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ABSTRACT 

This thesis explores shared data in list structures and ambiguity 
in language processing. Tolerance of ambiguity is necessary to support 
clear and modular expression. Data sharing is necessary to support 
ambiguity efficiently. Data sharing is useful also in compiled programs 
to save memory and time. 

Let us define some terms. A returi te grammar is a set of 
replacement rules each of which specifies that a given phrase may be 
replaced by another given phrase. Each replacement rule expresses a 
local translation. A parser finds those sequences of replacements that 
bring a given text to a machine handleable form. Each such sequence 
represents a meaning or interpretation for the given text. Tolerance of 
ambiguity or multiple interpretations for a given text is necessary so 
that subsequent processing can place further constraints upon the input 
text. 

This thesis presents a parser which efficiently handles 
·general-rewrite grammars. To conserve computer .time and memory, only 
essential differences·among multiple interpretations are represented and 
processed. If •everal interpretations for a given text are valid, the 
parser yields a meaning which represents the ambiguity as· locally as 
possible. Even an exponential number of distinct meanings may be 
represented in a polynomial amount of memory. 

This thesis also presents a language processing system which 
supports semantic processing via independent rewrite grammars. Each 
grammar represents a. distinct aspect of the language. A given sequence 
of grammars becomes a sequence of passes, or process steps. Each pass 
derives a meaning with respect to one grammar and uses that meaning to 
generate phrases which will be interpreted by the next pass. Although 
linguistic specification is usually done with contex.t-free grammars, 
features of this parser which support general-rewrite grammars are 
essential for the integration of passes. Not only ambiguity, but also 
the locality of ambiguity is preserved from one pass to the next. It is 
necessary to preserve locality of amhiguity in order to avoid explosive 
computation arising from useless interaction among independent sets of 
interpretations. 

I have implemented a general-purpose programming language called 
ICL with this system. The fact that ICL's datatypes are processed by a 
rewrite grammar makes it simple to implement both user-defined datatype 
coercions and functions known as polymorphic operators whose definitions 
depend on parameter datatypes. Datatype coercions and polymorphic 
operators reduce the amount·of specification required in algorithms to 
such an extent that a user can often modify declarations and achieve 
optimizations and changes in concept without modifying .his aJgorithmic 
specification. 

ICL includes a simple and safe policy about pointers so that the 
user can ignore their ex.istence completely if he wishes. ICL 
automatically maximizes data sharing and minimizes copying by adopting a 
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"copy on write• policy. This policy supports the illusion that each and 
every reference to a data structure generates a complete copy of that 
data structure. This same technique is used in the language processor 
itself to facilitate data sharing among multiple interpretations in 
ambiguous cases. 
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This thesis presents a programming language, ICL, and the language 

processor with which it was implemented. The design and implementation 

of ICL was facilitated by building a flexible language processor which 

readily admits the creation and modification of any computer language. 

ICL was created for two reasons. There was need for a sophisticat~d IC 

design language and there was need to see how well the language 

processor could support a large application language. 

ICL was conceived by forming a collection of notations which would 

express a variety of independent concepts. The language emerged by 

integrating these various notations. The rules specifying 

notations could be integrated became the grammar for ICL. 

defined by three independent grammars each of which imposes a 

class of requirements. 

how these 

ICL is now 

different 

The language processor supports linguistic specification in terms 

of general rewrite grammArs. A rewrite grammar is a set of replacement 

rules each of which specifies that a given phrase may be replaced by 

another given phrase. Each replacement rule expresses a local 

translation. A meaning is derived from an input text by applying 

replacement rules upon the text in such a way as to bring the input text 

to a machine usable form. 

The program which discovers the appropriate replacements is called 

a parser. The result of parsing is a record of the replacements 

performed, a tree structure known as a derivation. A derivation may be 

viewed as nested function calls, e.g., the text 



may have the derivation 

plus( times(1,2) , times(3,4) ). 

Viewed as nested function calls, a derivation can be e~ecuted. The 

execution of a derivation implements the intended meaning. Refer to the 

section Languages for a more complete description. 

Ambtouttu and Shared Data 

This thesis is based on two ideas. One is tolerance of a~biguity 

and the other is automatic sharing of data in list structures. 

Ambiguity refers to the existence of multiple interpretations for a 

given expression. Data sharing refers to the representation of nearly 
' t 

identical structures where all those su~structures which are common in 

the various structures are represented in memory only once. A common 

substructure is said to be shared by all structures whi~h reference the 

substructure. Tolerance of ambiguity becomes pr~ctical when only 

essential differences among multiple interpretations are represented and 

processed. Stmilartttes among multiple interpretations will be shared 

'both in memory and in processing. 

Tolerance of ambiguity supports two needs in processing. On one 

hand, the support of multiple interpretations allows programs to be 

picky. A program will be given a choice of interpretations for input 

and hence the program can choose those interpretations amenable to the 

program's needs. Making such choices reduces the number of 

interpretations, or the degree of ambiguity. On the other hand, a 

program may generate multiple interpretations for output when it finds 
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several valid ways to procede. 

If ambiguity were to be avoided, a predictive policy would have to 

be adopted. For example, when a program could generate multiple 

interpretations, the program would instead have to predict ahead of time 

which interpretation will actually be utilized in subsequent processing. 

This is not always possible. To resolve the uncertainty in prediction, 

numerous systems employ backtracking so that when a prediction fails to 

come true, processing can be backed up to the point where the faulty 

prediction was made and another interpretation can be predicted in its 

place. 

The language processor supports ambiguity by processing multiple 

interpretations in parallel. The major advantage of parallel processing 

is that all valid interpretations will be presented · together at any 

point in processing. This means that similarities among the various 

interpretations can be known and hence the similarities can be 

represented and processed only once. In contrast, if only one 

interpretation is processed at a time, e.g., with backtracking, all 

· interpretations will not be presented together and hence similarities 

among multiple interpretatjons are ignored. The cost of processing 

multiple interpretations one at a time can be exponential where a 

parallel implementation would incur only polynomial cost. 



Parsers 

A variety of parsers exist ranging from parsers tailormade for 

specific languages to general-purpose parsers which process large 

classes of grammars. The simplest kind of parser is the LR(k) parser 

presented by Knuth[t]. Such a parser avoids ambiguity by restricting 

the class of grammars to such an extent that it can be decided with 

certainty which replacement rule applies by looking ahead at most k 

characters. Another simple parsing technique known as recursive 

descent[2] utilizes backtracking exclusively to support uncertain 

decisions. 

Earley's efficient context-free parser[3] handles any context-free 

grammar with a worst. case performance of n3 where n js the length of the 

text to be parsed. A context-free grammar is a rewrite grammar each of 

whose replacement rules substitutes a given phrase with a phrase of 

length one. Currently, Earley's is the most efficient parser which 

accepts all context-free grammars. 

Thompson's REL parser[4] and Kay's Powerful Parser[5] each accepts 

general rewrite grammars. However, the REL parser has a worst case 

performance of infinity even. for context-free grammars. I don't know if 

Kay's parser has an upper bound. 

The parser presented in this thesis accepts general rewrite 

grammars. When given context-free grammars in particular, the parser 

has a polynomial upper bound as a function of the input text's length. 

If the context-free grammar is in Chompsky Normal Form, i.e., each 

replacement rule replaces a phrase of length at most two, then this 
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parser's upper bound is n4 • The disparity between this n4 and Earley's 

n8 comes about because Earley indexes into an array of length n where 

this parser walks a list structure of length n. The use of an array is 

cumbersome when dealing with general-rewrite grammars. 

The section An Efficient General Rewrite Parser documents this 

parser. 

A language Processor 

The language processor presented in this thesis supports multipass, 

or semantic processing via independent rewrite grammars. A given 

sequence of grammars becomes a sequence of passes, or process steps. 

Each pass derives a meaning with respect to one grammar and uses that 

derivation to generate phrases which will be interpreted by. the grammar 

belonging to the next pass. The grammars in a multipass system 

represent the constraints and capabilities of distinct aspects of a 

given language. The first pass in a multipass system is usually 

referred to as the syntax pass and non-first passes are referred to as 

semantic passes. For example, ICL is implemented with three passes, a 

syntax pass, a datatype processing pass, and a pass which enforces 

proper use of data sources and data sinks. It is conceivable that a 

fourth pass could be added which would process the output from the third 

pass in terms of a register transfer language. Some· replacement rules 

of the register transfer language could map certain sequences of 

instructions to other sequences and thereby offer alternate 

implementations. An optimal implementation could be chosen from these 

alternatives. 
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This multipass language processor necessitates a general rewrite 

parser because a derivation must be able to generate phrases of length 

greater than one. In analogy, ~'here a replacement rule generates a 

phrase in place of another phrase, a derivation generates a phrase in 

place of itself. A derivation can generate a phrase by concatenating 

those phrases generated by its subderivations. Phrases generated either 

by replacement rules or by derivations may interact with surrounding 

phrases. Each generated phrase and each union of that phrase with 

surrounding phrases must be subject to processing via replacement Fules. 

Multipass language processing emerged originally in the days when 

computers had tiny memories. By running passes independently, each pass 

could use the whole computer memory. Communications from one pass to 

the next were made via a text string stored on disk. However, 

ambiguities which could not be resolved by one pass were not easily 

passed on to the next pass. 

Ambiguity must be supported within and between passes so that each 

pass need not be overly specified and hence overly rigid. If a pass 

were not able to deliver its unresolved ambiguities to the next pass, 

each pass would have to resolve all ambiguities within the pas~'s 

limited domain. In general, this would require that each pass emulate 

subsequent passes so that the given pass can successfully predict which 

interpretation it should deliver. Because each pass represents a 

distinct aspect of the overall language, ·the requirement that a pass 

emulate subsequent passes forbids a truly independent specification for 

each independent aspect of the given language. The support of ambiguity 

provides the lubrication, so to speak, between the independent domains 
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of each pass. 

For example, an ambiguity not resolvable by the first pass will be 

delivered to the second pass. If the ambiguity makes no distinction in 

the domain of the second pass, the second pass will automatically 

process each of the alternate interpretations and deliver them on to the 

third pass. The ambiguity may be resolved by the earliest pass within 

whose domain the ambiguity makes a distinction. 

In general, each pass will not only resolve ambiguities but also 

generate new ambiguities. For example, in FORTRAN, the number 259 is 

unambiguous syntactically. but when FORTRAN considers data types, the 

number 259 becomes ambiguous because 259 must be considered as either an 

integer or a real number. Of course, the ambiguity is resolved when 

surrounding context is taken under consideration, e.g., 259 is 

specifically assigned to an integer variable. 

To support ambiguities between passes practically, the 

individuality, or locality of these ambiguities must be preserved. It 

is not satisfactory, for example, to have each pass yield a set of 

unambiguous deriYations, each of which will be processed independently 

by the next pass. Because each derivation will typically have much in 

common with the other derivations, processing each derivation 

independently will result in duplicate processing for similarities among 

the various derivations. Ignorance of similarities among multiple 

derivations can turn a polynomial cost into an exponential cost. 
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Both this parser and Earley's parser have the wonderful property 

that ambiguities which cease to provide distinction for the parsing 

process disappear from the parsing process. These ambiguities reappear 

embedded within the resulting ambiguous derivation. ·An ambiguous 

derivation is a derivation which may contain instances of a new kind of 

node called an OR-node. A single ambiguous derivation represents many 

distinct unambiguous derivations. 

For example, the ambiguous derivation 

OR ( f(a) , f(b) 

represents the meaning 

either J(a) 

The am~iguous derivation 

f ( OR(a,b) 

represents the mea·ning 

or J(b). 

f( either a or b ) 

and it is in fact equivalent to the former derivation. This latter 

derivation is said to be more factored than the former derivation 

because the OR-node is nested deeper within the latter derivation. That 

is. just as 

f*(a+b) 

f( OR(a,b)) 

is more factored than 

is more factored than 

f*a + f*b, 

OR( f(a) , f(b) ). 

In each example, the most factored expression shares the most data. f 

is written only once in the factored expressions whereas f is.written 

twice in the unfactored expressions. For another example, 
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g( OR(a,b) , OR(c,d) ) is more factored than 

OR( g(a,OR(c,d)) , g(b,OR(c,d)) ) and than 

OR( OR( g(a,c),g(a,d) ) , OR( g(b,c),g(b,d) ) ). 

A maximally factored ambiguous derivation can represent as many as an 

exponential number of distinct derivations in only a polynomial amount 

of memory. Both Earley's and this parser yield maximally factored 

ambiguous derivations. 

This language processor takes full advantage of ambiguous 

derivations. In support of multipass processing, an ambiguous 

derivation is used to generate an ambiguous phrase. An ambiguous phrase 

is a datastructure which represents a set of alternative phrases by 

sharing as many common subphrases as possible. 

An ambiguous phrase is maximally factored in the sense that 

----- f a -----
\ I 
\-- b --/ 

is more factored than 

f 

' , __ f 
a -----

/ 
b --/ 

Each of these ambiguous phrases represents the phrases 

I a and f b 

A more factored ambiguous phrase shares more data, e.g., the J is shared 

in the more factored ambiguous phrase. The ambiguous phrase 

f --------- a ----- b -----
\ I \ I 
\-- g -I \------- c -----/ 
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is more factored than the unfactored 

\ 
\-------
\ 
\-----
\ 
\---

f --------- a ----- b -----------
/ 

f --------~---- c -----------/ 
I 

g --------- a ----- b -----/ 
I 

g ------~------ c -------/ 

With the unfactored ambiguous phrase given above, f is represented 
I 

twice. An unfactored ambiguous phrase wastes not only memory space, but 

also processing time: With this unfactored phrase, those processes, 

e.g., replacement rules, which depend on f without reference to f's 

surrounding context will be duplicated simply because f is represented 

twice. With the factored ambiguous phrase, f is represented only once 

·and hence those processes which depend on f without reference to· f's 

surrounding context will execute only once. Maximally · factored 

ambiguous derivations or phrases are said to maintain localttu of 

ambiguitu. 

The parser presented in this thesis in fact deals exclusively with 

ambiguous phrases. A replacement rule affects an ambiguous phrase.by 

placing the rule's generated phrase onto the ambiguous phrase as an 

alternate phrase. For example, applying the replacement rule 

c replaces a b 

upon the phrase 

·---- f ----- a ----- b -----

yields the ambiguous phrase 



----- f ----- a ----- b -----
\ I 
\----- c -----/ 

Applying the replacement rule 

g replaces J 

upon this result, we get the ambiguous phrase 

f ------- a ----- b -----
\ I.\ I 
\- g ~1 \------ c ----/ 

Because replacement rules make local replacements, the parser natural~y 

preserves the locality of ambiguity within ambiguous phrases. 

It is interesting to note that the structure of an ambiguous 

derivation generalizes the structure of an ambiguous phrase. The 

structure of an ambiguous derivation is in fact identical to the 

structure of an ambiguous phrase when each function in the derivation is 

unary, i.e., each function takes at most one parameter. The equivalence 

can be seen by viewing the phrase a b c x as the derivation a(b(c(x))). 

For example. the ambiguous phrase 

----- f ---------- a --------- x 
\ I 
\--- b ---/ 

corresponds in structure to the ambiguous derivation· 

f( OR( a(x) • b(x) ) ). 

The ambiguous phrase 

f ---------- a ----- b ----- x 
\ I \ I 
\-- g -I \------ c -----/ 
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corresponds tn structure to the ambiguous derivation 

OR( f(u),g(u) ) where u = OR( a(b(x)) , c(x) ) . 

The Sample lanouaoe, ICl 

ICL, the sample language implemented with the language processor, 

includes two major features taken from the language processor. ICL 

maximizes data sharing so that nearly identical datastructures indeed 

share common substructures. In addition, ICL utilizes the parser to 

process datatypes. All datatype relationships are represented in a 

datatupe grammar. Refer to the section ICl Overutew for a closer look 

at how these features manifest themselves in the language. 

ICL was designed to support the creation of integrated circuits. 

Because a given integrated circuit is defined by a given set of masks, 

ICL includes special features for processing two-dimensional geometry. 

Because the specification of IC layouts and electrical or 

functional properties is a relatively new endeavor, I chose to make ICL 

a flexible, general-purpose programming language. I envision two 

distinct user groups. The first group is akin to language designers; 

this group defines bo~h the internal representation fbr IC's and the 

notation with which IC's are specified and manipulated. The other group 

defines and edits specific IC's with the system provided by the first 

group. Each group interacts with the other; the language group 

continually modifies its system by incorporating common needs found by 

the IC designers. In this way, a convenient IC design system evolves 
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and avoids obsolescence. 

Paramount to this duality is the need for upward compatabili ty. IC 

specification should always be successfully interpreted by the system 

even if the internal representation for IC's changes dramatically. Not 

only top-level IC specs, but also IC specs made from within existing 

functions should be upward compatible. In each case, the existing IC 

specification should be mapped optimally into the new representati~n. 

lCL includes two essential features which readily support changes 

in representation. These features are known as datatype coercions and 

polumorphic operators. A datatype coercion is a declaration which 

specifies that any instance of a given datatype can be viewed as an 

instance of another given datatype via a given transformation. A 

datatype coercion differs from a function because a datatype coercion 

may be invoked without an explicit call. A function can be invoked only 

by explicitly writing the function's name. 

ICL applies datatype coercions at appropriate places in a user's 

specification to maintain the integrity of his specification. Thus, 

upon changes to representation, i.e., changes to the notion of 

integrity, ICL will automatically apply coercions at different places if 

necessary. If the user had gone to the trouble of specifying all 

coercions via function calls, as is necessary in other programming 

languages, his specification would be overly rigid and less amenable to 

changes in representations. Upon changes in representation, the user 

would have to edit his specification by removing certain function calls 

and adding other function calls. With coercions, this is done 

automatically. Because ICL guarantees to minimize the number of 
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· coercions it employs, the integrity of a user's specification will be 

maintained as concisely as possible. 

A polY'morphic operator is a function whose definition depends on 

the datatypes of its parameters. For example, the function name 

DISPLACE can have several definitions. One definition will support the 

'displacement of a point by a point. Another definition will support the 

displacement of a whole IC-mask by a point. When the user specifies a 

call to DISPLACE, 

datatype consistency. 

ICL will choose that definition which maintains 

The use of polymorphic operators, lik.e data type 

. coercions. reduces the necessary specification and hence the rigidity of 

specification. A change in representation which affects. the datatypes 

in a call to DISPLACE can be tolerated if another definition of DISPLACE 

can accomodate the new datatypes. 

Program integrity is preserved via the parser during ICL's second 

pass, when the datatype grammar is active. The parser's tolerance of 

ambiguity lends itself naturally to the task of discovering which 

coercions to apply where and what definition to use among those 

definitions which make up a given polymorphic operator. 

What Fol lou1s 

The section Languages presents rewrite grammars and various 

techniques by which rewrite grammars can be extended to encompass more 

linguistic specification. The language processor itself is made up of 

two components, a parser and a semantic evaluator. One section 

documents the parser. Another section documents the semantic evaluator 



- 15 -

and its role in the language processor. The section ICl Ouerutew 

documents the goals in designing ICL and the results of each goal. 

The first appendix gives a sketch of how a language is specified to 

the language processor. Linguistic specification is 

PDP-10's assembler language with the help of macros. 

appendix, the ICl Reference Manual formally documents ICL. 

done in the 

The final 
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A language is a set of conventions by which a string of characters 

can be mapped into some corresponding meaning. On the computer, the 

most general form of meaning is some action which modifies either the 

state of memory or the state of some output devices. This section 

introduces rewrite grammars, terminology, and useful conventions for 

implementing meaning. The following sections document programs which 

implement ideas presented in this section .. 

The term part-of-speech will refer to the atomic elements of our 

space of discourse. We include all ASCII characters as parts-of-speech. 

All parts-of-speech excluding ASCII characters are called non-terminals 

and can be thought of as syntactic classes or as abstract characters. A 

non-terminal will be denoted by a name enclosed in angle brackets, e.g., 

<VERB> 

phrase or string refers to any sequence of 

Phrases made up solely of ASCII characters are called 

The term 

parts-of-speech. 

terminal phrases. 

A productton, or rule, is a pair of phrases, written as 

phrase ::= phrase 

The phrases will be refered to as the Lefthand phrase and the righthand 

phrase respectively. 
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A grammar is a set of productions along with a chosen 

part-of-speech called the root part-of-speech. Given a grammar, we will 

say that a given string is a rewrite of another string precisely when 

the given string can be obtained from the other string by a single 

rewrite operation: 

' . 1) Locate an occurence of some production's righthand phrase within 

the given string. 

2) Erase that occurrence of the righthand phrase and write in its 

place a copy of the production's lefthand phrase. 

We will say that a given string is dertuable from another string if the 

given string can be obtained from the other string by a sequence of 

rewrites. A dertuatton is a record of the rewrite operations employed 

in deriving one string from another. 

The language accepted by a grammar is the set of terminal sirings 

from which the root phrase is derivable. The root phrase is the phrase 

of length one consisting of the grammar's root part-of-speech. In 

performing rewrite operations upon a given text, the goal is to come up 

with the root phrase. 

For example, the set of productions 

<DIGIT> 
<DIGIT> 

<DIGIT> 

: : = 
: : = 

.. -

0 
1 

9 

state that the part-of-speech <DIGIT> can be derived from each of the 

characters 0, 1, ••• , 9. The productions 



<NUMBER> 

<NUMBER> 

.. -.. -

.. -

.... 18 ... 

<DIGIT> 

<NUMBER> <DIGIT> 

state that <NUMBER> can be derived from a single <DIGIT> or from a 

<NUMBER> followed by a <DIGIT>. Thus, <NUMBER> is any non-null string 

of digits. The grammar consisting of these productions along with 

·<NUMBER> as the root part-of-speech defines the language consisting of 

all non-null strings of digits. 

#eantng 

The preceding description shows how a grammar can be used to 

specify the legal strings of a language but it fails to mention how to 

associate a meaning with a given string in the language. We can 

incorporate meaning by associating a meaning with each element in a 

string. That is, an element of a string will consist of not only a 

part-of-speech but a part-of-speech and a meaning. We can associate 

with each production a meaning transformation. That is, when a rewrite 

· operation is performed, we let the chosen production defi.ne a meaning 

for each element it writes into the string. These meanings wi 11 be 

functions of the meanings associated with each of the erased elements. 

For example, the production 

<EXPR> ::= <EXPR> + <EXPR> 

can have the transformation which yields the sum of the meanings 

associated with each of the righthand <EXPR>s. The meaning of a string 

in a language will be the meaning which is associated wit~ the root 

phrase derived from the given string. 
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We can express productions which include meaning transformations in 

the following concise notation: 

<EXPR: sum(a,b)> ::= <EXPR:a> + <EXPR:b> 

The parts-of-speech appearing in the righthand phrase include the 

specification of variables and the parts-of-speech appearing on the 

lefthand phrase each includes the specification of a meaning which is a 

function of the variables named in the righthand phrase. One can see 

how a transformation is carried out. When this production is employed 

in a rewrite operation, the variables a and b are set to the meanings 

associated with the two <EXPR> elements which are being erased. The 

value sum(a.b) is computed and associated with the new <EXPR> replacing 

the erased elements. 

A meaning transformation associated with a production whose 

lefthand phrase has length greater than one defines a separate meaning 

for each part-of-speech in the lefthand phrase. · For example, the 

production 

<A: f(c,d)> <B: g(c,d)> .. - <C:c> <D:d> 

specifies that the meaning under the <A> is f(c.d) and that the meaning 

.under the <B> is g(c.d). A meaning transformation as~ociates· a meaning 

with each part-of-speech in the lefthand phrase and not with the phrase 

as a whole. 

The <NUMBER> grammar can be written with meaning transformations as 

follows: 



<DIGIT:O> 
<DIGIT: t> 

<DIGIT:9> 

<NUMBER:a> 

::= .. -.. -

.. -

: : = 

0 
1 

9 

<NUMBER: tO•a+b > 

~ 20 ~· 

<DIGIT:a> 

::= <NUMBER:a> <DIGIT:b> 

The meaning associated with a <DIGIT> or a <NUMBER> is an integer. 

Looking at the <DIGIT> rules, note that the digit appearing on the 

righthand side is a character whereas the meaning associated with the 

<DIGIT> is an integer. For example, the rule 

<DIGIT:t> ::= 1 

states that the character "1" has the integer 1 as its meaning when the 

character •t• is viewed as a <DIGIT>. The first <NUMBER> rule states 

that when a <DIGIT> is viewed as a <NUMBER>, the meaning for the 

<NUMBER> is the same as the meaning associated with the <DIG IT>. The 

final rule states that when a <NUMBER> followed by a <DIGIT> is viewed 

as a <NUMBER>, the meaning for the resulting <NUMBER> is ten times the 

meaning of the given <NUMBER> plus the meaning of the <DIGIT>. 

Many grammars can be written which accept a given language. 

However, some grammars may be more suitable than others for defining 

meaning transformations. For example, consider the grammar given above 

which accepts the language consisting of strings of digits. The rule 

<NUMBER> ::= <NUMBER> <DIGIT> 

could be replaced by the rule 
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<NUMBER> ::= <DIGIT> <NUMBER> 

without changing the language accepted by the grammar. However, it is 

more difficult to write the meaning transformation for the latter rule 

than to do so for the former rule. Given a language to implement, the 

language implementor generally chooses that grammar whose meaning 

transformations are easiest to define. 

The following is a grammar for a subset of arithmetic expressions.: 

<ATOM: a> 

<TERM: a> 

. ·­.. -

. ·­.. -

<NUMBER:a> 

<ATOM:a> 

<TERM: times(a,b)> · ::= <TERM:a> * <TERM:b> 

<FORM: a> ::= <TERM:a) 

<FORM: sum(a.b)> ::= <FORM:a> + <TERM:b> 

<ATOM: a> ( <FORM:a> ) 

This grammar admits expressions built with numbers, +•s. *'s and 

parentheses. The part-of-speech <ATOM> admits only numbers and 

parenthesized expressions. <TERM> admits products of <ATOM>s and <FORM> 

admits sums of <TERM>s. The separation of arithmetic expressions into 

<ATOM>, <TERM>. and <FORM> implements the standard operator precedences: 

••s are grouped before +•s. 

<FORM> can be derived from the string 1+2*3 by 
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1 + 2 it 3 

<DIGIT: t> <DIGIT:2> <DIGIT:3) 

<NUMBER: 1> <NUMBER:2> <NUMBER:3> 

<ATOPI: t> <ATOM :2> <ATOM:3> 

<TERM: D <TERM:2> 

<FORPl:t> <TERM: times(2,3)> 

<FORM: sum( 1 , timcs(2,3) ) > 

This diagram shows only those rewrite operations which participate in 

deriving the final <FORM>. The final <FORM> has the accumulated meaning 

sum( 1 , times(2,3) ). 

We have not specified what kind of data sum and times take in and 

produce. We might assume that sum and times take in and produce 

numbers, i.e., the meaning for the final <FORPI> could simply be 7. On 

the other hand, we might assume that sum and times take in and produte 

programs whose executions yield numbers. For example, ·a LISP program 

can be obtained if sum and times are defined as follows: 

times(a,b) = (LIST 'ITIMES a b) 

sum(a,b) = (LIST 'IPLUS a b) 

The.string 1+2*3 would rewrite to a <FORPI> whose meaning is 

(IPLUS 1 (ITIMES 2 3)) 

A parser 1s a program which takes in a grammar and an input . string 

and always does one of two things. If the input string is a member of 

the language accepted by the grammar, the parser yields the meaning 

associated with the input string. Otherwise, the parser rejects the 

input string. 
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Keanino as Programs 

Representing meanings as programs 

evaluation of meaning can be delayed 

has the advantage that the 

until the completion of the 

rewriting process even though meaning transformations are carried out 

during the rewriting process. The meaning transformations can be 

written to take in and produce programs whose later executions will 

carry out the intended meaning. 

There are two major reasons tor having meanings represented by 

programs rather than by computed values. First of all, a parser will 

invariably have to backtrack in its effort to find the particular 

sequence of rewrites by which the grammar's root phrase is derived from 

the input string. For example, a parser might at some time consider the 

following rewrite sequence: 

l 

<DIGIT: t> 

<NUPIBER:1> 

<ATOPl:t> 

<TERPI: 1> 

<FORPI: t> 

+ 2 

<OIGIT:2> 

<NUMBER:2> 

<ATOM:2>· 

<TERPl:2> 

<FORM: sum( 1 , 2 ) > 

3 

This final <FORM> spanning 1+2 cannot be used in any successful 

derivation for 1+2•3. If sum were an expensive computation, the time 

taken to compute sum(l,2) would be a major loss. In addition, if 

sum(1,2) involved side effects, the side affects would have to be undone 

at some time. 

side effects 

However, we can make sum both inexpensive and free of 

by ha~ing sum return as its value a program whose later 
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execution will perform the expensive computation. The program can 

simply be represented by the address of a function along with two 

parameters. In this example, since sum(t,2) won't be a part of any 

successful derivation for 1+2~3, the program given by sum(t,2) will 

never be executed. 

The notation 

II[ a; b;] program \ \ 

will denote the datastructure which represents program along with the 

predefined parameters a and b. For example, sum can be defined by 

sum(a,b) = //[a;b;] expensiue computation \\ 

A call to sum yields a datastructure which contains the current values 

of a and b and the address of the program which implements expt!ns iue 

computation. To the expensive computation, the variables a and b always 

appear to contain the values they contained at the time sum was called. 

The notation 

EX(x) 

(EXecute) will denote the invocation of x where x is a program with 

predefined parameters. Thus, if we assign x as in 

x := sum(a,b) ,, 

performing 

EX(x) 

will invoke the expensiue computation. 
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The second and perhaps more fundamental reason for representing 

meanings as programs rather than as computed values is simply that some 

meanings have values which depend on context not yet available at the 

time a particular rewrite is carried out. For example, consider a 

grammar where numbers can include radix specification,. e.g., 

101 base 8 would be 65 base 10. 

The number rules could be 

<NUM> ::= <DIGIT> 

<NUM> ::= <NUM> <DIGIT> 

<NUMBER> ::= <NUM> BASE <DIGIT> 

The part-of-speech <NUM> represents numbers without radix specification, 

i.e., strings of digits. A <NUMBER> is formed by appending a base 

specification to a <NUM>. Consider the meaning transformations for 

these rules. One is tempted to write 

<NUM: a> : := <DIGIT: a> 

<NUM: radix•a+b> ::= <NUM:a> <DIGIT:b> 

<NUMBER: ?? > ::= <NUM:a> BASE <DIGIT:b> 

The problem is that the radfa won't be known when the second rule is 

applied. The radix becomes known only after the third rule applies. By 

agreeing that the meaning of a <NUM> will be not an integer, but a 

program whose execution will yield an integer, we can write the rules as 

follows: 

<NUM: //[a;] a \\ > .. - <DIG IT:a> 

<NUM: //[a;b;J radix*EX(a)+b \\ > .. - <NUM:a> <DIGIT:b> 

<NUMBER: radix:=b; EX(a) > <NUM:a> BASE <DIGIT:b> · 
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The first rule yields a program whose execution simply yields the 

<DIGIT>'s meaning. The second rule yields a program which includes the 

global variable radix as a free variable. The third rule, the <NUMBER> 

rule; produces an integer as its meaning by first setting the global 

variable radix and then invoking the program associated with <NUM>. 

Thus, the computation which must involve radix has been delayed until a 

time when radix is available. 

In general, if meanings are represented as programs, the meaning 

transformation associated with a production can adequately control the 

context in which any of its parameters is evaluated. We will use the 

term top-down context to refer to context which is set by a routine for 

the evaluation of one of its parameters. For example, the <NUMBER> rule 

uses the global variable radix as top-down context. Top-down context 

can generally be used only if the evaluation of meaning is delayed until 

the completion of the rewriting process. 

Parts-of-speech Are Datatypes 

A datatype in its most general form is a set of conveptions by 

which a datum exists. A datum is an instance of a datatype precisely 

when the datum obeys the conventions of the datatype. We can see how 

the parts-of-speech of a grammar serve as the datatypes over the space 

of meanings. 

In defining a grammar and the routines which implement the meaning 

transformations, one must agree on how a meaning is represented. What 

sorts of actions will be performed by the evaluation of a meaning? For 

example, if we implement the routine sum for the rule 
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<FORM: sum(a,b)> ::= <FORM:a> + <TERM:b> 

we must know three things: What kinds of object~ are a and b and what 

kind of object must be associated with the resulting <FORM>? We can 

deduce that the type of data yielded by sum(a,b) must be the same as the 

type of data represented by a because a itself could be set to the 

result of a sum, e.g., the rewriting process might employ the 

<FORM:sum(a,b)> generated by this rule as the <FORM:a> in another 

application of this rule, e.g., 

c + d + b 

<FORM: sum(c,d)> 

<FORM: sum( sum(c,d) , b) > 

When a is set to the meaning of a <FORM>, we cannot tell which 

production generated the <FORM>. Hence, each production which generates 

a <FORM> must associate a meaning which follows the same conventions as 

the meaning associated with any other <FORM>. In general, the only 

thing that can be known about a meaning is the part-of-speech with which 

the meaning is associated. 

Jt is therefore advantageous to establish conventions for meaning 

on a part-of-speech by part-of-speech basis. That is, for a given 

part-of-speech, one should state exactly what can be expected of an 

associated meaning. A part-of-speech serves as the name for the 

conventions obeyed by any meaning associated with the part-of-speech. 

In the examp 1 e production given above, we can assume that a fo 11 ows the 

<FORPl>-conventions and that b follows the <TERM>-conventions and finally · 

that sunr(a, b) had better follow the <FORM>-conventions. From the point 

of view of sum's definition, these requirements appear as datatype 
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constraints: 

sum(a:FORPI b:TERM) = FORM: 

Sum is a function which maps a FORM and a TERM to a FORM. 

Parts-of-speech are the datatypes for the input and output parameters in 

any function which implements a meaning. 

For example, suppose we wish to write a compiler with the rules 

<ATOM: load(a)> ::= <VARIABLE:a> 

<PROGRAPI: assign(a,b)> : := <VARIABLE:a> .- <FORM:b> ; 

We can make the following conventions: The evaluation of a meaning 

associated with 

1) a <VARIABLE> yields a memory address and generates no machine 

code 

2) an <ATOM>, <TERM>, or <FORM> generates machine code which will 

push an integer onto the stack 

3) a <PROGRAM> generates machine code which will leave the stack 

level unchanged. 

The meaning transformations for the two rules can be written as follows:. 

load(a:VARIABLE)= ATOM: 

//[a;] Address := EX(a); 

Assemble ' PUSH Address ' \\ 

assign(a:VARIABLE b:FORM)= PROGRAM: 

II[ a ;b;] 

EX(b) " Generate code which will push the right 

side of the assignment onto the stack 0 

Address .- EX(a); " Where to store the result " 
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Assemble ' POP Address ' \\ 

Load maps a VARIABLE to an ATOM by producing a program whose 

execution will generate machine code which will push an integer onto the 

stack. l'he program produced by load uses its VARIABLE parameter by 

evaluating it to obtain the address for the variable. Assign maps a 

VARIABLE and a FORM to a PROGRAM by producing a program whose execution 

will generate machine code which will leave the stack level unchanged. 

The program produced by assign evaluates the FORM parameter to generate 

code which will push one word onto the stack. The program produced by 

assign finally evaluates the VARIABLE parameter and assembles a POP 

·instruction to complete the assignment which brings th~ .stack level back 

down. 

The rule 

<FORM: sum(a,b)> ::= <FORM:a> + <TERM:b> 

can be added if we define sum as follows: 

sum(a:FORM b:TERM)= FORM: 

l/[a;b;] 

EX(a) " Generate code which will push 

one word onto the stack " 

EX(b) " Generate code which will push 

another word onto the stack " 

Assemble an ADO instruction which pops two words 

off the stack and which finally pushes the sum 

back onto the stack \\ 
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The program produced by sum will indeed generate machine code which will 

push one word onto the stack. 

Given an input string, if <PROGRAM> can be derived from a given 

input string, we can generate machine code which will implement the 

given string by performing 

EX(p) 

where p is the meaning associated with the derived <PROGRAM>. 

Notice that if <PROGRAM> can be derived from the input string, the 

datatype requirements for the routines load, asstgn, and sum are 

automatically satisfied. The correctness of the compiler can be proven 

simply by proving 

1) the correctness of each meaning transformation and 

2) that each meaning associated with a given part-of-speech 

satisfies the established conventions for that given 

part-of-speech. 
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Ambtoutt.11 

It may be the case that a grammar's r~ot phrase can be derived from 

a given input string in more than one way. For example~ with the 

grammar 

<FORM:a> ::= <NUMBER:a> 

<FORM: exponent(a,b)> <FORM:a> t <FORM:b) 

<FORM> can be derived from the string 2t3t4 in two ways: 

2 t 3 

<NUMBER:2> <NUMBER:J> 

<FORM:2> <FORM:J> 

<FORM: exponent( 2 , 3 ) > 

t 4 

<NUMBER:4> 

<FORM:4> 

<FORM: exponent( exponent( 2 , 3 ) • 4 ) > 

2 t 

<NUPIBER:2) 

<FORPl:2> 

or - - - -

3 t 

<NUMBER:J> 

<FORM:3> 

4 

<NUl"IBER:4> 

<FORM:4> 

<FORM: exponent( 3 , 4 > 
<FORK: exponent( 2 , exponent( 3 , 4 ) ) > 

In the first case, the string is interpreted as (2t3)t4 whereas in the 

second case, the string is interpreted as 2t(3t4). We say that the 

string 2t3t4 is ambiguous with respect to the given grammar. This 

grammar could be modified so that it always groups 2t3t4 in one way and 

not the other. For example, to group left to right, substitute the 

second rule with 
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<FORM: exponent(a,b)> .. - <FORM:a> t <NUMBER:b> 

To group from right to left, use 

<FORM: exponent(a,b)> .. - <NUMBER:a> t <FORM:b> 

It is desirabie to have unambiguous languages, i.e., languages 

where a given string can have at most one meaning. However, it may be 

advantageous to have a grammar which produces multiple meanings for a 

given string so that some of these meanings can disqualify themselves on 

grounds other than syntactic structure. For example, ICL has the 

operators + and I where + is used to add either numbers or points and 

where I is used to combine two numbers to yield a point, e.g., 

112 is the point at x=1 and y=2, 

112 + 314 is the point 4#6, and 

1+2 I J is the point 313. 

Consider how A+BIC might be grouped. If A, B, and C are numbers, A+BIC 

must be grouped as 

(A+B)IC 

because the grouping 

A+(BIC) 

would force + to add a number and a point. On the other hand, if A is a 

point and B and C are numbers, the latter grouping must prevail lest + 

be forced to add a point and a number. If A, B, and C are the names of 

program variables, the grouping decision can't be made until the types 

of A, B, and C are known. Since the types associated to variables are 

not known until declarations are processed and because declar~tions 

can't be processed until syntax analysis is complete, the grouping 
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decision cannot be dictated by the syntax grammar. The syntax grammar 

therefore must admit both groupings, i.e., yield two meanings for the 

string A+BIC. During the evaluation of meaning, the types for A, 8, and 

C will become known and hence one of the meanings will disqualify 

itself. 

In general, ambiguity is necessary when insufficient information is 

available for making a decision. 
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Kultipass Language Processing 

Consider two grammars which describe different aspects of a subset 

of FORTRAN'S arithmetic expressions. The first grammar is the grammar 

relating the parts-of-speech <FORM>, <TERM>, and <ATOK> presented 

earlier. The second grammar is written in terms of the parts-of-speech 

<INTEGER> and <REAL>: 

<INTEGER: addi(a,b)> 

<REAL: addr(a,b)> 

<INTEGER: muli(a,b)> 

<REAL: mulr(a,b)> 

<INTEGER:a> 

<REAL:a> 

<REAL: float(a)> 

.. -

.. -

.. -

.. -

<INTEGER:a> + <INl~GER:b) 

<REAL:a> + <REAL:b) 

<INTEGER:a> * <INTEGER:b> 

<REAL:a> * <REAL:b> 

<INTEGER:a> 

<REAL:a> 

<INTEGER: a> 

This latter grammar states FORTRAN's datatype requirements and ignores 

operator precedence. The former grammar states FORTRAN's operator 

precedence but ignores datatype requirements. However, any legal 

arithmetic expression must be accepted by both grammars. For brevity, 

we will call the former grammar the syntax grammar and the latter 

grammar the type grammar. 

Both gra.mmars can be incorporated by agreeing that meanings 

associated with <ATOM>, <TERM>, and <FORM> are programs whose executions 

will generate phrases in the language accepted by the type-grammar. 

During the generation of these phrases, the type grammar instead of the 

syntax grammar will be active. Thus, each generated phrase will be 

subject to rewrites via the productions of .the type-grammar. For 

example, sum can be defined as 
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sum(a:FORM b:TERM) = FORM: 

//[a;b;] 

EX(a) " Generate a phrase in the type language • 

Generate a "+" to the right of the phrase 

generated by a 

EX(b) " Generate a phrase to the right of the + • \\ • 

If sum's a parameter generates the phrase 

<INTEGER> 

and if b generates the phrase <REAL>, the program produced by sum will 

generate the phrase 

<INTEGER> + <REAL> 

Since the type grammar is active during these phrase generations, <REAL> 

will be derived from this phrase: 

<INTEGER:a> + <REAL:b> 

<REAL: float(a)> 

<REAL: addr( float(a) , b ) > 

As such, one of the phrases generated by sum is <REAL> standing alone. 

To be more specific, the multipass scheme works as follows: 

1) Process the input string with respect to the first grammar. 

2) The result will be a meaning associated with the root phrase of 

the first grammar. 

3) Evaluate the resulting meaning with respect to the second 

grammar. 

4) From all the phrases generated by the evaluation, choose the 

root phrase of the second grammar. 
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The meaning associated with the second grammar's root phrase is now the 

meaning for the string with respect to both grammars. This multipass 

scheme indeed requires that the input string be accepted by both 

grammars. 

Kore than two passes can be implemented by agreeing that the 

meaning transformations associated with one grammar will generate 

phrases in the language accepted by the next grammar in the sequence. 

The meaning transformations for the final grammar in the sequence will 

be responsible for carrying out the originally intended meaning. 

Two successive grammars can be radically different so long as the 

meaning transformations associated with the first grammar can indeed 

generate useful phrases in the language accepted by the next grammar. 

The successive grammars need not be refinements of one another, e.g., it 

.is not necessary for. the type grammar to consist of several productions 

per syntax production. For example, the syntax production 

<ATOM:a> ( <FORM :a> ) 

need not have any counterparts in the type grammar. Furthermore, 

several syntax productions might indeed generate the sa.me phrase in the 

type language where the ultimate distinction between the ·two syntax 

. productions resides in the meanings associated with the elements of the 

generated phrases. 
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Productton Schema 

We will now consider productions whose parts-of-speech may 

themselves be variables. A whole scheme of productions may be 

implemented by one or a few productions whose parts-of-speech are 

variables. For example, consider the set of ~roductions 

<X> ::= <X> EQUALS <X> 

where <X> stands for any part-of-speech. Each of the productions 

<INTEGER> 

<REAL> 

.. -

.. -
<INTEGER> EQUALS <INTEGER> 

<REAL> EQUALS <REAL> 

is a member of the production scheme given above. 

The production scheme 

<X> .. - IF <BOOL> THEN <X> ELSE <X> 

represents the type requirements for the If-THEN-ELSE construct. The 

type of an IF-THEN-ELSE expression is precisely the type of the 

THEN-clause when the type of the ELSE-clause matches the type of the 

THEN-clause. If the types of the THEN-clause and the ELSE-clause 

differ, this production does not apply. 

One can write production schema where the variables representing 

parts-of-speech accept only a limited range of values. For example, let 

<EXPR> denote the array of parts-of-speech 

<EXPR1>, <EXPR2>, ... , <EXPRn> 

and let <BOP> (binary·operator) represent the parts-of-speech 
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<BOP~>, <BOP2>, .... , <BOPn> 

A precedence grammar is implemented by the production scheme 

<EXPRi> ::= <EXPRu> <BOPi> <EXPRv> 

where u is required to be less than or equal to i and where v is 

required to be strictly less than i. This scheme is a generalization of 

the precedence grammar given earlier which included the parts-of-speech 

: <ATOK>. <TERM>, and <FORM>. In this more general setting, we can agree 

that 

<ATOM> = <EXPR1>, 

<TERM> = <EXPR2 >, and 

<FORM> = <EXPR3> 

and that the binary operators + and * have the rules 

<BOP2> ::= * 
<BOP3> : := + 

The requirements on u, i, and v in the rule scheme impose the same 

precedence requirements inherent in the <ATOM>-<TERM>-<FORM> grammar. 

The parenthesis rules 

<ATOM> <FORPI> 

has the counterpart 

Where t is required to be less than or equal to 3. 

The implementation of operator precedence via this rule scheme is 

more. efficient than the implementation offered by the 

<ATOM>-<TERK>-<FORK> grammar. The <ATOM>-<TERM>-<FORPI> grammar includes 
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<TERPI> 

<FORPl> ... -
<ATOM> 

<TERM> 
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Thus, whenever an <ATOM> is generated, the <ATOM> is rewritten to . a 

<TERPl> and the <TERM> is rewritten to a <FORM>, e.g., 

This 

case 

( 1 

<ATOM> 

<TERM> 

<FORM> 

< A T 0 M 

cascading effect 

that the <EXPR1> 

( 1 

<EXPR1> 

<EXPR2> 

<EXPR3> 

) 

> 

is absent in the precedence scheme: 

rewrites to <EXPR2> and finally to 

< E X P R 1 > 

It is not the 

<EXPR3> lik.e 

The production scheme doesn't need to include the bookkeeping rules 

<EXPRi+l> ::= <EXPRi> 

because the precedence conditions, i.e., the conditions upon u, i, and 

u, are stated in terms of inequalities rather than in terms of 

equalities. Thus, for example, the string ( 1 ) parses simply as 



because the parenthesis rule requires only that t be less than or equal 

to 3 and not that t be equal to 3. 

As the reader may recall, the conventions set upon meanings 

associated with the parts-of-speech <ATOM>, <TERM>, and <FORM> were 

identical. The distinction among these parts-of-speech was solely for 

synt·actical rather then semantic reasons. Thus, grouping all the 

<EXPRi> into one conceptual part-of-speech is natural from the point of 

view of setting up conventions for meaning. 

The production schema presented thus far include variable 

parts-of-speech which admit either any part-of-speech or a specific 

array of parts-of-speech. However, the conditions placed on a variable 

part-of-speech can be of any sort we wish. The following example 

involves parts-of-speech which are themselves general datastructures. 

Consider the datatype declaration 

TYPE A = { B } ; 

This defines A to be a string, or array, each of whose elements is of 

type B. One effect of this declaration is the creation of the following 

datatype production: 

<B> ::= <A> [ <INTEGER> ] 

This production states that the rcsul t of indexing into an object of 

type A is an object of type B. If the user were to declare 

TYPE C = { D 

E = { F 

G = { H 
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we would have the rules 

<D> 

<F> 

<H> 

: := 

.. -.. -
: : = 

<C> [ <INTEGER> ] 

<E> [ <INTEGER> ] 

<G> [ <INTEGER> ] 

The meaning transformations associated with each of these rules are 

identical; each performs an indexing operation which does not depend on 

the datatypes involved. Because the meaning transformations are the 

same, we can take this opportunity to write one rule which will act as 

each of these individual rules: 

<type1> ::= <type2> [ <INTEGER> ] 

~here <type2> = a type declared to be a string of elements of type 

<type1>. 

This rule scheme can be implemented if the part-of-speech <type2> is 

itself a datastructure which represents the structure of type2 . That 

is, the rule scheme can be written as 

?? ::= <X> [ <INTEGER> ] 

where the meaning transformation looks at the wild-card 

<X> to determine if it is a string of some other type. 

part-of-speech 

If <X> is not a 

string, the meaning transformation inhibits the application of the rule. 

If <X> is a string, the meaning transformation obtains that datatype or 

which <X> is a string and supplies this as the lefthand part-of-speech, 

the ??. The meaning transformation finally generates a meaning in terms 

of the meanings under <X> and the <INTEGER> and gives this as the 

meaning associated with the lefthand part-of-speech. 
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Rule schema are useful for minimizing the size and maximizing the 

readability of a grammar. 



Reluctant Productions 

Consider the productions 

<INtEGER: addi(a,b)> 

<REAL: addr(a,b)> ::= 

<REAL: float(a)> .. -
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<INTEGER:a> + <INTEGER:b> 

<REAL:a> + <REAL:b> 

<INTEGER:a> 

This grammar has an inherent ambiguity. If the string 1+2 is viewed as 

a REAL, there are two possible derivations: 

+ 2 1 

<INTEGER:t> 

<INTEGER: 

<REAL: 

<INTEGER:2> 

addi( 1 , Z ) > 

float( addi(t,2) > 
- - - ,.. or -

1 + z 
<INTEGER:t> <INTEGER:Z> 

<REAL:float(t)> <REAL:float(Z)> 

<REAL: addr( float(1),float(2)) > 

The first derivation employs integer add whereas the second derivation 

employs real add. The first derivation applies float to the result of 

the sum whereas the second derivation applies float to each operand 

previous to the sum. 

To remove this ambiguity, we can introduce a notion of 1reluctant 

productions, i.e., productions which· in some sense avoid being used. 

The notation 
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<REAL:float(a)> ::== <INTEGER:a> 

will denote a reluctant rule. The reluctance of a rule manifests itself 

not during the rewrite process but after the rewritting process is 

complete. Upon completion of the rewrite process, all possible 

derivations for the input string are available. At this time we can 

choose those derivations which involve the minimum number of reluctant 

rules. For the example given above, the first derivation will win over 

the second derivation because the first involves one application of the 

float production whereas the second involves two applications. 

For another example, consider the grammar 

<A> .. - <B> 
<B> ::= <C> 
<C> .. - <D> 

<A> .. - <X> 
<X> : : = <D> 

<A> can be derived from <D> in two ways: 

D -> C -> B -> A and 

D -> x -> A 

If all these productions are reluctant, the path via X will be chosen 

over the path involving C and B. 

Although reluctant productions can remove many ambiguities, there 

are some stubborn cases which defy disambiguation by this method. A 

notable example involves unary operators. With the rules 

<INTEGER: minusi(a)> ::= 

<REAL: minusr(a)> .. -.. -
<INTEGER:a> 

<REAL: a> 
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the string 

- 1 

is ambiguous when viewed as a REAL and in fact both derivations involve 

the same number of reluctant productions. That is, does the float apply 

before the minus or after? 

With a scheme of reluctance, ti·e can afford to make a 

ambiguous and achieve a measure of optimization. 

exponentiation is more efficient when the exponent is an 

rules 

grammar more 

For example, 

integer. The 

<INTEGER: expi(a,b)> 

<REAL: expri(a,b)> .. -
<INTEGER:a> t <INTEGER:b> 

<REAL:a> t <INTEGER:b> 

<REAL: exprr(a,b)> <REAL:a> t <REAL:b) 

represent the three ways exponentiation is usually 

second rule is clearly redundant because with 

carried out. The 

the INTEGER-to-REAL 

coercion, the third rule alone supports all uses of the second rule. 

For example, the string 1.2t3 parses either as 

1.2 

<REAL: 1.2> 

<REAL: exprr 

t 3 

<INTEGER:J> 

<REAL: float(J)> 

1.2 , float(3) > 

or as - - - - - - - -

1.2 

<REAL:1.2> 

<REAL: expri 

t 3 

<INTEGER:J> 

1.2 • 3 > 
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The ambiguity generated by the inclusion of the second rule is welcome 

because we now have a·choice of derivations. lhe second derivation will 

win over the first derivation because the reluctant float rule is not 

used in the second derivation whereas it is used in the first. Thus, 

the inclusion of rules which obviously admit ambiguity can indeed serve 

towards optimization. in a scheme "''here some rules are reluctant. 
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This section documents an efficient, general rewrite parser. This 

parser accepts any general rewrite, or type 0 grammar whose productions 

have non-null righthand phrases. If the parser terminates, it yields 

all possible derivations in a factored form. 

If we restrict our attention to contex.t-free grammars, the parser 

works at a worst case expense equal to a polynomial function of the 

input character string length. The degree of the polynomial is equal to 

two plus the maximum length of each production's righthand phrase. If 

the number of parts-of-speech encompassed by the grammar is p, if the 

longest righthand phrase has length L, and if n is the input string 

length, then the worst case memory and time is bounded above by (np)2 +l. 

This is calculated for a grammar having all possible context-free 

productions with righthand phrases of length less than or equal to L. 

The polynomial upper bound for memory includes the space taken by 

the resulting derivations. Even though there may be an exponential 

number of derivations, all the derivations together fit in polynomial 

space. There are two factors which yield this result. First of all, 

many derivations share common subderivations. This factor alone does 

not achieve the polynomial space but it does make possible the 

effectiveness of the second factor. The second factor involves 

extending the notion of derivation to include ambiguous derivations. An 

ambiguous derivation is a derivation which may contain instances of a 

new kind of node called an OR-node. A single ambiguous derivation can 

represent many distinct unambiguous derivations. The big payoff comes 
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when an ambiguous subderivation is shared by several derivations~ 

For example, the grammar 

<X> 

<X> 

: : = 1 

<X> + <X> 

represents all strings of characters representing sums of 1, e.g., 

1+1 or 1+1+1+1+1 etc. 

This grammar gives rise to many derivations for a string having three or 

more ls because no preference is given to left or right associativity. 

The string 

1+1+1+1 

parses as any of 

( (1+1) + 1 ) + 1 or 

( 1 + ( 1+1) ) + 1 or 

(1+1) + (1+1) or 

1 + ( (1+1) + 1 or 

1 + ( 1 + (1+1) ) . 
The number of derivations arising from a string having n ls equals the 

number of ways parentheses can be applied to the given string. This 

number excedes 2n-2. 

We can begin to see how all 2n-2 derivations fit in polynomial 

space by noting two examples. First of all, the initial "(1+1)" in both 

the first and third derivations can be represented once and can be 

shared. Secondly, the ambiguous derivation consisting of both 
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[ ( 1+ 1) + 1 ] and 

[ 1 + (1+1) ] 

can be shared by each of 

( 1 + [1+1+1} ) + 1 and 

1 + [1+1~1} + 1 ). 

A complete explanation for how the 2n-2 derivations fit into polynomial 

space will come when we prove the polynomial upper bound for the 

parser's expense. 

The upper bound for expense applies even if the grammar has rules 

like 

<X> ::= <X> 

or like 

<REAL> <INTEGER> 

<INTEGER> ::= <REAL> 

Such "infinite loop" rules can give rise to infinitely many derivations. 

An infinite number of derivations is represented by a derivation 

containing cycles. As we shall see, rules like these come up' in many 

applications. 

We will address the problems and advantages that come with 

processing an ambiguous derivation after the workings of the parser are 

presented. We shall see how an exponential number of derivations 

represented in polynomial space can often be processed in polynomial 

time. 
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Although this parser was conceived independently, there are 

similarities with Earley's IUficient Context-free rarser[3] and with 

Thompson's REL parser[4]. Earley's efficient context-free parser has an 

upper bound on both memory and time of n3 where n is the length of the 

input string of characters. · The parser described here has an upper 

bound of n4 for context-free grammars in Chompsky Norma.I Form. The 
I 

disparity between this n4 and Earley's n3 comes about because Earley 

indexes into an array of length n where this parser walks a list 

structure of length n. The use of an array is cumbersome when dealing 

with general-rewrite grammars. The REL parser works for general rewrite 

grammars whose righthand phrases are non-null but its memory and time 

expense is unbounded even for context-free grammars. The key factor 

leading to Earley's efficiency is a continual factoring process which 

avoids duplicating work emanating from identical states. 

The parser described here, like REL's, is bottom-up. The .input 

string of characters is mapped into a list and this list is expanded to 

include nodes representing parts-of-speech spanning various substrings 

of the input string of characters. However, unlike REL's parser, a new 

node will not be added to the parsing graph if there already exists a 

node representing the identical part-of-speech and span. When an 

identical node is proposed, the derivation as~ociated with the existing 

node is replaced by an ambiguous derivation consisting of both the 

derivations from the existing node and the new node. The grammar is not 

consulted with this new node because any responses by the grammar will 

have already occured once before when the existing node was proposed. 

The replacement of derivations is done in such a manner that all 

derivations which already reference the existing node's derivation will 
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automatically reference the ambiguous derivation. 



How The Parser Works 

The parser works by taking in one character and appending it onto 

the righth~nd side of a completely parsed initial string of characters. 

The parser then calls on the grammar to achieve a complete parsing of 

the extended initial string of characters. This cycle repeats forever; 

the grammar is responsible for processing a command when it recognizes 

one. 

The Par~tno Graph 

The parser revolves around a central datastructUre called the 

parsing graph. A parsing graph is a list structure each of whose memory 

elements has four fields: 

The LEFT and ALTernate fields each either contains NIL or points to 

another memory element of this same type. The part-of-speech is a 

scalar and the derivation is a reference to an arbitrary datastructure. 

A parsing graph p'rovides a concise representation for an ambiguous 

phrase. In its basic form, a parsing graph is simply a phrase, e.g., 
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An alternate subphrase may be incorporated by plugging the alternate 

subphrase into the ALTernate field of an existing node, e.g., 

For example, the parsing graph 

represents the strings 

1 + 1 + and X + 

For clarity, illustrations will exclude the derivation field. 

Properttes of the Parstng Graph 

It is very useful to view the parsing graph in terms of phrases and 

columns. A column is any list of nodes linked together via their 

ALTernate pointers. A single column represents a set of alternative 

phrases, or paths. Each node in a column is the righthand element of a 
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phrase where the phrase is accessed by following nodes towards the left 

via LEFT pointers. At each step in traversing a phrase, the viewer 

confronts a column and hence has a choice for continued traversal. 

A phrase is said to emanate from the column containing the ~hrase's 

rightmost node. It is also said that a column contains a phrase when 

the column contains the phrase's rightmost node. A node in a column is 

said to reside on that column. 

We say that a given phrase is represented in the parsing graph iff 

there exists a sequence of parsing graph nodes such that 

1) The parts-of-speech of the nodes match the parts-of-speech in 

the given phrase from right to left, and 

2) Each node resides on the column referenced from the previous 

node's LEFT field. 

We say that two phrases have the same span iff they both emanate from 

the same column and if the leftmost node in each phrase referenc~s the 

identical memory address via its LEFT field. 

We say that a parsing graph is fully parsed when, for each phrase 

represented in the parsing graph, the following is true: If that phrase 

matches some production's righthand phrase, then an instance of the 

production's lefthand phrase also resides in the parsing graph and 



indeed has the same span. 

The Aloor1.thm 
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OV\ S'lme 

colWttrt 

The parser is implemented by two routines, one which enlarges the 

parsing graph and one which examines the parsing graph. The enlargement 

routine maintains the fully parsed property by consulting the grammar. 

The grammar is a program which calls on these two routines; a rule's 

righthand phrase examines the parsing graph to determine the rule's 

applicability and wben applicable, the rule's lefthahd phrase enlarges 

the parsing graph. 

The basic idea is to give the grammar sight to each phrase 

represented in the parsing graph without giving sight to the same phrase 

twice in the same context. This is done in an incremental manner. If 

we assume that a given parsing graph is fully parsed, i.e., the grammar 

.has already seen every phrase in the given parsing graph, then we can 

enlarge the parsing graph and see to it that the grammar sees each new 

phrase represented in the extended parsing graph and in fact sees each 

new phrase only once. 

We allow a parsing graph to be extended in only one way: A new 

node may be placed to the right of a fully parsed parsing graph, i.e., 



Wheneuer a new node is generated, the parser gives the grammar sight to 

the extended parsing graph. The grammar sees only those phrases which 

include the new node. The grammar sees no phrase which lies completely 

within the fully parsed parsing graph to the left of the new node. 

