
Koopman-based Learning and Control
of Agile Robotic Systems

Thesis by
Carl A. A. Folkestad

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy, Control and Dynamical Systems

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2022
Defended October 8, 2021

ii

© 2022

Carl A. A. Folkestad
ORCID: 0000-0002-3436-8247

All rights reserved except where otherwise noted

iii

ACKNOWLEDGEMENTS

I am very grateful to my advisor, Joel Burdick, for being a reliable and caring
advisor. He has supported me to pursue the ideas I’ve found most interesting and
given me the freedom to make my PhD-journey interesting and enjoyable, both
professionally and personally. I would also like to thank Richard Murray, Aaron
Ames, and Yisong Yue for being great mentors and sources of inspiration during
my PhD and for serving on my committee.

I have been lucky to work with many great graduate students, postdocs, and pro-
fessors during my years at Caltech. I would especially like to thank Daniel Pastor,
Yuxiao Chen, and Skylar Wei for great research collaborations. I would also like to
thank Igor Mezic, RyanMohr, andMaria Fonoberova for their mentorship and inter-
esting discussions in the early stages of my PhD research. You have all challenged
me intellectually, filled in my blind spots, and made the research more interesting,
fun, and productive. Finally, I would like to thank everyone in the Burdick and
Ames research groups for inspiring me and helping me become a better researcher.

I would also like to thank the Aker Scholarship foundation for their guidance and
financial support for pursuing my PhD. In particular, Bjørn Blindheim has been
invaluable to help me navigate the possibilities for graduate studies in the US and
to help me succeed. Their financial support has also enabled me to pursue research
ideas more freely, which has been a great benefit throughout my PhD.

I am deeply grateful to all the great friends I have made during my time at Caltech,
who make both work and time off fun, interesting, and entertaining. I am also
convinced that I would not have gotten through the first year if it hadn’t been for all
the brilliant people in CMS and CDS fighting in the trenches besides me. I must
especially thank my office mates in both Annenberg and Gates Thomas for making
the hours spent in the office enjoyable.

Finally, I would like to thank my family for their unconditional support and for
giving me a strong foundation at home that makes it easier to pursue my dreams
even though it means being far away. Last but not least, I must thank my partner-
in-crime, Maria, for always dreaming with me, and for making life exciting and
colorful.

iv

ABSTRACT

Learning methods to enable high performance control systems have recently shown
promising results in selected environments and applications. These advances pro-
mote the next generation of autonomous robots capable of significantly improving
efficiency, cost, and safety in their respective domains. Importantly, these systems
are safety-critical and operate in proximity to humans in diverse and uncertain en-
vironments. As a result, operational failures may cause significant material and
societal losses. Additionally, robot learning and control are further complicated by
requiring fast controller update rates and operational constraint satisfaction.

To address these challenges, this thesis presentsmultiplemethods based onKoopman
operator theory. The first approach develops algorithms to learn lifted-dimensional
models of nonlinear systems and leverages the models in model predictive control
(MPC) design. Koopman-based methods typically employ hand-crafted observable
functions to "lift" the state variables to the higher dimensional space. For most
systems, this leads to poor prediction performance and inefficient use of data and
computational resources. Instead, I present methods that generate observable func-
tions from data, both based on underlying theory and by incorporating the observable
functions and model structure in a neural network model. This allows lower dimen-
sional models, important for real-time control, and enables the nonlinearities of
control-affine dynamics to be captured, crucial to describing many robotic systems.
I use quadrotor drones to experimentally demonstrate that the learned models com-
bined with MPC can achieve close to optimal behavior while respecting important
operational constraints.

The last part of the thesis is concerned with endowing systems with an arbitrary
nominal control policy with safety guarantees. Control barrier functions (CBFs) are
a powerful tool to achieve this, yet they rely on the computation of control invariant
sets, which is notoriously difficult. To avoid this, a backup strategy can be used to
implicitly define a control invariant set. However, this requires forward integration
of the system dynamics under a backup controller, which is prohibitively expensive
for realistic systems. I present a method that replaces the expensive integration using
learned Koopman operators of the closed-loop dynamics. As a result, the online
computation time required to evaluate the controller is drastically reduced, enabling

v

real-time use. I also derive an error bound on the unmodeled dynamics in order to
robustify the CBF controller and demonstrate the method on multi-agent collision
avoidance for wheeled robots and quadrotors.

vi

PUBLISHED CONTENT AND CONTRIBUTIONS

Folkestad, Carl, Skylar X. Wei, and Joel W. Burdick (2022). “Quadrotor Trajec-
tory Tracking with Learned Dynamics: Joint Koopman-based Learning of Sys-
tem Models and Function Dictionaries”. In: 2022 International Conference on
Robotics and Automation (ICRA) (submitted).
Contribution: Algorithm development, code implementation, experiment design
and execution, article writing. Content is presented in Chapter 4.

Folkestad, Carl and Joel W. Burdick (May 2021). “Koopman NMPC: Koopman-
based Learning and Nonlinear Model Predictive Control of Control-affine Sys-
tems”. In: 2021 IEEE International Conference on Robotics and Automation
(ICRA). url: http://arxiv.org/abs/2105.08036.
Contribution: Algorithm development and theoretical analyses, code implemen-
tation, experiment design and execution, article writing. Content is presented in
Chapter 4.

Folkestad, Carl, Yuxiao Chen, et al. (Dec. 2021). “Data-Driven Safety-Critical Con-
trol: Synthesizing Control Barrier Functions with Koopman Operators”. In: IEEE
Control Systems Letters 5.6, pp. 2012–2017. issn: 24751456. doi: 10.1109/
LCSYS.2020.3046159.
Contribution: Algorithm development and theoretical analyses, code implemen-
tation, experiment design and execution, article writing. Content is presented in
Chapter 5.

Folkestad, Carl, Daniel Pastor, and Joel W. Burdick (May 2020). “Episodic Koop-
man Learning of Nonlinear Robot Dynamics with Application to Fast Multirotor
Landing”. In: Proceedings - IEEE International Conference on Robotics and Au-
tomation. Institute of Electrical and Electronics Engineers Inc., pp. 9216–9222.
isbn: 9781728173955. doi: 10.1109/ICRA40945.2020.9197510.
Contribution: Algorithm development, simulation and hardware code implemen-
tation, experiment design and execution, article writing. Content is presented in
Chapter 3.

Folkestad, Carl, Daniel Pastor, Igor Mezic, et al. (July 2020). “Extended Dynamic
Mode Decomposition with Learned Koopman Eigenfunctions for Prediction and
Control”. In: Proceedings of the American Control Conference. Vol. 2020-July.
Institute of Electrical and Electronics Engineers Inc., pp. 3906–3913. isbn:
9781538682661. doi: 10.23919/ACC45564.2020.9147729.
Contribution: Algorithm development and theoretical analyses, code implemen-
tation, experiment design and execution, article writing. Content is presented in
Chapter 3.

Pastor, Daniel, Carl Folkestad, and Joel W. Burdick (Dec. 2020). “Ensemble Model
Predictive Control: Learning and Efficient Robust Control of Uncertain Dynami-
cal Systems”. In: Proceedings of the IEEE Conference on Decision and Control

vii

2020-Decem, pp. 1254–1259. doi: 10.1109/CDC42340.2020.9304442.
Contribution: Algorithm development and theoretical analyses, article writing.
Content is not part of this thesis.

viii

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . iv
Published Content and Contributions . vi
Table of Contents . vii
List of Illustrations . x
List of Tables . xii
Nomenclature . xiii
Chapter I: Introduction . 1

1.1 Related Work . 4
1.2 Thesis Contribution and Organization 11

Chapter II: Learning and Control from an Operator Theoretic Perspective . . 14
2.1 Koopman Spectral Theory for Autonomous Dynamics 14
2.2 Theory and Application of Koopman Theory to Control Systems . . 16
2.3 Learning High Dimensional Linear Models to Approximate Nonlin-

ear Dynamics . 19
2.4 Koopman Model Predictive Control 21

Chapter III: Learning and Control of Systems with Linear Actuated Dynamics
using Learned Koopman Eigenfunctions 23
3.1 Introduction . 23
3.2 Preliminaries on Construction of Eigenfunctions for Nonlinear Dy-

namics . 25
3.3 Data-driven Koopman Eigenfunctions for Unknown Nonlinear Dy-

namics . 28
3.4 Koopman Eigenfunction Extended Dynamic Mode Decomposition . 31
3.5 Model Predictive Control Design 35
3.6 Supervised Learning and Control of Simulated Inverted Pendulum . . 36
3.7 Episodic KEEDMD Learning . 39
3.8 Episodic Eigenfunction Construction and KEEDMD Inference 41
3.9 Improving Fast multirotor Descent and Landing by Learning the

Ground Effect . 43
3.10 Conclusions . 46

Chapter IV: Learning and Control of Systems with Control-affine Dynamics . 48
4.1 Introduction . 48
4.2 Preliminaries . 51
4.3 Learning Lifted Bilinear Dynamics 53
4.4 Nonlinear Model Predictive Control Design 55
4.5 Simulated Quadrotor Learning and Control 57
4.6 Joint Learning of the Koopman Dictionary and Model 61
4.7 Experimental Low Altitude Trajectory Tracking with Quadrotor Drone 64

ix

4.8 Conclusion . 69
Chapter V: Safety-critical Control with Data-driven Control Barrier Functions 70

5.1 Introduction . 70
5.2 Preliminaries . 71
5.3 Koopman Operator for Backup Trajectories 74
5.4 CBF with Koopman Predicted State Flow 78
5.5 Simulation and Experimental Results 79
5.6 Conclusion . 83

Chapter VI: Conclusion . 84
6.1 Future Work . 87

Bibliography . 89

x

LIST OF ILLUSTRATIONS

Number Page
3.1 Chain of topological conjugacies used to construct eigenfunctions,

adapted from (Mohr and Mezić, 2014). 29
3.2 Performance comparison of the nominalmodel, EDMD, andKEEDMD

applied to open loop prediction of the cart-pole system from 40 dif-
ferent initial conditions. 37

3.3 Performance comparison of the nominalmodel, EDMD, andKEEDMD
used for closed loop control of the cart-pole system. 38

3.4 Flow chart showing the different elements for each episode. 43
3.5 From left to right: hovering before the sequence start, high speed

descent with learned dynamics, and soft landing. 43
3.6 Evolution of drone altitude ?I with accumulated error and control

effort after each episode. Episode 0: baseline controller, Episode 1-
3: performance after each episode of learning. Red arrows: duration
the thrust constraint is active. 45

3.7 Mean ± 1 standard deviation of tracking performance after each
episode over 5 independent campaigns. 46

4.1 Trajectories generated with MPCs based on DMD, EDMD, and
bEDMD models. True model-based NMPC used as benchmark.
(Black dotted lines-state/actuation constraints, dashed lines-open loop
simulation of generated trajectories). 56

4.2 Closed loop control withMPCs based onDMD,EDMD, and bEDMD
models. True model-based NMPC used as benchmark. 59

4.3 Koopman neural network model architecture. 63
4.4 Experiment set-up. 65
4.5 Hardware configuration and experimental results from “Figure 8”

trajectory tracking control experiment. 67
4.6 Average MSE and total thrust (dots) +/- 3 std (error bars) from 5

consecutive experiment runs with each of the controllers at decreas-
ing altitudes. Stable flight not achieved by the nominal NMPC for
altitudes below 0.25 m. 68

xi

5.1 Robotarium experiment traces, the Koopman CBF controller guaran-
tees zero collisions. Each robot visits a point and returns to its initial
position while (a) avoiding obstacle, (b) avoiding collision, and (c)
avoiding collision and obstacle. 80

5.2 Simulated quadrotor landing experiment. (left) Snapshot of scenario
3 simulation and traces of full trajectory for eachUAV. (right) Altitude
and velocity of each agent. The Koopman CBF controller guarantees
zero collisions while maintaining sufficient mobility to achieve landing. 81

xii

LIST OF TABLES

Number Page
3.1 Improvement in MPC cost with learned models 38
3.2 Experiment Parameters . 44
4.1 Prediction error of DMD, EDMD, and bEDMD models. 58
4.2 Summary statistics over 100 experiments of the MPC trajectory cost,

error, and SQP iterations. 60
4.3 Summary statistics over 100 experiments of the MPC closed loop

control cost and computation times. 61
4.4 Learning architecture and tuned hyperparameter values 65
4.5 Crazyflie system properties and NMPC parameters 65
5.1 State and sensitivity matrix forward integration computation times

per agent. 81

xiii

NOMENCLATURE

���. Control barrier function.

�"�. Dynamic mode decomposition.

��"�. Extended dynamic mode decomposition.

�%. Gaussian processes.

�%'. Gaussian processes regression.

"!. Machine learning.

"%�. Model predictive control.

#"%�. Nonlinear model predictive control.

&%. Quadratic program.

'!. Reinforcement learning.

1

C h a p t e r 1

INTRODUCTION

Over the last few decades, an increasing number of agile autonomous robotic systems
have been conceptualized and demonstrated. Dynamic autonomous robot applica-
tions are currently being developed for a wide range of commercial and research
applications with examples including autonomous driving (Cruise, 2018), drone
delivery (O’Brien, 2018), mobility recovery of paraplegic patients (Gurriet, Finet,
et al., 2018), and planetary exploration (Balaram et al., 2018). These applications
have the potential to revolutionize the sectors they operate in, but require systems
and technologies that can perform a wide range of tasks while operating in close
proximity to humans in highly diverse and uncertain environments. A further com-
plication is that robots for these tasks typically are safety critical, where any failure
can lead to catastrophic societal or economic consequences in addition to harm or
loss of human life. As a result, significant academic and industrial research and
development efforts are aimed at developing systems capable of navigating complex
tasks and environments to realize the benefits of widespread robot adoption while
maintaining strict safety and reliability standards.

The current progress and optimism around autonomous systems rely on advances
in a range of core technologies that together lay the foundation for the future of
high performance autonomous robots. First, better mechanical designs, materials
and sensor hardware enable lighter, more durable, and longer operating duration
robots at reasonable cost. Second, sensors are not only becoming smaller, lighter,
and cheaper, but the quality and type of data that can be captured are also changing.
One important example is how progress in image classification using machine
learning (ML) and fast graphical processing units enable rich data to be collected and
interpreted using inexpensive cameras, providing important information about the
context and environment (Schmidhuber, 2015; Lecun, Bengio, and Hinton, 2015).
Third, control algorithms have improved to better take advantage of the improved
sensing and model information resulting in more efficient and higher performing
systems. For example, model predictive control that is capable of optimizing a
performance criterion while satisfying state and actuation constraints can now be
solved in real-time even with nonlinear dynamics models (Kouzoupis et al., 2018;
Gros et al., 2020; Grandia et al., 2020). Also, nonlinear control methods based

2

on Lyapunov and control barrier functions can be efficiently implemented using
quadratic programs (Ames and M. Powell, 2013; Ames, Xu, et al., 2017). In
addition to the improvements in pure control methods, ML-inspired methods have
significantly improved and are intensely researched. In particular, reinforcement
learning (RL), concerned with improving the future operation of a dynamical system
based on past data, has demonstrated impressive performance in simulated and
selected laboratory experiments. A large number of methods and architectures are
currently explored, ranging frommodel-free methods, which directly learn a control
policy based on past data and a performance measure, and model-based methods,
which explicitly learn a model of the underlying system dynamics and use a control
algorithm exploiting the learned model as a policy (Recht, 2019; Kober, Bagnell,
and Peters, 2013).

This thesis is focused on model-based methods and explores how ideas based on
Koopman operator theory (Koopman and Neumann, 1932) can be used for model
learning and control of agile autonomous robotic systems. Whereas a system’s
behavior conventionally is characterized via its state space flows, Koopman-based
approaches study the evolution of observables, which are functions over the state-
space. In this space, the system can be represented by a linear (but possibly infinite
dimensional) operator (Lan and Mezić, 2013; Mauroy and Goncalves, 2016).

Although many methods have been proposed to use data and learning to improve
control performance of autonomous robots, many challenges are still unresolved.
In particular, many modern learning architectures rely on a very large number of
learnable parameters to achieve accurate models, requiring very large amounts of
data which can be infeasible or prohibitively expensive to collect from a physical
robot. Furthermore, largemodelsmay take too long to evaluate at runtimewhen used
for controllers which are typically updated at a rate of 10-1000 hz. Secondly, few
methods allow safety and performance behavior to be interpreted and/or guaranteed,
prohibiting their deployment for safety critical systems. Finally, all real-world robots
have constraints on their actuation, e.g. the maximum force that can be exerted by
an actuator, and operation, e.g. avoiding collision with other agents, and therefore
need control methods that can incorporate these constraints into the design such that
constraint satisfaction can be guaranteed and close to optimal behavior realized.

To address these challenges, this thesis presents methods that solve these problems
using two different approaches. The first approach develops learning algorithms
inspired by Koopman spectral theory to learn higher-dimensional lifted models

3

of nonlinear control systems and leverage the learned models in model predictive
control design. Two main challenges are identified in contemporary Koopman-
based learning methods. First, hand-crafted observable functions are typically used
to "lift" the state variables to the higher dimensional space. For most systems, this
will lead to poor prediction performance over longer time horizons and inefficient
use of data and computational resources. Chapter 3 presents a systematic approach
to generate observable functions from data based on theory of the existence of a
diffeomorphism between the nonlinear dynamics and their linearization around a
fixed point. Furthermore, Chapter 4 presents a more flexible approach to observable
design by incorporating the model structure of Koopman-based models in a deep
neural network architecture. Second, most existing methods rely on identifying
lifted linear models, which are not capable of capturing nonlinear control-affine
dynamics, a crucial model class for robotic systems to capture important nonlinear
model effects of how actuation enters the system. Chapter 4 therefore shows how to
utilize Koopman-based learning underpinned by a bilinear model, that theoretically
can capture control-affine dynamics, and how to use the learnedmodel in a nonlinear
model predictive control framework.

The second approach focuses on how to endow a system with an arbitrary nominal
control policy with safety guarantees. This can for example be used to ensure that a
system remains safe during the training process of a model-free reinforcement learn-
ing policy (Cheng et al., 2019). Multiple approaches use Control barrier functions
(CBFs) to choose the action closest possible to the nominal policy while ensuring
safety. However, when the system has constrained actuation, as is often the case
for robotic systems, a control invariant set must be calculated, which is notoriously
difficult. The expensive offline computation can be avoided by designing a backup
controller stabilizing the system to a safe state, and implicitly defining the control
invariant set by integrating the system dynamics under the backup controller. Unfor-
tunately, the integration is prohibitively expensive for high dimensional systems, and
inaccurate in the presence of unmodelled dynamics. Chapter 5 presents a method to
learn discrete-time Koopman operators of the closed-loop dynamics under a backup
strategy. This approach replaces forward integration by a simple matrix multipli-
cation, which can mostly be computed offline. Furthermore, an error bound on the
unmodeled dynamics is derived in order to robustify the CBF controller.

4

In the remainder of this section, I will first do a survey of existing and ongoing work
on model-based learning and control before outlining the main contributions and
structure of the thesis.

1.1 Related Work
Currently, many different approaches are pursued with the common goal of merging
learning and control to achieve high performance controllers with provable guaran-
tees and adaptive behavior. In this section, a selection of this work is highlighted to
give an overview of the current state-of-the-art. This is not meant to be an exhaustive
literature review, but rather a discussion of examples of progress in various recent
directions relevant to this thesis.

I focus on model-based approaches and learning methods motivated by structure
resulting from specific control strategies, while excluding direct policy learning
methods. This is strongly motivated by the need for data efficiency in learning
for robotic control strategies to be able to realize these methodologies on physical
systems. Furthermore, model-based methods typically yield more compact function
representations, whose evaluation time is crucial for real-time control. Lastly,
deriving usable model error bounds can be easier by exploiting prior knowledge
and structure of the dynamics which is more naturally encoded in model-based
approaches.

Methods that Learn Full State Space Dynamics

Methods that learn full state space models of the dynamics are typically independent
of specific task or control objectives, and can therefore be used for both prediction
and control with any compatible control design approach. Many works have shown
that usingmachine learning techniques coupledwith traditional control designmeth-
ods can yield significant performance improvements over first-principles modeling
for systems with hard to model dynamics effects or unknown model parameters. A
large portion of the algorithms that learn full state space models can be classified
into three categories: (1) neural network-basedmethods, (2) Gaussian process-based
methods, and (3) Koopman-based methods.

Neural Network-based Methods: Inspired by the widespread adoption of neural
network architectures in other domains, many researchers have explored model
learning using neural network-based methods in the setting of controlled dynamical
systems. Although neural network architectures certainly are capable of capturing

5

dynamics models, two important challenges for robotics application are obtaining
a reliable model with a limited amount of collected data, and how to design a
controller utilizing the learned model. One approach to address these challenges is
to leverage prior knowledge of the system dynamics to constrain the learning process
such that stable control using the learned model can be guaranteed. G. Shi, X. Shi,
et al., 2019 proposed a spectrally normalized neural network to learn the ground
effect to improve landing of a multirotor. Interestingly, the spectral normalization
is shown to both improve model generalization and enables control design with
stability guarantees. However, the stability guarantee requires the unknown part
of the dynamics to be small relative to the nominal model, and state and actuation
constraints cannot be incorporated into the control design.

Manek and Kolter take a different approach and use the stability of the true system
(if known) as a prior to learn neural network-based dynamical models (Manek and
Kolter, 2020). To achieve this, a model for the dynamics and a Lyapunov function
guaranteeing the stability of the learned dynamicsmodel are inferred simultaneously.
The Lyapunov function is then used to project the learned dynamics into the space
of stable dynamics if needed, ensuring that the learned dynamics model is stable
throughout the training process. Although an interesting idea, controlled dynamical
systems are not yet considered, and as such, stability guarantees of the true dynamical
systemwhen it is controlled based on the learned dynamics and/or Lyapunov function
are not developed.

Gaussian Process-based Methods: Gaussian process regression (GPR) models
the dynamical system as a Gaussian process and uses data and a prior on the state
transition distribution to estimate a posterior mean and variance. If a good prior can
be designed, GPR provides a practical and theoretically appealing tool for inference
of dynamical models because structure and prior knowledge can be encoded, and
a measure of uncertainty is obtained as part of the inference process (Rasmussen
and C. K. I. Williams, 2018). Deisenroth, Fox, and Rasmussen, 2015 demonstrate
that GPR can efficiently be used to learn dynamics to improve sample efficiency
and performance in a model-based RL framework. GPR has also been used in
combination with a nominal model to learn residual dynamics (Chang et al., 2017;
Beckers, Kulić, and Hirche, 2019). If a reasonable nominal model is known, this
can improve sample efficiency and aid theoretical guarantees on safety and stability.

6

More recently, Wenk et al., 2020 proposed a GP-based learning framework leverag-
ing knowledge of the ODE parametric form of the system dynamics being learned.
The knowledge of the parametric forms significantly reduces the number of param-
eters to be learned resulting in high data efficiency. When the prior information
is accurate, the method outperforms other state-of-the-art methods based on GPs.
Although the assumptions of their current work is restrictive in many settings, the
idea to encode all available prior knowledge in GP type learning is attractive and
demonstrates the flexibility of GPR. However, computational complexity is high,
restricting practical use of GPR to certain applications. Furthermore, design of
controllers that are robust to model uncertainties in this approach while respecting
state and actuation bounds, is not evident.

GPR has also been extensively used to learn models or partial models to be utilized
for safety filtering. This will be discussed in the end of this section.

Koopman-based Methods: Koopman-inspired modelling and identification tech-
niques have received substantial recent attention (Rowley et al., 2009; Budišić,Mohr,
and Mezić, 2012). In particular, the Dynamic Mode Decomposition (DMD) and
extended DMD (EDMD) methods have emerged as efficient numerical algorithms
to identify finite dimensional approximations of the Koopman operator associated
with the system dynamics (Schmid, 2010; M. O. Williams, Kevrekidis, and Row-
ley, 2015). The methods are easy to implement, mainly relying on least squares
regression, and computationally and mathematically flexible, enabling numerous
extensions and applications (S. L. Brunton and Kutz, 2019). For example, DMD-
based methods have been successfully used in the field of fluid mechanics to capture
low-dimensional structure in complex flows (Taira et al., 2017), in robotics for
external perturbation force detection (Berger et al., 2015), and in neuroscience to
identify dynamically relevant features in ECOG data (B. W. Brunton et al., 2016).
Typically, EDMD-methods employ a dictionary of functions that are used to lift the
state variables to a space where the dynamics are approximately linear. A practical
nonlinear sparse regression method was proposed by S. L. Brunton, Proctor, et al.,
2016. Based on a dictionary of nonlinear transformations of the state variables
(e.g. monominal functions), a ;1-regularized regression problem over the nonlinear
transformations can be posed resulting in the key functional forms needed for good
prediction performance to be identified. This method is shown to be data efficient
and achieve good prediction performance if a good library of transformations is
known.

7

It is especially relevant for this thesis that Koopman-style modeling has previously
been extended to controlled nonlinear systems (Kaiser, Kutz, and S. L. Brunton,
2018; Proctor, S. L. Brunton, and Kutz, 2018). This is particularly interesting as
EDMD can be used to approximate nonlinear control systems by a lifted state space
model. As a result, well-developed linear control design methods such as robust,
adaptive, and model predictive control (MPC) can be utilized to design nonlinear
controllers. Korda and Mezić, 2018b use EDMD to learn a high-dimensional linear
model and linear MPC for control design . Furthermore, it is shown that the explicit
relationship between the state and control input in the dynamics update equation
enables the MPC to be implemented in a way that eliminates the state from the
optimization problem, thereby removing the dependence on the lifting dimension.
Consequently, the MPC can be implemented very efficiently. This is one of the key
results that have spurred a lot of interest in Koopman-based learning and control
and is indeed part of the inspiration for the methods presented in Chapters 3-4.

As discussed in the introduction, one of the big challenges with current Koopman
methods is how to choose a good function dictionary to "lift" the state variables of
the system. If not chosen carefully, the time evolution of the dictionary functions
cannot be described by a linear combination of the other functions in the dictio-
nary. This results in error accumulation when the model is used for prediction,
potentially causing significant prediction performance degradation. Previous works
have attempted to principally construct observables for certain model classes (e.g.
(Korda and Mezić, 2018a)), but typically rely on assumptions that are problematic
for robotic systems, e.g. that the data must be collected while the system is operating
under open loop controls, which can lead to catastrophic system damage. This is
addressed in Chapter 3, which introduces an approach for principled eigenfunction
construction for lifted linear models that is usable for robotic systems. Alterna-
tively, multiple researchers have proposed to parametrize the function dictionary
using neural networks and learn the lifting functions alongside the dynamics model
(Li et al., 2017; Lusch, Kutz, and S. L. Brunton, 2018). Although these methods
have demonstrated promising results for certain dynamical systems, none have fo-
cused on algorithm development and the unique requirements of controlled robotic
systems, such as how to design controllers using the learned models.

