A Language Processor and a Sample Language

Ronald Ayres

Computer Science Department
California Institute of Technology

2276:TR:78

A LANGUAGE PROCESSOR AND A SAMPLE LANGUAGE

by

Ronald Ayres

Technical Report 2276

June 12, 1978

Computer Science Department
California Institute of Technology

Pasadena, California 91125

Silicon Structures Project

sponsored by

Burroughs Corporation, Digital Equipment Corporation,
Hewlett-Packard Company, Honeywell Inco;porated,
International Business Machines Corporétion,
Intel Corporation, Xerox Corporation,

and the National Science Foundation

The material in this report is the property of Caltech, and is
subject to patent and license agreements between Caltech and
its sponsors.

Copyright, California Institute of Technology, 1978

i
ABSTRACT

This thesis explores shared data in list structures and ambiguity
in languagde processing. Tolerance of ambiguity is necessary to support
clear and modular expression. Data sharing is npecessary to support
ambiguity efficiently. Data sharing is useful also in compiled programs
to save memory and time.

Let us define some terms. A rewrite grammar 1is a set of
replacement rules each of which specifies that a given phrase may be
replaced by another given phrase. Each replacement rule expresses a
local translation. A parser finds those sequences of replacements that
bring a given text to a machine handleable form. Each such sequence
represents a meaning or interpretation for the given text. Tolerance of
ambiguity or multiple interpretations for a given text is necessary so
that subsequent processing can place further constraints upon the input
text.

This thesis presents a parser which efficiently handles
‘general-rewrite grammars. To conserve computer time and memory, only
essential differences among multiple interpretations are represented and
processed. If several interpretations for a given text are valid, the
© parser yields a meaning which represents the ambiguity as locally as
possible. Even an exponential number of distinct meanings may be
represented in- a polynomial amount of memory.

. This thesis also presents a language processing system which
supports semantic processing via independent rewrite grammars. Each
grammar represents a distinct aspect of the language. A given sequence
of grammars becomes a sequence of passes, or process steps. Each pass
derives a meaning with respect to one grammar and uses that meaning @ to
generate phrases which will be interpreted by the next pass. Although
linguistic specification is usually done with context-free grammars,

‘features of this parser which support general-rewrite grammars are
essential for the integration of passes. Not only ambiguity, but also
the locality of ambiguity is preserved from one pass to the next. It is
necessary to preserve locality of amhiguity in order to avoid explosive
computation arising from useless interaction among independent sets of
interpretations. ‘

I have implemented a general-purpose programming language called
. ICL with this system. The fact that ICL's datatypes are processed by a
rewrite grammar makes it simple to implement both user-defined datatype
coercions and functions known as polymorphic operators whose definitions
depend on parameter datatypes. Datatype coercions and polymorphic
operators reduce the amount of specification required in algorithms to
such an extent that a vuser can often modify declarations and achieve
optimizations .and changes in concept without modifying his algorithmic
specification.

ICL includes a simple and safe policy about pointers so that the
user can ignore their existence completely if he wishes. ICL
automatically maximizes data sharing and minimizes copying by adopting a

iit

"copy on write" policy. This policy supports the illusion that each and
every reference to a data structure generates a complete copy of that
data structure. This same technique is used in the language processor
itself to facilitate data sharing among multiple interpretations in

ambiguous cases.

iv

Table of Contents

Introduction . e e e
Ambiguity aand Shared Data
Parsers ’
A Language Processor :
The Sample Language, ICL ' ¢
What Follows

Languages
Meaning .
Meaning As Programs
Parts-of-speech Are Datatypes
Ambiguity
Multipass Language Processing
Production Schema
Reluctant Productions

An Efficient General Rewrite Parser
flow The Parser Works :
The Parsing Graph
Properties of the Parsing Graph
The Algorithm
Parsing Graph Generation
Parsing Graph Selection
The Grammar
Sample Run
Why The Parser Works
The Lemmas
An Upper Bound for Parser Expense with Context Free Grammars

A Semantic Evaluvator < .« .
OR-Derivation Nodes and The Routine SEMOR
Meanings of the First Kind
Meanings of the Second Kind
Meanings of the Third Kind
What SEMOR Does
How An Ambiguous Derivation Generates A Parsing Graph
Two Sources of Ambiguity
Locality of Ambiguity
Efficient Treatment for Shared Derivations
The Semantic Operator PAW - Pruned Awakening
Top-Down Context Besides LEFT and COLUMN - The Operator RESET
Reluctant Derivations and Cycles - The Operator GOODNS

16

47

92

ICL Overview e e e e e e e
Modularity
The Use of the Language Processor
ICL Aimed at IC Masks
Carryovers from Language Processing
Ambiguity - A Manifestation of the Parser
Pointers
Error Reporting in ICL
Syntax Errors
Datatype and PASS3 Errors

" Conclusion e e e e e e e e e
Bibliography . .
Appendices . .

A Sketch of The Language Processor in MACBO-IO.

ICL Reference Manual

. 164

116

140
147

.- 148

This thesis presents a programming language, ICL, and the language
processor with which it was implemented. The design and implementation
of ICL was facilitated by building a flexible language processor which
readily admits the creation and modification of any computer language.
ICL was created for two reasons. There was need'for a sophisticated IC
design language and there was npeed to see how well the language

processor could support a large application language.

ICL was conceived by forming a collection of notations which would
express a variety of independent concepts. The language emerged by
integrating these various notations. The rules specifying how these
notations could be integrated became the grammar for ICL. ICL is now
defined by three independent grammars each of which imposes a different

class of requirements.

The language processor supports linguistic specification in terms
of general rewrite grammars. A rewrite grammar is a set of replacement
rnles each of which specifies that a given phrase may be replacgd by
another given phrase. Each replacement rule expresses a local
iranslation. A meaning is derived from an input text by applying
replacement rules upon the text in such a way as to bring the input text

to a machine usable form.

The program which discovers the appropriate replacements is called
a parser. The result of parsing is a record of the replacements
performed, a tree structure known as a derivation. A derivation may be

viewed as nested function calls, e.g., the text

12+ 3*4

may have the derivation

plus(times(1,2) , times(3,4)).
Viewed as nested function calls, a derivation can be executed. The
execution of a derivation implements the intended meaning. Refer to the

section Languages for a more complete description.

Ambiguity and Shared Data

This thesis is based on two ideas. One is tolerance of ambiguity
and the other 1is automatic sharing of data in 1list structures.
Ambiguity refers to the exisfence of multiple interpretations for a
given expression. Data sharing refers to the representation‘of nearly
identical structures where all those substructures which are common in
the various structures are represented in memory only once. A common
substructure is said to be shared by all structures which reference the
substructure. Tolerance of ambiguity becomes practical when only
essential differences among multiple interpretations are represented and
.‘processed. Stmilarities among multiple interpretations will be shared

‘both in memory and in processing.

Tolerance of’ambigdity supports two needs in processing. On one
hand, the support of multiple interpretations allows programs.to be
picky. A program will be given a choice of interpretations for input
and bhence the program can choose those interpretations amenable to the
program's needs. Making such choices reduces the number of
interpretations, or the degree of ambiguity. On the other hand, a

progiram may generate mulfiple interpretations for output when it finds

several valid ways to procede.

If ambiguity were to be avoided, a predictive policy would have to
be adopted. For example, when a program could generate multiple
interpretations, the program would instead have to predict ahead of time
which interpretation will actually be utilized in subsequent processing.
This is not always possible. To resolve the uncertainty in prediction,
numerous systems employ backtracking so that when a prediction fails to
come true, processing can be backed up to the point where the faulty
prediction was made and another interpretation can be predicted in its

place.

The language processor supports ambiguity by processing multiple
interpretations in parallel. The major advantage of parallel brocessing
‘is that all valid interpretations kill be presented 'togethe} at any
_point 1in processing. This means that similarities among the various
interpretations can be known and hence the similarities can be
represented and processed only once. In contrast, if only one
1nterpretationAis processed at a time, e.g., with backtracking, all
-interprefations will not be presented together and hence similarities
among multiple interpretations are ignored. The coét of processing
multiple interpretations one at a time can be eXponential where a

parallel implementation would incur only polynomial cost.

Parsers

A variety of parsers exist ranging from parsers tailormade for
specific languages to general-purpose parsers which process large
classes of grammars. The simplest kind of parser is the LR(k) parser
presented by Knuth[1]. Such a parser avoids ambiguity by restricting
the class of grammars to such an extent that it can be decided with
certainty which replacement rule applies by locking ahead at most %
‘characters. Another‘ simple parsing technique known as 'recursive
‘ descent[2] utilizes backtracking exclusively to support uncertain

de;isions.'

Earley's efficient context-free parser[3] handles any context-free

grammar with a worst case performance of n3

where n is the length of the
text to be parsed. A context-free grammar is a rewrite grammar each . of -
‘whose replacement rules substitutes a given phrase with a phrase of
length one. Currently, Earley's is the most‘ efficient parser which

accepts all context~-free grammars.

Thompson's REL parser[4] and Kay's Powerful Parser[5] each accepts
- general rewrite grammars. waever, the REL parser has a worst case
performance of infinity even for context-free grammars. I don't know if
Kay's parser has an upper bound.

. ‘ [}
The parser presented in this thesis accepts general rewrite

grammars. When given context-free grammars in particular, the parser
has a polynomial upper bound as a function of the input text's length.
If the context-free grammar. is in Chompsky Normal Form, i.e., each

replacement rule replaces a phrase of length at most two, then this

~5

parser's upper bound is n4. The disparity between this n

na comes about because Earley indexes into an array of 1length n where

4 and Earley's

this parser walks a list structure of length n. The use of an array is

cumbersome when dealing with general-rewrite grammars.

The section An Efficient General Rewrite Parser documents this

parser.

A Language Processor

The language processor presented in this thesis supports multipass,
or semantic processing via independent rewrite grammars. A given
sequence of grammars becomes a sequence of passes, or process steps.
Each pass derives a meaning with respect to one grammar and uses that
derivation to generate phrases which will be interpreted by thé grammar
belonging tou the next pass. The grammars in a multipass system
répresent the constraints and capabilities of distinct aspects of a
given language. The first pass in a multipass system is usually
referred to as the syntax pass and non-first passes are referred to as
semantic passes. For example, ICL is implemented with three passes, a
syntax pass, a datatype processing pass, and a pass which enforces
proper use of data sources and data sinks. It is conceivable that a
fourth pass could be added which would process the ocutput from the third
‘pass in terms of a (egister transfer language. Some~rep1acehent rules

of the register ‘transfer language could map certain sequences of
instructions to other sequences and thereby offer alternate
implementations. An optimal implementation could be chosen from these

alternatives.

'

This multipass language processor necessitates a general rewrite
parser because a derivation must be able to generate phrases of length
greater than one. In analogy, where a replacement rule generates a
phrase in' place of another phrase, a derivation generates a phrase in
place of itself. A derivation can generate a phfase by concatenating
those phrases generated by its subderivations. Phrases genérated either
by replacement rules or by derivations may interact with surrounding
phrases. Each generated phrase and each wunion of that phrase with

surrounding phrases must be subject to processing via replacement rules.

Multipass language processing emerged originally in the days when
computers had tiny memories. By running passes independently, each pass
could use the wholé computer memory. Communications from one pass to
the next were made via a text string stored on disk. However,
ambiguities which could not be resolved by one pass were not easily

passed on to the next pass.

Ambiguity must be supported within and between passes so that each
pass need not be overly specified and hence overly rigid. If a pass
were not able to deliver its unresolved ambiguities to the next pass,
each pass would have to resolve all ambiguities within tﬁe pass's
limited domain. 1In general, this would'require that each pass emulate
subsequent passes so that the given pass can successfully predict which
interpretation it should deliver. Because each pass represents a
distinct aspect of the overall language, the requirement that a pass
_emulate subsequent passes forbids a truly independent specification for
each independent aspect of the given language. The support of ambiguity

provides the lubrication, so to speak, between the independent domains

of each pass.

For example, an ambiguity not resolvable by the first bass will be
delivered to the second pass. If the ambhiguity makes no distinction in
the domain of the second pass, the second pass will automatically
process each of the alternate interpretations and delivervthem on to the
third pass. The ambiguity may be resolved by the earliest pass within

whose domain the ambiguity makes a distinction.

In general, each pass will not only resolve ambiguities but also
generate new ambiguities. For example, in FORTRAN, the number 259 is
unambiguous syntactically, but when FORTRAN coﬁsiders datétypes. the
number 259 becomes ambiguous because 259 must be considered as either an
integer or a rgal number. Of course, the ambiguity 1is resolved when
surrounding context is téken under consideration, e.g., 259 is

specifically assigned to an integer variable. :

To support ambiguities between passes practically, the
individuality, or 1locality of these ambiguities must be preserved. If
is not satisfactory, for example, to have each pass yield a set of
unambiguous derivations, each of which will be processed independently
by the next pass. Because each derivation will typically have much in
common with the other derivations, processing each derivation
independently will result in duplicate processing for similarities among
the various derivations. Ignorance of similarities among multiple

derivations can turn a polynomial cost into an exponential cost.

~8 ~

Both this parser and Earley's parser have the wonderful property
that ambiguities which cease to provide distinction for the parsing
process disappear from the parsing process. These ambiguities reappear
embedded within the resulting ambiguous derivation. An ambiguous
derivation is a derivation which may contain instancés of a new kind of
node called an OR-node. A single ambiguous derivation represents many

distinct unambiguous derivations.
For example, the ambiguous derivation

OR (f(a) , f(b))

represents the meaning

etther f(a) or f(b).

The ambiguous derivation

f (OR(a,b))

represents the meaning

JC either a or b)
and it is in fact equivalent to the former derivation. This latter
derivation is said to be more [factored than the former derivation
because the OR-node is nested deeper within the latter derivation. That

is, Jjust as

f*(a#b) is more factored than f*xa + f*p,

f(OR(a,b)) 1is more factored than OR{ f(a) , f(b)).
In each example, the most factored expression shares the most data. lf
is written only once in the factored expressions whereas‘f is written

twice in the unfactored expressions. For another example,

~ 0 ~

g(OR(a,b) , 0OR(c,d)) is more factored than N
OR(g(a,0R(c,d)) , g(b,0R(c,d))) and than
OR(OR(g(a,c),g(a,d)) , OB(g(b,c),g(b,d))).
A maximally factored ambiguous derivation can represent as many as an
exponential number of distinct derivations in only a polynomial amount

of memory. Both Earley's and this parser yield maximally factored

ambiguous derivations.

This language processor takes full advantage of ambiguous
derivations. In support of multipass processidg, an ambiguous.
derivation is used to generate an ambiguous phrase. An ambiguous phrase
is a datastructure which represents a set of alternative phrases by

sharing as manybcommon subphrases as possible.

An ambiguous phrase is maximally factored in the sense that

----- f —mam.] ewmeo=
/
\--b -~/
is more factored than
..... f remme g mewe-
\ /
\ee f www=- b -~/

Each of these ambiguous phrases represents the phrases

J a and I b
A more factored ambiguous phrase shares more data, e.g., the f is shared

in the more factored ambiguous phrase. The ambiguous phrase

~ 10 ~

is more factored than the unfactored

---------- f ---=-----a -~~~ b ~-=--=--c---
\ /
\-==mm=- f cemreccraven- C mermmmwecw- /

\ /
\moma- g ~-e-e=--- a----- b ----- /

\ /

© \=m- g mmmemememeee- C -----=-- /

With the unfactored ambiguous phrase given above, f is r?presented
twice. An unfactored ambiguous phrase wastes not only memory space, but
also processing time: With this unfactored phrase, those processes,
e.g., replacement rules, which depend on f without reference tp f's
surrounding context will be duplicated simply because f 1s represented
twice. With the factored ambiguous phrase, f is represented only once
“and hence those prbcesses which depend on f without reference to f's
surrounding context will execute only once. ﬁaxima11y~ factored
ambiguous derivations or phrases are said to maintain locality of

ambiguity. ‘

The parser presented in this thesis in fact deals exclusively with
ambiguous phrases. A replacement rule affects an ambiguous phrase by
placing the rule's generated phrase onto the ambiguous phrase as an

alternate phrase. For example, applying the réplacement rule

c replaces ab

upon the phrase

yields the ambiguous phrase

~ 11 -

Applying the replacement rule

g replaces f

upon this result, we get the ambiguous phrase

' Because replacement rules make local replacements, the parser npaturally

preserves the locality of ambiquity within ambiguous phrases.

‘ It Is interesting to note that the structure of an ambiguous
derivation genéralizes the structure of an ambiguous phrase. The
structure of an ambigucus derivation is in fact identical to the
‘structure of an ambiguous phrase when each function in the derivation is
unary, i.e., each function takes at most one parameter. The equi#alencé
can be seen by viewing the phrase a b ¢ x as the derivation a(b(c(x))).

For example, the ambiguous phrase

corresponds in structure to the ambiguous derivation’

f(OR(a(x) , b(x))).
The ambiguous phrase

~ 12 ~

corresponds in structure to the ambiguous derivation

OR(f(u),g(u)) where u = OR(a(b(x)) , c(x)).

The Sample Language, ICL

ICL, the sample language implemented with the language processor,
includes two major features taken from the language processor. ICL
maximizes data sharing so that nearly identical datastructures indeed
Share common substructures. In addition, ICL utilizes the parser to
process datatypes. All datatype relationships are represented in a
datatype . grammar. Refer to the section ICL Overview for a closer lock

at how these features manifest themselves in the language.

ICL was designed to support the creation of integrated circuits.
Because a given integrated circuit is defined by a given set‘of masks,

ICL includes special features for processing two-dimensional geometry.

Because the specification of IC layouts and electrical or
functional properties is a relatively new endeavor, 1 chose to make ICL
a flexible, general-purpose programming language. I envision two
distinct wuser groups. The first group is akin to language designers;
'this group defines both the internal representation for IC's’ and the
. notation with which IC's are specified and'manipulated. Thg other group
defines and edits specific IC's with the system provided by the first
group. Each group interacts with the other; the language group
cohtinually modifies its system by incorporating common needs found. by

the IC designers. In this way, a convenient IC design system evolves

-~ 13 -~ ‘ L]

and avoids obsolescence.

Paramount to this duality is the need for upward compatability. IC
specification should always be successfully interpreted by the system
even if the internal representation for IC's changes dramatically. Not
only top-level IC specs, but also IC specs made from within existing
functions should be upward compatible. In each case, “the existing 1IC

specification should be mapped optimally into the new representation.

ICL includes two essential features which readily support changes
in representation. These features are known as datatype coercions and
polymorphic operators. A datatype coercion is a declaration which
specifies that any instance of a given datatype can be viewed as an
instance of another given datatype via a given transformation. A
datatype coercion differs from a function because a datatype coercion
may be invoked without an explicit call. A function can be invoked only’

by explicitly writing the function's name.

ICL applies datatype coercions at appropriate places 1in a wuser's
specification to maintain the integrity of his specification. Thus,
upon changes to representation, i.e., changes to the notion of
integrity, ICL will automatically apply coercions at different places if
necessary. If the user had gone to the tfouble of specifying all
coercions via function calls, as 1is necessary in other programming
languages, his specification would be overly rigid and less amenable to
changes in representations. Upon changes in representation, the user
would have to edit his specification by removing certain function calls
and adding other function calls. With coercions, this is done

automatically. Because ICL gquarantees to minimize the onumber of

~ 14 ~

* coercions it employs, the integrity of a user's specification will be

maintained as cancisely as possible.

A polymorphic operator is a function whose definition depends' on
the datatypes of its parameters. For example, the. function name
DISPLACE can have several definitions. One definition will support the
‘displacement of a point by a point. Another definition will support the
displacement of a whbole IC-mask by a point. When the user specifies a
call to DISPLACE, ICL will choose that definition which maintaips
datatype consistency. The use of polymorphic operators, 1like datatype
'.coercions, reduces the necessar& specification and hence the rigidity of
specification. A change in representation which affects. the datatypes
in a call to DiSPLACE can be tolerated if another definition of DISPLACE

can accomodate the new datatypes. ‘ '

Program integrity is preserved via.the parser during ICL's second
pass, when the datatype grammar i§ active. The bafser's tolefance of
ambiguity lends itself naturally to the task of discovering which
coercions to apply where and what defipition to use among those

definitions which make up a given polymorphic operator.

What Follows

The section Languages presents rewrite grammars and various
techniques by which rewrite grammars can be extended to encompass more
linguistic specification. The language processor itself is made up of
two components, a parser and a semantic evaluator. One' section

documents the parser. Another section documents the semantic evaluator

~ 15 ~

and 1its role in the language processor. The section ICL Overview

documents the goals in designing ICL and the results of each goal.

The first appendix gives a sketch of how a language is specified to
the language processor. Linguistic specification is dome in the
PDP-10's assembler language with the help of macros. The fioal

appendix.'the ICL Reference Manual formally documents ICL.

~ 16 ~

LANGUAGES

A language is a set of conventions by which a string of characters
can be mapped into some corresponding meaning. On the computer, the
most general form of meaning is some action which modifies either the
state of memory or the state of some output devices. This section
introduces rewrite grammars, termipology, and useful conventions for
implementing meaning. The following sections document programs which

implement ideas presented in this section.

The term part-of-speech will refer to the atomic elements of our
space of discourse. We include all ASCII characters as parts-of-speech.
All parts-of'speech excluding ASCII characters are called non-terminals
and can be thought of as syptactic classes or as abstract characters. A

non-terminal will be denoted by a name enclosed in angle brackets, e.g.,
<VERB>

The term phrase or string refers‘ to any sequence of
parts-of-speech. Phrases made up solely of ASCII characters are called

terminal phrases.
A production, or rule, is a pair of phrases, written as

phrase ::s phrase
The phrases will be refered to as the lefthand phrase and the righthand

phrase respectively.

~ 17 ~

A grammar 1is a set of productions along with a chosen
part-of-speech called the root part-of-speech. Given a gramﬁar, we will
‘say that a given string is a rewrite of another string preciseiy when
the giéen string can be obtained from the other string by a single
rewrite operation: '
1) Locate an occurence of some production's righthadd phrése within
the given string.
2) Erase that occurrence of the righthand phrase and write in its
place a copy of the production's lefthand phrase.
We will say that a given string is derivable from another string if the
‘given string can be obtained from the other string by a sequence of
rewrites. A derivation is a record of the rewrite operations employed

in deriving one string from another.

The language accepted by a grammar is the set of terminal strings
from which the root phrase is derivable. The root phrase is the phrase
of length one consisting of the grammar's root part-of-speech. In
performing rewrite operations upon a given text, the goal is to come up

with the root phrase.

For example, the set of productions

<DIGIT> ::= 0
<DIGIT = 1
<DIGIT> ::= 9

state that the part-of-speech <DIGIT> can be derived from each of ‘the

characters 0, 1, ..., 9. The productions

~ 18 ~

{NUMBER> ::

<{DIGIT>
{NUMBER>

<NUMBER> <DIGIT>

state thatl(NUMBER> can be derived from a single <DIGIT> or from a
<{NUMBER)> followed by a <DIGIT>. Thus, <NUMBER> is any non-null string
of digits. The grammar consisting of these productions along with
NUMBER> as the root part-of-speech defines the language consisting of

all non-null strings of digits.

Heaning

The preceding description shows how a grammar can be used to
specify the legal strings of a language but it fails to mention how to
associate a meaninj with a given string in the language. We can
'incorporate meaning by associating a meaning with each element in a
string. That is, an element of a string will consist of not only a
part-of—speéch but a part-of-speech and a meaning. We can associate
with each prbduction a meaning transformation. That is, wheb a rewrite
"operation 1is performed, we let the chosen production define a‘ﬁeaning ,
for each element it writes into the string. These meanings will be
functions of the meanings associated with each of the erased eleﬁents.

For example, the production

CEXPR> ::= <EXPR> + <EXPR>
can have the transformation which yields the sum of the meanings
associated with each of the righthand <EXPR>s. The meaning of a string
in a language will be the meaning which is associated. with the root

phrase derived from the given string.

~ 19 ~

We can express productions which include meaning transformations in

the following concise notation:

<EXPR: sum(a,b)> ::= <EXPR:a> + <EXPR:b> .
The parts-of-speech appearing in the righthand phrase include the
specification of variables and the parts-of-speech appearing on the
lefthand phrase each includes the specification of a meaning which is a
function of the variables named in the righthand phrase. One can see
how a transformation is carried out. When this production is employed
in & rewrite operation, the variables a and » are set to the meanings
assoclated with the two <{EXPR)> elements which are being erased. The
value sum(a,b) 1is computed and associated with the new <EXPR> replacing

the erased elements.

A meaning transformation associated with a production whose
lefthand phrase has length greater than one defines a separate meaning
for each part-of-speech in the 1lefthand phrase. - For example, the

production

<A: f(c,d)> <B: g(c,d)> ::= <C:c> <D:d>
specifies that the meaning under the <A) is f(c,d) and that the meaning
under the is g(c,d). A meaning transforhation associates a meaning
with each part-of-speéch in the lefthaﬁd phrase and nqt with the phrasé

as a whole.

The <NUMBER)> grammar can be writtem with meaning transformation; as

follows:

~ 20 ~

{DIGIT:0> ::= O
<DIGIT:1> ::= 1
<DIGIT:9> = 9

<NUMBER:a> ::= <(DIGIT:a>

<NUMBER: t10%a+b > ::= <NUMBER:a> <DIGIT:b>
The meaning associated with a <DIGIT> or a <NUMBER> 1is an inéeger.
Looking at the <DIGIT> rules, note that the digit appearing onh the.
rigﬁthand side is a characfer whereas the meaning associated with the

<DIGIT> is an integer. For example, the rule

<DIGIT:1> ::=
states that the character "1" has the integer 1 as its meaning when the
character "1" is viewed as a <DIGIT>. The first <NUMBER> rule states
that when a <DIGIT> is viewed as a <NUMBER>, the meaning for the
<NUMBER> is the same as the meaning associated with the <(DIGIT>. The
final rule states that when a (NUMBER> followed by a <(DIGIT> is viewed
as a <NUMBER)>, the meaning for the resulting <NUMBER)> is ten times the

meaning of the given {NUMBER)> plus the meaning of the <DIGIT>.

Many grammars can be written which accept a given language.
However, some grammars may be more suitable than others for defining
meaning transformations. For example, consider the grammar given above

which éccepts the language consisting of strings of digits. The rule

CNUMBER> ::= <NUMBER> <DIGIT>

could be replaéed by the rule

~ 21 ~

{NUMBER> ::= <DIGIT> <NUMBER>
without changing the language accepted by the grammar. However, 1t is
more difficult to write the meaning transformation for the latter rule
than to do so for the former rule. Given a language to implement, the
“language implementor generally chooses that grammar whose meaning

transformations are easiest to define.

The following is a grammar for a subset of arithmetic expressions:

CATOM: a> ::= <NUMBER:a)
CTERM: @) ::= <ATOM:ad
CTERM: times(a,b)> ::= <TERM:a> * CTERM:b)

<FORM: a> ::= <TERM:a> ‘
<FORM: sum(a,b)> ::= C(FORM:a> + <TERM:b>

CATOM: a> ::= (<FORM:a>)
This grammar admits expressions built with numbers, +'s, %x's and
parentheses. The part-of-speech <ATOM> admits only numbers and
parenthesized expressions. <TERM) admits products of <ATOM>s and <FORM>
admits sums of <TERM>s. The separation of arithmetic expressiohs into
<ATOM>, <TERM>, and <FORM> implements the standard operator precedences:

L]

%'s are grouped before #'s.

<FORM> can be derived from the string 1+42%*3 by

~22 ~

1 + 2 x 3
<DIGIT:1> <DIGIT:2> <DIGIT:3>
<NUMBER:1> (NUMBER:2> {NUMBER:3>
(ATOM:!) <ATOM:2> <ATOM:3>
CTERM:1) <TERM:2>
<FORM:1> CTERM: times(2,3)>

CFORM: sum(1 , times(2,3)) >
This diagram shows only those rewrite operations which participate in

deriving the final <FORM>. The finél (FORM> has the accumulated meaning
sum(1 , times(2,3)).

We have not specified what kind of data sum and times take inm and
'produce._ We might assume that sum and times take in abd produce
_ numbers, i.e., the‘meaning for the final <FORM> could simply be 7. On
the other hand, we might assume that sum and times take in and produce
programs whose executions yield numbers. For example, - a LISP program

can be obtained if sum and times are defined as follows:

times(a,b) = (LIST 'ITIMES a b)
sum(a,b) = (LIST 'IPLUS a b)

The .string 1+2*3 would rewrite to a <FORM> whose meaning is
(IPLUS 1 (ITIMES 2 3))

A pérser is a program which takes in a grammar and an input‘_string
and always does one of two things. If the input string is a_member of
the language accepted by the'grammar, the parser yields the meaning
associated with the input string. Otherwise, the parser rejects the

input string.

~ 23 ~ :

Meaning as Programs

Representing meanings as programs has the advantage that the
evaluation of meaning can be delayed until the completion of the
rewriting process even though meaning transformations are carried out
during the rewriting process. The meaning transformations can be
written to fake in and produce programs whose later executions will

carry out the intended meaning.

There are iwo major reasons for having meanings represented by
programs rather than by computed values. First of all, a parser will
invariably have to»backtrack, in its effort to find the particular
sequence of rewrites by which the grammar's root phrase is derived from
the input string. For example, a parser might at some time consider the

following rewrite sequence:

1 + 2 x 3
<DIGIT:1> {DIGIT:2>
<NUMBER:1> <NUMBER:2>
<ATOM:1> <ATOM:2>-

CTERM:1> <TERM:2>
<FORM:1>

(FbRH: sum(1 , 2) >
This final <FORM)> spanning 1+2 cannot be used in any successful
derivation for 14+2%3. If sum were an expensive computation, the time
taken to compute sum(1,2) would be a major loss. In addition, if
sum(1,2) involved side effects, the side affects would have to be undone
at some time. However, we can make sum both inexpensive and free of

'side effects by having sum return as its value ‘a program whose later

~ 24 ~

executioh will perform the expensive computation. The program can
‘simply be represented by the address of a function along with two
parameters. In this example, since sum(1,2) won't be a part of any
successful derivation for i+2*3, the program given by sum(1,2) will

§
never be executed.

The notation

//[a;b;] program \\
will denote the datastructure which represents progroam along with the

predefined parameters a and b. For example, sum can be defined by

sum(a,b) = //[a;b;] expensive computation \\ ‘ .
A call to.sum yields a datastructure which contains the current values
of a and » and the address of the program which implements expénsive
computation. To the expensive computation, the variables a and b always
appear to contain the values they contained at the time sum was called.

The notation

EX{x)
(EXecute) will denote the invocation of x where x is a program with

predefined parameters. Thus, if we assign x as in

x := sum(a,b) ;,

performing

EX(x)

will invoke the expensive computation.

~ 25 ~

The Second and perhaps more fundamental reason for representing
meanings as programs rather than as computed values is simply that some
meanings have values which depend on context not yet available at the
time a particular rewrite is carried out. For example, consider a

‘'grammar where pumbers can include radix specification, e.g.,

101 base 8 would be 65 base 10.

The number rules could be

<NUMD> :: <DIGIT>

<NUMD <NUM> <DIGIT>

CNUMBER> ::= <(NUM> BASE <DIGIT>
The part-of-speech <(NUM> represents numbers without radix specification,
i.e., strings of digits, A <NUMBER> is forméd by appending a base
specification to a <NUM>. Consider the meaning transformations for

these rules. One is tempted to write

<NUM: a> ::= <DIGIT:a>

<NUM: raedix*a+b> ::= <NUM:a> <DIGIT:b>

{NUMBER: ?? > ::= <NUM:a> BASE <DIGIT:b> ‘ '
The problem is that the radix won't be known when the second rule is
applied. The radix becomes known only after the third rule applies. By
agreeing that the meanihg of a <NUM> will be not an integer, but a
program whose execution will yield an integer, we can write the rules as

follows:

CNUM: //[a;] a \\ > ::= <DIGIT:a)
CNUM: //[a;b;] radix*EX{a)sb \\ > ::= <NUM:a> <DIGIT:b>

{NUMBER: radix:=b; EX(a) > s:= <NUM:a> BASE <DIGIT:b> * .

~ 26 ~

The first rule yields a program whose execution simply yields the
<{DIGIT>'s meaning. The second rule yields a program which includes the
global variable radix as a free variable. The.third rule, the <NUMBER>
rule, produces an integer as its meaning by first setting the global
variable radix and then invoking the program associated with <NUMD.
Thus, the computation which must involve raedix has been delayed until a

time when radix is available.

In general, if meanings are represented as programs, the meaning
transformation associated with a production can adequately control the
context in which any of its parameters is evaluated. We will use the
term top-down context to refer to context which is set by a routine fbr
-the evaluétion of one of its parameters. For example, the {NUMBER)> rule
uses the 1global variable radix as top-down context. Top-down context
can generally be used only if the evaluation of meaning is delayed until

the completion of the rewriting process.

Parts-of-speech Are Datatypes

A datatype in its most general form is a set of conventions by
which a datum exists. A datum is an instance of a datatype precisely
" when the datum obeys the conventions of the datatype. We can see how
the parts-of-speech of a grammar serve as the datatypes over the spaée

of meanings.

In defining a gfammar and the routines which implement the meaning
transformations, one must agree on how a meaning is represented. what
‘sorts of actions will be performed by the evaluation of a meaning? For

example, if we implement the routine sum for the rule

~ 27 ~

<FORM: sum(a,b)> ::= <FORM:a> + <TERM:b>
“we must know three things: What kinds of objects are a and » and what
kind of object must be associated with the resulting <FORM>? We can
deduce fhat the type of data yielded by suwm(a,b) must be the same as the
type of data represented by a because a itself could be set to the
result of a sum, e.g., the rewriting process might employ‘ the

<{FORM:sum(a,b)> generated by this rule as the <FORM:a> in another

application of this rule, e.g.,

c + | d + b

<FORM: sum(c,d)>

<FORM: sum(sum(c.d) , b) >
When a is set to the meaning of a <FORM>, we cannot tell which
production generated the <(FORM>. Hence, each production which generates
a <FORM> must associate a meaning which follows the same conQentions as
the meaning associated with any other <FORM>. In general, the only
thing that can be known about a meaning is the part-of-speech with which

the meaning is associated.

It is therefore advantageous to establish conventions for meaning _
on a part-of-speech by part-of-speech basis. That is, for a given
part-of-speech, one should state exactly what can be expected of an
associated meaning. A part-of-speech serves as the name for the
conventions obeyed by any meaning associéted with the part-of-speech.
In the example production given above; we can assume that o follows the
<FORM>-conventions and that b follows the <TERM>-conventions and finally"
that sum(a,b) had better follow the {FORM>-conventions. From the point

of view of sum's definition. these requirements appear as datatype

~ 28 ~

" constraints:

sum(a:FORM b:TERM) = FORM: o
Sum is a function which maps a FORM and a TERM to a FORM.
Parts-of-speech are the datatypes for the input and output parameters in

any function which implements a meaning.
For example, suppose we wish to write a compiler with the rules

CATOM: load(a)> ::= <VARIABLE:a>
{PROGRAM: assign(a,b)> ::= <VARIABLE:a> := <FOQRM:b> ; .
We can make the following conventions: The evaluation of a meaning
associated with '
1) a <VARIABLE)> yields a memory address and generates no machine
code
2) an <ATOM>, <TERM)>, or <FORM) generates machine code which will
push an integer onto the stack
3) a <PROGRAM> generates machine code which will 1leave the stack

level unchanged.

The meanihg transformations for the two rules éan be written as follows: .

load(a:VARIABLE)= ATOM: .
//{a;] Address := EX{(a);
Assemble ' PUSH Address ' N
assign(a:VARIABLE b:FORM)= PROGRAM:
//la;b;]
EX(b) " Generate code which will push the right
side of the assignment onto the stack "

Address := EX(a); * Where to store the result "

Assemble * POP Address ' ALY .

Load maps a VARIABLE to an ATOM by producing a program whose
execution will generate machine code which will push an integer onto the
stack. The program produced by loed uses its VARIABLE parameter by
evaluating it to obtain the address for the variable. Assign maps a
VARIABLE and a FORM to a PROGRAM by producing a program whose execution
will generate machine code which will leave the stack level unchanged.
The program produced by assign evaluates the FORM paramefer to generate
code which will push one word onto the stack. The program produced by
assign finally evaluates the VARIABLE parameter and assembles a POP
-instruction to complete the assignment which bfings the stack level back

down.
The rule

<FORM: sum(a,b)> ::= <FORM:a> + <TERM:b>

can be added if we define sum as follows:

sum(a:FORM b:TERM)= FORM:

//la;b;]
EX(a) * Generate code which will push
one word onto the stack "
EX(b) * Generate code which.will push

another word onto the stack "
Assemble an ADD instruction which pops two words
off the stack and which SJinally pushes the sum

back onto the stack W\ ' o

~ 30 ~

The program produced by sum will indeed generate machine code which will

push one wqrd onto the stack.

Given an input string, if <PROGRAM> can be derived from a given
input string, we can generate machine code which will implement the

given string by performing

EX(p)
where p 1s the meaning associated with the derived {PROGRAM>.

Notice that if <PROGRAM> can be derived from the input string, the
datatype requirements for the routines load, assign, and sum are
automatically satisfied. The correctness of the compiler can be proven
simply byvproving

1) the correctness of each meaning transformation énd

2) that each meaning associated with a given part-of-speech

satisfies the established conventions for that given

part-of-speech.

~ 31 -

Ambiguity

It may be'the case that a grammar's root phrase can be derived from
a given input string in more than one way. For example, with the

grammar

<{FORM:a> ::= <NUMBER:a>
CFORM: exponent(a,b)> ::= <(FORM:a> t <FORM:b> ,

<{FORM> can be derived from the string 2t3t4 in two ways:

2 * 3 t a
<NUMBER:2)> <NUMBER: 3> ~ <NUMBER:4>
CFORM:2> <FORM:3> CFORM:4>

CFORM: exponent(2 , 3) >

<FORM: exponent(exponent{(2 , 3) , 4) >

.......... OF = = = = = = = = = =
2 t 3 t 4
{NUMBER:2> {NUMBER:3> {NUMBER:4>

<FORM:2> <FORM:3> <FORM:4>

CFORNM: exponent(3 , 4) >
CFORM: exponent(2 , exponent(3 , 4)) > .
In the first case, the string is interpreted as (2+3)t4 whereas in the
second case, the string is interpreted as 2t(314). We say that the
string 2t3t4 is ambiguous with respect to the given grammar. This
grammar could be modified so that it always groups 2t3t4 in one way and
not the other. For example, to group left to right, substitute the

second rule with

CFORM: exponent(a,b)> (FORM:a> t <NUMBER:b>

To group from right to left, use

1

<FORM: exponent(a,b)> {NUMBER:a> t <FORM:b>

It is desirable to have unambiguous languages, 1i.e., languages
where a given string can have at most one meaning. However, it may be
advantageous to have a grammar which produces multiple meanings for a
given string so that some of these meanings can disqualify thgmselve$ on
grounds other than ﬁyntactic structure. For example, ICL bhas the
operators + and # where + is used to add either numbers or points énd

‘where # is used to combine two numbers to yield a point, e.g.,

112 | is the point at x=1 and y=2,

1#2 + 374 1is the point 4#6G, and

1+2 # 3 is the point 343. '
.Consider how A+BFC might be grouped. If A, B, and C are numbers, A+BFC

must be grouped as

(A+B)/C . o '

because the grouping

A+(B#C)
would force + to add a number and a point. On the other hand, if A is a
point and B and C are numbers, the latter grouping must prevail lest +
be forced to add a point and a number. If A, B, and C are the names of
program variables, the grouping decision can't be made until the types
of A, B, and C are known. Since the types associated to variables are
not known until declarations are processed and becausé declargtions

can't be processed until syntax analysis is complete, the grouping

~ 33 -~

decision cannot be dictated by the syntax grammar. The syntax grammar
therefore must admit both groupings, i.e., yield two meanings for the
string A+BFC. During the evaluation of meaning, the types for A, B, and
C will ﬁecome known and hence one of the meanings will disqualify

itself.

In general, ambiguity is necessary when insufficient information is

available for making a decision.

~ 34 ~

Multipass Language Processing

Consider two grammars which describe different aspects of a subset
of FORTRAN's arithmetic expressions. The first grammar is the grammar
relating the parts-of-speech <FORM>, <TERM>, and <ATOM> presented
earlier. The second grammar is written in terms of the parts-of-speech

CINTEGER> and <REAL>:

CINTEGER: addi(a,b)> ::= <INTEGER:a> + <CINTEGER:b>

<REAL: addr(a,b}> <REAL:a> + <REAL:b>

CINTEGER: muli(a,b)> ::

CINTEGER:a> * <INTEGER:b>
<REAL: mulr(a,b)>

{REAL:a> * <REAL:b>

"

CINTEGER:a> (<INTEGER:a>)

<REAL:a>

(<REAL:a>)
<REAL: float(a)>

CINTEGER:a>

This latter grammar states FORTRAN's datatype requirements and ignores
operator precedence. The former dgrammar states FORTRAN's operator
precedehce but ighores datatype requirements. However, any legal
arithmetic expression must be accepted by both grammars. For brevity,
we will call the former grammar the syntax grammar and the latter

grammar the type grammar.

Both grammars can be incorporated by agreeing that meanings
associated with <ATOM>, <TERM>, and <{FORM> are programs whose executions
will generate phrases in the 1language accepted by the type-grammar.
buring the generation of these phrases, the type grammar instead of the
syntax grammar will be active. Thus, each generated phrase will be
subject to rewrites via the productions of .the type-grammar. For

example, sum can be defined as

~ 35 ~

sum(a:FORM b:TERM) = FORM:
//La;b;]
EX(a) " Generate a phrase in the type language "
Generate a "+" to the right of the phrase
generated by a
EX(b) " Generate a phrase to the right of the + " \\ .

If sum's a parameter generates the phrase

<INTEGER>
and if b generates the phrase <REAL>, the program produced by sum will

generate the phrase '

CINTEGER> + <REAL>
Since the type grammar is active during these phrase generations, <REAL>

will be derived from this phrase:

CINTEGER:a> + <REAL:b>
<REAL: float(a)>
<REAL: addr(float(a) , b) >

As such, one of the phrases generated by sum is <REAL> standing alone.

To be more specific, the multipass scheme works as follows:

1) Process the input string with respect to the first grammar.

2) The result will be a meaning associated with the root phrase of
the first grammar.

3) Evaluate the resulting meaning with respect to the second
grammar .

4) From all the phrases generated by the evaluation, choose the

root phrase of the second grammar..

~ 36 ~

The meaning associated with the second grammar's root phrase is now the
meaning for the string with respect to both grammars. This multipass
scheme indeed requires that the input string be accepted by both

grammars.

More than two passes can be implemented by agreeing that the
meaning transformations associated with one grammar will generate
phrases in the language accepted by the next grémmar in the sequence.
_ The meaning transformations for the final grammar in the sequence will

be responsible for carrying out the originally intended meaning.

Two»successiyeAgrammars can be radically différenf so long as the
- meaning transformations associated with the first grammar can indeed
generate vseful phrases in the language accepted by the next grammaf.
The successive grammars need not be refinements of one another, e.g., it
is not necessary for the type grammar to consist of séveral productions

per syntax production. For example, the syntax production

<ATOM:a>

t= (<FORM:a>)

need not have any counterparts in the type 'grammar. Furthermore,
saveral syntax productions might indeed generate the same phrase io the
type language where the ultimate distinction between the ' two syntéx
. productions resides in the meahings associated with the elements of the

generated phrases.

~ 37 ~

Production Schema

We will opow consider productions whose parts-of~speech may
themselves be variables,. A whole scheme of productions may be
implemented by one or a few productions whose parts-of-speech are

variables. For example, consider the set of productions

<X> ::= <X> EQUALS <X>

where <X> stands for any part-of-speech. Each of the productions

<INTEGER>

CINTEGER> EQUALS <INTEGER>

<REAL> {REAL> EQUALS <REAL>

is a member of the production scheme given above.
The production scheme

<X> ::= IF <BOOL> THEN <X> ELSE <X>
represents the type requirements for the IF-THEN-ELSE construct. The
type of an IF-THEN-ELSE expression is precisely the type of the
THEN-clause when the type of the ELSE-clause matches the type of the
THEN-clause. If the types of the THEN-clause and the ELSE-clause

differ, this production does not apply.

One can write production schema where the variables representing
parts-of-speech accept only a limited range of values. For example, let

<EXPR)> denote the array of parts-of-speech

<EXPR >, <EXPR,>, ... , <£xpkn>

and let <BOP> (binary operator) represent the parts-of;speech

-~ 38-.

(BOPI), (BOP2>, -y CBOP D

A precedence grammar is implemented by the production scheme

(EXPRi> ii= <EXPRu> <BOPi> <EXPRv>
where u is required to be less than or equal to i and where v is
required to be strictly less than i. This scheme is a generalization of
the precedence grammar given earlier which included the parts-of-speech

~CATOM>, <TERM>, and <FORM>. In this more general setting, we can agree

that
<ATOM> = <EXPR1>,
<TERMD> = <EXPR2>, and N
<FORM> =.<EXPR3>

and that the binary operators + and * have the rules

(BOPZ) 1= R

CBOP> ::= +
The requirements on u, i, and v in the rule scheme impose the same
precedence requirements inherent in the <ATOM>-<TERM)>-<{FORM)> grammar.

The parenthesis rules

CATOM> ::= (<FORM>)

has the counterpart

<EXPR > sz (<EXPR;>)

where t is required to be less than or equal to 3.

The implementation of operator precedence via this rule scheme is
more. efficient than the implementation offered by the

CATOMD>-<TERM>-<FORM> grammar. The <ATOM>-<TERM>-<FORM> grammar includes

~ 39 ~

the bookkeeping rules

<TERM> ::= <ATOM>

CFORM> ::= <(TERM>

. Thus, whenever an CATOM> is generated, the <ATOMY> is rewritten to a

<TERM> and the <{TERM) is rewritten to a <FORM>, e.g.,

« 1)
CATOM>
<TERM>
CFORM)

< ATOM >

This cascading effect is absent in the precedence scheme: It is not the

case that the <EXPR1> rewrites to (EXPRz) and fiﬁally to <EX§R3> like

(1)
<EXPR ;>
CEXPR,) ‘
<EXPRg>

CEXPR 12

The production scheme doesn't need to include the bookkeeping rules

(EXPRi,I> se= <EXPRi>
because the precedence conditions, i.e., the conditions upon u, i, and
v, are stated in terms of tnequalities rather than in terms of

equalities.' Thus, for example, the string (1) parses simhly as

(1) .
<EXPR ;>
CEXPR O

-~ 40 ~

because the parenthesis rule requires only that i be less than or equal

to 3 and not that i be equal to 3.

As the reader may recall, the conventions set upon meanings
associated with the parts-of-speech <ATOM)>, <TERM)>, and <FORM)> were
identical. The distinction among these parts-of-speech was solely for
syntactical rather then semantic reasons. Thus, grouping all the
(EXPRi> into one conceptual part-of-speech is natural from the point of

view of setting up conventions for meaning.

The production schema presented thus far include variable
parts-of—speéch which admit either any part-of-speech or a specific
array of parts-of-speech. However, the conditions placed on a variable
part-of-speech can be of any sort we wish. The following example

involves parts-of-speech which are themselvés general datastructures.
Consider the datatype declaration

TYPE. A= { B} ; _
This defines A to be a string, or array, each of whose elements is‘ of
' type B. One effect of this declaration is the creation of the following

datatype production:

 ::= <A> [<INTEGER)>]
This production states that the result of indexing inte an object of

type A is an 6hject of type B. If the user were to declare

TYPE C={ D} ;
E=({F};
G=(H});

~ 41 ~

we would have the rules

<D = <C> [<INTEGER)]
CF> ::= CEY> [<CINTEGERY])
<H> = <G> [<INTEGER)]

The meaning transformations associated with each of these rules are
identical; each performs an indexing operation which does not depend on
the datatypes involved. Because the meaning transformations are the
same, we can take this opportunity to write one rule which will act as

each of these individual rules:

<type1) T <type2> [<INTEGER>]
where (type2> = a type declared to be a string of elements of type
<type1).
Th{s rule scheme can be implemented 1f the part-of-speech ,<typez> is

itself a datastructure which répresents the structure of typez. That

is, the rule scheme can be written as

?? ::= <X> [CINTEGER)]
where the meaning transformation locks at the wild-card part-of-speech
<X> to determine if it is a string of some other type. If <X> is not a
string; the meaning transformation inhibits the application of the rule.
If <X> is a string, the meaning transformation obtains that datatype of
which <X> is a string and supplies this as the lefthand part-of-speech,
the ??. The meaning transformation finally generates a meaning in terms
of the meanings under <X> and the <INTEGERY> and gives this as the

meaning associated with the lefthand part-of-speech.

~ 42 ~

Rule schema are useful for minimizing the size and maximizing the

‘readability of a grammar.

~ 43~

Reluctant Productions

Consider the productions

CINTEGER: addi(a,b)> ::= <INTEGER:a> + <CINTEGER:b>
<REAL: addr{a,b)> ::= <REAL:a> + <REAL:b>
CREAL: float(a)> ::= <INTEGER:a> .

This grammar has an inherent ambiguity. If the string 1+2 is viewed as

a REAL, there are two possible derivations:’

I 2
CINTEGER:1) CINTEGER:2)
CINTEGER: addi{ 1 , 2) >
<REAL: float(addi(1,2)) >

CINTEGER:1> . <INTEGER:2>
CREAL:float(1)> <REAL:f16at(2)>
<REAL: addr(float(1),float(2)) > .
The first derivation employs integer add whereas‘the second derivation
employs real add. Tﬁe first derivation applies float to the rgsult of
.the sum whereas the second derivation applies float tb each operand -

previocus to the sum.

To remove this ambiguity, we can introduce a notion of (reluctant
productions, 1.e., productions which' in some sense avoid being used.

The notation

~ 44 ~

CREAL:float(a)> ::== <(INTEGER:a>
will denote a reluctant rule. The reluctance of a rule manifests itself
not during. the rewrite process but 'after the rewritting process is
complete. Upon completion of the rewrite process, all possible
derivations for the input string are available. At this time we can
choose those derivations which involve the minimum number of reluctant
rules. For the example given above, the first derivation will win over
the second derivation because the first involves one application of the

Jloat production whereas the seéond involves two applications.

For another example, consider the grammar

<AY :1:=. B>
B> ::= <O
<C> ::= <D
<A = KX>
<X> ::= <D

<A)> can be derived from <D> in two ways:

D -> C > B > A and
P -> X -> A
If all these productions are reluctant, the path via X will be chosen

over the path involving C and B.

Although reluctant productions can remove many ambiguities, there
are some stubborn cases which defy disambiguation by this method. A

notable example involves unary operators. With the rules

CINTEGER: minusi(a)> ::= - <INTEGER:a>

CREAL: minusr{a)> s - <REAL:a>

the string , .

-1
is ambiguous when viewed as a REAL and in fact both derivations involve
the same number of reluctant productions. That is, does the float apply

before the minus or after?

With a scheme of reluctance, we can afford to make a grammar more
ambiguous and achieve a measurc of optimization. For example,
exponentiation is more efficient when the exponent is an integér. The

rules J

CINTEGER: expi(a,b)> CINTEGER:a> t <(INTEGER:b>

<REAL:a> t <INTEGER:b>

CREAL: expri(a,b)>

<REAL: exprr(a,b)> <REAL:a> t <REAL:b>

represent the three ways exponentiation is usually carried out. The
second rule is clearly redundant because with the INTEGER-to~REAL
coercion, the third rule alone supports all uses of the second rule.

For example, the string 1.2t3 parses either as

1.2 t 3
<REAL:1.2> CINTEGER:3>
<REAL: float(3)>
<REAL: exprr (1.2 , float(3)) >

1.2 t 3
<REAL:1.2> CINTEGER:3>
<REAL: expri (1.2, 3) >

~ 46 ~

The ambiguity generated by the inclusion of the second rule is welcome
because we now have a choice of derivations. The second derivation will
- win over the first derivatibn because the reluctant float rule 1is not
used 1in fhe sacond derivation whereas it is used in the first. Thué,
the inclusion of rules which obviously admit ambiguity can indeed serve

towards optimization in a scheme where some rules are reluctant.

-~ 47 ~

AN EFFICIENT GENERAL REWRITE PARSER

This section documents an efficient, general rewrite parser. This
parser accepts any general rewrite, or type 0 grammar whose productions
have non-null righthand phrases. If the parser terminates, it yields

all possible derivations in a factored form.

If we_restrict our attention to context-free grammars, the parser
works at a worst case expense equal to a polynomial function of the
input character string length. The degree of the polynomial is equal to
two plus the maximum length of each production's righthand phrase. If
the number of parts-of-speech encompassed by the grammar is p, if the
longest righthand phrase has 1length L, and if n is the input string
length, then the worst case memory and time is bounded above by (np)z*L.

This 1is calculated for a grammar having all possible context-free

productions with righthand phrases of length less than or equal to L.

The polynomial upper bound for memory includes the space taken by
the resulting derivations. Even though there hay be an exponential
number of derivations, all the derivations together fit in polynomial
space. There are two factors which yield this result. First of all,
many derivations share common subderivations. This factor alone does
not achieve the polynomial space but it does make possible the
effectiveness of the second factor., The second factor involves
extending the notion of derivation to include ambiguous derivations. An
ambiguous derivation is a derivation which may contain instances of a
new kind of node called an OR-node. A single ambiguous deriyation can

represent many distinct unambiguous derivations. The big payoff comes

~ 48 -

when an ambiguous subderivation is shared by several derivations. .
For example, the grammar

<X> ::= 1
<X>

<X> + XD

represents all strings of characters representing sums of 1, e.g.,

1+14 or 1+1+484141 etc.
This grammar gives rise to many derivations for a string having three or
more 1s because no preference is given to left or right associativity.

The string

BESERLS!

parses as any of

((1+41) ¢+ 1) + 1 or

(1 + (1+41)) + 1 or

(141) + (1+1) or

1+ ((101) +1) or

1+ (1 + (141)).
The number of derivations arising from & string having n Is équals the
number of ways parentheses can be applied to the given string. This

number excedes 2"'2,

We can begin to see how all 2"2 derivations fit in polynomial
space by noting two examples. First of all, the initial "(1+1)" in both
the first and third derivations can be represented once and can be

shared. Secondly, the ambiguous derivation consisting of both

~ 49:.

[(1+41) + 1] and
[1+ (1+41)]

can be shared by each of

(1 + [1+141])]) + 1 and

1 +‘([1+1+1]) + 1).

