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ABSTRACT

(1)

A study of the electronic levels associated with the divacancy
in silicon is reported. The extended Huckel theory is shown to
reproduce the band structure of silicon% The electronic levels of
the divacancy are calculated by considering a periodic array of
large unit cells each containing 62 atoms; a 64 atom perfect cell
with 2 atoms removed to form the divacancy. The results are found
to be in qualitative agreement with the results of EPR and infrared

absorption measurements.

(2)

A theory of the wariation of conduction electron density with
the temperature for various impurity concentrations is presented.
In addition to previously noted effects of conduction band edge
lowering and screening of the impurity potential by the conduction
electrons, the influence of a finite energy transfer integral
and spatial fluctuation in the potential are included. The results

17 o

show that for Nir$10 m—3 in silicon one must not view the acti-
vation as occurring between a single impurity level and a well
defined conduction band edge, but must include the broadening of
the impurity level and tailing of the conduction band density of

states. Calculations for the shallow donors P, Sb, and As in Si

are found to be in satisfactory agreement with experiment.



(3)

Hall and sheet resistivity measurements as a function of
temperature combined with layer removal have been used to study
S1i implanted with Te at energies up to 220 KeV. At low doses
&L x 1012 cm_z), Te has a donor level with 140 meV activation
energy. The activation energy decreases at higher Te doses and is
approximately equal to zero for Te doses 2 1015 cm-2. At high dose
levels, the number NS of conduction electrons is more than an

order of magnitude below the number of Te cm ~. High temperature
anneal treatments followed by quenching did not produce a substantial
increase in NS suggesting that the formation of Te clusters was

not responsible for the low value of Ns. Also channeling measurements
indicated a high substitutional fraction. Based on differential Hall
measurements on P-implanted samples, with and without Si pre-

damage, we conclude that residual radiation damage is not a major
factor. A theoretical calculation, which includes the effect of
decrease of activation energy with increasing impurity concentrations,
indicated that the number of conduction electrons could be much

less than the number of implanted Te even though the apparent
activation energy is almost zero. Although the results of theoretical
calculation do not give quantitative agreement with the experimental
results, they do confirm the changes in apparent activation energy

with concentration.
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FART ONE

INTRODUCTION



(1)

Deep level impurities in semiconductors are of considerable
interest because they have been found to create important effects

in the devices. For examples, the presence of gold in silicon

. . (2) e degp_bl fonlires )
Junction can increase the switching speed; hitrogen iImpurities
are responsible for the high quantum efficiency of gallium phosphide
light emitting diode.(B) Also, there has been a upsurge of interest
in heavily doped semiconductors.(u) This interest is both due to
their expanding applications and their new phenomena in the semi-
conductor physics. This thesis contains both theoretical and experi-
mental studies addressed to the problem of deep levels and high
impurity concentrations in silicon.

Deep levels in semiconductors have been the subject of study
for about 20 years. Until recently, very little theoretical work
has been reported on this difficult problem. The theoretical compli-
cation is due to the tight binding character and multiplicity of
charge states which are usually assocliated with deep levels. In
addition, the lattice distortion around the defect center has
also been thought to have signifiéant influence on the deep energy
levels. Therefore, the effective mass theory, which works success-
fully for shallow levels, is not applicable to deep level problems.
An appropriate theory for deep levels should correctly take into
account the defect center potential, electron-electron interaction
and the lattice distortions, simultaneously.

There have been two different kinds of approacheto treat

the deep level problems. One is the solid state scattering theory
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(SST) used by Callaway(S) and the other is the defect molecular
model (DMM) pioneered by Coulson and Kearsley.(é) In the SST, the
solid state continuum aspects of the problem are emphasized. The
defect energy level is calculated in terms of scattering of electrons
off the defect centef potential. The tremendous amount of work in
this calculation makes it difficult to incorporate the electron-
electron interaction and lattice distortions into the solid state

(7)

scatering theory. The SST has been applied to undistorted vacancy

(8)

and undistorted divacancy: ‘in silicon. The lattice distortions were
neglected in their calculations.

In the defect molecular model, one considers all thebonds
near the defect center and treats them like a molecular unit. A
full configuration interaction, electron-electron interaction and
Jahn-Teller distortion are included in this model. This model has
(6,9,10)

been applied with moderate success to vacancy

(11)

and diva-
cancy in diamond. Because of the complicated calculations
involved, it is difficult to extend this model to a molecular unit
with a large number of atoms. Hence, the influence of the bonds
other than the nearest ones are not included. This makes this method
not suitable for defect centers of which the amplitude of the
electron wavefunction extends over more than just the nearest bonds.
Furthermore, since the solid state continuum aspect is totally

lost in this molecular model, the relative position of the defect
levels with respect to the solid state band diagram can not be

determined.,

Recently, llessmer and Watkins(iz) have modified the DIl so
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that they can treat large molecular unit. In the modified DMM, they

have used the extended Huckel theory (EHT).(13) Mmﬁ /s a4 one—

electron molecular-orbital treatment, on a finite cluster of atoms
to investigate the nature of deep defect levels. Lattice distortions
are directly included by moving atoms in the cluster about until
the total energy of the system reached a minimum. However, the
variation of electron-electron interaction and ion-ion interaction
with charge state and distortion were not included in this treatment.
It has also been pointed out that, by directly applying the LHT
to cluster of atoms, the energy levels and the ordering of the
symmetry depend upon the size of the cluster selected.(14’15)
In Part II of this thesls, we have used the BHT to calculate
deep energy levels. Due to the inherent complication of deep level
problems, we chose a simple system to study: divacancy in silicon.

(16)

It has been suggested that divacancy in silicon introduces
three levels in the energy gap, with four charge states ( +1, 0, -1
and -2); the single donor stateflocated.approximately at 0.25 eV
above the valence band edge and the double acceptor state is at
about 0.4 eV below the conduction band edge. Watkins and Corbett(lé)
deduced a model for lattice distortion around the silicon divacancy
by using their electron-paramagnetic-resonance data. Furthermore,
suggested by the results of EPR and stress experiments, &atkins(17)
claimed that the energy assoclated with this lattice distortion
was about 2 eV and thus had significant influence on the energ

levels. e have used the model of Watkins and Corbett to include

the distortion around the silicon divacancy. That is, we applied



the BHT to a system of periodic large unit cell with a distorted
divacancy in each cell. This treatment differs from that of Messmer
and Watkins in that they used a cluster of atoms to calculate energy
level of nitrogen in silicon whereas we used a solid which consisted
of periodic large unit cell.