The second significant challenge of current methods is that many rely on model
structures that cannot capture nonlinear control-affine dynamics, ¤x = f (x) + g(x)u,
which are an important model class in robotics that allows a wide class of aerial and

8

ground robots to be characterized. Most current methods approach this problem
by learning a lifted linear model, which only allows the control vector fields, g(x),
to take a constant state-invariant form. This is a significant limitation, as many
useful robotic systems, e.g. systems where input forces enter the system dynamics
through rotation matrices, are best described by nonlinear control-affine dynamics.
Theoretically, the Koopman canonical transform (KCT) (Surana, 2016) allows a
large class of nonlinear control-affine dynamic models to be lifted to a higher-
dimensional space where the system evolution can be described by a bilinear (but
possibly infinite dimensional) dynamical system. Learning and control design with
bilinear models is sparsely explored, but connections between Koopman bilinear
system descriptions and classical control concepts such as reachability and control
Lyapunov functions have been presented (Goswami and Paley, 2018; Huang, Ma,
and Vaidya, 2019). Very recently, bilinear Koopman models that are linearized at
the current state of the systemwere used inMPC (Bruder, Fu, andVasudevan, 2021).
Another approach uses the bilinear model structure to simplify the construction of
a control Lyapunov function enforced as a constraint in a nonlinear MPC method
to obtain stability guarantees (Narasingam and Kwon, 2020). Chapter 4 develops a
method for joint dictionary and model learning underpinned by the bilinear model
structure that make these emerging ideas practically useful for robotic systems and
model predictive control design.

Methods that Learn Partial Models Motivated by Controller Structure

Although learning the full state space model leads to a model that can be used
for both prediction and control design for various tasks, increased data efficiency
could be achieved by posing the learning problem in the setting of a specified
objective. This motivates learning and control frameworks that exploit structure
that is available when a dynamics model is combined with a specific control design
approach to achieve some objective.

Several methods approach learning and control in the context of MPC. This is a
natural approach as most robotic control problems can be formulated as a MPC
problem. Aswani et al. formulate a MPC problem that employs a nominal linear
model with additive disturbance capable of capturing unmodeled dynamics of a
nonlinear system for robustness guarantees and non-parametric learning for perfor-
mance improvement (Aswani et al., 2013). As such, the problem of robustness
and performance is decoupled, and the model is also robust against mislearning.

9

However, not updating the belief of the disturbance as more data is collected can
lead to overly conservative behavior. Rosolia, X. Zhang, and Borrelli, 2018 de-
velopeded an episodic learning framework dubbed Learning MPC (LMPC) that
overcomes this issue. Based on an initial experiment execution, an initial safe set,
and known dynamics, the system iteratively executes an experiment, updates the
safe set based on the states visited, and improves the control performance as more of
the state space is deemed safe. The framework does not explicitly learn the system
dynamics, but learns the safe set of the system and the effect of disturbances on
the dynamics through a sampling-based method. MPC-motivated approaches also
exist in the more traditional approximate dynamic programming methods of RL. For
example, Amos et al., 2018 formulate a MPC problem such that it can be differenti-
ated and thereby integrated in a neural network architecture and backpropagated on.
This is shown to significantly improve the sample complexity and performance of
the controller based on learned (MPC) cost and dynamics compared to model-free
reinforcement learning methods.

Several methods are also based on control Lyapunov (CLFs) and control barrier
functions (CBFs) to guide the learning and synthesize controllers (Ames and M.
Powell, 2013). Controllers with stability and safety guarantees can be synthesized
by including CLF and/or CBF constraints in a quadratic program. Because sta-
bility/safety can be evaluated by a scalar function, learning improved CLF/CBF
derivatives can significantly reduce the learned model dimension aiding data effi-
ciency and generalization. Taylor, Dorobantu, Le, et al., 2019 proposed to learn a
reduced dimensional projection of the state in the form of Lyapunov function deriva-
tives, which effectively project the dynamics to a scalar quantity that can be used
to promote stability (the dynamics are implicitly described through the Lyapunov
function derivative). The method is integrated in an episodic learning framework
and subsequent works developed state-dependent uncertainty bounds and guarantees
on Projection to State Stability, a novel concept similar to Input-to-State Stability
for projected dynamics (Taylor, Dorobantu, Krishnamoorthy, et al., 2019).

Similar ideas have also been presented to learn control barrier function derivatives
(Taylor, Singletary, et al., 2020) and simultaneous learning of both control Lyapunov
and control barrier functions (Choi et al., 2020). Additionally, methods that can
explicitly account for the model error in the CLF/CLF constraints based on Lipschitz
continuity arguments (Taylor, Dorobantu, Dean, et al., 2020) and confidence bounds
of GPR (Castaneda et al., 2021) allow model uncertainty to be accounted for in the

10

theoretical guarantees. Finally, multiple approaches include CLF and/or CLF terms
in the reward function of reinforcement learning approaches to promote stability
and/or safety in learned policies. This has been shown to significantly reduce
variance and speed up convergence as system knowledge can be encoded into the
reward terms (Cohen and Belta, 2020; Zheng et al., 2020; Cheng et al., 2019).

As discussed above, methods that learn partial models motivated by controller
structure have shown great performance for multiple simulated and physical envi-
ronments. However, the improved performance and data efficiency comes at the cost
of learning models/controllers that are task specific. Transferring a learned system
between tasks can therefore be costly and time consuming.

Safety Filtering

A different philosophy to approach theoretical safety guarantees of dynamical sys-
tems is through various forms of safety filters similar to those created through control
barrier functions (CBF) as introduced by Ames, Xu, et al., 2017. In this setting, full
freedom is given to the design of high performance control policies, and the control
actions suggested by these policies are executed as long as they don’t violate the
system safety specification. If safety is violated, a safety controller takes over when
necessary and ensures safe operation of the system.

Many learning methods based safety filters use GPR for model and uncertainty
estimates. L. Wang, Theodorou, and Egerstedt, 2018 utilize GPR and CBFs to
endow general control policies with learned safety certificates. Their approach
approximates the mean and variance of residual dynamics between observed data
and a nominal control-affine dynamics model. Furthermore, safety guarantees based
on samples from the system and an adaptive sampling algorithm are developed.
Similarly, Turchetta, Berkenkamp, and Krause, 2019 and Berkenkamp et al., 2017
leverage a GP prior and observations of a function encoding safety through an oracle
to learn a mean and variance estimate of the value of the safety function at unseen
states. Then, smoothness assumptions on the dynamics are used to expand the set
of safe actions from an initial (small) set of safe actions. A key feature of the
method is that the safety filter only intervenes and/or expands if necessitated by the
suggested control action of the controller, i.e. the safe set is only expanded in the
directions relevant for high performance control, significantly improving sampling
efficiency compared to other methods that tend to expand the safe operating region
in all directions of the state space.

11

The GPR safety filter is extended with an online evaluation of the model reliability
by Fisac, Akametalu, et al., 2019. Their key insight is that a safety controller should
not only be utilized when the system is on the boundary of the control invariant set,
but also if the prediction model used in control design is expected to be unreliable.
This enables the system to retract to a safe region if, e.g., new uncertainties which
are not captured by the model are introduced. The framework can also be modified
to design a confidence-aware predictor of human behavior based on GPR to help
robots navigate around humans (Fisac, Bajcsy, et al., 2018). Finally, safety filtering
approaches have also used parametric learning methods such as neural networks
(Richards, Berkenkamp, and Krause, 2018).

Safety filtering is a flexible tool to endow any control policy with safety guarantees.
However, in the context of learning and control there are two main drawbacks to
this approach. First, all methods reviewed only allow uncertainty to enter the model
through the unactuated dynamics, limiting the unknowns that can be captured for
many practical applications. Second, a high performance controller still needs to
be designed and this controller should also take advantage of the collected data to
improve its performance. As a result, treating performance and safety separately
may lead to inefficient use of computational resources and unnecessary system
complexity. In the work presented in Chapter 5, a computational and data efficient
method to implement a safety filtering method based on partially learned dynamics
to address this is presented. Furthermore, I discuss the potential to learn both a
model for safety filtering and one for performance-oriented work in the future work
section of Chapter 6.

1.2 Thesis Contribution and Organization
The main contributions of this thesis can be summarized as follows:

• I develop a learning framework to construct Koopman eigenfunctions for
unknown, nonlinear dynamics using data gathered from experiments. The
method exploits the learned Koopman eigenfunctions to learn a lifted linear
state-spacemodel. To the best ofmy knowledge, themethodwas the first to uti-
lize Koopman eigenfunctions as lifting functions for EDMD-based methods.
Furthermore, the learned model is utilized for linear MPC and demonstrated
experimentally on a multirotor drone to learn aerodynamic ground effect.
Furthermore, this is one of the first demonstrations of Koopman learning and
control demonstrated on a physical robotic platform.

12

• I develop a method combining the process of learning control-affine dynamics
with nonlinear MPC design. First, building on recent advances in NMPC, I
design a controller for bilinear Koopman models that uses the bilinear model
structure to improve computational efficiency, making real-time computation
possible. Second, I show the advantages of learning lifted bilinear models
over linear models and demonstrate that the completely data-driven Koopman
NMPC method can match the performance of a NMPC controller with full a
priori model knowledge on a simulated planar quadrotor.

• I extend the method to learn lifted bilinear models by encoding both the
function dictionary and the bilinear lifted model in a single neural network
architecture. This solves the problem of designing an appropriate function
dictionary, which is typically difficult for real-world systems, and allows im-
proved prediction performance and/or lower lifting dimension of the model
compared to fixed function dictionaries. Reducing the lifting dimension is
crucial to enable the NMPC based on the learned model to run in real time
on physical robots. I demonstrate the learning and controller performance on
a quadrotor drone. At medium altitude, the controller based on the learned
model is able to match the performance of a NMPC based on a nominal non-
linear quadrotor model. At lower altitudes, where aerodynamic ground effect
impacts the drone’s dynamics, however, the controller based on the learned
model maintains acceptable tracking performance whereas the nominal con-
troller fails to achieve stable flight.

• I introduce a data-driven approach that combines Koopman-based learning
and control barrier functions to achieve safety-critical control that guarantees
safety under limited actuation and errors in the learned Koopman model. The
method significantly reduces the online computation required allowing the
safety filter to be used for high-dimensional systems. Furthermore, backup
trajectories can be learned from data, improving the applicability of the ap-
proach in real-world scenarios where accurate models may be unavailable.
Experiments and simulations show that the method can be incorporated in a
decentralized framework formulti-agent control, further expanding the impact
of the efficiency improvements.

13

Each of the methods in Chapters 3-5 includes demonstrations of the proposed
methods on both simulated and laboratory experiments. Many of the experiments
are carried out using quadrotor drones. These vehicles are well suited for such
research, as they have sufficient complexity to study learning and control algorithms
for robotic systems, such as bounded actuation, important nonlinear dynamical
effects, and the ability to perform agile maneuvers that can lead to catastrophic
failure, while being relatively inexpensive and easy to deploy. Furthermore, aerial
vehicles are affected by aerodynamic effects that can be very hard to model from first
principles using model classes that are practical for real-time control and therefore
presents an attractive use case for learning. For example, all the chapters include
examples where data is used to learn an unmodeled ground effect occuring when
the vehicle flies close to the ground and the downwash from the propellers impact
the motion of the vehicle. Even though the experimental focus of this thesis is
on drones, all the methods are applicable to general robotic systems satisfying the
assumptions described in each respective chapter.

The rest of the thesis is organized as follows. Chapter 2 introduces relevant back-
ground on Koopman operator theory and Koopman-based learning frameworks.
Chapters 3 and 4 focus on simultaneous learning of function dictionaries and dy-
namics models based on Koopman theory. Chapter 3 is concerned with learning
with models underpinned by lifted linear models and control using linear MPC. As a
result, only linear actuated dynamics can be accurately captured. Chapter 4 develops
algorithms to capture nonlinear control-affine actuated dynamics underpinned by
lifted bilinear models and nonlinear MPC. Chapter 5 focuses on combining safety
filtering with CBFs and Koopman-based learning resulting in a flexible, computa-
tionally efficient method to guarantee safety under any nominal controller. Finally,
conclusions and future work are discussed in Chapter 6.

14

C h a p t e r 2

LEARNING AND CONTROL FROM AN OPERATOR
THEORETIC PERSPECTIVE

This chapter introduces the fundamental concepts of operator theoretic approaches
to learning and control of dynamical systems. Section 2.1 discusses the basic theory
of the Koopman operator for autonomous systems and Section 2.2 describes how
the theory can be extended to controlled systems. Finally, Section 2.3 introduces the
most widespreadmethod to learn finite dimensional approximations of the Koopman
operator, the extended dynamicmode decomposition, before practical control design
with MPC is discussed in Section 2.4. These preliminaries serve as an introduction
to the Koopman operator for dynamical systems and are the foundations of the
research presented in Chapters 3-5.

2.1 Koopman Spectral Theory for Autonomous Dynamics
Koopman Operator of Continuous-time Dynamics

Consider the autonomous dynamical system:

¤x = f (x) (2.1)

with state x ∈ X ⊂ R3 and f (·) Lipschitz continuous on X. The flow of this
dynamical system is denoted by (C (x) and is defined as

3

3C
(C (x) = f ((C (x)) (2.2)

for all x ∈ X and C ≥ 0. The Koopman operator semi-group (KC)C≥0, hereafter
denoted as the Koopman operator, is defined as

KCW = W ◦ (C (2.3)

for all W ∈ C(X), where ◦ denotes function composition. Each element of the Koop-
man operator maps continuous functions to continuous functions, KC : C(X) →
C(X). Crucially, each KC is a linear operator that governs the evolution of scalar
functions along trajectories of the associated nonlinear dynamical system.

Similar to matrix analysis using eigenvectors, Koopman eigenfunctions can be used
to describe key characteristics of the underlying dynamical system. An eigenfunction
of the Koopman operator associated to an eigenvalue 4_ ∈ C is any function i ∈

15

C(X) that defines a coordinate evolving linearly along the flow of (2.1), satisfying

(KCi) (x) = i((C (x)) = 4_Ci(x). (2.4)

Furthermore, the infinitesimal generator of KC , limC→0
KC−�
C

, can be shown to be
f · 5 = !f , where !f is the Lie derivative with respect to f (Mauroy and Mezić,
2016). The infinitesimal generator satisfies the eigenvalue equation !fi = _i.
An infinite number of eigenfunctions of the Koopman operator can be constructed
(Budišić, Mohr, and Mezić, 2012). In particular, if i1, i2 are eigenfunctions of
KC with eigenvalues _1, _2, respectively, then i:1i

;
2 is also an eigenfunction with

eigenvalue :_1 + ;_2, :, ; ∈ N (Budišić, Mohr, and Mezić, 2012).

To gain more familiarity with the core concepts of the Koopman operator, Example
2.1 shows a constructed system that admits a finite dimensional Koopman operator.
Very few real world systems allow a simple construction of observable functions
resulting in a finite dimensional Koopman operator, but it is instructive to study
the mechanics of the construction for a simple synthetic system regardless. In
contrast, Example 2.2 shows an example of a system that does not allow a finite set
of observables using a simple set of dictionary functions.

Example 2.1 (System with finite dimensional Koopman operator). Certain sys-
tems have a structure that leads to a closed Koopman subspace if a correct set of
observables is chosen. Consider the system

[
¤G1

¤G2

]
=

[
`G1

_(G2 − G2
1)

]
. (2.5)

By choosing observables y = [G1, G2, G
2
1]
) , (2.5) can be rewritten as an equivalent

linear system
¤H1

¤H2

¤H3

 =

` 0 0
0 _ −_
0 0 2`

︸ ︷︷ ︸
K

H1

H2

H3

 , (2.6)

whereK is the Koopman operator of the system. Note that since ¤H3 =
¤G2
1 = 2G1 ¤G1 =

2`G2
1 = 2`H3, (G1, G2, G

2
1) form a closed subspace under differentiation resulting in

a finite dimensional Koopman operator.

16

Example 2.2 (System with infinite dimensional Koopman operator). Most sys-
tems do not have a structure that allows a finite dimensional Koopman operator.
Consider instead the system

¤G = G2. (2.7)

If we naively try to construct observables to obtain a Koopman operator for this
system, a natural choice is to start with y = [G, G2]) . However, when differentiating
G2, we get ¤G2 = 2G ¤G = 2G3. This will lead us to add H3 = G

3, and for every observable
we add, the differentiation will result in the power being increased by one and we
get an infinite cascade of higher powers in order to fully describe the derivative of
y. I.e. an infinite number of observables is needed and the associated Koopman
operator will be infinite dimensional.

This situation is common for many systems, and as a result, practical use of the
Koopman operator relies on finding good finite dimensional approximations from
data.

Discrete Time Dynamics
This thesis also utilizes discrete-time Koopman operators, which can be defined
in a similar manner to the continous-time counterpart. Consider the discrete-time
autonomous dynamical system

x:+1 = f3 (x:) (2.8)

with state X ⊆ R3 and f3 (·) Lipschitz continuous on X. Define a real-valued
observable function W : X → R. Then, the Koopman operator is defined as

KW = W ◦ f3 (2.9)

where ◦ denotes function composition such that KW(x:) = W(f (x:)) = W(x:+1).
Again, K is a linear operator. An eigenfunction of the discrete-time Koopman
operator associated to an eigenvalue _ ∈ C is any function i : X → C that defines
a coordinate evolving according to

Ki = _i. (2.10)

2.2 Theory and Application of Koopman Theory to Control Systems
Recently, extensions of the Koopman operator for control systems have been pre-
sented. If the control law is a state dependent feedback control law, u(x) = q(x), the
Koopman operator of the controlled system under control reduces to the Koopman

17

operator for the autonomous dynamics ¤x = f (x, q(x)). Alternatively, if the dynam-
ics are affected by a time-dependent external forcing, observables describing the
forcing term can be defined and the Koopman operator needs to be defined such that
both the time-dependent forcing and the observables associated with the dynamics
are propagated by the operator (Proctor, S. L. Brunton, and Kutz, 2018).

More concretely, control-affine dynamics can be transformed to a bilinear form
through the Koopman canonical transform (KCT) (Surana, 2016). Consider the
control-affine dynamics

¤x = f (x) +
<∑
8=1

g8 (x)D8, (2.11)

where x ∈ X ⊆ R3 , u ∈ U ⊆ R<, and f, g8, 8 = 1, . . . , < are assumed to be Lipschitz
continuous on X. Let

(
4_8 , i8 (x)

)
, 8 = 1, . . . , = be eigenvalue-eigenfunction pairs of

theKoopman operator associatedwith the autonomous dynamics of (2.11), ¤x = f (x).
The KCT relies on the assumption that the state vector can be described by a linear
combination of a finite number of eigenfunctions, i.e. that x =

∑=
8=1 i8 (x)vx

8
for all

x ∈ X, and where vx
8
∈ C3 . This is likely to hold if = is large. If not, the state may

be well approximated by = eigenfunctions.

When i8 : X → R, the KCT is defined as (see Goswami and Paley, 2018 for the
case when i8 : X → C)

x = �xz, ¤z = �z +
<∑
8=1

!g8) (x)D8, (2.12)

where z =) (x) = [i1(x) . . . i= (x)]) , �x = [vx
1 . . . v

x
=], and � ∈ R=×= is a diagonal

matrix with entries �8,8 = _8.

Under certain conditions, the system (2.12) is bilinearizable in a countable, possibly
infinite basis. The following theorem restates the conditions for the existence of a
bilinear form in a finite basis, as this is of practical interest for the work in this thesis.

Theorem 2.3. (Goswami and Paley, 2018) Suppose there exist Koopman eigen-
functions i 9 , 9 = 1, . . . , =, = ∈ N, = < ∞ of the autonomous dynamics (2.11) whose
span, B?0=(i1, . . . , i=), forms an invariant subspace of !g8 , 8 = 1, . . . , <. Then, the
system (2.11), and in turn system (2.12), are bilinearizable with an n-dimensional
state space.

Although the conditions of Theorem 2.3 may be hard to satisfy in a given problem,
an approximation of the true system (2.11) can be obtained with sufficiently small
approximation error by including adequately many eigenfunctions in the basis. As

18

a result, !g8 = �8 and the system can be expressed as the Koopman bilinear form
(KBF) (see Goswami and Paley, 2018 for details):

¤z = �z +
<∑
8=1

�8zD8, z ∈ R=, = < ∞. (2.13)

In practice, most works on the use of Koopman models in control use a lifted linear
model structure instead of a bilinear one when approximating Koopman opera-
tors from data (cf. (Korda and Mezić, 2018b; Kaiser, Kutz, and S. L. Brunton,
2018; Bruder, Gillespie, et al., 2019)). This is motivated by the abundance of
control and analysis tools available for linear systems, and this simplification typ-
ically achieves good performance if the underlying dynamics have linear actuated
dynamics (

∑<
8=1 g8 (x)D8 = �u), with � a constant matrix. Learning with extended

dynamic mode decomposition and control with model predictive control for lifted
linear models are introduced in the next sections. Methods that better capture non-
linear actuation effects is a central focus of this thesis and will be explored in depth
using the KBF in Chapter 4.

To gain more familiarity with the basic mechanics of the Koopman bilinear form,
Example 2.4 shows a modification of the constructed system of Example 2.1 that
admits a finite dimensional Koopman bilinear form. As before, very few real
world systems allow a simple construction of observable functions resulting in a
finite dimensional KBF, but it is instructive to study the construction for a simple
synthetic system to understand why reformulation to the KBF could be possible.

Example 2.4 (System with exact Koopman bilinear form). Consider a modified
version of the system introduced in Example 2.1, where two control inputs, D1, D2,
are added with nonlinear actuation effects resulting in the control-affine dynamics:

¤x =

G3

G4

_G3

`G4 + (2_ − `)2G2
3

︸ ︷︷ ︸
f0

+

0
0
1
0

︸︷︷︸
g1

D1 +

0
0
0

G1 + 1

︸ ︷︷ ︸
g2

D2. (2.14)

As a result of the careful construction of this system, there exists a Koopman
canonical transform, z =) (x) that exactly transforms the control-affine dynamics
into a bilinear system. Consider the transformation:

19

) (x) =

q1(x)
q2(x)
q3(x)
q4(x)
q5(x)
q6(x)

=

1
G1 − 1

_
G3

G2 − 1
`
G4 + (2_−`)22_` G2

3
G3

G4 − 2G2
3

G2
3

, (2.15)

where q1, q2, q3, q4, q5, q6 are eigenfunctions of the Koopman operator associated
with the drift vector field, f0. The matrix with the eigenvalue associated with the
i-th eigenfunction on the i-th diagonal element is � = diag(0, 0, _, `, 2_, 0). Then,
to reformulate the dynamics, we have:

!g1) (x) =

0
− 1
_

(2_−`)2
_`

G3

1
−22G3

2G3

, !g2) (x) =

0
0

− 1
`
(G1 + 1)

0
G1 + 1

0

, (2.16)

which can equivalently be expressed as a Koopman bilinear form (2.12) with z =
) (x), � = diag(0, 0, _, `, 2_, 0) and actuation matrices:

�1 =

0 0 0 0 0 0
− 1
_

0 0 0 0 0
0 0 0 (2_−`)2

_`
0 0

1 0 0 0 0 0
0 0 0 −22 0 0
0 0 0 2 0 0

, �2 =

0 0 0 0 0 0
0 0 0 0 0 0
− 1
`
− 1
`

0 − 1
_`

0 0
0 0 0 0 0 0
1 1 0 1

_
0 0

0 0 0 0 0 0

. (2.17)

2.3 Learning High Dimensional Linear Models to Approximate Nonlinear
Dynamics

All EDMD-based learning frameworks essentially follow the same, simple concept.
Consider that we have an unknown system of the form (2.11) and that our goal is
to learn an estimated model for the system from data. For simplicity, I assume that
we have access to state measurements in this exposition but the exact same method
can be used to build a model for some output based on a set of measurements. With
some nominal control signal, collect a data set of state, state derivative, and actuation
snapshots - = [x1, x2, . . . , x)], ¤- = [¤x1, ¤x2, . . . , ¤x)],* = [u1, u2, . . . , u)] where

20

each xC , ¤xC and uC are the vectors of state measurements, state derivatives and control
inputs at time C, respectively. If the state derivatives cannot be directlymeasured they
can be estimated with numerical differentiation techniques. First, to learn a linear
state space model, dynamic mode decomposition with control can be employed
(Proctor, S. L. Brunton, and Kutz, 2016). In this case, we seek to learn state space
matrices � and � by minimizing the least squares problem

min
�∈R3×3 ,�∈R3×<

| |�- + �* − ¤- | | → ¤x ≈ �x + �u (2.18)

where 3 is the state dimension and < is the number of control inputs. Then, to
learn a high dimensional model to approximate the nonlinear dynamics, the state
can be extended by defining a dictionary of = nonlinear transformations Φ(x) =
[q(1) (x), q(2) (x), . . . , q(=) (x)]) where each q(8) (G) : R3 → R (Korda and Mezić,
2018b). Then, when all the state samples are transformed by the dictionary functions,
the lifted state snapshots / = Φ(-) are formed and a lifted dimensional model is
obtained with EDMD by solving the following regression problems

min
�∈R=×=,�∈R=×<

| |�/ + �* − ¤/ | | → ¤z ≈ �z + �u

min
�x∈R3×=

| |�x/ − - | | → x ≈ �xz
(2.19)

where ¤/ can be calculated analytically or by numerical differentiation, and �x is
the projection matrix. The above regression problems can be solved analytically or
by off-the-shelf solvers and result in the linear state/lifted state space models on the
right-hand-side of Equations 2.18-2.19.

EDMDcan similarly be defined to learn a discrete-timemodel. Instead of calculating
the state derivative, amatrix of the state snapshots shifted one time step is constructed
to get

- = [x1, x2, . . . , x)−1],
-′ = [x2, x3, . . . , x)],
* = [u1, u2, . . . , u)−1] .

(2.20)

Then, defining the lifted state snapshots, / = Φ(-), as before, and the time shifted
lifted state snapshots /′ = Φ(-′), the following regression problem can be solved:

min
�3∈R=×=,�3∈R=×<

| |�3/ + �3* − /′| | → z:+1 = �3z: + �3u:

min
�x∈R3×=

| |�x/ − - | | → x: = �xz: .
(2.21)

21

One of the key challengeswith EDMDmethods is how to choose the number and type
of nonlinear transformations inΦ. One possibility is to use knowledge of the system
to pick suitable dictionary functions. This is known as feature engineering and can
be successful if sufficient information about the system is available. However, to be
able to predict the evolution of the chosen features in a linear fashion, i.e. as a linear
combination of the other features in the dictionary, is not guaranteed which can lead
to significant prediction performance degradation. Another approach that typically
suffers from the same shortcomings is to choose a generic function class such as
monomials of the state variables up to a certain order or radial basis functions. This
method can work for certain problems, but has little rigorous motivation. A third
approach, that has motivated my research, is to construct Koopman eigenfunctions
and use them as nonlinear transformations. Importantly, these eigenfunctions are
guaranteed to evolve linearly and are rigorously motivated by the Koopman operator.
How to apply these ideas to improve learning is explored in Chapters 3 and 4.

