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ABSTRACT

The vast majority of the Earth system is inaccessible to direct observation. Conse-
quently, the structure and dynamics of the Earth can only be determined indirectly,
via geophysical sensing. These methods have the mathematical form of an inverse
problem, in which the data and the unknowns are linked by a physical process, such
as seismic wave propagation. From the possibly noisy data, we have indirect access
to the unknowns. The vast majority of geophysical inverse problems are ill-posed,
and require the provision of a priori knowledge to stabilize the solution. This thesis
investigates methods for designing inverse problems to better take advantage of geo-
physical or geological constraints, to allow better resolution or more interpretability
of the solutions. Four major themes are investigated: In Chapter 2, we study the
collection of a novel dataset of Rayleigh wave horizontal-to-vertical ratios to provide
stronger constraints on upper-crustal structure in Southern California. In Chapters
3 and 4, we develop a method for wavefield-reconstruction of sparse seismic data,
including heterogeneous networks consisting of both displacement and strain in-
struments. This method amounts to an inversion in data-space, and promises to
unlock the potential of wavefield based methods for complex datasets. In Chapters
5 and 6, we investigate a new structural parameterization based on a combination
of Gaussian processes and the level-set method, that better models discontinuous
geological features such as sedimentary basins. We test our method on a variety
of synthetic and real datasets, culminating in a detailed study of the northeastern
Los Angeles basin, which we found to be significantly deeper and steeper than in
previous models. Finally, we develop a method of model selection for noisy histor-
ical datasets, which we investigate using the case study of correcting Oldham’s data
misinterpretation in the 1906 paper that “discovered” Earth’s core.
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C h a p t e r 1

INTRODUCTION

Elucidating the full 3D heterogeneity Earth’s interior processes is one of the grand

challenges of 21st century Earth science. From the multi-million-year deep tectonic

processes providing Earth’s climostat, to the amplification of earthquake shaking

in the seconds the energy takes to cross a shallow sedimentary basin, essential

questions of Earth structure ranging at all time and spatial scales remain to be

resolved. The most detailed information we have about the Earth’s interior derives

from seismology. The basic 1D wave equation, with displacement u and wavespeed

c,
∂2u
∂t2 − c2 ∂

2u
∂x2 = 0, (1.1)

is hyperbolic, and has solutions of the form u(x, t) = f (x − ct) + g(x + ct). Qual-

itatively, this type of controlling equation allows information from deep within the

Earth to be maintained and carried to the surface, and as such seismic imaging has

proven incredibly fruitful. Despite this useful property, the physics of viscoelastic

wave propagation and the incomplete illumination of the Earth’s interior by the

seismic data recorded to date means that the problem of recovering Earth structure

from seismic data is fundamentally ill-posed. This thesis aims to improve both the

quality of data and the quality of inversion methods used to solve seismic inverse

problems, with a particular focus on upper-crustal structure in the western United

States, a region of interesting tectonics and high seismic hazard.

1.1 The Structure of Inverse Problems

At the heart of geophysical inverse problems we usually find an equation of the form

y = G(m). (1.2)
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This equation combines the three key parts of the inverse problem: the data y; the

unknowns m that we seek to infer from the data; and a mapping G between the two

(Dashti and Stuart, 2013). The mapping G may be linear or nonlinear. In practice,

data is normally observed with noise, so that in practice we are dealing with the

equation

y = G(m) + e, (1.3)

from which two problems arise; firstly, G may not have a unique inverse, and

secondly, that even ifG has a unique inverse (so thatwe could obtainm = G−1(y−e)),

we do not know what e is. For this introduction, we will assume uncorrelated noise

with some characteristic level σ, but the noise could in principle have additional

structure. Concisely stated, geophysical inverse problems are ill-posed—finite,

noisy data will never be sufficient to perfectly recover unknown continuous Earth

structure. In order to solve the inverse problem, additional a priori information

must therefore be added, beyond what is provided by the data. The probabilistic

formulation gives the natural setting for adding this a priori information. The

fundamental object of interest in the probabilistic setting is the joint distribution of

data and unknowns p(y, d). Using the law of conditional probability and rearranging

we have Bayes’ theorem:

p(m |y)p(y) = p(y |m)p(m) (1.4)

p(m |y) =
p(y |m)p(m)

p(y)
, (1.5)

which may intuitively be read as

posterior =
likelihood × prior

evidence
. (1.6)

The posterior is what we are interested in—given the data, what is the probability

distribution of unknowns? The likelihood, or the distribution of data given the

unknowns, expresses the goodness of fit of our potential solution. The prior encodes
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the additional knowledge about the unknowns, and the evidence tells us how likely

the data is given the class of model being fit. The evidence is difficult to calculate,

and is fixed for a particular class of model, so Bayes’ theorem is normally given in

the proportional form

p(m |y) ∝ p(y |m)p(m). (1.7)

The interplay between the class of model (which determines the form of the un-

knowns m, the choice of likelihood function, and the prior, determines the outcome

of the inverse problem. The most typical choice of both the likelihood and the prior

is the normal distribution, with the a priori information being encoded by some

operator R, so that the posterior has the form

p(m |y) ∝
1

√
2πσ2

e−
| |G(m)−y | |2

2σ2 ·
1
√

2π
e−R(m), (1.8)

from which we can take the negative log to obtain

− log p(m |y) ∝
||G(m) − y | |2

2σ2 + R(m), (1.9)

if we assume a fixed data noise level σ. Finding the minimum of the negative log-

posterior is equivalent to finding the maximum a posteriori point (MAP point), and

shows the close relationship between a typical Bayesian geophysical inverse problem

and (non)linear least-squares inversion. The often-raised assertion that probabilistic

formulations are inherently subjective and therefore untrustworthy, when compared

to regularization based approaches (Parker, 1994), can be seen to bemade under false

pretenses. The probabalistic formulation and the regularization based formulation

have the same structure in most geophysical inverse problems, with the probabilistic

approach merely giving a fuller account beyond just the MAP point. The main areas

in which subjectivity plays a role are the choice of the regularization operator R,

and the form of the model parameterization—how the unknowns m are translated

into Earth structure—and regularization based approaches have no special claim
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over objectivity in this regard. A particularly common form of regularization or a

priori knowledge is the setting of R to a linear operator—this is commonly referred

to as Tikhonov regularization (Aster et al., 2018), with R = I and R = ∇2 often

seen. If m directly represents the Earth by encoding the values of geophysical

parameters at voxels, then these two choices have an obvious interpretation. R = I

penalizes deviations from zero, so a model with small amplitude is preferred; this

choice is often used if the inverse problem is in a perturbative setting relative to

a simpler reference model. R = ∇2 penalizes the roughness of the model, noting

that there is no penalty to constant or linear models with this regularization. It is of

course a subjective choice as to what a priori knowledge one encodes in an inverse

problem—or equivalently, what penalties to include in the regularization!

Equally important is the choice of model parameterization. In geophysics, the two

most common approaches are to use voxel based parameterizations, which have

the advantage of directly representing Earth structure, and spectral representations,

which often have particularly expedient mathematical properties. However, both

of these common forms have significant drawbacks. In particular, spectral repre-

sentations are inherently global and so struggle to represent datasets with spatially

dependent resolution optimally. Voxel representations are typically more flexible

due to spatial locality, but normally require very strong regularization for inversion

stability, which often results in a blurry and uninterpretable output image. Using

more opinionated model parameterizations transfers the workload of inversion sta-

bility from the regularization onto the parameterization, which is often easier to

reason about using a priori geological knowledge; this is a concept that we inves-

tigate in this thesis in Chapters 5 and 6. Another approach of interest is that we

may perform inversion in the data space itself, solving the problem of ill-posedness

by synthesising additional data from observations. This is implicitly the approach

taken in the recently popular wavefield tomography methods, such as eikonal and
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Helmholtz tomography (Lin and Ritzwoller, 2011; Lin et al., 2009), which directly

solve for Earth structure products without incorporating a true tomographic inverse

problem, per se. Instead, they rely on adequately interpolating the observed seismic

data such that the constitutive properties can be directly retrieved, i.e. the inverse

problem is fundamentally in the data space. Data space inversions are increasingly

important given the proliferation of large seismic arrays, and we investigate methods

for performing them in Chapters 3 and 4.

1.2 Overview

This thesis presents the full lifecycle of the geophysical inverse problem, from initial

collection of data, to preliminary analyses, design of the inverse problem, algorithms

for obtaining a solution, and finally the selection of a final model from a principled

basis. The work is laid out in roughly this order, although each chapter often cuts

across multiple stages of the inverse problem workflow. The predominant theme

throughout the work is to go beyond “standard” techniques to explore methods that

may allow greater insight into earth processes, whether by obtaining a novel and

particularly informative dataset, analysing this data in a powerful way or by bringing

in a priori geophysical knowledge into the inversion process.

We begin in Chapter 2 with a presentation of the study of the shallow crust of South-

ern California from the horizontal-to-vertical (H/V) ratios of Rayleigh waves. H/V

ratios have a sensitivity depth approximately 1/3 that of Rayleigh phase velocity

measurements at the same frequency, meaning that they are particularly well suited

for isolating near-surface structures. By using the ambient-noise cross-correlation

method to observe coherent Rayleigh wave propagation between pairs of stations in

the Southern California Seismic Network, we observed H/V ratios at substantially

higher frequencies than reported by previous authors, allowing for high-resolution

imaging of sedimentary basin structure. This chapter broadly illustrates the themes
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of the thesis overall, including the selection of an appropriate dataset & the devel-

opment of an inverse problem to best exploit it.

In Chapters 3 and 4 we develop a comprehensive treatment of the interpolation

of sparse seismic wavefields using compressive sensing. Beginning with direct

observations of the time derivatives of the displacement wavefield in Chapter 3, we

propose performing a two-stage wavelet transform consisting of a discrete wavelet

transform in time followed by a Laplacian-preconditioned curvelet transform in

space. To handle incomplete spatial data, we perform the curvelet transform in

the compressive sensing setting, which poses the transform as an inverse problem

with sparsifying regularization. Laplacian preconditioning promotes smoothness

of the solution up to the second spatial derivative, promoting interpolations that

satisfy the seismic wave equation. Consequently, the interpolatedwavefields derived

from this method may be used for advanced seismic data processing methods,

such as wavefield gradiometry and Helmholtz-Hodge decomposition. In Chapter

4, we extend the methodology to incorporate strain measurements. We test the

methodology using data from the Porotomo experiment (Feigl and Parker, 2019),

which co-deployed temporary seismometers and fibre-optic distributed-acoustic-

sensing (DAS) to a geothermal field at Brady, Nevada, and assessed the performance

of both the individual seismic andDASnetworks, aswell as the heterogeneousmixed

network, and found that the wavefield reconstruction paradigm was particularly

useful in empirically quantifying the site response of the DAS cable, a current major

research question that must be resolved before robsut DAS becomes widespread.

Using our reconstruction framework, we also proposed methods for improving the

fidelity of DAS records to true ground motions using homogenization theory, and

also investigated the optimal design of mixed point-sensor and strain deployments

within the compressive sensing setting.

In Chapters 5 and 6, we turn our attention from inverse methods for data collection to



7

inverse methods for the determination of Earth structure. Given that seismic inverse

problems require some kind of a priori knowledge for their solution, we developed

a methodology for explicitly introducing geologically motivated regularizations via

the level-set method. By using level-sets, we can simplify the difficult problem of

parameterizing explicit geological features (which may have an unknown topology)

by defining them implicitly using the contour levels of a higher-dimensional latent

field. We lay out the structure of this method, and its application to several synthetic

and real-world travel-time tomography examples, in Chapter 5. In Chapter 6, we

applied our method to a large-scale problem of real-world importance—the structure

of the northeast Los Angeles (LA) basin. The Mw 6.4 and Mw 7.1 July 2019

Ridgecrest earthquakes generated strongly-excited surface waves within the basin

(Filippitzis et al., 2021; Kohler et al., 2020). The pattern of amplification was poorly

predicted by existing 3D velocity models, however the recent deployment of the

permanent strong-ground-motion Community Seismic Network (CSN) introduced

the possibility of updating these models using the Ridgecrest data using a dense

network of stations. We used our level-set based method to invert for a basin update

using Love-wave phase velocities and amplitudes, and found that the northeast

LA basin is most likely significantly deeper, and with steeper sidewalls, than the

existing reference model CVM-S4.26, which substantially changes the amplification

characteristics of the basin. On the other hand, the basin depth in the most northerly

part of the array is shallower than in the seismic models, which brings our model

into concordance with the current understanding of the geology of the area. In

Chapter 6, we also introduce a novel inversion scheme based on an extension of the

Ensemble Kalman Sampler (Garbuno-Inigo et al., 2020) that efficiently calculates a

derivative-free Bayesian approximate solution to the inverse problem for hierarchical

parameterizations.

Finally, having obtained data and developed models from that data in the previous
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chapters, we move on to the assessment of these models in Chapter 7. In the Earth

sciences, there are often a range of parameterizations that are a priori reasonable,

and so before doing the inversion we have no justifiable basis on which to pick

one in particular. After performing the inversion, however, we have obtained more

information, and can use that to reason about our decision as to which model to

use in the future to make further predictions. Picking the best fitting model is

rarely the best choice, as we inevitably encounter the problem of overfitting, leading

to poor predictive accuracy. Using the famous travel-time curve of R.D. Oldham

(Oldham, 1906) as an example, we developed a Bayesian framework for handling

model selection for very imprecise data for which inaccuracies were present in both

dependent and independent variables (as is often the case in historical datasets). We

found that there was robust statistical evidence for Oldham’s original conclusion

that the Earth had a core using only a small subset of his data; it is now well known

that the full dataset was fundamentally misinterpreted in the original paper.
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C h a p t e r 2

RAYLEIGH-WAVE H/V VIA NOISE CROSS CORRELATION IN
SOUTHERN CALIFORNIA

Muir and Tsai (2017) previously published as

Muir, J. B. & V. C. Tsai (2017). “Rayleigh-Wave H/V via Noise Cross Correlation

in Southern California”. In: Bulletin of the Seismological Society of America

107.5, pp. 2021–2027. doi: 10.1785/0120170051

2.1 Abstract

We study the crustal structure of Southern California by inverting horizontal-to-

vertical amplitudes (H/V) of Rayleigh waves observed in noise cross-correlation

signals. This study constitutes a useful addition to traditional phase-velocity based

tomographic inversions due to the localized sensitivity of H/V measurements to the

near-surface of the measurement station site. The continuous data of 222 permanent

broadband stations of the Southern California SeismicNetwork (SCSN)were used in

production of noise cross-correlation waveforms, resulting in a spatially dense set of

measurements for the Southern California region in the 2.5–37.5 s period band. The

fine inter-station spacing of the SCSN allows retrieval of high signal-to-noise ratio

(SNR) Rayleigh waves at periods as low as 2.5 s, significantly improving the vertical

resolution of the resulting tomographic image, compared to previous studies with

minimum periods of 5–10 s. In addition, horizontal resolution is naturally improved

by increased station density. Tectonic sub-regions including the Los Angeles Basin

and Salton Trough are clearly visible due to their high short-period H/V ratios, while

the Transverse and Peninsular Ranges exhibit low H/V at all periods.
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2.2 Introduction

The development of noise cross-correlation techniques constitute one of the ma-

jor developments of observational seismology in the past 15 years (Shapiro and

Campillo, 2004). As a result of the many possible pairs of stations in a seismic net-

work such as the SCSN (n(n − 1)/2 independent pairs for a network of n stations),

and the lack of dependence on earthquake source location, noise cross-correlation

has delivered a level of data density that was unprecedented little more than a decade

ago.

The fundamental result of the noise cross-correlation technique is that cross-

correlating an ambient noise wavefield between two points results in a signal ap-

proximately proportional to the causal and anti-causal far-field Green’s function

between those two points (Boschi and Weemstra, 2015; Snieder, 2004). Practically,

waveforms approximating the displacement Green’s function between two seismic

stations can be constructed by correlating noise traces (of length sufficient to capture

the phase of interest) at each station in the time domain, and then stacking them to

produce an average (Bensen et al., 2007).

The power spectral density of seismic noise is at a maximum in the 5-20 s period

band, as a result of the primary and secondary oceanic microseisms at peak periods

of 15 and 7 seconds respectively (Ardhuin et al., 2015). The dominance of oceanic

noise also means that the global noise wavefield is primarily generated near the

Earth’s surface. Consequently, the seismic mode best observed in noise cross-

correlation measurements is the short-period fundamental mode Rayleigh wave, as

it is well excited by surface noise sources in this period band.

It has been generally thought that Rayleigh waves are more easily observed in noise

cross-correlation than Love waves as P-SV motion is excited at the Earth’s surface

at a greater rate than SH motion. Cross-correlation studies have therefore focused
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heavily on Rayleigh-wave techniques, especially the traditional measurements of

phase and group velocities for tomographic imaging (Shapiro et al., 2005), although

some studies have shown that Love waves may be clearly observed (Lin et al., 2008).

As the cross-correlation technique matures, amplitude information derived from

noise cross-correlation studies has begun to supplement velocity measurements.

Absolute amplitudes of noise cross-correlations, or even relative inter-station am-

plitudes, are difficult to interpret theoretically due to the differing effects of real

noise distributions (e.g. Tsai (2011)); however, the amplitude ratios between noise

cross-correlation components are more robust due to common noise source and

wave propagation, particularly if care is taken to jointly, rather than independently,

normalize all components (Lin et al., 2014). We note that noise cross-correlation

derived H/V match earthquake H/V in their overlapping period range, providing

empirical evidence of the robustness of the noise derived H/V (Lin et al., 2014).

Similarly to traditional event waveform horizontal-to-vertical (H/V) amplitude ra-

tios of Rayleigh waves, H/V of noise cross-correlations are highly sensitive to upper

crustal structure in the immediate vicinity of the receiving station.

H/V ratios derived from single-station noise power spectral densities have the ad-

vantage of being easy to derive from even short deployments. However, it is difficult

to definitively interpret single station measurements; they have been variously in-

terpreted in terms of Rayleigh waves (Boore and Toksoz, 1969; Fäh et al., 2001),

vertically propagating SHwaves (Nakamura, 2000) or diffuse-wave theory (Sánchez-

Sesma et al., 2011). The noise cross-correlation method presented here does not

suffer from this theoretical uncertainty. The use of noise cross-correlation traces

instead allows for clear identification of Rayleigh waves by observation of elliptical

particle motion and windowing of seismograms around the expected Rayleigh-wave

arrival time. Hence, H/V ratios derived from noise cross-correlations may be inter-

preted using Rayleigh-wave forward modeling. H/V ratios are especially sensitive
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to basin structures, in which the large impedance contrast between the basin ma-

terial and underlying bedrock results in a characteristically peaked H/V spectrum,

exhibiting a basin resonance effect.

Figure 2.1 shows that Rayleigh-wave H/V sensitivity is concentrated at the near-

surface, relative to the sensitivity of Rayleigh-wave phase velocities for the Hadley-

Kanamori 1D velocity model of the Transverse Ranges, which is commonly used

as a reference velocity model for Southern California (Hadley and Kanamori, 1977;

Hutton et al., 2010). Sensitivity is even greater close to the surface for models con-

taining low-velocity basins, as the eigenfunction amplitudes become sharply peaked

in the basin at resonant frequencies. This high surface sensitivity, with suppressed

sensitivity at depth relative to phase-velocity measurements, makes Rayleigh-wave

H/V ratios an exciting prospect for highly vertically resolved tomographic studies

of the near surface.

In this study, we have employed the regionally dense permanent Southern Cal-

ifornia Seismic Network (SCSN) to observe H/V values in Southern California.

Southern California is an ideal test site for new seismic methodologies because it

is simultaenously structurally complex, and well studied. Thus, there is a wealth

of comparisons that can be made with previous results. Cutting edge tomographic

results in especially complex regions, such as the Los Angeles Basin, rely on joint in-

version for many seismic observables, up to and including full waveform inversions

for which the forward problem is prohibitively expensive for many applications,

and a high quality initial 3D model is required. In comparison, ambient noise

cross-correlation is relatively inexpensive, with good results available after only a

several-months long deployment of a small broadband network. H/V tomography

(e.g. Li et al. (2016); Lin et al. (2012, 2014)) has utilized noise cross-correlations

and long-period Rayleigh waves in a combined period band of 8–100 s. The 8–100

s period band results in good vertical resolution at a continental scale and combined
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(b)(a) (c)

Phase Velocity Sensitivity (Fractional) H/V Sensitivity (Fractional)Speed (Km/s) / Density (g/cm3)

Figure 2.1: (a) Southern California Hadley-Kanamori 1D velocity model for P
wave velocity (VP), S wave velocity (VS) and density (ρ) to a depth of 200km. (b)
Rayleigh-wave phase velocity sensitivity to perturbations in VP, VS and ρ at depth
at a period of 10s. (c) Rayleigh-wave H/V sensitivity to perturbations in VP, VS and
ρ at depth at a period of 10s.
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with phase-velocity measurements is sensitive to the whole crust; however, it does

not contain the short-period data necessary to image the upper 10 km of the crust

at kilometric length scales. Expanding the period range of Rayleigh-wave H/V via

noise cross-correlation techniques, to a minimum period of 1 s should therefore

prove especially useful in maximizing the utility of preliminary regional crustal

studies, where events during station deployment are limited and the regional crustal

model is of poor resolution.

2.3 Methodology

Three-component broadband (BH channel) data were obtained for the year 2015, for

222 permanent stations of the SCSN. The data were divided into 1 hour segments.

The data were then pre-processed using the methods described in Bensen et al.

(2007), with the followingmodifications: In order to facilitate efficient computation,

the data were decimated from their natural sampling rate of 40Hz to 5Hz after being

low-pass filtered to prevent aliasing. Note that the cutoff for the low-pass filter

is 1Hz, well above the 0.4Hz maximum frequency used for computing H/V ratios

for this study, and so does not effect reported results. For each station, all three

components were normalized in the time and spectral domains using a common

normalization signal, to maintain the relative amplitude information necessary for

H/V ratio measurement; in contrast to coherency measurements of amplitude this

method allows for a meaningful measurement of amplitude ratios. The common

signals used to normalize the time and spectral domain records were taken to be

the means of the single component signals for each channel, as described in Bensen

et al. (2007).

H/V ratio measurements were then performed following Lin et al. (Lin et al., 2008).

Nine component cross-correlations between all station pairs were calculated for each

hour; the resulting cross-correlations were then stacked for all available hours in
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(a)
CI.PASC

CI.PASC

CI.PASC

(b)
CI.USC

CI.USC

CI.USC

Figure 2.2: Waveforms and particle motions, filtered to a central period of 12.5s, for:
(a), a hard rock site (Pasadena Arts Center, SNR of 92); (b) a basin site (University
of Southern California, SNR of 73). The colored area shows the time interval used
for H/V calculation.
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2015 to produce the final hour-long averaged traces. To calculate H/V ratios, the

cross-correlations were rotated from the measurement (east-north-vertical or ENZ)

frame into the radial-transverse-vertical (RTZ) frame between the two stations,

and then filtered to the period of interest using a Butterworth bandpass filter. To

simultaneously rotate all 9 components into the correct RTZ frames, the rotation

matrix may be simply calculated asM =M1
⊗

M2 whereM1,2 are the 3 component

rotation matrices from the ENZ to the RTZ frame for the individual stations and⊗
is the Kronecker product. This calculation extrapolates to the case of a general

3D rotation—see Laub (2005) Chapter 13. We also calculated empirically derived

backazimuths from ZR/ZT particle motion ellipses to account for any effect raypath

bending away from the great-circle arc may have on the calculated H/V ratios. Using

the empirical backazimuths increased the H/V ratios by a maximum of 10% in the

7.5–12.5 s period band; however, as rotation by the empirical backazimuths did

not appear to substantially improve the calculated waveforms, we report only the

great-circle path rotated results here.

To avoid misidentifying higher-mode Rayleigh waves as the fundamental mode of

interest, the theoretical arrival times of the fundamental mode and first overtone

were calculated, and the signal before the mean of these times removed. The

phase gradient of the identified peak was logged to record the sense of motion

of the arrival. As noted by Tanimoto and Rivera (2005), the sense of motion is

period dependent and may switch from retrograde to prograde for the fundamental

mode in the presence of steep surface velocity gradients, which can complicate

the identification of the fundamental mode. As a result, further discrimination

between potential first overtone and fundamental mode signals was not performed

using the phase gradient. Furthermore, record sections of the calculated noise-

cross correlations do not show coherent move-out of the first overtone. The root-

mean-squared amplitude of the waveform near the maximum of the envelope of
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each component was then used to make amplitude ratio measurements between

components. Example waveforms, with the time intervals used for the calculation

of H/V intervals highlighted, are shown in Figure 2.2.

Once the H/V values for each station pair were collected, quality control was further

performed by removal of low (<15) signal-to-noise ratio (SNR) measurements,

with the last 100 s of the causal cross-correlation taken as the noise reference. The

four components of interest in calculating H/V ratios (out of the nine calculated

components) are ZZ, ZR, RZ, and RR, where the first letter corresponds to the

component of the “source” and the second to the “receiver” for the causal cross-

correlation signal (i.e. ZR corresponds to a vertical impulse at the virtual source

being recorded on the radial component of the receiver). Both ZR/ZZ (initial

vertical impulse) and RR/RZ (initial radial impulse) H/V measurements may be

made; however, as the RR component of the causal cross-correlation failed the

SNR criterion at a much higher rate than ZZ and ZR, the RR/RZ H/V values

are not reported in this study. For each receiver station, each virtual source that

satisfied the SNR criterionwas used to generate summative H/V spectra. The ZR/ZZ

H/V measurements are approximately log-normally distributed; for the purposes of

inverting for velocity structure we assume that they follow a log-normal distribution

at each period, for each receiver. Inter-station spacing varies widely throughout the

SCSN, with the densest spacing in the Los Angeles basin. As H/V is principally

dependent only on structure local to the receiver, the station density should not

influence the inversion results with the possible exception of fewer short-period data

in regions with low station density, as the amplitude of short-period waves decay

rapidly with distance.

The resultant log H/V spectra were then used to invert for 1D near-surface struc-

ture underneath each of the available SCSN stations using the genetic algorithm

global function minimizer provided by MATLAB. A 1D average velocity model
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for Southern California provided by SCEC was used as the initial parametrization

(Hutton et al., 2010). This smoothed initial parametrization captures some of the

efforts of previous tomographic results, without overly conditioning the prior infor-

mation. Theoretical H/V values were calculated using the finite element method of

Lysmer (1970) to solve for Rayleigh-wave fundamental-mode eigenfunctions. The

earth structure was parametrized by 5 layers (0-500 m, 500-1000 m, 1000-2000 m,

2000-4000 m, 4000-8000 m), with the VP/VS and VP/ρ ratios set by the empirical

relationships of Brocher (2005). This parametrization was chosen since five lay-

ers was the minimum required to fully fit the observed H/V peaks; the increasing

layer thicknesses with depth helps to avoid overspecification of the forward model;

however, the choice of parametrization was ultimately subjective.

2.4 Results and Discussion

Figure 2.3 shows an example of the median of the collected H/V results, in this

case for central periods of 5 s and 17.5 s. The median H/V, standard deviation of

the H/V logarithms and the counts exceeding SNR at each station at all periods

from 2.5–37.5 s s are available in the electronic supplement to this article, figures

S1-S15. A table of data containing all recorded amplitudes and SNRs is available as

supplementary Table S1. Major sedimentary basin regions of Southern California

(the Los Angeles Basin and the Salton Trough) are clearly visible as regions of

elevated H/V ratios, particularly in the 5–20 s period band. Basins with smaller land

surface expressions (Ventura Basin, Santa Maria Basin) and with fewer deployed

seismometers (Central Valley) are also visible on a limited selection of stations.

We expect the H/V ratios at each station to be closer to log-normal than normal in

distribution (as the amplitudes are a product of many positive multiplicative factors).

Maps of the standard deviation of the H/V logarithms show little correlation with

known structures, other than a general increase within the Los Angeles Basin (see
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(a)

Median H/V Ratio at 5s Period

(b)

Median H/V Ratio at 17.5s
Period

Figure 2.3: H/V aggregate measurements using the ZR & ZZ cross-correlation
components at central filtering periods of: (a) 5s; (b) 17.5s. Inset plots show the
Los Angeles basin area; note the different color scales for each subplot.
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Figure 2.4: Example boxplots of H/V spectra with lines from fitting a layered
structure (black) for (a) a hard-rock site (Pasadena Arts Center) and (b) a basin site
(University of Southern California). Boxes show the middle 50th quantile of H/V
ratio measurements at a particular period, with red bars showing the median. The
lower and upper whiskers are at the 25th quantile minus 1.5 times the interquartile
range (IQR) and the 75th plus 1.5 times the IQR, respectively, with remaining
outliers shown as crosses. The dashed black lines show the predicted absolute H/V
values from the Harvard Community Velocity Model (CVM-H).

Figures S31-S45, available in the electronic supplement to this article). It is difficult

to speculate on the underlying cause behind the differing variance in H/V ratios, as

it does not show consistent trends with either values of the H/V ratio, number of

measurements exceeding the SNR criterion, the backazimuth to the source station,

distance to the ocean (the predominant noise source at most periods), or station

density.

Figure 2.4 shows two examples of H/V spectra as a function of period exhibiting

typical hard-rock and basin site features. The H/V spectra is generally well fit by

a five layer parameterization for nearly all stations. There is significant tradeoff

between basin depth and near-surface velocity within inversions; however, fitting

both the width and amplitude of the H/V peak, if present, does allow for basin depth

and velocity to be independently resolved. Figure 2.5 shows the inverted VS maps

for the top two layers of the parametrization that result from use of the measured
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Figure 2.5: VS models, inverted using ZR/ZZ data, for depth ranges of (a) 0–500 m
and (b) 500–1000 m. Inset plots show the Los Angeles basin area; note the different
color scales for each subplot.
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ZR/ZZ H/V ratios. Basin structures are clearly observable within the inverted

VS model as regions of depressed velocity persisting several kilometers into the

crust. We performed an ensemble Markov-Chain Monte-Carlo (MCMC) inversion

of the vertical velocity profile underneath CI.USC to assess the uncertainties in

the inversion results (see Figure S51, available in the electronic supplement to this

article) using the emcee Python package, which natively handles the non-linear and

highly correlated likelihood surface of the forward problem (Foreman-Mackey et al.,

2013). The results show increased confidence in the inversion of the near surface

parameters, as expected from the sensitivity behavior of H/V ratio measurements.

The extensive computational requirements of theMCMC sampling process preclude

us from performing this analysis for all stations.

A notable inference that can bemade from Figure 2.5 is that inversions based on H/V

ratios suggest a shallower effective basin depth (in the sense of horizontal seismic

amplification) than is currently defined within the Southern California community

velocity models (CVMs), of which we use the Harvard CVM (CVM-H, Shaw et al.

(2015)). Ma and Clayton (2016), using Rayleigh and Lovewave dispersion along the

Los Angeles Syncline Seismic Interferometry Experiment (“LASSIE”), also found

a shallower layer of very low velocities in the Los Angeles Basin than that contained

in the CVM-H basin, although their deep velocity structure is more similar to the

CVM-H than ours. The theoretical H/V ratios predicted by the CVM-H model

are shown in Figure 2.4 as dashed black lines; for the USC station example the

CVM-H predicts a larger amplitude and longer period than found in the empirical

data. The mismatch between H/V ratios predicted by CVM-H and those measured

empirically is frequent within basin areas; as can be seen in the PASC example,

in hard rock sites the spectra is quite flat and there is not as strong evidence for

potential mismatches within the period range studied here. Matsushima et al. (2014)

and others have invoked non-planarity of subsurface interfaces to explain similar
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discrepancies between observations and theory in microtremor H/V ratio data, and

have obtained similarly reduced amplitudes and shorter periods. However, the

effect they observed is significantly weaker than the mismatches between CVM-H

predicted H/V and the H/V we have observed. Additionally, the effect of non-

planar interfaces (and anisotropic velocity) should be apparent as an azimuthally

dependent H/V ratio, for which there is only weak evidence in our dataset. Further

exploration of this effect requires a large scale numerical simulation of ambient

noise propagation within Southern California and is therefore outside the scope of

this paper.