As to heavily doped semiconductors, it has been reported
that the impurity-to-band activation energy decreases with increasing

(18)

impurity concentrations. A number of different suggestions have

been put forward to account for this phenomenon theoreatigally.
(18) (19)

Pearson and Bardeen, and Castellan and Seitz

suggested that
the decrease of impurity activation energy with impurity concen-
trations was due to attraction between the conduction electrons

and ionized donors. Calculations based upon this physical model
yielded qualitative but not quantitative agreement with the experi-
mental results. Pincherle(zo) proposed that free carriers screen
the field of the impurity center and hence give rise to decrease of
electron binding energy to the impurity center. Calculations based’
upon this proposal only did not give satisfactory results. A self-
consistent calculation which combined the above two models was

(21)

given by Lehman and James. Their calculation gave a better
agreement with experimental results but still underestimated the
decrease of activation energy.

It should be pointed out that both the shift of impurity
level with respect to band edge and the broadening of impurity level

could lead to variation of impurity activation energy. The impurity

level shift may be due to the above mentioned physical phenomenn,



i.e. conduction electron screening and Coulombic attraction. The
impurity level broadening may be caused elther by the finite energy:
transfer integral due to wavefunction overlap or by potential fluc~
tuations. In the first case, the impurity level wavefunction at

a given impurity has finite llamiltonian matrix elements with impurity
level wavefunction centered at nearby impurities. This leads to
finite energy transfer integral and to broadening of impurity levels
when the impurities are at finite density. This produces a band

of levels. In the second case, the presence of charged impurities
distributed in a random way throughout the solid generated potential
fluctuations. These potentiai fluctuations produce tailing of con-

(22)

duction and valence band density-of-states and spreading of
inpurity levels.'?3) In Part TIT of this thesis, we will include
both the shift and the broadening of the impurity level to treat
the decrease of impurity activation energy with impurity concentra-
tions.

Generaly,deep level impurities have low solid solubility in
semiconductors and thus it is difficult to heavily dope the semi-
conductors with deep level impurities by thermal equilibrium tech-
nique$, However, ion implantation provides a way to introduce high
concentrations of deep level impurities, even above their solid
solubilities, in semiconductors. After ilon implantation, usually
high temperature anneal (600—8506C) is required to reduce the radi-
ation damage in the ion implanted samples. Therefore, even though
ion implantation can introduce impurities above thelr solid solubi-

lity into semiconductors, after high temperature anneal, the impu-



rities may preciplitate by forming compounds or moving out of lattices
sites and beconec electrically inactive. Channeling measurement pro-
vides a tool for studying the impurity lattice 1oca£ion.(2u) HeV He
ion backscattering and channeling measurements have been made for
lattice locations of group II and group VI elements in silicon.(25)
Of these elements, tellurium is attractive beczuse it has large
fraction (60%) on substitutional sites.(zu)

Tellurium has been reported to be a donor in silicon, and For

IESS ﬁ’““ 17 __3
Te concentration, 107" cm , ard it has a deep level, 0.14 eV, below

(26)

the conduction band edge. Frevious llall efifect and resistivity
measurements(27)indicated that for heavily Te implanted samples

the number of conduction electrons/cm2 is much lower than that of
implanted substitutional Te/cm2 even though the activation energy is
almost zero. The discrepancy in these numbers may be due to the fact
that the measured number of conduction electrons/cm2 is a welighted
average of the implanted impurity concentrations and is usually
smaller than the number of implanted impurities. Another source for
tlils discrepancy is that high temperature anneal after ion implant-
ation may still leave some residual damage. The residual damage may
act likefbompensation centerg and thus reduces the number of con-
duction electrons/cmz. In arsenic diffused samples, 1t has becn
found(28> that the electrical activity is reduced by longz heat
treatment at temperatures of 500-970 C. The electrical activity
could be increased by heating at high temperatures (~1100°C) and

then quenching., The reduction of electrical activity was attributed

to the formation of As clusters which could be dissociated durin::
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high temperature processing. Similar effects may be responsible for
this discrepancy in high dose Te implanted samples.

In Part IV of this thesis, we performed Hall effect and resis-
tivity measurements combined with layer removal technique to investi-
gate the electrical properties of Te implanted silicon samples. Theo-
retical calculations of conduction electrons/cm3 as a function of
tenperature for Te in silicon were also made. The calculated results

were then compared with experimental data.
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1. INTRODUCTION

Up until recently, very little theoretical work has been reportea
on the difficult questions associated with deep levels in semiconductors.
This lack of theoretical activity is not due to a lack of experimental
information on deep levels but is due to the inherent theoretical compli-
cations thought to be associated with the deep level problem. The
tightly bound character and multiplicity of charge states usually associated
with deep levels make thé standard effective mass theory (Kohn 1957)
inapgropriate. An appropriate theory of the deep electronic levels is
thought to require the simultaneous accurate treatment of the potential
of the defect, the lattice distortion, and the electron-electron inter-
action.

Previous theoretical treatments of defect levels have made use
of two rather different approaches. The first pioneered by Coulson and
Kearsley (1957) and extended by Coulson and Larkins (1969 and 1971) makes
use of the defect molecule model (DMM). In the DMM, one apbroximates
the problem of a defect in a perfect solid by a small molecular unit
consisting of the bonds near the defect. A full configuration inter-
action calculation is then performed on this small molecular unit.
Lattice distortion is treated by expanding the energy of the defect
molecule to second order in the atomic positiohs and minimizing this
expansion to obtain the atomic positions and energy eigenvalues. While
the DMM takes account of electron-electron interaction explicitly, the

difficult calculations inherent in the method have prevented calculations
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involving more than the bonds on the nearest neighbors. Hence, the
influence of bonds further away from the defect have not been included.
This makes the method unsuitable for the treatment of defects where

the amplitude of the wavefunction of an electronic level associated with
the defect extends over more than just the nearest bonds. The DMM has
been applied with moderate success to the vacancy in diamond by Coulson
and Kearsley (1957), Coulson and Larkins (1971), and Larkins (1971a) and
to the divacancy in diamond by Coulson and Larkins (1969).

