
THE REL LANGUAGE WRITER'S LANGUAGE:

A METALANGUAGE FOR IMPLEMENTING

SPECIALIZED APPLICATION LANGUAGES

Thesis by

Peter Szolovits

In Partial Fulfi I lment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1975

{Submitted October 3, 1974}

ACKNOWLEDGEMENTS

I wish to thank Or. Frederick B. Thompson, my teacher, adviser
and friend, for his guidance and inspiration. My perceptions of what
problems are of interest and my intuitions about I ikely possible
solutions owe much to his teaching. I have also felt privileged to work
with Or. Norton Greenfeld and Or. Richard Bigelow, former col leagues
whose experiences have contributed much to my understanding, and Or.
Giorgio Ingargiola, whose helpful comments on earlier drafts of this
thesis have been of great value.

My graduate studies have been generously supported by the Fannie
and John Hertz Foundation, for whose help I am grateful~ The languages
described in this thesis have been partially implemented in the Rapidly
Extensible Language (REL) System, which is being developed under the
l~adership of Or. Thompson and Or. Bozena H. Oostert. The REL Project
is supported in part by the fol lowing grant and contracts:

National Science Foundation grant #GH-31573

Rome Air Development Center contract #F30602-72-C-0249

Office of Naval Research contract #N00014-67-A-0094-0024

The Computing Center of the California Institute of Technology has
provided the computer faci Ii ties which I have used to prepare and edit
this thesis.

- i -

ABSTRACT

This the~is is an investigation into the task of implementing
specialized computer application languages. It contains a discussion of
the conceptual issues which make the development of specialized
languages useful, and it motivates the selection of a scheme of syntax
di~ected interpretation as · the framework on which specialized languages
ar~ to be implemented. The thesis includes a description of the REL
Langµage Writer's Language, in which the semanticalJy primitive data
types and operati_ons and the extended syntax of object languages are to
be specified. The definition of an i I lustrative object language for the
storage and retrieval of personal bibliographic information is given~
Also dis~ussed is the relationship between this manner of language
implementation and various alternative technologies.

- i i -

TABLE OF CONTENTS

ACKNOWLEDGMENTS
ABSTRACT ii
TABLE OF CONTENTS iii

·chapter
I. INTRODUCTION 1

. 1.1 LANGUAGE AND COMMUNITIES OF INTEREST 4 .
1.2 THE ROLE OF THE COMPUTER 8

I I . HI GH LEVEL, SPEC I AL I ZED LANGUAGES 12

2. 1 LOW LEVEL LANGUAGES 14
2. 2 HI GH LEVEL LANGUAGES 1 7
2.3 THE USE OF GENERAL PROGRAMMING LANGUAGES 20
2.4 SPECIALIZED LANGUAGES 24
2.5 SYNTAX DIRECTED COMPUTING 29

III. BIBLIO: AN EXAMPLE 33

3.1 BIBLIO STATEMENTS 38
3 ~ 2 B IBLI O QUEST IONS 42

IV. THE METALANGUAGE: UNIVERSE OF DISCOURSE 46

4. 1 OECLARA TI ONS 48
4.1.1 BASIC DATA TYPES 48
4.1.2 STRUCTURED DATA TYPES 49
4. 1. 3 TYPE CHECK I NG 51

4.2 DEFINITIONS 53
4.2.1 THE DEFINE STATEMENT 54
4.2.2 . CONSTANT, TYPE ANO CATEGORY DEFINITIONS 57
4.2.3 METALANGUAGE EXTENSION 58

4.3 PROGRAMS 66
4.3.1 MISCELLANEOUS DIFFERENCES FROM PASCAL 67
4.3.2 FUNCTIONS 69
4.3.3 THE PHRASE MARKER 71
4.3.4 THE SCOPE OF VARIABLES 74

4.4 DATA ALLOCATION, PERSISTENCE AND ACCESS 76
4. 4.1 THE USE OF REL 76
4.4.2 LIST PROCESSING 79
4.4.3 PAGING 80

- iii -

V. THE METALANGUAGE: LANGUAG~ PROCESSING

5.1 SYNTAX AND SEMANTICS
5.2 FEATURES
5.3 TRANSFORMATIONS
5.4 PARSING AND CONDITION FUNCTIONS
5.5 METAVARIABLES AND BINDING
5.6 AMBIGUITY
5.7 LANGUAGE EXTENSION

VI. IN RETROSPECT

88

90
94
98

106
109
113
118

122

6.1 ALTERNATIVE TECHNOLOGIES 123
6. i .1 EXTENSIBLE PROGRAMMING LANGUAGES 124
6.1.2 COMPILER GENERATORS 132
6.1.3 SEMANTIC LANGUAGES 135

6.2 ANOTHER LOOK AT METALANGUAGES 137
6.2.1 MANY POSSIBLE METALANGUAGES 137
6.2.2 LANGUAGE IMPLEMENTATION IS DIFFICULT 140
6.2.3 METALANGUAGES WITH HIGHER LEVEL

PRI MI TI YES 141
6.3 THE PROLIF~RATION OF LANGUAGES 144
6.4 CONCLUSION 146

LIST OF REFERENCES 148

APPENDIX A 153

APPENDIX 8 176

-iv-

- 1 -

CHAPTER

INTRODUCTION

••• to imagine a language means to imagine a form
of Ii fe.

L. Wittgenstein [1958, p. 8e]

How is man to use computers? Before entering a discussion of

technical matters which ·will be presented in this thesis, it seems

appropriate,, i f not ob I i gatory, to examine the more g I oba I and

philosophical issues which motivate research and debate among those who

devote their attentions to applying computers for human use.

Computing is a very young practice. It has been barely twenty-

five years since the development of general purpose stored program

computers, and that quarter century has seen a dramatic, unprecedented

and chaotic growth of uses of the computer. The fantastic

diversification of current and intended applications has created the

image of a field in constant flux and torrential change. Yet, in a

- 2 -

deeper sense, it is a 11 too apparent that deve I opments of the past

decade in the technological areas have not been matched by the evolution

of organizing concepts which make the physically avai I able computer

intellectually avai I able to the vast potential number of people with

complex, large-scale problems which could be amenab1e to solution using

the computer as an i mpor·tant too I.

Curre·n t computer app I i cat i ans have been attained at a very high

cost. On I y the richest organ i zat i ans have been ab I e to a I I ocate the

resource~ required to implement computer systems that- precisely satisfy

their requirements. Even for these organizations, the slightest changes

in their app Ii cat i ans have made their systems inappropriate and have

required a continuing supplemental infusion of money to keep their

computer operations useful. For the user with a much smaller financial

base, the high cost of tailored computer systems has forced on him a

compromise between ut i Ii ty and cost. He has had to accept cut-rate

systems which never "fit" quife right, but which at least provide some

form of useful computing capability at a tolerable cost.

It shou Id be the ro I e of computer science research today to

develop systems which wi 11 prove to be comfortable and valuable tools

for investigators in various areas of human endeavor. We should move

aL-Jay from the customary view of the computer as the super-expensive,

super-complicated general machine which only large businesses and major

scientific research projects can have the resources -- both financial

- 3 -

and intellectual to apply effectively. The cost of hardware is

decreasing rapidly enough that we can foresee computers owned by s~al I

businesses and even non-professional individuals. The major problem,

however, _wi I I be: Of what use is the computer to the businessman or the

homeowner unless he can use it naturally and effectively in pursuing his

interests in an inventory, a budget~ or perhaps a hobby?

The responsibi I ity to answer . this question must not be shunned.

The coming ~niversal av~i labi lity of computer power can have tremendous

I iberating 6onsequences, or it can merely add to the social forces which

currently encourage uniformity and abstention from creative growth. The

extreme cost of developing new software for computers dictates uniform,

inflexible applications. The customary view of computer usage, i f

extended into the low price range, suggests that the individual computer

will come with a turnkey program to allow its user to balance his

checkbook, order his groceries, and read the AP or UP] news releases as

they come off the wire. Overlooked will be the possibility that the

individual may have a personal, uniquely interesting use of his powerful

tool in mi.nd -- a use he cannot realize because the tool ls powerful

only through the specialized k~owledge of programming. Without careful

nurture and a significantly increased productivity of technical support,

the potential for individual creativity and diversity may be cut short

by an economically encouraged conformity.

We now proceed to I ay a conceptua I framework for computer use,

- 4 -

in I inguistic terms; on which to bui Id a technology for bringing the

computer's power direct I y and convenient I y to the potent i a I end-user,

providing an interaction with him that is natural and specialized to his

interests.

1.1 LANGUAGE AND COMMUNITIES OF INTEREST

Strong arguments have been set for th for the thesis that the

thought and behavior of an individual or of a community are greatly

influenced by thei.r language. Indeed, language has been suggested as

the embodiment of a I I the tacit I y assumed views, know I edge, I imitations

and culture of a community.

As Benjamin Wharf, in his best known example, states the case

[1856, p. 57):

••• The Hopi language contains no reference to 'time,' either
exp I i cit or imp I i cit.

At the·same time, the Hopi language is capable of accounting for
and describing correctly, in a pragmatic or operational sense, all
observable phenomena of the universe •••• Just as Jt is possible
to have any number of geometries other than Euclidean which give an
equally perfect account of space configurations, so it is possible
to have descriptions of the universe, al I equally val id, that do not
contain our fami I iar contrasts of time and space. The relativity
viewpoint of modern physics is one such view, conceived in
mathematical terms, and the Hopi Weltanschauung is another and quite
different one, nonmathematical and I inguistic.

Thus, the Hopi language and culture conceals a METAPHYSICS, such
as our so-ca 11 ed naive view of space and ti me does, or as the
relativity theory · does; yet it is a different metaphysics from
either. In order to describe the structure of the universe
according to the Hopi, it is necessary to attempt -- insofar as it
is possible to make explicit this metaphysics, properly
describable only in the Hopi language.

- 5 -

Thomas Kuhn, app I y i ng a s i mi I ar ana I ys is to the revo I ut i onary

change of scientific theories, characterizes the operation of "norma I

science" as the fleshing out of scientific theories, based upon the

seemingly immutable bedrock of the current paradigm. Throughout his

discussion, he assumes a coupling between an established paradigm and

the language in which its content is stated (1870, p. 136). ·

As the source of authority, I have in mind principally textbooks
of science together with both the popu I ar i za ti ans and the
phi I osoph i ca I works mode I ed on them. • • • They address themse Ives
to an already articulated body of problems, data, and theory, most
often to the particular set of paradi'gms to which the scientific
community is committed at the time they are written. Textbooks
themselves aim to communicate the vocabulary and syntax of a
contemporary scientific language.

Kuhn is interested mo.st I y in the changes of paradigm which

signal .scientific revolutions. We will be content with considering

part i cu I ar I anguages which are c I ose I y tied to a current paradigm.

Thus, the rnethodolog\:j explored below is in support of "normal", not

"revolutionary" science.

We wi 11 be interested in examining the uti Ii ty of specialized

languages in the service of limited groups. It is useful to consider

what such a group is. Kuhn, in a postscript to his wel I-known

discussion of scientific change [1970, p. 176], recognizes the

circularity inherent in identifying a paradigm as·the set of fYhdamental

(and unquestioned} assumptions of a normal-science community, and a

comrnun i ty as a group whose members Ii ve by the same paradigm. He

- 6 -

attempts to e I i mi na te the c i rcu I ar dependence by recourse to

sociological research to ditermine the boundar1es of groups; yet,

perhaps it is exactly the adherence of a group to a commonly developed

or accepted paradigm whJch is the fundamental character of the group and

the paradigm. In any case, it is important to recognize the

interdependence of scientific communities with their paradigms.

In an argument recal I ing information theoretic studies of

communication, Frederick B. Tho~pson [1866a, p. 64] expresses this view: .

What happens in a research team, working intimately, intensively
together? The commona Ii ty of experience, the tarn i Ii ar i ty bred by
common environment, comrnor. action, and common goa Is, presses down
i n to more and more d i s c r i m i na t i n g I eve I s the i n t er sec Hon • • • of
their disparate languages. Their sparse syntax and crisp jargon
~ests on a deep .fund of tacit understanding.

The size of a com mun i ty, in the above sense, may vary great I y.

Typically, the specificity of its language, the totality of its common

pool of tacit assumptions, will vary inversely with the community's

size. Communities are far from disjoint. One might imagine, for

example, · the community of physicists~ al I of whom share a large body of

specialized knowledge and beliefs. Yet within their paradigm, the sub

commun i ti es formed by, say, loi.:-tempera ture physics and astrophysics may

have sets of paradigms, corresponding to technical jargons, so different

that technical discussion between members of the two fields may be

nearly impossible. Their communication is meaningful only at the more

general level of their shared background and understanding.

- 7 -

The internal structure of a community and, correspondingly, the

structure of the paradigm or language of the community are hierarchical.

The higher in this structure that a conversation takes pla~e, the wider

is its scope and the lower is its precision. The lower it takes place,

the more precise are its distinctions, the more efficient is its

capab i I i ty. for expression, and the narrower is its scope of

app I i cab i I i ty_.

Whereas one might identify the total hierarchy of such languages

as a natura I I anguage, say Eng Ii sh, we w i 11 concern ourse Ives with on I y

specific languages, of rather narrow scope, serving fairly smal I

communities of interest, and reacting poorly to revolutionary change.

Specifically, we are interested in providing computer .languages which

successfully subsume a large fund of tacit knowledge, so that their

interaction with a computer us~r may occur at a level of specialization

appropriate to discourse with a col league. If the language is of

extremely limited use or even incomprehensible in a different context,

that is a price we are wi I I ing to_pay. The individual computer language

is not intended as a system in which a complete human world view may be

represented, and its inabi I ity to react wel I to major shifts in interest

or conceptual structure need not be regretted. For sufficiently

differing areas of interest or points of view, various distinct

specialized languages can be develop~d, possibly with bui It-in methods

of coordination.

- 8 -

The fragmentation of i nte I I ectua I wor Ids imp Ii ed by this

discussion is a bitter pill for both humanists and scientists to

swa I I ow. Some, such as Gunnar Myrda I (1969] , argue that II object iv i ty ,\11

namely the ability of each person to understand and assess the work of

each other, is to be achieved by making exp I i cit the as sump ti ans under

which we pursue thought and research. Yet, to hope for that is

unrealistic, if not irrelevant. We cannot continually be conscious of

al I our assumptions; thus, we depend on our language to fi I ter

experiences in a way that is consistent with the fundamental decisions

we have already (consciously or unconsciously) accepted about the world,

so that they do not constantly clamor for our attention and interfere

with our thinking.

Of what relevance is this discussion to the use of computers?

Si mp I y, that we propose to mirror in the compu fer the spec i a I i zed

I inguistic capabilities of smal I communities of interest, by developing

computer I anguages which na tura I I y express the jargon and embody the

paradigm of a specialized field.

1.2 THE ROLE OF THE COMPUTER

The "manufacturers' ai lemma" has become a wel I-recognized

problem in upcoming computing practice. It is that the cost of a .unit

operation on the computer is decreasing approximate I y exponent i a I I y,

- 9 -

with no short-term end of the trend in sight. This means that in order

to remain profitable, the computer manufacturing and distribution

community must devise techniques which make ever-greater and more

sophisticated use of computers and attract larger and larger numbers of

users to the computer. With a touch less hint of compulsion, Frank T.

Cary, formerly president of IBM Corporation, put it this way [CACM July

1972, p. 511]:

Continuing improvements in large-scale integration,
semi conductor memory, and magnetics, I et us put more information on
I i ne to the user. • • • App I i cation programs p I us new programming
languages must be tailored more closely to the way people think,
communicate, solve problems wi _th their - own minds. They wi 11 be
needed to bring the comput3r's information more easily and quickly
to the end user, who w i I I not be a computer profess i ona I and w i I I
not have the time, or the inclination, to become fami I iar with
either the computer's intrica~ies or the programs. He wi I I want to
talk and communicate with the machine in much the same way he· talks
and communicates with you or me without learning special
languages to manipulate the machine. He wi I I want that machine to
be a convenient tool for improving the profitability and
productivity of his business operations, his professional
activities, his daily performance in whatever he does.

Thompson (1972, p. 315) has argued that the use of spec i a Ii zed

languages secures significant economic advantages to the eventual user,

as we 11 as· to the manufacturer. To the user, these come about through

the manpower saved by al lowing him to communicate in a language natural

to his problem domain, and through the language implementor's abi I ity to

make use of the tacit knowledge of an application field to increase the

efficiency of problem solving in that field. To the manufacturer, the

obvious advantage I i es in the expanded poo I of potent i a I cus tamers who

- 10 -

w i I I be attracted to the computer by the s imp I e and power fu I too Is

provided by the specialized languages.

These complementary pressures, to widen and deepen the computer

user community, on the one hand, and to capture the sophisticated

conceptualization of specialized problem domains, on the other, wi 11

lead to the widespread implementation and use of specialized computer

I anguages. This thesis is concerned with techniques which make the

imp I ernentat ion of such spec i a I .i zed I anguages convenient and efficient.

To avoid confusion, a few terms should be clarified here: By

11 cornpu ter user", or II user", or "end user", we mean the same per son wt:1om

Cary describes above, not the trad it i ona I user of the computer, name I y

the programmer. By II I anguage", we w i I I genera I I y mean II spec i a I i zed

language", of the sort one migr,t use in investigating a user's problems,

rather than today's norma I programming I anguages. These distinctions

are, of course, somewhat arbitrary, but the emphasis we wish to place is

on the contact between the "person with a real-world problem" and a

computer language tailored for his benefit.

In this thesis, we will explore the concept of specialized

languages and one technology for making possible their cost-effect ·ive

implementation. In Chapter II,

notions now under development

spec i a Ii zed I anguages are re I ated to

under titles like "Very High Level

Languages" and "Artificial Intelligence", and an examination of current

- 11 -

practice in application programming leads into the presentation of

syntax directed interpretation as a methodology for implementing

specialized languages. Chapter III presents an informal description of

BIBLIO, a specialized language for the storage and retrieval of a

simple, personalized bib I iographic information data base. The

des er i pt ion of B IBLI O is in tended to show the type of spec i a I i zed

language whose creation is addressed in this thesis, and examples to

i I I ustrate features of the Language Writer's Language (LWU wi I I be

drawn from BIBLIO.

Chapters IV and V discuss the interesting features of LWL.

Chapter IV deals with a PASCAL-like language for specifying data types

and primitive semantic operation, and Chapter V presents the rich

syntactic mechanisms by the use of which a specialized language can be

bui It to express the fundamental semantic capabll ities in a form natural

to the user. Concluding remarks appear in Chapter VI, concerning

alternative technologies of specialized language implementation and

possible extensi .ons to the t~chniques .presented here. In addition, some

comments on the social impact of language diversification tie I inks back

to the introductory discussion of the first chapters. Two appendices

are also included: Appendix A is a brief, semi-formal description of

LWL; Appendix B contains the I inguistic definition of BIBLIO in LWL.

- 12 -

CHAPTER I I

HIGH LEVEL, SPECIALIZED LANGUAGES

We dissect nature along I ines laid down by our
native languages.

-- 8. Wharf [1956, p. 213)

The specialization of computer languages, suggested in the

discussion of the last chapter, is of value to the applications user

because a specialized language is able to de~I naturally with its user's

problems in a restricted context. It is able to assume a great deal of

imp I icit knowledge of data and techniques, and it dissects nature along

the I i nes which its user requires (in Whor f i an term i no I ogy). To an

extent, · these are the goa Is of much of the research which has recent I y

been reported under the title "very high level languages." In a review

article, Leavenworth and Sammet [1974] introduce the fi'eld in this way:

•.. Consider the fol lowing list of terms, each of which should be
fo I I owed by the word ' I anguages':

very high level
nonprocedural
less procedural
goal oriented
problem oriented
pattern directed
declarative
funct i ona I
relational

- 13 -

problem statement
problem definition
problem description
systems analysis
specification
result specification
task description ·

In addition to these terms, consider a I so the fo I I owing:

automatic programming
art i f i c i a I i n t e I I i gence

This Ii st is not necessar i I y a comp I ete set of a 11 the terms no&-1
being used by one or more groups of peop I e to convey an in tu i ti ve
notion of I anguage_s which in some sense are 'higher' than FORTRAN,
COBOL, PL/1, etc. The most common term used for this concept has
been nonprocedura I, and ~he most common phrase has been 'what'
rather than 'how'.

Of course, it would be a mistake - to assume that each of the

above terms refers to equivalent efforts and aims. Chapter I of this

thesis strongly suggests that speGial ized languages wi 11 often be very

high I eve I I anguages, because by imp I i cit I y assuming much know I edge that

is spec i ·a I to a part i cu I ar domain, a great dea I of the "ho&-1 11 can be

bu i It into the mechanisms of the I anguage i tse If, I eav i ng the use.r to

deal mainly with the •~what." It does not follow, however, that high

I eve I I anguages need be spec i a Ii zed, or that spec i a Ii zed I anguages are

a I ways high I eve I. For examp I e, I anguage.s with primitive data types

- 14 -

which might be identified with sets, sequences and n-ary relations are

widely recognized as high level. Yet, they promote their capabi I ities as

general computational languages, e.g., [Schwartz 1973a]. To the . end

user, in any field. outside computer science or mathematics, they are

hardly more capable of understanding "what" than are any of the older

generation of lower level languages {a term, interestingly enough, that

is not enthusiastically embraced by anyone). Conversely, important

languages I ike COMIT [Yngve 1966] and IPL~V [Newel I 1960), though rather

specialized in their application domains, are hardly high level.

2.1 LOW LEVEL LANGUAGES

Perhaps the key issue, both technical and conceptual, in

applying computers for human use, is the determination of the degree of

"knowledge" we impute to the hardware-software combination which is

attacking some posed task. Any student of computers can easily conjure

up a picture of John von Neumann or Commander Grace Hopper leaning over

an early vacuum-tube behemoth, setting the bit patterns needed to open

the right electrical gat~s, to perform the earliest calculations on

comp I icated trajectories. In this picture, the meaning of what is being

computed, in the sense that one wants to label the resulting numerical

values with some descriptors 'tying them to a world of objects and

relationships, exists completely outside the operations of the computer.

Only the programmer is aware of what significance the input and output

- 15 -

va I ues have, and on I y the programmer rea Ii zes that the sequence of

operations set up in the order code of the machine actually accomplishes

the solution of a differential equation. This · picture is titled the

low-level programming approach.

Primitive operations which are semantically insignificant to a

user characterize I ow I eYe I programming. In the war-time trajectory

example, the significant operation is to achieve a model of an anti

aircraft defense system. This wi I I normally reduce to seeking a

solution to some set of fixed differential equations, which wi 11 satisfy

a certain set of required conditions .• In more detail, one might say

that the problem is to determine a set of parameters for the anticipated

functional form which wi 11 minimize some measure of deviation from the

idea I so I u ti on. More concretely, the problem. may be stated as an

algorithm which wi I I compute those desired parameters.

It is at these I eve Is of genera I i ty that the person who poses

the problem. and the applied mathematician who devises a solution scheme

perform their analyses. The task .o.f storage al location to parameters

and auxi I i'ary variables, the translation of algorithmic descriptions to

sequences of machine order code detailed to the level of 11 add 11 and "jump

if zero", and the creation of commands to cause input parameters to be

accepted and results to be displayed are unseen -- thus insignificant

at the level where the problem and its desired solution are described.

- 16 -

To i 11 ·ustrate further, note that in low level programming, the

probl em as understood by its formulator. cannot even be recognized.

Without extensive documentation and profuse commentary, a programmer

other than the program's originator cannot grasp the essence of ~hat is

being computed. The fami I iar problem of "de-compi I ing" machine code

into comprehens i b I e a I gar i thms, for instance, has no genera I so I ut ion,

because at the opera ti ona I machine .I eve I, those organizing concepts

which give meaning to the problem solution being attempted are no longer

exp I icitly avai I able. The best de-compiler can yield merely a symbolic

and somewhat compacted version o{ the code. The user's problem is

irrecoverable.

It is not meant here to disparage low levet programming as such;

when the problems of interest are indeed low level e.g. in

optimizing an algorithm . to operate efficiently in terms of the number of

uni t operat i ans per formed -- then that is the appropriate I eve I; the

basic operations are significant and meaningful. What is criticized is

the use of such low level techniques for an approach to problems whose

scope is sufficiently broad to push the low level considerations into

obscurity.

The keynote of the low level programming approach is its

concen t r a tion on the symbol manipulating aspects of computation, as

opposed to meaning at the user's conceptua I I eve I. An ana I ogy may be

drawn with mathematical reasoning: consider the axiomatic derivation of

- 17 -

arithmetic from the set theory. From our childhood, we understand the

meaning of simple arithmetic statements and operations, and only in much

later I ife do some become conc3rned with interpreting this meaning in a

rigorous, formal structure. When we do arithmetic, we do not really

perform the set theoretic operations which define arithmetic. In the

use of arithmetic, its axiomatic definition is irrelevant -- a requisite

foundation, to be ignored after it is success f u I I y cone I uded.

Similarly, when we compute a trajectory, the machine code which has

expressed the detailed manipulations we have needed to come to a result

is no longer of significance.

Thus far, we have argued that in the use of the computer to

so Ive human prob I ems, two separate I eve Is of thought can be recognized:

a conceptual understanding of the problem with some strategies for its

solution, and a detailed cogQizance of the techniques required to

implement a solution. Further, we have argued that these two levels are

generally quite dissimilar. We may also claim with relativ~ safety that

i t is the former which is of cen tra I interest to those seeking a

solution.

2.2 HIGH LEVEL LANGUAGES --------

The development of higher level programming languages has been a

response to recognizing the above sp Ii t; the higher I eve I I anguage

- 18 -

attempts to provide .·faci Ii ties which make the expression of the problem

of interest central and the specification of the symbol manipulating

operations peripheral or even unnecessary. It i~ much more difficult to

bring to mind a picture of what high level programming is than to

envision primitive low level computing; most of us have extensive

experience with the I at ter approach, and very few have enjoyed much

contact with 11 intel I igent 11 or "knowing" computer systems.

Much of the "Artificial Intel I igence" (Al) community, especially

those engaged in work on automatic programming, see themselves invol~ed

in the creation of these high level tools.• The view expressed is that a

computer user should be able to approach the computer in English, or at

least some good, powerful interlingua. He should be able to discourse

about a problem he is attempting to solve, and the computer system

should be capable of generating a model of the user's problem, finding

the unclear aspects of it, interrogating the user further, making some

11 i nte I I i gent guesses" to comp I ete the mode I, and eventua I I y producing

and per forming an a I gar i thm i c so I ut ion to the prob I em (e.g., [Ba I zer

1873]) .

With such a system, one could recast the scenario for solving

the trajectory problem: -instead of choosing a reasonable numerical

technique for solving a differential equation to which the problem has

been manually reduc~d, the investigator might simply begin by ~iscussing

his interest in the interception of aircraft by projectiles, the effects

- 19 -

of wind and shape on acceleration, the necessary proximity of she I I to

aircraft for a successful intercept and rnaybe the disposition of enemy

pi Io ts to per form part i cu I ar maneuvers. The computer' s mode I bu i Ider

may i n turn re q u es t some i n format i on on m a_n e uv er ab i I i t y o f the a i r p I an e •

After an extended conversation of this sort, the system would then

produce a model of the anti-aircraft attack situation and a program to

compute the required aiming parameters of the gun. Presumably, the user

woLJ Id a I so be ab I e to interrogate the mode I, to determine in what way

the pi lot's probabi I istic behavior, for instance, had been taken into

account.

