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ABSTRACT 

(1) 

A study of the electronic levels associated with the divacancy 

in silicon is reported, The extended Huckel theory is shown to 
, ?Jell the e11erg ;;t.,} 

reproduce the band structure of silicon":"" The electronic levels of 

the divacancy are calculated by considering a periodic array of 

large unit cells each containing 62 atoms; a 64 atom perfect cell 

with 2 atoms removed to form the divacancy. The results are found 

to be in qualitative agreement with the results of EPR and infrared 

absorption measurements. 

(2) 

A theory of the -.tariation of conduction electron density with 

the temperature for various impurity concentrations is presented . 

In addition to previously noted effects of conduction band edce 

lowering and screening of the impurity potential by the conduction 

electrons, the influence of a finite energy transfer integral 

and spatial fluctuation in the potential are included. The results 

show that for ND ~ 1017 cm-Jin silicon one must not view the acti­

vation as occurring between a single impurity level and a well 

defined conduction band edge, but must include the broadening of 

the impurity level and tailing of the conduction band den sity of 

states, Calculations for the shallow donors P, Sb, and As in Si 

are found to be in satisfactory agreement with experim ent. 



V 

(3) 

Hall and sheet resistivity measurements as a function of 

temperature combined with layer removal have been used to study 

Si implanted with Te at energies up to 220 KeV. At low doses 

~4 x 1012 cm-2), Te has a donor level ,with 140 meV activation 

energy. The activation energy decreases at higher Te doses and is 

approximately equal to zero for Te doses~ 1015 cm-2 • At high dos e 

levels, the number N of conduction electrons is more than an 
s 

-2 order of magnitude below the number of Te cm • High temperature 

anneal treatments followed by quenching did not produce a substantial 

increase in N suggesting that the formation of Te clusters was 
s 

not responsible for the low value of N. Also channeling measurements 
s 

indicated a hi&h substitutional fraction. Based on differential Hall 

measurements on P-implanted samples, with and without Si pre-

damage, we conclude that residual radiation damage is not a major 

factor. A theoretical caJculation, which includes the effect of 

decrease of activation energy with increasing impurity concentrations , 

indicated that the number of conduction electrons could be much 

less than the :number of implanted Te even though the apparent 

activation energy is almost zero. Although the results of theoretical 

calculation do not ~ive quantitative agreement with the experimental 

results, they do confirm the changes in apparent activation energy 

with concentration. 
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PART ONE 

I NTRODUCTION 
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Deep level impurities in semiconductors(i) are of considerable 

interest because they have been found to create important effects 

in the devices. For examples, the presence of gold in . silicon _d,J 
( 2 ) the de.y, iPvJ f eak r~ c 

junction can increase the switching speed; , Vriitrogen impurities 

are responsible for the high quantum efficiency of gallium phosphide 

light emitting diode.(J) Also, there has been a upsurge of interest 

in heavily doped semiconductors.(4) This interest is both due to 

their expanding applications and their new phenomena in the semi­

conductor physics. This thesis contains both theoretical and experi­

mental studies addressed to the problem of deep levels and high 

impurity concentrations in silicon, 

Deep levels in semiconductors have been the subject of study 

for about 20 years, Until recently, very little theoretical work 

has been reported on this difficult problem. The theoretical compli­

cation is due to the tight binding character and multiplicity of 

charge states which are usually associated with deep levels, In 

addition, the lattice distortion around the defect center has 
/ 

also been thought to have significant influence on the deep energy 

levels, Therefore, the effective mass theory, which works success­

fully for shallow levels, is not applicable to deep level problems. 

An appropriate theory for deep levels should correctly take into 

account the defect center potential, electron-electron interaction 

and the lattice distortions, simultaneously. 

There have been two different kinds of approac~sto treat 

the deep level problems. One is the solid state scattering theory 
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(SST) used by Callaway(S) and the other is the defect molecular 

model (DMM) pioneered by Coulson and Kearsley.( 6) In the SST, the 

solid state continuum aspects of the problem are emphasized. The 

defect energy level is calculated in terms of scattering of electrom' 

off the defect center potential. The tremendous amount of work in 

this calculation makes it difficult to incorporate the electron­

electron interaction and lattice distortions into the solid state 

scatering theory. The SST has been applied to undistorted vacancy(?) 

and undistorted divacanci8 )in silicon. The lattice distortions were 

neglected in their calculations. 

In the defect molecular model, one considers all thebonds 

near the defect center and treats them like a molecular unit. A 

full configuration interaction, electron-electron interaction and 

Jahn-Teller distortion are included in this model. This model has 

been applied with moderate success to vacanci 6•9•10) and diva­

cancy(ii) in diamond. Because of the complicated calculations 

involved, it is difficult to extend this model to a molecular unit 

with a large number of atoms. Hence, the influence of the bonds 

other than the nearest ones are not included. This makes this method 

not suitable for defect centers of which the amplitude of the 

electron wavefunction extends over more than just the nearest bonds. 

Furthemore, since the solid state continuum aspect is totally 

lost in this molecular model, the relative position of the defect 

levels with respect to the solid state band diagram can not be 

d0tennined. 

necently, Messmer n.nd Watkins(i2) have modified the DrJ.I so 

/ 
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that they can treat large molecular unit. In the modified DMN, they 

have used the extended Huckel theory (EHT), (i3) :/;,!{a,} 3a....fl =~e@­
electron molecular-orbital treatment, on a finite cluster of atoms 

to investigate the nature of deep defect levels. Lattice distortions 

are directly included by moving atoms in the cluster about until 

the total energy of the system reached a minimum. However, the 

variation of electron-electron interaction and ion-ion interaction 

with charge state and distortion were not included in this treatment. 

It has also been pointed out that, by directly applying the EH'r 

to cluster of atoms, the energy levels and the ordering of the 

( 1L~ 15) 
symmetry depend upon the size of the cluster selected. ' 

In Part II of this thesis, we have used the EHT to calculate 

deep energy levels. Due to the inherent complication of deep level 

problems, we chose a simple system to study: divacancy in silicon. 

It has been suggested(i6) that divacancy in silicon introduces 

three levels in the energy Gap, with four charge states ( +1, O, -1 
,S 

and ·-2); the single donor stateAlocated approximately at 0.25 eV 

above the valence band edge and the double acceptor state is at 

about O.L~ eV below the conduction band edge. Watkins and Corbett(i6 ) 

deduced a model for lattice distortion around the silicon divacancy 

by using their electron-para.maenetic-resonance data. Furthermore, 

suggested by the results of EPR and stress experiments, WatI-:-L.1s(i ?) 

claimed that the energy associated with this lattice distortion 

was about 2 eV and thus had significant influence on the energy 

levels. 1.'le have used the model of Watkins and Corbett to include 

the distortion around the silicon di vacancy. Tha:t is, irn arrplied. 
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the EHT to a system of periodic larc;e unit cell with a distorted 

divacancy in each cell. This treatment differs from that of Nessmer 

and Watkins in that they used a cluster of atoms to calculate energy 

level of nitrogen in silicon whereas we used a solid which consisted 

of periodic large unit cell. 

As to heavily doped semiconductors, it has been reported 

that the impurity-to-band activation energy decreases with increasing 

impurity concentrations.(iS) A number of different suggestions have 

been put forward to account for this phenomenon theorelticrally. 

Pearson and Bardeen,(iS) and Castellan and Seitz(i9) suggested that 

the decrease of impurity activation energy with impurity concen­

trations was due to attraction between the conduction electrons 

and ionized donors. Calculations based upon this physical model 

yielded qualitative but not quantitative agreement with the experi-'­

mental results. Pincherle( 2o) proposed that free carriers screen 

the field of the impurity center and hence give rise to decrease of 

electron binding energy to the impurity center. Calculations based' 

upon this proposal only did not give satisfactory results. A self­

consistent calculation which combined the above two models was 

given by Lehman and James.( 2i) Their calculation gave a better 

agreement with experimental results but still llnderestimated the 

decrease of activation energy. 

It should be pointed out that both the shift of impurity 

level with respect to band edge and the broadenin~ of impurity level 

could lead to variation of impurity activation energ,J. The impurity 

level shift may be due to the above mentioned physical phenomena, 



6 

i.e. conduction electron screeninG and Coulombic attraction. The 

ir.1purity level broadening may be caused either by the finite energy · 

transfer integral due to wavefunction overlap or by potential fluc­

tuations. In the first case, the impurity level wavefunction at 

a given impurity has finite Hamiltonian matrix elements with impurity 

level Havefunction centered at nearby impurities. This leads to 

finite energy transfer integral and to broadening of impurity levels 

when the impurities are at finite density. Thi s _produces a band 

of levels. In the second case, the presence of charged impurities 

distributed in a random way throughout the solid generated potential 

fluctuations. These potential fluctuations produce tailing of con­

duction and valence band density-of-states( 22 )and spreading of 

impurity levels.( 2J) In Part III of this thesi s, we will include 

both the shift and the broadening of the impurity level to treat 

the decrease of impurity activation energy with impurity concentra-

tions. 

Gener~, deep level impurities have low solid solubility in 

semiconductors and thus it is difficult to heavily dope the semi­

conductors with deep level impurities by thermal equilibrium tech­

niques~ However, ion implantation provides a way to introduce high 

concentratio1uof deep level impurities, even above their solid 

solubilities, in semiconductors. After ion implantation, usually 
(} 

high temperature anneal (600-850 C) is required to reduce the radi~ 

ation damaf,e in the ion implanted samples. Therefore, even though 

ion implantation can introduce impurities above their solid solubi­

lity i nto semiconductors, after high temperature anneal, the impu-
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rities may precipitate by forminG compounds or movin& out of lattice, 

sites and becouc electrically inactive. Channeline; measurement pro­

vides a tool for studying the impurity lattice location.(24) HeV He 

ion backscattering and channelin~ measurements have been made for 

lattice locations of group II and group VI elements in silicon.( 25) 

Of these elements, tellurium is attractive becc.use it has large 

fraction (60%) on substitutional sites.(24-) 

Tellurium has been reported to be a donor in silicon . and f or 
less~ 17 _ 

Te concentration /\ 10 cm ~ a:ad: it has a deep level, 0.1~- eV, below 

the conduction band edr;e.( 26 ) Frevious Hall effect and resistivity 

measurements( 27\ndicated that for lwa,vily Te implanted samples 

the number of conduction electrons/cm2 is much loucr than that of 

implanted substitutional Te/cm2 even though the activation energy is 

almost zero. The discrepancy in these numbers may be due to the fact 

that the measured number of conduction electrons/cm2 is a weighted 

averaee of the implanted impurity concentrations and is usually 

smaller than the number of implanted impuri ti(-!S. Another source for 

tliis discrepancy is that hic;h temperature· anneal after ion implant­

ation may stil1 leave some residual dc]Jllage. The residual damac;e may 
lL 

act like l\ compensation center$ and thus reduces the number of con-

duction electrons/er/. In arsenic diffused srunples , it has been 

founa.C 28 ) that the elect:dcal activity is reduced b:1 lanes heat 

treatment at temperatures of _500-970°C. The electrical activity 

could be increased by heatinr, at hi~h temperatu:res (~1100 °C) arnl. 

then quenchinG, The reduction of electrica1 activity was attributed 

to the formation of As cl ustcrs 1rhlch could lJe di ssocio:ted d.urin< 
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high temperature processing. Similar effects may be responsible for 

this discrepancy in high dose Te implanted samples. 