The grammar responds to each visible phrase in the extended parsing 

graph which matches a production's righthand phrase. For example, the 

grammar 

<X> 

<X> 

responds to 

~~------

.. - 1 

: : = <X> + <X> 

because the second production sees an <X>+<X> phrase. The response of a 

production is to enlarge the (sub)parsing graph residing to the left of 

the matched phrase. In this example, the second production generates a 

new X-node. 
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A general rewrite rule, e.g., 

<A> <B> ::= <X> + <X> 

enlarges the parsing graph by generating a node for each part-of-speech 

on the lefthand side from left to right, e.g., 

First the A-node is generated and the grammar responds to those phrases 

visible from the new A-node. Finally, the B-node is generated and the 

grammar responds to all phrases visible from the new B-node. 

Whenever a new node is generated, besides consulting the grammar, 

the parser places the new node on the column referenced by the global 

variable named COLUMN. COLUMN represents the righthand edge of newly 

generated phrases. 

All new phrases reside initially on COLUMN. New phrases become 

incorporated into the parsing graph when a newer node is created which 

references COLUMN via the newer node's LEFT field. 
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Following are precise descriptions for the routine which generates 

parsing graph nodes, the routine which examines the parsing graph, and 

the routine which acts as the grammar. 

Parsing Graph Generation 

The routine which enlarges the parsing graph, NEWNODE, takes the 

following parameters: 

POS: the part-of-speech for the new node 

SEPI: the deriuation to be associated with the new node 

LEFT: a fully parsed parsing graph which is to reside 

to the left of the new node. 

LEFT acts as the lefthand edge for the new node and the global variable 

COLUMN acts as the righthand edge. NEWNODE operates as follows: Look 

thru the list COLUMN for a node whose part-of-speech equals POS and 

whose LEFT equals the parameter LEFT. 

If no match is found, form an extended parsing graph by 

constructing a node whose LEFT, part-of-speech, and derivation are 
I 

the parameters LEFT, POS, and SEM resp. Put the new node on COLUMN 

and call the grammar passing this new node as point of reference. 

When the grammar returns, NEWNODE returns. 

1-- 01...D c..a t..i...1k t-.1 

If a match ts found, do not modify the parsing graph and do not 
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call the grammar. Rather, refer to the memory element which 

represents the derivation associated with matched existing node. 

Modify that memory element to represent the ambiguation of both the 

original derivation and the parameter SEM . 

. -¥ am\n~~ou, 
. , 

NEWNODE affects the global variable COLUMN only by appending to it. 

Parsing Graph Selection 

The routine which ex.amines the parsing graph, FIND, takes as 

parameters: 

P: the parsing graph, or column, to be examined 

RHS: a phrase to be sought 

ACTION: a process which is to be performed upon 

each match. 

FIND examines the parsing graph, P, looking for instances of RHS, the 

'phrase to be sought. FIND looks only for phrases which emanate from the 

column immediately referenced by P. FINO views the parsing graph simply 

as a sideways tree; the ALTernate links are seen as brother links and 

the LEFT links are seen as son links. For each part-of-speech in RHS 

from right to left, FIND looks down a column for a node having the same 

part-of-speech, where upon finding a match, FIND continues the search by 

looking in the column referenced by the matched node's LEFT field. FIND 

will catch every matching phrase which emanates from the column P. 
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for example, given the following parsing graph in P 

and the phrase 

<X> + <X> 

in RHS, FIND matches the phrases 

<X5> +7 <Xg> with 

<X6> +7 <Xg> with 

<X2> +a <X10> with 

LEFT= +a 

LEFT= +o 

LEFT= +o 

l \ '~ 
.. - 8 

11 

-------- f' 

Upon each phrase match, ACTION is performed. Available to ACTION 

are the derivations associated with each of the matched nodes. In 

addition, ACTION has access to the LEFT field of the leftmost matched 

node. ACTION is typically a process which, representing a rule's 

lefthand phrase, calls NEWNODE with each part-of-speech in the lefthand 

phrase. Along with each part-of-speech, ACTION will pass to NEWNOOE a 

newly constructed derivation which references those derivations 

associated with each of the matched nodes. 

The only backtracking in this parser occurs in FIND. The depth of 

backtracking is limited by the length of RHS, the phrase being sought. 

It turns out that FIND is always called with some production's righthand 

phrase shortened by deleting its rightmost part-of-speech. The expense 
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upper bound for this parser is based on the time spent in FIND where we 

know the maximum si2e of the parsing graph P. 

The Grammar 

The grammar is a program which accepts an extended parsing graph as 

para.meter. An extended parsing graph is a single node whose LEFT 

references a fully parsed.parsing graph. The grammar is always called 

from NEWNODE. We will call the single node the nem node. It is a 

property of NEWNODE that the ne1U node resides on the global variable 

COLUMN. However, even though the new node resides on COLUMN, the 

grammar will not consider any other node on COLUMN. 

The grammar consists of a 

production. Let RHS denote 

statement has the form 

series. of statements, one for 

the production's righthand phrase. 

each 

Each 

IF the new node matches RHS's rightmost part-of-speech THEN 

Call FIND with P= new node's LEFT, 

RHS= RHS less the rightmost 

part-of-speech 

ACTION= a process which generates 

this rule's lefthand phrase 

If RHS has only one part-of-speech, the call to FIND does not appear, 

rather, ACTION itself is performed where LEFT is set to new node's LEFT, 

i.e., 



, . 
• 

-· 62 -

IF the new node matches RffS's rightmost part-of-speech THEN 

LEFT:= new node's LEFT 

generate this rule's Iefthand phrase 

In each case, the rule generates its lefthand phrase in a context where 

LEFT references the parsing graph residing to the left of the matched 

phrase and where COLUMN contains the rightmost node in the matched 

phrase, the new node. 

The process which generates the rule's lefthand phrase takes one of 

two forms. First, if the lefthand phrase has length one, e.g., 

<A> .. -
.then the generating process is 

POS:= <A> 

SEM:= some new derivation 

Call NEWNODE 

NEWNODE places the new <A> node on the same column from which emanates 

the matched phrase, the column referenced by COLUMN. The LEFT for the 

new node references the same (sub)parsing graph which is referenced by 

the LEFT of the matched phrase. Indeed, both the matched righthand 

phrase and the generated lefthand phrase have the same span. 

If the lefthand phrase has length greater than one, e.g., 

<A> <B> <C> 

then the generating process is as follows. Notice how each call to 

NEWNODE occures in a context where the resulting column from the 
' 

previous call appears as the LEFT in th~ current call. 
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OlO COWftf~/ I: COWM~i 
COlUMN:: Nil 

SEM:= some new derivation 
POS: = <A> 
Call NEWNODE 

lEFT:: COW~Ui 
COWMli:: ~ii l 

SEM:= some new derivation 
POS:= <B> 
Call NEWNODE 

LEFT:: COl/Jftffri 
COW MN I: OlD _.COWM!l 

SEM:= some new derivation 
POS:= <C> 
Call NEWNODE 

" Save COlUMN locally ,, 

" Re.store COLUMN " 

The italicized sections set up position context. COLUMN is set to NIL 

for all but the rightmost node. That is, the positions for the <A> and 

<B> nodes have no place in any currently existing column. However, the 

rightmost node, the <C> node, is placed in the original column so that 

the new <A><B><C> phrase emanates from the original column. 

ICO\..oMtJ 

t-/\1 a tcliecl Ph rn'°" ---t--t . . 

Notice that the LEFT for the first node, the <A> node, is externally 

defined for this process. lhe LEFT upon entry to this process is, as 

always, the LEFT of the matched phrase. Indeed, the generated <A><B><C> 

phrase has the same span as the matched phrase, and in fact, starting 

from the <C> node, the <B> node resides in the column referenced by 

.<C> 1 s LEFT and the <A> node resides in the column referenced by <B>'s 



-· 64 -· 

LEFT. 

It should be noted that the THEN clause for each production 

modifies the variable COLUMN only by appending more nodes to the list. 

Hence, no matter in what order we assemble the prdductions, each 

production is entered with COLUMN still containing the new node, the 

rightmost node in any matched phrase. 

In summary, each production requires that the new node's 

part-of-speech matches the production's righthand phrase's rightmost 

part-of-speech. The rest of the righthand phrase is matched by FIND. 

Upon each match, the rule generates its lefthand phrase having the same 

span as the matched righthand phrase. 

For example, the grammar 

<X> ::= 1 

<X> ::= <X> + <X> 

translates to 

IF new node's POS=. "1" THEN 

Call NEWNODE with LEFT= ne111 node's LEFT 

POS= <X> and 

SEM= some new derivation 
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IF new node's POS= <X> THEN 

Call FIND with P= new node's LEFT 

RHS= the phrase <X> ~ 

ACTION= " Call NEWNODE with 

POS= <X> and 

SEM= some new derivation " . 



- 66 ~· 

Sample Run 

Suppose the grammar is 

<X> 

<X> 

.. -.. -

.. -
1 

<X> + <X> 

If we call NEWNODE with the following parameters: 

COLUMN: NIL 

POS: the part of speech "+" 

SEK: the NIL derivation 

LEFT: a reference to the fully parsed parsing 

graph for input "1+1": 

NEWNODE consults the grammar with the extended parsing graph 

and returns the fully parsed parsing graph in COLUMN. 
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The grammar has added no additional nodes because the grammar has no 

rule whose righthand phrase can match the extended parsing graph using 

the net11 "+"node: No rule's righthand phrase has"+" as its rightmost 

part-of-speech. 

Let us perform 

LEFT:= COLUMN and 

COLUMN:= NIL 

This moves our point of view to the right: 

Now, 1 f we call NEWNODE with a "1", NEWNODE will consult the grammar 

with the extended parsing graph 

···--·-
The grammar's production 

<X> ::= 1 

responds by calling NEWNODE with POS= <X> and with LEFT= the LEFT of the 

1-node. The new incarnation of NEWNODE consults the grammar with the 

extended graph 
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This time, the production 

<X> ::= <X> + <X> 

responds and in fact it responds twice. 

----©'-- C.OL-UM"1 

.,__.... b-V"O..M MQ. r !s 
",·e.v.,; 

This production's righthand 

phrase has a choice of two X-nodes to the left of the +-node. The first 

response calls NEWNODE with POS= <X> and with LEFT= the LEFT of the 

leftmost node in one of the matched <X>+<X> phrases. NEWNODE consults 

the grammar with the extended parsing graph 

~LUHN 
~~--trn-------{±)~·1 

y.. 

I 

S G-ra.mM.a'f s 
'------------<XI \JIC!J.;, 

Without following further recursion, NEWNODE returns with 

The full spanning X-node represents the parsing 1+(1+1). The second 
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response calls NEWNODE with POS= <X> and with LEFT= the LEFT of the 

leftmost node in the other matched <X>+<X> phrase. 

The newly proposed X-node represents the parsing (1+1)+1. This time, 

however, NEWNOOE does not consult the grammar; COLUMN already contains 

an X-node having the identical LEFT. Instead, NEWNODE modifies the 

derivation associated with the existing X-node so that it now represents 

the ambiguous derivation for both parsings. 
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This section shows that if the parser terminates then if and only 

if the given input string can have a derivation in terms of the given 

grammar, the parsing graph will contain the phrase which consists solely 

of the grammar's root part-of-speech and which spans the whole input 

string. The next section places time and memory bounds on this parser 

for context-free grammars. These two facts together prove that the 

parser works at least for context-free grammars. 

Let us assume that the character input routine works as follows: 

COLUMN:= NIL 

WHILE there are more characters DO 

LEFT:= COLUMN 
COLUMN:= NIL 

POS:= 
SEM:= 
Call 

NEXT CHARACTER 
NIL -

NEWNODE 

" Step Right " 

Each new character is placed to the right of the parsing graph which 

represents the previous characters. The input string exists as a phrase 

in the final parsing graph referenced from COLUMN because each character 

resides on that column which is referenced by the LEFT field of the node 

representing the next character. 

To lend some precision to the following arguments, we shall state 

the following lemmas and assumption. The lemmas wi 11 be proven at the 

end of this section. 
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Lemma 1: 

Any node which is accessible from some node's LEFT is never 

modified. 

Lemma 2: 

If two given nodes reside on the variable COLUMN at some time, then 

any column referenced by some node's LEFT either contains both of 

the given nodes or contains neither node. 

Assumption 1: 

No two parsing graph nodes reference the identical derivation node. 

In other words, any given derivation node is referenced by at most 

one parsing graph node. In the description for the parser given in 

the previous section, the assignment 

SEM:= some new derivation 

is meant to imply that SEM is set to reference a node which is 

currently referenced from nowhere else. This implication supports 

this assumption. 

It is essential to note that a parsing graph node is examined only from 

the point of view of some other node's LEFT. The parsing graph 

examination routine, FIND, is always called with P containing a column 

which is taken from some existing node's LEFT. Thus, a node's 

appearence is important only when that node resides on a column which is 

referenced from some node's LEFT. Thus, the two lemmas help remove time 

considerations for all nodes which can be examined. 
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Anu parsing graph is always fully parsed if each node ts entered by 

NaUIODEr Choose any production and choose any phrase in the parsing 

graph which matches the production's righthand phrase. 

phrase's rightmost node. 

Consider this 

This rightmost node was created at some time. By lemma 1, the 

parsing graph to the LEFT of this new node is now exactly what it was at 

the time the new node was created. Hence, the chosen righthand phrase 

was represented in· the extended parsing graph at the time NEWNOOE 

consulted the grammar with this rightmost node. Assuming that NEWNOOE 

did consult the grammar, we know that the chosen production matched this 

phrase and hence generated its lefthand phrase having the same span. 

Because at this time COLUMN contained both the left and righthand 

phrases, lemma 2 guarantees that the lefthand phrase will always be seen 

to reside on any column which contains the righthand phrase. Therefore, 

both the righthand and the lefthand phrases exist in the parsing graph 

sharing the same span. In addition; the derivations associated with 

each node in the lefthand phrase were indeed created by ~his 

having access to the derivations of the. righthand phrase. 

production 
f 

What about those cases where NEWNODE does not consult the grammar, 

i.e., those cases when there already exists a node in COLUMN having 

identical part-of-speech and LEFT? Because the existing node was itself 

generated by NEWNODE at an earlier time, the production's lefthand 

phrase already exists in the parsing graph. Consider what would happen 

if NEWNODE did indeed consult the urammar. The grammar would be called 

in exactly the sa.me context in l'i'hich it was called when the existing . 
node was generated except that the parameter SEM may have a different 
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value. However, because this parser never looks at a derivation, i.e., 

a derivation is used only in constructing new derivations which 

reference the given derivation, the parameter SEM in no way affects the 

running of the parser. Therefore, consulting the grammar with the new 

node would generate only copies of existing nodes differing only in 

their associated derivations. 

Even if NEWNODE does not consult the grammar, NEWNODE guarantees 

that each new derivation which would be generated by consulting the 

grammar will indeed be represented. Because the parameter SEM in no way 

affects the running of the parser, we can imagine that when the existing 

parsing graph node was generated, the parameter SEM could have been 

substituted with the new value for SEM. Exactly the same processing 

would ensue. Hence, by generating the existing node twice, once with 

old SEM and once with new SEM, we would come up with identical 

derivations which differ only by the value of SEM. By making SEM 

represent an ambiguous derivation consisting of both old and new SEM, 

all the derivations which would be generated by consulting the grammar 

with the newly proposed node will indeed be represented. 

NEWNODE makes SEM represent the ambiguous derivatio~ by modifying 

the derivation node referenced from the existing parsing graph node. 

NEWNODE replaces the original derivation by the ambiguous derivation. 

This guarantees at least that any derivation which accesses old SEM will 

now access the ambiguous derivation. That is, any derivation generated 

with reference to old SEM ~ow represents both the original derivatio~ 

and the same derivation where old SEM is substituted with new SEM. 
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We must verify that each node which accesses the modified 

derivation is a node which should see the ambiguous derivation in place 

of either the old or new derivations. Because the existing parsing 

graph node is the only parsing graph node which references old SEK by . 
assumptton 1, we can see that the only derivations which access the 

ambiguous derivation are those derivations which were built on account 

of generating the existing parsing graph node. These are precisely the 

derivations which should see the ambiguous derivation. 

Any parsing graph node whose I.EFT references a column containing 

the existing node would reference a column containing both the existing 

node and the newly proposed node if NEWNODE were to place the newly 

proposed node on COLUMN by lemma 2. Therefore, from any node's LEFT, 

both derivations would always be represented under identical parsing 

graph nodes· even if NEWNODE were not to modify the existing node's 

derivation. In other words, there is no parsing graph node whose LEFT 

should see the original derivation instead of the ambiguous derivation. 

Because this parser's correctness depends on the fact that a 

derivation is not examined during the parser's operation, anyone who 

writes a grammar must avoid examining derivations associated with 

parsin9 graph nodes. That is, the grammar cannot depend on derivations 

until the parsing is complete. The only information available at 

syntax. or parsing time is parts-of-speech and not derivations. 
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If the input string is a valid string in the language generated bu 

the grammar, then the grammar's root part-of-speech exists as a phrase 

of length one sharing the same span with the input string: Assuming that 

the input string is an element of the language, we know that there 

exists a sequence of strings, each of which is derived from the previous 

string by rewriting some occurrence of some production's righthand 

phrase into that production's lefthand phrase. The final string·in the 

sequence is the grammar's root part-of-speech standing alone. It is a 

fact that each string in this sequence exists in the fully parsed 

parsing graph and each shares the same span. 

First of all, the input string exists in the parsing graph. 

Secondly, assuming that a given string in the sequence exists in the 

parsing graph, we can see that the next string in the sequence also 

resides in the parsing graph. 

which is rewritten to yield the 

Look at the portion of the given string 

next string. This portion is an 

instance of some production's righthand phrase. Because the parsing 

graph is fully parsed, we know that the parsing graph also contains an 

instance of the production's lefthand phrase having identical.span. 

Hence we know that the next string in the sequence also resides in the 

parsing graph. 

To be more precise, we can say that the righthand phrase is contained in 

the column referenced by the LEFT field of the string node to the right 

of the righthand phrase. By lemma 2 and because both the left and 

righthand phrases resided on COLUMN at some time, we can conclude that 

the column containing the righthand phrase also contains the lefthand 

phrase. Thus, the lefthand phrase is accessible from the string node 
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which references the righthand phrase. 

Each full spanning strtng represented in the parsing graph is a 

strtno 1ohtch can be obtained from the input string by performing legal 

rewrites. This says that the grammar's root part-of-speech can exist as 

a full spanning phrase only if the input string is a valid string in the 

language generated by the grammar. Suppose there is some full spanning 

string represented in the parsing graph which cannot be obtained by 

legally rewriting the input string. Let us call any such string an 

tllegal string. A legal string is any string which can be obtained by 

performing legal rewrites upon the input string. We want to show that 

each full spannin~ string in the parsing graph is a legal string. 

Let LHS denote any phrase in the parsing graph each of whose nodes 

was created by a single production. A LHS is the set of nodes generated 

by one execution of one production's lefthand phrase not including those 

nodes generated by further calls to the grammar. For example. a phrase 

ABC in the parsing graph is a LHS only if 1) there exists a production 

whose lefthand phrase is ABC and 2) each of the nodes representing A. B. 

and C were explicitly created in the same execution of the THEN clause 

for the production. 

Any node ever generated is either an input character or a member of 

some LHS because any node not generated by the input routine is 

generated by the lefthand phrase of some production. Furthermore. any 

node is a member of at most one LHS because any given node is created by 

at most one execution of one production·• s lefthand phrase. 
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The following are two lemmas about LHSs: 

Lemma 3: 

Any column contains at most one node which is not the rightmost 

node in some LHS. 

Lemma 4: 

Let S be any string represented in the parsing graph. Let N be any 

node in S which is also the rightmost node in some LHS. One' of the 

following must be true: 

1) Each node in the LHS is a node in S, or 

2) There exists a node in S which is both the rightmost node 

in some other LHS and which is accessible from N's LEFT. 

Consider any full spanning string in the parsing graph except the 

original input string. This string, S, has the property that some LHS 

makes up a segment of S. That is, there is some lHS each of whose nodes 

ts in S: Since S is not the input string, S contains a node, N, which is 

not an input character. N is therefore an element of some LHS. Let N 

be the rightmost node in S which is a member of some LHS. In S, the 

node to the right of N must be an input character and hence it must 

reference a column containing both N and an input character. By lemma 

3, N must be the rightmost node in some LHS. By applying lemma 4, we 

see that either s includes all of LHS or s includes a node to the LEFT 

of N which is itself the rightmost node in some LHS. In fact, we can 

·repeatedly apply lemma 4 as long as con di ti on ( 2) shows up. However, 

each such application of the lemma increases a lower bound for the 

length of S. Therefore, condition (1) of the lemma must become true at 
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some time lest S be infinite. 

We will define the age of a full spanning string, s, by averaging 

the ages of each node in S. The age of a node is precisely the amount 

of time which has elapsed since the node was created. 

Suppose there exists an illegal string represented in the parsing 

graph. Let S be an illegal full spanning string of maximal age. That 

is, in some sense S is one of the first illegal strings created. From 

the preceding argument, we know that some segment of S is a LHS. We 

know that at the time LHS was on COLUMN, the righthand phrase of the 

production which created the LHS was also on COLUMN sharing the same 

span. By lemma 2 1 the column containing LHS also contains this 

righthand phrase. Hence, the string formed by substituting the 

righthand phrase for LHS in S is a string which resides in the parsing 

graph. Let St denote the string formed from S by substituting LHS with 

the righthand phrase. 

Because UIS was generated only after the righthand phrase had 

·already been created, the age of each node in LHS is less than the age 

of each node in the righthand phrase. Thus, the age of S is less than 

the age of 81. By S's maximality, this older string, 81, must be a 

legal string. However, S is merely this older string where a righthand 

phrase has been rewritten to LHS. Hence, S itself is legal and we have 

a contradiction. 
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The Lemmas 

All memory elements generated by this parser are. of one of two 

kinds. One kind is a parsing graph node and the other kind is a 

derivation node. The following discussion is concerned mainly with 

parsing graph nodes and hence we will use the unqualified term node to 

ref er to parsing graph nodes. 

We will use the term reference to mean direct or immediate 

reference, i.e., a pointer references only the node which resides at the 

address contained in the pointer; the pointer does not reference nodes 

which are referenced from pointers within the referenced node. In 

contrast, we will use the term accessible to mean the transitive closure 

of reference, i.e., a given node is accessible from a given pointer iff 

there exists a sequence of nodes where the first node is referenced from 

the pointer and each node in the sequence contains a pointer referencing 

the next node and the final node in the sequence is the given node. 

Def 1) 

A column is any sequence of nodes where each node in the sequence 

references the next node via its ALT link and where the last node 

in the sequence has NIL as its ALT link. The head of a column is· 

the first node in the sequence. A column contains a node iff the 

node is a member of the sequence. 

The following definitions refer to the global variable named COLUMN at 

any given time: 
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Def 2) 

A node resides on COLUMN iff that node is a member of the column 

whose head is referenced by COLUMN. 

Def 3) 

A node resides on OLD_COLUMN iff some existing incarnation of the 

local variable OLD_COLUMN references a column which contains the 

given node. 

LEMM A: 

At any given time, the only nodes which might be modified are 

either nodes which reside on COLUMN or derivation nodes referenced 

from nodes on COLUMN. 

LEPlPt.A B: 

Once a node ceases to reside on both COLUMN and OLD_COLUMN, the 

node will never again reside on COLUMN or OLD COLUMN. 

LEMMA C: 

At a given time, no node resides both on COLUMN and on. OLD_COLUHN. 

LEMMA D: 

Suppose two given nodes reside on COLUMN at some given time. From 

this time forwa·rd, we will see either both nodes residing on COLUMN 

or neither node residing on COLUMN. 

LEMMA E: 

A given node's LEFT references a value which was held by COLUMN at 

a time before the given node was created. In addition, before the 

given node was created, each node on the column referenced by the 
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given node's LEFT ceased to reside on COLUMN. More specifically. 

the value taken from COLUMN for a node's LEFT is a value which was 

held by COLUMN precisely at the time immediately before eacb node 

on COLUMN ceased to reside on both COLUMN and OLD COLUMN. 

LEMMA F: 

Each node on the column referenced by some node's LEFT never 

resides on COLUMN. 



Proof of A: 

NEWNODE is the only routine which modifies nodes. 

modify a node in one of two ways: 

1) NEWNODE inserts a new onto the list COLUMN 

NEWNODE will 

2) NEWNODE modifies the derivation node which is referenced 

from a node on COLUMN. 

Proof of B: 

COLUMN is modified in one of three ways: 

1) NEWNODE puts a newly created node on COLUMN 

2) COLUMN is set to NIL 

3) COLUMN is set to OLD_COLUMN. 

(2) and (3) occur in a general rewrite production's lefthand phrase 

and only (2) occurs in the character input routine. 

Suppose a given node is not on COLUMN and not on OLD_COLUMN. 

The only way a node gets onto COLUMN is by (1) and by (3). Because 

we are assuming that at some time the given node did reside on 

COLUMN or OLD_COLUMN, we know that the given node is one which 

already exists. Hence, (1) cannot put the given node on COLUMN. 

(3) cannot put the given node on COLUMN because the given node is 

not on OLD_COLUMN. 

A given node is put on OLD_COLUMN only by 

OLD_COLUMN:= COLUMN 

However, because the given node is not on COLUMN, this assignment 

can't put it on OLD_COLUMN. 
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Proof of C: 

Let B reside both on COLUMN and on OLD COLUMN. B first resides on 

COLUMN because all newly created nodes first reside on COLUMN. B 

gets put on OLD_COLUMN only in the program text 

OLD_COLUMN: = COLUMN 

COLUMN:= NIL 

After this operation, B no longer resides on COLUMN. 

back on COLUMN only by 

COLUMN:= OLD_COLUMN 

B gets put 

This occurs just before the generation of the last node in a 

general rewrite production. We may insert the statement 

OLD_COLUMN:= NIL 

immediately after the assignment to COLUMN because this incarnation 

of the local variable OLD COLUMN will no longer be used. Hence, 

when B gets put back onto COLUMN, B no longer resides on 

OLD_COLUf'lN. 

Proof of D: 

Let A and B be nodes both of which reside on COLUMN at some time. 

Consider the first operation which deletes either A or B from 

COLUMN. This operation is one of 

2) COLUMN:= NIL or 

3) COLUMN:= OLD_COLUMN 

If the operation is (2), botn A and B are removed from COLUMN. 

Operation (3) also removes both A and B from COLUMN because neither 

A nor B resides on OLD_COLUMN by lemma C. Thus, the first 
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operation which removes one of A and B from COLUMN removes both A 

and B. 

C~nsider the operation whjch puts one of A or B back onto 

COLUMN. This occurs by 

COLUMN:= OLD_COLUMN 

If both A and B reside on OLD_COLUMN, then both A and B will return 

to COLUMN. If it can ever be that exactly one of A or B resides on 

OLD_COLUMN, let us consider the first operation which puts exactly 

one of A or B on OLD_COLUMN: 

OLD_COLUMN:= COLUMN 

COLUMN itself must have contained. exactly one of A and B at some 

previous time. However, looking at the two assignments-above, we 

can see that COLUMN can enter this state only if OLD_COLUMN 

contained exactly one of A and B at an earlier time. 

Proof of E: 

Let N be any node. Because the LEFT field of any node is never 

changed once the node is created, N's LEFT is sti 11 ex.actly wha.t it 

was when N was created. N's LEFT is therefore the value held by 

NEWNODE's parameter LEFT at the time N was created. NEWNODE's 

parameter LEFT gets set in one of three ways: 

1) LEFT is taken from the LEFT field of an existing node. 

2) LEFT:= CbLUMN 

COLUMN:= NIL 
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3) LEFT:= COLUMN 

COLUMN:= OLD COLUMN 

NEWNODE is called immediately after one of these operations and 

hence N is created after one of these operations is complete. 

Consider (2) and (3) first. In each case, LEFT is indeed set 

to a value held by COLUMN. In fact, immediately after lEF'T is 

assigned COLUMN, each node on COlU~N ceases to reside on both 

COLUMN and OlO_cow~rAi: Let c be a node which is initially on 

COLUMN. C's residence on COLUMN implies that C is not on . 
OLD_COLUMN by lemma C. Thus in both (2) and (3), COLUMN is set to 

a value on which C does not reside. 

In the case of (1), the value for LEFT is taken from the LEFT 

field of an existing node. Let M be the first node ever created 

whose LEFT field is that of N. Since M is the first node created 

with the given value for LEFT, M's LEFT had to have been set by (2) 

or by (3). Thus, M's, and hence N's LEFT is indeed a value held by 

COLUMN at the time immediately before each node on COLUMN ceases to 

reside on both COLUMN and OLO_COLUMN. 

Proof of F: 

Let C be a node on the column referenced by the LEFT field of 

another node, N. By lemma E, C ceased to reside on COLUMN and 

OLD_COLUMN before N was created. By lemma B, each node on the 

column referenced by N's LEFT will never reside on COLUMN now that 

N exists. 



~· 86 ~ 

Proof of Lemma 1 

By lemma A, we merely need to show that any node accessible from a 

given node's LEFT never resides on COLUMN. All nodes accessible 

from the given node's LEFT are precisely 

1) the nodes residing on the column referenced by the given 

node's LEFT and 

2) all nodes accessible from the LEFT field of each node on 

the column. 

Thus. all nodes accessible from the given node's LEFT reside on 

columns which are themselves referenced from some nodes' LEFTs. 

Hence by lemma F, each node accessible from the given node's LEFT 

can never reside on COLUMN. 

Proof of Lemma. 2: 

Suppose nodes A and B reside on COLUMN at some time and suppose 

' that N is a node whose LEFT references a column containing A. We 

will show that N's LEFT references a column containing both A and 

B. 

By lemma E, N's LEFT references a value held by COLUMN at some 

time. By lemma F, the column referenced by N's LEFT never changes 

once N is created. Thus, N's LEFT is a value which was held by 

COLU~N when A resided on COLUMN. If B also resided on COLUMN at 

this time, then the column referenced by N's LEFT always contains A 

and B. 



- 87 -

Since both A and B reside on COLUMN at some time by 

hypothesis, lemma D guarantees that both A and B reside on COLUMN 

immediately bef orc A ceases to reside on both COLUMN and 

OLD_COLUMN; A will never again reside on COLUMN. Lemma E 

guarantees that N's LEFT was taken from COLUMN immediately before A 

ceased to reside on both COLUMN and OLD_COLUMN. Therefore, COLUMN 

contained both A and B when N's LEFT was set to the value in 

COLUMN. 

Proof of 3: 

Consider how. the grammar puts nodes onto COLUMN. Look at a 

production's lefthand phrase. Each non-rightmost node is placed on 

COLUMN in the context 

COLUMN:= NIL 

Call NEWNODE 

Thus, when a non~rightmost node is placed on COLUMN, no other nodes 

reside on COLUMN. liencc COLUMN always contains at most one 

non-rightmost node of a LHS. 

Similarly, each node generated by the character input routine 

is placed on COLUMN in the context 

COLUMN:= NIL 

Call NEWNODE 

Thus, COLUMN can contain at most one of either an input character 

or a non-rightmost node in a LHS. The only other nodes on COLUMN 

are the rightmost nodes of LHSs. 
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Because the LEFT field of any node is a value once held by 

COLUMN, any accessible column contains at most one node which is 

not the rightmost element in a LHS. 

Proof of 4: 

Suppose there is a node in LHS not in S. Let K be th~ rightmost 

node in LHS which is not in s. K is not the rightmost node in LHS 

because the rightmost node in LHl is in S by assumption. Let R be 

the node in LHS just to the right of K. R is in S. Therefore, R's 

LEFT references a column containing both K and a node in S. By 

lemma 3, we conclude that the node in S on the column containing K 

is the rightmost node in some LHS because K itself is not the 

rightmost node in the LHS containing K. Futherrnore, the column 

containing K is accessible from N's LEFT because N is the rightmost 

node in LHS. 
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The time and memory expense for this parser with context free 

grammars is a polynomial function of the input string length. We find 

this because a context free grammar always gives rise to a special sort 

of parsing graph. Any given node's LEFT field is precisely the LEFT 

field of a node representing an input character. Therefore, if n 

characters have been taken in, any node in the whole p~rsing 1 graph can 

have one of at most n possible values in its LEFT field. Furthermore, 

because NEWNODE avoids placing duplicate nodes on COLUMN, COLUMN can 

contain at most n,.p nodes where p is the number of parts-of-speech 

encompassed by the grammar. Knowing that there are at most n values for 

LEFT and that the column referenced by a LEFT has at most n,.p nodes, we 

can conclude that the parsing graph has at most n2~p nodes. This size 

limits the number of phrases which can be matched and hence the number 

of times that each of NEWNODE, FIND, and the grammar can be called. 

The rest of this section presents a more precise formulation for 

the memory and time bounds in context free grammars. Let n be the 

number of input characters processed up to now. Let p be the number of 

parts-of-speech encompassed by the grammar. Let l be the maximum length 

of any production's righthand phrase. 

There are at most n values for LEFT. The input routine has created 

n values for LEFT by having taken in n characters. The context free 

grammar always sets LEFT to the value of the LEFT field in some existing 

node because each production has a lefthand phrase of length one. 
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At any time, COLUMN contains at most n"'p nodes. Consider that 

NEWNODE does not place a node on COLUMN if COLUMN already contains an 

identical node. NEWNODE considers two nodes identical when both the 

LEFT fields match and when the parts-of-speech match. Since there are n 

possible values for LEFT and p possible parts-of-speech, there are at 

most n•p distinct nodes which can reside on COLUMN at any one time. 

~ parts4-sp~~-­
(l.. all\d l3 

3 V~s fot- \.EfT 

Because the LEFT field for a node references a value once held by 

COLUKN, any node's LEFT references a column of length at most n"'p. Thus, 

the maximum number of phrases which have length less than or equal to l 

and which emanate from a given column is (n"'p)l, Going from right to 

left, there are n*p choices at each of l stages. 

Consider how much time it takes to build one column. For each 

distinct node which NEWNODE places on COLUMN, NEWNODE calls the grammar. 

We can conclude that NEWNOOE calls t.hr. grammar at most n"'p times in 

forming a single COLUMN. Upon each call, the grammar can match at most 

(n•p)l-l phrases which include the nei..· node. Thus, the time spent in a 

single call to the grammar e:tcluding the grammar's cal ls to IU'fMJ'flOOE. is 

(n*p)L-t. The grammar can call NEWNOOE at most (n*p)l-t times because 

each phrase match can generate at most one node. 
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Each time the grammar calls NEWNODE, NEWNODE takes at most n•p time 

to see if ihe newly proposed node already resides on COLUMN. If NEWNODE 

does not consult the grammar, then no futher time is taken by NEWNODE. 

If, on the other hand, NEWNODE does consult the grammar, we wi 11 add 

zero time because we will count this call to the grammar as one of the 

total n*p times that NEWNODE calls the grammar with the current COLUMN. 

Therefore, the time taken to form one COLUMN is the product of 

1) n•p calls to the grammar 

2) (n*p)l-t in each call to the grammar excluding the grammar's 

calls to NEWNODE and 

3) n*p in each of the grammar's calls to NEWNODE. 

This yields (n•p)l+l. 

The nodes on COLUMN cease to reside on COLUMN precisely when the 

input routine takes in another character. Therefore, the cost of 

processing n characters is at most n times the cost· of building one 

column. Hence, this parser processes n characters in at most t•nl+2 

time where It. does not depend on n. 

The number of both parsing graph and derivation nodes built by the 

parser is bounded by the amount of time spent in the parser. We can 

conclude that the parser creates at most k*nl+Z nodes where l does not 

.depend on n. Even though there are at most p*n2 parsing graph nodes, 

there are a lot of derivation nodes. Consider that each time NEWNODE is 

called, NEWNODE either creates a parsing graph node or creates a 

derivation OR-node. Since NEWNODE may be called nl times in forming one 

column, NEWNODE may indeed create nl-n derivation OR-nodes. 



this section documents a set of programs by whJch a derivation, or 

meaning. is evaluated. We will assume that meanings are represented by 

programs as suggested in the section about languages. If meanings were 

not represented by programs, there would be no need to evaluate a 

meaning. The operator EX() is one of the main semantic operators. EX 

has already been described in the section about languages; EX is 

equivalent to LISP's EVAL function. All the other semantic operators 

are for dealing with and optimizing the evaluation of ambiguous 

derivations. 

Let us see how an ambiguous derivation comes to be. 

productions 

<A: f(b )> 
<B: g(c )> 

<A: h(c)> 

.. - <B:b> 
<C:c> 

<C:c> 

With the 

<A> can be derived from <C> in two ways. The string <C:c> parses as 

<C:c> 

<B: g(c)> 

<A: f(g(c))> 

<A: h(c)> 

Referring to the parser presented in an earlier section, when the 

.grammar proposes the second <A> node, NEWNOOE sees that there already 

exists an <A> node having identical span. NEWNODE, therefore, does not 

make a new <A> node, rather, NEWNODE modifies the derivation associated 

with the existing <A> node so that it now represents both derivations. 



Thus, we really get 

<C:c> 

<B: h(c)> 
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<A : OR ( f ( h ( c )) , g ( c ) ) > 

Instead of having two <A> nodes, we have one <A> node which has an 

ambiguous derivation. If we add the rule 

<D: y(a)> .. - <A:a> 

<D> will be derived from <C:c> with the meaning 

y( OR( f(h(c)) , g(c) ) ) 

Thus, OR-derivation elements may be 

derivations. 

arbitrarily nested within 

An OR-node references a routine called SEMOR. That is, EX applied 

to an OR-node simply calls SEMOR exactly as EX would call any other· 

program which implements a meaning. SEMOR is a routine not supplied by 

the language writer; SEMOR comes with the semantic evaluator because 

the parser may generate OR-derivation nodes independent of language. 

What does SEMOR do? Because an OR-derivation node may show up as 

the meaning associated with any given part-of-speech, SEMOR must be 

compatible with all possible meaning conventions. This presents a major 

problem. Following are three classes of meaning conventions, each of 

which requires a different action to be performed by SEMOR. 
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Meantngs of the First Kind 

The simplest and most restrictive meaning conventions are those 

which agree that a meaning is a computed value rather than a program. A 

part-of-speech which adheres to such a meaning convention can never 

afford to have an OR-node involved in its meanings. For example, if the 

meaning associated with a given part-of-speech is supposed to be an 

integer, the appearance of an OR-derivation node in place of a single 

integer will undoubtedly result in a faulty meaning when the OR-node is 

interpreted as an integer. Because the meaning associated with such a 

part-of-speech is not evaluated, SEMOR will never even gain control. 

'Thus, no matter how SEMOR is defined, meanings which are not programs 

cannot afford OR-nodes. A part-of-speech which has such meaning 

conventions must be one which can be derived from any given input string 

in at most one way, lest an OR-node show up in its meaning. 

Meantngs of the Second Kind 

The second kind of meaning conventions are those which agree that a 

meaning is a program where the program may produce side e.J.fects or where 

the program yields a datastructure which is not capable of representing 

ambiguity. Such conventions differ from the previously mentioned 

conventions in that a meaning will be evaluated rather than simply 

fetched. Thus, the appearance of an OR-node in such a meaning will at 

least give control to SEMOR. For example, a meaning which adheres to 

such conventions is a meaning whose evaluation generates machine code in 
I 

some global array. Another example is a meaning whose evaluation yields 

an integer. The type integer is not capable of representing an 
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ambiguous integer, i.e., two integers. 

For meanings of the second kind, SEMOR must not evaluate both of 

its para~eters. The best SEMOR can do in general is to evaluate exactly 

one of its parameters. This makes SEMOR an identity function, and as 

such, SEMOR is compatible with all meaning conventions. However, this 

particular arrangement for SEMOR introduces arbitrary decisions and 

hence should be used only as the last resort in language processing. We 

can expect that this will be a legitimate treatment for ambiguity which 

is not resolvable by the given language. It may be appropriate for 

SEMOR to inform the user of the existence of an ambiguity. 

Meaning conventions of the first kind can be mapped into meaning 

conventions of the second kind by agreeing that a meaning will be a 

program whose evaluation will simply yield a previously computed value. 

This reorganization has the advantage that the existence of an ambiguity 

will at least be detected. 

Keanings of the Third Kind 

The third kind of meaning conventions is the most general and 

perhaps the most useful. A meaning of the third kind is one whose 

evaluation generates a datastructure which itself is capable of 

representing ambiguity. Under such conventions, SEMOR should evaluate 

each of its parameters and yield the datastructure which represents the 

ambiguation of both results. This technique introduces no arbitrary 

decisions and properly preserves ambiguity. An example of a m~aning of 

this kind is a meaning whose evaluation generates a parsing graph. A 

parsing graph is definitely a datastructure capable of representing 



ambiguity. In this example, SEMOR should evaluate each of its two 

parameters and merge the two resulting parsing graphs. A precise 

description for this scheme will follow shortly. 

What SEMOR Does 

In the implementation, SEMOR's default action supports meanings of 

the third kind where the ambinuous datastructure is required to be a 

parsing graph. For meanings of the second kind, prior to their 

evaluation, some program must modify SEMOR so that it acts as the 

identity and as such evaluates only one of its parameters. There is 

never any question as to which action SEMOR should be set to perform. 

Since any meaning is acquired with relation to a particular 

part-of-speech, the conventions for meaning under that part-of-speech 

cl~arly imply whether the meaning is of the second or third kind. As 

has turned out in practice, there have been very few places where SEMOR 

must be redefined. Typically, meanjngs referenced from within a given 

meaning are all of the same kind. 

For example, in the ICL compiler, most meanings are of the third 

kind. ICL is a three pass compiler implemented as described in an 

earlier section about multipass language processing. The meanings 

associated with the first pass generate phrases in the language of the 

second pass and likewise from the second to the third pass. Thus, the 

meanings associated with the first and second passes are meanings of the 

third kind. An exception is made for the processing of declarations: 

Under the syntax part-of-speech for declarations, meanings are of the 

second kind; their executions make global modifications to both . the 
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symbol table and the grammar of the second pass. Finally, the meanings 

associated with the third pass are meanings of the second kind; their 

execution generates machine code in a global array. 

The following is a set of conventions by which a meaning can 

generate a parsing graph. A meaning will have access to two global 

variables named LEFT and COLUMN. These two variables will define the 

span of a phrase just as they do in the parser during the generation of 

a production's lefthand phrase. A meaning, therefore, will use LEFT and 

COLUMN and act exactly like a production's lefthand phrase. For 

example, sum in the rule 

<FORM: sum(a,b)> <FORM:a> + <TERM:b> 

will produce a meaning whose evaluation will generate a polish postfix 

phrase if sum is defined as follows: 

sum(a:FORM b:TERM) = FORM: 

//(a;b;] " LEFT and COLUMN are now input parameters " 

let OlO_COWm'i be local 

OLD COLUMN:= COLUMN 
COLUMN:= NIL 

" Save COLUMN " 

EX(a) n Let a generate its phras~ " 

LEFT:=.COLUMN " Step Right " 
COLUMN:= NIL 

EX(b) " b generates its phrase " 

LEFT:= COLUMN " Step Right " 
COLUMN:= OLO_COLUMN " Restore COLUMN " 

SEM:= NIL 
POS:=· "+" 
CALL NEWNOOE 

11 Generate + " 

\\ 
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This phrase generation program is very nearly identical to that of a 

production's lefthand phrase. The only difference is that EX is used to 

generate some of the subphrases. Indeed, the evaluation of the program 

yielded by sum will generate a phrase whose leftmost node's LEFT 

references the value held by the input variable LEFT and whose rightmost 

node is placed on COLUMN. Just like a production's lefthand phrase, 

COLUMN will be modified only by ap1>ending more elements onto COLUPIN. 

What should SEMOR do under these conventions? SEMOR needs merely 

to keep LEFT constant over the evaluation of both parameters, i.e., 

SE MOR( a,b): 

Sat1e LEFT 

EX( a) ft Let one possibility generate its phrase as 

though it were the only possibility " 

Restore LEFT ft LEFT may very well have been damaged " 

EX(b) ft Let the other possibility gener.ate its 

phrase over the same span " 

The phrases generated.by a and bare placed on the same column and each 

shares the same span. The order in which a and b are evaluated is 

irrelevant. For example, if a generates the phrases 

LEFT ------ <REAL:a> 
\ 
\ - - - - - -

and if b generates the phrases 

<REAL:b> ----- + 
I 

<REAL: addr(a,b)> 

LEFT ------ <POINT:a> ------- MINUS 
\ I 

\ - - - - <POINT: minusp(a)> 



-· 99 -

then SEMOR will leave COLUMN containing 

LEFT ------ <REAL:a> <REAL:b> ----- + 
\ I 

\ - - - - - - <REAL: addr(a,b)> 
\ I 
\ ------- <POINT:a> -------- MINUS 
\ I 
\ - - - - - - <POINT: minusp(a)> 

Two Sources of Ambiguity 

With this scheme, ambiguities, i.e., alternate phrases, are created 

by two distinct means. First of all, ambiguities in the first grammar 

of a multipass scheme generate derivations containing OR-nodes and the 

evaluation of these OR-nodes combine independently generated phrases to 

form alternate phrases. Secondly, even in the absence of OR-nodes, 

ambiguities in the second grammar will themselves generate alternate 

phrases. In the example given above, the first two parsing graphs 

consist of alternate phrases generated exclusively by the second 

grammar, the grammar with the rules 

<REAL> ::= <REAL> <REAL>+ 

<POINT> ::= <POINT> MINUS 

The third parsing graph, the parsing graph generated by SEMOR, contains 

alternate phrases brought together by SEMOR and not by the second 

grammar. 

Both sources of ambiguity manifest themselves in exactly the same 

way. Each appends alternate phrases onto COLUMN. Thus, distinctions 

between the two sources of ambiguity disappear. This is appropriate 

when one considers that each of the alternate phrases offers a valid 
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interpretation of the evaluated meaning and that the alternate phrases 

do not interact with one another. 

localttv of Ambiguttu 

The existence of OR~nodes represents not only ambiguity, but also 

locality of ambiguity. For example, the derivations 

sum( OR(a,b) , OR(c,d) ) and 

OR( sum(a,c) , sum(b,c) , sum(a,d) , sum(b,d) ) 

present the same alternatives but the first derivation represents a 

tighter locality. 

Given a derivation containing OR-nodes, one can imagine expanding 

the derivation by bringing OR-nodes from the inside out. In fact, 

OR-nodes can be brought all the way out to the.top level, thus yielding 

a set of derivations, each devoid of OR-nodes. This kind of expansion 

destroys locality of ambiguity. 

The locality of ambiguity represented by OR-nodes is preserved by 

the evaluation of a meaning. For example, if a,b,c, and d generate the 

parsing graphs a,b,c, and d respectively, the derivation 

sum( OR{a,b) , OR(c,d) 

generates the parsing graph 

a 
\ I 
\-- b 

c ----- + 
\ I 
\-- d 
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whereas the less localized derivation 

OR( sum(a,c) , sum(a,d) , sum(b,c) , sum(b,d) ) 

generates the less localized parsing graph 

--------- a ----- c ----- + 
\ 
\------ b ----- c ----- + 
\ 
\---- a d ----- + 
\ 
\-- b d ----- + 

Local ambiguity generated by the first grammar in a multipass 

·scheme gives rise to localized OR-nodes. As shown here, the localized 

OR-nodes give rise to localized ambiguity in the generated parsing 

graphs for the second grammar. Thus, locality of ambiguity is preserved 

from one pass to the next. 

In fact, during the generation of parsing graphs for the second 

grammar, NEWNODE still collapses parsing graph nodes of identical span. 

Hence, OR-nodes may come to exist in the derivations under phrases in 

the second grammar. For example, if a generates 

<INTEGER:x> 

<REAL:y> 

<POINT:z> 

and if b generates 

<BOOLEAN:w> 

<REAL:v> 



then OR(a,b) generates 

<INTEGER:x> 

<BOOLEAN:u> 

<POINT:z> 

<REAL: OR(y, v)> 

.. 102 ... 

The meaning under the <REAL> contains a new OR-node which will manifest 

itself during the third pass. In this example, an OR-node in one pass 

gives rise to an OR-node in the next pass. 



~· 103 ~ 

I 

We have just seen how ambiguous derivations can be tolerated when 

it is ~greed that meanings generate parsing graphs. We will now 

consider a refinement of these conventions which will permit 

considerable computational savings. As mentioned in the section about 

the parser. the parser yields a derivation consisting of at most a 

number of nodes which is a polynomial function of the length of the 

input string. This relatively small number of nodes may none the less 

represent an exponential number of distinct derivations. This comes 

about because many subderivations are shared. 

The EX operator takes no advantage of the fact that many 

subderivations may be shared. When a particular subderivation is 

referenced from two distinct points of view. EX applied from each point 

of view will cause the shared subderivation to generate its phrases 

twice. The computation incurred by EX is the same whether or not 

subderivations are shared. Thus. even if only a polynomial number of 

nodes represent an exponential number of derivations, EX will take an 

exponential amount of time. 

A way to remedy this situation is to have each derivation node save 

its results, i.e., its generated phrases, so that all non-first accesses 

can simply fetch the previously computed values and hence avoid their 

recomputation. This guarantees that each node performs a computation 

only once and hence the time and memory taken to evaluate a derivation 

is proportional to the number of nodes making up the derivation. Thus, 

even though an exponential number of derivations might be represented, 

only polynomial space and time is needed to process all of the 
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represented derivations. 

It is possible to have a derivation node store the result~ of its 

evaluation and to allow futher references to simply fetch the previously 

computed value onlu tf the results are independent of the particular 

reference. That is, two distinct nodes which reference a given 

subderivation may set up different top-down contexts which will cause 

two evaluations or' the given subderivation to yield different results. 

In such cases, the shared subderivation cannot simply yield the result 

of the first evaluation as the value for the second evaluation. Thus, 

the feasibility of sharing results of evaluations depends on conventions 

about top-down context. 

It would appear that the variables LEFT and COLUMN are top~down 

context for the evaluation of derivations which generate parsing graphs. 

One evaluation of a given shared subderivation might occur where LEFT 

and COLUMN have one set of values and yet another evaluation of the same 
I 

subderivation might occur with different values for LEFT and COLUMN. A 

way to resolve this dilemma is to imagine a representation for phrases 

which has the following two properties: 

1) The representation is independent of the top-down context LEFT 

and COLUMN and 

2) The representation may readily be converted to a value which 

incorporates the top-down context LEFT and COLUMN. 

With such a representation, we can allow derivation nodes to store this 

imagined representation which is independent of top-down context. When 

a particular reference fetches this stored representation, it must 

convert a copy to incorporate the specific top-down context. 
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This technique of factoring out top-down context has worked with 

great success in other applications such as display graphics. The 

top-down context in display graphics is a transformation matrix. Many 

occurences of a given picture which differ only in orientation may be 

represented by a single instance of the picture where various references 

to the stored picture include individual transformation matrices. When 

a particular reference is made to the stored picture, th~ transformation 

matrix is applied to the picture in order to properly incorporate the 

top-down context. 

Tiie Semantic Operator PA-w· - Pruned Atuak.ening 

We will now consider a top-down context-free representation for 

parsing graphs. We will see both how easy it is to factor out the 

effects of the top-down variable COLUMN and yet how herd it is to do so 

for the variable LEFT. We will then consider a scheme of less 

·generality where it is easy to factor out the effects pf LEFT.· We will 

also see how the loss of generality fits nicely with multipass language 

processing when one considers the problem of documenting a language. 

To obtain a top-down context-free parsing graph from a meaning, the 

operator PAW sets both COLUMN and LEFT to NIL for the evaluation of the 

meaning. As such, the resulting parsing graph is certainly independent 

of the given values in COLUMN and LEFT. PAW then attaches the resulting 

parsing graph onto the given meaning. Thus, upon future references to 

the given meaning, PAW can simply pick up the previously computed value. 

A derivation node which includes the value of a previous evaluation is 

said to be awake. 
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Upon each call, PAW converts the stored top-down context-free 

parsing graph into one which incorporates the given values in COLUMN and 

LEFT. Since PAW is supposed to appear to act exactly as EX and because 

EX applied to a meaning is supposed to append new phrases onto COLUMN, 

PAW merely appends the stored parsing graph onto COLUMN. This properly 

incorporates the top-down context offered by COLUMN because in 

actuality, COLUMN is treated as an append-only variable and hence COLUMN 

tn no way affects the generation of a parsing graph. 

How might the variable LEFT be incorporated into one of these 

top-down context-free parsing graphs. One might suggest that a copy of 

the parsing graph be made where all LEFT fields which are found to be 

NIL be substituted with the value in the variable LEFT. Unfortunately, 

this technique does not yield the same parsing graph as would be yielded 

by actually evaluating the meaning with the given value in LEFT. For 

example, suppose LEFT references the parsing graph 

<FORM:a> 

and suppose that evaluating a given meaning would generate the parsing 

graph 

+ <TERM:b> 

If LEFT is left unchanged for the evaluation of the given meaning, i.e., 

LEFT is not set to NIL, the phrase 

<FORM:a> + <TERM:b> 

will exist as <TERM> is generated and hence the grammar will add a new 

<FORM> node: 
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<FORM:a> ---- + ---- <TERM:b> 
\ I 

\ - - - - - - - <FORM: sum(a,b)> 

This exactly is what happens if EX is used instead of PAW. On the other 

hand, if LEFT is set to NIL for the evaluation of the given meaning, the 

evaluation will generate the phrase 

+ <TERM :b> 

in the absence of the neighboring <FORM:a> node and hence the grammar 

will not at this time add a <FORM:sum(a,b)> node. When PAW finally 
' I 

incorporates the variable LEFT, i.e., by changing the + node's LEFT 

field to reference the <FORM:b>, we indeed get the phrase 

<FORM:a> + <TERM:b> 

but we do not get a <FORM: sum( a, b )> node. The change to + • s LEFT is 

made too late; the <TERM> node's consideration by the grammar has 

already come and gone. Recall that a grammar is triggered upon the 

generation of the rightmost node in a matched phrase. 

Thus, the incorporation of the top-down variable LEFT preseqts a 

problem. In order to alleviate the problem, we will consider some new 

conventions about generating phrases. Following are two observations. 

Referring to a previous example, even though sum might generate the 

parsing graph 

<INTEGER:a> 

<REAL: float( a)> 

+ <REAL:b> 

<REAL: addr ( float(a) , b ) > 
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the only phrase of real interest is the full spanning 

<REAL: addr( float(a) • b ) > 

We are concerned only with the fact that the datum represented by sum is 

REAL. The fact that REAL came from this particular parsing graph is 

adequately represented in the meaning associated with the REAL. The 

second observation is that the non-first grammars in a multipass scheme 

can simply be reverse polish grammars. Sum can easily generate 

<INTEGER:a> <REAL:b> + 

instead of the infix phrase. 

The new conventions are as follows: 

1) PAW retains only full spanning phrases of length one. 

2) The righthand phrase of each production in a non-first grammar 

must be either of length one or must have an operator as its 

rightmost part-of-speech. 

In multipass processing, the first convention states that the relevance 

of a meaning is the generation of one part-of-speech and not a string of 

parts-of-speech. Looking at ICL's multipass scheme, this states th~t 

under a syntax part-of-speech, there must appear a well defined datatype 

· and not a string of data types. 

With this first convention, a language implemented by a multipass 

scheme can be simply documented by documenting each s~ntax production 
I 

independently. Along with each syntax production, one can completely 

specify the relevant requirements imposed by the type-grammar solely in 

terms of a datatype relation which constrains the datatypes which may 

appear under each part-of-speech in the syntax production. This is 
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possible because only a well defined datatype, and not an abstract 

datatype phrase, will be associated with each syntax part-of-speech. 

The documentation need not mention the type-grammar nor the individual 

phrases generated by the meaning associated with each syntax production. 

Refer to the ICL Reference Manual for an abundance of this sort of 

documentation. 

The second convention is necessary so that PAW can effectively 

generate phrases in isolation. Consider what would happen if sum were 

to use PAW in generating an infix phrase. Sum would first call on its 

left parameter to produce 

<INTEGER:a> 

<REAL: float(a)> 

Sum would then generate a 11 +" to the right. Finally, sum's righthand 

parameter would generate, in isolation, the phrase 

<REAL :b> 

When these phrases are put together, yielding 

<INTEGER:a> 

<REAL: float( a)> 

+ <REAL:b> 

the full spanning <REAL:addr(float(a),b)> will be missing. As in the 

previous example, the fact that <REAL:b> was generated in isolation 

means that the grammar never sees the phrase 

<REAL:floatia)> + <REAL:b> 

However, if sum generates a polish postfix phrase, sum's t"4·o parameters 

may be evaluated in isolation and finally put together to yield 
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<REAL: float( a)> 
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<REAL:b> 

At this point, we suffer no loss in the fact that the grammar does not 

see this particular parsing graph as a whole. By convention (2), the 

grammar contains no productions which can match a phrase in this parsing 

graph except for productions whose righthand phrases have length one. 

However, these excepted productions have already applied during the 

individual generations of sum's two parameters, e.g., the float rule has 

already generated the <REAL:float(a)>. When sum finally generates the + 

to the right, i.e., yielding 

<INTEGER:a> 

<REAL :float( a)> 

<REAL:b> + 

the grammar's + production will fire, having access to the necessary 

phrases, and thus the grammar wi 11 indeed generate the desired 

<REAL:addr(float(a),b)> spanning the whole parsing graph. 

It might appear that the conventions stated ahove remove so much 

generality from a non-first 

replaced by a set of functions. 

grammar that the grammar itself could be 

Since most productions will include a 

specific, well defined operator, it appears that each production could 

be replaced by a function whose name is the operator itself, e.g., the + 

production could be replaced by a + function which computes the possible 

resulting datatypes. However, the functions would have to take in not 

single datatypes, but lists of alternative datatypes. In addition, some 

functions might have to act as several productions, e.g., there are two 

+ productions, one for integer and one for real arithmetic. In general, 

the functions would have to contain CASE and looping statements. It is 
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noteworthy that with the grammar implementation. the CASE and looping 

constructs are efficiently and generally handled by the parser's 

matching routine FIND, and in addition. the parser naturally yields 

lists of alternate parts-of-speech. Finally, a grammar implementation 

greatly surpasses a function implementation for two reasons: Some 

productions include no operators what~oever, e.g .• the float rule; they 

operate implicitly everYlt.·here. Secondly, the grammar implementation 

facilitates a very modular definition, e.g .• the two+ productions may 

be expressed independently. This modular feature is extremely valuable 

in a compiler where the processing of declarations may spuriously add 

productions at different times. 

Top-Down Conte:tt Besides LEFT and COLUMN - The Operator RESET 

In addition to the variables LEFT and COLUMN. top-down context may 
• 

be specified thru other variables. For example~ a production which 

incorporates declarations for a local program block will modify the 

symbol table prior to the evaluation of the program block. In this 

example. the symbol table appears as top-down context for the evaluation 

of the program block. The operator RESET is provided for dealing with 

top-down context excluding LEFT and COLUMN. 

RESET applied to a meaning removes all the stored results from 

previous evaluations. In this way, any record of previous top-down 

context is removed. This means. of course. that when PAW is applied to 

the reset meaning, all phrases will have to be regenerated. However, 

the recomputation will again be proportional to the number of nodes in 

the meaning because within the reset meaning. shared subderivations will 



recompute only once. 

Reluctant Derivations and Cycles - The Operator GOOO!liS 

The reluctance associated with a production is stored in the 

derivation nodes produced by the production. For example, the phrase 

<INTEGER:a> + <INTEGER:b> 

may yield the ambiguous derivation 

OR( float(addi(a,b)) , addr(float(a),float(b)) 

when viewed as a REAL. This derivation can be drawn as 

where the resistor symbol represents the application of a reluctant 

production, e.g., the float production. from the point of view of the 

OR-node on the top, the lefthand alternative contains one resistor 

whereas the righthand alternative contains two resistors. 