" A complete explanation for how the 2"°2 derivations fit into polynomial
space will come when we prove the polynomial upper bound for the

parser's expense.

The upper bound for expense applies even if the grammar bas rules

like

KX> :1:= <XD
or like

{REAL> ::= <{INTEGER>

CINTEGER> ::= <REAL>
Such "infinite loop® rules can give rise to infinitely many derivations.
An infinite number of derivations is represented by a derivation
containing cycles. As we shall see, rules like these come up' in many

applications.

We will address the problems and advantages that come with
‘processing an ambiguous derivation after the workings of the parser are
presented. We shall see how an exponential numﬁer of derivations
represented in polynomial space can often be processed in polynomial

time.

~ 50 ~

Although this parser was conceived independently, there are
similarities with Earley's Efficient Context-free Parser{3] and with
Thqmpson's REL parser[4]. Earley's efficient cohtext—free pérser has an
'uppeé bouﬁd on both memory and time of nd where n is the length of the
input string of characters. ' The parser described here has an upper
bound of n4 for context-ffee grammars in Chompsky Normal Form. The

3 comes about 'becauée Earley

disparity between this n4 and Earley's n
indexes into an array of length n. where this parser walks a list
structure of length n. The use of an array is cumbersome Qhen dealing
with general-rewrite grammars. The REL parser works for general rewrite
grammars whose righthand phrases are non-null but its memory and time
expense is unbounded even for context-free grammars. The key factor

leading to Earley's efficiency is a continual factoring process which

avolds duplicating work emanating from identical states.

The parser described here, like REL's, is bottom-up. The .iaput
string of characters is mapped into a list and this list is expanded to
include nodes representing parts-of-speech spanning various substrings
of the input string of charactérs. However, unlike REL's parser, a new
node will not be added to the parsing graph if there already exists a
node representing the identical part-of-speech and span. When an
identical node is proposed, the derivation associated with the existing
node 1is replaced by an ambiguous derivation consisting of both the
derivations from the existing node and the new node. The grammar is not
consulted with this new node because any responses by the grammar will
héve already occured once before when the existing node was proposed.
The replacement of derivations is done in such a manner that all

derivations which already reference the existing node's derivation will

~ 51 ~

automatically reference the ambiguous derivation.

How The Parser Works

The parser works by taking in one character and appending it onto
the righthahd side of a completely parsed initial string of characters.
The parser then calls on the grammar to achieve a complete parsing of
the extended initial string of characters. This cycle repeats forever;
the grammar is responsible for prqcessing a command when it recognizes

one.

\\«3 pam,d‘
LTV,

n-1 charvodiu)

w choracters

Chayr

I SN

The Parsing Graph

The parser revolves around a central datastructure called the
parsing graph. A parsing graph is a list structure each of whose memory

elements has four fields:

(Dahvui4cm)

ALTernate

The LEFT and ALTernate fields each either contains NIL or points to
another memory. element of this same type. The part-of-speech is a
scalar and the derivation is a reference to an arbitrary datastructure.
A parsing graph provides a concise representation for an ambiguous

phrase. In its basic form, a parsing graph is simply a phrase, e.g.,

~ 563 ~ : '

LEFT: @ c.s:r: T -

An alternate subphrase may be incorporated by plugging the alternate

subphrase into the ALTernate field of an existing node, e.g.,

LEFT LEFT LGFT LEFT

X“_ {N:r

For example, the parsing graph

< O O @&+

represents the strings

1 +1 4+ and X +

For clarity, illustrations will exclude the derivation field.

Properties of the Parsing Graph

It is very useful to view the parsing graph in terms of phrases and
columns. A column 1is any 1list of nodes linked together via their
ALTernate pointers. A single column represents a set of alternative

phrases, or paths. Each node in a column is the righthand element of a

~ 54

' phrase where the phrase is accessed by following nodes towards the left

via LEFT pointers. At each step in traversing a phrase, the viewer

confronts a column and hence has a choice for continued traversal.

P) = n 4—no
R n o
\’\\;_ ‘C-
:Qq. 5 z
N & ©

A phrase is said to emanate from the column containing the bhrase's
rightmost node. It 1is also said that a column contains a phrase when
the column contain$ the phrase's rightmost node. A node in a column is

said to reside on that column. ' !

We say that a given phrase is represented in the parsing graph iff
there exists a sequence of parsing graph nodes such that
1) The parts-of-speech of the nodes match the parts-of-speech in
the given phrase from right to left, and
2) Each node resides\on the column referenced from the previous
node's LEFT field.
We say that two phrases have the same spaﬁ iff they both emanate from
the same column and if the leftmost node in each phrase references the

identical memory address via its LEFT field.

We say that a parsing graph is fully parsed when, for each phraseb
represented in the parsing graph, the following is true: [If that phrase
matches some production's righthand phrase, then an instance of the

production's lefthand phrase also resides in the parsing graph and

~ 55 ~

indeed has the same span.

o , on Same
Same LEFNOR IWthand Phrase ‘ colump

+——CO=—=0

chfhangiﬂpﬂru;p

The Algorithm

The parser is implemented by two routines, one which enlarges the
parsing graph and one which examines the parsing graph. The enlargement
routine maintains the fully parsed property by consulting the grammar.
The grammar is a program which calls on these two routines; a rule's
righthand phrase examines the parsing graph to determine the rule's
'applicability and when applicable; the rule's lefthand phrasé enlarges

. the parsing graph;

The basic idea is to give the grammar sight to each phrase
represented in the parsing graph without giving sight to the same phrase
twice in the séme context. This is done in am incremental manner. If
we assume that a given parsing graph is fully parsed, i.e., the grammar
‘has already seen every phrase in the given parsing graph, then we can
enlarge the parsing graph and see to it that the grammar seés each new
phrase represented in the extended parsing graph and in fact sees each

new phrase only once.

We allow a parsing graph to be extended in only one way: A new

node may be placed to the right of a fully parsed parsing graph, i.e.,

~ 56 ~

5—&”3 ",)cLLSed
/PQX“;\.HE" ci\“l?‘;_ ne ;\c&’a’

-

Whenever a new node is generated, the parser gives the grammar sight to
the extended parsing graph. The grammar sees only those phrases which
include the new node. The grammar sees no phrase which lies completely

within the fully parsed parsing graph to the left of the new node.

The grammar responds to each visible phrase in the extended parsing
graph which matches a production's righthand phrase. For example, the

grammar

<X> ::= 1
<X> 1= LXD + <X

responds to

+- X\ @—— Growmarls

Uq“ .\Qt\'“' VAW

because the second production sees an <X>+CX) phrase. The response of a
production 1is to enlarge the (sub)parsing graph residing to the left of
the matched phrase. In this example, the second production generates a

new X-node.

~ §7 ~

S

O

e —— e

3W¢v

A s i 4

A general rewrite rule, e.g.,

CAY ::= LX) ¢+ (XD
enlarges the parsing graph by generating a node for each part-of-speech

on the lefthand side from left to right, e.g.,

Q.M

First the A-node is generated and the grammar responds to those phrases
.visible from the new A-node. Finally, the B-node is generated and the

grammar responds to all phrases visible from the new B-node.

Whenever a new node is generated, besides consulting the grammar,
the parser placés the new node on the column referenced by the global
variable named COLUMN. COLUMN represents the righthand edge of newly

generated phrases.

All new phrases reside initially on COLUMN. New phrases become
incorporated into the parsing graph when a newer node is éreated which

réferences COLUMN via the newer node's LEFT field.

~ 58 ~

Following are precise descriptions for the routine which generates
parsing graph nodes, the routine which examines the parsing graph, and

the routine which acts as the grammar.

Parsing Graph Generation

The routine which enlarges the parsing graph, NEWNODE, takes the

- following parameters:

POS: the part-of-speech for the new node

SEM: the derivation to be associated with the new node

LEFT: a fully parsed parsing greph which is to reside
to the left of the new node.
LEFT acts as the lefthand edge for the new node and the global variable
COLUMN acts as the righthand edge. NEWNODE operates as follows: Look
thru the list COLUMN for a node whose part-of-speech equals POS and

. whose LEFT equals the parameter'LEFT.

If no match is Jound, form an extended parsing graph by
constructing a node whoée LEFT, part-of-speech, and derivation are
the parameters LEFT, POS, and SEM resp. Put the neﬁ node'on COLUMN
and call the grammar passing thig new node as point‘of reference.

When the grammar returns, NEWNODE returns.

SN COLUMN

S'U-\) ﬂ. s-Fu\SQL'l <~._u~‘_' EET: e

pqvﬁns geaph

Grammar's Vew

j/— OLD CoLM bl

1y @ match is found, do not modify the parsing graph and do not

L]

~ 59 «

call the grammar. Rather, refer to the memory element which .
represents the derivation associated with matched existing node.
Modify that memory element to represent the ambiguation of both the
original derivatibn and the parameter SEM.

COLUMN

.

. mm\mcsuous derivetion
. LEFT ”@J‘M
—— e

»
’,

NEWNODE affects the global variable COLUMN only by appending to it.

Parsing Graph Selection

The routine which examines the parsing graph, FIND, takes as

parameters:

P: the parsing graph,_or column, to be examined

RHS: a phrase ta be scught

ACTION: a process which is to be performed upon

each match.
FIND examines the parsing graph, P, looking fqr instances of RHS, the
‘phrase to be sought. FIND looks only for phrases which emanate from the
column iﬁmeﬂiately referenced by P. FIND views the parsing graph simply

as a sideways tree; the ALTernate links are seen as brotﬁer links and
the LEFT links are seen as son links. For each part-of-speech in RHS
from right to left, FIND looks down a column for a node having the same
part-of-speech, where upon finding a match, FIND continue$ the search by
looking in the column referenced by the matched node's LEFT field. FIND

will catch every matching phrase which emanates from the column P.

~ 60 ~

For example, given the following parsing graph in P

and the phrase

<X> + <XD
in RHS, FIND matches the phrases

,<x5) + (X9> with LEFT= *s3
(XG) +s (Xg) with LEFT= *0

(Xz) t3 (X10> with LEFT= *0

Upon each phrase match, ACTION is performed. Available to ACTION
are the derivations associated with each of the matched nodes. 1In
addition, ACTION has access to the LEFT field of the 1leftmost matched
node. ACTION is typically a process which, representing a rule's
lefthand phrase, calls NEWNODE with each part-of-speech in the lefthand
phrase. Along with each part-of-speech, ACTION will pass to NEWNODE a
newly cdnstructed derivation which references those derivations

associated with each of the matched nodes.

The only backtracking in this parscer occurs in FIND. The depth of
backtracking 1is 1limited by the length of RHS, the phrase being sought.
It turns out that FIND is always called with some production's righthand

phrase shortened by deleting its rightmost part-of-speech. The expense

~ 61 ~

upper bound for this parser is based on the time spent in FIND where we

know the maximum size of the parsing graph P.

The Grammar

The grammar is a program which accepts an exténded parsing gfaph as
parameter. An extended parsing graph is a single node whose LEFT
references a fully parsed parsing graph. The grammar is always cailed
from NEWNODE. We will call the single node the new node. It is a
property of NEWNODE that the new node resides on the 'global Qériable
COLUMN. However, even though thé new node resides on COLUMN, the

grammar will not consider any'other node on COLUMN.
!

The grammar consists of a series of statements, one for each
production. Let RHS denote the production's righthand phrase. Each

statement has the form

IF the new node matches RHS's rightmost part~of—sﬁeech THEN
Call FIND with = new node's LEFT,
RliS= RHS less the rightmost
part-of-speech
ACTION= a process which generates .

this rule's lefthand phrase .

If RHS has only one part-of-speech, the call to FIND does not appear,
rather, ACTION itself is performed where LEFT is set to new node's LEFT,

i.e.,

< 62 -~

IF the new node matches RIHS's rightmost part-of-speech THEN‘
LEFT:= new node's LEFT

generate this rule's lefthand phrase

In each case, the rule generates its lefthand phrase in a context where
LEFT references the parsing graph residing to the left of the matched
phrase and where COLUMN contains the rightmost node in the matched

phrase, the new node.

The process which generates the rule's lefthand phrase takes one of

two forms. First, if the lefthand phrase has length one, e.g.,

<A> ::=

.then the generating process is

POS:= <A
SEM:= some new derivation

Call NEWNODE

NEWNODE places the new <A> node on the same column from which emanates
- the matched phrase, the column referenced by COLUMN. The LEFT for the

.new node references the same (sub)parsing graph which is referenced by‘_
the LEFT of the matched phrase. Indeed, both the matched righthand

phrase and the generated lefthand phrase have the same span.
If the lefthand phrase has_length greater than one, e.g.,

<A> <B)> <C> ::=
then the generating process is as follows. Notice how each call to
NEWNODE occures 1in a context where the resulting Icolum9 from the

previous call appears as the LEFT in the current call.

~ 63 ~

OLD _COLUMN:= COLUMN " Save COLUMN locally "
COLUMN:= NIL

SEM:= some new derivation

POS:= <A

Call NEWNODE

LEFT:= COLUNN
COLUMN:= NIL

SEHM: some new derivation
POS:
Call NEWNODE

LEFT:= COLUMN

COLUMN:= OLD_COLUMN " Restore COLUMN "
SEM:= some new derivation
POS:= <C>

Call NEWNODE

The italicized sections set up position context. COLUMN is set to NIL
for all but the rightmost node. That is, the positions for the <A> and
<{B> nodes have no place in any currently existing column. However, the
rightmost node, the <C> node, is placed in the original column so that

the new <AX{B><C> phrase emanates from the original column.
{““(KMAH*LI

T'VWatcﬁecl F%VRSQ
O‘ <9

Notice that the LEFT for the first node, the <A> node, is externally
defined for this process. The LEFT upon entry to this process is, as
always, the LEFT of the matched phrase. Indeed, the generated <{A><C>
phrase has the same span as the matched phrase, and in fact, starting
from the <C> node, the node resides in the column referenced by

£C>'s LEFT and the <A> node resides in the column'referenced by 's

~ 64 ~

LEFT.

It should be noted that the THEN clause for each production
modifies the Vvariable COLUMN only by appending more nodes to the 1list.
Hence, no matter in what order we assemble the prdductions, each
production is entered with COLUMN still containing the new node, the

rightmost node in any matched phrase.

In summary, each production requires that the new node's
part-of-speech matches the production's righthand phrase's rightmost
part-of-speech. The rest of the righthand phrase is matched by FIND.
Upon each match, the rule generates its lefthand phrase having the same

span as the matched righthand phrase.

For example, the grammar

<X> iz XD+ KD

translates to

IF new node's POS= "1" THEN
Call NEWNODE with LEFT= new node's LEFT
POS= <X> and

SEM= some new derivation

~ 05 ~

IF new node's PM0S= <X> THEN
Call FIND with P= new node's LEFT
RHS= the phrase <X) +
ACTION= " Call NEWNODE with
POS= <X> and

SEM= some new derivation "

~ 66 ~

Sample Run

Suppose the grammar is

<X 1

<X> <X> + <X

If we call NEWNODE with the following parameters:

COLUMN: NIL

POS: the part of speech "+"
- SEM: the NIL derivation
LEFT: a reference to the fully parsed parsing

graph for input "1+1":

NERNODE consults the grammar with the extended parsing graph

tg*—- D

and returns the fully parsed parsing graph in COLUMN.

o

T CCLumy

v

~ 67 ~

The grammar has added no additional nodes because the grammar has no
rule whose righthand phrase can match the extended parsing graph using
the new "+" node: No rule's righthand phrase has "+" as 1its rightmost

part-of-speech.
Let us perform

LEFT:= COLUMN and
COLUMN:= NIL
This moves our point of view to the right:

—E€FT

Now, if we call NEWNODE with a "1", NEWNODE will consult the grammar

with the exfended parsing graph

) - ‘)HQ"M@‘\’

X)

C;c
* \\\
Cramumar’s viey

’ i““\.

The grammar's production

X> ::= 1
responds by calling NEWNODE with PDS= <X) and with LEFT= the LEFT of the
1-node. The new incarnation of NEWNODE consults the grammar with the

extended graph

~ 68 ~

‘(b\‘ COLUMN

R) <+ Grammars
View

This time, the production

X> = XD+ <KD
responds and in fact it responds twice. This production's righthand
phrase has a choice of two X-nodes to the left of the +-node. The first
response calls NEWNODE with POS= <X)> and with LEFT= the LEFT of the
leftmost - node 1in one of the matched <X>+<X> phrases. NEWNODE consults

the grammar with the extended parsing graph

{ T @wm

NSNS QIS
& S
- Y e

Without following further recursion, NEWNODE returns with ' .

The full spanning X-node represents the parsing 1+(1+1). The second

~ 69 ~

response calls NEWNODE with POS= <X) and with LEFT= the LEFT of the

leftmost node in the other matched <X>+<X)> phrase.

COLUMN

new)
- —X) the node
The newly proposed X-node represents the parsing (1+1)+1, This 'time,
however, NEWNODE does not consult the grammar; COLUMN already contains
an X-node having the identical LEFT. Instead, NEWNbDE modifies the

- derivation associated with the existing X-node so that it now represents

the ambiguous derivation for both parsings.

~ 70 ~

Why The Parser Works

This section shows that if the parser terminates then if and only
if the given 1input string can have a deriyation in terms of the given
grammar, the parsing graph will contain the phrase which consists solely
of the grammar's root part-of-speech and which spa&s the whole input
string. The next section places time and memory bounds on this parser
for context-free grammars. These two facts together prove that the

parser works at least for context-free grammars.
Let us assume that the character input routine works as follows:

COLUMN:= NIL
WHILE there are more characters DO

LEFT:= COLUMN " Step Right "
COLUMN:= NIL

POS:= NEXT_CHARACTER

SEM:= NIL :

Call NEWNODE .
Each new character is placed to the right of the parsing graph which
represents the previous characters. The ianput string exists as a phrase
in the final parsing graph referenced from COLUMN because each character

resides on that column which is referenced by the LEFT field of the node

representing the next character.

To lend some precision to the following arguments, we shall state
the following 1lemmas and assumption. The lemmas will be proven at the

end of this section.

~ 71 -

Lemma 1:
Any node which 1is accessible from some node's LEFT 1is never

modified.

Lemma 2:
If two given nodes reside on the variable COLUMN at some time, then
any column referenced by some node's LEFT either contains both of

the given nodes or contains neither node.

.Assumption 1:
No two parsing graph nodes reference the identical derivation node.
In other words, any given derivation node is referenced by at most
one parsing graph node. In the description for the parser given in

the previous section, the assignment

SEM:= some new derivation
is meant to imply that SEM is set to reference a node which is
currently referenced from nowhere else. This implication supports

this assumption.

It is essential tec note that a parsing graph node is examined only from
the point of view of some other onode's LEFT. The parsing graphk
examination routine, FIND, is always called with P containing a column
which is taken from some existing node's LEFT. Thus, a node's
appearence is important only when that node resides on a coiumn which is
referenced from some node's LEFT. Thus, the two lemmas help remove time

considerations for all nodes which can be examined.

~72 ~

Any parsing graph is alweys fully parsed if each node is entered by
NEWNODE: Choose any production and choose any phrase in the parsing
graph which matches the production's righthand phrase. Consider this

phrase's rightmost node.

This rightmost node was created at some time. By lemma 1, the
parsing graph to the LEFT of this new node is now exactly what it was at
the time the new node was created. Hence, the chosen righthand phrase
was represented in the extended parsing graph at the time NEWNODE
consulted the grammar with this rightmost node. Assuming that NEWNODE
did consult the grammar, we know that the chosen production matched this
phrase and hence genefated its lefthand phrase having the same span.
Because at this time COLUMN contained both the left and righthand
phrases,vlemma 2 guarantees that the lefthand phrase will always be seen
~to reside on any column which contains the righthand phrase. Therefore,
both the righthand and the lefthand phrases exist in the parsing graph
sharing the same span. In addition, the derivations associated with
each node in the lefthand phrase were indeed created by this ?roduction

having access to the derivations of the righthand phrase.

What about those cases where NEWNODE does not consult the grammar,
i.e., those cases when there already exists a node in COLUMN having
identical part-of-speech and LEFT? Because the existing node was itself
generated by NEWNODE at an ecarlier time, the production's lefthand
phrase already exists in the parsing graph. Consider what would happen
if NEWNODE did indeed consult the grammar. The grammar would be called
in exactly the same context in which it was called when the existing

node was generated except that the parameter SEM may have a different

~73 ~

value. However, because this parser never looks at a derivation, 1i.e.,
a derivation 1s used only in constructing new derivations which
reference the given derivation, the parameter SEM in no way affects the
running of the parser. Therefore, consulting the grammar with the new
node would generate only copies of existing nodes differing only in

their associated derivations.

Even if NEWNODE does not consult the grammar, NEWNODE guarantees
that each new derivation which would be generated by consulting the
grammar will indeed be represented. Because the parameter SEM in no way
affects the ruaning of the parser, we can imagine that when the'existing
parsing graph node was generated, the parameter SEM could have been
substituted Qith the new value for SEM. Exactly the same processing
would ensue. Hence, by generating the existing node twice, once with
old SEM and once with new SEM, we would come up with identical
derivations which differ only by the value of SEM. By making SEM
represent an oambiguous derivation consisting of both old and new SEM,
all the derivations which would be generated by consulting the grammar

.with the newly proposed node will indeed be represented.

NEWNODE makes SEM represent the ambiguous derivation by modifying
the derivation node referenced from the existing parsing graph node.
NEWNODE replaces the original derivation by the ambiguous derivation.
This guarantees at least that any derivation which accesses old SEM will
now access the ambiguous derivation. That is, any derivation generated
with reference to o0ld SEM now represents both the original derivation

and the same derivation where old SEM is substituted with new SEM.

~ 74 ~

We must verify that each node which accesses the modified
derivation 1is a node which should see the ambiguous derivation in place
of aeither the old or new derivations. Because the existing parsing
graph node 1is the only parsing graph node which references old §EH by
assumption 1, we can see that the only derivations which access the
ambiguous derivation are those derivations which were built on account
of genqrating the existing parsing graph node. These are precisely the

derivations which should see the ambiguous derivation.

Any parsing graph node whose LEFT references a column containing
the existing node would reference a column containing both the existing
node and the newly proposed node if NEWNODE were to place the newly
proposed node onb COLUMN by lemma 2. Therefore, from any node's LEFT,
both derivations would always be represented under identical parsing
graph nodes even if NEWNODE were not to modify the existing node's
derivation. In other words, there is no parsing graph node whose LEFT

should see the original derivation instead of the ambiguous derivation.

Because this parser's correctness depends on the fact that a
derivation is not examined .during the pérser‘s operation, anyone who
writes a grammar must avoid examining derivations associated with
parsing graph nodes. That is, the grammar cannot depend on derivations
until the parsing is complete. The only information available at

syntax, or parsing time is parts-ostpeech and not derivations.

~ 75 ~

If the input stfinq is a valid string in the language generated by
the grammar, tLhen the grammar's root part-of-speech exists as a phrase
of length one sharing the same span with the input string: Assuming that
the 1ipput string is an element of the language, we know that there
exists a sequence of strings, each of which is derived from the previous
string by rewriting some occurrence of some production's righthand
phrase into that production's lefthand phrase. The final string'in the
sequence is the grammar's root part-of-speech standing alone. It is a
fact that each'string in this sequence exists in the fully parsed

parsing graph and each shares the same span. ‘ |

First of all, the input string exists in the parsing grapbh.
Secondly, assuming that a given string in the seguence exists in the
parsing graph, we can see that the next string in the sequence also
resides in the parsing graph. Look at the portion of the given string
which is rewritten to yield the next string. This portion is an
instance of some production's righthand phrase. Because the parsing
graph is fully parsed, we know that the parsing graph also contains an
instance of the production's 1lefthand phrase having identical_span.
Hence we know that the next string in the sequence also residés in the

parsing graph. -

To be more precise, we can say that the righthand phrase is contained in
the column referenced by the LEFT field of the string node to the right
of the righthand phrase. By lemma 2 and because both the left and
righthand phrases resided on COLUMN at some time, we can conclude that
the column containing the righthand phrase also contains the lefthand

phrase. Thus, the lefthand phrase is accessible from the string node

~ 76 ~

which references the righthand phrase.

Each full spanning string represented in the parsing graph is a
string which can be obtained from the input string by performing legal
rewrites. This says that the grammar's root part-of-speech can exist as
a full spanning phrase only if the input string is a valid string in the
language generated by the grammar. Suppose there is some full spanning
string represented in the parsing graph which cannot be obtained by
legally rewriting the input string. Let us call any such string an
illegal string. A legal string is any string which can be obtained by
‘performing legal rewr;tes upon the input string. We want to Show that

. each full spanning string in the parsing graph is a legal string.

Let LHS deﬁote any phrase in the parsing graph each of whose nodes
was created by a single pfoduction. A LHS is the set of nodes generated
by one execution of one production's lefthand phrase not including those
nodes generated by further calls to the grammar. For example, a phrase
ABC in the parsing graph is a LHS only if 1) there exists a production
-whose lefthand phrase is ABC and 2) each of the nodes representing A, B,
and C were explicitly created in the same execution of the THEN clause

for the production.

Any node ever generated is either an input character or a member of
some LHS because any node not generated by the input routine is
generated by the lefthand phrase of some production. Furthermore, any
node 1s a member of at most one LHS because any given node is created by

at most one execution of one production's lefthand phrase.

~ 77 ~

The following are two lemmas about LHSs:

Lemma 3:
Any column contains at most one node which is not the rightmost

node in some LHS.

Lemma 4:
Let S be any string represented in the parsing graph. Let N be any
node in S which is also the rightmost node in some LHS. One of the

following must be true:

1) Each node in the LHS is a node in S, or
2) There exists a node in S which is both the rightmost node

in sohe other LHS and which is accessible from N's LEFT.

Consider any full spanning string in the parsing graph except the
criginal ioput string. This string, S, has the property that some LHS
makes up a segment of S. That is, there is some LHS each of whose nodes
is in S: Since S is not the input string, S contains a node, N, which is
not an input character. N is therefore an element of some LHS. Let N
be the rightmost node ip S which is a member of some LHS. In S, the
node to the right of N must be an input character and bhence it must
reference a column containing both N and an input character. By lemma
3, N must be the rightmost node in some LHS. By applying lemma 4, we
see that either S includes all of LHS or S includes a node to the LEFT
of N which is itself the rightmost node in sdme LS. In fact, we can
repeatedly apply lemma 4 as long as condition (2) shows up.' However,
. each such application of the lemma increases a lower bound for the

length of S. Therefore, condition (1) of the lemma must become true at

~ 78 ~

some time lest S be infinite..

We will define the age of a full spanning string, S; by 'averaging
the ages of each pode in S. The age bf a node is precisely the amount

of time which has elapsed since the node was created.

Suppose-there exists an illegal string represented in the parsing
graph. Let S be an illegal full spanning string of maximal age. That
is, in some sense S is one of the first illegal strings created. From
the preceding argument, we know fhat some segment of S is a LHS. We
know that at the time LHS was on COLUMN, the righthand phrase of the
production which created the LHS was also on COLUMN sharing the same
span. By lemmé 2, the column containing LHS also contains this
righthand phrase. Hence, the string formed by substituting the
righthand phrase for LHS in S is a string which resides iﬁ the parsing
graph. Let S1 denote the string formed from S by substituting LHS with

the righthand phrase.

Because LHS was generated only after the righthand phrase bhad
-already been created, the age of each node in LHS is less than the age
of each node in the righthand phrase. Thus, the age of S is 1less than
the age of §Sit. By S's maximality, this older string, Si, must be a
legal string. However, S is merely this older string where a righthand
phrase‘ has been rewritten to LHS. Hence, S itself is legal and we have

a contradiction.

~ 79 ~

The Lemmas

All memory elements generated by this parser are of one of two
kinds. One kind ié a parsing graph node and the other kind is a
derivation node. The following discussion is concerned mainly with
parsing graph nodes and hence we will use the unqualified term node to

refer to parsing graph nodes.

We will wuse the term reference to mean direct or immediate
reference, i.e., a pointer referecnces only the node which resides at the
address contained in the peointer; the pointer does not reference nodes
which are referenced from pointers within the referenced node. In
contrast, we will use the term accessible to mean the transitive closure
of reference, i.e., a given node is accessible from a given pointer iff
there exists a sequence of nodes where the first nodé is referenéed from
the pointer and each node in the sequence contains a pointer referencing

the next node and the final node in the sequence is the given node.

[

Def 1)
A column is any sequence of nodes where each node in the sequence
references the next node via its ALT link and where the last node
in the sequence has NIL as its ALT link. The head of a column is-
the first node in the sequence. A column contailns a node iff the

pode is a member of the sequence.

The following definitions refer to the global variable named COLUMN at

any given time:

~ 80 ~

Def 2)
A node resides on COLUMN iff that node is a member of the column

whose head is referenced by COLUMN.

Def 3)
A node resides on OLD_COLUMN iff some existing incarnation of the
local variable OLD_COLUMN references a column which contains the

given node.

LEMMA A:
At any given time, the only nodes which might be modified are
either nodes which reside on COLUMN or derivation nodes referenced

from nodes on COLUMN.

LEMMA B:
Once a node ceases to reside on both COLUMN and OLD_COLUMN, the

node will never again reside on COLUMN or OLD_COLUMN.

LEMMA C:
At a given time, no node resides both on COLUMN and on OLD_COLUMN.

LEMMA D:
Suppose two given nodes reside on COLUMN at some given time. From
this time forward, we will see either both nodes residing on COLUMN

or neither node residing on COLUMN.

LEMMA E:
A given node's LEFT references a value which was held by COLUMN at
a time before the given node was created. In addition, before the

given node was created, each node on the column referenced by the

~ 81 -

given node's LEFT ceased to reside on COLUMN. More specifically,
the value taken from COLUMN for a node's LEFT is a value which was
held by COLUMN precisely at the time immediately before each node

on COLUMN ceased to reside on both COLUMN and OLD_COLUMN.

LEMMA F:

Each node on the column referenced by some node's LEFT never

resides on COLUMN.

~ B2 ~

Proof of A:

NEWNODE is the only routine which modifies nodes. NEWNODE will
modify a node in one of two ways:

1) NEWNODE inserts a new onto the list COLUMN

2) NEWNODE modifies the derivation node which is referenced

from a node on COLUMN.

Proof of B:

COLUMN is modified in one of three ways: ‘ !
1) NEWNODE puts a newly created node on COLUMN
2) COLUMN is set to NIL
3) COLUMN is set to OLD_COLUMN.
{2) and (3) occur in a general rewrite production's leftﬁand phrase

and only (2) occurs in the character input routine.

Suppose a given node is not on COLUMN and not on OLD_COLUMN.
The only way a node gets onto COLUMN is by (1) and by (3). Because
we are assuming that at some time the given node did reside on
COLUMN or OLD_COLUMN.Y we know that the given node is one which
already exists. Hence, (1) cannot put the given node on COLUMN.
(3) cannot put the given node on COLUMN because the given node is

not on OLD_COLUMN.
A given node is put on OLD_COLUMN only by

OLD_COLUMN:= COLUMN
' However, because the given node is not on COLUMN, this assignment

can't put it on OLD_COLUMN.

~ 83 ~

Proof of C:
Let B reside both on COLUMN and on OLD_COLUMN. B first resides on
COLUMN because all newly created nodes first reside on COLUMN. B

gets put on OLD COLUMN only in the program text

OLD_COLUMN:= COLUNMN
COLUMN:= NIL
After this operation, B no longer resides on COLUMN. B gets put

back on COLUMN only by

COLUMN:= OLD_COLUMN
This occurs just before the generation of the last node in a

‘general rewrite production. We may insert the statement

OLD_COLUMN:= NIL
immediately after the assignment to COLUMN because this incarnation
of the local variable OLD_COLUMN will no lcnger be used. Hence,
when B gets put back onto COLUMN, B no longer resides on
OLD_COLUMN.

Proof of D:

Let A and B be nodes both of which reside on COLUMN at somév time.
Consider the first operation which deletes either A or B from
COLUMN. This operation is one of

2) COLUMN:= NIL or ' !

3) COLUMN:= OLD_COLUMN .
If the operation is (2), both A and B are removed from COLUMN.
Operation (3) also removes both A and B from COLUMN because neither

A nor B resides on OLD_COLUMN by 1lemma C. Thus, the first

~ B4 ~

operation which removes one of A and B from COLUMN removes both A

and B.

Consider the operation which puts one of A or B back onto

COLUMN. This occurs by

COLUMN:= OLD_COLUMN
If both A and B reside on OLD_COLUMN, then both A and B will return
to COLUMN. If it can ever be that exactly one of A or B resides oﬁ
OLD_COLUMN, let us consider the first operation which puts exactly

one of A or B on OLD_COLUMN:

OLD_COLUMN:= COLUMN
COLUMN itself hust have contained exactly one of A and B at some
previous time. However, locoking at the two gssignments~above. we
can see that COLUMN can enter this state only if OLD_COLUMN

contained exactly one of A and B at an earlier time.

Proof of E:
| Let N be any node. Because the LEFT field of any node is never
chénged once the node is créated, N's LEFT is still exactly what it
was when N was created. N's LEFT is therefore the value held by
NEWNODE's parameter LEFT at thé time N was created. NEWNODE's
parameter LEFT gets set in one of three ways:
1) LEFT is taken from the LEFT field of an existing node.
2) LEFT:= COLUMN
 COLUMN:= NIL

~ 85 ~

3) LEFT:= COLUMN : f
COLUMN:= OLD COLUMN
NEWNODE is called immediately after one of these operations and

hence N is created after one of these operations is complete.

Consider (2) and (3) first. In each case, LEFf is indeed set
to a value held by COLUMN. In fact, immediately after LEFT 1is
assigned COLUMN, each node on COLUMN ceases to reside on both
CoLUMN and OLD _COLUMN: Let C be a node which is initially on
COLUMN. C's residence on COLUMN implies that C 1is nqt on
OLD_COLUMN by lemma C. Thus in both (2) and (3), COLUMN is set to

a value on which C does not reside.

In the case of (1), the value for LEFT is taken from the LEFT
field of an existing node. Let M be the first node ever created
whose LEFT field is that of N. Since M is the first onode created
with the givep value for LEFT, M's LEFT had to have been set by (2)
or by (3).' Thus, M's, and hence N's LEFT is indeed a value held by
COLUMN at the time immediately before each node on COLUMN ceases to

reside on both COLUMN and OLD_COLUMN.

Proof of F:
Let C be a node on the column referenced by the LEFT field of
another node, N. By lemma E, C ceased to reside on COLUMN and
OLD_COLUMN before N was created. By lemma B, each node on the
column referenced by N's LEFT will never reside on COLUMN now that

N exists.

~ 86 ~

Proof of Lemma 1
By lemma A, we merely need to show that any ndde éccessihle from a
given onode's LEFT never resides on COLUMN. All nodes accessible
from the given node's LEFT are precisely
1) the nodes residing on the column referenced by the given
node's LEFT and
2) all nodes accessible from the LEFT field of each node on
‘the column.
Thus, all nodes accessible from the given node‘s LEFT reside on
columnsv which are themselves referenced from some nodes’ LEFTs.
Hence by lemma F, each node accessible from the given pode's LEFT

can never reside on COLUMN.

Proof of Lemma 2:
Suppose nodes A and B regide on COLUMN at some time and suppose
that N is a node whose LEFT references a column cantaining A. Ve
will show that N's LEFT references'a column containing both A and

B.

By lemma E, N's LEFT references a value held by COLUMN at some
time. By lemma F, the column referenced by N's LEFT never changes
once N is created. Thus, N's LEFT is a value which was held by
COLUMN when A resided on COLUMN. If B also reSided on COLUMN at
this time, then the column referenced by N's LEFT always contains A

and B. .

~ 87 -~

Since both A and B reside on COLUMN at some time by
hypothesis, lemma D guarantees that both A and B reside on COLUMN
immediately before A ceases to reside on both COLUMN and
OLD_COLUMN; A will never again reside on COLUMN. Lemma E
guarantees that N's LEFT was taken from COLUMN immediately before A
ceased to reside on both COLUMN and OLD_COLUMN. Therefore, COLUMN
contained both A and B when N's LEFT was set tb the value in

COLUMN.

Proof of 3:
Consider how the grammar puts nodes onto COLUMN. Look at a
production's lefthand phrase. Each non-rightmost node is placed on

COLUMN ip the context

COLUMN:= NIL

Call NEWNODE
Thus, when a non-rightmost node is placed on COLUﬁN, no other nodes
reside on COLUMN. Hence COLUMN always contaiﬁs -at most one

non-rightmost node of a LHS.

Similarly, each node generated by the character input routine

is placed on COLUMN in the context

COLUMN:= NIL

Call NEWNODE
Thus, COLUMN can contaip at most one of either an input character
or a non-rightmost node in a LHS. The only other nodes on COLUMN

are'the rightmost nodes of LHSs.

~ 88 ~

Because the LEFT field of any node is a value once held by
COLUMN, any accessible column contains at most one node which 1s

not the rightmost element in a LHS.

Proof of 4:

Suppose there is a node in LHS not in S. Let K be> the rightmost
node in LHS which is not in S. K is not the rightmost node in LHS
because the rightmost node in LHS is in S by assumption. Let R be
the node in LHS just to the right of K. R is in S. Therefore, R's
LEFT references a column containing both K and a node in S. By
lemma 3, we conclude that the node in S on the column containing K
is the rightmost node in some LHS because K itself is bnot the
rightmost node in the LHS containing K. Futhermore, the colﬁmn
containing K is accessible from N's LEFT because N is the rightmost
node in LHS.

~ 89 ~

An Upper Bound for Parser Expense with Context Frec Grammars

The time and memory expense for this parser with context free
grammars 1is a polynomial function of the input string length. We fihd
~this because a context free grammar always gives rise to a special sort
of parsing graph. Any given node's LEFT field is precisely the LEFT
field of a node representing an input character. Therefore, if n
characters have been taken in, any node in the whole parsing'graph can
have one of at most n possible values in its LEFT field. Furthermore,
because NEWNODE avoids placing duplicate nodes on COLUMN, COLUMN can
contain at most n*p nodes where p is the onumber of parts-of-speech
encompassed by the grammar. Knowing that there are at most n values for
LEFT ahd that tﬁe column referenced by a LEFT has at most n*p nodes, we

can conclude that the parsing graph has at most n2

*p nodes. This size
limits the number of phrases which can be matched and hence the number

of times that each of NEWNODE, FIND, and the grammar can be called.

The rest of this section presents a more precise formu]atioﬁ for
the memory and time bounds in context free grammars. Let n be the
number of input characters processed up to now. Let p be the number of
parts-of-speech encompassed by the grammar. Let L be the maximum length

of any production's righthand phrase.

There are at mast n values for LEFT. The ipnput routine has created
n valves for LEFT by baving taken in »n characters. The context free
grammar always sets LEFT to the value of the LEFT field in some existing

node because each production has a lefthand phrase of length one.

~ G0 ~

At any time, COLUMN contains at most n*p nodes.. Consider that
NEWNODE does not place a node on COLUMN if COLUMN already contains an
identical node. NEWNODE considers two nodes identical when both the
LEFT fields match and when the parts-of-speech match. Since there are n
possible values for LEFT and p possible parts-of-speech, there are at

most n*p distinct nodes which can reside on COLUMN at any one time.

LEFT, LEFT, LEFTy

— O T ® .
g 3 velues for LEFT
®

Because the LEFT field for a node references a value once held by
COLUMN, any node's LEFT references a column of length at most a*p. Thus,
the maximum number of phrases which have length less than or edual to L
and which emanate from a given column is (n*p)L: Going from right to

left, there are n*p choices at each of L stages.

Consider how much time it takes to build one column.. For each
" distinct node which NEWNODE places on COLUMN, NEWNODE calls the Qfammar;
We can conclude that NEWNODE calls the grammar at most n*p times in
forming a sinéle COLUHN. Updn each call, the grammér can match at most
(R*D)L'I phrases which include the new node. Thus, the time spent in a
single call to the grammar excluding the grammar's calls to VEWVODE is
(n*p)L-I. The grammar can call NEWNODE at most (n*p)l™1 times because

each phrase match can generate at most one node.

~ 91 ~

Each time the grammar calls NEWNODE, NEWNODE takes at most n*p time
to see if the newly proposed node already resides on COLUMN. If NEWNODE
does not consult the grammar, then no futher time is taken by NEWNODE.
If, on. the other hand, NEWNODE does consult the grammar, we will add
zero time because we will count this call to the grammar as one of the

total a*p times that NEWNODE calls the grammar with the current COLUMN.

Therefore, the time taken to form one COLUMN is the product of

1) n*p calls to the grammar

2) (R'P)L-I in each call to the grammar excluding the grammar's
calis to NEWNODE and

3) n*p in each of the grammar's calls to NEWNODE.

This yields (n*p)L*I.

The nodes on COLUMN cease to reside on COLUMN precisely when the
input routine takes in another character. Therefore, the cost of
processing n characters is at most n times the cost- of building one
column. Hence, this parser processes n characters in at most k*nl*2

time where & does not depend on n.

The number of both parsing graph and derivation nodes built by the
parser 1is bounded by the amount of time spent in the parser. We can

caonclude that the parser creates at most k*nL*z nodes where & does not
2

-depend on a. Even though there are at most p*n® parsing graph nodes,

there are a lot of defivation nodes. Consider that each time NEWNODE is
‘ called, NEWNODE either creates a parsing graph node or creates a

L

derivation OR-node. Since NEWNODE may be called n~ times in forming one

column, NEWNODE may indeed create nL—n derivation OR-nodes.

~ 92 ~

A SEMANTIC EVALUATOR

This section documents a set of programs by which a derivation, or
meaning, 1is evaluated. We will assume that meanings are represented by
programs as suggested in the section about languages. If meanings were
not represented by programs, there would be no need to evaluate a '
meaning. The operator EX() is one of the main semantic operators. EX
has already been described in the section about languages; EX is
equivalent to LISP's EVAL function. All the other semantic operators
are for dealing with and optimizing the evaluation of ambiguous

derivations.

Let us see how an ambiguous derivation comes to be. wWith the

productions
<A: f(b)> 1= <B:b>
<B: g{c)> = (C:c>
<A: h{c)> = <C:c>

<A> can be derived from <C> in two ways. The string <C:c> parses as

{C:c>

<B: g(c)>

<A: f(g(c))>

<A: h(c)>
Referring to the parser presented in an earlier section, when the
grammar proposes the second <A> node, NEWNODE sees that there already
~ exists an <A> node having identical span. NEWNODE; thércfore, does not
' make a new <A> node, rather, NEWNODE modifies the derivation associated

with the existing <{A> node so that it now represents both derivations.

~ 93 ~

Thus, we really get

<C:c>
<B: h{c)>
CA: OR{ f(h(c)) , gl{c)) >
Instead of having two <A> nodes, we have one <A> node which has an

ambiguous derivation. If we add the rule

<D: y{a)> ::= <A:a>

<D> will be derived from <C:c> with the meaning

y(OR(f(h(c)) , g(c)))

Thus, OR-derivation elements may be arbitrarily nested within

derivations.

An OR-node references a routine called SEMOR. That is, EX applied
to an OR-node simply calls SEMOR exactly as EX would call any other
program which implements a meaning. SEMOR is a routine not supplied by
the language writer; SEMOR comes with the semantic evaluator because

the parser may generate OR-derivation nodes independent of language.

What does SEMOR do? Because an OR-derivation node may show up as
the meaning associated with any given part-of-speech, SEMOR must be
compatible with all possible meaning conventions. This presents a major
problem. Following are three classes of meaning conventions, each of

whiéh requires a different action to be performed by SEMOR.

~ 94 ~

Meanings of the First Kind

The simplest and mast restrictive meaning conventions are those
which agree that a meaning is a computed value rather than a program. A
part-of-speech which adheres to such a meaning convention can never
afford to have an OR-node involved in its meanings. For example, if the
meaning associated with a given part-of-speech 1s supposed to be an
integer, the appearance of an OR-derivation node in place of a single:
integer will undoubtedly result in a faulty meaning when the OR-node 1is
interpreted as an integer. Because the meaning associated with such a
part-of-speech is not evaluated, SEMOR will never even gain control.
‘Thus, no matter how SEMOR is defined, meanings which are not programs

cannot éfford OR-nodes. A part-of-speech which bhas guch meaning
conventions must be one which can be derived from any given.input string

in at most one way, lest an OR-node show up in its meaning.

Meanings of the Secohd Rind

The second kind of meaning conventions are those which agree that a
meaning is a program where the program may produce side effects or where
the program yields a datastructure which is not capable of representing
ambiguity. Such conventions differ from the previously mentioned
conventions in tﬁat a meaning will be evaluatéd rather than 'simply
‘fetched. Thus, the appearance of an OR-node in such a meaning.will at
least give control to SEMOR, For example, a meaning which adheres to
such conventions is a meaning.whose evaluation generates machine code in
some global array. Another example is a meaning whose éQaluation yields

an integer. The type <integer is not capable of representing an

~ 95 ~

ambiguous integer, i.e., two integers.

For meanings of the second kind, SEMOR must not evaluate both of
its parameters. The best SEMOR can do in general is to evaluate exactly
one of its parameters. This makes SEMOR an identity function, and as
such, SEMOR is compatible with all meaning conventions. However, this
particular arrangement for SEMOR introduces arbitrary decisions and
hence should be used only as the last resort in language processing. We
can expect that this will be a legitimate treatment for ambiguity which
is not resolvable by the given language. It may be appropriate for

SEMOR to inform the user of the existence of an ambiguity.

Meaning conventions of the first kind can be mapped into meaning
conventions of the second kind by agreeing that a meaning will be a
program whose evaluation will simply yield a previously computed value.
This reorganization has the advantage that the existence of an ambiguity

will at least be detected.

Meanings of the Third KRind

The third kind of meaning conventions is the most general and
perhaps the most wuseful. A meaning of the third kind is one whose
evaluation generates a datastructure which itself is capable of
representing ambiguity. Under such conventions, SEMOR should evaluate
each of its parameters and yield the datastructure which represents the
ambiguation of both results. This technique introduces no arbitrary
decisions and properly preserves ambiguity. An example of a meaning of
this kind is a meaning whose evaluation generatés akparsing graph. A

- parsing graph is definitely a datastructure capable of representing

~ 96 ~

ambiguity. In this example, SEMOR should evaluate each of its two
parameters and merge the two resulting parsing graphs. A precise

description for this scheme will follow shortly.

What SEMOR Does

In the implementation; SEMOR's default action supports meanings of
the third kind where the ambiguous datastructure is required to be a
parSing graph. For meanings of the second kind, prior to their
evaluation, some program must modify SEMOR so that it acts as the
identity and as such evaluates only one of its parameters. There is
never any question "as to which action SEMOR shou]d'be set to perform.
Since ahy meanin§ is acquired with relation to a particular
part-of-speech, the conventions for meaning under that part-of-speech
clearly imply whether the meaning is of the second or third kind. As
has turned out in practice, there have been very few places where SEMOR

must be redefined. Typically, meanings referenced from within a given

meaning are all of the same kind.

For example, in the ICL compiler, most meanings are of the third
kind. ICL is a three pass compiler implemented as described in an
earlier section about multipass language processing. The meanings
associated with the first pass gencrate phrases in the language of the
second pass and likewise from the second to the third pass. Thus, the
meanings associated with the first and second passes are meanings of the
third kind. An exception is made for the processing of declarations:
Under the syntax part-of-speech for dcclarations,vmeanings are of the

second kind; their executions make global modifications to both . the

~ §7 ~

symbol table and the grammar of the second pass. Finally, the meanings
associated with the third pass are meanings of the second kind; their

execution generates machine code in a global array.

The following is a set of conventions by which a meaning can
generate a parsing graph. A meaning will have access to two global
variables named LEFT and COLUMN. These two variables will define the
span of a phrase just as they do in the parser during fhe generation of
a production's lefthand phrase. A meaning, therefore, will use LEFT and
COLUMN and act exactly like a production’s 1lefthand phrase. For

example, sum in the rule

<FORM: sum(a,b)> ::= <FORM:a> + <TERM:b>
will produce a meaning whose evaluation will generate a polish postfix

phrase 1f sum is defined as follows:

sum({a:FORM b:TERM) = FORM:
//[a;b;] " LEFT and COLUMN are now input parameters "
Let OLD_COLUMN be local

OLD_COLUMN:= COLUMN " Save COLUMN "
COLUMN:= NIL

EX(a) " Let a generate its phrase "
LEFT:= COLUMN " Step Right "

COLUMN:= NIL

EX{b) " b generates its phrase "
LEFT:= COLUMN " Step Right *

COLUMN:= OLD_COLUMN " Restore COLUMN "
SEM: " Generate + "

nn
F-
—
e~

POS:
CALL NEWNODE W

' !l*'l

~ 98 -~

This phrase generation program is very nearly identical to that of a
production’s lefthand phrase. The only difference is that EX is used to
generate some of the subphrases. Indeed, the evaluation of the program
yielded by sum will generate a phrase whose 1leftmost node's LEFT
references the value held by the input variable LEFT and whose rightmost
node ‘is placed on COLUMN. Just like a production's lefthand phrase,

COLUMN will be modified only by appending more elements onto COLUMN.

What should SEMOR do under these conventions? - SEMOR needs merely

to keep LEFT constant over the evaluvation of both parameters, i.e.,

SEHOR(a.b):v
Save LEFT
EX(&) " Let one possibility generate its phrase as
though it were the only possibility "
Restore LEFT * LEFT may very well have been damaged "
EX(b) " Let the other possibility generate its

phrase over the same span "

" The phrases generated by a and » are placed on the same column and each
. shares the same span. The order in which a and b are evaluated is

irrelevant. For example, if @ generates the phrases

LEFT <-vewe- <REAL:a> ~---- {REAL:b> =--~-- +
|
N\ = e - .- <REAL: addr(a,b)>

LEFT ~==ew- <POINT:3> -=-==-- MINUS

\ - - - - <POINT: minusp(a)>

~ 99 -

then SEMOR will leave COLUMN containing

LEFT --e--- <REAL:a> ----- CREAL:b> ----- .
\\ --------- (REAL: addr(a,b)>

\\ ------- CPOINT:a> =-=----- MINUS '

\\ ------ <POINT: minusp(a); .

Two Sources of Ambiguity

With this scheme, ambigquities, i.e., alternate phrases, are created
by two distinct means. First of all, ambiguities in the first grammar
of a multipass scheme generate derivations containing OR-nodes and the
evaluaiion of fhese OR-nodes combine independently generated phrases to
form alternate phrases. Secondly, even in the absence of OR-nodes,
ambiguities in the second grammar will themselves generate alternate
phrases. In the example given above, the first two parsing graphs
consist of alternate phrases generated exclusively by the second

grammar, the grammar with the rules

{REAL> ::= <(REAL> <(REAL> +
CPOINT> ::= <POINT> MINUS
The third parsing graph, the parsing graph generated by SEMOR, contains

alternate phrases brought together by SEMOR and not by the second

- grammar.

Both sources of ambiguity manifest themselves in exactly the same
way. Each appends alternate phrases onto COLUMN. Thus, distinctions
between the two sources of ambiguity disappear. This 1is appropriate

when one considers that each of the alternate phrases offers a valid

~ 100 ~

interpretation of the evaluated meaning and that the alternate phrases

do not interact with one another.

Locality of Ambiguity

The existence of OR-nodes represents not only ambiguity, but also

locality of ambiguity. For example, the derivations

sum(OR{a,b) , OR(c,d)) and
OR(Sum(a,c) , sum(b,c) , sum(a,d) , sum(b,d))
present the same alternatives but the first derivation represents a

tighter locality.

Given a derivatlon containing OR-nodes, one can imagine expanding
the derivation by bringing OR-nodes from the inside out. In fact,
OR-nodes can be brought all the way cut to the top level, thus yielding
‘a set of derivations, each devoid of OR-nodes. This kind of expansion

destroys locality of ambiguity.

The locality of ambiguity represented by OR-nodes is preserved by
the evaluation of a meaning. For example, if a,b,c, and d generate the

parsing graphs a,b,c, and d respectively, the derivation

sum(OR(a,b) , OR(c,d))

generates the parsing graph

~ 101 ~

whereas the less localized derivation

OR(sum(a,c) , sum(a,d) , sum(b,c) , sum(b,d))

generatés the less localized parsing graph

--------- @ === € =-=-- 4
\ I
\-=m-- b ----- € ----- +

\ |
\-=== @ -==-- d ----- +

I

\-- b ----- d ~---- +

Local ambiguity generated by ‘the first grammar in a multipass
‘schemev gives rise tq localized OR-nodes. As shown here, theAlocalized
' OR-nodes give risé to localized ambiguity in the generated parsing
graphs for the second grammar. Thus, locality of ambiguity is preserved

from one pass to the next.

In fact, during the generation of parsing graphs for the second
grammar, NEWNODE still collapses parsing graph nodes of identical span.
Hence, OR-podes may come to exist in the derivations wunder phrases in

the second grammar. For example, if ¢ geperates

CINTEGER:x>
<REAL:y>
<POINT:2>

and if » generates

{BOOLEAN:w>
CREAL:v>

~ 102 ~

then OR{a,b) generates

CINTEGER: x>
{BOOLEAN:u>
{POINT:2>
<REAL: OR(y,v)>
The meaning under the <(REAL> contains a ncw OR-node which will manifest
“itself during the third pass. In this example, an OR-node in one pass

gives rise to an OR-node in the next pass.

~ 103 ~

Efficient Treatment for Shared Derivations

We have just seen how ambiguous derivations can be 'toleréted when
it 1s agreed that meanings generaté parsing graphs. We will now
consider a refinement of these conventions which will permit
considerable computational savings. As mentioned in the section about
the parser, the parser yields a derivation consisting of at most a
number of nodes which is a polynomial function of the length of the
input string. This relatively small number of nodes may none the less
represent an exponential number of distinct derivations. This comes

about because many subderivations are shared.

The EX operator takes no advantage of the fact that many
subderivations may be shared. When a particular subderivation 1s
referenced from two distinct points of view, EX applied from each point
of view will cause the shared subderivation to genmerate its phrases
twice. The computation incurred by EX is the same whether or not
subderivations are shared. Thus, even if only a polynomial number of
nodes represent an exponential numbef of derivations, EX will take an

exponential amount of time.

A way to remedy this situation is to have each derivation node save
its results, i.e., its generated phrases, so that all non-first accesses
can simply fetch the previously computed values and hence avoid their
recomputation. This guarantees that each node performs a computation
only once and hence the time and memory taken to evaluate a derivation
is proportional to the number of nodes making up the derivation. Thus,
even though an exponential number of derivations might be represented,

only polynomial space and time is needed to process all of the

~ 104 ~

represented derivations.

