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ABSTRACT 

My thesis focuses on developing experimental and computational tools to probe and manipulate 

cellular transcriptomes in the context of human health and disease. Chapters 1 and 2 focus on 

published work where we leverage single-cell RNA sequencing (scRNA-seq) to understand human 

immune variability, characterize cell-type specific biases of multiple viral variants within an animal, 

and assess temporal immune response in the brain to delivery of genetic cargo via an adeno-

associated virus (AAV). Chapters 3 and 4 present progress I have made on tools for exporting RNA 

extracellularly and engineering of a transcription factor for modulating macrophage state. 

For probing cellular transcriptome states, we have developed a platform using multiplexed single-

cell sequencing and out-of-clinic capillary blood extraction to understand temporal and inter-

individual variability of gene expression within immune cell types. Our platform enables simplified, 

cost-effective profiling of the human immune system across subjects and time at single-cell 

resolution. To demonstrate the power of our platform, we performed a three day time-of-day study 

of four healthy individuals, generating gene expression data for 24,087 cells across 22 samples. We 

detected genes with cell type-specific time-of-day expression and identified robust genes and 

pathways particular to each individual, all of which could have been missed if analyzed with bulk 

RNA-sequencing. Also, using scRNA-seq, we have developed a method to screen and characterize 

cellular tropism of multiple AAV variants. Additionally, I have looked at AAV-mediated 

transcriptomic changes in animals injected with AAV-PHP.eB three days and twenty-five days post-

injection. I have found that there is an upregulation of genes involved in p53 signaling in endothelial 

cells three days post-injection. 

In the context of manipulating cellular transcriptomic states, I demonstrate that a fusion between 

RNA targeting enzyme, dCas13, and capsid-forming neuronal protein, Arc, is able to form a capsid-

like structure capable of encapsulating RNA. I also present methods and preliminary data for tuning 

macrophage states through mutations in transcription factor EB (TFEB) using scRNA-seq as a 

readout. 
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C h a p t e r  1  

SINGLE CELL PROFILING OF CAPILLARY BLOOD ENABLES 

OUT-OF-CLINIC HUMAN IMMUNITY STUDIES 

Adopted from (1) 

1.1 Introduction 

 Increasing evidence implicates the immune system in an overwhelming number of diseases, 

and distinct cell types play specific roles in their pathogenesis.1,2 Studies of peripheral blood 

have uncovered a wealth of associations between gene expression, environmental factors, 

disease risk, and therapeutic efficacy.3,4,49 For example, in rheumatoid arthritis, multiple 

mechanistic paths have been found that lead to disease, and gene expression of specific 

immune cell types can be used as a predictor of therapeutic non-response.4 Furthermore, 

vaccines, drugs, and chemotherapy have been shown to yield different efficacy based on time 

of administration, and such findings have been linked to the time-dependence of gene 

expression in downstream pathways.5,6,7 However, human immune studies of gene 

expression between individuals and across time remain limited to a few cell types or time 

points per subject, constraining our understanding of how networks of heterogeneous cells 

making up each individual’s immune system respond to adverse events and change over 

time. 

The advent of single-cell RNA sequencing (scRNA-seq) has enabled the interrogation of 

heterogeneous cell populations in blood without cell type isolation and has already been 

employed in the study of myriad immune-related diseases.2,8,9,48 Recent studies employing 

scRNA-seq to study the role of immune cell subpopulations between healthy and ill patients, 

such as those for Crohn’s disease 10, Tuberculosis 11, and COVID-19 12, have identified cell 

type-specific disease relevant signatures in peripheral blood immune cells; however, these 

types of studies have been limited to large volume venous blood draws which can tax already 

ill patients, reduce the scope of studies to populations amenable to blood draws, and often 
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require larger research teams to handle the patient logistics and sample processing costs and 

labor. In particular, getting repeated venous blood draws within a single day and/or multiple 

days at the subject's home has been a challenge for older people with frail skin and those on 

low dosage Acetylsalicylic acid.13 This dependence on venous blood dramatically impacts 

our ability to understand the high temporal dynamics of health and disease. 

Capillary blood sampling is being increasingly used in point-of-care testing and has been 

advised for obese, elderly, and other patients with fragile or inaccessible veins.14,15,16,17 The 

reduction of patient burden via capillary blood sampling could enable researchers to perform 

Fig.1 | Experimental workflow and consistency of capillary blood sampling (a) Experimental workflow 
for capillary blood immune profiling 1. Blood is collected using the TAP device from the deltoid. 2. 
Capillary peripheral blood mononuclear cells (CPBMCs) are separated via centrifugation. 3. Red blood 
cells are lysed and removed, and samples from different subjects are pooled together. 4. Cell transcriptomes 
are sequenced using single-cell sequencing. (b) Time-course study design. CPBMCs are collected and 
profiled from 4 subjects (2 male, 2 female) each morning (AM) and afternoon (PM) for 3 consecutive days. 
(c) 2-dimensional t-SNE projection of the transcriptomes of all cells in all samples. Cells appear to cluster 
by major cell type (Fig. S6) (d) Immune cell type percentages across all samples shows stable cell type 
abundances (includes cells without subject labels). (e) Cell type ratios between capillary blood from this 
study, and venous blood from 3 other studies were the same, with the exception of CD14+ Monocytes, 
which are more abundant in venous blood (FDR < 0.05, 2-sided student t-test, multiple comparison 
corrected) The q-values are displayed for each cell type comparison. 



 

 

3 
studies on otherwise difficult or inaccessible populations, and at greater temporal resolution. 

Additionally, capillary blood is being shown to be comparable to traditional venous blood 

draws for a variety of applications. For example, Catala, et al (2018) have shown that 39 out 

of 45 clinically relevant metabolites had overlapping ranges between capillary blood vs 

traditional venous blood draws18, and Toma et al. have shown strong correlation (Spearman 

correlation coefficient >= 0.95) between bulk RNA sequencing data between capillary and 

venous blood from the same donor.19 However, to date, scRNA-seq of human capillary blood 

has not yet been validated nor applied to study the immune system. In order to make small 

volumes of capillary blood (100 ul) amenable to scRNA-seq we have developed a platform 

which consists of a painless vacuum-based blood collection device, sample de-multiplexing 

leveraging commercial genotype data, and an analysis pipeline used to identify time-of-day 

and subject specific genes. The potential of our platform is rooted in enabling large scale 

studies of immune state variation in health and disease across people. The high-dimensional 

temporal transcriptome data could be paired with computational approaches to predict and 

understand emergence of pathological immune states. Most importantly, our platform makes 

collection and profiling of human immune cells less invasive, less expensive, and as such 

more scalable than traditional methods rooted in large venous blood draws. 

1.2 Platform for low-cost interrogation of single-cell immune gene expression profiles 

 Our platform is composed of a protocol for isolating capillary peripheral blood mononuclear 

cells (CPBMCs) using a touch activated phlebotomy device (TAP)14, pooling samples to 

reduce per-sample cost using genome-based demultiplexing20, and a computational package 

that leverages repeated sampling to identify genes that are differentially expressed in 

individuals or between time points, within subpopulations of cells (Fig. 1a). Using a painless 

vacuum-based blood collection device such as the commercial FDA-approved TAP to collect 

capillary blood makes it convenient to perform at-home self-collected sampling and removes 

the need for a trained phlebotomist, increasing the ease of acquiring more samples. The 

isolation of CPBMCs is done using gradient centrifugation and red blood cells are further 

removed via a red blood cell lysis buffer. The cells from the different subjects are pooled, 
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sequenced via scRNA-seq using a single reagent kit, and demultiplexed 20 via each subject’s 

single-nucleotide polymorphisms (SNPs), reducing the per-sample processing cost. By 

pooling the data across all 6 time points, and using a genotype-free demultiplexing software 

(popscle), we were able to identify which cells belonged to which subject across time points, 

removing the need for a separate genotyping assay to link subjects together across batches. 

1.3 Single-cell RNA sequencing (scRNA-seq) of low volume capillary blood recovers 

distinct immune cell populations stably across time 

 As a proof-of-concept, we leveraged our scRNA-seq of capillary blood platform to identify 

genes that exhibit diurnal behavior in subpopulations of cells and find subject-specific 

immune relevant gene signatures. We performed a three-day study in which we processed 

capillary blood from four subjects in the morning and afternoon, totaling 24,087 cells across 

22 samples (Fig. 1b). Major immune cell types such as T cells (CD4+, CD8+), Natural Killer 

cells, Monocytes (CD14+, CD16+), and B cells are present in all subjects and time points with 

stable expression of key marker genes (Fig. 1d, Fig. S1), demonstrating that these signals are 

robust to technical and biological variability of CPBMC sampling (Fig. 1c). In order to 

compare cell type distributions derived from our method with venous blood draws, we used 

data from 11 healthy subjects provided by three independent studies21,22,23 (Table S4). CD14+ 

Monocytes make up a higher percentage of PBMCs in venous blood (n=11) versus capillary 

blood (n=22) (FDR < 0.05, 2-sided student t-test, multiple comparison corrected), while 

other cell types do not have a significant difference in distributions (Fig. 1e). 

1.4 High frequency scRNA-seq unveils new diurnal cell type-specific genes 

Genes driven by time-of-day expression, such as those involved in leukocyte recruitment24 

and regulation of oxidative stress25, have been determined to play an important role in both 

innate and adaptive immune cells26. Medical conditions such as atherosclerosis, parasite 

infection, sepsis, and allergies display distinct time-of-day immune responses in 

leukocytes27, suggesting the presence of diurnally expressing genes that could be candidates 

for optimizing therapeutic efficacy via time-of-day dependent administration. However, 



 

 

5 
studies examining diurnal gene expression in human blood have been limited to whole blood 

gene panels via qPCR, or bulk RNA-seq.28,29,30 

 

Leveraging our platform, which enables single-cell studies of temporal human immune gene 

expression, we detected 395 genes (FDR < 0.05, multiple comparison corrected) exhibiting 

diurnal activity within at least one cell subpopulation (Fig. 2a). Among the 20 top diurnally 

classified genes, we found that 40% of those genes were previously correlated with circadian 

behavior (Table S1), such as DDIT428 (Fig. 2b), SMAP231, and PCPB132. However, only 

Fig. 2 | Diurnal variability in subpopulations of capillary blood (a) Magnitude (Z-score) of the 
difference in AM vs PM gene expression across the whole population of cells (x) vs the cell type with 
the largest magnitude Z-score (y). Points above or below the significance lines (FDR < 0.05, multiple 
comparison correction) display different degrees of diurnality. The size of each marker indicates the 
abundance of the gene (the largest percent of cells in a subpopulation that express this gene). (b) 
Distribution of expression of DDIT4, a previously identified circadian rhythm gene9, shows diurnal 
signal across all cells, as well as individual cell types, such as natural killer (NK) cells. u indicates the 
mean fraction of transcripts per cell (gene abundance). (c) Example of newly identified diurnal genes, 
LSP1 and IFI16 that could be missed if analyzed at the population level (d) Example of a gene, EAF2, 
that could be falsely classified as diurnal (i) without considering cell type subpopulations due to a 
diurnal B cell abundance shift (ii). 
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119/395 (30.1%) of these genes are detected as diurnal at the whole population level (FDR 

< 0.05, multiple comparison corrected), suggesting there may be many more diurnally-

varying genes than previously discovered. For example, IFI16 and LSP1 (Fig. 2c) have 

diurnal expression only in NK cells and B cells, respectively, and display previously 

unreported transcriptional diurnal patterns. In particular, LSP1 has been implicated in 

numerous leukemias and lymphomas of B cell origin.33 Given previous evidence of increased 

efficacy of time-dependent chemotherapy administration7,34 and tumor cells exhibiting out-

of-sync behavior compared to normal cells35, understanding LSP1’s diurnal expression 

pattern can potentially guide timely administration of candidate therapeutics. Out of the 

identified 395 diurnally-varying genes, 114 (29%) are considered druggable under the drug 

gene interaction database (http://www.dgidb.org/). 

1.5 scRNA-seq profiling distinguishes diurnal gene expression from cell type 

abundance changes 

 We also detected 406 genes (FDR < 0.05, multiple comparison corrected) exhibiting diurnal 

behavior when analyzed at the population level, such as EAF2, that do not display diurnal 

variation in any of our major cell types (Fig. 2d.i). Such false positives may come from 

diurnal shifts in cell type abundance rather than up- or down-regulation of genes. In the case 

of EAF2, which is most abundant in B cells, we hypothesized that the diurnality detected at 

the population level was a result of an increase of B cell abundance in the afternoon, and 

verified this in our data (p=7.5x10-3, one-sided student-t test) (Fig. 2d.ii). This finding 

highlights the importance of looking at expression within multiple cell types to avoid 

potentially misleading mechanistic hypotheses. 

1.6 Individuals exhibit robust cell type-specific differences in genes and pathways 

relevant to immune function 

Gene expression studies of isolated cell subpopulations across large cohorts of people have 

revealed a high degree of variability between individuals that cannot be accounted for by 

genetics alone, with environmental effects that vary over time likely playing a critical 

http://www.dgidb.org/
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role.36,37 Furthermore, these transcriptomic differences have been linked to a wide range of 

therapeutic responses, such as drug-induced cardiotoxicity.38 However, while immune 

system composition and expression have been shown to be stable over long time periods 
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within an individual, acute immune responses generate dramatic immune system changes, 

meaning that large single time point population studies are unable to establish whether 

variability between individuals is stable or the result of dynamic response to stimuli.39 

Fig.3 | Subject variability in immune and disease-relevant genes and pathways (a) Magnitude (log2 F 
statistic) of the variability in expression of genes between different cell types (x) and between subjects (y). 
1284/7034 (18.3%) of genes are above the subject specificity significance line (FDR < 0.05, multiple 
comparison correction) and are classified as subject-specific. Several MHC class II genes (HLA-X) are 
strongly subject-specific, consistent with previous findings5. (b) KEGG pathways grouped into categories 
and their enrichment (Z-score from 2-proportion Z-test) among the top 250 diurnally and subject-varying 
genes vs all genes. Immune system and disease pathways are significantly enriched (p=0.029), supportive 
of the conclusion that immune and disease-related genes are highly subject dependent. The large circles 
indicate the enrichment of the category overall, and the sizes of the smaller pathway points indicate the 
number of genes associated with the pathway. (c) Subject and cell type specific gene examples for each 
subject and cell type with the upper row displaying the trace of mean gene expression across time-points 
and the bottom row showing gene abundance shifts for the subjects of interest. 
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To probe the stability of individual gene expression signatures at the single-cell level, we 

used our pipeline to identify genes whose variation in gene expression is most likely caused 

by intrinsic intersubject differences rather than high frequency immune system variability. 

We compared the mean gene expressions of all time points between subjects in all cell types 

and identified 1284 genes (FDR < 0.05, multiple comparison corrected) that are differentially 

expressed in at least one subpopulation of cells. Like Whitney, et al., we found MHC class 

II genes, such as HLA-DRB1, HLA-E, and HLA-DRA (Fig. 3a) to be among the largest 

sources of variation between subjects.40 Additionally, we found that DDX17, which was 

classified by Whitney et al. as a gene with high intersubject variability, but low intrasubject 

variability via repeat sampling over longer time scales, may be a new class of temporally 

varying gene that varies by day of week, having consistently increasing expression each 

subsequent sampling day. This stresses the importance of high frequency sampling for 

identifying genes with the most intrinsic interindividual variability. 

1.7 Numerous subject-specific genes are revealed in specific immune cell types 

 Within the 1284 genes with intrinsic interindividual variability, we found myriad disease-

relevant genes for all subjects and cell types, which can be explored at our interactive online 

portal (http://capblood- seq.caltech.edu). As just one example, subject S1’s monocytes have 

a consistent downregulation (p=9.1x10-7, two-sided student t-test) of LIPA, a gene that is 

implicated in Lysosomal Acid Lipase Deficiency (Fig. 3c). Given the low abundance of 

monocytes in blood samples, such findings would typically only be discovered from a 

targeted blood test or RNA sequencing of isolated monocytes, either of which would only be 

performed if the disease was already suspected; this showcases how automated discovery in 

heterogeneous cell populations can be leveraged for personalized, preventative care. 

 

1.8 Immune function and disease pathways are enriched in subject-specific genes 
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 Given that genes do not act alone, we also found cell type-specific pathway differences 

among subjects. In particular, Subject 2’s S100A8, S100A9, and S100A12 genes, calcium-

binding proteins that play an important role in macrophage inflammation, are significantly 

downregulated in monocytes (pS100A8=1.3x10-5, pS100A9=9.0x10-5, pS100A12=3.0x10-4, two-

sided student t-test) compared to other subjects (Fig. S2). We further explored our findings 

by inspecting the pathways that are most enriched in individual and time-varying genes, and 

found that genes that are implicated in immune system function (p=0.085) and immune 

diseases (p=0.029) are more present in subject-specific genes (Fig. 3b). This stands in 

contrast to pathways of core cellular functions such as genetic information processing 

(p=0.029) and metabolism (p=0.095), which are less present in subject-specific genes. 

1.9 Discussion 

 Genome and transcriptome sequencing projects have unveiled millions of genetic variants 

and associated gene expression traits in humans.41,47 However, large-scale studies of their 

functional effects performed through venous blood draws require tremendous effort to 

undertake, and this is exacerbated by the cost and complexity of single-cell transcriptome 

sequencing. Efforts such as the Immune Cell Census42 are already underway to perform 

single-cell profiling of large cohorts, but reliance on venous blood draws of PBMCs will 

likely limit the diversity and temporal resolution of their sample pool. Our platform gives 

researchers direct, scalable access to high resolution immune system transcriptome 

information of human subjects, lowering the barrier of entry for myriad new research 

avenues. Examples of such studies include: 1.) tracking vulnerable populations over time, 

such as monitoring clonal expansion of CD8+ T cells in Alzheimer’s disease progression2; 

2.) profiling of individuals who are under home care to track disease progression and 

therapeutic response, such as transplant patients and people under quarantine; and 3.) 

tracking how stress, diet, and environmental conditions impact the immune system at short 

and long time scales, particularly in underrepresented populations who do not have easy 

access to hospitals or research institutions, such as people in rural or underdeveloped areas. 

Larger, more diverse subject pools coupled with time course studies of cell type gene 
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expression in health and disease will have a dramatic impact on our ability to understand the 

baseline and variability of immune function. 

Online Content 

Online web portal is available to explore data presented in the main figures for study 

summary, with diurnal and subject specific genes via http://capblood-seq.caltech.edu.  

Data Availability 

Gene expression matrix and relevant metadata are available on 

https://data.caltech.edu/records/1407. FASTQ files are not being released to protect the 

identity of the subjects. 

Code Availability  

Custom code made for diurnal and subject specific gene detection is available on 

https://github.com/thomsonlab/capblood-seq 

1.10 Methods 

Human Study Cohort 

This study was conducted at Caltech. Four healthy adults (2 male, 2 female) were recruited 

(Table S3). All participants provided written informed consent. The study was approved by 

the Institutional Review Board (IRB) at Caltech and all methods were performed in 

compliance with relevant guidelines and regulations. The blood collection took place in a 

non-BSL room to make sure the subjects were not exposed to pathogens. Subject blood was 

collected roughly 8 hours apart over three consecutive days.  

 

 

http://capblood-seq.caltech.edu/
https://github.com/thomsonlab/capblood-seq
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CPBMC isolation 

100 µl of capillary blood was collected via push-button collection device (TAP from Seventh 

Sense Biosystems). For each blood draw, the site of collection was disinfected with an 

alcohol wipe and the TAP device was placed on the deltoid of the subject per device usage 

instructions. The button was pushed, and then blood was collected for 2-7 minutes until the 

indicator turned red. Blood was extracted from the TAP device by gently breaking the seal 

foil, and mixed with PBS + 2% FBS to 1 ml. The mixture was slowly added to the side of a 

SepMate tube (SepMate-15 IVD, Stem Cell Technologies) containing 4.5 ml of Lymphoprep 

(#07811, Stem Cell Technologies) and centrifuged for 20 minutes at 800 RPM. 

Approximately 900 µl of CPBMC layer was extracted below the plasma layer. To further 

remove red blood cells, 100 µl of red blood cell lysis buffer (eBioscience 10X RBC Lysis 

Buffer, #00-4300-54) was added to the CPBMCs and incubated at RT for 15 minutes. The 

CPBMC pellet was washed twice with PBS and centrifuged at 400 rpm for 5 minutes. Cells 

were counted using trypan blue via an automated detector (Countess II Automated Cell 

Counter) and subjects’ cells were pooled together for subsequent single-cell RNA 

sequencing. 

Single-cell RNA sequencing 

Subject pooled single-cell suspensions were loaded onto a Chromium Single Cell Chip (10X 

Genomics) based on manufacturer’s instructions (targeted 10,000 cells per sample, 2,500 

cells per person per time point). Captured mRNA was barcoded during cDNA synthesis and 

pooled for Illumina sequencing (Chromium Single Cell 3’ solution - 10X Genomics). Each 

time point was barcoded with a unique Illumina sample index, and then pooled together for 

sequencing in a single Illumina flow cell. The libraries were sequenced with an 8-base index 

read, 26-base read 1 containing cell-identifying barcodes and unique molecular identifiers 

(UMIs), and a 91-base read 2 containing transcript sequences on a NovaSeq 6000. 

Single-cell Dataset Generation 
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FASTQ files from Illumina were demultiplexed and aligned using Cell Ranger v3.0 

(https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/what-is-cell-ranger) and the hg19 reference genome 

with all options set to their defaults. 

Sample Demultiplexing 

FASTQ files from the single-cell sequencing Illumina libraries were aligned against the hg19 

(human) reference genome using Cellranger v3.0 count function. SNPs were detected in the 

aligned data using freebayes (https://github.com/ekg/freebayes), which creates a combined 

variant call format (VCF) file, one per sample. SNPs were then grouped by cell barcode using 

popscle dsc-pileup (https://github.com/statgen/popscle). The SNP files for all samples were 

then merged into a single dsc-pileup file, and cell barcodes were disambiguated by providing 

a unique identifier per sample. Freemuxlet (popscle freemuxlet) was then run with default 

parameters to group cells into 4 subjects. This generates a probability of whether each cell 

barcode belongs to each subject, given the detection of single nucleotide polymorphism 

(SNPs) in reads associated with that cell barcode. Each cell was then assigned to the subject 

with the highest probability. Cells with low confidence (ambiguous cells) and high 

confidence in more than one subject (multiplets) were discarded, using popscle’s default 

confidence thresholds. See the README at https://github.com/thomsonlab/capblood-seq for 

detailed instructions. 

Debris Removal 

The raw cell gene matrix provided by Cell Ranger contains gene counts for all barcodes 

present in the data. To remove barcodes representing empty or debris-containing droplets, a 

debris removal step was performed. First, a UMI count threshold was determined that yielded 

more than the expected number of cells based on original cell counts (15,000). All barcodes 

below this threshold were discarded. For the remaining barcodes, principal component 

analysis (PCA) was performed on the log-transformed cell gene matrix, and agglomerative 

clustering was used to cluster the cells. The number of clusters was automatically determined 

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://github.com/ekg/freebayes
https://github.com/statgen/popscle
https://github.com/thomsonlab/capblood-seq
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by minimizing the silhouette score among a range of numbers of clusters (6 to 15). For each 

cluster, a barcode dropoff trace was calculated by determining the number of barcodes 

remaining in the cluster for all thresholds in increments of 50. These cluster traces were then 

clustered into two clusters using agglomerative clustering — the two clusters representing 

“debris” with high barcode dropoff rates and “cells” with low barcode drop-off rates. All 

clusters categorized as “debris” were then removed from the data. 