2.5 Conclusions

We have obtained noise cross-correlation derived measurements of Rayleigh-wave

H/V ratios for the Southern California Seismic Network in the 2.5–37.5 s s period

band. Robust statistics are obtained for the majority of stations, showing clearly

elevated H/V ratios within the major basin regions of Southern California within

the 5–20 s period band. The H/V ratios have also been inverted for 1-D profiles of

VS beneath the recording stations.

These results confirm the ability of dense seismic arrays to produce useful H/V

measurements at shorter periods than in the optimally excited oceanic microseism

period band. Recorded patterns of H/V ratios correlate very well with known

structure in Southern California throughout the period range studied. These results

provide a useful additional constraint on near surface structure that may be folded

into large collaborativemodels such as the CVM-H, evenwithin their high resolution

basin zones, and could potentially improve near-surface resolution within the less

studied areas of the Southern California region. Within this study, the use of a single

theoretical framework (surface wave inversion) results in a self-consistent map of

VS, unlike existing CVMs which are often nonphysically discordant as a result of
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resolution changes across the model according to data availability. Furthermore,

the good concordance with known structure validates the use of short-period H/V

measurements to develop detailed near-surface crustal models underneath other

seismic arrays where the underlying crustal structure is less well known.

Inversion of 1D structure underneath a single station using either H/V values, or

phase-velocity, is by necessity under-determined. This is a consequence of the

significant tradeoffs between the three principle seismic parameters seen in the

sensitivity kernels of Figure 2.1, for bothH/V ratios and phase velocities. Removal of

these tradeoffs would require the calculation of phase-velocity dispersion curves for

the stations using this study. Incorporation of this data would also extend the depth

to which the inversion is sensitive; however there would also by necessity be some

mapping of deeper structure into the shallow upper crust observed by H/V ratios,

dependent on the relativeweighting of datasets. Use of onlyH/V ratiomeasurements

in an inversion for velocity structure is an illuminating exercise in that it is by physical

necessity only sensitive to the near surface and consequently does not suffer the

poorer depth resolution of phase-velocity measurements. Accurate assessment of

the relative data uncertainty will be required for a future joint inversion using both

H/V ratio and phase velocity datasets. The decrease in measurements exceeding

the SNR requirement at shorter periods indicate that this study has approached

the limit of the short-period range accessible to noise-cross correlation surface

wave measurements using the SCSN. This study therefore presents the best vertical

resolution of the near surface crust achievable using regional surface waves in

Southern California using current instrumentation.

2.6 Data and Resources

All available waveform data from the SCSN in the year 2015 were downloaded us-

ing the Seismogram Transfer Program (Southern California Earthquake Data Center
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(SCEDC), 2013; http://scedc.caltech.edu/, last accessed July 2017). Sta-

tion data were downloaded using the ObsPy International Federation of Digital

Seismographic Networks client service (Beyreuther et al., 2010). MATLAB’s ge-

netic algorithm global functionminimizers were used to invert horizontal-to-vertical

(H/V) ratios for velocity structure (www.mathworks.com/products/matlab, last

accessed July 2017). Maps were created using Cartopy (http://scitools.org.

uk/cartopy/, last accessed July 2017), with background images provided by Sta-

men Terrain.
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C h a p t e r 3

SEISMIC WAVEFIELD RECONSTRUCTION USING A
PRECONDITIONED WAVELET-CURVELET COMPRESSIVE

SENSING APPROACH

Muir and Zhan (2021) previously published as

Muir, J. B. & Z. Zhan (2021). “Seismic Wavefield Reconstruction using a Precon-

ditionedWavelet-Curvelet Compressive Sensing Approach”. In: Geophysical

Journal International 227.1, pp. 303–315. doi: 10.1093/gji/ggab222

3.1 Abstract

The proliferation of large seismic arrays have opened many new avenues of geo-

physical research; however most techniques still fundamentally treat regional and

global scale seismic networks as a collection of individual time series rather than as

a single unified data product. Wavefield reconstruction allows us to turn a collection

of individual records into a single structured form that treats the seismic wavefield

as a coherent 3D or 4D entity. We propose a split processing scheme based on a

wavelet transform in time and preconditioned curvelet based compressive sensing

in space to create a sparse representation of the continuous seismic wavefield with

smooth second order derivatives. Using this representation, we illustrate several ap-

plications, including surface wave gradiometry, Helmholtz-Hodge decomposition

of the wavefield into irrotational and solenoidal components, and compression and

denoising of seismic records.

3.2 Introduction

The character of progress in observational seismology has to a large extent been

controlled by the quality and quantity of data. As such, the increasing availability
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of seismic arrays with large numbers of instruments (large-N arrays) to the research

community has become one of the major instrumentation themes of 21st century

seismology. Array seismology brings both opportunities, in the form of spatial anal-

ysis techniques such as backprojection (Kiser and Ishii, 2017), eikonal / helmholtz

tomography (Lin and Ritzwoller, 2011; Lin et al., 2009) and wave gradiometry (de

Ridder and Biondi, 2015; Langston, 2007a,b), as well as challenges associated with

processing ever larger data volumes (Kennett and Fichtner, 2020). These technical

trends will increase as more large-N array data is recorded, especially with the ad-

vent of Distributed Acoustic Sensing (DAS) arrays, from which data sets with many

thousands of channels recorded at 100 Hz are now routinely recorded (e.g. Li and

Zhan (2018); Lindsey et al. (2017); Williams et al. (2019); Yu et al. (2019)).

One of the most significant opportunities presented by large-N arrays is the transi-

tion from collections of individual seismograms to unified analysis of the seismic

wavefield as a single entity, for which we can evaluate the ground motion at an

arbitrary point in time and space within the array. In this study we use the term

wavefield reconstruction to describe the process of synthesising individual seismo-

grams into a coherent product. This product allows for additional analyses, such

as robust wavefield gradiometry (de Ridder and Biondi, 2015), that fully utilize the

behaviour of the wavefield in both space and time.

Ensuring that seismic instruments are of sufficiently high quality to measure ground

motions to high fidelity in time was one of the great instrumentation achievements of

the last century of seismology. However in most research settings, spatial sampling

of the wavefield is insufficiently dense to capture all details of interest within the

desired temporal frequency bandwidth. Because seismic arrays used in research

settings typically only take sparse and uneven spatial measurements, the develop-

ment of methods for optimal reconstruction of the continuous wavefield is an open

research question. Industry scale results have typically focused attention to the
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problem of optimally filling missing or corrupted channels in an otherwise regu-

larly sampled deployment. Much effort in industry has recently focused on time

and scale localized transforms (e.g. Herrmann and Hennenfent (2008); Herrmann

et al. (2008)), which can allow for sparser representation of complex wavefields and

consequently improved robustness of the reconstruction under noise, but for which

the most efficient algorithms require structured data volumes.

At regional scales, methodologies have had to contend with the aforementioned

spatial sparsity. Suggested methods have included: perturbations of a reference

plane wave by smoothed splines (Sheldrake, 2002), applicability of which is limited

to single phases with constant slownesses across the array; radon transforms using

a general plane wave basis (Wilson and Guitton, 2007); compressive sensing using

a plane wave basis (Zhan et al., 2018); and recently tensor completion methods

utilising local rank-reduction to capture curved wavefronts (Chen et al., 2019b).

Past regional scale wavefield reconstruction methods have focused primarily on

plane-wave based reconstructions due to their attractive theoretical properties and

potential for good angular resolution given adequate array design; however the plane

wave assumption performs poorly for wavefields close to the source or with local

scattering, for which the full spatial frequency spectrum is required to reconstruct

the wavefield, leading to difficulties in resolving the required planewave coefficients.

In this study, we present a wavefield reconstruction method based on wavelet analy-

sis, specifically employing temporal wavelet analysis on individual seismic channels

and then employing weighted curvelets for spatial analysis. This algorithm allows

for a fully time/space and scale localized transform on unstructured seismic data.

The underlying physics of wave propagation in continuous media is controlled by

balancing the rate of change of momentum in a volume with the stress gradients (and

body forces) applied to the volume through Newton’s second law: ρ Üui = σi j, j + fi. If

the constitutive relationship of the medium is elastic, the stresses σi j are expressed
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in terms of strains σi j = ci j klεkl with εkl =
1
2 (ui, j + u j,i) (Aki and Richards, 2002).

These fundamental relationships of wave physics suggest an important considera-

tion in wavefield reconstruction; namely, that the physical wavefield does not depend

on the displacement field itself, but rather its second time derivative, and, approxi-

mately, its second spatial derivatives. This implies that any wavefield reconstruction

algorithm must attempt to not only fit the data, but also produce physically reason-

able second derivatives if wave physics is to be respected. Accurately recording

the spatial derivatives of the wavefield places significantly tighter constraints on

the quality and density of the recorded wavefield than does merely recording the

undifferentiated ground motions. The wavefield reconstruction algorithm presented

in this study promotes the reconstruction of wavefields that obey wave physics by

introducing a Laplacian based preconditioner into the compressive-sensing opti-

mization problem, and by recognizing that due to the non-stationary power content

of earthquake wavefields, a time-frequency representation is required to optimize

the regularization of the spatial reconstruction transform. After introducing the

algorithm, we present three case studies utilizing real seismic data to emphasise

practical applications.

3.3 Wavefield Reconstruction Algorithm

Data Quality Control and Processing

For the purposes of designing a data quality control and processing workflow, the

most notable characteristic of the proposed wavefield reconstruction algorithm is

that the final, compressive-sensing, step it is performed on the whole data volume

of an array simultaenously, rather than on a trace-by-trace basis. Therefore, the

algorithm requires that each individual trace has an equivalent instrument response,

or, if a heterogeneous collection of instruments is being used, that the instrument

response is removed from all traces to obtain true ground motions. Because the
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regularized curvelet inversion utilized in the spatial reconstruction step uses a least-

squares metric for assessing data fit, it is relatively sensitive to amplitude outliers.

Consequently, all examples in this paper using real datasets were manually checked

for malfunctioning channels, which were removed. For larger datasets, it is likely

that an automated procedure for identifying malfunctioning channels is required,

however as the method is likely to change depending on application, we have not

presented a general strategy here and instead describe what actions have been taken

for each example individually.

Wavelet Transform

Figure 3.1: Continuous Wavelet Transform (CWT) of two strong ground motion
accelerograms of the July 6 2019 Mw 7.1 Ridgecrest Earthquake. The CWT
highlights the general observation that the power of signals from seismic events is
typically non-stationary in both time and frequency.

After initial processing of the data, each record is then transformed into a time-

frequency representation via a wavelet transform. The wavelet transform comes

in both continuous and discrete forms; heuristically both act by representing the
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signal in terms of a scalings and translations of an underlying mother wavelet. The

behaviour with scale encodes the frequency characteristics of the signal, whilst the

translations encode behaviour in time. The choice of using a discrete (DWT) or

continuous (CWT) wavelet transform is determined by the objective of the study.

For a given mother wavelet ψ(t), the CWT of a given signal u(t) is given by

w( jw, s) =
1
√

jw

∫ +∞

−∞

u(t)ψ∗
(
t − s

jw

)
dt, (3.1)

where ψ∗ is the complex conjugate of ψ. As the CWT is overcomplete, the inverse

transform is non-unique, however the natural inverse (using the samemother wavelet

as the original transform) is given by

u(t) =
1
C

∫ ∞

0

∫ +∞

−∞

1
√

jw
w( jw, s)ψ

(
t − s

jw

)
djwds

j2
w

, (3.2)

with the normalising constant C calculated in the frequency domain by

C =
∫ ∞

0

ψ̃∗(ω)ψ̃(ω)

ω
dω. (3.3)

In practice, other functions may be simpler to implement—in this paper we use

the δ function reconstruction as suggested by Torrence and Compo (1998). This

normalising factor calculated in Equation 3.3 implies an admissibility condition,

which is that the mean of the mother wavelet (i.e. ψ̃(0)) be 0 so that the integral

converges.

The CWT provides high fidelity and for typical seismic wave packets the choice of

the Morlet mother wavelet is usually excellent. The (admissibility corrected) Morlet

used in this study is given by

ψ(t) = 4√π

(
eiω0t − e−

ω2
0

2

)
e−

t2
2 , (3.4)

where ω0 is a non-dimensional frequency constant, set here to 6 as suggested by

Torrence and Compo (1998)—we note that the Morlet is not strictly admissible but

the corrected form presented here is sufficiently close for practical purposes.
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The CWT has the advantage that it permits explicit processing in the time-frequency

domain, for example wavelet based denoising and windowing as suggested by

Mousavi and Langston (2016) and Langston and Mousavi (2019). However, the

CWT is redundant and so the computational complexity and storage requirements

of employing it are high. Figure 3.1 shows two filtered seismic waveforms and the

amplitude of their time-frequency representations by employing the CWT using a

Morlet mother wavelet. The most salient feature of the time-frequency represen-

tations of the CWT is that the signal power depends strongly on time within the

signal for each frequency, and strongly on frequency at each time, i.e. the signal

is non-stationary within the time-frequency domain. This suggests that the optimal

regularization parameter for compressive sensing in the curvelet domain is likely to

be different for each wavelet coefficient.

The DWT provides a more computationally efficient transform than the CWT. The

implementation details of DWT transforms are substantially more involved than that

of the CWT—we refer the reader to Starck et al. (2010) for a review. In contrast to

the CWT, the DWT is not redundant, however the choice of mother wavelet for DWT

analysis is non-trivial and typically requires some a priori knowledge or test data

to optimize the DWT representation, as the final reconstruction performance can be

significantly impaired by a bad choice of mother wavelet, compared to the generally

robust CWT for seismic data usingMorelets (Langston andMousavi, 2019;Mousavi

and Langston, 2016). Additionally, the structure of the DWT means that it is not

suitable for time-frequency analysis; however, it often forms a suitable representation

for data compression and denoising. For reasons of computational efficiency, all of

the case studies that follow employ the DWT for time-frequency analysis, however

CWT based redundant reconstructions based on the Morelet typically produce the

best results and may be necessary if the highest quality is required. We have found

that the Daubechies wavelet family typically performs well for the examples shown
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in this study.

Compressive Sensing in the Curvelet Domain

̴2-j ̴2 -j/2

Figure 3.2: Example curvelet in the spatial domain showing angular sensitivity
and characteristic parabolic scaling relationships between wavefront-parallel and
wavefront-perpendicular directions.

Compressive sensing (CS) provides amechanism to recover an unknown signal from

relatively few measurements, such as is encountered by spatial sampling of seismic

data in research settings. CS theory asserts that if the signal d can be sparsely

represented by a basis or frame Φ and the signal is sampled incoherently with the

basis or frame by a sampling operator Ψ, then solving the Elastic-Net regularized

linear inverse problem

m̂ = argmin
[
1
2
| |ΨΦPm − d| |2 + αλ | |m| |1 + (1 − α)λ | |m| |2

]
(3.5)

with α = 1 provides an accurate and sparse reconstruction of d in the chosen basis

or frame (Candes et al., 2008; Davenport et al., 2011; Donoho, 2006) (The α = 1

is also known as Lasso regression, while α = 0 is known as Ridge regression and

corresponds to classical Tikhonov regularization in geophysical inverse problems).
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Setting α slightly less than 1 still typically results in a sparse representation of

the signal in the chosen basis or frame, but may help to stabilize the inversion in

the presence of noise. The requirement that Ψ be incoherent with Φ is achieved

by having a sensing matrix that takes point measurements; the coherence of a

distributed set of Dirac deltas with a spatially extended frame Φ is low as long as

the sensors are not tightly clustered.

A frame that is particularly suited to use in seismic applications is the curvelet frame,

which has been designed to promote sparsity for signals with wave-propagation like

properties (Candes and Demanet, 2005). The k-space support of an individual

curvelet is a dartboard-like wedge segment, which gives curvelets directional sensi-

tivity, as well as scale localisation (Candès et al., 2006). Curvelets are constructed

to obey a parabolic scaling relationship with the spatial extent perpendicular to

wave propagation scaling like the square root of that parallel to propagation, which

accounts for their directional sensitivity (see Figure 3.2). The curvelet frame has

consequently been used in industry scale reconstruction and denoising applications

using compressive sensing (e.g. Hennenfent et al. (2010); Hennenfent andHerrmann

(2006); Herrmann and Hennenfent (2008); Herrmann et al. (2008)), for synthetic

regional scale examples applied to surface wave tomography (Zhan et al., 2018) and

recently as a filter for scattered waves by Zhang and Langston (2019), who employed

the explicit curvelet transform for densely sampled data interpolated to a regular

grid rather than the optimization based approach employed here for sparse data.

An optimal interpolation at points sampled by another sampling matrix Ψ̂ is given

by Ψ̂ΦPm̂. This formulation differs slightly from the normal presentation in that we

have included an additional weighting matrix P, that rescales the basis coefficients

to reflect desired properties. In particular, curvelets are indexed by a scale jc (as

well as rotation and translation indices). To promote smoothness of the second

derivative, we employ P = Diag(2− jcn) as our weighting matrix, which penalises
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rapid oscillation of the reconstructed signal. Application of this matrix is in effect

somewhat similar to applying Tikhonov regularization to the compressive sensing

problem, with n = 2 corresponding to smoothing by penalizing the Laplacian of the

wavefield, however it removes the need for a second regularization parameter and

also puts the problem in a form that can be used by all existing L1 solvers.

To compactify future notation, we employ the traditional notation of linear inverse

problems G = ΨΦP with ith row Gi representing the projection of the basis or

frame elements on a seismic channel indexed by i. For the proposed wavefield

reconstruction algorithm, we solve the inverse problem for each wavelet coefficient

ĉ( jw, s) = arg min
c( jw,s)

[
1
2

Ntraces∑
i=1
(wi( jw, s) −Gic( jw, s))2 + αλ | |c( jw, s)| |1 + (1 − α)λ | |c( jw, s)| |2

]
,

(3.6)

to give a sparse collection of estimated spatial curvelet coefficients ĉ( jw, s) for each

temporal wavelet. As we discussed during the wavelet transform component of the

algorithm, broadband seismic signals are typically highly non-stationary in power

and frequency content. Consequently, the optimal regularization parameter λ will

change for each collection of wavelet coefficients {wi( jw, s)}
Ntraces

i=1 , sometimes by

several orders of magnitude. To some extent this problem can be ameliorated by

normalizing the prediction matrix G and wavelet coefficients {wi( jw, s)}
Ntraces

i=1 , typ-

ically by the standard deviation of ΨΦ and {wi( jw, s)}
Ntraces

i=1 respectively. However,

this still leaves the question of how to optimally choose λ. We have found good

reconstruction results by optimizing the posterior predictive accuracy via 5-fold

cross-validation. We choose the value of λ that minimizes the summed squared

differences between the left out data and the predictions across the validation data

sets. Cross-validation is in general an expensive operation, which motivates the use

of a fast cross-validated L1 solver for this step; we employ the Celer solver (Massias
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et al., 2018) which has proven itself to greatly outperform other L1 solvers during

testing, including those on the GPU. For large scale compressive sensing operations,

cross-validation becomes computationally infeasible; in that case, we employ the

Corrected Akaike Information Criterion (AICc) using the Lasso.jl software package

to perform the inversion, which is a fast Julia language port of the R language glmnet

solver (Friedman et al., 2010).

Reconstruction

Reconstruction of the wavefield, either for recorded seismic channels, or at unob-

served synthetic channels, is performed by generating the matrix Ĝ with rows Ĝk

that describes the sampling-basis transform-weighting product ΨΦPm evaluated at

the channels indexed by k. The predicted wavelet coefficients for each channel are

then given by ŵk( jw, s) = Ĝk ĉ( jw, s). The time domain signal for the channel is then

recovered by performing an inverse wavelet transform ûk(t) = IWT(ŵk( jw, s)). For

the CWT, the inverse transform is not unique due to the redundancy of the transform

and an appropriately normalized inversion wavelet must be prescribed to take this

into account; in contrast the DWT has a unique inverse transform (Daubechies,

1992). It must be noted that this synthesis step encodes the regularizing assump-

tions inherent in the previous analysis steps that allow us to write the wavefield as a

collection of curvelet coefficients in space and wavelet coefficients in time, namely

that coherently propagating waves are present in the wavefield and we expect them

to have smooth Laplacians. As such, any further usage of the wavefield must be

consistent with these assumptions.

Summary

To summarize the methods detailed above, we propose the following generic algo-

rithm for wavelet-curvelet wavefield reconstruction:
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1. Data Preprocessing: Individual traces ui(t), indexed by channel i and time t,

are quality controlled to ensure timing and amplitude are correct.

2. Wavelet Transform: Individual traces ui(t) are put into a time-frequency rep-

resentation using a common wavelet transform to give a collection of wavelet

coefficients wi( jw, s) = WT(ui(t)) indexed by time shift s, channel i and

wavelet scale jw.

3. Curvelet Transform: For each wavelet coefficient, an L1 regularized optimiza-

tion problem of the form given in Equation 3.6 is solved to determine sparse

curvelet coefficients ĉ( jw, s) for shift s and wavelet scale jw describing the

spatial distribution of the wavelet coefficients wi( jw, s) across the array.

4. Reconstruction: To evaluate the groundmotion at a particular location indexed

by k, we form the curvelet reconstruction matrix Ĝk , and the reconstructed

ground motion is given by ûk(t) = IWT(Ĝk ĉ( jw, s))

3.4 Wavefield Gradiometry for the Southern California Array

Array based seismic wavefield tomography techniques, in particular eikonal tomog-

raphy (Lin et al., 2009), have, in the last decade, become a major component of the

regional-global structural seismic workflow, especially in the context of ambient-

noise cross correlation datasets (e.g. Berg et al. (2018, 2020); Bowden et al. (2017);

Lin et al. (2014)). These methods use various combinations of derivatives of

wavefield observables to obtain information such as surface wave phase velocities.

Because of the difficulty of accurately computing derivatives on a sparse collection

of data and the resultant amplification of noise, this class of techniques is a good

target for wavefield reconstruction as a first step in data processing so as to obtain

robust derivatives.

The principle theoretical advantage of array-wavefield techniques, compared to
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classical surface-wave tomography, is that they automatically account for wavefront

bending without having to iteratively solve for the velocity structure to compute

raypaths. However, the commonly used first-order eikonal tomography, and its

second-order correction, Helmholtz tomography, rely on accurate identification of

a phase delay time gradient ∇τ, requiring that the wavefield is dominated by a

single phase front and that the phase delay time can be measured, with Helmholtz

tomography additionally requiring the Laplacian of a fitted amplitude surface. Array

methods based on a single wave ansatz include the first order wave gradiometry

methods of Langston (2007a,b), which allow time-frequency resolution of a wave-

packet containing multiple components including body waves; however the single

wave assumption again precludes the ability to handle scattering or multipathing.

Array methods that rely on the full wave equation, such as that proposed by de

Ridder and Biondi (2015), do not require this assumption and can instead utilize

multipathed or interfering wavefields. As both the wave equation basedmethods and

the Helmholtz tomography correction to eikonal tomography utilize second order

spatial derivatives of the wavefield, they impose much stricter quality requirements

on the spatial resolution of the wavefield compared to eikonal tomography. In

its most basic form, wave equation based wavefield gradiometry assumes that the

wavefield, filtered at a particular frequency, is dominated by a single-mode surface

wave with displacement u, which can be described by the simple acoustic wave

equation

∂2u
∂t2 = c2

p∇
2u (3.7)

for phase velocity cp. If both the temporal and spatial second derivatives of u can be

accurately measured, then the squared phase velocity (with associated error) is given

by simple linear regression. In practice, given the difficulties associated with these

measurements, the regression is either solved in a hierarchical setting (de Ridder
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and Biondi, 2015) or combined with wavefield reconstruction in a partial differential

equation (PDE) constrained inverse problem (de Ridder andMaddison, 2018). In all

the aforementioned studies, the typical rule-of-thumb given for the station spacing

appropriate for accurate computation of the Laplacian of the wavefield is a super-

Nyquist ∼ 10 stations per wavelength, a requirement that is rarely met in regional–

global scale station deployments for wavelengths of interest. Exact performance

analysis depends on the geometry of the array, in particular the accuracy of the

second-order finite difference operator. An interesting application of the CS based

wavefield reconstruction method proposed in this study is to decrease the station

density requirements of array based tomography methods, potentially enabling the

use of more powerful Laplacian based methods such as Helmholtz tomography

and wave equation based gradiometry at the higher frequency/station spacing ratios

that are typical for non-industry array deployments. After application of CS in the

wavelet domain, the wavefield can additionally be projected onto a dense Cartesian

grid, allowing the most accurate computation of numerical second derivatives.

As an example of this, we performed a wave equation gradiometry tomography

experiment for the Southern California Seismic Network (SCSN). Wave equation

based gradiometry, in particular, places the highest quality requirements on the

Laplacian of the wavefield as it utilizes the phase of the wavefield, in addition to

its amplitude. Obtaining reasonable values of phase velocity from wave equation

gradiometry therefore serves as a practical demonstration that the wavefield recon-

struction is accurately recovering the true wavefield, up to the second derivatives in

space and time.

The interquartile range of the distances to the four nearest neighbor stations in the

SCSN, calculated across the network, is 14–28 km. This corresponds to a station

spacing of between 2.5–5 stations per wavelength for a period of 20s, assuming a

nominal phase velocity of 3.5 km/s, and up to 7 -14 stations/wavelength for 50s
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period waves with, assuming a nominal phase velocity of 4 km/s. As such, large

parts of the SCSN fail to match the 10 stations/wavelength requirement for wavefield

gradiometry in this period band, which is a typical band for earthquake based array

tomography methods.

For the source wavefield, we utilized the Rayleigh wave packet of the November 19,

2017 Mw 7.0 Loyalty Islands earthquake (GCMT code 201711192243A, Dziewon-

ski et al. (1981); Ekström et al. (2012)). This earthquake had a shallow normal

faulting mechanism that directed strong Rayleigh waves towards California. We

analysed the BHZ channel of the SCSN, integrated to displacement and filtered be-

tween 10–100 s. Quality control was performed on a per-trace basis by calculating

the maximum normalized cross-correlations between a test trace and the signal at

all other stations, and then requiring that at least 50% of these normalized cross-

correlation values be better than 0.6 for the test trace to be retained. Additionally,

we required that the root-mean-square log amplitude be within three standard de-

viations of the average across stations. These quality control measures resulted in

a final array of 221 stations from an initial set of 234 with data. The wavefield

reconstruction was performed using a 64×128 pixel curvelet transform, with the

db4 wavelet (the Daubechies family wavelet with 4 vanishing moments) used for the

temporal transform. Figure 3.3 shows a cross-section of the reconstruction results

for this earthquake. After performing the reconstruction, we apply narrow band

Butterworth filters with a width of 1/
√

20 the period, and then calculate Cp using

Equation 3.7. Examples of this are also shown in Figure 3.3, and show that the

scaled Laplacian does typically fit the acceleration records well for this data. The

resulting phase velocity curves are physically reasonable, and match the theoretical

phase velocity curves from the CVM-H model (Shaw et al., 2015) well, especially

within the basin. Figure 3.4 shows a spatial map of the phase velocity recovered for

a period of 45 s. The wave equation gradiometry discussed here does not formally
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account for finite frequency effects as we do not constrain the wavefield to fit the

wave equation; to handle this, and reduce the variance of the results, we apply radial

basis function smoothing using a multiquadratic basis function with length scale

45km (approximately 1/4 wavelength), and only report results for points within the

convex hull of stations within 90km of that point. The equivalent model without

radial basis function smoothing is shown in Supplementary Figure 3.8. These re-

sults are comparable to existing surface wave tomography maps in the same period

band (Lin and Ritzwoller, 2011), but are derived directly from a single earthquake,

giving us good confidence that the reconstruction algorithm is accurately capturing

the details of the wavefield.

3.5 Helmholtz-Hodge Decomposition of the Horizontal Wavefield

The horizontal vector wavefield uh is by definition tangent to the Earth’s surface,

and may therefore be represented by two scalar potential functions D and S and a

harmonic vector function r by the Helmholtz-Hodge Decomposition (Bhatia et al.,

2013)

uh = ∇D + ẑ × ∇S + r (3.8)

r being harmonic implies that ∇2r = 0. The irrotational potential function D creates

a curl-free displacement field and consequently generates the horizontal projection of

the P−SV system in a laterally homogeneousmedium, while the solenoidal potential

function S creates a divergence-free displacement field and corresponds to the SH

system in laterally homogeneous medium. As such, applying the Helmholtz-Hodge

decomposition to the horizontal wavefield may allow improved discrimination of

wave types in sufficiently smoothly varyingmedia, even in the presence of significant

off-great-circle and multipathing wave propagation. In particular, for wavefields

comprised solely of surface waves, the Helmholtz-Hodge decomposition allows

for discrimination between Rayleigh and Love wave components using potentials
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Figure 3.3: Wavefield gradiometry for the Southern California Seismic network
applied to the Rayleigh wave packet of the November 19, 2017 Mw 7.0 Loyalty
Islands earthquake. We show the BHZ channel integrated to displacement and its
reconstruction for one basin station (USC) and one high desert station (VTV), filtered
between 10–100s. We also show a comparison between the measured accelerations
at 30s and the spatial Laplacian multiplied by a single coefficient, interpreted to
be the squared phase velocity at the channel site—showing that the Rayleigh wave
packet closely follows the acoustic wave equation at this period. Finally, we show
the estimated phase velocity curves and their comparisons to the theoretical phase
velocities derived from the CVM-H model; the agreement between the observed
data and the theoretical model is quite good, and has been achieved from a single
wave packet from a single earthquake.
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Figure 3.4: Phase velocity map of Southern California at a period of 45 s for points
within the convex hull of nearby SCSN stations (<90 km distance), recovered using
Laplacian based wavefield gradiometry of a single event, the November 19, 2017
Mw 7.0 Loyalty Islands earthquake. The tomographic model is smoothed using a
multiquadratic radial basis function with a length scale of 45km to suppress artifacts
at lengthscales shorter than 1/4 of the characteristic wavelength.

that satisfy an acoustic type wave equation for phase velocity. The decomposed

wavefield may therefore be used for surface wave tomography directly via wavefield

gradiometry (de Ridder and Biondi, 2015), or using a more robust gradient based

method such as eikonal or Helmholtz tomography (Lin and Ritzwoller, 2011; Lin

et al., 2009).

Using the framework developed in Section 3.3, we can estimate the curvelet co-

efficients of the potentials D and S from the wavelet transforms of the horizontal

components by solving
∂G
∂x

∂G
∂y

∂G
∂y − ∂G

∂x



cD( jw, s)

cS( jw, s)

 =

wx( jw, s)

wy( jw, s)

 (3.9)

with L1 regularization. The harmonic component r cannot be uniquely determined



44

without appropriate boundary conditions on a space that are typically not available

for finite seismic observations on a particular area. However it may be generated by

augmenting either D or S, and is consequently absorbed into the potentials by L1

regularization.

As an example of utilizing wavelet-curvelet compressive sensing for performing

the Helmholtz-Hodge decomposition, we visualize the wavefield from the Mw 7.1

July 6 2019 Ridgecrest Earthquake, recorded at the Los Angeles United School

District subset of the Community Seismic Network (LAUSD-CSN). The LAUSD-

CSN is a low-cost, high-density permanent urban seismic deployment utilizing

micro-electromechanical system (MEMS) accelerometers, straddling the North-

eastern edge of the Los Angeles basin (Clayton et al., 2012; Kohler et al., 2020).

The network is optimized for cheap, spatially resolved near real-time strong-ground-

motion reporting from earthquakes within the Los Angeles metro area and conse-

quently uses instruments with a high instrument noise floor. However the ground

motions from the regional Mw 7.1 Ridgecrest event were sufficiently strong to pro-

duce waveforms that are a near match to the acceleration seismograms of co-located

permanent strong-groundmotion instruments (HN channel, example comparison for

station CI.PASC in Supplementary Figure 3.7). The location of the LAUSD-CSN

relative to downtown Los Angeles, and the curvelet inversion domain utilized in the

Helmholtz-Hodge decomposition are shown in Figure 3.5 A).

