
A Language Processor and a Sample Language

Ronald Ayres

Computer Science Department
California Institute of Technology

2276 :TR :78

A LANGUAGE PROCESSOR AND A SAMPLE LANGUAGE

by

Ronald Ayres

Technical Report 2276

June 12, 1978

Computer Science Department

California Institute of Technology

Pasadena, California 91125

Silicon Structures Project

sponsored by

Burroughs Corporation, Digital Equipment Corporation,

Hewlett-Packard Company, Honeywell Incorporated,
·,

International Business Machines Corporation,

Intel Corporation, Xerox Corporation,

and the National Science Foundation

The material in this report is the property of Caltech, and is
subject to patent and license agreements between Caltech and
its sponsors.

Copyright, California Institute of Technology, 1978

..

ii

ABSTRACT

This thesis explores shared data in list structures and ambiguity
in language processing. Tolerance of ambiguity is necessary to support
clear and modular expression. Data sharing is necessary to support
ambiguity efficiently. Data sharing is useful also in compiled programs
to save memory and time.

Let us define some terms. A returi te grammar is a set of
replacement rules each of which specifies that a given phrase may be
replaced by another given phrase. Each replacement rule expresses a
local translation. A parser finds those sequences of replacements that
bring a given text to a machine handleable form. Each such sequence
represents a meaning or interpretation for the given text. Tolerance of
ambiguity or multiple interpretations for a given text is necessary so
that subsequent processing can place further constraints upon the input
text.

This thesis presents a parser which efficiently handles
·general-rewrite grammars. To conserve computer .time and memory, only
essential differences·among multiple interpretations are represented and
processed. If •everal interpretations for a given text are valid, the
parser yields a meaning which represents the ambiguity as· locally as
possible. Even an exponential number of distinct meanings may be
represented in a polynomial amount of memory.

This thesis also presents a language processing system which
supports semantic processing via independent rewrite grammars. Each
grammar represents a. distinct aspect of the language. A given sequence
of grammars becomes a sequence of passes, or process steps. Each pass
derives a meaning with respect to one grammar and uses that meaning to
generate phrases which will be interpreted by the next pass. Although
linguistic specification is usually done with contex.t-free grammars,
features of this parser which support general-rewrite grammars are
essential for the integration of passes. Not only ambiguity, but also
the locality of ambiguity is preserved from one pass to the next. It is
necessary to preserve locality of amhiguity in order to avoid explosive
computation arising from useless interaction among independent sets of
interpretations.

I have implemented a general-purpose programming language called
ICL with this system. The fact that ICL's datatypes are processed by a
rewrite grammar makes it simple to implement both user-defined datatype
coercions and functions known as polymorphic operators whose definitions
depend on parameter datatypes. Datatype coercions and polymorphic
operators reduce the amount·of specification required in algorithms to
such an extent that a user can often modify declarations and achieve
optimizations and changes in concept without modifying .his aJgorithmic
specification.

ICL includes a simple and safe policy about pointers so that the
user can ignore their ex.istence completely if he wishes. ICL
automatically maximizes data sharing and minimizes copying by adopting a

iii

"copy on write• policy. This policy supports the illusion that each and
every reference to a data structure generates a complete copy of that
data structure. This same technique is used in the language processor
itself to facilitate data sharing among multiple interpretations in
ambiguous cases.

i II

Table of Contents

Introduction 1
Ambiguitu and Shared Data
Parsers
A language Processor
The Sample language, lCL
What Follows

Languages 16
Meaning
Meaning As Programs
Parts-of-speech Are Datatupes
Ambiguity
Multipass language Processing
Production Schema
Reluctant Productions

An Efficient General Rewrite Parser 47
How The Parser Works

The Parsing Graph
Properties of the Parsing Graph
The Algorithm

Parsing Graph Generation
Parsing Graph Selection
The Grammar

Sample Run
Why The Parser Works

The Lemmas
An Upper Bound for Parser Expense with Context Free Grammars

A Semantic Evaluator . . . 92
Oll-Oerillatton Nodes and The Routine SE.MOR

Meanings of the First Kind
Meanings of the Second Kind
Meanings of the Third Kind
What SEMOR Does

How An Ambiguous Derivation Generates A Parsing Graph
Two Sources of Ambiguity
Locality of Ambiguity

Efficient Treatment for Shared Derivations
The Semantic Operator PAW - Pruned Awakening
Top-Down Context Besides LEFT and COLUMN - The Operator RESET
Reluctant Derivations and Cycles - The Operator GOODNS

ICL Overview
/lfodularttu

IJ

The Use of the language Processor
!Cl Aimed at IC Masks
Carryovers from language Processing
Ambiguity - A Manifestation of the Parser
Pointers
Error Reporting in /Cl

Syntax Errors
Datatype and PA$S3 Errors

Conclusion

Bibliography •

Appendices •
A Sketch of The language Processor in MACR0-10
ICL Reference Manual

• 116

• 140

. 147

. 148
• 148

164

... 1 ...

This thesis presents a programming language, ICL, and the language

processor with which it was implemented. The design and implementation

of ICL was facilitated by building a flexible language processor which

readily admits the creation and modification of any computer language.

ICL was created for two reasons. There was need for a sophisticat~d IC

design language and there was need to see how well the language

processor could support a large application language.

ICL was conceived by forming a collection of notations which would

express a variety of independent concepts. The language emerged by

integrating these various notations. The rules specifying

notations could be integrated became the grammar for ICL.

defined by three independent grammars each of which imposes a

class of requirements.

how these

ICL is now

different

The language processor supports linguistic specification in terms

of general rewrite grammArs. A rewrite grammar is a set of replacement

rules each of which specifies that a given phrase may be replaced by

another given phrase. Each replacement rule expresses a local

translation. A meaning is derived from an input text by applying

replacement rules upon the text in such a way as to bring the input text

to a machine usable form.

The program which discovers the appropriate replacements is called

a parser. The result of parsing is a record of the replacements

performed, a tree structure known as a derivation. A derivation may be

viewed as nested function calls, e.g., the text

may have the derivation

plus(times(1,2) , times(3,4)).

Viewed as nested function calls, a derivation can be e~ecuted. The

execution of a derivation implements the intended meaning. Refer to the

section Languages for a more complete description.

Ambtouttu and Shared Data

This thesis is based on two ideas. One is tolerance of a~biguity

and the other is automatic sharing of data in list structures.

Ambiguity refers to the existence of multiple interpretations for a

given expression. Data sharing refers to the representation of nearly
' t

identical structures where all those su~structures which are common in

the various structures are represented in memory only once. A common

substructure is said to be shared by all structures whi~h reference the

substructure. Tolerance of ambiguity becomes pr~ctical when only

essential differences among multiple interpretations are represented and

processed. Stmilartttes among multiple interpretations will be shared

'both in memory and in processing.

Tolerance of ambiguity supports two needs in processing. On one

hand, the support of multiple interpretations allows programs to be

picky. A program will be given a choice of interpretations for input

and hence the program can choose those interpretations amenable to the

program's needs. Making such choices reduces the number of

interpretations, or the degree of ambiguity. On the other hand, a

program may generate multiple interpretations for output when it finds

- 3 -

several valid ways to procede.

If ambiguity were to be avoided, a predictive policy would have to

be adopted. For example, when a program could generate multiple

interpretations, the program would instead have to predict ahead of time

which interpretation will actually be utilized in subsequent processing.

This is not always possible. To resolve the uncertainty in prediction,

numerous systems employ backtracking so that when a prediction fails to

come true, processing can be backed up to the point where the faulty

prediction was made and another interpretation can be predicted in its

place.

The language processor supports ambiguity by processing multiple

interpretations in parallel. The major advantage of parallel processing

is that all valid interpretations will be presented · together at any

point in processing. This means that similarities among the various

interpretations can be known and hence the similarities can be

represented and processed only once. In contrast, if only one

interpretation is processed at a time, e.g., with backtracking, all

· interpretations will not be presented together and hence similarities

among multiple interpretatjons are ignored. The cost of processing

multiple interpretations one at a time can be exponential where a

parallel implementation would incur only polynomial cost.

Parsers

A variety of parsers exist ranging from parsers tailormade for

specific languages to general-purpose parsers which process large

classes of grammars. The simplest kind of parser is the LR(k) parser

presented by Knuth[t]. Such a parser avoids ambiguity by restricting

the class of grammars to such an extent that it can be decided with

certainty which replacement rule applies by looking ahead at most k

characters. Another simple parsing technique known as recursive

descent[2] utilizes backtracking exclusively to support uncertain

decisions.

Earley's efficient context-free parser[3] handles any context-free

grammar with a worst. case performance of n3 where n js the length of the

text to be parsed. A context-free grammar is a rewrite grammar each of

whose replacement rules substitutes a given phrase with a phrase of

length one. Currently, Earley's is the most efficient parser which

accepts all context-free grammars.

Thompson's REL parser[4] and Kay's Powerful Parser[5] each accepts

general rewrite grammars. However, the REL parser has a worst case

performance of infinity even. for context-free grammars. I don't know if

Kay's parser has an upper bound.

The parser presented in this thesis accepts general rewrite

grammars. When given context-free grammars in particular, the parser

has a polynomial upper bound as a function of the input text's length.

If the context-free grammar is in Chompsky Normal Form, i.e., each

replacement rule replaces a phrase of length at most two, then this

~· 5 ~·

parser's upper bound is n4 • The disparity between this n4 and Earley's

n8 comes about because Earley indexes into an array of length n where

this parser walks a list structure of length n. The use of an array is

cumbersome when dealing with general-rewrite grammars.

The section An Efficient General Rewrite Parser documents this

parser.

A language Processor

The language processor presented in this thesis supports multipass,

or semantic processing via independent rewrite grammars. A given

sequence of grammars becomes a sequence of passes, or process steps.

Each pass derives a meaning with respect to one grammar and uses that

derivation to generate phrases which will be interpreted by. the grammar

belonging to the next pass. The grammars in a multipass system

represent the constraints and capabilities of distinct aspects of a

given language. The first pass in a multipass system is usually

referred to as the syntax pass and non-first passes are referred to as

semantic passes. For example, ICL is implemented with three passes, a

syntax pass, a datatype processing pass, and a pass which enforces

proper use of data sources and data sinks. It is conceivable that a

fourth pass could be added which would process the output from the third

pass in terms of a register transfer language. Some· replacement rules

of the register transfer language could map certain sequences of

instructions to other sequences and thereby offer alternate

implementations. An optimal implementation could be chosen from these

alternatives.

-· 6 -·

This multipass language processor necessitates a general rewrite

parser because a derivation must be able to generate phrases of length

greater than one. In analogy, ~'here a replacement rule generates a

phrase in place of another phrase, a derivation generates a phrase in

place of itself. A derivation can generate a phrase by concatenating

those phrases generated by its subderivations. Phrases generated either

by replacement rules or by derivations may interact with surrounding

phrases. Each generated phrase and each union of that phrase with

surrounding phrases must be subject to processing via replacement Fules.

Multipass language processing emerged originally in the days when

computers had tiny memories. By running passes independently, each pass

could use the whole computer memory. Communications from one pass to

the next were made via a text string stored on disk. However,

ambiguities which could not be resolved by one pass were not easily

passed on to the next pass.

Ambiguity must be supported within and between passes so that each

pass need not be overly specified and hence overly rigid. If a pass

were not able to deliver its unresolved ambiguities to the next pass,

each pass would have to resolve all ambiguities within the pas~'s

limited domain. In general, this would require that each pass emulate

subsequent passes so that the given pass can successfully predict which

interpretation it should deliver. Because each pass represents a

distinct aspect of the overall language, ·the requirement that a pass

emulate subsequent passes forbids a truly independent specification for

each independent aspect of the given language. The support of ambiguity

provides the lubrication, so to speak, between the independent domains

... 7 ...

of each pass.

For example, an ambiguity not resolvable by the first pass will be

delivered to the second pass. If the ambiguity makes no distinction in

the domain of the second pass, the second pass will automatically

process each of the alternate interpretations and deliver them on to the

third pass. The ambiguity may be resolved by the earliest pass within

whose domain the ambiguity makes a distinction.

In general, each pass will not only resolve ambiguities but also

generate new ambiguities. For example, in FORTRAN, the number 259 is

unambiguous syntactically. but when FORTRAN considers data types, the

number 259 becomes ambiguous because 259 must be considered as either an

integer or a real number. Of course, the ambiguity is resolved when

surrounding context is taken under consideration, e.g., 259 is

specifically assigned to an integer variable.

To support ambiguities between passes practically, the

individuality, or locality of these ambiguities must be preserved. It

is not satisfactory, for example, to have each pass yield a set of

unambiguous deriYations, each of which will be processed independently

by the next pass. Because each derivation will typically have much in

common with the other derivations, processing each derivation

independently will result in duplicate processing for similarities among

the various derivations. Ignorance of similarities among multiple

derivations can turn a polynomial cost into an exponential cost.

... 8 ...

Both this parser and Earley's parser have the wonderful property

that ambiguities which cease to provide distinction for the parsing

process disappear from the parsing process. These ambiguities reappear

embedded within the resulting ambiguous derivation. ·An ambiguous

derivation is a derivation which may contain instances of a new kind of

node called an OR-node. A single ambiguous derivation represents many

distinct unambiguous derivations.

For example, the ambiguous derivation

OR (f(a) , f(b)

represents the meaning

either J(a)

The am~iguous derivation

f (OR(a,b)

represents the mea·ning

or J(b).

f(either a or b)

and it is in fact equivalent to the former derivation. This latter

derivation is said to be more factored than the former derivation

because the OR-node is nested deeper within the latter derivation. That

is. just as

f*(a+b)

f(OR(a,b))

is more factored than

is more factored than

f*a + f*b,

OR(f(a) , f(b)).

In each example, the most factored expression shares the most data. f

is written only once in the factored expressions whereas f is.written

twice in the unfactored expressions. For another example,

~· g ~·

g(OR(a,b) , OR(c,d)) is more factored than

OR(g(a,OR(c,d)) , g(b,OR(c,d))) and than

OR(OR(g(a,c),g(a,d)) , OR(g(b,c),g(b,d))).

A maximally factored ambiguous derivation can represent as many as an

exponential number of distinct derivations in only a polynomial amount

of memory. Both Earley's and this parser yield maximally factored

ambiguous derivations.

This language processor takes full advantage of ambiguous

derivations. In support of multipass processing, an ambiguous

derivation is used to generate an ambiguous phrase. An ambiguous phrase

is a datastructure which represents a set of alternative phrases by

sharing as many common subphrases as possible.

An ambiguous phrase is maximally factored in the sense that

----- f a -----
\ I
\-- b --/

is more factored than

f

' , __ f
a -----

/
b --/

Each of these ambiguous phrases represents the phrases

I a and f b

A more factored ambiguous phrase shares more data, e.g., the J is shared

in the more factored ambiguous phrase. The ambiguous phrase

f --------- a ----- b -----
\ I \ I
\-- g -I \------- c -----/

- 10 -

is more factored than the unfactored

\
\-------
\
\-----
\
\---

f --------- a ----- b -----------
/

f --------~---- c -----------/
I

g --------- a ----- b -----/
I

g ------~------ c -------/

With the unfactored ambiguous phrase given above, f is represented
I

twice. An unfactored ambiguous phrase wastes not only memory space, but

also processing time: With this unfactored phrase, those processes,

e.g., replacement rules, which depend on f without reference to f's

surrounding context will be duplicated simply because f is represented

twice. With the factored ambiguous phrase, f is represented only once

·and hence those processes which depend on f without reference to· f's

surrounding context will execute only once. Maximally · factored

ambiguous derivations or phrases are said to maintain localttu of

ambiguitu.

The parser presented in this thesis in fact deals exclusively with

ambiguous phrases. A replacement rule affects an ambiguous phrase.by

placing the rule's generated phrase onto the ambiguous phrase as an

alternate phrase. For example, applying the replacement rule

c replaces a b

upon the phrase

·---- f ----- a ----- b -----

yields the ambiguous phrase

----- f ----- a ----- b -----
\ I
\----- c -----/

Applying the replacement rule

g replaces J

upon this result, we get the ambiguous phrase

f ------- a ----- b -----
\ I.\ I
\- g ~1 \------ c ----/

Because replacement rules make local replacements, the parser natural~y

preserves the locality of ambiguity within ambiguous phrases.

It is interesting to note that the structure of an ambiguous

derivation generalizes the structure of an ambiguous phrase. The

structure of an ambiguous derivation is in fact identical to the

structure of an ambiguous phrase when each function in the derivation is

unary, i.e., each function takes at most one parameter. The equivalence

can be seen by viewing the phrase a b c x as the derivation a(b(c(x))).

For example. the ambiguous phrase

----- f ---------- a --------- x
\ I
\--- b ---/

corresponds in structure to the ambiguous derivation·

f(OR(a(x) • b(x))).

The ambiguous phrase

f ---------- a ----- b ----- x
\ I \ I
\-- g -I \------ c -----/

.. 12

corresponds tn structure to the ambiguous derivation

OR(f(u),g(u)) where u = OR(a(b(x)) , c(x)) .

The Sample lanouaoe, ICl

ICL, the sample language implemented with the language processor,

includes two major features taken from the language processor. ICL

maximizes data sharing so that nearly identical datastructures indeed

share common substructures. In addition, ICL utilizes the parser to

process datatypes. All datatype relationships are represented in a

datatupe grammar. Refer to the section ICl Overutew for a closer look

at how these features manifest themselves in the language.

ICL was designed to support the creation of integrated circuits.

Because a given integrated circuit is defined by a given set of masks,

ICL includes special features for processing two-dimensional geometry.

Because the specification of IC layouts and electrical or

functional properties is a relatively new endeavor, I chose to make ICL

a flexible, general-purpose programming language. I envision two

distinct user groups. The first group is akin to language designers;

this group defines bo~h the internal representation fbr IC's and the

notation with which IC's are specified and manipulated. The other group

defines and edits specific IC's with the system provided by the first

group. Each group interacts with the other; the language group

continually modifies its system by incorporating common needs found by

the IC designers. In this way, a convenient IC design system evolves

~· 13 ~·

and avoids obsolescence.

Paramount to this duality is the need for upward compatabili ty. IC

specification should always be successfully interpreted by the system

even if the internal representation for IC's changes dramatically. Not

only top-level IC specs, but also IC specs made from within existing

functions should be upward compatible. In each case, the existing IC

specification should be mapped optimally into the new representati~n.

lCL includes two essential features which readily support changes

in representation. These features are known as datatype coercions and

polumorphic operators. A datatype coercion is a declaration which

specifies that any instance of a given datatype can be viewed as an

instance of another given datatype via a given transformation. A

datatype coercion differs from a function because a datatype coercion

may be invoked without an explicit call. A function can be invoked only

by explicitly writing the function's name.

ICL applies datatype coercions at appropriate places in a user's

specification to maintain the integrity of his specification. Thus,

upon changes to representation, i.e., changes to the notion of

integrity, ICL will automatically apply coercions at different places if

necessary. If the user had gone to the trouble of specifying all

coercions via function calls, as is necessary in other programming

languages, his specification would be overly rigid and less amenable to

changes in representations. Upon changes in representation, the user

would have to edit his specification by removing certain function calls

and adding other function calls. With coercions, this is done

automatically. Because ICL guarantees to minimize the number of

~· 14 -

· coercions it employs, the integrity of a user's specification will be

maintained as concisely as possible.

A polY'morphic operator is a function whose definition depends on

the datatypes of its parameters. For example, the function name

DISPLACE can have several definitions. One definition will support the

'displacement of a point by a point. Another definition will support the

displacement of a whole IC-mask by a point. When the user specifies a

call to DISPLACE,

datatype consistency.

ICL will choose that definition which maintains

The use of polymorphic operators, lik.e data type

. coercions. reduces the necessary specification and hence the rigidity of

specification. A change in representation which affects. the datatypes

in a call to DISPLACE can be tolerated if another definition of DISPLACE

can accomodate the new datatypes.

Program integrity is preserved via the parser during ICL's second

pass, when the datatype grammar is active. The parser's tolerance of

ambiguity lends itself naturally to the task of discovering which

coercions to apply where and what definition to use among those

definitions which make up a given polymorphic operator.

What Fol lou1s

The section Languages presents rewrite grammars and various

techniques by which rewrite grammars can be extended to encompass more

linguistic specification. The language processor itself is made up of

two components, a parser and a semantic evaluator. One section

documents the parser. Another section documents the semantic evaluator

- 15 -

and its role in the language processor. The section ICl Ouerutew

documents the goals in designing ICL and the results of each goal.

The first appendix gives a sketch of how a language is specified to

the language processor. Linguistic specification is

PDP-10's assembler language with the help of macros.

appendix, the ICl Reference Manual formally documents ICL.

done in the

The final

- 16 -·

A language is a set of conventions by which a string of characters

can be mapped into some corresponding meaning. On the computer, the

most general form of meaning is some action which modifies either the

state of memory or the state of some output devices. This section

introduces rewrite grammars, terminology, and useful conventions for

implementing meaning. The following sections document programs which

implement ideas presented in this section ..

The term part-of-speech will refer to the atomic elements of our

space of discourse. We include all ASCII characters as parts-of-speech.

All parts-of-speech excluding ASCII characters are called non-terminals

and can be thought of as syntactic classes or as abstract characters. A

non-terminal will be denoted by a name enclosed in angle brackets, e.g.,

<VERB>

phrase or string refers to any sequence of

Phrases made up solely of ASCII characters are called

The term

parts-of-speech.

terminal phrases.

A productton, or rule, is a pair of phrases, written as

phrase ::= phrase

The phrases will be refered to as the Lefthand phrase and the righthand

phrase respectively.

- 17 ...

A grammar is a set of productions along with a chosen

part-of-speech called the root part-of-speech. Given a grammar, we will

say that a given string is a rewrite of another string precisely when

the given string can be obtained from the other string by a single

rewrite operation:

' . 1) Locate an occurence of some production's righthand phrase within

the given string.

2) Erase that occurrence of the righthand phrase and write in its

place a copy of the production's lefthand phrase.

We will say that a given string is dertuable from another string if the

given string can be obtained from the other string by a sequence of

rewrites. A dertuatton is a record of the rewrite operations employed

in deriving one string from another.

The language accepted by a grammar is the set of terminal sirings

from which the root phrase is derivable. The root phrase is the phrase

of length one consisting of the grammar's root part-of-speech. In

performing rewrite operations upon a given text, the goal is to come up

with the root phrase.

For example, the set of productions

<DIGIT>
<DIGIT>

<DIGIT>

: : =
: : =

.. -

0
1

9

state that the part-of-speech <DIGIT> can be derived from each of the

characters 0, 1, ••• , 9. The productions

<NUMBER>

<NUMBER>

.. -.. -

.. -

.... 18 ...

<DIGIT>

<NUMBER> <DIGIT>

state that <NUMBER> can be derived from a single <DIGIT> or from a

<NUMBER> followed by a <DIGIT>. Thus, <NUMBER> is any non-null string

of digits. The grammar consisting of these productions along with

·<NUMBER> as the root part-of-speech defines the language consisting of

all non-null strings of digits.

#eantng

The preceding description shows how a grammar can be used to

specify the legal strings of a language but it fails to mention how to

associate a meaning with a given string in the language. We can

incorporate meaning by associating a meaning with each element in a

string. That is, an element of a string will consist of not only a

part-of-speech but a part-of-speech and a meaning. We can associate

with each production a meaning transformation. That is, when a rewrite

· operation is performed, we let the chosen production defi.ne a meaning

for each element it writes into the string. These meanings wi 11 be

functions of the meanings associated with each of the erased elements.

For example, the production

<EXPR> ::= <EXPR> + <EXPR>

can have the transformation which yields the sum of the meanings

associated with each of the righthand <EXPR>s. The meaning of a string

in a language will be the meaning which is associated wit~ the root

phrase derived from the given string.

... 19 -·

We can express productions which include meaning transformations in

the following concise notation:

<EXPR: sum(a,b)> ::= <EXPR:a> + <EXPR:b>

The parts-of-speech appearing in the righthand phrase include the

specification of variables and the parts-of-speech appearing on the

lefthand phrase each includes the specification of a meaning which is a

function of the variables named in the righthand phrase. One can see

how a transformation is carried out. When this production is employed

in a rewrite operation, the variables a and b are set to the meanings

associated with the two <EXPR> elements which are being erased. The

value sum(a.b) is computed and associated with the new <EXPR> replacing

the erased elements.

A meaning transformation associated with a production whose

lefthand phrase has length greater than one defines a separate meaning

for each part-of-speech in the lefthand phrase. · For example, the

production

<A: f(c,d)> <B: g(c,d)> .. - <C:c> <D:d>

specifies that the meaning under the <A> is f(c.d) and that the meaning

.under the is g(c.d). A meaning transformation as~ociates· a meaning

with each part-of-speech in the lefthand phrase and not with the phrase

as a whole.

The <NUMBER> grammar can be written with meaning transformations as

follows:

<DIGIT:O>
<DIGIT: t>

<DIGIT:9>

<NUMBER:a>

::= .. -.. -

.. -

: : =

0
1

9

<NUMBER: tO•a+b >

~ 20 ~·

<DIGIT:a>

::= <NUMBER:a> <DIGIT:b>

The meaning associated with a <DIGIT> or a <NUMBER> is an integer.

Looking at the <DIGIT> rules, note that the digit appearing on the

righthand side is a character whereas the meaning associated with the

<DIGIT> is an integer. For example, the rule

<DIGIT:t> ::= 1

states that the character "1" has the integer 1 as its meaning when the

character •t• is viewed as a <DIGIT>. The first <NUMBER> rule states

that when a <DIGIT> is viewed as a <NUMBER>, the meaning for the

<NUMBER> is the same as the meaning associated with the <DIG IT>. The

final rule states that when a <NUMBER> followed by a <DIGIT> is viewed

as a <NUMBER>, the meaning for the resulting <NUMBER> is ten times the

meaning of the given <NUMBER> plus the meaning of the <DIGIT>.

Many grammars can be written which accept a given language.

However, some grammars may be more suitable than others for defining

meaning transformations. For example, consider the grammar given above

which accepts the language consisting of strings of digits. The rule

<NUMBER> ::= <NUMBER> <DIGIT>

could be replaced by the rule

~· 21 ~·

<NUMBER> ::= <DIGIT> <NUMBER>

without changing the language accepted by the grammar. However, it is

more difficult to write the meaning transformation for the latter rule

than to do so for the former rule. Given a language to implement, the

language implementor generally chooses that grammar whose meaning

transformations are easiest to define.

The following is a grammar for a subset of arithmetic expressions.:

<ATOM: a>

<TERM: a>

. ·­.. -

. ·­.. -

<NUMBER:a>

<ATOM:a>

<TERM: times(a,b)> · ::= <TERM:a> * <TERM:b>

<FORM: a> ::= <TERM:a)

<FORM: sum(a.b)> ::= <FORM:a> + <TERM:b>

<ATOM: a> (<FORM:a>)

This grammar admits expressions built with numbers, +•s. *'s and

parentheses. The part-of-speech <ATOM> admits only numbers and

parenthesized expressions. <TERM> admits products of <ATOM>s and <FORM>

admits sums of <TERM>s. The separation of arithmetic expressions into

<ATOM>, <TERM>. and <FORM> implements the standard operator precedences:

••s are grouped before +•s.

<FORM> can be derived from the string 1+2*3 by

~· 22 ~·

1 + 2 it 3

<DIGIT: t> <DIGIT:2> <DIGIT:3)

<NUMBER: 1> <NUMBER:2> <NUMBER:3>

<ATOPI: t> <ATOM :2> <ATOM:3>

<TERM: D <TERM:2>

<FORPl:t> <TERM: times(2,3)>

<FORM: sum(1 , timcs(2,3)) >

This diagram shows only those rewrite operations which participate in

deriving the final <FORM>. The final <FORM> has the accumulated meaning

sum(1 , times(2,3)).

We have not specified what kind of data sum and times take in and

produce. We might assume that sum and times take in and produce

numbers, i.e., the meaning for the final <FORPI> could simply be 7. On

the other hand, we might assume that sum and times take in and produte

programs whose executions yield numbers. For example, ·a LISP program

can be obtained if sum and times are defined as follows:

times(a,b) = (LIST 'ITIMES a b)

sum(a,b) = (LIST 'IPLUS a b)

The.string 1+2*3 would rewrite to a <FORPI> whose meaning is

(IPLUS 1 (ITIMES 2 3))

A parser 1s a program which takes in a grammar and an input . string

and always does one of two things. If the input string is a member of

the language accepted by the grammar, the parser yields the meaning

associated with the input string. Otherwise, the parser rejects the

input string.

... 23 ...

Keanino as Programs

Representing meanings as programs

evaluation of meaning can be delayed

has the advantage that the

until the completion of the

rewriting process even though meaning transformations are carried out

during the rewriting process. The meaning transformations can be

written to take in and produce programs whose later executions will

carry out the intended meaning.

There are two major reasons tor having meanings represented by

programs rather than by computed values. First of all, a parser will

invariably have to backtrack in its effort to find the particular

sequence of rewrites by which the grammar's root phrase is derived from

the input string. For example, a parser might at some time consider the

following rewrite sequence:

l

<DIGIT: t>

<NUPIBER:1>

<ATOPl:t>

<TERPI: 1>

<FORPI: t>

+ 2

<OIGIT:2>

<NUMBER:2>

<ATOM:2>·

<TERPl:2>

<FORM: sum(1 , 2) >

3

This final <FORM> spanning 1+2 cannot be used in any successful

derivation for 1+2•3. If sum were an expensive computation, the time

taken to compute sum(l,2) would be a major loss. In addition, if

sum(1,2) involved side effects, the side affects would have to be undone

at some time.

side effects

However, we can make sum both inexpensive and free of

by ha~ing sum return as its value a program whose later

~· 24 ~-

execution will perform the expensive computation. The program can

simply be represented by the address of a function along with two

parameters. In this example, since sum(t,2) won't be a part of any

successful derivation for 1+2~3, the program given by sum(t,2) will

never be executed.

The notation

II[a; b;] program \ \

will denote the datastructure which represents program along with the

predefined parameters a and b. For example, sum can be defined by

sum(a,b) = //[a;b;] expensiue computation \\

A call to sum yields a datastructure which contains the current values

of a and b and the address of the program which implements expt!ns iue

computation. To the expensive computation, the variables a and b always

appear to contain the values they contained at the time sum was called.

The notation

EX(x)

(EXecute) will denote the invocation of x where x is a program with

predefined parameters. Thus, if we assign x as in

x := sum(a,b) ,,

performing

EX(x)

will invoke the expensiue computation.

,. 25 '

The second and perhaps more fundamental reason for representing

meanings as programs rather than as computed values is simply that some

meanings have values which depend on context not yet available at the

time a particular rewrite is carried out. For example, consider a

grammar where numbers can include radix specification,. e.g.,

101 base 8 would be 65 base 10.

The number rules could be

<NUM> ::= <DIGIT>

<NUM> ::= <NUM> <DIGIT>

<NUMBER> ::= <NUM> BASE <DIGIT>

The part-of-speech <NUM> represents numbers without radix specification,

i.e., strings of digits. A <NUMBER> is formed by appending a base

specification to a <NUM>. Consider the meaning transformations for

these rules. One is tempted to write

<NUM: a> : := <DIGIT: a>

<NUM: radix•a+b> ::= <NUM:a> <DIGIT:b>

<NUMBER: ?? > ::= <NUM:a> BASE <DIGIT:b>

The problem is that the radfa won't be known when the second rule is

applied. The radix becomes known only after the third rule applies. By

agreeing that the meaning of a <NUM> will be not an integer, but a

program whose execution will yield an integer, we can write the rules as

follows:

<NUM: //[a;] a \\ > .. - <DIG IT:a>

<NUM: //[a;b;J radix*EX(a)+b \\ > .. - <NUM:a> <DIGIT:b>

<NUMBER: radix:=b; EX(a) > <NUM:a> BASE <DIGIT:b> ·

... 26 ...

The first rule yields a program whose execution simply yields the

<DIGIT>'s meaning. The second rule yields a program which includes the

global variable radix as a free variable. The third rule, the <NUMBER>

rule; produces an integer as its meaning by first setting the global

variable radix and then invoking the program associated with <NUM>.

Thus, the computation which must involve radix has been delayed until a

time when radix is available.

In general, if meanings are represented as programs, the meaning

transformation associated with a production can adequately control the

context in which any of its parameters is evaluated. We will use the

term top-down context to refer to context which is set by a routine for

the evaluation of one of its parameters. For example, the <NUMBER> rule

uses the global variable radix as top-down context. Top-down context

can generally be used only if the evaluation of meaning is delayed until

the completion of the rewriting process.

Parts-of-speech Are Datatypes

A datatype in its most general form is a set of conveptions by

which a datum exists. A datum is an instance of a datatype precisely

when the datum obeys the conventions of the datatype. We can see how

the parts-of-speech of a grammar serve as the datatypes over the space

of meanings.

In defining a grammar and the routines which implement the meaning

transformations, one must agree on how a meaning is represented. What

sorts of actions will be performed by the evaluation of a meaning? For

example, if we implement the routine sum for the rule

.. 27 ...

<FORM: sum(a,b)> ::= <FORM:a> + <TERM:b>

we must know three things: What kinds of object~ are a and b and what

kind of object must be associated with the resulting <FORM>? We can

deduce that the type of data yielded by sum(a,b) must be the same as the

type of data represented by a because a itself could be set to the

result of a sum, e.g., the rewriting process might employ the

<FORM:sum(a,b)> generated by this rule as the <FORM:a> in another

application of this rule, e.g.,

c + d + b

<FORM: sum(c,d)>

<FORM: sum(sum(c,d) , b) >

When a is set to the meaning of a <FORM>, we cannot tell which

production generated the <FORM>. Hence, each production which generates

a <FORM> must associate a meaning which follows the same conventions as

the meaning associated with any other <FORM>. In general, the only

thing that can be known about a meaning is the part-of-speech with which

the meaning is associated.

Jt is therefore advantageous to establish conventions for meaning

on a part-of-speech by part-of-speech basis. That is, for a given

part-of-speech, one should state exactly what can be expected of an

associated meaning. A part-of-speech serves as the name for the

conventions obeyed by any meaning associated with the part-of-speech.

In the examp 1 e production given above, we can assume that a fo 11 ows the

<FORPl>-conventions and that b follows the <TERM>-conventions and finally ·

that sunr(a, b) had better follow the <FORM>-conventions. From the point

of view of sum's definition, these requirements appear as datatype

.. 28 ...

constraints:

sum(a:FORPI b:TERM) = FORM:

Sum is a function which maps a FORM and a TERM to a FORM.

Parts-of-speech are the datatypes for the input and output parameters in

any function which implements a meaning.

For example, suppose we wish to write a compiler with the rules

<ATOM: load(a)> ::= <VARIABLE:a>

<PROGRAPI: assign(a,b)> : := <VARIABLE:a> .- <FORM:b> ;

We can make the following conventions: The evaluation of a meaning

associated with

1) a <VARIABLE> yields a memory address and generates no machine

code

2) an <ATOM>, <TERM>, or <FORM> generates machine code which will

push an integer onto the stack

3) a <PROGRAM> generates machine code which will leave the stack

level unchanged.

The meaning transformations for the two rules can be written as follows:.

load(a:VARIABLE)= ATOM:

//[a;] Address := EX(a);

Assemble ' PUSH Address ' \\

assign(a:VARIABLE b:FORM)= PROGRAM:

II[a ;b;]

EX(b) " Generate code which will push the right

side of the assignment onto the stack 0

Address .- EX(a); " Where to store the result "

- 29 '

Assemble ' POP Address ' \\

Load maps a VARIABLE to an ATOM by producing a program whose

execution will generate machine code which will push an integer onto the

stack. l'he program produced by load uses its VARIABLE parameter by

evaluating it to obtain the address for the variable. Assign maps a

VARIABLE and a FORM to a PROGRAM by producing a program whose execution

will generate machine code which will leave the stack level unchanged.

The program produced by assign evaluates the FORM parameter to generate

code which will push one word onto the stack. The program produced by

assign finally evaluates the VARIABLE parameter and assembles a POP

·instruction to complete the assignment which brings th~ .stack level back

down.

The rule

<FORM: sum(a,b)> ::= <FORM:a> + <TERM:b>

can be added if we define sum as follows:

sum(a:FORM b:TERM)= FORM:

l/[a;b;]

EX(a) " Generate code which will push

one word onto the stack "

EX(b) " Generate code which will push

another word onto the stack "

Assemble an ADO instruction which pops two words

off the stack and which finally pushes the sum

back onto the stack \\

- 30 -

The program produced by sum will indeed generate machine code which will

push one word onto the stack.

Given an input string, if <PROGRAM> can be derived from a given

input string, we can generate machine code which will implement the

given string by performing

EX(p)

where p is the meaning associated with the derived <PROGRAM>.

Notice that if <PROGRAM> can be derived from the input string, the

datatype requirements for the routines load, asstgn, and sum are

automatically satisfied. The correctness of the compiler can be proven

simply by proving

1) the correctness of each meaning transformation and

2) that each meaning associated with a given part-of-speech

satisfies the established conventions for that given

part-of-speech.

- 31 ~·

Ambtoutt.11

It may be the case that a grammar's r~ot phrase can be derived from

a given input string in more than one way. For example~ with the

grammar

<FORM:a> ::= <NUMBER:a>

<FORM: exponent(a,b)> <FORM:a> t <FORM:b)

<FORM> can be derived from the string 2t3t4 in two ways:

2 t 3

<NUMBER:2> <NUMBER:J>

<FORM:2> <FORM:J>

<FORM: exponent(2 , 3) >

t 4

<NUMBER:4>

<FORM:4>

<FORM: exponent(exponent(2 , 3) • 4) >

2 t

<NUPIBER:2)

<FORPl:2>

or - - - -

3 t

<NUMBER:J>

<FORM:3>

4

<NUl"IBER:4>

<FORM:4>

<FORM: exponent(3 , 4 >
<FORK: exponent(2 , exponent(3 , 4)) >

In the first case, the string is interpreted as (2t3)t4 whereas in the

second case, the string is interpreted as 2t(3t4). We say that the

string 2t3t4 is ambiguous with respect to the given grammar. This

grammar could be modified so that it always groups 2t3t4 in one way and

not the other. For example, to group left to right, substitute the

second rule with

-· 32 '

<FORM: exponent(a,b)> .. - <FORM:a> t <NUMBER:b>

To group from right to left, use

<FORM: exponent(a,b)> .. - <NUMBER:a> t <FORM:b>

It is desirabie to have unambiguous languages, i.e., languages

where a given string can have at most one meaning. However, it may be

advantageous to have a grammar which produces multiple meanings for a

given string so that some of these meanings can disqualify themselves on

grounds other than syntactic structure. For example, ICL has the

operators + and I where + is used to add either numbers or points and

where I is used to combine two numbers to yield a point, e.g.,

112 is the point at x=1 and y=2,

112 + 314 is the point 4#6, and

1+2 I J is the point 313.

Consider how A+BIC might be grouped. If A, B, and C are numbers, A+BIC

must be grouped as

(A+B)IC

because the grouping

A+(BIC)

would force + to add a number and a point. On the other hand, if A is a

point and B and C are numbers, the latter grouping must prevail lest +

be forced to add a point and a number. If A, B, and C are the names of

program variables, the grouping decision can't be made until the types

of A, B, and C are known. Since the types associated to variables are

not known until declarations are processed and because declar~tions

can't be processed until syntax analysis is complete, the grouping

- 33 -

decision cannot be dictated by the syntax grammar. The syntax grammar

therefore must admit both groupings, i.e., yield two meanings for the

string A+BIC. During the evaluation of meaning, the types for A, 8, and

C will become known and hence one of the meanings will disqualify

itself.

In general, ambiguity is necessary when insufficient information is

available for making a decision.

- 34 -

Kultipass Language Processing

Consider two grammars which describe different aspects of a subset

of FORTRAN'S arithmetic expressions. The first grammar is the grammar

relating the parts-of-speech <FORM>, <TERM>, and <ATOK> presented

earlier. The second grammar is written in terms of the parts-of-speech

<INTEGER> and <REAL>:

<INTEGER: addi(a,b)>

<REAL: addr(a,b)>

<INTEGER: muli(a,b)>

<REAL: mulr(a,b)>

<INTEGER:a>

<REAL:a>

<REAL: float(a)>

.. -

.. -

.. -

.. -

<INTEGER:a> + <INl~GER:b)

<REAL:a> + <REAL:b)

<INTEGER:a> * <INTEGER:b>

<REAL:a> * <REAL:b>

<INTEGER:a>

<REAL:a>

<INTEGER: a>

This latter grammar states FORTRAN's datatype requirements and ignores

operator precedence. The former grammar states FORTRAN's operator

precedence but ignores datatype requirements. However, any legal

arithmetic expression must be accepted by both grammars. For brevity,

we will call the former grammar the syntax grammar and the latter

grammar the type grammar.

Both gra.mmars can be incorporated by agreeing that meanings

associated with <ATOM>, <TERM>, and <FORM> are programs whose executions

will generate phrases in the language accepted by the type-grammar.

During the generation of these phrases, the type grammar instead of the

syntax grammar will be active. Thus, each generated phrase will be

subject to rewrites via the productions of .the type-grammar. For

example, sum can be defined as

- 35 -

sum(a:FORM b:TERM) = FORM:

//[a;b;]

EX(a) " Generate a phrase in the type language •

Generate a "+" to the right of the phrase

generated by a

EX(b) " Generate a phrase to the right of the + • \\ •

If sum's a parameter generates the phrase

<INTEGER>

and if b generates the phrase <REAL>, the program produced by sum will

generate the phrase

<INTEGER> + <REAL>

Since the type grammar is active during these phrase generations, <REAL>

will be derived from this phrase:

<INTEGER:a> + <REAL:b>

<REAL: float(a)>

<REAL: addr(float(a) , b) >

As such, one of the phrases generated by sum is <REAL> standing alone.

To be more specific, the multipass scheme works as follows:

1) Process the input string with respect to the first grammar.

2) The result will be a meaning associated with the root phrase of

the first grammar.

3) Evaluate the resulting meaning with respect to the second

grammar.

4) From all the phrases generated by the evaluation, choose the

root phrase of the second grammar.

~· 36 ~·

The meaning associated with the second grammar's root phrase is now the

meaning for the string with respect to both grammars. This multipass

scheme indeed requires that the input string be accepted by both

grammars.

Kore than two passes can be implemented by agreeing that the

meaning transformations associated with one grammar will generate

phrases in the language accepted by the next grammar in the sequence.

The meaning transformations for the final grammar in the sequence will

be responsible for carrying out the originally intended meaning.

Two successive grammars can be radically different so long as the

meaning transformations associated with the first grammar can indeed

generate useful phrases in the language accepted by the next grammar.

The successive grammars need not be refinements of one another, e.g., it

.is not necessary for. the type grammar to consist of several productions

per syntax production. For example, the syntax production

<ATOM:a> (<FORM :a>)

need not have any counterparts in the type grammar. Furthermore,

several syntax productions might indeed generate the sa.me phrase in the

type language where the ultimate distinction between the ·two syntax

. productions resides in the meanings associated with the elements of the

generated phrases.

_. 37 -

Productton Schema

We will now consider productions whose parts-of-speech may

themselves be variables. A whole scheme of productions may be

implemented by one or a few productions whose parts-of-speech are

variables. For example, consider the set of ~roductions

<X> ::= <X> EQUALS <X>

where <X> stands for any part-of-speech. Each of the productions

<INTEGER>

<REAL>

.. -

.. -
<INTEGER> EQUALS <INTEGER>

<REAL> EQUALS <REAL>

is a member of the production scheme given above.

The production scheme

<X> .. - IF <BOOL> THEN <X> ELSE <X>

represents the type requirements for the If-THEN-ELSE construct. The

type of an IF-THEN-ELSE expression is precisely the type of the

THEN-clause when the type of the ELSE-clause matches the type of the

THEN-clause. If the types of the THEN-clause and the ELSE-clause

differ, this production does not apply.

One can write production schema where the variables representing

parts-of-speech accept only a limited range of values. For example, let

<EXPR> denote the array of parts-of-speech

<EXPR1>, <EXPR2>, ... , <EXPRn>

and let <BOP> (binary·operator) represent the parts-of-speech

.... 38 ..

<BOP~>, <BOP2>, , <BOPn>

A precedence grammar is implemented by the production scheme

<EXPRi> ::= <EXPRu> <BOPi> <EXPRv>

where u is required to be less than or equal to i and where v is

required to be strictly less than i. This scheme is a generalization of

the precedence grammar given earlier which included the parts-of-speech

: <ATOK>. <TERM>, and <FORM>. In this more general setting, we can agree

that

<ATOM> = <EXPR1>,

<TERM> = <EXPR2 >, and

<FORM> = <EXPR3>

and that the binary operators + and * have the rules

<BOP2> ::= *
<BOP3> : := +

The requirements on u, i, and v in the rule scheme impose the same

precedence requirements inherent in the <ATOM>-<TERM>-<FORM> grammar.

The parenthesis rules

<ATOM> <FORPI>

has the counterpart

Where t is required to be less than or equal to 3.

The implementation of operator precedence via this rule scheme is

more. efficient than the implementation offered by the

<ATOM>-<TERK>-<FORK> grammar. The <ATOM>-<TERM>-<FORPI> grammar includes

the bookkeeping rules

<TERPI>

<FORPl> ... -
<ATOM>

<TERM>

- 39 ~·

Thus, whenever an <ATOM> is generated, the <ATOM> is rewritten to . a

<TERPl> and the <TERM> is rewritten to a <FORM>, e.g.,

This

case

(1

<ATOM>

<TERM>

<FORM>

< A T 0 M

cascading effect

that the <EXPR1>

(1

<EXPR1>

<EXPR2>

<EXPR3>

)

>

is absent in the precedence scheme:

rewrites to <EXPR2> and finally to

< E X P R 1 >

It is not the

<EXPR3> lik.e

The production scheme doesn't need to include the bookkeeping rules

<EXPRi+l> ::= <EXPRi>

because the precedence conditions, i.e., the conditions upon u, i, and

u, are stated in terms of inequalities rather than in terms of

equalities. Thus, for example, the string (1) parses simply as

because the parenthesis rule requires only that t be less than or equal

to 3 and not that t be equal to 3.

As the reader may recall, the conventions set upon meanings

associated with the parts-of-speech <ATOM>, <TERM>, and <FORM> were

identical. The distinction among these parts-of-speech was solely for

synt·actical rather then semantic reasons. Thus, grouping all the

<EXPRi> into one conceptual part-of-speech is natural from the point of

view of setting up conventions for meaning.

The production schema presented thus far include variable

parts-of-speech which admit either any part-of-speech or a specific

array of parts-of-speech. However, the conditions placed on a variable

part-of-speech can be of any sort we wish. The following example

involves parts-of-speech which are themselves general datastructures.

Consider the datatype declaration

TYPE A = { B } ;

This defines A to be a string, or array, each of whose elements is of

type B. One effect of this declaration is the creation of the following

datatype production:

 ::= <A> [<INTEGER>]

This production states that the rcsul t of indexing into an object of

type A is an object of type B. If the user were to declare

TYPE C = { D

E = { F

G = { H

~· 41 ~·

we would have the rules

<D>

<F>

<H>

: :=

.. -.. -
: : =

<C> [<INTEGER>]

<E> [<INTEGER>]

<G> [<INTEGER>]

The meaning transformations associated with each of these rules are

identical; each performs an indexing operation which does not depend on

the datatypes involved. Because the meaning transformations are the

same, we can take this opportunity to write one rule which will act as

each of these individual rules:

<type1> ::= <type2> [<INTEGER>]

~here <type2> = a type declared to be a string of elements of type

<type1>.

This rule scheme can be implemented if the part-of-speech <type2> is

itself a datastructure which represents the structure of type2 . That

is, the rule scheme can be written as

?? ::= <X> [<INTEGER>]

where the meaning transformation looks at the wild-card

<X> to determine if it is a string of some other type.

part-of-speech

If <X> is not a

string, the meaning transformation inhibits the application of the rule.

If <X> is a string, the meaning transformation obtains that datatype or

which <X> is a string and supplies this as the lefthand part-of-speech,

the ??. The meaning transformation finally generates a meaning in terms

of the meanings under <X> and the <INTEGER> and gives this as the

meaning associated with the lefthand part-of-speech.

- 42 -

Rule schema are useful for minimizing the size and maximizing the

readability of a grammar.

Reluctant Productions

Consider the productions

<INtEGER: addi(a,b)>

<REAL: addr(a,b)> ::=

<REAL: float(a)> .. -

.. 43 -

<INTEGER:a> + <INTEGER:b>

<REAL:a> + <REAL:b>

<INTEGER:a>

This grammar has an inherent ambiguity. If the string 1+2 is viewed as

a REAL, there are two possible derivations:

+ 2 1

<INTEGER:t>

<INTEGER:

<REAL:

<INTEGER:2>

addi(1 , Z) >

float(addi(t,2) >
- - - ,.. or -

1 + z
<INTEGER:t> <INTEGER:Z>

<REAL:float(t)> <REAL:float(Z)>

<REAL: addr(float(1),float(2)) >

The first derivation employs integer add whereas the second derivation

employs real add. The first derivation applies float to the result of

the sum whereas the second derivation applies float to each operand

previous to the sum.

To remove this ambiguity, we can introduce a notion of 1reluctant

productions, i.e., productions which· in some sense avoid being used.

The notation

.. 44 ..

<REAL:float(a)> ::== <INTEGER:a>

will denote a reluctant rule. The reluctance of a rule manifests itself

not during the rewrite process but after the rewritting process is

complete. Upon completion of the rewrite process, all possible

derivations for the input string are available. At this time we can

choose those derivations which involve the minimum number of reluctant

rules. For the example given above, the first derivation will win over

the second derivation because the first involves one application of the

float production whereas the second involves two applications.

For another example, consider the grammar

<A> .. -
 ::= <C>
<C> .. - <D>

<A> .. - <X>
<X> : : = <D>

<A> can be derived from <D> in two ways:

D -> C -> B -> A and

D -> x -> A

If all these productions are reluctant, the path via X will be chosen

over the path involving C and B.

Although reluctant productions can remove many ambiguities, there

are some stubborn cases which defy disambiguation by this method. A

notable example involves unary operators. With the rules

<INTEGER: minusi(a)> ::=

<REAL: minusr(a)> .. -.. -
<INTEGER:a>

<REAL: a>

- 45 -

the string

- 1

is ambiguous when viewed as a REAL and in fact both derivations involve

the same number of reluctant productions. That is, does the float apply

before the minus or after?

With a scheme of reluctance, ti·e can afford to make a

ambiguous and achieve a measure of optimization.

exponentiation is more efficient when the exponent is an

rules

grammar more

For example,

integer. The

<INTEGER: expi(a,b)>

<REAL: expri(a,b)> .. -
<INTEGER:a> t <INTEGER:b>

<REAL:a> t <INTEGER:b>

<REAL: exprr(a,b)> <REAL:a> t <REAL:b)

represent the three ways exponentiation is usually

second rule is clearly redundant because with

carried out. The

the INTEGER-to-REAL

coercion, the third rule alone supports all uses of the second rule.

For example, the string 1.2t3 parses either as

1.2

<REAL: 1.2>

<REAL: exprr

t 3

<INTEGER:J>

<REAL: float(J)>

1.2 , float(3) >

or as - - - - - - - -

1.2

<REAL:1.2>

<REAL: expri

t 3

<INTEGER:J>

1.2 • 3 >

-· 46 ._

The ambiguity generated by the inclusion of the second rule is welcome

because we now have a·choice of derivations. lhe second derivation will

win over the first derivation because the reluctant float rule is not

used in the second derivation whereas it is used in the first. Thus,

the inclusion of rules which obviously admit ambiguity can indeed serve

towards optimization. in a scheme "''here some rules are reluctant.

... 47 ..

This section documents an efficient, general rewrite parser. This

parser accepts any general rewrite, or type 0 grammar whose productions

have non-null righthand phrases. If the parser terminates, it yields

all possible derivations in a factored form.

If we restrict our attention to contex.t-free grammars, the parser

works at a worst case expense equal to a polynomial function of the

input character string length. The degree of the polynomial is equal to

two plus the maximum length of each production's righthand phrase. If

the number of parts-of-speech encompassed by the grammar is p, if the

longest righthand phrase has length L, and if n is the input string

length, then the worst case memory and time is bounded above by (np)2 +l.

This is calculated for a grammar having all possible context-free

productions with righthand phrases of length less than or equal to L.

The polynomial upper bound for memory includes the space taken by

the resulting derivations. Even though there may be an exponential

number of derivations, all the derivations together fit in polynomial

space. There are two factors which yield this result. First of all,

many derivations share common subderivations. This factor alone does

not achieve the polynomial space but it does make possible the

effectiveness of the second factor. The second factor involves

extending the notion of derivation to include ambiguous derivations. An

ambiguous derivation is a derivation which may contain instances of a

new kind of node called an OR-node. A single ambiguous derivation can

represent many distinct unambiguous derivations. The big payoff comes

'1 .

- 48 -

when an ambiguous subderivation is shared by several derivations~

For example, the grammar

<X>

<X>

: : = 1

<X> + <X>

represents all strings of characters representing sums of 1, e.g.,

1+1 or 1+1+1+1+1 etc.

This grammar gives rise to many derivations for a string having three or

more ls because no preference is given to left or right associativity.

The string

1+1+1+1

parses as any of

((1+1) + 1) + 1 or

(1 + (1+1)) + 1 or

(1+1) + (1+1) or

1 + ((1+1) + 1 or

1 + (1 + (1+1)) .
The number of derivations arising from a string having n ls equals the

number of ways parentheses can be applied to the given string. This

number excedes 2n-2.

We can begin to see how all 2n-2 derivations fit in polynomial

space by noting two examples. First of all, the initial "(1+1)" in both

the first and third derivations can be represented once and can be

shared. Secondly, the ambiguous derivation consisting of both

... 49 ..

[(1+ 1) + 1] and

[1 + (1+1)]

can be shared by each of

(1 + [1+1+1}) + 1 and

1 + [1+1~1} + 1).

A complete explanation for how the 2n-2 derivations fit into polynomial

space will come when we prove the polynomial upper bound for the

parser's expense.

The upper bound for expense applies even if the grammar has rules

like

<X> ::= <X>

or like

<REAL> <INTEGER>

<INTEGER> ::= <REAL>

Such "infinite loop" rules can give rise to infinitely many derivations.

An infinite number of derivations is represented by a derivation

containing cycles. As we shall see, rules like these come up' in many

applications.

We will address the problems and advantages that come with

processing an ambiguous derivation after the workings of the parser are

presented. We shall see how an exponential number of derivations

represented in polynomial space can often be processed in polynomial

time.

- 50 ~·

Although this parser was conceived independently, there are

similarities with Earley's IUficient Context-free rarser[3] and with

Thompson's REL parser[4]. Earley's efficient context-free parser has an

upper bound on both memory and time of n3 where n is the length of the

input string of characters. · The parser described here has an upper

bound of n4 for context-free grammars in Chompsky Norma.I Form. The
I

disparity between this n4 and Earley's n3 comes about because Earley

indexes into an array of length n where this parser walks a list

structure of length n. The use of an array is cumbersome when dealing

with general-rewrite grammars. The REL parser works for general rewrite

grammars whose righthand phrases are non-null but its memory and time

expense is unbounded even for context-free grammars. The key factor

leading to Earley's efficiency is a continual factoring process which

avoids duplicating work emanating from identical states.

The parser described here, like REL's, is bottom-up. The .input

string of characters is mapped into a list and this list is expanded to

include nodes representing parts-of-speech spanning various substrings

of the input string of characters. However, unlike REL's parser, a new

node will not be added to the parsing graph if there already exists a

node representing the identical part-of-speech and span. When an

identical node is proposed, the derivation as~ociated with the existing

node is replaced by an ambiguous derivation consisting of both the

derivations from the existing node and the new node. The grammar is not

consulted with this new node because any responses by the grammar will

have already occured once before when the existing node was proposed.

The replacement of derivations is done in such a manner that all

derivations which already reference the existing node's derivation will

- 51 -

automatically reference the ambiguous derivation.

How The Parser Works

The parser works by taking in one character and appending it onto

the righth~nd side of a completely parsed initial string of characters.

The parser then calls on the grammar to achieve a complete parsing of

the extended initial string of characters. This cycle repeats forever;

the grammar is responsible for processing a command when it recognizes

one.

The Par~tno Graph

The parser revolves around a central datastructUre called the

parsing graph. A parsing graph is a list structure each of whose memory

elements has four fields:

The LEFT and ALTernate fields each either contains NIL or points to

another memory element of this same type. The part-of-speech is a

scalar and the derivation is a reference to an arbitrary datastructure.

A parsing graph p'rovides a concise representation for an ambiguous

phrase. In its basic form, a parsing graph is simply a phrase, e.g.,

... 53 ..

An alternate subphrase may be incorporated by plugging the alternate

subphrase into the ALTernate field of an existing node, e.g.,

For example, the parsing graph

represents the strings

1 + 1 + and X +

For clarity, illustrations will exclude the derivation field.

Properttes of the Parstng Graph

It is very useful to view the parsing graph in terms of phrases and

columns. A column is any list of nodes linked together via their

ALTernate pointers. A single column represents a set of alternative

phrases, or paths. Each node in a column is the righthand element of a

~· 54 ~·

phrase where the phrase is accessed by following nodes towards the left

via LEFT pointers. At each step in traversing a phrase, the viewer

confronts a column and hence has a choice for continued traversal.

A phrase is said to emanate from the column containing the ~hrase's

rightmost node. It is also said that a column contains a phrase when

the column contains the phrase's rightmost node. A node in a column is

said to reside on that column.

We say that a given phrase is represented in the parsing graph iff

there exists a sequence of parsing graph nodes such that

1) The parts-of-speech of the nodes match the parts-of-speech in

the given phrase from right to left, and

2) Each node resides on the column referenced from the previous

node's LEFT field.

We say that two phrases have the same span iff they both emanate from

the same column and if the leftmost node in each phrase referenc~s the

identical memory address via its LEFT field.

