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ABSTRACT

Our curiosity and spirit for exploration has fueled advancements towards visiting
Earth’s neighbors in the solar system. Environments outside of Earth are extreme,
however, and it is far from guaranteed that landing and operating on the surface
of these bodies is an easy task. Conditions such as reduced gravity, extreme tem-
peratures and sparse atmospheres play a role in the compressive, shear, and tensile
strength of a surface. These environmental factors make experiments that work to
inform design decisions for spacecraft-surface interaction di�cult and expensive.
In order to better ensure successful mission operations in the future, this thesis fo-
cuses on the development of a platform of numerical modeling for planetary surface
interaction.

Dry regolith and water ice are two surface materials that are pervasive in the solar
system. For each, the mechanical properties are heavily reliant on features at the
microscale that are insu�ciently modeled. The first part of the thesis will focus
on crushable dry regolith. There will be two chapters on this topic, the first of
which discusses the development of the modeling capability to capture both the
highly irregular particle shapes and the brittle nature of regolith. The second
chapter on regolith will focus on the validation of this method on a crushable sand
sample experiment. This model demonstrates excellent predictive capability for
the constituitive relationship, the evolution of particle sizes, and the evolution of
particle shape in the sample. Further, evidence from the forces between the particles
shows that despite larger particles being weaker on average, many survive due to two
reasons. One, the surviving particles are generally on the stronger side of the particle
strength distribution, and second, that larger particles have a higher coordination
number producing a more isotropic stress state in the particle.

Unlike dry regolith, distinct neighboring water ice particles will sinter together over
time at varying rates depending on their environment. This leads to a large amount
of the water ice surfaces that are of interest to future missions, having a highly
varied and many times unknown levels of strength. The contact interaction between
water ice particles at the microscale will be handled the same as regolith, however a
modification was added to account for sintering. The strong cohesiveness sintering
generates is modeled by placing massless bonds where sinters would form. The
cross-sectional area of the bond represents the amount of sintering that has taken
place and can be thought of as a representation of the neck geometry that early
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stage sintering is described as. The bonds used are linear elastic and breakable in
order to capture the crushable nature of porous ice. Three chapters are dedicated
to ice modeling. First, the model development will be shown with verification
examples for its use. Second, the model will be used to predict cone penetration
tests on ice that were previously conducted in experiment. Comparisons show
that the model can produce similar stresses and qualitative features observed in the
experiment. A sensitivity analysis is conducted and shows that the most important
controlling parameters are the ice’s critical strength and the sinter’s neck thickness.
The relation of the bond characteristics to the sintering process is discussed. In the
third chapter on water ice, the landing of a footpad on the surface of Enceladus is
modeled. The model predicts that a lack of sintering could result in catastrophic
sinkage, however even moderate sintering provides enough strength to support a
lander. Also the model predicts landing on inclined surfaces and shows that landing
could be possible at angles as high as 20 degrees.
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C h a p t e r 1

INTRODUCTION

1.1 Planetary Bearing Capacity: A Historic Problem
Up to the very moment when Apollo 11 landed on the moon, there remained a
serious question about whether or not the bearing capacity of the Moon’s surface
could hold the Eagle lander or an astronaut. As Buzz Aldrin wrote in his memoir,
“widely held was the suspicion that the Moon’s surface was covered with dust so
thick it would swallow a man or a spaceship like quicksand” (Aldrin et al., 1973).
Many may remember that much of the transmission from Neil Armstrong when he
first set foot on the Moon was focused on the surface properties, such as how deep the
lander sunk, the depth and geometry of his footprint, and what the particles looked
like up close (Armstrong, 1969). The worry came from the reduced gravity and dry
conditions on the Moon limiting the strength and cohesiveness of the loose particles
on the surface. When samples of the Moon’s surface returned to Earth, we later
learned that it was the unique particle size distribution and particle shapes found
on the Moon that gave it much greater bearing capacity than anticipated (Heiken
et al., 1991). Indeed, it was the microscale features that made the di�erence, but
it was not for another 10 years after the landing that the most popular method,
the discrete element method (DEM), for investigating the microscale of granular
materials was introduced (Cundall et al., 1979), and it could still not model variable
particle shape. While much has been learned over the decades since the landing,
questions still remain not just for the Moon, but also for the many other bodies in
the Solar System we wish to visit.

1.2 Planetary Strength Issues in the Modern Age
Although we now know that the Moon’s surface is one we can safely land and walk
on, similar questions plague many missions today. This includes future missions
to the Moon where there are goals of larger construction projects that may test the
limits of the Moon’s bearing capacity (Gelino et al., n.d.). It is known that the
surface particles on the Moon are quite brittle, which complicates the predictability
of surface strength because the microstructure undergoes severe evolution during
breakage (Heiken et al., 1991). On Mars, unknowns about the surface strength
have caused recent failures, such as Insight’s mole being unable to meet depth
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Figure 1.1: Planetary surfaces with dry, brittle granular material or porous ice are
abundant in the Solar System and are frequent targets for recent and future missions.
For all images credit goes to NASA/JPL.

requirements due to the surface being stronger and providing less friction than
anticipated (Good et al., 2021). Also, the first rock core on Mars pulverized due to the
rock being weaker than anticipated (Witze, 2021). Micro-gravity environments on
smaller bodies, such as on moons and comets, have spurred research on both surface
strength and sample acquisition testing to ensure sample sizes meet requirements
(Riccobono et al., 2021).

Enceladus and Europa are particularly interesting targets due to their water-ice
surface and geologically active core producing a relatively high likelihood for life
(Chyba, 2000). The surface of icy bodies presents a unique challenge when the ice
is porous due to the ability of ice particles to sinter over time, creating large changes
in strength (Choukroun et al., 2020). The ice on these bodies can be thought of as
a connected granular material where individual ice particles are connected through
sintering (Molaro et al., 2019). This type of ice is far from uncommon in the solar
system. For example, on Enceladus the plumes on the south pole eject ice particles
that deposit on the surface and sinter over time (Verbiscer et al., 2018). A highly
porous but cohesive granular microstructure exists due to the low sintering rates.
On Europa and Triton, recent image analysis points to a high probability of porous
granular ice (Eluszkiewicz, 1991; Carlson et al., 2009). Many smaller bodies have
a mixture of ice and regolith, which can result in similar densification to pure ice
(Campins et al., 2010). Without understanding how the strength of the ice surface
changes with sintering, designing missions to these bodies appropriately will be
exceedingly di�cult.
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The common thread between all of the mentioned surfaces is that at the micro-scale,
the morphology is complex and significant breakage is a possibility. Key to the
design and understanding of these surfaces for the purposes of interaction will be
in predictions that capture these strength changing properties of the micro-scale
e�ectively.

1.3 Research Objectives
The objective of this thesis is to further the state of the art of granular modeling
in order to capture the unique features found on planetary surfaces. There will
be two types of surfaces that will be focused on: first, a dry regolith surface and
second, a porous ice surface, which, between the two, compose a large majority of
the scientific targets of interest. Dry regolith surfaces require a model to take into
account irregular shaped particles that are brittle. While it is already possible to
model particles of arbitrary shape, in this thesis this method will be extended to
enable those particles to be breakable. For surfaces composed of porous ice, the
model will instead be extended to take into account the sti� sinters that grow in
between ice particles. We will utilize an assumption that at a critical load the sinters
will be first to break because they are generally thin sections of the microstructure.
Due to this assumption, the sinters modeled will be breakable instead of the particles
themselves.

1.4 Approach
Grain-scale Modeling
The study of granular materials occurs at many scales that are often categorized
as the macro-scale, meso-scale, and the micro/grain-scale. At the macro-scale,
granular materials act like a continuum that can generally be seen as a single solid
object, but can also be seen as a fluid such as in the case of landslides. At the
meso-scale, groups of particles form representative volume elements (RVE) that are
meant to be large enough to still satisfy the continuum assumption. However at this
scale, some ideas of the state of the grain-scale come into play to be able to bridge
the two scales in between. The fundamental science of granular materials, however,
occurs at the grain scale where individual grains can be identified. At this scale,
macroscopic stresses result in interparticle forces that unevenly divide into force
chains. The number, magnitude, orientation, and evolution of these force chains
dictate the constitutive behavior of a granular material, making granular materials
inherently non-local (Celigueta et al., 2017). Factors such as particle shape, size,
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and strength play a critical role in the nature of force chains and, therefore, must be
captured in modeling at this scale in order to correctly inform the larger scales.

DEM is extremely popular for modeling the grain scale because it provides an
e�cient way of calculating the forces and kinematics of individual particles. Origi-
nally, DEM was designed with only circles and spheres for particle shapes (Cundall
et al., 1979). However, over time many innovations have allowed for more complex
shapes to be captured (Mollon et al., 2014; Zhu et al., 2019). The level set variant
(LSDEM) is the only one of these that can capture any arbitrary shape, therefore it
is the one that will be utilized throughout this thesis (Kawamoto et al., 2016).

Level Set Discrete Element Method
Summaries of LSDEM are given repeatedly throughout this thesis, specifically in one
of the upcoming sections, 2.3, and later, in greater detail, in 4.3 therefore it will not
be given here as well. For the purpose of introduction, it is important to understand
the intent behind the method. LSDEM provides the ability to geometrically describe
any particle shape through an implicit definition, which enables full functionality
for studying the e�ects of particle shape (Kawamoto et al., 2018a), in addition to
the micro mechanics that the other DEM methods provide. Any shape can be fully
described, and it also can be naturally paired with x-ray imaging, which provides the
shapes and locations of a granular specimen. In this way, the method can be directly
validated, and individual properties can be properly investigated. Because the model
is considered predictive, there is confidence in the statistics of the interparticle forces
that are calculated in the model. These can be utilized to learn about the kinetics
(Karapiperis et al., 2020b). This is very important because experiments on natural
granular materials cannot measure the forces between particles. Therefore we
must rely on methods like LSDEM to study the key mechanism behind granular
mechanics.

XRCT Imaging and Level Set Conversion
On the experimental side of grain scale science, granular assemblies often are imaged
using X-ray computed tomographic (XRCT) scans (Andò et al., 2012; Karatza et al.,
2019). These scans construct 3D images from thousands of x-ray images taken of
a specimen on a rotating platform. The resulting image is required to have voxel
sizes on the order of geometric features of the particles, usually on the order of
micrometers for commonly used sands, such as Hostun and Ottawa sand. For any
given loading, scans are taken at multiple steps to properly capture the full process.
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However for the purposes of level set production for computation, only the initial
image is used.

Once images are taken, some type of watershedding procedure is performed in order
to distinguish and label particles. In the case of studying breakage, particles must
be also tracked from parent particles to child particles by comparing successive
images (Seo et al., 2020). Level sets can then be made using LS-imaging from the
watershed and edge markers defined from the image gradient. LS-imaging uses an
energy functional that minimizes when the distance of the discrete level set function
to the edge markers are zero (VlahiniÊ et al., 2014). When the LS-imaging process
is finished, the surface of the discrete level set and the surface on the image coincide.
The final step is to produce a surface discretization of each particle to enable the
leader-follower algorithm for the method. Figure 1.2 visualizes the process from
raw image to watershed to level sets.

Figure 1.2: XRCT images are processed into a watershed to distinguish individual
particles. From here, level sets can be made from creating an energy potential that
minimizes at the surface. The level set evolution algorithm becomes stationary at
the minimum energy contour.

1.5 Organization
This thesis will be organized by first addressing the modeling of brittle, arbitrarily
shaped material. Then, there will be a chapter on the validation of many features of
the model through direct comparison to experiment with further investigation into
the science of breakage. The focus will then shift in Chapter 4 towards porous ice



6

modeling. Similarly to the regolith modeling, first the model will be introduced,
then in the next chapter, the model will be compared to an experiment. In Chapter
6, we will then go beyond validation and model the landing process on the Ence-
ladus surface investigating the limitations of landing selection. Finally, there is a
conclusion chapter where a summary of results and discussion for future work can
be found.
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C h a p t e r 2

LEVEL SET SPLITTING IN DEM FOR MODELING BREAKAGE
MECHANICS

Harmon, J.M., D. Arthur, and J.E. Andrade (2020). “Level set splitting in DEM for
modeling breakage mechanics”. In: Computer Methods in Applied Mechanics and
Engineering 365, p. 112961. ���: https://doi.org/10.1016/j.cma.2020.
112961. ���: https://www.sciencedirect.com/science/article/pii/
S0045782520301444.

2.1 Abstract
Brittle breakage of particles in granular materials has often been modeled using
the discrete element method (DEM). DEM is often limited however in its ability to
capture particle shape, particularly when used for breakage. This paper presents the
first brittle breakage technique where level set functions will allow for the description
of the arbitrary shape for both particles and fracture surfaces. The breakage model
to be described here uses fracture surfaces defined by level sets to take advantage
of simple intersection and di�erence set operations to split particles in both two and
three dimensions. We show how this method is implemented and how we can use
it to define and apply arbitrary fracture surface shapes. We then give qualitative
examples of using the method in both simple and exotic ways. Finally, we model
oedometric tests and rock crushing, both very common uses for previous DEM
breakage techniques, to present a validation that the method captures the physics of
the problem.

2.2 Introduction
Understanding the mechanics and e�ects of particle breakage is important in many
applications. In geomechanics, particle breakage produces a new particle size
distribution (PSD) which will a�ect strength and dilantancy among other properties
(Minh et al., 2013; Holtz et al., 1981). Fault zones in earthquakes are home to a
large amount of fractured rocks in which the PSD has large e�ects on the physical
attributes on the fault core (Billi, 2005). Recent continuum models will include
breakage as a parameter, which opens the possiblity of bridging the grain scale
and continuum scale if a grain scale method can reasonably simulate enough grains
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(Einav, 2007). Also instead of looking at how particle breakage a�ects larger scales,
one could also look at how a single particle fully comminutes. This has applications
in mining, where crushing iron ore is necessary in the process to extract iron (Evans,
1993). This also has applications in lithotripsy, where the goal is to comminute a
single kidney stone as much as possible(Sapozhnikov et al., 2007).

Discrete Element Modeling (DEM) has been a popular numerical method for study-
ing breakage. DEM is a method first developed by Cundall & Strack (Cundall et al.,
1979) which has been widely used to study granular materials. Implementing par-
ticle breakage in the classical DEM, where each particle is a sphere, has been done
in two ways. The first is by having each particle made of many smaller particles
bonded together (Cil et al., 2014; Cheng et al., 2003; Wang et al., 2013; Potyondy
et al., 2004). When the forces acting between two smaller particles exceed the
strength of the bond, then the bond is considered fractured and therefore removed.
The benefits of this method is that an initial clump of particles can be arranged to
take a non-spherical shape and the fracture will preserve mass. The drawbacks are
that the increased amount of particles increases computation time and even with an
extremely large amount of smaller particles, the larger particle will always di�er
from a physical one. The other method replaces a particle when it reaches a certain
stress level with many smaller particles (Ben-Nun et al., 2010; McDowell et al.,
2013). This method is much quicker computationally, but has issues with mass
conservation, replicating a realistic fracture pattern, and choosing how many par-
ticles to replace a larger one with. Both sphere-based methods mainly su�er from
an inability to model particle shape correctly, which in recent literature has shown
to have an impact on which grains carry the deviatoric stresses (Kawamoto et al.,
2018a). Since it is the stresses on the particle that drive when and how particles
break, it is critical to have a method that describes particle shape exactly.

This has been approached by creating and solving a finite element mesh for every
particle (Imseeh et al., 2018; Iliev et al., 2019), a good solution for granular systems
with small numbers of particles. For larger systems, polyhedral elements have been
used. Originally done by Potapov and Campbell (Potapov et al., 1996), this was
originally quite slow so this method was modified to be suitable for large scale
simulations (Herbst et al., 2004). The improved method has not been able to fit both
single particle breakage and particle size distributions though due to an energy-based
approach instead of a stress-based one (Jiménez-Herrera et al., 2018). More recent
developments have moved to a stress based approach and increased e�ciency using
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ideas such as implementing a hybrid peridynamcis and physics engine approach(Zhu
et al., 2019). Despite these advancements, polyhedral methods still have di�culty
working with geometrical concavity in particles. Since it should always be expected
that particles will have local concave features, these methods are not fully ideal.

A version of DEM that can handle non-convex particles uses Fourier descriptors to
describe shape (Mollon et al., 2014). Fourier descriptors can e�ectively describe
any particle of a “star” shape, which is suitable for most granular materials. As far
as we have seen, there is no breakage method for this DEM version yet.

In this paper, we will build a breakage model from the level set DEM (LS-DEM)
(Kawamoto et al., 2016). This method has the powerful capability to capture exact
shape without limitations while maintaining reasonable computational e�ciency.
LS-DEM has the profound advantage of capturing morphology from X-Ray Com-
puted Tomography (XRCT) (VlahiniÊ et al., 2014) and has been shown to be able
to make one-to-one predictions at the micro-scale (Kawamoto et al., 2018b). So in
the following sections we will describe the first LS-DEM breakage method. We will
first show how splitting level sets can be done in both two and three dimensions.
Then we will show an industrial example of how level set splitting in LS-DEM
can predict the performance of crushing machines. Finally, we will show an exam-
ple of the method’s capability in geomechanics from comparisons with oedometric
experiments on a granular specimen,with a small study of breakage criteria.

2.3 LS-DEM
LS-DEM, originally introduced in (Kawamoto et al., 2016), is a DEM variant that
fully captures the shape of every particle unlike the classical DEM where only
spheres are used. LS-DEM utilizes level set functions for defining each particle
geometry. Level set functions define a surface implicitly by having the function
value at every point be equal to the signed distance to the object surface; a negative
level set value means the point is inside the object, a positive value is for outside the
object, and a zero value is for locations on the surface.

In implementation, particles of dimension D are geometrically defined by using
both a discrete level set, �,

�(x) = ±d (2.1)

where d is the signed distance from the surface of the particle, and a set of surface
points, P,

P = {p 2 RD |�(p) = 0} (2.2)
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as shown in Figure 2.1. This method of contact results in e�ciency being largely
based on surface point discretization density since each point must be checked with
either the level set of each other particle or the radius of its bounding sphere. The
discretization of the level set has no e�ect on e�ciency outside of a finer grid taking
more memory to store.

To find contact, for instance between particle g1 and particle g2, we take the surface
points of g1 and check the level set value on g2 of each surface point. If the following
inequality holds for any surface point, p

i
2 P1, on the first particle,

�2(pi
) < 0 (2.3)

then contact is established and the overlap is known from the evaluation of �2(pi
).

Furthermore, the contact normal is calculated easily from the gradient of the level
set,

n̂ = r�2(pi
) (2.4)

With the overlap and contact normal, contact forces and moments can be determined
from a contact law. No contact law is specific to LS-DEM; in this study, a linear
model is used. The Hertzian contact law could also be used (Johnson et al., 1987).
The frictional forces are computed using Coulomb friction. These forces and
moments are then integrated to get displacements and rotations for each time step.
Either contact dynamics, (Jean, 1999) or an explicit scheme, (Walton et al., 1993;
Lim et al., 2014) could be used for integration, and in this paper, the explicit scheme
is chosen. The displacements and rotations are then applied to the surfaces points,
and the process iterates.