Gene Filtering 

Before cell typing, genes that have a maximum count less than 3 are discarded. Furthermore, 

after cell typing, any genes that are not present in at least 10% of one or more cell types are 

discarded.  

Data Normalization 

Gene counts were normalized by dividing the number of times a particular gene appears in a 

cell (gene cell count) by the total gene counts in that cell. Furthermore, for visualization only, 

the gene counts were multiplied by a constant factor (5000), and a constant value of 1 was 

added to avoid zeros and then log transformed. 

Cell Typing 

We used single cell Variational Inference (scVI) to transform the raw cell gene expression 

data into a 10-dimensional variational autoencoder latent space.43 The variational 

autoencoder is conditioned on sample batch, creating a latent space which is independent of 

any batch-specific effects. The variational auto-encoder parameters: learning rate = 1e-3, 

number of epochs = 50 

Agglomerative clustering (sci-kit learn) was used to generate clusters from the latent cell 

gene expression data. These clusters were then annotated based on known cell type marker 

genes (Fig. S1). 
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In order to resolve specific cell subtypes, such as those of T cells and Monocytes, we 

specified 13-15 clusters as an input for agglomerative clustering. For each study, we started 

at 13 clusters and incremented until all 4 major cell types and 2 subtypes were separable. In 

cases where agglomerative clustering yielded multiple clusters of the same cell type, these 

clusters were merged into a single cell type for analysis. 

Venous and Capillary Blood Comparison 

In order to compare venous blood cell type distributions to capillary blood, raw gene count 

data was downloaded from each of the respective studies, and we performed the same cell 

typing pipeline as for our capillary data, first projecting the data into a latent space via scVI, 

followed by agglomerative clustering and manual annotation based on known cell type 

marker genes. 

Diurnal Gene Detection 

To identify genes that exhibit diurnal variation in distinct cell types, we developed a 

statistical procedure that detects robust gene expression differences between morning (AM) 

and evening (PM) samples. Given that gene expression is different between subjects, we first 

normalize the mean gene expression within each subject for each cell type.  

𝜇𝜇′𝑔𝑔𝑖𝑖,𝑠𝑠𝑗𝑗,𝑐𝑐𝑛𝑛,𝑘𝑘 =  𝜇𝜇𝑔𝑔𝑖𝑖,𝑠𝑠𝑗𝑗,𝑐𝑐𝑛𝑛,𝑘𝑘 − (
∑ 1𝑘𝑘∈𝐴𝐴𝐴𝐴𝜇𝜇𝑔𝑔𝑖𝑖,𝑠𝑠𝑗𝑗,𝑐𝑐𝑛𝑛,𝑘𝑘
𝑁𝑁𝑠𝑠𝑗𝑗
𝑘𝑘=1

2∑ 1𝑘𝑘∈𝐴𝐴𝐴𝐴
𝑁𝑁𝑠𝑠𝑗𝑗
𝑘𝑘=1

+
∑ 1𝑘𝑘∈𝑃𝑃𝐴𝐴𝜇𝜇𝑔𝑔𝑖𝑖,𝑠𝑠𝑗𝑗,𝑐𝑐𝑛𝑛,𝑘𝑘
𝑁𝑁𝑠𝑠𝑗𝑗
𝑘𝑘=1

2∑ 1𝑘𝑘∈𝑃𝑃𝐴𝐴
𝑁𝑁𝑠𝑠𝑗𝑗
𝑘𝑘=1

)        (Eq. 1) 

 

We take the mean gene expression μ for each gene gi in all samples k for cell type cn and 

subject sj and renormalize it into μ’ by subtracting the equally weighted mean of AM and 

PM samples (Eq. 1). We then split the mean gene values into an AM group and a PM group 

and perform a statistical test (two-tailed student-t test) to determine whether to reject the null 

hypothesis that gene expression in AM and PM samples come from the same distribution. 

We then perform Benjamini-Hochberg multiple comparison correction at an FDR of 0.05 on 
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all gene and cell type p-values to determine where to plot the significance threshold.  For 

plotting the genes, we choose the Z-statistic corresponding to the minimum p-value among 

cell types for that gene. To determine diurnality at the population level, we repeated the 

procedure above with all cells pooled into a single cell type. 

Subject and Cell Type Specific Gene Detection 

To classify genes as subject specific, we detect genes with mean gene expression levels that 

are robustly different between subjects in at least one cell type. For each cell type cn and gene 

gi, we create subject groups containing the mean gene expression values from each sample. 

To determine whether the gene expression means from the different subjects do not originate 

from the same distribution, we perform an ANOVA one-way test to get an F-statistic and p-

value for each gene. We then perform Benjamini-Hochberg multiple comparison correction 

at an FDR of 0.05 on all gene and cell type p-values. For plotting the genes, we chose the F-

statistic corresponding to the minimum p-value among cell types for that gene. 

For determining gene cell type specificity, we performed a similar procedure. In particular, 

for each gene gi, we create cell type groups containing the mean gene expression values for 

that cell type from each sample. We then perform a one-way ANOVA, and Benjamini-

Hochberg multiple comparison correction at an FDR of 0.05. 

Pathway Enrichment Analysis 

Pathways from the KEGG database (python bioservices package) were used to calculate 

pathway enrichment for genes that were among the top 250 most diurnal and individual 

specific.  All remaining genes present in the data were considered background. In order to 

normalize for gene presence across pathways, each gene was weighted by dividing the 

number of pathways in which that gene appears. For each KEGG pathway44,45,46, the test 

statistic for a two-proportion z-test (python statsmodel v0.11.1) is used to determine pathway 

enrichment. From the top level pathway classes, we broke out “Diseases” into “Other”, 

“Immune Diseases”, and “Infectious Diseases” and separated “Immune System” from 
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“Organismal System” to understand diurnal and subject-specific genes in an immune 

relevant context. 

Figure Art 

All drawings (Fig. 1a,b and Fig. S2a) are generated using BioRender.com  

Fig. 1e was generated using GraphPad Prism 8.3.1 
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Supplementary Fig. 1 | Cell type marker gene 

expression in cell clusters Violin plots of log-normalized gene expression (y-axis, right 

hand side) for cell type markers (y-axis, left hand side) used to annotate cell clusters (x-axis) 

for known cell types. The colors correlate to clusters from Figure 1.d. 
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Supplementary Fig. 2 | S100 pathway exhibits individual-specific regulation (a) Simple 

schematic illustrating the role of S100A8, S100A9, and S100A12 genes in immune 

regulation. (b) Normalized mean gene expression of S100A8, S100A9, and S100A12 genes 

for S2 showing significant downregulation in monocytes as compared to all cells. 
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Supplementary Fig. 3 | Characterization of debris removal pipeline across each time 

sample. Scatter plots of the total number of transcripts (UMIs) detected for each barcode (x-
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axis), and the ratio of transcripts that are mitochondrial (y-axis). These barcodes are the union 

of barcodes called by 10X Cellranger and our debris filtering pipeline. Barcodes colored red 

were flagged as debris and removed. The debris filtering pipeline appears to detect barcodes 

that have both a low transcript count, and a high mitochondrial gene ratio, or a rare number 

of cells that appear to have 0 mitochondrial genes. The counts of barcodes removed for each 

sample are in Table S6. 

 

Supplementary Fig. 4 | Comparison of individual specificity by cell type vs in simulated 

bulk data. Magnitude (log2 F statistic) of the variability in expression of genes between 

subjects, accounting for each cell type separately (y) and in simulated bulk (x). 1284/7034 

(18.3%) of genes are above the subject specificity significance line (FDR < 0.05, multiple 

comparison corrected) and are classified as subject-specific. Of these, only 637/1284 (49.6%) 

are also detected as subject-specific when simulating bulk RNA reads, despite the 
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significantly lower multiple comparison correction burden (7034 tests as compared to 28,136 

tests in the cell type case).  

 

Supplemental Fig. 5 | Merged projection of capillary and venous blood cells. Capillary 

blood cells from this study (n=22) and venous blood cells from 3 other studies (n=11) were 
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projected into a joint latent space using scVI. (a) Agglomerative clustering with n=13 clusters 

was performed to identify cell types, and annotated using known cell type markers (b) 

Capillary blood cells cluster together with venous blood cells, with the exception of one 

cluster of B cells unique to capillary cells, as well as 3 cell types unique to the venous blood 

sample: red blood cells, dendritic cells, and neutrophils, which are likely filtered out via 

laboratory procedures and the computational debris filtering pipeline. 

 

 

Supplemental Fig. 6 | Immune cell type clusters detected in capillary blood. 2-

dimensional t-SNE projection of the transcriptomes of all cells in all samples obtained from 

agglomerative clustering of latent gene expression. Cell clusters were annotated and grouped 
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based on the markers presented in Table S2. Small unidentifiable clusters were are not 

included in the figure. 

 

Table S1: Genes that ranked in top 20 that had pre-existing literature tying to circadian/diurnal expression 

Gene DOI Reference 
DDIT4 10.7554/eLife.20214.001, 

10.1073/pnas.1800314115 
SMAP2 10.1038/s41398-019-0671-7 
RPL19 10.1128/MCB.00701-15 
RPS9 10.1073/pnas.1515308112 
PCPB1 10.1038/s41556-019-0441-z 
RPS2 10.1073/pnas.1601895113 
COX5B 10.1152/physiolgenomics.00066.2007 

 
 
 
Table S2: Marker genes used to annotate clusters with specified cell population identity.  

Cells Marker Genes 
CD14 Monocytes CD14, LYZ 
CD16 Monocytes FCGR3A, MS4A7 
CD4 T Cells IL7R,CCR7 
CD8 T Cells KLRG1, CD8A, CD8B 
Natural Killer (NK) Cells GNLY, KLRF1, KLRD1 
B Cells BANK1, CD79A, CD79B, CD19 

 
 
 
 
Table S3: Subject age and demographics. All subjects indicated to be healthy during the study. 

Subject Age Gender 
S1 32 M 
S2 41 M 
S3 34 F 
S4 26 F 

 
 
Table S4: Details of studies used to get healthy venous blood single-cell RNA sequencing dataset 
for comparison with capillary blood. 
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Subject Age Gender Corresponding DOI Corresponding 

Study 
Identification 

S1 21 M https://doi.org/10.1038/s41598-020-59827-1 Pre-THC-S1 
S2 21 M https://doi.org/10.1038/s41598-020-59827-1 Pre-THC-S2 
S3 63 F 

https://doi.org/10.1126/sciimmunol.abd1554 

Sample 
5_Normal 1 
scRNA-seq 
[SW107] 

S4 54 F 

https://doi.org/10.1126/sciimmunol.abd1554 

Sample 
13_Normal 2 
scRNA-seq 
[SW115] 

S5 67 F 

https://doi.org/10.1126/sciimmunol.abd1554 

Sample 
14_Normal 3 
scRNA-seq 
[SW116] 

S6 63 M 

https://doi.org/10.1126/sciimmunol.abd1554 

Sample 
19_Normal 4 
scRNA-seq 
[SW121] 

S7 50 M https://doi.org/10.1073/pnas.1907883116 CT1 
S8 70 F https://doi.org/10.1073/pnas.1907883116 CT2 
S9 60 F https://doi.org/10.1073/pnas.1907883116 CT3 
S10 70 F https://doi.org/10.1073/pnas.1907883116 CT4 
S11 80 M https://doi.org/10.1073/pnas.1907883116 CT5 

 
 
 
 
Table S5: Number of genes in different cell types that is specific to each subject.  

B Cells Monocytes NK Cells T Cells Any 
S1 55 67 58 269 400 
S2 24 94 49 58 190 
S3 55 149 70 150 353 
S4 49 36 34 44 131 

 
Table S6: Statistics for debris removal pipeline.  

Cellranger 
Called 

Removed Added Final # Cells % Removed 

AM1 5808 2662 21 3167 45.83 
PM1 3144 1302 12 1854 41.41 
AM2 8772 2037 20 6755 23.22 
PM2 6172 3587 0 2585 58.12 

https://doi.org/10.1038/s41598-020-59827-1
https://doi.org/10.1038/s41598-020-59827-1
https://doi.org/10.1126/sciimmunol.abd1554
https://doi.org/10.1126/sciimmunol.abd1554
https://doi.org/10.1126/sciimmunol.abd1554
https://doi.org/10.1126/sciimmunol.abd1554
https://doi.org/10.1073/pnas.1907883116
https://doi.org/10.1073/pnas.1907883116
https://doi.org/10.1073/pnas.1907883116
https://doi.org/10.1073/pnas.1907883116
https://doi.org/10.1073/pnas.1907883116
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AM3 6684 1408 10 5286 21.07 
PM3 7974 2370 4 5608 29.72 

 
 

 Description File Name 
Table S7 Differential expression analysis for 

each cluster and cell type of the 
combined capillary blood (n=22) 
dataset 

cluster_differential_expression.xlsx 

Table S8 Differential expression analysis for all 
clusters between capillary blood 
(n=22, this study), and venous blood 
(n=11, external studies) 

capillary_vs_venous_differential_expression.xlsx 
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C h a p t e r  2  

DEEP PARALLEL CHARACTERIZATION OF AAV TROPISM AND 

AAV-MEDIATED TRANSCRIPTIONAL CHANGES VIA SINGLE-

CELL RNA SEQUENCING 

Adapted from (2). 

2.1 Introduction 

Recombinant AAVs (rAAVs) have become the preferred gene delivery vehicles for many 

clinical and research applications (Bedbrook et al., 2018; Samulski and Muzyczka, 2014) 

owing to their broad viral tropism, ability to transduce dividing and non-dividing cells, low 

immunogenicity, and stable persistence as episomal DNA ensuring long-term transgene 

expression (Daya and Berns, 2008; Deverman et al., 2018; Gaj et al., 2016; Hirsch and 

Samulski, 2014; Naso et al., 2017; Wu et al., 2006). However, current systemic gene 

therapies using AAVs have a relatively low therapeutic index (Mével et al., 2020). High 

doses are necessary to achieve sufficient transgene expression in target cell populations, 

which can lead to severe adverse effects from off-target expression (Hinderer et al., 2018; 

Srivastava, 2020; Wilson and Flotte, 2020). Increased target specificity of rAAVs would 

reduce both the necessary viral dose and off-target effects: thus, there is an urgent need for 

AAV gene delivery vectors that are optimized for cell-type-specific delivery (Paulk, 2020). 

Lower viral doses would also alleviate demands on vector manufacturing and minimize the 

chances of undesirable immunological responses (Calcedo et al., 2018; Gao et al., 2009; 

Mingozzi and High, 2013). Capsid-specific T-cell activation was reported to be dose-

dependent in vitro (Finn et al., 2010; Pien et al., 2009) and in humans (Mingozzi et al., 2009; 

Nathwani et al., 2011). Shaping the tropism of existing AAVs to the needs of a specific 

disease has the potential to reduce activation of the immune system by detargeting cell types, 

such as dendritic cells, that have an increased ability to activate T-cells (Herzog et al., 2019; 
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Rogers et al., 2017; Rossi et al., 2019; Somanathan et al., 2010; Vandenberghe et al., 2006; 

Zhu et al., 2009). 

Several studies have demonstrated that the transduction efficiency and specificity of natural 

AAVs can be improved by engineering their capsids using rational design (Bartlett et al., 

1999; Davidsson et al., 2019; Davis et al., 2015; Lee et al., 2018; Sen, 2014) or directed 

evolution (Chan et al., 2017; Dalkara et al., 2013; Deverman et al., 2016; Excoffon et al., 

2009; Grimm et al., 2008; Körbelin et al., 2016a; Kotterman and Schaffer, 2014; Maheshri 

et al., 2006; Müller et al., 2003; Ogden et al., 2019; Ojala et al., 2018; Pekrun et al., 2019; 

Pulicherla et al., 2011; Ravindra Kumar et al., 2020; Tervo et al., 2016; Ying et al., 2010). 

These engineering methods yield diverse candidates that require thorough, preferably high-

throughput, in vivo vector characterization to identify optimal candidates for a particular 

clinical or research application. Toward this end, conventional immunohistochemistry (IHC) 

and various in situ hybridization (ISH) techniques are commonly employed to profile viral 

tropism by labeling proteins expressed by the viral transgene or viral nucleic acids, 

respectively (Arruda et al., 2001; Chan et al., 2017; Deleage et al., 2016, 2018; Deverman et 

al., 2016; Grabinski et al., 2015; Hinderer et al., 2018; Hunter et al., 2019; Miao et al., 2000; 

Polinski et al., 2015, 2016; Puray-Chavez et al., 2017; Ravindra Kumar et al., 2020; Wang 

et al., 2020; Zhang et al., 2016; Zhao et al., 2020). 

Although these histological approaches preserve spatial information, current technical 

challenges limit their application to profiling the viral tropism of just one or two AAV 

variants across a few gene markers, thus falling short of efficiently characterizing multiple 

AAVs across many complex cell types characteristic of tissues in the central nervous system 

(CNS). The reliance on known marker genes also prevents the unbiased discovery of 

tropisms since such marker genes need to be chosen a priori. Choosing marker genes is 

particularly challenging for supporting cell types, such as pericytes in the CNS 

microvasculature and oligodendrocytes, which often have less established cell type 

identification strategies (Liu et al., 2020; Marques et al., 2016). The advent of single-cell 

RNA sequencing (scRNA-seq) has enabled comprehensive transcriptomic analysis of entire 
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cell-type hierarchies, and brought new appreciation to the role of cell subtypes in disease 

(Berto et al., 2020; Gokce et al., 2016; Tasic et al., 2016, 2018; Zeisel et al., 2018). However, 

experimental and computational challenges, such as the sparsity of RNA capture and 

detection, strong batch effects between samples, and the presence of ambient RNA in 

droplets, reduce the statistical confidence of claims about individual gene expression 

(Lähnemann et al., 2020; Yang et al., 2020; Zheng et al., 2017). Computational methods have 

been developed to address some of these challenges, such as identifying contaminating RNA 

(Yang et al., 2020), accounting for or removing batch effects (Korsunsky et al., 2019; Lin et 

al., 2019; Lopez et al., 2018), and distinguishing intact cells from empty droplets (Lun et al., 

2019; Macosko et al., 2015; Zheng et al., 2017). However, strategies for simultaneously 

processing transcripts from multiple delivery vehicles and overcoming the computational 

challenges of confidently detecting individual transcripts have not yet been developed for 

probing the tropism of AAVs in complex, heterogeneous cell populations. 

Collecting the entire transcriptome of injected and non-injected animals offers an opportunity 

to study the effects of AAV transduction on the host cell transcriptome. A similar 

investigation has been conducted with G-deleted rabies virus (Huang and Sabatini, 2020). 

This study demonstrated that virus infection led to the downregulation of genes involved in 

metabolic processes and neurotransmission in host cells, whereas genes related to cytokine 

signaling and the adaptive immune system were upregulated. At present, no such detailed 

examination of transcriptome changes upon systemic AAV injection has been conducted. 

High-throughput single-cell transcriptomic analysis could provide further insight into the 

ramifications of AAV capsid and transgene modifications with regard to innate (Duan, 2018; 

Hösel et al., 2012; Martino et al., 2011; Shao et al., 2018; Zaiss et al., 2008) and adaptive 

immune recognition (George et al., 2017; Manno et al., 2006; Mingozzi et al., 2007; 

Nathwani et al., 2011, 2014). Innate and adaptive immune responses to AAV gene delivery 

vectors and transgene products constitute substantial hurdles to their clinical development 

(Colella et al., 2018; Shirley et al., 2020). The study of brain immune response to viral gene 

therapy has been limited to antibody staining and observation of brain tissue slices post direct 

injection. In particular, prior studies have shown that intracerebral injection of rAAV vectors 
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in rat brains does not induce leukocytic infiltration or gliosis (Chamberlin et al., 1998; 

McCown et al., 1996); however, innate inflammatory responses were observed (Lowenstein 

et al., 2007). Results reported by these methods are rooted in single-marker staining and thus 

prevent the discovery of unexpected cell-type-specific responses. A comprehensive 

understanding of the processes underlying viral vector or transgene-mediated responses is 

critical for further optimizing AAV gene delivery vectors and treatment modalities that 

mitigate such immune responses. 

Here, we introduce an experimental and bioinformatics workflow capable of profiling the 

viral tropism and response of multiple barcoded AAV variants in a single animal across 

numerous complex cell types by taking advantage of the transcriptomic resolution of scRNA-

seq techniques (Figure 1 A). For this proof-of-concept study, we profile the tropism of 

previously-characterized AAV variants that emerged from directed evolution with the 

CREATE (AAV-PHP.B, AAV-PHP.eB) (Chan et al., 2017; Deverman et al., 2016) or M-

CREATE (AAV-PHP.C1, AAV-PHP.C2, AAV-PHP.V1, AAV.CAP-B10) (Flytzanis et al., 

2020; Ravindra Kumar et al., 2020) platforms. We selected the AAV variants based on their 

unique CNS tropism following intravenous injection. AAV-PHP.B and AAV-PHP.eB are 

known to exhibit overall increased targeting of the CNS compared with AAV9 and 

preferential targeting of neurons and astrocytes. Despite its sequence similarity to AAV-

PHP.B, the tropism of AAV-PHP.V1 is known to be biased toward transducing brain 

vascular cells. AAV-PHP.C1 and AAV-PHP.C2 have both demonstrated enhanced blood–

brain barrier (BBB) crossing relative to AAV9 across two mouse strains (C57BL/6J and 

BALB/cJ). Finally, AAV.CAP-B10 is a recently-developed variant with a bias toward 

neurons compared to AAV-PHP.eB (Flytzanis et al., 2020). 

In our initial validation experiment, we quantify the transduction biases of AAV-PHP.eB and 

AAV-CAP-B10 across major cell types using scRNA-seq, and our results correlate well with 

both published results and our own conventional IHC-based quantification. We then 

demonstrate the power of our transcriptomic approach by going beyond the major cell types 

to reveal significant differences in sub-cell-type transduction specificity. Compared with 
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AAV-CAP-B10, AAV-PHP.eB displays biased targeting of inhibitory neurons, and both 

variants transduce Sst+ or Pvalb+ inhibitory neurons more efficiently than Vip+ inhibitory 

neurons. We validate these results with fluorescent in situ hybridization – hybridization chain 

reaction (FISH-HCR). We then develop and validate a barcoding strategy to investigate the 

tropism of AAV-PHP.V1 relative to AAV-PHP.eB in non-neuronal cells and reveal that 

pericytes, a subclass of vascular cells, evade transduction by this and other variants. We 

further use scRNA-seq to profile cell-type-specific responses to AAV.PHP-eB at 3 and 25 

days post-injection (DPI), finding, for example, numerous genes implicated in the p53 

pathway in endothelial cells to be upregulated at 3 DPI. While most upregulated genes across 

cell types return to control levels by day twenty-five, excitatory neurons show a persistent 

upregulation of genes involved in MAPK signaling extending to 25 days. Finally, we 

showcase the capabilities of parallel characterization by verifying the preceding findings in 

a single animal with seven co-injected AAV variants and reveal the unique non-neuronal 

tropism bias of AAV-PHP.C2. 