We say that a parsing graph is fully parsed when, for each phrase

represented in the parsing graph, the following is true: If that phrase

matches some production's righthand phrase, then an instance of the

production's lefthand phrase also resides in the parsing graph and

indeed has the same span.

The Aloor1.thm

~· 55 ~·

OV\ S'lme

colWttrt

The parser is implemented by two routines, one which enlarges the

parsing graph and one which examines the parsing graph. The enlargement

routine maintains the fully parsed property by consulting the grammar.

The grammar is a program which calls on these two routines; a rule's

righthand phrase examines the parsing graph to determine the rule's

applicability and wben applicable, the rule's lefthahd phrase enlarges

the parsing graph.

The basic idea is to give the grammar sight to each phrase

represented in the parsing graph without giving sight to the same phrase

twice in the same context. This is done in an incremental manner. If

we assume that a given parsing graph is fully parsed, i.e., the grammar

.has already seen every phrase in the given parsing graph, then we can

enlarge the parsing graph and see to it that the grammar sees each new

phrase represented in the extended parsing graph and in fact sees each

new phrase only once.

We allow a parsing graph to be extended in only one way: A new

node may be placed to the right of a fully parsed parsing graph, i.e.,

Wheneuer a new node is generated, the parser gives the grammar sight to

the extended parsing graph. The grammar sees only those phrases which

include the new node. The grammar sees no phrase which lies completely

within the fully parsed parsing graph to the left of the new node.

The grammar responds to each visible phrase in the extended parsing

graph which matches a production's righthand phrase. For example, the

grammar

<X>

<X>

responds to

~~------

.. - 1

: : = <X> + <X>

because the second production sees an <X>+<X> phrase. The response of a

production is to enlarge the (sub)parsing graph residing to the left of

the matched phrase. In this example, the second production generates a

new X-node.

~· 57 -

A general rewrite rule, e.g.,

<A> ::= <X> + <X>

enlarges the parsing graph by generating a node for each part-of-speech

on the lefthand side from left to right, e.g.,

First the A-node is generated and the grammar responds to those phrases

visible from the new A-node. Finally, the B-node is generated and the

grammar responds to all phrases visible from the new B-node.

Whenever a new node is generated, besides consulting the grammar,

the parser places the new node on the column referenced by the global

variable named COLUMN. COLUMN represents the righthand edge of newly

generated phrases.

All new phrases reside initially on COLUMN. New phrases become

incorporated into the parsing graph when a newer node is created which

references COLUMN via the newer node's LEFT field.

.. 58 ..

Following are precise descriptions for the routine which generates

parsing graph nodes, the routine which examines the parsing graph, and

the routine which acts as the grammar.

Parsing Graph Generation

The routine which enlarges the parsing graph, NEWNODE, takes the

following parameters:

POS: the part-of-speech for the new node

SEPI: the deriuation to be associated with the new node

LEFT: a fully parsed parsing graph which is to reside

to the left of the new node.

LEFT acts as the lefthand edge for the new node and the global variable

COLUMN acts as the righthand edge. NEWNODE operates as follows: Look

thru the list COLUMN for a node whose part-of-speech equals POS and

whose LEFT equals the parameter LEFT.

If no match is found, form an extended parsing graph by

constructing a node whose LEFT, part-of-speech, and derivation are
I

the parameters LEFT, POS, and SEM resp. Put the new node on COLUMN

and call the grammar passing this new node as point of reference.

When the grammar returns, NEWNODE returns.

1-- 01...D c..a t..i...1k t-.1

If a match ts found, do not modify the parsing graph and do not

~· 59 ~

call the grammar. Rather, refer to the memory element which

represents the derivation associated with matched existing node.

Modify that memory element to represent the ambiguation of both the

original derivation and the parameter SEM .

. -¥ am\n~~ou,
. ,

NEWNODE affects the global variable COLUMN only by appending to it.

Parsing Graph Selection

The routine which ex.amines the parsing graph, FIND, takes as

parameters:

P: the parsing graph, or column, to be examined

RHS: a phrase to be sought

ACTION: a process which is to be performed upon

each match.

FIND examines the parsing graph, P, looking for instances of RHS, the

'phrase to be sought. FIND looks only for phrases which emanate from the

column immediately referenced by P. FINO views the parsing graph simply

as a sideways tree; the ALTernate links are seen as brother links and

the LEFT links are seen as son links. For each part-of-speech in RHS

from right to left, FIND looks down a column for a node having the same

part-of-speech, where upon finding a match, FIND continues the search by

looking in the column referenced by the matched node's LEFT field. FIND

will catch every matching phrase which emanates from the column P.

-· 60 -

for example, given the following parsing graph in P

and the phrase

<X> + <X>

in RHS, FIND matches the phrases

<X5> +7 <Xg> with

<X6> +7 <Xg> with

<X2> +a <X10> with

LEFT= +a

LEFT= +o

LEFT= +o

l \ '~
.. - 8

11

-------- f'

Upon each phrase match, ACTION is performed. Available to ACTION

are the derivations associated with each of the matched nodes. In

addition, ACTION has access to the LEFT field of the leftmost matched

node. ACTION is typically a process which, representing a rule's

lefthand phrase, calls NEWNODE with each part-of-speech in the lefthand

phrase. Along with each part-of-speech, ACTION will pass to NEWNOOE a

newly constructed derivation which references those derivations

associated with each of the matched nodes.

The only backtracking in this parser occurs in FIND. The depth of

backtracking is limited by the length of RHS, the phrase being sought.

It turns out that FIND is always called with some production's righthand

phrase shortened by deleting its rightmost part-of-speech. The expense

.... 61 ~·

upper bound for this parser is based on the time spent in FIND where we

know the maximum si2e of the parsing graph P.

The Grammar

The grammar is a program which accepts an extended parsing graph as

para.meter. An extended parsing graph is a single node whose LEFT

references a fully parsed.parsing graph. The grammar is always called

from NEWNODE. We will call the single node the nem node. It is a

property of NEWNODE that the ne1U node resides on the global variable

COLUMN. However, even though the new node resides on COLUMN, the

grammar will not consider any other node on COLUMN.

The grammar consists of a

production. Let RHS denote

statement has the form

series. of statements, one for

the production's righthand phrase.

each

Each

IF the new node matches RHS's rightmost part-of-speech THEN

Call FIND with P= new node's LEFT,

RHS= RHS less the rightmost

part-of-speech

ACTION= a process which generates

this rule's lefthand phrase

If RHS has only one part-of-speech, the call to FIND does not appear,

rather, ACTION itself is performed where LEFT is set to new node's LEFT,

i.e.,

, .
•

-· 62 -

IF the new node matches RffS's rightmost part-of-speech THEN

LEFT:= new node's LEFT

generate this rule's Iefthand phrase

In each case, the rule generates its lefthand phrase in a context where

LEFT references the parsing graph residing to the left of the matched

phrase and where COLUMN contains the rightmost node in the matched

phrase, the new node.

The process which generates the rule's lefthand phrase takes one of

two forms. First, if the lefthand phrase has length one, e.g.,

<A> .. -
.then the generating process is

POS:= <A>

SEM:= some new derivation

Call NEWNODE

NEWNODE places the new <A> node on the same column from which emanates

the matched phrase, the column referenced by COLUMN. The LEFT for the

new node references the same (sub)parsing graph which is referenced by

the LEFT of the matched phrase. Indeed, both the matched righthand

phrase and the generated lefthand phrase have the same span.

If the lefthand phrase has length greater than one, e.g.,

<A> <C>

then the generating process is as follows. Notice how each call to

NEWNODE occures in a context where the resulting column from the
'

previous call appears as the LEFT in th~ current call.

~· 63 ~

OlO COWftf~/ I: COWM~i
COlUMN:: Nil

SEM:= some new derivation
POS: = <A>
Call NEWNODE

lEFT:: COW~Ui
COWMli:: ~ii l

SEM:= some new derivation
POS:=
Call NEWNODE

LEFT:: COl/Jftffri
COW MN I: OlD _.COWM!l

SEM:= some new derivation
POS:= <C>
Call NEWNODE

" Save COlUMN locally ,,

" Re.store COLUMN "

The italicized sections set up position context. COLUMN is set to NIL

for all but the rightmost node. That is, the positions for the <A> and

 nodes have no place in any currently existing column. However, the

rightmost node, the <C> node, is placed in the original column so that

the new <A><C> phrase emanates from the original column.

ICO\..oMtJ

t-/\1 a tcliecl Ph rn'°" ---t--t . .

Notice that the LEFT for the first node, the <A> node, is externally

defined for this process. lhe LEFT upon entry to this process is, as

always, the LEFT of the matched phrase. Indeed, the generated <A><C>

phrase has the same span as the matched phrase, and in fact, starting

from the <C> node, the node resides in the column referenced by

.<C> 1 s LEFT and the <A> node resides in the column referenced by 's

-· 64 -·

LEFT.

It should be noted that the THEN clause for each production

modifies the variable COLUMN only by appending more nodes to the list.

Hence, no matter in what order we assemble the prdductions, each

production is entered with COLUMN still containing the new node, the

rightmost node in any matched phrase.

In summary, each production requires that the new node's

part-of-speech matches the production's righthand phrase's rightmost

part-of-speech. The rest of the righthand phrase is matched by FIND.

Upon each match, the rule generates its lefthand phrase having the same

span as the matched righthand phrase.

For example, the grammar

<X> ::= 1

<X> ::= <X> + <X>

translates to

IF new node's POS=. "1" THEN

Call NEWNODE with LEFT= ne111 node's LEFT

POS= <X> and

SEM= some new derivation

- 65 -

IF new node's POS= <X> THEN

Call FIND with P= new node's LEFT

RHS= the phrase <X> ~

ACTION= " Call NEWNODE with

POS= <X> and

SEM= some new derivation " .

- 66 ~·

Sample Run

Suppose the grammar is

<X>

<X>

.. -.. -

.. -
1

<X> + <X>

If we call NEWNODE with the following parameters:

COLUMN: NIL

POS: the part of speech "+"

SEK: the NIL derivation

LEFT: a reference to the fully parsed parsing

graph for input "1+1":

NEWNODE consults the grammar with the extended parsing graph

and returns the fully parsed parsing graph in COLUMN.

- 67 -

The grammar has added no additional nodes because the grammar has no

rule whose righthand phrase can match the extended parsing graph using

the net11 "+"node: No rule's righthand phrase has"+" as its rightmost

part-of-speech.

Let us perform

LEFT:= COLUMN and

COLUMN:= NIL

This moves our point of view to the right:

Now, 1 f we call NEWNODE with a "1", NEWNODE will consult the grammar

with the extended parsing graph

···--·-
The grammar's production

<X> ::= 1

responds by calling NEWNODE with POS= <X> and with LEFT= the LEFT of the

1-node. The new incarnation of NEWNODE consults the grammar with the

extended graph

~· 68 ~·

This time, the production

<X> ::= <X> + <X>

responds and in fact it responds twice.

----©'-- C.OL-UM"1

.,__.... b-V"O..M MQ. r !s
",·e.v.,;

This production's righthand

phrase has a choice of two X-nodes to the left of the +-node. The first

response calls NEWNODE with POS= <X> and with LEFT= the LEFT of the

leftmost node in one of the matched <X>+<X> phrases. NEWNODE consults

the grammar with the extended parsing graph

~LUHN
~~--trn-------{±)~·1

y..

I

S G-ra.mM.a'f s
'------------<XI \JIC!J.;,

Without following further recursion, NEWNODE returns with

The full spanning X-node represents the parsing 1+(1+1). The second

- 69 -

response calls NEWNODE with POS= <X> and with LEFT= the LEFT of the

leftmost node in the other matched <X>+<X> phrase.

The newly proposed X-node represents the parsing (1+1)+1. This time,

however, NEWNOOE does not consult the grammar; COLUMN already contains

an X-node having the identical LEFT. Instead, NEWNODE modifies the

derivation associated with the existing X-node so that it now represents

the ambiguous derivation for both parsings.

~· 70 ~·

This section shows that if the parser terminates then if and only

if the given input string can have a derivation in terms of the given

grammar, the parsing graph will contain the phrase which consists solely

of the grammar's root part-of-speech and which spans the whole input

string. The next section places time and memory bounds on this parser

for context-free grammars. These two facts together prove that the

parser works at least for context-free grammars.

Let us assume that the character input routine works as follows:

COLUMN:= NIL

WHILE there are more characters DO

LEFT:= COLUMN
COLUMN:= NIL

POS:=
SEM:=
Call

NEXT CHARACTER
NIL -

NEWNODE

" Step Right "

Each new character is placed to the right of the parsing graph which

represents the previous characters. The input string exists as a phrase

in the final parsing graph referenced from COLUMN because each character

resides on that column which is referenced by the LEFT field of the node

representing the next character.

To lend some precision to the following arguments, we shall state

the following lemmas and assumption. The lemmas wi 11 be proven at the

end of this section.

~· 71 ~

Lemma 1:

Any node which is accessible from some node's LEFT is never

modified.

Lemma 2:

If two given nodes reside on the variable COLUMN at some time, then

any column referenced by some node's LEFT either contains both of

the given nodes or contains neither node.

Assumption 1:

No two parsing graph nodes reference the identical derivation node.

In other words, any given derivation node is referenced by at most

one parsing graph node. In the description for the parser given in

the previous section, the assignment

SEM:= some new derivation

is meant to imply that SEM is set to reference a node which is

currently referenced from nowhere else. This implication supports

this assumption.

It is essential to note that a parsing graph node is examined only from

the point of view of some other node's LEFT. The parsing graph

examination routine, FIND, is always called with P containing a column

which is taken from some existing node's LEFT. Thus, a node's

appearence is important only when that node resides on a column which is

referenced from some node's LEFT. Thus, the two lemmas help remove time

considerations for all nodes which can be examined.

- 72 -

Anu parsing graph is always fully parsed if each node ts entered by

NaUIODEr Choose any production and choose any phrase in the parsing

graph which matches the production's righthand phrase.

phrase's rightmost node.

Consider this

This rightmost node was created at some time. By lemma 1, the

parsing graph to the LEFT of this new node is now exactly what it was at

the time the new node was created. Hence, the chosen righthand phrase

was represented in· the extended parsing graph at the time NEWNOOE

consulted the grammar with this rightmost node. Assuming that NEWNOOE

did consult the grammar, we know that the chosen production matched this

phrase and hence generated its lefthand phrase having the same span.

Because at this time COLUMN contained both the left and righthand

phrases, lemma 2 guarantees that the lefthand phrase will always be seen

to reside on any column which contains the righthand phrase. Therefore,

both the righthand and the lefthand phrases exist in the parsing graph

sharing the same span. In addition; the derivations associated with

each node in the lefthand phrase were indeed created by ~his

having access to the derivations of the. righthand phrase.

production
f

What about those cases where NEWNODE does not consult the grammar,

i.e., those cases when there already exists a node in COLUMN having

identical part-of-speech and LEFT? Because the existing node was itself

generated by NEWNODE at an earlier time, the production's lefthand

phrase already exists in the parsing graph. Consider what would happen

if NEWNODE did indeed consult the urammar. The grammar would be called

in exactly the sa.me context in l'i'hich it was called when the existing .
node was generated except that the parameter SEM may have a different

- 73 -

value. However, because this parser never looks at a derivation, i.e.,

a derivation is used only in constructing new derivations which

reference the given derivation, the parameter SEM in no way affects the

running of the parser. Therefore, consulting the grammar with the new

node would generate only copies of existing nodes differing only in

their associated derivations.

Even if NEWNODE does not consult the grammar, NEWNODE guarantees

that each new derivation which would be generated by consulting the

grammar will indeed be represented. Because the parameter SEM in no way

affects the running of the parser, we can imagine that when the existing

parsing graph node was generated, the parameter SEM could have been

substituted with the new value for SEM. Exactly the same processing

would ensue. Hence, by generating the existing node twice, once with

old SEM and once with new SEM, we would come up with identical

derivations which differ only by the value of SEM. By making SEM

represent an ambiguous derivation consisting of both old and new SEM,

all the derivations which would be generated by consulting the grammar

with the newly proposed node will indeed be represented.

NEWNODE makes SEM represent the ambiguous derivatio~ by modifying

the derivation node referenced from the existing parsing graph node.

NEWNODE replaces the original derivation by the ambiguous derivation.

This guarantees at least that any derivation which accesses old SEM will

now access the ambiguous derivation. That is, any derivation generated

with reference to old SEM ~ow represents both the original derivatio~

and the same derivation where old SEM is substituted with new SEM.

-· 74 -·

We must verify that each node which accesses the modified

derivation is a node which should see the ambiguous derivation in place

of either the old or new derivations. Because the existing parsing

graph node is the only parsing graph node which references old SEK by .
assumptton 1, we can see that the only derivations which access the

ambiguous derivation are those derivations which were built on account

of generating the existing parsing graph node. These are precisely the

derivations which should see the ambiguous derivation.

Any parsing graph node whose I.EFT references a column containing

the existing node would reference a column containing both the existing

node and the newly proposed node if NEWNODE were to place the newly

proposed node on COLUMN by lemma 2. Therefore, from any node's LEFT,

both derivations would always be represented under identical parsing

graph nodes· even if NEWNODE were not to modify the existing node's

derivation. In other words, there is no parsing graph node whose LEFT

should see the original derivation instead of the ambiguous derivation.

Because this parser's correctness depends on the fact that a

derivation is not examined during the parser's operation, anyone who

writes a grammar must avoid examining derivations associated with

parsin9 graph nodes. That is, the grammar cannot depend on derivations

until the parsing is complete. The only information available at

syntax. or parsing time is parts-of-speech and not derivations.

- 75 -

If the input string is a valid string in the language generated bu

the grammar, then the grammar's root part-of-speech exists as a phrase

of length one sharing the same span with the input string: Assuming that

the input string is an element of the language, we know that there

exists a sequence of strings, each of which is derived from the previous

string by rewriting some occurrence of some production's righthand

phrase into that production's lefthand phrase. The final string·in the

sequence is the grammar's root part-of-speech standing alone. It is a

fact that each string in this sequence exists in the fully parsed

parsing graph and each shares the same span.

First of all, the input string exists in the parsing graph.

Secondly, assuming that a given string in the sequence exists in the

parsing graph, we can see that the next string in the sequence also

resides in the parsing graph.

which is rewritten to yield the

Look at the portion of the given string

next string. This portion is an

instance of some production's righthand phrase. Because the parsing

graph is fully parsed, we know that the parsing graph also contains an

instance of the production's lefthand phrase having identical.span.

Hence we know that the next string in the sequence also resides in the

parsing graph.

To be more precise, we can say that the righthand phrase is contained in

the column referenced by the LEFT field of the string node to the right

of the righthand phrase. By lemma 2 and because both the left and

righthand phrases resided on COLUMN at some time, we can conclude that

the column containing the righthand phrase also contains the lefthand

phrase. Thus, the lefthand phrase is accessible from the string node

~· 76 ~

which references the righthand phrase.

Each full spanning strtng represented in the parsing graph is a

strtno 1ohtch can be obtained from the input string by performing legal

rewrites. This says that the grammar's root part-of-speech can exist as

a full spanning phrase only if the input string is a valid string in the

language generated by the grammar. Suppose there is some full spanning

string represented in the parsing graph which cannot be obtained by

legally rewriting the input string. Let us call any such string an

tllegal string. A legal string is any string which can be obtained by

performing legal rewrites upon the input string. We want to show that

each full spannin~ string in the parsing graph is a legal string.

Let LHS denote any phrase in the parsing graph each of whose nodes

was created by a single production. A LHS is the set of nodes generated

by one execution of one production's lefthand phrase not including those

nodes generated by further calls to the grammar. For example. a phrase

ABC in the parsing graph is a LHS only if 1) there exists a production

whose lefthand phrase is ABC and 2) each of the nodes representing A. B.

and C were explicitly created in the same execution of the THEN clause

for the production.

Any node ever generated is either an input character or a member of

some LHS because any node not generated by the input routine is

generated by the lefthand phrase of some production. Furthermore. any

node is a member of at most one LHS because any given node is created by

at most one execution of one production·• s lefthand phrase.

... 17 ...

The following are two lemmas about LHSs:

Lemma 3:

Any column contains at most one node which is not the rightmost

node in some LHS.

Lemma 4:

Let S be any string represented in the parsing graph. Let N be any

node in S which is also the rightmost node in some LHS. One' of the

following must be true:

1) Each node in the LHS is a node in S, or

2) There exists a node in S which is both the rightmost node

in some other LHS and which is accessible from N's LEFT.

Consider any full spanning string in the parsing graph except the

original input string. This string, S, has the property that some LHS

makes up a segment of S. That is, there is some lHS each of whose nodes

ts in S: Since S is not the input string, S contains a node, N, which is

not an input character. N is therefore an element of some LHS. Let N

be the rightmost node in S which is a member of some LHS. In S, the

node to the right of N must be an input character and hence it must

reference a column containing both N and an input character. By lemma

3, N must be the rightmost node in some LHS. By applying lemma 4, we

see that either s includes all of LHS or s includes a node to the LEFT

of N which is itself the rightmost node in some LHS. In fact, we can

·repeatedly apply lemma 4 as long as con di ti on (2) shows up. However,

each such application of the lemma increases a lower bound for the

length of S. Therefore, condition (1) of the lemma must become true at

.. 78 ..

some time lest S be infinite.

We will define the age of a full spanning string, s, by averaging

the ages of each node in S. The age of a node is precisely the amount

of time which has elapsed since the node was created.

Suppose there exists an illegal string represented in the parsing

graph. Let S be an illegal full spanning string of maximal age. That

is, in some sense S is one of the first illegal strings created. From

the preceding argument, we know that some segment of S is a LHS. We

know that at the time LHS was on COLUMN, the righthand phrase of the

production which created the LHS was also on COLUMN sharing the same

span. By lemma 2 1 the column containing LHS also contains this

righthand phrase. Hence, the string formed by substituting the

righthand phrase for LHS in S is a string which resides in the parsing

graph. Let St denote the string formed from S by substituting LHS with

the righthand phrase.

Because UIS was generated only after the righthand phrase had

·already been created, the age of each node in LHS is less than the age

of each node in the righthand phrase. Thus, the age of S is less than

the age of 81. By S's maximality, this older string, 81, must be a

legal string. However, S is merely this older string where a righthand

phrase has been rewritten to LHS. Hence, S itself is legal and we have

a contradiction.

-· 79 -

The Lemmas

All memory elements generated by this parser are. of one of two

kinds. One kind is a parsing graph node and the other kind is a

derivation node. The following discussion is concerned mainly with

parsing graph nodes and hence we will use the unqualified term node to

ref er to parsing graph nodes.

We will use the term reference to mean direct or immediate

reference, i.e., a pointer references only the node which resides at the

address contained in the pointer; the pointer does not reference nodes

which are referenced from pointers within the referenced node. In

contrast, we will use the term accessible to mean the transitive closure

of reference, i.e., a given node is accessible from a given pointer iff

there exists a sequence of nodes where the first node is referenced from

the pointer and each node in the sequence contains a pointer referencing

the next node and the final node in the sequence is the given node.

Def 1)

A column is any sequence of nodes where each node in the sequence

references the next node via its ALT link and where the last node

in the sequence has NIL as its ALT link. The head of a column is·

the first node in the sequence. A column contains a node iff the

node is a member of the sequence.

The following definitions refer to the global variable named COLUMN at

any given time:

~· 80 ,.

Def 2)

A node resides on COLUMN iff that node is a member of the column

whose head is referenced by COLUMN.

Def 3)

A node resides on OLD_COLUMN iff some existing incarnation of the

local variable OLD_COLUMN references a column which contains the

given node.

LEMM A:

At any given time, the only nodes which might be modified are

either nodes which reside on COLUMN or derivation nodes referenced

from nodes on COLUMN.

LEPlPt.A B:

Once a node ceases to reside on both COLUMN and OLD_COLUMN, the

node will never again reside on COLUMN or OLD COLUMN.

LEMMA C:

At a given time, no node resides both on COLUMN and on. OLD_COLUHN.

LEMMA D:

Suppose two given nodes reside on COLUMN at some given time. From

this time forwa·rd, we will see either both nodes residing on COLUMN

or neither node residing on COLUMN.

LEMMA E:

A given node's LEFT references a value which was held by COLUMN at

a time before the given node was created. In addition, before the

given node was created, each node on the column referenced by the

- 81 -

given node's LEFT ceased to reside on COLUMN. More specifically.

the value taken from COLUMN for a node's LEFT is a value which was

held by COLUMN precisely at the time immediately before eacb node

on COLUMN ceased to reside on both COLUMN and OLD COLUMN.

LEMMA F:

Each node on the column referenced by some node's LEFT never

resides on COLUMN.

Proof of A:

NEWNODE is the only routine which modifies nodes.

modify a node in one of two ways:

1) NEWNODE inserts a new onto the list COLUMN

NEWNODE will

2) NEWNODE modifies the derivation node which is referenced

from a node on COLUMN.

Proof of B:

COLUMN is modified in one of three ways:

1) NEWNODE puts a newly created node on COLUMN

2) COLUMN is set to NIL

3) COLUMN is set to OLD_COLUMN.

(2) and (3) occur in a general rewrite production's lefthand phrase

and only (2) occurs in the character input routine.

Suppose a given node is not on COLUMN and not on OLD_COLUMN.

The only way a node gets onto COLUMN is by (1) and by (3). Because

we are assuming that at some time the given node did reside on

COLUMN or OLD_COLUMN, we know that the given node is one which

already exists. Hence, (1) cannot put the given node on COLUMN.

(3) cannot put the given node on COLUMN because the given node is

not on OLD_COLUMN.

A given node is put on OLD_COLUMN only by

OLD_COLUMN:= COLUMN

However, because the given node is not on COLUMN, this assignment

can't put it on OLD_COLUMN.

~· 83 ~

Proof of C:

Let B reside both on COLUMN and on OLD COLUMN. B first resides on

COLUMN because all newly created nodes first reside on COLUMN. B

gets put on OLD_COLUMN only in the program text

OLD_COLUMN: = COLUMN

COLUMN:= NIL

After this operation, B no longer resides on COLUMN.

back on COLUMN only by

COLUMN:= OLD_COLUMN

B gets put

This occurs just before the generation of the last node in a

general rewrite production. We may insert the statement

OLD_COLUMN:= NIL

immediately after the assignment to COLUMN because this incarnation

of the local variable OLD COLUMN will no longer be used. Hence,

when B gets put back onto COLUMN, B no longer resides on

OLD_COLUf'lN.

Proof of D:

Let A and B be nodes both of which reside on COLUMN at some time.

Consider the first operation which deletes either A or B from

COLUMN. This operation is one of

2) COLUMN:= NIL or

3) COLUMN:= OLD_COLUMN

If the operation is (2), botn A and B are removed from COLUMN.

Operation (3) also removes both A and B from COLUMN because neither

A nor B resides on OLD_COLUMN by lemma C. Thus, the first

~· 84 ~·

operation which removes one of A and B from COLUMN removes both A

and B.

C~nsider the operation whjch puts one of A or B back onto

COLUMN. This occurs by

COLUMN:= OLD_COLUMN

If both A and B reside on OLD_COLUMN, then both A and B will return

to COLUMN. If it can ever be that exactly one of A or B resides on

OLD_COLUMN, let us consider the first operation which puts exactly

one of A or B on OLD_COLUMN:

OLD_COLUMN:= COLUMN

COLUMN itself must have contained. exactly one of A and B at some

previous time. However, looking at the two assignments-above, we

can see that COLUMN can enter this state only if OLD_COLUMN

contained exactly one of A and B at an earlier time.

Proof of E:

Let N be any node. Because the LEFT field of any node is never

changed once the node is created, N's LEFT is sti 11 ex.actly wha.t it

was when N was created. N's LEFT is therefore the value held by

NEWNODE's parameter LEFT at the time N was created. NEWNODE's

parameter LEFT gets set in one of three ways:

1) LEFT is taken from the LEFT field of an existing node.

2) LEFT:= CbLUMN

COLUMN:= NIL

~· 85 ~

3) LEFT:= COLUMN

COLUMN:= OLD COLUMN

NEWNODE is called immediately after one of these operations and

hence N is created after one of these operations is complete.

Consider (2) and (3) first. In each case, LEFT is indeed set

to a value held by COLUMN. In fact, immediately after lEF'T is

assigned COLUMN, each node on COlU~N ceases to reside on both

COLUMN and OlO_cow~rAi: Let c be a node which is initially on

COLUMN. C's residence on COLUMN implies that C is not on .
OLD_COLUMN by lemma C. Thus in both (2) and (3), COLUMN is set to

a value on which C does not reside.

In the case of (1), the value for LEFT is taken from the LEFT

field of an existing node. Let M be the first node ever created

whose LEFT field is that of N. Since M is the first node created

with the given value for LEFT, M's LEFT had to have been set by (2)

or by (3). Thus, M's, and hence N's LEFT is indeed a value held by

COLUMN at the time immediately before each node on COLUMN ceases to

reside on both COLUMN and OLO_COLUMN.

Proof of F:

Let C be a node on the column referenced by the LEFT field of

another node, N. By lemma E, C ceased to reside on COLUMN and

OLD_COLUMN before N was created. By lemma B, each node on the

column referenced by N's LEFT will never reside on COLUMN now that

N exists.

~· 86 ~

Proof of Lemma 1

By lemma A, we merely need to show that any node accessible from a

given node's LEFT never resides on COLUMN. All nodes accessible

from the given node's LEFT are precisely

1) the nodes residing on the column referenced by the given

node's LEFT and

2) all nodes accessible from the LEFT field of each node on

the column.

Thus. all nodes accessible from the given node's LEFT reside on

columns which are themselves referenced from some nodes' LEFTs.

Hence by lemma F, each node accessible from the given node's LEFT

can never reside on COLUMN.

Proof of Lemma. 2:

Suppose nodes A and B reside on COLUMN at some time and suppose

' that N is a node whose LEFT references a column containing A. We

will show that N's LEFT references a column containing both A and

B.

By lemma E, N's LEFT references a value held by COLUMN at some

time. By lemma F, the column referenced by N's LEFT never changes

once N is created. Thus, N's LEFT is a value which was held by

COLU~N when A resided on COLUMN. If B also resided on COLUMN at

this time, then the column referenced by N's LEFT always contains A

and B.

- 87 -

Since both A and B reside on COLUMN at some time by

hypothesis, lemma D guarantees that both A and B reside on COLUMN

immediately bef orc A ceases to reside on both COLUMN and

OLD_COLUMN; A will never again reside on COLUMN. Lemma E

guarantees that N's LEFT was taken from COLUMN immediately before A

ceased to reside on both COLUMN and OLD_COLUMN. Therefore, COLUMN

contained both A and B when N's LEFT was set to the value in

COLUMN.

Proof of 3:

Consider how. the grammar puts nodes onto COLUMN. Look at a

production's lefthand phrase. Each non-rightmost node is placed on

COLUMN in the context

COLUMN:= NIL

Call NEWNODE

Thus, when a non~rightmost node is placed on COLUMN, no other nodes

reside on COLUMN. liencc COLUMN always contains at most one

non-rightmost node of a LHS.

Similarly, each node generated by the character input routine

is placed on COLUMN in the context

COLUMN:= NIL

Call NEWNODE

Thus, COLUMN can contain at most one of either an input character

or a non-rightmost node in a LHS. The only other nodes on COLUMN

are the rightmost nodes of LHSs.

- 88 -

Because the LEFT field of any node is a value once held by

COLUMN, any accessible column contains at most one node which is

not the rightmost element in a LHS.

Proof of 4:

Suppose there is a node in LHS not in S. Let K be th~ rightmost

node in LHS which is not in s. K is not the rightmost node in LHS

because the rightmost node in LHl is in S by assumption. Let R be

the node in LHS just to the right of K. R is in S. Therefore, R's

LEFT references a column containing both K and a node in S. By

lemma 3, we conclude that the node in S on the column containing K

is the rightmost node in some LHS because K itself is not the

rightmost node in the LHS containing K. Futherrnore, the column

containing K is accessible from N's LEFT because N is the rightmost

node in LHS.

-· 89 -

The time and memory expense for this parser with context free

grammars is a polynomial function of the input string length. We find

this because a context free grammar always gives rise to a special sort

of parsing graph. Any given node's LEFT field is precisely the LEFT

field of a node representing an input character. Therefore, if n

characters have been taken in, any node in the whole p~rsing 1 graph can

have one of at most n possible values in its LEFT field. Furthermore,

because NEWNODE avoids placing duplicate nodes on COLUMN, COLUMN can

contain at most n,.p nodes where p is the number of parts-of-speech

encompassed by the grammar. Knowing that there are at most n values for

LEFT and that the column referenced by a LEFT has at most n,.p nodes, we

can conclude that the parsing graph has at most n2~p nodes. This size

limits the number of phrases which can be matched and hence the number

of times that each of NEWNODE, FIND, and the grammar can be called.

The rest of this section presents a more precise formulation for

the memory and time bounds in context free grammars. Let n be the

number of input characters processed up to now. Let p be the number of

parts-of-speech encompassed by the grammar. Let l be the maximum length

of any production's righthand phrase.

There are at most n values for LEFT. The input routine has created

n values for LEFT by having taken in n characters. The context free

grammar always sets LEFT to the value of the LEFT field in some existing

node because each production has a lefthand phrase of length one.

~· 90 ~·

At any time, COLUMN contains at most n"'p nodes. Consider that

NEWNODE does not place a node on COLUMN if COLUMN already contains an

identical node. NEWNODE considers two nodes identical when both the

LEFT fields match and when the parts-of-speech match. Since there are n

possible values for LEFT and p possible parts-of-speech, there are at

most n•p distinct nodes which can reside on COLUMN at any one time.

~ parts4-sp~~-­
(l.. all\d l3

3 V~s fot- \.EfT

Because the LEFT field for a node references a value once held by

COLUKN, any node's LEFT references a column of length at most n"'p. Thus,

the maximum number of phrases which have length less than or equal to l

and which emanate from a given column is (n"'p)l, Going from right to

left, there are n*p choices at each of l stages.

Consider how much time it takes to build one column. For each

distinct node which NEWNODE places on COLUMN, NEWNODE calls the grammar.

We can conclude that NEWNOOE calls t.hr. grammar at most n"'p times in

forming a single COLUMN. Upon each call, the grammar can match at most

(n•p)l-l phrases which include the nei..· node. Thus, the time spent in a

single call to the grammar e:tcluding the grammar's cal ls to IU'fMJ'flOOE. is

(n*p)L-t. The grammar can call NEWNOOE at most (n*p)l-t times because

each phrase match can generate at most one node.

-· 91 -

Each time the grammar calls NEWNODE, NEWNODE takes at most n•p time

to see if ihe newly proposed node already resides on COLUMN. If NEWNODE

does not consult the grammar, then no futher time is taken by NEWNODE.

If, on the other hand, NEWNODE does consult the grammar, we wi 11 add

zero time because we will count this call to the grammar as one of the

total n*p times that NEWNODE calls the grammar with the current COLUMN.

Therefore, the time taken to form one COLUMN is the product of

1) n•p calls to the grammar

2) (n*p)l-t in each call to the grammar excluding the grammar's

calls to NEWNODE and

3) n*p in each of the grammar's calls to NEWNODE.

This yields (n•p)l+l.

The nodes on COLUMN cease to reside on COLUMN precisely when the

input routine takes in another character. Therefore, the cost of

processing n characters is at most n times the cost· of building one

column. Hence, this parser processes n characters in at most t•nl+2

time where It. does not depend on n.

The number of both parsing graph and derivation nodes built by the

parser is bounded by the amount of time spent in the parser. We can

conclude that the parser creates at most k*nl+Z nodes where l does not

.depend on n. Even though there are at most p*n2 parsing graph nodes,

there are a lot of derivation nodes. Consider that each time NEWNODE is

called, NEWNODE either creates a parsing graph node or creates a

derivation OR-node. Since NEWNODE may be called nl times in forming one

column, NEWNODE may indeed create nl-n derivation OR-nodes.

this section documents a set of programs by whJch a derivation, or

meaning. is evaluated. We will assume that meanings are represented by

programs as suggested in the section about languages. If meanings were

not represented by programs, there would be no need to evaluate a

meaning. The operator EX() is one of the main semantic operators. EX

has already been described in the section about languages; EX is

equivalent to LISP's EVAL function. All the other semantic operators

are for dealing with and optimizing the evaluation of ambiguous

derivations.

Let us see how an ambiguous derivation comes to be.

productions

<A: f(b)>
<B: g(c)>

<A: h(c)>

.. - <B:b>
<C:c>

<C:c>

With the

<A> can be derived from <C> in two ways. The string <C:c> parses as

<C:c>

<B: g(c)>

<A: f(g(c))>

<A: h(c)>

Referring to the parser presented in an earlier section, when the

.grammar proposes the second <A> node, NEWNOOE sees that there already

exists an <A> node having identical span. NEWNODE, therefore, does not

make a new <A> node, rather, NEWNODE modifies the derivation associated

with the existing <A> node so that it now represents both derivations.

Thus, we really get

<C:c>

<B: h(c)>

~· 93 ~

<A : OR (f (h (c)) , g (c)) >

Instead of having two <A> nodes, we have one <A> node which has an

ambiguous derivation. If we add the rule

<D: y(a)> .. - <A:a>

<D> will be derived from <C:c> with the meaning

y(OR(f(h(c)) , g(c)))

Thus, OR-derivation elements may be

derivations.

arbitrarily nested within

An OR-node references a routine called SEMOR. That is, EX applied

to an OR-node simply calls SEMOR exactly as EX would call any other·

program which implements a meaning. SEMOR is a routine not supplied by

the language writer; SEMOR comes with the semantic evaluator because

the parser may generate OR-derivation nodes independent of language.

What does SEMOR do? Because an OR-derivation node may show up as

the meaning associated with any given part-of-speech, SEMOR must be

compatible with all possible meaning conventions. This presents a major

problem. Following are three classes of meaning conventions, each of

which requires a different action to be performed by SEMOR.

... 94 ...

Meantngs of the First Kind

The simplest and most restrictive meaning conventions are those

which agree that a meaning is a computed value rather than a program. A

part-of-speech which adheres to such a meaning convention can never

afford to have an OR-node involved in its meanings. For example, if the

meaning associated with a given part-of-speech is supposed to be an

integer, the appearance of an OR-derivation node in place of a single

integer will undoubtedly result in a faulty meaning when the OR-node is

interpreted as an integer. Because the meaning associated with such a

part-of-speech is not evaluated, SEMOR will never even gain control.

'Thus, no matter how SEMOR is defined, meanings which are not programs

cannot afford OR-nodes. A part-of-speech which has such meaning

conventions must be one which can be derived from any given input string

in at most one way, lest an OR-node show up in its meaning.

Meantngs of the Second Kind

The second kind of meaning conventions are those which agree that a

meaning is a program where the program may produce side e.J.fects or where

the program yields a datastructure which is not capable of representing

ambiguity. Such conventions differ from the previously mentioned

conventions in that a meaning will be evaluated rather than simply

fetched. Thus, the appearance of an OR-node in such a meaning will at

least give control to SEMOR. For example, a meaning which adheres to

such conventions is a meaning whose evaluation generates machine code in
I

some global array. Another example is a meaning whose evaluation yields

an integer. The type integer is not capable of representing an

- 95 -

ambiguous integer, i.e., two integers.

For meanings of the second kind, SEMOR must not evaluate both of

its para~eters. The best SEMOR can do in general is to evaluate exactly

one of its parameters. This makes SEMOR an identity function, and as

such, SEMOR is compatible with all meaning conventions. However, this

particular arrangement for SEMOR introduces arbitrary decisions and

hence should be used only as the last resort in language processing. We

can expect that this will be a legitimate treatment for ambiguity which

is not resolvable by the given language. It may be appropriate for

SEMOR to inform the user of the existence of an ambiguity.

Meaning conventions of the first kind can be mapped into meaning

conventions of the second kind by agreeing that a meaning will be a

program whose evaluation will simply yield a previously computed value.

This reorganization has the advantage that the existence of an ambiguity

will at least be detected.

Keanings of the Third Kind

The third kind of meaning conventions is the most general and

perhaps the most useful. A meaning of the third kind is one whose

evaluation generates a datastructure which itself is capable of

representing ambiguity. Under such conventions, SEMOR should evaluate

each of its parameters and yield the datastructure which represents the

ambiguation of both results. This technique introduces no arbitrary

decisions and properly preserves ambiguity. An example of a m~aning of

this kind is a meaning whose evaluation generates a parsing graph. A

parsing graph is definitely a datastructure capable of representing

ambiguity. In this example, SEMOR should evaluate each of its two

parameters and merge the two resulting parsing graphs. A precise

description for this scheme will follow shortly.

What SEMOR Does

In the implementation, SEMOR's default action supports meanings of

the third kind where the ambinuous datastructure is required to be a

parsing graph. For meanings of the second kind, prior to their

evaluation, some program must modify SEMOR so that it acts as the

identity and as such evaluates only one of its parameters. There is

never any question as to which action SEMOR should be set to perform.

Since any meaning is acquired with relation to a particular

part-of-speech, the conventions for meaning under that part-of-speech

cl~arly imply whether the meaning is of the second or third kind. As

has turned out in practice, there have been very few places where SEMOR

must be redefined. Typically, meanjngs referenced from within a given

meaning are all of the same kind.

For example, in the ICL compiler, most meanings are of the third

kind. ICL is a three pass compiler implemented as described in an

earlier section about multipass language processing. The meanings

associated with the first pass generate phrases in the language of the

second pass and likewise from the second to the third pass. Thus, the

meanings associated with the first and second passes are meanings of the

third kind. An exception is made for the processing of declarations:

Under the syntax part-of-speech for declarations, meanings are of the

second kind; their executions make global modifications to both . the

~· 97 ~

symbol table and the grammar of the second pass. Finally, the meanings

associated with the third pass are meanings of the second kind; their

execution generates machine code in a global array.

The following is a set of conventions by which a meaning can

generate a parsing graph. A meaning will have access to two global

variables named LEFT and COLUMN. These two variables will define the

span of a phrase just as they do in the parser during the generation of

a production's lefthand phrase. A meaning, therefore, will use LEFT and

COLUMN and act exactly like a production's lefthand phrase. For

example, sum in the rule

<FORM: sum(a,b)> <FORM:a> + <TERM:b>

will produce a meaning whose evaluation will generate a polish postfix

phrase if sum is defined as follows:

sum(a:FORM b:TERM) = FORM:

//(a;b;] " LEFT and COLUMN are now input parameters "

let OlO_COWm'i be local

OLD COLUMN:= COLUMN
COLUMN:= NIL

" Save COLUMN "

EX(a) n Let a generate its phras~ "

LEFT:=.COLUMN " Step Right "
COLUMN:= NIL

EX(b) " b generates its phrase "

LEFT:= COLUMN " Step Right "
COLUMN:= OLO_COLUMN " Restore COLUMN "

SEM:= NIL
POS:=· "+"
CALL NEWNOOE

11 Generate + "

\\

- 98 -·

This phrase generation program is very nearly identical to that of a

production's lefthand phrase. The only difference is that EX is used to

generate some of the subphrases. Indeed, the evaluation of the program

yielded by sum will generate a phrase whose leftmost node's LEFT

references the value held by the input variable LEFT and whose rightmost

node is placed on COLUMN. Just like a production's lefthand phrase,

COLUMN will be modified only by ap1>ending more elements onto COLUPIN.

What should SEMOR do under these conventions? SEMOR needs merely

to keep LEFT constant over the evaluation of both parameters, i.e.,

SE MOR(a,b):

Sat1e LEFT

EX(a) ft Let one possibility generate its phrase as

though it were the only possibility "

Restore LEFT ft LEFT may very well have been damaged "

EX(b) ft Let the other possibility gener.ate its

phrase over the same span "

The phrases generated.by a and bare placed on the same column and each

shares the same span. The order in which a and b are evaluated is

irrelevant. For example, if a generates the phrases

LEFT ------ <REAL:a>
\
\ - - - - - -

and if b generates the phrases

<REAL:b> ----- +
I

<REAL: addr(a,b)>

LEFT ------ <POINT:a> ------- MINUS
\ I

\ - - - - <POINT: minusp(a)>

-· 99 -

then SEMOR will leave COLUMN containing

LEFT ------ <REAL:a> <REAL:b> ----- +
\ I

\ - - - - - - <REAL: addr(a,b)>
\ I
\ ------- <POINT:a> -------- MINUS
\ I
\ - - - - - - <POINT: minusp(a)>

Two Sources of Ambiguity

With this scheme, ambiguities, i.e., alternate phrases, are created

by two distinct means. First of all, ambiguities in the first grammar

of a multipass scheme generate derivations containing OR-nodes and the

evaluation of these OR-nodes combine independently generated phrases to

form alternate phrases. Secondly, even in the absence of OR-nodes,

ambiguities in the second grammar will themselves generate alternate

phrases. In the example given above, the first two parsing graphs

consist of alternate phrases generated exclusively by the second

grammar, the grammar with the rules

<REAL> ::= <REAL> <REAL>+

<POINT> ::= <POINT> MINUS

The third parsing graph, the parsing graph generated by SEMOR, contains

alternate phrases brought together by SEMOR and not by the second

grammar.

Both sources of ambiguity manifest themselves in exactly the same

way. Each appends alternate phrases onto COLUMN. Thus, distinctions

between the two sources of ambiguity disappear. This is appropriate

when one considers that each of the alternate phrases offers a valid

- 100 -

interpretation of the evaluated meaning and that the alternate phrases

do not interact with one another.

localttv of Ambiguttu

The existence of OR~nodes represents not only ambiguity, but also

locality of ambiguity. For example, the derivations

sum(OR(a,b) , OR(c,d)) and

OR(sum(a,c) , sum(b,c) , sum(a,d) , sum(b,d))

present the same alternatives but the first derivation represents a

tighter locality.

Given a derivation containing OR-nodes, one can imagine expanding

the derivation by bringing OR-nodes from the inside out. In fact,

OR-nodes can be brought all the way out to the.top level, thus yielding

a set of derivations, each devoid of OR-nodes. This kind of expansion

destroys locality of ambiguity.

The locality of ambiguity represented by OR-nodes is preserved by

the evaluation of a meaning. For example, if a,b,c, and d generate the

parsing graphs a,b,c, and d respectively, the derivation

sum(OR{a,b) , OR(c,d)

generates the parsing graph

a
\ I
\-- b

c ----- +
\ I
\-- d

- 101 -

whereas the less localized derivation

OR(sum(a,c) , sum(a,d) , sum(b,c) , sum(b,d))

generates the less localized parsing graph

--------- a ----- c ----- +
\
\------ b ----- c ----- +
\
\---- a d ----- +
\
\-- b d ----- +

Local ambiguity generated by the first grammar in a multipass

·scheme gives rise to localized OR-nodes. As shown here, the localized

OR-nodes give rise to localized ambiguity in the generated parsing

graphs for the second grammar. Thus, locality of ambiguity is preserved

from one pass to the next.

In fact, during the generation of parsing graphs for the second

grammar, NEWNODE still collapses parsing graph nodes of identical span.

Hence, OR-nodes may come to exist in the derivations under phrases in

the second grammar. For example, if a generates

<INTEGER:x>

<REAL:y>

<POINT:z>

and if b generates

<BOOLEAN:w>

<REAL:v>

then OR(a,b) generates

<INTEGER:x>

<BOOLEAN:u>

<POINT:z>

<REAL: OR(y, v)>

.. 102 ...

The meaning under the <REAL> contains a new OR-node which will manifest

itself during the third pass. In this example, an OR-node in one pass

gives rise to an OR-node in the next pass.

~· 103 ~

I

We have just seen how ambiguous derivations can be tolerated when

it is ~greed that meanings generate parsing graphs. We will now

consider a refinement of these conventions which will permit

considerable computational savings. As mentioned in the section about

the parser. the parser yields a derivation consisting of at most a

number of nodes which is a polynomial function of the length of the

input string. This relatively small number of nodes may none the less

represent an exponential number of distinct derivations. This comes

about because many subderivations are shared.

The EX operator takes no advantage of the fact that many

subderivations may be shared. When a particular subderivation is

referenced from two distinct points of view. EX applied from each point

of view will cause the shared subderivation to generate its phrases

twice. The computation incurred by EX is the same whether or not

subderivations are shared. Thus. even if only a polynomial number of

nodes represent an exponential number of derivations, EX will take an

exponential amount of time.

A way to remedy this situation is to have each derivation node save

its results, i.e., its generated phrases, so that all non-first accesses

can simply fetch the previously computed values and hence avoid their

recomputation. This guarantees that each node performs a computation

only once and hence the time and memory taken to evaluate a derivation

is proportional to the number of nodes making up the derivation. Thus,

even though an exponential number of derivations might be represented,

only polynomial space and time is needed to process all of the

- 104 -

represented derivations.

It is possible to have a derivation node store the result~ of its

evaluation and to allow futher references to simply fetch the previously

computed value onlu tf the results are independent of the particular

reference. That is, two distinct nodes which reference a given

subderivation may set up different top-down contexts which will cause

two evaluations or' the given subderivation to yield different results.

In such cases, the shared subderivation cannot simply yield the result

of the first evaluation as the value for the second evaluation. Thus,

the feasibility of sharing results of evaluations depends on conventions

about top-down context.

It would appear that the variables LEFT and COLUMN are top~down

context for the evaluation of derivations which generate parsing graphs.

One evaluation of a given shared subderivation might occur where LEFT

and COLUMN have one set of values and yet another evaluation of the same
I

subderivation might occur with different values for LEFT and COLUMN. A

way to resolve this dilemma is to imagine a representation for phrases

which has the following two properties:

1) The representation is independent of the top-down context LEFT

and COLUMN and

2) The representation may readily be converted to a value which

incorporates the top-down context LEFT and COLUMN.

With such a representation, we can allow derivation nodes to store this

imagined representation which is independent of top-down context. When

a particular reference fetches this stored representation, it must

convert a copy to incorporate the specific top-down context.

... 105

This technique of factoring out top-down context has worked with

great success in other applications such as display graphics. The

top-down context in display graphics is a transformation matrix. Many

occurences of a given picture which differ only in orientation may be

represented by a single instance of the picture where various references

to the stored picture include individual transformation matrices. When

a particular reference is made to the stored picture, th~ transformation

matrix is applied to the picture in order to properly incorporate the

top-down context.

Tiie Semantic Operator PA-w· - Pruned Atuak.ening

We will now consider a top-down context-free representation for

parsing graphs. We will see both how easy it is to factor out the

effects of the top-down variable COLUMN and yet how herd it is to do so

for the variable LEFT. We will then consider a scheme of less

·generality where it is easy to factor out the effects pf LEFT.· We will

also see how the loss of generality fits nicely with multipass language

processing when one considers the problem of documenting a language.

To obtain a top-down context-free parsing graph from a meaning, the

operator PAW sets both COLUMN and LEFT to NIL for the evaluation of the

meaning. As such, the resulting parsing graph is certainly independent

of the given values in COLUMN and LEFT. PAW then attaches the resulting

parsing graph onto the given meaning. Thus, upon future references to

the given meaning, PAW can simply pick up the previously computed value.

A derivation node which includes the value of a previous evaluation is

said to be awake.

- 106 -

Upon each call, PAW converts the stored top-down context-free

parsing graph into one which incorporates the given values in COLUMN and

LEFT. Since PAW is supposed to appear to act exactly as EX and because

EX applied to a meaning is supposed to append new phrases onto COLUMN,

PAW merely appends the stored parsing graph onto COLUMN. This properly

incorporates the top-down context offered by COLUMN because in

actuality, COLUMN is treated as an append-only variable and hence COLUMN

tn no way affects the generation of a parsing graph.

How might the variable LEFT be incorporated into one of these

top-down context-free parsing graphs. One might suggest that a copy of

the parsing graph be made where all LEFT fields which are found to be

NIL be substituted with the value in the variable LEFT. Unfortunately,

this technique does not yield the same parsing graph as would be yielded

by actually evaluating the meaning with the given value in LEFT. For

example, suppose LEFT references the parsing graph

<FORM:a>

and suppose that evaluating a given meaning would generate the parsing

graph

+ <TERM:b>

If LEFT is left unchanged for the evaluation of the given meaning, i.e.,

LEFT is not set to NIL, the phrase

<FORM:a> + <TERM:b>

will exist as <TERM> is generated and hence the grammar will add a new

<FORM> node:

- 107

<FORM:a> ---- + ---- <TERM:b>
\ I

\ - - - - - - - <FORM: sum(a,b)>

This exactly is what happens if EX is used instead of PAW. On the other

hand, if LEFT is set to NIL for the evaluation of the given meaning, the

evaluation will generate the phrase

+ <TERM :b>

in the absence of the neighboring <FORM:a> node and hence the grammar

will not at this time add a <FORM:sum(a,b)> node. When PAW finally
' I

incorporates the variable LEFT, i.e., by changing the + node's LEFT

field to reference the <FORM:b>, we indeed get the phrase

<FORM:a> + <TERM:b>

but we do not get a <FORM: sum(a, b)> node. The change to + • s LEFT is

made too late; the <TERM> node's consideration by the grammar has

already come and gone. Recall that a grammar is triggered upon the

generation of the rightmost node in a matched phrase.

Thus, the incorporation of the top-down variable LEFT preseqts a

problem. In order to alleviate the problem, we will consider some new

conventions about generating phrases. Following are two observations.

Referring to a previous example, even though sum might generate the

parsing graph

<INTEGER:a>

<REAL: float(a)>

+ <REAL:b>

<REAL: addr (float(a) , b) >

... 108

the only phrase of real interest is the full spanning

<REAL: addr(float(a) • b) >

We are concerned only with the fact that the datum represented by sum is

REAL. The fact that REAL came from this particular parsing graph is

adequately represented in the meaning associated with the REAL. The

second observation is that the non-first grammars in a multipass scheme

can simply be reverse polish grammars. Sum can easily generate

<INTEGER:a> <REAL:b> +

instead of the infix phrase.

The new conventions are as follows:

1) PAW retains only full spanning phrases of length one.

2) The righthand phrase of each production in a non-first grammar

must be either of length one or must have an operator as its

rightmost part-of-speech.

In multipass processing, the first convention states that the relevance

of a meaning is the generation of one part-of-speech and not a string of

parts-of-speech. Looking at ICL's multipass scheme, this states th~t

under a syntax part-of-speech, there must appear a well defined datatype

· and not a string of data types.

With this first convention, a language implemented by a multipass

scheme can be simply documented by documenting each s~ntax production
I

independently. Along with each syntax production, one can completely

specify the relevant requirements imposed by the type-grammar solely in

terms of a datatype relation which constrains the datatypes which may

appear under each part-of-speech in the syntax production. This is

- 109 -

possible because only a well defined datatype, and not an abstract

datatype phrase, will be associated with each syntax part-of-speech.

The documentation need not mention the type-grammar nor the individual

phrases generated by the meaning associated with each syntax production.

Refer to the ICL Reference Manual for an abundance of this sort of

documentation.

The second convention is necessary so that PAW can effectively

generate phrases in isolation. Consider what would happen if sum were

to use PAW in generating an infix phrase. Sum would first call on its

left parameter to produce

<INTEGER:a>

<REAL: float(a)>

Sum would then generate a 11 +" to the right. Finally, sum's righthand

parameter would generate, in isolation, the phrase

<REAL :b>

When these phrases are put together, yielding

<INTEGER:a>

<REAL: float(a)>

+ <REAL:b>

the full spanning <REAL:addr(float(a),b)> will be missing. As in the

previous example, the fact that <REAL:b> was generated in isolation

means that the grammar never sees the phrase

<REAL:floatia)> + <REAL:b>

However, if sum generates a polish postfix phrase, sum's t"4·o parameters

may be evaluated in isolation and finally put together to yield

<INTEGER:a>

<REAL: float(a)>

- 110 ~·

<REAL:b>

At this point, we suffer no loss in the fact that the grammar does not

see this particular parsing graph as a whole. By convention (2), the

grammar contains no productions which can match a phrase in this parsing

graph except for productions whose righthand phrases have length one.

However, these excepted productions have already applied during the

individual generations of sum's two parameters, e.g., the float rule has

already generated the <REAL:float(a)>. When sum finally generates the +

to the right, i.e., yielding

<INTEGER:a>

<REAL :float(a)>

<REAL:b> +

the grammar's + production will fire, having access to the necessary

phrases, and thus the grammar wi 11 indeed generate the desired

<REAL:addr(float(a),b)> spanning the whole parsing graph.

It might appear that the conventions stated ahove remove so much

generality from a non-first

replaced by a set of functions.

grammar that the grammar itself could be

Since most productions will include a

specific, well defined operator, it appears that each production could

be replaced by a function whose name is the operator itself, e.g., the +

production could be replaced by a + function which computes the possible

resulting datatypes. However, the functions would have to take in not

single datatypes, but lists of alternative datatypes. In addition, some

functions might have to act as several productions, e.g., there are two

+ productions, one for integer and one for real arithmetic. In general,

the functions would have to contain CASE and looping statements. It is

~· 111 ...

noteworthy that with the grammar implementation. the CASE and looping

constructs are efficiently and generally handled by the parser's

matching routine FIND, and in addition. the parser naturally yields

lists of alternate parts-of-speech. Finally, a grammar implementation

greatly surpasses a function implementation for two reasons: Some

productions include no operators what~oever, e.g .• the float rule; they

operate implicitly everYlt.·here. Secondly, the grammar implementation

facilitates a very modular definition, e.g .• the two+ productions may

be expressed independently. This modular feature is extremely valuable

in a compiler where the processing of declarations may spuriously add

productions at different times.

Top-Down Conte:tt Besides LEFT and COLUMN - The Operator RESET

In addition to the variables LEFT and COLUMN. top-down context may
•

be specified thru other variables. For example~ a production which

incorporates declarations for a local program block will modify the

symbol table prior to the evaluation of the program block. In this

example. the symbol table appears as top-down context for the evaluation

of the program block. The operator RESET is provided for dealing with

top-down context excluding LEFT and COLUMN.

RESET applied to a meaning removes all the stored results from

previous evaluations. In this way, any record of previous top-down

context is removed. This means. of course. that when PAW is applied to

the reset meaning, all phrases will have to be regenerated. However,

the recomputation will again be proportional to the number of nodes in

the meaning because within the reset meaning. shared subderivations will

recompute only once.