It is possible to have a derivation node store the results of its
evaluation and to alléw futher references to simply fetch the previously
computed value only if the results are indépendcnt of the particular
reference. That is, two distinct ‘nodes which reference a given
subderivation may set up different top-down contexts which will cause
two evaluations of the given subderivation to yield different results.
In such cases, the shared subderivation cannot simply yield the result
‘of the first evaluation as the value for the second evaluation. Thus,
the feasibility of shafing results of evaluations depends on conventions

about top-down context.

It would appear that the variables LEFT and COLUMN are top-down
context for the evaluation of derivations which generate parsing‘graphs.
One evaluatioﬁvof a8 given shared subderivation might occur where LEFT
and COLUMN have one‘set of values and yet another evaluation of the same
subderivation might occur with different values for LEFT'and CbLUMN. A
way to resolve this dilemma is to imaﬁine a representation for phrases
which has the following two properties:

1) The representation is independent of the top-down context LEFT

and COLUMN and

2) The repraesentation may readily be converted to a value which

incorporates the top-down context LEFT and COLUMN.

With such a representation, we can allow derivation nodes to store this
imagined representation which is independent of todeown context. When

a particular reference fetches this stored representation, it must

convert a copy to incorporate the specific top-down context.

This technique of factoring out top-down context bhas worked with
great success 1in other applications such as display graphics. The
top-down context in display graphics is a transformation matrix. Many
occurences of a given picture which differ only in orientation may be
represented by a single instance of the picture Qhere various references
to the stored picture include individual transformation matrices. Wwhen
a particular reference is made to the stored picture, the transformation
matrix is applied to the picture in order to properly incorporate the

top~-down context.

The Semantic Operatbr PAW - Pruned Awakening

We will now consider a top-down context-free representation for
parsing graphs. We will see both how easy it is to factor out the
effects of the top~-down variable COLUMN and yet how hard it is to do so
for the variable LEFT. We will then consider a scheme of less
‘generality where it is easy to factor out the effects of LEFT. We will
also see how the losé of generality fits nicely with multipass language

processing when one considers the problem of documenting a language.

To obtain a top-down context-free parsing graph froﬁ a meaning, the
operator PAW sets both COLUMN and LEFT to NIL for the evaluation of the
meaning. As such, the resulting parsing graph is certainly independent
of the given values in COLUMN and LEFT. PAW then attaches the resulting
Aparsing graph onto the given meaning. Thus, upon future references to
the given meaning, PAW can simply pick up the previously computed value.
A derivation node which includes the value of a previous eQaluation is

said to be awake.

~ 106 -

Upon each call, PAW converts the stored top-down context-free
parsing graph into one which incorporates the given values in COLUMN and
LEFT. Since PAW is supposed to appear to act exactly as EX and because
EX appliéd to a meaning is supposed to append new phrases onto COLUMN,
PAW merely appends the stored parsing graph onto COLUMN. This properly
incorporates the top-down context offered by COLUMN because in
actuality, COLUMN is treated as an append-only variable and hence COLUMN

in no way affects the generation of a parsing graph.

| How might the variable LEFT be incorporated into one of these
top-down context-free parsing graphs. One might suggest that a copy of
the parsing graph be made where all LEFT fields which are found te be
NIL be substituted with the value in the variable LEFT. Unfortunately,
this technique does not yield the same parsing'graph as would be yielded
by actually evaluating the meaning with the given value in LEFT. For

example, suppose LEFT references the parsing graph

<FORM:a>
and suppose that evaluating a given meaning-would generate the parsing

graph

+ <CTERM:b>
If LEFT is left unchanged for the evaluatiop of the given meaning, i.e.,

LEFT is not set to NIL, the phrase

<FORM:a> + <TERM:b>
will exist as <(TERM)> is generated and hence the grammar will add a new

<FORM> node:

~ 107 ~

----- <FORM:8> ---- 4 =~-=-- <TERM:b>

\\ ------- <FORM: sum(a.é)) .
This exactly is what happens if EX is used instead of PAW. On the other
hand, if LEFT is set to NIL for the evaluation of the given meaning, the

evaluation will generate the phrase

+ <TERM:b>
in the absence of the neighboring <FORM:a> node and hence the grammar
will not at this time add a (FORM:sum(a,b)> node. When Pﬁw finally
incorporates the variable LEFT, i.e., by changing the + node's LEFT

field to reference the <FORM:b)>, we indeed get the phrase

<FORM:a> + <TERM:b>
but we do not get a <{FORM:sum(a,b)> node. The change to +'s LEFT 15
made too late; the <(TERM> node's consideration by the grammar has
already come and gone. Recall that a grammar is triggered upon the

generation of the rightmost node in a matched phrase.

Thus, the incorporation of the top-down variable LEFT presenpts a
problem. In order to alleviate the problem, we will consider some new
conventions about generating phrases. Following are two observations.
Referring to a »previous example, even though sum might generate the

parsing graph

CINTEGER:a> + <REAL:b>
<REAL:float(a)>
CREAL: addr (float{a) , b) >

~ 108 ~

the only phrase of real interest is the full spanning

CREAL: addr(float(a) , b) > .
We are concerned only with the fact that the datum represented by sum is
REAL. The fact that REAL camec from this particulaf parsing graph is
adequately represented in the meaning associated with the REAL. The
second observation is that the non-first grammars in a multipass scheme

can simply be reverse polish grammars. Sum can easily generate

CINTEGER:a> <REAL:b> +

instéad of the infix bhrase.

The new conventions are as follows:
1) PAW retaids only full spanning phrases of length one.
2) The righthang phrase of each production in a non-first grammar
must be either of 1length one or must have an operator as its
rightmost part-of-speech.
In multipass processing, the first convention states tﬁat the' relevance
of a meaning is the generation of one part-of—speech and not a string of
parts-of-speech. Looking at ICL's multipass scheme, this states that

under a syntax part-of-speech, there must appear a well defihed datatype

“and not a string of datatypes.

With this first conventiqn. a language implemented by a multipass
scheme can be simply documented by documenting each sxntax ?roduction
independently. Along with each syntax production, one can completely
sbecify the relevant requirements imposed by the type-grammar solely in
terms of a datatype relation which constrains the datatypes which may

appear under each part-of-speech in the syntax production. This is

~ 109 ~

possible because only a well defined datatype, and not an abstract
. datatype phrase, will be associated with each syntax part-of-speech.
The documentation need not mention the type-grammar nor the individual
phrases generated by the meaning associated with each syntax production.
Refer to the ICL Reference Manual for an abundance of this sort of

documentation.

The second convention is necessary so that PAW can effectively
generate phrases in isolation. Consider what would happen if sum were
to use PAW in generating an infix phrase. Sum would first call on 1its

left parameter to produce

CINTEGER:a>
<REAL: float(a)>
Sum would then generate a "+" to the right. Finally, sum's righthand

parameter would generate, in isolation, the phrase

<REAL:b>

When these phrases are put together, yielding

CINTEGER:a> + <REAL:b>

<REAL:float(a)>
the full spanning (REAL:addr(roat(a).b)) will be missing. As 1ipn the
previous example, the fact that <REAL:b)> was generated in isolation

means that the grammar never sees the phrase

<REAL:float(a)> + <REAL:b>
' However, if sum generates a polish postfix phrase, sum's two parameters

may be evaluated in isolation and finally put together to yield

~ 110 ~

CINTEGER:a> <REAL:b> ' '

<REAL:float(a)>
At this point, we suffer no loss in the fact that the grammar does not
see this barticular parsing graph as a whole. By convention (2), the
grammar contains no productions which can match a phrase in this parsing
graph except for productions whose righthand phrases have length one.
However, these excepted productions have already applied during the
individual generations of sum's two parameters, e.g., the float rule has
already generated the <(REAL:flocat(a)>. When sum finaily generates the +

to the right, i.e., yielding ‘ *

CINTEGER:a> <REAL:b> +
* CREAL:float(a)>
the grammar's + production will fire, baving access to the necessary
phrases, and thus the grammar will indeed generate the desired

<REAL:addr(float(a),b)> spanning the whole parsing graph.

It might appear that the conventions stated above remove so much
gencrality from a non-first grammar that the grammar ifself could be
replaced by a set of functions. Since most productions will include a
specific, well defined operator, it appears that each production could
be replaced by a function whose name is the operator itself, e.g., the +
production could be replaced by a ¢+ function which computes the possible
resulting datatypes. However, the functions would have to take in not
single datatypes, but lists of alternative datatypes. In addition, some
functions might haye to act as several productions, e.g., there are two
+ productions, one for integer and one for real arithmetic. In general,

the functions would have to contain CASE and 1ooping statements. It is

~ 111 ~

.noteworthy “that with the grammar implementation, the CASE and looping
constructs Vare efficiently and generally handled 'by the parser's
- matching routine FIND, and in addition, the parser naturally yields
lists of alternate parts-of-speech. Finally, a grammar implementatibn
greatly surpasses a function implementation for two reasons: Some
productions include no operators whatsocever, e.g., the float rule; they
operate implicitly everywhere. Secondly, the grammar implementation
_facilitates a very modular definition, e.g., the two + productions may
be aeaxpressed independently. This modular feature is extremely valuable
in a compiler where the processing of declarations may spuriously add

productions at different times.

Top-Down Context Besides LEFT and COLUMN - The Operator RESET

In addition to the variaﬁles LEFT and COLUMN, top-down context may
be specified thru other variables. For example, a ﬁroduc%ion which
incorporates declarations for a local ﬁrogram block will modify the
symbol tabie prior to the evaluation of the brogram block. 1In this
example, the symbol table appears as top~-down context for the evaluation
of the program block. The operator RESET is provided for dealing with
top-down context excluding LEFT and COLUHMN.

RESET applied to a meaning removes all the stored results from
'previous evaluations. In this way, any record of previous top-down
- context is removed. This means, of course, that when PAW is applied to
the reset meaning, all phrases will have to be regenerated. However,
the recomputation will again be proportional to the number of nodes in

the meaning because within the reset meaning, shared subderivations will

~ 112 ~

recompute only once.

Reluctant Derivaetions and Cycles - The Operator GOODNS

The reluctance associated with a production 1is stored in the
derivation nodes produced by the production. For example, the phrase
<INTEGER:a)> + <INTEGER:b>

may yield the ambiguous derivation

OR(float(addi(a,b)) , addr(float(a),float(b)))

when viewed as a REAL. This derivation can be drawn as

_OR~—__

float addvy
5&; }‘m/t \fr“‘t

@ ¢

" where the resistor symbol represents the application of -a reluctant
" production, e.g., the float production. From the point of view of the
OR-nbde on the top, the 1lefthand altcrnative contains one resistor

whereas the righthand alternative contains two resistors.

The operator GOODNS (short for goodness) climbs thru a derivation
and removes subderivations of higher resistance. More specifically,
GOODNS associates a number with each node in a derivation to record the
number of resistors contained in the total subderivation whose top js
the given node. GOODNS associates with an OR-node the minimum

resistance of its two alternative subderivations. In the example given

~ 113 ~

above, the resistance numbers are

1
f,/;"(:>F(T~ 2
floal add\
i lea i b
add © § loal Sleat
N v

T

As GOODNS associates a number with an OR-node, if the numbers associated
with the two alternative subderivations differ, GOODNS replaces the
OR~-node with a NO-OP node which references ' only the minimal
subderivation. In this way, reluctance is manifested in a given
derivation. The only OR-nodes which survive are those which reference

subderivations of equal resistance.

It is intended that GOODNS will be applied to a derivation before

any other semantic operator is applied.

There is another situation which GOODNS must bhandle. Derivations
vielded by the parser may be cyclic; the parser does make destructive
modifications when installing an OR-node. For example, consider the

rules

(REAL: float{a)>

CINTEGER:a?
CINTEGER: fix(a)>

{REAL:a>

One can imagine that <{INTEGER:a> will parse as

~ 114 ~

CINTEGER:a>

<REAL: float(a)>

CINTEGER: fix(float(a))>
CREAL: float(fix(float(a)))>

However, when ;he parser proposes the second <JINTEGER> node, NEWNODE
Qees that there already exiSts an (INTEGER> node having the same span,
and therefore NEWNODE does not gencrate a second <INTEGE§) nodé. rather,
NEWNODE modifies the derivation associated with the first CINTEGER>
node. NEWNODE modifies the derivation node a., in place, so that in
fact, the node at a is now the OR-node and one of the nodes referenced
from the OR-node is a copy of a. From the poinis of view of the

CINTEGER> and <REAL)> nodcs, what used to be

| L
(REAL> - — > Float - > &\9&;\\
l becomes | g
< INTEGER> e - > o L ~ OR ;’
@ Fw
Cespy)

after NEWNODE incorporates the proposal of the second {INTEGER> node.

This cyclic derivation does indeed capture the infinite number of
derivations implied by the two given productions. For example, from the
point of view of the <INTEGER> node, the viewer has a choice of taking
simply a, or, taking one ride arocund the cycle, fix(float(a)), or taking
two rides around the cycle, fix(float(fix(float(a)))), etc. Frdm the
point of view of the <REAL> node, the same choices are available where

each choice is embedded within one float.

~ 115 ~

The following arbitrary decision concerning cycles is implemented
in GOODNS: At a given OR-node, GOODNS removes an alternative
subderivation if that subderivation has no choice but to refer back to
the given OR-node. In essence, GOODNS climbs down a derivation and upon
encountering a previcusly encounted node_which has been entered but not
yet left, GOODNS associates infinity as the resistance number. Thus, at
the closest OR-nodes which access this previously encountered node,
‘GOODNS will naturally remove the cyclic alternative. Here 1is a
rationale: Assuming fhat at least one of the productions involved iﬁ
the cycle is reluctant, it would appear that travelling around the cycle
even once will «collect more resistance than avoiding the cycle

altogether.

This algorithm is indeed arbitrary because it may depend on the
order in which GOODNS climbs down thru a given derivation. However, the
.algorithm does remove all cycles and does so by removing only OR-nodes.
In addition, the clipping occurs in some sense as close as possible to

the re-encountered node.

~ 116 ~

ICL is a general programming language implemented on the language
processor'presented in this thesis. Refer to thé large appendix The ICL
Reference Manual for a formal and complete definition of ICL. Refer to
the appendix about the HACRO-IO implementation for a description of the
files which make up ICL.

ICL isvimplemented in a multipass scheme as described in the
section about languages. ICL consists of three passes. The first pass
constrains syntax, the second pass constrains datatypes, and the third
pass constrains the use of data sources and data sinks. The third pass
ensures that only\data sinks may appear on the Jlefthand sides of
assignment statements. Furthermore, the third pass deals with a special
kind of sink, a looping-target, which facili;ates a uniform treatment

for ICL's main loop-generator, the sclection FOR-quantifier.

ICL was created with several goals in mind. The first goal was to
show that the general language processor is indeed a very practical tool
for implementing languages. The second goal was to provide a convenient
language to aid in the design of integrated circuits. A third goal was
to produce a language which includes constructs absent from other
programming languages which have none the less proven indispensable in
.the field of language processing. A fourth goal was to incorporate into
. a conventional prdgramming language as much of the extensive flexibility
and generality offered by the rewrite parser as possible. Another goél
was to remove the consideration of pointers from the user's domain; too

much confusion arises from ad hoc use of pointers. Finally, ICL was to

~ 117 ~
[}
be very modular in both implementation and documentation, and as such,

ICL should be readily extensible.

Following are the results of each goal. This section concludes

with ICL's compile time error reporting mechanisms.

Modularity

As the reader may note, the ICL reference manual documents ICL 1in
terms of small groups of productions. Each group is independent of all
the others. The ICL reference manual, 1like the PDP-10's reference
manual, is both complete and hard to learn from. The ICL manual is a
very straightforward translation from the implementation into English

with additional comments concerning the relevance of each construct.

Because ICL is implemented on top of the language processor, one
Ean ‘easily extend ICL by adding more productions to any of the three
grammars, or passes. One need not worry about interactions among
productions as 1long as one follows the éonventions for meanings under

the various parts-of-speech.

The Use of the Language Processor

As just mentioned, one of the profits gained by using the language
processor is modularity and extensibility. The majority of routines
which make up the ICL compiler are each less than a half a page of
nearly double spaced MACRO-10 source. The vast majority of routines
correspond one-to-one with the productions in ICL's three grammars. The

notable exceptions are the routine which processes declarations and the

~ 118 ~

routine which coordinates the three passes.

The use of the language processor facilitated easy modification
during the creation of ICL. I didn't need to worry about syntax or
datatype processing; I merely dealt with individual productions,

adding, removing, and modifying each one on an independent basis.

I did go to some trouble to optimize the syntax grammar for speed.
Some simple productions are broken into several smaller productions to
facilitate a linear rather than quadratic parsing time. For example,

strings (arrays) in ICL are created with the notation

{ element { element ; element ; ... ; element } .

A simple and straightforward syntax description is

{STRING_EXPR> ::= <EXPRO

CSTRING_EXPR> ::= <EXPR> ; <STRING_EXPR>

<EXPR> s:= { <STRING_EXPR> }
With the parser presented in this thesis, this grammar will take
quadratic time as a function of the length of a string expression; a

<STRING_EXPR> will be found to span every substring, e.g.,

{ element ; elcment ; element ; element }
(--STRING_EXPR----) .
On the other hand. I could take advantage of the fact that a
<STRING_EXPR> is useful only between the brackets { and J. I constrained
the creation of <STRING_EXPR>s to occure only in the context of a } with

the grammar

~ 119 ~

{STRING_EXPR>

<EXPR> }

{STRING_EXPR> CEXPR> ; <STRING_EXPR>

<EXPRD>

{ <STRING_EXPR>

This grammar takes only linear time to parse a string, e.g.,

{ element ; element ; element ; element |}

(-STRING_EXPR-)

(memmme STRING_EXPR ----)

(mmmmmmm———e- STRING_EXPR -=--=--~)

(mmmmmmmm e STRING_EXPR ===-=m-mmmeme-e)
(-mmmmmmm—————————— EXPR ===mmmemmmmeceecmee) .

With this grammar, a <STRING_EXPR> is created oﬁly in the context of a }
and hence substrings not including the last element will not parse as

<STRING_EXPR)>.

Because the language processor‘preserves locality of ambiguity, 1
~was able to maintain a modularity in the syntax grammar, even at the
expense of making the syntax grammar ambiguous. For example, there are
two distinct applications of ICL's CASE statement; one is for SCALAR
datatypes and the other is for VARIANT datatypes. The syntax producfion
for the SCALAR-CASE is

CEXPR> ::= CASE <EXPR> OF

and the syntax for the VARIANT-CASE is

<EXPR> ::= CASE <ID> OF _
The CASE value in the VARIANT form is constrained to be a single
~variable (<ID>) for semantic reasons. Rather than including dﬁly the

former production and implementing the latter with a semantic

~ 120 ~

restriction, I simply included both productions. The meapning
transformations under each production are independent and each considers

only one of the VARIANT and SCALAR meanings.
Because ICL also includes the production

CEXPR> ::= <IDD

the form

CASE <ID> OF
will parse two ways, one for the SCALAR interpretation and one for the
VARIANT interpretation. However, thru all three pasées, this ambiguity
is manifested only in the locality of the CASE construct. In fact, in
the dafaiype pass\when the <ID>'s datatype 1s known, the ambiguity will

cease to exist.

ICL was started in June 1976, in both conception, design, and
implementation. These three efforts occured in parallel with little
trouble. Within one year, by June 1977, ICL was working, nearly free of
bugs. Until now, April 1978, fewer than ten bugs have been found (and
fixed), the last being resolved over three months ago. Since June 1977,
ICL has been‘ under extensive use by myself, and more recently, there

have been several other users designing ICs.

ICL atmed at‘IC Masks

ICL includes three main features important for dealing with IC
masks. First, the notation for creating two dimensional polnts is
brief; there is a one character overhead. Operators like + and - are

defined for points as well as for integers and reals. Secondly, the

~ 121 ~

selection-FOR quantifier provides for convenient access to polygons
represented as strings of points. Several vertices may be taken at a
time with the option for wrapping around back to the beginning of the
string. Finally, automatic data sharing facilitates both safe and
efficieht representations for IC-masks, objects of a highly repetetive
nature. Refer to a following section about pointers for more about data

L]

sharing.

Carryovers from Language Processing

ICL provides for the creation and invocation of processes as
previously described in the section Meaning as Programs within the
section about lahguages. Indced, the //...\\ construct exists in ICL.
This construct allows for programs along with specific context to be
passed off as data and hence to be stored in datastructures as readily
as any other kind of data. In fact, the //...\\ construct goes beyond
that which has yet been described. In ICL, parameters may be pas#ed to
a process invocation just as they are passed to a function call. In
addition, the user may specify that a process be allowed to change the
values of 1its context variables so that later invocations can bhave a
private memory of previous invocations. For numerous examples, please
refer to the section on processes near the very end of the ICL Reference

Manual .

Ambiguity -~ A Manifestation of the FParser

The existence of the parser with its tolerance of ambiguities has
made simple the implementation of both coercions and polymorphic
function nemes. In addition, the parser offers a totally general and
restriction-free implementation for datatypes. In essence, if the user
can imagine a way by which his program will make sense in the space of

datatypes, the parser will find it and implement it.

In fact, with the parser's upper bound for expense,. it 1is
guaranteed that any set of coercions and functions will be accepted and
processed in finite time. Coercions may be defined between datatype
without concern = for cycles, e.q., the INTEGEthO‘REéL and a

REAL-to-INTEGER coercion may both exist,simultaneously.

At early stages in ICL's developement, I considered making ICL's
syntax dynamically extensible. Such a feature is nearly trivial to
implement. However, syntactic extensibility has the disadvantage that
programs written by different people might not be easily readable by
others in the user's group. Besides, a reliance on syntax extension can
easily divert people's attention from the more relevant, semantic issues

involved in a given programming task.

ICL's extensibility is more of a semantic sort. The second
grammar, the datatype grammar, is completely extensible via the use of
type, coerclion, and function declarations. Extensibility limited to the
datatype grammar conforms to the kind of extensibility offered by a

conventional programming language like PASCAL.

- 123 ~

Following are examples of the various ways in which ambiguity crops

up in datatypes.
Two representations for geometric lines are defined in ICL by

TYPE SEGMENT = [FROM:POINT TO:POINT] ;
EQUATION= [A:REAL B:REAL C:REAL] ;
A SEGMENT consists of two points labled FROM and T0. An EQUATION
consists of three numbers 1labled A, B, and C which define the line

equation

Ax + By + C =0
Suppose we provide coercions between the two representations, i.e., we.

declare

LET SEGMENT BECOME EQUATION BY some program

LET EQUATION BECOME SEGMENT BY some program .
These two coercions make the types SEGMENT and EQUATION interchangeable,
i.e., any SEGMENT may be viewed as an EQUATION and visa versa. Finally,

suppose we define a routine for intersection:

DEFINE INTERSECT(A:EQUATION B:EQUATION) = POINT: ...
INTERSECT takes in two EQUATIONs and yields a POINT. The two coercions

-and one function declarations affect the type-grammar by adding the

rules
CEQUATION> = <(SEGMENT)
{SEGMENT> = <{EQUATION>
<POINT> = INTERSECT (<EQUATION> , <EQUATION>)

~ 124 ~

The third rule is really entered in a reverse polish form, but we will

ignore that fact for clarity. Now, if the user writes

P := INTERSECT(A,B);
where P is a POINT and where A and B are EQUATIONs, the type-pass will

generate the parsing graph (again ignoring polish conventions)

POINT := INTERSECT (EQuATION , EQUATION) ;

This assignment statement is legal because both sides of the assignment
can be viewed as the same type of object, namely POINT. If A were a

SEGMENT instead of an EQUATION, this assignment would parse as

POINT := INTERSECT (SEGMENT , EQUATION) ;
(-EQUATION-)

The SEGMENT-to-EQUATION coercion is employed to maintain datatype
consistency. In fact, each parameter in INTERSECT may independently be
either of type SEGMENT or of type EQUATION. Each parameter which is not

of type EQUATION will invoke one coercian.

An optimization is obtained by defining another INTERSECT

especially for SEGMENTs, e.g.,

DEFINE INTERSECT(A:SEGMENT B:SEGMENT) = POINT: ... -
Consider that if the parameters to INTERSECT are each of type SEGMENT,

the given assignment statement will parse either as

POINT := INTERSECT (SEGMENT , SEGMENT) ;

~ 125 ~

ar as

POINT := INTERSECT (SEGMENT |, SEGMENT)
(-EQUATION-) (-EQUATION-)

This ambiguity reflects the fact tbat either INTERSECT routine can be
Vemployed. However, because productions entered by coercion declarations
are entered as reluctant productions, the first parsing graph will
dominate. Hence, no coercions will apply and the INTERSECT routine

which directly deals with SEGMENTs will be choseﬁ.

If the user defines all four INTERSECT routines, one for each
possible type .combination, no coercions need ever apply and hence the
user has achieved an optimization. Note the flexibility offered ‘here:
The wuser 1is allowed to define anywhere from one to four different
INTERSECT routines and in any case, the wuser's program will work.
Without changing any program text, e.g., programs refering to INTERSECT,
definitions for INTERSECT may be added or removed with the effect of

varying only optimization and not correctness.

Another example of ambiguity arises in the following program.

Suppose the user declares

TYPE GQS = EITHER : .
JUST_ONE = QS
MANY = { GOS }

ENDOR ;

~ 126 ~

where QS denotes the type for gquoted text strings. This declaration
states that a GQS may be formed in one of two ways:

1) Any QS is a GQS and

2) Any string of GQSs is itself a GQS.
The notation { GQS } denotes a datatype which represents a string

(array) of GQSs. This declaration essentially generates.the rules

<GQS> ::= QS
<GQRS> ::= { <GQS> ; <GQS> ; ... }

Thus, for example, the QS

IHii
is a GQS. The string of GQSs

{ 'Hi' ; 'There' ; 'You' }

is a GQS. In fact, the nested expression

{ { 'Hi* ; 'There' } ; { 'You' } }

is a GQS. Now, suppose the user defines the type MESSAGES as follows:

TYPE MESSAGES = { GQS } ;

The expression

{ { 'Hi' ; 'There' } ; ‘You' }
may.be viewed either as a single GQS or as a MESSAGES. If viewed as a
MESSAGES, this expression represents a string of length two whose

elements are the GQSs

{ 'Hi' ; 'There' } and 'You'

~ 127 ~

Thus, 1if the user declares the function

DEFINE PROCESS(M:MESSAGES):

and if the user subsequently specifies

PROCESS({ { 'Hi' ; 'There' } ; ‘'You' } y:
the { { 'Hi* ; 'There' } ; 'You' } will be viewed as a MESSAGES and
not a GQS so to be compatible with PROCESS.

Another example involves a datatype called RG which is meant to
represent pictures. We wish that én RG be formed by any of the
following

1) Any POLYGON is an RG

2) Any union of RGs is an RG, and

3) Any displacement upon an RG is an RG.

We can declare RG with

TYPE RG = EITHER

SIMPLE = POLYGON
UNION = { RG }
DISP = [DISPLACE:RG BY:POINT]
ENDOR ; ' .

This declaration for RG essentially adds the rules

<RG> ::= <POLYGON>

RG> ::= { <RG> ; <RG> ; ...}

<RG> ::= [DISPLACE: <RG> BY: <POINT>] .
Thus, if CURLY is an instance of type POLYGON, then

~ 128 ~

{ CURLY ; ([DISPLACE: CURLY BY: point])}
represents two CURLYs, one of which is displaced by poin;. This

particular expression is an RG via the parsing

{ CURLY ; [DISPLACE: CURLY BY: point] }
(-POLYGON-) (-POLYGON-) : »
(---RG----) (---RG----) '

R et RG ---==-=-=mom-)

(mmemmmmme s RG ===ccmmmmemcccme e eaeas)

Now, suppose the user wishes to associate a minimum bounding box
(mbb) with each Subpicture. For sure, he doesn't want to specify the
mbb each time he specifies a subpicture; the user likes the current
notation for specifying RGs. We can get mbbs installed automatically
"and implicitly by making the following declarations. First of al;, we
make up a new datatype called MRG which will represent an RG along with

its mbb.

TYPE MRG = [BODY:RG MBB:BOX] ;
Even though we wish to specify pictures as RG's, we would like to access

an RG as though it were an MRG. The coercion

LET RG BECOME MRG BY [BODY:RG MBB: f(RG)] ;
specifies that any RG may be viewed as an MRG. We assume, of course,

that f maps an RG to its mbb. This coercion adds the rule

<MRGY> :: <RG>
Let us redeclare the type RG so that each reference to an RG is replaced

by a reference to an MRG:

~ 129 ~

TYPE RG = EITHER

SIMPLE = POLYGON
UNION = { MAG }
DISP = [DISPLACE:MRG BY:POINT]
ENDOR ; .

‘This new definition for RG guarantees that each subpicture wili include
_its mbb, 1.e., each subpicture in a union will include its mbb and each
subpicture involved in a displacement will include its mbb. Note that
any given expression which could be viewed as an RG under the old
definition will still be viewable as an RG under the new definifion
because any subpictu}e, an RG, will automatically coerce to an MRG. For

example, we will get the parsing

{ CURLY ; [DISPLACE: CURLY BY: point] }

(-POLYGON-) - (-POLYGON-)
(---RG-==-) (=--RG----)
(-=-NRG---) (---NRG---)
(wmmmmmmmm———————— RG ===mmmmmme)
(mrmemmmmmmnm e MRG --mmmmmmmm)
(mmmmmmmmemm——————ee RG ~-==mmemmem—em———cece——-)
[MRG w--voommocmmsascmecmeenn)

Each place where an RG is rewritten to an MRG, code will be generated

which will calculate the mbb and thus create a valid MRG.

ICL's tolerance of ambiguity in datatypes very often makes it
possihble to modify declarations without having to modify the executable
part of a program. Modifications to declarations can be made for

optimization as well as for changes in concept. Coercions generally

~ 130 -~

come in handy to cover up a splitting of what used to be one datatype,
e.g., RG, into several types, e.g., RG and MRG. More examples are

contained in the ICL Reference Manual.

Pointers

In order to provide a safe and flexible system for serious use,
pointers had to be wused in the implementation but also had to be
invisible for the majority of programs. For example, the 1languages
PASCAL and SIMULA require an obsessive and inconvenient awareness of
'pointers. In these languages, the user must explicitly . distinguish
between a pointer to an object and the referenced object itself in both
declarations and opefations. The explicitvuse of pointers is reduired
even for the very common purpose of defining recursive datastructures.
Even worse, many subtle bugs arise with pointers from an inadvertent
sharing of data, e.g., a modification to a datastructure may become
apparent from unwanted points of view. The programmer is forced to do
his own bookkeeping with respect to specifying copy operations in order
to avoid unwanted data sharing. Pointers, like GOTOs, will often
obscure simple constructs, and even worse than GOTOs, pointers may be

‘abundantly created by the execution of programs.

In principle, the need to be aware of pointers is a rarity.
Pointers are necessary in concept only when one wishes to share data for
the single purpose of allowing modifications to the data to be
simultanecusly apparent from several points of view. Except for this
purpose, it is conceptually easiest to imagine that no datum is shared

and that pointers do not exist. For example, the data structure

~ 131 -~

AN —m——

T (Shared)
B: ——— DATA

may be thought of as being equivalent to

B: [Unshared
copy)
DATA

unless we wish a modification to the shared data made from the
points—df—view of either A or B be apparent from both A and B. In
practice, however, a programmecr will often share data for effiéiency
even though he does not wish that modifications be apparent from all

references to the shared data.

ICL does not require the programmer to be aware of pointers except
in programming tasks where it is in principle nccessary to be aware of
pointers. That is, the ICL programmer may define and use recursive
datastructures or do anything he wishes without having to know about
pointers and data sharing. However, if the wuser wishes to implement
shared data for the purpose of having modifications be apparent from
several points of view, the user must obviously think in terms of
pointers; hence ICL bhas provided a single operator, the € operator,
which allows the user to make modifications which will expose pointer
structure. The @ operator corresponds to a combination of LISP's RPLACA

and RPLACD operators.

Backstage, ICL does indeed make extensive use of pointers whether
or not the user wishes to be aware of it. ICL automatically shares data
as much as is possibie without any overhead. Data transfers, e€e.9g.,
assignmentv statements and parameter passage, are each implemented by
transferring a one word entity which is often a pointer. Datastructures
whose creations are specified with multiple references to a particular
variable automatically wind up sharing the structure referenced by the

variable.

However, ICL will never destructively modify an existing sfructure
except via the @ operator. Excluding the @ operator, when the user
specifies a modification, the'modification will be carried obt in such a
way that the modification will become apparent only to the variable with
which the user specifies the subject stfucture. ICL copies a minimal
amount of the subject structure, just encugh to implement the
modification, and finally assigns this augmented structure to the
variable. It will appear as though the variable has aiways referenced a
private copy of the datasiructure. If no variable or structure
references the original structure, those parts from which copies were
made will automatically be returned to free storage during the next
garbage collection. If in fact some variable or structure does
reference the original structure, both the modified and the original
structure will exist sharing all that substructure which was not
involved in the minimal copy. This "copy on write" technique allows.
data to be shared invisibly. Digital Equipment Corporation uses the

same technique on the coarser scale of memory pages.

~ 133 ~

Refer to the section ICL's Policy About Assignments, Copying, and
Pointers 1in the ICL AReference Manual. That section contains both

examples and implementation details.

Error Reporting In ICL

The reader may refer to the ICL Refercnce Mbnual to see how compile
time user errors are reported. Basically, each pass has its own ways of
reporting errors. What follows are the technigues used in generating
the error messages, The mechanism hy which errors are reported is in

fact supplied with the language processor and not with ICL.

Syntax Errors

Some of the productions which make up ICL's syntax are
deterministic. A deterministic production is one which destroys
alternate phrases during the gencration of its 1lefthand phrase. A
deterministic production removes any phrase whose span intersects the
span of the generated lefthand phrase. For example, the deterministic

-production

CA> <(BY> :::= <C> <D> <E>

will apply in the parsing graph

mmmm KQY = LY mmmm DD --e- KED

!
| l
\-memeon- W |
l
\------"‘-""“’""" <H>

~ 134 ~

leaving the following parsing graph

~mmm Q) we-= CAD ---- (B
Any phrasé which (partially) spanned the <C)>-<{D>-<E> phrase has been

removed.

Any production can be made deterministic by modifying the
generation of its lefthand phrase. As the reader may recall, when a
lefthand phrase is about to be generated, the glcbal variable COLUWMN
contains all alternate phrases which share the same righthand edge.
Basically, a deterministic production sets COLUMN to NIL before it
generates 1ts lefthand phrase. In the example given above, the
deterministic production is entered when COLUMN references the <E> node.
The deterministic production removes the <E> node from COLUMN and hence
kills any reference to the parsing graph accessible from <E>. However,
when the deterministic production places the phrase (A>(B> onto COLUMN,

only the <Q> node from the original parsing graph remains accessible.

To support the application of several deterministic productions
over a given.span, a deterministic production actually sets COLUMN not
to NIL, but to the contents of another variable which is initialized to
NIL. After the production's lefthand phrase is generated, the
production stores COLUMN back into this other variable. Thus, if
another determini%tic production applies, the phrases generated by the
earlier applicatiods of deterministic productions will not be iost;
COLUMN will be set not to NIL, but to the previously generated phrases.
In some seﬁse. the lefthand phrases of deterministic productions form an

elite set.

~ 135 ~

A deterministic production represents a certainty that the
application of the production is unconditionally appropriafe. The
righthand phrase of a .deterministic production should _contain an
abundance .of unique keywords so that only the existence of such a

i

keyword in a user's text can trigger the deterministic production.

Syntax errors are reported by presenting the user with a linearized
version of the parsing graph. This linearized parsing graph is obtained
by scanning the parsing graph from right to left, arbitrarily choosing
the first node in each encountered column. This indeed presents a
linearized parsing graph devoid of alternate parses. It so happens that
the first node in most columns is an input character. This is so
because columns are ordered by part-of-speech and input characters bhave
the lowest parts-of-speech. (Refer to the appendix on MACRO-10
Implementation). Thus, except where deterministic productions have.
applied, the user will be presented with his original input text. Where
deterministic productions have applied, the original input text will be
replaced by a syntax part-of-speech. Thus, the lincarized parsing graph

indicates where certain productions have applied.

The usefulness of this sort of error message increases with the
number of deterministic productions. However, with a greater number of
deterministic prodhctions. a modification to ICL's syntax reguires a
greater amount of care. If a modification isn't made carefully, the
application of a deterministic production might wind up removing phrases

which are necessary for a successful parsing.

~ 136 ~

At the present time, ICL includes few deterministic productions.
The 1last index in the ICL Reference Manual lists ICL's deterministic

productions.

This scheme is not well understood and hence it should either be
replaced or better understood. A better scheme might have deterministic
' productions simply remove one element from COLUMN, namely a terminal
part-of-speech, without destroying the 'other alternate phrases. Yet
another method might have deterministic productions remove no phrases
whatsoever and simply mark the generated lefthand phrase so that the

error reporter can still see the "deterministic" application.

Datatype and PASS3 Errors

Each non-first pass, or process step, is precisely the evaluation
of the derivation yielded by the previous pass. The evaluation of the
“derivation yielded by' the previous pass generates phrases in the
language of the current pass. The result of the current pass is the
parsing graph; i.e., phrases, generated by the top node in the

derivation. ' !

Let us> assume that the operator PAW is wused to evaluate a
derivation. PAW stores with each node in the derivation the parsing
graph generated by that particular node. If a particular node generates
the empty parsing graph, we will say that the node has no parsing graph.
An error in a non-first pass is detected by noticing the lack of a

parsing graph associated with the top node in the derivation.

~ 137 ~

For example, consider the derivation node created by the Syntax

production for "+":

<EXPR: //[a;b;] f(a,b)\\ > ::= <EXPR:a> + <EXPR:b>
The resulting derivation node references f along with the parameters a
and b. Suppose that [generates a parsing graph which depends on the

parsing graphs generated by a and b, e.g.,

EX(a) "+" EX(b)
If EX(a) generates (INTEGER> and if EX(b) generates <(BOOLEAN>, then f

generates

CINTEGER> + <BOOLEAN>
This phrase matchés no production of the second grammar, i.e., INTEGERS
and BOOLEANs cannot be combined with "+", Thus, the grammar will
generate no full spanning phrase of length one over the given phrase.
The parsing graph which PAW stores with the derivation node representing
J is a pruned parsing graph; only full spanning phrases of 1length one
are kept. Thus, PAW will store no parsing graph with the derivation

node representing f.

An erroneous derivation node is any derivation node with the
" following properties:
1) It has no parsing graph and
2) Each of its sons, e.g., a and » in the example given above, does
have a parsing graph.
The first property indicates that the derivation has no interpretation
in the current pass. The second property indicates that the lack of

interpretation is not the fault of a subderivation.

~ 138 -

Each node in a derivation can be identified with the production
which generated the node. In ICL, a production is idgntified by the
name of the function which implements its meaning. For example, the "+"
production given above is identified by the name f. In the ICL keference
Manual, the documentation for each syntax productipn includes the. name

of the routine which implements the production's meaning. This name is

presénted as the name of the production.
An error in a non-first pass is reported by

FOR each erroneous node in the derivation,
1) Identify that node for the user and
Z) Provide a backtrace so that the user
can see where in his program the error occurs.
A backtrace consists of the sequence of derivation nodes 1lying between
the erroneous node and the top derivation node. Refer to the section
Datatype Errors in the ICL Reference Manual for a convenient way to

interpret a backtrace.

This error reporting scheme will identify an error in the second
pass by identifying particular syntax productions. Because each syntax
production is documented in the ICL neference’ Manual, a wuser can
successfully interpret the error message generated from a datatype
error. However, an error in the third pass is reported by identifying
productions belonging to the second pass. Because the productions
belonging to the second pass are not documented, the user can make
little sense of a third pass error message. As mentioned in the ICL
Reference Manual, errors from the third pass rérely occur, and for the

most part, they are the result of very obvious user errors.

~ 139 ~

None the less, it would be nice to report errors from the third
pass in terms of .syntax productions rather than in terms of datatype
productions. The following scheme might achieve this: Associate with
‘each third-pass derivation node a pointer to the second-pass derivation
node which generated those phrases responsible for the creation of this
third-pass derivation node. Given such a pointer, an erronecus
third-pass derivation node can be reported in terms of a second-pass

derivation node.

The creation of such pointers can be implemented by setting a
global variable which refefences a given second»pass'derivation node
during the evaluation of the given second-pass derivatioﬁ nodei As the
second-pass derivation node generates.phrases for the third pass, each
derivation node created by a third-pass production can be augmented to
include the value currently in the global variable. Thus, each
third~pass derivation node which is created by the evaluation of a given

second-pass derivation node will reference the given second-pass

derivation node. This is currently not done in ICL.

~ 140 ~
CONCLUSION

This thesis has presented a language processor and a sample
language implemented with this language procesSor. The languagei
processor supports ambiguity so that the specification for a language
can be extremely modular. The language processor practically supports
ambiguity by representing and processing only essential differences

among multiple interpretations.

The sample language, ICL, is a rich, general-purpose programming
language which takes special advantage of the language processor in
support of user-defined datatype coercions and polymorphic - operators.

Both the language processor and ICL work reliably.

Several systems have already been implemented in ICL imncluding an
IC-mask pracessor, a graphics system which includes arbitrary,
non-linear transformations, a text preprocessor for the program RUNOFF,
and a graphics text processor which includes fonts and colors. Numerous
IC-masks have been made with ICL and one user has defined a function
which yields a PLK as a function of the number of AND terhs, the number
of OR terms, and the binary PLA code. This thesis itself was run

through the text preprocessor for subsequent processing by RUNOFF.

ICL's datatype checking has repeatedly facilitated quick and sure
creation or modification of programs. Hany bugs are found and
‘pinpointed immediate}y at compile time. A rich -use of' datatype
‘ coercions and polymorphic functions not only offers a convenient
technique for program specification, but it also facilitates quick

changes in datatype definitions. Without re-examining programs which

~ 141 ~

utilize the modified datatypes, a quick recompilation has often run
without any problems; ICL chooses a different placement of coercions so
that the program specification remains consistent with the new datatype
definitions; If no placement of coercions can render consistency, then
ICL cites exactly those places in the program specification which
present no possible interpretation. Often by introducing a new coercion
or a new definition for an existing function name, these remaining

problems quietly cease to exist.

Although ICL generates rather sloppy machine code, e.g., there is
" no attempt to optimize the machine code per Se and all temporaries are
stored not in registers but on the stack, ICL code has run three ‘times
as fast as SIMULA compiled code. This relation was obtained by running
a8 program which adds 10000 points in each of ICL and SIMULA. Because
the type POINT is primitive in ICL and not in SIMULA, I reran the ICL
program with the type POINT substituted with a user-defined recard
datatype which represents two REALs. Still, ICL ran 2.5 times as fast
as the SIMULA program. I imagine that the difference between SIMULA's
and ICL's runtimes rests on the fact that SIMULA leaves some datatype
considerations for runtime, e.g., superclass searching, whereas ICL

processes all datatype considerations, e.g., datatype coercions, at

compile time.

One of the cqrrently largest ICL systems includes the IC-mask
processor, the general graphics system, and the graphics text processor.
This system resides in 86.5K words of memory. This figure includes all
of the ICL compiler including the symbol table and the three grammars.

This system includes 325 wuser-defined functions. The 86.5K memory

~ 142 -~

includes 30K for list-space, 12K of which is free, 17Kk of machine code

for the user-defined functions, and 7.9K for the datatype grammar .

The language processor's preservation of locality of ambiguity pays
off not only in theory, but also in practice. To see the effect of this
feature, I chose a one line ICL statement which would generate a maximal

amount of syntactic ambiguity:

WRITE(1 \A 1 \A 1 \A 1 \A 1); .
The \A is an infix notation for calling the function pamed A. ICL will
.consider all possible ways to apply parentheses around subexpressions.
ICL will finally choose that placement of parentheses which tends to
group- from 1left to right while satisfying the datatype requirements
imposed by the infix function calls. In this exémple. A wasvdefiqed to
‘map two integers to one integer, and thus ICL would ultimatel& choose
the strictly lgft to right grouping. Theory says that an expression of
this form which has n \AS will give rise to at least an exponential
number of groupings. However, theory also says that' this‘ language
processor will process the exponential'number of meanings in polynomial

time.

With the standard ICL compiler, this statement with 6 \As compiles
in about one second. With 15 \As, it takes about 16 seconds. To make
ICL ignore locality of ambiguity during the second and third passes, 1
modified the semantic operator PAW so that it would not take advantage
of shared subderivations. With this modification, ICL took ¢4 seconds
to process a statement with § \As, and with 6 \As, it took a minute and
a half before ICL fatally ran out of memory. It is impossible to make

the first pass ignore locality of ambiguity without modifying the parser

~ 143 ~

itself. I have modified the parser's routine NEWNODE so that it would
not collapse identical parsing graph. nodes. This, however, led to
infinite looping and memory consumption because of the existence of

cyclic rules like

<REAL>

CINTEGERD and
CINTEGER> ::

<REAL>

ICL compiles and executes an assignment statement which assigns a
newly created box with a color to a variable whose type admits IC-masks.

Compiled and executed one at a time, ICL processes about 300 of these

assignment statements per minute.

For future wofk. this Jlanguage processor needs a meta-language
besides MACRO-10. Currently, all productions are expressed in MACRO-10
with the help of macros, as described in the first appendix. MACRO-10
was chosen as the meta-language because to specify semantics, it is
often necessary to specify programs which implement meanings. . However,
'now that ICL is working, it should be relatively éasy'to augment ICL to
. include new datatypes and syntax for specifying grammars. All semantics

can be conveniently expressed in ICL.

The main problem with using MACRO-10 as the meta-language is that
each change to a grammar requires a reassembly. This restriction
forbids runtime creation of grammars. Another disadvantage follows
immediately from the fact that MACRO-10 provides no type checking. Bugs
in MACRO-10 programs can be much bharder to find than bugs in ICL
programs. ICL always generates machine code which obeys the conventions

imposed by system components such as the garbage collector. A single

~ 144 ~

violation of system conventions can resuvlt in obscure behavior, e.g.,
illegal memory references. The bug will become apparent much too late,

e.g., during a subsequent garbage collection. .

Currently, I imagine that the parts-of-speech for a new grammar
should be declared statically 1like variables and datatypes. A

part-of-speech declaration might look like

POS FORM = INT ;
This would declare that FORM is a new part-of-speech and that INT will
serve as the datatype for any meaning which can be associated with the
part-of-speech FORM. In general, the declaration for each
part-of-speech should include a datatype which will serve as the
datatype for any meaning which can be associated with the new
part-of-speech. With this information, ICL can verify that all meaning
transformations preserve datatype integrity. The section Languages
shows why it is absolutely necessary to associate a datatype with each

part-of-speech.

A replacement rule can be specified with a notation like

RULE <FORM: EXPR)

.

{FORM: variable> ‘'+' <(TERM: variable>.

An expression of this form can be thought of as an instance of a onew
primitive dafatype called RULE. A grammar can be defined to be a string
of RULEs. 1ICL can compile the mecaning for the 1lefthand <FORM> by
compiling the specified <EXPR> in the context where each of the
variables specified in the righthand phrase becomes an implicit

parameter to the <EXPR>. The type for each of these parameter variables

~ 145 ~

is known immediately from the part-of-speech declarations. For example,
looking at the declaration given above for the part-of-speech FORM, we
can tell that the variable specified in <FORM:variable> should be given
the type FINT. Finally, ICL can verify that the <{EXPR)> associated with
the lefthand <FORM> is of type INT, the typé associated with the

part-of-speech FORM.

However, - to provide fhe flexibilty offered by the MACRO-10
metaFlanguage, it will be necessary to support more than.RULEs and
part-of-speech declarations. For multipass specification, the
meta-language must include a notation for generating phrases under
program control. This might be done by providing ICL functions which
call routines in the language processor, e.g., the routine NEWNODE. A
special notation will be needed to specify phrase sclection, i.e., calls

to the routine FIND. For example, the specification

WITH x -> <(FOBRM:a> '+' <TERM:b»> DO action END

can mean
Execute action for each occurence of the phrase

CFORM> + <{TERM>
in the parsing graph x.
For each phrase match, action will be executed where the variables a and
b are set to the meanings under tﬁe matched <FORM> and <{TERM>

respectively.

Finally, in order to support production schema, the meta-language
should support wild-card part-of-speech specification. For example, the

following rule schema specifies the datatype requirements of the

~ 146 ~

IF-THEN-ELSE construct:

RULE < 7T: f(a,b,c) > ::=
YIF' <BOOL:a> ‘'THEN' <?T:b> ‘ELSE' <(?T:c>
The wild-card part-of-speech ?7 matches any part-of-speech. All
gccurences of the part-of-speech 2?7 in this rule must match the same
part-of-speech. There are many important uses for production schema as
showh in the section Languages. Arbitrary constraints cap be placed upon

wild-card parts-of-speech in the MACRO-10 meta-language.

(1]

(2]

(31

{4]

(5]

[6]

(7]

Knuth, D.E.

~ 147 ~

"On The Translation of Languages From Left to Right"

Information and Control, 8,6 (1965), Pages 607-639

Aho, A.V. and Ullman, J.D. Principles of Compiler Design

Earley, J.

Addison-Wesley, 1977

"An Efficient Context-Free Parsing Algorithm"

Comm ACM, 13,2 (Feb 1970), Pages 94-102

Thompson, F. and Dostert, B.

Kay, M.

Jensen, K. and

Teitelman, W.

Practical Natural Language Processing:
The REL System as Prototype in

Advances In Computers, Academic Press, Vol 13, 1975

"Experiments with a Powerful Parser"

The RAND Corp., memorandum RM-8452-PR, Oct 1967

Wirth, N. PASCAL User Manual and Report

Springer-Verlag, New York, N.Y., 1975

INTERLISP Reference Manual

XEROX Palo Alto, Calif. 1975

~ 148 ~

Appendix 1 ‘ ¢

A Sketch of The Language Processor in MACRO-10

This section documents some of the macros defined in the assembly
language implementation for the language processor. ICL was implemented
thru the use of these macros. It will be assumed .that the reader is
familiar with MACRO-10. The 1latter part of this section documents
refinements to the parser and grammar representation which further
optimize the matching process, e.g., the routine FIND documented

~earlier. Finally, I will describe the set of source files for both the

language processor and ICL.

Declaration of Parts-of-Speech
The macro

TYPES < name , name , ... >
declares each name to be a part-of-speech. TYPES assigns each name a

unique number. The macro

RNGTYP < number,name , number.name , ... >
declares each name to represent an array of parts-of-speech of size
number. This is in no way meant to allocate storage. The numbers merely

increment the unique number allocator. Examples are:

TYPES <RANGE,SSV,VDECL,TYPEX>
RNGTYP <32,EXPR, 32,BOP, 3,DECL, 3,QUANT>

~ 149 ~

The array parts-of-speech, e.g., EXPR, are wuseful for implementing
precedence grammars. This declaration for EXPR makes fhe values EXPR+0O,
" EXPR+2, EXPR+4, e , EXPR+64 valid parts~of-speech. All
parts-of—sbeech declared by these macros are assigned odd numbers in

order to satisfy the conventions imposed by the garbage collector.

For terminal parts-of-speech, i.e., the ASCII characters, append a
.3 to the character to obtain the corresponding part-of-speech.

Non-alphabetic characters have special names; see the file ICLSYN.MAC.

Rule Declarations - The Coarse Form
A rule of grammar is declared with the RULE macro:

RULE righthand phrase , variables , action .
The righthand phrase must be a list of parts-of-speech and variables
must be a 1list of variables and action must be machine code. For

example,

RULE < LSET , TYPEX , RSET > , <,X> , action

specifies the production

2?2 ::= { <TYPEX> 1}
{LSET is the part-of-speech for "{" and RSET is "}"). This declaration
also specifies that when the righthand phrase is matched, the variable X
will be set to the meaning under the matched TYPEX. Action, having
access to X, will be performed upon each match. The lefthand phrase for
the production should be generated by action. Action will be entered
where the register LEFT contains the LEFT field of the leftmost node in

the matched phrase.

The complete production

CTYPEX: //[X;] STRVGT(X)\\> ::= { <TYPEX:X> }

is declared by

RULE <LSET,TYPEX,RSET>,<,X>,<

SUSPE&D STRNGT, <X>

GIVEA(TYPEX)

DEAD

>

The macro>SUSPEND implements the //..\\ notation and GIVEA implements a
call to NEWNODE. »SUSPEND defines NEWNODE's parameter SEM and GIVEA both
defines NEWNODE's paraméter POS and actvally calls NEWNODE. DEAD

signals the end of the action and assembles as a POPJ instruction.

The second parameter in the RULE macro, the 1list of variables,
'corresponds to the first parameter in almost a one-toc-ome manner.
Basically, the first variable will be set to the mcaniﬁg under the first
* part-of-speech in the matched righthand phrase, and so forth for the
remaining parts-of-speech and variables. The one-to-one correspondenﬁe
locally becomes a one-to~two .correspondedce when a specified
partfof-speech is one declared by the RNGTYP mécro. An array
part-of-speech will match any part-of-speech between its bounds. The
two variablés corresponding to an array part-of-speech are set to hold
the meaning and the specific matched part-of—speech respectively.