2.2 Multiplexed single-cell RNA sequencing-based AAV profiling pipeline 

To address the current bottleneck in AAV tropism profiling, we devised an experimental and 

computational workflow (Figure 1 A) that exploits the transcriptomic resolution of scRNA-

seq to profile the tropism of multiple AAV variants across complex cell-type hierarchies. In 

this workflow, single or multiple barcoded rAAVs are injected into the retro-orbital sinus of 

mice followed by tissue dissociation, single-cell library construction using the 10X 

Genomics Chromium system, and sequencing with multiplexed Illumina next-generation 

sequencing (NGS) (Zheng et al., 2017). The standard mRNA library construction procedure 

includes an enzymatic fragmentation step that truncates the cDNA amplicon such that its 

final size falls within the bounds of NGS platforms (Figure 1 B). These cDNA fragments are 

only approximately 450 bp in length and, due to the stochastic nature of the fragmentation, 

sequencing from their 5’ end does not consistently capture any particular region. The 

fragment length limit and heterogeneity pose a problem for parallelizing AAV tropism 

profiling, which requires reliable recovery of regions of the transgene that identify the 
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originating AAV capsid. For example, posttranscriptional regulatory elements, such as the 

600 bp Woodchuck hepatitis virus posttranscriptional regulatory element (WPRE), are 

commonly placed at the 3’ end of viral transgenes to modulate transgene expression. The 

insertion of such elements pushes any uniquely identifying cargo outside the 450 bp capture 

range, making them indistinguishable based on the cDNA library alone (Supplemental 

Figure 1 A). An alternative strategy of adding barcodes in the 3’ polyadenylation site also 

places the barcode too distant for a 5’ sequencing read, and reading from the 3’ end would 

require sequencing through the homopolymeric polyA tail, which is believed to be unreliable 

in NGS platforms (Chang et al., 2014; Shin and Park, 2016). 

We circumvented these limitations in viral cargo identification by taking an aliquot of the 

intact cDNA library and adding standard Illumina sequencing primer recognition sites to the 

viral transcripts using PCR amplification such that the identifying region is within the two 

Illumina primer target sequences (e.g. Figure 2 B). The cell transcriptome aliquots 

undergoing the standard library construction protocol and the amplified viral transcripts are 

then sequenced as separate NGS libraries. We sequence shorter viral transcripts in the same 

flow cell as the cell transcriptomes and longer viral transcripts on the Illumina MiSeq, which 

we found to be successful at sequencing cDNAs up to 890 bp long. The sequencing data 

undergoes a comprehensive data processing pipeline (see Methods). Using a custom genome 

reference, reads from the cell transcriptome that align to the viral cargo plasmid sequences 

are counted as part of the standard 10X Cell Ranger count pipeline (see Methods and 

Supplemental Figure 1 C). In parallel, reads from the amplified viral transcripts are used to 

count the abundance of each viral barcode associated with each cell barcode and unique 

molecular identifier (UMI). The most abundant viral barcode for each cell barcode and UMI 

is assumed to be the correct viral barcode, and is used to construct a variant lookup table. 

This lookup table approach identifies an originating capsid in 69.1 ± 1.9% of viral reads 

detected in the cell transcriptome aliquots (Supplemental Table 4). 

For determining viral cell-type tropism, we developed a method to estimate the fraction of 

cells within a cell type that express viral transcripts. Viral RNA expression levels depend on 
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both the multiplicity of infection and the transcription rate of the delivered cargo. Thus, 

directly using viral RNA counts to determine tropism is confounded by differences in 

transcription rate between cell types, limiting comparison with imaging-based tropism 

quantification methods. As evidence of this, we detected that viral RNA expression levels 

can vary by cell type but are not perfectly rank correlated with the percent of cells detected 

as expressing that transcript (Supplemental Figure 2 B). An additional confound arises from 

the ambient RNA from cellular debris co-encapsulated with cell-containing droplets, which 

can lead to false positives, i.e., detecting viral RNA in droplets containing a cell that was not 

expressing viral RNA. For example, we detected low levels of viral transcripts in large 

percentages of cells, even in cell types suspected to evade transduction, such as immune cells 

(Supplemental Figure 2 A). To reduce the effect of both variability in expression and ambient 

RNA, we developed an empirical method to estimate the percentage of cells expressing 

transcripts above the noise, wherein the distribution of viral transcript counts in a set of cells 

of interest is compared to a background distribution of cell-free (empty) droplets (see 

Methods, Supplemental Figure 2 C). In simulation, this method accurately recovers the 

estimated number of cells expressing transcripts above background across a wide range of 

parameterizations of negative binomial distributions (see Methods, Supplemental Figure 2 

D). 

To address several additional technical problems in default single-cell pipelines, we 

developed a simultaneous quality control (QC) and droplet identification pipeline. Our viral 

transduction rate estimation method described above relies on having an empirical 

background distribution of viral transcript counts in empty droplets to compare against the 

cell type of interest. However, the default cell vs. empty droplet identification method 

provided by the 10X Cell Ranger software, which is based on the EmptyDrops method (Lun 

et al., 2019), yielded unexpectedly high numbers of cells and clusters with no recognizable 

marker genes, suggesting they may consist of empty droplets of ambient RNA or cellular 

debris (Supplemental Figure 3 A, B). Additionally, we sought to remove droplets containing 

multiple cells (multiplets) from our data due to the risk of falsely attributing viral tropism of 

one cell type to another. However, using Scrublet (Wolock et al., 2019), an established 
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method for identifying droplets containing multiplets, failed to identify multiplets in some of 

our samples and only identified small proportions of clusters positive for known non-

overlapping marker genes, such as Cldn5 and Cx3cr1 (Supplemental Figure 3 C). To address 

both the empty droplet and multiplet detection issues, we built a droplet classification 

pipeline based on scANVI, a framework for classifying single-cell data via neural-network-

based generative models (Xu et al., 2021). Using clusters with a high percentage of predicted 

multiplets from Scrublet as training examples of multiplets, and clusters positive for known 

neuronal and non-neuronal marker genes as training examples of neurons and non-neuronal 

cells, we trained a predictive model to classify each droplet as a neuron, non-neuron, 

multiplet, or empty droplet (see Methods, Supplemental Figure 4 A). This model performed 

with 97.6% accuracy on 10% of cells held out for testing, and yielded a database of 270,982 

cortical cells (Supplemental Figure 4 B). Inspection of the cells classified as empty droplets 

reveals that these droplets have lower transcript counts and higher mitochondrial gene ratios, 

consistent with other single-cell quality control pipelines (Supplemental Figure 4 D). 

Critically, we discovered that non-neuronal clusters contained significantly more cells that 

had been previously removed by the Cell Ranger filtering method as compared to neuronal 

clusters (P = 0.02, 2-sided student t-test). In some clusters, such as Gpr17+ C1ql1+ 

oligodendrocytes and Gper+ Myl9+ vascular cells, we identified up to 85% more cells than 

what were recovered via Cell Ranger in some samples. 

Using our combined experimental and computational pipeline for viral transcript recovery 

and droplet identification, we can recover a lower bound on the expected number of cells 

expressing each unique viral cargo within groups of cells in heterogeneous samples. 
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Figure 1. Workflow of AAV tropism characterization by scRNA-seq. (A) (I) Injection of a 

single AAV variant or multiple barcoded AAV variants into the retro-orbital sinus. (II) After 

3–4 weeks post-injection, the brain region of interest is extracted and the tissue is dissociated 

into a single-cell suspension. (III) The droplet-based 10x Genomics Chromium system is used 

to isolate cells and build transcriptomic libraries (see B). (IV) Cells are assigned a cell-type 

annotation and a viral transcript count. (V) AAV tropism profiling across numerous cell 

types. (B) The full length cDNA library is fragmented for sequencing as part of the single-

cell sequencing protocol (top). To enable viral tropism characterization of multiple rAAVs 

in parallel, an aliquot of the intact cDNA library undergoes further PCR amplification of 

viral transcripts (bottom). During cDNA amplification, Illumina sequencing primer targets 

are added to the viral transcripts such that the sequence in between the Illumina primer 

targets contains the AAV capsid barcode sequence. Viral cargo in the cell transcriptome is 

converted to variant barcodes by matching the corresponding cell barcode + UMI in the 

amplified viral transcript library (right). 
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2.3 Single-cell RNA sequencing recapitulates AAV capsid cell-type-specific tropisms 

As a first step, we validated our method by comparing the quantification of AAV 

transduction of major cell types via scRNA-seq to conventional IHC. For this purpose, we 

characterized the tropism of two previously reported AAV variants, AAV-PHP.eB (Chan et 

al., 2017) and AAV-CAP-B10 (Flytzanis et al., 2020) (Figure 2 A). In total, four animals 

received single or dual retro-orbital injections of AAV-PHP.eB and/or AAV-CAP-B10 with 

1.5 × 1011 viral genomes (vg) per variant. Co-injection of both variants served to test the 

ability of our approach to parallelize tropism profiling. By having each variant package a 

distinct fluorophore, tropism could be simultaneously assessed via multi-channel 

fluorescence and mRNA expression of the distinct transgene. After 3–4 weeks of expression, 

we harvested the brains and used one hemisphere for IHC and one hemisphere for scRNA-

seq. To recover viral transcripts, we chose primers such that enough of the XFP sequence 

was contained within the Illumina primer target sequences to differentiate the two variants 

(Supplemental Table 1). For this comparison, we focused on the transduction rate for neurons 

(Rbfox3), astrocytes (S100b), and oligodendrocytes (Olig2). For IHC, a cell was classified 

as positive for the marker gene on the basis of antibody staining, and was classified as 

transduced on the basis of expression of the delivered fluorophore. For scRNA-seq, all cells 

that passed our QC pipeline were projected into a joint scVI latent space and clustered. To 

most closely match our imaging quantification, we considered all clusters that were 

determined to be positive for the respective marker gene as belonging to the corresponding 

cell type (see Methods). All clusters of the same marker gene were grouped together, and the 

transduction rate of the combined group of cells was determined using our viral transduction 

rate estimation method.  

Our analysis of the scRNA-seq data demonstrates that the viral tropism biases across the 

three canonical marker genes are consistent with previous reports (Figure 2 C) (Chan et al., 

2017; Flytzanis et al., 2020). In contrast to AAV-PHP.eB, AAV-CAP-B10 preferentially 

targets neurons over astrocytes and oligodendrocytes. No marked discrepancies in viral 

tropism characterization were observed with single versus dual injections. 
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To quantify the similarity of the AAV tropism characterizations obtained with IHC and 

scRNA-seq, we directly compared the transduction rate of each AAV variant for every cell 

type and its corresponding marker gene (i.e., Rbfox3, S100b, or Olig2) as determined by 

each technique and noticed a good correlation (Figure 2 D). Despite the different underlying 

biological readouts–protein expression in IHC and RNA molecules in labeled cell types for 

scRNA-seq–the two techniques reveal similar viral tropisms. 

 

Figure 2. Comparison of viral tropism profiling with traditional IHC and scRNA-seq. (A) 

Overview of the experiment. Four animals were injected with 1.5 × 1011 viral genomes (vg) 

packaged in AAV-PHP.eB and/or AAV-CAP-B10. The bottom panels show a representative 

dataset collected from an animal that was co-injected with AAV-PHP.eB and AAV-CAP-

B10. The left side displays the scRNA-seq data set in the lower dimensional t-SNE space, 

with cells colored according to transduction status. The shaded areas indicate clusters with 

high expression of the corresponding gene marker. The right side shows representative 

confocal images of cortical tissue labeled with IHC. Scale bar, 50 µm. (B) Viral transcript 
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recovery strategy. The shaded areas highlight sequences added during library construction. 

(C) The fraction of the total number of transduced cells labeled as expressing the 

corresponding marker gene. For each AAV variant, the results of a two-way ANOVA with 

correction for multiple comparisons using Sidak’s test are reported with adjusted P-values 

(****P ≤ 0.0001, ***P ≤ 0.001, and **P ≤ 0.01 are shown; P > 0.05 is not shown). (D) 

Comparison of transduction rates based on quantification via scRNA-seq or IHC. 

Transduction rate was calculated as (number of transduced cells in the group)/(total number 

of cells in the group). Each dot represents the transduction rate of neurons/Rbfox3+, 

astrocytes/S100b+, or oligodendrocytes/Olig2+ by AAV-PHP.eB or AAV-CAP-B10 in one 

animal. Histology data are averages across three brain slices per gene marker and animal. 

r indicates the Pearson correlation coefficient. 

2.4 Tropism profiling at transcriptomic resolution reveals AAV variant biases for 

neuronal subtypes 

After validating our approach against the current standard of AAV tropism characterization 

(IHC imaging), we scrutinized the tropism of AAV-PHP.eB and AAV-CAP-B10 beyond the 

major cell types (Figure 3). Since AAV-CAP-B10 has increased neuronal bias relative to 

AAV-PHP.eB, we first sought to understand if there were neuronal subtypes that were 

differentially responsible for this bias. However, in-depth cell typing of transcriptomes 

collected from tissues with numerous and complex cell types, such as neurons in the brain, 

requires expert knowledge of the tissue composition, time to manually curate the data, and 

the availability of large datasets (Zeisel et al., 2018). To minimize the burden of manual 

annotation, computational tools have been developed that use previously-annotated single-

cell databases to predict the cell type of cells in new, unannotated single-cell experiments, 

even across single-cell platforms (Cao et al., 2020; Tan and Cahan, 2019; Xu et al., 2021). 

We decided to leverage these tools and expanded our marker gene-based cell typing approach 

by having more complicated or well-established cell types be assigned based on annotations 

in a reference dataset (Supplemental Figure 4 A). To this end, we again employed scANVI 

to construct a joint model of cells from our samples and cells from an annotated reference 
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database. For this model, we used the Mouse Whole Cortex and Hippocampus 10x v2 dataset 

available from the Allen Brain Institute (Yao et al., 2021). Since this is a neuron-enriched 

dataset, we constructed the model using only the 109,992 cells in our dataset classified as 

neurons from our marker-based QC pipeline combined with the 561,543 neuronal cells from 

cortical regions from the reference database. We trained this model to predict to which of 14 

neuron subtype groupings each cell belonged. We held out 10% of the data for testing: the 

model performed with 97.9% classification accuracy on the held-out data. We then applied 

the model to predict the neuron subtypes of our cells. 

During our in-depth characterization, we discovered several previously unnoticed sub-cell-

type biases for AAV-PHP.eB and AAV-CAP-B10 (Figure 3 A). Starting at the top of our 

neuronal hierarchy, the fraction of transduced cells that were glutamatergic neurons was 

markedly reduced for AAV-PHP.eB compared with AAV-CAP-B10 (P = 0.03, 2-sided 

student t-test, corrected for 2 neuron subtype comparisons).  Furthermore, Pvalb+ and Sst+ 

inhibitory neurons both represented a larger fraction of transduced cells than Vip+ inhibitory 

neurons with both variants (adjusted P < 0.0001, P = 0.10, respectively, two-way ANOVA 

with multiple comparison correction for inhibitory neuron subtypes using Tukey’s method). 

To confirm these tropism biases in neuronal subtypes with a traditional technique, we 

performed FISH-HCR for glutamatergic and GABAergic gene markers (Figure 3 B) (Choi 

et al., 2014; Patriarchi et al., 2018). As indicated by our scRNA-seq data, AAV-CAP-B10, 

when compared with AAV-PHP.eB, has increased transduction efficiency of glutamatergic 

neurons (SLC17A7). Furthermore, FISH-HCR verified the downward trend in transduction 

efficiency from Pvalb+, to Sst+, to Vip+ neurons in both AAV variants (Figure 3 C). 
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Figure 3. In-depth AAV tropism characterization of neuronal subtypes at transcriptomic 

resolution. (A) Viral tropism profiling across neuronal sub types. Neuronal subtype 
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annotations are predicted by a model learned from the Allen Institute reference dataset using 

scANVI (Xu et al., 2021; Yao et al., 2021). Each dot represents data from one animal injected 

with AAV-PHP.eB and/or AAV-CAP-B10. Bar width indicates the total number of cells of a 

particular cell type present in our dataset. (B) Representative confocal images of cortical 

tissue from an animal injected with 1.5 × 1011 vg of AAV-PHP.eB. Tissue was labeled with 

FISH-HCR for gene markers of glutamatergic neurons (Slc17a7) and GABAergic neurons 

(Gad1, Pvalb, Sst, Vip). AAV-PHP.eB shows the endogenous fluorescence of mNeonGreen. 

Scale bar, 50 µm. (C) Confirmation of viral tropism biases across neuronal subtypes using 

FISH-HCR (3 mice per AAV variant, 1.5 × 1011 vg dose). Dots represent the average values 

across three brain slices from one animal. Results from a two-way ANOVA with correction 

for multiple comparisons using Tukey’s test is reported with adjusted P-values (****P ≤ 

0.0001; and P > 0.05 is not shown on the plot). 

2.5 Pooled AAVs packaging barcoded cargo recapitulate the non-neuronal tropism bias 

of PHP.V1 

To enable profiling viral variants in parallel without needing distinct transgenes per variant, 

we established a barcoding strategy whereby we package AAV variants with the same 

transgene and regulatory elements but with short, distinguishing nucleotide sequences within 

the 3’ UTR (Figure 4 A). To verify that this barcoding strategy can recover tropisms 

consistent with our previous transgene-based capsid-identification strategy, we performed a 

set of experiments to re-characterize the tropism of AAV-PHP.eB in parallel with that of the 

recently developed AAV-PHP.V1, which has increased specificity for vascular cells over 

AAV-PHP.eB (Ravindra Kumar et al., 2020). 

We produced AAV-PHP.eB carrying CAG-mNeonGreen and AAV-PHP.V1 carrying either 

CAG-mRuby2 or CAG-tdTomato. Additionally, we produced AAV-PHP.eB and AAV-

PHP.V1 both carrying CAG-mNeonGreen with 7-nucleotide barcodes 89 bp upstream of the 

polyadenylation start site such that they did not interfere with the WPRE. We ensured each 

barcode had equal G/C content, and that all barcodes were Hamming distance 3 from each 

other (Supplemental Table 5). Each of the barcoded variants was packaged with multiple 
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barcodes that were pooled together during virus production. Four animals received a retro-

orbital co-injection of 1.5 x 1011 vg/each of AAV-PHP.V1 and AAV-PHP.eB. Two animals 

received viruses carrying separate fluorophores (cargo-based), and two animals received 

viruses carrying the barcoded cargo (barcode-based). For amplification of the viral cDNA in 

the animals receiving the barcoded cargo, we used primers closer to the polyA region such 

that the sequencing read covered the barcoded region (Supplemental Table 1). During the 

single-cell sequencing dissociation and recovery, one of our dissociations resulted in low 

recovery of neurons (Supplemental Figure 4 C); thus, we investigated only non-neuronal 

cells for this experiment. 

Despite variability in the total transgene RNA content between barcodes of the same variant 

(Supplemental Figure 5 A), the estimated percent of cells expressing the transgene within 

each cell type was consistent between barcodes within a single animal, with standard 

deviations ranging from 0.003 to 0.058 (Supplemental Figure 6 A). Our analysis of both the 

barcode-based animals and cargo-based animals shows the same bias in non-neuronal 

tropism, with AAV-PHP.eB significantly preferring astrocytes over oligodendrocytes, 

vascular cells, and immune cells (Figure 4 D). Interestingly, our analysis also revealed that 

the variance between barcodes within an animal was less than the variance between animals, 

even when controlling for cargo and dosage (P = 0.021, Bartlett’s test, P-values combined 

across all variants and cell types using Stouffer’s method, weighted by transduced cell type 

distribution). 

Next, we investigated the distribution of cells transduced by AAV-PHP.eB vs AAV-PHP.V1 

in the major non-neuronal cell types across both barcode-based and cargo-based paradigms 

(Figure 4 E). The single-cell tropism data confirms the previously-established finding that 

AAV-PHP.V1 has a bias toward vascular cells relative to AAV-PHP.eB. Additionally, we 

uncovered that this is coupled with a bias away from astrocytes relative to AAV-PHP.eB, 

but that transduction of oligodendrocytes and immune cells did not differ between the 

variants. To investigate for a specific effect of the barcoding strategy, we performed a three-

way ANOVA across the variant, cell type, and experimental paradigm factors. We found that 
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the cell type factor accounted for 89.25% of the total variation, the combined cell type + 

variant factor accounted for 7.7% of the total variation, and the combined cell type + 

experimental paradigm factor accounted for only 2.0% of the total variation, confirming our 

hypothesis that barcoded pools can recover tropism with minimal effect. 

2.6 Relative tropism biases reveal non-neuronal subtypes with reduced AAV 

transduction 

To further characterize the tropism biases of AAV-PHP.V1 and expand our method to less 

well-established cell hierarchies, we explored the non-neuronal cell types in our dataset. 

Since the Allen Brain Institute reference database that we used to investigate neuronal 

tropism was enriched for neurons, it does not contain enough non-neuronal cells to form a 

robust non-neuronal cell atlas. Our combined dataset consists of 169,265 non-neuronal cells, 

making it large enough to establish our own non-neuronal cell clustering. Thus, we 

performed an additional round of automatic clustering on the cells classified as non-neuronal 

in our combined dataset, and identified 12 non-neuronal cell subtypes based on previously 

established marker genes (Figure 4 B, C, Supplemental Table 2). 
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Figure 4. Barcoded co-injected rAAVs reveal the non-neuronal tropism bias of AAV-

PHP.V1. (A) Experimental design for comparing barcode vs cargo-based tropism profiling. 

Animals received dual injections of AAV-PHP.eB and AAV-PHP.V1, carrying either distinct 

fluorophores (cargo) or the same fluorophore with distinct barcodes. (B) t-SNE projection 

of the single-cell Variational Inference (scVI) latent space of cells and their cell type 

classification of the 169,265 non-neuronal cells across all our samples. Each number 

corresponds to the cell type labeled in (C). (C) Marker genes used to identify non-neuronal 

cell types. Darker colors indicate higher mean expression, and dot size correlates with the 

abundance of the gene in that cell type. (D) The distribution of non-neuronal cells expressing 

transcripts from AAV-PHP.eB across 4 barcodes within one animal (blue) and across 5 

animals (red). All animals received dual injections, with one of the vectors being 1.5 x 1011 

vg of PHP.eB carrying CAG-mNeonGreen. The y-axis represents the fraction of transduced 

non-neuronal cells that are of the specified cell type. Only the non-significant comparisons 

between cell types in a two-way ANOVA with correction for multiple comparisons using 
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Tukey’s test are reported. All other cell-type comparisons within a paradigm were significant 

at P ≤ 0.0001. (E) The distribution of non-neuronal cells expressing transcripts from AAV-

PHP.eB (black) and AAV-PHP.V1 (gray). Results from the different experimental paradigms 

are combined. Results shown are from a two-way ANOVA with correction for multiple 

comparisons using Sidak’s test comparing transduction by AAV-PHP.eB to AAV-PHP.V1 

for each cell type, with adjusted P-values (****P ≤ 0.0001 is shown; P > 0.05 is not shown). 

(F) Within-animal difference in the fraction of cells transduced with AAV-PHP.V1 relative 

to AAV-PHP.eB across four animals, two from each experimental paradigm. For each cell 

type in each sample, the combined 2-proportion z score for the proportion of that cell type 

transduced by AAV-PHP.V1 vs AAV-PHP.eB is reported. Cell types with fewer than 2 cells 

transduced by both variants were discarded. Z scores were combined across multiple 

animals using Stouffer’s method and corrected for multiple comparisons. Cell-type 

differences with an adjusted P-value below 0.05 are indicated with *. 

Most cell subtypes had multiple clusters assigned to them, which suggested there may be 

additional subtypes of cells for which we did not find established marker genes. To determine 

whether any of these clusters delineated cell types with distinct transcriptional profiles, we 

investigated the probability of gene expression in each cluster compared to the other clusters 

of the same cell subtype (see Methods). Our approach determined two subclusters of 

pericytes, astrocytes, and oligodendrocyte precursor cells (OPCs). Both clusters of pericytes 

had strong expression of canonical pericytes marker genes Rgs5, Abcc9, and Higd1b. 