Reluctant Derivations and Cycles - The Operator GOOO!liS

The reluctance associated with a production is stored in the

derivation nodes produced by the production. For example, the phrase

<INTEGER:a> + <INTEGER:b>

may yield the ambiguous derivation

OR(float(addi(a,b)) , addr(float(a),float(b))

when viewed as a REAL. This derivation can be drawn as

where the resistor symbol represents the application of a reluctant

production, e.g., the float production. from the point of view of the

OR-node on the top, the lefthand alternative contains one resistor

whereas the righthand alternative contains two resistors.

The operator GOODNS (short for goodness) climbs thru a derivation

and removes subderivations of higher resistance. More specifically,

GOODNS associates a number with each node in a derivation to record the

number of resistors contained in the total subderivation whose top is

the given node. GOODNS associates with an OR-node the minimum

resistance of its two alternative subderivations. In the example given

- 113 -

above, the resistance numbers are

As GOODNS associates a number with an OR-node, if the numbers associated

with the two alternative subderivations differ, GOODNS replaces the

OR-node with a NO-OP node which references only the minimal

subderivation. In this way, reluctance is manifested in a given

derivation. The only OR-nodes which survive are those which reference

subderivations of equal resistance.

It is intended that GOODNS will be applied to a derivation before

any other semantic operator is applied.

There is another situation which GOODNS must handle. Derivations

yielded by the parser may be cyclic; the parser does make destructive

modifications when installing an OR-node. For example, consider the

rules

<REAL: float(a)>

<INTEGER: fix(a)>

<INTEGER: a>

<REAL:a>

One can imagine that <INTEGER:a> will parse as

- 114 ..

<INTEGER: a>

<REAL: float(a)>

<INTEGER: fix(float(a))>

<REAL: float(fix(float(a)))>

However, when the parser proposes the second <INTEGER> node, NEWNODE

sees that there already exists an <INlEGER> node having the same span,
' I

and therefore NEWNODE does not generate a second <INTEGER> node, rather,

NEWNODE modifies the derivation associated with the first <INTEGER>

node. NEWNODE modifies the derivation node a, in place, so that in

fact, the node at a is now the OR-node and one of the nodes referenced

from the OR-node is a copy of a. From the points of view of the

<INTEGER> and <REAL> nodes, what used to be

<. ItJTfGER> ------ - ----

.floo.:t

l
-, (A..

bec.omes
< RE~L> >

after NEWNODE incorporates the proposal of the second <INTEGER> node.

This cyclic derivation does indeed capture the infinite number of

derivations implied by the two given productions. For example, from the

point of view of the <INTEGER> node, the viewer has a choice of taking

simply a. or, taking one ride around the cycle, Ji~(float(a)), or taking

two rides around the cycle, fh(float(Ji~(float(a)-))), etc. From the

point of view of the <REAL> node, the same choices are available where

each choice is embedded within one float.

- 115 -

The following arbitrary decision concerning cycles is implemented

in GOODNS: At a given OR-nodn, GOODNS removes an alternative

subderivation if that subderivation has no choice but to refer back to

the given OR-node. In essence, GOODNS climbs down a derivation and upon

encountering a previously encounted node which has been entered but not

yet left, GOODNS associates infinity as the resistance number. Thus, at

the closest OR-nodes which access this previously encountered node,

·GOOONS will naturally remove the cyclic alternative. Here is a

rationale: Assuming that at least one of the productions involved in

the cycle is reluctant, it would appear that travelling around the cycle

even once will collect more resistance than avoiding the cycle

altogether.

This algorithm is indeed arbitrary because it may depend on the

order in which GOOONS climbs down thru a given derivation. However, the

algorithm does remove all cycles and docs so by removing only OR-nodes.

ln addition, the clipping occurs in some sense as close as possible to

the re-encountered node.

... 116 ...

ICL is a general programming language implemented on the language

processor presented in this thesis. Refer to the large appendix The ICl

Reference Nanual for a formal and complete definition of ICL. Refer to

the appendix about the KACR0-10 implementation for a description of the

files which make up ICL.

ICL is implemented in a multipass scheme as described in the

section about languages. ICL consists of three passes. The first pass

constrains syntax, the second pass constrains datatypes, and the third

pass constrains the use of data sources and data sinks. The third pass

ensures that only data sinks may appear on the lcfthand sides of

assignment statements. Furthermore, the third pass deals with a special

kind of sink, a looping-target, which facilitates a uniform treatment

for ICL's main loop-generator, the selection FOR-quantifier.

ICL was created with several goals in mind. The first goal was to

show that the general lartguage processor is indeed a very practical tool

for implementing languages. The second goal was to provide a convenient

language to aid in the design of integrated circuits. A third goal was

to produce a language which includes constructs absent from other

programming languages which have none the less proven indispensable in

the field of language processing. A fourth goal was to incorporate into

a conventional programming language as much of the extensive flexibility

and generality offered by the rewrite parser as possible. Another goal

was to remove the consideration of pointers from the user's domain; too

much confusion arises from ad hoc use of pointers. Finally, ICL was to

be very modular in both implementation and documentation, and as such,

ICL should be readily extensible.

Following are the results of each goal. This section concludes

with ICL's compile time error reporting mechanisms.

ttrodu la rtt11

As the reader may note, the ICL reference mnnual documents ICL in

terms of small groups of productions. Each group is independent of all

the others. The ICL reference manual, like the PDP-10's reference

manual, is both complete and hard to learn from. The ItL manual is a

very straightforward translation from the implementation into English

with additional comments concerning the relevance of each construct.

Because ICL is implemented on top of the language processor, one

can easily extend ICL by adding more productions to any of the three

grammars, or passes. One need not 1'•orry about interactions among

productions as long as one follows the conventions for meanings under

the various parts-of-speech.

The Use of the Language Processor

As just mentioned, one of the profits gained by using the language

processor is modularity and extensibility. The majority of routines

which make up the ICL compiler are each less than a half a page of

nearly double spaced MACR0-10 source. The vast majority of routines

correspond one-to-one with the productions in ICL's three grammars. The

notable exceptions are the routine which processes declarations and the

~· 118 ~·

routine which coordinates the three passes.

The use of the language processor f aci Ii tatcd easy modification

during the creation of ICL. I didn't need to worry about syntax or

datatype processing: merely dealt with individual productions,

adding, removing, and modifying each one on an independent basis.

I did go to some trouble to optimize the syntax grammar for speed.

Some simple productions are broken into several smaller productions to

facilitate a linear rather than quadratic parsing time.

strings (arrays) in ICL are created with the notation

{ element : element ; element ; ... ; element }

A simple and straightforward syntax description is

<STRING_EXPR>

<STRING_EXPR>

<EXPR>

. ·­.. -
<EXPR>

<EXPR> ; ~STRING_EXPR>

<SlRING_EXPR>

For example,

With the parser pres·ented in this thesis, this grammar will take

quadratic time as a function of the length of a string expression; a

<STRING_EXPR> will be found to span every substring, e.g.,

{ element element ; element ; clement }

(--STRU"G_.EXPR----)

On the other hand, I could take advantage of the fact that a

<STRING_.EXPR> is useful only between the brackets { and } . I constrained

the creation of <STRING_.EXPR>s to occure only in the context of a } with

the gra.•ar

-· 119 -

<STRING_EXPR> ::= <EXPR>

<STRING_EXPR>

<EXPR>

<EXPR> <STRING_EXPR>

.. - { <STRING EXPR>

This grammar takes only linear time to parse a string, e.g.,

{ element ; element ; element element

(-ST RI AiG __ EXfR-)

(------ STRU.iG __ E'XfR ----)

(------------ STRHIG_tXPR --------)

(--------------- - srn I ~·a _EX PR -- ----- ----- - -)

<------------------ exrn --------------------->
With this grammar, a <STRING_EXPR> is created only in the context of a }

and hence substrings not including the last element will not parse as

<STRING_EXPR>.

Because the language processor preserves locality· of ambiguity, I

was able to maintain a modularity in the syntax grammar, even at the

expense of making the syntax grammar ambiguous. For example, there are

two distinct applications of ICL's CASE statement; one is for SCALAR

datatypes and the other is for VARIANT datatypes. The syntax production

for the SCALAR-CASE is

<EXPR> .. - CASE <EXPR> OF

and the syntax for the VARIANT-CJ\SE is

<EXPR> .. - CASE <ID> OF

The CASE value in the VARIANT fOi"ID is constrained to be a single

variable (<ID>) for semantic reasons. Rather than including only the

former production and implementing the latter with a semantic

~· 120 ~·

restriction, I simply included both productions. The meaning

transformations under each production are independent and each considers

only one of the VARIANT and SCALAR meanings.

Because ICL also includes the production

<EXPR> .. - <ID>

the form

CASE <ID> OF

will parse two ways, one for the SCALAR interpretation and one for the

VARIANT interpretation. However, thru all three passes, this ambiguity

is manifested only in the locality of the CASE construct. In fact, in

the datatype pass when the <ID>'s datatype is known, the ambiguity will

cease to exist.

ICL was started in June 1976, in both conception, design, and

implementation. These three efforts occured in parallel with little

trouble. Within one year, by June 1977, ICL was working, nearly free of

bugs. Until now, April 1978, fewer than ten bugs have been found (and

fixed), the last being resolved over three months ago. Since June 1977,

ICL has been under ex.tensive use by myself, and more recently, there

have been several other users designing ICs.

ICL atmed at IC Masks

ICL includes three main features important for dealing with IC

masks. First, the notation for creating two dimensional points is

brief: there is a one character overhead. Operators like + and are

defined for points as well as for integers and reals. Secondly, the

~· 121 ~·

selection-FOR quantifier provides for convenient access to polygons

represented as strings of points. Several vertices may be taken at a

time with the option for wrapping around back to the beginning of the

string. Finally, automatic data sharing facilitates both safe and

efficient representations for IC-masks, objects of a highly repetetive

nature. Refer to a following section about pointers for more about data

sharing.

Carruouers from language Processing

ICL provides for the creation and invocation of processes as

previously described in the section Meaning as Programs within the

section about languages. Indeed, the // ... \\construct exists in ICL.

This construct allows for programs along with specific context to be

passed off as data and hence to be stored in datastructures as readily

as any other kind of data. In fact, the // ... \\construct goes beyond

that which has yet been described. In ICL, parameters may be passed to

a process invocation just as they are passed to a function call. In

addition, the user may specify that a process be allowed. to change the

values of its context variables so that later invocations can have a

private memory of previous invocations. For numerous examples, please

refer to the section on processes near the very end of the ICL Reference

Manual.

... 122 ..

Ambiouttv - A Kantfestation of the Parser

The existence of the parser with its tolerance of ambiguities has

made simple the implementation of both coercions and polymorphic

function names. In addition, the parser offers a totally general and

restriction-free implementation for datatypes. In essence, if the user

can imagine a way by.which his program will make sense in the space of

datatypes, the parser will find it and implement it.

In fact, with the parser's upper bound for expense,. it is

guaranteed that any set of coercions and functions will be accepted and

processed in finite time. Coercions may be defined between datatype

without concern fo.r cycles, e.g., the INTEGER-to-REAL and a
' I

REAL-to-INTEGER coercion may both exist. simultaneously.

At early stages in ICL's developcment, I considered making ICL's

syntax dynamically extensible. Such a feature is nearly trivial to

implement. However, syntactic extensibility has the disadvantage that

programs written by different people might not be easily readable by

others in the user's group. Besides, a reliance on syntax extension can

easily divert people's attention from the more relevant, semantic issues

involved in a given programming task.

ICL's extensibility is more of a semantic sort. The second

grammar, the datatype grammar, is completely ex.tensible via the use of

type, coercion, and function declarations. Extensibility limited to the

datatype grammar conforms to the kind of extensibility offered by a

conventional programming language like PASCAL.

~· 123 ...

Following are examples of the various ways in which ambiguity crops

up in datatypes.

Two representations for geometric lines are defined in ICL by

TYPE SEGMENT = [FROM:POINT TO:POINT] ;

EQUATION= [A:REAL B:REAL C:REAL]

A SEGMENT consists of two points labled FROM and TO. An EQUATION

consists of three numbers labled A, B, and C which define the line

equation

Ax + By + C = 0

Suppose we provide coercions between the two representations, i.e., we

declare

LET SEGMENT BECOME EQUATION BY some program

LET EQUATION BECOME SEGMENT BY some program

These two coercions make the types SEGMENT and EQUATION interchangeable,

i.e., any SEGMENT may be viewed as an EQUATION and visa versa. Finally,

suppose we define a routine for intersection:

DEFINE INTERSECT(A:EQUATION B:EQUATION = POINT:

INTERSECT takes in two EQUATIONs and yields a POINT. The two coercions

·and one function declarations affect the type-grammar by adding the

rules

<EQUATION>

<SEGMENT>

<POINT>

. ·­.. -
: :=

.. -

<SEGMENT>

<EQUATION>

INTERSECT (<EQUATION> , <EQUATION>)

~· 124 ~

The third rule is really entered in a reverse polish form, but we will

ignore that fact for clarity. Now, if the user writes

P := INTERSECT(A,B);

where P is a POINT and where A and B are EQUATIONs, the type-pass will

generate the parsing graph (again ignoring polish conventions)

l'OU"T INTERSECT (F.QUATTON E'QUAT10fl) ;

(--------------- POINT ----------------)

This assignment statement is legal because both sides of the assignment

can be viewed as the same type of object, namely POUT. If A were a

SEGMENT instead of an EQUATION, this assignment would parse as

POINT INTERSECT SE.mt ENT

(-UIUATimi-)

EQUATlml) ;

(----------------- POINT -~---------~--)

The SEGMENT-to-EQUATION coercion is employed to maintain datatype

consistency. In fact, each parameter in INTERSECT may independently be

either of type SEGMENT or of type EQUATION. Each parameter which is not

of type EQUATION will invoke one coercion.

An optimization is obtained by defining another

especially for SEGMENTs, e.g.,

INTERSECT

DEFINE INTERSECT(A:SEGMENT B:SEGMENT) =POINT: ..•

Consider that if the parameters to IN1ERSECT are each of type SEGMENT,

the given assignment statement will parse either as

POU"T := INlERSECT (SF:GMll/H SEG~Uff) ;

(--------------- POINT --------~------)

' 125 '

or as

POUT .- INTERSECT ()

(-EQUATlON-) (-EQUATION-)

(---------------- fOINT -----------------)

This ambiguity reflects the fact that ei thcr INTERSECT routine can be

employed. However, because productions entered by coercion declarations

are entered as reluctant productions, the first parsing graph will

dominate. Hence, no coercions wiJl apply and the INTERSECT routine

which directly deals with SEGMENTs wi 11 be chosen.

If the user defines all four INTERSECT routines, one for each

possible type combination, .no coercions need ever apply and hence the

user has achieved an optimization. Note the flexibility. offered here:
I

The user is allowed to define anYl'f·hcre from one to four different

INTERSECT routines and in any case, the user's program wi 11 work.

Without changing any program text, e.g., programs refering to INTERSECT,

definitions for INTERSECT may be added or removed with the effect of

varying only optimization and not correctness.

Another example of ambiguity arises in the following program.

Suppose the user declares

TYPE GQS = E ITllER

JUST_ONE = QS

MANY = { GQS }

~NOOR ;

~· 126 ~·

where QS denotes the type for quoted text strings.

states that a GQS may be formed in one of two ways:

1) Any QS is a GQS and

2) Any string of GQSs is itself a GQS.

This declaration

The notation { GQS } denotes a datatype which represents a string

(array) of GQSs. This declaration essentially generates .the rules

<GQS>

<GQS>

.. -

.. -
<QS>

{ <GQS>

Thus, for example, the QS

'Hi'

is a GQS. The string of GQSs

<GQS>

{ 'Hi' ; 'There• ; 'You'

. . . }

is a GQS. In fact., the nested expression

{ 'Hi' ; 'There' } { 'You' }

is a GQS. Now, suppose the user defines the type MESSAGES as follows:

TYPE MESSAGES = { GQS } ;

The expression

{ { 'Hi' ; 'There' } 'You'

may be viewed either as a single GOS or as a MESSAGES. If viewed as a

MESSAGES, this expression represents n string of length two whose

elements are the GQSs

{ 'Hi' ; 'There' } and 'You'

- 127 ~·

Thus, if the user declares the function

DEFINE PROCESS(M:MESSAGES):

and if the user subsequently specifies

PROCESS({ 'Hi' ; 'There' 'You' }) ;

the { { 'Hi' 'There' 'You' } will be viewed as a MESSAGES and

not a GQS so to be compatible with PROCESS.

Another example involves a datatype called RG which is meant to

represent pictures.

following

We wish that an RG be formed by any of the

1) Any POLYGON is an RG

2) Any unton of RGs ts an RG, and

3) Any displacement upon an RG is an RG.

We can declare RG with

TYPE RG = EITHER

SIMPLE = POLYGON

UNION = { RG }

DISP = [DISPLACE:RG BY:POINT]

ENDOR ;

This declaration for RG essentially adds the rules

<RG> .. - <POLYGON>

<RG> .. - { <RG> ; <RG> ; ... }

<RG> .. - [DISPLACE: <RG> BY: <POINT>]

Thus, if CURLY is an instance of type POLYGON, then

' 128 '

{ CURLY [DISPLACE: CURLY BY: point]

represents two CURLYs, one of which is displaced by point. This

particular expression is an RG via the parsing

{ CURLY

(-POLYGON-)

(---RG----)

[DISPLACE: CURLY BY: point] }

(-POLYGON-)

(---RG----)

(---------------- RG -------------)

(---------------------- RG ------------------;------)

Now, suppose the user wishes to associate a minimum bounding box

(mbb) with each subpicture. For sure, he doesn't want to specify the

mbb each time he specifies a subpicturc; the user likes the current

notation for specifying RGs. We can get mbbs installed automatically

and implicitly by making the following declarations. First of al~, we

make up a new datatype called MRG which will represent an RG along with

1 ts mbb1

TYPE MRG = [BODY:RG MBB:BOX]

Even though we wish to specify pictures as RG 's, we would like to access

an RG as though 1 t were an MRG. The coercion

LET RG BECOME MRG BY [BOOV:RG MBB: /(RG)] ;

specifies that any RG may be viewed as an MRG. We assume, of course,

that J maps an RG to its mbb. This coercion adds the rule

<MRG> .. - <RG>

Let us redeclare the type RG so that each reference to an RG is replaced

by a reference to an MRG:

- 129 -·

TYPE RG = EITHER

SIMPLE =

UNION =

POLYGON

{ MRG }

DISP = [DISPLACE:MRG BV:POINT]

ENDOR ;

'This new definition for RG guarantees that each subpicture will include

its mbb, i.e., ea.ch subpicture in a union will include its mbb and each

subpicture involved in a displacement will include its mbb. Note that

any given expression which could be viewed as an RG under the old

definition will still be viewable as an RG under the new definition

because any subpicture. an RG, wi 11 automatically coerce to an MRG. For

example, we will get the parsing

(CURLY [DISPLACE: CURLY BY: point] }

(-POLYGON-) (-POLYGON-),

(---RG----) (---RG----)

(---MRG---) (---MRG---)

(------------------ RG ----------)

(----------------- MRG ----------)

(------------------- RG --------------------------)

(------------------ MRG --------------------------)

Each place where an RG is rewritten to an MRG, code will be generated

which will calculate the mbb and thus create a valid MRG.

ICL's tolerance of ambiguity in datatypes very often makes it

possible to modify declarations without having to modify the executable

part of a program. Modifications to declarations can be made for

optimi2ation as well as for changes in concept. Coercions generally

- 130 -

come in handy to cover up a splitting of what used to be one datatype,

e.g., RG, into several types, e.g., RG and MRG. More examples are

contained in the !CL Reference Manual.

l'otnters

In order to provide a safe nnd flexible system for serious use,

pointers had to be used in the implementation but also had to be

invisible for the majority of programs. For example, the languages

PASCAL and SIMULA require an obsessive and inconvenient awareness of

pointers. In these languages, the user must explicitly .distinguish

between a pointer to an object nnd the referenced object itself in both

declarations and operations. The explicit use of pointers is required

even for the very common purpose of defining recursive datastructures.

Even worse, many subtle bugs arise with pointers from an inadvertent

sharing of dat~, e.g., a modification to a datastructure may become

apparent from .unwanted points of view. lhe programmer is forced to do

his own bookkeeping with respect to specifying copy operations in order

to avoid unwanted data sharing. Pointers, like GOTOs, will often

obscure simple constructs, and even worse than GOTOs, pointers may be

abundantly created by.the execution of programs.

In principle, the need to be aware of pointers is a rarity.

Pointers are necessary in concept only when one wishes to share data for

the single purpose of allowing modifications to the data to be

simultaneously apparent from several points of view. Except for this

purpose, it is conceptually easiest to jmagine that no datum is shared

and that pointers do not exist. For example, the data structure

~ 131 '

may be thought of as being equivalent to

{ Un-:>h(\red
cop~)

D~.:rp...,

unless we wish a modification to the shared <lat.a made from the

points-of-view of either A or B be apparent from both A and B. In

practice, however, a programmer will often share data for efficiency

even though he does not wish that modifications be apparent from all

references to the shared data.

lCL does not require the programmer to be aware of pointers except

in programming tasks where it is in principle necessary to be aware of

pointers. That is, the ICL programmer may define and use recursive

datastructures or do anything he wishes without having to know about

pointers and data sharing. However, if the user wishes to implement

shared data for the purpose of having modifications be apparent from

several points of view, the user must obviously think in terms of

pointers; hence ICL has provided a single operator, the @ operator,

which allows the user to make modifications which will expose pointer

structure. The @ operator corresponds to a combination of LISP's RPLACA

and RPLACD operators.

~ 132 ~

Backstage, ICL does indeed make extensive use of pointers whether

or not the user wishes to be aware of it. ICL automatically shares data

as much as is possible without any overhead. Data transfers, e.g.,

assignment statements and parameter passage, are each implemented by

transferring a one word entity which is often a pointer. Datastructures

whose creations are specified with multiple references to a particular

variable automatically wind up sharing the structure referenced by the

variable.

However, ICL will never destructively modify an existing structure

except via the @ operator. Excluding the @ operator, when the user

specifies a modification, the modification will he carried out in such a
I

way that the modification will become apparent only to the variable with

which the user specifies the subject structure. ICL copies a minimal

amount of the subject structure, just enough to implement the

modification, and finally assigns this augmented structure to the

variable. It will appear as though the variable has always referenced a

private copy of the datastructure. If no variable or structure

references the original structure, those pnrts from which copies were

made will automatically be returned to free stora~c during the next

garbage collection. .If in fact some variable or structure docs

reference the original structure, both the modified and the original

structure will exist sharing all that suhstructure which was not

involved in the minimal copy. This "copy on write"_ technique allows

data to be shared invisibly. Digital Equipment Corporation uses the

same technique on the coarser scale of memory pages.

.. 133 ...

Refer to the section !Cl's Policy About Assignments, Copying, and

Pointers in the !Cl Reference Manual. That section contains both

examples and implementation details.

Error Reporting In ICl

The reader may refer to the !Cl Reference Manual to see how compile

time user errors are reported. Basically, each pass has its own ways of

reporting errors. What follows are the techniques used in generating

the error messages. The mechanism by which errors are reported is in

fact supplied with the language processor and not with ICL.

Syntax Errors

Some of the productions which make up ICL's syntax are

deterministic. A deterministic production is one which destroys

alternate phrases during the generation of its lefthand phrase. A

deterministic production removes any phrase whose span intersects the

span of the generated le'rthand phrase. For example, the deterministic

production

<A> ... - <C> <D> <E>

will apply in the parsing graph

<Q> <C> <O> ---- <E>
\ \ I I
\ \- <Z> I
\ I I
\-------- <W> I
\ I
\--------------- (ID

- 134 ..

leaving the following parsing graph

---- <Q> ---- <A> ----

Any phrase which (partially) spanned the <C>-<D>-<E> phrase has been

removed.

Any production can be made deterministic by modifying the

generation of its lefthand phrase. As the reader may recall, when a

lefthand phrase is about to be generated, the global variable COLUMN

contains all alternate phrases which share the same righthand edge.

Basically, a deterministic production sets COLUMN to NIL before it

generates its lefthand phrase. In the example given above,· the

deterministic production is entered when COLUMN references the <E> node.

The deterministic production removes the <E> node from COLUMN and hence

kills any reference to the parsing graph accessible from <E>. However,

when the deterministic production places the phrase <A> onto COLUMN,

only the <Q> node from the original parsing graph remains accessible.

To support the application of several deterministic productions

over a given span, a deterministic production actually sets COLUMN not

to NIL, but to the contents of another variable which is initialized to

NIL. After the production's Jcfthand phrase is generated, the

production stores COLUMN back into this other variable. Thus, if

another determini~tic production applies, the phrases generated by the

earlier applications of deterministic productions will not be lost;

COLUMN will be set not to NIL, but to the previously generated phrases.

In some sense, the lefthand phrases of deterministic productions form an

elite set.

A determini.stic

application of the

righthand phrase of

abundance of unique

~· 135 ~·

production represents a certainty that

production is unconditionally appropriate.

the

The

a .deterministic production should contain an

keywords so that only the ex.istence of such a

keyword in a user's text can trigger the deterministic production.

Syntax errors are reported by presenting the user with a linearized

version of the parsing graph. This linearized parsing graph is obtained

by scanning the parsing graph from right to left, arbitrarily choosing

the first node in each encountered column. This indeed presents a

linearized parsing graph devoid of alternate parses. It so happens that

the first node in most columns is an input character. This is so

because columns are ordered by part-of-speech and input characters have

the lowest parts-of-speech. (Refer to the appendix on MACR0-10

Implementation). Thus, except where deterministic productions have

applied, the user will be presented with his original input text. Where

deterministic productions have applied, the original input text will be

replaced by a syntax part-of-speech. lhus, the linearized parsing graph

indicates where certain productions have applied.

The usefulness of this sort of error message increases with the

number of deterministic productions. However, with a greater number of

deterministic productions, a modification to ICL's syntax requires a

greater amount of care. If a modification isn't made carefully, the

application of a deterministic production might wind up removing phrases

which are necessary for a successful parsing.

- 136 -

At the present time, ICL includes few deterministic productions.

The l~st index in the ICl Reference Manual lists ICL's deterministic

productions.

This scheme is not well understood and hence it should either be

replaced or better understood. A better scheme might have deterministic

productions simply remove one element from COLUMN, namely a terminal

part-of-speech, without destroying the other alternate phrases. Ye\

another method might have deterministic productions remove no phrases

whatsoever and simply mark the generated lefthand phrase so that the

error reporter can still see the "deterministic" application.

Oatatype and PASS8 Errors

Each non-first pass, or process step, is precisely the evaluati9n

of the derivation yielded by the previous pass. The evaluation of the

derivation yielded by the previous pass generates phrases in the

language of the current pass. The result of the current pass is the

parsing graph, i.e., phrases, generated by the top node in the

derivation.

Let us assume that the operator PAW is used to evaluate a

derivation. PAW stores with each node in the derivation the parsing

graph generated by that particular node. If a particular node generates

the empty parsing graph, we will say that the node has no parsing graph.

An error in a non-first pass is detected by noticing the lack of a

parsing graph associated with the top node in the derivation.

' 137 ,.

For example, consider the derivation node created by the syntax

production for "+":

<EXPR: //[a;b;] J(a,b)\\ > .. - <EXPR:a> + <EXPR:b>

The resulting derivation node references f along with the parameters a

and b. Suppose that f generates a parsing graph which depends on the

parsing graphs generated by a and b, e.g.,

EX(a) "+" EX(b)

If EX(a) generates <INTEGER> and if EX(b) generates <BOOLEAN>, then f

generates

<INTEGER> + <BOOLEAN>

This phrase matches no production of the second grammar, i.e., INTEGERS

and BOOLEANS cannot be combined with "+". Thus, the grammar will

generate no full spanning phrase of length one over the given phrase.

The parsing graph which PAW stores with the derivation node representing

f is a pruned parsing graph; only full spanning phrases of length one

are kept. Thus, PAW will store no parsing graph with the derivation

node representing f.

An erroneous derivation node is any derivation node with the

following properties:

1) It has no parsing graph and

2) Each of its sons, e.g., a and bin the example given above, does

have a parsing graph.

The first property indicates that the derivation has no interpretation

in the current pass. The second property indicates that the lack of

interpretation is not the fault of a subderivation.

- 138 -

Each node in a derivation can be identified with the production

which generated the node. In ICL, a production is identified by the

name of the function which implements its meaning. For example, the "+"

production given above is identified by the name f. In the !Cl Reference

nanual, the documentation for each syntax production includes the name

of the routine which implements the production's meaning. This name is

presented as the name of the production.

An error in a non-first pass is reported by

FOR each erroneous node in the derivation,

1) Identify that node for the user and

2) Provide a backtrace so that the user

can see where in his program the error occurs.

A backtrace consists of the sequence of derivation nodes lying between

the erroneous node and the top derivation node. Refer to the section

Oatatupe Errors in the ICl Reference Nanual for a convenient way to

interpret a backtrace.

This error reporting scheme will identify an error in the second

pass by identifying particular syntax productions. Because each syntax

production is documented in the ICl Reference Nanual, a user can

successfully interpret the error message generated from a datatype

error. However, an error in the third pass is reported by identifying

productions belonging to the second pass. Because the productions

belonging to the second pass are not documented, the user can make

little sense of a third pass error message. As mentioned in the !Cl

Reference nanual, errors from the third pass rarely occur, and for the

most part, they are the result of very obvious user errors.

- 139 -

None the less, it would be nice to report errors from the third

pass in terms of syntax productions rather than in terms of datatype

productions. The following scheme might achieve this: Associate with

each third-pass derivation node a pointer to the second-pass derivation

node which generated those phrases responsible for the creation of this

third-pass derivation node. Given such a pointer, an erroneous

third-pass derivation node can be reported in terms of a second-pass

derivation node.

The creation of such pointers can be implemented by setting a

global variable which references a given second-pass derivation node

during the evaluation of the given second-pass derivation node. As the

second-pass derivation node generates phrases for the third pass, each

derivation node created by a third-pass production can be augmented to

include the value currently in the global variable. Thus, each

third-pass derivation node which is created by the evaluation of a given

second-pass derivation node will reference the given second-pass

derivation node. This is currently not done in ICL.

... 140 ...

This thesis has presented a language processor and a sample

language implemented with this language processor. The language

processor supports a.mbiguity so that the specification for a language

can be extremely modular. The language processor practically supports

ambiguity by representing and processing only essential differences

among multiple interpretations.

The sample language, ICL, is a rich, general-purpose programming

language which takes special advantage of the language processor in

support of user-defined datatype coercions and polymorphic . operators.

Both the language processor and ICL work reliably.

Several systems have already been implemented in ICL including an

IC-mask processor, a graphics system which includes arbitrary,

non-linear transformations, a text preprocessor for the program RUNOFF,

and a graphics text processor which includes fonts and colors. Numerous

IC-masks have been made with JCL and one user has defined a function

which yields a PLA as a function of the number of AND terms, the number

of OR terms, and the binary PLA code. This thesis itself was run

through the text preprocessor for subsequent processing by RUNOFF.

ICL's datatype checking has repeatedly facilitated quick

creation or modification of programs. Many bugs are

pinpointed immediately at compile time. A rich ·use of

and sure

found and

datatype

coercions and polymorphic functions

technique for program specification,

changes in datatype definitions.

not

but

only offers a convenient

it also facilitates quick

Without re-examining programs which

- 141 -

utilize the modified datatypes, a quick recompilation has often run

without any problems; ICL chooses a d iffcrent placement .of co~rc ions so

that the program specification remains consistent with the new datatype

definitions. If no placement of coercions can render consistency, then

ICL cites exactly those places in the program specification which

present no possible interpretation.

or a new definition for an existing

problems quietly cease to exist.

Often by introducing a new coercion

function name, these remaining

Although ICL generates rather sloppy machine code, e.g., there is

no attempt to optimize the machine code per se and all temporaries are

stored not in registers but on the stack, ICL code has run three times

as fast as SIMULA compiled code. lhis relation was obtained by running

a program which adds 10000 points in each of ICL and SIMULA. Because

the type POINT is primitive in ICL and not in SIMULA, I reran the ICL

program with the type POINT substituted with a user-defined record

datatype which represents two REALs. Still, ICL ran 2.5 times as fast

as the SIMULA program. I imagine that the difference between SIMULA's

and ICL's runtimes rests on the fact that SIMULA leaves some datatype

considerations for runtime, e.g., superclass

processes all datatype considerations, e.g.,

compile time.

searching, whereas ICL

datatype coercions, at

One of the c~rrently largest ICL systems includes the IC-mask

processor. the general graphics system, and the graphics text processor.

This system resides in 86. 5K words of memory. This figure include.s all

of the ICL compiler including the symbol table and the three grammars.

This system includes 325 user-defined functions. The B6.5K memory

' 142 '

includes JOK for list-space, 12K of which is free, 17K of machine code

for the user-defined functions, and 7.9K for the datatype grammar.

The language processor's preservation of locality of ambiguity pays

off not only in theory, but also in practice. To see the effect of this

feature, I chose a one line ICL statement which would generate a maximal

amount of syntactic ambiguity:

WRITE(1 \A 1 \A \A \A 1) ;

The \A is an infix notation for calling the function named A. ICL will

consider all possible ways to apply parentheses around subexpressions.

ICL wi 11 finally choose that placement of parentheses which tends to

group from left to right while satisfying the datatype requirements

imposed by the infix function calls. In this example, A was defined to

map two integers to one integer, and thus ICL would ultimately choose

the strictly left to right grouping. Theory says that an expression of

this form which has n \As will give rise to at least an ex.ponential

• number of groupings. However, theory also says that this language

processor will process the exponential number of meanings in polynomial

time.

With the standard ICL compiler, this statement with 6 \As compiles

in about one second. With 15 \As, it takes about 16 seconds. To make

ICL ignore locality of ambiguity during the second and third passes, I

modified the semantic operator PAW so that it would not take advantage

of shared subderivations. With this modification, ICL took 44 seconds

to process a statement with 5 \As, and with 6 \As, it took a minute and

a half before ICL fatally ran out of memory. It is impossible to make

the first pass ignore locality of ambiguity without modifying the parser

~ 143 ~

itself. I have modified the parser's routine NEWNODE so that it would

not collapse identical parsing graph nodes.

infinite looping and memory consumption because

cyclic rules like

<REAL>

<INTEGER>

<INTEGER>

<REJ\L>

and

This, however, led to

of the existence of

ICL compiles and executes an assignment statement which assigns a

newly created box with a color to a variable whose type admits IC-masks.

Compiled and executed one at a time, TCL processes about 300 of these

assignment statements per minute.

For future work, this language processor needs a meta-language

besides MACR0-10. Currently, all productions are expressed in MACR0-10

with the help of macros, as described in the first appendix. KACR0-10

was chosen as the meta-language because to specify semantics, it is

often necessary to specify programs which implement meanings. However,

now that ICL is working, it should be relatively easy to augment ICL to

include new datatypes and syntax for specifying grammars. All semantics

can be conveniently expressed in ICL.

The main problem with using MACR0-10 as the meta-1anguage is that

each change to a grammar requires a reassembly. This restriction

forbids runtime creation of grammars. Another disadvantage follows

immediately from the fact that MACR0-10 provides no type checking. Bugs

in MACR0-10 programs can be much harder to find than bugs in ICL

programs. ICL always generates machine code which obeys the conventions

imposed by system components such as the garbage collector. A single

~- 144 ~

violation of system conventions can result in obscure behavior, e.g.,

illegal memory references. The bug will become apparent much too late,

e.g., during a subsequent garbage collection.

Currently, I imagine that the parts-of-speech

should be declared statically like variables

part-of-speech declaration might look like

POS FORM = INT ;

for

and

a new grammar

datatypes. A

This would declare that FORM is a new part-of-speech and that INT wi 11

serve as the datatype for any meaning which can be associated with the

part-of-speech FORM. In general, the declaration for each

part~of-speech should include a datatype which will serve as the

datatype for any meaning which can be associated with the new

part-of-speech. With this information, ICL can verify that all meaning

transformations preserve datatype integrity. The section Languages

shows why it is absolutely necessary to associate a datatype with each

part-of-speech.

A replacement rule can be specified with a notation like

RULE <FORM: EXPR> .. -
<FORM: 11ar·iable> '+' <TERM: variable>.

An expression of this form can be thou~ht of as an instance of a new

primitive datatype called RULE'. A grammar can be defined to be a string

of RU I.E's. ICL can compile the meaning for the lefthand <FORM> by

compiling the specified <EXPR> in the context where each of the

variables specified in the righthand phrase hecomes an implicit

parameter to the <EXPR>. The type for each of these ~arameter variables

~· 145 ~

is known immediately from the part-of-speech declarations. For example.

looking at the declaration given above for the part-of-speech FORM, we

can tell that the variable specified in <FORM:variable> should be given

the type INT. Finally, ICL can verify that the <EXPR> associated with

the lefthand <FORM> is of type INT. the type associated with the

part-of-speech FORM.

However, to provide the flexibilty offered by the MACR0-10

meta-language. it will be necessary to support more than RULEs and

part-of-speech declarations. For . multi pass specification, the

meta-language must include a notation for generating phrases under

program control. This might be done by providing ICL functions which

call routines in the language (lrocessor, e.g., the routine NEWNODE. A

special notation will be needed to specify phrase selection, i.e., calls

to the routine FIND. For example, the specification

WITH x -> <FOflM:a> '+' OE'flftf:b) DO action END

can mean

Execute action for each occurence of the phrase

<FORM> + <TERM>

in the parsing graph x.

For each phrase match, action will be executed where the variables a and

b are set to the meanings under the matched <FORM> and <TERM>

respectively.

Finally, in order to support production schema, the meta-language

should support wild-card part-of-speech specification. For example, the

following rule schema specifies the datatype requirements of the

~· 146 ~·

IF-THEN-ELSE construct:

RULE < ?T: f(a,b,c) >

'IF' <BOOL:a> 'HIEN' <?T:b> 'ELSE' <?T:c>

The wild-card part-of-speech ?1 matches any part-of-speech. All

occurences of the part-of-speech ?1 in this rule must match the same

part-of-speech. There are many important uses for production schema as

shown in the section languages. Arbitrary constraints can he placed upon

wild-card parts-of-speech in the MACR0-10 meta-language.

[1]

(2)

(3)

Knuth, D.E.

- 147 -

"On The Translation of Languages From Left to Right"

Information and Control, 8,6 (1965), Pages 607-639

Aho, A.V. and Ullman, J.D. £EJ.1].!;.!P!.Q.~. Q.f ~.Ql!'P.!.!.~.r P.~.~l.9.~

Addison-Wesley, 1977

Earley, J. "An Efficient Context-Free Parsing Algorithm"

Comm ACM, 13,2 (Feb 1970), Pages 94-102

[4] Thompson, F. and Dostert, B.

Practical Natural Language Processing:

lhe REL System as Prototype in

~.9.Y.~.!.'!-~-~-~ .!.!.'!. ~.Q!!ll?.~.~~!.~· Academic Press, Vol 13, 1975

(5) Kay, Pl. "Experiments with a Powerful Parser"

The RAND Corp., memorandum RM-8452-PR, Oct 1967

(6) Je·nsen, K .• and Wirth, N. P.~.§-~_~1=_ !!~-~.!:. ~-~!)~-~! ~nd ~~port

(7] Teitelman, W.

Springer-Verlag, Ne"'· York., N. V., 1975

l!{II~ L. !.§.~ ~ ~.f.~E.~.!!-~.~ ~~-!!.u a.!

XEROX Palo Alto, Calif. 1975

- 14B --

Appendix 1

This section documents some of the macros defined in the assembly

language implementation for the language processor. ICL was implemented

thru the· use of these macros. It wjll be assumed -that the reader is

familiar with KACR0-10. The latter part of this section documents

refinements to the parser and grammar representation which further

optimize the matching process, e.g., the routine FIND documented

earlier. Finally, I will describe the set of source files for both the

language processor and ICL.

Declaratton of Parts-of-Speech

The macro

TYPES < name , name , .•. >

declares each name to be a part-of-speech. TYPES assigns each name a

unique number. The macro

RNG TYP < number, name , numbc r, name , • . . >

declares each name to represent an array of parts-of-speech of size

number. This is in no way meant to allocate storage. The numbers merely

increment the unique number allocator. Examples are:

TYPES <RANGE,SSV,VDECL,TVPEX>

RNGTYP <32,EXPR, 32,BOP, 3,DECL, 3,QUANT>

.. 149 ..

The array parts-of-speech, e.g., EXPR, are useful for implementing

precedence grammars. This declaration for EXPR makes the values EXPR+O,

EXPR+2, EXPR+4, EXPR+6'1 valid parts-of-speech. All

parts-of-speech declared by these macros are assigned odd numbers in

order to satisfy the conventions imposed by the garbage collector.

For terminal parts-of-speech, i.e., the ASCII characters, append a

.$ to the character to obtain the corresponding part-of-speech.

Non-alphabetic characters have special names; see the file ICLSVN.MAC.

Rule Declarations - The Coarse Form

A rule of grammar is declared with the RULE macro:

RULE righthand phrase , variables , action

The rtghthand phrase must be a list of parts-of-speech and variables

must be a list of variables and action must be machine code. For

example,

RULE < LSET , TVPEX , RSET > , <,X> , action

specifies the production

?? { <TVPEX>

(LSET is the part-of-speech for "{"and RSET is "}"). This declaration

also specifies that when the righthand phrase is matched, the variable X

will be set to the meaning under the matched TVPEX. Action, having

access to X, will be performed upon each match. The lefthand phra~e for

the production should be generated by action. Action will be entered

where the register LEFT contains the LEFT field of the leftmost node in

the matched phrase.

- 150 -·

The complete production

<TYPEX: //[X;] STRNGT(X)\\>

is declared by

RULE <LSET,TYPEX,RSET>,<,X>,<

SUSPEND STRNGT,<X>

GIVEA(TVPEX)

DEAD

>

<TYPEX:X>

The macro SUSPEND implements the // .. \ \ notation and G IVEA implements a

call to NEWNODE. SUSPEND defines NEWNODE's parameter SEM and GIVEA both

defines NEWNODE 's parameter POS and actually calls NE\o/NODE. DEAD

signals the end of the action and assembles as a POPJ instruction.

The second parameter in the RULE macro, the list of variables,

corresponds to the first parameter in almost a one-to-o~e manner.

Basically, the first variable will be set to the meaning under the first

part-of-speech in the matched righthand phrase, and so forth for the

remaining parts-of-speech and variables. The one-to-one correspondence

locally becomes a one-to-two .correspondence when a specified

part-of-speech is one declared by the RNGTVP macro. An array

part-of-speech will match any part-of-speech between its bounds. The

two variables corresponding to an array part-of-speech are set to hold

the meaning and the specific matched part-of-spnech respectively.

Referring to the part-of-speech declarations given above,

RULE <EXPR,BOP,EXPR>,< X,P1, Y,P2, W,P3> , Action

- 151 -

implements the production scheme

?? <EXPR> <BOP> <EXPR>

Action will find X, V, and W containing the meanings under the matched

phrase and action will find Pt, P2, and PJ containing the specific

parts-of-speech held by each of the matched nodes.

precedence production scheme

For example, the

<EXPRi: //[x;y;w;] EBOP(x,y,w)\\>

.. - <EXPRu:x> <BOPi:y> <EXPRV:w>

where u is required to be less than or equal to i and where v is

required to be strictly less than i is implemented by

RULE <EXPR,BOP,EXPR>,< X,P1, Y,P2, W,PJ>,<

MOVE POS,P2 Part-of-speech of BOP

ADDI POS,EXPR-BOP Oisplacc into range of EXPR, i.e,

BOPi goes to EXPRi

CAMGE POS,P1

DEAD

CAMG POS,P3

DEAD

i must be greater or equal to u

otherwise, abort this rule

i must be greater than u

1 Precedence conditions arc now satisfied. Also,

1 POS contains the part-of-speech for EXPRi

SUSPEND EBOP,<X,V,W> SEM:= ll[X1Y:W:] EBOP(X,y,W)\\

GIVEA

DEAD >

1 Generate EXPRi. No parameter

is specified because ros is already set

~· 152 ~·

The user who wishes to declare a general rewrite rule, e.g.,

<A: //[x;] J(x)\\> <B: //[x;y;] g(x,y)\\ <C:x> <D:y>

must specify the generation of the lef thand phrase as has been described

in the section about the parser, e.g.,

RULE <C,D>,<X,V>,<

PUSH. COLUttN
SETZ COLUMN,

SUSPEND f,<X>
GIVEA(A)

OW COLUMl'i:: COWMf1i
COLiiM~·: :Ajfl

SlM:: ll(X:) f(X)\\
Call NIH1lNOOE.

MOVEI LEFT,(COLUMN)
POP. COLUMN

Step Right

SUSPEND g,<X,Y>
GIVEA(B)
DEAD >

The II .. \\ Notation, SUSPEND

The macro

SUSPEND f,<X,V,Z>

implements the statement

SEM:: ll[X:Yr) g(X,Y) \\
Call ~·EWfiOOF.

SEM:= //[X;Y;Z;] f(X,Y,Z)\\

As the reader may recall, SEM is the meaning parameter to NEWNODE. In

general, all meanings are represented by programs in this way. F. must

be the name of a procedure declared by the SlJSFUNC macro (see below).

The SUSFUNC macro - Another Component of the// ... \\

... 153 ...

A function which implements o meaning, i.e., one whose name is used

in the SUSPEND macro, must be declared with the SUSFUNC macro. SUSFUNC

is a declarative statement:

SUSFUNC(name , R , frozen parameters , local variables)

Procedure Body

DEAD

The frozen parameters is a list of variables. Upon entrance to the

procedure body, these variables will be set to the values that were

contained in the variables specified in the SUSPEND macro. local

variables specify the names of variables which are to be local to the

procedure body. R specifies a reluctance; the default is zero. The

reluctance of a production is specified with the production's meaning

routine.

For example, referring to the <EXPR> <BOP> <EXPR> rule given

earlier, we can implement the routine EBOP with the following

conventions:

1) EX(an EXPR) sets register 1 to a number, and

2) EX(a BOP) sets register 1 to a number where it is expected

that the global variables ARG1 and ARG2 will first be set to two

numbers.

EBOP i~ then defined by

SUSFUNC(EBOP,,<E1,B1,E2>)

EX(Et)
MOVEM

EX(E2)
MOVEM

EX(Bl)
DEAD

' 1,ARGl

' 1,ARG2

ARG1:: value from Lefthand EXf'R

ARG2:: value from righthand EXPR

Give the BOP control. leaves
register 1 containing result.

~· 154 ~

A Ftner Control Ouer the Matching Process - WANT

The parser's matching routine, FIND, is actually implemented by a

sequence or invocations of the WANT macro. WANT matches one element of

a phrase. That is, WANT takes a part-of-speech and a single column and

searches the column for nodes having the given part-of-speech. Upon

each match, WANT "returns". Unlike with standard procedure protocol,

WANT does not leave the stack level unchanged upon return. WANT returns

having pushed some data onto the stack. The user specifies that WANT is

to resume its searching by performing a POPJ.

For example, a call to FIND with RHS = <A><C> is implemented by

the sequence

WANT(C)

WANT(B)

WANT(A)

That is, from the given parsing graph in register P, WANT looks down the

column referenced by P and stops at each node whose part-of-speech is c.

Upon each match, WANT(C) "returns" and WANT(B) executes. Whenever WANT

"returns", WANT leaves P containing the LEFT field of the matched node.

Thus, cascaded calls to WANT implement the routine FINO. When WANT can

find no more matches, WANT itself executes a POPJ. In this example,

.when WANT(B) finds no more matches, WANT(B) executes a POPJ ·and thus

gives control back to WANT(C) so that WANT(C) will try to find another C

node.

~- 155 ~-

WANT can take a second parameter which specifies a variable into

which WANT will store the meaning associated with the matched node.

Thus, the righthand phrase

<A:X>

may be programmed as

WANT(C,Z)

WANT(B,Y)

WANT(A,X)

Body

POPJ .

<B:Y> <C:W>

Body will be executed upon each occurrence of the phrase <A><C>

within the parsing graph referenced by P. Body will be executed in an

environment where X, Y, and W have the meanings associated with the

matched nodes and where P contains the LEFT field of the matched A node.

T'he POPJ at the end of body will give control back to WANT(A) so that

WANT(A) will resume searching for another A-node. When WANT(A) finds no

more A-nodes, WANT(A) POPJ's and thus gives control back to WANT(B). If

WANT(B) finds another node, WANT(B) will again give control to

WANT(A) with P containing the LEFT field of the

In this way, alternate phrases represented

transformed into backtracking program execution.

newly matched B-node.

in a parsing graph are

An Opttmtzatton - Factored Righthand Phrases and Ordered Columns

When a grammar is called, the grammar has to search

production 1 s righthand phrase within the given parsing graph.

for each

A certain

saving will be achieved if some of the searching effort can be shared

among the various ~ighthand phrases. Consider, for example, that the

set of righthand phrases

<A> <C>

<D> <C>

<E> <Q> <C>

can be factored from the right to yield

<A> ---- <C>
I I

<D> I
I

<E> <Q>

In trying to find instances of these three righthand phrases, the

factored representation facilitates some sharing of the searching

effort. That is, rather than searching for a <C> node three times, once

for each righthand phrase, the search for a <C> node can simultaneously

serve all three righthand phrases.

With the WANT macro, the unfactored set of righthand phrases is

searched by

PUSHJ. [WANT(C)
WANT(B)
WANT(A)

body1
POPJ.]

PUSHJ. (WANT(C)
WANT(B)
WANT(O)

hody2
POPJ.]

PUSHJ. [WANT(C)
WANT(Q)
WANT(E)

body3
POPJ.]

- 157 -

The factored righthand phrases are searched by

WANT(C)

PUSHJ. [WANT(B)
PUSHJ.

PUSHJ.

POPJ.]

PUSHJ. [WANT(Q)
WANT(E)

body3
POPJ.]

[WANT(A)
body1

POPJ.]

[WANT(D)
body2

POPJ.]

Each match of a C-node serves simultaneously for all three phrases.

In fact. WANT takes a third parameter which specifies the address

of a program to which WANT will branch when WANT can find no more

matching nodes. When the third parameter is specified, WANT performs

the branch rather than performing a POPJ. Thus, the factored righthand

phrases can be searched by

LABLE2:

LABLE1:

WANT(C)
WANT(B,,LABLE1)

WANT(A, ,LABLE2)
bodyt

POPJ.

WANT{ D)
body2

POPJ.

WANT(Q)
WANT(E)

body3
POPJ.

In general. the searching of alternate parts-of-speech from within the

same column is efficiently implemented by a series of WANTs linked

together by their third parameters, e.g .• the phrases

implemented by

<A>

<C>
<D>

• 158 -

WANT(A,,LABLE1)
bodyl

POPJ.

LABLEl: WANT(B,,LABLE2)
body2

POPJ.

LABLE2: WANT(C,,LABLEJ)
body8

POPJ.

LABLE3: WANT(D)
body4

POPJ.

Given a column and a set of alternate parts-of-speech to be

searched, we can achieve further optimization by requiring that both the

column and the set of alternate parts-of-speech be ordered, e.g., in

increasing order by part-of-speech. This constraint will facilitate a

linear rather than quadratic search time. That is, rather than

independently searching the column for each given part-of-speech, we can

find all matches with exactly one scan thru both the column and the

given set of parts-of-speech.

In fact, both the procedure NEWNODE and the macro WANT are written

to create and examine ordered columns with ordered grammars. NEWNODE

inserts a new node into COLUMN at an appropriate place so to preserve

order in COLUMN. WANT ceases to search for a given part-of-speech in a

given column as soon as WANT comes across a node whose part-of-speech is

greater than the given part-of-speech. WANT branches to the address

.. 159 ..

specified in its third parameter leaving r containing the unsearched

portion of the given column rather than setting P to the start of the

given column. In this way, an ordered series of WANTs linked via' their

third parameters search a given column in a single scan.

A generalization of the macro WANT allows the specification of an

array of parts-of-speech:

WANTR(LOW , lilGH , Pl , X , AL l

specifies a search for any part-of-speech between LOW and HIGH. Upon

each match, the variables Pl and X are set respectively to the matched

part-of-speech and meaning. lhe final parameter, ALT, is identical to

the third parameter in the WANT macro.

All productions specified via the declarative RULE macro are

initially assembled as list structures. Upon system initialization, all

of the righthand phrases specified in RULE macros are gathered. The set

of righthand phrases is then factored from the right and ordered.

Finally, the factored datastructurc as a whole is compiled into machine

code as though optimally specified with the use of the WANT macro. The

resulting program becomes the grammar.

Several grammars, e.g., grammars for a multipass system, are

compiled separately so that each grammar may be independently and

dynamically engaged to the parser. Another declarative macro enables

the user to specify that following productions are to belong to a

specified grammar. There is another macro which engages a grammar to

the parser. The file NEWBMT.MAC contains relatively complete

documentation on these macros.

llniuersal Files

BI GMAC

NEWBMT

NHETAL

Source Code

BEGIN

CIRCUS

NEWSCN

NEWPAR

-· 160 -

Top level universal file.

Contains register assignments and macros for memory
management and other generally useful macros and
opdefs.

(New Basic Metalanguage)

Contains
Contains
macro.

macro definitions for the metalanguage.
relatively complete documentation for each

Extension of NEWMBT.

NEWMBT and NMETAL together define at least the macros
pr~sented in this section.

System Initialization and Local UUO handler.

(Circulatory System)

Memory Management.
collector.

(New Scanner)

Includes list-space garbage

Contains the parser's character input routine which,
in addition to generating nodes representing the input
characters, .generates each of the alternative phrases
<ID>, <NU>, and <OS> over the appropriate input
strings of characters. <ID> stands for i-entifier,
<NU> stands for unsigned integer, and <QS> stands for
quoted text string. lhe reader may note that these
three parts-of-speech are treated specially in the ICL
reference manual. In addition, NEWSCN ignores
comments and manages the symbol table for identifiers.

(New Parser)

Includes both the pnrser and the semantic evaluator
presented in this thesis. Many of the macros defined
in NEWBMT reference programs contained in NEWPAR.
Note one major difference in naming: There is no
single prodedure corresponding to the procedure named
FIND in this thesis. As mentioned earlier, the effect

GCMPIL

CODGEN

UTILS

Untuersal Ftles

ICLSVN

ICL TYP

lCLSEl'I

I CL RUN

' 161 ~

of this mythical FIND is implemented by uses of the
WANT macro. The WANT macro references a routine which
happens to be called FIND.

(Grammar Compiler)

Compiles the righthand phrases of a given grammar into
an efficient, factored use of the WANT macro.

(Code Generation)

Contains the machine-code generation procedures.
Serves as the assembler language for automatic code
generation, e.g., supports labels and foward
references. Also int~rfaces to the memory manag~r and
automatjcally fragments the generated machine code so
as to optimally use segmented free storage.

(Utilities of general interest)

Supports file 1/0, numberic output, ~nd contains a
little spill over from NEWPAR.

(ICL Syntax)

Declares the parts-of-speech for ICL's syntax grammar.

(ICL Types)

Declares the parts-of-speech for ICL's type and pass3
grammars.

(ICL Semantics)

Defines the datastructure which represents the user's
~eclarcd non-primitive types.

(ICL Runtime Support)

Defines registers
support. Also
code-generation.
CO,DGEN.

and fields
includes

These macros

for ICL's runtime
the macros for
reference the file

~· 162 ~·

Syntax Files

The syntax files nearly correspond to the major parts-of-speech in

ICL's syntax. Following is a list of parts-of-speech, syntax files, and

semantic files. For each part-of-speech in the first column, the second

column names the file declaring productions whose lefthand phrases

consist of the named part-of-speech, and the third column names the file

containing the programs which implement the meanings for .these

productions.

<TYPE>
<EXPR>
<DECL>
<BOP>
<UOP>
<RANGE>
<SS>
<QUANT>
Processes
/lfetalanguage
flfiscellaneous
Top level

T\'PEX
EXPR and EXPRl
DECL
BOP
UOP
RANGE
SS
QUANT
QUOTE
META
MISC
FUN

TYPEX8
F.XPRB and EXPR9
DECL8 and DDECLB
BOP8
lJOPB
Rl\NCiEB
sso
QlJJ\NTB

QIJOlEB
MElAB
(M I SC its e lf)
(FUN itself)

The files named in the second column contain invocations of the SUSPEND

macro and the procedures named within the SUSPEND macro are defined in

·the corresponding file in the third column.

The Type and Third Pass Files

PA.SS2
PASS28

PASS3
PASS38

RULE declarations for permanent rules of the type-pass.
More of the same.

Both Pl\SS2 and PASS2ll together include the meaning
routines under these rules. lhnse files also include
the access functions for the datastructures which
represent the parts-of-speech for non-primitive types.

Rules of the third pass.
Meaning routines for third pass.

The routines in PASS30 generate machine code.

- 163 -

Miscellaneous Compiler Files

ERRORS

K.EY IDS

The compile time error reporting mechanism.

Also includes the tC-handler.

Sets up correspondence between symhols used in the

MACR0-10 source to name datatypes and the ident1fiers
used by the ICL user. KEYIDS also sets up
correspondence between some of the keywords found in
the syntax productions and symbols used in the
MACR0-10 source as parts-of-speech for these keywords.

lCl's Runtime Support

ICLRTS and ICLRT1 Runtime support

TOPS20 A little more runtime support.

This runtime supports requires the TOPS-20 monitor.

ICLDDT The debugging package

Appendix 2

REFERENCE MANUAL FOR ICL

- 165 -

REFERENCE MANUAL FOR ICL

Introduction
Overview
Basic Conventions

Meta-Language
Input
Output
Ending
Meta-Language File Names
Examples

tC-Handler
Example

The Compiler

Compiler Structure and Error Reporting
Syntax Errors
Datatype Errors
PASS3 Errors .