The inversion utilized acceleration waveforms bandpass filtered between 2–15 s, a

64×64 pixel spatial curvelet transform, and the db12 wavelet for the time domain

transform. The compressive sensing optimization problem was solved with Elastic-

Net regression with α = 0.95. The LAUSD-CSN team discovered that a number of

sensors were misoriented during the Ridgecrest event; these sensor problems have

confirmed by site visit and corrected. Additional potentially misoriented sensors

have been detected by analysing apparent spatial discontinuities in long-period
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particle motion. In that case, rotations in 90◦ increments have beenmanually applied

to bring the long period motions into alignment; in these cases the misorientation is

likely a result of placement of the instrument against the incorrect wall of an interior

room. An example time-domain reconstruction is shown in Figure 3.5 B), showing

the ability of the Helmholtz-Hodge decomposition to extract the large Love wave

component into the solenoidal term. A still frame from the resulting Helmholtz-

Hodge decomposition, 75 s after the event origin time, is shown in Figure 3.6 (the

full video is available online in the Supplement). The frame shown in 3.6 is during

the surface-wave packet. The contributions of the Rayleigh and Love waves can be

seen in the irrotational and solenoidal components of the field, respectively. The

irrotational component in particular shows the strong bending of Rayleigh waves as

they cross into the deep Los Angeles basin from the North-East.

3.6 Wavefield Compression

A final, simple, application of the wavefield reconstruction technique detailed here

is as a lossy data compression algorithm. Whilst the wavefield reconstruction

algorithm proposed here is not optimized for data compression, the use of a sparsity

promoting domain transform naturally induces compression when the wavefield is

sufficiently coherent. In general seismic data (especially in research settings) is

able to be stored as high fidelity continuous timeseries, however there are at least

two significant end-member cases for which compression techniques are potentially

applicable. The first is in extremely dense industry-scale surveys, in which the

total data volume becomes prohibitively difficult to handle. The tension between

periods of high data acquisition and continually advancing computational storage

and processing capabilities, has lead to cycles of interest in seismic data compression

as ameans to reduce the computational burden (e.g. Da Silva et al. (2019); Herrmann

et al. (2008); Villasenor et al. (1996)). The majority of these studies have focused
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Figure 3.5: A) Los Angeles Unified School District - Community Seismic Network
(LAUSD-CSN) accelerometers used in this study are shown in blue, with station
LAS274 shown by a pink square. The inversion domain is shown by the orange
square. The Los Angeles downtown is the high density area of roads in the center
of the figure. B) Data, reconstruction and residual for the tangential component of
the Ridgecrest July 5, 2019 Mw 7.1 Earthquake recorded at LAUSD-CSN station
CJ.LAS274. The irrotational and solenoidal components are individually shown
offset from the main waveform, and show the strong solenoidal Love wave arriving
after the SV/SH arrival observed on both components. Waveform is bandpass
filtered between 0.5–15 s
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Figure 3.6: Helmholtz-Hodge decomposition of the horizontal wavefield of the
Mw 7.1 July 6 2019 Ridgecrest event recorded on the LAUSD-CSN network. The
wavefield is plotted 75 s after the event origin time. Arrows show the horizontal
particle instantaneous acceleration for both data and reconstruction. Arrows are
colored with the sign of the real data vertical component to highlight the oscillatory
structure of the wavefield.
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on structured seismic data volumes, potentially with some missing elements, and

so have achieved high compression ratios whilst maintaining fidelity; a peculiarity

of the current study is that our algorithm is targeted at unstructured data volumes,

necessitating the mixed-type wavelet-curvelet decomposition described above. The

second end-member is that of slow data transmission-rate scenarios, such as those

that will be encountered by proposed planetary seismology arrays (e.g. Marsal et al.

(2002); Neal et al. (2019); Zhan and Wu (2019)). This scenario motivated initial

studies into seismic data compression, such as that of Wood (1974), where the rate

of data acquisition outpaced that of early telephone based remote communication

protocols. In this scenario, onsite preprocessing before transmissionmay allowmore

detailed (either more channels or higher sampling frequency) data to be transmitted

than would otherwise be the case. We briefly discuss the ability of the algorithm

proposed in this study to compress the wavefield within the context of a local

strong-ground motion accelerometer array (CSN).

For CSN dataset resampled at 2 Hz and filtered using a zero-phase bandpass filter

between 2–50 s, applying the proposed wavelet-curvelet reconstruction method

using a db4 wavelet for DWT achieves a compression ratio of 8.3. The recovery

of the original signal can be quantified by the a scaled mean-squared-error fidelity

metric 1−
√

1
Ns

∑Ns

j=1
1

Nd

∑Nd

i=1(di j − d̂i j)
2/Var(d), which gives a value of 0.71 using

the for the CSN dataset. The residuals from the above case studies are largely

incoherent with the recorded wavefield, suggesting that the reconstruction is acting

as a denoising filter (noting that “noise” in this context includes scattered energy that

is not able to be sparsely represented using the curvelet frame). We do not attempt

to optimize the transform parameters for compression, and it is likely that further

investigation would yield improved compression ratios for equivalent fidelity. In

particular, for the purposes of compression, it may not be necessary to accurately

obtain accurate spatial derivatives, so changing the form of the preconditioning



49

matrix may promote sparser transforms.

In our scheme, compression occurs entirely during the sparsity promoting Elastic

Net regularized curvelet inversion—all wavelet coefficients are inverted for. It is

possible that higher compression ratios for equivalent reconstruction accuracy could

be obtained by further sparsifying the temporal component in the wavelet domain.

Temporal sparsification would, however, have to be designed to be consistent with

the spatial patterns of the waveforms, which may be difficult due to the propagation

of the wavefield. As such, further studies into compression schemes based on the

joint wavelet-curvelet transform are left for future research.

3.7 Discussion and Conclusions

The three real-data examples shown in this work illustrate the required modifica-

tions to the framework presented in Zhan et al. (2018) to robustly handle sparse,

noisy, realistic wavefield recordings. We have developed the theory in this paper

for point sensor recordings, however with minor modifications it can equally be em-

ployed for DAS ormixed DAS and point sensor deployments. Because the algorithm

presented here relies on time-scale (wavelet) or position-angle-scale (curvelet) trans-

forms, there is significant scope for tailoring the algorithm toward specific datasets,

that we have not fully explored. In particular, in the time domain, we have found

that the Daubechies family typically works well, but that is not to say that other

wavelet families may not be equally or even more performant. In the spatial domain,

curvelets are well suited for seismic applications (Herrmann and Hennenfent, 2008;

Herrmann et al., 2008), but other transforms such as wave atoms may work well

(Leinonen et al., 2013). For large apeture deployments such as the USArray, where

the Earth’s curvature becomes important, employing natively spherical transforms

such as spherical curvelets (Chan et al., 2017) may be necessary. Future work to

address, in particular, the best combination of both transforms to promote sparsity
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of the spatial transform and hence good compressive sensing performance will im-

prove the accuracy of the reconstruction. Given this flexibility, the key intellectual

contribution of this paper is then to propose independent reconstructions in time and

space to handle the sparse, unstructured datasets present in research deployments,

and to recognize the importance of appropriately reweighting the spatial reconstruc-

tion frame to promote continuity of higher order derivatives, if the wave equation is

to be satisfied.

Looking forward to future methodology for wavefield reconstructions of unstruc-

tured seismic datasets, recent machine learning (ML) applications of physics-

informed neural networks (PINNs) (Raissi et al., 2019) promise to allow for grid-

free reproduction of seismic wavefields (Karimpouli and Tahmasebi, 2020; Moseley

et al., 2020; Song et al., 2020). Current research has focused on training forwavefield

solvers based on known synthetic velocity models, however there is potential for the

same computational structure to be used in a joint inversion of unknown velocity

structure with observed data, under reasonable assumptions that some seismic wave

equation is satisfied; given observational constraints the first likely route would be

for surface wave reconstruction/phase velocity inversion as is presented in this study.

PINN based studies originating from within the geophysics community have uti-

lized computational architectures originally proposed for general discovery of PDE

behaviour, i.e they have not been specifically optimized for seismic applications. In

particular, these studies have made use of non-periodic activation functions, which

fail to exploit the inherent quasi-periodicity of the seismic wavefield. Recent work

on neural networks utilizing periodic activation functions (Sitzmann et al., 2020)

and/or analysis in the Fourier domain (Li et al., 2020b) may therefore improve the

potential of ML based methods for wavefield reconstruction. In particular, the work

of Sitzmann et al. (2020), utilizing sinusoidal activation functions in a network they

term SIRENS, has proven to be able to very accurately reconstruct the higher order
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derivatives of seismic wavefields necessary for computing terms in the seismic wave

equation. This is due to the property that the derivative of a SIREN is also a SIREN,

which allows for analytical computation of non-vanishing second order derivatives

with inherent periodicity. Thus far, the training of PINNs has proven to be relatively

computationally expensive and work has been largely limited to synthetic examples,

however the field is still in its nascent stage and currently appears to hold great

promise for the large class of PDE constrained inverse problems, in which wavefield

reconstruction may be included.

We have presented a general strategy for wavefield reconstruction of unstructured

seismic data using wavelet/curvelet transforms, as well as specific implementation

details for three example applications. This framework allows for the conversion

of point seismic time series into a single unified data product, suitable for spatial

analyses of the seismic wavefield such as wavefield gradiometry, back-projection,

reverse-time migration, etc. Our choice of the curvelet basis for spatial analysis

allows for the recovery of complex wavefields including multi-pathing or back-

scattering effects. Our framework promotes a physically concordant wavefield by

appropriately penalizing short wavelength fluctuations without requiring a priori

knowledge of the underlying velocity structure or requiring iterative solutions of the

wavefield reconstruction problem. It therefore represents a simple and flexible way

to compress and represent the seismic wavefield, suitable for irregularly sampled

networks at all scales.
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3.9 Data Availability

Data for the Mw 7.0 Loyalty Islands Earthquake was obtained through the obspy

FDSN service using the Southern California Earthquake Data Center as a provider.

CSN data for the Mw 7.1 Ridgecrest Earthquake is available through the CSN

website at http://csn.caltech.edu/data/. Code and data to recreate the

Helmholtz-Hodge decomposition is available at https://github.com/jbmuir/

HelmholtzHodgeCSN.

3.10 Supplement

The supplement also includes a movie of the Helmholtz-Hodge decomposition for

the CSN, which may be accessed via the online version of this paper.
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Figure 3.7: Comparison between Southern California Seismic Network strong
ground motion station CI.PASC.00.HN* and Community Seismic Network station
CJ.T000337..HN* for theMw7.1 July 5 2019 Ridgecrest earthquake. These stations
are approximately co-located. The waveforms have been decimated to 5 Hz, de-
trended and lowpass filtered at 1 Hz. Amplitudes have been scaled to approximately
account for instrument gain.
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Islands earthquake. This version uses simple 2D linear interpolation as opposed to
radial basis function smoothing, as shown in Figure 3.4.
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C h a p t e r 4

WAVEFIELD-BASED EVALUATION OF DAS INSTRUMENT
RESPONSE AND ARRAY DESIGN

To appear as

Muir, J. B. & Z. Zhan “Wavefield-based evaluation of DAS instrument response

and array design”. In: Geophysical Journal International, Submitted

4.1 Abstract

Distributed Acoustic Sensing (DAS) networks promise to revolutionize observa-

tional seismology by providing cost-effective, highly dense spatial sampling of the

seismic wavefield, especially by utilizing pre-deployed telecomm fiber in urban

settings for which dense seismic network deployments are difficult to construct.

However, each DAS channel is sensitive only to one projection of the horizontal

strain tensor and therefore gives an incomplete picture of the horizontal seismic

wavefield, limiting our ability to make a holistic analysis of instrument response.

This analysis has therefore been largely restricted to pointwise comparisons where a

fortuitious coincidence of reference three-component seismometers and co-located

DAS cable allows. We evaluate DAS instrument response by comparing DAS mea-

surements from the PoroTomo experiment with strain-rate wavefield reconstructed

from the nodal seismic array deployed in the same experiment, allowing us to treat

the entire DAS array in a systematic fashion irrespective of cable geometry relative

to the location of nodes. We found that, while the phase differences are in general

small, the amplitude differences between predicted and observed DAS strain-rates

average a factor of 2 across the array and correlate with near-surface geology, sug-

gesting that careful assessment of DAS deployments is essential for applications
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that require reliable assessments of amplitude. We further discuss strategies for

empirical gain corrections and optimal placement of point sensor deployments to

generate the best combined sensitivity with an already deployed DAS cable, from a

wavefield reconstruction perspective.

4.2 Introduction

DistributedAcoustic Sensing (DAS) networks utilize time-of-flight interferometry of

Rayleigh backscatter from natural imperfections within fiber optic cables to obtain

spatially resolved strain measurements. Current technological standards allow a

single DAS interrogator unit to produce meters spaced channels along cables of

length ∼20-100km; in other words, creating a distributed strain network of many

thousands of sensors. Whilemost original application ofDASwas in industry, where

the spatial resolution and high environmental tolerance of fiber-optic cable makes

DAS eminently suitable for borehole deployment, the falling costs of the interrogator

units and the increasing utilization of “dark fiber” (already laid inactive telecom

fiber) have made surface deployments an attractive proposition for fundamental

research purposes. Recent studies have shown that onshore DAS can detect both

teleseismic (Lindsey et al., 2017; Yu et al., 2019) and local (Karrenbach et al., 2020;

Wang et al., 2018; Zhan, 2020) earthquakes with waveforms that match colocated

seismometers. Several studies utilizing offshore cables have also reported success

in observations of both earthquakes and ambient environmental seismology (Ide

et al., 2021; Lindsey et al., 2019; Matsumoto et al., 2021; Sladen et al., 2019; Spica

et al., 2020; Williams et al., 2019). DAS also promises to be one of the key data

sources in the nascent field of social seismology, with recent success in monitoring

parade traffic in an urban setting (Wang et al., 2020) and real time monitoring of

rail-traffic (e.g. Ferguson et al. (2020); Wiesmeyr et al. (2020)). Mixed networks

of DAS and point sensors have also proven to be a successful combination for fine
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scale monitoring of seismic properties associated with hydrothermal fields (Feigl,

2017; Feigl and Parker, 2019), and hold promise in integration into traditional

ambient-noise tomography workflows (Nayak et al., 2021).

While DAS presents great opportunities for very dense deployments, it also comes

with several notable challenges. The signal-to-noise ratio of DAS data is typically

poorer than that of conventional seismometers, and the instrument response in real-

istic deployments is also not fully understood, leading to a generally less informative

single-channel observations. DAS measures the integrated strain-rate or strain in a

particular direction over a finite gauge length, meaning that individual stations or

straight lengths of cable do not have access to the full horizontal particle motion

as would be obtained from a 3-component point sensor. Finally, the huge volumes

of data produced by DAS are highly redundant except at very high frequency, and

storing and analysing them poses a great computational challenge. Many of these

challenges can be overcome, or better understood, by treating the DAS sensor array

as a means of accessing a single underlying wavefield, rather than as a collection

of individual channels—that is, seeking a representation of the data as u(x, y, t)

rather than ui(t) where x and y are spatial components and i is a channel number.

Such a representation allows us to study in detail the spatial response of the array,

including gradient terms, which are essential for strain based measurements like

DAS. The wavefield representation offers a simple and coherent mechanism for

converting between strains and displacements, which makes it especially well suited

for studying the lateral variations of DAS amplitude response. Characterisation

of this response will be essential for realizing the promise of DAS as a spatially

dense sensing modality for strong ground motions and earthquake early warning

(Karrenbach et al., 2020).

In the preceding paper (Muir and Zhan, 2021), we developed a framework for com-

bining an irregular network of spatially distributed sensors into a single unified data
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product by using wavefield reconstruction. In this study, we apply our compressive

framework to the combined DAS and nodal array deployed during the PoroTomo

Experiment at Brady, NV (Feigl, 2016a, 2017; Feigl and Parker, 2019). Nodal

arrays are constructed from self-contained cable-free instruments that sense the

conventional wavefield (i.e. time derivatives of the particle displacement). Nodal

arrays have proven highly successful in temporary dense deployments (i.e. Jia and

Clayton (2021); Lin et al. (2013)). Nodes strongly complement DAS arrays in the

burgeoning earthquake rapid-response space by providing extra spatial coverage to

supplement dark-fibre DAS deployments. We perform a comparison between the

strain-rates recorded on the DAS array and those predicted by reconstructing the

velocity wavefield recorded on the nodal array. While this analysis has been per-

formed for individual DAS segments using co-located seismometers (e.g. Lindsey

et al. (2020); van den Ende andAmpuero (2021);Wang et al. (2018)), our framework

allows us to evaluate the DAS array using the entire recorded nodal data volume

simultaenously, allowing for non-optimally aligned segments, without favorable

reference seismometers, to be studied. The wavefield approach also sidesteps the

need to apply f k rescaling (or similar methods that rely on estimating a reference

phase velocity which become unstable for small wavenumbers k (Lindsey et al.,

2020)) when converting from strain-rate to velocity. This aids in the simplicity

of application and the robustness of the results. We further develop methods for

simultaenously reconstructing DAS and nodal data, correcting DAS data using the

observed nodal field, and optimal design strategies for mixed arrays.

4.3 Inversion of DAS records for particle velocity

DAS measurements are performed by observing the change in back-scattering char-

acteristics from laser pulses sent into a fiber-optic cable. Measurements ideally

correspond to the strain or strain-rate averaged along a gauge-length at some point
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in the fiber. The strain εc along a cable is given by the projection of the horizontal

strain tensor along the cable azimuth α

εc =
[
sinα cosα

] 
εxx εxy

εxy εyy



sinα

cosα

 = sin2 αεxx + sin 2αεxy + cos2 αεyy (4.1)

with the strain components given as usual by εi j =
ui, j+u j,i

2 . The theoretical DAS

strain-rate response εDAS is in turn given given by averaging the strain or strain-rate

(Bakku, 2015; Wang et al., 2018) over a gauge length L

εDAS =
1
L

∫ L/2

−L/2
εc(l)dl, (4.2)

where l indexes the length along the gauge length. Typical gauge lengths are on

the order of ∼10m. Work to characterise the phase and amplitude response of

DAS cables is rapidly progressing. If a DAS array is deployed such that it has

sensitivity to both components of the horizontal wavefield, the general framework

of Muir and Zhan (2021) may be employed to cast the recovery of the horizontal

wavefield from DAS records as an inverse problem—we develop the necessary

inverse problem machinery in Section 4.9. Qualitatively, the framework of Muir

and Zhan (2021) creates a sparse representation of the wavefield using a reweighted

curvelet basis (Candes and Demanet, 2005), scaled to promote continuity of the

wavefieldLaplacian. This rescaling, coupledwith the use of a curvelet representation

which is natively well-suited towards representing wave propagation, promotes

interpolations that satisfy the seismic wave equation and result in smooth derivatives

that can be used to calculate the predicted DAS strain-rate based on the observed

velocity field.

While most extant DAS deployments are typically linear or loop-shaped, the Poro-

Tomo experiment deployed at the Brady, Nevada thermal field in 2016 has a suitable

space-filling zig-zag deployment geometry for wavefield reconstruction using DAS
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(Feigl, 2017). This suitability has also separately lead to analysis of the beamform-

ing capabilities of the PoroTomo DAS array (van den Ende and Ampuero, 2021),

where the authors discovered issues with coherence within the array inhibited beam-

forming performance. The lack of coherence was interpreted to be variously due

to the cable geometry, coupling, and the effects of small-scale scattering. By inte-

grating DAS strain records, the beamforming issues highlighted by (van den Ende

and Ampuero, 2021) were largely ameliorated, with these results highlighting the

potential utility of wavefield reconstruction for improving the spatial continuity of

the seismic waveform, thereby making it more suitable for spatial techniques such

as beamforming.

The seismic component of the PoroTomo experiment ran for 15 days in March

2016, with the instrumentation consisting of 8700m of fiber optic cable filling a

rectangle with approximately 4:1 aspect ratio, and additionally instrumented with

238 three-component seismic nodes. The distribution of nodes and the geometry of

the DAS cable are shown in Figure 4.1. An additional 400m of cable was deployed

in a borehole, which we do not utilize in our wavefield reconstruction. Wang

et al. (2018) showed that by appropriately differencing co-deployed nodal seismic

instruments and comparing them to the average strain-rate along cable segments,

quantitatively similar strain-rate waveforms could be observed for a ML 4.3 that

occurred March 21, 2016 approximately 150km SSE of the PoroTomo experiment.

The methodology proposed in this study allows us to perform similar quantitative

analysis on the entireDASarray, using a robustwavefield recorded on the entire nodal

array, as well as the reverse experiment, to invert for the velocity field perturbations

given the strain-rates.

The PoroTomo team has provided data for the Fairfield ZLand 5 Hz three component

nodal seismometers, corrected for instrument gain to give units of coil-case velocity

in µm s−1 (Feigl, 2017). Ringler et al. (2018) found that a collection of similar
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instruments can be well characterised by assuming a damped oscillator instrument

response, with a mean free oscillation frequency of 4.87 Hz and a damping factor of

0.98 (averaged across all three channels for a collection of three instruments). We

use these parameters to correct the nodal data to give ground velocity. DAS records

were cleaned by removing channels for which the DAS gauge length included a

corner (10 m for the PoroTomo deployment), and by removing traces below the 1st

or above the 99th percentile of maximum log amplitude.

To begin with, we first emulate Wang et al. (2018)’s experiment using the com-

pressive sensing framework developed in this study. Utilizing all nodes within the

orange study area shown in Figure 4.1, we inverted for a 32 × 128 pixel curvelet

decomposition of the discrete wavelet transform (DWT) of the nodal ground ve-

locity records. We then projected these results onto the DAS cable, and inverse

transformed to give the predicted strain-rate. Both nodes and DAS were bandpass

decimated to a 10 Hz sampling rate, and a 1–2.5 Hz bandpass filter was applied. 2.5

Hz was chosen as an upper limit based on experimentation, which found it to be the

highest frequency able to be reasonably reconstructed using DAS only data as seen

in Section 4.10. The Daubechies db12 wavelet with 5 levels was used for the time

domain transform (the optimal wavelet was determined by experimentation), and

the compressive sensing optimization used pure L1 regularization. The PoroTomo

deployment is known to suffer from clock timing mismatches between the nodes

and DAS (Wang et al., 2018). We estimated a best-fit uniform clock correction by

minimizing the least squares misfit between the reconstructed DAS strain-rate data

and the true DAS strain-rate records as a function of lag time. This resulted in a

best relative time shift of 17 samples, or 1.7 s, with the DAS clock being faster. We

plot the results (including time shift) for seven cable locations (labelled in Figure

4.1) in Figure 4.2. We see that the recovered strain-rate typically match the phase

and relative amplitudes of the DAS records well. Absolute amplitudes are normally
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well recovered for the P wave. The machinery of Muir and Zhan (2021) can also be

used to perform the reverse operation of predicting nodal data using the observed

DAS strain-rate without recourse to a plane-wave assumption and the consequent

difficulties in obtaining a representative phase velocity, and also to jointly invert

DAS and nodal data into a unified data product. The results of these experiments are

shown in Appendices 4.10 and 4.11 respectively—notably the framework of wave-

field reconstruction allows for a conversion of DAS strain-rates to particle velocity

without relying on an inferred horizontal phase velocity that may depend on local

constitutive properties and that becomes difficult to stabilize for near-vertical inci-

dence ground motions or where cable segments are insufficiently short for adequate

k-space (wavenumber) resolution.

In Section 4.11, we perform a five-fold cross validation experiment to compare the

reconstruction performance of a mixed network of DAS and nodes to the node only

network. The low prediction error in the nodes-only cross-validation experiment

shown in Figure 4.11 illustrates that the nodal sensors at Brady are essentially

able to fully capture the major details of ML 4.3 Hawthorn NV wavefield within

the 1-2.5 Hz frequency band, an argument that has also been made on the basis

of beamforming coherence by van den Ende and Ampuero (2021). The average

root-mean-square-error when using 80% of the nodes as a training set to predict

the remaining 20% left-out test data is 0.13. This suggests that we should be

able to predict the DAS strain-rate data from the reconstructed velocity wavefield

derived from the nodal sensors with a high degree of accuracy. While the results of

Figure 4.2 indicate that we can capture many features of the DAS data, there still

remain substantial discrepancies to be explained. Sources of these discrepancies

must relate either to incorrect metadata (imprecisions in the locations of the DAS

channels, for example), unexplained errors in the ability of theDASdata to accurately

record the true wavefield (i.e. instrument-ground coupling), or theory errors in the
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prediction of strain from the observed velocity. Given that strain measurements

are acutely sensitive to very small-scale structure, the distinction between true

instrument response, coupling between the instrument and the ground, and very

local path effects are less distinct for DAS (and other strain-sensing modalities) than

they are for point seismometers acting at typical 1 Hz frequencies (e.g., Capdeville

et al. (2020); King et al. (1976); Ringler et al. (2019)). Attempting to ascribe the

apparent response of the cable to any one of these factors using only the predicted

ground motions is difficult, however by studying the characteristics of response

across the whole array it may be possible to build a hypothesis as to the predominant

factors by searching for a correlation (or lack of correlation) with other datasets,

such as tomographic models of the subsurface.

We now look at the characteristics of errors in the predicted wavefield in more

detail. While the PoroTomo experiment unfortunately recorded only one earthquake

source suitable for wavefield reconstruction, which precludes analysis of the DAS

transfer-function in detail as was performed for the FOSSA experiment by Lindsey

et al. (2020), the areal coverage characteristics of the PoroTomo experiment offer a

unique opportunity to investigate the spatial behavior of the gross-scale metrics of

instrument response. We computed zero-lag normalized cross correlations between

observed DAS strain-rates and those predicted from the reconstructed nodal field as

a metric of waveform shape matching or phase fidelity. We used the default settings

for normalized cross-correlation in the ObsPy library (Beyreuther et al., 2010) (i.e.

demeaning and normalization of the signals in running windows). Averaged over the

entire DAS array, we saw a median normalized zero-lag cross correlation of 0.69,

with a histogram of cross-correlation values plotted in Figure 4.3, showing that the

majority of the array is clustered at high cross-correlation values, indicating a good

overall phase fit, with a long tail of poor cross-correlations, including some with

reversed polarity. In order to assess the match in amplitudes, we took the log of the
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waveform envelopes, obtained using the Hilbert transform method, and compared

their normalized root-mean-square-error (RMSE, normalized by division by the

interquartile range of the observed log-envelope to provide a robust assessment of

the scale of improvement irrespective of the original scale of amplitudes). The log-

envelope metric gives a holistic view of the amplitude fit throughout the waveform,

including low and high amplitude sections, with a RMSE ∼ 0 under this metric

indicating that the amplitude scale is matched throughout the waveform and an

RMSE ∼ 1 indicating amplitude errors on the scale of the interquartile range of the

observations; the median RMSE for this amplitude metric was was 0.61, and the

histogram of RMSE values across the array is also plotted in Figure 4.3.

To look at the amplitude fits in greater detail, we performed a time-frequency

analysis by calculating the continuous wavelet transform (CWT) of the observed

and predicted DAS strain-rate signals using a Morelet wavelet, and then used these

to calculate the RMS amplitude of both during the P-wave (16–21 s) and S-wave

(36–41 s), for three frequency bands (1.0-1.5 Hz, 1.5–2.0 Hz, 2.0–2.5 Hz, and

also the full 1.0–2.5 Hz), with the results plotted in terms of log-amplitude ratios

in Figure 4.4. We observe spatially coherent patterns of mispredicted amplitudes

across both P and S phases and across frequency bands. The most obvious features

are the two red areas of overpredicted amplitude in the lower left and upper right of

the array. These areas are coincident with quaternary alluvial surface geology and

particularly low near-surface VP, as reported by (Parker et al., 2018), which together

with the large spatial scale of the amplitude response features and the fact that the

PoroTomo cable was buried directly in a fresh trench (Feigl, 2017) suggests that the

geological conditions encountered by the DAS cable are substantively responsible

for the differences between observed and predicted waveforms. In particular there

are significant areas in which the observed amplitude of the DAS waveforms is

substantially less than what one would expect based on the data recorded on the



67

nodes. This implies that future studies that utilize DAS for amplitude-critical

applications, such as earthquake early-warning, must carefully evaluate the fidelity of

DAS amplitudes to expected values corresponding to the true displacement ground

motions. Observing that the features in Figure 4.4 are relatively independent of

frequency band and wavetype, a naive correction method for amplitude response is

to simply take the median amplitude ratio from the 6 rightmost panels and multiply

the predicted waveforms; doing this improves the median RMSE log-amplitude fit

from 0.61 to 0.54, with the histogram of corrected values also shown in Figure 4.3

showing significant improvement. We note that the two definitions of amplitude

fit (RMS ratio for the P and S wave first arrivals vs log-amplitude RMSE for the

entire waveform) are quite different so that this naive correction is not just simply

curve-fitting. Of course, the naive correction does not improve the normalized cross-

correlation values whatsoever, as it does not affect the shape of the waveforms, and

as such we are motivated to develop more detailed correction methods that may

result in further improvements. Given our previous observation that the spatial

distribution of amplitude responses suggest that the strains observed by the DAS

for the Porotomo experiment are affected by near-surface geology, we will develop

an approach that models the DAS waveforms as a perturbation of the predicted

long-wavelength strain-wavefield using homogenization theory.

4.4 Towards correcting DAS amplitude response using two-scale homogeniza-

tion theory

Homogenization theory (Capdeville et al., 2010a,b) gives a framework for under-

standing the differences between observed strain-rates and those calculated from

the reconstructed velocity field as observed by the nodes. The tutorial study by

Capdeville et al. (2020) shows the potential issue starkly: material property distribu-

tions which produce smooth displacement waveforms and stress fields may produce
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correction) and normalized root-mean-square-error in log amplitudes between the
observed DAS strain-rates and strain-rates predicted from the reconstructed nodal-
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Figure 4.4: RMS amplitude ratios between the observed DAS data and the DAS
strain-rates predicted from the nodal data reconstruction, for the P (upper row) and
S (lower row) energy packets of the ML 4.3 Hawthorn NV earthquake, both for the
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bands. The pattern of ratios shows clear spatial patterns that cut across frequency
bands, with the most coherent features being the two overpredicted red patches in the
lower left and upper right of the array, which is apparent in the median amplification
across the six time-frequency bands.
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counterintuitively complicated strain fields, which will complicate the study of the

resulting DASmeasurements which sense the integrated strain along a gauge length.

Singh et al. (2019) studied means to correct for this effect, using the theory of two-

scale homogenization, and applied it to rotation measurements recorded using the

G-ring laser at Wetzell, Germany. They found substantial improvements could be

made to the predicted rotation measurements calculated using PREM by making an

additional first order correction, with coefficients trained using observed rotation

seismograms. A similar procedure may be used to obtain corrections for DAS seis-

mograms, which we will outline here. For a full description of the theory, we refer

the reader to the extensive development presented in Capdeville et al. (2020). We

begin with the first-order expansion of the true displacement gradients ∇u(x, y, t) in

terms of reference displacements u0(x, t) and strains ε0(x, t), where x is the “large

scale” space variable and y is the “microscale” space variable:

∇u(x, y, t) = ∇xu0(x, t) + (∇y χ(y)) : ε0(x, t). (4.3)

The reference displacements and strains are calculated using suitably averaged

properties, while the term χ(y) is the first-order correction operator, which is a

degree-three tensor. Equivalently, in Einstein-summation notation, and for nota-

tional convenience dropping the dependence of the fields on x, y and t we have

ui, j = u0
i, jx + χinm, jyε

0
nm. (4.4)

Inserting this relationship into Equation 4.1 and assuming that we have no coupling

between the vertical and horizontal components of the wavefield, we have

εc = sin2 α(u0
1,1x + χ1nm,1yε

0
nm) +

sin 2α
2
(u0

1,2x + u0
2,1x + (χ1nm,2y + χ2nm,1y )ε

0
nm)

+ cos2 α(u0
2,2x + χ2nm,2yε

0
nm),

(4.5)
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where the numerical indices are not summed over and represent the two orthogonal

horizontal components and α is the clockwise azimuth relative to component 2.