Reférring to the part-of-speech declarations given above,

RULE <EXPR,BOP,EXPR>,< X,P1, Y,P2, W,P3> , Action

~ 151 ~

implements the production scheme

?2? ::= <EXPR> <BOP> <EXPRD>
Action will find X, Y, and W containing the meanings under the matched
phrase and action will find P1, P2, and P3 containing the specific
parts-of-speech held by each of the matched nodes. For example, the

precedence production scheme

<EXPR : //[x;y;w;] EBOP(x,y,w)\\>
HEE (EXPRu:x> (BOPi:y) (EXPRU:W>
where u 1s required to be less than or equal to i and where v is

required to be strictly less than i is implemented by

'RULE <CEXPR,BOP,EXPR>,< X,P1, Y,P2, W,P3>,<
MOVE POS,P2 ‘ ; Part-of-speech of BOP
ADDI POS,EXPR-BOP ; Displace into range of EXPR, 1i.e,

H BOPi goes to EXPRi

CAMGE POS,P1 ; 1 must be greater or equal to u
DEAD ; otherwise, abort this rule

CAMG POS,P3 ; L must be greater than v
DEAD

¢+ Precedence conditions arc now satisfied. Also,
:+ POS contains the part-of-spcech for EXPRi
SUSPEND EBOP,<X,Y,W> ; SEM:- //7[X:Y:W:] EBOP(X.Y W)\\
GIVEA i+ Generate EXFR,. No parameier
: 15 specified because FOS is already set

DEAD >

~ 152 ~

The user who wishes to declare a general rewrite rule, e.g.,

<A: 770%:] FOONND <B: //[x%5y:;] 9(x,¥)\\ ::= <C:x> <D:y>
must specify the generation of the lefthand phrase as has been described

in the section about the parser, e.g.,

RULE <C,D>,<X,¥>,<

PUSH. COLU“N ; OLD COLUMN:= COLUMAN
SETZ COLUNMN, "y COLUMN:<NIL

SUSPEND £,<X> ; SEM:.= //7[X;] fCX)\\

GIVEA(A) : Call NEWNODE

MOVEI LEFT, (COLUMN) ; Step Right

POP. COLUMN

SUSPEND g,<X,Y> . SEM:= /7[X:Y;] 9(X.Y) \\
" GIVEA(B) : Call NEWNODE

DEAD >

The //..\\ Notation. SUSPEND
The macro

SUSPEND £ ,<X,Y,2>

implements the statement

SEM:= //7[X;Y;2;1 f(X,Y,Z2)\\
As the reader may recall, SEM is the mcaning parameter to NEWNODE. In
general, all meanings are represented by programs in this way. F must

be the name of a procedure declared by the SUSFUNC macro (see below).

The SUSFUNC macro - Another Component of the //...\\

A function which implements a mecaning, i.e., one whose name is used
in the SUSPEND macro, must be declared with the SUSFUNC macro. SUSFUNC

is a declarative statement:

SUSFUNC(name , R , frozen parameters , local variables)
Procedure Body
DEAD .
The frozen parameters is a list of variables. Upon entrancg to the
‘procedure body, these variables will be set to the values that were
. contained in the .variab]es specified 1in the SUSPEND macro. Local
variables specify the names of variables which are to be local to the
procedure body. & specifies a reluctance; the default is 2zero. The
reluctance of a ‘production is specified with the production's meaning

routine.

For example, referring to the <EXPR> <BOP> <EXPR> rule given
earlier, we can implement the routine EBOP with the following
conventions:

1) EX(an EXPR) sets register 1 to a number, and

2) EX(a BOP) sets register 1 to a number where it is expected

that the global variables ARG1 and ARGZ will first be set to two

numbers.

EBOP is then defined by

SUSFUNC(EBOP, ,<E1,B1,E2>)

EX(E1) ; ARG1:= value from lefthand EXPR
MOVEM 1,ARG1

EX(E2) : ARGZ:= value from righthand EXPR
MOVEM 1,ARGZ

EX(B1) ; Give the BOP control. Leaves
DEAD ;1 register 1 containing result.

~ 154 -

A Finer Control Over the Matching Process - WANT

The parser's matching routine, FIND, is actuvally implemented by a
sequence' of invocations of the WANT macro. WANT matches one element of
a phrase. That is, WANT takes a part-of-speech and a single column and
searches the column for nodes having the given part-of-speech. Upon
each match, WANT "returns". Unlike with standard procedure protocol,
WANT does not leave the stack level unchanged upon return., WANT returns
having pushed some data onto the stack. The user specifies that WANT is

to resume its searching by performing a POPJ.

For example, a call to FIND with RHS = <AX{B><C> is implemented by

the seguence

WANT(C)

WANT(B)

WANT(A)
That is, from the given parsing graph in register P, WANT looks down the
column referenced by P and stops at each node whose part-of-speech is C.
Upon each matéh, WANT(C) "returns" and WANT(B) executes. Whenever WANT
"returns®, WANT leaves P containing the LEFT field of the matched node.
Thus, cascaded calls to WANT implement the routine FIND. When WANT can
find no more matches, WANT itself executes a POFJ. In this example,
when WANT(B) finds no more matches, WANT(B) executes a POPJ 'and thus
gives control back toVWANT(C) so that WANT(C) will try to find another C

' node.

[

WANT can take a second parameter which specifies a wvariable into
which WANT will store the meaning associated with the matched node.

Thus, the righthand phrase

= CAXD <(B:Y> <C:W

may be programmed as

WANT(C,2)

WANT(B,Y)

WANT(A,X) '

Body

popJ
Body will be executed upon each occurrence of the phrase <ADXBXXC>
within the parsing graph referenced by P. Body will be executed in an
environment where X, Y, and W have the meanings associated with the
matched nodes and where P contains the LEFT field of the matched A node.
The POPJ at the end of body will give control back to WANT(A) so that
WANT(A) will resume searching for another A-node. When WANT(A) finds no
more A-nodes, WANT(A) POPJ's and thus gives control back to WANT(B). If
WANT(B) finds another node, WANT(B) willvagain give control to
WANT(A) with P containing the LEFT field of the newly matched B-node.
In this way, alternate phrases represented in a parsing graph are

transformed into backtracking program execution.

An Optimization - Factored Righthand Phrases and Ordered Columns

When a grammar is called, the grammar has to search for each
production's righthand phrase within the given parsing graph. A certain

saving will be achieved if some of the searching effort can be shared

~ 156 ~

among the various righthand phrases. Consider, for example, that the

" set of righthand phrases

<A> <C>
<D> <C>
<E> <Q> <C>

can be factored from the right tb yield

CA> ===~ KBY -==- <C>
I |
<D I
I
<EY ==-= <@

In trying to find instances of these three righthand phrases, the
factored representation facilitates some sharing of the searching
effort. That is, rather thah searching for a <C> node three times, once

for each righthand phrase, the search for a <C> node can simultaneously

]
serve all three righthand phrases.

With the WANT macro, the unfactored set of righthand phrases is

searbhed by

PUSHJ. [WANT(C)
WANT(R)
WANT(A)
body!1
POPJ.]

PUSHJ. [WANT(C)
WANT(B)
WANT(D)
body2
POPJ.]

PUSHJ. [WANT(C)
WANT(Q)
WANT(E)
body3
POPJ.]

~ 157 ~

The factored righthand phrases are searched by

WANT(C)

PUSHJ. [WANT(B)
PUSHJ. [WANT(A)

body1
POPJ.]
PUSHJ. [WANT(D)
body2
POPJ.]
POPJ.]
PUSHJ. [WANT(Q)
. WANT(E)
body3
POPJ.]

Each match of a C-node serves simultaneously for all three phrases.

In fact, WANT takes a third parameter which specifies the address
of a program to which WANT will branch when WANT can find no more
matching nodes. When the third parameter is specified, WANT performs
the branch rather than performing a POPJ. Thus, the factored righthand
phrases can be searched by

WANT(C)
WANT(B, ,LABLE1)
WANT(A, ,LABLEZ)
body1
POPJ.
LABLEZ: WANT(D)
body2
POPJ.
LABLE1: WANT(Q)
WANT(E)
body3
POPJ.
In general, the searching of alternate parts-of-speech from within the
same column is efficiently implemented by a series of WANTs linked

together by their third parameters, e.g., the phrases

~ 158 ~

eee CAD
.. <D>
implemented by
WANT(A, ,LABLE1)
bodyl
POPJ.
LABLE1: WANT(B,,LABLE2)
bhody2
pordJ.
LABLE2: WANT(C,,LABLE3)
body3
POPJ.
. LABLE3: WANT(D)
- bodyd
POPJ.

Given a column and a set of alternate parts-of-speech to be
searched, we can achieve further optimization by requiring that both the
column and the set of alternate parts-of-speech be ordered, e.g., in
increasing order by part-of-speech. This constraint will facilitate a
linear rather than gquadratic search time. That 1is, rather than
independently searching the column for each given part-of-speech, we can

find al; matches with exactly one scan thru both the column and the

given set of parts-of-speech.

In fact, both the procedure NEWNODE and the macro WANT are written
'to create and examjne ordared columns with ordered grammars; NEWNODE
. inserts a new node'into COLUMN at an appropriate place so to preserve
order in COLUMN. WANT ceases to search for a given part-of-speech in a
given co}umn as soon as WANT comes across a node whose part-of-speech is

greater than the given part-of-spcech. WANT brancheé‘to the address

~ 159 ~

specified in its third parameter leaving F containing the unsearched
portion of the given column rather than setting P to the start of the
given column., In this way, an ordered serics of WANTs linked via their

third parameters search a given column in a single scan.

A generalization of the macro WANT allows the specification of an

array of parts-of-speech: . ,

WANTR(LOW , HIGH , P1 , X , ALT)
specifies a search for any part-of-speech between LOW and HIGH. Upon
each match, the variables P1 and X are set re;pectively to the matched
part-of-speech and meaning. The final parameter, ALT, is identical to

the third parameter in the WANT macreo.

All productions specified via the declarative RULE macro are
initially assembled as list structures. Upon system initialization, all
of the righthand phrases specified in RULE macros are gathered. The set
of righthand phrases is then factored from the right and ordered.
Finally, the factored datastructure as a whole is compiled intoc machine
cade as though optimally specified with the use of the WANT macro. The

'resulting program becomes the grammar.

Several grammars, e.g., grammars for a multipass system, are
compiled separately so that each grammar may be independently and
dynamically engaged to the parser. Another declarative macro enables
the user to specify that following productions are to belong to a
specified grammar. There is another macro which engages a grammar to
the parser. The file NEWBMT.MAC contains relatively complete

documentation on these macros.

~ 160 ~

The Source Files Making Up Lhe Languege Frocessor

Universal Files

BIGMAC Top level universal file.
Contains register assignments and macros for memory
management and other generally wuseful macros and
opdefs.

NEWBMT (New Basic Mectalanguage)
Contains macro defipitions for the metalanguage.
Contains relatively complete documentation for each
macro. .

NMETAL Extension of NEWMBT.

NEWMBT and NMETAL together define at least the macros
\ presented in this section.

Source Code

BEGIN System Initialization and Local UUO handler.
CIRCUS (Circulatory System)
Memory Management. Includes list~space garbage

collector.
NEWSCN (New Scanner)

Contains the parser's character input routine which,
in addition to generating nodes representing the input
characters, - gencrates each of the alternative phrases
<ID>, <NU>, and <QS> over the appropriate input
strings of characters. <(ID> stands for identifier,
<{NU> stands for unsigned integer, and <QS> stands for
quoted text string. The reader may note that these
three parts-of-speech are treated specially in the ICL
reference manual. In additian, NEWSCN ignores
comments and manages the symbol table for identifiers.

NEWPAR (New Parser)

Includes both the parser and the semantic evaluator
presented in this thesis. Many of the macros defined
in NEWBMT reference programs contained in NEWPAR.
Note one major difference in paming: There is no
single prodedure corresponding to the procedure named
FIND in this thesis. As mentioned earlier, the effect

~ 161 -~

of this mythical FIND is implemented by wuses of the
WANT macro. The WANT macro references a routine which
happens to be called FIND.

GCMPIL (Grammar Compiler)

Compiles the righthand phrases of a given grammar into
an efficient, factored use of the WANT macro.

CODGEN (Code Generation)

Contains the machine-code generation procedures.,
Serves as the assembler language for automatic code
generation, e.g., supports labels and foward
references. Also interfaces to the memory manager and
avtomatically fragments the generated machine code so
as to optimally use segmented free storage.

UTILS (Utilities of general interest)

Supports file I1/0, numberic output, and contains a
little spill over from NEWPAR.

Universal Files
ICLSYN (ICL Syntax)
Declares the parts-of-speech for ICL's syntax grammar.
ICLTYP (ICL Types)

Declares the parts-of-speech for ICL's type and pass3
grammars.

ICLSEM (ICL Semantics)

Defines the datastructure which fepresents the user's
declared non-primitive types.

ICLRUN (ICL Runtime Support)
Defines registers and fields for ICL's runtime
support. Also includes the macros for

code-~generation. These macros reference the file
CODGEN. ' -

~ 162 ~

Syntax Files

The syntax files nearly correspond to the major parts-of-speech in
ICL's synfax. Following is a list of parts-of-speech, syntax files, and
semantic files. For each part-of-speech in the first column, the second
column names the file declaring productions whose lefthand phrases
consist of the named part-of-speech, and the third column names the file
containing the programs which implement the meanings for ,these

productions.

<TYPE> TYPEX TYPEXS

<EXPRD EXPR and EXPR1 EXPR8 and EXPR9Y
<DECL> DECL DECL8 and DDECLS
(BOP> BOP BOP8

op> uop uors

<RANGE> RANGE RANGES

{SS> SS S38

<QUANT> QUANT QUANTS
Processes QUOTE QUOTES
Metalanguage META METAS8
Miscellaneous MISC (MISC itself)

Top Level FUN {FUN itself)

The files named in the second column contain invocations of the SUSPEND
macro and the procedures named within the SUSPEND macro are defined in

" the corresponding file in the third column.

The Type and Third Pass Files

PASS2Z RULE declarations for permanent rules of the type-pass.
PASSZB More of the same.

Both PASSZ and PASSZB together include the meaning
routines under these rules. These files also include
the access functions for the datastructures which
represent the parts-of-speech for non-primitive types.

PASS3 Rules of the third pass.
PASS38 Meaning routines for third pass.

The routines in PASS38 generate machine code.

~ 163 ~

' Miscellaneous Compiler Files

ERRORS

KEYIDS

The compile time error reporting mechanism.

Also includes the tC-handler.

Sets up correspondence between symbols used in the

MACRO-10 source to name datatypes and the identifiers
used by the ICL user. KEYIDS also sets up
correspondence hetween some of the keywords found in
the syntax productions and symbols used in the
MACRO-10 source as parts-of-speech for these keywords.

ICL'Ss Runtime Support

ICLRTS and ICLRT1 Runtime support

TOPS20

ICLDDT

A little more runtime support.

This runtime supports requires the TOPS-20 monitor.

The debugging package

~ 164 ~

Appendix 2

REFERENCE MANUAL FOR ICL

Introduction
Overview
Basic Conven

Meta-Language

Input .
Output
Ending

Meta-Language File Names

Examples

tC-Handler
Example

The Compiler

REFERENCE MANUAL FOR ICL

tions .

LR

.

. . - . - - - - . . - . .

LY . « . -

Compiler Structure and Error Reporting . . .
Syntax Errors v e e e e e e e e
Datatype Errors e e e e e e e e
PASS3 Errors . e e e e e e e

ICL's Rules of Grammar . .

ICL's Major Syntax Parts- of speech ...
The ICL Process e e e e e e

Declarations . e e e e

ICL's Datatypes - Part 1 o e e e
Primitive Datatypes Ce e e
Non-primitive Datatypes

Strings e e e e e e
Records e e e e e e e
Variants

Scalars

' Defining New Datatypes and Declarxng New Varlables

Referencing a Prev10usly Dec]ared Type
Examples

Declaring Datatypes
Examples e e e e e
Declaring Varlables e e e e e
Examples . e e e e
When Are Types Equal7
Defining Functions and Coercions ..
Functions e e e e e e
Examples e e e
Coercions e e e e e e e
Examples . e e e e e e e
Miscellaneous (DECL>s e e e e e
Executable Forms
Computed Values: {EXPR>s - Ffart 1

The

IF-THEN-ELSE

-

* e e e 3 e

s s e e

*« e+ s o

168
178
173

176
177
177
178
178
179

180
181

182
182
182
184
184

- 186

186
187

189
190
190
191
191
192
192
193
183
194
196
196
196
199
199

. 200

203
203
204
206
207
208

210
211

. 213

~ 166 ~

An Explanation of The Generalized Rule Format
Terminal <EXPR>s . i e e e e e e
String <EXPR>s

String Generation e e e e e e

String Selection . e e e e e

Miscellancous String Forms e e e .
Record <EXPR>s+ . .

Record Generation

Record Selection e e e e e e e e e
Point <EXPR>s c e e e e e ey e e e

Point Generation e e e e e e e e

Point Selcction . e e e .
Scalar Selection - The Sca]ar CASE Porm ..
Variant <EXPR>s e e e e e e e e e e

Variant Generation . .

Variant Selection - The Varlant CASE Form .
Type Disambiguation e e e e e e e e e
Function Calling . .
<EXPR>s Involving anary and Unary Operators

Looping With <BOP>s
Existential and Universal <EXPR>s e e e e
Embedding <8S>s Within <EXPR>s .

Embedding Declarations Within <EXPR>S - The BEGIN END

Global Communications -~ The HOLDING form and <ASN>

.

¢ & » & e e @

form

.
.
.
.
.
.
-
-
.
.

e+ e e e

Anchoring Pointers - @ and COPY -
Detecting NIL . e e e e e e e e e
Binary and Unary Operators: <BOP>s, <UOP>s. and <RHUOP>s
<BOP>s . . S .
Unary Operators - <UOP> and <RHUOP> e e e e e
Sentence Forms: {SS>s . . e e e e e
Assignment Statements and <SSRHS> e .
ICL's Policy about Assignments, Po1nters, and Copylng
ICL's Implementation is in Terms of Pointers .
Memory Sharing
Memory Modification . e e e ..
Pointer Anchoring and Copylng e e e e e
Example - Line Editor = . e e e ..
Example - Bounding Boxes and Property Lists .
Disasters . e e e e e e e e e
Carry-overs from <FXPR>5 e e e e e e e e
The IF-THEN-ELSE e e e e e e e e e e
The Scalar CASE form
The Variant CASE form e e e e e e e e
The HOLDING form e e e e e e e e e
The BEGIN-END form
Looping with <{SS>s e e e e e e e e e
Function Calling e e e e e e e e e e e
A Sequence of <(SS>s ..
Quantifiers - Loop Generators: <QUANTDs e e e
Primitive Quantifiers e e e e e e e e
The WHILE Quantifier
The UNTIL Quantifier

. 214

217
221
221
223
226
228
228

. 229

231

. 231
. 231

233
238
2356
239

. 244

246
248
251

2568
262
265
270
274

275

. 275

284

288
288
292
293
297
299
304
306
314
323
328

. 328

329
330
331
333
334
334
336

337
338

. 338
.» 339

~ 167 ~

The REPEAT Quantificer e e e+« .« < . 840

The Arithmetic FOR Quantlfler SN .at . . 3841

The Selection FOR Quantifier - the 3E and $C 346
Non-primitive Quantifiers e e e e e e e 361
Binary Combinations e e e e e e e e e 361

Unary Combinations e e e e e e 3606

C<EXPR>s and <TYPE>s ~ Part 2 372
Another Primitive Type - ID O V4

ID <EXPR>s - The % . D 24

Two More Non-primitive Types O Y |
PRIVATE Types v e e e e e . . 378
Publication and Conflrmatlon - . < 376

Selection and Gencration for PRIVATE Types 376

Processes - The //...\\ and the <*...% . . . 384

Process Types .. e e« o+ . . 386

Process <{EXPR>s - Gcnoratlnq Forms .« 388

Selection Forms for Process <EXPR>s 403

Process Generation - The Shert Form 406

A Concise Notation for Specifying Relative Points - The *:" 410

The Debugging Package R T B 2
Indices - . ‘ e e e e e e e e e+ <« . 423
Rules Sorted by Part of speech ™ 281
Rules Sorted by Name . . e e e e e e e e e e e . 428
434

Deterministic Rules e e e e e e e e e e e e e

~ 168 ~

Introduction

| ICL was initially intended to be an upgraded PAL (precisionm artwofk
langUagé) to further ease the design and realization of integrated
circuit masks. PAL, as it turns out, is hardly programmable except that
it supports assignment statements for numbers and parameterless
subroutines for pictures. There is no block structure, no recursion,
and no associative data structure. ICL, however, is a full blown
programming language with some features especially designed for dealing

with geometry.

This manual describes ICL in its full generality as a programming
language. The ICL tailorgd for IC implementation is described in the
marual titled The IC manual for ICL. The basic programming language 1is
kept separate from its specialization in order to provide flexjbility in
keeping with evolving styles of IC design. The special functions and
datatypes which define the IC-specific ICL are all impleﬁented in ICL
and thus are subject to relatively easy modification. 'Throughout this

manual, ICL refers to the general programming language.

ICL includes many features present in both LISP and PASCAL. Like
LISP, ICL encourages generative and embedded expression. A record
structure, for example, may be generated in ICL without the use of
assignment statements, like LISP's LIST function, whereas in PASCAL, one
must assign each component separately. Unlike LISP, but 1like PASCAL,
ICL is a completely typed language. That is to say, any computed entity

must be associated with some declared datatype. ICL is completely type

~ 169 -

safe, whereas PASCAL leaves a few arcas inadequately type checked: For
example, PASCAL gives the user completely independent access to the case
key and to the body of a variant data structure.

ICL represents its data in terms of pointers. The user, however,
may ignore the existence of pointers altogother. Except for one,
optional operator, the existence of pointers is invisible. The use of
pointérs in the implementation allows for efficient and automatic data
sharing. Besides, the user may define recursive data structures without

thinking about pointers.

ICL supports process expressions and in fact, bhas process types.
That 1is, a program may be packaged along with some current context and
passed off as datum. At some later time, this datum may be evaluated,
causing the program to execute then and there. The evaluation occurs in
the current context combined with the old context which was saved at the

time of the packaging.

ICL supports user-defined type coercions. A type coercion is a
declaration specifying that one datatype may implicitly be transformed
into a second datatype via a given program. Even the common
integer-to-real coercion, which is implemeﬁted in almost every language
including FORTRAN, is user-defined in ICL. A coercion is a function
which bhas no name and whose invocation occurs without any specification
whatsoever. The compiler will apply coercions throughout the wuser's

program in the effort to maintain datatype consistency.

~ 170 ~

. Type coercions are essential to support the notion of equivalence
classes of representations. For example, a geometric line may be
represented either by @ pair of points or by three numbers .which
represent the coefficients of a lincar equation. After one has defined
the two coercions relating these representations, an instance of a line
may be generated in either of the two forms and independently accessed
in either form. Thus, a routine which requires, say, the equation
representation for a 1line can work even 1if given a 1line in the

pair-of-points representation.

Independent of type coercions, a single procedure name may be
shared by several different procedures. One example of this is found in
the programming language PASCAL: The procedure-name WRITE is the npame
of the procedure which prints integers and is simultaneously the name of
the procedure which prints booleans. The operation, WRITE, is defined
for more than one datatype. In ICL, the user may define many different
procedures using the same name so long as they are distinguishable by
their input. or output datatypes. Throughout the languages of science,
there are many operators whose definitions depend on the types of their
parameters. For example, ABSolute-value is defined on integers, reals,
and points. The operator DISPLACE can be defined to mean "displace a
point by a point", or "displace a mask by a point", or even, "displace a

linear transform by a point".

The space of datatypes may be extended to include many distinct
types whose representations are identical. For example, a list of
points is a suitable representation for both a wire and a convex

polygon. However, the set of convex polygons is clearly a subset of the

~ 171 ~

set of all 1lists of points. In ICL the construct "PRIVATE" enables the
user to specify a new type which is a restricted form of an existing
type. He can then specify coercions between the restricted and
unrestricted types. For example, a list of points could be coerced into
the restricted type, a convex polygon, via a brogram which verifies
convexity and which reorders the list of points to trace the poiygon in
the clockwise direction. A convex polygon could be coerced back into a
list of poinfs via the identity. Thus, the user can define procedures
which take convex polygons as input and which access the'input'as lists
of points. The user can be certain that the input iS indeed clockwise

and convex.

Datatypes in ICL provide more utility than do datatypes in PASCAL.
PASCAL's datatypes serve mainly to aid the compiler in detecting program
inconsistencies. ICL's datatypes not only check program integrity, but
also play an active role of choosing which functions to call and which

coercions to invoke where.

The type pass in ICL operates as a parser trying to come up with a
successful parse in a language whose parts-of-speech are datatypes. The
rules of grammar come from the coercion, function, and datatype
definitions. The compiler generates machine code. All decisions about
when to apply coercions or what functions to use are made at
compile-time. Thus, the free use of datétypes has no runtime overhead

per se.

Datatypes are to programming languages as units are to physics. A
meaningful equation describing a physical principle must not only make

sense syntactically but must also make sense in terms of units. It

~ 172 ~

often happens that one can complete an equation very easily guided only
by the units requirements. My experience is that much of programming is

very automatic once one knows the type of cbject to produce where.

~ 173 ~

Overview

The ICL system is composed of four ma jor sections: a
meta-language, a compiler, a debugging package, and a tC (control-C)
handler. The meta-lanquage is used to specify input source files for
the compiler to read, output files on which to keep a complete record of
the session's activity, and files which are to be closed or forgotten.
The compiler is the main body of ICL. The debugging package permits the
user to trace the execution of functions and to set break points at
functions' entrances and exits. It also gives him the ability to look
at and set a function's input and output parameters. The debugging
package can be called from a running fCL program. The tC bandler

responds to tC's and will accept several one-character commands.

I will proceed by describing the meta-language and the tC-handler
first. These components are applicable nearly everywhere. Then I will
describe the.ICL language itself and finally, the debugging package.
However, I must first define some basic terms and conveantions used

throughout ICL.

Basic Conventions

Throughout this manual, the term "letter" refers only to capital

letters.

An identifier in ICL is a letter followed by a sequence of either a
letter, a digit, or an underscore (_). An identifier is terminated only

by some character other than a letter, digit, or underscore. From here

~ 174 -~

on out, <ID> will mean identifier. ' .

A comment is text which is completely ignored by the compiler.

Comments begin and end with a double quote (").

Text strings, also known as Quoted strings, are specified by
 beginning and ending with a single quote ('). A single quote may be
entered into the quoted string by placing two single quotes with no
intervening characters. The symbol <QS> will be used to denote a quoted

string.

~An uninterrupted string of digits without 1leading zeros will be

denoted by <NU>. An unsigned integer number is an instance of <NU>.

The term blank, or blanks, will be used to denote any non-empty
sequence of spaces, tabs, carriage-returns, line-feeds, or form-feeds.
Blanks are ignored except in the following places: Blanks in a quoted

string are preserved, and as noted above, blanks cannot occur within an

<ID> or <NU>.

We shall adopt a slightly extended BNF notation for specifying the

syntax of ICL. A BNF rule hés the format

lefthand phrase ::= righthand phrase
where each phrase is a sequence of parts-of-speech. A part-of-speech is
either an identifier enclosed in angle brackets, e.g., <ID>,, a literal

identifier, e.g., IF, or a character. A rule which is written as

lefthand phrase :::= righthand phrase

~ 175 ~

'is equivalent to the first form in all respects except for a tiny matter

relevant only to the interpretation of ICL's syntax error messages.

Thus far, we have introduced the parts-of-speech <ID>, <NU>, and
<QS>. I have refrained from using BNF to describe <ID>,‘<NU>. or <QS>
because unlike other parts-of-speech in ICL, blanks are not ignored in
these parts-of—speefh. Blanks in all other ICL forms are optional.
Hence, the righthand phrases of BNF rules implicitly invite blanks

between their elements.

There is one other commonly used part-of-speech, <IDLIST>, which we

can deﬁcribe by the rules:

- <IDLIST> ::= <ID>

CIDLISTY> @t

<IDLIST> , <ID>
This states that an <IDLISTY is a sequence of <ID>s separated by commas.

For example, the following is an instance of <IDLIST>: . 1

OBI_WAN_KENOBI,DARTH_VADER ,THE_FORCE , LUKE
(----IDLIST--)

(mmmmmmmm——- IDLIST==mmmm=-)
(memmmmm e IDLIST==-mnmm-)
(mmmmmmmc e ———— IDLIST ~memmmmm =)

Some computer terminals cannot accept the characters "{" or "}",
These characters are used extensively in specifying strings, or lists of

objects. For these poor terminals, ICL has the rules .

——
.
.
i
™
A d

~ 176 ~

so that a [) will pass as a { and a (] will pass as a }.

The ICL system receives teletype input from one of two ports: the
compiler port and the general port. Unless otherwise mentioned, all
input goes into the compiler port. The compiler port tries to interpret
its input as ICL source language text. The general port is used by
ICL's error handlers and all running ICL programs. The general port is
merely a character by character port. It follows none of the
conventions described above and it does not understand the meta-language

or the ICL language.

The compiler pert takes in characters a line at a time. This means
that the compiler does not see any input until a break character is
typed. Included in the set of break characters are G (bell),

carriage-return, and tZ.

MACRO Hackers
The input TTCALLs comprise the general port. An "XCT SCANIN® is
the compiler port. It sets AC 1 to the character. The "XCT
SCANIN" does not itself follow any of the above conventions.
Do not use any I/0 channels except via the mechanisms provided
in UTILS.MAC

Meta-language

The meta-language is entered by typing a /* and is left by typing a
x/. Any text produced by the enclosed meta-statements appears to
substitute for the /* ... */ string. Producing text means feeding the
text to the compiler port. Any sequence of the folloﬁipg
meta-statements may appear between the /* and the x/. The

part-of-speech <file> will be described after the meta-statements are

~ 177 ~.

described.
Input
READ <file> ;
produces the text contained in <(file>). The default
extension is ICL. The compiler port takes in
characters from <file> but the general port remains
unaffected. Hence <file> should contain only ICL
source language text and meta-language text. Any
input requested by ICL's error bhandlers or by any
running user's program will not be taken from <{file>.
EREAD <file> ;
(echo read) is cquivalent to READ except that the text
is also echoed to the terminal.
corY (file> ;
produces the text contained in <file> Jike READ, but,
in addition, any input requested thru the general port
is also taken from <file>. Both input ports take
characters from <{file>. Hence it is conceivable that
{file> may contain source language text, meta-language
text, wuser program input, and responses to gquestions
posed by ICL's error handlers. The default. extension
is ICG (IC1 1oG).
ECOPY (file> ;
is COPY with echo to the TTY.
Cutput
IN_LOG <filed> ;

produces nothing. Heowever, all characters input from
the TTY, starting after the terminating */, will go to
{file>. Default extension is ICG. Note that since
all your keystrokes are recorded, you can completely
replay your session by restarting ICL and then typing
"/XECOPY <file>;*/ <{carriage-return>". IN_LOG records
all TTY ionput from both TTY ports.

OUT LOG <filed ;

produces nothing. However, all characters typed out
to the TTY go into <(file>.

~ 178 ~

FULL_LOG <file> ;

produces nothing. All TTY characters input or output
go to <(file>.

MACRO Hackers

If you take BIGMAC.MAC as a umniversal file, all TTCALL's will be
intercepted for the LOG files. "TTCAL." has been OPDEFed to the
real TTCALL. '

Ending ' . '
CLOSE filed ; ’

produces nothing. Closes <file>. This is necessary
to insure the existence of the output files. For
input files, CLOSE is equivalent to FORGET.

FORGET File> ;

produces nothing. For input files, FORGET cuts short
the input by simulating an early EOF. For output
files, FORGET undoes all writing that has occurred to
the file. The old version, if any, remains untouched.

CLOSE and FORGET work for any files, even if they are
being used by a running ICL program. CLOSE and FORGET
may occur asynchronously. Input files are cut short,
and further output to the output file is ignored:

Meta~language Filenames

A <file> is described by the following BNF rules:
1) <filed ::= <IDD
takes the default extension
2) <(file> ::= <ID> .
blank extension
3) (filed> ::= ID> . <KID
extension specified
4) <filed ::= <(filed - (file>

The concatenation of the two files; may not be used

§) <file> ::

6) <file> ::

~ 179 -

for specifying output files.

<ID> @ <file> ;

<ID> specifies a device for all of <file>. Note that
even if the specified device is TTY, none of the TTY
characters taken in thru this mechanism will appear on
any of the LOG files.

{file> [<NU> , <ID>]

Project Programmer Number (PPN) specification. <File>
may not be one directly from (4).

‘Note that <file) represents only a subset of the PDP-10's possible

filenames.

Examples:

1) If the file A.ICL contains the text "+2*K", then

I:= JOHN /*READ A;*/; is equivalent to

I:= JOHN +2%K;

2) If the file B.WHO contains the text "+3/*READ A;%/;", then

1:=JOHN/*READ B.WHO;*/ is equivalent to

I:=JOHN+3+2%K;

3) The following are equivalent:

/* IN_LOG X; READ A-B-C;*/

/% IN_LOG X; READ A; READ B-C;*/

/* READ A-B; IN_LOG X; READ C;*/

/* READ A;*/ /*READ B-C;*/ /XIN_LOG X;*/

However, the

following is different:

/*IN_LOG X; READ A-B;*/ /* READ C;*/

~ 180 ~

The file X.ICG will begin with the characters /% READ C;*/.
Remember that the IN_LOG takes effect immediately following the

~closing */.

tC-Handler

While running ICL, typing one or two tC's will get you into the
tC-handler. The 1tC-handler prompts with a "<{>". Typing twenty or
“thirty tC's should get you to the monitor level in case of an ICL bug.
Sometimes, the "<>" will npot appear at first; I don't know why.

However, in either case, typing one of the following letters will do ...

H :
‘ (Help) Type out a reminder of these letter commands.

C
(Continue) Ignore the tC and resume what was being done.

B
{Bye) Get out. Go to monitor 1level. You may CONT
from the monitor level and be back in the tC-handler.

E
(Exit) Prepares to make a save file. You are then
asked for an initial message. Type anything and terminate by
a tG (bell). ICL then exits. If you do a SAVE, you can
later run the saved file and be right back where you were
just before the tC. You will first be greeted by your
initial message.
The E command will not exit if any I/0 channels are currently
open. If any 1/0 channels are open, the user will be
notified and the E will procced like the C command does.

A ,
(Abort) * Abort a running ICL program. Acts like a "C" if
an ICL program is not currently running. The debugging
package will be entered as soon as some function. is entered
or left. . .

D v
(DDT) Enter DDT. Return from DDT by DDT's <altmoded>G.

1

(Intercepf) Idtercept the compiler port so that when it
requests another character, the compiler port will take

~ 181 ~

characters directly from the T1Y. Intercept i1is meant to
enable the user to override the current input source for the
compiler port. This is useful if a long file is currently
being read by the compiler port.

. "I" leaves you in'the tC handler. Do a "C" so that the

system will continue processing. When the compiler next asks
for input, it will be waiting for TTY input.

The compiler port will resume taking in characters from the
original source immediately after you type a tZ.

You may not intercept an intercept; intercepts may not be
nested.

You have done /*READ A;*/ and the file A is the wrong file; YOU

would

like to put an carly end to A. Do an intercept ("tC I C")

and then type "/*FORGET A;*/t2". The first part of A will have

been read in, but nothing since the tC.

NOTE:

tC's are not recorded on any LOG file, nor are any of these

single-character commands. These letter commands come thru neither

input port.

~ 182 -~

THE COMPILER

The compiler is the main body of ICL. The compiler responds to
user input by attempting to view it as a valid ICL program. If
successful, the compjler then generates machine .code and transfers
control to it. When the user program terminates, ICL is ready to

respond to more user input.

ICL is documented entirely in terms of the individual rules of
grammar which define ICL's syntax. Each syntax ruie is independent from
all the rest and in fact plays the role of an .individual,. predefinéd
function. So, for example, where LISP defines the function "(COND
«e.)", ICL defines the construct "IF ... THEN ... ELSE ... FI".
Associated with each syntax rule is additional, non-syntactic
information. This additional information expresses requiremenys imposed
by further compiler passes. For the user to understand ICL's error

messages, he must be aware of the overall structure of the compiler.

Compiler Structure and Error Reporting

ICL is implemented as a three pass compiler. The first pass
enforces syntactic requirements, the second pass enforces datatype
consistency, and the third pass enforces consistent use of data sources
and data sinks. In the event that a user's program is ill-formed, bhe
will be informed as to which pass failed and will be given a sét of
possible reasons for failure. Each pass has a different way of

reporting error conditions.

Syntax Errors

~ 183 ~

Failures from the first pass, the syntax pass, are reportéd by
typing back the user's input in a partially compressed form. Incorrect
sections of input are not compressed and hence appear unmodified.
However, some correct sections of text are compressed in the sense that,
in place of the correct section, ICL gives the appropriate syntax
part-of-speech enclosed in angle brackets. For example, the following

syntactically incorrect text:

HAPPINESS := IF TODAY=SATURDAY THEN 100 ELSE 0 FI % X
YESTERDAYS HAPPINESS + K*20 ;.

ylelds the syntax error message:

HAPPINESS := <EXPR> * %
YESTERDAYS_HAPPINESS + K*20 ;

The text between the IF and FI is correct and has been compressed.

Unfortunately, the error reporter's notion of syntactic correctness
" is more restricted than ICL's. Some correct sections will not be
compressed. The compression of correct sections occurs on a rule by
rule basis and not every rule participates in compression., Compression
occurs only with deterministic rules. The documentation for each syntax
rule specificies whether or not the rule is deterministic. The "::=" of

the BNF notation is replaced by ":::=" in deterministic rules.

Consider the example above. The IF-THEN-ELSE-FI rule is
deterministic, and because its use in the example has no errors, the
IF-THEN-ELSE-FI rule bhas been» compressed. Hdwever, the' "KX20" is
correct but it is not compressed. The rule which implementS infix

operators ,e.g., the "*", is not deterministic. The syntax error

~ 184 ~

message would be more informative if every rule were deterministic.
However, a rule can be deterministic only if its applicability camn be
determined without reference to surrounding text. The infix-operator
rule cannot be deterministic because, given the text "142%, its
applicability >depends on whether the "1+42" is contained in "A:=1+42;" or
"A:z142%N",

The only certain information the user can derive from a syntax
‘error message is that

1) Compressed sections are syntactically correct, and

2) Non-compressed sections may or may not be correct, except that

3) A ndn-compressed section involving a deterministic rule is

definitely not correct.

Datatype Errors

Fallures of the second pass, the type-pass, are reported in terms
of ICL's syntax rules. The user, when informed of a type-pass failure,
will be told which syntax-rule failed the type-pass. The wuser should
then look up the syntax rule and understand that he violated the type
requirements associated with that rule. The user will alsoc be given a
backtrace of grammar rules, so that he can see where in his program the

faulty syntax rule was applied.

PASS3 Errors

Errors emanating from the third pass are not well reported by ICL.
Fortunately, PASS3 errors are relatively rare and may be characterized

rather simply. Since PASS3 enforces consistent use of data sinks and

~ 185 ~

sources, a PASS3 error indicates that the user has put a non-sink on the

lefthand side of an assignment statement, e.g., "1:=A+B;".

The one subtlety of a PASS3 error is that a datatype coercidn can
leave a valid sink as a non-sink. That is, there is one kind of error
which might be.characterized as a type-error, but which ICL detects only
in PASS3. This occurs when the type-pass, in order 'to satisfy type
requirements, coerces something which will later turn out to be a
data-sink. The canonic example is this: The user has defined the
coercion from integer to real (FLOAT) but has not defined the coercion
from real to integer (FIX). The error occurs when hé assigns a real to

an integer, e.g.,

I:=R; .
The type-pass will be forced to coerce the lefthand si&e into a real in
order to have matching types across the assignment. Thus, the type-pass

has effectively put a function call on the lefthand side, yielding

FLOAT(I):=R; .
The lefthand side is no longer a data sink. If, on the other hand, the
user wishes such an assignment to be valid, he must supply a coercion
from reél to integer (FIX), so that the type-pass can be satisfied by

coercing only the righthand side of the assignment, yielding

I:=FIX(R); .

I will return to the matter of error reporting with examples after

some of ICL is formally defined.

~ 186 ~

ICL's Rules of Grammar

ICL is documented entirely in terms of its syntax rules. An

earlier section, Basic Conventions, outlines the form of a syntax rule.

ICL's rules of grammar will be grouped together by the
part-of-speech - appearing on the lefthand side of a rule. Each group of
rules defines a distinct cohponent of ICL. The components of‘ ICL are
_named by ICL's major parts-of-speech. There is, howéver,.one group of
rules which has no lefthand side. This group makes up what is called

the ICL process.

ICL's Major Syntax Parts-of-Speech

ICL's linguistic constructs fall into one of two categories:
declarations and algorithms. Algorithms, or sentences, are executable
forms which perform actions. Declarations; on the other hand, are
linguistic specifications which augment the type-grammar, the language

of the sécond pass. Declarations consist of function definitions,
datatype definitions, coercion definitions, and the .declaration of
variables. Declarations and 'algorithms may be embedded within one
another. Declarations, being 1linguistic augmentatiqn, h?ve their

effects manifested implicitly within algorithms.

Declarative statements fall under the part-of-speech <DECL>.
Algorithms take on the part-of-speech <SS>, read as sentence. Within
algorithms, computed values take on the part-of-speech <EXPRD>. Within
<EXPR)>s, 1infix binary aperators, e.g., +,-,%, and /, take on the

part-of-speech <BOP), read as binary operator. Loop-generating.

~ 187 -~

statements, quantifiers, take on the part-of-speech <(QUANT>. Within
declarations, a datatype expression is called a <TYPE>. More
parts-of-speech will be introduced to implement sub-sections of the

ma jor parts-of-speech.

The ICL Process

The compiler is an infinite loop which repeatedly waits for the
user to type a sequence of characters which can bé parsed as a possibly
null sequence of <DECL> and <SS> terminated by a tG (bell). The
compiler always responds to a tG except within comments or quoted
strings. If the compiler does not respond to a tG and is indeed waiting
for TTY input, then the user has forgotten to close a comment or guoted
string. The user should then type a double quote (") followed by a +G.
If there is still no response, he should type a single quote (')
followed by a tG. The compiler will definitely have responded by this

time,

In the event that the input text, if any, has not parsed into a
sequence of <DECL> and <SS> prior to the t, the vser is notified of a
syntax error. He is given the choice of seeing the syntax error message
which contains the partially compressed form or skibping it. . In either
case, the compiler finally responds with a "x" andAis ready for another

" go around.

If, on the other hand, there are no syntax errors, a
carriage-return is typed out and the compiler proceeds as follows. All
of the <DECL>s are processed. This includes compiling any function

definitions or coercions. Whenever a function or coercion is compiled,

~ 188 ~

the header of the function or coercion is typed out. Finally, if the
declarations compile successfully, all the <(SS>s are cdmpiled and
executed. The compiler ultimately responds with a "*" and is ready for

another go around.

~ 189 -~

Declarations are represented by the part-of-speech <DECL>.
Declarations play the role of providing implicit information for
algorithms. The four kinds of declarations are: the definition of new
datatypes, the declaration of variobles, the definition of functions,
and the definition of coercions. The definition of a new datatype
associates an identifier to a new datatype expréssiun. The declaration
of a variable aSsociates an identifier to a datatype by creating a
variable which 1is capable of representing instances of that type. The
definition of a function associates an identifier, a set of input
parameter datatypes, and an output datatype to an 'algorithm. The
definition of a coercion associates two datatypes to an algorithm which
translates an instance of the first datatype into an instance of the

second datatype.

Basic to all declarations is the notion of datatype. We shall begin

by describing the datatypes which ICL supports.

~ 190 ~

ICL's Datatypes - Part 1

The part-of-speech <(TYPE)> covers all datatype expressions.

Primitive Datolypes

The primitive datatypes of ICL are integer (INT), REAL, POINT,
boolean (BOOL), character (CHAR), quoted text string (QS), and strings
of bits (LOGICAL). A POINT is represented by a pair of REALs. We have

- the rules:

<TYPE>] INT

<TYPE> := REAL

<TYPE> := POINT

<TYPE> 13= BOOL

<TYPE> = ::= CHAR

<TYPE> HEE] Qs

CTYPEY 5= LOGICAL (<NU>)

<NU> is a decimal number which specifies the max imum

ggTber of bits, or word length. <NU> may be at most

Instances of INT and REAL are formed just as they are in FORfRAN
except that ICL will not accept the "E" notation. Note that an instance
of INT will automatically pass as an instance of REAL if the user has
included the INTeger-to-REAL type caercion. Instances of POINT are
formed by infixing two REALs with a "#". The instances of BOOL are TRUE
and FALSE. Instance; of CHAR are formed by enclosing a single character
between single quotes. Instances of QS are formed by enclosing any
string of characters between single quotes. An instéﬁce of
LOGICAL(<NU>) is formed by enclosing one or two octal numbers, separated
by a space, 'within "t(...)". Each octal number may consist of no
more than 6 octal digits. If you write two octal numbers, 'then the

left-hand number is automatically positioned 6 octal digits to the left

~ 191 ~

in significance. The total word length implied by the octal oumber(s)
must not exceed the <NU> in LOGICAL{<NU>).

So

256 is an INT

256.1 or .1 or 5. are REALs

TRUE and FALSE are BOOLs
3.146.5 is a POINT

3#5 is a POINT when we have

the INTeger-to-REAL coercion

'ct is a CHAR
'C* or 't8rhi’ are QSs
L(5) is an instance of LOGICAL(k)

where k is between 3 and 36.
L{200000 451) is an instance of LOGICAL(k)
where k = 35 or 36.
The formation of instances of these types are covered formally in the
section for <EXPR)s. The operations performable on the various types

are also described under <EXPR> and <{BOP)>.

Non-primitive Datatypes

The wnon-primitive datatype constructs are described b§ the
following BNF rules. Subscripts are used to distinguish instances of

the same part-of-speech for later reference.

Strings

<TYPE,>

Records

<TYPE >

CCTYPE> ::
"KCTYPE)> ::

Variants

~ 192 ~

ti= { <TYPE))

The resulting type, <TYPE0), is called a STRING of
<TYPEI). An instance of <TYPE0> ‘is amn ordered
sequence of instances of (TVPE1>. Curly brackets "{}"

are generally used in conjunction with strings.

[<CTYPE>] where

(IDLISTk) : (TYPEk)

CCTYPE> <CTYPE>

The resulting type, <fYPEo>. is called a RECORD. An
instance of (TYPE0> is a composite of components where
each component consists of an <(ID> in <IDLISTk) along
with an instance of <TYPE,>. The subscript , is used
to remind the reader that the form {IDLIST>:<{TYPE> may
appear more than once in a <CTYPE>. The multiple
appearances are allowed because of the final syntax
rule. Square brackets "[]* are generally used in

conjunction with records.

~ 193 -

(TYPEO) 1= EITHER <VTYPE> ENDOR where
<VTYPE> ::= CIDLIST,> = (TYPEk>
$:= SVTYPE> <VTYPED

<VTYPE> ::

The resulting type, <TYPE >, is éalled a VARIANT. An
instance of <TYPEG> is an instance of one of the
<TYPEk> along with a case key, an ID from (IDLISTk>.
Given an instance of <TYPE0>, the qssociated case key
indicates which one of the <TYPEk>s is used to
represent this instance. We will use the terms state
anq case key interchangeably. Automatically, ICL
supplies a coercion from (TYPEk> to <TYPE0) with this
<TYPE> construct; the effect is that an instance of

<TYPEk> will pass as an instance of (TYPEa>.

Scalars

SCALAR (<IDLIST>)

<TYPE,>

The resulting type, <TYPE0), is called a SCALAR. An
instance of <TYPE0> is any one of the <ID>s in
{IDLIST>.

Referencing a Prewiously Peclared Type

~ 194 ~

<TYPE> 1= <IbD>

The resulting type is precisely the user-defined type

<ID>, whatever <ID> was declared to be.

There are a few more <TYPE> constructs, but their presentation is

delayed until the reader become familiar with more of ICL.

Examples:

{ INT)

) denotes a new datatype called a string of INTegers.
Strings in ICL play the role of arrays in other
programming languages. Strings may be indexed to select
a particular element, or may have a tail selected to

- yield a substring of the original. However, the most
common and efficient use of strings is in the program
loop generator which iterates for each element in the
string.

[LENGTH,WIDTH:INT CENTER:POINT ANGLE:REAL]

denotes a npnew datatype, called a record whose
components are named by LENGTH, WIDTH, CENTER, and
ANGLE. The LENGTH and WIDTH components are INTegers,
CENTER is a POINT, and ANGLE is a REAL. This datatype
might be a good representation for rectangles.
Records differ from strings in that record components
are named and may bhave differing datatypes. All
elements in a string, on the other hand, are of the
same datatype and their number is unbounded.

EITHER
BOX = [LENGTH,WIDTH: INT CENTER: POINT]
CIRCLE= [CENTER: POINT RADIUS: INT]
ENDOR

is a variant whose possible states are named by BOX and
CIRCLE. An instance of this datatype is an instance of
either of these two record datatypes depending on the state.

SCALAR(RED,BLUE,GREEN, YELLOW, BLACK)

denotes a new datatype, called a SCALAR. Instances of
this datatype can take on ‘precisely five values,
namely RED, BLUE, GREEN, YELLOW, and BLACK.

~ 195 ~

How instances of these various datatypes are created and accessed
is presented formally under the rules for (EXPR>. However, here are a

few examples of creation:

£1; 20 ; 70 ; 100) .

is an instance of { INT } which has four elements.
The elements in a string are separated by semicolons.

[LENGTH: 5 WIDTH: 5 CENTER: .2#.1 ANGLE: 90]
is an instance of the record datatype defined above,
BOX:: [LENGTH: § WIDIH: 2 CENTER: .1#.5]
is an instance of the variant datatype described
above. "BOX::" denotes the state and "[LENGTH: 1 ...
" denotes the value. However, the "BOX::" may be

omitted because the value's type unambiguously implies
the BOX state.

~ 196 ~

The declaration of new datatypes and the declaration of progfam
variables are short and simple. One merely needs to associate an <ID>,

the name for a new datatype or variable, to a <TYPE>.

Declaring Datatypes

Type declarations are characterized formally by the rules:

<DECL> s {TDECL> where

CTDECL> :::= TYPE <Ib,> = (TYPE1> ;

{TDECL> :::

n

CTDECL> <ID,> = (TYPEk> ;

This specifies that <IDk> is a new datatype whose
representation is <TYPEk). The latter two rules are

deterministic.

Examples:

TYPE STACK_OF_INTEGER = { INT } ; *
specifies that STACK_OF INTEGER is a string of INTegers. The datatype
STACK_OF _INTEGER now understands all the operations which a string
understands and in addition, each element of STACK_OF_INTEGER is known

to be an INTeger.

TYPE COMPLEX NUMBER = [REAL_PART, IMAGINARY_PART: REAL]J;

~ 197 ~

specifies that the type COMPLEX_NUMBER is a record baving two

components, both of which are REALs.

TYPE SET_OF_POLES = { COMPLEX_ NUMBER } ;

specifies that SET_OF_POLES is a string of COMPLEX_NUMBERSs.

TYPE LISP_ELEMENT = EITHER

ATOM = QS

CONS_PAIR = [CAR,CDR:

LISP_ELEMENT]
INTEGER_NUMBER = INT
FLOATING_NUMBER = REAL
ENDOR; '

‘ specifies that a LISP_ELEMENT is either an ATOM which is a quoted
string, or a CONS_PAIR which is a record havjng a CAR and a CDR field -
each of which is again a LISP_ELEMENT, or an INTEGER_NUMBER which is' an
INTeger, or a FLOATING_NUMBER which is a REAL. In other vords, a
LISP_ELEMENT residing in the ATOM state is represented by a QS, a
LISP_ELEMENT residing in the CONS PAIR state is represented by an
instance of the record [CAR,CDR:LISP_ELEMENT], a LISP_ELEMENT found in
the INTEGER_NUMBER state is represented by an INTeger, and a
LISP_ELEMENT found in the FLOATING_NUMBER state is represented by 'a
REAL. Note that the coercions supplied by the variant construct imply
that instances of QS, the record [CAR,CDR:LISP_ELEHENT], INTeger, and
REAL, all pass as instances of LISP_ELEMENT. Note alsc that a
LISP_ELEMENT may be examined only after its current state is getermined

because the representation is dependent upon that state. The only

construct ICL provides for examining a variant type, like LISP_ELEKENT,

~ 198 ~

is the variant-CASE form. The user is always required to consider each

possible state when examining a variant object.

TYPE COLOR = SCALAR({RED,BLUE,GREEN,YELLOW,BLACK) ;

»

specifies that a COLOR is RED, BLUE, GREEN, YELLOW, or BLACK.

~ 199 ~

.

Declaring Variables

The declaration of variables is characterized by
<DECL> HE] <VDECL>) where
<VDECL)>

VAR (IDLIST1> = (TYPEI> ;

{VDECL> ::: {VDECL> <IDLISTk> = (TYPEk> H

This specifies that each JID> in <IDLISTk> is a
program variable whose type is <TYPEk). The latter

two rules are deterministic.

Examples: ’ .

VAR 1I,J=INT; R=REAL;
declares I and J to be variables which contain instances.of INTegers and

R to be a variable which contains instances of REAL. Writing

VAR C = COMPLEX_NUMBER ;

enables one to write the assignment statement:

C := [REAL_PART: 1.2 IMAGINARY_PART: R] ;
C is assigned the COMPLEX_NUMBER whose components are 1.2 and the

contents of R. Also, we can now write

R := C.REAL_PART ;

R is assigned the REAL_PART of C. However,

~ 200 ~

though syntactically correct, both fail the type~-pass because the

<EXPR>s on each side of the ":=" are not of equal types.

When are Types Equal?'

There are many syntax rules which state their datatype requirments
in terms of two datatypes being cqual. The assignment statement (:=) is
one such rule, because for an assignment statemant to pass the
type~pass, the <EXPR>s on either side must be of equal types. Two typés
are equal only if the names of the types are identical, or if the name
bof one of the datatypes was defined directly from the name of the other,
or in ong other case invelving the <EXPR> "NIL" which 1is described
later. In other words, two datatypes which have identical structure are
not necessarily equal. Thus, the types A and B are not equbl if they

"were declared by

TYPE. A= { INT }; B = { INT };

but A and B are equal if declared by

TYPE A = { INT }; B = A;

The types A, B, C, and D are all equal to one another if declared by

TYPE A = { INT }; B=A; C=B; D=C;

The declaration

TYPE PATH

]

{ POINT } ;

WIRE = [THICKNESS: INT DIRECTION: { POINT }] ;

not only specifies that a PATH and a WIRE's DIRECTION are indeed strings
of POINTs but it alsoc specifies that a WIRE's DIRECTICN is not

necessarily a PATH and that a PATH dis not necessarily a WIRE's

~ 201 ~

DIRECTION. In contrast, the declaration

TYPE PATH

{ POINT } s
WIRE

[THICKNESS: INT DIRECTION: PATH] ;

specifies the same representation implied in the previous declaration
but it also specifies that a PATH and a WIRE's DIRECTION are identical
types. The latter declaration specifies that an instance of PATH may be
assigned intoc the DIRECTION component of a WIRE and visa versa, whereas

the former declaration forbids such an assignment.