In I)art IV of this thesis, ue performed Hall effect and resis­

tivity measurements combined. with layer removal technique to investi­

gate the electrical properties of Te implanted silicon samples. Theo­

retical calculations of conduction electrons/cm3 as a function of 

temperature for Te in silicon were also made. ':Che calculated results 

were then compared with experimental data. 
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l. INTRODUCTION 

Up until recently, very little theoretical work has been reportea 

on the difficult questions associated with deep levels in semiconductors. 

This lack of theoretical activity is not due to a lack of experimental 

information on deep levels but is due to the inherent theoretical compli­

cations thought to be associated with the deep level problem. The 

tightly bound character and multiplicity of charge states usually associated 

with deep levels make the standard effective mass theory (Kohn 1957) 

inap~ropriate. An appropriate theory of the deep electronic levels is 

thought to require the simultaneous accurate treatment of the potential 

of the defect, the lattice distortion, and the electron-el~ctron inter­

action. 

Previous theoretical treatments of defect levels have made use 

of two rather different approaches. The first pioneered by Coulson and 

Kearsley (1957) and extended by Coulson and Larkins (1969 and 1971) makes 

use of the defect molecule model (DMM). In the DMM, one approximates 

the problem of a defect in a perfect solid by a small molecular unit 

consisting of the bonds near the defect. A full configuration inter­

action calculation is then performed on this small molecular unit. 

Lattice distortion is treated by expanding the energy of the defect 

molecule to second order in the ·atomic positions and minimizing this 

expansion to obtain the atomic positions and energy eigenvalues. While 

the DMM takes account of electron-electron interaction explicitly, the 

difficult calculations inherent in the method have prevented calculations 
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involving more than the bonds on the nearest neighbors. Hence, the 

influence of bonds further away from the defect have not been included. 

This makes the method unsuitable for the treatment of defects where 

the amplitude of the wavefunction of an electronic level associated with 

the defect extends over more than just the nearest bonds. The DMM has 

been applied with moderate success to the vacancy in diamond by Coulson 

and Kearsley (1957), Coulson and Larkins (1971), and Larkins (1971a) and 

to the divacancy in diamond by Coulson and Larkins (1969). 

Recently, Messmer and Watkins (1970) have modified the DMM so 

that'one can treat larger molecular units. In their calculations, a 

finite cluster of atoms is treated using the extended Huckel theory (EHT) 

(Hoffman 1963). Lattice distortions are treated directly by moving 

.atoms in the cluster about until the total energy of the system reaches 

a minimum. The application of the EHT to the cluster, on the one hand, 

makes it possible to treat very large clusters of atoms. However, on 

the otffer hand, it does not take account explicitly of the variation 

of electron-electron interaction and ion-ion interaction with charge 

state and distortion (Larkins 1971 b,c). 

Messmer and Watkins (1971) and Watkins and Messmer (1970) have 

applied these techniques with moderate success to a number of deep 

levels in diamond. However, Larkins (1971 b,c) has shown that direct 

application of these methods to defects in silicon presents a number 

of problems. The energy gap between occupied and unoccupied levels 

is much larger than the band gap. The energy eigenvalues and the 
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ordering of eigenvalues of various symmetry depend upon the size of the 

cluster selected. 

The second approach makes use of solid state scattering theory 

(SST) (Callaway 1964). In this approach, the solid state continum aspects 

of the problem are emphasized. The defect level problem is cast in terms 

of the scattering of an electron off the defect potential in the presence 

of a perfect crystal (Bennemann 1965; Callaway and Hughes 1967). However, 

. the method has the disadvantages that: it is difficult to identify the 

correct form of the defect potential; the treatment of lattice distor­

tion ana electron-electron interaction is hard to carry out; and a great 

deal of calculational work is required to obtain results. 

In this paper, we report upon a study of a deep level in silicon, 

the divacancy. In this study, we have attempted to marry some of the 

best points of the two methods described above. To do this, ~,e have made 

calculations using the EHT for a perfect solid consisting of large unit 

cells with the divacancies at their center . Hence, we have a well 

defined potential (the absence of two silicon atoms) and at the same time 

we have circumvented the difficulties associated with cluster calculations 

which have been noted above. Using this methoda we obtain results which 

are in qualitative agreement with known experimental results. 

Toe outi ine of this paper 1s as follows: 1n Section 2, we review 

the theoretical approach. In Section 3, we report the results obtained 

for the silicon ,Si-ivacancy. Section 4 contains discussions and conclu­

sions. 
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2. OUTLINE OF THEORY 

2.1 Extended Huckel Theory (EHT) 

In the independent electron approximation, the energy eigenvalues 

and eigenfunctions for a system consisting of a defect in an otherwise 

perfect solid are obtained by solving the time independent Schrodinger 

equation, 

(2.1) 

where , · 

H = Hperfect + Vdefect (2.2) 

V is defined to be the difference in potential between that found defect 

in a perfect crystal and that found with the defect present. One approach 

to solving (2.1) is to take ~i to be a linear combination of atomic 

orbitals, ~ centered on each atom in the crystal. That is, '+'a, 

~,· = ' C 4> l ia a 
(2.3) 

a 

In this case, a solution to (2.1) is obtained when 

(2.4) 

where 

H = <4> IHI 4> > · af3 a f3 (2.5) 

and 
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(2.6) 

In the EHT, the matrix elements of the Hamiltonian between the atomic 

orbitals is approximated by taking 

and 

H - - I aa a 

I is ihe empirical ionization energy of the ath atomic level and 
a 

(2.7a) 

(2.7b) 

Ka$ is a dimensionless parameter usually taken to be between l and 2. 

2.2 Large Unit Cell 

The method of Messmer and Watkins (1970) consistsof the applica­

tion of (2.4) to (2.7) to a large cluster of atoms with the defect in the 

center. However, as will be discussed below, direct application of this 

method leads to unsatisfactory res~lts. 

To solve this problem, we have considered a perfect solid with a 

large unit cell. The large unit ·cell wa~ chosen to consist of a cubic 

block of two by two by two . face centered cubic cells, 32 primitive cells, 

or 64 atoms . This procedure insures that a calculation for a system with 

no defects will give an exact energy gap. 

2.3 Lattice Distortion 

The position of the atoms near the defect should be obtained by 

minimizing the total energy of the system with respect to atomic positions. 

The quantity in the EHT which is analogous to the total energy of the 
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system is defined as 

where the summation runs over all the occupied states. Messmer and Watkins 

(1970) have used this expression for the energy to obtain the lattice dis­

tortion of the atoms in a cluster about the defect. The same process 

could be used with a little bit more work to calculate the lattice distor­

tion in a large unit cell as discussed above. However, as emphasized by 

Larkins (1971 b,c), the total energy defined by (2.8) is not precisely the 

total eoergy of the system since no explicit provision is made for taking 

account of electron-electron interaction, and ion-ion interaction variation 

with charge state and lattice distortion. Hence ,minimizing (2.8) to give 

the equilibrium atomic positions about the defect may give unreliable 

results. For this reason, we have decided to simply explore the role of 

lattice distortion on the electronic levels associated with the defect. 

We will only report on one representative distortion here. The 

lattice distortion chosen is suggested by that deduced by ~·la tk ins and Corbett 

(1965) with the aid of their EPR data, see Fig. 1. The pairs of atoms a and 

c, and a' and c' are moved toward each other to improvil!(t the bonding 

between the "dangling bonds" left by the removal of the divacancy atoms, 
while. 
WfEi:ie the atoms band b' are moved away from each other so that they move 

out of the way of the bonding pairs, ac and a'c'. Further, the 

distortion was introduced in such a way that the distortion of the bonds 

between the atoms next to the defect and their three nearest neighbors 
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was confined to t he st retching a single bond and the bending of the 

other two bonds. If we take the location of the six nearest neighbor 

atoms to the div acancy in the undi storted case to be given by: 

➔ a fe - 3e 3e )/8 (2.9a) a -
O' X y z 

a• a (-e 
O X 

+ 3e + 3e )/8 y z (2.9b) 

t ao (-3ex - it + e )/8 y z (2.9c) 

b' a (3e + 3e - e )/8 
0 X y Z 

(2 . 9d) 

-+ 
a (-3e + e - 3ez)/8 (2.9e) C 

0 X y 

c' a (3e - e + 3e )1a (2.9f) 
0 X y z 

where a
0 

is the length of the cube edge, then, after the distortion, the 

atoms are located at 

-+ a [(1-B)e - (3-B)e - · (3+a)e ]/8 (2.10a) a 
0 X y Z 

a' a [-(1-Bf~ + 
0 X 

(3-B)e + y (3+a)ez]/8 (2. lOb) 

t a [- (3+s)"t -
0 X 

(3+B )e + y (l+a)e
2
]/8 (2. l Oc) 

t• a [(3+B)e + (3+$}e - (l+a)e ]/8 
0 X Y Z 

(2. 10d) 

-+ 
a [-(3-B)e + (l-B)e - (3+a)e ]/8 (2. l Oe) C = 

0 X y Z 

CI == a [(3-B)e - (1-B)e + 
0 X y (3+a)ez]/8 (2.lOf) 

a sets the scale of the distortion and 
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Distortion is measured by a parameter d defined by 

d- == a ia/4 
0 

2.4 Definition of Localization 

(2. 11 ) 

For the purpose of deciding which levels should be identified 

with the defect, we define a ~easure of localization of a level on 

the six nearest neighbor atoms by: 

* l
0 
c iacis\:is 

a,µ 
pi== over six atoms 

lQ c\(/issaa 
a,µ 

a 11 atoms 
unit cell 

where Cia is the a
th component of eigenvector of state i. 

3. RESULTS 

3.1 Silicon Band Structure 

(2.12) 

For suitable values of EHT parameters in (2.7}, the EHT accurately 

reproduces the accepted band structure for silicon (Herman et al. 1966; 

Messmer 1971). We have used atomic functions like those obtained by 

Clementt (1965). The atomic functions used differ in that we have kept 

only the three largest terms in the expansion in Slater orbitals and 

modified the Slater exponents slightly. The Slater exponents in ~Js 

are increased by factor of 1.3 and the Slater exponents in ~Jp by 1.4, 
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¢35 = [- 0.20265 x3(6.8112, r) + 0.61435 x3(2.7160, r) 

and a 3p wave function of the form 

-
¢3p = [ - 0.1208 x2(9.8, r) + 0.48091 x4(3.2214, r) 

+ 0.57523 x4(1.8218, r)J v1 ,0(e, ¢) 

where 

and a
8 

is Bohr radius. 

r35 = 17 eV 

r3p = 11.6 eV 

The dimensionless parameters were taken to be 

Kss = 1.87 

Kpp = 1.81 

~p = 1.35 

( 3. 1) 

(3.2) 

(3.3a) 

(3.3b) 

(3.4a) 

(3.4b) 

L3.4c) 

Using these parameters, we obtain the band str~cture shown in Fig. 2. The 

calculated value of the gap is 1.15 eV and the minimum in the conduction 

band occurs along the 6 direction in agreement with accepted band 

structures. 
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3.2 Electronic Levels of Clusters 

Calculations of the e]ectronic levels of clMsters of 29 a~d 64 atoms 

with no defect present show that energy levels of the cluster do not give 

a satisfactory representation of the electronic level structure for 

silicon. The electronic levels were calculated using the same EHT parameters 

as were used in the band structure calculation. The results of these 

calculations are shown in Fig. _3 where we have plotted the band structure 

for the large unit all at the r point along with the electronic levels 

for the 29 and 64 atom clusters. From these results, one can see that the 

level structure in the cluster calculation is unlike that obtained in the 

band structure calculation. In this figure, we have _shown the location of 

the energy separating occupied from unoccupied levels hy an arrow. For 

a reasonable representation of the electronic structure of the solid, 

we would expect there to be a region in energy just above this arrow which 

would be the band gap. However, as can be easily seen from Fig. 3, no 

such gap exists for the cases of 29 atom ~r 64 atom cluster. 