The above is, of course, highly speculative as a general ·

capab i I i ty, but it points in the direction that hi gh-1 eve I techniques

wi I I aim. As a more immediate goal, a system which has a fair number of

bui It-in model te~plates and some

recognize one of its models as a

pattern matching capabi I ity to

generalization of a particular

described situation promises to exhibit some of the same sophisticated

behavior. The idea here is to_ create a high I eve I I anguage which

exhibits sophisticated behavior across a wide range of problem domains.

Because specialization appears to be the best way of bui I ding high level

responsiveness, this approach uses the technique of creating a high

I eve I I anguage by se I ect i ng for it the appropriate one of a set of

already existing specialized languages, so that the innate structure of

the particular selected pattern can guide further interaction and

interpretation.

- 20 -

Whatever phi I osoph i ca ·I pas it ion one may ho Id on the ab i Ii ty of

machines to possess knowledge, it is obvious that in the above paradigm,

what is of interest is the r.i eaning of the user's problem, not the

manipulations required to solve it. Independent of the physical

rea Ii zat ion of this computerized "know I edge", the user is dea I i ng with a

system which appears to understand his prob I ems at very much the same

level as he does. This is the characteristic of high level languages:

that t heir semantic primitives are coincident with the meaningful

concepts of the user's problem domain.

In fact, it is meaningful to discuss an ordering of languages

between the extremes we have i de·nt if i .ed. The p I acement of a I anguage

according to this ordering w i 11 correspond to the degree to which i ts

primitives mirror the usage of its users. The scale is certainly not

wel 1-ordere·d, as level depends on intended application, but in general

this thesis argues that the idea I is to move toward the higher I eve I

languages.

2.3 THE . USE OF GENERAL PROGRAMMING LANGUAGES

The rest of this chapter, indeed the greatest part of this

the S i S ,. W i I I be de VO t e d t O e X am i n i ng how Sp e C j a I i Zed h i g h · I 8 Ve I

languages can be achieved. Thus far, the most widespread and most

success f u I attempts at dea I i ng with th i's prob I em have been made in the

- 21 -

deve I opmen t of a succession of more and more sophisticated genera I

programming languages~

The strongest tendency in the history of programming I anguage

design has been to incorporate· as primitives into new I anguages those

often-used operations which .had required tedious expression in previous

environments. This deve I opment has genera 11 y increased the size and

complexity of our programming tools, and has made it easier to express

certain complex matters of data structuring and computation.

Each new programming I anguage deve I opment increases the

expressiveness and sophistication of computer I anguages, but does it

make the computer any more natural a tool for the original man with the

problem? We could answer 11 yes 11 only if he were the one who benefitted

from using the newer capabi Ii ties of languages. But, typically, he does

not.*

Today's principal user of a programming language is the

profess i ona I programmer, not his emp I ayer. New developments in

programming language design have succeeded not in bringing the

computer's power directly to bear on the end-user's problems, but in

easing the task of the intermediate, the programmer, who often does the

*One schoo I of thought ho Ids that as more and more peop I e w i I I acqu i r-e
sufficient programming ski I ls, new programming lang_uages wi 11 be of
direct benefit to the applications user. There is no convincing evidence
that any such trend exists for the very large User audience envisioned
by planners like Cary {see Introduction).

- 22 -

work of translating a solution scheme into a running program. The

newest high I eve I I anguages have become high I eve I for him, because they

recognize and exp I i cit I y support his cus ternary usage of the computer.

They provide a meaning f u I semantics for discussing the comp I ex symbo I

man i pu I at ions i nvo I ved in computing. They do not, however, recogn i z.e

the semantics of the original, motivating problem.

In the ear Ii est pub Ii cat i ans on FORTRAN, that revo I ut i onary

development of the 1950's was described as the FORTRAN Automatic Coding

System [Backus 1957) • W i thou t be I i t t I i ng the enormous con tr i but ion of

that early work, one must recognize that neither FORTRAN nor its near

contemporaries COBOL and ALGOL can be considered high level programming

I anguages in the sense discussed above. Certain I y, arrays in FORTRAN

and pictures in COBOL are important conveniences, but neither truly

embodies the useful concepts of its ultimate beneficiary. A profit and

I ass statement is not a COBOL record, just as a stress tensor is not a

FORTRAN array. These I anguage cons true ts st i I I dea I w i th the

manipulations of arriving at a solution rather than the description of a

problem. They rise far above · their machine language predecessors:

indexing operations or subfield selection .can be subsumed under general

notions; sti 11, this fal Is far short of comprehending the semantic

character of the real-world entities they model.

Current programming development deals with extremely flexible

contra I structures, concurrent op~rat ion, contextua I interpretation of

- 23 -

data and operators, pr iv i I eged access to resources, automatic

backtracking and error recovery, goal-directed procedure invocation, and

myriad other s i mi I ar I y comp I ex issues {e.g., [Bobrow 1973]). Because

these concepts, once incorporated in a programming I anguage, make the

task of a programmer who chooses to use such techniques easier, the

deve I opers of these new comp I ex I anguages have appropriated the names

"high level" and "very high level" to their creations. It has indeed

been suggested that the measure of II I eve I II of a programming I anguage

should be the proportion of some exhaustive I ist of features which it

includes [Schwartz 1973b].

The inc Ii nat i ans expressed here run counter to that be Ii ef. It

may be true that each of the above features finds an area of natura I

app I i cab i I i ty, but it is i mposs i b I e to argue that they are a I I use f u I in

expressing the semantically primitive notions of many problem domains.

The criticism takes two forms. Certainly not all of these features can

be of any use to a particular di sci pl ine. Thus, the cost of their

inclusion in those instances where they are not of use is heavy and

uncompensated, not only from efficiency considerations, but also because

the presence of these general feafures 1--1i 11 prejudice the thinking of

the language's user in directions he might consider unnatural.* Even of

greater significance, most uses bf a computer-~ perhaps barring those

*For examp I e, consider the di ff i cu It i es i nvo I ved in trying to teach
merely a subset of PL/1, so that a student need not be bothered by the
comp I ex i ty of the f u I I . I anguage.

- 24 -

special AI research applications for which many of these techniques were

deve I oped -- in fact do not find a sympathetic semantic expression in

terms of these generalized primitives. A network of goals and theorems

is not an insight into management practices. The meaning of a financial

analyst's questions about th~ relationships among performance measures

of certain types of companies may wel I be translated into a concurrent,

backtracking relation-discovering procedure operating over a ring

structured network, but that is definitely not how the . analyst

understands it.

Unless the programming system is capable -0f communicating with

the analyst in a language based on his own logic and terminology, he

w i I I become resigned to doing on I y .what his programmers have foreseen

for him, or to depending on his programmers to mediate between him and

the computer system in a manner reminiscent of the shaman interceding

for a per son , be fore his gods. The modern techniques which have been

cal led high level are the tools of the medicine man; they support a high

level organization of the manipulations of problem solving, but they do

not support the ultimate human use of computers in an understanding way.

2.4 SPECIALIZED LANGUAGES

If the increased power and generality of the newest programming

languages appears not to address the problem of naturaln~ss and

- 25 -

sophistication of computer use for a wide variety of end users, 1-Jhat

a I terna ti ves are ava i I ab I e? Spec i a 1 i zed I anguages, whose syntax and

semantics are tailored carefully to the specific needs of their

projected users, have been strongly proposed (e.g., (Bigelow 1973)}.

The typ i ca I computer end user current I y accesses the computer

through the interface of an application program or an application

programmer. For a relatively static interaction, such as the production

of a payroll or the maintenance of a savings deposit record, single,

comp I ex programs which mirror the rea I it i es of their prob I em domains

simply and fairly effectively are the rule. The bank teller may be

interacting with a very sophisticated computer system which is capable,

on detailed command, - of solving problems beyond the teller's

imagination; yet, to the teller, the system and his specially designed

terminal are an obedient tool, faithfully recording deposits,

withdrawals, computing interest, and supporting the many detailed

requirements of a bank teller.

In situations which are less wel I defined and more subject to

change, tMe unitary applicatio~ program is less and less adequate. When

the computer user is interested in discovering rather than recording

information, his understanding must range over a wider latitude of

detai I and generalization. A bank's officer attempting to predict the

future level of demand deposits must have the ability to look into the

defails of his bank's operation at the same level as the teller, to

- 26 -

deve I op data and insight into specific types of transactions, but he

must also be able to abstract his view to the level where he can

consider the impact of Federal Reserve policy and tax structure on his

largest clients. Further, he does not understand at the beginning of

his investigation the exact nature of his task, or even the questions he

w i I I even tua I I y answer . The designer of an app Ii cation program wou Id

need to be prescient tci support the needs of such a user by a single,

al I-encompassing program.

The investigative computer user ordinad ly has an appl icati'on

programmer at Hand to answer questions for him by writing new programs

as the need arises. The programmer-computer system is genera I I y a high

I eve 1 too I of th~ sort discussed above. The experienced programmer can

understand the essential aspects of his ·boss's questions, and can

produce answers we I I suited to his emp I ayer' s needs. The major

difficulties with this tool are, however, serious. Its response time is

i nord i na te I y I ong. If the figure of seven I i nes of finished code per

day per programmer is within an order of magnitude of the good

application programmer's productivity, even moderately complex demands

on this "tool" introduce enormous delays in an investigation. The

resulting hesitancy of the investigator to develop long I ines of

questions, where the nature of the next depends heavily on the results

of the previous, entai Is a serious deficiency in effective analysis. In

addition, the destruction of. an • intimacy between the investigator and

- 27 -

his data by the required intercession of the programmer can seriously

reduce the value · of the data to the investigator. Nevertheless, this is ·

the current paradigm of user-programmer-computer interaction, and we

should be able to profit from its analysis.

Let us examine the structure of the II too I" we are discussing,

the programmer-computer system .team. What makes it high I eve I is that

i t has detailed know.ledge of the problem . domain of its us.er. Not only

is the programmer fami I iar with the idiosyncratic views and usage of the

investigator, but he also develops within the computer system a

primitive "understanding" of the basic concepts with which he deals, in

terms of a set of data structures, functions~ and a program Ii brary.

When faced with an individual problem, he need not start from scratch to

bui Id a particular solution, but can assemble parts of his prepared

environment and specialize it to a sufficient extent to solve the

pro_b I em. The measure of the va I ue of this II too I", as of a I I other high

level tools, is the degree to which the process of assembly and

specialization corresponds to the way in which the user structures his

understanding of the problem domain; the closer the correspondence, the

easier and more effective it is to use the tool.

Several of the successful projects in natural language

understanding have satisfied this mod~I~ Winograd, in his natural

language system, selected a I imited world of blocks on a table, bui It a

set of functions which could manipulate this world, and provided a

- 28 -

strong I inguistic component to al low his 11 user 11 to assemble the semantic

operations .of this world in English [Winograd 1972]. The LUNAR System

of Woods uses a different technology, but in an essentially similar way,

to provide its users access to lunar rocks data [Woods 1972]. With yet

another approach, the REL English language has made an anthropologist's

large data base avai I able for use in a convenient and personal izable

language [Oostert 1970).

Even a casual examination of the problems encountered by

"Management Information Systems 11 {MIS}, for example, is convincing proof

that the development of tools of this nature is a difficult task. The

I arger the scope of deve I opmen t, the more di ff i cu I t i t becomes. Where

the bank officer and his personal programming staff may be $low, they

are Ii ke I y to be satisfied and effective. · An MIS for the company's

leadership is bound to be less personalized and wi 11 undoubtedly be

inadequate and unresponsive to many individual needs, and a company-wide

MIS, to encompass uniformly the operations of all level from nuts and

bo I ts to executive p Ianni ng, is doomed to be a cumbersome, unmitigated

disaster. General techniques, even if high level, tend to be less

appropriate to the needs of an individual user than ones specialized for

him.

It is important to seek ways in which the individualized use of

computing can be aided and improved. As with a I I new techno I og i ca I

developments, it is not even p~ssible to foresee the innovative uses to

- 29 -

which a new technique, freed from its oppressive economic bonds, cou Id

be app Ii ed. Today, the cost of spec i a Ii zed I anguages, computer systems

and extra programmers is so high that it precludes their utilization

except in outstanding cases. If a considerable fraction of the task of

the human part of the programmer-computer team can be shifted to the

computer, a sufficient decrease in cost and increase in responsiveness

is achieved to open the possibility of individualized; high level

computing to many.

2.5 SYNTAX DIRECTED COMPUTING

The designer and imp I ementor of a spec i a I i zed computer

application language faces a complicated and. difficult task. He must

discover and mirror in the computer the fundamental concepts of the

application domain, provide faci Ii ties which al lou these fundamentals to

combine in the natura I ways that a user may desire, and invent and

imp I emen t a fo-rma I I anguage which w i I I be s imp I e and natura I enough to

encourage its acceptance by the user and yet complex enough to al low its

sophisticated application. At the same time, the implementor must not

lose sight of the need for efficient ways of handling both the language

he w i I I provide and the fundamenta I a Igor i thms which he w i 11 imp I ement

as part of the basic fabric (tacit knowledge) of the specialized

language.

- 30 -

Syntax directed interpretation is an excel lent general technique

by which to structure and implement a specialized language. A genera(

and powerful syntactic analyzer makes it possible for the language

writer to implement rather sophisticated languages without excessive

programming cost. In a we I I -designed I anguage, the primitive

interpretive routines wi 11 correspond to the semantically fundamental

operations of the application domain, and the rules of grammar wi 11

express phrases whose meaning is a valid composition of primitive

operations and data. The s true ture of the synt'ax directed interpreter

is natural for the application language developer because it provides

the ab.ave para I lels to the manner in which the application programmer

now works.

The REL Language Writer's Language {LWL} is a specialized

programming I anguage for the j mp I ementor of new spe.c i a Ii zed I anguages. ·

Its 11 tacit knowledge" includes a model of syntax directed interpretation

as performed by the REL System, and LWL is tailored to make it

re I at i ve I y easy for the I anguage writer to specify the grammar of a new

language and the data and functional primitives which represent

fundamentally meaningful objects and operations of that language.

Languages implemented using LWL make rather strong demands on

their computer environment for common services. This is characteristic

of nearly al I high level languages, because major aspects of computation

expected to be shared by many programs are co 11 ected and abstracted

- 31 -

behind a few simple language constructs. Thus, "run-time packages" for

nearly al I languages provide standard input and output services; for the

more sophisticated languages, the run-time environment includes garbage-

collected heaps, dynamic · error .processing, synchronization of

para I lel ism, etc. Al I languages that are implemented using LWL run in

the REL System, which is essentially a large collection of services and

f ac i I it i es to bred by its spec i a Ii zed I anguages. I t is a run-ti me

enmen t which inc I udes a great dea I of tacit know I edge about syntactic .

ana I ys is, I anguage processing and data management; it is thus capab I e of

providing high level abstractions which shorten and sirnpl ify the

I anguage imp I emen tor's task. The me ta I anguage may be viewed as the

external representation or model of the REL System (to its user, the

specialized language implementor}.

The REL System is a complex syntax directed interpreter. It

operates on the fol lowing cycle: wait for a sentence to be inp~t by the

user, per form a comp I e te syntactic ana I ys is in accordance w i th the

grammar of the language currently in use, evaluate the meaning of the

resulting structural analysis by using the data objects and functions of

the I anguage (composed as specified by the ·grammar), and (poss i b I y)

update the language's universe of discourse and output a reply to the

user. This simple picture wi 11 later be comp I icated by the intrusion

and hand I ing of ambiguity, error and user extensions.

That part of LWL which expresses data structures and the

- 32 -

semantically primitive functions is discussed in Chapter IV, and the

rather comp I ex capab i Ii ti es of the I anguage processor are taken up in

Chapter V.

- 33 -

CHAPTER III

BIBLIO: AN EXAMPLE

A book in the hand is worth ten in ·the I ibrary.

-- Anonymous

The discussion of the previous chapters has been concerned with

a global view of the role of specialized application languages. At this

point, we switch to a microscopic view, to consider a particular

I anguage, which w i I I be of some use in showing how the pr inc i p I es of

language implementation apply in a specific instance. Portions of the

LWL programs which imp I emen t this I anguage w i I I appear throughout the

thesis as examples of how various features of LWL are used.

The selection of a simple example to exp I icate a principle or

methodology is never devoid of grave dangers. Languages for specialized

domains range from the very simple, in both expression and power, to the

extremely complex. To choose a simple one for tutorial purposes is

tempting, but unrealistic -- it leaves untouched the complex issues

- 34 -

which guide the conceptual development of the methodology. Thus,

something I ike a desk-calculator language, which is amenable to a

straightforward implementation under a large number of systems, wi I I not

be adequate.

Much of the motivation for this research finds its roots in

investigating the development of practical natural language processing

techniques in a large data base, question answering context. The

temptation is st r~ ong, therefore~ to choose an example like REL English,

which would i I lustrate a large proportion of the capabi Ii ties developed

in the metalanguage. Unfortunately, such an exposition would .be overly

lengthy, and linguistic and semantic issues of such magnitude would

arise from the example that they would threaten to swamp the exposition

of meta- level ideas. Thus, we wi I I choose a simpler language, and only

occasionally refer to experience with REL English (which is partially

described in [Oostert 1972; Greenfeld 1972; Thompson 1~74a]),

Our e~ample wi I I be a language to provide a very highly

spe c i a I i zed b i b I i o graph i c . ref ere n c e f i I e for an i n d iv i dua I or s ma I I

group of I i ke-m i nded co I I eagues. The examp I e is of more than mere

academic . interest, as anyone who has struggled with a three-by-five card

file for such purposes can attest.

Of fundamenta I importance, intended to permeate this examp I e, is

the idea that it is to be a personal bibliographic fi I ing system. It is

- 35 -

not to be considered for installation in place of the pub I ic I ibrary_' s

card cat a I og, it is not necessar i I y appropriate even for a much sma I I er

group of clients possessing fairl .';J homogeneous interests; it is to be a

private store of facts and organization, not intended for others'

i I lumination or aud1t. Indeed, much of its power (and I ikabi I ity) wi 11

derive from its abi I ity to capture idiosyncratic views of organization

and information.

The language, which we wi I I cal I BIBLIO, wi I I deal with concepts

like "book", "article", "report", "author", "editor", "publisher",

"subject matter", "relevance to topic", "quality", etc. But what wi 11

properly form the fundamental building blocks of the language?

Certainly, it should not contain as a fixed portion, some extensive

"bui It-in" collection of references, because al though the language

intends to become a clo~e reflection of its user's interests, a general

{ i f somewhat hazy} distinction can be drawn be tween the under I y i ng

) anguage and the information it contains about a particular universe. of

discourse. This is ana I ogous to the distinction be tween FORTRAN and a

FORTRAN program, or the lower predicate calculus and one of its models.

Thus, while "publisher" is likely to play a meaningful role in the

I anguage, "MIT Press" is un I i ke I y to deserve such spec i a I recognition.

The separation between innate parts of the language and data in

its universe of discourse is not as clean-cut as the above distinctions

imply. For example, since "subject matter" seems a meaningfu.1 concept

- 36 -

when discussing any book or art i c I e, it shou Id be an innate I anguage

part. But what is the "calculus" of subject matters? Are we to assume

that any general relationships, whatever, may hold among them, or do we

identify subject matter with a common index, like the Library of

Congress catalog number? This is typical of the questions which arise

in the design and implementation of specialized languages, and we wi I I

look at it in some depth.

For the general I ibrary, a subject classification system I ike

that used by the Library of Congress is necessary, because bibliographic

information must be kept in a uniform, statically defined structure for

the entire co 11 ect ion. Simi I ar I y, abstracting and reviewing services

generally choose•some fixed tree representation of their subject domain

and maintain their data in that form; e.g., the categories of Computing

Reviews [CR Jan. 1974, p. 43).

For a personal bib I iographic system, the general tree-I ike

character of the standard systems is often a reasonable organization,

though _the categories and their relationships will be quite different.

Even considering a relatively specialized index I ike CR, the decisions

of its editors on questions of emphasis and grouping will often be

i nappr opr i ate to an ind iv i dua I. Working in the programming I anguages

area, a researcher may we 11 need to keep track of more references to

"Procedure- and Prob I em-Oriented Languages" (CR category 4. 22) than he

ever encounters on other whole major branches of the subject tree.

- 37 -

Further, the general classification cannot afford to ramify its

categories to a sufficient depth to provide adequate resolution for the

spec i a I i st.

Not only is the general tree of subjects too coarse, but in some

instances it must cut inappropriately across subtrees which may be quite

useful in a certain conceptual view. For example, a long report on the

design and implementation of a special purpose computer to support a

particular language used for maintaining a large file might wel I bring

together such categories as 6.J2, 4.22, 4.33, 4.34, 4.35, 4.12, .3.73 and

3.74 (generally, areas _in "hardware", "software", and "applications"}.

By the CR index, the report's parts should be scattered across the

various categories most appropriate to each, and the general concept

which unifies the deve I opment of this (hypothet i ca I) system becomes

invisible.

Notice the tradeoff that we are finding: Implementing a

bib I i ograph i c I anguage with a bu i It-in index makes its in it i a I use

easier (if the index is appropriate to the user's field of interest),

but it may make the language inflexible to later change. Alternatively,

I eav i ng the user a freedom of cha ice in dee id i ng his indexing scheme

requires of him more effort 1o define and maintain the index scheme, and

requires that he have a better understanding of his .problem and the

manner in which the computer w i 11 operate on it, i.e., the "how". This

tradeoff is characteristic of all specialization, and we find it again

and again in discussing spec~al ized languages.

- 38 -

3.1 BIBLIO STATEMENTS

Let us turn now to the informal definition of the BIBLIO

language, considering first the universe of discourse that under I ies it.

We wi 11 assume that there are three classes of fundamental bib I iographic

entities. They are:

publications, b\:j which we will mean books, articles, journals,
pub I ished proceedings, reports, manuals, dissertations,
collections, etc.

authors, which wi 11 include editors, collectors, translators,
annotators, etc., and

subjects, which wi 11 themselves be categories of the user's
choosing, describing the subject matter of the pub I ication.

In addition to t_he three fundamenta I c I asses of entities, we

wi 11 want to represent peripheral (though often highly useful)

information about each. Thus, publications wi I I typically have the name

of the publisher and the date~ pub I ication, the name of a disseminator

{e.g., . the National Technical ·Information Service), the user's local

source {e.g., the Comp. Center Library, or Fred's office), and an

overal I rating of gual i ty. This peripheral information wi 11 be treated

as attributes of the entities.

We di st i ngu i sh between fundarnenta I and per i phera I information by

anticipating the queries we are to answer. One might wel I ask "What are

publications by Quine?" or "What articles are about syntax directed

compi I ing?" or "To what subjects is Word and Object relevant?" but we do

not anticipate "What books were published by Addison Wesley?" or "What

- 39 -

was pub Ii shed in 1950?" Therefore, we make authors, pub Ii cations and

subjects primary, and publishers, pub.I ication dates, etc., secondary.

The heart of the manipulable information in the data base

serving as the universe of discourse for BIBLIO will be the

relationships which hold between the major entities of this universe.

Thus, we want to be able to represent the relationships betwee~ authors

{used in the generic sense described above} and pub Ii cat i ans, and the

specific type of such a relationship. For instance, Benjamin L. Whorf

is the author of the book Language, Thought and Reality, and Saul Rosen

is the editor of the co 11 ect ion Programming Systems and Languages.

Other major relationships exist between publications and subjects

{Aspects of the Theory of Syntax is about linguistics), between

pub I i cat i ans {"Two Dogmas of Empiricism" appeared in From a Log i ca I -- -
Point of View}, and between subjects (transformational grammar is part

of syntax}.

This brief description defines the underlying logic of the data .

base on 1-Jhich BIBLIO rests. The language in which the user and the

computer communicate w i I I have to ref I ec t this I og i c. Because none of

the data is predefined, BIBLIO must include ways to introduce the names

of new publications, authors and subjects, and specify the relationships

among them. We want the I anguage to be easy to I earn and use, and

concise enough to be congenial; thus compound statements which wi 11

define and relate several new entities wi 11 be useful. We may want, for

instance,

- 40 -

Whor f, Benjamin L. i s the author of the book Language, Thought and
Reality, which was published by MIT Press in February 1956, and is
extremely relevant to I inguistic philosophy and also highly relevant
to semantic models; it is an excellent work.

To avoid the difficulties involved in handling an English

sufficient to process the above, we will settle for a somewhat less

natural, · though similar I inguistic form. (Simple extension of the

upcoming language by al lowing innocent "noise words" and other trivial

techniques can improve its appearance cons i derab I y, but we w i I I not

discuss that here.) We wi I I state the above as:

Author: Wharf, Benjamin L.; book: Language, Thought and Reality;
publisher: MIT Press; February 1956, A-subject: linguistic
phi I osophy; B-sub j ec t: semantic mode I; A

Here, we have translated "extremely relevant" to an "A-" modification on

the subject, "highly relevant" to "B-", and "excellent work" to "A".

Notice that the "February 1956" is implicitly known to be the

publication date, just as the "A" at the end can only be the overal I

assessment of quality •

. Actua 11 y, the I anguage becomes m~re cone i se as more data are

present. For instance, after the above statement, and another which has

introduced Quine, Wi I lard vanOrman as an author, the statement

Quine, book: Word and Object; MIT Press, 1960, A-linguistic
phi I osophy, A

carries quite a bit of information in rather few symbols. Since Quine,

MIT Press and I i ngu i st i c phi I osophy are a I ready known entities, they

need not be reintroduced, and the relations imp! ied among them are

- 41 -

straightforward consequences of the types of these entities.* Notice

that the specialized nature of the language allows a rather concise,

high level presen tation of information.

The statement of the sort presented above serves to introduce

new authors, subjects, pub Ii shers, etc., and states the author

pub I i ca t i on and pub I i· ca t i on-sub j e ct re I a t i on sh i p s. I t w i I I a I so e ><press

the publication-publication relation ("appeared . in"), but it is not

*Severa I quest i ans about amb i gu i ty · shou Id assau It the care fu I
reader here. For instance, in the unlikely event that "MIT Press" is
introduced as the tit I e of a new book (perhaps a retrospective of the
Cambridge weight I if ting championships), a I ater use may find the term
ambiguous. Usually, the ambiguity wi 11 be resolvable by syntactic
means. In this case, if we require that a statement must refer to
exactly one publication, we can always settle the sense in which "MIT
Pre ss " i s used, and se I ect the appr opriate interpretation. One of the
major advantages of the REL metalanguage scheme of implementation is
that this disambiguation wi 11 ·be almost totally an automatic byproduct
of the way I anguage is defined, therefore very easy for the I anguage
implementor to provide.

The prob I em is tougher if our perverse "worst case ana I ys i s 11

suggests that the user may become interested in "MIT Press" also as a
subject matter. We would find it overly restrictive to require the
appearance of a pub I i sher, and a re I evance r.a ting for each subject
mentioned in a statement. Therefore, in something like

Quine, Word and Object, MIT Press

the "MIT Press" can be either the pub Ii sher or the subject.
case, we require the user to di$ambiguate, e.g.,

Quine, Word and Object, publisher: MIT Press;

In that

Similar comments can .be made about other cases of ambiguity.
For example, though "Quine" wi 11 be sufficient to identify Wi I lard
vanOrman Quine, if both Terry and Shmuel are in the data base,
"Winograd, Terry" is required for an unambiguous reference.