The operator GOODNS (short for goodness) climbs thru a derivation 

and removes subderivations of higher resistance. More specifically, 

GOODNS associates a number with each node in a derivation to record the 

number of resistors contained in the total subderivation whose top is 

the given node. GOODNS associates with an OR-node the minimum 

resistance of its two alternative subderivations. In the example given 
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above, the resistance numbers are 

As GOODNS associates a number with an OR-node, if the numbers associated 

with the two alternative subderivations differ, GOODNS replaces the 

OR-node with a NO-OP node which references only the minimal 

subderivation. In this way, reluctance is manifested in a given 

derivation. The only OR-nodes which survive are those which reference 

subderivations of equal resistance. 

It is intended that GOODNS will be applied to a derivation before 

any other semantic operator is applied. 

There is another situation which GOODNS must handle. Derivations 

yielded by the parser may be cyclic; the parser does make destructive 

modifications when installing an OR-node. For example, consider the 

rules 

<REAL: float(a)> 

<INTEGER: fix(a)> 

<INTEGER: a> 

<REAL:a> 

One can imagine that <INTEGER:a> will parse as 
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<INTEGER: a> 

<REAL: float(a)> 

<INTEGER: fix(float(a))> 

<REAL: float(fix(float(a)))> 

However, when the parser proposes the second <INTEGER> node, NEWNODE 

sees that there already exists an <INlEGER> node having the same span, 
' I 

and therefore NEWNODE does not generate a second <INTEGER> node, rather, 

NEWNODE modifies the derivation associated with the first <INTEGER> 

node. NEWNODE modifies the derivation node a, in place, so that in 

fact, the node at a is now the OR-node and one of the nodes referenced 

from the OR-node is a copy of a. From the points of view of the 

<INTEGER> and <REAL> nodes, what used to be 

<. ItJTfGER> ------ - ----

.floo.:t 

l 
-, (A.. 

bec.omes 
< RE~L> > 

after NEWNODE incorporates the proposal of the second <INTEGER> node. 

This cyclic derivation does indeed capture the infinite number of 

derivations implied by the two given productions. For example, from the 

point of view of the <INTEGER> node, the viewer has a choice of taking 

simply a. or, taking one ride around the cycle, Ji~(float(a)), or taking 

two rides around the cycle, fh(float(Ji~(float(a)-))), etc. From the 

point of view of the <REAL> node, the same choices are available where 

each choice is embedded within one float. 
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The following arbitrary decision concerning cycles is implemented 

in GOODNS: At a given OR-nodn, GOODNS removes an alternative 

subderivation if that subderivation has no choice but to refer back to 

the given OR-node. In essence, GOODNS climbs down a derivation and upon 

encountering a previously encounted node which has been entered but not 

yet left, GOODNS associates infinity as the resistance number. Thus, at 

the closest OR-nodes which access this previously encountered node, 

·GOOONS will naturally remove the cyclic alternative. Here is a 

rationale: Assuming that at least one of the productions involved in 

the cycle is reluctant, it would appear that travelling around the cycle 

even once will collect more resistance than avoiding the cycle 

altogether. 

This algorithm is indeed arbitrary because it may depend on the 

order in which GOOONS climbs down thru a given derivation. However, the 

algorithm does remove all cycles and docs so by removing only OR-nodes. 

ln addition, the clipping occurs in some sense as close as possible to 

the re-encountered node. 
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ICL is a general programming language implemented on the language 

processor presented in this thesis. Refer to the large appendix The ICl 

Reference Nanual for a formal and complete definition of ICL. Refer to 

the appendix about the KACR0-10 implementation for a description of the 

files which make up ICL. 

ICL is implemented in a multipass scheme as described in the 

section about languages. ICL consists of three passes. The first pass 

constrains syntax, the second pass constrains datatypes, and the third 

pass constrains the use of data sources and data sinks. The third pass 

ensures that only data sinks may appear on the lcfthand sides of 

assignment statements. Furthermore, the third pass deals with a special 

kind of sink, a looping-target, which facilitates a uniform treatment 

for ICL's main loop-generator, the selection FOR-quantifier. 

ICL was created with several goals in mind. The first goal was to 

show that the general lartguage processor is indeed a very practical tool 

for implementing languages. The second goal was to provide a convenient 

language to aid in the design of integrated circuits. A third goal was 

to produce a language which includes constructs absent from other 

programming languages which have none the less proven indispensable in 

the field of language processing. A fourth goal was to incorporate into 

a conventional programming language as much of the extensive flexibility 

and generality offered by the rewrite parser as possible. Another goal 

was to remove the consideration of pointers from the user's domain; too 

much confusion arises from ad hoc use of pointers. Finally, ICL was to 



be very modular in both implementation and documentation, and as such, 

ICL should be readily extensible. 

Following are the results of each goal. This section concludes 

with ICL's compile time error reporting mechanisms. 

ttrodu la rtt11 

As the reader may note, the ICL reference mnnual documents ICL in 

terms of small groups of productions. Each group is independent of all 

the others. The ICL reference manual, like the PDP-10's reference 

manual, is both complete and hard to learn from. The ItL manual is a 

very straightforward translation from the implementation into English 

with additional comments concerning the relevance of each construct. 

Because ICL is implemented on top of the language processor, one 

can easily extend ICL by adding more productions to any of the three 

grammars, or passes. One need not 1'•orry about interactions among 

productions as long as one follows the conventions for meanings under 

the various parts-of-speech. 

The Use of the Language Processor 

As just mentioned, one of the profits gained by using the language 

processor is modularity and extensibility. The majority of routines 

which make up the ICL compiler are each less than a half a page of 

nearly double spaced MACR0-10 source. The vast majority of routines 

correspond one-to-one with the productions in ICL's three grammars. The 

notable exceptions are the routine which processes declarations and the 
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routine which coordinates the three passes. 

The use of the language processor f aci Ii tatcd easy modification 

during the creation of ICL. I didn't need to worry about syntax or 

datatype processing: merely dealt with individual productions, 

adding, removing, and modifying each one on an independent basis. 

I did go to some trouble to optimize the syntax grammar for speed. 

Some simple productions are broken into several smaller productions to 

facilitate a linear rather than quadratic parsing time. 

strings (arrays) in ICL are created with the notation 

{ element : element ; element ; ... ; element } 

A simple and straightforward syntax description is 

<STRING_EXPR> 

<STRING_EXPR> 

<EXPR> 

. ·­.. -
<EXPR> 

<EXPR> ; ~STRING_EXPR> 

<SlRING_EXPR> 

For example, 

With the parser pres·ented in this thesis, this grammar will take 

quadratic time as a function of the length of a string expression; a 

<STRING_EXPR> will be found to span every substring, e.g., 

{ element element ; element ; clement } 

(--STRU"G_.EXPR----) 

On the other hand, I could take advantage of the fact that a 

<STRING_.EXPR> is useful only between the brackets { and } . I constrained 

the creation of <STRING_.EXPR>s to occure only in the context of a } with 

the gra.•ar 
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<STRING_EXPR> ::= <EXPR> 

<STRING_EXPR> 

<EXPR> 

<EXPR> <STRING_EXPR> 

.. - { <STRING EXPR> 

This grammar takes only linear time to parse a string, e.g., 

{ element ; element ; element element 

(-ST RI AiG __ EXfR-) 

(------ STRU.iG __ E'XfR ----) 

(------------ STRHIG_tXPR --------) 

(--------------- - srn I ~·a _EX PR -- ----- ----- - - ) 

<------------------ exrn ---------------------> 
With this grammar, a <STRING_EXPR> is created only in the context of a } 

and hence substrings not including the last element will not parse as 

<STRING_EXPR>. 

Because the language processor preserves locality· of ambiguity, I 

was able to maintain a modularity in the syntax grammar, even at the 

expense of making the syntax grammar ambiguous. For example, there are 

two distinct applications of ICL's CASE statement; one is for SCALAR 

datatypes and the other is for VARIANT datatypes. The syntax production 

for the SCALAR-CASE is 

<EXPR> .. - CASE <EXPR> OF 

and the syntax for the VARIANT-CJ\SE is 

<EXPR> .. - CASE <ID> OF 

The CASE value in the VARIANT fOi"ID is constrained to be a single 

variable (<ID>) for semantic reasons. Rather than including only the 

former production and implementing the latter with a semantic 
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restriction, I simply included both productions. The meaning 

transformations under each production are independent and each considers 

only one of the VARIANT and SCALAR meanings. 

Because ICL also includes the production 

<EXPR> .. - <ID> 

the form 

CASE <ID> OF 

will parse two ways, one for the SCALAR interpretation and one for the 

VARIANT interpretation. However, thru all three passes, this ambiguity 

is manifested only in the locality of the CASE construct. In fact, in 

the datatype pass when the <ID>'s datatype is known, the ambiguity will 

cease to exist. 

ICL was started in June 1976, in both conception, design, and 

implementation. These three efforts occured in parallel with little 

trouble. Within one year, by June 1977, ICL was working, nearly free of 

bugs. Until now, April 1978, fewer than ten bugs have been found (and 

fixed), the last being resolved over three months ago. Since June 1977, 

ICL has been under ex.tensive use by myself, and more recently, there 

have been several other users designing ICs. 

ICL atmed at IC Masks 

ICL includes three main features important for dealing with IC 

masks. First, the notation for creating two dimensional points is 

brief: there is a one character overhead. Operators like + and are 

defined for points as well as for integers and reals. Secondly, the 
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selection-FOR quantifier provides for convenient access to polygons 

represented as strings of points. Several vertices may be taken at a 

time with the option for wrapping around back to the beginning of the 

string. Finally, automatic data sharing facilitates both safe and 

efficient representations for IC-masks, objects of a highly repetetive 

nature. Refer to a following section about pointers for more about data 

sharing. 

Carruouers from language Processing 

ICL provides for the creation and invocation of processes as 

previously described in the section Meaning as Programs within the 

section about languages. Indeed, the // ... \\construct exists in ICL. 

This construct allows for programs along with specific context to be 

passed off as data and hence to be stored in datastructures as readily 

as any other kind of data. In fact, the // ... \\construct goes beyond 

that which has yet been described. In ICL, parameters may be passed to 

a process invocation just as they are passed to a function call. In 

addition, the user may specify that a process be allowed. to change the 

values of its context variables so that later invocations can have a 

private memory of previous invocations. For numerous examples, please 

refer to the section on processes near the very end of the ICL Reference 

Manual. 
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Ambiouttv - A Kantfestation of the Parser 

The existence of the parser with its tolerance of ambiguities has 

made simple the implementation of both coercions and polymorphic 

function names. In addition, the parser offers a totally general and 

restriction-free implementation for datatypes. In essence, if the user 

can imagine a way by.which his program will make sense in the space of 

datatypes, the parser will find it and implement it. 

In fact, with the parser's upper bound for expense,. it is 

guaranteed that any set of coercions and functions will be accepted and 

processed in finite time. Coercions may be defined between datatype 

without concern fo.r cycles, e.g., the INTEGER-to-REAL and a 
' I 

REAL-to-INTEGER coercion may both exist. simultaneously. 

At early stages in ICL's developcment, I considered making ICL's 

syntax dynamically extensible. Such a feature is nearly trivial to 

implement. However, syntactic extensibility has the disadvantage that 

programs written by different people might not be easily readable by 

others in the user's group. Besides, a reliance on syntax extension can 

easily divert people's attention from the more relevant, semantic issues 

involved in a given programming task. 

ICL's extensibility is more of a semantic sort. The second 

grammar, the datatype grammar, is completely ex.tensible via the use of 

type, coercion, and function declarations. Extensibility limited to the 

datatype grammar conforms to the kind of extensibility offered by a 

conventional programming language like PASCAL. 
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Following are examples of the various ways in which ambiguity crops 

up in datatypes. 

Two representations for geometric lines are defined in ICL by 

TYPE SEGMENT = [FROM:POINT TO:POINT] ; 

EQUATION= [A:REAL B:REAL C:REAL] 

A SEGMENT consists of two points labled FROM and TO. An EQUATION 

consists of three numbers labled A, B, and C which define the line 

equation 

Ax + By + C = 0 

Suppose we provide coercions between the two representations, i.e., we 

declare 

LET SEGMENT BECOME EQUATION BY some program 

LET EQUATION BECOME SEGMENT BY some program 

These two coercions make the types SEGMENT and EQUATION interchangeable, 

i.e., any SEGMENT may be viewed as an EQUATION and visa versa. Finally, 

suppose we define a routine for intersection: 

DEFINE INTERSECT( A:EQUATION B:EQUATION = POINT: 

INTERSECT takes in two EQUATIONs and yields a POINT. The two coercions 

·and one function declarations affect the type-grammar by adding the 

rules 

<EQUATION> 

<SEGMENT> 

<POINT> 

. ·­.. -
: := 

.. -

<SEGMENT> 

<EQUATION> 

INTERSECT ( <EQUATION> , <EQUATION> ) 
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The third rule is really entered in a reverse polish form, but we will 

ignore that fact for clarity. Now, if the user writes 

P := INTERSECT(A,B); 

where P is a POINT and where A and B are EQUATIONs, the type-pass will 

generate the parsing graph (again ignoring polish conventions) 

l'OU"T INTERSECT ( F.QUATTON E'QUAT10fl ) ; 

(--------------- POINT ----------------) 

This assignment statement is legal because both sides of the assignment 

can be viewed as the same type of object, namely POUT. If A were a 

SEGMENT instead of an EQUATION, this assignment would parse as 

POINT INTERSECT SE.mt ENT 

(-UIUATimi-) 

EQUATlml ) ; 

(----------------- POINT -~---------~--) 

The SEGMENT-to-EQUATION coercion is employed to maintain datatype 

consistency. In fact, each parameter in INTERSECT may independently be 

either of type SEGMENT or of type EQUATION. Each parameter which is not 

of type EQUATION will invoke one coercion. 

An optimization is obtained by defining another 

especially for SEGMENTs, e.g., 

INTERSECT 

DEFINE INTERSECT( A:SEGMENT B:SEGMENT) =POINT: ..• 

Consider that if the parameters to IN1ERSECT are each of type SEGMENT, 

the given assignment statement will parse either as 

POU"T := INlERSECT ( SF:GMll/H SEG~Uff ) ; 

(--------------- POINT --------~------) 
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or as 

POUT .- INTERSECT ( ) 

(-EQUATlON-) (-EQUATION-) 

(---------------- fOINT -----------------) 

This ambiguity reflects the fact that ei thcr INTERSECT routine can be 

employed. However, because productions entered by coercion declarations 

are entered as reluctant productions, the first parsing graph will 

dominate. Hence, no coercions wiJl apply and the INTERSECT routine 

which directly deals with SEGMENTs wi 11 be chosen. 

If the user defines all four INTERSECT routines, one for each 

possible type combination, .no coercions need ever apply and hence the 

user has achieved an optimization. Note the flexibility. offered here: 
I 

The user is allowed to define anYl'f·hcre from one to four different 

INTERSECT routines and in any case, the user's program wi 11 work. 

Without changing any program text, e.g., programs refering to INTERSECT, 

definitions for INTERSECT may be added or removed with the effect of 

varying only optimization and not correctness. 

Another example of ambiguity arises in the following program. 

Suppose the user declares 

TYPE GQS = E ITllER 

JUST_ONE = QS 

MANY = { GQS } 

~NOOR ; 
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where QS denotes the type for quoted text strings. 

states that a GQS may be formed in one of two ways: 

1) Any QS is a GQS and 

2) Any string of GQSs is itself a GQS. 

This declaration 

The notation { GQS } denotes a datatype which represents a string 

(array) of GQSs. This declaration essentially generates .the rules 

<GQS> 

<GQS> 

.. -

.. -
<QS> 

{ <GQS> 

Thus, for example, the QS 

'Hi' 

is a GQS. The string of GQSs 

<GQS> 

{ 'Hi' ; 'There• ; 'You' 

. . . } 

is a GQS. In fact., the nested expression 

{ 'Hi' ; 'There' } { 'You' } 

is a GQS. Now, suppose the user defines the type MESSAGES as follows: 

TYPE MESSAGES = { GQS } ; 

The expression 

{ { 'Hi' ; 'There' } 'You' 

may be viewed either as a single GOS or as a MESSAGES. If viewed as a 

MESSAGES, this expression represents n string of length two whose 

elements are the GQSs 

{ 'Hi' ; 'There' } and 'You' 
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Thus, if the user declares the function 

DEFINE PROCESS( M:MESSAGES ): 

and if the user subsequently specifies 

PROCESS( { 'Hi' ; 'There' 'You' } ) ; 

the { { 'Hi' 'There' 'You' } will be viewed as a MESSAGES and 

not a GQS so to be compatible with PROCESS. 

Another example involves a datatype called RG which is meant to 

represent pictures. 

following 

We wish that an RG be formed by any of the 

1) Any POLYGON is an RG 

2) Any unton of RGs ts an RG, and 

3) Any displacement upon an RG is an RG. 

We can declare RG with 

TYPE RG = EITHER 

SIMPLE = POLYGON 

UNION = { RG } 

DISP = [DISPLACE:RG BY:POINT] 

ENDOR ; 

This declaration for RG essentially adds the rules 

<RG> .. - <POLYGON> 

<RG> .. - { <RG> ; <RG> ; ... } 

<RG> .. - [ DISPLACE: <RG> BY: <POINT> ] 

Thus, if CURLY is an instance of type POLYGON, then 
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{ CURLY [DISPLACE: CURLY BY: point] 

represents two CURLYs, one of which is displaced by point. This 

particular expression is an RG via the parsing 

{ CURLY 

(-POLYGON-) 

(---RG----) 

[DISPLACE: CURLY BY: point] } 

(-POLYGON-) 

(---RG----) 

(---------------- RG -------------) 

(---------------------- RG ------------------;------) 

Now, suppose the user wishes to associate a minimum bounding box 

(mbb) with each subpicture. For sure, he doesn't want to specify the 

mbb each time he specifies a subpicturc; the user likes the current 

notation for specifying RGs. We can get mbbs installed automatically 

and implicitly by making the following declarations. First of al~, we 

make up a new datatype called MRG which will represent an RG along with 

1 ts mbb1 

TYPE MRG = [BODY:RG MBB:BOX] 

Even though we wish to specify pictures as RG 's, we would like to access 

an RG as though 1 t were an MRG. The coercion 

LET RG BECOME MRG BY [BOOV:RG MBB: /(RG)] ; 

specifies that any RG may be viewed as an MRG. We assume, of course, 

that J maps an RG to its mbb. This coercion adds the rule 

<MRG> .. - <RG> 

Let us redeclare the type RG so that each reference to an RG is replaced 

by a reference to an MRG: 
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TYPE RG = EITHER 

SIMPLE = 

UNION = 

POLYGON 

{ MRG } 

DISP = [DISPLACE:MRG BV:POINT] 

ENDOR ; 

'This new definition for RG guarantees that each subpicture will include 

its mbb, i.e., ea.ch subpicture in a union will include its mbb and each 

subpicture involved in a displacement will include its mbb. Note that 

any given expression which could be viewed as an RG under the old 

definition will still be viewable as an RG under the new definition 

because any subpicture. an RG, wi 11 automatically coerce to an MRG. For 

example, we will get the parsing 

( CURLY [DISPLACE: CURLY BY: point] } 

(-POLYGON-) (-POLYGON-), 

(---RG----) (---RG----) 

(---MRG---) (---MRG---) 

(------------------ RG ----------) 

(----------------- MRG ----------) 

(------------------- RG --------------------------) 

(------------------ MRG --------------------------) 

Each place where an RG is rewritten to an MRG, code will be generated 

which will calculate the mbb and thus create a valid MRG. 

ICL's tolerance of ambiguity in datatypes very often makes it 

possible to modify declarations without having to modify the executable 

part of a program. Modifications to declarations can be made for 

optimi2ation as well as for changes in concept. Coercions generally 
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come in handy to cover up a splitting of what used to be one datatype, 

e.g., RG, into several types, e.g., RG and MRG. More examples are 

contained in the !CL Reference Manual. 

l'otnters 

In order to provide a safe nnd flexible system for serious use, 

pointers had to be used in the implementation but also had to be 

invisible for the majority of programs. For example, the languages 

PASCAL and SIMULA require an obsessive and inconvenient awareness of 

pointers. In these languages, the user must explicitly .distinguish 

between a pointer to an object nnd the referenced object itself in both 

declarations and operations. The explicit use of pointers is required 

even for the very common purpose of defining recursive datastructures. 

Even worse, many subtle bugs arise with pointers from an inadvertent 

sharing of dat~, e.g., a modification to a datastructure may become 

apparent from .unwanted points of view. lhe programmer is forced to do 

his own bookkeeping with respect to specifying copy operations in order 

to avoid unwanted data sharing. Pointers, like GOTOs, will often 

obscure simple constructs, and even worse than GOTOs, pointers may be 

abundantly created by.the execution of programs. 

In principle, the need to be aware of pointers is a rarity. 

Pointers are necessary in concept only when one wishes to share data for 

the single purpose of allowing modifications to the data to be 

simultaneously apparent from several points of view. Except for this 

purpose, it is conceptually easiest to jmagine that no datum is shared 

and that pointers do not exist. For example, the data structure 
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may be thought of as being equivalent to 

{ Un-:>h(\red 
cop~ ) 

D~.:rp..., 

unless we wish a modification to the shared <lat.a made from the 

points-of-view of either A or B be apparent from both A and B. In 

practice, however, a programmer will often share data for efficiency 

even though he does not wish that modifications be apparent from all 

references to the shared data. 

lCL does not require the programmer to be aware of pointers except 

in programming tasks where it is in principle necessary to be aware of 

pointers. That is, the ICL programmer may define and use recursive 

datastructures or do anything he wishes without having to know about 

pointers and data sharing. However, if the user wishes to implement 

shared data for the purpose of having modifications be apparent from 

several points of view, the user must obviously think in terms of 

pointers; hence ICL has provided a single operator, the @ operator, 

which allows the user to make modifications which will expose pointer 

structure. The @ operator corresponds to a combination of LISP's RPLACA 

and RPLACD operators. 
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Backstage, ICL does indeed make extensive use of pointers whether 

or not the user wishes to be aware of it. ICL automatically shares data 

as much as is possible without any overhead. Data transfers, e.g., 

assignment statements and parameter passage, are each implemented by 

transferring a one word entity which is often a pointer. Datastructures 

whose creations are specified with multiple references to a particular 

variable automatically wind up sharing the structure referenced by the 

variable. 

However, ICL will never destructively modify an existing structure 

except via the @ operator. Excluding the @ operator, when the user 

specifies a modification, the modification will he carried out in such a 
I 

way that the modification will become apparent only to the variable with 

which the user specifies the subject structure. ICL copies a minimal 

amount of the subject structure, just enough to implement the 

modification, and finally assigns this augmented structure to the 

variable. It will appear as though the variable has always referenced a 

private copy of the datastructure. If no variable or structure 

references the original structure, those pnrts from which copies were 

made will automatically be returned to free stora~c during the next 

garbage collection. .If in fact some variable or structure docs 

reference the original structure, both the modified and the original 

structure will exist sharing all that suhstructure which was not 

involved in the minimal copy. This "copy on write"_ technique allows 

data to be shared invisibly. Digital Equipment Corporation uses the 

same technique on the coarser scale of memory pages. 
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Refer to the section !Cl's Policy About Assignments, Copying, and 

Pointers in the !Cl Reference Manual. That section contains both 

examples and implementation details. 

Error Reporting In ICl 

The reader may refer to the !Cl Reference Manual to see how compile 

time user errors are reported. Basically, each pass has its own ways of 

reporting errors. What follows are the techniques used in generating 

the error messages. The mechanism by which errors are reported is in 

fact supplied with the language processor and not with ICL. 

Syntax Errors 

Some of the productions which make up ICL's syntax are 

deterministic. A deterministic production is one which destroys 

alternate phrases during the generation of its lefthand phrase. A 

deterministic production removes any phrase whose span intersects the 

span of the generated le'rthand phrase. For example, the deterministic 

production 

<A> <B> ... - <C> <D> <E> 

will apply in the parsing graph 

<Q> <C> <O> ---- <E> 
\ \ I I 
\ \- <Z> I 
\ I I 
\-------- <W> I 
\ I 
\--------------- (ID 
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leaving the following parsing graph 

---- <Q> ---- <A> ---- <B> 

Any phrase which (partially) spanned the <C>-<D>-<E> phrase has been 

removed. 

Any production can be made deterministic by modifying the 

generation of its lefthand phrase. As the reader may recall, when a 

lefthand phrase is about to be generated, the global variable COLUMN 

contains all alternate phrases which share the same righthand edge. 

Basically, a deterministic production sets COLUMN to NIL before it 

generates its lefthand phrase. In the example given above,· the 

deterministic production is entered when COLUMN references the <E> node. 

The deterministic production removes the <E> node from COLUMN and hence 

kills any reference to the parsing graph accessible from <E>. However, 

when the deterministic production places the phrase <A><B> onto COLUMN, 

only the <Q> node from the original parsing graph remains accessible. 

To support the application of several deterministic productions 

over a given span, a deterministic production actually sets COLUMN not 

to NIL, but to the contents of another variable which is initialized to 

NIL. After the production's Jcfthand phrase is generated, the 

production stores COLUMN back into this other variable. Thus, if 

another determini~tic production applies, the phrases generated by the 

earlier applications of deterministic productions will not be lost; 

COLUMN will be set not to NIL, but to the previously generated phrases. 

In some sense, the lefthand phrases of deterministic productions form an 

elite set. 
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production represents a certainty that 

production is unconditionally appropriate. 

the 

The 

a .deterministic production should contain an 

keywords so that only the ex.istence of such a 

keyword in a user's text can trigger the deterministic production. 

Syntax errors are reported by presenting the user with a linearized 

version of the parsing graph. This linearized parsing graph is obtained 

by scanning the parsing graph from right to left, arbitrarily choosing 

the first node in each encountered column. This indeed presents a 

linearized parsing graph devoid of alternate parses. It so happens that 

the first node in most columns is an input character. This is so 

because columns are ordered by part-of-speech and input characters have 

the lowest parts-of-speech. (Refer to the appendix on MACR0-10 

Implementation). Thus, except where deterministic productions have 

applied, the user will be presented with his original input text. Where 

deterministic productions have applied, the original input text will be 

replaced by a syntax part-of-speech. lhus, the linearized parsing graph 

indicates where certain productions have applied. 

The usefulness of this sort of error message increases with the 

number of deterministic productions. However, with a greater number of 

deterministic productions, a modification to ICL's syntax requires a 

greater amount of care. If a modification isn't made carefully, the 

application of a deterministic production might wind up removing phrases 

which are necessary for a successful parsing. 
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At the present time, ICL includes few deterministic productions. 

The l~st index in the ICl Reference Manual lists ICL's deterministic 

productions. 

This scheme is not well understood and hence it should either be 

replaced or better understood. A better scheme might have deterministic 

productions simply remove one element from COLUMN, namely a terminal 

part-of-speech, without destroying the other alternate phrases. Ye\ 

another method might have deterministic productions remove no phrases 

whatsoever and simply mark the generated lefthand phrase so that the 

error reporter can still see the "deterministic" application. 

Oatatype and PASS8 Errors 

Each non-first pass, or process step, is precisely the evaluati9n 

of the derivation yielded by the previous pass. The evaluation of the 

derivation yielded by the previous pass generates phrases in the 

language of the current pass. The result of the current pass is the 

parsing graph, i.e., phrases, generated by the top node in the 

derivation. 

Let us assume that the operator PAW is used to evaluate a 

derivation. PAW stores with each node in the derivation the parsing 

graph generated by that particular node. If a particular node generates 

the empty parsing graph, we will say that the node has no parsing graph. 

An error in a non-first pass is detected by noticing the lack of a 

parsing graph associated with the top node in the derivation. 
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For example, consider the derivation node created by the syntax 

production for "+": 

<EXPR: //[a;b;] J(a,b)\\ > .. - <EXPR:a> + <EXPR:b> 

The resulting derivation node references f along with the parameters a 

and b. Suppose that f generates a parsing graph which depends on the 

parsing graphs generated by a and b, e.g., 

EX(a) "+" EX(b) 

If EX(a) generates <INTEGER> and if EX(b) generates <BOOLEAN>, then f 

generates 

<INTEGER> + <BOOLEAN> 

This phrase matches no production of the second grammar, i.e., INTEGERS 

and BOOLEANS cannot be combined with "+". Thus, the grammar will 

generate no full spanning phrase of length one over the given phrase. 

The parsing graph which PAW stores with the derivation node representing 

f is a pruned parsing graph; only full spanning phrases of length one 

are kept. Thus, PAW will store no parsing graph with the derivation 

node representing f. 

An erroneous derivation node is any derivation node with the 

following properties: 

1) It has no parsing graph and 

2) Each of its sons, e.g., a and bin the example given above, does 

have a parsing graph. 

The first property indicates that the derivation has no interpretation 

in the current pass. The second property indicates that the lack of 

interpretation is not the fault of a subderivation. 
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Each node in a derivation can be identified with the production 

which generated the node. In ICL, a production is identified by the 

name of the function which implements its meaning. For example, the "+" 

production given above is identified by the name f. In the !Cl Reference 

nanual, the documentation for each syntax production includes the name 

of the routine which implements the production's meaning. This name is 

presented as the name of the production. 

An error in a non-first pass is reported by 

FOR each erroneous node in the derivation, 

1) Identify that node for the user and 

2) Provide a backtrace so that the user 

can see where in his program the error occurs. 

A backtrace consists of the sequence of derivation nodes lying between 

the erroneous node and the top derivation node. Refer to the section 

Oatatupe Errors in the ICl Reference Nanual for a convenient way to 

interpret a backtrace. 

This error reporting scheme will identify an error in the second 

pass by identifying particular syntax productions. Because each syntax 

production is documented in the ICl Reference Nanual, a user can 

successfully interpret the error message generated from a datatype 

error. However, an error in the third pass is reported by identifying 

productions belonging to the second pass. Because the productions 

belonging to the second pass are not documented, the user can make 

little sense of a third pass error message. As mentioned in the !Cl 

Reference nanual, errors from the third pass rarely occur, and for the 

most part, they are the result of very obvious user errors. 
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None the less, it would be nice to report errors from the third 

pass in terms of syntax productions rather than in terms of datatype 

productions. The following scheme might achieve this: Associate with 

each third-pass derivation node a pointer to the second-pass derivation 

node which generated those phrases responsible for the creation of this 

third-pass derivation node. Given such a pointer, an erroneous 

third-pass derivation node can be reported in terms of a second-pass 

derivation node. 

The creation of such pointers can be implemented by setting a 

global variable which references a given second-pass derivation node 

during the evaluation of the given second-pass derivation node. As the 

second-pass derivation node generates phrases for the third pass, each 

derivation node created by a third-pass production can be augmented to 

include the value currently in the global variable. Thus, each 

third-pass derivation node which is created by the evaluation of a given 

second-pass derivation node will reference the given second-pass 

derivation node. This is currently not done in ICL. 
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This thesis has presented a language processor and a sample 

language implemented with this language processor. The language 

processor supports a.mbiguity so that the specification for a language 

can be extremely modular. The language processor practically supports 

ambiguity by representing and processing only essential differences 

among multiple interpretations. 

The sample language, ICL, is a rich, general-purpose programming 

language which takes special advantage of the language processor in 

support of user-defined datatype coercions and polymorphic . operators. 

Both the language processor and ICL work reliably. 

Several systems have already been implemented in ICL including an 

IC-mask processor, a graphics system which includes arbitrary, 

non-linear transformations, a text preprocessor for the program RUNOFF, 

and a graphics text processor which includes fonts and colors. Numerous 

IC-masks have been made with JCL and one user has defined a function 

which yields a PLA as a function of the number of AND terms, the number 

of OR terms, and the binary PLA code. This thesis itself was run 

through the text preprocessor for subsequent processing by RUNOFF. 

ICL's datatype checking has repeatedly facilitated quick 

creation or modification of programs. Many bugs are 

pinpointed immediately at compile time. A rich ·use of 

and sure 

found and 

datatype 

coercions and polymorphic functions 

technique for program specification, 

changes in datatype definitions. 

not 

but 

only offers a convenient 

it also facilitates quick 

Without re-examining programs which 
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utilize the modified datatypes, a quick recompilation has often run 

without any problems; ICL chooses a d iffcrent placement .of co~rc ions so 

that the program specification remains consistent with the new datatype 

definitions. If no placement of coercions can render consistency, then 

ICL cites exactly those places in the program specification which 

present no possible interpretation. 

or a new definition for an existing 

problems quietly cease to exist. 

Often by introducing a new coercion 

function name, these remaining 

Although ICL generates rather sloppy machine code, e.g., there is 

no attempt to optimize the machine code per se and all temporaries are 

stored not in registers but on the stack, ICL code has run three times 

as fast as SIMULA compiled code. lhis relation was obtained by running 

a program which adds 10000 points in each of ICL and SIMULA. Because 

the type POINT is primitive in ICL and not in SIMULA, I reran the ICL 

program with the type POINT substituted with a user-defined record 

datatype which represents two REALs. Still, ICL ran 2.5 times as fast 

as the SIMULA program. I imagine that the difference between SIMULA's 

and ICL's runtimes rests on the fact that SIMULA leaves some datatype 

considerations for runtime, e.g., superclass 

processes all datatype considerations, e.g., 

compile time. 

searching, whereas ICL 

datatype coercions, at 

One of the c~rrently largest ICL systems includes the IC-mask 

processor. the general graphics system, and the graphics text processor. 

This system resides in 86. 5K words of memory. This figure include.s all 

of the ICL compiler including the symbol table and the three grammars. 

This system includes 325 user-defined functions. The B6.5K memory 
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includes JOK for list-space, 12K of which is free, 17K of machine code 

for the user-defined functions, and 7.9K for the datatype grammar. 

The language processor's preservation of locality of ambiguity pays 

off not only in theory, but also in practice. To see the effect of this 

feature, I chose a one line ICL statement which would generate a maximal 

amount of syntactic ambiguity: 

WRITE( 1 \A 1 \A \A \A 1 ) ; 

The \A is an infix notation for calling the function named A. ICL will 

consider all possible ways to apply parentheses around subexpressions. 

ICL wi 11 finally choose that placement of parentheses which tends to 

group from left to right while satisfying the datatype requirements 

imposed by the infix function calls. In this example, A was defined to 

map two integers to one integer, and thus ICL would ultimately choose 

the strictly left to right grouping. Theory says that an expression of 

this form which has n \As will give rise to at least an ex.ponential 

• number of groupings. However, theory also says that this language 

processor will process the exponential number of meanings in polynomial 

time. 

With the standard ICL compiler, this statement with 6 \As compiles 

in about one second. With 15 \As, it takes about 16 seconds. To make 

ICL ignore locality of ambiguity during the second and third passes, I 

modified the semantic operator PAW so that it would not take advantage 

of shared subderivations. With this modification, ICL took 44 seconds 

to process a statement with 5 \As, and with 6 \As, it took a minute and 

a half before ICL fatally ran out of memory. It is impossible to make 

the first pass ignore locality of ambiguity without modifying the parser 
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itself. I have modified the parser's routine NEWNODE so that it would 

not collapse identical parsing graph nodes. 

infinite looping and memory consumption because 

cyclic rules like 

<REAL> 

<INTEGER> 

<INTEGER> 

<REJ\L> 

and 

This, however, led to 

of the existence of 

ICL compiles and executes an assignment statement which assigns a 

newly created box with a color to a variable whose type admits IC-masks. 

Compiled and executed one at a time, TCL processes about 300 of these 

assignment statements per minute. 

For future work, this language processor needs a meta-language 

besides MACR0-10. Currently, all productions are expressed in MACR0-10 

with the help of macros, as described in the first appendix. KACR0-10 

was chosen as the meta-language because to specify semantics, it is 

often necessary to specify programs which implement meanings. However, 

now that ICL is working, it should be relatively easy to augment ICL to 

include new datatypes and syntax for specifying grammars. All semantics 

can be conveniently expressed in ICL. 

The main problem with using MACR0-10 as the meta-1anguage is that 

each change to a grammar requires a reassembly. This restriction 

forbids runtime creation of grammars. Another disadvantage follows 

immediately from the fact that MACR0-10 provides no type checking. Bugs 

in MACR0-10 programs can be much harder to find than bugs in ICL 

programs. ICL always generates machine code which obeys the conventions 

imposed by system components such as the garbage collector. A single 
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violation of system conventions can result in obscure behavior, e.g., 

illegal memory references. The bug will become apparent much too late, 

e.g., during a subsequent garbage collection. 

Currently, I imagine that the parts-of-speech 

should be declared statically like variables 

part-of-speech declaration might look like 

POS FORM = INT ; 

for 

and 

a new grammar 

datatypes. A 

This would declare that FORM is a new part-of-speech and that INT wi 11 

serve as the datatype for any meaning which can be associated with the 

part-of-speech FORM. In general, the declaration for each 

part~of-speech should include a datatype which will serve as the 

datatype for any meaning which can be associated with the new 

part-of-speech. With this information, ICL can verify that all meaning 

transformations preserve datatype integrity. The section Languages 

shows why it is absolutely necessary to associate a datatype with each 

part-of-speech. 

A replacement rule can be specified with a notation like 

RULE <FORM: EXPR> .. -
<FORM: 11ar·iable> '+' <TERM: variable>. 

An expression of this form can be thou~ht of as an instance of a new 

primitive datatype called RULE'. A grammar can be defined to be a string 

of RU I.E's. ICL can compile the meaning for the lefthand <FORM> by 

compiling the specified <EXPR> in the context where each of the 

variables specified in the righthand phrase hecomes an implicit 

parameter to the <EXPR>. The type for each of these ~arameter variables 
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is known immediately from the part-of-speech declarations. For example. 

looking at the declaration given above for the part-of-speech FORM, we 

can tell that the variable specified in <FORM:variable> should be given 

the type INT. Finally, ICL can verify that the <EXPR> associated with 

the lefthand <FORM> is of type INT. the type associated with the 

part-of-speech FORM. 

However, to provide the flexibilty offered by the MACR0-10 

meta-language. it will be necessary to support more than RULEs and 

part-of-speech declarations. For . multi pass specification, the 

meta-language must include a notation for generating phrases under 

program control. This might be done by providing ICL functions which 

call routines in the language (lrocessor, e.g., the routine NEWNODE. A 

special notation will be needed to specify phrase selection, i.e., calls 

to the routine FIND. For example, the specification 

WITH x -> <FOflM:a> '+' OE'flftf:b) DO action END 

can mean 

Execute action for each occurence of the phrase 

<FORM> + <TERM> 

in the parsing graph x. 

For each phrase match, action will be executed where the variables a and 

b are set to the meanings under the matched <FORM> and <TERM> 

respectively. 

Finally, in order to support production schema, the meta-language 

should support wild-card part-of-speech specification. For example, the 

following rule schema specifies the datatype requirements of the 
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IF-THEN-ELSE construct: 

RULE < ?T: f(a,b,c) > 

'IF' <BOOL:a> 'HIEN' <?T:b> 'ELSE' <?T:c> 

The wild-card part-of-speech ?1 matches any part-of-speech. All 

occurences of the part-of-speech ?1 in this rule must match the same 

part-of-speech. There are many important uses for production schema as 

shown in the section languages. Arbitrary constraints can he placed upon 

wild-card parts-of-speech in the MACR0-10 meta-language. 
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Appendix 1 

This section documents some of the macros defined in the assembly 

language implementation for the language processor. ICL was implemented 

thru the· use of these macros. It wjll be assumed -that the reader is 

familiar with KACR0-10. The latter part of this section documents 

refinements to the parser and grammar representation which further 

optimize the matching process, e.g., the routine FIND documented 

earlier. Finally, I will describe the set of source files for both the 

language processor and ICL. 

Declaratton of Parts-of-Speech 

The macro 

TYPES < name , name , .•. > 

declares each name to be a part-of-speech. TYPES assigns each name a 

unique number. The macro 

RNG TYP < number, name , numbc r, name , • . . > 

declares each name to represent an array of parts-of-speech of size 

number. This is in no way meant to allocate storage. The numbers merely 

increment the unique number allocator. Examples are: 

TYPES <RANGE,SSV,VDECL,TVPEX> 

RNGTYP <32,EXPR, 32,BOP, 3,DECL, 3,QUANT> 
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The array parts-of-speech, e.g., EXPR, are useful for implementing 

precedence grammars. This declaration for EXPR makes the values EXPR+O, 

EXPR+2, EXPR+4, EXPR+6'1 valid parts-of-speech. All 

parts-of-speech declared by these macros are assigned odd numbers in 

order to satisfy the conventions imposed by the garbage collector. 

For terminal parts-of-speech, i.e., the ASCII characters, append a 

.$ to the character to obtain the corresponding part-of-speech. 

Non-alphabetic characters have special names; see the file ICLSVN.MAC. 

Rule Declarations - The Coarse Form 

A rule of grammar is declared with the RULE macro: 

RULE righthand phrase , variables , action 

The rtghthand phrase must be a list of parts-of-speech and variables 

must be a list of variables and action must be machine code. For 

example, 

RULE < LSET , TVPEX , RSET > , <,X> , action 

specifies the production 

?? { <TVPEX> 

(LSET is the part-of-speech for "{"and RSET is "}"). This declaration 

also specifies that when the righthand phrase is matched, the variable X 

will be set to the meaning under the matched TVPEX. Action, having 

access to X, will be performed upon each match. The lefthand phra~e for 

the production should be generated by action. Action will be entered 

where the register LEFT contains the LEFT field of the leftmost node in 

the matched phrase. 
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The complete production 

<TYPEX: //[X;] STRNGT(X)\\> 

is declared by 

RULE <LSET,TYPEX,RSET>,<,X>,< 

SUSPEND STRNGT,<X> 

GIVEA(TVPEX) 

DEAD 

> 

<TYPEX:X> 

The macro SUSPEND implements the // .. \ \ notation and G IVEA implements a 

call to NEWNODE. SUSPEND defines NEWNODE's parameter SEM and GIVEA both 

defines NEWNODE 's parameter POS and actually calls NE\o/NODE. DEAD 

signals the end of the action and assembles as a POPJ instruction. 

The second parameter in the RULE macro, the list of variables, 

corresponds to the first parameter in almost a one-to-o~e manner. 

Basically, the first variable will be set to the meaning under the first 

part-of-speech in the matched righthand phrase, and so forth for the 

remaining parts-of-speech and variables. The one-to-one correspondence 

locally becomes a one-to-two .correspondence when a specified 

part-of-speech is one declared by the RNGTVP macro. An array 

part-of-speech will match any part-of-speech between its bounds. The 

two variables corresponding to an array part-of-speech are set to hold 

the meaning and the specific matched part-of-spnech respectively. 

Referring to the part-of-speech declarations given above, 

RULE <EXPR,BOP,EXPR>,< X,P1, Y,P2, W,P3> , Action 
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implements the production scheme 

?? <EXPR> <BOP> <EXPR> 

Action will find X, V, and W containing the meanings under the matched 

phrase and action will find Pt, P2, and PJ containing the specific 

parts-of-speech held by each of the matched nodes. 

precedence production scheme 

For example, the 

<EXPRi: //[x;y;w;] EBOP(x,y,w)\\> 

.. - <EXPRu:x> <BOPi:y> <EXPRV:w> 

where u is required to be less than or equal to i and where v is 

required to be strictly less than i is implemented by 

RULE <EXPR,BOP,EXPR>,< X,P1, Y,P2, W,PJ>,< 

MOVE POS,P2 Part-of-speech of BOP 

ADDI POS,EXPR-BOP Oisplacc into range of EXPR, i.e, 

BOPi goes to EXPRi 

CAMGE POS,P1 

DEAD 

CAMG POS,P3 

DEAD 

i must be greater or equal to u 

otherwise, abort this rule 

i must be greater than u 

1 Precedence conditions arc now satisfied. Also, 

1 POS contains the part-of-speech for EXPRi 

SUSPEND EBOP,<X,V,W> SEM:= ll[X1Y:W:] EBOP(X,y,W)\\ 

GIVEA 

DEAD > 

1 Generate EXPRi. No parameter 

is specified because ros is already set 
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The user who wishes to declare a general rewrite rule, e.g., 

<A: //[x;] J(x)\\> <B: //[x;y;] g(x,y)\\ <C:x> <D:y> 

must specify the generation of the lef thand phrase as has been described 

in the section about the parser, e.g., 

RULE <C,D>,<X,V>,< 

PUSH. COLUttN 
SETZ COLUMN, 

SUSPEND f,<X> 
GIVEA(A) 

OW COLUMl'i:: COWMf1i 
COLiiM~·: :Ajfl 

SlM:: ll(X:) f(X)\\ 
Call NIH1lNOOE. 

MOVEI LEFT,(COLUMN) 
POP. COLUMN 

Step Right 

SUSPEND g,<X,Y> 
GIVEA(B) 
DEAD > 

The II .. \\ Notation, SUSPEND 

The macro 

SUSPEND f,<X,V,Z> 

implements the statement 

SEM:: ll[X:Yr) g(X,Y) \\ 
Call ~·EWfiOOF. 

SEM:= //[X;Y;Z;] f(X,Y,Z)\\ 

As the reader may recall, SEM is the meaning parameter to NEWNODE. In 

general, all meanings are represented by programs in this way. F. must 

be the name of a procedure declared by the SlJSFUNC macro (see below). 

The SUSFUNC macro - Another Component of the// ... \\ 
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A function which implements o meaning, i.e., one whose name is used 

in the SUSPEND macro, must be declared with the SUSFUNC macro. SUSFUNC 

is a declarative statement: 

SUSFUNC( name , R , frozen parameters , local variables ) 

Procedure Body 

DEAD 

The frozen parameters is a list of variables. Upon entrance to the 

procedure body, these variables will be set to the values that were 

contained in the variables specified in the SUSPEND macro. local 

variables specify the names of variables which are to be local to the 

procedure body. R specifies a reluctance; the default is zero. The 

reluctance of a production is specified with the production's meaning 

routine. 

For example, referring to the <EXPR> <BOP> <EXPR> rule given 

earlier, we can implement the routine EBOP with the following 

conventions: 

1) EX( an EXPR ) sets register 1 to a number, and 

2) EX( a BOP ) sets register 1 to a number where it is expected 

that the global variables ARG1 and ARG2 will first be set to two 

numbers. 

EBOP i~ then defined by 

SUSFUNC(EBOP,,<E1,B1,E2>) 

EX( Et) 
MOVEM 

EX(E2) 
MOVEM 

EX( Bl) 
DEAD 

' 1,ARGl 

' 1,ARG2 

ARG1:: value from Lefthand EXf'R 

ARG2:: value from righthand EXPR 

Give the BOP control. leaves 
register 1 containing result. 
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A Ftner Control Ouer the Matching Process - WANT 

The parser's matching routine, FIND, is actually implemented by a 

sequence or invocations of the WANT macro. WANT matches one element of 

a phrase. That is, WANT takes a part-of-speech and a single column and 

searches the column for nodes having the given part-of-speech. Upon 

each match, WANT "returns". Unlike with standard procedure protocol, 

WANT does not leave the stack level unchanged upon return. WANT returns 

having pushed some data onto the stack. The user specifies that WANT is 

to resume its searching by performing a POPJ. 

For example, a call to FIND with RHS = <A><B><C> is implemented by 

the sequence 

WANT(C) 

WANT(B) 

WANT( A) 

That is, from the given parsing graph in register P, WANT looks down the 

column referenced by P and stops at each node whose part-of-speech is c. 

Upon each match, WANT(C) "returns" and WANT(B) executes. Whenever WANT 

"returns", WANT leaves P containing the LEFT field of the matched node. 

Thus, cascaded calls to WANT implement the routine FINO. When WANT can 

find no more matches, WANT itself executes a POPJ. In this example, 

.when WANT(B) finds no more matches, WANT(B) executes a POPJ ·and thus 

gives control back to WANT(C) so that WANT(C) will try to find another C 

node. 
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WANT can take a second parameter which specifies a variable into 

which WANT will store the meaning associated with the matched node. 

Thus, the righthand phrase 

<A:X> 

may be programmed as 

WANT(C,Z) 

WANT(B,Y) 

WANT(A,X) 

Body 

POPJ . 

<B:Y> <C:W> 

Body will be executed upon each occurrence of the phrase <A><B><C> 

within the parsing graph referenced by P. Body will be executed in an 

environment where X, Y, and W have the meanings associated with the 

matched nodes and where P contains the LEFT field of the matched A node. 

T'he POPJ at the end of body will give control back to WANT(A) so that 

WANT(A) will resume searching for another A-node. When WANT(A) finds no 

more A-nodes, WANT(A) POPJ's and thus gives control back to WANT(B). If 

WANT(B) finds another <B> node, WANT(B) will again give control to 

WANT(A) with P containing the LEFT field of the 

In this way, alternate phrases represented 

transformed into backtracking program execution. 

newly matched B-node. 

in a parsing graph are 

An Opttmtzatton - Factored Righthand Phrases and Ordered Columns 

When a grammar is called, the grammar has to search 

production 1 s righthand phrase within the given parsing graph. 

for each 

A certain 

saving will be achieved if some of the searching effort can be shared 
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set of righthand phrases 

<A> <B> <C> 

<D> <B> <C> 

<E> <Q> <C> 

can be factored from the right to yield 

<A> <B> ---- <C> 
I I 

<D> I 
I 

<E> <Q> 

In trying to find instances of these three righthand phrases, the 

factored representation facilitates some sharing of the searching 

effort. That is, rather than searching for a <C> node three times, once 

for each righthand phrase, the search for a <C> node can simultaneously 

serve all three righthand phrases. 

With the WANT macro, the unfactored set of righthand phrases is 

searched by 

PUSHJ. [ WANT(C) 
WANT(B) 
WANT(A) 

body1 
POPJ. ] 

PUSHJ. ( WANT(C) 
WANT(B) 
WANT(O) 

hody2 
POPJ. ] 

PUSHJ. [ WANT(C) 
WANT(Q) 
WANT(E) 

body3 
POPJ. ] 
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The factored righthand phrases are searched by 

WANT(C) 

PUSHJ. [ WANT(B) 
PUSHJ. 

PUSHJ. 

POPJ. ] 

PUSHJ. [ WANT( Q) 
WANT(E) 

body3 
POPJ. ] 

[ WANT(A) 
body1 

POPJ. ] 

[ WANT(D) 
body2 

POPJ. ] 

Each match of a C-node serves simultaneously for all three phrases. 

In fact. WANT takes a third parameter which specifies the address 

of a program to which WANT will branch when WANT can find no more 

matching nodes. When the third parameter is specified, WANT performs 

the branch rather than performing a POPJ. Thus, the factored righthand 

phrases can be searched by 

LABLE2: 

LABLE1: 

WANT( C) 
WANT(B,,LABLE1) 

WANT(A, ,LABLE2) 
bodyt 

POPJ. 

WANT{ D) 
body2 

POPJ. 

WANT(Q) 
WANT(E) 

body3 
POPJ. 

In general. the searching of alternate parts-of-speech from within the 

same column is efficiently implemented by a series of WANTs linked 

together by their third parameters, e.g .• the phrases 
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<A> 
<B> 
<C> 
<D> 
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WANT(A,,LABLE1) 
bodyl 

POPJ. 

LABLEl: WANT(B,,LABLE2) 
body2 

POPJ. 

LABLE2: WANT(C,,LABLEJ) 
body8 

POPJ. 

LABLE3: WANT(D) 
body4 

POPJ. 

Given a column and a set of alternate parts-of-speech to be 

searched, we can achieve further optimization by requiring that both the 

column and the set of alternate parts-of-speech be ordered, e.g., in 

increasing order by part-of-speech. This constraint will facilitate a 

linear rather than quadratic search time. That is, rather than 

independently searching the column for each given part-of-speech, we can 

find all matches with exactly one scan thru both the column and the 

given set of parts-of-speech. 

In fact, both the procedure NEWNODE and the macro WANT are written 

to create and examine ordered columns with ordered grammars. NEWNODE 

inserts a new node into COLUMN at an appropriate place so to preserve 

order in COLUMN. WANT ceases to search for a given part-of-speech in a 

given column as soon as WANT comes across a node whose part-of-speech is 

greater than the given part-of-speech. WANT branches to the address 
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specified in its third parameter leaving r containing the unsearched 

portion of the given column rather than setting P to the start of the 

given column. In this way, an ordered series of WANTs linked via' their 

third parameters search a given column in a single scan. 

A generalization of the macro WANT allows the specification of an 

array of parts-of-speech: 

WANTR( LOW , lilGH , Pl , X , AL l 

specifies a search for any part-of-speech between LOW and HIGH. Upon 

each match, the variables Pl and X are set respectively to the matched 

part-of-speech and meaning. lhe final parameter, ALT, is identical to 

the third parameter in the WANT macro. 

All productions specified via the declarative RULE macro are 

initially assembled as list structures. Upon system initialization, all 

of the righthand phrases specified in RULE macros are gathered. The set 

of righthand phrases is then factored from the right and ordered. 

Finally, the factored datastructurc as a whole is compiled into machine 

code as though optimally specified with the use of the WANT macro. The 

resulting program becomes the grammar. 

Several grammars, e.g., grammars for a multipass system, are 

compiled separately so that each grammar may be independently and 

dynamically engaged to the parser. Another declarative macro enables 

the user to specify that following productions are to belong to a 

specified grammar. There is another macro which engages a grammar to 

the parser. The file NEWBMT.MAC contains relatively complete 

documentation on these macros. 
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BI GMAC 

NEWBMT 

NHETAL 

Source Code 

BEGIN 

CIRCUS 

NEWSCN 

NEWPAR 
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Top level universal file. 

Contains register assignments and macros for memory 
management and other generally useful macros and 
opdefs. 

(New Basic Metalanguage) 

Contains 
Contains 
macro. 

macro definitions for the metalanguage. 
relatively complete documentation for each 

Extension of NEWMBT. 

NEWMBT and NMETAL together define at least the macros 
pr~sented in this section. 

System Initialization and Local UUO handler. 

(Circulatory System) 

Memory Management. 
collector. 

(New Scanner) 

Includes list-space garbage 

Contains the parser's character input routine which, 
in addition to generating nodes representing the input 
characters, .generates each of the alternative phrases 
<ID>, <NU>, and <OS> over the appropriate input 
strings of characters. <ID> stands for i-entifier, 
<NU> stands for unsigned integer, and <QS> stands for 
quoted text string. lhe reader may note that these 
three parts-of-speech are treated specially in the ICL 
reference manual. In addition, NEWSCN ignores 
comments and manages the symbol table for identifiers. 

(New Parser) 

Includes both the pnrser and the semantic evaluator 
presented in this thesis. Many of the macros defined 
in NEWBMT reference programs contained in NEWPAR. 
Note one major difference in naming: There is no 
single prodedure corresponding to the procedure named 
FIND in this thesis. As mentioned earlier, the effect 



GCMPIL 

CODGEN 

UTILS 

Untuersal Ftles 

ICLSVN 

ICL TYP 

lCLSEl'I 

I CL RUN 
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of this mythical FIND is implemented by uses of the 
WANT macro. The WANT macro references a routine which 
happens to be called FIND. 

(Grammar Compiler) 

Compiles the righthand phrases of a given grammar into 
an efficient, factored use of the WANT macro. 

(Code Generation) 

Contains the machine-code generation procedures. 
Serves as the assembler language for automatic code 
generation, e.g., supports labels and foward 
references. Also int~rfaces to the memory manag~r and 
automatjcally fragments the generated machine code so 
as to optimally use segmented free storage. 

(Utilities of general interest) 

Supports file 1/0, numberic output, ~nd contains a 
little spill over from NEWPAR. 

(ICL Syntax) 

Declares the parts-of-speech for ICL's syntax grammar. 

(ICL Types) 

Declares the parts-of-speech for ICL's type and pass3 
grammars. 

(ICL Semantics) 

Defines the datastructure which represents the user's 
~eclarcd non-primitive types. 

(ICL Runtime Support) 

Defines registers 
support. Also 
code-generation. 
CO,DGEN. 

and fields 
includes 

These macros 

for ICL's runtime 
the macros for 
reference the file 
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Syntax Files 

The syntax files nearly correspond to the major parts-of-speech in 

ICL's syntax. Following is a list of parts-of-speech, syntax files, and 

semantic files. For each part-of-speech in the first column, the second 

column names the file declaring productions whose lefthand phrases 

consist of the named part-of-speech, and the third column names the file 

containing the programs which implement the meanings for .these 

productions. 

<TYPE> 
<EXPR> 
<DECL> 
<BOP> 
<UOP> 
<RANGE> 
<SS> 
<QUANT> 
Processes 
/lfetalanguage 
flfiscellaneous 
Top level 

T\'PEX 
EXPR and EXPRl 
DECL 
BOP 
UOP 
RANGE 
SS 
QUANT 
QUOTE 
META 
MISC 
FUN 

TYPEX8 
F.XPRB and EXPR9 
DECL8 and DDECLB 
BOP8 
lJOPB 
Rl\NCiEB 
sso 
QlJJ\NTB 

QIJOlEB 
MElAB 
( M I SC its e lf ) 
(FUN itself) 

The files named in the second column contain invocations of the SUSPEND 

macro and the procedures named within the SUSPEND macro are defined in 

·the corresponding file in the third column. 

The Type and Third Pass Files 

PA.SS2 
PASS28 

PASS3 
PASS38 

RULE declarations for permanent rules of the type-pass. 
More of the same. 

Both Pl\SS2 and PASS2ll together include the meaning 
routines under these rules. lhnse files also include 
the access functions for the datastructures which 
represent the parts-of-speech for non-primitive types. 

Rules of the third pass. 
Meaning routines for third pass. 

The routines in PASS30 generate machine code. 
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Miscellaneous Compiler Files 

ERRORS 

K.EY IDS 

The compile time error reporting mechanism. 

Also includes the tC-handler. 

Sets up correspondence between symhols used in the 

MACR0-10 source to name datatypes and the ident1fiers 
used by the ICL user. KEYIDS also sets up 
correspondence between some of the keywords found in 
the syntax productions and symbols used in the 
MACR0-10 source as parts-of-speech for these keywords. 

lCl's Runtime Support 

ICLRTS and ICLRT1 Runtime support 

TOPS20 A little more runtime support. 

This runtime supports requires the TOPS-20 monitor. 

ICLDDT The debugging package 
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REFERENCE MANUAL FOR ICL 
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REFERENCE MANUAL FOR ICL 

Introduction 
Overview 
Basic Conventions 

Meta-Language 
Input 
Output 
Ending 
Meta-Language File Names 
Examples 

tC-Handler 
Example 
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Reference ~~.!:!~~.!. f.Q!: !H. 

Introduction 

ICL was initially intended to be an upgraded PAL (precision artwork 

language) to further ease the design and realization of integrated 

circuit masks. PAL •. as it turns out, is hardly programmable except that 

it supports assignment statements for numbers and parameterless 

subroutines for pictures. There is no block $tructure, no recursion, 

and no associative data structure. ICL, however, is a full blown 

programming language with some features especially designed for dealing 

with geometry. 

This manual describes ICL in its full genera Ii ty as a programming 

language. The ICL tailored for IC implementation is described in the 

mar.ual titled The IC manual for ICl. The basic programming language is 

kept separate from its specialization in order to provid~ flexfbility in 

keeping with evolving styles of IC design. The special functions and 

datatypes which define the IC-specific ICL are all implemented in ICL 

and thus are subject to relatively easy modification. Throughout this 

manual, ICL refers to the general programming language. 

JCL includes many features present in both LISP and PASCAL. Like 

LISP, ICL encourages generative and embedded expression. A record 

structure, for example, may be generated in ICL without the use of 

assignment statements, like LISP's LIST function, whereas in PASCAL, one 

must assign each component separately. Unlike LISP, but like PASCAL, 

ICL is a completely typed language. That is to say, any computed entity 

must be associated with some declared datatype. ICL is completely type 
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safe, whereas PASCAL leaves a few areas inadequately type checked: For 

example, PASCAL gives the user completely independent access to the case 

key and to the body of a variant data structure. 