3.3 Divacancy 

We will report the results for the divacancy in two parts: first 

the divacancy without lattice distortion; and, second, the divacancy with 

lattice distortion. 

3.3.l Undistorted 

The undistorted divacancy is modeled by simply removing two atoms 

from the center of each 64 atom unit cell (described in Sec. 2.2) in a 

periodic structure. The resulting unit cell has symmetry o3d with the 

3-fold axis of symmetry along the vector connecting the positions of the 
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a) The energy levels at the center of Brillouin zone, r, 

of Si perfect crystal with 64-atom cubic unit cell. 

b) The energy levels of 64-atom cubic silicon cluster. 

c) The energy levels of 29-atom silicon cluster. 

The arrows indicate the level separating occupied from 

unoccupied levels in the case of a ·neutral unit. 
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atoms removed to produce the divacancy. The solid produced by this pro­

cedure consists of a periodic array of oriented divacancies at a density 

of approximately 1021 crt3 in an otherwise perfect diamond lattice. 

To study the electronic levels of this large unit cell, we have 

made calculations of the band structure at the zone center ( 11 r-point 11 ) 

and at the cubic Brillouin zone edge along the (lTO) direction ( 11 M­

point11) oriented with respect to the divacancy as shown in Fig. 1. Each 

of our calculations yields 248 eigenvalues and eigenvectors. These 248 

energy levels divide such that 125 are below the valence band edge for 

the perfect crystal and 123 levels are above. Hence, if we neglect 

dispersion in the eigenvalues in our small Brillouin zone, and the Fermi 

energy is at the valence band edge, then the unit cell contains two 

additional electrons above the four electrons per atom present when the 

cell is neutral. 

We are interested in all the energy levels which are located in 

the energy gap and also those energy states which have large probabilities 

P around the divacancy (see (2.12)). Therefore we have plotted in 

Fig. 4 the energy levels at r-point and their corresponding probabili­

ties P for all the levels in the energy gap and for the levels with 

P greater than 0.30. To make comparison with the results for the 

distorted divacancy easier, we have labeled the · states with their 

symmetry according to c2h (a subgroup of 03d) (Hamermesh 1965), the 

symmetry of the distorted divacancy. The degeneracy of each state is 

indicated by the height of the line in the energy level plot. \~e 

marked in Fig. 4 the six most localized states by their symmetries. 

These six most localized states are also listed explicitly in the first 
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series of entries in Table I. Only the six most localized states were 

studied since these may be associated with the six dangling bonds around 

the divacancy (Watkins and Corbett, 1965). 

Because of the rather high density of defects (-lo21 cm- 3) in our 

model, we have also investigated the role of defect-defect interaction. 

This was accomplished by computing the band structure at the above 

described 11 M-point 11 and again identifying the six most highly localized 

states. The results of this calculation are shown in the second entry in 

Table 1. The levels have been arranged so that they have the same symmetry 

as in the first entry Table 1. Comparing the two entries we see that the 

levels are shifted by approximately 0.2 eV and this suggests a rather 

strong divacancy-divacancy interaction at this density of divacancies. 

To explore the use of cluster calculations which avoids the 

divacancy-divacancy interaction question by use of a finite number of 

atoms, we have made calculations for a single divacancy centered in a 

cluster of (62 atoms). The resulting energy of the six most highly 

localized states are shown in the final entry in Table 1. From these 

results, we see that the levels in a cluster calculation bear little 

resemblance in location and symmetry to those obtained in the above 

described calculation. 

3.3.2 Distorted 

The introduction of the lattice distortion discussed in Sec. 2.3 

lowers the symmetry about the divacancy from o3d to c2h (Watkins and 

Corbett 1965). We have studied the influence of this lattice distortion 

on the energy and degree of localization of the six most highly localized 
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levels. In Figs. 5 and 6, we have plotted the energy and probability 

of being on the six nearest neighbor atoms, respectively, as a function 

of the lattice distortion measured by d (see Eq. (2.11)). From these 

figures we see that: The energy of highly localized s1 moves from 
u 

the valence band into the energy gap. The state · A2g increases in 

energy but remains in the energy gap for reasonable values of the 

distortion; and becomes more highly localized. The energy of the state 

with symmetry B
1
u remains in the energy gap but becomes more diffuse. 

Turning our attention to the three states in the energy gap, the 

state with symmetry s
9
1 is localized around the four atoms a,d, and a',d' 

(See Fig. 1 for labeling of atoms around defect). The states A
9
2 and Bu 1 

are localized largely on the two atoms band b'. The best agreement 

between these energy eigenvalues and the experimental observed properties 
0 

of the divacancy (See Sec. 4) is obtained when the distortion is 0.19 A. 
0 

For the case in which the divacancy is distorted by 0.19 A, we have plotted 

in Fig. 7 the energy levels and the corresponding probabilities P for all 

the states in the energy gap and for the states with probabilities 

greater than 0.30. The symmetries of the states are indicated by using 

different symbols for different symmetries. The six states which are 

thought to be associated with the dangling bonds of divacancy are marked 

by their symmetries in Fig. 7. As we can see, most of .the highly local­

ized states are either in the energy gap or close to the top of valence 

band. 
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For this value of the distortion,the 248 energy levels divide such 

that 124 levels are below the band edge for the perfect crystal and 

124 levels are above. Hence, if we neglect dispersion in the eigen­

values in our small Brillouin zone, and the Fermi energy is at the 

valence band edge, then the unit cell contains four electrons per atom 

and is neutral. 

To estimate the size of divacancy-divacancy interactions, we have 

also calculated the energy levels at the "M point" (see definition given 

above} and at the zone boundary along (lll} direction, "R point". The 

results of this calculation along with the values at the r point for 
0 

d = 0.19 A are given in Table 2. As in the results for the undistorted 

divacancy, we note that divacancy-divacancy interaction at this density 

can produce level shifts which are on the order of 0.2 eV. We also note 

that at "R point" the B
9 
1 1 eve l is in valence band and the A

9
2 

and Bu1 

levels are in the energy gap. Therefore the presence of the s
9

1 level in 

the energy gap is uncertain; it may be due to divacancy-divacancy inter­

actions or due to only six nearest atoms to divacancy being distorted. 

4. DISCUSSION AND CONCLUSIONS 

Using the extended Huckel theory (EHT), we calculated the band 

structure of sil1con. The calculated band structure is in good agreement 

with the accepted band structure for silicon showing that EHT is capable 

of reproducing the band structure of silicon. 
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Calculations of the electronic levels of free clusters of 29 and 

64 atoms spatially arranged as in a perfect diamond lattice show that the 

electronic structure of the clusters is not the same as that of the perfect 

solid. If w~ define the top of the valence band as that energy below which 

half of the electronic levels occur, then the energy range from the top 

of the valence band to that energy plus the band gap is filled almost 

completely by electronic levels. This fact has necessitated our use of 

the large unit cell. 

Using the parameters obtained in the band structure calculation, 

we have calculated the electronic levels for the distorted and undis­

torted divacancy. Labelling all the states by their symmetry in the case 

of the distorted divacancy, we find that the six states most highly 

localized about the divacancy, listed in Table 1, have the same symmetry 

and ordering as the six molecular states in the LCAO model proposed by 

Watkins and Corbett (1965). In the results presented here, the states 

with symmetries A
9

2 and s
9
1 are in the band gap while the remaining four 

states are in the valence band. 

Distortion is introduced by simply moving the atoms nearest 

the divacancy in such a way that the symmetry around the defect is c2h. 

This distortion produces changes in the energy of the divacancy as well 

as changes in the degree of localization of the states about the defect. 

While the distortion is very much like that invisioned by Watkins and 

Corbett (1965) the ordering of the states after distortion is different 

from that of the LCAO molecular orbital results. This result is due 

to interaction between the divacancy levels and the conduction or valence 

bands. After distortion the A2 level is still inside the band gap, g 
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and the B~ level has moved up into the gap; the B~ levels moves down­

wards. The position of the s1 level is uncertain since due to its more 
it g 

diffuse natureAis subject to greater influence by divacancy-divacancy inter-

action and distortion of the atoms away from the defect.than the other 

levels. A calculation which takes account of these factors may locate 
I 

the 8
9 

level in the valence band. 

The results of these divacancy calculations are consistent with the 

experimental resu\ts presently available. The EPR studies of Watkins and 

Corbett (1965) have identified two spectral features labeled Si-G6 and 

Si-G7. Study of the hyperfine interactions in these spectral features has 

led them to conclude that about 50-60% of the total probability for an 

electron contributing to the EPR are localized about atoms band b' in 

Fig. l and about 10-15% of this probability in S-like. 

We interpret the Si-G6 and Si-G7 spectra as arising from single 

occupancy of the B~, and A~ levels, respectively. These two levels are 

in or near the band gap depending upon the degree of distortion; and 

40-50% of the probabilities are found about the band b' atoms. Further-
0 

more, when the divacancy is distorted to equal 0.19 A (see Eq. (2.11)), the 

s-wave character of the states about band b' is about 10-15%. · Bothof 

these q~antities are in reasonable agreement with the experimentally 

determined values. 

Studies have also been made of the infrared absorption (Fan et al. 

1959; Vavilov et al. 1963; Corelli et al. 1965; Cheng et al. 1966; Young 

et al. 1969; Chen et al. 1972) and photoconductivity (Cheng 1967, 1968; 

Kalma et al. 1968; Young et al. 1972) of samples containing divacancies. 

While there seems to be a number of contradictory experimental results, 

there does seem to definitely be a 1.8µ (0.69 eV) absorption in the 
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infrared. Experiments suggest that this absorption is due to highly 

localized states on the negatively charged divacancy. Group theoretical 

arguments suggest that this transition is between states having Ag and 

Bu symmetry or between states having Au and Bg symmetry. Our 

theoretical calculation suggest that the transition is between our A 2 
g 

and Bu1 states. The calculated energy difference is 0.5 eV, which is 

reasonable agreement with the 0.69 eV observed. We have been unable to 

identify the number of other transitions reported by various authors. 