- 42 -

sufficient to introduce the subject-subject relationships. As discussed

be fore, this re I at i onsh i p cou Id take sever a I forms. We choose to define

it as a partial order on subjects, where the order is "is part of." This

is more general than the tree-I ike organizations considered before, as

lattice-like structures can be represented. For instance, "Grammar is

part of syntax directed interpretation, 11 "Grammar is part of compi I ing,"

and "Syntax directed interpretation and compi I ing are parts of language

processing." To express this relation, another kind of statement wi 11 be

used:

subject: model generation; is part of subject: automatic
programming;

or, assuminSJ the previous introduction of "computer aided education",

model generation is part of computer aided education

3.2 BIBLIO QUESTIONS

The purpose of questions in BIBLIO wi I I be to retrieve

information that exists {either explicitly or implicitly) in the data

base. • The simplest queries wi 11 retrieve the basic information about

the primary entities. Thus:

0: Quine?
A: Quine, Wi I lard vanOrman

0: Language, Thought and Reality?
A: Wharf, Benjamin L., Language, Thought and

Reality, MIT Press, February 1956.

Q: I anguage processing?
A: language processing, syntax directed

interpretation, compi I ing, grammar

- 43 -

These queries merely return more complete information about the

requested entity; the first yields the ful I name, the second, a complete

bib I iographic reference, and the third, a list of al I sub-categories of

the subject. This usage reflects the type of operation to which a normal

card catalog is customarily put.

The use of the interconnections in the data base makes BIBLIO

truly powerful. By recursively combining applications of derivative

computations, a large and wide net can be cast throughout the data base

to search for the desired information. The fol lowing computations can be

combined, where each "function" is a map from lists of one primary type

to Ii sts of another:

AUTHOR OF <pub I ication>
WORKS BY <author>
TOPIC OF <pub I ication>
GENERALIZATION OF <subject>
WORKS ABOUT <subject>
WORKS <rating>-RELEVANT TO <subject>
<rating> QUALITY <pub I ication>

These al low us to pose questions I ike:

Works by Quine?

-> <author>
-> <pub Ii cation>
-> <subject>
-> <subject>
-> <pub Ii cation>
-> <pub Ii cation>
-> <pub Ii cation>

Author of A quality works 8-relevant to I inguistic philosophy?
Works.about generalization of topic of works by author of Word and

Object?

Notice that with these primitive functional operations, the

amount of information retrieved by a complex query might be very large,

because conjunction is not provided. At least for "WORKS", conjunction

and dition may be very useful constructs, permitting constructions I ike:

- 44 -

Work s by Quine and about logic?
Works about compilers or interpreters and by Wegbreit?

In addition, we would I ike a definition faci Ii ty in BIBLIO, to

al low the introduction of new concepts in ter'ms of existing ones. Thus,

we want the abi I ity to say

Define I inguistic philosopher~: author of A quality works 8-relevant
to I inguistic philosophy

Then, questions I ike

Works by Ii ngu i st i c phi I osophers about computat i ona I Ii ngu i st i cs?

become convenient. This provides not only a shorthand form of expres?ion

{which is itself quite valuable}, but a ·simple manner of creating and

using new concepts. After the above definition, the user wi 11 ask

questions involving 11 1 inguistic philosophers" without recal I ing the

deta i I ed meaning he has assigned to that term. Thus, the term acquires

a I ife of its own, with a compatible meaning to both user and computer

{assuming ·the definition was made wel I). Here, new high level concepts,

eas i I y · in traduced by the user, are immediate I y ava i I ab I e for further

use. This is a very important capability of any good high level

language, and is strongly supported by the REL system.

This completes a rather informal descripof the BIBLIO language,

which w i I I be used as an examp I e to i I I us tra te techniques of I anguage

imp I emen tat ion. Undoubted I y, one cou Id discover some aspects of

bibliographic reference not adequately treated in this elementary

language, or treated differently from one's own preferences. To

- 45 -

objections on the basis of preference, we can only point to the comments

about specialization made at the beginning of this discussion -- BIBLIO

i s not a ge~era I I anguage to p I ease everyone. 0 ther I anguages, to some

extent similar, but making different choices in design, are possible and

desirable for other users, and to the extent that they are similar, they

wi 11 share implementations with HIBLIO. Omission of further detailed

capabilities is {mostly) justifiable by c.onsiderations of space.

This spec i a I i zed I anguage a I I ows com mun i cation at a high I eve I

and provides its user with a convenient, reasonably flexible and

power fu I fac i Ii ty for keeping track of his persona I bib Ii ography. It is

i I lustrative of the notions we have presented for specialized languages,

and should give 'a flavor of what they may be I ike. We wi 11 now present

the · computer system and metalanguage in which such specialized

application languages can be implemented.

- 46 -

CHAPTER IV

THE METALANGUAGE: UNIVERSE OF DISCOURSE

Specifying the universe of a theory makes sense only
re I at i ve to some background theoryt and on I y
relative to some choice of a manual of translation
of one theory into the other.

-- W. Y. Quine [1969t p. 54]

If we may substitute "language" for ntheory" in Ouine's

relativistic prescriptiont the above is an outline for the program of

the next two chapters of this thesis. We are interested in the

implementation of new, specialized languages, and we wi 11 present the

"manual of translation" into -the REL Language Writer's Language, which

wi 11 serve as our "background" language, or metalanguage.

Within the framework deve I oped in Chapter I It a I anguage

consists of two parts: a data representation which defines what types of

objects can exist in the language's universe of discourse (cal led data

structures} and what operations may be performed on them (cal led

- 47 -

functions);* and an extended syntax which defines the meaning of each

phrase of the object language in terms of the data representation.

To specify data structures and functions, LWL uses.a style _drawn

from fami I iar programming languages, and its syntax for statements and

type declarations fol lows, wherever possible, Wirth's definition of the

I anguage PASCAL [1973], extended and modified where necessary to our

needs. This form~ the subject of the current chapter. PASCAL provides

no help concerning the definition of languages; thus, LWL introduces its

own cap ab i I i ti es there, using the f I avor of the Backus-Naur f orma I i sm

{BNF), greatly enhanced. The related LWL facilities are presented in

Chapter V.

The discussion below is concerned with those areas in which LWL

differs from PASCAL, and considerable attention is devoted to motivating

and discussing LWL's novel features. Therefore, this presentation is

top i ca 1 · rather than comp I ete, and for the purposes of exposition it

assumes the reader's f am i I i ar i ty with the PASCAL I anguage. When not

stated otherwise, LWL includes exactly the corresponding features from

PASCAL. A complete syntactic description of LWL appears in Appendix A.

*Note that the data representation contains both data structures and
their operations. Thus, it includes most of what is in a normal
programming language.

- 48 -

4.1 DECLARATIONS

Data are represented by constants and the values of variables,

each of which must appear in a variable declaration which associates a

data structure {data ~} with the variable. The data values are

constants, where each data type defines the set of constants which

variables of that type may have as values.

4.1.1 BASIC DATA TYPES

The basic data types are the sea I ar ~. Their definition

indicates an ordered set of values, each of which is (implicitly)

defined to be a constant of that type. In addition, there exist four

standard scalar types: Boolean, with the constant values False and True;

char, with the constant v·alues corresponding fo the host computer's

character set; integer, with constant val~es corresponding to the

al lowed range of integer arithmetic; and real, with the constant values

corresponding to the allowable values of floating point arithmetic on

the host computer .

PASCAL inc I udes a subrange type, which defines a type whose

constant values are a consecutive subset of the values of some other

type. The use of subrange as a type has been severely criticized by

Habermann [1873, p. 50]. LWL retains the form of the subrange, but

mere I y as an expressive mechanism by which the I anguage wr i ter can

- 49 -

concisely indicate not only the basic type but also a range of values

within that type for a variable. Thus, if we say a variable is of type

1 .. 256, we will really mean that it is of type integer, and needs

storage only sufficient to distinguish 256 values. No commitment is

implied to enforcing the bounds at run-time.*

4.1.2 STRUCTURED DATA TYPES

Structured ~ are defined by describing the types of their

components and by indicating .a structuring method. LWL supports three

of the PASCAL structured types, arra~, record and set,** with some major

differences involving the REL System's conventions on data space

a I I ocat ion and persistence. Pr inc i pa 11 y, a record type definition may

*This does not satisfy Habermann's objection in full, since it ·1eaves
unanswered the same question trat is raised by the PL/1 program segment

DECLARE I FIXED BINARY{31},
J FIXED BINARY{15);

What is the value of J if I was greater than 2"'15-1? The question is
sidestepped by most implementations, which is exactly the strategy we
pursue here. Admittedly, this does violence to Wirth's desire for
clarity and transparency, but the run-time discipline required to
enforce value bounds is a cost we are unwi 11 ing to assume. Notice,
however, that a host computer of the Burroughs 1700 type, wlth variable
word I ength, wou Id find such bound checking (at I east to the nearest
power of two} quite straightforward. Also, a "debugging" feature like
PL/1' s SUBSCR I PTRANGE or STR I NGRANGE cou Id be defined for e><p I i c i t I y
requesting a check on subrange boundaries.

**The f i I e structure type is not imp I emented, as justified in the
sectionGndata hand I ing and paging, below.

- 50 -

include a storage class specification, indicating how this structured

type may be represented in the REL underlying data structures. The

three storage classes are stack, corresponding to an ALGOL-like dynamic

run time stack;~' referring to a rather specialized garbage

collected heap; and~' which corresponds to space in a random access

f i I e sys tern managed as a vi r tua I memory.

Pointer ~ play a relatively more important role in LWL than

in PASCAL, because nearly any non-temporary datum (i.e., anything which

persists in the universe of discourse of the language) must be

referenced through pointers. The pointer is an object with strict ·

I imitations in LWL. The target of a pointer musl be a record type which

has an associated storage class specification. The pointer is said to

be bound to its target type. The pointer can also be identified with

the storage cla~s of its target, and we will refer to~ pointers,

stack pointers, and~ pointers. A pointer variable may also have the

value~' which is a val id constant of al I pointer types.

Partly in recognition of the above limitation on pointers, we

introduce another abbreviative convenience I ike subrange, the subtype

pointer. For example, we al low

~ publ ication_page = page record
pub I ication_data: array [1 •. num_pubs_per_page] of

record

end

ti t I e : ti t I e_s tr i ng; ·
num_auth: 0 .. max_num_auth;
auth : array [1. .• max_num_auth] ~ author;

end

- 51 -

category pub I ication =
@ publ ication_page.publ ication_data[*J;

The second definition makes publication a subtype, defining it as a

pointer to one of the elements of publication_data in a

publ ication_page.* Notice that this mechanism, in essence, returns to

LWL the flexibi I ity in the use of pointers which is apparently removed

by the strict I imitation on pointer targets introduced above. Thus, any

data type may be the target of a subtype pointer, but only if it is

contained in a storage classed record type. This guarantees that the

compiler has. sufficient information about the target of a pointer so

that it may generate the proper code to access the data which is

referenced. This is especially useful when a collection of objects

(e.g., the above pub Ii cat i on_data structures) are to be treated both as

individuals and as a group.

4.1.3 TYPE CHECKING

Type checking is very strong in LWL. The strict enforcement of

typing hierarchy is carried to rigorous extremes. Every appearance of

~ anonymous type~~ unique~- Though there is some doubt about

Wirth~s definition of the equivalence or compatibility of types, PASCAL

*The trad i ti ona I a I terna ti ve to this scheme wou Id be
pub I i cation by a pair, [pub I _page__po inter, pub I _index],
reference to a publication would
pub I _page_po inter@. pub Ii cat i on_data [pub I _index]. The
merely incorporates the index as part of the pointer.

to represent a
in which case a
appear as:

subtype pointer

- 52 -

genera I I y assumes that any two types defined i dent i ca 11 y are the same

type. Thus, the program segment

var a
b

a : = b;

arra'd [1 •. 50) ~ char;
array [1 •• 50] of char;

defines one , anonymous type (array [1.. 50] of char) and considers a and b

to be variables of the same ty~e.

LWL attempts to force the language writer to structure his data

definitions hierarchically; therefore it considers two anonymously

defined types to be distinct, and the assignment a := b, above, is a

type fault error. To achieve the intended effect, one would code

var a, b arra'd (1. .50] -of char;

a : = b;

In even better style, one would name the defined type, which indeed

s tan d s for a mean i n g f u I concept - - i n th i s case,. " s tr i n g of char a c t er s

in a title":

t\Jpe tit I e_str i ng = array [1. .50) of char;
var a, b: title_string;

a : = b;

This preferred style gives an identifier, title_string, to the data type

being used, so that it can be referred to e I sewhere in the program

without any need to know its exact definition.

This rigid typing convention means that every type which is used

must be exp I i cit I y named and dee I ared. This shou Id improve program

- 53 -

correctness and understandabi Ii ty, because the translation of a given

type into the LWL data structures can be defined in only one place. In

the above examp I e, the programmer is prevented from being s I oppy by

reflecting his knowl~dge of the physical structure of title_string in

every place that he defines a variable of that type. To be consistent

with this point of view, even the common stylistic aberration

canst title_string_length = 50;
type title_string_selector _index= 1 .. 50;
type title_string = array [1 •• 50] £f char;

should be written instead as

canst title_string_length = 50;
type title_string_selector_index =

1 •• title_string_length;
type title_string =

array [title_string_selector _index] £f char;

We encourage, by this I imitation, the extensive use of constant and type

definitions, which are part of a. general and powerful definition

facility for LWL.

4. 2 DEF I NI TI ONS

The user of a computer I anguage of ten needs to introduce new

notations and concepts into the language for his own convenience. These

may range in complexity from wanting to write "pi" for "3.14159" to the

desire to introduce fairly complex new functions under a new syntax.*

*Note that this process is or thogona I to the I anguage writer's basic
task, to define the syntax and semantics of an object language. We
address here on I y extensions which the I anguage writer makes to his
meta I anguage for his own use. These may we 11 have Ii t.t I e apparent

- 54 -

The definition of new data types is such an extension, of intermediate

complexity. LWL provides a powerful, general definition faci I ity, which

is appropriate for the PASCAL-like definition of new constant values and

data types, but also al lows the introduction of new syntactic constructs

of the metalanguage.

4.2.1 THE define STATEMENT

LWL's general definition mechanism is of the form

define definiendum = definiens;

where the definiens is a meaningful phrase of LWL,* and the definiendum

is an arbitrar\d string of characters not including the "equal sign" (=).

Loosely speaking, this statement defines the definiendum to be a valid

paraphrase of the definiens. For example, in its simplest use,

definition may become a mechanism for introducing abbreviations:

define (!
define !)

These definitions i n.troduce the abbrev i ati oh which permits compound

statements I ike

relation to features which he is building into the object language. The
relation of metalanguage extension to object language construction wi I I
be taken up again in the final chapter.

*What is a meaningful phrase of LWL, is determined by the grammar by
which LWL is defined (see·Appendix Al; this is also the manner in which
the PASCAL Report defines PASCAL. Thus, strings I i ke II array (1. • 8) 9..!.. 11

or 11 b : = 11 are not val id, as they have no meaning in LWL, whereas 11 a+3 11

is a <simple_expression> and "var a:integer" is a
<variable_declaration>. This is an indication that the definitional
extension mechanism of LWL is context free.

- 55 -

{ ! sl; s2; . . • sk ! }

This is the most trivial, string-replacement type of definition.

The processing of definitions is, however, different from macro

style text replacement. The definiendum is bound to the structural

analysis of the definiens as .l_! ~parsed~ the time of the definition.

This makes LWL definitions more like the macro evaluation faci I ities of

the Vienna Definition Language [Wegner 1972) than I ike the operations of

a general string processor. Thus, the meaning of a definition needs to

be analyzed only at the time of the definition, potentially saving

extensive parsing for commonly used defined constructs. On the other

hand, definitions are not completely "compiled", since the meaning of

other defined terms appearing in the definiens and the binding of

metavariables {see below) are not determined unti I each use of a

definition. This latter allows chains of definitions which adjust

correctly when some defin1tion in the chain is altered.

Both definiendum and definiens may contain metavariable~, ~hich

are of the form

''phrase"

where phrase is a meaningful phrase of LWL. The metavariable stands for

an arbitrary entity of the metalanguage which is of the same kind as the

phrase between the quotation marks. For example, 11 5 11 is a metavariable

for <unsigned_constant>s, "a < 811 is a metavariable for <e><pression>s,

and if pub I ication_type has been defined by

- 56 -

~ pub I ication_type = {buok, article, journal, report,
proceedings, manual, dissertation, collection};

then "publication_type" is a metavariable for scalar types.

The above technique allows these metavariables to be defined~

example. The phrase between the quotes {"} is parsed according to the

grammar of LWL {Appendix A), and the first non-terminal which spans the

whole phrase is taken as the part of speech of the metavariable.

A metavar i ab I e has a ~ £.f_ speech, and it may a I so have a

This al lows the use · of metavariables to stand for selected

subcategories of the LWL parts of spe~ch. For example, given the above

BIBLIO definition for publ ication_type and a declaration

var which : pub Ii cat i on_type;

the metavariable "which" has part of speech <variable>, and range

publ ication_type. Thus, a definition involving "which" wi 11 be applied

only under the constraint that the actual LWL variable to be bound to

"which" w i I I have been dee I ared as a var i ab I e for pub Ii cat i on_type.

This is the on I y use of range made by LWL; the genera I fac i Ii ty may be

important in the imp I ementat i ori of object I anguages, and is· described

fully in Chapter V, in the section VARIABLES AND BINDING.

Alternatively, constructions I ike "<constant>" or "<expression>"

al low the more knowledgeable language writer to use his understanding of

the LWL grammar to define metavariables explicltly, with less chance of

error and confusion. Metavariable definition by example is, hoi..,ever,

usually sufficient to achieve the intended result.

- 57 - ·

The metavar i ab I es of the def in i endum are bound to the

corresponding metavariables of the definiens, as in a lambda calculus.

They are variables in the logical sense, having a type but no specific

value. They are bound at each use of the definition.

4.2.2 CONSTANT, TYPE ANO CATEGORY DEFINITIONS

· For consistency with PASCAL, the canst and~ definitions are

retained as special cases of define. They must not contain the use of

metavariables and must in fact define constants and data types,

respectively. For example,

const title_string_length = 50;
type title_string_selector_index

l .. title_string_length;
type title_string =

array [title_string_selector_index] of char;

could be written equally wel I as

define title_string_length = 50;
· define title_string_selector_index

1 •. title_string_length;
define title_string =

array [title_string_selector_index] of char;

An add it i ona I form for data type definition exists. The

sentence

category <identifier>= <type>

declares not only a new data _type of the LWL, but also identifies this

data t1;Jpe as the representation of a semantic category of the object

- 58 -

language being defined. The identifier is then used to name the three

associated things: the LWL data type, the object language semantic

category, and the corresponding object language syntactic category (part

of speech). For example, to define the category subject of the BIBLIO

language, we write

~ subject_data =~record
subject_name: subject_string;

end;
category subject=@ subject_data;

This is the method by which the object language's parts of speech are

introduced.

4~2.3 METALANGUAGE EXTENSIONS

The general form of the define statement gives the language

writer considerable power to tailor LWL to his needs. In this section,

we take up two difficult but common questions of extensible languages:

the use 6f parameterized types and functional extensions of the

metalanguage.

The use of metavar i ab I es is handy in aggregating LWL

constructions which are not identical, but differ only in detai I. In

the PASCAL Report, for instance, string is defined [p. 9] as

packed array [1 .• n] ~ char

The upper I imi t of this array dimension, n, appears to be an arbitrary

- 59 -

number, and in fact no further 111ention is made of it. Wirth holds back

from actually claiming that string is a type, for in PASCAL~ would then

have to be fixed for al I strings. In fact, hidden additional mechanisms

of the compiler permit the use of string constants so that n comes out

appropriate for each instance, but this is much more complex than the

Report indicates. Certainly, string is ·not I ike any other type

definable in PASCAL. In LWL, one states inst~ad

define string("7 11
} = array [l.. 11 7 11

] of char;

This definiti-on is not prettier,* and it does not solve al I of

the problems, but at least it faces up to the fact that PASCAL (as wel I

as LWU does not have faci Ii ties for arbi t_rary length structures, and

thus there can be no real type string. One might use the above

definition, instead, to isolate the various str.ing-1 ike types that wi 11

be ·introduced, from the detail that they will be implemented as arrays

of characters. Thus, we might rewrite the definitions of title_string

and subject_string as

type title_string string(title_string_lengthl;

~ subject_string = string{subject_string_length);

The lack of varying length structures is one of PASCAL's most

controversiai features, because it fai Is to make ful I use of the dynamic

*The syntax "string(8} 11 is arbitrary. It could equally wel I have been
"string.8", 11 8-string", "stri. , 8 •• ng", etc. One of the advantages of a
general definition sch~me is that it will accomodate rather peculiar
syntactic forms, wh_en desired.

- 60 -

storage allocation mechanism included in its definition. Further, it

necessitates the arbitrary imposition of maximum array sizes, set at

comp i I at ion rather than execution ti me. This is a drawback routine I y

overcome in contemporary programming languages, and it is annoying and

overly rigid. Thi·s limitation also exists in LWL, but it is a less

arbitrary restriction because a priori I imitations on the max-imum size

of contiguous data, imposed by the REL Sys tern's data management schemes,

already effectively exclude the possibility .of arbitrary sized data

structures.

The apparent incompatibility between strong type checking and

variable structural parameters is a common one, which LWL does not

escape. In the PASCAL Report [p. 37), Wirth writes a deceptively nice

piece of code, for the function Max, whose arguments are a vector and an

integer (the I ength}. The imp Ii cation is that Max is indeed a genera I

function to compute the maximum value of a vector of reals. Yet, because

the type vector has had to be declared as an array with some particular

length, under strong type checking the function Max wi 11 only work ·for

arguments of type vector; thus only for real arrays of that particular

length.

Languages which do a I I ow var i ab I e · Ieng th s true tures do not

completely overcome this difficulty either. For instance, a related

problem plagues Ell, which defines string [Wegbreit 1970, p. 180] quite

generally and legiti-mately as

DECL string: mode;
string<- ROW{CHAR);

- 61 -

The length of this row of characters is not bound, and string is said to

be length unresolved. This leads to some difficulty, because the

similar mode string8, defined by

DECL string8: mode;
string8 <- ROW(8,CHAR};

is not equal to string. Apparently, the declaration

DECL a: string;

is not permitted without a modifier that fixes the string length.

Typically, this wi 11 be the BYYAL modifier which declares a to be the

argument of a PROC, · in which case the mode is I ength reso I ved by the

actual parameter. Hm.Jever, since the length resolution wi 11 generally

not occur unti I the PROC is invoked, the code segment

DECL a : · string;
DECL b string8;

a<- b;

leaves unclear whether an implicit type conversion wi I I be required. It

wi I I generally result in a type fault failure, unless the programmer has

had the foresight to define conversion routines among strings of

arbitrary lengths.

It is poss i b I e to overcome these prob I ems by I oosen i ng the

requirements of type checking to exclude length as a type

differentiator. This, however, forces recourse to run .time checking of

array bounds, and violates some intuitive sense that arrays of different

- 62 -

lengths cannot be the same type. Perhaps this difficulty can be

resolved by making explicit the hierarchical relationships among types

and the structure-determining "hidden bindings" across procedure cal Is,

as suggested by Ingargiola [1974]. In any case, LWL does not implement

varying length arrays.

Notice that the definition facility is more widely useful than

in type definition. For exam p I e , i t subsumes par t o f the opera tor

extension facility which is typically included in extensible languages.

To define a si ·mple new operator on constants, for instance, one codes

define 11 1" % 11 2" = {"1 11 +11 2"}*{"1 11
-

11 2 11
);

Later, this could be used in

canst min_bound l; param = 5;
canst max_bound = param % min_bound;

Similarly, given the above definition bf title_string, we can write

var a, b : ti tle_string;
define :: 11 a 11

=
max {ord {"a" [1]}, ord {"a" [ti t I e_str i ng_l ength]));

which defines a rather odd metric on title_strings, the maximum ordinal

of their first and last characters. This newly defined construct is then

immediately available for further use, and

·while ::a= ::b do

becomes f legitimate statement of LWL.

Further sophisticated uses of definitions might be considered,

but they may often surpass the limits of what are desirable extensions

- 63 -

of LWL. In the imp I ernentat ion o·f the BIBLIO I anguage, some data type

which represents · a Ii st of pub Ii cations w i 11 be usefu I in computing

answers to queries relating to pub I ications. Ordinarily, when we code

functions which compute with such a type, the syntactic forms of

reference emplo\:jed to access elements of the I ist predetermine, to a

large extent, the actual data t\:jpes. This means that the functions are

difficult to change in significant ways, because many matters related to

data access are scattered throughout the code.

definition of such a i ist,

~ I ist_of_publ ications =
arra~ [lop_index] ~ pub I ication;

Given a typical

a variable of type I ist_of_publ ications is probably referenced in many

places in the program as "a[i]". If it shou I cJ become des i rab I e to .

change the representation of I ist_of_publ ications to, say, a true

I inked-I ist structure, either man\:j of the functions referring to

variables of that type would have to be rewritten, or we must extend the.

meta I anguage to accept the arra\d form of reference for Ii sts of

pub I i cations which are no I anger represented in that way. One may be

tempted to consider something like the fol lowing:

type I ist_of_publ ications =@ pub_l ist;
~ pub_l ist =~record

Ii nk : Ii st_of _pub I i,cat i ans;
pub: pub I ication
end;

- 64 -

var a : Ii st_of _pub Ii cat i ans;

define 11 a 11
[

11 i 11 J = if "i" = 1
then 11 a 11 @.pub
else begin

integer;

· var x ·: list_of_publications;
var j : integer;
J!= "i"; X := "a";
wh i I e j >0 & x@. I ink <> @ do begin

j := j-1;
x : = x@. Ii nk
end;

x@.pub
end;

This would not be at al I a satisfactory solution. Note that in

the ccide comp i I ed for a function with references to an II a [i] " such as

above, this definition wou Id be expanded for every occurrence, and the

defined program fragment would be inserted at each use. Even if the

compiler were sufficiently clever to aggregate each of the expansions in

a common subroutine, the a I gar i thm is st i 11 cost I y. This ref I ects a

common cost disadvantage of extensible programming. Further, every

phrase of LWL would have to be able to return a value (including a so

cal led "left value", as the target of an assignment), to allow the

functional expression of definitions, as above. Many languages take

recourse to such a pol icy: In LISP, everything is an S-expression ~ith a .

value; in Ell, everything is a FORM with a value. For us, such a

dee is ion wou Id wreak havoc on the grammar of [WL -- every compound

statement would need to carry ·additional syntactic information about the

type of its value, and we would become mired in the treatment of generic

mechanisms and related type-dependent processes.

- 65 -

A better technique for avoiding this costly alteration is to

view the meaning and respons i bi Ii ty for computing II the i' th pub I i cation

on a I ist" as a part of the object language, where it can be implemented

once. Any change in list_of_publications will then reflect back to the

LWL only in the data types and functions which implement that particular

part of the object language. Thus, we write*

define "a"["i"] = publication_selector("a","i"};

function publ ication_selector
(listp: list_of_publications, count
: pub I i cation;
begin

integer}

var counter : . integer; counter : = count;
var list · : list_of_publications; list:= listp;

wh i I e counter > 1 & Ii st@. Ii nk <> ~ do begin
counter := counter - 1;
I is t : = I is t@. I ink
end;

retuml ist@.pub
end;

Note that although this function may be equally useful and avai I able to

both the language writer and the eventual lahguage user, the above

definition commits only the language writer to this method of invoking

the function. The object language construct for which this function is

the semantics may be of the form

<number>th <pub I ication>

as in

15th work by Quine about logic

*Rec a I I that a and
only apply when
Ii st_of _pub I i ~at i ans.

are as above.
array-type

Thus, the syntax defined here ~i I I
selection is attempted on a

- 66 -

(if, for instance, list_of_publications were ·chronologically ordered),

or the function may not be available in the object language at al I (for

example, BIBLIO does not contain this particular construct}. In general,

the proper structuring of the object language's implementation wi 11

p I ace fewer demands on the extension mechanism of the LWL, and w i I I

greatly improve the efficiency of the compiled code.