2.4 Description of Breakage Model
The breakage model described here is composed of two parts. The first part is the
fracture criterion, which determines when a particle will break. This part is not
specific to the method and can easily be changed as will be discussed. The second
part is the level set splitting method, which determines how a particle will break.
This method was built with the assumption that the particles which compose the
granular material are brittle. Namely, that the speed of crack propagation is on
a much smaller time scale than the loading. With this assumption in mind, it is
sensible to build a method that breaks a particle into two or more pieces instantly,
or in implementation, a single time step. This can save a significant amount of
computation time that would otherwise be used for crack tracking, determining
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Descrete Level Set (Slave)Surface Discretization (Master)

Figure 2.1: Particle geometrical description. Left: A set of points that all lie on
the particle surface. Right: A discrete color map where cooler colors are negative
and warmer colors are positive. The black line is the zero contour line found with
interpolation. The surface points of the master particle are mapped to the slave
particle’s level set to determine contact.

crack speed or resolving stress around a crack tip, allowing a user to model systems
with very large numbers of breakages.

Breakage Criterion
A natural way to determine when a particle should break is by evaluating the
stress inside the particle. This can be done by solving the distribution of stresses
in a particle (Imseeh et al., 2018) however this method can be very ine�cient.
Alternatively, the average stress inside the particle, �̄��p can be calculated from
knowledge of the contact forces, Fc, and branch vectors, xc, over a certain number
of contacts on the particle, N ,

�̄��p =
1

Vp

N’
c=1

xxxc ⌦ FFFc (2.5)

where Vp is the volume of the particle. From here, it is very convenient to find the
principal stresses, �p, by finding the eigenvalues of �̄��p.

(�̄��p � �pI)n̂ = 0 (2.6)

Using the principal stresses, we can then choose a stress-based yield criterion. As
mentioned before, the yield criterion is a flexible choice, therefore in this paper
three separate yield criterions will be used. Here we will use the maximum pricipal
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stress, von Mises criterion, and the Tresca criterion for breakage, however other
DEM breakage models have also used a shifted Tresca criterion (Iliev et al., 2019)
which could certainly be substituted given considerations for the material being
modeled.

The maximum principal stress criterion assumes that the particle will break when
the principal stresses reach a critical value. For this criterion, we will assume
this could be in either compression or tension. Since most granular materials are
much stronger in compression than tension, there will be two critical values for this
criterion.

�max

C
> �C = min(�p1,�p2,�p3) (2.7)

�max

T
> �T = max(�p1,�p2,�p3) (2.8)

where �C and �T are the maximum compressive and tensile stresses, respectively.

The von Mises yield criterion is expressed as follows,

�Vmax > �V =

r
1
2
[(�1 � �2)2 + (�2 � �3)2 + (�3 � �1)2 (2.9)

where �Vmax is the maximum allowed value of the average von Mises stress inside
a particle, �V .

The Tresca yield criterion is based on the shear stresses in the material

1
2
�max

C
> ⌧ =

1
2

max(|�1 � �2 |, |�2 � �3 |, |�3 � �1 |) (2.10)

where ⌧ is the maximum shear stress at any one stress state. Figure 2.2 shows a
graphical depiction of the yield surfaces from these criterions. The units are set to
be the stress values for the oedometer test in section 5 of this paper.

When the average critical stress of any particle exceeds the threshold set by the
chosen criterion, then the particle will be broken. The value of the critical stress
is determined by both the material and the size of the particle, as according to
Weibull’s theory (Weibull, 1939), the probability of failure is given by

Pf (�c � �max) = 1 � exp

(
�
✓

d

d0

◆3 ✓�c

�0

◆m
)

(2.11)

where d and �c are the diameter and the chosen breakage criterion’s characteristic
stress for any given particle, and d0 and �0 are a reference diameter and strength.
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Figure 2.2: Yield surfaces used in this paper.

The variable m is Weibull’s modulus which is a material parameter. In this paper, a
typical Weibull’s modulus of 3 was used throughout (McDowell, 2002). To be able
to seed true critical stress values, we need to invert and solve for �c.

�c = �0

(
�
✓

d0
d

◆3
ln(1 � Pf )

)m
�1

(2.12)

Now by using inverse transform sampling, we can seed critical stress values by
taking values of Pf from a uniform distribution, U(0, 1).

As particles break into smaller fragments, breakages tend to be along the largest
flaws in a given particle. Therefore as particles comminute, they will become
stronger which is an e�ect that must be represented in modeling. To continue to
account for particle size in our breakage criterion, we refer to Weibull statistics and
experiments performed by Nakata et al. (F. L. Nakata et al., 1999) that show the
following relation between a child particle, a, and a parent particle, b,

�max

a

�max

b

=

✓
da

db

◆�3/m

(2.13)

Level Set Splitting
Splitting particles in LS-DEM can be done in either two or three dimensions, and
have a similar process for each. To split a level set, �1, we first must make a separate
level set object that defines the fracture surface we want to apply, �2. The fracture
level set surface must extend to the boundary at all end points, allowing one side
of the surface to have negative values and the other to have positive values. These
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fracture surface level sets can be made in a wide variety of ways. Some methods of
creation could be: level set imaging from XRCT just like grains of sand in previous
uses of LS-DEM (VlahiniÊ et al., 2014), utilizing stress distribution information that
could be solved on the particle (Jiang et al., 2019), or from assumptions on what the
fracture might look like based on contact forces and/or particle shape.

The two new grains will be created by doing the intersection and di�erence set
operations between �1 and �2.

�3 = �1 \ �2 = max(�1,��2) (2.14)

�4 = �1 \ �2 = max(�1, �2) (2.15)

This process is depicted in Figure 2.3 for both a 2D and 3D grains. Note that both
surfaces can have large numbers of convexities and concavities and that every feature
that intersects the particle is shown in the fragments. The part of fracture surfaces
that extend past �1(x) = 0 can be arbitrary.

Since the new particle surfaces defined by �3 and �4 are made by set operations, the
union operator could also be used to bring back the original particle,

�3 [ �4 = min(�3, �4) = �1 (2.16)

Figure 2.3: Level set surfaces in 2D and 3D for a pre-split sand grain (top left),
breakage surface (top right), and two fragments (bottom left and right).
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The intersection and di�erence set operations can produce error on the outside
region of each fragments’ level set, or specifically where � > 0. These errors come
from the set of kept distance values that refer to a surface that was removed during
the set operation. Due to LS-DEM only being interested in the level set values
inside the particle, this issue can be safely ignored for most cases. The accuracy of
the outer portions could be important if we wanted to add cohesion or a bonding
method though. In this case, these errors can be removed with a couple time steps
of the reinialization equation which was first described in (Sussman et al., 1994),

�t = sign(�0)(1 � |r�|) (2.17)

The reinitialization equation keeps the object surface stationary and converges when
the level set returns to being a signed distance function at all points. After reinitial-
ization, the particle is ready for use for all purposes. In Figure 2.4, a heat map of the
errors is shown for �1 after being split by a straight line. The error is calculated from
the di�erence in the discrete level set values from the broken particle before and
after reinitialization. The dots on the figure depict the discrete border where the set
operation stops taking values from the original particle (red dots) and starts taking
values from the fracture surface (white dots). It can be easily seen that errors are
localized to areas outside of the resulting particle. Since no cohesion was necessary
for any application in this paper, Equation (2.17) is not used.

Figure 2.4: Heat map of the error produced from set operations. Dots on figure
show the discrete border between the max function picking particle values (red) or
fracture surface values (white).

Determining Fracture Path
While it is possible to use any arbitrary fracture surface that could be derived
from either experiment or statistical methods, the simplest way to implement level



16

set splitting into LS-DEM and the way it will be done in this paper is to only
use flat breakages such as lines in 2D and planes in 3D. These breakages can be
oriented in any way by defining the line or plane by two or three points, respectively.
Experiments have shown that granular fracture surfaces are highly likely to connect
between the contact forces acting on a grain (Cil et al., 2012; Hurley et al., 2018).
So for the case of 2D, we choose the two points to complete the line by taking the
location of the two highest contact forces. From here, the level set can be easily
built from the well known point to line distance formula,

�(x, y) = (y2 � y1)x � (x2 � x1)y + x2y1 � y2x1p
(y2 � y1)2 + (x2 � x1)2

(2.18)

where the locations of the contact points are given as (x1, y1) and (x2, y2).

Similarly in 3D, we choose the locations of the three highest contact forces to
determine the breakage plane. With these locations determined from contact, the
resulting level sets can be calculated from,

�(x) = n · x � n · p1
| |n| | (2.19)

where
n = (p2 � p1) ⇥ (p3 � p1) (2.20)

and p1, p2, and p3 are the three points that define the plane. For both two or three
dimensions, there are occasionally cases where only one or two forces cause enough
stress to break a particle which would not create enough contact points to complete
a line or plane. For these cases, the particle centroid was used as another point
for breakage. In the case that there is only one contact point for a 3D particle,
breakage was held o� until a second contact point was encountered. If there are
multiple points of contact for a single contact pair, such as right after a breakage
with line-to-line and plane-to-plane contact, only the point of contact contributing
the highest force will be used for fracture path determination.

To build the surface points, generally a marching squares method or an energy
minimization method is used. In the case of building flat fracture surfaces, this can
be greatly simplified by utilizing the known vectors that define the line or plane and
placing points at equidistant values along the tangent vector directions. From here,
we determine what surface points from the original particle and the fracture surface
go to which fragment. This is done by comparing surface points to the level sets.
For example, if the locations of surface points on the fracture surface are in the
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negative region of the original particle’s level set, then we keep those points since
these will be on the surface of both fragments. Similarly, we check the location
of each surface point on the original particle against the fracture path level set to
determine which fragment that surface point should be assigned to.

During fragmentation, the physical properties of the new particles must also be
determined, namely the mass, moment of inertia, and center of mass. This is done
using just the level set matrix in the same way as when producing particles from
tomography. A full explanation for how to calculate these properties are both in
(Kawamoto et al., 2016) and in the Appendix.

Figure 2.5: A simple three particle example for level set splitting for both 3D (top)
and 2D (bottom).

Qualitative Testing
Before applying the model to applications for validation, we first went through a
round of qualitative testing. The first of these was producing the breakage of three
grains vertically aligned in compression shown in Figure 2.5. This was conducted
both in 2D and 3D on particles of Hostun sand taken from 3D XRCT. The DEM
parameters were set to produce breakages easily in order to test the stability of small
particles. It was here that it was found that when particles become small enough
to be of similar size to the surface point discretization, then they can be a source
of significant instability. We had three methods to address this issue. First method
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is to halt breakage when particles reach a minimum size. The second method is
to adaptively increase discretization of the particles throughout comminution. The
final method was to remove particles that were small enough to be problematic.
All three of these methods were tested in the two quantitative studies described
in the following sections. The first method was unable to produce good results
against experiment for predicting PSD since the smaller sizes were unreachable
by definition. It is likely that this method would be a good one if the particles
were given a finer discretization since the limiting factor was often the surface
point discretization density. The later two methods both produced similar results,
so the final method was used throughout due to its added e�ciency. Removed
particles were stored in output and were counted in producing the PSD data. For all
simulations, it was ensured that the total mass of the filtered particles were < 1% of
the total mass of the specimen.

It is also of note that after some qualitative analysis of this method, it was found
that occasionally a seemingly unrealistic amount of thin grains were produced,
particularly in 2D. To remedy thi,s we also added what was termed a “buckling”
breakage mode. The buckling mode occurs if the volume of the circumscribed circle
or sphere around the particle is much larger than the volume of the particle itself. If
a calibrated ratio between the circumscribed sphere’s volume to the particle volume
was reached, then the particle would be cut along its closest surface. So in this case,
the breakage line would be determined from the centroid and the closest surface
point, pmin, from the set of surface points for each particle, Pp,

pmin = min(Pp) (2.21)

which would define the fracture line in 2D. In 3D, we took a random point to
complete the plane with the centroid and pmin. This was not used in later testing
with experiment since it did not produce good results, an explanation for this will
be given in Section 5.1. So while this was used during qualitative tests, it was not
used in any other part of the paper.

For the next qualitative test, we wanted to look at a more dynamic setting that
clearly demonstrates an ability that no other DEM breakage model could produce in
a practical way. For this, we took the fact that the ability of level sets to take arbitrary
shape is a unique and powerful ability within the context of DEM. There are many
applications, particularly in breakage mechanics, where extremely complex shapes
may need to be used. A good example of this is in building demolition, where
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both the wall and the demolition machine have shapes that are very di�erent than
any granular particle. We take advantage of the geometrical versatility of using a
level set based method to show an example of how this method could be used for
demolition.

The setup consisted of creating both a wall and excavator buckets in AutoCAD
and then converting each into level sets through a point-to-triangulation distance
function. The bucket trajectories were then defined so that there would be two
instances of crushing the wall. For each instance of wall crushing, the first break
was manually determined in order for the breakage method to not choose the centroid
of the wall as a point on the breakage plane. All subsequent breakages were done
by using the flat level set splitting breakage method described earlier. The final
product of this is a video where five representative frames at di�erent phases of
the demotion are shown in Figure 2.6. This simulation demonstrates that level set
splitting in DEM can be used in many applications beyond the typical uses for DEM
in granular mechanics.

Figure 2.6: Visualization of wall demolition using two excavator buckets. Simula-
tion time runs from left to right.

2.5 Jaw Crusher Simulations
Jaw Crusher Setup
DEM has been a popular method for simulating rock crushing for mining applications
(Weerasekara et al., 2013). One of the simplest crushers is the jaw crusher which will
be used as an example in this section. The jaw crusher uses two plates to comminute
rocks by compressing the plates together repeatedly. As shown in Figure 2.7a, these
plates are either vertical or near vertical and taper to create a much smaller opening
at the bottom than at the top. In all jaw crushers, there is a stationary plate and a
swing plate. The swing plate can be set to have specific opening sizes, RPMs, and
other adjustable settings depending on how it is manufactured.
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(a) TST Jaw crusher made by FLSmidth.
(b) Visualization of a 2D jaw crusher in
operation.

Figure 2.7: Jaw crushers.

The jaw crusher simulations were built to mimic the jaw crusher used in a study
by Johansson et al. Johansson et al., 2017. The table below shows the three
crusher-specific settings that we looked to mimic. The first is the rotational speed
of the wheel that drives the compression of the plates. One rotation of the wheel
corresponds to one cycle of compression and extension. The second is the average
angle between the stationary plate and swing plate which is called the nip angle.
The swing plate will tilt slightly during operation. In our simulations, the angle
varied ⇡ ±1.7 degrees each rotation. The third is the eccentric throw, which is the
distance between the open side setting (OSS) and the closed side setting (CSS), the
OSS being the widest opening between the bottom of the plates and the CSS being
the smallest opening over a cycle.

This jaw crusher simulation will be done in 2D with two rectangles defined by level
sets representing the jaw crusher. The rock shapes used were cross sections of
Hostun sand from XRCT images scaled to the size of rock. A total of 25 unique
particle shapes were used and dropped in order so that the twenty-sixth particle that
was dropped was the same as the first particle. The feed for the jaw crusher was done
by dropping rocks into the crusher from a specified position once the last rock had
completely cleared the space. Figure 2.7b shows a visualization of the jaw crusher
during a simulation. The particle on the upper left shows where the particles are
spawned, and particles were sent to output once they left the frame of the image.
Simulation parameters were set to resemble typical values for rock and shown in
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Parameter Value Units Jaw Crusher Setting Value Units
kn 3*107 N/m RPM 300 rot/min
ks 0.8*kn N/m Nip Angle 22 deg
µ 0.6 none Nip Angle Change ± 1.7 deg
⇢ 2650 kg/m3 Eccentric Throw 50 mm
�t 1.8*10�6 sec kn 3*107 N/m

Global Damping (Cg) 0 (sec)�1
ks 0.8*kn N/m

Contact Damping (Cres) 0.4 none µ 0.6 none
Level Set Resolution 7 mm/pix

Weibull’s Modulus (m) 3 none
Critical Strength 56.5 MPa

Characteristic Diameter 0.21 m
Surface Point

Discretization Density 2 pts/pix

Table 2.1: Parameters for jaw crusher testing.

Table 2.1. For these simulations, only the von Mises criterion was used. Studying
the e�ect of using this criterion versus the Tresca and Maximum Principal Stress
will be done in the next section on oedometer testing.

Jaw Crusher Results
There were three total simulations analyzed for comparison. The closed side setting
(CSS) was varied from 50 mm, to 80 mm, and then to 100 mm while all other
parameters, including calibrated material parameters, were kept constant. Each
simulation was run over forty jaw crusher cycles. The total amount of particles
analyzed as output were 336, 397, and 233 for the 50mm, 80mm, and the 100mm
CSS test, respectively. At the end of each simulation, the PSD was determined for
the collection of particles that had completely passed through the crusher. Sieve
size was determined through an approximation of the minor axis of the particle. We
calculated this by finding the diameter along the line connecting the centroid and
the closest surface point, pmin, from Equation (2.21). We then took manufacturer
results for output PSD given in (Johansson et al., 2017) and compared them to our
simulation in Figure 2.8. Results match well for all three comparisons across sieve
sizes, which means this modeling strategy can be predictive for applications where
output PSD is a key factor.

Although not done here, other important predictions for jaw crushers can be per-
formed using this strategy such as capacity, flow rate, power draw, and e�ects of
di�erent jaw crusher settings. Other crushers besides the jaw crusher could also be
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modeled easily since level sets can be built from the CAD models used to design
crushers.
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Figure 2.8: PSD of the jaw crusher output from both the level set splitting method as
well as from experiment. Manufacturer data adapted from (Johansson et al., 2017).

2.6 Oedometric Testing
Oedometer tests have been a common way to investigate the e�ect of crushing in a
granular sample (Atkinson, 2007). These tests are conducted by compressing the
specimen from the top, usually in displacement control, while maintaining rigid
walls around the specimen. Due to the rigidity of the boundaries, the specimen
must have breakages to better fill the constantly decreasing void space. To further
validate our model quantitatively, we conducted an oedometric test on a set of grains
in 2D and compared the results to experimental testing in the literature.

Parameter Value Units Parameter Value Units
kn 4*107 N/m Weibull’s Modulus (m) 3 none
ks 0.6*kn N/m Max Compressive Stress 40 MPa
µ 0.4 none Max Tensile Stress 0.4 MPa
⇢ 2450 kg/m3 Max Von Mises Stress 35 MPa
�t 2.2*10�7 sec Max Shear Stress 40 MPa

Global Damping (Cg) 0.01/�t (sec)�1 Minimum Area 0.05 mm2

Contact Damping (Cres) 0.4 none Characteristic Diameter (dc) 2 mm
Level Set Resolution 0.07 mm/pix Wall Strain Rate 0.08 mm/sec

Surface Point
Discretization Density 2 pts/pix

Table 2.2: Parameters for Oedometric Testing.
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Specimen Setup
The specimen setup described in this section is intended to simulate a cross section
of a cylindrical oedometer test specimen. The grains that were utilized for this were
the same shapes as from the crushing example and again were picked from a pool
of 25 total grains. The material properties were set the same as the silica sand from
oedometric experiments done by Nakata et al. (Nakata et al., 2001) in an attempt
to compare our simulation to their experimental results, and are shown in Table 2.2.
This was done by calibrating the sti�ness so the simulation matches the experiment
constitutively in the regime where there is no breakage. The yield stress for the
particles were then set so grains would start breaking at the same time as when
breakage initiated in the experiment. This resulted in slightly di�erent critical stress
values for each criterion. The graphical depiction of these values were presented in
Section 3.1 in Figure 2.2, and a discussion on this will be left to the next section.