In conclusion, the extended Huckel theory combined with periodic 

boundary conditions induced by using a large unit cell gives results in 

qualita-five agreement wjth the experimental results available. 
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PART THREE 

VARIATION OF IMPURITY-TO-BAND ACTIVATION ENERGIES 

WITH IMPURITY DENSITY 
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I. INTRODUCTION 

Slnce the work Ofl'earson and Bardeen(l) in 1949, it has been well 

known that the impurity-to-band activation energy in semiconductors decreases 

·with increasing impurity concentrations. At low impurity concentrations 

(for example, less than 1017 phosphorus/cm3 in silicon), the variation of 

activation energy with impurity concentrations is small. At high -impurity 

concentrations, the activation energy is strongly dependent upon the impurity 

-concentrations. A number of different suggestions have been put forward 

·to account for this phenomenon theoretically. Pearson and Bardeen(l), and 

Castell~n and Seitz(2) ~uggested that the decrease of impurity-to-band 

-activation energy with impurity concentrations was due to attraction 

between the conduction electrons and ionized donors. Calculations based 

upon this physical phenomenon yielded qualitative but not quantitative 

agreement with the experimental results. Pincherle(3) proposed that free 

carriers screen the field of the impurity center and hence decrease the 

binding energy of a carrier electron to an impurity center. Calculation 

.,.based on this proposal alone did not give satisfactory results. A self­

consistent calculation which combined the two models was given by Lehman 

~and James. (4) While this calculation was in good agreement with experiment 

for low impu~ity concentrations, at high impurity concentrations (1016cm- 3 

shallow donors in Ge), their calculations underestimate the experimentally 

-observed decrease of activation energy. A more systematic treatment proposed 

·by Debye and Conwell(S) suggested that a correct description would include 

~hree effects - (i) lowering of the conduction band edge due to attraction 

. ~f the conduction electrons by the ionized donors, (ii) the shift of the 
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. donor ground state energy due to free electron screening,aod (iii) the 

inaaease ift .the 4'.e~ecu.JrJ; ... ~tant due to the presence of the polarizable 

neutral donors. As in the case of Lehman and James they- obtain good agree­

ment with experiment at low impurity concentrations. None of these authors 

has considered the role of phenomenon which would lead to impurity broaden­

ing and hence change the observed activation energy. 

In this paper we consider the change in the observed activation energy 

due to the influence of those effects which both broaden and shift the 

impurity level. We consider the same phenomenon \11hich tend to shift the 

level as ·considered by Debye and Conwell. We have included two effects 

'.which tend to broaden the level. First, the impurity level wavefunction at 

a given impurity has finite Hamiltonian matrix elements with impurity level 

•-wavefunctions centered at nearby impurities. This leads to broadening of 

--impurity levels when the impurities are at finite density to produce ~ 

band of levels. Second, the presence of charged impurities distributed in 

a random way throughout the solid generates potential fluctuations. These 

·,potential fluctuations produce tailing of condu.ction and valence band 

density of states(G) and spreading of impurity levels.(?) For simplicity
1 

we will confine our attention to shallow donor levels with compensating 

~acceptors in silicon. 

This paper is organized in the following fashion. In Section II, we 

· consider those phenomena which shift the energy level. In this section, 

· we review the results of Lehman and James and put the formulas in a form 

-suitable for our use. In Section III, we consider the conduction band edge 

·tailing effect due to potential fluctuations. In Section IV, the phenomena 
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.ai611a1 which broaden the impurity level are investigated. Section V 

·con ta·; ns ·'the··· ca1 c'tilati ons of conduction electron concentration n versus 

temperature T for various donor and compensating acceptor concentrations 

and compare the calculated results with the known experimental results. 

Section VI contains a brief discussion and conclusions. 

I I. IMPURITY LEVEL SHI FT WITH RESPECT TO CONDUCTION BAND EDGE 

In th~ effective mass theory approximation, the Hamiltonian for 

the conduction electrons consists of electron kinetic energies, electron­

impurity' Coulomb interactions and the electron-electron interactions. Once 

the electron is bound the donor ion plus electron becomes a neutral system 

and has little effect on the motion of conduction electrons. Hence the 

unbound electron motion can be accurately described by a Hamiltonian which 

.does not include any interaction wi~h these neutral systems. The motion 

of conduction electrons can be approximately ~escribed by a series of 

one-electron Hamiltonian{S, 9) lr-Ral 

2 
H =~ + 

2m 
(II-1) 

-where r and ·p are the position and momenum, respectively, of the elec-

-tron; · Ra is the pcsition of the ath impurity which has signed charge 

Z~; the prime above the summation indicates that the sum runs over ionized 

-impurides only. The semiconductor is described by an isotropic effective 

* ·,mass m and dielectric constant£. The electron screening length is Ae . 

For non-degenerate case, the electron screening length is given by(lO) 
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(11-2) 

where n is conduction electron concentratfon, K8 is Boltzmann constant, 

and T is absolute temperature. For silicon, >.e ranges typically between 
0 4 ° 18 -3 12 3 40 A and 10 A for n = 10 cm and T = 300°K, and for n = 10 cm- and 

T :: 50°K, respectively. He wi 11 use the !kmi 1toni an in Eq. ( II-1) to 

describe the unbound conduction electrons. 

There are several effects which are thought to be related to the 

shift o"f impurity levels with respect to the conduction band edge. They 

are: (i) the change of dielectric constant due to the presence of neutral 

donors, (ii) the influence of conduction electron screening on donor 

ground state energy, and {iii) the conduction band edge lowering due to 

attraction between conduction electrons and ionized donors. In the follow­

ing, we are going to examine these three effe~ts. 

A. Neutral Donor Polarization 

In Eq. {II-1), there is some question about what dielectric constant 

we should use. As pointed out by Castellan nnd Seitz,< 2) we should include 

the contribution to £ due to the ·presence of polarizable neutral 

donors. However, this produces a small change in c. For donor concentra­

tions up to 1018 neutral-donors/cm3, the concomitant shift of impurity 

energy level relative to the conduction band edge is less than 1 meV. Hence, 

we will assume that the dielectric constant is independent of impurity 

concentrations. 
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B. Shift of Impurity Level to Screening 

The presence of the conduction electrons should screen the attrac­

tive interaction between the donor ion and the bound electron in a donor 

level. This screening will tend to shift the donor ground state energy 

to,~ard the conduction band. Using Hartree approximation, Lehman and 

James(4) had included this effect in their self-consistent calc~lation. 

For the ~urpose of estimating the size of this effect and to separate 

this effect from the conduction band edge shift effect, we will make a 

simple first order perturbation calculation of this effect. We approxi­

mate the donor ground state wavefunction by a single ls Slater orbital 

with an exponent of t. The potential due to the crinduction electrons is 

obtained by computing the change in local electron density due to the 

presence of the donor ion and the bound electron in a linearized Hartree 

approximation. 

Since the electron screening length i5 larger than the size of the 

donor level wavefunction, i.e. tAe > 1, the difference between the 

screened ion potential and the unscreened ion potential is small. First 

order perturbation theory of this difference potential can be used to esti­

mate the shift in the donor level due to conduction electron screening. 

The result of the calculation is 

(iil-3) 

(see the Appendix for a derivatton of this result). 6E
8 

is a monoton-

ically decreasing function of the screening length A , we can obtain e 
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an upper bound to 6E8 by taking the smallest value of Ae that we 
0 

encoimter.m;f~,under .the ~.n± experimental conditions (about 40 A). Taking 

t to be the reci proca 1 of the Bohr radius for the donor ff. = ~)in Si , 
\

1 

19A 
we have that 

for conduction electron concentrations less than 1018cm-3 in Si. This 

result agrees with the calculations of Lehman and James which indicated 

that screening produced a small impurity level shift. Therefore, we can 

neglect the effect of screening on the donor ground state energy level . 

C. Average Shift of Conduction Band Edge 

The presence of ionized donors and compensating acceptors changes 

the position of the conduction band edge. The random spatial distribution 

of the ionized centers leads to not only an average shift of the conduc­

tion band edge but also spatial flu~tuations in the position of the 

conduction band edge. In this section we concentrate on the average shift 

of the conduction band edge and leave to a later section the discussion of 

fluctuations. 

To make an estimate of the average shift, we should in principle 

calculate the energy levels associated with the potentials due to the 

ionized impurities, then devise some method of defining the bottom of 

the conduction band, and finally average this over all the possible 

spatial configurations of ionized impurities. While this is in principle 

the way to proceed, in ·practice we can not carry out such a calculation 
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in anything hut the most idealized models. Thus, we proce·ed by first 

obtalning a potential wn'i'c:h snou"id app·roximate the potential due to the 

ionized i111purities. In obtaining the potential due to a single ionized 

donor, the principal dopant, we must note that the Coulomb potential of a 

donor is modified by the presence of the conduction electrons and also by 

the increased probability of finding an ionized acceptor near an ionized 

donor. These two effects are taken into account by screening the Coulomb 

potential of the donor. The screening length is made up of two parts -

that due to the electrons, and that due to the ionized ~ impurities. The 

screening length for the electrons is the same as that given 

. before in Eq. (11-2). The screening length for ionized impurities is given 

by a standard Debeye screening length fonn (:l.i)(ll,l 2) modified by the 

addition of a length which is the average spacing .between impurities.(?) 

That is, 

where 

and 

l• z: ).. + a 
l · 10 

). • = 
10 

(I 1-4) 

I. · (I 1-5) 

(11-6) 



which is the average distance under Poisson distribution. The total screen­

ing length . ). is given by 

{II-7) 

With this screening length the potential about a donor becomes 

{II-8} 

To estimate the average lowering of the conduction band edge, we con­

centrate our attention on the potential between two impurities which are 

separated by the average distance between donors. The average shift can be 

divided into two parts. First, the conduction electron barrier height is 

lowered due to the overlap of the potential of ionized donors as illustrated 

in Fig. 1. Second, the conduction band edge actually occurs somewhat below 

the maximum of the potential due to electron t4nneling. We first calculate 

the maximum of the potential. If only the nearest neighbor is.considered, 

the lowering of the barrier height as shown in Fig. l is approximately 

equal to 

+ -1/3 + 
with d = (N0 ) where N0 is the ionized donor concentration. The 

first term in (II-9) co.rresponds to the potential lowering at the middle 

point of the two nearby ionized donors. The second term corresponds to the 

potential lowering at the ionized donor site due to the presence of the 

nearby ionized donor. 



-
-

-q
2

 e
r/>

.. 

. 
r 

47
T

E
E

or
 

l~E
,c 

--
--

=-
-::

:: 
J~

--
-

--
--

-
---

~~
 ..... ---

-
----

---
---

---
--

-:
.>

-:
: 

-
-
-
-
-
-
-
-

--
--

--
--

--
--

--
-

d 

F
ig

. 
1 

Th
e 

sh
if

t 
o

f 
co

nd
uc

ti
on

 b
an

d 
ed

ge
 d

ue
 

to
 o

ve
rl

ap
 o

f 
io

ni
ze

d 
do

no
r 

p
o

te
n

ti
al

s.
 

Th
e 

lo
w

er
in

g 
o

f 
b

ar
ri

er
 h

ei
gh

t 
is

 ~
E

lc
 

an
d 

th
e 

to
ta

l 

sh
if

t 
6f

 c
on

du
ct

io
n 

ba
nd

 
ed

ge
 

is
 A

El
c 

+
 6

E 2c.
 