Definitions extend and specialize LWL by introducing concepts

and terminology which are relevant to implementing the specialized

language under consideration. Recal I that the definitions do not become

part of the new language; they · merely extend the metalanguage for the

convenience of the I anguage wr i ter. Def in i ti on is, however, a very

powerful mechanism, one of LWL's major strengths.

4.3 PROGRAMS

LWL does not support the creation of programs, as such. In its

top level structure, it is heavily influenced by the requirements of the

REL language processor which supports the specialized languages created

by LWL. The most notable omission in LWL is the lack of statements to

dee I are or invoke procedures; the most rad i ca I change is in the syn tax

and semantics of function invocation.

- 67 -

4.3.1 MISCELLANEOUS DIFFERENCES FROM PASCAL

In the denotation of var i ab I es, intermediate fie Id identifiers

and pointer references may be omitted when no ambiguity is in traduced

thereby. For instance, given the fol lowing definition of BIBLIO's

author and q_author categories,

category author=@ author _entry;

and

~ author _entry=~ record
name: name_str1ng;
num_pub: 0 •• max_num_pub;
pub: arra\d[l .• max_num_pub] 2..f. publication
end;

category q_author =@ author _I ist;
~ author _I ist =~record

next q_author; ·
this: author
end;

var x: q_author

then the variable designator

x. pub [1]

is an abbreviation for

x@.th is@. pub [1]

This form of abbreviation is especially useful when referring to some

part of the complex list structures maintained by the language

processor.

For the convenience of the language writer, the for statement

has been expanded and modified. PASCAL's to and downto constructions

need not be di st i ngu i shed, arid a new form exists for a I I owing an

- 68 -

iteration increment other than one. New forms also exist to express

iteration over al I values of a scalar type and al I elements of a I ist.

Thus,

for type=~ pub I ication_type do

is equivalent to

for type= book •• collection do •••

given the definition of pub Ii cat i on_type introduced ear Ii er. A I so, if

v2 is a pointer to a record which includes another pointer to that

record type { typ i ca I in a sing I y Ii nked Ii st), then

for vl := al I v2 do S

is equivalent to

vl := v2;
while vl <> ni I do
--w-i th vl @ do begin

--S;

vl := <the next pointer value for vl>
end

In the spec i f .i cation of re I at i ona I operators, a mi nor change is

introduced. Knuth has pointed out the desirabi I ity of performing

numerical comparisons on pointers, because an arbitrary (but consistent)

ordering al lows certain sophisticated algorithms to be more efficient

than if only equality or inequality between pointers were determinable

(1973, p. 2 of the letter to Hoare}. In response to this observation,

the relational operators<, >, <=, and>= also apply between pointers of

the same type {i.e., the same target type).

- 69 -

4. 3. 2 FUNCTIONS

The fundamental program unit to be created in the metalanguage

is the function. Inputs to a function are called its constituents, and

its resu It is ca I I e-d its va I ue; the types of both are determined from

the rules of grammar which mention the function as their . semantic

function. Functions are normally evaluated by the language processor in

response to its analysis of a user's sentence; thus, the constituents

and value of a ~unction are represented in a structure cal led a phrase

marker, 1-1hich is a tree representation of linguistic and computational

information developed by the language processor.

The elimination of procedures and the redefinition of functions

both resuJt from the dis~ipline imposed on evaluation by the REL System

· I anguage processor. In a syntax directed interpreter, the user's

sentence · is analyzed according to the grammar of the object language,

and interpretive functions corresponding to each of the applied grammar

ru I es are invoked to compute the II meaning" of the sentence. According

to the I inguistic model which is the basis of the REL languaga

processor, every rule of grammar represents a meaningful operation of

the object language, and its corresponding function defines the matching

computation on the language's universe of discourse. Functions are

composed by the composed application of rules of grammar in the analysis

of the user's sentences. Functions may also be cal led by other

functions, to permit a hi erarch i ca I composition of a Igor i thm i c tasks.

- 70 -

In that case, we permit a slightly altered syntax from PASCAL's for the

function reference.

In addition to the forms which correspond to PASCAL's function

designation, we a I so a 11 ow a function to appear as a se I ector on its

first constituent. For example,

f(a,b,c)

is equ i va I en t to

a.f(b,c)

This is done so that the distinction between reference to an item in a

structure and the functional computation of an attribute of a record

type object may be deliberately blurred. For instance, if we define

~complex= record rp, ip: real ~nd;
var ex: complex;
function norm (c:complex; real};

then LWL wi I I al low the references

cx.rp

and

ex.norm

to appear i dent i ca I • This is des i rab I e, because i-n referring to the

norm of a complex number, there is no need to distinguish in the form of

the reference between the above method of computing the norm at every

reference and the alternative strategy of storing its value in the

representation of the type:

~ complex -= record rp, ip, norm real end;

- 71 -

This syntactic usage recognizes that a selector is a function just as

any other operation which computes a value from a record~ and it unifies

the syntax of al I · function references. This is a minor part of

SIMULA 67's class concept [Dahl 1868).

4.3.3 THE PHRASE MARKER

The phrase marker, mentioned above, is the uni versa I s true ture

of the REL language processor. Space considerations prevent a complete

description here, and the reader is referred . to [Thompson 1974b] for a

fu 11 treatment. For the purpose of describing LWL, the fol lowing

condensation is presented.

The phrase marker, as its name imp I i es, is the semantic marker

developed by the language processor for each phrase recognized in the

user's sentence. The phrase marker is a tree of interlinked phrase and

phrase information (abbreviated ei_) records, al I of the storage class

I ist. The phrase record contains the part of speech and features of its

phrase and a pointer to its pi record. The pi can represent either

"data" or various structures which determine the way in which the

phrase's value can be computed. If the pi is a "data" type, it either

is or points to an ~bject of the type defined with the phrase's part of

speech in a categor~ definition.

A phrase may have a pi of the cases rou or gen, in which case it

- 72 -

spec i fies the address of a function to be invoked to compute the

phrase's value, a pointer to the first of a list of phrase markers which

represent the constituents of the phrase, and a variable list which

spec i fies the binding of me tavar i ab I es which needs to occur when the

function is invoked. The effect of evaluating a phrase is to replace

its "structure" pi b\d the 11 data 11 pi of its value.

The pi also has cases def, amb, var and out. A def pi includes

a pointer to the phrase marker which represents the value of the defined

~hrase and a variable I lst which specifies any bindings of metavariables

between the definiendum and definiens. An amb pi represents a phrase

whose va I ue is ambiguous, and contains a pointer to the first of · the

various phrase markers which represent its ambiguous meanings. A var pi

identifies its phrase to be a metavariable; it includes the

rnetavariable's name and a phrase marker which defines its range. The

out pi is a message to be output to the user; it is ordinarily the val.ue

of a <sentence> phrase.

The phrase marker of a sentence is a recursive tree of phrases

and their pi's, where the leaves of the tree contain only "data" pi's or

pi's wh)ch invoke functions with no arguments.

The passing of parameters between functions and the language

processor and among functions is by reference to the phrase marker whose

rou or gen pi specifies the function invoked. Within the invoked

- 73 -

function, the built in function constituent returns a pointer to the

root phrase of that phrase marker. Although the above implies that the

parameter of every function is in principle the same, in fact one

(ordinarily) knows at compilation time the parts of speech of each

cons ti tuen t phrase in the phrase marker, and there fore the type of its ·

"data" pi. The non-terminal phrases of the grammar rule which selects a

function as its semantic representation determine the types of the

function's constituents, or these types are specified in an explicit

declaration.

fn, the case that a function is defined with an explicit

parameter list, the parameters must be declared with types that are

categories, and the given names then refer to the corresponding actual

constituent phrases when the function is invoked. If no expl lcit names

are given to the parameters, then the category name (as used in the rule

statement) may be used as a function on constituent to select a pointer

to the appropriate phrase. For example,*

constituent.subject

In either manner of naming canst i tuent phrases, the I anguage processor

guarantees that fo~mal and actual parameters wi I I match in type.

Usually, this is possible to check at compilation, but for functions

invoked with parameters in the wrong order, or from rules involving

*If the function .has several <subject> constituents,
cons t i t u en t • sub j e c t (1) , cons t i tu en t. sub j e c t (2) , .
constituent~ yield the pointer ni I.

they are ca I I ed
Any non-existing

- 74 -

transformations or from more than one rule, run-time binding is often

necessary.

LWL does not require that the names of var i ab I es be fu I I y

specified; even referenced variables may have omitted intermediate

names. Therefore, the I anguage writer can refer to the va I ue of a

phrase without detailing the path · through the phrase marker which must

be selected to reach the value. For instance, the variable

constituent.pub! ication.title[l]

is the first character of the title of the first <publication>

constituent of the current function.

LWL has functions and prefix functions, corresponding to rou and

~ pi's. Before a function is invoked, its constituents are evaluated,

bL!t no such evaluation occurs before invocation of a prefix function.

Thus, prefix functions must refer only to structural components of their

phrase markers, or use the bui It in function evaluate to evaluate any of

their constituents, as desired. The tag gen for prefix functions is

indicative of their most common use, as generators over metavariables.

4.3.4 THE SCOPE OF VARIABLES

One further significant difference between LWL and PASCAL is in

the scope of variables. LWL has no notion corresponding to PASCAL's

program, because the overa 11 organization of "program 11 execution is

- 75 -

determined dynamically by the grammatical interpretation of the user's

statements. The usual nesting of procedures and functions which

determines the structure of a program in PASCAL gives way to a more

variable structure of function interactions imposed by the grammar of

the object language. Therefore, a deep nesting of function declarations

is unusual, warranted only when subproblems of a function's

implementation are identified in the implementation as separate

functi~ns, but are not in the grammar as meaningful primitive

operations.

LWL' s r u I es of scope ref I e c t the s tr on g mod u I a r i t y i mp I i e d

above. A I I identifiers (and, more genera I I y, . a I I def in it i ans} defined

or decl.ared in a function declaration are local to that function, but

not to any functions decl~red within them. Thus, the scope of

identifiers does not extend to contained functions~ as in PASCAL. It is

poss i b I e to dee I are var i ab I es or to define various constructs outside

any function dee I arat ion, in what is ca 11 ed the g.l oba I environment. The

scope of such global declarations and definitions is universal; i.e.,

they apply both in the global environment and within every function

declaration. Side effects of functions are, therefore, limited to the

manipulation of variables declared globally.

- 76 -

4.4 DATA ALLOCATION, PERSISTENCE AND ACCESS

The semantics of a programming language are primarily- based on

its innate capab i Ii ti es for hand Ii ng data in various forms. As

foreshadowed in the above discussion of storage c I asses, LWL has some

fairl'd peculiar innate capabilities and limitatiohs in its data

a I I oca ti on and access. These are the resu I ts of dee is ions adopted

during the development of the REL System and they are currently so

deeply ingrained in the design and objectives of languages operating in

or contemplated for the system that LWL retains them even in the face of

some considerations to the contrarlJ.

4.4.1 THE USE OF REL

The fo I 1. ow i n g d i s cuss i on w i I I be c I ar i f i e d i f we beg i n by

outlining the manner of use of application languages in the REL System.

REL is, itself, -a semi-permanent entity consisting of a load-module

which contains the res-i dent par ts of the I anguage processor, u ti I i ti es

and an interface to the operating system of the host IBM 360 or 370

computer, and several data sets which represent the total virtual memory

resources of the REL S'dstem. Such a S1Jstem is initially generated and

then exists indefinitely. A terminal session is the total processing

performed during a single execution of the REL System, which corresponds

to the . contiguous time that a single user spends at a terminal,

- 77 -

interacting with REL. A user, when beginning a terminal session, is

connected to the REL Command Language [Gomberg 1973], in which he can

create, delete or invoke for use (enter} those versions to which he is

al lowed the proper access.

A version is a part i cu I ar instance of a spec i a I i zed I anguage,

along with al I the data which have been incorporated into it. Thus, our

example, BIBLIO, is a language, but an instance of the BIBLIO language

to which bib I iographic information about parsing and related subjects .

has been added (perhaps called PARSING BIBLIO} is a version, which 1-Je

say is based on the I anguage BIBLI D. * A version occupies a certain

amount of the REL-control led disk space al located to it, as needed, by

the REL System. The source programs which define a version in LWL, the

compiled machine code which implements the language's functions, and any

data assimilated by those functions into the permanent data base are al I

part of the version.** A typical terminal session wi I I appear I ike this:

REL - LOGON PLEASE
>pete
REL COMMAND LANGUAGE - PROCEED
>enter parsing bib I io
PROCEED

*Actually, a language and a version are identical, from the system's
viewpoint. In use, often a language is a version which has no
particular data associated with it; it serves as a base version, from
which multiple versions may be created.

**Currently, the process of basing a version on another involves a fut I,
ac tua I copy. · This is not a I ways necessary, and the source and comp i I ed
code, and even some common basic set of data might be shared among
versions if the necessary protection and access mechanisms were added to
the REL System. For instance, in BIBLIO, several col leagues may want
independent versions of the language, but all starting with a shared
common set of references.

>articles by Wegbreit?

>exit

- 78 -

REL COMMAND LANGUAGE - PROCEED
>exit
THANK YOU

The segment of interaction between "enter 11 and the succeeding

"exit" is called a session. {Note that, therefore, a single terminal

session may contain several sessions, if several different versions are

entered or even if the same version is entered several times.) Each

version persists unti I it is specifically deleted. Thus, any data base

or context accumulated during interaction with the user may carry over

into succeeding sessions, if the language writer has provided for that.

Typically, the data base wi 11 be permanently kept with a version,

al lowing the user to exit a session and continue without major

difficulty at some later time, but information about the local context

of interaction (e.g., the referents of anaphoric references) is . dropped

at the end of each session.

This style of interaction naturally introduces three time scales

of data persistence, which correlate with the three storage classes of

LWL. Of these, the simplest and most temporary is the stack storage

class, which provides data objects which are created at the entry and

destroyed at the exit of each function. The most permanent is the~

storage class (and the associated version common area), which persists

for the duration of the version. Intermediate to these is the list

storage class (and the associated version global area) whose persistence

- 79 -

is the duration of a session. The Ii st and ~ storage c I asses need

further discussion, fol lowing.

4.4.2 LIST PROCESSING

The~ storage class consists of data items. al located by the

bu i I t- in . function new and recovered by a garbage co I I ec tor. Any I is t

structure is guaranteed to persist as long as any reference is made to

it by a pointer variable in the scope of the function being evaluated or

its ancestors (l. e., any stack. var i ab I e in the current or invoking

functions, including the parsing graph, and any variable in the session

global area).

The form of I ist data items (elements) is rigidly constrained by

two conventions: every list element is of fixed length, and the first

byte of each I ist el.ement must be a variable of type char, the value of

which defines the structure of the .remainder of the record. This

information is used by the garbage col lectbr to determine which fields

need to be "chased." If the language ,writer's definition of a list

record type does not include the necessary initial char variable, it is

added by default and initialized, on al location, to a value appropriate

to the structure of the record.

- 80 -

4.4.3 PAGING

Considerable evidence has accumulated indicating that natural

language performance involves an interaction with data in the language's

universe of discourse. We take this view of specialized computer

languages as we! I: that the universe of discourse is an integral part of

a language. This imp I ies that data is not something kept in a "file

structure" and processed by an "input/output system" to make it

avai I able to an operation, but is innately and intimately tied to the

I inguistic and operational constructs of the language.

Consider the imp I ications of the above for "programming" in a

specialized application language like BIBLIO. In a typical programming

language, say FORTRAN, the user-introduced symbols of an instance of the

language (namely, a program) are al I variables~ with the responsibi I ity

for associating meanings to these variables by input or computation

resting with the user. In BIBLIO, by contrast, essentially every

"identifier" introduced by the user acquires a meaning at the time of

its original appearance, either as a reference to a particular object of

the user's universe of discourse (e.g., MIT Press}, or as a method of

determining some objects {e.g., the definition of "Ii ngu i st i c

philosopher"}. LWL's mechanisms for data manipulation are specifically

designed to reflect this style.

LWL supports no input and output opera ti ans, per se. A I I

- 81 -

communication between a specialized language running under the REL

System and the external world is through the language processor

(described in the next chapter). Instead of access to f i I es, LWL

provides a very large, directly addressable virtual memory, i-Jhich is a

permanent part of every version.*

Several requirements and constraints have colored the

development of REL's and LWL's handling of virtual memory, and the

resulting mechanism has some unusual characteristics. The conventionc;1I

vi r tua I memory systems, Ii ke BBN' s TENEX [Bobrow 1872), re I y on a

hardware-assisted operating system which automat i ca 11 y trans I ates

addresses from a relatively large virtual space into the actual hardware

address where the appropriate part of the virtual space resides in main

memory. Of course, to make this mapping possible, the operating system

must also at times read from a backing store into main memory some part

of the virtual space that is newly referenced; it may, at the same time,

need to over I ay, or write back to the backing store, parts of the

vi r tua I space not I i ke I y to be accessed soon -- this requires the ·

adoption of a rep I acement po Ii cy, most of ten some form of the Least

Recently Used {LRU) or Working Set {WS) strategies. The transfer of

information between main memory and backing storage is in units of

*The MULTICS system [Sal tzer 1974], which supports access to files,
imp I emen ts that access through i ts vi r tua I memory management. In REL,
each version can access a fu 11 32-b it address space {4,294,967,296
bytes}, subject, of course, to the avai labi Ii ty of that much direct
acces secondary storage.

- 82 -

~' which are ord i nar i I y I arge compared to a sing I e basic data i tern

of the computer. (In t~e REL System, a page is 2048 bytes.)

I n pr i n c i p I e , the v i r tu a ·1 memory me ch an i s m i s comp I e t e I y

transparent to a program; it gives the appearance that the ac tua I

computer is totally dedicated to the single program, with real main

storage resources equal to the size of the virtual address space. This

i s, of course, a handy fiction which works wel I in the general case, but

has serious negative impact on the processing of programs which actually

a t temp t to exp I o i t a s i g n i f i cant po r t i on o f th i s resource. The s i mp I e

exchange of row for column processing of FORTRAN arrays can save as much

as a factor of the order of the matrix in the number of page faults

generated to compute large matrix problems [Moler 1972]. A col league

has found examples in the processing of relational data primitives where

three or more orders of magnitude may be lost in elapsed time by

unknowingly running in a virtual memory [Greenfeld 1972). Similar

conclusions result fro·m a study of sorting algorithms [Brawn 1970].

What is of great significance is that in genera I, the more that

an algorithm attempts to take advantage of information it may have about

its host computer, the worse is its degradation when that host turns out

to be implemented virtually.

The intimations of horrible performance deducible from

ca I cu I at i ans Ii ke those mentioned above have conv i need us of the need

- 83 -

for paging, or virtual memory management, which al lows rather strict

control by the language writer. This control is exercised through the

three standard functions lock, refease and unlocked, and an extension of

PASCAL's with statement. Lock and release both take arguments which are

page pointers (pointers to records of storage c I ass ~), and return

them unchanged, with the side-effect that a page which is locked is

guaranteed not to be replaced by the paging system unti I a release is

.executed.* Un I ocked is a function of no arguments, whose va I ue is the

number of actual page frames which are currently available for use and

not I ocked. Further, access to a page record may be made on I y inside a

with statement which controls that record.

Virtual memory managemant as undertaken by IBM's VS2 operating

system ·postdates the development of REL's paging design and

implementation, and fails to satisfy our requirements on two accounts.

It is committed to a 24-bit virtual addressing space, which must be

shared among a I I mu It i programming tasks {in the current re I ease), and

which is volatile at the termination of every task. We have felt that

the non-persistence of the paging space from session to session with a

I anguage and the re I at i ve I y sma I I (and unpred i c tab I e because of the

presence of other tasks} size of the virtual memory pose serious

problems· if we were to base our paging on it. Further, the variant of

the working set strategy employed in VS2 does not support our

*With the exception of intervening error and interruption processing.

- 84 -

requirements for the unlocked, lock and release functions without

significant (and i mpract i ca I) subversion of · VS2. Therefore, we have

chosen to implement the paging services provided by the REL System as a

software layer, using the IBM operating system's standard direct access

1/0 faci I ities, and ignoring the paging services provided by VS2.

The dee is ion to imp I ement paging by software has been a very

expensive one in design, implementation and operation, because of the

need to efficiently invoke the paging services to have al I referenced

pages in main memory when needed and to mark pages for rewriting to the

backing store when they are modified. At the level of machine code, the

software processing of paging requires giving up a strict demand paging

strategy and incorporating some aspect of paging prediction. To stay

with demand paging strictly, the machine code would have to generate

extra "instructions" (in fact, subroutine calls) around each data access

instruction of the real machine, to insure the presence of the required

data. Thus, load would become

I oad_page; I oad

and store would become

load_and_mark_page; store

This is clearly too inefficient to adopt, since the load_page

"instruction," even if no page fault occurs, is one hundred times slower

than the I oad. Thus, something Ii ke· a f I ow ana I ys is of the program is

required to determine those points at which paging instructions should

be placed to efficiently simulate the true demand paging pol icy.

- 85 -

Fortunately, the control structures (without goto) implemented

by PASCAL and LWL are es sent i a 11 y s imp I e f I ow graphs, and the needed

analysis is a direct result of the structure of the language. However,

the inefficiencies achievable b·y paging are so great, that LWL forces

the language writer to devote considerable attention to paging by

permitting reference to the components of a~ record structure only

within the context of a with statement; which is extended to perform the

required paging operations. This makes with a syntactic marker to

indicate the scope of access to the virtual memory.*

Consider the BIBLIO semantic function which relates authors to

their publications, based on a user's input sentence. Given the

def in it i ans of pub Ii cation and q_author from ear Ii er examp I es, the basic

input function is:

- - - - - - - - - -
*Note that this mechanism could also become the basis for an
implementation of critical region, if REL were to support the
simultaneous use of one version by several people. Such use is
currently not supported.

- 85 -

function basic_input begin
var auth_ptr: q_author;
with pub I ication@ do
--for auth_ptr:=aTT constituent.q_author do begin

- if num auth > max_num_auth
- th;n error 'Too many authors.'

else begin
num~auth := num auth + l;
auth[num_auth] := this
end;

withthis'@do
if num_pub > max_num_pub

then error

end
end bas i c_i nput;

'Too many publications for author.'
else begin

num_pub := num_pub + l;
pub[nwm_pub] :=publication
end

The explicit use of lock and release supplements the control

exercised through the use of with by al lowing data paging control not

tied to the program's hierarchic structure. In computations where

highly efficient int~rleaved processing of two sets of pages is required

{for instance, a merge), these functions allow the simulation of

efficient coroutine behavior which is not supported by LWL. Greenfeld's

thesis inc I udes sever a I a Igor i thms in which these func ti ans are

part i cu I ar I y usefu I [1872].

This concludes the discussion of that part of LWL which al lows

the language writer to define the primitive data types of the object

language and the functions which operate on them. In this, LWL is very

s i mi I ar to PASCAL. The major semantic differences resu It from spec i a I

- 87 -

considerations introduced b\d the host REL System's memory management

mechanisms ahd t~e fundamental framework of . the syntax directed language

processor. Other differences result from a desire to provide a concise

notation to the I anguage writer for dea I i ng with common I y encountered

tasks and from the powerful definitional capability which allows the

extension of LWL itself.

- 88 -

CHAPTER V

THE METALANGUAGE: LANGUAGE PROCESSING

••• a theory of linguistic structure that aims for
[descriptive] adequacy must contain*

{ i }

{ii}
{ i i i }
{ j V}

a universal phonetic theory that defines
the notion "possible sentence"
a definition of "structura I description"
a definition of "generative grammar"
a method for determining the structural
description of a sentence, given a grammar

-- N. Chomsky [1965, p. 311

Language is now commonly understood as a set of sentences,

recursiv~ly enumerated by a ' formal system which determines what strings

of symbols are val id in the language; the formalism assigns a s~ructure

to each acceptable string and represents its meaning in terms of that

structure. · The use of this conceptual framework for describing

art i f i c i a I I anguages has become no more unusua I than its app I i cation to

the linguistic analysis of natural languages (e.g., [Naur 1983]), and

considerable success has even been realized in its use for implementing

some languages {e.g., [Irons 1961]}.

*In the section quoted, Chomsky is actually discussing explanatory
rather than descriptive adequacy; he includes another requirement, "a
way of evaluating alternative proposed grammars." Later [p. 34], he
drops that requirement for a descriptive theory. It shou Id be noted
that Chomsky is interested in analyzing the linguh,t'ic competence of a
"native speaker,'·' whereas our interest I ies only in using I inguistic
theory to guide the design of computer languages.

- 89 -

The REL System's Language Writer's Language supports the

application of these I inguistic techniques to the implementation of

specialized application languages. As described in the previous

chapter, the REL System is a generalized syntax directed interpreter.

In the fol lowing sections, we wi 11 discuss how it performs the tasks

alluded to in Chomsky's list, and how LWL al lows the language writer to

define the syntax and semantics (the extended syntax) of a particular

language.

The basic idea of syntax directed interpretation is that a

sentence is decomposed into its constituent phrases, recursively,

according to the formal rules ·of a grammar. The meaning of the sentence

is computed by composing the .actions of functions which correspond to

each grammar ru I e, as it is app Ii ed. This is the typ i ca I manner of

application of syntax directed techniques, for instance, in many

compilers, where the effect of _the functions is to generate code which

implements the intent of the statement under consideration.

An extension · of this idea, presented in [Thompson 1866b] and

explored in theoretical terms in [Benson 1968] and [Randal I 1970], forms

the basis of syntactic and semantic evaluation in the REL System.

- 90 -

5.1 SYNTAX ANO SEMANTICS

Perhaps the best description begins with an example • . In BIBLIO,

we would I ike to ask the question

Generalization of grammar?

to find the list of subjects which have been stated to immediately

include the subject grammar in their extent. {By the examples of

Chapter III, these would be syntax directed interpretation and

compi I ing.) Clearly, we would find a language implementation based

strictly on simple patterns rather strained, so the rules of grammar

wi 11 be sufficiently general to accept not onJy relatively simple

queries I ike the above, but much more complex, composed queries. Below

is a portion of the syntax of BIBLIO.

The distinguished symbol of BIBLIO, as of every language defined

using LWL, is <sentence>. Thus, one rule wi 11 be

<sentence>::= <query>?

which specifies that one valid kind of sentence of BIBLIO is a <query>

fol lowed by a question mark. Since the answers to queries wi I I be I ists

of authors, I ists of publications or I ists of subjects, we need

corresponding syntactic rules •. For the above query, we require only

<query>::= <q_subject>

where <q_subject> is a list of subjects. Then, · to aliow a simple query

Ii ke*

*Recal I from Chapter III that a query merely naming a subject asks for a
Ii st of al I subjects covered by it.

- 91 ..

Grammar?

we wi I I have a rule

<q_subject> ::= <subject>

Finally, to define the "general ization 11 query, we need

<q_subject> ::=generalization of <q_subject>

With the above fragmentary grammar, and assuming a lexical rule

corresponding to

<subject>::= grammar

our example sentence is analyzed in the fol lowing form:

<sentence>

<query>

<q_subject>

<q_sub j ec t>

<subject>

·General izati~n of grammar ?

Notice that the generality we have introduced creates som~ extra levels

of ana I ys is in the grammar; however, it immediate I y a I I ows more comp I ex

queries like

Generalization of generalization of grammar?
Generalization of generalization of generalization of grammar?

