THE REL LANGUAGE WRITER’S LANGUAGE:
A METALANGUAGE FOR IMPLEMENTING

SPECIALIZED APPLICATION LANGUAGES

Thesis by

Peter Szolovits

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1975

(Submitted October 3, 1374)

ACKNOWLEDGEMENTS

[wish to thank Dr. Frederick B. Thompson, my teacher, adviser
and friend, for his guidance and inspiration. My perceptions of what
problems are of interest and my intuitions about Ilikely possible
solutions owe much to his teaching. | have also felt privileged to work
Wwith Dr. Norton Greenfeld and Dr. Richard Bigelow, former colleagues
whose experiences have contributed much to my understanding, and Dr.
Giorgio Ingargiola, whose helpful comments on earlier drafts of this
thesis have been of great value.

My graduate studies have been generously supported by the Fannie
and John Hertz Foundation, for whose help I am grateful. The languages
described in this thesis have been partially implemented in the Rapidly
Extensible Language (REL) System, which is being developed under the
leadership of Dr. Thompson and Dr. Bozena H. Dostert. The REL Project
is supported in part by the following grant and contracts:

National Science Foundation grant #GH-31573
Rome Air Development Center contract #F38682-72-C-8249
Office of Naval Research contract #N@@814-67-A-8094-0824
The Computing Center of the California Institute of Technoloég has

provided the computer facilities which [have used to prepare and edit
this thesis.

ABSTRACT

~ This thesis is an investigation into the task of implementing
specialized computer application languages. It contains a discussion of
the conceptual issues which make the development of specialized
languages useful, and it motivates the selection of a scheme of syntax
directed interpretation as the framework on which specialized languages
are to be implemented. The thesis includes a description of the REL
Language MWriter’s Language, in which the semantically primitive data
types and operations and the extended syntax of object languages are to
be specified. The definition of an illustrative object language for the
storage and retrieval of personal bibliographic information is given.
Also discussed is the relationship betueen this manner of language
implementation and various alternative technologies. '

TABLE OF CONTENTS

ACKNOWLEDGMENTS [
ABSTRACT ii
TABLE OF CONTENTS iii
Chapter »

[. INTRODUCTION 1
1.1 LANGUAGE AND COMMUNITIES OF INTEREST 4

1.2 THE ROLE OF THE COMPUTER 8

IT. HIGH LEVEL, SPECIALIZED LANGUAGES 12
2.1 LOW LEVEL LANGUAGES 14

2.2 HIGH LEVEL LANGUAGES 17

2.3 THE USE OF GENERAL PROGRAMMING LANGUAGES 28

2.4 SPECIALIZED LANGUAGES 264

2.5 GSYNTAX DIRECTED COMPUTING 29

IT1. BIBLIO: AN EXAMPLE 33
3.1 BIBLIO STATEMENTS 38

3.2 BIBLIO QUESTIONS 42

IV. THE METALANGUAGE: UNIVERSE OF DISCOURSE 46
4.1 DECLARATIONS 48

4,1.1 BASIC DATA TYPES 48

4,1.2 STRUCTURED DATA TYPES 43

4,1.3 TYPE CHECKING 51

4,2 DEFINITIONS 53

4,2.1 THE DEFINE STATEMENT 54

4.2.2 "CONSTANT, TYPE AND CATEGORY DEFINITIONS 57

4.2.3 METALANGUAGE EXTENSION 58

4,3 PROGRAMS 66

4.3.1 MISCELLANEQUS DIFFERENCES FROM PASCAL 67

4.3.2 FUNCTIONS 63

4,3.3 THE PHRASE MARKER 71

4.3.4 THE SCOPE OF VARIABLES 74

4.4 DATA ALLOCATION, PERSISTENCE AND ACCESS 76

4.4.,1 THE USE OF REL 76

4,4,2 LIST PROCESSING 739

4.4.3 PAGING 80

- il -

V. THE METALANGUAGE: LANGUAGZ PROCESSING

VI. IN RETROSPEC

LIST OF REFERENCES
APPENDIX A

APPENDIX B

T

6.

6.
6.

Uil
NOO S WN -

—

N

S~ W

SYNTAX AND SEMANTICS

FEATURES

TRANSFORMATIONS

PARSING AND CONDITION FUNCTIONS
METAVARIABLES AND BINDING
AMBIGUITY

LANGUAGE EXTENSION

ALTERNATIVE TECHNOLOGIES
6.4.1 EXTENSIBLE PROGRAMMING LANGUAGES
6.1.2 COMPILER GENERATORS
6.1.3 SEMANTIC LANGUAGES
ANOTHER LOOK AT METALANGUAGES
6.2.1 MANY POSSIBLE METALANGUAGES
6.2.2 LANGUAGE IMPLEMENTATION IS DIFFICULT
6.2.3 METALANGUAGES WITH HIGHER LEVEL
PRIMITIVES

THE PROLIFERATION OF LANGUAGES
CONCLUSION

—-{iv—-

140
141
144
146
148
153

176

CHAPTER 1

INTRODUCTION

. « . to imagine a language means to imagine a form
of life.

-- L. Wittgenstein [1958, p. 8el

How is man to use computers? Before entering a discussion of
technicai. matters which 'will be presented in this thesis, it seems
appropriate,, if not obligatory, to examine the more global and
philosophica] issues which motivate research and debate among those uwho

devote their attentions to applying computers for human use.

Computing is a very young practice. It has been barely twenty-
five years since the development of general purpose stored program
computers, and that quarter century has seen a dramatic, unprecedented
and chaotic growth of wuses of the computer. The fantastic
diversification of current and intended applications has created the

image of a field in constant flux and torrential change. Yet, in a

-2 -

deeper sense, it is all too apparent that developments of the past
decade in the technological areas have not been matched by the evolution
of organizing concepts which make the physically available computer
intel!ectqallg available to the.vast potential number of people with
complex, large-scale problems which could be amenable to sclution using

the computer as an important tool.

Current computer applications have been attained at a very high
cost. Only the richest organizations have been able to allocate the
resources required to implement computer sgstems that- precisely satisfy
their requirements. Even for these organizations, the slightest changes
in their applications have made their systems inappropriate and have
required a continuing supplemental infusion of money to keep their
computer operations useful. For the user with a much smaller financial
base, the high cost of taiiored computer systems has forced on him a
compromise between utility and cost. He has had to accept cut-rate
systems which never "fit" quite right, but which at least provide some

form of useful computing capability at a tolerable cost.

[t should be the role of computer science research today to
develop systems which will prove to be comfortable and valuable tools
for investigators in various areas of human endeavor. MWe should move
away from the customary view of the computer as the super-expensive,
super-complicated general machine uwhich only large businesses and major

scientific research projects can have the resources -- both financial

-3 -

and intellectual -- to apply effectively. The cost of harduware is
decreasing rapidly enough that uwe can foresee computers owned by small
businesses and even non-professional individuals. The major problem,
however, will be: Of what use is the computer to the businessman or the
homeowner unless he can use it naturally and effectively in pursuing his

interests in an inventory, a budget, or perhaps a habby?

The responsibility to answer this question must not be shunned.
The coming universal availability of computer power can have tremendous
liberating consequences, or it can merely add to the social forces which
currently encourage uniformity and abstention from creative grouth. The
extreﬁe cost of developing new software for computers dictates uniform,
inflexible applications. The customary view of computer usage, if
extended into the low price range, sﬁggests that the individual computer
Wwill come with a turnkey program to allow its user to balance his
checkbook, order his groceries, an& read the AP or UPI neuws releases as
they come off the wire. Overlooked will be the possibility that the
individual may have a personal, uniquely interesting use of his pouerful
tool in mind -- a use he cannot realize because the tool is pouerful
only through the specialized knowledge of programming. Without careful
nurture and a significantly increased productivity of technical support,
the pofential for individual creativity and diversity may be cut short

by an economical ly encouraged conformity.

We now proceed to lay a conceptual framework for computer use,

-k -

in linguistic terms; on which to build a technology for bringing the
computer’s power directly and conveniently to the potential end-user,
providing an interaction wWwith him that is natural and specialized to his

interests.

1.1 LANGUAGE AND COMMUNITIES OF INTEREST

Strong arguments have been set forth for the thesis that the
thought and behavior of an individual or of a community are greatly
influenced by their language. Indeed, langugge has been suggested as
the embodiment of all the tacitly assumed views, knowledge, limitations

and culture of a community.

As Benjamin Whorf, in his best knoun example, states the case

(1356, p. 571:

. . The Hopi language contains no reference to 'time,’ either
explicit or implicit.

At the same time, the Hopi language is capable of accounting for
and describing correctly, in a pragmatic or operational sense, all
observable phenomena of the universe. . . . Just as it is possible
to have any number of geometries other than Euclidean which give an
equal ly perfect account of space configurations, so it is possible
to have descriptions of the universe, all equally valid, that do not
contain our familiar contrasts of time and space. The relativity
viewpoint of modern physics is one such view, conceived in
mathematical terms, and the Hopi Weltanschauung is another and quite
different one, nonmathematical and linguistic.

Thus, the Hopi language and culture conceals a METAPHYSICS, such
as our so-called naive view of space and time does, or as the
relativity theory does; yet it is a different metaphysics from
either. In order to describe the structure of the universe
according to the Hopi, it is necessary to attempt -- insofar as it
is possible -- to make explicit this metaphysics, properly
describable only in the Hopi language.

o B =

Thomas Kuhn, applying a similar analysis to the revolutionary
change of scientific theories, characterizes the operation of "normal
science" as the fleshing out of scientific theories, based upon the
seemingly immutable bedrock of the current paradigm. Throughout his
discussion, he assumes a coupling hetween -an established paradigm and
the language in which its content is stated [1978, p. 136].

As the source of authority, I have in mind principally textbooks
of science together with both the popularizations and the
philosophical works modeled on them. . . . They address themselves
to an already articulated body of problems, data, and theory, most
often to the particular set of paradigms to which the scientific
community is committed at the time they are written. Textbooks
themselves aim to communicate the vocabulary and syntax of a
contemporary scientific language.

Kuhn is interested mostly in the changes of paradigm which

signal .scientific revolutions. MWe will be content with considering
particular languages which are closely tied to a current paradigm.

Thus, the methodology explored below is in support of "normal", not

"revolutionary" science.

We will be interested in examining the utility of specialized
languages in the service of limited groups. It is useful to consider
what such a group is. Kuhn, in a postscript to his wuell-knoun
discussion of scientific change (1978, p. 17681, recognizes the
circularity inherent in identifging a paradigm as the set of funhdamental
(and unquestioned) assumptions of a normal-science communitg, and a

community as a group whose members live by the same paradigm. He

- B =

attempts to eliminate the ~circular dependence by recourse to
sociological research fo determine the boundaries of groups; uyet,
perhaps it is exactly the adherence of a group to a commonly developed
or accepted paradigm which is the fundamental character of the group and
the paradigm. In any case, it is important to recognize the

interdependence of scientific communities with their paradigms.

In an argument recalling information theoretic studies of
communication, Frederick B. Thompson [1966a, p. 64] expresses this vieu: .
What happens in a research team, working intimatelg. intensively
together? The commonality of experience, the familiarity bred by
common environment, commorn action, and common goals, presses doun
into more and more discriminating levels the intersection . . . of
their disparate languages. Their sparse syntax and crisp jargon
rests on a deep .fund of tacit understanding.

The size of a community, in the above sense, may vary greatly.
Typically, the specificity of its language, the totality of its common
pool of tacit assumptions, will vary inversely with the community’s
size. Communities are far from disjoint. 0One might imagine, for
example, the community of physicists, all of whom share a large body of
specialized knowledge and beliefs. Yet within their paradigm, the sub-
communities formed by, say, low-temperature physics and astrophysics may
have sets of paradigms, corresponding to technical jargons, so different
that technical discussion between members of the two fields may be

nearly impossible. Their communication is meaningful only at the more

general level of their shared background and understanding.

- =

The internal structure of a community and, correspondingly, the
structure of the paradigm or language of the community are hierarchical.
The higher in this structure that a conversation takes place, the wider
is its scope and the lower is its precision. The lower it takes place,
the more precise are its distinctions, the more efficient is its
capability. for expression, and the narrower is its scope of

applicability.

Whereas one might identify the total hierarchy of such languages
as a natural language, say English, we uwill concern ourselves with only
specific languages, of rather narrow scope, serving fairly small
communities of interest, and reacting poorly to revolutionary change.
Specifically, wWe are interested in providing computer languages wuhich
successful ly subsume a lg:gg fund df tacit knowledge, so that their
interaction with a computer user may occur at a level of‘specialization
appropriate to discourse with a colleague. [f the Ianguage is of
extremely limited use or even incomﬁrehensible in a different context,
that is a price we are Willing to pay. The individual computer |anguage
is not intended as a system in which a complete human world vieg may be
represented, and its inability to react well to major shifts in interest
or conceptual. structure need not be regretted. For sufficiently
differing areas of interest or points of vieu, various‘ distinct
.specialized languages can be developed, possibly with built-in methods.

of coordination.

-8 -

The fragmentation of intellectual worlds implied by this
discussion is a bitter pill for both humanists and scientists to
swallow. Some, such as Gunnar Myrdal [1969], argue that "objectivity,”
namely the ability of each person to understand and assess the work of
each othér’ is to be achieved by making explicit the assumptions under
which we pursue thought and research. Yet, to hope for that is
unrealistic, if not irrelevant. We cannot continually be conscious of
all our assumptions; thus, we depend on' our language to filter
experiences in a way that is consistent with the fundamental decisions
we have already (consciously or unconsciously) accepted about the world,
so that they do not constantly clamor for our attention and interfere

With our thinking.

0f what relevance is this discussion to the use of computers?
Simply, that ue propose to mirror in the computer the specialized
linguistic capabilities of small communities of interest, by developing
computer languages which naturally express the jargon and embody the

paradigm of a specialized field.

1.2 THE ROLE OF THE COMPUTER

The "manufacturers’ ailemma" has become a well-recognized
problem in upcoming computing practice. It is that the cost of a unit

operation on the computer is decreasing approximately exponentially,

-9 -

with no short-term end of the trend in sight. This means that in order
to remain profitable, the computer manufacturing and distribution
community must devise techniques wuwhich make ever-greater and more
sophisticated use of computers and attract larger and larger numbers of
users to the computer. With a touch less hint of compulsion, Frank T.
Cary, formerly president of IBM Corporation, put it this way [CACM July

1972, p. blll:

Continuing improvements in large-scale integration,
semiconductor memory, and magnetics, let us put more information on
line to the user. . . . Application programs plus new programming
languages must be tailored more closely to the way people think,
communicate, solve problems with their own minds. They wWill be
needed to bring the computzr’s information more easily and quickly
to the end user, who uwill not be a computer professional and will
not have the time, or the inclination, to become familiar With
either the computer’s intricacies or the programs. He will want to
talk and communicate with the machine in much the same way he: talks
and communicates wWwith you or me -- without Ilearning special
languages to manipulate the machine. He will want that machine to
be a convenient tool for improving the profitability and
productivity of his business operations, his professional
activities, his daily performance in whatever he does.

Thompson (1372, p. 315] has argued that the use of specialized
languages secures significant economic advantages to the eventual user,
as well és-to the manufacturer. To the user, these come about through
the manpower saved by allowing him to communicate in a language natural
to his problem domain, and through the language implementor’s ability to
make use of the tacit knowledge of an apblication field to increase the
efficiéncg of problem solving in that field. To the manufacturer, the

obvious advantage lies in the expanded pool of potential customers who

- 19 -

Wwill be attracted to the computer by the simple and powerful tools

provided by the specialized languages.

These complementary pressures, to widen and deepen the computer
user community, on the one hand, and to capture the sophisticated
conceptualization of specialized problem domains, on the other, will
lead to the widespread implementation and use of specialized computer
languages. This thesis is concerned uwith techniques which imake the

implementation of such specialized languages convenient and efficient.

To avoid confusion, a few terms should be clarified here: By
"computer user", or "user", or "end user", ue mean the same person whom
Cary describes above, not the traditional user of the computer, namely
the programmer. By "language", we wWill generally mean "specialized
language", of the sort one might use in investigating a user’s problems,
rather than today’s normal programming languages. These distinctions:
are, of course, somewhat arbitrary, but the emphasis we wish to place is
on the contact between the "person with a real-world problem" and a

computer language tailored for his benefit,

In this thesis, we will explore the concept of specialized
languages and one technology for making possible their cost-effective
implementation. In Chapter II, specialized languages are related to
notions now under development under titles like "Very Hfgh Level

Languages" and "Artificial Intelligence", and an examination of current

- 11 -

practice in application programming leads into the presentation of
syntax directed interpretation as a methodology for implementing
specialized languages. Chapter IIl presents an informal description of
BIBLIO, a specialized language for the storage and retrieval of a
simple, personalized bibliographic information data base. The
description of BIBLIO is intended to show the type of specialized
language whose creation is addressed in this thesis, and examples to
illustrate features of the Lanéuage Writer’s Language (LWL) wWill be

drawn from BIBLIO.

Chapters IV and V discuss the interesting features of LHUL.
Chapter 1V deals with a PASCAL-like language for specifying data types
and primitive semanfic. operation, and Chapter VY presents the rich
syntactic mechanisms by the use of which a specialized language can be
built to express the fundamental semantic capabilities in a form natural
to the wuser. Concluding remarks appear in Chapter VI, concerning
alternative technologies of specialized language implementation and
possible extensions to the fachniquesvpresented here. In addition, some
comments on the social impact of language diversification tie links back
to the introductory discussion of the first chapfers. Two appendices
are also included: Appendix A is a brief, semi-formal description of

LWL; Appendix B contains the linguistic definition of BIBLIO in LUWL.

- 12

CHAPTER 11

HIGH LEVEL, SPECIALIZED LANGUAGES

We dissect nature along lines laid down by our
native languages.

-- B. Whorf [1356, p. 213]

The specialization of computer languages, suggested in the
discussion of the last chapter, is of value to the applications user
because a specialized language is able to deal naturally with its user’'s
problems in a restrfcted context. It is able to assume a great deal of
implicit knowledge of data and techniques, and it dissects nature along
the lines which its user requires (in Whorfian terminology). To an
extent, these are the goals of much of the research which has recentiy
been reported under the title "very high level languages." In a revieu
article, Leavenworth and Sammet [1974] introduce the field in this way:

. . Consider the following list of terms, each of which should be
fol lowed by the word 'languages’:

- 13 =

very high level
nonprocedural

less procedural
goal oriented
problem oriented
pattern directed
declarative
functional
relational

problem statement
problem definition
problem description
systems analysis
specification
result specification
task description’

In addition to these terms, consider also the following:

automatic programming
artificial intelligence

This list is not necessarily a complete set of all the terms now
being used by one or more groups of people to convey an intuitive
notion of languages which in some sense are 'higher’ than FORTRAN,
COBOL, PL/1, etc. The most common term used for this concept has
been nonprocedural, and the most common phrase has been ’wuhat’
rather than "hou’.

Of course, it would be a mistake. to assume that each of the
above terms refers to equivalent efforts and aims. Chapter | of this
thesis strongly suggests that specialized languages will often be very
high level languages, because by imblicitlg assuming much knouledge that
is special to a particular domain, a great deal of the "how" can be
built into the mechanisms of the language itself, leaving the user to
deal mainly with the "what." It does not follow, however, that high
level languages need be specialized, or that specialized languages are

always high level, For example, languages with primitive data types

- 14 -

which might be identified with sets, sequences and n-ary relations are
widely recognized as high IeQel. Yet, they promote their capabilities as
general computational languages, e.g., [Schuartz 1973al. To the end
user, in any field. outside computer science or mathematics, they are
hardly more capable of understanding "what" than are any of the older
generation of louer level languages (a term, interestingly enough, that
is not enthusiastically embraced by anyone). Conversely, important
languages |ike COMIT [Yngve 19661 and IPL-V [Newell 19681, though rather

specialized in their application domains, are hardly high level.

2.1 LOW LEVEL LANGUAGES

Perhaps the key issue, both technical and conceptual, in
applying computers for human use, is the determination of tHe degree of
"knowledge" we impute to the harduare-software combination which is
attacking some posed task. Any student of computers can easily conjure
up a picture of John von Neumann or Commander Grace Hopper leaning over
an early vacuum-tube behemoth, setting the bit patterns needed to open
the right electrical gates, to perform the earliest calculations on
complicated trajectories. In this picture, the meaning of what is being
computed, in the sense that one wants to label the resulting numerical
values wWith some descriptors tying them to a world of objects and
relationships, exists completely outside the operations of the computer.

Only the programmer is aware of what significance the input and output

- 15 =

values have, and only the programmer realizes that the sequence of
operations set up in the order code of the machine actually accomplishes
the solution of a differential equation. This picture is titled the

low-level programming approach.

Primitive operations which are semantically insignificant to a
user characterize low level programming. In the war-time trajectory
example, the significant operation is to achieve a model of an anti-
aircraft defense system. This wWill normally reduce to seeking a
solution to some set of fixed differential equations, which will satisfy
a certain set of required conditions. In more detail, one might say
that the problem is to determine a set of parameters for the anticipated
functional form which will minimize some measure of deviation from the
ideal solution. More concretely, the problem may be stated as an

algorithm uhich will compute those desired parameters.

It is at these levels of generality that the person who poses
the problem and the applied mathematician who devises a solution scheme
perform their analyses. The task .of storage allocation to parameters
and auxiliary variables, the translation of algorithmic descriptions to
sequences of machine order code detailed to the level of "add" and " jump
if zero", and the creation of commands to cause input parameters to be
accepted and results to be displayed are unseen -- thus insignificant --

at the level where the problem and its desired solution are described.

- 18 =

To illustrate further, note that in low level programming, the
problem as understood by its formulator cannot even be recognized.
Without extensive documentation and profuse commentary, a programmer
other than the program's originator cannot grasp the essence of what is
being computed. The familiar problem of "de-compiling" machine code
into comprehensible algorithms, for insténce, has no general solution,
because at the operational machine level, those organizing concepts
uhich give meaning to the probleﬁ solution being attempted are no longer
explicitly available. The bgst de-compiler can yield merely a symbolic
and somewhat compacted version of the code. The user’s problem is

irrecoverable.

[t is not meant here to disparage low level programming as such;
Wwhen the problems of interest are indeed low level -- e.g. in
optimizing an algorithm to operate efficiently in terms of the number of
unit operations performed -- then that is the appropriate level; the
basic operations are significant and meaningful. MWhat is criticized is
the use of such low level techniques for an approach to problems whose
scope is sufficiently broad to push the low level considerations into

obscuri ty.

The keynote of the low level programming approach is its
concentration on the symbol manipulating aspects of computation, as
opposed to meaning at the user’'s conceptual level. An analogy may be

drawn with mathematical reasoning: consider the axiomatic derivation of

- 17 =

arithmetic from the set theory. From our childhood, we understand the
meaning of simple arfthmetic statements and operations, and only in much
later life do some become concerned with interpreting this meaning in a
rigorous, formal structure. MWhen we do arithmetic, we do not really
perform the set theoretic operations which define arithmetic. In the
use of arithmetic, its axiomatic definition is irrelevant -- a requisite
foundation, to be ignored after it is successfully concluded.
Similarly, when we compute a trajectory, the machine code which has
expressed the detailed manipulations we have needed to come to a result

is no longer of significance.

Thus far, we have argued that in the use of the computer to
solve human problems, two separate levels of thought can be recognized:
a conceptual understanding of the problem with some strategies for its
solution, and a detailed cognizanﬁe of the techniques required to
implement a solution. Further, we have argued that these tuwo levels are
generally quite dissimilar., We may also claim with relative safety that
it is the former which is of central interest to those éeeking a

solution.

2.2 HIGH LEVEL LANGUAGES

The development of higher level programming languages has been a

response to recognizing the above split; the higher level language

w 18 =

attempts to provide. facilities which make the expression of the problem
of interest central and the specification of the symbol manipulating
operations peripheral or even unnecessary. It is much more difficult to
bring to mind a picture of what high level programming is than to
envision primitive low level computing; most of us have extensive
experience wWith the latter approach, and very few have enjoyed much

contact with "intelligent" or "knowing" computer systems.

Much of the "Artificial Intelligence" (Al) community, especially
those engaged in work on automatic programming, see themselves involved
in the creation of these high.level tools. The view expressed is that a
computer user should be able to approach the computer in English, or at
least some good, powerful interlingua. He should be able to discourse
about a problem he is attempting to solve, and the computer system
should be capable of generating a model of the user’'s problem, finding
the unclear aspects o% it, interrogating the user further, making some
"intelligent guesses" to complete the model, and eventually producing

and performing an algorithmic solution to the problem (e.g., (Balzer

19731).

With such a system, one could recast the scenario for solving
the trajectory problem: instead of choosing a reasonable numerical
technique for solving a differential equation to which the problem has
been manually reduced, the investigator might simply begin by discussing

his interest in the interception of aircraft by projectiles, the effects

- 19 -

of wind and shape on acceleration, the necessary proximity of shell to
aircraft for a successful intercept and maybe the disposition of enemy
pilots to perform particular maneuvers. ' The computer’s model builder
may in turn request some information on maneuverébilitg of the airplane.
After an extended conversation of this sort, the system would then
produce a model of the anti-aircraft attack situation and a program to
compute the required aiming parameters of the gun. Presumably, the user
would also be able to }nterhogate the model, to determine in what uag
the pilot’s probabilistic behavior, for instance, had been takeh into

account.,

The above is, of course, highly speculative as a general
capability, but it points in the direction that high-level techniques
Wwill aim. As a more immediate goal, a system uhich‘has a fair number of
built-in model templates and :some pattern matching capability to
recognize one of its models as a generalization of a particular
described situation promises to exhibit some of the same sophisticated
behavior. The idea here is to create a high level language which
exhibits sophisticated behavior across a wide range of problem domains.
Because specialization appears to be the best way of building high level
responsiveness, this approach uses the technique of creating a high
level language by selecting for it the appropriate one of a set of
already existing specialized languages, so that the innate structure of
the particular selected pattern can guide further interaction and

interpretation.