\..
n 

0 



51 

As we have mentioned above, because of electron tunAeling the conduc­

tiOli~nd .e.dge oa;w-.s Jiel.ow the maximum in the potential. The location of 

the average conduction band edge depends upon the shape of the ionized 

donor potential. · We have made a rough estimate about the location of the 

conduction band edge measured with respect to the maximum in the potential 

(-tE2c), and found that it is small for the cases considered here. There­

fore, we can use the result of the rough estimate and it ~1·11 not 

introduce significant error in our calculation. The estimate proceeds as 

follows. We assume that the excited donor state is an extended state if the 

average radius of the electron wavefunction of the excited state is half 

the distance between ionized donors. · \fo also assume that as r becomes 

large the electron wavefunction of the excited state approaches to 

~ (y) « e-Ky 
n (II-9) 

_ ... f 2m* "1E2c 
where K = )' 

112 
and (-AE2c) is the bottom of conduction band 

measured with respect to the top of the potential barrier. Hence the average 

(K) -1. radius of the electron wavefunction is approximately equal to 

Setting the average radius of the electron wavefunction to equal. to the half 
. -1 . 

dt~tance between ionized donors, 1.e. (K) = d/2. we have 

(II-10) 

The total downward shift of the conduction band edge is thus equal 

to 
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(II-11) 

For the donor concentrations and temperatures we are interested in, ~Ee 

gives significant contribution to the decrease of activation energy, as 

will be shown in Section V. 

I I I. CONDUCTION BAND EDGE TAILING 

Donors and acceptors are approximately randomly distributed in the 

semiconductors. The random distribution of ionized donors and acceptors 

generate~ spatial fluctuations in the potential. The potential fluctua­

tion smear out the conduction band edge and thus produce a tail on the 

conducti~n band density of states. (S) 

The work of Kane(S) and Morgan(7) indicates that the distribution 

-of potential p(v) is approximately Gaussian, 

p(v) = _1 _ 
11& a 

-with a standard deviation . a given by 

a= 

(III-1) 

(111-2) 

·where >. is the screening length which is given -by Eq. (11-7). This 

distribution of potential fluctuations generates a tail on the conduction 

·band density of states which extends to minus infinity in energy. However, 

the mobility of electrons in the density of states tail is a function of 

energy, approaching zero for energies below a c~rtain energy in the tail. 
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For simplicity, we will assume that the mobility is constant for energies 

~r ~ , -211""1!'T'ffl t1ffl't··"'the ,"ffl0bility is zero for energies less than -2CJ. 

Hence, states with energy less than -2CJ do not contribute to the conduction 

since their mobility is zero. 

For slowly varying potential fluctuations, the local d~nsity of 

states at a point \vi th potenti a 1 v is given by 

The average conduction band density of states is given by 
E f Pc(E-v)p(v)dv E > -2cr 

0 E < -2cr 

(III-3) 

(III-4) 

The magnitude and extend of the conduction band density of states depends 

upon the value of cr • For typical values of the parameters,. CJ can 

attain values of as large as 10 meV (see discussion in Sec. V). Hence, 

the broadening of the conduction band edge can lead to significant effects 

on the observed activation .energy. 

IY. BROADENING OF DONOR LEVEL 

There are two effects which tend to broaden the level. First, the 

localized wavefunction of the impurity level ·at a given impurity has finite 

Hamiltonian matrix element with localized wavefunctions centered at nearby 

impurities. At finite densities, this leads to broadening of impurity 
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levels into a band of levels. Second, the pritential fluc~uations due to 

random distribution of charge impurities lead to changes in the energy of 

the various localized impurity states. 

A. Level Broadening Due to Donor Wavefunction Overlap 

For one single isolated shallow donor, such as P, As, or Sb in Si, 

the hydr~genic model can be applied to define the donor energy state. 

For semiconductors with shallow donor concentration N0, the donor ground 

state level is discrete but h~s N0-fold degeneracy if there is no interac­

tion betwre.n the donor impurities. However, if there are finite Hamiltonian 

matrix elements between the donor ground state wavefunctions on different 

sites, the degeneracy is lifted and the single donor ground energy is 

broadened into a band. If the overlaps between the donor ground state 

wavefunctions at different sites are small, we can use tight binding model 

to estimate the donor level broadening. In this model, the donor level 

broadening is proportional to the energy transfer integral ,Cl 3 ) 

(IV-1) 

where +
0

(y) is donor ground state wavefunction. Using scaled hydrogenic 

model for donor ground state wavefunction, we have 

• (IV-2) 

with t = -1 ·fa, where (-E0) is the donor ionization energy for the 
aH "r;; 



55 

2 
low donor concentration case and . E E - 8 9 is the g~ound state energy 

o n£e:oaH 
calcu1ate6 ·'from effect,ve mass theory_(l 4) With 4>

0
{y) given in 

(IV-2), the integration in (IV-1) can be carried out and leads to 

J(R) = (IV-3) 

where R is the distance between nearest donor neighbors. As shown in 

(IV-3), the energy transfer integral J(R) depends exponentially on the 

nearest donor neighbor distance R. Since the .donors are randon~y distributed 

in space,, the distance R to the nearest donor neighbor and the energy 

transfer integral J{R) vari~s from one donor site to the next. If the 

donors are absolutely randomly distributed in semiconductors, they should 

follow a Poisson distribution. In a Poisson distribution, the probability 

that the nearest donor neighbor lies in a distance R in a spherical shell 

between R and R + dR is given by 

41rNo exp (- j" NoR
3
) R

2 
dR 

Therefore, the average energy transfer integral between a donor and its 

nearest donor neighbor is equal to 

(IV-4) 

In the tight binding model, the total band width B is equal to 2zl<J(R)>I 

where z is the number of nearest neighbors. With a Poisson distribution, 

there is only one nearest neighbor to every donor and therefor~ z is equal 

to 1. Hence the totai band width B is given by 
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(IY-5} 

The quantity of importance in our calculation is the impurity 

band density of states p
0

(E). In general, this is a very complicated 

function of energy. However, for purposes here it suffices to take 

p
0

(E) to be a constant over the bandwidth B. That is, if we take. to 

midband to occur at zero energy, then 

p
0

(E) = (IV-6) 

o otherwise 

We found for example, that for 1018cm- 3 shallow donors the donor band 

width is about 30 meV. Thus, this broadening of the impurity energy level 

is one of the important effects which have to be included when considering 

the variation of activation energies as a function of impurity concentration 

and temperature. 

B. Level Spreading Due to Potential Fluctuation 

As we have mentioned in Section III, the random distribution of 

ionized donors and acceptors generates spatial flu~tuations in the po~en­

tial. If the local potential varies slowly over the size of the 

wavefunction, an assumption which is true for the cases considered here, 

then the donor ground states vary along with the potential fluctuations. 

Therefore, the impurity states are spread in energy(?)_ 

The donor level density of states p1(E} which is appropriate to 

our calculation should include both the fluctuation induced broadening 
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and the broadening due to the energy transfer integral. These two effects 

cao...ae combJaad~y .. aver..g.wg .,.JI.} .. .q,i~_£n j.11 Eq. (IV-6) over the value of 

the local potential. That is, 
,.+co 

p i ( E) = J -m p O ( E -v ) p ( v ) d v (IV-7) 

where p( v) is given by Eq. (I I I-1) . 

V. CALCULATIONS AND COMPARISON \~ITl-1 EXPERIMENTAL RESULTS 

One way to obtain the impurity activation energy in a semiconductor 

is to study the conduction electron concentration as a function of tempera­

ture (Arrehnus plot). Therefore, in this section we are going to use the 

results of previous sections and calculate the conduction electron concen­

trations as a function of temperature. 

The conduction electron concentration is given by the standard 

expression 

n - lco Nc(E) dE 

-co 1 + exp (E-Ef) 
K8T 

(V-1) 

where Nc(E) has been defined in Eq. (III-4) and Ef is the Fermi 

energy. Similarly, the concentration of ionized donors is defined as 

(V-2) 

where p1 (E) is defined in (IV-7} and g is degeneracy factor; E0' is 
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the center of the impurity band and is related to the donor ionization energy 

of Tery di·hrte s,'S'tem, • (-'£0,, 'by 

(V-3) 

with AEc defined. in {Il-11). Charge neutrality leads to 

(V-4) 

which determines the Fermi level Ef and, in turn, the electron concentra­

tion can'be obtained from (V-1). It should_be noted that ~1(E) and Nc(E) 

are functions of a and a is a function of n and N0+. Hence, n and 

N0+ have to be solved self-consistently. 

To illustrate these analytical results, we have made numerical cal­

culations of n versus T for shallow donor in silicon (for example P , As, 

* and Sb). The values of £ and m were t~ken to 11.8 and 0.33 me, 

respectively. The degeneracy factor was taken to be 2. In Fig. 2, the 

calculated n versus the reciprocial of Tis plotted for different P concen­

trations. The compensation ratios K, ratio of acceptors to donors, is 

fixed at 0.5% and the ionization energy of Pin Si at low concentrations 

is taken to be 44mev.Cl 5) At this rather small value of compensation ratio 

the presence of compensation centers is relatively unimportant. The activa­

tion energy is proportional to the slope of Arrehnus plot. We see that as 

P concentration increases the slope and hence the activation energy 

decreases as expected. 

To gauge the relative importance of the various phenomena in this 

case, we have calculated the values of the ~Ec, B, and oat two different 

temperatures 200°K and 25°K. These results are given in Table I. From 
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CONDUCTION ELECTRON CONCENTRATION 

VS TEMPERATURE 

Phosphorus in Silicon 
Compenso1ion RoHo = 0.005 

15 20 25 30 35 . 40 45 50 

103/T (°K-I) 

Fig. 2 The conduction electron concentration versus reciprocal tempera­

ture for different phosphorus concentrations in silicon. The 

compensation ratio is 0.5%. 
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this table, we note that llEc varies by a factor of 4 to 7 between 200°K 

and 25°K. .Ihi s .is.,.,due to the va,d at.i.QD . .i.D...tbe.~Rumh.e_r of unoccupied donors 

and hence the potential a free electron in the conduction band sees. The 

value of B varies from 5.o meV at the low concentration of 1017cm-3 to 29.8 meV 

at the high concentration of 1018cm-3. This variation is due to the increase 

in the energy transfer integral with increasing donor concentrations. The 

value of cr also shows a considerable variation with temperature and a 

small variation with donor concentration. The large variation with tempera­

ture is due to freeze out of the conduction electrons to the ionized donors . 

. TQ investigate the effect of compensation centers on the activation 

energy, we have calculated conduction electron concentrations versus 1/T 

for fixed P, concentration with different compensation ratios. The results 

for P concentrations of 5 x 1017cm-3 are given in Fig. 3. This figure 

shows that as K increases the slope and hence the activation energy 

decrease. To show the relative importance of the various phenomena in this 

case, we have calculated the values of ~Ec, 8, and a at two different 

temperatures, 25°K and 200°K, and listed the results in Table II. Since 

6Ec is primarily a function of N0~ we note little variation in ~Ec with 

changes in K in this range. Again AEc shows a rather large variation 

with temp~rature betause of the "freeze out" of. the conduction electrons. 

As .axpected B shows no variation with K since it is a function of the 

donor concentration only. The values of a show a small increase with K 

at fixed · T since the magnitude of the fluctuations in the potential 

increase with increasing compensation. The variation of a with T is 

again due to the "freeze out" ·of the conduction electrons. As K increases, 

the conduction band edge lowering 6Ec and potential fluctuation a are 
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1019 

CONDUCTION ELECTRON CONCENTRATION 

1018 VS TEMPERATURE 

1017 

1016 

1015 

1014 

1013 

1012 

Phosphorus in Silicon 

10 11 N0 = 5 x 1017 cm-3 

1010 

109 
5- 10 15 20 25 30 35 40 45 50 

103 /T (°K-1) 

Fig. 3 The conduction electron concentration versus reciprocal tempera-, 

ture for different compensation ratios. The phosphorus concentra­

tion is 5 x 1017cm-3• 
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· increased . Therefore, the increase of compensation ratio leads to decrease 

of activat1on energy. 