This rather restricted notion of type equality imposes a style of

declaration which is characterized by the following conventions:

1) Do not nest <TYPE) expressions and
2) Use previously declared types in VAR statements.

For example, the declaration

TYPE TWO_DIMENSIONAL ARRAY = { { INT } } ;

involves nested <TYPE> expression, whereas

TYPE TWO _DIMENSIONAL_ARRAY = { ONE DIMENSION } ;
ONE_DIMENSION = { INT } ;
involves no nesting of <TYPE> expressions. Also, | the variable

declaration

VAR MAIN_JOB QUEUE = { JOB } ;

involves a <TYPE)> expression, whereas

TYPE JOB_QUEUE = { JOB } ;

VAR MAIN_JOB _QUEUE = JOB_QUEUE ;

~ 202 ~

declares MAIN JOB QUEUE without involving a <TYPE> expression in the VAR

statement.

Holding to this style has the effect of requiring the user to give
a name to each indivisible type construct. These names invariably
become useful when the user wishes to declare variables or define
functions which refer to sub-structures without reference to the whole
structure. For instance, we can define many functions which operate on
instances of ONE_DIMENSION and which have no knowledge of their role
within instances of TWO_DIMENSIONAL_ARRAY. Also, if we wish to iterate
thru the vectors of a TWO_DIMENSIONAL_ARRAY, we will need a variable of
type ONE_DIMENSION.

~ 203 ~

Defining Functions and Coercions

Thus far, we've covered the declaration of ttypes and variables.
This section documents the rest of <DECLD by introducing function and

coercion definitions.

A function is defined by any of the four following deterministic

rules:

{DECL> :::= DEFINE <ID> : <S8S> ENDDEFN

{DECL> :::= DEFINE <ID> = <TYPE> : <EXPR> ENDDEFN

<DECL> :::= DEFINE <ID> (<CTYPE>) : <SS> ENDDEFN

{DECL> :::= DEFINE <ID> (<CTYPE>) = <TYPE> : <EXPR> ENDDEFN

The first form defines a procedure which has no input or output
parameters. The second form defines a function which has no input
parameters but which does produce a value. The third and fourth forms
correspond to the first two forms with the addition of input parameters.
In each case, the part following the colon, the <EXPR> or <SS83, is
called the body of the function. The <ID> is called the function name,

and all that which precedes the colon is called the function header.

Remember that <(SS> stands for an algorithm which produces no value
and that <EXPR> stands for a computed value. Note that an "=(TYPE>" is
present only in those two forms whose bodies are <EXPR>s. The <EXPR>
must be of type <TYPED. The "=<TYPE>" is absent from the other two

forms, whose bodies are <SS>s.

~ 204 ~

<CTYPE> was introduced carlier when records were introduced:

<CTYPE>

CIDLIST> : <TYPE>

{CTYPE> {CTYPE> <CTYPE>

A <CTYPE> is used here to represent input parameters. The names of the
input parameters are in the <IDLIST>s and the type of each input
parameter is the corresponding <TYPE>. All <(TYPE>s involved in the
function header must be <(ID>s, the names of previously declared

datatypes.

Input parameterslare passed by wvalue, not by -referenhe as 1in
‘ FORTRAN. That is to say, modifications made to the input parameters
from within the function body are not felt by the caller. These
parameter = names are to the function merely local variables whose values
have been initialized to the given input values. Refer to ICL's
assignment statemenf in the section for <S8S>s to gain a ;omplete

understanding of how ICL assigns new values to variables.

Examples:

DEFINE CLEAR_JOB_QUEUE: MAIN_JOB_QUEUE:=NIL; ENDDEFN
DEFINE NUMBER_OF_JOBS=INT: some INTeger CEXPR> ENDDEFN
DEFINE DRAW(P:PICTURE AT:POINT): some <SS> ENDDEFN
DEFINE FACTORIAL(N:INT)=INT:
IF N =< 1 THEN 1 ELSE N*FACTORIAL(N-1) FI
: \

ENDDEFN

Note the absence of commas in the input parameter specification for

DRAW. Also note that

DEFINE COPY(FROM,TO:INT): FROM:=TO; ENDDEFN

~ 205 ~

effectively defines COPY to be a no-ap. A call like

CcoPY(I,5);

does not set I to §; I is left untouched.

The format for calling a function depends on which of the four
kinds you're calling. The first kind is called by "<ID>;" and is
syantactically a <SS>. The secoﬁd kind is called by "<ID>" and is‘
syntactically an <EXPR>. The third kind is called by "<{ID>(CEXPR>,
LSEXPR>);" and is a <SS>. The fourth kind is called by "<ID>(KEXPR>,

L,CEXPRY)" and 1is an <EXPRO>. This is equivalent to FORTRAN's
calling syntax except that the keyword "CALL" is replaced by a

terminating semicolon.

The user may declare local variables and embed <SS>s within <EXPR>s

by using the ever useful rules:

CEXPR> ::= DO <SS8> GIVE <EXPR>
CEXPR> :::= BEGIN <DECL> <EXPR> END
SS> :::= BEGIN <DECL> <SS> END
These rules will later be documented in full. I could define FACTORIAL

by

DEFINE FACTORIAL(N:INT)=INT:
BEGIN VAR I=INT;
DO IF N =C 1 THEN I:=1; ELSE I:= N*FACTORIAL(N-1); FI
GIVE I '
END
ENDDEFN

~ 206 ~

The body is put together employing our syntax rules as follows:
{

BEGIN <DECL> DO <SS> GIVE- CEXPR> END

The ICL user may link to MACRO-10 routines by using the following

function definition forms:

CDECL> :::= DEFINE <ID>: MACRO-10(<QS>)
<DECL> :::= DEFINE <ID>

n

CTYPE> : MACRO-10(<QS>)

<DECL> :::= DEFINE <ID> (<CTYPE>) : MACRO-10(<QS>)

{DECL> :::= DEFINE <ID> (<CTYPE>) = <TYPE> : MACRO-10(<QS>)
<QS> is a quoted-string which names the global symhol representing the
address of a HACRO-lO routine. The compiler obviously does not try to
verify that the MACRO-10 routine does indeed expect the designated
number of arguments and produce the right type of data. This is taken

on faith.

MACRO Hackers

The routine may damage AC's 1 thru 6, TX (13), and RET (16).
Fach argument, a one word cntity, is pushed onto the stack and
then a PUSHJ is executed. The stack register is STK (17). . The
routine, upon returning, must decrement the stack pointer by
{the number of arguments + 1). The output value, if any, is to
be returned in AC DATA (1). The files ICLRTS.MAC and ICLRT1.MAC
contain ICL's runtime support and the user is free to call wupon
them. Atop your MACRO-10 file, copy the text residing on the
first page of ICLRT1.MAC. Further details are not yet
available.

Coercions
The user may define coercions via:

<DECL> :::= LET <ID1> BECOME <1D,> BY <EXPR> ;

~ 207 -~

<ID1> and <IDZ> must be names of previously declared datatypes. CEXPR>
‘must be of the type designated by <IDZ> and must. be a data source.
Within <EXPRD, (IDI) is automatically declared to be a variable of type

<IDI>' and is initially set to the input argument.

Examples:

LET BOOL BECOME INT BY IF BOOL THEN 1 ELSE 0 FI ;
declares that any BOOLean value may be viewed as an iNTeger value via

the transformation which takes TRUE to 1 and FALSE to O.

LET REAL BECOME COMPLEX NUMBER BY [{REAL_PART: REAL
IMAGINARY_PART: 0] ;
declares that any REAL may become a COMPLEX NUMBER by' generating a
COMPLEX_NUMBER whose REAL_PART is the given REAL, and whose
IMAGINARY _PART is 0.

Coercioans apply only to data sources, anot to data éinks. A
coercion 1is not a macro, rather, it jS a function. There is a note in
the introducﬁion for The Compiler which mentions how a coercion may
participate in masking a type-pass error, only to have it show up as a

PASS3 error.

The ICL user may define a coercion in terms of a routine written in

MACRO-10 by:

CDECL> :::= LET <I1D> BECOME <ID> BY MACRO-10(<QS>)
The MACRO-10 routine should act 1like a function with one input

parameter.

~ 208 ~

Example:

LET - INT BECOME REAL BY MACRO-10('FLT3')

The file BEGIN.ICL is usually the first file read into a freshly

loaded ICL systen. BEGIN.ICL includes the above INT to REAL coerciecn

plus the definitions for WRITE (on INTs, REALs, CHARs, QSs,
BOOLs) and COS, SIN, TAN, and other such utilities.

Multiple Coercions

With the three coercions

LET BOOL BECOME INT BY
LET INT BECOME REAL BY
LET REAL BECOME COMPLEX_NUMBER BY

any BOOL can be viewed as a COMPLEX_NUMBER because ICL will

POINTs,

apply

coercions upon coercions if necessary. However, of all the possible

ways that coercions can be applied, ICL will always choose a way which

. minimizes the total number of coercions. For example, if ip addition to

these three coercions, the user declares

LET BOOL BECOME COMPLEX_NUMBER BY

ICL will apply this fourth coercion instead of applying the other three

coercions when a BOOL must be viewed as a COMPLEX NUMBER.

Miscellaneous <DECL)s

~ 209 ~

Any sequence of <DECL> is also a <DECL>:

<DECL>

'y

:= <DECL> <DECL>

The order of <DECL>s is irreievant.

~ 210 ~

EXECUTABLE FORMS

Executable forms consist of all of ICL's 1linguistic constructs
except declarations. Executable forms are represented by the
parts-of-speech <(EXPR> and <SS>7 An <EXPR> rcpréscnts a computed value

whereas <SS> represents a sentence form, or action.

Each functional form of <{EXPR> or <SS> will be described by a
generalized rule of grammar. A generalized rule consists of a set of
BNF rules each having a name and numbered righthand phrase .elements, a
set of type requirements including specification of a resulting type, a
set of requirements. for PASS3, and a description of meaning with
examples. Any reference to a rulé made by the ICL compiler will be by
the rule's name. An explanation of this rule format follows the

presentation of the first rule.

ICL is an expression oriented language. That -is to say, the

majority of syntax rules define <(EXPR>s and only a few rules describe

.

¢(SS>s. - We shall begin by describing <(EXPR>s.

-~ 211 ~

The part-of-speech (EXPR> represents a computed value. Because ICL
is a typed language, each.computed value is an instance of some type.
It is relatively easy to partition off certain sets of <EXPR> forms:
some <EXPR> forms deal with strings, some deal with records, and some
deal with variants. Independently, there are some <EXPFR> forms which
deal with all kinds of types such as the IF—THENfELSE. function calling,

.and various other forms.

Each non-prihitive type construct, e.g., string, record, and
variant, has a special set of (EXPR> forms which perform generation and
a special set of forms which perform sclection. Geheration refers to the
creation of new objects and selection refers to the examination or
analysis of existing objects. For example, LISP bhas the generation
forms CONS and LIST and the selection forms CAR and CDR. Languages like
PASCAL and FORTRAN have no generating forms: The effect of generation
is achieved only by putting individual selection forms on the lefthand

sides of individual assignment statements.

The part-of-speéch <{EXPR> actually stands for an array of
parts-of-speech. The common notion of operator precedence (e.gd.,
multiplication before addition) splits the part-of-speech <EXPR> into
{EXPR>s of various precedences. We denote a particular‘eleme?t in this
array of parts-of-speech by writing <EXPRY of precedence 1. The
precedence of an <EXPR> 1is precisely the precedence of that'binary
operator (<BOP>) most recently used in constrﬁcting the CEXPR>.
Operator precedence will be described in full with the set of rules

which integrate {(BOP>s and <EXPR>s. Let it suffice for the time being

~ 212 ~

that unless otherwise specified, the <{EXPR> appearing on the lefthand
side of a BNF rule always has precedence 2zero and that the <EXPR>s
appearing on the righthand side always invite any precedenqe. Thus, the
user can ignore all considerations of precedence except in those rules

~having some specified precedence condition.

Many of the <EXPR>-rules Vpresented in this section have
counterparts for <SS>s. For example, the IF-THEN-ELSE construct is
defined both for <EXPR>s and for <SS>s. The <EXPR> IF-THEN-ELSE chooses
one value among many values and the <SS> IF-THEN-ELSE chooses one action

among many actionsf Refer to the section Sentence Forms: <SS§) to see

which <EXPR> forms Carry over to <SS> forms.

In any description for PASS3 requirements, the terms sink and

target will be used interchangeably.

~ 213 ~

The IF-THEN-ELSE

EBIF: <EXPR0) 1i3= (BIFEI) <EXPR2> THEN CEXPRg> ELSE <EXPR,> FI

4
where

BIFt: <BIFE> IF

]

BIFZ2: {BIFE> <BIFEk1) <EXPRk2> THEN (EXPRk3> EF
Type Requirements:

<EXPR2) = BOOL = <EXPRk2>

result = <EXPR3>

CEXPR> = (EXPRk3>

PASS3:
CEXPR,> = SOURCE

<Eprk2>

result = <EXPR3> <EXPR4> = (EXPRk3> = (SOURCE or TARGET)
Meaning:

The <EXPR2> and <EXPRk2>s are evaluated in sequence until one of them
evaluates to TRUE. Then the corresponding THEN <EXPR>, either <EXPR3>

or one of the <EXPRk3>s, is evaluated and that is all. However, if
niether <EXPR2) nor any of the <EXPRk2>s yield TRUE, then the ELSE
<EXPR)>, shown as <EXPR4>, is evaluated.

Examples:

K:= IF A=B THEN 1 ELSE 2 FI H
The meaning is nearly obvious: K is assigned 1 if A=B, otherwise,

K is assigned 2.

K:= IF A<l THEN 1

~ 214 ~

EF A<2 THEN 2
ELSE 3 FI H
K is assigned 1 if Ad1l, otherwise, K is assigned 2 if A<Z,

otherwise, K is assigned 3. "EF" is short for "ELSE IF".
IF A1 THEN I ELSE J FI = 5

If ACt, then I is assigned 5, otherwise J is assigned §.

An Explanation of the Generalized Rule Format

The IF-THEN-ELSE construct was described by the three rules whose
names are EBIF, BIF1, and BIF2. These syntax rules ‘are easily
understood by using "IF" in place of <(BIFE>. Thus the first rulé; EBIF,
is simply "IF <EXPR,> THEN CEXPRg> ELSE <EXPR,> FI". Substituting "IF"
for <BIFE> is 1egitimate by the second rule, BIF1. In general, to
comprehend a set of rules like these, use the simplest rTules'as direct
substitutions. Now, since <BIFE) is esSenti&lly "IF", we can view the
third rule, BIF2, as "IF <EXPR> THEN <EXPR> EF", and furthermore, we
ﬁould substitute the <BIFE> in the first rule by "IF <EXPR> THEN <EXPR>
EF" and come up with "IF <EXPR> THEN <EXPR> EF <EXPR> THEN <EXPR> ELSE
<EXPR> FI". etc.

The use of "k" in some of the subscripting conforms to the fact
that there may be many occurences, due to the recursive structure of the
BNF rules. For éxamp]e, the <EXPRk3> in the rule BIFZ2 refers tg all
<EXPR>s occupying that slot between "THEN" and "EF" in each application
of the rule BIF2. The "&"s are merely reminders about the possible

multiplicity of the subscripted entity.

~ 215 ~

The type requirements state that the <EXPR>s immediately following
<BIFE>s must be of type BOOL, and futhermore, that all of the ather
CEXPR>s, those which follow "THEN" or "ELSE", may be of any type so long
as they are all of cqual types. The resuvwlting type, the type of
<EXPR0>, is given this common type. Note that ICL will apply coercions
in order to satisfy type requirements. Thus, for example, the <{EXPR>s
following the THEN and the ELSE may be of different types as long as
there exists some common type to which ICL can coerce each of the these
given <(EXPR>s. Similar]y, CEXPR>s following <BIFE>s can be of any type

as long as that type can be coerced to the type BOOL.

The PASS3 requiréments state that the <EXPR>s immediately following
the (BI?E)S must be data sources. The other {EXPR>s may either all be
sources or all be targets. Allowing the target case means that an
IF-THEN-ELSE may appear on the lefthand side of an assignment statement.
Note that the term "evaluate" applies not only to sources, but. also to
. targets. Evaluating a source mcans producing a value.'and evaluating a

target means consuming some given value.

The naming of rules and the pumbering of their righthand elements
facilitates a concise identification scheme. For instance, "EBIF 3°

identifies the THEN-clause in the rule EBIF. The "%x%" ip

IF...THEN IF...THEN...ELSE * FI ELSE...FI

is identified by the backtrace:

~ 216 ~

EBIF 4

EBIF 3
thch says that the "*" is in the ELSE clause, <EXPR4>, of an
IF-THEN-ELSE, and that furthermore, this IF-THEN-ELSE is itself in the

THEN clause, <EXPRg>, of an enclosing IF-THEN-ELSE. The "*" in

IF...THEN * EF...THEN...EF...THEN...ELSE...FI

is identified by

BIF2 3
BIF2 1
EBIF 1

which says that the "*" is in the THEN clause, <EXPR,,>, of the rule
BIFZ. Furthermore, the resulting <BIFE) is the (BIFEk1> in the rule
BIFZ, and finally, this resulting <BIFE)> is the <BIFE1> in the rule
EBIF. Each 1line in the lacktrace specifies where, and in which rule,

the previous line resides.

This identification scheme is used to specify where a type-error is

found.

~ 217 ~

Terminal <EXPR>s

The following <EXPR> forms are terminal in the sense that the
part-of-speech <EXPR> is absent from each rule's righthand side. Any

<EXPR> will be expressed in terms of these basic <EXPRD>s.
ENU: <EXPR> ::= <NW

Type requirements The resulting type is INTeger.
PASS3 requirements The result is a SOURCE.

Meaning: The value is the integer <NU)> itself.

Examples: ‘ 1 or 5§ or 139

EQS: <EXPR> <Qs>

Type requirements
The resulting type is a QS (quoted text string) and is also a
CHARacter whenever <QS> is one character long.

PASS3 requirements The result is a SOURCE.

Meaning The value is <QS> itself.

Examples: 'this is a QS' or ‘¢!

ELOG: <EXPR>

i

L (<NU>)
<EXPR>

L (<NU> <NU>)

Type requirements

~ 218 ~

The resulting type is LOGICAL(k) where k is greater than or equal
to the total word length implied by the <NU>(s). Each <NU> must be
no more than six digité long and must contain no 8's or 9's. The
<{NU>s are interpreted in octal.

PASS3 requirements The result is a SOURCE.

Meaning
If there is only one <NU>, then the value is the bit pattern
implicit from the octal notation. If there are two <NU>s, then the

bit pattern is:

(NUI) *2?18 + <NUy.
Examples:
L(5) "~ is an instance of LOGICAL(k) where k is
between 3 and 36. The bit pattern is ... 101.
L(1 1) is an instance of LOGICAL(k) where k is
between 19 and 36. The bit pattern is
. 001 000 000 000 000 000 001

EFNU: <EXPR> a flonting'number

Type requirements The result is a REAL.

PAssa_requirements The result is a SOURCE. . \
Meaning The REAL value itself.

Examples: 1.1 or 1.09 or .1 or .09 or §0.

There is no "E" notation.

ETRU: <EXPR>

TRUE

~ 219 ~

Type requirements The result is a BOOL.
PASS3 requirements The result is a SOURCE.

Meaning TRUE

EFALS: <EXPR> ::= FALSE

Same as TRUE, but the meaning is inverted.

ENIL: <EXPR> ::= NIL
FType requirements

The result is a pseudo-type called NIL. An explanation follows.
PASS3 requirements The result is a SOURCE.

Meaning "Undefined"

The NIL pseudo-type is a one of a kind entity in ICL. NIL is
not a type. Variables may not be declared to be of NIL type.
However, NIL is operational in that it is equal to any type

excepting INT, REAL, BOOL, CHAR, and any LOGICAL or SCALAR type.

The <EXPR> construct "DEFINED(<EXPR>)", which is documented

later, is the only way to sense a NIL value.
EID: <EXPRY ::= <ID>

Type requirements
The resulting type is either the type of the variable (ID) if <ID>
is a declared variable, or any scalar type which includes <ID> in
its <IDLIST>, or the output type of a parameterless function whose

pame is <ID>.

~ 220 ~

PASS3 requirements

In the variable case, the resulting PASS3 status is SOURCE and

TARGET. The other cases yield SOURCE only.

Meaning

In the variable caSe, the SOURCE state means that the contents of
<ID> are fetched, and the TARGET state means that <ID> is set to
hold a given value. In the scalar case, the value is <ID> itself.
In the function case, the value 1is the result of calling the

function, <ID>.

Examples:

Refering to the examples presented in the section Declarations ...

1 | represents the contents of
the INTeger variable T

BLUE represents an instance of the
scalar type COLOR

NUMBER_OF_JOBS represents the value obtained by

calling the function NUMBER_OF_JOBS.

Two more terminal <EXPMR> farms will be introduced in Part 2.

. String <EXPR)>s

String Generation

~ 221 ~

Strings are generated by

STRGEN: <EXPR>
SEXP: <REXPR>
SEMNOP: <REXPR>
SCRNG: CREXPR>
SCEXP: <REXPR>
SCCONX:

o -
=

- <REXPR> ::

{

SREXPRD

where

CEXPR > }

<RANGEI> }

(RANGEkI) ; (REXPRk2>
(EXPRk1> H (REXPRk2>
<EXPR, > ;* <REXPR

k2>

k1 ’
Informally, this states that an <EXPR> may be formed by yriting a
"{" followed by a sequence of either {EXPR> or <RANGE>, followed by
a "}". The elements in the sequence are separated by either ";" or

w.x"_ A <RANGE)> is a form which yields many values:

RFUNC: <RANGE> = § <EXPR > <QUANT,>
RFUNC: CRANGE> = COLLECT (EXPR1> (QUANT2>
RFUNC: CRANGE> = (QUANTZ) 3 (EXPRI)
RFUNC: {RANGE> = <QUANT,> COLLECT <EXPRI)

A <QUANT> 1is a 1loop generator. Refer to the section on

quantifiers.

Type requirements

~ 222 ~

All the <EXPR>s must be of egual types, including the <EXPR>s in
the RFUNC rules. The resulting type is any type which has been
declared to be a STRING of this common type.

PASS3 requirments _
All the <EXPR>s must be SOURCEs, and the result is a SOURCE. Later
on, we shall see where a TARGET form of the above is useful. The
-TARGET case will be covered under the FOR-quantifﬁer.

Meaning
The value is the ordered sequence consisting of the values of the
<EXPR>s and the multiple values of any <RANGE>s. The separators
." and ";%" are equivalent; the distinction between w.t and "%
occurs only in the TARGET case. Any <EXPRDs which evaluate to NIL
are ignored. The user caonnot depend on having the <EXPR>s and

{RANGE>s evaluated in order of specification.

All fouf of the <RANGE> rules (RFUNC) are semantically
equivalent. "The <RANGE> produces a sequence of values by
evaluating <EXPR1> once for each iteration caused by (QUANT2).
Remember that a <QUANT> is a program loop generétor.

Examples:

{1:;2:3;4)
is the ordered sequence 1,2,3,4, and is an instance of type { INT
}» e.g., STACK_OF INTEGER declared earlier. Note, however, if'{
INT } had never been mentioned in a declaration, this <EXPR>, or

any <EXPR> having this as a sub-<{EXPR>, would fail the type pass.

{ 3.1#2.0 ; 1.346.2 ; 7.048.0)

~ 223 ~

is a sequence of three points and is an instance of type { POINT },

e.g., SET_OF_POLES declared ecarlier.

{ 3.1#2.0 ; NIL ; 1.3f6.2 ; 7.04#8.0 }

is equivalent to the previous example.

{1 ;2; 1 FORTIFROM 3TO7; ; 8}

(----QUANT~--~~-~-)
(m=mmm—-- RANGE~--==-==-~)
is eguivalent to
{1;:;2;3;4:;5;6;7;8) and

{1;2; FORIFROM 3 T0O 7; COLLECTI ; 8}

String Selection

STRSEL: CEXPR> ::= <EXPR,> [<EXPR2>]

(EXPR1> must be of precedence zero.

Type requirements

<EXPR1> is a string of some type and

CEXPR,> = INT.

result = that type of which (EXPR1> is a string.
PASS3 requirements

CEXPR,> = SOURCE

result = <EXPR1> = SOURCE. Also

~ 224 ~

result = TARGET when <EXPRI) passes as both a SOURCE
and a TARGET.
Meaning
Indexing: The resulting value, in the SOURCE case, 1is the
CEXPR,>'th element in 'the string <EXPR,>. 1In the TARGET case,
<EXPR1> is modified so that its <EXPR2>'th element dppear$ to have
the new value unless that new value is NIL. Assigning NIL to an
element of a string has the effect of deleting that element from
the string, preserving the string's order. This is in keeping with
the fact that NIL is never an element of any string. Note that in

the string generation rules, STRGEN, all NIL values are ignored.

The debugging package will be entered under the following
conditions: In the SOURCE case, the index iS non-positive. In the
TARGET case, the index is non-positive or the index is larger. than
the length of the string. Note, however, if the index is larger
than the string length in the SOURCE case, a value of NIL, 0, or

FALSE is returned.

Examples:
{2 ;4 ;6)I1[2) is 4.
X[3] is the third element in X.
X{1+1] is the I+1'th element in X.
X[1] = 23 modifies X so that its I'th element is 2.

The statements

V:= {1.001.0 ; 2.0#2.0 ; 3.0#3.0)} ;
V[2] := NIL ;

leave V being { 1.0d1.0 ; 3.043.0 }.

ETAIL: <EXPR> ::= (EXPR1> L (EXPR2> -]

<EXPR1> must be of precedence zero.

Type requirements
<EXPR1) is a string of some type and
<EXPR,> = INT.
result = (EXPR1>

PASS3 requirements

<EXPR,> = SOURCE.

result (EXPR1> = SOURCE. Also

result = TARGET when <EXPR1> passes as both a SOURCE
and a TARGET.
Meaning
Tail extraction: The resulting value, in the SOURCE case, 1is the
substring of <EXPR1> which begins at the <EXPR2>'th element and
continues until the end. In the target case, <EXPR1> is modified
sgo that its tail startiqg at the <EXPR2>'th pasition appears to be

the new value.

The debugging package will bk entered wunder the following
conditions: In the SOURCE case, the index is non-positive. 1In the
TARGET case, the index is non-positive or the index is larger than
the 1length of the string. Note, however, if the index is larger
than the string length in the SOURCE case, the NIL string is
returned. | .

Examples:

~ 226 ~

{2:4;6) [2-] is {4;6)
X(1-] is the tail of X; starting
| at position I.
X[I-1(1] is equal to X[1].
X(1-] is egual to X.
X{(1-] c= {20 ; 30 ; 40 } ;
modifies X so that X[I] is 20, X[I+1] is 30, and X[I+2] is 40. The

last element in X is now X[I+2].

Miscellaneous String Forms

ERFRSH: CEXPR>

REFRESH (<EXPR,>) or
ERFRSH: CEXPRY ::

REFRESH ! (EXPR1>)

Type requirements
<EXPR1) is a string of something
result = <EXPR,>
PASS3 requirements result = <EXPR,> = SOURCE
Meaning
An identity: (EXPRI) appears unchanged, but a possibly more
efficient 1nterpa1 representation is chosen-for-(EXPR1>L REFRESH
is purely an optimizing considecration. The <BOP>s "$>", "$%", and
¢ Iy leave strings in a slightly inefficient form for
.accessibility. REFRESH straightens out the wrinkles, so to speak.

Both the resulting <EXPR> and <EXPRI> are refreshed.

~ 227 =~

If the user defines a unary function named REFRESH which takes
a string as a parameter, his definition overrides the first ERFRSH

rule. However, the equivalent form

REFRESH ! <EXPR>)
cannot be overridden.

Examples:

Y := REFRESH(X) ;

Y gets a refreshed X.

Z := REFRESH(X) ;
is equivalent to "Z:=X;" if performed immediately after the

previous example, because X is already refreshed.

EREVRS: <EXPR>

]

REVERSE (<EXPR1>) or

EREVRS: <EXPR>

REVERSE ! <EXPR1>)
have the same requirements as ERFRSH.
Meaning
The resulting value is the string <EXPR,> in reverse order. The
result is automatically refreshed. REVERSE can be overridden just
as REFRESH can be overridden.
Examples:
REVERSE({ 2 ; 4 ; 6)}) is equal to { 6 ; 4 ; 2 }
REVERSE(REVERSE(X)) is equal to X.

~ 228 ~

Record <EXPR>s

Record Generation

RGENF : CEXPR> ::= <RECX>

where

SEMNOP: <RECX> ::= [<RECXTO

RGENQ: <RECXT> ::= <IDI> i CEXPR,>]

RGEN1: 1(RECXT> 1:= <IDk1> : '<EXPRk2) {RECXT

Type

k3’

Informally, a new record is specified by a "[" followed by a
sequence ~of "KID> : .<EXPR>" and is terminated by a ®i", The

elements in the sequence are separated by blanks. . 4

requirements
The resulting type is any declared record type which contains the

<CTYPE> elements "(IDI> : the-type-of—(EXPRI)" and each of "<IDk1>

: the-type-of—(EXPRk2>".

PASS3 requirements

result = (EXPRZ) = (EXPsz) = (SOURCE or TARGET).

Meaning

In the SOURCE case, crcate a new record whose component names are
<IDI) and each <IDk1> and whose corresponding values are <EXPR2>
and each <EXPRk2>. Unspecified components are automatically
assigned the values: O for INT, REAL, and LOGICAL, FALSE for BOOL,
the NULL character (code 0) for CHARs, and NIL for all other types.
In the TARGET case, assign into each <EXPR,> and <EXPR,,> the value

of the corresponding component from a given structure. The user

~ 229 ~

cannot depend on having the <EXPR>s evaluated in their specified
order.

Examples:

[REAL_PART: 5.6 IMAGINARY PART: 3.0]
is a new instance of COMPLEX NUMBER, a type which was declared by

an earlier example in the section Declarations.

[THICKNESS: 1 DIRECTION: { 040 ; 1#1 ; 140 }]

is a new instance of WIRE (also declared earlier).

[THICKNESS: 1]
is a new instance of WIRE. The DIRECTION component is NIL. Note,

howéver. that

[THICKNESS: 1 DIRECTION: NIL]
fails the type-pass because nowhere is NIL required to be equal to
some type. In general, an isolated "NIL" may not be specified in a

record.

’

[THICKNESS: I DIRECTION: A_PATH] := A_WIRE ;
assigns the THICKNESS of A_WIRE into I and simultaneously assigns
the DIRECTION of A_WIRE into A PATH.

Record Selection

RSELQ: <EXPR> ::= <CEXPR,> . <IDy>

(EXPR1> must be of precedence zero.

Type requirements

~ 230 ~ .

<EXPR1> must be a record type which includes a component whose name
is <IDZ>‘ The resulting type is the type of the component named
<ID,>. ’

PASS3 requirements
result = SOURCE = <EXPR,>. Also,
result = TARGET when <EXPR1> passes as both a SOURCE and a TARGET.

Meaning
In the SOURCE case, the resulting value is the <IDz> component of
<EXPR1>. In the TARGET case, <EXPR,> is modified so that its <ID,>
component appears to have a new value.

Examples:

[REAL_PART:1.3 IMAGINARY PART:2.6] . IMAGINARY_PART
is the REAL, 2.6. '

X.REAL_PART
is the REAL_PART of X.

~ 231 ~

Paoint <EXPR)>s

Point Generation

Points are generated by the form

<EXPR> # <EXPRO
where each <EXPR) is a REAL. Because ICL treates "#" as an infix binary

operator, please refer to the opcrator "#" in the section for <BOP>s.

Point Selection

PTSELX: <EXPR> = <EXPR1> . X
PTSELY: CEXPRO = <EXPR1> .Y
(EXPRI) must be of precedence zero. .

Type requirements <EXPR1> = POINT. result = REAL

PASS3 requirements are like those of the rule RSELQ.

Meaning
Select the X or Y coordinate of a point. A POINT 1is essentially
the record [X,Y: REAL]. However, a POINT is generated by REAL #

REAL ratﬁer than by the record generating form [X:REAL Y:REAL]J.

Examples:
(3.0#5.6).X is 3.0
P.X is the x-coordinate of
the point P

Q.X 1= 5.0

~ 232 ~

modifies Q so that its x-coordinate appears to be 5.0.

~ 233 ~

SCALAR Selection - The SCALAR CASE Form

This section covers the CASE-form when used in conjunction

SCALAR types.

ECASEE: CEXPR> :::= CASE (EXPR1> OF <EXPRV2>
where

EVCASE: CEXPRV)> :::

(IDI> : (EXPR2> ENDCASE

H

EVCASB: CEXPRV> ::: (IDkI) : (EXPRk2> CEXPRV

k3’
Informally, this states that an {(EXPR> may be of the form
CASE <EXPR> OF
<ID> : CEXPRY

<ID> : <EXPRO

<1D> : <EXPR> ENDCASE
Type requirements

<EXPR1) must be of some declared scaler type. . <IDI> and

with

each

(IDk1> must either be elements of this scalar type's <IDLIST>, or

must literally be the <ID> ELSE.

Result = <EXPR2> = <EXPRk2>
PASS3 requirements.

(EXPR1> = SOURCE

Result = <EXPR2>

(EXPRk2> = (SOURCE or TARGET).

Meaning

Evaluate <EXPR1), thus yielding an <ID> in the scalar's <IDLIST>.

Look down the list of (IDI> and <IDk1>s in <EXPRV2> until you

a match. Then evaluate the corresponding <EXPR2> or <EXPRk2).

find .
If

no match is found, i.e. the user hasn't specified all the <ID>s in

~ 234 -

the scalar's <IDLIST>, then evaluate the <EXPR> corresponding to
the <ID> ELSE, if there is one. Otherwise, enter the debugging

package.

This form of the CASE statement is slightly more concise than
a corresponding use of the IF-THEN-ELSE form.

Example:

DEFINE WRITE(X:COLOR):
WRITE(CASE X OF
RED: 'Red’
BLUE: 'Blue'
GREEN: 'Green'
YELLOW: 'Yellow'
BLACK: ‘'Black’ ENDCASE Y
ENDDEFN
defines the function WRITE for COLORs, a type which was declared
earlier, wusing the function WRITE defined for quoted text strings
(QS). The CASE form results in the type QS because all of its

clauses result in the type QS.

Variant (EXPR)s

Variant Generation

The following rule has two independent meanings. This section
documents only one of its mecanings. The other meaning is covered under
Type Disambiguation. The form presented here is refered to as explicit

variant generation.

TYPDIS: <EXPR> ::= <ID1> e (EXPR2>

(EXPRZ) must be of precedence zero.

Type requirments ‘ '
result = a variant type where
<IDI) is the name of some state in that variant type and
<EXPR2) is of the type corresponding to this state.
PASS3 requirments
resu]t = SOURCE = <EXPR,>
Meaning
The resulting value is the variant object which resides in state

(IDI) and which has value <EXPR2>.

Examples:

The datatype declaration

TYPE EDGE = EITHER

STATE1 LINE

STATEZ = ARC

ENDOR;

- 236 -~

specifies that an EDGE may reside in one of two states. The names
of the states are STATE1 and STATEZ. An EDGE found in STATE1l is
represented by an instance of the type LINE and an EDGE found in
STATE2 1is represented by an instance aof the type ARC. If LINES is

a variable of type LINE, then the <{EXPR>

STATEL :: LINES
is an instance of EDGE. This EDGE is in the state STATE1 and 1its

value is LINES. Similarly,

STATEZ :: an <EXPR) of type ARC

is an EDGE residing in the state STATEZ.
The following <EXPR> is not an EDGE:

STATEZ :: LINES
An EDGE cannot both be in STATEZ and be represented by a LINE. An

EDGE in STATEZ.can only be represented with an ARC,

As described carlier with the variant <TYPE) cdnstruct, the
variant <TYPE)> construct provides coercions from each of its
constituent types to the variant type. Thus, the type EDGE, a
variant type whose constituent types are LINE ahd ARC, comes with

the coercions

LINE -~> EDGE and

ARC -> EDGE
This means that an instance of LINE and an instance of ARC each
implicitly can be viewed as an instance of type EDGE.: The user

actually does not need to write

~ 237 ~

STATE1 :: LINES

to have LINES pass as an instance of EDGE.

LINES
by itself passes as an instance of EDGE, thanks to the coercions.

Similarly,

an <EXPR> of type ARC

basses as an instance of EDGE.

The reader might wonder if it is ever necessary to explicitly
specify the state for a variant object. It would seem that the
coercions supplied with the variant type declaration make it
unnecessary. There are two reasons why the user will want to
explicitly specify the state. The state may be specified solely
for clarity or style. However, there are cases where it is
absolutely necessary to specify the state. Consider the following

variant datatype.

TYPE PICTURE = EITIIER
POLYGON = { POINT }
WIRE = { POINT }
ENDOR;
The type PICTURE has two constituents whose types are identical.
The <EXPR>

{ point ; point ; point }
can be viewed as a PICTURE in two ways. Is it in the POLYGON state
or is it in the WIRE state? If the user does not sbecify the

state, the string of points is ambiguous when viewed as a PICTURE.

~ 238 ~
Each of the following is wunambiguous because the state is
explicitly stated:

POLYGON :: { point ; point ; point } 4 .

WIRE :: { point ; point ;. point }

~ 239 <

This section covers the CASE form when vused in conjunction with a
variant object.

A variant value can be examined only by using the follbwing form.

| ECASE: CEXPR> :::= CASE <IDI> OF <EXPRV2>
where <EXPRV)> is as defined for the scalar CASE form:
EVCASE: <EXPRV)> :::= (IDI> : (EXPR2> ENDCASE
EVCASB: CEXPRV) :::= (IDy,> : CEXPR,,) <EXPRV, 0>
Type requirements
<IDI> of ECASE, the case variable, must be a variable of some
variant datatype. Each of the <ID,> and <ID,,>s of the CEXPRV>
"must either be the name of one of the states in the variant

datatype or literally ELSE.

The case-variable, <IDI> of ECASE, is automatically ﬁodified
within each case-clause, the (EXPR2) and each <EXPRk2>. The type
of the case-variable witﬁin the case-clause labeled <IDk1) becomes
precisely that type which is associated with the(state'<IDk1> in
the variant datatype's definition.‘ The case-variable assumes the
state's particular type because the state of the case-variable is
known within each case clause. However, within the ELSE clause, if
there 1is any, the case-variable is npot modified and it still

retains its original, variant type.

Within each case-clause, the user is free to assign new values
into the case-variable. However, the data he assigns must be of

the specific type which the case-variable assumes in« the

~ 240 -

case-clause. Once the CASE form is terminated, the_case-variable
appears unmodified regardless of the new values it might have been
assigned from within any of the case-clauses excepting the ELSE
clause.

PASS3 requirements are like those for the scalar CASE.

Meaning:
Fetch the value from the variable <ID,>. Look down the 1list of
<IDI> and <IDk1)s within <EXPRV2> until one matches the state in
which the variant value currently resides. Then evaluate the
corresponding (EXPR2) or (EXPRk2> and that is all. However, if no
match is found, evaluate the ELSE clause if there is one, otherwise

. enter the debugging package.

As noted above, the meaning of the case-variable's name 1is
different within each non-ELSE case-clause. Thus, if the user
wishes to refer to the original vaeriant value from within a
specific case-clause, he must have previously assigned the original

value to another, independent variable.

Examples:
Assume L is a variable of the variant type LISP_ELEMENT declared

earlier.

WRITE(CASE L OF
ATOM: 'L is an ATOM'
CONS_PAIR: 'L is a CONS'PAIR'
INTEGER_NUMBER: 'L is an integer'

FLOATING NUMBER: 'L is a real number' ENDCASE

~ 241 ~

uses WRITE of a QS to report in which state L resides. If L is in
the ATOM state, then "L is an ATOM" is typed out.' If L is in the

CONS_PAIR state, then "L is a CONS_PAIR" is typed out, etc.

DEF INE IS_ATOM(L:LISP_ELEMENT)=BOOL: .
CASE L OF CONS_PAIR: FALSE ELSE: TRUE ENDCASE
ENDDEFN
defines the function "IS_ATOM" to be like LISP's predicate “ATOM".

DEFINE IS _LITATOM(L:LISP_ELEMENT)=BOOL:
CASE L OF ATOM: TRUE ELSE: FALSE ENDCASE
ENDDEFN
defines "IS_LITATOM" to match LISP's LITATOM predicate.

DEFINE CDR(L:LISP_ELEMENT)=LISP_ELEMENT:

CASE L OF
CONS_PAIR: L.CDR
ELSE: Hy repoft an error GIVE NIL
ENDCASE
ENDDEFN

defines CDR extraction. CDR doesn't succeed unconditionally. CDR
of an INTEGER_NUMBER is an erroneous request, for example. Note
that within the CONS_PAIR case-clause, the variable L may have its
CDR field fetched because L. has been implicitly declared to be of
the record type "[CAR,CDR:LISP_ELEMENT]" for the duration of the

CONS_PAIR case-clause.

DEFINE EQUAL(X,Y:LISP_ELEMENT)=BOOL:
CASE X OF

~ 242 -

ATOM: CASE Y OF
ATOM: X=Y ELSE: FALSE ENDCASE
INTEGER_NUMBER: CASE Y OF
| INTEGER_NUMBER: X=Y ELSE: FALSE ENDCASE
FLOATING_NUMBER: CASE Y OF
FLOATING NUMBER: X=Y ELSE: FALSE ENDCASE
CONS_PAIR: CASE Y OF
CONS_PAIR: EQUAL(X.CAR,Y.CAR) &
EQUAL(X.CDR,Y.CDR)
ELSE: FALSE ENDCASE
ENDCASE
ENDDEFN
defines the predicate EQUAL to tell if two given LISP_ELEMENTs are
identical in structure. This states that if the first LISP_ELEMENT is
in the ATOM state, then equality is achieved only if the second
LISP_ELEMENT 1is also in the ATOM state and if it has the same value.
Similar requirements are used to complete the definition for EQUAL by
accounting for the other states in which a LISP_ELEMENT may reside. In
the CONS_PAIR state, recursion onh the CAR and the CDR is wused., The
binary operators "=" and "8" are defined later in the section for
<BOP>s. In ICL, "=" is defined only for the primitive datatypes. Note
that in the ATOM cases for X and Y, the "=" compares two QS's and that
in the INTEGER_NUMBER cases, the "=" compares two INTegers, and that in
the FLOATING_NUMBER cases, the "=" compares two REALs. The CONS_PAIR
cases, however, are not written using "=" because "=" will not compare
two LISP_ELEMENTs. LISP_ELEMENT 1is a non-primitive type. Note also

that only within the CONS_PAIR clauses can we select the CAR or CDR

~ 243 -~

field of X and Y.

~ 244 ~

Type Disambiguation

The following rule has two independent meanings. One of the

meanings has already been covered in the section Variant Generation.

The

meaning presented bhere is referred to as explicit type

specification.

TYPDIS: CEXPR> ::= <IDI> 1 <EXPR,>

<EXPR2> must be of precedence zero.

Type requirments

<ID1> is the name of a declared datatype and

result = <EXPR2>

the type <IDI>

PASS3 requirments

result = <EXPR2> (SOURCE or TARGET)

Meaning

(EXPRZ) is explicitly required to be of type (IDI). This
construct 1is wuseful for disambiguation. The existence of type
coercions andvpolymorphic function names may lead to ambiguities in
datatypes. For example, supposc we have twice defined the function
name WRITE, once for INTeger input and once for ‘REAL input.'
Suppose further that we have an INTeger-to-REAL type coercion. If

the user types

WRITE(K);
where K is an INTeger variable, two scenarios appear possible. One
scenario 1is that the INTeger-WRITE will be invoked. Thé other is
that the REAL—WRITE will be invoked after coercing K to a REAL.

ICL will choose the simpler of the two scenarios because ICL

~ 245 ~

applies coercions with reluctance. In short, the preferred type of

K 1is INTeger, not REAL. However, the user may force the coercion
! 1

to apply by writing:

WRITE(REAL::K);
The <EXPR)> "REAL::K" passes the type-pass only by viewing K as a

REAL. The preferred type of "REAL::K" is REAL, not INTeger.
Examples:

INT:: 1

is equivalent to 1.

INT:: (1.042.3)
is equal to 3 if the user has supplied a REAL-to-INT coercion, so

that the REAL, (1.0+2.3), may be viewed as an INT.

LISP_ELEMENT:: NIL
is-a NIL LISP_ELEMENT. NIL can be made an instance of any type to

which NIL is equal by prefixing NIL with that type's name. Thus

[CAR: § CDR: LISP ELEMENT::NIL]

passes the type pass and is equivalent to

[CAR: 5]

~ 246 ~

Function Calling

Functions with parameters are called by

‘ECALLP: CEXPR> ::= <IDp <ARGS,>
_ where

ARGS1: {ARGSX> ::= (<EXPR>

ARGS2: CARGSX> ::= CARGSX,> , <EXPR,>

ARGS3: (ARGS> ::= <ARGSX>)

Type

Informally, this states that an <EXPR> may be formed by an <ID>
followed by a "(" followed by a sequence of <EXPR>s separated by
commas fol]owed by a ")". This has the appearence of FORTRAN. |
requirements

There must exist a declared function whose name is <ID,> and whose
input parameter types sequentially match the types of the <EXPR>s
iny(ARGS). An isolated "NIL" may not be passed ‘as a parameter
because NIL has no type and a test for type equality is not used
here. However, a NIL value may be passed as a parameter by using

the rule TYPDIS.

PASS3 requirements

Each <EXPR)> in <ARGS> = SOURCE and
result = SOURCE.

Meaning

Evaluate, in order, each <EXPR> of <ARGS> and then <call the
appropriate function, <IDI>.' The resulting value is that of the

function.

Example

~ 247 ~

EQUAL(X,Y)
is a BOOLean if X and Y are LISP_ELEMENTs, referring to an earlier

example.

Functions without 1input parameters are called by just naming the

function name. This was described in the rule EID.

~ 248 -~

<EXPR>s Involving Binary and Unary Operators

Binary operators are denoted by <BOP> and are things like "+", "-",
"x®, etc. Unary operators are denoted by <UOP> and <(RHUOP> and are
things like unary minus and boolean NOT, "-". Associated to <(BOP>s and
<UOP>s 1s an attribute called precedence. Precedence is precisely that
syntactic notion which specifies which operators are to be performed
befofe others, or in other words, which operators have tighter bonds to
.their operands. For example, "% before +", meaning that 1+2*3 is 7 and
not 9, 1is specified by having the precedence of "x" he lower than the
precedence of "+". By an internal convention in ICL, 1lower precedence

means a tighter bond.

<EXPR>s also have an associated precedence. The precedence of an
{EXPR> 1is precisely the precedence of the most recent <{BOP> or <UOP>
which was used in forming that <EXPR>. For example, the precedence of
the <EXPR> "142% is that of the <{BOP> "+", and the precedence of "1+2%3"
is also that of "+" because "+" is the last operator uséd in forming

"142%3", The precedence of "(1+2)*3" is that of "»x",

SEMNOP: (EXPR0> HEL I | (EXPR1>)

The resulting <EXPR>, (EXPRO), has precedence zero, as do all rules
for <EXPR>s which don't specify otherwise. This rule has no type
nor PASS3 requirements per se, and the meaning is nothing. The
only effect of the parentheses is to overide any default grouping

caused by precedence.

EBOP or EBOPG: CEXPR> ::= <EXPR,> <BOP

1 {EXPR

2’ 3’

~ 249 -~

Syntax requirements
Praecedence: The precedence of <EXPR1> must be less than or equal
to the precedence of (BOP2> and the precedence of <EXPR3> must be
strictly less than the precedence of (BOP2>. This guarantees that
<{BOP>s with lower precedence will be combined first and that <BOP§s
of equal precedence will be associated left-to-right. This is just

Jike FORTRAN.

If <(BOP> has no precedcnce, then the rule applies, but after
all type and PASS3 requirements are checked, a préferenée is made
for left-to-right association. This feature will be explained in

the section about <(BOP>s.

This rule does not apply if <EXPRI> has the special precedence

called EMAX. A rule of grammar producing an <EXPR> of precedence
EMAX specifies that its result has higher precedence than any
<BOP>s and therefore applies only after all <BOP>s have been bound.
For an example, see the rule EGIVE, which produces an <EXPR> of
precedence EMAX. | »

Type and PASS3 requrements depend on <BOP2).

Meaning
Evaluate <EXPR1> and <EXPR3> and then apply <BOP2> to the resulting
values. There is no guarantee as to which of <EXPR,> and CEXPRg>
is evaluated first.

Examples:

1 + 2
1+2*3
(1 +2)=»3

EUOP:

There are more examples in the section for <BOP>s.

CEXPR> ::= (UOPI) (EXPRZ)

Syntax requirements

Precedence: (EXPRz) must be of precedence less than or equal to 2

and the resulting <EXPR> is of precedence 2. That is to say,

“CUOP>s may prefix {EXPR>s of precedence zero or <EXPR>s which are

Type

themselves prefixed by <UOP>s.

and PASS3 requirements depend on (U0P1>.

Meaning

Evaluate <EXPR,> and then apply <U0P1>.

Example:

EUOP

-1 or --1

-142 ' equals 1, not -3

-X[I1]
groups as -(X[I]) and not as (-X)[I] because the string indéxing
construct, STRSEL, requires the string-<{EXPR> to have precedence
zero. The string-<EXPR> X has precedence zero but the
string-<EXPR> -X has precedence 2. Hence, the string-<{EXPR> ;X
cannot be used in the string indexing construct. The unary minus
is therefore attached after X and [I] are attached because the

CEXPR> X{I] has precedence zero.

or EUOPG: <EXPR> ::= <EXPR2> .(RHU0P1>
This is like the rule EUOP above, but it's for unary ops which must
appear on the righthand side. The precedence conditions and

oxamples are delayed until <RHUOP>s are described.

~ 251 ~

Looping with <BOP)s

EBOPQ: CEXPR> ::= (BOPI) <EXPR

The mapping from "+" to summation is defined for all operators.

The rules:

2) <0UANT3>

EBOPQ: <EXPR> ::= <QUANT3> GIVE <BOP > (EXPRZ) END

1

EBOPQ: <EXPR> ::= (QUANT3> <BOP ;> <EXPR,>

Type

all have the same meaning: each yields the cumulative value

<EXPR2> (BOP1> <EXPR2> (BOP1> “es <EXPR2)
where the number of terms is determined by the program loop
generator <QUANT3>. The third rule results in an <EXPR> of
precedence EMAX.
requirements -

There must exist some type, T, which can act as a temporary for

holding the cumulating value. Thus, T is characterized by

T = <EXPR,>

2
the resulting type from (T <BOP1) <EXPR2>)

n

T

These accommodate assigping an initial value to the temporary and
then assigning cumulative values for each iteration. These two
equations, in the space of datatypes, are not singular;
"T=<EXPR2)” doesn't bind T exclusively to one datatype. If
necessary, the <EXPR2> in these two equations will differ by having
one be the result of applying coercion(s) to the other. Typically,
however, this type constraint means that both operands of the <(BOP>

and the resulting type are all equal.

PASS3 requirements result = <EXPR2> = SOURCE

Meaning

Apply (BOP1> to the successive values of (EXPRz} generated
evaluating <EXPR2> once for each iteration caused hy <QUANT3>.

Examples:

+ 1 FOR I FROM 1 TO 5;
(-BOP-) (-EXPR-) (===--==-- QUANT =~ ~--)

sums up 1s as I marches from 1 to §.

+ I FOR I FROM 1 TO N;

equals 14243+, 4N,

* -2 REPEAT N;
(-80P~) (-EXPR-) (--QUANT--)

equals 2 to the Nth power.

+ F(1) FOR 1 FROM 1 TO N;
(-BOP-) (-EXPR-) (=----- QUANT ===~ --)

is equivalent to

FOR I FROM 1 TO N; GIVE + F(I) END
[G QUANT == -—-) (-BOP-) (-EXFR-)

and to

FOR I FROM 1 TO N; + F(I)
(======- QUANT ~-----) (-BOP-) (-EXPR-).

Note that the precedence of the third rule specifies that

REPEAT 10; + 2 %34+ 1

groups as

REPEAT 10; + (2 %3+ 1)

by

and not as

(REPEAT 10; + 2) * 3 + 1

or

(REPEAT 10; + 2 * 3) + 1
The resulting (EXPR) from the third EBOPQ rule has precedence £EMAX
and hence that <EXPR> cannot be the lefthand coperand for a binary

operator. Refer to the precedence requirements of the rule EBOP.

Existential and Universal <EXPR>s

~ 254 ~

The .following <EXPR>. forms correspond to mathematical 1logic's

existential and universal quantification. The reader might note the

similarity between these (EXPR> forms and those of the previous sectien,

Looping with <BOP)s.

meaning.

QBOOL1: <EXPR)
QBOOL1: <EXPR>
QBOOL1: <EXPR)
QBOOL1: <EXPR)>
where
QBALW: <QBOOL>
QBNVR: <QBOOL>
QBEXS: <QBOOL>
. QBEXS: <QBOOL>

Syntax Reqﬁirements

The following four QBOOL1 rules are equivalent in

CQUANT >
(QUANTI)

CQUANT >

1

<QBOOL >

3

s:= ALWAYS
::= NEVER
::= EXISTS

::= THERE_IS

CEXPR,> <QBOOL 5>
<QBOOL3> CEXPR,>
GIVE (QBOOL3) <EXPR2> END
<EXPR2> <QUANTI)

The second QBOOL1 yields an C(EXPR> of precedence EMAX.

The first rule's <QBOOL,> will not admit THERE_IS and the other

rules’ <QBOOL3) will not

identical meanings; this

readability.
Type Requirements
PASS3 Requirements

Meaning

admit EXISTS. EXISTS and THERE_IS have

restriction merely enhances program

result = BOOL = <EXPR2>

result

SOURCE = <EXPR,>

Evaluate (EXPR2> ance for each iteration caused by <QUANT12 and
stop as soon as the condition specified by (QBOOL3> becomes known.
If the condition becomes known before the (QUANT> is exhausted, the
user will find the variables of <EXPR2> holding those vélues which

were used in the final evaluation of <EXPR2>.

The <QBOOL> ALWAYS yields TRUE only when all values of <EXPR2>
yield TRUE. NEVER vyields TRUE only when all values of <EXPR2>
yield FALSE. EXISTS and THERE_IS yield TRUE as soon As (EXPR2>
yvields its first TRUE.