2.4 Koopman Model Predictive Control
As discussed in Chapter 1, one of the results that has created significant interest
in Koopman techniques for controlled dynamical systems is how approximated
Koopmanoperators can be used to design effective controllers that leverage nonlinear
model information with linear control design tools. For example, the Koopman
operator can be used to transform the nonlinear optimization problem of MPC
with nonlinear dynamics into an efficient quadratic program (QP) that is solved
at each time step (Korda and Mezić, 2018b). This is achieved by formulating a
quadratic objective function in the states and controls and assume that the state and
control constraints are non-empty polytopesX,U. Then, the following optimization
problem can be implemented:

min
/,*

)−1∑
:=1

[
(�xz: − 3:))&(�xz: − 3:) + u):'u:

]
+ (�xz) − 3)))&) (�xz) − 3)),

z:+1 = �z: + �u: , : = 0, . . . ,) − 1,

�xz: ∈ X, : = 1, . . . ,),

u: ∈ U, : = 0, . . . ,) − 1,

z0 = Φ(x0),
(2.22)

22

where &,&# ∈ R3×3 and ' ∈ R<×< are positive semidefinite cost matrices, 3 ∈
R3×) is the reference trajectory,) is the number of timesteps to predict, �3 ∈ R=×=

and �3 ∈ R=×< are the discrete time matrices (2.21), �x ∈ R3×= is the projection
matrix, and Φ ∈ R= are the observable functions.

To speed up the solution of the optimization program, the dependency on the lifting
dimension = in Eq. (2.22), the state can be eliminated via its explicit relation with
the control input. This formulation is referred to as the dense form MPC (Mauroy,
Mezic, and Susuki, 2020). This step greatly reduces the number of optimization
variables, enabling real-time implementations regardless of the lifting dimension.

23

C h a p t e r 3

LEARNING AND CONTROL OF SYSTEMS WITH LINEAR
ACTUATED DYNAMICS USING LEARNED KOOPMAN

EIGENFUNCTIONS

This chapter describes a systematic method to construct Koopman eigenfunctions
from data and learn lifted linear models for systems with unknown dynamics. The
contents of the chapter were previously published in two papers. The first paper
was presented at the 2020 American Control Conference (ACC) (Folkestad, Pastor,
Mezic, et al., 2020) and introduced the eigenfunction construction and model learn-
ing method. The second paper, presented at the 2020 International Conference on
Robotic and Automation (ICRA) (Folkestad, Pastor, and Burdick, 2020), extended
the basic method to an episodic learning framework that could better capture nonlin-
ear actuation effects, and was one the early works to demonstrate Koopman-based
learning and control on a physical robot.

3.1 Introduction
A key step in developing a high performance robotic application is the modeling
of the robot’s mechanics. Standard modelling and identification require extensive
knowledge of the system and laborious system identification procedures (Lupashin
et al., 2014). Moreover, although methods to show stability and safety of nonlinear
systems exist (Khalil, 2002; Ames, Xu, et al., 2017), the process of control design
that incorporates state and control limitations remains challenging.

The Dynamic Mode Decomposition (DMD) and extended DMD (EDMD) methods
have emerged as efficient numerical algorithms to identify finite dimensional approx-
imations of the Koopman operator associated with the system dynamics (Schmid,
2010; M. O. Williams, Kevrekidis, and Rowley, 2015). However, EDMD-methods
typically employ a dictionary of functions used to lift the state variables to a space
where the dynamics are approximately linear. However, if not chosen carefully, the
time evolution of the dictionary functions cannot be described by a linear combina-
tion of the other functions in the dictionary. This results in error accumulation when
the model is used for prediction, potentially causing significant prediction perfor-
mance degradation. To mitigate this problem, I develop a learning framework that
can extract spectral information from the full nonlinear dynamics by learning the

24

eigenvalues and eigenfunctions of the associated Koopman operator. Limited atten-
tion has been given to constructing eigenfunctions from data. Sparse identification
techniques have been used to identify approximate eigenfunctions (Kaiser, Kutz, and
S. L. Brunton, 2021) but rely on defining an appropriate candidate function library.
Other previous methods (e.g., (Korda andMezić, 2018a)) depend upon assumptions
that are problematical for robotic systems: the ID data is gathered while the robot
operates under open loop controls, which can lead to catastrophic system damage.

This chapter presents a novel learning framework,KoopmanEigenfunction Extended
Dynamic Mode Decomposition (KEEDMD), to construct Koopman eigenfunctions
for unknown, nonlinear dynamics using a data gathered from experiments. The
learned Koopman eigenfunctions are then exploited to learn a lifted linear state-
space model and perform control design using model predictive control (MPC)
(Mayne et al., 2000), thereby allowing control and state constraints to be satisfied
during the learning process. After the details of the method are presented in a
supervised learning setting, I extend the method to learn a model and control the
system episodically. This is done by first allowing the method to gather data while
the system operates under any nonlinear stabilizing controller. This enables input
vector field nonlinearities to be captured, unlike prior Koopman-based model ID
approaches. Second, I introduce an episodic learning procedure, by considering
the closed-loop dynamics obtained with a nonlinear controller as the autonomous
dynamics for the next episode. This feature increases sample efficiency (i.e., fewer
learning trials) for improving specific tasks, and enables nonlinear actuation effects,
which are important in robotics, to be captured in the Koopman eigenfunctions.

The rest of the chapter is organized as follows. Section 3.2 reviews relevant facts
about Koopman eigenfunction construction for nonlinear systems. Then, Sections
3.3 and 3.4 describe eigenfunction and model learning for the KEEDMD, respec-
tively, and Section 3.5 describes MPC design before simulated results on a inverted
pendulum are considered in Section 3.6. Section 3.7 introduces the episodic learning
framework before the details of the episodic KEEDMD are described in Section 3.8.
Finally, Section 3.9 presents experimental results demonstrating that our method
can be used to episodically learn the ground effect of a quadrotor drone to improve
landing velocity before the chapter is concluded in Section 3.10.

25

3.2 Preliminaries on Construction of Eigenfunctions for Nonlinear Dynamics
For any sufficiently smooth autonomous dynamical system that is asymptotically
stable to a fixed point, Koopman eigenfunctions can be constructed by first finding
the eigenfunctions of the system linearization around the fixed point and then com-
posing them with a diffeomorphism (Mohr and Mezić, 2014). To see this, consider
asymptotically stable dynamics of the form

¤x = f (x). (3.1)

The linearization of the dynamics around the origin is

¤y = Df (0)y = �̂y, y ∈ Y. (3.2)

The following proposition describes how to construct eigenfunction-eigenvalue pairs
for the linearized system (3.2).

Proposition 3.1. Let �̂1 denote the linearization (3.2) of the nonlinear system (3.1)
with Y scaled into the unit hypercube, Y1 ⊂ Q1, and let {v1, . . . , v3} be a basis
of the eigenvectors of �̂1 corresponding to nonzero eigenvalues {_1, . . . , _3}. Let
{w1, . . . ,w3} be the adjoint basis to {v1, . . . , v3} such that 〈v 9 ,w:〉 = X 9 : , where
X 9 : is the Kronecker delta, and w 9 is an eigenvector of �̂∗1 at eigenvalue _̄ 9 . Then,
the linear functional

k 9 (y) = 〈y,w 9 〉 (3.3)

is a nonzero eigenfunction of K�̂1
, the Koopman operator associated to �̂1. Fur-

thermore, for any tuple (<1, . . . , <3) ∈ N30(3∏
9=1

4< 9_ 9 ,

3∏
9=1
k
< 9

9

)
(3.4)

is an eigenpair of the Koopman operator K�̂1
.

Proof. A less formal description of the results in the proposition and associated
proofs are described in (Mohr and Mezić, 2014), Example 4.6. By utilizing inner-
product properties, k 9 is an eigenfunction of K�̂ as described in Chapter 2 since

(KCk 9) (y) = KC 〈y,w 9 〉 = 〈y,K∗C w 9 〉 = 〈y, ¯4_ 9w 9 〉
= 4_ 9 〈y,w 9 〉 = 4_ 9k 9 (y).

26

By scaling the state-space such that Y1 ⊂ Q1, the linear eigenfunctions (3.3) form
a vector space on Y1 that is closed under point-wise products. The construction of
arbitrarily many eigenpairs (3.4) therefore follows from the semi-group property of
eigenfunctions (see (Budišić, Mohr, and Mezić, 2012), Prop. 5). �

In the following, the linear functionals (3.3) are denoted as principal eigenfunctions.
The eigenfunctions for the Koopman operator associated with the linearized dynam-
ics can be used to construct eigenfunctions that are associated with the Koopman
operator of the nonlinear dynamics through the use of a conjugacy map, as described
in the following proposition.

Proposition 3.2. (Budišić, Mohr, and Mezić, 2012) Assume that the nonlinear
system (3.1) is topologically conjugate to the linearized system (3.2) via the diffeo-
morphism ℎ : X → Y. Let � ∈ X be a simply connected, bounded, positively
invariant open set in X such that ℎ(�) ⊂ &A ⊂ Y, where &A is a cube in Y.
Scaling &A to the unit cube &1 via the smooth diffeomorphism 6 : &A → &1 gives
(6 ◦ ℎ) (�) ⊂ &1. Then, if k is an eigenfunction for K�̂1

at 4_, then k ◦ 6 ◦ ℎ is an
eigenfunction forKf at eigenvalue 4_, whereKf is the Koopman operator associated
with the nonlinear dynamics (3.1).

The following extension of the Hartman-Grobman theorem guarantees the existence
of the diffeomorphism, ℎ described in Proposition 3.2, between the linearized and
nonlinear systems in the entire basin of attraction of a fixed point, for sufficiently
smooth dynamics.

Theorem 3.3. (Lan and Mezić, 2013) Consider the system (3.1) with f (x) ∈ C2(X).
Assume that matrix � ∈ R3×3 is Hurwitz, i.e., all of its eigenvalues have negative
real parts. So, the fixed point x = 0 is exponentially stable and let Ω be its basin of
attraction. Then ∃ℎ(x) ∈ C1(Ω) : Ω→ R3 , such that

y = 2(x) = x + ℎ(x) (3.5)

is a C1 diffeomorphism with D2(0) = � in Ω and satisfies ¤y = �y.

Example 3.4 (Eigenfunctions for system with finite dimensional Koopman op-
erator). This example demonstrates how the theory presented in Section 3.2 can
be used to construct eigenfunctions when the system dynamics are known and the
diffeomorphism can analytically constructed as described in Theorem 3. Recall the
system with a finite dimensional Koopman operator introduced in Chapter 2

27[
¤G1

¤G2

]
=

[
`G1

_(G2 − G2
1)

]
(3.6)

which has a finite dimensional Koopman operator. I first show how to construct three
eigenfunctions that completely describe the evolution of the system by utilizing the
Koopman modes associated with each eigenfunction (Budišić, Mohr, and Mezić,
2012). Then, I demonstrate how to arrive at the same eigenfunctions through the
use of the diffeomorphism. This underpins our data-driven approach described in
Section 3.3, using data to approximate the conjugacy map when the dynamics are
unknown and/or a exact diffeomorphism cannot be derived.

Calculating Eigenfunctions from the Koopman Operator: By choosing observ-
ables H = [G1, G2, G

2
1]
) , (3.6) can be rewritten as an equivalent linear system

¤H1

¤H2

¤H3

 =

` 0 0
0 _ −_
0 0 2`

︸ ︷︷ ︸
K

H1

H2

H3

 (3.7)

where K is the Koopman operator of the system. From this, three Koopman
eigenfunctions of (3.6) can be constructed. Let {v8}38=1 be the eigenvectors ofK and
let {w8}38=1 be the adjoint basis to {v8}

3
8=1 scaled such that 〈w8, v 9 〉 = X8 9 . Then, three

eigenfunctions of the system are

k1(y) = 〈y,w1〉 = H1 = G1

k2(y) = 〈y,w2〉 = H3 = G
2
1

k3(y) = 〈y,w3〉 = H2 +
_

_ − 2`
H3 = G2 +

_

_ − 2`
G2

1 .

(3.8)

Calculating Eigenfunctions Based on the Diffeomorphism: I now show how the
calculated eigenfunctions can be obtained through the diffeomorphism between the
linearized and nonlinear dynamics. The linearization of the dynamics (3.6) around
the origin is [

¤̂G1
¤̂G2

]
=

[
` 0
0 _

]
︸ ︷︷ ︸

�

[
Ĝ1

Ĝ2

]
(3.9)

and principal eigenfunctions for the linearized system can be constructed, k̂1(x) =
〈ŵ1, x〉 = G1, k̂2(x) = 〈ŵ2, x〉 = G2, where ŵ1, ŵ2 are the eigenvectors of the
adjoint of �. As described in Proposition 1, arbitrarily many eigenfunctions for the

28

linearized system can be constructed by taking powers and products of the principal

eigenfunctions, i.e. k̂8 (x) = k̂
<
(1)
8

1 (x)k̂<
(2)
8

2 (x) = G<
(1)
8

1 G
<
(2)
8

2 is an eigenfunction of the
linearized system.

To get the eigenfunctions for the nonlinear system, it can be shown that

2(x) =
[
G1

G2

]
+

[
0
_

_−2`G
2
1

]
(3.10)

is a diffeomorphism of the form described in Theorem 3. Then, ignoring the scaling
function 6(x) for simplicity of exposition, the following eigenfunctions for the
nonlinear dynamics are obtained

q1(x) = k̂1(2(x)) = G1

q2(x) = k̂2(2(x)) = G2 +
_

_ − 2`
G2

1

q8 (x) = k̂8 (2(x)) = G
<
(1)
8

1

(
G2 +

_

_ − 2`
G2

1

)< (2)
8

, 8 = 3, . . .

(3.11)

and by setting <3 = (2, 0), the analytic eigenfunctions of Equation (3.8) are recov-
ered.

3.3 Data-driven Koopman Eigenfunctions for Unknown Nonlinear Dynamics
I now develop the data-driven approach to learn the diffeomorphism ℎ(G) described
in Proposition 3.2 and Equation 3.5, resulting in a methodology for constructing
Koopman eigenfunctions from data.

Modeling Assumptions
Consider the dynamical system

¤x = a(x) + �u (3.12)

where x ∈ X ⊂ R3 , a(x) : X → X, u ∈ U ⊂ R<, � ∈ R3×<, and where a(x) and
� are unknown. Assume that we have access to a nominal linear model

¤x = �=><x + �=><u (3.13)

where x ∈ Ω ⊂ X ⊂ R3 , �=>< ∈ R3×3 , �=>< ∈ R3×<, u ∈ U and an associated
nominal linear feedback controller u=>< = =><x that stabilizes the system (3.12)
to the origin in a region of attraction Ω around the origin. The nominal model
(3.13) can for example be obtained from first principles modeling or from parameter
identification techniques and linearization of the constructed model around the fixed
point if needed.

29

Figure 3.1: Chain of topological conjugacies used to construct eigenfunctions,
adapted from (Mohr and Mezić, 2014).

Constructing Eigenfunctions from Data
Algorithm1 constructsKoopman eigenfunctions fromdata, based on the foundations
introduced in Section 3.2. "C trajectories of fixed length) are executed from initial
conditions x 90 ∈ Ω 9 = 1, . . . , "C , and are guided by the nominal control law u=><.
The system’s states and control actions are sampled at a fixed interval ΔC, resulting
in a data set

D =

((
x 9
:
, u 9

:

)"B
:=0

)"C
9=1

(3.14)

where "B =)/ΔC. Variable length trajectories and sampling rates can be imple-
mented with minor modifications.

Under the nominal control law, Koopman eigenfunctions for the nominal linearized
model (3.13) can be constructed as in Proposition 3.1 using the eigenvectors and
eigenvalues of the closed loop dynamics matrix �2; = �=>< + �=>< =><. I.e. let
QA be a hypercube centered at the origin with sides 2A such that X ⊂ QA , a scaling
function 6 : QA → Q1 can then be constructed (by scaling each coordinate) to get the
scaled dynamics matrix �2;,1. Furthermore, let {vj}39=1 be a basis of eigenvectors of

Algorithm 1 Data-driven Koopman Eigenpair Construction
1: Input: Data set D =

(
(x 9
:
, u 9
:
)"B

:=0
)"C

9=1, nominal model matrices �=><, �=><,
nominal control gains =><, number of lifting functions =, = power combinations
(< (8)1 , . . . , <

(8)
3
) ∈ N30 , 8 = 1, . . . , =

2: Construct principal eigenpairs for the linearized dynamics: (_ 9 , k 9 (y)) ←
(_ 9 , 〈y,w 9〉), 9 = 1, . . . , =

3: Construct = eigenpairs: (_̃8 , k̃8) ←
(∏3

9=1 4
<
(8)
9
_ 9 ,

∏3
9=1 k

<
(8)
9

9

)
, 8 = 1, . . . , =

4: Fit diffeomorphism estimator: ℎ(y) ← ERM(Hℎ,Lℎ,D)
5: Construct scaling function: 6(y) ← 6 : QA → Q1
6: Construct = eigenpairs for the nonlinear dynamics: (_̃8 , q8) ←
(_̃8 , k̃8 (6(ℎ(y)))), 8 = 1, . . . , =

7: Output: Λ = diag(_̃1, . . . , _̃=), 5 = [q1, . . . , q=])

30

�2;,1 with corresponding eigenvalues {_ 9 }39=1 and let {wj}39=1 be the adjoint basis to
{vj}39=1. Then k 9 (y) = 〈y,w 9 〉 is an eigenfunction of K�2;,1 with eigenvalue 4_9 and
an arbitrary number of eigenpairs can be constructed using the product rule (3.4).

The eigenfunction construction for the linearized system only relies on the nominal
model. To construct Koopman eigenfunctions for the true nonlinear dynamical
system, I aim to learn the diffeomorphism (3.5) between the linearized model (3.13)
and the true dynamics (3.12), see Figure 3.1. This diffeomorphism is guaranteed
to exist in the entire basin of attraction Ω by Theorem 3.3. Let Hℎ be a class of
continuous nonlinear function mapping R3 to R3 . The diffeomorphism is found by
solving the following optimization problem:

min
ℎ∈Hℎ

"C∑
:=1

"B∑
9=1
(¤x 9
:
+ ¤ℎ(x 9

:
) − �2; (x 9: + ℎ(x

9

:
)))2

s.t. Dℎ(0) = 0

(3.15)

which is a direct transformation of Theorem 3.3 into the setting with unknown
nonlinear dynamics. The form of problem (3.15) is found byminimizing the squared
loss ¤y: − �2;y: over all data pairs, substituting y = x + ℎ(x), and then adding the
constraint D2(0) = � to yield the optimization problem (3.15).

Next, (3.15) is formulated as a general supervised learning problem. Consider the
data set of input-output pairs Dℎ =

{
(x: , ¤x:), ¤x: − �2;x:

}"B ·"C
:=1 , constructed from

the state measurements (perhaps by calculating numerical derivatives ¤x 9
:
as needed).

The class Hℎ can be any function class suitable for supervised learning (e.g. deep
neural networks) as long as the Jacobian of the function ℎ(x) ∈ Hℎ w.r.t. the input
can be readily calculated. Assuming ℎ(x) ∈ Hℎ I define the loss function

Lℎ (x, ¤x, �2;x − ¤x) = | | ¤ℎ(x) − �2;ℎ(x) − (�2;x − ¤x) | |2 + U | |Dℎ(0) | |2

= | |Dℎ(x) ¤x − �2;ℎ(x) − (�2;x − ¤x) | |2 + U | |Dℎ(0) | |2
(3.16)

where parameter U penalizes the violation of constraint (3.15). The supervised
learning goal is to select a function in Hℎ through empirical risk minimization
(ERM):

ℎ = argminℎ∈Hℎ
1

"B · "C

"B ·"C∑
:=1
Lℎ (x: , ¤x: , �2;x: − ¤x:) . (3.17)

Finally, with function ℎ identified from ERM (3.17), Proposition 3.2 implies that the
Koopman eigenfunctions for the unknown dynamics under the nominal control law
can be constructed from the eigenfunctions of the linearized system by the function

31

composition:
q 9 (x) = k̃ 9 (6(ℎ(x))) (3.18)

where 6 is the scaling function ensuring that the basin of attractionΩ is scaled to lie
within the unit hypercube &1 and k̃ 9 is an eigenfunction for the linearized system
with associated eigenvalue _̃ 9 constructed with (3.4).

Importantly, because the diffeomorphism is learned from data, it may not perfectly
capture the underlying diffeomorphism over all ofΩ, and thus the eigenfunctions for
the unknown dynamics are approximate. The error arises from the fact that the ERM
problem is underdetermined resulting in the possibility of multiple approximations
with equal loss while failing to capture the underlying diffeomorphism. This is
especially an issue when encountering states and state time derivatives not reflected
in the training data and introduces a demand for exploratory control inputs to cover
a larger region of the state space of interest. This can be achieved by introducing
a random perturbation of the control action deployed on the system and is akin to
persistence of excitation in adaptive control (Ljung, 1987). To understand these
effects, state dependent model error bounds are needed, but they are a subject of
future work.

3.4 Koopman Eigenfunction Extended Dynamic Mode Decomposition
To use the constructed Koopman eigenfunctions for prediction and control, an
EDMD-basedmethod to build a linearmodel in a lifted space is developed. Since this
method exploits the structure of the Koopman eigenfunctions, it is dubbedKoopman
Eigenfunction Extended Dynamic Mode Decomposition (KEEDMD). I construct =
eigenfunctions {q 9 }=9=1 with associated eigenvalues Λ = diag(_1, . . . , _=) as out-
lined in Section 3.3 and define the lifted state as

z = [x, 5(x)]) (3.19)

where 5(x) = [q1(x), . . . , q= (x)]. I seek to learn a model of the form

¤z = �z + �u (3.20)

where matrices � ∈ R(=+3)×(3+=) , � ∈ R(3+=)×< are unknown, and are to be inferred
from the collected data. As discussed in Chapter 1, using a lifted linear model is a
simplification that makes the learning and control formulation easier. Lifted bilinear
models that can accurately capture control-affine dynamics, more appropriate to
describe many robotic systems will be explored in Chapter 4.

32

I focus on systems governed by Lagrangian dynamics, whose state space coordinates
consist of position, p, and velocity v: x = [p, v]) , with ¤p = v. The rows of �
corresponding to the position states are known. Furthermore, by construction the
eigenvaluesΛ describe the evolution of the eigenfunctions under the nominal control
law. Therefore, the rows of � corresponding to eigenfunctions are also known. As
a result, the lifted state space model has the following structure:

¤p
¤v

¤5

([
p
v

])

=

0 � 0
�vp �vv �v5

−�5 =>< Λ

︸ ︷︷ ︸
�

p
v

5

([
p
v

])

+

�p

�v

�5

︸ ︷︷ ︸
�

u (3.21)

where 0, �,Λ, =>< are fixed matrices and �vp, �vv, �v5, �p, �v, �5 are determined
from data. The term −�5 =>< accounts for the effect of the nominal controller on
the evolution of the eigenfunctions.

To infer the different parts of (3.21), the data samples are first processed and ag-
gregated into data matrices. Specifically, for each x 9

:
in D, the data set (3.14), the

position and velocity, p 9
:
, v 9
:
are extracted and the lifted state, 5 9

:
= 5(x 9

:
) calcu-

lated. Furthermore, the nominal and perturbed control signals are calculated as
u 9
:,=><

= =><x 9
:
and u 9

:,?4AC
= u 9

:
− =><x 9

:
, respectively. u 9

:,=><
and u 9

:,?4AC
are

introduced to distinguish between the nominal control signal and the added random
perturbation that is added to induce exploratory behavior as discussed in Section
3.3. The data matrices are then aggregated as follows

% = [p1
1, . . . , p

1
"B
, . . . , p"C1 , . . . , p"C

"B
]) ,

+ = [v1
1, . . . , v

1
"B
, . . . , v"C1 , . . . , v"C

"B
]) ,

Φ = [51
1, . . . , 5

1
"B
, . . . , 5"C1 , . . . , 5"C

"B
]) ,

*=>< = [u1
1,=><, . . . , u

1
"B ,=><

, . . . , u"C1,=><, . . . , u
"C
"B ,=><

]) ,

*?4AC = [u1
1,?4AC , . . . , u

1
"B ,?4AC

, . . . , u"C1,?4AC , . . . , u
"C
"B ,?4AC

]) .

(3.22)

Additionally, ¤%, ¤+, ¤Φ are constructed, either by numerically differentiating %,+,Φ,
respectively, or by directly measuring ¤x = [¤p, ¤v]) and analytically calculating ¤5 =
∇x5 ¤x if available.

33

Second, the constructed data matrices are concatenated and the loss function for
three separate ordinary least squares regression problems formulated, defined as
follows

min
�p∈R(3/2)×<

| |yp − -p�
)
p | |22, -p = [*], yp = [¤% − �+] (3.23a)

min
�v∈R(3/2)×(3+=)
�v∈R(3/2)×<

| |yv − -v [�v �v]) | |22, -v = [% + Φ *], yv = [¤+] (3.23b)

min
�5∈R=×<

| |y5 − -5�
)
5 | |

2
2, -5 = [* −*=><], y5 = [¤Φ − ΛΦ] .

(3.23c)

To reduce overfitting, different forms of regularization can be added to the objectives
of the regression formulations. In particular, ;1-regularization, which promotes
sparsity in the learned matrices, has been shown to perform well for dynamical
systems (S. L. Brunton, Proctor, et al., 2016) when used in normal EDMD. This
has also been the case in our numerical simulations, where ;1-regularization seem
to improve the prediction performance and the stability of the results.

To avoid an ill-conditioned KEEDMD regression problem, Brownian noise is added
to perturb the nominal controller (Kaiser, Kutz, and S. L. Brunton, 2021). Brownian
noise is chosen in this instance because pure sampling from e.g. a Gaussian distri-
bution leads to perturbations that have too high frequency to perturb the movement
of the multirotor. This perturbation is also used by our episodic learning framework
(Section 3.8). When the lifted state space model is identified, state estimates can be
obtained as x = �xz, where �x = [� 0]. As before, �x is denoted the projection
matrix of the lifted state space model.

Extensions for Trajectory-tracking Nominal Controller
In all of the above, a pure state feedback nominal control law is considered. This
section discusses how to extend the methodology to allow linear trajectory-tracking
feedback controllers of the form u = =>< (x − 3(C)). Under such a controller, the
closed loop linearized dynamics become ¤x = �=><x + �=>< =>< (x− 3(C)). Let the
definition of the closed loop dynamics matrix, �2; = (�=>< + �=>< =><) and the
principal eigenfunctions (the eigenfunctions associated with the Koopman operator
of the linearized system), be as in Section 3.2. Then, the evolution of the principal
eigenfunctions becomes

34

¤k 9 (y) = ¤〈w 9 , y〉 = w)
9 ¤y

= 〈w 9 , �2;y − �=>< =><3(C)〉
= _ 9 〈w 9 , y〉 − 〈w 9 , �=>< =><3(C)〉
= _ 9k(y) − w)

9 �=>< =><3(C)

(3.24)

where _ 9 and w 9 are the j-th eigenvalue and adjoint eigenvector of �2; , respectively.
Notably, the principal eigenfunctions evolves as described in Section 3.3 but with
an additional forcing term, −w)

9
�=>< =><3(C).

Using the assumption that the dynamics considered have linear actuated dynamics
(see Eq. 3.12), I show that the evolution of the eigenfunctions of the Koopman
operator associated with the full dynamics is affine in the input signal.