These results may be compared with the experimental results of Penin 

et al(l 6) and the thorough experimental study of Swartz.1ll) 

The experimental results of Penin et al(l 6) indicate that the impurity­

to-band activation energy depends upon the compensating impurity concentra­

t i on and decreases as compensating impurity concentrations in Si increase . 

Thus the result of our calculation is in qualitative agreement with Penin ' s 

,xperimental result. 

Swartz 1 s(l 7) results of Hall measurements on Si samples doped with 

P. As, and Sb provide a rather rigorous check of the theory. Because of a 

lack of any information about what is the correct value of the Hall coefficient 

required to convert Hall coefficients to conduction electron concentrations, 

we take it to be the value appropriate to account phonon scattering, 3n/8. 

The experimental result for conduction electron concentrations for Pin Si 

along with calculated electron concentrations are plotted versus 1/T in Fig . 4. 

In this numerical calculation, the donor concentration N0 has been taken 

to be 1.6 x 1017 P/cm3, a value which produced the best agreement between 

experiment and theory. The density of compensating centers was determined 

from the- kink in the experimental n versus T-l plot to be 1015cm-3. As 

we can see from Fig. 4, the agreement between the.theory with all the 

corrections and experiment is very satisfactory. For comparison, we al~o 

plotted in Fig. 4 the calculated conduction electron concentration for a 

system with fixed activation energy of 44 meV and all the same donor and 

acceptor concentration. From Fig. 4 we notice that at low temperatures the 

decrease of activation energy produces a significant increase in the 
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Fig. 4 The experimental and calculated conduction electron concentrations 

versus reciprocal temperature for phosphorus in silicon. The 

calculated results for a single fixed level theory is included for 

comparison. 
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conduction electron concentration 

To compare our ca1 cul at ion wHh Swartz's experimenta 1 results on 

other dopants, we plotted the calculated electron conc~ntrations versus 

1/T along with experime~tal results for Si doped with Sb and As in Fig. 5 

and Fig. 6, respectively. In these calculations, the ionization energies 

have been taken to be 39 meV for very low density of Sb in Si and 49 meV 

for very low density of As in Si. In Fig. 5,the compensating acceptor 

concentrations have been determined in the same way as in the case of Pin 

Si. The Sb concentrations have been chosen to give best agr2ement between 

theory and experiment. As we can see, the agreement is quite good for 

case of Sb in Si. In Fig. 6, we compare the experimental and theoretical 

· ·results for As in Si. The theoretical calculations for the case N0 = 

4 x 1017cm-3 and NA= 1015cm-3, and N0 = 7 x 1017cm-3 and NA= 1015cm- 3 
a.re -,1 
atisfactory agreement with the experimental results. However for samples 

. 18 3 
doped with more than 10 As/cm, we can only obtain qualitative agreement 

between theory and experiment. 

VI. DISCUSSION AND CONCLUSIONS 

The self-consistent calculation by Lehman and James(4) essentially 

include two effects: the lowering of the conduction band edge and the 

-shift of the ground state level of the donor due to conduction electron 

screening. While their results are successful at accounting for experimental 

results at small donor concentrations and with small amounts of compensa­

tion, they are inadequate at higher impurity concentrations. In this paper 
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CONDUCTION ELECTRON CONCENTRATION 
VS TEMPERATURE 

No= 1.74 x 1017 cm-3} 
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Antimony in Silicon 
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Fig. 5 The experimental and calculated conduction electron concentrations 

versus reciprocal temperature for antimony in silicon. 
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CONDUCTION ELECTRON CONCENTRATION 

VS TEMPERATURE 
... ... Arsenic in Silicon 

{
No= 4xl0I8cm- 3 . 
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Fig. 6 The experimental and calculated conduction electron concentrations 

versus reciprocal temperature for arsenic in silicon. 
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we have introduced two additional effects: the broadening of the impurity 

level due to a fini~e energy transfer integral between wavefunctions local­

ized on neighboring sites and potential fluctuations, and the tail on the 

conduction band edge due to potential .f~uctuations. The addition of these 
l.,01',JflJU't.. 

'effects were shown to bring about good agreementl\,experimental results and 

theory for moderate impurity concentrations. However, at even higher 

impurity concentrations _ (N0~4 x 1018cm-3) even these effects are incapable 

of explaining the experimental results. This suggests that the problem is 

more complicated in this range. 

The importance of broadening of the impurity level and band tailing 

on the conduction band edge found in these calculations suggest that one 

may not think of the single activation energy for N0 ~ 1017cm-3. Inter­

pretation of the Arrehnus plot in terms of single activation energy would 

then require that a temperature dependent activation energy. 
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APPENDIX 

We first calculated the potential due to donor atom, i.e. one 

ionized donor plus one trapped electron. In response to the potential of 

the donor atom, the conduction electron readjust themselves to screen the 

potential. We calculated the screening conduction electrcm distribution 

by using linearized Hartree approximation. Since the potential due to the 

screening conduction electrons is small, we then calculated the donor 

_ ground state level shift by using first order perturbation theory. 

To obtain the potential due to the donor ion and trapped electron, 

we assume that the trapped donor electron has 'ls ground state wavefunction 

with Slater coefficient , i.e. 

(A-1) 

where r = lrl. The potentia 1 of the neutra 1 donor ato·m is thus equal to 

V (y) = _L [ l + t]e-2tY (A-2) 
n 4w££

0 
y 

Subject to the neutral donor atom potential, V
0
{y), the conduction elec­

trons readjust themselves and try to screen the potential. Under Hartree 

approximation and linear response theory, the -screened ,p:,tential is given 

by 

(A-3) 

-with 
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{A-4) 

·where . Ae is conduction electron screening lenQth and V
0
(t) is the Fourier 

transfonnation of Vn(y), i.e. 

Vn(R) = Jvn(Yl e-;R.y d3y 

(A-5) 

with K • IKI . In view of (A-4) and (A-5), the integral can be carried out 

and, for 

with 

and 

1 tAe > 4 , leads to 

1 fc-------
.. / 16t2 >. 2 - l l · e 

g = [1 + l + 1 (1 + l )1 /2 ] 1 /2 
2 

16t_
2A/ 2 

2t_
2>i./ 

(A-6) 

For the case we are interested in the conduction electron screening length 

is larger than the trapped electron average radius 1/t, i.e. Ae~ > 1. The 
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1 series expansion of Vnc(y} to the first order of glves 
P·e 

sin (A-7) 

. . ·( 1 )2 
with the residual terms of the order of P•e . Therefore the potent"ial due 

to donor ion and screening electrons only is given by 

(A-8) 

The potential seen by the trapped electron is different from Coulcmb poten­

tial by 

(A-9) 

and the ground state energy shift in first order perturbation theory is 

given by 

IV' l<P > 0 

[ 
1 -1 1 ] 2t>.e sin ~ + 2 tan 8~ 

4 + 1 
16t2). 2 . e 

(A-10) 
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INVESTIGATION OF TELLURIUM IMPLANTED SILICON 
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Generally, deep level impurities have low solid sol­

ubilities in semiconductors. Therefore, by conventional 

doping techniques such as thermal diffusion, it is difficult 

to heavily dope the semiconductors with deep level impurities. 

Ion implantation, (l) however, offers the possibility for 

introducing high concentrations of deep level dopants in 

silicon. MeV He channeling studies have been made of the 

lattice location of a wide variety of dopant species in Si. <2
> 

Of these dopant species, tellurium would appear to be attrac­

tive for evaluation of electrical properties because of its 

high substitutional fraction CJ) and deep level. <4 )· 

When Te is implanted at low doses (~ 4 x 1012 cm- 2 ), 

it acts as an n-type dopant with an activation energy of 

140 meV. (S) However, samples implanted with high doses 

(typically 1011 - 1015 cm- 2 ) exhibit a somewhat puzzling 

behavior; the number of conduction electrons has a temperature 

activation energy which is about zero; and the measured number 

of conduction electrons is some two orders of magnitude smaller 

than number of implanted Te. {G) From conventional semicon­

du.etor ·theory~?) one would anticipate that for heavily doped 

semiconductors which have a zero activation energy, the number 

of conduction electrons would be nearly equal to the number of 

substitutiqnal impurities. In this work, we pursue the 

apparent contradiction between a zero activation energy and the 

small number of conduction electrons as compared to the number 

of substitutional Te dopants. 
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We have investigated several experimental aspects that 

could influence the measured electrical activity: (i) the non­

uniform depth distribution of the implanted Te, (ii) the in­

fluence of radiation damage, and (iii) formation of substitut­

ional clusters of Te. Previous Hall effect measurements on 

high dose Te implanted samples( 6 ) were made without use of 

layer-removal techniques. (B) The measured number of conduction 

2 
electrons/cm, Ns' is usually smaller than the actual number 

present due to the mobility weighting factor. This weighting 

effect can be overcome by differential measurements which 

combine Hall effect and resistivity measurements with layer 

removal technique. This differential technique coupled with 

measurements as a function of temperature has been found to 

give activation ener~ies consistent with those for bulk doped 

samples for silicon implanted with indium and Te at low con­

centrations. (S,lO) In this work we have used differential 

techniques to obtain ~he temperature dependence of the carrier 

concentration for substitutional Te concentration between 

For implanted samples, residual radiation damage can 

rema.in after high temperature anneal. The radiation defects 

may act as compensation centers and thus reduce the number of 

conduction electrons. To investigate the effect of implantation 

radiation ~amage, we performed electrical measurements on low 

dose (10 12 to , 1013;cm2 ) phosphorus implanted Si samples with 

and without pre-damage introduced by a higher dose (lo
15

;cm
2

) 

of Si ions. If the radiation damage is responsible for the 
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reduction in the numb~r of electron~/cm2 for th~ Te case, we w6uld expect 

that the electrical a.ctivity of phosphorus jmplanted samples with pre­

damage would be much less than the electrical activity of phosphorus 

implanted samples without pre-damage. 

In arsenic diffused samples, it has been found(ll) that the 

electrical activity is reduced by long heat treatment at temperatures of 

500-970°C. The electrical activity could be increased by heating at 

higher temperatures (approx .. 1100°C) and then quenching. Th~ reduction 
• 1 

of electrical activity was attributed to the fonnation of As clusters 

which C'Ould be dissociated during high temperature processing. Similar 

effects may play a role in high dose Te implanted samples where the con­

centration of Te (1019 to 1020/cm3) can be orders of magnitude above the 

reported(4. ) thermal equilibrium solid solubility of 1017;cm3. To investi­

gate the influence of cluster fonnation we employed high temperature heat 
. . . 

treatment followed by quenching for some samples. In analogy with As 

results, this treatment should lead to high electrical activity if fonnation 

of Te clusters were responsible for the relatively low electron concentra­

tions. 

From a theoretical approach, we used the model proposed by Lee 

and McGill(l 2) to treat the decrease of activation energy •with increasing 

impurity concent~ations. In ~is case, we calculated the conduction 

electron concentrations as a function of temperature for different Te 

concenfrations to detennine whether there is contradiction between the 

almost zero activation energy and the reduction in conduction electron 

concentrations. 
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This paper is organized in the following way. Section II contains 

the experiment ~nd analysis procedures. In Section III we describe the 

procedure of calculating electron concentrations as a function of tempera­

ture. In Section IV, we present the experimental results and compare 

them with theoretical calculations. 