Averaging this equation along the DAS cable over a gauge length L gives us the

DAS strain

εDAS = ε
0
DAS +

1
L

∫ L/2

−L/2
sin2 αχ1nm,1y (l)ε

0
nm(l) +

sin 2α
2
(χ1nm,2y (l) + χ2nm,1y (l))ε

0
nm

+ cos2 αχ2nm,2y (l)ε
0
nm(l)dl,

(4.6)

where we have assumed a straight cable about the reference location at l = 0. If

we further assume that we are in a regime such that the reference strains ε0
nm are

approximately constant over a gauge length, which we would expect to be true

in the regime where displacements are well modelled and which allows the scale

separation required by homogenization theory to be valid, then we can write

εDAS ≈ ε
0
DAS + J11ε

0
11 + J12ε

0
12 + J22ε

0
22, (4.7)

where

J11 =
1
L

∫ L/2

−L/2
sin2 αχ111,1y (l)+

sin 2α
2
(χ211,1y (l)+ χ111,2y (l))+ cos2 α, χ211,2y (l)dl,

(4.8)

etc. The coupling coefficients J are time independent and thus constant both

within a particular recorded strain-rate time series, and between records. This

analysis depends on assumptions that seem well justified (scale separation allows

us to remove the reference strains from the gauge integrand), as well as those that

are potentially less so (lack of coupling between vertical and horizontal strains), but

does serve as a starting point for the correction of DAS records to local heterogeneity

using the theory of two-scale homogenization. The coefficients J can be obtained

for each DAS channel by computing

J = (E0TE0)−1E0T δ, (4.9)
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where for signal sample times t = t1, t2, . . . , tn

J =
[
J11 J12 J22

]T
, (4.10)

E0 =



ε0
11(t1) ε0

12(t1) ε0
22(t1)

ε0
11(t2) ε0

12(t2) ε0
22(t2)

...
...

...

ε0
11(tn) ε0

12(tn) ε0
22(tn)


, (4.11)

δ =



εDAS(t1) − ε0
DAS(t1)

εDAS(t2) − ε0
DAS(t2)

...

εDAS(tn) − ε0
DAS(tn)


. (4.12)

When multiple records are used for the inversion, the different ti need not be from

the same record as J is time independent, assuming that the local heterogeneity is

not changing. While the PoroTomo experiment only recorded one significant event,

which is insufficient to perform a robust analysis similar to Singh et al. (2019),

we can solve for J by using the nodal reconstructed wavefield of the Hawthorn

NV event to compute the reference strain-rate and see what sort of improvements

can be made using the assumptions developed in this section. It is worthwhile

to note that the DAS records used here have significantly more high-frequency

detail than the long-period rotation measurements in Singh et al. (2019), so the

danger of overfitting is lessened. In figure 4.5, we show the corrected strain-rates

calculated from the nodal reconstructed wavefield. In five out of seven of the

example waveforms, we see a significant improvement in this amplitude metric.

Because of the requirement for clock-corrections, these error metrics are calculated

using the time range of 15–55 s. Averaged over the entire DAS array, we saw

the median normalized zero-lag cross correlation increase from 0.69 to 0.76, and

the median normalized RMSE in log amplitude decrease from 0.61 to 0.56—the

average gain in waveform shape accuracy is significant, with the tail of negative zero-
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lag cross-correlations eliminated completely. However, the improvment in RMSE

amplitude fit is not as good as the naive amplitude correction. Histograms showing

the distributions of these values across channels are shown in Figure 4.3, with the

histogram of homogenized RMSE showing a secondary hump that may be due to

the prioritization of the L2 metric of fitting phase over amplitude, which can result

in the “best-fit” corrected amplitude (in the L2 sense) having very small amplitude.

Further advancements of homogenization-theory based corrections may allow for

more accurate matching of recorded DAS strains to predicted waveforms, which

may substantially improve the efficacy of DAS arrays for studying source processes.

Additionally, there is potentially scope for further inversion of the correction term

J for small scale structure, although the requisite theory has yet to be developed.

4.5 Optimal Design of Mixed Networks

In this study, we have so far explored the potential of wavefield reconstruction to

characterize a combined DAS and point-seismometer network, with the view that

such deployments will become increasingly common in the future. Given that new

arrays offer new opportunities for deployment design, a natural extension of our

study of wavefield reconstruction is how to best design such mixed networks to

maximise their reconstruction performance and ability to correct for DAS gain,

and in particular how we might use our mathematical framework to formalize the

array design. Within the general framework of Muir and Zhan (2021), the final,

spatially resolved step of the wavefield analysis is a linear inverse problem, utilizing

a L1 regularization to promote sparse solutions. Procedures for how to make

optimal measurements for linear inverse problems have been widely studied for over

a century, and have been collectively termed methods for Optimal Experimental

Design (OED). While OED is a well established concept, methods for OED within

the context of compressive sensing have only been recently developed. In the
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Figure 4.5: Comparisons between DAS channels (blue) and reconstructed corrected
strain-rate from nodes (orange) at the seven stations highlighted in Figure 4.1.
Corrections are obtained from applying a first order expansion of the observed DAS
signal in terms of the predicted DAS signal and predicted strain-rates, as described
in the text. Changes to the observed zero-lag normalized cross correlation ∆CC and
log-amplitude error ∆RMSE show substantially improved fits compared to Figure
4.2 in almost all cases.
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following, we use an algorithm proposed in Ravi et al. (2017) to determine optimal

mixed network designs and evaluate their performance for improving wavefield

reconstruction relative to unoptimized networks.

Following Ravi et al. (2017), the information matrix M′ is defined by the product

GTG. For compressive sensing problems, M′ is not full rank, so is regularized

by M = M′ + ε I . Using the D-optimal design criterion, which minimizes the

confidence ellipsoid of the estimate for the inverted curvelet coefficients, good

designs will minimize log det M−1. We introduce a selection vector s, such that

each element si ∈ {0, 1}. We can write the matrix M∗ =
∑

i sig
T
i gi + ε I where gi

are the row vectors of G—each row vector corresponds to a candidate measurement

location. The optimal design problem asks, given a budget of B stations, what

the best s with sum(s) ≤ B is, such that the solution of the compressive sensing

problem | |Diag(s)(Gm− d)| |2 + | |m | |1 is similar to that of the unrestricted problem

| |Gm − d | |2 + | |m | |1.

Ravi et al. (2017) proposed a design criterion for compressive-sensing problems

based on combining D-optimal design with an additional term designed to minimize

the coherence of the selected stations. The coherence is defined as the maximum

diagonal term of the hat matrix H∗ = Diag(s)GM∗−1GT Diag(s) (this criterion is

also known in the literature as G-optimal design). The full objective function to be

minimized is therefore given by

f (s) = − log det(M∗) + λmax [Diag(H∗)] , (4.13)

for some regularization parameter λ > 0, and where the max is the maximum

element of the diagonal of the hat matrix H∗. Minimizing coherence tends to

produce better solutions for compressive sensing, so combining these two criteria

promotes a balance of solutions that allows for good sparse signal recovery (from

the incoherence condition) while also maintaining overall sensitivity (from the D-



76

optimal condition). Solving this problem for binary s is anNP-hard nonlinearmixed-

integer problem and is thus generally intractable as a polynomial time solution is

not known, leading to two solution strategies. The first is to obtain an approximate

solution via sequential optimization by finding the minimum of f for an initial

station, then fixing that station and subsequently optimizing for the second station,

etc. This sequential approach is computationally tractable and will often give a

good solution but is not guaranteed to find the optima of f (s); this approach has

been commonly used for geophysical optimal design problems (e.g. see Bloem et al.

(2020) for a recent overview including fully nonlinear design principles for small

networks) and has the additional advantage that the same scheme can be also used to

study the variant in which the candidate locations are allowed to vary, although we

will not consider that possibility in this study. The second approach is to work with

a relaxation 0 ≤ s ≤ 1, and then minimize f (s) simultaneously for all stations; this

approach was advocated by Ravi et al. (2017). The resulting relaxed weights give

some indication of favorable designs; for instance they could be used as probabilistic

weights for random network designs, or further schemes can be used to round the

relaxed weights into a binary solution. We implemented the relaxed scheme using

the JuMP interface (Dunning et al., 2017) to ipopt (Wächter and Biegler, 2006),

which utilizes a log-barrier term to relax the constraints into the objective function.

For our mixed network problem, we have s = [sDAS; sx; sy]. Typically DAS net-

works will either use existing dark-fiber instrumentation, or if using a greenfield

deployment, will require complex constraints on the geometry due the required

continuity of the cable, attempts to minimize corners, obstacles, etc.; conse-

quently, we will restrict our discussion to the case that the DAS cable geometry

is known and we wish to optimize the locations of deployed point seismome-

ters to supplement the cable. In that case, we have the additional restriction that

sx = sy = sSeismometers, sDAS = 1, and the restriction on the number of sensors is
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then sum(sSeismometers) ≤ BSeismometers. With these changes, the problem statement

conforms to that in Ravi et al. (2017), and can be solved as described above.

To test both the sequential and relaxed methods of network design, we utilize a

square synthetic array consisting of 384 DAS channels arranged in a cross-hatch

formation, with 5m channel spacing and 10m gauge length, along with 64 candi-

date two-component horizontal seismometer locations evenly spaced over a central

square. The geometry of the synthetic setup is shown in Figure 4.6. To determine

reconstruction performance, we generated a synthetic Rayleigh-wave propagating

across the array by simulating the acoustic wave equation with a point source for

a weakly varying checkerboard velocity model (average velocity ∼ 1810 ± 90 m/s

), and then taking the gradient to determine horizontal motions. We calculate the

synthetic traces at each DAS channel and candidate seismometer location, including

10% addedGaussian noise, and also at 256 evenly spaced validation locations within

the central square of the DAS array where we expect to be able to achieve adequate

reconstruction results. All performance metrics reported are given by the per-trace

normalized RMS misfit of the reconstructed wavefield at the validation stations.

For the relaxed analysis, we drew 10 lots of 1000 designs by sampling without

replacement using the weights obtained by optimizing Equation 4.13. We set they

hyperparameters to λ = 1 and ε = 10−2, with the latter motivated by the cutoff of

the eigenvalue spectrum of the design matrix for a DAS array of totally random

sensor locations and azimuths, which we would expect to have the best potential

reconstruction performance—although that design is certainly not achievable in

practice. The choice of λ was then made to give the incoherence term a similar scale

to the typical range of perturbations to the D-optimal design term in Equation 4.13.

For each of the 10 lots, we then chose the design with the lowest value of Equation

4.13 amongst the 1000 candidates, and performed a wavefield reconstruction on

the data. We also performed a wavefield reconstruction on 10 designs chosen by
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unweighted random selection without replacement. We tested designs with 4, 8, 16,

32 and 64 stations (with 64 being the complete set of potential locations, so that

only 1 design was in fact tested). We also performed wavefield reconstructions for

the sequential optima for those numbers of stations. Figure 4.7 shows the relaxed

design weights, sequentially optimized design, and example resultant fits to the

true synthetic waveform for the tested designs up to 32 included nodes. Overall

performance at the example station is quite good, and unsurprisingly gets better as

the number of included stations increases. The weights generally prefer stations

that are further away from the DAS cable, particularly the outer crossing, which is

somewhat intuitive as those areas already have provided information; it is however

interesting to note that the center of the array is always weighted at least moderately

despite the presence of a DAS crossing, presumably as the strong improvement

to the D-optimal design term from occupying the center location outweights the

coherence penalty there. Figure 4.8 shows the per-trace-normalized root-mean-

square-error (RMSE) for this synthetic experiment as a function of the number of

included nodes. In this case, despite there being no guarantee that the sequential

design is particularly performant, it consistently has significantly lower RMSE than

both the weighted and unweighted random designs, potentially as the regular, dense

DAS array design makes choosing the locations of the next element of the sequence

simple. For low node density, the weighted design substantially outperforms the

unweighted design on average, while it confers no advantage once one quarter of

the nodes are included.

4.6 Conclusions

DAS networks promise a paradigm shift within observational seismology bymaking

large-N, highly spatially dense networks financially and logistically feasible for

the research community. However, the strain based measurement procedure is
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Figure 4.6: Network geometry used for synthetic optimal network design. DAS
cable channel locations are shown as circles colored by cable azimuth. Red triangles
show the locations of candidate stations, and grey triangles show the locations of
the validation sensors placed within the central region where we should expect to
be able to achieve good recovery of the wavefield.

highly susceptible to the effects of local heterogeneity and is furthermore sensitive

to only one projection of the horizontal strain tensor. Using a wavelet-curvelet

compressive sensing based wavefield reconstruction, we have developed a method

for simultaenous spatial assessment of DAS array response using a theory that

does not require potentially unstable f k rescaling, when a colocated but potentially

off-cable point sensor array is available. We have shown that the DAS phase

response in the 1-2.5 Hz range is relatively accurate to true ground motion for

the ML 4.3 Hawthorne, NV earthquake recorded on the Porotomo DAS array, but

that there are however significant amplitude errors that correlate with near-surface

geology. These amplitude errors can be well characterized by a single empirical gain
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Figure 4.7: Array designs and reconstruction performance for different numbers of
included nodes. The colors of the left column shows the inclusion weight for the
relaxed OED problem. The shapes show the sequential insertion design, with square
symbols showing included stations and triangular symbols showing non-included
stations. The right column shows the evaluated reconstruction for the x component
of the validation station at location (155,165), near the center of the array, with the
black line showing the true data, the pink line the reconstruction for the sequential
insertion design, blue lines showing unweighted random designs and orange lines
showing weighted random designs.
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calculated using the 256 validation stations shown in 4.6 as a function of number of
utilized nodes in the design. The pink line shows the sequentially optimized design,
while blue squares and orange circles show results from unweighted and weighted
randomized designs respectively. The error bars show the maximum and minimum
RMSE across the 10 samples used for each randomized design.

coefficient within the studied frequency band, and further detailed studies using the

framework of homogenization theory may yield corrections that improve both phase

and amplitude response. Furthermore, we have shown that wavefield reconstruction

permits a cohesive framework for combining DAS with point sensors such as 3D

nodes, with the combined DAS and nodes network outperforming the nodal network

by itself for low node density using the PoroTomo array geometry. With a view to

generalizing the applicability of these results beyond the PoroTomo deployment,

we have investigated an optimal design strategy for improving the efficiency of

mixed DAS and point sensor deployments for wavefield reconstruction. While

at this stage we have focused on the relatively simpler task of deciding the best
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locations for point sensors given a fixed DAS deployment, as this is computationally

more tractable and also corresponds to the common case of utilizing pre-existing

dark fiber deployments, the general concept of optimizing network sensitivity while

also promoting the incoherence of measurements, will allow for optimal design

of general DAS networks in the future. As DAS becomes increasingly prevalent

and further integrated with traditional seismic networks, wavefield reconstruction

therefore represents a flexible framework for overcoming the weaknesses of DAS as

a single component large-N array, instead optimizing its strength as a single unified

areal sensor.
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4.9 Appendix: Wavefield Reconstruction Theory

In Muir and Zhan (2021), we proposed a wavelet decomposition in the time domain,

coupledwith a compressive-sensing based preconditioned curvelet decomposition in

the spatial domain. Mathematically this involves a transform w( jw, s) = WT(u(t)),

operating trace-by-trace, from the collection of time-domain signals u to the wavelet

domain indexed by scale jw and time-position variable s, followed by the solution of

an L1 regularized linear inverse problem Gĉ( jw, s) = w( jw, s) expressing the spatial

behavior of the wavelet coefficients w( jw, s) in terms of the curvelet coefficients

ĉ( jw, s). Individual curvelet coefficients are indexed by a scale jc, as well as rotation

and translation indices. The design matrix G = ΨΦP in our formulation includes

both the spatial behaviour of the curvelet basis functions, Φ, the spatial sampling

matrix Ψ and a variable preconditioning matrix P = Diag(2− jcn) that allows us to

promote smooth wavefields by penalizing the scale factor jc of the curvelets.

We now develop the theory further to include DAS measurements of the strain field.

As indicated in Equation 4.2, DAS strain metrics are calculated by averaging the true

strain or strain-rate over a gauge length L. As such, we can invert for the horizontal

wavefield curvelet coefficients by solving

[
1
L

∫ L/2
−L/2 A1

∂G
∂x + A2

∂G
∂y dl 1

L

∫ L/2
−L/2 A2

∂G
∂x + A3

∂G
∂y dl

] 
cx( jw, s)

cy( jw, s)

 = wεDAS ( jw, s)

(4.14)[
GDAS,x GDAS,y

] 
cx( jw, s)

cy( jw, s)

 = wεDAS ( jw, s),

(4.15)

where A1 = Diag(sin2 α), A2 = Diag( sin 2α
2 ) and A3 = Diag(cos2 α). The inte-

grals are applied to each row, each of which corresponds to a single measurement for

a cable segment with gauge length L and cable azimuth α. This inversion process
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is unable to recover static components of the velocity field due to the derivatives

involved, but given the normally oscillatory characteristics of solid earth ground

motion, this is unlikely to be an issue in practice. Once the curvelet components

are found, the ground velocity wavelet coefficients may be recovered by apply-

ing the undifferentiated curvelet basis matrix giving wux ( jw, s) = Gcx( jw, s) and

wuy ( jw, s) = Gcy( jw, s). The ground velocities in time domain can then be re-

covered by the inverse wavelet transform. In the reverse process, the horizontal

components ux and uy of 3C seismic deployments may be inverted using an ap-

propriate design matrix G, and the above equations used to obtain the predicted

DAS signal. Finally, we may simultaneously invert both 3C seismometers and DAS

deployments by forming the block matrix equation
GDAS,x GDAS,y

GSeismometers 0

0 GSeismometers



cx( jw, s)

cy( jw, s)

 =

wεDAS ( jw, s)

wux ( jw, s)

wuy ( jw, s)


, (4.16)

which in the compressive sensing framework is given by L1 regularization


ĉx( jw, s)

ĉy( jw, s)

 = arg min



����������
����������

GDAS,x GDAS,y

GNodes 0

0 GNodes



cx( jw, s)

cy( jw, s)

 −

wεDAS ( jw, s)

wux ( jw, s)

wuy ( jw, s)



����������
����������
2

+ λ

�������
�������

cx( jw, s)

cy( jw, s)


�������
�������
1


,

(4.17)

solved using the Lasso.jl Julia module (a fast reimplementation of the R code

glmnet (Friedman et al., 2010)), with the regularization parameter λ determined

automatically using the corrected Akaike information criterion or AICc (Burnham

and Anderson, 2004), or via 5-fold cross-validation where computationally feasible.

4.10 Appendix: Reconstruction of nodal data using DAS

Having shown that the dense nodal deployment is able to well-recover the DAS

strain-rate, we then performed the opposite procedure: recovery of both horizontal
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components of the wavefield using only the DAS cable. We note that this is a

significantly more challenging task than the previous nodes-to-DAS experiment,

as we can only access the horizontal wavefield through its derivative. In order to

stabilize the selection of curvelets when only using DAS, we use mixed L1 and L2

regularization (i.e. Elastic Net Regression) of the form α | |c | |1 + (1 − α)| |c | |2 with

α = 0.95. We have found that this small additional amount of L2 regularization

is not necessary when any nodal data is included. Figure 4.9 shows the resulting

horizontal components at three node locations, using timing lags optimized for the

P wave on each instrument—individually calibrated time corrections were used for

this figure as the overall DAS to nodal reconstruction is not of sufficient accuracy to

calculate a global correction. In this case, the fit to the phases and amplitudes of the

initial P wave is generally good, and performance declines throughout the P wave

coda. Waveform fits improve on the East components during the initial S wave,

but fits to the North component are generally poor. Sensitivity analysis following

Martin et al. (2018) is shown in Figure 4.10 assuming a near surface VP of 1300

m/s and a Poisson solid relationship for VS indicates that relative sensitivities for P,

SV and SH motions are almost independent of frequency across the frequency band

studied here. The cable geometry, near surface velocity structure and earthquake

source location combine to give highest sensitivity to P, followed by SH, with little

sensitivity to SV . The overall better fit of the P wave data is therefore unsurprising,

as the effective wavelength of this low-slowness phase is large across the array, and

the relative sensitivity to P motions is large, allowing the CS inversion scheme to

better integrate the P wavefield. In the case of the S wave, the higher amplitude of the

East vs North nodal channels suggests that the SH component of the S wavepacket

is dominant (given that the earthquake is south-southeast of the aray). The higher

sensitivity to SH, combined with higher SH component, explains the better fit to

the East components of the motion at the nodes. In general, however, it is apparent
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that the DAS cable is by itself insufficient to recover the wavefield to a desirable

accuracy within the frequency range of this study.
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Figure 4.9: Comparisons between nodal seismic channels (blue) and reconstructed
ground velocity from DAS (orange) at the three stations highlighted in Figure 4.1.
Waveforms are bandpass filtered at 1–2.5 Hz, and nodal data has been corrected
using a nominal Fairfield ZLand 3C instrument response.
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Figure 4.10: DAS cable sensitivity of the PoroTomo experiment at Brady, NV, at a
frequencies of 1.0, 1.75 and 2.5 Hz to motions originating from the ML 4.3, March
21, 2016 studied in Wang et al. 2018. Notably, the relative sensitivity of the DAS
cable is independent of cable azimuth across this period band
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4.11 Appendix: Joint reconstruction of DAS and nodes

Finally, we study the performance of a mixed deployment of horizontally sensitive

point sensors (nodes in this case) and DAS cable. We performed a five-fold cross

validation experiment to obtain standardized mean square error (MSE) paths for

nodal horizontal component reconstruction as a function of nodal instrument density.

Specifically, we split the nodal dataset into five folds. With each of these folds acting

as a validation dataset, we used between 20% and 100% of the remaining four folds

as a training dataset. We then calculated the MSE of the reconstruction both with

and without including the DAS data in the reconstruction. We also calculated the

MSE of the DAS for each validation fold with no nodal data included. The results

are shown in Figure 4.11. With the exception of one poorly performing fold, we

see that the inclusion of DAS data substantially improves the MSE performance

of reconstruction for low station densities. As the station density increases, the

performance of the mixed network saturates whilst the performance of the nodal

only network continues to improve. We interpret this saturation effect to be due

to the inconsistencies between the nodal and DAS data due to clock errors and

uncalibrated DAS-ground coupling; with a mixed network designed from the outset

for joint wavefield reconstruction, improved performance at all station densities

seems likely. This result highlights the potential of a mixed deployment to act

as a unified areal sensor via wavefield reconstruction, even while utilizing a small

number of three component seismometers. A network designed and calibrated with

wavefield reconstruction inmind from the outsetwould likely have strongly improved

performance when compared to the Porotomo experiment. This style of mixed

network would be especially powerful for long-term or permanent deployment,

where the costs of installing and maintaining dense three component arrays are

substantial.
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Figure 4.11: Mean Square Error (MSE) paths for a 5-fold cross-validation ex-
periment. Blue lines show paths trained using only the remaining four-fifths of
nodal data. Orange lines show paths with the addition of the full processed and
quality-controlled DAS dataset.
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C h a p t e r 5

GEOMETRIC AND LEVEL SET TOMOGRAPHY USING
ENSEMBLE KALMAN INVERSION

Muir and Tsai (2020b) previously published as

Muir, J. B. & V. C. Tsai (2020). “Geometric and level set tomography using

ensemble Kalman inversion”. In: Geophysical Journal International 220.2,

pp. 967–980. doi: 10.1093/gji/ggz472

5.1 Abstract

Tomography is one of the cornerstones of geophysics, enabling detailed spatial

descriptions of otherwise invisible processes. However, due to the fundamental

ill-posedness of tomography problems, the choice of parametrizations and regular-

izations for inversion significantly affect the result. Parametrizations for geophysical

tomography typically reflect the mathematical structure of the inverse problem. We

propose, instead, to parametrize the tomographic inverse problem using a geolog-

ically motivated approach. We build a model from explicit geological units that

reflect the a priori knowledge of the problem. To solve the resulting large-scale

nonlinear inverse problem, we employ the efficient Ensemble Kalman Inversion

scheme, a highly parallelizable, iteratively regularizing optimizer that uses the en-

semble Kalman filter to perform a derivative-free approximation of the general

iteratively-regularized Levenberg-Marquardt method. The combination of a model

specification framework that explicitly encodes geological structure and a robust,

derivative-free optimizer enables the solution of complex inverse problems involving

non-differentiable forward solvers and significant a priori knowledge. We illustrate

the model specification framework using synthetic and real data examples of near-
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surface seismic tomography using the factored eikonal fast marching method as a

forward solver for first arrival travel times. The geometrical and level set framework

allows us to describe geophysical hypotheses in concrete terms, and then optimize

and test these hypotheses, helping us to answer targeted geophysical questions.

5.2 Introduction

Geophysical imaging methods, in particular seismic imaging, have offered the

strongest constraints on the geometry and material parameters of the internal fea-

tures of the Earth. Since the origin of geophysical inverse theory in the 1970s (e.g.,

Aki et al. (1977); Backus and Gilbert (1968); Dziewonski et al. (1977)), imaging

methods have rapidly progressed with increasing computational resources, from

small-scale linear tomography models to regional and global scale inversions fully

utilizing the physics of the governing forward model (e.g., Rawlinson et al. (2010)).

Despite these significant advancements, the interpretability of even well-constrained

high-resolution seismic imaging results has remained challenging at regional and

global scales, resulting in significant disagreements for the implications of seismic

images (e.g., Foulger et al. (2013)). The potentially most significant underlying

reason is the ill-posed nature of the inverse problem. Since the Earth is a three-

dimensional (3D) continuous body, and our data is finitely distributed on or near the

surface, there can never be a unique solution to the full continuum inverse problem.

This ill-posedness necessitates regularization in imaging, either through explicit

Tikhonov type additions to the data misfit function, which are equivalent in the

Bayesian formulation to assumptions about the prior distribution of model parame-

ters, or through implicit regularization via basis truncation (Parker, 1994; Rawlinson

et al., 2014; Tarantola, 2005). Alternatively, some researchers have sought to use

intuition informed by geodynamical considerations to create ad hoc images of the

Earth throughwaveformmodelling (Ko et al., 2017; Ni et al., 2002; Song et al., 2009;
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Sun et al., 2016). These waveform modelling approaches are particularly important

at higher frequencies (∼1Hz) where a combination of computational expense and

required model complexity have precluded formal tomographic solutions at regional

and global scales. Both the inverse problem approach and the waveform modelling

approach have deficiencies. In the latter case, significant expert knowledge is re-

quired, and it is likely that only a limited range of candidate models will be tested.

The former case does not rely on direct human intervention and is consequently

potentially more objective, but the damping and smoothing regularization almost

universally used create undesirable tomographic artifacts such as smeared rays and

false compensating wave speeds near imaging targets as the misfit function attempts

to balance penalties from the data and regularization.

Recent developments in Markov Chain Monte Carlo (MCMC) driven Bayesian

tomography have helped to characterize the uncertainty of the results of seismic im-

ages (Tarantola, 2005), including the degree of data noise and model complexity in

the now popular hierarchical transdimensional formulation (Bodin and Sambridge,

2009). These uncertainty measures can help one to understand poorly constrained

parts of the resulting images, allowing more confidence in the predictions drawn

from them. Recent results in transdimensional Bayesian tomography have high-

lighted the important impact of assumptions about the parametrization of internal

boundaries on inversion results (Gao and Lekić, 2018; Roy and Romanowicz, 2017).

Unlike the waveform modelling approach, which relies on strong a priori expec-

tations about what potential structures may look like, seismic tomography in both

deterministic and MCMC driven forms has typically only loosely prescribed the

forms of acceptable models. We assert that in many cases, strong a priori knowl-

edge does in fact exist, and that utilizing it can potentially significantly improve

the resulting image in the inverse problem context. In addition, where intuition

permits a range of potentially feasible geological structures, explicitly modelling
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these options enables us to evaluate them within a hypothesis testing framework,

quantitatively ranking potential models and rejecting models that do not fit the data

(Claeskens, 2016).

At local scales, objectives of interest include the imaging of anomalous bodies such

as tunnels or salt packages, geometric distortions such as faults, and stratigraphic

interfaces. At the regional and global scale, there are clear targets of opportunity

for which we have strong information from high-frequency waveforms that sharp

physical contrasts exist, such as perturbations in important radial discontinuities (the

Moho, 410 and 660 discontinuities) and abrupt localized features (slabs, ultra-low

velocity zones, sedimentary basins). Specialized methods, such as receiver function

analysis, exist to image these structures but they are difficult to use in a traditional

tomographic framework. Parameterizing the tomographic inverse problem in such

a way that these boundaries are explicitly modeled may help to overcome this

limitation. This observation leads to the fundamental idea of this study, which is

to pose the geophysical inverse problem as an optimization of explicitly defined

geologic structures. Candidate structures for our proposed methodology are shown

in Figure 5.1. Defining the inverse problem in this way allows us to better test

hypotheses formulated using our a priori knowledge, as these hypotheses can be

directly modeled. Viewed from another perspective, our inverse framework places

waveform-modelling type approaches on amore rigorous footing by allowing greater

flexibility in the range of permitted models and supplying the tools necessary for

handling larger scale inversions than is possible using an exhaustive full model-

space search. An alternative to our explicit modelling viewpoint would be use of the

null-space shuttle, which allows a priori information to be added after an optimal

solution is obtained (deWit et al., 2012; Deal and Nolet, 1996; Fichtner and Zunino,

2019).

The purpose of this paper is threefold. The first part will describe a method
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Figure 5.1: Schematic of the types of imaging targets that represent distinct domains
with different geophysical properties; these targets are candidates for our proposed
methodology.

of defining Earth models that allows for flexible modelling of explicit structures,

enabling an improvement in the interpretability of inverse problems. Second, we

will introduce from the inverse problem literature a derivative-free optimizer based

on the Ensemble Kalman Filter, known as Ensemble Kalman Inversion (EKI), and

further describe the details of the algorithm for a geoscience audience. Finally, we

will illustrate the use of our model definition scheme and EKI to solve nonlinear

travel time tomography problems.

5.3 Model Specification

Parametrization is a fundamental design choice present in all geophysical inverse

problems. Parametrizations must seek to accurately represent potential Earth struc-

ture, interface with forward solvers, closely predict the data, and lead to solutions

of the inverse problem that can be stabilized against the effect of data noise. These

potentially conflicting goals have led to a profusion of different parametrization

schemes, ranging from simple Cartesian block models, to more exotic basis function

sets or spectral domain methods, to irregular multiscale parametrizations designed
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Figure 5.2: Schematic of the geologically motivated parametrization proposed by
this study. a) shows some body in the Earth that is the imaging target, for which
we have some a priori knowledge. b) shows a potential geometric parametrization
of the body which we optimize using EKI. M0 encodes the background model,
while Ω1 and M1 are the boundary and interior properties of the first model layer,
respectively. H1 is a deformation rule that further alters the model.

to tune model complexity to match the data (Rawlinson et al., 2010). In this study,

we aim to introduce a parametrization designed to intuitively describe geological

features. Because the model is built up from discrete units that are fixed a priori,

we use the term model specification rather than parametrization; this highlights

that the researcher explicitly introduces their a priori knowledge into the inverse

problem by determining the number and type of geological features solved for, and

also emphasises that the model is independent of the form of discretization used to

solve the forward problem.

In the inverse problem context, a model specification for domain X must provide a

set of P functions {Fp(x)}Pp=1 that determine the P material properties of interest

at an arbitrary point x ∈ X . Our model specification framework describes the

inversion domain X via a set of simple layers. The base layer defines a background,

or reference, model M0. The background model has a set of material property

functions Fp(x; M0) that are defined for x ∈ X . So defined, the background model

could range from a homogeneous space to a fully 3D model depending on a priori
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knowledge. On top of the base layer, J objects Mj are defined, each with their

own geometries Ω j ⊆ X and material parameter functions Fp(x; Mj). We define

Fp for a collection of objects as Fp(x; {Mj}
J
j=0) = Fp(x; Mj ′) where j′ is the largest

integer with x ∈ Ω j ′—in concrete terms, we select the topmost layer that contains

x, reverting to the background if no higher layers are available. Once the objects

are assembled, K deformations (such as faults) are included. The deformations are

defined by invertible functions Hk(x), X → X . To evaluate the model at a particular

point in space, these deformations are reversed, so that Fp(x; {Mj}
J
j=0, {Hk}

K
k=1) =

Fp(x′; {Mj}
J
j=0) where x′ = H−1

1 ◦ H−1
2 ◦ ... ◦ H−1

K (x). These operations are shown

schematically in Figure 5.2. Figure 5.2a shows an imaging target, while Figure

5.2b shows a geometric parametrization for the body that can be specified using our

parametrization framework, and optimized using EKI to fit available geophysical

data.