Al though the grammar above determines the structure of our

sentence, it says nothing about how its meaning (in this case, a reply

to the user) is to . be computed. We rectify this by associating 1-1ith

- 92 -

each rule the name of a function which wil I carry out the computation

imp I ied by the syntactic transformation.

fragment, as actually written in LWL, is below.

The resulting grammar

query_forming rule <sentence>::= <query>'?' (print}
subject_query rule <query>::= <q_subject>: (format_subjects)
generalization ru~e <q_subject> ::= 'generalization of' <q_subject>

: (genera Ii ze) ·
primitive_subject rule <q_subject> ::=<subject>: {single_subject)

Each rule is named, so that it may later be referenced for modification

or debugging. Text that is literally mentioned in the left or right

hand side of a rule {i.e., terminal symbols) is _expressed by quoted

strings, since spaces in the object language are significant but spaces

in LWL are not. The i n for ma t i on fo I I ow i ng the " :I' i s the · s em ant i c

specification; in this case, the names of the appropriate functions.

These ru I es have the side effect of specifying the resu It types and

constituent types of the functions they mention. In genera I rewr i te

rules, one semantic specification appears for each non-terminal phrase

in the left hand side. An omitted semantic specification implies the

identity semantic function.

is

With the above grammar, the meaning of the question

Generalization of grammar?

print(produce_subjects(generalize(. single_subject{grammar))));

The phrase marker which represents this computation is produced by the

I anguage processor as a resu It of the syntactic ana I ys is be fore any

- 93 -

actual evaluatio~ is attempted; thus, syntactic and semantic processing

do not ord i nar i I y proceed in para I I e I • This may save cons i derab I e

semantic computation if spurious part i a I parses can be rejected for

purely syntactic reasons before any semantic computation takes place.

A I so, this convention minimizes the prob I em of "undoing" which can haunt

many syntax directed compilers; having to undo falsely hypothesized

act i ans based on spurious parses is usua I I y av~ i ded by adopting very

. simple bounded context grammars. As we shal I see below, the processing

of semantics synchronously with syntax is possible, though not

mandatory.

Let us return again to Chomsky's I ist, and take up the

discussion more specifically. His first question, in our context, asks,

"What are the strings of symbols to be considered?" The terminal

symbols of every object language are the printable characters of the

host computer (the EBCDIC printable characters), augmented by the

symbols <string_begin>, <string_end>, <input_terminator> and

<carriage_return>. <s tr i ng_beg in> and <s tr i ng_end> are automa ti ca I I y

appended around the input string, for the convenience of syntactic

ana I ys is. < i nput_term i nator> is a REL-recognized symbo I by which the

user indicates the end of his input sentence, and <carr i age_return> ·is

the end of I ine.* The complete vocabulary of every language is encoded

*Carri age return is ord i nar i I y a nor·ma I input character, and a spec i a I
<input_terminator> is required to initiate processing of an input
sentence. In TSO, this is (control)-S. Note that most EBCDIC devices
do not have lower case characters or some of the special symbols used in
the description of LWL. For LWL, a transl iteration similar to that

- 94 -

as .objects of the LWL type char; thus, the non-terminal vocabulary is

made to correspond to unprintable characters of EBCDIC. These do not

over I ap the codes for the four characters defined above or the char

constants described in the section on List Processing in Chapter IV.

Turning to Chomsky's second question, we understand "structural

description" by the description introducing functions in the previous

chapter. The structural description is the phrase marker, representing

both the sentence's syntactic analysis _and the composition of functions

required to compute its meaning.

Corresponding to Chomsky's third question, about "generative

grammar", we need to define our complete notion of "analytical grammar 11
•

The fundamentals of the rule statement appear above; in the succeeding

sections, we elaborate the definition of rules by introducing useful

extensions.

5.2 FEATURES

The LWL definition of langu~ge associates with each non-terminal

part of speech (category) a data type. Conceptually, the association is

symmetric, and excellent justification exists, in fact, to treat the

data type as fundamentally important and the part of speech as a mere

representative of the abstract category defined by the data type.

proposed by Wirth for PASCAL is followed. In BIBLIO, although example
sentences in this thesis use both upper and lower case characters, the
grammar is written assuming that al I characters in use are upper case.

- 95 -

Current techniques in the syntactic description of programming

languages often rely on the invention of new parts of speech to assure

the unambiguous parsing of certain phrases.

guarantees that

cannot be interpreted as

{a+ b) * c

For instance, PASCAL

by introducing parts of speech <factor>, <term>, <simple expression> and

<expression>, each of which may represent objects of the same type.

This practice clutters the connection between syntax and semantics.

A similar difficulty arises in BIBLI0. Just as &-Je introduced

the category <q_subject> above to represent a list of subjects involved

in a query, we need a category <q_publication>. As we defined BIBLIO,

the manner of expressing <q_publ ication>s must be far more flexible than

that for <q_subjects>. Indeed, the abi I ity to handle queries I ike

Works by Wegbreit or about parsing and C-relevant to extensible
languages?

requires a reasonably complex syntax. We begin with

<query>::= <q_publication>

which is obvious. Since the above query must be treated as an

expression, with the possibility of "operators" of different precedence,

a grammar I ike the fol lowing is plausible:

<q_factor>
<q_factor>
<q_factor>

.. -.. -.. -.. -.. -.. -
'by' <q_author>
'about ' <q_subject>
<rating> '-relevant _to' <q_subject>

- 95 -

<q_term> ::= <q_factor> I <q_term>' and' <q_factor>

<q_express ·i on> : : = <q_term> I <q_express ion> ' or ' <q_term>

<q_publ ication> ::='works' <q_expression>

It is never good practice to hide knowledge that the programmer uses and

depends on; yet, the above does · exactly that, by failing to show that

each o f the phrases a c tu a I I y r· e pres en ts a I i s t of pub I i ca t i on s • I t does

violence to a notion of str;-ucturing that identifies syntactic with

semantic structures.

Features provide a syntactic subcategorization of the categories

introduced by the language writer. Each feature is a binary flag which

qua I ifies the part of speech of a phrase. Features may be tested for

presence or absence on phrases in the right hand side of a ru I e; they

may be carried over, set, reset or reversed on phrases of the left hand

side. Using three features to subcategorize <q_pub Ii cation>,

conjuncted~ disjuncted and completed, we rewrite the above rules as

<q_pub Ii cation> : : = 'by ' <q_author> : (works_by)
<q_pub I i cation> : : = 'about ' <q_pub I i cation> : (works_about)
<q_publ ication> ::= <rating> '-relevant to' <q_subject>:

(works _re I e van t }

<q_publ ication,+conjuncted> ::= <q_publ ication,-disjuncted
completed>' and' <q_publication,-disjuncted-conjuncted
completed> : (q_and)

<q_publ ication,+disjuncted> ::= <q_publication,-completed>' or '
. <q_publ ication,-disjuncted-completed> : {q_or)

<q_publ ication,+completed> ::= 'works ' <q_publ ication,-completed>
(q_i dent i ty)

<query>::= <q_publ ic;ation,+completed> {format_publications)

- 97 -

Features to be carried over are represented by a constituent number in

the I hs (e.g., +1 means to copy over a 11 features now on the first rhs

non-terminal phrase}. Checking for the presence of a feature and

setting it are indicated by the+ sign {e.g., +compieted}. Checking for

absence and resettfng are shown by the - sign, and reversing the setting

of a feature in the lhs is shown by a*·

If the verbosity of such long descriptions is an objection, the

LWL definition mechanism may be used to provide a convenient shorthand.

For instance,

define q_term =
q_publ ication,+conjuncted-disjuncted-completed

With such definitions, a language writer committed to a syntax I ike the

first proposed above can write it in exactly that way; however, it is

preferred to retain the visible correspondence between syntactic

category and semantic data type that is posslbl·e through the use of

features.

The above example shows how features may be used to simulate a

precedence mechanism in the parser. However, features are also useful in

many other instances. In natural language processing, for exa~ple, they

have been used to record essentially semantic distinctions in the

syntax, to aid disambiguation by the grammar {e.g., the animate feature,

discussed in [Oostert 1972)}. Features are somewhat like the mechanism

Knuth describes as the semantics of context free languages [Knuth 1968]. ·

- 98 -

They are not as genera I, because their va I ues are restricted to one

Boolean·, and their dependence is expressible only in a bottom-to-top

direction.

5.3 TRANSFORMATIONS

Formal systems tend to be concise, rigid and minimal.

Considerations of human engineering often comp I icate and extend the

s true ture of a form a I ism as it is put to use, even though the new

comp I ications and extensions add nothing essential to the formal system.

The inclusion of transformations in the rules _of grammar by which we

define spec i a I i zed · I anguages is an extension of convenience, not

principle. Be I ow, we present severa I examp I e.s of the use of

transformations, ranging in complexity from a simple identity·

transformation to a set of complex local transformations which are

useful in the parsing of English sentences.

As a first example, consider the rule

<q_pub Ii cation, +comp I eted> : : =
'works ' <q_pub Ii cation, -comp I eted> : (q_i dent i ty)

which was presented above. The semantic intent of this rule is merely

to pa ss the value of the right hand side on as the value of the left

hand side, without change. Clearly, the trivial function q_identity can

be written to perform this service. However, it seems inappropriate to

require the invention of trivial semantic functions to serve purely

- 99 -

syntactic purposes. Of course, such extra functions, where they exist,

also contribute an unnecessary increment to the time spent in evaluating

their phrases. The need for the function q_i dent i ty can be · comp I ete I y ·

eliminated by specifying transformational semantics for the rule in

question. We write

<q_publication,+completed> ::= ·
'works' <q_publ ication,-completed> (1)

The Ql__ me ans that, §!l syntactic processing time, the semantics of the

left hand side non-terminal is replaced by the semantics of the first

right hand side non-terminal. Clearly, both must have the same part of

speech. The transformation is, in general, a transformation on the

phrase marker, as it is being developed in the process of parsing.

Consider now the syntax by which bibliographic data are input to

BIBLIO. In the basic input st3tement, we may have a number of authors

associated with a single publication. Therefore, We need a rule I ike

<input> .. -.. - <author> {, <author>}, <pub I ication>

Instead of using such a repetition (which LWL does not support), we

write the rules

basic_input rule <input>::= <q_author,+explicit> ', ' <publication>
: (bas i c_i nput);

single_author rule <q_author,+expl icit> ::= <author>
(bui ld_author_l ist);

mu It i p I e_authors ru I e <q __ author, +exp I i cit> : : = <q_author, +exp I i cit>
', ' <author>-;-{<l,*><2>,bui ld_author _I ist)

The transformation part of the last rule's semantic specification,

<1,*><2>, means that the semantic constituents of the left hand side

- 100 -

should be: al I the constituents of the first non-terminal in the right

hand side, and the second non-terminal on the right. The function

bui ld_author I ist wi 11 be the semantic transformation computing the

value of the resulting <q_author> phrase, and each of its constituents

wi I I be an <author>.

Without the above transformation, the syntactic ana I ys is of the

sentence

Aho, UI Iman, Theory of Parsing.

1,-1ould be

<q_author>

<q_author>

<sentence>

<input>

<author> <author> <pub I ication>

Aho UI ~man, Theory of Parsing.

By applying the transformation, we get

<sentenc,e>

<input>

<q_author>

<author> <author> <pub I ication>

Aho UI Iman, Theory of Parsing.

This transformation not only simplifies the syntactic structure of the

sentence, but also permits the unification into one function of the task

- 101 -

of bui I ding a I ist of authors (<q_author>). Without the transformation,

the semantic functions of the single_author and multiple_authors rules

could ·not be the same because of the different types of their

constituents, and the collection task would be spread between two

functions.

The parser, in its norma I operation, determines that each non

term i na I of the lhs ·has a phrase marker which computes its value. Each

non-term i na I of the rhs is a constituent of these phrase markers. The

transformations specify a replacement of the constituents in the phrase

marker. The identity transformation has been discussed above. In al I

other cases, the .language writer 'Writes a list of selectors which

specify the actual constituents to be used and their proper order. A

selector of the forn1 <i> selects the i'th rhs non-terminal. <i,*>

selects each constituent of the i'th rhs non-terminal. Further forms of

the selector permit the selection of only particular categories of

constituents of the i'th rhs non-t~rminal. These forms of selection

actually flatten the phrase marker, and remove from it calls on a

function which has been ref~renced by a previously applied rule.

No single transformation can flatten the phrase marker by more

than a single level. This is a limitation on the generality of the

transformation mechanism, but practical observation (e.g., the

implementation of REL English) indicates that transformations i,.Jhich

attempt to "reach back" into the structures of their constituent phrases

- 102 -

to a depth of two or more rule applications are too complex to use.

They would need to anticipate so much of the structure of the grammar

that went into bui !ding up those phrases that they i..Jould destroy any

modularization of syntactic structure gained by the use of a grammar to

express it.

Transformational grammar is ordinarily thought of as a mechanism

for genera I tree transformations on the syntactic marker of a sentence.

One of the few designs of a computer system with such capabilities is

presented by Keyser and Petrick [1967]. Their scheme is to represent

the syntactic transformation by a pattern transformation, mapping a

given cut across the phrase marker tree into another one. This is a

global v)ew of transformations, necessitating an elaborate and expensive

pattern ·matching and control faci Ii ty to interface the application of

ordinary grammar rules to the use of pattern transformations. Aithough

the transformation f ac i I it i es discussed above have been motivated by

concerns similar to Keyser and Petrick's, the emphasis has been on local

trans format ions.

The app Ii cation of trans format i ona I ru I es is coup I ed to the

app I i,ca ti on of ordinary ru I es of grammar. Indeed, as the above examp I es

show, transformations may be of use in instances which fal I outside the

domain of traditional transformational grammar. The source of many of

our examples, the BIBLIO language, has a grammar that is not

sufficient I y sophisticated to demand the presence of II genuine"

- 103 -

Ii ngu i st i c trans format i ans. To exemp I i f y such a use, consider some

smal r part of a grammar for English.

REL English bases its syntactic analysis on the theory of verb

cases mostert 1971, 1973). In this approach, each part of the sentence

is re I ated to the centra I verb according to one of the verb's case

positions. In the s imp I e examp I e be I ow, we use the order of noun

phrases in the phrase marker of the verb phrase to distinguish their

cases. In the sentence

B i I I h i t John.

"Bill" is the agent (the first noun constituent), "John" is the object

{the second noun constituent), and "hit" is the verb.

fragmentary English grammar to parse the above sentence is

<sentence>::= <verb,+has_object+has_agent> '.' :
(declarative_statement)

A very.

<verb,+has_agent+2> ::=<noun>' ' <verb,-has_agent+has_object>
(<2,verb><1><2,noun>)

<verb,+has_object> ::= <verb,-has_object>' ' <noun>

Assuming I ex i ca I ru I es for the nouns · 11 b i 11" and II john" and · the verb

"hit", the above sentence parses with the syntactic structure

<sentence>

<verb>

<verb>

<noun> <verb> <noun>

Bi I I hit John

The effect of the transformation is to eliminate the surface detai Is,

- 104 -

I ike the order in which the agent and object were incorporated into the

verb phrase. The transformed syntactic structure appears as

<sentence>

<verb>

<noun> <verb> <noun>

8 i I I hi t John

and it is the order of constituents in the verb phrase that ac tua I I y

determines the sentence's meaning. The deep structure, represented by

the phrase marker of the sentence, is:

{*) <sentence>
<verb>

<verb> 11 h it"
<noun> "Bi 11 11

<noun> "John"

Now, consider the equivalent sentence

John was hit by Bi I I •

We extend the above grammar fragment by ru I es to hand I e the passive

case.

<verb,+has_agent+passive> ::='was' <verb>' by' <noun>;
<verb,+has_object+l> •. - <noun>' ' <verb,+passive-has_object>

{<2, *><l>);

Wl th this grammar, the untransformed _syntactic analysis is

<sentence>

<verb>

<verb>

<noun> <verb> <noun>

John was hit by 8 i I I

- 105 -

but the phrase marker is, nevertheless, the same as in (*} above.

By contrast, Keyser and Petrick write the rule [1967, p. 8]

{OPT {NP AUX V X NP X BY PASS)
(5 2 (BE EN 3) 4 0 6 7 ll ()
PASSIVE)

This specifies the optional replacement of a pattern fitting the first

template by the corresponding pattern specified in the second templ~te.

This scheme has the advantage that it- unifies the operation of the

passive transformation in a single rule. However, the contra I

mechanfsms needed to guide the application of pattern replacements in a

reasonable, non-exploding order, and the searches involved in matching

patterns which allow arbitrary constituents (like X, above) introduce

both conceptual and practical difficulties.

The s imp I e fragment of a case grammar for Eng I i sh, described

above, is clearly insufficient for an actual grammar of English.

However, the strategy of combining very local, simple transformations

with the app Ii cation of genera I rewrite grammar ru I es is an ef feet i ve

technique of processing trans format i ona I grammars. I t is espec i a I I y

useful because it is very efficiently implemented, as part of the

parser's application of each rule of grammar.

- 108 -

5.4 PARSING AND CONDITION FUNCTIONS

Chomsky's fourth demand was for 11 a method of determining the

structural description of a sentence, given a grammar. 11 The REL System

includes a genera I purpose parser, emp I oy i ng an a I gar i thm s i mi I ar to

Martin Kay's 11 powerful parser 11 (1987]. The unique advantage of this

parsing a I gar i thm is that . it parses genera I rewrite ru I e grammars and

finds ever';! va Ii d parse of an input sentence once and ~ once. The

current implementation of the parser ls due to Frederick 8. Thompson,

and is described in de ta i I in [Thompson 1974b] •

The parser operates on a structure cal led the parsing~- It

is a directed, acyclic graph which is initially a single strand of arcs,

each label led with one phrase {character) of the input sentence to be

analyzed. As each rule is applied, the rule's left hand side is added as

an arc { s tr i ng o f arcs i n the genera I r ew r i t e r u I e case) w h i ch de f i n es

an alternate path to the existi~g right hand side. Each newly added arc

is label led by a phrase marker which includes a reference to each non

terminal (constituent} in the rule's rhs. The parser operates from

bottom to top and right to left. When no more rules of grammar apply,

the parse is completed, and every arc label led by <sentence> which spans

from a <s tr i ng_beg in> to a <str i ng_end> arc is a va Ii d parse of the

input sentence. If no such arc exists, the str.i ng is not a sentence,

and the input is syntacticalll;J meaningless; if more than one such arc

exists, the sentence is S\;jntactical ly ambiguous. A sentence can also be

- 107 -

semantical l!d meaningless, if in the -evaluation of each of its possible

meanings some semantic function executes the standard function fa i I.

Semantic ambiguity is also possible, and the whole subject of ambiguity

is taken up below.

To give the language writer an additional degree of control over

the operation of the parser, each LWL rule may specify a condition

function, to be evaluated when the parser is about to apply the

associated grammar rule. The checking and setting of features and any

transformations specified in the rule are performed before the condition

function is invoked. The constituents of the condition function are: the

I ist of phrases constructed by the parser which would have become the

labels of arcs inserted into the parsing graph, and the recursion stack

of the parser,. from which its total environment is accessible. The

value of a condition function is~ list of phrases, which are added to

the parsing graph in the normal way, or !:i.!_, in which case the current -

rule fai Is and nothing is added to the parsing graph.

The name of the cond i ti on function is wr i t ten be tween the two

colons of the "production arrow" (::=). For example, if we wished to

evaluate <subject>s to <q_subject>s during the parsing _ process, w~ would

write the primitive_subject rula as

primitive_subject rule <q_subject> :evaluate:= <subject>
{single_subjec-t)-

Then, the semantic function single_subject would be evaluated every time

- 108 -

that this grammar rule was applied by the parser, and the <q_subject>

phrase . added to the parsing graph would be the evaluated I ist of

subjects. Note that in contrast to semantic functions, one of which

must exist for each non-terminal of the lhs, each rule has but a single

condition function.

Typ i ca I uses of condition functions are to make more comp I ex

feature checks than those al lowed by the rule specification (e.g.,

requiring a certain phrase with either one or another feature set), to

compute a set of features for a lhs phrase that is not specifiable in

the rule {e.g., depending on the carried over features of more than one

rhs phrase}, or to perform transformations of greater depth or

complexity than those.al lowed by the rule. The capabi I ities of the rule

statement are al I constrained by the design requirement that they be

implemented very efficiently. When more complex syntactic processing is

required, the condition function is used.

Some investigators have made much of the ab i I i ty to eva I ua te

semantic information while the syntax analysis is proceeding, to reduce

syntactic ambiguity {e.g., [Winograd 1972]}. Although this is often an

expensive strateg\d when semantic operations are ·1engthy, one possible

use of the condition function {demonstrated above} is to evaluate some

or a I I phrases before· the syntactic ana I ys is is comp I ete.

Because the condition function has access to the complete

- 109 -

environment of the parser, it can introduce arbitrary side effects.

However, this is generally not useful, and it is very harmful to the

notion of I i ngu is tic s true ture imposed by an exp I i c i t grammar.

Efficiency considerations sometimes dictate such a use of condition

functions: scanning a ~tring of digits and converting them to a

<number>, and a simple lexical analysis of the input string are two

common uses of condition functions with significant side effects.

5.5 METAVARIABLES ANO BINDING

In the syntax directed interpretation scheme so far described,

every phrase specifies, by its evaluation, a specific object of the

universe. Because these objects are, in fact, arbitrary data types of

LWL, they may be designed to represent co 11 ect i ans or sequences of

11 objects II at sor.,e I ower concep tua I I eve I • However, that forced change of

view is antithetical to the linguistic point of view expressed in the

introductory chapters.

Consider, for instance, the BIBLIO category q_author, which

represents a collection of authors. In BIBLIO, as we have described it

in Chapter III, viewing a collection of authors as a simple object of

the object language is an acceptable strategy, because the authors in

such a collection need not be ~xplicitly distinguished. However, it is

easy to conceive of a more expressive BIBLIO, in which we could ask a.

question I ike

- 110 -

Topic ·of works by each linguistic philosopher?

In our actual BIBLIO, the simi·lar query

Topic of works by I inguistic philosophers?

evokes a list of subjects, _undifferentiated by affiliation with the

various I inguistic philosophers from which they were derived.* The more

demanding first query requests exa~tly such an affiliation.

We wi 11 not change BIBLIO to include the hand I ing of

quantifiers, but it is illustrative to see how that would be done.

Within the interpretation scheme presented above, every phrase must have

a unique meaning, represented by an object. Presuming that the query

parses according to the fol lowing structure,

<sentence>

<query>

<q_subject>

<q_publ ication>

<q_author>

<q_author>

Topic of works by _each linguistic philosopher?

the q_author phrase "each I inguistic philosopher" must differ

sufficiently from "linguistic philosopher" that subsequent semantic

functions which compute the topics of works by these authors keep

*Rec a I I that II I i ngu is tic phi I osophers" has been introduced by

define I inguistic philosophers= author of A-quality works B
relevant to I inguistic philosophy

- 111 -

separate accounts for each autlicr. That is a significant comp I ication

of both the data types and semantic functions which implement these

notions. In BIBLIO, the required effort for these capabilities is

unwarranted.*

Alternately, we would like to view the phrase "each linguistic

philosopher" as a metavariable for ·<q_author>, and then evaluate the

whole query in turn for each individual "I inguistic philosopher". The

me ta var i ab I e , as we d i s cussed i n Ch apter I Y, has a par 't ~ speech , i n

this case <author>, and a range, in this case a 11 Ii ngu i st i c

p h i I o sop hers • The me ta var i ab I e acts as a p I a c eho I de r for i t s par t o f

speech in the syntactic analysis, and its range defines the set of

semantic values to which it may be bound.

Me tavar i ab I es act much Ii ke var i ab I es of the I ambda ca I cu I us,

raising corresponding issues of binding. Metavariables are created by

grammar rules which invoke the standard condition function metavar. In

our hypothetical extension to BIBLIO, we would include the rule

variable_author rule <q_author> :metavar:= 'each' <q_author>

The grammar rule must have exactly one non-terminal in the lhs and at

most one in the rhs. The part of speech of the lhs non-terminal becomes

the part of speech of the created hletavar i ab I e, and the rhs phrase

*Bid contrast, such a quantification capability is so important in REL
English that the suggested complication is incorporated. From efficiency
cons i dera ti ans, the quantifier scheme using metavar i ab I es (be I 01--1) is
unacceptable in REL English [Greenfeld 1972].

- 112 -

becomes its range. If the rhs consists of all terminals, the range is

nil. The metavariable is also given a name, to allow several

metavariables with the same parts of speech and range to be

distinguished.* The name contains the literal characters which make up

the rhs.

In LWL, the use of metavar i ab I es is not predetermined by the

I anguage processor. However, in any mean i ngfu I use, no metavar i ab I es

may be · free in a <sentence>. Every phrase, some of · whose canst i tuents

e i ther are me tavar i ab I es or have unbound me ta var i ab I es, is said to have

those metavariables free in it. The parser maintains, for each phrase,

a variable I ist of its free metavariables, The standard function .

me tab ind binds a 11 free metavar i ab I es in its I hs phrase; thus, the

expanded BIBLIO would have the rule

subject_query rule <query> :metabind:= <q_subject>
{,format_al !_subjects}

which would bind the metavariables created by every "each" to the

function which computes the meaning of <query>. In a semantic function,

the standard function ~_bound tel Is the number of metavariables bound in

this ph_rase, and the function metabound { i) re turns pointers to the

n_bound variable phrases in the variable I ist. The semantics of this

rule, format_al !_subjects, is a prefix function. It would evaluate its

*LWL' s notion of metavar i ab I es is imp I emented in terms of the above
me tavar i ab I e capab i Ii ti es of the I anguage processor, a I though by a
different condition function than metavar. The name permits the 11 1" and
11 2" to be distinguished in define "1 11 % 11 2 11 = {"l"+ "2") * {"1 11

- "2"}

- 113 -

<q_subject> constituent phrase for al I possible combinations of values

from each of its n_bound metavariables. Format_all_subjects would use

the standard function evaluate, with an additional parameter that would

be a Ii st of phrases to be substituted for the various metavar i ab I es

bound in the phrase.

The evaluation mechanism, including the binding and

instantiation of metavariables, is complex. Because only the creation

and binding of me tavar i ab I es is known to the I anguage processor and

their use is left to the individual language implementor, metavariables

serve a large variety of functions. The above example of quantification

is one, and the use of metavariables in the LWL definitional mechanism

ls another. A complete discussion is beyond the scope of this

presentation; for more deta·i I, refer to [Thompson 1974b].

5.5 AMBIGUITY

The notion ambiguity has been both b I essed and cursed for its

role in language. Innate ambiguities appear to interact with context

reso Iv i ng mechanisms .in natura I I anguages to provide conceptua I

genera I i ty and expressive cone i seness. In the computerized processing

of languages, ambiguity has been viewed as the anathema of any practical

methods of parsing and ana I ys is. Espec i a 11 y when emp I oy i ng genera I

rewrite rule grammars, parsers have been subject to uncontrolled

combinatorial growth of ambiguous interpretations.

- 114 -

Language implementation in LWL does not attempt to suppress the

potential problems which arise from the tolerance of ambiguity, but it

does provide some methods of control ling those problems without

resorting to the customary prohibition against any use of ambiguity.

The REL I anguage processor inc I udes automatic mechanisms for

al lowing the ambiguous interpretation of sentences. If, for example, an

input sentence can be assigned several different structural analyses,

each phrase marker w i I I be eva I ua ted by the I anguage processor, and if

their values differ, al I wi 11 be output, with an indication that these

are ambiguous responses.

Ambiguity may be introduced either through the syntax or

semantics of an object language. In the syntax, the case above is

typ i ca I; that is, a sentence can parse in more thah one way. In the

semantics, it is poss i b I e for a semantic function to compute more than

one va I ue for its phrase, in which case the phrase becomes ambiguous.