- 28 -

Whatever philosophical position one may hold on the ability of
machines to possess knowledge, it is obvious that in the above paradigm,
what is of interest is the neaning of the user’s problem, not the
manipulations required to solve it. Independent of the physical
realization of this computerized "knowledge", the user is dealing With a
system which appears to understand his problems at very much the same
level as he does. This is the characteristic of high level languages:
that their semantic primitives are coincident with the meaningful

concepts of the user’s problem domain.

In fact, it is meaningful to discuss an ordering of l|anguages
betuween the extremes we have identified. The placement of a language
according to this ordering will correspond to the degree to which its
primitives mirror the usage of its users. The scale is certainly not
wel l-ordered, as level depends on intended application, but in general
this thesis argues that the ideal is to move toward the higher level

languages.

2.3 THE USE OF GENERAL PROGRAMMING LANGUAGES

The rest of this chapter, indeed the greatest part of this
thesis, wWill be devoted to examining hou specialized high level
languages can be achieved. Thus far, the most widespread and most

successful attempts at dealing with thi's problem have been made in the

- 2] =

development of a succession of more and more sophisticated general

programming languages.

The strongest tendency in the history of programming |anguage
design has been to incorporate as primitives into new languages those
often-used operations which had required tedious expression in previous
environments. This development has generally increased the size and
complexity of our programming tools, and has made it easier to express

certain complex matters of data structuring and computation.

Each new programming language development increases the
expressiveness and sophistication of computer languages, but does it
make the computer any more natural a tool for the original man with the
probliem? We could answer "yes" only if he were the one who benefitted
from using the newer capabilities of languages. But, typically, he does

not.X

Today’s principal user of a programming language is the
professional programmer, not his employer. New developments in
programming language design have succeeded not in bringing the
computer’s power directly to bear on the end-user’s problems, but ‘in

easing the task of the intermediate, the programmer, who often does the

*One school of thought holds that as more and more people will acquire
sufficient programming skills, new programming languages will be of
direct benefit to the applications user. There is no convincing evidence
that any such trend exists for the very large user audience envisioned
by planners like Cary (see Introduction).

- 22 -

work of translating a solution scheme into a running program. The
newest high level languages have become high level for him, because they
recognize and explicitly support his customary usage of the computer.
They provide a meaningful semantics for discussing the complex symbol
manipulations involved in computing. They do not, however, recognize

the semantics of the original, motivating problem.

In the earliest publications on FORTRAN, that revolutionary
development of the 1958's was described as the FORTRAN Automatic Coding
System [Backus 1957]. Without belittling the enormous contribution of
that early work, one must recognize that neither FORTRAN nor its near-
contemporaries COBOL and ALGOL can be considered high level programming
languages in the sense discussed above. Certainly, arrays in FORTRAN
and pictures in COBOL are important' conveniences, but neither truly
embodies the useful concepts of its ultimate beneficiary. A profit and
loss statement is not a COBOL record, just as a stress ‘tensor is not a
FORTRAN array. These language constructs still deal with the
manipulations of arriving at a solution rather than the description of a
problem. They rise far above their machine language predecessors:
indexing operations or subfield selection can be subsumed undef general
notions; still, this falls far short of comprehending the semantic

character of the real-world entities they model.

Current programming development deals with extremely flexible

control structures, concurrent operation, contextual interpretation of

- 23 -

data and operators, privileged access to resources, automatic
backtracking and error recovery, goal-directed procedure invocation, and
myriad other similarly complex issues (e.g., [Bobrow 1973]). Because
these concepts, once incorporated in a programming language, make the
task of a programmer who chooses to use such techniques easier, the
developers of these new complex languages have appropriated the names
"high level" and "very high level" to their creations. It has indeed
been suggested that the measure of "level" of a programming |anguage
should be the proportion of some exhaustive list of features which it

includes [Schwartz 1973bl.

The inclinations expressed here run counter to that belief. It
‘mag be frue that each of the above features finds an area of natural
applicability, but it is impossible to argue that they are all useful in
expressing the semantically primitive notions of many problem domains.
The criticism takes two forms. Certainly not all of these features can
be of any use to a particular discipline. Thus, the cost of their
inclusion in those instances uhere they are not of use is heavy and
uncompensated, not only from efficiency considerations, but also because
the presence of these general features will prejudice the thinking of
the language’s user in directions he might consider unnatural.® Even of

greater significance, most uses of a computer -- perhaps barring those

*For example, consider the difficulties involved in trying to teach
merely a subset of PL/1l, so that a student need not be bothered by the
complexity of the full language.

-2 -

special Al research applications for which many of these techniques were
developed -- in fact do not find a sympathetic semantic expression in
terms of these generalized primitives. A network of goals and theorems
is not an insight into management practices. The meaning of a finanéial
analyst’s questions about the relationships among performance measures
of certain types of companies may wWell be translated into a concurrent,
backtracking relation-discovering procedure operating over a ring-
structured network, but that is definitely not hou the analyst

understands it.

Unless the programming system is capable of communicating wWith
the analyst in a language based on his ouwn logic and terminology, he
Wwill become resigned to doing only what his programmers have foreseen
for him, or to depending on his programmers to mediate between him and

~the computer system in a manner reminiscent of the shaman interceding
for a person’ before his gods. The modern techniques uwhich have been
called high level are the tools of the medicine man; they support a high
level organization of the manipulations of problem solving, but they do

not support the ultimate human use of computers in an understanding way.

2.4 SPECIALIZED LANGUAGES

[f the increased power and generality of the newest programming

languages appears not to address the problem of naturalnéss and

- I5 -

sophistication of computer use for a wide variety of end users, what
alternatives are available? Specialized languages, whose syntax and
semantics are tailored carefully to the specific needs of their

projected users, have been strongly proposed (e.g., [Bigelow 19731).

The typical computer end user currently accesses the computer
through the interfaee of an application program or an application
programmer. For a relatively static interaction, such as the production
of a payroll or the maintenance of a savings deposit record, single,
complex programs which mirror the realities of their problem domains
simply and fairly effectively are the rule. The bank teller may be
interacting with a very sophisticated combuter system which is capable,
on detailed command,- of solving problems beyond the teller’s
imagination; yet, to the teller, the system and his specially designed
terminal are an obedient tool, faithfully recording deposits,
Wwithdrawals, computing interest, and supporting the many detailéd

requirements of a bank teller,

In situations which are less well defined and more subject to
change, the unitary application program is less and less adequate. When
the computer user is intérested in discovering rather than recording
information, his understanding must range over a wider latitude of
detail and generalization. A bank’'s officer attempting to predict the
future level of demand deposits must have the ability to look into the‘

details of his bank’s operation at the same level as the teller, to

-~ 95 -

develop data and insight into specific types of transactions, but he
must also be able to abstract his view to the level uhere he can
consider the impact of Federal Reserve policy and tax structure on his
largest clients. Further, he does not understand.at the beginning of
his investigation the exact nature of his task, or even the questions he
will eventually answer. The designer ofban application program would
need to be prescient to support the needs of such a user by a single,

al l-encompassing program,

.‘The investigative computer user ordinarily has an application
programmer at Hand to ansuwer questions for him by writing new programs
as the need arises. The programmer-computer system is generally a high
level tool of the sort discussed above. The experienced programmer can
understand the essential aspects of his boss’s questions, and can
produce answers wWell suited to his employer’s needs. The major
difficulties with this tool are, however, serious. Its response time is
inordinately long. If the figure of seven lines of finished code per
day per programmer is wuWithin an order of magnitude of the good
application programmer’s productivity, even moderately complex demands
on this "tool" introduce enormous delays in an investigation. The
resulting hesitancy of the investigator to develop long lines of
questions, where the nature of the next depends heavily on the results
of the previous,‘entails a serious deficiency in effective analysis. In

addition, the destruction of an intimacy between the investigator and

- 27 -

his data by the required intercession of the programmer can seriously
reduce the value of the data to the investigator. Nevertheless, this is’
the current paradigm of user-programmer-computer interaction, and we

should be able to profit from its analysis.

Let us examine the structure of the "tool" we are discussing,
the programmer-computer system team. MWhat makes it high level is that

it has detailed knouledge of the problem. domain of its user. Not only

is the programmer familiar wWwith the idiosyncratic views and usage of the
investigator, but he also develops wWithin the computer .sgstem a
primitive "understanding" of the basic concepts with which he deals, in
terms of a set of data structures, functions, and a program |ibrary.
When faced wWith an individual problem, he need not start from scratch to
build a particular solution, but can assemble parts of his prepared
environment and specialize it to a sufficient extent to solve the
qublem. The measure of the value of this "tool", as of all other high
level tools, is the degree to which the process of assembly and
specialization corresponds to the way in which the ‘user structures his
understanding of the problem domain; the closer the correspondence, the

easier and more effective it is to use ‘the tool.

Several of the successful projects in natural |anguage
understanding have satisfied this model. MWinograd, in his natural
language system, selected a limited world of blocks on a table, built a

set of functions which could manipulate this world, and provided a

- 28 -

strong linguistic component to allow his "user" to assemble the semantic
operations of this world in English [Winograd 1972]. The LUNAR Sgétem
of Woods uses a different technology, but in an essentially similar way,
to provide its users access to lunar rocks data [Woods 1972]. MWith yet
another approach, the REL English language has made an anthropologist’s
large data base available for use in a convenient and personalizable

language [Dostert 1970].

Even a casual examination of the problems encountered by
"Management Information Systems" (MIS), for example, is convincing proof
that the development of tools of this nature is a difficult task. The
larger the scope of development, the more difficult it becomes. MWhere
the bank officer and his personal programming staff may be slow, they
are likely to be satisfied and effective. An MIS for the company’s
leadership is bound to be less personalized and wWill undoubtedly be
inadequate and unresponsive to many individual needs, and a company-uide
MIS, to encompass uniformly the operations of all level from nuts and
bolts to executive planning, is doomed to be a cumbersome, unmitigated
disaster. General techniques, even if high level, tend to be less

appropriate to the needs of an individual user than ones specialized for

him.

[t is important to seek ways in which the individualized use of
computing can be aided and improved. As wWith all new technological

developments, it is not even possible to foresee the innovative uses to

- 29 -

which a new technique, freed from its oppressive economic bonds, could
be applied. Today, the cost of specialized languages, computer systems
and extra programmers is so high that it precludes their utilization
except in outstanding cases. I[f a considerable fraction of the task of
the human part of the programmer-computer team can be shifted to the
computer, a sufficient decrease in cost and increase in responsiveness
is achieved to open the possibility of individualized, high level

computing to many.

2.5 GSYNTAX DIRECTED COMPUTING

The designer and implementor of a specialized computer
application language faces a complicated and difficult task. He must
discover and mirror in the computer the fundamental concepts of the
application domain, provide facilities which allow these fundamentals to
combine in the natural ways that a user may desire, and invent and
implement a formal language which will be simple and natural enough to
encourage its acceptance by the user and yet complex enough to allow its
sophisticated application. At the same time, the implementor must not
lose sight of the need for efficient ways of handling both the language
he will provide and fhe fundamental algorithms which he will implement
as part of the basic fabric (tacit knouwledge) of the specialized

| anguage.

.- 30 -

Syntax directed interpretation is an excellent general technique
by which to structure and implement a speciafized language. A general
and powerful syntactic analyzer makes it possible for the language
writer to implement rather sophisticated languages without excessive
programming cost. In a well-designed language, the primitive
interpretive routines will correspond to the semantically fundamental
operations of the application domain, and the rules of grammar wuill
express phrases whose meaning is a valid composition of primitive
operations and data. The structure of the syntax directed interpreter
is natural for the application language developer because it provides
the above parallels to the manner in which the application programmer

nouw wWorks.

The REL Languége Writer's Language (LWL) is a specialized
programming language for the implementor of new specialized languages.
[ts "tacit knowledge" includes a model of syntax directed interpretation
as performed by the REL System, and LWL is tailored to make it
relatively easy for the language writer to specify the grammar of a neu
language and the data and functional primitives wuwhich represent

fundamental ly meaningful objects and operations of that language.

Languages implemented using LWL make rather strong demands on
their computer environment for common services. This is characteristic
of nearly all high level languages, because major aspects of computation

expected to be shared by many programs are collected and abstracted

- 31 -

behind a few simple language constructs. Thus, "run-time packages" for
nearly all languages provide standard input and output services; for the
more sophisticated languages, the run-time environment includes garbage-
collected heaps; dynamic -error processing, synchronization of
parallelism, etc. All languages that are implemented using LWL run in
the REL System, which is essentially a large collection of services and
facilities to bred by its specialized languages. It is a run-time
enment which includes a great deal of tacit knowledge about syntactic
analysis, language processing and data management; it is thus capable of
providing high level abstractions which shorten and simplify the
language implementor’s task. The metalanguage may be viewed as the
external Fepresentation or model of the REL System (to its user, the

specialized language implementor).

The REL System is a complex syntax directed interpreter. It
operates on the following cycle: wait for a sentence to be input by the
user, perform a complete syntactic analysis in accordancé with the
grammar of the language currently in use, evaluate the meaning of the
resul ting structural analysis by using the data objects and functions of
the language (composed as specified by the grammar), and (possibly)
update the language's universe of discourse and output a reply to the
user. This simple picture wWill later be complicated by the intrusion

and handling of ambiguity, error and user extensions.

That part of LWL which expresses data structures and the

- 32 =

semantically primitive functions is discussed in Chapter IV, and the
rather complex capabilities of the language processor are taken up in

Chapter V.

- 33 -

CHAPTER I11

BIBLIO: AN EXAMPLE

A book in the hand is worth ten in the library.

-- Anonymous

The discussion of the previous chapters has been concerned uith
a global view of the role of specialized application languages. At this
point, wuWe suwitch to a microscopic vieuw, to consider a particular
language, which wWill be of some use in showing how the principles of
language implementation apply in a specific instance. Portions of the
LWL programs which implement this language will appear throughout the

thesis as examples of how various features of LWL are used.

The selection of a simple ekample to explicate a principle or
methodology is never devoid of grave dangers. Languages for specialized
domains range from the very simple, in both expression and power, to the
extremely complex. To choose a simple one for tutorial purposes is

tempting, but unrealistic -- it leaves untouched the complex issues

-3 -

which guide the conceptual development of the methodology. Thus,
something |ike a desk-calculator language, wWhich is amenable to a
straightforward implementation under a large number of systems, will not

be adequate.

Much of the motivation for this research finds its roots in
investigating the development of practical natural language processing
techniques in a large data base, question ansuwering context. The
temptation is strong, therefore, to choose an example |ike REL English,
which would illustrate a large proportion of the capabilities developed
in the metalanguage. Unfortunately, such an exposition would be overly
lengthy, and linguistic and semantic issues of such magnitudé would
arise from the example that they would threaten to suémp the exposition .
of meta- level ideas. Thus, we will choose a simpler language, and only
occasionally refer to experience with REL English (Which is partially

described in [Dostert 1972; Greenfeld 1972; Thompson 1374al).

Our example wWill be a language to provide a very highly
specialized bibliographic reference file for an individual or small
group of like-minded colleagues. The example is of more than mere
academic. interest, as anyone who has struggled with a three-by-five card

file for such purposes can attest.

Of fundamental importance, intended to permeate this example, is

the idea that it is to be a personal bibliographic filing system. It is

- 95 =

not to be considered for installation in place of the public library’s
card catalog, it is not necessarily appropriate even for a much smaller
group of clients possessing fairly homogeneous interests; it is to be a
private store of facts and organization, not intended for others’
illumination or audit. Indeed, much of its power (and likability) will
derive from its ability to capture idiosyncratic views of organization

and information.

The language, which we will call BIBLIO, will deal with concepts
like "book", "article", "report", "author", "editor", "publisher",
"subject matter", "relevance to topic", "quality", etc. But what will
properly form the fundamental building blocks of the |anguage?
Certainly, it should not contain as a fixed portion, some extensive
"built-in" collection of references, because although the language
intends to become a close reflection of its user’s interests, a general
(if somewhat hazy) distinction can be drawn between the underlying
language and the information it contains about a particular universe of
discourse. This is analogous to the distinction between FORTRAN and a
FORTRAN program, or the lower predicate calculus and one of its models.
Thus, while "publisher" is likely to play a meaningful role in the

language, "MIT Press" is unlikely to deserve such special recognition.

The separation between innate parts of the language and data in
its universe of discourse is not as clean-cut as the above distinctions

imply. For example, since "subject matter" seems a meaningful concept

- BT .

Wwhen discussing any book or article, it should be an innate language
part. But uwhat is the "calculus" of subject matters? Are ue to assume
that any general relationships, whatever, mag hold among them, or do we
identifg subject matter with a common index, like the Library of
Congress catalog number? This is typical of the questions which arise
in the design and implementation of specialized languages, and we will

look at it in some depth.

For the general library, a subject classification system |ike
that used by the Library of Congress is necessary, because bibliographic
information must be kept in a uniform, statically defined structure for
the entire collection. Similarly, abstracting and reviewing services
generally choose® some fixed tree representation of their subject domain
and maintain their data in that form; e.g., the categories of Computing

Reviews [CR Jan. 1974, p. 43].

For a personal bibliographic system, the general tree-like
character of the standard systems is often a reasonable organization,
though the categories and theirbrelationships Wwill be quite different.
Even considering a relatively specialized index like CR, the decisions
of its editors on questions of emphasis and grouping will often be
inappropriate to an individual. MWorking in the programming languages
area, a researcher may well need to keep track of more references to
"Procedure- and Problem-Oriented Languages" (CR category 4.22) than he

ever encounters on other whole major branches of the subject tree.

- 37 -

Further, the general classification cannot afford to ramify its
categories to a sufficient depth to provide adequate resolution for the

specialist.

Not only is the general tree of subjects too coarse, but in some
instances it must cut inappropriately across subtrees which may be quite
useful in a certain conceptual view. For example, a long report on the
design and implementation of a special purpose computeh to support a
particular language used for maintaining a large file might well bring
together such categories as 6.22, 4.22, 4.33, 4.34, 4.35, 4.12, 3.73 and
3.74 (generally, areas in "hardware", "software", and "applications").
By the CR index, the report’s parts should be scattered across the
various categories most appropriate to each, and the general concept
which unifies the development of this (hypothetical) system becomes

invisible.

Notice the tradeoff that we are ‘finding: Implementing a
bibliographic language with a built-in index makes its initial use
easier (if the index is appropriate to the user’s field of interest),
but it may make the language inflexible to later change. Alternatively,
leaving the user a freedom of choice in deciding his indexing scheme
requires of him more effort to define and maintain the index scheme, and
requires that he have a better understanding of his .problem and the
manner in which the computer will operate on it, i.e., the "hou". This
tradeoff is characteristic of all specialization, and we find it again

and again in discussing specialized |anguages.

- 38 -

3.1 BIBLIO STATEMENTS

Let us turn now to the informal definition of the BIBLIO
language, considering first the universe of discourse that underlies it.
We will assume that there are three classes of fundamental bibliographic

entities. They are:

publications, by wuhich we will mean books, articles, journals,
published proceedings, reports, manuals, dissertations,
collections, etc. .

authors, which will include editors, collectors, translators,
annotators, etc., and

subjects, which will themselves be categories of the wuser’s

choosing, describing the subject matter of the publication.

In addition to the three fundamental classes of entities, we
Wwill want to represent peripheral (though often highly useful)
information about each. Thus, publications will typically have the name

of the publisher and the date of publication, the name of a disseminator

(e.g., the National Technical Information Service), the user’s local
source (e.g., the Comp. Center Library, or Fred's office)l, and an
overall rating of quality. This peripheral information will be treated

as attributes of the entities. -

We distinguish between fundamental and peripheral information by
anticipating the queries we are to answer. One might well ask "What are
publications by Quine?" or "What articles are about syntax directed

compiling?" or "To what subjects is Word and Object relevant?" but we do

not anticipate "What books were published by Addison Wesley?" or "What

- 3]

Wwas published in 1868?" Therefore, we make authors, publications and

subjects primary, and publishers, publication dates, etc., secondary.

The heart of the manipulable information in the data base
serving as the wuniverse of discourse for BIBLIO will be the
relationships which hold between the major entities of this universe.
Thus, we want to be able to represent the relationships between authors
(used in the generic sense described above) and publications, and the
specific type of such a relatibnship. For instance, Benjamin L. Whorf

is the author of the book Language, Thought and Reality, and Saul Rosen

is the editor of the collection Programming Systems and Languages.

Other major relationships exist betueen publications and subjects
(Aspects of the Theory of Syntax is about Ilinguistics), betueen
publications ("Two Dogmas of Empiricism" appeared in From a Logical

Point of View), and betuween subjects (transformational grammar is part

of syntax).

This brief description defines the underlying logic of the data
base on which BIBLIO rests. The language in which the user and the
computer communicate will have to reflect this logic. Because none of
the data is predefined, BIBLIO must include ways to introduce the names
of new publications, authors and subjects, and specify the relationships
among them. We want the language to be easy to learn and use, and
concise enough to be congenial; thus compound statements which will
define and relate several new entities will be useful. We may want, for

instance,

- 49 -

Whorf, Benjamin L. is the author of the book Language, Thought and
Reality, which was published by MIT Press in February 1956, and is
extremely relevant to linguistic philosophy and also highly relevant
to semantic models; it is an excellent work.

To avoid the difficulties involved in handling an English
sufficient to process the above, we uwill settle for a somewhat less
natural, though similar linguistic form. (Simple extension of the
upcoming language by allowing innocent "noise words" and other trivial
techniques can improve its appearance considerably, but we will not
discuss that here.) We will state the above as:

Author: MWhorf, Benjamin L.; book: Language, Thought and Reality;
publisher: MIT Press; February 13956, A-subject: linguistic
phi losophy; B-subject: semantic model; A
Here, we have translated "extremely relevant" to an "A-" modification on
the subject, "highly relevant" to "B-", and "excellent work" to "A".
Notice that the "February 1956" is 'implicitlg known to be the
publication date, just as the "A" at the end can only be the overall

assessment of quality.

Actually, the language becomes more concise as more data are
present. For instance, after the above statement, and another which has
introduced Quine, Willard vanOrman as anAauthor, the statement

Quine, book: Word and Object; MIT Press, 13968, A-linguistic
philosophy, A

carries quite a bit of information in rather few symbols. Since Quine,
MIT Press and linguistic philosophy are already known entities, they

need not be reintroduced, and ‘the relations implied among them are

- 41 -

straightforuard consequences of the types of these entities.® Notice
that the specialized nature of the language allows a rather concise,

high level presentation of information.

The statement of the sort presented above serves to introduce
nen authors, subjects, publishers, etc., and states the author-
publication and publication-subject relationships. It will also express

the publication-publication relation ("appeared in"), but it is not

*Several questions about ambiguity should assault the careful
reader here. For instance, in the unlikely event that "MIT Press" is
introduced as the title of a new book (perhaps a retrospective of the
Cambridge weight Iifting championships), a later use may find the term
ambiguous. Usually, the ambiguity will be resolvable by syntactic
means. In this case, if we require that a statement must refer to
exactly one publication, we can always settle the sense in which "MIT
Press" is used, and select the appropriate interpretation. One of the
major advantages of the REL metalanguage scheme of implementation is
that this disambiguation will 'be almost totally an automatic byproduct
of the way language is defined, therefore very easy for the language
implementor to provide.

The problem is tougher if our perverse "worst case analysis"
suggests that the user may become interested in "MIT Press" also as a
subject matter. We would find it overly restrictive to require the
appearance of a publisher, and a relevance rating for each subject
mentioned in a statement. Therefore, in something like

Quine, Uord and Object, MIT Press

the "MIT Press" can be either the publisher or the subject. In that
case, We require the user to disambiguate, e.d.,

Quine, Word and Object, publisher: MIT Press;

" Similar comments can .be made about other cases of ambiguity.
For example, though "Quine" will be sufficient to identify MWillard
vanOrman (Quine, if both Terry and Shmuel are in the data base,
“Winograd, Terry" is required for an unambiguous reference.

- 42 -

sufficient to introduce the subject-subject relationships. As discussed
before, this relationship could take several forms. We choose to define
it as a partial order on subjects, where the order is "is part of." This
is more general than the tree-like organizations considered before, as
lattice-like structures can be represented. For instance, "Grammar is
part of syntax directed interpretation," "Grammar is part of compiling,"
and "Syntax directed interpretation and compiling are parts of language
pl"Of:ess'vr1g."I To express this relation, another kind of statement will be

used:

subject: model generation; is part of subject: automatic
programming; -

or, assuming the previous introduction of "computer aided education",

model generation is part of computer aided education

3.2 BIBLIO QUESTIONS

The purpose of questions in BIBLIO will be to retrieve
information that exists (either explicitly or implicitly) in the data
base. The simplest queries will retrieve the basic information about
the primary entities, Thus:

Q: Quine?
A: Quine, Willard vanOrman

Q: Language, Thought and Reality?
A: Whorf, Benjamin L., Language, Thought and
Reality, MIT Press, February 1356.

language processing? ‘
¢ language processing, syntax directed
interpretation, compiling, grammar

> 0

- 43 -

These queries merely return more complete information about the
requested entity; the first yields the full name, the second, a complete
bibliographic reference, and the third, a list of all sub-categories of
the subject. This usage reflects fhe type of operation to which a normal

card catalog is customarily put.