There was no consideration for particular particle shape properties since the actual
shapes from the experiment are not known, therefore the accuracy of these tests will
be more focused on the physics rather than a one-to-one matching that has been done
in previous studies with LSDEM (Kawamoto et al., 2018b). The initial PSDs were
nearly uniform between 1.4 and 1.7 mm for both the simulation and experiment as
shown in Figure 2.13. Matching the initial PSD is critical since it has been shown
in experiment that a more graded sample will a�ect both constituitive properties
and final PSD (Nakata et al., 2001; F. L. Nakata et al., 1999). As discussed
earlier, initially there was a consideration to have a buckling breakage mode to avoid
unnaturally thin particles. While this mode seems intuitive, in application it causes
an un-physical kinking in the PSD. We believe this is due to the particles that reach
this criterion are set to cut in half, which eliminates certain particle sizes from being
achievable. An example of this phenomenon is shown in Figure 2.9.

The numerical specimen was set to have the same height (10mm) as the experiment
and set to have the same width as the diameter of the experiment (50mm). Porosity
was matched by using an equation suggested by (Wang et al., 2014),

�2D = 0.42 ⇤ �2
3D
+ 0.25 ⇤ �3D (2.22)

which resulted in our simulation having an initial void ratio of 0.18 which corre-
sponds to a three dimensional void ratio of 0.6. With a fixed specimen dimension,
the PSD and void ratio targets were achieved by placing in grains that were scaled
to match the PSD requirement until the allowable volume of solids in the specimen
was reached. This resulted in the final specimen having 144 grains before loading.
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Figure 2.9: PSD using the von Mises criterion and the buckling breakage mode.
Kinking in the curve can be observed due to the inability of the buckling breakage
to achieve a wide range of breakage sizes.

Figure 2.10: Visualization of the oedometric test at the initial and final timestep.

Results
The results discussed here are from a set of DEM simulations from the specimen
described before. While intended to completely mimic the experiment, only half of
the total imposed displacement from experiment was done in simulation. This is
because of limits in void space in two dimensions so that the simulation could only
reach strains of around 15%. Despite this, many useful comparisons can be made
at these lower strain levels.

The results for the model and its comparison to experiment will first be looked at for
the constitutive relation. Figure 2.11 plots the stress vs strain and void ratio for both
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the model and experiment. Since LS-DEM without breakage has been validated
in previous papers, matching the first three data points was expected as little or no
breakage had occurred yet. The comparisons for the breakage model start at around
a strain of 5% where the model and data still align quite closely. Some lack of
smoothness can be observed during the breakage region for the model which we
believe would be greatly minimized from having a larger sample so that individual
breakages do not a�ect the macroscopic properties as heavily. We also observe that
all three breakage criterions can achieve the same macroscopic response, the main
di�erence being that they must be calibrated to a di�erent value. While the Tresca
and maximum principal stress criterions correspond to a compression strength of 40
MPa, the von Mises correspond to a compression strength of 35 MPa. The fact that
the Tresca and maximum principal stress criterions predict higher breakage stresses
is expected since these are more conservative criterion measures. Considering the
very similar constituitive response and the shape of the three yield surfaces, it seems
that the most important part of the yield surfaces are the compressive regions where
all three yield surfaces overlap.

The PSD was also compared at both the initial and final stages of the test and shown
in Figure 2.13. Again each criterion produce very similar results and match closely
with experiment. In Figure 2.12, the evolution of the PSD is shown with similar
results across all three criterions at high strains. Some di�erences can be seen for the
principal stress criterion at low strain rates, which is likely due to each simulation
having a di�erent seed for initial strength values. Once more breakage has occured,
the curves more closely align showing that the true strength distribution is seen by
the material response.

While the level of breakage seems to be consistent with experiment, the model pre-
dicts slightly more large particles and slightly less small particles. These limitations
would likely come from either using only straight cracks on a small specimen or
di�erences in definition of sieve size between two- and three-dimensional granular
materials. Investigating this e�ect on larger specimens in three dimensions may
eliminate this issue, where there would be less statistical variance and the sieve
size would be better identified as the three dimensional intermediate axis length
instead of the two dimensional minor axis length. Another way that this could be
improved is by defining fracture surfaces with more data-intensive methods such
as either intra-particle stress distribution methods such as the boundary element
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Figure 2.11: Stress curves for each stress criterion calibrated to experiment.
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(c) Tresca Criterion

Figure 2.12: Growth of PSD for each criterion studied.

method (Jiang et al., 2019) and the ghost-point finite di�erence methods (Coco
et al., 2013), or from XRCT images of breakage.

Another interesting trend was found by taking a closer look at the grain scale.
Since the level set splitting method can capture exact shape, it is an ideal model for
investigating changes in grain shape which we will do for the von Mises criterion
simulation. Here we will look at the development of shape by looking at the
true circularity, the two dimensional analog to true sphericity, and the aspect ratio
(AR) for each particle. The true circularity is measured as the ratio between the
circumference of a circle with the particles volume and the perimeter, ⇢, of the
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Figure 2.13: Particle size distributions at initial and final state for experiment and
simulation using each of the three breakage criterions.

particle, the calculation for which can be simplified to

Circularity =
4⇡Vp

⇢2
(2.23)

For comparison, true sphericity of a particle is defined as the ratio between the
surface area of a sphere with the same volume and the surface area (Wadell, 1932).
AR here is defined by the ratio between the short axis and the long axis of a best fit
ellipse on the particle.

Figure 2.14 shows the trend of the average circularity and average AR as a function
of the macroscopic vertical strain applied to the specimen. Both true circularity and
AR drop as particle sizes get smaller. This is consistent with trends of both AR
(Afshar et al., 2017; Altuhafi et al., 2011; Sun et al., 2014; Zhao et al., 2015; Takei
et al., 2001), and sphericity (Sun et al., 2014; Zhao et al., 2015) in experiments.
Some experiments however have reported that sphericity can increase during light
breakage before sphericity drops during heavy breakage (Afshar et al., 2017). We
believe this is not seen in our results for two reasons. First is that our particles
are already very circular at the beginning of the test, so an increase in sphericity
would be di�cult. The second reason is that this model as of now does not attempt
to replicate chipping, which has been experimentally shown to be the dominant
breakage phenomenon at lower stress levels, while splitting is dominant at high
stress levels (Karatza et al., 2019). Chipping is the e�ect of very small breakages
focused around a single contact point on a particle. Chipping would likely have a
large chance for shaving o� sharp corners that would contribute to an initial particle’s
lack of sphericity, thereby increasing the sphericity after breakage. While chipping
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is a possible e�ect to model using level set splitting assuming a certain chipping
criterion, it was not attempted in this paper.
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Figure 2.14: Trend in average circularity and average aspect ratio of the particles as
the macroscopic strain increased on the specimen.
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Figure 2.15: Histograms of particle circularity and aspect ratio as a function of
strain on the specimen.

Figure 2.15 shows a series of particle sphericity and AR histograms as a function
of global strain on the specimen. Bins for the histograms were segmented at 0.5
intervals in a way so that the center of the bins are depicted as dots on the figure.
Since only 25 unique particles are used, the initial distribution of particle shapes is
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not well varied. Over the course of the experiment, the particles’ circularities and
ARs become much more varied. This is to be expected since some particles will
break much more than others and cause the particle shapes to take a more varied
distribution. These results further suggest that the particle shape has a significant
e�ect on both the likelihood of breakage on any single particle and on the nature of
breakage as damage increases.

2.7 Conclusion
Modeling breakage in granular materials has always been challenging due to the
complexities of the breakage process and capturing arbitrary shape changes. This
paper presented a modeling method that provides an avenue for addressing the
di�culties in modeling the morphological changes that occur in breakage. In doing
so, we demonstrated how the level set splitting method can thrive in various realms
where DEM finds a use.

The first example was for comminution modeling for a jaw crusher. We showed
how the level set splitting method can make very accurate predictions on the PSD
of the jaw crusher output. Abilities for this model to make additional important
predictions on performance for both jaw crushers and other crusher types were
discussed as possible future work. The second example was a classic oedometric
test where we showed that level set splitting can make reasonable comparisons with
experiment even with quite small samples. In fact, predictions could be made at
both the macroscopic scale, such as for constitutive modeling, and also at the grain
scale, such as with predicting changes in particle shape.

Future work with this method will certainly include quantitative validation exercises
in three dimensions, using XRCT to capture the true particle shapes of the material.
Further work can also be done with using XRCT to determine the exact time and
fracture surface of a breakage, allowing for the study of single particle breaks. This
could answer questions about how the contact forces are a�ected during breakage.

While already capable of making good predictions on granular breakage, this method
can certainly be improved. For example, three simple breakage criteria were used
in this paper. A breakage criterion where the breakage stress is based on a field of
intraparticle stress may be more realistic for many materials. Also improvements
in fracture surface shape could greatly improve the accuracy at the granular level.
This could be done either with calculating a stress distribution or by using the data
from tomography to have a data-based method for fracture surface generation. For
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possibly a more simple addition, adding available extensions to this method to model
more breakage types, such as chipping, may increase accuracy of the method even
further as well.
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2.8 Appendix: Calculating Material Properties for Particles
For the purposes of building new particles, here we present an explanation on how
to determine the material properties using just the information from the discrete
level set function. The three key material properties to compute is the mass, center
of mass, and the moment of inertia.

First, we define the smoothed Heaviside function, H(�), as,

H(�) =

8>>>>><
>>>>>:

0 � < �✏
1
2

⇣
1 + �✏ +

sin( ⇡�✏ )
⇡

⌘
�✏  � < ✏

1 ✏  �

(2.24)

where ✏ is a smoothness parameter set to ✏ = 1.5. Assuming the particle has uniform
density, ⇢, and unitary grid spacing, the mass can be computed in 3D as,

m = ⇢
I’

i=1

J’
j=1

K’
k=1

H(��(xi, y j, zk)) (2.25)

and in 2D as,

m = ⇢
I’

i=1

J’
j=1

H(��(xi, y j)) (2.26)

where I, J, and K are the maximum grid dimensions in each direction. The center
of mass can then be computed in 3D,
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and in 2D,
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Then, finally the moment of inertia for 3D,

Ixx = ⇢
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and in 2D,

I = ⇢
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H(��(xi, y j, zk))[(xi � x̄)2 + (y j � ȳ)2] (2.30)
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C h a p t e r 3

PREDICTING CONTACT FORCES AND PARTICLE STRESSES
IN CRUSHABLE SAND

Harmon, J.M. et al. (2021). “Predicting contact forces and particle stresses in crush-
able sand”. In: Geotechnique (submitted).

3.1 Abstract
In this paper, we endeavor to predict the evolving statistics of inter-particle contact
forces during comminution using grain-scale computational modeling. First, a
validation is carried out by creating a one-to-one virtual avatar of an Ottawa sand
specimen from 3D X-ray tomography with level sets and comparing the data from an
oedometric test to the model’s prediction. The predictive capabilities are confirmed
from comparing the constitutive response, grain size distribution, and changes in
particle shapes in both the experiment and model. Once validated, we delve into
the predicted contact forces and particle stresses. We find that the largest particles
experience the largest forces. Despite larger particles being weaker on average,
many survive due to being on the stronger side of the particle strength distribution
and also having a higher coordination number producing a more isotropic stress
state in the particle. These highest forces are largely aligned with the specimen
axis demonstrating that larger particles provide the strength in the loading direction.
Meanwhile forces in the radial direction are more broadly distributed indicating that
small particles play a significant part in providing radial stability.

3.2 Introduction
The e�ects of breakage in granular materials have been an elusive subject due to some
inherent di�culties. For one, complete repeatability in experiment is impossible due
to the irreversibility of breakage compounded with the fact that there is no uniformity
in the microscopic properties of specimens such as individual particle shape or
their arrangement. Experiments have also not been able to provide information
on the contact forces between particles for real sands in specimens experiencing
breakage. This fact limits the insightfulness of experiments and highlights the
need for modeling, particularly like the discrete element method (DEM), to provide
reproducibility and contact force information. DEM is capable of doing this by



34

representing every particle individually using rigid bodies that interact with springs
and dampers originally shown in ((Cundall et al., 1979). DEM has had its own
di�culties as well however, often having to compromise between accuracy and
e�ciency. Despite these di�culties significant strides have recently been made in
both experiment and modeling.

To characterize the response of granular materials in three dimensions, 3D X-ray
tomography has been used (Andò et al., 2012; Cil et al., 2014; Wang et al., 2004),
and has explored breakage in granular materials over the last decade. For example,
(Garcia et al., 2009) used this method to explore the correlation between interfacial
area of single particles and grain boundary fracture, and quantitatively analyzed the
degree of preferential grain boundary fracture at particle level. (Zhao et al., 2015)
showed that the initial particle properties such as morphology, heterogeneity, and
mineralogy of single particle breakage influence the particle-level fracture strength.
With the benefit of the improved interplay of X-ray tomography scanning and sample
size, successive scans of the assembly of sand have enabled capturing the continuous
response of granular materials through one-to-one matching of grains. The size-
dependent strength of individual particles on yield strength at assembly-scale via
3D X-ray images was examined and it was revealed that the breakage of individual
particles a�ect the macroscopic response of the granular system (Cil et al., 2020).
(Karatza et al., 2019) captured breakage by using 3D X-ray tomography in triaxial
testing showing significant breakage characteristics in the shear banding region.
While those studies present the importance of considering breakage in the granular
system, the shape e�ects, which directly determine the system-level characteristics,
have been relatively less explored. Some recent studies have begun to investigate
the matter however, such as (Zhao et al., 2015) showing that the evolution of particle
morphology and coordination number at the particle scale is dependent on the
fragment scale under di�erent assembly densities. (Seo et al., 2020) extracted the
variation of shape factors of ongoing fractured agglomerates during an oedometer
test with consecutive scans, presenting that all morphological indices converge to a
similar range of shape values at high compression. Those recent studies support that
the measurement of particle shape evolution for a high breakage density specimen
is critical data due to the established importance of particle shape in granular
mechanics, e.g. (Murphy et al., 2019).

With the correct validation completed, a predictive DEM model can capitalize
on reproducibility by conducting its own experiments via virtual testing. Virtual
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testing of this kind is already reliably conducted for granular materials that are
not experiencing breakage, providing information experiments cannot achieve e.g.
(Karapiperis et al., 2020b). When breakage is added, the most common DEM
methods have been largely confined to using geometrically limited particle shapes
such as spheres or clumped spheres e.g. (Ben-Nun et al., 2010; McDowell et
al., 2013). Some recent developments in breakage modeling have improved the
capabilities of modeling particle geometry such as with the use of polyhedrons e.g.
(Zhu et al., 2019; Jiménez-Herrera et al., 2018). Polyhedrons however cannot easily
handle concavities in the particle shape, and often must use a convex hull of the
true particle. Some studies have captured the true particle shape by using a finite
element model on every particle, however with a considerable expense in e�ciency
e.g. (Iliev et al., 2019; Imseeh et al., 2018). Here we are presenting the first
three dimensional validation of the level set variant of DEM (LSDEM) that uses
the level set splitting technique first introduced in Harmon et al. (Harmon et al.,
2020). The level set variant of DEM has no shape limitations and has already been
shown to be predictive without breakage and can model macroscopic specimens
with >50,000 particles (Kawamoto et al., 2018b). The level set splitting addition
allows for breakage and has shown some evidence already of being predictive in two
dimensions.

One of the most useful aspects of a validated DEM model is the ability of DEM
to uncover the forces between particles. (Daniels et al., 2017) suggested methods
to quantify the contact forces of particles in the way of photoelastic measurements.
Through the optical stress intensity via birefringence, they provided the estimation
of vector contact forces though this method is restricted to two dimensions and
photoelastic materials. Recently, (Hurley et al., 2018) used 3D x-ray di�raction
methods to measure average particle strain and thereby calculate stress and contact
forces in crystalline spheres. (Li et al., 2019) was able to obtain the contact forces
by applying Hooke’s law to calculate the stress from the strain measured via digital
image correlation method (DIC). This study is particularly important here since it
found that LSDEM provides similar forces to the measurements.

The organization of this paper is designed to provide a validation of the level set
splitting technique followed by an investigation into the contact forces seen in the
model. This will be achieved by first conducting an overview of the experimental
work that is being used for validation and how a numerical avatar can be developed
from it. Then the model will be introduced with a summary of the method, its setup,
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and how its parameters are determined. Finally, results for the validation and the
contact forces will be shown with discussion on some of the implications of the
trends in these results.

3.3 Experiments
Uniaxial Compressions Test with 3D X-Ray Tomography
Ottawa sand was tested for a uniaxial compression test while performing 3D X-
ray tomography to understand the ongoing response in the sand assembly. The
sand sample was sieved between #20 (840 µm) and #40 (420 µm) in compliance
with ASTM standard. After being oven dried at 110°C for 24 hours, the sand was
poured into aluminum tubing with a diameter of 4.1 mm through the dry pluviation
method and was tamped to achieve the maximum packing density. The prepared
specimen had an initial void ratio of 0.60 with a height of 5.0 mm and a median
diameter of 600 µm (Fig. 3.1a). The sample was set on the compression device
and tested under strain-control conditions at a constant vertical displacement rate of
0.05 mm/min, while radial deformation was prevented by the aluminum tubing. The
miniature nature of this customized testing device allowed the system to be mounted
in the X-ray tomography beamline while simultaneously acquiring data about the
compression response. To generate pervasive breakage, vertical stress beyond the
macroscopic yielding point was imposed, thus benefiting from a maximum axial
load capacity of the device corresponding to 1112 N, recorded with a resolution of
0.1 N.

The experiment was performed in the GeoSoilEnviroCARS (GSECARS) beamline
13 BM-D of the advanced photon source (APS), Argonne National Laboratory in
Lemont, IL, USA, where synchrotron X-ray microtomography (SMT) is available.
Specifically pink beam technology was used, which allows rapid high-resolution
3D microtomography (i.e., 4·28 µm/pixel in this study) (Rivers, 2016). The sample
under loading was scanned at varying values of normalized vertical stress (�/�y
= 0·50, 1·00, 1·33, 1·66, and 2·00, where � is the applied stress and �y is the
conventional yield stress (29 MPa) of Ottawa sand determined from preliminary
experiments (Fig. 3.1b). Following standard soil mechanics procedures, the yield
stress was determined in correspondence with the point of maximum curvature
of the compression curve. When the targeted stress, �, was reached, the sample
was stabilized for 10 minutes with a fixed loading piston. Successive X-ray scans
acquired through this procedure enabled visual inspection of the developing breakage
in the assembly.
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(a) (b)

Figure 3.1: PSD used and scan points. (a) Initial particle size distribution of the
specimen (b) Schematic of uniaxial compression test and scan points

Image Processing
3D images from SMT allowed quantification of the breakage characteristics at the
level of individual grains. For this purpose, corrective procedures were applied, such
as the correction of rotations due to inevitable small imperfections of the sample
alignment a�ecting image acquisition during rotation. Hence, to adjust the central
point of the acquired raw tomography in accordance with the three-dimensional
sample geometry, the image sets were reconstructed through the IDL software
available at 13 BM-D (Rivers, 2012), and these reconstructed images were further
processed through the commercial software Avizo to isolate individual particles.
Figure 3.2 schematically depicts this process with reference to a cropped portion
of the original scans. Raw images were filtered to minimize the noise with an
anisotropic di�usion algorithm (Kim et al., 1987). The filtered images were then
separated into two distinct phases through thresholding criteria based on the lowest
value between the solid and void grayscale intensity levels. The remaining local
noise from the images were removed by using the remove spot tool. The following
step is segmentation of the solid phase into individual particles through a watershed
function based on the Chamfer distance (Reynolds, 1883).