Recently, Messmer and Watkins (1970) have modified the DMM so
that' one can treat larger molecular units. In their calculations, a
finite cluster of atoms is treated using the extended Huckel theory (EHT)
(Hoffman 1963). Lattice distortions are treated directly by moving
atoms in the cluster about until the total energy of the system reaches
a minimum. The application of the EHT to the cluster, on the one hand,
makes it possible to treat very large clusters of atoms. However, on
the other hand, it does not take account explicitly of the variation
of electron-electron interaction and ion-ion interaction with charge
state and distortion (Larkins 1971 b,c).

Messmer and Watkins (1971) and Watkins and Messmer (1970) have
applied these techniques with moderate success to a number of deep
levels in diamond. However, Larkins (1971 b,c) has shown that direct
application of these methods to defects in silicon presents a number
of pfob]ems. The energy gap between occupied and unoccupied levels

is much larger than the band gap. The energy eigenvalues and the
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ordering of eigenvalues of various symmetry depend upon the size of the
cluster selected.

The second approach makes use of solid state scattering theory
(SST) (Callaway 1964). In this approach, the solid state continum aspects
of the problem are emphasized. The defect level problem is cast in terms
of the scattering of an electron off the defect potential in the presence
of a perfect crystal (Bennemann 1965; Callaway and Hughes 1967). However,
the method has the disadvantages that: it is difficult to identify the
correct form of the defect potential; the treatment of lattice distor-
tion and electron-electron interaction is hard to carry out; and a great
deal of calculational work is required to obtain results.

In this paper, we report upon a study of a deep 1evei in silicon,
the divacancy. In this study, we have attempted to marry some of the
best points of the two methods described above. To do this, we have made
calculations using the EHT for a perfect solid consisting of large unit
cells with the divacancies at their center. Hence, we have a well
defined potential (the absence of two silicon atoms) and at the same time
we have circumvented the difficulties associated with cluster calculations
which have been noted above. Using this method, we obtain results which
are in qualitative agreément with known experimental results.

The outiine of this paper 1s as follows: 1n Section 2, we review
the theoretical approach. In Section 3, we report the results obtained
for the silicon divacancy. Section 4 contains discussions and conclu-

sions.
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2. OUTLINE OF THEORY

2.1 Extended Hiickel Theory (EHT)

In the independent electron approximation, the energy eigenvalues
and eigenfunctions for a system consisting of a defect in an otherwise
perfect solid are obtained by solving theltime independent Schrodinger

equation,
H‘J’i = e s (2.1)
where -

H=H (2.2)

perfect * Vdefect -

vdefect is defined to be the difference in potential between that found
in a perfect crystal and that found with the defect present. One approach
to solving (2.1) is to take ¥; to be a linear combination of atomic

orbitals, by centered on each atom in the crystal. That is,

v = LGy 8, . (2.3)
o

In this case, a solution to (2.1) is obtained when
det[HaB - esaBI =0 | »  (2.4)
where _
Mg = <oy IHlgg> . (2.5)

and



SaB = <¢u|¢8> ‘ .. (2.6)

In the EHT, the matrix elements of the Hamiltonian between the atomic

orbitals is approximated by taking

2 ol
H K(Ia+1)s

- 7 Kag 6)Sug » for o # 8 3 (2.7a)

and

H =-1 ‘ . (2.7b)

ac o

Ia is the empirical ionization energy of the ath atomic Tevel and

KaB is a dimensionless parameter usually taken to be between 1 and 2.

2.2 Large Unit Cell

The method of Messmer and Watkins (1970) consistsof the applica-
tion of (2.4) to (2.7) to a large cluster of atoms with the defect in the
center. However, as will be discussed be1ow, direct application of this
method leads to unsatisfactory results.

To solve this problem, we have considered a pérfect solid with a
large unit cell. The large unit cell was chosen to consist of a cubic
block of two by two by two face centered cubic ce]ls; 32 primitive cells,
or 64 atoms. This procedure insures that a calculation for a system with

no defects will give an exact energy gép.

2.3 Lattice Distortion
The position of the atoms near the defect should be obtained by
minimizing the total energy of the system with respect to atomic positions.

The quantity in the EHT which is analogous to the total energy of the
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system is defined as

Egur = 1251. g (2.8)

where the summation runs over all the occupied states. Messmer and Watkins
(1970) have u§ed this expression for the energy to obtain the lattice dis-
tortion of the atoms in a cluster about the defect. The same process
could be used with a Tittle bit more work to calculate the lattice distor-
tion in a large unit cell as discussed above. However, as emphasized by
Larkins (1971 b,c), the total energy defined by (2.8) is not precisely ‘the
total epergy of the system since no explicit provision is made for taking
account of electron-electron interaction, and ion-ion interaction variation
with charge state and lattice distortion. Hence ,minimizing (2.8) to give
the equilibrium atomic positions about the defect may give unreliable
results. For this reason, we have decided to simply explore the role of
lattice distortion on the electronic Tevels associated with the defect.

We will only report on one representative distortion here. The
lattice distortion chosen is suggested by that deduced by atkins and Corbett
(1965) with the aid of their EPR data, see Fig. 1. The pairs of atoms a and
¢, and a' and c¢' are moved toward each other to imprové@sg the bonding
between the "dangling bonds" Teft by the removal of the divacancy atoms,
ﬁg;;; the atoms b and b' are moved away from each other so that they move
out of the way of the bonding pairs, ac and a'c'; Further, the
distortion was introduced in such a way that the distortion of the bonds

between the atoms next to the defect and their three nearest neighbors
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was confined to the stretching a single bond and the bending of the
other two bonds. 1f we take the location of the six nearest neighbor

atoms to the divacancy in the undistorted case to be given by:

3 = a (8, - 3Ey - 3¢,)/8 | _ . (2.9)
3= (-e + 33y +3¢,)/8 ,  (2.9b)
B = a,(-32, - 3Ey +¢,)/8 . ,  (2.9¢)
B' = a (38 + 33y - ¢,)/8 ,  (2.9d)
¢ = a (-3¢, + Ey - 332)/8 ,  (2.9)
¢ =a (38 - Ey +3¢,)/8 . (2.9f)

where a, is the length of the cube edge, then, after the distortion, the

atoms are located at

a = a[(1-8)e, - (3-s>ay - (3+a)é,1/8 -, (2.102)
a' = a [-(1-8)e, + (3-3)3y + (3+a)8,1/8 . (2.10b)
B o= a [-(3+8)8, - (3+e)zy + (1+a)é,1/8 . (2.10c)
b’ = aO[<3+s>zx % (3+e)3& - (1+a)Ez]/8 ,  (2.10d)
¢ = a [-(3-8)¢, + (1-8)e, - (3+a)3;]/8 5 (2.10e)
c' = a[(3-8)8 - (1-3)3& + (3+a)é,]/8 . (2.10f)

a sets the scale of the distortion and
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2
_ 4/ ba - a
B = —5 .