The use of the interconnections in the data base makes BIBLIO
truly powerful. By recursively combining applications of derivative
computations, a large and wide net can be cast throughout the data base
to search for the desired information. The following computations can be
combined, where each "function" is a map from lists of one primary tuype

to lists of another:

AUTHOR OF <publication> -> <author>
WORKS BY <author> -> <publication>
TOPIC OF <publication> -> <subject>
GENERALIZATION OF <subject> -> <subject>
WORKS ABOUT <subject> -> <publication>
WORKS <rating>-RELEVANT TO <subject> -> <publication>
<rating> QUALITY <publication> -> <publication>

These allow us to pose questions |ike:
Works by Quine?
Author of A quality works B-relevant to linguistic philosophy?

Works about generalization of topic of works by author of Word and
Object?

Notice that with these primitive functional operations, the
amount of information retrieved by a complex query might be very large,
because conjunction is not provided. At least for "WORKS", conjunction

and dition may be very useful constructs, permitting constructions |ike:

- 44 -

Works by Quine and about logic?
Works about compilers or interpreters and by Wegbreit?
In addition, we would like a definition facility in BIBLIO, to
allow the introduction of new concepts in terms of existing ones. Thus,
‘we want the ability to say

Define linguistic philosophers: author of A quality works B-relevant
to linguistic philosophy

Then, questions |like
Works by linguistic philosophers about computational linguistics?

become convenient. This provides not only a shorthand form of expression
(uhich is itself quite valuable), but a-‘simple manner of creating and
using new cdncepts. After the above definition, the user will ask
questioné involving "linguistic philosophers" without récalling the
detailed meaning he has assigned to that term. Thus, the ferm acquires
a life of its oun, uitﬁ a compatible meaning to both user and computer
(assuming the definition was made well). Here,.neu high level concepts,
easily introduced bg the user, are immediately available for further
use. This is a very important capability of any good high level

language, and is strongly supported by the REL system.

This completes a rather informal descripof the BIBLIO language,
which will be used as an example to illustrate techniques of language
implementation. Undoubtedly, one could discover some aspects of
bibliographic reference not adequately treated in this elementary

language, or treated differently from one’s own preferences. To

- 45 -

objections on the basis of preference, we can only point to the comments
about specialization made at the beginning of this discussion -- BIBLIO
is not a general language to please everyone. Other languages, to some
extent similar, but making different choices in design, are possible and
desirable for other users, and to the extent that they are similar, they
Wwill share implementations with BIBLIO. Omission of further detailed

capabilities is (mostly) justifiable by considerations of space.

This specialized language allows communication at a high level
and provides its user wWith a convenient, reasonably flexible and
powerful facility for keeping track of his personal bibliography. It is
illustrative of the notions we have presented for specialized |anguages,
and should give'a flavor of what they may be like. We will now present
the computer system and metalaﬁguage in which such special ized

application languages can be implemented.

- 48 -

CHAPTER TV

THE METALANGUAGE: UNIVERSE OF DISCOURSE

Specifying the universe of a theory makes sense only
relative to some background theory, and only
relative to some choice of a manual of translation
of one theory into the other.

-- W. V. Quine [1969, p. 54]

I[f we may substitute "language" for "theory" in Quine’s
relativistic prescription, the above is an outline for the program of
the next two chapters of this thesis. _Ne are interested in the
implementation of new, specialized languages, and we wWill present the
"manual of translation" into the REL Language Writer’s Language, which

Wwill serve as our "background" language, or metalanguage.

Within the framework developed in Chapter II, a language

consists of two parts: a data representation which defines what types of

objects can exist in the language's universe of discourse (called data

structures) and what operations may be performed on them (called

- 47 -

functions);* and an extended syntax ihich defines the meaning of each

phrase of the object language in terms of the data representation.

To specify data structures and functions, LUL uses.a style draun
from familiar programming languages, and its syntax for statements and
type declarations follogs, wherever possible, Wirth's definition of the
language PASCAL [1373], extended and modified where necessary to our
needs. This forms the subject of the current chapter. PASCAL provides
no help concerning the definition of languages; thus, LHL introduces its
own capabilities there, using the flavor of the Backus-Naur formalism
(BNF), greatly enhanced. The related LWL facilities are presented in

Chapter V.

The discussfon below is concerned with those areas in which LWL
differs from PASCAL, and consicerable attention is devoted to motivating
and discussing LWL’s novel features. Therefore, this presentation is
topical rather than complete, and for the purposes of exposition it
assumes the reader’s familiarity with the_PASCAL language. MWhen not
stated otherwise, LWL includes exactly the corresponding features from

PASCAL. A complete syntactic description of LWL appears in Appendix A.

*Note that the data representation contains both data structures and
their operations. Thus, it includes most of what is in a normal
programming |language.

- 48 -
4.1 DECLARATIONS

Data are represented by constants and the values of variables,

each of which must appear in a variable declaration uhich associates a

data structure (data type) with the variable. The data values are
constants, where each data type defines the set of constants which

variables of that type may have as values.

4.1.1 BASIC DATA TYPES

The basic data types are the scalar types. Their definition
indicates an ordered set of values, each of which is (implicitly)
defined to be a constant of that type. In addition, there exist four

standard scalar types: Boolean, with the constant values False and True;

char, wuith the constant values corresponding to the host computer’s
character set; integer, with constant values corresponding to the
allowed range of integer arithmetic; and real, with the constant values
corresponding to the allouable values of floating‘point arithmetic on

the host computer.

PASCAL includes a subrange type, which defines a type whose
constant values are a consecutive subset of the values of some other
type. .The use of subrange as a type has been severely criticized by
Habermann [1973, p. 58]. LWL retains the form of the éubrange, but

merely as an expressive mechanism by which the language writer can

- 49 -

concisely indicate not only the basic type but also a range of values
Wwithin that type for a variable. Thus, if we say a variable is of type
1 .. 256, we will really mean that it is.of type integer, and needs
storage only sufficient to distinguish 256 values. No commitment is

implied to enforcing the bounds at run-time.*

4.1.2 STRUCTURED DATA TYPES

Structured types are defined by describing the types of their

components and by indicating a structuring method. LWL supports three

of the PASCAL structured types, array, record and ggi,** Wwith some major
differences involving the REL System’s conventions on data space

allocation and persistence. Principally, a record type definition may

*This does not satisfy Habermann’s objection in full, since it leaves
unanswered the same question that is raised by the PL/1 program segment

DECLARE I FIXED BINARY(31],
J FIXED BINARY(15);

J=I

What is the value of J if | was greater than 2715-1? The question is
sidestepped by most implementations, which is exactly the strategy ue
pursue here. Admittedly,. this does violence to Wirth’s desire for
clarity and transparency, but the run-time discipline required to
enforce value bounds is a cost we are unwWilling to assume. Notice,
however, that a host computer of the Burroughs 1788 type, With variable
uword length, would find such bound checking (at least to the nearest
power of two) quite straightforward. Also, a "debugging" feature |ike
PL/1’s SUBSCRIPTRANGE or STRINGRANGE could be defined for explicitly
requesting a check on subrange boundaries.

*The file structure type is not implemented, as justified in the
section on data handling and paging, belou.

- 5@ -

include a storage class specification, indicating how this structured

type may be represented in the REL underlying data structures. The
three storage classes are stack, corresponding to an ALGOL-I|ike dynamic

run time stack; list, referring to a rather épecialized garbage

collected heap; and page, which corresponds to space in a random access

file system managed as a virtual memory.

Pointer types play a relatively more important role in LWL than

in PASCAL, because nearly any non-temporary datum (i.e., anything which
persists in the wuniverse of discourse of the language) must be
referenced through pointers. The pointer is an object with strict
limitations in LWL. The target of a pointer must be a record type which
has an associated storage class specification. The pointer is said to
be bound to its target type. The pointer can also be identified with

the storage class of its target, and we will refer to list pointers,

stack pointers, and page pointers. A pointer variable may also have the

value nil, which is a valid constant of all pointer types.

Partly in recognition of the above limitation on pointers, ue
introduce another abbreviative convenience |ike subrange, the subtype
pointer. For example, we allou

type publication_page = page record
publication_data : array [l..num_pubs_per_pagel of

record
title : title_string;
num_auth : 8 .. max_num_auth;

auth : arrayll..max_num_auth] of author;
end
end

- 61 -
category publication =
@ publication_page.publication_datalx];
The second definition makes publication a subtype, defining it as a
pointer to one of the elements of publication_data in a
publication_page.* Notice that this mechanism, in essence, returns to
LWL the flexibility in the use of pointers which is apparently removed
by the strict limitation on pointer targets introduced above. Thus, any
data type may be the target of a subtype pointer, but only if it is
contained in a storage classed record type. This guarantees that the
compiler has sufficient information about the target of a pointer so
that it>mag generate the proper code to access the data which is
referenced. This is especially useful when a collection of objects
(e.g., the above publication_data structures) are to be treated both as

individuals and as a group.

4.1.3 TYPE CHECKING

Tupe checking is very strong in LWL. The strict enforcement of

typing hierarchy is carried to rigorous extremes. Every appearance of

any anonymous type is a unique type. Though there is some doubt about

Wirth’s definition of the equivalence or compatibility of types, PASCAL

¥The traditional alternative to this scheme would be to represent a
publication by a pair, [publ_page_pointer, publ_index], in which case a
reference to a publication would appear as:
publ_page_pointere.publication_datalpubl_index]. The subtype pointer
merely incorporates the index as part of the pointer.

- 52 -

generally assumes that any two types defined identically are the same
type. Thus, the program segment

var a : array [1..58] of char;
b : array (1..58] of char;

defines one: anonymous type (array [1..50] of char) and considers a and b

to be variables of the same type.

LWL attempts to force the language writer to structure his data
definitions hierarchically; therefore it considers two anonymously
defined types to be distinct, and the assignment a := b, above, is a
type fault error. To achieve the intended effect, one would code

var a, b : array [1..58] of char;

é ;=.b;
In even better style, one would name the defined type, uhi;h indeed
stands for a meaningful concept -- in this case, "string of characters
inatitle":

type title_string = array [1..56] of char;

var a, b : title_string;

é ;=.b;
This preferred style gives an identifier, title_string, to the data type

being used, so that it can be referred to elsewhere in the program

Without any need to know its exact definition,

This rigid typing convention means that every type which is used

must be .explicitlg named and declared. This should improve program

- B

correctness and understandability, because the translation of a given
type into the LWL data structures can be defined in only one place. In
the above example, the programmer is prevented from being sloppy by
reflecting his knowledge of the physical structure of title_étring in
every place that he defines a variable of that type. To be consistent
Wwith this point of vieuw, eveﬁ the common stylistic aberration

const title_string_length = 58;

type title_string_selector_index = 1..58;
type title_string = array [1..50] of char;

should be written instead as

const title_string_length = 58;

type title_string_selector_index =
l..title_string_length;

type title_string =
array [title_string_selector_index] of char;

We encourage, by this limitation, the extensive use of constant and type
definitions, which are part of a general and pouwerful definition

facility for LWL.

4.2 DEFINITIONS

The user of a computer language often needs to introduce new
notations and concepts into the language for his oun convenience. These

may range in complexity from wanting to write "pi" for "3.14153" to the

desire to introduce fairly complex new functions under a neu syntax. X

*Note that this process is orthogonal to the language writer’s basic
task, to define the syntax and semantics of an object language. We
address here only extensions which the language wuriter makes to his
metalanguage for his own use. These may well have little apparent

- Bh -

The definition of new data types is such an extension, of intermediate
complexity. LWL provides a powerful, general definition facility, which
is appropriate for the PASCAL-like definition of new constant values and

data types, but also allous the introduction of new syntactic constructs

of the metalanguage.

4.2.1 THE define STATEMENT

LWL’s general definition mechanism is of the form

define definiendum = definiens;
where the definiens is a meaningful phrase of LWL,* and the definiendum
is an arbitrarg.string of characters not including the "equal sign" (=).
Loosely speaking, this statement defines the definiendum to be a valid
paraphrase of the definiens., For example, in its simplest use,
definition may become a mechanism for introducing abbreviations:

define (!
define !} =

[}
o
[¢]
=

1
V]
]
Q.

These definitions introduce the abbreviation which permits compound

statements |ike

relation to features which he is building into the object language. The
relation of metalanguage extension to object language construction will
be taken up again in the final chapter.

*WUhat is a meaningful phrase of LWL, is determined by the grammar by
which LWL is defined (see-Appendix A); this is also the manner in which
the PASCAL Report defines PASCAL. Thus, strings like "array [1..8] of"
or "b :=" are not valid, as they have no meaning in LWL, whereas "a+3"
is a <simple_expression> and “var a: integer" is a
<variable_declaration>. This ‘is an indication that the definitional
extension mechanism of LWL is context free.

- 68 -

(! sl; s2; . . . sk !)

This is the most trivial, string-replacement type of definition.

The processing of definitions is, however, different from macro-
style text replacement. The QEfiniendum is bound to the structural
analysis of the definiens as it is parsed at the time of the definition.
This makes LWL definitions more like the macro evaiuation facilities of
the Vienna Definition Language [Wegner 1372] than like the opeﬁations of
a general string processor. Thus, the meaning of a definition needs to
be analyzed only at the time of the definition, potentially saving
extensive parsing for commonly used defined constructs. On the other
hand, definitions are not completely “compiied", since the meaning of
other defined terms appearing in the definiens and the binding of
metavariables (see below) are not determined until each use of a

definition. This latter allous chains of definitions which adjust

correctly when some definition in the chain is altered.

Both definiendum and definiens may contain metavariables, wWhich

are of the form

"phrase"
where phrase is a meaningful phrase of LWL. The metavariable stands for
an arbitrary entity of the metalanguage which is of the.same kind as the
phrase between the quotation marks. For example, "5" is a metavariable
for <unsigned_constant>s, "a < 8" is a metavariable for <expression>s,

and if publication_type has been defined by

- 5B =
type publication_type = (book, article, journal, report,
proceedings, manual, dissertation, collection);

then "publication_type" is a metavariable for scalar types.

The above technique allous these metavariables to be defined by
example. The phrase betueen the quotes (") is parsed according to the
grammar of LWL (Appendix A), and the first non-terminal which spans the

whole phrase is taken as the part of speech of the metavariable.

A metavariable has a part of speech, and it may also have a

range. This allous the use of metavariables to stand for selected

subcategories of the LWL parts of speech. For example, given the above
BIBLIO definition for publication_type and a declaration

var uhich : publication_type;

the metavariable "which" has part of speech <variable>, and range
publication_type. Thus, a definition involving "which" will be applied
only under the constraint that the actual LWL variable to be bound to
"which" wWill have been declared aé' a variable for publication_type.

This is the only use of range made by LWL; the general facility may be
important in the implementation of object languages, and is described

fully in Chapter V, in the section VARIABLES AND BINDING.

Alternatively, constructions like "<constant>" or "<exbression>"
allow the more knowledgeable language wWriter to use his understanding of
the LWL grammar to define metavariables explicitly, with less chance of
error and confusion. Metavariable definition by example is, houever,

usual ly sufficient to achieve the intended result.

- E7 -

The metavariables of the definiendum are bound to the
corresponding metavariables of the definiens, as in a lambda calculus.
They are variables in the logical sense, having a type but no specific

value. They are bound at each use of the definition.

4.2.2 CONSTANT, TYPE AND CATEGORY DEFINITIONS

For consistency with PASCAL, the const andviﬁgg definitions are
retained as special cases of define. They must not contain the use of
metavariables and must in fact define constants and data types,
respecfivelg. For example,

const title_string_length = 58;
type title_string_selector_index =

l..title_string_length;

type title_string =
array [title_string_selector_index] of char;

could be written equally well as
define title_string_length = 58;
" define title_string_selector_index =
l..title_string_length;
define title_string =
array [title_string_selector_index] of char;
An additional form for data type definition exists. The
sentence
category <identifier> = <type>

declares not only a new data type of the LWL, but also identifies this

data type as the representation of a semantic category of the object

~ B8 -

|anguage being defined. The identifier is then used to name the three
associated things: the LWL data type, the object language semantic
category, and the corresponding object language syntactic category (part
of speech). For example, to define the category subject of the BIBLIO
language, wWe write
type subject_data = page record
subject_name : subject_string;
end;
category subject = @ subject_data;

This is the method by which the object language's parts of speech are

introduced.

4.2.3 METALANGUAGE EXTENSIONS

| The general form of the define statement gives the language
writer considerable power to tailof LWL to his needs. In this section,
Wwe take up two difficult but common questions of‘extensible languages:
the use of parameterized types and functional extensions of the

metalanguage.

The wuse of metavariables is handy in aggregating LWL
constructions which are not identical, but differ only in detail. In

the PASCAL Report, for instance, string is defined [p. 9] as

packed array [l..n] of char

The upper limit of this array dimension, n, appears to be an arbitrary

- 59 -

number, and in fact no further mention is made of it. Wirth holds back
from actually claiming that string is a type, for in PASCAL n would then
have to be fixed for all strings. In fact, hidden additional mechanisms
of the compiler permit the use of string constants so that n comes out
appropriate for each instance, but this is much more complex than the
Report indicates. Certainly, string is 'not like any other type
definable in PASCAL. In LWL, one states instead

define string("7") = array [1.."7"] of char;

¥ and it does not solve all of

This definition is not prettier,
the problems, but at least it faces up to the fact that PASCAL (as well
as LUWL) does not have facilities for arbitrary length structures, and
thus there can be no real type string. One might use the above
definition, instead, to isolate the various string-like types ‘that will
be ‘introduced, from the detail that they will be implemented as arrays
of characters. Thus, we might reurite the definitions of title_string
and subject_string as

type title_string = string(title_string_length);

type subject_string = string(subject_string_length);

The lack of varying length structures is one of PASCAL’s most

controversial features, because it fails to make full use of the dynamic

*The syntax "string(8)" is arbitrary. It could equally well have been
"string.8", "8-string", "stri..8..ng", etc. One of the advantages of a
general definition scheme is that it will accomodate rather peculiar
syntactic forms, when desired.

- B8 -

storage allocation mechanism included in its definition. Further, it
necessitates the arbitrary imposition of maximum array sizes, set at
compilation rather than execution time. This is'a drauback routinely
overcome in coﬁtemporarg programming languages, and it is annoying and
overly rigid. This limitation also exists in LWL, but it is a less
arbitrary restriction because a priori limitations on the maximum size
of contiguous data, imposed by the REL System’s data management schemes,
already effectively exclude the possibility .of arbitrary s{zed data

structures.

The apparent incompatibility between strong type checking and
variable structural parameters is a common one, wWhich LWL does not
escape. In the PASCAL Repdrt (p. 37], Wirth urites a deceptively nice
piece of code, for the function Max, whose arguments are a vector and an
integer (the length). The implication is that Max is indeed a general
function to compute the maximum value of a vector of reals. Yet, because
the type vector has had to be declared as an array with some particular
length, under strong type checking the function Max will only work for
arguments of type vector; thus only for real arrays of that particular

length.

Languages which do allow variable length structures do not
completely overcome this difficulty either. For instance, a related
problem plagues EL1, which defines string [Wegbreit 1978, p. 188] quite

general ly and legitimately as

-~ Bl -

DECL string : mode;
string <- ROW(CHAR);
The length of this row of characters is not bound, and string is said to

be length unresolved. This leads to some difficulty, because the

similar mode string8, défined by

DECL string8 : mode;
string8® <- ROW(8,CHAR);

is not equal to string. Apparently, the declaration

DECL a : string;
is not permitted without a modifier that fixes the string length.
Typically, this will be the BYVAL modifier which declares a to be the
argument of a PROC, in which case the mode is length resolved by the
actual parameter. However, since the length resolution wWwill generally

not occur until the PROC is invoked, the code segment

DECL "a :-strihg;

DECL b : string8;

; <—fb;
leaves unclear whether an implicit type conversjon will be required. It
will generally result in a type fault failure, unless the programmer has

had the foresight to define conversion routines among strings of

arbitrary lengths.

It is possible to overcome these problems by loosening the
requirements of type checking to exclude length as a type
differentiator. This, however, forces recourse to runtime checking of

array bounds, and violates some intuitive sense that arrays of different

- B2 -

lengths cannot be the same type. Perhaps this difficulty can be
resolved by making explicit the hierarchical relationships among'tgpes
and the structure-determining "hidden bindings" across procedure calls,
as suggested by Ingargiola [1974]. In any case, LWL does not implement

varying length arrays.

Notice that the definition facility is more widely useful than
in type definition. For example, it subsumes part of the operator
extension facility which is tgpicalfg included ih extensible languages.
To define a simple new operator on constants, for instance, one codes

define "1" % "2" = ("1"+"2"i*(“1"—"2“);

Later, this could be used in

1; param = 5;
param % min_bound;

const min_bound
const max_bound

Similarly, given the above definition of title_string, wWwe can urite

var a, b : title_string;

define ::"a
max (ord("a" [1]), ord("a"[title_string_lengthl));

which defines a rather odd metric on titlé_strings, the maximum ordinal
“of their first and last.characters. This neuwly defined construct is then
immediately available for further use, and
while ::a = :sb do . . .

becomes 4 legitimate statement of LWL.

Further sophisticated uses of definitions might be considered,

but they may often surpass the limits of what are desirable extensions

- B3 -

of LHL. In the implementation of the BIBLIO language, some data type
Wwhich represents a list of publications will be useful in computing
answers to queries relating to publications. Ordinarily, when wWwe code
functions which compute with such a type, the syntactic forms of
reference employed to access elements of the list predetermine, to a
large extent, the actual data types. This means that the functions are
difficult to change in significant ways, because many matters related to
data access are scattered throughout the code. Given a typical
definition of such a list,

type list_of_publications =
array [lop_index] of publication;

a variable of type list_of_publications is probably referenced in many
places in the program as "alil". [If it should become desirable to.
change the representation of list_of_publications to, say, a true
linked-list structure, either many of the functions referring to
variables of that type would have to be reuritten, or we must extend the.
metalanguage to accépt the array form of reference for Ilists of
publicétions Wwhich are no longer represented in that way. One may be
tempted to consider something like the following:

type list_of_publications = @ pub_list;

type pub_list = list record

link ¢ list_of_publications;

pub : publication
end;

- B4 -

var a : list_of_publications; i : integer;

define Ilall[llill] = .l—f Hill = 1
M "a"@.pub
else begin
var x : list_of_publications;
var j : integer;

[T

joe="i" x :="a";

while j>8 & xe.link <> nil do begin
joi= -1
x = xe. link
end;

X@. pub

end;

This would not be at all a satisfactory solution. Note that in
the code compiled for a function with references to an "alil" such as
above, this definitioh would be expanded for every occurrence, and the
defined program fragment would be inserted at each use. Even if the
compiler were sufficiently clever to aggregate each of the expansions in
a common subroutine, the algorithm is still costly. This reflects a
common cost disadvantage of extensible programming. Further, every
phrase of LWL would have to be able to return a value (including a so-
called "left value", as the target of an assignment), .to allou the
functional expression of definitions, as above. Many languages take
recourse to such a policy: In LISP, everything is an S-expression with a .
value; in ELl1, everything is a FORM with a value. For us, such a
decision would wreak havoc on the grammar of LWL -- every compound
statement would need to carry additional syntactic informafion about the
type of its value, and we would become mired in the treatment of generic

mechanisms and related type-dependent processes.

- B5 -

A better technique for avoiding this costly alteration is to
view the meaning and responsibility for computing "the i'th publication
on a list" as a part of the object Iaﬁguage, where it can be implemented
once. Any change in list_of_publications will then reflect back to the
LWL only in the data types and functions which implement that particular
part of the object language. Thus, we write*

define "a"["i"] = publication_selector("a","i");

function publication_selector

(listp : list_of_publications, count : integer)
: publicationg
begin
var counter :.integer; counter := count;
var list-: list_of_publications; list := listp;

while counter > 1 & liste.link <> nil do begin
counter := counter - 1;
list := liste.link
end;
return |liste.pub
end;
Note that although this function may be equally useful and available to
both the language writer and the eventual language user, the above
definition commits only the language writer to this method of invoking
the function. The object language construct for which this function is
the semantics may be of the form
<number>th <publication>

as in

15th work by Quine about logic

*Recall that a and i are as above. Thus, the syntax defined here will
only apply when array-type selection is attempted on a
list_of_publications.

- BB =

(if, for instance, Iist_of_qulications were ‘chronologically ordered),
or the function may not be available in the object language at all (for
example, BIBLIO does not contain this particular construct). In general,
the proper structuring of the object language’s implementation will
place fewer demands on the extension mechanism of the LWL, and will

greatly improve the efficiency of the compiled code.

Definitions extend and specialize LWL by introducing concepts
and terminology which are relevant to implementing the specialized
language under consideration. Recall that the definitions do not become
part of the new language; they merely extend the metalanguage for the
convenience of the language writer. Definition is, however, a very

power ful mechanism, one of LWL's major strengths.

4.3 PROGRAMS

LWL does not support the creation of programs, as such., In its
top level structure, it is heavily influenced by the requirements of the
REL language processor which supports the specialized languages created
by LWL. The most notable omission in LWL is the lack of statements to
declare or invoke procedures; the most radical change is in the syntax

and semantics of function invocation.