However, one of the clusters had no marker genes that made it distinct from the other pericyte 

cluster, nor from endothelial cells. Consistent with previous reports, this suggests that this 

cluster could be pericytes contaminated with endothelial cell fragments, and thus was not 

considered for further analysis (He et al., 2016; Vanlandewijck et al., 2018; Yang et al., 

2021). Two distinct groups of astrocytes were detected, one of which had unique expression 

of Myoc and Fxyd6. Finally, one of the clusters of OPCs were uniquely expressing Top2a, 

Pbk, Spc24, Smc2, and Lmnb1. Using these new marker genes, we expanded our non-

neuronal cell taxonomy to 14 cell types, now including Myoc+ and Myoc- astrocytes, and 

Top2a+ and Top2a- OPCs. 
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Given our finding that inter-sample variability exceeds intra-sample variability, we 

established a normalization method for comparing transduction biases between variants co-

injected into the same animal. This normalization–calculating the difference in the fraction 

of transduced cells between variants–captures the relative bias between variants, instead of 

the absolute tropism of a single variant (see Methods). By considering the relative bias 

between variants, we are able to interrogate tropism in a way that is more robust to inter-

sample variability that arises from different distributions of recovered cells, expression rate 

of delivered cargo, and success of the injection. Using this normalization method, we 

evaluated the non-neuronal cell type bias of AAV-PHP.V1 relative to AAV-PHP.eB in both 

the cargo-based animals and the barcode-based animals across our non-neuronal cell-type 

taxonomy (Figure 4 F). We discovered that the bias of AAV-PHP.V1 for vascular cells is 

driven by an increase in transduction of endothelial cells, but not pericytes. Similarly, AAV-

PHP.V1’s bias away from astrocytes is driven by a decrease in transduction of Myoc- 

astrocytes, but not Myoc+ astrocytes. Further inspection of the transduction of pericytes and 

Myoc+ astrocytes revealed that pericytes are not highly transduced by any of the AAVs 

tested in this work, and that Myoc+ astrocytes have both lower viral transcript expression 

and lower abundance than Myoc- astrocytes, and thus do not contribute significantly to 

tropism (Supplemental Figure 4, 7 A, B). 

2.7 Single-cell RNA sequencing reveals early cell-type-specific responses to IV 

administration of AAV-PHP.eB that return to baseline by 3.5 weeks 

To investigate the temporal cell-type-specific transcriptional effects of systemic AAV 

delivery and cargo expression, we performed a single-cell profiling experiment comparing 

animals injected with AAV to saline controls. We injected four male mice with AAV-

PHP.eB (1.5 x 1011 vg) carrying mNeonGreen, and performed single-cell sequencing on two 

mice three days post-injection (3 DPI) and two mice twenty-five days post-injection (25 

DPI). These time points were chosen based on previous work showing MHC presentation 

response peaking around day seven and transgene response peaking around day 30 

(Lowenstein et al., 2007). The two saline control mice were processed 3 DPI. We then 
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analyzed differential gene expression for each cell type between injected animals and 

controls using DESeq2 (Supplemental Table 7). Of note, we excluded cell types with less 

than 50 cells in each sample, and excluded leukocytes and red blood cells given the risk of 

their presence due to dissociation rather than chemokine mediated infiltration. Additionally, 

we collapsed subtypes of excitatory neurons, inhibitory neurons, and OPCs to have greater 

than 50 cells for differential analysis. We estimated viral transduction rate of AAV-PHP.eB 

using its delivered cargo, mNeonGreen, across cell types and time points. We identified that 

Myoc- Astrocytes have significantly higher estimated transduction rate at 25 DPI compared 

to 3DPI (adjusted P-value = 0.0003, two-way ANOVA with multiple comparison correction 

using Sidak’s method). It is also worth noting that endothelial cells have a similar 

transduction rate between the time points in both animals, while one of the animals at 25 DPI 

exhibited higher transduction in neurons (Figure 5A). The number of statistically relevant 

genes between the injected and control group (adjusted P-value < 0.05, DESeq2) were 

highest in pericytes (26 genes), endothelial cells (76 genes), and excitatory neurons (45 

genes) at 3 DPI (Figure 5 B). At day twenty-five, only excitatory neurons had greater than 

10 genes (14 genes total) differentially expressed (adjusted P-value < 0.05, DESeq2). 
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Figure 5. Single-cell gene expression profiling finds cell-type-specific responses to AAV 

transduction in vascular cells and excitatory neurons. (A) Estimated transduction rate (%) 

of mNeonGreen cargo at three and twenty-five days post-injection (DPI). Results from a 

two-way ANOVA with correction for multiple comparisons using Sidak’s method is 

reported with adjusted P-values (***P ≤ 0.001; and P > 0.05 is not shown on the plot). (B) 

Number of differentially expressed genes (adjusted P-value < 0.05, DESeq2) at 3 DPI and 

25 DPI across 2 animals. (C) Differentially expressed genes across the two time points in 

endothelial cells, pericytes, microglia, perivascular macrophages, and excitatory neurons. 

Color indicates DESeq2 test statistic with red representing downregulation and blue 

representing upregulation. Genes outlined by a black rectangle are determined to have 

statistically significant differential expression compared to controls (adjusted P-value < 

0.05, DESeq2). Colored circles adjacent to each gene indicate the corresponding pathway 

presented in (D). (D) A summary of corresponding pathways in which the differentially 

regulated genes in (C) are involved across the time points. (E) Distribution of p53 signaling 

transcripts in endothelial cells (animals are combined) and an example of a gene 

upregulated in both 3 and 25 DPI in excitatory neurons. 

We found that endothelial cells had the most acute response at 3 DPI with pathways such as 

p53, MAPK, and TNF signaling notably impacted. A significant upregulation of Phlda3 and 

its effectors Bax, Aen, Mdm2, and Cdkn1a, all involved in the p53/Akt signaling pathway, 

was present (Figure 5 C, E) (Ferreira and Nagai, 2019; Ghouzzi et al., 2016). Of relevance, 

we also detected Trp53cor1/LincRNA-p21, responsible for negative regulation of gene 

expression (Amirinejad et al., 2020), upregulated in endothelial cells at 3 DPI. Other 

examples of upregulated genes relevant to inflammation and stress response in vascular cells 

include the suppressor of cytokine signaling protein Socs3 (Baker et al., 2009), and Mmrn2, 

responsible for regulating angiogenesis in endothelial cells (Lorenzon et al., 2012). 

Expression of Socs3 and Icam1, which are upregulated in endothelial cells at 3 DPI, and 

Cepbp, which is upregulated in pericytes at 3 DPI, have all been linked to TNF signaling 

(Burger et al., 1997; Cao et al., 2018; Li et al., 2020). We have also observed genes linked to 

MAPK signaling upregulated in endothelial cells, such as Gas6, Epha2, and Mapkapk3, and 
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Klf4 in both endothelial cells and pericytes (Chen et al., 1997; Macrae et al., 2005; Riverso 

et al., 2017). 

In brain immune cells, we observe a few substantial changes in genes pertaining to immune 

regulation at 3DPI which vanish at 25 DPI. For example, we observe an upregulation of 

MHC-I gene H2-D1 at 3 DPI in microglia, which then stabilizes back to control levels at 25 

DPI (Figure 5 C). Marcksl1, previously reported as a gene marker for neuroinflammation 

induced by alpha-synuclein (Sarkar et al., 2020), also shows upregulation at 3 DPI. We did 

not observe significant differences in pro-inflammatory chemokines, Ccl2 and Ccl5, which 

are related to breakdown of the blood-brain barrier via regulation of tight-junction proteins 

and recruitment of peripheral leukocytes (Gralinski et al., 2009). Ccl3, responsible for 

infiltration of leukocytes and CNS inflammation (Chui and Dorovini-Zis, 2010), was 

upregulated in perivascular macrophages in 3 DPI and diminished back to control levels at 

25 DPI (Figure 5 C). In contrast, Cd209a, a gene previously identified as critical for attracting 

and activating naïve T Cells (Franchini et al., 2019), was downregulated at 3 DPI. 

Interestingly, we found that excitatory neurons had changes in genes across both 3 DPI and 

25 DPI. MHC-Ib H2-T23, which is involved in the suppression of CD4+ T cell responses 

(Ohtsuka et al., 2008), is downregulated at 3 DPI. Meanwhile, the growth arrest genes, 

Gadd45g and Gadd45b (Vairapandi et al., 2002), are upregulated. Genes involved in synaptic 

vesicle cycling, such as Unc13c (Palfreyman and Jorgensen, 2017) and Slc32a1 (Taoufiq et 

al., 2020), are also downregulated at 3 DPI. Some genes remain upregulated throughout the 

study, such as Npas4, responsible for regulating excitatory-inhibitory balance (Spiegel et al., 

2014). Genes implicated in MAPK signaling were upregulated – such as Gadd45b/g, Dusp6, 

and Trib1 at 3 DPI, and Dusp1 and Nr4a1 at 25 DPI (Muhammad et al., 2018; Ollila et al., 

2012; Pérez-Sen et al., 2019; Salvador et al., 2013; Zhang and Yu, 2018). Gadd45b, Dusp1, 

Nr4a1 were also upregulated in pericytes and Gadd45b/g in endothelial cells (Figure 5 C). 

Immediate early genes such as Ier2 (Kodali et al., 2020) were upregulated across pericytes, 

endothelial cells, inhibitory neurons, and OPCs at 3 DPI, while Fos, Ier2, Junb, and Arc were 

prominent in excitatory neurons at 25 DPI. 
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By investigating the gene expression differences in subpopulations of cells post-injection, 

we found that vascular cells such as endothelial cells and pericytes upregulate genes linked 

to p53, MAPK, and TNF signaling pathways at 3 DPI (Figure 5 D). Immune cells such as 

microglia and perivascular macrophages upregulate genes involved in chemokine signaling, 

MHCI/II antigen processing, and Fc Gamma R-Mediated Phagocytosis (Zhang et al., 2021) 

at 3 DPI (Figure 5 D). Excitatory neurons are the only cell type with genes implicated in the 

same pathway (MAPK signaling) upregulated across both of the time points (3 DPI, 25 DPI).  

2.8 Larger pools of barcoded AAVs recapitulate complex tropism within a single 

animal 

To showcase the capabilities of parallel characterization, we next designed a 7-variant 

barcoded pool that included the three previously characterized variants (AAV-PHP.eB, 

AAV-CAP-B10, and AAV-PHP.V1), AAV9 and AAV-PHP.B controls, and two additional 

variants, AAV-PHP.C1 and AAV-PHP.C2. For simplification of cloning and virus 

production, we designed a plasmid, UBC-mCherry-AAV-cap-in-cis, that contained both the 

barcoded cargo, UBC-mCherry, and the AAV9 capsid DNA (Supplemental Figure 1 B). We 

assigned three distinct 24 bp barcodes to each variant (Supplemental Table 5). Each virus 

was produced separately to control the dosage, and 1.5 x 1011 vg of each variant was pooled 

and injected into a single animal. 

After 3 weeks of expression, we performed single-cell sequencing on extracted cortical 

tissue. To increase the number of cells available for profiling, we processed two aliquots of 

cells, for a total of 36,413 recovered cells. To amplify the viral transcripts, we used primers 

that bind near the 3’ end of mCherry such that the barcode was captured in sequencing 

(Supplemental Table 1). 
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Figure 6. Single animal injections of multiple barcoded rAAVs enables deep, parallel 

characterization. (A, B) Relative cell type tropism of 7 co-injected rAAVs for neuronal (A) 

and non-neuronal (B) cell types. The color scale indicates the difference in transduction bias 

of a variant relative to all other variants in the pool. The area of each circle scales linearly 

with the fraction of cells of that type with viral transcripts above background. For each 

variant and cell type, a 2-proportion z score was calculated to compare the number of cells 

of that type transduced by that variant relative to all other variants combined. Z scores were 

combined across two single-cell sequencing aliquots using Stouffer’s method, and corrected 

for multiple comparisons. Cell types with fewer than 10 transduced cells in either the variant 

or variants compared against were discarded. Only cell-type biases at an adjusted P-value 

< 0.05 are colored; otherwise they are grayed out. 

Using our cell typing and viral transcript counting methods, we investigated the transcript 

counts and transduction bias of the variants in the pool. Compared with our previous profiling 
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experiments, the number of UBC-mCherry viral transcripts detected per cell was 

significantly lower than CAG-mNeonGreen-WPRE and CAG-tdTomato (adjusted P < 

0.0001, P=0.0445, respectively, two-way ANOVA with multiple comparison correction 

using Tukey’s method) and shifted towards vascular cells (adjusted P < 0.0001, P=0.0008, 

respectively, two-way ANOVA with multiple comparison correction using Tukey’s method) 

(Supplemental Figure 5 B, C). Next, we looked at the transduction rate difference for each 

variant compared with the rest of the variants in the pool for each cell type in our taxonomy 

(Figure 6 A, B). Despite the lower expression rate and bias shift, the transduction rate 

difference metric captured the same tropism biases for AAV-CAP-B10 and AAV-PHP.V1 

as determined from our previous experiments. AAV-CAP-B10 showed enhanced neuronal 

targeting relative to other variants in the pool, with this bias coming specifically from an 

increase in the transduction of glutamatergic neurons. All five variants with transcripts 

detected in neurons showed a decreased transduction rate in Vip+ neurons relative to other 

GABAergic neuronal subtypes (Supplemental Figure 7 C). AAV-PHP.eB showed enhanced 

targeting of astrocytes (+6.2%, P = 1.4 x 10-8, 2-proportion z-test, multiple comparison 

corrected with Benjamini/Hochberg correction), and AAV-PHP.V1 showed strong bias for 

vascular cells (+51.6%, p = 1.7 x 10-43). In addition to confirming all our existing hypotheses, 

we were able to identify biases for the previously reported AAV-PHP.C2, which has not 

been characterized in depth. This variant, which was reported as having a non-neuronal bias 

similar to AAV-PHP.V1, showed significant transduction bias not only toward vascular cells 

(+13.6%, P = 8.3 x 10-6), but also toward astrocytes (+24.0%, P = 1.6-30), and a bias away 

from neurons (−38%, p = 4.1 x 10-32). 

2.9 Discussion 

The advent of NGS has enabled screening of large libraries of AAV capsids in vivo by 

extracting viral DNA from relevant tissue followed by sequencing of capsid gene inserts or 

DNA barcodes corresponding to defined capsids. To date, NGS-based screening has been 

successfully applied to libraries created by peptide insertions (Davidsson et al., 2019; 

Körbelin et al., 2016b), DNA shuffling of capsids (De Alencastro et al., 2020; Herrmann et 
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al., 2019; Paulk et al., 2018), and site-directed mutagenesis (Adachi et al., 2014). Although 

these NGS-based strategies allow the evolution of new AAV variants with diverse tissue 

tropisms, it has been difficult to obtain a comprehensive profiling for multiple variants across 

cell types, which is of utmost importance in organs with complex cell-type compositions, 

such as the brain (Deverman et al., 2016; Ravindra Kumar et al., 2020; Tasic et al., 2016, 

2018; Zeisel et al., 2018). Towards this end, techniques such as IHC, fluorescent in situ RNA 

hybridization (Chen et al., 2015; Choi et al., 2014; Femino et al., 1998; Lubeck et al., 2014; 

Shah et al., 2016a, 2016b) or in situ RNA sequencing (Ke et al., 2013; Lee et al., 2014; Wang 

et al., 2018) can be employed. Several limitations make it challenging to apply these 

techniques as high-throughput, post-selection AAV tropism profiling methods. First, the 

limits of optical resolution and the density of transcripts in single cells pose challenges for 

full in situ transcriptome analysis and, until recently, have restricted the total number of 

simultaneously measured genes in single cells within tissue to several hundred (Ke et al., 

2013; Lee et al., 2014; Liao et al., 2020; Shah et al., 2016a; Wang et al., 2018). By contrast, 

scRNA-seq with the 10x Genomics Chromium system enables detection of over 4000 genes 

per cell (Yao et al., 2021), fast transcriptomic analysis, and multiplexing across different 

tissue types (McGinnis et al., 2019; Stoeckius et al., 2018). Furthermore, the method is 

already widely used by the research community which can help with adoption of our 

proposed pipelines. Although droplet-based scRNA-seq methods lose spatial information 

during the dissociation procedure, analysis packages have been developed that can infer 

single-cell localization by combining scRNA-seq data with pre-existing information from 

ISH-based labeling for specific marker genes (Achim et al., 2015; Durruthy-Durruthy et al., 

2015; Halpern et al., 2017; Nitzan et al., 2019; Satija et al., 2015; Stuart et al., 2019). 

Therefore, scRNA-seq techniques have great potential to rapidly profile the tropism of 

multiple AAV variants in parallel across several thousand cells defined by their entire 

transcriptome. 
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Here, we established an experimental and data-analysis pipeline that leverages the 

capabilities of scRNA-seq to achieve simultaneous characterization of several AAV variants 

across multiplexed tissue cell types within a single animal. To differentiate multiple AAV 

capsid variants in the sequencing data, we packaged variants with unique transgenes or the 

same transgene with unique barcodes incorporated at the 3’ end. We added standard Illumina 

sequencing primer recognition sites (Read 2) to the viral transcripts using PCR amplification 

such that the barcoded region could be consistently read out from the Illumina sequencing 

data. Our computational pipeline demultiplexes viral reads found in the transcriptome 

according to which matching sequence is most abundant in a separate amplified viral 

transgene library. Comparing the distribution of viral transcripts by cell type to a null model 

of empty droplets, we could then determine the cell-type biases. 

 

Our platform has corroborated the tropism of several previously characterized AAV variants 

and has provided more detailed tropism information beyond the major cell types. The fraction 

of transduced cells that are glutamatergic neurons was found to be markedly reduced for 

AAV-PHP.eB when compared with AAV-CAP-B10. Furthermore, within all the variants we 

tested, both Pvalb+ and Sst+ inhibitory neurons have greater transduction rates than Vip+ 

neurons. This bodes well for delivery to Pvalb+ neurons, which have been implicated in a 

wide range of neuro-psychiatric disorders (Ruden et al., 2021), and suggests Vip+ 

interneurons, which have recently been identified as being a sufficient delivery target for 

induction of Rett syndrome-like symptoms, as a target for optimization (Mossner et al., 

2020). Awareness of neuronal subtype biases in delivery vectors is critical both for 

neuroscience researchers and for clinical applications. Dissection of neural circuit function 

requires understanding the roles of neuronal subtypes in behavior and disease and relies on 

successful and sometimes specific delivery of transgenes to the neuronal types under study 

(Bedbrook et al., 2018). 
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We further discovered that the vascular bias of AAV-PHP.V1 originates from its 

transduction bias towards endothelial cells. Interestingly, this is the only cell type we detected 

expressing Ly6a (Supplemental Figure 8), a known surface receptor for AAV variants in the 

PHP.B family (Batista et al., 2020; Hordeaux et al., 2019; Huang et al., 2019). Given AAV-

PHP.V1’s sequence similarity to AAV-PHP.B and its tropism across mouse strains, this 

pattern suggests that AAV-PHP.V1 transduction may also be Ly6a-mediated. Finding such 

associations between viral tropism and cell-surface membrane proteins also suggests that full 

transcriptome sequencing data may hold a treasure trove of information on possible 

mechanisms of transduction of viral vectors. 

We also revealed that AAV-PHP.C2 has a strong, broad non-neuronal bias toward both 

vascular cells and astrocytes. AAV-PHP.C2 also transduces BALB/cJ mice, which do not 

contain the Ly6a variant that mediates transduction by PHP.B family variants (Hordeaux et 

al., 2019). This suggests that PHP.C2 may be the most promising candidate from this pool 

for researchers interested in delivery to non-neuronal cells with minimal neuronal 

transduction both in C57BL/6J mice and in strains and organisms that do not have the Ly6a 

variant. 

All our tested variants with non-neuronal transduction have lower expression in Myoc+ 

astrocytes and pericytes. Astrocytes expressing Myoc and Gfap, which intersect in our data 

(Supplemental Figure 8), have been previously identified as having reactive behavior in 

disease contexts, making them a target of interest for research on neurological diseases 

(Perez-Nievas and Serrano-Pozo, 2018; Wu et al., 2017). Similarly, pericytes, whose 

dysfunction has been shown to contribute to multiple neurological diseases, may be an 

important therapeutic target (Blanchard et al., 2020; Liu et al., 2020; Montagne et al., 2020). 

Both of these cell types may be good candidates for further AAV optimization, but may have 

been missed with marker gene-based approaches. In both AAV characterization and 

neuroscience research efforts, different marker genes are often used for astrocyte 

classification – sometimes more restrictive genes such as Gfap, and other times more broadly 

expressing genes such as S100b or Aldh1l1 (Yang et al., 2011; Zhang et al., 2019). Similarly, 
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defining marker genes for pericytes is still an active field (He et al., 2016; Yang et al., 2021). 

Given the constraints of having to choose specific marker genes, it is difficult for staining-

based characterizations to provide tropism profiles that are relevant for diverse and changing 

research needs. This highlights the importance of using unbiased, full transcriptome profiling 

for vector characterization. 

We have shown that our combined experimental and computational platform is able to 

recover transduction biases and profile multiple variants in a single animal, even amidst the 

noise of ambient RNA. We have further shown that our method is robust to the variability 

inherent in delivery and extraction from different animals, with different transgenes, and with 

different regulatory elements. For example, we discovered lower overall expression from 

vectors carrying UBC-mCherry compared with CAG-mNeonGreen-WPRE. Such 

differences are not surprising since the WPRE is known to increase RNA stability and 

therefore transcript abundance (Johansen et al., 2003). Furthermore, the shift in cell-type bias 

may come from the UBC promoter, as even ubiquitous promoters such as CAG and UBC 

have been shown to have variable levels of expression in different cell types (Qin et al., 

2010). Despite these biases, looking at the differences in transduction between variants 

delivering the same construct within an individual animal reveals the strongest candidate 

vectors for on-target and off-target cell types of interest. While we show that our method can 

profile AAVs carrying standard fluorescent cargo, caution is needed when linking 

differences in absolute viral tropism to changes in capsid composition alone without 

considering the contribution of the transgene and regulatory elements. Therefore, for more 

robust and relative tropism between variants, we found it beneficial to use small barcodes 

and co-injections of pools of vectors. Our scRNA-seq-based approach is not restricted to 

profiling capsid variants, but can be expanded in the future to screen promoters (Chuah et 

al., 2014; Jüttner et al., 2019; Rincon et al., 2015), enhancers (Hrvatin et al., 2019; Mich et 

al., 2020), or transgenes (Gustafsson et al., 2004; Shirley et al., 2020), all of which are 

essential elements requiring optimization to improve gene therapy. 
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Finally, we have used scRNA-seq to understand how intra-orbital administration of AAV-

PHP.eB affects the host cell transcriptome across distinct time points. Results from our study 

show genes pertaining to the p53 pathway in endothelial cells are differentially expressed 3 

days after injection. The highest number of differentially expressed genes being in 

endothelial cells suggests that vascular cells could be the initial responders to viral 

transduction and expression of the transgene. This is supported by Kodali et al., who have 

shown that endothelial cells are the first to elicit a response to peripheral inflammatory 

stimulation by transcribing genes for proinflammatory mediators and cytokines (Kodali et 

al., 2020). With regards to p53 differentially expressed genes, Ghouzzi, et al. have also 

shown that the genes Phdla3, Aen, and Cdkn1a were upregulated in cells infected with ZIKA 

virus, signifying genotoxic stress and apoptosis induction (Ghouzzi et al., 2016). 