II. EXPERIMENTAL AND ANALYSIS PROCEDURES 

2.1 Sample Preparation 

Implantations of tellurium were made at energies between 100 and 

220 keV in etch-polished slices of float-zoned 10 and 2000 n-cm p-type 

silicon. The projected ranges . for 100 and 220 keV tellurium implantation 

in silicon are 456 A and 870.A, respectively.(lJ) Ion doses .ranged between 

4 x 1012cm-2 to 1.4 x 1015cm-2. Ion implantations of phosphorus were made 

at energies between 7 and 190 keV and ion doses between 3 x 1012cm-2 and 

3 x 1013cm-2 . The projected range of silicon implantation for pre-damage 

was deeper than those of phosphorus implantations; the silicon dose was 
15 -2 . 10 cm . All the substrates were at room temperature. 

Hall effect and sheet resistivity measurements were made using 

the van der Pauw configuration.(l 4) The van der Pauw pattern was defined 

on the implanted surface by masking with photoresist followed by mesa 

etching. The mesa structure in combination with the p-n junction between 

the implanted layer and substrate isolated the region of interest. 

After the van der Pauw patterns were put on the implanted specimens, 

they were placed in a quartz tube furnace with flowing N2 to anneal out 

the radiation damage. The P-implanted samples have been ahnealed to 850°C 

for 15 to 30 minutes. For Te implanted samples, isothennal anneal cycles 

have been performed to detennine the anneal temperature where the number 
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of electrons/cm2 was near the maximum value. The anneal behavior of 

several samples ·were shown in fig. l, in whi~h the measured number of 

electrons/cm2 and the electron mobility were plotted as a function of 

anneal temperature. As found previously,(lS} the number of electrons/cm2 

is much lower than the number of Te/c~2. For the highest dose implant 

shown there is a factor of 60 difference between the two values. As shown 

in Fig. 1, the number of electrons/cm2 and the electron mobility stayed 

essentially at the same value over the anneal temperature between 800 and 

1000°C. Therefore, anneal temperatures between 800 and 1000°C for 15 to 

30 minutes have been chosen for all the samples. 

MeV He ion backscattering and channeling measurements were made on 

several annealed Te implanted samples to confirm the previous results 

which indicated high (60%) substitutional percent of Te atoms.( 3} The 

highest substitutional percent we obtained was 80% for a sample implanted 

with 1.4 x 1014 Te/cm2 and the lowest was 30% for a dose of 1 .4 x 1015 Te/cm2. 

As pointed out previously, these results indicate that the low electrical 

activity of Te implanted layers cannot be due entirely to non-substitutional 

Te. 

2.2 Layer Removal Techniques 

Layer removal was accomplished by using oxide layer stripping 

techniques. In practice, a layer of ~1licon dio~ide was anodically grown 

on the sample and then removed by etching. A vinyl mask was used to define 

the area of the anodic oxide on the sample which was then securely clamped 

below a hole· at the bottom of a teflon beaker. The anodic solution 

contained in the beaker was made from 97% N-methylacetamide, 2% triply 

distilled water and 1% potassium nitrate by weight. A constant current 



80 

C\J 

~ u 

" Cf) 

z 
0 x_______.-x et: 1012 I-u 
w 
_j 
w 

(/) 

z 
6 x 10 12 CM- 2 X 

• 2 x 1013 CM- 2 

V 1.4 X 10 14 CM-2 

10 11 
A 5 x 1014 CM-2 

Figure 1. Anneal behavior of the surface electron concentration 

N
8 

and the effective mobility µe for silicon implanted 

at room temperature with 220 Kev Te ions. 
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density of 9 ma/cm2 in the presence of high intensity light was used dur­

ing the process of anodization. 

Ellipsometry measurements were made to determine the thickness­

voltage dependence. The oxide thicknesses were found to be reproducible 

within 5%. The oxide layer was stripped with concentrated hydrofluoric 

acid (HF). The thickness of removed silicon layer was assumed to be 43% 

of the thickness of oxide layer. 

2.3 Electrical Measurements 

Hall effect and sheet resistivity were measured as a function of 

temperature. The desired temperature was maintained through heat exchange 

in a gas flow liquid nitrogen cryostat. The platinum sensor and controller 

held temperatures to within~ 0.2°K. A magnetic field of 4 K Gauss has 

been employed for Hall effect measurements. Measurements were performed 

using pressure contact to the implanted layers. 

As a result of Hall effect and sheet resistivity measurement, 

the number of electrical carriers/cm2, N
5

, and sheet resistivity Ps can 

be obtained if we assume that the Hall mobility is equal to drift mobility. 

This assumption is valid for heavily doped semiconductor samples.(l 5) 

For low dose samples, this assumption may give rise to, at most, a factor 

of two error. By combining layer removal technique with Hall effect and 

sheet .resistivity measurement we can obtain the av~rage carrier concen­

tration and resistivity of the removed thin layer through the relationship(B) 



Where (N) and (p ) 
s i+l s i+l 

after the removal of the 

i 
th 

_1 aY,er. 

2.4 Quenching 
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(II.1} 

(II.2) 

are measured carriers/cm2 and sheet resistivity 

i th layer; di is the thickness of the removed 

To perfonn the quenching experiments, we set the furnace at an up­

right position so that the samples could move freely in the vertical 

direction. The samples were placed in a quartz basket with several holes 

at the bottom. At the end of the annealing time period, the quartz 

basket and samples were dropped within 0.2 sec into a beaker containing 

de-ionized water. The samples were cycled through a series of heat treat­

ments which involved anneal at 1000°C followed by a quench and then 

anneal at 850°C without a quench. Electrical measurements were made before 

and after each anneal. 

I II. THEORY OF ACTIVATION ENERGY VARIATION 

·The ratio of conduction electron concentration to the impurity 

concentration at various temperatures depends upon the impurity activation 

energy. Hence, any variation of impurity activation energy would cause a 

change of the values of the electron-to-impurity-concentration ratio. It 

has been reported that the impurity-to-band activation energy decreases 
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at high impurity concentration in semiconductors.{ll) Recently, Lee and 

McGi11< 12 ) have worked out a theory for the variation of activation energy 

with impurity concentrations. They pointed out that the donor activation 

energy decreases because of both donor level shifting and donor level 

broadening. 

To illustrate the model of their theory, the conduction band density­

of-states, Nc(E), and the donor level density-of-states, pi(E), are plotted 

in Fig. 2 for the cases of both low donor concentrations and high donor 

concentrations. For low donor concentration case, the conduction band 

edge and the discrete donor level are well defined. The donor activation 

energy is unique and equal to E0. For high donor concentratjon case, in 

addition to the strict shift of conduction band edge toward the donor 

level, 6Ec, the broadening of the donor states and the tail of the conduc­

tion band edge also contribute to the decrease of donor activation energy. 

Due to the donor state broadening effect, some impurity states shift 

upward toward the conduction band edge and some shift downward away from 

conduction band edge, as shown in Fig. 2. The upward shifted states 

contribute partly to the decrease of the activation energy and the downward 

shifted states are mostly occupied by electrons and thus correspond to 

the non-ionized portion of Te impurities. The donor activation energy 

is not uniquely defined and thus varies as a function of temperature. 

Further, even though the apparent activation can decrease to values near 

zero, the donor atoms are not all ionized. 

Using this physical model, we calculated the conduction electron 

concentration as follows: The conduction electron concentration n is 
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Figure 2. The physical model for the decrease of activation 

energy with increasing impurity concentrations. 



85 

given by the standard expression 

{III.1) 

8 oltzmtU11t 
where Ef is Fenni energy, K8 is 9..lotzrnann constant, Tis absolute temper-

ature, Nc(E) is conduction band density of states and tEc is the lowering 

of conduction band edge due to attraction between conduction electrons and 

ionized donors. Because of conduction band edge smearing due to poten­

tial fl~ctuation, the shape of Nc(E) is different from that of intrinsic 

Si. The expressions for Nc(E) and ~Ec are given in Appendix. Similarly, 

the concentration of ionized donors is defined as 

Joo . p
1
• (E-E

0
) 

N0+ = ---~--=-,-dE 
-oo 1 + g exp 

(III.2) 

where g is the degeneracy factor for the donor ground state, pi(E) is the 

donor level density of states and (-E0) is the donor ionization energy at 

low donor concentrations. The factor pi{E) depends upon the effects of 

donor level broadening due to donor electron wavefunction overlapping and 

the effect of donor state spreading due to potential fluctuation. The 

expression for pi(E) is also gfven in Appendix. For donors, such as P 

in Si, the hydrogen model is suitable to describe the donor states and 

thus g is assumed to be equal to 2. For donors, such as Te in Si, the 

helium model seems to be appropriate to describe the donor states and 

thus g is assumed to be equal to 1/2.(lS) 
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With the presence of compensating acceptor concentration NA, charge 

neutrality leads to 

(IIl.3) 

which detennines the Fermi level Ef and, in turn, determines the conducting 

electron concentration n from Eq. (III.l). The presence of compensation 

centers not only reduces the number of electrons but also introduces 

additional broadening due to increased potential fluctuations. (l 2) 

IV. RESULTS 

For the purpose of investigating the influence of residual radia­

tion damage on the electrical properties of implanted samples, we 

investigated the influence of damage caused by pre-implantation of Si 

ions. In Fig. 3 the measured numbers of electrons/cm2, Ns, versus 1/T 

are given for two samples; one of the sample was phosphorus implanted to 

3 x 1013cm2 with Si ion pre-damage and the other sample was phosphorus 

implanted to 3 x 1012cm-2 without pre-damage. For both of the samples, the 

numbers of electrons/cm2 at room temperature were equal to two/thirds of 

phosphorus concentrations. Therefore, the Si ion pre-damage does not 

seem to result into significant reduction of number of conduction electrons 

at room temperature. 

To investigate the effect of residual radiation damage in more 

detail, we used differential measurements to obtain the carrier concentration 

as a function of temperature. Therefore, in Fig. 3 the measured numbers 

of electrons/cm2 versus 1/T are shown for both of the samples after a 
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Variable Energy lmp.lant 

Maxi mum Energy 190 KeV 

•, .- Si{P) 3xl013 cm-2 , Si Pre-implanted 
TA = 850 °c, 15 min 

■, • Si (P) 3 x 1012 cm-2 

TA = 850 °C, 30 min 

0 

After 860 A 
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F~gure 3. The surface electron concentration N versus 
s 

reciprocal temperature for two P-implanted silicon 

samples before and after a thin layer was removed. 
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layer was removed. The results of the differential measurements are shown 

in Fig. 4 which gives the concentration of electrons/cm3 versus 1/T. The 

conduction electron concentrations at room temperature are about 1018cm-3 

for sample implanted with phosphorus 3 x 1013 cm-2 and about 9 x 1016 cm- 3 

for sample implanted with phosphorus 3 x 1012 cm-2• To compare the 

experimental results with theoretical calculations (see Appendix) we also 

plotted in Fig. 4 the calculated conduction electron concentrations as a 

function of 1/T. The donor concentrations N0 and the compensating acceptor 

concentration NA were chosen to give best agreement between the theory and 

experiment. The numerical calculations with N0 = 1.2 x 1018 cm-3 and 

NA= 1015 cm-3 was in good agreement with the experimental results of 

sample implanted with phosphorus 3 x 1013 cm-2. Similarly, the numerical 

calculation with N0 = 9 x 1016 cm-3 and NA= 1015 cm- 3 was also in 

satisfactory agreement with the experimental results of sample implanted 

with phosphorus 3 x 1012 cm- 2. The concentrations of compensating centers 

NA are two to three orders of magnitude below the phosphorus concentration. 