Proposition 3.5. Assume that �=>< in the linearized model of the dynamics (3.13)
is equal to the actuation matrix of the true dynamics (3.12) and that the dynam-
ics are controlled by a linear trajectory-tracking feedback controller of the form
u = =>< (x− 3(C). Then, the time derivatives of the eigenfunctions of the Koopman
operator associated with the dynamics (3.12) constructed as described in Proposi-
tion 3.1-3.2 are affine in the external forcing signal 3(C).

Proof. I first show that the diffeomorphism between the linearized and nonlinear
dynamics is linear in the forcing signal. Consider the diffeomorphism described in
Theorem 3.3 with an additional forcing term. Derived from the linearized dynamics,
I seek to find a function ℎ(x) such that

¤y = �2;y − �=>< =><3(C), y = x + ℎ(x). (3.25)

By algebraic manipulations I get that

¤y = ¤x + ¤ℎ(x) = �2; (x + ℎ(x) − �=>< =><3(C)
⇒ 0(G) + � =>< (x − 3(C)) + ¤ℎ(x)
= (�=>< + �=>< =><) (x + ℎ(x)) − �=>< =><3(C)
⇒ ¤ℎ(x) − �2;ℎ(x) = �=><x − 0(x).

(3.26)

Hence, the expression for ℎ(x) does not depend on the forcing signal 3(C). As
a result, the diffeomorphism 2(x) does not depend on the forcing signal and the
eigenfunctions associated with the eigenfunctions of the nonlinear dynamics (3.12)
evolve affinely in the forcing signal. �

35

Because the eigenfunctions evolve linearly in the forcing signal, the KEEDMD-
framework can readily learn the effect of external forcing on the eigenfunctions
with only minor modifications. First, the loss of the diffeomorphism empirical risk
minimization (3.15) must be changed to account for the forcing term following the
construction of (3.25) such that the new loss function becomes

Lℎ (x, ¤x, �2;x − ¤x, 3(C)) =
| | ¤ℎ(x) − �2;ℎ(x) − (�2;x − ¤x) + �=>< =><3 | |2 + U | |Dℎ(0) | |2

(3.27)

where 3 is the vector of desired states corresponding to the time when x, ¤x were
sampled. Second, the data matrix -5 in the regression formulation (3.23) must be
modified so the effect of the forcing on the eigenfunction evolution can be learned.
This is achieved by setting

-5 = [* − =>< [% +]] . (3.28)

3.5 Model Predictive Control Design
The MPC design is based on the controller introduced in Chapter 2. The QP formu-
lation requires us to discretize the previously learned linear continuous dynamics. I
assume a known objective function that is solely a function of states and controls.
For simplicity, a quadratic objective function is used but other objective functions
are possible, and can be introduced by adding them to the lifting functions. I assume
known control bounds umin, umax ∈ R< and state bounds xmin, xmax ∈ R3 . These
assumptions define the following optimization problem, as introduced in Chapter 2:

min
/,*

)−1∑
:=1

[
(�xz: − 3:))&(�xz: − 3:) + u):'u:

]
+ (�xz) − 3)))&) (�xz) − 3)),

s.t. z:+1 = �z: + �u: , : = 0, . . . ,) − 1,

xmin ≤ �xz: ≤ xmax, : = 1, . . . ,),

umin ≤ u: ≤ umax, : = 0, . . . ,) − 1,

z0 = Φ(x0)
(3.29)

36

here &,&# ∈ R3×3 and ' ∈ R<×< are positive semidefinite cost matrices, 3 ∈
R3×) is the reference trajectory, �3 ∈ R=×= and �3 ∈ R=×< are the discrete time
versions of (3.20), �x ∈ R3×= is the projection matrix, and 5 ∈ R= are the learned
eigenfunctions.
To remove the dependency on the lifting dimension = in Eq. (3.29), the state
is eliminated via the explicit relation with the control input. This formulation is
referred as the dense form MPC (see Chapter 2). This step greatly reduces the
number of optimization variables, which is beneficial as the MPC problem must
be solved in real-time. In this form, the MPC is agnostic not only of the lifting
dimension but of the whole Koopman formalism, i.e. the eigenfunctions 5 and
linear matrices �3 , �3 and�x do not directly appear in the formulation. In addition,
the state constraints are relaxed while keeping hard control bounds in order to ensure
there is always a solution to the quadratic program. The relaxation penalty can be
tuned to have negligible violation of the constraints and to avoid numerical problems.

3.6 Supervised Learning and Control of Simulated Inverted Pendulum
To obtain an initial evaluation of the performance of the proposed framework, the
canonical cart pole system with continuous dynamics is studied1:

[
¥G
¥\

]
=

[
1

"+<
(
<; ¥\ cos \ − <; ¤\2 + �

)
1
;

(
6 sin \ + ¥G cos \

)]
(3.30)

where G, \ are the cart’s horizontal position and the angle between the pole and the
vertical axis, respectively, ",< are the cart’s and pole tip’s mass, respectively, ; is
the pole length, 6 the gravitational acceleration, and � the horizontal force input on
the cart. The linearization of the dynamics around the origin is used as the nominal
model. Starting with knowledge of the nominal model only, our goal is to learn a
lifted state space model of the dynamics to improve the system’s ability to track a
trajectory designed based on the nominal model to move to the origin from a initial
condition two meters away. Data is collected with a nominal controller, a lifted state
space model learned and the learned model used to design an improved MPC.

To build the dataset used for training, 40 trajectories are simulated by sampling an
initial point in the interval (G, \, ¤G, ¤\) ∈ [−2.5, 2.5]× [−0.25, 0.25]× [−0.05, 0.05]×
[−0.05, 0.05], generating a two second long trajectory from the initial point to the
origin with a MPC based on the nominal model, and simulating the system with

1Code available at https://github.com/Cafolkes/keedmd

37

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
−2

−1

0

1

2

e x

Mean open loop prediction error (+/- 1 std)

Nominal

EDMD

KEEDMD

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time (sec)

−4

−2

0

2

4

e θ

Figure 3.2: Performance comparison of the nominal model, EDMD, and KEEDMD
applied to open loop prediction of the cart-pole system from 40 different initial
conditions.

a PD controller stabilizing the system to the trajectory. Note that the system is
underactuated and stabilizing the system to a set point under PD control is not
possible. The PD controller is perturbed with white noise of variance 0.5 to aid the
model fitting as described in Section 3.3, and state and control actions are sampled
from the simulated trajectories at 100 hz. With the collected data, eigenfunctions are
constructed as described in Algorithm 1, and a lifted state space model is identified
according to (3.23).

To benchmark our results, I compare our prediction and control results against (1)
the nominal model, and (2) a EDMD-model with the state and Gaussian radial basis
functions as lifting functions. In both the EDMD and KEEDMD models, a lifting
dimension of 85 is used and elastic net regularization is added with regularization
parameters determined by cross validation. The diffeomorphism, ℎ, is parameterized
by a 3-layer neural networkwith 50 units in each layer and implementedwithPyTorch
(Paszke et al., 2019). The EDMD and KEEDMD regressions are implemented with
Scikit-learn (Pedregosa et al., 2011).

38

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0

1

2

x

Closed loop trajectory tracking with MPC

Reference

Nominal

EDMD

KEEDMD

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time (sec)

−0.4

−0.2

0.0

0.2

0.4

θ

Figure 3.3: Performance comparison of the nominal model, EDMD, and KEEDMD
used for closed loop control of the cart-pole system.

First, the open loop prediction performance is compared by sampling 40 points from
the same intervals as the training data, and then stabilizing the system to the origin
with a MPC based on the nominal model, using a 2-second prediction horizon.
Then, the time evolution of the system is predicted from the sampled initial point
and with the control sequence from the collected data for each trajectory with the
nominal, EDMD, and the KEEDMDmodels. The mean error between the predicted
evolution and the true system evolution over all the trajectories is depicted in Figure
3.2. Both the nominal and EDMD models are able to predict the evolution for
the first second but then diverges. In contrast, KEEDMD is able to maintain good
prediction performance over the entire duration of the trajectories with relatively
low, constant standard deviation.

Table 3.1: Improvement in MPC cost with learned models

Improvement over nominal model Improvement over EDMD-model

EDMD −68.00%
KEEDMD −96.75% −89.84%

39

To evaluate the closed loop performance, I compare the behavior of the three different
models on the task of moving from initial condition (G0, \0, ¤G0, ¤\0) = (2, 0.25, 0, 0)
in two seconds. The nominal model is used to generate a trajectory from the initial
state to the origin. Then, a dense form MPC using the learned lifted state space
model is implemented in Python using the QP solver OSQP (Stellato et al., 2018).
The MPC costs on the trajectory tracking task are significantly improved when
the lifted state space models are used, see Figure 3.3. It is important to note that
the EDMD-based MPC regulates less towards the end of the trajectory causing
large deviations but still outperforms the nominal model in terms of MPC cost by
62 percent. For the same penalty matrices &, ', the KEEDMD-based MPC has
significantly better trajectory tracking performance and further reduces the MPC
cost by 90 percent.

3.7 Episodic KEEDMD Learning
KEEDMD (Section 3.4) requires batch training data to be collected from system
executions under a nominal linear control law: u=>< (x) = =>< (x − 3(C)). The re-
mainder of this chapter describes how to iteratively learn an improving sequence of
eigenfunctions and nonlinear controllers in an episodic manner, i.e. by considering
the closed-loop dynamics obtained with a nonlinear controller as the autonomous
dynamics for the next episode. This approach enables the online learning process to
capture nonlinear actuation effects in the learned Koopman eigenfunctions. Specif-
ically, the lifted state-space model is iteratively used to design an MPC-controller
to track learning trajectories (see Figure 3.4).

Assume that we have selected a fixed trajectory 3 to be tracked by the robot during
episodic learning. Further assume a nominal controller û(x, 3, C) that can stabilize
the system to 3 within a region of attractionΩ around the trajectory. This controller
might be the outcome of a previous learning episode (see below), or the simple linear
nominal controller from KEEDMD. Finally, the system’s governing dynamics are
assumed to be unknown, and take the general form

¤x = f (x, u) (3.31)

where x ∈ X ⊂ R3 , u ∈ U ⊂ R<, and f (x, u) is assumed to be Lipschitz continuous
onX×U. Note that the actuated dynamics are not required to be linear as in Section
3.3 as the episodic learning framework is designed to capture nonlinear actuation
effects.

40

Learning with Arbitrary Stabilizing Control Laws
If a candidate nonlinear controller û(x, 3, C) can stabilize system (3.31) to a given
trajectory 3, the controlled system can be described by the autonomous dynamics

¤x = f (x, û(x, 3, C)) = �û,3 (x, C). (3.32)

Importantly, for the autonomous dynamics (3.32), there exists an associated Koop-
man operator K�û,3 that depends on control law û and trajectory 3. Therefore,
approximate eigenpairs forK�û,3 can be constructed (see Section 3.2) from the gath-
ered state and control samples. A lifted state-space model can be constructed from
these eigenpairs.

However, unlike the framework presented in Section 3.4, I aim to learn a dynamical
model that assumes that the system is already regulated by the nominal controller
û(x, 3, C). As a result, the �-matrix of the lifted state space model captures the
autonomous dynamics under the nominal control law (Eq. 3.32), and the �-matrix
captures the effect of control variations around the nominal controller:

¤̂z = �ẑ + �(u(x, 3, C) − û(x, 3, C)). (3.33)

This model is used in an MPC framework below to design an augmenting control
law that adds optimal control actions to the nominal controller. The augmenting
controller leverages the improved system model to make corrections to sub-optimal
actions taken by the nominal controller.

Modifications to Allow the Diffeomorphism to Capture Nonlinear Control and
Dynamics Effects
To enable the learning framework to capture nonlinear effects caused by the nonlinear
controller and actuated dynamics, a minor modification to the function approximator
of ℎ is necessary. Namely, since the diffeomorphism is affected by the forcing signal
3(C) it must be included in the inputs of ℎ. This is motivated by the form of
the diffeomorphism loss function (3.15). In the case considered in Section 3.4
however, the actuated dynamics and controller are assumed to be linear. This causes
the effect of the forcing signal 3(C) to cancel out such that the diffeomorphism is
independent of the desired trajectory. In the general nonlinear case however, the
effect is not canceled out and must be captured by the diffeomorphism. As a result,
the diffeomorphism is modified such that ℎ : X × X → Y.

41

3.8 Episodic Eigenfunction Construction and KEEDMD Inference
Overview of the Episodic Learning Algorithm
Algorithm 2 summarizes our episodic learning approach, which applies three key
steps per episode. In each episode, 4, the first key step starts when an initial
condition is sampled from set -0 and an experiment is executed with the controller
that results from the previous episode u4−1(x, 3, C). The state x, control actions
u4−1, Brownian noise control perturbations ũ, and the desired position dictated by
the trajectory at the time associated with the 8-th sample 38 are sampled. State data
can be differentiated numerically to find estimates ¤x. The resulting data set is:

D (4)G =

{(
x(4)
8
, u(4)
8
, ũ(4)
8
, 38

)
, ¤x(4)
8

})B
8=1

(3.34)

where x(4)
8

denotes the 8-th timestep of the 4-th episode and)B denotes the num-
ber of samples in the episode. From D (4)G , the diffeomorphism, ℎ, is estimated
and the eigenfunctions, 5(4) (x), with associated eigenvalues, Λ(4) , constructed via
Algorithm 1. Since changes in the control law between episodes are expected to
be small, the learning algorithm is warm-started with model coefficients from the
previous episode.

The second key step is to use the constructed eigenpairs to build a lifted data set
D (4)I :

D (4)I =

{(
z(4)
8
, u(4)
8
, ũ(4)
8
, 38

)
, ¤z(4)
8

})B
8=1

(3.35)

Algorithm 2 Episodic KEEDMD
1: Input: Desired trajectory 3, nominal controller û(x, 3, C), diffeomorphism model class
Hℎ, diffeomorphism loss Lℎ, number of lifting functions =, KEEDMD loss LI

2: DI = ∅, u0(x, 3, C) = û(x, 3, C)
3:
4: for 4 = 1, . . . , #4? do
5: Sample initial condition: x0 ← sample(-0)
6: Execute experiment: D (4)G ← run(x0, u(4−1) (x, 3, C))
7: Fit diffeomorphism estimator: ℎ(x) ← ERM(Hℎ,Lℎ,D (4)G)
8: Construct eigenpairs: (5 (4) (x),Λ(4)) ← ℎ(6(7(x)))
9: Construct and aggregate lifted data set: DI ← DI ∪ D (4)I
10: Fit KEEDMD model: ¤z(4) (z) ← ERM((5 (4),Λ(4)),LI ,DI)
11: Update controller: u(4) ← u(4−1) + F (4)MPC(¤z(4) , u(4−1))
12: end for
13: Output: Final control law u(#4?)

42

which is the same data as D (4)G , but with the state and its derivative, x(4)
8
, ¤x(4)
8

,
replaced with the lifted state and its derivative, z(4)

8
, ¤z(4)
8

. Next, data from the current
and previous episodes is aggregated:

⋃4
9=1D

(9)
I . The lifted state-space model is

constructed from this data using the framework of Section 3.7. This results in a
model of the form (3.33).

In the third and final step, an augmenting MPC is designed (see Section 3.8) for
the lifted state-space model. The evaluation of the previous iteration’s controllers
is necessitated by the fact that the eigenfunctions depend on the dynamics under
closed loop control with the controller deployed in the previous episodes. The
controller augmentations are weighted and added to the previous episode’s control
law: u4 = u0 +

∑4
9=1 F 9u 9 , where F4 is a weighting factor indicating the confidence

in the augmenting controller. The weighting factors can be any monotonically
increasing sequence on the interval [0, 1] which allows the augmenting controller
to have a bigger impact after a sufficiently rich data set has been collected.

Model Predictive Controller Details
This section shows how our framework yields, as a by-product of the learning
process, an optimal controller that respects state and input constraints during both
the learning and execution process. The controller structure is based on the MPC
introduced in Section 2.4. Because the control input for eachMPC problem refers to
the change from the the previous controller, this change must be accounted for in the
control bounds. All these assumptions define the following optimization problem
that is solved at each time step:

min
/,*

)−1∑
:=1

[
(�xz: − 3:))&(�xz: − 3:) + u):'u:

]
+ (�xz) − 3)))&) (�xz) − 3)),

s.t. z:+1 = �z: + �u: , : = 0, . . . ,) − 1,

xmin ≤ �xz: ≤ xmax, : = 1, . . . ,),

umin ≤ u: −
9−1∑
8=1

F (8)u(8)
:
≤ umax, : = 0, . . . ,) − 1,

z0 = Φ(x0).
(3.36)

43

Figure 3.4: Flow chart showing the different elements for each episode.

Figure 3.4 illustrates how each controller is augmented as more episodes are being
executed. Additionally, a smoothing regularizer is added to avoid chatter that may
arise from optimization-based controllers (Morris, M. J. Powell, and Ames, 2015).

3.9 Improving Fast multirotor Descent and Landing by Learning the Ground
Effect

To validate the methodology, I apply it to fast descent and landing of a multirotor.
Consider a multirotor drone, whose basic flight mechanics in open air are well
understood (Hoffmann et al., 2007; Bangura and Mahoney, 2012). However, when
multirotors fly close to the ground or a wall, or inside a narrow tunnel (e.g., for non-
invasive inspection), the unmodeled effects of the complex vehicle-air-environment
interaction can substantially reduce the drone’s path tracking accuracy, and perhaps
its stability. While ground effect models can be incorporated, their accuracy is
limited, and their parameters must still be estimated in a slow process.

Figure 3.5: From left to right: hovering before the sequence start, high speed descent
with learned dynamics, and soft landing.

44

Previous approaches have implemented MPC in real time on modest computational
hardware (Zeilinger, 2011), on multirotors using an explicit solution in simulation
(Liu, Lu, and W. H. Chen, 2015), and designed feedback linearizing controllers
for multirotors in real experiments (Bangura and Mahony, 2014; Abdolhosseini,
Y. M. Zhang, and Rabbath, 2013). Bouffard et al. (Bouffard, Aswani, and Tomlin,
2012) also used MPC to learn ground effects using an experimental multirotor, but
used an Extended Kalman Filter (EKF) in combination with Learning-Based MPC
(LBMPC). Shi et al. experimentally demonstrated using a spectrally-normalized
neural network to learn the ground effect and improve drone landing by designing
a feedback linearizing controller utilizing the learned model (G. Shi, X. Shi, et al.,
2019). I introduce a new approach to solve this problem and aim to demonstrate
that our method represents a first step towards practical Koopman-based learning
and control of real-world robotic systems.

Modeling and Problem Statement
To simplify the discussion, consider a 1-dimensional nominal model of the multi-
rotor’s altitude dynamics, consisting of a point mass model having altitude and its
derivative, [?I, ¤?I]) , as states, mass <, and total thrust, �, as input:[

¤?I
¥?I

]
=

[
0 1
0 0

] [
?I

¤?I

]
+

[
0

1/<

]
�. (3.37)

Using this model a nominal MPC is designed as described in Section 3.8 with the
goal of reaching a fixed point of 0.05 m above ground at zero velocity. Furthermore,
thrust constraints are added to reflect the multirotor’s physical actuation limits.

A nominalMPC stabilizes the drone to a fixed point, but uses more control effort and
time to reach that point as a result of its simplified model. Importantly, the nominal
dynamics model does not capture the ground effect. Our goal is to iteratively learn a
better dynamics model (and associated MPC) that will improve speed and tracking
performance in both the air and near-ground regimes.

Table 3.2: Experiment Parameters

State error penalty, & [10, 0.1] Min thrust, Dmin 0.3
Control penalty, ' 1 Max thrust, Dmax 0.8
Min altitude, Gmin 0.05 m Hover thrust, Dhover 0.66

45

Figure 3.6: Evolution of drone altitude ?I with accumulated error and control effort
after each episode. Episode 0: baseline controller, Episode 1-3: performance after
each episode of learning. Red arrows: duration the thrust constraint is active.

Implementation and Experimental Details
Our experiments use the Intel Aero RTF Drone2. Drone position is measured
using an OptiTrack motion capture system and is fused with the drone’s IMU (stock
PX4 v1.8) to estimate the state. The code for learning is implemented as discussed
in Section 3.6. A dense form MPC-controller is implemented in Python using the
QP solver OSQP (Stellato et al., 2018), and commands are sent to the PX4 flight
controller via ROS. All computation for learning and control is done on board the
drone. Each neural network and MPC evaluation takes 5 ms, limiting us to 5
episodes as update rates below 60 hz lead to poor performance on our hardware.
The experiment’s key parameters are summarized in Table 3.23.

Algorithm 2 is executed as discussed in Section 3.8 on the drone for three episodes
in each campaign. Each episode starts with 3 repetitions of the following: (1)
the drone takes off and moves to an initial point under PX4 control; (2) the lifted
controller takes over to stabilize the fixed point and hovers at that point for a second.
After 3 repetitions, the drone lands under lifted control, fits the diffeomorphism
and KEEDMD models, and repeats the episode. An additional landing sequence
is executed with no exploratory noise to evaluate the performance of the current
episode controller.

46

0 1 2 3
Episode

0.85

0.90

0.95

1.00

∫(
z

−
z d

)2 (
no

rm
al

ize
d)

Tracking error evolution

Figure 3.7: Mean ± 1 standard deviation of tracking performance after each episode
over 5 independent campaigns.

Results and Discussion
Figure 3.6 depicts the drone’s trajectory and control effort under the nominal con-
troller (Episode 0), and then final landing for three episodes of a single learning
campaign. Episode 0 represents the nominal performance before learning, while
episodes 1-3 show the learning effect. Tracking error is reduced by 19.3 percent
by the end of the last episode while the total control effort increases 4.5 percent as
a consequence of the chosen MPC penalty matrices. Importantly, the thrust con-
straint is rigorously satisfied, and this constraint is active for longer duration. As the
system learns more accurate dynamic models, it relies more on the open-loop bang-
bang characteristic, as would be expected from an optimal solution, and less from
closed loop control. Less control effort is needed towards the end of the trajectory,
indicating that our methodology captures the ground effect.

The mean and standard deviation of five independent learning campaigns are re-
ported in Fig. 3.7. The tracking performance improves in every episode. Further-
more, the methodology has low variance between campaigns.

3.10 Conclusions
I presented a novel method to learn nonlinear dynamics, using Koopman Eigenfunc-
tions constructed from principal eigenfunctions and a nonlinear diffeomorphism as
lifting functions for extended mode decomposition. I then used a MPC framework
to obtain an optimal controller, while respecting state and control input bounds.
I showed in simulation that the method drastically outperforms the linearization
around the origin as well as the classical EDMD method with the same number of

2https://github.com/intel-aero/meta-intel-aero/wiki
3Code available at https://github.com/Cafolkes/keedmd

47

lifting functions in both prediction and closed loop control. These results indicate
that focusing on the spectral properties of the Koopman Operator can allow for a
more compact representation while achieving similar performance.

I then extended the batch learning process to an episodic learning framework to learn
a robotic system’s nonlinear dynamics, and learn a near optimal control strategy
for given tasks. By using a Koopman approach, a real-time MPC framework
for optimal system control can be implemented during the learning process. The
approach improves performance as it gathersmore data, augmenting the controller to
avoid constant actuation matrix limitations, while respecting state and control input
bounds. A current limitation is the addition of a controller in each episode leading
to prohibitive computational complexity as the number of episodes grows. This
limitation is addressed in Chapter 4 by modifying the underlying model structure to
allow nonlinear actuation effects to be capturedwithout the need of adding additional
augmenting controllers each episode.

48

C h a p t e r 4

LEARNING AND CONTROL OF SYSTEMS WITH
CONTROL-AFFINE DYNAMICS

This chapter describes two methods that can learn lifted bilinear models that, unlike
the linear lifted models discussed in Chapter 3, can capture control-affine dynamics.
The first method was presented at the 2021 International Conference on Robotic
and Automation (ICRA) (Folkestad and Burdick, 2021) and introduced a EDMD
method to learn a bilinear model and utilize it in nonlinear MPC design. The
second method has been submitted to the 2022 International Conference on Robotic
and Automation (ICRA) (Folkestad, Wei, and Burdick, 2022). It extends the basic
method by incorporating the model structure in a neural network architecture that
can significantly reduce the lifting dimension of the learned model, enabling real
time model predictive control based on the learned model.

4.1 Introduction
The process of designing high performance controllers for agile robotic systems that
satisfy state and actuation constraints is challenging for systems with important non-
linear dynamical effects. Model predictive control (MPC) can capture appropriate
performance objectives and constraints. Advances in optimization algorithms and
computing power are enabling nonlinear MPC (NMPC) to be deployed on robotic
systems in real-time if carefully implemented (Kouzoupis et al., 2018; Gros et al.,
2020; Grandia et al., 2020). However, obtaining a sufficiently accurate dynamical
model is crucial to achieve good performance with nonlinear MPC (NMPC). Many
learning approaches have been proposed to capture a robots’s complex mechanics
and environmental interactions, reducing the need for time consuming system iden-
tification (cf. (Rasmussen and C. K. I. Williams, 2018; G. Shi, X. Shi, et al., 2019;
Taylor, Dorobantu, Le, et al., 2019; Recht, 2019; Kaiser, Kutz, and S. L. Brunton,
2018)). However, NMPC design based on these models is typically impossible
because of the model discretization and the intractable forward simulation needed
to evaluate the nonlinear program. This chapter presents two methods that take a
Koopman-centric approach to learn a lifted bilinear model of the dynamics that can
be incorporated in NMPC to design close to optimal controllers that respect state
and actuation constraints.

49

This chapter focuses on learning control-affine dynamics of the form

¤x = f (x) + g(x)u (4.1)

where x is the system state and u is a vector of control inputs, x ∈ X ⊂ R3 , f (x) :
X → X, u ∈ U ⊂ R<, g(x) : X → R3×<, f, g assumed to be Lipschitz continuous
on X. This model characterizes a wide class of aerial and ground robots. As
discussed in Chapters 1 - 3, the extended dynamic mode decomposition (EDMD) is
a common indentification technique for Koopman-inspired models (Schmid, 2010;
M. O. Williams, Kevrekidis, and Rowley, 2015; Korda and Mezić, 2018b; S. L.
Brunton, Proctor, et al., 2016; Kaiser, Kutz, and S. L. Brunton, 2021; Proctor,
S. L. Brunton, and Kutz, 2018). However, most current EDMD methods model
the unknown control system dynamics by a lifted linear model, which implicitly
restricts the control vector fields, g(x), to be state-invariant. This is a significant
limitation, as many robotic systems, e.g. systems where input forces enter the
dynamics through rotation matrices, are best described by nonlinear control-affine
dynamics.

To overcome this limitation, I propose to learn a model motivated by the Koopman
canonical transform (KCT) introduced in Chapter 2, which allows a large class of
nonlinear control-affine dynamic models to be lifted to a higher-dimensional space
where the system evolution can be described by a bilinear (but possibly infinite
dimensional) dynamical system.