The standard function ambig acts similarly to return, except that it

does not actually return control from the function. Al I values

spec i f i ed by each ca I I on amb i g and the f i na I ca I I on re turn from a

single invocation of a function become the ambiguous resulting valu~s of

the phrase.

In most cases, the processing of ambiguity is hidden and

automatic. In the process of semantic evaluation (the application of

- 115 -

evaluate), the presence of ambiguity, whether syntactic or semantic, may

be ignored except in prefix functions. When the evaluator is about to

invoke a semantic function with ambiguous arguments, it invokes the

function a number of times instead, once with each combination of

unambiguous arguments formable from al I the ambiguous constituents. Al I

values returned by the function for its various constituents are

co I I ected and form the ambiguous va I ue of the resu It i ng phrase. Of

course, the blind application of this strategy is what can lead to

combinatorial explosion not only in parsing but also . in semantic

evaluation.

The above tec~niques merely introduce ambiguity, but do nothing

to control it. The resolution of ambiguity is most generally handled by

the ability of a function to fail {a standard function call). If the

phrase for which a va I ue is being computed is unambiguous and · the

semantic function fails, or if each of the phrase's ambiguous

interpretations fail, the phrase is meaningless and every phrase of

which it is a constituent also becomes meaningless, without the need for

further semantic processing. Therefore, one such failure can eliminate a

proposed parse of a sentence, or several of its ambiguous alternatives.

The function fai I has an optional argument, which is an output message

to the user, to be displayed if this function's failure makes the whole

sentence meaning I ess. I f some other eva I ua ti on succeeds, however, the

fai I ing phrase and message are discarded.

- 116 -

In Chapter I I I, we noted that BIBLIO wou Id accept the name

Winograd as a synon\:jm for both authors Terry and Shmue I, if both were

known in the data base. In practice, this occurs because the <author>

phrase produced b\J the lexical rule

<author>::= 'Winograd'

is assigned an ambiguous meaning, referring to both alternatives. With

a syntax for inquiring about authors that is similar to that for

subjects,

author _query ru I e <query> : : = <q_author> : (format_authors)
primitive_author rule <q_author> ::=<author>: {single_author)

the evaluation of the query

Winograd?

w i I I app I y sing I e_author in turn to Terry and Shmue I, producing an

ambiguous <q_author> phrase. Then, format_authors wi 11 apply twice, to

give an ambiguous <query>, then ~ twice, for an ambiguous

<sentence>, and the reply wi I I be

AMBIGUOUS:
(1) Winograd, Terry
(2) Winograd, Shmuel

Of course, if any of the semantic functions thus cal led had failed (not

I ikely in this example), the ambiguity would have been resolved.

The elimination of ambiguity by semantic failure is a general,

but often expensive approach. To al low greater control to the language

writer, the prefix function may be used. Because a prefix function is

invoked before its constituents are evaluated, the automatic propagation

- 117 -

described above does not come into p I ay, and the prefix function can

itself manipulate its ambiguous constituents. To aid this, two standard

functions are provided. Ttie function ~_amb returns the number of

ambiguous alternatives for its constituent phras~. For ins~ance, in the

function single_author in the previous example, if it were made a prefix

function, the va I ue of

n_amb (canst i tuent. author)

would be 2. To select one of these ambiguous phrases, the standard

function amb, with a phrase and an integer argument returns the selected

ambiguous phrase of the given phrase. For example,

constituent.author.amb(2)

yields · the second ambiguous value of the <author> phrase. The abi I ity to

deal with ambiguity explicitly in an object language is of special

importance when some innate construction of the object language

naturally expresses a reasonable interpretation of the ambiguity. In

the BIBLIO case, the desired effect of "Winograd'"s ambiguity is to

treat the synonym as standing indistinguishably for both its values.

But the category <q_au thor> is exact I y a type which exhibits that

required behavior. Thus, the natural interpretation of the ambiguity of

an <author> phrase is to convert it to an unambiguous <q_author> phrase

which I ists the alternative meanings. The single_author function is the

appropriate place for that conversion.

If ambiguity can be successfully mapped into one of the

- 118 -

primitive concepts of the object language, then the overhead and

possible uncontrolled growth of ambiguity processing is eliminated. The

ability to effect this shift, from .general evaluation mechanism to a

specific function of the object language, is an important opportunity

for the language writer.

5.7 LANGUAGE EXTENSION

We operate under the assumption that no language designer or

implementor has the foresight to create an object language that l-Ji 11

perfectly fit a user's evolving needs. Therefore, LWL supports the

p_rovision of extensibility in any object language. It is useful to

distinguish between two forms of extension: one, by the language writer,

to add significant new features to a I anguage; the other, by the user,

to add to his language new objects and concepts of his universe, in

terms of the fundamentals of the object language. The hypothetical

addition of "each" to BIBLIO, · discussed above, would be an extension of

the first kind, requiring intervention by the I anguage writer. The

definition of "Ii ngu i st i c ph-i I osopher",. a I so mentioned before, is an

extension introduced by the user, for which al I required faci Ii ties

already exist in the object language. These two forms of extension seem

to be what Wegbrei t cal Is nietaphrase and paraphrase extension [1970,

pp. 124-125].

- 119 -

The introduction of fundamental new capabi Ii ties into a language

is accomplished by its further development in LWL. The single reserved

sentence, metalanguage, of every object language switches control of the

session from the object language to the particular instance of LWL i-n

which the object language has been implemented. At that time, al I the

faci I ities of LWL for adding .or deleting grammar rules, data types and

functions are available, and the language writer · is given the same free

hand in altering the object ianguage as he had in implementing it.

Ordinarily, the language user is not expected to modify his language in

this way.

The way in which an object lang1,.Jage is extended depends very

much on the particular language. Therefore, LWL makes avai I able to the

language writer a standard function extend, which provides al I of those

features avai I able in the rule statement. Thus, any object language may

include functions which extend the grammar of the language itself. The

form and meaning of such capabilities are completely determined by the

I anguage writer, when he writes the syntactic ru I es and the condition

and semantic functions of the object language which implement its

abi I ities for extension. The BIBLIO define statement is an example of

such an extension capabi I ity.

A I though many I anguages imp I emented in the REL System inc I ude

sophisticated extension mechanisms I ike BIBLIO's define, or even the

more comp I ex define of LWL, that is by no means the on I y use of

- 120 -

extensibi I ity. In BIBLIO, for instance, the names of new authors,

subjects, publications and publishers must be added when they are first

introduced. For example, to satisfy the specifications in Chapter III,

if the phrase

Author: Wharf, Benjamin L.;

appears in an input sentence, it must have the effect of adding the two

lexical rules

<author>::= 'Wharf, Benjamin L.'

and

<author>::= 'Wharf'

to the language. In addition, it must create an object of the category

author, in it i a Ii ze it and use it as the "data" semantics of the above

rules. The portion of the BIBLI0 grammar dealing with this is:

<item,+author-complete> ::= 'Author: '
<item,+1> ::= <item,-complete> <letter> (<l,*><2>)
<i tem,+1> :getchar:= <item,-complete>' '
<i tem,+1> :getchar:= <item,-complete> ','
<item,+1> :getchar:= <item,-complete> '.'
<item,+complete+l> ::= <item,-complete> ';' : (1)
<author>::= <item,+author+complete>: (create~author)

The condition function getchar must append the blank, comma or period as

a further constituent o·f the <item>.* A similar treatment is given for

the other new items.

<item,+subject-complete> ::= 'subject: '
<subject>::= <item,+subject+complete> (create_subject)

*In fact, to .avoid rules of grammar to create <letter>s and the
. resulting parsing overhead, an actual implementation of BIBLIO would
employ a condition function on the first <item> rule. Its side effect
would be to collect each character up to a semicolon as constituents of
the <item>.

- 121 -

<i tem,+publ isher-complete> ::= 'pub I isher: '
<publisher>::= <item,+publ isher+complete> (create_publ isher}

<item,+publ ication+book-complete> ::= 'book: ' <publication>
<i tem,+publ ication+complete> : {create_publ ication)

.. -.. -

The create_publ ication function determines, on the basis of the features

of its constituent <item>, whether a book, article, etc., is being

introduced.

The genera Ii ty of LWL' s extend function can be used by the

language writer to program th~ object language to reflect accurately the

needs of its users.

In this chapter, the language definition capabi Ii ties of LWL

have been discussed. The basic statement with which we were concerned is

the rule statement. It al lows the specification of general rewrite rules

of grammar and their associated semantic functions. · In addition,

features, local transformations and condition functions were introduced

to enhance the usefulness and conciseness of grammar rules. Finally, we

discussed the handling and use of metavariables and ambiguity, and the

capabi I ities for extension of the object language.

The above discussion of LWL's specification of the extended

syntax of an object language, together with Chapter IV's presentation of

how LWL is used to specify the object language's universe of discourse,

completes the topical definition of the REL Language Writer's Language.

Its formal definition is in Appendix A.

- 122 -

.CHAPTER VI

IN RETROSPECT

And the earth was of one tongue, and of the same
speech ••••

And the Lord came down to see the c i ty and the
tower, which the children of Adam were bui I ding.
And he said • • • I et us go down and there confound
their tongue, that they may not understand one
another's speech. And therefore the name
thereof was cal led Babel.

-- Genesis, .11:1-9.

When introducing a new computer language, its author has a dual

responsibility: to justify the need for yet another addition to the

programmers' Babel of languages, and also to consider how wel I his

language meets the criteria which motivated it and how it will affect

the wor Id which spawned it. In this cone I ud i ng chapter, we w i I r cover

three topics: a comparison of LWL to othe~ possible methods for

implementing specialized languages, some thoughts on why LWL fal Is short

of meeting the cha I I enges posed in the introduction and some poss i b I e

remedies, and a few disturbing questions about the diversification of

the myriad new languages made possib.le by our approach.

- 123 -

6.1 ALTERNATIVE TECHNOLOGIES

From the discussion of various desi ·gn points of LWL scattered

throughout the body of this thesis, some of the reasons why other

ex i sting techno I og i es for I anguage imp I emen tat ion were not considered

adequate should be apparent. In this section, we examine this question

with respect to the avai I able capabi Ii ties of extensible programming

I anguages, comp i I er generators and the recent crop of semant i ca I I y

powerful languages developed for the support of AI research (which we

cal I semantic languages, for lack of an accepted term).

The pr inc i pa I issue which ci is ti ngu i shes these three techniques

of I anguage imp I ementat ion is: What shou Id be the re I at i onsh i p between

the metalanguage and the object language? The extensible language

answer is that the object language should be bui It by adding to the base

language any new capabi I ities needed. Thus, the object language would

contain within it the metalanguage. A language implemented . by a

comp i I er genera tor is comp I ete I y divorced from the comp i I er generator

(metacompi ler) when it is completed. The semantic languages take an

ambiguous position, since their current users, the AI researchers, use

them as object languages, but they contain very strong extension

mechanisms that make it poss i b I e to use them as rneta I anguages for

creating application languages.

Each of the approaches has some great attractions and

- 124 -

shortcomings. We take up each, in turn, and discuss the debts which LWL

owes to each, as wel I as the compromises which have been .made in LWL to

avoid some of the worst problems with each of these other technologies.

5.1.1 EXTENSIBLE PROGRAMMING LANGUAGES

The fundamenta I premise of ex tens i b I e programming I anguages is

simple · and elegant: if it is possible to invent a basic computer

language with a very few primitive operations and some very simple and

extremely powerful techniques for composing them, then perhaps any

desired programming I anguage can eas i I y be extended from that base

language. The earl~ major attempts in this direction succeeded in

recreating from a stripped-down base language most of the features then

current in comp I ex programming I anguages, and the above premise was

assumed proven. To single out two particular projects; Standish's PPL

demonstrated the feasibi Ii ty of data structure extension from a basic

polymorphic set . of data types by a very few simple operators.

Wegbrei t's ECL made a serious attempt to tackle the most co~plex

problems of extensibi Ii ty, including considerations of efficiency and

language contraction. Yet, against this background of apparent success,

interest in ex tens i b I e I anguages has waned and their ac tua I use is

minimal. Even Standish now writes articles with titles like "After

Extensible Languages, What Next?"

- 125 -

According to an old folk saying, "The fruit doesn't fal I far

from the tree," and so it is with the I anguages created by extension.

The examples foreseen by the base language's designer al I work out wel I,

but many truly unforeseen extensions are just not possible with · any

reasonable effort. As an example of this problem, we turn to Standish's

PPL.

PPL is an extensible APL-like ·language, with only a limited

basic set of data types and operators. The expectation is that the user

who needs other data types and other operat i ans can add them to the

I anguage using its extension capab i I it i es. In those instances which

conform . closely to the incremental augmentation strategy (where the

desired I anguage is "c I ose" to the base I anguage), the resu It i ng

I anguage can be quite reasonab I e. The ub i qui taus 11 COMPLEX 11 examp I e fits

wel I with the base language, and one can conceive a similar extension

strategy to bui Id PPL up to a ful I APL or similar language.

To use PPL-style extension for the creation of significantly

different languages, however, is problematical. Incorporating a faci I ity

for symbo I i c man i pu I at i·on is a we I I -known {e.g. FORMAC} technique for

improving

concerned

the usefulness of an algebraic

with symbolic manipulation,

I anguage { to users who are

of course). Any ex tens i b I e

language is capable of expressing such an addition, but not necessarily

in a useful way. Consider the symbolic differentiation example [Taft

1971, p. 51].

- 126 -

PPL is extended to include data types FORMula, ~inary ~ormula,

~nary ~ormula and ATOM, in terms of structures and the primitive types:

SFORM = UF ! BF ! ATOM
SBF = [LO:FORM, OP:CHAR, RO:FORMJ
SUF = [OP:CHAR, RO:FORMJ
SA TOM = STRING ! CHAR ! REAL ! I NT DBL

Then the formulas F and Gare defined by

F <- BF('X, '+, 3)
G < - UF { ' - , BF (' X, ' *, F))

After a PPL function DERIV(F,X) is defined, we are shown

DER IV (F, 'X)
[LO: 1, OP:+, RO: 01

OERIV(G, 'X)
[OP:-,RO: [LO: [LO:X,OP:*,RO: [LO:l,OP:+,R0:0]] ,OP:+,
RO: [L0:1,0P:*,RO: [LO:X,OP:+,R0:3]]]]

With the addition of a special print routine, this becomes

PF {OERIV (F, 'X))

{1+0)
PF(G)

{-(X*(X+3)))
PF (DER IV (G, 'X))

(-((X*(1+0))+{1*{X+3))))

One might, as suggested, add the simplification algorithms

needed to make symbolic differentiation fook better, but the problem

with this "new" I anguage is deeper than that. As I ong as formu I as need

to be entered in the unnatural · manner shown above, this language wi 11

not be congenial to a real user. And note that the input routines are

not accessible for "extension" to deal with FORMs. Further, some simple

and potentially desirable capabi Ii ties are impossible to provide. For

instance, given the above def1nitions of F and DERIV, one might , like to

evaluate

- 127 -

X <- 5
X*DERI V {F, 'X)

65

But this is not possible, because the result of DERIV is a FORM, which

is not a proper argument to TIMES. So, the symbolic differentiation is

in some pecu I i ar sense unava i I ab I e to the rest of the I anguage. The

difficulty is .that the new language is implemented by representing

formulas as structures of symbols in the base language. This makes

their manipulation quite simple, but their evaluation impossible. The

failure results from not recognizing the relationship between the

imp I icit formulas of the PPL language and the FOR~s of the new language.

A formula in PPL may . be evaluated by the bui It-in language processor,

but a FORM is merely a structure of symbols on which the DERIV and PF

operations are val id.

This particular •difficulty is not universal. In USP, for

instance, the notion of "formula", or S-expression, is built in, and

would be' a natural representation for FORM. However, in every extensible

I anguage there are some extensions that just I ie outside the scope of

what can be handled naturally by the provided language processor, and

these can not be reached effectively by extension. The biggest

di ff i cu It i es arise whenever the base I anguage is extended to a new

capabi Ii ty which may conf I i·ct or have harmful interactions with an old

feature of the base language.

Symbolic differentiation added to an algebraic language is

- 128 -

hardly a radical extension. Yet, in PPL in particular, it cannot be

effectively accomplished. Because the specialized application languages

we consider involve operations more closely mirroring external realities

{presumab I y even farther removed from the bas·i c operations of an

extensible language}, an extensible language seems like an inappropriate

choice for the language writer.

A re I ated but di st ind troub I e with ex tens i b I e I anguages that

has surfaced concerns their often severe inefficiency. At the root of

this trouble is the extreme generality of primitives and extension

mechanisms which is demanded by the fundamenta I premise. For any

particular problem domain, a specially written tanguage can take

advantage of the peculiarities of the speci fie case to outperform the

. general techniques. If this were the only difficulty, it would be

unimportant, because the savings in implementation would quite often

offset this disadvantage. The serious problem results from the fact

that many such inefficiencies compound as layers of extension are bui It

on layers of extension to form the desired object language.

Consider the possibility of a language which verifies

tautologies in the sentential calculus, which has been written in a

I ist-processing language, which has in turn been written as an extension

of ECL~ Now, in the design of the list processing language, its

primitives are realized by data structures and operations of ECL. These

design decisions greatly influence the efficiency with which that

- 129 -

language wi 11 perform certain operations, which wi 11 in turn have a

significant effect on the tautology checker. Yet, to expect the

imp I ementor of the tauto I ogy checker to know each I ayer of I anguage

above which he works so that he might optimize the performance of his

routines is unreasonable; thus, decisions over which he has lost control

introduce inefficiencies which will hurt him. For instance, Wegbreit

i I lustrates ECL's data type extension by introducing a new type, RBUF. a

FIFO buffer of characters [1974]. Now, it might be that for the

imp I ementor of the Ii st processing I anguage we are imagining, such an

RBUF is an attractive implementation of atom names. Then, the

imp I ementor of the tau to I ogy verifier w i 11 be using a rather comp I ex

buffering mechanism, most likely unknown to him, even if he should

dee i de that a 11 sentence symbo Is in his I anguage are to be sing I e

characters.

The group working on the ECL system has started an attack on the

above prob I em. They have proposed incorporating very good optimizing

techniques in their comp i I er and have suggested the app Ii cation of

program verifying methods so that the compiler co~ld automatically or by

interacting with a programmer discover and eliminate inefficiencies

introduced in the extension process [Cheatham 1972). Certainly, this

attempt is necessary if extensibi I ity wi I I ever compete effectively with

spec i a I I y bu i It prob I em-oriented I anguages and programs. However, the

current ·state of understanding of programming language semantics and

- 130 -

espec i a I I y of the re I at i onsh i p between the semantics of a rea 1-wor Id

problem domain and the semantics of the implementing computer language

is sufficient I y muddy that automatic techniques of transferring

knowledge from ohe to - the other are uni ikely.

One final criticism of extension in extensible programming

languages -centers on the common assumption that no matter how the base

I anguage · may be modified, the desired mechanisms of extension remain

essentially unchanged. That this is unsatisfactory from the viewpoint of

this thesis should be apparent from considering four different problems

of language uBe and extension which are discernible in the creation and

use of an object language:

1) extension of the metalanguage itself, by the language writer, to
introduce his favorite abbreviations and convenient functions,

2) the language writer's use of the metalanguage to create and
modify the · object language,

3} the end user's use of his basic application language, as
prepared by the language writer, and

4} .the end user's extension of his language, using mechanisms put
into the object 1anguage by the language writer.

Considering the major differences between the task of the

language writer and the language user, there is no reason to expect that

their languages wi 11 be at al I similar, or that any part of the

meta I anguage wi 11 be of use to the user. For examp I e, essent i a I I y

nothing of LWL is of any di-rect use to the user of BIBLIO. In exactly

the same vein, there is no reason to assume that the manner in which the

I anguage writer and the I anguage user want to extend their I anguages

- 131 -

wi 11 be at al I similar. For example, both the syntax and sem~ntics of

LWL and BIBLIO differ greatly for the introduction to LWL of a new data

type coni'pared to the addition to BI BLI O of a new pub Ii cation. In an

ex tens i b I e I anguage imp I ementa ti on, - the same mechanism wou Id have to

serve for both.*

The goals of LWL are much more modest than those expounded for

extensible languages. Neither LWL nor any object languages created by it

aim for extreme- simplicity or elegance. And, most important, in no sense

is a tower of languages, al I bui It on top of each other, envisioned. In

fact, with the semantic primitives supported by LWL and the REL System,

the implementation of o~ject languages which in turn are able to create

other new languages is very difficult.** Because only a single ful I

level of "extension" is desired from LWL to the particular application

language, and because the extension actual 1·y bui Ids a completely new

I anguage rather than adding new capab i Ii ti es to a base, the severe

problems of inefficiency, the disturbing interference between old and

new features, and the confusion of different modes of language use and

extension are avoided.

*If a k-now I edgeab I e I anguage user insists on extending LWL in a manner
not supported by the I anguage ·writer { for instance, to inc I ude the
addresses of publishers), he steps outside the role of language user and
employs the faci I ities of LWL as a language writer.

**This accounts, in part, for many of the practical difficulties
encountered in implementing LWL, which runs in the REL System almost as
an ordinary object language.

- 132 -

6.1.2 COMPILER GENERATORS

The earliest appearance of syntax directed techniques for

language implementation probably occurred in the development of syntax

directed compilers for algebraic languages, I ike the Brooker-Morris

Comp i I er Comp i I er [Rosen 1964] and · I rans' ALGOL comp i I er [Irons 19611 •

Unfortunately, almost no significant improvements over these methods

have been in traduced in metacomp i I ers s i nee. then, and few recent sys terns

have even reached the degree of sophistication of the Brooker-Morris

system.

The .major attraction of the compiler generator {we use compiler

generator and metacompi ler interchangeably) is its abi I ity to transform

a language definition into a rather efficient compiler for that

language. The metacompiler view is that the definition of an object

language is translated into an independently existing new language. Once

a I anguage has been so created, its connection to the metacoinp i I er is

completely broken. If we define, sa!:J, FORTRAN, by this technique, the

result wi I I be a FORTRA~ compiler, with none of the capabi I ities of the

system which was used to create it. Although its syntax may have been

defined in BNF, the new language wi I I have no such mechanisms.

The use of a metacompi ler involves the fol lowing steps {as

out I ined in a problem suggestion in [McKeeman 1970, p. 2411):

1. Invent a I anguage •••
2. Use BNF, ANALYZER, and English descriptive text to describe your

language.

- 133 -

3. Implement and thoroughly test a syntax checker for your
I anguage.

4. Invent an idea I · machine to execute your I anguage. I mp I emen t and
document an interpretive simulator for your machine.

5. Add code emitters to the syntax checker, and incorporate the
interpreter •••

6. Test your language thor6ughly.

A metacompiler like XPL [McKeeman 1970]'aids this process at

steps two through five. Steps two and three create a simple,

unambiguous grammar for the desired language, and XPL's ANALYZER helps

by checking the grammar and eventually translating it to a set of tables

to be used by the ske I eta I syntactic ana I yzer. Steps four and five

couple interpreters and code emitters to the productions of the syntax,

to create the finished language processor.

The semantic routines which a I anguage writer imp I ements in a

met acomp i I er are used typ i ca I I y to em i t machine I anguage ins true ti ons.

{XPL, for example, provides bui It in routines I ike EMITRX to produce

machine instructions.) The basic faci Ii ties of the metacompi ler best

support this usage.

The major shor teaming of metacomp i I ers used for app I i cation

I anguage imp I ementat ion is that the prob I em of app Ii cation I anguage

processing is fundamenta 11 y not a comp i I at ion prob I em. In · a nor ma I

programming language~ the semantically meaningful primitives are at such

a I ow I eve I that very many of them must be invoked to perform a

significant computation. Thus, in implementing such a new programming

- 134 -

language, the most important tasks are to be able to analyze statements

of the new ·language as rapidly as possible and to translate them into

efficient and efficiently connected code segments. Metacomp1 lers,

therefore, provide parser generators which work for restricted c I asses

of grammars so that the generated parser can be very fast, and they

support the I anguage writer's work by providing a standard set of

functions for code generation, the al location of temporaries and

register optimization.

In the processing of appfication languages, nei~her the speed of

parsing nor the amount of I anguage processor overhead in composing

semantic primitives is important compared to the cost of performing the

basic data manipulations meaningful in the application field. In

answering a complex query, BIBLIO wi I I not apply more than twenty rules

of grammar in analyzing the sentence, but the resulting retrieval may

search hundreds of pages of the data base. Thus, the extra ti me spent

by a power fu I parser and a sophisticated semantic eva I uator I i ke those

provided by LWL can improve the usab i Ii ty of the I anguage without

significant additional cost. Also, because semantic primitives are

I arge and se If-contained, Ii t t I e advantage wou Id resu It from recomp i I i ng

them in the appropriate combinations for each sentence. Instead, LWL

supports a language for defining each semantic primitive independently,

and a compiler to turn those definitions into efficient implementations,

just once. Then, the funct i ans act as the interpretive routines of a

syntax directed interpreter.

- 135 -

Concisely put, a program in an application language is I ikely to

be a single sentence. Thus, the services provided by typical

metacompi lers are often irrelevant, and .the metacompi ler is not a very

appropriate tool for the implementation of specialized application

I anguages.

5.1.3 SEMANTIC LANGUAGES

Based on the experience of A I researchers in to prob I ems of

natural language understanding, robotics, vision and goal-directed

problem solving, a large number of semantically very powerful new

languages have been designed and at least partly implemented. These

languages have been described elsewhere [Bobrow ,1973), but a few

comments about them as application language implementation tools are in

order.

The great attraction of languages like PLANNER, QLISP, CONNIVER

and the i r re I a t i v es i s th a t they i n c I u de a r i ch rep er to i re of bas i c

semantic capabi Ii ties which have been found useful by years of

experience in Al research. General pattern matching, pattern directed

procedure invocation, high I eve I data primitives I i ke sets and

sequences, flexible control structures, and computations in dynamically

switchable contexts are all built into some of these languages. With

these features, many of the traditional AI algorithms reduce to short

- 136 -

programs, and the user of one of these languages gets a great deal of

computation per statement. In that the above mentioned capabi I ities are

I ikely to be useful in implementing the semantics of application problem

domains, these languages might be excel lent metalanguages.

The main reason why application languages have not yet been

imp I emented in these I anguages is that they tend to be inordinate I y

inefficient. The richness of their primitives easily leads to immoderate

application and exorbitant cost. Even the primitive operations are

sufficiently complex to use a significant amount of computing time, and

if any sort of combinatorial growth is al lowed to occur in the use of

these primitives, the languages become totally impractical. This view

is supported by current experience, which shows that only languages with

very smal I universes of discourse can be implemented at al I.

It seems that the freedom granted by . the semantic I anguages is

too much. They impose so Ii t t I e structure on their users that they · fa i 1

to provide guidelines for what will be practical. A language writer

using one of these has no "I anguage processor" a I ready defined for h-i m,

no definition of what an object language is or of how to implement it.

In some sense, the environment is too poor: if a context free parser is

needed, it must be implemented. On the other hand, it is too rich: The

language writer may be tempted to use pattern matching as a fundamental

access mechanism to his data base because it is so easily available; if

he does, its cost wi 11 make his language impractical.

- 137 -

Perhaps what is needed is a somewhat restrictive language

processor imposed on top of this environment, to insure that at least

those aspects of language processing which are clearly understood wi 11

be implemented efficiently. This idea wi I I be taken up again in the next

section, considering future extensions of LWL. Without such additional

structure on the general capabi Ii ties of these languages, however, they

do not provide a sufficiently wel I defined formal ism for application

language implementation.