Distortion is measured by a parameter d defined by

d = ao/"374 . (2.11)

2.4 Definition of Localization

For the purpose of deciding which levels should be identified
with the defect, we define a measure of localization of a level i on

the six nearest neighbor atoms by:

3¢, C..S
B 1o 18 aB
_ over six atoms
fi ® ¥ e*. €8
BB 1a 18 aB
all atoms
unit cell

" (2.12)

where Cia is the uth component of eigenvector of state 1.

3. RESULTS

3.1 Silicon Band Structure

For suitable values of EHT parameters in (2.7), the EHT accurately
reproduces the accepted band structure for silicon (Herman et al. 1966;
Messmer 1971). We have used atomic functions like those obtained by
Clemente (1965). The atomic functions used differ in that we havye kept
only the three largest terms in the expansion in Slater orbitals and
modified the Slater exponents slightly. The Slater exponents in ¢3;

are increased by factor of 1.3 and the Slater exponents in ¢3p by 1.4,



¢3, = [- 0.20265 x,(6.8112, r) + 0.61435 x3(2.7160, r)
+0.52025 x5(1.6829, r)] qu(e, $) " (3.1)

and a 3p wave function of the form

¢3p = [ -'0.1208 x2(9.8, r) + 0.48091 x4(3.2214, r)
+ 0.57523 x,(1.8218, r)] Y, ~(6, ¢) . (3.2)
4 1,0
where
. 3 w% n+%— . n-1 -gr/aB
xg(6s 1) = [ag>(2n)1]1 © (25) ° () e
B
and ag is Bohr radius.
I3S =17 eV 5 (3.3a)
13p = 11.6 eV . (3.3b)

The dimensionless parameters were taken to be

Ky = 1.87 . (3.42)
K = . s .

pp 1.81 (3.4b)
Ksp = 1.35 {3.4c)

Using these parameters, we obtain the band structure shown in Fia. 2. The
calculated value of the gap is 1.15 eV and the minimum in the conduction
band occurs along the A direction in agreement with accepted band

structures.
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Figure 2

The band structure of silicon along A and A directions

in EHT approximation. The EHT parameters: I3s =17,

= 1.81, K P 1.35. The

I3p = 11.6, KSs =1.87, Kpp "

energy gap is 1.15 eV.
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3.2 Electronic Levels of Clusters

Calculations of the electronic levels of clusters of 29 and 64 atoms
with no defect present show that energy levels of the cluster do not give
a satisfactory'representation of the electronic level structure for
silicon. The electronic levels were calculated using the same EHT parameters
as were used in the band structure calculation. The results of these
calculations are shown in Fig. 3 where we have plotted the band structure
for the large unit all at the T point along with the electronic levels
for the 29 and 64 atom clusters. From these results, one can see that the
level structure in the cluster calculation is unlike that obtained in the
band structure calculation. In this figure, we have shown the location of
the energy separating occupied from unoccupied levels by an arrow. For
a reasonable representation of the electronic structure of the solid,
we would expect there to be a region in energy just above this arrow which
would be the band gap. However, as can be easily seen from Fig. 3, no

such gap exists for the cases of 29 atom or 64 atom cluster.

3.3 Divacancy

We will report the results for the divacancy in two parts: first
the divacancy without lattice distortion; and, second, the divacancy with
lattice distortion.

3.3.1 Undistorted

The undistorted divacancy is modeled by simply removing two atoms
from thé center of each 64 atom unit cell (described in Sec. 2.2) in a
periodic structure. The resulting unit cell has symmetry D3d with the

3-fold axis of symmetry along the vector connecting the positions of the
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a) The energy levels at the center of Brillouin zone, T,
of Si perfect crystal with 64-atom cubic unit cell.

b) The energy levels of 64-atom cubic silicon cluster.

c) The energy levels of 29-atom silicon cluster.

The arrows indicate the level separating occupied from

unoccupied levels in the case of a neutral unit.
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atoms removed to produce the divacancy. The solid produced by this pro-
cedure consists of a periodic array of oriented divacancies at a density

210173 in an otherwise perfect diamond lattice.

of approximately 10

To study the electronic Tevels of this large unit cell, we have
made calculations of the band structure at the zone center ("r-point")
and at the cubic Brillouin zone edge along the (170) direction ("M-
point") oriented with respect to the divacancy as shown in Fig. 1. Each
of our calculations yields 248 eigenvalues and eigenvectors. These 248
energy levels divide such that 125 are below the valence band edge for
the perfect crystal and 123 levels are above. Hence, if we neglect
dispersion in the eigenvalues in our small Brillouin zone, and the Fermi
energy is at the valence band edge, then the unit cell contains two
additional electrons above the four electrons per atom present when the
cell is neutral,

We are interested in all the energy levels which are located in
the energy gap and also those energy states which have large probabilities
P around the divacancy (see (2.12)). Therefore we have plotted in
Fig. 4 the energy levels at T-point and their corresponding probabili-
ties P for all the levels in the energy gap and for the levels with
P greater than 0.30. To make comparison with the results for the
distorted divacancy easier, we have labeled the states with their
symmetry according to C2h (a subgroup of D3d) (Hamermesh 1965), the
symmetry of the distorted divacancy. The degeneracy of each state is
indicated by the height of the line in the energy level plot. We
marked in Fig. 4 the six most localized states by their symmetries.

These six most localized states are also listed explicitly in the first
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The energy levels of undistorted divacancy and their
corresponding probabi]ities_fof all the energy states in
the energy gap and the energy states with localization
probabilities P greater than 0.30. The degeneracy of
states is indicated by the height of the line in the
energy level plot. The symmetries of the states are
indicated. The six most localized states are indicated

by arrows.
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series of entries in Table I. Only the six most localized states were
studied since these may be associated with the six dangling bonds around
the divacancy (Watkins and Corbett, 1965).