Prior work on Koopman-based control design has primarily focused on applying
linear MPC to lifted linear models, and has been successfully implemented in both
simulated and robotic experiments (Korda and Mezić, 2018b; Bruder, Gillespie, et
al., 2019), and includes thework presented inChapter 3. Designwith bilinearmodels
is less explored, but connections between Koopman bilinear system descriptions and
classical control concepts such as reachability and control Lyapunov functions have
been presented (Goswami and Paley, 2018; Huang, Ma, and Vaidya, 2019). Very
recently, bilinear Koopman models linearized at the current state of the system
were used in MPC (Bruder, Fu, and Vasudevan, 2021). Another approach uses the
bilinear model structure to simplify the construction of a control Lyapunov function
enforced as a constraint in a nonlinear MPC method to obtain stability guarantees
(Narasingam and Kwon, 2020).

50

While a few works have addressed NMPC design for bilinear Koopman models
(Bruder, Fu, and Vasudevan, 2021), (Narasingam and Kwon, 2020), little consider-
ation has been given to practical real-time realization of these methods on robotic
systems, which often require high control rates due to fast dynamics. Towards
this goal, this chapter presents Koopman NMPC, combining the process of learn-
ing control-affine dynamics in Koopman bilinear form with NMPC design. I first
present an EDMD-based learning method to learn a bilinear model from data. This
is achieved by carefully designing the function dictionary and employing linear
regression techniques on the lifted state (M. O. Williams, Kevrekidis, and Rowley,
2015; Korda and Mezić, 2018b). Then, building on recent advances in NMPC, I de-
velop a controller for bilinear Koopmanmodels that uses the bilinear model structure
to improve computational efficiency, making real-time computation possible. The
advantages of learning lifted bilinear models over linear models are highlighted, and
this chapter demonstrates that the completely data-driven Koopman NMPC method
canmatch the performance of a NMPC controller with full a priori model knowledge
on a simulated planar quadrotor.

However, for realistic systems, such as real-world quadrotor drones, the dimension of
the lifted model becomes too high when using a fixed function dictionary, resulting
in the NMPC being intractable to implement in real-time. As a result, the second
learning method incorporates the bilinear Koopman structure in a neural network
model, allowing the function dictionary and bilinear model to be learned jointly
from data. This enables similar or improved prediction performance with much
fewer observable functions, thus allowing real-time use even for high-dimensional
systems. Additionally, the resulting model maintains the bilinear structure, making
it partially interpretable and possible to simulate its behavior forward in time by
only evaluating the neural network at the initial state and propagating the lifted state
forward using the bilinear system matrices.

Choosing a good function dictionary is a central challenge in Koopman-based meth-
ods, and using neural networks to jointly learn Koopman models and function dic-
tionaries has been attempted previously. Multiple works have shown that using
an encoder-decoder type architecture to parametrize the function dictionary allows
many of the benefits of a Koopman-based model to be maintained while obtaining
more compact models and/or improving prediction performance compared to fixed
dictionaries (Li et al., 2017; Kaiser, Kutz, and S. L. Brunton, 2021; R. Wang, Han,
and Vaidya, 2021). However, no existing method utilizes the bilinear models to

51

accurately capture control-affine systems, nor has a view towards achieving high
performance control for robotic systems. As such, the main contributions of this
chapter are:

1. Development of two flexible learning methods underpinned by the Koopman
canonical transformation to a bilinear form that can readily be used for NMPC
design.

2. Hardware experiments with a quadrotor demonstrating that a controller based
strictly on the data-driven model can outperform an NMPC based on a known,
identified model, while needing limited training data.

The rest of this chapter is organized as follows. Preliminaries onNMPCare presented
in Section 4.2. Then, the first learning method using fixed function dictionaries to
learn lifted bilinear models is described in Section 4.3. Model predictive control
design utilizing the learned model is described in Section 4.4 before demonstrations
of the method are shown using a simulated planar quadrotor in Section 4.5. Subse-
quently, the second learning method that jointly learns both the function dictionary
and bilinear model is presented in Section 4.6 and physical experiments validating
the method on a quadrotor drone are presented in Section 4.7. Finally, concluding
remarks are discussed in Section 4.8.

4.2 Preliminaries
Nonlinear model predictive control
When the exact continuous dynamics (4.1) are known, the general optimal control
problem is intractable because there are infinitely many optimization variables.
To reformulate the problem into a tractable finite-dimensional nonlinear program
(NLP) the dynamics are discretized. Given a time horizon) , consider the time
increment ΔC and divide the time horizon [0,T] into # =)

ΔC
+ 1 discrete subintervals

[C: , C:+1], C: = :ΔC, : = 0,. . ., #−1. Replacing the continuous control signal u(C)
with a zero-order-hold signal, the dynamics are integrated over each interval with an
appropriate integration scheme to get a discrete-time representation of the dynamics
x:+1 = f3 (x: , u:), where x: = x(C:).

52

The quadratic objective NMPC problem is formulated as:

min
-,*

#−1∑
:=0

1
2

[
x: − xref

:

u: − uref
:

])
,:

[
x: − xref

:

u: − uref
:

]
s.t. x:+1 = f3 (x: , u:), : = 0, . . . , # − 1

x0 = x̂, h: (x: , u:) ≤ 0, : = 0, . . . , #

(4.2)

where x̂ is the current state, - = [x0, . . . , x#]) ,* = [u0, . . . , u#−1]) are the stacked
matrices of state and control vectors for each time step,, is the positive semi-definite
costmatrix, andh: is the constraint function encoding state and actuation constraints:
both, and h: can change at every timestep. In classical receding horizon fashion,
at each timestep, a new state estimate x̂ is obtained, the optimization problem is
solved, and the control signal solution corresponding to the first timestep, u0, is
deployed to the system.

Sequential quadratic programming
NMPC problems (4.2) are primarily solved via interior point (IP) or sequential
quadratic programming (SQP) methods. SQP-approaches can leverage the fact that
the nonlinear programming problems (NLP) solved at adjacent timesteps are quite
similar, so that the solution of the NMPC problem at the previous timestep can be
used to warm-start the solution at the current timestep. This warm-start feature
greatly reduces the real-time computational burden, and often a single SQP iteration
is sufficient at each timestep to arrive at a close-to-optimal solution of the NMPC
problem (Kouzoupis et al., 2018).

In the SQP algorithm, summarized in Algorithm 3, Eq. (4.2) is sequentially ap-
proximated by quadratic programs (QPs), whose solutions are Newton directions
for performing steps toward the optimal solution of the NLP. The sequence is ini-
tialized at an initial guess of the solution, (- init

0 ,*init
0), at which the following QP is

Algorithm 3 (Gros et al., 2020) SQP for NMPC at discrete time 8
1: Input: current state x̂8 , reference trajectory (- ref

8
,*ref

8
), initial guess (- init

8
,*init

8
)

2:
3: while Not converged do
4: Form r8,: , h8,: , �8,: , �8,: , �8,: , �8,: , �8,: , �8,: by (4.4)
5: Solve (4.3) to get the Newton direction (Δ-8 ,Δ*8)
6: Update initial guess with the Newton step: (- init

8
,*init

8
) ← (- init

8
+Δ-8 ,*init

8
+Δ*8)

7: end while
8: Return: NMPC solution (-8 ,*8) = (- init

8
,*init

8
)

53

iteratively solved and the initial guess updated at each iteration i until convergence:

min
Δ-8 ,Δ*8

#∑
:=0

[
Δx8,:
Δu8,:

])
�8,:

[
Δx8,:
Δu8,:

]
+ �)8,:

[
Δx8,:
Δu8,:

]
s.t.Δx8,:+1= �8,:Δx8,:+�8,:Δu8,: + r8,: , : =0, ..., #−1,
�8,:Δx8,: + �8,:Δu8,: + h8, 9 ≤ 0, : = 0, ..., #,

Δx8,0 = x̂8 − xinit8,0 ,

(4.3)

where �8,: is the Hessian of the NLP Lagrangian (4.2) and

�8,: =
mf3
mx

����- init
8

*init
8

, �8,: =
mf3
mu

����- init
8

*init
8

, �8,: =
mh
mx

����- init
8

*init
8

, �8,: =
mh
mu

����- init
8

*init
8

,

r8,: = f3 (xinit8,: , u
init
8,:) − xinit8,:+1, h8,: = h(xinit8,: , u

init
8,:),

�8,: = ,8,:

[
xinit
8,:
− xref

8,:

uinit
8,:
− uref

8,:

]
.

(4.4)

4.3 Learning Lifted Bilinear Dynamics
Modeling assumptions and data collection
EDMD is used to learn approximate finite dimensional lifted bilinear dynamics from
data. The system’s unknown dynamics are assumed to be control-affine, with f, g
in (4.1) unknown. I seek to learn a model and design a multi-purpose controller for
the unknown system.

I assume that a nominal controller permits us to execute "C data collection trajecto-
ries of length)C from initial conditions x 90 ∈ Ω, 9 = 1, . . . , "C . From each trajectory,
"B = ()C/ΔC) state and control actions are sampled at a fixed time interval ΔC, re-
sulting in a data set

D =

((
x 9 ,: , x′9 ,: , u 9 ,:

)"B−1
:=0

)"C
9=1
, (4.5)

where x′
9 ,:
= x 9 ,:+1.

Since the NMPC design requires continuous-time models to be discretized, a
discrete-time lifted bilinear model is learned, thereby avoiding potential numerical
differentiation and discretization errors. This is further motivated by the existence of
discretization procedures that maintain stability properties and the bilinear structure
of the original system, such as the trapezoidal rule with zero-order-hold (Phan et al.,
2012; Surana et al., 2018).

54

Supervised learning of unknown dynamics
Define a dictionary of = dictionary functions z = 5(x), 5 : R3 → R=. The choice
of the functions can be based on system knowledge (i.e. feature engineering) or be
a generic basis of functions such as monomials of the state up to a certain degree.
Choosing dictionary functions is an ongoing area of research in Koopman-based
learning methods. This will be further addressed in the second bilinear learning
method in Section 4.6.

To learn a lifted bilinear dynamic model, the data D is organized into data ma-
trices -, -′,*, where each corresponding column of - , and -′ are state sam-
ples recorded one sampling interval apart, see (4.6). Then, the lifted data ma-
trix is created by applying 5(x) to each column of - and -′, denoted / =

5(-), /′ = 5(-′) by slight abuse of notation. Finally, /u is constructed by
applying 5u(x, u) to each corresponding pair of columns of - and *, where
5u(x, u) = [5(x) 5(x)D1 . . . 5(x)D<]) . Learning can then be formulated as a
linear regression problem (4.6).

min
�,�1,...,�<∈R=×=

| |/′ −
[
� �1 . . . �<

]
/u | |2

min
�G∈R3×=

| |- − �x/ | |2
(4.6)

- =

[
x1

0 . . . x1
"B−1 . . . x"C0 . . . x"C

"B−1

]
,

-′ =
[
x1

1 . . . x1
"B

. . . x"C1 . . . x"C
"B

]
,

* =

[
u1

0 . . . u1
"B−1 . . . u"C0 . . . u"C

"B−1

]
,

/ = 5(-), /′ = 5(-′), /u = 5u(-,*) .

Regularization, such as sparsity-promoting ;1-regularization which has been shown
to improve prediction performance and reduce overfitting (Kaiser, Kutz, and S. L.
Brunton, 2018) can be added to the regression. Furthermore, learning �x is not
needed if the projection from the lifted space to the original space can be analytically
computed for the chosen dictionary. For example, a monomial basis will typically
include the state itself. This results in a lifted discrete-time bilinear model of the
form

x: = �xz: , z:+1 = �z: +
<∑
;=1

� ;z:D:,; . (4.7)

55

Algorithm 4 Koopman NMPC (closed loop)
1: Input: reference trajectory (- ref

8
,*ref

8
), initial guess (- init

8
,*init

8
)

2:
3: while Controller is running do
4: Form r8,: , �8,: , �8,: using (4.10)
5: Get and lift current state, z8,0 = 5(x̂)
6: Solve (4.8) to get the Newton direction (Δ-8 ,Δ*8)
7: Update solution, (-8 ,*8)← (- init

8
+Δ-8 ,*init

8
+Δ*8)

8: Deploy first input u0 to the system
9: Construct (- init

8+1,*
init
8+1) using (4.9)

10: end while

4.4 Nonlinear Model Predictive Control Design
Design considerations
Based on Section 4.2, the NMPC problem (4.2) is first reformulated using the
identified Koopman bilinear model:

min
/,*

#∑
8=0

[
zinit
8,:
+ Δz8,:

uinit
8,:
+ Δu8,:

])
,8,:

[
zinit
8,:
+ Δz8,:

uinit
8,:
+ Δu8,:

]
s.t. z:+1 = �z: +

<∑
8=1

�8z:D(8): , : = 0, . . . , # − 1

c; ≤ �xz: ≤ cD, d; ≤ u: ≤ dD, : = 0, . . . , #,

z0 = 5(x̂).

(4.8)

The optimization constraint set is generally non-convex due to the bilinear term
between z, in the lifted dynamicmodel and the control inputs, D1, . . . , D<. As a result,
the optimization problem (4.8) is solved using sequential quadratic programming
(SQP). The non-convex optimization problem (4.8) is sequentially approximated by
quadratic programs (QPs), whose solutions are Newton directions for performing
steps toward the optimal solution of the nonlinear program (NLP). The initialization
and closed loop operation of the controller can be summarized as follows (see
Algorithm 4). Before task execution, the SQP algorithm with the Koopman QP
subproblem (4.8) is executed to convergence to obtain a good initial guess of the
solution. Then, in closed loop operation, the Koopman bilinear model is linearized
along the initial guess, the current state is obtained from the system, the current
state is lifted using the function basis, and then the QP subproblem is solved only
once. Finally, the first control input of the optimal control sequence is deployed to
the system, and the full solution is shifted one timestep and used as an initial guess
at the next timestep.

56

0 1 2
−1

0

1

2

y
(m

)

y-coordinates
DMD MPC
EDMD MPC
K-MPC
NMPC

0 1 2
0

1

z (
m

)

z-coordinates

0 1 2
−0.40
−0.32
−0.24
−0.16
−0.08

0.00
0.08
0.16
0.24
0.32

θ
(ra

d)

θ-coordinates

0 1 2
Time (sec)

−2
−1

0
1
2

̇ y
(m

/s
)

0 1 2
Time (sec)

−2

−1

0

1

2

̇ z (
m

/s
)

0 1 2
Time (sec)

−2

−1

0

1

2

̇ θ

0 1 2
0
3
6
9

12
15
18

T 1
 (N

)

Control inputs

0 1 2
Time (sec)

0
3
6
9

12
15
18

T 2
 (N

)

Figure 4.1: Trajectories generated withMPCs based on DMD, EDMD, and bEDMD
models. True model-based NMPC used as benchmark. (Black dotted lines-
state/actuation constraints, dashed lines-open loop simulation of generated trajecto-
ries).

Although I have restricted the objective to be quadratic and the state and actuation
constraints to be linear (except for the evolution of the dynamics), nonlinear objective
and constraint terms can be included by adding them to the lifted state z = 5(x).
For example, if it is desired to enforce the constraint cos(G1) ≤ 0, q 9 = cos(G1) can
be added to the lifted state and I(9)

:
≤ 0 enforced (Korda and Mezić, 2018b).

While not the main focus of this section, a discussion of how to achieve guaranteed
closed loop stability of the proposed control strategy is in order. In the nominal
case, with no model mismatch between the true dynamics and the Koopman bilinear
model, closed loop stability of the controller for bilinear systems with a quasi-
infinite method has been shown (see e.g. Bloemen, Cannon, and Kouvaritakis,
2002). More recently, some early stability results using Lyapunov MPC methods
have been developed (Narasingam and Kwon, 2020). In particular, the bilinear
model structure simplifies the construction of a Lyapunov function that is added as a
constraint to the MPC. Lyapunov stability of the controller based on the KBF is then
proved under the assumption that the prediction error of the learned Koopmanmodel
is finite. Although promising, further analysis of robustness and stability properties
of the methodology is needed. In this work however, I focus on the practical
implementation and defer further theoretical development to future research.

Warm-start of SQP at each timestep
As discussed in Section 4.2, the SQP algorithm requires an initial guess of the
solution - init

8
,*init

8
. Selecting an initial guess that is sufficiently close to the true

optimal solution is essential for the algorithm to converge fast and reliably (Gros
et al., 2020). It is well known that the receding horizon nature of MPC can be

57

exploited to obtain excellent initial guesses. At a time instant 8, this can be achieved
by shifting the NMPC solution from the previous timestep 8 − 1 and by updating the
guess of the final control input. Under certain conditions, a locally stable controller
enforcing state and actuation constraints can be designed allowing feasibility of
the initial guess to be guaranteed (Rawlings and Mayne, 2012). Typically, simpler
approaches are taken such as simply adding a copy of the final control signal and
calculating the implied final state using the dynamics model

uinit
8,: = u8−1,:+1, : = 0, . . . , # − 2,

xinit8,: = x8−1,:+1, : = 0, . . . , # − 1,

uinit
8,#−1 = uinit

8,#−2, xinit8,# = f3 (xinit8,#−1, u
init
8,#−1).

(4.9)

If the previous solution -8−1,*8−1 is feasible, the shifted solutionwill also be feasible
for all but the last timestep.

Calculating the linearized system matrices
As a result of the bilinear structure of the dynamics model, the linearization can
be efficiently computed for a given initial guess. The linearization at each timestep
: = 0, . . . , # − 1 of the initial guess is obtained by directly calculating the partial
derivatives as described in (4.4)

�8,: = � +
<∑
9=1
� 9 (Dinit8,:)

(9) , �8,: =
[
�1zinit8,: . . . �<zinit8,:

]
r8,: = �zinit8,: +

<∑
9=1
� 9zinit8,: (D

init
8,:)
(9) − zinit8,:+1.

(4.10)

Consequently, the linearized dynamics matrices can be obtained by simple matrix
multiplication and addition with the dynamics matrices of the Koopman model and
the matrices containing the initial guesses of / init

8
,*init

8
.

4.5 Simulated Quadrotor Learning and Control
System and data collection details
Consider a planar quadrotor with states x = [H I \ ¤H ¤I ¤\]) ,

¥H
¥I
¥\

 =

0
−6
0

 +

−(1/<)sin\ −(1/<)sin\
(1/<)cos\ (1/<)cos\
−;0A</�GG ;0A</�GG

[
)1

)2

]
, (4.11)

58

DMD EDMD bEDMD
Mean squared error 8.71e-2 5.60e-2 7.53e-3
Improvement vs DMD 35.75 % 91.35 %
Improvement vs EDMD 86.54 %
Standard deviation 2.79e-1 2.36e-1 8.66e-2
Improvement vs DMD 15.27 % 68,94 %
Improvement vs EDMD 63.35 %

Table 4.1: Prediction error of DMD, EDMD, and bEDMD models.

where H, I describe the horizontal and vertical position in a fixed reference frame,
\ is the orientation,)1,)2 are the propeller thrusts, 6 is the acceleration of gravity,
< is the vehicle mass, ;0A< is the distance from the vehicle’s center of mass to the
propeller axis, and �GG is the rotational inertia.

To collect data, a nominal LQR controller is designed using the linearized dynamics,
linearized around hover. Since the system is underactuated, learning trajectories are
generated from a MPC based on the system’s linearized dynamics. However, any
controller can be used and the method does not need a known model linearization.
Additionally, exploratory Gaussian white noise is added to aid sufficient excitation.
The learning data set is collected as follows. First, an initial condition x0 and final
condition x 5 are sampled uniformly at random from the interval H, I ∈ [−2, 2]2, \ ∈
[−c/3, c/3], ¤H, ¤I, ¤\ ∈ [−1, 1]3. Then, 2-second long trajectories link x0 to x 5 ,
which are tracked via the LQR-controller. This process is repeated 100 times as
state and actuation data is captured at 100 hz.

To compare the method against the state-of-the art of Koopman-based learning
methods, I trained three separate models, dynamic mode decomposition (DMD)
(Tu et al., 2014), extended DMD (EDMD) (Li et al., 2017), and the method of
Section 4.3, denoted bilinear EDMD (bEDMD). Assuming that the input forces
enter through rotation matrices, a simple dictionary of 27 functions was cho-
sen for both the EDMD and bEDMD consisting of the state vector and mono-
mials of the \, ¤\ up to the third order multiplied by 1, cos(\), sin(\), 5(x) =
[1, H, I, \, ¤H, ¤I, ¤\, \2, \, ¤\, . . . , ¤\3, cos \]) . ;1-regularization tuned with cross-
validation was also applied to each method. Code for learning and control is imple-
mented in Python1 and the dynamics are simulated using 5th order Runge-Kutta in
scipy.

59

0 1 2
Time (sec)

−1

0

1

2

y
(m

)

y-coordinates
DMD MPC
EDMD MPC
K-NMPC
NMPC

0 1 2
Time (sec)

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

z (
m

)

z-coordinates

0 1 2
Time (sec)

−0.40
−0.32
−0.24
−0.16
−0.08

0.00
0.08
0.16

θ
(ra

d)

θ-coordinates

0 1 2
0

20

T 1
 (N

)

Control inputs

0 1 2
Time (sec)

0

20

T 2
 (N

)

−1.0 −0.5 0.0 0.5 1.0 1.5
y (m)

0

1

2

z (
m

)

Koopman NMPC closed loop trajectory with quadrotor orientation sampled at 2 hz

Figure 4.2: Closed loop control with MPCs based on DMD, EDMD, and bEDMD
models. True model-based NMPC used as benchmark.

Open loop prediction
I first evaluate our method’s prediction performance. A test data set is generated the
same way as the training set. Then, the control sequence of each test trajectory is
simulated forwardwith each of the learnedmodels. Themean and standard deviation
of the error between the true and predicted evolution over the trajectories are reported
in Table 4.1. The experimental results support the theory: the mean and standard
deviation of the error is reduced by 86-91 percent and 63 to 69 percent, respectively,
compared to DMD and EDMD. bEDMD better captures the nonlinearities in the
actuation matrix that drives the (H, I)-dynamics.

Trajectory generation and closed loop control
To study trajectory generation and control, MPCs for each of the learned models are
designed. For the linear (DMD) and lifted linear (EDMD) models, a linear MPC
is designed. Then, the Koopman NMPC (K-NMPC) is designed as described in
Section 4.4. Finally, as a benchmark I implement NMPC using the true dynamics
(4.11) based on Section 4.2. Each controller is based on a discrete-time model
with sampling length 10 ms. All the optimization problems are solved with OSQP
(Stellato et al., 2018). I initially study the ability of each controller to generate high
quality trajectories. One hundred trajectories (2.5 second duration) are designed
to move the system from x0 to x 5 , sampled uniformly at random from the interval
H, I ∈ [−2, 2]2, \ ∈ [−0.1, 0.1], ¤H, ¤I, ¤\ ∈ [−1, 1]3. The Frobenius norm of the
control inputs over the prediction horizon isminimized and a terminal state constraint

1Code available at github.com/Cafolkes/koopman-learning-and-control

60

is added to each of the controllers to ensure that the desired terminal position is
reached. Finally, the velocities are constrained to have magnitude less than 2,
¤H, ¤I, ¤\ ∈ [−2, 2], and the thrust of each propeller is limited,)1,)2 ∈ [0, 2)ℎ>E4A].

The generated trajectories from one of the experiments (solid lines) along with
the open-loop simulation of the true dynamics with the control sequence of each
designed trajectory (dashed lines) are depicted in Figure 4.1. Table 4.2 presents
summary statistics from 100 experiments: total control effort (as measured by the
Frobenious norm and normalized by the NMPC control effort), the terminal state
error (the Euclidean distance between the final open loop stimulation state and the
desired state), and the number of SQP iterations needed by K-NMPC and NMPC.
The open loop simulation reveals that the trajectories resulting from the DMD and
EDMD models are not realizable, leading to significant mean terminal state errors
of 2.24 and 2.46, respectively. K-NMPC has a significantly lower mean error of
0.70, and, more importantly, captures the idealized behavior of NMPC, even though
it is completely data-driven.

Finally, I study closed loop control behavior of each control approach over the same
100 initial and terminal conditions. Each of the MPCs use a 0.5 second prediction
horizon with sampling length 10 ms and a quadratic state penalty and control input
cost. The Koopman NMPC and NMPC controllers are initialized by solving each of
the NLPs to convergence with the SQP algorithm before only a single SQP iteration
is performed at each timestep in closed loop.

The traces resulting from each controller are presented in Figure 4.2 for one of
the experiments. Furthermore, summary statistics over the 100 experiments of the
realized cost (as measured by the total trajectory cost, normalized by the NMPC
cost), and the computation time at each timestep of each of the controllers are
reported in Table 4.3. Because closed loop operation can correct for model errors,
the performance difference between the controllers is smaller than for the trajectory

DMD EDMD bEDMD Benchmark
(MPC) (MPC) (K-NMPC) (NMPC)

mean std mean std mean std mean std
Control effort 0.97 0.02 0.97 0.06 1.01 0.01 1.00 0.00
Terminal error 2.24 1.50 2.46 1.77 0.70 0.31 0.36 0.17
SQP iterations 21.88 11.57 9.33 9.63

Table 4.2: Summary statistics over 100 experiments of the MPC trajectory cost,
error, and SQP iterations.

61

generation case. The controllers based on the DMD and EDMDmodels achieve a 4
and 2 percent higher cost than the NMPC, respectively. The K-NMPC again closely
follows the behavior of the NMPC.

The linear and lifted linear MPCs require less computational effort than the SQP-
based approaches with an average computation time of 2 and 7 ms, respectively.
K-NMPC requires somewhat higher computational effort thanNMPC for this system
with an average of 13 ms compared to 7 ms. This is dominated by longer solution
time of the QP because a higher number of variables and constraints as a result of
the lifting. The relative computational effort between K-NMPC and NMPC will
ultimately depend on the complexity of linearizing the nonlinear model for NMPC,
which can be expensive for complicated models, as well as the lifting dimension
of the Koopman bilinear model. Finally, I note that even with a relatively simple
python implementation, the controllers are approaching real-time capability.

DMD EDMD bEDMD Benchmark
(MPC) (MPC) (K-NMPC) (NMPC)

mean std mean std mean std mean std
Realized cost 1.04 0.05 1.02 0.03 1.00 0.00 1.00 0.00
Comp time (ms) 1.50 0.34 7.40 1.78 13.14 8.35 6.99 1.11

Table 4.3: Summary statistics over 100 experiments of the MPC closed loop control
cost and computation times.

4.6 Joint Learning of the Koopman Dictionary and Model
I now turn to the second learning method that encodes the bilinear structure in
a neural network model that jointly learns the function dictionary and bilinear
model from data. To formulate the learning problem, an analogous approach to the
bEDMD method in Section 4.3 is followed. However, unlike bEDMD, the function
dictionary is now parametrized by a neural network, and the function dictionary and
bilinear model matrices are jointly learned. Let) parametrize the neural network
representing the function dictionary and 5(x;)), and�, �1, . . . , �<, �

x parametrize
the bilinear model matrices described in Section 4.3.