Upregulation of genes such as Bax and Cdkn1a in our data hint at an initiation of apoptosis 

and cell cycle arrest, respectively, in response to cellular stress induced by viral transduction 

(Ferreira and Nagai, 2019; Zamagni et al., 2020). The reduction in the number of differential 

expressed genes across all cells (Figure 5 B) at day twenty-five imparts that the initial 

inflammatory responses did not escalate. Downregulation of Cd209a gene in perivascular 

macrophages in our data further implies that the AAV-PHP.eB infection did not necessitate 

a primary adaptive immune response. Additionally, antigen presenting genes, such as H2-

D1, returning back to control expression levels and a lack of proinflammatory cytokines 

being upregulated supports that the event of infiltration of peripheral leukocytes is unlikely, 

in agreement with prior studies (Chamberlin et al., 1998; McCown et al., 1996). Upregulation 

of genes such as Gadd45g, Gadd45b, and Ppp1r15a suggest that neurons are turning on 

stress-related programs as an early response to encountering the virus. Genes such as Nr4a1 

and Dusp1, which play a role in the MAPK pathway, indicate sustained stress response even 

at day 25. Based on prior studies, we speculate that the genes that are differentially expressed 

at day 25 in the excitatory neurons are due to transgene expression and not due to the virion 

(Lowenstein et al., 2007). It is important to note that the findings discussed here are specific 

to the rAAV, transgene, and dosage. Our results highlight the power of single-cell profiling 

in being able to ascertain cell-type-specific responses at an early time point post-injection.  
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In summary, our platform could aid the gene therapy field by allowing more thorough 

characterization of existing and emerging recombinant AAVs by helping uncover cellular 

responses to rAAV-mediated gene therapy, and by guiding the engineering of novel AAV 

variants. 
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2.11 Methods 

Animals 

Animal husbandry and all experimental procedures involving animals were performed in 

accordance with the California Institute of Technology Institutional Animal Care and Use 

Committee (IACUC) guidelines and approved by the Office of Laboratory Animal 

Resources at the California Institute of Technology (animal protocol no. 1650). Male 

C57BL/6J mice (Stock No: 000664) used in this study were purchased from the Jackson 

Laboratory (JAX). AAV variants were injected i.v. into the retro-orbital sinus of 6–7 week 

old mice. 

Plasmids 

In vivo vector characterization of AAV variant capsids was conducted using single-stranded 

(ss) rAAV genomes. pAAV:CAG-NLS-mNeonGreen, pAAV:CAG-NLS-mRuby2, 

pAAV:CAG-tdTomato, and pAAV:CAG-NLS-tdTomato constructs were adapted from 

previous publications (Chan et al., 2017; Ravindra Kumar et al., 2020). To introduce 

barcodes into the polyA region of CAG-NLS-mNeonGreen, we digested the plasmid with 

BglII and EcoRI, and performed Gibson assembly (E2611, NEB) to insert synthesized 

fragments with 7bp degenerate nucleotide sequences 89 bp upstream of the polyadenylation 

site. We then seeded bacterial colonies and selected and performed Sanger sequencing on the 

resulting plasmids to determine the corresponding barcode. 

The UBC-mCherry-AAV-cap-in-cis plasmid was adapted from the rAAV-Cap-in-cis-lox 

plasmid from a previous publication (Deverman et al., 2016). We performed a restriction 

digest on the plasmid with BsmbI and SpeI to remove UBC-mCherry and retain the AAV9 

cap gene and remaining backbone. We then circularized the digested plasmid using a gblock 

joint fragment to get a plasmid containing AAV2-Rep, AAV9-Cap, and the remaining 

backbone via T4 ligation. In order to insert UBC-mCherry with the desired orientation and 

location, we amplified its linear segment from the original rAAV-Cap-in-cis-lox plasmid. 
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The linear UBC-mCherry-polyA segment and circularized AAV2-Rep,AAV9-cap plasmid 

were then both digested with HindIII and ligated using T4 ligation. In order to get the SV40 

PolyA element in the proper orientation with respect to the inserted UBC-mCherry, we 

removed the original segment from the plasmid using AvrII and AccI enzymes and inserted 

AvrII, AccI treated SV40 gblock using T4 ligation to get the final plasmid. 

To insert barcodes into UBC-mCherry-AAV-cap-in-cis, we obtained 300 bp DNA fragments 

containing the two desired capsid mutation regions for each variant and the variant barcode, 

flanked by BsrGI and XbaI cut sites. The three segments of the fragment were separated by 

BsaI Type I restriction sites. We digested the UBC-mCherry-AAV-cap-in-cis plasmid with 

BsrGI and XbaI, and ligated each variant insert to this backbone. Then, to reinsert the missing 

regions, we performed Golden Gate assembly with two inserts and BsaI-HF. 

Viral production 

To produce viruses carrying in trans constructs, we followed established protocols for the 

production of rAAVs (Challis et al., 2019). In short, HEK293T cells were triple transfected 

using polyethylenimine (PEI) with three plasmids: pAAV (see Plasmids), pUCmini-iCAP-

PHP.eB (Chan et al., 2017), pUCmini-iCAP-CAP-B10 (Flytzanis et al., 2020), or pUCmini-

iCAP-PHP.V1 (Ravindra Kumar et al., 2020), and pHelper. After 120 h, virus was harvested 

and purified using an iodixanol gradient (Optiprep, Sigma). For our 7-variant pool, we 

modified the protocol to be a double transfection using PEI with two plasmids: UBC-

mCherry-AAV-cap-in-cis and pHelper. 

Tissue processing for single-cell suspension 

Three to four weeks after the injection, mice (9-10 weeks old) were briefly anesthetized with 

isoflurane (5%) in an isolated plexiglass chamber followed by i.p. injection of euthasol (100 

mg/kg). The following dissociation procedure of cortical tissue into a single-cell suspension 

was adapted with modifications from a previous report (Pool et al., 2020). Animals were 

transcardially perfused with ice-cold carbogenated (95% O2 and 5% CO2) NMDG-HEPES-
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ACSF (93 mM NMDG, 2.5 mM KCl, 1.2 mM NaH2PO4, 30 mM NaHCO3, 20 mM HEPES, 

25 mM glucose, 5 mM Na L-ascorbate, 2 mM thiourea, 3 mM Na-pyruvate, 10 mM MgSO4, 

1 mM CaCl2, 1 mM kynurenic acid Na salt, pH adjusted to 7.35 with 10N HCl, osmolarity 

range 300–310 mOsm). Brains were rapidly extracted and cut in half along the anterior-

posterior axis with a razor blade. Half of the brain was used for IHC histology while the 

second half of the brain was used for scRNA-seq. Tissue used for scRNA-seq was immersed 

in ice-cold NMDG-HEPES-ACSF saturated with carbogen. The brain was sectioned into 

300-μm slices using a vibratome (VT-1200, Leica Biosystems, IL, USA). Coronal sections 

from Bregma −0.94 mm to −2.80 mm were collected in a dissection dish on ice containing 

NMDG-HEPES-ACSF. Cortical tissue from the dorsal surface of the brain to ~3.5 mm 

ventral was cut out and further sliced into small tissue pieces. NMDG-HEPES-ACSF was 

replaced by trehalose-HEPES-ACSF (92 mM NaCl, 2.5 mM KCl, 1.2 mM NaH2PO4, 30 

mM NaHCO3, 20 mM HEPES, 25 mM glucose, 2 mM MgSO4, 2 mM CaCl2, 1 mM 

kynurenic acid Na salt, 0.025 mM D-(+)-trehalose dihydrate*2H2O, pH adjusted to 7.35, 

osmolarity ranging 320–330 mOsm) containing papain (60 U/ml; P3125, Sigma Aldrich, 

pre-activated with 2.5 mM cysteine and a 0.5–1 h incubation at 34°C, supplemented with 0.5 

mM EDTA) for the enzymatic digestion. Under gentle carbogenation, cortical tissue was 

incubated at 34°C for 50 min with soft agitation by pipetting every 10 min. 5 μl 2500 U/ml 

DNase I (04716728001 Roche, Sigma Aldrich) was added to the single-cell suspension 10 

min before the end of the digestion. The solution was replaced with 200 μl trehalose-HEPES-

ACSF containing 3 mg/ml ovomucoid inhibitor (OI-BSA, Worthington) and 1 μl DNase I. 

At room temperature, the digested cortical tissue was gently triturated with fire-polished 

glass Pasteur pipettes for three consecutive rounds with decreasing pipette diameters of 600, 

300, and 150 μm. 800 μl of trehalose-HEPES-ACSF with 3 mg/ml ovomucoid inhibitor was 

added. The uniform single-cell suspension was pipetted through a 40 μm cell strainer 

(352340, Falcon) into a new microcentrifuge tube followed by centrifugation at 300 g for 5 

min at 4°C. The supernatant was discarded and cell pellet was resuspended in 1 ml of 

trehalose-HEPES-ACSF. After mixing using a Pasteur pipette with a 150 μm tip diameter, 

the single-cell suspension was centrifuged again. Supernatant was replaced with fresh 

trehalose-HEPES-ACSF and the resuspended cell pellet was strained with a 20 μm nylon net 
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filter (NY2004700, Millipore). After resuspension in trehalose-HEPES-ACSF, cells were 

pelleted again and resuspended in 100 μl of ice-cold resuspension-ACSF (117 mM NaCl, 2.5 

mM KCl, 1.2 mM NaH2PO4, 30 mM NaHCO3, 20 mM HEPES, 25 mM glucose, 1 mM 

MgSO4, 2 mM CaCl2, 1 mM kynurenic acid Na salt and 0.05% BSA, pH adjusted to 7.35 

with Tris base, osmolarity range 320–330 mOsm). Cells were counted with a hemocytometer 

and the final cell densities were verified to be in the range of 400–2,500 cells/μl. The density 

of single-cell suspension was adjusted with resuspension-ACSF if necessary. 

Transcriptomic library construction 

Cell suspension volumes containing 16,000 cells–expected to retrieve an estimated 10,000 

single-cell transcriptomes–were added to the 10x Genomics RT reaction mix and loaded to 

the 10x Single Cell Chip A (230027, 10x Genomics) for 10x v2 chemistry or B (2000168, 

10x Genomics) for 10x v3 chemistry per the manufacturer’s protocol (Document CG00052, 

Revision F, Document CG000183, Revision C, respectively). We used the Chromium Single 

Cell 3’ GEM and Library Kit v2 (120237, 10x genomics) or v3 (1000075, 10x Genomics) to 

recover and amplify cDNA, applying 11 rounds of amplification. We took 70 ng to prepare 

Illumina sequencing libraries downstream of reverse transcription following the 

manufacturer’s protocol, applying 13 rounds of sequencing library amplification. 

Viral library construction 

We selectively amplified viral transcripts from 15 ng of cDNA using a cargo-specific primer 

binding to the target of interest and a primer binding the partial Illumina Read 1 sequence 

present on the 10x capture oligos (Supplemental Table 1). For animals injected with a single 

cargo, amplification was performed only once using the primer for the delivered cargo; for 

animals with distinct cargo sequences per variant, amplification was performed in parallel 

reactions from the same cDNA library using different cargo-specific primers for each 

reaction. We performed the amplification using 2x KAPA HiFi HotStart ReadyMix 

(KK2600) for 28 cycles at an annealing temperature of 53°C. Afterwards, we performed a 

left-sided SPRI cleanup with a concentration dependent on the target amplicon length, in 



 

 

69 
accordance with the manufacturer’s protocol (SPRISelect, Beckman Coulter B23318). We 

then performed an overhang PCR on 100 ng of product with 15 cycles using primers that 

bind the cargo and the partial Illumina Read 1 sequence and appending the P5/P7 sequences 

and Illumina sample indices. We performed another SPRI cleanup, and analyzed the results 

via an Agilent High Sensitivity DNA Chip (Agilent 5067-4626). 

Sequencing 

Transcriptome libraries were pooled together in equal molar ratios according to their DNA 

mass concentration and their mean transcript size as determined via bioanalyzer. Sequencing 

libraries were processed on Novaseq 6000 S4 300-cycle lanes. The run was configured to 

read 150 bp from each end. Sequencing was outsourced to Fulgent Genetics and the UCSF 

Center for Advanced Technology. 

All viral transcript libraries except barcoded UBC-mCherry were pooled together in equal 

molar ratios into a 4 nM sequencing library, then diluted and denatured into a 12 pM library 

as per the manufacturer’s protocol (Illumina Document #15039740v10). The resulting 

library was sequenced using a MiSeq v3 150-cycle reagent kit (MS-102-3001), configured 

to read 91 base pairs for Read 2 and 28 base pairs for Read 1. To characterize the effect of 

sequencing depth, one viral transcript library was additionally processed independently on a 

separate MiSeq run. 

The UBC-mCherry viral transcript library, which was recovered with primers near the 

polyadenylation site, consisted of fragments ~307 bp long. Since this length is within the 

common range for an Illumina NovaSeq run, this viral transcript library was pooled and 

included with the corresponding transcriptome library. 

Transcriptome read alignment 

For transcriptome read alignment and gene expression quantification, we used 10x Cell 

Ranger v5.0.1 with default options to process the FASTQ files from the transcriptome 
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sequencing library. The reads were aligned against the mus musculus reference provided by 

Cell Ranger (mm10 v2020-A, based on Ensembl release 98). 

To detect viral transcripts in the transcriptome, we ran an additional alignment using 10x 

Cell Ranger v5.0. 1 with a custom reference genome based on mm10 v2020-A. We followed 

the protocol for constructing a custom Cell Ranger reference as provided by 10x Genomics. 

This custom reference adds a single gene containing all the unique sequences from our 

delivered plasmids in the study, delineated as separate exons. Sequences that are common 

between different cargo are provided only once, and annotated as alternative splicings. 

Viral transcript read alignment 

For viral read alignment, we aligned each Read 2 to a template derived from the plasmid, 

excluding barcodes. The template sequence was determined by starting at the ATG start site 

of the XFP cargo and ending at the AATAAA polyadenylation stop site. We used a Python 

implementation of the Striped Smith-Waterman algorithm from scikit-bio to calculate an 

alignment score for each read, and normalized the score by dividing by the maximum 

possible alignment score for a sequence of that length, minus the length of the barcode region. 

For each Read 2 that had a normalized alignment score of greater than 0.7, we extracted the 

corresponding cell barcode and UMI from Read 1, and any insertions into the template from 

Read 2. 

Constructing the variant lookup table 

For co-injections with multiple templates and injections of barcoded templates, we 

constructed a lookup table to identify which variant belongs to each cell barcode/UMI. For 

each template, we counted the number of reads for each cell barcode/UMI. For reads of 

barcoded cargo, we only counted reads where the detected insertion in the barcode region 

unambiguously aligned to one of the pre-defined variant barcodes. Due to sequencing and 

PCR amplification errors, most cell barcode/UMI combinations had reads associated with 

multiple variants. Thus, we identified the variant with the largest count for each cell 
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barcode/UMI. We discarded any cell barcode/UMIs that had more than one variant tied for 

the largest count. Finally, each cell barcode/UMI that was classified as a viral transcript in 

the transcriptome (see Transcriptome read alignment) was converted into the virus detected 

in the variant lookup table, or was discarded if it did not exist in the variant lookup table. 

Estimating transduction rate 

To determine an estimate of the percent of cells within a group expressing viral cargo above 

background, we compared the viral transcript counts in that group of cells to a background 

distribution of viral transcript counts in debris (see Droplet type classification). First, we 

obtained the empirical distribution of viral transcript counts by extracting the viral counts for 

that variant in cell barcodes classified as the target cell type as well as cell barcodes classified 

as debris. Next, we assumed a percentage of cells containing debris. For each viral transcript 

count, starting at 0, we calculated the number of cells that would contain this transcript count, 

if the assumed debris percentage was correct. We then calculated an error between this 

estimate and the number of cells with this transcript count in the cell type of interest. We 

tallied this error over all the integer bins in the histogram, allowing the error in a previous 

bin to roll over to the next bin. We repeated this for all possible values of percentage of debris 

from 0 to 100 in increments of 0.25, and the value that minimized the error was the estimated 

percentage of cells whose viral transcript count could be accounted for by debris. The inverse 

of this was our estimate of the number of cells expressing viral transcripts above background. 

To validate that this method reliably recovers an estimate of transduction rate, we performed 

a series of simulations using models of debris viral transcript counts added to proposed cell 

type transcript count distributions across a range of parameterizations. To get estimates of 

the background distribution of debris, we used diffxpy (https://github.com/theislab/diffxpy) 

to fit the parameters of a negative binomial distribution to the viral transcript counts in debris 

droplets within a sample. We then postulated 1,000 different parameterizations of the 

negative binomial representing transcript counts in groups of cells, with 40 values of r 

ranging from 0.1 to 10, spaced evenly apart, and 25 values of p ranging from 0.001 to 0.99, 

spaced evenly apart. For each proposed negative binomial model, we drew 1,000 random 

https://github.com/theislab/diffxpy
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samples of viral counts from the learned background distribution, and 1,000 random samples 

from the proposed cell distribution, and summed the two vectors. This summed vector was 

then used in our transduction rate estimation function, along with a separate 1,000 random 

samples of background viral transcripts for the function to use as an estimate of the 

background signal. We calculated the true probability of non-zero expression in our proposed 

cell negative binomial model (1 – P(X = 0)), and compared this value with the estimated 

value from the transduction rate estimation method. 

Calculating viral tropism 

For each variant vn and cell type of interest ci, we estimated the percentage of cells expressing 

viral cargo. To calculate tropism bias, we used this estimated expression rate, 𝑡𝑡𝑐𝑐𝑖𝑖,𝑣𝑣𝑛𝑛, to 

estimate the number of cells expressing viral transcripts in that cell type, 𝑇𝑇𝑐𝑐𝑖𝑖,𝑣𝑣𝑛𝑛 out of the total 

number of cells of that type, 𝑁𝑁𝑐𝑐𝑖𝑖.  𝑇𝑇𝑐𝑐𝑖𝑖,𝑣𝑣𝑛𝑛 =  𝑡𝑡𝑐𝑐𝑖𝑖,𝑣𝑣𝑛𝑛𝑁𝑁𝑐𝑐𝑖𝑖. Cell type bias, 𝑏𝑏𝑐𝑐𝑖𝑖,𝑣𝑣𝑛𝑛, within a sample 

was then calculated as the ratio of the number of cells of interest divided by the total number 

of transduced cells, 𝑏𝑏𝑐𝑐𝑖𝑖,𝑣𝑣𝑛𝑛 =  
𝑇𝑇𝑐𝑐𝑖𝑖,𝑣𝑣𝑛𝑛
∑ 𝑇𝑇𝑐𝑐𝑗𝑗𝑣𝑣𝑛𝑛𝑗𝑗

. Finally, to calculate the difference in transduction bias 

for a particular variant relative to other variants in the sample, 𝛿𝛿𝑐𝑐𝑖𝑖,𝑣𝑣𝑛𝑛, we subtracted the bias 

of the variant from the mean bias across all other variants, 𝛿𝛿𝑐𝑐𝑖𝑖,𝑣𝑣𝑛𝑛 =  
𝑇𝑇𝑐𝑐𝑖𝑖,𝑣𝑣𝑛𝑛
∑ 𝑇𝑇𝑐𝑐𝑗𝑗𝑣𝑣𝑛𝑛𝑗𝑗

−  
∑ 𝑇𝑇𝑐𝑐𝑖𝑖,𝑣𝑣𝑚𝑚𝑚𝑚≠𝑛𝑛

∑ ∑ 𝑇𝑇𝑐𝑐𝑗𝑗,𝑣𝑣𝑚𝑚𝑗𝑗𝑚𝑚≠𝑛𝑛
. 

Histology 

Immunohistochemistry 

The immunohistochemistry procedure was adapted from a previous publication (Oikonomou 

et al., 2019). Brain tissue was fixed in 4% paraformaldehyde (PFA) at 4°C overnight on a 

shaker. Samples were immersed in 30% sucrose in 1x phosphate buffered saline (PBS) 

solution for >2 days and then embedded in Tissue-Tek O.C.T. Compound (102094-104, 

VWR) before freezing in dry ice for 1 h. Samples were sectioned into 50 μm coronal slices 

on a cryostat (Leica Biosystems). Brain slices were washed once with 1x phosphate buffered 

saline (PBS) to remove O.C.T. Compound. Samples were then incubated overnight at 4°C 
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on a shaker in a 1x PBS solution containing 0.1% Triton X-100, 10% normal goat serum 

(NGS; Jackson ImmunoResearch, PA, USA), and primary antibodies. Sections were washed 

three times for 15 min each in 1x PBS. Next, brain slices were incubated at 4°C overnight 

on a shaker in a 1x PBS solution containing 0.1% Triton X-100, 10% NGS, and secondary 

antibodies. Sections were washed again three times for 15 min each in 1x PBS. Finally, slices 

were mounted on glass microscope slides (Adhesion Superfrost Plus Glass Slides, #5075-

Plus, Brain Research Laboratories, MA, USA). After the brain slices dried, DAPI-containing 

mounting media (Fluoromount G with DAPI, 00-4959-52, eBioscience, CA, USA) was 

added before protecting the slices with a cover glass (Cover glass, #4860-1, Brain Research 

Laboratories, MA, USA). Confocal images were acquired on a Zeiss LSM 880 confocal 

microscope (Zeiss, Oberkochen, Germany). The following primary antibodies were used: 

rabbit monoclonal to NeuN (Rbfox3) (1:500; ab177487; Abcam, MA, USA), rabbit 

monoclonal to S100 beta (1:500; ab52642; Abcam, MA, USA), and rabbit monoclonal to 

Olig2 (1:500; ab109186; Abcam, MA, USA). The following secondary antibody was used: 

goat anti-rabbit IgG H&L Alexa Fluor 647 (1:500; ab150079; Abcam, MA, USA). 

Fluorescent in situ hybridization chain reaction 

FISH-HCR  was  conducted  as  previously  reported (Patriarchi et al., 2018). Probes 

targeting neuronal markers were designed using custom-written software 

(https://github.com/GradinaruLab/HCRprobe). Probes contained a target sequence of 20 

nucleotides, a spacer of 2 nucleotides, and an initiator sequence of 18 nucleotides. Criteria 

for the target sequences were: (1) a GC content between 45%–60%, (2) no nucleotide repeats 

more than three times, (3) no more than 20 hits when blasted, and (4) the ∆G had to be above 

–9 kcal/mol to avoid self-dimers. Last, the full probe sequence was blasted and the Smith-

Waterman alignment score was calculated between all possible pairs to prevent the formation 

of cross-dimers. In total, we designed 26 probes for Gad1, 20 probes for Vip, 22 probes for 

Pvalb, 18 probes for Sst, and 28 probes for Slc17a7. Probes were synthesized by Integrated 

DNA Technologies. 

Droplet type identification 

https://github.com/GradinaruLab/HCRprobe)
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scRNA-seq datasets were analyzed with custom-written scripts in Python 3.7.4 using a 

custom fork off of scVI v0.8.1, and scanpy v1.6.0. To generate a training dataset for 

classifying a droplet as debris, multiplets, neuronal, or non-neuronal cells, we randomly 

sampled cells from all 27 cortical tissue samples. We sampled a total of 200,000 cells, taking 

cells from each tissue sample proportional to the expected number of cells loaded into the 

single-cell sequencing reaction. Within each sample, cells were drawn randomly, without 

replacement, weighted proportionally by their total number of detected UMIs. For each 

sample, we determined a lower bound on the cutoff between cells and empty droplets by 

constructing a histogram of UMI counts per cell from the raw, unfiltered gene count matrix. 

We then found the most prominent trough preceding the first prominent peak, as 

implemented by the scipy peak_prominences function. We only sampled from cells above 

this lower bound. Using these sampled cells, we trained a generative neural network model 

via scVI with the following parameters: 20 latent features, 2 layers, and 256 hidden units. 

These parameters were chosen from a coarse hyperparameter optimization centered around 

the scVI default values (Supplemental Table 3). We included the sample identifier as the 

batch key so that the model learned a latent representation with batch correction. 

After training, Leiden clustering was performed on the learned latent space as implemented 

by scanpy. We used default parameters except for the resolution, which we increased to 2 to 

ensure isolation of small clusters of cell multiplets. Using the learned generative model, we 

draw 5000 cells from the posterior distribution based on random seed cells in each cluster. 