Because of the rather high density of defects (~1021cm'3) in our
model, we have also investigated the role of defect-defect interaction.
This was accomplished by computing the band structure at the above

described "M-point" and again identifying the six most highly localized

states. The results of this calculation are shown in the second entry in
Table 1. The levels have been arranged so that they have the same symmetry
as in the first entry Table 1. Comparing the two entries we see that the
levels are shifted by approximately 0.2 eV and this suggests a rather
strong divacancy-divacancy interaction at this density of divacancies.

To explore the use of cluster calculations which avoids the
divacancy-divacancy interaction question by use of a finite number of
atoms, we have made calcu]étions for a single divacancy centered in a
cluster of (62 atoms). The resulting energy of the six most highly
localized states are shown in the final entry in Table 1. From these
results, we see that the levels in a cluster calculation bear little
resemblance in location and symmetry to those obtained in the above
described calculation.

3.3.2 Distorted

The introduction of the lattice distortion discussed in Sec. 2.3
lowers the symmetry about the divacancy from D3d to C2h (Watkins and
Corbett 1965). We have studied the influence of this lattice distortion

on the energy and degree of localization of the six most highly localized
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levels. In Figs. 5 and 6, we have plotted the energy and probability
of being on the six nearest neighbor atoms, respectively, as a function
of the lattice distortion measured by d (see Eq. (2.11)). From these
! moves from

u
the valence band into the energy gap. The state A2g increases in

figures we see that: The energy of highly localized B

energy but remains in the energy gap for reasonable values of the
distortion; and becomes more highly localized. The energy of the state

1 . . ;
with symmetry B y remains in the energy gap but becomes more diffuse.
Turning our attention to the three states in the energy gap, the
state with symmetry Bg] is localized around the four atoms a,d, and a',d'

2 1
and Bu

(See Fig. 1 for labeling of atoms around defect). The states Ag
are localized largely on the two atoms b and b'. The best agreement
between these energy eigenvalues and the experimental observed properties
of the divacancy (See Sec. 4) is obtained when the distortion is 0.19 K.
For the case in which the divacancy is distorted by 0.19 Z, we have plotted
in Fig. 7 the energy levels and the corfesponding‘probabi]ities P for all
the states in the energy gap and for the states with probabilities

greater than 0.30. The symmetries of the states are iﬁdicated by using
different symbols for different symmetries. The six states which are
thought to be associated with the dangling bonds of divacancy are marked

by their symmetries in Fig. 7. As we can see, most of .the highly local-

ized states are either in the energy gap or close to the top of valence

band.
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to be associated with the dangling bonds of divacancy

are indicated by arrows.



34

For this value of the distortion,the 248 energy levels divide such
that 124 levels are below the band edge for the perfect crystal and
124 levels are above. Hence, if we neglect dispersion in the eigen-
values in our small Brillouin zone, and the Fermi energy is at the
valence band edge, then the unit cell contains four electrons per atom
and is neutral.

To estimate the size of divacancy-divacancy interactions, we have
also calculated the energy levels at the "M point" (see definition given
above) and at the zone boundary along (171) direction, "R point". The
results of this calculation along with the values at-the r point for
d =0.19 K are given in Table 2. As in the results for the undistorted
divacancy, we note that divacancy-divacancy interaction at this density
can produce level shifts which are on the order of 0.2 eV. We also note

that at "R point" the Bg] level is in valence band and the Ag2 and Bu]

! level in

levels are in the energy gap. Therefore the presence of the Bg
the energy gap is uncertain; it may be due to divacancy-divacancy inter-

actions or due to only six nearest atoms to divacancy bheing distorted.

4, DISCUSSION AND CONCLUSIONS

Using the extended Hiickel theory (EHT), we calculated the band
structure of silicon. The calculated band structure is in good agreement
with the accepted band structure for silicon showing that EHT is capable

of reproducing the band structure of silicon.



35

% 1S 0°¢l- mm »L°2h 88" LL- wm %9° L€ 69°LL- wm
. . b . . b . 3 b

%6°€€ L°2l- —< »L°SY €6°¢l- _< %57 Ch §6°¢l- _<
. b . . il 6 . . b

% 65 Ll N< %8796 L'LL- N< %6° LY 6 LL- N<
. s n 5 . n . . n
%8°0% 6°¢l- Nm %9°0S ¢9°¢l- Nm %9°09 §L°¢L= Nm
- . n . n . . n

%9°vv ¢'el- —< »h°LE el el- P< %8°5§ ceel- F<
n n . ¢ n

% 9§ 98 L1L- Fm »L°29 L6711~ Fm %€°€9 86°LL- Pm

(A3) (A3) (A3)
K311 Lqeqoud ELER AaouwwAs | A3L|Lqeqoud ELER ‘AuzowwAs | A3L|Lqeqoud ELEN Aagouds
(L) (OLL)W A
*sa3ls |eulbLao alayz
"usym Y- pue | obpa Buoz pue 1 J33UID BUOZ 3B SIS PBZL[BDO| XIS ‘Yl °Z 3I|qel

WOUSTY 6L°Q 23RLASp Swoje



35

Calculations of the electronic levels of free clusters of 29 and
64 atoms spatially arranged as in a perfect diamond lattice show that the
electronic structure of the clusters is not the same as that of the perfect
solid. If we define the top of the valence band as that energy below which
half of the electronic levels occur, then the energy range from the top
of the valence band to that energy plus the band gap is filled almost
completely by electronic levels. This fact has necessitated our use of
the large unit cell.

Using the parameters obtained in the band structure calculation,
we havé calculated the electronic levels for the distorted and undis-
torted divacancy. Labelling all the states by their symmetry in the case
of the distorted divacancy, we find that the six states most highly
localized about the divacancy, listed in Table 1, have the same symmetry
and ordering as the six molecular states in the LCAO model proposed by
Watkins and Corbett (1965). In the results presented here, the states

with symmetries Ag2 and Bg]

are in the band gap while the remaining four
states are in the valence band.

Distortion is introduced by simply moving the atoms nearest
the divacancy in such a way that the symmetry around the defect is C2h‘
This distortion produces changes in the energy of the divacancy as well
as changes in the degree of localization of the states about the defect.
While the distortion is very much like that invisioned by Watkins and
Corbett (1965) the ordering of the states after distortion is different
from tﬁat of the LCAO molecular orbital results. This result is due

to interaction between the divacancy levels and the conduction or valence

bands. After distortion the Azg level is still inside the band gap,
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and the Bl level has moved up into the gap; the B; levels moves down-
wards. The position of the B; level is uncertain since due to its more
diffuse naturefﬁs subject to greater influence by divacancy-divacancy inter-
action and distortion of the atoms away from the defect. than the other
levels. A calculation which takes account of these factors may locate

the B; level in the valence band.