- B7 -
4.3.1 MISCELLANEQUS DIFFERENCES FROM PASCAL

In the denotation of variables, intermediate field identifiers
and pointer references may be omitted when no ambiguity is introduced
thereby. For instance, given the follewing definition of BIBLIO’s
author and g_author categories,

category author = @ author_entry;
type author_entry = page record
name : name_string;

num_pub : B .. max_num_pub;
pub : arrayll..max_num_pub]l of publication

end;
category q_author = @ author_list;
type author_list = list record

next : g_author;
this : author
end;
and
var x : g_author
then the variable designator
x. pub [1]
is an abbreviation for
xe. thise,pub[l]
This form of abbreviation is especially useful when referring to some

part of the complex list structures maintained by the language

processor.

For the convenience of the language writer, the for statement
has been expanded and modified. PASCAL's to and dounto constructions

need not be distinguished, ard a new form exists for allowing an

- B8 -

iteration increment other than one. New forms also exist to express

iteration over all values of a scalar type and all elements of a list.

Thus,
for type = all publication_type do . . .
is equivalent to
for type = book .. collection do . . .
given the definition of publication_type introduced earlier. Also, if
vZ2 is a pointer to a record which includes another pointer to that
record type (typical in a singly linked list), then
for vl :=all v2 do S
is equivalent to
vl 1= v2;
while vl <> nil do
}ﬂt_hsyl @ do begin

vl := <the next pointer value for vl>
end

In the specification of relational operators, a minor change is
introducea. Knuth has pointed out the desirability of performing
numerical comparisons on pointers, because an arbitrary (but consistent)
ordering allows certain sophisticated algorithms to be more efficient
than if only equality or inequality betwueen pointers were determinable
(1973, p. 2 of the letter to Hoarel. In response té this observation,
the relational operators <, >, <=, and >= also apply betueen pointers of

the same type (i.e., the same target type).

-~ B8 =
4,3.2 FUNCTIONS

The fundamental program unit to be created in the metalanguage
is the function. Inputs to a function are called its constituents, and
its result is called its value; the types of both are determined from
the rules of grammar wuwhich mention the function as their. semantic
function. Functions are normally evaluated by the language processor in
response to its analysis of a user’'s sentence; thus, the constituents
and value of a function are represented in a structure called a phrase
marker, which is a tree representation of linguistic and computational

information developed by the language processor.

The elimination of procedures and the redefinition of fﬁnctions

both result from the discipline imposed on evaluation by the REL System
- language processor. In a syntax directed interpreter, the user’s
sentence' is analyzed according to the grammar of the object |anguage,
and interpretive functions corresponding to each of the applied grammar
rules are invoked to compute the "meaning" of the sentence. According
to the linguistic model wWhich is the basis of the REL language
processor, every rule of grammar represents a meaningful operation of
the object language, and its corresponding function defines the matching
computation on the language’s universe of discourse. Functions are
composed by the composed application of rules of grammar in the analysis
of the wuser’s sentences. Functions may also be called by other

functions, to permit a hierarchical composition of algorithmic tasks.

- 78 -

In that case, we permit a slightly altered syntax from PASCAL's for the

function reference.

In addition to the forms which correspond to PASCAL's function
designation, wWwe also allow a function to appear as a selector on its
first constituent. For example,

fla,b,c)
is equivalent to
a. flb,c)
This is done so that the distinction between reference to an item in a
structure and the functional computation of an attribute of a record
type object may be deliberately blurred. For instance, if we define
Eggg_bomplex = record rp, ip : real end;

var cx : complex;
function norm (c:complex; real); . + .

then LWL will ailow the references
cX.rp
and
cx.norm
to appear identical. This is desirable, because in referring to the

norm of a complex number, there is no need to distinguish in tHe form of
the reference between the above method of computing the norm at every
reference and the alternative. strategy of storing its value in the
representation of the type:

type complex-= record rp, ip, norm : real end;

-

This syntactic usage recognizes that a selector is a function just as
any other operation uwhich computes a value from a record, and it unifies
the syntax of all function references. This is a minor part of

SIMULA B67’s class concept [Dahl 1968].

4.3.3 THE PHRASE MARKER

The phrase marker, mentioned above, is the universal structure
of the REL language processor. Space considerations prevent a complete
description here, and the reader is referred to [Thompson 1974b) for a
full treatment. For the purpose of describing LWL, the following

condensation is presented.

The phrase marker, as its name implies, is the semantic marker
developed by the language processor for each phrase recognized in the
user’s sentence. The phrase marker is a tree of interlinked phrase and
phrase_information (abbreviated pi) records, all of the storage class
list. The phrase record contains the part of speech and features of its
phrase and a pointer to its pi record. The pi can represent either
"data" or various structures wuwhich determine the way in which the
phrase’s value can be computed. [f the pi is a "data" type, it either
is or points to an object of fhe type defined with the phrase's part of

speech in a category definition.

A phrase may have a pi of the cases rou or gen, in which case it

-72 -

specifies the address of a function to be invoked to compute the
phrase's value, a pointer to the first of a list of phrase markers uhich

represent the constituents of the phrase, and a variable list which

specifies the binding of metavariables which needs to occur when the
function is invoked. The effect of evaluating a phrase is to replace

its "structure" pi by the "data" pi of its value.

The pi also has cases def, amb, var and out. A def pi includes
a pointer to the phrase marker which represents the value of the defined
phrase and a variable list which specifies any bindings of metavariables
between the definiendum and definiens. An amb pi represents a phrase
whose value is ambiguous, and contains a pointer to the first of the
varioué phrase markers which represent its ambiguous meanings. A var pi
identifies its phrase to be a metavariable; it includes the
metavariable's name and a phrase marker which defines its range. The
out pi is a message to be output to the user; it is ordinarily the value

of a <sentence> phrase.

The phrase marker of a sentence is a recursive tree of phrases
and their pi’s, where the leaves of the tree contain only "data" pi’s or

pi's which invoke functions with no arguments.

The passing of parameters between functions and the language
processor and among functions is by reference to the phrase marker whose

rou or gen pi specifies the function invoked. MWithin the invoked

- 73 -

function, the built in function cqnstituent returns a pointer to the
root phrase of that phrase marker. Although the above implies that the
parameter of every function is in principle the same, in fact one
(ordinarily) knous at. compilation time the parts of speech of each
constituent phrase in the phrase marker, and therefore the type of its
"data" pi. The non-terminal phrases of the grammar rule which selects a
function as its semantic representation determine the types of the
function’s constituents, or these types are specified in an explicit

declaration.

In- the case that a function is defined with an explicit
parameter list, the parameters must be declared with types that are
categories, and the given names then refer to the corresponding actual
constituent phrases when the function is invoked. If no explicit names
are given to the parameters, then the category name (as used in the rule
statement) may be used as a function on constituent to select a pointer
to the appropriate phrase. For example,*

constituent.subject
In either manner of naming constituent phrases, the language processor
guarantees that formal and actual parameters will match in type.
Usually, this is possible to check at compilation, but for functions

invoked wWith parameters in the wrong order, or from rules involving

XIf the function has several <subject> constituents, they are called
constituent.subject(l), constituent.subject(2),. . . . Any non-existing
constituents yield the pointer nil.

- 74 -

transformations or from more than one rule, run-time binding is often

necessary.

LWL does not require that the names of variables be fully
specified; even referenced variables‘ may have omitted intermediate
names. Therefore, the language writer can refer to the value of a
phrase without detailing the path' through the phrase marker which must
be selected to reach the value. For instance, the variable

constituent.publication.titlell]
is the first character of the title of the first <publication>

constituent of the current function.

LWL has functions and prefix fuhctions, corresponding to rou and

gen pi’s. Before a function is invoked, its constituents are evaluated,
but no such evaluation occurs before invocation of a prefix function.
Thus, prefix functions must refer only to structural components of their
phrase markers, or use the built in function evaluate to evaluate any of
their constituents, as desired. The tag gen for prefix functions is

indicative of their most common use, as generators over metavariables.

4.3.4 THE SCOPE OF VARIABLES

One further significant difference between LWL and PASCAL is in
the scope of variables. LWL has no notion corresponding to PASCAL’s

program, because the overall organization of "program" execution is

- 75 -

determined dynamically by the grammatical interpretation of the user’s
statements. The wusual nesting of procedures and functions which
determines - the structuée of a program in PASCAL gives way to a more
variable structure of function interactions imposed by the grammar of
the object language. Therefore, a deep nesting of function declarations
is unusual, warranted only when subproblems of a function's
implementation are identified in the implementation as separate
functions, but are not in the grammar as meaningful primitive

operations.

LWL’s rules of scope reflect the strong modularity implied
above. All identifiers (and, more generally,.all definitions) defined
or declared in a function declaration are local to that function, but
not to any functions declared within them. Thus, the scope of
identifiers does not extend to contained functions, as in PASCAL. It is
possible to declare variables or to define varioué constructs outside
any function declaration, in what is called the global environment. The
scope of such global declarations and definitions is universal; i.e.,
they apply both in the global environment and wWithin every function
declaration. Side effects of functions are, therefore, limited to the

manipulation of variables declared global ly.

- 76 -

4.4 DATA ALLOCATION, PERSISTENCE AND ACCESS

The semantics of a programming language are primarily based on
its‘ innate capabilities for handling data in various forms. As
foreshadowed in the above discussion of storage classes, LWL has some
fairly peculiar innate capabilities and Ilimitatiohs in its data
allocation and access. These are the results of decisions adopted
during the development of the REL System and they are currently so
deeply ingrained in the design and objectives of languages operating in
or contemplated for the system that LWL retains them even in the face of

some considerations to the contrary.

4.4.1 THE USE OF REL

The following discussion will be clarified if we begin by
outlining the manner of use of application languages in the REL System.
REL is, itself, a sem%—permanent entity consisting of a load-module
which contains the resident parts of the language processor, utilities
and an interface to the operating system of the host IBM 368 or 378
computer, and several data sets which represent the total virtual memory
resources of the REL System. Such a system is initially generated and.

then exists indefinitely. A terminal session is the total processing

per formed during a single execution of the REL System, which corresponds

to the contiguous time that a single user spends at a terminal,

- I7 -

interacting with REL. A user, when beginning a terminal session, is

connected to the REL Command Language ([(Gomberg 139731, in which he can

create, delete or invoke for use (enter) those versions to which he is

al lowed the proper access.

A version is a particular instance of a specialized l|anguage,
along with all the data which have been incorporated into it. Thus, our
example, BIBLIO, is a language, but an instance of the BIBLIO language
to which bibliographic information about parsing and related subjects
has been added (perhaps called PARSING BIBLIO) is a versien, which wue
say is based on the language BIBLIO.* A version occupies a certain
amount of the REL-controlled disk space allocated to it, as needed, bgv
the REL System. The source programs which define a version in LWL, the
compiled machine code which ihplements the language’s functions, and any
data assimilated by those functions into the permanent data base are all
part of the version.™ A typical terminal session will appear like this:

REL - LOGON PLEASE

>pete

REL COMMAND LANGUAGE - PROCEED
>enter parsing biblio

PROCEED

¥Actually, a language and a version are identical, from the system’s
viewpoint. In use, often a language is a version wuhich has no
particular data associated with it; it serves as a base version, from
which multiple versions may be created.

*¥Currently, the process of basing a version on another involves a full,
actual copy. This is not always necessary, and the source and compiled
code, and even some common basic set of data might be shared among
versions if the necessary protection and access mechanisms were added to
the REL System. For instance, in BIBLIO, several colleagues may uant
independent versions of the language, but all starting with a shared
common set of references.

- 78 -

>articles by Weghreit?

>exit

REL COMMAND LANGUAGE - PROCEED

>exit

THANK YOU
The segment of interaction between "enter . . ." and the succeeding
"exit" ‘is called a session. (Note that, therefore, a single terminal

session may contain several sessiohs. if several different versions are
entered or even if the same version is entered several times.) Each
version persists until it is specifically deleted. Thus, any data base
or context accumulated during interaction with the user may carry over
into succeeding sessions, if the language writer has provided for that.
Tgpicallg, the data‘ base wWill be permanently kept with a version,
allowing the wuser to exit a session and continue wWithout major
difficulty at some later time, but information about the local context

of interaction (e.g., the referents of anaphoric references) is dropped

at the end of each session.

This stgle of interaction naturally introduces three time scales
of data persistence, which correlate with the three storage classes of
LWL. Of these, the simplest and most temporary is the stack storage
class, uhich provides data objects which are created at the entry and
destroyed at the exit of each function. The most permanent is the page

storage class (and the associated version common area), which persists

for the duration of the version. Intermediate to these is the list

storage class (and the associated version global area) whose persistence

- 79 -

is the duration of a session. The list and page storage classes need

further discussion, followWing.

4.4.2 LIST PROCESSING

The list storage class consists of data items allocated by the
built-in function new and recovered by a garbage collector. Any list
structure is guaranteed to persist as long as any reference is made to
it by a pointer variable in the scope of the function being evaluated or
its ancestors (i.e., any stack variable in the current or invoking
functions, including the parsing graph, and ang‘variable in the session

global area).

The form of list data items (elements) is rigidly constrained by
two conventions: every list element is of fixed length, and the first
byte of each list element must be a variable of type char, the value of
which defines the structure of the remainder of the record. This
information is used by the garbage collector to determine which fields
need to be "chased." I[f the language writer's definition of a list
record type does not include the necessary initial char variable, it is
added by default and initialized, on allocation, to a value appropriate

to the structure of the record.

- 89 -
4.4.3 PAGING

Considerable evidence has accumulated indicating that natural
language performance involves an interaction with data in the language's
universe of discourse. We take this view of specialized computer.
languages as well: that the universe of discourse is an integral part of

a language. This implies that data is not something kept in a "file
structure" and processed by an "input/output system" to make it
available to an operation, but‘is innately and intimately tied to the

linguistic and operational constructs of the language.

Consider the implications of the above for "programming" in a
specialized application language like BIBLIO. In a typical programming
language, say FORTRAN, the user-introduced symbols of an instance of the
language (namely, a program) are all variables, with the responsibility
for associating meanings to these variables bg input or computation
resting with the user. In BIBLIO, by contrast, essentially every
"identifier" introduced by the user acquires a meaning at the time of
its original appearance, either as a reference to a particular object of
the user’s universe of djscourse (e.g., MIT Press), or as a method of
determining some objects (e.g., the definition of "linguistic
philosopﬁer"). LWL's mechanisms for data manipulation are specifically

designed to reflect this style.

LWL supports no input and output operations, per se. All

= 8] =

communication betuween a specialized language running under the REL
Sgsteﬁ and the external world is through the language processor
(described in the next chapter). Instead of access to files, LWL
provides a very large, directly addressable virtual memory, which is a

permanent part of every version.X

Several requirements and constraints have colored the
development of REL’s and LWL’'s handling of virtual memory, and the
resul ting mechanism has some unusual characteristics. The conventional
virtual memory systems, like BBN's TENEX [Bobrow 139721, rely on a
hardware-assisted operating system which automatically translates
addresses from a relatively large virtual space into the actual hardware
address uhere the appropriate part of the virtual space resides in main
memory. Of course, to make this mapping possible,‘the operating system
must also at times read from a backing store into main memory some part
of the virtual space that is newly referenced; it may, at the same time,
need to overlay, or urife back to the backing store, parts of the
virtual space not likely to ‘be accessed soon -- this requires the-

adoption of a replacement policy, most often some form of the Least

Recently Used (LRU) or MWorking Set (WS) strategies. The transfer of

information between main memory and backing storage is in units of

*The MULTICS system [Saltzer 1974)], which supports access to files,
implements that access through its virtual memory management. In REL,
gach version can access a full 32-bit address space (4,294,967,296
bytes), subject, of course, to the availability of that much direct
acces secondary storage.

= 32 =

pages, which are ordinarily large compared to a single basic data item

of the computer. (In the REL System, a page is 2048 bytes.)

In principle, the virtual memory mechanism is completely
transparent to a program; it gives the appearance that the actual
computer is totally dedicated to the single program, With real main
storage resources equal to the size of the virtual aadress space. This
is, of course, a handy fiction which works well in the general case, but
has serious negative_impact on the processing of programs which actually
attempt to exploit a significant portion of this resource. The simple
exchange of row for column processing of FORTRAN arrays can save as much
as a factor of the order of the matrix in the number of page faults
generated to compute large matrix problems [Moler 19721. A colleague
has found examples in the processing of relational data primitives where
three or more orders of magnitude may be lost in elapsed time by
unknowingly running in a virtual memory [Gréenfeld 19721. Similar

conclusions result from a study of sorting algorithﬁs [Braun 1370].

What is of great significance is that in general, the more that
an algorithm attempts to take advantage of information it may have about
its host computer, the worse is its degradation when that host turns out

to be implemented virtual ly.

The intimations of horrible performance deducible from

calculations like those mentioned above have convinced us of the need

- 83 -

for paging, or virtual memory management, which allous rather strict
control by the language writer. This control is exercised through the
three standard functions lock, release and unlocked, and an extension of

PASCAL’s with statement. Lock and release both take arguments which are

page pointers (pointers to records of storage class page), and return
them unchanged, with thg side-effect that a page which is locked is
guaranteed not to be replaced by the paging system until a release is
executed.® Unlocked is a function of no arguments, wWhose value is the
number of actual page frames which are currentlg available for use and
not locked. Further, access to a page record may be made only inside a

Wwith statement which controls that record.

Virtual memory management as undertaken by IBM’s VS2 operating
system ‘postdates the development of REL’s paging design and
implementation, and fails to satisfy our requirements on tuwo accounts.
It is committed to a 24-bit virtual addressing space, which must be
shared among all multiprogramming tasks (in the current release), and
which is volatile at the termination of every task. We have felt that
the non-persistence of the paging space from session to session wWith a
language and the relatively small ({(and unpredictable because of the
presence of other tasks) size of the virtual memory pose serious
problems if we were to base our paging on it. Further, the variant of

the working set strategy employed in VS2 does not support our

*Jith the exception of intervening error and interruption proce&sing.

- 84 -

requirements for the unlocked, lock and release functions without

significant (and impractical) subversion of - VS2. Therefore, we have
chosen to implement the paging services provided by the REL System as a
software layer, using the IBM operating system's standard direct access

1/0 facilities, and ignoring the paging services provided by VS2.

The decision to implementvpaging by software has been a very
expensive one in design, implementation and operation, because of the
need to efficiently invoke the paging services to have all referenced
pages in main memory uhén needed and to mark pages for reuriting to the
backing store when they are modified. At the level of machine code, the
software processing of paging requires giving up a strict demand paging
strategy and incorporating some aspect of paging prediction. To stay
Wwith demand paging strictly, the machine code would have to generate
extra "instructions" (in fact, subroutine calls) around each data access
instruction of the real machine; to insure the presence of the required
data. Thus, load would become

load_page; load
and store would become
load_and_mark_page; store
This is cfearlg too inefficient to adopt, since the l|oad_page

"instruction,"

even if no page fault occurs, is one hundred times slower
than the load. Thus, something like a flow analysis of the program is
required to determine those points at which paging instructions should

be placed to efficiently simulate the true demand paging policy.

-85 -

Fortunately, the control structures (without goto) implemented
by PASCAL and LWL are essentially simple flow graphs, and the needed
analysis is a direct result of the structure of the language. Houwever,
the inefficiencies achievable by paging are so great, that LWL forces
the language wuriter to devote considerable attention to paging by
permitting reference to the components of a page record structure only
Wwithin the context of a with statement, which is extended to perform the
required paging operations. This makes wWith a syntactic marker to

indicate the scope of access to the virtual memorg.*

Consider the BIBLIO semantic function which relates authors to
their publications, based on a wuser’'s input sentence. Given the
definitions of publication and g_author from earlier examples, the basic

input function is:

*Note that this mechanism could also become the basis for an
implementation of critical region, if REL were to support the
simul taneous use of one version by several people. Such use is
currently not supported.

- 86 -

function basic_input begin
var auth_ptr : g_author;
Wwith publication e do
for auth_ptr:=all constituent.q_author do begin
if num_auth > max_num_auth
" then error. 'Too many authors.’

EIEE begin
num_auth := num_auth + 13
auth[num_authl := this
end;

With this e do
if num_pub > max_num_pub
" then error
"Too many publications for author.’

else begin
num_pub := num_pub + 1;

pub [num_pub] := publication
end
end
end basic_input;

The explicit use of lock and release supplements the control
exercised through the use of with by allowing data paging control not
tied to the program’'s hierarchic structure. In computations where
highly efficient interleaved processing of two sets of pages is required
(for instance, a merge), these functions allow the simulation of
efficient coroutine hehavior which is not supported by LWL. Greenfeld’s

thesis includes several algorithms in which these functions are

particularly useful [1972].

This concludes the discussion of that part of LWL which allous
the language uriter to define the primitive data types of the object
language and the functions which operate on them. In this, LWL is very

similar to PASCAL. The major semantic differences result from special

- 87 -

considerations introduced by the host REL System’s memory management
mechanisms and the fundamental framework of. the syntax directed language
processor. Other differences result from a desire to provide a concise
notation to the language writer for dealing wWwith commonly encountered
tasks and from the powerful definitional capability which allous the

extension of LWL itself.

- 88 -

CHAPTER V

THE METALANGUAGE: LANGUAGE PROCESSING

. .« . a theory of linguistic structure that aims for
[descriptivel adequacy must contain*®
(i) a universal phonetic theory that defines
the notion "possible sentence"
(ii) a definition of "structural description”
(iii) a definition of "generative grammar"
(ivl a method for determining the structural
description of a sentence, given a grammar

-- N. Chomsky [1965, p. 311

Language is now commonly understood as a set of sentences,
recursively enumerated by a' formal system which determines what strings
of symbols are valid in the language; the formalism assigns a structure
to each acceptable str{ng ana represents its meaning in terms of that
structure.” The use of this conceptual framework for describing
artificial languages has become no more unusual than its application to
the linguistic anafgsis of natural languages (e.g., [Naur»1983]), and
considerable success has even been realized in its use for implementing

some languages (e.g., [Irons 19611).

¥In the section quoted, Chomsky is actually discussing explanatory
rather than descriptive adequacy; he includes another requirement, "a
way of evaluating alternative proposed grammars." Later [p. 34], he
drops that requirement for a descriptive theory. It should be noted
that Chomsky is interested in analyzing the linguistic competence of a
"native speaker," whereas our interest lies only in using linguistic
theory to guide the design of computer languages.

- 89 -

The REL System’s Language MWriter’s Language supports the
application of these linguistic techniques to the implementation of
specialized application languages. As described in the previous
chapter, the REL System is a generalized syntax directed interpreter.
In the following sections, we wWill discuss how it performs fhe tasks
alluded to in Chomsky’s list, and how LWL allows the language writer to

define the syntax and semantics (the extended syntax) of a particular

language.

The basic idea of syntax directed interpretation is that a
sentence is decomposed into its constituent phrases, recursivelg._
according to the formal rules of a grammar. The meaning of the sentence
is computed by composing the .actions of functions which correspond to
each grammar rule, as it is applied. This is the typical manner of
application of syntax directed techniques, for ihstance. in many
compilers, where the effect of the functions is to generate code which

implements the intent of the statement under consideration.

An extension of this idea, presented in [Thompson 1966bl and
explored in theoretical terms in [Benson 1968] and [Randall 19781, forms

the basis of syntactic and semantic evaluation in the REL System.

- 99 -

5.1 SYNTAX AND SEMANTICS

Perhaps the best description begins with an example. In BIBLIO,
we would |ike to ask the question
Generalization of grammar?
to find the list of subjects which have been stated to immediately
include the subject grammar in their extent. (By the examples of

Chapter III, these would be syntax directed interpretation and

compiling.) Clearly, we would find a language implementation based
strictly on simple patterns rather strained, so the rules of grammar
"Will be sufficiently general to accept not only relatively simple
queries like the above, but much more complex, composed queries. Belou

is a portion of the syntax of BIBLIO.

The distinguished symbol of BIBLIO, as of every language defined

using LWL, is <sentence>. Thus, one rule Will be

<sentence> ::= <query> ?
which specifies that .one valid kind of sentence of BIBLIO is a <query>
followed by a question mark. Since the ansuwers to queries wWwill be lists
of authors, lists of publications or |ists of subjects, we need
corresponding syntactic rules. For the above query, wWe require only

<query> ::= <q_subject>
Wwhere <q_subject> is a list of subjects. Then, to allow a simple query
like*

*Recall from Chapter I1Il that a query merely naming a subject asks for a
list of all subjects covered by it.

-9] -

Grammar?
we will have a rule
<g_subject> ::= <subject>
Finally, to define the "generalization" query, we need

<g_subject> ::= generalization of <g_subject>

With the above fragmentary grammar, and assuming a lexical rule
corresponding to
<subject> ::= grammar
our example sentence is analyzed in the following form:

<sentence>

‘Generalization of grammar ?
Notice that the generality we have introduced creates some extra levels
of analysis in the grammar; however, it immediately alloué more caomp lex
queries like
Generalization of generalization of grammar?

Generalization of generalization of generalization of grammar?

Although the grammar above determines the structure of our
sentence, it says nothing about how its meaning (in this case, a reply

to the user) is to be computed. MWe rectify this by associating wWith

- 97 -~

each rule the name of a function which will carry out the computation
implied by the syntactic transformation. The resulting grammar
fragment, as actually written in LWL, is belowu.

query_forming rule <sentence> ::= <query> '?’ : (print)

subject_query rule <query> ::= <g_subject> : (format_subjects)

generalization rule <g_subject> ::= "generalization of ' <qg_subject>
: (generalize) '

primitive_subject rule <q_subject> ::= <subject> : (single_subject)

Each rule is named, so that it may later be referenced for modification
or debugging. Text that is literally mentioned in the left or right
hand side of a rule (i.e., tefminal symbols) is expressed by quoted
strings, since spaces in the object language are significant but spaces
in LWL are not. The information following the ":" is the semantic
specificatiop; in this case, the names of the appropriate functions.
These rules have the side effect of specifying the result types and
constituent types of the functions they mention. In general reurite
rules, one semantic specification appears for each non-terminal phrase
in the left hand side. An omitted semantic specification implies the

identity semantic function.