We draw an equal number conditioned on each batch. From these samples, we then 

calculated a batch-corrected probability of each cluster expressing a given marker gene (see 

Cluster marker gene determination). For this coarse cell typing, we chose a single marker 

gene for major cell types expected in the cortex (Supplemental Table 2). If a cluster was 

expressing the neuron marker gene Rbfox3, it was labeled as “Neurons”. If a cluster was 

expressing any of the other non-neuronal marker genes, it was labelled as “Non-neurons”. 

Next, we ran Scrublet on the training cells to identify potential multiplets. Scrublet was run 

on each sample independently, since it is not designed to operate on combined datasets with 

potential batch-specific confounds. We then calculated the percentage of droplets in each 
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cluster of the combined data that were identified as multiplets by Scrublet. We found a 

percentage threshold for identifying a cluster as containing predominantly multiplets by 

using Otsu’s threshold, as implemented by scikit-image. All droplets in any cluster above the 

multiplet percentage threshold were labelled as “Multiplets”. All other clusters were labelled 

as “Debris”. 

Next, we trained a cell-type classifier using scANVI on the droplets labeled as training data. 

We used the weights from the previously trained scVI model as the starting weights for 

scANVI. Rather than using all cells for every epoch of the trainer, we implemented an 

alternative sampling scheme that presented each cell type to the classifier in equal 

proportions. Once the model was trained, all cells above the UMI lower noise bound were 

run through the classifier to obtain their cell-type classification. Droplets classified as 

“Neurons” or “Non-neurons” were additionally filtered by their scANVI-assigned 

probability. We retained only cells above an FDR threshold of 0.05, corrected for multiple 

comparisons using the Benjamini-Hochberg procedure. Finally, since the original run of 

Scrublet for multiplet detection was performed on only the training data, and thus did not 

take advantage of all the cells available, we ran Scrublet on all droplets classified as cells, 

and removed any identified multiplets. 

Cluster marker gene determination 

To identify which clusters are expressing marker genes, we determined an estimated 

probability of a marker gene being expressed by a random cell in that cluster. For each 

cluster, we randomly sampled 5,000 cells, with replacement. We used scVI to project each 

cell into its learned latent space, and then used scVI’s posterior predictive sampling function 

to generate an example cell from this latent representation, and tallied how many times the 

gene is expressed. We repeated this for each batch, conditioning the posterior sample on that 

batch, to account for technical artifacts such as sequencing depth. Once we obtained a 

probability of expression of a marker gene for each cluster, we find a threshold for expression 

using Otsu’s method, as implemented by scikit-image. Clusters that have a probability of 

expression above the threshold are considered positive for that marker gene. 
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Neuronal subtype classification 

Cells classified as neurons were further subtyped using annotations from a well-curated 

reference dataset. We used the Mouse Whole Cortex and Hippocampus 10x dataset from the 

Allen Institute for Brain Science as our reference dataset (Yao et al., 2021). First, we filtered 

the reference dataset to contain only cell types that are found within the brain regions 

collected for our experiments. To ensure that, overall, enough cells per cell type were present 

in our datasets, we merged cell types with common characteristics, such as expression of key 

marker genes. We re-aligned our cell transcriptome reads to the same pre-mRNA reference 

used to construct the reference dataset, so that the gene count matrices had a 1:1 mapping. 

We then trained a joint scANVI model with all cells identified as neurons from our samples 

and the reference database to learn a common latent space between them. The model was 

trained to classify cells based on the labels provided in the reference dataset. Cells were 

sampled from each class in equal proportions during training. After the model was trained, 

all neurons from our sample were run through the model to obtain their cell type 

classification. 

Non-neuronal subtype classification 

Cells classified as non-neuronal were further subtyped using automatic clustering and marker 

gene identification. We trained an scVI model using only the non-neuronal cells and 

performed Leiden clustering as implemented by scanpy on the latent space. We determined 

which clusters were expressing each of 31 marker genes across 13 cell subtypes. Marker 

genes were identified from a review of existing scRNA-seq, bulk RNA-seq, or IHC studies 

of mouse brain non-neuronal subtypes (Supplemental Table 2). Each cluster was assigned to 

a cell subtype if it was determined positive for all the marker genes for that cell subtype (see 

Cluster marker gene determination). If a cluster contained all the marker genes for multiple 

cell subtypes, the cluster was assigned to the cell subtype with the greatest number of marker 

genes. Clusters that did not express all the marker genes for any cell subtype were labeled as 

“Unknown”. Clusters that expressed all the marker genes for multiple cell subtypes with the 

same total number of marker genes were labeled as “Multiplets”. For cell types that contained 
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multiple clusters, we then calculated the probability of every gene being zero in each cluster 

(see Cluster marker gene determination). We then compared gene presence between clusters 

of the same cell type to see if there were any subclusters that had a dominant marker gene 

(present in > 50% of samples), that was not present in any of the other clusters (< 10% of 

samples). For the three cell types that had unique marker genes, we named the cluster after 

the gene with the highest 2-proportion z-score between the sampled gene counts in that 

cluster vs the rest.  

Quantification of images 

Quantitative data analysis of confocal images was performed blind with regard to AAV 

capsid variant. Manual quantification was performed using the Cell Counter plugin, present 

in the Fiji distribution of ImageJ (National Institutes of Health, Bethesda, MD) (Schindelin 

et al., 2012). Transduction rate was calculated as the total number of double positive cells 

(i.e. viral transgene and cell type marker) divided by the total number of cell type marker 

labeled cells. For each brain slice, at least 100 cells positive for the gene markers of interest 

were counted in the cortex. 

Differential expression 

To calculate differential expression within cell types between groups of animals, we used the 

DESeq2 R package (Love et al., 2014). For each cell type, the gene counts are summed across 

all cells of that type and treated as a pseudo-bulk sample. The summed gene counts from 

each animal are then included as individual columns for a DESeq2 differential expression 

analysis. We performed 3 DPI DE and 25 DPI separately, testing each sample against saline-

injected controls. For each cell type, only genes that were present in all samples of at least 

one condition are included. 

Marker gene dot plots 

To generate dot plots for marker genes, we used scanpy’s dotplot function (Wolf et al., 2018). 

Gene counts were normalized to the sum of the total transcript counts per cell using scanpy’s 
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normalize_total function. Normalized gene expression values are log-transformed as part of 

the plotting function. 

Statistics 

Statistical analyses comparing the fraction of transduced cells in different cell types for 

Figures 2, 3, and 4 C were conducted using GraphPad Prism 9. Statistical analyses comparing 

proportions of transduced cells within an animal in Figure 4 E and Figure 6 were performed 

using the Python statsmodels library v0.12.1. No statistical methods were used to 

predetermine sample sizes. The statistical test applied, sample sizes, and statistical significant 

effects are reported in each figure legend. The significance threshold was defined as a = 0.05. 

2.12 Supplemental Material  
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Supplemental Figure 1. Plasmid details. (A) Size of typical transcriptome cDNA library 

post-fragmentation. Both distinguishing XFPs and variant barcodes fall outside the typical 

capture region of single-cell RNA sequencing workflows. (B) UBC-mCherry-AAV-cap-in-cis 

plasmid used for 7-variant barcoded pool. (C) Visualization of the construction procedure 

for the custom genome reference. Variant cargos are segmented into common and 

uncommon regions, and each unique segment is concatenated together as a contiguous gene. 

Variants are defined as different splicings of the custom AAV gene. 

 

 

Supplemental Figure 2. Expression rate estimation. (A) Percent of cells expressing AAV-

PHP.eB cargo transcripts above a fixed threshold in a single sample. (B) An example of the 

distribution of viral transcript counts in a single animal from AAV-PHP.eB carrying CAG-

mNeonGreen-WPRE in neurons and astrocytes. (C) Visualization of our expression-rate 

estimation algorithm. The distribution of the cell type of interest and background debris is 
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obtained. An error is calculated for different estimates of the percent of the cells that express 

background levels of transcripts. This error is minimized to find the best fit. (D) Performance 

of the expression rate estimation algorithm on simulated data consisting of negative binomial 

distributions with parameters r between 0.1 and 10 and p between 0.001 and 0. 99, spaced 

evenly apart. (E) Comparison between mean transcripts/cell (x) and the estimated 

transduction rate (y) in major cell types for AAV-PHP.eB across 9 samples. 

 

Supplemental Figure 3: Noise from debris and doublets. (A) An example of a Cell Ranger 

filtered dataset. This is a t-SNE projection of the log-normalized gene expression space. 

Suspected debris clusters are outlined. (B) Marker gene expression for the major cell types 

in the brain—Oligodendrocytes/Olig2, Astrocytes/Aldh1l1, Neurons/Rbfox3, Vascular 
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Cells/Cldn5, Immune Cells/Tmem119—for each cluster. Darker colors indicate higher mean 

expression, and dot size correlates with the abundance of the gene in that cluster. (C) An 

example of a multiplet cluster from the joint scVI space of all training samples, projected via 

t-SNE. Cluster 51 is annotated, and raw gene expression of Cldn5 and Cx3cr1 are shown. 

The percentage of cells in cluster 51 expressing each marker gene is displayed. (right) 

Predicted doublets from Scrublet are overlaid in red. 
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Supplemental Figure 4. Cell typing. (A) Cell typing workflow. A subset of cells are used for 

training. For each marker gene, clusters expressing that marker gene are identified. Clusters 

that have no marker genes (debris) or are determined to be multiplets via Scrublet are 

marked for removal. Training data used to train a scANVI model to predict the remaining 

cells. A reference database can be used instead of manually labeled cells, as we did for 

neuronal subtypes. (B) Cell-type distribution of all identified cells from our combined cell-

type taxonomy. This includes samples described in the study as well as additional controls 

and animals used for troubleshooting and prototyping. (C) Cell-type percentages across the 

major cell types in the ten samples used for AAV tropism characterization. One of the 

samples, BC1, had dramatically fewer neurons than any other sample and correspondingly 

higher percentages of non-neurons. (D) Mitochondrial gene ratio and total transcript counts 

of the major cell type clusters in the ten samples used for tropism characterization. 
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Supplemental Figure 5. Transcript expression. (A) Viral transcript expression of different 

barcodes across two samples (S1, S2). Each point is a distinct barcode. (B) Viral transcript 

abundance in entire samples (viral transcripts / total transcripts) across different variants 

carrying different cargo. (C) Fraction of transcripts detected in vascular cells vs all other 

cell types. 
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Supplemental Figure 6. Inter-sample variability. (A) The standard deviations between 

measurements of the fraction of transduced cells in all major non-neuronal cell types in AAV-

PHP.V1 and AAV-PHP.eB. Inter-sample variance (left) refers to the standard deviation 

between animals, and intra-sample variance (right) refers to the standard deviation between 

barcodes within the same animal. (B) The distribution of recovered cell types compared to 

the distribution of transduced cells across nine samples injected with AAV-PHP.eB. 
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Supplemental Figure 7. Cell subtype inspection. (A) Estimated transduction rate of 

endothelial cells vs pericytes across all samples and variants. (B) Pairwise transduction rate 

of Myoc+ and Myoc- astrocytes across all variants and samples. Each point is a single 

variant in a different sample. (C) Pairwise transduction rate of Vip+ neurons vs all other 

inhibitory neurons across all variants and samples. 

 

Supplemental Figure 8. Cell subtype markers. Gene expression of additional marker genes 

for astrocyte and OPC subtypes. 

Supplemental Table 1. Primers. Primers used for round 1 and round 2 amplification of 
viral transcripts. Primers with TC1 and TC2 in the amplicon name indicate they were used 
only for those samples. 

Amplicon Read Round Sequence (Ns indicate Illumina sample index) 

All Viruses 1 1 CTACACGACGCTCTTCCGATCT 
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All Viruses 1 2 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCT
ACACGACGCTCTTCCGAT 

mNeonGreen 
TC1 

2 1 TTCAAGGAGTGGCAAAAGGCCTTTACCGATGTGAT 

mRuby2 2 1 CAACGGGAACATGCAGTTGCCAAGTTTGCTGG 

mNeonGreen 2 1 TAACTATCTGAAGAACCAGCCGATGTAC 

tdTomato TC2 2 1 AGGACTACACAATTGTCGAACAGTATGAG 

tdTomato 2 1 ACAACGAGGACTACACCATCGTGG 

mCherry 2 1 CATCGTGGAACAGTACGAACG 

WPRE 2 2 CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGAC
TGGAGTTCAGACGTGTGCTCTTCCGATCTAGACGAGTC
GGATCTCCCT 

mNeonGreen 2 2 CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGAC
TGGAGTTCAGACGTGTGCTCTTCCGATCTTTCAAGGAG
TGGCAAAAGGC 

mRuby2 2 2 CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGAC
TGGAGTTCAGACGTGTGCTCTTCCGATCTCAACGGGAA
CATGCAGTTGC 

tdTomato TC2 2 2 CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGAC
TGGAGTTCAGACGTGTGCTCTTCCGATCTGCATGGACG
AGCTGTACAAG 

tdTomato 2 2 CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGAC
TGGAGTTCAGACGTGTGCTCTTCCGATCTCCTCTTTCTC
TATGGGATGGATGA 

mCherry 2 2 CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGAC
TGGAGTTCAGACGTGTGCTCTTCCGATCTCGGCATGGA
CGAGCTGT 

 

Supplemental Table 2. Marker Genes. 
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Cell Type Marker Gene(s) 

Astrocytes Aldh1l1 (Cahoy et al., 2008), Sox9 (Sun et al., 2017) 

Neurons Rbfox3 (Lin et al., 2016) 

Vascular Cells Cldn5 (Song et al., 2020)  

Endothelial Cells Slc2a1 (Veys et al., 2020) 

Pericytes Pdgfrb (Winkler et al., 2010), Rgs5, Abcc9 (He et al., 
2016) 

Red Blood Cells Hba-a1, Hba-a2 (Capellera-Garcia et al., 2016) 

Vascular SMCs Acta2, Myh11, Tagln (Chasseigneaux et al., 2018) 

Vascular LMCs Fam180a, Slc6a13, Dcn, Ptgds (Marques et al., 2016) 

Microglia Cx3cr1, Tmem119  (Jordão et al., 2019) 

Leukocytes Itgal, Gzma (Huang and Sabatini, 2020) 

Perivascular Macropages Mrc1 (Jordão et al., 2019) 

Oligodendrocytes Olig2 (Dai et al., 2015) 

OPCs Pdgfra, Cspg4 (Suzuki et al., 2017) 

Mature Oligos Mog, Mbp (Miron et al., 2011) 

Committed Oligos Ptprz1, Bmp4, Nkx2-2, Vcan (Marques et al., 2016) 

 

Supplemental Table 3. scVI Hyperparameter Tuning 

Dispersion Latent Lib 
Size 

# Latent # Layers # Hidden Test KL 
Divergence 

Gene False 10 1 128 5366.4 
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Gene-
batch 

True 10 1 128 5406.1 

Gene True 10 1 128 5391.0 

Gene-
batch 

True 50 2 512 5362.6 

Gene-
batch 

False 10 1 128 5378.7 

Gene False 25 1 128 5354.6 

Gene False 25 2 256 5337.8 

Gene False 20 2 256 5336.7 

Gene False 40 4 1024 5338.0 

 

Supplemental Table 4. Sample Metadata. Supplemental file contains the following fields. 

Field Name Description 

10X Version Whether the sample was processed using 10X V2 
or V3 chemistry 

Animal ID A unique animal identifier. Some animals provided 
multiple samples 

Target # Cells The target number of cells for extraction. 1.6X this 
number is loaded into the 10X Chromium 
instrument 

# Recovered Cells The number of cells recovered, after debris and 
multiplet filtering 

Cell Ranger # Cells The number of cells as predicted by Cell Ranger 

Predicted Multiplets The number of predicted multiplets 

Transcriptome Sequencing 
Depth 

The number of reads 
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Transcriptome Reads/Cell The number of reads divided by the number of 
recovered cells 

Median UMIs/Cell Of the recovered cells, the median total UMI count 

Median Genes/Cell Of the recovered cells, the median number of 
genes detected with at least one transcript 

Variants Recovered Which variants were recovered from this sample. 
Samples labeled “Cell Typing Only” were not used 
for tropism analysis, but were included in the cell 
type classifier 

Virus Sequencing Depth The number of reads of the amplified viral 
transcripts across all templates 

Virus Reads/Cell The read depth of the amplified viral transcripts 

Age at Extraction (Days) The age of the animal at extraction time 

Virus Incubation Time (Days) How many days prior to extraction the animal was 
injected 

Percent of Virus UMIs 
Determined 

What percent of transcriptome reads that aligned 
to the virus gene were disambiguated from the 
amplified lookup table 

 

Supplemental Table 5. Variant Barcodes 

Variant Cargo Barcodes 

AAV-PHP.eB pAAV:CAG-NLS-
mNeonGreen 

 

AAV-PHP.V1 pAAV:CAG-NLS-mRuby2  

AAV-PHP.eB pAAV:CAG-NLS-
mNeonGreen 

CCTGACA, GGACAGA, GCACAGA, 
CGAGAGA 

AAV-PHP.V1 pAAV:CAG-tdTomato  
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AAV-PHP.V1 pAAV:CAG-NLS-
mNeonGreen 

CAGTGTC, GAGAGTG, GTGTGAG 

AAV-CAP-B10 pAAV:CAG-NLS-
mNeonGreen 

 

AAV-PHP.eB pAAV:CAG-NLS-tdTomato  

AAV-CAP-B10 pAAV:CAG-NLS-tdTomato  

AAV9 UBC-mCherry-AAV-cap-in-
cis 

CGTCTCAGCTATAACTTCCAA 

CGAGGTCGTAAGGTCGGCATT 

TGATTATCATGCCTGCTCAGG 

AAV-PHP.B UBC-mCherry-AAV-cap-in-
cis 

TATACCCAACCACTCAGTCCC 

CGGTTTTAGCACGGCCATAGA 

AAGCGATGTCTCTACACGATA 

AAV-PHP.eB UBC-mCherry-AAV-cap-in-
cis 

TACAGCTTTTTGACTGGAGGT 

CTGGCATTAATACGCGGGTCA 

TACAGGTCCTAGACAGGTGAT 

AAV-CAP-B10 UBC-mCherry-AAV-cap-in-
cis 

GCTGGGCGTTAAAGTACTCGC 

GCAACTGGGATAATCGTAGTC 

AACGGAGTGAACGGACCCTAG 

AAV-PHP.V1 UBC-mCherry-AAV-cap-in-
cis 

GTGGCGGGTTTCCGAAAAAGT 

TCGTCGGCACTCTCTTAGAGC 

CATGTGATAGTGAAGCACGCC 

AAV-PHP.C1 UBC-mCherry-AAV-cap-in-
cis 

TCTGTGCTGCTCTTCTAACAA 

TCTGACGGCGGGTAAACACTG 

TGGCCACCCGCAGAGTATACT 

AAV-PHP.C2 UBC-mCherry-AAV-cap-in-
cis 

GACTAGGGTAAGTGAGCTATG 

CGAATTTCTTCCATACCTCCT 

TAGTGCCAACAACGGAGAAGA 
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Supplemental Table 6. Differentially Expressed Genes. Supplemental file contains one 
tab for astrocytes, pericytes, and OPCs, with the following fields. 

Field Name Description 

Gene ID The Ensembl Gene ID 

Gene name The canonical gene name 

P Non Zero The probability of a cell expressing this gene in this 
cluster 

P Non Zero Rest The probability of a cell expressing this gene in the other 
cell subtype clusters 

 

Supplemental Table 7. Differentially Expressed Genes Across Time Points. 
Supplemental file contains one tab per cell type, with the following fields. 

Field Name Description 

Gene ID The Ensembl Gene ID 

Gene name The canonical gene name 

Mean expression The mean expression of this gene in this group 

L2FC The log fold change of this gene 

L2FC SE The standard error of the L2FC 

Stat The stat, as reported by DESeq2 

P-value The unadjusted P-value 

Adjusted P-value The adjusted P-value 
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C h a p t e r  3  

APPROACHES TOWARDS ENGINEERING THE NEURONAL ARC 

CAPSID FOR TARGETED RNA EXPORT 

3.1 Introduction 

Efficient and targeted RNA delivery could have numerous applications, from trafficking 

undesired RNA to degradation sites and studying intracellular trafficking, to perturbation 

studies of intercellular communication. In terms of disease, it has been shown that 

transcription of non-coding DNA repeats generates expanded RNA transcripts that are toxic 

to the cells, causing disruption of multiple downstream cellular processes and resulting in 

multisystem health disorders (Ranum, et al. 2006). Myotonic Dystrophy 1 (DM1) is 

considered to be one of such multisystem disorders in which there is an abnormal expansion 

of trinucleotide repeat sequences. Another undesired form of RNA that can be present in 

mammalian cells is that of latent RNA viruses, such as that of HIV and Human T-cell 

leukemia virus type 1 (HTLV1) (Speck, et al. 2010). A method enabling removal of these 

disease-inducing RNAs from cells would allow for an alternative strategy which does not 

include integration of permanent rescue genes. Additionally, current RNA therapies suffer 

from shortcomings such as; limited targeting of a wide range of spliced RNAs, unmodified 

siRNA is susceptible to degradation by RNAse, and the potential induction of immune 

system response (Damase, et al. 2021). Furthermore, introducing intervention at the gene 

expression level over one that targets the toxic protein itself is that potentially negative 

downstream cellular pathogenic effects that arise from abnormal functioning of that single 

protein could be reduced or eliminated (Ghosh, et al. 2017).  

Recently, the neuronal immediate early gene, Arc, has been found to assemble into virus-

like particles and transfer RNA intracellularly in neurons (Pastuzyn, et al. 2018). Inspired by 

this finding, I have designed and tested Arc fusion constructs to target specific RNA and 

export them out of the cell. Deactivated Cas13 (dCas13) enzymes, such as dPspCas13b and 

dLwaCas13a, have been shown to bind RNA without cleaving the target (Abudayyeh, et al. 

2017, Cox, et al. 2017). Cox, et al. have also demonstrated that dCas13 enzymes fused to 
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ADAR2, an RNA-binding and editing protein, edit RNAs specifically. Accordingly, I have 

generated and tested fusions of Arc and deactivated Cas13 enzymes in order to target Arc to 

a specific RNA. I observed capsid formation of dLwaCas13a-Arc fusions in bacteria and 

characterized their RNA encapsulation. Additionally, I have developed a functional assay to 

measure export of target RNA.  Overall, I demonstrate that it is possible for Arc to maintain 

its capsid-forming ability and to encapsulate RNA when fused with a dCas13 enzyme. These 

preliminary results support the possibility of engineering Arc as a scientific tool for RNA 

delivery, as well as capture of disease relevant targets such as amyloid-beta precursor 

mRNA. 

3.2 Arc RNA targeting strategies 

Strategies to achieve targeted RNA binding and export are illustrated in Figure 1.  

An MS2-MCP system is composed of bacteriophage MS2 multimerized RNA stem loops, 

named MS2 for short, and a coat protein which binds the MS2 stem loops, MCP (MS2 

Figure 1. Arc engineering strategies for purpose of targeted RNA export (A) 
Arc fused to MCP would capture target RNA containing MS2 loops. This method 
requires modification of target RNA (B) Arc fused to dCas13 enzymes captures 
target RNA using guide RNA. Guide RNA needs to be made and optimized for 
target RNA. Ideally, both monomers oligomerize to form capsids, protect 
encapsulated RNA, and get exported into extracellular space.  
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Coat Protein). The system is commonly used to image live mRNAs to study RNA dynamics 

and has been further optimized to ensure that the MS2 loops binding strength is sufficient 

to allow for RNA degradation (Tutucci, et al. 2017). Binding strength of MCP to MS2 

tagged RNA is an important property of the M2S-MCP system (Han, et al. 2020). For 

example, in the case of fusing Arc to MCP, the binding of MCP to target RNA tagged with 

MS2 might be desirable such that the RNA survives the entire process of oligomerization 

and cell expulsion. The disadvantage of using the MS2-MCP system in conjunction with 

Arc is that it requires modification of target RNA. Additionally, given that MS2 was 

derived from a bacteriophage, immune cells could be more likely to interact with the 

complex, either causing its degradation and/or confounding readout.  