ICL's Rules of Grammar
ICL's Major Syntax Parts-of-speech
The ICL Process

Dec 1 arations
ICL's Datatypes - Part 1

Primitive Datatypes
Non-primitive Datatypes

Strings
Records
Variants
Scalars
Referencing a Previously Declared Type
E'~ample.s

Defining New Oatatypes and Declaring New Variables
Declaring Datatypes

Examples
Declaring Variables

E·umple.s
When Are Types Equal?
Defining Functions and Coercions

Functions
Examples

Coercions
Examples

Miscellaneous <DECL>s

Executable Forms

Computed Values: <EXPR>s - fart 1
The IF-THEN-ELSE

·. 168
173
173

176
177
177

. 178
178

. 179

. 180

. 181

182

182
182
184
184

. 186

. 186
187

189
190 . 190

. 191

. Hit

. 192

. 192
193 . 193

. 194
196

. 196

. 196
199

. 199
200

. 203
203
204

• 206
. 207
• 208

. 210

• 211
213

~· 166 ~

An E~planation of The Generalized Rule Format 214
Terminal <EXPR>s . 217
String <EXPR>s . 221

String Generation . 221
String Se1ection . 223
Miscellaneous String Forms . 226

Record <EXPR>s . 228
Record Generation 228
Record Selection 229

Point <EXPR>s . 231
Point Generation 231
Point Selection 231

Scalar Selection - The Scalar CASE Form . 233
Variant <EXPR>s . 235

Variant Generation . 236
Variant Selection - lhe Variant CASE form . 239

Type Disambiguation 244
Function Calling . 246
<EXPR>s Involving Binary and Unary Operators . 248

Looping With <UOP>s . . 251
Ex.istential and Universal <EXPR>s . 264
Embedding <SS>s Within <F.XPR>s . 268
Embeddihg Declarations Within <EXPR>s - The BEGIN-END form 262
Global Communications - The HOLDING form and <ASN> . 265
Anchoring Pointers - @ and COPY • 270
Detecting NIL . 274

Binary and Unary Operators: <BOP>s, <UOP>s, and <RHUOP>s
<BOP>s
Unary Operators - <UDP> and <RHUOP>

Sentence Forms: <SS>s . . .
Assignment Statements and <SSRllS>

ICL's Policy abnut Assignments, Pointers, and Copying
ICL's Implementation is in Terms of Pointers
Memory Sharing
Memory Modification
Pointer Anchoring and Copying
Example - Line Editor
Example - Bounding Boxes and Property Lists
Disasters

Carry-overs from <EXPR>s
The IF-THEN-ELSE
lbe Scalar CASE form
The Variant CASE form
lhe HOLDING form
The BEGIN-END form

Looping with <SS>s
Function Calling
A Sequence of <SS>s

Quantifiers - Loop Generators: <QUANT>s
Primitive Quantifiers

The WHILE Quantifier
The UNTIL Quantifier

. 276
276

. 284

. 288

. 288

. 292

. 293

. 297

. 299

. 304

. 306

. 314

. 323

. 328
328

. 329

. 330
• 331

333
334
334

. 336

. 337
338
338
339

~ 167 ~

The REPEAT Quantifier
The Arithmetic FOR Quantifier • I

340
341

The Selection FOR Quantifier - the $E and $C
Non-primitive Quantifiers

. 316
361
361
366

Binary Combinations
Unary Combinations

<EXPR>s and <TYPE>s - Port 2
Another Primitive Type - ID
ID <EXPR>s - The %
Two More Non-primitive Types

PRIVA1E Types
Publication and Confirmation -

372
372

. 372
• 375

375

Selection and Generation for PRIVATE Types
. 376

376
384
386

Processes - lhe // ... \\and the<• ... •>
Process Types
Process <EXPR>s - Generating Forms
Selection Forms for Process <EXPR>s
Process Generation - The Short Form

A Concise Notation for Specifying Relative

The Debugging Package

Indices
Rules Sorted by Part-of-speech
Rules Sorted by Name
Deterministic Rules

. 388

. 403
. . . 406

Points - The 0
:" 410

412

423
. 423
• 42g
. 434

~· 168 ~·

Reference ~~.!:!~~.!. f.Q!: !H.

Introduction

ICL was initially intended to be an upgraded PAL (precision artwork

language) to further ease the design and realization of integrated

circuit masks. PAL •. as it turns out, is hardly programmable except that

it supports assignment statements for numbers and parameterless

subroutines for pictures. There is no block $tructure, no recursion,

and no associative data structure. ICL, however, is a full blown

programming language with some features especially designed for dealing

with geometry.

This manual describes ICL in its full genera Ii ty as a programming

language. The ICL tailored for IC implementation is described in the

mar.ual titled The IC manual for ICl. The basic programming language is

kept separate from its specialization in order to provid~ flexfbility in

keeping with evolving styles of IC design. The special functions and

datatypes which define the IC-specific ICL are all implemented in ICL

and thus are subject to relatively easy modification. Throughout this

manual, ICL refers to the general programming language.

JCL includes many features present in both LISP and PASCAL. Like

LISP, ICL encourages generative and embedded expression. A record

structure, for example, may be generated in ICL without the use of

assignment statements, like LISP's LIST function, whereas in PASCAL, one

must assign each component separately. Unlike LISP, but like PASCAL,

ICL is a completely typed language. That is to say, any computed entity

must be associated with some declared datatype. ICL is completely type

~ 169 ~

safe, whereas PASCAL leaves a few areas inadequately type checked: For

example, PASCAL gives the user completely independent access to the case

key and to the body of a variant data structure.

ICL represents its data in terms of pointers. The user, however,

may ignore the existence of pointers altogcth~r. Except for one,

optional operator, the existence of pointers is invisible. The use of

pointers in the implementation allows for efficient and automatic data

sharing. Besides, the user may define recursive data structures without

thinking about pointers.

ICL supports process expressions and in fact, has process types.

That is, a program may be packaged along with some current context and

passed off as datum. At some later time, this datum may be evaluated,

causing the program to execute then and there. The evaluation occurs in

the current context combined with the old context which was saved at the

time of the packaging.

ICL supports user-defined type coercions. A type coercion is a

declaration specifying that one datatype may implicitly be transformed

into a second datatype via a given progrC1m. Even the common

integer-to-real coercion. which is implemented jn almost every language

including FORlRAN. is user-defined in ICL. A coercion is a function

which has no name and whose invocation occurs without any specification

whatsoever. The compiler will apply coercions throughout the user's

program in the effort to maintain datatype consistency.

- 170 -

Type coercions are essential to support the notion of equivalence

classes of representations. F-0r example, a geometric line may be

represented either by a pair of points or by three numbers ,which

represent the coefficients of a linear equation. After one has defined

the two coercions relating these representations, an instance of a line

may be generated in either of the two forms and independently accessed

in either form. Thus, a routine which requires, say, the equation

representation for a line can work even if given a line in the

pair-of-points representation.

Independent of type coercions, a single procedure name may be

shared by several different procedures. One example of this is found in

the programming language PASCAL: The procedure-name WRITE is the name

of the procedure which prints integers and is simultaneously the name of

the procedure which prints booleans. The operation, WRITE, is defined

for more than one datatype. In ICL, the user may define many different

procedures using the same name so long as they are distinguishable by

their input or output datatypes. Throughout the languages of science,

there are many operators whose definitions depend on the types of their

parameters.

and points.

For example, ABSolutc-value is defined on integers, reals,

The operator DISPLACE can be defined to mean "displace a

point by a point", or "displace a mask by a point", or even, "displace a

linear transform by a point".

The space of datatypes may be extended to include many distinct

types whose representations are identical. For example, a list of

points is a suitable representation for both a wire and a convex

polygon. However, the set of convex polygons is clearly a subset of the

~· 171 ~

set of all lists of points. In ICL the construct "PRIVATE" enables the

user to specify a new type which is a restricted form of an existing

type. He can then specify coercions between the restricted and

unrestricted types. For example, a list of points could be coerced into

the restricted type, a convex polygon, via a program which verifies

convexity and which reorders the list of points to trace the polygon in

the clockwise direction. A convex polygon could be coerced back into a

list of points via the identity. lhus, the user can define procedures

' . which take convex polygons as input and which access the input as lists

of points. The user can be certain that the input is indeed clockwise

and convex.

Datatypes in ICL provide more utility than do datatypes in PASCAL.

PASCA.L's datatypes serve mainly to aid the compiler in detecting program

inconsistencies. ICL's datatypcs not only check program integrity. but

also play an active role of choosing which functions to call and which

coercions to invoke where.

The type pass in ICL operates as a parser trying to come up with a

successful parse in a language whose parts-of-speech are datatypes. The

rules of grammar come from the coercion, function, and datatype

definitions. The compiler generates machine code. All decisions about

when to apply coercions or what functions to use are made at

compile-time. Thus, the free use of datatypes has no runtime overhead

per .se.

Data types are to programming lan~iuages as uni ts are to physics. A

meaningful equation describing a physical principle must not only make

sense syntactically but must also make sense in terms of uni ts. It

~ 172 ~

often happens that one can complete an equation very easily guided only

by the units requirements. My experience is that much of programming is

very automatic once one knows the type of object to produce where.

' 173 ,.

The ICL system is composed of four major sections: a

meta-language, a compiler, a debugging p~ckage, and a tC (control-C)

handler. The meta-language is used to specify input source files for

the compiler to read, output files on which to keep a complete record of

the session's activity, and files which are to be closed or forgotten.

The compiler is the main body of ICL. The debugging package permits the

user to trace the execution of functions and to set break points at

functions' entrances and exits. It also gives him the ability to look

at and set a function's input and output parameters. The debugging

package can be called from a running ICL program. The tC handler

responds to tC's and will accept several one-character commands.

l will proceed by describing the meta-language and the tC-handler

first. These components are applicable nearly everyh'here. Then I will

describe the ICL language itself and finally, the debugging package.

However, I must first define some basic terms and conventions used

throughout ICL.

Throughout this manual, the term "letter" refers only to capital

.letters.

An identifier in ICL is a letter followed by a sequence of either a

letter, a digit, or an underscore (_). An identifier is terminated oniy

by some character other than a letter, digit, or underscore. From here

- 1711 -

on out, <ID> will mean identifier.

A comment is text which is completely ignored by the compiler.

Comments begin and end with a double quote (").

Text strings, also known as Quoted strings, are specified by

beginning and ending with a single quote('). A single quote may be

entered into the quoted string by placing two single quotes with no

intervening characters. The symbol <OS> will be used to denote a quoted

string.

An uninterrupted string of digits without leading zeros will be

denoted by <NU>. An unsigned integer number is an instance of <NU>.

The term blank, or blank.s, wi 11 be used to denote any non-empty

sequence of spaces, tabs, carriage-returns, line-feeds, or form-feeds.

Blanks are ignored except in the following places: Blanks in a quoted

string are preserved, and as noted above, blanks cannot occur within an

<ID> or <NU>.

We shall adopt a slightly extended BNF notation for specifying the

syntax of ICL. A BNF rule has the format

Lefthand phrase ::= righthand phrase

where each phrase is a sequence of parts-of-speech. A part-of-speech is

either an identifier enclosed in angle brackets, e.g., <IO>,, a literal

identifier, e.g., IF, or a character. A rule which is written as

Lefthand phrase :::= righthand phrase

- 175 -

is equivalent to the first form in all respects except for a tjny matter

relevant only to the interpretation of ICL's syntax error messages.

Thus far, we have introduced the parts-of-speech <ID>, <NU>, and

<QS>. I have refrained from using BNF to describe <ID>, <NU>, or <QS>

because unlike other parts-of-speech in ICL, blanks are not ignored in

these parts-of-speech. Blanks

Hence, the righthand phrases of

between their elements.

in all other ICL forms are optional.

BNF rules implicltly invite blanks

There is one other commonly used part-of-speech, <IDLIST>, which we

can describe by the rules:

<IDLIST>

< IDLIST>

: := <ID>

<IDLIST> , <ID>

This states that an < IDLIST> is a sequence of < ID>s separated by commas.

For example, the following is an instance of <IDLIST>:

OBI_WAN_KENOBI,DARTH_yADER ,lHE FORCE , LUKE

(----IDLIST--)

(-----------IDllST--------)

(----------------------IDllST--------)

(---------------------------IDllST----------)

Some computer terminals cannot accept the characters "{" or "}".

·These characters are used extensively in specifying strings, or lists of

objects. For these poor terminals, ICL has the rules

{

}

: : =

.. -
[

]

.. 176 ...

so that a[) will pass as a { and a (]will pass as a }.

The ICL system receives teletype input from one of two ports: the

compiler port and the general port. Unless otherwise mentioned, all

input goes into the compiler port. The compiler port tries to interpret

its input as ICL source language text. The general port is used by

ICL's error handlers and all running ICL programs. The general port is

merely a character by character port. It follows none of the

conventions described above and it does not understand the meta-language

or the ICL language.

The compiler port takes in characters a line at a time. This means

that the compiler does not see any input until a break character is

typed. Included in the set of break characters are tG (bell),

carriage-return, and tZ.

MACRO Jlackers

The input TTCALLs·comprise the general port. An "XCT SCANIN" is
the compiler port. It sets AC 1 to the character. The "XCT
SCAN IN" does not itself follow any of the above conventions.

Do not use any 1/0 channels except via the mechanisms provided
in UTILS.PIAC

The meta-language is entered by typing a I* and is left by typing a

•/. Any text produced by the enclosed meta-statements appears to

substitute for the/• ... *I string. rroducing text means feeding the

text to the compiler port. Any sequence of the following

meta-statements may appear between the I* and the The

part-of-speech <file> will be described after the meta-statements are

' 177 '

described.

READ <file> ;

ERE AD

produces the text contained in (file>. The default
extension is ICL. The compiler port takes in
characters from <file> but the general port remains
unaffected. Hence <file> should contain only ICL
source language text and meta-language text. Any
input requested by ICL's error handlers or by any
running user's program will not be taken from (file>.

(file> ;

(echo read) is equivalent to READ except that the text
is also echoed to the terminal.

COPY <file> ;

ECOPY

OU!J!.fl.~

IN_LOG

OUT_LOG

produces the text contained in <file> Jike READ, but,
in addition, any input requested thru the general port
is also taken from <file>. Both input ports take
characters from <file>. Hence it is conceivable that
(file> may contain source language text, meta-language
text, user program input, and responses to questions
posed by ICL's error handlers. The default extension
is ICG (ICl loG).

<file> ;

is COPY with echo to the TTY.

<file> ;

produces nothing. However, all characters input from
the TTY, starting after the terminating */, will go to
<file>. Default extension is ICG. Note that since
all your keystrokes arc recorded, you can completely
replay your session by restarting ICL and then typing
"/*ECOPY <file>;•/ <carriage-return>". IN LOG records
all TTY input from both TTY ports. -

<file> ;

produces nothing. llowever, all characters typed out
to the TTY go into <file>.

FULL_LOG

.. 178 ..

<file> ;

produces nothing. All TTY characters input or output
go to < f 11 e > •

MACRO Hackers

If you take BIGKAC .MAC as a universal file, all TTCALL 's will be
intercepted for the LOG files. "TTCAL." has been OPDEFed to the
real TTCALL.

!ndt!l.l

CLOSE

FORGET

<file> ;

produces nothing. Closes <file>. This is necessary
to insure the existence of the output files. For
input files, CLOSE is equivalent to FORGET.

<file> ;

produces nothing. For input files, FORGET cuts short
the input by simulating an early EOF. For output
files, FORGET undoes all writing that has occurred to
the file. The old version, if any, remains untouched.

CLOSE and FORGET work for any files, even if they are
being used by a running ICL program. CLOSE and FORGET
may occur asynchronously. Input files are cut short,
and further output to the output file is ignored•

A <file> is described by the following BNF rules:

1) <file> <iD>

takes the default extension

2) <file> ::= <IO> .

blank ex.tension

3) <file> .. - <ID> . <ID>

extension specified

4) <file> .. - <file> - <file>

The concatenation of the two files; may not be used

5) <file>

6) <file>

~· 179 ~

for specifying output files.

<ID> : <file> ;

<ID> specifics a device for all of <file>. Note that
even if the specified device is TTY, none of the TTY
characters taken in thru this mechanism will appear on
any of the LOG files.

< f i 1 e > [<NU> , < ID>]

Project Programmer Number (PPN) specification. <File>
may not be one directly from (4).

·Note that <file> represents only a subset of the PDP-to•s· possible

filenames.

1) If the file A.ICL contains the text "+2*K", then

I:= JOHN /*READ A;*/; is equivalent to

I:= JOHN +2*K;

2) If the file B.WHO contains the text "+3/*READ A;*/;w, then

I:=JOHN/*READ B.WHO;*/ is equivalent to

I:=JOHN+3+211tK;

3) The following are equivalent:

I* IN LOG X; READ A-B-C;•/

I* IN LOG X; READ A; READ B-C;*/

I* READ A-B; IN_LOG X; READ C;*/

I* READ A;"/ /iitREAf> B-C; "I /•IN_.LOG X;*I

However, the following is different:

/*IN_LOG X; READ A-B;*/ /'*READ C;*/

~· 180 ~

The file X.ICG will begin with the characters /• READ C;•/.

Remember that the IN_LOG takes effect immediately following the

closing•/.

While running ICL, typing one or two tC's will get you into the

tC-handler. The tC-handler prompts with a "<>". Typing twenty or

thirty tC's should get you to the monitor level in case of an ICL bug.

Sometimes, the "<>" will not appear at first; I don't know why.

However, in either case, typing one of the following letters will do •••

H

c

B

E

A

. D

I

(Help) Type out a reminder of these letter commands.

(Continue) Ignore the tC and resume what was being done.

(Bye) Get out. Go to monitor level. You may CONT
from the monitor level and be back in the tC-handler.

(Exit) Prepares to make a save file. You are then
asked for an initial message. Type anything and terminate by
a tG (bell). ICL then ex.its. If you do a SAVE, you can
later run the saved file and be right back where you were
just before the tC. You will first be greeted by your
initial message.

The E command will not exit if any I/0 channels are currently
open. If any I/0 channels are open, the user will be
notified and the E will proceed like the C command does.

(Abort) Abort a running ICL program. Acts like a "C" if
an ICL program is not currently running. The debugging
package will be entered as soon as some function is entered
or left •

(DDT) Enter DDT. Return from DDT by DDT's <altmode>G.

(Intercep~) Intercept the compiler
requests another character, the

port so
compiler

that when it
port will take

~· 181 -

characters directly from the TlY. Intercept is meant to
enable the user to override the current input source for the
compiler port. This is useful if a long file is· currently
being read by the compiler port .

. "I" leaves you in the tC handler. Do a "C" so that the
system will continue processing. When the compiler next asks
for input, it will be waiting for TTY input.

The compiler port will resume taking in characters from the
original source immediately after you type a tZ.

You may not intercept an intercept; intercepts may not be
nested.

~).:a p~!:._~_:_

You have done /•READ A;•/ and the file A is the wrong file; you

would like to put an early end to A. Do an intercept ("tC I C")

and then type "/•FORGET A;•/tZ". The first part of A will have

bee~ read in, but nothing since the tC.

NOTE: tC's are not recorded on any LOG file, nor are any of these

single-character commands. These letter commands come thru neither

input port.

- 182 -

I!:!I COMPILER -·-·-·---·-·-

The compiler is the main body of ICL. The compiler responds to

user input by attempting to view it as a valid ICL program. If

successful, the compiler then generates machine . code and transfers

control to it. When the user program terminates, ICL is ready to

respond to more user input.

ICL js documented entirely in terms of the individual rules of

grammar which define ICL's syntax. Each syntax rule is independent from

all the rest and in fact plays the role of an individual, predefined

function • So, for example, where LISP defines the function "(COND

.••)". ICL defines the construct "IF THEN ELSE FI".

Associated with each syi:itax rule is additional, non-syntactic

information. This additional information expresses requirements imposed
• f

by further compiler passes. For tre user to understand ICL's error

messages, he must be aware of the overall structure of the compiler.

ICL is implemented as a three pass compiler. The first pass

enforces svntactic requirements, the second pass enforces datatype

consistency, and the third pass enforces consistent use of data sources

and data sinks. In the event that a user's program is ill-formed, he

will be informed as to which pass failed and will be given a set of

possible reasons for failure. Each pass has a different way of

reporting error conditions.

~ 183 ~

Failures from the first pass, the synta~ pass, are reported by

typing back the user's input in a partially compressed form. Incorrect

sections of input are not compressed and hence appear unmodified.

However, some correct sections of text arc compressed in the sense that,

in place of the correct section, ICL gives the appropriate syntax

part-of-speech enclosed in angle brackets. For example, the following

syntactically incorrect text:

HAPPINESS := IF TODAV=SATURDAY THEN 100 ELSE 0 FI * X.

YESTERDAYS HAPPINESS + K.*20 ;

yields the syntax error message:

HAPPINESS := <EXPR> * X.

YESTERDAVS_,HAPPINESS + K*20 ;

The text between the IF and FI is correct and has been compressed.

Unfortunately, the error reporter's notion of syntactic correctness

is more restricted than ICL's. Some correct sections will not be

compressed. The compression of correct sections occurs on a rule by

rule basis and not every rule participates in compression. Compression

occurs only with det~rministic rules. The documentation for each syntax

rule specificies whether or not the rule is deterministic. The ": :=" of

the BNF notation is replaced by " ... -" ... -

Consider the example above.

in deterministic rules.

lhe IF-THEN-ELSE-FI rule is

deterministic, and because its use in the example has no errors, t~e

IF-THEN-ELSE-FI rule has been compressed. However, the "K•20" ts

correct but it is not compressed. The rule which implemenis infix

oper~tors ,e.g .• the is not deterministic. The syntax error

~· 1B4 ~·

message would be more informative if every rule were determinlstic.

However, a rule can be deterministic only if its applicability can be

determined without reference to surrounding text. The infix-operator

rule cannot be deterministic because, given the text "1•2", its

applicability depends on whether the "1+2" is contained in "A:=1+2;" or

"A:=t+2•N".

lhe only certain information the user can derive from a syntax

error message is that

1) Compressed sections are syntactically correct, and

2) Non-compressed sections may or may not be correct, except that

3) A non-compressed section involving a deterministic rule is

definitely not correct.

Failures of the second pass, the type-pass, are reported in terms

of ICL's syntax rules. The user, when informed of a type-pass failure,

will be told which syntax.-rule failed the type-pass. The user should

then look up the syntax rule and understand that he violated the type

requirements associated with that rule. The user will also be given a

backtrace of grammar rules, so that he can see where in his program the

faulty syntax rule was applied.

Errors emanating from the third pass are not well reported by ICL.

Fortunately, PASS3 errors are relatively rare and may be characterized

rather simply. Since PASS3 enforces consistent use of data sinks and

- 185 -

sources. a PASS3 error indicates that the user has put a non-sink on the

lefthand side of an assignment statement. e.g .• "l:=A+B;".

The one subtlety of a PASS3 error is that a datatyJe coercion can

leave a valid sink as a non-sink. That is, there is one kind of error

which might be characterized as a type-error. but which ICL detects only

in PASS3. This occurs when the type-pass, in order 'to satisfy type

requirements. coerces something which will later turn out to be a

data-sink. The canonic example is this: The user has defined the

coercion from integer to real (FLOAT) but has not defined the coercion

from real to integer (FIX). The error occurs when he assigns a real to

an integer. e.g .•

I:=R; .

The type-pass will be forced to coerce the l~fthand side into a real in

order to have matching types across the assignment. Thus, the typ~-pass

has effectively put a function call on the lefthand side, yielding

FLOAT(I):=R;.

The lefthand side is no longer a data sink. If, on the other hand, the

user wishes such an assignment to be valid. he must supply a coercion

from real to integer (FIX), so that the type-pass can be satisfied by

coercing only the righthand side of the assignment, yielding

I:=FIX(R); •

I will return to the matter of error reporting with examples after

some of ICL is formally defined.

... 186 ...

ICt is documented entirely in terms of its syntax rules. An

earlier section, Basic Conuentions, outlines the form of a syntax rule.

ICL's rules of grammar will be grouped together by the

part-of-speech appearing on the lefthand side of a rule. Ea~h group of

rules defines a distinct component of ICL. The compon~nts of ICL are

named by ICL's major parts-of-speech. There is, however, one group of

rules which has no lefthand side. This group makes up what is called

the ICL process.

ICL's linguistic constructs fall into one of two categories:

declarations and algorithms. Algorithms, or sentences, are executable

forms which perform actions. Declarations, on the. other hand, are

linguistic specifications which augment the type-grammar, the language

of the second pass. Declarations consist of function definitions,

datatype definitions, coercion definitions, and the declaration of

variables. Declarations and algorithms may be embedded within one

another. Declarations, being linguistic augmentation, have their

effects manifested implicitly within algorithms.

Declarative statements fall under the part-of-speech <DECL>.

Algorithms take on the part-of-speech <SS>, read as sentence. Within

algorithms, computed uaLues take on the part-of-speech <EXPR>. Within

<EXPR>s, infix binary operators, e.g., +,-,*, and /, take on the

part-of-speech <BOP>, read as binary operator. Loop-generating.

statements, quantifiers,

declarations, a datatype

parts-of-speech will be

major parts-of-speech.

~· 187 ~

take on the part-of-speech <QUANT>. Within

expression is called a <TYPE>. More

introduced to implement sub-sections of the

The compiler is an infinite loop which repeatedly waits for the

user to type a sequence of characters which can be parsed as a possibly

null sequence of <DECL> and <SS> terminated by a tG (bell). The

compiler al1uays responds to a tG except within comments or quoted

strings. If the compiler does not respond to a tG and is indeed waiting

for TTY input, then the user has forgotten to close a comment or quoted

string. The user should then type a double quote (") followed by a tG.

If there is still no response, he should type a single quote(')

followed by a tG. The compiler will definitely have responded by this

time.

In the event that the input text, if any, has not parsed into a

sequence of <DECL> and <SS> prior to the tG, the user is notified of a

syntax error. He is given the choice of seeing the syntax error message

which contains the partially compressed form or skipping it .. In either

case, the compiler fi~ally responds with a "*" and is ready for another

go around.

If, on the other hand, there are no syntax errors, a

carriage-return is typed out and the compiler proceeds as follows. All

of the <DECL>s are processed. This includes compiling any function

definitions or coercions. Whenever a function or coercion is compiled,

- 188 -

the header of the function or coercion is typed out. Finally, if the

declarations compile successfully, all the <SS>s are compiled and

~xecuted. The compiler ultimately responds with a "•" and is ready for

another go around.

- 109 -

Declarations are represented by the part-of-speech <DECL>.

Declarations

algorithms.

play the role of providing implicit information

The four kinds of declarations are: the definition of

for

new

datatypes, the declaration of variables, the definition of functions,

and the definition of coercions. The definition of a new datatype

associates an identifier to a new datatype expression. The declaration

of a variable associates an identifier to a datatype by creating a

variable which is capable of representing instances of that type. The

definition of a function associates an identifier, a set of input

parameter datatypes, and an output datatype to an 'algorithm. The

definition of a coercion associates two' datatypes to an algorithm which

translates an instance of the first datatype into an instance of the

second datatype.

Basic to all declarations is the notion of datatype. We shall begin

by describing the datatypes which ICL supports.

~· 190 ~·

ICL' s Datat.r.~.es .:. Part !

The part-of-speech <TYPE> covers all datatype expressions.

The primitive datatypes of ICL are integer (INT). REAL. POINT.

boolean (BOOL), character (CHAR), quoted text string (QS), and strings

of bits (LOGICAL). A POINT is represented by a pair of REALs. We have

the rules:

<TYPE>
<TYPE>
<TYPE>
<TYPE>
<TYPE>
<TYPE>
<TYPE>

: := INT
.. - REAL
: : = POINT
.. - BOOL .. -.. - CHAR . ·- QS .. -
: :.= LOGICAL (<NU>)

<NU> is a decimal number which specifies · the maximum
number of bits, or word length. <NU> may be at most
36.

Instances of INT and REAL are formed just as they are in FORTRAN

except that ICL will not accept the "E" notation. Note that an instance

of INT will automatically pass as an instance of REAL if the user has

included the INTeger-to-REAL type coercion. Instances of POINT are

formed by in fixing two REALs with a "II". The instances of BOOL are TRUE

and FALSE. Instances of CHAR are formed by enclosing a single charact~r

between single quotes. Instances of QS are formed by enclosing any

string of characters between single quotes. An instance of

LOGICAL(<NU>) is formed by enclosing one or two octal numbers, separated

by a space, within "L()". Each octal number may consist of no

more than 6 octal digits. If you write two octal num~ers, •then the

left-hand number is automatically positioned 6 octal digits to the left

- 191 -

in significance. The total word length implied by the octal number(s)

must not exceed the <NU> in l.OGICAL(<NU>).

So

256

256.1 or .1 or 5.

TRUE and FALSE

3.116.5

315

'C'

'C' or 't3:•hi'

L(5)

L(200000 451)

is an INT

are REALs

are BOOLs

is a POINT

is a POINT when we have

the INTeger-to-REAL coercion

is a CllAR

are QSs

is an instance of LOGICAL(t)

where k is between 3 and 36.

is an instance of LOGICAL(k)

where k = 35 or 36.

The formation of instances of these types are covered formally in the

section for <EXPR>s. The operations performable on the various types

are also described under <EXPR> and <BOP>.

The non-primitive datatype constructs are described by the

following BNF rules. Subscripts are used to distinguish instances of

the same part-of-speech for later reference.

Strings

<TVPE0>

Records

<TYPE0>

<CTYPE>

<CTYPE>

Vartants

- 192 ~

: : =

The resulting type, <TYPE 0 >, is called a STRING of

<TYPE 1>. An instance of <TYPE 0> ·is an ordered

sequence of instances· of <TVPE 1 >. Curly brackets "{}"

are generally used in conjunction with strings.

.. -

. ·-· .. -.. -

[<CTYPE>] where

<IDLISTk) <TYPEk>

<ClYPE) <CTYPE>

The resulting type, <TVPE0>, is called a RECORD. An

instance of <TYPE0> is a composite of components where

each component consists of an <ID> in <IDLISTk> along

with an instance of <TYPEk>. lhe subscript k is used

to remind the reader that the form <IDLIST>:<TYPE> may

appear more than once in a <CTYPE>. The multiple

appearances are allowed because of the final syntax

rule. Square brackets "[]" are generally used in

conjunction with records.

~ 193 ~

.. - E ITllER <VTYPE > EN DOR where

<VTYPE > : := =
<VTVPE>

Scalars

<TYPE0>

<VTYPE> <VTYPE>

The.resulting type, <TVPE 0>, is called a VARIANT. An

instance of <TVPE 0 > is an instance of one of the

<TYPEk> along with a case key, an ID from <IDLISTk>.

Given an instance of <TYPE 0 >, the associated case key

indicates which one of the <TVPEk>s is used to

represent this instance. We will use the terms state

and case key interchangeably. Automatically, ICL

supplies a coercion from <TYPEk> to <TYPE0> with this

<TYPE> construct; the effect is that an instance of

<TYPEk> will pass as an instance of <TYPE0>.

.. - SCALAR (<IDLIST>

The resulting type, <TYPE0 >. is called a

instance of <TYPE0> is any one of

<IDLIST>.

SCALAR. An

the < ID>s in

Referencing a Preuiouslu Declared Type

~· 194 ~·

<TYPE> : : = <ID>

The resulting type is precisely the user-defined type

<ID>, whatever <ID> was declared to be.

There are a few more <TYPE> constructs, but their presentation is

delayed until the reader become familiar with more of ICL.

E~ample.s:

{ INT }
denotes a new datatype called a string of INTcgcrs.
Strings in ICL play the role of arrays in other
programming languarics. Strings may be indexed to select
a particular elcmnnt, or may have a tail selected to
yield a substring of the original. Ho.,.·ever, the most
common and efficient use of strings is in the program
loop generator which iterates for each element in the
string.

[LENGTH,WIDTH:INT CENTER:POINT ANGLE:REAL]

EITHER

denotes a new datatype, called a record whose
components are named by LENGTH, WIDTH, CENTER, and
ANGLE. The LENGTH and WIDTH components are INTegers,
CENTER is a POINT, and ANGLE is a REAL. This datatype
might be a good representation for rectangles.
Records differ from strings in that record components
are named and may have differing· datatypes. All
elements in a string, on the other hand, are of the
same datatype and their number is unbounded.

BOX = [LENGTH,WIDlff: INT CENTER: POINT]
CIRCLE= [CENTER: POINT RADIUS: INT]

EN DOR

is a uartant .,.·hose possible states are named by BOX and
CIRCLE. An instance of this datatype is an instance of
either of these two record datatypes depending on the state.

SCALAR(RED,BLUE,GREEN,YELLOW,BLACK)

denotes a new datatype, called a SCALAR. Instances of
this datatype can take on precisely five values,
namely REO, BLUE, GREEN, YELLOW, and BLACK ..

~ 195 ~·

How instances of these various datatypes are created and accessed

is presented formally under the rules for <EXPR>. However, here are a

few examples of creation:

{ 1 20 70 ; 100 }

is an instance of { INT } which has four elements.
The elements in a string are separated by semicolons.

[LENGTH: 5 WIDTH: 5 CEN1.ER: .21.1 ANGLE: 90]

is an instance of the record datatype defined above.

BOX:: [LENGTH: l WID111: 2 CENTER: .1#. 5]

is an instance of the variant datatype described
above. "BOX::" denotes the state and "[LENGTH: 1 ...
" denotes the value. However, t.he "BOX::" may be
omitted because the value's type unambiguously implies
the BOX state.

- 196 ~

The declaration of new datatypes and the declaration of program

variables are short and simple~ One merely needs to associate an <ID>,

the name for a new datatype or variable, to a <TYPE>.

Declartn.e.. Dat!!J.11pes

Type declarations are characterized formally by the rules:

<DECL>

<TDECL>

Examples•

: : = <TDECL> \'<'here

... - TYPE =

This specifies that <ID!> is a new datatype whose

representation is <TYPEk>. The latter two rules are

deterministic.

TYPE STACK._.OF _INTEGER = { INT } ;

specifies that STACK._OF _.INTEGER is a string of INTegers. The datatype

STACK._OF _INTEGER now understands all the operations which a string

understands and in addition, each element of STACK_OF_INTEGER is known

to be an INTeger.

TYPE COMPLEX NUMBER = [REAL_PART, IMAGINARY_PART: REAL];

- 197 -

specifies that the type COMPLEX NUMBER is a record having

components, both of whjch are RE/\l.s.

TYPE SET OF POLES = { COMPLEX NUMBER) ;

specifies that SET OF POLES is a string of COMPLEX_NUMUERs.

TYPE LISP_ELEMENT = EITHER

ATOM = QS

CONS PAIR = [CAR,CDR:

LISP __ ELEMENT]

INTEGER NUMBER = INT

Fl.OATING_NUMUER = REAL

ENDOR;

two

specifies that a LISP_ELEMENT is either an ATOM which is a quoted

string, or a CONS PAIR which is a record having a CAR and a CDR field -

each of which is again a LISP _ELHIENT, or an INTEGER NUMBER which is· an

INTeger, or a FLOATING_NlJMBER \'<'hi ch is a REAL. In other words, a

LISP_ELEMENT residing in the ATOM state is represented by a QS, a

LISP_ELEMENT residing in the CO~S PAIR state is represented by an

instance of the record [CAR,CDR:l.ISP_ELEMENT], a USP_El.EMENT found in

the INTEGER NUMBER state is represented by an INTeger, and a

LISP_ELEMENT found in the FLOATING ~UMBER state is represented by a

REAL. Note that the coercjons supplied by the variant construct imply

that instances of QS, the record [CAR,CDR:LISP_ELEMENT], INTeger, and

REAL, all pass as instances of LISP __ ELEMENT. Note also that a

LISP_ELEME~T may be examined only after its current stat~ is determined
I

because the representation is dependent upon that state. The only

construct ICL provides for examining a variant type, like LISP_ELEMENT,

- 198 -

is the variant-CASE form. lhe user is always r~quired to consider each

possible state when examining a variant object.

TYPE COLOR = SCALAR(RED,BLUE,GREEN,VELLOW,Bl.ACK)

specif !es that a COLOR is RED, BLUE, GREEN, YELLOW, or BLACK.

- 199 -

The declaration of variables is characterized by

<DECL> .. - <VDECL> "'·here

<VDECL> ... - VAR < IDLIST 1 > = <TYPE 1>

<VDECL> ... - <VDECL> < IDLISTk.> = <TYPEk >

This specifies that each <ID> in <IDLISTk> is a

program V8riable whose type is <TYPEl>. The latter

two rules are dctermi11istic.

Examples:

VAR l,J=INT; R=REAL;

declares I and J to be variables which contain instances of INTegers and

R to be a variable which contains instances of REAL. Writing

VAR C = COMPLEX_NUMBER ;

enables one to write tile assignment statement:

C := [REAL __ PART: 1.2 IMAGINARY __ PART: R]

C is assigned the COMPLEX_NUMBER whose components are 1.2 and the

contents of R. Also, we can now write

R ·-.- C.REAL_PART

R is assigned the REAL_PART of C. However,

C .- R; or R .- C

~· 200 -·

though syntactically correct, both fail the type-pass because the

<EXPR>s on each side of the ":=" are not of equal types.

There are many syntax rules which state their datatype r~quirmen~s

in terms of two datatypes being equal. lbe assignment statement (:=) is

one such rule, because for an assignment stntcment to pass the

type-pass, the <EXPR>s on either side must be of equal types. Two types

are ~.q.!!..~.!. only if the names of the iypes are identical. or if the name

of one of the datatypes was defined directly from the name of the other,

or in one other case involving the <EXPR> "NIL" which is described

later. In other words, two datatypes which have identical structure are

not necessarily equal. Thus, the types A and B ~re not equal if they

· were declared by

TYPE A= { INT }; B = { INT };

but A and B are equal if declared by

TYPE A= {.INT }; B =A;

The types A, B, C, and D are all equal to one another if declared by

TYPE A= { INT }; B=A; C=B; O=C;

The declaration

TYPE PATH = { POINT } ;

WIRE = [THICKNESS: INT DIRECTION: { POINT }] ;

not only specifies that a PAHi and a WIRE• s DIRECTION are indef!d strings
.

of POINTs but it also specifics that a WIRE's DIRECTION is not

neccssoril11 a PAlH and thnt a PATH is not necessarily a WIRE 's

~· 201 ~

DIRECTION. In contrast, the declaration

TYPE PATH = POINT } ;

WIRE = [THICKNESS: INT DIRECTION: PATH] ;

specifies the same representation implied in the previous declaration

but it also specifies that a PATH and a WIRE's DIRECTION are identical

types. The latter declaration specifies that an instance of PATH may be

assigned into the DIRECTION component of a WIRE and visa versa, whereas

the former declaration forbids such an assignment.

This rather restricted notion of type equality imposes a style of

declaration which is characterized by the fol lowing conventions:

1) Do not nest <TYPE> expressions and

2) Use previously declared types in VAR statements.

For example, the declaration

TYPE TWO_DIMENSIONAL A.RRAY = { { INT } }

involves nested <TYPE> expression, whereas

TYPE TWO_DIMENSIONA.L_J\RRAV =

ONE_DIMENSION = { INT

ONE DIMENSION }

involves no nesting of <TYPE> expressions. Also,

declaration

VAR MAIN_JOB_QUEUE = { JOB

involves a <TYPE> expression, whereas

TYPE JOB_,QUEUE = { JOB } ;

VAR MAIN_JOB_QUEUE = JOB_.QUEUE

the variable

- 202 -

declares MAIN_JOB_QUEUE without involving a <TYPE> expression in the VAR

statement.

Holding to this style has the effect of requiring the user to give

a name to each indivisible type construct. These names invariably

become useful when the user wishes to declare variables or define

functions which refer to sub-structures without reference to the whole

structure. For instance, we can define many functions which operate on

instances of ONE_DIMENSION and which have no knowledge of their role

within instances of TWO __ DIMENSIONAL_ARRAV. Also, if we wish to iterate

thru the vectors of a T~O_DIMENSIONAL_ARRAY, we will need a variable of

type ONE_DIMENSION.

-· 203 -

Thus far, we've covered the declaration of types and variables.

This section documents the rest of <DECL> by introducing function and

coercion definitions.

A function is defined by any of the four following deterministic

rules:

<DECL> DEFINE <ID> <SS'> ENDDEFN

<OECL> ... - DEFINE <ID> = <TYPE> : <EXPR> ENODEFN

<DECL>

<OECL>

: : : = DEFINE <ID>

DEFINE <ID>

<CTYPE>

<CTYPE>

The first form defines a

parameters. lhe second

procedure which

form defines a

parameters but which does produce a value.

<SS> ENDDEFN

= <TYPE> : <EXPR> ENDDEFN

has no input or output

function which has no input

The third and fourth forms

correspond to the first two forms with the addition of input parameters.

In each case, the part following the colon, the <EXPR> or <SS~, is

called the body of the function. The <ID> is called the function name,

and all that which precedes the colon is called the function header.

Remember that <SS> stands for an algorithm which produces no value

and that <EXPR> stands for a computed value. Note that an "=<TYPE>" is

present only in those two forms whose bodies are <EXPR>s. The <EXPR>

must be of type <TYPE>. The "=<TYPE>" is absent from the other two

forms, whose bodies are <SS>s.

,. 204 -

<CTYPE> was introduced earlier when records were introduced:

<CTYPE>

<CTYPE>

<IDLIST> : <1YPE>

<CTYPE> <CTYPE>

A <CTYPE> is used here to represent input parameters.

input parameters are in the <IDLIST>s and the

parameter is the corresponding <TYPE>. All <TYPE>s

The names of the

type of each input

involved in the

function header must be <ID>s, the names of previously declared

datatypes.

Input parameters are pnssed by value, not by ·reference as in

FORTRAN. That is to

from within the tunction

say, modifications made to the input parameters

body are not felt by the caller. These

parameter names are to the function merely local variables whose values

have been initialized to the given input values. Refer to ICL's

assignment statement in the section for <SS>s to gain a complete

understanding of how ICL assigns new values to variables.

Examples,

DEFINE CLEAR_.JOB_ QUEUE: MAIN_JOB_QlJEUE:=NIL; ENOOEFN

DEFINE

DEFINE

NUMBER OF JOBS=INT: some

DRAW(P:PIClURE AT: POINT):

DEFINE FACTORIAL(N:INT)=JNT:

INTeger <EXPR> ENODEFN

some <SS> ENDDEFN

IF N =< 1 THEN 1 ELSE' N*FACiORIAL(N-1) FI

ENOOEFN

Note the absence of commas in the input parameter specification for

DRAW. Also note that

DEFINE COPY(FROM,TO:IN1): FROM:=TO; ENDDEFN

- 205 -

effectively defines COPY to be a no-op. A call like

COPV(I,5);

does not set I to 5; I is left untouched.

The format for calling a function depends on which of the four

kinds you're calling. The first kin~ is called by "<ID>;" and is

syntactically a <SS>. The second kind is called by "<IO>" and is

syntactically an <EXPR>. The third kind is called by "<ID>(<EXPR>,

,(EXPR>);" and is a <SS>. lbe fourth kind is called by "<ID>(<EXPR>,

,<EXPR>)" and is an <EXPR>. Tbis is equivalent to FORTRAN's

calling syntax except that the keyword "CALL" is replaced by a

terminating semicolon.

The user may declare local variables and embed <SS>s within <EXPR>s

by using the ever useful rules:

<EXPR> ::=DO <SS> GIVE <EXPR>

<EXPR> :::=BF.GIN <DECL) <EXPR> END

<SS> :::=BEGIN <DECL) <SS> END

These rules will later be documented in full. I could define FACTORIAL

by

DEFINE FACTORIAL(~:INT)=INT:

BEGIN VAR I=INT;

END

ENDDEFN

DO IF N =< 1 THEN I:=l; ELSE I:= N*FACTORIAL(N-1); FI

GIVE I

~· 206 ~·

The body is put t.ogether employing our syntax rules as follows:

BEGIN <DECL> DO <SS> GIVE· <EXPR> END

The ICL user may link to MACR0-10 routines by using the following

function definition forms:

<DECL> :::=DEFINE <ID>: MACR0-10(<QS>)

<DECL>

<DECL>

<DECL>

... -

... -

... -... -

DEFINE <ID> = <TYPE> : MACR0-10(<QS>)

DEFINE <ID> <CTYPE> MACR0-10(<QS>)

DEFINE <ID> <CTVPE> = <TYPE> : MACR0-10(<QS>)

<QS> is a quoted-string which names the global symbol representing the

address of a MACR0-10 routine. The compiler obviously does not try to

verify that the MACR0-10 routine does indeed expect the designated

number of arguments and produce the right type of data. This is taken

on faith.

MACRO Hackers

The routine may damage AC's 1 thru 6, TX (13), and RET (16).
Each argument, a ono word entity, is pushed onto the stack. and
then a PUSHJ is executed. The stack register is SlK (17). The
routine, upon returning, must decrement the stack pointer by
(the number of arguments + 1). The output value, if any, is to
be returned in AC DATA (1). The files ICLRTS.MAC and ICLRT1 .MAC
contain ICL's runtime support and the user is free to call upon
them. Atop your MACR0-10 file, copy the text residing on the
first page of ICLRT1.MAC. Further details are not yet
available.

The user may define coercions via:

<DECL> ... - LET <ID1> BECOME <ID2> BY <EXPR>

~· 207 ~

<ID1> and <ID2> must be names of previously declared datatypes. <EXPR>

·must be of the type designated by < ID2> and must. be a da'ta source.

Within <EXPR>, <ID1> is automatically declared to be a variable of type

<ID1>, and is initially set to the input argument.

E~amplesi

LET BOOL BECOME INT BY IF BOOL THEN 1 ELSE 0 FI

declares that any BOOLean value may be viewed as an INTeger value via

the transformation which takes lRUE to 1 and FALSE to O.

LET REAL BECOME COMPLEX_.NUMBER BY [REAL_.PART: REAL

IMAG INARY_.PART: 0]

declares that any REAL may become a COMPLEX_NUMBER by generating a

COMPLEX_NUMBER whose

IMAGINARY_.PART is 0.

REAL_PART is the given REAL,. and whose

I

Coercions apply only to data sources, not to data sinks. A

coercion is not a macro, rather, it is a function. There is a note in

the introduction for The Compiler which mentions how a coercion may

participate in masking a type-pass error, only to have it show up as a

PASS3 error.

The ICL user may define a coercion in terms of a routine written in

MACR0-10 by:

<DECL> ... - LET <ID> BECOME <ID> BY MACR0-10(<QS>)

The MACR0-10 routine should act like a function with one input

parameter.

-· 208 -

Etample:

LET INT BECOME REAL BY MACR0-10('FLT$')

The file BEGIN.ICL is usually the first file read into a freshly

loaded ICL system. BEGIN.ICL includes the above INT to REAL coercion

plus the definitions for WRITE (on INTs. REA.Ls, CHARs, QSs, POINTs,

BOOLs) and COS, SIN, TAN, and other such utilities.

With the three coercions

LET BOOL

LET INT

LET REAL

BECOME

BECOME

BECOME

INT BY

REAL BY

COMPLEX_NUMBER BY

any BOOL can be viewed as a COMPLEX NUMBER because ICL will apply

coercions upon coercions if necessary. However, of all the possible

ways that coercions can be applied, ICL will always choose a way which

minimizes the total number of coercions. For example, if in addition to

these three coercions, the user declares

LET BOOL BECOME COMPLEX_NUMBER BY

ICL will apply this fourth coercion instead of applying the other three

coercions when a BOOL must be viewed as a COMPLEX NUMRER.

- 209 -

Any sequence of <DECL> is also a <DECL>:

<DECL> ::= <DECL> <OECL>

The order of <DECL>s is irrelevant.

- 2 J 0 -

Executable forms consist of a11 of ICL's linguistic constructs

except declarations. Executable forms are represented by the

parts-of-speech <EXPR> and <SS>. An <EXPR> represents a computed value

whereas <SS> represents a sentence form, or action.

Each functional form of ~EXPR> or <SS> will be described by a

generalized rule of grammar. A generalized rule consists of a set of
• l

BNF rules each having a name and number~d righthand phrase elements, a

set of type requirements including specification of a resulting type, a

set of requirements for PASS3, and a description of meaning with

examples. Any reference to a rule made by the ICL compiler will be by

the rule's name. An explanation of this rule format follows the

presentation of the first rule.

ICL is an expression oriented language. That is to say, the

majority of syntax rules define <EXPR>s and only a few rules describe

<SS>s .. We shall begin by describing <EXPR>s.

- 211 -

The part-of-speech <EXPR> represents a computed value. Because ICL

is a typed language, each computed value is an instance of some type.

It is relatively easy to partition off certain sets of <EXPR> forms:

some <EXPR> forms deal with strings, some deal with records, and some

deal with uartants. Independently, there are some <EXPR> forms which

deal with all kinds of types such as the IF-THEN-ELSE, function calling,

.and various other forms.

Each non-primitive type construct, e.g., string, record, and

variant, has a special set of <EXPR> forms which perform generation and

a special set of forms which perform selection. Generation refers to the

creation of new objects and selection refers to the examination or

analysis of existing objects. For example, LISP has the generation

forms CONS and LIST and the selection forms CAR and CDR. Languages like

PASCAL and FORTRAN have no generating forms: The effect of generation

is achieved only by putting individual selection forms on the lefthand

sides of individual assignment statements.

The part-of-speech <EXPR) actually stands for an array of

parts-of-speech. The common notion of operator precedence (e.g.,

multiplication before addition) splits the part-of-speech <EXPR> into

<EXPR>s of various precedences. We denote a particular element in this
' I

array of parts-of-speech by writing <EXrR> ~I precedence i. The

precedence of an <EXPR> is precisely the precedence of that binary

operator (<BOP>) most recently used in constructing the <EXPR>.

Operator precedence will be described in full with the set of rules

which integrate <BOP>s and <EXPR>s. Let it suffice for the time being

- 212 -

that unless otherwise specified, the <EXPR> appearing on the lefthand

side of a BNF rule always has precedence zero and that the <EXPR>s

appearing on the righthand side always invite any precedence. Thus, the

user can ignore all considerations of precedence except in those rules

having some specified precedence condition.

Many of the <EXPR>-rules presented in this section have

counterparts for <SS>s. For example, the IF-THEN-ELSE construct is

defined both for <EXPR>s and for <SS>s. The <EXPR> IF-THEN-ELSE chooses

one value among many values and the <SS> IF-THEN-ELSE chooses one action

among many actions. Refer to the section §~!!.!~.!!.£.~ Fot._~~. <SS> to see

which <EXPR> forms carry over to <SS> forms.

In any description for PASSJ requirements, the terms sink and

taroet will be used interchangeably.

~· 213 ~·

EBIF: <EXPR0> :::= <BIFE1> <EXPR2> THEN <EXPR3> ELSE <EXPR4> FI

where

BIF1:

BIF2:

<BIFE>

<BIFE>

IF

: := <BIFEkt> <EXPRk 2> THEN <EXPRka> EF

Type Requirements,

<EXPR2 > = BOOL = <EXPRk2>

result = <EXPR3> = <EXPR4> = <EXPRka>

PASS31

<EXPR2> = SOURCE = <EXPRk2>

result = <EXPR3> = <EXPR4> = <EXPRka> = (SOURCE or TARGET)

Meaning:

The <EXPR2> and <EXPRk2 >s are evaluated in sequence until one of them

evaluates to TRUE. Then the corresponding THEN <EXPR>, either <EXPR3>

or one of the <EXPRA: 3>s, is evaluated and that is all. However, if

niether <EXPR2> nor any of the <EXPRk2 >s yield .TRUE, then the ELSE

<EXPR>, shown as <EXPR4>, is evaluated.

Examples:

K:= IF A=B THEN 1 ELSE 2 FI

The meaning is nearly obvious: K is assigned 1 if A=B, otherwise,

K is assigned 2.

K:= IF A<t THEN 1

' 214 '

EF ~<2 THEN 2

ELSE 3 FI

K is assigned 1 if A<t, otherwise, K is assigned 2 if A<2,

otherwise, K is assigned 3. "EF" is short for "ELSE IF".

IF A<l THEN I ELSE J FI := 5

If A<t, then I is assigned 5, otherwise J is assigned 5.

The IF-THEN-ELSE construct was described by the three rules who~e

names are EBIF, BIF1, and BIF2. These syntax rules are easily

understood by using "IF" in place of <BIFE>. Thus the first rul~, EBIF,

is simply "IF <EXPR2 > THEN <EXPR3> ELSE <EXPR4 > Fl". Substituting "IF"

for <BIFE> is legitimate by the second rule, BIFt. In general, to

comprehend a set of rules like these, use the simplest 'rules•as direct

substitutions. Now, since <BIFE> is es~entially "IF", we can view the

third rule, BIF2, as "If <EXPR> THEN <EXPR> EF", and furthermore, we

could substitute the <BIFE> in the first rule by "IF <EXPR> THEN <EXPR>

EF" and come up with "IF <EXPR> THEN <EXPR> EF <EXPR> THEN <EXPR> ELSE

<EXPR> Fl", etc.

The use of "k" in some of the subscripting conforms to the fact

that there may be many occurences, due to the recursive structure of the

BNF rules. For example, the <EXPRk 3> in the rule BIF2 refers tq all

<EXPR>s occupying that slot between "THEN" and "EF" in each application

of the rule BIF2. The "k"s are m~rely reminders about the possible

multiplicity of the subscripted entity.

~ 215 ~

The type requirements state that the <EXPR>s immediately following

<BIFE>s must be of type BOOL, and futh~rmore, that all of the other

<EXPR>s, those which follow "THEN" or "ELSE", may be of any type so long

as they are all of equal types. The resulting type, the type of

<EXPR0 >, is given this common type. Note that ICL wil 1 apply coercions

in order to satisfy type requirements. Thus, for example, the <EXPR>s

following the THEN and the ELSE may he of different types as long as

there exists some common type to which ICL can coerce each of the these

given <EXPR>s. Similarly, <EXPR>s following <BIFE>s can be of any type

as long as that type can be coerced to the type BOOL.

The PASS3 requirements state that the <EXPR>s immediately following

the <BIFE>s must be data sources. The other <EXPR>s may either all be

sources or all be targets. Allowing the target case means that an

IF-THEN-ELSE may appear on the lefthand side of an assignment statement.

·Note that the term "evaluate" applies not only to sources, but also to

targets. Evaluaiing a source means producing a value, and evaluating a

target means consuming some given value.

The naming of rules and the numbering of their righthand elements

facilitates a concise identification scheme. For instance, "EBIF 3"

identifies the THEN-clause in the rule EBIF. The "~" in

IF ••. THEN IF ..• THEN ... ELSE it FI EL.SE ... FI

<------ -E:xrn--------)
<---------------txrn----------------------->

is identified by the backtracei

- 216 -

EBIF 4

EBIF 3

which says that the "*" is in the ELSE clause, <EXPR4 >, of an

IF-THEN-ELSE, and that furthermore, this IF-THEN-ELSE is itself in the

THEN clau•e, <EXPR3 >, of an enclosing IF-l~EN-ELSE. The "*" in

IF ... THEN * EF •.. THEN ••• EF ... THEN ... ELSE ••• FI

(---BIFE-----)

(--------------BIFF.------)

<----------------------------Exrn----------->
is identified by

BIF2 3

BIF2 1

EBIF 1

which says that the "*" is in the THEN clause, <EXPRk 3 >, of the rule

BIF2. Furthermore, the resulting <BIFE> is the <BIFEt1> in the rule

BIF2, and finally, this resulting <BIFE> is the <BIFE1> in the rule

EBIF. Each line in the backtrace specifies where, and in which rule,

the previous line resides.

This identification scheme is used to specify where a type-error is

found.

- 217 -

The following <EXPR> forms are terminal in the sense that the

part-of-speech <EXPR> is absent from each rule's righthand side. Any

<EXPR> will be expressed in terms of these basic <EXPR>s.

ENU: <EXPR>

Type requirements

PASS3 requirements

Meaning:

Examples:

EQS: <EXPR> .. -

Type requirements

<NU>

The resulting type is JNTeger.

The result is a SOURCE.

The value is the integer <NU> itself.

1 or 5 or 139

<OS>

The resulting type is a QS (quoted text string) and is also a

CHARacter whenever <OS> is one character long.

PASS3 requirements The result is a SOURCE.

Meaning

Examples:

ELOG: <EXPR>

<EXPR> .. -

Type requirements

The value is <OS> itself.

L

L

'this is a QS'

<NU>

<NU> <NU>

or IC I

~· 218 ~·

The resulting type is LOGICAL(k) where k is greater than or equal

to the total word length implied by the <NU>(s). Each <NU> must be

no more than six digits long and must contain no B's or 9's. The

<NU>s are interpreted in octal.

PASS3 requirements

/lfeantna

The result is a SOURCE.

If there is only one <NU>, then the value is the bit pattern

implicit from the octal notation. If there are two <NU>s, then the

bit pattern is:

Examples:

L(5)

L(l 1)

EFNU: <EXPR> .. -

Tupe requirements

PASS3 requirements

Meant no

Examples:

i.s an instance of LOGICAL(k) where

between 3 and 36. The bit pattern

is an instance of LOGICAL(k) where

between 19 and 36. The

• • . 001 000 000 000 000

a Jloatina number

The result is a REAL.

The result is a SOURCE.

The REAL value itself.

bit pattern

000 001

k is

is

k is

is

1.1 or 1.09 or .1 or .09 or 50.

There is no "E" notation.

ETRU: <EXPR> TRUE

101.

~ 219 ~·

Type requirements

PASS3 requirements

Meaning

The result is a BOOL.

lhe result is a SOURCE.

TRUE

EFALS: <EXPR> ::= FALSE

Same as TRUE, but the meaning is inverted.

ENIL: <EXPR> : := NIL

Type requirements

The result is a pseudo-type called NIL. An explanation follows.

PASS3 requirements lhe result is a SOURCE.

Meaning "Undefined"

EID:

The NIL pseudo-type is a one of a kind entity in ICL. NIL is

not a type. Variables may not be declared to be of NIL type.

However. NIL is operational in that it is equal to any type

excepting INT, REAL, BOOL, CHAR, and any LOGICAL or SCALAR type.