With the above grammar, the meaning of the question

Generalization of grammar?

print(produce_subjects(generalize(single_subject(grammar))));
The phrase marker which represents this computation is produced by the

language processor as a result of the syntactic analysis before any

- 93 -

actual eQaIuation is attempted; thus, syntactic and semantic processing
do not ordinarily proceed in parallel. This may save considerable
semantic computation if spurious partial parses can be rejected for
purely syntactic reasons before any semantic computation takes place.
Also, this convention minimizes the problem of "undoing" which can haunt
many syntax directed compilers; having to undo falsely hypothesized
actions based on spurious parses is usually avoided by adopting very
simple bounded context grammars. As we shall see below, the processing
of semantics synchronously with syntax is possible, though not

mandatory.

Let us return again to Chomsky’s Ilist, and také up the
discussion more specifically. His first question, in our context, asks,
"What are the strings of symbols to be considered?" The terminal
symbols of every object language are the printable characters of the
host computer (tﬁe EBCOIC printable charécters), augmented by the
symbols <string_begin>, <string_end>, <input_terminator> and
<carriage_return>. <string_begin> and. <string_end> are automaticallgv
appended around the input string, for the convenience of syntactic
analysis. <input_terminator> is a REL—recognized symbol by which the
user indicates the end of his input sentence, and <carriage_return> is

the end of line.* The complete vocabulary of every language is encoded

*Carriage return is ordinarily a normal input character, and a special
<input_terminator> is required to initiate processing of an input
sentence. In TS0, this is (control)-5. Note that most EBCDIC devices
do not have louer case characters or some of the special symbols used in
the description of LWL. For LWL, a transliteration similar to that

- 94 -

as objects of the LWL type char; thus, the non-terminal vocabulary is
made to correspond to unprintable characters of EBCDIC. These do not
overlap the codes for the four characters defined above or the char

constants described in the section on List Processing in Chapter 1IV.

Turning to Chomsky’s second question, we understand "structural
description" by the description introducing functions in the previous
chapter. The structural description is the phrase marker, representing
both the sentence’s syntactic analysis and the composition of functions

required to compute its meaning.

Corresponding to Chomsky’s third question, about "generative
grammar", we need to define our complete notion of "analytical grammar".
The fundamentals of the rule statement appear above; in the succeeding
sections, we elaborate the definition of rules by introducing useful

extensions.

5.2 FEATURES

The LWL definition of language associates with each non-terminal
part of speech (category) a data type. Conceptually, the association is
symmetric, and excellent justification exists, in fact, to treat the
data type as fundamentally important and the part of speech as a mere
representative of the abstract category defined by the data type.

proposed by Wirth for PASCAL is followed. In BIBLIO, although example
sentences in this thesis use both upper and lower case characters, the
grammar is Written assuming that all characters in use are upper case.

- 95 -

Current techniques in the syntactic description of programming
languages often rely on the invention of new parts of speech to assure
the unambiguous parsing. of certain phrases. For instance, PASCAL
guarantees that

a+ b xc
cannot be interpreted as

(a+b) xc
by introducing parts of speech <factor>, <term>, <simple expression> and
<expression>, each‘of which may represent objects of the same type.

This practice clutters the connection betueen syntax and semantics.

A similar difficulty arises in BIBLIO. Just as we introduced
the category <q_subject> above to rgpresent a list of subjects involved
in a quefg, we need a category <q_publication>. As we defined BIBLIO,
the manner qf expressing <q_publication>s must be far more flexible than
that for <g_subjects>. Indeed, the ability to handle queries |ike

Works by Wegbreit or about parsing and C-relevant to extensible
languages?

requires a reasonably complex syntax. We begin with

<qguery> ::= <qg_publication>
which is obvious. Since the above query must be treated as an
expression, With the possibility of "operators" of different precedence,
a grammar |ike the following is plausible:

y

<q_factor> ::= "by ' <q_author>
<q_factor> ::= "about ' <q_subject>
<g_factor> ::= <rating> '-relevant to ’ <qg_subject>

- 96 -

<g_term> ::= <q_factor> | <q_term> ’ and ' <q_factor>

’

<q_expression> ::= <q_term> | <q_expression> ' or ’ <q_term>
<q_publication> ::= "works ' <q_expression>

[t is never good practice to hide knowledge that the programmer uses and

depends on; yet, the above does exactly that, by failing to shouw that

each of the phrases actually represents a list of publications. It does

violence to a notion of structuring that identifies suntactic with

semantic structures.

Features provide a syntactic subcategorization of the categories
introduced by the language writer. Each feature is a binary flag which
qualifies the part of speech of a phrase. Features may be tested for
presence or absence on phrases in the right hand side of a rule; they
may be carried over, set, reset or reversed on phrases of the left hand
side. Using three featureg to subcategorize <q_publication>,

conjuncted, disjuncted and completed, we reurite the above rules as

’

<q_publication> ::= "by * <g_author> : (wWorks_by)

<q_publication> ::= "about ' <q_publication> : (works_about)

<q_publication> ::= <rating> '-relevant to ’ <q_subject> :
(works_relevant)

<q_publication,+conjuncted> ::= <q_publication,-disjuncted-
completed> ' and ' <qg_publication,-disjuncted-conjuncted-
completed> : (g_and)

<q_publication,+disjuncted> ::= <qg_publication,-completed> * or ’
~<q_publication,-disjuncted-completed> : (q_or)

\J

<g_publication,+completed> s:= "works ' <q_publication,-completed> ¢

(g_identity)

<query> ::= <qg_publication,+conpleted> : (format_publications)

- 97 -

Features to be carried over are represented by a constituent number in
the lhs (e.g., +1 means to copy over all features now on the first rhs
non-terminal phrase). Checking for the presence of a feature and
setting it are indicated by the + sign (e.g., +completed). Checking for
absence and resetting are shoun by the - sign, and reversing the setting

of a feature in the lhs is shown by a .

[f the verbosity of such long descriptions is an objection, the
LWL definition mechanism may be used to provide a convenient shorthand.
For instance,

define q_term =
g_publication,+conjuncted-disjuncted-completed

With such definitions, a language writer committed to a syntax like the
first proposed above can urite it in exactly that way; houever, it is
preferred to retain the visible correspondence between syntactic

category and semantic data type that is possible through the use of

features.

The above example shows how features may be used to simulate a
precedence mechanism in the parser. However, features are also useful in
many other instances. In natural language processing, for example, they
have been used to record essentially semantic distjnctions in the
syntax, to aid disambiguation by the grammar (e.g., the animate feature,
discussed in [Dostert 1372]1). Features are soméuhat like the mechanism

Knuth describes as the semantics of context free languages [Knuth 1968]. -

- 98 -

They are not as general, because their values are restricted to one

Boolean, and their dependence is expressible only in a bottom-to-top

direction.

5.3 TRANSFORMATIONS

Formal systems tend to be concise, rigid and minimal.
Considerations of human engineering often complicate and extend the
structure of av formalism as it is put to use, even though the neu
complications and extensions add nothing .essential to the formal system.
The inclusion of transformations in the rules of grammar by which we
define specialized languages is an extension of convenience, not
principle. Below, we present several examples of the wuse of
transformétions, ranging in complexity from a simple identity
transformation to a set of complex local transformations which are

useful in the parsing of English sentences.

As a first example, consider the rule

<g_publication,+completed> ::= 3
"works ' <qg_publication,-completed> : (g_identity)

which was presented above. The semantic intent of this rule is merely
to pass the value of the right hand side on as the value of the left
hand side, without change. Clearly, the trivial function g_identity can
be written to perform this service. However, it seems inappropriate to

require the invention of trivial semantic functions to serve purely

- 99 -

syntactic purposes. Of course, such extra functions, where they exist,
also contribute an unnecessary increment to the time spent in evaluating
their phrases. The need for the function q_identity can be completely
eliminated by specifying transformational semantics for the rule in
question. We write

<gq_publication,+completed> ::= *
'lworks ' <q_publication,-completed> : (1)

The (1) means that, at syntactic processing time, the semantics of the

left hand side non-terminal is replaced by the semantics of the first
right hand side non-terminal. Clearly, both must have the same part of
speech. The transformation is, in general, a transformation on the

phrase marker, as it is being developed in the process of parsing.

Consider now the syntax by which bibliographic data are input to
BIBLIO. In the basic input statement, we may have a number of authors
associated Wwith a single publication. Therefore, We need a rule like
<input> ::= <author> {, <author>}, <publication>
Instead of using such a repetition (which LWL does not support), we

urite the rules
basic_input rule <input> ::= <g_author,+explicit> ', ' <publication>
(basic_input);
single_author rule <qg_author,+explicit> ::= <author> :
(build_author_list);
multiple_authors rule <q_author,+explicit> ::= <q_author,+explicit>

. <author> ; (<l1,%><2>,build_author_list)

The transformation part of the last rule's semantic specification,

<l,%><2>, means that the semantic constituents of the left hand side

- 108 -

should be: all the constituents of the first non-terminal in the right
hand side, and the second non-terminal on the right. The function
build_author_list will be the semantic transformation computing the
value of the resulting <g_author> phrase, and each of its constituents

Wwill be an <author>.

Without the above transformation, the syntactic analysis of the
sentence

Aho, Ullman, Theory of Parsing.

would be
<sentence>
""""""""" dnputs
 qauthors
<q_author>
_:;;;;;;;- <author> <publication>

Aho , Uliman , Theory of Parsing .

By applying the transformation, we get

<sentence>
R dmputs
T aqauthors
:;;;;;;;_~-:;;;;;;;- <publication>
“ano, Ulinan , Theory of Parsing -

This transformation not only simplifies the syntactic structure of the

sentence, but also permits the unification into one function of the task

- 181 -

of building a list of authors (<g_author>). Without the transformation,
the semantic functions of the single_author and multiple_authors rules
could ‘not be the same because of the ‘different types of their
constituents, and the collection task would be ‘spread between two

functions.

The parser, in its normal operation, determines that each non-
terminal of the lhs has a phrase marker which computes its value. Eac.h
non-terminal of the rhs is a constituent of these phrase markers. The
transformations specify a replacement of the constituents in the phrase
marker. The idehtitg transformation has been discussed above. In all
other cases, the .language writer ‘writes a list of sele;tors which
specify the actual constituents to be used and their proper order. A
selector of the form <i> selects the i;th rhs non-terminal. <i,%>
selects each constituent of the i’th rhs non-terminal. Further forms of
the selector permit the selection of only particular categories of
constituents of the i'th rhs non-terminal. These forms of selection
actually flatten the phrase marker, and remove from it calls on a

function which has been referenced by a previously applied rule.

No single transformation can flatten the phrase marker by more
than a single. level. This is a limitation on the generality of the
transformation mechanism, but practical observation (e.g., the
implementation of REL English) indicates that transformations which

attempt to "reach back" into the structures of their constituent phrases

- 182 -

to a depth of two or more rule applications are too complex to use.
They would need to anticipate so much of the structure of the grammar
that went into building up those phrases that they would destroy any
modularization of syntactic structure gained by the use of a grammar to

express it.

Transformational grammar is ordinarily thought of as a mechanism
for general tree transformations on the syntactic marker of a sentence.
One of the few designs of a computer system with such capabilities is
presented by Keyser and Petrick [1967]. Their scheme is to represent
the syntactic transformation by a pattern transformation, mapping a
given cut across the phrase marker tree into another one. This is a
global vieuw of transformations. necessitating an elaborate and expensive
pattern matching and control facility to interface the application of
ordinary grammar rules to the use of pattern transformations. Although
the transformation facilities discussed above have been motivated by
concerns similar to Keyser and Petrick’s, the emphasis has been on local

transformations.

The application of transformational rules is coupled to the
application of ordinary rules of grammar. Indeed, as the above examples
shou, transformations may be of use in instances which fall outside the
domain of traditional transformational grammar. The source of many of
our examples, the BIBLIO language, has a grammar that is not

sufficiently sophisticated to demand the presence of "genuine"

- 1083 -

linguistic transformations. To exemplify such a use, consider some

small part of a grammar for English.

REL English bases its syntactic analysis on the theory of verb
cases [Dostert 13971, 1973]. In this approach, each part of the sentence
is related to the central vérb according to one of the verb’s case
positions. In the simple example below, wWe use the order of noun
phrases in the phrase marker of the verb phrase to distinguish their

cases. In the sentence

Bill hit John.
"Bill" is the dgent (the first noun constituent), "John" is the object
(the second noun constituent), and "hit" 1is the verb. A very.

fragmentary English grammar to parse the above sentence is
<sentence> :i= <verb,+has_object+has_agent> .’ :
(declarative_statement) .
<verb,+has_agent+2> ::= <noun>
(<2, verb><1><2,noun>)
<verb,+has_object> ::= <verb,-has_object> ' ' <noun>

’

' <verb,-has_agent+has_object>

Assuming lexical rules for the nouns "bill" and "john" and the verb
"hit", the above sentence parses with the syntactic structure

<sentence>

The effect of the transformation is to eliminate the surface details,

- 184 -

like the order in which the agent and object were incorporated into the
verb phrase. The transformed sgntactic structure appears as

<sentence>

and it is the order of constituents in the verb phrase that actually
determines the sentence’'s meaning., The deep structure, represented by

the phrase marker of the sentence, is:

(%) <sentence>
<verb>
<verb> -- "hit"
<noun> -- "Bill"
<noun> -- "John"

Nou. consider the equivalent sentence
John was hit by Bill.

We extend the above grammar fragment by rules to handle the passive

case.

’

<verh,+has_agent+passive> ::= 'was ' <verb> ’ by ’ <noun>;
<verb,+has_object+l> ::= <noun> * ’ <verb,+passive-has_object> :
(<2Z,%><1>); :
With this grammar, the untransformed syntactic analysis is

<sentence>

- 185 -

but the phrase marker is, nevertheless, the same as in (%) above.

By contrast, Keyser and Petrick wurite the rule [1967, p. 8]
(OPT (NP- AUX V X NP X BY PASS)
(52 BEEN3) 48671 ()
PASSIVE)
This specifies the optional replacement of a pattern fitting the first
template by the corresponding pattern specified in the second template.
This scheme has the advantage that it unifies the operation of the
passive transformation in a single rule. Houever, the control
mechanisms needed to guide the application of pattern replacements in a
reasonable, non-exploding order, and the searches involved in matching

patterns which allow arbitrary constituents (like X, above) introduce

both conceptual and practical difficulties.

The simple fragment of a case grammar for English, described
above, is clearly insufficient for an actual grammar of English.
However, the strategy of combining very local, simple transformations
Wwith the application of general rewrite grammar rules is an effective
technique of processing transformational grammars. It is especially
useful because it is very efficiently implemented, as part of the

parser’s application of each rule of grammar.

- 106 -

5.4 PARSING AND CONDITION FUNCTIONS

Chomsky’s fourth demand was for "a method of determining the
structural description of a sentence, given a grammar." The REL System
includes a general purpose parser, employing an algorithm similar to
Martin Kay's "powerful parser" [1967]. The unique advantage of this
parsing algorithm is that it parses general rewrite rule grammars and
finds every valid parse of an input sentence once and only once. The
current implementation of the parser is due to Frederick B. Thompson,

and is described in detail in [Thompson 1974bl.

The parser operates on a structure called the parsing graph. It
is a directed, acyclic graph which is initially a single strand of arcs,
each Iabelled With one phrase (character) of the input sentence to be
analyzed. As each rule is applied, the rule’s left hand side is added aé
an aFc (string of arcs in the general reurite rule case) which defines
an alternate path to the existing right hand side. Each newly added arc
is labelled by a phrase marker uwhich includes a reference to each non-
terminal (constituent) in the rule's rhs. The parser operates from
bottom tb top and right to left. When no more rules of grammar apply,
the parse is completed, and every arc labelled by <sentence> uhich spans
from a <string_begin> £o a <string_end> arc is a valid parse of the
input sentence. If no such arc exists, the string is not a sentence,

and the input is syntactically meaningless; if more than one such arc

exists, the sentence is syntactically ambiguous. A sentence can also be

- 107 -

semantically meaningless, if in the evaluation of each of its possible

meanings some semantic function executes the standard function fail.
Semantic ambiguity is also possible, and the whole subject of ambiguity

is taken up belou.

To give the language writer an additional degree of control over
the operation of the parser, each LWL rule may specify a condition
function, to be evaluated when the parser is about to apply the
associated grammar rule. The checking and setting of features and any
transformations specified in the rule are performed before the condition
function is invoked. The constituents of the condition function are: the
list of phrases constructed by the parser uwhich would have become the
labels of arcs inserted into the parsing graph, and the recursion stack
of the parser, from which its total environment is accessible. The
value of a condition function is a list of phrases, which are added to
the parsing graph in the normal way, or nil, in uhich case the current.

rule fails and nothing is added to the parsing graph.

The name of the condition function is written between the tuwo
colons of the "production arrow" (::=). For example, if we wished to
evaluate <subject>s to <q_subject>s during the parsing process, we would
urite the primitive_subject rule as

primitive_subject rule <g_subject> :tevaluate:= <subject> :
(single_subject)

Then, the semantic function single_subject would be evaluated every time

- 188 -

that this grammar rule was applied by the parser, and the <g_subject>
phrase added to the parsing graph would be the evaluated I|ist of
subjects. Note that in contrast to semantic functions, one of which
must exist for each non-terminal of the lhs, each rule has but a single

condition function.

Typical uses of condition functions are to make more complex
feature checks than those allowed by the rule specification (e.g.,
requiring a certain phrase with either one or another feature set), to
compute a set of features for a |hs phrase that is not specifiable in
the rule (e.g., depending on the carried over features of more than one
rhs phrase), or to perform transformations of greater depth or
complexity than those.allowed by the rule. The capabilities of the rule
statement are all constrained by the design requirement that they be
implemented very efficiently. When more complex syntactic processing is

required, the condition function is used.

Some investigators have made much of the ability to evaluate
semantic information while the syntax analysis is proceeding, to reduce
syntactic ambiguity (e.g., [Winograd 19721). Although this is often an
expensive strategy when semantic operations are ‘lengthy, one possible
use of the condition function (demonstrated above) is to evaluate some

or all phrases before the syntactic analysis is complete.

Because the condition function has access to the complete

- 189 -

environment of the parser, it can introduce arbitrary side effects.
However, this is generally not useful, and it is very harmful to the
notion of linguistic structure imposed by an explicit grammar.
Efficiency considerations sometimes dictate such a use of condition
functions: scanning a string of digits and converting them to a
<number>, and a simple lexical analysis of the input string are tuwo

common uses of condition functions with significant side effects.

5.5 METAVARIABLES AND BINDING

In the syntax directed interpretation scheme so far described,
every phrase specifies, by its evaluation, a specific object of the
universe. Because thesg objects are, in fact, arbitrary data types of
LWL, they may be designed to represent collections or sequences of
"objects" at some lower conceptual level. However, that forced change of
view is antithetical to the linguistic point of view expressed in the

introductory chapters.

Consider, for instance, the BIBLIO category g_author, which
represents a collection of authors. In BIBLIO, as we have described it
in Chapter III, viewing a collection of authors as a simple object of
the object'language is an acceptable strategg; because the authors in
such a collection need not be explicitly distinguished. However, it is
easy to conceive of a more expressive BIBLIO, in which we could ask a.

question like

- 118 -

Topic ‘of works by each linguistic philosopher?
In our actual BIBLIO, the similar query

Topic of works by linguistic philosophers?
evokes -a list of subjects, undifferentiated by affiliation with the
various linguistic philosophers from which they uere derived.* The more

demanding first query requests exactly such an affiliation.

We will not change BIBLIO to include the handling of
quantifiers, but it is illustrative to see how that would be done.
Within the interpretation scheme presented above, every phrase must have
a unique meaning, represented by an object. Presuming that the query
parses according to the following structure,

<sentence>

Topic of works by each linguistic philosopher ?
the g_author phrase '"each linguistic philosopher" must differ
sufficiently from "linguistic philosopher" that subsequent semantic
functions which compute the topics of wuworks by these authors keep
*Recal | that "linguistic philosophers" has been introduced by

define linguistic philosophers = author of A-quality works B-
relevant to linguistic philosophy

- 111 -

separate accounts for each authcr. That is a significant complication
of both the data types and semantic functions which implement these
notions. In BIBLIO, the required effort for these capabilities is

unwarranted.*

Alternately, we would like to view the phrase "each linguistic
philosopher" as a metavariable for -<g_author>, and then evaluate the
whole query in turn for each individual "linguistic philosopher". The

metavariable, as we discussed in Chapter IV, has a part of speech, in

this case <author>, and a range, in this case all |linguistic
philbsophers. The metavariable acts as a placeholder for its part of
speech in the syntactic analysis, and its range defines the set of

semantic values to which it may be bound.

Metavariables act much like variables of the lambda calculus,
raising corresponding issues.of binding. Metavariables are created by
grammar rules which invoke the standard condition function metavar. In
our hypothetical extension to BIBLIO, we would include the rule

variable_author rule <q_adthor> :metavar:= 'each ’ <q_author>
The grammar rule must have exactly one non-terminal in the |hs and at
most one in the rhs. The part of speech of the lhs non-terminal becomes

the part of speech of the created metavariable, 'and the rhs phrase

*¥By contrast, such a quantification capability is so important in REL
English that the suggested complication is incorporated. From efficiency
considerations, the quantifier scheme using metavariables (below) s
unacceptable in REL English [Greenfeld 1372].

- 112 -

becomes its range. I[f the rhs consists of all terminals, the range is
nil. The metavariable is also given a name, to allouw several
metavariables with the same parts of speech and range to be

distingujshed.* The name contains the literal characters which make up

the rhs.

In LWL, the use of metavariables is not predetermined by the
language processor. However, in any meaningful use, no metavariables
may be free in a <sentence>. Everg'phrase, some of whose consfituents
either are metavariables or have unbound metavariables, is said to have
those metavariables free in it. The parser maintains, for each phrase,
a variable list of its free metavariables. The standard function
metabind binds all free metavariables in its |hs phrase; thus, the
expanded BIBLIO would have the rule

subject_query rule <query> :metabind:= <qg_subject> :
(. format_all_subjects)

which would bind the metavariables created by every "each" to the
function which computes the meaning of <query>. In a semantic function,
the standard function n_bound tells the number of metavariables bound in
this phrase. and the function metabound(i) returns pointers to the
n_bound variable phrases in the variable list. The semantics of this

rule, format_all_subjects, is a prefix function. It would evaluate its

¥ WL’s notion of metavariables is implemented in terms of the above
metavariable capabilities of the language processor, although by a
different condition function than metavar. The name permits the "1" and

"2" to pe distinguished in define "1" % "2" = ("1" + "2") x ("1" - "2")

- 118 -

<g_subject> constituent phrase for all possible combinations of values
from each of its n_bound metavariables. Format_all_subjects would use
the standard function evaluate, with an additional parameter that would
be a list of phrases to be substituted for the various metavariables

bound in the phrase.

The evaluation mechénism, including the binding and
instantiation of metavariables, is complex. Because only the creation
and binding of metavariables is knoun to the language processor and
their use is left to the individual language implementor, metavariables
serve a large variety of functions. The above example of quantification
is one, and the use of metavariables in the LWL definitional mechanism
is another. A complete discussion is beyond the scope of this

presentation; for more detail, refer to [Thompson 1974b].

5.6 AMBIGUITY

The'notion ambiguity has been both blessed and cursed for its
role in language. Innate ambiguities appear to interact with context-
resolving mechanisms .in natural languages to provide conceptual
generality and expressive conciseness. In the computerized processing
of languages, amhiguity has been vieued as the anathema of any practical
methods of parsing and analysis. Especially when ’emploging general
reurite rule grammars, parsers have been- subject to wuncontrolled

combinatorial growth of ambiguous intérpretations.

- 114 -

Language implementation in LWL does not attempt to suppress the
potential problems which arise from the tolerance of ambiguity, but it
does provide some methods of controlling those problems without

resorting to the customarg prohibition against any use of ambiguity.

The REL language processor includes automatic mechanisms for
allowing the ambiguous interpretation of sentences. If,vfor example, an
input sentence can be assigned several different structural analyses,
each phrase marker uwill be evaluated by the language processor, and if
their values differ, all will be output, wWwith an indication that these

are ambiguous responses.

Ambiguity may be introduced either through the syntax or
semantics of an object language. In the syntax, the case above is
typical; that is, a sentence can parse in more than one way. In the
semantics, it is possible for a semantic function to compute more than
one value for its phrase, in which case the phrase becomes ambiguous.
The standard function ambig acts similarly to return, except that it
does not actually return control from the fuﬁction. All values
specified by each call on ambig and the final call on return from a
single invocation of a function become the ambiguous resulting values of

the phrase.

In most cases, the processing of ambiguity is hidden and

automatic. In the process of semantic evaluation (the application of

- 115 -

evaluate), the presence of ambiguity, whether syntactic or semantic, may
be ignored except in prefix functions. When the evaluator is about to
invoke a semantic function with ambiguous arguments, it invokes the
function a number of times instead, once with each combination of
unambiguous arguments formable from all the ambiguous constituents. All
values returned by the function for its various constituents are
Collecfed and form the ambiguous value of the resulting phrase. Of
course.‘ the blind application of this strategy is what can lead to
combinatorial explosion not only in parsing but also in semantic

evaluation.