Cas13 is a type of enzyme containing nucleotide-binding endoRNase domains that allow 

for targeted RNA cleavage (Shmakov, et al. 2015). Three families of Cas13 enzymes have 

been found thus far; Cas13a, Cas13b, and Cas13c. Gootenberg JS, et al. have shown that 

Cas13a can be used for nucleic acid detection, while Abudayyeh, et al. have used Cas13a 

for transcript tracking. In order to disable the cleaving function of Cas13 enzymes, 

Abudayyeh, et al. have created a catalytically dead variant of Cas13a (dLwaCas13a) by 

mutating catalytic arginine residues. Similarly, Cox, et al. have created catalytically dead 

variant of Cas13b (dPspCas13b) by mutating the conserved catalytic residues in the Higher 

Eukaryote and Prokaryote Nucleotide-binding (HEPN) domains. The dPspCas13b was 

then fused to Adenosine deaminases acting on RNA (ADAR) enzyme to achieve targeted 

RNA editing. The concept of fusing Arc with dCas13a/b enzymes to achieve 

oligomerization and export of targeted RNAs was inspired by dCas13b-ADAR work. The 

biggest advantage of the dCas13 system for targeting RNAs is that it does not require 

modification of target RNA. However, the optimization and testing of guide RNAs that 

would allow for sufficient binding to the RNA of interest takes time and the system in 

which the guide RNA is tested may not always translate between different cell types.  

Though MCP-Arc and mCherry-MS2 plasmid constructs were generated, I have chosen to 

work with the dCas13 RNA targeting system due to its flexibility and different variants of 

the enzyme being available. The Elowitz lab has kindly provided shortened versions of 

dLwaCas13a and dPspCas13b enzymes to be fused with Arc for targeted RNA trafficking.  
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Given that Pastuzyn, et al. have shown that GFP fused to Arc allows for functional RNA 

transfer between donor and recipient cells, I have chosen to focus on characterizing dCas13 

fused to N-terminus of Arc (dCas13-Arc). Additionally, given the smaller size of shortened 

dLwaCas13a enzyme (1092 bp) versus shortened dPspCas13b enzyme (2379 bp), much of 

the characterization was focused on dLwaCas13a-Arc fusion.  

 

3.3 dCas13-Arc fusions produce monomers in mammalian cells 

Figure 2 illustrates the functional concept for the dCas13-Arc system in which dCas13-Arc 

monomers bind to target RNA using respective guide RNA, oligomerize into a capsid-like 

structure, get packaged into an exosome, and get expelled into extracellular space. 

Constructs of dCas13-Arc fusions are illustrated in Figure 2.b, in which dCas13 enzyme is 

fused with Arc at its N terminus. As mentioned in the previous section, this design was 

selected based on demonstration of functional RNA transfer by GFP-Arc as seen in 

Pastuzyn, et al. It is important to acknowledge the potential risk of placing dCas13 at Arc’s 

N terminus. It is not understood whether the dCas13 holding RNA of interest via the guide 

RNA would end up inside the capsid-like structure with the RNA well protected or whether 

some and/or all dCas13 would have its RNA exposed externally, risking RNAse 

degradation. To first determine whether dCas13-Arc monomers are produced by 

mammalian HEK293 cells and their respective size, I have performed fluorescent western 

blot analysis on cell lysate of cells transfected with dCas13-Arc fusions. Arc antibodies 

were used in conjunction with secondary fluorescent antibodies to mark monomer fusions. 

Arc is natively a 45.3 kDa protein (396 amino acids). Shortened dLwaCas13a is similarly 

sized as Arc at 361 amino acids, with an expected size of roughly 43.55 kDa, while 

shortened dPspCas13b is 92.13 kDa (https://www.bioinformatics.org/sms/prot_mw.html). 

This places the estimated size of dLwaCas13a-Arc at 88.85 kDa and dPspCas13b-Arc at 

137.43 kDa.  

As expected, mammalian HEK293 cells express dLwaCas13-Arc at roughly below 100 

kDa and dPspCas13b-Arc between 100 kDa and 150 kDa. Negative control in which no 

transfection occurred showed no clear band of detection for Arc.  

https://www.bioinformatics.org/sms/prot_mw.html
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Additionally, HEK293 cells were chosen due to them not natively expressing Arc protein, 

eliminating potential confounding effects that would otherwise be present with cells such 

as neurons.  

3.4 Methods for characterizing formation of dLwaCas13a-Arc capsids 

In order to determine whether dCas13-Arc fusion is capable of making capsids I have 

purified cell medium from HEK293 cells transfected with dLwaCas13a-Arc, GFP-Arc, and 

myc-Arc. The transfections were done using FUGENE reagent and the medium was 

changed 12 hours post transfection to eliminate free floating plasmid DNA that would 

potentially confound the signal. After 18-24 hours, the cell medium from ten 150 mm plates 

were concentrated using Amicon Ultra-15 mL centrifugal filters with molecular weight 

cutoff 30 kDa. Concentrating the cell medium is necessary to get sufficient amount of Arc 

EVs given their poor release efficiency. The concentrated cell medium was then passed 

through Izon’s qEV10 gravity column which flows through extracellular vesicles (EV) 

such exosomes, while trapping smaller proteins (Figure 3.a). The fractions collected from 

Figure 2. Determining dCas13-Arc monomer size in human HEK293 cells (A) Conceptualization 
of Arc RNA export system using dCas13 enzyme and guide against target RNA (B) dCas13-Arc 
configuration and size (C) Fluorescent Western Immunoblot stained against Arc antibody in 
transfected dCas13-Arc HEK293 cells. 
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the column were then run on western blot with fluorescent immunostaining against Arc to 

determine whether denatured dCas13-Arc capsids produce same sized bands seen in cell 

lysate of Figure 2.c. GFP-Arc and native Arc were used as positive controls. Fractions with 

brightest western blot lanes were then used for Transmission Electron Microscopy (TEM).  

Figure 3. Characterization of dLwaCas13a-Arc capsid formation in HEK293 cells (A) 
Visualization of protocol for purification of extracellular vesicles (EVs) from mammalian cells. Large 
molecules, like exosomes and capsids, get passed through while small proteins get stuck to the 
column. (B) Protocol for staining purified EVs and capsids against Arc using gold antibodies for EM. 
(C) Fluorescent Western Immunoblot stained against Arc antibody to determine EV fractions most 
abundant in Arc (D) Representative EM images of purified GFP-Arc and dLwaCas13a-Arc EVs 
showing presence of capsid-like structures (E) Representative EM images of purified EVs stained in 
accordance to protocol illustrated in (B). 
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Figure 3.c shows four faint bands around 100 kDa for dLwaCas13a-Arc. Band at 50 kDa 

and 75 kDa was observed respectively for native Arc and GFP-Arc as expected. Electron 

microscopy (EM) images of dLwaCas13a-Arc and GFP-Arc show presence of exosome 

and capsid-like structures as illustrated in unstained purified EVs (Figure 3.d). In order to 

verify that the capsids observed in the EM images are Arc capsids, the purified EVs were 

stained using Arc antibodies. As per protocol outlined in Korkut et, al., purified fractions 

were then fixed with 2 % PFA, transferred to EM grid, washed with 0.1M Tris to quench 

the fixation, blocked with saponin to permeabilize the exosomes, and then stained with Arc 

antibodies and secondary antibodies with conjugated 10 nm gold beads (Figure 3.b). I 

performed the protocol across numerous condition of antibody incubation wait times, wash 

steps, and reagents. However, as can be seen in Figure 3.e, much of the exosome and 

capsid-like structures ended up being broken down into its oligomer components or washed 

away. An array of block dots, the 10 nm gold particles attached to Arc antibody, 

surrounding oligomer chunks can be seen in Figure 3.e. I presume that the Arc-gold 

antibody conjugate are binding Arc structures that did get expelled into medium by the cell 

for the purpose of extracellular RNA transfer. However due to a lack of clear capsid-like 

structures being tagged with the Arc gold antibodies across both dLwaCas13a-Arc and the 

positive Arc control, it is challenging to confirm and characterize dLwaCas13a-Arc ability 

to form capsid-like structures resembling those of Arc in HEK293 cells.  
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3.5 dLwaCas13a-Arc fusions generate capsid-like structure and encapsulate Arc 

RNA 

Given the challenges posed by purification and characterization of Arc capsids in HEK293 

cells, such as poor release efficiency of Arc and heterogeneous exosome content generated 

by HEK cells, BL21 bacterial cells were used for Arc capsid purification, characterization, 

Figure 4. dLwaCas13a-Arc forms capsid structures and encapsulated Arc RNA (A) Visualization of protocol 
for purifying GST-tagged Arc capsids from BL21 bacterial cells. SEC is used to filter our capsids from monomers 
and tetramers (B) Representative EM images of purified Arc and dLwaCas13a-Arc capsids from bacterial BL21 
cells (C) Coomassie gel of fractions purified from SEC. Lane 12 is purified dLwaCas13a-Arc post GST-column 
and pre-SEC (D) Fluorescent Western Immunoblot against Arc antibody for purified Arc and dLwaCas13a-Arc 
capsid fractions (E) RT-qPCR of dLwaCas13a-Arc capsid fraction and monomeric dLwaCas13a-Arc fraction using 
Arc probes (F) RT-qPCR of Arc and dLwaCas13a-Arc pre- and post- RNAse treatment. 
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and validation of RNA encapsulation. Plasmids with Glutathione S-transferase (GST) tag 

fused to N-terminus of Arc and dLwaCas13a-Arc were transformed, corresponding capsids 

were cleaved in GST columns via PreScission Protease, and separated into capsid, 

oligomer, and monomeric fractions using size exclusion chromatography (SEC) (Figure 

4.a). Neither GST nor Arc are natively expressed in BL21 bacterial cells. As such given 

that GST is fused with Arc there is certainty in that whatever is captured by the GST 

column is part of Arc. The protocol for bacterial purification of Arc capsids was adapted 

from Pastuzyn, et al. and modified with the assistance of protein expression center (PEC) 

at Caltech. Fully formed spherical shells sized around 50 nm with shell structures can be 

observed in representative images of both Arc and dLwaCas13a-Arc capsids purified from 

BL21 cells in Figure 4.b. It also appears that partially formed capsids lacking the shell 

structure are present, as can be seen in the second image of dLwaCas13a-Arc (Figure 4.b). 

Coomassie gel shows a prominent band between 64 and 97 kDa for dLwaCas13a-Arc 

capsid fraction, in agreement with the expected size of 88.5 kDa for a dLwaCas13a-Arc 

fusion (Figure 4.c). Fluorescent Western Immunoblot of Arc and dLwaCas13a-Arc capsid 

fractions show Arc near the 50 kDa band and dLwaCas13a-Arc between 75 kDa and 100 

kDa (Figure 4.d). A lack of strong band in Coomassie gel and Western blot for 

dLwaCas13a-Arc for other sizes suggests that dLwaCas13a-Arc monomers predominantly 

make up the capsids seen in the EM images. It is also interesting to note that the 

dLwaCas13a-Arc do not seem to be bigger than Arc, hinting at the capsid needing only a 

specific amount of monomers to oligomerize properly. Purification of dLwaCas13a-Arc 

has also been performed by Sheperd Lab at University of Utah for replication purposes 

where capsids with shell structures were observed (Supplementary Figure 7).  

Similar to an Arc capsid, I expected that a dLwaCas13a-Arc capsid would encapsulate its 

own RNA and protect it from RNAse treatment. To demonstrate this, I have extracted RNA 

(Direct-zol RNA kit) from Arc and dLwaCas13a-Arc capsid fraction, and from monomer 

fraction of dLwaCas13a-Arc purified product as negative control. The extracted RNA was 

converted to cDNA and measured via RT-qPCR using Arc probes mentioned in Pastuzyn, 

et al. Figure 4.e shows that RNA was detected in one of the dLwaCas13a-Arc capsid 

fractions (post RNAse treatment) as compared to monomeric fraction of dLwaCas13a-Arc, 
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hinting that capsid structure composed of  dLwaCas13a-Arc monomers are necessary to 

protect the encapsulated RNA. In a separate purification run, I have compared the 

dLwaCas13a-Arc and Arc fraction pre- and post RNAse treatment. Arc’s titer did not 

change much with RNA treatment, while not treating dLwaCas13a-Arc capsids with 

RNAse showed a stark increase in titer (Figure 4.f). It is important to note that with RNAse 

treatment, dLwaCas13a-Arc’s titers are similar to that of Arc, though making solid claims 

would be unfounded due to lack of repeated experiments. This stark increase could 

potentially be explained by having some of the dLwaCas13a-Arc forming the capsid hold 

on to RNA on the outside of the capsid, instead of properly encapsulating it and protecting 

the captured RNA.  

 

3.6 Methods for validating functional and targeted export of RNA via dLwaCas13a-

Arc constructs 

In prior sections, I presented data showing that dLwaCas13a-Arc forms capsid structures 

and protects Arc RNA in BL21 bacterial cells, with capsid-like structures observed in EVs 

purified from mammalian HEK293 cells. The next step was to determine whether 

dLwaCas13a-Arc capsids are capable of preferentially picking up target RNA of interest 

via guide RNA and shuttling it outside the cell. The Elowitz lab has kindly provided stable 

Citrine HEK293 cells that are induced via tetracycline, as well as the appropriate guide 

RNA to Citrine. Having stable Citrine HEK293 cells also minimizes the number and 

variables for transient DNA transfections. If the hypothesis that dLwaCas13a-Arc can 

preferentially export target RNA of interest is true, then I would expect to see higher titers 

of Citrine RNA in the cell medium transfected with dLwaCas13a-Arc and Citrine guide 

RNA compared to dLwaCas13a-Arc co-transfected with pUC (pUC19-common cloning 

vector). Figure 5.b shows different construct designs for dLwaCas13a and Arc placement. 

Membrane localizer (ML) constructs with and without Arc was kindly provided by Dr. 

Bjorkman’s lab. The hypothesis for ML-Arc constructs was that higher levels of Arc could 

be expelled from the cell if more of them localized to the membrane, as such exporting 

more RNA. A construct in which the dLwaCas13a was fused to C terminus of Arc was also 

explored due to data presented in prior sections, with the idea being that if dLwaCas13a is 
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in this configuration then it would fold inside the Arc monomers and protect captured RNA 

more efficiently. ML-dLwaCas13a constructs were made to explore whether Arc is 

necessary for expulsion of RNA into the cell medium. Citrine HEK293 cells were 

transfected in 6-well plates with relevant combination of plasmids specified in Figure 5.c, 

the cell medium was changed 6 hours post transfection, and then collected following day 

18-24 hours post transfection to be concentrated down to 100 ul (triplicates). The 

concentrated cell medium was then treated with RNAse to remove free floating RNA and 

to leave only capsids that are protecting encapsulated RNA. The RNA was then extracted 

(Direct-zol RNA kit), converted to cDNA, and quantified via RT-qPCR using dLwaCas13a 

and Citrine probes. As can be seen in Figure 5.c, titers for Citrine expelled into cell medium 

Figure 5. Characterization of targeted RNA export via dLwaCas13-Arc constructs (A) 
Visualization of RNA export assay, starting with transfection of Citrine stable HEK293 cells, cell 
medium concentration, RNA extraction, cDNA conversion, and transcript quantification via RT-
qPCR (B) dLwaCas13a and Arc constructs used for testing targeted RNA export of Citrine transcripts 
(C) RT-qPCR results of constructs presented in (B) titered against dLwaCas13a probes. Similarly, 
results for titer against Citrine transcripts is shown on the right-hand panel (gCit + pUC and cell-lysate 
from dLwaCas13a-Arc + gCit are not included).  
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were low across all conditions. However, dLwaCas13a titers were high, expect in the 

negative control case of guide RNA against citrine (gCit) and pUC, suggesting there is a 

release and protection of dLwaCas13a transcripts by the dLwaCas13a-Arc capsid, but not 

Citrine.  

 

3.7 Limitations and Challenges 

Getting Arc to target RNA of interest and export it out of the cell is a proof of concept 

project with numerous limitations, challenges, and risky components. First, the shortened 

dLwaCas13a and dPspCas13b were still in development and characterization phase when 

I obtained them from Elowitz lab. There is likely more optimization and validation left to 

confirm their functionality, especially when fused to another protein. Ideally, this sort of 

validation would be done with an RNA immunoprecipitation protocol (RIP) in which Arc 

antibodies can be used to capture the dCas13-Arc capsids and protein, RNA precipitated, 

converted to cDNA, and quantified using RT-qPCR. If the guide RNA is more effective in 

capturing target transcripts then those transcripts would be enriched in cells transfected 

with dLwaCas13a-Arc/dPspCas13b-Arc and guide RNA versus cells transfected with 

dLwaCas13a-Arc/dPspCas13-Arc and pUC. I have performed one such RIP experiment 

(Magna RIP Kit, 17-700, Sigma-Aldrich) in which I had two conditions, one of which was 

HEK293 cells transfected with dPspCas13b-Arc, guide against Citrine, and Citrine, and 

the other dPspCas13b-Arc, pUC, and Citrine. I have chosen to do this experiment with 

dPspCas13b fusion because prior art, as referenced in section 3.2, has shown that 

dPspCas13b is more effective at targeting transcript of interest compared to dLwaCas13a. 

HEK293 cells were transfected using FUGENE transfection reagent and cell lysates were 

processed 24 hours post transfection. Arc antibodies were used to capture dPspCas13b-Arc 

proteins, while normal rabbit IgG served as control. RNA extracted from the two conditions 

was quantified using RT-qPCR against Citrine and Arc probes, as seen in Figure 6. RIP 

assays are expensive and known to be noisy requiring multiple repetitions, as such it is 

important to keep in mind that experiment presented is an N=1. The first two bar graphs 

show RT-qPCR titer results for Citrine and Arc probes respectively. In both cases the signal 

for transcripts captured by Arc antibody is several fold higher than the control samples, 
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suggesting that Arc antibody captured dPspCas13b-Arc protein fragments and their 

respective transcripts. However, as also seen in the first bar plot, there is not a large fold 

difference of Citrine transcripts with guide RNA against Citrine (gCit) versus pUC. The 

intent of the third bar plot is to determine how well dPspCas13b-Arc is detargeted from 

encapsulating its own RNA, it appears that there is a log fold difference in Citrine 

transcripts captured compared to Arc. However, without further experimental repeats it is 

difficult to pinpoint whether that effect is driven by noise or intended biological 

phenomenon. It is also interesting to observe that even with the lack of a guide RNA, 

dPspCas13b-Arc captured more Citrine transcripts with pUC co-transfected compared to 

Arc transcripts. Though all plasmids were transfected in identical ratios, it is possible that 

the cells produce more Citrine transcripts. For example, do cells produce more Citrine if 

you feed them oranges from Citrus tree? To answer that, I could vary the amount of Citrine 

transfected to determine whether the amount of Citrine transcripts picked by dPspCas13b-

Arc correlate to the amount of Citrine transfected. It would also be more ideal to perform 

this kind of experiment in Citrine stable cells to eliminate a transfection variable. Similarly, 

the membrane localizer was received from Bjorkman Lab as a plug-and-play component 

for the dCas13-Arc system and not optimized accordingly. Second, though Pastuzyn, et al. 

have demonstrated successful transfer of both Arc and GFP RNA in the donor-recipient 

assay as seen in their Figure 4 for HEK293 cells, the efficiency of this transfer is low as 

Figure 6. RNA Immunoprecipitation (RIP) RT-qPCR characterization of dPspCas13b-
Arc constructs  
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suggested by their Supplementary Figure 4. Low transfer rate could be due to poor release 

efficiency of Arc into the cell medium, uptake efficiency of Arc exosomes by recipient 

cells, or a combination of both. Performing donor-recipient and release assays is also a 

challenge in neuronal cells given the large amounts of cells needed, Arc being natively 

expressed in neurons, and constant need of extracting primary neurons from either rat or 

mouse pups. Given that Arc is a well-known early response gene in neuronal cells and 

responsible for mediating plasticity in learning tasks, it likely has numerous mechanisms 

regulating its release and transfer efficiency. For example, Zhang, et al. have shown the 

complexity of Arc’s function where while Arc’s N- and C-lobe control high-order 

oligomerization of Arc, they are not responsible for Arc association with vesicle proteins 

in order to be exported from the cell.  My suspicion is that the lack of a clear signal seen in 

Figure 5 is likely due to poor release efficiency of Arc, making it difficult to assess dCas13-

Arc’s targeted RNA export. Third, in addition to Arc’s role in neurons still being rigorously 

researched, its function in immortalized cell lines such as HEK293 cells is also not well 

understood. Thus, using HEK293 cells to develop a specific function for a protein that is 

designed to work in complex cells such as neurons is not ideal.  

 

3.8 Discussion 

I was able to demonstrate that dLwaCas13a-Arc fused to N-terminus of Arc is able to create 

spherical shelled capsids similar to that of Arc, encapsulate its own RNA, and protect it 

from degradation. Additionally, I have validated a method for purifying Arc and 

dLwaCas13a-Arc EVs from HEK293 cells that recover monomers of expected size. It is 

still not clear whether the dLwaCas13a enzyme is facing the outside of the capsid holding 

on to the transcripts it has captured via guide RNA, with Arc packaging other nearby 

transcripts inside the capsid. Generating a construct in which dLwaCas13a is on the C-

terminus of Arc could answer this curiosity. Lack of clear signal demonstrating that 

dLwaCas13a-Arc prefers packaging RNA of interest could have been confounded by much 

of its captured transcripts being lost to RNAse degradation if they are external to the capsid. 

It would also elucidate whether capsid formation is possible with proteins and/or enzyme 

being placed on C-terminus of Arc. 
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Given the challenges and limitations encountered in engineering Arc to target specific 

RNA for export, I will discuss strategies going forward. One of the biggest challenges in 

working with Arc is its poor release efficiency, as such this function could be optimized 

via directed evolution. Since the release of Pastuzyn, et al. work showing that Arc forms 

capsids and transports RNA, numerous works have emerged further unveiling information 

on how Arc’s sequence and structure correlates to its function. In 2019, Nielsen, et al. have 

identified that Arc interacts directly with several neuroreceptors, such as GluN2A and 

GluN2B, and that these interactions interfere with oligomerization of Arc into capsids. 

Binding to these ligands stabilizes monomeric state of Arc and inhibits formation of higher 

order Arc oligomers. In 2018, Hallin et al. have shown that the interaction between Arc 

and the cellular domain is mediated by the positively charged N-terminal Domain (NTD) 

binding to phospholipid head groups. Additionally, both Hallin, et al. and Nielsen, et al. 

have shown that homo-oligomerization of Arc capsids is absent without the NTD. Zhang, 

et al. have also introduced mutations into Arc to identify sections responsible for Arc 

oligomerization and their data suggest that N-terminal half of Arc could play a role in 

association with vesicle proteins. Given these findings, NTD site on Arc (AA 17-154) 

could be a good candidate for error prone PCR mutagenesis to optimize association with 

cell membrane and vesicle proteins. Mutating regions in N-lobe and C-lobe could also 

optimize oligomerization efficiency. In order to select an Arc mutant which increases Arc’s 

release efficiency, libraries at site of interest could be transfected into HEK293 cells, cell 

medium collected and concentrated, and RNA extracted and converted to cDNA. Arc 

variants could then be amplified from the cDNA and sequenced to determine the most 

abundant mutant.   