The watershed image sets are applicable both to experimental data analysis and
preparation of the virtual particles used in LS-DEM. In the image analysis, the
watershed particles were labeled, and their geometrical properties were calculated
through labeling analysis. Specifically, the volume and the surface of the grains were
computed from the voxels allocated to the individual particles in 3D image-wise
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and to their boundaries. LS-DEM replicates the particle geometry on the basis of
the set of gray and watershed images (VlahiniÊ et al., 2014). After defining the
surface, the level set points are assigned their level set values as the distance from
the object surface. To distinguish the level set points belonging to the void and
solid phases, it was set to negative values indicated inside the solid and positive
values in correspondence with the inter-granular voids. After the level set function
is determined, the surface of the particle is discretized into surface points which are
important for the leader-follower style contact algorithm.

Figure 3.2: Schematics of post-image processing and level set image preparation.

3.4 Modeling Methodology
The level set based DEM variant uses level sets as the geometric descriptor for each
particle which describes a geometric surface implicitly through a distance function
(Sethian, 1999). From an image, the shape, position, and rotation of every particle
is known, enabling the creation of a one-to-one avatar of the experiment. This is
the same process that has been done before for a triaxial test that was conducted as
a validation of LSDEM (Kawamoto et al., 2016). Readers can refer to (Kawamoto
et al., 2016) for the full description of the method without breakage.

Unlike previous three-dimensional comparison studies with LSDEM, this specimen
will experience breakage. To enable the level set particles to break, the level set
splitting method will be used which was introduced in (Harmon et al., 2020). A
summary of this method will be provided here.
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Figure 3.3: Each image shows the zero level isosurface of each level set function.
The intersection and di�erence set operations between the original particle and
fracture surface result in a mass conserving split.

Level set splitting uses set operations to separate a single level set into two level
sets with a predetermined splitting surface. This operation is done by using the
intersection and di�erence between the original particle level set, �1, and a proposed
splitting surface, �2, as seen in Figure 3.3 to provide two new particles, �3 and �4.

�3 = max(�1, �2) (3.1)

�4 = max(�1,��2) (3.2)

In principle, this surface can be arbitrarily shaped, however for simplicity, we have
chosen to only use flat planes as splitting surfaces. To determine when to split
a particle, we use breakage criteria calculated from the average stress over each
particle. The average stress is determined by its volume, V

p, the contact forces, Fc,
and branch vectors, xc,

�̄p =
1

Vp

Nc’
c=1

xc ⌦ Fc (3.3)

From the average stress, we choose a breakage criterion, which we have chosen to
be the maximum principle stress since this is most accurate for brittle materials.
This criterion assumes that the breakage will occur due to the tensile internal forces
inside the particle. The maximum principal stress is determined from the greatest
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eigenvalue of the average stress tensor. The minimum principal stress may also be
checked in the case of failure from compression, despite the compressive strength
being many times higher than the tensile strength for sand particles, but a failure
of this type rarely occurs in this setting. It is well known that particle strength
is a function of particle size, famously shown in (Weibull, 1939). These strength
di�erences follow a Weibull distribution.

Pf (� � �max) = 1 � exp{�(d/d0)3(�/�c0)m} (3.4)

This equation determines the probability of failure from the size and stress state of the
particle. Here � and d is the stress and diameter of a given particle and �0 and d0 is
the stress and diameter of a particle that is known to have a 37% survival probability
at that state. The parameter m is the Weibull’s modulus which is a material property
that controls how much the particle strength grows with a given diameter reduction.
Smaller values of m result in larger variations of particle strength. Generally values
for the Weibull’s modulus are in the range of 1-4 (F. L. Nakata et al., 1999).

For implementation, we use inverse transform sampling to determine the critical
stresses directly.

�c = �c0

"
�
✓

d0
d

◆3
ln(1 � Pf )

#m
�1

(3.5)

Where Pf will be a uniform distribution U(0, 1). After these critical stresses are
determined for the initial particles, we determine the critical stresses for child
particles from simply relating their critical stresses to their parent particles. We
assume that the child particles will have similar internal flaw characteristics as
the parent particles and therefore should not have their strength seeded from the
distribution again.

�a

�b

=
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da
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◆�3/m

(3.6)

When a particle breakage event is computed, the splitting surface is created by
generating a flat plane from the locations of the three highest contact forces on the
particle. In the cases where there are only two contact forces on the particle, the
third point used is the particle centroid. The physical properties of volume, center
of mass, and moment of inertia of each new particle are recalculated.



41

3.5 Specimen Preparation and Parameter Determination
The specimen was prepared by taking the level sets developed from the XRCT
images and placing them in exactly the same position and rotations as the images.
The created particles were slightly smaller than the imaged particles to ensure
no particles are initialized in the model in contact, which could cause immediate
instability if an initial overlap is significant.

The contact sti�nesses were determined from calibration with experiment in the pre-
breakage regime. For this calibration, the breakage was turned o� and the sti�ness
was altered until the model aligned constitutively with the experiment at low stresses.
Friction and density have well known values for Ottawa sand (El Ghoraiby et al.,
2020). The breakage parameters�c0,d0, and m were determined from single particle
breakage experiments conducted by (Nakata et al., 2001), as well as with further
guidance from statistical analysis done by (Zhang et al., 2015). Table 3.1 shows all
these values that have been described.

Parameter Value Units
kn 1.5 MN/m

ks/kn 0.9 none
µ 0.4 none
⇢ 2.65 g/cm

3

�c0 100 (tensile) MPa

d0 0.6 mm

m 3.3 none
Pf U[0, 1] none

Level Set Resolution 8.6 mm/vox

Table 3.1: Parameters used in modeling with values and units.

The level set resolution is usually determined from the resolution of the image. Here
the experiment resolution was much higher than what is generally used for LSDEM,
so the resolution of the level sets was halved from the experiment to alleviate any
memory concerns during simulation.

3.6 Results
Six moments in the experiment will be focused on for comparison in order to provide
comparisons at multiple stages. The moments chosen are at strains 0%, 3%, 5%,
6.4%, 9.8%, and 13%. These were chosen because they are the same moments
when scans were taken of the experiment and are well spaced for observation of
phenomena at many stages of breakage.
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Mechanics Validation
First, we will compare experiments and simulations in terms of macroscopic con-
stitutive response. In Figure 3.4(a), these responses are shown for each. Plotting
the stress in log space is standard in breakage science e.g. (Nakata et al., 2001)
and is helpful for visualizing the large range of stresses the specimen experiences.
For the entire range of the imposed axial stress, the model is overlapping or nearly
overlapping with the experiment. The plots of the GSD for each previously refer-
enced strain level is shown in Figure 3.4(b). The grain size of the particles for both
experiment and simulation was determined by using the diameter of a sphere of the
same volume, often called the equivalent diameter. The first few moments have the
same GSD due to little to no breakage having occurred yet, however the GSD evolves
for the last three moments similarly between model and experiment. This provides
confidence that the assumptions of flat breakages and breakages intersecting the
highest contact forces produce particles of similar volume as the experiment. The
final GSD at 13% axial strain is not necessarily the ultimate GSD, however we can
assume that if the model can capture the evolution of grain size, then it can capture
the ultimate GSD as well. Both the model and experiment predict the dominant
growth of finer particles in the post-yielding region. This observation is emphasized
in Figure 3.5 where the model specimen is visualized. It can be easily seen that
there are many more particles that have broken 5+ times than particles that have
broken 2-4 times at the final stage.

Chipping is an important phenomenon that was observed in experiment however
is not seen here. This may be expected since chipping is usually local to a single
contact force which is not conducive to the assumption in the model that cracks
must intersect multiple contact forces. Despite this, the lack of chipping does not
seem to have a�ected the GSD and constitutive comparisons. The very fine region
of the GSD curve, a region where chipping is the dominant mechanism for particle
creation, has errors for both model and experiment due to limitations at small particle
sizes. For experiment, fines with volumes less than 0.001 mm

3 were removed due to
uncertainty in measurement. In the model, small particles cause instability and poor
shape representation, so a size limit is implemented at 10 surface points or 15 level
set voxels. Particles at these sizes however are small enough to lose confinement and
migrate significantly in the void space of the specimen, resulting in those particles
producing little e�ect on the mechanics.
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(a) (b)

Figure 3.4: Stress-strain and GSD evolution. (a) Constitutive response comparison
with markings placed at stresses in which the grain size distribution is plotted on
the right. (b) Grain size distribution evolution at 0%, 3%, 5%, 6.4%, 9.8% and 13%
strain for both model (dashed lines) and experiment (solid lines).

Figure 3.5: Visualizations of the breakage for the last four simulation steps. Opacity
is increased for particles that have experienced at least one break.

Particle Shape Validation
When the model is initialized, all the particles have the same shape virtually as they
do in the experiment. As the particles break at higher stresses however, the new
particles in the model are far from guaranteed to have the same or similar shapes as
the experiment. To investigate the extent to which the shapes in the model diverge
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from the shapes in experiment, each will be compared quantitatively at multiple
stages.

The sphericity of a particle is a measure of how close that particle shape is to a
sphere and is used often in microscale analysis of granular matter (Blott et al., 2008;
El Ghoraiby et al., 2020). The sphericity of a particle, S, is calculated as the ratio
between the surface area of a sphere with the same volume and the surface area of
the particle itself. This ratio can be simplified to the following equation,

S =

3
q

36⇡V2
p

A
(3.7)

From the experimental data, Figure 3.6 shows the histogram of sphericity at each
scan point. At the initial stage, 50.7% of particles had sphericities between 0.90 and
0.95 indicating a narrow distribution. At yielding (Figure 3.6b) where noticeable
amounts of breakage initiate and the portion of fines increases, fragments appear in
a lower range of sphericity (0.45-0.80). This range becomes more common for both
simulation and experiment at subsequent scan points as well, showing that breakage
in the assembly results in producing angular fragments. This is expected since the
wide variety of fracture shapes that could happen should result in a wide variety of
particle shapes from the child particles. Through the image analysis of experimental
data, we conclude that breakage in granular materials triggers a large variation of
particle geometry, and this is also captured by the model. This evidence suggests
that the assumptions of flat fracture surfaces and breakages connecting the largest
contact forces are reasonable. The model does predict sphericities that are lower
than experiment, but this could be expected from the nature of flat fractures creating
sharp corners at the edges paired with the lack of chipping in the model that could
serve to smoothen those edges.

As other variables that describe particle geometry, flatness is a measure of flat form
(e.g., oblate) expressed as a ratio of shortest length (S) over intermediate length (I)
while elongation is a term to describe elongated grain such as rod or prolate shape,
quantified as a ratio between the intermediate length (I) over the longest length (L)
(Blott et al., 2008).

Flatness = S/I (3.8)

Elongation = I/L (3.9)
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(a) (b)

(c) (d)

Figure 3.6: Sphericity distribution of entire particles from experiments at strains (a)
0 %, (b) 5%, (c) 6.4%, (d) 13%.

Figure 3.7 shows comparisons of the average flatness and elongation over time of
the particles for both experiment and the model. These properties were determined
by the ratio between principal lengths fitting to a circumscribing ellipsoid having
the minimum volume. In experiments, flatness decreased from 0.80 to 0.61 while
the initial value, 0.80 of flatness in LS-DEM dropped to 0.60. The overall Flatness
in LS-DEM shows 1.08 % of an average error on the basis of the experimental
data. In addition, the Elongation of the particles including fragments in LS-DEM
evolved the same as those of experiments by having 0.87 % of an average error.
This indicates that LS-DEM can replicate particle shape alterations with a very high
level of accuracy.
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Figure 3.7: Evolution of average Flatness and Elongation for experimental results
and LS-DEM data.

Investigation of the Contact Forces
Unlike the experiment, the model can report contact forces experienced by particles
in the specimen. In this section, some observations of the reported contact forces
from the model will be shown to demonstrate this capability and investigate the
microscopic nature of breakage.

Figure 3.8: Same as Figure 3.6, but with interparticle contact forces added and
opacity reduced for all particles to better see the contact forces. Thickness of black
lines is proportional to the force magnitude.

Figure 3.8 visualizes the contact forces with the specimen at the same four moments
shown in Figure 3.5. The forces are shown as black lines whose thickness is
proportional to the magnitude of the contact force and are aligned with the direction
of the contact force. As the stress in the specimen increases from left to right, there
is a clear increase in higher magnitude contact forces. This is despite an increase
in the total number of contacts from the increase in particle numbers indicating that
the e�ect of spreading out the stress over a larger number of contacts does not limit
the increase in contact force with increasing compression. Higher forces do not tend
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to exist in regions with high levels of breakage which we can observe by noticing a
lack of thick black lines in the regions of particles that have experienced 5+ breaks.
Another observation of the model is that if a particle is to break many times, it
does so rapidly because one break is not often enough to alleviate the stress in the
region. In the experiment, it was shown that both “comminution” events where
one particle breaks into many particles exist as well as “splitting” events where one
particle breaks into only two particles. Despite the model only allowing splitting
events, there are many times where there are multiple subsequent splitting events
that culminate to what could be described as a comminution event. After these
comminution events, the forces in that region significantly decrease and cause a
shielding e�ect on the new particles, disallowing further breakage. So, while most
forces in the specimen increase with increasing stress, when particles experience
many breakages, the forces in that local region tend to decrease.

Figure 3.9: Histograms of contact force magnitude at strains (a) 5%, (b) 6.4%, (c)
9.8%, (d) 13%.

Figure 3.9 shows further evidence of this due to the large increase in small forces
at higher stresses where significantly more breakage exists. This figure also shows
that larger forces in the >20N range only seem to exist at the higher levels of strain.
While the number of forces at the extremes increase, the number of forces in a
mid-range around 7-12N remain similar. It can more generally be described that the
force magnitude distribution is more uniform at lower strains when the PSD is more
uniform than later in the experiment when the specimen has a more graded PSD.

There are two e�ects that enable many large particles that are both statistically weaker
and experience high contact forces to resist breakage throughout the experiment.
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Figure 3.10: (a)-(d) Histograms of breakage stress for both broken and unbroken
particles at strains of 5%, 6.4%, 9.8%, and 13%, respectively. (e) Histograms of
only the unbroken particles for multiple strains indicating that largely the weakest
particles were the ones that broke.

These are a survival of the fittest e�ect and the cushioning e�ect. Because the
strengths of the initial particles are seeded from a distribution, from the beginning,
there is a significant variation in particle strength when the particles all have similar
volumes as shown in Figure 3.10 and so naturally the average strength of unbroken
particles will increase as the stronger particles survive and the weaker ones break.
In Figure 3.10a-d, the histograms of particle strengths of both broken and unbroken
particles are shown at various strain levels. While unbroken particles that are
generally larger do have lower average strength, there are many broken particles that
have the same strength or are weaker meaning that large unbroken particles are not
necessarily the weakest. Broken particles are mostly produced by the weakest of
the original particles, as seen in Figure 3.10e where the count of unbroken particles
of low strength significantly decreases over the course of compression. Because
broken particle strength is directly related to the strength of its parent particle, this
further explains why many broken particles have lower or similar critical stresses
compared to unbroken particles.

The cushioning e�ect also enables the survival of larger particles due to higher
coordination numbers producing more isotropic stress states, allowing large particles
to experience higher forces without an increase in maximum principal stress. To
quantify the contact force statistics for di�erent particle volumes, Figure 3.11a uses
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a concept of average pair volume which is the average volume of the two particles
that share a given contact force. In Figure 3.11a, we show the average contact force
for each average pair volume bin, in which case there is a clear correlation between
average pair volume and contact force. This observation indicates that it is indeed
the larger particles that on average experience the large forces that then produce the
bulk of the specimen strength. Figure 3.11b uses the same plot in Figure 3.9d but
with a color coding that represents the average pair volume of that contact force. For
this plot, the average pair volume is compared to the average volume of all particles
in the specimen. The plot shows that forces with an average pair volume below
50% of the average particle volume of the specimen are responsible for the bulk of
the smallest forces that are <3-4N, but are nearly non-existent for larger forces that
are >10N. Forces with average pair volumes that are greater than twice the average
particle volume however seem to be equally likely to have the force magnitude to
be between 1-15N and are the only average pair volumes to have forces >15N. In
Figure 3.11c, the Pearson’s correlation coe�cient, ⇢, between two quantities, A and
B, is used and is calculated as,

⇢(A, B) = 1
N � 1

N’
i=1

� Ai � µA

�A

� �Bi � µB

�B

�
(3.10)

where µ is the mean and � is the standard deviation of the respective quantity.
Note that this value can be negative for negatively correlated quantities, but in
Figure 3.11c, all quantities are positively correlated. Here the correlation between
particle volume and contact force magnitude is made completely clear by showing
that the correlation between these quantities is very high once significant breakage
initiates at around 5% strain. The correlations also show quantitative evidence of
the cushioning e�ect from volume being correlated to both coordination number
and isotropic stress, I1. The volume is also significantly more correlated to I1 than
the deviatoric stress invariant, J2, a direct result of a higher coordination number
creating a cushioning e�ect. The correlation of volume to the ratio of �1 and �c

shows that larger particles are generally closer to breakage than smaller ones. The
polar plot in Figure 3.11d quantifies the directionality of the contact forces. Bins
near 90 or 270 degrees are the sum total of force magnitude in the vertical z direction,
while bins near 0 or 180 degrees are the sum total of force magnitude in the radial,
r , direction.
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Figure 3.11: Contact force information. (a) Average contact force for each bin
of particle volumes. (b) Histogram of all contact force magnitudes separated by
volume. (c) Pearson’s correlation coe�cient for many variables and volume. (d)
Polar plot of total force magnitude in each direction. Vertical forces on the plot
indicate forces in the z-direction and horizontal indicate forces in the r-direction.

Large amounts of force can be seen in the vertical direction, and significantly less
so in the radial direction. The forces are broken up into four bins of average pair
volume so it can be observed that the larger particles experience disproportionately
more vertical force than radial force. The smaller particles on the other hand,
while still experiencing more force in the vertical direction, have a larger relative
contribution to the total force in the radial direction than the vertical direction. The
small particles then serve as lateral support so that the larger particles can maintain
enough confinement to keep the stronger force chains from buckling. The smaller
particles still hold significant force near the vertical direction as well however, so
these must be the forces that are providing the bulk of the cushioning the larger
particles experience.