ICL represents its data in terms of pointers. The user, however, 

may ignore the existence of pointers altogcth~r. Except for one, 

optional operator, the existence of pointers is invisible. The use of 

pointers in the implementation allows for efficient and automatic data 

sharing. Besides, the user may define recursive data structures without 

thinking about pointers. 

ICL supports process expressions and in fact, has process types. 

That is, a program may be packaged along with some current context and 

passed off as datum. At some later time, this datum may be evaluated, 

causing the program to execute then and there. The evaluation occurs in 

the current context combined with the old context which was saved at the 

time of the packaging. 

ICL supports user-defined type coercions. A type coercion is a 

declaration specifying that one datatype may implicitly be transformed 

into a second datatype via a given progrC1m. Even the common 

integer-to-real coercion. which is implemented jn almost every language 

including FORlRAN. is user-defined in ICL. A coercion is a function 

which has no name and whose invocation occurs without any specification 

whatsoever. The compiler will apply coercions throughout the user's 

program in the effort to maintain datatype consistency. 
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Type coercions are essential to support the notion of equivalence 

classes of representations. F-0r example, a geometric line may be 

represented either by a pair of points or by three numbers ,which 

represent the coefficients of a linear equation. After one has defined 

the two coercions relating these representations, an instance of a line 

may be generated in either of the two forms and independently accessed 

in either form. Thus, a routine which requires, say, the equation 

representation for a line can work even if given a line in the 

pair-of-points representation. 

Independent of type coercions, a single procedure name may be 

shared by several different procedures. One example of this is found in 

the programming language PASCAL: The procedure-name WRITE is the name 

of the procedure which prints integers and is simultaneously the name of 

the procedure which prints booleans. The operation, WRITE, is defined 

for more than one datatype. In ICL, the user may define many different 

procedures using the same name so long as they are distinguishable by 

their input or output datatypes. Throughout the languages of science, 

there are many operators whose definitions depend on the types of their 

parameters. 

and points. 

For example, ABSolutc-value is defined on integers, reals, 

The operator DISPLACE can be defined to mean "displace a 

point by a point", or "displace a mask by a point", or even, "displace a 

linear transform by a point". 

The space of datatypes may be extended to include many distinct 

types whose representations are identical. For example, a list of 

points is a suitable representation for both a wire and a convex 

polygon. However, the set of convex polygons is clearly a subset of the 
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set of all lists of points. In ICL the construct "PRIVATE" enables the 

user to specify a new type which is a restricted form of an existing 

type. He can then specify coercions between the restricted and 

unrestricted types. For example, a list of points could be coerced into 

the restricted type, a convex polygon, via a program which verifies 

convexity and which reorders the list of points to trace the polygon in 

the clockwise direction. A convex polygon could be coerced back into a 

list of points via the identity. lhus, the user can define procedures 

' . which take convex polygons as input and which access the input as lists 

of points. The user can be certain that the input is indeed clockwise 

and convex. 

Datatypes in ICL provide more utility than do datatypes in PASCAL. 

PASCA.L's datatypes serve mainly to aid the compiler in detecting program 

inconsistencies. ICL's datatypcs not only check program integrity. but 

also play an active role of choosing which functions to call and which 

coercions to invoke where. 

The type pass in ICL operates as a parser trying to come up with a 

successful parse in a language whose parts-of-speech are datatypes. The 

rules of grammar come from the coercion, function, and datatype 

definitions. The compiler generates machine code. All decisions about 

when to apply coercions or what functions to use are made at 

compile-time. Thus, the free use of datatypes has no runtime overhead 

per .se. 

Data types are to programming lan~iuages as uni ts are to physics. A 

meaningful equation describing a physical principle must not only make 

sense syntactically but must also make sense in terms of uni ts. It 
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often happens that one can complete an equation very easily guided only 

by the units requirements. My experience is that much of programming is 

very automatic once one knows the type of object to produce where. 
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The ICL system is composed of four major sections: a 

meta-language, a compiler, a debugging p~ckage, and a tC (control-C) 

handler. The meta-language is used to specify input source files for 

the compiler to read, output files on which to keep a complete record of 

the session's activity, and files which are to be closed or forgotten. 

The compiler is the main body of ICL. The debugging package permits the 

user to trace the execution of functions and to set break points at 

functions' entrances and exits. It also gives him the ability to look 

at and set a function's input and output parameters. The debugging 

package can be called from a running ICL program. The tC handler 

responds to tC's and will accept several one-character commands. 

l will proceed by describing the meta-language and the tC-handler 

first. These components are applicable nearly everyh'here. Then I will 

describe the ICL language itself and finally, the debugging package. 

However, I must first define some basic terms and conventions used 

throughout ICL. 

Throughout this manual, the term "letter" refers only to capital 

.letters. 

An identifier in ICL is a letter followed by a sequence of either a 

letter, a digit, or an underscore (_). An identifier is terminated oniy 

by some character other than a letter, digit, or underscore. From here 
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on out, <ID> will mean identifier. 

A comment is text which is completely ignored by the compiler. 

Comments begin and end with a double quote ("). 

Text strings, also known as Quoted strings, are specified by 

beginning and ending with a single quote('). A single quote may be 

entered into the quoted string by placing two single quotes with no 

intervening characters. The symbol <OS> will be used to denote a quoted 

string. 

An uninterrupted string of digits without leading zeros will be 

denoted by <NU>. An unsigned integer number is an instance of <NU>. 

The term blank, or blank.s, wi 11 be used to denote any non-empty 

sequence of spaces, tabs, carriage-returns, line-feeds, or form-feeds. 

Blanks are ignored except in the following places: Blanks in a quoted 

string are preserved, and as noted above, blanks cannot occur within an 

<ID> or <NU>. 

We shall adopt a slightly extended BNF notation for specifying the 

syntax of ICL. A BNF rule has the format 

Lefthand phrase ::= righthand phrase 

where each phrase is a sequence of parts-of-speech. A part-of-speech is 

either an identifier enclosed in angle brackets, e.g., <IO>,, a literal 

identifier, e.g., IF, or a character. A rule which is written as 

Lefthand phrase :::= righthand phrase 
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is equivalent to the first form in all respects except for a tjny matter 

relevant only to the interpretation of ICL's syntax error messages. 

Thus far, we have introduced the parts-of-speech <ID>, <NU>, and 

<QS>. I have refrained from using BNF to describe <ID>, <NU>, or <QS> 

because unlike other parts-of-speech in ICL, blanks are not ignored in 

these parts-of-speech. Blanks 

Hence, the righthand phrases of 

between their elements. 

in all other ICL forms are optional. 

BNF rules implicltly invite blanks 

There is one other commonly used part-of-speech, <IDLIST>, which we 

can describe by the rules: 

<IDLIST> 

< IDLIST> 

: := <ID> 

<IDLIST> , <ID> 

This states that an < IDLIST> is a sequence of < ID>s separated by commas. 

For example, the following is an instance of <IDLIST>: 

OBI_WAN_KENOBI,DARTH_yADER ,lHE FORCE , LUKE 

(----IDLIST--) 

(-----------IDllST--------) 

(----------------------IDllST--------) 

(---------------------------IDllST----------) 

Some computer terminals cannot accept the characters "{" or "}". 

·These characters are used extensively in specifying strings, or lists of 

objects. For these poor terminals, ICL has the rules 

{ 

} 

: : = 

.. -
[ 

] 
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so that a[) will pass as a { and a (]will pass as a }. 

The ICL system receives teletype input from one of two ports: the 

compiler port and the general port. Unless otherwise mentioned, all 

input goes into the compiler port. The compiler port tries to interpret 

its input as ICL source language text. The general port is used by 

ICL's error handlers and all running ICL programs. The general port is 

merely a character by character port. It follows none of the 

conventions described above and it does not understand the meta-language 

or the ICL language. 

The compiler port takes in characters a line at a time. This means 

that the compiler does not see any input until a break character is 

typed. Included in the set of break characters are tG (bell), 

carriage-return, and tZ. 

MACRO Jlackers 

The input TTCALLs·comprise the general port. An "XCT SCANIN" is 
the compiler port. It sets AC 1 to the character. The "XCT 
SCAN IN" does not itself follow any of the above conventions. 

Do not use any 1/0 channels except via the mechanisms provided 
in UTILS.PIAC 

The meta-language is entered by typing a I* and is left by typing a 

•/. Any text produced by the enclosed meta-statements appears to 

substitute for the/• ... *I string. rroducing text means feeding the 

text to the compiler port. Any sequence of the following 

meta-statements may appear between the I* and the The 

part-of-speech <file> will be described after the meta-statements are 
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described. 

READ <file> ; 

ERE AD 

produces the text contained in (file>. The default 
extension is ICL. The compiler port takes in 
characters from <file> but the general port remains 
unaffected. Hence <file> should contain only ICL 
source language text and meta-language text. Any 
input requested by ICL's error handlers or by any 
running user's program will not be taken from (file>. 

(file> ; 

(echo read) is equivalent to READ except that the text 
is also echoed to the terminal. 

COPY <file> ; 

ECOPY 

OU!J!.fl.~ 

IN_LOG 

OUT_LOG 

produces the text contained in <file> Jike READ, but, 
in addition, any input requested thru the general port 
is also taken from <file>. Both input ports take 
characters from <file>. Hence it is conceivable that 
(file> may contain source language text, meta-language 
text, user program input, and responses to questions 
posed by ICL's error handlers. The default extension 
is ICG (ICl loG). 

<file> ; 

is COPY with echo to the TTY. 

<file> ; 

produces nothing. However, all characters input from 
the TTY, starting after the terminating */, will go to 
<file>. Default extension is ICG. Note that since 
all your keystrokes arc recorded, you can completely 
replay your session by restarting ICL and then typing 
"/*ECOPY <file>;•/ <carriage-return>". IN LOG records 
all TTY input from both TTY ports. -

<file> ; 

produces nothing. llowever, all characters typed out 
to the TTY go into <file>. 
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<file> ; 

produces nothing. All TTY characters input or output 
go to < f 11 e > • 

MACRO Hackers 

If you take BIGKAC .MAC as a universal file, all TTCALL 's will be 
intercepted for the LOG files. "TTCAL." has been OPDEFed to the 
real TTCALL. 

!ndt!l.l 

CLOSE 

FORGET 

<file> ; 

produces nothing. Closes <file>. This is necessary 
to insure the existence of the output files. For 
input files, CLOSE is equivalent to FORGET. 

<file> ; 

produces nothing. For input files, FORGET cuts short 
the input by simulating an early EOF. For output 
files, FORGET undoes all writing that has occurred to 
the file. The old version, if any, remains untouched. 

CLOSE and FORGET work for any files, even if they are 
being used by a running ICL program. CLOSE and FORGET 
may occur asynchronously. Input files are cut short, 
and further output to the output file is ignored• 

A <file> is described by the following BNF rules: 

1) <file> <iD> 

takes the default extension 

2) <file> ::= <IO> . 

blank ex.tension 

3) <file> .. - <ID> . <ID> 

extension specified 

4) <file> .. - <file> - <file> 

The concatenation of the two files; may not be used 
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6) <file> 
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for specifying output files. 

<ID> : <file> ; 

<ID> specifics a device for all of <file>. Note that 
even if the specified device is TTY, none of the TTY 
characters taken in thru this mechanism will appear on 
any of the LOG files. 

< f i 1 e > [ <NU> , < ID> ] 

Project Programmer Number (PPN) specification. <File> 
may not be one directly from (4). 

·Note that <file> represents only a subset of the PDP-to•s· possible 

filenames. 

1) If the file A.ICL contains the text "+2*K", then 

I:= JOHN /*READ A;*/; is equivalent to 

I:= JOHN +2*K; 

2) If the file B.WHO contains the text "+3/*READ A;*/;w, then 

I:=JOHN/*READ B.WHO;*/ is equivalent to 

I:=JOHN+3+211tK; 

3) The following are equivalent: 

I* IN LOG X; READ A-B-C;•/ 

I* IN LOG X; READ A; READ B-C;*/ 

I* READ A-B; IN_LOG X; READ C;*/ 

I* READ A;"/ /iitREAf> B-C; "I /•IN_.LOG X;*I 

However, the following is different: 

/*IN_LOG X; READ A-B;*/ /'*READ C;*/ 
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The file X.ICG will begin with the characters /• READ C;•/. 

Remember that the IN_LOG takes effect immediately following the 

closing•/. 

While running ICL, typing one or two tC's will get you into the 

tC-handler. The tC-handler prompts with a "<>". Typing twenty or 

thirty tC's should get you to the monitor level in case of an ICL bug. 

Sometimes, the "<>" will not appear at first; I don't know why. 

However, in either case, typing one of the following letters will do ••• 

H 

c 

B 

E 

A 

. D 

I 

(Help) Type out a reminder of these letter commands. 

(Continue) Ignore the tC and resume what was being done. 

(Bye) Get out. Go to monitor level. You may CONT 
from the monitor level and be back in the tC-handler. 

(Exit) Prepares to make a save file. You are then 
asked for an initial message. Type anything and terminate by 
a tG (bell). ICL then ex.its. If you do a SAVE, you can 
later run the saved file and be right back where you were 
just before the tC. You will first be greeted by your 
initial message. 

The E command will not exit if any I/0 channels are currently 
open. If any I/0 channels are open, the user will be 
notified and the E will proceed like the C command does. 

(Abort) Abort a running ICL program. Acts like a "C" if 
an ICL program is not currently running. The debugging 
package will be entered as soon as some function is entered 
or left • 

(DDT) Enter DDT. Return from DDT by DDT's <altmode>G. 

(Intercep~) Intercept the compiler 
requests another character, the 

port so 
compiler 

that when it 
port will take 
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characters directly from the TlY. Intercept is meant to 
enable the user to override the current input source for the 
compiler port. This is useful if a long file is· currently 
being read by the compiler port . 

. "I" leaves you in the tC handler. Do a "C" so that the 
system will continue processing. When the compiler next asks 
for input, it will be waiting for TTY input. 

The compiler port will resume taking in characters from the 
original source immediately after you type a tZ. 

You may not intercept an intercept; intercepts may not be 
nested. 

~).:a p~!:._~_:_ 

You have done /•READ A;•/ and the file A is the wrong file; you 

would like to put an early end to A. Do an intercept ("tC I C") 

and then type "/•FORGET A;•/tZ". The first part of A will have 

bee~ read in, but nothing since the tC. 

NOTE: tC's are not recorded on any LOG file, nor are any of these 

single-character commands. These letter commands come thru neither 

input port. 
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I!:!I COMPILER -·-·-·---·-·-

The compiler is the main body of ICL. The compiler responds to 

user input by attempting to view it as a valid ICL program. If 

successful, the compiler then generates machine . code and transfers 

control to it. When the user program terminates, ICL is ready to 

respond to more user input. 

ICL js documented entirely in terms of the individual rules of 

grammar which define ICL's syntax. Each syntax rule is independent from 

all the rest and in fact plays the role of an individual, predefined 

function • So, for example, where LISP defines the function "(COND 

.•• )". ICL defines the construct "IF THEN ELSE FI". 

Associated with each syi:itax rule is additional, non-syntactic 

information. This additional information expresses requirements imposed 
• f 

by further compiler passes. For tre user to understand ICL's error 

messages, he must be aware of the overall structure of the compiler. 

ICL is implemented as a three pass compiler. The first pass 

enforces svntactic requirements, the second pass enforces datatype 

consistency, and the third pass enforces consistent use of data sources 

and data sinks. In the event that a user's program is ill-formed, he 

will be informed as to which pass failed and will be given a set of 

possible reasons for failure. Each pass has a different way of 

reporting error conditions. 
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Failures from the first pass, the synta~ pass, are reported by 

typing back the user's input in a partially compressed form. Incorrect 

sections of input are not compressed and hence appear unmodified. 

However, some correct sections of text arc compressed in the sense that, 

in place of the correct section, ICL gives the appropriate syntax 

part-of-speech enclosed in angle brackets. For example, the following 

syntactically incorrect text: 

HAPPINESS := IF TODAV=SATURDAY THEN 100 ELSE 0 FI * X. 

YESTERDAYS HAPPINESS + K.*20 ; 

yields the syntax error message: 

HAPPINESS := <EXPR> * X. 

YESTERDAVS_,HAPPINESS + K*20 ; 

The text between the IF and FI is correct and has been compressed. 

Unfortunately, the error reporter's notion of syntactic correctness 

is more restricted than ICL's. Some correct sections will not be 

compressed. The compression of correct sections occurs on a rule by 

rule basis and not every rule participates in compression. Compression 

occurs only with det~rministic rules. The documentation for each syntax 

rule specificies whether or not the rule is deterministic. The ": :=" of 

the BNF notation is replaced by " ... -" ... -

Consider the example above. 

in deterministic rules. 

lhe IF-THEN-ELSE-FI rule is 

deterministic, and because its use in the example has no errors, t~e 

IF-THEN-ELSE-FI rule has been compressed. However, the "K•20" ts 

correct but it is not compressed. The rule which implemenis infix 

oper~tors ,e.g .• the is not deterministic. The syntax error 
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message would be more informative if every rule were determinlstic. 

However, a rule can be deterministic only if its applicability can be 

determined without reference to surrounding text. The infix-operator 

rule cannot be deterministic because, given the text "1•2", its 

applicability depends on whether the "1+2" is contained in "A:=1+2;" or 

"A:=t+2•N". 

lhe only certain information the user can derive from a syntax 

error message is that 

1) Compressed sections are syntactically correct, and 

2) Non-compressed sections may or may not be correct, except that 

3) A non-compressed section involving a deterministic rule is 

definitely not correct. 

Failures of the second pass, the type-pass, are reported in terms 

of ICL's syntax rules. The user, when informed of a type-pass failure, 

will be told which syntax.-rule failed the type-pass. The user should 

then look up the syntax rule and understand that he violated the type 

requirements associated with that rule. The user will also be given a 

backtrace of grammar rules, so that he can see where in his program the 

faulty syntax rule was applied. 

Errors emanating from the third pass are not well reported by ICL. 

Fortunately, PASS3 errors are relatively rare and may be characterized 

rather simply. Since PASS3 enforces consistent use of data sinks and 
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sources. a PASS3 error indicates that the user has put a non-sink on the 

lefthand side of an assignment statement. e.g .• "l:=A+B;". 

The one subtlety of a PASS3 error is that a datatyJe coercion can 

leave a valid sink as a non-sink. That is, there is one kind of error 

which might be characterized as a type-error. but which ICL detects only 

in PASS3. This occurs when the type-pass, in order 'to satisfy type 

requirements. coerces something which will later turn out to be a 

data-sink. The canonic example is this: The user has defined the 

coercion from integer to real (FLOAT) but has not defined the coercion 

from real to integer (FIX). The error occurs when he assigns a real to 

an integer. e.g .• 

I:=R; . 

The type-pass will be forced to coerce the l~fthand side into a real in 

order to have matching types across the assignment. Thus, the typ~-pass 

has effectively put a function call on the lefthand side, yielding 

FLOAT(I):=R;. 

The lefthand side is no longer a data sink. If, on the other hand, the 

user wishes such an assignment to be valid. he must supply a coercion 

from real to integer (FIX), so that the type-pass can be satisfied by 

coercing only the righthand side of the assignment, yielding 

I:=FIX(R); • 

I will return to the matter of error reporting with examples after 

some of ICL is formally defined. 
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ICt is documented entirely in terms of its syntax rules. An 

earlier section, Basic Conuentions, outlines the form of a syntax rule. 

ICL's rules of grammar will be grouped together by the 

part-of-speech appearing on the lefthand side of a rule. Ea~h group of 

rules defines a distinct component of ICL. The compon~nts of ICL are 

named by ICL's major parts-of-speech. There is, however, one group of 

rules which has no lefthand side. This group makes up what is called 

the ICL process. 

ICL's linguistic constructs fall into one of two categories: 

declarations and algorithms. Algorithms, or sentences, are executable 

forms which perform actions. Declarations, on the. other hand, are 

linguistic specifications which augment the type-grammar, the language 

of the second pass. Declarations consist of function definitions, 

datatype definitions, coercion definitions, and the declaration of 

variables. Declarations and algorithms may be embedded within one 

another. Declarations, being linguistic augmentation, have their 

effects manifested implicitly within algorithms. 

Declarative statements fall under the part-of-speech <DECL>. 

Algorithms take on the part-of-speech <SS>, read as sentence. Within 

algorithms, computed uaLues take on the part-of-speech <EXPR>. Within 

<EXPR>s, infix binary operators, e.g., +,-,*, and /, take on the 

part-of-speech <BOP>, read as binary operator. Loop-generating. 



statements, quantifiers, 

declarations, a datatype 

parts-of-speech will be 

major parts-of-speech. 
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take on the part-of-speech <QUANT>. Within 

expression is called a <TYPE>. More 

introduced to implement sub-sections of the 

The compiler is an infinite loop which repeatedly waits for the 

user to type a sequence of characters which can be parsed as a possibly 

null sequence of <DECL> and <SS> terminated by a tG (bell). The 

compiler al1uays responds to a tG except within comments or quoted 

strings. If the compiler does not respond to a tG and is indeed waiting 

for TTY input, then the user has forgotten to close a comment or quoted 

string. The user should then type a double quote (") followed by a tG. 

If there is still no response, he should type a single quote(') 

followed by a tG. The compiler will definitely have responded by this 

time. 

In the event that the input text, if any, has not parsed into a 

sequence of <DECL> and <SS> prior to the tG, the user is notified of a 

syntax error. He is given the choice of seeing the syntax error message 

which contains the partially compressed form or skipping it .. In either 

case, the compiler fi~ally responds with a "*" and is ready for another 

go around. 

If, on the other hand, there are no syntax errors, a 

carriage-return is typed out and the compiler proceeds as follows. All 

of the <DECL>s are processed. This includes compiling any function 

definitions or coercions. Whenever a function or coercion is compiled, 
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the header of the function or coercion is typed out. Finally, if the 

declarations compile successfully, all the <SS>s are compiled and 

~xecuted. The compiler ultimately responds with a "•" and is ready for 

another go around. 
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Declarations are represented by the part-of-speech <DECL>. 

Declarations 

algorithms. 

play the role of providing implicit information 

The four kinds of declarations are: the definition of 

for 

new 

datatypes, the declaration of variables, the definition of functions, 

and the definition of coercions. The definition of a new datatype 

associates an identifier to a new datatype expression. The declaration 

of a variable associates an identifier to a datatype by creating a 

variable which is capable of representing instances of that type. The 

definition of a function associates an identifier, a set of input 

parameter datatypes, and an output datatype to an 'algorithm. The 

definition of a coercion associates two' datatypes to an algorithm which 

translates an instance of the first datatype into an instance of the 

second datatype. 

Basic to all declarations is the notion of datatype. We shall begin 

by describing the datatypes which ICL supports. 
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ICL' s Datat.r.~.es .:. Part ! 

The part-of-speech <TYPE> covers all datatype expressions. 

The primitive datatypes of ICL are integer (INT). REAL. POINT. 

boolean (BOOL), character (CHAR), quoted text string (QS), and strings 

of bits (LOGICAL). A POINT is represented by a pair of REALs. We have 

the rules: 

<TYPE> 
<TYPE> 
<TYPE> 
<TYPE> 
<TYPE> 
<TYPE> 
<TYPE> 

: := INT 
.. - REAL 
: : = POINT 
.. - BOOL .. -.. - CHAR . ·- QS .. -
: :.= LOGICAL ( <NU> ) 

<NU> is a decimal number which specifies · the maximum 
number of bits, or word length. <NU> may be at most 
36. 

Instances of INT and REAL are formed just as they are in FORTRAN 

except that ICL will not accept the "E" notation. Note that an instance 

of INT will automatically pass as an instance of REAL if the user has 

included the INTeger-to-REAL type coercion. Instances of POINT are 

formed by in fixing two REALs with a "II". The instances of BOOL are TRUE 

and FALSE. Instances of CHAR are formed by enclosing a single charact~r 

between single quotes. Instances of QS are formed by enclosing any 

string of characters between single quotes. An instance of 

LOGICAL(<NU>) is formed by enclosing one or two octal numbers, separated 

by a space, within "L( )". Each octal number may consist of no 

more than 6 octal digits. If you write two octal num~ers, •then the 

left-hand number is automatically positioned 6 octal digits to the left 
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in significance. The total word length implied by the octal number(s) 

must not exceed the <NU> in l.OGICAL(<NU>). 

So 

256 

256.1 or .1 or 5. 

TRUE and FALSE 

3.116.5 

315 

'C' 

'C' or 't3:•hi' 

L(5) 

L(200000 451) 

is an INT 

are REALs 

are BOOLs 

is a POINT 

is a POINT when we have 

the INTeger-to-REAL coercion 

is a CllAR 

are QSs 

is an instance of LOGICAL(t) 

where k is between 3 and 36. 

is an instance of LOGICAL(k) 

where k = 35 or 36. 

The formation of instances of these types are covered formally in the 

section for <EXPR>s. The operations performable on the various types 

are also described under <EXPR> and <BOP>. 

The non-primitive datatype constructs are described by the 

following BNF rules. Subscripts are used to distinguish instances of 

the same part-of-speech for later reference. 

Strings 



<TVPE0> 

Records 

<TYPE0> 

<CTYPE> 

<CTYPE> 

Vartants 
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: : = 

The resulting type, <TYPE 0 >, is called a STRING of 

<TYPE 1>. An instance of <TYPE 0> ·is an ordered 

sequence of instances· of <TVPE 1 >. Curly brackets "{}" 

are generally used in conjunction with strings. 

.. -

. ·-· .. -.. -

[ <CTYPE> ] where 

<IDLISTk) <TYPEk> 

<ClYPE) <CTYPE> 

The resulting type, <TVPE0>, is called a RECORD. An 

instance of <TYPE0> is a composite of components where 

each component consists of an <ID> in <IDLISTk> along 

with an instance of <TYPEk>. lhe subscript k is used 

to remind the reader that the form <IDLIST>:<TYPE> may 

appear more than once in a <CTYPE>. The multiple 

appearances are allowed because of the final syntax 

rule. Square brackets "[]" are generally used in 

conjunction with records. 
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.. - E ITllER <VTYPE > EN DOR where 

<VTYPE > : := = 
<VTVPE> 

Scalars 

<TYPE0> 

<VTYPE> <VTYPE> 

The.resulting type, <TVPE 0>, is called a VARIANT. An 

instance of <TVPE 0 > is an instance of one of the 

<TYPEk> along with a case key, an ID from <IDLISTk>. 

Given an instance of <TYPE 0 >, the associated case key 

indicates which one of the <TVPEk>s is used to 

represent this instance. We will use the terms state 

and case key interchangeably. Automatically, ICL 

supplies a coercion from <TYPEk> to <TYPE0> with this 

<TYPE> construct; the effect is that an instance of 

<TYPEk> will pass as an instance of <TYPE0>. 

.. - SCALAR ( <IDLIST> 

The resulting type, <TYPE0 >. is called a 

instance of <TYPE0> is any one of 

<IDLIST>. 

SCALAR. An 

the < ID>s in 

Referencing a Preuiouslu Declared Type 
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<TYPE> : : = <ID> 

The resulting type is precisely the user-defined type 

<ID>, whatever <ID> was declared to be. 

There are a few more <TYPE> constructs, but their presentation is 

delayed until the reader become familiar with more of ICL. 

E~ample.s: 

{ INT } 
denotes a new datatype called a string of INTcgcrs. 
Strings in ICL play the role of arrays in other 
programming languarics. Strings may be indexed to select 
a particular elcmnnt, or may have a tail selected to 
yield a substring of the original. Ho.,.·ever, the most 
common and efficient use of strings is in the program 
loop generator which iterates for each element in the 
string. 

[ LENGTH,WIDTH:INT CENTER:POINT ANGLE:REAL ] 

EITHER 

denotes a new datatype, called a record whose 
components are named by LENGTH, WIDTH, CENTER, and 
ANGLE. The LENGTH and WIDTH components are INTegers, 
CENTER is a POINT, and ANGLE is a REAL. This datatype 
might be a good representation for rectangles. 
Records differ from strings in that record components 
are named and may have differing· datatypes. All 
elements in a string, on the other hand, are of the 
same datatype and their number is unbounded. 

BOX = [ LENGTH,WIDlff: INT CENTER: POINT ] 
CIRCLE= [ CENTER: POINT RADIUS: INT ] 

EN DOR 

is a uartant .,.·hose possible states are named by BOX and 
CIRCLE. An instance of this datatype is an instance of 
either of these two record datatypes depending on the state. 

SCALAR(RED,BLUE,GREEN,YELLOW,BLACK) 

denotes a new datatype, called a SCALAR. Instances of 
this datatype can take on precisely five values, 
namely REO, BLUE, GREEN, YELLOW, and BLACK .. 
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How instances of these various datatypes are created and accessed 

is presented formally under the rules for <EXPR>. However, here are a 

few examples of creation: 

{ 1 20 70 ; 100 } 

is an instance of { INT } which has four elements. 
The elements in a string are separated by semicolons. 

[LENGTH: 5 WIDTH: 5 CEN1.ER: .21.1 ANGLE: 90] 

is an instance of the record datatype defined above. 

BOX:: [LENGTH: l WID111: 2 CENTER: .1#. 5] 

is an instance of the variant datatype described 
above. "BOX::" denotes the state and "[LENGTH: 1 ... 
" denotes the value. However, t.he "BOX::" may be 
omitted because the value's type unambiguously implies 
the BOX state. 
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The declaration of new datatypes and the declaration of program 

variables are short and simple~ One merely needs to associate an <ID>, 

the name for a new datatype or variable, to a <TYPE>. 

Declartn.e.. Dat!!J.11pes 

Type declarations are characterized formally by the rules: 

<DECL> 

<TDECL> 

Examples• 

: : = <TDECL> \'<'here 

... - TYPE = 

This specifies that <ID!> is a new datatype whose 

representation is <TYPEk>. The latter two rules are 

deterministic. 

TYPE STACK._.OF _INTEGER = { INT } ; 

specifies that STACK._OF _.INTEGER is a string of INTegers. The datatype 

STACK._OF _INTEGER now understands all the operations which a string 

understands and in addition, each element of STACK_OF_INTEGER is known 

to be an INTeger. 

TYPE COMPLEX NUMBER = [ REAL_PART, IMAGINARY_PART: REAL ]; 
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specifies that the type COMPLEX NUMBER is a record having 

components, both of whjch are RE/\l.s. 

TYPE SET OF POLES = { COMPLEX NUMBER ) ; 

specifies that SET OF POLES is a string of COMPLEX_NUMUERs. 

TYPE LISP_ELEMENT = EITHER 

ATOM = QS 

CONS PAIR = [CAR,CDR: 

LISP __ ELEMENT] 

INTEGER NUMBER = INT 

Fl.OATING_NUMUER = REAL 

ENDOR; 

two 

specifies that a LISP_ELEMENT is either an ATOM which is a quoted 

string, or a CONS PAIR which is a record having a CAR and a CDR field -

each of which is again a LISP _ELHIENT, or an INTEGER NUMBER which is· an 

INTeger, or a FLOATING_NlJMBER \'<'hi ch is a REAL. In other words, a 

LISP_ELEMENT residing in the ATOM state is represented by a QS, a 

LISP_ELEMENT residing in the CO~S PAIR state is represented by an 

instance of the record [CAR,CDR:l.ISP_ELEMENT], a USP_El.EMENT found in 

the INTEGER NUMBER state is represented by an INTeger, and a 

LISP_ELEMENT found in the FLOATING ~UMBER state is represented by a 

REAL. Note that the coercjons supplied by the variant construct imply 

that instances of QS, the record [CAR,CDR:LISP_ELEMENT], INTeger, and 

REAL, all pass as instances of LISP __ ELEMENT. Note also that a 

LISP_ELEME~T may be examined only after its current stat~ is determined 
I 

because the representation is dependent upon that state. The only 

construct ICL provides for examining a variant type, like LISP_ELEMENT, 
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is the variant-CASE form. lhe user is always r~quired to consider each 

possible state when examining a variant object. 

TYPE COLOR = SCALAR(RED,BLUE,GREEN,VELLOW,Bl.ACK) 

specif !es that a COLOR is RED, BLUE, GREEN, YELLOW, or BLACK. 
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The declaration of variables is characterized by 

<DECL> .. - <VDECL> "'·here 

<VDECL> ... - VAR < IDLIST 1 > = <TYPE 1> 

<VDECL> ... - <VDECL> < IDLISTk.> = <TYPEk > 

This specifies that each <ID> in <IDLISTk> is a 

program V8riable whose type is <TYPEl>. The latter 

two rules are dctermi11istic. 

Examples: 

VAR l,J=INT; R=REAL; 

declares I and J to be variables which contain instances of INTegers and 

R to be a variable which contains instances of REAL. Writing 

VAR C = COMPLEX_NUMBER ; 

enables one to write tile assignment statement: 

C := [ REAL __ PART: 1.2 IMAGINARY __ PART: R ] 

C is assigned the COMPLEX_NUMBER whose components are 1.2 and the 

contents of R. Also, we can now write 

R ·-.- C.REAL_PART 

R is assigned the REAL_PART of C. However, 

C .- R; or R .- C 
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though syntactically correct, both fail the type-pass because the 

<EXPR>s on each side of the ":=" are not of equal types. 

There are many syntax rules which state their datatype r~quirmen~s 

in terms of two datatypes being equal. lbe assignment statement (:=) is 

one such rule, because for an assignment stntcment to pass the 

type-pass, the <EXPR>s on either side must be of equal types. Two types 

are ~.q.!!..~.!. only if the names of the iypes are identical. or if the name 

of one of the datatypes was defined directly from the name of the other, 

or in one other case involving the <EXPR> "NIL" which is described 

later. In other words, two datatypes which have identical structure are 

not necessarily equal. Thus, the types A and B ~re not equal if they 

· were declared by 

TYPE A= { INT }; B = { INT }; 

but A and B are equal if declared by 

TYPE A= {.INT }; B =A; 

The types A, B, C, and D are all equal to one another if declared by 

TYPE A= { INT }; B=A; C=B; O=C; 

The declaration 

TYPE PATH = { POINT } ; 

WIRE = [ THICKNESS: INT DIRECTION: { POINT } ] ; 

not only specifies that a PAHi and a WIRE• s DIRECTION are indef!d strings 
. 

of POINTs but it also specifics that a WIRE's DIRECTION is not 

neccssoril11 a PAlH and thnt a PATH is not necessarily a WIRE 's 
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DIRECTION. In contrast, the declaration 

TYPE PATH = POINT } ; 

WIRE = [ THICKNESS: INT DIRECTION: PATH ] ; 

specifies the same representation implied in the previous declaration 

but it also specifies that a PATH and a WIRE's DIRECTION are identical 

types. The latter declaration specifies that an instance of PATH may be 

assigned into the DIRECTION component of a WIRE and visa versa, whereas 

the former declaration forbids such an assignment. 

This rather restricted notion of type equality imposes a style of 

declaration which is characterized by the fol lowing conventions: 

1) Do not nest <TYPE> expressions and 

2) Use previously declared types in VAR statements. 

For example, the declaration 

TYPE TWO_DIMENSIONAL A.RRAY = { { INT } } 

involves nested <TYPE> expression, whereas 

TYPE TWO_DIMENSIONA.L_J\RRAV = 

ONE_DIMENSION = { INT 

ONE DIMENSION } 

involves no nesting of <TYPE> expressions. Also, 

declaration 

VAR MAIN_JOB_QUEUE = { JOB 

involves a <TYPE> expression, whereas 

TYPE JOB_,QUEUE = { JOB } ; 

VAR MAIN_JOB_QUEUE = JOB_.QUEUE 

the variable 
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declares MAIN_JOB_QUEUE without involving a <TYPE> expression in the VAR 

statement. 

Holding to this style has the effect of requiring the user to give 

a name to each indivisible type construct. These names invariably 

become useful when the user wishes to declare variables or define 

functions which refer to sub-structures without reference to the whole 

structure. For instance, we can define many functions which operate on 

instances of ONE_DIMENSION and which have no knowledge of their role 

within instances of TWO __ DIMENSIONAL_ARRAV. Also, if we wish to iterate 

thru the vectors of a T~O_DIMENSIONAL_ARRAY, we will need a variable of 

type ONE_DIMENSION. 
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Thus far, we've covered the declaration of types and variables. 

This section documents the rest of <DECL> by introducing function and 

coercion definitions. 

A function is defined by any of the four following deterministic 

rules: 

<DECL> DEFINE <ID> <SS'> ENDDEFN 

<OECL> ... - DEFINE <ID> = <TYPE> : <EXPR> ENODEFN 

<DECL> 

<OECL> 

: : : = DEFINE <ID> 

DEFINE <ID> 

<CTYPE> 

<CTYPE> 

The first form defines a 

parameters. lhe second 

procedure which 

form defines a 

parameters but which does produce a value. 

<SS> ENDDEFN 

= <TYPE> : <EXPR> ENDDEFN 

has no input or output 

function which has no input 

The third and fourth forms 

correspond to the first two forms with the addition of input parameters. 

In each case, the part following the colon, the <EXPR> or <SS~, is 

called the body of the function. The <ID> is called the function name, 

and all that which precedes the colon is called the function header. 

Remember that <SS> stands for an algorithm which produces no value 

and that <EXPR> stands for a computed value. Note that an "=<TYPE>" is 

present only in those two forms whose bodies are <EXPR>s. The <EXPR> 

must be of type <TYPE>. The "=<TYPE>" is absent from the other two 

forms, whose bodies are <SS>s. 



,. 204 -

<CTYPE> was introduced earlier when records were introduced: 

<CTYPE> 

<CTYPE> 

<IDLIST> : <1YPE> 

<CTYPE> <CTYPE> 

A <CTYPE> is used here to represent input parameters. 

input parameters are in the <IDLIST>s and the 

parameter is the corresponding <TYPE>. All <TYPE>s 

The names of the 

type of each input 

involved in the 

function header must be <ID>s, the names of previously declared 

datatypes. 

Input parameters are pnssed by value, not by ·reference as in 

FORTRAN. That is to 

from within the tunction 

say, modifications made to the input parameters 

body are not felt by the caller. These 

parameter names are to the function merely local variables whose values 

have been initialized to the given input values. Refer to ICL's 

assignment statement in the section for <SS>s to gain a complete 

understanding of how ICL assigns new values to variables. 

Examples, 

DEFINE CLEAR_.JOB_ QUEUE: MAIN_JOB_QlJEUE:=NIL; ENOOEFN 

DEFINE 

DEFINE 

NUMBER OF JOBS=INT: some 

DRAW(P:PIClURE AT: POINT): 

DEFINE FACTORIAL(N:INT)=JNT: 

INTeger <EXPR> ENODEFN 

some <SS> ENDDEFN 

IF N =< 1 THEN 1 ELSE' N*FACiORIAL(N-1) FI 

ENOOEFN 

Note the absence of commas in the input parameter specification for 

DRAW. Also note that 

DEFINE COPY(FROM,TO:IN1): FROM:=TO; ENDDEFN 
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effectively defines COPY to be a no-op. A call like 

COPV(I,5); 

does not set I to 5; I is left untouched. 

The format for calling a function depends on which of the four 

kinds you're calling. The first kin~ is called by "<ID>;" and is 

syntactically a <SS>. The second kind is called by "<IO>" and is 

syntactically an <EXPR>. The third kind is called by "<ID>(<EXPR>, 

,(EXPR>);" and is a <SS>. lbe fourth kind is called by "<ID>(<EXPR>, 

,<EXPR>)" and is an <EXPR>. Tbis is equivalent to FORTRAN's 

calling syntax except that the keyword "CALL" is replaced by a 

terminating semicolon. 

The user may declare local variables and embed <SS>s within <EXPR>s 

by using the ever useful rules: 

<EXPR> ::=DO <SS> GIVE <EXPR> 

<EXPR> :::=BF.GIN <DECL) <EXPR> END 

<SS> :::=BEGIN <DECL) <SS> END 

These rules will later be documented in full. I could define FACTORIAL 

by 

DEFINE FACTORIAL(~:INT)=INT: 

BEGIN VAR I=INT; 

END 

ENDDEFN 

DO IF N =< 1 THEN I:=l; ELSE I:= N*FACTORIAL(N-1); FI 

GIVE I 
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The body is put t.ogether employing our syntax rules as follows: 

BEGIN <DECL> DO <SS> GIVE· <EXPR> END 

The ICL user may link to MACR0-10 routines by using the following 

function definition forms: 

<DECL> :::=DEFINE <ID>: MACR0-10( <QS> ) 

<DECL> 

<DECL> 

<DECL> 

... -

... -

... -... -

DEFINE <ID> = <TYPE> : MACR0-10( <QS> ) 

DEFINE <ID> <CTYPE> MACR0-10( <QS> ) 

DEFINE <ID> <CTVPE> = <TYPE> : MACR0-10(<QS>) 

<QS> is a quoted-string which names the global symbol representing the 

address of a MACR0-10 routine. The compiler obviously does not try to 

verify that the MACR0-10 routine does indeed expect the designated 

number of arguments and produce the right type of data. This is taken 

on faith. 

MACRO Hackers 

The routine may damage AC's 1 thru 6, TX (13), and RET (16). 
Each argument, a ono word entity, is pushed onto the stack. and 
then a PUSHJ is executed. The stack register is SlK (17). The 
routine, upon returning, must decrement the stack pointer by 
(the number of arguments + 1). The output value, if any, is to 
be returned in AC DATA ( 1). The files ICLRTS.MAC and ICLRT1 .MAC 
contain ICL's runtime support and the user is free to call upon 
them. Atop your MACR0-10 file, copy the text residing on the 
first page of ICLRT1.MAC. Further details are not yet 
available. 

The user may define coercions via: 

<DECL> ... - LET <ID1> BECOME <ID2> BY <EXPR> 
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<ID1> and <ID2> must be names of previously declared datatypes. <EXPR> 

·must be of the type designated by < ID2> and must. be a da'ta source. 

Within <EXPR>, <ID1> is automatically declared to be a variable of type 

<ID1>, and is initially set to the input argument. 

E~amplesi 

LET BOOL BECOME INT BY IF BOOL THEN 1 ELSE 0 FI 

declares that any BOOLean value may be viewed as an INTeger value via 

the transformation which takes lRUE to 1 and FALSE to O. 

LET REAL BECOME COMPLEX_.NUMBER BY [REAL_.PART: REAL 

IMAG INARY_.PART: 0 ] 

declares that any REAL may become a COMPLEX_NUMBER by generating a 

COMPLEX_NUMBER whose 

IMAGINARY_.PART is 0. 

REAL_PART is the given REAL,. and whose 

I 

Coercions apply only to data sources, not to data sinks. A 

coercion is not a macro, rather, it is a function. There is a note in 

the introduction for The Compiler which mentions how a coercion may 

participate in masking a type-pass error, only to have it show up as a 

PASS3 error. 

The ICL user may define a coercion in terms of a routine written in 

MACR0-10 by: 

<DECL> ... - LET <ID> BECOME <ID> BY MACR0-10( <QS> ) 

The MACR0-10 routine should act like a function with one input 

parameter. 
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Etample: 

LET INT BECOME REAL BY MACR0-10('FLT$') 

The file BEGIN.ICL is usually the first file read into a freshly 

loaded ICL system. BEGIN.ICL includes the above INT to REAL coercion 

plus the definitions for WRITE (on INTs. REA.Ls, CHARs, QSs, POINTs, 

BOOLs) and COS, SIN, TAN, and other such utilities. 

With the three coercions 

LET BOOL 

LET INT 

LET REAL 

BECOME 

BECOME 

BECOME 

INT BY 

REAL BY 

COMPLEX_NUMBER BY 

any BOOL can be viewed as a COMPLEX NUMBER because ICL will apply 

coercions upon coercions if necessary. However, of all the possible 

ways that coercions can be applied, ICL will always choose a way which 

minimizes the total number of coercions. For example, if in addition to 

these three coercions, the user declares 

LET BOOL BECOME COMPLEX_NUMBER BY 

ICL will apply this fourth coercion instead of applying the other three 

coercions when a BOOL must be viewed as a COMPLEX .... NUMRER. 
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Any sequence of <DECL> is also a <DECL>: 

<DECL> ::= <DECL> <OECL> 

The order of <DECL>s is irrelevant. 
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Executable forms consist of a11 of ICL's linguistic constructs 

except declarations. Executable forms are represented by the 

parts-of-speech <EXPR> and <SS>. An <EXPR> represents a computed value 

whereas <SS> represents a sentence form, or action. 

Each functional form of ~EXPR> or <SS> will be described by a 

generalized rule of grammar. A generalized rule consists of a set of 
• l 

BNF rules each having a name and number~d righthand phrase elements, a 

set of type requirements including specification of a resulting type, a 

set of requirements for PASS3, and a description of meaning with 

examples. Any reference to a rule made by the ICL compiler will be by 

the rule's name. An explanation of this rule format follows the 

presentation of the first rule. 

ICL is an expression oriented language. That is to say, the 

majority of syntax rules define <EXPR>s and only a few rules describe 

<SS>s .. We shall begin by describing <EXPR>s. 
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The part-of-speech <EXPR> represents a computed value. Because ICL 

is a typed language, each computed value is an instance of some type. 

It is relatively easy to partition off certain sets of <EXPR> forms: 

some <EXPR> forms deal with strings, some deal with records, and some 

deal with uartants. Independently, there are some <EXPR> forms which 

deal with all kinds of types such as the IF-THEN-ELSE, function calling, 

.and various other forms. 

Each non-primitive type construct, e.g., string, record, and 

variant, has a special set of <EXPR> forms which perform generation and 

a special set of forms which perform selection. Generation refers to the 

creation of new objects and selection refers to the examination or 

analysis of existing objects. For example, LISP has the generation 

forms CONS and LIST and the selection forms CAR and CDR. Languages like 

PASCAL and FORTRAN have no generating forms: The effect of generation 

is achieved only by putting individual selection forms on the lefthand 

sides of individual assignment statements. 

The part-of-speech <EXPR) actually stands for an array of 

parts-of-speech. The common notion of operator precedence (e.g., 

multiplication before addition) splits the part-of-speech <EXPR> into 

<EXPR>s of various precedences. We denote a particular element in this 
' I 

array of parts-of-speech by writing <EXrR> ~I precedence i. The 

precedence of an <EXPR> is precisely the precedence of that binary 

operator (<BOP>) most recently used in constructing the <EXPR>. 

Operator precedence will be described in full with the set of rules 

which integrate <BOP>s and <EXPR>s. Let it suffice for the time being 
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that unless otherwise specified, the <EXPR> appearing on the lefthand 

side of a BNF rule always has precedence zero and that the <EXPR>s 

appearing on the righthand side always invite any precedence. Thus, the 

user can ignore all considerations of precedence except in those rules 

having some specified precedence condition. 

Many of the <EXPR>-rules presented in this section have 

counterparts for <SS>s. For example, the IF-THEN-ELSE construct is 

defined both for <EXPR>s and for <SS>s. The <EXPR> IF-THEN-ELSE chooses 

one value among many values and the <SS> IF-THEN-ELSE chooses one action 

among many actions. Refer to the section §~!!.!~.!!.£.~ Fot._~~. <SS> to see 

which <EXPR> forms carry over to <SS> forms. 

In any description for PASSJ requirements, the terms sink and 

taroet will be used interchangeably. 
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EBIF: <EXPR0> :::= <BIFE1> <EXPR2> THEN <EXPR3> ELSE <EXPR4> FI 

where 

BIF1: 

BIF2: 

<BIFE> 

<BIFE> 

IF 

: := <BIFEkt> <EXPRk 2> THEN <EXPRka> EF 

Type Requirements, 

<EXPR2 > = BOOL = <EXPRk2> 

result = <EXPR3> = <EXPR4> = <EXPRka> 

PASS31 

<EXPR2> = SOURCE = <EXPRk2> 

result = <EXPR3> = <EXPR4> = <EXPRka> = (SOURCE or TARGET) 

Meaning: 

The <EXPR2> and <EXPRk2 >s are evaluated in sequence until one of them 

evaluates to TRUE. Then the corresponding THEN <EXPR>, either <EXPR3> 

or one of the <EXPRA: 3>s, is evaluated and that is all. However, if 

niether <EXPR2> nor any of the <EXPRk2 >s yield .TRUE, then the ELSE 

<EXPR>, shown as <EXPR4>, is evaluated. 

Examples: 

K:= IF A=B THEN 1 ELSE 2 FI 

The meaning is nearly obvious: K is assigned 1 if A=B, otherwise, 

K is assigned 2. 

K:= IF A<t THEN 1 
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EF ~<2 THEN 2 

ELSE 3 FI 

K is assigned 1 if A<t, otherwise, K is assigned 2 if A<2, 

otherwise, K is assigned 3. "EF" is short for "ELSE IF". 

IF A<l THEN I ELSE J FI := 5 

If A<t, then I is assigned 5, otherwise J is assigned 5. 

The IF-THEN-ELSE construct was described by the three rules who~e 

names are EBIF, BIF1, and BIF2. These syntax rules are easily 

understood by using "IF" in place of <BIFE>. Thus the first rul~, EBIF, 

is simply "IF <EXPR2 > THEN <EXPR3> ELSE <EXPR4 > Fl". Substituting "IF" 

for <BIFE> is legitimate by the second rule, BIFt. In general, to 

comprehend a set of rules like these, use the simplest 'rules•as direct 

substitutions. Now, since <BIFE> is es~entially "IF", we can view the 

third rule, BIF2, as "If <EXPR> THEN <EXPR> EF", and furthermore, we 

could substitute the <BIFE> in the first rule by "IF <EXPR> THEN <EXPR> 

EF" and come up with "IF <EXPR> THEN <EXPR> EF <EXPR> THEN <EXPR> ELSE 

<EXPR> Fl", etc. 

The use of "k" in some of the subscripting conforms to the fact 

that there may be many occurences, due to the recursive structure of the 

BNF rules. For example, the <EXPRk 3> in the rule BIF2 refers tq all 

<EXPR>s occupying that slot between "THEN" and "EF" in each application 

of the rule BIF2. The "k"s are m~rely reminders about the possible 

multiplicity of the subscripted entity. 
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The type requirements state that the <EXPR>s immediately following 

<BIFE>s must be of type BOOL, and futh~rmore, that all of the other 

<EXPR>s, those which follow "THEN" or "ELSE", may be of any type so long 

as they are all of equal types. The resulting type, the type of 

<EXPR0 >, is given this common type. Note that ICL wil 1 apply coercions 

in order to satisfy type requirements. Thus, for example, the <EXPR>s 

following the THEN and the ELSE may he of different types as long as 

there exists some common type to which ICL can coerce each of the these 

given <EXPR>s. Similarly, <EXPR>s following <BIFE>s can be of any type 

as long as that type can be coerced to the type BOOL. 

The PASS3 requirements state that the <EXPR>s immediately following 

the <BIFE>s must be data sources. The other <EXPR>s may either all be 

sources or all be targets. Allowing the target case means that an 

IF-THEN-ELSE may appear on the lefthand side of an assignment statement. 

·Note that the term "evaluate" applies not only to sources, but also to 

targets. Evaluaiing a source means producing a value, and evaluating a 

target means consuming some given value. 

The naming of rules and the numbering of their righthand elements 

facilitates a concise identification scheme. For instance, "EBIF 3" 

identifies the THEN-clause in the rule EBIF. The "~" in 

IF ••. THEN IF ..• THEN ... ELSE it FI EL.SE ... FI 

<------ -E:xrn--------) 
<---------------txrn-----------------------> 

is identified by the backtracei 
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EBIF 4 

EBIF 3 

which says that the "*" is in the ELSE clause, <EXPR4 >, of an 

IF-THEN-ELSE, and that furthermore, this IF-THEN-ELSE is itself in the 

THEN clau•e, <EXPR3 >, of an enclosing IF-l~EN-ELSE. The "*" in 

IF ... THEN * EF •.. THEN ••• EF ... THEN ... ELSE ••• FI 

(---BIFE-----) 

(--------------BIFF.------) 

<----------------------------Exrn-----------> 
is identified by 

BIF2 3 

BIF2 1 

EBIF 1 

which says that the "*" is in the THEN clause, <EXPRk 3 >, of the rule 

BIF2. Furthermore, the resulting <BIFE> is the <BIFEt1> in the rule 

BIF2, and finally, this resulting <BIFE> is the <BIFE1> in the rule 

EBIF. Each line in the backtrace specifies where, and in which rule, 

the previous line resides. 

This identification scheme is used to specify where a type-error is 

found. 
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The following <EXPR> forms are terminal in the sense that the 

part-of-speech <EXPR> is absent from each rule's righthand side. Any 

<EXPR> will be expressed in terms of these basic <EXPR>s. 

ENU: <EXPR> 

Type requirements 

PASS3 requirements 

Meaning: 

Examples: 

EQS: <EXPR> .. -

Type requirements 

<NU> 

The resulting type is JNTeger. 

The result is a SOURCE. 

The value is the integer <NU> itself. 

1 or 5 or 139 

<OS> 

The resulting type is a QS (quoted text string) and is also a 

CHARacter whenever <OS> is one character long. 

PASS3 requirements The result is a SOURCE. 

Meaning 

Examples: 

ELOG: <EXPR> 

<EXPR> .. -

Type requirements 

The value is <OS> itself. 

L 

L 

'this is a QS' 

<NU> 

<NU> <NU> 

or IC I 
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The resulting type is LOGICAL(k) where k is greater than or equal 

to the total word length implied by the <NU>(s). Each <NU> must be 

no more than six digits long and must contain no B's or 9's. The 

<NU>s are interpreted in octal. 

PASS3 requirements 

/lfeantna 

The result is a SOURCE. 

If there is only one <NU>, then the value is the bit pattern 

implicit from the octal notation. If there are two <NU>s, then the 

bit pattern is: 

Examples: 

L(5) 

L(l 1) 

EFNU: <EXPR> .. -

Tupe requirements 

PASS3 requirements 

Meant no 

Examples: 

i.s an instance of LOGICAL(k) where 

between 3 and 36. The bit pattern 

is an instance of LOGICAL(k) where 

between 19 and 36. The 

• • . 001 000 000 000 000 

a Jloatina number 

The result is a REAL. 

The result is a SOURCE. 

The REAL value itself. 

bit pattern 

000 001 

k is 

is 

k is 

is 

1.1 or 1.09 or .1 or .09 or 50. 

There is no "E" notation. 

ETRU: <EXPR> TRUE 

101. 
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Type requirements 

PASS3 requirements 

Meaning 

The result is a BOOL. 

lhe result is a SOURCE. 

TRUE 

EFALS: <EXPR> ::= FALSE 

Same as TRUE, but the meaning is inverted. 

ENIL: <EXPR> : := NIL 

Type requirements 

The result is a pseudo-type called NIL. An explanation follows. 

PASS3 requirements lhe result is a SOURCE. 

Meaning "Undefined" 

EID: 

The NIL pseudo-type is a one of a kind entity in ICL. NIL is 

not a type. Variables may not be declared to be of NIL type. 

However. NIL is operational in that it is equal to any type 

excepting INT, REAL, BOOL, CHAR, and any LOGICAL or SCALAR type. 

The <EXPR> construct "DEFINED( <EXPR> ) ", which is documented 

later, is the only way to sense a NIL value. 

<EXPR> .. - <ID> 

Type requirements 

The resulting type is either the type of the variable <ID> if <ID> 

is a declared variable. or any scalar type which includes <ID> in 

its <IDLIST>, or the output type of a parameterless function whose 

name is <ID>. 
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PASS3 requirements 

In the uariable case, the resulting PASS3 status is SOURCE and 

TARGET. The other cases yield SOURCE only. 

Meaning 

In the uariable case, the SOURCE state means that the contents of 

<ID> are fetched, and the TARGET state means that <ID> is set to 

hold a given value. In the scalar case, the value is <ID> itself. 

In the function case, the value is the result of calliqg the 

function, <ID>. 

Examples: 

Refering to the examples presented in the section Declarations .•. 

I 

BLUE 

represents the contents of 

the INTeger variable J 

represents an instance of the 

scalar type COLOR 

NUMBER_OF_JOBS represents the value obtained by 

calling the function NUMBER __ OF _JOBS. 

Two more terminal <EXPR> forms will be introduced in Part 2. 
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§.!r.!..~.9. g_~ n e.r.'!..!.!.2.~. 

Strings are generated by 

STRGEN: <EXPR> .. - <REXPR> 

where 

SEXP: <REXPR> .. - <EXPR1> 

SEMNOP: <REXPR> : : = <Rl\NClE 1> 

SCRNG: <REX PR> .. - <Rl\NGEk1> <REXPRk2> 

SCEXP: <REX PR> .. - <EXPRkl> <REXPRk 2> 

SCCONX: <REXPR> : := <EXPRk 1> ·* <REXPRk2> ' 

Informally, this states that an <EXPR> may be formed by writing 
f 

a 

"{" followed by a sequence of eith~r <EXPR> or <RANGE>, followed by 

a "}". lbe elements in the sequence are separated by either ";" or 

";*" A <RANGE> is a form which yields many values: 

RFUNC: <RANGE> .. - $ <EXPR1> <QUl\NT 2 > 

RFUNC: <RANGE> .. - COLLECT <EXPR 1> <OUANT2> 

RFUNC: <RANGE> .. - <QUANT2> $ <EXPR1> 

RFUNC: <RANGE> .. - <QUANT2> COLLECT <EXPR1> 

. 
A (QUANT> is a loop generator. Refer to the section on 

quantiJiers. 

Tupe requirements 
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All the <EXPR>s must be of equal types, including the <EXPR>s in 

the RFUNC rules. The resulting type is any type which has been 

declared to be a STRING of this common type. 

PASS3 requirments 

All the <EXPR>s must be SOURCEs, and the result is a SOURCE. Later 

on, we shall see where a TARGET form of the above is useful. The 

TARGET case will be covered under the FOR-quantifier. 

/lleanina 

The value is the ordered sequence consisting of the values of the 

<EXPR>s and the multiple values of any <RANGE>s. The separators 

•;• and •;*" are equivalent; the distinction between ";" and "·*" • 

occurs only in the TARGET case. Any <EXPR>s which evaluate to NIL 

are ignored. The user cannot depend on having the <EXPR>s and 

<RANGE>s evaluated in order of specification. 

All four of the <RANGE> rules (RFUNC) are semantically 

equivalent. The <RANGE> produces a sequence of values by 

evaluating <EXPR1> once for each iteration caused by <QUANT2 >. 

Remember that a (QUANT> is a program loop generator. 

Examples: 

{1;2;3;4> 

is the ordered sequence 1,2,3,4, and is an instance of type INT 

}, e.g., STACK_OF_)NTEGER declared earlier. Note, however, if { 

INT } had never been mentioned in a declaration, this <EXPR>, or 

any <EXPR> having this as a sub-<EXPR>, would fail the type pass. 

{ 3.112.0 ; 1.316.2 ; 7.0#8.0 } 



- 223 -

is a sequence of three points and is an instance of type { POINT }. 

e.g,. SET_OF_POLES declared earlier. 

{ 3.112.0 ; NIL ; 1.3#6.2 ; 7.0#8.0 

is equivalent to the previous example. 

{ 1 ; 2 ; $ I FOR I FROM 3 TO 7; 8 } 

is equivalent to 

(----QUAftiT- - ------) 

(--------RAiGE---------) 

2 3 ; 4 ; 5 ; 6 ; 7 ; B ) and 1 

1 2 FOR I FROM 3 TO 7; COLLECT I ; B 

(-----QU~iT------) 

STRSEL: 

(--------------RAiGi---------) 

<EXPR> ::= <EXPR1> [ <EXPR2 > ] 

<EXPR1> must be of precedence zero. 

Type requirements 

<EXPR1> is a string of some type and 

<EXPR2> = INT. 

result = that type of which <EXPR 1> is a string. 

PASS3 requirements 

<EXPR2 > = SOURCE 

result = <EXPR 1> = SOURCE. Also 
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result = TARGET when <EXPR1> passes as both a SOURCE 

and a TARGET. 

trleantng 

Indexing: The resultjng value, in the SOURCE case, is the 

<EXPR2>1 th element in ·the string <EXPR1>. In the TARGET case, 

<EXPR1> is modified so that its <EXPR2> 'th element appear~ to have 

the new value unless that new u~lue is NIL. Assigning NIL to an 

element of a string has the effect of deleting that element from 

the string, preserving the string's order. This is in keeping with 

the fact that NIL is never an element of any string. Note that in 

the string generation rules, STRGEN, all NIL values are ignored. 