The <EXPR> construct "DEFINED(<EXPR>) ", which is documented

later, is the only way to sense a NIL value.

<EXPR> .. - <ID>

Type requirements

The resulting type is either the type of the variable <ID> if <ID>

is a declared variable. or any scalar type which includes <ID> in

its <IDLIST>, or the output type of a parameterless function whose

name is <ID>.

- 220 -

PASS3 requirements

In the uariable case, the resulting PASS3 status is SOURCE and

TARGET. The other cases yield SOURCE only.

Meaning

In the uariable case, the SOURCE state means that the contents of

<ID> are fetched, and the TARGET state means that <ID> is set to

hold a given value. In the scalar case, the value is <ID> itself.

In the function case, the value is the result of calliqg the

function, <ID>.

Examples:

Refering to the examples presented in the section Declarations .•.

I

BLUE

represents the contents of

the INTeger variable J

represents an instance of the

scalar type COLOR

NUMBER_OF_JOBS represents the value obtained by

calling the function NUMBER __ OF _JOBS.

Two more terminal <EXPR> forms will be introduced in Part 2.

- 221 -·

§.!r.!..~.9. g_~ n e.r.'!..!.!.2.~.

Strings are generated by

STRGEN: <EXPR> .. - <REXPR>

where

SEXP: <REXPR> .. - <EXPR1>

SEMNOP: <REXPR> : : = <Rl\NClE 1>

SCRNG: <REX PR> .. - <Rl\NGEk1> <REXPRk2>

SCEXP: <REX PR> .. - <EXPRkl> <REXPRk 2>

SCCONX: <REXPR> : := <EXPRk 1> ·* <REXPRk2> '

Informally, this states that an <EXPR> may be formed by writing
f

a

"{" followed by a sequence of eith~r <EXPR> or <RANGE>, followed by

a "}". lbe elements in the sequence are separated by either ";" or

";*" A <RANGE> is a form which yields many values:

RFUNC: <RANGE> .. - $ <EXPR1> <QUl\NT 2 >

RFUNC: <RANGE> .. - COLLECT <EXPR 1> <OUANT2>

RFUNC: <RANGE> .. - <QUANT2> $ <EXPR1>

RFUNC: <RANGE> .. - <QUANT2> COLLECT <EXPR1>

.
A (QUANT> is a loop generator. Refer to the section on

quantiJiers.

Tupe requirements

,. 222 '

All the <EXPR>s must be of equal types, including the <EXPR>s in

the RFUNC rules. The resulting type is any type which has been

declared to be a STRING of this common type.

PASS3 requirments

All the <EXPR>s must be SOURCEs, and the result is a SOURCE. Later

on, we shall see where a TARGET form of the above is useful. The

TARGET case will be covered under the FOR-quantifier.

/lleanina

The value is the ordered sequence consisting of the values of the

<EXPR>s and the multiple values of any <RANGE>s. The separators

•;• and •;*" are equivalent; the distinction between ";" and "·*" •

occurs only in the TARGET case. Any <EXPR>s which evaluate to NIL

are ignored. The user cannot depend on having the <EXPR>s and

<RANGE>s evaluated in order of specification.

All four of the <RANGE> rules (RFUNC) are semantically

equivalent. The <RANGE> produces a sequence of values by

evaluating <EXPR1> once for each iteration caused by <QUANT2 >.

Remember that a (QUANT> is a program loop generator.

Examples:

{1;2;3;4>

is the ordered sequence 1,2,3,4, and is an instance of type INT

}, e.g., STACK_OF_)NTEGER declared earlier. Note, however, if {

INT } had never been mentioned in a declaration, this <EXPR>, or

any <EXPR> having this as a sub-<EXPR>, would fail the type pass.

{ 3.112.0 ; 1.316.2 ; 7.0#8.0 }

- 223 -

is a sequence of three points and is an instance of type { POINT }.

e.g,. SET_OF_POLES declared earlier.

{ 3.112.0 ; NIL ; 1.3#6.2 ; 7.0#8.0

is equivalent to the previous example.

{ 1 ; 2 ; $ I FOR I FROM 3 TO 7; 8 }

is equivalent to

(----QUAftiT- - ------)

(--------RAiGE---------)

2 3 ; 4 ; 5 ; 6 ; 7 ; B) and 1

1 2 FOR I FROM 3 TO 7; COLLECT I ; B

(-----QU~iT------)

STRSEL:

(--------------RAiGi---------)

<EXPR> ::= <EXPR1> [<EXPR2 >]

<EXPR1> must be of precedence zero.

Type requirements

<EXPR1> is a string of some type and

<EXPR2> = INT.

result = that type of which <EXPR 1> is a string.

PASS3 requirements

<EXPR2 > = SOURCE

result = <EXPR 1> = SOURCE. Also

' 224 '

result = TARGET when <EXPR1> passes as both a SOURCE

and a TARGET.

trleantng

Indexing: The resultjng value, in the SOURCE case, is the

<EXPR2>1 th element in ·the string <EXPR1>. In the TARGET case,

<EXPR1> is modified so that its <EXPR2> 'th element appear~ to have

the new value unless that new u~lue is NIL. Assigning NIL to an

element of a string has the effect of deleting that element from

the string, preserving the string's order. This is in keeping with

the fact that NIL is never an element of any string. Note that in

the string generation rules, STRGEN, all NIL values are ignored.

The debugging package will be entered under the following

conditions: In the SOURCE case, the index is non-positive. In the

TARGET case, the index is non-positive or the index is larger than

the length of the string. Note, however, if the index is larger

than the string length in the SOURCE case, a value of NIL, 0, or

FALSE is returned.

Examples:

{ 2 ; 4 6 } [2] is 4.

X[3] is the third element in X.

X[I+t] is the 1+1'th element in X.

X[I] := Z; modifies X so that its l'th element is 2.

The statements

v := 1.0Nt.O 2.0#2.0 3.0N3.0 }

V[2] := NIL ;

- 225 -

leave V being { 1.0#1.0 3. 0#3. 0 } .

ETAIL:]

<EXPR1> must be of precedence zero .

. Type requirements

<EXPR1 > is a ~tring of some type and

<EXPR2 > = INT.

result = <EXPR1>

PASS3 requirements

<EXPR2> = SOURCE.

Meaning

resu 1 t = <EXPR 1 > = SOURCE. Al so

result = TARGET when <EXPR1> passes as both a SOURCE

and a TARGET.

Tail extraction: The resulting value, in the SOURCE case, is the

substring of <EXPR1> which begins at the <EXPR2>1 th element and

continues until the end. In the target case, <EXPR1> is modified

so that its tail starting at the <EXPR2 >1 th position appears to be

the new value.

The debugging package will be entered under the following

conditions: In the SOURCE case, the index is non-positive. In the

TARGET case, the index is non-positive or the index is larger than

the length of the string. Note, however, if the index is larger

than the string length in the SOURCE case, the NIL string is

returned.

Examples:

~· 226 ~·

{ 2 ; 4 6) (2-) is

X[I-] is

at

X[I-][1] is

X[1-] is

X[I-] := { 20 ; 30 ; 40

modifies X so that X[I] is 20, X[I+1]

last element in X is now X[I+2].

Mt!~el Laneous String FonE.~.

ERFRSH:

ERFRSH:

<EXPR> ::= REFRESH

<EXPR> ::= REFRESH

Type requirements

<EXPR1> is a string of something

result = <EXPR1>

{ 4 ; 6 }

the tail of x, starting

position I.

equal to X[I].

equal to x.

> ;

is 30, and X[I+2] is 40.

or

PASS8 requirements

Keantng

result = <EXPR 1> = SOURCE

The

An identity: <EXPR1> appears unchanged, but a possibly more

efficient internal representation is chosen ·for· <EXPR1>. REFRESH

is purely an ~ptimizing consideration. The <BOP>s "$>", "$$", and

"<$" leave strings in a slightly inefficient form for

accessibility. REFRESH straightens out the wrinkles, so to speak.

Both the resulting <EXPR> and <EXPR1> are refreshed.

' 227 ,.

If the user defines a unary function named REFRESH which takes

a string as a paramotor, his definition overrides the first ERFRSH

rule. However, the equivalent form

REFRESH ! <EXPR>

cannot be overridden.

Examples:

Y := REFRESH(X)

Y gets a refreshed X.

Z := REFRESH(X)

is equivalent to "Z:=X;" if performed immediately after the

previous example, because X is already refreshed.

EREVRS: <EXPR> .. - REVERSE or

EREVRS: <EXPR> ::= REVERSE

have the same requirements as ERFRSH.

Meaning

The resulting value is the string <EXPR1> in reverse order. The

result is automatically refreshed. REVERSE can be overridden just

as REFRESH can be overridden.

Examples:

REVERSE({ 2 ; 4 ; 6 })

REVERSE(REVERSE(X))

is equal to 6

is equal to X.

4 2 }

~· 22B ~·

Record Gener!!_!_!on

RGENF: <EXPR> .. - <RECX>

where

SEMNOP: <RECX> .. - [<RECXT>

RGENQ: <RECXT> : := <ID1> <EXPR2>]

RGENt: <RECXT> : : = <ID kt> <EXPRk2> <RECX:Tk 3 >

Informally, a new record is specified by a 11
[" followed by a

sequence · of "<ID> ·<EXPR>" and is terminated by a "]". The

elements in the sequence are separated by blanks.

Tupe requirements

The resulting type is any declared record type which contains the

<CTVPE> elements "<I01> : the-type-of-<EXPR1>11 and each of "<IDkt>

the-type-of-<EXPRk2>11
•

PASS3 requirements

result= <EXPR2 > = <EXPRk2> = (SOURCE or TARGET).

/lfeantng

In the SOURCE case, create a new record whose component names are

<ID1> and each <IDk 1> and whose corresponding values are <EXPR2 >

and each <EXPRk2 >. Unspecified components are automatically

assigned the values: 0 for INT, REAL, and LOGICAL, FALSE for BOOL,

the NULL character (code 0) for CllARs, and NIL for all other types.

In the TARGET case, assign into each <EXPR2> and <EXPRk2 > the value

of the corresponding component from a given structure. The user

-· 229 -

cannot depend on having the <EXPR>s eualuated in their specified

order.

Examples:

[REAL_PART: 5.6 IMAGINARY PART: 3.0]

is a new instance of COMPLEX_NUMRER, a type which was declared by

an earlier example in the section Declarations.

[THICKNESS: 1 DIRECTION: 0#0 ; 111 ; 1#0 }]

is a new instance of WIRE (also declared earlier).

[THICKNESS: 1]

is a new instante of WIRE. The DIRECTION component is NIL.

however, that

[THICKNESS: 1 DIRECTION: NIL]

Note,

fails the type-pass because nowhere is NIL required to be equal to

some type. In general, an isolated "NIL" may not be specified in a

record.

[THICK.NESS: DIRECTION: A_PATH] := A_WIRE ;

assigns the THICK.NESS of A_.WIRE into I and simultaneously assigns

the DIRECTION of A_WIRE into A. PATH.

RSELQ: <EXPR> ::= <EXPR1>

<EXPR1> must be of precedence zero.

Type requirements

- 230 -

<EXPR1> must be a record type which includes a component whose name

is <ID2 >.

<ID2>·

The resulting type is the type of the component named

PA553 requirements

result = SOURCE = <EXPR1 >. Also,

result= TARGET when <EXPR1> passes as both a SOURCE and a TARGET.

Jlleantng

In the SOURCE case, the resulting value is the <ID2 > component of

<EXPR1>. In the TARGET case, <EXPR1> is modified so that its <ID2 >

component appears to have a new value.

Examples:

[REAL_PART: 1.3 IMAGINARY_.PART:2 .6]

is the REAL, 2.6.

X.REAL_PART

is the REAL_PART of X.

IMA.GINARY_PART

~ 231 ~

Points are generated by the form

<EXPR> I <EXPR>

where each <EXPR> is a REAL. Because ICL treatcs "I" as an infix binary

operator, please refer to the operator "I" in the section for <BOP>s.

PTSELX: <EXPR> .. - <EXPR1> x

PTSELY: <EXPR> .. - <EXPR1> y

<EXPR1 > must be of precedence zero.

Type requtrements <EXPR1> = POINT. result = REAL

PASS3 requirements are like those of the rule RSELQ.

flreantno

Select the X or Y coordinate of a point. A POINT is essentially

the record [X,Y: REAL]. However, a POINT is generated by REAL I

REAL rather than by the record generating form [X:REAL Y:REAL].

Examples:

(3.015.6).X

P.X

Q.X := 5.0

is 3.0

is the x-coordinate of

the point P

- 232 -

modifies Q so that its x-coordinate appears to be 5.0.

~· 233 ~·

This section covers the CASE-form when used in conjunction with

SCALAR types.

ECASEE: <EXPR> ... - CASE <EXPR1> OF <EXPRV2 >

where

EVCASE: <EXPRV> : : : = <ID1> : <EXPR2 > ENDCASE

EVCASB: <EXPRV> : : : = <ID1c1> : <EXPR1c2> <EXPRV1cs>

Informally, this states that an <EXPR> may be of the form

CASE <EXPR> OF

Type requirements

<ID> <EXPR>

<ID> <EXPR>

<ID> : <EXPR> ENDCASE

<EXPR1> must be of some declared scalar type. <ID1> and each

<ID1c 1> must either be elements of this scalar type's <IDLIST>, or

must literally be the <ID> ELSE.

Result = <EXPR2> = <EXPR1c2>

rASS3 requirements.

<EXPR1> = SOURCE

Result = <EXPR2> = <EXPR1c2> = (SOURCE or TARGET).

flreanina

Evaluate <EXPR1), thus yielding an <ID> in the scalar's <IDLIST>.

Look down the list of <ID1> and <ID1c 1>s in <EXPRV2> until you find

a match. Then evaluate the corresponding <EXPR2> or <EXPR1c2>. If

no match is found, i.e. the user hasn't specified all the <ID>s in

~ 234 ~

the scalar's <IDLIST>, then evaluate the <EXPR> corresponding to

the <ID> ELSE, if there is one. Otherwise, enter the debugging

package.

This form of the CASE statement is slightly more concise than

a corresponding use of the IF-THEN-ELSE form.

Example:

DEFINE WRITE(X:COLOR):

WRITE(CASE X OF

ENDDEFN

RED: 'Red'

BLUE: •Blue'

GREEN: 'Green'

YELLOW: 'Yellow'

BLACK: 'Black' ENDCASE

defines the function WRil'E for COLORs, a type which was declared

earlier, using the function WRITE defined for quoted text strings

(QS). The CASE form results in the type QS because all of its

clauses result in the type QS.

~· 235 ~

The following rule has two independent meanings. This section

documents only one of its meanings. The other meaning is covered under

Tupe Disambiguation. The form presented here is refered to as e~plicit

variant generation.

TYPDIS:

<EXPR2 > must be of precedence zero.

Type re qui rments

result = a uariant type where

<ID1> is the name of some state in that variant type and

<EXPR2> is of the type corresponding to this state.

PASS3 requirments

result = SOURCE = <EXPR2>

Meaning

The resulting value is the variant object which resides· in state

<ID1> and which has value <EXPR2>.

Examples:

The datatype declaration

TYPE EDGE = EITHER

STATE1 = LINE

STATE2 = ARC

ENDOR;

~· 236 ~

specifies that an EDGE may rcsjde in one of two states. The names

of the states are STATE1 and STATE2. An EDGE found in STATE1 is

represented by an instance of the type LINE and an EDGE found in

STATE2 is represented by an instance of the type ARC. If LINE5 is

a variable of type LINE, then the <EXPR>

STATE1 : : LINES

is an instance of EDGE. This EDGE is in the state STATE1 and its

value is LINE5. Similarly,

STATE2 :: an <fXPR> of type ARC

is an EDGE residing in the state STATE2.

The followi~g <EXPR> is not an EDGE:

STATE2 :: LINE5

An EDGE cannot both be in STATE2 and he rcpnisented by a LINE. An

EDGE in STATE2 can only be represented with an ARC.

As described earlier with the variant <TYPE> construct, the

variant <TYPE> construct provides coercions from each of its

constituent types to the variant type. Thus, the type EDGE, a

variant type whose constituent types are LINE and ARC, comes with

the coercions

LINE -> EDGE and

ARC - > EDGE

This means that an instance of LINE and an instance of ARC each

implicitly can be viewed as an instance of type ,EDGE.• The user

actually does not need to write

- 237 -

STAlE l : : LINES

to have LINES pass as an instance of EDGE.

LINES

by itself passes as an instance of EDGE, thanks to the coercions.

Similarly,

an <tXPR> of type ARC

passes as an instance of EDGE.

The reader might wonder if it is ever necessary to explicitly

specify the state for a variant object. It would seem that the

coercions supplied with the variant type declaration make it

unnecessary. There are two reasons why the user wi 11 want to

explicitly specify the state. The state may he specified solely

for clarity or style. However, there are cases where it is

absolutely necessary to specify the state. Consider the following

variant datatype.

TYPE PICTURE = EI111ER

POLYGON =

WIRE =

EN DOR;

POINT

POINT

The type PICTURE has two constituents whose types are identical.

The <EXPR>

{ point ; point ; point >

can be viewed as a PICTURE in two ways. Is it in the POLYGON state

or is it in the WIRE state? If the user does not specify the

state, the string of points is ambiguous \'<·hen viewed as a PICTURE.

- 238 -

Each of the following is unambiguous because the state is

explicitly stated:

POLYGON ••

WIRE : :

point

point

point ; point

poi n t ; . poi n t

-· 239 -

This section covers the CASE form when used in conjunction with a

variant object.

A variant value can be examined only by using the following form.

ECASE: <EXPR> ... - CASE < ID1> OF <EXPRV2>
where <EXPRV> is as defined for the scalar CASE form:

EVCASE: <EXPRV> ... - <ID1> : <EXPR2 > EN DC ASE

EVCASB: <EXPRV> ... - < IDk 1 > : <EXPRk2 > <EXPRVk3>
Type requirements

<ID1> of ECASE, the case variable, must be a variable of some

variant datatype. Each of the <ID1> and <IDk 1>s of the <EXPRV>

must either be the name of one of the states in the variant

datatype or literally ELSE.

The case-variable, <ID1> of ECASE, is automatically modified

within each case-clause, the <EXPR2> and each <EXPRk2 >. The type

of the case-variable within the case-clause labeled <IDkt> becomes
I

precisely that type which is associated with the state <IDkt> in

the variant datatype's definition. The case-variable assumes the

state's particular type because the state of the case-variable is

known within each case clause. Hol'•ever, within the ELSE clause, if

there is any, the case-variable is not modified and it still

retains its original, variant type.

Within each case-clause, the user is free to assign new values

into the case-variable. However, the data he assigns must be of

the specific type which the case-variable assumes in• the

- 240 -

case-clause. Once the CASE form is terminated, the case-variable

appears unmodified regardless of the new values it might have been

assigned from within any of the case-clauses excepting the ELSE

clause.

PASS3 requtrements are like those for the scalar CASE.

Jlfeaning:

Fetch the value from the variable <ID1>. Look down the list of

<ID1> and <IDk 1>s within <EXPRV2> until one matches the state in

which the variant value currently resides. Then evaluate the

corresponding <EXPR2> or <EXPRk 2> and that is all. However, if no

match is found, evaluate the ELSE clause if there is one, otherwise

enter the d~bugging package.

As noted above, the meaning of the case-variable's name is

different within each non-ELSE case-clause. Thus, if the user

wishes to refer to the original variant value from within a

specific case-clause, he must have previously assigned the original

value to another, independent variable.

Examples:

Assume L is a variable of the variant type LISP_ELEMENT .declared

earlier.

WRITE(CASE L OF

AlOM: 'L is an ATOM'

CONS PAIR: 'L is a CONS PAIR'

INTEGER NUMBER: 'L is an integer'

FLOATING NUMBER: 'L is a real number' ~NDCASE

) ;

- 241 -

uses WRITE of a QS to report in which state L resides. If L is in

the ATOM state, then "L is an ATOM" is typed out. If L is in the

CONS_PAIR state, them "L is et CONS_PAIR" is typed out, etc.

DEFINE IS __ ATOM(L: LISP _ELEMENT)=BOOL:

CASE L OF CONS PAIR: FALSE ELSE: TRUE

ENODEFN

ENDCASE

def in es the function "IS_ATOM" to be like LISP' s predicate "ATOM".

DEFINE IS_L IlATOM(L: LISP _ELEMENT)=BOOL:

CASE L OF ATOM: TRUE

ENODEFN

ELSE: FALSE ENDCASE

defines "IS_LITATOM" to match LISP' s LITATOM predjcate.

DEFINE CDR(L:LISP_ELEMENT)=LISP_ELEMENT:

CASE L OF

CONS_PA.IR:

ELSE:

ENDCASE

ENDDEFN

L .CDR

00 report an error GIVE NIL

defines CDR extraction. CDR doesn't succeed unconditionally. CDR

of an INTEGER_NUMBER is an erroneous request, for example. Note

that within the CONS_PAIR case-clause, the variilble L may have its

CDR field fetched because L has been implicitly declared to be of

the record type "[Cl\R,COR:LISP __ ELEMENT]" for the duration of the

CONS_PAIR case-clause.

DEFINE EQUAL(X,Y:LlSP_ELEMENT)=BOOL:

CASE X OF

- 242 -

ATOM: CASE V OF

ATOM: X=Y ELSE: FALSE ENDCASE

INTEGER_NUMBER: CASE V OF

JNlEGER NUMBER: X=Y ELSE: FALSE ENDCASE

FLOATING NUMBER: CASE V OF

FLOATING NUMBER: X=V ELSE: FALSE ENDCASE

CONS PAIR: CASE V OF

ENDCASE

ENDDEFN

CONS_PAIR: EQUAL(X.CAR,V.CAR) &

EQUAL(X.CDR,Y.CDR)

ELSE: FALSE ENOCASE

defines the predicate EQUAL to tell if two given LISP ELEMENTs are

identical in structure. This states that if the first LISP ELEMENT is

in the ATOM state, then equality is achiaved only if the second

LISP_ELEMENT is also in the AlOM state and if it has the same value.

Similar requirements are used to complete the definition for EQUAL by

accounting for the other states in ~hich a l.ISP_ELEMENT may reside. In

the CONS_PAIR state, recursion on the CAR and the CDR is used., The

binary operators "=" and "&" arc defined later in the section for

<BOP>s. In ICL, "=" is defined only for the primitive datatypcs. Note

that in the ATOM cases for X and V, the "=" compares two QS's and that

in the INTEGER_NUMBER cases, the "=" compares two INTegers, and that in

the FLOATING_NUMBER cases, the "=" compares two REALs. The CONS PAIR

cases, however, are not written using

two LISP_ELEMENTs. LISP ELEMENT is

"=" because "=" will not compare

a non-primitive type. Note also

that onlu within the CONS_PAIR clauses can we select the CAR or CDR

~ 243 ~

field of X and Y.

~ 244 ~

The following rule has two independent meanings. One of the

meanings has already been covered in the section Variant Generation.

The meaning presented here is

specification.

TY POIS:

referred

<EXPR2> must be of precedence zero.

Type requirments

to

<ID1> is the name of a declared datatype and

result = <EXPR2> = the type <ID1>

PASS3 requirments

result = <EXPR2> = (SOURCE or TARGET)

/lfeantno

as e"K.plicit type

<EXPR2 > is e"K.plicitly required to be of type <ID1>. This

construct is useful for disambiguation. The existence of type

coercions and polymorphic function names may lead to ambiguities in

datatypes. For example, suppose we have twice defined the function

name WRITE, once for INTegcr input and once for ·REAL input.'

Suppose further that we have an INTcger-to-REAL type coercion. If

the user types

WRITE(K);

where K is an INTeger variable, two scenarios appear possible. One

scenario is th~t the INTegcr-WRITE will be invoked. The other is

that the REAL-WRITE will be invoked after coercing K to a REAL.

ICL will choose the simpler of the two scenarios because ICL

~ 245 ~·

applies coercions with reluctance. In short, the pr~ferred type of

K is INTeger, not REAL. llowevcr, the user may force the coercion

to apply by writing:

WRITE(REAL::K);

The <EXPR> "REAL::K" passes the type-pass only by viewing K as a

REAL. The preferred type of "RE/\L::K" is REAL, not INTeger.

Examples:

INT:: 1

is equivalent to 1.

INT:: (1.0+2.3)

is equal to 3 if the user has supplied a REAL-to-INT coercion, so

that the REAL, (1.0+2.3), may be viewed as an INT.

LISP_ELEMENT:: NIL

is a NIL LISP ELEMENT. NIL can be made an instance of any type to

which NIL is equal by prefixing NIL with that type's name. Thus

[CAR: 5 CDR: LISP_ELEMENT::NIL]

passes the type pass and is equivalent to

[CAR: 5]

- 246 -

Function f~!in.9

Functions with parameters arc called by

'ECALLP: <EXPR> .. - <ID1> <ARGS)
2

where

ARGS1: <ARGSX> .. - <EXPR>

ARGS2: <ARGSX> .. - <ARGSX1> <EXPR2>

ARGS3: <ARGS> .. - <ARGSX>

Informally, this states that an <EXPR> may be formed by an <ID>

followed by a "(" followed by a sequence of <EXPR>s separated by

commas followed by a ")". This has the appearence of FORTRAN.

Tupe requirements

There must exist a declared function whose name is <ID1> and who~e

input parameter types sequentially match the types of the <EXPR>s

in <ARGS>. An isolated "NIL" may not be passed as a parameter

because NIL has no type and a test for type equality is not used

here. However, a NIL valud may be passed as a parameter by using

the rule TYPDIS.

PASS8 requirements

Each <EXPR> in <ARGS> = SOURCE and

result = SOURCE.

Meant no
Evaluate, in order, each <EXPR> of <ARGS> and then call the

appropriate function, <ID1>.

function.

Example

The resulting value is that of the

~ 24 7 ~

EQUAL(X,V)

is a BOOLean if X and Y arc LISP ELEMENls, referring to an earlier

example.

Functions without input parameters are called by just naming the

function name. This was described in the rule EID.

- 248 -

Binary operators are denoted by <BOP> and are things like 11 +11
,

11
-

11
,

Unary operators arc denoted by <UOP> and <RHUOP> and are

things like unary minus and boolean NOT, 11
-

11
• Associated to <BOP>s and

<UOP>s is an attribute called precedence. Precedence is precisely that

syntactic notion which specifies which operators are to be performed

before others, or in other words, which operators have tighter bonds to

their operands. For example, 11
• before +", meaning that 1+2•3 is 7 and

not 9, is specified by having the precedence of 11
•

11 be lower than the

precedence of "+". By an internal convention in ICL, lower precedence

means a tighter bond.

<EXPR>s also have an associated precedence. The precedence of an

<EXPR> is precisely the precedence of the most recent <BOP> or <UOP>

which was used in forming that <EXPR>. For example, the precedence of

the <EXPR> "1+2" is that of the <HOP> "+ 11
, and the precedence of "1+2•3 11

is also that of "+" because "+" is the last operator used in forming

"1+2*3". The precedence of "(1+2)*3 11 is that of"*"

SEMNOP: <EXPR0 > .. -

The resulting <EXPR>, <EXPR0>, has precedence zero, as do all rules

for <EXPR>s which don't specify otherwise. This rule has no type

nor PASS3 requirements per se, and the meaning is nothing. The

only effect of the parentheses is to overide any default grouping

caused by precedence.

EBPP or EBOPG:

~· 2'19 ~

Synta~ requirements

Precedence: The precedence of <EXPR 1> must he less than or equal

to the precedence of <BOP2 > and the precedence of <EXPR
3

> must be

strictly less than the precedence of <BOP2 >. This guarantees that

<BOP>s with lower precedence will be combined first and that <BOP>s

of equal precedence will be associated left-to-right. This is just

like FORTRAN.

If <BOP> has no precedence, then the rule applies, but after
t

all type and PASS3 requirements are checked, a preference is made

for left-to-right association. lhis feature will be explained in

the section about <BOP>s.

lhis rule does not apply if <f.XPR1 > has the special precedence

called £MAX. A rule of grnmmar producing an <EXPR> of precedence

EM!lX specifies that its result has higher precedence than any

<BOP>s and therefore applies only after all <BOP>s have been bound.

For an example, see the rule EGIVE, which produces an <EXPR> of

precedence £MAX.

Type and PASS3 rcqurements depend on <BOP2 >.

Meaning

Evaluate <EXPR1> and <EXPR3> and then apply <BOP2 > to the resulting

values. There is no guarantee as to which of <EXPR 1 > and <EXPR3 >

is evaluated first.

Examples:

1 + 2

1 + 2 • 3

- 250 -

There are more examples in the section for <BOP>s.

EUOP:

Syntax requirements

Precedence: <EXPR2 > must be of precedence less than or equal to 2

and the resulting <EXPR> is of precedence 2. That is to say,

<UOP>s may prefix <EXPR>s of precedence 2ero or <EXPR>s which are

themselves prefixed by <UOP>s.

Type and PASS3 requirements depend on <UOP 1 >.

Keanina

Evaluate <EXPR2 > and then apply <UOP 1 >.

Example:

-1 or --1

-1+2 equals 1, not -3

-X[I]

groups as -(X[I]) and not as (-X)[I] because the string indexing

construct, STRSEL, requires the string-<EXPR> to have precedence

zero. The string-<EXPR> X has precedence zero but the

string-<EXPR> -X has precedence 2. Hence, the string-<EXPR> -X

cannot be used in the string indexing construct. The unary minus

is therefore attached ~ftcr X and [I] are attached because the

<EXPR> X[I] has precedence zero.

EUOP or EUOPG:

This is like the rule EUOP above, hut it's for unary ops which must

appear on the righthand side. The precedence conditions and

examples are delayed until <RllUOP>s arc dcsc:ribcd.

~ 251 ~

f.'!Ql!.!_1_1_g__ !!!it.~. ~_!Hlf.~-~-

The mapping from "+" to summation is defined for all operators.

The rules:

EBOPQ: <EXPR> .. - <BOP 1> <F.XPR2> <OlJANT3 >

EBOPQ: <EXPR> .. - <QUANT3 > GIVE <BOP 1> <F.XPR2 > END

EBOPQ: <EXPR> .. - <QUANT 3> <BOP 1 > <EXPR2 >

all have the same meaning: each yields the cumulative .value

<EXPR2 > <BOP 1> <EXPR2 > <BOP 1 > ... <EXPR2 >

where the number of terms is determined by the program loop

generator <QUANT3 >.

precedence El'fAX.

Tupe req~trements

The third rule results in an <EXPR> of

There must exist some type, T, which can act as a temporary for

holding the cumulating value. Thus, T is characterized by

T = <EXPR2 >

T = the resulting type from (T <BOP 1> <EXPR2))

These accommodate assigning an initial value to the temporary and

then assigning cumulative values for each iteration. These two

equations, in the space of datatypes, are not singular;

"T=<EXPR2 >" doesn't hind T exclusively to one datatype. If

necessary, the <EXPR2 > in these two equations will differ by having

one be the result of applying cocrcion(s) to the other. Typically,

however, this type constraint means that both operands of the <BOP>

and the resulting type are all equal.

PASS3 requirements

Meaning

result = <EXPR2 > = SOURCE

- ?.52 -

Apply <BOP1> to the successive v<tlucs of <EXPR2~ generated
'

by

evaluating <EXPR2> once for each i~eration caused by <QUANT3>.

Examples:

+ FOR I FROM 1 TO 5;

(-BOP-) (-EXPR-) (--------QUIUiT-----)

sums up ts as I marches from 1 to 5.

+ I FOR I FROM 1 TO N;

equals 1+2+3+ •.• +N.

* 2 REPEAT N;

(-BOP~) (-EXPR-) (--QUANT--)

equals 2 to the Nth power.

+ F(I) FOR I FROM 1 TO N;

(-BOP-) (-EXPR-) (------QUAIT-------)

is equivalent to

FOR [FROM 1 TO N; GIVE + F(I) END

(-------QUANT------) (-BOP-) (-IXPR-)

and to

FOR I FROM 1 TO N; • F (I)

(-------QUM1iT------) (-BOP-) (-EXfR-).

Note that the precedence of the third rule specifies that

REPEAT 10; ... 2 * 3 ... 1

groups as

REPEAT 10; •(2"3+1)

~ 253 ~

and not as

(REPEAT 10; + 2) * 3 + 1

or

(REPEAT 10; + 2 * 3) + 1

The resulting <EXPR> from the third EBOPQ r11le has precedence t~AX

and hence that <EXPR> cannot be the lefthand operand for a binary

operator. Refer to the precedence requirements of the rule EBOP.

The .following <EXPR> forms correspond to mathematical logic's

existential and universal quantification. The reader might note the

similarity between these <EXPR> forms and those of the previous section,

looping with <BOP>s. The following four QBOOLt rules are equivalent in

meaning.

QBOOL1: <EXPR> .. - (QUl\NT1> <EXPR2> <QBOOL3>

QBOOL1: <EXPR> .. - <OUANT1> <QBOOL3> <EXPR2>

QBOOL1: <EXPR> .. - <QUANT1> GIVE (Q[l.OOL3> <EXPR2 > END

QBOOL1: <EXPR> : : = <QBOOL3> <EXPR2> <QUANT1>

where

QBALW: <QBOOL> .. - ALWAYS

QBNVR: <QBOOL> .. - NEVER

QBEXS: <QBOOL> .. - EXISTS

QBEXS: <QBOOL> : : = THERE IS

Syntax Requirements

The second QBOOL1 yields an <EXPR> of precedence EMAX.

The first rule'~ (QBOOL3> will not admit THERE IS and the other

rules' <QBOOL8> will not admit EXISTS. EXISTS and THERE_IS have

identical meanings;

readabi Ii ty.

this restriction merely enhances program

Type Requirements

PASS8 Requirements

/lleaning

result = BOOL = <EXPR2>

result = SOURCE = <EXPR2>

- 255 -

Evaluate <EXPR2> once for each iteration cuused by <QUANT1 ~ and

stop as soon as the condition specified by <OBOOL3> becomes known.

If the condition becomes known before the <QUANT> is exhausted, the

user will find the variables of <EXPR2> holding those values which

were used in the final evaluat]on of <EXPR2 >.

The <OBOOL> ALWAYS yields TRUE only "''hen all values of <EXPR2 >

yield TRUE. NEVER yields TRUE only when all values of <EXPR2 >

yield FALSE. EXISTS and lHERE __ IS yield TRUE as soon as <EXPR2 >

yields its first lRUE.

Examples:

ALWAYS X<5 FOR X $E S;

(--QUMiT-----)

FOR X $E S; ALWAYS X<5

(---QUA""T---)

FOR X $E S; X<5 ALWAYS

(---QUA1iT---)

are equivalent and each yields TRUE if X<5 for all X in the string

s.

THERE_IS X<5 FOR X SE S;

FOR X $E S; THERE_lS X<5

FOR X $E S; X<S EXISTS

are equivalent and each yields TRUE if there exists at least one X

in S with X<5.

NEVER X<S FOR X $E S;

FOR X $E S; NEVER X<5

- 256 -

FOR X $E S; X<5 NEVER

are equivalent and each yields TRUE if each element in S is not

less than 5. The following are equivalent:

ALWAYS <EXPR> <QUANT>

NEVER - <EXPR> <QUANl>

- THERE IS - <EXPR> <QUANT>

The "-" is logical NOT.

Note that if

ALWAYS X<S FOR X $E S;

yields FALSE then X is left containing a number such that X<S is

FALSE. The form

IF THERE IS X<5 FOR X SE S; THEN then-clause

ELSE else-clause FI

guarantees that X contains the first value in S less than 5 upon

entering the THEN-clause.

IF ALWAYS X<S FOR X $E S; HIEN then-clause

ELSE else-clause FI

guarantees that X contains the first value jn S which is not less

than 5 upon entering the ELSE-clause.

IF NEVER X<S FOR X $E S; TllEN then-clause

ELSE else-clause FI

guarantees that X contains the first value in S which is less than

5 upon entering the El.SE-clause.

FOR X $E S; ALWAYS TMERE_IS Y=X FOR Y $E Si;

- 257 -

or

FOR X $ES; ALWAYS FOR Y $E St; lHERE IS X=Y

states the condition that the string S is a subset of the string

St.

IF FOR X $E S; Al.WAYS lHERE_IS Y=X FOR Y $E Sl;

THEN then-clause ELSE else-clause FI

guarantees that upon entrance to the El.SE-clause,·x holds the first

value in S which is not in Sl.

- 258 -

The following three rules enable the jnsertion of a <SS> within an

<EXPR>. This section concludes with a warning about side effects and

order of evaluation.

EGIVE: <EXPR) .. - DO <SS1> GIVE <EXPR2>

EGRAB:

EGRAB:

<EXPR) .. - GIVING <EXPR2> DO <SS1> END

<EXPR> .. - PO <SS1> GRABBING <EXPR2>

The first and third rules yield <EXPR>s of precedence E'/lfAX.

Type requirements

PASS3 re~utrements

Meaning

result = <EXPRi>

result = <EXPR2> (SOURCE or TARGET)

The first rule specifies that <SS1> is executed before evaluating

<EXPR2>. The resulting value js that of <EXPR2>. This is LISP's

PROGN function. lhe second and third rules are equivalent and each

specifies that <ss1> is executed ajlcr <EXPR2 >. This is LISP's

PROG1 function.

E>c.amples:

DO I:=K*N-V/5; GIVE I+J

yields the value of "l+I" after I has been assigned "K*N-V/5".

Note that this groups as

DO I:=K*N-V/5; GIVE (I+I)

and not as

(DO I:=K*N-V/S; GIVE I) + I

- 759 -

because the DO ... GIVE rule yields an <EXPR> of precedence UfllX. A

DO ... GIVE form cannot be the lcfthand operilnd of a <BOP), unless,

of course, it is enclosed in parentheses. llencc the "I+I" has to

bind first.

GIVING I+I DO I:=K*N-V/5 END

yields the value of "l+I" and then resets I to the value of

"K.•N-V/5".

DO WRITE(!•!); GRABBING I := 5;

types out a 25. The cvilluntion of the lefthand side of this

assignment statement sends the number 5 to the DO ••• GRABBING form.

The DO ••• GRABBING form first cvaluatf!s its <EXPR2 >, I, and thus

sets I to 5. It then executes <ss 1>, typing out a 25.

The fol lowing rule offers a more concise notation for one of the

more common DO ... GIVE usages.

SETQX: <EXPR> ... -

This represents an assignment statement enclosed in parentheses.

The part-of-speech <SSRHS> will be documented completely in the

section called Assignment Statements. for the time being, let us

assume the definition:

<SSRHS> := <EXPR> ;

<SSRHS> stands for "<SS>'s righthand side" and comprises the

righthand side of the assignment statement including the :=. Thus,

the form

<EXPR> <SSRHS>

- 260 -

represents the assignment statement

<EXPR> . - <EXPR>

and the form

(<EXPR> <SSRHS>)

takes on the appearance

(<EXPR> := <EXPR> ;)

The parentheses around the assignment statement transform it into

an <EXPR> whose value is that value which passes thru the

Formally speaking, the type and fASS3 requirements and the

meaning for the rule SETQX are all derived by transforming

(<EXPR1> <SSRBS2>)

(DO <EXPR 1> <SSRllS2 >

<-------ss------->

into

GIVE · <EXPR > 1

Refer to the assignment statement rule, SSASS, in the section for

<SS>s.

Examples:

(1:=1+1;) increments I and yields

the resulting value of I.

I:=(J:=3;); sets both I and J to the

value 3.

Notice that the semicolon is required as part of the assignment

statement!

IF (J:=N•N;) < 4 lHEN ,J ELSE J+1 FI

- 261 -

yields the value N•N if N•N is less than 4, otherwise it yields

N•N+1. This is equivalent to

IF DO J:=N*N; GIVE J < 4 THEN J ELSE J+t FI

fllAMUNG:

Embedding <SS>s within <EXPR>s expands the notion of computed ualue

to include side effect~. The evaluation of an <EXPR> containing an

embedded <SS> not only yields a value but it also performs some actions,

typically modifying variables. Because of such side effects, the order

of <EXPR> evaluation becomes a relevant issue. For example,

(J: =2;) * J

yields either a 4 or 2•(the old value of J), depending on which of the

two parameters to the "*" evaluates first. The rule incorporating the

"*" EBOP, clearly states that the user cannot depend on the order of

evaluation. Thus, the above <EXPR> yields an uncertain value.

Similarly, the string

{ DO J:=2; GIVE J J }

yields either {2;2} or (2;the old value of_J}. The STRGEN rules clearly

state that the order of evaluation in strings is uncertain.

EDECL:

DCOUGH:

DCOUGH:

- 262 -

<EXPR> ::= <BEXPR>

where

<BEX PR>

<BEX PR> : : : =

BEGIN

BEGIN

result = <EXPR2>

END

END

Tupe requtremcnts

PASS3 requirements

/lleantng

result = <EXPR2> = (SOURCE or 1ARGET)

Evaluate <EXPR2>. However. the declarations, are

incorporated for the duration of <EXPR2 >. Thus. the user may

declare new variables to be local to <EXPR2>. Ile mny also declare

new types, functions, or coercions which arc accessable only within

<EXPR2 >. Outside of the BEGIN-END block, the effects. of <OECL 1>

are absent.

Any variable or type decl~ration which defines a previously

used name automatically overrides the name's previous definition.

However, the same is not true for function and coercion

declarations. Unfortunately. an attempt to override a previous

function or coercion definition results in ambiguity when the

function or coercion is used within <EXPR2>.

Examples:

BEGIN VAR l,J=INT;

END

DO 1:=20; J:=30;

GIVE I*J

~ 263 ~

declares I and J to be local INTegers for the duration of this

<EXPR>. Its value is 600. Any external meanings for I and J are

unchanged.

BEGIN VAR 1,J=INT;

DO 1:=10; J:=30;

GIVE I+J* BEGIN VAR J=INT; J=REAL;

f)O I:=J;

GIVE I

END • I

END

yields the value 910: The inner BEGIN-END <EXPR> yields the value

3 and the "I~J• ... *I" therefore reduces to "I+J*3*I". Even though

I is redeclared inside the inner BEGIN-END hlock, within the outer

block but not within the inner block, I has its assigned value of

10.

BEGIN LET COMPLEX_NUMBER BECOME REAL BY

COMPLEX_.NUMBER .REAL_PART

some <EXPR>

END

specifies that for the duratj.on of the <EXPR>. COMPLEX_NUMBERs may

implicitly be viewed as REA.Ls by considering only their REAL_.PARTs.

This might be useful if within this block, all COMPLEX NUMBERs were

scrutinized only for their relatjon to the imaginary axis.

DEFINE IOTA(N: INT)=SlACK_.OF _INT:

BEGIN VAR I=INT;

COLLECT I FOR I FROM 1 TO N;

- 26'1 -·

END

ENDDEFN

defines APL's iota function, which returns the string of integers

from 1 to N. The variable I is local to this function and hence

does not interfere with any other use of the name I.

DEFINE SUBSCRIPT(SUBJECT,INOICES:STACK~OF_INTEGER)

= STACK. __ OF __ INTEGER:

BEGIN VAR I=INT;

END

ENDDEFN

COLLECT SUBJECT[I] FOR I $E INDICES; }

defines APL's vector-on-vector indexing operation. The "$E" within

the FOR-quantifier reads "an element of".

- 265 -

This section covers a structured management for global variables:

the HOLDING form. The HOLDING form works for any kind of variables but

it is primarily useful for managing global variables.

introduce the part-of-speech <ASN>.

We wi 11 also

HOl.DIT: <EXPR> ... - llOLDING <ASN1 > GIVE <EXPR2 > ENDHOLD

Type Requt rements

PASS3 Requirements

result = <EXPR2 >

result = <EXPR2 >

Keantng

ASN1:

The resulting value is that of <EXPR2 >. However, preceding

<EXPR2 >•s evaluation, the specified variables in <ASN1 > are saved

and <ASN1 >1 s implied assignments are carried out. After the

evaluation of <EXPR2 >, the specified variables in <ASN1 > are

restored.

This is like LISP's PROG function except that variables without

implied assignment are left unchanged, i.e., they are not set to

NIL. The <ASN> in the HOLDING form corresponds to the PROG's first

parameter.

Examples will follow .

. . - <IDru>

ASNRHS:

<ASN>

<ASN> .. - <IDkt> <SSRHSk2>

ASNX:

~· 266 ~·

<ASN> .. - <ASN> <ASN>

Informally, an <ASN> is a sequence of either "<ID>;" or

"<ID>:=<EXPR>;". The part-of-speech <SSRllS> is covered in the

section Assignment Statements. <SSRHS> is basically the form

.- <EXPR>

Thus, the form in the rule ASNRHS

< IDkt> <SSRHSk2 >

appears as

<IDkt> .- <EXPR> ;

and represents an assignment statement where the lefthand side is

the variable <IDk 1>.

Tupe Requtrements

Each <IDk 1> must be some declared variable and each

<IDkt> <SSRHSk2 >

must satisfy the type requirements implied by the assignment.

Refer to the assignment statement rule, SSASS, in the section for

<SS>s.

'PASS3 Requtrements

Those implied by the assignments

Jlfeantno

An <ASN> has an abstract meaning in ICL. An <ASN> represents both

a set of <ID>s, all the <IDk 1>s, and a set of assignment

statements, all the <IDk 1><SSRHSk2 >s of the rule ASNRHS. The set

of <ID>s is called the specified variables and the set of

assignment statements is called the implied assignments.

- 267 -

Examples of <ASN>s:

I;J;K.

has the spectfied variables I, J, and K, and has no implied

asstgnments. Notice that there is a terminating semicolon.

J := 3 ; K ; I

(--ASli--) (-SSRllS-) (-ASN-)

(----AS~i---)

has the spccifted variables I, J, and

asstonments J:=3;.

I ; J:= (V:=3;); K: =2;

has the specified uariahles I' J, and

asstonments

J:=(V:=3;); and K:=2;.

K., and has

K, and has

Note that Vis not in the set of specified variables.

Examples of the HOLDING form:

HOLDING I;J;. GIVE <EXPR> ENDHOLD

(-As~·-)

the implied

the implied

specifies that I and J are to appear unchanged after this <EXPR> is

evaluated.

HOLDING I;J; GIVE

DO 1:=1; GIVE <EXPR> ENDHOLD

~· 268 -

specifies the same as above except that I is set to 1 before

<EXPR>'s evaluation.

HOLDING 1:=1; J; GIVE <EXPR> ENDHOLO

specifies the same as the previous example.

HOLDING EPSILON:=EPSILON/2; GIVE

SOLUTION __ TO_EOUAlION ENDllOLD

specifies that while fjnding SOLUTION_TO_EQUATION, EPSILON is to be

cut in half.

In general, when you want to reuse a global variable, use the

HOLDING for~ to assign it its new value, lest the global variable's

previous value be lost. This kind of treatment for global

variables is essential in many recursive enviornments.

HOLDING INPUT_DEVICE:=DISK; GIVE

INPUT_lEXT ENDHOLD

specifies that the function INPUT_TEXT will operate in the context

where INPUT __ DEVICE=DISK. As implied by its use above, INPUT_TEXT

is a parameterless function. llol'.·ever, if INPUT TEXT were defined

to be a function of one parameter, the input device, its call would

look like

INPUT_TEXT(OISK)

The use of the HOLDING form is equivalent in the sense that an

input parameter is being specified. However, the latter form

requires the input device to be specified upon each call to

INPUT_TEXT whereas the former form sets that parameter for all

calls to INPUT_TEXT, thus making the input device an implicit

- 269 -·

parameter.

- 270 -

The introduction to this manual mentions that the ICL user need not

be aware of p~inters. This section presents the anchoring operator, the

only operator in ICL which requires the user to be aware ,of ICL's

pointer implementation. The anchoring operator is useful only if the

user wants to take further advantage of ICL's pointer implementation.

EAT: <EXPR> ::=

Type Requirements

result = <EXPR1> = any type to which NIL is equal except POINT.

PASS3 Requtrements

<EXPR1> = SOURCE

result = (SOURCE or TARGET)

l'reantno

no~op; the resulting value is In the SOURCE case,@(...) is a

simply the value of <EXPR 1>. However, in the TARGET case, ICL

stores the given value into the memory location occupied by the

value of <EXPR1>.

The debugging package will be entered under the following

conditions: In the TARGET case, either <EXPR1> is NIL or the given

value is NIL, i.e., either

Examples:

@(NIL):= <EXPR> or @(<EXPR>):= NIL

A :=[REAL_PART:1 1MA.GINARV_PART:2];

B .- A ;

- 271 -

leave A and B referencing the same memory location. The assignment

A.REAL_PART := 700;

modifies A so that A's REl\L __ PART becomes 700. However, B's

REAL_PART is untouched and still contains the value 1. A and B now

reference different memory locations. On the other hand, if we

instead were to write

@(A).REAL_PART := 700;

B.REAL_PART would also become 700. That is, the memory location

referenced by A is modified, not the variable A itself. B feels

the change because B references the same location referenced by A.

When do computed values reference the same memory location?

This question cannot be answered without some knowledge of ICL's

implementation. The reader is referred to the section !Cl's Policy

about Assignments, Pointers, and Copying for a complete

explanation. The LISP user, however, can come to a reasonable

understanding by knowing that in ICL the generation of records,

strings, and variants operates like l.ISP's LIST function; the
I

results occupy newly allocated memory locations. For example,

[A:X B:Y]

{P;Q;R}

p: :Q

acts like (LIST X Y)

atts like (LIST P Q R)

acts like (CONS P Q)

and with ICL's TARGET selection forms,

W.A:=X; acts like W:=(CONS X (CDR W))

if A happens to be the first

component in W

' 272 '

W[2]:=X; acts like W:=(CONS (CAR W)

(CONS X (CDDR W]

W[2-J:=X; acts like W:=(CONS (CAR W) X).

Thus, the ICL nested record

W:= [A: [P:X] B: [P:X]];

specifies that W.A and W.B do not reference the same memory

location, but that W.A.P and W.B.P do reference the same location.

The operation

@(X):=V; or @(W.A.P):=Y;

makes a change which is apparent from both of W's A and B

components. However, the assignment

@(W.A).P := V;

appears to modify W's A component without modifying W's B

component. W's A and B components referen~e different memory

locations, each containing a different copy of [P:X].

Refer to the section ICl's rolicy about Assignments, Pointers,

and Copying for a complete explanation.

ECOPV: <EXPR> .. - COPY <EXPR 1>

ECOPY: <EXPR> : : = COPY <EXPR1>
Type Requirements are like the rule EAT, above.

PASS8 Requtrements . result = SOURCE = <EXPR1>.

Keanino

~ 2 73 ~

The resulting value is a copy of the value of <EXPR1>. The copy

and the value of (£Xrll 1> occll/'ff di/Jcn:nt memoru locations. COPY

is a very fast operator, only two PDP-10 words are moved. However,

if the value of <EXPR1> is NIL, COPY acts as a no-op and simply

returns NIL.

If the user defines a unary function named COPY, his

definition will· override the first ECOPY rule.

equivalent form

COPY ! <EXPR>)

cannot be overridden.

Example:

However, the

Referring to the above example with A and B, if we substitute the

B := A ;

with

B : = COPY(A) ;

then the assignment

@(A).REAL_PART := 700;

does not affect B. The structure referenced by B is not at the

location referenced by A, thanks to the COPY.

- 274 -

Q!l~.~.£ t i.!!.9. ~-H.

EDEF: <EXPR> .. - DEFINED (<EXPR 1>)

Type requirements

<EXPR1> must be of a type to which NIL is equal. Refer to the rule

ENIL.

result = BOOL

PASS3 requirements

/lleantng

result = <EXPR1> = SOURCE

TRUE if <EXPR1> is not NIL, FALSE otherwise.

~· 275 ~·

The part-of-speech <BOP> refers to all infix binary operators. We

will denote a <BOP>'s type requirements via the notation

"<TVPE1> <TVPE2 > -) <TYPE3 >u.

This states that the <BOP>'s lefthand parameter must be of type <TYPE 1 >,

its righthand parameter must be of type <TYPE2 >, and the resulting value

is of type <TYPE3 >. The PASSJ requirements tot <DOP>s are simply that

both input parameters and the output parameter are SOURCEs unless

otherwise specified.

BOPADD: <BOP> .. - +
BOPSIJB: <BOP> .. -
BOPMUL: <BOP> .. - *
BOPOIV: <BOP> .. - I
BOPEXP: <BOP> .. - t

have the type requirements:

INT
REAL
POINT

INT
REAL
POINT

-)

->
->

INT
REAL
POINT

+, -, "• and I arc the usual FORTRAN arithmetic operators where a

POINT is treated as if it were a complex number. II f II iS

exponentiation and does not yet work for POINTs. + and have

precedence 6, * and I have precedence 4, and t has precedence 2.

Thus, " and I are preformed before + and and t is performed

before * and /. Remember that in ICL, the lower the precedence,
' f

the tighter the operator binds to jts operands. In general, the

actual precedence numbers arc unimportant; the only importance is

~· 276 ~

their relation to one another.

The <BOP>s * and I can also be used to combine a POINT and a

REAL by yielding scalar multiplication or division. The REAL and

POINT may appear on either side of the *,

POINT REAL ->'POINT
REAL POINT -> POINT

but division admits the REAL only on the righthand side:

BOPAND:
BOPOR:
BOPXOR:

<BOP>
<BOP>
<BOP>

:
:
:

POINT REAL

.- &

.-

.- XOR

have the type requirements:

BOOL 8001. -) BOOL
LOGICAL LOGICAL -> LOGICAL

-> POINT

"&" ~tands for boolean AND, "!" stands for hoo1can OR, and "XOR"

stands for exclusive OR. For l.OGICALs, these <BOP>s procede

bitwise. The LOGICALS must all be equal types. for example, a

LOGICAL(7) and a LOCilCl\L(10) cannot be combined. The precedence of

"&" is 10, "!" is 12, and "XOR" is 14. Thus &'s are done before

! 's and ! 's are done before XOR's.

BOP BIT: <BOP> BIT

has the type requirments:

LOGICAL INT -> BOOL

- 277 -

BIT tests a bit in the LOGICAL and tells whether it is a one or a

2ero, yielding lRUE or FALSE, respectively. The INT specifies

which bit is to be examined. Zero is the rightmost bit, one is the

second to the rightmost bit, etc. FALSE is returned if INT isn't

less than the word size of the LOGICAL. BIT has precedence 20.

BOPLSL:

BOPLSR:

<BOP> ::= SHIFTL

<BOP> : : = Sill Fl R

have the type requirements:

LOGICAL INT -> LOGICAL

SHIFTL means shift left and SHIFlR means shift right. The INT

specifies the number of bits to shift. A negative INT caus~ that

the shift occurs in the opposite direction. SHIFTL and SHIFTR each

has precedence 20.

BOPMIN:

BOPMAX:

<BOP>

<BOP>

MIN

MAX

have the type requirements:

INT INT -> INT

REAL REAL -> REAL

POINT POINT -> POINT

MIN and MAX yield the minimum and maximum, respectively. MIN and

MAX are defined on points by proceeding coordinate-wise. Thus, "Pt

MIN P2", where Pl and P2 are POINTs, yields the lower left corner

of the box determined by Pl and P2. Please note that the resulting

point might not equal either P1 or P2. MIN and MAX have precedence

26.

-· 278 -

The remaining <BOP>s are said to have no precedence. This means

that they impose no precedence conditions. However, <BOP>s with no

precedence will tend to associate in Urn usual left-to-right manner when

possible. <BOP>s with no precedence also tend to apply after the other

<BOP>s have applied; they tend to have a higher precedence. What

distinguishes <BOP>s of no precedence from <BOP>s all having equ~l

precedence is that their grouping is flexible enough to allow a

non-left-to-right grouping when datatype inconsistency forbids the usual

left-to-right grouping.

BSHARP: <BOP> : := I

has the type requirements

REAL REAL -> POINT

and forms the POINT whose x and y coordinates are the two REALs

respectively. The "I" operator works in the TARGET case if both

parameters are TARGETs. lhus, the two coordinates of a point may

be unloaded into two REAL variables simultaneously.

Examples:

1+2•3t2+5

3.014.0 + 1.016.0

L(4)

L(4)

L(4)

BIT 0

BIT 1

BIT 2

equals 21

equals 4.0110.0

is I· Al.SE

is FALSE

is TRUE

L(4) SHIFTL 2

L(4) SHIFTR -2

L(4) XOR L(5)

(1.012.0)*3.0

1.012.0 lit 3.0

L(4) BIT 3 & lRUE

- 279 -

js L(20)

is L(20)

is L(t)

is 3.016.0

is 1.016.0

fails the type-pass because it groups as

L(4) BIT (3 & TRUE)

because of precedence, and "3 & TRUE" fails the type-pass.

However,

(L(4) BIT 3) & TRUE

passes the type-pass. "L(4) BIT 3" yields a DOOL and so the "&"

operates on BOOLeans). Note that in the form without parentheses,

precedence chooses a fatal grouping.

XIV := P;

sets the REAL variables X and V to the coordinates of the point P.

More <BOP>s of no precedence:

COMPEQ: <BOP> .. - =
COMPNE: <BOP> .. - <>
COMPGT: <BOP> .. - >
COMPGE: <BOP> .. - >=
COMPLT: <BOP> .. - <
COMPLE: <BOP> .. - =<

- 280 -

lhese have the type requirements

INT INT -) BOOL
REAL REAL -) BDOL
POINT POINT -> BOOL
CHAR CHAR -) BODI.
LOGICAL LOGICAL -> BOOL

=, <>,), >=, <' =< are the compt1re operato1·s. They are, in order:

equal, not equal, greater, greater or equal, less, less or equal.

Note that "less or equal" and "greater or equal" place the "="

relative to the "<" or ">" so to avoid forming an arrow. "=" and

"< >" also allow

BOOL
QS
SCALAR

BOOL
QS
SCALAR

-)

->
-)

BOOL
BOOL
BOOL

A partial ordering is assigned to POINTS and LOGICALS by comparing

each of the coordi~ates of a POINT (or bits in a LOGICAL) and

requiring that both (all) of the comparisons succeed for a

successful overall comparison. CllARs are ordered by their ASCII

codes. These compare operators will also work on one other

datatype which is yet to be introduced.