In the applications discussed in this paper, we are typically interested in describing

the interface between two or more geologic units (i.e. the boundaries of regionsΩ j).

If the interface is expected to be relatively simple—for instance, if we were attempt-

ing to image a near-surface tunnel—then an explicit description of the interface is

convenient. An explicit descriptionmay be based on deformed geometric primitives,

or by describing the locations of spline knots or polygon vertices etc. These explicit

definitions have the advantage of reducing the number of parameters required to

describe interfaces. However, they are relatively inflexible descriptions, especially

when data requires that the topology of the interface should be different from that

assumed by the explicit definition (for instance, if two bodies should be merged

into one or vice versa). These situations may require the use of transdimensional

methods in which model parameters are added and removed, which significantly

increases the complexity of the inverse problem.

Alternatively, object boundaries may be defined implicitly by means of an auxiliary
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function. Implicit definitions handle complex boundaries and changes in topology,

while avoiding the need to change the number of parameters during the inversion.

In the following sections, we describe the level set method as a way of implicitly

defining object boundaries, and Gaussian random fields as a means of controlling

the behavior of level set functions.

The level set method

The level set method partitions space into disjoint regions by considering contour

lines of a set of n continuous auxiliary functions {φi}
n
i=1. The rationale behind the

method is that discontinuous fields can be represented in this way by continuous

fields of a higher dimension, which often makes the handling of boundaries more

mathematically tractable. Associatedwith the auxiliary fields are regional parameter

fields {A j}
N
j=1 that describe the value of the parameter of interest within a region.

To construct a parameter field F described by level sets, we may use either a

combinatoric or a procedural definition. In this work, we employ the procedural

definition as it is simpler to implement and combine with other elements of our

model definition; however it does not allow for explicit differentiation of the model.

The more commonly used combinatoric definition is given in the appendix for

comparison.

Procedural Definition: For N regional parameter fields of interest, set n such that

N = n. Then F(x) = Ai(x) for the largest i such that φi(x) > 0. In this procedural

definition, where multiple φ are non-zero, we “paint over” with increasing i in a

similar fashion to other elements of our model definition framework. Each auxiliary

field is individually associated with a spatial region and its associated parameter

field, which aids intuition.

Implicit definition of potentially discontinuous boundaries via the level set method

has been actively developed since its introduction for the solution of interface evo-
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lution problems (Osher and Sethian, 1988). In the level set method, an interface

is represented by a particular contour on a continuous auxiliary field—examples

are shown in Figure 5.3. Level-set based tomographic methods have recently been

intensively studied in the context of Electrical Impedance Tomography (EIT, also

known as resistivity tomography, e.g., Chung et al. (2005)), hydrology (Cardiff and

Kitanidis, 2009; Iglesias et al., 2013) and in various exploration geophysics con-

texts, especially crosswell seismic tomography and to a more limited extent gravity

and magnetic applications (Isakov et al., 2011; Li et al., 2014, 2017; Li and Qian,

2016; Lu and Qian, 2015; Zheglova et al., 2013, 2018). Existing work has typi-

cally assumed piecewise constant fields, often of prescribed value, as this strong a

priori knowledge is often available in exploration contexts. Under this framework,

authors have found significantly improved reconstruction of interfaces compared to

the smoothed images available from traditional Tikhonov regularized tomographic

methods. Work within the geophysics community has exclusively employed the

level-set evolution equation, which requires the calculation of the Fréchet deriva-

tive of the data misfit functional with respect to the level set function. The misfit

functional is typically equipped with regularization that penalizes longer interface

lengths (i.e. Total Variation, or TV regularization, Osher et al. (2005)). The level

set evolution equation allows for efficient inversion but restricts the applicability of

the level set formulation to contexts for which the Fréchet derivatives are available.

Additionally, existing applications using the level set evolution equation (Li et al.,

2017; Zheglova et al., 2018) require significantly more mathematical machinery

when multiple level sets are used, limiting their applicability to complex models.

When the derivatives are not available, for example when using externally supplied

black-box forward models, the level-set evolution equation and also traditional it-

erative gradient-based tomographic methods break down. An alternative to TV

regularization of level sets is specification of a Gaussian random field prior for the
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auxiliary field used to generate the level set (e.g., Chada et al. (2018)). Using a

Gaussian random field prior allows explicit control of the dominant length scale and

roughness of the resultant level set, as shown in Figure 5.3. A possible alternative

would be to learn appropriate basis function representations of the level-set auxil-

iary field from data using a dictionary learning approach (e.g., Bianco and Gerstoft

(2018)). Due to its conceptual simplicity, the Gaussian random field based level-set

approach is taken in the examples below to specify the boundary of object layers

with our model specification framework.

Gaussian random fields

Gaussian random fields (GRFs, also commonly referred to as Gaussian processes,

especially in 1D applications) have a long history in geostatistics where they provide

the framework for kriging estimators of fields with observed training data (Chiles

and Delfiner, 2012). In the inverse problem setting, the quantities of interest are

not observed directly. For the linear or weakly nonlinear case, Hansen et al. (2006)

has supplied theory for conditioning GRF priors on averaged observations such

as travel times in fixed raypath tomography. An intriguing further development

in applying GRFs to geophysical inverse problems has recently been provided by

Ray and Myer (2019) which utilizes transdimensional MCMC for sampling training

points on which the GRFs are conditioned. In this study, we use GRF priors,

without conditioning on training data points, for the auxiliary fields used by the

level set method. Thus, the material parameter fields are not determined by the

GRFs directly, but rather by a nonlinear transform of them that can encode abrupt

changes in material properties.

A comprehensive review of GRFs is given by Rasmussen andWilliams (2006); here

we offer a brief summary of definitions that are important to the model specification

scheme outlined in this study. A scalar valued GRF on Rn is a spatial process
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analogous to a Gaussian distribution. It is defined by a mean function m(x) and

symmetric covariance function C(x, y) = C(y, x) and has the property that any

finite set of points {xk}
M
k=1 on the field are distributed as a multivariate Gaussian

distribution N(m,Σ) with

m =


m(x1)

...

m(xM)


, Σ =


C(x1, x1) . . . C(x1, xM)

...
. . .

...

C(xM, x1) . . . C(xM, xM)


. (5.1)

The covariance function encodes the GRF’s spatial correlation behavior, and may

be anisotropic and spatially varying (non-stationary); in many typical applications,

a subclass of isotropic, stationary GRFs are employed for which only the distance

between x and y matters, i.e. C(x, y) = C(| |x − y | |). Within this class, the proto-

typical covariance functions with spatially constant variance σ2 are the exponential

covariance with characteristic lengthscale l

C(x, y) = σ2 exp
(
−
||x − y | |

l

)
, (5.2)

and the Matérn covariance function with smoothness parameter ν and length scale

parameter ρ

C(x, y) = σ2 21−ν

Γ(ν)

(√
2ν | |x − y | |

ρ

)ν
Kν

(√
2ν | |x − y | |

ρ

)
, (5.3)

where Γ is the gamma function and Kν is the modified Bessel function of the second

kind. The Matérn covariance function includes the exponential covariance function

(as well as the squared-exponential variance function) as a special case. Figure 5.3

shows a table of example GRFs defined by Matérn covariances of different length

scales and smoothness parameters, as well as level set partitions that can be defined

by them. GRFs form a useful class of fields for defining boundaries in models using

the level set method as they encode a wide range of potential prior information that

can be tailored to a particular geophysical problem.
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Figure 5.3: A table of sample zero-mean Gaussian random fields (GRFs) shown by
continuous contours. These are overlain by a transparent two-color image showing
a possible level set partition into two fields, defined by the zero contour level of
the GRFs. The underlying continuous GRFs, which are visible underneath the
two-color image, give rise to the discontinuous final level set partitioning.

5.4 Ensemble Kalman Inversion

The model specification framework proposed in this paper aims to map the a priori

information of a researcher into an Earth model in a way that is independent of

the computational requirements of the forward solver used by the inverse problem.

While defining models in this fashion is advantageous from the perspectives of

ease of usage and interpretation, it potentially makes derivatives of the desired

geophysical observables with respect to model parameters difficult to calculate using

fast analytic or adjoint methods—that is, the model function F may not be easily

differentiable. Additionally, derivatives of the physical model may not be available

when using closed source or legacy code. Since explicit calculation of derivatives

via finite differencing is intractable for models with many parameters, and we
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wish to maintain solver independence, in general precluding the use of algorithmic

automatic differentiation, we are motivated to employ an efficient derivative-free

optimizer for inverse problems defined using our model specification framework. In

particular, we have employed the Ensemble Kalman Inversion optimizer (Iglesias

et al., 2013), which we define below.

The Ensemble Kalman Inversion (EKI) scheme was introduced by Iglesias et al.

(2013) as a derivative-free ensemble-based approximation of the iteratively reg-

ularized Levenberg-Marquardt (LM) inversion scheme (Hanke, 1997). Further

development has resulted in applications to hydraulic reservoir modelling (Chada

et al., 2018; Iglesias, 2014), electrical impedance tomography (Chada et al., 2018),

and for optimizing neural-network parameters in machine learning (Kovachki and

Stuart, 2018). For comparison, we first describe the regularizing LM scheme from

which the EKI scheme is derived. We closely follow the development in Iglesias

(2016).

Iteratively Regularized Levenberg-Marquardt scheme: The iteratively-regularized

LM scheme considers an inverse problem with model parameters u ∈ X and data

y ∈ Y . X and Y are Hilbert spaces with appropriate norms | | · | |X and | | · | |Y ; in a

geoscience application X will typically be either a finite dimensional space RP or

a function space on RP and Y will be a finite dimensional observation space RM .

We assume that y = G(u†) + η for some model operator G, “true” set of model

parameters u† and noise η. Using our model framework, we typically have a set

of model parameters that are transformed by the model function F to the physical

model of interest on an evaluation grid, which are then input into a forward solver

H so that G(u) = H(F(u)). We assume a priori knowledge of the noise level

η = | |Γ−1/2(y − G(u†))| |Y, (5.4)

where Γ is an operator that encodes the measurement precision, so that the absolute
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misfit (y − G(u)) is weighted to account for the quality of measurements. For finite

dimensional observations equipped with the normal Euclidean norm, if we assume

that η ∼ N(0, σ) (i.e. Gaussian noise with variance σ2) and we set Γ = I so that

observations are equally weighted, then η ≈ σ
√

M where M is equal to the number

of observations.

The objective of any iteratively regularized scheme is to find a model uη that is a

stable approximation of u† with respect to the noise in the sense that as η→ 0, then

uη → u? for some u? ∈ X with G(u?) = G(u†). In contrast to standard Tikhonov

regularization methods, in which the problem is explicitly regularized and then opti-

mized, iteratively regularized schemes fundamentally seek an approximate solution

to the unregularized problem but stabilize the parameter updates and terminate at an

appropriate level of fitting to avoid being dominated by noise. In the LM scheme,

this condition is achieved by solving a succession of Tikhonov regularized updates

with regularizing parameter αn

un+1 = u + v∗, (5.5)

v∗ = argmin
v∈X

(
| |Γ−1/2(y − G(un) − DG(un)v)| |

2
Y + αn | |C−1/2v | |2X

)
, (5.6)

where DG(un) is the Frechét derivative of G in respect to u, so that y − G(un) −

DG(un)v is a linear approximation of the misfit about un. C is an operator X → X

that encodes regularity or prior information on X , and αn controls the strength of the

regularization at each update step. Note that within the LM scheme, the linear term

of the first quadratic form gives rise to a steepest descent update, while the second

order term gives the Gauss-Newton approximation of the Hessian (see Appendix

5.9 for the derivation in finite dimensions). The desired stable convergence property

of LM was shown by Hanke (1997) to require that αn at each iteration must satisfy

ρ| |Γ−1/2(y − G(un))| |Y ≤ αn | |Γ
−1/2(y − G(un) − DG(un)v

∗)| |Y (5.7)
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for a tuning parameter ρ ∈ (0, 1) that is set a priori and fixed for all iterations. The

scheme is terminated when

| |Γ−1/2(y − G(un))| |Y ≤ τη < | |Γ
−1/2(y − G(un−1))| |Y (5.8)

for somefixed τ > 1/ρ, where this inequality is required to ensure stable convergence

of the scheme (Hanke, 1997). This termination criterion is a form of Morozov’s

discrepancy principle (Scherzer, 1993), and ensures that the LM scheme does not

overfit to the noise; without the termination criterion the scheme is equivalent to a

modification of a standard unregularized Levenberg-Marquardt optimizer. Equation

5.6 can be shown to be equivalent to the explicit update

un+1 = un + (DG?(un)Γ
−1DG(un) + αnC−1)−1DG?(un)Γ

−1(y − G(un)), (5.9)

with DG? the adjoint operator of DG (Iglesias and Dawson, 2013). For finite

dimensional X , the mth component of DG is DmG(un) = J(un) · em where J is the

Jacobian of G and em is the unit vector for m; Equation 5.9 then simplifies to the

standard finite dimensional LM update

un+1 = un + (J(un)
T
Γ
−1J(un) + αC−1)−1J(un)

T
Γ
−1(y − G(un)). (5.10)

When the Frechét derivative ofG is available, the iteratively regularizing LMscheme

provides a useful framework for the general solution of nonlinear inverse problems,

and has been applied successfully in geophysical applications for groundwater flow

(Hanke, 1997; Iglesias and Dawson, 2013).

EnsembleKalman Inversion scheme: TheEnsembleKalman Inversion (EKI) scheme

is an ensemble approximation of the iteratively regularized LM scheme. The gen-

eral concept is to update an ensemble of particles (where each particle represents a

realization of the model) using the ensemble Kalman filter (Evensen, 1994; Iglesias,

2016). Ensemble Kalman filters have recieved recent attention in the seismology
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community as a means of uncertainty quantification in large scale full-waveform

inverse problems (Eikrem et al., 2019; Thurin et al., 2017), although this usage is

still in its preliminary stages. In this study, we utilize the EKI dynamic purely as a

high-performance iteratively-regularized optimizer.

The dynamics driving the EKI ensemble are designed to drive the mean of the

particles towards the solution of the inverse problem of interest (Iglesias et al.,

2013). At each step, the ensemble of particles solves an approximate Tikhonov

regularized update with iteration dependent regularization αn, the strength of which

is controlled by a global regularization parameter ρ (Iglesias, 2014). We let the

ensemble at iteration n be {u( j)n }
J
j=1 where J is the number of ensemble members.

Means of collections are denoted by over-bars (i.e. ūn is the mean over the collection

of {u( j)n }
J
j=1). Approximating G(u( j)n ) to first order about the mean of the ensemble

G(u( j)n ) ≈ G(ūn) + DG(ūn)(u
( j)
n − ūn). (5.11)

Iglesias (2016) shows that using this approximation, explicit calculation of the

Frechét derivative DG(u) may be eliminated, leading to an approximation of the

iteratively regularized LM scheme by the following algorithm:

1. Initialization: Draw {u( j)}Jj=1 ensemble members from prior distribution. Set

ρ ∈ (0, 1) and τ > 1/ρ. Then for n = 0, 1...

2. Prediction: Evaluate w( j)n = G(u( j)n ); calculate w̄n

3. Termination: If | |Γ−1/2(y− w̄n)| | ≤ τη, terminate and output ūn as the solution

4. Analysis: At each iteration, an ensemble of perturbed data {y( j)n }
J
j=1 is gen-

erated with additional noise y
( j)
n = y + η. Addition of extra noise helps the

ensemble to better explore parameter space by preventing the ensemble from

converging to a single point from which ensemble gradients cannot be com-

puted. Let 〈·, ·〉Y being the inner product onY and define covariance operators
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Cuw
n and Cww

n by

Cww
n (·) =

1
J − 1

J∑
j=1
(G(u( j)n ) − w̄n)〈G(u

( j)
n ) − w̄n), ·〉Y, (5.12)

Cuw
n (·) =

1
J − 1

J∑
j=1
(u( j)n − ūn)〈G(u

( j)
n ) − w̄n), ·〉Y, (5.13)

then update the model ensemble {u( j)n } with the ensemble of perturbed data

{y
( j)
n }

J
j=1 by

u( j)n+1 = u( j)n + Cuw
n (C

ww
n + αnΓ)

−1(y
( j)
n − w

( j)
n ), (5.14)

where αn is heuristically chosen to be αn = 2iα0, with α0 an initial guess, such

that i ≥ 0 is the first integer with

αn | |Γ
1/2(Cww

n + αnΓ)
−1(y − w̄n)| | ≥ ρ| |Γ

−1/2(y − w̄n)| |. (5.15)

α0, ρ and τ are tuning parameters of the scheme; typically α0 = 2 so that αn ≥ 1—

the choice of αn = 2iα0 is a heuristic that tries to balance choosing as small as

possible αn without computing Equation 5.15 many times for each analysis step;

theoretically any αn that satisfies Equation 5.15 is acceptable, but this heuristic

provides a good balance of computational effort without over-regularizing. Higher

values of ρ provide greater regularization by forcing larger αn; this typically also

results in more iterations until the termination criterion is reached (Iglesias, 2016).

If P is the dimension of the model space (potentially after discretization in the

case where G operates on fields) and M is the number of observations, then Cuw
n

is a P × M matrix and Cww
n is a M × M matrix. For large data and model spaces,

constructing and especially inverting these matricies can be very expensive—O(M3)

for the construction of (Cww
n + αnΓ)

−1. However, due to their construction, both

covariance matrices are of rank at most min(J − 1, M). Consequently, for J � M ,

it is more efficient to implement them within the algorithm as operators defined
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by Equations 5.12 and 5.13. For constructing the inverse, we employ a low rank

approximation of Cww
n to compute the approximate Hermitian eigendecomposition

of the operator, as it is symmetric positive semidefinite by construction (Halko et al.,

2011). The low rank approximation is exact if an approximation of rank J − 1 is

sought. This decomposition allows us to write

Cww
n = QΛQT, (5.16)

whereΛ is a square diagonal matrix of dimension at most (J−1)×(J−1) containing

the largest eigenvalues of Cww and Q, which is a M by at most J − 1 matrix, has

columns equal to the eigenvectors of Cww corresponding to the elements of Λ. We

may then use the Woodbury matrix identity to compute

(Cww
n +αnΓ)

−1 = (QΛQT+αnΓ)
−1 =

Γ−1

αn
−
Γ−1

αn
Q(Λ−1+QT

Λ
−1Q)−1QT Γ

−1

αn
. (5.17)

The matrix (Λ−1 +QTΛ−1Q) is of dimension at most (J − 1) × (J − 1), and all other

inverses are of diagonal matricies. Constructing the Hermitian eigendecomposition

requires only matrix-vector products (Halko et al., 2011); due to the structure of

the covariance matrix Cww
n , only J vector-vector products are actually required if

we use Cww
n in its operator form. This means that Cww

n never needs to be explicitly

constructed, which can result in significant memory savings for large data sets. The

cost of constructing the eigendecomposition is amortized across the need to update J

ensemble members. Consequently, using a low rank approximation and applying the

Woodburymatrix identity can dramatically reduce the cost of updating the ensemble

in both number of operations and memory. Figure 5.4 shows a schematic of the EKI

algorithm applied to a two parameter linear inverse problem. Far from the optimum,

ensemble members take scaled gradient descent steps as the regularization provided

by αnΓ dominates the dynamics. Closer to the optima, the ensemble becomes more

aware of the curvature of the objective as the Cww term dominates.
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In the basic EKI algorithm, the final model uη lies in the span of the initial ensemble.

Appropriate choice of the initial ensemble therefore acts to encode prior information

into the inverse problem. Within our model specification framework, the actual

geological model F(u) used to predict data by the forward solver is a nonlinear

transform of the model parameter vector u defining the underlying Gaussian random

fields and geometric parameters. This allows significant flexibility even when the

underlying space of potential models is constrained to lie within a low-dimension

subspace of the full space of models. Specifically, though the final parameter vector

ūn describing the model specification is in the span of the initial ensemble {u( j)0 }
J
j=1,

the corresponding physical model F(ū) is not necessarily in the span of {F(u( j)0 )}
J
j=1.

The EKI algorithm offers several compelling benefits for the derivative-free solution

of PDE constrained inverse problems. From a theoretical standpoint, the stable

convergence to an approximate solution depending on the noise level is appealing.

Furthermore, the scheme is practical, easy to implement and handles large parameter

spaces. In particular, the calculation of the forward models G(u( j)n ) and the updates

of models u( j)n+1 have no interaction between ensemble members. Consequently,

these parts of the algorithm are embarrassingly parallelizable and scale trivially

to meet available computational resources (Herlihy and Shavit, 2011). Since the

forward model calculations are typically the most expensive part of the algorithm,

this is a particularly useful property. Finally, an important consideration for practical

employment of the algorithm is that it allows black-box forward models, such as

legacy or proprietary closed-source codes for which derivatives of themisfit function

with respect to model parameters are not available, to be used without expensive

explicit finite differencing. Compared to obtaining the gradient from the adjoint

method, the EKI method uses J forward solves for every step, compared to Ja for

an adjoint method, so that the ratio of computational effort is J/Ja if the solution

of model updates is negligible in cost. Ja depends on the forward model but is
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typically 2-3, while the optimum J depends on the problem but is typically larger.

Despite this, as the J ensemble members are independent, the ensemble method

is particularly amenable to distributed computing even if communication between

processes has high latency. Additionally, for non-self-adjoint forward solvers, the

EKI algorithm does not utilize a backwards pass and so does not require complex

checkpointing schemes for managing storage requirements (e.g. Komatitsch et al.

(2016)), which may be a useful property for some problems.

Two Updates of EKI

Ensemble
Ensemble Mean
Truth

Figure 5.4: Two updates of the EKI alogrithm with four ensemble members for a
toy linear objective with two parameters. Elliptical lines show the contours of the
objective function.

Inversion Framework Summary

The inversion framework presented in this study consists of a geologically moti-

vated parametrization of the Earth, coupled to an efficient, highly parallelizable

and derivative-free solver. Framing geophysical inverse problems as a question of

optimizing geological models allows for direct interpretation of the resulting im-
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ages, and allows practitioners to compare structurally different models against each

other. The parametrization scheme described above has the flexibility to describe

models ranging from simple 1D descriptions to fully 3D, heterogeneous models

with structural discontinuities in a consistent format. We have shown that by using

the implicit level-set method to define geological domains allows the topology of a

model to change to fit the data without changing the parametrization, in contrast to

explicit definitions of domains in which the parameters must be added or removed to

describe changes in topology, significantly complexifying the inverse problem. Our

parametrization framework motivates using a derivative-free optimizer because the

resulting models are not necessarily efficiently differentiable, and because a goal of

this study is to modularize the inverse problem so that the structure of the model

is not tied directly to the forward solver. We employ EKI as the optimizer, as it

scales well with computational resources, treats the forward solver as a black box,

and incorporates iterative regularization to avoid overfitting the data. Utilizing the

inherent low-rank structure of the covariance matricies used by EKI allows even

large data sets to be handled efficiently. As an iteratively regularized algorithm,

EKI does not include explicit Tikhonov damping and will fit the data to within

an assumed noise level, without the biases introduced by these terms. The tuning

parameters in the EKI scheme instead control the stability of the convergence and

the convergence rate.

5.5 Examples

To illustrate the combination of our model parametrization framework and the EKI

inversion scheme, we show two synthetic seismic tomography examples and one

example using real active source seismic data collected at Carrizo Plains, CA. In

all cases, the data are first arrivals of P-waves from known source locations, as

is typical in an active source seismic experiment. We have chosen this relatively
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simple forwardmodel to concentrate on the details of themodel specification and the

inversion method. We note however, that both the model specification framework

and the EKI solver are independent of the choice of foward model and are not

limited to seismic travel-time tomography; for instance joint inversions incorporating

potential methods such as gravity could be used, or full seismic waveforms could

be used—noting that for full waveform methods the model specification must be

very close to the truth or it is likely that the inverse problem will converge to an

unrealistic local minimum.

To calculate the arrival times through the model, we solve the eikonal equation using

the fast marching method (Osher and Sethian, 1988; Rawlinson and Sambridge,

2004). We employ the factored form of the eikonal equation, accounting for the

singularity at the source analytically, resulting in significantly improved travel time

calculations along grid diagonals relative to the basic eikonal method (Treister and

Haber, 2016). The first example illustrates the advantages of the GRF level-set

definition for describing geological domains; the second example shows how our

model specification can compose geological objects and deformations; the third

example shows that our method is robust for real data and highlights the useful

iteratively-regularizing properties of the EKI scheme. In the examples that follow,

we take GRFs with fixed length scales for simplicity; solving for GRF length scales

may be achieved during the inversion by hierarchical EKI (Chada et al., 2018).

Shape Recovery in First Arrival Crosswell Tomography

Our first example is an application of the level set method with GRF priors to

invert first arrival data in a crosswell geometry using the EKI algorithm—as such,

this example uses only a subset of the model description framework described in

Section 5.3. The purpose of this example is to illustrate the advantages of implicitly

defining boundaries via the level set method. This type of shape optimization
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problem may be alternatively solved using the level set evolution equation (Li et al.,

2014), however, the GRF based formulation used in this study imposes additional a

priori constraints on the inverse problem—this example shows that shape recovery

is still possible under these constraints. We synthesize data from 9 sources in

a vertical well with 16m spacing. We record data in a vertical well 96m away,

with sensors spaced at 4m, and assuming a nominal data picking error of 0.25 ms.

We hypothesize a background model of 1000m/s velocity, with fast inclusions of

1500m/s. The geometry of the true input model is shown in Figure 5.5a.

We assume that we have no knowledge of the number or geometry fast inclusions,

while the velocities are known. Thismakes explicit parametrization of their locations

and shapes difficult, as some heuristic must be used to determine the appropriate

number and topologies of boundaries. To overcome this issue, we generate an initial

ensemble of 200 candidate models using GRF defined level sets, containing a wide

range of inclusion topologies—four examples of the starting ensemble are shown

in Figure 5.5b, from which we can confirm that the initial ensemble is not strongly

tuned to reflect the true input model. The ensemble was generated using a zero-

mean Matérn GRF with ρ = 50m and ν = 1.5; the choice of a Matérn GRF with

ν < 2 is motivated by a desire to have solutions with somewhat rough boundaries.

Therefore, for this example, the parameter vector u consists of the values of the

latent field, initially drawn from the Matérn distribution, and the model function F

is the level set operator assigning values of the latent field that are greater than 0 to

1500m/s, and those below 0 to 1000m/s. The forward operator H is the solution of

the factored eikonal equation from the sources to the receivers, and as usual the full

forward map may be written as G(u) = H(F(u)).

We evolve the initial ensemble using the EKI algorithm using ρ = 0.75 and τ = 1.6

until the discrepancy principle termination criterion is satisfied after 40 iterations.

The output model and fits to the data are shown in Figure 5.5cd. We see that the
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location and approximate geometries of the three inclusions are recovered, and that

the data is well fit by the predicted model.

In this example, regularization is provided by the underlying structure of the GRF

used to generate the ensemble. In particular, the wavelength parameter ρ of the

Matérn covariance was chosen to be comparable to the size of the inversion domain,

which suppresses shortwavelength structure. TheEKI algorithm, as presented in this

paper, produces model parameter outputs in the linear span of the initial ensemble,

which has the effect of maintaining the GRF structure throughout the iterations

of the inversion. The level-set function acts as a nonlinear activation function,

allowing the GRF function to produce the shorter lengthscale features required by

the data, even though the GRF lengthscale is significantly longer. Setting the GRF

lengthscale to be large avoids the introduction of small anomalous features in the

final result. Additionally, the discrepancy principle used to terminate EKI serves to

avoid overfitting the data; the inversion starts with smooth members of the starting

model and evolves greater complexity, stopping immediately once a fit to the data

is achieved.

Determining Surface Fill Depth with a Fault

In many geological settings, there may be stronger a priori knowledge of potential

structures that can be employed in an inversion. A typical example of this would be

the inferred presence of faults derived from observed seismicity, surficial rupture

or other geological constraints. In this example, we simulate first-break seismic

refraction data for a smoothly varying interface between two layers bisected by a

vertical fault with some offset—for example, this could be a profile perpendicular

to a strike-slip fault with unconsolidated alluvial surface cover. We assume sources

spaced every 30m and receivers spaced every 5m along a profile 240m in length.

Data were perturbed with 1ms Gaussian noise to simulate picking error estimated
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Figure 5.5: Use of Gaussian random field (GRF) level sets for a crosswell tomog-
raphy boundary identification problem. a) shows the true input model, with source
and reciever geometry. Yellow regions are 1500m/s, black 1000m/s. b) shows 4
examples of the initial ensemble of models used for EKI. c) shows the output model,
and d) shows the data and fit, with colors corresponding to the source colors in a).

from a real data experiment with equivalent geometry (Example 5.5). The true

model is shown in Figure 5.6a. A simple stationary GRF-based level set approach

cannot easily represent this kind of model since the smooth covariance structure will

suppress the fault, acting similarly to a Tikhonov smoothing regularization. Instead,

we explicitly add in the presence of a potential fault in our model description. This

has the additional advantage that the parameters related to the fault (e.g., position,

dip angle, offset) are immediately physically interpretable. This type of inversion

therefore represents a combination of level set inversion and minimum-parameter

modelling in the style of Zelt and Smith (1992). The objective of the inverse

problem is then to calculate the optimal parameter vector u, which is made up of the

GRF latent field describing the interface, the explicit geometrical parametrization
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of the fault, which consists of the horizontal location of the fault plane and the

amount of vertical offset, and the velocities of the two layers. The forward map

can again be written G(u) = H(F(u)) where F transforms u into the physical model

of interest evalutated on a Cartesian solver grid, and H solves the factored eikonal

equation. We use EKI with 256 ensemble members to solve the resulting inverse

problem, which converged in 28 iterations. Once again, we show 4 examples of the

initial ensemble to illustrate the range of potentially allowable geometries in Figure

5.6b. The final inverted model is shown in Figure 5.6c, together with a comparison

in Figure 5.6d to a traditional ray-tracing based tomography performed using the

commercial DWTomo Software, which explicitly considers topography and creates

a smoothed regularized solution (Geogiga Technology Corporation, 2016).

Without a priori knowledge of the expected structures, the traditional refraction to-

mography smooths the vertical interface and has approximate vertical and horizontal

resolution of ∼ 10m, controlled by the regularization and data quality, as can be

seen in Figure 5.6d. Additionally, the L2 regularization used in the tradition tomog-

raphy promotes a smooth transition from low to high velocity. Assuming we have

appropriate knowledge, our level set / geometric parametrization can much better

recover the true model. In this case, appropriate knowledge could be prior mapping

of a surface rupture of the fault. The question of whether an explicitly layered model

such as this is more appropriate than a smooth model requires assessment of the

data, as well as any appropriate geologic knowledge at hand.

Near-Surface Refraction Tomography of the San Andreas Fault at Carrizo

Plains

For a final example, we apply our inversion scheme to real seismic refraction data

collected on March 20, 2017 at Carrizo Plains, California, USA. Reconstruction of

paleoseismicity of the San Andreas Fault (SAF) at Carrizo Plains suggests regular
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Figure 5.6: Illustration of using a combination of level sets and explicit geometric
parametrizations to recover a subsurface interface offset by a vertical fault. a) shows
the true input model with source / receiver geometry. b) shows 4 examples of the
initial ensemble of models used for EKI. c) shows the output of the inversion. d)
shows the traditional inversion using DWTomo; the opaque grey mask shows the
boundary of the rays calculated by DWTomo.

slip of up to ∼ 5m (Ludwig et al., 2010; Zielke et al., 2010), with trenching implying

a potentially > 10m wide band of multiple near-surface fault strands that are likely

to be seen as a low velocity damage zone in tomographic images (Akciz et al.,

2009). Data were collected along a profile of length 240m, oriented SW to NE, with

significant topography, using a 48-channel geophone array. The profile is roughly

bisected by the SAF, which can be prominently seen in Figure 5.7a, especially

noting the significant stream channel offset near the center of the image. Remington

Industrial 8-gauge charges buried approximately 0.25 m deep generated the active

sources at 0, 60, 120, 180 and 235m along the profile. First arrival times were

then handpicked. We consider the data noise to include picking and triggering

errors, imprecision in the source and receiver locations, and errors in the recorded
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surface topography. The true noise distribution is consequently unknown; for this

application we will assume data is independent, identically Gaussian distributed

with equal variance.