3.7 Conclusion
The LSDEM with level set splitting in three dimensions has been compared to exper-
iment at multiple scales showing predictive capabilities for both the mechanics and
particle shape evolution. The quality of comparisons has provided confidence that
investigations into the contact forces and particle stresses using the model can give
physically meaningful insight. Observations of the contact forces show the existence
of large contact forces on the largest particles. These larger particles were shown
to survive due to both a survival of the fittest e�ect and a cushioning e�ect, both
of which were observed quantitatively. Quantitative analysis of computed contact
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forces also pointed out that the emergence of clusters of pervasive crushing leads to
a rerouting of major force chains, which in turn shields the a�ected particles from
further breakage. From the directionality of forces for various particle volumes,
it was observed that the vertical resistance comes from large forces in the verti-
cal direction on large particles, enabled by the smaller newer particles providing
support in the lateral direction. These results, here enabled by DEM simulations
allowing realistic particle shape evolution, demonstrate the benefits of integrating
full-field measurements and high-fidelity computations to isolate how individual
grain properties and collective inter-particle interactions influence the macroscopic
crushability of sands.
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C h a p t e r 4

MODELING CONNECTED GRANULAR MEDIA: PARTICLE
BONDING WITHIN THE LEVEL SET DISCRETE ELEMENT

METHOD

Harmon, J.M. et al. (2021). “Modeling connected granular media: Particle bond-
ing within the level set discrete element method”. In: Computer Methods in
Applied Mechanics and Engineering 373, p. 113486. ����: 0045-7825. ���:
https://doi.org/10.1016/j.cma.2020.113486. ���: https://www.
sciencedirect.com/science/article/pii/S004578252030671X.

4.1 Abstract
Granular materials are made up of particles with complex non-convex shapes that
in many cases become connected by cementation, sintering, or other adhesive pro-
cesses. This paper introduces and describes the methodology behind using the
bonded particle method (BPM) with the level set discrete element method (LS-
DEM-BPM), in order to model connected granular materials with arbitrary particle
shape. The method is thoroughly detailed in both two- and three-dimensions. Ex-
amples of use for the method are shown for three distinct contexts. The first is
the modeling of a fault gouge, where it is demonstrated that the method has the
potential to be predictive of the rate-and-state friction law and have key insights into
the micromechanics of the process. Another example is presented where a cone
penetrates porous sintered ice showing that bond thickness has a considerable e�ect
on model behavior. The third example is a simulation using many unique bonds
for each contact interface, demonstrating the ability to simulate partial fractures. A
discussion is also included on how and when this method can be either advantageous
or disadvantageous.

4.2 Introduction
Rocks, ices, and metals are among many examples of materials that can be thought of
as connected granular materials due to the clear presence of a grain scale that features
adhesive mechanisms at grain-to-grain contact locations. For many applications,
the physics at the microscale dominate behavior that is observed at the macroscale.
To understand the underlying mechanics of these materials, it is important to model
the fundamental physics at the grain scale that drives the macroscale observations.
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For example, considerable study has been done on the microscale of rock and how
it a�ects the macroscale properties (Grady et al., 1979; Regnet et al., 2019). Small
flaws in the rock microstructure can cause large di�erences in fracture strength. This
drives the well-known phenomenon that as rocks get smaller from breakage, their
strength increases (Weibull, 1939). The microstructure of ice is also often granular
when many ice particles sinter together during formation (Hobbs et al., 1964). The
sintering process causes the strength of ice to be dependent on the thickness of
the sintered neck, which in itself is dependent on time, temperature, humidity, and
initial particle shapes (Christmann et al., 2015).

The bonded particle method (BPM) has been used in discrete element modeling
(DEM) extensively since its introduction by Potyondy & Cundall to model connected
granular matter (Potyondy et al., 2004). Particle bonding was originally done with
spheres that were bonded by beams connecting the centers of the particles that behave
linearly. Progress on the model has usually taken the form of enriching the linear
bonding mechanics such as with non-local considerations or by improving shape
capabilities (Celigueta et al., 2017; M. A. Celigueta et al., 2020). Using spheres
assumed that if the spheres were small enough compared to the macrostructure,
that their mechanical response would replicate the granular microstructure of a
cemented material. This assumption showed to be e�ective for simulating aspects
of crack propagation in rock (Zhang et al., 2011). This principle is also used for
simulating breakage in sand where every particle is made of many small spheres
bonded together during oedometer testing (Cheng et al., 2003; Cil et al., 2012).

Further developments in both DEM and BPM led to using the bonded particle
method in polyheron-shaped particles. This was an important development since
many studies have shown the importance of particle shape in granular materials
(Kawamoto et al., 2018b; Imseeh et al., 2018). The polyhedron-based method
proved e�ective for simulating the breakage of rock (Galindo-Torres et al., 2012).
This also had important implications for masonry as the shape for bricks could be
properly represented (Lemos, 2007).

In this paper, the bonded particle model will be implemented with the level set variant
of DEM (LS-DEM) for the first time. LS-DEM has key advantages compared to other
DEM variants (Kawamoto et al., 2016). The most notable is the ability to capture
any arbitrary shape for particles without limitations or special treatments. This
has allowed the study of granular specimens through a true one-to-one comparison
with experiment by utilizing exact shape for every particle from X-Ray Computed
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Tomography (XRCT) imaging (VlahiniÊ et al., 2014). Validation experiments have
provided unique levels of confidence in the method which allows for numerical
experimentation beyond what is capable in a lab (Li et al., 2019; Kawamoto et al.,
2018b). These advantages could often be of interest to applications for the bonded
particle model.

This paper is organized as follows. First the model will be described for both two
and three dimensions detailing both LS-DEM and bonding where the simple linear
version will be used. Three separate examples will be shown, each highlighting
advantages to using the LS-DEM variant of the bonded particle method. Finally,
we will conclude with a discussion over both the advantages and disadvantages with
the model.

4.3 Modeling Methodology
Level Set Discrete Element Method
LS-DEM is a discrete element modeling variant that utilizes discrete level sets and a
surface point discretization for representing particle shape through a leader-follower
relationship. Level set functions were developed to define object surfaces implicitly
(Sethian, 1999). Discrete level set functions, �, determine the distance, �, to an
object surface given a location, Æx, where positive values are outside the surface and
negative values are inside the surface. In this way, the morphologies are implicitly
defined as the surface can be found through interpolation at the zero level set. Then
using a set of surface points, contact is established when the location of a surface
point from a leader particle returns a negative level set value from the follower
particle (Figure 4.1). Like in other DEM variants, this necessitates a small overlap
between particles to occur to determine contact with an assumption made that the
overlap is too small to a�ect results.

The surface normal vector is then determined by taking the gradient of the level set
function at that point,

r�(x) = n̂ (4.1)

Both the overlap and surface normal is used to get contact force through a force-
displacement relationship-based contact model. No contact model is specific to LS-
DEM, however it is important to consider that contact force is heavily determined
by the local curvatures of the contacting surfaces. Hertzian contact is often used
in other DEM variants, however this model is only accurate for spheres (Johnson,
1985). Due to the high variety of possible contacting curvatures, a linear model
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Figure 4.1: Illustration of LS-DEM contact. Red surface points are inside the
follower particle and are therefore considered in contact.

will be used with the assumption that having enough contacts will average out the
error. The linear model has been shown many times to give reasonable results for
LS-DEM (Kawamoto et al., 2016). Both normal and pre-slip shear forces use the
linear model,

Fn = kn�nn̂ (4.2)

�Fs = ksvs�t ŝ (4.3)

where kn and ks are the normal and shear sti�nesses, respectively, vs is the relative
velocity in the shear direction between contact points, and �t is the timestep. Using
Coulomb friction, the shear force has a maximum value which allows slip,

Fmax

s
= µ| |Fn | | (4.4)

where µ is the static friction coe�cient. Due to the frictional aspect being history
dependent, shear forces use an incremental approach. Moment is calculated by
crossing the total contact force with the vector pointing from the center of mass of
the particle to the contact point, Æc,

M = Æc ⇥ F (4.5)

Once forces and moments are found, the kinematics are calculated using Newton’s
laws and a global damping formulation. Global damping, which is controlled by
the global damping parameter, ⇠, is applied as described in Lim et al. (Lim et al.,
2014) for both translational motion,

vn+1/2 =
1

1 + ⇠�t/2


(1 � ⇠�t/2)vn�1/2 +

�t

m
F

�
(4.6)
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and also rotational motion, which uses an iterative predictor-corrector procedure to
converge to the correct angular velocities. The algorithm is described in full in Lim
et al. and is an integration of Euler’s equations of motion with inertia proportional
damping,

↵1 = [M1 + !2!3(I2 � I3) � ⇠ I1!1]/I1 (4.7)

↵2 = [M2 + !3!1(I3 � I1) � ⇠ I2!1]/I2 (4.8)

↵3 = [M3 + !1!2(I1 � I2) � ⇠ I3!1]/I3 (4.9)

Global damping is not always added for DEM simulations, but is often useful. The
explicit time integration used in DEM often commands the use of small time steps
and therefore higher rates of forcing to maintain reasonable simulation durations
(Walton et al., 1993; Lim et al., 2014). The global damping alleviates the dynamic
errors introduced by maintaining quasi-static conditions.

Bonding Model
Particle bonding models in DEM can usually be described within two di�erent types
which have been termed the parallel bonding model and the contact bonding model
when introduced (Potyondy et al., 2004). In LS-DEM-BPM, both of these variants
may be implemented as shown in Figure 4.2.

The parallel bonding model connects contact points with a bond that resists relative
motion and relative rotation. Bonding points are determined at the initialization
step of the simulation by searching for nearby particles. In LS-DEM-BPM, this
is done in a manner similar to contact where two particles are bonded if a surface
point of a leader particle is within a maximum bonding distance of the surface of
the follower particle. This is determined by evaluating the follower particle’s level
set function at the leader particle’s surface point location. This maximum bonding
distance is set by the user and is termed the cohesive distance, dc. For the case of
parallel bonding, only the surface point that returns the smallest level set value from
the follower particle is used.

The contact bonding model is similar to the parallel bonding model except the bonds
have infinitesimal thickness and therefore do not resist rotation. A clear use for this
in LS-DEM-BPM is by allowing many contact bonds per particle pair that together
can resist rotation while simultaneously allowing for the bond to not necessarily
break all at once.
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While in this paper the linear method will be used for both parallel and contact bond-
ing, neither are limited by this. Non-local methods have shown to provide accurate
results and can be implemented by modifying the model similarly to the studies
where it was implemented with spheres (Celigueta et al., 2017; M. A. Celigueta
et al., 2020).
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Figure 4.2: Sketch in 2D of each bonding model for a single leader-follower bond
pair. Note that for parallel bonding, only the closest point is used to make a bond
while for contact bonding, all points closer than dc are used.

Bonding Mechanics

Each parallel bond is made with a defined radius, r , that defines the cross-section of
a cylindrical beam that connects the bond points. Circular cross sections are used
because they bear the closest resemblance in shape to a sinter neck, adhesive, or any
other bonding agent. This radius is used to compute the bond area, Ā, and moment
of inertiae for both the rolling, Ī, and twisting, J̄, axes of motion,

Ā =

8>><
>>:

2rt, t = 1, 2D

⇡r2, 3D

Ī =

8>><
>>:

2
3r

3
t, t = 1, 2D

1
4⇡r

4, 3D

J̄ =
n

1
2⇡r

4, 3D (4.10)

The bar above variables in this section identify variables as pertaining to bonding
characteristics, for example Ī is the moment of inertia for the bond and I is the
moment of inertia for a particle. Bonds act on particles through a force displacement
relationship and a moment angle relationship calculated incrementally in both the
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normal and shear directions.

�F̄n = k̄n Ā vp

rel,n�t (4.11)

�F̄s = k̄s Ā vp

rel,s�t (4.12)

�M̄n = k̄s J̄!rel,n�t (4.13)

�M̄s = k̄n Ī!rel,s�t (4.14)

where the total force and moment from the bond can be computed by adding the
normal and shear components

F̄ = F̄nn̂ + F̄s ŝ (4.15)

M̄ = M̄nn̂ + M̄s ŝ (4.16)

The variables k̄n and k̄s are the sti�nesses in both the normal and shear directions
for the bond. The normal sti�ness can be understood by considering the elasticity
of the adhesive agent. Suppose a bonding agent has a Young’s modulus, Ē , then
the sti�ness could be calculated from knowledge of the cylindrical geometry of the
bond. Here the area we have just determined and the length is approximately the
cohesive distance used as our search area to determine bonding,

k̄n =
Ē Ā

dc

(4.17)

The shear sti�ness can be similarly understood with the shear modulus, Ḡ, or more
often is set as a ratio between the shear sti�ness and the normal sti�ness.

The bonds are allowed to break, which is determined by stresses computed using
the following beam equations,

�̄c > �̄ =
F̄n

Ā
+
|M̄s |r

Ī
(4.18)

⌧̄c > ⌧̄ =
|F̄s |
Ā
+
|M̄n |r

J̄
(4.19)

Bond breakage occurs when the total stress in the beams exceed a breakage stress.
When a bond breaks, the bond is eliminated from the model and therefore does not
produce any further forces or moments.

For the case of using contact bonding, there is no concept of bond thickness or
moment resistance which simplifies the bond force equations to

�F̄n = k̄n v
p

rel,n�t (4.20)
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�F̄s = k̄s v
p

rel,s�t (4.21)

Note that the bond sti�ness is di�erent here than in parallel bonding. The two
definitions of bond sti�ness can be related to each other in the following way,

k̄
contact

n
=

k̄
parallel

n Ā

n̄
(4.22)

where n̄ is the number of contact bonds for the interface. The breakage condition is
also simplified to being a critical breakage force rather than a breakage stress.

F̄n,c > F̄n (4.23)

F̄s,c > F̄s (4.24)

The critical breakage forces can still be determined by breakage stress, however with
knowledge of the discretization density of the surface points per unit surface area,
⇢p,

F̄n,c =
n̄�̄c

⇢p

(4.25)

F̄s,c =
n̄⌧̄c
⇢p

(4.26)

Bond Damping

Without damping in the model, the bond forces will oscillate which would cause
premature breakages and instability. For many applications, particularly for quasi-
static tests, global damping is enough to remove these oscillations. Applications
with more dynamic interaction prefer to not use global damping however, which
requires an ability to dampen bond motion locally. The goal of local bond damping is
for both the translational and rotational motion of the bonded contact to be critically
damped so that the stress in the bond is equilibrated at the fastest rate.

For translational motion, the normal equation for critical damping in a one degree
of freedom system is used,

F̄
damp = vn


2
q

k̄n Āmeq

�
� vs


2
q

k̄s Āmeq

�
(4.27)

where the first term controls the damping in the normal direction to the surface of
the particles and the second controls damping in the shear direction. The term meq

is the equivalent mass computed from the masses of each bonded particle,

meq =
m

(1)
m

(2)

m(1) + m(2) (4.28)
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Rotations are considered similarly,

M̄
damp = !n


2
q

k̄s J̄ I
eq

n

�
+ !s


2
q

k̄n Ī I
eq

s

�
(4.29)

where I
eq

n and I
eq

s are the normal and shear equivalent moments of inertia calculated
from the normal and shear moments of inertia from each particle at the point of
bonding. For example in the normal direction, I

eq

n can be calculated as,

I
eq

n =
I
(1)
n I

(2)
n

I
(1)
n + I

(2)
n

(4.30)

and the normal moment of inertia can be found from the parallel axis theorem being
applied to the scalar moment of inertia about the normal axis which is determined
from the particle’s moment of inertia tensor,

In = (n̂ · I)n̂ + m| |c | |2 (4.31)

In the case of contact damping, the damping moment is unused and the same
equation for damping force can be used with just a simple change to the sti�ness
aspect,

F̄
damp = vn


2
q

k̄nmeq

�
� vs


2
q

k̄sm
eq

�
(4.32)

In general it is recommended that either global damping or bond damping is used
since applying both can easily over-damp the system and therefore get inaccurate
results from bond forces being unable to reach equilibrium. In cases of low global
damping though, the bond damping force can still be applied, but may need to be
scaled down for achieving the best results.

By combining this section with the previous two, the mathematics for calculating
forces and moments can be understood. To illustrate how all the mechanics come
together in implementation, a pseudocode is shown below for calculating contact
and bonding for a single particle pair.
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Algorithm 1 Calculate forces and moments
for all particle pairs {i, j} {leader, f ollower} do

for all surface points of leader particle, pi do
if surface point and follower particle have intact bond then

{Get Bond Forces and Moments} F̄n,F̄s,M̄n,M̄s  eq. 4.11, 4.12,
4.13, 4.14
{Check for Breakage} �̄, ⌧̄  eq. 4.18, 4.19
if eq. 4.18 & 4.19 false then

Set bond to broken
else

{Apply Damping} F̄
damp, M̄damp  eq. 4.27, 4.29

end if
else if � j(pi) < 0 then

{Get Contact Surface} n̂, ŝ eq. 4.1, vs/| |vs | |
{Get Forces and Moments} Fn, Fs,M  eq. 4.2, 4.3, 4.4, 4.5

end if
end for

end for

4.4 Model Behavior for Fault Rupture Tests
In this first application of the proposed methodology, we model the rupture of a
fault subjected to compression and shear, and the ensuing formation of a granular
gouge. In particular, we focus on modeling the fracture of surface asperities and
the deterioration of cementation at the grain scale, and we identify their e�ect
on the macroscopic friction. A plethora of experimental studies have focused on
delineating this macroscopic frictional behavior for a natural or model fault (Morrow
et al., 1989; Marone et al., 1990; Rubino V. et al., 2017), which have inspired a series
of theories (Scholz et al., 1972; Ida, 1972) culminating in the development of the
rate-and-state framework (Dieterich, 1979; Ruina, 1983). However, these theories
remain largely phenomenological given the relative sparsity of micromechanical
modeling of these complex grain-scale processes. DEM enhanced with contact
aging was employed in (Morgan, 2004) to investigate the frictional behavior of
gouge and reproduce several characteristics observed in the laboratory. Further,
DEM with bonding was used in (Guo et al., 2008) to study gouge formation under
constant-velocity shearing of two surfaces, and in (Fournier et al., 2012), to study
the e�ect of the heterogeneity of the slip surface on the overall characteristics of the
slip behavior. In the following, we will present how LS-DEM-BPM can be used to
gain further insight into the frictional response of a fault, and we will discuss its
implications to rate-and-state theory.
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Setup
Figure 4.3a shows an SEM micrograph of a natural gouge, which has been subjected
to chemical healing processes, inducing cementation between aggregates (Smith
et al., 2015; Keulen et al., 2008). Figure 4.3b shows the idealization of that system
within the proposed framework. In particular, we consider a 2D cell comprised
of 10,000 angular particles modeled after a quartz sand (Karapiperis et al., 2020a)
bonded together. The process of cementation is modeled by parallel bonding neigh-
boring particle surface points that lie within a threshold distance as described in
Section 2.2. The properties of particles and cement bonds are reported in Table
4.4. We will further assume that the grains themselves cannot experience fracture,
although such an extension is possible within the LS-DEM framework (Harmon
et al., 2020).

The cell is first vertically compressed to a pressure �, allowing for periodic bound-
ary conditions in the x-direction. To impose shear, the upper wall is displaced
horizontally, while keeping a constant vertical stress. A preimposed weak interface
is introduced in the middle of the specimen, in order to control the initiation of the
rupture (Figure 4.3b). The velocity of the upper wall is first kept constant at a value
v0 = 1 mm/s until steady state is achieved, and is then instantaneously increased to
a value v f = 10 mm/s, until the new steady state is reached (Figure 4.5a). During
this process, we measure the evolving population of interparticle bonds as well as
the shear stress at the upper boundary, yielding the transient macroscopic friction
angle µ = ⌧/�.
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LS-DEM-BPM Model(a) (b)

Cementation 4.2mm

2
.2
m
m

x

y

Bonded wall particles

Figure 4.3: Fault gouge. (a) SEM micrograph of a healed gouge adopted from (Smith
et al., 2015). Arrows show cohesive bridges (bonds) forming between aggregates,
(b) Idealized numerical model of the fault.
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Parameter Value Units
Density (⇢) 2500 Kg/m3

Grain Young’s modulus (Eg) 70 GPa
Contact sti�ness ratio (kn/kt ) 2 -
Friction coe�cient (µ) 0.3 -
Coe�cient of restitution (cr ) 0.6 -
Cement Young’s modulus (Ēc) 3 GPa
Bond sti�ness ratio (k̄n/k̄t ) 2 -
Cement compressive strength (�̄c) 100 MPa
Cement shear modulus (⌧̄c) 100 MPa

Figure 4.4: Particle and cement properties for the LS-DEM-BPM model of the
gouge.