The results of these divacancy calculations are consistent with the
experimental results presently available. The EPR studies of Watkins and
Corbett (1965) have identified two spectral features labeled Si-G6 and
Si-G7. Study of the hyperfine interactions in these spectral features has
led them to conclude that about 50-60% of the total probability for an
electron contributing to the EPR are localized about atoms b and b' in
Fig. 1 and about 10-15% of this probability in S-Tike.

We interpret the Si-G6 and Si-G7 spectra as arising from single
1

ul
in or near the band gap depending upon the degree of distortion; and

occupancy of the B , and AS levels, respectively. These two levels are
40-50% of the probabilities are found about the b and b' atoms. Further-
more, when the divacancy is distorted to equal 0.19 R (see Eq. (2.11)), the
s-wave character of the states about b and b' is about 10-15%. Both of
these quantities are in reasonable agreement with the experimentally
determined values.

Studies have also been made of the infrared absorption (Fan et al.
1959; Vavilov et al. 1963; Corelli et al. 1965; Cheng et al. 1966; YoUng
et al. 1969; Chen et al. 1972) and photoconductivity (Cheng 1967, 1968;
Kalma et al. 1968; Young et al. 1972) of samples containing divacancies.
While there seems to be a number of contradictory experimental results,

there does seem to definitely be a 1.8u (0.69 eV) absorption in the
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infrared. Experiments suggest that this absorption is due to highly
localized states on the negatively charged divacancy. Group theoretical
arguments suggest that this transition is between states having Ag and
Bu symnetry or between states having Au and Bg symmetry. Our
theoretical calculation suggest that the transition is between our Ag2
and Bu] states. The calculated energy difference is 0.5 eV, which is
reasonable agreement with the 0.69 eV observed. We have been unable to
identify the number of other transitions reported by various authors.

In conclusion, the extended Hiuckel theory combined with periodic

boundary conditions induced by using a large unit cell gives results in

qualitative agreement with the experimental results available.
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PART THREE
VARTATION OF IMPURITY-TO-BAND ACTIVATION ENERGIES

WITH IMPURITY DENSITY



L2

I. INTRODUCTION

Since the work of Pearson and Bardeen(j) in 1949, it has been well
known that the impurity-to-band activation energy in semiconductors decreases
‘with increasing impurity concentrations. At low impurity concentrations

V7 phosphorus/cm3 in si]iton), the variation of

(for example, less than 10
activation energy with impurity concentrations is small. At high-impurity
concentrations, the activation energy is strongly dependent upon the impurity
-concentrations. A number of different suggestions have been put forward

-to account for this phenomenon theoretically. Pearson and Bardeen(]), and
Castellan and Seitz(z) suggested that the decrease of impurity-to-band
-activatioﬁ energy with impurity concentrations was due to attraction
between the conduction electrons and ionized donors. Calculations based
upon this physical phenomenon yielded qualitative but not quantitative
agreement with the experimental results. Pincher]e(3) proposed that free
‘carriers screen the field of the impurity center and hence decrease the
binding energy of a carrier electron to an impurity center. Calculation
~based on this proposal alone did not give satisfactory results. A self-
consistent calculation which combined the two models was given by Lehman
-and James.(4) While this calculation was in good agreement wifh experiment

16cm—3

for low impufity concentrations, at high impurity concentrations (10
sha]]ow donors in Ge), their calculations underestimate the experimentally
vbserved decrease of activation energy. A more systematic treatment proposed
by Debye and Conwe11(5) suggested that a correct description would include
three effects - (i) lowering of the conduction band edge due to attraction

. of the conduction electrons by the ionized donors, (ii) the shift of the
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donor ground state energy due to free electron screening,and (iii) the
incnesse ia the dielecinic.consdant due to the presence of the polarizable
neutral donors. As in the case of Lehman and James they obtain good agree-
ment with experiment at low impurity concentrations. None of these authors
has considered the role of phenomenon which would lead to impurity broaden-
ing and hence change the observed activation energy.

In this paper we consider the change in the observed activation energy
due to the influence of those effects which both broaden and shift the
impurity level. We consider the same phenomenon which tend to shift the
level as ‘considered by Debye and Conwell. We have included two effects
‘which tend to broaden the level. First, the impurity level wavefunction at
a given impurity has finite Hamiltonian matrix elements with impurity level
-wavefunctions centered at nearby impurities. This-]eads to broadening of
Ampurity levels when the ihpurities are at finite density to produce a
band of levels. Second, the presence of charged impurities distributed in
a random way throughout the solid generates poteﬁtia1 fluctuations. These
~potential fluctuations produce tailing of conduction and valence band
density of states(s) and spreading of impurity 1evels.(7) For simplicity,
we will confine our attention to shallow donor levels with compensating
eaéceptors in silicon.

This paper is organized in the following fashion. In Section II, we
consider those phenomena which shift the energy level. In this section,
“we review the results of Lehman and.James and put the formulas in a form
suitable for our use. In Section III, we consider the condﬁction band edge

‘tailing effect due to potential fluctuations. In Section IV, the phenomena



_sdwdbos which broaden the impurity level are investigated. Section V
contains “tne caiculations of tonduction electron concentration n versus
temperature T for various donor and compensating acceptor concentrations
and compare the calculated results with the known experimental results.