The purpose of this example is primarily to show that the combination of the level

set formulation and EKI is practical and stable when applied to real data and to

compare it against a traditional tomographic image. Inspection of the data suggests

a three layered model. Consequently, we choose to invert for a model vector u that

consists of two 1D GRFs describing layer interfaces and the constant velocities of

the three layers. The model function F computes level sets from the GRFs and

assigns velocities to the resulting regions in physical space. The explicit topography

derived from the known locations of the receivers is included in F by linear spline

interpolation. In this case, we chose to employ 1DGRFs to initialize the ensemble for

a 2D model inversion, to avoid overlapping folds in the boundaries between regions.

Similarly, in a 3D setting, 2D GRFs may be used to introduce a layered structure

with no folds. This type of problem could potentially be solved using a multiple

level set evolution equation method such as that in Li et al. (2017), however as shown

in section 5.9 the combinatorial complexity of these methods greatly increases with

the number of layers, and our GRF formulation provides intrinsic regularity to the

solutionswhichmotivates the use of ourmodel specification framework. As previous

trenching evidence suggested that the fault was likely to be observed as a distributed

damage zone at the lengthscale of this study, we did not employ any deformation

layers in our model description. We chose Matérn GRFs with ρ = 100m, ν = 1.5

and σ = 5m. The a priori mean depth of the first layer used to generate the EKI

ensemble was set to be uniform across the depth range of the model, with the mean

depth of the second layer set to be uniformly generated between 0-20m below the

first layer. To test the stable convergence properties of EKI, we inverted the data

assuming nominal noise standard deviations σ of 6, 4 and 3 ms, with the resulting
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models shown in Figure 5.7d,f,h respectively. Note that we estimated a picking error

of approximately 1ms from the data, but expect to see significant modelling error

from source/receiver geometry errors and modelling errors. Solution of the inverse

problem employed 128 ensemble members, and required 7 iterations to reach the 3

ms noise level. Data and fits are shown in Figure 5.7c,e,g. Together, these show

that as the assumed noise level is lowered, the data is progressively better fit and the

model becomes progressively more featured, without developing obvious artifacts

related to lack of sufficient regularization. A traditional tomographic reconstruction

(again using DWTomo) is shown in Figure 5.7b and exhibits similar qualitative

behavior to the 3ms level set / EKI result, with a slow surface layer with similar

undulations and a steep step up across the SAF of a faster third layer.

These results show that our parametrization and optimization scheme is sufficiently

robust to apply to real inverse problems. At the 3-ms noise level, all significant

features of the data are captured even by the relatively simple 3 layered model

proposed here. Lowering the assumed noise level does not significantly qualitatively

change the models, but instead sharpens features, especially the primary feature of

the step in the fastest velocity across the fault. The initial ensemble of models

for all noise levels have on average flat interfaces across the layer boundaries—

the progression in Figure 5.7d,f,h illustrates a key property of the iteratively EKI

algorithm, in that it evolves the ensemble away from the typically smooth “prior”

towards a more featured final model. At higher noise levels, this progression is

terminated earlier, and so the ensemble will look more like the smooth prior; hence

Figure 5.7d has smoother and flatter interfaces than Figures 5.7f and h, in which the

evolution of the ensemble progresses further away from the prior. As in any iterative

tomographic method, the starting model, or in this case starting ensemble, has an

important impact on the final result when the data is noisy, but becomes progressively

less important as the inversion is constrained to closely fit the data; a substantial
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difference to traditional tomographic methods is that the final model produced

by EKI lies in the linear span of the starting ensemble, so that for implicit GRF

parametrizations the covariance structure is maintained throughout the inversion.

This may or may not be a desired property of the inversion; if the initial ensemble

encodes a model appropriate for the data then the linear span property ensures that

the final model reflects the initial ensemble. Alternatively, if greater flexibility is

required due to less strong a priori constraints on the model, then a hierarchical

generalization of EKI may be employed in which hyperparameters are optimized for

the fundamental properties of the parametrization, such as the length scales ρ used

for GRFs (Chada et al., 2018). As our focus in this study is setting up a general

modelling framework, we have chosen not to investigate these generalizations in this

paper, however they offer an intriguing extension for situations in which a priori

information is relatively lacking.
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Figure 5.7: Three layer inversion of near surface velocity adjacent to the San
Andreas Fault at Carrizo Plains, illustrating the consistent convergence properties
of the iteratively-regularized EKI scheme. Black regions of the tomographic images
are not inverted, and correspond to air. a) shows the study area and source / receiver
geometry. b) shows the traditional inversion using DWTomo; the opaque grey mask
shows the boundary of the rays calculated by DWTomo. c), e) and g) show the data
and fits for assumed data noise σ = 6, 4, 3 ms respectively, and d), f) and h) show
the corresponding 3-layer inversion models using our scheme.
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5.6 Discussion and Conclusions

The objective of this study has been to develop a framework for encoding geolog-

ical information into geophysical inverse problems in an intuitive way. Using the

EKI algorithm, the computational difficulties of taking derivatives of our models

are avoided, enabling our definitions to be used to solve large-scale inverse prob-

lems defined by nonlinear, possibly black-box forward models. Using our inversion

framework we solved three example inverse problems using the P-wave first arrival

travel-time problem as a test case. In these examples, the level-set model specifica-

tion enabled complex boundaries to be inverted using only the a priori knowledge of

the expected number of domains. Furthermore, we showed how we can incorporate

useful a priori information, such as the presence of faults, to deliver a yet more parsi-

monious model that has significantly better resolution than traditional tomographic

approaches. We have illustrated how using our inversion framework appropriately

may result in tomographic images that are easier to interpret than traditional images

produced by standard methods; the practitioner should be empowered to formulate

descriptive models that enable targeted exploration of the data. For concenceptual

clarity, this study has used examples for which heterogeneity within model regions is

sufficiently weak that it is reasonable to assume constant velocity models. However,

the model framework permits arbitrary structure within each model layer, which

could be modeled with a GRF with no level set function applied. For regions in

which there is substantial in-layer heterogeneity, explicit modelling of material in-

terfaces may still be useful when there is a mixture of sharp transitions and smooth

variations in mechanical properties which are both relevant to the inverted data -

for example, when jointly inverting high-frequency receiver functions with surface

wave dispersion for sedimentary basin geometry and internal velocity structure.

One important outcome of the framework not presented in this study is the possibility

of formal model selection performed on geologically parameterized models. In the
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context of model selection, a practitioner would propose several distinct geological

models and then use some criterion to rank the models in a preferred order by bal-

ancing their complexity against their ability to predict the data. For the deterministic

inverse problems solved in this study, which produce a single optimum model that

best fits the model given observed data and prior constraints, various information

criterion (IC) such as the Akaike or Bayesian IC may be used (Claeskens, 2016).

If computational resources permit, cross-validation techniques are possible and act

as a guard against outlier data (Claeskens, 2016). If a Bayesian approach is taken,

more robust approaches include predictive performance checks using draws from

the posterior predictive distribution of the data—methods such as PSIS-LOO using

these draws can emulate leave-one-out cross validation without explicitly resam-

pling the posterior conditioned on subsets of the data (Vehtari et al., 2017). Finally,

explicit Bayes factor estimation may be tractable for lower dimensionality models

where the practitioner is confident in the priors assigned to the model (Weinberg,

2012). As our experimental evidence shows, even relatively simple models of the

Earth can match complex data to within a realistic noise level. It is therefore up

to the domain expertise of the inversion practitioner to design candidate models

such that any model selection is meaningful. Once appropriate geophysical models

are identified from a priori knowledge, our study provides a framework by which

the models can be defined and optimized to fit the data. The inversion philosophy

promoted by this work is more investigative than exploratory when compared to

traditional geophysical inversion procedures that typically emphasize removing a

priori information as much as possible from the inverse problem. As our under-

standing of the Earth and its structures grows, we believe that methodologies, such

as the one presented here, that are driven by our a priori knowledge will become

increasingly important to ameliorate the fundamental issue of non-uniqueness in

geophysical inverse problems.
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5.8 Resources

All calculations were computed using the Julia language (Bezanson et al., 2017).

Code for our model specification language can be found at https://github.com/

jbmuir/EarthModels.jl. Code for the EKI optimizer can be found at https:

//github.com/jbmuir/EnsembleKalmanInversion.jl. Code for a Julia 1.0+

compliant factored Eikonal fast marching method forward solver can be found at

https://github.com/jbmuir/FEFMM.jl.

5.9 Appendix

Combinatorial Definition of Multiple Level Sets

For N regional parameter fields of interest, set n such that N = 2n. If N is not a

power of 2, we can arbitrarily split regions until we can meet this condition; this will

generate a “boundary" without a discontinuity across it. We define the Heaviside
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step operator to be

H(φ)(x) =


1, φ(x) > 0

0, φ(x) ≤ 0
(5.18)

Then let ι(i, j) be the ith digit of the binary representation of j − 1. Then

F(x) =
N∑

j=1

n∏
i=1

A j(x)(ι(i, j)(1 − H(φi)(x)) + (1 − ι(i, j))H(φi)(x)) (5.19)

This definition is differentiable and potentially requires fewer auxiliary fields than

the procedural definition. However, due to the combinatoric nature of the formula

differentiation becomes difficult in practice for n > 2, and regularization of the

inverse problem may result in cross-talk between different regions which share

some of the same auxiliary fields—auxiliary fields are not individually associated

with regional parameter fields.

Derivation of Explicit Levenberg-Marquardt Update in Finite Dimensions

In finite dimensions, Γ and C are symmetric positive-definite matrices. For com-

pactness, let the prediction error at un be y − G(un) = δyn We start with the LM

update rule in finite dimensions

un+1 = u + v∗, (5.20)

v∗ = arg min
v∈RM

(
| |Γ−1/2(δyn − J(un)v)| |

2
RM
+ αn | |C−1/2v | |2

RN

)
, (5.21)

v∗ = arg min
v∈RM

(
(δyn − J(un)v)

T
Γ
−1(δyn − J(un)v) + αnv

TC−1v
)
. (5.22)
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The condition for v∗ is that the derivative of the right hand side equals 0, which

gives

∂
(
(δyn − J(un)v)

TΓ−1(δyn − J(un)v) + αnv
TC−1v

)
∂v

(5.23)

=
∂(δyn − J(un)v)

TΓ−1(δyn − J(un)v)

∂(δyn − J(un)v)

∂(δyn − J(un)v)

∂v
+
∂αnv

TC−1v

∂v
(5.24)

= − (δyn − J(un)v)
T
Γ
−1J(un) + αnv

TC−1 (5.25)

=vT (J(un)
T
Γ
−1J(un) + αnC−1) − δyT

n Γ
−1J(un) (5.26)

=0, (5.27)

or on taking transposes while noting Γ−1 and C−1 are both symmetric

(J(un)
T
Γ
−1J(un) + αnC−1)v = J(un)

T
Γ
−1δyn, (5.28)

which gives the usual explicit LM update

v∗ = (J(un)
T
Γ
−1J(un) + αnC−1)−1J(un)

T
Γ
−1(y − G(un)). (5.29)
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C h a p t e r 6

PARSIMONIOUS VELOCITY INVERSION APPLIED TO THE
LOS ANGELES BASIN, CA

In review as

Muir, J. B., R. W. Clayton, V. C. Tsai & Q. Brissaud “Parsimonious velocity

inversion applied to the Los Angeles Basin, CA”. In Journal of Geophysical

Research: Solid Earth, Submitted

6.1 Abstract

The increasing proliferation of dense arrays promises to greatly improve our ability

to image geological structures at the scales necessary for accurate assessment of

seismic hazard. However, effectively combining the resulting local high-resolution

tomographic results with existing regional models presents an ongoing challenge.

We have recently developed a framework based on the Tikhonov-regularized level-

set method that provides a simple means to infer where local data provides meaning-

ful constraints on seismic observables beyond those found in larger scale regional

models—for example the Community VelocityModels (CVMs) of southern Califor-

nia. This technique defines a volume within which updates are made to a reference

CVM, with the boundary of the volume being part of the inversion rather than

explicitly defined. By appropriately penalizing the complexity of the boundary, a

minimal update that sufficiently explains the data is achieved.

To test this framework, we utilize the high-resolution data from the Community Seis-

mic Network, a large 400-station permanent urban deployment. We inverted Love

wave dispersion, derived from eikonal tomography of two-station cross-correlation

travel-time delays, and relative amplification data, from the Mw 6.4 July 3 and Mw
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7.1 July 5 2019 Ridgecrest earthquakes. We invert for an update to CVM-S4.26

using the Tikhonov Ensemble Sampling scheme, a highly efficient derivative-free

approximate Bayesian method. We find that the Ridgecrest Earthquake data is best

explained by a deepening of the Los Angeles Basin (compared to the CVM-S4.26

reference model) with its deepest part just south of downtown Los Angeles, along

with a substantially steeper northeastern wall of the basin. This result offers new

progress towards the parsimonious incorporation of detailed local basin models

within regional reference models utilizing an objective inverse-problem framework,

and highlights the importance of accurate basin geometry models when accounting

for the potentially significant amplification of surface waves from regional earth-

quakes in the high-rise building response band.

Plain Language Summary

Los Angeles is a major city of the United States that is at high risk of damage

due to earthquakes, due to the large number of nearby active faults and its location

on a deep bowl of weak rock, which tends to amplify earthquake damage. We

use a large number of instruments located in Los Angeles district schools to make

measurements of earthquakes that occurred near Ridgecrest, California in July 2019.

These earthquakes generated a type of energy that is particularly useful for studying

the structures responsible for amplification of earthquakes. Using this data, we

applied a new imaging technique to create a local model of the northeast LosAngeles

basin at higher resolution than had been previously available. Our imaging technique

appropriately balances information from previous, lower resolution inversions with

the new data obtained in this study.

6.2 Introduction

The Los Angeles (LA) Basin is a deep sedimentary structure whose evolution can

be roughly characterized by an initial subsidence and extensional phase during the
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establishment of the North America - Pacific plate boundary associated with the

opening of the Gulf of California and the rotation of the Transverse Ranges in the

Miocene. This was followed by a period of transpression (Ingersoll and Rumelhart,

1999), and the generation of a substantial network of thrust faults within the basin

(Wright, 1991). In its current state, the basin contains both active strike-slip faults

(e.g. the Newport-Inglewood fault, Whittier-Elsinore fault) and an imbricated stack

of blind thrust faults (e.g. the Elysian Park faults, Puente hills thrust), all of which

accommodate the transpressional motion of the basin. These faults contribute

to local seismic hazard both by providing source surfaces for earthquakes and by

controlling local path effects by shaping the basin geometry (Plesch et al., 2007). The

evolutionary history of the LA basin, with ample opportunity to produce and bury

organic material during extension followed by the estabilishment of stratigraphic

traps during compression, allowed LA to be a leading producer of oil in the United

States (US), helping to fuel a large rise in population during the mid-20th century.

Development took place predominantly on the soft sediments of the main LA, San

Fernando, San Gabriel and San Bernadino basins. As a consequence, LA is both

one of the largest and most economically important cities in the US, while also being

one of the most exposed to significant earthquake hazard due to the complex fabric

of active faults and ground-motion amplifying sedimentary structures associated

with the geology that has allowed its preeminence.

Seismic hazard within the basin is controlled by the locations and potential for slip

on the multiple local and regional faults of southern California, combined with

the significant amplifying effect of the basin on ground motions. The importance

of path effects, such as wavefield focusing, multipathing, and basin amplification,

on LA basin ground motions has led to extensive development of seismic velocity

models. The ultimate goal of these models is to produce accurate synthetic wave-

forms at frequency ranges relevant to infrastructure and building codes within the
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basin. Early efforts focused on creating rule-based models of southern California

(Magistrale et al., 2000, 1996) using empirically derived velocity laws (Faust, 1951)

in combination with inferred geological structure obtained by correlating surface

outcrops, borehole profiles and potential methods (Wright, 1991). Since these inital

efforts, regional scale models of southern California have assimilated ever greater

quantities of seismic data, including seismic reflection profiles, receiver functions,

and earthquake source locations and mechanisms, in an effort to better demarcate

boundaries, including faults (Magistrale et al., 2000; Plesch et al., 2007), and allowed

for more lateral variation of within basin velocity structures by using geostatistical

methods to tie together disparate seismic data (Shaw et al., 2015; Süss and Shaw,

2003). Continued development of seismic velocity models of southern California

has resulted in two widely used reference Community Velocity Models (CVMs),

CVM-S4.26.M01 (Lee et al. (2014), CVM-S hereafter) and CVM-H 15.1.0 (Shaw

et al. (2015), CVM-H hereafter), that have incorporated waveform based seismic

tomography to further refine the models. CVM-S and CVM-H broadly agree in the

positions, average velocity profile, and geometry of the major basins of southern

California, however in detail they are quite different, with CVM-H containing more

explicit geological information. Figure 6.1 shows a characteristic cross-section of

the LA basin for both models, running fromCatalina Island, across the Inner Border-

land to Palos Verdes, then through the main LA basin, San Gabriel basin and though

the transverse ranges to the high desert. This profile makes evident the consider-

ably higher detail present in the CVM-H model due to its construction including

explicit geological features (notably including an Inner Borderland basin not present

in CVM-S), as well as its significant artefacts associated with changing lateral res-

olution, as evident in profile marks R1 and R2. In contrast, CVM-S is significantly

smoother than CVM-H due to its reliance on wavefield-tomography during the final

stages of construction, although several sharp resolution based artefacts are also
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evident. While many features of the seismic wavefield within the LA basin, such

as phase arrival times and P-to-S amplitude ratios, are captured for local events at

frequencies of up to 0.2 Hz (Lai et al., 2020; Taborda et al., 2016), excitations of the

basin from the recent large regional Ridgecrest earthquake sequence in July 2019

have illustrated that ground motion amplification predictions from finite-difference

wave propagation through the SCEC CVM-H and CVM-S models do not accurately

model the observations even at the relatively low frequency 0.1-1Hz range that is

relevant for tall buildings within downtown LA (Filippitzis et al., 2021), warranting

continued close study of the LA basin velocity model.

Seismic tomography offers the best opportunity for full spatial coverage of the basin

at high resolution, especially when dense seismic arrays are utilized. In the southern

and central parts of the basin, the deployment of high-density temporary seismic

arrays using 10Hz corner-frequency geophone nodes by the petroleum industry has

enabled considerable exploration of the shallow structure of the basin using ambient-

noise derived observables, such as Rayleigh-wave phase velocities, Rayleigh-wave

amplifications, and body-wave travel times (e.g. Bowden et al. (2015); Castellanos

et al. (2020); Jia and Clayton (2021); Lin et al. (2013)). However, similarly dense

industry deployments have not to date taken place in the northern part of the basin,

which encompasses the downtown LA region, with buildings that are highly sus-

ceptible to resonant coupling to the basin. The permanent broadband southern

California Seismic Network (SCSN), while providing a long time series of excellent

quality observations, has already been incorporated into the CVM reference mod-

els and does not provide the spatial resolution required for the next generation of

basin models. A potential alternative data source is the Community Seismic Net-

work (CSN, Clayton et al. (2012, 2020)), a permanent network of three-component

micro-electromechanical system (MEMS) accelerometers, designed to provide real-

time strong-ground-motion telemetry in the event of local earthquakes within the
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LA basin. The CSN instruments have been designed for inexpensive construction,

utilizing off-the-shelf components, and have a maximum observable acceleration of

±2g, in order to fulfil their primary goal of strong-ground-motion monitoring. As a

result, the instrument noise floor is above the amplitude of ground motions produced

by smaller regional earthquakes, and is also above the ambient seismic noise level,

which precludes the use of ambient-noise cross-correlation methods on CSN data

as these methods rely on coherent low-level energy propagation between sensors.

However, both the Mw 6.4 and Mw 7.1 2019 Ridgecrest, California earthquakes

produced high quality records across the array, allowing for detailed analysis of

ground amplification within the basin (Filippitzis et al., 2021; Kohler et al., 2020).

The coherent surface-wave energy from these two events, recorded on the CSN,

offers a unique opportunity to construct a high-resolution local tomographic model

of the northeastern edge of the LA basin. In this study, we use the phase velocity and

relative amplitudes of Love waves from both events, along with a 3D surface-wave

tomography method based on the level-set method of Muir and Tsai (2020b), to

create such a model. The level-set framework extends traditional tomography by

allowing for discontinuous interfaces within a velocity model, which are implicitly

defined by a contour line of a latent function. For instance, Muir and Tsai (2020b)

used the level-set method to image the damage zone of the San Andreas Fault at Car-

rizo plains using a an implicit three-layer model, while Tso et al. (2021) presented

several applications of the level-set method for developing interpretable block mod-

els of electrical resistivity. The ability to handle implicitly defined discontinuities

significantly extends traditional tomography, which usually require restrictive and

unphysical regularization schemes to be well-posed. We use the level-set method to

define a basin volume within which we update a local model—this method allows

us to only alter the reference CVM model where we have sufficient data constraints

to warrant an update. Integration of local models within the SCEC CVM ecosys-
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tem will become an important part of hazard modelling within Southern California

as high-density arrays allow access to the fine scale detail of path effects. The

framework presented in this study represents a parsimonious way to achieve this

integration.

0

2500

5000

7500

10000

D
ep
th
(m
)

CVM-S 4.26

A R1 R2 B

0

2500

5000

7500

10000

D
ep
th
(m
)

CVM-H

0

500

1000

1500

2000

2500

3000

3500

Vs
(m
/s
)

a) b)

Figure 6.1: a) Shaded elevation model of southern California showing the outline
of the major basins (defined by slope-break analysis) in purple and the transect A-B
used for profiles shown in orange. b) Characteristic profiles through the Los Angeles
basin for the CVM-S and CVM-H models. Abrupt lateral changes in resolution at
positions R1 and R2 are seen in the CVM-H model.

6.3 Data Collection

Preprocessing

The data for this study were obtained from the HN accelerometer channels of the

Los Angeles Unified School District (LAUSD) subarray of the Community Seismic

Network (CSN, Clayton et al. (2012, 2020)), consisting of 200s time series after

the Mw 6.4 and Mw 7.1 Ridgecrest earthquakes’ origin times and recorded at 50

samples/sec. The network is deployed within school buildings in the City of Los

Angeles, and at the time of the Ridgecrest earthquakes consisted of 300 stations

spaced approximately 0.5 km apart. We used the components of the CSN located

within the northeast LA basin, which is the densest part of the array—the study

area, including the locations of the stations, is shown in Figure 6.2. Various display

of the Ridgecrest earthquake data are shown in Filippitzis et al. (2021), along with



133

−118°30' −118°20' −118°10' −118°00'

34°00'

34°10'

34°20'
Stations
Inversion
Plots

Figure 6.2: Map of the study region, showing the locations of the CSN stations
as empty triangles, the boundary of the square inversion region in red, and the
boundary of the analysis plots in blue.

a comparison of the data and predicted ground motions by several methods. For

our study, data were first detrended, rotated into the ZRT frame, decimated to

5 Hz and then detrended once more. Pseudo-spectral accelerations (PSA) were

then calculated for both the real data and synthetic 3D finite-difference simulations

following the Graves and Pitarka method (Graves and Pitarka, 2010; Pitarka et al.,

2019) for both the CVM-H and CVM-S models by convolving the records with a

5% damped harmonic oscillator, with the results for 4–9 s period shown in Figure

6.3. A record section of the high-frequency strong-ground-motion-accelerometer
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Figure 6.3: Relative amplification of the maximum amplitude of 3 component
pseudo-spectral accelerations (PSA) in the range of 4–9 s from the Mw 7.1 July
5 2019 Ridgecrest Earthquake as recorded on the Community Seismic Network
(CSN), and as simulated using the Graves and Pitarka rupture generator (Pitarka
et al., 2019) and a 3D finite-difference waveform solver for both the CVM-H and
CVM-S models.

transverse (HNT) channel showing strong SH polarized phases corresponding to the

fundamental Love mode is shown in Figure 6.4.

Love Group Arrival Time and Amplitude Picks

Tomake group arrival picks, rawwaveformswere first narrow-band filtered at period

P using a zero-phase Butterworth bandpass filter with corners at 1/P ± 1/(
√

20P)

and then cosine tapered over the first 20s of the time series to suppress edge effects.

The maximum of the T component envelopes at a central period P = 12.5s were set

as the first preliminary group arrival pick. The 12.5s filtered waveform envelopes

were then again cosine-tapered with a 6P taper window with 1P edges about this

preliminary pick. We then fit a Gaussian function to the waveform envelope, with

the center of the Gaussian being used as the finalized group arrival pick at 12.5s and

the amplitude of the Gaussian being recorded as the Love wave amplitude. Starting
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Figure 6.4: Record Section of the Mw 7.1 Ridgecrest earthquake as recorded on the
HNT channel of the CSN-LAUSD array, zero-phase bandpass filtered between 4–
10s. Twomain phases are clearly identifiable, with the first arriving phase exhibiting
little delay due to the basin at longer offsets, which we infer to be the primary SH
arrival, which is shaded orange. A second, stronger phase, which is delayed by the
basin at longer offsets, we infer to be the fundamental Love mode and is shaded red.

with the parameters of the 12.5s Gaussian as initial values, we then proceeded to

work down in 0.25s increments on the narrowband filtered waveform envelopes, to

a minimum period of 2s. We tapered with the 6P width cosine around the Gaussian

center of the previous period. We then fit a new Gaussian to the shorter-period

waveform, initialized using the previous period’s Gaussian fit. This method tracks

the Love-wave group arrival from long periods, where it is clearly identifiable as the

strongest feature, to shorter periodswhere other features are present. A characteristic

example of the group picks is shown in Figure 6.5.



136

0 25 50 75 100 125 150 175 200

0.004

0.002

0.000

0.002

0.004

H
N
Z

0 25 50 75 100 125 150 175 200

2

4

6

8

10

12

Pe
rio
d
(s
)

0 25 50 75 100 125 150 175 200

0.004

0.002

0.000

0.002

0.004

H
N
R

0 25 50 75 100 125 150 175 200

2

4

6

8

10

12

Pe
rio
d
(s
)

Pe
rio
d
(s
)

0 25 50 75 100 125 150 175 200

0.004

0.002

0.000

0.002

0.004

H
N
T

0 25 50 75 100 125 150 175 200

2

4

6

8

10

12

LAS200

Time (s) Time (s)

P arrival
S arrival
Love arrival
Rayleigh arrival

Love group pick

Figure 6.5: HN waveforms and corresponding continuous-wavelet transform spec-
trograms for the LAUSD CSN station LAS200 from the July 5 2019 Ridgecrest
Mw 7.1 earthquake. The solid and dashed orange lines show the theoretical arrival
times of the P and S waves through the laterally averaged CVM-H model from the
hypocentral location to LAS200, and the solid and dashed red lines show the theoret-
ical group arrivals for Love and Rayleigh waves, respectively. All theoretical travel
times are offset from the event origin time by 10s, which is the approximate peak of
the USGS moment rate function. The lemon yellow lines show the center and ±1σ
width of the fitted Gaussian functions to the envelope of the tangential component.
The center of these Gaussian functions act as group delay picks for defining the
cross-correlation window used for two-station phase delay measurements shown in
Figure 6.6.
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We took the logarithms of the fitted Gaussian amplitudes and normalized them

relative to the mean log at each period to create the amplitude data set. The

relatively narrow aperture of the CSN array compared to the distance to the source

meant that the geometry was not favorable for traditional tomographic methods. We

therefore employed eikonal tomography (Lin et al., 2009, 2014) to calculate surface-

wave dispersion curves, which has the additional advantage of naturally handling

the curving wavefronts recorded on the CSN, caused by refraction across the basin

boundary. While recent studies (Qiu et al., 2019) have attempted to utilize group

arrival times for eikonal tomography of group velocity, there is significant noise

associated with the group arrival peak. Furthermore, there are strict conditions on

the approximations necessary for using eikonal tomography on group delay times

which may not be met when the surface-wave arrival experiences refraction across

a basin boundary. As such, we did not attempt to utilize group velocity cg in this

study, but rather used the group times as a guide for two-station cross-correlation

phase delay times as discussed below.

Eikonal Tomography from Two-Station Cross-Correlation Phase-Delay Times

We employ eikonal tomography (Lin et al., 2009) to obtain phase velocity estimates

within the densely spaced CSN array. Eikonal tomography obtains phase velocity c

directly from the gradient of the phase delay field: |∇τ | ≈ 1/c. Eikonal tomography

has two principle requirements. Firstly, there must be a clearly identifiable phase

delay field τ (i.e. there is no significant multipathing), a requirement which is met

for Love waves in the period range of this study. Secondly, eikonal tomography is

derived from an approximation of the transport equation 1/c2 = |∇τ |2 − ∇2 A/Aω2,

where ignoring the amplitude correction is typically taken to be valid for velocity

models that are sufficiently laterally smooth that the amplitude Laplacian is small.

Waves propagating from the Ridgecrest earthquake sequence strike the northeastern
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edge of the Los Angeles Basin nearly perpendicularly, so any effect of the basin edge

on the Laplacian is limited in extent within the LAUSD-CSN array. It is possible

to utilize the full transport equation for determining phase velocity, which is called

Helmholtz tomography (Lin and Ritzwoller, 2011), however comparisons between

Helmholtz tomography and eikonal tomography show agreement across the basin

transition where we would expect the amplitude correction to be strongest, implying

that eikonal tomography is sufficient to capture the correct phase velocity in the

center of the array. Spurious values of the Helmholtz tomography solutions occur

on the edges of the array due to the difficulty of obtaining accurate values of the

amplitude Laplacian. Consequently, we limit our data analysis to the phase velocities

derived from the eikonal equation as its assumptions appear to be satisfactorily

realized and the Helmholtz tomography corrections are not sufficiently robust given

our data.

In order to obtain the phase delay field τ at period P (relative to the northernmost

station of the array), we first narroband filter wavepackes using central period P

and cosine tapered with a flat pass window of width 4P and edges of P centered

at the group arrival time. We then calculate the cross-correlation time delay ∆τi j

between each pair of stations i and j within a circle of radius ri j < max(cgP, cminP)

with a cutoff velocity cmin = 0.5km/s. The distance limit reduces the impact of

potential cycle skipping on the phase delay observations, while the narrower taper

width compared to the group picks also helps to stabilize the cross-correlation

calculations. This process is illustrated in Figure 6.6 a) and b). The relative delays

∆τi j form a graph with stations acting as nodes and the delays acting as edge weights.

Similarly, the distances between stations ∆di j also form a graph. Appealing to

Fermat’s principle of least travel time, we extract the minimum spanning tree (MST)

of the station distance graph, and then use the geometry of the MST to find the

minimum travel time surface. The MST is a unique sub-graph that connects all
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Figure 6.6: Outline of steps used to construct the phase delay field τ from narrow-
band filtered records. In the first two steps, the phase delays between all nearby
stations are computed. In a), we draw a circle of radius ri j < max(cgP, 0.5P) and
compute the phase delay for maximum cross-correlation, ∆τi j , as shown in b). Only
nearby stations are used to suppress cycle skipping. In the second phase, we extract
the minimum spanning tree (MST) from the graph of collected phase delay times,
as shown in c). The MST is a sub-graph which minimizes the total edge lengths
(i.e. ∆di j) such that the graph is still fully connected. Finally, in d) we unroll the
MST from the northernmost station, summing δτi j along the edges to get the τ, a
minimum-relative-phase-delay surface concordant with the recorded relative phase
delays between individual station pairs.
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nodes (stations) with minimum edge weights (distances), with a schematic of this

subgraph shown in Figure 6.6 c). Summing phase delays ∆τi j along MST edges

from the northernmost station gives a minimum relative travel time surface that is

concordant with the observed phase delay data, as shown in Figure 6.6 d). We also

tested MSTs extracted from the graph of normalized cross-correlation values, as

well as the phase delays themselves, but found that distance weighting gave the best

performance. We then smooth the travel-time surface at each period by first fitting

a high-tension cubic spline to the data, removing all outlying data points for which

the fit residual at that point were greater than one standard deviation of all collected

residuals, and then refitting the spline to the remaining data. This smoothed surface

τ is then used to calculate phase velocity c at period p using the eikonal equation

|∇τ | = 1/c.