Rate-and-state friction law
Before delving into the results of the numerical experiments, we briefly review the
standard rate-and-state friction law used to describe these systems. The law relies
on the Coulomb assumption with a rate and state dependent friction coe�cient
⌧ = µ(v, ✓)�, where v is the slip rate and ✓ is an internal variable (state) representing
history dependence, typically interpreted as the contact lifetime:

µ = µ0 + a log
v

v0
+ b log

v0✓

L
(4.33)

where µ0, v0 are the reference friction coe�cient and reference velocity, respectively,
L is a length scale, and a, b are parameters of the model. The evolution of state is
described by the aging law (Dieterich, 1979):

€✓ = 1 � v✓

L
(4.34)

and can give rise to either velocity strengthening (a � b > 0) or velocity weakening
(a�b < 0). Figure 4.5 demonstrates the evolution of friction in these two cases. For
bare slipping surfaces, experimental evidence suggest velocity weakening behavior
(Marone et al., 1990). In the presence of gouge, most evidence points to velocity
strengthening (Marone et al., 1990), while velocity weakening has also been reported
in the literature (Beeler et al., 1996; Ikari et al., 2017), depending on the inertial
number (Kuwano et al., 2013; DeGiuli et al., 2017).

Results
Figure 4.6a shows the evolution of macroscopic friction against the fault slip for the
same experiment carried out at two di�erent pressures: �1 = 1 MPa and�2 = 2 MPa,
respectively. Following the initial rupture at the weak interface, both systems arrive
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Figure 4.5: Velocity and rate-and-state. (a) Velocity history (b) Rate-and-state
friction law.

at a steady state as witnessed by the small fluctuations in friction. These fluctuations
represent stick-slip events arising from the repeating formation and collapse of force
chains. This is evident in Figure 4.7a, which shows the heterogeneous contact
force and bond force chains at that state for the higher pressure experiment. Figure
4.6b shows the rate of bond breaking for the two experiments. After an initially
pronounced bond breaking phase, we observe a decrease in the rate of bond breaking
towards the first steady state, at a slip of approximately 2 mm.

Upon the imposed sudden increase in the velocity in the second stage of the ex-
periments, we observe a spontaneous increase in friction in line with experimental
evidence and rate-and-state theory. This so-called “direct e�ect” is the signature
of an increase in the number of activated contacts. Gradually, the contact network
rearranges itself, and force chains appear to localize at the asperities (Figure 4.7a).
We observe local fractures at the asperities as a result of these dynamic stress con-
centrations. This leads to widening of the gouge, and in turn to reduced particle
interlocking which reduces macroscopic friction. In Figure 4.6b, we observe that
the rate of bond breaking indeed increases in both systems at a slip > 2 mm, only
to eventually decay towards a new steady state at a slip > 3 mm. At that point, only
a few bonds continue to experience fracture. The widened fault at the final steady
state is shown in Figure 4.7b for the lower pressure experiment. The final steady
state friction coe�cient depends on the pressure, which a�ects the accumulated
damage to the asperities and alters the dynamics of the contacting particles within
the weakened zone. In this experiment, we observe that lower pressure leads to
rate-strengthening behavior, while a higher pressure leads to minor rate-weakening
behavior which is likely due to greater damage at the asperities.
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Although no direct comparison with experiments is attempted in this study, this
framework exhibits great potential in reproducing the range of behaviors observed
in the laboratory. The incorporation of particle morphology ensures that we can
accurately account for particle interlocking and rolling, which has been shown to
be important for fault gouge modeling (Morgan, 1999). This completely avoids
the need for numerical proxies, when approximating the system by idealized shapes
such as disks (Morgan, 2004). Further, the incorporation of local (particle surface)
bonding ensures an accurate representation of contact scale cementation. Uncov-
ering the complex interplay between the inertial properties of the gouge, and the
evolving surface roughness and gouge width (Scholz, 1987), would clearly require a
systematic investigation of the parameters of the system. The latter could then shed
light on the parameters of the rate-and-state theory, such as the length scale L. The
above lie beyond the scope of this application.

(a) (b)

Figure 4.6: Friciton and breakage over slip. (a) Friction as a function of slip (b)
Rate of bond breakage (averaged over 1% shear strain increments) as a function of
slip.

4.5 Model Behavior for Cone Penetration Tests
This application will study the model behavior during a cone penetration test.
Particularly we will look at the e�ect of sintering neck size on strength. The
sintering process is an important aspect for many classes of materials such as metals
and ices. Being able to predict the changes in strength with increasing amounts of
sintering is highly desirable.

An example of an application where understanding the strength of a sinter network in
a granular material is sample acquisition on space missions to icy worlds. NASA has
made it a priority to send missions to moons in the solar system with global oceans
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(a) (b)

Figure 4.7: Particle configuration with bond force chains (in black) and contact
force chains (in blue) for the low pressure experiment for states (a) right before
the velocity jump and (b) at the final steady state. Darker particles represent those
connected by cement bonds; Lighter particles represented unbonded particles.

such as Europa and Enceladus due to the relatively high probability of finding life
(McKay et al., 2014). Due to the very low temperatures and near vacuum conditions,
porous ice solidifies at a very slow rate, meaning the planetary surface likely remains
quite porous (Molaro et al., 2019). Due to this, large amounts of the surface would
correctly be described as a connected granular material. This is particularly true
for the most geologically active areas, which are often of highest interest, such as
the south pole region of Enceladus. This region has geysers emitting ice particles
from the subsurface that either eject into Saturn’s E-ring or fall back onto the nearby
surface (Tsou et al., 2012). This section is built to be a first attempt at mimicking a
metal cone penetrating an icy surface such as Enceladus in this region where ice is
granular.

Specimen Preparation
The specimen was prepared by pluviation of particles into a cylindrical container. A
set of 100 unique granular geometries were used as particles taken from an XRCT
image of Hostun sand. During pluviation, the particles were made slightly larger so
that when the specimen is complete, there is empty space where the sintered necks
will be. Instead of all the particles being dropped from the beginning, particles were
only added when previous particles had settled. Each new set of added particles
were placed directly above the specimen, resulting in the particles depositing at
a low velocity. This created a loose specimen with a porosity of 46%. Particle
parameters used during the pluviation process were the same as during testing and
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are shown in Figure 4.8. When bonding the particles, a cohesive distance of 0.5mm

was used with several neck sizes.

Parameter Value Units
Density (⇢) 900 Kg/m3

Grain Young’s modulus (Eg) 9 GPa
Contact sti�ness ratio (kn/kt ) 2 -
Friction coe�cient (µ) 0.2 -
Coe�cient of restitution (cr ) 0.6 -
Cement Young’s modulus (Ēc) 9 GPa
Bond sti�ness ratio (k̄n/k̄t ) 2 -
Cement compressive strength (�̄c) 1 MPa
Cement shear modulus (⌧̄c) 1 MPa

Figure 4.8: Particle and cement properties for the LS-DEM-BPM model of the ice
specimen.

Cone Penetration Test
The cone penetration test was conducted by descending a cone with a diameter of
1cm at a rate of 0.2m/s into the ice specimen. Considerable global damping was
used to ensure quasi-static conditions despite the relatively high penetration rate.
Due to this, no bond damping was necessary for this case. The stress was calculated
by adding up the vertical forces on the cone tip and dividing by the cross sectional
area of the cone. The test is conducted three times to investigate the e�ect of the
thickness of the sintered neck being represented as bonds. The thickness is set by a
ratio between the radius of the sintered neck, r , and the radius of the circumscribed
sphere of each particle, R. The three thicknesses tested are r/R = 0.01, r/R = 0.25
and r/R = 0.5. Figure 4.9 shows a visualization of the cone penetrating the ice
specimen at various stages of loading for r/R = 0.5. During the early stages of
the loading, such as in Figures 4.9c and 4.9d where the cone displacement is at
1.5cm, small cracks near the tip can easily be observed with these cracks causing
only local deformation in the area of the cracking. In Figure 4.9d, it can be observed
that cracking propagates laterally as the particles are pushed away from the cone
center, however the bonds remain intact directly below the tip providing continued
resistance. At this time of loading, stress is continuing to build with occasional
minor cracks causing only minimal reductions in strength as seen in Figure 4.10.
Above a displacement of a little over 2cm, the specimen experiences heavy brittle
fracture for both r/R = 0.25 and r/R = 0.5. In the visualization in Figure 4.9b, large
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displacements and heavy breakage can be easily observed in most of the specimen
corresponding to the large stress drop measured.

For the test where r/R = 0.01, the very low sintering results in very little resistance
which is expected. For this case, the specimen does not experience the same
reductions in strength from heavy breakage, but instead has a much more consistent
level of resistance as what may be expected from a specimen with no bonding at all.

This model behavior is consistent with trends seen for ice that experiences brittle
breakage with the advantage of being able to investigate the micromechanics of the
sintered bonds (Schulson, 1999). In future work with modeling strength of sintered
particles, it would be advantageous to utilize the shape morphing aspects of the
level set method to better represent particles morphologies and di�erent stages of
sintering. Level sets are extensively used for tracking shape changes from physical
processes (Sethian, 1999). Implementing the many theoretical models that predict
sinter growth with the level set evolution methods is a promising avenue for more
accurate modeling in the future.

The results for the cone penetration test show the considerable e�ect the thickness
of particle bonds have on the behavior of the model, and therefore the importance of
understanding how particles adhere together. A common assumption in BPM is to
take the thickness of the bond as the minimum of the thicknesses of the two particles
being bonded. This is likely a good assumption for non-porous materials such as
rock where the cementation completely surrounds each particle, but probably an
insu�cient assumption for more porous substances such as ice or metal that has not
been fully sintered together.

4.6 Model Behavior for Adhesive Failure
There are many instances where an adhesive agent that is wished to be modeled
between particles may not break all at once. In these cases, modeling with a single
breakable bond is not ideal since relative rolling between particles should cause
failure in only the tensile region of the bond. In order to model these cases, this
section proposes to have multiple contact bonds at each contact pair instead of a
single parallel bond. Here, an example of this idea is presented with a simple
constructed material built to absorb energy. The construction of periodic and lattice
structures to tune viscoelastic behavior is common in applications from the nanoscale
(Portela et al., 2020) to the macroscale (Maskery et al., 2017). In this study, the
choice of structure is a lattice of very sti� spheres bonded with a compliant adhesive.
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(a) (b)

(c) (d)

Figure 4.9: Visualization of ice specimen with r/R = 0.5. Color indicates the
displacement of the particle away from the center of the specimen with darkest
color being a displacement of one cone radius. Black lines indicate intact bonds
and red lines are broken bonds. (a) Top view of initial specimen. (b) Specimen
after complete fracture. (c) Top view at 1.5cm cone displacement. (d) Profile of
specimen at 1.5cm cone displacement.

While LS-DEM-BPM could handle any other geometry just as well, spheres show
that for this case the utilization of surface points for bonding delivers the advantage
of having multiple bonds per particle pair that may be useful enough even for sphere
based applications.

Model Setup
A cubical lattice specimen was prepared by placing spheres in a five-by-five grid.
Each sphere was allowed to bond only vertically, allowing spheres to move laterally.
This was done so that the structure could buckle more easily, therefore increasing its
potential for dissipation. Spheres were ordered so that leader particles were placed
below follower particles, so therefore bonds are centered at the surface of the bottom
particles and directed toward the top particle. The surface points for each sphere
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Figure 4.10: Relationship between stress on cone and cone displacement into the
specimen for various sinter neck thicknesses. Due to the brittle nature of ice, the
cone stress on specimens with thicker bonds falls abruptly at a critical level.

were seeded so that each bond is made of 14 separate and evenly spaced contact
bonds. Walls were added to the top and bottom of the specimen with equal sti�ness
and friction to the spheres. The specimen is shown in Figure 4.12a in the initial state
before compression. Whereas normally in LS-DEM a linear contact model is used,
for this case a Hertzian contact model is used due to the spherical shapes, changing
the force displacement relationship to,

Fn =
4
3

E
⇤
q

R�3n (4.35)

Where R is the e�ective radius which for uniform spherical contact is equal to
half the sphere radius and for sphere to wall contact is the equivalent to the sphere
radius. The material parameter E

⇤ is defined in the usual way for contact of identical
materials,

E
⇤ =

E

2(1 � ⌫2) (4.36)

Exact model parameters used are shown in Table 4.11. The value of breakage stress
for the bonds in this example was normal distributed across the interfaces which
will provide some heterogeneity to the otherwise identical sphere columns.

Model Results
The specimen underwent one full loading and unloading cycle with a peak strain
of 20% for each test conducted. Stresses were calculated by dividing the total
force on the top wall by the maximum cross sectional area of the structure defined
as Astruc = 10Rsph where Rsph is the radius of the spheres. Visualizations of the
simulations were rendered to observe bulk behavior in the specimen shown in Figure
4.12. It can first be observed that breakages generally occur in the middle row of
bonds, which is sensible since that is the area where the highest stress will naturally
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Parameter Value Units
Density (⇢) 2650 Kg/m3

Grain Young’s modulus (E⇤) 66 GPa
Contact sti�ness ratio (kn/kt ) 2 -
Friction coe�cient (µ) 0.1 -
Coe�cient of restitution (cr ) 0.6 -
Cement Young’s modulus (Ēc) 0.2 MPa
Bond sti�ness ratio (k̄n/k̄t ) 2 -
Cement compressive strength (�̄c) 11 MPa
Cement shear modulus (⌧̄c) 11 MPa

Figure 4.11: Particle and cement properties for the LS-DEM-BPM model of the
sphere specimen.

(a) (b)

(c) (d)

Figure 4.12: Visualization of the compression of spheres bonded with the contact
bonding model. (a) Initial state (b) 10% strain (c) 20% strain (d) Fully unloaded.

occur. Bond breakage does however occur outside of the middle row as well to a
lesser degree. After unloading, most columns appear to come back to full height,
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showing evidence that very high levels of deformation do not injure the ability of
the bonding method to recover the initial state.

Constitutive behavior of the specimen can be seen in Figure 4.13. During loading,
three distinct phases of behavior can be easily seen for all cases tested. First is
the pre-buckling phase where the structure behaves closely to the material behavior
of the spheres. The structure then buckles, resulting in nearly constant stress with
limited evidence of bond breakages. Finally, considerable bond breakages occur
while simulataneously the densification of the spheres create new sphere-to-sphere
contacts resulting in higher strength.

Upon unloading, significant hysteresis is observed, the magnitude of which being
inversely proportional to the average bond strength as shown in Figure 4.13. Inter-
estingly, the variance of the bond strength has a minor e�ect as well, where a higher
variance in bond strength causes more hysteresis. This can be explained by the fact
that higher variance of bond strengths results in more bonds being broken if stresses
in the bonds on average remain lower than the average critical stress.

(a) (b)

Figure 4.13: The stress vs. strain relationship for various levels of bond strength.
Figure (a) shows plot for various mean values for critical stress. Figure (b) shows
plot for various standard deviations of critical stress.

4.7 Discussion
The most considerable advantage to using LS-DEM-BPM is the ability to use any
arbitrary shape. For a fully bonded granular material, particle shape will a�ect the
fabric of the bonds as it does the fabric of contact forces for an un-bonded granular
material. For cases where there are very few fully debonded particles, the polyhedron
method could be su�cient since the interlocking e�ect of concave features may not
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play as large of a role as it would for an un-bonded granular material. However,
an interesting direction of future work with using level sets will be utilizing images
of the microscale for materials such as rock or sintered materials to investigate the
importance of grain shape in the material behavior. XRCT and SEM images of
the grain-scale for these materials allow access to the true shape characteristics of
the grains and grain boundaries. With plenty of research confirming that fractures
generally occur along grain boundaries, representing the correct shape for the grains
will likely prove to be a key aspect for using BPM for such applications (Eberhardt
et al., 1999).

The advantage of arbitrary shape becomes even more pronounced in applications
such as the fault gouge where the material behavior beyond the breakage of bonds is
important. Once particles have broken all of their bonds, those particles will behave
as an unbonded granular material. The importance of particle shape in an unbonded
granular material is well documented (Guo et al., 2015) and has been the driving
reason for many DEM variants attempting to define shape in general ways (Mollon
et al., 2014). Especially for the fault gouge where shear is the driving mechanism
for deformation, the correct particle shape is critical as it has the largest e�ects on
the predictions for shear (Herbst et al., 2004).

The most significant disadvantage with LS-DEM-BPM continues to be the e�ciency
of the method. Some applications ask for the simulation of millions of particles,
and while this is certainly possible with LS-DEM-BPM, it is unfeasible without
large computational resources. New developments in e�ciency with LS-DEM such
as using octree methods may prove to alleviate though not completely solve this
issue (Duriez et al., 2020). Until the new generations of computer processors or
the implementation of LS-DEM with GPU parallelization, LS-DEM is limited to
particle numbers on the order of < 106 particles. This limitation is important for
applications where a granular specimen must interact with large objects, however
studies for even these cases will often show that there are diminishing returns for
using smaller and smaller particles (Catanoso et al., 2020). For cases where the
goal of the modeling is to investigate the material behavior by using a representative
volume element, this limitation is less important as many studies have shown success
at replicating experiments with much fewer particles (Froiio et al., 2010).
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4.8 Conclusion
The implementation of the bonded particle method with the level set discrete element
method has been introduced. This allows the bonded particle method to be utilized
with a DEM method that allows for arbitrary particle shape. Examples of possible
applications of this method have been shown. The fault gouge example demonstrated
the capability of the method to model a fault gauge and the rate-state friction model.
This example highlighted the potential for this model in applications where the
unbonded granular materials plays a significant role. Further, an example of a cone
penetrometer fracturing ice demonstrated the e�ects of bond thickness on the model
behavior and showed that it is significant. The third example showed the potential
for a modeling strategy where each particle pair may have many bonds that do not
necessarily break all at once. This strategy allows for crack growth within each
particle bond and correctly weakens only the bonding region where tensile forces
were present. Finally a discussion highlighted the advantages of particle shape
despite drawbacks in e�ciency. This procedure could open doors to new knowledge
of materials that can be defined as a connected granular material.
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C h a p t e r 5

MODELING BREAKAGE MECHANICS OF GRANULAR ICE
ANALOGS FOR ICY BODY SPACECRAFT INTERACTIONS

Harmon, J.M. et al. (2021). “Modeling breakage mechanics of granular ice analogs
for icy body spacecraft interactions”. In: Journal of Terramechanics (submitted).