The debugging package will be entered under the following 

conditions: In the SOURCE case, the index is non-positive. In the 

TARGET case, the index is non-positive or the index is larger than 

the length of the string. Note, however, if the index is larger 

than the string length in the SOURCE case, a value of NIL, 0, or 

FALSE is returned. 

Examples: 

{ 2 ; 4 6 } [ 2] is 4. 

X[3] is the third element in X. 

X[ I+t] is the 1+1'th element in X. 

X[ I] := Z; modifies X so that its l'th element is 2. 

The statements 

v := 1.0Nt.O 2.0#2.0 3.0N3.0 } 

V[2] := NIL ; 
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leave V being { 1.0#1.0 3. 0#3. 0 } . 

ETAIL: ] 

<EXPR1> must be of precedence zero . 

. Type requirements 

<EXPR1 > is a ~tring of some type and 

<EXPR2 > = INT. 

result = <EXPR1> 

PASS3 requirements 

<EXPR2> = SOURCE. 

Meaning 

resu 1 t = <EXPR 1 > = SOURCE. Al so 

result = TARGET when <EXPR1> passes as both a SOURCE 

and a TARGET. 

Tail extraction: The resulting value, in the SOURCE case, is the 

substring of <EXPR1> which begins at the <EXPR2>1 th element and 

continues until the end. In the target case, <EXPR1> is modified 

so that its tail starting at the <EXPR2 >1 th position appears to be 

the new value. 

The debugging package will be entered under the following 

conditions: In the SOURCE case, the index is non-positive. In the 

TARGET case, the index is non-positive or the index is larger than 

the length of the string. Note, however, if the index is larger 

than the string length in the SOURCE case, the NIL string is 

returned. 

Examples: 
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{ 2 ; 4 6 ) (2-) is 

X[ I-] is 

at 

X[ I-][ 1] is 

X[ 1-] is 

X[ I-] := { 20 ; 30 ; 40 

modifies X so that X[I] is 20, X[I+1] 

last element in X is now X[I+2]. 

Mt!~el Laneous String FonE.~. 

ERFRSH: 

ERFRSH: 

<EXPR> ::= REFRESH 

<EXPR> ::= REFRESH 

Type requirements 

<EXPR1> is a string of something 

result = <EXPR1> 

{ 4 ; 6 } 

the tail of x, starting 

position I. 

equal to X[ I]. 

equal to x. 

> ; 

is 30, and X[I+2] is 40. 

or 

PASS8 requirements 

Keantng 

result = <EXPR 1> = SOURCE 

The 

An identity: <EXPR1> appears unchanged, but a possibly more 

efficient internal representation is chosen ·for· <EXPR1>. REFRESH 

is purely an ~ptimizing consideration. The <BOP>s "$>", "$$", and 

"<$" leave strings in a slightly inefficient form for 

accessibility. REFRESH straightens out the wrinkles, so to speak. 

Both the resulting <EXPR> and <EXPR1> are refreshed. 
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If the user defines a unary function named REFRESH which takes 

a string as a paramotor, his definition overrides the first ERFRSH 

rule. However, the equivalent form 

REFRESH ! <EXPR> 

cannot be overridden. 

Examples: 

Y := REFRESH( X ) 

Y gets a refreshed X. 

Z := REFRESH( X ) 

is equivalent to "Z:=X;" if performed immediately after the 

previous example, because X is already refreshed. 

EREVRS: <EXPR> .. - REVERSE or 

EREVRS: <EXPR> ::= REVERSE 

have the same requirements as ERFRSH. 

Meaning 

The resulting value is the string <EXPR1> in reverse order. The 

result is automatically refreshed. REVERSE can be overridden just 

as REFRESH can be overridden. 

Examples: 

REVERSE( { 2 ; 4 ; 6 } ) 

REVERSE( REVERSE( X ) ) 

is equal to 6 

is equal to X. 

4 2 } 
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Record Gener!!_!_!on 

RGENF: <EXPR> .. - <RECX> 

where 

SEMNOP: <RECX> .. - [ <RECXT> 

RGENQ: <RECXT> : := <ID1> <EXPR2> ] 

RGENt: <RECXT> : : = <ID kt> <EXPRk2> <RECX:Tk 3 > 

Informally, a new record is specified by a 11
[" followed by a 

sequence · of "<ID> ·<EXPR>" and is terminated by a "]". The 

elements in the sequence are separated by blanks. 

Tupe requirements 

The resulting type is any declared record type which contains the 

<CTVPE> elements "<I01> : the-type-of-<EXPR1>11 and each of "<IDkt> 

the-type-of-<EXPRk2>11
• 

PASS3 requirements 

result= <EXPR2 > = <EXPRk2> = (SOURCE or TARGET). 

/lfeantng 

In the SOURCE case, create a new record whose component names are 

<ID1> and each <IDk 1> and whose corresponding values are <EXPR2 > 

and each <EXPRk2 >. Unspecified components are automatically 

assigned the values: 0 for INT, REAL, and LOGICAL, FALSE for BOOL, 

the NULL character (code 0) for CllARs, and NIL for all other types. 

In the TARGET case, assign into each <EXPR2> and <EXPRk2 > the value 

of the corresponding component from a given structure. The user 
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cannot depend on having the <EXPR>s eualuated in their specified 

order. 

Examples: 

[ REAL_PART: 5.6 IMAGINARY PART: 3.0 ] 

is a new instance of COMPLEX_NUMRER, a type which was declared by 

an earlier example in the section Declarations. 

[ THICKNESS: 1 DIRECTION: 0#0 ; 111 ; 1#0 } ] 

is a new instance of WIRE (also declared earlier). 

[ THICKNESS: 1 ] 

is a new instante of WIRE. The DIRECTION component is NIL. 

however, that 

[ THICKNESS: 1 DIRECTION: NIL ] 

Note, 

fails the type-pass because nowhere is NIL required to be equal to 

some type. In general, an isolated "NIL" may not be specified in a 

record. 

[ THICK.NESS: DIRECTION: A_PATH ] := A_WIRE ; 

assigns the THICK.NESS of A_.WIRE into I and simultaneously assigns 

the DIRECTION of A_WIRE into A. PATH. 

RSELQ: <EXPR> ::= <EXPR1> 

<EXPR1> must be of precedence zero. 

Type requirements 
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<EXPR1> must be a record type which includes a component whose name 

is <ID2 >. 

<ID2>· 

The resulting type is the type of the component named 

PA553 requirements 

result = SOURCE = <EXPR1 >. Also, 

result= TARGET when <EXPR1> passes as both a SOURCE and a TARGET. 

Jlleantng 

In the SOURCE case, the resulting value is the <ID2 > component of 

<EXPR1>. In the TARGET case, <EXPR1> is modified so that its <ID2 > 

component appears to have a new value. 

Examples: 

[REAL_PART: 1.3 IMAGINARY_.PART:2 .6] 

is the REAL, 2.6. 

X.REAL_PART 

is the REAL_PART of X. 

IMA.GINARY_PART 
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Points are generated by the form 

<EXPR> I <EXPR> 

where each <EXPR> is a REAL. Because ICL treatcs "I" as an infix binary 

operator, please refer to the operator "I" in the section for <BOP>s. 

PTSELX: <EXPR> .. - <EXPR1> x 

PTSELY: <EXPR> .. - <EXPR1> y 

<EXPR1 > must be of precedence zero. 

Type requtrements <EXPR1> = POINT. result = REAL 

PASS3 requirements are like those of the rule RSELQ. 

flreantno 

Select the X or Y coordinate of a point. A POINT is essentially 

the record [X,Y: REAL]. However, a POINT is generated by REAL I 

REAL rather than by the record generating form [X:REAL Y:REAL]. 

Examples: 

(3.015.6).X 

P.X 

Q.X := 5.0 

is 3.0 

is the x-coordinate of 

the point P 



- 232 -

modifies Q so that its x-coordinate appears to be 5.0. 
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This section covers the CASE-form when used in conjunction with 

SCALAR types. 

ECASEE: <EXPR> ... - CASE <EXPR1> OF <EXPRV2 > 

where 

EVCASE: <EXPRV> : : : = <ID1> : <EXPR2 > ENDCASE 

EVCASB: <EXPRV> : : : = <ID1c1> : <EXPR1c2> <EXPRV1cs> 

Informally, this states that an <EXPR> may be of the form 

CASE <EXPR> OF 

Type requirements 

<ID> <EXPR> 

<ID> <EXPR> 

<ID> : <EXPR> ENDCASE 

<EXPR1> must be of some declared scalar type. <ID1> and each 

<ID1c 1> must either be elements of this scalar type's <IDLIST>, or 

must literally be the <ID> ELSE. 

Result = <EXPR2> = <EXPR1c2> 

rASS3 requirements. 

<EXPR1> = SOURCE 

Result = <EXPR2> = <EXPR1c2> = (SOURCE or TARGET). 

flreanina 

Evaluate <EXPR1), thus yielding an <ID> in the scalar's <IDLIST>. 

Look down the list of <ID1> and <ID1c 1>s in <EXPRV2> until you find 

a match. Then evaluate the corresponding <EXPR2> or <EXPR1c2>. If 

no match is found, i.e. the user hasn't specified all the <ID>s in 
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the scalar's <IDLIST>, then evaluate the <EXPR> corresponding to 

the <ID> ELSE, if there is one. Otherwise, enter the debugging 

package. 

This form of the CASE statement is slightly more concise than 

a corresponding use of the IF-THEN-ELSE form. 

Example: 

DEFINE WRITE(X:COLOR): 

WRITE( CASE X OF 

ENDDEFN 

RED: 'Red' 

BLUE: •Blue' 

GREEN: 'Green' 

YELLOW: 'Yellow' 

BLACK: 'Black' ENDCASE 

defines the function WRil'E for COLORs, a type which was declared 

earlier, using the function WRITE defined for quoted text strings 

(QS). The CASE form results in the type QS because all of its 

clauses result in the type QS. 
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The following rule has two independent meanings. This section 

documents only one of its meanings. The other meaning is covered under 

Tupe Disambiguation. The form presented here is refered to as e~plicit 

variant generation. 

TYPDIS: 

<EXPR2 > must be of precedence zero. 

Type re qui rments 

result = a uariant type where 

<ID1> is the name of some state in that variant type and 

<EXPR2> is of the type corresponding to this state. 

PASS3 requirments 

result = SOURCE = <EXPR2> 

Meaning 

The resulting value is the variant object which resides· in state 

<ID1> and which has value <EXPR2>. 

Examples: 

The datatype declaration 

TYPE EDGE = EITHER 

STATE1 = LINE 

STATE2 = ARC 

ENDOR; 
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specifies that an EDGE may rcsjde in one of two states. The names 

of the states are STATE1 and STATE2. An EDGE found in STATE1 is 

represented by an instance of the type LINE and an EDGE found in 

STATE2 is represented by an instance of the type ARC. If LINE5 is 

a variable of type LINE, then the <EXPR> 

STATE1 : : LINES 

is an instance of EDGE. This EDGE is in the state STATE1 and its 

value is LINE5. Similarly, 

STATE2 :: an <fXPR> of type ARC 

is an EDGE residing in the state STATE2. 

The followi~g <EXPR> is not an EDGE: 

STATE2 :: LINE5 

An EDGE cannot both be in STATE2 and he rcpnisented by a LINE. An 

EDGE in STATE2 can only be represented with an ARC. 

As described earlier with the variant <TYPE> construct, the 

variant <TYPE> construct provides coercions from each of its 

constituent types to the variant type. Thus, the type EDGE, a 

variant type whose constituent types are LINE and ARC, comes with 

the coercions 

LINE -> EDGE and 

ARC - > EDGE 

This means that an instance of LINE and an instance of ARC each 

implicitly can be viewed as an instance of type ,EDGE.• The user 

actually does not need to write 
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STAlE l : : LINES 

to have LINES pass as an instance of EDGE. 

LINES 

by itself passes as an instance of EDGE, thanks to the coercions. 

Similarly, 

an <tXPR> of type ARC 

passes as an instance of EDGE. 

The reader might wonder if it is ever necessary to explicitly 

specify the state for a variant object. It would seem that the 

coercions supplied with the variant type declaration make it 

unnecessary. There are two reasons why the user wi 11 want to 

explicitly specify the state. The state may he specified solely 

for clarity or style. However, there are cases where it is 

absolutely necessary to specify the state. Consider the following 

variant datatype. 

TYPE PICTURE = EI111ER 

POLYGON = 

WIRE = 

EN DOR; 

POINT 

POINT 

The type PICTURE has two constituents whose types are identical. 

The <EXPR> 

{ point ; point ; point > 

can be viewed as a PICTURE in two ways. Is it in the POLYGON state 

or is it in the WIRE state? If the user does not specify the 

state, the string of points is ambiguous \'<·hen viewed as a PICTURE. 
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Each of the following is unambiguous because the state is 

explicitly stated: 

POLYGON •• 

WIRE : : 

point 

point 

point ; point 

poi n t ; . poi n t 
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This section covers the CASE form when used in conjunction with a 

variant object. 

A variant value can be examined only by using the following form. 

ECASE: <EXPR> ... - CASE < ID1> OF <EXPRV2> 
where <EXPRV> is as defined for the scalar CASE form: 

EVCASE: <EXPRV> ... - <ID1> : <EXPR2 > EN DC ASE 

EVCASB: <EXPRV> ... - < IDk 1 > : <EXPRk2 > <EXPRVk3> 
Type requirements 

<ID1> of ECASE, the case variable, must be a variable of some 

variant datatype. Each of the <ID1> and <IDk 1>s of the <EXPRV> 

must either be the name of one of the states in the variant 

datatype or literally ELSE. 

The case-variable, <ID1> of ECASE, is automatically modified 

within each case-clause, the <EXPR2> and each <EXPRk2 >. The type 

of the case-variable within the case-clause labeled <IDkt> becomes 
I 

precisely that type which is associated with the state <IDkt> in 

the variant datatype's definition. The case-variable assumes the 

state's particular type because the state of the case-variable is 

known within each case clause. Hol'•ever, within the ELSE clause, if 

there is any, the case-variable is not modified and it still 

retains its original, variant type. 

Within each case-clause, the user is free to assign new values 

into the case-variable. However, the data he assigns must be of 

the specific type which the case-variable assumes in• the 
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case-clause. Once the CASE form is terminated, the case-variable 

appears unmodified regardless of the new values it might have been 

assigned from within any of the case-clauses excepting the ELSE 

clause. 

PASS3 requtrements are like those for the scalar CASE. 

Jlfeaning: 

Fetch the value from the variable <ID1>. Look down the list of 

<ID1> and <IDk 1>s within <EXPRV2> until one matches the state in 

which the variant value currently resides. Then evaluate the 

corresponding <EXPR2> or <EXPRk 2> and that is all. However, if no 

match is found, evaluate the ELSE clause if there is one, otherwise 

enter the d~bugging package. 

As noted above, the meaning of the case-variable's name is 

different within each non-ELSE case-clause. Thus, if the user 

wishes to refer to the original variant value from within a 

specific case-clause, he must have previously assigned the original 

value to another, independent variable. 

Examples: 

Assume L is a variable of the variant type LISP_ELEMENT .declared 

earlier. 

WRITE( CASE L OF 

AlOM: 'L is an ATOM' 

CONS PAIR: 'L is a CONS PAIR' 

INTEGER NUMBER: 'L is an integer' 

FLOATING NUMBER: 'L is a real number' ~NDCASE 

) ; 
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uses WRITE of a QS to report in which state L resides. If L is in 

the ATOM state, then "L is an ATOM" is typed out. If L is in the 

CONS_PAIR state, them "L is et CONS_PAIR" is typed out, etc. 

DEFINE IS __ ATOM( L: LISP _ELEMENT )=BOOL: 

CASE L OF CONS PAIR: FALSE ELSE: TRUE 

ENODEFN 

ENDCASE 

def in es the function "IS_ATOM" to be like LISP' s predicate "ATOM". 

DEFINE IS_L IlATOM( L: LISP _ELEMENT )=BOOL: 

CASE L OF ATOM: TRUE 

ENODEFN 

ELSE: FALSE ENDCASE 

defines "IS_LITATOM" to match LISP' s LITATOM predjcate. 

DEFINE CDR(L:LISP_ELEMENT)=LISP_ELEMENT: 

CASE L OF 

CONS_PA.IR: 

ELSE: 

ENDCASE 

ENDDEFN 

L .CDR 

00 report an error GIVE NIL 

defines CDR extraction. CDR doesn't succeed unconditionally. CDR 

of an INTEGER_NUMBER is an erroneous request, for example. Note 

that within the CONS_PAIR case-clause, the variilble L may have its 

CDR field fetched because L has been implicitly declared to be of 

the record type "[Cl\R,COR:LISP __ ELEMENT]" for the duration of the 

CONS_PAIR case-clause. 

DEFINE EQUAL(X,Y:LlSP_ELEMENT)=BOOL: 

CASE X OF 
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ATOM: CASE V OF 

ATOM: X=Y ELSE: FALSE ENDCASE 

INTEGER_NUMBER: CASE V OF 

JNlEGER NUMBER: X=Y ELSE: FALSE ENDCASE 

FLOATING NUMBER: CASE V OF 

FLOATING NUMBER: X=V ELSE: FALSE ENDCASE 

CONS PAIR: CASE V OF 

ENDCASE 

ENDDEFN 

CONS_PAIR: EQUAL(X.CAR,V.CAR) & 

EQUAL(X.CDR,Y.CDR) 

ELSE: FALSE ENOCASE 

defines the predicate EQUAL to tell if two given LISP ELEMENTs are 

identical in structure. This states that if the first LISP ELEMENT is 

in the ATOM state, then equality is achiaved only if the second 

LISP_ELEMENT is also in the AlOM state and if it has the same value. 

Similar requirements are used to complete the definition for EQUAL by 

accounting for the other states in ~hich a l.ISP_ELEMENT may reside. In 

the CONS_PAIR state, recursion on the CAR and the CDR is used., The 

binary operators "=" and "&" arc defined later in the section for 

<BOP>s. In ICL, "=" is defined only for the primitive datatypcs. Note 

that in the ATOM cases for X and V, the "=" compares two QS's and that 

in the INTEGER_NUMBER cases, the "=" compares two INTegers, and that in 

the FLOATING_NUMBER cases, the "=" compares two REALs. The CONS PAIR 

cases, however, are not written using 

two LISP_ELEMENTs. LISP ELEMENT is 

"=" because "=" will not compare 

a non-primitive type. Note also 

that onlu within the CONS_PAIR clauses can we select the CAR or CDR 
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field of X and Y. 
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The following rule has two independent meanings. One of the 

meanings has already been covered in the section Variant Generation. 

The meaning presented here is 

specification. 

TY POIS: 

referred 

<EXPR2> must be of precedence zero. 

Type requirments 

to 

<ID1> is the name of a declared datatype and 

result = <EXPR2> = the type <ID1> 

PASS3 requirments 

result = <EXPR2> = (SOURCE or TARGET) 

/lfeantno 

as e"K.plicit type 

<EXPR2 > is e"K.plicitly required to be of type <ID1>. This 

construct is useful for disambiguation. The existence of type 

coercions and polymorphic function names may lead to ambiguities in 

datatypes. For example, suppose we have twice defined the function 

name WRITE, once for INTegcr input and once for ·REAL input.' 

Suppose further that we have an INTcger-to-REAL type coercion. If 

the user types 

WRITE(K); 

where K is an INTeger variable, two scenarios appear possible. One 

scenario is th~t the INTegcr-WRITE will be invoked. The other is 

that the REAL-WRITE will be invoked after coercing K to a REAL. 

ICL will choose the simpler of the two scenarios because ICL 
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applies coercions with reluctance. In short, the pr~ferred type of 

K is INTeger, not REAL. llowevcr, the user may force the coercion 

to apply by writing: 

WRITE( REAL::K ); 

The <EXPR> "REAL::K" passes the type-pass only by viewing K as a 

REAL. The preferred type of "RE/\L::K" is REAL, not INTeger. 

Examples: 

INT:: 1 

is equivalent to 1. 

INT:: (1.0+2.3) 

is equal to 3 if the user has supplied a REAL-to-INT coercion, so 

that the REAL, (1.0+2.3), may be viewed as an INT. 

LISP_ELEMENT:: NIL 

is a NIL LISP ELEMENT. NIL can be made an instance of any type to 

which NIL is equal by prefixing NIL with that type's name. Thus 

[CAR: 5 CDR: LISP_ELEMENT::NIL ] 

passes the type pass and is equivalent to 

[CAR: 5] 
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Function f~!in.9 

Functions with parameters arc called by 

'ECALLP: <EXPR> .. - <ID1> <ARGS ) 
2 

where 

ARGS1: <ARGSX> .. - <EXPR> 

ARGS2: <ARGSX> .. - <ARGSX1> <EXPR2> 

ARGS3: <ARGS> .. - <ARGSX> 

Informally, this states that an <EXPR> may be formed by an <ID> 

followed by a "(" followed by a sequence of <EXPR>s separated by 

commas followed by a ")". This has the appearence of FORTRAN. 

Tupe requirements 

There must exist a declared function whose name is <ID1> and who~e 

input parameter types sequentially match the types of the <EXPR>s 

in <ARGS>. An isolated "NIL" may not be passed as a parameter 

because NIL has no type and a test for type equality is not used 

here. However, a NIL valud may be passed as a parameter by using 

the rule TYPDIS. 

PASS8 requirements 

Each <EXPR> in <ARGS> = SOURCE and 

result = SOURCE. 

Meant no 
Evaluate, in order, each <EXPR> of <ARGS> and then call the 

appropriate function, <ID1>. 

function. 

Example 

The resulting value is that of the 
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EQUAL(X,V) 

is a BOOLean if X and Y arc LISP ELEMENls, referring to an earlier 

example. 

Functions without input parameters are called by just naming the 

function name. This was described in the rule EID. 
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Binary operators are denoted by <BOP> and are things like 11 +11
, 

11
-

11
, 

Unary operators arc denoted by <UOP> and <RHUOP> and are 

things like unary minus and boolean NOT, 11
-

11
• Associated to <BOP>s and 

<UOP>s is an attribute called precedence. Precedence is precisely that 

syntactic notion which specifies which operators are to be performed 

before others, or in other words, which operators have tighter bonds to 

their operands. For example, 11
• before +", meaning that 1+2•3 is 7 and 

not 9, is specified by having the precedence of 11
•

11 be lower than the 

precedence of "+". By an internal convention in ICL, lower precedence 

means a tighter bond. 

<EXPR>s also have an associated precedence. The precedence of an 

<EXPR> is precisely the precedence of the most recent <BOP> or <UOP> 

which was used in forming that <EXPR>. For example, the precedence of 

the <EXPR> "1+2" is that of the <HOP> "+ 11
, and the precedence of "1+2•3 11 

is also that of "+" because "+" is the last operator used in forming 

"1+2*3". The precedence of "(1+2)*3 11 is that of"*" 

SEMNOP: <EXPR0 > .. -

The resulting <EXPR>, <EXPR0>, has precedence zero, as do all rules 

for <EXPR>s which don't specify otherwise. This rule has no type 

nor PASS3 requirements per se, and the meaning is nothing. The 

only effect of the parentheses is to overide any default grouping 

caused by precedence. 

EBPP or EBOPG: 
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Synta~ requirements 

Precedence: The precedence of <EXPR 1> must he less than or equal 

to the precedence of <BOP2 > and the precedence of <EXPR
3

> must be 

strictly less than the precedence of <BOP2 >. This guarantees that 

<BOP>s with lower precedence will be combined first and that <BOP>s 

of equal precedence will be associated left-to-right. This is just 

like FORTRAN. 

If <BOP> has no precedence, then the rule applies, but after 
t 

all type and PASS3 requirements are checked, a preference is made 

for left-to-right association. lhis feature will be explained in 

the section about <BOP>s. 

lhis rule does not apply if <f.XPR1 > has the special precedence 

called £MAX. A rule of grnmmar producing an <EXPR> of precedence 

EM!lX specifies that its result has higher precedence than any 

<BOP>s and therefore applies only after all <BOP>s have been bound. 

For an example, see the rule EGIVE, which produces an <EXPR> of 

precedence £MAX. 

Type and PASS3 rcqurements depend on <BOP2 >. 

Meaning 

Evaluate <EXPR1> and <EXPR3> and then apply <BOP2 > to the resulting 

values. There is no guarantee as to which of <EXPR 1 > and <EXPR3 > 

is evaluated first. 

Examples: 

1 + 2 

1 + 2 • 3 
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There are more examples in the section for <BOP>s. 

EUOP: 

Syntax requirements 

Precedence: <EXPR2 > must be of precedence less than or equal to 2 

and the resulting <EXPR> is of precedence 2. That is to say, 

<UOP>s may prefix <EXPR>s of precedence 2ero or <EXPR>s which are 

themselves prefixed by <UOP>s. 

Type and PASS3 requirements depend on <UOP 1 >. 

Keanina 

Evaluate <EXPR2 > and then apply <UOP 1 >. 

Example: 

-1 or --1 

-1+2 equals 1, not -3 

-X[ I] 

groups as -(X[I]) and not as (-X)[I] because the string indexing 

construct, STRSEL, requires the string-<EXPR> to have precedence 

zero. The string-<EXPR> X has precedence zero but the 

string-<EXPR> -X has precedence 2. Hence, the string-<EXPR> -X 

cannot be used in the string indexing construct. The unary minus 

is therefore attached ~ftcr X and [I] are attached because the 

<EXPR> X[I] has precedence zero. 

EUOP or EUOPG: 

This is like the rule EUOP above, hut it's for unary ops which must 

appear on the righthand side. The precedence conditions and 

examples are delayed until <RllUOP>s arc dcsc:ribcd. 
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f.'!Ql!.!_1_1_g__ !!!it.~. ~_!Hlf.~-~-

The mapping from "+" to summation is defined for all operators. 

The rules: 

EBOPQ: <EXPR> .. - <BOP 1> <F.XPR2> <OlJANT3 > 

EBOPQ: <EXPR> .. - <QUANT3 > GIVE <BOP 1> <F.XPR2 > END 

EBOPQ: <EXPR> .. - <QUANT 3> <BOP 1 > <EXPR2 > 

all have the same meaning: each yields the cumulative .value 

<EXPR2 > <BOP 1> <EXPR2 > <BOP 1 > ... <EXPR2 > 

where the number of terms is determined by the program loop 

generator <QUANT3 >. 

precedence El'fAX. 

Tupe req~trements 

The third rule results in an <EXPR> of 

There must exist some type, T, which can act as a temporary for 

holding the cumulating value. Thus, T is characterized by 

T = <EXPR2 > 

T = the resulting type from (T <BOP 1> <EXPR2 )) 

These accommodate assigning an initial value to the temporary and 

then assigning cumulative values for each iteration. These two 

equations, in the space of datatypes, are not singular; 

"T=<EXPR2 >" doesn't hind T exclusively to one datatype. If 

necessary, the <EXPR2 > in these two equations will differ by having 

one be the result of applying cocrcion(s) to the other. Typically, 

however, this type constraint means that both operands of the <BOP> 

and the resulting type are all equal. 

PASS3 requirements 

Meaning 

result = <EXPR2 > = SOURCE 
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Apply <BOP1> to the successive v<tlucs of <EXPR2~ generated 
' 

by 

evaluating <EXPR2> once for each i~eration caused by <QUANT3>. 

Examples: 

+ FOR I FROM 1 TO 5; 

(-BOP-) (-EXPR-) (--------QUIUiT-----) 

sums up ts as I marches from 1 to 5. 

+ I FOR I FROM 1 TO N; 

equals 1+2+3+ •.• +N. 

* 2 REPEAT N; 

(-BOP~) (-EXPR-) (--QUANT--) 

equals 2 to the Nth power. 

+ F(I) FOR I FROM 1 TO N; 

(-BOP-) (-EXPR-) (------QUAIT-------) 

is equivalent to 

FOR [ FROM 1 TO N; GIVE + F(I) END 

(-------QUANT------) (-BOP-) (-IXPR-) 

and to 

FOR I FROM 1 TO N; • F (I) 

(-------QUM1iT------) (-BOP-) (-EXfR-). 

Note that the precedence of the third rule specifies that 

REPEAT 10; ... 2 * 3 ... 1 

groups as 

REPEAT 10; •(2"3+1) 
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and not as 

(REPEAT 10; + 2) * 3 + 1 

or 

(REPEAT 10; + 2 * 3) + 1 

The resulting <EXPR> from the third EBOPQ r11le has precedence t~AX 

and hence that <EXPR> cannot be the lefthand operand for a binary 

operator. Refer to the precedence requirements of the rule EBOP. 



The .following <EXPR> forms correspond to mathematical logic's 

existential and universal quantification. The reader might note the 

similarity between these <EXPR> forms and those of the previous section, 

looping with <BOP>s. The following four QBOOLt rules are equivalent in 

meaning. 

QBOOL1: <EXPR> .. - (QUl\NT1> <EXPR2> <QBOOL3> 

QBOOL1: <EXPR> .. - <OUANT1> <QBOOL3> <EXPR2> 

QBOOL1: <EXPR> .. - <QUANT1> GIVE (Q[l.OOL3> <EXPR2 > END 

QBOOL1: <EXPR> : : = <QBOOL3> <EXPR2> <QUANT1> 

where 

QBALW: <QBOOL> .. - ALWAYS 

QBNVR: <QBOOL> .. - NEVER 

QBEXS: <QBOOL> .. - EXISTS 

QBEXS: <QBOOL> : : = THERE IS 

Syntax Requirements 

The second QBOOL1 yields an <EXPR> of precedence EMAX. 

The first rule'~ (QBOOL3> will not admit THERE IS and the other 

rules' <QBOOL8> will not admit EXISTS. EXISTS and THERE_IS have 

identical meanings; 

readabi Ii ty. 

this restriction merely enhances program 

Type Requirements 

PASS8 Requirements 

/lleaning 

result = BOOL = <EXPR2> 

result = SOURCE = <EXPR2> 
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Evaluate <EXPR2> once for each iteration cuused by <QUANT1 ~ and 

stop as soon as the condition specified by <OBOOL3> becomes known. 

If the condition becomes known before the <QUANT> is exhausted, the 

user will find the variables of <EXPR2> holding those values which 

were used in the final evaluat]on of <EXPR2 >. 

The <OBOOL> ALWAYS yields TRUE only "''hen all values of <EXPR2 > 

yield TRUE. NEVER yields TRUE only when all values of <EXPR2 > 

yield FALSE. EXISTS and lHERE __ IS yield TRUE as soon as <EXPR2 > 

yields its first lRUE. 

Examples: 

ALWAYS X<5 FOR X $E S; 

(--QUMiT-----) 

FOR X $E S; ALWAYS X<5 

(---QUA""T---) 

FOR X $E S; X<5 ALWAYS 

(---QUA1iT---) 

are equivalent and each yields TRUE if X<5 for all X in the string 

s. 

THERE_IS X<5 FOR X SE S; 

FOR X $E S; THERE_lS X<5 

FOR X $E S; X<S EXISTS 

are equivalent and each yields TRUE if there exists at least one X 

in S with X<5. 

NEVER X<S FOR X $E S; 

FOR X $E S; NEVER X<5 
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FOR X $E S; X<5 NEVER 

are equivalent and each yields TRUE if each element in S is not 

less than 5. The following are equivalent: 

ALWAYS <EXPR> <QUANT> 

NEVER - <EXPR> <QUANl> 

- THERE IS - <EXPR> <QUANT> 

The "-" is logical NOT. 

Note that if 

ALWAYS X<S FOR X $E S; 

yields FALSE then X is left containing a number such that X<S is 

FALSE. The form 

IF THERE IS X<5 FOR X SE S; THEN then-clause 

ELSE else-clause FI 

guarantees that X contains the first value in S less than 5 upon 

entering the THEN-clause. 

IF ALWAYS X<S FOR X $E S; HIEN then-clause 

ELSE else-clause FI 

guarantees that X contains the first value jn S which is not less 

than 5 upon entering the ELSE-clause. 

IF NEVER X<S FOR X $E S; TllEN then-clause 

ELSE else-clause FI 

guarantees that X contains the first value in S which is less than 

5 upon entering the El.SE-clause. 

FOR X $E S; ALWAYS TMERE_IS Y=X FOR Y $E Si; 
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or 

FOR X $ES; ALWAYS FOR Y $E St; lHERE IS X=Y 

states the condition that the string S is a subset of the string 

St. 

IF FOR X $E S; Al.WAYS lHERE_IS Y=X FOR Y $E Sl; 

THEN then-clause ELSE else-clause FI 

guarantees that upon entrance to the El.SE-clause,·x holds the first 

value in S which is not in Sl. 
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The following three rules enable the jnsertion of a <SS> within an 

<EXPR>. This section concludes with a warning about side effects and 

order of evaluation. 

EGIVE: <EXPR) .. - DO <SS1> GIVE <EXPR2> 

EGRAB: 

EGRAB: 

<EXPR) .. - GIVING <EXPR2> DO <SS1> END 

<EXPR> .. - PO <SS1> GRABBING <EXPR2> 

The first and third rules yield <EXPR>s of precedence E'/lfAX. 

Type requirements 

PASS3 re~utrements 

Meaning 

result = <EXPRi> 

result = <EXPR2> (SOURCE or TARGET) 

The first rule specifies that <SS1> is executed before evaluating 

<EXPR2>. The resulting value js that of <EXPR2>. This is LISP's 

PROGN function. lhe second and third rules are equivalent and each 

specifies that <ss1> is executed ajlcr <EXPR2 >. This is LISP's 

PROG1 function. 

E>c.amples: 

DO I:=K*N-V/5; GIVE I+J 

yields the value of "l+I" after I has been assigned "K*N-V/5". 

Note that this groups as 

DO I:=K*N-V/5; GIVE (I+I) 

and not as 

(DO I:=K*N-V/S; GIVE I) + I 
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because the DO ... GIVE rule yields an <EXPR> of precedence UfllX. A 

DO ... GIVE form cannot be the lcfthand operilnd of a <BOP), unless, 

of course, it is enclosed in parentheses. llencc the "I+I" has to 

bind first. 

GIVING I+I DO I:=K*N-V/5 END 

yields the value of "l+I" and then resets I to the value of 

"K.•N-V/5". 

DO WRITE(!•!); GRABBING I := 5; 

types out a 25. The cvilluntion of the lefthand side of this 

assignment statement sends the number 5 to the DO ••• GRABBING form. 

The DO ••• GRABBING form first cvaluatf!s its <EXPR2 >, I, and thus 

sets I to 5. It then executes <ss 1>, typing out a 25. 

The fol lowing rule offers a more concise notation for one of the 

more common DO ... GIVE usages. 

SETQX: <EXPR> ... -

This represents an assignment statement enclosed in parentheses. 

The part-of-speech <SSRHS> will be documented completely in the 

section called Assignment Statements. for the time being, let us 

assume the definition: 

<SSRHS> := <EXPR> ; 

<SSRHS> stands for "<SS>'s righthand side" and comprises the 

righthand side of the assignment statement including the :=. Thus, 

the form 

<EXPR> <SSRHS> 



- 260 -

represents the assignment statement 

<EXPR> . - <EXPR> 

and the form 

( <EXPR> <SSRHS> ) 

takes on the appearance 

( <EXPR> := <EXPR> ; ) 

The parentheses around the assignment statement transform it into 

an <EXPR> whose value is that value which passes thru the 

Formally speaking, the type and fASS3 requirements and the 

meaning for the rule SETQX are all derived by transforming 

( <EXPR1> <SSRBS2> ) 

( DO <EXPR 1> <SSRllS2 > 

<-------ss-------> 

into 

GIVE · <EXPR > 1 

Refer to the assignment statement rule, SSASS, in the section for 

<SS>s. 

Examples: 

(1:=1+1;) increments I and yields 

the resulting value of I. 

I:=(J:=3;); sets both I and J to the 

value 3. 

Notice that the semicolon is required as part of the assignment 

statement! 

IF (J:=N•N;) < 4 lHEN ,J ELSE J+1 FI 
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yields the value N•N if N•N is less than 4, otherwise it yields 

N•N+1. This is equivalent to 

IF DO J:=N*N; GIVE J < 4 THEN J ELSE J+t FI 

fllAMUNG: 

Embedding <SS>s within <EXPR>s expands the notion of computed ualue 

to include side effect~. The evaluation of an <EXPR> containing an 

embedded <SS> not only yields a value but it also performs some actions, 

typically modifying variables. Because of such side effects, the order 

of <EXPR> evaluation becomes a relevant issue. For example, 

( J: =2;) * J 

yields either a 4 or 2•(the old value of J), depending on which of the 

two parameters to the "*" evaluates first. The rule incorporating the 

"*" EBOP, clearly states that the user cannot depend on the order of 

evaluation. Thus, the above <EXPR> yields an uncertain value. 

Similarly, the string 

{ DO J:=2; GIVE J J } 

yields either {2;2} or (2;the old value of_J}. The STRGEN rules clearly 

state that the order of evaluation in strings is uncertain. 
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<EXPR> ::= <BEXPR> 

where 

<BEX PR> 

<BEX PR> : : : = 

BEGIN 

BEGIN 

result = <EXPR2> 

END 

END 

Tupe requtremcnts 

PASS3 requirements 

/lleantng 

result = <EXPR2> = (SOURCE or 1ARGET) 

Evaluate <EXPR2>. However. the declarations, are 

incorporated for the duration of <EXPR2 >. Thus. the user may 

declare new variables to be local to <EXPR2>. Ile mny also declare 

new types, functions, or coercions which arc accessable only within 

<EXPR2 >. Outside of the BEGIN-END block, the effects. of <OECL 1> 

are absent. 

Any variable or type decl~ration which defines a previously 

used name automatically overrides the name's previous definition. 

However, the same is not true for function and coercion 

declarations. Unfortunately. an attempt to override a previous 

function or coercion definition results in ambiguity when the 

function or coercion is used within <EXPR2>. 

Examples: 

BEGIN VAR l,J=INT; 

END 

DO 1:=20; J:=30; 

GIVE I*J 
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declares I and J to be local INTegers for the duration of this 

<EXPR>. Its value is 600. Any external meanings for I and J are 

unchanged. 

BEGIN VAR 1,J=INT; 

DO 1:=10; J:=30; 

GIVE I+J* BEGIN VAR J=INT; J=REAL; 

f)O I:=J; 

GIVE I 

END • I 

END 

yields the value 910: The inner BEGIN-END <EXPR> yields the value 

3 and the "I~J• ... *I" therefore reduces to "I+J*3*I". Even though 

I is redeclared inside the inner BEGIN-END hlock, within the outer 

block but not within the inner block, I has its assigned value of 

10. 

BEGIN LET COMPLEX_NUMBER BECOME REAL BY 

COMPLEX_.NUMBER .REAL_PART 

some <EXPR> 

END 

specifies that for the duratj.on of the <EXPR>. COMPLEX_NUMBERs may 

implicitly be viewed as REA.Ls by considering only their REAL_.PARTs. 

This might be useful if within this block, all COMPLEX NUMBERs were 

scrutinized only for their relatjon to the imaginary axis. 

DEFINE IOTA(N: INT)=SlACK_.OF _INT: 

BEGIN VAR I=INT; 

COLLECT I FOR I FROM 1 TO N; 
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END 

ENDDEFN 

defines APL's iota function, which returns the string of integers 

from 1 to N. The variable I is local to this function and hence 

does not interfere with any other use of the name I. 

DEFINE SUBSCRIPT(SUBJECT,INOICES:STACK~OF_INTEGER) 

= STACK. __ OF __ INTEGER: 

BEGIN VAR I=INT; 

END 

ENDDEFN 

COLLECT SUBJECT[I] FOR I $E INDICES; } 

defines APL's vector-on-vector indexing operation. The "$E" within 

the FOR-quantifier reads "an element of". 
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This section covers a structured management for global variables: 

the HOLDING form. The HOLDING form works for any kind of variables but 

it is primarily useful for managing global variables. 

introduce the part-of-speech <ASN>. 

We wi 11 also 

HOl.DIT: <EXPR> ... - llOLDING <ASN1 > GIVE <EXPR2 > ENDHOLD 

Type Requt rements 

PASS3 Requirements 

result = <EXPR2 > 

result = <EXPR2 > 

Keantng 

ASN1: 

The resulting value is that of <EXPR2 >. However, preceding 

<EXPR2 >•s evaluation, the specified variables in <ASN1 > are saved 

and <ASN1 >1 s implied assignments are carried out. After the 

evaluation of <EXPR2 >, the specified variables in <ASN1 > are 

restored. 

This is like LISP's PROG function except that variables without 

implied assignment are left unchanged, i.e., they are not set to 

NIL. The <ASN> in the HOLDING form corresponds to the PROG's first 

parameter. 

Examples will follow . 

. . - <IDru> 

ASNRHS: 

<ASN> 

<ASN> .. - <IDkt> <SSRHSk2> 
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<ASN> .. - <ASN> <ASN> 

Informally, an <ASN> is a sequence of either "<ID>;" or 

"<ID>:=<EXPR>;". The part-of-speech <SSRllS> is covered in the 

section Assignment Statements. <SSRHS> is basically the form 

.- <EXPR> 

Thus, the form in the rule ASNRHS 

< IDkt> <SSRHSk2 > 

appears as 

<IDkt> .- <EXPR> ; 

and represents an assignment statement where the lefthand side is 

the variable <IDk 1>. 

Tupe Requtrements 

Each <IDk 1> must be some declared variable and each 

<IDkt> <SSRHSk2 > 

must satisfy the type requirements implied by the assignment. 

Refer to the assignment statement rule, SSASS, in the section for 

<SS>s. 

'PASS3 Requtrements 

Those implied by the assignments 

Jlfeantno 

An <ASN> has an abstract meaning in ICL. An <ASN> represents both 

a set of <ID>s, all the <IDk 1>s, and a set of assignment 

statements, all the <IDk 1><SSRHSk2 >s of the rule ASNRHS. The set 

of <ID>s is called the specified variables and the set of 

assignment statements is called the implied assignments. 
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Examples of <ASN>s: 

I;J;K. 

has the spectfied variables I, J, and K, and has no implied 

asstgnments. Notice that there is a terminating semicolon. 

J := 3 ; K ; I 

(--ASli--) (-SSRllS-) (-ASN-) 

(----AS~i---) 

has the spccifted variables I, J, and 

asstonments J:=3;. 

I ; J:= (V:=3;); K: =2; 

has the specified uariahles I' J, and 

asstonments 

J:=(V:=3;); and K:=2;. 

K., and has 

K, and has 

Note that Vis not in the set of specified variables. 

Examples of the HOLDING form: 

HOLDING I;J;. GIVE <EXPR> ENDHOLD 

(-As~·-) 

the implied 

the implied 

specifies that I and J are to appear unchanged after this <EXPR> is 

evaluated. 

HOLDING I;J; GIVE 

DO 1:=1; GIVE <EXPR> ENDHOLD 
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specifies the same as above except that I is set to 1 before 

<EXPR>'s evaluation. 

HOLDING 1:=1; J; GIVE <EXPR> ENDHOLO 

specifies the same as the previous example. 

HOLDING EPSILON:=EPSILON/2; GIVE 

SOLUTION __ TO_EOUAlION ENDllOLD 

specifies that while fjnding SOLUTION_TO_EQUATION, EPSILON is to be 

cut in half. 

In general, when you want to reuse a global variable, use the 

HOLDING for~ to assign it its new value, lest the global variable's 

previous value be lost. This kind of treatment for global 

variables is essential in many recursive enviornments. 

HOLDING INPUT_DEVICE:=DISK; GIVE 

INPUT_lEXT ENDHOLD 

specifies that the function INPUT_TEXT will operate in the context 

where INPUT __ DEVICE=DISK. As implied by its use above, INPUT_TEXT 

is a parameterless function. llol'.·ever, if INPUT TEXT were defined 

to be a function of one parameter, the input device, its call would 

look like 

INPUT_TEXT(OISK) 

The use of the HOLDING form is equivalent in the sense that an 

input parameter is being specified. However, the latter form 

requires the input device to be specified upon each call to 

INPUT_TEXT whereas the former form sets that parameter for all 

calls to INPUT_TEXT, thus making the input device an implicit 
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parameter. 
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The introduction to this manual mentions that the ICL user need not 

be aware of p~inters. This section presents the anchoring operator, the 

only operator in ICL which requires the user to be aware ,of ICL's 

pointer implementation. The anchoring operator is useful only if the 

user wants to take further advantage of ICL's pointer implementation. 

EAT: <EXPR> ::= 

Type Requirements 

result = <EXPR1> = any type to which NIL is equal except POINT. 

PASS3 Requtrements 

<EXPR1> = SOURCE 

result = (SOURCE or TARGET) 

l'reantno 

no~op; the resulting value is In the SOURCE case,@( ... ) is a 

simply the value of <EXPR 1>. However, in the TARGET case, ICL 

stores the given value into the memory location occupied by the 

value of <EXPR1>. 

The debugging package will be entered under the following 

conditions: In the TARGET case, either <EXPR1> is NIL or the given 

value is NIL, i.e., either 

Examples: 

@(NIL):= <EXPR> or @(<EXPR>):= NIL 

A :=[REAL_PART:1 1MA.GINARV_PART:2]; 

B .- A ; 
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leave A and B referencing the same memory location. The assignment 

A.REAL_PART := 700; 

modifies A so that A's REl\L __ PART becomes 700. However, B's 

REAL_PART is untouched and still contains the value 1. A and B now 

reference different memory locations. On the other hand, if we 

instead were to write 

@(A).REAL_PART := 700; 

B.REAL_PART would also become 700. That is, the memory location 

referenced by A is modified, not the variable A itself. B feels 

the change because B references the same location referenced by A. 

When do computed values reference the same memory location? 

This question cannot be answered without some knowledge of ICL's 

implementation. The reader is referred to the section !Cl's Policy 

about Assignments, Pointers, and Copying for a complete 

explanation. The LISP user, however, can come to a reasonable 

understanding by knowing that in ICL the generation of records, 

strings, and variants operates like l.ISP's LIST function; the 
I 

results occupy newly allocated memory locations. For example, 

[A:X B:Y] 

{P;Q;R} 

p: :Q 

acts like (LIST X Y) 

atts like (LIST P Q R) 

acts like (CONS P Q) 

and with ICL's TARGET selection forms, 

W.A:=X; acts like W:=(CONS X (CDR W)) 

if A happens to be the first 

component in W 
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W[2]:=X; acts like W:=(CONS (CAR W) 

(CONS X (CDDR W] 

W[2-J:=X; acts like W:=(CONS (CAR W) X). 

Thus, the ICL nested record 

W:= [A: [P:X] B: [P:X] ]; 

specifies that W.A and W.B do not reference the same memory 

location, but that W.A.P and W.B.P do reference the same location. 

The operation 

@(X):=V; or @(W.A.P):=Y; 

makes a change which is apparent from both of W's A and B 

components. However, the assignment 

@(W.A).P := V; 

appears to modify W's A component without modifying W's B 

component. W's A and B components referen~e different memory 

locations, each containing a different copy of [P:X]. 

Refer to the section ICl's rolicy about Assignments, Pointers, 

and Copying for a complete explanation. 

ECOPV: <EXPR> .. - COPY <EXPR 1> 

ECOPY: <EXPR> : : = COPY <EXPR1> 
Type Requirements are like the rule EAT, above. 

PASS8 Requtrements . result = SOURCE = <EXPR1>. 

Keanino 
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The resulting value is a copy of the value of <EXPR1>. The copy 

and the value of (£Xrll 1> occll/'ff di/Jcn:nt memoru locations. COPY 

is a very fast operator, only two PDP-10 words are moved. However, 

if the value of <EXPR1> is NIL, COPY acts as a no-op and simply 

returns NIL. 

If the user defines a unary function named COPY, his 

definition will· override the first ECOPY rule. 

equivalent form 

COPY ! <EXPR> ) 

cannot be overridden. 

Example: 

However, the 

Referring to the above example with A and B, if we substitute the 

B := A ; 

with 

B : = COPY(A) ; 

then the assignment 

@(A).REAL_PART := 700; 

does not affect B. The structure referenced by B is not at the 

location referenced by A, thanks to the COPY. 
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Q!l~.~.£ t i.!!.9. ~-H. 

EDEF: <EXPR> .. - DEFINED ( <EXPR 1> ) 

Type requirements 

<EXPR1> must be of a type to which NIL is equal. Refer to the rule 

ENIL. 

result = BOOL 

PASS3 requirements 

/lleantng 

result = <EXPR1> = SOURCE 

TRUE if <EXPR1> is not NIL, FALSE otherwise. 
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The part-of-speech <BOP> refers to all infix binary operators. We 

will denote a <BOP>'s type requirements via the notation 

"<TVPE1> <TVPE2 > -) <TYPE3 >u. 

This states that the <BOP>'s lefthand parameter must be of type <TYPE 1 >, 

its righthand parameter must be of type <TYPE2 >, and the resulting value 

is of type <TYPE3 >. The PASSJ requirements tot <DOP>s are simply that 

both input parameters and the output parameter are SOURCEs unless 

otherwise specified. 

BOPADD: <BOP> .. - + 
BOPSIJB: <BOP> .. -
BOPMUL: <BOP> .. - * 
BOPOIV: <BOP> .. - I 
BOPEXP: <BOP> .. - t 

have the type requirements: 

INT 
REAL 
POINT 

INT 
REAL 
POINT 

-) 

-> 
-> 

INT 
REAL 
POINT 

+, -, "• and I arc the usual FORTRAN arithmetic operators where a 

POINT is treated as if it were a complex number. II f II iS 

exponentiation and does not yet work for POINTs. + and have 

precedence 6, * and I have precedence 4, and t has precedence 2. 

Thus, " and I are preformed before + and and t is performed 

before * and /. Remember that in ICL, the lower the precedence, 
' f 

the tighter the operator binds to jts operands. In general, the 

actual precedence numbers arc unimportant; the only importance is 



~· 276 ~ 

their relation to one another. 

The <BOP>s * and I can also be used to combine a POINT and a 

REAL by yielding scalar multiplication or division. The REAL and 

POINT may appear on either side of the *, 

POINT REAL ->'POINT 
REAL POINT -> POINT 

but division admits the REAL only on the righthand side: 

BOPAND: 
BOPOR: 
BOPXOR: 

<BOP> 
<BOP> 
<BOP> 

: 
: 
: 

POINT REAL 

.- & 

.-

.- XOR 

have the type requirements: 

BOOL 8001. - ) BOOL 
LOGICAL LOGICAL -> LOGICAL 

-> POINT 

"&" ~tands for boolean AND, "!" stands for hoo1can OR, and "XOR" 

stands for exclusive OR. For l.OGICALs, these <BOP>s procede 

bitwise. The LOGICALS must all be equal types. for example, a 

LOGICAL(7) and a LOCilCl\L(10) cannot be combined. The precedence of 

"&" is 10, "!" is 12, and "XOR" is 14. Thus &'s are done before 

! 's and ! 's are done before XOR's. 

BOP BIT: <BOP> BIT 

has the type requirments: 

LOGICAL INT -> BOOL 
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BIT tests a bit in the LOGICAL and tells whether it is a one or a 

2ero, yielding lRUE or FALSE, respectively. The INT specifies 

which bit is to be examined. Zero is the rightmost bit, one is the 

second to the rightmost bit, etc. FALSE is returned if INT isn't 

less than the word size of the LOGICAL. BIT has precedence 20. 

BOPLSL: 

BOPLSR: 

<BOP> ::= SHIFTL 

<BOP> : : = Sill Fl R 

have the type requirements: 

LOGICAL INT -> LOGICAL 

SHIFTL means shift left and SHIFlR means shift right. The INT 

specifies the number of bits to shift. A negative INT caus~ that 

the shift occurs in the opposite direction. SHIFTL and SHIFTR each 

has precedence 20. 

BOPMIN: 

BOPMAX: 

<BOP> 

<BOP> 

MIN 

MAX 

have the type requirements: 

INT INT -> INT 

REAL REAL -> REAL 

POINT POINT -> POINT 

MIN and MAX yield the minimum and maximum, respectively. MIN and 

MAX are defined on points by proceeding coordinate-wise. Thus, "Pt 

MIN P2", where Pl and P2 are POINTs, yields the lower left corner 

of the box determined by Pl and P2. Please note that the resulting 

point might not equal either P1 or P2. MIN and MAX have precedence 

26. 
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The remaining <BOP>s are said to have no precedence. This means 

that they impose no precedence conditions. However, <BOP>s with no 

precedence will tend to associate in Urn usual left-to-right manner when 

possible. <BOP>s with no precedence also tend to apply after the other 

<BOP>s have applied; they tend to have a higher precedence. What 

distinguishes <BOP>s of no precedence from <BOP>s all having equ~l 

precedence is that their grouping is flexible enough to allow a 

non-left-to-right grouping when datatype inconsistency forbids the usual 

left-to-right grouping. 

BSHARP: <BOP> : := I 

has the type requirements 

REAL REAL -> POINT 

and forms the POINT whose x and y coordinates are the two REALs 

respectively. The "I" operator works in the TARGET case if both 

parameters are TARGETs. lhus, the two coordinates of a point may 

be unloaded into two REAL variables simultaneously. 

Examples: 

1+2•3t2+5 

3.014.0 + 1.016.0 

L(4) 

L(4) 

L(4) 

BIT 0 

BIT 1 

BIT 2 

equals 21 

equals 4.0110.0 

is I· Al.SE 

is FALSE 

is TRUE 



L( 4) SHIFTL 2 

L(4) SHIFTR -2 

L(4) XOR L(5) 

(1.012.0)*3.0 

1.012.0 lit 3.0 

L(4) BIT 3 & lRUE 
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js L(20) 

is L(20) 

is L(t) 

is 3.016.0 

is 1.016.0 

fails the type-pass because it groups as 

L(4) BIT (3 & TRUE) 

because of precedence, and "3 & TRUE" fails the type-pass. 

However, 

(L(4) BIT 3) & TRUE 

passes the type-pass. "L(4) BIT 3" yields a DOOL and so the "&" 

operates on BOOLeans). Note that in the form without parentheses, 

precedence chooses a fatal grouping. 

XIV := P; 

sets the REAL variables X and V to the coordinates of the point P. 

More <BOP>s of no precedence: 

COMPEQ: <BOP> .. - = 
COMPNE: <BOP> .. - <> 
COMPGT: <BOP> .. - > 
COMPGE: <BOP> .. - >= 
COMPLT: <BOP> .. - < 
COMPLE: <BOP> .. - =< 
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lhese have the type requirements 

INT INT -) BOOL 
REAL REAL -) BDOL 
POINT POINT -> BOOL 
CHAR CHAR -) BODI. 
LOGICAL LOGICAL -> BOOL 

=, <>, ), >=, <' =< are the compt1re operato1·s. They are, in order: 

equal, not equal, greater, greater or equal, less, less or equal. 

Note that "less or equal" and "greater or equal" place the "=" 

relative to the "<" or ">" so to avoid forming an arrow. "=" and 

"< >" also allow 

BOOL 
QS 
SCALAR 

BOOL 
QS 
SCALAR 

-) 

-> 
-) 

BOOL 
BOOL 
BOOL 

A partial ordering is assigned to POINTS and LOGICALS by comparing 

each of the coordi~ates of a POINT (or bits in a LOGICAL) and 

requiring that both (all) of the comparisons succeed for a 

successful overall comparison. CllARs are ordered by their ASCII 

codes. These compare operators will also work on one other 

datatype which is yet to be introduced. 

The operators "S>", "$$", nnd "($" are for appending elements or strings 

onto strings. 

Let A be any type and SA bo the type "{A}", strjng of A. 

BOPSTR: 

BOPSTC: 

BOPST'L: 

<BOP> 

<BOP> 

<BOP> 

.. -
$) 

$$ 

($ 
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These have the type requirements (respectively): 

SA A -> SA 

SA SA -> SA 

A SA -> SA 

"$>" appends an element onto the righthand end of a string. "<$" 

appends an element onto thc·lefthand side of a string, like LISP's 

CONS. "$$" appends two strings, like LISP's APPEND. Thus, 

1 ($ {2;3;4} equals {1;2;3;4} 

{1;2} $) 3 $) 4 equals {1;2;3;4} 

{1} $$ {2;3} $$ {4;5} equals· {1;2;3;4;5} 

A note about efficiency might be of interest. All three of these 

operators are equally fast (not slow). However, accessing a string 

built with many "$>"s or "$$"s is relatively slow. The REFRESH 

operator, the rule ERFRSH, rebuilds a string using "<$" so that it 

may be accessed efficiently from thereafter. 

There is one more <BOP> form, which enables calling functions in an 

infix manner. 

BOPBID: <BOP> .. - \ <IO> 

<ID> must be the name of a function which takes in two parameters 

and yields a value. Therefore, the types of data that this <BOP> 

takes in and yields are determined by the particular function, 

<ID>. 

Examples: 
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Referring to the function EQUAL defined ear1ier for comparing two 

LISP _.ELEMENTs, 

X \EQUAL V 

is equivalent to EQUAL(X,Y). X and Y must be of type LISP_.ELEMENT 

and "X \EQUAL yn is a BOOLean. 

X \EQUAL V & Z \EQUAL W 

automatically groups as 

(X \EQUAL Y) & (Z \EQUAL W) 

because the "\<ID>" <BOP> has no precedence, and hence it. groups to 

suit datatyp~ compatibility. 

Now, suppose we wish to define 3-D points: 

TYPE lliREE_.POINT = [ X. Y, Z: REAL]; 

Suppose further that we define addition and multiplication by 

DEFINE PLUS(A,B: nIREE_POINT)=lllREE_POINT: 

[X: A.X+B.X V: A.Y+B.Y Z: A.Z+B.Z] ENDDEFN 

DEFINE TIMES( A: lHREE_.POINT R :REAL )=HIREE_POINT 

[X: A.X*R Y:A.Y*R Z: A.Z*R] ENDDEFN 

Then, if A, B, and C are var iahlcs of type lllREE POINT. 

A \PLUS B \PLUS C 

represents their sum, and 

(A \PLUS B \PLUS C) \TIMES (1.0/3.0) 



- 283 -

represents their average. Note that due to the left-to-right 

grouping tendency in <BOP>s of no precedence, we could get the same 

effect by: 

A \PLUS B \PLUS C \TIMES (1.0/3.0) 

or even 

A \PLUS B \PLUS C \TIMES 2.0/3.0 \TIMES 1.0/2.0 

lhis ability to classify binary functions as <BOP>s enables their 

use in looping-<BOP> operations. For example, if Q wer~ a string 

of THREE POINTS then we can get the average in that string by 

writing 

\PLUS 

(-BOP-) 

A FOR A $E Q; \TIMES (1.0/ + 1 FOR A SE Q;) 

(--QUAfa---) 

The •foR A $E Q;" reads as "FOR A an element of Q". 
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Unary operators were mentioned earlier in the <EXPR> ruie, EUOP, 

which states that an <EXPR> may be prefixed by a <UDP> or postfixed by a 

<RHUOP>. We shall specify a <UOP> 's type requirements by 

<TYPE 1> -> 

1·his will mean that the <LJOP> takes in iln instance of type <TVPE1> and 

yields an instance of type <TYPE2 >. All inputs and outputs are assumed 

to be SOURCES. 

UOPMIN: <UOP> 

has the type requirements 

INT 
REAL 
POINT 
BOOL 
LOGICAL 

-> INT 
-> RE/\L 
-> POINT 
-> BOOL 
-> LOGJC/\L 

Unary minus operates like in FORlRAN for JNTcgers and REALs. A 

point is negated by negating each of its coordinates independently. 

When applied to a BOOLean, "-" is the function NOT. "-" performs 

ones complement on LOGICALs. 