Examples:

ALWAYS %<5 FOR X SE S;
(--QUANT - -~~~)
FOR X SE S; ALWAYS X<5
(---QUANT---)
FOR X $E S; X<5 ALWAYS
(~-~-~QUANT-~-)
are egquivalent and each yields TRUE if X<5 for ell X in the string

S.

THERE_IS X<5 FOR X $E S;
FOR X BE S; THERE_IS X<5
FOR X $E 5; X<5 EXISTS
are equivalent and each yields TRUE if there exists at least one X

in S with X<5.

NEVER X<5 FOR X BE S;
FOR X BE S; NEVER X<§

FOR X $E S; X<(5 NEVER
are equivalent and each yields TRUE if each element in S

less than 5. The following are equivalent:

ALWAYS <EXPR> <QUANT>

NEVER - <EXPR> <QUANT>

- THERE_IS - <EXPR> <QUANT>
vThe "-" is logical NOT.

Note that if

ALWAYS X<§ FOR X $E S;
yields FALSE then X is left containing a number such that
FALSE. The form

IF THERE_IS X<5 FOR X $E S; THEN then-clause
ELSE else~clause FI
guarantees that X contains the first value in S less than

entering the THEN-clause.

IF ALWAYS X<5 FOR X $E S; THEN then-clause
ELSE else-clause FI
guarantees that X contains the first value in S which is

than 5 upon entering the ELSE-clause.

IF NEVER X<5 FOR X $E S; THEN then-clause

ELSE else-clause FI

is

X<§

5

not

guarantees that X contains the first value in S which is less

5 upon entering the ELSE-clause.

FOR X $E S; ALWAYS THERE_1S Y=X FOR Y $E S1;

not

is

upon

less

than

~ 257 -~

ar
FOR X BE S; ALWAYS FOR Y $E S1; THERE_IS X=Y
states the condition that the string S is a subset of the string

S51.

IF FOR X $E S; ALWAYS THERE IS Y=X FOR Y BE Si;
THEN then-clause ELSE else-clause FI
guarantees that upon entrance to the ELSE-clause, X holds the first

value in S which is not in Si.

~ 258 -

Embedding <SS>s within <EXPR>s

The following three rules enable the insertion of a <SS> within an
<EXPR>. This section concludes with a warning about side effects and

order of evaluation.

EGIVE: <EXPR>

bo <SSI) GIVE <EXPR2>

GIVING (EXPR?> Do (SS]) END

po <SSI> GRABBING (EXPRZ)

EGRAB: CEXPR>
EGRAB: CEXPR>

The first and third rules yield <EXPR>s of precedence EMAX.

Type requirements result <EXPR2>

PASS3 requirements result = <EXPR,> = (SOURCE or TARGET)

Meaning
The first rule specifies that (SSI> is executed before evaluating
<EXPR2>. The resulting value is that of CEXPR,>. This is LISP's
PROGN function. The second and third rules are equivalent and each
specifies that <551) is executed aftler (EXPR2>. This is LISP's
PROG1 function.

Examples:

DO 1:=KXN-V/5; GIVE 1+]
yields the value of "I+I" after I has been assigned "KxXN-V/5",

Note that this groups as

Do :=KAN-V/5; GIVE (I+1)

and not as

(DO I:=K*N-V/5; GIVE 1I) + I

~ 259 ~ ' !

because the DO...GIVE rule yields an <EXPR> of procedence EMAX. A
DO...GIVE form cannot be the lefthand operand of a <BOP>, unless,
of course, it is enclosed in parentheses. Hence the "I+I" has to

bind first.

GIVING I+I DO 1I:=K*N-V/5 END
yields the value of "I+I" and then resets I to the value of

"REN-V/5".

DO WRITE(I*I); GRABBING I 1= by
types out a 25. The cvaluation of the lefthand side of this
assignment statement sends the number 5 to the DO...GRABBING form.
The‘DO...GRABBING form first evaluates its <EXPR2>, I, and thus

sets I to 5. It then executes <SSI), typing out a 25.

The following rule offers a more concise notation for one' of the

more common DO...GIVE usages.
SETQX: <EXPRY :::= (<EXPR1> (SSRH82>)

This represents an assignment statement enclosed in parentheses.
The part-of-speech <(SSRHS> will be documented completely in the
section called Assigmment Statements. Fdr the time being, let us

assume the definition:

<{SSRHS> ::= := <EXPR> ;
¢SSRHSY stands for "<SS8>'s righthand side" and comprises the
righthand side of the assignment statement including the :=. Thus,

the form

CEXPR> <{SSRHS>

~ 260 ~

represents the assignment statement

<EXPR> 1= CEXPR> ;

and the form

(<EXPR> <{SSRHS>)

takes on tﬁe appearance

{ <EXPR)> := <EXPRD> ;)
The parentheses around the assignment statement transform it into

an {EXPR> whose value is that value which passes thru the :=.

Formally speaking, the type and PASS3 requirements and the

médnina'for the rule SETQX are all derived by transforming

((EXPRI) (SSRHS?)) into ' !

{ DO (EXPRj) (SSRH82> GIVE - (EXPR1>)

Refer to the assignment statement rule, SSASS, in the section for

<8S>s.
Examples:
(I:=1I+1;) increments I and yields
the resulting value of 1.
1:=(J:=3;); sets both I and J to the .

value 3.
Notice that the semicolon is required as part of the assignment

statement!

IF (J:=N*N;) < 4 THEN J ELSE J+1 FI

~ 261 ~

ylelds the value N*N if N*N is less than 4, otherwise it yields

NxN+1. This is equivalent to

IF DO J:=N*N; GIVE J < 4 THEN J ELSE J+1 FI

WARNING .

Embedding <SS>s within <EXPR>s expands the notion of computed value
to include side effects. The evaluation of an <EXPR> containing an
embedded <SS> not only yields 5 value but it also performs some actions,
typically modifying variables. Because of such side effects, the order

of <EXPR> evaluation becomes a relevant issue. For example,

(J:=2;) x J
yields either a 4 or 2*(the old value of J), depending on which of the
two parameters to the "*" evaluates first. The rule.incorporating the
- "enr_ EBOP, clearly states that the user cannot depend on the order of
evaluation. Thus, the above <EXPR> yields an uncertain valué.

Similarly, the string

{ DO J:=2; GIVEJ ; J)
yields either {2;2} or {2;the_old_value_of J}. The STRGEN rules cleafly

state that the order of evaluation in strings is uncertain.

~ 262 ~

Embedding Declarations within (EXPR>s

EDECL: {EXPR> ::= <BEXPR>
. where

DCOUGH: <(BEXPR> :::

BEGIN (DECLI) (EXPRZ) END

DCOUGH: <BEXPR> :::= BEGIN (EXPR2> {DECL,> END

1

1]

Type requirements result <EXPR

27
(EXPR2> = (SOURCE ar TARGET)

PASS3 requirements result
Meaning

Evaluate (EXPR2>. However, the declarations, <DECL1),

incorporated for the duration of <EXPR2). Thus, the user may

declare new variables to be local to <EXPR?). He may also declare

new types, functions, or coercions which are accessable only within

(EXPRz); Outside of the BEGIN-END block, the effects of (DECL1>

are absent.

Any variable or type declaration which defines a previously

used name automatically overrides the name's previous definition.

However, the same is not true for function and coercion

declarations. Unfortunately, an attempt to override a previous

function or coercion definition results in ambiguity when

function or coercion is used within (EXPR2>.
Examples:

BEGIN VAR I,J=INT;
PO 1:=20; J:=30;
GIVE I*J

END

~ 263 -

declares I and J to be local INTegers for the duration of this
CEXPR>. Its value is G00. Any external meanings for I and J are

unchanged.

BEGIN VAR 1,J=INT;
DO 1:=10; J:=30;
GIVE I+J* BEGIN VAR I=INT; J=REAL;
po 1:=3;
GIVE 1
END * 1
END
yields the value 910: The inner BEGIN-END C(EXPFR> yields the value
3 and the "I+Jx,. *I" therefore reduces to "I+J*3*I“.b Even though
I is redeclared inside the inner BEGIN-END hlock, within the outer
block but not within the inner block, I has its assigned value of

10.

BEGIN LET COMPLEX_NUMBER BECOME REAL BY
COMPLEX_NUMBER .REAL_PART ;
some <EXPR>
END
specifies that for the duration of the <EXPR>, COMPLEX NUMBERs may
implicitly be viewed as REALs by considering only their REAL_PARTs.
This might be useful if within this block, all COMPLEX_NUMBERs were

scrutinized only for their relation to the imaginary axis.

DEFINE IOTA(N:INT)=STACK_OF INT:
BEGIN VAR I=INT;

{ COLLECT 1 FOR I FROM 1 TO N; }

~ 264 ~

END

ENDDEFN
defines APL's iota function, which returns the string of integers
from 1 to N. The variable I is local to this function and hence

does not interfere with any other use of the name I.

DEF INE SUBSCRIPT(SUBJECT,INDICES:STACK“OFﬂiNTEGER)
| | = STACK_OF INTEGER:
BEGIN VAR I=INT;
{ COLLECT SUBJECTLI] Foé I SE INDICES; }
END
ENDDEFN
défines APL's vector-on-vector indexing operation. The "$E" within

the FOR-quantifier reads "an element of".

Globa

1 Communications - The HOLDING form and CASN)

This section covers a structured management for global variables:

the HOLDING form. The HOLDING form works for any kind of variables but

it is primarily useful for managing global variables. We will also

introduce the part-of-speech <ASN>.

The HOLDING form

HOLDIT: CEXPR> :::= HOLDING <ASN1> GIVE <EXPR?> ENDHOLD

Type Requirements result = <EXPR2>

PASS3 Requirements result = <EXPR2)

Meaning
The resulting value is that of (EXPR2>. However, preceding
<EXPR2>'s evaluation, the specified variables in <ASN1> are saved
and (ASN1>'S tmplied assignments are carried out. After the
evaluation of <EXPR2), the specified variables in <ASN1> are
restored.
This is like LISP's PROG function except that variables without
implied assignment are 1left unchanged, i.e., they are not set to
NIL. The <ASN> in the HOLDING form corresponds to the PROG's first
parameter. ‘
Examples will follow.

The <ASND

ASN1: CASN> ::= <IDk1> ;

ASNRHS: CASN>

<IDk1) (SSRHSk2>

~ 266 ~

ASNX: CASN> ::= <ASNY <ASND
Informally, an <ASN> 1is a sequence of either "{Ib>; " or
"IDY :=CEXPR>;". The part-of-speech <SSRHSY> is covered in the

section Assignment Statements. <SSRHS> is basically the form

:= CEXPR> ;

Thus, the form in the rule ASNRHS .

<ID, ;> <SSRHS, >

appears as

(IDkI) = CEXPR> ;
and represents an assignment statement where the lefthand side is
the variable <IDkl>‘
Type Requirements

Each (IDk1> must be some declared variable and each

<ID, o> <SSRHS,, >
must satisfy the type requirements implied by the assignment.
Refer to the assignment statement rule, SSASS, in the section for.
<S8>s.

‘PASS3 Requirements
Those implied by the assignments

Meaning
An <ASN> has an abstract meaning in ICL. An <ASN> represents both
a set of <ID>s, all the <IDk1>s, and a set of assignment
statements, all the <IDk1><SSRHSk2)s of the rule ASNRHS. The set

of <ID>s is called the specified variables and the set of

assignment statements is called the implied assignments.

~ 267 -

Examples of <ASN)s:

I ;J; K ;

has the specified variables 1, J, and K, and bhas

assignments. Notice that there is a terminating semicolon.

¢ : J = 3 ; K :
(-~ASk--) (-SSRHS-) (-ASk-)
(--~-ASN---)

has the specified variables I, J, and K, and has

assignments J:=3;.

I ; J:= (V:=3;); K:=2;
has the specified variables I, J, and K, and has

assignments
J:=(V:=3;); and K:=2;.
Note that V is not in the set of specified variables.
Examples of the HOLDING form:

HOLDING I;J;. GIVE <EXPR> ENDHOLD
(-AS¥-)

no

the

the

implied

implied

implied

specifies that I and J are to appear unchanged after this CEXPR> is

evaluated.

HOLDING 1I;J; GIVE
DO I:=1; GIVE <{EXPR> ENDHOLD

~ 268 ~

specifies the same as above except that I 1is set to 1 before

<EXPR>'s evaluation.

HOLDING I:=1; J; GIVE <EXPR> ENDHOLD

specifies the same as the previous example.

HOLDING EPSILON:=EPSILON/2; GIVE
SOLUTION_TO_EQUATION ENDHOLD _
specifies that while finding SOLUTION_TO_EQUATION, EPSILON is to be

cut in half.

In general, when you want to reuse a global variable, use the
HOLDING form to assign it its new value, lest the global variable's
previous value be lost. This kind of trecatment for global

variables is essential in many recursive enviornments.

HOLDING INPUT DEVICE:=DISK; GIVE
INPUT_TEXT ENDHOLD
specifies that the function INPUT_TEXT will aperate in the coniext
where INPU1;DEVICE=DISK. As implied by its use above, INPUT_TEXT
is a parameterless function. However, if INPUT_TEXT were defihed
to be a function of one paramcter, the input device, its call would

look like

INPUT_TEXT(DISK)
The use of the HOLDING form is cquivalent in the‘ sense that an
input parameter 1is being specified. However, the latter form
requires the input devi;e to be specified upon each call tg
INPUT_TEXT whereas the former form sets that parameter for all
‘ !

calls to INPUT_TEXT, thus making the input device an implicit

~ 269 ~

parameter.

~ 270 ~

Anchoring Pointers - @ and COPY

The introduction to this manual mentions that the ICL user need not
be aware of pointers. This section presents the anchoring operator, the
only operator in ICL which requires the user to be aware .of ICL's
pointer implementation. The anchoring operator is useful only if the

user wants to take further advantage of ICL's pointer implementation.

EAT: CEXPR) e (<EXPR,)

Type Requirements
result = <EXPR1> = any type to which NIL is equal except POINT.
PASS3 Requirements
CEXPR,> = SOURCE
result = (SOURCE or TARGET)
Meaning
In the SOURCE case, @(...) is a npno-op; the resulting value is
simply the value of CEXPR . However, in the TARGET case, ICL
stores the given value into the memory location occupied by the

value of (EXPRI).

The debugging package will be entered under the following
conditions: In the TARGET case, ecither <EXPR1> is NIL or the given

value is NIL, i.e., either

@(NIL):= <EXPR)> ; or @(<EXPR>):= NIL ;

Examples:

A :=[REAL_PART:1 IMAGINARY_PART:2];
B := A ;

~ 271 ~

leave A and B referencing the same memory location. The assignment

 A.REAL_PART := 700;
modifies A so that A's REAL_PART becaomes 700, However, B's
REAL_PART is untouched and still contains the value 1. A and B now
reference different memory locations. On the other hand, if we

instead were to write

@(A).REAL_PART := 700;
B.REAL_PART would also become 700. That is, the memory locatlion
referenced by A is modified, not the variable A itself. B feels

the change because B references the same location referenced by A.

IWhen do Eomputed values reference the same memory location?
This question cannot be answered without some knowledge of ICL's
implementation. The reader is referred to the section ICL's Policy
about Assignments, Pointers, and Copying for a cqmplete
explanation. The LISP user, however, can come to a reésonable
vnderstanding by knowing that in ICL the generation of records,
strings, and variants opérates like LISP's LIST function; the

. !]
results occupy newly allocated memory locations. For example,

[A:X B:Y] acts like (LIST X Y)
{P;Q;R} acts like (LIST P Q R)
P::Q acts like (CONS P Q)

and with ICL's TARGET selection farms,

W.A:=X; acts like W:=(CONS X (CDR W))
if A happens to be the first

component in W

~ 272 ~

W{2]:=X; acts like W:=(CONS (CAR W)
(CONS X (CDDR W]
- W[2-]:=X; acts like W:=({CONS (CAR W) X).

Thus, the ICL nested record

W:= [A: [P:X] B: [P:X] J;
specifies that W.A and W.B do not reference the same memory
location, but that W.A.P and W.B.P do reference the same location.

The operation

e(X):=Y; or G(W.A.P):=Y;
makes a change which 1is apparent from both of W's A and B

components. However, the assignment

8(W.A).P 1= ¥,
appears to modify W's A component without modifying W's B
component. W's A and B components reference different memory

‘locations, each containing a different copy of [P:X].

Refer to the section ICL's FPolicy about Assignments, Pointers,

and Copying for a complete explanation.

- ECOPY: CEXPR> ::= COPY (<EXFR >)

ECOPY: CEXPR> ::= C(COPY ! <EXPR,>)

Type Requirements are like the rule EAT, above.

PASS3 Requirements . result = SOURCE = <EXPR1>.

Meaning

~ 273 ~ :

The resulting value is a copy of the value of <EXPR1>. The copy
and the value of (EXPR]> occupy different memory locations. COPY
is a very fast operator, only two PDP-10 words are moved. However,
if the value of <EXPR1> is NIL, COPY acts as a no-op and simply

returns NIL.

If the wuser defines a upary function named COPY, his
definition will override the first ECOPY rule. However, the

equivalent form

COPY ! <EXPR>)}
cannaot be overridden.
Example:

Referring to the above example with A and B, if we substitute the

B := A ;
with

B := COPY{(A) ;

then the assignment

@(A).REAL_PART := 700;
does not affect B. The structure referenced by B is not at the

location referenced by A, thanks to the COPY.

~ 274 ~

Detecting NIL

EDEF : CEXPR> ::= DEFINED (<CEXPR,>)

Type requirements
<EXPR1> must be of a type to which NIL is equal. Refer to the rule
ENIL.
result = BOOL

PASS3 requirements result = <EXPR,> = SOURCE

Meaning

TRUE if <EXPR1) is not NIL, FALSE otherwise.

~ 275 ~ :

Binary and Unary Operators:

<8OP)s

The part-of-speech <BOP> refers to all infix binary operators. We

will denote a <BOP>'s type requirements via the notation

"(TYPE1> <TYPE2> -> <TYPE3>".

This states that the <(BOP>'s lefthand parameter must be of type <TYPEI),
its righthand parameter must be of type <TYPE2>, and the resulting valué

is of type (TYPE3>. The PASS3 requirements for <BOP>s are simply that
both input parameters and the output parameter are SOURCEs unless
. otherwise specified.
BOPADD: <BOP> ::
BOPSUB: <BOP> ::
BOPMUL: <{BOP> ::

BOPDIV: <BOP>
BOPEXP: <BOP>

wnuna
- o 1

have the type requirements:

INT INT ~> INT

REAL REAL -> REAL

POINT POINT -> POINT
+, -, X, and / are the usual FORTRAN arithmetic operators where a
POINT 1is treated as if it were a complex number. wew is
exponentiation and does not yet waork for POINTs. + and .- have
precedence 6, * and / have precedence 4, and t has precedence 2.
Thus, * and / are preformed before + and -, and t is performed
before * and /. Remember that in ICL, the lawer the p{ecedence,

the tighter the operator binds to jts operands. In general, the

actual precedence numbers are unimportént; the only importance is

~ 276 ~

their relation to one another.

The <BOP>s * and / can also be used to combine a POINT and a
REAL by yielding scalar multiplication or division. The REAL and
POINT may appear on either side of the *,
POINT REAL -> "POINT
REAL POINT ~> POINT

but division admits the REAL only on the righthaond side:

POINT REAL -> POINT

BOPAND: {BOP> ::= &
BOPOR: <BOP> ::= 1
BOPXOR <BOP> ::= XOR

have the type requirements:

BOOL BOOL. -> BOOL
LOGICAL LOGICAL -> LOGICAL

"8" stands for boolean AND, "!" stands for hoolean OR, and "XOR"
stands for exclusive OR. For LOGICALs, these <BOP>s procede
bitwise. The LOGICALs must all be equal types. For example, a
LOGICAL(7) and a LOGICAL(10) cannot be combined. The precedence of
“&" is 10, "!" is 12, and "XOR" is 14. Thus &'s are done before

I's and !'s are done before XOR's.

BOPBIT: <{BOP> ::= BIT

has the type requirments:

LOGICAL 1INT -> BOOL

~ 277 ~ :

BIT tests a bit in the LOGICAL and tells whether it is a one or a
2ero, yielding TRUE or FALSE, respectively. The INT specifies
which bit is to be examined. Zero is the rightmost,bit, ?ne is the
second to the rightmost bit, etc. FALSE is returned if INT isn't

less than the word size of the LOGICAL. BIT has precedence 20.

BOPLSL: <{BOP>

SHIFTL
BOPLSR: {BOP> ::

SHIFTR

have the type requirements:

LOGICAL INT -> LOGICAL
SHIFTL means shift left and SHIFTR means shift right. The INT
specifies the .number of bits to shift. A negative INT cause that
the shift occurs in the opposite direction. SHIFTL and SHIFTR each

has precedence 20.

BOPMIN: <BOP> MIN

BOPMAX : {BOP> ::= MAX

have the type requirements:

INT INT -> INT

REAL REAL -> REAL

POINT POINT -> POINT
MIN and MAX yield the minimum and maximum, respectively. MIN and
MAX are defined on points by procecding coordinate-wise. Thus, "Pi
MIN P2", where P1 and P2 are POINTs, yields the lower 1left corner
of the box determined by P1 and P2Z. Please note that the resulting
point might not equal either P1 or P2. MIN and MAX have precedence

26.

~ 278 ~

The remaining <(BOP>s are said to have no precedence. This means
that they impose no precedence conditions. Howevef. <(BOP>s with no
precedence will tend to associate in the usual left-to-right manner when
'possible. <BOP>s with no precedence also tend to apply after‘the other
- <BOP>s have app]ied; they tend to have a higher precedence. What
distinguishes <BOP>s of no precedence from <BOP>s all having equal
precedence is that their grouping is flexible encugh to allow a
non-left-to-right grouping when datatype inconsistency forbids the usual

left-to-right grouping.

'BSHARP: <(BOP> ::= #

has the type requirements

REAL REAL -> POINT
and forms the POINT whose x and y coordinates are the two. REALs
respectively. The "#" operator works in the TARGET‘case if both
parameters are TARGETs. IThus. the two coordinates of a point may

be unloaded into two REAL variables simultaneously.

Examples:
142%31245 equals 24
3.044.0 + 1.0#6.0 cquals 4.0#10.0
L(4a) BIT ©O© is FALSE
. L{4) BIT 1 is FALSE

L(4) BIT 2 is TRUE

~ 279 ~

L(4) SHIFTL 2 is L(20)
L(4) SHIFTR -2 is L(20)
L(4) XOR L(5) is L(1)
(1.042.0)*3.0 is 3.046.0
1.042.0 * 3.0 is 1.046.0

L(4) BIT 3 & TRUE

fails the type-pass because it groups as

L{(4) BIT (3 & TRUE)
because of pretedence, and "3 & TRUE" fails the type-pass.

However, -

(L(4) BIT 3) & TRUE
passes the type-pass. ("L(4) BIT 3" yields a BOOL and so the "&"
operates on BOOLeans). Note that in the form without parentheses,

precedence chooses a fatal grouping.

X#Y := P;

sets the REAL variables X and Y to the coordinates of the point P.

More <BOP>s of no precedcnce:

COMPEQ: <BOP> = =
COMPNE : <BOP> = O
COMPGT: <BOP> =
COMPGE : <BOP> = =
COMPLT: <BOP> = <
COMPLE: <BOP> = =<

~ 280 ~

These have the type requircments

INT INT -> BOOL
REAL REAL -> BOOL
POINT POINT -> BOOL
CHAR CHAR -> BOOL

LOGICAL LOGICAL -> BOOL .
=, <>, >, >=, £, =X are the compare operators. They are, in order:
equal, not equal, greater, greater or equal, less, less or equal.
Note that "less or equal" and “greater or equal" place the "="
relative to the "<" or ">" so to avoid forming an arrow. "=" and
"{>" also allow

BOOL BOOL -> BOOL

Qs - Qs -> BOOL

SCALAR SCALAR -> BOOL
A partial ordering is assigned to POINTs and LOGICALs by comparing
each of the coordinates of a POINT (or bits in é LOGICAL) and
requiring that both (all) of the comparisons succeed for a
successful overall comparison. CHARs are ordered by their ASCII
codes. These compare operators will also work on one other

datatype which is yet to be introduced.

The operators "$>", "$3", and "<3$" are for appending elements or strings
onto strings.

Let A be any type and SA beo the type "{A}", string of A.

BOPSTR: <{BOP> ::= &>
BOPSTC: <BOP> ::= 3%
BOPSTL: <BOP> ::= (%

~ 281 - T

These have the fype requirements (respectively):

SA° A -> SA

SA SA ~-> SA

A SA -> SA
"$>" appends an element onto the righthand end of a string. "
appends an element onto the-lefthand side of a strihg. like LISP's

CONS. "$3" appends two strings, like LISP's APPEND. Thus,

1 <8 {2:3;4) ‘equals {1;2;3;4)

{1;2} > 3 5> 4 equals {1;2;3;4) : |

{1} 3% {2;3) $3 {4;5} equals - {1;2;3;4;5)}
A note aboutyefficiency might be of interest. All three of these
operators are equally fast (not slow). However, accessing a string
built with many "3>"s or "$8"s is relatively slow. The REFRESH
operator, the rule ERFRSH, rebuilds a string using "<(3" so that it

may be accessed efficiently from thereafter.

There is one more <BOP> form, which enables calling functions ipn an

infix manner. ' .

BOPBID: <BOP> ::= \ <ID
<ID> must be the name of a function which takes in two parameters
and yields a value. Therefore, the types of data that this <BOP>
takes in and yields are determined by the particular function,
<ID>.

Examples:

~ 282 ~

Referrjng to the function EQUAL defined earlier for comparing two

LISP_ELEMENTS,

X \EQUAL Y
is equivalent to EQUAL(X,Y). X and Y must be of type LISP_ELEMENT

and "X \EQUAL Y" is a BOOLean.

X \EQUAL Y & 2Z \EQUAL W

auvtomatically groups as

(X \EQUAL Y) & (2 \EQUAL W)
because the "\<ID>" <BOP> has no precedence, and hence it‘groups to

suit datatype compatibility.
Now, suppose we wish to define 3-D points:

TYPE THREE_POINT = [X,Y,Z: REAL];

Suppose further'that we define addition and multiplication by'

DEFINE PLUS(A,B: THREE_POINT)=THREE POINT:
[X: A.X¢B.X Y: AY+B.Y Z: A.Z+B.Z] ENDDEFN
DEFINE TIMES(A:THREE_POINT R:REAL)=THREE_POINT
[X: A.X*XR Y:A.Y*R 2Z: A.Z*R] ENDDEFN

Then, if A,B, and C are variables of type THREE_POINT,

A \PLUS B \PLUS C

represents their sum, and

(A \PLUS B \PLUS C) \TIMES (1.0/3.0)

~ 283 - >

represents their average. Note that due to the 1left-to-right
grouping tendency in <BOP>s of no precedence, we could get the same

effect by:

A \PLUS B \PLUS C \TIMES (1.0/3.0) -

or even

A \PLUS B \PLUS C \TIMES 2.0/3.0 \TIMES 1.0/2.0

This ability to classify binary functions as <BOP>s enables their
use in looping-(BOP) operations. For example, if Q were a string
of THREE_POINTs then we can get the average in that string by

writing

\PLUS A FOR A BE Q; \TIMES (1.0/ + 1 FOR A $E Q;)
(-80F-) (--QUANT---)

The "FOR A $E Q;" reads as "FOR A an element of Q".

~ 284 -

Unary Operators - CUOF> and <RRUOP)

Unary operators were mentioned carlier in the <EXPR> rule, EUOP,
which states that an <EXPR> may be prefixed by a <UOP> or postfixed by a

<RHUOP>. We shall specify a <UOP>'s type requirements by

<TYPEI> -> <TYPEZ>
This will mean that the <UOP> takes in an instance of type <TYPE,> and
yields an instance of type <TYPE?). All inputs and outputs are assumed

to be SOURCEs.

UOPMIN: wop> = - .

has the type requirements

INT => INT
REAL -> REAL
POINT -> POINT
BOOL -> BOOL

LOGICAL -> LOGICAL
Unary minus operates like in FORTRAN for INTegers and REALs. A
point is negated by negating each of its coordinates independently.
When applied to a BOOLean, "-" is the function NOT. “-" performs
ones complement on LOGICALs.

Examples

TRUE is FALSE

L(4) is L(3) if imterpreted as a LOGICAL(3), or
L(13) if interpreted as a LOGICAL(4), or

L(33) if interpreted as a LOGICAL(5), etc.

(1.072.0) is -1.0 # -2.0
-XtY is (-X) £ Y

' UENCOD: <UOP>

UDECOD: <uop>
UUNARY: <UOP>

UNORM: <uop>.
UBITSW: <uop>

-(X#Y) is -X # -Y
UTALLY: <UOP> ::= TALLY
ULFTZO: <UOP)> ::= LEFTZEROS
= ENCODE

have the type requircments

LOGICAL

> INT
TALLY counts the number of ones in a LOGICAL. LEFTZEROS counts the
number of 1leading =zeros. ENCODE counts the number of trailing

2eros.

1]

DECODE
UNARY

have the type requirements

INT -> LOGICAL
DECODE yiélds a LOGICAL having at most one bit set. The INT
specifies the number of trailing zeros which are to follow that one
bit. If the INT is greater than thc word length of the LOGICAL,
the result is L(0). UNARY yields a LOGICAL which has all zeros on
the left and all ones on the right. The number of ones is

specified by the INT.

"

NORM

BITSWAP

have the type requirements

LOGICAL -> LOGICAL

~ 286 -

NORM yields the input shifted left wuntil a 1 bit occupies the
Jeftmost position. BITSWAP reflects the bits so that the leftmost
bit becomes the rightmost bit and the second to the left becomes

the secohd to the right, etc.

The following unary operator is classified as an <RHUOP> because it can
combine with <EXPR>s only by appearing on the righthand side of the
<EXPR>. <RHUOP>s have no precedcnce in the sense that (RHUOP>s tend to

apply aofter the text to its left has been combined.

UOPBID: CRHUOP> ::= \ (I

Type requirements
<ID> must be the name of a declared function which takes in one
value and produces a value. Therefore, the input and output
datatypes are determined by the particular function, <ID>.

Meaning

Apply the function, <ID>, to its parameter, the CEXPR> to the left.

' Examples:

TALLY L(5) is 2

LEFTZEROS L(1)
is ambiguous because we do not know the word Jength of L(1).
However, if X were declared to be a variable of type LOGICAL(6) and

if X were assigned L(1), then

LEFTZEROS X would be 5

ENCODE L(4) is 2

~ 287 - o

DECODE § is L(40)
UNARY 5 is L(37)
NORM X would be L1.(40)

If X were assigned L(3), then

BITSWAP X would be L(60).
If L is of type LISP_ELEMENT, then

L \CDR
is equivalent to CDR(L) and has the effect of extracting

from L, referring to an carlier declaration.

L \IS_ATONM

1s equivalent to IS_ATOM(L).

WRITE(IF L \IS_ATOM THEN 'L is an ATOM'
ELSE 'L isn'’t an ATOM' FI);

reports whether L is an ATOM or not.

the

CDR

~ 288 ~

Sentence Forms: <S88>

The part-of-speech <SS).refers to a sentence, or action form.

Unlike <EXPR>, <S88> has no resulting type and neither produces nor
consumes a value." Evaluating a <SS> refers to performing the specified
action. There are relatively few rules which produce <SS>s. In fact,
besides the assignment statement and the concatenation form, all <SS>s
are carry overs from the <EXPR> secction. We shall begin with the

assignment statement.

Assignment Statements and <SSRHS>

SSASS: <85>

(EXPRI) (SSRH82>

where

SSRHS1: <(SSRHS> ::

i= CEXPR >
SSRHSZ : {SSRHS> ::

un

::= <BOP (EXPR2) H
SSRHS3: {SSRHS> ::

1= (EXPR1> <BOP2> ;
These rules specify that a <SS> may be formed either by

CEXPR> := CEXPR> ; or by

CEXPR> ::

<BOPF> <EXPR> ; or by
CEXPR> ::

<EXPR> <BOP> ;
The first form is the basic assignment statement. The others
translate into .the basic assignment statement via the following

mappings:

(EXPR1> ::= <BOP> <EXPR2) : hecomes

(EXPR1> 1= ((EXPRI)) <BoP> (EXPR,> ; and

~ 289 - :

<EXPR1> 1= (EXPR2> <BOP> ; hecomes
<£XPR1) := (EXPR2> <BOPY> (<EXPR1>)

For example,

I ::= ¢+ 1 ; hecomes I := 1T + 1 ;
I ::= -3 ; becomes 1 :=1T -3
I ::= 3 -, becomes I :=3-1;

We can now specify the type and PASS3 requirements for each of these

forms merely by specifying those for the basic assignment form.
Type Requirements.

(EXPRI) of SSASS

<EXPR1> of SSRHS1

PASS3 Requirements

(EXPR1> of. SSASS = TARGET and

(EXPR1> of SSRHS1 SOURCE

Meaning
Evaluate the righthand <{EXPR), (EXPRI> of SSRHS1, and then feed the
resulting value to the lefthand <EXPRD, <EXPRI> “of SSASS.
Conceptually, the assignment statement is a process by_ which the

lefthand <EXPR> is made to be equal to the righthand <EXPR>. The
lefthand <EXPR)> is pliable whereas the righthand <EXPR> is fixed.

Examples:

I:

5 ; sets I to contain a 5.
C := [REAL_PART:A IMAGINARY_PART:B] ;
sets C to some complex number.

[REAL_PART:A IMAGINARY PART:B] := C ;

~ 290 -

does the opposite: It sets A and B
to the real and imaginary

components of C respectively.

I ::= +1 ; increments 1.
K :3: +2%3 adds 6 to K.
K ::= %243 ; multiplies K by 5.
S := S>$> 1 ; appends the eclement 1
onto the string S.
S =8> 1 ; docs the same.
S ::= 3<% ; appends 3 onto the front of S.
S ::= 8% {(5;6} ; appends the string {5;6} onto

the righthand end of S.

(2]
"

{5:6) &8 ; appends the string {5;6} onto

the lefthand end of S.

The two auxilary assignment forms, SSRHSZ and SSRHS3, have

counterparts.for <UOP>s and <RHUOP>s:

SSRHS4: <SSRHS> ::= ::= <KUOP>
where
KUOP1: <KRUOP> ::= <GUOI ;
KUOPZ: <RUOP> ::= CGUOP,> <KUOP,>
‘ and where
'SENNOP: <GUOP> ::= <UOP>
 SEMNOP: CGUOP> ::= CRHUOP)

Informally, this states that an <(SSRHS)> may be
followed by a

terminated with a semicolon.

~ 291 ~

sequence

both <UOP> and <RHUOP>.

The type and PASS3 requirements and
transforming
<EXPR1> <= CGUOPY ... <GUOP> ;
<EXPR1> = {GUOP> ... <QUOP>
Examples:
I ::=2 - becomes 1
I ::= \CDR ; becaomes I
or 1
I ::= \CDR \CDR ; becomes 1
cor 1

of <UOP>

the

and <RHUOP>.

The part-of-speech <GUOP>

meaning

into

(EXPR1> ;

-1;
I \CDR ;
CDR(I) ;
I \CDR \CDR ;
CDR(CDR(I)) ;

Note that all assignmént forms end with a semicolon!

formed by
The sequence is

represents

derived by

~ 202 ~

ICL's Policy about Assignmentis, Fointers, and Copying

ICL's assignment statement appears to set the lefthand side to a

copy of the righthand side. For example,

A:= [REAL_PART:1 IMAGINARY PART:2] ;

B:= A;

B.REAL_PART:= 700;

WRITE(A.REAL_PART);
prints a 1. The second assignment appears to set B to a new complete
copy of A. Thus, the third assignment modifies the copy referenced by B

and does not affect the copy referenced by A.

Furthermore, each and every reference to a structure appears to

generate a new complete copy. For exanmple,

X:= [Q:1 R:2] ;

Y:= [A:X B:X] ;

Y.A.Q:= 700;

WRITE(Y.B.Q);
prints a 1. The second assignment references X twice. Y appears to be
set to a record which contains two distinct copies of X. The third
assignment modifies one of the copies, that which is referenced by Y.A.

However, the qther copy, Y.B, appears unmodified.

ICL's apparent copy policy guarentees that distinct wvariables
reference distinct structures and thus a modification incurred from the
point of view of one variable is non-existent from the point of view of
another variable. This policy applies everywhere, including to the

passage of parameters to functions; a function appears to receive a

~ 293 ~ :

distinct copy for each of its paramcters. This policy 1is a
generalization of the generally accepted treatment for integers, reals,
and any datatype whose instances are not represented with the aid of

pointers;

For efficiency, ICL in fact does not generate copies as described
above. Rather, ICL generates copies only when a modification is
specified. 1In the two examples given above, copying ocours e¢nly upon
execution of the third assigoment in- each example. A and B reference

the same struéture until the modification is specified.

The user who plans to use the & operator, the pointer anchoring
operator,v or who(wishes to understand ICL's efficiency must understand
how ICL imblements this copy appearence. The user who avoids the @
operator can effectively believe that ICL copies upon each reference and
he can ignore the concept of pointers altogether. The rest of this
section documents ICL's data implementation and gives examples using the

@ operator.

ICL's Implementation is in Terms of Polnters

ICL uniformly minimizes copying and maximizes memory sharing by
making extensive use of pointers. Instances of each of ICL's datatypes

are represented as fbllows:

Non-pointer Types
An instance of INT, REAL, BOOL, CHAR, LOGICAL, or SCALAR is
represented by a single word. These non-pointer datatypes are

precisely those datatypes which are not equal to the NIL

~ 294 ~

pseudo-type. Instances of these datatypes can never take on the
value NIL.

Pointer Types

All other datatypes in ICL are represented by a single word which

coptains the memory address of a structure representing the

instance.

Variant:

STATE

DATA|

This is the result of the variant generation <EXPR>

state :: data

Record:

SEL ;| ot+—P|SEL 2| of—b s o0 Oy SEL i

DATA DATA - DATA y

This is the result of the record generation <EXPR).
[selyidata, sel,idata, ... sclk:datakj.

NIL:-or 0 values are not stored on this record list. |

If a record component is set to NIL or 0, the corresponding
memory element in the record list is removed and the

record list appears to be shortened.

~ 295 ~ T

String:

A refreshed string is represented by

BEFORE| O-+—BEFORE| O—b> s o s Q—b|BEFORE

ELEMENT;| |ELEMENT, ELEMENT)

A genefal string, howeéer. has three kinds of elément
representation:

Left Append

DEFORE G+—F> STRING

\DATA

Data precedes all elements in string.

Riqht Append

FFTER G STRING

DATA

Data follows all elements in string.
Such a node is created with the $> operator:
string $> data

Concatenatién

awn| ot—i= STRING

~a
STRING,

~ 296 ~

All elements in stringl brecede all elements
in stringe. Such a node is created by

stringI 53 stringz

For example, the string

(((1 <8 {2;3}) 38 {4;5}) 8> 6)

is represented by

RFTEHl G| CONCAT G| BEFORE O BEFURE

C .\ L 5

BEFORE O BEFORE e-l——am
1 2] L3

A more efficient representation will result from the form

{1;2;3;4;5;6) or {COLLECT I FOR I FROM 1 T0 6;)

BeFORE| O1—DIBEFIE| OT—D{BEFORE| O+—DIBEFIRE| G}—biFFORE| G+—beerine

' : L » O
1 2 3
The REFRESH operator applied to the former representation
yields the latter representation. The latter representation
is preférred because it is accessed most efficiently.

Point:

Xl o—t—> X2

\/

~ 297 ~

XI and Xz togethér represent the point's x-coordinate. The wholé
x~coordinate 1is not stored in a single word; a few bits in the
lefthalf of the first word of the referenced node are required by
the garbage collector. This description is not quite accurate but
it does bring up the difference between the représentation for
POINT and the representation for all other pointer types. The
single word which contains the memory address for pointer types
contains some non-pointer information for POINT. This difference
is responsible for the exclusion of the type POINT from the @€

operator's domain.

" Memory Sharing

Memory sharing is automatically achieved throughout ICL's

implementation by moving pointers rather than by copying the referenced

structures. For example, the statements

A:= [REAL_PART:1 IMAGINARY_PART:2] ;
B:= A;

yield the following memory state:

5 |
RP e[F]
A [1)

Rather than setting B to a copy of A's record, ¢the pointer in ‘A is

copied into B. A and B are left referencing the same record.

Similarly,

~ 298 ~

X:= [Q:1 R:2] ;
Y:= [A:X B:X] ;
yields

Y—8

Xe—{Q] *
! 2

The A and B components of Y reference the identical record. Finally,

the <EXPR>

{COLLECT [DISPLACE:A BY:1] FOR I FROM 1 TO 3;}
generates the string of records:

= =

? ¢ 9

p1se| oY

°
U
<
8
)
9
(w]

DISP

A— =

All the DISPLACE components reference the unique memory 1location

referenced by A.

~ 299 ~

Memory Modification

In ICL, a modification to an existing structure is specified by the
appearance of a selection form as a TARGET. The following are examples

of modification specification:

B.REAL_PART:= 700;

S[I]:= 700;

S{I-]:= R;

X.A.B:= Y;

X[2].A:= Y;

X.A.B[2][3][4].C:= ¥;
In each example, ICL modifies only the variable which appears as a
TARGET. Thus, the first example changes only the pointer residing in B
and the final example changes only the pointer residing in X. The new
pointer placed in the variable X references a newly created structure

which is identical to old X with the exception that the access path

LA.B[2][3][4].C
leads to the value Y. Any references to old X, old X.A, old X.A.B, or
old X.A.B[2], setc., are not affected by the modification to X. The
modification is apparent anly from the point of view of the variable X

and not from the point of view of any other variable or any structure.

Modification is implemented by first copying the structure
referenced by the target variable and then modifying that copy. In this

process, ICL copies a minimal amount of memory.

Examples:

~ 300 ~

Refering to a previous example, we had

i SEn

The modifying statement -

B.REAL_PART:= 700; yields ra

Note that B and A no longer reference the same memory element. -

Given

R

1 A~

><o—+ S

the modifying statement

Y.A.Q:= 700; yields

~ 301 ~

Y—{Al
oY e . Bl
? e
X—{Q g lall

- This modification costs two new nodes. However, if thére are no
references to old Y, the node immediately referenced by old Y ﬁill
be freed by garbage collection. Note that if there is a reference
to old Y, the nodes R and B are each shared by at least two

references. New Y's B component still references the - same

structure it used to reference.
Given the same initial memory state, the modifying_statement‘

Y.B.Q:= 700; yields

|
h 1

Given the string S

~ 302 ~

peronE| O} —blpeFoRE| G D{BEFORE| G—D{BEFORE| G BEFORE

v B8] [O [E

the statement S[3]:= K; yields

S T

H B K

o 8 o—aLnul of—dlwoe| of—pjowon
B B C

The first three nodes in S are copied.

The remarkable savings achieved by the minimal copy are not the
result of sharing portions of a record or string list, rather, it is the
sharing of the elements which yields the major savings. For example,
consider the string S given above. Let us assume that the elements
A,B,C,D, and E each references some giant 1list structure. The
modification to S still requires only three extra nodes. The structures
A,B,D, and E are shared by S and old S. The minimal copy copies at most

the top level structure of S.

In general, the user can predict the amount of copying CICL will

perform given a modifying statement:

X.A:= <EXPR>; copies at most n nodes where
n= the number of components in
the record X.

X[1I]):= <EXPR>; or

~ 303 ~ B

X[I-]:=<EXPR>; copies I nodes.

Multiple selections appearing on the lefthand side are also accountable:

X.A.B:= <EXPR>; copies at most n+m nodes where
n= the number of components in
the records X and where m= the
number of components in the record
X.A. .
X[I11[J]:=<EXPR>; copies I+J nodes.
The number of copied nodes is bounded above by the sum of the lengths of
each relevant layer. The number of relevant layers equals the number of
selection operators. The number of relevant layers is independent from

the total number of layers making up the entire structure.
For another example of how shared data are modified, consider

X:={COLLECT [DISPLACE:A BY:I] FOR I FROM 1 TO 3;}
Y:=X;

X[2].BY:= 700;
This yields the following memory structure. In the following
illustration, the term BEFQ is used in place of BEFORE and DISP is used
in place of DISPLACE.

®
—TE]
e
<]

" ' SOMETHING

The first and third elements of the strings X and Y are shared and A 1is

shared by all. ' . ,

Pointer Anchoring and Copying

We can infer several invariants from ICL's modification and copy
policy:
' 1) ICL's data sharing is invisible.

2) Never is an existing structure modified.

3) A modification is immediately apparent only from the point vof

view of exactly one variable.

4) A circular list structure never exists.
These invariants forbid many of the usual pointer operations. The @
operator 1is provided to enable the user to override these invariants.
It is strongly suggested, however, that the user be careful about wheré
he uses the @ operator. A strong dependence on the @ operator will

inevitably lead to those popular bugs found in programs which are

~ 305 ~

written 1in languages where the user is free to manage pointers on his

own .

The @ operator turns a‘SOURCE into a TARGET by writing a giveq
value directly over tﬁe memory element referenced by the SOURCE. The @
operator has the effect of making a modification apparent to all points
of view. A modification made with the @ operator is éaid to be a global

modification. For example, given the memory state

AP P

A 2

the anchored assignment

@(A):= [REAL_PART:5 IMAGINARY_PART:6] ;

yields the memory state

B
RP| o= P
A [5 5

-Both A and B-and any other reférences to"this ungdué"mﬁemory‘ lézhtion

sense the change. The €@ operation in the assignment happened as

follows:

B P Pl
A 1 2

AIGTHO 810E o—-—vHP‘ i =] P

~ 306 ~

The € operation writes the 5-node right over the t-node.

The @ operator differs from conventional pointer manipulation in
that it does not modify a reference in some structure, rather, it
modifies the referenced structure itself. This 1is equivalent to
modifying all réferences to the given structure. This scheme greatly
contrasts ICL's default, single point of view modification. With the @

operator, the user can do any desired pointer manipulation.

Example - Line Editor:
Let us consider part of an editor for a line oriented terminal. We
will want to hove both up and down about the lines of the screen.

The picture

P

~CEE) (e w)
o 41" orEe] e e

POWN uP . .
v Cuie we2)

Oowp

————

may be represented in ICL by the type declarations

TYPE LINE= [UP,DOWN:LINE CHARS:LINE_OF_CHARACTERS] ;
'LINE_OF_CHARACTERS= { CHAR } ;
A LINE has an UP and a DOWN field which reference other LINEs. The
CHARS field references the string of characters which reside on the
line. The following procedure deletes a line by modifying its
neighbors' UP and DOWN fields to bypass the given line:

DEFINE DELETE(L:LINE):

e o e ——— N i e i o e ———

~ 307 ~

IF DEFINED(L.UP) THEN @(L.UP).DOWN:= L.DOWN; FI
IF DEFINED(L.DOWN) THEN @(L.DOWN).UP:= L.UP; FI
ENDDEFN
That is,
 Lop ‘ — L
L —— — becomes L —
Loomb — — - Oows 5 S—

Note that DELETE's first sentence is

@(L.UP).DOWN:= L.DOWN;

This modifies the node residing at L.UP. This is not equivalent to

1) @(L.UP.DOWN):= L.DOWN; or

2) L.UP.DOWN:= L.DOWN; or

3) @(L).UP.DOWN:= L.DOWN;.
The first modifies the node residing at L.UP.DOWN, which in this
context"is L itself. This would write the node residing at L.DOWN

over the node at L.

oid (LoroowN) = L —*

Ad (L, oown)—\§

f - o ————— ==
P

The second modifies the variable L and leaves the referenced

structure unchanged.

L'UP e of -3 5\6 (, L'UP)

~ 308 ~

From L's point of view, everything is the same except that the
particular path '.UP.DOWN is different. In other words, L
references a copy of oid L whose UP field is different. This UP
field references a new node which is a copy of (old) L.UP whose

DOWN field is different.

The third aésignment modifies the node at L. This is like the
second form except that the node at new L is written over the node

at old L and the variable L is itself unchanged.

< od (L.up)

-— L =2 od L

A procedure to insert line A before line B is

DEFINE INSERT(A,B:LINE):
IF DEFINED(B.DOWN) THEN @(B.DOWN).UP:= A; FI
"@(A).DOWN:= - B.DOWN;
8(A).UP:= B;
@(B).DOWN:= A; ' !

ENDDEFN

B — 8 ——
beﬁxonneé

N —

B.powp — old (e.m&\ —

~ 309 ~

WARNING:
Any reference to an instance of type LINE will see any and all
modificationé made to that instance even if the modification was
specified from the point of view of a different reference to the

same instance. For example, with

LINEZ2:= LINE1;,

which sets LINEZ to reference what LINE1 references,

INSERT(LINE1,X);

is equivalent to

INSERT(LINEZ,X);
Because a8 LINE is modified with the © operator, the apparent copy
policy ‘over assignment statements is lost for LINEs and for any
structure which contains a reference to a LINE. We will return to

this example after ICL's COPY operator is explained.

cory

The rule ECOPY takes any pointer type and copies the
referenced memory element to yield an identical structure which
resides at a different memory location. For example, given thé

memory state

& m[g 07— --.

the sentence

B:= COPY(A);

~ 310 ~

yields

e ot e P s 1 2

8 ™

COPY copies only one memory element. The essential fact is that A

‘and B now reference distinct memory locations. Thus,

@(A):= <EXPR)> ;

which creates the memory state

R ——

n ————— - <2XPRS O -

—

A

Jpe—— -

chdanges nothing from B's point of view. The € operator writes over

only the single memory element directly referenced by A.

ICL's ECOPY construct does not perform a complete copy, to the

contrary, it copies only one memory element. While

LINE1:= COPY(LINEZ2);

assures that

@(LINE1):= <EXPR);

affects nothing from the point of view of LINE2, the assignment

~ 311 ~ t

G(LINE1.UP):= <EXPR>;
does make a change apparent from both LINE1 and LINE2's points' of

view. LINEI.UP'and LINEZ.UP are the same memory element:

Linegy —m» > LINE

However, we can define a function which produces 'a complete

copy of a given LINE:

DEFINE COPY(L:LINE)=LINE:
IF DEFINED{L.UP) THEN "copy the whole structure
referenced by L.UP "
DO L.UP:= COPY(L.UP);
@(L.UP).DOWN:= L;
GIVE L
ELSE COPY!L) FI
ENDDEFN
Recall that the <EXPR)> COPY'!L), which is used in the ELSE clause,
is equivalent to COPY(L) in the absence of this function
definition. Refer to the rule ECOPY. This function definition
overrides the default meaning for COPY when applied to a LINE.
However, COPY!L) bhas the original meaning of - COPY(L). jhis

function, given L:

~ 312 ~

g I—|
—e]
L —» —>-—]
produées
Ccopy(L) —>

L ———r

This function‘procedes by transforming

. . rett
%idx.
recy :
t cofy
mw \- — A p—— O‘J L

via the statement L.UP::COPY(L.UP);. The statement
@(L.UP).DOWN:=L; changes the dashed DOWN link to reference new L
instead of old L. One can deduce from the very start that COPYing
a LINE involves at least one @ operator: COPYing a LINE produces a
circular structure, a two-way linked list. We knok that ‘without

the @, a circular structure cannot be created.

~ 313 - -

If the given L has L.DOWN=NIL, then this COPY function yields
a complete copy. 1f, on the other hand, L.DOWN is not NIL, then
the copy will not be consistent because (COPY(L)).DOWN.UP will be L
and not (COPY(L)). Therefore, the user might wish to make this
copy function a subfunction of a new COPY function where the new
COPY walks to the bottom of L and then performs the function

presented above.

Note that L.CHARS is not copigd. This is fine if L.CHARS or
any of its substructure 1is never modified with the @ aperator.
However, if L.CHARS or any of its substructure is modified with ' @,

a complete copy of a LINE must include copying the L.CHARS field:

DEFINE COPY(L:LINE)=LINE: BEGIN VAR C=CHAR;
DO L.CHARS:= {COLLECT C FOR C $E L.CHARS;}
GIVE the previous COPY function body
END
ENDDEFN
L is modified so that its CHARS field references a complete copyvof
the original L.CHARS. The identity-like

{COLLECT X FOR X 3E S;)
forms a new string each of whose elements references the
corresponding element in S. In other words, this COLLECT form

produces a copy of S one level deep.

Now, if we write

~ 314 ~

LINE2:= COPY(LINE1);
LINE2 will remain unaffected by any operations performed upon
LINEf. In summary, because instances of LINE are modified with the
@ operator, ICL's apparent copy policy does not apply to LINEs. A
new style of programming emerges when dealing with structures which
are modified with @. Such structures appear to evolve independent
from point of view. To obtain a completely distinct instance of
such a structure whose furﬁher evolution is independent from the
evolution of other instances, the user must explicitly specify a

copy operation.

Example - Bounding Boxes and Property Lists:

This example differs from the previous example in that éhe @
modifications create no change in meaning. Rather, the @ operator
is used to attach to some existing structure, properties, or
values, any of which could be computed at any time. These values
are characterized by being context-free: The value of a property
does not depend on the point of view which references the structure
having the property. The value depends only on structure below.
An example of a context-free property for a picture is the
picture's minimum-bounding-box. The minimum-bounding-box depends

only on the picture and not on any references to the picture.

The advantage in storing context-free properties on existing
structures is realized when the value of a property is requested
more than once. The first request for a property may involve

computation but further requests need pot involve computation if

~ 315 ~ N

the first request stores the result of the computation. The
savings is increased when the structure is shared by many different

points of view.
Consider the following definition for the type RG, an IC mask:

TYEE RG= EITHER
POLY= POLYGON
DISP= [DISPLACE:RG BY:POINT]
UNION= { RG }
ENDOR;
This says that a region, RG, may be formed by specifying either a
single polygon, a displacement upon an RG, or a union of RGs. The

following form instances of RG, RG1 and RG2Z:

RG1:= { POLY1 ; [DISPLACE:POLY2 BY:3#4] };

RG2:

{COLLECT [DISPLACE:RG1 BY:I40]

v FOR I FROM 1 TO 10;};
RGt represents the union.of POLY1T and a displaced POLYZ. RG2
represents 10 copies of RG1, each of which is displaced in X by a

different amount.

It turns out that the processing of RGs can be optimized by
having some properties associated with each instance. The most
popular property is known as an RG's‘minimum-bounding-box (mbb). We

can define the type MRG to be the association of a box to an RG:

TYPE MRG= [BODY:RG VANISHING_MBB:BOX];

~ 316 ~

That is, an MRG is an RG along with its mbb. To make the mbb
available at the appropriate places, let us redefine the type RG as

follows:

TYPE RG= EITHER
POLY= POLYGON
DISP= [DISPLACE:MRG BY:POINT]
UNION= { MRG }
ENDOR;
All references to RGs have been replaced with references to MRGs.
Thus, when processing an RG, the mbbs of its constituent parts are

immedi&tely available.