Section VI contains a brief discussion and concTusions.
I11. IMPURITY LEVEL SHIFT WITH RESPECT TO CONDUCTION BAND EDGE

In the effective mass theory approximation, the Hamiltonian for
the conduction electrons consists of electron kinetic energies, electron-
impurity Coulomb interactions and the electron-electron interactions. Once
the electron is bound the donor ion plus electron becomes a neutral system
and has 1ittle effect on the motion of conduction electrons. Hence the
unbound electron motion can be accurately described by a Hamiltonian which
.does not include any interaction with these neutral systems. The motion

of conduction electrons can be approximately described by a series of

one-electron Hamiltonian(8*%) |F-§8[
"X
2 e
2 Z,q e
HeBp s 7 B o o (11-1)
2m 8 41r+:e°]y- Bl

where T and ‘F are the position and momenum, respectively, of the elec-
-tron; ﬁB is the position of the Bth impurity which has signed charge
ZB; the prime above the summation indicates that the sum runs over ionized
impurities only. The semiconductor is described by an isotropic effective
~mass m* and dielectric constant e. The electron screening length is Ao

For non-degenerate case, the electron screening length is given by(1o)
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A T RO, AP~ B ) (11'2)

where n 1is conduction electron concentration, KB is Boltzmann constant,

ranges typically between
3

and T 1is absolute temperature. For silicon, A
]8cm-3

e
40 A and 10% A for n = 10 and T = 30C°K, and for n = 102en™3 and

T = 50°K, respectively. Ue will use the Hemiltonian in Eq. (II-1) to
describe the unbound conduction electrons.

There are several effects which are thought to be related to the
shift of impurity levels with respect to the conduction band edge. They
are: (i) the change of dielectric constant due to the presence of neutral
donors, (ii) the influence of conduction electron screening on donor
ground state energy, and (iii) the conduction band edge lowering due to
attraction between conduction electrons and ionized donors. In the follow-

ing, we are going to examine these three ef7ects.
A. Neutral Donor Polarization

In Eq. (1I-1), there is some question about what dielectric constant

(2)

we should use. As pointed out by Castellan and Seitz, we should include
the contribution to e due to the presence of polarizable neutral

donors. However, this produces a small change in e. For donor concentra-
tions up to 10]8 neutral—donors/cm3, the concomitant shift of impurity

energy level relative to the conduction band edge is less than 1 meV. Hence,

we will assume that the dielectric constant is independent of impurity

concentrations.
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B. Shift of Impurity Level to Screening

The presence of the conduction electrons should screen the attrac-
tive interaction between the donor ion and the bound electron in a donor
level. This screening will tend to shift the donor ground state energy
toward the conduction band. Using Hartree approximation, Lehman and
James(4) had included this effect in their self-consistent calculation.
For the purpose of estimating the size of this effect and to separate
this effect from the conduction band edge shift effect, we will make a
simple first order perturbation calculation of this effect. We approxi-
mate the donor ground state wavefunction by a single 1s Slater orbital
with an exponent of &. The potential due to the conduction electrons is
obtained by computing the change in local electron density due to the
presence of the donor ion and the bound electron in a linearized Hartree
approximation.

Since the electron screening length is larger than the size of the
donor level wavefunction, i.e. EAg > 1, the difference betwéen the
screened ion potential and the unscreened ion potential is small. First
order perturbation theory of this difference potential can be used to esti-
mate the shift in the donor level due to conduction electron screening.

The result of the calculation is

. 1 -1 1
2 EXx_ sin [—~—-+ 2 tan ————]
2 ="e 28X 8EA
pE. =98 J3 : € e , (111-3)
B 7 4mec 8 1
0 4 + —57
16¢ Ae

(see the Appendix for a derivation of this result). 4E, is a monoton-

B
ically decreasing function of the screening length Ae; we can obtain
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an upper bound to AEB by taking the smallest value of xe that we

(-]
encounterad under the present experimental conditions (about 40 A). Taking
& to be the reciprocal of the Bohr radius for the donor (& = —l—1r)in Si

19A
we have that

AEB s 1 meV ’

for conduction electron concentrations less than 10'8m~3 in Si. This
result agrees with the calculations of Lehman and James which indicated
that screening produced a small impurity level shift. Therefore, we can

neglect the effect of screening on the donor ground state energy level.
C. Average Shift of Conduction Band Edge

The presence of ionized donors and compensating acceptors changes
the position of the conduction band edge. The random spatial distribution
of the ionized centers leads to not only an average shift of the conduc-
tion band edge but also spatial fluctuations in the position of the
conduction band edge. In this section we concentrate on the average shift
of the conduction band edge and leave to a later section the discussion of
fluctuations.

To make an estimate of the average shift, we should in principle
-calculate the energy levels associated with the potentials due to the
jonized impurities, then devise some method of defining the bottom of
the condﬁction band, and finally average this over all the possible
spatial configurations of fonized impurities. While this is in principle

the way to proceed, in practice we can not carry out such a calculation
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in anything hut the most idealized models. Thus, we proceed by first
obtdining a potenfiaT which shou'id approximate the potential due to the
jonized iwpurities. In obtaining the potential due to a single ionized
donor, the principal dopant, we must note that the Coulomb potential of a
donor is modified by the presence of the conduction electrons and also by
the increased probability of finding an ionized acceptor near an ionized
donor. These two effects are taken into account by screening the Coulomb
potential of the donor. The screening length is made up of two parts -
that due to the electrons, and that due to the ionized impurities. The
3creenin§ length for the electrons is.the same as that given

before in fq. (I1-2). The screening length for ionized impurities is given

by a standard Debeye screening length form (xi)(ll’]z) modified by the
addition of a length which is the average spacing between impurities.(7)
That is,
A{ = Ay t 2 ) " (11-4)
where
ee, kB T/q2
Ao * Nptn oo (11-5)
CRURE
and

41'[ -]/3 6
0.893 §-(ND + NA) . (11-6)

-1}
fn
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which is the average distance under Poisson distribution. The total screen-

ing length A 1is given by

YIS . (11-7)

v(r) = & . (11-8)

To estimate the average lowering of the conductionvband edge, we con-
centrate our attention on the potential between two impurities which are
separated by the average distance between donors. The average shift can be
divided iﬁto two parts. First, the conduction electron barrier height is
lowered due to the overlap of the potential of ionized donors as illustrated
in Fig. 1. Second, the conduction band edge actually occurs somewhat below
the maximum of the potential due to electron tunneling. Hg first calculate
the maximum of the potential. If only the nearest neighbor is considered,

the lowering of the barrier height as shown in Fig. 1 is approximately

equal to
g .9
- 2q2e 2\ . qze X ’
lc 4nce° (d/2) 4nse° d

-1/3
with d = (ND+) where ND+ is the ionized donor concentration. The

first term in (II-9) corresponds to the potential lowering at the middle
point of the two nearby ionized donors. The second term corresponds to the
potential lowering at the ionized donor site due to the presence of the

nearby ionized donor.
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As we have mentioned above, because of electron tunneling the conduc-
tior band adge occurs below the maximum in the potential. The location of
the average conduction band edge depends upon the shape of the ionized
donor potential. We have made a rough estimate about the Yocation of the
conduction band edge measured with respect to the maximum in the potential
(—AEZC), and found that it is small for the cases considered here. There-
fore, we can use the result of the rough estimate and it will not
introduce significant error in our calculation. The estimate proceeds as
follows. HWe assume that the excited donor state is an extended state if the
average radius of the electron wavefunction of the excited state is half
the distance between jonized donors. We also assume that as r becomes

large the electron wavefunction of the excited state approaches to

8 (7) = 7Y . (11-9)

l’ 2m AE
where K = -_TEQ_EZi and ('AEZC) i$ the bottom of conduction band

measured with respect to the top of the potential barrier. Hence the average
radius of the electron wavefunction is approximately equal to (K)'1.
Setting the average radius of the electron wavefunction to equal.to the half

distance between ionized deonors, i.e. (K)_] = d/2. we have

2h?