6.2 ANOTHER LOOK AT METALANGUAGES

Metalanguages, in general, and LWL, in particular, share many of

the advantages and disadvantages of the above techniques for I anguage

because of the many s i mi I ar it i es and shared implementation,

capab i I it i es. In this section, we consider some deficiencies of the

present metalanguage approach 6nd some possibi Ii ties for improvement.

6.2.1 MANY POSSIBLE METALANGUAGES

Like an extensible language, a metalanguage can be the base of

only a limited class of object languages. The more appropriate that a

metalanguage is for defining a particular object language, the less

effective will it be for implementing other, different languages.

Clearly, the simplest metalanguage for implementing a particular object

- 138 -

language is one which already contains al. I of the primitives of the

desired . language. But that metalanguage wi 11 include many features

unique to the part i cu I ar prob I em domain it best supports, and w i I I

therefore be peculiar · to use for implementing languages in remote

fields.

The ·cha ice of how spec i a Ii zed a meta I anguage shou Id be to a

part i cu I ar domain is a choice s i mi I ar to how spec i a I i zed a part i cu I ar

object I anguage shou Id be. The more spec i a I i zed, the easier i t is to

use, but the fewer opportunities will arise to use it. If it is

anticipated that many application languages wi 11 need to be bui It, al I

including a certain special set of capabi Ii ties, it makes economic sense

to support those capabi Ii ties in a fairly specialized metalanguage. The

dividing line between what responsibility belongs to the implementor of

a particular application language and what to the metalanguage bui Ider

then becomes a question determined by economic considerations.

The metalanguage described in this thesis,. LWL, has developed as

the result of many years of experience with the implementation of

specialized languages. The problem domains of the individual languages

have ranged from the production of abstract motion graphics [Thompson

1974c] to natural language question answering (REL English). LWL is most

appropriate for imp I ement i ng a I anguage whose primitives are comp I ex

computat i ans ref I ect i ng n1ean i ngfu I operat i ans in an app Ii cation fie Id,

whose grammar is complex and benefits from the avai labi I ity of a

- 139 -

powerful syntactic analyzer, and whose efficiency depend~ on the

availability of efficient data access and manipulation facilities.

Ambiguity to I erance and user-introduced extension is a I so we I I

supported. Languages which pe'rm it the user. to interact with I arge,

persisting data bases in a complex manner are particularly wel I suited

to imp I ementat ion in LWL. The imp l.ementat ion of a rad i ca I I y .. different

language {e.g., a variant of JOSS) is possible but receives relatjvely

I it tie appropriate support from LWL.

Because of the I ikely future increase in the use of specialized

computer app Ii cation I anguages, it is reasonab I e to suggest and expect

that many metalanguages wi I I come into existence, with distinct~ large,

but I i mi ted domains of app Ii cab i Ii ty. Existing system imp I ementat ion

languages also suggest that metalanguages need not be implemented from

an assemb I y I anguage base, and one may expect to see a hi erarch~ of

metalanguages each of which al lows the implementation of other

meta I anguages or object I anguages. * Because each of these I anguages

would be complete and self-contained, it might be possible to avoid the

compounding of inefficiencies which accrues in a similar use of an

extensible language to build a hierarchy of languages. If not, then it

*LWL has been partially implemented in assembly language, using the same
system faci Ii ties and standard functions which are avai I able to the
object I anguage imp I ementor. LWL does not meet various of the er i ter i a
which an object lariguage must meet to receive proper support from this
environment {e.g., most of LWL's semantic primitives are the low level
primitives of programming languages). Therefore, its implementation
might have been easier in a different metalanguage, had an appropriate
one existed.

- 140 -

wi I I sti I I be possible to bui Id at least a few useful metalanguages I ike

LWL, that wi I I be able to support the implementation of large classes of

useful specialized application languages.

6.2.2 LANGUAGE IMPLEMENTATION IS DIFFICULT

LWL has been designed to make it easy to imp I ement I anguages

like BIBLIO. Has it been successful? Yes and no! The linguistic

framew.ork provided by LWL is a valuable tool for structuring BIBLIO's

i nip I ementat ion, the REL I anguage processor is powerfu I enough to make

the design of BIBLIO's syntax quite straightforward, and the PASCAL-I ike

LWL faci Ii ties for defining data structures and storage and retrieval

algorithms are convenient. Certainly, compared to an implementation in

assembly language, or even in a higher level language like PL/1, the LWL

implementation of BIBLIO is simpler and easier.

However, LWL i tse If is a I arge, comp Ii cated I anguage, not easy

for a .1 anguage writer to I earn · to use fu I I y and effective I y. Some of

the comp I ications (e.g., the inf lexibi Ii ty of the ·~ storage class}

are incidental, the result of historical accidents. The comp.lexity of

the rule statement, on the other hand, is not a result of poor design

each of its capabi Ii ties and nuances has at some time been quite useful

in implementing a portion of various languages.

The task of language implementation is undoubtedly complex, and

- 141 -

we know of no significant way of making it easy. The . only successful

models of language description existing today al I pose the task in terms

of defining i syntax according to some formal grammar and the semantics

according to another formal system {e.g., a programming language), and

connecting the two. The most optimistic researchers in automatic

programming may envision other possible approaches, in which the

programming system can elicit from the intended end user enough

information to construct his desired language without forcing him to

resort to formal descriptions, but only much more research and

experience wi I I decide if this optimism is justified.

A more promising direction is to spec i a Ii ze the meta I anguage

even more than LWL is specialized, and to add to it very compl-~te models

of a particular application domain. A metalanguage .like that might

already contain faci Ii ties which support features sufficiently close to

the desired object language of a particular user that he could specify,

in terms natural to the field, what his object language is to be I ike.

This is essentially the approach taken by Martin [1974] in building a

"metalanguage" in which to implement inventory control systems.

6.2.3 METALANGUAGES WITH HIGHER LEVEL PRIMITIVES

Concepts and experience from ex tens i b I e I anguages and comp i I er

generators have obviously contributed to the metalanguage scheme

- 142 -

discussed above. Contributions from the semantic languages ·have not yet

been inc I uded. LWL now provides the I anguage wr i ter strong I i ngu is tic

tools with which to shape an object language syntactically, but the

primitive semantic capabi Ii ties of LWL from which the object language's

semantics must be bui It are relatively low level.

For the development of specialized languages which exhibit

semantically sophisticated behavior as wel I as a flexible syntax,

features from the semantic languages could be incorporated into LWL.

With careful regard for efficiency {without which an application

language is useless}, some pattern matching and deduction primitives and

the addition of a set of basic relational data ti le manipulation

primitives could be added to the LWL programming language. To provide

truly convenient, flexible and natural application languages, semantic

capab i I it i es based on such techniques w i I I very Ii ke I y be necessary.

This augmentation of LWL would make it easier for the language writer to

implement application languages which use such complex primitive

semantics.

The incorporation of notions of program and data structuring

which are now being developed in an attempt to implement some of

□ i j ks tra' s ideas on s true tured programming [1973] wou Id be a usef u I

addition to LWL. Especially in the construction of very complex

semantic primitives, the c I ass and c I ass concatenation concepts from

SI MULA wou Id be quite important [□ ah I 1973). This wou Id permit the

- 143 ...

introduction of a level of structure which fal Is below that imposed by

the object language's rules of grammar.

Finally, the inclusion of highly interactive, powerful debugging

aids might well be a more significant improvement in LWL than any other

additional feature. This thesis has not addressed the problems of ·

language testing and debugging, but obviously the addition of faci I ities

with a sophistication similar to Interlisp's break, undo and DWIM

[Tei tel man 1974], but aimed at the particular language bui I ding

environment of LWL would be extremely useful.

This cone I udes the discussion of poss i b I e extensions to LWL

which promise to make it more effective as a language implementation

too I . The three extensions proposed have been: the deve I opment of a

hierarchy of metalanguages, the specialization of a metalanguage by the

incorporation of models for very I imited problem domains, and the

addition of very high level semantic primitives. Each suggestion is

intended to explore a way of making metalanguages more powerful and

easier to use. However, as with all cha I lenging human tasks, no fully

automatic techniques can rep I ace the necessity of hard thought and

inventive design to create a good language.

- 144 -

6.3 THE PRGLIFERATION OF LANGUAGES

Sammet, in one of her recent surveys, reported the existence of

near I y two hundred different computer I anguages in use in the

U.S. [1972]. The pressures for creating spec i a Ii zed I anguages discussed

in the introduction and the increasing avai labi I ity of tools I ike LWL

which make language implementation easier wi I I encourage an increase in

that already large number of languages, perhaps by orders of magnitude.

The possible creation of many incompatible, idiosyncratic languages wi I I

exacerbate the serious problems of incompatibility which we already face

and w i I I make the interchange of data in a mean i ngfu I form among

different users nearly impossible.

Potentially, each investigator (be he scientist or businessman)

w i I I have the ab i I i ty to have deve I oped for him spec i a I i zed computer

too Is which impose his own s true tura I views on the phenomena he is

studying. Because a specialized language can be changed arbitrari ~y to

fit the peculiarities of its user's special views, two investigators

starting from the same data and similar interests might develop their

thoughts and their analyses in such radically different directions that, ·

at a later time, their results may no longer be meaningful to each

other. If each investigator has abso I ute freedom in deve I oping his

studies and his speci~I ized tools, they might well become

incommensurable with the work of others.

- 145 -

Of course, there are now natural checks which prevent most

individuals from retreating into personal worlds, and we should presume

these to continue to operate. Thus, a scientist wi I I keep in touch with

the paradigm -0f his field because he does not want to lose the abi I ity

to comm~nicate his ideas to col leagues who are only accessible through

that paradigm. In a business, no department wi II be al lowed to develop

accounting techniques, for instance, which are irreconci I able with those

used elsewhere in the company, no matter how attractive that may be to

the department.

Whereas the present cost of providing specialized computer tools

acts as the primary deterrent to specialization, after the introduction

of inexpensive language implementation techniques, it wi I I be the

information cost that wi 11 discourage the abandoning of common

standards. The advantages gained by providing particularly appropriate,

spec i a I i zed too Is to each member of an organization w i I I have to come

into equi I ibrium with the disadvantages which result from

communication breakdown caused by i ncompa ti b I e spec i a I i za ti ans.

the

This

equi I ibrium is a better one on which to rely for decisions in computer

system design than the current one, which is so heavily dominated by

considerations of the cost of imp I emen ting different computer sys terns

and languages.

The metalanguage methodology helps to eliminate the control I ing

factor of excessive cost. It does riot, however, take a stand on whether

- 146 -

common or unique app Ii cation I anguages are appropriate. In fact, a

nearly continuous range of possibilities is suppotted, sinci two object

I anguages imp I emented in LWL may sharehere from a 11 to none of their

syntax, data structures and semantic functions. One attractive

compromise between common and unique languages is to require some common

core, but to let each of several users have special facilities of his

own beyond that core. Another is to require the same data structures and

some common set of semantic functions, but to al low each user different

syntactic access to a commonly structured data base. The methodology of

application language implementation in a metalanguage supports al I of

these possibi Ii ties.

6.4 CONCLUSION

This dissertation has presented a point of view favoring the

creation of specialized languages as a means of giving natural access to

the computer's organizing and prob I em so Iv i ng capab i I it i es to I arge

numbers of users. A discussion of the role of specialized languages and

current application computing practice led to the presentation of a

methodology for aiding the implementation of specialized application

languages. The interesting features of the REL Language Writer's

Language were presented, with examples from the BIBLIO language used to

i I lustrate the application of LWL. Finally, LWL's approach · to

supper ting I anguage imp I emen tat ion was compared w i th other poss i b I e

techniques.

- 147 -

The use of metalanguages is effective in easing the task of the

language implementor; therefore, it will make it more economical to

implement specialized languages. This wi 11 lead to the avai labi Ii ty . of

na tura I computer I anguages to aid spec i a I i zed areas of human endeavor,

and thus wi I I bring the computer within the reach of many.

- 148 -

LIST OF REFERENCES

Backus, J. W., R. J. Seeber, S. Best, R Goldberg, L. M. Haibt, H. L.
Herrick, R. A. • Ne I son, □. Sayre, P. B. Sheridan, H. Stern, I.
Zi Iler, R. A. Hughes, and R. Nutt 1957. The FORTRAN Automatic
Coding System. Proc. Western Joint Computer=--Conference 11:188-
198. Reprinted in Rosen, Sau I, ed,, Programming Systems and
Languages. New York: McGraw-Hi I I, 1967. ·

Balzer, Robert M. 1973. "A Global View of Automatic Programming," Proc.
3 I JCA I (20-23 Aug. 1973) • Men Io Park, Ca. : Stan ford Research
Institute.

Benson, David B. 1968. Forma I Languages, Part Theory, and Change.
Ph.D. Dissertation, Cal if. Inst. of Tech., Pasadena, Ca.

Bigelow, R. H., N. R. Greenfeld, P. Szolovits, and F. B. Thompson 1973.
"Specialized Languages: An Applications Methodology," Proc. AFIPS

. National Computer Conference 42{1973}:M49-M53. --

Bobrow, 0. G., J. 0. Burchfield, 0. L. Murphy, and R. S. Tomi inson 1972.
"TENEX, a Paged Time Sharing System for the POP-10," Comm. ACM 15
(March 1972).

Bobrow, D. G. and B. Raphae I 1973. "New Programming Languages for A I
Research," presented at 3IJCAI {Aug. 20, 1973}. Men Io Park·, Ca.:
Stanford Research Institute.

Brawn, B. S., F. G. Gustavson , and E. S. Mankin 1970. "Sorting in a
Paging Environment," Comm. ACM 13(Aug. 1970):483.

CACM (Commun i cat i ans of the ACM) Ju I y 1972. "As the . Indus try Sees It, 11

Comm. ACM 15:506-517.

Cheatham, T. E. and Ben Wegbrei t 1972. "A· Laboratory for the Study of
Automatic Programming," Proc. AFIPS SJCC 40{Sept. 1972):11-21.

Chomsky, N. 1965. Aspects ~ the Theory of Syntax. Cambridge: MIT
Press.

- 149 -

CR {ACM Computing Reviews) Jan. 1974. "Categories of the Computing
Sciences," ACM Computing Reviews lSCJan. 1974):43-44.

□ah I , 0. -J. , B. Myhrhaug, and K. Nygaard 1958. The SI MULA 67 Common
Base Language. Norwegian Computing Centre, For skn i ngsve i en 1B,
Oslo 3.

Dahl, 0.-J. 1372. "Hierarchical Program Structures," in Structured
Programming, 0.-J. Dahl, E. W. Dijkstra, ~nd C. A. R. Hoare, eds.
London: Academic Press.

Dijkstra, E. W. 1972. "Notes on Structured Programming, 11 in Structured
Programming, 0.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, eds.
London: Academic Press.

Oostert, Bozena H. 1970. REL -- An Information System for a Dynamic
Environment. . REL Project Report No. 3. Pasadena;--Ea:-: Calif.
Inst. of Tech., Dec. 1970.

Dostert, B. H. and F. B. Thompson 1971. The Syntax of REL English. REL
• Project Report.No. 1. Pasadena, Ca.: Calif. Inst. of Tech., 1971.

Dostert, B. H. and F. B. Thompson 1972. "Syntactic Analysis in REL
English: A Computational Case Grammar," Statistical Methods in
Linguistics 8(1972):5-38.

Oostert, B. H. and F. B. Thompson 1973. Verb Semantics in a Relational
Data Sys tern, REL Project Report No. 6.Pasadena, Ca:7 Ea I if. Inst.
of Tech., 1873.

Gomberg, Sara 1973. The REL Command Language. REL Project Report · No. 8.
Pasadena, Ca.: Calif. Inst. of Tech., 1373.

Greenfeld, N. R. 1972. Computer System Support for Data Analysis. Ph.D.
Dissertation, Calif. Inst. of Tech., Pasadena, Ca.

Habermann, A. N. 1973. "Critical Comments on the Programming Language
Pascal," Acta Informatica 3(1973):47-57.

Ingargiola, Giorgio P. 1974. "Hierarchies and Relations Among Data
Types," to appear in Proc~ ACM National Conference {Nov. 1974).

Irons, E.T. 1951. "A Syntax Directed Compiler for Algol 60," Comm. ACM
4{Jan 1951):51:55.

Keyser, S. J. and S. R. Petrick 1967. Syntactic Analysis, AFCRL-67-
0305. Bedfofd, Mass.: L. G. Hanscom Field, Air Force Cambridge
Research Laboratories.

- 150 -

Kay, Martin 1967. Experiments With ~ Powerful Parser, RM-5452-PR.
Santa Monica, Ca.: Rand Corporation.

Knuth, Donald E. 1958. "The Semantics of Context Free Languages,"
Mathematical Systems Theory 2{June 1958):127-145.

____ , 1973. A Review of 11 Structured Programming, 11 STAN-CS-73-371.
Stanford, Ca.: Stanford University, Computer Science Dept., June
1973.

Kuhn, Thomas S. 1970. The Structure of Scientific Revolutions, Second
Ed i t i on, I n tern at i on a I Ency c I ope dia o f Un i f i e d Sc i enc e , Vo I 2, No.
2. Chicago: University of Chicago Press, 1970.

Leavenworth, Burt M. and Jean E. Sammet 1974. "An
Nonprocedura I Languages, 11 {Proc. Symp. on Very

. Languages) ACM SIGPLAN Notices 9{Apri I 1974) :1-12.

McKeeman, W. M., J. J. Horning, and D. B. Wortman 1970.
Generator. Englewood Cliffs, N.J.: Prentice-Hal I.

Overview of
High Level

A· Comp i I er

Martin, Wi 11 iam A. 1974. "OWL: A System for Building Expert Problem
Solving Systems Involving Verbal Reasoning, 11 manuscript. Mass.
Inst. of Tech.

Moler, ·Cleve B. 1972. "Matrix Computations with Fortran and Paging,"
Comm. ACM 15{Apr. 1972):258-270.

Myrdal, Gunnar 1969. Objectivity~ Social Research. New York: Random
House, Pantheon Books.

Naur, Peter, ed. 1963. "Revised Report on the Algorithmic Language
Algol 60," Comm. ACM 6Uan. 1953):1-17.

Newell, A., F. M. Tonge, E. A. Feigenbaum, G. H. Mealy, N. Saber, B. F.
Green, Jr.·~ and A. K. Wolf 1950. Information Processing Language
~ Manual. Santa Monica, Ca.: Rand Corpdration.

Quine, W. V. 1969. Ontological Relativity and Other Essays. New York:
Columbia University Press.

Randal I, David L. 1970. Formal Methods in the Foundations of Science.
Ph.D. Dissertation, Cal if. Inst. ofTech., Pasadena, Ca-.

Rosen, S. 1964. 11 A Campi I er-Bui I ding System Developed by Brooker and
Morris," Comm. ACM ?{July 1954):403-414.

Saltzer, Jerome H. 1974. "Protection and the Control of Information in
Mu It i cs," Comm. ACM 17 {Ju I y 1974): 388-402.

- 151 -

Sammet; Jean 1972. "Programming Languages: History and Future," Comm.
ACM 15Uuly 1972):601-610.

Schwartz, J. T. 1973a.' On Programming: An Interim Report on the SETL
Project; Installment 1: Generalities. Courant Institute of
Mathematical Sciences, New York University.

____ , 1973b. "Centra I Techn i ca I Issues in the Semantic Design of
Procedura I Programming Languages, 11 manuscript. Courant Institute
of Mathematical Sciences, New York University.

Taft, E. A. 1971. PPL User's Manual. Cambridge: Harvard University,
Harvard Extensible Language Project, January 1971.

Teitelman, Warren 1974. Interlisp Reference Manual. Palo Alto: Xerox
Palo Alto Research Center.

Thompson, F. B. 1966a. "Man-machine Communication," in Seminar on
Computational Linguistics, A. W. Pratt, A. H. Roberts, and !<:-
Lewis, eds. U.S. Department of Hea I th, Education, and We I fare,
Pub I ic Health Service Publication No. 1716.

____ , 195Gb. "English -for the Computer," Proc. AFIPS FJCC
29{1955):349-356.

Thompson, F. B. and 8. H. Oostert 1972. "The Future of Specialized
Languages," Proc. AFIPS SJCC 40{1972):313-319.

Thompson, F. B. and B. H. Doster t 1974a. Pr act i ca I Natura I Language
Processing: The REL S'dstem as Prototype. REL Project Report No.
13. Pasadena, Ca.: Calif. Inst. of Tech., Jan. 1974. To appear in

· Advances in Computers, Vol. 13, ed. M. C. Yovits and M. Rubinoff. ·
New York:Academic Press.

Thompson, F. B. 1974b. The REL Language Processor. REL Project Report
No. 11. Pasadena, Ca.: Cal if. Inst. of Tech., 1974.

Thompson, F. B., R. H. Bigelow, N. R. Greenfeld, J. R. Odden, □. Reece,
and P. Szo I ov its 1974c. The REL Animated Fi Im Language. REL
Pro j e c t Rep or t No. 12. Pasadena , Ca. : Ca I i f. I n s t. o f Tech; , 197 4.
To appear in Computers and Graphics Vol. 1{1974).

Wegbreit, Ben 1970. Studies~ Extensible Programming Languages. ESO-
TR-70-297. Bedford, Mass.: L. G. Hanscom Field,Oirectorate of
Systems Design and Development, May 1970.

Wegbreit, Ben 1974. "The Treatment of Data Types in Ell," Comm. ACM 17
{May 1974):251-264.

- 152 -

Wegner, Peter 1972. "The Vienna Definition Language," ACM Computing
Surveys 4{March 1972):5-63.

Whor f, Benjamin L. 1956. Language, Thought, and Rea I i t y. Cambridge:
MIT Press.

Winograd, Terry 1972. · Understanding Natural Language. New York:
Academic Press.

Wirth, N. 1973. The Programming Language Pascal {Revised Report}.
Berichtige de Fachgruppe Computer-Wissenschaften, ETH, No. 5.
Zurich, Switzerland: Technical University, July 1973.

Wittgenstein, Ludwig 1958. Philosophical Investigations, Third Edition.
New York: Macmi I Ian.

Woods, W. A., R. M. Kaplan, and B. Nash-Webber, "The Lunar Sciences
Natural Language Information System: Final Report." BBN Report
2378. Cambridge, Mass.: Bolt, Beranek, and Newman, June 1972.

- 153 -

APPENDIX A

THE SYNTAX OF LWL

{1} - Introduction

To exp I icate the discussion of various constructs of the REL

Language Writer's Language in this thesis, this appendix presents an

informal syntax of LWL. The level 6f formatity desired in this

presentation is that of Wirth' s PASCAL Report [1973). This means that

the language description is accurate, but does not comprehend in detai I

the actual implementation.

The I anguage writer who uses LWL' s sophisticated def in it i ona I

capabi I ities may need to refe~ to the fo~ lowing syntactic description of

the I anguage, to understand the meaning assigned to his paraphrase

definitions, and especially to understand the ontology of his

metavariables.* For the less daring language writer, the operations of

the LWL are rather straightforward, and its grammar wi I I rarely

introduce difficulties •

.Because LWL is intended to parallel PASCAL wherever that

*C.f. Chapter IV, Section 4.2.1.

- 154 -

language has been adequate to our task, its syntactic definition l-li 11

take advantage of the excel lent and widely available definition of the

PASCAL I anguage [Wirth, 1973] . The discussion be I 01-J w i I I fo I I ow the

organization of the PASCAL Report and wi I I explicitly define only those

features of LWL which differ significantly from PASCAL {except where

clarity demands greater completeness}. Section headings are numbered by

corresponding section numbers from the Report. Section 10, on procedure

declarations, is essentially omitted, and Section 12, on the rule

statement, is added.

{2} - Summary £.f_ the Language

The REL Language Writer's Language is a meta I anguage in which

new, specialized object language~ may be defined for the REL System. An

object language consists of: its extended syntax, the rules of grammar

by which the REL language processor interprets . utterances of the

I anguage; and the data representat i ori, the dee I arat ion of the types of

objects in the language's universe of discourse {data structures) and

the operations which may be performed upon them {functions).

In addition to the standard sea I ar types, Boo I ean, integer, char

and real, and the user-defined scalar types, LWL introduces the scalar

type function, which is an arbitrarily {but consistently) ordered set of

values, each of which is a primitive or user-defined function. This

- 155 -

permits the construction and manipulation _ of data types which include

functions as components. Two "special" types of data items required in

the processing of grammar rules, the part_of_speech and features are in

fact represented in terms of the above sea I ar types. Parts of speech

are made equivalent to the non-printing values of the data type char,

and the features used to subcategor i ze each part i cu I ar part of speech

form a scalar type, whose name is

<pos>.features

Subrange is retained as an abbreviation for the scalar type and

concomitant advice to the compiler about the required amount of storage

needed for a variable. The va I ues of a var i ab I e dee I ared of type

subrange, however, .do not differ from the va I ues of the type on which

the subrange is based. Further, subrang.es may not be formed of the

scalar types real and function.

The PASCAL s true tured data types · array, record and set are

provided. For the record type, a storage class is an additional

possible attribute. The three storage classes are stack, ~and~'

and correspond to al locating the reco~d's -corresponding storage on the

ALGOL- I i ke stack, in a garbage-co I I ec ted I is t space or in the· paged

virtual memory.* The set structure may not have a base type of real or

*Certain specific I imitations and defaults exist on the maximum sfze and
organization of recor~ types of the various storage classes: The maximum
size of a page record is the REL Sys tern vi r tua I memory page size
(currently 2048 bytes); list records are each of fixed length (currently
12 bytes) and the first fi~ld of every list record type must be of type
char (required by the garbage collector). If it is not explicitly

- 156 -

function, and should ordinarily not be based on integer. There is no

file structure.

Variables of pointer type may be used to dynamically reference

storage classed record variables (not arbitrary variables, as in

PASCAL}. Pointer variables may have the value QJ.J_ or any record of the .

c I ass and type to which the pointer var i ab I e is bound. A pointer may

a I so be bound to a sub type of a defined type, name I y some pre-se I ec ted

part of a larger data type.

In the dee I arat ion of var i ab I es, the issues of scope and

persistence arise. In PASCAL, the scope of al I locally declared

variables is the procedure or function in which they are declared, and

every variable persists throughout its scope, with the exception of

those unnamed, dynamically created variables which may be referenced

only through pointers.

In LWL, al I record variablas of the list or page storage class

are of that latter, dynamic kind. No variable may be declared with a

type that is a page or I ist storage classed record -- only the function

new may be used to create such var i ab I es dynam i ca 11 y, and they may be

referenced only through pointer variables bound to their type.

Variables of the page class persists until they are either explicitly

declared so, the declaration is augmented to satisfy this requirement,
and the newly introduced anonymous variable is assigned an initial value
consistent (for the garbage collector} with the structure of the rest of
the record.

- 157 -

removed by the function free or imp I i cit I y freed by the de I et ion of the

complete version. Variables of the I ist class persist unti I e .i ther no

more pointer var i ab I es reference them or the user session is

terminated.*

All· static variables must be declared with data types with

storage classes other than page or I ist. Ordinarily, their persistence

is co-terminous with the invocation of the function in which they were

dee I ared, and their scope is exact I y that function, exc I ud i ng other

functions cal led by it. The special declarations common and globaJ give

such a variable universal scope; global insures the same persistence as

the current session, and common the same as the version.**

Assignment and the basic operators are as in PASCAL, except that

the ordering relations also apply to pointer and function types. There

are no program or procedure dee I arat ions, the funct i ona I parameter and

evaluation mechanism is quite different*** and there are extensions of

the for and while statements.

The extended syntax of the object language is introduced ~y the

use of the rule statement. Its syntax is defined in Section 12, below.