The operators "S>", "$$", nnd "($" are for appending elements or strings

onto strings.

Let A be any type and SA bo the type "{A}", strjng of A.

BOPSTR:

BOPSTC:

BOPST'L:

<BOP>

<BOP>

<BOP>

.. -
$)

$$

($

' 281 '

These have the type requirements (respectively):

SA A -> SA

SA SA -> SA

A SA -> SA

"$>" appends an element onto the righthand end of a string. "<$"

appends an element onto thc·lefthand side of a string, like LISP's

CONS. "$$" appends two strings, like LISP's APPEND. Thus,

1 ($ {2;3;4} equals {1;2;3;4}

{1;2} $) 3 $) 4 equals {1;2;3;4}

{1} $$ {2;3} $$ {4;5} equals· {1;2;3;4;5}

A note about efficiency might be of interest. All three of these

operators are equally fast (not slow). However, accessing a string

built with many "$>"s or "$$"s is relatively slow. The REFRESH

operator, the rule ERFRSH, rebuilds a string using "<$" so that it

may be accessed efficiently from thereafter.

There is one more <BOP> form, which enables calling functions in an

infix manner.

BOPBID: <BOP> .. - \ <IO>

<ID> must be the name of a function which takes in two parameters

and yields a value. Therefore, the types of data that this <BOP>

takes in and yields are determined by the particular function,

<ID>.

Examples:

- 282 -

Referring to the function EQUAL defined ear1ier for comparing two

LISP _.ELEMENTs,

X \EQUAL V

is equivalent to EQUAL(X,Y). X and Y must be of type LISP_.ELEMENT

and "X \EQUAL yn is a BOOLean.

X \EQUAL V & Z \EQUAL W

automatically groups as

(X \EQUAL Y) & (Z \EQUAL W)

because the "\<ID>" <BOP> has no precedence, and hence it. groups to

suit datatyp~ compatibility.

Now, suppose we wish to define 3-D points:

TYPE lliREE_.POINT = [X. Y, Z: REAL];

Suppose further that we define addition and multiplication by

DEFINE PLUS(A,B: nIREE_POINT)=lllREE_POINT:

[X: A.X+B.X V: A.Y+B.Y Z: A.Z+B.Z] ENDDEFN

DEFINE TIMES(A: lHREE_.POINT R :REAL)=HIREE_POINT

[X: A.X*R Y:A.Y*R Z: A.Z*R] ENDDEFN

Then, if A, B, and C are var iahlcs of type lllREE POINT.

A \PLUS B \PLUS C

represents their sum, and

(A \PLUS B \PLUS C) \TIMES (1.0/3.0)

- 283 -

represents their average. Note that due to the left-to-right

grouping tendency in <BOP>s of no precedence, we could get the same

effect by:

A \PLUS B \PLUS C \TIMES (1.0/3.0)

or even

A \PLUS B \PLUS C \TIMES 2.0/3.0 \TIMES 1.0/2.0

lhis ability to classify binary functions as <BOP>s enables their

use in looping-<BOP> operations. For example, if Q wer~ a string

of THREE POINTS then we can get the average in that string by

writing

\PLUS

(-BOP-)

A FOR A $E Q; \TIMES (1.0/ + 1 FOR A SE Q;)

(--QUAfa---)

The •foR A $E Q;" reads as "FOR A an element of Q".

- 284 -

Unary operators were mentioned earlier in the <EXPR> ruie, EUOP,

which states that an <EXPR> may be prefixed by a <UDP> or postfixed by a

<RHUOP>. We shall specify a <UOP> 's type requirements by

<TYPE 1> ->

1·his will mean that the <LJOP> takes in iln instance of type <TVPE1> and

yields an instance of type <TYPE2 >. All inputs and outputs are assumed

to be SOURCES.

UOPMIN: <UOP>

has the type requirements

INT
REAL
POINT
BOOL
LOGICAL

-> INT
-> RE/\L
-> POINT
-> BOOL
-> LOGJC/\L

Unary minus operates like in FORlRAN for JNTcgers and REALs. A

point is negated by negating each of its coordinates independently.

When applied to a BOOLean, "-" is the function NOT. "-" performs

ones complement on LOGICALs.

Examples

- TRUE

L(4)

(1.012.0)

-XIV

is FALSE

is L(3) if interpreted as a LOGICAL(3), or

L(13) Jf interpreted as a LOGICAL(4), or

L(33) if interpreted as a LOGICAL(5), etc.

is -1.0 I -2.0

is (-X) I Y

~ 285 '

-(XIV) is -X I -Y

.UTALLV:

ULFTZO:

UENCOD:

<UOP>

<UOP>

<UOP>

T !\LL Y

LEFTZEROS

ENCOOE

have the type requirements

LOGICAL -> INT

TALLY counts the number of ones in a LOGICAL. LEFTZEROS counts the

number of leading zeros. ENCODE counts the number of trailing

2eros.

UOECOO:

UUNARY:

<UOP>

<UOP> .. -
DECODE

UNARY

have the type requirements

INT -> LOGICAL

DECODE yields a LOGICAL having at most one bit set. The INT

specifies the number of trailing zeros which are to 'follo* that one

bit. If the INT is greater than the word length of the LOGICAL,

the result is L(O). UNARY yields a LOGICAL ~·hich has all zeros on

the left and all ones on the right. The number of ones is

specified by the INT.

UNORM:

UBITSW:

<UOP>

<UOP>

NORM

BITSW'AP

have the type requirements

LOGICAL -> LOGICAL

- 286 -

NORM yields the input shifted left until a 1 bit occupies the

leftmost position. BITSWAP reflects the bi ts so that the leftmost

bit becomes the rightmost bit and the second to the left becomes

the second to the right, etc.

The following unary operator is classified as an <RHUOP> because it can

combine with <EXPR>s only by appearing on the righthand side of the

<EXPR>. <RHUOP>s have no precedence in the sense that <RHUOP>s tend to

apply after the text to its left has been combined.

UOPBID: <RHUOP> \ <ID>

Tupe requirements

<ID> must be the name of a declared function which takes in one

value and produces a value. 1herefore, the input and output

datatypes are determined by the particular function, <ID>.

Meaning

Apply the function, <ID>, to its parameter, the <F.XPR> to· the left.

Examples:

TALLY L(5) is 2

LEFTZEROS L(t)

is ambiguous because we do not know the word length of L(l).

However, if X were declared to be a variable of type LOGICAL(6) and

if X were assigned L(t), then

LEFTZEROS X

ENCODE L(4)

would be 5

is 2

DECODE 5

UNARY 5

NORM X

- 287 -

is L(40)

is L(37)

would be l.(40)

If X were assigned L(3), then

BITSWAP X would be L(60).

If L is of type LISP_ELEMENT, then

L \CDR

is equivalent to CDR(L) and has the effect of extracting the CDR

from L, referring to an earlier declaration.

L \IS_ATOM'

is equivalent to IS_ATOM(L).

WRITE(IF L \IS __ A.TOM THEN 'Lis an ATOM'

ELSE 'l. i sn' 't an ATOM 1 F J) ;

reports whether L is an ATOM or not.

~ 288 ~

The part-of-speech <SS> refers to a sentence, or action form.

Unlike <EXPR>, <SS> has no resulting type nnd neither produces nor

consumes a value.· Eualuating a <SS> refers to performing the specified

action. There are relatively few rules which produce <SS>s. In fact,

besides the assignment statement and the concatenation form, all <SS>s

are carry overs from the <EXPR> section.

assignment statement.

We shall begin with the

SSASS: <SS>

where

SSRHS1: <SSRHS> : : = := <EXPR1>

SSRHS2: <SSRHS> .. - .. - <BOP 1> <EXPR2 >

SSRHS3: <SSRHS> .. - .. - <EXPR1 > <BOP2>

these rules specify that a <SS> may be formed either.by

<EXPR> := <EXPR> or by

<EXPR> <BOP> <EXPR> or by

<EXPR> ::= <EXPR> <BOP>

The first form is the basic assignment statement. The others

translate into the basic assignment statement via the following

mappings:

<EXPR1> : := <BOP> <EXPR2> becomes

<EXPR1> _:= (<EXPR1>) <BOP> <EXPR2 > ; and

For

- 289 -

<EXPR 1> : := <EXPR2> <BOP> ;

<EXPR1> .- <EXPR2> <HOP>

example,

I .. - + 1 ; becomes

I .. - -3 ; becomes

I : : = 3 - ; becomes

I

hecomcs

.- I +

.- - 3

. - 3 - I

We can now specify the type and PASS3 requirements for each of these

forms merely by specifying those for the basic assignment form.

Type Requirements

<EXPR1> of SSASS = <EXPR 1> of SSRHSl

PASS3 Requirement-s

Meaning

<EXPR1> o~ SSASS = TARGET and

<EXPR1> of SSRHSt = SOURCE

Evaluate the righthand <EXPR>, <F.XPR 1 > of SSRJISt, and then feed the

resulting value to the leftlrnnd <EXPR>, <EXPR J > of SSASS.

Conceptually, the assignment statement is a process by which the

lefthand <EXPR> is made to be equal to the righthand <EXPR>. The

lefthand <EXPR> is pliable whereas the righthand <EXPR> is fixed.

Examples:

I . - 5 ; sets I to contain a 5.

C .- [REAL_PART:A HlAGINARY PftRl :BJ ;

sets C to some complex number.

[REA.L_.PART:A IMAGINARY P/\RT:B] .- C ;

I : : = +1 ;

K .. - +zit3

K .. - •2+3

s .- s $) 1 ;

s . . - $) 1

s .. - 3 ($

s .. - $$ {5;6}

s .. - {5;6} $$

does the opposjte: It sets A and B

to the real and imHaJnary

components of C respectively.

increments I.

acids 6 to K.

mu lt i p 1 i e s K hy 5.

appends the clement

onto the string s.

docs tlH? same .

appends 3 onto the front of s.

appends the string {5;6} onto

the r i nh ttrnnd encl (l f s.

appcnrls the string {5;6} onto

the lefthand end of s.

The two auxilary assignment forms, SSRHS2 and SSRHS3, have

counterparts for <UOP>s and <RHUOP>s:

SSRHS4: <SSRHS> .. - .. - <KUOP>

where

KUOP1: <KUOP> .. - <GUOP> ;

IWOP2: <KUOP> : := <GUOP 1 > <KUOP2 >

and where

'SEMNOP: <GUOP> .. - <UOP>

SEMNOP: <GUOP> : : = <RHUOP>

- 291 -

Informally, this states that an <SSRHS> may be formed by a •. -

followed by a sequence of <UOP> and <RllUOP>. The sequence is

terminated with a semicolon. The part-of-speech <GUOP> represents

both <UOP> and <RHUOP>.

The tupe and PASS3 requirements and the meaning are derived by

transforming

<EXPR1> ::: <GUOP> ... <GUOP> into

<EXPR1> .- <GUOP> ... <GUOP>

Examples:

I : : = - ; becomes .- - I ;

I .. - \CDR becomes I .- I \COR

or I .- CDR(I)

I .. - \CDR \CDR becomes I .- I \CDR \CDR

or I .- CDR(COR(I))

Note that all assignment forms end with a semicolon!

~· 292 ~

ICL's assignment statement appears to set the lefthand side to a

copy of the righthand side. For example,

A:= [REAL_PART:1 IMAGINARY_PART:2]

B:= A;

B.REAL_PART:= 700;

WRITE(A.REAL __ .PART) i

prints a 1. The second assignment appears to set B to a new complete

copy of A. Thus, the third assignment modifies the copy referenced by B

and does not affect the copy referenced by A.

Furthermore, each and every reference to a structure appears to

generate a new complete copy. For example,

X:= [Q:1 R:2]

Y:= [A:X B:X]

Y.A.Q:= 700;

WR ITE (Y • B • Q) ;

prints a I. The second assignment references X twice. V appears to be

set to a record which contains two distinct copies of X. The third

assignment modifies one of the copies, that which is referenced by Y.A.

However, the other copy, Y.B, appears unmoclificd.

ICL's apparent copy policy guarentecs that distinct variables

reference distinct structures and thus a modification incurred from the

point of view of one variable is non-existent from the point of view of

another variable. This policy applies everywhere, including to the

passage of parameters to functions; a function appears to receive a

~· 293 ~

distinct copy for each of its parameters. This policy is a

generalization of the generally accepted treatment for integers, reals,

and any datatype whose instances are not represented with the aid of

pointers.

For efficiency, ICL in fact docs not generate copies as described

above. Rather, ICL generates copies only when a modification is

specified. In the two examples given above, copying occurs ~nly upon

execution of the third assignment in· each example. A nnd B reference

the same structure until the modification is specified.

The user who plans to use the @ operator, the pointer anchoring

operator, or who wishes to understand ICL's efficiency must understand

how ICL implements this copy appearence. Tbe user who avoids the @

operator can effectively believe that ICL copies upon each reference and

he can ignore the concept of pointers altogether. The rest of this

section documents ICL's data implementation and gives examples using the

@ operator.

ICL uniformly minimizes copying and maximizes memory sharing by

making extensive use of pointers. Instances of each of ICL's datatypes

are represented as follows:

Non-pointer Types

An instance of INT, REAL, DOOL,

represented by a single word.

precisely those datatypes which

OIAR, LOGICAL, or SCALAR is

These non-pointer datatypes are

are not equal to the NIL

pseudo-typ~.

value NIL.

Pointer Types

~· 294 ~·

Instances of these datatypes can never take on the

All other datatypes in ICL are represented by a single word which

contains the memory address of a structure representing the

instance.

Variant:

This is th~ result of the variant generatio~ <EXPR>

state :: data

Record:

SEL J • • •

DATA 1 DATA 2 DATA K

This ~s the result of the record generation <EXPR>

NIL·or 0 values are not stored on this record list.
1

If a record component is set to NIL or 0, the corresponding

memory element in the record list is removed and the

record list appears to be shortened.

-· 295 -·

String:

A refreshed string is represented by

• • •

ELEMENT1 ELEMENT2 ELEMENTK

A general string, however, has three kinds of element

representation:

Left Append

BUOi:'
G+---e_.- ST1t1NG

DATA

Data precedes all elements in string.

Right Append

G+---Blo ST1t1NG

DATA

Data follows all elements in string.

Such a node is created with the $) operator:

string S> data

Concaten-atton

~STRI~
STRING1

j

.... 296

All elements in string1 precede all elements

in string2 . Such a node is created by

string1 $$ string2

For example, the string

(((t ($ {2;3}) $$ {4;5)) $) 6)

is represented by

AFTER

6 5

2 3

A more efficient representation will result from the form

{1;2;3;4;5;6} or {COLLECT I FOR I FROM~ TO 6;}

The REFRESH operator applied to the former representation

yields the latter rep~esentation. The latter representation

is preferred because it is accessed most efficiently.

Point:

- 297 -

x1 and x2 together represent the point's x-coordinate. The whole

x-coordinate is not stored in a single word; a few bits in the

lefthalf of the first word of the referenced node are required by

the garbage collector. This description is not quite accurate but

it does bring u• the difference between the representation for

POINT and the representation for all other pointer types. The

single word which contains the memory address for pointer types

contains some non-pointer information for POINT. This difference

is responsible for the exclusion of the type POINT from the @

operator's domain.

Kemorv Shartno

Memory sharing is au~omatically achieved throughout ICL's

implementation by mov~ng pointers rather than by copyinQ the referenced
I

·structures. For example, the statement~

A:= [REAL_PART:1 IMAGINARY_PART:2]

B:= A;

yield the following memory state:

B
RP IP

R 1 2

Rather than setting B to a copy of A's record, the pointer in A is

copied into B.

Similarly,

A and B are left referencing the same record.

yields

X:= (Q: 1 R:2]

Y:= [A:X B:X]

y

... 298 ...

The A and B components of Y reference the identical record.

the <EXPR>

{COLLECT [DISPLACE:A BV:I] FOR I FROH 1 TO 3;}

generates the string of records:

e+--------1- e+--------11-

Finally,

All the DISPLACE components reference the unique memory location

referenced by A.

~· 299 -

nemorv ~odification

In ICL, a modification to an existing structure is specified by the

appearance of a selection form as a TARGET. The following are examples

of modification specification:

B.REAL_PART:= 700:

S[I]:= 700;

S[I-]:= R;

X.A.B:= Y;

X[2].A:= Y;

X.A.8[2][3][4].C:= V;

In each example, ICL modifies only the variable which appears as a

TARGET. Thus, the first example changes only the pointer residing in B

and the final example changes only the pointer residing in X. · The new

pointer placed in the variable X references a newly created structure

which is identical to old X with the exception that the access path

• A. B[2][3][4 J. C

leads to the value Y. Any references to old X, old X.A, old X.A.B, or

old X.A.8(2], etc., are not affected by the modification to X. The

modification is apparent only from the point of view of the variable X

and not from the point of view of any other variable or any structure.

Modification is implemented by first copying the structure

referenced by the target variable and then modifying that copy. In this

process, ICL copies a minimal amount of memory.

Examples:

- 300 -

Refering to a previous example, we had

B
R

The modifying statement

B.REAL_PART:= 700; yields

B

Note that Band A no longer reference the same memory element.

Given

the modifying statement

Y.A.Q:= 700; yields

~· 301 -

This modification costs two new nodes. However, if there are no

references to old Y, the node immediately referenced by old Y will

be freed by garbage collection. Note'that if there is a reference

to old Y, the nodes R and B are each shared by at least two

references. New Y's B component still references the same

structure it used to reference.

Given the same initial memory state, the modifying stateme~t·

Y.B.Q:= 700; yields

Given the string S

' ..

.. 302 ..

the statement S[J]:= K; yields

5

OLD 9

The first three nodes in S are copied.

The remarkable savings achieved by the minimal copy are not the

result of sharing portions of a record or string list, rather, it is the

sharing of the elements which yields the major savings. For example,

consider the string S given above. Let us assume that the elements

A,B,C,D, and E each references some giant list structure. The

modification to S still requires only three extra nodes. The structures

A,8,D, and E are shared by S and old S. The minimal copy copies at most

the top level structure of s.

In general, the user can predict the amount of copying ICL will

perform given a modifying statement:

X.A:= <EXPR>; copies at most n nodes where

n= the number of components in

the record X.

X[I]:= <EXPR>; or

- 303

X[I-J:=<EXPR>; copies I nodes.

Kultiple selections appearing on the lefthand side are also accountable:

X.A.B:= <EXPR>; copies at most n+m nodes where

n= the number of components in

the records X and where m= the

number of components in the record

X.A.

X[I][J]:=<EXPR>; copies I+J nodes.

The number of copied nodes is bounded above by the sum of the lengths of

each relevant layer. The number of relevant layers equals the number of

selection operators. The number of relevant layers is independent from

the total number of layers making up the entire structure.

For another example of how shared data are modified, consider

X:={COLLECT [DISPLACE:A BV:I] FOR I FROM 1 TO 3;}

Y:=X;

X[2].BV:= 700;

This yields the following memory structure. In the following

illustration, the term BEFO is used in place of BEFORE and DISP is used

in place of DISPLACE.

~· 304 ~·

x

Y • .CLO X

SOMETHING

The first and third elements of the strings X and Y are shared and A is

shared by all.

Potnter Anchortn_e. and Co_l!.m.~.

We can infer several invariants from ICL's ·modification and copy

policy:

1) ICL's data sharing is invisible.

2) Never is an existing structure modified.

3) A modification is immediately apparent only from the point of

view of exactly one variable.

4) A circular list structure never exists.

These invariants forbid many of the usual pointer operations. The @

operator is provided to enable the user to override these invariants.

It is strongly suggested, however, that the user be careful about where

he uses the 9 operator. A strong dependence on the @ operator will

inevitably lead to those popular bugs found in programs which are

.:.
-· 305 -·

written in languages where the user is free to manage pointers on his

own.

The @ operator turns a SOURCE into a TARGET by writing a given

value directly over the memory element referenced by the SOURCE. The @

operator has the effect of making a modification apparent to all points

of view. A modification made with the @ operator is said to be a global

modification. For example, given the memory state

B
R

the anc~ored assignment

t(A):= [REAL_PART:5 IMAGINARY_PART:6];.

yields the memory ·state

B
R

Both A and B and any other references to this unique memory location

sense the change. The @ operation in the assignment happened as

follows:

--~

.... 306 -

The @ operation writes the 5-node right over the 1-node.

The @ operator differs from conventional pointer manipulation in

that it does not modify a reference in some structure, rather, it

modifies the referenced structure itself. This is equivalent to

modifying all references to the given structure. This scheme greatly

contrasts ICL's default, single point of view modification. With the @

operator, the user can do any desired pointer manipulation.

Example - Line Editor:

Let us consider part of an editor for a line oriented terminal. We

will want to move both up and down about the lines of the screen.

The picture
-----· ·------UP

l -Ce.-.t (\\~ n.)

r tea.t 1. l hne fl.1" 1 \

J ltN. rL+ i?.) J t!!t. (.
UP

may be represented in ICL by the type declarations

TYPE LINE= [UP,OOWN:LINE CHARS:LINE_OF_CHARACTERS]

LINE_OF __ CHARACTERS= { CHAR }

A LINE has an UP and a DOWN field which reference other LINEs. The

CHARS field references the string of characters which reside on the

line. The following procedure deletes a line by modifying its

neighbors' UP and DOWN fields to bypass the given line:

DEFINE DELETE(L:LINE):

.,

. ···- - ·- - -·-- -- - -·---~~--

- 307 -·

IF DEFINED(L.UP) THEN

IF DEFINED(L.OOWN) THEN

ENDDEFN

That is,

@(L.UP)~DOWN:= L.DOWN; FI

@(L.DOWN).UP:= L.UP; FI

L ~'~~~l

L.vp±· 1 I
becomes

L.o~ - r-· --""

Note that DELETE's first sentence is

@(L.UP).DOWN:: L.DOWN;

This modifies the node residing at L.UP. This is not equivalent to

1) @(L.UP.DOWN):= L.DOWN; or

2) L.UP.DOWN:= L.DOWN; or

3) @(L).UP.OOWN:= L.DOWN;.

The first modifies the node residing at L.UP.DOWN, which in this

context is L itself. This would write the node residing at L.DOWN

over the node at L.

o\cl l '-•uP. 009.lt.)) 'S L •

°'' (J_.\')c~~)-- .. ·-··-----------..... -~-------------

The second modifies the variable L and leaves the referenced

structure unchanged.

\...UP -+ ------ ~\o t _,UP)

---dcl L.

... 308 ...

From L•s point of view, everything is the same except

particular path .UP.DOWN is different. In other

that the

words, L

references a copy of old L whose UP field is different. This UP

field references a new node which is a copy of (old) L.UP whose

DOWN field is different.

The third assignment modifies the node at L. This is like the

second form except that the node at new L is written over the node

at old L and the variable L is itself unchanged.

L.oP _,..
o\d (.L..UP)

... L::. o\d L

A procedure to insert line A before line B is

DEFINE INSERT(AJB:LINE):

IF DEFIN~D(B.DOWN) THEN @(8.DOWN).UP:= A; Fl

@(A).DOWN:= B.DOWN;

@(A).UP:= B:
@(B).DOWN:= A;

ENDDEFN

... 309 ...

WARNING:

Any reference to an instance of type LINE will see any and all

modifications made to that instance even if the modification was

specified from the point of view of a different reference to the

same instance. For example, with

LINEZ:= LINE1;,

which sets LINEZ to reference what LINEl references,

INSERT(LINE1,X);

is equivalent to

INSERT(LINEZ,X);

Because a LINE is modified with the @ operator, the apparent copy

policy over assignment statements is lost for LINEs and for any

structure which contains a reference to a LINE. We will return to

this example after ICL's COPY operator is explained.

corr

The rule ECOPY takes any pointer type and copies the

referenced memory element to yield an identical structure which

resides at a different memory location. For example, given the

memory state

the sentence

B:= COPY(A);

.. 310 ..

yields

COPY copies only one memory element. The essential fact is that A

and B now reference distinct memory locations. Thus,

@(A):= <EXPR> ;

which creates the memory state
·---·------·-·····-· .•.

---·---------------·---

changes nothing from B's point of view. The !!,' operator writes ouer

onl11 the single memory element directly referenced by A.

ICL's ECOPY construct does not perform a complete copy, to the

contrary, it copies only one memory element. While

LINE1:= COPY(LINE2);

assures that

@(LINE1):= <EXPR>;

affects nothing from the point of view of LINE2, the assignment

.. 311

@(LINE1.UP):: <EXPR>;

does make a change apparent from both LINE1 and LINE2's points of

view. LINE1.UP and LINE2.UP are the same memory element:

L1NG1

Howe.ver, we can define a function which produces a complete

copy of a giveri LINE:

DEFINE COPY(L:LINE)=LINE~

IF DEFINED(L.UP) HIEN "copy the whole structure

referenced by L.UP "

DO L.UP:= COPV(L.UP);

@(L.UP).DOWN:= L;

GIVE L

ELSE COPY!L) FI

ENDDEFN

Recall that the <EXPR> COPY!L), which is used in the ELSE clause,

is equivalent to COPY(L) in the absence of this function

definition. Refer to the rule ECOPV. This function definition

overrides the default meaning for COPY when applied to a LINE.

However, COPY!L) has the original meaning of· COPY(L). This

function, given L:

- 312 ~·

L •

produces
--------··-··· -· .

This function procedes by transforming

-to -
new \...

via the statement L.UP:=COPY(L.UP);. The statement

@(L.UP).DOWN:=L: changes the dashed DOWN link to reference new L

instead of old L. One can deduce from the very start that COPVing

a LINE involves at least one @ operator: COPVing a LINE produces a

circular structure, a two-way linked list. We know that without

the t. a circular structure cannot be created.

o\J L

~·. 313 ~

If the given L has L.DOWN=NIL, then this COPY function yields

a complete copy. If, on the other hand, L.DOWN is not NIL, then

the copy will not be consistent because (COPY(L)).OOWN.UP'will be L

and not (COPY(L)). Therefore, the user might wish to make this

copy function a subfunction of a new COPY function where the new

COPY walks to the bottom of L and then performs the function

presented above.

Note that L.CHARS is not copied. This is fine if L.CHARS or

any of its substructure is never modified with the @ operator.

However, if L.CHARS or any of its substructure is modified with @,

a complete copy of a LINE must include copying the L.CHARS field:

DEFINE COPY(L:LINE)=LINE: BEGIN VAR C=CHAR;

DO L.CHARS:= {COLLECT C FOR C SE L.CHARS;}

GIVE

END

ENDDEFN

the preuious corr function body

L is modified so that its CHARS field references a complete copy of

the original L.CHARS. The identity-like

{COLLECT X FOR X SES;)

forms a new string each of whose elements references the

corresponding element in s. In other words, this COLLECT form

produces a copy of S one level deep.

Now, if we write

- 314 -

LINE2:= COPV(LINE1);

LINE2 will remain unaffected by any operations performed upon

LINE1. In summary, because instances of LINE are modified with the

@operator, ICL's apparent copy policy does not apply to ~INEs. A

new style of programming emerges when dealing with structures which

are modified with @. Such structures appear to evolve independent

from point of view. To obtain a completely distinct instance of

such a structure whose further evolution is independent from the

evolution of other instances, the user must explicitly specify a

copy operation.

Example - Bounding Boxes and Property Lists:

This example differs from the previous example in that the @

modifications create no change in meaning. Rather, the @ operator

is used to attach to some existing structure, properties, or

values, any of which could be computed at any time. These values

are characterized by being context-free: The value of a property

does not depend on the point of view which references the structure

having the property. The value depends qnly on structure below.

An example of a context-free property for a picture is the

picture's minimum-bounding-box. The minimum-bounding-box depends

only on the picture and not on any references to the picture.

The advantage in storing context-free properties on existing

structures is realized when the value of a property is requested

more than once. The first request for a property may involve

computation but further requests need not involve computation if

- 315 -

the first request stores the result of the computation. The

savings is increased when the structure is shared by many different

points of view.

Consider the following definition for the type RG, ah IC mask:

l'YPE RG= EITHER

POLY= POLYGON

DISP= [DISPLACE:RG BY:POINT]

UNION= { RG }

ENDOR;

This says that a region, RG, may be formed by specifying either a

single polygon, a displacement upon an RG, or a union of RGs. The

following form instances of RG, RG1 and RG2:

RG1:= { POLY1 ; [DISPLACE:POLY2 BY:3#4] };

RG2:= {COLLECT [DISPLACE:RG1 BY:IIO]

FOR I FROM 1 TO 10;};

RGt represents the union.of POLY1 and a displaced POLY2. RG2

represents 10 copies of RG1, each of which is displaced, in X by a

different amount.

It turns out that the processing of RGs can be optimized by

having some properties associated with each instance. The most

popular property is knmm as an RG 's minimum-bounding-box (mbb). We

can define the type MRG to be the association of a box to an RG:

TYPE MRG= [BODY:RG VANISHING_MBB:BOX];

- 316 -·

That is, an MRG is an RG along with its mbb. To make the mbb

available at the appropriate places, let us redefine the type RG as

follows:

TYPE RG= EITHER

POLY= POLYGON

DISP= [DJSPLACE:MRG BY:POINT]

UNION= { MRG }

ENDOR;

.All references to RGs have been replaced with references to MRGs.

Thus, when processintt an RG, the mbbs of its constituent parts are

immediately available.

The dispa.rity between RG and MRG is cosmetically removed by

declaring

LET RG BECOME MRG BY [BODY:RG];

Any RG will automatically pass as an MRG. Now, any program text

specifying an RG which worked under the old definition for the type

RG will still work under the new definition for RG. RG's

requirement that.constituents be MRGs instead of RGs is resolved by

the coercion.

Note that the coercion does not define the VANISHING_MBB

field. We could, of course, change the coercion so that it

calculates the mbb and sticks it in the VANISHING_MBB field.

However, there is no real need to calculate the mbb until the mbb

is actually sought. Once it is calculated, though, we should store

the· mbb in the VANISHING_MBB field so that it need not be

- 317 ...

calculated again, e.g., when another reference to the MRG seeks the

mbb.

MRG.

The following function will actually obtain the mbb from an

DEFINE MBB(M:MRG)=BOX:

IF DEFINED(M.. VANISH ING _.MBB) TllEN M.. VANISHING_.MBB

ELSE DO @(M) .VANISIHNG_MBB:=CALCULATE_MBB(M..RG);

GIVE M.VANISHING_MBB FI

ENDDEFN

This function first sees if the VANISHING_.MBB field is already

defined. If it is, this field is immediately returned and that is

all. Otherwise, this function calculates the mbb by calling

CALCULATE_MBB, and via the @(•.) operator, the function M.BB

modifies the actual memory location referenced by M to include the

box. Now any further references to that MRG see the defined

VANISHING_MBB field. Note that if the@(...) were not used, only

the local variable M would be modified and so upon leaving the

function, the calculated box would not be permanently associated to

the given MRG. The assignment

@(K).VANISHING_MBB := <EXPR>

may be paraphrased as

" From the point of view of the structure referenced by M, the

VANISHING_MBB field is defined to be <EXPR>. n

In contrast, the assignment

says

- 318 -

M.VANISHING_MBB := <EXPR>

• From the point of view of the uariable M, the VANISHING __ MBB

field is defined to be <EXPR>. "

If ~ is an MRG, then

M.BODY

MBB(M)

is the RG and

is the mbb

The awkward name VANISHING MBB was chosen to discourage direct

access to that component. For example, if the user forgets that

the mbb must be accessed via the function MBB, e.g.,' he wtites

M.MBB

to fetch M's mbb, he will receive a datatype error. However,

referring to the section on unary operators, the notation

M\MBB is equivalent to MBB(M).

Thus, the \ by itself appears to play the role of a generalized

selection operator.

By declaring

LET MRG BECOME RG BY MRG.BODY ;

the user need not specify the .BODY on an MRG to obtain its RG. M

by itself passes as an RG. In fact, because we have the coercions

between MRG and RG going in both directions, instances of the two

types are completely interchangeable.

-· 319 -

Note that MBB applied to an RG still yields the RG's mbb. The

RG will be coerced to an MRG before calling MBB. However, the mbb

tacked onto the MRG by the function MBB will not be attached to the

RG. The MRG passed to MBB is lost upon return from MBB; even

though the RG may still be referenced, the MRG created by the

coercion ceases to be referenced.

It is advantageous to declare variables to be of type MRG

rather than to be of type RG. For example, the RG

{ A ; [DISPLACED:A BY:10110] }

references the variable A twice. If A is of type RG, the· coercion

from RG to .. MRG will be applied twice and, in fact, the mbb for A

will ultimately be calculated twice. However, if A is of type MRG,

no coercion will be applied and the mbb of A will be (or has

already been) calculated only once. It is similarly advantageous

to use the type MRG in place of the type RG whe~ declaring new

types which reference IC-masks. In fact, the type RG should be

forgotten altogether except in those few functions which examine

MRGs.

An MRG may be defined to include more properties, e.g.:

TYPE MRG=[BODV:RG VANISHING_MBB:BOX

VANISH ING_.RECTS: RECTANGLES

DESIGN_RULES_OK: DESIGN_STATUS

SCHEMATIC: C IRCUIT_DIAGRAK];
t

.. 320 ...

Here we have properties including the representation of an RG in

terms of rectangles, a design rule status, and a schematic. Each

of these properties can be computed from an RG and these properties

are independent from the points of view which reference an MRG or

an RG. Accessing each property should be done via a function like

MBB which manages one component in the MRG record. Such access

functions manage the retrieval and storage of individual

properties. It is conceivable that an access function might be

written which conditionally stores its computed values. The

conditions might depend on global variables which tell how much

memory is available or they might depend on the state in whi.ch the

RG resides, e.g., the DISP state has a trivial mbb calculation

whereas the UNION state has a more expensive mbb calculation.

This scheme for implementing properties has the advantage that

shared data implies shared com~utation. Let us assume that the

variables RGt and RG2 were declared to be of type MRG. Consider

that the value in RG2 is represented by

~· 321 ~·

MAG

a D

In this illustration, the following substitutions have been made:

.... 322

BEFO is used in place of BEFORE

DPL is used in place of DISPLACE

u is used in place of UIUOl'i, and

1188 is used in place of VANISHUJ'G_l"fBB.

The slanted elements are the VANISHING MBB components of MRGs.

These do not exist until MBB is called. The mbb at RG1 will be

calculated only once even though it will be requested 10 times from

the point of . view of RG2. Note also that RG1 will find its mbb

already calculated if RG2's mbb was previously sought. Similarly,

if the mbb of RG1 is requested first, it will not be recalculated

when computing RG2's mbb.

Finally, note that the overhead from introducing MRGs in place

of .RGs is one memory element per instance in the absence of any

properties. Each extsttng property costs an additional overhead of

one memory element.

irrelevant.

The number of declared properties is

The @operator is an untamed animal. Some very innocent

actions can cause bizarre effects. This section documents some

disasters which can come with the @ operator.

Example 1:

first, let us consider the non-anchored assignment

A := [X:A V:B];

This assignment modifies the variable A so that it points to a new

record, [X:A V:B], and this new record's X component references

what A used to reference. What A now references and what A used to

reference are distinct memory locations.

In contrast, the anchored assignment

@(A) := [X:A V:B];

creates a circular structure and does not modify the variable A .•

,_ ,_..._Y _\ -j

This assignment writes the new record [X:A V:B] ouer the locatton

referenced by both the variable A and the record's X component.

' 324 ,.

The location referenced by A and the location referenced by the

record's X component are precisely the location now occupied by the

record itself. However,

@(A) := [X:COPY(A) Y:B];

modifies the structure referenced by A to be a record whose X

component references a copy of what A used to reference.

J\:: old f\ /

.. -,.....·----~-·- --·------ ..

The COPY is used to avoid circularity.

Example 2:

The assignment

@(8):= 1 <SB;

would seem to modify the node at B to be what B used to be with a 1

tacked on the front. However, this will not be the case. After

the evaluation of the righthand side of the assignment, we get

----- --·--·-··-----.. -·.

Finally, the I operator writes the 1-node over tho node referenced

- 325 -·

by B, yielding

)

B now references an infinitely long string of 1s. In contrast,

@(B) := 1 <S COPY(B);

does the expected.

B::. olcJ B ~be\ore\
) i

·----------·····-----·· -·------ ·------·-- . ····---

T

Ex.ample 3:

The <EXPR>

S[2-J

is not necessarily a tail of S in the sense that one could get from

S to S[2-] by tracing nodes in memory. S[2-] only appears to be a

tail of S. For example, if we specify

T:= {1;2};

S:= T $) 5;

S, T, and S[2-J will reference the memory structures

-_;;_---------,_...-f1he~;;c.T-;i----7'"...., ~e c

5 _ -~-_..,....... a.ft~r

s-
.t ~

st z-J ------ s
·------· -·--·---·--.

- 326 ..

The node referenced by S[2-] is not on a path starting at S. Thus,

for example,

@(S[Z-]) := {10;11} ;

does not change anything from S's point of view.

write

S:=REFRESH(S);

Q:= S[2-];

then we get

______ \~_J.o_~_·'_!f t7

Thus,

@(S[2-]) .- {10;11};

leaves

.s ---r---~-)b.~I v1•e1D;I ·\
Q

as expected.

\

However, if we

I

Strings act like LISP's lists only when the string is

refreshed. In summary, do not use @s on the tails of non~refreshed

strings. Recall that a refreshed string is formed by

.. 327 ...

REFRESH(any string) or by

element <$ refreshed string or by

the string generation rules, e.g.,

{ ••• ; element ; ... ; COLLECT element <QUANT> . . . } .

Consolation:

Even though ICL represents records a~ linked lists like

strings, record lists maintain an important property which is

absent from strings: Any non-first node in a record list is not

the first node in another record list. In other words, no record

list is a proper tail of another record list. Thus, because the @

operator overwrites only the first node in a record list, the

property given above guarantees that @ cannot overwrite a non-first

node in any record list. The essential invariant is that the user

can think of a record as being an indistinguishable unit of memory,

e.g.,

M
oc. 11 K

-··-··--·-·----·- -------·-···--··· - ----· ·-·--·---·- - -~

all of which or none of which can be clobbered with an @.

- 328 -·

Carry-overs f.r.om <EX.PR~.~

The following <SS> forms are carry overs from <EXPR>s. These rules

are copied from the corresponding <EXPR> forms by merely substituting

<SS> for <EXPR> and DO for GIVE in the appropriate places. Any type or

PASS8 requirements imposed on the <EXPR>s ~hich have been replaced by

<SS>s are simply to be ignored.

The IF-THEN-ELSE

EBIF: <SS> : : : =
SBIF: <SS> ... -... -

where

BIF1: <BIF> ::=

BIF2: <BIF> ... -
Type Requtrements

PASS3 Requirements

Neaning

<BIF 1>

<BIF 1>

IF

<BIF kl>

<EXPR2> THEN <SS3> ELSE <SS4> FI

<EXPR2> THEN <SS3> FI

<EXPRk2> THEN <SSka> EF

Identical to the EBIF rule in the section for <EXPR>s. Note

however that an ELSE clause is optional in the <SS> IF-THEN-ELSE.

The extra rule, SBIF, allows a <SS> to be built without an ELSE.

Example:

IF A=B THEN 1:=5; FI

If A=B, then I is assigned the value 5, otherwise, nothing is done.

If A=B THEN 1:=5; EF A<B THEN J:=20; FI

- 329 ~·

If A=B, then I is assigned 5, otherwise if A<B, then J is assigned

20, otherwise, nothing is done. The form

IF A=B THEN 1:=5; ELSE 1:=23; Fl

is equivalent to

ECASEE:

EVCASE:

EVCASB:

I:= IF A=B THEN 5 ELSE 23 FI

<SS> ...• CASE <EXPR1> OF <SSV2>

where

<SSV> ... - <ID1> : <SS2> ENDCASE

<SSV> ... - <IDkt> : <SStl> <SSVka>

Tupe and PASS3 Requirements

Refer to the <EXPR> ECASEE rule. <EXPR1> must be a scalar type.

Jlfeanino

Refer to the <EXPR> ECASEE rule. However, where' the •debugging

package would be entered in the <EXPR> rule, nothing happens in the

<SS> rule. That is~ if <EXPR1> yields none of the <ID1> or <IDk.t>s

in <SSV2> and if there is no ELSE clause, the <SS>-CASE performs no

action.

Examples:

CASE A_COLOR OF

BLUE: 1:=5;

RED: I :=20; ENDCASE

... 330 ~·

If the variable A_COLOR is BLUE, I is assigned 5. If A COLOR is

RED, I is assigned 20. If A_.COLOR is nei thcr RED or BLUE then I is

unchanged. An equivalent <EXPR>-CASE form is:

I:= CASE A COLOR OF

BLUE: 5

RED: 20

ELSE: I EN DC ASE

The Vartant CA§! for!!!_

ECASE: (SS> :::= CASE <ID1> OF <SSV2>

where <SSV> is as defined above.

Tupe and PASS8 Requirements

Refer to the <EXPR> ECASE rule. <ID1> must be a variable of some

variant type.

f'leaninfl

Refer to the <EXPR> ECASE rule. However, as in · the <SS> scalar

case form, th~ absence of an ELSE clause may render the <SS>-case a

no-op; it won't cause the debugging package to be entered.

Example:

DEFINE WR·lTE (L: LISP _ELEMENT):

CASE L OF

ATOM: WRITE(L);

INTEGER_.NUMBER: WRITE(L);

FLOATIN(_NUMBER: WRITE(L);

CONS_PAIR: WRITE('('); WRITE(L.CAR);

WRITE(' . '); WRITE(L.CDR);

- 331 -·

WRITE (I) I) ;

EN DC ASE

ENDDEFN

This defines WRITE of LISP_.ELEMENT to print out a LISP __ ELEMENT in

the dot notation. Note that the WRITE functions named in the first

three case-clauses are WRITE of QS, INT, ond REAL respectively.

Recursion occurs only in the CONS_PAIR clause; L.CAR and L.CDR are

of type LISP_ELEMENT.

Note that the following CASE form:

CASE L OF

CONS_PAIR: L. CAR: =L. CDR;

EN DC ASE

leaves L unmodified upon completion. Referring to the <EXPR> ECASE

rule, note that the case-variable, L, always appears unchanged by

anything within a CASE form.

Th! f!CJ.~DU:Q. f!l~

HOLDIT: <SS> :::= HOLDING <ASN1> DO <ss,> ENDHOLD

M'eantng

Refer to the <EXPR> llOLDING form.

Example:

When processing pictures, it is useful to have a global variable

defining the "current" orientation and to have plotting procedures

which reference that global variable for the purpose of placing the

given picture on the screen. Suppose the type PICTURE is defined

by

,. 332 ,.

TYPE PICTURE= EITHER

SIMPLE= POLYGON

DISPLACED= [P:PICTURE BY:POINT]

UNION= { PICTURE }

ENDOR;

That is, a PICTURE may be formed by unions and displacements upon

POLYGONs. Let us declare

VAR POSITION=POINT;

so that POSITION is the global variable representing orientation.

Assuming the existence of a procedure to plot POLYGONs at the

orientation specified in POSITION, the following procedure will

plot .PICTUREs:

DEFINE PLOT(X:PICTURE):

CASE X OF

SIMPLE: PLOT_POLY(X);

DIS-LACED: HOLDING POSITION:=POSITION+X.BY;

DO PLOT(X.P); ENDHOLD

UNION: BEGIN VAR V=PICTURE;

DO PLOT(V); FOR V $E X;

END

ENDCASE

ENDDEFN

The DISPLACED case-clause modifies the orientation, POSITION, for

and onlu for the plotting of the "displaced" Jlicture. The global

variable POSITION is being used in a recursive manner because there

·,

... 341 ...

The Artthmettc fOR guanti[ier

This quantifier corresponds to FORTRAN•s DO-loop.

AFORGO:

AFORID:

<OUANT> ::= <AFOR1> ;

where

<AFOR> ::= FOR <ID1>

AFORFR: <AFOR> .. - <AFOR1> FROM <EXPR2 >

AFORTO: <AFOR> : : = <AFOR 1> TO <EXPR2 >
AFORBV: <AFOR> .. - <AFOR 1> BY <EXPR2 > .. -
AFORIN: <AFOR> .. -.. - <AFOR 1> IN <EXPR2>

AFORJS: <AFOR> .. -.. - <AFOR1> IN• <EXPR2 >

Informally. a (QliANT> mily be formed by

FOR <ID>

followed by a sequence

FROl1 <EXrR>

TO <EXPR>

BY <EXPR>

IN <EXPR>

IN• <EXPR>

of the clauses

followed finally by a semicolon.

Suntax Requirements

Some clauses cannot appear together and some clauses

others.

1) Each clause may appear at most once.

2) IN, IN•, and BY are mutually exclusive.

3) TO is required in the absence of BY.

require .

.. 334 ...

~oopt ne. rutth <SS>.~

SSQ: <SS> : := DO <SS1> <QUANT2>

SSQ: <SS> ::= <QUANT2> DO <SS1> END

/lteantng

Execute <SS1> once for each iteration caused by <QUANT2 >

Examples:

DO WRITE(I); FOR I FROM 1 TO 9;

(---ss----)(------QUANT------)

prints 123456789.

FOR I FROM 1 TO 9; DO WRITE(I); END

does exactly the same.

Function Cal!.!.~.f

SSCALP:

SSICAL:

<SS> ::= <ID1> <ARGS2>

<SS> .. - <ID1>

where <ARGS> is as defined in the

<EXPR> function call rule, ECALLP.

Tvpe Requtrements

For the first rule, SSCALP, there must be a declared function whose

name is <ID1>, which produces no value, and whose input parameter

types sequentially match the types of the <EXPR>s in <ARG~2>. For

the second rule, SSICAL, there must be a declared function whose

name is <ID1> and which has no input or output parameters.

l'ASS8 Requirements

~· 335 ~·

The <EXPR>s in <ARGS2> must be SOURCES.

/lleantng

Evaluate each <EXPR> in <ARGS2> in order of specification and then

call the appropriate function, <ID1>.

Example:

DEFINE TAB: WRITE(' I) ; ENDDEFN

defines TAB to be a procedure which prints a tab.

TAB;

invokes TAB and thus prints a tab.

~· 336 ~·

Unlike the programming language PASCAL, sequences of statements

need not be enclosed within SEGIN-ENDs. Also, in ICL, semicolons do not

separate <SS>s. Semicolons are terminators for

constructs like the assignment statement and

various independent

the procedure call.

Statements in ICL are separated by blanks or by nothing at all.

SS.SS:

flfeanin9

Evaluate <SS1>. Then evaluate <ss2>.

Example:

I:=O; I:=I+3; I:=I•2;

leaves I containing a 6~

' 337 ,.

Quan ti f i er s :. ~.Q.Q.E!. Q~i::! er at -2.t!.!. 59g~~.Il

Quantifiers are those linguistic forms in ICL which cause looping.

Aside from looping via recursion, all looping in ICL is expressed via

quantifiers.

We can characterize the meaning of <QUANT> by first noting that all

of ICL's rules which incorporate <QUANT>s easily transform into the

canonical form:

DO <SS> <QUANT>

Some action is performed repEatedly as dictated by <QUANT>, whether that

action be accumulating a sum, forming a string, or performing some

arbitrary action.

DO <SS> <QUANT>

is implemented by the program:

LOOP:

EXIT:

prepare for the first iteration

<SS>

prepare for the next iteration

GOTO LOOP

where the two preparations have the option of branching to the EXIT

lable, thus terminating the loop.

... 336 ..

Primitive Quantifiers

The following are ICL's primitive <OUANT>s. In the next section,

we will see ways to combine <QUANT>s to come up with more complex

quantifiers.

QWHIL: <QUANT> •• - WHILE <EXPR 1>

Type Requirements

PASS3 Requirements

Neaning

<EXPR1> = BOOL

<EXPR1> = SOURCE

Before each iteration, evaluate <EXPR1> and exit as soon as <EXPR>

yields FALSE. The WHILE quantifier may cause 2ero iterations!

Examples:

DO WRil'E('x'); WHILE FALSE;

is a no-op.

DO WRITE('x'); WHILE TRUE;

is an infinite loop.

{ COLLECT C WHILE (C:=TTYCIN;) <>CR; }

forms a string of characters taken from the TTY. The function

TTYCIN yields each character typed in at the TTY. The. resulting

string includ~s ~11 characters up to but not including the first

. carriage-return, assuming that the variable CR tontains the

carriage-return character. Note that since the WHILE-<EXPR>

(C:=TTYCIN;) <> CR

- 339 ~·

evaluates b~fore each iteration, the CHAR variable C contains a new

input character upon each iteration. The form

(C: =TTYC IN;)

sets C to the input character and yields this character as its

value, referring to the rule SETQX in the section !~be~~i!!.~ <SS>s

i~ <EXPR>~. Upon leaving this string <EXPR>, C contains a carriage

return.

QUNTL: (QUANT> ::= UNTIL <EXPR1>
Type Requirements

PASS3 Requtrements

lfeantng

<EXPR1> = BOOL

<EXPR1> = SOURCE

After each iteration, evaluate <EXPR1> and exit as soon as <EXPR1>
yields TRUE. The UNTIL quantifier causes at least one iteration!

Examples:

DO WRITE('x'); UNTIL TRUE;

writes one x.

DO WRITE('x'); UNTIL FALSE;

is an infinite loop.

{ COLLEC.T C UNTIL (C:=TTYCIN;) =CR;}

forms a string of characters taken from the TTY. The first

character in the string is not from the TTY, however; the first

character is whatever C contained upon entry to this string <EXPR>.

This string includes all characters up to and tncludtng the first

·,

- 340 -

carriage-return, assuming that the variable CR contains a

carriage-return.

carriage-return.

Upon leaving this <EXPR>, C contains a

REP ET: <QUANT> : : = REPEAT <EXPR1>

Tvpe Requtrements

PASS3 Requirements

flf'eaning

<EXPR1>

<EXPR1>
= INT

= SOURCE

Cause <EXPR1> iterations. If <EXPR1> is 2ero or less, cause no

iterations.

Examples:

DO WRITE('x');

writes 50 x's.

REPEAT 50;

(COLLECT TTVCIN REPEAT BO:}

forms a string of BO characters taken from the TTY.

·,

... 341 ...

The Artthmettc fOR guanti[ier

This quantifier corresponds to FORTRAN•s DO-loop.

AFORGO:

AFORID:

<OUANT> ::= <AFOR1> ;

where

<AFOR> ::= FOR <ID1>

AFORFR: <AFOR> .. - <AFOR1> FROM <EXPR2 >

AFORTO: <AFOR> : : = <AFOR 1> TO <EXPR2 >
AFORBV: <AFOR> .. - <AFOR 1> BY <EXPR2 > .. -
AFORIN: <AFOR> .. -.. - <AFOR 1> IN <EXPR2>

AFORJS: <AFOR> .. -.. - <AFOR1> IN• <EXPR2 >

Informally. a (QliANT> mily be formed by

FOR <ID>

followed by a sequence

FROl1 <EXrR>

TO <EXPR>

BY <EXPR>

IN <EXPR>

IN• <EXPR>

of the clauses

followed finally by a semicolon.

Suntax Requirements

Some clauses cannot appear together and some clauses

others.

1) Each clause may appear at most once.

2) IN, IN•, and BY are mutually exclusive.

3) TO is required in the absence of BY.

require .

- 342 -

Tupe Requtrements

<ID1> must be a variable. <ID1> and the <EXPR2>s must either all

be INTeger or all be REAL.

PASSa Requtrements

Neantng

All the <EXPR2>s = SOURCE

Set the loop variable, <ID1>, for each iteration as directed by the

specified clauses. Each clause has its own meaning:

FROM <EXPR>

sets the loop-variable to the value of <EXPR> before the first

iteration. In the absence of FROM, the value of the loop-variable

is whatever it was upon entrance to the loop. That is, the absence

of FROM is equivalent to specifying

FROM <ID1>
The TO clause,

TO <EXPR2>
specifies that the loop is to terminate when the loop variable

exceeds the value of <EXPR2>. Note that if the increment is

negative, exceed means less than. In the absence of the TO clause,

the loop is infinite.

The BY, IN, and IN• clauses specify an increment. In the absence

of these clauses, the increment is +1 or -1, depending on which of

the FROM and TO <EXPR>s is greater.

- 343 ~

specifies that the increment is to be the value of <EXPR2>. Before

each non-first iteration, the loop variable is incremented by the

value of <EXPR2 >. <EXPR2> may be negative.

IN <EXPR2>

sp~cifies the increment (TO-FROM)/IN. That is, IN specifies the

number of iterations. The increment is chosen to divide the

FROM-TO interval evenly into <EXPR2 > intervals. The loop variable

is set to the initial endpoint of each interval, e.g.,

FOR R FROM 0 • 0 TO 1. 0 JN 4 ;

sets R to the values

0.0, 0.25, 0.5, 0.75, but not to 1.0

However,

IN• <EXPR2>
specifies the same increment as the IN <EXPR> but the number of

iterations is <EXPR2>+1, not <EXPR2>. The extra iteration sets the

loop variable to the terminal endpoint of the last interval, e.g.,

FOR R FROM 0.0 TO 1.0 IN• 4;

sets R to the values

0.0, 0.25, 0.5, 0.75, and 1.0.

Note that if the loop variable is INTeger, the increment

(TO-FROM)/ IN

is calculated using the integer divide, so

FOR I FROM 1 TO 10 IN• 3;

... 344

yields the sequence 1,4,7,10 and

FOR I FROM 1 TO 9 JN• 3;

yields the sequence 1,3,5,7 ..

The arithmetic FOR quantifier evaluates each <EXPR2> once,

before entering the loop. The arithmetic FOR quantifier also

res~ts the loop variable for each iteration, ignoring

value, e.g.,

DO WRlTE(I); 1:=20; FOR I FROM 1 TO 3;

I.
its current

writes the numbers 1,2, and 3. Also, the FOR quantifier does not

increment the loop variable after the final iteration, and it does

not reset it. Thus,

DO WRITE(I); FOR I FROM 1 TO 3;

leaves the variable I containing the value 3, not 4.

DO WRITE(I); 1:=20; FOR I FROM 1 TO 3;

writes the numbers 1,2, and 3 and leaves I containing a 20 upon

exit.·

Examples:

DO WRITE(I) ;WRITE(I I); FOR I FROM 5 TO 10;

writes 5 6 7 B 9 10.

DO WRITE(l);WRITE(' ');FOR I FROM 10 TO 5;

writes 10 9 8 7 6 5.

1:=10;

DO WRITE(I); FOR l TO 5;

~ 345 ~·

does the same.

DO WRITE(I); FOR I FROM 10 TO 5 BY 1;

writes the number 10.

DO WRITE(R);WRITE(' ');FOR R FROM 1.0 TO 0.0 IN 4;

writes

1.0 0.75 0.5 0.25

The following form generates a string of points:

{COLLECT COS(T)#SIN(T) FORT FROM 0 TO 2•3.14 INN;}

This string of points represents an N-gon without duplicating · the

first point.

{COLLECT COS(T)ISIN(T) FORT FROM 0 TO 2•3.14 IN*.N;)

makes an N·gon where the first point is duplicated at the end.

. "" 346 ""

The selection FOR quantifier is perhaps the main workhorse in ICL.

As implied by its name, the selection FOR quantifier performs selection,

mainly on strings. Its most popular use is for iterating thru the

elements in a string. As we shall see, the FOR quantifier supports

iterations thru the elements of elements of strings or thru the elements

of string components of records or thru the elements of strings of

records of strings, etc. In addition, the FOR quantifier can iterate

thru a string by setting a sequence of variables to consecutive elements

in the string. The user can even specify that the sequence of variables

be allowed to wrap around back to the beginning of the string.

The FOR quantifier is basically an assignment statement. However,

unlike the regular assignment statement, the FOR quantifier is free to

cause looping. Within a FOR quantifier, the notion of TARGET is

extended to include a new class of TARGET-lik.e entities:

looping-TARGETs. Looping-TARCiETs include a new TARGET which is formed

by the strtng generation rule, e.g., {I;J; ... }. We shall formally

introduce the class of looping-TARGETs after we present the linguistic

contraction which abbreviates the FOR quantifier for the most common

uses.

· QFORE: (QUANT> ::= FOR <EXPR1> $E <EXPR2 >

The $E reads as an element of.

Tupe Requtrements

- 347 -

<EXPR2> = a string of some type and

<EXPR1> = that type of which <EXPR2 > is a string.

PASS3 Requirements

<EXPR2 > = SOURCE and

<EXPR1> = TARGET or looping-TARGET

neaning

The following describes the meaning only for those cases .where

<EXPR1> is a TARGET and not a looping-TARGET: For each element in

the string <EXPR2 >, feed that element to the TARGET <EXPR1> and

cause one iteration. The number of iterations is therefore equal

to the length of the string <EXPR2>.

Examples:

DO WRITE(I);WRITE(' ');FOR I $E {1;5;20;-3};

writes 1 5 20 ·3.

+ I FOR I SE {1;5;20;-3};

yields the value 23, the sum of the elements in the specified

string. (Refer to the section Looptno wtth <BOP>s).

{ COLLECT 1+1 FOR I $E S;}

yields a string identical to S except that each element is

incremented.

MIN I FOR I $E S;

yields the minimum value in S. Recall that MIN is a <BOP>. If BOX

is defined by

TYPE BOX = [LOW,HIGH: POINT];

.... 348 ~

where LOW refers to the lower lefthand corner and HIGH refers to

the upper righthand corner, then

[LOW: MIN P FOR P $E S;

HIGH: MAX P FOR P $E S;]

yields the minimum bounding box for an arbitrary string of POINTs,

s.

The SE FOR-quantifer presented above is a special case of the more

general. $C FOR-quantifier. In general, we can translate

FOR <EXPR1> $E

FOR · { <EXPR1> }
<EXPR2>

$~ <EXPR2>

into

$E reads as an eleme.nt of and $C reads as contained in.

QFORC: <QUANT> .. -.. - FOR <EXPR1> SC <EXPR2>

Tupe Requirements <EXPR1> = <EXPR2>
PASS8 Requirements <EXPR2> = SOURCE and

<EXPR1> = TARGET or looping-TARGET.

1'eantng

feed the value of <EXPR2> to the TARGET or looping-TARGET <EXPR1>.