The disparity between RG and MRG is cosmetically removed by

declaring

LET RG BECOME MRG BY [BODY:RG];
Any RG will automatically pass as an MRG. Now, any program text
specifying an RG which worked under the old definition for the type
RG will still work under the new definition for RG. RG's

requirement that.constituents be MRGS instead of RGs is resolved by

the coercion.

Note that the coercion does not define the VANISHING_MBB
field. We could, of course, change the coercion so that it
calculates the mbb and sticks it in the VANISHING MBB field.
However, there 1is no real need to calculate the mbb until the mbd
is actually sought. Once it is calculated, though, we should store

the mbd in the VANISHING_MBB field so that it need not be

~ 317 ~

calculated again, e.g., when another reference to the MRG seeks the

mbb.

The following function will actually obtain the mbb from an

MRG.

DEFINE MBB(M:MRG)=BOX:
IF DEFINED(M.VANISHING_MBB) THEN M.VANISHING_MBB
ELSE DO @(M).VANISHING_MBB:=CALCULATE_MBB(M.RG);
GIVE M.VANISHING_MBB FI
ENDDEFN
This function first sees if the VANISHING MBB field is already
defined. If it is, this field is immediately returned and that is
all. Otherwise, this function calculates the mbb by calling
CALCULATE-MBB, and via the @€(..) operator, the function MBB
modifies the actual memory location referenced by M to include the
box. Now any Jurther references to that MRG see the defined
VANISHING_MBB field. Note that if the @(...) were not used, only
the locél variable M would be modified and so upen leaving the
function, the calculated box would not be permanently associated to

the given MRG. The assignment

 @(M).VANISHING MBB := CEXPRD ;
may be paraphrased as
| " From the point of view of the structure referenced by M, the
VANISHING_MBB field is defined to be <CEXPR>. "

In contrast, the assignment

~ 318 ~

M.VANISHING_MBB := <EXPR> ;
says '
" From the point of view of the veriaeble M, the VANISHING_MBB

field is defined to be <EXPR>. "
If M is an MRG, then

M.BODY is the RG and

MBB(M) is the mbb
The awkward name VANISHING_MBB was chosen to discourage direct
acceass tb' that component. For example, if the userbforgets that

the mbb must be accessed via the function MBB, e.g., he wtrites

M.MBB
to fetch M's mbb, he will receive a datatype error. However,

referring to the section on unary operators, the notation

M\MBB is equivalent to MBB(M).
Thus, the \ by itself appears to play the role of a generalized

selection operator.
By declaring

LET MRG BECOME RG BY MRG.BODY ;
the user need not specify the .BODY on an MRG to obtain its RG. M
by 1itself passes as an RG. 1In fact, because we have the coercions
between MRG and RG going in both directions, instances of the two

types are completely interchangeable.

~ 319 ~

Note that MBB applied to an RG still yields the RG's mbb. The
RG will be coerced to an MRG before calling MBB. However, the mbd
tacked onto the MRG by the function MBB will not be attached to the
RG. The MRG passed to MBB is lost upon return from MBB; even
though fhe RG may still be referenced, the MRG created by the

coercion ceases to be referenced.

It is advantageous tb declare variables to be of type MRG

rather than to be of type RG. For example, the RG

{ A ; [DISPLACED:A BY:10#10] }
references the‘variable A twice. If A is of type.RG, the. coercion
from RG to . MRG will be applied twice and, in fact, the mbb for A
will ultimately be calculated twice. However, if A is of type MRG,
no coercion will be applied and the mbb of A will be (or has
already been) calculated only once. It is similarly advantageous
to use the type MRG in place of the type RG when declaring new
types which reference IC-masks. In fact, the type RG should be
forgotten altogether except in those few functions which examine

MRGs.
An MRG may be defined to include more properties, e.g.:

TYPE MRG=[BODY:RG VANISHING_MBB:BOX '
VANISHING_RECTS: RECTANGLES
DESIGN_RULES_OK: DESIGN_STATUS
- SCHEMATIC: CIRCUIT-DIAGRAM]E

~ 320 ~

Here we have properties including the representation of an RG in
terms of rectangles, a design rule status, and a schematic. Each
of these properties can be computed from an'RG and these properties
are independent from the points of view which reference an MRG or
an RG. Accessing each property should be done via a function 1like
MBB which manages one component in the MRG record. Such access
functions manage the retrieval and storage of individual
properties. It is conceivable that an access function might be
written which conditionally stores its computed values. The
conditions might depend on global variables whicb tell how much
memory is available or they might depend on the state in which the
RG resides, e.g., the DISP state has a trivial mbd calculation

whereas the UNION state has a more expensive mbb calculation.

This scheme for implementing properties has the advantage that
shared data implies shared computation. Let us assume that the
variables RG1 and RG2 were declared to be of type MRG. Consider

that the value in RGZ2 is represented by

~ 321 ~

MRG T

;
B
i
3
§
.

:
Wk
st
El
Kl

1#0 380
AG1
o B
— A 80x
STRING .'" .

we B A EEEY
—— oLy} n}nx ﬁ: RL

F(I.Yl\ r;_ .

77

(3

In this illustration, the following substitutions have been made:

~ 322 ~

BEFO is used in place of BEFORE

OPL 1is used in place of DISPLACE

U is used in place of UNION, and
BB is used in place of VANISHING_MBB.

The slanted elements are the VANISHING_MBB components of MRGs.
These do not exist until MBB is called. The mbb at RG1 will Ee
"calculated only once even though it will be requested 10 times from
the point of . view of RGZ. Note also that RG1 will find its mbbd
already calculated if RG2's mbb was previously sought. Similarly,
if the mbb of RG1 is requested first, it will not be recalculated

when computing RG2's mbb.

Finally, note that the overhead from introduiing MRGs in place
of RGs is one memory element per instance in the absence of any
properties. Each existing'property costs an additional overhead of
one memory element. The number of declared properties is

irrelevant.

~ 323 ~ -

Disasters

The @ operator is an untamed animal. Some very innocent
actions can cause bizarre effects. This section documents some

disasters which can come with the @ operator.

Example 1:
First, let us consider the non-anchored assignment

A := [X:A Y:B];
This assignment modifies the variable A so that it points to a new
record, [X:A Y:B], and this new record's X component references
what A used to referénce. What A now references and what A used to

reference are distinct memory locations.

P‘/_‘\——Px A

old A

In contrast, the anchored assignment

@(A) := [X:A Y:BJ;

‘creates a circular structure and does not modify the variable A.

A= old A - Yy

This assignment writes the new record [X:A Y:B] over the location

referenced by both the variable A and the record's X component.

~ 324 ~

The location referenced by A and the 1location referenced by the
record's X component are precisely the location now occupied by the

record itself. However,

@(A) := [X:COPY(A) Y:B];
modifies the structure referenced by A to be a record whose X

component references a copy of what A used to reference.

P\Eo\JA’"\"‘% < v

oid A

The COPY is used to avoid circularity.

Example 2:
The assignment

@(B):= 1 <8 B;
would seem to modify the node at B to be what B used to be with a 1
tacked on the front. However, this will not be the case. After

the evaluation of the righthand side of the assignment, we get

(146 B) —|before] 1)
1

8

Finally, the @ operator writes the t-node over the node referenced

~ 325 ~ -

by B, yielding

Bz d B \C_.m-':D

I e mmeeen s PUMOR Lt ———

B now references an infinitely long string of 1s. In contrast,

@(B) := 1 <3 COPY(B);

does the expected.

B= od B bekore | ™ copy of
| - S od B

Example 3:
The <{EXPR>

s{2-]
is not necessarily a tail of S in the sense that one could get from
S to S[2-] by tracing nodes in memory. S[2-] only appears to be a
tail of S. For example, if we specify

T:= {1;2};
S:= T $) §;

S, T, and S[2~-] will reference the memory structures

T /7 before | * ™| befere]
s — R)
5 ‘
' after |
st 2‘] _ / = .

——

~ 326 ~

The node referenced by 8[2-] is not on a path starting at 8. Thus,

for example,

e(sf2-]1) := {10;11} ;
does not change anything from S's point of view. However, if we

write

S:=REFRESH(S);
Q:= 8[{2-];

then we get
S ————— v [before) etore] 7] bejore
- 1 | 2 | 5

&

Thus,

e(sf2-]) := {10;11};
leaves
' before |
———————v | be | - before] o>
S dove 2\ N

Q

as expected.

Strings act like LISP's 1ists only when the string is
refreshed. In summary, do not use @s on the tails of non‘refreshed

strings. Recall that a refreshed string is formed by

~ 327 ~

REFRESH(any string) or by
element <3 refreshed string or by
the string generation rules, e.g.,

“{ ... ; element ; ... ; COLLECT element <QUANT> ; ... }.

Consolation:

Even though ICL represents records as linked 1lists 1like
strings, record 1lists maintain an dimportant property which 1is
absent from strings: Any non-first node in a record 1list is not
the first node in another record list. In other words, no record
list is a proper tail of another record list. Thus, because the @
operator overwrites only the first node ' in a record list, the
property given above guarantees that @ cannot overwrite a non-first
node in any record list. The essential invariant is that the user
can think of a record as being an indistinguishable unit of memory,

e.g.,

« B8 ¥

_all of which or none of which can be clobbered with an @.

~ 328 ~

Carry-overs frbm <EXPR>s

i
The following <SS> forms are carry overs from <EXPR>s. These rules

are copied from the corresponding <EXPR> forms by merely substituting
<{SS> for <EXPR> and DO for GIVE in the appropriate places. Any type or
PASS8 requirements imposed on the <EXPR>s which have been replaced by

{SS>s are simply to be ignored.

The IF-THEN-ELSE

EBIF: <{SS>

(BIFI) <EXPR2> THEN <S8S,> ELSE (SS4> FI

3
SBIF: {S88> :::= (BIFI) <EXPR2> THEN (883> FI

where
BIF1: <BIF> ::= IF
BIF2: <BIF>

(BIFk1> <EXPRk2) THEN <SSk3> EF

Type Requirements <EXPR2> BOOL = <EXPRk2>

SOURCE = <EXPR

PASS3 Requirements <EXPR2> k2>

Meaning
Identical to the EBIF rule in the section for <EXPR>s. Note
however that an ELSE clause is dptional in the <S8S> IF-THEN-ELSE.
The extra rule, SBIF, allows a <SS> to be built without an ELSE.

Example:

IF A=B THEN 1I:=5; FI

If A=B, then I is assigned the value 5, otherwise, nothing is done.

IF A=B THEN 1:=5; EF A<B THEN J:=20; FI

~ 329 ~
If A=B, then 1 is assigned 5, otherwise if A<{B, then J is assigned
20, otherwise, nothing is done. The form

IF A=B THEN 1I:=5; ELSE 1:=23; FI

is egquivalent to

I:= IF A=B THEN § ELSE 23 FI

The Scalar CASE form

ECASEE: <SS

i

CASE (EXPRI> OF <SSV2>
where

EVCASE: <SSV> :::= <IDI> : <SSZ> ENDCASE

EVCASB: (SSV? S (IDk1> : <§Sk1> {SSV

r3’
Type and PASS3 Requirements
Refer to the <EXPR> ECASEE rule. <EXPR1> must he a scalar type.
Meaning | |
Refer to the <EXPR> ECASEE rule. However, where' the 'debugging
package would be entered in the <EXPR) rule, nothing happens in the
{SS> rule. That is,iif <EXPR1> yields none of the (ID1> or (IDk1>s
in (SSV2> and if there is no ELSE clause, the <{SS>-CASE performs no

action.

Examples:
CASE A_COLOR OF

BLUE: I:=5;
RED: 1:=20; ENDCASE

~ 330 ~

If the variable A_COLOR is BLUE, I is assigned §. If A_COLOR is
RED, I is assigned 20. If A_COLOR is neither RED or BLUE then I is
unchanged. An equivalent <EXPR)>-CASE form is:

I:= CASE A_COLOR OF
BLUE: 5
RED: 20
ELSE: I ENDCASE

The Variant CASE form

ECASE: {SS> :::= CASE <IDI> OF <SSV,

2
where <S5SV> is as defined above.

Type and PASS3 Requirements
Refer to the CEXPR> ECASE rule. <ID,> must be a variable of some
variant type.

Meaning) '
Refer to the <EXPR> ECASE rule. However, as ‘in 'ghe <SS) scalar
case form, the absence of an ELSE clause may render thg {SS>-case a
no-op; it won't cause the debugging package to be entered.

Example:

DEFINE WRITE(L:LISP_ELEMENT):
CASE L OF
ATOM: WRITE(L);
INTEGER_NUMBER: WRITE(L);
FLOATING_NUMBER: WRITE(L);
CONS_PAIR: WRITE{'('); WRITE(L.CAR);
WRITE(' . '); WRITE(L.CDR);

~ 331 ~)

WRITE(')');
ENDCASE
ENDDEFN ‘ .
This defines WRITE of LISP_ELEMENT to print out a LISP_ELEMENT in
the dot notation. Note that the WRITE functions named in the first
three case-clauses are WRITE of QS, INT. ond REAL respectively.
Recursion occurs only in the CONS_PAIR clause; L.CAR and L.CDR are
of type LISP_ELEMENT. '

Note that the following CASE form:

CASE L OF
CONS_PAIR: L.CAR:

L.CDR;

ENDCASE
leaves L unmodified upon completion. Referring'to the <EXPR)> ECASE
rule, note that the case-variable, L, alwéys appears unchanged by

anything within a CASE form.

The HOLDING Form

HOLDIT: <88> :::= HOLDING <ASN,> DO (SSI> ENDHOLD

Meaning
Refer to the <EXPR> HOLDING form.

Example:
When processing pictures, it is useful to have a global variable
defining the "current" orientation and to have plotting procedures
which reference that global variable for the purpose of placing the

given picture on the screen. Suppose the type PICTURE is defined

~ 332 ~

by

TYPE PICTURE= EITHER
SIMPLE= POLYGON
DISPLACED= [P:PICTURE - BY:POINT] -
UNION= { PICTURE }
ENDOR;
That is, a PICTURE may be formed by unions and displacements upon
POLYGONs. Let us declare . .

VAR POSITION=POINT;
so that POSITION is the global variable representing orientation.
Assuming the existence of a procedure to plot POLYGONs at the
orientation specified in POSITiON. the following procedure will
plot PICTUREs:

DEFINE PLOT(X:PICTURE):
CASE X OF
SIMPLE: PLOT_POLY(X); .
DISPLACED: HOLDING POSITION:=POSITION+X.BY;
DO PLOT(X.P); ENDHOLD
UNION: BEGIN VAR V=PICTURE;
PO PLOT(V); FOR V $E X;
END
ENDCASE
ENDDEFN
The DISPLACED case-clause modifies the orientation, PbSITION, Jor
and only for the plotting of the "displaced” picthre. The globali

variable POSITION is being used in a recursive manner because there

~ 341 ~

The Arithmetic FOR Quantifier

This quantifier corresponds to FORTRAN's DO-loop.

AFORGO: CQUANTY> ::= (AFORI) ;
where

AFORID: CAFOR> ::= FOR <IDI>

AFORFR: CAFORY> ::

(AFOR1> FROM <EXPR,>

AFORTO: CAFOR> :: (AFORI) TO <EXPR,D

AFORBY: CAFOR> ::

(AF0R1> BY (EXPR2>

AFORIN: CAFOR> :: <AFOR1) IN (EXPR2>
AFDRIS: CAFORY> ::= (AFORI) IN% <EXPR2>

Informally, a CQUANT> may be formed by

- FOR <ID>

fallowed by a sequence of the clauses , ' !

FROM <EXPRD>
TO <EXPR>
BY <EXPR>
IN <EXPRD
IN® <EXPRD
followed finally by a semicolon.

Syntax Requirements

Some clauses cannot appear together and some clauses

others.
1) Each clause may appear at most once.
2) IN, IN®, and BY are mutually exclusive.

3) TO is required in the absence of BY.

rgquire

~ 334 ~

Looping with <SS)s

SSQ: <SS8> ::= DO <SSI> <QUANT2)
SSQ: (88> 1::= (QUANT2> Do <SSI> END .
Meaning

Execute <SSI> once for each iteration caused by <QUANT2>

Examples:

DO WRITE(I); FOR I FROM 1 TO 9;
(==~§8=wee)(mmn~m- QUANT - ==~~~)
prints 123456789.

FOR I FROM 1 TO - 9; DO WRITE(I); END

does exactly the same,

Function Calling

SSCALP: <S8> ::= <ID;> <ARGS,> ;
SSICAL: <88> ::= <ID,> ;
: where CARGS> is as defined in the
<EXPR> function call rule, ECALLP.
Type Requirements ’
For the first rule, SSCALP, there must be a declared function whose
pame 1is <IDI>, which produces no value, and whose input parameter

types séquentially match the types of the <EXPR>s in <ARG§ >. For

2
the second rule, SSICAL, there must be a declared function whose
name is (IDI) and which has no ipput or cutput parameters.

PASS3 Requirements

~ 335 ~ | :

The <EXPR>s in <ARGSZ> must be SOURCEs.

Meaning '
Evaluate each <EXPR)> in <ARGS,> in order of specification and then
call the appropriate function, <IDI>.

Example:

DEFINE TAB: WRITE(' ') ENDDEFN

defines TAB to be a procedure which prints a tab.

TAB;

invokes TAB and thus prints a tab.

~ 336 ~

A Sequence of <S88>s

Unlike the prbgramming language PASCAL, sequences of statements
need not be enclosed within BEGIN-ENDs. Also, in ICL, semicolons do not
separate <SS>s. Semicolons are termipators for various independent
constructs like thg assignment statement and the ﬁrocedure call.

Statements in ICL are separated by blanks or by nothing at all.

SS5S8S: <88> ::= (SSI) (882>
Meaning

Evaluate (SSI). Then evaluate <ssz>.

Example:

I:=0; I:=1+43; I:=1%2;

leaves I containing a 6.

~ 337 ~

Quantifiers - Loop Generators: <QUANT)

-

Quantifiers are those linguistic forms in ICL which cause 1looping.
Aside from looping via recursion, all looping in ICL is expressed via

quantifiers.

We can characterize the meaning of <QUANT> by first noting that all
of ICL's rules which incorporate <QUANT>s easily transform into the

canonical form:

DO <SS> <QUANTD
Some action is performed repeatedly as dictated by (QUANT>, whether that
action be accumulating a sum, forming a string, or performing some

arbitrary action.

DO <SS> <QUANT)

is implemented by the program:

prepare for the first iteration
LooP: <SS>
prepare for the next iteration
GOTO LoOP
EXIT: -~
where the two preparations have the option of branching to the EXIT

lable, thus terminating the loop.

~ 338 ~

Primitive Quantifiers

The following are ICL's primitive <QUANT>s. In the next section,
we will see ways to combine <QUANT>s to come up with more complex

quantifiers.

The WHILE Quantifier

QWHIL: CQUANT> ::= WHILE <EXPR,>

Type Requirements <EXPR1> = BOOL
PASS3 Requirements CEXPR,> = SOURCE
ﬁeanihg

Before each iteration, evaluate <EXPR1) and exit as soon as <EXPR>
yields FALSE. The WHILE gquantifier may cause zero iterations!

Examples:

DO WRITE('x'); WHILE FALSE;

is a no-op.

DO WRITE('x'); WHILE TRUE;

is an infinite loop.

{ COLLECT C WHILE (C:=TTYCIN;) <> CR; }
forms avstring of characters taken from the TTY. The function
TTYCIN yields each character typed in at the TTY. The resulting
string includes all characters up to but not ‘1nc1uding the first
~carriage-return, assuming that the variahle‘ CR contains thé

carriage-return character. Note that since the WHILE-<EXPR>

(C:=TTYCIN;) <> CR

~ 339 ~

evaluates before each iteration, the CHAR variable C contains a new

input character upon each iteration. The form

(C:=TTYCIN;)
sets C to the input character and yields this character as 1ts

value, referring to the rule SETQX in the section Embedding <SSJs

in {EXPR)>s. Upon leaving this string <EXPR>, C contains a carriage

——— —— v — s

The UNTIL Quantifier

QUNTL: CQUANT> ::= UNTIL (EXPR1> H

Type Requirements <EXPR > = BOOL

PASS3 kevuirements <EXPR,> = SOURCE

Meaning
After each iteration, evaluate <EXPR1> and exit as soon as' <EXPR1>
yields TRUE. The UNTIL gquantifier causes at least one iteration!

Examples:

DO WRITE('x'); UNTIL TRUE;

writes one x.

DO WRITE('x'); UNTIL FALSE;

is an infinite loop.

{ COLLECT C UNTIL (C:=TTYCIN;) = CR; }
forms a string of characters taken from the ‘TTY. The first
character in the string is not from the TTY, however; <the first
character is whatever C contained upon entry to this string <EXPRD>.

This string includes all characters up to and including the first

~ 340 ~

1

carriage-return, assuming that the variable CR contains a
carriage-return. Upon leaving this <EXPR>, € contains a

carriage-return.

The REPEAT Quantifier

REPET: CQUANT> ::= REPEAT <EXPR1> H
Type Requirements <EXPR1) = INT
PASS3 Requirements <EXPR,> = SOURCE .

Meanting
' Cause <EXPRI> iterations. If <EXPRI) is zero or 1less, cause no

iterations.

Examples:

DO WRITE('x'); REPEAT 50;

writes 50 x's.

{ COLLECT TTYCIN REPEAT 80;}

forms a string of B0 characters taken from the TTY.

~ 341 ~

The Arithmetic FOR Quantifier

This quantifier corresponds to FORTRAN's DO-loop.

AFORGO: CQUANTY> ::= (AFORI) ;
where

AFORID: CAFOR> ::= FOR <IDI>

AFORFR: CAFORY> ::

(AFOR1> FROM <EXPR,>

AFORTO: CAFOR> :: (AFORI) TO <EXPR,D

AFORBY: CAFOR> ::

(AF0R1> BY (EXPR2>

AFORIN: CAFOR> :: <AFOR1) IN (EXPR2>
AFDRIS: CAFORY> ::= (AFORI) IN% <EXPR2>

Informally, a CQUANT> may be formed by

- FOR <ID>

fallowed by a sequence of the clauses , ' !

FROM <EXPRD>
TO <EXPR>
BY <EXPR>
IN <EXPRD
IN® <EXPRD
followed finally by a semicolon.

Syntax Requirements

Some clauses cannot appear together and some clauses

others.
1) Each clause may appear at most once.
2) IN, IN®, and BY are mutually exclusive.

3) TO is required in the absence of BY.

rgquire

~ 342 -

Type Requirements
(IDI) must be a variable. <ID,> and the <EXPR,>s must eithe; all
be INTeger or all be REAL.

PASS3 Requirements All the <EXPR2)s = SOURCE

Meaning
Set the loop variable, <IDI>. for each iteration as directed by the

specified clauses. Each clause has its own meaning:

FROM <EXPR>
sets the loop-variable to the value of <EXPRY> before the first
iteration. In the absence of FROM, the value of the loop-variable
is whatever it kas upon entrance to the loop. That is, the absence

of FROM is equivalent to specifying

FROM (IDI>
The TO clause,

TO <EXPR,>
specifies that the loop is to .terminate when the loop variable
'exceeds the va;ue of <EXPR2>. Note that if the increment is
negative, exceed means less than. ~In the absence of the TO clause,

the loop is infinite.

The BY, IN, and IN* clauses specify an increment. In the absence
of these clauses, the increment is +1 or -t, depehding on which of

the FROM and TO <EXPR)>s is greater.

BY <EXPR2)

~ 343 ~

specifies that the increment is to be the value of <EXPR2>, Before
each non-first iteration, the loop variable is incremented by the

value of <EXPR2>. <EXPR2) may be negative.

IN <EXPR,>
specifies the increment (TO-FROM)/IN. That is, IN specifies the
number of iterations. The increment is chosen to divide the
FROM-TO interval evenly into <EXPR2> intervals. The loop variable

is set to the initial endpoint of each interval, e.g.,

FOR R FROM 0.0 TO 1.0 IN 4;

sets R to the values

0.0, 0.25, 0.5, 0.75, but not to 1.0

However,

IN® <EXPR2>
specifies the same increment as the IN <EXPR> but the number of

iterations 1s <EXPR2)+1. not <EXPR2>. The extra iteration sets the

loop variable to the terminal endpoint of the last interval, e.g.,

'FOR R FROM 0.0 TO 1.0 IN* 4;

sets R to the values

0.0, 0.25, 0.5, 0.75, and 1.0.

Note thdt if the loop variable is INTeger, the increment

(TO-FROM)/IN

is calculated using the integer divide, so

FOR I FROM 1 TO 10 IN* 3;

~ 344 ~

yields the sequence 1,4,7,10 and

FOR I FROM 1 TO 9 IN* 3;

yields the sequence 1,3,5.7.‘

The arithmetic FOR quantifier evaluates each <EXPR2> once,
before entering the léop. The arithmetic FOR quantifier also
resets the loop variable for each iteration, 1gnoriﬁg ité‘ current

value, e.g.,

DO WRITE(I); I:=20; FOR I FROM 1 TO 3;
writes the numbers 1,2, and 3. Also, the FOR quantifier does not
increment the loop variable after the final iteration, and it does

ndtvreset it. Thus-.~

DO WRITE(I); FOR I FROM 1 TO 3;

leaves the variable I containing the value 3, naot 4.

DO WRITE(I); I:=20; FOR I FROM 1 TO 3;
writes the numbers 1.2. and 3 and leaves I containing a 20 wupon
exit.

Examples:

DO WRITE(I);WRITE(' '); FOR I FROM 5 TO 10;
writes 56 7 8 9 10. |

DO WRITE(I);WRITE(' '); FOR I FROM 10 TO 5;
writes 10 9 8 7 6 §.

" I1:=10;
DO WRITE(I); FOR I TO §5;

~ 345 ~

does the same.

DO WRITE(I); FOR I FROM 10 TO & BY 1;

writes the number 10.

DO WRITE(R);WRITE(' '); FOR R FROM 1.0 TO 0.0 IN 4;

writes

1.0 0.75 0.5 0.25

The following form generates a string of points:

{COLLECT COS(T)#SIN(T) FOR T FROM 0 TO 2%x3.14 IN N;}
This string of points represents an N-gon without duplicating " the

first point.

{COLLECT COS(T)#SIN(T) FOR T FROM 0 TO 2*3.14 IN* N;}

makes an N-gon where the first point is duplicated at the end.

~ 346 ~

The Selection FOR Quantifier

The seléction FOR quantifier is perhaps the main workhorse in ICL.
As implied by its name, the selection FOR quantifier performs selection,
mainly on strings. Its most popular use is for iterating thru the
elements in a string. As we shall see, the FOR quantifier supports
iterations thru the elements of elements of strings or thru the elements
of string components of records or thru the elements of strings of
records of strings, etc. In addition, the FOR quantifier can iterate
thru a string by setting a sequence of variables to consecutive elements
in the string. The user can even specif& that the sequence of variables

be allowed to wrap around back to the beginning of the string.

The FOR quantifier is basically an assignment statement. However,
unlike the regular assignment statement, the FOR quantifier is free to
cause looping. Within a ~FOR quantifier, the notion of TARGET is
extended to include a new class of TARGET-like entities:
looping~TARGETs. Looping-TARGETs include a new TARGET which is formed
by the string generation rule, e.g., {I;J;...}. We shall formally
introduce the class of looping-TARGETs after we present the linguistic
contraction which abbreviates the FOR quantifier for the most common

uses.

- QFORE: CQUANT> ::= FOR CEXPR,> SE CEXPR,>

The $E reads as an element of.

Type Requirements

~ 347 ~

<EXPR2) = a string of some type and
<EXPR1> = that type of which <EXPR2> is a string.
PASS3 Requirements

CEXPR,> = SOURCE and
(EXPRl) = TARGET or looping-TARGET
Meaning

The following describes the meaning only for those cases .where
<EXPR1> is a TARGET and not a looping-TARGET: For each element in
the string <EXPR2>, feed that element to the TARGET (EXPR1> and
cause one iteration. The number of iterations is therefore equal
to the length df the string <EXPR,>.

Examples:

DO WRITE(I);WRITE(' '); FOR I $E {1;5;20;-3};
writes 1 5 20 -3.

+ I FOR I SE {1;5;20;-3};
yields the value 23, the sum of the elements in the specified

string. (Refer to the section Looping with CBOP)S).

{ COLLECT 1I+%1 FOR I SE S;}
yields a string identical to S except that each element is

incremented.

MIN I FOR I BE S;
yields the minimum value in S. Recall that MIN is a <BOP>. If BOX
is defined by

TYPE BOX = [LOW,HIGH: POINT];

~ 348 ~

where LOW refers to the lower lefthand corner and HIGH refers to

the upper righthand corner, then

[LOW: MIN P FOR P $E S;

HIGH: MAX P FOR P 3E S;] .
yields the minimum bounding box for an arbitrary string of POINTs,
S.

The $E FOR-quantifer presented above is a special case of the more
general, $C FOR-quantifier. In general, we can translate

FOR <EXPR1> SE <EXPR2> ; into
FOR { <EXPR1> } 8C <EXPR2> 3
$E reads as an element of and $C reads as contained in.

QFORC: <QUANT> ::= FOR <EXPR,> $C CEXPR,> ;

Type Requirements <EXPR > = CEXPR,>

PASS3 Requirements <EXPR2> = SOURCE and
<EXPR1) = TARGET or looping-TARGET.

Keaning
Feed the value of (EXPR2> to the TARGET or looping-TARGET <EXPR1>.
If (EXPR1> is a TARGET, act as a simple assignment and cause
exactly one iteration. If; on the other hand, <EXPR,> is a
looping-TARGET, then set variables and cause looping as directed by
the looping-TARGET.

~ 349 ~

What is a Looping-TARGET

——

A looping-TARGET is

bl) any TARGET, or.

2) any string of looping-TARGETs, or

3) aony record of looping-TARGETs ‘
In this context, we are viewing the set of looping~-TARGETs as
including the set of TARGETs. Please refer to the string
generation rule, STRGEN, and the record generation rule, RGENF for
the syntax of string and record generation. We now extend these
generation rules‘ PASS3 requirements to include looping-TARGETs.

Each string form, {}, represents one dimension of iteration.

Examples of Looping-TARGETSs

{1}
is a8 looping-TARGET. It sets I to each element in a given string
-and causes one iteration for each value of I. The number of

iterations is therefore equal to the length of the given string.

{14}
sets I and J to consecutive elements in a given string. That is, I
holds the first element and J holds the second element for the
first iteration. For the second iteration, I holds the second
value and J holds the third. The final ifaration finds I holdihg
the'second to the last element and J holding the last element. The
number of iterations equals (the length of the‘given_strlng - 1).
If the given string is of length one, then there are zero

iterations, i.e., the template {I;J} cannot fit into a string of
!]

~ 350 ~

length one.

{I;J;K)
setsbl. J, and K to consecutive elements in the given string. The
number of iterations is two 1less than the length of the given
string. Again, if the length of the given string is 1less than
three, there are no iterations.

Examples of the FOR quantifier

FOR (I} $C {2;4;6;8;10};
sets I to the values 2,4,6,8,10. This is equivalent to

FOR I SE {2;4;6;8;10};

The quantifier

FOR (I;J)} 8C {2:4;6:8;10};

sets I and J for each iteration as follows:

iteration 1: I,Jd= 2,4

iteration 2: 1I,J= 4,6

iteration 3: 1I,Jd= 6,8
iteration 4: 1,J= 8,10
Similarly,

FOR {I;J;K} $C {2;4;6:8;10};

sets I, J, and K for each iteration as:

iteration 1: 1I,J,K= 2,4,6
iteration 2: 1I,J,Kk= 4,6,8
iteration 3: 1I,J,K= 6,8,10

~ 351 ~

Looping~-TARGETs that Wrap-around

{I:*xJ}
is equivalent to
{I1;J}
' L]
except that ogne more iteration occurs. This final iteration finds
1 cohtaining the last element in the given string and J containing

the first element. That is, the template {I ;* J)} has wrapped

around back to the beginning of the given string.

{I;J3%K}
sets I, J, and K to the consecutive elements in the given string
bdtv in addition. K is allowed to wrap around. Hence, the final
iteration finds K holding the first element and I and J holding the

second to last and the last elements in the given string.

{1I;:;%J; K}
differs from the previous example py the placement of the woxn
separator. Here, both J and K are allowed to wrap arocund. The

quantifier

FOR (I :;x J) $C {2:4;6:8;10};

causes the iterations:

iteration t: I,d= 2,4

iteration 2: 1I,d= 4,6
iteration 3: 1I,J= 6,8
iteration 4: 1I,d= 8,10

iteration §5: 1I,J= 10, 2

More

~ 352 ~

The quantifier

FOR {I ; J ;*x K} $C {2:4;6;8;10};

causés the iterations:

iteration 1: 1,J,K= 2,4,6

iteration.Z: I,J,Ks 4,6,8

iteration 3: 1I,J,K= 6,8,10

iteration 4: 1I,J,K= 8,10, 2
. The quantifier

FDR {1 ;*J ; K} $C {2;4;6;8;10)};

causes the iterations:

iteration 1: I,J,K= 2,4,6
iteration 2: 1I,J,K= 4,6,8
iteration 3: 1I,J,K= 6,8,10

iteration 4: 1I,J,K= 8,10, 2
iteration 5: 1I1,J,K= io0, 2,4

In general, the first ";%" specifies that the following elements

will wrap around. All but the first ";*" are ignored.. The number

of iterations depends on the length of the given

number of target elements preceding the " ;%X":

Complex Looping-TARGETSs

({11} ,
sets I to each element in a Two;DIMENSIONALwARRAY

section When ar Types Equal for the

TWO_DIMENSIONAL_ARRAY). That is, working form the

string, and

(refer to
definition

outside in,

the

the
of

the

~ 353 ~

{{I}} sets the looping-TARGET (I} tb each vector in the given
TWO_DIMENSIONAL_ARRAY. The {I} receives each vector by setting I
to each element in the vector. Thus, {{I}) represents a

two-dimensional loop.

A computer circuit board, or CARD, consists of a bunch of
interconnected chips. Each chip has a name and a set of wires ar

signals to which it connects. In ICL, we can represent this by

TYPE CARD= { CHIP };
CHIP= [NAME: CHIP_NAME
SIGNALS: { WIRE_NAME) J;
That is, a CARD is a bunch of CHIPs and each CHIP has a name and a
set of wires. Now, suppose CARD is a variable of type CARD. Each
of the following prints the names of the CHIPs in CARD.

DO WRITE(CHIP.NAME); FOR CHIP $E CARD;
or
DO WRITE(N); FOR [NAME:N] SE CARD;
The second form selects down toc the chip-name in the FOR-quantifier
whereas - the first form selects down to the chip-name in the WRITE

statement.

Each of the following forms prints each wire-name, WN, as many

times as it is connected to a chip:

FOR CHIP BE CARD;
DO 'FQR WN SE CHIP.SIGNALS;
DO WRITE(WN); END END

or

FOR [SIGNALS:S] $E CARD;
DO FOR WN 3E S;
DO WRITE(WN); END END
or stmply
FOR [SIGNALS: {WN}] S$E CARD;
DO WRITE(WN); END
Each of these loops is a two~-dimension loop. However, the ﬁfinal
form has only one FOR-quantifier. Looking closer at the final

form, we see that each element in CARD, a CHIP, is assigned to the

looping-TARGET

[SIGNALS: {WN}].
This looping?TARGET assigns the SIGNALS component to the
looping-TARGET (WN}. {WN} assigns each element in SIGNALS to the
variable WN. Therefore, WN is assigned each signal in each chip in

CARD.
The following prints each wire-chip pair:

FOR [NAME: CN SIGNALS: (WN}] 3E CARD;
DO WRITE{CN); WRITE(WN); END
Each chip in CARD is assigned to the looping-TARGET

[NAME: CN SIGNALS: {WN}]
This looping-TARGET sets CN to the name of the chip and it sets the
looping~TARGET (WN} to the chip's SIGNALS component. The

looping-TARGET {WN} then assigns each signal into the variable WN.

The following prints each chip-name to which a given WIRE_ NAME

is connected:

FOR [NAME: CN SIGNALS: {WN}] $E CARD;
DO IF WN=WIRE_NAME THEN WRITE(CN); FI END

Let us now consider the problem of sorting a CARD by signals.
As CARD now stands, a particular wire-name is scattered among many
chips. Our goal is to produce a reshaped CARD so that each WIRE is

conveniently listed with all the chips it cbnnects;

TYPEl SORTED_CARD= { [WIRE: WIRE_NAME
| CHIPS: SET_OF CHIPS] };
SET_OF_CHIPS= { CHIP_NAME }; ' '
A SORTED_CARD is a set of records éach havihg a unique wire-name
along with the set of chip-names to which the wire connects. The

following function, complete with declarations, should accomplish

the task of translating a CARD into a SORTED_CARD.

~ 356 ~

DEFINE SORT(CARD:CARD)= SORTED_CARD :
BEGIN VAR CN=CHIP_NAME; WN,WN1=WIRE_NAME;
C= SET_OF_CHIPS;
SORTED_CARD= SORTED_CARD;
DO SORTED_CARD:=NIL; |
FOR [NAME:CN SIGNALS:{WN}] $E CARD;
* For each chip-wire pair ;...“
DO " Have we yet encountered this particular
wire-name? "
IF NEVER WNi=WN FOR [WIRE:WN1
CHIPS:C] SE SORTED_CARD;
THEN "We have a new wire-name. '
Expand SORTED_CARD to include an entry
for this new wire-name-and its chip"
SORTED_CARD: :=[WIRE : WN
CHIPS: {CN}] <3;
ELSE "WN=WN1i. Add CN to C, the
set of chips associated to WN1."
@(C):= CN <$ COPY(C); FI
END
GIVE SORTED_CARD
END
ENDDEFN

This function may be analyzed as follows: The surface struéture is

DEFINE SORT(CARD:CARD)=SORTED_CARD:
BEGIN <DECL>
DO SORTED_CARD:=NIL; .

~ 357 ~ :

Expand SORTED _CARD to include
each chip-wire pair
GIVE SORTED_CARD
END
ENDDEFN
The main part of this function repeatedly updates SORTED_CARD to
account for each individual chip-wire pair. We get each chip-wire

pair by using the quantifier

FOR [NAME:CN SIGNALS: {WN}] $E CARD;
Having each chip~-wire pair, we use SORTED_CARD as a table and 1look

for an entry having WN as its wire. The <EXPR>

NEVER WNi=WN FOR [WIRE:WN1
CHIPS:C] $E SORTED_CARD;
is a BOOLean which yields TRUE if SORTED_CARD does not have an

entry for the wire WN. That is, the guantifier

FOR [WIRE:WN1 CHIPS:C] $E SORTED_CARD;
sets WN1 to each wire in SORTED_CARD and sets € to the wire's
accumulated chip set. If it dis never true that WNl:WN then
SORTED_CARD contains no entry for the wire WN. Here the program
splits into two cases. First, if SORTED_CARD has no entry for WN,
create a new entry on SORTED_CARD for the new wire, WN. This 1is

done by

SORTED_CARD::= [WIRE:WN CHIPS:{CN}] <& ;

~ 358 ~

We append onto the front of SORTED_CARD a new entry, an entry whose
wire is WN and whose associated set of chips is {CN}, the string

containing CN as its only element.

On the other hand, if SORTED_CARD already contains 'an entry
for WN, then we merely modify its associated chip set to include
CN. The variable C contains WN's associated chip set because the

NEVER <EXPR)> yielded FALSE. The sentence

@(C):= CN <3 COPY(C);
appends CN to the front of C. The @ and COPY are used solely for
the purpose of making this modification apparent from SORTED_CARD's
point of view and not merely from C's point of viéw. That is, the
string referapced by the CHIPS component of an element in
SORTED_CARD is treated as an object in its own right which can be
modified in a global sense. The @ operator makes the change
apparent from all points of view. We are obliged, bhowever, to
assure ourselves that this global modification affects nothing
besides those structures created in this program. We can 1look at
this program and easily prove that the modification is apparent
only from C's and SORTED_CARD's points of view. The location
referenced by C, the location modified by the @ operator, will
always be the CHIPS component of some record in SORTED_CARD. Each

.entry in SORTED_CARD is created by the record generating <EXPR>

[WIRE:WN CHIPS:{CN}].
The CHIPS component, {CN}, is a newly created string and therefore
it resides at a location referenced from no other point of view.

It i1s precisely this location in memory which is affected by the @

~ 359 ~

operator. Io short, the location modified by the @ operator is one
which is created in this program and which is referenced only by

SORTED_CARD and C.

.Nou~nested Looping~-TARGET s

' We now define what happens when two looping-TARGETs are
disjoint, 1.e., neither is nested within the other. For example,

the looping-TARGET

[A: {X} B: (Y}] .
has two string (EXPR)s which appear independently from one another.
This looping-TARGET produces a two-dimensional loop: k and Y are
set to each element in the A and B components of the given record .

in all possible ways. Thus,

FOR [A:{X} B:{Y}] $C [A:{1;2;3) B:{10;20}];

sets
X,¥= 1,10
X,Y= 2,10 ' ' .
X,¥= 3,10
X,¥= 1,20
X,¥= 2,20
X,¥= 3,20
or
X,¥= 1,10

X,¥= 1,20

~ 360 ~

X,¥= 2,10
X,¥Y= 2,20

X,Y= 3,10

X,Y= 3,20
One of these sequences occurs, but the user cannot be certain as to
which. Refer to the uncertain evaluation order in the record

generation rule, RGENF.
The looping-TARGET

{ {1} ; {J}}
defines a three-dimensional loop upon a string of strings. Let us
refer fo the given string of strings by the name 8. This
looping-TARGET sets the 1looping-TARGETs (I} and {J} to the
consecutive strings in S. Each of these looping-TARGETs
independently sets I and sets J to the elements in the two
consecutive strings. In other words, I is set to each element in
the fir;t string of S and J is independently set to each element in
the second string of &. Then, I is set to egch element in the
second string of S and J is independently setlto each element in
the third string of S, etc. In general, the dimensionality of any
given looping-TARGET is equal to the number of string-<EXPR>s, {},

occuring within.

~ 361 ~

Non-primitive Quantifiers

We can combine the primitive quantifiers to form quantifiers of a
more general sort. The following section covers the combination of
quantifiers with quantifiers and the section there after covers the

L]

modification of quantifiers.

Binary Combinations

The following rules construct quantifiers which cause nested

looping, lock-stepped looping, and sequenced looping.

QOR: . CQUANT> . ::= CQUANT > 1! <QUANT,>
QAND: CQUANTY> ::= (QUANTI) &8 <QUANT2>
QTHEN: CQUANT> ::= (QUANTI) THEN (QUANT2>

Meaning
The operator !! npests quantifiers, the operator && lock-steps

guantifiers, and the operator THEN sequences quantifiers. That 1is

<QUANT1> R (QUANTZ)
specifies that for each iteration caused by‘(QUANTI), run <QUANT2>.

The canonical

DO <SS (QUANT1> 'l <QUANT,>

becomes

DO DO <SSO <QUANT2) (QUANT1>

~ 362 ~

The resulting number of iterations is the product of the numbers of
iterations causéd by <QUANT1> and <QUANT2>.
The quantifier

<QUANT1> &8 <QUANT2>
specifies that <QUANT1> and <QUAN12> step together. This
quantifier terminates as soon as either <QUANT1> or <QUANT2>

terﬁlnates. The canonical

DO <SS (QUANTJ) 88 <QUANT,> .

becomes

prépare for first iteration of {QUANT1>'
, ﬁrepare for first iter;tion of <QUANT2>
LOOP: <SS>
prepare for next iteration of <QUANT1>
prepare for next iteration of <QUANT,>
GOTO LOOP
EXIT: --
where each of the four preparations may spontanecusly branch to
EXIT. As soon as one quantifier is exhausted, the 8& COmbiqation
is said to be exhausted. The resulting number of iterations is the
minimum of the numbers of iterations caused by <QUANT1> and
<QUANTZ).
The quantifier

CQUANT > THEN (QUANT2>

~ 363 ~)

specifies that when <QUANT1> terminates, start up <QUANT2>.

canonical

DO <SS CQUANT,> THEN CQUANT ,>

becomes the two sentences

DO <SS8> <QUANT >
DO <S58> <QUANT,>

Examples:

DO WRITE(I);TAB;WRITE(J);CRLF; FOR I FROM 1 TO 3; !!
FOR J FROM I TO 3;

prints

w NN
Ww W ™ W N

The sentence

DO WRITE(I*J);TAB; FOR I FROM 1 TO 3; !!
.FOR J FROM 1 TO 3;

prints

1 2 3 2 4 6 3.6 9

The expression ' . f

{COLLECT I#J FOR I FROM {1 TO 10; !!

The

~ 364 ~

FOR J FROM 1 TO 9; }
forms an array of points having 9 rows and 10 elements per row.

The && operator may be used as follows:

DO WRITE(I);TAB;WRITE(J);CRLF; FOR I FROM 1 TO 10; &&
‘ FOR J FROM 0 TO 20 BY §5;

prints

3 10
4 15
5§ 20

The string

{COLLECT 1 FOR I 3E S; 8& WHILE I<10; }
forms the longest initial substring of S baving all elements less

than 10. The string

{COLLECT I FOR I BE S; 8& REPEAT 5; }
forms a string having the first 5 elements of S. If S has less

than 5 elements, this new string is a mere copy of S. The string

{COLLECT I FOR I FROM 0 BY 5; &8
REPEAT 20; }
forms a string of 20 elements. The first element is 0 and each
following element 1is 5 greater than its predecessor. Notice that

this example uses'the &8 to limit the non-terminating quantifier

FOR I FROM O BY §5;.

~ 365 ~

The BOOLean expression

ALWAYS A=B FOR A SE S1; 8& FOR B SE SZ;
compares two strings of characters and yields TRUE if one'string is

the initial segment of the other.l

DO WRITE('Element#');WRITE(I);WRITE(' is ');WRITE(J);
FOR I FROM 1 BY 1; 88& FOR J BE Si1;
prints out a table of two columns. The first column is the
sequence of integers from 1 to the length of St and the second
column is the corresponding elements in S1. If S1 is the string

{5;10;-3} then we will get

Element#1 is §
Elementf2 is 10
Element#3 is -3

The following sentence uses the THEN operator:

DO WRITE(I);TAB; FOR I FROM 1 T0 § BY 2; THEN
FOR I FROM 100 TO 102; THEN
FOR 1 FROM 200 TO 202;

prints

135 100 101 102 200 201 202

The summation

4+ 1 FOR I BE S1; THEN FOR I $E S2;
yields the sum of the elements in both S1 and S52.

~ 366 ~

Unary Combinations

Any quantifier may be postfixed with a variety of modifiers.
-Concernihg precedence, these modifiers are tacked on before any binary

combinations are considered. For example,

FOR I $E S; && FOR J SE S1; WITH J >= 5;

groups as

FOR I $E S; 88 (FOR J $E S1; WITH J >= §;)

and not as

(FOR I $E. S; && FOR J $E S1;) WITH J >= §;

QWITH: CQUANT> ::= <QUANT,> WITH <EXPR,> ;
QINH: {QUANT> ::= CQUANT > INHIBIT_IF <EX§R2> H
QRES: <QUANT> ::= <QUANT1) RESET_IF <EXPR,> ;

QECH: <QUANT> ::= (QUANT1> EACH_DO <882> ;
QFTM: <QUANT> ::= (QUANT1> FIRST_DO <SSZ) ; . ;

QOTH: CQUANT> ::= <QUANTI> OTHER_DO <3838,> ;

QFST: - CQUANT>

.
]

<QUANT1> INITIALLY <88,> ;
QFIN: <QUANT> ::

(QUANT1> FINALLY DO <SS,> ;

Type Requirements <EXPR2> BOOL

PASS3 Requirements (EXPRz)

SOURCE
Meaning

Each modifier has its own meaning:

WITH <EXPR2> H

~ 367 ~

filters the <QUANT1> by removing those iterations for which <EXPR2>

yields FALSE. That is, the canonical

DO <SS CQUANT ;> WITH CEXPR,> ;

becomes

DO IF <EXPR2> THEN <85> FI ~ <QUANT,>

The modifier

INHIBIT_IF <EXPR,> ;
inhibits the stepping of <QUANT1) when <EXPR2> yields TRUE except
on the first iteration. That is, before each non-first stepping of
<QUANT1>. evaluate (EXPR2> and abandon the stepping if <EXPR,>
yields TRUE. '
The modifier

RESET_IF <EXPR,> ;
resaets (QUANT1> to start over from the beginning if <EXPR2) yields
TRUE. That is, before each non-first stepping of '<QUANT1>.
evaluate <EXPR2>~and if it yields TRUE, reset'(QUANTI) so that it
now restarts from the beginning.

‘The modifier

EACH_DO <85,> ;
specifies that <S5,> be evaluated before each iteration after

<QUANT1> has been stepped. That 1s, the canonical

DO <SS> (QUANT1> EACH_DO 85,5 3

~ 368 ~

becomes

DO <SSZ> <SS> <QUANT1>
(~===§§~=~~~)
The modifier

FIRST_DO <SSZ> ;
specifies that (882> be evaluated before the first iteration but

after <QUANT1> is first stepped. That is, the canonical

DO <SSO (QUANTI) FIRST_DO <88,> ;

becomes

DO IF this is the first iteration THEN <882) Fl
<58> CQUANT ;>
The modifier

OTHER_DO <ssz> ;
specifies that (S$2> be evaluated before each non-first iteration.

That is, the canonical

DO <SS> (QUANT1> OTHER_DO 88,5 ;

becomes

DO IF this is not the first iteration
THEN <882> FI <8S> <QUANT1>
It turns out that (532) appears to be evaluated between iterations.

The modifier

INITIALLY <SS,>

~ 369 ~ -

specifies that (SSZ> be evaluated before the first stepping of

(QUANT1>. The canonical

DO <SS (QUANTI) INITIALLY <SSQ> ;

becomes

(882) DO <SS> <QUANT >

The modifier
FINALLY_DO <SSZ> ;P
specifies that <582> be evaluated after (QUANTI) terminates. The

¢
canonical

DO <SS> <QUANT,> FINALLY DO <SS,> ;

becomes

DO <SS> <QUANT,> <88,>

Examples:

{COLLECT I FOR I BE S; WITH I>5; }

forms the largest subset of S whose elements satisfy I>5.

{COLLECT I FOR I SE S1; WITH
THERE_IS J=1 FOR J 8E S2; ; }

forms the intersection of the strings S1 and S2. We must assume,
of course, that the elements of S1 and S2 are comparable with the
<BOP> "="_ This string (EXPR> collects each element in S1 only 1if

that element is in S2.

~ 370 ~

+ Jx(J-1) FOR I SE S;
EACH_DO J:=IXSQRT(I); ;

yields the sum of J*(J-1) where J=I*SQRT(I) for each I in S. This

is equivalent to

+ (I*SQRT(I))*((I*SQRT(I))-1) FOR I $E S;
The EACH_DO 1is generally useful for setting auxiliary loop
variables which depend on the actual loop variable.

The quantifier

FOR I $E S; EACH_DO I::=MAX 5; ;
sets I to the maximum of each element in S and 5.
The following sentence plots the path represented by the string of

points S:

FOR P $E S}
FIRST DO PLOT(P,PEN_UP);;
OTHER_DO PLOT(P,PEN_DOWN);;
DO NOTHING; END
The first point is plotted with the pen lifted up and the non-first
points are plotted with the pen down. The guantifier itself does
all the work. The <SS> being quantified is "NOTHING;", a'lno-op.

The above sentence employs the rule

{QUANT> DO <SS> END

and so we are obliged to write the."DO NOTHING; END".

~ 371 ~

The following sentence plots a polygon which is represented by
a string of points where the first point is not duplicated at the

end:

FOR { P1 ;* P2) $C S;
FIRST_DO PLOT(P1,PEN_UP);;
DO PLOT(PZ,PEN_DOWN); END
" The quantifier

FOR { P1 ;x P2)} §C S;
sets P1 and P2 to consecutive points in S where the final iteration
leaves P2 containing the first point in S. The first iteration
plots the first two points of S, P1 and P2, and the other

iterations just plot P2.

~ 372 ~

CEXPR>s and <TYPE)>s - Part 2

This section introduces three more datatypes and the corresponding
CEXPR> forms which generate and select instances of the new types.
Finally, we will introduce a concise notation for specifying strings of

points using relative movements.

‘Another Primitive Type - 1

Just like INT, REAL, POINT, etc. are primitive types, the name ID

is another primitive type in ICL. That is, we include the rule

" CTYPEY ::= ID

Do not confuse the literal ID with the part-of-speech <ID>.

An instance of the type ID is any <ID>. The type ID‘ is very
similar to the type QS and to the SCALAR types. Instances of ID differ
from 1nstan¢es of QS by their denctation and their efficiency in the
comparison operators. Unlike instances of QS, equal instances of ID are
represented by unique memory addresses, 1like ATOMs in LISP. Thus,
comparing two IDs is as efficient as comparing two INTegers. The type
" ID differs from a SCALAR type in that any <ID> may be an instance of ID
whereas only the <ID>s contained in a SCALAR's <IDLIST> can be instances
of the SCALAR type. |

ID <EXPR)s - The X%

Instances of the type ID are generated by prefixing an <ID> with a

percent sign:

EIDID: CEXPR> ::= X <ID

~ 373 ~ -

Type Requirements result 1D

PASS3 Requirements result SOURCE

Meaning
The resulting value is the <ID> as a literal value.

Examples:

%GROUND is the ID GROUND
%A_B_C is the ID A B C

Instances of ID may be compared by the compare operators

= (O = { >= D
These are the compare operators which have been documented in the
section for <BOP>s. Now, we will extend the compare operators to

compare two instances of ID:

ID 1ID -> BOOL '
Two 1Ds are equal if and only if they are the same ID. IDs are ordered

" in a completely arbitrary way. Thus,

¥GROUND = %GROUND is TRUE,

%GROUND = %GND is FALSE,
%GROUND <> %GND is TRUE, and
%GROUND < %GND is uncertain.

However, if

%GROUND < %GND
is TRUE once, then it is true from this time forward. The orderihg
between two IDS is determined as soon as ICL has seen each <ID> for

thé first time in any context. It turns out thaf the value of an

~ 374 ~
instance of ID is its address in ICL's internal symbol table.