The above techniques merely introduce ambiguity, but do nothing
to control it. The resolution of ambiguity is most generally handled by
the ability of a function to fail (a standard function call). If the
phrase for which a value is being computed is unambiguous and the
semantic function fails, or if each of the phrase’s ambiguous
interpretations fail, the phrase is meaningless and every phrase of
which it is a constituent also becomes meaningless, wWithout the need for
further semantic processing. Therefore, one such failure can eliminate a

proposed parse of a sentence, or several of its ambiguous alternatives.

The function fail has an optional argument, which is an output message

to the user, to be displayed if this function’s failure makes the whole
sentence meaningless. [f some other evaluation succeeds, houever, the

failing phrase and message are discarded.

- 116 -

In Chapter III, we noted that BIBLIO would accept the name
Winograd as a synonym for both authors Terry and Shmuel, if both were
knoun in the data base. In practice, this occurs because the <author>
phrase produced by the lexical rule

<author> ::= 'Winograd’
is assigned an ambiguous meaning, referring to both alternatives. With
a syntax for inquiring about authors that is similar to that for
sub jects,

author_query rule <query> ::= <q_author> : (format_authors)
primitive_author rule <g_author> ::= <author> : (single_author)

the evaluation of the query

Winograd?
will apply single_author in turn to Terry and Shmuel, producing an
ambiguous <qg_author> phrase. Then, format_authors will apply twice, to

give an ambiguous <query>, then print twice, for an ambiguous
<sentence>, and the reply will be

AMBIGUOUS:

(1) Winograd, Terry

(2) Winograd, Shmuel

Of course, if any of the semantic functions thus called had failed (not

likely in this example), the ambiguity would have been resolved.

The elimination of ambiguity by semantic failure is a general,
but often expensive approach. To allow greater control to the language
writer, the prefix function may be used. Because a prefix function is

invoked before its constituents are evaluated, the automatic propagation

- 117 -

described above does not come into play, and the prefix function can
itself manipulate its ambiguous constituents. To aid this, two standard
functions are provided. Thg function n_amb returns the number of
ambiguous alternatives for its constituent phrase. For instance, in the
function single_author in the previous example, if it were made a prefix
function, the value of
n_amb (constituent.author)
would be 2. To select one of these ambiguous phrases, the standard
function amb, with a phrase and an integer argument returns the selected
ambiguous phrase of the given phrase. For example,
constituent.author.amb(2)

gﬁelds‘the second ambiguous value of the <author> phrase. The ability to
deal wuwith ambiguity explicitly in an object language is of special
importance when some innate construction of the object Ilanguage
naturally expresses a reasonable interpretation of the ambiguity. In
the BIBLIO case, the desired effect of "Winograd"'s ambiguity is to
treat the synonym as standing indistinguishably for both its values.
But the category <q_author> is exactly a type uwhich exhibits that
required behavior. Thus, the natural interpretation of the ambiguity of
an <author> phrase is to convert it to an unambiguous <q_author> phrase
Wwhich lists the alternative meanings. The single_author function is the

appropriate place for that conversion.

[f ambiguity can be successfully mapped into one of the

- 118 -

primitive concepts of the object language, then the overhead and
possible uncontrolled grouth of ambiguity processing is eliminated. The
ability to effect this shift, from general evaluation mechanism to a
specific function of the object language, is an important opportunity

for the language uriter.

5.7 LANGUAGE EXTENSION

We operate under the assumption that no language designer or
implementor has the foresight to create an object language that will
perfectly fit a user’s evolving needs. Therefore, LWL supports the
provision of extensibility in any object language. It is useful to
distiﬁguish between two forms of extension: one, by the language writer,
to add 'significant new features to a language; the other, by the user,
to add to his language new objects and concepts of his universe, in
terms of the fundamentals of the object language. The hypothetical
addition of "each" to BIBLIO, discussed above, would be an extension of
the first kind, requiring interventi_on by the language writer. The
definition of "linguistic philosopher", also mentioned before, is an
extension introduced by the user, for uhich. all required facilities
already exist in the object language. These two forms of extension seem.

to be what Wegbreit calls metaphrase and paraphrase extension [13978,
pp. 124-125].

- 119 -

The introduction of fundamental new capabilities into a language
is accomplished by its further development in LWL. The single reserved
sentence, metalanguage, of every object language suwitches control of the
session from the object language to the particular instance of LWL in
which the object Ianguage has been implemented. At that time, all the
facilities of LWL for adding or deleting grammar rules, data types and
functions are available, and the language writer is given the same free
hand in altering the object i1anguage as he had in implementing it.
Ordinarily, the language uger is not expected tb modify his language in

this way.

The way in which an object language is extended depends very
much on the partiéufar language. Therefore, LWL makes available to the
language writer a standard function extend, uwhich provides all of those
features available in the rule statement. Thus, any object language may
include functions which extend the grammar of the language itself. The
?orm and meaning of such capabilities are completely determined by the
language writer, when he writes the syntactic rules and the condition
and semantic functians of the object language which implement its
abilities for extension. The BIBLIO define statement is an example of

such an extension capability.

Although many languages implemented in the REL System include
sophisticated extension mechanisms |ike BIBLIO's define, or even the

more complex define of LWL, that is by no means the only use of

- 128 -

extensibility. In BIBLIO, for instance, the names of new authors,
subjects, publications and publishers must be added when they are first
introduced. For example, to satisfy the specifications in Chapter III,
if the phrase

Author: Whorf, Benjamin L.;_
appears in an input sentence, it must have the effect of adding the two
lexical rules

<author> ::= "Whorf, Benjamin L.’
and

<author> ::= "Whorf’
to the language. In addition, it must create an object of the category
author, initialize it and use it as the "data" semantics of the above
rules. The portion of the BIBLIO grammar dealing with this is:

<item,+author-complete> ::= "Author: °’

<item,+l> ::= <item,-complete> <letter>

: (<1, %><2>)
<item,+l> :getchar:= <item,-complete> .’ ’

<item,+l> :getchar:= <item,-complete> ’,
. <item,+l> :getchar:= <item,-complete> .
<item,+complete+l> ::= <item,-complete> "3’ : (1)

<author> ::= <item,+author+complete> : (create_author)
The condition function getchar must append the blank, comma or period as
a further constituent of the <item>.* A similar treatment is given for

the other new items.
<item,+subject-complete> ::= "subject: ’
<subject> ::= <item,+subject+complete> : (create_subject)

*¥In fact, to .avoid rules of grammar to create <letter>s and the
resulting parsing overhead, an actual implementation of BIBLIO would
employ a condition function on the first <item> rule. [ts side effect
Wwould be to collect each character up to a semicolon as constituents of
the <item>.

- 121 -

<item, +publisher-complete> ::= "publisher:
<publisher> ::= <item,+publisher+complete> : (create_publisher)

<item,+publication+book-complete> ::= 'book: ’ <publication> ::=
<item,+publication+complete> : (create_publication)

The create_publication function determines, on the basis of the features
of its constituent <item>, whether a book, article, etc., is being

. introduced.

The generality of LWL's extend function can be used by the
language writer to program the object language to reflect accurately the

needs of its users.

In this chapter, the language definition capabilities of LWL
have been discussed. The basic statement with which we were concerned is
the rule statement. It allows the specification of general reurite rules
of grammar and their associated semantic functions. In addition,
features, local transformations and condition functions were introduced
to enhance the usefulness and conciseness of grammar rules. Finally, we
discussed the handling and use of metavariables and ambiguity, and the

capabilities for extension of the object language.

The above discussion of LWL’s specification of the extended
syntax of an object language, together uith Chapter IV’'s presentation of
how LWL is used to specify the object language’s universe of discourse,
completes the topical definition of the REL Language Writer's Language.

Its formal definition is in Appendix A.

- 122 -

-CHAPTER VI

IN RETROSPECT

And the earth was of one tongue, and of the same
speech. . . .

And the Lord came doun to see the city and the
tower, which the children of Adam were building.
And he said . . . let us go doun and there confound
their tongue, that they may not understand one

another’s speech. . . . And therefore the name
thereof was called Babel.

-- Genesis, .11:1-9.

When introducing a new computer language, its author has a dual

responsibility: to justify the need for yet another addition to the

programmers’ Babel of languages, and also to consider how well his
language meets the criteria which motivated it and how it will affect
the world which spauned it. In this concluding chapter, we wWill cover

three topics: a comparison of LWL .to other- possible methods for
implementing specialized languages, some thoughts on why LWL falls short
of meeting the challenges posed in the introduction and some possible
remedies, and a few disturbing questions about the diversification of

the myriad new languages made possible by our approach.

- 123 -

6.1 ALTERNATIVE TECHNOLOGIES

From the discussion of various design points of LWL scattered
throughout the body of this thesis, some of the reasons why other
existing technologieg for language implementation were not considered
adequate should be apparent. In this section, we examine this question
With respect to the available capabilities of extensible programming
languages, compiler generators and the recent crop of semantically
power ful languages developed for the support of Al research (which ue

call semantic languages, for lack of an accepted term).

The principal issue which distinguishes these three techniques
of language implementation is: What should be the relationship betueen
the metalanguage and the object language? The extensible language
ansuer is that the object language should be built by adding to the base
language any new capabilities needed. Thus, the object language would
contain within it the metalangdage. A language implemented by a
compiler generator is completely divorced from the compiler generator
(metacompiler) when it is completed. The semantic languages take an
ambiguous position, since their current users, the Al researchers, use
them as object languages, but they contain very strong extension
mechanisms that make it possible to use them as metalanguages for

creating application languages.

Each of the approaches has some great attractions and

- 194 -

shortcomings. MWe take up each, in turn, and discuss the debts which LWL
oues to each, as well as the compromises which have been made in LWL to

avoid some of the worst problems with each of these other technologies.

6.1.1 EXTENSIBLE PROGRAMMING LANGUAGES

The fundamental premise of extensible programming languages is
simple and elegant: if it is possible to invent a basic computer
language with a very few primitive operétions and some very simple and
extremeig pouerful techniques for composing them, then perhaps any
desired programming language can easily be éxtended from that base
language. The early major attempts in this direction succeeded in
recreating from a stripped-doun base language most of the features then
current in complex programming languages, and the above premise wuas
assumed proven. To single out two particular projects, Standish’s PPL
demonstrated the feasibility of data structure extension from a basic
polymorphic set. of data types by a very few simple operators.
Wegbreit’s ECL made a serious attempt to tackle the most complex
problems of extensibility, including considerations of efficiency and
language contraction. Yet, against this background of apparent success,
interest in extensible languages has waned and their actual use is
minimal. Even Standish now writes articles with titles like "After

Extensible Languages, What Next?"

- 125 -

According to an old folk saying, "The fruit doesn’t fall far
from the tree," and so it is with the languages created by extension.
The examples foreseen by the base language's designer all work out well,
but many truly unforeseen extensions are just not possible with any

reasonable effort. As an example of this problem, we turn to Standish’s

- PPL.

PPL is an extensible APL-like language, with only a limited
basic set of data types and operators. The expectation is that the user
Wwho needs other data types and other operations can add them to the
language using its extension capabilities. In those instances which
conform closely to the incremental augmentation strategy (where the
desired language is "close" to the base Ianguage), the resulting
language can be quite reasonable. The ubiquitous "COMPLEX" example fits
well with the base language, and one can conceive a similar extension

strategy to build PPL up to a full APL or similar language.

To use PPL-style extension for the creation of significantly
different languages, however, is problematical. Incorporating a facility
for sgmbolic manipulation is a well-knowun (e.g. FORMAC) technique for
improving the usefulness of an algebraic languége (to users who are
concerned with symbolic manipulation, of tourse). Any extensible
language is capable of expressing such an addition, but not necessarily
in a useful way. Consider the symbolic differentiation example [Tgft

1871, p. bil.

- 126 -

PPL is extended to include data types FORMula, Binary Formula,
Unary Formula and ATOM, in terms of structures and the primitive types:
$FORM = UF | BF | ATOM
$BF = [LO:FORM, OP:CHAR, RO:FORMI
$UF = [OP:CHAR, RO:FORM]
$ATOM = STRING ! CHAR ! REAL ! INT ! DBL

Then the formulas F and G are defined by

F <= BFCUX, '+, 3)
G <~ UF('-, BECX, *x, F))

After a PPL function DERIV(F,X) is defined, we are shoun
DERIV(F, 'X)
(LO:1,0P:+,R0:0]
DERIV (G, 'X)
[OP:-,R0O: [LO: [LO:X,0P:x%,R0O: [LO:1,0P:+,R0:811,0P: +,
RO: [LO:1,0P:%,R0O: [LO:X,0P:+,R0:31111
With the addition of a special print routine, this becomes
PF (DERIV(F, 'X))
(1+0)
PF (G)
(- (Xx(X+3)))

PF (DERIV (G, X))
(- CXx (148)) + (1% (X+3))))

One might, as suggested, add the simplification algorithms
needed to make symbolic differentiation look better, but the problem
With this "new" language is deeper than that. As long as formulas need
to be entered in the unnatural manner shouwn above, this language will
not be congenial to a real user. And note that the input routines are
not accessible for "extension" to deal with FORMs. Further, some simple
and potentially desirable capabilities are impossible to provide. For

instance, given the above definitions of F and DERIV, one might like to

evaluate

- 127 -

X <=5
XxDERIV (F, 'X)
65

But this is not possible, because the resuit of DERIV is a FORM, which
is not a proper argument to TIMES. So; the symbolic differentiation is
in some peculiar sense unavailable to the rest of the language. The
difficulty is .that the new language is implemented by representing
formulas as structures of symbols in the base language. This makes
their manipulation quite simple, but their evaluation impossible. The .
failureb results from not recognizing the relationship between the
implicit formulas of the PPL language and the Egﬂﬂs of the new language.
A formula in PPL may. be evaluated by the built-in language processor,

but a FORM is merely a structure of symbols on which the DERIV and PF

operations are valid.

This particular “difficulty is not universal. In LISP, for
instance, the notion of "formula", or S-expression, is built in, and
would be a natural representation for FORM. However, in every extensible
language there are some extensions that just lie outside the scope of
what can be handled naturally bg the provided language processor, and
these can not be reached effectively by exfension. The biggest
difficulties arise uhenever the base language is extended to a neuw
capability which may conflict or have harmful interactions with an old

feature of the base language.

Symbolic differentiation added to an algebraic language is

- 128 -

hardly a radical extension. Yet, in PPL in particular, it cannot be
effectively accomplished. Because the specialized application |anguages
We consider involve operations more closely mirroring external realities
(presumably even farther removed from the basic operations of an
extensible language), an extensible language seems Iiké an inappropriate

choice for the language writer.

A related but distinct trouble with extensible languages that
has surfaced concerns their often severe inefficiency. At the root.of
this trouble is the extreme generality of primitives and extension
mechanisrﬁs which is demanded by the fundamental premise. For any
particular problem domain, a specially written language can take
advantage of the peculiarities of the specific case to outperform the
general techniques. If this uwere the only difficulty, it would be
unimpoﬁtant, because the savings in implementation would quite often
offset this disadvantage. The serious problem results from the fact
that many such inefficiencies compound as layers of ‘extension are built

on layers of extension to form the desired object language.

Consider the possibility of a language which verifies
tautologies in the sentential calculus, which has been written in a
list-processing !anguage, which has in turn been written as an extension
of ECL. Now, in the design of the list processing language, its
primitives are realized by data structures and operations of ECL. These

design decisions greatly influence the efficiency with which that

- 129 -

language will perform certain operations, which Will in turn have a
significant effect on the tautology checker. Yet, to expect the
‘implementor of the tautology checker to know each layer of language
above wuwhich he works so that he might optimize the performance of his
routines is unreasonable; thus, deci.sions over which he has lost control
introduce inefficiencies which wWill hurt him. For instance, Wegbreit
illustrates ECL’s data type extension by introducing a new type, RBUF, a
FIFO buffer of characters [1974]. Now, it might be that for the
implementor of the list processing language we are imagining, such an
RBUF is an attractive implementation of atom names. Then, the
implementor of the tautology verifier will be _using a rather complex
buffering mechanism, most Ilikely unknoun to him, even if he should
decide that all sentence symbols in his language are to be single

characters.

The group working on the ECL system has started an attack on the
above problem. They have proposed incorporating very good optimizing
techniques in their compiler and have suggested the application of
program verifying methods so that the compiler could automatically or by
interacting with a programmer discover ‘and eliminate inefficiencies
introduced in the extension process [Cheatham 1872]. Certainly, this
attempt is necessary if extensibility will ever compete effectively wWith
special ly built problem-oriented languages and programs. Houever, the

current 'state of understanding of programming language semantics and

- 138 -

especially of the relationship betueen the semantics of a real-world
problem domain and the semantics of the implementing computer |anguage
is sufficiently muddy that automatic techniques of transferring

knowledge from ohe to-the other are unlikely.

One final criticism of extension in extensible programming
languages -centers on the common assumption that no matter how the base
language: may be modified, the desired mechanisms of extension remain
essential ly unchanged. That this is unsatisfactory from the vieuwpoint of
this thesis should be apparent from considering four different problems
of language use and extension which are discernible in the creation and
use of an object language:

1) extension of the metalanguage itself, by the language writer, to
introduce his favorite abbreviations and convenient functions,

2} the language uriter’s use of the metalanguage to create and
modify the object language,

3) the end user's use of his basic application language, as
prepared by the language writer, and

4) the end user’s extension of his language, using mechanisms put
into the object language by the language uriter.

Considering the major differences between the task of the
language wuriter and the language user, there is no reason to expect that
their languages will be at all similar, or that any part of the
metalanguage will be of use to the user. For example, essentially
nothing of LWL is of any direct use to the user of BIBLIO. In exactly

the same vein, there is no reason to assume that the manner in which the

language writer and the language user want to extend their languages

- 131 -

Wwill be at all similar. For example, both the syntax and semantics of
LWL and BIBLIO differ greatly for the introduction to LWL of a new data
type compared to the addition to BIBLIO of a new publication. In an

extensible language implementation, -the same mechanism would have to

serve for both.X

The goals of LWL are much more modest than those expounded for
extensible languages. Neither LWL nor any object languages created by it
aim for extreme simplicity or elegance. And, most important, in no sense
is a tower of languages, all built on top of each other, envisioned. In
fact, with the semantic primitives supported by LWL and the REL System,
the implementation of object languages which in turn are able to create
other new languages is very difficult.* Because only a single full
level of "extension" is desired from LWL to the particular application
language, and because the extension actually builds a completely new
language rather than adding new capabilities to a base, the severe
problems of inefficiency, the disturbing interference between old and
new features, and the confusion of different modes of language use and

extension are avoided.

*If a knowledgeable language user insists on extending LWL in a manner
not supported by the language ‘writer (for instance, to include the
addresses of publishers), he steps outside the role of language user and
employs the facilities of LWL as a language uriter.

*fThis accounts, in part, for many of the practical difficulties
encountered in implementing LWL, which runs in the REL System almost as
an ordinary object language.

- 132 -

6.1.2 COMPILER GENERATORS

The earliest appearance of syntax directed techniques for
language implementation probably occurred in the development of syntax
directed compilers for algebraic languages, |ike the Brooker-Morris
Compiler Compiler [Rosen 1964] and Irons’ ALGOL compiler [Irons 19611.
Unfortunately, almost no significant improvements over these methods
have been introduced in metacompilers since. then, and few receﬁt systems
have even reached the degree of sophistication of the Brooker-Morris

system.

The major attraction of the compiler generator (we use compiler

generator and metacompiler interchangeably) is its ability to transform

a language definition into a rather efficient compiler for that
language. The metacompiler view is that the definition of an object
Iénguage is translated into an independently existing new language. Once
a language has been so created, its connection to the metacompiler is
completely broken. I[f we define, say, FORTRAN, by this technique, the
result will be a FORTRAN compilér, With none of the capabilities of the
system which was used to create it. Although its syntax may have been

defined in BNF, the new language will have no such mechanisms.

The use of a metacompiler involves the following steps (as
outlined in a problem suggestion in [McKeeman 1978, p. 241]):
1. Invent a language . . .

2. Use BNF, ANALYZER, and English descriptive text to describe your
language.

- 133 -

3. Implement and thoroughly test a syntax checker for your

language. _

4. Invent an ideal machine to execute your language. Implement and
document an interpretive simulator for your machine.

5. Add code emitters to the syntax checker, and incorporate the
interpreter . . .

6. Test your language thoroughly . . .

A metacompiler like XPL [McKeeman 1978] aids this process at
steps two through five. Steps two and three create a simple,
unambiguous grammar for the desired language, and XPL's ANALYZER helps
by checking the grammar and eventually translating it to a set of tables
to be used by the skeletal syntactic analyzer. Steps four and five

couple interpreters and code emitters to the productions of the syntax,

to create the finished language processor.

The semantic routines which a language writer implements in a
metacompiler are used typically to emit machine language instructions.
(XPL, for example, provides built in routines like EMITRX to produce
machine instructions.) The basic facilities of the metacompiler best

support this usage.

The major shortcoming 'of metacompilers used for application
language implementation is that the problem of application Ianguage
processing is fundamentally not a compilation problem. In"a normal
programming language, the semantically meaningful primitives are at such
a low level that very many of them must be invoked to perform a

significant computation. Thus, in implementing such a new programming

- 134 -

language, the most important tasks are to be able to analyze statements
of the new 'language as rapidly as possible and to translate them into
efficient and efficiently connected code .segments. Metacompilers,
therefore, provide parser geqerators which work for restricted classes
of grammars so that the generated parser can be very fast, and they
support the language writer’'s work by pfoviding a standard set of
functions for code generation, the allocétion of temporaries and

registef optimization.

In the processing of application languages, neither the speed of
parsing nor the amount of language processor overhead in composing
semantic primitives is important compared to the cost of performing the
basic data manipulations meaningful in the application field. In
answering a complex query, BIBLIO will not apply more than tuenty rules
of grammar in analyzing the sentence, but the resulting hetrieval may
search hundreds of pages of the data base. Thus, the extra time spent
by a powerful parser and a sophisticated semantic evaluator |ike those
provided by LWL can improve the usability of the language without
significant additional cost. Also, because semantic primitives are
large and self-contained, little advantage would result from recompiling
them in the appropriate combinations for each sentence. Instead, LWL
supports a language for defining each semantic primitive independently,
and a compiler to turn those definitions into efficient implementations,
just once. Then, the functions act as the interpretive routines of a

syntax directed interpreter.

- 136 -

Concisely put, a program in an application language is likely to
be a single sentence. Thus, the services provided by typical
metacompilers are often irrelevant, and the metacompiler is not a very

appropriate tool for the implementation of specialized application

languages.

6.1.3 SEMANTIC LANGUAGES

Baéed on- the experience of Al researchers into problems of
natural language understanding, robotics, vision aﬁd goal-directed
problem solving, a large number of semantically very powerful new
languages have been designed and at least partly implemented. These
languages have been described elseuhere [Bobrow 1373], but a feu
comments about them as application language implementation tools are in

order.

The great attraction of languages |ike PLANNER, QLISP, CONNIVER
and their relatives is that they include a rich repertoire of basic
semantic capabilities which have been found useful by years of
experience in Al research. General pattern matching, pattern directed
procedure invocation, high level data primitives Jike 'sets and
sequencés. flexible control structures, and computations in dynamically
suwitchable contexts are all built into some of these languages. With

these features, many of the traditional Al algorithms reduce to short

- 136 -

programs, and the user of one of these languages gets a great deal of
computation per statement. In that the above mentioned capabilities are
likely to be useful in implementing the semantics of application problem

domains, these languages might be excellent metalanguages.

The main reason why application languages have not yet been
implemented in these languages is that they tend to be inordinately
inefficient, The richness of their primitives easily Iead; to immoderate
application and exorbitant cost. Even the primitive operations are
sufficiently complex to use a significant amount of computing time, and
if any sort of combinatorial growth is allouwed to occur in the use of
these primitives, the |anguage§ become totallg impractical, This viewu
is supported by current experience, which shous that only languages with

very small universes of discourse can be implemented at all.

[t seems that the freedom granted by. the semantic languages is
too much. They impose so little structure on their users that they fail
to provide guidelines for what will be practical. A language wuriter
using one of these has no "language processor" already defined for him,
no definition of what an object language is or of how to implement it.
In some sense, the environment is too poor: if a context free parser is
needed, it must be implemented. On the other hand, it is too rich: The
language wWriter may be tempted to use pattern matching as a fundamental
access mechanism to his data base because it is so easily available; if

he does, its cost will make his language impractical.

- 137 -

Perhaps what is needed is a somewhat restrictive language
processor imposed on top of this environment, to insure that at least
those aspects of language processing which are clearly understood wWill
be implemented efficiently. This idea will be taken up again in the next
section, considering future extensions of LWL. - Without such additional
structure on the general capabilities of these languages, houever, they
do not provide a sufficiently well defined formalism for application

language implementation,

6.2 ANOTHER LOOK AT METALANGUAGES

Metalanguages, in general, and LWL, in particular, share many of
the advantages and disadvantages of the above techniques for Ilanguage
implementation, because of the many similarities and shared
capabilities. In this section, uwe consider some deficiencies of the

present metalanguage approach and some possibilities for improvement.

6.2.1 MANY POSSIBLE METALANGUAGES

Like an extensible language, a metalanguage can be the base ofy
only a limited class of object languages. The more appropriate that a
metalanguage is for defining a particular object language, the less
effective will it be for implementing other, different languages.

Clearly, the simplest metalanguage for implementing a particular object

- 138 -

language is one wuwhich already contains all of the primitives of the
desired .language. But that metalanguage will include many features
unique to the particular problem domain it best supports, and will
therefore be peculiar -to use for implementing languages in remote

fields.