If <EXPR1> is a TARGET, act as a simple assignment and cause

exactly one iteration. If, on the other hand, <EXPR1> is a

looping-TARGET, then set variables and cause iooping as directed bu

the looping-TARGET.

~· 349 ~·

What is ! Looping-TARGET

A looping-TARGET is

1) any TARGET, or

2) any string of looping-TARGETs, or

3) any record of looping-TARGETs

ln this context, we are viewing the set of looping-TARGETS as

including the set of TARGETs. Please refer to the string

generation rule, STRGEN, and the record generation rule, RGENF for

the syntax of string and record generation. We now ex.tend these

generation rules' PASS3 requirements to include looping-TARGETs.

Each string form, {}, represents one dimension of iteration.

{ I }

is a looping-TARGET. It sets I to each element in a given string

and causes one iteration for each value of 1~ The number of

iterations is therefore equal to the length of the given string.

{ I ; J }

sets I and J to consecutive elements in a given string. That is, I

holds the first element and J holds the second element for the

first iteration. For the second iteration, I holds the second

value and J holds the third. The final iteration finds I holding

the second to the last element and J holding the last element. The

number of iterations equals (the length of the given string - 1).

If the given

iterations,

string is

i . e. , the

of length one, then there are zero

template {I;J} cannot fit into a string of

~· 350 ~·

length one.

{ I ; J K

sets I, J, and K to consecutive elements in the given string. The

number of iterations is two less than the length of the given

string. Again,.if the length of the given string is less than

three, there are no iterations.

txamples !l1. the FOR !IJ!.~.!1.H.l.!.~E

FOR {I} $C {2;4;6;8;10);

sets I to the values 2,4,6,8,10. This is equivalent to

FOR I SE {2;4;6;8;10);

The quantifier

FOR (I;J} SC {2;4;6;8;10);

sets I and J for each iteration as follows:

iteration 1: I,J= 2,4

iteration 2: I,J= 4,6

iteration 3: I,J= 6,8

iteration 4: I,J= 8, 10

Similarly,

FOR {I;J;K.} $C {2;4;6;8;10);

sets I, J' and K for each iteration as:

iteration 1: I' J • K.= 2,4,6

iteration 2: I, J 'K.= 4,6,8

iteration 3: I,J,K.= 6,B,10

,. 351 ~·

loopinv-TARGETs that ~rae-arQ.~!l~

{ I ;* J }

is equivalent to

{ I ; J }

except that one more iteration occurs. This final iteration finds

I containing the last element in the given string and J containing

the first element. That is, the template {I ;* J} has wrapped

around back to the beginning of the given string.

{ I ; J ;* K }

sets I, J, and K to the consecutive elements in the given string

but in addition, K is allowed to wrap around .. Hence, the final

iteration finds K holding the first element and I and J holding the

second to last and the last elements in the given string.

{ I ;* J ; K. }

differs from the previous example by the placement of the "·*" '
separator. Here, both J and K are allowed to wrap around. The

quantifier

FOR {I ;* J} $C {2;4;6;&;10};

causes the iterations:

iteration 1: I ,J= 2,4

iteration 2: I,J= 4,6

iteration 3: I,J= 6,8

1 teration 4: I,J= 8,10

iteration 5: I,J= 10, 2

.... 352

The quantifier

FOR (I ; J ;* K} $C (2;4;6;8;10};

causes the iterations:

iteration 1: I,J,K= 2,4,6

iteration 2: l,J,K..= 4,6,8

iteration 3: I,J,K= 6,8,10

iteration 4: I ,J ,K= 8,10, 2

The quantifier

FOR {I ;*. J ; K} $C {2;4;6;8;10};

causes the iterations:

iteration 1: l,J,K= 2,4,6

iteration 2: I, J, K= 4,6,B

iteration 3: l,J,K= 6,8,10

iteration 4: I,J,K..= 8,10, 2

iteration 5: l, J. K..= 10, 2,4

In general, the first ";*" specifies that the following elements

will wrap around. All but the first";*" are ignored .. The number

of iterations depends on the length of the given string. and the

number of target elements preceding the

({ I } }

"·•·· . .

sets I to each element in a TWO_DIMENSIONAL __ ARRAY (refer to the

section for the definition of

TWO_DIMENSIONAL_ARRAY). That is, working form the outside in, the

.... 353

((I}} sets the looping-TARGET {I} to each vector in the given

TWO_DIMENSIONAL_.ARRAY. The {I} receives each vector by setting I

to each element in the vector. Thus, {{I}) represents a

two-dimensional loop.

A computer circuit board, or CARD, consists of a bunch of

interconnected chips. Each chip has a name and a set of wires or

signals to which it connects. In ICL, we can represent this by

TYPE CARD= { CHIP };

CHIP= [NAME: CHIP_NAME

SIGNALS: { WIRE __ NAME }] ;

That is, a CARD is a bunch of CIHPs and each CHIP has a name and a

set of wires. Now, suppose CARD is a variable of type CARD. Each

of the following prints the na.mes of the CHIPs in CARD.

DO WRITE(CHIP .NAME); FOR CHIP SE CARD;

or

DO WRITE(N); FOR [NAME:N] $E CARD;

The second form selects down to the chip-name in the FOR-quantifier

whereas the first form sele'cts down to the chip-name in the WRITE

statement.

Each of the following forms prints each wire-name, WN, as many

times as it is connected to a chip:

FOR CHIP SE CARD;

DO FO.R WN $E CHIP.SIGNALS;

DO WRITE(WN); END END

or

~· 3 51}

FOR [SIGNALS:S] $E CARD;

DO FOR WN $E S;

DO WRilE(WN); END END

or simply

FOR [SIGNl\LS: {WN}] $F. C/\.RD;

DO WRITE(WN); END

Each of these loops is a two-dimension

form has only one FOR-quantifier.

loop. However, the final

Looking closer at the final

form, we see that each element in CARO, a CHIP, is assigned to the

looping-TARGET

[SIGNALS: (WN}].

This looping-TARGET assigns the SIGNALS component to the

looping-TARGET (WN). {WN} assigns each eJement in SIGNALS to the

variable WN. Therefore, WN is assigned each signal in each chip in

CARD.

The following prints each wire-chip pair:

FOR [NAME: CN SIGNALS: {WN}] $E CARO;

DO WRITE(CN); WRITE(w'N); END

Each chip in CARD is assigned to the looping-lARGET

[NAME: CN SIGNALS: {WN}]

This looping-TARGET sets CN to the name of the chip and it sets the

looping-TARGET (WN} to the chip's SIGNA.l.S component. The

looping-TARGET {WN} then assigns each signal into the variable WN.

- 355 -

The following prints each chip-name to which a given WIRE_NAME

is connected:

FOR [NAME: CN SIGNALS: {WN}] $E CARD;

DO IF WN=WIRE_NAME TltEN WRITE(CN); FI END

Let us now consider the problem of sorting a CARD by signals.

As CARD now stands, a particular wire-name is scattered among many

chips. Our goal is ~o produce a reshaped CARD so that each WIRE is

conveniently listed with all the chips it connectsi

TYPE SORTED_CARO= [WIRE: WIRE_NAME

CHIPS: SET __ OF_CfllPS] };

SET_OF __ CHIPS= { CHIP __ NAME } ;

A SORTED_CARD is a set of records each having a unique wire-name

along with the set of chip-names to whjch the wire connects. The

following function, complete with declarations, should accom~lish

the task of translating a CARO into a SORTEO_CARO.

' 356 ,,

DEFINE SORT(CARD:CARD)= SORT'ED __ CARD :

BEGIN VAR CN=CHIP_NAME; WN,WN1=WIRE_.NAME;

C= SET_OF_CHIPS;

SORTED_CARD= SORTED_.CARD;

DO SORTED __ CARD:=NIL;

FOR [NAME:CN SIGNALS:{WN}] $E CARD;

"For each chip-wire pair ... "

DO " Have we yet encountered this particular

wire-name? "

IF NEVER WN1=WN FOR [WIRE :WNt

CHIPS:C] $E SORTED __ CARD;

THEN "We have a new wire-name.

Expand SORTED_CARD to include an entry

for this new wire-name and its chip"

SORTED_CARD::=[WIRE:WN

CHIPS: {CN}] <S;

ELSE "WN=WN1. Add CN to C, the

set of chips associated to WNt."

@(C):= CN ($ COPY(C); FI

DEFINE SORT(CARD:CARD)=SORTED_CARD:

BEGIN <DECL>

DO SORTED_CARD:=NIL;

~· 357 ~·

Expand SORTF.'O_CARD to include

each chip-wire pair

GIVE SORTED_CARD

END

ENDDEFN

The main part of this function repeatedly updates SORTED_.CARD to

account for each individual chip-wire pair. We get each chip-wire

pair by using the quantifier

FOR [NAME:CN SIGNALS: {WN}] $E CARD;

Having each chip-wire pair, we use SORTED_CARD as a table and look

for an entry having WN as its wire. The <EXPR>

NEVER WN1=WN FOR [WIRE:WN1

CHIPS:C] $E SORTED_.CARD;

is a BOOLean which yields TRUE if SORTED_CARD does not ha.ve an

entry for the wire WN. That is, the quantifier

FOR [WIRE:WN1 CHIPS:C] $E SORTED_CARD;

sets WN1 to each wire in SORTED_CARD and sets C to the wire's

accumulated chip set. If it is never true that WN1=WN then

SORTED_CARD contains no entry for the wire WN. Here the program

splits into two cases. First, if SORTED_.CARD has no entry for WN',

create a new entry on SORTEO_CARO for the new wire, WN. This is

done by

SORTED_CARD::= [WIRE:WN CHIPS:{CN}] <S

~· 358 ~·

We append onto the front of SORTED_CARD a new entry, an entry whose

wire is WN and whose associated set of chips is {CN}, the string

containing CN as its onl~ element.

On the other hand, if SORTEO_CARD already contains 'an entry

for WN, then we merely modify its associated chip set to include

CN. The variable C contains WN's associated chip set because the

NEVER <EXPR> yielded FALSE. The sentence

@(C):= CN ($ COPV(C);

appends CN to the front of C. The @ and COPY are used solely for

the purpose of making this modification apparent from SORTED_CARD's

point of view and not merely from C's point of view. T.hat is, the

string referenced by the CHIPS component of an elemeqt in

SORTED_.CARD is treated as an object in its own right which can be

modified in a global sense. The @ operator makes the cha.nge

apparent from all points of view. We are obliged, however, to

assure ourselves that this global modification affects nothing

besides those structures created in this program. We can look at

this program and easily prove that the modification is apparent

only from C's and SORTED_CARO's points of view. The location

referenced by C, the location modified by the @ operator, will

always be the CHIPS component of some record in SORTED_.CARD. Each

entry in SORTED~CARD is created by the record generating <EXPR>

[WIRE:WN CHIPS:{CN}].

The CHIPS component, {CN}, is a newly created string and therefore

it resides at a location referenced from no other point of view.

It is precisely this location in memory which is affected by the @

.. 359 ..

operator. In short, the location modified by the @ operator is one

which is created in this program and which is referenced only by

SORTED_CARD and C.

11 on-n es t e d ~.Q.Q.l!.!.~.'J..:.[1.fl.Q.~I.~.

We now define what happens when two looping-TARGETs are

disjoint, i.e., neither is nested within the other. For example,

the looping-TARGET

[A: (X} B: (Y}]

has two string <EXPR>s which appear independently from one another.

This looping-TARGET produces a two-dimensional loop: X and Y are

set to each element in the A and B components of the given record

in all possible ways. Thus,

sets

or

FOR [A:{X} B:{Y)] $C [A:{1;2;3) B:{10;20}];

X,Y= 1,10

X,Y= 2,10

X,V= 3,10

X,Y= 1,20

X,Y= 2,20

X,V= 3,20

X,Y= 1,10

X,V= 1,20

X,Y= 2,10

X,Y= 2,20

X,Y= 3,10

X,Y= 3,20

- 360 ~·

One of these sequences occurs, but the user cannot be certain as to

which. Refer to the uncertain evaluation order in the record

generation rule, RGENF.

The looping-TARGET

{ {I} ; {J} }

defines a three-dimensional loop upon a string of strings. Let us

refer to the given string of strings by the name s. This

looping-TARGET sets the looping-TARGETs {I} and {J} to the

consecutive strings in S. Each of these looping-TARGETS

independently sets I and sets J to the elements in the two

consecutive strings. In other words, I is set to each element in

the first string of S and J is independently set to each element in

the second string of S. Then, I is set to each element in the

second string, of·s and J is independently set to each element in

the third string of S, etc. In general, the dimensionality of any

given looping-TARGET is equal to the number of string-<EXPR>s, {},

occuring within.

..... 361 -·

We can combine the primitive quantifiers to form quantifiers of a

more general sort. The following section covers the combination of

quantifiers with quantifiers and the section there after covers the

modification of quantifiers.

Binarl Combinations

The following rules construct quantifiers which cause nested

looping, Jock-stepped looping, and sequenced looping.

QOR: <QUANT> : := <Q.UANT 1> !! <QUANT2>

QAND: <QUANT> .. - <QUANT1> &&: <QUANT2>

QTHEN: <QUANT> : : = <QUANT1> THEN <QUANT2>

lleaning

The operator!! nests quantifiers, the operator && lock-steps

quantifiers, and the operator THEN sequences quantifiers. That is

<QUANT1> II <QUANT2>

specifies that for each iteration caused by·<QUANT1>, run <OUANT2>.

The canonical

DO <SS>

becomes

DO DO <SS> <QUANT2> <QUANT1>

<-------ss---------J

~· 362 ~·

The resulting number of iterations is the product of the numbers of

iterations caused by <QUANT1> and <OUANT2 >.

The quantifier

<QUANT1> && <QUANT2>

specifies that <QUANT 1> and <QUANT2 > step together. This

quantifier terminates as soon as either <QUANT1> . or <QUANT2>

terminates. The canonical

DO <SS> <QUANT1> && <QUANT2>
becomes

prepare for first iteration of (QUANT1>

prepare for first iteration of (QUA.NT2>

LOOP: <SS>

prepare for next iteration of <QUANT1>

prepare for next iteration of (QUANT2 >

GOTO LOOP

EXIT:

where each of the four preparations may spontaneously branch to

EXIT. As soon as one quantifier is exhausted, the &'.& combination

is said to be exhausted. The resulting number of iterations is the

minimum of the numbers of iterations caused by <QUANT1> and

<QUANT2>.

The quantifier

' 363 ~·

specifies that when <QUANT1> terminates, start up <QUANT2>. The

canonical

DO <SS>

becomes the two sentences

Examples:

DO <SS> <QUANT1>

DO <SS> <QUANT2 >

DO WRITE(I);TAB;WRITE(J);CRLF; FOR I FROM 1 TO 3; I!

prints

1 1

1 2

1 3

2 2

2 3

3 3

The sentence

FOR J FROM I TO 3;

DO WRITE(ptJ) ;TAB; FOR I FROM 1 TO 3; !!

. FOR J FROM 1 TO 3;

prints

1 2 3 2 4 6 3. 6 9

The expression

{COLLECT IIJ FOR I FROM 1 TO 10; !!

~· 364 -

FOR J FROM 1 TO 9;

forms an array of points having 9 rows and 10 elements per row.

The && operator may be used as follows:

DO WRITE(l);TAB;WRITE(J);CRLF; FOR I FROM 1 TO 10; &&

FOR J FROM 0 TO 20 BY 5;

prints

1 0

2 5

3 10

4 15

5 20

The string

{COLLECT I FOR I $E S; && WHILE 1<10; }

forms the longest initial substring of S having all elemerits less

than 10. The string

{COLLECT I FOR I $E S; && REPEAT 5;

forms a string having the first 5 elements of S. If S has less

than 5 elements, this new string is a mere copy of S. The string

{COLLECT I FOR I FROM 0 BY 5; &&

REPEAT 20;

forms a string of 20 elements. The first element is 0 and each

following element is 5 greater than its predecessor. Notice that

this example uses the && to limit the non-terminating qua~tiffer

FOR I FROM 0 BY 5; .

-· 365 -·

The BOOLean expression

ALWAYS A=B FOR A $E St; && FOR B $E S2;
I compares two strings of characters and yields TRUE if one string is

the initial segment of the other.

DO WRITE('ElemenU') ;WRITE(I) ;WRITE(' is ') ;WRITE(J);

FOR I FROM 1 BY 1; && FOR J $E S1;

prints out a table of two columns. The first column is the

sequence of integers from 1 to the length of St and the second

column is the corresponding elements in St. If St is the string

{5;10;-3} then we will get

Elementlt is 5

ElemenUZ is 10

Elementl3 is -3

The following sentence uses the THEN operator:

DO WRITE(I);TAB; FOR I FROM 1 10 5 BY 2; THEN

FOR I FROM 100 TO t02; THEN

FOR I FROM 200 TO 202;

prints

1 3 5 too 101 102 200 201 202

The summation

+ I FOR I $E S1; THEN FOR I $E S2;

yields the sum of the elements in both St and S2.

.. 366 ...

Any quantifier may be postfixed with a variety of modifiers.

·Concerning precedence, these modifiers are tacked on. before any binary

combinations are considered. For example,

FOR I $ES; && FOR J $E St; WITH J >= 5;

groups as

FOR I $Es·; &.& (FOR J $E St; WITH J >= 5;)

and not as

(FOR I $ES; &.& FOR J $E St;) WITH J >= 5;

QWITH: <QUANT> •• - (QUANT1> WITH <EXPR2> ;
QINH: <QUANT> : := <QUANT 1> INHIBIT'_IF <EXPR2 >

QRES: <QUANT> : := (QUANT1> RESET IF <EXPR2 >

QECH: <QUANT> •• - <QUANT1> EACH DO <SS2 > ;

QFTM: <QUANT> •• - <QUANT 1> F IRST_DO <SS2>

QOTH: <QUANT> ::= <QUANT1> OTHF.R_,PO <SS2>

QFST: <QUANT> ::= <QUANT1> INITIALLY <SS2>

QFIN: <QUANT> : := <QUANT1> FINALLY_,00 <SS2>

Tupe Requirements <EXPR2> = BOOL

PASS8 Requirements <EXPR2 > = SOURCE

1feanino

Each modifier has its own meaning:

-· 367 -

filters the <QUANT1> by removing those iterations for which <EXPR2>
yields FALSE. That is, the canonical

DO <SS>

becomes

DO IF <EXPR2> THEN <SS> Fl <QUANT1>

<------------ss--------->
The modifier

INHIBIT_IF <EXPR2 > ;

inhibits the stepping of <QUANT1> when <EXPR2 > yields TRUE except

on the first iteration. That is, before each non-first stepping of

<QUANT1>, evaluate <EXPR2 > and abandon the stepping if <EXPR2 >
yields TRUE.

The modifier

RESET_IF <EXPR2> ;

resets <QUANT1> to start over from the beginning if <EXPR2 > yields

TRUE. That is, before each non-first stepping of · <QUANT1>,

evaluate <EXPR.2 > and if it yields TRUE, reset <QUANT1> so that it

now restarts from the beginning.

The modifier

EACH_DO <S~2>

specifies that <SS2> be evaluated before each iteration after

<QUANT1> has been stepped. That is, the canonical

DO <SS>

.. 368 -

becomes

DO <SS2 > <SS> <QUANT1>

<----ss---->
The modifier

FIRST_DO <SS2 >

specifies that <SS2> be evaluated before the first iteration but

after <QUANT1> is first stepped. That is, the canonical

DO <SS>

becomes

DO IF thts ts the first iteratton THEN <ss2> FI

<SS> <OUANT1>

The modifier

OTHER_DO <SS2>

specifies that <SS2> be evaluated before each non-first iteration.

That is, the canonical

DO <SS>

becomes

DO IF this is not the first iteration

<SS>

It turns out that <SS2> appears to be evaluated betlueen iterations.

The modifier

- 369 -

specifies that <SS2> be evaluated before the first stepping of

<QUANT1>. The canonical

DO <SS>

becomes

<SS2 > DO <SS> <QUANT1>

The modifier

FINALLY_DO <SS2> ;.

specifies that <SS2> be evaluated after <QUANT1> terminates. The

canonical

DO <SS>

becomes

DO <SS> <QUANT1> <SS2>

<-------ss-------->
Examples:

{COLLECT I FOR I $E S; WITH 1>5; }

forms the largest subset of S whose elements satisfy I>.5.

{COLLECT I FOR I $E St; WITH

THERE_IS J=I FOR J $E S2; }

(----------EXPR----------)

(--------------QUANT-----------)

forms the intersection of the strings S1 and S2. We must assume,

of course, that the elements of S1 and 82 are comparable with the

<BOP> "=". This string <EXPR> collects each element in S1 onlu tf

that element is in S2.

+ J*(J-1)

- 370 -

FOR I $E S;

EACH __ DO J:=I•SQRT(I);

<-----ss-----J
~ields the sum of J*(J-1) where J=l*SQRT(I) for each I in S. This

is equivalent to

+ (I*SQRT(I))*((I*SQRT(I))-1) FOR I $ES;

The EACH_DO is generally useful for setting auxiliary loop

variables which depend on the actual loop variable.

The QUanti fier

FOR I SE. S;. EACH_DO I: :=M.AX 5; ;

sets I to the maximum of each element in Sand 5.

The following sentence plots the path rep~esented by the stri~g of

points S:

FOR P $E S;

FIRST_DO PLOT(P,PEN __ UP);;

OTHER_DO PLOT(P,PEN_DOWN);;

DO NOTHING; ENO

The first point is plotted with the pen lifted up and the non-fir~t

points are plotted with the pen down. The quantifier itself does

all the work. The <SS> being quantified is "NOTHING;", a· no-op.

The above sentence employs the rule

(QUANT> DO <SS> END

and so we are obliged to write the "DO NOTHING; END".

.. 371 ..

The following sentence plots a polygon which is represen~ed tiy

a string of points where the first point is not duplicated at the

end:

FOR { Pt ;• P2 } SC S;

FIRST_DO PLOT(P1,PEN_UP);;

DO PLOT(P2,PEN_DOWN); END

The quantifier

FOR Pt •• P2 } $C S; ,

sets Pt and P2 to consecutive points in S where

leaves P2 containing the first point in S.

plots the first two points of S, Pt and

iterations Just plot P2.

the final iteration

The first iteration

PZ, and the other

... 372 ...

<EXPR>s and <TVPE>s - Part Z

This section introduces three more datatypes and the correspondi~g

<EXPR> forms which generate and select instances of the new types.

Finally, we will introduce a concise notation for specifying strings of

points using relative movements.

Another Primitive frl!! .: ID

Just like INT, REAL, POINT, etc. are primitive types, the name ID

is another primitive type in ICL. That is, we include the rule

<TYPE> : := ID

Do not confuse the literal IO with the part-of-speech <ID>.

An instance of the type ID is any <ID>. The type ID is very

similar to the type QS and to the SCAL~R types. Instances of ID differ

from instances of QS by their denotation and their efficiency in the

comparison operators. Unlike instances of QS, equal instances of ID are

represented by unique memory addresses, like ATOMs in LISP. Thus,

comparing two IDs is as efficient as comparing two INTegers. The type

ID differs from a SCALAR type in that any <IO> may be an instance of ID

whereas only the <ID>s contained in a SCALAR's <IDLIST> can be instances

of the SCALAR type.

Instances of the type ID are generated by prefixing an <ID> with a

percent sign:

EIDID: <EXPR> ::: ~<ID>

.... 373 ~·

Type Requirements result = ID

PASS3 Requirements result = SOURCE

Keaning

The resulting value is the <ID> as a literal value.

Examples:

X.GROUND

X.A_B_C

is the ID GROUND

is the ID A_B_C

Instances of ID may be compared by the compare operators

= <> =< < >=)
These are the compare operators which have been documented in the

section for <BOP>s. Now, we will extend the compare operators to

compare two instances of ID:

ID ID -> BOOL

Two IDs are equal if and only if they are the same ID. IDs are ordered

in a completely arbitrary way. Thus,

X.GROUND = X.GROUND is lRUE,

X.GROUND = X.GND is FALSE,

X.GROUND < > X.GND is TRUE, and

X.GROUND < X.GND is uncertain.

However, if

X.GROUND < X.GND

is TRUE once, then it is true from this time forward. The ordering

between two IDs is determined as soon as ICL has seen each <ID> for

the first time in any context. It turns out that the value of an

- 374 -·

instance of lb is its address in ICL's internal symbol table.

Whtch Type is Appropriate, 10, QS, or SCALAR(<IOLIST>)?

The types ID, QS, and SCALAR(<IDLIST>) are so similar that one

might ask what situations demand the use of one over the other. QS is

the most general; any text string is an instance of QS. ID is less

general; only tho~e text strings which form valid <ID>s as defined in

the section Basic Conuentions are instances of ID. SCALAR(<IDLIST>)

is the least general; only those <ID>s appearing in <IDLIST> are

instances of SCALAR(<IDLIST>).

As a rule of thumb, use the least general typ~ with which you can

get by. IDs compare faster than QSs and they take up slightly less

memory. SCALARs are the best because the compiler checks that any

context which expects an instance of a SCALAR does indeed get one of the

<ID>s in the SCALAR'S <IDLIST>.

-· 375 -

The following two type schema each offers a profound extension to

ICL. One enables the creation of truly abstract datatypes in the sense

that an abstract datatype may have invariant properties besides those

inherent in a machine representation. The other type schema enables the

creation of data which is a program along with some context.

A new datatype, a restriction of an existing datatype, is formed by

prefixing the existing datatype with the word PRIVATE:

<TYPE> PRIVATE <TYPE>

The representation for the resulting type is the same as the

representation for the original type. However, instances of the

original type are not instances of the resulting type and visa versa . .
The PRIVATE construct is primarily useful for creating dtsttnct types

whose representations are identical. The user will typically define

coercions between the distinct types so to remove the distinction.

However, within the coercions, he can monitor the tranference from one

type to the other. Here he can place checks and translations which will

occur implicitly throughout his programs.

For example, let us consider polygons and convex polygons. A

general polygon is suitably represented by a string of points tracing

out its vertices:

'.'

..... 376 ~·

TYPE POLYGON= { POINT };

What is here agreed upon is that any newly formed string of points

passes as an instance of POLYGON. Thus,

{ point 1 ; point2 ; •.. ; pointn }

is an instance of POLYGON. Furthermore, any operations which apply to

strings of points apply to POLYGONs:

poluoon $> Point

point <$ poluuon

poluoon $$ poluuon

poluuon [3-]

are all instances of. POLYGON. In contrast, a convex polygon is not just

any old string of points. The above expressions for POLYGONs do not

guarantee convexity. In ICL, we can specify that the type

CONVEX_POLYGON is a restricted sort of POLYGON by writing.

TYPE CONVEX_POLYGON = PRIVATE POLYGON ;

Of course, ICL doesn't know how COWEX_.POLYGONs are restricted POLYGONs,

but the user can capture the restriction in the functions and coercions

he writes which consume and produce CONVEX __ POLYGONs. CONVEX_POLYGONs

are so private that none of·the above expressions for polygons pass as

instances of CONVEX_POLYGON. The only way to create ·or examine an

instance of CONVEX_POLYGON is to explicitly specify the transference

from privacy to publicity or visa versa. The following section covers

the notation for doing so.

Publication and Confirmation - Selection and Generation for PRIVATE

Tupe&

~· 371 ~·

The following rules are the only rules which involve PRIVATE types.

Instances of PRIVATE types are stripped of their privacy by

PUBLC: <EXPR> .• - PUBLICIZE:::(<EXPR1>)

Tupe Requirements

<EXPR1> must be a private type, say PRIVATE T. The resulting type

is T, the less restricted type.

llfeantno

An identity. No additional code is generated. This construct is

used to gain access to an instance of a private type.

Example:

If C is a CONVEX_POLYGON, then

PUBLICIZE:: :(C)

is a POLYGON. The coercion

LET CONVEX_POLYGON BECOME POLYGON BY

PUBLICIZE:::(CONVEX_POLYGON)

specifies that any convex polygon is also a polygon. The privacy

of CONVEX_POLYGON may therefore be lifted implicitly.

'Instances of a private type are created by:

PRIVY:

Tupe Requirements

<ID1> is the name of a declared PRIVATE type and

<EXPR2> = that .type which is the generalization of the private type

<ID1>. That is, the following relation must hold:

-· 378 -

<ID1> = PRIVATE the-type-of-<EXPR2>
Meaning

An identity. No additional code is generated. This construct is

used to confirm <EXPR1> as being a legitimate instance of a PRIVATE

type.

Example:

If P is a POLYGON, then

CONVEX_POLYGON:::(P)

is a CONVEX_POLYGON. Similarly,

CONVEX_.POLYGON:: :({point 1 ,potnt2 : ... 1potntn}

is a CONVEX_.POLYGON. Note that the points can be chosen so as not

to form a convex polygon. ICL does not check or know what is meant

by CONVEX_POLYGON. ICL only verifies that except thru this

doorway, the notion of CONVEX_.POLYGON is safely preserved. The

coercion

LET POLYGON BECOME CONVEX_.POLVGON BY

IF POLYGON \IS_.CONVEX THEN

CONVEX_POLYGON:::(POLYGON)

ELSE DO HELP; GIVE NIL FI ;

specifies that any POLYGON passes as a CONVEX_POLYGON but in doing

so, the POLYGON is automatically subject to a test. To understand

what role this coercion plays, let us consider a function which

works only on CONVEX_POLYGONs.

- 379 -

The process of cutting a polygon in two with. a line is

referred to as polygon clipping. It is a fact that any convex

polygon clipped by a line results in another convex polygon. It is

also a fact that a general polygon clipped by a line can yield

several disconnected polygons. Without filling in the details, the

following function clips a convex polygon by a line and yields the

convex clipped polygon:

DEFINE CLIP(V:CONVEX_POLYGON BY:LINE)=CONVEX_POLYGON:

DO Clip the polygon V

GIVE the clipped polygon

ENDDEFN

Because the argument to CLIP is of type CONVEX_POLYGON, the body of

this function can be written assuming the convexity,of th' argument

V. The argument V may be accessed. simply as a string of points

because the CONVEX_POLYGON -to- POLYGON coercion can render V as a

POLYGON.

Where does the POLYGON -to- CONVEX_POLYGON coercion come in?

It potentially comes in at two places.

with a POLYGON parameter, the coercion

First, if CLIP is called

will apply before the

function call and the parameter's convexity will be checked before

entering the function CLIP. Secondly, the result of the clipping

is a new string of points, which is called the clipped polygon in

the program text given above. Before leaving the CLIP function,

the coercion will be applied to the clipped string of points, thus

verifying its convexity. If CLIP is ever called with a POLYGON

which is not convex, the function HELP will be called from within

~· 380 ~·

the POLYGON -to- CONVEX_POLVGON coercion. Similarly, if CLIP

yields a non-convex polygon, HELP will be called. Note, however,

we know that the result of the clipping is always convex. It is

therefore a waste of time for the coercion to be invoked upon

leaving CLIP. We may simultaneously relieve this final coercion

and explicitly state in program text that this procedure always

yields a convex polygon by writing

CONVEX_POLYGON:::(the clipped polygon

in the GIVE clause. We are explicitly putting our stamp of

approval on the result of this function.

Another example implements a restricted type of

capitalized character.

TYPE CAP_CHAR = PRIVATE CHAR

declares CAP_CHAR to be a restricted CHAR. We can

meaning of capitalizati~n by writing the coercions:

LET CAP_C.HAR BECOME CHAR BY

PUBLICIZE:::(CAP_CHAR)

LET CHAR BECOME CAP_CHAR BY

CAP_CHAR:::(IF CHAR >='a' & CllAR =< 1 2 1

THEN THE __ CHAR(CHAR-'a'+'A')

ELSE CHAR FI) ;

CHARacter. a

capture the

The first coercion states that any CAP_CHAR is a valid CHAR. The

second coercion states that any CHAR is a CAP __ CHAR by capitalizing

the CHAR. Before we discuss the ramifications, I must clarify the

THEN-clause· in the second coercion. The <EXPR>

' 381 ,.

CHAR - 'a' + 'A'

specifies arithmetic to be performed on characters. CHARs may not

participate in arithmetic but INTegers can. This <EXPR> assumes

the existence of a CHAR-to-INT coercion, one which maps a CHAR into

its INTeger ASCII code. Assuming such a coercion,

CHAR - 'a' + 'A'

results in type INTeger, the ASCII code for a capital letter. The

"identity" function THE_CHAR maps an INTeger into a CHAR. Thus,

THE_CHAR(CHAR - 'a' + 'A')

is the desired capitalized character. Just as the INTeger-to-REAL

coercion is generally assumed, the user may assume the existence of

the CHAR-to- INTeger coercion and the THE_,OIAR INTeger-to-CHAR

function. This coercion and function are contained in the file

BEGIN.ICL, the first file read into a freshly created ICL system.

WARNING:

A common user error accompanies coercions which coerce to

a private type, e.g., the CHAR-to-CAP _,CHAR coercion. The user

might forget to write the confirmation, e.g., CAP_CHAR:::(•••)

around the body of the BY-clause in the coercion, e.g.,

LET CHAR BECOME CAP_CHAR BY IF .. THEN .. ELSE .. FI ;

This forgetfulness results in an infinite loop via recursion.

ICL wttt apply the coercion to the body of the coercion itself

in order to satisfy the requirement that the body of the

coercion result in the type CAP_CHAR. Even though the

IF-THEN-ELSE results in a CHAR which is capitalized, ICL

... 382 ...

doesn't know that this is a CAP_CHAR. The user must

explicitly confirm that the body is of type CAP_CHAR.

What do the CHAR and CAP_CHAR coercions buy us? First of all,

the types .CHAR and CAP ~CHAR are now equivalent. One or the other

may be used anywhere with no distinction. However, anywhere the

user uses the type CAP _CHAR, he wil 1 be guaranteed to have a

capital character. Variables declared as CAP _.CHARs will always

contain capital characters. No coercion will occur when passing an

<EXPR> of type CAP_CHAR to a function requiring a CAP_CHAR.

Upon changing the declarations of some variables from CAP_CHAR

to CHAR ·or visa versa, the placement of coercions will

automatically vary in a given program. ICL always minimizes the

number of applied coercions in a static sense. 'rn this sense, ICL

optimizes a program.

coercions might be

However, the few places where ICL does place

inside a loop. In the dynamic sense, the

program is not necessarily optimized. However, as in FORTRAN, the

user can optimize his program by judiciously choosing which

variables are to be of one type and which are to be of the other

type.

The following exemplifies how ICL minimizes the application of

coercions. Appending two points to an existing CONVEX_POLYGON

might be expressed as

conue~ polvgon S> point1 $> point2

~· 383 ~

The coercions will be placed as follows. For abbreviation. P will

stand for the type POLYGON and CP will stand for the type

CONVEX __ POLYGON.

convex polygon $) point 1 $> point2

(-----CP-----)

<-----r----7-J
(-------------P---------)
<-------------------r-------------J
(-------~-----------CP------------)

First, the CONVEX_.POLVGON is coerced to a POLYGON. Then the two

points are appended to the POLYGON. Finally, if the result must be

viewed as a CONVEX_POLYGON, the finished POLYGON coerces to back to

CONVEX_POLVGON and only this once, the POLYGON is tested for

convexity. This interpretation requires the minimum number of

coercions, two.

... 384

This section documents ICL's process datatypes and their instances.

Procedures, like data structures, may be created, invoked, and passed

around both in variables and within data structures. Coercions and

functions can be defined which transform processes or data to yield

other processes or data.

The term Process Generation refers to the creation of a process and

the term Inuocation refers to the transfering of control to a process.

The symbols II and \\ are used to delimit the program text making up a

process; they denote process generation. The symbols <* and *> are

used to specify invocation of a process.

Examples

A := II <SS> \\ ;

sets A to represent the program action specified by <SS>. Writing

<* A *> ;

will cause <SS> to execute. A may be invoked as many times and in

as many environments as desired.

A:=//.I:!=+1; \\;

sets A so that <*A*> increments the global variable I.

Parameters may be passed:

F := l/(X:REAL) X*X \\ ;

... 385 ... ·

sets F to represent the function X*X.

<*F*>(5)

yields the value 25.

G:= //(X:REAL) SIN(<*F*>(X)) \\ ;

sets G to represent the function SIN of whatever <•F*>(X) yields.

<*G*>(O)

<*G*>(2)

is 0 and

is SIN(4).

However, if we now write

then

F:= //(X:REAL) 1-X \\

<•G*>(O)

<•G•>(2)

is SIN(l)

is SIN(-1).

and

Variables appear to represent the values they hold at the time of

invocation and not at the time of process generation. Thus. a

change in Fis reflected in G because G makes reference to F.

The user may specify that values taken at the time of process

generation be available at the time of invocation. Such values are

called context. For example,

G:= //(X:REAL)[F;] SIN(<*F*>(X.)) \\ ;

sets G to represent the function SIN of <•F*>(X) where F represents

the value of F now, at the time of process generation. G is now

immune to any change made to the variable F. When G is invoked,

the value F in G ~dll appear to be "'·hat it was at the time of the

assignment and not what it will be at the time of invocation. The

~· 386 ~·

context variable F is said to be frozen.

The user specifies the desired set of variables whose values

are to appear frozen at the time of process generation by enclosing

them in square brackets and inserting a semicolon after each

variable. G now represents the function

SIN(t-X)

because F = (1-X) at the time G was assigned. Writing

F := //(X:REAL) COS(X) \\ ;

does not affect G at all. In fact, writing

F:= //{X:REAL)[G;] <*G*>(X) I 2 \\ ;

• sets F to represent one half the value of <*G*>(X) where G appears

frozen now, i.e.,

F = SIN(t-X)/2.

Note that the F in the definition for G is still 1-X despite this

new assignment because F was enclosed in square brackets in the

assignment for G.

The sentences

f:= //(X:REAL) X \\;

DO f:: //(X:REAL)[F;] <*F*>(X) * <*F*>(X) \\ ; REPEAT 5;

set f to represent the function X raised to the 32nd power.

~· 387 ~·

The examples presented above were done so assuming that the

variables A, F, and G were previously declared.

declared to be variables of the types

They were to be

II \\ for A and

//REAL(REAL)\\ for F and G.

A is a process which neither produces a value nor takes any par~meters.

F and G are each of the process type which produces a REAL and which

expects exactly one parameter, whose type is REAL.

Formally, we have the following new rules for <TYPE>:

<TYPE> : : = II \\

<TYPE> : : = II <TYPE1> \\

<TYPE> : : =' II (< IDLIST> \\

<TYPE> : : = II <TVPE 1> <IDLIST> \\

The first <TYPE> denotes a process which returns no value. The second

<TYPE> denotes a process which returns a value of type <TYPE1> •. The

third <TYPE> denotes. a process which returns no value but which does

expect input parameters whose types are named by the <ID>s in <IDLIST>.

The fourth <TYPE> is similar to the third <TYPE> except that not only

does it expect input parameters, it also returns a value of type

<TVPE1>.

All.the <ID>s in the <IDLIST>s must be the names of declared types.

The reader might note that these four <TYPE> rules correspond.to the

four kinds of function headers presented in the section Declarations.

Examples:

~· 388 ~·

TYPE SS = II\\;

declares that SS is the name of a process type. Instances of SS

neither return a value nor do they accept input parameters.

TYPE FUNCTION= l/REAL(REAL)\\ ;

declares that FUNCTION is the name of a process type. Each

instance of FUNCTION accepts one parameter of type REAL and returns

· a value of type REAL.

TYPE PLOTTER = ll(POINT,PLOlTER_COMMAND)\\

declares PLOTTER to be a process type which expects two parameters,

a POINT and a PLOTTER_COMMAND. The invocation of a PLOTTER returns

no value.

TYPE CHAR_PRODUCER = II CHAR \\ ;

declares CHAR_PRODUCER to be a process type which yields a CHAR

upon each invocation and which expects no input parameters.

The following rules define the syntax for making instances of

process types:

SUSBt: <SUSB> . ·- II

SUSB2: <SUSB> .. - <SUSB1> (<CTYPE2 >

SUSB3: <SUSB> .. - <SUSB1> [<ASN2>]

SUSB4: <SUSB> .. -.. - <SUSB1> { <ASN2 >

SUSF1: <EXPR> ... -... - <SUSB1> <EXPR2> \\

SUSFtS: <EXPR> : : : = <SUSB1> <SS2> \\

-· 389 -·

Informally, an instance of a process type is generated by enclosing

an <EXPR> or an <SS> between a <SUSB> and a \\. A <SUSB> is a II

optionally followed by parameter specification or by context

specification or by both. Parameters are specified via the rule

SUSB2 and context is specified via either of the rules kusB3 and

SUSB4.

Tupe Requirements

There must exist a declared process datatype whose parameter types

sequentially match the parameter types specified in <CTYPE2> and

whose return type is the type of <EXPR2 > if the rule SUSF1 is used.

If the rule SUSFlS is used, the process type must include no return

type. The resulting type for the rules SUSF1 and SUSF1S is any

such declared process type.

For example

II <SS> \\ is of type II\\.

II an INT \\ is of type //INT\\.

I /(X,.Y :REAL B:BOOL) <SS> \\

is of type //(REAL,REAL,BOOL)\\.

//(X,Y:REAL B:BOOL) a F'Ol ""T \\

is of type //POINT(REAL,REAL,BOOL)\\.

The <ASN2 > in the rules SUSB3 and SUSB4 plays no part

the type requirements. For example,

//[A;B;] <SS> \\ is of type II\\.

l/[A;B;] an INT\\ is of type //INT\\.

//(X:REAL)[A;B;] <SS> \\

whatsoever in

- 390 ..

is of type //(REAL)\\.

//(X:REAL)[A;B;] a POINT \\

is of type //POINT(REAL)\\.

PASS3 Requirements <EXPR2> = SOURCE = result

/lfeanino

The r~sulting value is a process which either produces the value

<EXPR2> or performs the action <ss2> where the <EXPR2> or <SS2 > is

evaluated not now, b~t at the time this value is invoked. Invocation

will be formally described with the next set of rules. This resulting

value will expect parameters at the time of invocation if the rule SUSB2

has been used.

Further Requirements

Each variable named in <EXPR2> or <ss2> must either be

1) a global variable, or

2) a parameter variable specified in <CTVPE2 >, or

3) a context variable specified in <ASN2 >, or

4) a variable declared local within <EXPR2> or <ss2) itself.

A variable in <EXPR2 > or <SS2> may not be a local variable declared

outside of <EXPR2> or <SS2> except via (3). A violation will be

reported by the cryptic error message:

?SLOAD or ?TSTORE: Address has illegal index field.

The specified variables of <ASN2> must be variables declared

outside <EXPR2> or <SS2> and they may be local or global.

Further /lfeantna

- 391 -

Each of the specified variables of <ASN2> is automatically made

local to the body, <EXPR2 > or <SS2 >. That is, <F.XPR2 > or <SS2 > may reed

and write any of the specified variables of <ASN2 > and the effect will

be apparent only to <EXPR2> or <SS2>.

The implied assignments of <ASN2 > are carried out now and not at

the time of invocation. The implied ass ignmcnts can be viewed simply as

the initialization of the context variables for the process.

The distinction between the rules SUSB3 and SUSB4, the square

brackets vs. the curly brackets, is as follows: The specified

11ariables of the <ASN2 > enclosed in square brackets have the property

that their values are reset to their initialized values upon each

invocation of the process. The specified variables of the <ASN2>

enclosed in curly brackets are not reset upon each invocation and hence

they may be used to remember information from the previous invocation.

WARNING:

Processes constructed with the rule SUSB4, the curly brackets, have

a property unlike any other data in ICL. Such a process appears to

evolve independently from all points of view. Thus, with·

B:= //{I:=O;} WRITE ((I : : = + 1 ;)) ; \ \

A:= B;

we have the following scenario:

<"'A*>;

<"'A"'>;

prints a 1

prints a 2

prints a 3 and not a 1.

- 392 -

However, if we now write

A:= COPV(B);

<•B•>; prints a 4

<•B•>; prints a 5

<•A•>; prints a 4 and not a 6

<•B*>; prints a 6.

COPYing a process yields a process whose further evolution is

independent from the evolution of the original process except for

the following convention: Any (sub)processes referenced by the

original process are now shared between the original process and

the copied process. Thus, an invocation of a subprocess from

either the original or the copied process will be apparent from

both the original and the copied processes.

The reader who has examined the section about ICL's policy

towards assignments, pointers, and copying may note that a process

generated with the rule SUSB4 evolves as though it were modified

via the @-operator upon each invocation. A process is represented

much like a record is represented; there is a list of memory

elements, one for each context variable, and a field containing the

address of a program. The memory elements of this context list are

updated tn place upon completion of each invocation so that they

hold the new current values for the process's context variables.

An explicit COPY is required for the creation of an independent

instance precisely because of this @-like, in place, treatment for

a process's context list. The COPY operation makes a copy of the

context list copying only the top level structure: Structures

~· 393 -

referenced from the list are not copied, rather, they are shared by

both the original and the copied list.

Examples:

The declarations

TYPE SS = II\\
PROCESS_QUEUE= { SS } ;

VAR RUNABLE_PROCESSES= PROCESS __ QUEUE;

DEFINE RUN_ONE_PROCESS:

IF DEFINED(RUNABLE PROCESSES) TTIEN

ENDDEFN

<• RUNABLE_PROCES~ES[t] •>;

RUNABLE_PROCESSES:=RUNABLE_PROCESSES[2-]; FI

DEFINE RUNABLE(S:SS):

RUNABLE_PROCESSES::=$> S

ENDDEFN

define a dumb scheduler which has a global variable of type

PROCESS_QUEUE, a string of processes. The function RUNABLE puts a .
process on the queue and the function RUN_ONE_PROCESS executes the

first process on the queue and removes that process from the queue.

Non-linear transformation upon pictures are supported by the

declaration

TYPE POINT __ XFRM= //POINT(POINT)\\

... 394 ~

A POINT_XFRH is a function which takes a POINT and which yields the

transformed POINT.

VAR ITALICIZE= POil'JT_XFRM;

ITALICIZE:= //(P:POINT) P.X+P.Y fl P.Y \\;

sets the POINT_XFRM ITALICIZE to be a mapping which tilts a picture

45 degrees to the right. The function

DEFINE COMPOSED_WITH(A, B: POINT_,XFRM)= POINT _.XFRM:

//(P:POINT)[A;B;] <*A*>(<*B*>(P)) \\

ENDDEFN

will form a POINT_XFRM which is the composition of two given

POINT_XFRMs. The resulting POINT_.XFRM takes · its input POINT,

passes it thru B and then passes the result thru A. The variables

A and B are enclosed in square brackets so that their values will

be available at the time of invocation. If A and B were not

specified as context variables, an error message would be issued at

compile time because the variables A and B inside the resulting

POINT_XFRM are not global variables. The POINT_XFRM

ITAL IC IZE \COMPOSED_WITH Il ALIC IZE

yields a POINT_XFRM which applies ITALICIZE twice.

The declaration

TYPE FUNCTION= //REAL(REAL)\\ ;

defines FUNCTION to be the process type which maps. a REAL to a

REAL. The function

DEFIN~ PRIME(F:FUNCTION)= FUNCTION:

- 395 -

//(R:REAL)[F;] (<*F*>(R+EPSILON)-<*F*>(R)) I

EPSILON \\

ENDDEFN

maps a FUNCTION into its derivative, assuming EPSILON is a global

variable. When the derivative is invoked, the function F will be

invoked twice, once at R+EPSILON and once at R.

The declaration

TYPE FUNCTION_PRODUCER= //FUNCTION(REAL)\\ ;

defines FUNCTION_PROOUCER to be a process type which maps a REAL to

a FUNCTION. The following is an instance of FUNCTION_PRODUCER:

//(N:REAL)

//(T:REAL)[N;] SIN(N*2*3.141592 * T) \\ \\

This instance takes in a REAL, N, and yields the SIN function which

maps the interval between O and 1 into N cycles. Thus, with

VAR FMAP= FUNCTION_PRODUCER;

F = FUNCTION;

FKAP:= //(N:REAL)

//(T:REAL)[N;] SIN(N*2*3.141592 * T) \\ \\

the sta.tement

F:= <*FlllAP*>(J)

sets F to a function which maps the interval between 0 and 1 into 3

cycles of the SIN function.

- 396 -

The resulting function, F, is not as optimi2ed as it might be.

Upon repeated invocation of F, the value

N*2*3.141592

will repeatedly be calculated even· though it does not depend on the

parameter to F. We can remove this calculation from F and put it

into FMAP by assigning F~AP as follows:

FMAP:=//(N:REAL)

//(T:REAL)[N:=N*2*3.141592;] SIN(N*T) \\ \\

Now, when we write

F:= <*FMAP*>(3);

the resulting function, F, involves one multiply and on~ SIN

calculation. The calculation

N:= N*2*3.141592 ;

is performed at the time FMAP is invoked and not at the time F is

invoked. That is, the variable N is initiali2ed to the convenient

value during the process generation for the return value from FMAP.

The following instances of FUNCTION yield identical results:

1) //(R:REAL)[A;D;C;] SIN(A*COS(D)+C*R) \\

2) BEGIN VAR D=REAL;

DO D:= A*COS(B);

GIVE //(R:REAL)[C;D;] SIN(D+C*R) \\

END

3) BEGIN VAR D=REAL;

//(R:REAL)[C;O:=A*COS(B);] SIN(D+C*R) \\

~· 397 ~

END

4) BEGIN VAR D=REAL;

//(R:REAL)[D:=A*COS(B);C;] SIN(D+C*R) \\

END

The BEGIN-END is used to create an auxiliary variable, D, which

will contain the intermediate value A*COS(B).

The difference between the square brackets and the curly

brackets is exemplified in the following:

TYPE INT_.PRODUCER= I /INT\\ ;

VAR A,B= INT_PRODUCER; I=INT;

A:= //[1:=5;] DO 1:=1+1; GIVE I \\

B:= //{1:=5;} DO 1:=1+1; GIVE I \\

The expression <*A*> will always yield 6 whereas the expression

<*B*> will yield the number 6 upon first invocation, the number 7

upon second invocation, etc. Each invocation of B yields a number

one greater than the result of the previous invocation.

The user can define coercions between process types:

TYPE BUNCH_.OF _.SS= { SS) ;

LET BUNCH_ OF _.ss BECOME SS BY

II[BUNCH_.OF _,SS;] BEGIN VAR S=SS;

DO <*S*>; FORS$EBUNCH_OF_.SS; END\\;

This says that any string of SSs may be viewed as a single SS which

sequentially evaluates each SS in the string. Thus,

{ //1:=21;\\ ; //J:=I+l;\\ ; //WRITE(J);\\ }

... 398 ...

may be seen as a single SS whose invocation prints the number 22.

Another example of coercion between process types involves

another interpretation for the type FUNCTION_PRODUCER. A

FUNCTION_PRODUCER can be seen as a single function which takes two

REAL parameters and which yields a REAL, like the following type:

TYPE TWO_DIM= //REAL(REAL,REAL)\\

That is, we can declare

LET FUNCTION_PRODUCER BECOME TWO_DIM BY

//(R,T:REAL)[FUNCTION_PRODUCER;] "takes two parameters"

<* <*FUNCTION_PRODUCER*>(R) *>(T) \\ ;

A FUNCTION_PRODUCER is viewed as a lWO_DIM by using the first

parameter of TWO_DIM to select a function from FUNCTION_PROOUCER

and evaluating that function at the second parameter.

we can go backwards with

LET TWO_DIM BECOME FUNCTlON_.PRODUCER BY

//(R:REAL)[TWO_DIM;] "takes one parameter"

Similarly,

//(T:REAL)[TWO_OIM;R;] <*TWO_,Oif'l11C)(R, l) \\ \\

The resulting FUNCTION_PRODUCF.R, given R, yields the function

TWO_DIPI where TWO_DIM's first parameter is frozen at R.

Our final example involves the definition of a process type

called PICTURE. We will adopt the point of view that a PICTURE is

so general that all we know is that a PICTURE may be invoked and

that this invocation may invoke a global variable called PLOTTER,

sending to PLOTTER a POINT and a pen-up or pen-down directive.

Furthermore, we shall assume that PLOTTER wi 11 automatically

-· 399 -

transform its given point by displacing that point by another

global variable, ORIENTATION.

TYPE PLOTTER= //(POINT, PLOTTER __ COMMAND)\\

"Expects ORIENTATION to be preset"

PLOTTER_COMMAND= SCALAR(PEN __ UP, PEN __ DOWN);

PICTURE= //\\ ; " PICTURE expects PLOTTER

and ORIENTATION to be preset "

VAR PLOTTER= PLOTTER; ORIENTATION= POINT;

The following is an instance of PLOTTER:

PLOTTER:= //(P: POINT E: PLOTTER __ COMMAND)

P::= +ORIENTATION;

CASE E OF

PEN_UP: WRITE('Up'); WRITE(P);

PEN_DOWN: WRITE('Down');WRITE(P);

EN DC ASE

CRLF; \\

This plotter is especially l'l'ell suited for terminals which have no

plotting capabilities. This plotter prints the points on the

terminal. Note that this plotter displaces its given point by

ORIENTATION like any instance of PLOTTER should.

We can form many instances of PICTURE by introducing a type for a

special sort of picture and by defining a coercion from this type

to the type PICTURE:

~· '100 ~

TYPE SIMPLE_PIC= { CURVE

CURVE = { POINT } ;

A SIMPLE_PIC is a string of CURVEs where each CURVE is a set of

points meant to be drawn with the pen down. That is, the pen is to

be lifted only for the first point in each CURVE.

coercion lets a SIMPLE_PIC be viewed as a PICTURE:

LET SIMPLE_PIC BECOME PICTURE BY

The following

//(SIMPLE_PIC;] BEGIN VAR P=POINT; C=CURVE;

FOR C $E SIMPLE_PIC; DO

FOR P $E C; f IRST_.DO <*PLOTTER*)(p, PEN_UP);;

OTllER_DO <*PLOTTER*>(P, PEN_DOWN);;

DO NOlHING; END END

END \\ ;

In fact, any datatype which can be plotted can be coerced to a

PICTURE. One needs merely to place the plotting procedure,

enclosed in // ••• \\, as the body of the coercion.

The following function makes use of the global variable

ORIENTATION.

DEFINE DISPLACED_.BY (V: PICTURE DISP: POINT)=P ICTURE:

//[V;DISP;]

ENDDEFN

HOLDING ORIENTATION::=+DISP;

DO <~V*>; ENDHOLD \\

That is, the resulting PICTURE is the process which invokes the

giVen PICTURE, V, in the environment where the ORIENTATION has been

moved by the giVen POINT, DISP. Thus,

- 401 -

picture \DISPLACED_BV 10*12

yields the PICTURE picture all of whose points will be displaced by

10#12. Note that DISPLACED_.BV 's modification to the variable

ORIENTATION is done with the HOLDING form. Thus, when V finishes,

ORIENTATION will be reset to its old value, as is appropriate.

The following function takes two PICTUREs and produces a

PICTURE which repeatedly draws the first picture displaced by each

point in the second picture:

DEFINE OUTER_PROOUCT(A,B:PICTURE)= PICTURE:

//[A;B;]. BEGIN VAR V=PLOTTER;

HOLDING PLOTTER:=//[V:=PLOTTER;B;](P:POINT

E:PLOTTER_COMMAND)

HOLDING PLOTTER:=V;

ORIENTATION: :=+P;

DO <*B*>; ENDHOLD \\

DO <*A*>; ENDHOLD END \\

ENDDEFN

The first picture, A, is invoked in the context where PLOTTER has

been set to a procedure which draws B. Thus, each point which. A

sends to PLOTTER will be received by the procedure

//[V :=PLOTTER ;B;](P: POINT E: PLOTTER_COMMAND)

HOLDING PLOTTER:=V;

ORIENTATION::=+P;

DO <*B*>; ENpHOLD \\
•·

-· 402 -

This procedure ignores E, the PLOlTER COMMAND and displaces

ORIENTATION by P, the point sent from A. This procedure also sets

the global variable PLOTTER back to its original value so that upon

invocation of B, B will send its points to the original plotter and

not back to this procedure. This procedure finally invokes B.

Upon completion of B, ORIENTATION' s and PLOTTER' s old values are

restored and so A's next point will be sent to this procedure and B

will be replotted, this time displaced by the new point issued from

A.

The statement

HOLDING PLOTTER:=//(V:=PLOTTER;B;] \ \ ; DO ...

sets PLOTTER to a procedure which has access to the old value of

PLOTTER and to B. The reader might wonder why we've gone to the

trouble of assigning V the value of PLOTTER instead of merely

writing

HOLDING PLOTT'ER:=//(PLOTTER;B;] ... \\ ; DO ...

Indeed, this second form does give the procedure body access to the

old value of PLOTTER and to B. However, the procedure body loses

access to the global variable PLOTTER. Recall that each of the

specified uariables of the <ASN> between the square brackets is

automatically made local to the procedure body. Thus, within the

procedure body, the name PLOTTER refers to a local variable and not

to the global variable named PLOTTER. The first form, which uses

the variable V, does not lose access to the global variable named

PLOTTER.

- 403 -·

The formal rules for process invocation are:

SEMNOP: <FID> .. - <• <EXPR1> •>

FID1: <EXPR> : : = <FID>

FID2: <EXPR> .. - <FID1> <ARGS2>

f 103: <EXPR> : : :: <FID>

FID4: <EXPR> .. - <FID1> <ARGS2 >

These rules are identical to the rules for procedure and. function

calling in ICL except that the <FID> replaces the proced~re or

function name.

Tupe Requirements

<EXPR1> must be a process type.

The rule FI01 requires that <EXPR1> expects no parameters and

that it returns a value. The type of the returned value is the

resulting type for the rule FIDt.

The rule FI02 requires that <EXPR1> expects parameters whose

types sequentially match the types of the <EXPR>s in <ARGS2 >. In

addition. <EXPR1> must return a value. The type of the return

value is the resulting type for the rule FID2.

The rules FID3 and FID4 are similar to the rules FID1 and FID2

except that it is required that <EXPR1> returns no value.