The key idea of the learning method is that both the function dictionary parametriza-
tion and the bilinear model structure can be encoded in a single neural network.
Then, once training is complete, the learned function dictionary and model matrices
can be extracted to maintain the benefits of Koopman-based learning methods out-
lined in Section 4.1, while improving the prediction performance and/or reducing

62

the dimension of the function dictionary. To achieve this, I formulate a loss function,
L to be minimized by empirical risk minimization over all the input-output pairs in
the training data set, D:

L(x, u, x′) = ULrec(x, x′) + Lpred(x, u, x′) + VLkct(x, u, x′),

Lrec(x, x′) = | |x − �x5(x;)) | |2,

Lpred(x, u, x′) = | |x′ − �x
(
�5(x;)) +

∑
8=1,...,<

�85(x;))u8
)
| |2,

Lkct(x, u, x′) = | |5(x′;)) −
(
�5(x;)) +

∑
8=1,...,<

�85(x;))u8
)
| |2,

(4.12)

where

• Lrec is the mean squared error (MSE) of the reconstruction loss when lifting
the system’s state using the encoder 5(x;)) and projecting back down to the
original system state with the projection matrix �x,

• Lpred is the MSE of the one-step prediction error of the model when projected
down in the original state space,

• and Lkct is the MSE of the one-step prediction error in the lifted space.

Tunable hyperparameters U and V determine the weight of the prediction and KCT
losses, respectively, relative to the reconstruction loss.

The learned model should realize good prediction performance in the original state
space: minimizing Lpred encourages this goal. Loss terms Lrecon and Lkct respec-
tively promote accurate projection of the function dictionary to the original state
space and an approximately bilinear dynamical system model in the lifted space.
Loss Lkct promotes good prediction accuracy over multiple time steps, as multi-
step prediction is performed in the lifted space before the result is projected to the
original state space only at relevant times of interest.

Figure 4.3 depicts the neural network architecture that implements loss (4.12). The
autoencoder (Fig. 4.3a) passes the system state x through the encoder, 5(x;)),
to obtain the lifted state z. Subsequently, the lifted state is projected back to the
original state space through the projection matrix �x, resulting in the reconstructed

63

(a) Autoencoder model (b) State prediction model

(c) Lifted state prediction model

Figure 4.3: Koopman neural network model architecture.

state, x̂, which is compared to the original state, x, in Lrecon. The state prediction
model (Fig. 4.3b) passes the system state through the encoder to obtain the lifted
state, z, before evolving the lifted state one time-step with the bilinear model based
on z and u to get the one-step-ahead lifted state, z′. The lifted state prediction is
projected to the original state space to get the one-step-ahead state prediction, x̂′,
which is compared to the true one-step-ahead state, x′, in Lpred. Finally, the lifted
state prediction model (Fig. 4.3c) follows the same forward pass through the same
state prediction model to get the one-step-ahead lifted state prediction ẑ′. This is
compared to the true one-step-ahead lifted state z′ in Lkct, obtained by passing the
true one-step-ahead state, x′ through the encoder 5.

This approach can be implemented using modern neural network software packages
with basis functions 5 modeled as a feedforward neural network having fully con-
nected layers and �, �1, . . . , �<, �

x as single fully connected layers with no nonlin-
ear activations. The entiremodel can be trained simultaneously using gradient-based
learning algorithms applied to the loss function (4.12).

64

4.7 Experimental Low Altitude Trajectory Tracking with Quadrotor Drone
Experiments are conducted to demonstrate the performance of the proposed method
on a quadrotor drone. To capture the nonlinearity in the quadrotor dynamics, 6-
second long “Figure 8” trackingmaneuvers are performed (see Fig. 4.5b) at very low
altitudes above the ground so that aerodynamic “ground effect” corrupts the nominal
model (Sanchez-Cuevas, Heredia, and Ollero, 2017). The G − H coordinates of the
“Figure 8” trajectory require high roll and pitch maneuvers and the low altitude
flights highlight the effect of unmodeled dynamics, encapsulated in the fv and 38

terms in (4.13).

Modeling assumptions
The quadrotor dynamics are modeled using states global position p ∈ R3, velocity
v ∈ R3, attitude rotation matrix ' ∈ SO(3), and body angular velocity 8 ∈ R3, and
consider the following dynamics:

p = v,
¤' = '((8),

<v = <g + 'f + fv(p,v,',8,f,3),
� ¤8 = �8 × 8 + 3 + 38 (p,v,',8,f,3),

(4.13)

where < and � are the vehicle mass and inertia matrices, respectively, ((·) is a 3× 3
skew symmetric mapping, and g = [0, 0,−6]) is the gravitational force vector. The
state and control-dependent functions 5v(·) and g8 (·) capture unmodelled dynamic
terms, such as the aerodynamic ground effect.

As is common, I abstract the system’s control inputs to a total thrust in the body
z-direction, f = [0, 0,)]) , and body torques 3 = [gG , gH, gI]) , u = [), gG , gH, gI]) .
The mapping of rotor speeds to the abstract controls is typically modeled by a linear
combination of the squared rotor speeds:

u = T(, T =
[
2) 2) 2) 2)
0 2) ; 0 −2) ;
−2) ; 0 2) ; 0
−2& 2& −2& 2&

]
, (=

[[2
1
[2

2
[2

3
[2

4

]
, (4.14)

where 2) and 2& are the propeller thrust and torque coefficients, ; is the distance
from the vehicle’s center of gravity to the propeller axle, and [[1, . . . , [4]) are
the propeller rotation rates. This mapping enables the abstracted controls to be
translated into propeller rotational rates.

65

Figure 4.4: Experiment set-up.

Implementation and experimental details
The experiments are conducted with a commercially available Crazyfile 2.1 quadro-
tor drone. Global position is measured via an OptiTrack motion capture system
(tracking at 120 Hz) and fused with the onboard IMU data to get filtered state esti-
mates. The all-up quadrotor weight is 33.6 g, with a thrust to weight ratio of 1.7.
Control commands are computed on an offboard computer and communicated to
the drone over radio, see Fig. 4.4. All communication with the drone is performed
using the Crazyswarm Python API (Preiss et al., 2017).

To collect training data, waypoints were sampled uniformly at random within
G, H, I ∈ [−0.3, 0.3] × [−0.3, 0.3] × [0.1, 1.0] meters and tracked with a PID po-
sition controller for a total of 4 minutes. The estimated position, attitude, linear
and angular velocites, motor pulse width modulation (PWM) signals, and battery
voltage were collected at 500 Hz. The state estimates where downsampled and the

Table 4.4: Learning architecture and tuned hyperparameter values

of encoder layers 2 Learning rate 1e-3
Layer width 100 KCT loss penalty, V 2e-1
Activation function tanh ;2-regularization strength 5e-4
Total lifting dimension 23 # of epochs 200

Table 4.5: Crazyflie system properties and NMPC parameters

Mass 33.6 g State error penalty, Q [10, 10, 10]
Max thrust 57.0 g Control penalty, R [1, 1, 1, 1]
�GG (Landry et al., 2016) 1.7e-5 kg ·m2 NMPC prediction
�HH (Landry et al., 2016) 1.7e-5 kg ·m2 horizon 0.5 s
�II (Landry et al., 2016) 2.9e-5 kg ·m2 Controller timestep 0.02 s

66

PWMs and voltage averaged over each 0.02 s interval to obtain a dataset at 50 Hz,
the target update rate for the controller. This smoothing process better captures
motor PWM inputs, as the raw data showed significant variability within each 0.02
s period. Finally, PWMs and voltage are mapped to motor thrust commands using
the model identified in G. Shi, Hönig, et al., 2020 (see Tab. 1, G. Shi, Hönig, et al.,
2020) and the thrust mixing in (4.14) is applied to yield total thrust and torques
around each axis, resulting in the inputs used in the learning process.

A discrete-time lifted-dimensional bilinear model is learned as described in Section
4.6. Thirty percent of the data set is held out for validation and testing and the
hyperparameters are tuned to obtain good open loop prediction performance over
0.5 seconds, the same prediction horizon used in the model predictive controllers.
The final parameters used are included in Tab. 4.4. Note that determining the lifting
dimension is a part of the hyperparameter tuning process, and keeping the lifting
dimension low is more important than keeping the width and number of layers low as
the lifting dimension directly affects the NMPC solution time. The neural network
is implemented using PyTorch (Paszke et al., 2019)2. To simplify the process
of encoding the NMPC objective and constraints, the state itself is added to the
lifted state, z = [x) , 5(x;)))]) , making the projection matrix known, �x = [�, 0].
This makes the reconstruction loss, Lrecon in (4.12) redundant and I therefore set
U = 0. In this experiment, setting the total lifting dimension (including the state
itself) to 23 led to a good compromise between lifting dimension and prediction and
generalization performance.

Two controllers are implemented for the task. First, a nominal NMPC using the
dynamic model (4.13) with 38 = fv = 0 and the system parameters described
in Tab. 4.5, are used as a performance baseline. Second, the Koopman NMPC
described in Section 4.2, using the learned model, is implemented. Both controllers
are coded in Python using the OSQP quadratic program solver (Stellato et al.,
2018). The objective penalizes errors between the state and desired trajectory in
G, H, I. The control inputs are constrained using the vehicle’s mechanical limitations.
The position error penalties, & = [@G , @H, @I], and control effort penalties, ' =

[A) , AgG , AgH , AgI], and remaining control parameters are described in Tab. 4.5. The
control thrusts and desired attitude are calculated by the NMPCs and sent to the

2Code available at github.com/Cafolkes/koopman-learning-and-control

67

0 1 2 3 4 5 6
Time (sec)

−0.4

−0.2

0.0

0.2

0.4

0.6

x
(m

)

0 1 2 3 4 5 6
Time (sec)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y
(m

)

0 1 2 3 4 5 6
Time (sec)

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

z (
m

)

Koopman NMPC
Nominal NMPC
Reference

(a) Mean position coordinates (solid lines) +/- 3 std (shaded area) of 10 consecutive experiment runs
with both controllers at 0.25 m altitude.

(b) “Figure 8” tracking with position depicted at selected times.

Nominal Koopman
NMPC NMPC

Avg. position tracking error (mse) 4.7e-3 4.8e-3
Avg. control effort (thrust norm) 10.7 10.5

Figure 4.5: Hardware configuration and experimental results from “Figure 8” tra-
jectory tracking control experiment.

onboard drone controller, which decides the final motor control allocations. This
architecture enables both controllers to cycle at 50 Hz while attitude tracking runs
at a higher rate onboard the drone.

Results and discussion
Fig. 4.5 details the tracking performance of the nominal and Koopman NMPC
closed-loop controllers tracking a 6-second long “Figure 8” trajectory over 10 con-
secutive experiment runs. The yaw and pitch performance is comparable, indicating

68

0.10.20.30.40.5
0.0025

0.0050

0.0075

0.0100

Er
ro

r (
m

se
)

Koopman NMPC
Nominal NMPC

0.10.20.30.40.5
Trajectory altitude (m)

9.0

9.5

10.0

10.5

11.0
Th

ru
st

 n
or

m

Figure 4.6: Average MSE and total thrust (dots) +/- 3 std (error bars) from 5
consecutive experiment runs with each of the controllers at decreasing altitudes.
Stable flight not achieved by the nominal NMPC for altitudes below 0.25 m.

accurate identification of the roll-pitch-yaw dynamics. Furthermore, the large I-
tracking error from the nominal NMPC induced by the ground effect is successfully
captured by the Koopman learned dynamics. Note that the drone both starts and
ends at zero velocity, causing increased tracking error at the beginning and end of
the trajectory.

To further the impact of the ground effect on tracking performance, 5 “Figure
8” trajectories were executed at decreasing altitudes, as shown in Fig. 4.6. At
altitudes 0.25 m and higher, nominal and Koopman NMPCs tracking performance
is similar. However, at lower altitudes nominal NMPC stability fails, leading to
catastrophic crashes. In contrast, the Koopman NMPC completed all five tests,
albeit with increased tracking error as the altitude setpoint approaches 0.05 m above
the ground. I also note that the Koopman NMPC exploits the buoyancy in resulting
from the ground effect at lower altitudes to significantly reduce the thrust needed to
complete the task. Furthermore, both controllers demonstrated good repeatability
(when the nominal NMPC did not catastrophically fail), by being able to repeat the
experiments many times with no signs of failure, and robustness to minor wind gusts
in the semi-outdoor arena where the experiments were conducted.

69

4.8 Conclusion
This chapter has presented methods that couple Koopman-based bilinear models
and NMPC in order to allow for real-time optimal control of robots that captures
important nonlinearities, while allowing for critical state and control limits.

The first method showed how fixed function dictionaries can be designed to use
EDMD-based learning to identify a lifted bilinear model from data. Through a
simulated planar quadrotor example, I demonstrated the advantages of learning lifted
bilinear models over lifted linear models to capture control-affine dynamics. I also
showed that the resulting data-driven controller could achieve similar performance
to the case of NMPC design with an exactly known dynamic model.

However, function dictionary design is a key challenge in Koopman-based model-
ing and control methods and fixed dictionaries typically result in high dimensional
function dictionaries to achieve the desired prediction performance. The second
learning method therefore jointly learns a lifted Koopman bilinear model and KCT
function dictionary strictly from data, enabling more compact models and/or better
prediction performance compared to predefined function dictionaries. More com-
pact models, i.e. lower lifting dimension, are crucial for robotic applications where
real-time control is needed. Data-driven models are valuable in cases where first-
principles modeling may be difficult. The quadrotor drone experiments demonstrate
good prediction performance with a lifting dimension of only 23. The associated
Koopman NMPC can match the performance of a NMPC based on the nominal
model (4.13) far away from the ground, and outperforms the nominal NMPC in
near-ground regimes. Notably, the nominal controller is unable to maintain stable
flight near the ground, whereas the Koopman NMPC maintains acceptable tracking
performance down to 0.05 m altitude.

70

C h a p t e r 5

SAFETY-CRITICAL CONTROL WITH DATA-DRIVEN
CONTROL BARRIER FUNCTIONS

This chapter describes a data-driven method to both increase computational ef-
ficiency and improve the performance of safety-critical systems operating under
safety filters based on control barrier functions. The method was first presented in
the IEEE Control Systems Letters (Folkestad, Y. Chen, et al., 2021).

5.1 Introduction
The field of safety-critical control has received increasing attention since safety
is a primary requirement for important autonomous systems, such as autonomous
cars and robots. While control barrier functions (CBFs) (Ames, Xu, et al., 2017;
Borrmann et al., 2015) can provide safety guarantees for autonomous systems, the
feasibility of this approach in the presence of input bounds relies on control invariant
sets, which may be difficult to compute (Raković et al., 2006; Blanchini, 1999; Y.
Chen, Peng, et al., 2019). In (Gurriet, Mote, et al., 2019), the authors proposed
a CBF approach that uses an implicitly defined control invariant set based on a
backup strategy, computed by forward integrating the dynamics. The approach
was extended to multi-agent systems in a fully decentralized manner in (Y. Chen,
Singletary, and Ames, 2020). However, online evaluation of the CBF and its Lie
derivative requires forward integration of the system dynamics and a sensitivity
matrix, which can be a bottleneck for nonlinear and high dimensional systems.
Moreover, when parts of the dynamics are unmodelled, the inaccurate integration
can lead to safety violations.

I propose to learn an approximate Koopman operator for the closed-loop dynamics
under the backup strategy. This replaces the expensive forward integration of the
dynamics and sensitivity matrix with matrix multiplication. I also develop an
error bound on the learned model that supports a robust version of the supervisory
controller: it guarantees safety when the learned model forward propagates the
backup trajectory. Additionally, a Koopman operator trained on real system data
producesmore accurate backup trajectories, especially in the presence of unmodeled
dynamics, which improves system safety guarantees and, potentially, the system’s
mobility.

71

Koopman inspired modelling and identification techniques have received substan-
tial attention (Rowley et al., 2009; Budišić, Mohr, and Mezić, 2012). In particular,
the Dynamic Mode Decomposition (DMD) and extended DMD (EDMD) meth-
ods efficiently identify finite dimensional approximations of the Koopman operator
(Schmid, 2010; M. O. Williams, Kevrekidis, and Rowley, 2015). However, as
most prior work focused on learning unknown dynamics, utilizing Koopman-based
learning to improve the computation efficiency and dynamic model uncertainty for
safety-critical applications has not been previously explored.

Building upon (Gurriet, Mote, et al., 2019), I introduce a data-driven approach that
combines Koopman-based learning and CBFs to achieve a safety-critical control
system that

1. guarantees safety under limited actuation and errors in the learned Koopman
model.

2. requires little online computation to implement.

3. can learn backup trajectories from data, improving the applicability of the
approach in real-world scenarios where accurate models may be unavailable.

Our experiments and simulations show that the method can be incorporated in
the decentralized framework of (Y. Chen, Singletary, and Ames, 2020), further
expanding the impact of our efficiency improvements.

The rest of this chapter is organized as follows. Section 5.2 reviews CBFs, the
backup approach to craft CBFs, and Koopman theory. Section 5.3 describes how to
learn Koopman operators of closed-loop dynamics under a backup strategy. Section
5.4 introduces a CBF controller using the Koopman model. Section 5.5 presents
experimental results.

5.2 Preliminaries
Control barrier functions
Using CBFs (Ames, Grizzle, and Tabuada, 2014; Ames, Xu, et al., 2017), a su-
pervisory controller can be designed to maintain system safety with minimum
intervention. Specifically, consider the control-affine dynamic system:

¤x = f (x, u) = a(x) + b(x)u, (5.1)

72

where x ∈ X ⊆ R3 , u ∈ U ⊆ R<, a : X → R3 , b : X → R3×<. Suppose we can
encode the safety criterion as a CBF, ℎ : R3 → R, that satisfies

∀ x ∈ X0, ℎ(x) ≥ 0

∀ x ∈ X3 , ℎ(x) < 0

∀ x ∈ X, ∃ u ∈ U s.t. ¤ℎ + U (ℎ) ≥ 0,

(5.2)

where X0 is the set of initial states and X3 are the states to avoid. U(·) is an
extended class-K function, i.e., U(·) is strictly increasing and satisfies U(0) = 0.
For any legacy controller, the supervisory CBF controller constraints the state inside
{x | ℎ(x) ≥ 0} via the following quadratic program:

u★ = arg min
u∈U

u − u0(x)
2

s.t. ∇ℎ · f (x, u) + U (ℎ(x)) ≥ 0,
(5.3)

where u0(G) is the input of the legacy controller. To ensure that (5.3) is always
feasible when ℎ(x) ≥ 0, {x|ℎ(x) ≥ 0} need to be a control invariant set, which is
defined as follows.

Definition 5.1. A set S ⊆ R3 is a control invariant set if there exists a control law
0 : R3 →U such that for all initial conditions x(0) ∈ S, ∀C ≥ 0,ΦCf0 (x(0)) ∈ S.

Here, f0 denotes the closed-loop dynamics under controller 0, and ΦCf0 (x) denotes
the system flow map: ΦCf0 (x) is the state at C, following f0, starting at x.

Control barrier function with backup controller
This section reviews a backup strategy for control invariant set generation (Gurriet,
Mote, et al., 2019). Given system (5.1), suppose the following constraint must hold
for all C ≥ 0 to ensure system safety:

x(C) ∈ C � {x ∈ X|ℎC (x) ≥ 0},

where the smooth function ℎC : R3 → R defines the safe set C. If a control invariant
set S ⊆ C is known, a CBF can be constructed and the supervisory controller (5.3)
guarantees that the state will remain in S, and thus in C, for any initial condition
x(0) ∈ S. However, computing S is often difficult. To bypass this problem,
the backup strategy approach was introduced in (Gurriet, Mote, et al., 2019) and
(Singletary, Nilsson, et al., 2019). Suppose we find a small initial control invariant
set, e.g. by linearizing the dynamics, S0 � {x|ℎS (x) ≥ 0} ⊆ C, where ℎS is

73

smooth. Any equilibrium point of (5.1) inside C satisfies the requirement. Then,
for a backup strategy 0 : R3 →U and horizon) , define

S � {x ∈ X|Φ)f0 (x) ∈ S0 ∧ ∀C ∈ [0,)],ΦCf0 (x) ∈ C}, (5.4)

which is the set of all initial conditions from which the backup strategy would bring
the state to S0 at C =) while satisfying the constraint x(C) ∈ C,∀C ∈ [0,)].

SinceS0 is a control invariant set, by Definition 5.1, there exists a control law 00 that
keeps any state starting inside S0 within S0. Therefore, 0 |S0 = 00 |S0 is fixed such
that any state reaching S0 will remain within S0 under 0. As a result, S contains the
initial condition that can reach S0 in [0,)] (instead of exactly at)) while satisfying
the state constraint. This result and how to construct a CBF from S are summarized
in the two following lemmas.

Lemma 5.2 (Y. Chen, Singletary, and Ames, 2020). S is a control invariant set and
S0 ⊆ S ⊆ C.

Lemma 5.3 (Y. Chen, Singletary, and Ames, 2020). S is the 0-level set of the
following function

ℎ(x) = min{ min
C∈[0,)]

ℎC (ΦCf0 (x)), ℎ
S (Φ)f0 (x))}. (5.5)

Using Lemma 5.3, a modified constraint set of the controller (5.3) enforces the
system to satisfy both ℎC and ℎS:

u∗ = argminu∈U | |u − u0 | |2

s.t.∀C ∈ [0,)],
3ℎC (ΦCf0 (x))

3C
(x, u) + U(ℎC (ΦCf0 (x))) ≥ 0

3ℎS (Φ)f0 (x))
3C

(x, u) + U(ℎS (Φ)f0 (x))) ≥ 0,

(5.6)

where for any C ∈ [0,)], the total derivative of ℎC (ΦCf0 (x)) is computed as

3ℎC (ΦCf0 (x))
3C

= ∇ℎC
3ΦCf0
3C

= ∇ℎC (∇ΦCf0 (x) 5 (x, u) −
mΦCf0
mC
),

where ∇ΦCf0 is the sensitivity matrix and −
mΦCf0
mC

accounts for the nominal flow under
the backup strategy. For fixed dynamics, f0, and initial condition G, denote the
sensitivity matrix at time C as &x,f0 (C) = ∇ΦCf0 . Then, the evolution of &x,f0 (C) can
be described by the following ordinary differential equation

&x,f0 (0) = �, ¤&x,f0 = ∇f0&x,f0 (C). (5.7)

74

Similar to the safety guarantees for the nominal supervisory CBF controller (5.3),
guarantees can be given when using the backup controller derived supervisory
controller (5.6). This is summarized in the following proposition.

Proposition 5.4 (Y. Chen, Singletary, and Ames, 2020). For all x ∈ {x|ℎ(x) ≥ 0},
a solution to (5.6) is always feasible and Eq. (5.6) implies ¤ℎ(x, u) + U(ℎ(x)) ≥ 0.
Moreover, ℎ is a CBF that satisfies

• ∀x ∉ C, ℎ(x) < 0,

• ∀x ∈ {x | ℎ(x) ≥ 0}, ∃u ∈ U, s.t. ¤ℎ(x,u) + U(ℎ(x)) ≥ 0.

When implementing the supervisory controller (5.6), the first constraint is not im-
plementable because there are uncountably many C in [0,)]. Consequently, the con-
tinuous interval [0,)] is replaced with a finite sequence, 0 = C0 < C1 < · · · < C =) ,
C8+1 − C8 = ΔC, and the constraint enforced at these points instead. This discretization
calls for additional robustness of the control strategy, as is discussed in (Singletary,
Y. Chen, and Ames, 2020).

Assumption 5.5. ΔC is sufficiently small such that robustly satisfying the constraints
of (5.6) at each C: (by adding an error buffer) implies constraint satisfaction for all
ΦCf0 (x)

��C=C:+ΔC
C=C:

.

5.3 Koopman Operator for Backup Trajectories
Motivating the use of Koopman operators
For high dimensional systems and/or long time spans) , the forward integration of the
sensitivity matrix in (5.6) may be prohibitively expensive. Besides, in the presence
of unmodelled dynamics, the online integration can be inaccurate. Additionally, the
trajectory under the backup strategy typically evolves for a finite time, which allows
us to bound the prediction error under the Koopman operator, making it suitable for
safety-critical applications. As the constraint of (5.6) must be evaluated at discrete
points, I will approximate the flow of the system under the backup controller at
these points using an approximated discrete-time Koopman operator. Specifically,
a finite dimensional Koopman approximation is identified which enables estimating
the sensitivity matrix in (5.6) as

∇ΦC:f0 (x0) ≈ ∇
(
�x�:5(x0)

)
= �x�:∇5(x0), (5.8)

75

which only requires matrix multiplication. Moreover,�x�: can be precomputed for
: = 0, . . . , , significantly reducing the real-time computational cost of the forward
integration of the sensitivity matrix, improving the method’s scalability.

Learning Koopman operators for backup trajectories
To learn an approximate Koopman operator associated with the closed-loop backup
controller dynamics,"C trajectories of length)C are simulated from initial conditions
x 90 ∈ Ω, 9 = 1, . . . , "C under backup control. The set Ω is chosen to cover the
operating region of interest. From each trajectory, "B =)/ΔC state snapshots are
sampled at a fixed time interval, ΔC, resulting in the data set

D =

((
x 9
:

)"B
:=0

)"C
9=1
. (5.9)

Define a dictionary of = functions z = 5(x), 5 : R3 → R=. The choice of basis can
be based on system knowledge (i.e. feature engineering) or they can be a generic
basis of functions such as monomials of the state up to a certain degree. Selecting
the type and number of dictionary functions is an open question in Koopman-based
learning. Promising efforts in this direction use data-driven Koopman eigenfunc-
tions (See Chapter 3 and Korda and Mezić, 2018a). Because I aim to learn ap-
proximate Koopman operators of the closed-loop dynamics, which is autonomous,
the learning of data-driven Koopman eigenfunctions is simplified. In particular, the
method presented in Chapter 3 can be applied with minor modifications.

The data set D is organized into matrices -, - ′ as described in (5.10). Then, the
lifted state data matrices are constructed by applying 5(x) to each column of -
and - ′, denoted / = 5(-), / ′ = 5(- ′) by slight abuse of notation. Utilizing the
constructed datamatrices, the best fitKoopmanoperator approximation is inferred by
solving a linear least squares regression problem (5.10a). In addition, regularization
can be added to the regression formulation.

min
�∈R=×=

| |�/ − / ′ | |2 (5.10a)

min
�x∈R3×=

| |�x/ − - | |2 (5.10b)

- = [x1
0 . . . x

1
("B−1) . . . x

"C
0 . . . x"C("B−1)], / = 5(-)

-
′
= [x1

1 . . . x
1
"B
. . . x"C0 . . . x"C

"B
], /

′
= 5(- ′)

76

The second regression problem (5.10b) is formulated to learn the matrix projecting
the lifted state back to the original state. As discussed in Chapters 3 and 4, �x

may be computed analytically for certain choices of the function dictionary 5(x),
rendering the regression problem obsolete. For example, a monomial basis will
typically include the state itself, making the computation trivial.

Quantifying the error of the Koopman approximation
For safety-critical application, bounding the prediction error of the Koopman op-
erator is essential. The supervisory controller requires the system flow at a finite
number of sample points C0, C1, . . . , C , where C: = :ΔC. Denote the true flow of
the closed-loop dynamics under the backup controller at these sampling points as
Φ
C:
f0 (x). Similarly, denote the estimate of the same flow using the learned Koopman

operator as Φ̂C:f0 (x) = �
x�:5(x). Then, the true system evolves as:

Φ
C:
f0 (x) = Φ̂

C:
f0 (x) +Φ

C:
f0 (x) − Φ̂

C:
f0 (x)︸ ︷︷ ︸

Ξ: (x)

(5.11)

To guarantee safety under the approximation error of the Koopman operator, Ξ: (x),
I first introduce definitions and assumptions that are later used in Prop. 5.8 to derive
an error bound. A key concept to bound the prediction error is the incremental
stability of discrete-time systems (Tran, Rüffer, and Kellett, 2016).