~ The choice of how specialized a metalanguage should be to a
particular domain is a choice similar to how specialized a particular
object language should be. The more specialized, the easier it is to
use, but the fewer opportunities wWill arise to use it. If it is
anticipated that many application languages wWill need to be built, all
including a certain special set of capabilities, it makes economic sense
to support those capabilities in a fairly specialized metalanguage. The
dividing |ine betueen what responsibility belongs to the implementor of
a particular application language and what to the metalanguage builder

then becomes a guestion determined by economic considerations.

The metalanguage described in this thesis,. LWL, has developed as
~ the result of many years of experience wWith the implementation of
specialized languages. The problem domains of the individual languages
have ranged from the production of abstract motiﬁn graphics [Thompson
1974c] to natural language question answering (REL English). LWL is most
appropriate for implementing a language whose primitivés are complex
computations reflecting meaningful operations in an application field,

whose grammar is complex and benefits from the availability of a

- 139 -

power ful syntactic analyzer, and whose efficiency depends on the
availability of efficient data access and manipulation facilities.
Ambiguity tolerance and user-introduced extension is also well
supported. Languages which permit the user. to interact uith.large.
persisting data bases in a complex manner are particularly well suited
to implementation in LWL. The implementation of a radically.different
language (e.g., a variant of JOSS) is possible but receives relatively

little appropriate support from LWL.

Because of the likely future increase in the use of specialized
computer application languages, it is reasonable to suggest and expect
that many metalanguages will come into existence, wWwith distinct, large,
but limited domains of applicability., Existing system implementation
Ianguaggs also suggest that metalanguages need not be implemented from
an assembly language base, and one may expect to see a hierarchy of
metalanguages each of which allous .the implementation of other
metalanguages or object languages.* Because each of these languages
uould be complete and self-contained, it might be possible to avoid the
compounding of inefficiencies wuwhich accrues in a similar use of an
extensible language to build a hierarchy of languages. If not, then it

*¥_LWL has been partially implemented in assembly language, using the same
system facilities and standard functions which are available to the
object language implementor. LWL does not meet various of the criteria
which an object language must meet to receive proper support from this
environment (e.g., most of LWL’s semantic primitives are the low level
primitives of programming languages). Therefore, its implementation
might have been easier in a different metalanguage, had an appropriate
one existed.

- 148 -

Wwill still be possible to build at least a few useful metalanguages |ike
LWL, that will be able to support the implementation of large classes of

useful specialized application languages.

6.2.2 LANGUAGE IMPLEMENTATION IS DIFFICULT

LWL has been designed to make it easy to implement languages
like BIBLIO. Has it been successful? Yes and no! The linguistic
framework provided by LWL is a valuable tool for structuring BIBLIO’s
implementation, the REL language processor is powerful enough to make
the design of BIBLIO's syntax quite straightforward, and the PASCAL-Iike
LWL facilities for defining data structures and storage and retrieval
algorithﬁs are convenient. Certainly, compared to an implementation in
assembly language, or even in a higher level language |ike PL/1, the LWL

implementation of BIBLIO is simpler and easier.

However, LWL itself is a large, complicated language, not easy
for a language writer to learn to use fully and effectively., Some of
the complications (e.g., the inflexibility of the list storage class)
are incidental, the result of historical accidents. The complexity of
the rule statement, on the other hand, is not a result of pdor design --
each of its capabilifies and nuances has at some time been quite useful

in implementing a portion of various languages.

The task of language implementation is undoubtedly complex, and

- 141 -

we know of no significant way of making it easy. The only successful
models of language description existing today all pose the task in terms
of defining a syntax according to some formal grammar and the semantics
according to another formal system (e.g., a programming language), and
connecting vthe two. The most optimistic researchers in automatic
programming may envision other possible approaches, in which the
programming sgstem‘ can elicit from the intended end user enough
information to construct his desired language wWithout forcing him to
resort to formal descriptions, but only much more research and

experience Will decide if this optimism is justified.

A more promising direction is to specialize the metalanguage
even more than LWL is specialized, and to add to it very complete models
of a particular application domain. A metalanguage |ike that might
already contain facilities which support features'sufficientlg close to
the desired object language of a particular user that he could specify,
in termé natural to the field, what his object language is to be like.
This is essentially the approach taken by Martin [1974] in building a

"metalanguage" in which to implement inventory control systems.

6.2.3 METALANGUAGES WITH HIGHER LEVEL PRIMITIVES

Concepts and experience from extensible languages and compiler

generators have obviously contributed to the metalanguage scheme

- 142 -

discussed above. Contributions from the semantic l|anguages have not yet
been included. LWL now provides the language writer strong linguistic
tools with which to shape an object language syntactically, but the
primitive semantic capabilities of LWL from which the object language’s

semantics must be built are relatively lou level.

For the development of specialized languages which exhibit
semantically sophisticated behavior as well as a flexible syntax,
features from the semantic languages could be incorporated into LWL.
With careful regard for efficiency (Without which an application
language is useless), some pattern matching and deduction primitives and
the addition of a set of basic relational data file manipulation
primitives could be added to the LWL programming language. To provide
truly convenient, flexible and natural application languages, semantic
capabilities based on such techniques will very likely be necessary.
This augmentation of LWL would make it easier for the language writer to
implement application languages which use such complex primitive

semantics.

The incorporation of notions of program and data structuring
which are now being developed in an attempt to implement some of
Dijkstra’s ideas on structured programming [1973] would be a useful
addition to LWL. Especially in the construction of very complex

semantic primitives, the class and class concatenation concepts from

SIMULA would be quite important [Dahl 1973]. This would permit the

- 143 -

introduction of a level of structure which falls belou that imposed by

the object language’s rules of grammar.

Finally, the inclusion of highly interactive, powerful debugging
aids might well be a more significant imbrovement in LWL than any other
additional feature. This thesis has not addressed the problems of"
language testing and debugging, but obviously the addition of facilities
Wwith a sophistication similar to Interlisp’s break, undo and DWIM
[Teitelman 1974), but aimed at the particular language building

environment of LWL would be extremely useful.

This concludes the discussion of possible extensions to LWL
which promise to make it more effective as a language implementation
tool. The three extensions proposed have been: the developﬁent of a
hierarchy of metalanguages, the specialization of .a metalanguage by the
incorporation of models for very limited problem domains, and the
addition.of very high level semantic primitives. Each suggestion is
intended to explore a way of making meAtalanguages more pouwerful and
e‘asier to use. However, as with all challenging human tasks, no fully
automatic techniques can replace the necéssitg of hard thought and

inventive design to create a good language.

- 144 -

6.3 THE PROLIFERATION OF LANGUAGES

Sammet, in one of her recent surveys, reported the existence of
nearly two hundred different computer languages in use in the
u.s. [19721. The pressures for creating specialized languages discussed
in the introduction and the increasing availability of tools like LWL
which make language implementation easier will encourage an increase in
that already large number of languages, perhaps by orders of magnitude.
The possible creation of many incompatible, idiosyncratic languages will
exacerbate the serious problems of incompatibility which we already face
and will make the interchange of data in a meaningful form among

different users nearly impossible.

Potentially, each investigator (be he scientist or businessman)
Wwill have the ability to have developed for him specialized computer
tools uhicﬁ impose his oun étructural ‘vieué on the pheriomena he is
studying. Because a specialized language can be changed arbitrarily to
fit the peculiarities of its user’s special views, tuwo investigatdrs
starting from the same data and similar interests might develop their
thoughts and their analyses in such radically different directions that,
at a later time, their results may no longer be meaningful to each
other. If each investigator has absolute freedom in developing his
studies and his specialized tools, they might well become

incommensurable with the work of others.

- 145 -

Of course, there are now natural checks which prevent most
individuals from retreating into personal worlds, and we should presume
these to continue to operate. Thus, a scientist will keep in touch with
the paradigm of his field because he does not want to lose the ability
to communicate his ideas to colleagues Wwho are only accessible through
that paradigm. In a business, no department will be allowed to develop
accounting techniques, for instance, which are irreconcilable with those
used elsewhere in the company, no matter how attractive that may be to

the department.

Whereas the present cost of providing specialized computer tools
acts as the primary deterreﬁt to specialization, after the introduction
of inexpensive language implementation techniques, it will be the
information cost that will discourage the abandoning of common
standards. The advantages gained by providing particulariy appropr_iate.
specialized tools to.each member of an organization will have to come
into equilibrium wWwith the disadvantages which result from the
communication breakdoun caused by incompatible specializations. This
equilibrium is a better one on which to rely for decisions in computer
system design than the current one, which is so heavily dominated by
considerations of the cost of implementing different computer systems

and languages.

The metalanguage methodology helps to eliminate the controlling

factor of excessive cost. It does not, however, take a stand on whether

- 146 -

common or unique application languages are appropriate. In fact, a
nearly continuous range of possibilities is supported, since two object
languages implemented in LWL may sharehere from all to none of their
sgntax; data structures and semantic functions. One attractive
compromise between common and unique languages is to require some common
core, but to let each of several users have special facilities of his
own beyond that core. Another is to require the same data structures and
some common set of semantic functions, but to allow each user different
syntactic access to a commonly structured data base. The methodology of
application language implementation in a metalanguage supports all of

these possibilities.

6.4 CONCLUSION

This dissertation has presented a point of view favoring the
creation of specialized languages as a means of giving natural access to
the computer’s organizing and problem solving capabilities to large
numbers of users. A discussion of the role of specialized languages and
current application computing practice led to the presentation of a
methodology for aiding the implementation of specialized application
languages. The interesting features of the REL Language MWriter’s
Language were presented, with examples from the BIBLIO language used to
illustrate the application of LWL, Finally, LWL's approach to
supporting language . implementation was compared with other possible

techniques.

- 147 -

The use of metalanguages is effective in easing the task of the
language implementor; therefore, it will make it more economical to
implement specialized languages. This will lead to the availability.of
natural computer languages to aid specialized areas of human endeavor,

and thus will bring the computer within the reach of many.

- 148 -

LIST OF REFERENCES

Backus, J. W., R. J. Beeber, S. Best, R Goldberg, L. M. Haibt, H. L.
Herrick, R. A.:Nelson, D. Sayre, P. B. Sheridan, H. Stern, I.
Ziller, R. A. Hughes, and R. Nutt 1857. The FORTRAN Automatic
Coding System. Proc. Western Joint Computer Conference 11:188-
198. Reprinted in Rosen, Saul, ed., Programming Systems and
Languages. New York: McGraw-Hill, 1967. '

Balzer, Robert M. 1973. "A Global View of Automatic Programming," Proc.
31JCAT (28-23 Aug. 1973). . Menlo Park, Ca.: Stanford Research
Institute.

Benson, David B. 1968. Formal Languages, Part Theory, and Change.
Ph.D. Dissertation, Calif. Inst. of Tech., Pasadena, Ca.

Bigelow, R. H., N. R. Greenfeld, P. Szolovits, and F. B. Thompson 13973.
"Specialized Languages: An Applications Methodology," Proc. AFIPS
~National Computer Conference 42(1973):M43-M53. ’

Bobrow, 0. G., J. 0. Burchfield, D. L. Murphy, and R. S. Tomlinson 13972.
"TENEX, a Paged Time Sharing System for the PDP-18," Comm. ACM 15
(March 1972).

Bobrow, D. G. and B. Raphael 1973. "New Programming Languages for Al
Research," presented at 31JCAI (Aug. 20, 1973). HMenlo Park, Ca.:
Stanford Research Institute.

Brawn, B. S., F. G. Gustavson, and E. S. Mankin 1978. "Sorting in a
Paging Environment," Comm. ACM 13(Aug. 1378):483.

CACM (Communications of the ACM) July 1972. "As the Industry Sees It,"
Comm. ACM 15:586-517.

Cheatham, T. E. and Ben Wegbreit 1872. "A Laboratory for the Study of
Automatic Programming," Proc. AFIPS SJCC 48(Sept. 1972):11-21.

Chomsky, N. 1965. Aspects of the Theory of Syntax. Cambridge: MIT
Press. :

- 149 -

CR (ACM Computing Reviews) Jan. 1974. "Categories of the Computing
Sciences," ACM Computing Revieus 15(Jan. 1874):43-44,

Oahl, 0.-J., B. Myhrhaug, and K. Nygaard 13968. The SIMULA 67 Common
Base Language. Norwegian Computing Centre, Forskningsveien 1B,
Oslo 3.

Danhl, 0.-J. 13972. "Hierarchical Program Structures," in Structured
Programming, 0.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, eds.
London: Academic Press.

Dijkstra, E. W. 1972, "Notes on Structured Programming," in Structured
Programming, 0.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, eds.
London: Academic Press.

Dostert, Bozena H. 1978. REL -- An Information System for a Dynamic
Environment. REL Project Report No. 3. Pasadena, Ca.: Calif.
Inst. of Tech., Dec. 1970.

Dostert, B. H. and F. B. Thompson 1971. The Syntax of REL English. REL
- Project Report No. 1. Pasadena, Ca.: Calif. Inst. of Tech., 13971.

Dostert, B. H. and F. B. Thompson 1972. "Syntactic Analysis in REL
English: A Computational Case Grammar," Statistical Methods in

Linguistics 8(1972):5-38.

Oostert, B. H. and F. B. Thompson 1973. Verb Semantics in a Relational
Oata System, REL Project Report No. 6. Pasadena, Ca.: Calif. Inst.
of Tech., 1973. ’

Gomberg, Sara 13973. The REL Command Language. REL Project Report No. 8.
Pasadena, Ca.: Calif. Inst. of Tech., 1973.

Greenfeld, N. R. 1372. Computer System Support for Data Analysis. Ph.D.
Dissertation, Calif. Inst. of Tech., Pasadena, Ca.

Habermann, A. N. 1873. "Critical Comments on the Programming Language
Pascal," Acta Informatica 3(1973):47-57.

Ingargiola, Giorgio P. 1374. ‘"Hierarchies and Relations Among Data
Types," to appear in Proc. ACM National Conference (Nov. 13974).

Irons, E. T. 1961. "A Syntax Directed Compiler foh.AIgol 60," Comm. ACM
4(Jan 1961):51:565.

Keyser, S. J. and S. R. Petrick 1367. Syntactic Analysis, AFCRL-B67-
0@305. Bedford, Mass.: L. G. Hanscom Field, Air Force Cambridge
Research Laboratories.

- 158 -

Kay, Martin 13967. Experiments With a Powerful Parser, RM-5452-PR.
Santa Monica, Ca.: Rand Corporation.

Knuth, Donald E. 1968. "The Semantics of Context Free Languages,"
Mathematical Systems Theory 2(June 1968):127-146.

, 1973. A Review of "Structured Programming," STAN-CS-73-371.

Stanford, Ca.: Stanford University, Computer Science Dept., June
1873,

Kuhn, Thomas S. 1978. The Structure of Scientific Revolutions, Second
Edition, International Encyclopedia of Unified Science, Vol 2 No.
2. Chicago: University of Chicago Press, 1978.

Leavenworth, Burt M. and Jean E. Sammet 1974. "An Overvieuw of
Nonprocedural Languages," (Proc. Symp. on Very High Level
- Languages) ACM SIGPLAN Notices 3(April 1974):1-12.

McKeeman, W. M., J. J. Horning, and D. B. Wortman 13978. A Compiler
Generator. Englewood Cliffs, N.J.: Prentice-Hall.

Martin, William A. 1874. "OWL: A System for Building Expert Problem
Solving Systems Involving Verbal Reasoning," manuscript. Mass.
Inst. of Tech.

Moler, Cleve BL 1972. "Matrix Computations with Fortran and Paging,"
Comm. ACM 15(Apr. 13972):268-278.

Myrdal, Gunnar 1863. Objectivity in Social Research. New York: Random
House, Pantheon Books.

Naur, Peter, ed. 1963. "Revised Report on the Algorithmic Language
Algol 66," Comm. ACM 6(Jan. 1863):1-17.

Newell, A., F. M. Tonge, E. A. Feigenbaum, G. H. Mealy, N. Saber, B. F.
Green, Jr., and A. K. Wolf 1368. Information Processing Language
V Manual. Santa Monica, Ca.: Rand Corporation.

Quine, W. V. 1963. Ontological Relativity and Other Essays. New York:
Columbia University Press.

Randall, David L. 1978. Formal Methods in the Foundations of Science.
Ph.D. Dissertation, Calif. Inst. of Tech., Pasadena, Ca.

Rosen, S. 1964. "A Compiler-Building System Developed by Brooker and
Morris," Comm. égﬁ 7 (July 1964):403-414,

Saltzer, Jerome H, 1974. "Protection and the Control of Information in
Multics," Comm. ACM 17 (July 1974):388-482.

- 151 -

Sammet, Jean 1972. "Programming Languages: History and Future," Comm.
ACM 15(July 1972):601-618.

Schwartz, J. T. 1973a. 0On Programming: An Interim Report on the SETL
Project; Installment 1: Generalities. Courant Institute of
Mathematical Sciences, New York University.

, 1373b. "Central Technical Issues in the Semantic Design of
Procedural Programming Languages," manuscript. Courant Institute
of Mathematical Sciences, New York University.

Taft, E. A. 1971. PPL User’s Manual. Cambridge: Harvard University,
Harvard Extensible Language Project, January 1971.

Teitelman, Warren 1974. Interlisp Reference Manual. Palo Alto: Xerox
Palo Alto Research Center.

Thompson, F. B. 1966a. "Man-machine Communication," in Seminar on
Computational Linguistics, A. W, Pratt, A, H. Roberts, and K.
Lewis, eds. U.S. Department of Health, Education, and Welfare,
Public Health Service Publication No. 1716.

, 1966b. "English -for the Computer," Proc. AFIPS FJCC
29(1966) : 349-356. '

Thompson, F. B. and B. H. Dostert 1372. "The Future of Specialized
Languages, " Proc. AFIPS SJCC 48(1972):313-319.

Thompson, F. B. and B. H. Dostert 1974a. Practical Natural Language
Processing: The REL System as Prototype. REL Project Report No.
13. Pasadena, Ca.: Calif., Inst. of Tech., Jan. 1974, To appear in
Advances in Computers, Vol. 13, ed. M. C. Yovits and M. Rubinoff.
New York: Academic Press. '

Thompson, F. B. 1974b. The REL Language Processor. REL Project Report
No. 11. Pasadena, Ca.: Calif. Inst. of Tech., 1974.

Thompson, F. B., R. H. Bigelow, N. R. Greenfeld, J. R. Odden, D. Reece,
and P. Szolovits 1374c. The REL Animated Film Language. REL
Project Report No. 12. Pasadena, Ca.: Calif. Inst. of Tech:, 1974,
To appear in Computers and Graphics Vol. 1(13974).

Wegbreit, Ben 13978. Studies ig Extensible Programming Languages. ESD-
TR-78-2397. Bedford, Mass.: L. G. Hanscom Field,Directorate of
Systems Design and Development, May 1978.

Wegbreit, Ben 1374. "The Treatment of Data Types in EL1," Comm. ACM 17
(May 1974):251-264,

- 152 -

‘Wegner, Peter 1972. "The Vienna Definition Language," ACM Computing
Surveys 4(March 1972):5-63.

Whor f, Benjamin L. 13856. Language, Thought, and Reality. Cambridge:
MIT Press.

Winograd, Terry 1372. " Understanding Natural Language. Neu York:
Academic Press.

Wirth, N. 1873. The Programming Language Pascal (Revised Report).
Berichtige de Fachgruppe Computer-Wissenschaften, ETH, No. 5.
Zurich, Switzerland: Technical University, July 1373.

Wittgenstein, Ludwig 1958. Philosophical Investigations, Third Edition.
Neu York: Macmillan.

Woods, W. A., R. M. Kaplan, and B. Nash-Webber, "The Lunar Sciences
Natural Language Information System: Final Report." BBN Report
2378. Cambridge, Mass.: Bolt, Beranek, and Newuman, June 13972.

- 153 -

APPENDIX A

THE SYNTAX OF LWL

{1} - Introduction

To explicate the discussion of various constructs of the REL
Language MWriter’'s Language in this thesis, this appendix presents an
informal syntax of LWL, The level of formality desired in this
presentation is that of Wirth's PASCAL Report [1973]. This means that
the language description is accurate, but does not comprehend in detail

the actual implementation.

The language writer who uses LWL's sophisticated definitional
capabilities may need to refer to the following syntactic description of
the language, to understandv the meéning assigned tq his paraphrase
definitions, and especially to wunderstand the ontology of his
metavariables.® For the less daring language writer, the operations of
the LWL are rather straightforward, and its grammar will rarely

introduce difficulties.

Because LWL is intended to parallel PASCAL wherever that

- 154 -

language has been adequate to our task, its syntactic definition will
take advantage of the excellent and widely available definition of the
PASCAL - language [Wirth, 1973j. The discussion below will follow the
organization of the PASCAL Report and will explicitly definé only those
features of LWL which differ significantly from PASCAL (except wuhere
clarity demands greater completeness). Secfion headings are numbered by
corresponding section numbers from the Report. Section 18, on procedure
declarations, is essentially omitted, and Section 12, on the rule

statement, is added.

{2} - Summary of the Language

The REL Language Writer’s Language is a metalanguage in which

new, specialized object languages may be defined for the REL System. An

object language consists of: its extended syntax, the rules of grammar

by which the REL language processor interprets utterances of the

language; and the data representation, the declaration of the types of

objects in the language's universe of discourse (data structures) and

the operations which may be performed upon them (functions).

In addition to the standard scalar types, Boolean, integer, char

and real, and the user-defined scalar types, LWL introduces the scalar
type function, wWhich is an arbitrarily (but consistently) ordered set of

values, each of which is a primitive or user-defined function. This

- 186 -

permits the construction and manipulation of data types which include
functions as components. Tuwo "special" types of data items required in

the processing of grammar rules, the part_of_ speech and features are in

fact represented in terms of the above scalar types. Parts of speech
are made equivalent to the non-printing values of the data type char,
and the features used to subcategorize each particular part of speech
form a scalar type, whose name is

<pos>. features

Subrange is retained as an abbreviation for the scalar type and
concomi tant advice to the compiler about the required amount of storage
needed for a variable. The values of a variable declared of type
Subrange, however, do not differ from the values of the type on which
the subrange is based. Further, subranges may not be formed of the

scalar types real and function.

The PASCAL structured data types array, record and set are

provided. For the record type, a storage class is an additional
possible attribute. The three storage classes are stack, list and page,
and correspond to allocating the record’s.corresponding storage on the
ALGOL-like stack, in a garbage-collected list space or in the paged

virtual memorg.* The set structure may not have a base type of real or

*Certain specific limitations and defaults exist on the maximum size and
organization of record types of the various storage classes: The maximum
size of a page record is the REL System virtual memory page size
(currently 2048 bytes); list records are each of fixed length (currently
12 bytes) and the first field of every list record type must be of tuype
char (required by the garbage collector). If it is not explicitly

- 156 -

function, and should ordinarily not be based on integer. There is no

file structure.

Variables of pointer type may be used to dynamically reference
storage classed record variables (not arbitrary variables, as in
PASCAL). Pointer variables may have the value nil or any record of the.
class and type to which the pointer variable is bound. A pointer may

also be bound to a subtype of a defined type, namely some pre-selected

part of a larger data type.

In the declaration of variables, the issues of scope and
persistence arise. In PASCAL; the scope of all locally declared
variables is the procedure or function jn which they are declared, and
"every variable persists throughout its scope, wWith the exception of
those unnamed, dynamically created variables which may be referenced

only through pointers.

In LWL, all record variables of the list or page storage class
are of that latter, dynamic kind. No variable may be decléred with a
type that is a page or list storage classed record -- only the function
new may be used to create such variables dynamically, and they may be
referenced only through pointer variables bound to their type.
Variables of the page class persists until they are either explicitly

declared so, the declaration is augmented to satisfy this requirement,
and the newly introduced anonymous variable is assigned an initial value
consistent (for the garbage collector) with the structure of the rest of
the record.

- 157 -

removed by the function free or implicitly freed by the deletion of the
complete version. VYariables of the list class persist until either no
more pointer variables reference them or the user session is

terminated.*

All- static variables must be declared with data types with
storage classes other than page or list. Ordinarily, their persistence
is co-terminous with the invocation of the function in which they uwere
declared, and their scope is exactly that function, excluding other
functions called by it. The special declarations common and global give
such a variable universal scope; global insures the same persistence as

the current session, and common the same as the version.**¥

Assignment and the basic operators are as in PASCAL, except that
the ordering relations also apply to pointer and function types. = There

are no program or procedure declarations, the functional parameter and

evaluation mechanism is quite different™* and there are extensions of

the for and while statements.

The extended syntax of the object language is introduced by the

use of the rule statement. Its syntax is defined in Section 12, below.

*¥C.f. chapter IV, Section 4.4.1.

*Note that the value of a pointer variable declared common and bound to
a list record type becomes meaningless after the end of a session, and
that dynamic variables of the page class may be permanently lost to a
version at the end of a session unless they are pointed to by a variable
declared common. '

¥¥XC, f. Chapter 1V, Section 4.3.3.

- 158 -

{3} - Notation, terminology, and vocabulary

The syntactic description of LWL will use an extended Backus-
Naur form. The semantit part of the rule definitions Wwill be left out,
and the semantics will be described informally or left implicit if

obvious. The LWL syntax uses features to keep track of the source from
which a particular phrase derives. For instance, <éca|ar_tgpe,+rea|>
and <scalar_type,+integer> are both instances of <scalar_type>, both
recognized using the rule

<scalar_type> ::= (<identifier> {,<identifier>}) | integer | real |
Boolean | char | function

but with the further requirement that it was the real or integer
alternate éf the scalar_type rule which applied to them. This provides a
systematic syntactic means for taking into account grammatical
informafion not explicitly specified by the PASCAL grammar rules.
Unless otheruise specified, assume that each part of speech is marked by

features indicating its actual derivation, as in the above example.