Examples 

- TRUE 

L(4) 

(1.012.0) 

-XIV 

is FALSE 

is L(3) if interpreted as a LOGICAL(3), or 

L(13) Jf interpreted as a LOGICAL(4), or 

L(33) if interpreted as a LOGICAL(5), etc. 

is -1.0 I -2.0 

is (-X) I Y 
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-(XIV) is -X I -Y 

.UTALLV: 

ULFTZO: 

UENCOD: 

<UOP> 

<UOP> 

<UOP> 

T !\LL Y 

LEFTZEROS 

ENCOOE 

have the type requirements 

LOGICAL -> INT 

TALLY counts the number of ones in a LOGICAL. LEFTZEROS counts the 

number of leading zeros. ENCODE counts the number of trailing 

2eros. 

UOECOO: 

UUNARY: 

<UOP> 

<UOP> .. -
DECODE 

UNARY 

have the type requirements 

INT -> LOGICAL 

DECODE yields a LOGICAL having at most one bit set. The INT 

specifies the number of trailing zeros which are to 'follo* that one 

bit. If the INT is greater than the word length of the LOGICAL, 

the result is L(O). UNARY yields a LOGICAL ~·hich has all zeros on 

the left and all ones on the right. The number of ones is 

specified by the INT. 

UNORM: 

UBITSW: 

<UOP> 

<UOP> 

NORM 

BITSW'AP 

have the type requirements 

LOGICAL -> LOGICAL 
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NORM yields the input shifted left until a 1 bit occupies the 

leftmost position. BITSWAP reflects the bi ts so that the leftmost 

bit becomes the rightmost bit and the second to the left becomes 

the second to the right, etc. 

The following unary operator is classified as an <RHUOP> because it can 

combine with <EXPR>s only by appearing on the righthand side of the 

<EXPR>. <RHUOP>s have no precedence in the sense that <RHUOP>s tend to 

apply after the text to its left has been combined. 

UOPBID: <RHUOP> \ <ID> 

Tupe requirements 

<ID> must be the name of a declared function which takes in one 

value and produces a value. 1herefore, the input and output 

datatypes are determined by the particular function, <ID>. 

Meaning 

Apply the function, <ID>, to its parameter, the <F.XPR> to· the left. 

Examples: 

TALLY L(5) is 2 

LEFTZEROS L(t) 

is ambiguous because we do not know the word length of L(l). 

However, if X were declared to be a variable of type LOGICAL(6) and 

if X were assigned L(t), then 

LEFTZEROS X 

ENCODE L(4) 

would be 5 

is 2 



DECODE 5 

UNARY 5 

NORM X 
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is L(40) 

is L(37) 

would be l.(40) 

If X were assigned L(3), then 

BITSWAP X would be L( 60). 

If L is of type LISP_ELEMENT, then 

L \CDR 

is equivalent to CDR(L) and has the effect of extracting the CDR 

from L, referring to an earlier declaration. 

L \IS_ATOM' 

is equivalent to IS_ATOM(L). 

WRITE( IF L \IS __ A.TOM THEN 'Lis an ATOM' 

ELSE 'l. i sn' 't an ATOM 1 F J ) ; 

reports whether L is an ATOM or not. 
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The part-of-speech <SS> refers to a sentence, or action form. 

Unlike <EXPR>, <SS> has no resulting type nnd neither produces nor 

consumes a value.· Eualuating a <SS> refers to performing the specified 

action. There are relatively few rules which produce <SS>s. In fact, 

besides the assignment statement and the concatenation form, all <SS>s 

are carry overs from the <EXPR> section. 

assignment statement. 

We shall begin with the 

SSASS: <SS> 

where 

SSRHS1: <SSRHS> : : = := <EXPR1> 

SSRHS2: <SSRHS> .. - .. - <BOP 1> <EXPR2 > 

SSRHS3: <SSRHS> .. - .. - <EXPR1 > <BOP2> 

these rules specify that a <SS> may be formed either.by 

<EXPR> := <EXPR> or by 

<EXPR> <BOP> <EXPR> or by 

<EXPR> ::= <EXPR> <BOP> 

The first form is the basic assignment statement. The others 

translate into the basic assignment statement via the following 

mappings: 

<EXPR1> : := <BOP> <EXPR2> becomes 

<EXPR1> _:= ( <EXPR1> ) <BOP> <EXPR2 > ; and 
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<EXPR 1> : := <EXPR2> <BOP> ; 

<EXPR1> .- <EXPR2> <HOP> 

example, 

I .. - + 1 ; becomes 

I .. - -3 ; becomes 

I : : = 3 - ; becomes 

I 

hecomcs 

.- I + 

.- - 3 

. - 3 - I 

We can now specify the type and PASS3 requirements for each of these 

forms merely by specifying those for the basic assignment form. 

Type Requirements 

<EXPR1> of SSASS = <EXPR 1> of SSRHSl 

PASS3 Requirement-s 

Meaning 

<EXPR1> o~ SSASS = TARGET and 

<EXPR1> of SSRHSt = SOURCE 

Evaluate the righthand <EXPR>, <F.XPR 1 > of SSRJISt, and then feed the 

resulting value to the leftlrnnd <EXPR>, <EXPR J > of SSASS. 

Conceptually, the assignment statement is a process by which the 

lefthand <EXPR> is made to be equal to the righthand <EXPR>. The 

lefthand <EXPR> is pliable whereas the righthand <EXPR> is fixed. 

Examples: 

I . - 5 ; sets I to contain a 5. 

C .- [REAL_PART:A HlAGINARY PftRl :BJ ; 

sets C to some complex number. 

[REA.L_.PART:A IMAGINARY P/\RT:B] .- C ; 



I : : = +1 ; 

K .. - +zit3 

K .. - •2+3 

s .- s $) 1 ; 

s . . - $) 1 

s .. - 3 ($ 

s .. - $$ {5;6} 

s .. - {5;6} $$ 

does the opposjte: It sets A and B 

to the real and imHaJnary 

components of C respectively. 

increments I. 

acids 6 to K. 

mu lt i p 1 i e s K hy 5. 

appends the clement 

onto the string s. 

docs tlH? same . 

appends 3 onto the front of s. 

appends the string {5;6} onto 

the r i nh ttrnnd encl (l f s. 

appcnrls the string {5;6} onto 

the lefthand end of s. 

The two auxilary assignment forms, SSRHS2 and SSRHS3, have 

counterparts for <UOP>s and <RHUOP>s: 

SSRHS4: <SSRHS> .. - .. - <KUOP> 

where 

KUOP1: <KUOP> .. - <GUOP> ; 

IWOP2: <KUOP> : := <GUOP 1 > <KUOP2 > 

and where 

'SEMNOP: <GUOP> .. - <UOP> 

SEMNOP: <GUOP> : : = <RHUOP> 
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Informally, this states that an <SSRHS> may be formed by a •. -

followed by a sequence of <UOP> and <RllUOP>. The sequence is 

terminated with a semicolon. The part-of-speech <GUOP> represents 

both <UOP> and <RHUOP>. 

The tupe and PASS3 requirements and the meaning are derived by 

transforming 

<EXPR1> ::: <GUOP> ... <GUOP> into 

<EXPR1> .- <GUOP> ... <GUOP> 

Examples: 

I : : = - ; becomes .- - I ; 

I .. - \CDR becomes I .- I \COR 

or I .- CDR(I) 

I .. - \CDR \CDR becomes I .- I \CDR \CDR 

or I .- CDR(COR(I)) 

Note that all assignment forms end with a semicolon! 
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ICL's assignment statement appears to set the lefthand side to a 

copy of the righthand side. For example, 

A:= [REAL_PART:1 IMAGINARY_PART:2] 

B:= A; 

B.REAL_PART:= 700; 

WRITE(A.REAL __ .PART) i 

prints a 1. The second assignment appears to set B to a new complete 

copy of A. Thus, the third assignment modifies the copy referenced by B 

and does not affect the copy referenced by A. 

Furthermore, each and every reference to a structure appears to 

generate a new complete copy. For example, 

X:= [Q:1 R:2] 

Y:= [A:X B:X] 

Y.A.Q:= 700; 

WR ITE ( Y • B • Q ) ; 

prints a I. The second assignment references X twice. V appears to be 

set to a record which contains two distinct copies of X. The third 

assignment modifies one of the copies, that which is referenced by Y.A. 

However, the other copy, Y.B, appears unmoclificd. 

ICL's apparent copy policy guarentecs that distinct variables 

reference distinct structures and thus a modification incurred from the 

point of view of one variable is non-existent from the point of view of 

another variable. This policy applies everywhere, including to the 

passage of parameters to functions; a function appears to receive a 
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distinct copy for each of its parameters. This policy is a 

generalization of the generally accepted treatment for integers, reals, 

and any datatype whose instances are not represented with the aid of 

pointers. 

For efficiency, ICL in fact docs not generate copies as described 

above. Rather, ICL generates copies only when a modification is 

specified. In the two examples given above, copying occurs ~nly upon 

execution of the third assignment in· each example. A nnd B reference 

the same structure until the modification is specified. 

The user who plans to use the @ operator, the pointer anchoring 

operator, or who wishes to understand ICL's efficiency must understand 

how ICL implements this copy appearence. Tbe user who avoids the @ 

operator can effectively believe that ICL copies upon each reference and 

he can ignore the concept of pointers altogether. The rest of this 

section documents ICL's data implementation and gives examples using the 

@ operator. 

ICL uniformly minimizes copying and maximizes memory sharing by 

making extensive use of pointers. Instances of each of ICL's datatypes 

are represented as follows: 

Non-pointer Types 

An instance of INT, REAL, DOOL, 

represented by a single word. 

precisely those datatypes which 

OIAR, LOGICAL, or SCALAR is 

These non-pointer datatypes are 

are not equal to the NIL 
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value NIL. 

Pointer Types 
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Instances of these datatypes can never take on the 

All other datatypes in ICL are represented by a single word which 

contains the memory address of a structure representing the 

instance. 

Variant: 

This is th~ result of the variant generatio~ <EXPR> 

state :: data 

Record: 

SEL J • • • 

DATA 1 DATA 2 DATA K 

This ~s the result of the record generation <EXPR> 

NIL·or 0 values are not stored on this record list. 
1 

If a record component is set to NIL or 0, the corresponding 

memory element in the record list is removed and the 

record list appears to be shortened. 
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String: 

A refreshed string is represented by 

• • • 

ELEMENT1 ELEMENT2 ELEMENTK 

A general string, however, has three kinds of element 

representation: 

Left Append 

BUOi:' 
G+---e_.- ST1t1NG 

DATA 

Data precedes all elements in string. 

Right Append 

G+---Blo ST1t1NG 

DATA 

Data follows all elements in string. 

Such a node is created with the $) operator: 

string S> data 

Concaten-atton 

~STRI~ 
STRING1 
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All elements in string1 precede all elements 

in string2 . Such a node is created by 

string1 $$ string2 

For example, the string 

(((t ($ {2;3}) $$ {4;5)) $) 6) 

is represented by 

AFTER 

6 5 

2 3 

A more efficient representation will result from the form 

{1;2;3;4;5;6} or {COLLECT I FOR I FROM~ TO 6;} 

The REFRESH operator applied to the former representation 

yields the latter rep~esentation. The latter representation 

is preferred because it is accessed most efficiently. 

Point: 



- 297 -

x1 and x2 together represent the point's x-coordinate. The whole 

x-coordinate is not stored in a single word; a few bits in the 

lefthalf of the first word of the referenced node are required by 

the garbage collector. This description is not quite accurate but 

it does bring u• the difference between the representation for 

POINT and the representation for all other pointer types. The 

single word which contains the memory address for pointer types 

contains some non-pointer information for POINT. This difference 

is responsible for the exclusion of the type POINT from the @ 

operator's domain. 

Kemorv Shartno 

Memory sharing is au~omatically achieved throughout ICL's 

implementation by mov~ng pointers rather than by copyinQ the referenced 
I 

·structures. For example, the statement~ 

A:= [REAL_PART:1 IMAGINARY_PART:2] 

B:= A; 

yield the following memory state: 

B 
RP IP 

R 1 2 

Rather than setting B to a copy of A's record, the pointer in A is 

copied into B. 

Similarly, 

A and B are left referencing the same record. 



yields 

X:= (Q: 1 R:2] 

Y:= [A:X B:X] 

y 
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The A and B components of Y reference the identical record. 

the <EXPR> 

{COLLECT [DISPLACE:A BV:I] FOR I FROH 1 TO 3;} 

generates the string of records: 

e+--------1- e+--------11-

Finally, 

All the DISPLACE components reference the unique memory location 

referenced by A. 
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nemorv ~odification 

In ICL, a modification to an existing structure is specified by the 

appearance of a selection form as a TARGET. The following are examples 

of modification specification: 

B.REAL_PART:= 700: 

S[ I]:= 700; 

S[I-]:= R; 

X.A.B:= Y; 

X[2].A:= Y; 

X.A.8[2][3][4].C:= V; 

In each example, ICL modifies only the variable which appears as a 

TARGET. Thus, the first example changes only the pointer residing in B 

and the final example changes only the pointer residing in X. · The new 

pointer placed in the variable X references a newly created structure 

which is identical to old X with the exception that the access path 

• A. B[ 2 ][ 3 ][ 4 J. C 

leads to the value Y. Any references to old X, old X.A, old X.A.B, or 

old X.A.8(2], etc., are not affected by the modification to X. The 

modification is apparent only from the point of view of the variable X 

and not from the point of view of any other variable or any structure. 

Modification is implemented by first copying the structure 

referenced by the target variable and then modifying that copy. In this 

process, ICL copies a minimal amount of memory. 

Examples: 
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Refering to a previous example, we had 

B 
R 

The modifying statement 

B.REAL_PART:= 700; yields 

B 

Note that Band A no longer reference the same memory element. 

Given 

the modifying statement 

Y.A.Q:= 700; yields 
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This modification costs two new nodes. However, if there are no 

references to old Y, the node immediately referenced by old Y will 

be freed by garbage collection. Note'that if there is a reference 

to old Y, the nodes R and B are each shared by at least two 

references. New Y's B component still references the same 

structure it used to reference. 

Given the same initial memory state, the modifying stateme~t· 

Y.B.Q:= 700; yields 

Given the string S 
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the statement S[J]:= K; yields 

5 

OLD 9 

The first three nodes in S are copied. 

The remarkable savings achieved by the minimal copy are not the 

result of sharing portions of a record or string list, rather, it is the 

sharing of the elements which yields the major savings. For example, 

consider the string S given above. Let us assume that the elements 

A,B,C,D, and E each references some giant list structure. The 

modification to S still requires only three extra nodes. The structures 

A,8,D, and E are shared by S and old S. The minimal copy copies at most 

the top level structure of s. 

In general, the user can predict the amount of copying ICL will 

perform given a modifying statement: 

X.A:= <EXPR>; copies at most n nodes where 

n= the number of components in 

the record X. 

X[I]:= <EXPR>; or 
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X[I-J:=<EXPR>; copies I nodes. 

Kultiple selections appearing on the lefthand side are also accountable: 

X.A.B:= <EXPR>; copies at most n+m nodes where 

n= the number of components in 

the records X and where m= the 

number of components in the record 

X.A. 

X[I][J]:=<EXPR>; copies I+J nodes. 

The number of copied nodes is bounded above by the sum of the lengths of 

each relevant layer. The number of relevant layers equals the number of 

selection operators. The number of relevant layers is independent from 

the total number of layers making up the entire structure. 

For another example of how shared data are modified, consider 

X:={COLLECT [DISPLACE:A BV:I] FOR I FROM 1 TO 3;} 

Y:=X; 

X[2].BV:= 700; 

This yields the following memory structure. In the following 

illustration, the term BEFO is used in place of BEFORE and DISP is used 

in place of DISPLACE. 
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x 

Y • .CLO X 

SOMETHING 

The first and third elements of the strings X and Y are shared and A is 

shared by all. 

Potnter Anchortn_e. and Co_l!.m.~. 

We can infer several invariants from ICL's ·modification and copy 

policy: 

1) ICL's data sharing is invisible. 

2) Never is an existing structure modified. 

3) A modification is immediately apparent only from the point of 

view of exactly one variable. 

4) A circular list structure never exists. 

These invariants forbid many of the usual pointer operations. The @ 

operator is provided to enable the user to override these invariants. 

It is strongly suggested, however, that the user be careful about where 

he uses the 9 operator. A strong dependence on the @ operator will 

inevitably lead to those popular bugs found in programs which are 
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written in languages where the user is free to manage pointers on his 

own. 

The @ operator turns a SOURCE into a TARGET by writing a given 

value directly over the memory element referenced by the SOURCE. The @ 

operator has the effect of making a modification apparent to all points 

of view. A modification made with the @ operator is said to be a global 

modification. For example, given the memory state 

B 
R 

the anc~ored assignment 

t(A):= [REAL_PART:5 IMAGINARY_PART:6];. 

yields the memory ·state 

B 
R 

Both A and B and any other references to this unique memory location 

sense the change. The @ operation in the assignment happened as 

follows: 

--~ 
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The @ operation writes the 5-node right over the 1-node. 

The @ operator differs from conventional pointer manipulation in 

that it does not modify a reference in some structure, rather, it 

modifies the referenced structure itself. This is equivalent to 

modifying all references to the given structure. This scheme greatly 

contrasts ICL's default, single point of view modification. With the @ 

operator, the user can do any desired pointer manipulation. 

Example - Line Editor: 

Let us consider part of an editor for a line oriented terminal. We 

will want to move both up and down about the lines of the screen. 

The picture 
-----· ·------UP 

l -Ce.-.t (\\~ n.) 

r tea.t 1. l hne fl.1" 1 \ 

J ltN. rL+ i?.) J t!!t. (. 
UP 

may be represented in ICL by the type declarations 

TYPE LINE= [UP,OOWN:LINE CHARS:LINE_OF_CHARACTERS] 

LINE_OF __ CHARACTERS= { CHAR } 

A LINE has an UP and a DOWN field which reference other LINEs. The 

CHARS field references the string of characters which reside on the 

line. The following procedure deletes a line by modifying its 

neighbors' UP and DOWN fields to bypass the given line: 

DEFINE DELETE(L:LINE): 
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IF DEFINED(L.UP) THEN 

IF DEFINED(L.OOWN) THEN 

ENDDEFN 

That is, 

@(L.UP)~DOWN:= L.DOWN; FI 

@(L.DOWN).UP:= L.UP; FI 

L ~'~~~l 

L.vp±· 1 I 
becomes 

L.o~ - r-· --"" 

Note that DELETE's first sentence is 

@(L.UP).DOWN:: L.DOWN; 

This modifies the node residing at L.UP. This is not equivalent to 

1) @(L.UP.DOWN):= L.DOWN; or 

2) L.UP.DOWN:= L.DOWN; or 

3) @(L).UP.OOWN:= L.DOWN;. 

The first modifies the node residing at L.UP.DOWN, which in this 

context is L itself. This would write the node residing at L.DOWN 

over the node at L. 

o\cl l '-•uP. 009.lt.)) 'S L • 

°'' (J_.\')c~~)-- .. ·-··-----------..... -~-------------

The second modifies the variable L and leaves the referenced 

structure unchanged. 

\...UP -+ ------ ~\o t \_,UP) 

---dcl L. 
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From L•s point of view, everything is the same except 

particular path .UP.DOWN is different. In other 

that the 

words, L 

references a copy of old L whose UP field is different. This UP 

field references a new node which is a copy of (old) L.UP whose 

DOWN field is different. 

The third assignment modifies the node at L. This is like the 

second form except that the node at new L is written over the node 

at old L and the variable L is itself unchanged. 

L.oP _,.. 
o\d (.L..UP) 

... L::. o\d L 

A procedure to insert line A before line B is 

DEFINE INSERT(AJB:LINE): 

IF DEFIN~D(B.DOWN) THEN @(8.DOWN).UP:= A; Fl 

@(A).DOWN:= B.DOWN; 

@(A).UP:= B: 
@(B).DOWN:= A; 

ENDDEFN 
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WARNING: 

Any reference to an instance of type LINE will see any and all 

modifications made to that instance even if the modification was 

specified from the point of view of a different reference to the 

same instance. For example, with 

LINEZ:= LINE1;, 

which sets LINEZ to reference what LINEl references, 

INSERT(LINE1,X); 

is equivalent to 

INSERT(LINEZ,X); 

Because a LINE is modified with the @ operator, the apparent copy 

policy over assignment statements is lost for LINEs and for any 

structure which contains a reference to a LINE. We will return to 

this example after ICL's COPY operator is explained. 

corr 

The rule ECOPY takes any pointer type and copies the 

referenced memory element to yield an identical structure which 

resides at a different memory location. For example, given the 

memory state 

the sentence 

B:= COPY(A); 
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yields 

COPY copies only one memory element. The essential fact is that A 

and B now reference distinct memory locations. Thus, 

@(A):= <EXPR> ; 

which creates the memory state 
·---·------·-·····-· .•. 

---·---------------·---

changes nothing from B's point of view. The !!,' operator writes ouer 

onl11 the single memory element directly referenced by A. 

ICL's ECOPY construct does not perform a complete copy, to the 

contrary, it copies only one memory element. While 

LINE1:= COPY(LINE2); 

assures that 

@(LINE1):= <EXPR>; 

affects nothing from the point of view of LINE2, the assignment 
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@(LINE1.UP):: <EXPR>; 

does make a change apparent from both LINE1 and LINE2's points of 

view. LINE1.UP and LINE2.UP are the same memory element: 

L1NG1 

Howe.ver, we can define a function which produces a complete 

copy of a giveri LINE: 

DEFINE COPY(L:LINE)=LINE~ 

IF DEFINED( L.UP) HIEN "copy the whole structure 

referenced by L.UP " 

DO L.UP:= COPV(L.UP); 

@(L.UP).DOWN:= L; 

GIVE L 

ELSE COPY!L) FI 

ENDDEFN 

Recall that the <EXPR> COPY!L), which is used in the ELSE clause, 

is equivalent to COPY(L) in the absence of this function 

definition. Refer to the rule ECOPV. This function definition 

overrides the default meaning for COPY when applied to a LINE. 

However, COPY!L) has the original meaning of· COPY(L). This 

function, given L: 
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L • 

produces 
--------··-··· -· . 

This function procedes by transforming 

-to -
new \... 

via the statement L.UP:=COPY(L.UP);. The statement 

@(L.UP).DOWN:=L: changes the dashed DOWN link to reference new L 

instead of old L. One can deduce from the very start that COPVing 

a LINE involves at least one @ operator: COPVing a LINE produces a 

circular structure, a two-way linked list. We know that without 

the t. a circular structure cannot be created. 

o\J L 



~·. 313 ~ 

If the given L has L.DOWN=NIL, then this COPY function yields 

a complete copy. If, on the other hand, L.DOWN is not NIL, then 

the copy will not be consistent because (COPY(L)).OOWN.UP'will be L 

and not (COPY(L)). Therefore, the user might wish to make this 

copy function a subfunction of a new COPY function where the new 

COPY walks to the bottom of L and then performs the function 

presented above. 

Note that L.CHARS is not copied. This is fine if L.CHARS or 

any of its substructure is never modified with the @ operator. 

However, if L.CHARS or any of its substructure is modified with @, 

a complete copy of a LINE must include copying the L.CHARS field: 

DEFINE COPY(L:LINE)=LINE: BEGIN VAR C=CHAR; 

DO L.CHARS:= {COLLECT C FOR C SE L.CHARS;} 

GIVE 

END 

ENDDEFN 

the preuious corr function body 

L is modified so that its CHARS field references a complete copy of 

the original L.CHARS. The identity-like 

{COLLECT X FOR X SES;) 

forms a new string each of whose elements references the 

corresponding element in s. In other words, this COLLECT form 

produces a copy of S one level deep. 

Now, if we write 
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LINE2:= COPV(LINE1); 

LINE2 will remain unaffected by any operations performed upon 

LINE1. In summary, because instances of LINE are modified with the 

@operator, ICL's apparent copy policy does not apply to ~INEs. A 

new style of programming emerges when dealing with structures which 

are modified with @. Such structures appear to evolve independent 

from point of view. To obtain a completely distinct instance of 

such a structure whose further evolution is independent from the 

evolution of other instances, the user must explicitly specify a 

copy operation. 

Example - Bounding Boxes and Property Lists: 

This example differs from the previous example in that the @ 

modifications create no change in meaning. Rather, the @ operator 

is used to attach to some existing structure, properties, or 

values, any of which could be computed at any time. These values 

are characterized by being context-free: The value of a property 

does not depend on the point of view which references the structure 

having the property. The value depends qnly on structure below. 

An example of a context-free property for a picture is the 

picture's minimum-bounding-box. The minimum-bounding-box depends 

only on the picture and not on any references to the picture. 

The advantage in storing context-free properties on existing 

structures is realized when the value of a property is requested 

more than once. The first request for a property may involve 

computation but further requests need not involve computation if 
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the first request stores the result of the computation. The 

savings is increased when the structure is shared by many different 

points of view. 

Consider the following definition for the type RG, ah IC mask: 

l'YPE RG= EITHER 

POLY= POLYGON 

DISP= [DISPLACE:RG BY:POINT] 

UNION= { RG } 

ENDOR; 

This says that a region, RG, may be formed by specifying either a 

single polygon, a displacement upon an RG, or a union of RGs. The 

following form instances of RG, RG1 and RG2: 

RG1:= { POLY1 ; [DISPLACE:POLY2 BY:3#4] }; 

RG2:= {COLLECT [DISPLACE:RG1 BY:IIO] 

FOR I FROM 1 TO 10;}; 

RGt represents the union.of POLY1 and a displaced POLY2. RG2 

represents 10 copies of RG1, each of which is displaced, in X by a 

different amount. 

It turns out that the processing of RGs can be optimized by 

having some properties associated with each instance. The most 

popular property is knmm as an RG 's minimum-bounding-box (mbb). We 

can define the type MRG to be the association of a box to an RG: 

TYPE MRG= [BODY:RG VANISHING_MBB:BOX]; 
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That is, an MRG is an RG along with its mbb. To make the mbb 

available at the appropriate places, let us redefine the type RG as 

follows: 

TYPE RG= EITHER 

POLY= POLYGON 

DISP= [DJSPLACE:MRG BY:POINT] 

UNION= { MRG } 

ENDOR; 

.All references to RGs have been replaced with references to MRGs. 

Thus, when processintt an RG, the mbbs of its constituent parts are 

immediately available. 

The dispa.rity between RG and MRG is cosmetically removed by 

declaring 

LET RG BECOME MRG BY [BODY:RG]; 

Any RG will automatically pass as an MRG. Now, any program text 

specifying an RG which worked under the old definition for the type 

RG will still work under the new definition for RG. RG's 

requirement that.constituents be MRGs instead of RGs is resolved by 

the coercion. 

Note that the coercion does not define the VANISHING_MBB 

field. We could, of course, change the coercion so that it 

calculates the mbb and sticks it in the VANISHING_MBB field. 

However, there is no real need to calculate the mbb until the mbb 

is actually sought. Once it is calculated, though, we should store 

the· mbb in the VANISHING_MBB field so that it need not be 
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calculated again, e.g., when another reference to the MRG seeks the 

mbb. 

MRG. 

The following function will actually obtain the mbb from an 

DEFINE MBB(M:MRG)=BOX: 

IF DEFINED( M.. VANISH ING _.MBB) TllEN M.. VANISHING_.MBB 

ELSE DO @(M) .VANISIHNG_MBB:=CALCULATE_MBB(M..RG); 

GIVE M.VANISHING_MBB FI 

ENDDEFN 

This function first sees if the VANISHING_.MBB field is already 

defined. If it is, this field is immediately returned and that is 

all. Otherwise, this function calculates the mbb by calling 

CALCULATE_MBB, and via the @( •. ) operator, the function M.BB 

modifies the actual memory location referenced by M to include the 

box. Now any further references to that MRG see the defined 

VANISHING_MBB field. Note that if the@( ... ) were not used, only 

the local variable M would be modified and so upon leaving the 

function, the calculated box would not be permanently associated to 

the given MRG. The assignment 

@(K).VANISHING_MBB := <EXPR> 

may be paraphrased as 

" From the point of view of the structure referenced by M, the 

VANISHING_MBB field is defined to be <EXPR>. n 

In contrast, the assignment 
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M.VANISHING_MBB := <EXPR> 

• From the point of view of the uariable M, the VANISHING __ MBB 

field is defined to be <EXPR>. " 

If ~ is an MRG, then 

M.BODY 

MBB(M) 

is the RG and 

is the mbb 

The awkward name VANISHING MBB was chosen to discourage direct 

access to that component. For example, if the user forgets that 

the mbb must be accessed via the function MBB, e.g.,' he wtites 

M.MBB 

to fetch M's mbb, he will receive a datatype error. However, 

referring to the section on unary operators, the notation 

M\MBB is equivalent to MBB(M). 

Thus, the \ by itself appears to play the role of a generalized 

selection operator. 

By declaring 

LET MRG BECOME RG BY MRG.BODY ; 

the user need not specify the .BODY on an MRG to obtain its RG. M 

by itself passes as an RG. In fact, because we have the coercions 

between MRG and RG going in both directions, instances of the two 

types are completely interchangeable. 
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Note that MBB applied to an RG still yields the RG's mbb. The 

RG will be coerced to an MRG before calling MBB. However, the mbb 

tacked onto the MRG by the function MBB will not be attached to the 

RG. The MRG passed to MBB is lost upon return from MBB; even 

though the RG may still be referenced, the MRG created by the 

coercion ceases to be referenced. 

It is advantageous to declare variables to be of type MRG 

rather than to be of type RG. For example, the RG 

{ A ; [DISPLACED:A BY:10110] } 

references the variable A twice. If A is of type RG, the· coercion 

from RG to .. MRG will be applied twice and, in fact, the mbb for A 

will ultimately be calculated twice. However, if A is of type MRG, 

no coercion will be applied and the mbb of A will be (or has 

already been) calculated only once. It is similarly advantageous 

to use the type MRG in place of the type RG whe~ declaring new 

types which reference IC-masks. In fact, the type RG should be 

forgotten altogether except in those few functions which examine 

MRGs. 

An MRG may be defined to include more properties, e.g.: 

TYPE MRG=[BODV:RG VANISHING_MBB:BOX 

VANISH ING_.RECTS: RECTANGLES 

DESIGN_RULES_OK: DESIGN_STATUS 

SCHEMATIC: C IRCUIT_DIAGRAK]; 
t 
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Here we have properties including the representation of an RG in 

terms of rectangles, a design rule status, and a schematic. Each 

of these properties can be computed from an RG and these properties 

are independent from the points of view which reference an MRG or 

an RG. Accessing each property should be done via a function like 

MBB which manages one component in the MRG record. Such access 

functions manage the retrieval and storage of individual 

properties. It is conceivable that an access function might be 

written which conditionally stores its computed values. The 

conditions might depend on global variables which tell how much 

memory is available or they might depend on the state in whi.ch the 

RG resides, e.g., the DISP state has a trivial mbb calculation 

whereas the UNION state has a more expensive mbb calculation. 

This scheme for implementing properties has the advantage that 

shared data implies shared com~utation. Let us assume that the 

variables RGt and RG2 were declared to be of type MRG. Consider 

that the value in RG2 is represented by 
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MAG 

a D 

In this illustration, the following substitutions have been made: 
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BEFO is used in place of BEFORE 

DPL is used in place of DISPLACE 

u is used in place of UIUOl'i, and 

1188 is used in place of VANISHUJ'G_l"fBB. 

The slanted elements are the VANISHING MBB components of MRGs. 

These do not exist until MBB is called. The mbb at RG1 will be 

calculated only once even though it will be requested 10 times from 

the point of . view of RG2. Note also that RG1 will find its mbb 

already calculated if RG2's mbb was previously sought. Similarly, 

if the mbb of RG1 is requested first, it will not be recalculated 

when computing RG2's mbb. 

Finally, note that the overhead from introducing MRGs in place 

of .RGs is one memory element per instance in the absence of any 

properties. Each extsttng property costs an additional overhead of 

one memory element. 

irrelevant. 

The number of declared properties is 



The @operator is an untamed animal. Some very innocent 

actions can cause bizarre effects. This section documents some 

disasters which can come with the @ operator. 

Example 1: 

first, let us consider the non-anchored assignment 

A := [X:A V:B]; 

This assignment modifies the variable A so that it points to a new 

record, [X:A V:B], and this new record's X component references 

what A used to reference. What A now references and what A used to 

reference are distinct memory locations. 

In contrast, the anchored assignment 

@(A) := [X:A V:B]; 

creates a circular structure and does not modify the variable A .• 

,_ ,_..._Y _\ -j 

This assignment writes the new record [X:A V:B] ouer the locatton 

referenced by both the variable A and the record's X component. 
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The location referenced by A and the location referenced by the 

record's X component are precisely the location now occupied by the 

record itself. However, 

@(A) := [X:COPY(A) Y:B]; 

modifies the structure referenced by A to be a record whose X 

component references a copy of what A used to reference. 

J\:: old f\ / 

.. -,.....·----~-·- ...... --·------ .. 

The COPY is used to avoid circularity. 

Example 2: 

The assignment 

@(8):= 1 <SB; 

would seem to modify the node at B to be what B used to be with a 1 

tacked on the front. However, this will not be the case. After 

the evaluation of the righthand side of the assignment, we get 

----- --·--·-··-----.. -·. 

Finally, the I operator writes the 1-node over tho node referenced 
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by B, yielding 

) 

B now references an infinitely long string of 1s. In contrast, 

@(B) := 1 <S COPY(B); 

does the expected. 

B::. olcJ B ~be\ore\ 
) i 

·----------·····-----·· -·------ ·------·-- . ····---

T 

Ex.ample 3: 

The <EXPR> 

S[2-J 

is not necessarily a tail of S in the sense that one could get from 

S to S[2-] by tracing nodes in memory. S[2-] only appears to be a 

tail of S. For example, if we specify 

T:= {1;2}; 

S:= T $) 5; 

S, T, and S[2-J will reference the memory structures 

-_;;_---------,_...-f1he~;;c.T-;i----7'"...., ~e c 

5 _ -~-_..,....... a.ft~r 

s-
.t ~ 

st z-J ------ s 
·------· -·--·---·--. 
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The node referenced by S[2-] is not on a path starting at S. Thus, 

for example, 

@(S[Z-]) := {10;11} ; 

does not change anything from S's point of view. 

write 

S:=REFRESH(S); 

Q:= S[2-]; 

then we get 

______ \~_J.o_~_·'_!f t7 

Thus, 

@(S[2-]) .- {10;11}; 

leaves 

.s ---r---~-)b.~I v1•e1D;I ·\ 
Q 

as expected. 

\ 

However, if we 

I 

Strings act like LISP's lists only when the string is 

refreshed. In summary, do not use @s on the tails of non~refreshed 

strings. Recall that a refreshed string is formed by 
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REFRESH( any string ) or by 

element <$ refreshed string or by 

the string generation rules, e.g., 

{ ••• ; element ; ... ; COLLECT element <QUANT> . . . } . 

Consolation: 

Even though ICL represents records a~ linked lists like 

strings, record lists maintain an important property which is 

absent from strings: Any non-first node in a record list is not 

the first node in another record list. In other words, no record 

list is a proper tail of another record list. Thus, because the @ 

operator overwrites only the first node in a record list, the 

property given above guarantees that @ cannot overwrite a non-first 

node in any record list. The essential invariant is that the user 

can think of a record as being an indistinguishable unit of memory, 

e.g., 

M 
oc. 11 K 

-··-··--·-·----·- -------·-···--··· - ----· ·-·--·---·- - -~ 

all of which or none of which can be clobbered with an @. 
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Carry-overs f.r.om <EX.PR~.~ 

The following <SS> forms are carry overs from <EXPR>s. These rules 

are copied from the corresponding <EXPR> forms by merely substituting 

<SS> for <EXPR> and DO for GIVE in the appropriate places. Any type or 

PASS8 requirements imposed on the <EXPR>s ~hich have been replaced by 

<SS>s are simply to be ignored. 

The IF-THEN-ELSE 

EBIF: <SS> : : : = 
SBIF: <SS> ... -... -

where 

BIF1: <BIF> ::= 

BIF2: <BIF> ... -
Type Requtrements 

PASS3 Requirements 

Neaning 

<BIF 1> 

<BIF 1> 

IF 

<BIF kl> 

<EXPR2> THEN <SS3> ELSE <SS4> FI 

<EXPR2> THEN <SS3> FI 

<EXPRk2> THEN <SSka> EF 

Identical to the EBIF rule in the section for <EXPR>s. Note 

however that an ELSE clause is optional in the <SS> IF-THEN-ELSE. 

The extra rule, SBIF, allows a <SS> to be built without an ELSE. 

Example: 

IF A=B THEN 1:=5; FI 

If A=B, then I is assigned the value 5, otherwise, nothing is done. 

If A=B THEN 1:=5; EF A<B THEN J:=20; FI 
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If A=B, then I is assigned 5, otherwise if A<B, then J is assigned 

20, otherwise, nothing is done. The form 

IF A=B THEN 1:=5; ELSE 1:=23; Fl 

is equivalent to 

ECASEE: 

EVCASE: 

EVCASB: 

I:= IF A=B THEN 5 ELSE 23 FI 

<SS> ...• CASE <EXPR1> OF <SSV2> 

where 

<SSV> ... - <ID1> : <SS2> ENDCASE 

<SSV> ... - <IDkt> : <SStl> <SSVka> 

Tupe and PASS3 Requirements 

Refer to the <EXPR> ECASEE rule. <EXPR1> must be a scalar type. 

Jlfeanino 

Refer to the <EXPR> ECASEE rule. However, where' the •debugging 

package would be entered in the <EXPR> rule, nothing happens in the 

<SS> rule. That is~ if <EXPR1> yields none of the <ID1> or <IDk.t>s 

in <SSV2> and if there is no ELSE clause, the <SS>-CASE performs no 

action. 

Examples: 

CASE A_COLOR OF 

BLUE: 1:=5; 

RED: I :=20; ENDCASE 
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If the variable A_COLOR is BLUE, I is assigned 5. If A COLOR is 

RED, I is assigned 20. If A_.COLOR is nei thcr RED or BLUE then I is 

unchanged. An equivalent <EXPR>-CASE form is: 

I:= CASE A COLOR OF 

BLUE: 5 

RED: 20 

ELSE: I EN DC ASE 

The Vartant CA§! for!!!_ 

ECASE: (SS> :::= CASE <ID1> OF <SSV2> 

where <SSV> is as defined above. 

Tupe and PASS8 Requirements 

Refer to the <EXPR> ECASE rule. <ID1> must be a variable of some 

variant type. 

f'leaninfl 

Refer to the <EXPR> ECASE rule. However, as in · the <SS> scalar 

case form, th~ absence of an ELSE clause may render the <SS>-case a 

no-op; it won't cause the debugging package to be entered. 

Example: 

DEFINE WR·lTE ( L: LISP _ELEMENT): 

CASE L OF 

ATOM: WRITE( L); 

INTEGER_.NUMBER: WRITE( L); 

FLOATIN(_NUMBER: WRITE( L); 

CONS_PAIR: WRITE('('); WRITE(L.CAR); 

WRITE(' . '); WRITE(L.CDR); 
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WRITE ( I ) I ) ; 

EN DC ASE 

ENDDEFN 

This defines WRITE of LISP_.ELEMENT to print out a LISP __ ELEMENT in 

the dot notation. Note that the WRITE functions named in the first 

three case-clauses are WRITE of QS, INT, ond REAL respectively. 

Recursion occurs only in the CONS_PAIR clause; L.CAR and L.CDR are 

of type LISP_ELEMENT. 

Note that the following CASE form: 

CASE L OF 

CONS_PAIR: L. CAR: =L. CDR; 

EN DC ASE 

leaves L unmodified upon completion. Referring to the <EXPR> ECASE 

rule, note that the case-variable, L, always appears unchanged by 

anything within a CASE form. 

Th! f!CJ.~DU:Q. f!l~ 

HOLDIT: <SS> :::= HOLDING <ASN1> DO <ss,> ENDHOLD 

M'eantng 

Refer to the <EXPR> llOLDING form. 

Example: 

When processing pictures, it is useful to have a global variable 

defining the "current" orientation and to have plotting procedures 

which reference that global variable for the purpose of placing the 

given picture on the screen. Suppose the type PICTURE is defined 
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TYPE PICTURE= EITHER 

SIMPLE= POLYGON 

DISPLACED= [P:PICTURE BY:POINT] 

UNION= { PICTURE } 

ENDOR; 

That is, a PICTURE may be formed by unions and displacements upon 

POLYGONs. Let us declare 

VAR POSITION=POINT; 

so that POSITION is the global variable representing orientation. 

Assuming the existence of a procedure to plot POLYGONs at the 

orientation specified in POSITION, the following procedure will 

plot .PICTUREs: 

DEFINE PLOT(X:PICTURE): 

CASE X OF 

SIMPLE: PLOT_POLY(X); 

DIS-LACED: HOLDING POSITION:=POSITION+X.BY; 

DO PLOT(X.P); ENDHOLD 

UNION: BEGIN VAR V=PICTURE; 

DO PLOT(V); FOR V $E X; 

END 

ENDCASE 

ENDDEFN 

The DISPLACED case-clause modifies the orientation, POSITION, for 

and onlu for the plotting of the "displaced" Jlicture. The global 

variable POSITION is being used in a recursive manner because there 
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The Artthmettc fOR guanti[ier 

This quantifier corresponds to FORTRAN•s DO-loop. 

AFORGO: 

AFORID: 

<OUANT> ::= <AFOR1> ; 

where 

<AFOR> ::= FOR <ID1> 

AFORFR: <AFOR> .. - <AFOR1> FROM <EXPR2 > 

AFORTO: <AFOR> : : = <AFOR 1> TO <EXPR2 > 
AFORBV: <AFOR> .. - <AFOR 1> BY <EXPR2 > .. -
AFORIN: <AFOR> .. -.. - <AFOR 1> IN <EXPR2> 

AFORJS: <AFOR> .. -.. - <AFOR1> IN• <EXPR2 > 

Informally. a (QliANT> mily be formed by 

FOR <ID> 

followed by a sequence 

FROl1 <EXrR> 

TO <EXPR> 

BY <EXPR> 

IN <EXPR> 

IN• <EXPR> 

of the clauses 

followed finally by a semicolon. 

Suntax Requirements 

Some clauses cannot appear together and some clauses 

others. 

1) Each clause may appear at most once. 

2) IN, IN•, and BY are mutually exclusive. 

3) TO is required in the absence of BY. 

require . 
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~oopt ne. rutth <SS>.~ 

SSQ: <SS> : := DO <SS1> <QUANT2> 

SSQ: <SS> ::= <QUANT2> DO <SS1> END 

/lteantng 

Execute <SS1> once for each iteration caused by <QUANT2 > 

Examples: 

DO WRITE( I); FOR I FROM 1 TO 9; 

(---ss----)(------QUANT------) 

prints 123456789. 

FOR I FROM 1 TO 9; DO WRITE( I); END 

does exactly the same. 

Function Cal!.!.~.f 

SSCALP: 

SSICAL: 

<SS> ::= <ID1> <ARGS2> 

<SS> .. - <ID1> 

where <ARGS> is as defined in the 

<EXPR> function call rule, ECALLP. 

Tvpe Requtrements 

For the first rule, SSCALP, there must be a declared function whose 

name is <ID1>, which produces no value, and whose input parameter 

types sequentially match the types of the <EXPR>s in <ARG~2>. For 

the second rule, SSICAL, there must be a declared function whose 

name is <ID1> and which has no input or output parameters. 

l'ASS8 Requirements 
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The <EXPR>s in <ARGS2> must be SOURCES. 

/lleantng 

Evaluate each <EXPR> in <ARGS2> in order of specification and then 

call the appropriate function, <ID1>. 

Example: 

DEFINE TAB: WRITE(' I ) ; ENDDEFN 

defines TAB to be a procedure which prints a tab. 

TAB; 

invokes TAB and thus prints a tab. 
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Unlike the programming language PASCAL, sequences of statements 

need not be enclosed within SEGIN-ENDs. Also, in ICL, semicolons do not 

separate <SS>s. Semicolons are terminators for 

constructs like the assignment statement and 

various independent 

the procedure call. 

Statements in ICL are separated by blanks or by nothing at all. 

SS.SS: 

flfeanin9 

Evaluate <SS1>. Then evaluate <ss2>. 

Example: 

I:=O; I:=I+3; I:=I•2; 

leaves I containing a 6~ 
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Quan ti f i er s :. ~.Q.Q.E!. Q~i::! er at -2.t!.!. 59g~~.Il 

Quantifiers are those linguistic forms in ICL which cause looping. 

Aside from looping via recursion, all looping in ICL is expressed via 

quantifiers. 

We can characterize the meaning of <QUANT> by first noting that all 

of ICL's rules which incorporate <QUANT>s easily transform into the 

canonical form: 

DO <SS> <QUANT> 

Some action is performed repEatedly as dictated by <QUANT>, whether that 

action be accumulating a sum, forming a string, or performing some 

arbitrary action. 

DO <SS> <QUANT> 

is implemented by the program: 

LOOP: 

EXIT: 

prepare for the first iteration 

<SS> 

prepare for the next iteration 

GOTO LOOP 

where the two preparations have the option of branching to the EXIT 

lable, thus terminating the loop. 
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Primitive Quantifiers 

The following are ICL's primitive <OUANT>s. In the next section, 

we will see ways to combine <QUANT>s to come up with more complex 

quantifiers. 

QWHIL: <QUANT> •• - WHILE <EXPR 1> 

Type Requirements 

PASS3 Requirements 

Neaning 

<EXPR1> = BOOL 

<EXPR1> = SOURCE 

Before each iteration, evaluate <EXPR1> and exit as soon as <EXPR> 

yields FALSE. The WHILE quantifier may cause 2ero iterations! 

Examples: 

DO WRil'E('x'); WHILE FALSE; 

is a no-op. 

DO WRITE( 'x'); WHILE TRUE; 

is an infinite loop. 

{ COLLECT C WHILE (C:=TTYCIN;) <>CR; } 

forms a string of characters taken from the TTY. The function 

TTYCIN yields each character typed in at the TTY. The. resulting 

string includ~s ~11 characters up to but not including the first 

. carriage-return, assuming that the variable CR tontains the 

carriage-return character. Note that since the WHILE-<EXPR> 

(C:=TTYCIN;) <> CR 
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evaluates b~fore each iteration, the CHAR variable C contains a new 

input character upon each iteration. The form 

( C: =TTYC IN;) 

sets C to the input character and yields this character as its 

value, referring to the rule SETQX in the section !~be~~i!!.~ <SS>s 

i~ <EXPR>~. Upon leaving this string <EXPR>, C contains a carriage 

return. 

QUNTL: (QUANT> ::= UNTIL <EXPR1> 
Type Requirements 

PASS3 Requtrements 

lfeantng 

<EXPR1> = BOOL 

<EXPR1> = SOURCE 

After each iteration, evaluate <EXPR1> and exit as soon as <EXPR1> 
yields TRUE. The UNTIL quantifier causes at least one iteration! 

Examples: 

DO WRITE('x'); UNTIL TRUE; 

writes one x. 

DO WRITE('x'); UNTIL FALSE; 

is an infinite loop. 

{ COLLEC.T C UNTIL (C:=TTYCIN;) =CR;} 

forms a string of characters taken from the TTY. The first 

character in the string is not from the TTY, however; the first 

character is whatever C contained upon entry to this string <EXPR>. 

This string includes all characters up to and tncludtng the first 
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carriage-return, assuming that the variable CR contains a 

carriage-return. 

carriage-return. 

Upon leaving this <EXPR>, C contains a 

REP ET: <QUANT> : : = REPEAT <EXPR1> 

Tvpe Requtrements 

PASS3 Requirements 

flf'eaning 

<EXPR1> 

<EXPR1> 
= INT 

= SOURCE 

Cause <EXPR1> iterations. If <EXPR1> is 2ero or less, cause no 

iterations. 

Examples: 

DO WRITE( 'x'); 

writes 50 x's. 

REPEAT 50; 

( COLLECT TTVCIN REPEAT BO:} 

forms a string of BO characters taken from the TTY. 
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The Artthmettc fOR guanti[ier 

This quantifier corresponds to FORTRAN•s DO-loop. 

AFORGO: 

AFORID: 

<OUANT> ::= <AFOR1> ; 

where 

<AFOR> ::= FOR <ID1> 

AFORFR: <AFOR> .. - <AFOR1> FROM <EXPR2 > 

AFORTO: <AFOR> : : = <AFOR 1> TO <EXPR2 > 
AFORBV: <AFOR> .. - <AFOR 1> BY <EXPR2 > .. -
AFORIN: <AFOR> .. -.. - <AFOR 1> IN <EXPR2> 

AFORJS: <AFOR> .. -.. - <AFOR1> IN• <EXPR2 > 

Informally. a (QliANT> mily be formed by 

FOR <ID> 

followed by a sequence 

FROl1 <EXrR> 

TO <EXPR> 

BY <EXPR> 

IN <EXPR> 

IN• <EXPR> 

of the clauses 

followed finally by a semicolon. 

Suntax Requirements 

Some clauses cannot appear together and some clauses 

others. 

1) Each clause may appear at most once. 

2) IN, IN•, and BY are mutually exclusive. 

3) TO is required in the absence of BY. 

require . 
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Tupe Requtrements 

<ID1> must be a variable. <ID1> and the <EXPR2>s must either all 

be INTeger or all be REAL. 

PASSa Requtrements 

Neantng 

All the <EXPR2>s = SOURCE 

Set the loop variable, <ID1>, for each iteration as directed by the 

specified clauses. Each clause has its own meaning: 

FROM <EXPR> 

sets the loop-variable to the value of <EXPR> before the first 

iteration. In the absence of FROM, the value of the loop-variable 

is whatever it was upon entrance to the loop. That is, the absence 

of FROM is equivalent to specifying 

FROM <ID1> 
The TO clause, 

TO <EXPR2> 
specifies that the loop is to terminate when the loop variable 

exceeds the value of <EXPR2>. Note that if the increment is 

negative, exceed means less than. In the absence of the TO clause, 

the loop is infinite. 

The BY, IN, and IN• clauses specify an increment. In the absence 

of these clauses, the increment is +1 or -1, depending on which of 

the FROM and TO <EXPR>s is greater. 



- 343 ~ 

specifies that the increment is to be the value of <EXPR2>. Before 

each non-first iteration, the loop variable is incremented by the 

value of <EXPR2 >. <EXPR2> may be negative. 

IN <EXPR2> 

sp~cifies the increment (TO-FROM)/IN. That is, IN specifies the 

number of iterations. The increment is chosen to divide the 

FROM-TO interval evenly into <EXPR2 > intervals. The loop variable 

is set to the initial endpoint of each interval, e.g., 

FOR R FROM 0 • 0 TO 1. 0 JN 4 ; 

sets R to the values 

0.0, 0.25, 0.5, 0.75, but not to 1.0 

However, 

IN• <EXPR2> 
specifies the same increment as the IN <EXPR> but the number of 

iterations is <EXPR2>+1, not <EXPR2>. The extra iteration sets the 

loop variable to the terminal endpoint of the last interval, e.g., 

FOR R FROM 0.0 TO 1.0 IN• 4; 

sets R to the values 

0.0, 0.25, 0.5, 0.75, and 1.0. 

Note that if the loop variable is INTeger, the increment 

(TO-FROM)/ IN 

is calculated using the integer divide, so 

FOR I FROM 1 TO 10 IN• 3; 
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yields the sequence 1,4,7,10 and 

FOR I FROM 1 TO 9 JN• 3; 

yields the sequence 1,3,5,7 .. 

The arithmetic FOR quantifier evaluates each <EXPR2> once, 

before entering the loop. The arithmetic FOR quantifier also 

res~ts the loop variable for each iteration, ignoring 

value, e.g., 

DO WRlTE(I); 1:=20; FOR I FROM 1 TO 3; 

I. 
its current 

writes the numbers 1,2, and 3. Also, the FOR quantifier does not 

increment the loop variable after the final iteration, and it does 

not reset it. Thus, 

DO WRITE(I); FOR I FROM 1 TO 3; 

leaves the variable I containing the value 3, not 4. 

DO WRITE(I); 1:=20; FOR I FROM 1 TO 3; 

writes the numbers 1,2, and 3 and leaves I containing a 20 upon 

exit.· 

Examples: 

DO WRITE( I) ;WRITE( I I); FOR I FROM 5 TO 10; 

writes 5 6 7 B 9 10. 

DO WRITE(l);WRITE(' ');FOR I FROM 10 TO 5; 

writes 10 9 8 7 6 5. 

1:=10; 

DO WRITE(I); FOR l TO 5; 



~ 345 ~· 

does the same. 

DO WRITE(I); FOR I FROM 10 TO 5 BY 1; 

writes the number 10. 

DO WRITE(R);WRITE(' ');FOR R FROM 1.0 TO 0.0 IN 4; 

writes 

1.0 0.75 0.5 0.25 

The following form generates a string of points: 

{COLLECT COS(T)#SIN(T) FORT FROM 0 TO 2•3.14 INN;} 

This string of points represents an N-gon without duplicating · the 

first point. 

{COLLECT COS(T)ISIN(T) FORT FROM 0 TO 2•3.14 IN*.N;) 

makes an N·gon where the first point is duplicated at the end. 
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The selection FOR quantifier is perhaps the main workhorse in ICL. 

As implied by its name, the selection FOR quantifier performs selection, 

mainly on strings. Its most popular use is for iterating thru the 

elements in a string. As we shall see, the FOR quantifier supports 

iterations thru the elements of elements of strings or thru the elements 

of string components of records or thru the elements of strings of 

records of strings, etc. In addition, the FOR quantifier can iterate 

thru a string by setting a sequence of variables to consecutive elements 

in the string. The user can even specify that the sequence of variables 

be allowed to wrap around back to the beginning of the string. 

The FOR quantifier is basically an assignment statement. However, 

unlike the regular assignment statement, the FOR quantifier is free to 

cause looping. Within a FOR quantifier, the notion of TARGET is 

extended to include a new class of TARGET-lik.e entities: 

looping-TARGETs. Looping-TARCiETs include a new TARGET which is formed 

by the strtng generation rule, e.g., {I;J; ... }. We shall formally 

introduce the class of looping-TARGETs after we present the linguistic 

contraction which abbreviates the FOR quantifier for the most common 

uses. 

· QFORE: (QUANT> ::= FOR <EXPR1> $E <EXPR2 > 

The $E reads as an element of. 

Tupe Requtrements 
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<EXPR2> = a string of some type and 

<EXPR1> = that type of which <EXPR2 > is a string. 

PASS3 Requirements 

<EXPR2 > = SOURCE and 

<EXPR1> = TARGET or looping-TARGET 

neaning 

The following describes the meaning only for those cases .where 

<EXPR1> is a TARGET and not a looping-TARGET: For each element in 

the string <EXPR2 >, feed that element to the TARGET <EXPR1> and 

cause one iteration. The number of iterations is therefore equal 

to the length of the string <EXPR2>. 

Examples: 

DO WRITE(I);WRITE(' ');FOR I $E {1;5;20;-3}; 

writes 1 5 20 ·3. 

+ I FOR I SE {1;5;20;-3}; 

yields the value 23, the sum of the elements in the specified 

string. (Refer to the section Looptno wtth <BOP>s). 

{ COLLECT 1+1 FOR I $E S;} 

yields a string identical to S except that each element is 

incremented. 

MIN I FOR I $E S; 

yields the minimum value in S. Recall that MIN is a <BOP>. If BOX 

is defined by 

TYPE BOX = [LOW,HIGH: POINT]; 
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where LOW refers to the lower lefthand corner and HIGH refers to 

the upper righthand corner, then 

[LOW: MIN P FOR P $E S; 

HIGH: MAX P FOR P $E S; ] 

yields the minimum bounding box for an arbitrary string of POINTs, 

s. 

The SE FOR-quantifer presented above is a special case of the more 

general. $C FOR-quantifier. In general, we can translate 

FOR <EXPR1> $E 

FOR · { <EXPR1> } 
<EXPR2> 

$~ <EXPR2> 

into 

$E reads as an eleme.nt of and $C reads as contained in. 

QFORC: <QUANT> .. -.. - FOR <EXPR1> SC <EXPR2> 

Tupe Requirements <EXPR1> = <EXPR2> 
PASS8 Requirements <EXPR2> = SOURCE and 

<EXPR1> = TARGET or looping-TARGET. 

1'eantng 

feed the value of <EXPR2> to the TARGET or looping-TARGET <EXPR1>. 

If <EXPR1> is a TARGET, act as a simple assignment and cause 

exactly one iteration. If, on the other hand, <EXPR1> is a 

looping-TARGET, then set variables and cause iooping as directed bu 

the looping-TARGET. 
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What is ! Looping-TARGET 

A looping-TARGET is 

1) any TARGET, or 

2) any string of looping-TARGETs, or 

3) any record of looping-TARGETs 

ln this context, we are viewing the set of looping-TARGETS as 

including the set of TARGETs. Please refer to the string 

generation rule, STRGEN, and the record generation rule, RGENF for 

the syntax of string and record generation. We now ex.tend these 

generation rules' PASS3 requirements to include looping-TARGETs. 

Each string form, {}, represents one dimension of iteration. 

{ I } 

is a looping-TARGET. It sets I to each element in a given string 

and causes one iteration for each value of 1~ The number of 

iterations is therefore equal to the length of the given string. 

{ I ; J } 

sets I and J to consecutive elements in a given string. That is, I 

holds the first element and J holds the second element for the 

first iteration. For the second iteration, I holds the second 

value and J holds the third. The final iteration finds I holding 

the second to the last element and J holding the last element. The 

number of iterations equals (the length of the given string - 1). 

If the given 

iterations, 

string is 

i . e. , the 

of length one, then there are zero 

template {I;J} cannot fit into a string of 
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length one. 

{ I ; J K 

sets I, J, and K to consecutive elements in the given string. The 

number of iterations is two less than the length of the given 

string. Again,.if the length of the given string is less than 

three, there are no iterations. 

txamples !l1. the FOR !IJ!.~.!1.H.l.!.~E 

FOR {I} $C {2;4;6;8;10); 

sets I to the values 2,4,6,8,10. This is equivalent to 

FOR I SE {2;4;6;8;10); 

The quantifier 

FOR (I;J} SC {2;4;6;8;10); 

sets I and J for each iteration as follows: 

iteration 1: I,J= 2,4 

iteration 2: I,J= 4,6 

iteration 3: I,J= 6,8 

iteration 4: I,J= 8, 10 

Similarly, 

FOR {I;J;K.} $C {2;4;6;8;10); 

sets I, J' and K for each iteration as: 

iteration 1: I' J • K.= 2,4,6 

iteration 2: I, J 'K.= 4,6,8 

iteration 3: I,J,K.= 6,B,10 
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loopinv-TARGETs that ~rae-arQ.~!l~ 

{ I ;* J } 

is equivalent to 

{ I ; J } 

except that one more iteration occurs. This final iteration finds 

I containing the last element in the given string and J containing 

the first element. That is, the template {I ;* J} has wrapped 

around back to the beginning of the given string. 

{ I ; J ;* K } 

sets I, J, and K to the consecutive elements in the given string 

but in addition, K is allowed to wrap around .. Hence, the final 

iteration finds K holding the first element and I and J holding the 

second to last and the last elements in the given string. 

{ I ;* J ; K. } 

differs from the previous example by the placement of the "·*" ' 
separator. Here, both J and K are allowed to wrap around. The 

quantifier 

FOR {I ;* J} $C {2;4;6;&;10}; 

causes the iterations: 

iteration 1: I ,J= 2,4 

iteration 2: I,J= 4,6 

iteration 3: I,J= 6,8 

1 teration 4: I,J= 8,10 

iteration 5: I,J= 10, 2 



.... 352 .... 