*C.f. chapter IV, Section 4.4.1.

**Note that the value of a pointer variable declared common and bound to
a Ii st record type becomes meaningless after the end of a session, and
that dynamic var i ab I es of the page c I ass may be permanent I y I ost to a
version at the end of a session unless they are pointed to by a variable
declared common.

***C.f. Chapt~r IV, Section 4.3.3.

- 158 -

{3} - Notation, terminology, and vocabulary

The syntactic description of LWL wi 11 use an extended Backus

Naur form. The semantit part of the rule definitions wi 11 be left out,

and the semantics wi 11 be described informally or left imp I ici t if

obvious. The LWL syntax uses features to keep track of the source from

which a part i cu I ar phrase derives. For instance, <sea I ar _type, +rea I>

and <scalar_type,+integer> are both instances of <scalar_type>, both

recognized using the rule

<scalar _type>::= {<identifier> {,<identifier>}) I integer I real I
Boolean I char I function

but with the further requirement that it was the real or integer

alternate of the scalar_type rule which applied to them. This provides a

systematic syntactic means for taking into account grammat i ca I

information not explicitly specified by the PASCAL grammar rules.

Unless otherwise specified, assume that each part of speech is marked by

features indicating its actual derivation, as in the above example.

The optional presence and repetition {zero or more times) of an

item in the syntax wi I I be represented by enclosing it in a pair of . the

metabrackets { and } • The vertical bar, I , wi 11 indicate alternatives,

and the rnetasymbol, ::=, wi I I be the production symbol of BNF.

It must be noted that because LWL is itself an extensible

I anguage, its syntax as presented here is only an accurate statement

before the I anguage writer has commenced. For examp I e, the definition

- 159 -

of a new <record_type> adds to the LWL syntax grammar rules i..Jhich

recognize the newly defined type identifier and the various field

identifiers. The PASCAL definition's ubiquitous use of the syntactic

category <identifier> is avoided by i·dent i fy i ng new I y introduced

identifiers with their syntactic type in a new rule of LWL.

The vocabulary consists of the basic symbols

< I et t er> : : = A I B I C I D I E I F I G I H I ·I I J I K I L I M I N I
0 I P I Q I R I S I T I U I V I W I X I Y I Z I a I b I c I d I

elflglhl I lklllmlnlolplqlrlsltl
u I V I w I X I y I z I

<digit> •• - 0 1 2 3 4 I 5 I 6 I 7 I 8 I 9

<special symbol>::=
{ I l I : = I . I

+ I -
I

* I I
I ,

I & I > I < I < I l I· C I J I
@ I A

category, define, array, record, set,~' ~' stack, function, rule,

etc., although they are standard words of the language, are n6t

considered reserved or quoted. It is the I anguage writers

responsibi Ii ty to avoid usage that would cause ambiguity. A comment,

delimited by the symbols Jandl, may appeat in the text anywhere that a

blank may appear {except insid~ strings) and has the same meaning.

- 160 -

{4} - Identifiers, Numbers, and Strings

Identifiers denote constants, types, variables, functions,

rules, parts_of_speech and features. An identifier may denote severa .l

of these at the same time, so long as its use in any particular instance

i s unambiguous. Identifiers are defined as in PASCAL. Numbers are

expressed in the normal decimal notation, as in PASCAL, but with the

caret (A) used to show the scale factor instead of E.

Sequences of characters enc I osed in quote marks (') are ca I I ed

strings, as in PASCAL. Strings may appear only as <simple_expression>s.

{5} - Definitions

In PASCAL, constant definition and data type definition are

treated as distinct. LWL subsumes both unde~ the more general operation

of definition. Syntactically, this is provided by the define statement

<definition>::= define <definiendum> = <definiens>
<constant_definition> I <type_definition>

The definiendum is a sequence of metavariables and characters other than

=. Metavariables are enclosed in " marks, and either identify the LWL

part of speech for which they stand exp I i c i t I y or provide an examp I e

from which the part of speech is determined. Thus,

<metavar i ab I e> : : = "<LWL_part_of _speech>" I "any_phrase_of _LWL"

The alternative "<LWL_part_of_speech>" is actually written with the

- 161 -

angle brack~ts, and refers to the left hand side of any of the grammar

rules of LWL, e.g.

"<expression>"

The definiens is an LWL phrase, possibly including

metavariables. The meaning of this rule is similar to adding to the

grammar of LWL the general rewrite rule

definiens 1:= definiendum

It is similar rather than equivalent, because the rule is not entered as

.stated; if the definiens parses to a part of speech <ps>, then the rule

added is

<ps> ::= definiendum

with a def semantics which contains the phrase marker of the definiens.

Note that the requirement that the definiens must parse before the rule

is added eliminates the possibility of general rewrite rule and

recursive definitions.

In detai I, the operation · of the definition rule is rather

comp I icated. For example, it is necessary to determine that parse of the

definiens which is minimally sufficient to span it, and it is necessary

to · i den t i f y the me ta var i ab I es wh i ch are to par t i c i pate i n the

definition. This is more dif _ficult than might first appear, since so

I ittle is assumed about the form of the definiendum. Thus, a definition

Ii ke

de f i n e II >< II • • r; y II = s i n (II y II)

- 162 -

is meaningful, but here the "x" are merely symbols of the defined

phrase, and do not serve as a metavariable. The actual defining process

works as fol lows:

I. Find a 11 parses of the def in i ens. If there are none, the
definition is meaningless and fai Is. Eliminate any parses in
which the last rule applied was of the form

<non_terminal> ::= <non_terminal> .
to get the minimal parses of the definiens. If there is more
than one such parse, the definition is ambiguous and fai Is.

II. Consider al I possible sequences of terminal characters and
metavariables of the definiendum. ·E.g., for the above example,
the possible sequences are

"x" •• <metavariable for var i ab I es Ii ke y>
<metavar i ab I e for var i ab I es Ii ke x> •• "y"
<metavariable for variables I ike x> •• <metavariable for

variables I ike y>
"x" .. "y"

where the first is the . correct interpretation.

III. Find al I pairs of <sequence from II, parse from I> which have
correspondingly the same sets of metavariables. If there is
more than one such pair, the definition is ambiguous and fai Is.
If there are no such pairs, the definition is meaningless and
fai Is. If there is ~xactly one such pair, then a new grammar
rule is added to LWL, where the right had side is the sequence
found in II., and the left hand side is the part of speech of
the parse from I., with a semantics which is the phrase of that
parse and with the correspondi .ng metavariables bound to each
other.

{5.ll - Constant Definition

Constant definition is~ special case of <definition>, in which

the definiendum is an identifier and the definiens is a constant

expression. A constant definition introduces an identifier as a sy~onym

for a constant. Any expression which may be eva I ua ted to a constant

- 153 -

value at the time of constant definition may appear in the definition,

a 11 owing constants to be defined in terms of other constants. This

includes the application of standard functions, which return constant

values given constant constituents.

<constant definition>::= <identifier>= <expression,+constant>

A constant definition, like

canst limit= 8;

has the effect of adding to the LWL grammar the rule

<constant>::= I imit

with the meaning that lli.l.!_ evaluates to 8.

In addition, numbers and the nul I pointer are constants:

<constant>::= <unsigned_number> I !ll_!_

{6} - Data~ Definitions

A data type identifies a semantic category of objects. It thus

determines the set of values which variables of that type may assume. A

data type definition extends LWL by introducing an identifier whose

meaning is the newry defined type. In addition, the category data type

definition identifies a semantic category of the object language, and

therefore, a syntactic part of speech.*

*The relationships among the ~' define and category definitions are
discussed in Chapter IV, Section 4.2.2.

- 164 -

<type_definition> ::=~<identifier> = <type> I
category <identifier>= <type>

<type>::= <simple_type> I <pointer_type> I <structured_type>

{6.1} - Simple types

The s imp I e types are sea I ars, both standard and user defined,

and the restricted ranges of these, cal led the subrange types. The

counting types form the val id base typ~s for sets and array indices.

<simple_type> ::= <scalar_type> I <subrange_type>
<scalar_type> ::= {<identifier> {,<identifier>}) I integer I real I

Boolean I char
<subrange_type> ::=

<constant,-real-function> •• <constant,-real-function>
<counting_type> ::= <scalar_type,-real~function> I <subrange_type>

{6.2} - Structured types

Structured types are aggregations of cqmponents, co-ordinated by

a structuring method and perhaps specifying a storage class. The

structuring methods are array, set and record, and the storage classes

are page, Ii st and stack.

<structured_type>
<subtype>

<array_type> ::=

.. -.. - <array_type> I <set_type> I <record_type> I

arra~ [<counting_type> {,<counting_type>l] £f. <type>

<set_type> ::= set 2...!. <counting_type>

<record_type> ::= <unclassed_record_type> I <classed_record_type>
<classed_record_type> ::= <storage_class> <unclassed_record_type>
<storage class>::=~ I~ I stack .

- 165 -

<unclassed_record_type> ::= record <field_l ist> end
<field_l ist> ::= <fixed_part> I <fixed_part>;<variant_part>

<var i an t_par t>
<fixed_part> ::= <record_section> {;<record_section>l
<record_section> ::= <identifier> {,<identifier>} : <type>
<variant_part> :;= case <identifier>: <counting_type,+identifier>

2..!. <variant> {;<variant>}
<variant> : := <case_label I ist> (<field_l ist>}

<case I abe I Ii st> :
<case I abe I I is t> : : =

<constant,-real-function> {,<constant,-real-function>l

A further structured type, the subtype, is a se I ected component

of a structured type, often used as the target of pointer types L-1here

the desired referent is known to be some e I ement of a I arger known

structure. The subtype is syntactically represented much I ike a

var i ab I e denotation, but with the arbitrary * as the on I y array index

permitted. The feature mechanism is used to assure that on I y c I assed

record types ~re subject to subtype definition, and the subtype acquires

the storage class of its base type.

<subtype>::= <subtype_head> I <subtype_component>
<subtype_head> ::= <structured_type,+identifier+classed_record>.

<field_identifier>
<subtype_component> ::= <indexed_subtype> I <subtype_field>
<indexed_component> ::= <subtype,+array> [* {,*}]
<subtype_field> ::= <subtype,+record>. <field_identifier>

As in constant definition, the app Ii cation of many of these

rules has as side effect the extension of LWL's grammar by the addition

of new lexical rules. The scalar type rule adds rules of the form

<constant> .. -.. - identifier

for each constant of the new user-defined scalar type.

section and variant part rules add other rules of the form

The record

- 166 -

<field_identifier> ::= identifier

for the tag and other fields of a structure.

{6.3} - Pointer types

Pointer types may have as their targets only storage-classed

record types or subtypes, and the target type must be named by an

identifier.

<pointer_type> .. -.. - @ <structured_type,+identifier+classed_record>

{7} - Declaration and Denotation of Variables

Variables are declared and referenced in the same manner as in

PASCAL, µith the exceptions that intermediate field identifiers may be

omitted where no ambiguity can result, and pointer references may also

be omitted, in which case the denotation is assumed to represent the

shortest path in a breadth-first, left-to-right search of the connected

data types. Field identifiers determining among variants of a case

record may not be omitted.

{8} - Expressions

Expressions are very much as in PASCAL, with a few minor

differences:

- 167 -

<factor>::= <variable> I <constant> I <function designator> I <set>
I (<expression>) I not <factor>

<set> : : = [<expression>_{_, <expression>} J I []
<term>::= <factor> I <term> <multiplying_operator> <factor>
<simple_expression> ::= <term> I

<simple_expression> <adding_operator> <term> I
<adding_operator> <term> I <string>

<expression>::= <simple_e~pression> I
<simple_expression> <relational_operator> <simple_ex.pression>

The relational operators for comparison are extended to operate

as wel I on pointer variables with the same target types and on function

variables. Features are used to mark whether an expression has a I I

constant components and the type of the result of expression evaluation.

An alternative form of function cal Is is also permitted:

<f unct i on_des i gna tor> : : = <function, -var i ab I e> I
<function> (<constituent> {,<Constituent>}) I
<constituent>. <function,-variable> I
<constituent>. <function,-variable>

{<canst i tuent> {,<Constituent>})

{9} - Statements

Statements are executable segments of a I gar i thms. The empty

statement and assignment statement remain as simple statements, along

with a limited version of PASCAL's <procedure statement>. The <goto

statement> and its corresponding <label>s have been eliminated. Within

compound statements, definition statements are treated as nul I

statements, al lowing definitions to be interspersed with other

statements of a function declaration.

In the assignment statement, only the form

- 168 -

<assignment_statement> ::=<variable>:= <expression>

. is a I I owed, s i nee func ti ona I va I ues are to be re turned by the standard

functions return and ambig.

The structured statements <compound_statement>,

<conditional_statement>, and the <whi le_statement> and

<repeat_statement> are as in PASCAL.

differ.

The for and while statements

The for statement has the expanded form*

<for _statement> : := for <entire_variable> := <for I ist> do
<statement>

<for_l ist> ::= <expression 1> to <expression 2> I
<expression 1>,<expression 3>, .. ,.,<expression 2> I
a I I <count i ng_type> I ill <var i ab I e, +pointer>

The <entire variable> which receive~ the new values on each loop of the

for is called the control variable. It and any value assigned to it

must be of the same type.

The with statement is considerably modified, to provide a simple

syntactic form for control over the REL System's software paging

mechanism.

<with_statement> ::= with <record_binding_list> do <statement>
<record_binding_l ist> ::= <record_binding> {,<record_binding>}
<record_binding> ::= <record_variable> I

<identifier> <record_variable> I <array_variable,+pointer>
<identifier>: <array_variable,+pointer>

The first a I ternat i ve for <record_b i ndi ng> Ii es c I osest to the

*C.f. Chapter IV, Section 4.3.1.

- 169 -

purely syntactic use of with chosen by PASCAL. In LWL, however, the

with statement is executed, and if the <record variable> has the storage

class~, the with surrounds its constituent statement with calls on

the REL paging services to guarantee appropriate access to the record

within the scope of the statement. The. second alternative additionally

introduces a I oca I synonym for the record var i ab I e, so that if in the

constituent statement a field reference must be disambiguated, the local

identifier may be used in place of the (often longer) actual variable

denotation.

The third alternative is a special construct to aid in the

writing of functions which pay close attention to paging. It al lows an

array, each of whose elements is a pointer to a record structure, to

appear in the binding Ii st. I ts effect is that every non-!ll.J.. e I ement of

the array is used to identify a record which is made available. The

fourth alternate is analogous t~ the second.

In add i ti on, any fie Id se I ec ti on in a record binding which

involves a variant of a case record implies that the case validity is

verified once only, at the beginning of the with statement.

Some cal ls on standard functions may take the form of additional

statement types by the omission of otherwise demanded parentheses. For

instance,

return x;

takes the place of the <procedure_statement>

- 170 -

return {><};

{10} - Procedure Declarations

LWL does not provide for the declaration of user procedures.

{10.1} - Standard procedures

The fol lowing standard ~rocedures exist:

return -- returns its single argument as the value of the function
currently being executed.

amb i g -- adds its sing I e argument to the Ii st of ambiguous .va I ues
which wi I I be returned by this function when return is invoked.

~ -- causes the current function to fai I; this causes the current
interpretation of its phrase to be abandoned.

error -- returns its single argument as the out-type value for the
current function, causing the noted error to propagate to the
top level of evaluation.

vacuous -- I ike error, but the output propagates only so long as no
val id alternative interpretation of this phrase is encountered.*

message -- writes its argument immediately to the user.

{11} - Function Declarations

LWL supports functions and prefix functions, which differ in

that the· constituents of a prefix function are not evaluated when the

function is invoked. Because the type information of a function's

parameters and va I ue can be deduced if the function appears as the

*C.f. [Thompson, 1974b].

- 171 -

semantics of a rule . of grammar, the function declaration need not

include these type declarations for such functions.

<function_declaration> ::= <function_heading> <compound_statement>
<function_heading> ::= <function_word> <identifier> I

<function_word> <identifier> <parameters>
<parameters>::=

(<formal_parameter _section> {,<formal_parameter _section>})
: <type,+identifier> I : <type,+identifier>

<function_word> ::= function I prefix function I subroutine

The evaluation of functions and prefix functions and the binding

of parameters are performed by the REL language processor.* A subroutine

is a restricted form of function, which may be invoked only directly

from another function; it may not be invoked by the I anguage processor

in response to the application of a grammar rule and it may not fai I or

return an ambiguous value. The parameters of a subroutine are bound by

value. This mechanism is provided to al low an efficient form of

function-to-function calling without paying the overhead of the

generality of the language processor's evaluation mechanism.

{11.11 - Standard Functions

In addition to the PASCAL standard functions, LWL provides the

fo 11 owing:

*C.f., Chapter IV, Sect·ions 4.3.2 and 4.3.3, and [Thompson, 1974b].

- 172 -

Simple Extensions of the PASCAL Functions:

The function ord may take any scalar type but real, and returns

the ord i na I pas it ion of that va I ue in the sea I ar type. Instead of the

single function chr, the name of every (non-real, non-integer) scalar

type is a function, and so, for instance, char(i) is the i-th character

in the character representation.

Dynamic allocation is performed by the function new, which

differs from the PASCAL procedure new since its first parameter is not a

variable, but a type to be allocated, and its value is a pointer to the

newly al locat~d variable.

Functions for Paging Control

unlocked -- a function of no arguments, it returns an integer which
counts the number of yet avai I able page frames for further
paging operations.

lock(<page classed record variable>) -- returns its argument with
the side effect that the page of virtual memory occupied by the
selected record is not subject to automatic replacement unti I
explicitly released or unti I a fai I or error or vacuous
statement is executed, or unti I processing of the current
sentence is terminated.

release -- the release function for lock.

Functions for using the Language Processor

evaluate(<phrase>, -<I ist of phrases>) -- cal Is the semantic
evaluator on its first argument; the second argument, if
present, is a I ist of phrases to be bound to the metavariables
of the the phrase before it is evaluated.

constituent -- a function of no arguments, yielding the phrase which
is currently being evaluated

For each par t_o f _speech, there is a function of two argument, the
f i r s t a phrase , the sec.on d an opt i on a I i n t e g er , wh i ch s e I e ct s the

- 173 -

const'i tuent of that phrase with that part_of _speech. The integer,
if present, requests select~on of the i-th such constituent.

!::1_-amb{<phrase>) -- the number of . ambiguous phrases 1-1hich represent
the ambiguous values of the phrase.

amb{<phrase>, i) -- the phrase which represents the i-th of the
ambiguous values of the input phrase.

metavar -- a condition function which creates new metavariables.
rnetabind -- a condition function which binds metavariables.
n_bound(<phrase>) -- the number of metavariables bound in the phrase
me~nd{<phrase>, i) -- the i~th bound metavariable phrase · in the

input phrase.
range{<metavariable phrase>) -- the range of the metavariable,

another phrase.
name(<metavariable phrase>} -- the name of the metavariable, a

string (array of char}.

extend(<I ist of phrases>, <list of phrases>, function, string) -
the arguments are, in turn, the phrases of the left hand side
and right hand side of the new rule to be added, the condition
function for the rule, and the name of the . rule.

The interface with the language processor is further specified

in a document on that subject, [Thompson, 1974b].

{12} - Rules

The object language to be implemented is defined in terms of a

set of syntactic rules which al iow the language processor to ihterpret

sentences of the language in terms of its defined data objects and

funct i ans. the ru I e statement has the form:

<rule_statement> ::= <identifier> rule <left_hand_side> <production>
<r i gh t_hand_s i de> : f<seman ti cs>}

<production> : : = : (<function>): ·= I : : =

The identifier names the ru I e for future reference; the first form of

- 174 -

the <production> al lows the specification of a condition function to be

invoked when the parser is about to apply this rule.

The left and right hand sides of the rule are I ists of

parts_of_speech, including specification of feature matching and setting

requirements.

<left_hand_side> ::= <part_of_speech_l ist>
<right_hand_side> ::= <part_of_speech_l ist>
<part_of_speech_l ist> ::= <terminal> I <non_terminal>

<par t_of _speech_! is t> <term i na I> I
<par t_of _speech_! i st> <non_term i na I>

<terminal>::= <string> I <string_begin> I <string_end> I
<input_terminator> I <carriage_return>

<non_terminal> ::= < <part_of_speech> > I
< <part_of _speech>, {<feature_check_or _set>} >

<feature_check_or_set> ::= <feature_sign> <feature>
<unsigned_integer> .

<feature_sign> ::=+I - I*

The semantic specification of a ru I e mentions the semantic

functions which are to compute the meaning of each non-terminal phrase

of the rule's left hand side and the associated syntactic

trans format i ans which are to take p I ace on the phrase marker which

represents that value.

<semantics>::= {<unsigned_integer>} I (<function>) I
(.<prefix_function>) I ({<transformation>} ,<function>)
({<transformati6n>} ,.<prefix_function>)

<transformation>::=< <unsigned_integer> > I
< <unsigned_integer>,* > I
< <unsigned_integer>,<part~of_speech>{,<unsigned_integer>l >
< <unsigned_integer>,*-<part_of_speech>{,<unsigned_integer>} >

The meaning of the rule statement is discussed in Chapter V.

The features statement allows the definition of features to

subcategorize parts of speech:

- 175 -

<features_statement> ::= features <part_of_speech> =
[<identifie~>{,<identifier>}l

- 176 -

APPENDIX II

THE SYNTAX OF BIBLIO

The BIBLIO language was presented informally in Chapter III, as

an example of the kind of language which is ea$i ly implementable in LWL.

This appendix defines the syntax of BIBLIO, in LWL.*

The basic data input statements are defined by the fol lo~ing

syntax:

<SENTENCE>::= <SUBJECT>' IS PART OF' <SUBJECT>
CRELATE_SUBJECTS)

' ' .

<SENTENCE> : : = < I _pusu CAT ION> ' . ' : (SA y _OK)

<I_PUBLICATION> ::= <O_AUTHOR,+EXPLICIT>' ' <PUBLICATION>
(BAS I C_I NPUT}

<I_PUBLICATION> ::=<!_PUBLICATION>' ' <SUBJECT>
CRELATE_TO_SUBJECT}

<O_AUTHOR,+EXPLICIT> ::= <AUTHOR>

<AUTHOR>::= <AUTHOR>','

<PUBLICATION>::= <PUBLICATION>','

<SUBJECT>::= <SUBJECT>','

{BUILO_AUTHOR_LIST)

*Note that the syntax examples drawn from this language for the
presentation of Chapter V differ somewhat in detail from the syntax
presented here.

- 177 -

The last three rules are merely to al low the inclusion of commas to

separate parts of the input statement.

The fol lowing rules permit the introduction of new entities into

BI BLI 0:

<ITEM,+AUTHOR>: (COLLECT_ITEMJ:= 'AUTHOR: '

<ITEM,+SUBJECT>: (COLLECT~ITEMJ:= 'SUBJECT: '

<ITEM,+PUBLICATION>: (COLLECT_ITEMJ:= 'PUBLICATION: '

<AUTHOR>::= <ITEM,+AUTHOR>: (CREATE_AUTHORJ

<SUBJECT>::= <ITEM,+SUBJECT>: (CREATE_SUBJECT}

<PUBLICATION>::= <ITEM,+PUBLICATION>: (CREATE_PUBLICATION}

Thus, the creation of new entities is a two_stage process: Our i ng

parsing, the col lect_i tern codi tion function collects the str1ng of

characters to the right.of its constit~ents (up to a semicolon} into an

<item>.* Then, the semantic functions Ii ke create_author actua I I y create

the specified entity and enter into the dictionary its name {and any

desired aliases).

The fol lowing rules define the syntax of questions:

<SENTENCE>::= <O_AUTHOR> '?' : (PRINT_AUTHORS)

<SENTENCE>::= <O_SUBJECT> '?' : (PRINT_SUBJECTSJ

<SENTENCE>::= <O_PUBLICATION> '?' (PRINT_PUBLICATIONS)

*It must also manipulate the parsing graph to show the <item> spanning
the whole string, including the terminating semicolon.

- 178 -

The only way to get an author except by explicitly naming him is

by using the rule

<□_AUTHOR>::= 'AUTHOR OF' <O_PUBLICATION,+COMPLETED>
(AUTHORS_OF}

To request a I ist of subjects,. the fol lowing may be used:

<□_SUBJECT>

<O_SUBJECT>

<O_SUBJECT>

. ·.. -

.. -.. -

' TOP IC OF ' <O_PUBLI CA TI ON> : (TOPI CS _OF}

'GENERALIZATION OF' <□_SUBJECT>: (GENERALIZATION)

' PAR TS OF ' <O_SUBJEC T> : { SPEC I ALIZA T ION}

<□_SUBJECT>::= <SUBJECT> BUILO_SUBJECT_LIST

<□_SUBJECT>::= <□_SUBJECT>' ' <SUBJECT>: (BUILD_SUBJECT_LIST)

The computation of I ists of publications is most complicated due

to the need for conjuncted and disjunGted phrases. The simple requests

for pub I ications are accomplish~d by the fol lowing rutes:

<OYUBLICATION+BY> ::='BY' <O_AUTHDR>: (WORKS_BY}

<O_PUBLICATION+ABOUT> ::='ABOUT' <O_PUBLICATION>: (WORKS_ABOUT}

<O_PUBLICATION,+RATED> ::= <RATING> '-RELEVANT TO' <□_SUBJECT>:
(WORKS_RELEVANT}

<O_PUBLICATION,+COMPLETED> ::='WORKS' <O_PUBLICATION,-COMPLETE□>
(1)

Conjunctions and d·isjunctions where only "works" is shared (e.g., "works

by Quine and about ontology"} are simply handled by the fol lowing:

<O_PUBLICATION,+CONJUNCTED> ::=
<O_PUBLICATION,-DISJUNCTED-COMPLETED>' AND'
<O_PUBL I CAT I ON, -0 I SJUNCTED-CONJUNCTEO-COMPLETED> : {Q_ANDl

<O_PUBLICATION,+OISJUNCTED> ::= <O_PUBLICATION,-COMPLETED>' OR'
<O_PUBLICATION,-OISJUNCTEO-COMPLETED>: (Q_OR)

- 179 -

More el I iptical constructions in which significant information must be

d i s tr i bu t e d over the var i o us cons t i tu en ts { e. g. , 11 works 8-r e I e van t to

extensible languages or natural language"} are accepted by general

rewrite rules:

<O_PUBLICATION,+BY>' AND BY' . <O_AUTHOR> ::= <O_PUBLICATION,+BY>'
AND ' <O_AUTHOR} : (1} (2)

<O_PUBLICATION,+BY>' OR BY' <□_AUTHOR>::= <O_pUBLICATION,+BY>'
OR ' <O_AUTHOR} : (1) (2}

<OYUBLICATION,+ABOUT>' ANO ABOUT' <□_SUBJECT>::=
<O_PUBLICATION, +ABOUT> ' AND ' <□_SUBJECT> : (1) (2}

<O_PUBLICATION,+ABOUT>' OR ABOUT' <□_SUBJECT>::=
<O_PUBLICATION,+ABOUT>' OR' <□_SUBJECT>: {1) (2)

<O_PUBLICATION,+RATED>' AND' <RATING> '-RELEVANT TO' <O_SUBJECT>
::= <O_PUBLICATION,+RATED>' AND' <□_SUBJECT>: {1)
<<1,<RATING>>) (2)

<OYUBLICATION,+RATED>' OR' <RATING> '-RELEVANT TO' <□_SUBJECT>
::= <O_PUBLICATION,+RATED>' OR' <□_SUBJECT>: {1}
(<l,<RATING>>) (2)

Note the effective use of genera I rewrite ru l·es and transformations.

This completes the BIBLIO s~ntax.