Definition 5.6. The dynamical system (5.1) is incrementally stable in X ⊆ R3 if
∀C ∈ N, ∀ x1, x2 ∈ X and control sequence u(·) : N → R< such that the closed-
loop evolution ΦCfu(·)

(x1) and ΦCfu(·)
(x2) remain in X, the state evolution satisfiesΦCfu(·)

(x1) −ΦCfu(·)
(x2)

 ≤ V(‖x1 − x2‖ , C), where V : R × N→ R is nonincreasing
in C and V(·, C) is a class-K function, i.e. V is a class-KL function.

Remark 5.7. Since the backup strategy is designed before implementing the CBF,
techniques exist to synthesize backup strategies that renders the closed-loop system
incrementally stable, even for open-loop unstable systems, e.g., the LMI approach
presented in Section III.B in (Singletary, Y. Chen, and Ames, 2020).

Proposition 5.8. For system (5.1), assume that the closed-loop dynamics under the
backup controller ¤x = f0 (x) is incrementally stable, and that projection matrix �x

is exact, i.e. x = �xz, z = 5(x). Further assume that 5(x) is Lipschitz continuous
on X with Lipschitz constant ! and that the distance between points in X and the
closest point inD is bounded by `, where ` = maxx∈X minx̂∈D | |x− x̂| | < ∞. Then,

77

error Ξ: (x) defined in (5.11) can be upper bounded as

| |Ξ: (x) | | ≤| |�x�: | |!` + ||Y<0G | |
:−1∑
9=1
| |�x� 9 | | + `

where the norm of the maximum residual error is given by

| |Y<0G | | = max
x 9
:
∈D\x 9

| |�5(x 9
:
) − 5(x 9

:+1) | |.

Proof. Let x ∈ X, x̂ ∈ D, and add and subtract ΦC:f0 (x̂)

| |Ξ: (x) | | = | |ΦC:f0(x) − Φ̂
C:
f0(x) +Φ

C:
f0(x̂) −Φ

C:
f0(x̂) | |.

Define the global error of the Koopman approximation on the training data as
�: = 5(x:) − �:5(x0). Then, ΦC:f0 (x̂) = Φ̂

C:
f0 (x̂) + �

x�: and separating each term
of the norm yields

| |Ξ: (x) | | ≤ | |Φ̂C:f0(x̂) − Φ̂
C:
f0(x) | | + | |�

x�: | | + | |ΦC:f0(x) −Φ
C:
f0(x̂) | |.

The first term follows from the definition of Φ̂C:f0 , Lipschitz continuity of 5(x), and
a bound on the distance from X to D:

| |Φ̂C:f0(x̂) − Φ̂
C:
f0(x) | | ≤ | |�

x�: (5(x) − 5(x̂)) | | ≤ | |�x�: | |!`.

To bound the second term, consider that the error can be expressed as �: =∑:−1
9=1 �

9Y 9−1, where Y 9 = 5(x 9) − �5(x 9−1). The term can then be bounded as
follows (Mamakoukas, Abraham, and Murphey, 2020)

| |�x�: | | ≤ | |�x
:−1∑
9=1

� 9Y 9−1 | | ≤ | |Y<0G | |
:−1∑
9=1
| |�x� 9 | |.

By incremental stability, the last term | |ΦC:f0 (x) − Φ
C:
f0 (x̂) | | ≤ | |x − x̂| | ≤ `. This

results in the desired bound. �

Remark 5.9. Following Section 5.3, the system state is usually included in the
function dictionary, making the projection �x exact. If this is not the case, the state
can be added, 5̄(x) = [x)5(x))]) .

Remark 5.10. The maximum distance between a new data point x to the nearest
point in data set D needs only to consider the non-cyclic states of the system.
Furthermore, the closed-loop system under the backup controller is stable to the

78

initial control invariant set S0, and thus the Koopman operator associated with the
dynamics is often at least marginally stable. This can be enforced in the learning
process if needed, see for example (Mamakoukas, Abraham, and Murphey, 2020).
Consequently, the terms | |�x�: | | in the bound are non-increasing w.r.t. k.

Remark 5.11. If ℎC , ℎS depend on a subset of states, the bound in Prop. 5.8 can
be tightened by replacing �x by �ℎ, which projects the state subset. If computation
permits, !` can be replaced with | |�x�: (5(x) −5(x̂)) | | and ` by the exact distance
from the current state x to the closest point in D.

5.4 CBF with Koopman Predicted State Flow
Using the learnedKoopmanoperators for the closed-loop dynamics under the backup
controller, the supervisory controller (5.6) can be reformulated as an optimization
problem:

u∗ = argminu∈U | |u − u0 | |2

s.t.∇ℎC (�x�:∇x5(x) (f (x, u) − fc (x))
+ U(ℎC (�x�:5(x))) ≥ 0, : = 1, . . . ,

∇ℎS (�x� ∇x5(x) (f (x, u) − fc (x)))
+ U(ℎS (�x� 5(x))) ≥ 0,

(5.12)

where the sensitivity matrix for every C: is replaced as (5.8).

By using the generalization bound derived in Prop. 5.8, the supervisory controller
can be made robust to the approximation error of the flow estimated by the Koopman
operator.

Theorem 5.12. Consider the control system (5.1) and an associated backup con-
troller with backup trajectories approximated by a learned Koopman operator sat-
isfying the assumptions of Prop. 5.8. If the constraints (5.12) are satisfied for
�x�:5(x) + �: (x), with �: (x) = {% : | |% − x| | ≤ | |Ξ: (x) | |}, then the true system
flow satisfies

Φ
C:
f0 (x) ∈ �

x�:5(x) + �: (x).

Under Assumption 5.5, ΦCf0 (x) ∈ C ∀C ∈ [0,)], i.e., the true system evolution under
0 satisfies the safety constraint.

79

Proof. The error bound on the evolution of the true system follows directly from
Proposition 5.8. The robustness of the controller follows from (Singletary, Y. Chen,
and Ames, 2020), Theorem 1. �

Remark 5.13. For an incrementally stable system, the constraints of (5.12) can be
enforced for allΦC:f0 (x) ∈ �

x�:5(x) +�: (x) by calculating the flow over the backup
trajectory for the nominal value of x, and evaluating the constraints over the set.
This greatly simplifies the computation and enables the use of interval arithmetic
libraries such as INTLAB (Rump, 1999) and libaffa (Gay, n.d.), see (Singletary,
Y. Chen, and Ames, 2020) for details.

5.5 Simulation and Experimental Results
Experiments are conducted to validate the method using two multi-agent systems.
First, physical ground robots are used to demonstrate that the method can work on a
physical system. Then, simulated quadrotors are used to highlight the computational
benefits of the method for high-dimensional systems.

Ground robot obstacle avoidance
I first demonstrate the method performing single-agent obstacle avoidance. A legacy
controller drives the robot in a straight line to a distant point, and then returns. The
supervisory controller maintains safety by utilizing a backup strategy applying
maximum brake and turn. The robot is modeled as a Dubin’s car with dynamics:

¤x =

¤-
¤.
¤E
¤\

=

E cos(\)
E sin(\)
0

A

, (5.13)

where - , . , E, \ denote its Cartesian coordinates, velocity, and heading angle. The
acceleration 0 and yaw rate A inputs are bounded by 0max and Amax. I conduct
simulated and physical experiments using Georgia Tech’s Robotarium (Pickem et
al., 2017).

The Koopman operator for the closed-loop system is learned by collecting 200 data
points sampled in the operating region of interest while the system operates under
backup control1,2. Based on knowledge of the system, 21 dictionary functions
are chosen, 5(x) = [1 - . E \ E2 . . . , E5 2>B(\) B8=(\) E2>B(\) . . . E5B8=(\)]) . The

1Code available at https://github.com/Cafolkes/koopman-cbf
2Video of all the experiments available at https://youtu.be/IfBUbtKP53c

80

(a) (b) (c)

Figure 5.1: Robotarium experiment traces, the Koopman CBF controller guarantees
zero collisions. Each robot visits a point and returns to its initial position while (a)
avoiding obstacle, (b) avoiding collision, and (c) avoiding collision and obstacle.

Lipschitz constant of the function dictionary used in Proposition 5.8 is calculated by
maximizing the symbolic Jacobian over the operating region of interest. The robust
supervisory controller that enforces the conditions of Theorem 5.12 is implemented
with INTLAB (Rump, 1999). Fig. 5.1(a) shows the robot’s path. Table 5.1 reports
computation times for forward integration of the sensitivity matrix and dynamics
using ode45, CasADi, and the learned Koopman operator. Our approach reduced
computation time by ∼ 80%.

Multi-agent ground robot collision avoidance
The single-agent supervisory controller (5.12) can be extended to a safe decentralized
multi-agent controller, following (Y. Chen, Singletary, and Ames, 2020). Each
agent has a backup strategy that brings it to a stable equilibrium. All agents’ backup
strategies are known a priori to every agent as part of a centralized design. Then,
each agent measures the adjacent agents’ states, and ensures that if other agents
execute a backup strategy, its own backup strategy avoids the danger set.

The initial positions of 5 robots are equally spaced on a circle. A greedy legacy
controller drives each robot to the opposite point on the circle, and then back. The
supervisory controller avoids collision between agents and with a fixed obstacle.
Fig. 5.1(b) shows the robot’s motion traces as they execute the task without a fixed
obstacle. As the robots near the circle center, they circle around each other and/or
the obstacle to avoid collision. The seemingly coordinated behavior is the result of
the decentralized supervisory controllers. Similarly, Fig. 5.1(c) shows the result
when a fixed obstacle is added. The results demonstrate that the CBF utilizing the
learned Koopman operator can maintain system safety.

81

Figure 5.2: Simulated quadrotor landing experiment. (left) Snapshot of scenario 3
simulation and traces of full trajectory for each UAV. (right) Altitude and velocity
of each agent. The Koopman CBF controller guarantees zero collisions while
maintaining sufficient mobility to achieve landing.

Simulated multi-agent quadrotor collision avoidance and landing
To showcase the method’s scalability, I consider 3 quadrotors trying to land on
the same landing pad while avoiding collisions and hard ground impacts. The
16-dimensional quadrotor state is x = [p, v,) ,8,
]ᵀ where p is the position, v
is the velocity,) are the Euler angles, 8 is the angular velocity, and
 is the
vector of propeller rotation rates. The motor drive voltages are the control inputs,
u = [+1, +2, +3, +4]ᵀ. The dynamics are derived from a force-balance in a rotating
frame, and a first order motor model. This high dimensional system makes the
sensitivity matrix expensive to forward integrate with previous methods, especially
in the multi-agent case. To highlight the benefits of learning the backup-controlled
dynamics from data, an external forcing that models the ground effect: a thrust
amplification model (see Sec. 2.2. of Sanchez-Cuevas, Heredia, and Ollero, 2017)
acts when the quadrotor nears the ground. This unmodeled effect is not captured by
the nominal dynamics model, but is captured when learning the Koopman operator
of the closed-loop dynamics under backup control.

ODE45 (ms) CasADi (ms) Koopman (ms)
mean std mean std mean std

Dubin’s car 21.5 12.4 1.1 0.5 0.2 0.1
Quadrotor 28.0 1.5 4.5 0.2 0.2 0.1

Table 5.1: State and sensitivity matrix forward integration computation times per
agent.

82

The legacy PD controller is designed to drive each agent from its initial position to
a setpoint p3 = [0, 0, 0]) with velocity v3 = [0, 0,−2]) , chosen such that the legacy
controller lands at a velocity that may cause damage. The backup policy is a PD
controller that aims to quickly decelerate the quadrotor to hover. The corresponding
backup set is a small ball around zero linear velocity, pitch, and roll angles.

The Koopman-based supervisory controller is compared with controllers using for-
ward integration (see Section 5.2). I consider 3 scenarios to highlight some benefits
of the method; (1) landing with the supervisory controller only enforcing collision
avoidance, (2) landing with the supervisory controller enforcing collision avoidance
and avoiding crashing into the ground, and, finally, (3) landing with the supervisory
controller enforcing collision avoidance and avoiding crashing into the ground with
a Koopman operator trained on data that captures the ground effect. The collision
avoidance barrier function ℎ2 (p8, p 9) is defined pairwise for all 8, 9 = 1, 2, 3, 8 ≠ 9 as
a ball of radius A around each agent, ℎ2 (p8, p 9) = p)

8
p 9 − A2. The ground avoidance

barrier function ℎ6 (p8) seeks to keep each agent above a paraboloid placed at the
center of the landing pad ℎ6 (p8) = I − p)

8
p8. Landing is defined as reaching an

altitude less than 1 cm.

The data set is collected by simulating the system under the backup controller
from 250 initial points sampled from the operating region of interest. The data set
includes data points close to the ground, thereby capturing trajectories influenced
by the ground effect. Based on knowledge of the system, 47 dictionary functions
are chosen consisting of the state, products of the angular rates and trigonometric
functions of the Euler angles, rotation matrix terms, angular and linear acceleration
terms, and a simple ground effect nonlinearity, Ω2

8

1−('/(4I)2 for each Ω8, 8 = 1, . . . , 4,
where ' is the propeller radius. Then, the Koopman operator is learned and the
controller for scenario 3 constructed.

A snapshot of scenario 3, and the altitude and velocities for all scenarios are shown in
Fig. 5.2. When not enforcing the ground avoidance CBF (scenario 1), the quadrotors
may hit the ground at speeds up to 1.2 m/s. Enforcing the ground avoidance CBF
based on the dynamics model, but without ground effects, causes the supervisory
controller to be too conservative, thereby prohibiting the quadrotor from reaching the
ground. Finally, when the ground avoidance is enforced with a Koopman operator
trained on data capturing the ground effect, smooth landing is achieved with impact

83

speeds less than 0.3 m/s. Furthermore, the forward integration computation time
is reduced by approximately 95 % when using the learned Koopman operator (see
Table 5.1).

5.6 Conclusion
This chapter presented a method using learned Koopman operators to improve the
computational efficiency of a control barrier function-based supervisory controller
and showed how to maintain theoretical guarantees even though backup trajecto-
ries are learned from data. Through physical experiments on wheeled robots and
simulated experiments on quadrotors, I show that the method can be incorporated
in a decentralized supervisory controller design that can take full advantage of the
computational benefits of Koopman-based forward integration. Furthermore, I ex-
emplify how learning the backup trajectories from data can improve the mobility of
the system, thereby improving overall control performance.

84

C h a p t e r 6

CONCLUSION

Although Koopman-inspired methods have received considerable attention in cer-
tain domains, such as fluid dynamics, they are relatively less explored for robotic
applications. As discussed in Chapter 1, robotic applications come with a set of
challenges that make learning particularly challenging. First, since data collection
is typically expensive, models need to achieve good performance with a limited
amount of data. Furthermore, if the learned models are used for control design,
evaluation of the model at run time must be fast enough such that high controller
rates are possible. Second, as failure can lead to material damage and human in-
juries and fatalities, safety and performance must be understood either by having the
ability to interpret the resulting models or through theoretical guarantees. Finally,
it must be possible to design controllers with the learned models that can exploit
the model’s prediction performance while respecting state and actuation limitations
that arise in virtually all real world robotic systems.

This thesis has focused on how ideas from Koopman operator theory can be used
to improve the performance, data efficiency, and theoretical guarantees of systems
that leverage data and learning to boost controller performance. The overarching
message is that Koopman-based learning and control methods can be powerful
tools for nonlinear control design of agile robotic systems if the model structure and
observable functions are carefully designed. The results in Chapters 3-5 indicate that
these methods can achieve good prediction performance with realistic data amounts
and that the learnedmodels can be used formodel predictive control design, allowing
optimization of relevant objectives while satisfying state and control constraints.

Chapter 3 presented a novel method to learn nonlinear dynamics using Koopman
eigenfunctions constructed in a principled way combined with a method to learn a
lifted linear model of the dynamics. I motivated theoretically and showed empiri-
cally that the principled design of eigenfunctions led to significantly better prediction
performance and improved control performance when the learned models are used
for model predictive control design. The presented method and associated papers
were some of the early works making Koopman learning and control functional on
agile robots in the laboratory, and the quadrotor experiments demonstrated that the

85

structured approach to designing Koopman eigenfunctions also can be practically
useful for control purposes. However, the method utilizes a linear model struc-
ture which prohibits nonlinear actuation effects to be appropriately captured. This
is a significant limitation for robotic systems, which typically have control-affine
dynamics with forces and torques entering the system dynamics through rotation
matrices.

To alleviate this, Chapter 4 described two methods underpinned by a lifted bilinear
model structure that theoretically can capture control-affine dynamics. In the first
method, I showed that by carefully designing the function dictionary, EDMD-type
learning can be used to identify a bilinear model from data. Then, using a simulated
planar quadrotorwith nonlinear control-affine dynamics, I demonstrated that bilinear
models indeed are more suitable to capture nonlinear effects, as prediction error
could be reduced by an order of magnitude compared to a lifted linear model using
the same, fixed function dictionary. Furthermore, I showed that the resulting bilinear
model can be utilized for model predictive control design and that the resulting data-
driven controller achieved similar performance to the case of a NMPC designed with
an exactly known dynamic model. However, for realistic systems, it is not clear how
to choose the functions in the function dictionary to achieve good performance.
Also, using fixed function dictionaries typically result in a high lifting dimension to
obtain the desired prediction error, making the NMPC based on the learned model
intractable for real time applications.

Instead, the second method encodes both the function dictionary and the Koopman
bilinear model in a single neural network architecture. This allows joint learning
of both the function dictionary and dynamic model matrices strictly from data,
alleviating the need to manually design a function dictionary and enabling more
compact models and/or better prediction performance compared to predefined func-
tion dictionaries. The compactness, i.e. lower lifting dimension, is crucial to make
NMPC based on the resulting models computationally feasible for real time control.
I show that the joint dictionary and model learning achieves sufficient prediction
performance using only a lifting dimension of 23, and that the resulting controller
can match or outperform a NMPC based on a nominal model although it is strictly
data-driven. The resulting controller showed remarkable repeatability and indicated
that the learned model was able to capture aerodynamic ground effect such that

86

agile trajectories could be executed close to the ground with acceptable tracking
error even when the controller based on the nominal model failed to achieve stable
flight.

Whereas Chapter 3 and 4 focused on learning and control performance, Chapter
5 introduced a method to improve the computational efficiency of a control bar-
rier function-based supervisory controller and showed how to maintain theoretical
guarantees even though backup trajectories are learned from data. I showed how
to derive theoretical error bounds on the learned Koopman model and how this
bound can be incorporated in the safety filter to guarantee safety satisfaction under
learning error. Furthermore, I showed that the safety filter computation time can be
drastically reduced by exploiting the linearity of the learned model. To my knowl-
edge, this is the only work that is primarily motivated by replacing a complicated
dynamics model with a lifted linear model to make computation of a underlying
controller feasible in real time.

Through the contributions of this thesis, various approaches for learning and con-
trol underpinned by Koopman operator theory have been explored. A lot of the
excitement and interest in Koopman-based methods in both controls, robotics, and
other domains is based on the fact that the theory indicates that nonlinear systems
can be globally transformed to linear ones allowing the vast array of linear analysis
and control design methods and theory to be applied. This feature is demonstrated
in Chapters 3 and 5, where the linear models allowed both computationally efficient
linear model predictive control and evaluation of the implicitly defined control bar-
rier function safety filter, while incorporating nonlinear model information. Linear
MPC using lifted linear models is a flexible and practical method that likely can
work very well for many systems and there is probably many more methods that
could become significantly more computationally efficient by replacing complicated
nonlinear models with appropriate linear Koopman approximations, as in Chapter
5. However, as is demonstrated in Chapter 4, control-affine dynamics, needed to
describe a large class of robotic systems, require bilinear models to appropriately
capture the underlying phenomena. Although bilinear models have a lot of structure
that potentially can be exploited for theoretical derivations and control design, they
are significantly less studied than linear models. As a result, the theoretical and
computational benefits of Koopman learning using bilinear models are less evident

87

than their linear counterpart, but their prediction performance when combined with
modern machine learning techniques and control performance when coupled with
NMPC warrant further investigation for robotic applications.

6.1 Future Work
Develop a unified framework for learning and control: Chapter 4 presented
a method for model learning and high performance control with nonlinear MPC
given a sufficiently rich data set. At the same time, Chapter 5 presented a method to
speed up and enhance the practical applicability of safety filtering utilizing a learned
Koopman operator based on data collected under a backup strategy. By combining
these two methods a framework for safe learning and high performance control can
result. For example, a system designer can do initial system identification to design a
backup policy, e.g. a proportional-derivative controller stabilizing a quadrotor drone
to hover. Then, a Koopman CBF safety filter (Chapter 5) can be designed based on
data collected from the system operating under the backup controller. Subsequently,
data can be collected with an arbitrary controller filtered using the Koopman CBF
safety filter to ensure safety of the system, and the Koopman NMPC framework
(Chapter 4) can be used to learn a model and seek high control performance. This
can be done either episodically or in a batch learning process to obtain a high
performance NMPC leveraging the learned Koopman bilinear model. As a result,
such a method would enable end-to-end data collection and learning with safety
guarantees.

Develop theoretical model error bounds for the Koopman bilinear model and
utilize them in NMPC control design: To enable the methods described in Chapter
4 to be fully utilized in safety-critical systems, model error bounds on the learned
model are needed to be able to analyze the model accuracy. The error bound
derived in Chapter 5 is a potential starting point to achieve such bounds. Theoretical
bounds on the prediction error as a function of the lifting dimension and/or type
of function dictionary is also desired to better understand and guide design choices
when deploying Koopman-based learning methods. Once practical bounds are
derived, results already exist that can be used as a basis for robust control design of
the NMPC. For example, as mentioned in Chapter 1, the bilinear model structure can
be used to simplify the construction of a control Lyapunov function enforced as a
constraint in a nonlinearMPCmethod to obtain stability guarantees (Narasingam and

88

Kwon, 2020). Then, robustness based on the model error bounds can be considered
using input-to-state stability reasoning, as introduced for NMPC by Bayer, Burger,
and Allgower, 2013.

Expand breadth of experiments and compare with alternative learning and
control methods: Multiple simulated and physical experiments are presented
in this thesis but many more are needed to more fully understand the benefits and
limitations of the proposedmethods. Furthermore, in the reinforcement learning and
learning and control communities, there are currently significant research activity
and many new methods are presented every year but a clear, transparent way to
compare the methods on equal grounds does not exist. As various methods become
more mature, it is crucial that the methods can be compared on equal baselines to
better understand what applications, systems, and tasks are suitable for the different
methods and how do they compare in terms of performance, data requirements,
computational efficiency, theoretical guarantees, etc. Comprehensive benchmarking
suites are currently emerging (cf. Voloshin et al., 2021 and references therein), and
it is now on the research community to start presenting results of how their proposed
methods perform on these benchmarks.

89

BIBLIOGRAPHY

Abdolhosseini, Mahyar, Youmin M. Zhang, and Camille-Alain Rabbath (2013).
“An Efficient Model Predictive Control Scheme for an Unmanned Quadrotor
Helicopter”. In: J Intell Robot Syst 70, pp. 27–38. doi: 10.1007/s10846-012-
9724-3.

Ames, Aaron D., Jessy W. Grizzle, and Paulo Tabuada (2014). “Control Barrier
Function Based Quadratic Programs with Application to Adaptive Cruise Con-
trol”. In: Proceedings of the IEEE Conference on Decision and Control. doi:
10.1109/CDC.2014.7040372.

Ames, Aaron D. and Matthew Powell (2013). “Towards the Unification of Locomo-
tion and Manipulation through Control Lyapunov Functions and Quadratic Pro-
grams”. In:LectureNotes inControl and Information Sciences. isbn: 9783319011585.
doi: 10.1007/978-3-319-01159-2{_}12.

Ames, Aaron D., Xiangru Xu, et al. (2017). “Control Barrier Function Based
Quadratic Programs for Safety Critical Systems”. In: IEEE Transactions on Auto-
matic Control 62.8, pp. 3861–3876. issn: 00189286. doi: 10.1109/TAC.2016.
2638961.

Amos, Brandon et al. (2018). “Differentiable MPC for End-to-End Planning and
Control”. In:Advances inNeural InformationProcessing Systems2018-Decem.NeurIPS,
pp. 8289–8300. issn: 10495258.

Aswani, Anil et al. (2013). “Provably Safe and Robust Learning-based Model Pre-
dictive Control”. In: Automatica 49.5, pp. 1216–1226. issn: 00051098. doi:
10.1016/j.automatica.2013.02.003. url: http://dx.doi.org/
10.1016/j.automatica.2013.02.003.

Balaram, Bob J. et al. (2018). “Mars Helicopter Technology Demonstrator”. In:
AIAA Atmospheric Flight Mechanics Conference, 2018 209999. doi: 10.2514/
6.2018-0023.

Bangura, Moses and Robert Mahoney (2012). “Nonlinear Dynamic Modeling for
High Performance Control of a Quadrotor”. In: Proc. Australasian Conf. on
Robotics and Automation.

Bangura, Moses and Robert Mahony (Jan. 2014). “Real-time Model Predictive
Control for Quadrotors”. In: IFAC Proceedings Volumes 47.3, pp. 11773–11780.
issn: 1474-6670. doi: 10.3182/20140824-6-ZA-1003.00203.

Bayer, Florian, Mathias Burger, and Frank Allgower (2013). “Discrete-time In-
cremental ISS: A framework for Robust NMPC”. In: 2013 European Control
Conference, ECC 2013, pp. 2068–2073. doi: 10.23919/ECC.2013.6669322.

90

Beckers, Thomas, Dana Kulić, and Sandra Hirche (May 2019). “Stable Gaussian
Process Based Tracking Control of Euler–Lagrange Systems”. In: Automatica
103, pp. 390–397. issn: 00051098. doi: 10.1016/j.automatica.2019.01.
023.

Berger, Erik et al. (May 2015). “Estimation of Perturbations in Robotic Behavior
Using Dynamic Mode Decomposition”. In: Advanced Robotics 29.5, pp. 331–
343. issn: 0169-1864. doi: 10.1080/01691864.2014.981292. url: https:
//doi.org/10.1080/01691864.2014.981292.

Berkenkamp, Felix et al. (2017). “Safe Model-based Reinforcement Learning with
Stability Gurantees”. In: 31st Conference on Neural Information Processing Sys-
tems (NIPS 2017) 47.12, pp. 737–742. issn: 1340-3451.

Blanchini, Franco (Nov. 1999). “Set Invariance in Control”. In: Automatica 35.11,
pp. 1747–1767. issn: 00051098. doi: 10.1016/S0005-1098(99)00113-2.

Bloemen, Hayco H. J., Mark Cannon, and Basil Kouvaritakis (2002). “Closed-loop
Sta bilizing MPC for Discrete-time Bilinear Systems”. In: European Journal of
Control 8.4, pp. 304–314. issn: 09473580. doi: 10.3166/ejc.8.304-314.
url: http://dx.doi.org/10.3166/ejc.8.304-314.