* 2 ° (II']O)
m d

AE, . =

The total downward shift of the conduction band edge is thus equal

to
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.Agc = BE, t AEy. . (I1-11)

For the donor concentrations and temperatures we are interested in, AEC
gives significant contribution to the decrease of activation eneray, as

will be shown in Section V.
I1I. CONDUCTION BAMND EDGE TAILING

Donors and acceptors are approximately randomly distributed in the
semiconductors. The random distribution of ionized donors and acceptors
generates spatial fluctuations in the potential. The potential fluctua-
tion.smear out the conduction band edge and thus produce a tail on the
conductibn band density of states.(s)

(6)

The work of Kane and Morgan(7) indicates that the distribution

.of potential p(v) 1is approximately Gaussian,

2,, 2
plv) = —— ¢V /% . (111-1)
b )

with a standard deviation o given by

(Np© + N) Ve

N, +N

= | D A" 4
m € Eo

where A 1is the screening length which is given by Eq. (II-7). This
distribution of potential fluctuations generates a tail on the conduction
band density of states which extends to minus infinity in energy. ‘However,
‘the mobility of electrons in the density of states tail is a function of

energy, approaching zero for energies below a certain energy in the tail.
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For simplicity, we will assume that the mobility is constant for energies
greu@er.thuﬁ -2o and thetthesmobility is zero for energies less than -2¢.
Hence, states with energy less than -2¢ do not contribute to the conduction
since their mobility is zero.

For slowly varying potential fluctuations, the local density of

states at a point with potential v is given by

3/2
*
o (E) = 8 ;’7 g’" (E-v) /2 . (111-3)
™ h
The average conduction band density of states is given by
E
f p(E-V)p(v)dv E> -2
N (E) =
0 E < -2 . (111-4)

The magnitude and extend of the conduction band density of states depends
upon the ya]ue of o . For typical values of the parameters, o can
attain values of as large aS 10 meV (see discussion in Sec. V). Hence,
the broadening of the conduction band edge can lead to significant effects

on the observed activation energy.

1Y. BROADENING OF DOMOR LEVEL

There are two effects which tend to broaden the level. First, the
localized wavefunction of the impurity level at a given impurity has finite
Hamiltonian matrix element with localized wavefunctions centered at nearby

{mpurities. At finite densities, this leads to broadening of impurity



levels into a band of levels. Second, the potential fluctuations due to
random distribution of charge impurities lead to changes in the energy of

the various localized impurity states.
A. Level Broadening Due to Donor Wavefunction Overlap

For one single isolated shallow donor, such as P, As, or Sb in Si,
the hydrogenic model can be applied to define the donor energy state.
For semiconductors with shallow donor concentration ND’ the donor ground
state level is discrete but has ND-fold degeneracy if there is no interac-
tion betweamn the donor impurities. However, if there are finite Hamiltonian
matrix eléments between the donor ground state wavefunctions on different
sites, the degeneracy is lifted and the single donor ground energy is
broadened into a band. If the overlaps between the donor ground state
wavefunctions at different sites are small, we can use tight binding model
to estimate the donor level broadening. In this model, the donor level

(13)

broadening is proportional to the energy transfér integral,

I(IR,-R.|) = —9-— 0o (7-R;) 0, (3-R))
J o 1R

(1v-1)
where ¢°(Y) is donor ground state wavefunction. Using scaled hydrogenic

model for donor ground state wavefunction, we have

[? -£|v-R;
6, (YR;) = Pl s (1v-2)

E
with £ = ; EQ" where (-ED) is the donor ionization energy for the
H 0
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Tow donor concentration case and Eo = - §}E£}?T— is the ground state energy
H "

(14) °

calciNated Trom effective mass theory. With ¢o(?) given in

(Iv-2), the integration in (IV-1) can be carried out and leads to

2
IR) =zl (14 eR) &R . (1v-3)
(0]

where R 1is the distance between nearest donor neighbors. As shown in
(1v-3), the energy transfer integral J(R) depends exponentially on the
nearest donor neighbor distance R. Since the donors are randomly distributed
in space, the distance R to the nearest donor neighbor and the energy
transfer integral J(R) vaties fyom'one donor site to the next. If the
donors are absolutely randomly distributed in semiconductors, they shopld
follow a Poisson diﬁtribution. Inba Poisson distribution, the probability
that the nearest donor neighbor lies in a distance R in a spherical shell
between R and R + dR 1is given by

3

4 2
4l exp -.31 NpR R

dR
Therefore, the average energy transfer integral between a donor and its

nearest donor neighbor is equal to

<J(R)> = fJ(R)-41rNDR2 exp (-gl NDR3) dr . (1v-4)

In the tight binding model, the total band width B 1is equal to 2z|<J(R)>|
where z 1is the number of nearest neighbors. With a Poisson distribution,
there is only one nearest neighbor to every donor and therefore 2z 1is equal

to 1. Hence the total band width B 1is given by
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B = 2J< J(R) >] . (1v-5)

The quantity of importance in our calculation is the impurity
band density of states po(E). In general, this is a very complicated
function of energy. However, for purposes here it suffices to take
po(E) to be a constént over the bandwidth B. That is, if we take. to
midband to occur at zero energy, then

N

D B B
- =< E < =~
() - B A= =g | . (1v-6)
Po
0 otherwise
We found for example, that for 1018cm-3 shallow donors the donor band

width is about 30 meV. Thus, this broadening of the impurity energy level
is one of the important effects which have to be included when considering
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