The optional presence and repetition (zero or more times) of an
item in the syntax will be represented by enclosing it in a pair of the
metabrackets { and }. The vertical bar, | , will indicate alternatives,

and the metasymbol, ::=, will be the production symbol of BNF.

[t must be noted that because LWL is itself an extensible
language, its syntax as presented here is only an accurate statement

before the language writer has commenced. For example, the definition

- 159 -

of a new <record_type> adds to the LWL syntax grammar rules which
recognize the newly defined type identifier and the various field
identifiers. The PASCAL definition’'s ubiquitous use of'the syntactic
category <identifier> is avoided by identifying newly introduced

identifiers with their syntactic type in a new rule of LUWL.

The vocabulary consists of the basic symbols

<letter> ::= A |B|C|DJEJF|G|IH]T|]JIKI]JLIM|N]
OIPIAQIRIS|ITJUIVIWIX|Y]|Z]al|lb]lc]|d]
el floglhlililkltimin]jolplalr|s]t]
ulvi]iwlxtulz]_

<digit>::=8 |1 |2 [3]4]5]61]17]8]3

<special symbol> 3=+ | = | x|/ | 'V | &> <] C|)Y} U} 1|
L A O R T I R
The words div, mod, not, nil, in, if, then, else, case, of,

repeat, until, while, do, for, to, begin, end, with, const, var, type,

category, define, array, record, ggi; page, list, stack, function, rule,

etc., although they are standard words of the language, are not
considered reserved or quoted. It is the language writers
responsibility to avoid usage that would cause ambiguity. A comment,
delimited by the symbols { and }, may appear in the text anyuhere that a

blank may appear (except inside strings) and has the same meaning.

- 168 -

{4} - Identifiers, Numbers, and Strings

Identifiers denote constants, types, variables, functions,
rules, parts_of_speech and features. An identifier may denote several
of these at the same time, so long as its use in any particular instance
is unambiguous. Identifiers are defined as in PASCAL. .Numbers are
expressed in the normal decimal notation, as in PASCAL, but with the

caret (”) used to show the scale factor instead of E.

Sequences of characters enclosed in quote marks (') are called

strings, as in PASCAL. Strings may appear only as <simple_expression>s.

{5} - Definitions

In PASCAL, constant definition and data type definition are
treated as distinct. LWL subsumes both under the more general operation
of definition. Syntactically, this is provided by the define statement

<definition> ::= define <definiendum> = <definiens> |
<constant_definition> | <type_definition>

The definiendum is a sequence of metavariables and characters other than
=, Metavariables are enclosed in " marks, and either identifg the LWL
part of speech for which they stand explicitly or provide an example
from which the part of speech is determined. Thus,

<metavariable> ::= "<LWL_part_of_speech>" | "any_phrase_of_LWL"

The alternative "<LWL_part_of_speech>" is actually written with the

- 161 -

angle brackets, and refers to the left hand side of any of the grammar

rules of LWL, e.g.

"<expression>"

The definiens is an LWL phrase, possibly including
metavariables. The meaning of this rule is similar to adding to the
grammar of LWL the general reurite rule

definiens ::= definiendum
It is similar rather than equivalent, because the rule is not entered as
stated; if the definiéns parses to a part of speech <ps>, then the rule
addgd is

<ps> ::= definiendum
Wwith a def semantics which contains the phrase marker of the definiens.
Note that the requirement that the definiens must parse before the rule
is added eliminates the possibility of general reuwrite rule and

recursive definitions.

In detail, the operation of the definition rule is rather
complicated. For example, it is necessary to determine that parse of the
definiens which is minimally sufficient to span it, and it is necessary
to ‘identify the metavariables which are to participate in fhe
definition. This is more difficult than might first appear, since so
little is assumed about the form of the definiendum. Thus, a definition
like

n n " n
.

define "x".."y" = sin("y")

- 162 -

is meahingful, but here the "x" are merely symbols of the defined
phrase, and do not serve as a metavariable. The actual defining process

works as follouws:

I Find all parses of the definiens. [f there are none, the
definition is meaningless and fails. Eliminate any parses in
which the last rule applied was of the form

<non_terminal> ::= <non_terminal>
to get the minimal parses of the definiens. 1f there is more
than one such parse, the definition is ambiguous and fails.

II. Consider all possible sequences of terminal characters and
metavariables of the definiendum. E.g., for the above example,
the possible sequences are

"x"..<metavariable for variables like y>

<metavariable for variables like x>.."y"

<metavariable for variables like x> .. <metavariable for
variahles |ike y>

" " n n

: o e §
where the first is the correct interpretation.

[II. Find all pairs of <sequence from II, parse from I> which have
correspondingly the same sets of metavariables. If there is
more than one such pair, the definition is ambiguous and fails.
[f there are no such pairs, the definition is meaningless and
fails. If there is exactly one such pair, then a neu grammar
rule is added to LWL, where the right had side is the sequence
found in Il., and the left hand side is the part of speech of
the parse from I., with a semantics which is the phrase of that
parse and with the corresponding metavariables bound to each
other. ‘

{5.1} - Constant Definition

Constant definition is a special case of <definition>, in which
the definiendum is an identifier and the definiens is a constant
expression. A constant definition introduces an identifier as a synonym

for a constant. Any expression which may be evaluated to a constant

- 163 -

value at the time of constant definition may appear in the definition,
allowing constants to be defined in terms of other constants. This
includes the application of standard functions, which return constant
values given constant constituents.

<constant definition> ::= <identifier> = <expression,+constant>
A constant definition, like

const limit = 8;
has the effect of adding to the LWL grammar the rule

<constant> ::= limit |

With the meaning that limit evaluates to 8.

In addition, numbers and the null pointer are constants:

<constant> ::= <unsigned_number> | nil

{6} - Data Type Definitions

A data type identifies a semantic category of objects. It thus
determines the set of values which variables of that type may assume. A
data type definition extends LWL by introducing an identifier whose
meaning is the newly defined type. In addition, the category data type
definition identifies a semantic category of the object language, and

therefore, a syntactic part of speech.*

*The relationships among the type, define and category definitions are
discussed in Chapter 1V, Section 4.2.2.

- 164 -
<type_definition> ::= type <identifier> = <type> |
category <identifier> = <type>

<type> ::= <simple_type> | <pointer_type> | <structured_type>

{8.1} - Simple types

The simple types are scalars, both standard and user defined,
and the restricted ranges of these, called the subrange types. The
counting types form the valid base types for sets and array indices.

<simple_type> ::= <scalar_type> | <subrange_type>

<scalar_type> ::= (<identifier> {,<identifier>}) | integer | real |
Boolean | char

<subrange_type> ::=

<constant,-real-function> .. <constant,-real-function>
<counting_type> ::= <scalar_type,-real-function> | <subrange_type>

{6.2} - Structured types

Structured types are aggregations of components, co-ordinated by
a structuring method and perhaps specifging a storage class. The
structuring methods are array, set and record, and the storage classes
are page, list and stack.

<structured_type> ::= <array_type> | <set_type> | <record_type> |
<subtype>

<array_type> ::=
array [<counting_type> {,<counting_type>}] of <type>

<set_type> ::= set of <counting_type>

<record_type> ::= <unclassed_record_type> | <classed_record_type>
<classed_record_type> ::= <storage_class> <unclassed_record_type>
<storage class> ::= page | list | stack

- 165 -

<unclassed_record_type> ::= record <field_list> end

<field_list> ::= <fixed_part> | <fixed_part>;<variant_part> |
<variant_part>

<fixed_part> ::= <record_section> {;<record_section>}

<record_section> ::= <identifier> {,<identifier>} : <type>

<variant_part> :;= case <identifier> : <counting_type,+identifier>
of <variant> {;<variant>}

<variant> ::= <case_label_list> : (<field_list>) |
" <case_label_list> :
<case_label_list> ::=

<constant, -real-function> {,<constant,-real-function>}

A further structured type, the subtype, is a selected component
of a structured type, often used as the target'of pointer types uwhere
the desired referent is known to be some element of a larger knoun
structure. The subtype is syntactically represented much |ike a
variable denotation, but with the.arbitrarg % as the only array index
permitted. ‘The feature mechanism is used to assure that only classed
record types are subject to subtype definition, and the subtype acquires
the storage class of its base type.

<subtype> ::= <subtype_head> | <subtgpe_componenf>

<subtype_head> ::= <structured_type,+identifier+classed_record> .
<field_identifier>

<subtype_component> ::= <indexed_subtype> | <subtype_field>
<indexed_component> ::= <subtype,+array> [x {,%}]
<subtype_field> ::= <subtype,+record> . <field_identifier>
As in constant definition, the application of many of these
rules has as side effect the extension of LWL’s grammar by the addition
of new lexical rules. The scalar type rule adds rules of the form
<constant> ::= identifier

for each constant of the new user-defined scalar type. The record

section and variant part rules add other rules of the form

- 166 -

<field_identifier> ::= identifier

for the tag and other fields of a structure.

{6.31 - Pointer types

Pointer types may have as their targets only storage-classed
record types or subtypes, and the target type must be named by an
identifier.

<pointer_type> ::= @ <structured_type,+identifier+classed_record>

{7} - Declaration and Denotation of Variables

Variables are declared and referenced in the same manner as in
PASCAL, wuwith the exceptions that intermediate field identifiers may be
omitted where no ambiguity can result, and pointer references may also
be omitted, in which case the denotation is assumed to represent the
shortest path in a breadth-first, left-to-right search of the connected
data tgpes. Field identifiers determining among variants of a case

record may not be omitted.

{8} - Expressions

Expressions are very much as in PASCAL, with a few minor

differences:

- 167 -

<factor> ::= <variable> | <constant> | <function designator> | <set>
| (<expression>) | not <factor>
<set> ::= [<expression> f{,<expression>}] | I[I
<term> ::= <factor> | <term> <multiplying_operator> <factor>
<simple_expression> ::= <term> |
<simple_expression> <adding_operator> <term> |
<adding_operator> <term> | <string>
<expression> ::= <simple_expression> | _
<simple_expression> <relational_operator> <simple_expression>
The relational operators for comparison are extended to operate
as well on pointer variables with the same target types and on function
variables. Features are used to mark whether an expression has all
constant components and the type of the result of expression evaluation.
An alternative form of function calls is also permitted:
<function_designator> ::= <function,-variable> |
<function> (<constituent> f{,<constituent>}) |
<constituent> . <function,-variable> |

<constituent> . <function,-variable>
(<constituent> {,<constituent>})

{3} - Statements

Statements are executable segments of algorithms. The empty
statement and assignment statement remain as simple statements, along
with a limited version of PASCAL’s <procedure statement>. The <goto
statement> and its corresponding <label>s have been eliminated. MWithin
compound statements,. definition statements are treated as null
statements, allowing definitions to be interspersed wuwith other

statements of a function declaration.

In the assignment statement, only the form

- 168 -

<assignment_statement> ::= <variable> := <expression>
is allowed, since functional values are to be returned by the standard

functions return and ambig.

The structured statements <compound_statement>,
<conditional_statement>, and the <uhile_statement> and
<repeat_statement> are as in PASCAL. The for and wuhile statements

differ.

The for statement has the expanded form*

<for_statement> ::= for <entire_variable> := <for_list> do
<statement>

<for_list> ::= <expression 1> to <expression 2> |
<expression 1>,<expression 3>,...,<expression 2> |
all <counting_type> | all <variable,+pointer>

The <entire variable> which receives the new values on each loop of the

for is called the control variable. It and any value assigned to it

must be of the same type.

The with statement is considerably modified, to provide a simple
syntactic form for control over the REL System’s software paging
mechanism.

<uith_statement> ::= With <record_binding_list> do <statement>
<record_binding_list> ::= <record_binding> {,<record_binding>}
<record_binding> ::= <record_variable> |

<identifier> : <record_variable> | <array_variable,+pointer> |
<identifier> : <array_variable,+pointers

The first alternative for <record_binding> lies closest to the

*C, f. Chapter IV, Section 4.3.1.

- 169 -

purely syntactic use of wWith chosen by PASCAL. In LWL, however, the
With statement is executed, and if the <record variable> has the storage
Elass page, the with surrounds its constituent statement with calls on
the REL paging services to guarantee appropriate acceés fo the record
Wwithin the scope of the statement. The second alternative additionally
introduces a local synonym for the record variable, so that if in the
constituent statement a field reference must be disambiguated, the local
identifier may be used in place of the (often longer) actual variable

denotation.

The third alternative is a special construct to aid in the
uriting of functions which pay close attention to paging. It allous an
array, each of uwhose elements is a pointer to a record structure, to
~appear in the binding list. Its effect is that every non-nil element of
the arrag fs used to identify a record which is made available. The

fourth alternate is analogous to the second.

In addition, any field selection in a record binding which
involves a variant of a case record implies that the case validity is

verified once only, at the beginning of the uith statement.

Some calls on standard functions may take the form of additional
statement types by the omission of otherwise demanded parentheses. For
instancé.

return x;

takes the place of the <procedure_statement>

- 178 =

return (x);

{18} - Prpcedure Declarations

LWL does not provide for the declaration of user procedures.

{18.1} - Standard procedures

The following standard procedures exist:

return -- returns its single argument as the value of the function
currently being executed.

ambig -- adds its single argument to the list of ambiguous values
which will be returned by this function when return is invoked.

fail -- causes the current function to fail; this causes the current
interpretation of its phrase to be abandoned.

error -- returns its single argument as the out-type value for the

current function, causing the noted error to propagate to the
top level of evaluation.

vacuous -- like error, but the output propagates only so long as no
valid alternative interpretation of this phrase is encountered.®
message -- Writes its argument immediately to the user.
{11} - Function Declarations

LWL supports functions and prefix functions, which differ in

that the constituents of a prefix function are not evaluated when the
function is invoked. Because the type information of a function’s

parameters and value can be deduced if the function appears as the

~ 171 =

semantics .of a rule. of grammar, the function declaration need not
include these type declarations for such functions.

<function_declaration> ::= <function_heading> <compound_statement>
<function_heading> ::= <function_word> <identifier> |
<function_uord> <identifier> <parameters>
<parameters> ::=
(<formal_parameter_section> {,<formal_parameter_section>})
¢ <type,+identifier> | : <type,+identifier>
<function_uord> ::= function | prefix_function | subroutine

The evaluation of functions and prefix functions and the binding
of parameters are performed by the REL language processor.* A subroutine
is a restricted form of function, which may be invoked only directly
from another function; it may not be invoked by the language processor
in response to the application of a grammar rule and it may not fail or
return an ambiguous value. The parameters of a subroutine are bound by
value. This mechanism is provided to allow an efficient form of
function-to-function calling without paying the overhead of the

generality of the language processor's evaluation mechanism.

{11.1} - Standard Functions

In addition to the PASCAL standard functions, LWL provides the

following:

*C.f., Chapter 1V, Sections 4.3.2 and 4.3.3, and [Thompson, 13974b].

- 172 -
Simple Extensions of the PASCAL Functions:

The function ord may take any scalar type but real, and returns
the ordinal position of that value in the scalar type. Instead of the
single function chr, the name of every (non—gggl. non-integer) scalar
type is a function, and so, for instance, char(i) is the i-th character

in the character representation.

Dynamic allocation is performed by the function neuw, which
differs from the PASCAL procedure new since its first parameter is not a
variable, but a type to be allocated, and its value is a pointer to the

newly allocated variable.

Functions for Paging Control

unlocked -- a function of no arguments, it returns an integer which
counts the number of yet available page frames for further
paging operations.

lock (<page classed record variable>) -- returns its argument with
the side effect that the page of virtual memory occupied by the
selected record is not subject to automatic replacement until
explicitly released or until a fail or error or vacuous
statement is executed, or until processing of the current
sentence is terminated. ‘

release -- the release function for |ock.

Functions for using the Language Processor

evaluate (<phrase>, .<list of phrases>) -- calls the semantic
evaluator on its first argument; the second argument, if
‘present, is a list of phrases to be bound to the metavariables
of the the phrase before it is evaluated.

constituent -- a function of no arguments, yielding the phrase which
is currently being evaluated

For each part_of_speech, there is a function of two argument, the
first a phrase, the second an optional integer, uhich selects the

- 173 -

constituent of that phrase with that part_of_speech. The integer,
if present, requests selection of the i-th such constituent.

n-amb (<phrase>) -- the number of. ambiguous phrases which represent
the ambiguous values of the phrase.
amb (<phrase>, i) -- the phrase which represents the i-th of the

- ambiguous values of the input phrase.

metavar -- a condition function which creates new metavariables.

metabind -- a condition function which binds metavariables.

n_bound (<phrase>) -- the number of metavariables bound in the phrase

me tabound (<phrase>, i) -- the i-th bound metavariable phrase in the
input phrase. .

range (<metavariable phrase>) -- the range of the metavariable,
another phrase.

name (<metavariable phrase>) -- the name of the metavariable, a

string (array of char).

extend(<list of phrases>, <list of phrases>, function, string) --
the arguments are, in turn, the phrases of the left hand side
and right hand side of the new rule to be added, the condition
function for the rule, and the name of the rule.

The interface with the language processor is further specified

in a document on that subject, [Thompson, 1974b].

{12} - Rules

| The object language to be implemented is defined in terms of a
set of syntactic rules which aliow the language processor to interpret
sentences of the language in terms of its defined data objects and
functions. the rule statement has the form:

<rule_statement> ::= <identifier> rule <left_hand_side> <production>
<right_hand_side> : {<semantics>}

<production> ::= : (<function>):= | ::=

The identifier names the rule for future reference; the first form of

- 174 -

the <production> allows the specification of a condition function to be

invoked when the parser is about to apply this rule.

The left and right hand sides of the rule are |lists of
parts_of_speech, including specification of feature matching and setting
requirements.

<left_hand_side> ::= <part_of_speech_list>
<right_hand_side> ::= <part_of_speech_list>
<part_of_speech_list> ::= <terminal> | <non_terminal> |
<part_of_speech_list> <terminal> |
<part_of_speech_list> <non_terminal>
<terminal> ::= <string> | <string_begin> | <string_end> |
<input_terminator> | <carriage_return>
<non_terminal> ::= < <part_of_speech> > |
< <part_of_speech>, {<feature_check_or_set>} >
<feature_check_or_set> ::= <feature_sign> <feature> |
<unsigned_integer>
<feature_sign> 1= + | - | %

The semantic specification of a rule mentions the semantic
functions which are to compute the meaning of each non-terminal .phrase
of the rule’'s left hand side and the associated syntactic
transformations which are to take place on the phrase marker which
represents that value.

<semantics> ::= (<unsigned_integer>) | (<function>) |
(.<prefix_function>) | ({<transformation>},<function>) |
({<transformation>},.<prefix_function>)

<transformation> ::= < <unsigned_integer> > |
< <unsigned_integer>,% > |
< <unsigned_integer>, <part_of_speech>{,<unsigned_integer>} > |

< <unsigned_integer>,%-<part_of_speech>{,<unsigned_integer>} >

The meaning of the rule statement is discussed in Chapter V.

The features statement allows the definition of features to

subcategorize parts of speech:

- 175 -

<features_statement> ::= features <part_of_speech> =
[<identifier>{,<identifier>}]

- 176 -

APPENDIX IT

THE SYNTAX OF BIBLIO

The BIBLIO language was presented informally in Chapter III, as
an example of the kind of language which is easily implementable in LWL.

This appendix defines the syntax of BIBLIO, in LWL.*

The basic data input statements are defined by the following
syntax:
<SENTENCE> ::= <SUBJECT> ’ IS PART OF ' <SUBJECT> ’.”’ :
(RELATE_SUBJECTS)
<SENTENCE> ::= <I_PUBLICATION> *.” : (SAY_OK)

<I_PUBLICATION> ::= <Q_AUTHOR,+EXPLICIT> * * <PUBLICATION> :
(BASIC_INPUT)

<] _PUBLICATION> ::= <] _PUBLICATION> " ' <SUBJECT> :
(RELATE_TO_SUBJECT)

<Q_AUTHOR, +EXPLICIT> ::= <AUTHOR> : (BUILD_AUTHOR_LIST)
<AUTHOR> s::= <AUTHOR> °',’
<PUBLICATION> ::= <PUBLICATION> *,’

<SUBJECT> ::= <SUBJECT> ',’

*Note that the syntax examples drawn from this language for the
presentation of Chapter Y differ somewhat in detail from the syntax
presented here.

- 17T -

The last three rules are merely to allow the inclusion of commas to

separate parts of the input statement.

The following rules permit the introduction of new entities into

BIBLIO:

<ITEM, +AUTHOR> : (COLLECT_ITEM):= "AUTHOR: °’

<ITEM, +SUBJECT> : (COLLECT_ITEM):= 'SUBJECT: ’

<ITEM, +PUBLICATION> : (COLLECT_ITEM):= 'PUBLICATION: *

<AUTHOR> ::= <ITEM,+AUTHOR> : (CREATE_AUTHOR)

<SUBJECT> ::= <ITEM,+SUBJECT> : (CREATE_SUBJECT)

<PUBLICATION> ::= <ITEM,+PUBLICATION> : (CREATE_PUBLICATION)
Thus, the creation of new entities is a two_stage process: During
parsing, the collect_item codition function collects the string of
characters to the righf‘of its constituents (up to a semicolon) into an
<item>.* Then, the semantic functions |ike create_author actual ly create

the specified entity and enter.into the dictionary its name (and any

desired aliases).

The follouwing rules define the syntax of questions:

[}

<SENTENCE> ::= <Q_AUTHOR> *?’ : (PRINT_AUTHORS)

<SENTENCE> ::

<Q_SUBJECT> *?* :« (PRINT_SUBJECTS)
<SENTENCE> ::

[}

<Q_PUBLICATION> *?" : (PRINT_PUBLICATIONS)

¥t must also manipulate the parsing graph to show the <item> spanning
the whole string, including the terminating semicolon.

- 178 -

The only way to get an author except by explicitly naming him is
by using the rule

<Q_AUTHOR> ::= "AUTHOR OF * <Q_PUBLICATION,+COMPLETED> :
(AUTHORS_OF)

To request a list of subjects, the following may be used:

<Q_SUBJECT> ::= "TOPIC OF * <Q_PUBLICATION> : (TOPICS_OF)
<0_SUBJECT> ::= 'GENERALIZATION OF ' <Q_SUBJECT> : (GENERALIZATION)
<Q_SUBJECT> ::= *PARTS OF * <Q_SUBJECT> : (SPECIALIZATION)

<SUBJECT> : BUILD_SUBJECT_LIST

<0_SUBJECT> ::
<Q_SUBJECT> ::= <Q_SUBJECT> ' * <SUBJECT> : (BUILD_SUBJECT_LIST)

The computation of lists of publications is most complicated due
to the need for conjuncted and disjuncted phrases. The simple requests

for publications are accomplished by the following rules:

<Q_PUBLICATION+BY> ::= "BY " <Q_AUTHOR> : (WORKS_BY)
<Q_PUBLICATION+ABOUT> ::= 'ABOUT ' <Q_PUBLICATION> : (WORKS_ABOUT)

<Q_PUBLICATION, +RATED> ::= <RATING> ’'-RELEVANT TO ' <Q_SUBJECT> :
(WORKS_RELEVANT)

<Q_PUBLICATION, +COMPLETED> ::= 'WORKS * <Q_PUBLICATION, -COMPLETED> :
(1)

Conjunctions and disjunctions where only "works" is shared (e.g., "works
by Quine and about ontology") are simply handled by the following:
<Q_PUBLICATION, +CONJUNCTED> ::= _
<Q_PUBLICATION, -DISJUNCTED-COMPLETED> * AND
<Q_PUBLICATION, -DISJUNCTED-CONJUNCTED-COMPLETED> : (Q_AND)

<Q_PUBLICATION, +DISJUNCTED> ::= <Q_PUBLICATION, -COMPLETED> * OR °’
<Q_PUBLICATION, -DISJUNCTED-COMPLETED> : (Q_OR)

- 179 -

More elliptical constructions in which significant information must be
distributed over the various constituents (e.g., "works B-relevant to
extensible languages or natural language") are accepted by general
reurite rules:
<0_PUBLICATION, +BY> * AND BY ' <Q_AUTHOR> ::= <Q_PUBLICATION,+BY> ’
AND * <Q_AUTHOR) : (1) (2)

<Q_PUBLICATION, +BY> ' OR BY * <Q_AUTHOR> ::= <Q_PUBLICATION,+BY> °’
OR ’ <Q_AUTHOR) : (1) (2)

<Q_PUBLICATION, +ABOUT> * AND ABOUT ’ <Q_SUBJECT> ::=
<Q_PUBLICATION, +ABOUT> ' AND ’ <Q_SUBJECT> : (1) (2}

<Q_PUBLICATION, +ABOUT> > OR ABOUT * <Q_SUBJECT> ::=
<Q_PUBLICATION, +ABOUT> " OR * <Q_SUBJECT> : (1) (2)

<0_PUBLICATION, +RATED> > AND ' <RATING> '-RELEVANT TO ' <Q_SUBJECT>
1= <Q_PUBLICATION, +RATED> * AND * <Q_SUBJECT> : (1)
(<1, <RATING>>) (2)

<Q_PUBLICATION, +RATED> * OR * <RATING> ’'-RELEVANT TO * <Q_SUBJECT>
t+= <0_PUBLICATION, +RATED> * OR * <Q_SUBJECT> : (1)
(<1, <RATING>>) (2)

Note the effective use of general rewrite rules and transformations.

This completes the BIBLIO syntax.