5.1 Abstract
For successful surface operations on planetary bodies where granular sintered ice is
present, the mechanics of the ice must be understood for spacecraft engineering and
the formulation of a mission’s science objectives. In this paper, granular sintered
ice is modeled as interconnected ice particles with particle shapes determined from
a laboratory ice simulant imaged by a 3D x-ray computed tomography. The shapes
are numerically modeled using individual level set functions for each particle, and
the mechanics are modeled with the discrete element method. The sintered struc-
ture is modeled using an interparticle bonding method that allows for breakage.
Cone penetration testing is modeled and compared to physical experiments. Com-
parisons show that the model can produce similar stresses and qualitative features
observed in the experiment. A sensitivity analysis is conducted and shows that the
most important controlling parameters are the ice’s critical strength and the sinter
neck thickness. The relation of the bond characteristics to the sintering process is
discussed.

5.2 Introduction
Icy bodies in the solar system such as Enceladus and Europa are scientific targets
of interest (Howell et al., 2020) due to the potential of finding life in these locations
(Chyba, 2000; Postberg et al., 2018). As such, there is a desire to understand more
about the mechanics of the ice the bodies are made of. The mechanics of any surface
materials, particularly its sti�ness and strength, are a key factor in the surface and
subsurface acquisition of samples since the sampler must be designed with certain
mechanical properties of the surface in mind. This lesson was learned acutely
when the Insight lander mole, HP3, was designed for largely unknown mechanical
properties of the regolith at its landing site (Spohn et al., 2018). In another recent
mission, the sample acquisition expectations on Bennu were largely dependent on



76

the previously unknown cohesive strength of the soil, which needed to be weak
enough to be gathered with nitrogen gas (Bierhaus et al., 2021).

The surface of icy bodies present a unique challenge when the ice is porous due
to the ability of ice particles to sinter over time, creating large changes in strength
(Choukroun et al., 2020). The ice on these bodies can be thought of as a connected
granular material where individual ice particles are connected through sintering
(Molaro et al., 2019). This type of ice is far from uncommon in the solar system.
For example, on Enceladus the plumes on the south pole eject ice particles that
deposit on the surface and sinter over time (Verbiscer et al., 2018). A highly
porous but cohesive granular microstructure exists due to the low sintering rates
(Choukroun et al., 2020). On Europa and Triton, recent image analysis points to a
high probability of porous granular ice (Eluszkiewicz, 1991; Carlson et al., 2009).
Many smaller bodies have a mixture of ice and regolith which can result in similar
densification as from pure ice (Campins et al., 2010).

Due to the connected granular nature, it is expected that the mechanics at the
particle scale drives the behavior at the macroscale. Figure 5.1a shows an image
of an ice microstructure similar to what is expected on icy bodies and an image
of a concrete microstructure that is currently used as a simulant for ice (Badescu
et al., 2019). At this scale, distinct particles can be easily distinguished with clearly
visible sinters that are likely locations of stress concentration under loading. Treating
these materials as a collection of connected discrete elements provides an ability
to understand the mechanics from the microscale. This has been true for many
other connected granular materials such as concrete, rock, and metals in additive
manufacturing (Suchorzewski et al., 2018; Kazerani et al., 2010; Xiang et al., 2016).
For this reason, it is desirable to use discrete element modeling (DEM) with particle
bonding so the micromechanics can be modeled directly as in other materials (Lisjak
et al., 2014; Cundall et al., 1979).

DEM is a modeling technique that directly simulates the motion of individual
particles in a granular material. The level set variant (LS-DEM) will be used since it
can e�ciently model any arbitrary particle shape, something that other methods are
unable to do. An important innovation in DEM is the addition of the Bonded Particle
Method (BPM) (Potyondy et al., 2004). BPM models adhering mechanisms, such as
cementation or sintering, with a sti� beam that connects the bonded interfaces. This
enables the modeling of sintered ice by creating the ability to physically represent the
sinter connection between ice particles. (Harmon et al., 2021) recently developed an
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implementation of BPM in LS-DEM, which is what is used in this paper. This study
will be the first comparison of the pairing of LS-DEM and BPM (LS-DEM-BPM)
with experimental results.

5.3 Relevant Ice Microstructure
The type of ice we aim to understand with this model is porous ice composed of
identifiable particles. We define the micro-scale of this ice as where the identifiable
ice particles interact, such as in Figure 5.1a. The microstructure of this ice may
range from a collection of discrete particles connected only through friction and
contact forces to more consolidated ice aggregates that have undergone considerable
modification from sintering. The sintering process is a frost metamorphism that is
driven by surface and volume di�usion resulting in the growth of the ice particle
contact area and densification. The contact area growth is what is referred to as
the sinter neck. While this paper only looks at ice that has undergone some level
of sintering, for cases where sintering has yet to occur this can be understood as
a special case of an infinitely small sinter. The mechanics of porous, sintered ice
heavily depend on microscale features such as particle shape, size, and sinter neck
growth (Christmann et al., 2015). At later stages of densification, individual ice
particles become less identifiable as the ice approaches a continuous solid. While
many versions of the bonded particle method have been proven to be e�ective
for continuous solids such as rock (Lisjak et al., 2014), the nature of solidified
microstructures are not as analogous to the mechanics of the model.

Figure 5.1: (a) Image of laboratory sintered ice (left) and concrete ice simulant
(right) taken from (Badescu et al., 2019). (b) Sketch for both contact and bonding
model.

5.4 Model Description
The sinters between ice particles are modeled using beams connecting the surfaces
that sinter together. The intention of representing ice particle sinters with bonds



78

can be directly visualized between Figure 5.1a and Figure 5.1b where the bond
connecting the leader particle and bond follower particle is meant to directly model
the visible connections between the imaged particles. LS-DEM uses a leader-
follower algorithm for detecting contact and enabling bonding as shown in Figure
5.1b. The complete and detailed description of the method is described in Harmon
et al. ((Harmon et al., 2021) and a summary will be provided here.

For this algorithm, a leader particle may be connected to follower particles via either
a contact or a bond. While at the initial state, all interparticle interactions are bonds,
as bonds break, their subsequent interactions are frictional contacts. For a contact
follower, the leader particle checks whether each surface point is either inside or
outside the follower particle’s surface. Level set functions, �(x), for a given particle
take a location in space as input then output the distance of that location, d, to the
particle surface where positive values are outside the particle and negative values
are inside.

�(x) = ±d (5.1)

The contact normal force, Fn, is calculated by using a linear relation determined by
the level set, �, and the surface point, pi, where kn is the sti�ness of the spring and
n̂ is the contact normal unit vector.

Fn = kn�(pi)n̂ (5.2)

The contact shear force uses an incremental approach where the shear force incre-
ment, �Fs, is determined from the relative velocities of the particles in the shear
direction at the point of contact, vs, where ks is the shear sti�ness, �t is the time
step, and ŝ is the shear unit vector.

�Fs = ksvs�t ŝ (5.3)

Coulomb friction is used and is implemented by setting a maximum value for the
shear force, F

m

s
ax, where µ is the friction coe�cient.

F
max

s
= µFn (5.4)
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If the surface point contains a bond such as the representation of a sintering neck,
then the bonding algorithm and bonding equations are used instead of the contact
equations. Particles that are bonded are allowed relative motion, but that motion is
resisted by a linear relation.

�F̄n = k̄n Āvn�t (5.5)

�F̄s = k̄s Āvs�t (5.6)

�M̄n = k̄s J̄!n�t (5.7)

�M̄s = k̄n Ī!s�t (5.8)

The bar above the variables denotes that the variable is bonding specific, for example
the bonding sti�nesses, k̄n and k̄s, are distinct from the contact sti�nesses. Unlike
contacts which act as point loads, bonds act over a circular cross-sectional area to
resemble ice sintering necks. This area can be defined with neck radius, r̄ , which
allows for the calculation of the area, Ā, rolling moment of inertia, Ī, and twisting
moment of inertia, J̄, which are the same as a beam with a circular cross section as
an idealized representation of a sinter neck cross sectional area. The stresses inside
the bond are evaluated every time step using beam equations where �̄ is the normal
stress and ⌧̄ is the shear stress.

�̄ =
F̄n

Ā
+
|M̄s |r̄

Ī
(5.9)

⌧̄ =
F̄s

Ā
+
|M̄n |r̄

J̄
(5.10)

If either the normal or shear stress exceed a critical value, which is set to the tensile
strength of non-porous ice, then the bond breaks and the bond forces no longer act
on either particle.

With forces calculated for both contact and bonding, motion can then be determined
from Newton’s Laws and kinematics. The model uses an explicit integration scheme
in time described in (Lim et al., 2014) where motion is determined directly from
spring forces as opposed to using an optimization strategy. The explicit method
encourages the use of some damping to remove oscillations. Damping is also
helpful to allow for faster loading rates and therefore lower compute times while
maintaining quasi-static conditions. The damping strategy used is to apply dampers
in parallel to the springs used for both contact and bonding. A complete description
of the damping method is also described in (Harmon et al., 2021).
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5.5 Particle Characterization
LS-DEM uses the complex shape of real particles that can be determined either
from x-ray CT imaging, CAD modeling, or through level set evolution algorithms
(VlahiniÊ et al., 2014; Osher et al., 2006). For missions to icy planetary bodies, per-
forming 3D imaging in situ is infeasible and samples are still unavailable, therefore
simulants are used to model the material. A material analog that has been used for
planetary surface sampling development to simulate sintered granular ice is highly
porous concrete, sometimes referred to as pervious concrete (Badescu et al., 2019).
Concrete is also granular in nature where the paste that holds concrete together can
be thought of as mechanically similar to the sintered connections that hold porous
ice together. Concrete has the added benefit of already being studied extensively
with BPM e.g.(Nitka et al., 2015).

The concrete imaged is Ordinary Portland Cement (OPC), ASTM C150 Type I/II.
The mixture has a water-to-cement ratio of 0.6 and is 60% voids. The aggregate
is Minex 3 and the concrete is 15% paste to aggregate. The imaging was in three
dimensions using an x-ray CT scan at a resolution of 22.2 µm. Once imaged,
the concrete particles were made into level set functions by using a watershed
segmentation and level set evolution procedure as described by (VlahiniÊ et al.,
2014). Figure 5.2 shows details of the size and shape of the concrete particles. The
concrete particles are statistically somewhat irregular with an average sphericity of
0.77. Such sphericity values correspond to fairly oblate particles which is consistent
with qualitative observation.

Figure 5.2: Ice simulant particles. (a) Particle size distribution of ice simulant
particles. (b) Histogram of particles’ sphericity.

This may be of benefit to more heavily sintered specimens where significant shape
changes from sintering and the irregular fracture surfaces that arise from loading
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would lead to broken ice particles reflecting these kinds of shapes. On the other
hand, if the experimental ice specimens start with nearly spherical shapes, then
results may be imperfect at early sintering times before significant shape changes
from sintering morph particles to a more irregular shape. This concern will likely
be alleviated in proposed future work when coupling LS-DEM-BPM to soon to
be developed sintering models where the particle shape can be computationally
determined by factors such as sinter time and temperature.

5.6 Cone Penetration Testing
In this section, the model is used to predict the mechanics of a cone penetration
test and is compared to cone penetration tests conducted on sintered ice samples by
(Choukroun et al., 2020) with predictions from the LS-DEM-BPM model. These
experiments evaluated the mechanical strength evolution of the plume deposit ice
analogs left to sinter at four di�erent temperatures (193 K, 223 K, 233 K, and 243
K) for a period of time up to 14 months.

Figure 5.3: Visualization of Numerical Specimen after pluviation and the cone
penetrator.

Specimen Preparation
In order to numerically model the cone penetration experiments, first a numerical
specimen must be made. The specimen is made with particles larger than in the
experiments to allow for reasonable compute times. Particles are pluviated by being
dropped into a cylindrical container one layer at a time until the desired height for
the specimen is established, a process known as pluviation. Particle volumes are
slightly expanded during the pluviation process, then brought back to the intended
size for the cone penetration. This is done so that when conducting the cone
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penetration experiments, the particles would initiate out of contact which allows
space for bonding. A table of the properties and parameters used for the final
specimen are shown in Table 5.1. Preliminary cone penetration testing was done to
ensure semi-infinite conditions. The specimens porosity is 47% which qualifies as
a loose specimen, comparable to the 51(±2)% porosity in the experiments.

To get sti�nesses from the elasticity parameters, we use the suggested conversion
shown in (Potyondy et al., 2004). In (Schulson, 1999), the strength is shown to
be dependent on both strain rate and temperature where the strength could range
from 2-10 MPa at 263 K and increase 25% at 248 K. Since the experiments are
conducted at temperatures ranging from 193 K to 243 K, the peak value of 10 MPa
is chosen as a standard, though other values are tested in the sensitivity analysis
section. The table also reports the level set resolution, surface point density, and
cone dimensions. The level set resolution di�ers from the imaging resolution so
that particles have a more manageable size for the cone testing.

The cone itself is made analytically and is represented in the simulation as a level
set. Visualizations of both the cone and the pluviated specimen are shown in Figure
5.3. Due to the cone only interacting with the particles as a level set, only the surface
points of the particles interact with the cone. This is the same as for the walls which
also only interact with particles through the particle’s surface points. Walls for this
study are given the same mechanical properties as the ice, so the boundaries better
represent a semi-infinite condition. In order to speed up the simulations, the cone
is initialized with the tip already inserted into the specimen. For this reason, in
the results we look to only compare with experiments the region after full cone tip
insertion.

Model Results
Results from the model provide insight for both the macroscale and the microscale.
On the macroscale, the stress experienced by the cone is evaluated by dividing
the total vertical force on the cone by its cross-sectional area. The results for the
cone stress versus cone displacement shown in Figure 5.4 show similar trends to
the experiment. Three simulation results are shown for various relative neck sizes
which is defined as the ratio between the radius of the bond to the radius of the
smallest circumscribed sphere of the bonded particle pair. Plots such as these
provide insight to the degree of sintering that is likely present in the specimen since
more sintering causes larger sinter necks. The stress for the numerical model seems
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Property Value Units Source
E 9 GPa (Schulson, 1999)
G 6.7 GPa (Schulson, 1999)
µ 0.2 none (Schulson et al., 2012)
�̄c 10 MPa (Schulson, 1999)

Level Set Resolution 0.2 mm
Surface Point Density 6.75 pts/mm

2

Cylinder Height 88 mm
Cylinder Radius 48 mm

Cone Radius 5 mm
Cone Angle 60 Degrees

Porosity 47% none
Number of Particles 8000 none

Table 5.1: Properties and dimensions of the particles, specimen, and cone.

to fluctuate more than experiment, which is likely due to the particles being larger
than experiment. This is consistent with other studies where larger particles caused
results that were less smooth, but each would have a similar average value (Catanoso
et al., 2020). The stress rises faster in simulation due to the cone in the numerical
model being initialized with the tip inserted.

Figure 5.4: Stress versus displacement profile for simulations with three di�erent
relative neck sizes with experimental results overlayed. Displacement is zeroed at
the depth where the cone tip is fully inserted and the stress on the cone reaches a
steady-state. Experimental data is from (Choukroun et al., 2020) for ice allowed to
sinter for 13 days at -30 C.

A quantity we will call the cone penetration resistance (CP Resistance) will be
defined as the average stress experienced by the cone after the tip is fully inserted.
This quantity matches well with experiment when using a relative neck size that is
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(a) (b)

Figure 5.5: Specimen Visualization. (a) Broken bonds are shown in red and are
concentrated in the local area around the cone. (b) Particles displacing radially away
from the cone.

indicative of the sinter phase the ice particles are in. The calibration for relative
neck size is shown in Section 4.4.

For a look at the microscale, Figure 5.5 shows visualizations of the specimen during
penetration with individual broken bonds (a) and particle displacements shown (b).
It can be seen that both bonds and particle displacement are confined to the local
area around the cone, confirming that the specimen is e�ectively semi-infinite. We
can understand the region of visible displacement as the region where particles are
fully broken, since particles that still have even a single bond to the greater structure
are still inhibited from motion. Since the area where broken bonds are seen is nearly
the same as the displacement area, it suggests that most particles that experience
breakage completely break free of all other particles. Quantitatively this confirmed
that around 80% of particles that experience breakage have all their bonds broken.
Whether or not this is a feature of the model or of the cone penetration experiment
is unclear, however we can surmise that this is due to the fact that any particle in the
path of the cone must completely break to be able to move and allow the cone to
pass. Particles that experience only partial breakage from the sinter network must
be in the vicinity but not in the direct path of the cone which must be composed of
a much smaller set of particles from the ones in the cone path. Also, the irregular
particle shapes increase the interlocking between particles and therefore deviatoric
stress in a local region. These facts would be true for both experiment and model.
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This phenomenon is well known and could encourage more complete breakage in a
local area (Kawamoto et al., 2018b).

Sensitivity Analysis
To better understand the model limitations, we investigated the local sensitivity of the
CP Resistance to four parameters: penetration rate, bond sti�ness, critical strength,
and relative neck size. In each case, we varied the value of one parameter and
quantified the change in the resulting CP Resistance value. A sensitivity measure
denoted S is defined as the absolute value of the percent change in CP Resistance
over the percent change in the tested quantity. Figure 5.6 shows that penetration
rate and bond sti�ness have little e�ect on the result. For bond sti�ness, this is not
surprising since it has been shown before that macroscopic response to the sti�ness
parameter in LS-DEM is fairly insensitive (Kawamoto et al., 2016) and would be
expected to be even less sensitive in an application with an unconfined boundary.
The fact that the cone penetration rate has little e�ect on CP Resistance shows that
inertial e�ects are not significantly a�ecting the bonding mechanics. This can be
seen as a verification that the damping strategy for the model is e�ective since the
penetration rate is quite fast for the purpose of computational e�ciency at a velocity
of 0.5 m/s. On the other hand, both the bond critical strength and the relative neck
size a�ect the CP Resistance significantly. This is expected since it is natural that
stronger non-porous ice and thicker, heavier sintering leads to stronger porous ice.

Connection to Sintering Models
In LS-DEM-BPM, the radius of the sintered neck is the mechanical representation of
the degree of sintering that has taken place. In reality, there are additional changes
in the structure and geometry of sintering ice particles that will a�ect their bulk
mechanical strength, and therefore the relative neck size we use in the model must
account for their contribution as well. For this reason, it is of great importance to
understand how the strength changes due to relative neck size in the model and how
that correlates to the strength changes in porous ice experiments. Key controlling
variables of the sintering process in experiment are temperature and sinter time.
(Molaro et al., 2019) model the geometric changes of spherical ice particles during
the sintering process as a function of temperature and sinter time. They break down
the sintering process into three distinct stages, the first of which is dominated by
neck growth. Their model quantifies the change in neck size with temperature and
particle size during stage 1, though it does not fully describe how the ice evolves
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(a) (b)

(c) (d)

Figure 5.6: CP Resistance versus (a) bond sti�ness, (b) penetration rate, (c) relative
neck size, and (d) critical strength. The sensitivity is quantified as the percent change
in CP Resistance divided by the percent change in the tested quantity and shown in
each plot.

during stages 2 and 3 when the microstructure becomes morphologically complex
due to particle growth, development of agglomerate particles, and other e�ects. As
a result, they can only quantify the e�ects of sintering during part of the duration
of the experiments of (Choukroun et al., 2020), which followed the ice into stage 2.
However, using their predicted neck growth times with our LS-DEM-BPM model
can still provide important insight into stage 1 sintering. We can use the relationship
between neck growth, temperature, and time in the Molaro et al. model to determine
what neck radius we use in this model when given these environmental parameters
within stage 1.