Estimating Measurement Uncertainty

The only available earthquakes that have produced sufficiently strong ground mo-

tions to record at least one octave of frequencies of Love waves are the Mw6.4 and

Mw7.1 Ridgecrest events. Two events are insufficient to obtain useful statistical

estimates of measurement uncertainty at each individual station. However, given

that the surface-wave measurements have a finite area of sensitivity that overlaps

substantially between neighbouring stations, we may bin error statistics over subar-

rays of radius λ/4 to obtain an estimate of the measurement uncertainty, where λ is

the wavelength at the period of measurement. At station i, we calculate the mean of

the relative log amplitude ãi = (ai
6.4 + ai

7.1)/2 and phase velocity c̃i = (ci
6.4 + ci

7.1)/2

where a6.4 and c6.4 are the amplitude and phase velocities for theMw 6.4 earthquake,

respectively, and likewise a7.1 and c7.1 are the amplitude and phase velocity for the

Mw 7.1 earthquake. We then estimate the standard error in the mean by averaging
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over errors at nearby stations:

σi
a =

√∑
j∈di j≤λ/4

(
a j

6.4 − ã j
)2
+

(
a j

7.1 − ã j
)2
/
√

2 (6.1)

σi
c =

√∑
j∈di j≤λ/4

(
c j

6.4 − c̃ j
)2
+

(
c j

7.1 − c̃ j
)2
/
√

2, (6.2)

where di j is the distance between stations i and j. The error correlation matrix Pi j is

estimated using a squared-exponential kernel with characteristic lengthscale equal

to one quarter of the average wavelength between the two stations, with the addition

of a diagonal term to account for uncorrelated error

Pi j = δi j + exp(−8d2
i j/(λi + λ j)

2), (6.3)

where δi j is the Kronecker delta. For each period the error covariance matrices

are therefore given by Γc = σcPσT
c and Γa = σaPσT

a , where σc is the collected

vector of individual station phase-velocity error measurements across all periods,

and σa is likewise the vector of amplitude error measurements. Future work on

error modelling could account for a variable scaling between the diagonal and

non-diagonal terms in P, and model the correlations between measurements at

neighboring periods; however for reasons of computational expediency we do not

develop these analyses here.

6.4 Inversion Methodology

Model Parameterization

Having obtained measurements c̃ and ã and associated error matrices Γc and Γa

for phase velocity and log-relative amplification within the CSN, we are now in a

position to model them and invert for a local basin update. We seek to obtain a

parsimonious local update that balances the constraints of new, densely recorded

data, with the already well developed models presented in the SCECCVMs. Ideally,

wewould perform a fullyBayesian inversion taking aCVMas a priormodel; however

as robust model uncertainties for the CVMs are not available, this approachwould be
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highly dependent on subjective estimates for setting the prior, andwould furthermore

be extremely computationally expensive for the nonlinear forward models required

to predict our recorded data. Instead, we recognize that the sensitivity of our data

is highly contained within the basin itself, given the characteristic phase velocities

c and periods p of our study and the heuristic sensitivity depth of cp/4 for Love

waves in a power-law basin-style velocity profile, given by Haney and Tsai (2020).

Taking advantage of this restricted sensitivity, we utilize the level-set-tomography

framework of Muir and Tsai (2020b) to explicitly define a volume within which we

perform our model updates as part of the model parameterization, and appropriately

regularize the boundary of this volume to achieve the desired parsimony between

the a priori CVM model and constraints from our newly observed data.

In this study, our model parameterization consists of two parts—a boundary to the

inversion domain, and the velocity perturbations within that domain. Both compo-

nents of the model are given by Gaussian Processes (GP) with a Whittle-Matérn

kernel—briefly, this GP model supposes that the outputs are jointly distributed like

a multivariate normal distribution with a pairwise covariance between model points

with spatial locations x and x′ given by

C(x, x′) = σ2 21−β

Γ(β)

(
| |x − x′| |

l

)ν
Kβ

(
| |x − x′| |

l

)
, (6.4)

where Γ is here the gamma (or extended factorial) function and Kβ is the modified

Bessel function of the second kind. A comprehensive treatment of classical GP

models may be found in (Rasmussen andWilliams, 2006). The statistical properties

of the GP are controlled by its hyperparameters, which for theWhittle-Matérn kernel

are l, the characteristic length scale, σ the characteristic scale of perturbations, and

β the regularity parameter. Individual realizations of the GP are β − 1
2 times

continuously differentiable. In practice β is very hard to infer in most inverse

problems and so it is set to β = 31
2 for the remainder of this study, a choice
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which generates sufficiently smooth models to ensure that Love-wave eigenvalues

are correctly calculated, and which does not introduce artificial roughness into the

posterior distribution.

CVM-S Reference + GP Perturbation

Inversion Boundary

CVM-S Reference + GP Perturbation

Basin Velocity Model

Figure 6.7: Schematic of the model definition, showing the construction of the
velocity model update and the boundary of the inversion, both constructed from
a CVM-S reference perturbed by a Gaussian Process. The background model,
schematically shown in grey, is given by the unaltered CVM-S model.

GP models with variable hyperparameters offer great flexibility, however they are

expensive to compute in the spatial domain as they require repeated inversion of

the covariance matrix C —an operation of complexity O(n3) for n model evaluation

points. To accelerate the GP computations, we approximate the model by defining

it on a regular grid with ncell grid nodes in each dimension, which allows us to

specify the model by means of its Fourier coefficients ξv and ξb for the velocity and

inversion boundary components respectively (Chen et al., 2019a; Lindgren et al.,

2011). Efficient sampling of the GP can then be performed by an inverse Real Fast

Fourier Transform (complexity of orderO(3m3 log(m))wherem = ncells/2+1 � n),

followed by interpolation by cubic splines to the locations required for computing

the forward model for phase velocity and amplitude underneath each station. We

use the same lengthscale parameter l for both the velocity update and the inversion
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boundary; the inversion domain is 22×22×12 km in size, which must be rescaled to

a unit cube for the inverse Fourier transform. The inversion area was determined by

finding the smallest square that encompassed the stations, and is shown in in Figure

6.2. We use 16 cells in each dimension, and a rescaled l̃ parameter on the unit

cube domain, which induces an effective lengthscale of lxy ∼ 22l̃ in the horizontal

direction and lz ∼ 12l̃ in the vertical direction—equivalent to assuming vertical

heterogeneity approximately twice as sharp as lateral heterogeneity. We denote

the evaluation (via inverse FFT) of the velocity GP model given velocity Fourier

coefficients ξv, lengthscale l̃ and velocity characteristic perturbation amplitude σv at

a location (x, y, z) byGPVξv,l̃,σv
(x, y, z), and the evaluation of the inversion boundary

given boundary Fourier coefficients ξb, lengthscale l̃ and boundary characteristic

perturbation amplitude σb at a location (x, y) by GPBξb,l̃,σb
(x, y). For both GP

models, a Whittle-Matérn kernel is assumed, and we use the CVM-S velocity model

and basin profile to set mean to ensure initialization near a physical solution. CVM-

S was chosen over CVM-H as the mean due to its smoothness, which lends itself to

more concordant velocity models across the inversion boundary, and also because

it better fits waveforms within the basin (Lai et al., 2019).

The Vs model is therefore given by

Vs(x, y, z) =


VCVM-S(x, y, z) + GPVξv,l̃,σv

(x, y, z) z < zCVM-S(x, y) + GPBξb,l̃,σb
(x, y)

VCVM-S(x, y, z) z ≥ zCVM-S(x, y) + GPBξb,l̃,σb
(x, y),

(6.5)

where VCVM-S and zCVM-S are the S velocity model and basin edge extracted from

CVM-S. A graphical schematic of the definition of the discretized model is shown

in Figure 6.7. Density and Vp are then calculated from the Vs model using the

empirical relationships of Brocher (2005), which are suitable for basins within

southern California.
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Extracting Reference Basin Depth Profiles from CVM-S

The SCEC CVM-S model is defined by a gridded voxel parametrization of VP, VS

and ρ, i.e., it does not contain explicit definitions of basin boundaries. To obtain

reference boundaries for the CVM-S model, we utilized the following procedure.

At each depth slice, we computed the mean and standard deviation of VS. We then

flagged each voxel for which VS was slower than one standard deviation below the

mean of that depth slice as a potential basin candidate. For each 1D depth profile,

we then worked from the second (z=500m) depth slice downwards, flagging a voxel

to be within a basin only if all voxels above it were also flagged—working from

the second depth slice avoids the connection of individual basins due to artificial

connectivity in the absence of the geotechnical layer. This process encodes an

assumption that basins are strictly convex, which is not true in general but is a useful

approximation to begin the inversion process. Using the scipy module ndimage

(SciPy 1.0 Contributors et al., 2020), we then performed image segmentation using

the label function, which generated 61 individual basins in southern California, of

which the most prominent correspond to the Ventura Basin, combined Los Angeles

and San Gabriel basins, San Fernando Basin, and the Salton Trough. This workflow

is presented in Figure 6.8. The boundaries of the Los Angeles / San Gabriel basin

candidate were then utilized as the reference basin bottom surface for the inversion

step.

Forward Modelling

In order to predict the data from the final rasterized velocity model given by our

model parametrization, we employ the lumped-mass finite element method for

surface-wave eigenvalue calculation first proposed by Lysmer (1970), and imple-

mented for Love waves by Haney and Tsai (2020). The rasterized model is interpo-

lated onto a set of finite elements of exponentially increasing thicknesses h given by
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Figure 6.8: Outline of steps used to extract a reference basin surface from the CVM-
S. a) for each vertical profile in CVM-S, we determine where (if anywhere) the VS
profile first becomes faster than one standard deviation below the mean CVM-S at
that depth. All depths above this level are set to be a potential candidate basin at the
location of the profile. In b), we show the extracted candidate basin depths across
southern California. In c), we strip off the top 500m (which is highly connected)
and then use the SciPy ndimage label function to segment the remaining data
volume. The three major basin families of southern California are clearly seen in
pink (Ventura / San Fernando), yellow (Los Angeles / San Gabriel / San Bernadino)
and blue (Salton Trough).



147

hn = min(c) ∗ exp(N/(na))/n where N = 50 is the number of layers in the model,

min(c) is the minimum phase velocity in a reference model, and a = 0.25 is a con-

stant used to control the exponential scaling. This exponential scaling heuristically

balances the need for finer resolution near the top of the model when calculating

shorter period Love waves in a way that is near optimal due to the approximate expo-

nential shape of Love eigenfunctions (Haney and Tsai, 2015, 2017, 2020; Tsai and

Atiganyanun, 2014). These layers are stacked on top of 4 layers of thickness h = 10

km simulating an infinite half-space to avoid contamination with the locked lower

boundary condition. We then set up the finite element stiffness and mass matrices as

given by Haney and Tsai (2020), and solve for the maximum slowness eigenfunction

u that corresponds to the fundamental Love mode, as well as the phase velocity

c =
√
νω, with ν being the eigenvalue associated with u for angular frequency

ω, and group velocity cg which is a function of c, u and the finite-element mass

and stiffness matrices. The relative amplification of Love waves directly observed

between two locations can then be calculated by

a1

a2
=

(
cg1 I1

cg2 I2

)−1/2
, (6.6)

with I =
∫ ∞

0 ρ(z)u(z)2dz (Bowden and Tsai, 2017; Bowden et al., 2017). Trans-

mission coefficients obtained using a 1D mode-conversion theory (Brissaud et al.,

2020; Datta, 2018) are plotted in Figure 6.9, and suggest that any potential modelling

error from neglecting mode-coupling is small. As we use a derivative-free inversion

method, these quantities are sufficient to solve for the optimal model.

Inverse Solver

We use an extension of the Ensemble Kalman Sampler (EKS, Garbuno-Inigo et al.

(2020)) to perform the inversion. This method uses an interacting ensemble of par-

ticles that follow Langevin diffusion dynamics to infer a Gaussian approximation to

the posterior of the inverse problem. The EKS is derivative-free and embarrassingly
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Figure 6.9: Transmission coefficients for a Love wave entering the Los Angeles
basin obtained using a 1D mode-coupling theory (Brissaud et al., 2020; Datta,
2018). This represents a worst-case mode-conversion scenario, with the true basin
exhibiting a smoother horizontal gradient and hence less conversion. Even in this
case, the conversion of energy from the fundamental mode to first overtone T01/T00
is relatively small, suggesting that our use of classical Love-amplification theory is
appropriate.

parallel in the forward model, which enable rapid user iteration between different

datasets and forward modelling methods, as well as easy deployment on heteroge-

nous computing networks. The EKS as outlined in Garbuno-Inigo et al. (2020)

assumes that all model parameters have a Gaussian prior. This restricts the model to

have fixed hyperparameters (e.g. l̃, σv, σb, as required to set the statistical behaviour

of the model parameterization described in Section 6.4), which introduces a signifi-

cant potential for practitioner bias as we do not have a good basis for estimating these

a priori. Consequently, we have further developed the EKS to handle hierarchical
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models with variable hyperparameters. The original EKS and our extension to it

are discussed in detail in Appendix 6.8. The priors for the velocity hyperparameters

are given by 1/l̃ ∼ Normal(0, 0.6) and σv ∼ Normal(0, 0.1) in scaled inverse km

and km/s respectively. Experimentation has shown that the characteristic boundary

perturbation amplitudeσb is not sufficiently identifiable from our data, so we set it to

a reasonable value of 0.5 km that is small enough to avoid large, unrealistic changes

in the basin geometry whilst allowing a sufficient fit to the data. Using these hyper-

priors, we run hierarchical EKS sampling using an initial step length ∆t0 = 50, and

an ensemble size of 32. We double both the step length and the ensemble size every

50 iterations up to iteration 250, and further double the step length only at iteration

300, to finish with 400 iterations. The purpose behind this doubling scheme is to

rapidly approach themaximum a posteriori (MAP) point using rough gradients from

a small number of ensemble members, and then perform more accurate sampling of

the posterior using more ensemble members (Garbuno-Inigo et al., 2020). The step

length doubling counteracts the tendency of the gradient amplitude to be small near

the MAP point. Convergence diagnostics for the inversion run are shown in Figure

6.10. The final inversion reduced the weighted Gaussian misfit function from 8.79

(for the CVM-S model) to 5.33, a variance reduction of 22%, which is a notable

improvement from the already highly optimized reference model.

6.5 Results and Implications for the Los Angeles Basin

The results of the inversion are shown in Figures 6.11, 6.12 and 6.13. In Figure 6.11

we plot the mean depth to the inferred basin bottom and the inferred change in the

depth of the Los Angeles basin at each station. The change in basin depth is defined

by the difference between the reference basin depth extracted from the CVM-S in

Section 6.4, and the depth to the same velocity contour in the final model. Figure

6.12 shows the details of the inversion along the profile A–A’. Figure 6.13 shows the
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Figure 6.10: Convergence diagnostics of the Ensemble Kalman Sampler (EKS)
showing the Ensemble Mean Square Distance converging to a constant approxima-
tion of the posterior, and the integration path length increasing steadily (heuristics
from Garbuno-Inigo et al. (2020) suggest a path length of 2 is sufficient to approxi-
mate the posterior).

approximate posterior distribution of the hyperparameters in the inversion. In Figure

6.12, we also show the reference CVM-S model used to initalize the inversion, the

mean of the EKS ensemble, the difference between these two, and the standard

deviation of the ensemble. The standard deviation gives a sense of the relative

uncertainty of the final inversion; as discussed in Garbuno-Inigo et al. (2020), in the

low-particle limit EKS sampling cannot fully capture the range of uncertainty in the

true inversion posterior, and so the plotted standard deviations are best assessed in

a qualitative fashion. The EKS ensemble indicates that the highest uncertainties are

along the boundary of the model. Within the inverted area of the final model, the

uncertainties are highest in the deep central basin where the 4-10s Love wave period

range offers less sensitivity, and near the northeastern edge of the model where the
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phase velocities are high, resulting in small travel time gradients and hence higher

uncertainties when employing eikonal tomography.

There are two principle features that are apparent from the results of the inversion.

The first and most significant finding is that the data supports a deeper Los Angeles

basin along its northeastern edge, with an especially large jump in basin depth

in the area immediately abutting the Upper Elysian Park fault as defined in the

USGS Quaternary fault map (USGS, 2020). The increase in basin depth reaches its

maximum just south of downtown LA, as is seen in the south part of Figure 6.11

b) which shows the change in basin depth. The Upper Elysian Park fault is shown

by a thick dashed cyan line in the center-right of the panels of Figure 6.11, and

demarcates a steep gradient in the edge of the basin which has been accentuated as

a result of the inversion. In Figure 6.12, this tall jump in the depth of the basin edge

occurs in the center of the profile A-A’, with Figure 6.12 c) showing that the deep

parts of the basin to the SSW of the fault are significantly slower in our final model,

with the edge of the basin being significantly steeper in our model in a) than the

reference model in b). This steepening is spatially coincident with the observations

of high amplification further north in the data than in the reference models, seen in

Figure 6.3, particularly in 5–7 s band. Extracting the average basin edge gradient

from 11.25–13.25 km along profile A–A’ in Figure 6.12 gives a dip angle of 72–73◦.

The SCEC CVMs have evolved from the original models of Magistrale et al. (2000,

1996), which for the Los Angeles basin were based on an empirically determined

velocity law for compacted sediments (Faust, 1951), with the spatial distribution of

velocities controlled by contacts between two gross scale units (the Repettian and

Mohnian), and the inferred basement depth, as reported in Wright (1991). There is

a notable gap in the locations of control wells used by Wright (1991), which in turn

initialized the SCEC CVMs (either as a starting model for full-waveform inversion

used in CVM-S (Lee et al., 2014) or included as a constraint in CVM-H (Shaw
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et al., 2015; Tape et al., 2009)), across the steep northeastern boundary of the basin

that is now covered by the CSN. Given the position of the basin sidewall is situated

between the imbricated blind-thrust faults of the Elysian Park system (Plesch et al.,

2007), the high apparent dip angle imaged by surface-wave measurements gives

further support to an over-thrusted basin in this region (as is included in the CVM-H

model, albiet further to the northeast than is suggested by our results). Further

cross-sections through the model are shown in Figure 6.14, and show that this steep

basin sidewall continues along the northwest-southeast axis of the northern LA basin

wall.

The second notable finding is that the depth of the low velocity zone in the hilly

terrain north of the Los Angeles basin is substantially shallower than in the reference

model, which can be seen both along the northern edge of Figure 6.11, and in the

faster velocities around end A’ of the transect in Figure 6.12 c). This shallowing

of the basin relative to the CVM-S model is somewhat unsurprising given the high

Love wave speeds recorded in the northeast of the array from eikonal tomography,

and the relatively lower amplification when compared to the slow, deep sediments

in the central basin. Indeed, the northeastern components of the CSN operate

within the surface expression of the lower Puente and Topanga units of the LA basin

stratigraphic column, which were assembled early within the LA basin sequence and

support a shallow sequence of basin rocks towards to the right of profile A–A’ (?). In

the Supplement, we further discuss these two main features in the context of fitting

the rule-based CVM1 (Magistrale et al., 2000, 1996) rule-based model to the profile

A–A’; by perturbing the locations of the loosely constrained geological contacts that

define the CVM1, we can analyse the outcomes of our fully 3D inversion in terms of

geological structure, and find that the steep basin sidewall is consistent with recently

(≤4 Ma) active deformation, as suggested by our discussion here.
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Figure 6.11: a) Mean depth of the inferred basin interface from the final ensemble.
b) The inferred change in the depth of the Los Angeles Basin relative to CVM-S,
showing deepening of the basin especially south of the Upper Elysian Park fault (top
thick dashed cyan line), and shallowing of the model in the hilly terrain to the North
of the CSN. In both panels, major late Quaternary faults (<130 Kyr) are shown in
red, and other Quaternary faults are shown in thick dashed cyan. The transect A-A’
is shown in black.
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Figure 6.12: a) Mean of the final ensemble VS model, b) CVM-S reference model
VS, c) difference between final model and reference model, d) standard deviation of
the final ensemble VS model.
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Hyperparameter Posterior

Figure 6.13: Approximate posterior distribution from the final ensemble for the
hyperparameters l̃ and σv.

6.6 Conclusion

We use Love waves generated by the Mw 6.4 and Mw 7.1 Ridgecrest, CA earth-

quakes to obtain Love-wave phase velocities and relative amplitudes between 4–10

s period using the Caltech-LAUSD Community Seismic Network, which offers un-

precedented high-density coverage of the northeast LA basin. We use the level-set

method of Muir and Tsai (2020b) to develop a parsimonious velocity inversion that

updates the SCEC CVM-S background model only where empirical estimates of

data uncertainty indicate additional complexity is warranted. By employing fully

3D surface-wave inversion, we avoid internal artifacts in the model and make best

use of a relatively small dataset. In doing so, we find that the northeast wall of

the LA basin is substantially steeper than that of the CVM-S model, allowing for

high amplifications of surface waves in the 4–6 s period band travelling within the

basin. The constraints provided by this model cover some of the parts of LA with

the highest density of population, infrastructure and commercial development, and

highlight the continued importance of seismic velocity model evolution in provid-

ing the most accurate possible estimates of potential strong ground motions in this

important city.
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Figure 6.14: Profiles of the mean output Vs across the Los Angeles Basin, with
inferred Quaternary faults in dashed cyan and the inferred edge of the inversion
shown in dashed black.
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6.8 Appendix

Hierarchical Ensemble Kalman Sampler

The Ensemble Kalman Inversion (EKI) scheme was introduced by Iglesias et al.

(2013) by deriving an state-variable augmented Ensemble Kalman Filter (Evensen,

1994, 2003) with dynamics that approximated the Levenberg-Marquardt method.

EKI acts as an efficient black-box optimizer for large scale PDE constrained problems

for which it is intractable or infeasible to obtain gradients, and has been used

successfully in practical geophysical applications (e.g. Muir and Tsai (2020b); Tso

et al. (2021)). Subsequent to its initial formulation, much analysis on the EKI scheme

has been performed by studying it as a continuous time gradient flow (Kovachki and

Stuart, 2018), rather than in its original formulation as a discrete time dynamical

system. This has lead to the development of the Ensemble Kalman Sampler (EKS,

Garbuno-Inigo et al. (2020)), an algorithm for approximate sampling of the posterior

distributions of large-scale Bayesian PDE constrained inverse problems. We utilize

a hierarchical variant of the EKS scheme in this study to sample the posterior

distribution of our local model update—we will briefly reintroduce the EKS scheme

as described in Garbuno-Inigo et al. (2020) and then outline our variant hierarchical

formulation. In general, the objective of these schemes is to approximate a posterior
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distribution whose negative log-posterior is of the form

Φ(u, d) = | |d − G(u)| |Γ + R(u), (6.7)

where Γ is the data noise covariance matrix, and where the regularization term R(u)

introduces prior information; for instance, a typical choice would be a Tikhonov

style regularization term R(u) = | |u| |C0 for some prior covariance matrix C0. The

norms here are defined by | |u| |A = 〈u, u〉A = uT A−1u.

The EKS scheme is an ensemble-based approximation of a preconditioned over-

damped Langevin equation, which is a stochastic differential equation (SDE) of the

form

Ûu = −C(u)∇uΦ(u) +
√

2C(u) ÛW (6.8)

with C(u) a preconditioning operator that depends on u and ÛW a Brownian motion

term. It can be shown that the long-term behavior of this SDE gives rise to a

trajectory that has a distribution given by p(u|d) ∝ exp(−Φ(u, d)), i.e. the desired

target posterior (Gelman et al., 1997). In the EKS scheme, an ensemble of particles

U = {u( j)}Jj=1 are used to approximate the gradient of the likelihood, and C(u) to

be is chosen to be the empirical covariance C(U) = 1
J
∑J

j=1(u
( j) − ū)(u( j) − ū)T ,

where overbars denote means across the particle ensemble. Preconditioning by the

empirical covariance acts to approximate the local curvature of the posterior by the

ensemble, giving accelerated convergence compared to the unconditioned equation

in a similar manner to the difference betweenNewton’smethod and gradient descent.

The dynamics of this system of particles are given by the following SDE (without

the gradient approximation and for Tikhonov-style Gaussian priors)

Ûu( j) =
1
J

J∑
k=1
〈(∇uG(u( j))(u(k) − ū),G(u( j) − d)〉Γu(k) − C(U)C−1

0 u( j) +
√

2C(U) ÛW ( j).

(6.9)
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Making the ensemble approximation for the gradient of the forward operator G

allows us to rewrite this in a form without an explicit derivative:

Ûu( j) =
1
J

J∑
k=1
〈(G(u(k)) − Ḡ,G(u( j)) − d)〉Γu(k) −C(U)C−1

0 u( j) +
√

2C(U) ÛW ( j), (6.10)

which is the equation solved by the EKS as described byGarbuno-Inigo et al. (2020).

We will define D(U) = 1
J
∑J

k=1〈(G(u
(k)) − Ḡ,G(u( j)) − d)〉Γ for future convenience,

so that the dynamics for the whole ensemble are given by

ÛU = UD(U)T − C(U)C−1
0 U +

√
2C(U) ÛW . (6.11)

We note that at the equilibrium of the ensemble, these dynamics suggest a balance

between a Newton-style update of the ensemble (using an empirical covariance

matrix to approximate the inverse Hessian) converging to the maximum a posteriori

point, and the generation of correlated noise scaled to the original ensemble. The

final state therefore results in a local Guassian approximation of the posterior.

Often, in geophysical problems, the scale of appropriate regularization (i.e. the

choice of operator C0 for Tikhonov regularized problems) is unknown. As such,

much recent effort has been devoted to the development of hierarchical methods

for solving inverse problems, in which the prior itself is to some degree unknown

and is controlled by some number of hyperparameters (see, e.g.,Malinverno and

Briggs (2004)). Additionally, for large-scale problems with Gaussian priors, it may

be beneficial for efficient sampling to perform a coordinate transform into diagonal-

ized non-centered coordinates, which remove the correlations in the prior between

hyperparameters and the main parameters used in the inverse problem. This class of

parametrizations are known aswhitened, non-centered hierarchical parametrizations

(Chada, 2018; Chada et al., 2018; Chen et al., 2019a). The set of parameters is given

by a collection of “regular” parameters ξ and hyperparameters θ. For zero-mean

Gaussian priors, the coordinate transform is given by u = L(θ)ξ for a Cholesky fac-

tor C0(θ) = L(θ)L(θ)T . With this transform, the prior for the parameters ξ is simply
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a Gaussian with identity covariance matrix. For reasons of computational efficiency,

if the prior covariance C0 is associated with spatial structure (say if the values of u

represent material quantities at particular points in space) an approximate transform

based on the solution to a stochastic partial differential equation (SPDE) is used

(Lindgren et al., 2011), with the choice of SPDE determined by the particular form

of the Gaussian prior to be approximated. For certain choices of prior covariance,

and by defining known boundary conditions on a rectangular volume encompass-

ing the model parameters, there are known analytic solutions for the appropriate

eigenfunctions φi(θ) and eigenvalues νi(θ) with which to solve the SPDE such that

truncation of the series of eigenfunctions has the smallest total mean squared er-

ror; these eigenfunction-eigenvalue pairs form the Karhunen-Loève (KL) expansion

(Dashti and Stuart, 2013). Using the KL expansion, L(θ)ξ ∼
√
νi(θ)φi(θ)ξi. By

using these known analytic eigenfunctions and appropriately truncating the KL ex-

pansion to a reasonable number of eigenfunctions can drastically increase the speed

of performing the coordinate transform; for the commonly used Whittle-Matérn

family of covariance functions in a rectangular domain, the transform (assuming

Neumann boundary conditions) can be calculated using the inverse discrete cosine

transform for even greater efficiency.

The hyperparameters θ may have arbitrary priors ρ, which are typically non-

Gaussian but do not depend on ξ; consequently the dynamics of the system follow

(for ensembles Ξ = {ξ( j)}Jj=1, Θ = {θ
( j)}Jj=1)

ÛΞ = ΞD(L(Θ)Ξ)T − C(Ξ)Ξ +
√

2C(Ξ) ÛW (6.12)

ÛΘ = ΘD(L(Θ)Ξ)T + C(Θ)∇θ log(ρ(Θ)) +
√

2C(Θ) ÛW . (6.13)

These dynamics derive from the original EKS by considering an augmented state

vector u = [ξ, θ]T and allowing arbitrary priors. We have furthermore neglected

the cross-covariance terms Cov(Ξ,Θ) and assumed a block-diagonal form for the
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preconditioning matrix, allowing us to decouple the dynamics as above. In order to

solve these equations, we use the same split-step implicit scheme as Garbuno-Inigo

et al. (2020), which is given by

Ξ
∗
k+1 = Ξk − ∆tkΞk D(L(Θk)Ξk)

T − ∆tkC(Ξk)Ξ
∗
k+1 (6.14)

Θ
∗
k+1 = Θk − ∆tkΘk D(L(Θk)Ξk)

T + ∆tkC(Θk)∇θ log(ρ(Θ∗k+1)) (6.15)

Ξk+1 = Ξ
∗
k+1 +

√
2∆tkC(Ξk)W(Ξ)k (6.16)

Θk+1 = Θ
∗
k+1 +

√
2∆tkC(Θk)W(Θ)k, (6.17)

where W(Ξ)k and W(Θ)k are matrices of standard random normals of the same

shape as Ξ and Θ respectively. The timestep ∆tk is calculated adaptively fol-

lowing Kovachki and Stuart (2018). Given a reference timestep ∆t0 we have

∆tk = ∆t0/(| |D(L(Θk)Ξk)| | + δ) where the norm on D is the Frobenius norm

and δ is an arbitrary positive constant. Unlike in Garbuno-Inigo et al. (2020), the

inclusion of arbitrary non-Gaussian priors for the hyperparameters θ mean that the

implicit update is no longer linear, but as the dimension of θ is usually small, the

cost of performing this update using an iterative nonlinear solver is normally not

overly burdensome; in practice we use forward-mode automatic differentiation for

arbitrary priors ρ and the L-BFGS method (Liu and Nocedal, 1989) for solving the

implicit update for Θ.

6.9 Supplement

The original versions of the SCEC CVM were based on empirical rule based ve-

locity models to interpolate between the inferred boundaries of large geologic units

(Magistrale et al., 2000, 1996). While rule-based models are necessarily simplified

compared to the potential complexity of the real Earth in almost all cases, they are

often useful from an interpretational standpoint, as rules correspond to real geo-

logical features, and additionally serve as a basis for combining disparate datasets

within a common framework, such as was done in the initial construction of the
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CVM models. Indeed, the level-set tomographic framework Muir and Tsai (2020b)

used in our study is an extension of rule-based models to include more flexibility,

and combine their benefits with those of standard tomographic models defined via

basis function representations.