In 2019, Fukuda, et al. have constructed guide RNAs which induce A-to-I mutations by 

guiding adenosine deaminase acting on RNA (ADAR), RNA editing enzyme, to target site. 

Similarly, given Arc’s tendency to bind nearby RNA, such designer guide RNAs could be 

created to guide Arc to target RNA without having to fuse it with an enzyme or another 

protein.  

Though Arc is an appealing option for targeting and exporting RNA given its natural 

presence in humans, other systems could be used to accomplish similar task that are more 
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well characterized. For example, Group-specific antigen (Gag) domain of HIV and Equine 

Infectious Anemia Virus (EIAV) contain p6 and p9 motifs, respectively, which bind 

ESCRT proteins and assist in viral budding (Bhaskar, et al. 2017, Jalaguier, et al. 2011). 

Fusion of HIV’s GAG domain with dCas13 enzymes has the potential to achieve similar 

targeted RNA export and have a more efficient release due its viral properties.  

Another impact that a system capable of exporting RNA to extracellular space and 

neighboring cells could have is to amplify a target therapeutic gene. For example, if there is 

a synthetic receptor that gets triggered by ligand, it could activate the production of Arc that 

can bind and deliver RNA of interest from the source cell to neighbors. This could reduce 

the need for highly efficient transduction by gene delivery methods, as the content that is 

already delivered could be further spread by the RNA export system (Supplementary Figure 

8). 

In conclusion, engineering a system to selectively pick up RNA of interest within a cell 

and traffick it either to extracellular space or to its neighbors remains a challenge. A lot of 

components necessary to make such a system are still being studied today, and 

development of new methods is necessary to readout both the export efficiency as well as 

disturbance caused to the cell state post RNA removal. However, results discussed in this 

chapter demonstrate glimpses of promise and exciting engineering avenues to achieve such 

an RNA export and trafficking system. 
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3.10 Methods  

Size of Arc monomers and its respective fusions were calculated using 

https://www.bioinformatics.org/sms/prot_mw.html 

 

Fluorescent Western Immunoblotting 

HEK293 Cells were transfected using FUGENE transfection reagent with dLwaCas13a-

Arc and dPspCas13b-Arc plasmids in 100 mm TC-treated plates. 18 hours post-

transfection the cells were spun down to rid of cell medium and 300 ul of RIPA buffer (1X 

RIPA Lysis Buffer, 1M Magnesium Chloride, 0.5 % DNAse, 0.02 % Pierce Universal 

Nuclease) was added. The cells resuspended in RIPA buffer were then incubated at 37 C 

while mixing at 950 RPM for 30 minutes. Spin down the cell lysate and combine equal 

volume sample with sample buffer (10 % 2-Mercaptoethanol in 2X Laemmli Sample 

Buffer). Samples were ran on gel using appropriate directions in accordance with the 

vendor (i.e. Bio-Rad, Running Buffer: 10 % 10X Tris/Glycine/SDS Buffer in Nanopure 

Water for 35 minutes at 150 V). The gel was removed from the cassette and activated via 

chemical crosslinking using UV (stain free Bio-Rad Imager). Blotting membrane paper 

was prepared by soaking it in 100 % Methanol for 5 minutes. Gel was transferred onto 

blotting paper (e.g. Bio-Rad Immun-Blot PVDF membrane) and placed accordingly unto 

a blot sandwich configuration. The blot was ran in accordance with manufacturer’s 

instructions (Blotting Buffer: 10 % Methanol, 10 % 10X Tris/Glycine Buffer, 80 % 

Nanopure water, 100 V for 30 minutes). Blotting paper was blocked in non-fat dry milk 

(NFDM) for 1 hour at room temperature (RT). Primary antibody staining was performed 

in blocking buffer (1 % NFDM in TBST) overnight at 4 C (Recommended antibody 

dilution 1:500).  Blotting paper was washed in TBST three times in order to remove 

unbound antibodies. Secondary fluorescent antibody was incubated in TBST for 2 hours at 

RT and then washed three times to remove unbound antibodies. Blots were detected using 

Bio-Rad Imager.  

Extracellular Vesicle Purification from HEK293 Cells 

Ten 150 mm plates with HEK293 cells cultured to 80 % confluence were transfected with 

dLwaCas13a-Arc, Arc, and GFP-Arc respectively. Cell medium (5 % FBS, DMEM) was 

https://www.bioinformatics.org/sms/prot_mw.html
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changed 12 hours post transfection. 24 hours post-transfection, exchanged medium was 

collected, spun down to remove debris and free floating cells, and concentrated using 

Amicon Ultra-15 mL centrifugal filters. Izon’s qEV10/70 nm columns were used per 

vendor’s instructions. Fractions were collected and processed through western 

immunoblotting to determine fractions with highest Arc content.  

BL21 Bacterial Purification of Arc Capsids 

BL21 bacterial cultures transformed with dLwaCas13a-Arc and Arc plasmids were grown 

with Carbenicillin. Terrific Broth was prepared with glycerol and autoclaved for each 

protein purification (1 L). The culture were then shaken at 250 RPM for 1.5 – 2 hours. 

When optical density (OD) reached 0.6 IPTG was added to induce the bacterial cultures 

and then the cultures were shaken overnight at 250 RPM at 27 C. Bacterial pellet was spun 

down 6000 RPM for 15 minutes and weight recorded to determine lysis buffer amount (1 

mg = 100 ul lysis buffer). Pellets were lysed in 1X TBS, PMSF and Roche tablets. Samples 

were collected throughout the protocol for quality assurance. Samples were spun down for 

30 minutes at 6000 RPM to get a clear cell lysates. The lysates were loaded unto GST-trap 

columns, washed with 20CV 1XTBS, and then 12CV 1XTBS, 1 mM EDTA, 1 mM DTT 

buffer. To cleave GST-captured proteins, 4.5-5 mL of PreScission Protease (PP) in PP 

buffer (1XTBS, 1mM EDTA, 1 mM DTT) was loaded into columns using column adapter. 

The columns were left overnight and eluted with 1XTBS,  1 mM EDTA, 1 mM DTT buffer 

the following day. Prior to feeding the samples through Size Exclusion Column (SEC) the 

samples were buffer exchanged with 50 mM Tris, 150 mM NaCl, pH 8.0 buffer.  

 

RNA Cell Medium Export Assay and RT-qPCR 

Citrine stable HEK293 cells were transfected in 6-wells (in triplicates) with DNA plasmids 

using FUGENE reagent. Prior to transfection, Citrine expression was induced using 

Tetracycline (200 ng/mL recommended). Cell medium (5 % FBS, DMEM) was exchanged 

6 hours post-transfection. 18-24 hours post-transfection the cell medium is spun down to 

remove dead cells and debris, concentrated using Amicon Ultra-4 mL to 100 ul and treated 

with RNAse to remove free floating RNA for 15 minutes at 37 C. Direct-zol RNA 

Microprep kit was used to extract RNA and ThermoFisher’s High-Capacity cDNA Reverse 
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Transcription Kit was used to convert RNA to cDNA. The extracted cDNA was then 

quantified using RT-qPCR (2 ul of DNA was loaded per well, 9.5 ul Ultra-Pure Water, 

12.5 ul FastStart Universal SYBR Green Master, 0.5 ul of 5 uM titer primers). Cycling 

parameters: Step 1 - 95 C for 10 min, Step 2 - 95 C for 15 seconds, Step 3 – 60 C for 60 

seconds, Repeat Step 2 – 4 40X. Arc primers adapted from Pastuzyn, et al. 2018 

Cit-forward: ATCTTCTTCAAGGACGACGG 

Cit-reverse: TTGTGGCTGTTGTAGTTGTA 

dLwaCas13a-forward: GACCAAGGTCGACGGCATCA 

dLwaCas13a-reverse:  TCCAGCCGGATGCTCAGCAG 
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3.11 Supplementary Material  

 

 

 
Figure 8. Concept of using Arc RNA export system to amplify target therapeutic 
gene in neighboring cells upon ligand stimulation 

 

 

 

 

 

 

 

 

Figure 7. Bacteria (BL21) purification of dLwaCas13a-Arc and Arc performed by Shepherd Lab 
for scientific replication purposes 
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C h a p t e r  4  

ENGINEERING TRANSCRIPTION FACTOR EB (TFEB) TO 

MODULATE MACROPHAGE STATE 

4.1 Introduction 

Macrophages are the immune system’s adaptive soldiers, capable of switching between pro-

inflammatory state (M1) and anti-inflammatory state (M2). M1 macrophages are commonly 

associated with phagocytizing bacteria and secreting proinflammatory cytokines. M2 

macrophages are often associated with clearing apoptotic cells, controlling inflammatory 

response, and promoting wound healing. M2 macrophages have also been subcategorized 

into M2a, M2b, and M2c divisions based on stimuli and induced transcriptional state. M2a 

macrophages are known for their high secretion of IL-10 and TGB-beta for purposes of 

wound healing and taming inflammatory responses. M2b, on one hand, are responsive to 

immune complexes and bacterial lipopolysaccharides (LPS). M2c are sensitive to 

glucocorticoids and TGF-beta and are often referred to as deactivated macrophages, 

macrophages turned from M1 state (Roszer, et al. 2015).  Macrophages are also known to be 

modulated by tumor micro-environment into M2 macrophages in order to minimize 

inflammatory response necessary for immune cells, such as T cells, to destroy cancerous 

cells. 

Given macrophages’ important role in innate immune response and flexibility, they are 

implicated in numerous immune-related diseases such as rheumatoid arthritis, 

neurodegeneration, and cancer (Ardura, et al 2019). This makes them both a challenging and 

attractive candidate for cellular reprogramming. Majority of the work on modulating 

macrophages has been limited to introducing combinations of cytokines to push them into a 

particular state. In 2019, Zhang, et al. delivered an mRNA interferon factor 5 to change M2 

phenotype within tumor associated macrophages (TAMs) to M1 phenotype macrophage. In 

2020, Klichinsky, et al. engineered human macrophages with chimeric antigen receptors 

(CAR) to direct the macrophages’ phagocytic activity against cancerous cells. They were 

able to show that these engineered CAR-M macrophages express pro-inflammatory signals, 
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convert TAMs into M1 macrophages, and resist effects of immunosuppressive cytokines. 

Despite these incredible advances, there remains a need to generate personalized and 

optimized cell-state specific engineering strategies which can leverage the complex signaling 

pathways of these chameleon-like cells. We believe that in order to achieve that, we ought to 

look at engineering transcription factors within the macrophages. 

Transcription factors regulate numerous downstream molecules, making them an 

engineering challenge for approaches that readout only a single or a few variables, such as 

directed evolution and rational protein design. However, recent advent of single-cell RNA 

sequencing (scRNA-seq) allows one to readout single cells’ transcriptomic state and assess 

presence of thousands of genes. Our hypothesis is that, similar to how enzymatic activity can 

be optimized through mutations in its catalytic domains, desired cellular states can be 

enriched for through mutation of transcription factors via single-cell transcriptomic readout. 

Certainly, this approach comes with its fair share of challenges. To name a few, cellular states 

vary between different cell types and organisms, and transcriptomic states in different 

contexts are still being researched and catalogued. In order to assess our hypothesis, we have 

selected transcription factor EB (TFEB) as a mutation candidate to modulate macrophage’s 

polarization states.  

 
Figure 1. “Macrophage State Ruler” showing the range of states in which 
macrophages polarize to achieve context specific immune function 
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4.2 Transcription Factor EB (TFEB) 

TFEB is part of MiTF/TFE (microphthalmia) family and is responsible for regulating 

lysosomal function and autophagy. In particular, TFEB controls lysosomal biogenesis, 

lysosomal exocytosis and promotes cellular clearance. Prior art has shown that TFEB 

expression plays an important role in regulating macrophage state (Puertollano, et al. 

2018). Fang, et al. 2017 mention that TFEB downregulation results in M2 polarization and 

tumor-promoting capacity, while TFEB expression is implicated in M1 polarization 

potentially response for inhibiting tumor growth. Pastore, at al. 2016 have shown that cells 

deficient in TFEB resulted in reduced inflammatory response. This tie between autophagy 

and macrophage state makes this duo an ideal candidate for tuning macrophage states. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Transcription Factor EB (TFEB) mutation strategies 

We have selected activation domain (AD) and DNA binding domain (DBD) of TFEB as 

mutation candidates to determine whether we could optimize an M1 or M2 state of 

macrophage, or generate a new state.  
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Figure 2. TFEB Mutation Experimental Design and Strategy (A) An 
experimental concept for rationally designed TFEB mutants and libraries at 
activation domain (AD) and DNA binding domain (DB) (B) Design strategy for 
rationally selected mutants using Position Specific Scoring Matrix (PSSM). Arrows 
indicate what the current amino acids at those positions are and point to the amino 
acids which will be substituted for those positions. High positive normalized log-
likehood indicates that the amino acid is more likely at the given position.  
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The rationale for choosing those domains is their functional importance, in particular AD 

is required for its transcriptional activation function and DNA binding domain is critical to 

have TFEB bind to DNA in the form of homodimers and heterodimers (Napolitano, et al. 

2016, Hemesath et al., 1994, Pogenberg et al., 2012). Site-saturated mutagenesis libraries 

and rationally-chosen mutants were generated in AD and DB domain of TFEB. In order to 

rationally choose mutants in AD and DB domains, we fed the TFEB sequence into Protein 

Structure Prediction (ProSPr) to compute normalized log-like likehood of substitution at a 

given position (Billings, et al. 2019).  The Position Specific Scoring Matrix (PSSM) heat 

map is shown in Figure 2.b, where positive blue colors indicate that the amino acid’s 

presence is more likely to be in that position, whereas red colors indicate that amino acid’s 

presence is unlikely to be at that position. Three mutants were created in DNA binding 

domain and two in Activation Domain. Arginine in positions 245-248 was changed to the 

next most likely predicted amino acid, Lysine. Another mutant that would likely have a 

disabling effect on the DNA binding domain was generated by changing Arginine in 245-

248 to one of the least likely predicted amino acids, Cysteine. We have also chosen a 

mutant that creates a single-point mutation at position 258 from Leucine to Methionine 

(Figure 2.b). For AD, at positions 158 and 159 Aspartic Acid was mutated to the next most 

likely amino acid, Glutamic Acid. Similarly, at positions 168 and 169 Aspartic Acid was 

mutated to Asparagine. In order to make RNA libraries to transfect into cultured 

macrophages, TFEB was cloned into an RNA backbone containing T7 promoter, 

3’untranslated region (UTR), and a poly-A tail via overlap polymerase chain reaction 

(PCR). PCR fragments were then made into RNA using in vitro transcription, 5’capping, 

and poly-A tailing kits. In vitro transcription kit with modified nucleosides was used for 

production of RNA to ensure macrophages can be transfected and minimize their immune 

response to the delivered cargo. The RNA was capped post transcription and poly-A tail 

extended to ensure stability.  
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4.4 Exploring DNA transfection for introduction of TFEB libraries 

In order to generate classical M1 and M2 states in cultured human macrophages and 

explore whether DNA transfection is a potential route for transfecting TFEB mutants, we 

Figure 3. Experimental results of DNA transfection and M1/M2 state induction in cultured human 
macrophages (A) Experimental design in which M1/M2 induction and plasmid transfection conditions are 
multiplexed into a single scRNA-seq experiment (B) Macrophage gene expression data projected into 
UMAP (Scanpy), colors indicate the different conditions and their source of induction (C) Top panel shows 
expression of markers pertaining to M2 macrophage state, whereas bottom panel shows expression of 
markers pertaining to M1 macrophage state.  
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performed a small pilot experiment as shown in Figure 3.a. One of the reasons DNA 

transfection is appealing is that the transfected plasmids can stick around, whereas RNA 

libraries can degrade, and later captured via feature capture probe on beads containing the 

complementary sequence (Supplementary Figure 5). We induced classical M2 state using 

IL4, IL10, and TGF-𝛽𝛽 (20 ng/mL) and M1 state using LPS (50 ng/mL), IFN-ᵞ (20 ng/mL). 

An IL-10 (20 ng/mL) condition was included given prior literature suggesting that IL-10 

can inhibit starvation induced autophagy in macrophages (Hun-Jung Park, et al. 2011).  

Three plasmids were transfected in macrophages using PromoFectin transfection reagent: 

TFEB with a feature capture probe (cloned between TFEB stop codon and SV40 poly-A 

signal), TFEB fused with GFP (TFEB-GFP) (pEGFP-N1-TFEB, addgene #38119), and 

mNeonGreen (pAAV-CAG-mNeongreen, addgene #99134). Plasmid structures for these 

are shown in Figure 4.b. TFEB-GFP was used to visualize transfection and presence of 

TFEB in macrophages, while mNeonGreen was used as a control for transfection. Two 

control wells of macrophages with no stimuli were also processed to serve as a baseline for 

M0 macrophage state. Upon transfecting the plasmids, no fluorescence was observed in 

either TFEB-GFP or mNeonGreen in macrophages. However, we still processed these 

conditions for scRNA-seq. All conditions were multiplexed into a single 10X chromium 

lane using lipid-tagged indices from MULTI-seq protocol (McGinnis, et al. 2019). In order 

to attempt capturing the TFEB containing the feature capture probe, we created a primer to 

amplify the user introduced TFEB. Capture of transfected TFEB is important for 

determining which TFEB libraries got expressed since macrophages produce TFEB 

transcripts natively.  scRNA-seq data was aligned as outlined in the Methods section. 

Samples were demultiplexed using MUTLI-seq indices and Scanpy was used to normalize, 

analyze, and visualize the data. The control samples demonstrate an overlap of cells as 

expected, suggesting a lack of variability in states between unperturbed macrophages 

(Figure 3.b). We first verified that we observed expected M1 and M2 markers in the 

respective conditions. TGM2, CD209, and IL17RB were all prominently expressed in M2 

cluster (Martinez, et al. 2013, Buchacher, et al. 2015, Gratchev, et al. 2021). WARS, 

CXCL9, and GBP1 had prominent expression in M1 condition cluster (Brown, Wallet, et 

al. 2010; Orecchioni, et al. 2019; Qiu, et al. 2018). This confirmed delineation between the 
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conditions is useful in serving as a ruler on which we can project the cell states of the 

mutants proposed in Section 4.3 (Figure 3). Next, we used Scanpy’s function (rank gene 

groups via Wilcoxon Rank-Sum) to determine genes most prominent in each condition of 

Figure 4.a. Macrophages are notoriously challenging to transfect with DNA and we did not 

observe any transfection via fluorescence, however we were curious to see if there were 

any interesting responses induced by the different plasmids shown in Figure 4.b. 

mNeonGreen is seen producing prominent antiviral proteins; MX1 as pictured in Figure 

4.b and MX2 as seen in Figure 4.a (Braun, et al. 2015), and interferon-induced genes IFIT1, 

IFIT2 whose expression is enhanced following viral infection (Pidugu, et al. 2019). These 

genes are also observed in the M1 cluster, potentially hinting at the viral element present 

on the mNeonGreen as being responsible for inducing a pro-inflammatory response. In 

particular, mNeonGreen plasmid contains a CAG promoter which is composed of 

cytomegalovirus (CMV) early enhancer, chicken beta-actin gene, and a splice acceptor of 

the rabbit beta-globin gene (Miyazaki, et al. 1989, Niwa, et al. 1991). Additionally, it has 

inverted terminal repeats (ITR) from Adeno-Associated Viruses and woodchuck hepatitis 

virus posttranscriptional regulatory element (WPRE). Given that no expression was seen 

from mNeonGreen, it is highly likely that one or a combination of these elements 

contributed to macrophages starting to move into pro-inflammatory anti-viral state. 

Macrophages transfected with TFEB-FC display an ambiguous state between pro- and anti-

inflammatory. Macrophages in this condition expressed IL6, which can act as both a pro-

inflammatory and anti-inflammatory cytokine, and IL10, which is known as an anti-

inflammatory cytokine.  Additionally, they expressed CXCL5, which is known recruit 

neutrophils and regulate inflammatory response. Interestingly, TFEB-GFP appears to 

highly express genes that are also observed in M1 macrophages and cells infected with 

mNeonGreen. Our hypothesis as to why TFEB plasmid did not induce a similar effect is 

due to presence of GFP in the TFEB-GFP plasmid. TFEB is natively expressed in 

macrophages, while GFP is foreign, making it more likely to raise an alarm. Given that the 

purpose of TFEB is to induce autophagy, we have screened four known autophagy markers, 

ULK1, ATG7, LAMP1, and DRAM1, and did not see a distinct expression of these genes 

in TFEB conditions (Bednarczyk, et al. 2018) as seen in Supplementary Figure 6. Overall, 
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the experiment confirmed challenges of macrophage DNA transfection, yielded interesting 

data on macrophage response to different plasmids, and provided clean M1, M2 

transcriptomic data.  
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Figure 4. Prevalent genes expressed in macrophages transfected with TFEB and 
mNeonGreen DNA plasmids (A) Most prominent genes ranked for each condition 
using Scanpy’s rank gene algorithm (B) Transfected vectors and some of the most 
prominent genes expressed in those conditions visualized on UMAP 

 

4.5 Future Work 

Given a lack of success with DNA transfection in macrophages, we have generated the 

RNA TFEB mutant libraries described in Figure 2. We have confirmed that RNA 

transfection yields good results (> 80% fluorescence) in Supplementary Figure 7. The next 

steps are to analyze the impact of rationally designed mutants, and site-saturation 

mutagenesis libraries, and understand how the method of transcription factor engineering 

via scRNA-seq can be improved.  
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4.7 Methods 

Transcript Alignment 

For transcriptome read alignment and gene expression quantification, we used 10x Cell 

Ranger v5.0.1 with default options to process the FASTQ files from the transcriptome 

sequencing library. The reads were aligned against the human reference provided by Cell 

Ranger (hg19-1.2.0). 

Macrophage Culturing  

Primary human monocytes were purchased from Stem Cell Technologies and cultured in 

RPMI 1640 supplemented with 10 vol % FBS with human M-CSF (Miltenyi Biotec, #130-
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096-491) to induce macrophage state (50 ng/mL). Cell medium was changed every third day 

and the cells were washed with pre-warmed medium to remove non-adherent cells. Cells 

were transfected with DNA on the seventh day post-seeding and culturing with M-CSF. 

DNA was transfected using PromoFectin-Macrophage (PromoCell, # PK-CT-2000-MAC-

10).  

 

 

RNA Production 

Site-saturation mutagenesis primer libraries were ordered from Twist Biosciences. 

Individually selected primer mutants were ordered from IDT. Both libraries and individual 

mutants were created using overlap PCR and then 1 ug of DNA was fed into Cell Script’s 

INCOGNITO T7 Ψ-RNA In Vitro Transcription kit (#C-ICTY110510). The 5’ capping and 

poly-A extension was done using Cell Script’s T7 mScript Standard mRNA Production 

System kit (#C-MSC11610). All intermediate reactions were purified using MEGAclear 

transcription clean-up kit (ThermoFisher, #AM1908).  

 

4.8 Supplementary Material  
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Figure 52. Conceptual drawing demonstrating how TFEB mutants introduced 
into macrophages would be captured using 10X Genomics’ Capture Sequence 
2 on the Gel Bead along with the rest of the cell transcriptome   
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Figure 6. UMAP projection showing expression of known autophagy markers across the various conditions 
outlined in Figure 3. 

Figure 3. Images of cultured macrophages (day 7 post M-CSF 
rest) showing transfection with Citrine RNA (bottom panel). 
Top shows morphology of the macrophages at day 7 and post 
RNA transfection in bright field view.   
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