Figure 5.7a shows the experimental results for CP Resistance versus sinter time
and temperature (Choukroun et al., 2020), the longest of which was carried out
for nearly 400 days. According to (Molaro et al., 2019), stage 1 for ice under the
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same conditions finishes as quickly as within the first day, highlighting the need for
further development of the sintering model to quantify changes in the ice during
later stages of sintering. When using their predicted neck size at the end of stage 1,
the strength simulated by the LS-DEM-BPM is consistent with the CP Resistance
values coinciding with the y-axis intercept of the best fit lines in Figure 5.7a. That is,
per the CP Resistance profiles from Choukroun et al., the strength of the ice samples
at time zero has a non-zero value which corresponds to the simulated strength of
the ice at the end of stage 1. This supports the prediction by Molaro et al. that rapid
modification occurs over short timescales in stage 1, resulting in the early rise in ice
strength as seen in the experiments. This shows a remarkable consistency between
the experiments and the two models and suggests that the linear profiles measured
by Choukroun et al. characterize the behavior of the ice following the completion
of stage 1.

Figure 5.7: Relative neck size calibration. (a) Cone penetration strength results,
figure from (Choukroun et al., 2020). (b) Calibrated relative neck size in the LS-
DEM-BPM model to sinter time and temperature by matching CP Resistance.

Since the model of Molaro et al. cannot be used to provide a neck size for the
LS-DEM-BPM model over the entire experiment duration, we must calibrate the
simulation results using the experiments for the time beyond stage 1. To do this, we
determine an e�ective relative neck size parameter by looking at what relative neck
size will produce the same CP Resistance in the simulation as in the experiment for
a given temperature and sinter time. Figure 5.7b shows this calibration, where the x
and y axes are sinter time and temperature, respectively, during the experiment that
produced the same CP Resistance value as the simulation with the corresponding
relative neck size shown in the colorbar. This e�ective relative neck size can be
thought of as a proxy for the total amount of modification that has occurred from
the combined neck growth and additional e�ects that occur during stage 2 of the
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sintering process. Since both stages 1 and 2 are controlled by the same primary
di�usion mechanisms (Choukroun et al., 2020), relative neck size also provides an
estimate of the total amount of di�usion that has occurred. Future studies aimed
at further developing the model of Molaro et al. (2019) can leverage predictions
of strength from relative neck size to link to the experiments. Future work on this
model will include comparisons to di�erent types of experiments to show that this
calibration honors the physics and not just one type of specimen loading. For now,
however, this graph should be used as reference for future use of LS-DEM-BPM for
cone penetration in sintered ice.

5.7 Conclusions
LS-DEM-BPM is an e�ective method for modeling the mechanics of sintered ice
by directly modeling the sintering mechanics through the bonded particle method.
The outcome for this model provides understanding of not only the macroscale
phenomena of cone penetration resistance, but also the microscale details of the
kinematics and kinetics of each ice particle and sintered bond respectively. The
addition of shape to the particles allows higher fidelity, an understanding of the
role particle shape plays in ice mechanics, and a window for future work to enable
particle shape deformation using sintering models. Both the mechanics of the
model and an example of determining particle shape from CT scans were shown.
The cone penetration testing showed that the model predicts reasonable strength
displacement profiles and with a calibrated relative neck size can correctly predict
the CP Resistance.
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C h a p t e r 6

PREDICTING THE LANDER SURFACE INTERACTION WHEN
LANDING ON ENCELADUS

Harmon, J.M. et al. (n.d.). “Predicting the lander-surface interaction when landing
on Enceladus”. In: (in preparation).

6.1 Introduction
This chapter will show results from modeling a landing on the Enceladus surface.
Enceladus presents unique problems to landing due the confluence of microgravity,
extreme cold, and a constant resurfacing from the tiger stripe plumes. The plume
deposition has been modeled and it shows that the amount of resurfacing can be
very significant, with some deposition maps predicting as much as 0.1 mm/yr in
certain areas (Southworth et al., 2019). This is good news for scientific return since
the material depositing from the plume is the most interesting. However, for landing
it can produce problems because at 80K, the surface temperature of Enceladus, it
would take longer than the age of the solar system for this ice to reach even moderate
amounts of sintering according to current models (Molaro et al., 2019). As seen in
Chapter 5, sintering will greatly increase the strength of ice, so without it there is
worry that the surface is not strong enough to support a lander. Regions near the
tiger stripes feature hot spots, which opens up the possibility of significant sintering
to occur (Spitale et al., 2007). The full range of sintering level will be tested here
in order to more completely understand the necessity of sintering for a successful
landing.

The modeling technique used here will be the same as in Chapter 5 with the same
parameters for the ice, unless otherwise stated. There is one aspect of the modeling
method that is critical to understand for this chapter, and should be reintroduced
and that is relative neck size, rrel . Relative neck size is the model parameter
describing the amount of sintering that has occurred and manifests itself as the
ratio between the radius of the bond that represents the sinter to the radius of the
smallest circumscribed sphere between the two bonded particles. In Chapter 5,
experiment and sinter growth models were used to approximate what relative neck
sizes coincide with the three sintering stages mechanically. The first stage, where
sinter necks become visible and individual particles are clearly distinct, the relative
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neck size ranges from 0 to about 0.4. The second stage is where the sintering
begins to cause significant morphological change in the particles; in this stage, neck
sizes range from about 0.4 to 0.8-0.9. In the final stage, individual ice particles are
di�cult to distinguish, and it is often easier to describe the microstructure by the
voids rather than particles. Here the relative neck size ranges from 0.8-0.9 to 1,
where at rrel = 1, we consider the ice to be fully solid. Outside of this important
note on relative neck size, this chapter will skip the modeling method section and
instead start with model setup. The model setup will describe both the lander and
surface specimen setup. Then the results will be shown over two sections, one for
landing on a flat surface and another for sloped surfaces. The flat surface subsection
will be focusing mostly on surface properties such as ice sintering and particle size
distribution (PSD). The sloped surface subsection will mostly be focused on what
can be done to minimize the downslope sliding displacement. Finally, a conclusion
will summarize the results and give some suggestions for future work.

6.2 Modeling Setup
Lander
The lander was modeled as a single rigid footpad with a simple shape. It was
assumed that the lander would have four footpads and that the weight would be
distributed evenly across each footpad such that the single footpad modeled would
weigh one fourth the weight of the entire lander. The mass of the lander was set
to 1000 kg. Three simple shaped footpad geometries were chosen and will be
referred to as the cone, disk, and hemisphere, as shown in Figure 6.1. All three
geometries have a 13 cm radius at the base making the ultimate impact surface area
the same. In all simulations, we are assuming that the other footpads of the lander
will provide the necessary stability, so the simulated footpad’s rotation is negligible.
In implementation, this assumption is manifested by the rotation of the footpads
being disabled. The mechanical properties of the footpad were kept the same as the
cone in Chapter 5, including the friction coe�cient which is µ = 0.2. The footpads
will start each simulation with an initial downward velocity of 1 m/s and placed
immediately above the surface.

Surface
The surface was modeled as a cylindrical granular specimen of 20000 particles.
The cylinder was made much wider than tall, so the footpads had room to slide
significantly when modeling landing on a sloped surface. Specimen preparation was
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Figure 6.1: Three footpad geometries were chosen, each with a base radius of 13cm.

conducted by dropping particles into the specimen with gravity until equilibrium, a
process known as pluviation. Because the gravity of Enceladus is so low, attempts
at pluviating the particles at Enceladus gravity were unsuccessful, so instead the
specimen was pluviated at Earth gravity. After equilibrium was reached at Earth
gravity, the particles were slightly shrunk to remove contact, then bonded together
at a prescribed sintering level. Once sintered, time was given for the sample to
re-establish equilibrium at Enceladus gravity. Properties for the ice were kept the
same as in Chapter 5.

Figure 6.2: The three PSDs for the surface specimens have power law slopes that
span the range of power law slopes seen in the particles captured by Cassini. The size
range was not changed between specimens and span significantly larger particles
than predicted on Enceladus to produce feasible computation times.

To have reasonable compute times, the particles had to be much larger than what is
actually expected on the surface. Particle sizes in all the specimens ranged in size
from 12mm to 18mm. The distribution of sizes were defined using a power law with
slope ↵,

p(r) ⇠ r
�↵ (6.1)

In Southworth et al. (2019), the PSD slope, ↵, seen from particles ejecting from the
plumes is reported to be between [2.5, 3.5] so three surface specimens were made
with ↵ values at 2.5, 3, and 3.5 as shown in Figure 6.2. Low values of ↵ correspond
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to a more uniform distribution of sizes, while higher values correspond to more
graded samples.

6.3 Results
Penetration Depth

Figure 6.3: The visualizations on top from left to right have relative neck sizes of
0.1, 0.5, and 1.0, respectively, and are good examples of a footpad uncontrollably
sinking, settling or bouncing. The plots show the depth of the tip of the footpad over
time for the three footpad geometries. Each geometry performs similarly, however
the disk is noticeably less likely to sink and more likely to bounce.

First, we will look at the results when the footpads land on a flat surface at various
levels of ice sintering. In Figure 6.3, we can see from the visualizations that the
outcome can be broadly categorized in three ways: large amount of sinking, a
reasonable settle, or a bounce. All three footpad geometries experience each of
these at di�erent stages of sintering, however the transition between these categories
is at di�erent sintering levels for each one. For the disk, a little less sintering is
required compared to the other footpads for the lander not to sink, however, the disk
will bounce at much earlier sintering levels as well. For both the hemisphere and
the cone, any relative neck size between rrel = [0.3, 0.9] produces a landing that
neither sinks nor shows significant bouncing. From the analysis in Chapter 5, these
relative neck sizes reflect late stage 1 to late stage 2 sintering, which, from a lander
stabilization point of view, are the most successful from model predictions.
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Figure 6.4: Each footpad geometry was tested on specimens with three di�erent
PSDs. The PSDs only di�er in power law slope, not in size range. Depth is
relatively similar across all PSDs for each footpad. Some bounce occured for the
disk at ↵ = 2.5, but the maximum depth still matches the others.

Samples with each of the PSD candidates produced relatively the same amount of
sinking for a given footpad geometry and ice sintering. Figure 6.4 shows the depth
of footpad penetration for all three footpads at all three PSDs at an ice sintering level
of rrel = 0.4. This sintering level was chosen because the lander for each footpad
geometry settles at a significant depth, so the e�ect of di�ering PSDs should be
maximized. Depth of penetration for each of the PSD specimens are relatively equal
for each footpad with only minor changes that could be explained by local porosity
variations that are generated naturally during pluvation. Because it is well known
that the PSD does a�ect the bearing capacity of a surface (Das, 2010), we can
conclude that, in this case, it is the range of particle sizes that make the di�erence
and not the slope of the PSD power law.

Sloped Surfaces
The surface of Enceladus is known to not be flat (Schenk et al., 2009), therefore any
lander will likely be landing on a sloped surface. To model this, the specimen and
footpad are kept the same and the gravity and initial footpad velocity are rotated to
a prescribed slope angle. In this way, the x, y, and z directions are now transformed
into the surface normal, downhill, and transverse directions. Because of the lack of
di�erence in penetration depth from each PSD sample, the one with ↵ = 3.0 was
the only one used for this section and was chosen because it is in the middle of the
tested range.
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Figure 6.5: Visualizations on the left show the hemisphere footpad landing on
increasingly sloped surfaces resulting in increasing lateral displacement. On the
right, the visualizations are all at 15o and demonstrate the extent to which footpad
geometry plays a role. All visualizations are at t = 2 seconds after impact.

Figure 6.5 shows visualizations for many landings on various slopes and footpad
geometries at a sintering level of rrel = 0.4. On the left, the hemisphere lands on
slope angles ranging from 5o to 20o successfully with only slightly larger downslope
displacement at higher angles. Figure 6.6 quantitatively shows that the hemisphere
landing on a surface with a 20o slope and rrel = 0.4 displaces downhill less than 2
footpad radii. Among all the simulations, this was the best case scenario for a 20o

slope angle.

On the right of Figure 6.5, each lander footpad lands on a slope of 15o, showing the
di�erences in footpad geometry qualitatively, and the quantitative data on downhill
displacement is shown in 6.6. What is immediately noticable is that changing the
footpad geometry does not change the results as much as a change of 5o of slope
angle does. However, it is still noticeable in the visualizations and plots that the



95

Figure 6.6: Downhill slide displacement versus time plots for relative neck sizes of
0.4 and 0.6 for all slopes and geometries tested. The disk was not tested at 20o and
rrel = 0.6 because it slid critically far at 15o.

hemisphere does minimize the sliding downhill compared to the cone and disk. This
is expected for the disk geometry because its blunt face produces less penetration
and, therefore, inhibits its ability to “lock in” to the ground. For the cone, however,
it was thought that it might perform well on slopes due to its pointed tip, but it is
possible that this cone’s height to radius ratio is too small to grip enough to slide
less than the hemisphere. In fact, there is only one scenario where the hemisphere
does not outperform the cone which is at a slope of 15o and rrel = 0.6.

To get a better understanding for this one instance where the cone performed better
than the hemisphere, we will look closely at how the cone performs with various
relative neck sizes. In Figure 6.7, both visualizations and plots are shown for the
landing of the cone geometry at three relative neck sizes. At rrel = 0.6, the cone
lands with almost twice as little sliding as rrel = 0.4 and rrel = 0.8, both of which
slide about the same. The visualizations illuminate that at lower sintering, the cone
is blunt enough and the ice is weak enough to produce large amounts of breakage
surrounding the landing spot. The extra breakage removes and/or weakens the
surrounding area which leaves space for the cone to slide despite a larger penetration
depth. At higher sintering, the opposite occurs, the breakage is relatively minimal
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Figure 6.7: Visualizations and plots show the movement of the cone footpad for
three relative neck sizes. For both visualizations and plots, the surface slope is 15o.

and not enough for the cone tip to properly grip the surface. Therefore, there
exists a “Goldilocks” zone for optimum sintering level for minimizing downslope
displacement where the surface is weak enough to allow significant penetration, but
strong enough to not break further. This zone also exists for the hemisphere, but is
not as pronounced as with the cone.

6.4 Conclusion
The landing on the surface of Enceladus was modeled for many footpad geometries,
ice sintering levels, PSDs, and surface slope angles. Through this study, we found
that while the footpad geometries do make a di�erence, factors such as sintering
level and slope angle a�ect the success of landing much more significantly. Based
on this model, when choosing a landing location, it is safest to land in areas at stage
2 sintering, where slope angles of 15o can be comfortably landed on. Areas in late
stage 2 and early stage 3 can be landed on, but some bouncing may occur and it
would be recommended to land on a shallower angle to avoid too much sliding.

While not every landing that was simulated would be considered successful, the
model did show that landing is very plausible for many of the tested conditions.
Some further study could improve the success rate by testing more realistic footpad
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geometries that have better grip than the simple shapes tested here. Moreover, in the
entire study, only one friction coe�cient was tested for both ice-ice and footpad-ice
sliding, and a simple Coulomb model was used. Ice has been shown to have a range
of friction coe�cients that are significantly dependent on temperature and velocity.
Further study into friction with this model would better predict what is possible.
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C h a p t e r 7

CONCLUSION AND FUTURE OUTLOOK

There are many unknowns when interacting with an extraterrestrial body’s surface,
however the risk can be dramatically reduced with reliable predictive models. This
thesis extended the state of the art such that modeling can now capture key features
at the microscale of granular materials at destinations of interest.

In Chapters2 and 3, a novel method for modeling crushable granular materials was
validated for predicting both the mechanics and particle shape evolution. Impor-
tantly, the model made impressive predictions for three separate shape descriptors:
sphericity, elongation and flatness. Further, correlations were found between vol-
ume and contact force showing that larger particles provide much of the resistance
to deformation in the vertical direction. This is counter-intuitive because large par-
ticles are generally weaker, but two explanations were found in the data. First was a
survival of the fittest e�ect where the large particles on the weak side of the strength
distribution were the ones that broke, raising the average strength of the larger parti-
cles. The second was a cushioning e�ect whose evidence came from the combined
correlation of volume and coordination number, volume and isotropic stress, and
volume and deviatoric stress. Because the volume correlation with coordination
number is significant, along with the volume correlation with isotropic stress being
higher than the correlation with deviatoric stress, the data shows a direct indication
of the cushioning e�ect occurring. Due to the abundance of brittle, irregularly
shaped particles composing regolith, this work will enable the proper modeling of
those surfaces.

Chapters 4 and 5 developed and demonstrated a bonding technique that can be used
to model sintered ice, among other adhesive mechanisms. Using this to model a
cone penetration test in ice enables an intimate look into the e�ect of sintering on
the strength of the ice. Important connections were made between the science of
sinter growth and model parameters that illuminated some understanding for how
to further use the method for space applications. In Chapter 6, the model was
then indeed used directly for the space application of landing on the surface of
Enceladus. The model predicted that some sintering must be present for the lander
to not sink too deep, however complete sintering would cause the lander to bounce.
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When landing on an inclined surface, the model predicted that successful landing is
possible at angles of 20 degrees. Between the three footpad geometries tested, the
disk slid significantly more for all cases, but no footpad geometry made as big of a
di�erence in downslope displacement as a 5 degree change in inclination.

7.1 Future Outlook
There is a significant amount of future work to be done with both modeling methods.
With the splitting method developed and validated, it can now be used for the
modeling of engineering implements for mission design considerations. It would be
particularly useful for the design of base-type structures on bodies like the Moon or
Mars. These heavy structures will greatly benefit from the increased predictability in
regards to particle shape, because they will more severely test the limits of the surface
strength. This method could also be used to study the e�ects of impacts on these
surfaces. Impacts produce heavy amounts of breakage and particle morphology
change that result in large changes in the surface properties, all of which could be
captured by the level set splitting method.

Further work in porous ice could include repeating the work done on the Enceladus
landing for other bodies with di�erent properties. Also, level sets have the ability
to e�ciently morphologically change. Level sets could be used with sinter growth
models to make microscale geometry predictions. If the sinter growth could be
captured by the level sets, then those level sets could be used for the mechanics
modeling, which would be made significantly more accurate by an improved initial
condition.

Some bodies in the solar system have surfaces that are a mix of rock and ice, such
as comets, or dwarf planets, such as Ceres (McCord et al., 2019). For these bodies
a combination of the methods would be ideal. Combining these methods could be
done in two ways. The first would be to enable splitting only when a particle has
broken all of its bonds with other particles. This method is quite simple and very little
modification of algorithms would be required. However, it caries an assumption that
the ice is so much weaker than the rock that the icy sinters will always break before
the rock does. This assumption breaks down if there exist ice connections that are
not stressed due to the loading direction and if the rock is on the much weaker side
of the strength distribution. Therefore the first method is not the most complete way
to marry the splitting and bonding model. The second would be to enable splitting
on particles that are still bonded. Here, the bonds must be communicated to the new
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particles when splitting occurs, which would require special care for large specimens
in which distributed memory parallelization is required. Moreover, because in the
current splitting method fracture surfaces connect the highest forces, this may occur
at locations where bonds are present, making it unclear which child particle should
inherit the bond. Likely the best answer will be to alter the method for determining
the fracture shape so that this issue is rare.

With the splitting and bonding methods, the door is open for the study of the surface
strength on planetary bodies throughout the solar system. This thesis has outlined
the ways in which these models are prepared to inform such work.
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