Within the LA basin, Magistrale et al. (1996) used the sedimentary compaction

law of Faust (1951), which has the form VP = k(da)
1
6 , where d is the depth of

maximum burial (corrected for any subsequent positive elevation), a is the age, and

k is an calibration factor unique for each basin. Magistrale et al. (1996) used three

boundaries - the basin bottom, pegged at an age of 20 Ma, the base of the Mohnian,

at 14.5 Ma, and the base of the Repettian, at 4 Ma, with ages linearly interpolated

in between these boundaries. The location of these boundaries, as well as the age

of the surface, are derived from digitization of older geological studies, principally

Yerkes et al. (1965) and Wright (1991). The uplift associated with the Pasadenan

deformation is assumed to happen instantaenously at the present (i.e. the entire

column is uplifted by an equivalent amount, rather than accounting for any potential

deposition during uplift). Magistrale’s model is relatively simple; however, such

simplicity also results in greater interpretability. Given EKS sampling is a black-

box approximate Bayesian method, it is feasible to “post-process” our inversions

to interpret them in terms of the rule-based CVM definitions. We apply this to

the major A-A’ profile of Figure 12. We fix the lower basin boundary at the basin

extracted from our inversion, and initialize the surface age, Repettian and Mohnian

boundaries at their values in the early CVMs. We then perturb these using 1D

Gaussian processes using a Matérn-3/2 kernel with unknown lengthscale and σ = 1

applied to the log surface-age and boundary depths, clamping theminimumVP at 1.5

Km / s and using Brocher (2005) to convert to VS and density. Due to the density of

information (in this case fitting to an image, rather than the physical observables in

the main inversion), we can use the relatively rough 3/2 kernel to capture the details



162

without being concerned about artifacts. The output velocity model, including the

locations of the reference and inverted boundaries, is shown in Supplementary Figure

6.15. The boundaries of both the Mohnian and Repettian units agree well with the

well-constrained locations (from borehole measurements) in the southern part of

the profile. In the northern part of the profile, the deep Mohnian profile agrees with

results in Wright (1991), however the CVM1 velocity model specification requires

a deep Repettian as well, which is not concordant with the outcropping of Puente

and Topanga units at the surface in this area. It is unsurprising that the CVM1

rules provide an outcome inconsistent with the geology here, as they are developed

primarily for the deeper basin, whereas our data suggests that the basin units are very

shallow in the northern part of the profile. In the central part of the profile, where the

reference interface locations are poorly controlled in Wright (1991), the observed

velocity model in Figure 12 is best represented by a steep Repettian interface and a

deep Mohnian, which conforms with our interpretation of the sharp gradient of the

northern basin boundary being controlled by the influence of Quaternary faults, as

even the youngest interface in the CVM1 model is highly deformed.
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Figure 6.15: Fit of a modified SCEC CVM2 model to the A-A’ profile results of
Figure 12, with dashed lines showing the CVM2 reference surfaces (the bottom of
the Repettian andMohnian units) and the solid lines showing the inverted interfaces.
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C h a p t e r 7

DID OLDHAM DISCOVER THE CORE AFTER ALL?
HANDLING IMPRECISE HISTORICAL DATA WITH

HIERARCHICAL BAYESIAN MODEL SELECTION METHODS

Muir and Tsai (2020a) previously published as

Muir, J. B. & V. C. Tsai (2020). “Did Oldham discover the core after all? Han-

dling imprecise historical data with hierarchical Bayesian model selection

methods”. In: Seismological Research Letters 91.3, pp. 1377–1383. doi:

10.1785/0220190266

7.1 Abstract

Historical seismic data is essential to fill in the gaps in geophysical knowledge caused

by the low rate of significant seismic events. Handling historical data in the context

of geophysical inverse problems requires special care, due to the large errors in the

data collection process. Using Oldham’s data for the discovery of Earth’s core as a

case study, we illustrate how a hierarchical Bayesian model selection methodology

using leave-one-out cross-validation can robustly and efficiently answer quantitative

questions using even poor quality geophysical data. We find that there is statistically

significant evidence for the existence of the core using only the P-wave data that

Oldham effectively discarded in his discussion.

7.2 Introduction

Seismologists are highlymotivated to study historical data due to the long timescales

of geophysical processes compared to the human lifespan, and especially compared

to the proliferation of modern digital instrumentation. A crucial consideration in

seismology is that both the quantity and quality of seismic data are ever increasing,
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and that as the density of instrumentation increases, so too does our ability to

accurately locate events in space and time and the number of useful recorded events

greatly increases. When dealingwith historical data, wemust therefore unfortunately

contend with the reversal of these trends, so that we are left with fewer data of poorer

quality. Overcoming these deficiencies requires careful treatment of noise in the

data. The required tools are provided by Bayesian analysis, which allow us to

rigorously derive posterior probability distributions for models given observed data

and explicitly quantified priors (Tarantola, 2005). The ability of Bayesian analysis

to quantitatively encode a priori information is especially important for historical

data, where the information provided by the data is relatively uninformative.

In this study, we focus on a particular type of data: pairs of station-receiver distance

and travel times from earthquakes. This data has long been central to geophysical

imaging, especially before the advent of computationally feasible waveform inver-

sions. Due to the computational expense of simulating waveforms and the require-

ment that waveform methods have an accurate starting model, seismic tomography

from travel time data still holds a central position in the hierarchy of geophysical

methods. When dealing with travel time data, the tomographer’s hope is that errors

in the spacetime location of an earthquake do not significantly contribute to the ob-

served residuals used for inversion, or that they may at least be minimized by some

relocation method. For historical data, the errors are often so large as to make this

impossible, so any analysis requires that we explicitly handle errors in both distance

and time. Classical regression methods such as Orthogonal Distance Regression

can handle this case when the model to be fitted is smooth and the ratio between

the errors for distance and time is known (Boggs and Rogers, 1990). However, as

the error ratio is generally not known, a full analysis requires marginalizing over all

possible reasonable combinations of errors. An analytical solution to this problem

for linear models and specific non-informative priors is given in a manuscript by
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Jaynes (Jaynes, 1999), left, like much of his work, unfinished by his death. For

nonlinear models and arbitrary priors, a numerical approach is required. For this

study, we present a Bayesian analysis for nonlinear models of imprecise data using

Markov-ChainMonte-Carlo (MCMC) sampling, and show how to incorporate it into

a model selection framework. We apply the model selection framework to some of

themost historically important data ever presented in seismology—the famous travel

time curve of R.D. Oldham (Oldham, 1906), demonstrating how model selection

can make a concrete case for the seismic observation of the Earth’s core using only

a subset of Oldham’s data.

It is well known in the seismological community that Oldham provided the first

strongly accepted seismic evidence for the Earth’s core in his seminal paper The

Constitution of the Interior of the Earth, as revealed by Earthquakes (Oldham,

1906), for which he is generally credited with the seismic discovery of the core

(Brush, 1980). Various geophysical arguments throughout the 1800s had suggested

a core, most notably the arguments of Wiechert which determined the parameters of

a core model from geodetic observations combined with the calculated moments of

inertia of the Earth (Wiechert, 1897). However, direct observation of the core was

unavailable until the development of quantitative seismology. Oldham provided a

travel time curve for “Primary” and “Secondary” phases derived from teleseismic

earthquake records, and correctly postulated their mechanical behavior as being

those of P and S waves, respectively. The curvature of travel time strongly suggested

to him that the waves travelled deeply in the Earth and were therefore capable of

informing us about properties far into the interior. In the travel time curve, there is

an apparent break in the behavior of the curves at around 120◦ epicentral distance,

from which Oldham inferred the existence of the core. The change in character is

much more apparent for the secondary arrivals than for the primary arrivals; indeed

Oldham states that it would have “probably remained undetected were it not for
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the very conspicuous alteration in the case of the second-phase waves”. As such,

Oldham predicated most of his argument on the secondary arrivals. Unfortunately,

immediately after the publication of the original paper it became apparent that the

change in secondary arrival behavior was in fact caused by the difference between S

and SS phases, and the apparent large jump in travel timewas not due to transmission

through the core—consequently Oldham has to a certain extent been lauded for his

discovery of the Earth’s core under false pretenses (Brush, 1980)! Figure 7.1 shows

Oldham’s data, taken from Oldham (1906) Table 1 for averaged points and digitized

from Oldham (1906) Figure 1 for non-averaged points, and overlaid with modern

travel time curves from the ak135 model (Kennett et al., 1995). It is apparent that

the later primary phase data are likely core interacting P phases of the PKP family.

However, the scatter is extreme for the primary arrivals and it is difficult by eye to

confidently claim that there is any meaningful change in the travel time curve. It

is therefore a point of historical interest whether it is in fact possible to deduce the

seismic existence of the core using only the primary (P) data presented in Oldham’s

paper. If we can show that there is a statistically significant change in behavior of the

P travel time curve, then Oldham’s deduction stands up even without the secondary

(S, SS) data. Due to the highly imprecise nature of Oldham’s data, this question

provides an excellent case study for the handling of historical data using hierarchical

Bayesian methods.

7.3 Data and Methodology

Oldham’s P phase travel time data consist of distances d and times t. To normalize

the data to the interval (−1, 1) for curve fitting, we subtract the mean and divide by

the range of both d and t.

We treat the question of detection of the core as one of quantitative Bayesian model

selection. In particular, we propose several models for the data, some containing
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Figure 7.1: Data from Oldham (1906), with modern travel time curves from ak135
overlaid (Kennett et al., 1995). Assignments to Primary/Secondary arrivals are from
Oldham.

only one predicted travel time curve, and some containing two. Following Oldham,

we infer the presence of the core if a candidate model with two disjoint travel time

curves is significantly better at predicting the data than models with only one curve.

This decision criterion (i.e. whether to choose the model that has the best predictive

performance) is a philosophical choice—for instance, if the true data generating

process was one of the candidate models, it is not guaranteed that we would recover

it (Shao, 1993). For geophysical data, however, the true data generating process

is almost always unavailable and not included as a candidate; selecting a model

that best predicts the observations is often the most sensible choice from a practical

standpoint. The predictive criterion is data driven and does not explicitly penalize

model complexity, but instead relies on the tendency of unnecessarily complex



169

models to overfit the data and therefore perform poorly at prediction for unseen data.

As mentioned before, Oldham’s data is extremely imprecise both in time and epi-

central distance compared to modern standards. As such, treating the data properly

requires that we handle unknown errors on both axes. As earlier mentioned, fre-

quentist methods such as orthogonal distance regression can fit curves to data with

errors in both independent and dependent variables, but require a priori knowledge

of the relative error. In contrast, hierarchical Bayesian methods allow us to set up the

unknown error standard deviations σd and σt in both distance and time respectively

as parameters that are inverted for along with the parameters describing the travel

timemodel—as these parameters describe the form of themodel likelihood and prior

distributions they are referred to as hyperparameters in the Bayesian geophysical

literature (Malinverno and Briggs, 2004). The model parameters are therefore m,

describing the form of the fitted travel time curves, and σd and σt . The functional

form of the travel time curve, including any jumps, is given by f (d,m). We assume

that the model parameters m are a priori independent from σd and σt since making

observations should not impact the type of models we propose for the travel time

structure, and we also assume that σd and σt are independent since the scales of the

errors in distance and travel time are not correlated.

To compare the predictive performance of different models and determine if there

is enough evidence in Oldham’s P arrival to indicate the existence of the core, we

must first derive the posterior distribution for the parameters of the different models

given the observed data. From Bayes’ rule, the posterior distribution is given by

p(m, σd, σt |d, t) ∝ p(d, t|m, σd, σt)p(m, σd, σt) = p(d, t|m, σd, σt)p(m)p(σd)p(σt),

(7.1)

assuming independent priors for m, σd , and σt . Both t and d have significant noise,
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so we represent the relationship between them as

t = f (d + ed,m) + et, (7.2)

where ed and et are the unknown measurement errors in distance and time, re-

spectively. This formulation implicitly assumes errors in distance and time are

independent, which given the majority of earthquake origins in Oldham (1906) are

from local reports, rather than by triangulation from travel time, is not unreasonable.

As we are ranking different functional forms f , we do not include model uncertainty

in this analysis.

To write out the posterior, we introduce dummy variables D = d + ed and T =

f (D,m); from a Bayesian standpoint D represents the unknown “true” distances

in Oldham’s data and T the corresponding “true” times predicted by the travel

time curve. Note that T is a deterministic function of D and m so p(·|D,m) =

p(·|T). Assuming that D is independent of m and given our earlier assumption

that uncertainties in d and t are independent, we can write the likelihood as a

marginalized distribution over D

p(d, t|m, σd, σt) =

∫
p(d, t|D,m, σd, σt)p(D)dD (7.3a)

=

∫
p(d|D,m, σd)p(t|D,m, σt)p(D)dD (7.3b)

=

∫
p(d|D, σd)p(t|T, σt)p(D)dD, (7.3c)

allowing us to write a fully decoupled marginal posterior

p(m, σd, σt |d, t) ∝
∫

p(d|D, σd)p(t|T, σt)p(m)p(σd)p(σt)p(D)dD. (7.4)

The full posterior, including the dummyvariablesD, can bewritten by de-marginalizing

Equation 7.4 and applying Bayes’ theorem to obtain

p(m, σd, σt,D|d, t) ∝ p(D|d, σd)p(t|T, σt)p(m)p(σd)p(σt). (7.5)
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The hierarchical parameterization used in this studymay cause difficulties in efficient

MCMC sampling due to the structure of the posterior—we discuss a method to avoid

this issue in the Supplement. The inclusion of noise in the independent variable d

means that the final inverse problem has a free parameter corresponding to every

data pair (di, ti), plus those used to specify the error scales σd and σt and the

model variablesm, meaning that the problem is fundamentally underdetermined and

requires careful selection of priors. Additionally, as the posterior is relatively high-

dimensional, explicit integration over it is intractable. We useMarkov-ChainMonte-

Carlo (MCMC) to calculate integrals with respect to the posterior, specifically

using Hamiltonian Monte Carlo (HMC) to sample the high dimensional posterior

efficiently (Neal, 2011).

Once the posterior distributions for the candidate models are determined, a metric

for comparing them for model selection must be defined. To determine the relative

performance of the candidate models, we use leave-one-out cross-validation (LOO-

CV). LOO-CV estimates the predictive performance of a model by removing datums

from the observations one at a time, fitting the model, and then testing the left out

datum against the model predictions. The posterior predictive distribution for the

ith left out datum is p(di, ti |d j,i, t j,i). The LOO-CV estimate for Ndata data points

is given by

LOO-CV =
Ndata∑

i

log p(di, ti |d j,i, t j,i). (7.6)

For each left out datum, we use MCMC sampling to draw NMCMC samples from the

marginal posterior p(m, σd, σt |d j,i, t j,i)—by using MCMC sampling we avoid ex-

plicitly integrating over the nuisance parameters D j,i. By writing p(di, ti |d j,i, t j,i)

as a marginalization of the posterior predictive p(di, ti |m, σd, σt) with respect to the
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held out data, we can estimate p(di, ti |d j,i, t j,i) using the MCMC draws

p(di, ti |d j,i, t j,i) =

∫
p(di, ti |m, σd, σt)p(m, σd, σt |d j,i, t j,i)dmdσddσt (7.7)

≈
1

NMCMC

NMCMC∑
n=1

p(di, ti |mn, σd,n, σt,n), (7.8)

where mn, σd,n, σt,n notate the nth MCMC sample of the posterior for the model

parameters. For each MCMC sample, we can then calculate

p(di, ti |mn, σd,n, σt,n) =

∫
p(di, ti |mn, σd,n, σt,n,Di)p(Di)dDi (7.9)

by explicit numerical integration. Higher values of the LOO-CV score indicate

better predictive performance. We therefore infer the presence of the core from

Oldham’s data if a model with a jump in the P travel time has a LOO-CV score at

least one standard error higher than all models without a jump. We chose LOO-

CV as its estimates of predictive performance are robust and unbiased (Vehtari

and Ojanen, 2012). LOO-CV is quite computationally intensive, as it requires

an independent MCMC run for each datum, which could motivate the use of less

expensive methods such as k-fold cross-validation for large datasets. However,

Oldham’s data consists of only 90 points, so explicit LOO-CV is feasible—we

further discuss these convergence performance considerations in the Supplement.

We use low-degree Chebyshev polynomials of the first kind Ti to define the model

travel time curves, following Oldham’s expectation that individual travel time curves

for a single phase should be smooth. For models that contain a jump in the travel

time curve, we use two polynomials to represent the curve before and after the

changepoint. We notate the models as (a,−) for single travel time curves of degree

a with − signifying no second travel time curve for P arrivals, and (a, b) for double

travel time curves of degrees a and b with a jump in travel time. For a single travel

time curve of degree a

f (x,m) =
a∑

i=0
miTi(x). (7.10)
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For double travel time curves, the model parameter vector m contains two sets of

polynomial coefficients and the location of the changepoint D j . The HMC method

requires that the posterior be continuously differentiable, so a model containing

two travel time curves with a true discontinuity between them cannot be used. To

model the jump in travel time between curves, we instead use a hyperbolic tangent

to transition between two polynomials f1 and f2 so that

f (D,m) =
f1(D,m)(1 − tanh(k(D − D j)) + f2(D,m)(1 + tanh(k(D − D j))

2
, (7.11)

where the factor of k = 1000 ensures that the jump is very sharp, but still continuous.

We use products of univariate normal distributions for p(d|D, σd) and p(t|T, σt),

which is appropriate given we expect the data to be independent, and the distribution

of residuals is approximately normal. For the prior p(m), we also use a product

of normals with large standard deviation (σ = 10); the purpose of this choice is

to constrain m to reasonable parameter ranges for Chebyshev polynomials on the

interval (−1, 1), which is important for the two travel time case where the second

polynomial may rely on very little data. This choice of prior contains all physically

reasonable travel time curves, and so is only as informative as is required to make

the posterior sensible. For the dummy variables D, we use an uninformative uniform

prior on the whole real line as the distribution of measurment distances is a priori

unknown. Based on visual inspection of the data, we use a uniform prior on the

range (90◦, 130◦) for the changepoint D j . Finally, setting the priors for σd and σt

requires special attention. Because the data is highly scattered, the error parameters

trade off very strongly with one another, which can lead to parts of the posterior

distribution being so highly curved that MCMC sampling is not feasible despite

the rescaling mentioned above. These situations have unreasonable choices of the

parameter space, withσd being almost zerowhileσt is extremely large, or vice versa.

Solving this issue requires putting an informative prior in the error parameters that
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stops either σ from being very small or very large, which is justified as it is a

priori clear that the errors in both distance and time are significant but finite. We

use inverse-gamma priors tuned so that P(σd ≤ 1.38◦) = P(σd ≥ 13.8◦) = 0.01

and P(σt ≤ 0.202 min) = P(σt ≥ 2.02 min) = 0.01, which are ranges we feel are

reasonable for the error standard deviations given Oldham’s description of the data.

7.4 Results

We used the STAN HMC sampler (Carpenter et al., 2017) to calculate the LOO-CV

score for seven models, detailed in Table 7.1. 5000 samples were generated for

6 chains, with the first 2500 discarded, and the chains were compared to ensure

convergence. The best performing model was (1, 1), which fits a line to the first part

of the data and a line to the data after the jump in travel times. The difference in

LOO-CV scores for all models relative to (1, 1) is given in Table 7.2. Both models

with two travel time curves separated by a jump are favored over all models without

a jump by at least 7 times the standard error, indicating that within the context of

the models chosen, there is a very significant change in the behavior of the travel

time curve despite the large scatter in the data. As such, the P phase arrival data

alone are sufficient to support Oldham’s arguments as to the existence of the core

in Oldham (1906). However, the data are not sufficient to distinguish between

a quadratic or a line for the first part of the travel time curve, as the difference

between models (1, 1) and (2, 1) is not significant. We show model (3,−), which

is the best performing model with only one travel time curve, in Figure 7.2 a) and

model (1, 1), the best performing model with two travel time curves, in Figure 7.2 b).

Note that the mean travel time curve shown for Figure 7.2 b) is smoother than any

individual sample of model (1, 1), which has a sharp jump between the two travel

time branches. Themeanmodel predictions for both (3,−) and (1, 1) fall between the

P/Pdiff and PP phases of the ak135 model for distances less than 120◦, suggesting
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that Oldham’s data is potentially a mix of these phases; for greater distances the

better performing (1, 1) model sits between ak135 PKiKP and PP at around 120◦

before moving towards what are likely to be P core phases at higher distances. The

presence of some PP data may explain why the posterior mean of model (1, 1) has

negative slowness after the jump in travel time, although the majority of post jump

data is closer to the modern core phase times.

From examining the spread of the 90% credible interval (i.e. the area between the 5%

and 95% quantiles of the posterior model distribution at each epicentral distance),

we can see that (3,−) is more tightly constrained than (1, 1), at the expense of fitting

the data significantly worse. For both models, the average correction increases as

a function of distance, as is seen in the length of the red connecting lines in Figure

7.2, indicating that measurements were generally worse fit by a single travel time

curve at longer epicentral distances. The LOO-CV score balances these concerns

and strongly favors models models with two travel time curves. The LOO-CV score

degrades substantially from model (3,−) to model (4,−) and model (5,−), which

indicates that further higher degrees would perform yet worse in predicting held out

data since the single travel time curve models are strictly nested (i.e. (5,−) contains

all of (4,−), which contains all of (3,−) as a special case). Overfitting becomes

significant even for simple polynomials due to the high scatter in the data.

Model Two travel time curves? Total free parameters
(1,−) No 94
(2,−) No 95
(3,−) No 96
(4,−) No 97
(5,−) No 98
(1, 1) Yes 97
(2, 1) Yes 98

Table 7.1: Catalog of models used to test Oldham’s data
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Figure 7.2: a) Posterior distribution formodel (3,−), the best performing single travel
time curve model. b) Posterior distribution for model (1, 1), the best performing
model. Note that the mean shown for b) is smoother than an individual sample of
model (1, 1).
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Model LOO-CV score Difference in LOO-CV Standard error in difference
(1,−) 23.99 -3.91 0.44
(2,−) 24.03 -3.87 0.40
(3,−) 23.12 -3.78 0.38
(4,−) 23.14 -4.76 0.69
(5,−) 22.55 -5.35 0.95
(1, 1) 27.90 — —
(2, 1) 27.85 -0.06 0.14

Table 7.2: Difference in LOO-CV score relative to (1, 1), the best performing tested
model.

7.5 Discussion and Conclusions

Model selection, provided by the LOO-CV score, strongly supports there being

enough evidence solely in Oldham’s P-wave data to support two apparently distinct

travel time curves, which leads to Oldham’s argument for the core. While the

scientific question presented in this study has not been in question for over 100

years, the robust statistical tools required to analyze the problem fully have only

recently become available. Model selection, in particular, remains at the forefront of

statistical research and has great implications for both traditional inverse theory and

newer techniques such as machine learning (e.g. Claeskens (2016); Rasmussen and

Williams (2006);Wit et al. (2012)). The problem of how to performmodel selection

is unfortunately less resolved than that of how to sample from the Bayesian posterior,

for which MCMC sampling, and in particular HMC, has emerged as the clearly

preferred technique (Betancourt, 2017; Fichtner et al., 2019; Neal, 2011). Model

selection, in contrast, has a plethora of related techniques, ranging in complexity

from penalized fits to the maximum a posteriori point such as the Akaike and

Bayesian information criteria (Claeskens, 2016), cross-validation methods such as

that presented here (Vehtari and Ojanen, 2012), and extending to full calculation

of the Bayesian evidence. The Bayesian evidence or Bayes factor calculation, in

particular, has received attention in geophysics and astronomy since it can be cleanly

derived from Bayes’ theorem as explicitly comparing the probability of two models
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given the data. Unfortunately, estimating the Bayesian evidence is highly nontrivial

and is typically only shown in the literature for low dimensional models due to

convergence difficulties, which limits its utility for realistic geophysical problems

(Friel and Wyse, 2012; Vehtari and Ojanen, 2012). The LOO-CV method used here

proved to be tractable formodels with∼ 100 parameters, however, it does suffer from

computational difficulties as the number of data becomes large. Vehtari et al. (2017)

give a method for using importance sampling on the posteriorMCMC samples using

all data to approximate the results from held out data, which is promising for large

geophysical data sets.

In this study, we have tested only simple functional forms for travel time curves with

and without jumps, with the further restriction that after the jump point all data are

assigned to the second travel time curve. This restriction means that there are no

overlapping travel time curves at any epicentral distance, which restricts our analysis

to datasets for which there are not multiple groups of phases observed at a particular

distance. Visual inspection of Oldham’s data suggests that this simple model is

the highest level of complexity warranted by the data. With modern seismic data,

however, it is likely that observations at a particular distance will contain multiple

phases that need to be classified into different classes. In this case, more advanced

modeling strategies that allow the expression of uncertainty as to what phase is

being observed, such as Gaussian Mixture Modeling, may be useful (e.g. Grana

et al. (2017)).

Our study shows how to set up a model that marginalizes over multiple potential

sources of error and can be efficiently sampled using HMC. We have shown how

careful specification of the prior is especially important in the historical context,

where the scale of the data errors are unknown and multiple sources of error may

trade off. Together, hierarchical Bayesian modeling and model selection give us a

powerful toolbox to explore poor quality historical data and derive robust conclusions
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about geophysical processes. In the context of Oldham’s travel time data, it allows

us to marginalize out the large errors associated with both the distances and travel

times to conclude that there is sufficient evidence contained in the P arrivals alone

to indicate the existence of the core.
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7.7 Data and Resources

Historical data were taken from Oldham (1906), either from the reported tables of

averaged events or by digitizing the presented travel time curves. All calculations

were performed using the PyStan wrapper of the Stan statistical software package

(Carpenter et al., 2017). Inversion results for the five models not presented in the

paper are found in Figures S1-S5. Additional discussion regarding hierarchical

MCMC sampling and LOO-CV vs k-fold CV are also present in the supplement.

7.8 Supplement

Avoiding the hierarchical “funnel” effect

The distribution p(d |D, σd) is highly curved as a function of σd , an effect popularly

known as the hierarchical “funnel” (Betancourt and Girolami, 2013). Intuitively, as

the scale σd decreases, the d and D are forced to be very close. This high curvature

greatly impedes the performance of sampling algorithms. To avoid this problem, we

rescale D by σd , writing D = d+σd D̄ which serves to decouple the scale of D̄ from

σd , and to center it around zero. If the likelihood p(d |D, σd) is a product of normal
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distributions di ∼ N(Di, σd), then this rescaling is equivalent to the likelihood for

D̄i ∼ N(0, 1). Equation 7.9 in the main text is then written

∫
p(di, ti |mn, σd,n, σt,n,Di)p(Di)dσDi =

∫
σd,np(di, ti |mn, σd,n, σt,n, D̄i)p(D̄i)dD̄i .

(7.12)

We give uniform priors fo D̄i as the distribution of measurement distances is a priori

unknown.

Performance considerations of LOO-CV (k = 1) vs k-fold CV (k > 1)

The integral in main text Equation 9 must be calculated explicitly, as it is with

respect to the uninformative prior density p(Di), meaning convergence of anMCMC

estimate will be slow. For this reason, cross-validation methods with multiple held

out data points such as k-fold cross-validation quickly become computationally

infeasible, as both the multidimensional explicit integrals over multiple held out

data points, and the MCMC estimates of these integrals, will converge very slowly.
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Figure 7.3: Posterior distribution for model (2,1)
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Figure 7.4: Posterior distribution for model (1,-)
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Figure 7.5: Posterior distribution for model (2,-)
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Figure 7.6: Posterior distribution for model (3,-)
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Figure 7.7: Posterior distribution for model (4,-)
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C h a p t e r 8

CONCLUSION

Seismic inversion remains a key component of the development of our understanding

of the Earth. The overarching theme of this thesis is that inversions, whether in the

data space or the model space, may be improved by designing them to better exploit

pre-existing geological or geophysical knowledge. In particular, we have looked

at how we can design an appropriate combination of model parameterization and

regularization to achieve our goals, whether they be to generate optimal seismic

data interpolations that respect wave physics, or allow the principled introduction

of explicit geological features in structural inversion via the level set method. We

have also explored how best to select between different potential classes of model

in a geophysical setting, through both the use of hierarchical methods, and post-

hoc selection criteria such as the data-driven cross-validation methods or through

statistically motivated information criteria. The methodologies presented in this

thesis have been extensively tested against both synthetic and real-world datasets,

and are suitable for future use by the research community.

8.1 Future Outlook for Incorporating a priori Knowledge in Geophysical In-

version

The ultimate goal of geophysical imaging is to enhance geological or geodynamical

understanding, however bridging the divide between inversion outcome and inter-

pretation is difficult. Existing methods to regularize geophysical imaging blur the

structures within the Earth, hindering geodynamical interpretability. As such, many

of the fundamental questions about Earth structure remain unanswered, e.g., does

the entire mantle recycle or are there long-lived reservoirs of primordial material?
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How does nonuniform heat flux across the core-mantle boundary affect the magnetic

field of the Earth and its reversals? How efficiently does the subducting crust trans-

port water into the interior and what effect does that have on the viscosity governing

convection? Answering these questions will require true multiscale imaging of the

deep Earth. Recent developments in machine learning have allowed alternative

forms of regularization based on deep networks, that assimilate the features of target

structures and deliver resulting images that reflect these features. These advanced

regularization schemes provide a principled basis on which to input complex and

detailed a priori geophysical constraints into tomographic problems— for instance,

promoting the recovery of features obtained from high resolution computational

geodynamical models within the context of global seismic imaging.

Deep-learning based inverse problem solvers have to date typically employed a

scheme where observed data is mapped directly into the desired physical model

space through the application of a multi-layer network. This is distinctive compared

to traditional inverse-problem solutions in that there is an absence of the forward

problem - inverse problem loop, as the forward model is never evaluated for the

observed data. To train these networks, a large number of data-model pairs must be

constructed; this is potentially infeasible for large-scale seismic tomography where

the solution of the forward problem is a very computationally intensive effort.

Additionally, in the seismic tomography problem there exist no “ground truth”

models except in very limited lab settings, so any such mapping would necessarily

be based on theoretical earth models. Instead, it is possible to leverage much of

the existing machinery of seismic tomography, treating the imaging problem as a

non-linear inverse problem to be solved by traditional optimization or sampling

methods rather than via push-forward through a deep neural network operator. In

order to weight our a priori knowledge, two methods may be employed. The

first is to explicitly parametrize the model in terms of geological features, such as
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we developed in Chapters 5 and 6. To create complex models that incorporate a

priori knowledge without being overly proscriptive, a deep-neural network can be

employed in a generative fashion, taking inputs in an abstract space and mapping

them into a physical model, for which the predicted data is calculated and the inverse

problem solved as normal. While these methods are powerful, they render the mere

creation of the model highly nonlinear, and also restrict the model to lie within the

range of the data used to train the generative process. The secondmethod is to utilize

regularization, in conjunction with a simple voxel-based parameterization. As has

been often noted in this thesis, all realistic inverse problems in geophysics are ill-

posed and require regularization to enable a unique solution to be found. Traditional

regularization methods have utilized simple principles such as the penalizing the

amplitude or roughness of model. Using deep-learning methods, more informative

types of regularization may be encoded by learning to extract features from synthetic

structural models that reflect our understanding of Earth’s evolution—this type of

approach has been termed NETT (network Tikhonov) by Li et al. (2020a). The

advantage of a regularization-based approach to encoding a priori knowledge is that

it can fully utilize the existing structure of large-scale seismic inversion, as inversion

is still performed in the physical model space. This represents a considerable

advantage over other methods as the infrastructure required to solve global seismic

imaging problems is non-trivial (Krischer et al., 2016). As an example of a potential

application of this method, by testing a suite of regularisers conditioned on a variety

ofmodes ofmantle convection, and assessing their performance, it would be possible

to improve the interpretability and quantification of uncertainty of seismic images

and allow beyond state-of-the-art hypothesis testing of different models of mantle

convection. Future work in data-space inversion will also lead to an improvement

in our ability to utilize “tomography free” methods, that may be able to operate

using short-time deployments of large arrays; we discuss some future prospects for
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advancing data-space inversions in Chapter 3.

8.2 Summary

In this thesis, we presented four studies representing the full spectrum of the geo-

physical inversion process. In Chapter 2, we describe a structural inversion of

the upper crust of Southern California using ambient-noise derived Rayleigh wave

horizontal-to-vertical (H/V) ratios, finding that H/V ratios provided a strong inde-

pendent constraint for the slow basin velocities in the LosAngeles area and the Salton

Trough. In Chapters 3 and 4, we developed a wavefield-reconstructionmethod based

on a temporal wavelet transform combined with spatial compressive sensing using a

preconditioned curvelet basis. This set of algorithms greatly improves the condition

of interpolated wavefields on sparse networks, and provides a quantitative frame-

work for assimilating heterogeneous strain and displacement datasets into a single

data product. In Chapters 5 and 6, introduced a new parameterization method for

seismic studies, the combined Gaussian process and level set parameterization, that

allows researchers to include discontinuous geological features into seismic inverse

problems in a particularly simple way. We applied our method to several synthetic

and real world datasets, culminating in a study of the northeastern Los Angeles basin

using Love wave energy originating from the Mw 6.4 and Mw 7.1 July 2019 Ridge-

crest earthquakes as recorded on the Community Seismic Network. We found that

the observed data required a steeper and deeper northeastern basin edge, changing

the outlook for ground motion amplification in downtown Los Angeles. Finally, we

investigated robust Bayesian model selection methods for noisy historical datasets,

correcting the interpretation of R. D. Oldham’s famous discovery of the Earth’s core

along the way. In all cases, by making full use of the suite of inversion techniques

available to us, we are able to advance our knowledge of Earth processes beyond

what we could do using traditional methods— and by maintaining a strong focus on
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methodological development into the future, important discoveries about our world

are sure to follow.
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