Borrmann, Urs et al. (Jan. 2015). “Control Barrier Certificates for Safe Swarm
Behavior”. In: IFAC-PapersOnLine. Vol. 48. 27. Elsevier B.V., pp. 68–73. doi:
10.1016/j.ifacol.2015.11.154.

Bouffard, Patrick, Anil Aswani, and Claire Tomlin (2012). “Learning-based Model
Predictive Control on a Quadrotor: Onboard Implementation and Experimen-
tal Results”. In: Proceedings - IEEE International Conference on Robotics and
Automation, pp. 279–284. doi: 10.1109/ICRA.2012.6225035.

Bruder, Daniel, Xun Fu, and Ram Vasudevan (July 2021). “Advantages of Bilinear
Koopman Realizations for the Modeling and Control of Systems with Unknown
Dynamics”. In: IEEE Robotics and Automation Letters 6.3, pp. 4369–4376. doi:
10.1109/LRA.2021.3068117.

Bruder, Daniel, Brent Gillespie, et al. (2019). “Modeling and Control of Soft Robots
Using theKoopmanOperator andModel Predictive Control”. In: doi: 10.15607/
rss.2019.xv.060.

Brunton, Bingni W. et al. (2016). “Extracting Spatial-temporal Coherent Patterns
in Large-scale Neural Recordings Using Dynamic Mode Decomposition”. In:
Journal of Neuroscience Methods 258, pp. 1–15. issn: 1872678X. doi: 10.
1016/j.jneumeth.2015.10.010. url: http://dx.doi.org/10.1016/j.
jneumeth.2015.10.010.

Brunton, Steven L. and J. Nathan Kutz (2019). Data-Driven Science and Engineer-
ing: Machine Learning, Dynamical Systems, and Control. Cambridge University
Press.

91

Brunton, Steven L., Joshua L. Proctor, et al. (2016). “Discovering Governing Equa-
tions from Data by Sparse Identification of Nonlinear Dynamical Systems”. In:
Proceedings of the National Academy of Sciences of the United States of America
113.15, pp. 3932–3937. issn: 10916490. doi: 10.1073/pnas.1517384113.
url: http : / / www . pnas . org / content / pnas / early / 2016 / 03 / 23 /
1517384113.full.pdf.

Budišić, Marko, Ryan Mohr, and Igor Mezić (2012). “Applied Koopmanism”. In:
Chaos 22.4. issn: 10541500. doi: 10.1063/1.4772195.

Castaneda, Fernando et al. (May 2021). “Gaussian Process-based Min-norm Sta-
bilizing Controller for Control-Affine Systems with Uncertain Input Effects and
Dynamics”. In: Proceedings of the American Control Conference 2021-May,
pp. 3683–3690. doi: 10.23919/ACC50511.2021.9483420.

Chang, Alexander H. et al. (2017). “Learning to Jump in Granular Media: Unifying
Optimal Control Synthesis with Gaussian Process-based Regression”. In: Pro-
ceedings - IEEE International Conference on Robotics and Automation, pp. 2154–
2160. issn: 10504729. doi: 10.1109/ICRA.2017.7989248.

Chen, Yuxiao, Huei Peng, et al. (Jan. 2019). “Data-Driven Computation of Mini-
mal Robust Control Invariant Set”. In: Proceedings of the IEEE Conference on
Decision and Control. Vol. 2018-December. Institute of Electrical and Electron-
ics Engineers Inc., pp. 4052–4058. isbn: 9781538613955. doi: 10.1109/CDC.
2018.8619312.

Chen, Yuxiao, Andrew Singletary, and Aaron D. Ames (2020). “Guaranteed Ob-
stacle Avoidance for Multi-Robot Operations With Limited Actuation: A Control
Barrier Function Approach”. In: IEEE Control Systems Letters 5.1, pp. 127–132.
doi: 10.1109/lcsys.2020.3000748.

Cheng, Richard et al. (July 2019). “End-to-End Safe Reinforcement Learning
Through Barrier Functions for Safety-Critical Continuous Control Tasks”. In:
Proceedings of the AAAI Conference on Artificial Intelligence 33.01, pp. 3387–
3395. issn: 2374-3468. doi: 10.1609/AAAI.V33I01.33013387. url: https:
//ojs.aaai.org/index.php/AAAI/article/view/4213.

Choi, Jason et al. (Apr. 2020). “Reinforcement Learning for Safety-Critical Control
under Model Uncertainty, using Control Lyapunov Functions and Control Barrier
Functions”. In: url: http://arxiv.org/abs/2004.07584.

Cohen, Max H. and Calin Belta (Dec. 2020). “Approximate Optimal Control for
Safety-Critical Systems with Control Barrier Functions”. In: Proceedings of the
IEEE Conference on Decision and Control 2020-December, pp. 2062–2067. doi:
10.1109/CDC42340.2020.9303896.

Cruise (2018). 2018 SELF-DRIVING SAFETY REPORT. Tech. rep.

92

Deisenroth, Marc Peter, Dieter Fox, and Carl Edward Rasmussen (2015). “Gaus-
sian Processes for Data-efficient Learning in Robotics and Control”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence. issn: 01628828. doi:
10.1109/TPAMI.2013.218.

Fisac, Jaime F., AnayoK.Akametalu, et al. (2019). “AGeneral Safety Framework for
Learning-Based Control in Uncertain Robotic Systems”. In: IEEE Transactions
on Automatic Control 64.7, pp. 2737–2752. issn: 15582523. doi: 10.1109/TAC.
2018.2876389.

Fisac, Jaime F., Andrea Bajcsy, et al. (May 2018). “Probabilistically Safe Robot Plan-
ning with Confidence-Based Human Predictions”. In: url: https://arxiv.
org/abs/1806.00109v1.

Folkestad, Carl and Joel W. Burdick (May 2021). “Koopman NMPC: Koopman-
based Learning and Nonlinear Model Predictive Control of Control-affine Sys-
tems”. In: 2021 IEEE International Conference on Robotics and Automation
(ICRA). url: http://arxiv.org/abs/2105.08036.

Folkestad, Carl, Yuxiao Chen, et al. (Dec. 2021). “Data-Driven Safety-Critical Con-
trol: Synthesizing Control Barrier Functions with Koopman Operators”. In: IEEE
Control Systems Letters 5.6, pp. 2012–2017. issn: 24751456. doi: 10.1109/
LCSYS.2020.3046159.

Folkestad, Carl, Daniel Pastor, and Joel W. Burdick (May 2020). “Episodic Koop-
man Learning of Nonlinear Robot Dynamics with Application to Fast Multirotor
Landing”. In: Proceedings - IEEE International Conference on Robotics and Au-
tomation. Institute of Electrical and Electronics Engineers Inc., pp. 9216–9222.
isbn: 9781728173955. doi: 10.1109/ICRA40945.2020.9197510.

Folkestad, Carl, Daniel Pastor, Igor Mezic, et al. (July 2020). “Extended Dynamic
Mode Decomposition with Learned Koopman Eigenfunctions for Prediction and
Control”. In: Proceedings of the American Control Conference. Vol. 2020-July.
Institute of Electrical and Electronics Engineers Inc., pp. 3906–3913. isbn:
9781538682661. doi: 10.23919/ACC45564.2020.9147729.

Folkestad, Carl, Skylar X. Wei, and Joel W. Burdick (2022). “Quadrotor Trajec-
tory Tracking with Learned Dynamics: Joint Koopman-based Learning of Sys-
tem Models and Function Dictionaries”. In: 2022 International Conference on
Robotics and Automation (ICRA) (submitted).

Gay, Olivier (n.d.). Libaffa - C++ Affine Arithmetic Library for GNU/Linux.

Goswami, Debdipta and Derek A. Paley (2018). “Global Bilinearization and Con-
trollability of Control-affineNonlinear Systems: AKoopman Spectral Approach”.
In: 2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017
2018-Janua.Cdc, pp. 6107–6112. doi: 10.1109/CDC.2017.8264582.

Grandia, Ruben et al. (2020). “Nonlinear Model Predictive Control of Robotic
Systems with Control Lyapunov Functions”. In: doi: 10.15607/rss.2020.
xvi.098. url: http://arxiv.org/abs/2006.01229.

93

Gros, Sébastien et al. (2020). “From Linear to Nonlinear MPC: Bridging the Gap
via the Real-time Iteration”. In: International Journal of Control 93.1, pp. 62–80.
issn: 13665820. doi: 10.1080/00207179.2016.1222553.

Gurriet, Thomas, Sylvain Finet, et al. (2018). “Towards Restoring Locomotion for
Paraplegics: Realizing Dynamically Stable Walking on Exoskeletons”. In: Pro-
ceedings - IEEE International Conference on Robotics and Automation, pp. 2804–
2811. issn: 10504729. doi: 10.1109/ICRA.2018.8460647.

Gurriet, Thomas, Mark Mote, et al. (2019). “An Online Approach to Active Set
Invariance”. In: Proceedings of the IEEE Conference on Decision and Control.
isbn: 9781538613955. doi: 10.1109/CDC.2018.8619139.

Hoffmann, Gabe M. et al. (2007). “Quadrotor Helicopter Flight Dynamics and
Control: Theory and Experiment”. In: Proc. AAIA Guidance and Control Conf.

Huang, Bowen, Xu Ma, and Umesh Vaidya (2019). “Feedback Stabilization Using
Koopman Operator”. In: Proceedings of the IEEE Conference on Decision and
Control 2018-Decem.1, pp. 6434–6439. issn: 07431546. doi: 10.1109/CDC.
2018.8619727.

Kaiser, Eurika, J. Nathan Kutz, and Steven L. Brunton (2018). “Sparse Identification
of Nonlinear Dynamics for Model Predictive Control in the Low-data Limit”. In:
Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sci-
ences 474.2219. issn: 14712946. doi: 10.1098/rspa.2018.0335.url: https:
//docs.wixstatic.com/ugd/c50953_e5f09192e29340e3872a333a5556bed1.
pdf.

– (June 2021). “Data-driven Discovery of Koopman Eigenfunctions for Control”.
In:Machine Learning: Science and Technology 2.3, p. 035023. issn: 2632-2153.
doi: 10.1088/2632-2153/ABF0F5. url: https://iopscience.iop.org/
article/10.1088/2632-2153/abf0f5%20https://iopscience.iop.
org/article/10.1088/2632-2153/abf0f5/meta.

Khalil, Hassan K. (2002). Nonlinear Systems. 3rd ed. Pearson.

Kober, Jens, J. Andrew Bagnell, and Jan Peters (2013). “Reinforcement Learning
in Robotics: A Survey”. In: International Journal of Robotics Research 32.11,
pp. 1238–1274. issn: 02783649. doi: 10.1177/0278364913495721.

Koopman, Bernard O. and John V. Neumann (May 1932). “Dynamical Systems
of Continuous Spectra.” In: Proceedings of the National Academy of Sciences
of the United States of America 18.3, pp. 255–263. issn: 0027-8424. doi: 10.
1073/PNAS.18.3.255. url: http://www.ncbi.nlm.nih.gov/pubmed/
16587673%20http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=PMC1076203.

Korda, Milan and Igor Mezić (2018a). “Learning Koopman Eigenfunctions for
Prediction and Control: the Transient Case”. In: pp. 1–32. url: http://arxiv.
org/abs/1810.08733.

94

Korda, Milan and Igor Mezić (2018b). “Linear Predictors for Nonlinear Dynamical
Systems: Koopman Operator Meets Model Predictive Control”. In: Automatica
93, pp. 149–160. issn: 00051098.doi: 10.1016/j.automatica.2018.03.046.

Kouzoupis, Dimitris et al. (2018). “Recent Advances in Quadratic Programming
Algorithms for Nonlinear Model Predictive Control”. In: Vietnam Journal of
Mathematics 46.4, pp. 863–882. issn: 23052228. doi: 10.1007/s10013-018-
0311-1.

Lan, Yueheng and Igor Mezić (2013). “Linearization in the Large of Nonlinear
Systems and Koopman Operator Spectrum”. In: Physica D 242.1, pp. 42–53.
issn: 01672789. doi: 10.1016/j.physd.2012.08.017. url: http://dx.
doi.org/10.1016/j.physd.2012.08.017%20www.elsevier.com/
locate/physd.

Landry, Benoit et al. (June 2016). “Aggressive Quadrotor Flight Through Cluttered
Environments using Mixed Integer Programming”. In: Proceedings - IEEE In-
ternational Conference on Robotics and Automation 2016-June, pp. 1469–1475.
doi: 10.1109/ICRA.2016.7487282.

Lecun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep Learning”. In:
Nature 521.7553, pp. 436–444. issn: 14764687. doi: 10.1038/nature14539.

Li, Qianxiao et al. (2017). “Extended Dynamic Mode Decomposition with Dictio-
nary Learning: A Data-driven Adaptive Spectral Decomposition of the Koopman
Operator”. In: Chaos 27.10. issn: 10541500. doi: 10.1063/1.4993854. url:
http://dx.doi.org/10.1063/1.4993854.

Liu, Cunjia, Hao Lu, and Wen Hua Chen (Sept. 2015). “An Explicit MPC for
Quadrotor Trajectory Tracking”. In: Chinese Control Conference, CCC 2015-
September, pp. 4055–4060. doi: 10.1109/CHICC.2015.7260264.

Ljung, Lennart (1987). System Identification—Theory for theUser. isbn: 0136566952.

Lupashin, Sergei et al. (2014). “APlatform forAerial RoboticsResearch andDemon-
stration: The Flying Machine Arena”. In: Mechatronics. issn: 09574158. doi:
10.1016/j.mechatronics.2013.11.006.

Lusch, Bethany, J. Nathan Kutz, and Steven L. Brunton (2018). “Deep Learning for
Universal Linear Embeddings of Nonlinear Dynamics”. In: Nature Communica-
tions 9.1. issn: 20411723. doi: 10.1038/s41467-018-07210-0.

Mamakoukas, Giorgos, Ian Abraham, and Todd D. Murphey (2020). “Learning
Data-Driven Stable Koopman Operators”. In: pp. 1–13. url: http://arxiv.
org/abs/2005.04291.

Manek, Gaurav and J. Zico Kolter (2020). “Learning Stable Deep Dynamics Mod-
els”. In: NeurIPS, pp. 1–9. url: http://arxiv.org/abs/2001.06116.

Mauroy, Alexandre and Jorge Goncalves (2016). “Linear Identification of Nonlinear
Systems: A Lifting Technique Based on the Koopman Operator”. In: 2016 IEEE
55th Conference on Decision and Control (CDC), pp. 6500–6505.

95

Mauroy, Alexandre, Igor Mezic, and Yoshihiko Susuki (2020). The Koopman Op-
erator in Systems and Control. 1st ed. Springer Nature.

Mauroy, Alexandre and Igor Mezić (2016). “Global Stability Analysis Using the
Eigenfunctions of the Koopman Operator”. In: IEEE Transactions on Automatic
Control 61.11, pp. 3356–3369. issn: 00189286. doi: 10.1109/TAC.2016.
2518918.

Mayne,DavidQ. et al. (June 2000). “ConstrainedModel PredictiveControl: Stability
and Optimality”. In: Automatica 36.6, pp. 789–814. issn: 0005-1098. doi: 10.
1016/S0005-1098(99)00214-9.

Mohr, Ryan and Igor Mezić (2014). “Construction of Eigenfunctions for Scalar-type
Operators via Laplace Averages with Connections to the Koopman Operator”. In:
pp. 1–25. url: http://arxiv.org/abs/1403.6559.

Morris, Benjamin J.,Matthew J. Powell, andAaronD.Ames (2015). “Continuity and
Smoothness Properties of Nonlinear Optimization-based Feedback Controllers”.
In: Proceedings of the IEEE Conference on Decision and Control 54rd IEEE.Cdc,
pp. 151–158. issn: 07431546. doi: 10.1109/CDC.2015.7402101.

Narasingam, Abhinav and Joseph Sang-Il Kwon (2020). “Data-driven Feedback
Stabilization of Nonlinear Systems: Koopman-based Model Predictive Control”.
In: pp. 1–11. url: http://arxiv.org/abs/2005.09741.

O’Brien, Ed (2018). Drone Delivery Update : Moving Forward in the Skies. Tech.
rep., pp. 1–8.

Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High-PerformanceDeep
Learning Library”. In: Advances in Neural Information Processing Systems 32.

Pedregosa, Fabian et al. (2011). “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12, pp. 2825–2830. url: http : / /
scikit-learn.sourceforge.net..

Phan, Minh Q. et al. (2012). “Discrete-time Bilinear Representation of Continuous-
time Bilinear State-space Models”. In: Advances in the Astronautical Sciences.
isbn: 9780877035817.

Pickem, Daniel et al. (2017). “The Robotarium: A Remotely Accessible Swarm
Robotics Research Testbed”. In: Proceedings - IEEE International Conference on
Robotics and Automation. isbn: 9781509046331. doi: 10.1109/ICRA.2017.
7989200.

Preiss, JamesA. et al. (July 2017). “Crazyswarm:ALargeNano-quadcopter Swarm”.
In: Proceedings - IEEE International Conference on Robotics and Automation,
pp. 3299–3304. doi: 10.1109/ICRA.2017.7989376.

Proctor, Joshua L., Steven L. Brunton, and J. Nathan Kutz (2016). “Dynamic Mode
Decomposition with Control”. In: SIAM Journal on Applied Dynamical Systems
15.1, pp. 142–161. issn: 15360040. doi: 10.1137/15M1013857.

96

Proctor, JoshuaL., StevenL.Brunton, and J.NathanKutz (Mar. 2018). “Generalizing
Koopman Theory to Allow for Inputs and Control”. In: SIAM J. Appl. Dyn. Syst.
17.1, pp. 909–930. doi: 10.1137/16M1062296. url: http://www.siam.org/
journals/siads/17-1/M106229.html.

Raković, Saša V. et al. (2006). “Simple Robust Control Invariant Tubes for Some
Classes of Nonlinear Discrete Time Systems”. In: Proceedings of the IEEE Con-
ference on Decision and Control. Institute of Electrical and Electronics Engineers
Inc., pp. 6397–6402. isbn: 1424401712. doi: 10.1109/cdc.2006.377551.

Rasmussen, Carl Edward andChristopherK. I.Williams (2018).GaussianProcesses
for Machine Learning. MIT Press. doi: 10.7551/mitpress/3206.001.0001.

Rawlings, James B. and David Q. Mayne (2012). Model Predictive Control Theory
and Design. Nob Hill Publishing. isbn: 978-0-975-93770-9.

Recht, Benjamin (2019). “A Tour of Reinforcement Learning: The View from Con-
tinuous Control”. In: Annual Review of Control, Robotics, and Autonomous Sys-
tems 2.1, pp. 253–279. issn: 2573-5144. doi: 10.1146/annurev-control-
053018-023825.

Richards, Spencer M., Felix Berkenkamp, and Andreas Krause (2018). “The Lya-
punov Neural Network: Adaptive Stability Certification for Safe Learning of
Dynamical Systems”. In: The 2nd Conference on Robotic Learning. CoRL. url:
http://arxiv.org/abs/1808.00924.

Rosolia, Ugo, Xiaojing Zhang, and Francesco Borrelli (2018). “Data-Driven Predic-
tive Control for Autonomous Systems”. In: Annual Review of Control, Robotics,
and Autonomous Systems 1.1, pp. 259–286. issn: 2573-5144. doi: 10.1146/
annurev-control-060117-105215.

Rowley, Clarence W. et al. (2009). “Spectral Analysis of Nonlinear Flows”. In:
Journal of Fluid Mechanics 641.Rowley 2005, pp. 115–127. issn: 00221120.
doi: 10.1017/S0022112009992059.

Rump, Siegfried M. (1999). INTLAB— INTerval LABoratory. doi: 10.1007/978-
94-017-1247-7{_}7. url: https://link.springer.com/chapter/10.
1007/978-94-017-1247-7_7.

Sanchez-Cuevas, Pedro, Guillermo Heredia, and Anibal Ollero (2017). “Characteri-
zation of the Aerodynamic Ground Effect and its Influence in Multirotor control”.
In: International Journal of Aerospace Engineering 2017. issn: 16875974. doi:
10.1155/2017/1823056.

Schmid, Peter J. (2010). “Dynamic Mode Decomposition of Numerical and Exper-
imental Data”. In: Journal of Fluid Mechanics 656, pp. 5–28. issn: 14697645.
doi: 10.1017/S0022112010001217.

97

Schmidhuber, Jürgen (2015). “Deep Learning in Neural Networks: An Overview”.
In: Neural Networks 61, pp. 85–117. issn: 18792782. doi: 10.1016/j.neunet.
2014.09.003. url: http://dx.doi.org/10.1016/j.neunet.2014.09.
003.

Shi, Guanya, Wolfgang Hönig, et al. (Dec. 2020). “Neural-Swarm2: Planning and
Control of Heterogeneous Multirotor Swarms using Learned Interactions”. In:
IEEE Transactions on Robotics, pp. 1–17. url: https://arxiv.org/abs/
2012.05457v2.

Shi, Guanya, Xichen Shi, et al. (2019). “Neural Lander: Stable Drone Landing
Control using Learned Dynamics”. In: International Conference on Robotics and
Automation (ICRA), pp. 9784–9790. url: http://arxiv.org/abs/1811.
08027.

Singletary,Andrew,YuxiaoChen, andAaronD.Ames (Dec. 2020). “Control Barrier
Functions for Sampled-Data Systems with Input Delays”. In: Proceedings of the
IEEE Conference on Decision and Control 2020-December, pp. 804–809. doi:
10.1109/CDC42340.2020.9304281.

Singletary, Andrew, Petter Nilsson, et al. (2019). “Online Active Safety for Robotic
Manipulators”. In: IEEE International Conference on Intelligent Robots and Sys-
tems. isbn: 9781728140049. doi: 10.1109/IROS40897.2019.8968231.

Stellato, Bartolomeo et al. (2018). “OSQP:AnOperator SplittingSolver forQuadratic
Programs”. In: 2018 UKACC 12th International Conference on Control, CON-
TROL 2018 1, p. 339. doi: 10.1109/CONTROL.2018.8516834.

Surana, Amit (2016). “Koopman Operator Based Observer Synthesis for Control-
affine Nonlinear Systems”. In: 2016 IEEE 55th Conference on Decision and
Control, CDC 2016 Cdc, pp. 6492–6499. doi: 10.1109/CDC.2016.7799268.

Surana, Amit et al. (2018). “Koopman Operator Framework for Constrained State
Estimation”. In: 2017 IEEE 56th Annual Conference on Decision and Control,
CDC 2017. isbn: 9781509028733. doi: 10.1109/CDC.2017.8263649.

Taira, Kunihiko et al. (2017). “Modal Analysis of Fluid Flows: An Overview”.
In: AIAA Journal 55.12, pp. 4013–4041. doi: 10 . 2514 / 1 . J056060. url:
www.aiaa.org/randp..

Taylor, Andrew J., Victor D. Dorobantu, Sarah Dean, et al. (Nov. 2020). “Towards
Robust Data-Driven Control Synthesis for Nonlinear Systems with Actuation
Uncertainty”. In: url: http://arxiv.org/abs/2011.10730.

Taylor, Andrew J., Victor D. Dorobantu, Meera Krishnamoorthy, et al. (2019).
“A Control Lyapunov Perspective on Episodic Learning via Projection to State
Stability”. In: Proceedings of the IEEE Conference on Decision and Control.
Vol. 2019-Decem. 0, pp. 1448–1455. isbn: 9781728113982. doi: 10.1109/
CDC40024.2019.9029226. url: http://arxiv.org/abs/1903.07214.

98

Taylor, Andrew J., Victor D. Dorobantu, Hoang M. Le, et al. (2019). “Episodic
Learning with Control Lyapunov Functions for Uncertain Robotic Systems”. In:
IEEE International Conference on Intelligent Robots and Systems, pp. 6878–
6884. isbn: 9781728140049. doi: 10.1109/IROS40897.2019.8967820. url:
http://arxiv.org/abs/1903.01577.

Taylor, Andrew J., AndrewSingletary, et al. (July 2020).Learning for Safety-Critical
Control with Control Barrier Functions. url: https://proceedings.mlr.
press/v120/taylor20a.html.

Tran, Duc N., Björn S. Rüffer, and ChristopherM. Kellett (Dec. 2016). “Incremental
Stability Properties forDiscrete-timeSystems”. In: 2016 IEEE55thConference on
Decision andControl, CDC2016. Institute of Electrical andElectronics Engineers
Inc., pp. 477–482. isbn: 9781509018376. doi: 10.1109/CDC.2016.7798314.

Tu, Jonathan H. et al. (2014). “On Dynamic Mode Decomposition: Theory and
Applications”. In: Journal of Computational Dynamics 1.2, pp. 391–421. issn:
21582505. doi: 10.3934/jcd.2014.1.391.

Turchetta, Matteo, Felix Berkenkamp, and Andreas Krause (2019). “Safe Explo-
ration for Interactive Machine Learning”. In: Advances in Neural Information
Processing Systems. url: http://arxiv.org/abs/1910.13726.

Voloshin, Cameron et al. (2021). “The Caltech Off-Policy Policy Evaluation Bench-
marking Suite”. In: Conference on Neural Information Processing Systems. url:
https://github.com/clvoloshin/COBS.

Wang, Li, Evangelos A. Theodorou, and Magnus Egerstedt (Sept. 2018). “Safe
Learning of Quadrotor Dynamics Using Barrier Certificates”. In: Proceedings
- IEEE International Conference on Robotics and Automation, pp. 2460–2465.
doi: 10.1109/ICRA.2018.8460471.

Wang, Rongyao, Yiqiang Han, and Umesh Vaidya (2021). “Deep Koopman Data-
Driven Optimal Control Framework for Autonomous Racing Deep Koopman
Data-Driven Optimal Control Framework for Autonomous Racing”. In: Easy-
Chair Preprint.

Wenk, Philippe et al. (Apr. 2020). “ODIN: ODE-Informed Regression for Parameter
and State Inference in Time-Continuous Dynamical Systems”. In: Proceedings
of the AAAI Conference on Artificial Intelligence 34.04, pp. 6364–6371. issn:
2374-3468. doi: 10.1609/AAAI.V34I04.6106. url: https://ojs.aaai.
org/index.php/AAAI/article/view/6106.

Williams, Matthew O., Ioannis G. Kevrekidis, and Clarence W. Rowley (2015).
“A Data–Driven Approximation of the Koopman Operator: Extending Dynamic
Mode Decomposition”. In: Journal of Nonlinear Science 25.6, pp. 1307–1346.
issn: 14321467. doi: 10.1007/s00332-015-9258-5.

Zeilinger, Melanie N. (2011). “Real-time Model Predictive Control”. PhD thesis.
ETH Zürich. doi: 10.3929/ethz-a-6619878. url: https://doi.org/10.
3929/ethz-a-6619878.

99

Zheng, Lei et al. (Oct. 2020). “Learning-Based Safety-Stability-Driven Control
for Safety-Critical Systems under Model Uncertainties”. In: 12th International
Conference on Wireless Communications and Signal Processing, WCSP 2020,
pp. 1112–1118. doi: 10.1109/WCSP49889.2020.9299833.