The good agreement between the theory .and experiment on phosphorus 

implanted Si samples indicated that the effect of the residual radiation 

damage was negligible. Although this is not conclusive evidence for an 

absence of damage effects in the Te case, it does suggest that radiation 

dam~9e is not the major factor responsible for the low-activity. 

We investigated the electrical properties of Te implanted samples 

by perfonning Hall effect and resistivity measurements. From the sign of 

the Hall voltage, we deduced that implanted Te has donor behavior in Si, 

in agreement with the result of Te doped bulk Si samples. (4) 

The anneal of Te implanted samples to l000°C and rapid quench to 
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Figure 4. The conduction electron concentrations of differ­

ential measurements versus reciprocal temperature 

for P-implanted silicon samples. The calculated con­

duction electron concentrations versus reciprocal 

temperature for Pin silicon are shown for comparison. 
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room temperature did not give significant increase of conduction electrons/ 

cm2. As discussed in Section 2.4, samples were processed through several 

quench and no-quench cycles. The values of Ns changed by about 10% through­

out the quenching steps, but no systematic trend was noticed. Therefore, 

we do not believe that the fonnation of Te substitutional clusters could 

account for the entire difference between the number of electrons/cm2 

and the number of implanted Te atoms. It is possible, of course, that a 

temperature of 1000°C is not sufficient to dissociate Te clusters or that 

faster quenching is required. 

The measured numbers of conduction electrons/cm2, Ns, versus 1/T 

for several Te implanted samples were plotted in Fig. 5. For these samples, 

the lowest dose is 4 x 1012 cm-2 and the highest dose is 1.4 x 1015 cm-2. 

In Fig. 5, the slopes of log Ns versus 1/T decrease as the Te concentrations 

increase. This indicates qualitatively that the Te activation energy 

decreases as Te concentration increases. For the sample implanted with 

Te 1.4 x 1015 cm- 2, the activation energy is approximately equal to zero 

but the number of conduction electrons/cm2 is about 2 x 1013 cm-2 which 

is almost two orders of magnitude less than the number of implanted Te 

atoms. The upward curvature in the data for the high dose sample caused 

by mobility weighting has been observed in other measurements on Te 

iNplanted samples. (6) 

The results of the differential measurements for three of the samples 

are plotted versus 1/T in Fig. 6. The slope of the curve for the sample 

implanted with 4 x 1012 Te cm-2 yields an activation energy of 140 meV, 

which agrees with the result of Te doped bulk Si samples.( 4) As also 

found in Fig. 5, the activation energy in Fig. 6 decreases with increasing 
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Figure 5. The surface electron concentration Ns versus re­

ciprocal temperature for Te-implanted silicon samples. 
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ential measurements versus reciprocal temperature for 

Te-implanted silicon samples. The calculated conduction 

electron concentrations versus reciprocal temperature 

for Te in silicon are shown for comparison. 
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Te concentration. For the sample implanted with Te 1.4 x 1015 crn-2, the 

measured .conduction electron concentration ~oes nat var-y between room 

temperature and 100°K. 

To compare the experimental results with the results of the 

theoretical calculations, we also plotted in Fig. 6 the calculated conduc­

tion electron concentrations versus 1/T for different Te concentrations. 

The Te concentrations ND and the compensating acceptor concentrations NA 

shown in Fig. 6 were chosen to give best agreement with the experimental 

results. The numerical calculation with ND= 3 x 1019 cm- 3 and 

NA= 2.5 x 1018 cm-3 indicated that the conduction electron concentrations 

varied very little over the temperature range between room temperature and 

100°K. As we can see from Fig. 6 the experimental and the theoretical 

results have some similar behavior. First, both the theoretical and the 
~ 

experimental results have the same trendAthat the activation energy 

decreases with increasing Te concentrations, as we expected. Second, for 

high Te concentrations {greater than 1019 cm-3), the activation energy is 

almost equal to zero but the conduction electrons concentrations are much 

smaller than the Te concentrations. On a quantitative basis there is still 
-3 a discrepancy between the calculated and measured number of electrons cm • 

The origin of this discrepancy is not known at present. 

V. CONCLUSION 

For high dose Te implanted Si samples, the number of electrons/cm2 

are found to be much less than the implanted number of Te/cm2 while the 

activation energy was approximately equal to zero. By use of layer removal 

technique in combination with Hall effect and resistivity measurements, we 
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w~re ·able to investigate the electrical properties of Te implanted Si samples 

in more detail. The effect of the residual radiatjon damage bas been 

investigated through the simulation of radiation damage by Si ion pre-

damage in phosphorus implanted samples. The negligible influence of the 

residual radiation damage on the electrical properties of phosphorus 

implanted samples, with or without Si ion pre-damage, led us to assume that 

the residual radiation damage did not substantially reduce the electron 

concentrations of the Te implanted Si samples. Quenching of the Te implantee 

-samples after a l000°C anneal has been found to give little increase of 

number of conduction electrons/cm2. Therefore, we do not believe that the 

fonnation of inactive substitutional Te clusters is entirely responsible 

for the much smaller number of conduction electrons/cm2 as compared to the 

implanted Te atoms. 

Theoretical calculations which included the effects of decrease of 

activation energy with increasing impurity concentrations gave qualitative 

agreement with the experiment results. Both the theoretical and experimental 

results indicated that the activation energy decr~ases approximately to 

zero for Te concentration higher than 1019 cm-3 . Further, not all the Te 

are ionized even though the activation energy is almost zero . This is 

understandable from our model of the variation of activation energy with 

impurity concentr-ations. In addition. to the strictly downward shifting 

of the conduction band edge, the broadening of impurity states and the 

smearing of conduction band edge also contribute to the decrease of 

activation energy with increasing impurity concentrations. Even though 

the activation energy is almost zero, the Te atoms are not necessarily 

a 11 ion i zed . 
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APPENDIX 

Dealing with the variation of activation energy with impurity concen­

trations, we included three effects in our model. These three effects are 

(i) the lowering of conduction band edge due to attraction between conduc­

tion electrons and ionized donirs, (ii) the broadening of donor level due 

to donor electron wavefunction overlapping and (iii) the smearing of conduc­

tion band edge and the spreading of donor states due to potential 

fluctuation . 

To obtain the lowering of conduction band edge, we proceeded as 

follows'. Due to the overlapping of ionized donor potentials, the average 

barrier height against electron conduction has .been reduced by an amount 

(A-1) 

where q is electronic charge,£= 11.8 is Si dielectric constant, dis the 

average distance between ionized donors and A is the screening length. The 

average ionized donor a distanced is given by 

-1/3 
d = (N +) (A-2) 

D 

where N0+ is the ionized donor concentration. The screening length A can 

be expressed in terms of electronic screening through Ae and ionized 

impurity screening length Ai by 

2 2 -1/2 
A= (ie- +Ai-} (A-3) 
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with 

fpr non-degenerate case (A-4) 

and 
1/2 -1/3 

] + o.893 [~(NA+ N0)] (A-5) 

where K8 is Boltzmann constant, Tis the absolute temperature, n is the 

conduction electron concentration, N
0 

and NA are donor and acceptor concen­

trationk respectively. Due to electronic tunneling, the botiom of conduc­

tion band locates below the top of the barrier. Consequently, the total 

lowering of conduction band edge is equal to 

(A-6) 

where ~E1 is given by Eq. (A-1} and 6E2, due to electron tunneling effect, 

is approximately equal to 

(A-7} 

* where m = 0.33 mis Si effective mass and dis given by Eq. (A-2}. 

The average broadening of donor energy level, B, has been found to 

be 

8 = 2 f (R)-4nN0R
2 Exp(- ~ N0R

3
) dR (A-8) 

where J(R) is the energy transfer integral and is given by 



97 

{A-9) 

where Zeff is the effective charge of the donor nucleus and 1/~ is the 

average radius of donor electron wa~ffunction. Zeff and~ have different 

values for different impurities in Si. For impurities such as P, As or 

Sb in Si, the hydrogen model is appropriate and thus we have 

(A-10) 

and 

(A-11) 

fs effective Bohr radius~ E0 = - BrreeoaH is the 

ground state energy from effective mass theory(l 9) and (-E0) is the donor 

ionization energy at low donor concentration case. For impurities such as 

Sor Te in Si, they have two more valence electrons and thus helium model 

seems to be appropriate . (la) Using helium model, we treate~ Zeff as parameter 

such that 

(A-12) 

i.e. 

(A-13) 

and we have 
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(A-14) 

Assuming constant density-of-states over the band width B, we have the 

donor level density-of-states, 

0 otherwise (A-15) 

Due to the potential fluctuation, the conduction band and donor 

level density-of-states have been modified. The work of Kane( 20) and 

Morgan( 2l) indicated that the potential fluctuation can be approximated 

by Gaussian distribution with the standard deviation given by 

a = (A-16) 

where xis the screening length, given by (A-3). Thus, the potential 

fluctuation is given by 

p(v) = l 
/2'°; a 

(A-17) 

The conduction electron mobility is a function of energy in the 

conduction band tail. For simplicity, we assume that the mobility is 

constant for electrons with potential energy ~ -2o and mobility is zero for 

potential energy < - 2a. The electron with zero mobility would not con­

tribute to current conduction. Therefore, the conduction band density-of­

states is given by 



J:. (E-V)1/ 2 p[v)dv 

0 

E > - 2a 

E < - 2a 
(A-18) 

The donor level density-of-states p1(E) should include both the 

fluctuation induced broadening and the broadening due to the energy trans­

fer integral. These two effects can be combined by averaging p0 (E) given 

in (A-lfi) over the value of the local potential. That is 

pi(E) = fm p0 (E-v) p(v)dv (A-19) 
-m 

where p(v) is given by (A-17). 
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SUGGESTION FOR FUTURE WORK: 

It has been shown that the EHT can produce silicon band 

structure with band gap 1.15 eV and with the minimum of conduction 
<J 00) 

band occurring along the I\ direction; both are in agreement with the 

accepted silicon band structures. We can apply the same EHT to 

amorphous silicon to obtain the density-of-states. It is interesting 

to compare the results obtained by ·using the EHT with those obtained 

by using some other methods . Furthermore, the EHT combined with 

periodic large unit cell has been shown to give good qualitative 

results for divacancy, a deep level, in silicon. We can extended 

this method to more complicated systems, such as deep impurities in 

silicon, and study their properties. 

In the theory of variation of activation energies with impurity 

concentrations, we have assumed that the electron mobility is either 

a finite constant or zero for electrons in the conduction band tail. 

However, the electron mobility should be a function of energy. 

Therefore, we can improve the theory by includinz the mobility 

variation in the band tail. This may bring a better agreement 

between the theory and experiment. Furthermore, the Hall effect 

and resistivity measurements were performed from room temperature 

down to 100 K. To provide a check for the theory and to investigate 

the electrical properties at lower temperatures , it will be important 

to do Hall effect and resistivity measurements on Te implanted Si 

samples down to liquid helium temperature. 