The quantifier 

FOR (I ; J ;* K} $C (2;4;6;8;10}; 

causes the iterations: 

iteration 1: I,J,K= 2,4,6 

iteration 2: l,J,K..= 4,6,8 

iteration 3: I,J,K= 6,8,10 

iteration 4: I ,J ,K= 8,10, 2 

The quantifier 

FOR {I ;*. J ; K} $C {2;4;6;8;10}; 

causes the iterations: 

iteration 1: l,J,K= 2,4,6 

iteration 2: I, J, K= 4,6,B 

iteration 3: l,J,K= 6,8,10 

iteration 4: I,J,K..= 8,10, 2 

iteration 5: l, J. K..= 10, 2,4 

In general, the first ";*" specifies that the following elements 

will wrap around. All but the first";*" are ignored .. The number 

of iterations depends on the length of the given string. and the 

number of target elements preceding the 

( { I } } 

"·•·· . . 

sets I to each element in a TWO_DIMENSIONAL __ ARRAY (refer to the 

section for the definition of 

TWO_DIMENSIONAL_ARRAY). That is, working form the outside in, the 
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((I}} sets the looping-TARGET {I} to each vector in the given 

TWO_DIMENSIONAL_.ARRAY. The {I} receives each vector by setting I 

to each element in the vector. Thus, {{I}) represents a 

two-dimensional loop. 

A computer circuit board, or CARD, consists of a bunch of 

interconnected chips. Each chip has a name and a set of wires or 

signals to which it connects. In ICL, we can represent this by 

TYPE CARD= { CHIP }; 

CHIP= [NAME: CHIP_NAME 

SIGNALS: { WIRE __ NAME } ] ; 

That is, a CARD is a bunch of CIHPs and each CHIP has a name and a 

set of wires. Now, suppose CARD is a variable of type CARD. Each 

of the following prints the na.mes of the CHIPs in CARD. 

DO WRITE( CHIP .NAME); FOR CHIP SE CARD; 

or 

DO WRITE(N); FOR [NAME:N] $E CARD; 

The second form selects down to the chip-name in the FOR-quantifier 

whereas the first form sele'cts down to the chip-name in the WRITE 

statement. 

Each of the following forms prints each wire-name, WN, as many 

times as it is connected to a chip: 

FOR CHIP SE CARD; 

DO FO.R WN $E CHIP.SIGNALS; 

DO WRITE(WN); END END 

or 
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FOR [SIGNALS:S] $E CARD; 

DO FOR WN $E S; 

DO WRilE(WN); END END 

or simply 

FOR [ SIGNl\LS: {WN} ] $F. C/\.RD; 

DO WRITE(WN); END 

Each of these loops is a two-dimension 

form has only one FOR-quantifier. 

loop. However, the final 

Looking closer at the final 

form, we see that each element in CARO, a CHIP, is assigned to the 

looping-TARGET 

[SIGNALS: (WN} ]. 

This looping-TARGET assigns the SIGNALS component to the 

looping-TARGET (WN). {WN} assigns each eJement in SIGNALS to the 

variable WN. Therefore, WN is assigned each signal in each chip in 

CARD. 

The following prints each wire-chip pair: 

FOR [NAME: CN SIGNALS: {WN} ] $E CARO; 

DO WRITE(CN); WRITE(w'N); END 

Each chip in CARD is assigned to the looping-lARGET 

[NAME: CN SIGNALS: {WN} ] 

This looping-TARGET sets CN to the name of the chip and it sets the 

looping-TARGET (WN} to the chip's SIGNA.l.S component. The 

looping-TARGET {WN} then assigns each signal into the variable WN. 
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The following prints each chip-name to which a given WIRE_NAME 

is connected: 

FOR [NAME: CN SIGNALS: {WN}] $E CARD; 

DO IF WN=WIRE_NAME TltEN WRITE(CN); FI END 

Let us now consider the problem of sorting a CARD by signals. 

As CARD now stands, a particular wire-name is scattered among many 

chips. Our goal is ~o produce a reshaped CARD so that each WIRE is 

conveniently listed with all the chips it connectsi 

TYPE SORTED_CARO= [WIRE: WIRE_NAME 

CHIPS: SET __ OF_CfllPS] }; 

SET_OF __ CHIPS= { CHIP __ NAME } ; 

A SORTED_CARD is a set of records each having a unique wire-name 

along with the set of chip-names to whjch the wire connects. The 

following function, complete with declarations, should accom~lish 

the task of translating a CARO into a SORTEO_CARO. 
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DEFINE SORT(CARD:CARD)= SORT'ED __ CARD : 

BEGIN VAR CN=CHIP_NAME; WN,WN1=WIRE_.NAME; 

C= SET_OF_CHIPS; 

SORTED_CARD= SORTED_.CARD; 

DO SORTED __ CARD:=NIL; 

FOR [NAME:CN SIGNALS:{WN}] $E CARD; 

"For each chip-wire pair ... " 

DO " Have we yet encountered this particular 

wire-name? " 

IF NEVER WN1=WN FOR [WIRE :WNt 

CHIPS:C ] $E SORTED __ CARD; 

THEN "We have a new wire-name. 

Expand SORTED_CARD to include an entry 

for this new wire-name and its chip" 

SORTED_CARD::=[WIRE:WN 

CHIPS: {CN}] <S; 

ELSE "WN=WN1. Add CN to C, the 

set of chips associated to WNt." 

@(C):= CN ($ COPY(C); FI 

DEFINE SORT(CARD:CARD)=SORTED_CARD: 

BEGIN <DECL> 

DO SORTED_CARD:=NIL; 
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Expand SORTF.'O_CARD to include 

each chip-wire pair 

GIVE SORTED_CARD 

END 

ENDDEFN 

The main part of this function repeatedly updates SORTED_.CARD to 

account for each individual chip-wire pair. We get each chip-wire 

pair by using the quantifier 

FOR [NAME:CN SIGNALS: {WN} ] $E CARD; 

Having each chip-wire pair, we use SORTED_CARD as a table and look 

for an entry having WN as its wire. The <EXPR> 

NEVER WN1=WN FOR [WIRE:WN1 

CHIPS:C ] $E SORTED_.CARD; 

is a BOOLean which yields TRUE if SORTED_CARD does not ha.ve an 

entry for the wire WN. That is, the quantifier 

FOR [WIRE:WN1 CHIPS:C] $E SORTED_CARD; 

sets WN1 to each wire in SORTED_CARD and sets C to the wire's 

accumulated chip set. If it is never true that WN1=WN then 

SORTED_CARD contains no entry for the wire WN. Here the program 

splits into two cases. First, if SORTED_.CARD has no entry for WN', 

create a new entry on SORTEO_CARO for the new wire, WN. This is 

done by 

SORTED_CARD::= [WIRE:WN CHIPS:{CN}] <S 
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We append onto the front of SORTED_CARD a new entry, an entry whose 

wire is WN and whose associated set of chips is {CN}, the string 

containing CN as its onl~ element. 

On the other hand, if SORTEO_CARD already contains 'an entry 

for WN, then we merely modify its associated chip set to include 

CN. The variable C contains WN's associated chip set because the 

NEVER <EXPR> yielded FALSE. The sentence 

@(C):= CN ($ COPV(C); 

appends CN to the front of C. The @ and COPY are used solely for 

the purpose of making this modification apparent from SORTED_CARD's 

point of view and not merely from C's point of view. T.hat is, the 

string referenced by the CHIPS component of an elemeqt in 

SORTED_.CARD is treated as an object in its own right which can be 

modified in a global sense. The @ operator makes the cha.nge 

apparent from all points of view. We are obliged, however, to 

assure ourselves that this global modification affects nothing 

besides those structures created in this program. We can look at 

this program and easily prove that the modification is apparent 

only from C's and SORTED_CARO's points of view. The location 

referenced by C, the location modified by the @ operator, will 

always be the CHIPS component of some record in SORTED_.CARD. Each 

entry in SORTED~CARD is created by the record generating <EXPR> 

[WIRE:WN CHIPS:{CN}]. 

The CHIPS component, {CN}, is a newly created string and therefore 

it resides at a location referenced from no other point of view. 

It is precisely this location in memory which is affected by the @ 
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operator. In short, the location modified by the @ operator is one 

which is created in this program and which is referenced only by 

SORTED_CARD and C. 

11 on-n es t e d ~.Q.Q.l!.!.~.'J..:.[1.fl.Q.~I.~. 

We now define what happens when two looping-TARGETs are 

disjoint, i.e., neither is nested within the other. For example, 

the looping-TARGET 

[A: (X} B: (Y} ] 

has two string <EXPR>s which appear independently from one another. 

This looping-TARGET produces a two-dimensional loop: X and Y are 

set to each element in the A and B components of the given record 

in all possible ways. Thus, 

sets 

or 

FOR [A:{X} B:{Y)] $C [A:{1;2;3) B:{10;20}]; 

X,Y= 1,10 

X,Y= 2,10 

X,V= 3,10 

X,Y= 1,20 

X,Y= 2,20 

X,V= 3,20 

X,Y= 1,10 

X,V= 1,20 



X,Y= 2,10 

X,Y= 2,20 

X,Y= 3,10 

X,Y= 3,20 
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One of these sequences occurs, but the user cannot be certain as to 

which. Refer to the uncertain evaluation order in the record 

generation rule, RGENF. 

The looping-TARGET 

{ {I} ; {J} } 

defines a three-dimensional loop upon a string of strings. Let us 

refer to the given string of strings by the name s. This 

looping-TARGET sets the looping-TARGETs {I} and {J} to the 

consecutive strings in S. Each of these looping-TARGETS 

independently sets I and sets J to the elements in the two 

consecutive strings. In other words, I is set to each element in 

the first string of S and J is independently set to each element in 

the second string of S. Then, I is set to each element in the 

second string, of·s and J is independently set to each element in 

the third string of S, etc. In general, the dimensionality of any 

given looping-TARGET is equal to the number of string-<EXPR>s, {}, 

occuring within. 
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We can combine the primitive quantifiers to form quantifiers of a 

more general sort. The following section covers the combination of 

quantifiers with quantifiers and the section there after covers the 

modification of quantifiers. 

Binarl Combinations 

The following rules construct quantifiers which cause nested 

looping, Jock-stepped looping, and sequenced looping. 

QOR: <QUANT> : := <Q.UANT 1> !! <QUANT2> 

QAND: <QUANT> .. - <QUANT1> &&: <QUANT2> 

QTHEN: <QUANT> : : = <QUANT1> THEN <QUANT2> 

lleaning 

The operator!! nests quantifiers, the operator && lock-steps 

quantifiers, and the operator THEN sequences quantifiers. That is 

<QUANT1> II <QUANT2> 

specifies that for each iteration caused by·<QUANT1>, run <OUANT2>. 

The canonical 

DO <SS> 

becomes 

DO DO <SS> <QUANT2> <QUANT1> 

<-------ss---------J 
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The resulting number of iterations is the product of the numbers of 

iterations caused by <QUANT1> and <OUANT2 >. 

The quantifier 

<QUANT1> && <QUANT2> 

specifies that <QUANT 1> and <QUANT2 > step together. This 

quantifier terminates as soon as either <QUANT1> . or <QUANT2> 

terminates. The canonical 

DO <SS> <QUANT1> && <QUANT2> 
becomes 

prepare for first iteration of (QUANT1> 

prepare for first iteration of (QUA.NT2> 

LOOP: <SS> 

prepare for next iteration of <QUANT1> 

prepare for next iteration of (QUANT2 > 

GOTO LOOP 

EXIT: 

where each of the four preparations may spontaneously branch to 

EXIT. As soon as one quantifier is exhausted, the &'.& combination 

is said to be exhausted. The resulting number of iterations is the 

minimum of the numbers of iterations caused by <QUANT1> and 

<QUANT2>. 

The quantifier 
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specifies that when <QUANT1> terminates, start up <QUANT2>. The 

canonical 

DO <SS> 

becomes the two sentences 

Examples: 

DO <SS> <QUANT1> 

DO <SS> <QUANT2 > 

DO WRITE(I);TAB;WRITE(J);CRLF; FOR I FROM 1 TO 3; I! 

prints 

1 1 

1 2 

1 3 

2 2 

2 3 

3 3 

The sentence 

FOR J FROM I TO 3; 

DO WRITE( ptJ) ;TAB; FOR I FROM 1 TO 3; !! 

. FOR J FROM 1 TO 3; 

prints 

1 2 3 2 4 6 3. 6 9 

The expression 

{COLLECT IIJ FOR I FROM 1 TO 10; !! 
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FOR J FROM 1 TO 9; 

forms an array of points having 9 rows and 10 elements per row. 

The && operator may be used as follows: 

DO WRITE(l);TAB;WRITE(J);CRLF; FOR I FROM 1 TO 10; && 

FOR J FROM 0 TO 20 BY 5; 

prints 

1 0 

2 5 

3 10 

4 15 

5 20 

The string 

{COLLECT I FOR I $E S; && WHILE 1<10; } 

forms the longest initial substring of S having all elemerits less 

than 10. The string 

{COLLECT I FOR I $E S; && REPEAT 5; 

forms a string having the first 5 elements of S. If S has less 

than 5 elements, this new string is a mere copy of S. The string 

{COLLECT I FOR I FROM 0 BY 5; && 

REPEAT 20; 

forms a string of 20 elements. The first element is 0 and each 

following element is 5 greater than its predecessor. Notice that 

this example uses the && to limit the non-terminating qua~tiffer 

FOR I FROM 0 BY 5; . 
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The BOOLean expression 

ALWAYS A=B FOR A $E St; && FOR B $E S2; 
I compares two strings of characters and yields TRUE if one string is 

the initial segment of the other. 

DO WRITE( 'ElemenU') ;WRITE( I) ;WRITE(' is ') ;WRITE(J); 

FOR I FROM 1 BY 1; && FOR J $E S1; 

prints out a table of two columns. The first column is the 

sequence of integers from 1 to the length of St and the second 

column is the corresponding elements in St. If St is the string 

{5;10;-3} then we will get 

Elementlt is 5 

ElemenUZ is 10 

Elementl3 is -3 

The following sentence uses the THEN operator: 

DO WRITE(I);TAB; FOR I FROM 1 10 5 BY 2; THEN 

FOR I FROM 100 TO t02; THEN 

FOR I FROM 200 TO 202; 

prints 

1 3 5 too 101 102 200 201 202 

The summation 

+ I FOR I $E S1; THEN FOR I $E S2; 

yields the sum of the elements in both St and S2. 
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Any quantifier may be postfixed with a variety of modifiers. 

·Concerning precedence, these modifiers are tacked on. before any binary 

combinations are considered. For example, 

FOR I $ES; && FOR J $E St; WITH J >= 5; 

groups as 

FOR I $Es·; &.& (FOR J $E St; WITH J >= 5;) 

and not as 

(FOR I $ES; &.& FOR J $E St;) WITH J >= 5; 

QWITH: <QUANT> •• - (QUANT1> WITH <EXPR2> ; 
QINH: <QUANT> : := <QUANT 1> INHIBIT'_IF <EXPR2 > 

QRES: <QUANT> : := (QUANT1> RESET IF <EXPR2 > 

QECH: <QUANT> •• - <QUANT1> EACH DO <SS2 > ; 

QFTM: <QUANT> •• - <QUANT 1> F IRST_DO <SS2> 

QOTH: <QUANT> ::= <QUANT1> OTHF.R_,PO <SS2> 

QFST: <QUANT> ::= <QUANT1> INITIALLY <SS2> 

QFIN: <QUANT> : := <QUANT1> FINALLY_,00 <SS2> 

Tupe Requirements <EXPR2> = BOOL 

PASS8 Requirements <EXPR2 > = SOURCE 

1feanino 

Each modifier has its own meaning: 
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filters the <QUANT1> by removing those iterations for which <EXPR2> 
yields FALSE. That is, the canonical 

DO <SS> 

becomes 

DO IF <EXPR2> THEN <SS> Fl <QUANT1> 

<------------ss---------> 
The modifier 

INHIBIT_IF <EXPR2 > ; 

inhibits the stepping of <QUANT1> when <EXPR2 > yields TRUE except 

on the first iteration. That is, before each non-first stepping of 

<QUANT1>, evaluate <EXPR2 > and abandon the stepping if <EXPR2 > 
yields TRUE. 

The modifier 

RESET_IF <EXPR2> ; 

resets <QUANT1> to start over from the beginning if <EXPR2 > yields 

TRUE. That is, before each non-first stepping of · <QUANT1>, 

evaluate <EXPR.2 > and if it yields TRUE, reset <QUANT1> so that it 

now restarts from the beginning. 

The modifier 

EACH_DO <S~2> 

specifies that <SS2> be evaluated before each iteration after 

<QUANT1> has been stepped. That is, the canonical 

DO <SS> 
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becomes 

DO <SS2 > <SS> <QUANT1> 

<----ss----> 
The modifier 

FIRST_DO <SS2 > 

specifies that <SS2> be evaluated before the first iteration but 

after <QUANT1> is first stepped. That is, the canonical 

DO <SS> 

becomes 

DO IF thts ts the first iteratton THEN <ss2> FI 

<SS> <OUANT1> 

The modifier 

OTHER_DO <SS2> 

specifies that <SS2> be evaluated before each non-first iteration. 

That is, the canonical 

DO <SS> 

becomes 

DO IF this is not the first iteration 

<SS> 

It turns out that <SS2> appears to be evaluated betlueen iterations. 

The modifier 
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specifies that <SS2> be evaluated before the first stepping of 

<QUANT1>. The canonical 

DO <SS> 

becomes 

<SS2 > DO <SS> <QUANT1> 

The modifier 

FINALLY_DO <SS2> ;. 

specifies that <SS2> be evaluated after <QUANT1> terminates. The 

canonical 

DO <SS> 

becomes 

DO <SS> <QUANT1> <SS2> 

<-------ss--------> 
Examples: 

{COLLECT I FOR I $E S; WITH 1>5; } 

forms the largest subset of S whose elements satisfy I>.5. 

{COLLECT I FOR I $E St; WITH 

THERE_IS J=I FOR J $E S2; } 

(----------EXPR----------) 

(--------------QUANT-----------) 

forms the intersection of the strings S1 and S2. We must assume, 

of course, that the elements of S1 and 82 are comparable with the 

<BOP> "=". This string <EXPR> collects each element in S1 onlu tf 

that element is in S2. 
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FOR I $E S; 

EACH __ DO J:=I•SQRT(I); 

<-----ss-----J 
~ields the sum of J*(J-1) where J=l*SQRT(I) for each I in S. This 

is equivalent to 

+ (I*SQRT(I))*((I*SQRT(I))-1) FOR I $ES; 

The EACH_DO is generally useful for setting auxiliary loop 

variables which depend on the actual loop variable. 

The QUanti fier 

FOR I SE. S;. EACH_DO I: :=M.AX 5; ; 

sets I to the maximum of each element in Sand 5. 

The following sentence plots the path rep~esented by the stri~g of 

points S: 

FOR P $E S; 

FIRST_DO PLOT(P,PEN __ UP);; 

OTHER_DO PLOT(P,PEN_DOWN);; 

DO NOTHING; ENO 

The first point is plotted with the pen lifted up and the non-fir~t 

points are plotted with the pen down. The quantifier itself does 

all the work. The <SS> being quantified is "NOTHING;", a· no-op. 

The above sentence employs the rule 

(QUANT> DO <SS> END 

and so we are obliged to write the "DO NOTHING; END". 
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The following sentence plots a polygon which is represen~ed tiy 

a string of points where the first point is not duplicated at the 

end: 

FOR { Pt ;• P2 } SC S; 

FIRST_DO PLOT(P1,PEN_UP);; 

DO PLOT(P2,PEN_DOWN); END 

The quantifier 

FOR Pt •• P2 } $C S; , 

sets Pt and P2 to consecutive points in S where 

leaves P2 containing the first point in S. 

plots the first two points of S, Pt and 

iterations Just plot P2. 

the final iteration 

The first iteration 

PZ, and the other 
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<EXPR>s and <TVPE>s - Part Z 

This section introduces three more datatypes and the correspondi~g 

<EXPR> forms which generate and select instances of the new types. 

Finally, we will introduce a concise notation for specifying strings of 

points using relative movements. 

Another Primitive frl!! .: ID 

Just like INT, REAL, POINT, etc. are primitive types, the name ID 

is another primitive type in ICL. That is, we include the rule 

<TYPE> : := ID 

Do not confuse the literal IO with the part-of-speech <ID>. 

An instance of the type ID is any <ID>. The type ID is very 

similar to the type QS and to the SCAL~R types. Instances of ID differ 

from instances of QS by their denotation and their efficiency in the 

comparison operators. Unlike instances of QS, equal instances of ID are 

represented by unique memory addresses, like ATOMs in LISP. Thus, 

comparing two IDs is as efficient as comparing two INTegers. The type 

ID differs from a SCALAR type in that any <IO> may be an instance of ID 

whereas only the <ID>s contained in a SCALAR's <IDLIST> can be instances 

of the SCALAR type. 

Instances of the type ID are generated by prefixing an <ID> with a 

percent sign: 

EIDID: <EXPR> ::: ~<ID> 
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Type Requirements result = ID 

PASS3 Requirements result = SOURCE 

Keaning 

The resulting value is the <ID> as a literal value. 

Examples: 

X.GROUND 

X.A_B_C 

is the ID GROUND 

is the ID A_B_C 

Instances of ID may be compared by the compare operators 

= <> =< < >= ) 
These are the compare operators which have been documented in the 

section for <BOP>s. Now, we will extend the compare operators to 

compare two instances of ID: 

ID ID -> BOOL 

Two IDs are equal if and only if they are the same ID. IDs are ordered 

in a completely arbitrary way. Thus, 

X.GROUND = X.GROUND is lRUE, 

X.GROUND = X.GND is FALSE, 

X.GROUND < > X.GND is TRUE, and 

X.GROUND < X.GND is uncertain. 

However, if 

X.GROUND < X.GND 

is TRUE once, then it is true from this time forward. The ordering 

between two IDs is determined as soon as ICL has seen each <ID> for 

the first time in any context. It turns out that the value of an 
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instance of lb is its address in ICL's internal symbol table. 

Whtch Type is Appropriate, 10, QS, or SCALAR( <IOLIST> )? 

The types ID, QS, and SCALAR( <IDLIST> ) are so similar that one 

might ask what situations demand the use of one over the other. QS is 

the most general; any text string is an instance of QS. ID is less 

general; only tho~e text strings which form valid <ID>s as defined in 

the section Basic Conuentions are instances of ID. SCALAR( <IDLIST> ) 

is the least general; only those <ID>s appearing in <IDLIST> are 

instances of SCALAR(<IDLIST>). 

As a rule of thumb, use the least general typ~ with which you can 

get by. IDs compare faster than QSs and they take up slightly less 

memory. SCALARs are the best because the compiler checks that any 

context which expects an instance of a SCALAR does indeed get one of the 

<ID>s in the SCALAR'S <IDLIST>. 
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The following two type schema each offers a profound extension to 

ICL. One enables the creation of truly abstract datatypes in the sense 

that an abstract datatype may have invariant properties besides those 

inherent in a machine representation. The other type schema enables the 

creation of data which is a program along with some context. 

A new datatype, a restriction of an existing datatype, is formed by 

prefixing the existing datatype with the word PRIVATE: 

<TYPE> PRIVATE <TYPE> 

The representation for the resulting type is the same as the 

representation for the original type. However, instances of the 

original type are not instances of the resulting type and visa versa . . 
The PRIVATE construct is primarily useful for creating dtsttnct types 

whose representations are identical. The user will typically define 

coercions between the distinct types so to remove the distinction. 

However, within the coercions, he can monitor the tranference from one 

type to the other. Here he can place checks and translations which will 

occur implicitly throughout his programs. 

For example, let us consider polygons and convex polygons. A 

general polygon is suitably represented by a string of points tracing 

out its vertices: 
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TYPE POLYGON= { POINT }; 

What is here agreed upon is that any newly formed string of points 

passes as an instance of POLYGON. Thus, 

{ point 1 ; point2 ; •.. ; pointn } 

is an instance of POLYGON. Furthermore, any operations which apply to 

strings of points apply to POLYGONs: 

poluoon $> Point 

point <$ poluuon 

poluoon $$ poluuon 

poluuon [3-] 

are all instances of. POLYGON. In contrast, a convex polygon is not just 

any old string of points. The above expressions for POLYGONs do not 

guarantee convexity. In ICL, we can specify that the type 

CONVEX_POLYGON is a restricted sort of POLYGON by writing. 

TYPE CONVEX_POLYGON = PRIVATE POLYGON ; 

Of course, ICL doesn't know how COWEX_.POLYGONs are restricted POLYGONs, 

but the user can capture the restriction in the functions and coercions 

he writes which consume and produce CONVEX __ POLYGONs. CONVEX_POLYGONs 

are so private that none of·the above expressions for polygons pass as 

instances of CONVEX_POLYGON. The only way to create ·or examine an 

instance of CONVEX_POLYGON is to explicitly specify the transference 

from privacy to publicity or visa versa. The following section covers 

the notation for doing so. 

Publication and Confirmation - Selection and Generation for PRIVATE 

Tupe& 
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The following rules are the only rules which involve PRIVATE types. 

Instances of PRIVATE types are stripped of their privacy by 

PUBLC: <EXPR> .• - PUBLICIZE:::( <EXPR1> ) 

Tupe Requirements 

<EXPR1> must be a private type, say PRIVATE T. The resulting type 

is T, the less restricted type. 

llfeantno 

An identity. No additional code is generated. This construct is 

used to gain access to an instance of a private type. 

Example: 

If C is a CONVEX_POLYGON, then 

PUBLICIZE:: :(C) 

is a POLYGON. The coercion 

LET CONVEX_POLYGON BECOME POLYGON BY 

PUBLICIZE:::(CONVEX_POLYGON) 

specifies that any convex polygon is also a polygon. The privacy 

of CONVEX_POLYGON may therefore be lifted implicitly. 

'Instances of a private type are created by: 

PRIVY: 

Tupe Requirements 

<ID1> is the name of a declared PRIVATE type and 

<EXPR2> = that .type which is the generalization of the private type 

<ID1>. That is, the following relation must hold: 
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<ID1> = PRIVATE the-type-of-<EXPR2> 
Meaning 

An identity. No additional code is generated. This construct is 

used to confirm <EXPR1> as being a legitimate instance of a PRIVATE 

type. 

Example: 

If P is a POLYGON, then 

CONVEX_POLYGON:::(P) 

is a CONVEX_POLYGON. Similarly, 

CONVEX_.POLYGON:: :( {point 1 ,potnt2 : ... 1potntn} 

is a CONVEX_.POLYGON. Note that the points can be chosen so as not 

to form a convex polygon. ICL does not check or know what is meant 

by CONVEX_POLYGON. ICL only verifies that except thru this 

doorway, the notion of CONVEX_.POLYGON is safely preserved. The 

coercion 

LET POLYGON BECOME CONVEX_.POLVGON BY 

IF POLYGON \IS_.CONVEX THEN 

CONVEX_POLYGON:::(POLYGON) 

ELSE DO HELP; GIVE NIL FI ; 

specifies that any POLYGON passes as a CONVEX_POLYGON but in doing 

so, the POLYGON is automatically subject to a test. To understand 

what role this coercion plays, let us consider a function which 

works only on CONVEX_POLYGONs. 
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The process of cutting a polygon in two with. a line is 

referred to as polygon clipping. It is a fact that any convex 

polygon clipped by a line results in another convex polygon. It is 

also a fact that a general polygon clipped by a line can yield 

several disconnected polygons. Without filling in the details, the 

following function clips a convex polygon by a line and yields the 

convex clipped polygon: 

DEFINE CLIP(V:CONVEX_POLYGON BY:LINE)=CONVEX_POLYGON: 

DO Clip the polygon V 

GIVE the clipped polygon 

ENDDEFN 

Because the argument to CLIP is of type CONVEX_POLYGON, the body of 

this function can be written assuming the convexity,of th' argument 

V. The argument V may be accessed. simply as a string of points 

because the CONVEX_POLYGON -to- POLYGON coercion can render V as a 

POLYGON. 

Where does the POLYGON -to- CONVEX_POLYGON coercion come in? 

It potentially comes in at two places. 

with a POLYGON parameter, the coercion 

First, if CLIP is called 

will apply before the 

function call and the parameter's convexity will be checked before 

entering the function CLIP. Secondly, the result of the clipping 

is a new string of points, which is called the clipped polygon in 

the program text given above. Before leaving the CLIP function, 

the coercion will be applied to the clipped string of points, thus 

verifying its convexity. If CLIP is ever called with a POLYGON 

which is not convex, the function HELP will be called from within 
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the POLYGON -to- CONVEX_POLVGON coercion. Similarly, if CLIP 

yields a non-convex polygon, HELP will be called. Note, however, 

we know that the result of the clipping is always convex. It is 

therefore a waste of time for the coercion to be invoked upon 

leaving CLIP. We may simultaneously relieve this final coercion 

and explicitly state in program text that this procedure always 

yields a convex polygon by writing 

CONVEX_POLYGON:::( the clipped polygon 

in the GIVE clause. We are explicitly putting our stamp of 

approval on the result of this function. 

Another example implements a restricted type of 

capitalized character. 

TYPE CAP_CHAR = PRIVATE CHAR 

declares CAP_CHAR to be a restricted CHAR. We can 

meaning of capitalizati~n by writing the coercions: 

LET CAP_C.HAR BECOME CHAR BY 

PUBLICIZE:::(CAP_CHAR) 

LET CHAR BECOME CAP_CHAR BY 

CAP_CHAR:::( IF CHAR >='a' & CllAR =< 1 2 1 

THEN THE __ CHAR(CHAR-'a'+'A') 

ELSE CHAR FI ) ; 

CHARacter. a 

capture the 

The first coercion states that any CAP_CHAR is a valid CHAR. The 

second coercion states that any CHAR is a CAP __ CHAR by capitalizing 

the CHAR. Before we discuss the ramifications, I must clarify the 

THEN-clause· in the second coercion. The <EXPR> 
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CHAR - 'a' + 'A' 

specifies arithmetic to be performed on characters. CHARs may not 

participate in arithmetic but INTegers can. This <EXPR> assumes 

the existence of a CHAR-to-INT coercion, one which maps a CHAR into 

its INTeger ASCII code. Assuming such a coercion, 

CHAR - 'a' + 'A' 

results in type INTeger, the ASCII code for a capital letter. The 

"identity" function THE_CHAR maps an INTeger into a CHAR. Thus, 

THE_CHAR( CHAR - 'a' + 'A' ) 

is the desired capitalized character. Just as the INTeger-to-REAL 

coercion is generally assumed, the user may assume the existence of 

the CHAR-to- INTeger coercion and the THE_,OIAR INTeger-to-CHAR 

function. This coercion and function are contained in the file 

BEGIN.ICL, the first file read into a freshly created ICL system. 

WARNING: 

A common user error accompanies coercions which coerce to 

a private type, e.g., the CHAR-to-CAP _,CHAR coercion. The user 

might forget to write the confirmation, e.g., CAP_CHAR:::( ••• ) 

around the body of the BY-clause in the coercion, e.g., 

LET CHAR BECOME CAP_CHAR BY IF .. THEN .. ELSE .. FI ; 

This forgetfulness results in an infinite loop via recursion. 

ICL wttt apply the coercion to the body of the coercion itself 

in order to satisfy the requirement that the body of the 

coercion result in the type CAP_CHAR. Even though the 

IF-THEN-ELSE results in a CHAR which is capitalized, ICL 
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doesn't know that this is a CAP_CHAR. The user must 

explicitly confirm that the body is of type CAP_CHAR. 

What do the CHAR and CAP_CHAR coercions buy us? First of all, 

the types .CHAR and CAP ~CHAR are now equivalent. One or the other 

may be used anywhere with no distinction. However, anywhere the 

user uses the type CAP _CHAR, he wil 1 be guaranteed to have a 

capital character. Variables declared as CAP _.CHARs will always 

contain capital characters. No coercion will occur when passing an 

<EXPR> of type CAP_CHAR to a function requiring a CAP_CHAR. 

Upon changing the declarations of some variables from CAP_CHAR 

to CHAR ·or visa versa, the placement of coercions will 

automatically vary in a given program. ICL always minimizes the 

number of applied coercions in a static sense. 'rn this sense, ICL 

optimizes a program. 

coercions might be 

However, the few places where ICL does place 

inside a loop. In the dynamic sense, the 

program is not necessarily optimized. However, as in FORTRAN, the 

user can optimize his program by judiciously choosing which 

variables are to be of one type and which are to be of the other 

type. 

The following exemplifies how ICL minimizes the application of 

coercions. Appending two points to an existing CONVEX_POLYGON 

might be expressed as 

conue~ polvgon S> point1 $> point2 
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The coercions will be placed as follows. For abbreviation. P will 

stand for the type POLYGON and CP will stand for the type 

CONVEX __ POLYGON. 

convex polygon $) point 1 $> point2 

(-----CP-----) 

<-----r----7-J 
(-------------P---------) 
<-------------------r-------------J 
(-------~-----------CP------------) 

First, the CONVEX_.POLVGON is coerced to a POLYGON. Then the two 

points are appended to the POLYGON. Finally, if the result must be 

viewed as a CONVEX_POLYGON, the finished POLYGON coerces to back to 

CONVEX_POLVGON and only this once, the POLYGON is tested for 

convexity. This interpretation requires the minimum number of 

coercions, two. 
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This section documents ICL's process datatypes and their instances. 

Procedures, like data structures, may be created, invoked, and passed 

around both in variables and within data structures. Coercions and 

functions can be defined which transform processes or data to yield 

other processes or data. 

The term Process Generation refers to the creation of a process and 

the term Inuocation refers to the transfering of control to a process. 

The symbols II and \\ are used to delimit the program text making up a 

process; they denote process generation. The symbols <* and *> are 

used to specify invocation of a process. 

Examples 

A := II <SS> \\ ; 

sets A to represent the program action specified by <SS>. Writing 

<* A *> ; 

will cause <SS> to execute. A may be invoked as many times and in 

as many environments as desired. 

A:=//.I:!=+1; \\; 

sets A so that <*A*> increments the global variable I. 

Parameters may be passed: 

F := l/(X:REAL) X*X \\ ; 
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sets F to represent the function X*X. 

<*F*>(5) 

yields the value 25. 

G:= //(X:REAL) SIN( <*F*>(X) ) \\ ; 

sets G to represent the function SIN of whatever <•F*>(X) yields. 

<*G*>(O) 

<*G*>(2) 

is 0 and 

is SIN(4). 

However, if we now write 

then 

F:= //(X:REAL) 1-X \\ 

<•G*>(O) 

<•G•>( 2) 

is SIN(l) 

is SIN(-1). 

and 

Variables appear to represent the values they hold at the time of 

invocation and not at the time of process generation. Thus. a 

change in Fis reflected in G because G makes reference to F. 

The user may specify that values taken at the time of process 

generation be available at the time of invocation. Such values are 

called context. For example, 

G:= //(X:REAL)[F;] SIN( <*F*>(X.) ) \\ ; 

sets G to represent the function SIN of <•F*>(X) where F represents 

the value of F now, at the time of process generation. G is now 

immune to any change made to the variable F. When G is invoked, 

the value F in G ~dll appear to be "'·hat it was at the time of the 

assignment and not what it will be at the time of invocation. The 
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context variable F is said to be frozen. 

The user specifies the desired set of variables whose values 

are to appear frozen at the time of process generation by enclosing 

them in square brackets and inserting a semicolon after each 

variable. G now represents the function 

SIN(t-X) 

because F = (1-X) at the time G was assigned. Writing 

F := //(X:REAL) COS(X) \\ ; 

does not affect G at all. In fact, writing 

F:= //{X:REAL)[G;] <*G*>(X) I 2 \\ ; 

• sets F to represent one half the value of <*G*>(X) where G appears 

frozen now, i.e., 

F = SIN(t-X)/2. 

Note that the F in the definition for G is still 1-X despite this 

new assignment because F was enclosed in square brackets in the 

assignment for G. 

The sentences 

f:= //(X:REAL) X \\; 

DO f:: //(X:REAL)[F;] <*F*>(X) * <*F*>(X) \\ ; REPEAT 5; 

set f to represent the function X raised to the 32nd power. 
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The examples presented above were done so assuming that the 

variables A, F, and G were previously declared. 

declared to be variables of the types 

They were to be 

II \\ for A and 

//REAL( REAL)\\ for F and G. 

A is a process which neither produces a value nor takes any par~meters. 

F and G are each of the process type which produces a REAL and which 

expects exactly one parameter, whose type is REAL. 

Formally, we have the following new rules for <TYPE>: 

<TYPE> : : = II \\ 

<TYPE> : : = II <TYPE1> \\ 

<TYPE> : : =' II ( < IDLIST> \\ 

<TYPE> : : = II <TVPE 1> <IDLIST> \\ 

The first <TYPE> denotes a process which returns no value. The second 

<TYPE> denotes a process which returns a value of type <TYPE1> •. The 

third <TYPE> denotes. a process which returns no value but which does 

expect input parameters whose types are named by the <ID>s in <IDLIST>. 

The fourth <TYPE> is similar to the third <TYPE> except that not only 

does it expect input parameters, it also returns a value of type 

<TVPE1>. 

All.the <ID>s in the <IDLIST>s must be the names of declared types. 

The reader might note that these four <TYPE> rules correspond.to the 

four kinds of function headers presented in the section Declarations. 

Examples: 
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TYPE SS = II\\; 

declares that SS is the name of a process type. Instances of SS 

neither return a value nor do they accept input parameters. 

TYPE FUNCTION= l/REAL(REAL)\\ ; 

declares that FUNCTION is the name of a process type. Each 

instance of FUNCTION accepts one parameter of type REAL and returns 

· a value of type REAL. 

TYPE PLOTTER = ll(POINT,PLOlTER_COMMAND)\\ 

declares PLOTTER to be a process type which expects two parameters, 

a POINT and a PLOTTER_COMMAND. The invocation of a PLOTTER returns 

no value. 

TYPE CHAR_PRODUCER = II CHAR \\ ; 

declares CHAR_PRODUCER to be a process type which yields a CHAR 

upon each invocation and which expects no input parameters. 

The following rules define the syntax for making instances of 

process types: 

SUSBt: <SUSB> . ·- II 

SUSB2: <SUSB> .. - <SUSB1> ( <CTYPE2 > 

SUSB3: <SUSB> .. - <SUSB1> [ <ASN2> ] 

SUSB4: <SUSB> .. -.. - <SUSB1> { <ASN2 > 

SUSF1: <EXPR> ... -... - <SUSB1> <EXPR2> \\ 

SUSFtS: <EXPR> : : : = <SUSB1> <SS2> \\ 
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Informally, an instance of a process type is generated by enclosing 

an <EXPR> or an <SS> between a <SUSB> and a \\. A <SUSB> is a II 

optionally followed by parameter specification or by context 

specification or by both. Parameters are specified via the rule 

SUSB2 and context is specified via either of the rules kusB3 and 

SUSB4. 

Tupe Requirements 

There must exist a declared process datatype whose parameter types 

sequentially match the parameter types specified in <CTYPE2> and 

whose return type is the type of <EXPR2 > if the rule SUSF1 is used. 

If the rule SUSFlS is used, the process type must include no return 

type. The resulting type for the rules SUSF1 and SUSF1S is any 

such declared process type. 

For example 

II <SS> \\ is of type II\\. 

II an INT \\ is of type //INT\\. 

I /(X,.Y :REAL B:BOOL) <SS> \\ 

is of type //(REAL,REAL,BOOL)\\. 

//(X,Y:REAL B:BOOL) a F'Ol ""T \\ 

is of type //POINT(REAL,REAL,BOOL)\\. 

The <ASN2 > in the rules SUSB3 and SUSB4 plays no part 

the type requirements. For example, 

//[A;B;] <SS> \\ is of type II\\. 

l/[A;B;] an INT\\ is of type //INT\\. 

//(X:REAL)[A;B;] <SS> \\ 

whatsoever in 
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is of type //(REAL)\\. 

//(X:REAL)[A;B;] a POINT \\ 

is of type //POINT(REAL)\\. 

PASS3 Requirements <EXPR2> = SOURCE = result 

/lfeanino 

The r~sulting value is a process which either produces the value 

<EXPR2> or performs the action <ss2> where the <EXPR2> or <SS2 > is 

evaluated not now, b~t at the time this value is invoked. Invocation 

will be formally described with the next set of rules. This resulting 

value will expect parameters at the time of invocation if the rule SUSB2 

has been used. 

Further Requirements 

Each variable named in <EXPR2> or <ss2> must either be 

1) a global variable, or 

2) a parameter variable specified in <CTVPE2 >, or 

3) a context variable specified in <ASN2 >, or 

4) a variable declared local within <EXPR2> or <ss2 ) itself. 

A variable in <EXPR2 > or <SS2> may not be a local variable declared 

outside of <EXPR2> or <SS2> except via (3). A violation will be 

reported by the cryptic error message: 

?SLOAD or ?TSTORE: Address has illegal index field. 

The specified variables of <ASN2> must be variables declared 

outside <EXPR2> or <SS2> and they may be local or global. 

Further /lfeantna 
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Each of the specified variables of <ASN2> is automatically made 

local to the body, <EXPR2 > or <SS2 >. That is, <F.XPR2 > or <SS2 > may reed 

and write any of the specified variables of <ASN2 > and the effect will 

be apparent only to <EXPR2> or <SS2>. 

The implied assignments of <ASN2 > are carried out now and not at 

the time of invocation. The implied ass ignmcnts can be viewed simply as 

the initialization of the context variables for the process. 

The distinction between the rules SUSB3 and SUSB4, the square 

brackets vs. the curly brackets, is as follows: The specified 

11ariables of the <ASN2 > enclosed in square brackets have the property 

that their values are reset to their initialized values upon each 

invocation of the process. The specified variables of the <ASN2> 

enclosed in curly brackets are not reset upon each invocation and hence 

they may be used to remember information from the previous invocation. 

WARNING: 

Processes constructed with the rule SUSB4, the curly brackets, have 

a property unlike any other data in ICL. Such a process appears to 

evolve independently from all points of view. Thus, with· 

B:= //{I:=O;} WRITE ( ( I : : = + 1 ; ) ) ; \ \ 

A:= B; 

we have the following scenario: 

<"'A*>; 

<"'A"'>; 

prints a 1 

prints a 2 

prints a 3 and not a 1. 
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However, if we now write 

A:= COPV(B); 

<•B•>; prints a 4 

<•B•>; prints a 5 

<•A•>; prints a 4 and not a 6 

<•B*>; prints a 6. 

COPYing a process yields a process whose further evolution is 

independent from the evolution of the original process except for 

the following convention: Any (sub)processes referenced by the 

original process are now shared between the original process and 

the copied process. Thus, an invocation of a subprocess from 

either the original or the copied process will be apparent from 

both the original and the copied processes. 

The reader who has examined the section about ICL's policy 

towards assignments, pointers, and copying may note that a process 

generated with the rule SUSB4 evolves as though it were modified 

via the @-operator upon each invocation. A process is represented 

much like a record is represented; there is a list of memory 

elements, one for each context variable, and a field containing the 

address of a program. The memory elements of this context list are 

updated tn place upon completion of each invocation so that they 

hold the new current values for the process's context variables. 

An explicit COPY is required for the creation of an independent 

instance precisely because of this @-like, in place, treatment for 

a process's context list. The COPY operation makes a copy of the 

context list copying only the top level structure: Structures 
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referenced from the list are not copied, rather, they are shared by 

both the original and the copied list. 

Examples: 

The declarations 

TYPE SS = II\\ 
PROCESS_QUEUE= { SS } ; 

VAR RUNABLE_PROCESSES= PROCESS __ QUEUE; 

DEFINE RUN_ONE_PROCESS: 

IF DEFINED(RUNABLE PROCESSES) TTIEN 

ENDDEFN 

<• RUNABLE_PROCES~ES[t] •>; 

RUNABLE_PROCESSES:=RUNABLE_PROCESSES[2-]; FI 

DEFINE RUNABLE(S:SS): 

RUNABLE_PROCESSES::=$> S 

ENDDEFN 

define a dumb scheduler which has a global variable of type 

PROCESS_QUEUE, a string of processes. The function RUNABLE puts a . 
process on the queue and the function RUN_ONE_PROCESS executes the 

first process on the queue and removes that process from the queue. 

Non-linear transformation upon pictures are supported by the 

declaration 

TYPE POINT __ XFRM= //POINT( POINT)\\ 
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A POINT_XFRH is a function which takes a POINT and which yields the 

transformed POINT. 

VAR ITALICIZE= POil'JT_XFRM; 

ITALICIZE:= //(P:POINT) P.X+P.Y fl P.Y \\; 

sets the POINT_XFRM ITALICIZE to be a mapping which tilts a picture 

45 degrees to the right. The function 

DEFINE COMPOSED_WITH(A, B: POINT_,XFRM )= POINT _.XFRM: 

//(P:POINT)[A;B;] <*A*>( <*B*>(P) ) \\ 

ENDDEFN 

will form a POINT_XFRM which is the composition of two given 

POINT_XFRMs. The resulting POINT_.XFRM takes · its input POINT, 

passes it thru B and then passes the result thru A. The variables 

A and B are enclosed in square brackets so that their values will 

be available at the time of invocation. If A and B were not 

specified as context variables, an error message would be issued at 

compile time because the variables A and B inside the resulting 

POINT_XFRM are not global variables. The POINT_XFRM 

ITAL IC IZE \COMPOSED_WITH Il ALIC IZE 

yields a POINT_XFRM which applies ITALICIZE twice. 

The declaration 

TYPE FUNCTION= //REAL(REAL)\\ ; 

defines FUNCTION to be the process type which maps. a REAL to a 

REAL. The function 

DEFIN~ PRIME(F:FUNCTION)= FUNCTION: 
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//(R:REAL)[F;] (<*F*>(R+EPSILON)-<*F*>(R)) I 

EPSILON \\ 

ENDDEFN 

maps a FUNCTION into its derivative, assuming EPSILON is a global 

variable. When the derivative is invoked, the function F will be 

invoked twice, once at R+EPSILON and once at R. 

The declaration 

TYPE FUNCTION_PRODUCER= //FUNCTION(REAL)\\ ; 

defines FUNCTION_PROOUCER to be a process type which maps a REAL to 

a FUNCTION. The following is an instance of FUNCTION_PRODUCER: 

//(N:REAL) 

//(T:REAL)[N;] SIN(N*2*3.141592 * T) \\ \\ 

This instance takes in a REAL, N, and yields the SIN function which 

maps the interval between O and 1 into N cycles. Thus, with 

VAR FMAP= FUNCTION_PRODUCER; 

F = FUNCTION; 

FKAP:= //(N:REAL) 

//(T:REAL)[N;] SIN(N*2*3.141592 * T) \\ \\ 

the sta.tement 

F:= <*FlllAP*>(J) 

sets F to a function which maps the interval between 0 and 1 into 3 

cycles of the SIN function. 
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The resulting function, F, is not as optimi2ed as it might be. 

Upon repeated invocation of F, the value 

N*2*3.141592 

will repeatedly be calculated even· though it does not depend on the 

parameter to F. We can remove this calculation from F and put it 

into FMAP by assigning F~AP as follows: 

FMAP:=//(N:REAL) 

//(T:REAL)[N:=N*2*3.141592;] SIN(N*T) \\ \\ 

Now, when we write 

F:= <*FMAP*>(3); 

the resulting function, F, involves one multiply and on~ SIN 

calculation. The calculation 

N:= N*2*3.141592 ; 

is performed at the time FMAP is invoked and not at the time F is 

invoked. That is, the variable N is initiali2ed to the convenient 

value during the process generation for the return value from FMAP. 

The following instances of FUNCTION yield identical results: 

1) //(R:REAL)[A;D;C;] SIN(A*COS(D)+C*R) \\ 

2) BEGIN VAR D=REAL; 

DO D:= A*COS(B); 

GIVE //(R:REAL)[C;D;] SIN(D+C*R) \\ 

END 

3) BEGIN VAR D=REAL; 

//(R:REAL)[C;O:=A*COS(B);] SIN(D+C*R) \\ 
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END 

4) BEGIN VAR D=REAL; 

//(R:REAL)[D:=A*COS(B);C;] SIN(D+C*R) \\ 

END 

The BEGIN-END is used to create an auxiliary variable, D, which 

will contain the intermediate value A*COS(B). 

The difference between the square brackets and the curly 

brackets is exemplified in the following: 

TYPE INT_.PRODUCER= I /INT\\ ; 

VAR A,B= INT_PRODUCER; I=INT; 

A:= //[1:=5;] DO 1:=1+1; GIVE I \\ 

B:= //{1:=5;} DO 1:=1+1; GIVE I \\ 

The expression <*A*> will always yield 6 whereas the expression 

<*B*> will yield the number 6 upon first invocation, the number 7 

upon second invocation, etc. Each invocation of B yields a number 

one greater than the result of the previous invocation. 

The user can define coercions between process types: 

TYPE BUNCH_.OF _.SS= { SS ) ; 

LET BUNCH_ OF _.ss BECOME SS BY 

II[ BUNCH_.OF _,SS;] BEGIN VAR S=SS; 

DO <*S*>; FORS$EBUNCH_OF_.SS; END\\; 

This says that any string of SSs may be viewed as a single SS which 

sequentially evaluates each SS in the string. Thus, 

{ //1:=21;\\ ; //J:=I+l;\\ ; //WRITE(J);\\ } 
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may be seen as a single SS whose invocation prints the number 22. 

Another example of coercion between process types involves 

another interpretation for the type FUNCTION_PRODUCER. A 

FUNCTION_PRODUCER can be seen as a single function which takes two 

REAL parameters and which yields a REAL, like the following type: 

TYPE TWO_DIM= //REAL(REAL,REAL)\\ 

That is, we can declare 

LET FUNCTION_PRODUCER BECOME TWO_DIM BY 

//(R,T:REAL)[FUNCTION_PRODUCER;] "takes two parameters" 

<* <*FUNCTION_PRODUCER*>(R) *>(T) \\ ; 

A FUNCTION_PRODUCER is viewed as a lWO_DIM by using the first 

parameter of TWO_DIM to select a function from FUNCTION_PROOUCER 

and evaluating that function at the second parameter. 

we can go backwards with 

LET TWO_DIM BECOME FUNCTlON_.PRODUCER BY 

//(R:REAL)[TWO_DIM;] "takes one parameter" 

Similarly, 

//(T:REAL)[TWO_OIM;R;] <*TWO_,Oif'l11C)(R, l) \\ \\ 

The resulting FUNCTION_PRODUCF.R, given R, yields the function 

TWO_DIPI where TWO_DIM's first parameter is frozen at R. 

Our final example involves the definition of a process type 

called PICTURE. We will adopt the point of view that a PICTURE is 

so general that all we know is that a PICTURE may be invoked and 

that this invocation may invoke a global variable called PLOTTER, 

sending to PLOTTER a POINT and a pen-up or pen-down directive. 

Furthermore, we shall assume that PLOTTER wi 11 automatically 
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transform its given point by displacing that point by another 

global variable, ORIENTATION. 

TYPE PLOTTER= //(POINT, PLOTTER __ COMMAND)\\ 

"Expects ORIENTATION to be preset" 

PLOTTER_COMMAND= SCALAR( PEN __ UP, PEN __ DOWN); 

PICTURE= //\\ ; " PICTURE expects PLOTTER 

and ORIENTATION to be preset " 

VAR PLOTTER= PLOTTER; ORIENTATION= POINT; 

The following is an instance of PLOTTER: 

PLOTTER:= //(P: POINT E: PLOTTER __ COMMAND) 

P::= +ORIENTATION; 

CASE E OF 

PEN_UP: WRITE('Up'); WRITE(P); 

PEN_DOWN: WRITE('Down');WRITE(P); 

EN DC ASE 

CRLF; \\ 

This plotter is especially l'l'ell suited for terminals which have no 

plotting capabilities. This plotter prints the points on the 

terminal. Note that this plotter displaces its given point by 

ORIENTATION like any instance of PLOTTER should. 

We can form many instances of PICTURE by introducing a type for a 

special sort of picture and by defining a coercion from this type 

to the type PICTURE: 
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TYPE SIMPLE_PIC= { CURVE 

CURVE = { POINT } ; 

A SIMPLE_PIC is a string of CURVEs where each CURVE is a set of 

points meant to be drawn with the pen down. That is, the pen is to 

be lifted only for the first point in each CURVE. 

coercion lets a SIMPLE_PIC be viewed as a PICTURE: 

LET SIMPLE_PIC BECOME PICTURE BY 

The following 

//(SIMPLE_PIC;] BEGIN VAR P=POINT; C=CURVE; 

FOR C $E SIMPLE_PIC; DO 

FOR P $E C; f IRST_.DO <*PLOTTER*)( p, PEN_UP);; 

OTllER_DO <*PLOTTER*>( P, PEN_DOWN);; 

DO NOlHING; END END 

END \\ ; 

In fact, any datatype which can be plotted can be coerced to a 

PICTURE. One needs merely to place the plotting procedure, 

enclosed in // ••• \\, as the body of the coercion. 

The following function makes use of the global variable 

ORIENTATION. 

DEFINE DISPLACED_.BY (V: PICTURE DISP: POINT)=P ICTURE: 

//[V;DISP;] 

ENDDEFN 

HOLDING ORIENTATION::=+DISP; 

DO <~V*>; ENDHOLD \\ 

That is, the resulting PICTURE is the process which invokes the 

giVen PICTURE, V, in the environment where the ORIENTATION has been 

moved by the giVen POINT, DISP. Thus, 
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picture \DISPLACED_BV 10*12 

yields the PICTURE picture all of whose points will be displaced by 

10#12. Note that DISPLACED_.BV 's modification to the variable 

ORIENTATION is done with the HOLDING form. Thus, when V finishes, 

ORIENTATION will be reset to its old value, as is appropriate. 

The following function takes two PICTUREs and produces a 

PICTURE which repeatedly draws the first picture displaced by each 

point in the second picture: 

DEFINE OUTER_PROOUCT(A,B:PICTURE)= PICTURE: 

//[A;B;]. BEGIN VAR V=PLOTTER; 

HOLDING PLOTTER:=//[V:=PLOTTER;B;](P:POINT 

E:PLOTTER_COMMAND) 

HOLDING PLOTTER:=V; 

ORIENTATION: :=+P; 

DO <*B*>; ENDHOLD \\ 

DO <*A*>; ENDHOLD END \\ 

ENDDEFN 

The first picture, A, is invoked in the context where PLOTTER has 

been set to a procedure which draws B. Thus, each point which. A 

sends to PLOTTER will be received by the procedure 

//[V :=PLOTTER ;B; ]( P: POINT E: PLOTTER_COMMAND) 

HOLDING PLOTTER:=V; 

ORIENTATION::=+P; 

DO <*B*>; ENpHOLD \\ 
•· 
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This procedure ignores E, the PLOlTER COMMAND and displaces 

ORIENTATION by P, the point sent from A. This procedure also sets 

the global variable PLOTTER back to its original value so that upon 

invocation of B, B will send its points to the original plotter and 

not back to this procedure. This procedure finally invokes B. 

Upon completion of B, ORIENTATION' s and PLOTTER' s old values are 

restored and so A's next point will be sent to this procedure and B 

will be replotted, this time displaced by the new point issued from 

A. 

The statement 

HOLDING PLOTTER:=//(V:=PLOTTER;B;] \ \ ; DO ... 

sets PLOTTER to a procedure which has access to the old value of 

PLOTTER and to B. The reader might wonder why we've gone to the 

trouble of assigning V the value of PLOTTER instead of merely 

writing 

HOLDING PLOTT'ER:=//(PLOTTER;B;] ... \\ ; DO ... 

Indeed, this second form does give the procedure body access to the 

old value of PLOTTER and to B. However, the procedure body loses 

access to the global variable PLOTTER. Recall that each of the 

specified uariables of the <ASN> between the square brackets is 

automatically made local to the procedure body. Thus, within the 

procedure body, the name PLOTTER refers to a local variable and not 

to the global variable named PLOTTER. The first form, which uses 

the variable V, does not lose access to the global variable named 

PLOTTER. 
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The formal rules for process invocation are: 

SEMNOP: <FID> .. - <• <EXPR1> •> 

FID1: <EXPR> : : = <FID> 

FID2: <EXPR> .. - <FID1> <ARGS2> 

f 103: <EXPR> : : :: <FID> 

FID4: <EXPR> .. - <FID1> <ARGS2 > 

These rules are identical to the rules for procedure and. function 

calling in ICL except that the <FID> replaces the proced~re or 

function name. 

Tupe Requirements 

<EXPR1> must be a process type. 

The rule FI01 requires that <EXPR1> expects no parameters and 

that it returns a value. The type of the returned value is the 

resulting type for the rule FIDt. 

The rule FI02 requires that <EXPR1> expects parameters whose 

types sequentially match the types of the <EXPR>s in <ARGS2 >. In 

addition. <EXPR1> must return a value. The type of the return 

value is the resulting type for the rule FID2. 

The rules FID3 and FID4 are similar to the rules FID1 and FID2 

except that it is required that <EXPR1> returns no value. 

PASS3 Requirements 
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<EXPR1> = SOURCE = result and 

each <EXPR> in <ARGS2> = SOURCE 

/lfeantng 

Evaluate <EXPR1>, thus yielding an instance of a process type.• 

Then evaluate each <EXPR> in <ARGS2 >. Finally call the process 

yielded by <EXPR1 >, passing the <-EXPR>s in <ARGS2 > as parameters. 

The resulting ·value for the rules FID1 and FIDZ is the value 

returned by the invocation. 

The debugging package will be entered if the value of <EXPR1> 

is NIL. Unfortunately, ICL finds this error to be fatal: When the 

user leaves the debugging package, ICL will gracefully crash. 

Examples: 

< * II WRITE ( I Hi I ) ; \\ It > 

prints Hi. 

<* //(R:REAL) WRITE(R); \\ •>(1.7) 

prints 1.7. 

<* //(R:REAL) R*R\\ *>(5.0) 

yields the REAL 25.0. 

More examples are found in the previous section. 

Just as the name of a function may be prefixed with a backslash to 

produce a <BOP> or <RHUOP>, an <FIO> may similarly be prefixed: 

SElllNOP: <BOP> \ <F ID> 
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SEMNOP: <RHUOP> ::= \ <FID> 

The precedence of the resulting <BOP> is the same as the precedence 

for the rule BOPBID in the section for <BOP>s. The type and PASS3 

requirements and the meaning are derived by transforming 

<EXPR1> \<FID> <EXPR2> to <FID>(<EXPR1>,<EXPR2 >) 

and 

to <FID>(<EXPR1>) 

Examples: 

5 \<* //(A,B:INT) A+B•A\\ •> 6 

yields 5+6*5, or 35. 

K:= //(A,B:REAL) A+B \\; 

WRITE( \<*K*> R FOR R FROM 1 TO 10; ); 

prints the sum of 1 thru 10. 

No new semantics are presented in this section. Rather, a short 

form for specifying process generation is presented. The short form is 

applicable when the user wishes to form a process whose body already 

exists as an ICL function. For example, the long form 

//(R:REAL) SIN(R) \\ 

forms a process which merely calls the existing function SIN. The 

corresponding short form is 
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//: SIN(REAL) \\ 

The short form includes a colon immediately after the //. The body of 

the short form consists of an ICL function name along with its parameter 

types. 

Besides saving a few characters of typing, the short form saves a 

little of both execution and memory expense. In the above example with 

SIN, the invocation of the long form involves two function calls, one 

for the // and one for SIN. In contrast, the short form involves only 

one function call, a call to SIN. The compiler allocates space for a 

process's machine code in chunks of 32 words. This allocation occurs 

only once, .at compile time. The short form allocates no machine-code 

space whereas the long form has to allocate at least 32 words, even 

though only a few words are actually used for calling the SIN function. 