PASS3 Requirements

~· 404 ~·

<EXPR1> = SOURCE = result and

each <EXPR> in <ARGS2> = SOURCE

/lfeantng

Evaluate <EXPR1>, thus yielding an instance of a process type.•

Then evaluate each <EXPR> in <ARGS2 >. Finally call the process

yielded by <EXPR1 >, passing the <-EXPR>s in <ARGS2 > as parameters.

The resulting ·value for the rules FID1 and FIDZ is the value

returned by the invocation.

The debugging package will be entered if the value of <EXPR1>

is NIL. Unfortunately, ICL finds this error to be fatal: When the

user leaves the debugging package, ICL will gracefully crash.

Examples:

< * II WRITE (I Hi I) ; \\ It >

prints Hi.

<* //(R:REAL) WRITE(R); \\ •>(1.7)

prints 1.7.

<* //(R:REAL) R*R\\ *>(5.0)

yields the REAL 25.0.

More examples are found in the previous section.

Just as the name of a function may be prefixed with a backslash to

produce a <BOP> or <RHUOP>, an <FIO> may similarly be prefixed:

SElllNOP: <BOP> \ <F ID>

~· 405 ~

SEMNOP: <RHUOP> ::= \ <FID>

The precedence of the resulting <BOP> is the same as the precedence

for the rule BOPBID in the section for <BOP>s. The type and PASS3

requirements and the meaning are derived by transforming

<EXPR1> \<FID> <EXPR2> to <FID>(<EXPR1>,<EXPR2 >)

and

to <FID>(<EXPR1>)

Examples:

5 \<* //(A,B:INT) A+B•A\\ •> 6

yields 5+6*5, or 35.

K:= //(A,B:REAL) A+B \\;

WRITE(\<*K*> R FOR R FROM 1 TO 10;);

prints the sum of 1 thru 10.

No new semantics are presented in this section. Rather, a short

form for specifying process generation is presented. The short form is

applicable when the user wishes to form a process whose body already

exists as an ICL function. For example, the long form

//(R:REAL) SIN(R) \\

forms a process which merely calls the existing function SIN. The

corresponding short form is

... 406 ..

//: SIN(REAL) \\

The short form includes a colon immediately after the //. The body of

the short form consists of an ICL function name along with its parameter

types.

Besides saving a few characters of typing, the short form saves a

little of both execution and memory expense. In the above example with

SIN, the invocation of the long form involves two function calls, one

for the // and one for SIN. In contrast, the short form involves only

one function call, a call to SIN. The compiler allocates space for a

process's machine code in chunks of 32 words. This allocation occurs

only once, .at compile time. The short form allocates no machine-code

space whereas the long form has to allocate at least 32 words, even

though only a few words are actually used for calling the SIN function.

SEPINOP: <QSUSB> : : = II: <ID>

- - -: (QSUSE> : : = \\

- - -: <QSUSE) : : = ;\\

QSUS2: <EXPR> .. -.. - <QSUSB1> (QSUSE>

QSUS3: <EXPR> ::= <QSUSB1> < IDLIST 2 > <QSUSE>

QSU84: <EXPR> .. -.. - <QSUSB1> <SARGS2 > <QSUSE>

QSUS5: <EXPR> .. - <QSUSB1> (<IDLIST2 > <SARGS3> <QSUSE>

where

ARGSl: <SAR GS> .. - <SARGX>]

ARGS2: <SARGX> . ·- <SARGX1> <EXPR2 > .. -
ARGSt: <SARGX> : : = [<EXPR1>

.. 407 ..

All short forms begin with a <OSUSB>. the

II: <ID>

The <ID> is the name of an existing ICL function. All short forms

end with either \\ or ;\\. The semicolon is entirely optional.

Thus, a short form looks like

II: <ID>

II: <ID>

\\

;\\.

or

The may be blank or may be any one of the following: 1

< IDLIST> or

[<EXPR> , <EXPR> , ...] or

(<IDLIST>) [<EXPR> • <EXPR> ,]

The part-of-speech <SARGS> represents the form

[<EXPR> , <EXPR> , ... • <EXPR>]

This form is precisely the form represented by the part-of-speech

<ARGS> except that the enclosing parentheses are replaced by square

brackets.

The type and PASS3 requirements and the meaning for the resulting

<EXPR>s will be given for each of the <EXPR>-producing rules, QSUS2 thru

QSUS5.

QSUS2 looks like II: <ID> \\

This short form is equivalent to the long form

II <ID> \\ or II <ID>; \\

~· 408 ~·

For example, if the function NUMBER_OF_JOBS takes no parameters and

yields an INTeger, then

II: NUMBER_OF_JOBS \\

is a process which calls NUMBER_OF_JOBS and yields the result

yielded by NUMBER_OF_JOBS.

QSUS3 looks like

This short form is equivalent to the long form

//(X: <I.D1>· Y: <ID2>) <I00>(X,Y) \\

For example,

ll:SIN(REAL)\\ is equivalent to

ll(X:REAL) SIN(X) \\ and

ll:DISTANCE(POINT,POINT)\\ is equivalent to

ll(X,Y:POINT) DISTANCE(X,Y) \\.

QSUS4 looks like II: <IDo> [<EXPR1> • <EXPR2>] \\

This short form is equiva.lent to the long form

/l[X:=<EXPR1>; Y:=<EXPR2>;] <ID0>(X,Y) \\

That is, the <EXPR>s between the square brackets are taken as

parameters to the function <ID0> whose values are frozen now, at

the time of process generation. For example,

/l:SIN[I+J]\\ is equivalent to the long form

l/[K:=I+J;] SIN(K) \\

.. 409 ...

Invocation of this process will always yield the same number

because SIN depends on no global variables. This process• s

invocation will call SIN passing the value I+J. The value I+J is a

single number which is computed at the time of process generation

and not at the time of invocation.

QSUS5 looks like

This short form is equivalent to

//(X: <ID1> Y: <ID2>) [Z:= <EXPR1> ;)

<ID0>(X,Y,Z) \\

That is, the <ID>s between the parentheses are the names of the

parameter types for the function < I00> 1 s first two para.meters. The

<EXPR1> is the function's third parameter. The third parameter is

evaluated now, at the time of process generation, whereas the first

two parameters are taken at the time of invocation. For example,

//:DISTANCE(POINT)[3#4]\\ is equivalent to

//(P:POINT) DISTANCE(P,314) \\

This process expects one parameter of type POINT. It calls the

function DISTANCE, passing 3#4 as the second parameter. Similarly,

//:DISTANCE(POINT)[P1+P2)\\ is equivalent to

//(P:POINT)[V:=P1+P2;] DISTANCE(P,V) \\

The P1+P2 is evaluated now, at the time of process generation, and

not at the time ef invocation.

,. 410 ,.

~ Concise Notation for. §_peci.f.r,ing B~1.!!.~ive f.Q.!.!:!1~. :. It!.~ ~

A string of points may be specified as follows:

{ 112 ; • #5 .11 ; 201. ; .+U5 ; .+7'.-8 }

The • " refers to the previously specified point's ~ or y coordinate.

For example, the string mentioned above is equivalent to

{ 112 ; 115 1#7 ; 2017 ; 2115 ; 281-3 }

If the period lies to the left of the I,

point's x-coordinate. If the period

it refers to the previous

lies to the right of the #, it

refers to the previous point's y-coordinate.

This concise notation for specifying relative points is implemented

by a combination of the built in rule

CURENT: <EXPR> ::=

and an ICL program whose text resides in the file BEGIN.ICL. The

<EXPR> can be used only in the context of point generation. The

<EXPR> can be combined only with REALs and only via + or - Thus,

example, the following are illegal:

.+. I 5

.•3 I 5

.+5'-. I 5

Misuse of the "·" <EXPR> comes up as a datatype error.

"."

" "
for

To aid the ICL program which implements relative points, ICL has

the following built in primitive datatypes:

- 411 -

PRELX a point relative in X,

PRELY a point relative in Y, and

PRELB a point relative in Both

Instances of these datatypes are not instances of POINT. However,

instances of these datatypes are represented like POINTs where the "·"

is interpreted as zero. Refer to the datatypes RELATIVE_POINT and SRP

and refer to the coercion from SRP to SP as defined in the file

BEGIN.ICL

.... 412 -

This section documents ICL's debugging package. The debugging

package is a set of ICL functions which provides services for on-line

debugging. Each function will be described separately. Each function

name begins with the characters ICLDDT. The function declarations can

be found in the file BEGIN.ICL, the first file read into a freshly

created ICL system. The functions are:

ICLDDT_HELP

ICLDDT_BT

ICLDDT_WHAT_FUNCTIONS

ICLDDT BREAK ON(FW)
ICLDDT=BREAK=OFF(FW)

ICLDDT TRACE ON(FW)
ICLDDT=TRACE::::OFF(FW)

ICLDOT INIT LOCALS ON
ICLDDl::INn::::LOCALs::::oFF

ICLDDT STACK CHECKING ON
ICLDD(::S.TACK::cHECKING::::oFF

ICLODT_K.ILL

In addition to these functions, the debugging package can be entered via

the tC-handler's Abort command.

Throughout the rest of this section, the term functton will

encompass both functions and coercions.

ICLDDT_HELP or stmply HELP

... 413 ...

Enter the debugging package. The following message will be

printed on the user's terminal:

Help! From within function function name

The function name is the name of the function containing the call

to ICLDDT_HELP. However, if ICLDDT __ HELP is called from within a

process, i.e., program text contained between the symbols // and

\\, then function name refers to the most recently entered ICL

function: The message

Help! From within function (SKIPPING OVER A SUSFUNC)

will appear a number of times before the message with function name

appears. The number of appearences equals the number of nested

process invocations between the call to function name a.rid the call

to ICLDDT_HELP. The term SUSFUNC (SUSpendable FUNCtion) is another

name for process.

After the "Help!" message is printed, an asterisk will appear,

signalling that a new incarnation of ICL is ready to receive input

from the user. The user is now free to interact with ICL as he

would at any other time. The user has access to all functions,

coercions, and datatypes. The user also has access to ail global

variables and to the arguments of Junction name. The user does not

have access to any other local variables, unfortunately. The user

will typically examine variables by printing them or by calling

functions which can give him more information. The user can a~sign

new values to variables if he wishes.

- 414 -·

The user leaves this new incarnation of ICL by typing a tZ

(control-Z). Upon receipt of tZ, ICLDDT_.HELP returns and program

execution continues where it left off. Variables assigned new

values retain their new values. However, all functions, coercions,

datatypes and variables declared during the new incarnation are

lost upon the tZ

If ICLDDT_HELP is called from within a new incarnation of ICL,

a still newer incarnation of ICL is created. In newer

incarnations, the user has access to all accessable variables of

the previous incarnations plus those variables which are arguments

to function name. If an argument to Junction name has the same

name as another accessable variable, the argument to function name

takes precedence; the user loses access to the old meaning for the

argument name.

Throughout this manual, the phrase Enter the debugging package

refers to an automatic call to ICLDDT_HELP. For example, th~ rule

STRSEL. string indexing, states that the sentence

S[N) := <EXPR> ; .

will automatically enter the debugging package if N is greater than

the length of the string S. Any rule which conditionaily enters

the debugging package acts as a no-op if it does indeed enter the

debugging package. Once the debugging package is entered, the user

can see how his program arrived there by invoking the function

ICLDDT_.BT. When the user types a tZ, his program resumes execution

where it left off. If the user wishes to cancel his program rather

than to let it continue execution, he should invoke the function

~· 415 ~·

ICLDDT_KILL before he types the tZ.

Example:

The declaration

DEFINE LOG(X:REAL)=REAL:

IF X =< 0 THEN DO ICLDDT_HELP; GIVE 0

ELSE <EXPR>. FI

ENDDEFN

defines LOG to b~ a function which maps a REAL to a REAL. It LOG

is ever called with a non-positive number, ICLDDT:_HELP will be

called.

Let us suppose that LOG is called with a non-positive number.

ICL will print the message

Help! From Within function LOG(X:REAL)=REAL

Now, if .the user types

WRITE(X); tG

he will see the non-positive argument to LOG. If' the user types

ICLDDT_BT; tG

he will s~e the function calling sequence which finally called LOG

with the bad value. When. the user types a tZ, execution will

resume and LOG will return a 0. If the user had typed

ICLDDT_K.ILL; tG

before he typed the tZ, LOG would not return and his program would.

be cancelled. The next asterisk he would see would be prompted by

the previous inc•rnation.

~· 416 -

ICLDDT_BT

Print a backtrace of function calls. ICLDDT_.BT prints each

function name in order from the most recently called function to

the earliest function call. For example, suppose the user has

declared

DEFINE F1(X:REAL)=REAL: LOG(X)*ZO ENDDEFN

DEFINE FZ(R:REAL)=REAL: Fl(X) + 5 ENDDEFN

If the user types

WRITE(F1(-COS(O)));tG

ICLDDT_HELP w.ill be called from within LOG because LOG will have

received a negative argument. The user sees

Help! From within function LOG(X:REAL)=REAL

Now, if the user types

ICLDDT_BT; tG

he will sec the backtrace

LOG(X:REAL)=REAL

F1(X:REAL)=REAL

F2(R:REAL)=REAL

This says that LOG was called from within Fl and that Fl was called

from within F.2. The function WRITE does not appe~r in the

backtrace becaues WRITE hasn't been called yet. Recall that in

ICL, a function's parameter is evaluated before the function is

entered. The error occurcd during the evaluation of WRITE's

parameter and not within the function WRITE itself.

- 417 -·

Each line of the backtrace has in addition to the function

name, two octal numbers. These octal numbers are not shown in the

example above. The first octal number is the address of a stack

frame and

The user

compiler

person.

the second octal number is the address of the function.

will typically ignore these numbers. However, for

bugs, these numbers are useful for the ICL maintenance

The following is an unfortunate feature which should be undone

someday: The user has access to the parameters of only the top

function in the backtrace and he has no access to the parameters of

the other functions listed in the backtrace.

Some lines of a backtrace may be of the form

(SUSFUNC)

Such a line refers to a process call. Refer to the treatment for

processes in the documentation for the function ICLDDT_HELP.

ICLDDT_WHAT_FUNCTIONS

Print the name of each defined ICL function. Preceding each

function name appears the octal address of the function. This

octal address is useful for identifying the function for the trace

and break facilities. Functions which were defined with the

MACR0-10 form are not included in the listing. Functions are

listed in the reverse order of definition, e.g., the most recently

defined function appears first.

ICLDDT_BREAK_ON(FW) and ICLDDT_BREAK_ON

~· 418 ~·

Set a breakpoint·at the entry and exit of the function whose

address is FW. If no parameter is specjfied, then set a breakpoint

at the entry and exit of each and every currently defiQed ICL

function.

The datatype FW is declared in the file BEGIN.ICL by

TYPE FW• LOGICAL(36);

Instances of FW are created as described with the rule ELOG: A

function address may be specified in octal with the form

L(the Junction's octal address

The address of a function can be found via . the

ICLDDT_WHAT_FUNCTIONS.

function

Having set a breakpoint at a function's entry and exit, the

debugging package will be entered each time the function is entered

or left. Upon entrance to the function, ICL prints the message

In Break Package: Entering function name

Upon leaving the function, ICL prints the message

In Break Package: Leaving functton name

Aft~r either message is printed, an asterisk will appear,

signalling that a new incarnation of ICL is ready to receive input

from the user. At this point, the user is free to interact with

ICL as he would at any other time. The situation is identical to

the situation created by the function ICLDDT_HELP except for the

following: If function name is being left and not entered, the

user is not given access to the function's parameters. The user's

,. 419 '

access rights depend on whether the function is being entered or

left.

If the function is being entered, the user has access to the

function's parameters. If the user assigns new values to the

parameters, the function will execute exactly as though it were

called with the newly assigned values. When the user types a tZ,

the new incarnation of ICL dies and execution resumes by actually

entering the function.

If the function is being left and if the function returns a

value, the user has access to the variable named ICLDDT_RETURN.

This special variable contains the value being returned by the

function. If the user assigns a new value to the variable, his

program will execute exactly as though the function actually

returned the newly assigned value. When the user types· a tZ, the

new incarnati~n of ICL dies and execution resumes by actually

leaving the function.

!CLDDT_BREAK_OFF(FW) and ICLDDT _BREAK_.OFF

Undo ICLDDT_BRE~K_ON. Remove the breakpoints from the function

whose address is FW. If no parameter is specified, remove the

breakpoints from all functions.

ICLDDT_TRACE_ON(FW) and ICLDDT_.TRACE ON

Trace the function whose address is FW. If no parameter is

specified, trace all currently defined ICL functions.

... 420 ...

A traced function prints its name each time it is entered and

it prints a backslash each time it is left. Execution is not

interrupted. The dynamic nesting of functions is communicated by

the indentation of the trace information.

ICLDDT_TRACE_OFF(FW) and ICLDDT _.TRACE_.OFF

Undo ICLDDT_lRACE_ON. The function whose address is FW is no

longer traced. If no parameter is specified, all functions will no

longer be traced.

ICLDDT_INIT_LOCALS_ON

Set up all currently defined ICL functions so that upon entry, they

initialize all their local variables to NIL, 0, or FALSE.

In general, functions do not take the time to zero their

locals. If, by chance, the user forgets to initialize a local

variable and if that variable becomes .a part of a newly created

structure, the newly created structure may very well contain a

garbage value. All sorts of system error messages can ensue and

ICL might crash at some unpredictable time in the future.

If the user ever gets a system error message, he should try

rerunning his program having first invoked ICLDDT_.INIT_.LOCALS_ON.

If his program runs without system errors, chances are that he

forgot to initialize a variable somewhere. The function

ICLDDT_STACK_CHECKING_ON is another quieter of system error

messages.

ICLODT_INIT_LOCALS_OFF

- 421

Undo ICLDDT_INIT_LOCALS_.ON.

ICLDDT_.STACK_.CHECKING_.ON

Set up all currently defined ICL functions so that upon entry, they

check the stack for overflow.

In general, functions do not check for stack overflow. An
4

infinite loop via recursion will, surely overfiow the stack. Once

the stack has overflowed. the ICL system is lost. A stack overflow

will typically announce itself by the execution of an illegal

instruction.

If the user has invoked ICLDDT_STACK_ClrnCKI~G-ON, when the

stack is about to overflow. the message

?STK.CHK.: Runtime stack nearing overflow

will appear and the debugging package will be entered as 'hough

called by ICLDDT_.HELP. At this point, the user can invoke

ICLDDT_BT to see the lengthy calling sequence that has filled the

stack. The user can resume execution by typing a tZ or he can

safely abort execution by invoking ICLDDT_KILL before typing the

tZ.

ICLDDT_.STACK._CHECKING_OFF

Undo ICLDDT_STACK_CHECKING_ON

ICLDDT_K.ILL

Abort the execution of the program in the previous incarnation of

ICL. That is, ICLDDT_KILL sets an internal flag so that upon

termination of the current incarnation, i.e., upon typing a tZ, the

.... 422

program running in the newly current incarnation aborts.

Warning:

The program is aborted by simply resetting the top-of-stack

pointer. This means that some global variables may not be reset

properly. For example, variables specified in the HOLDING form,

the rule HOLDIT, might not have their old values restored.

The tC-Hand1er' s Abort f.Q.1!~~.~.Q.

The only asynchronous entry to the debugging package is thru the

tC-handler's Abort command. Any time an ICL program is running,

the user can · intercept its execution by typing tC A. The

tC-handler's Abort command prints the message

Waiting for function call ...

and resumes execution. As soon as the running ICL program either

enters or leaves a function, ICL enters the debugging package

exactly as though that particular function had had breakpoints

previously set by ICLDDT_BREAK_.ON. The breakpoints created by the

tC 's Abort command are only temporary: The function does not

retain the breakpoints unless the function already had breakpoints

previous to the Abort.

,. 423 ,.

~.!!1!.! §.Q.r::.~-~cJ ~Y. !1.~.!:J!.:.Qf.:.~-~~-~S-~

Page Name

341 AF OR ID: <llFOR> .. - FOR <IO>
341 AFORFR: (AF'Ofl) : : = <AFOR> FROM <EXPR>
341 AFORTO: < AF'OR> .. - < AfOR> TO a;,". PR>
341 AFORBY: <AFOR> .. - <AfOR> BY <F..XPR>
341 AFORIN: < AF'Ofl> : : = <Af'OR> IN <F..XPR>
341 AFORIS: (Af'OR> .. -.. - <AFOR> IN• <t.XrR>

246 ARGS3: <ARGS> .. - <ARGSX>)

246 ARGS1: <ARGSX> .. - (<EXPR>
246 ARGS2: <ARGSX> .. - (ARGSX> , <EXPR>

266 ASN1: <AS"1'> . . - <IO> . •
265 ASNRHS: <AS1\i) .. - <ID> < SSRUS>
265 ASNX: <ASN> .. - <ASt\i") <ASt\i")

262 DCOUGH: <BF.XPR> .. ·-... - HEGTN <OECL> <Exrn> END
262 DCOUGH: <BEXPR> ... -... - BEGIN ((r;XPR> COE'Cl> END

328 BIF1: <BIF> : := IF
328 BIF2: <BIF> : : := <BIF> <EXl'ID THEN <SS> EF

213 BIF1: <BIF'E) .. - IF
213 BIF2: <BIF"E> .. - <8IFE> < f.','(PR> THEN (EXPR> EF

275 BOP ADD: <BOP> .. - +
275 BOPSUB: <BOP> : : =
276 BOPMUL: <BOP> .. - lie

275 BOPDIV: <BOP> .. - I
275 BOPEXP: <BOr> : : = t
276 BOP AND: <BOP> .. - &
276 BOPOR: (BOP> : :=
276 BOPXOR: <BOP> : : = XOR
276 BOPBIT: <BOP> .. - BIT
277 BOPLSL: <Bar> .. - SHIFTL
277 BOPLSR: <BOP> : := SHIFTR
277 BOPMIN: <BOr> .. - MIN
277 BOPMA.X: <BOP> .. - MAX
278 BSHARP: <BOP> .. - #
279 COMPEQ: <BOP> .. - =
279 COMPNE: ((JOI'> .. - <>
279 COMPGT: (BOP> .. - >
279 COMPGE: <BOP> .. - >=
279 COMPLT: <BOP> .. - <
279 COMPLE: (BOP> .. - =<
280 BOPSTR: <BOP> .. - $)
280 BOPSTC: <BOP> .. - $$
280 BOPS TL: <BOP> : : = ($
281 BOP BID: <BOP> .. - \ <IO>
-404 SEMNOP: (BOP> .. - \ <f"IO>

333 OCOUGH: <BSS>
333 DCOUGH: <BSS>

1(}2
192

190
. 199

203
203
203
203
ENDDEFN
206
206
206
206
<QS>)
206
207
208

213
217
217
217
217
218
218
219
219
219
221
223
226
226
226
227
227
228
229
231
231
233
235
239
244
246
248
248
248
260
260
260
261

EBIF:
ENU:
EQS:
ELOG:
ELOG:
EFNU:
ETRU:
EFALS:
ENIL:
EID:
STRGEN:
STRSEL:
ETAIL:
ERFRSH:
ERFRSH:
EREVRS:
EREVRS:
RGENF:
RSELQ:
PTSELX:
PTSELV:
ECA.SEE:
TVPDIS:
ECl\SE:
TVPDIS:
ECALLP:
SEMNOP:
EBOP:
EBOPG:
EUOP:
EUOP:
EUOPG:
EBOPQ:

<CTYPE>
<CTYPE>

<OECl>
<OECL>
<OECl>
(OECL>
(OECL>
<OECL>

<OFXl>
<OECl>
<OECL>
<DECL>

<OF.CL>
<OECl>
<OECL>

(f.'XPR>
(EX.PR>
<EX.PR>
<EXPR>
a;xrR>
<E"XPR>
<EX.PR>
(EXfR>
<EXPR>
<EX.PR>
a;xPR>
<E"XPR>
<F.XPR>
<EX.PR>
<EX.PR>
<EX.PR>
<EXPR>
(E"XPR>
<EXPR>
<EX.PR>
<EX.PR>
a;xrR>
(li'XPR>
<Ex.PR>
<EX.PR>
<E"XPR>
a·xrR>
(EXPR>
<EX.PR>
<EXPR>
<EXPR>
(/!.'Xl'R>
<EXPR>

: : : =
: :=
.. -
.. -
.. -
: : : = ... -... -
... -
: : : =

: : : =
: : : =
: : : =
: : : =

: : : =
: : : =
: : =

: : =
.. -.. -
: : =
: :=
.. -
: : =
: : =
: : = .. -.. -
.. -
: : =
: : = .. -
: : =
: : =
: : =
.. -
: :=
: : : =
: : =
: : : =
: :=
: : =
: : =
: : =
.. -
.. -.. -.. -.. -.. -.. -

.. 424 ...

BEGIN <OECL> <SS> END
BEGIN <SS> <OECL> END

<IOllST> : <TYPE>
<CTYPt> <CTYPE>

<TOFXL>
<VOE.Cl.>
DEFINE <JO> <SS> ENDOEFN
DEFINE <IO> = <TYPE> : <EXfR> ENDDEFN
DEFINE <IO> (<CTYPE>) : <SS) ENDDEFN
DEFINE <IO> (<CTYl'E">) = <TYPE> : <EXPR>

DEFINE (JO> MACR0-10(CQS>)
DEFINE <JD> = <TYPE> : MACR0-10(<QS>)
DEFINE (JO> (<CTYPF.>) : MACR0-10((QS>)
DEFINE <IO> (CC.TYPE')) = <T"YPE> : MACR0-10(

LET <ID> BECOME <IO> BY <EXPR> ;
LET <IO> BECOME <ID> BY MACR0-10(<QS>)
<OECL> <OECL>

(Bl FE> a;xrR> THEN <F..'XPR> ELSE (EXPR> FI
(AjU)

<QS>
L (<IlilJ >
L (<IJ'U) OlU))
a floating number
TRUE
FALSE
NIL
<IO>
{ <REX.Ni>
<EXPR> [<EXPR>]
<EXPR> [<EXPR> -]
REFRESll ((f;xrn>)
REFRESH <EXPR>)
REVERSE <EXPR>)
REVERSE <fXPR>)
<RE:cx>
<F."XPR> . <JO>
<E"XPR> . X
(EXPR> . Y
CASE <EXPR> OF <EXPRV>
<IO>:: (f,)\PR>
CA.SE <IO> OF <EXPRV>
<ID>:: CfiXPR>
<ID> <AIWS>
(<EXPR>)
<EXPR> <BOP> <EXPR>
<EXPR> <BOr> <EXrR>
<lJOP> <EXfR>
<EXPR> <fillfJOr>
<EXPR> <lifllJOP >
<BOP> <E'XPR> <QUAAiT>

251
251
264
254
254
254
258
268
258
259
,262
266
270
272
272
274
372
377
377
388
888
403
403
403
403
406
406
406
406

EIJOPQ:
EBOPQ:
QBOOL1:
QBOOLt:
QBOOL1:
QBOOL1:
EGIVE:
EGRAB:
EGRAB:
SETQX:
E OF.CL:
llOLDIT:
EAT:
ECOPY:
ECOPV:
EDEF:
EIIHD:
PUBLC:
PRIVY:
SUSF 1:
SUSF1S:
F ID1:
FI £>2:
F ID3:
F 104:
OSUS2:
QSUS3:
QSUS4:
QSUS5:

<EXPR> .. -
<E.XPR> .. -
<EXPR> .. -
<EXfR> : :=
<EXPR> .. -
<F.XPR> : :=
(E,'XPR> .. -
<EXPR> .. -
<EXPR> .. -
a;xrR> : : :=
<EXPR> : :=
axrn> ; : :=
axrn.> .. -
<EXPR> .. -
<EXPR> : :=
<EXPR> : :=
<F.XPR> .. -
<EXPR> .. -
<E'XPR> : :=
<EXNl> : : :=
<F.XPR> · : : :=
<EXPR> .. -
<EXPR> .. -
<EXPR> .. -
<EXPR> : :=
axrn> .. -
a·xrn> •.. -
a.:xrn> : :=
<EXPR> : :=

233 EVCASE: <EXPRV>
233 EVCASB: <EXPRV>
239 EVCASE: a;xrnv>
239 EVCASB: <E'XPRV>

.. ·­... -
: : : =
: : : =
: : : =

403 SEMNOP: <FIO>

290 SEMNOP: <GUOP>
290 SEMNOP: <GUOP>

.. -

~ 425 ~·

<QUANT> GIVE <BOP> <EXPR> END
(QUANT> CROP) <txrn>
<QUANT> ctxrn> (QROOL)
<QUANT> <QROOl) CEXPR>
(Q(JAl'il) GIVE <QBOOl> a;xrR> END
<QBOOl> <txrn> (Q(JANT>
DO (SS> GIVE a;xrn>
GIVING <EXPR> DO <SS> END
DO <SS> GRABBING <EXPR>
(<EXPR> CSSRHS>)
<BEXPR>
HOLDING CASI> GIVE <EXPR> ENDHOLD
@ < a:xrn>)
COPY (<EXPR>)
COPY ! Cf'.'XPR>)
DEFINED (< EXPR>
% <IO>
PUBLICIZE:::(<EXPR>
<IO> :::(<EXPR>)
<SUSB> <f:XPR> \\
CSUSB> <SS> \\
(F'/0)
<Fl 0 > <A RG S >
(f/0) ;

CF'IO> <ARGS> ;
CQSUSB> CQSUSE>
<QSUSB> (C/OLIST>) <QSUSE>
<QSUSIJ> <SARGS> <QSfJSID
<QSUSB> (<IOLIST>) <SARGS> <QSUS6>

<IO>
<IO>
<IO>
<IO>

<E'XNl> ENDCASE
<EXPR> <f.XPl?V>
<EXPR> ENDCASE
CEXPR> <EXPRV>

<* <EXPR> *>

<IJOr>
<RfWOP>

175
175

<IOLIST>::= <IO>
(IOLIST>:~= <IOLIST>, <10>

290 KUOPt:
290 KUOP2:

254 QBf\LW:
254 QBNVR:
254 OBEXS:
254 QBEXS:

(fWOP>
auor>

<QBOOl>
(QBOOl>
<QROOL>
<QBOOL>

406 SEMNOP: <QSUSB>

406
406

- - -: <QSIJS6>
(QSUS/D

: : =

: :=
: :=

.. -

(Q(/OP> ;
<GUOP > <IWOP >

ALWAYS
NEVER
EXISTS
n!ERE IS

II: <IO>

\\
;\\

338
389
840
341
346
348
361
361
361
866
366
366
365
866
306
366
866

QWHIL:
QUNTL:
RE PET:
AFORGO:
QFORE:
QFORC:
QOR:
QA.ND:
QTHEN:
QWITH:
QINH:
ORES:
QECH:
OFTH:
QOlH:
QFST:
QFIN:

221 RFUNC:
221 RFUNC:
221 RFUNC:
221 RFUNC:

<QUAn>
<QIJAk'T >
<QUIUtiT>
(QlJM'T>
(QUAk'T >
<QllMT>
<QUIWT>
(Ql/Ak"T>
<QUIWT>
<QUAH>
<QUAkT>
(QUANT>
(Ql/Ak"T>
<QUAl1iT>
<QUA&'T>
<QUA~'T>
<QUAk'T>

< RAAIGE>
<RA&'GE>
<RAk"GE>
<RA~"GE>

.. -

.. -

.. -

.. -
: : =
.. -
: :=
.. -
: : =
.. -
: : =
: : =
: : =
.. -
: : =
.. -
: :=
: : =

- 426 -·

WllILE <F.xrn> ;
UNTIL <EXPR> ;
REPEAT <EXPR>
<Af'OR> ;
FOR a:xrto $E <EXPR>
FOR <EXPR> $C <EXPR>
<QflAk"T > ! ! <QUAAi7 >
<QUAk"T > 8:8: <QUANT>
((~IJAf1iT > HIEN <QIJIWr>
<QUANT> WITH <EXPR> ;
<QtJAH > INllIBIT IF <EXPR>
<QUANT> RESET If <EXPR>
<QllAf1iT> EACll DO <SS> ;
(QfJAH > F rns1" DO <SS> ;
(QlJANT> OHIER-DO <SS> ;
<QUANT> INITIALLY <SS> ;
<QUANT> FI NALL v _ _no (SS>

$ a;xrn> <QUA&·n
COLLECT" a·xrn> (Q(JA!ff>
<QUAf1iT> $ axrn>
<QUANT> COLLECT CEXPR>

228 SEMNOP: < RECX > : : = [< RECXT >

228 RGENQ:
228 RGEN1:

221
221
221
221
221

SEXP:
SEMNOP:
SCRNG:
SCEXP:
SCCONX:

<RECXT>
<RECXT>

<RF.XPR>
<RF.XPR>
<REX PR>
<REX PR>
<RE.XPR>

286 UOPBID: <RHUOP>
406 SEMNOP: <RHUOP>

: : =
.. -
: : = .. -.. -
.. -
: :=
: : =
.. -
: : =

<ID> : <EXPR>]
(JO> : axrn> <RECXT>

axrn> >
<RAMO£> }
< R!lk'(i/j") ; <REX rn >
<F.XPR> ; <REXPR>
<EXPR> ;* <REXPR>

\ ([O>
\ <F'IO>

406 ARliS3: < SARGS> : : = < SARGX >]

.406 ARGS2:
406 ARGSt:

288
828
828
329
330
331
383
884
384
884
834
336

SSASS:
EBIF:
SBIF:
ECASEE:
ECASE:
HOLD IT:
EDECL:
SSQ:
SSQ:
SSCALP:
SSICAL:
SSSS:

<SARGX>
<SARGX>

<SS>
<SS>
<SS>
(SS>
<SS>
<SS>
<SS>
<SS>
<SS>
<SS>
<SS>
<SS>

. ·­.. -
: : =
: : =

: : : =
: : : =

: : : =
... -
.. -.. -.. -
.. -. ·­.. -
.. -

<SARGX >
[<EXPR>

<EXfR>

<EX.PR> <SSflllS>
<BIF> <EXPR> TllEN <SS> El.SE <SS> FI
<BIF> <EXPR> 1HEN <SS> FI
CASE <EXPR> OF <SSV>
CASE <IO> OF <SSV>
HOLDING <ASN> DO <SS> ENDHOLD
<BSS>
DO <SS> <QUANT>
CQllANT> DO <SS> END
<ID> <ARGS>
<IO> ;
<SS> <SS>

288
288
288
290
290

SSRHS1: <SSRllS>
SSRHS2: < SSRflS>
SSRliS3: <SSflflS>
ssr~HS4: (SSRHS>
SSRHS4: <SSRHS>

~· 42 7 ~

:= <EXf'R> ;
.. - <BOP> <E.XPR>
.. - <tXNO <BOP>
•• - (fi.lJOr>
.. - <IWOf>

829 F.VCASE: <SSV> :::= <IO> <SS> ENOCASE
329 EVCASB: <SSV> :::= <IO> <SS> <SSV>

388 SUSB1:
888 SUSB2:
888 SUSB3:
888 SUSB4:

196
196

190
190
190
190
UJO
190
190
192
192
198
198
198
872
375
387
387
387
387

284
285
285
285
285
286
285
286

199
199

193
193

178
178
178
178

uorMIN:
UTALLY:
ULFTZO:
UENCOO:
UDE COO:
UUNARY:
UNORM:
UBITSW:

<SlJSB>
<SUSB>
<SUSB>
<SUSB>

<TOECl>
<TOECl>

<Tl'PE>
<TYPE>
<TYPE>
<TYPE>
<TYf'E>
<TYPE>
<TYf'E>
<TYPE>
<TYPE>
<Tl'PE>
<TYPE>
<TYf'E>
<TYPE>
<TYf'E>
<TYPE>
<TYf'F;>
<TYPE>
<TYPE>

<UOP>
(lJOP>
<UOP>
<UOf'>
<YOP>
<YOP>
<YOP>
<UOP>

<VOECl>
<VOFXl>

<VTYPE>
<VTYPE>

<JU e>
<.Ii le>
<file>
<file>

: : : =
... -

.. -

.. -

. ·­.. -

.. -

.. -

.. -
: :=

. ·-.. -
: : =

: : :=
: : : =

.. -

.. -

II
<SYS!J> <CTYPE>
<SUSR> [<ASN>]
<SYSB> { <AS.\i') }

TYPE <IO> = <TYPE> ;
<TOECl> <IO> = <TYPE>

INT
REAL
POINT
BOOL
CHAR
OS
LOGICAL (< .\i'U >
{ <TYf'lD }
[<CTY PE.>]
EITHER <VTYPE> ENDOR
SCALAR (<JOlIST>)
<IO>
ID
PRIVATE <TYPE>
II \\
II <TYrE> \\
II (<IOllST>) \\
II <TYf'E> (<IOl/ST>) \\

TALLY
LEFTZEROS
ENCODE
DECODE
UNARY
NORM
BITSWAP

VAR <IOlIST> = <TYPE> ;
<VO£Cl> <IOllST> = <TYPE>

<IOLIST> = <TYPE>
<VTYPE> <VTYPE>

<IO>
<IO>
<IO> <IO>
<file> - <file>

.. 428 ...

178 <file> : : = <lD> : <Jil e>
178 <file> . ·-.. - <file> [<k"U) <ID>]

175 { .. - [)

176 } : : =]

Page Name

175
175
175
175
178
178
178
178
178
178
190
190
190
190
190
UlO
190
192
192

'192
192
193
193
193
193
193
196
196
196
199
199
199
203
203
203
203
ENDOEFN
206
206
206
206
(QS>)
206
207
208
372
375
387
387
387

(lOlJST>: :=
([OlIST>: :=
{ .. -
} .. -
(j'ile> .. -
<tile> .. -
(file> .. -
<file> .. -
(file> .. -
(file> : :=
<TYND .. -
(TYPE> •• -
<TYN.> .. -
(TYPF;> .. -
<TYND •. -
<TYPE> : : =
<TYN.'> : :=
<TY P'E,') : : =
<TYPE> .. -
(CTYPE> .. -
<CTYPE"> •. -
(TYPE> .. -
(VTYPE> : : =
<VTYPE> .. -
<TYPE."> •• -
(TYPE> .. -
(OECl> •• -
<TOECl> : : : =
(10f,'Cl) . •.• -
<OF.Cl> : :=
<VOF,'Cl> ••• -
<VOEXl> •.. -
<OECl> ••• -
<OF;cl> :::=
<OE.Cl> :::=
<DE.Cl> : : :=

(OE.Cl>
<OF.Cl>
<OE.Cl>
(OF.Cl>

<OECl>
(OECl>
(0£,'Cl>
<TYPE.'>
<TYP£>
<TYPE'>
<1'YPE>
<TYPE>

: : : =
: : :=
! : : =

... -

... -

.. -
: := .. -.. -

~· 429 ~

<IO>
<IDLIST> , <IO>
[)
(]
<IO>
<JO>
<JO> <IO>
<file> - <file>
<IO> : (file> ;
(file> [OiU> , <ID>]
INT
REAL
POINT
BOOL
CHAR
QS
LOGICAL (a·u>)
< arrro }
[<CT Y Pf..')]
<IOlIST> : <TYPE>
<CTYPE> <CTYPE>
EilHER <VTYPE> ENDOR
<IOLIST> = <TYPE>
<VTYPE'> <VTYPE>
SCALAR (<IOLIST>)
<ID>
<TIJECO
TYPE <IO> = <TYPE> ;
<TOE.Cl> <ID> = <TYP£>
<VOE.Cl.>
VAR <IOLIST> = <TYPE> ;
<VOECl> CIOlIST> = <TYPE>
DEFINE <IO> <SS> ENDDEFN
DEFINE <IO> = <TYPE> : <EXPR> ENDDEFN
DEFINE <IO> <CTYPE>) : <SS> ENDDEFN
DEFINE <IO> <CTYPE>) = <TYPE> : <EXPR>

DEFINE <IO> MACR0-10((QS>)
DEFINE <IO> = <TYPfD : M.A.CR0-10(<QS>)
DEFINE <IO> (<CTYPE>·) : MACR0-10(<QS>)
DEFINE <IO> (<CTYPE'>) = <TYPE> : MACR0-10(

LET <ID> BECOME <IO> BY <EXPR> ;
LET <IO> BECOME <IO> BY MACR0-10((QS>)
<OECl> <OECl>
ID'
PRIVATE <TYP!>
II \\
II <TYPE> \ \
II (<IOLIST)) \\

387

406
406

341
341
341
341
341
341
341
246
406
246
406
246
406
265
266
265

213
328
213
328
275
276
281
276
276
276
277
277
277
277
275
276
280
280
280
275
276
278

279
279
279
279
279
279

- - -: - - -:

AFORBY:
AFORFR:
AFORCiO:
AF OR ID:
AFORIN:
AFORIS:
AFORTO:
ARGS1:
ARGS1:
l\RGS2:
ARGS2:
ARGS3:
ARGS3:
ASN1:
ASNRHS:
ASNX:

BIF1:
BIF1:
BJF2:
BIF2:
BOPAOD:
BOPAND:
BOPBID:
BOPBIT:
BOPDIV:
DOPEXP:
DOPLSL:
BOPLSR:
BOPMA.X:
BOPMIN:
BOPMUL:
BOPOR:
BOPSTC:
BOPSTL:
BOPSTR:
BOPSUB:
BOPXOR:
BSHARP:

COMPEQ:
COMPGE:
COMPGT:
COMPLE:
COMPLT:
COMPNE:

<TYPE>

<QSUSE'>
<QSUSE>

<AFOR>
<llFOR>
<QUAlff>
<AFOR>
<AFOR>
<llFOR>
<AF.OR>
<ARGSX>
<SllRGX>
<ARGSX>
<SARGX>
<ARGS>
<SARGS>
<ASN>
<ASN>
<ASN>

<BIFE>
<BIF>
<BIFE>
<BIF>
<Bar>
<BOP>
<Bar>
<BOP>
<BOP>
<BOP>
<Bar>
<BOP>
<BOP>
<BOP>
<BOP>
<ROI'>
<BOP>
<BOP>
<BOP>
<BOP>
<BOP>
<BOP>

<BOP>
<BOP>
<BOP>
<BOP>
<BOP>
<BOP>

262 DCOUGH: <BE'XPR>
'262 DCOUGH: < BE'XPR>
333 DCOUGH: <BSS>

.. -

.. -
: : =
.. -
: : ::
.. -.. -
.. -
: : = . ·­.. -
: : =
.. -
: := .. -.. -
: : = . ·­.. -
.. -
: : =

.. -

. ·­.. -
: : =
: : : = .. -
.. -
: : =
: :=
: : =
.. -
: :=
: : =
: : =
: : =
: := . ·­.. -
.. -
.. -
: : = .. -.. -
: :=
. ·­.. -
.. -
: :=
.. -
: : =
.. -

: : : = -... -

... 430 ..

II <TYPE> (<IDLIST>) \\

\\
;\\

<AFOR> BY axrn>
<AFOR> FROM axrn>
<llf'OR> ;
FOR ([0)

<AFOR> IN <Exrn>
<llFOR> IN• CF.'XPR>
<AFOR> TO a·xrR>
(<EXPR>
[<E'XPR>
<llRGSX> <EXPR>
<SllRGX> , <EXPR>
(A/lGSX>)
<SARGX>]
<ID> ;
<ID> (SSRllS>
<ASfO <AS1J'>

IF
IF
<RI FE> <EXPR> lHEN <E'XPR> EF
<BIF> <EXrR> lHEN <SS> EF
+
&
\ <ID>
BIT
I
t
SHIFTL
SBTFTR
MAX
MIN
*
!
$$
<$
$)

XOR
I

=
>=
>
=<
<
<>
BEGIN <DECL> <EXPR> END
BEGIN <EXPR> <DECL> END.
BEGIN <D£CL> <SS> END

- 431 -

333 DCOUGH: <BSS> :::= BEGIN <SS> <OECl> END

270
213
328
248
248
251
251
251
246
239
330
238
329
272
272
262
333
274
21g
218
258
268
258
219
372
217
217
219
217
217
227
227
226
226
225
218
260
260
250
233
239
329
233
239
329

EAT:
EBIF:
EBIF:
EBOP:
EBOPG:
EBOPQ:
EBOPQ:
EBOPQ:
F:CALLP:
ECASE:
ECASE:
ECASEE:
ECASEE:
ECOPY:
ECOPV:
EDECL:
EDECL:
EDEF:
EF Al.S:
EFNU:
F.G IVE:
EGRAB:
EGRAB:
EID:
E IDID:
ELOG:
ELOG:
ENIL:
ENU:
EQS:
EREVRS:
EREVRS:
ERFRSH:
ERFRSH:
ETAIL:
ETRU:
EUOP:
EUOP:
EUOPG:
EVCASB:
EVCASB:
EVCASB:
EVCASE:
EVCASE:
EVCASE:

403 F 101:
403 FIDZ:
403 FID3:
403 F ID4:

<EKPR>
<EXfR>
<SS>
<F.XfR>
<EXPR>
<EXPR>
<EXfR>
<EXPR>
<f.,'XPR>
(E'XPR>
<SS>
<EXfR>
<SS>
axrn>
<EXfR>
<EXfR>
<SS>
<EXfR>
<E.'XPR>
<EXPR>
<EXrR>
<EXPR>
<F.XfR>
<EXPR>
(f,'XPR>
<EXPR>
<E'XPR>
<EXPR>
(£XPR>
< EXPR>
<EXfR>
<HPR>
\EXPR>
<EXPR>
<Exrn>
<EXfR>
a·xrn>
<F.XPR>
<f.XPR>
a;xrnv>
<EXPRV>
<SSV>
<EXPRV>
<EXPRV>
<SSV>

<EXPR>
<F.XPR>
<EXPR>
<EXPR>

: : =
: : : = ... -... -
: : =
: :=
.. -
: :=
: : = . ·­.. -
: : : =
: : : =
: : :=
: : : =
: : =
: :=
: :=
: : : =
: : = . ·­.. -
.. -
: : =
: : =
: : = .. -
: : =
.. -
.. -. ·­.. -
: := . ·­.. -
: :=
: : = .. -.. -
: : =
: : =
: : =
: : =
.. -
: : =
: : : =
: : := .. ·­... -
... -
: : : =
... -
.. -
: :=
: : =
: :=

@ (<EXPR>) .
<BlFE> (f,'XPR> THEN <EXPR> ELSE <EXPR> FI
(BJF> <EXfR> THEN <SS> ELSE <SS> FI
<EXfR> <Bar> <EXrR>
(£XPR> <BOP> <txrn>
<ROP> axrn> <QUA~iT>
<QUANT> GIVE <BOP> (£XPR> END
(QIJA&T> <BOP) <EXPR>
<In> <llRGS>
CASE (] 0 > OF <E'XrtlV >
CASE <JO> OF CSSV>
CASE <F.XfR> OF axrnv>
CASE <EXfR> OF <SSV>
COPY (<EXPR>)
corv ! axrro >
<BF..XPR>
<BSS>
DEFINED (<lXl'R>
FALSE
a floating number
DO <SS> GIVE (£XPR>
GIVING <t.XPR> DO <SS> END
DO (SS> GRABBING <EXPR>
<JO>
X. <JO>
L (< k'U>)
L ((llilf > Olll >
NIL
(f1iU >
<QS>
REVERSE <EXPR>)
REVERSE <EXPR>)
REFRESH <£XPR>)
REFRESH ! <EXPR>)
<EXPR> (<EXfR> -]
TRUE
cu or> axrro
<EXPR> amuor>
<EXPR> <fUIUOP>
<JO> <EXfR> <EXPRV>
<JO> <EXPR> <£XPRV>
(JO> CSS> CSSV>
<IO> CEXPR> ENDCASE
<JO> CEXPR> ENDCASE
<IO> <SS> ENDCASE

<F'IO>
<F'IO> (ll/WS>
(f'IO> ;
(Fl O> < ARGS>

266 HOLDIT: a;xrn> : : := HOLDING <ASN> GIVE <EXPR> ENDHOLD
831 HOLDIT: <SS> : : := HOLDING <AS,\i') DO <SS> ENDHOLD

290 KUOP1: <KUOP>
290 KUOP2: <KUOP>

377 PRIVY: <EXPR>
231 PTSELX: <EXPR>
231 PTSELV: <EXPR>
377 PUBLC: <EXPR>

·361
264
264
254
2f>4
254
264
254
254
366
866
348
346
366
366
360
361
366
866
406
406
40(J
406
361
339
338
366

340
221
221
221
221
228
228
228
22g

328
221
221
221
221
228
248
290
290

QAND:
QBALW:
QBEXS:
QBF.XS:
QBNVR:
QBOOl.1:
QBOOL1:
QBOOL1:
QBOOL1:
QECB:
QFIN:
QFORC:
OFORE:
QFST:
QFTM:
QINH:
QOR:
QOTH:
QRES:
QSUS2:
QSUS3:
QSUSiJ:
QSUS5:
QlllEN:
QUNTL:
QWHIL:
QWlTH:

REPET:
RFUNC:
RFUNC:
RFUNC:
RFUNC:
RGEN1:
RGENF:
RCiENQ:
RSELQ:

SBIF:
SCCONX:
SCEXP:
SCRNG:
SEMNOP:
SEMNOP:
SEMNOP:
SEMNOP:
SEMNOP:

(QUAfliT>
<QBOOl>
<QBOOL>
«WOOL>
«WOOL>
a:xrn>
<EXPR>
<EXPR>
<EXl'R>
<QUIU1iT>
((/lJIHiT>
< Q(J A k"T' >
<QUAH>
<QUAAiT >
<QUA1iT >
<QUANT>
<QUAf1iT>
<QUANT>
<Ql/AN.T>
a.xrn>
<EXPR>
a:xrn>
a:xrn>
<QUAfff>
<QUANT>
<QUANT>
<QUANT>

<QUANT>
<RAN'GE>
<RIHiGE>
<RllN'GE>
<RANGE>
<RE:CXT>
(fXPR>
<RECXT>
<F.XPR)

<SS>
<RF.Xl'R>
< R£XPR>
<RF.XPR>
<REX PR>
<R£CX>
<EXPR>
<GUOP>
<GUOr>

.. -.. -.. -

.. -

.. -
: :=

! : =
: :=

: : =

: :=
.. -.. -
: : =

.. -.. -.. -

: :=
.. -
: : =

.. -

.. -. ·­.. -

: : =
.. -.. -

. ·­.. -

.. -

.. -

~ 432 ~

<CWOP> ;
<GUOP> <KUOP>

<IO>:::(<EXPR>
(£XrtD X
<EXPR> Y
PUBLICIZE:::(<£XPR>

<QUANT> 8:& <QUA!tJT>
Al.WAYS
EXISTS
HIERE IS
NEVER-
CQUArr> CtXrR> <QBOOl>
<QUANT> <QBOOl> <EXPR>
<QYArT> GIVE <QBOOl> <EXPR> END
<QBOOL> <EXfR> <QUAMT>
<Ql/AfriT> EACH DO <SS> ;
<QUAMT> FINA[LY DO <SS>
FOR <£XfR> $C <lxrn> ;
FOR <£XPR> $E <EXPR> ;
<QUANT> INITIALLY <SS>
<QUAN1> FIRST DO <SS> ;
(QUANT> INllrnIT IF <E'XPR>
(QUAN.T > ! ! <Cll/A~'r>
CQfJA&'T > OTIJER DO <SS> ;
<QUAN'T.> RESET-·IF <F.:XPR>
(QSUSB> <QSIJSt:>
<QSl/S/O (<I DLI ST>) <QSlJSE>
<QSUSIJ> < SARGS> <QSUSE')
<QSUSR> (<I Dll ST>) < SARGS> .<QSUSE>
<QYMiT > lllEN <QUA!tJ'T'>
lJNTI L <F.X PR> ;
Wli I LE <t X ND ;
(QUANT> WITH <EXPR>

REPEAT <EXPID ;
$ <EXPR> <QUANT>
COLLECT <F.XNl> <QUANT>
<C/UMiT > $ < EXPR>
(QUANT> COLLECT a:xrR>
<IO> : <EXPR> <RECXT>
<RECX>
<IO> : <EXfR>]
<EXfR> <TO>

<BIF> <txrn> HIEN <SS) FI
<tXPR> ;* <REXfR>
<EXfR> ; <REXfR>
<RllN'GE> ; <liEXrR>
< RIWGE> }
[<RECH>
c <Exrn> >
cuor>
<Rl/UOP>

- IJJJ -

403 SEMNOP: <FTO> .. - (It axrn> *>
404 SEMNOP: <BOP> .. - \ (f/0)

405 SEMNOP: <RHUOP> .. - \ <FIO>
406 SH1NOP: <QSUSB> .. - 11: <TO>
259 SETQX: <E.XPR> .. ·- (<EXf'R> <SS!<llS> ... -
221 SEXP: <RH.PR> .. - <EX.PR> }
288 SSA.SS: <SS> .. - axrn> < ssnus>
334 SSCA.LP: <SS> .. - <TO> <"ARGS> ;
334 SSICAL: <SS> . ·- <IO> ;
334 SSQ: <SS> .. - DO <SS> (Ql/11H>
334 SSQ: <SS> .. - < QU A~1 > DO < SS > ENO
288 SSRHSt: <SSRHS> .. - := <EXrR> ;
288 SSRHS2: < ssrms> .. - .. - <Mr> <EXF'R>
288 SSRHS3: < ssm1s> .. - : := <f.Xfli> <IWf>
290 SSRllS4: <SSRllS> .. - : := <KUO!'>
290 SSRHS4: <SSRHS> . ·- : : = <Kl/Of'>
336 SSSS: <SS> .. - <SS> <SS>
221 SllHiEN: <F."XPR> .. - { <REX.ND
223 SlRSEL: a.xrn> .. - <EX.PR> [o;xrR>)
388 SUSB1: <SUSB> .. - II
388 SUSB2: <SUSB> .. - <SC/SB> (<CTYPE>
388 SUSBJ: <SllSB> .. - < SUSB> [< ASk"))
388 SUSB4: (SUSB> .. - < SUSB> { <Ask·> }
388 SUSF1: <EX.PR> ... - <SUSB> <EXPR> \\
388 SUSF1S: <fXPR> .. ·- <SUSB> <SS> \\ ... -
285 TYPDIS: <EXPR> .. - <IO> .. axrn>
244 TYPDIS: <EX.PR> .. - <IO> .. <EXPR>

286 UBITSW: <UOP> .. - BITSW/\P
285 UDECOD: <UOI'> .. - DECOOE
285 UENCOD: <UOP> .. - ENCODE
286 ULFTZO: <YOP> .. - LEFlZEROS
285 UNORM: <UOF'> .. - NORM
286 UOPBID: <RHUOI'> .. - \ <IO>
284 lJOPMIN: (UOI'> .. -
285 UTALLY: <UOP> : : = TALLY
·286 UUNARY: <UOP> .. - UNARY

~· 434 ~·

Page Na.me

262 DCOUGH: CBEXPR> :::= BEGIN <DECl> <EXrR> END
262 OCOUGH: CBEXPR> :::= BEGIN <lXPR> <OECl> END

328 BIF2: <BIF> : : := <BIF> <ExrR> HIEN <SS> EF

333 DCOUGH: <BSS>
333 DCOUGH: <BSS>

203
203
203
203
ENDDEFN
206
206
206
206
<QS>)
206
201

213
233
239
269
266
388
388

EBIF:
ECASEE:
ECASE:
SEl'QX:
HOLD IT:
SUSFt:
SUSF1S:

<OECl>
<OECl>
<DECl>
<OECl>

<DECl>
<DECL>

· <DEXL>
<DECL>

<DECl>
CDF..tl>

<EXrR>
<EXl'R>
CEXPR>
CEXl'R>
Cfi.'XPR>
<EXrR>
<EXPR>

233 EVCl\SE: a·xrRV>
233 EVCASB: Cf.Xl'RV>
239 EVCASE: a;xrnv>
239 EVCASB: <EXPRV>

328
328
329
330
331
333

F.BIF:
SBIF:
ECASEE:
ECASE:
HOLD IT:
EDECL:

<SS>
<SS>
<SS>
<SS>
<SS>
<SS>

329 EVCASE: <SSV>
329 EVCASB: <SSV>

196
196

199
199

CTOECL>
<T DECl>

<VDECl>
CVDEXl>

... -... -
: : :=
: : : =
: : :=
: : : =

: : : = ... -
... -... -
... -... -... -
: : : =
: : :=
: : : =
: : : =

: : :=
: : : =
... -
: : : =
: : : =

: : :=
... -
... -

... -

: : : =

... -.. ·­... -

BEGIN <OF.CL> <SS> END
BEGIN <SS> <DECL> END

DEFINE <ID>
DEFINE <ID>
DEFINE (/0)
DEFINE <ID>

<SS> ENDDEFN
= <TYfE> : C£XfR> ENDDEFN

<CTYl'E>) : <SS> ENDDEFN
<CTYl'E>) = <TYPE> : <EXPR>

DEFINE <IO> MACR0-10(<QS))
DEFINE <IO> = <TYrE> : MACR0-10(<QS>)
DEFINE <ID> (<CTYfE>) : MACR0-10(<QS>)
DEFtNE <ID> (<CTYPE>) = <TYPE> : MACR0-10(

LET <ID> BECOME <ID> BY <EXl'R> ;
LET CID> BECOME <ID> BY MACR0-10(<QS>)

<BIFE"> a:xrn> THEN <f,XPR> ELSE <HXPR> FI
CASE <Exrn> Of <lXfRV>
CASE CID> Of <EXPRV>
(<EXPR> <SSRHS>)
HOLDING <ASN> GIVE <EXPR> ENDHOLD
<SflSB> <EXPR> \\
<SUSB> <SS> \\

<ID>
<10>
CID>
<ID>

<EXfR> ENDCASE
<EXf'R) <EXPRV>
<txrR> ENDCASE
<Exrn> axrnv>

<BIF> CEXPR> TllEN <SS> ELSE <SS> FI
<BIF> <EXPR> THEN <SS> FI
CASE <£XfR> Of CSSV>
CASE <IO> Of <SSV>
HOLDING <ASN> DO <SS> ENDHOLD
CBSS>

<IO>
(10>

<SS> ENOCASE
<SS> <SSV>

TYPE <In> = <TYPE> ;
<TDECL> <IO> = <TYPE>

VAR <IOLIST> = <TYPE> ;
<VOECl> <IDLIST> = <TYl'E>