SEPINOP: <QSUSB> : : = II: <ID> 

- - -: (QSUSE> : : = \\ 

- - -: <QSUSE) : : = ;\\ 

QSUS2: <EXPR> .. -.. - <QSUSB1> (QSUSE> 

QSUS3: <EXPR> ::= <QSUSB1> < IDLIST 2 > <QSUSE> 

QSU84: <EXPR> .. -.. - <QSUSB1> <SARGS2 > <QSUSE> 

QSUS5: <EXPR> .. - <QSUSB1> ( <IDLIST2 > <SARGS3> <QSUSE> 

where 

ARGSl: <SAR GS> .. - <SARGX> ] 

ARGS2: <SARGX> . ·- <SARGX1> <EXPR2 > .. -
ARGSt: <SARGX> : : = [ <EXPR1> 



.. 407 .. 

All short forms begin with a <OSUSB>. the 

II: <ID> 

The <ID> is the name of an existing ICL function. All short forms 

end with either \\ or ;\\. The semicolon is entirely optional. 

Thus, a short form looks like 

II: <ID> 

II: <ID> 

\\ 

;\\. 

or 

The may be blank or may be any one of the following: 1 

< IDLIST> or 

[ <EXPR> , <EXPR> , ... ] or 

( <IDLIST> ) [ <EXPR> • <EXPR> , ] 

The part-of-speech <SARGS> represents the form 

[ <EXPR> , <EXPR> , ... • <EXPR> ] 

This form is precisely the form represented by the part-of-speech 

<ARGS> except that the enclosing parentheses are replaced by square 

brackets. 

The type and PASS3 requirements and the meaning for the resulting 

<EXPR>s will be given for each of the <EXPR>-producing rules, QSUS2 thru 

QSUS5. 

QSUS2 looks like II: <ID> \\ 

This short form is equivalent to the long form 

II <ID> \\ or II <ID>; \\ 
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For example, if the function NUMBER_OF_JOBS takes no parameters and 

yields an INTeger, then 

II: NUMBER_OF_JOBS \\ 

is a process which calls NUMBER_OF_JOBS and yields the result 

yielded by NUMBER_OF_JOBS. 

QSUS3 looks like 

This short form is equivalent to the long form 

//(X: <I.D1>· Y: <ID2>) <I00>(X,Y) \\ 

For example, 

ll:SIN(REAL)\\ is equivalent to 

ll(X:REAL) SIN(X) \\ and 

ll:DISTANCE(POINT,POINT)\\ is equivalent to 

ll(X,Y:POINT) DISTANCE(X,Y) \\. 

QSUS4 looks like II: <IDo> [ <EXPR1> • <EXPR2> ] \\ 

This short form is equiva.lent to the long form 

/l[X:=<EXPR1>; Y:=<EXPR2>;] <ID0>(X,Y) \\ 

That is, the <EXPR>s between the square brackets are taken as 

parameters to the function <ID0> whose values are frozen now, at 

the time of process generation. For example, 

/l:SIN[I+J]\\ is equivalent to the long form 

l/[K:=I+J;] SIN(K) \\ 
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Invocation of this process will always yield the same number 

because SIN depends on no global variables. This process• s 

invocation will call SIN passing the value I+J. The value I+J is a 

single number which is computed at the time of process generation 

and not at the time of invocation. 

QSUS5 looks like 

This short form is equivalent to 

//(X: <ID1> Y: <ID2> ) [Z:= <EXPR1> ;) 

<ID0>(X,Y,Z) \\ 

That is, the <ID>s between the parentheses are the names of the 

parameter types for the function < I00> 1 s first two para.meters. The 

<EXPR1> is the function's third parameter. The third parameter is 

evaluated now, at the time of process generation, whereas the first 

two parameters are taken at the time of invocation. For example, 

//:DISTANCE(POINT)[3#4]\\ is equivalent to 

//(P:POINT) DISTANCE(P,314) \\ 

This process expects one parameter of type POINT. It calls the 

function DISTANCE, passing 3#4 as the second parameter. Similarly, 

//:DISTANCE(POINT)[P1+P2)\\ is equivalent to 

//(P:POINT)[V:=P1+P2;] DISTANCE(P,V) \\ 

The P1+P2 is evaluated now, at the time of process generation, and 

not at the time ef invocation. 
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~ Concise Notation for. §_peci.f.r,ing B~1.!!.~ive f.Q.!.!:!1~. :. It!.~ ~ 

A string of points may be specified as follows: 

{ 112 ; • #5 .11 ; 201. ; .+U5 ; .+7'.-8 } 

The • " refers to the previously specified point's ~ or y coordinate. 

For example, the string mentioned above is equivalent to 

{ 112 ; 115 1#7 ; 2017 ; 2115 ; 281-3 } 

If the period lies to the left of the I, 

point's x-coordinate. If the period 

it refers to the previous 

lies to the right of the #, it 

refers to the previous point's y-coordinate. 

This concise notation for specifying relative points is implemented 

by a combination of the built in rule 

CURENT: <EXPR> ::= 

and an ICL program whose text resides in the file BEGIN.ICL. The 

<EXPR> can be used only in the context of point generation. The 

<EXPR> can be combined only with REALs and only via + or - Thus, 

example, the following are illegal: 

.+. I 5 

.•3 I 5 

.+5'-. I 5 

Misuse of the "·" <EXPR> comes up as a datatype error. 

"." 

" " 
for 

To aid the ICL program which implements relative points, ICL has 

the following built in primitive datatypes: 
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PRELX a point relative in X, 

PRELY a point relative in Y, and 

PRELB a point relative in Both 

Instances of these datatypes are not instances of POINT. However, 

instances of these datatypes are represented like POINTs where the "·" 

is interpreted as zero. Refer to the datatypes RELATIVE_POINT and SRP 

and refer to the coercion from SRP to SP as defined in the file 

BEGIN.ICL 
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This section documents ICL's debugging package. The debugging 

package is a set of ICL functions which provides services for on-line 

debugging. Each function will be described separately. Each function 

name begins with the characters ICLDDT. The function declarations can 

be found in the file BEGIN.ICL, the first file read into a freshly 

created ICL system. The functions are: 

ICLDDT_HELP 

ICLDDT_BT 

ICLDDT_WHAT_FUNCTIONS 

ICLDDT BREAK ON(FW) 
ICLDDT=BREAK=OFF(FW) 

ICLDDT TRACE ON(FW) 
ICLDDT=TRACE::::OFF(FW) 

ICLDOT INIT LOCALS ON 
ICLDDl::INn::::LOCALs::::oFF 

ICLDDT STACK CHECKING ON 
ICLDD(::S.TACK::cHECKING::::oFF 

ICLODT_K.ILL 

In addition to these functions, the debugging package can be entered via 

the tC-handler's Abort command. 

Throughout the rest of this section, the term functton will 

encompass both functions and coercions. 

ICLDDT_HELP or stmply HELP 
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Enter the debugging package. The following message will be 

printed on the user's terminal: 

Help! From within function function name 

The function name is the name of the function containing the call 

to ICLDDT_HELP. However, if ICLDDT __ HELP is called from within a 

process, i.e., program text contained between the symbols // and 

\\, then function name refers to the most recently entered ICL 

function: The message 

Help! From within function (SKIPPING OVER A SUSFUNC) 

will appear a number of times before the message with function name 

appears. The number of appearences equals the number of nested 

process invocations between the call to function name a.rid the call 

to ICLDDT_HELP. The term SUSFUNC (SUSpendable FUNCtion) is another 

name for process. 

After the "Help!" message is printed, an asterisk will appear, 

signalling that a new incarnation of ICL is ready to receive input 

from the user. The user is now free to interact with ICL as he 

would at any other time. The user has access to all functions, 

coercions, and datatypes. The user also has access to ail global 

variables and to the arguments of Junction name. The user does not 

have access to any other local variables, unfortunately. The user 

will typically examine variables by printing them or by calling 

functions which can give him more information. The user can a~sign 

new values to variables if he wishes. 
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The user leaves this new incarnation of ICL by typing a tZ 

( control-Z). Upon receipt of tZ, ICLDDT_.HELP returns and program 

execution continues where it left off. Variables assigned new 

values retain their new values. However, all functions, coercions, 

datatypes and variables declared during the new incarnation are 

lost upon the tZ 

If ICLDDT_HELP is called from within a new incarnation of ICL, 

a still newer incarnation of ICL is created. In newer 

incarnations, the user has access to all accessable variables of 

the previous incarnations plus those variables which are arguments 

to function name. If an argument to Junction name has the same 

name as another accessable variable, the argument to function name 

takes precedence; the user loses access to the old meaning for the 

argument name. 

Throughout this manual, the phrase Enter the debugging package 

refers to an automatic call to ICLDDT_HELP. For example, th~ rule 

STRSEL. string indexing, states that the sentence 

S[N) := <EXPR> ; . 

will automatically enter the debugging package if N is greater than 

the length of the string S. Any rule which conditionaily enters 

the debugging package acts as a no-op if it does indeed enter the 

debugging package. Once the debugging package is entered, the user 

can see how his program arrived there by invoking the function 

ICLDDT_.BT. When the user types a tZ, his program resumes execution 

where it left off. If the user wishes to cancel his program rather 

than to let it continue execution, he should invoke the function 
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ICLDDT_KILL before he types the tZ. 

Example: 

The declaration 

DEFINE LOG(X:REAL)=REAL: 

IF X =< 0 THEN DO ICLDDT_HELP; GIVE 0 

ELSE <EXPR>. FI 

ENDDEFN 

defines LOG to b~ a function which maps a REAL to a REAL. It LOG 

is ever called with a non-positive number, ICLDDT:_HELP will be 

called. 

Let us suppose that LOG is called with a non-positive number. 

ICL will print the message 

Help! From Within function LOG(X:REAL)=REAL 

Now, if .the user types 

WRITE(X); tG 

he will see the non-positive argument to LOG. If' the user types 

ICLDDT_BT; tG 

he will s~e the function calling sequence which finally called LOG 

with the bad value. When. the user types a tZ, execution will 

resume and LOG will return a 0. If the user had typed 

ICLDDT_K.ILL; tG 

before he typed the tZ, LOG would not return and his program would. 

be cancelled. The next asterisk he would see would be prompted by 

the previous inc•rnation. 
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ICLDDT_BT 

Print a backtrace of function calls. ICLDDT_.BT prints each 

function name in order from the most recently called function to 

the earliest function call. For example, suppose the user has 

declared 

DEFINE F1(X:REAL)=REAL: LOG(X)*ZO ENDDEFN 

DEFINE FZ(R:REAL)=REAL: Fl(X) + 5 ENDDEFN 

If the user types 

WRITE( F1( -COS(O) ) );tG 

ICLDDT_HELP w.ill be called from within LOG because LOG will have 

received a negative argument. The user sees 

Help! From within function LOG(X:REAL)=REAL 

Now, if the user types 

ICLDDT_BT; tG 

he will sec the backtrace 

LOG(X:REAL)=REAL 

F1(X:REAL)=REAL 

F2(R:REAL)=REAL 

This says that LOG was called from within Fl and that Fl was called 

from within F.2. The function WRITE does not appe~r in the 

backtrace becaues WRITE hasn't been called yet. Recall that in 

ICL, a function's parameter is evaluated before the function is 

entered. The error occurcd during the evaluation of WRITE's 

parameter and not within the function WRITE itself. 
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Each line of the backtrace has in addition to the function 

name, two octal numbers. These octal numbers are not shown in the 

example above. The first octal number is the address of a stack 

frame and 

The user 

compiler 

person. 

the second octal number is the address of the function. 

will typically ignore these numbers. However, for 

bugs, these numbers are useful for the ICL maintenance 

The following is an unfortunate feature which should be undone 

someday: The user has access to the parameters of only the top 

function in the backtrace and he has no access to the parameters of 

the other functions listed in the backtrace. 

Some lines of a backtrace may be of the form 

(SUSFUNC) 

Such a line refers to a process call. Refer to the treatment for 

processes in the documentation for the function ICLDDT_HELP. 

ICLDDT_WHAT_FUNCTIONS 

Print the name of each defined ICL function. Preceding each 

function name appears the octal address of the function. This 

octal address is useful for identifying the function for the trace 

and break facilities. Functions which were defined with the 

MACR0-10 form are not included in the listing. Functions are 

listed in the reverse order of definition, e.g., the most recently 

defined function appears first. 

ICLDDT_BREAK_ON(FW) and ICLDDT_BREAK_ON 
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Set a breakpoint·at the entry and exit of the function whose 

address is FW. If no parameter is specjfied, then set a breakpoint 

at the entry and exit of each and every currently defiQed ICL 

function. 

The datatype FW is declared in the file BEGIN.ICL by 

TYPE FW• LOGICAL(36); 

Instances of FW are created as described with the rule ELOG: A 

function address may be specified in octal with the form 

L( the Junction's octal address 

The address of a function can be found via . the 

ICLDDT_WHAT_FUNCTIONS. 

function 

Having set a breakpoint at a function's entry and exit, the 

debugging package will be entered each time the function is entered 

or left. Upon entrance to the function, ICL prints the message 

In Break Package: Entering function name 

Upon leaving the function, ICL prints the message 

In Break Package: Leaving functton name 

Aft~r either message is printed, an asterisk will appear, 

signalling that a new incarnation of ICL is ready to receive input 

from the user. At this point, the user is free to interact with 

ICL as he would at any other time. The situation is identical to 

the situation created by the function ICLDDT_HELP except for the 

following: If function name is being left and not entered, the 

user is not given access to the function's parameters. The user's 
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access rights depend on whether the function is being entered or 

left. 

If the function is being entered, the user has access to the 

function's parameters. If the user assigns new values to the 

parameters, the function will execute exactly as though it were 

called with the newly assigned values. When the user types a tZ, 

the new incarnation of ICL dies and execution resumes by actually 

entering the function. 

If the function is being left and if the function returns a 

value, the user has access to the variable named ICLDDT_RETURN. 

This special variable contains the value being returned by the 

function. If the user assigns a new value to the variable, his 

program will execute exactly as though the function actually 

returned the newly assigned value. When the user types· a tZ, the 

new incarnati~n of ICL dies and execution resumes by actually 

leaving the function. 

!CLDDT_BREAK_OFF(FW) and ICLDDT _BREAK_.OFF 

Undo ICLDDT_BRE~K_ON. Remove the breakpoints from the function 

whose address is FW. If no parameter is specified, remove the 

breakpoints from all functions. 

ICLDDT_TRACE_ON(FW) and ICLDDT_.TRACE ON 

Trace the function whose address is FW. If no parameter is 

specified, trace all currently defined ICL functions. 
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A traced function prints its name each time it is entered and 

it prints a backslash each time it is left. Execution is not 

interrupted. The dynamic nesting of functions is communicated by 

the indentation of the trace information. 

ICLDDT_TRACE_OFF(FW) and ICLDDT _.TRACE_.OFF 

Undo ICLDDT_lRACE_ON. The function whose address is FW is no 

longer traced. If no parameter is specified, all functions will no 

longer be traced. 

ICLDDT_INIT_LOCALS_ON 

Set up all currently defined ICL functions so that upon entry, they 

initialize all their local variables to NIL, 0, or FALSE. 

In general, functions do not take the time to zero their 

locals. If, by chance, the user forgets to initialize a local 

variable and if that variable becomes .a part of a newly created 

structure, the newly created structure may very well contain a 

garbage value. All sorts of system error messages can ensue and 

ICL might crash at some unpredictable time in the future. 

If the user ever gets a system error message, he should try 

rerunning his program having first invoked ICLDDT_.INIT_.LOCALS_ON. 

If his program runs without system errors, chances are that he 

forgot to initialize a variable somewhere. The function 

ICLDDT_STACK_CHECKING_ON is another quieter of system error 

messages. 

ICLODT_INIT_LOCALS_OFF 
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Undo ICLDDT_INIT_LOCALS_.ON. 

ICLDDT_.STACK_.CHECKING_.ON 

Set up all currently defined ICL functions so that upon entry, they 

check the stack for overflow. 

In general, functions do not check for stack overflow. An 
4 

infinite loop via recursion will, surely overfiow the stack. Once 

the stack has overflowed. the ICL system is lost. A stack overflow 

will typically announce itself by the execution of an illegal 

instruction. 

If the user has invoked ICLDDT_STACK_ClrnCKI~G-ON, when the 

stack is about to overflow. the message 

?STK.CHK.: Runtime stack nearing overflow 

will appear and the debugging package will be entered as 'hough 

called by ICLDDT_.HELP. At this point, the user can invoke 

ICLDDT_BT to see the lengthy calling sequence that has filled the 

stack. The user can resume execution by typing a tZ or he can 

safely abort execution by invoking ICLDDT_KILL before typing the 

tZ. 

ICLDDT_.STACK._CHECKING_OFF 

Undo ICLDDT_STACK_CHECKING_ON 

ICLDDT_K.ILL 

Abort the execution of the program in the previous incarnation of 

ICL. That is, ICLDDT_KILL sets an internal flag so that upon 

termination of the current incarnation, i.e., upon typing a tZ, the 
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program running in the newly current incarnation aborts. 

Warning: 

The program is aborted by simply resetting the top-of-stack 

pointer. This means that some global variables may not be reset 

properly. For example, variables specified in the HOLDING form, 

the rule HOLDIT, might not have their old values restored. 

The tC-Hand1er' s Abort f.Q.1!~~.~.Q. 

The only asynchronous entry to the debugging package is thru the 

tC-handler's Abort command. Any time an ICL program is running, 

the user can · intercept its execution by typing tC A. The 

tC-handler's Abort command prints the message 

Waiting for function call ... 

and resumes execution. As soon as the running ICL program either 

enters or leaves a function, ICL enters the debugging package 

exactly as though that particular function had had breakpoints 

previously set by ICLDDT_BREAK_.ON. The breakpoints created by the 

tC 's Abort command are only temporary: The function does not 

retain the breakpoints unless the function already had breakpoints 

previous to the Abort. 
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Page Name 

341 AF OR ID: <llFOR> .. - FOR <IO> 
341 AFORFR: (AF'Ofl) : : = <AFOR> FROM <EXPR> 
341 AFORTO: < AF'OR> .. - < AfOR> TO a;,". PR> 
341 AFORBY: <AFOR> .. - <AfOR> BY <F..XPR> 
341 AFORIN: < AF'Ofl> : : = <Af'OR> IN <F..XPR> 
341 AFORIS: (Af'OR> .. -.. - <AFOR> IN• <t.XrR> 

246 ARGS3: <ARGS> .. - <ARGSX> ) 

246 ARGS1: <ARGSX> .. - ( <EXPR> 
246 ARGS2: <ARGSX> .. - (ARGSX> , <EXPR> 

266 ASN1: <AS"1'> . . - <IO> . • 
265 ASNRHS: <AS1\i) .. - <ID> < SSRUS> 
265 ASNX: <ASN> .. - <ASt\i") <ASt\i") 

262 DCOUGH: <BF.XPR> .. ·-... - HEGTN <OECL> <Exrn> END 
262 DCOUGH: <BEXPR> ... -... - BEGIN ((r;XPR> COE'Cl> END 

328 BIF1: <BIF> : := IF 
328 BIF2: <BIF> : : := <BIF> <EXl'ID THEN <SS> EF 

213 BIF1: <BIF'E) .. - IF 
213 BIF2: <BIF"E> .. - <8IFE> < f.','(PR> THEN ( EXPR> EF 

275 BOP ADD: <BOP> .. - + 
275 BOPSUB: <BOP> : : = 
276 BOPMUL: <BOP> .. - lie 

275 BOPDIV: <BOP> .. - I 
275 BOPEXP: <BOr> : : = t 
276 BOP AND: <BOP> .. - & 
276 BOPOR: (BOP> : := 
276 BOPXOR: <BOP> : : = XOR 
276 BOPBIT: <BOP> .. - BIT 
277 BOPLSL: <Bar> .. - SHIFTL 
277 BOPLSR: <BOP> : := SHIFTR 
277 BOPMIN: <BOr> .. - MIN 
277 BOPMA.X: <BOP> .. - MAX 
278 BSHARP: <BOP> .. - # 
279 COMPEQ: <BOP> .. - = 
279 COMPNE: ((JOI'> .. - <> 
279 COMPGT: (BOP> .. - > 
279 COMPGE: <BOP> .. - >= 
279 COMPLT: <BOP> .. - < 
279 COMPLE: (BOP> .. - =< 
280 BOPSTR: <BOP> .. - $) 
280 BOPSTC: <BOP> .. - $$ 
280 BOPS TL: <BOP> : : = ($ 
281 BOP BID: <BOP> .. - \ <IO> 
-404 SEMNOP: (BOP> .. - \ <f"IO> 



333 OCOUGH: <BSS> 
333 DCOUGH: <BSS> 

1(}2 
192 

190 
. 199 

203 
203 
203 
203 
ENDDEFN 
206 
206 
206 
206 
<QS> ) 
206 
207 
208 

213 
217 
217 
217 
217 
218 
218 
219 
219 
219 
221 
223 
226 
226 
226 
227 
227 
228 
229 
231 
231 
233 
235 
239 
244 
246 
248 
248 
248 
260 
260 
260 
261 

EBIF: 
ENU: 
EQS: 
ELOG: 
ELOG: 
EFNU: 
ETRU: 
EFALS: 
ENIL: 
EID: 
STRGEN: 
STRSEL: 
ETAIL: 
ERFRSH: 
ERFRSH: 
EREVRS: 
EREVRS: 
RGENF: 
RSELQ: 
PTSELX: 
PTSELV: 
ECA.SEE: 
TVPDIS: 
ECl\SE: 
TVPDIS: 
ECALLP: 
SEMNOP: 
EBOP: 
EBOPG: 
EUOP: 
EUOP: 
EUOPG: 
EBOPQ: 

<CTYPE> 
<CTYPE> 

<OECl> 
<OECL> 
<OECl> 
(OECL> 
(OECL> 
<OECL> 

<OFXl> 
<OECl> 
<OECL> 
<DECL> 

<OF.CL> 
<OECl> 
<OECL> 

(f.'XPR> 
(EX.PR> 
<EX.PR> 
<EXPR> 
a;xrR> 
<E"XPR> 
<EX.PR> 
(EXfR> 
<EXPR> 
<EX.PR> 
a;xPR> 
<E"XPR> 
<F.XPR> 
<EX.PR> 
<EX.PR> 
<EX.PR> 
<EXPR> 
( E"XPR> 
<EXPR> 
<EX.PR> 
<EX.PR> 
a;xrR> 
(li'XPR> 
<Ex.PR> 
<EX.PR> 
<E"XPR> 
a·xrR> 
(EXPR> 
<EX.PR> 
<EXPR> 
<EXPR> 
(/!.'Xl'R> 
<EXPR> 

: : : = 
: := 
.. -
.. -
.. -
: : : = ... -... -
... -
: : : = 

: : : = 
: : : = 
: : : = 
: : : = 

: : : = 
: : : = 
: : = 

: : = 
.. -.. -
: : = 
: := 
.. -
: : = 
: : = 
: : = .. -.. -
.. -
: : = 
: : = .. -
: : = 
: : = 
: : = 
.. -
: := 
: : : = 
: : = 
: : : = 
: := 
: : = 
: : = 
: : = 
.. -
.. -.. -.. -.. -.. -.. -
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BEGIN <OECL> <SS> END 
BEGIN <SS> <OECL> END 

<IOllST> : <TYPE> 
<CTYPt> <CTYPE> 

<TOFXL> 
<VOE.Cl.> 
DEFINE <JO> <SS> ENDOEFN 
DEFINE <IO> = <TYPE> : <EXfR> ENDDEFN 
DEFINE <IO> ( <CTYPE> ) : <SS) ENDDEFN 
DEFINE <IO> ( <CTYl'E"> ) = <TYPE> : <EXPR> 

DEFINE (JO> MACR0-10( CQS> ) 
DEFINE <JD> = <TYPE> : MACR0-10( <QS> ) 
DEFINE (JO> ( <CTYPF.> ) : MACR0-10( (QS> ) 
DEFINE <IO> ( CC.TYPE') ) = <T"YPE> : MACR0-10( 

LET <ID> BECOME <IO> BY <EXPR> ; 
LET <IO> BECOME <ID> BY MACR0-10( <QS> ) 
<OECL> <OECL> 

(Bl FE> a;xrR> THEN <F..'XPR> ELSE ( EXPR> FI 
(AjU) 

<QS> 
L ( <IlilJ > 
L ( <IJ'U) OlU) ) 
a floating number 
TRUE 
FALSE 
NIL 
<IO> 
{ <REX.Ni> 
<EXPR> [ <EXPR> ] 
<EXPR> [ <EXPR> - ] 
REFRESll ( (f;xrn> ) 
REFRESH <EXPR> ) 
REVERSE <EXPR> ) 
REVERSE <fXPR> ) 
<RE:cx> 
<F."XPR> . <JO> 
<E"XPR> . X 
(EXPR> . Y 
CASE <EXPR> OF <EXPRV> 
<IO>:: (f,)\PR> 
CA.SE <IO> OF <EXPRV> 
<ID>:: CfiXPR> 
<ID> <AIWS> 
( <EXPR> ) 
<EXPR> <BOP> <EXPR> 
<EXPR> <BOr> <EXrR> 
<lJOP> <EXfR> 
<EXPR> <fillfJOr> 
<EXPR> <lifllJOP > 
<BOP> <E'XPR> <QUAAiT> 



251 
251 
264 
254 
254 
254 
258 
268 
258 
259 
,262 
266 
270 
272 
272 
274 
372 
377 
377 
388 
888 
403 
403 
403 
403 
406 
406 
406 
406 

EIJOPQ: 
EBOPQ: 
QBOOL1: 
QBOOLt: 
QBOOL1: 
QBOOL1: 
EGIVE: 
EGRAB: 
EGRAB: 
SETQX: 
E OF.CL: 
llOLDIT: 
EAT: 
ECOPY: 
ECOPV: 
EDEF: 
EIIHD: 
PUBLC: 
PRIVY: 
SUSF 1: 
SUSF1S: 
F ID1: 
FI £>2: 
F ID3: 
F 104: 
OSUS2: 
QSUS3: 
QSUS4: 
QSUS5: 

<EXPR> .. -
<E.XPR> .. -
<EXPR> .. -
<EXfR> : := 
<EXPR> .. -
<F.XPR> : := 
(E,'XPR> .. -
<EXPR> .. -
<EXPR> .. -
a;xrR> : : := 
<EXPR> : := 
axrn> ; : := 
axrn.> .. -
<EXPR> .. -
<EXPR> : := 
<EXPR> : := 
<F.XPR> .. -
<EXPR> .. -
<E'XPR> : := 
<EXNl> : : := 
<F.XPR> · : : := 
<EXPR> .. -
<EXPR> .. -
<EXPR> .. -
<EXPR> : := 
axrn> .. -
a·xrn> •.. -
a.:xrn> : := 
<EXPR> : := 

233 EVCASE: <EXPRV> 
233 EVCASB: <EXPRV> 
239 EVCASE: a;xrnv> 
239 EVCASB: <E'XPRV> 

.. ·­... -
: : : = 
: : : = 
: : : = 

403 SEMNOP: <FIO> 

290 SEMNOP: <GUOP> 
290 SEMNOP: <GUOP> 

.. -
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<QUANT> GIVE <BOP> <EXPR> END 
(QUANT> CROP) <txrn> 
<QUANT> ctxrn> (QROOL) 
<QUANT> <QROOl) CEXPR> 
(Q(JAl'il) GIVE <QBOOl> a;xrR> END 
<QBOOl> <txrn> (Q(JANT> 
DO (SS> GIVE a;xrn> 
GIVING <EXPR> DO <SS> END 
DO <SS> GRABBING <EXPR> 
( <EXPR> CSSRHS> ) 
<BEXPR> 
HOLDING CASI> GIVE <EXPR> ENDHOLD 
@ < a:xrn> ) 
COPY ( <EXPR> ) 
COPY ! Cf'.'XPR> ) 
DEFINED ( < EXPR> 
% <IO> 
PUBLICIZE:::( <EXPR> 
<IO> :::( <EXPR>) 
<SUSB> <f:XPR> \\ 
CSUSB> <SS> \\ 
(F'/0) 
<Fl 0 > <A RG S > 
(f/0) ; 

CF'IO> <ARGS> ; 
CQSUSB> CQSUSE> 
<QSUSB> ( C/OLIST> ) <QSUSE> 
<QSUSIJ> <SARGS> <QSfJSID 
<QSUSB> ( <IOLIST> ) <SARGS> <QSUS6> 

<IO> 
<IO> 
<IO> 
<IO> 

<E'XNl> ENDCASE 
<EXPR> <f.XPl?V> 
<EXPR> ENDCASE 
CEXPR> <EXPRV> 

<* <EXPR> *> 

<IJOr> 
<RfWOP> 

175 
175 

<IOLIST>::= <IO> 
(IOLIST>:~= <IOLIST>, <10> 

290 KUOPt: 
290 KUOP2: 

254 QBf\LW: 
254 QBNVR: 
254 OBEXS: 
254 QBEXS: 

(fWOP> 
auor> 

<QBOOl> 
(QBOOl> 
<QROOL> 
<QBOOL> 

406 SEMNOP: <QSUSB> 

406 
406 

- - -: <QSIJS6> 
(QSUS/D 

: : = 

: := 
: := 

.. -

(Q(/OP> ; 
<GUOP > <IWOP > 

ALWAYS 
NEVER 
EXISTS 
n!ERE IS 

II: <IO> 

\\ 
;\\ 



338 
389 
840 
341 
346 
348 
361 
361 
361 
866 
366 
366 
365 
866 
306 
366 
866 

QWHIL: 
QUNTL: 
RE PET: 
AFORGO: 
QFORE: 
QFORC: 
QOR: 
QA.ND: 
QTHEN: 
QWITH: 
QINH: 
ORES: 
QECH: 
OFTH: 
QOlH: 
QFST: 
QFIN: 

221 RFUNC: 
221 RFUNC: 
221 RFUNC: 
221 RFUNC: 

<QUAn> 
<QIJAk'T > 
<QUIUtiT> 
(QlJM'T> 
(QUAk'T > 
<QllMT> 
<QUIWT> 
(Ql/Ak"T> 
<QUIWT> 
<QUAH> 
<QUAkT> 
(QUANT> 
(Ql/Ak"T> 
<QUAl1iT> 
<QUA&'T> 
<QUA~'T> 
<QUAk'T> 

< RAAIGE> 
<RA&'GE> 
<RAk"GE> 
<RA~"GE> 

.. -

.. -

.. -

.. -
: : = 
.. -
: := 
.. -
: : = 
.. -
: : = 
: : = 
: : = 
.. -
: : = 
.. -
: := 
: : = 
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WllILE <F.xrn> ; 
UNTIL <EXPR> ; 
REPEAT <EXPR> 
<Af'OR> ; 
FOR a:xrto $E <EXPR> 
FOR <EXPR> $C <EXPR> 
<QflAk"T > ! ! <QUAAi7 > 
<QUAk"T > 8:8: <QUANT> 
((~IJAf1iT > HIEN <QIJIWr> 
<QUANT> WITH <EXPR> ; 
<QtJAH > INllIBIT IF <EXPR> 
<QUANT> RESET If <EXPR> 
<QllAf1iT> EACll DO <SS> ; 
(QfJAH > F rns1" DO <SS> ; 
(QlJANT> OHIER-DO <SS> ; 
<QUANT> INITIALLY <SS> ; 
<QUANT> FI NALL v _ _no (SS> 

$ a;xrn> <QUA&·n 
COLLECT" a·xrn> (Q(JA!ff> 
<QUAf1iT> $ axrn> 
<QUANT> COLLECT CEXPR> 

228 SEMNOP: < RECX > : : = [ < RECXT > 

228 RGENQ: 
228 RGEN1: 

221 
221 
221 
221 
221 

SEXP: 
SEMNOP: 
SCRNG: 
SCEXP: 
SCCONX: 

<RECXT> 
<RECXT> 

<RF.XPR> 
<RF.XPR> 
<REX PR> 
<REX PR> 
<RE.XPR> 

286 UOPBID: <RHUOP> 
406 SEMNOP: <RHUOP> 

: : = 
.. -
: : = .. -.. -
.. -
: := 
: : = 
.. -
: : = 

<ID> : <EXPR> ] 
(JO> : axrn> <RECXT> 

axrn> > 
<RAMO£> } 
< R!lk'(i/j") ; <REX rn > 
<F.XPR> ; <REXPR> 
<EXPR> ;* <REXPR> 

\ ([O> 
\ <F'IO> 

406 ARliS3: < SARGS> : : = < SARGX > ] 

.406 ARGS2: 
406 ARGSt: 

288 
828 
828 
329 
330 
331 
383 
884 
384 
884 
834 
336 

SSASS: 
EBIF: 
SBIF: 
ECASEE: 
ECASE: 
HOLD IT: 
EDECL: 
SSQ: 
SSQ: 
SSCALP: 
SSICAL: 
SSSS: 

<SARGX> 
<SARGX> 

<SS> 
<SS> 
<SS> 
(SS> 
<SS> 
<SS> 
<SS> 
<SS> 
<SS> 
<SS> 
<SS> 
<SS> 

. ·­.. -
: : = 
: : = 

: : : = 
: : : = 

: : : = 
... -
.. -.. -.. -
.. -. ·­.. -
.. -

<SARGX > 
[ <EXPR> 

<EXfR> 

<EX.PR> <SSflllS> 
<BIF> <EXPR> TllEN <SS> El.SE <SS> FI 
<BIF> <EXPR> 1HEN <SS> FI 
CASE <EXPR> OF <SSV> 
CASE <IO> OF <SSV> 
HOLDING <ASN> DO <SS> ENDHOLD 
<BSS> 
DO <SS> <QUANT> 
CQllANT> DO <SS> END 
<ID> <ARGS> 
<IO> ; 
<SS> <SS> 



288 
288 
288 
290 
290 

SSRHS1: <SSRllS> 
SSRHS2: < SSRflS> 
SSRliS3: <SSflflS> 
ssr~HS4: (SSRHS> 
SSRHS4: <SSRHS> 
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:= <EXf'R> ; 
.. - <BOP> <E.XPR> 
.. - <tXNO <BOP> 
•• - (fi.lJOr> 
.. - <IWOf> 

829 F.VCASE: <SSV> :::= <IO> <SS> ENOCASE 
329 EVCASB: <SSV> :::= <IO> <SS> <SSV> 

388 SUSB1: 
888 SUSB2: 
888 SUSB3: 
888 SUSB4: 

196 
196 

190 
190 
190 
190 
UJO 
190 
190 
192 
192 
198 
198 
198 
872 
375 
387 
387 
387 
387 

284 
285 
285 
285 
285 
286 
285 
286 

199 
199 

193 
193 

178 
178 
178 
178 

uorMIN: 
UTALLY: 
ULFTZO: 
UENCOO: 
UDE COO: 
UUNARY: 
UNORM: 
UBITSW: 

<SlJSB> 
<SUSB> 
<SUSB> 
<SUSB> 

<TOECl> 
<TOECl> 

<Tl'PE> 
<TYPE> 
<TYPE> 
<TYPE> 
<TYf'E> 
<TYPE> 
<TYf'E> 
<TYPE> 
<TYPE> 
<Tl'PE> 
<TYPE> 
<TYf'E> 
<TYPE> 
<TYf'E> 
<TYPE> 
<TYf'F;> 
<TYPE> 
<TYPE> 

<UOP> 
(lJOP> 
<UOP> 
<UOf'> 
<YOP> 
<YOP> 
<YOP> 
<UOP> 

<VOECl> 
<VOFXl> 

<VTYPE> 
<VTYPE> 

<JU e> 
<.Ii le> 
<file> 
<file> 

: : : = 
... -

.. -

.. -

. ·­.. -

.. -

.. -

.. -
: := 

. ·-.. -
: : = 

: : := 
: : : = 

.. -

.. -

II 
<SYS!J> <CTYPE> 
<SUSR> [ <ASN> ] 
<SYSB> { <AS.\i') } 

TYPE <IO> = <TYPE> ; 
<TOECl> <IO> = <TYPE> 

INT 
REAL 
POINT 
BOOL 
CHAR 
OS 
LOGICAL ( < .\i'U > 
{ <TYf'lD } 
[ <CTY PE.> ] 
EITHER <VTYPE> ENDOR 
SCALAR ( <JOlIST> ) 
<IO> 
ID 
PRIVATE <TYPE> 
II \\ 
II <TYrE> \\ 
II ( <IOllST> ) \\ 
II <TYf'E> ( <IOl/ST> ) \\ 

TALLY 
LEFTZEROS 
ENCODE 
DECODE 
UNARY 
NORM 
BITSWAP 

VAR <IOlIST> = <TYPE> ; 
<VO£Cl> <IOllST> = <TYPE> 

<IOLIST> = <TYPE> 
<VTYPE> <VTYPE> 

<IO> 
<IO> 
<IO> <IO> 
<file> - <file> 
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178 <file> : : = <lD> : <Jil e> 
178 <file> . ·-.. - <file> [ <k"U) <ID> ] 

175 { .. - [ ) 

176 } : : = ] 
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175 
175 
175 
175 
178 
178 
178 
178 
178 
178 
190 
190 
190 
190 
190 
UlO 
190 
192 
192 

'192 
192 
193 
193 
193 
193 
193 
196 
196 
196 
199 
199 
199 
203 
203 
203 
203 
ENDOEFN 
206 
206 
206 
206 
(QS> ) 
206 
207 
208 
372 
375 
387 
387 
387 

(lOlJST>: := 
([OlIST>: := 
{ .. -
} .. -
(j'ile> .. -
<tile> .. -
(file> .. -
<file> .. -
(file> .. -
(file> : := 
<TYND .. -
(TYPE> •• -
<TYN.> .. -
(TYPF;> .. -
<TYND •. -
<TYPE> : : = 
<TYN.'> : := 
<TY P'E,') : : = 
<TYPE> .. -
(CTYPE> .. -
<CTYPE"> •. -
(TYPE> .. -
(VTYPE> : : = 
<VTYPE> .. -
<TYPE."> •• -
(TYPE> .. -
(OECl> •• -
<TOECl> : : : = 
(10f,'Cl) . •.• -
<OF.Cl> : := 
<VOF,'Cl> ••• -
<VOEXl> •.. -
<OECl> ••• -
<OF;cl> :::= 
<OE.Cl> :::= 
<DE.Cl> : : := 

(OE.Cl> 
<OF.Cl> 
<OE.Cl> 
(OF.Cl> 

<OECl> 
(OECl> 
(0£,'Cl> 
<TYPE.'> 
<TYP£> 
<TYPE'> 
<1'YPE> 
<TYPE> 

: : : = 
: : := 
! : : = 

... -

... -

.. -
: := .. -.. -
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<IO> 
<IDLIST> , <IO> 
[ ) 
( ] 
<IO> 
<JO> 
<JO> <IO> 
<file> - <file> 
<IO> : (file> ; 
(file> [ OiU> , <ID> ] 
INT 
REAL 
POINT 
BOOL 
CHAR 
QS 
LOGICAL ( a·u> ) 
< arrro } 
[ <CT Y Pf..') ] 
<IOlIST> : <TYPE> 
<CTYPE> <CTYPE> 
EilHER <VTYPE> ENDOR 
<IOLIST> = <TYPE> 
<VTYPE'> <VTYPE> 
SCALAR ( <IOLIST> ) 
<ID> 
<TIJECO 
TYPE <IO> = <TYPE> ; 
<TOE.Cl> <ID> = <TYP£> 
<VOE.Cl.> 
VAR <IOLIST> = <TYPE> ; 
<VOECl> CIOlIST> = <TYPE> 
DEFINE <IO> <SS> ENDDEFN 
DEFINE <IO> = <TYPE> : <EXPR> ENDDEFN 
DEFINE <IO> <CTYPE> ) : <SS> ENDDEFN 
DEFINE <IO> <CTYPE> ) = <TYPE> : <EXPR> 

DEFINE <IO> MACR0-10( (QS> ) 
DEFINE <IO> = <TYPfD : M.A.CR0-10( <QS> ) 
DEFINE <IO> ( <CTYPE>·) : MACR0-10( <QS> ) 
DEFINE <IO> ( <CTYPE'> ) = <TYPE> : MACR0-10( 

LET <ID> BECOME <IO> BY <EXPR> ; 
LET <IO> BECOME <IO> BY MACR0-10( (QS> ) 
<OECl> <OECl> 
ID' 
PRIVATE <TYP!> 
II \\ 
II <TYPE> \ \ 
II ( <IOLIST) ) \\ 



387 

406 
406 

341 
341 
341 
341 
341 
341 
341 
246 
406 
246 
406 
246 
406 
265 
266 
265 

213 
328 
213 
328 
275 
276 
281 
276 
276 
276 
277 
277 
277 
277 
275 
276 
280 
280 
280 
275 
276 
278 

279 
279 
279 
279 
279 
279 

- - -: - - -: 

AFORBY: 
AFORFR: 
AFORCiO: 
AF OR ID: 
AFORIN: 
AFORIS: 
AFORTO: 
ARGS1: 
ARGS1: 
l\RGS2: 
ARGS2: 
ARGS3: 
ARGS3: 
ASN1: 
ASNRHS: 
ASNX: 

BIF1: 
BIF1: 
BJF2: 
BIF2: 
BOPAOD: 
BOPAND: 
BOPBID: 
BOPBIT: 
BOPDIV: 
DOPEXP: 
DOPLSL: 
BOPLSR: 
BOPMA.X: 
BOPMIN: 
BOPMUL: 
BOPOR: 
BOPSTC: 
BOPSTL: 
BOPSTR: 
BOPSUB: 
BOPXOR: 
BSHARP: 

COMPEQ: 
COMPGE: 
COMPGT: 
COMPLE: 
COMPLT: 
COMPNE: 

<TYPE> 

<QSUSE'> 
<QSUSE> 

<AFOR> 
<llFOR> 
<QUAlff> 
<AFOR> 
<AFOR> 
<llFOR> 
<AF.OR> 
<ARGSX> 
<SllRGX> 
<ARGSX> 
<SARGX> 
<ARGS> 
<SARGS> 
<ASN> 
<ASN> 
<ASN> 

<BIFE> 
<BIF> 
<BIFE> 
<BIF> 
<Bar> 
<BOP> 
<Bar> 
<BOP> 
<BOP> 
<BOP> 
<Bar> 
<BOP> 
<BOP> 
<BOP> 
<BOP> 
<ROI'> 
<BOP> 
<BOP> 
<BOP> 
<BOP> 
<BOP> 
<BOP> 

<BOP> 
<BOP> 
<BOP> 
<BOP> 
<BOP> 
<BOP> 

262 DCOUGH: <BE'XPR> 
'262 DCOUGH: < BE'XPR> 
333 DCOUGH: <BSS> 

.. -

.. -
: : = 
.. -
: : :: 
.. -.. -
.. -
: : = . ·­.. -
: : = 
.. -
: := .. -.. -
: : = . ·­.. -
.. -
: : = 

.. -

. ·­.. -
: : = 
: : : = .. -
.. -
: : = 
: := 
: : = 
.. -
: := 
: : = 
: : = 
: : = 
: := . ·­.. -
.. -
.. -
: : = .. -.. -
: := 
. ·­.. -
.. -
: := 
.. -
: : = 
.. -

: : : = .... -... -
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II <TYPE> ( <IDLIST> ) \\ 

\\ 
;\\ 

<AFOR> BY axrn> 
<AFOR> FROM axrn> 
<llf'OR> ; 
FOR ([0) 

<AFOR> IN <Exrn> 
<llFOR> IN• CF.'XPR> 
<AFOR> TO a·xrR> 
( <EXPR> 
[ <E'XPR> 
<llRGSX> <EXPR> 
<SllRGX> , <EXPR> 
(A/lGSX> ) 
<SARGX> ] 
<ID> ; 
<ID> (SSRllS> 
<ASfO <AS1J'> 

IF 
IF 
<RI FE> <EXPR> lHEN <E'XPR> EF 
<BIF> <EXrR> lHEN <SS> EF 
+ 
& 
\ <ID> 
BIT 
I 
t 
SHIFTL 
SBTFTR 
MAX 
MIN 
* 
! 
$$ 
<$ 
$) 

XOR 
I 

= 
>= 
> 
=< 
< 
<> 
BEGIN <DECL> <EXPR> END 
BEGIN <EXPR> <DECL> END. 
BEGIN <D£CL> <SS> END 
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333 DCOUGH: <BSS> :::= BEGIN <SS> <OECl> END 

270 
213 
328 
248 
248 
251 
251 
251 
246 
239 
330 
238 
329 
272 
272 
262 
333 
274 
21g 
218 
258 
268 
258 
219 
372 
217 
217 
219 
217 
217 
227 
227 
226 
226 
225 
218 
260 
260 
250 
233 
239 
329 
233 
239 
329 

EAT: 
EBIF: 
EBIF: 
EBOP: 
EBOPG: 
EBOPQ: 
EBOPQ: 
EBOPQ: 
F:CALLP: 
ECASE: 
ECASE: 
ECASEE: 
ECASEE: 
ECOPY: 
ECOPV: 
EDECL: 
EDECL: 
EDEF: 
EF Al.S: 
EFNU: 
F.G IVE: 
EGRAB: 
EGRAB: 
EID: 
E IDID: 
ELOG: 
ELOG: 
ENIL: 
ENU: 
EQS: 
EREVRS: 
EREVRS: 
ERFRSH: 
ERFRSH: 
ETAIL: 
ETRU: 
EUOP: 
EUOP: 
EUOPG: 
EVCASB: 
EVCASB: 
EVCASB: 
EVCASE: 
EVCASE: 
EVCASE: 

403 F 101: 
403 FIDZ: 
403 FID3: 
403 F ID4: 

<EKPR> 
<EXfR> 
<SS> 
<F.XfR> 
<EXPR> 
<EXPR> 
<EXfR> 
<EXPR> 
<f.,'XPR> 
( E'XPR> 
<SS> 
<EXfR> 
<SS> 
axrn> 
<EXfR> 
<EXfR> 
<SS> 
<EXfR> 
<E.'XPR> 
<EXPR> 
<EXrR> 
<EXPR> 
<F.XfR> 
<EXPR> 
(f,'XPR> 
<EXPR> 
<E'XPR> 
<EXPR> 
(£XPR> 
< EXPR> 
<EXfR> 
<HPR> 
\EXPR> 
<EXPR> 
<Exrn> 
<EXfR> 
a·xrn> 
<F.XPR> 
<f.XPR> 
a;xrnv> 
<EXPRV> 
<SSV> 
<EXPRV> 
<EXPRV> 
<SSV> 

<EXPR> 
<F.XPR> 
<EXPR> 
<EXPR> 

: : = 
: : : = ... -... -
: : = 
: := 
.. -
: := 
: : = . ·­.. -
: : : = 
: : : = 
: : := 
: : : = 
: : = 
: := 
: := 
: : : = 
: : = . ·­.. -
.. -
: : = 
: : = 
: : = .. -
: : = 
.. -
.. -. ·­.. -
: := . ·­.. -
: := 
: : = .. -.. -
: : = 
: : = 
: : = 
: : = 
.. -
: : = 
: : : = 
: : := .. ·­... -
... -
: : : = 
... -
.. -
: := 
: : = 
: := 

@ ( <EXPR> ) . 
<BlFE> (f,'XPR> THEN <EXPR> ELSE <EXPR> FI 
(BJF> <EXfR> THEN <SS> ELSE <SS> FI 
<EXfR> <Bar> <EXrR> 
(£XPR> <BOP> <txrn> 
<ROP> axrn> <QUA~iT> 
<QUANT> GIVE <BOP> (£XPR> END 
(QIJA&T> <BOP) <EXPR> 
<In> <llRGS> 
CASE (] 0 > OF <E'XrtlV > 
CASE <JO> OF CSSV> 
CASE <F.XfR> OF axrnv> 
CASE <EXfR> OF <SSV> 
COPY ( <EXPR> ) 
corv ! axrro > 
<BF..XPR> 
<BSS> 
DEFINED ( <lXl'R> 
FALSE 
a floating number 
DO <SS> GIVE (£XPR> 
GIVING <t.XPR> DO <SS> END 
DO (SS> GRABBING <EXPR> 
<JO> 
X. <JO> 
L ( < k'U> ) 
L ( (llilf > Olll > 
NIL 
(f1iU > 
<QS> 
REVERSE <EXPR> ) 
REVERSE <EXPR> ) 
REFRESH <£XPR> ) 
REFRESH ! <EXPR> ) 
<EXPR> ( <EXfR> - ] 
TRUE 
cu or> axrro 
<EXPR> amuor> 
<EXPR> <fUIUOP> 
<JO> <EXfR> <EXPRV> 
<JO> <EXPR> <£XPRV> 
(JO> CSS> CSSV> 
<IO> CEXPR> ENDCASE 
<JO> CEXPR> ENDCASE 
<IO> <SS> ENDCASE 

<F'IO> 
<F'IO> (ll/WS> 
(f'IO> ; 
(Fl O> < ARGS> 

266 HOLDIT: a;xrn> : : := HOLDING <ASN> GIVE <EXPR> ENDHOLD 
831 HOLDIT: <SS> : : := HOLDING <AS,\i') DO <SS> ENDHOLD 



290 KUOP1: <KUOP> 
290 KUOP2: <KUOP> 

377 PRIVY: <EXPR> 
231 PTSELX: <EXPR> 
231 PTSELV: <EXPR> 
377 PUBLC: <EXPR> 

·361 
264 
264 
254 
2f>4 
254 
264 
254 
254 
366 
866 
348 
346 
366 
366 
360 
361 
366 
866 
406 
406 
40(J 
406 
361 
339 
338 
366 

340 
221 
221 
221 
221 
228 
228 
228 
22g 

328 
221 
221 
221 
221 
228 
248 
290 
290 

QAND: 
QBALW: 
QBEXS: 
QBF.XS: 
QBNVR: 
QBOOl.1: 
QBOOL1: 
QBOOL1: 
QBOOL1: 
QECB: 
QFIN: 
QFORC: 
OFORE: 
QFST: 
QFTM: 
QINH: 
QOR: 
QOTH: 
QRES: 
QSUS2: 
QSUS3: 
QSUSiJ: 
QSUS5: 
QlllEN: 
QUNTL: 
QWHIL: 
QWlTH: 

REPET: 
RFUNC: 
RFUNC: 
RFUNC: 
RFUNC: 
RGEN1: 
RGENF: 
RCiENQ: 
RSELQ: 

SBIF: 
SCCONX: 
SCEXP: 
SCRNG: 
SEMNOP: 
SEMNOP: 
SEMNOP: 
SEMNOP: 
SEMNOP: 

(QUAfliT> 
<QBOOl> 
<QBOOL> 
«WOOL> 
«WOOL> 
a:xrn> 
<EXPR> 
<EXPR> 
<EXl'R> 
<QUIU1iT> 
((/lJIHiT> 
< Q(J A k"T' > 
<QUAH> 
<QUAAiT > 
<QUA1iT > 
<QUANT> 
<QUAf1iT> 
<QUANT> 
<Ql/AN.T> 
a.xrn> 
<EXPR> 
a:xrn> 
a:xrn> 
<QUAfff> 
<QUANT> 
<QUANT> 
<QUANT> 

<QUANT> 
<RAN'GE> 
<RIHiGE> 
<RllN'GE> 
<RANGE> 
<RE:CXT> 
(fXPR> 
<RECXT> 
<F.XPR) 

<SS> 
<RF.Xl'R> 
< R£XPR> 
<RF.XPR> 
<REX PR> 
<R£CX> 
<EXPR> 
<GUOP> 
<GUOr> 

.. -.. -.. -

.. -

.. -
: := 

! : = 
: := 

: : = 

: := 
.. -.. -
: : = 

.. -.. -.. -

: := 
.. -
: : = 

.. -

.. -. ·­.. -

: : = 
.. -.. -

. ·­.. -

.. -

.. -
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<CWOP> ; 
<GUOP> <KUOP> 

<IO>:::( <EXPR> 
(£XrtD X 
<EXPR> Y 
PUBLICIZE:::( <£XPR> 

<QUANT> 8:& <QUA!tJT> 
Al.WAYS 
EXISTS 
HIERE IS 
NEVER-
CQUArr> CtXrR> <QBOOl> 
<QUANT> <QBOOl> <EXPR> 
<QYArT> GIVE <QBOOl> <EXPR> END 
<QBOOL> <EXfR> <QUAMT> 
<Ql/AfriT> EACH DO <SS> ; 
<QUAMT> FINA[LY DO <SS> 
FOR <£XfR> $C <lxrn> ; 
FOR <£XPR> $E <EXPR> ; 
<QUANT> INITIALLY <SS> 
<QUAN1> FIRST DO <SS> ; 
(QUANT> INllrnIT IF <E'XPR> 
(QUAN.T > ! ! <Cll/A~'r> 
CQfJA&'T > OTIJER DO <SS> ; 
<QUAN'T.> RESET-·IF <F.:XPR> 
(QSUSB> <QSIJSt:> 
<QSl/S/O ( <I DLI ST> ) <QSlJSE> 
<QSUSIJ> < SARGS> <QSUSE') 
<QSUSR> ( <I Dll ST> ) < SARGS> .<QSUSE> 
<QYMiT > lllEN <QUA!tJ'T'> 
lJNTI L <F.X PR> ; 
Wli I LE <t X ND ; 
(QUANT> WITH <EXPR> 

REPEAT <EXPID ; 
$ <EXPR> <QUANT> 
COLLECT <F.XNl> <QUANT> 
<C/UMiT > $ < EXPR> 
(QUANT> COLLECT a:xrR> 
<IO> : <EXPR> <RECXT> 
<RECX> 
<IO> : <EXfR> ] 
<EXfR> <TO> 

<BIF> <txrn> HIEN <SS) FI 
<tXPR> ;* <REXfR> 
<EXfR> ; <REXfR> 
<RllN'GE> ; <liEXrR> 
< RIWGE> } 
[ <RECH> 
c <Exrn> > 
cuor> 
<Rl/UOP> 
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403 SEMNOP: <FTO> .. - (It axrn> *> 
404 SEMNOP: <BOP> .. - \ (f/0) 

405 SEMNOP: <RHUOP> .. - \ <FIO> 
406 SH1NOP: <QSUSB> .. - 11: <TO> 
259 SETQX: <E.XPR> .. ·- ( <EXf'R> <SS!<llS> ... -
221 SEXP: <RH.PR> .. - <EX.PR> } 
288 SSA.SS: <SS> .. - axrn> < ssnus> 
334 SSCA.LP: <SS> .. - <TO> <"ARGS> ; 
334 SSICAL: <SS> . ·- <IO> ; 
334 SSQ: <SS> .. - DO <SS> (Ql/11H> 
334 SSQ: <SS> .. - < QU A~1 > DO < SS > ENO 
288 SSRHSt: <SSRHS> .. - := <EXrR> ; 
288 SSRHS2: < ssrms> .. - .. - <Mr> <EXF'R> 
288 SSRHS3: < ssm1s> .. - : := <f.Xfli> <IWf> 
290 SSRllS4: <SSRllS> .. - : := <KUO!'> 
290 SSRHS4: <SSRHS> . ·- : : = <Kl/Of'> 
336 SSSS: <SS> .. - <SS> <SS> 
221 SllHiEN: <F."XPR> .. - { <REX.ND 
223 SlRSEL: a.xrn> .. - <EX.PR> [ o;xrR> ) 
388 SUSB1: <SUSB> .. - II 
388 SUSB2: <SUSB> .. - <SC/SB> ( <CTYPE> 
388 SUSBJ: <SllSB> .. - < SUSB> [ < ASk") ) 
388 SUSB4: (SUSB> .. - < SUSB> { <Ask·> } 
388 SUSF1: <EX.PR> ... - <SUSB> <EXPR> \\ 
388 SUSF1S: <fXPR> .. ·- <SUSB> <SS> \\ ... -
285 TYPDIS: <EXPR> .. - <IO> .. axrn> 
244 TYPDIS: <EX.PR> .. - <IO> .. <EXPR> 

286 UBITSW: <UOP> .. - BITSW/\P 
285 UDECOD: <UOI'> .. - DECOOE 
285 UENCOD: <UOP> .. - ENCODE 
286 ULFTZO: <YOP> .. - LEFlZEROS 
285 UNORM: <UOF'> .. - NORM 
286 UOPBID: <RHUOI'> .. - \ <IO> 
284 lJOPMIN: (UOI'> .. -
285 UTALLY: <UOP> : : = TALLY 
·286 UUNARY: <UOP> .. - UNARY 
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Page Na.me 

262 DCOUGH: CBEXPR> :::= BEGIN <DECl> <EXrR> END 
262 OCOUGH: CBEXPR> :::= BEGIN <lXPR> <OECl> END 

328 BIF2: <BIF> : : := <BIF> <ExrR> HIEN <SS> EF 

333 DCOUGH: <BSS> 
333 DCOUGH: <BSS> 

203 
203 
203 
203 
ENDDEFN 
206 
206 
206 
206 
<QS> ) 
206 
201 

213 
233 
239 
269 
266 
388 
388 

EBIF: 
ECASEE: 
ECASE: 
SEl'QX: 
HOLD IT: 
SUSFt: 
SUSF1S: 

<OECl> 
<OECl> 
<DECl> 
<OECl> 

<DECl> 
<DECL> 

· <DEXL> 
<DECL> 

<DECl> 
CDF..tl> 

<EXrR> 
<EXl'R> 
CEXPR> 
CEXl'R> 
Cfi.'XPR> 
<EXrR> 
<EXPR> 

233 EVCl\SE: a·xrRV> 
233 EVCASB: Cf.Xl'RV> 
239 EVCASE: a;xrnv> 
239 EVCASB: <EXPRV> 

328 
328 
329 
330 
331 
333 

F.BIF: 
SBIF: 
ECASEE: 
ECASE: 
HOLD IT: 
EDECL: 

<SS> 
<SS> 
<SS> 
<SS> 
<SS> 
<SS> 

329 EVCASE: <SSV> 
329 EVCASB: <SSV> 

196 
196 

199 
199 

CTOECL> 
<T DECl> 

<VDECl> 
CVDEXl> 

... -... -
: : := 
: : : = 
: : := 
: : : = 

: : : = ... -
... -... -
... -... -... -
: : : = 
: : := 
: : : = 
: : : = 

: : := 
: : : = 
... -
: : : = 
: : : = 

: : := 
... -
... -

... -

: : : = 

... -.. ·­... -

BEGIN <OF.CL> <SS> END 
BEGIN <SS> <DECL> END 

DEFINE <ID> 
DEFINE <ID> 
DEFINE (/0) 
DEFINE <ID> 

<SS> ENDDEFN 
= <TYfE> : C£XfR> ENDDEFN 

<CTYl'E> ) : <SS> ENDDEFN 
<CTYl'E> ) = <TYPE> : <EXPR> 

DEFINE <IO> MACR0-10( <QS) ) 
DEFINE <IO> = <TYrE> : MACR0-10( <QS> ) 
DEFINE <ID> ( <CTYfE> ) : MACR0-10( <QS> ) 
DEFtNE <ID> ( <CTYPE> ) = <TYPE> : MACR0-10( 

LET <ID> BECOME <ID> BY <EXl'R> ; 
LET CID> BECOME <ID> BY MACR0-10( <QS> ) 

<BIFE"> a:xrn> THEN <f,XPR> ELSE <HXPR> FI 
CASE <Exrn> Of <lXfRV> 
CASE CID> Of <EXPRV> 
( <EXPR> <SSRHS> ) 
HOLDING <ASN> GIVE <EXPR> ENDHOLD 
<SflSB> <EXPR> \\ 
<SUSB> <SS> \\ 

<ID> 
<10> 
CID> 
<ID> 

<EXfR> ENDCASE 
<EXf'R) <EXPRV> 
<txrR> ENDCASE 
<Exrn> axrnv> 

<BIF> CEXPR> TllEN <SS> ELSE <SS> FI 
<BIF> <EXPR> THEN <SS> FI 
CASE <£XfR> Of CSSV> 
CASE <IO> Of <SSV> 
HOLDING <ASN> DO <SS> ENDHOLD 
CBSS> 

<IO> 
(10> 

<SS> ENOCASE 
<SS> <SSV> 

TYPE <In> = <TYPE> ; 
<TDECL> <IO> = <TYPE> 

VAR <IOLIST> = <TYPE> ; 
<VOECl> <IDLIST> = <TYl'E> 