Which Type is Appropriate: ID, QS, or SCALAR(<IDLIST>)?

The types ID, QS, and SCALAR(<IDLIST>) are so similar that one
might ask what situations demand the use of one over the other. QS is
the most general; any text string is an instance of QS. ID is 1less
general; only those text strings which form valid <ID>s as defined in
the section Basic Conventions are instances of ID. SCALAR(<IDLIST>)
is the least general; only those <ID>s appearing in <IDLIST> are
instances of SCALAR(<IDLISTY).

As a rule of thumb, use the least general type with which you can
get by.. IDs compare faster than QSs and they take up slightly less
memory. SCALARs are the best because the compiler checks that any
context which expects an instance of a SCALAR does indeed get one of the

<ID>s in the SCALAR's <IDLIST>.

~ 375 ~ -

Two More Non-primitive Types

The following two type schema each offers avprofound extension to

ICL. Oﬁe enables the creation of truly abstract datatypes in the sense
‘that an abstract datatype may have invariant properties besides those
inherent in a machine represéntation. The other type schemé enables the
creation of data which is a program along with some context.

[

PRIVATE Types

A new datatype, a restriction of an existing datatype, is formed by

prefixing the existing datatype with the word PRIVATE:

CTYPE> ::= PRIVATE <TYPE>
The representation for the resulting type is the same as the
representation for the original type. However, instances of the
original type are not instances of the resulting type and visa versa.
The PRIVATE construct. is primarily useful for creating distinct types
whose representations are identical. The user will typically define
coercions between the distinct types so to remove the distinction.
However, within the coercions, he can monitor the tranference from one
type to the other. Here he can place checks and translations which will

occur implicitly throughout his programs.

For example, let us consider polygons and convex polygons. A
general polygon is suitably represented by a string of points tracing

out its vertices:

~ 376 ~

TYPE POLYGON = { POINT };
What is here agreed upon is that any newly formed string of points

passes as an instance of POLYGON. Thus,

{ pointI ; point2 P oeee pointn }
is an instance of POLYGON. Furthermore, any operations which apply to

strings of points apply to POLYGONs:

polygon $> point
~ point <3 polygon

polygon $% polygon

polygon [3-]
are all instances of. POLYGON. In contrast, a convex polygon is not just
any old string of ppints. The above expressions for POLYGONs do not
gu;rantee convexity. In ICL, we can specify that the type
CONVEX_POLYGON is a restricted sort of POLYGON by writing

TYPE CONVEX_POLYGON = PRIVATE POLYGON ;
Of course, ICL doesn't know how CONVEX_POLYGONs are restricted POLYGONs,
-but the user can capture the réstriction jn the functions and coercions
he writes which consume and produce CONVEmeOLYGONS. CONVEX_POLYGONs
are so private that none of the above expressions for polygons pass as
instances of CONVEX_POLYGON. The only way to create or examine an
instance of CONVEX_POLYGON is to explicitly specify the transference
from privacy to publicity or visa versa. The following section covers

the notation for doing so.

Publication and Confirmation - Selection and Generation for PRIVATE

Types

~ 377 ~ -

The following rules are the only rules which involve PRIVATE types.

Instances of PRIVATE types are stripped of their privacy by

PUBLC: <EXPR> ::= PUBLICIZE:::(<EXPR,>)

Type Requirements
<EXPR1> must be a private type, say PRIVATE T. The resulting type
is T, the less restricted type.

Meaning
An identity. No additional code is generated. This construct is

used to gain access to an instance of a private type.

Example:

If C 1s a CONVEX_POLYGON, then

PUBLICIZE:::(C)
is a POLYGON. The coercion

LET CONVEX_POLYGON BECOME POLYGON BY
PUBLICIZE:::{CONVEX_POLYGON) ;
specifies that any convex polygon is also a polygon. The privacy

of CONVEX_POLYGON may therefore be lifted implicitly.

‘Instances of a private type are created by:

PRIVY: <EXPR> =::= <IDI> HERS ¢ <EXPR2>)

Type Requirements
(IDI> is the name of a declared PRIVATE type and
(EXPR2> = that type which is the generalization of the private type

<IDI). That is, the following relation must hold:

~ 378 ~ : .

<ID,> = PRIVATE the-type-of -CEXPR,>
Meaning
An identity. No addifional code is generated. This construct is

used to confirm <EXPR1) as being a legitimate instance of a PRIVATE

type.

Example:

If P is a POLYGON, then

CONVEX_POLYGON: : : (P)
is a CONVEX_POLYGON. Similarly,

CONVEX_POLYGON:::({pointj;pointzg...;point"})
is a CONVEX_POLYGON. Note that the points can be chosen so as not
to form a convex polygon. ICL does not check or know what is meant
by CONVEX_POLYGON. ICL only verifies that except thru this
doorway, the notion of CONVEX_POLYGON is safely preserved. The

coercion

LET POLYGON BECOME CONVEX_POLYGON BY
IF POLYGON \IS_CONVEX THEN
CONVEX _POLYGON:::(POLYGON)
ELSE DO HELP; GIVE NIL FI ;
specifies that any POLYGON passes as a CONVEX_POLYGON but in doing
so, the POLYGON is automatically subject to a test. To understand
what role this coercion plays, let us consider a function which

warks only on CONVEX_POLYGONs.

~ 379 ~ o

The process of cutting a polygon in two with a 1lipe 1is
referred to as polygon clipping. It is a fact that any convéx
polygon clipped by a line results in another convex polygon. It is
also. a fact that a general polygon clipped by a line can yield
several disconnected polygons. Without filling in the details, the
following function clips a convex polygon by a line and yields the

convex clipped polygon:

DEFINE CLIP(V:CONVEX_POLYGON BY:LINE)=CONVEX_POLYGON:
DO Clip the polygon V
GIVE the clipped polygon
 ENDDEFN |
Because the argument to CLIP is of type CONVEX_POLYGON, the body of
this function can be written assuming the convexity of the argument
V. The argument V may be accessed. simply as a string of points
because the CONVEX_POLYGON -to- POLYGON coercion can render V as a
POLYGON.

Where does the POLYGON -to- CONVEX_POLYGON coercion come 16?

It potentially comes in at two places. First, if CLIP is called
with a POLYGON parameter, the coercion will apply before the
function call and the parameter's convexity will be checked before
entering the function CLIP. Secondly, the result of the clipping
is a new string of points, which is called the clipped poly&on in

.tbe program text given above. Before leaving the CLIP function,
the coercion will be applicd to the clipped string of points, thus
verifying its convexity. If CLIP is ever called with a POLYGON

which is not convex, the function HELP will be called from within

~ 380 ~

the POLYGON -to- CONVEX_POLYGON coercion. Similarly, if CLIP
yields a non-convex polygon, HELP will be called. Note, however,
we know that the result of the clipping is always convex. It is
therefore a waste of time for the coercion to be invoked upon
leaving CLIP. We may simultaneously relieve this final coercion
and explicitly state in program text that this procedure always

yields a convex polygon by writing

CONVEX_POLYGON:::(the clipped polygon)
in the GIVE clause. We are explicitly putting our stamp of

approval on the result of this function.

Another example implements a restricted type of CHARacter, a

capitalized character.

TYPE CAP_CHAR = PRIVATE CHAR ;
declares CAP_CHAR to be a restricted CHAR. We ‘can capture the

meaning of capitalization by writing the coercions:

LET CAP_CHAR BECOME CHAR BY
PUBLICIZE:::(CAP_CHAR) ;
LET CHAR BECOME CAP_CHAR BY
CAP_CHAR:::(IF CHAR >='‘a' & CHAR =< ‘'z
THEN THE_CHAR(CHAR-'a'+'A‘)
ELSE CHAR FI) ;
The'first coercion states that any CAP_CHAR‘is a valid .CHAR. The
second coercion states that any CHAR is a CAP_CHAR by capifélizing _
the CHAR. Before we discuss the ramifications, I must clarify the

THEN-clause in the second coercion. The C(EXPRD

~ 381 ~ -

CHAR - 'a' + 'A'
specifies arithmetic to be performed on characters. CHARs may not
participate in érithmetic but INTegers can. This <{EXPR)> assumes
the existence of a CHAR-to-INT coercion, one which maps a CHAR into

its INTeger ASCII code. Assuming such a coercion,

CHAR - 'a' + 'A?
results in type INTeger, the ASCII code for a capital letter. The

"identity" function THE_CHAR maps an INTeger into a CHAR. Thus,

THE_CHAR(CHAR - 'a' + 'A')
is the desired capitalized character. Just as the INTeger-to-REAL
coercion is ggnérally assumed, the user may assume the existence of
the CHAR-to-INTeger coercion and the THE_CHAR INTeger-to-CHAR
function. This coercion and function are containmed in the file

BEGIN.ICL, the first file reéd into a freshly created ICL system.

WARNING :

A common user error accompanies coercions which coerce to
a private type, e.g., the CHAR-to-CAP_CHAR coercion. The user
might forget to write the confirmation, e.g., CAP_CHAR:::(...)

around the body of the BY-clause in the coercion, e.g.,

kLET CHAR BECOME CAP CHAR BY IF..THEN..ELSE..FI ;
This forgetfulness results in an infinite loop via recursion.
ICL will apply the coercion to the body of the coercion itself
in order to satisfy the requirement that the body of the
coercion result in the type CAP_CHAR. Even though the
IF-THEN-ELSE results in a CHAR which is capitalized, ICL

~ 382 ~

doesn't know that this is a CAP_CHAR. The user must
explicitly confirm that the body is of type CAP_CHAR.

What do the CHAR and CAP_CHAR coercions buy us? First of all,
the types CHAR and CAP_CHAR are now equivalent. One or the other
may be used anywhere with no distinction. However{ anyyhere the
user uses the type CAP_CHAR, he will be guaranteed to have a
~ capital character. Variables declared as CAP_CHARs will always
contain capital characters. No coercion will occur when passing an

CEXPR> of type CAP_CHAR to a function requiring a CAP_CHAR.

Upon changing the declarations of some variables from CAP_CHAR
tor CHAR ‘or visa versa, the placement of coercions will
avtomatically vary in a given program. ICL always minimizes the
number of applied coercions in a static sense. In this sense, ICL
optimizes a program. However, the few places where ICL does *place
coercions might be inside a 1loop. In the dynamic sense, the
program is not necessarily optimized. However, as in FORTRAN, the
user can optimize bhis program by Jjudiciocusly choosing which
variables are to be of one type and which are to be of the other

type.

The following exemplifies how ICL minimizes the application of
coercions. Appending two points to an existing CONVEX_POLYGON

might be expressed as

convex polygon 3 pointl b)) point2

~ 383 ~

The coercions will be placed as follows. For abbreviation, P will
stand for the type POLYGON and CP will stand for the type
‘CONVEXQPOLYGON.

convex polygon $> pointl » point2

(==mmeCPmmmm=)

R)

O L)
(=mmmmmmmmmmmmeaenee Prommeceeeees)
(mmmmmmmmmmm e CPmmmmcmmmmmen)

First, the CONVEX_POLYGON is coerced to a POLYGON. Then the 'two
points are appeﬁded to the POLYGON. Finally, if the result must be
viewed as a CONVEX_POLYGON, the finished POLYGON coerces to back to

CONVEX_POLYGON and only this once, the POLYGON is tested for
convexity. This interpretation requires the minimum pumber of

coerclions, two.

~ 384 ~

Processes - The //...\) and the <*...%>

This section documents ICL's process datatypes and their instances.
Procedures. like data structures, may be created, invoked, and passed
around both in variables and within data structures. Coercions and
functions can be defined which transform processes orvdata to yield

other processes or data.

The term Process Generation refers to the creation of a process and
the term Invocation refers to the transfering of control to a process.
The symbols // and \\ are used to delimit the program text making up a
process; they denote process generation. The symbols <* and *> are

used to specify invocation of a process.

Examples

A= /] <88 \\ ;

sets A to represent the program action specified by <SS>. Writing

<A X ;
will cause <SS> to execute. A may be invoked as many times and 1in

as many environments as desired.

A = /) Ti=#1; \\

sets A so that <(®*A*) increments the global variable I.
Parameters may be passed:

F := //(X:REAL) X*X \\ ;

~ 385 ~

sets F to represent the function X*X.

CXF%>(5)
yields the value 25.

G:= //(X:REAL) SIN(<*F*>(X)) \\ ;

sets G to represent the function SIN of whatever (*F%x)(X) yields.

<XGX>(0) is 0 and
(RGx>(2) is SIN(4).

However, if we now write

t= J/(X:REAL) 1-X \\ ;

then

C(RG®H>(0) is SIN(1) and

CRGX>(2) is SIN(-1).
Variables appear to represent the values they hold‘at the time of
invocation qnd not at the time of process geﬁeration. Thus, a

change in F is reflected in G becduse G makes reference to F.

The user may specify that values taken at the time of process
generation be available at the time of invocation. Such values are

called context. For example,

G:= //(X:REAL)[F;] SIN(<XF*>(X)) \\ ;
sets G to represent the function SIN of <XF%*>(X) where F represents
the value of F now, at the time of process generation. G is now
immupne to any change made to the variable F. When G 1is invoked,
the value F in G will appear to be what it was at the time of the

assignment and not what it will be at the time of invocation. The

~ 386 ~

context variable F is said to be frozen.

The user specifies the desired set of variables whose vaiues
are to appear frozen at the time of process generation by enclosing
them in square brackets and inserting a semicolon after each

variable. G now represents the function

SIN(1-X)

because F = (1-X) at the time G was assigned. Writing .

F := //(X:REAL) COS(X) \\ ;

~ does not affect G at all. In fact, writing

- Fi= J/(X:REAL)[G;] <*G*X(X) / 2 \\ ;
!)
saets F to represent one half the value of <(*G*>(X) where G appears

‘frozen now, i.e.,

F = SIN(1-X)/2.
Note that the F in the definition for G is still 1-X despite this
new assignment because F was enclosed in square brackets in the

assignment for G.
The sentences

F:= //(X:REAL) X \\; :
DO F:= //(X:REAL)[F;] <XF*>(X) * <*F=>(X) \\ ; REPEAT §;

saet F to represent the function X raised to the 32nd power.

Process Types

~ 387 ~ -

The examples presented above were done so assuming that the
variables A, F, and G were previously declared. They were to be

declared to be variables of the types

/7 \\ for A and

//REAL(REAL)\\ for F and G.
A 1s a process which neither produces a value nor takes any parameters.
F and G are each of the process type which produces a REAL and which

expects exactly one parameter, whose type is REAL.

Formally, we have the following new rules for <TYPE>:

{TYPE> /1 \\

CTYPEY ::= /1 CTYPE) \\

<TYPE> = /7 (<CIDLIST>) \\

CSTYPE> ::= /7 KTYPE,> (1 <IDLIST>) \\
The first <TYPE)> denotes a process which returns no value. The secoﬁd
{TYPE> denotes a process which returns a value of type <TYPEI>. . The
third <TYPE> denotes a process which returns no value but which does
expect input parameters whose types afe named by the <ID>s in <IDLIST>.
‘The fourth (TYPE> is similar to the third <TYPE)> except that not only
does it expect input parameters, it also returns a value of type

<TYPE 5.

All the <ID>s in the <IDLIST>s must be the names of declared types.
. The reader might note that fhese four <TYPE> rules correspond to the

four kinds of function headers presented in the section Declarations.

Examples: ‘ '

~ 388 ~

TYPE SS = //\\;
_declares that SS is the name of a process type. Instances

neither return a value nor do they accept input parameters.

TYPE FUNCTION = //REAL(REAL)\\ ;

declares that FUNCTION is the name of a process type.

of S8S

Each

instance of FUNCTION accepts one parameter of type REAL and returns

-a value of type REAL.

TYPE PLOTTER = //(POINT,PLOTTER_COMMAND)\\ ;

declares PLOTTER to be a process type which expects two parameters,

a POINT and a PLOTTER_COMMAND. The invocation of a PLOTTER returns

no. value.

TYPE CHAR_PRODUCER = // CHAR \\ ;

declares CHAR_PRODUCER to be a process type which yields a CHAR

upon each invocation and which expects no input parameters.

The following rules define the syntax for making instances of

process types:

SUSB1: {(SUSB> ::= //

SUSB2: <SUSB> ::= <SUSB,> (<CTYPE,>)
SUSB3: {SUSB> ::= <SUSB,> [<ASN,>]
SUSB4: {SUSB> ::= (SUSBI) { (ASN2> }
SUSF1: CEXPR)> :::= <SUSB ;> (EXPR2> \\
.SUSFIS: <EXPR> :::= <SUSB ;> 55,5 \\

Type

~ 389 ~

Informally, an instance of a process type ié generated Sy enclosing
an <EXPR> or an <SS> between a <SUSB> andAa \\. A <SUSB>ViS‘a /7 .
optionelly followed by parameter specification or‘ by context
Specification or by bdth. Parameters are specified via the rule
SUSBZ and context is specified via either of the rdles kusas and

SusB4.

Requirements

There must exist a declared process datatype whose parameter types
sequentially match the parameter types specified in (CTYPE2> and
whose return type is the type of <EXPR2> if the rule SUSF1 is used.
If the rule SUSF1S is used, the process type must include no return
type. The résulting type for the rules SUSF1 and SUSF1S is any

such declared process type. ,
For example

/7 <SS> \\ is of type //\\.
// an INT \\ is of type //INT\\.
//7(X,Y:REAL B:BOOL) 88> \\
is of type //(REAL,REAL,BOOL)\\.
//{X,Y:REAL B;:BOOL) a FOINT \\
is of type //POINT(REAL,REAL,BOOL)\\.
The <ASN2> in the rules SUSB3 and SUSB4 blays no part whatsoever in

the type requirements. For example,

f/TA:B;] <SS8> \\ is of type //\\.
J/[TA;B;] an INT \\ 1is of type //INT\\.
//7(X:REAL)[A;B;] <SS> \\

~ 390 ~

is of type //(REAL)\\.
//(X:REAL)[A;B;] a POINT \\
is of type //POINT(REAL)\\.

PASS3 Requirements <EXPR2> = SOURCE = result
Meaning

The resulting value is a process which either produces the valhe
<EXPR2> or performs the action <SSZ> where the <EXPR2> or <SSZ> is
evaluated not now, but at the time this value is invoked. Invocation
will be formally descfibed with the next set of rules. This resulting
value w111 expect_pafameters at the time of invocation if the rule SUSB2

has been used.

Further Requirements

Each variable named in CEXPR,> or <S5, must either be -

1) a global variable, or

2) a parameter variable specified in <CTYPE,>, or
3)
1)

context variaﬁle specified in <ASN?>, or

variable declared local within (EXPR2> or <8525 itself.
A variable in (EXPR2) or <SSZ> may'not be a local variable declared
ocutside of <EXPR2> or <882> except via (3). A violation will be

reported by the cryptic error message:
?SLOAD or 7TSTORE: Address has illegal index field.

The specified variables of <ASN2> must be variables declared

outside <EXPR2> or <ssz> and they may be local or global.

Further Meaning 4 .

~ 391 ~

Each of the specified variables of <ASN2> is automatically made
local to the boady, <EXPR2) or (SSZ>' That is, <EXPR?> or <SSB> may read
and write any of the specified variables of <ASN,> and the effect will

be apparent only to (EXPR2> or <582>.

The implied assignments of (ASN2> are carried out now and not at
the time of invocation. The implied assignments can be viewed simply as

the initialization of the context variables for the process.

The distinction between the rules SUSB3 and SUSB4, the square
brackets vs. the curly brackets, is as follows: The specified
variables of the <ASN2> enclosed in square brackets have the property
that their values are reset to their initialized values upon each
invocation of the process. The specified wvariables of the (ASN2>
enclosed in curly brackets are not resef upon each invocation and hence

they may be used to remember information from the previous invocation.

WARNING:
Processes constructed with the rule SUSB4, the curly brackets, have
a property unlike any other data in ICL. Such a process appears to

evolve independently from all points of view. Thus, with

B:= l/{I}=0;} WRITE((I::=+15))3 1\ ;
A:= B;

‘"we have the following scenario:

CRA%D; " prints a 1
(RAXD . prints a 2_

C(RBX); prints a 3 and not a 1.

~ 392 ~

However, if we now write

A:= COPY(B);

{XB%); prints a 4
{XB%>; prints a 5
CXAXD; prints a 4 and not a 6 R
{XB%5, prints a 6.

COPYing a process yields a process whose further evclution is
independent from the evolution of the original process except for
the following convention: Any (sub)processes referenced by the
original process —are now shared between the original process and
the copied process. Thus, an invocation of a subprocess from
either the’ original or the copied process will be apparent from

both the original and the copied processes.

The reader who has examined the section about ICL's policy
towards assignments, pointers, and copying may note that a process
generated with the rule SUSB4 evolves as though 1t were modified
via the @-operator upon each invocation. A process is represented
much like a record is represented; there 1is a 1list of memory
elements, one for each context variable, and a field containing the
address of a program. The memory elements of this context list are
updated in place upon qompletion of cach invocation so that they
hold the new current values for the process's context variables.
An explicit COPY 1is required for the creation of an independent
instance precisely because of this @-like, in place, treatment for
a process's céntekt list. The COPY operation makes a copy of the

context list copying only the top 1level structbre: Structures

~ 393 ~

referenced from the list are not copied, rather, they are shared by

both the original and the copied list.

Examples:

The declarations

TYPE SS = //\\ ;
PROCESS_QUEUE= { SS } ;

VAR RUNABLE*PROCESSES= PROCESS_QUEUE;

DEFINE RUN_ONE_PROCESS:
IF DEFINED(RUNABLE_PROCESSES) THEN
(x RUNABLE_PROCES§ES[1] x>;

RUNABLE_PROCESSES:=RUNABLE_PROCESSES[2~]; FI
ENDDEFN

DEFINE RUNABLE(S:SS):
RUNABLE_PROCESSES: :=%> S ;
ENDDEFN
define a dumb scheduler which has ‘a global Variable of type
PROCESS_QUEUE, a string of processes. The function RUNABLE puts a
process on the queue and the function RUN_ONE_PROCESS executes the

first process on the queue and removes that process from the queue.'

Non-linear transformation upon pictures are supported by the

declaration

TYPE POINT_XFRM= //POINT(POINT)\\ ;

~ 394 ~

A POINT_XFRM is a function which takes a POINT anq which yields the
transformed POINT.

VAR ITALICIZE= POINT XFRM;
ITALICIZE:= //(P:POINT) P.X+P.Y # P.Y \\;
sets the POINT_XFRM ITALICIZE to be a mapping which tilts a picture

45 degrees to the right. The function

DEFINE COMPOSED_WITH(A,B:POINT_XFRM)= POINT_XFRM:
//(P:POINT)[A;B;] <*A*>(<*B*>(P)) \\

ENDDEFN
will form a POINT_XFRM which is the composition of two given
POINT XFRMs. The resulting POINT_XFRM takes - its input POINT,
‘passes it thru B and then passes the result thru A. The variables
A and B are enclosed in ‘square brackets so that their values will
be available at the time of invocation. If A apnd B were not
specified as context variables, an error message would be issued at
compile time be?ause the variables A and B inside the resulting

POINT_XFRM are not global variables. The POINT_XFRM

ITALICIZE \COMPOSED_WITH ITALICIZE
yields a POINT_XFRM which applies ITALICIZE twice.

The declaration

TYPE - FUNCTION= //REAL(REAL)\\ ;
defines FUNCTION to be fhe process type which maps. a REAL to a
REAL. The function

DEFINE PRIME(F:FUNCTION)= FUNCTION:

~ 395 ~

//7(R:REAL)[F;] (<*F*>(R+EPSILON)~<*F2x>(R)) /
EPSILON W
ENDDEFN
maps a FUNCTION into its derivative, assuming EPSILON is a global
variable. When the derivative is invoked, the function F will be

invoked twice, once at R+EPSILON and once at R.
The declaration

TYPE FUNCTION_PRODUCER= //FUNCTION(REAL)\\ ;
. defines FUNCTION_PRODUCER to be a process type which ﬁaps a REAL to
a FUNCTION. The following is an instance of FUNCTION_PRODUCER:

//{N:REAL)
//(T:REAL)[N;] SIN(N*2*x3.141592 * T) \\ \\
This instance takes in a REAL, N, and yields the SIN function which

maps the interval between 0 and 1 into N cycles. Thus, with

VAR FMAP= FUNCTION_PRODUCER;
F = FUNCTION;

FMAP:= //{N:REAL)
//(T:REAL)[N;] SIN(N*2*3.141592 * T) \\ \\ ;

the statement

F:= {*FMAP%>(3) ;
sets F to a function which maps the interval between 0 and 1 into 3

cycles of the SIN function.

~ 396 ~

The resulting function, F, is not as optimized as it might be.

Upon repeated invocation of F, the value

Nx2%x3.141592 ' 1
will repeatedly be calculated even' though it does not depend on the
parameter to F. We can remove this calculation from F and put it

into FMAP by assigning FMAP as follows:

FMAP:=//(N:REAL)
//(T:REAL)[N:=N*2%3.141592;] SIN(NXT) \\ \\ ;

Now, when we write

F:= C*FMAP*>(3);
the resulting function, F, involves one multiply and oné¢ SIN

calculation. The calculation

N:= N%2*3.141592 ;
is performed at the time FMAP is invoked and not at the time F is
invoked. That is, the variable N is initialized to the convenient

value during the process generation for the return value from FMAP.
The following instances of FUNCTION yield identical results:

1) //7(R:REAL)[A;B;C;] SIN(AXCOS(B)+C*R) \\
2) BEGIN VAR D=REAL;
DO D:= A*COS(B);
GIVE //(R:REAL)[C;D;] SIN(D+C*R) \\
END
3) BEGIN VAR D=REAL;
//(R:REAL)[C;D:=A*COS(B);] SIN(D+C%xR) \\

~ 397 ~

END
4) BEGIN VAR D=REAL;
//(R:REAL)[D:=A*COS(B);C;] SIN(D+C*R) \\
END
The BEGIN-END is used to create an auxiliary variable, D,

will contain the intermediate value A*COS(B).

The difference between the square brackets and the

brackets is exemplified in the following:

TYPE INT_PRODUCER= //INT\\ ;
VAR A,B= INT_PRODUCER; I=INT;

A:

//{1:=25;] DO I:=I+1; GIVE I \\
//7{1:=5;} DO I:=I+1; GIVE I \\ ;

we

B:

which

curly

The expression <{*A*) will élways yield 6 whereas the expression

<%BX> will yield the number 6 upon first invocation, the number 7

upon second invocation, etc. Each invocation of B yields a onumber

one greater than the result of the previous invocation.

The user can define coercions between process types:

TYPE BUNCH OF S8S= { 85)} ;
LET BUNCH OF SS BECOME SS BY
//[BUNCH_OF_SS;] BEGIN VAR S=SS;

DO <%S*>; FOR S SE BUNCH OF SS; END \\ ;

This says that any string of S$Ss may be viewed as a single SS which

sequentially evaluates each SS in the string. Thus,

{ 771:2215\\ ; //d:=1+1;\\ ; //WRITE(J);\\ }

~ 398 ~

may be seen as a single 8S whose invocation prints the number 22.

Another example of coercion between process types invelves
another interpretation for the type FUNCTION PRODUCER. A
FUNCTION_PRODUCER can be seen as a single function which takes two

REAL parameters and which yields a REAL, like the following type:

TYPE TWO_DIM= //REAL(REAL,REAL)\\ ;

That is, we can declare

LET FUNCTION_PRODUCER BECOME TWO_DIM BY
//(R, T:REAL)[FUNCTION PRODUCER;] "takes two parameters"
. (* <*FUNCTION_PRODUCER*>(R) *>(T) \\ ;
A FUNCTION_PRODUCER is viewed as a TWO~DIMV by wusing the first
parameter of TWO DIM to select a function from FUNCTION_PRODUCER
and evaluating that function at the second parameter. Similarly,

we can go backwards with

LET TWO_DIM BECOME FUNCTION_PRODUCER BY
//(R:REAL)[TWO_DIM;] "takes ;ne parameter"
//(T:REAL)[TWO_DIM;R;] CATWO_DIM*>(R,T) \\ \\ ;
‘The resulting FUNCTION PRODUCER, given R, yields the function

TWO_DIM where TWO_DIM's first parameter is frozen at R.

Our final example involves the definition of a process type
called PICTURE. We Qill adopt the point of view thét a PICTURE is
s0 general that all we know is that a PICTURE may be invoked and
that this invocation‘mﬂy invoke a global variable called PLOTTER,
sending to PLOTTER a POINT and a pen-up or pen-down directive.

Furthermore, we shall assume that PLOTTER will automatically

~ 399 ~

transform its given point by displacing that point by another
global variable, ORIENTATION.

TYPE PLOTTER= //(POINT,PLOTTER_COMMAND)\\ ;

"Expects ORIENTATION to be preset® .

PLOTTER_COMMAND= SCALAR(PEN_UP,PEN_DOWN);
PICTURE= //\\ ; * PICTURE expects PLOTTER
and ORIENTATION to be preset "

VAR PLOTTER= PLOTTER; ORIENTATION= POINT;

The following is an instance of PLOTTER:

PLOTTER:= //(P:POINT E:PLOTTER_COMMAND)
P::= + ORIENTATION;
CASE E OF
PENwﬁP: WRITE('Up'); WRITE(P);
PEN_DOWN: WRITE('Down');WRITE(P);
ENDCASE
CRLF; W H
This plotter is especially well suited for terminals which have no
p]ofting capabilities. This plotter prints the points on the
terminal. Note that this plotter displaces 1its given point by
ORIENTATION like any instance of PLOTTER should.

We can form many instances of PICTURE by introducing a type for a
special sort of picture and by defining a coercion from this type

to the type PICTURE:

~ 400 ~

TYPE SIMPLE PIC= { CURVE } ;
CURVE = { POINT } ;
A SIMPLE_PIC is a string of CURVEs where each CURVE is a set of
points meant to be drawn with the pen down. That is, the pen is to
be lifted only for the first point in each CURVE. The following

coercion lets a SINPLE_PIC be viewed as a PICTURE:

LET SIMPLE_PIC BECOME PICTURE BY
//[SIMPLE_PIC;] BEGIN VAR P=POINT; C=CURVE;
FOR C $E SIMPLE_PIC; DO
FOR P $E C; | FIRST_DO <XPLOTTER*>(P,PEN_UP);;
| OTHER_DO <*PLOTTER*>(P,PEN_DOWN);;
DO NOTHING; END END
END \\ ;
In fact, any datatype which can be plotted can bhe coerced to a
PICTURE. One needs merely to place the plotting procedure,

enclosed in //...\\, as the body of the coercion.

The following function makes use of the global variable

ORIENTATION. .

DEFINE DISPLACED_BY(V:PICTURE DISP:POINT)=PICTURE:
//[V;DISP;]
HOLDING ORIENTATION: :=+DISP;
DO (xyx),; ENDHOLD \‘

ENDDEFN
That is, the resulting PICTURE is the process which 1invokes the
given PfCTURE. V, in the environment where the ORIENTATION has been
moved by the given POINT, DISP. Thus,

~ 401 ~

picture \DISPLACED BY 10712
yields the PICTURE picture all of whose points will be displaced by
10412. Note that DISPLACED BY's modification to the variable
ORIENTATION is done with the HOLDING form. Thus, when V finishes,

ORIENTATION will be reset to its old value, as is appropriate.

The following function takes two PICTUREs and produces a
PICTURE which repeatedly draws the first picture displaced by each

point in the second picture:

DEF INE OUTER“PRODUCT(A,B;PICTURE):.PICTURE:
//[A;B;]. BEGIN VAR V=PLOTTER;
HOLbING PLOTTER:=//[V:=PLOTTER;B; J{P:POINT
’ E:PLOTTER_COMMAND)
HOLDING PLOTTER:=V; .
ORIENTATION::=+P;
DO <*B*>; ENDHOLD \\ ;
DO <*Ax>; ENDHOLD END \\
ENDDEFN
The first picture. A, is invoked in the context where PLOTTER has
been set to a procedure which draws B. Thus, each point whiéh.A

sends to PLOTTER will be received by the prdcedure

//[V:=PLOTTER;B; J(P:POINT E:PLOTTER_COMMAND)
HOLDING PLOTTER:=V;
 ORIENTATION: :=4P;
DO <XB*>; ENDHOLD \\

~ 402 ~

This procedure ignores E, the PLOTTER_COMMAND and displaces
ORIENTATION by P, the point sent from A. This procedure also sets
the global variable PLOTTER back to its original value so that upon
invocation of B, B will send its points to the original plotter and
not back to this procedure. This procedure finally invokes B.
Upon completion of B, ORIENTATION's and PLOTTER's old values are
restored and so A's next point will be sent to this procedure and B
will be replotted, this time displaced by the new point issued from
A.

The statement

HOLDING PLOTTER:=//[V:=PLOTTER;B;] ... \\ ; DO..
sets PLOTTER to a procedure which has access to the old value of
PLOTTER and to B. The reader might wonder why we've gone to the
trouble of assigning V the value of PLOTTER instead of merely

writing

HOLDING PLOTTER:=//[PLOTTER;B;] ... \\ ; bo ...
Indeed, this second form does give the procedure body access to the
old value of PLOTTER and to B. However, the procedure body loses
access ta the global variable PLOTTER. Recall that each of the
specified variables of the <(ASN)> between the square brackets is
automatically made local toc the procedure body. Thus, within the
procedure body, the name PLOTTER refers to a local variable and not
to the global variable named PLOTTER. The first form, which uses
the variable V, does not lase access to the global variéble named

PLOTTER.

~ 403 ~

Selection Forms for Process CEXPR)s - Invocation - The <*...*>

SEMNOP : <FID>

FID1:
FIb2:

FID3:
FID4:

Type

The formal rules for process invocation are: ' !

(x (EXPR1> x>

<EXPR> ::

<FID>
CEXPR> ::

<FID,> <ARGS,>

CEXPR> :: <FID>

<EXPR> ::

"

<FIDI> (ARGSZ> ;
These rules are identical to the rules for procedure and function
calling in ICL except that the <FID> replaces the procedure or

function name.
Requirements
(EXPR1> must be a process type.

The rule FID1 requires that <EXPRI> expects no parameters and
that it returns a value. The type of the returned value is the

resulting type for the rule FID1.

The rule FID2 requires that <EXPR1>’expects parameters whose
types seguentially match the types of the <EXPR>s in (ARGSZ>. In
addition, <EXPR1> must return a value. The type of the return

value is the resulting type for the rule FIDZ.

The rules FID3 and FID4 are similar to the rules FID1 and FID2

except that it is required that <EXPR1> returns no value.

PASS3 Requirements

~ 404 ~

<EXPR1) = SOURCE = result and
each <EXPR> in <ARG52) = SOURCE

Meaning

Evaluate (EXPR1>, thus yielding an instance of a process type.:

Then evaluate each <EXPR> in <ARGSz>. Finally call the process

yielded by <EXPR1>. passing the <EXPR>s in (AR082> as parameters.

The resulting - value for the rules FIDI and FIDZ is the value

returned by the invocation.

The debugging package will be entered»if the value of <EXPR1>

is NIL. Unfortunately, ICL finds this error toc be fatal: When the

user leaves the debugging package, ICL will gracefully crash.
Examples:

<x /7 WRITE('Hi'); \\ %> ;
prints Hi.

<* //(R:REAL) WRITE(R); \\ *>(1.7) ;
prints 1.7.

<% //(R:REAL) R*R\\ *%>(5.0)
yields the REAL 25.0.

More examples are found in the previous section.

Just as the name of a function may be prefixed with a backslash

produce a <BOP> or <RHUOP>, an <FID> may similarly be prefixed:

SEMNOP : <BOP> s\ <LFIDD

to

~ 405 ~

SEMNOP: CRHUOP> ::= \ <FID»

The precedence of the resulting <BOP> is the same as the precedence
for the rule BOPBID in the section for <BOP>s. The type and PASS3

requirements and the meaning are derived by transforming

<EXPR1> \<FID> <EXPR2> to <FID)(<EXPR1>.<EXPR2>)
and

<EXPR1> \<FID> to <FID>(<EXPR1>)
Examples:

5 \¢<* //(A,B:INT) A+B*A\\ *> &
yields 5+46*5, or 35.

K:= //{(A,B:REAL) A+B \\;
WRITE(\<%*K*> R FOR R FROM 1 TO 10;);

prints the sum of 1 thru 10.

_ Process Generation - The Short Form

No new semantics are presented in this section. Rather, a short
form for specifying process generation is presented. The short form is
applicable when the user wishes toc form a process whose body already

exists as an ICL function. For example, the long form

//(R:REAL) SIN(R) \\
forms a process which merely calls the existing function SIN. The

corresponding short form is

~ 406 ~

//: SIN(REAL) \\
The short form includes a colon immediately after the //. The body of
the short form consists of an ICL function name along with its parameter

types.

Besides saving a few characters of typing, the short form saves a
little of both execution and memory expense. In the above example with
SIN, the invocation of the long form involves two function calls, one
for the // and one for SIN. In contrast, the short form involves only
one function call, a call to Slﬁ. The compiler allocates space for a
process's machine code in 6hunks of 32 words. This allocation occurs
only once, at compile time. The short form allocates no machine-code
space whereas the 1long form has to allocate at least 32 words, even

though only a few words are actually used for calling the SIN function.

SEMNOP : <QSUSB> ::= //: <ID>

- = =: <QSUSE> ::= \\
- = =3 CQSUSE> ::= ;\\

QSuUS2: <EXPR> ::= (QSUSBI> {QSUSE>
QSUS3: ~ CEXPRY ::= (QSUSBI> ((IDLISTZ)) <QSUSE>

QSUS4 : CEXPR> ::= (QSUSBI> (SAR682> <QSUSE>
QSuUSS: <EXPR)> ::= <QSUSB,> (<IDLIST2)) (SARGS5> <QSUSE>

where
ARGS3: CSARGSY> ::= <SARGKY>]
ARGS2: CSARGX> ::= <CSARGX,> , <CEXPR,>
ARGS1: <SARGX)

L (EXPRI)

~ 407 ~

All short forms begin with a {QSUSB), the

//: <1D>
The <ID> is the name of an existing ICL function. All short forms
end with either \\ or ;\\. The semicolon is entirely optional.

Thus, a short form looks like

7/: <1 .es \\ or
77: <ID> ... ;\\.

The ... may be blank or may be any one of the follawing:,

(<IDLISTY) “or
[CEXPR> , <CEXPR> , ...] or
(CIDLIST>) [CEXPR> , <EXPR> , ...]

The part-of-speech <SARGS> represents the form

[<EXPR> , <EXPR> , ... , <EXPR>]
This form is precisely the form represented by the part-of-speech
<ARGS> except that the enclosing parentheses are replaced by squaré

brackets. : .

The type and PASS3 requirements and the meaning for the resulting
CEXPR>s will be given for each of the (EXPR)>-producing rules, QSUS2 thru

QSUSS.

QSUS2 1looks like 1/ <ID> \\

This short form is equivalent to the long form

7/ <ID> \\ or // <ID>; \\

~ 408 ~

For example, if the function NUMBER_OF_JOBS takes no parameters and

* yields an INTeger, then

//: NUMBER_OF_JOBS \\

is a process which calls NUMBER_OF_JOBS and yields the result

yielded by NUMBER_OF_JOBS.

QSUS3 1looks like //: <IDg> <IDp> , <IDy>) \\

This short form is equivalent to the long form

//(X: <ID,> ¥: CID,>) <IDp>(X,Y) \\

For example,

/7 :SIN(REAL)\\ is equivalent to
//(X:REAL) SIN(X) \\ and

// :DISTANCE(POINT,POINT)\\ is equivalent to
//(X,Y:POINT) DISTANCE(X,Y) \\.

QSUS4 1looks like //: (IDo> [<EXPR1) , (EXPRZ) T\

This short form is equivalent to the long form

//[X:=<EXPR1>; Y:=CEXPR,D;] <ID>(X,Y) \\

That is, the <EXPR>s between the square brackets are taken

as

parameters to the function <IDo> whose values are ffozen now, at

the time of process generation. For example,

/7 :SIN[I+J\\ is equivalent to the long form
- JIER:=1+d;] SIN(K) \\

~ 409 ~

Invocation of this process will always yield the same number
because SIN depends on no global variables. This process's
invocation will call SIN passing the value I+J. The value I+J is a
singie number which is computed at the time of process generation

and not at the time of invocation.

QSUSS 1looks like //: <IDy> (<ID,> , <IDZ>)L CEXPR,>] W\

This short form is equivalent to

//(X: <ID> ¥ <ID,>) [Z:= CEXPR,> ;]
<IDg>(X,Y,2) \\
That is, the <ID>s between the parentheses are the names of the
parameter tyhes for the function <IDa)'s first two parameters. The
<EXPR,> is the function's third parameter. The third parameter 1is
evaluated now, at the time of process generation, whereas the first

two parameters are taken at the time of invocation. For example,

//:DISTANCE(POINT)[374]1\\ is equivalent to
//(P:POINT) DISTANCE(P,3F4) \\
This process expects one parameter of type POINT. It calls the

function DISTANCE, passing 3#4 as the second parameter. Similarly,

//:DISTANCE(POINT)[P1+P2 \\ is equivalent to
//{P:POINT)[V:=P14P2;] DISTANCE(P,V) \\
The P1+P2 is evaluated now, at the time of process generaﬁion, and

not at the time of invocation.

~ 410 ~

A Concise Notation for Specifying Relative Points - The "."
A string of points may be specified as follows:

{ 142 ; 45 ; #7 ; 20#. ; .+1#5 ; .+7#.-8)
The *." refers to the previously specified point's x or y coordinate.

For example, the string mentioned above is equivalent to

{ 192 ; 145 ; 147 ; 2047 ; 21#5 ; 28#-3)
If the period lies to the left of the #, it refers 'to the previous
point's x-coordinate. If the period lies to the right of the #, it

refers to the previous point's y-coordinate.

This concise notation for specifying felative points is implemented

by a combination of the built in rule

CURENT: <CEXPR> ::= .

and an ICL program whose text resides in the file BEGIN.ICL. The "."
<EXPR> can be used only in the context of point generation. The "."
<EXPR> can be combined,only with REALs and only via + or -. Thus, for
example, the following are iliegal:

4. ¥ §
23 F S
."5"’0 ' 5

Misuse of the "." CEXPR) comes up as a datatype error.

Tq aid the ICL program which implements relative points, ICL has
the following built in primitive datatypes:

~ 411 ~

PRELX a point relative in X,

PRELY a point relatiueAin Y, and

PRELB ‘a point relative in Both
Instances of these datatypes are not instances of POINT. However,
instances of these datatypes are represented like POINTs where the_“."
is interpreted as zero. Refer to the datatypes RELATIVE_POINT and SRP
and ‘refer to the coercion from SRP to SP as defined in the file
BEGIN. ICL

~ 412 ~

The Debugging Package

This section documents ICL's debugging package. The debugging
package is a set of ICL functions which provides services for on-line
debugging. Each function will be described separately. Each functioﬁ
name begins with the characters ICLDDT. The function declarations can
be found in the file BEGIN.ICL, the first file read into a freshly

created ICL system. The functions are:

ICLDDT_HELP
ICLDDT_BT
ICLDDT_WHAT_FUNCTIONS

ICLDDT_BREAK_ON(FW)
ICLDDT_BREAK_OFF(FW)

ICLDDT_TRACE_ON(FW)
ICLDDT_TRACE_OFF (FW)

ICLDDT_INIT_LOCALS_ON
ICLDDT_INIT_LOCALS_OFF

ICLDDT_STACK_CHECKING_ON
ICLDDT. STACK CHECKING_OFF

ICLDDT_KILL
In addition to these functions, the debugging package can be entered via

the tC-handler's Abort command.

Throughout the rest of this section, the term Jfunction will

encompass both functions and coercions.

ICLDDT_HELP or stmply HELP

~ 413 ~

Enter the debugging package. The following ’message will be

printed on the user's terminal:

"‘Help! From within function function name
The function name is the name of the function containing the call
to ICLDDT_HELP. However, if ICLDDT_HELP is called from within a
process, i.e., program text contained between the symbol§ // and
\\, then function name refers to the most recently entered ICL

function: The message

Helpi From within function (SKIPPING OVER A SUSFUNC)
will appear a number of times before the message with function name
appears. The number of appearences equals the number of nested
process invocations between the call to function name and the call
to ICLDDT_HELP. The term SUSFUNC (SUSpendable FUNCtion) is another

name for process.

After the "Help!" message js printed, an asterisk will appear,
signalling that a new incarnation of ICL is ready to receive input
from the user. The user is now free to interact with ICL as he
would at any other time. The user has access to all functions,
coercions, and datatypes. The user also has access to all global
variables and to the arguments of function name. The user does not
have access to any other local variables, unfortunately. The user
will typically examine variables by printing them or by calling
functioﬁs which can give him more information. The user can aSsign_

new values to variables if he wishes.

~ 414 ~

The user leaves this new incarnation of ICL by typing a 2
(control-2Z). Upon receipt of tZ, ICLDDT_HELP returns and program
execqtion continues where it 1left off. Variables assigned new
values retain their new values. However, all functions, coercions,
da?atypes and variables deélared-during the new dncarnation are

lost upon the t2

If ICLDDT_HELP is called from within a new incarpation of ICL,
a still newer incarpation of ICL is creaéed."‘ln newer
incarnations, the user has access to all accessable variables of
the previous 1n§arnations plus those variables which are arguments
to function name. If an argument to function name has the same
namé as anoﬁher accessable variable, the argument to function ﬁame

takes precedence; the user loses access to the old meaning for the

argument name.

Throughout this manual, the phrase Enter the debugging package
refers to an automatic call to ICLDDT_HELP. For example, theé rule

STRSEL, string indexing, states that the sentence

S[{N] := <EXPR> ;
will automatically enter the debugging package if N is greater than
the 1length of the string S. Any rule which conditionally enters
the debugging package acts as a no-op if it does indeed enter the
debugging package. Once the debugging package is entered, the user
can see how his program arrived there by invoking the function
ICLDDT_BT. When the user types a tZ, his program resumes execution
where it left off. If the user wishes to cancel his program rather

than to let it continue execution, he should invoke the function

~ 415 ~

ICLDDT_KILL before he types the tZ.

Example:

The declaration

DEFINE LOG(X:REAL)=REAL:
IF X = 0 THEN DO ICLDDT_HELP; GIVE 0
ELSE <EXPR>. FI
ENﬁDEFN
defines LOG to bé a function which maps .a REAL to a REAL. If LOG
is ever called with. a non-positive number, ICLDDT_HELP will be
called. |

Let us Suppose that LOG is called with a non-positive number.

ICL will print the message

Help! From within function LOG(X:REAL)=REAL

Now, if the user types

WRITE(X);tG

he will see the non-positive argument to LOG. If the user types

ICLDDT_BT; *G
he will see the function calling sequence which finally called LOG
with the bad value. When the user types a tZ, execution will

i

resume and LOG will return a 0. If the user had typed

ICLDDT_KILL; *G _
before he typed tha tZ, LOG would not return and his program would.
be cancelled. The next asterisk he would see would be prompted by

the previous incarnation.

~ 416 ~

ICLDDT_BT
Print a backtrace of function calls. ICLDDT_BT prints each
function name in order from the most recently called function to
the earliest function call. For example, suppose the user has

declared

DEFINE F1(X:REAL)=REAL: LOG(X)*20 ENDDEFN
DEFINE F2(R:REAL)=REAL: F1(X) + § ENDDEFN

If the user types

WRITE(F1(-COS(0)));1*G
ICLDDT_HELP will be called from within LOG because LOG will bhave

received a negative argument. The user sees

- Help! From within function LOG(X:REAL)=REAL

Now, if the user types

ICLDDT_BT; tG

he will see the backtrace

LOG(X :REAL)=REAL

F1(X:REAL)=REAL

FZ(R:REAL)=REAL
This says that LOG was called from within F1 and that F1 was called
from within F2. The function WRITE does not appear in the
backtrace becaues WRITE hasn't been called yet. Recall that in
ICL, a function's parameter is evaluated before the function is
entered. The error occured during the evaluation of WRITE}S

'parameter and not within the function WRITE itself.

~ 417 ~
!

Each line of the backtrace has in addition to the function
name, two octal numbers. These octal numbers are not shown in the
example above. The first octal number is the address of a stack
frame and the second octal number is the address of the function.
The wuser will typically ignore these numbers. However, for
compiler bugs, these numbers are useful for the ICL maintenance

person.

The following is an unfortunate feature which should be undone
someday: The wuser bhas access to the parameters of only the top
function in the backtrace and he has no access to the parameters of

the other functions listed in the backtrace.

Some lines of a backtrace may be of the form

(SUSFUNC)
Such a line refers to a process call. Refer to the treatment for

processes in the documentation for the function ICLDDT_HELP.

ICLDDT_WHAT_FUNCTIONS
Print the name of each defined ICL function. Preceding each
function name appears the octal address of the function. This
octal address is useful for identifying the function for the trace
and break facilities. Functions which were defined with the
MACRO-10 form are not included in the listing.. Functions are
listed in the reverse order of definition, e.g., the most fecently

defined function appears first.

ICLDDT_BREAK_ON(FW) and ICLDDT_BREAK_ON

~ 418 ~

Set a breakpoint -at the entry and exit of thé fupction whose
address is FW. If no parameter is specified, then set a breakpoint
at the entry and exit of each and every currently defiped ICL

function.
The datatype FW is declared in the file BEGIN.ICL by

TYPE FW= LOGICAL(36);
Instances of FW are created as described with the rule ELOG: A

function address may be specified in octal with the form

L(the function's octal address)
The address» of a function can be found via . the function

ICLDDT_WHAT_FUNCTIONS.

Having set a breakpoint at a function's entry and exit, the
debugging package will be entered each time the funétion is entered

or>1eft. Upon entrance to the function, ICL prints the message

In Break Package: Entering Jfunction name

Upon leaving the function, ICL prints the message

In Break Package: Leaving .function name
After either message is 'printed, an asterisk will appear,
signalling that‘a new incafnation of ICL is’ready to receive input
from the user. At this point, the user is free to interact with
ICL as he would at any other time. The situation is identiéal to
the situation created by the function ICLDDT_HELP except for the
following: If function name is being left and not entered, the

user is not given access to the function's parameters. The user's

~ 419 ~

access rights depend on whether the function is being entered or

left.

-If the functibn is being entered, the user has access to the
function's parameters. If the wuser assigns new values to the
parameters, the function will execute exactly as though it were
called with the newly assigned values. When the user types a 1Z,
the new incarnation of ICL dies and execution resumes by actually

entering the function.

If the function is being left and if the function returns a
value, the user has access to the variable named ICLDDT-RETURN.
This special variable contains fhe value being returned by the
function. If the user assigns a new value to the variable; his
program will execute exactly as though the function actually
returned the newly assigned value. When the uSer types a tZ, the
new incarnation 6f ICL dies and execution resumes by actuall&

leaving the function.

ICLDDT_BREAK_OFF(FW) and ICLDDT_BREAK_OFF
Unde ICLDDT_BREAK_ON. Remove the breakpoints from the function
whose address 1is FW. If pno parameter is specified, remove the

breakpoints from all functions.

ICLDDT_TRACE_ON(FW) and ICLDDT_TRACE_ON
Trace the function whose address is FW. If no parameter is

specified, trace all currently defiped ICL functions.

~ 420 ~

A traced function prints its name each time it is entered and
it prints a backslash each time it is left. Execution is not
interrupted. The dynamic nesting of functions is communicated by

the indentation of the trace information.

ICLDDT_TRACE_OFF(FW) and ICLDDT_TRACE_OFF
Undo ICLDDT _TRACE_ON. The function whose address is FW is no
longer traced. If no parameter is specified, all functions will no

longer be traced.

ICLDDT_INIT_LOCALS_ON
Set up all currently defined ICL functions so that upon entry, they

initialize all their local variables to NIL, 0, or FALSE.

In general, functions do not take the time to =zero their
locals. If, by chance, the user forgets to initialize a local
variable and if that variable becomes .a part of a newly created
structure, the onewly created structure may very well éontain a
garbage value. All sorts of system error messages canh ensue and

ICL might crash at some unpredictable time in the future.

If the user ever gets a system error message, he should try
rerunning his program having first invoked ICLDDT_INIT_LOCALS_ON.
If his program runs without system errors, chances are that he
forgot 1 to initialize a variable somewhere. The function
ICLDDT_STACK_CHECKING_ON is another quieter of system error
messages.

ICLDDT_INIT_LOCALS_OFF

~ 421 ~
Undo ICLDDT_INIT_LOCALS_ON.

ICLDDT_STACK_CHECKING_ON
- Set up a11 currently defined ICL functions so that upen entry, they ‘

check the stack for overflow.

In general, functions do not check for stack' overflow. An
infinite loop via recursion will surely overflow the stack. Once
the stack has overflowed, the ICL system is lost. A stack overflow
will typically announce itself by the execution of an illegal

instruction.

If the user has invoked ICLDDT_STACK_CHECKING_ON, when the

stack is about to overflow, the message

?STKCHK : Runtime stack nearing overflow
will appear and the debugging package will be entered as though '
called by ICLDDT_HELP. At this point, the wuser can invoke
ICLDDT_BT to see the lengthy caliing sequence that has filled the
stack. The wuser can resume execution by typing a tZ or he can
safely abort execution by invoking ICLDDT_KILL before typing the
tZ.

ICLDDT_STACK_CHECKING_OFF
Undo ICLDDT_STACK_CHECKING_ON

ICLDDT_KILL
Abort the execution of the program in the previous incarnation of
ICL. That is, ICLDDT KILL sets an internal flag so that upon

termination of the current incarnation, i.e., upon typing a tZ, the

~ 422 ~

program running in the newly current incarnation aborts.
Warning:

The program is aborted by simply resetting the top-of-stack
pointer. . This means that some global variables may not be reset
properly. For example, variables specified in the HOLDING form,

the rule HOLDIT, might not have their old values restored.

" The tC-Handler's Abort Command

The only asynchronous entry to the debugging packagé is thru the
tC-handler's Abort command. Any time an ICL program is running,
the user can “intercept its execution by typing tC A. The

tC-handler's Abort command prints the message

Waiting for function call ...
and resumes execution. As soon as the running ICL program either
enters or leaves a function, ICL enters the debugging package
exactly as though that particular function had had 'breakpoints
previously set by ICLDDT_BREAK_ON. The breakpoints created'by the
tC's Abort command are only temporary: The function does not
retain the breakpoints unless the function already had breakpoints

previous to the Abort. . ‘ '

Page

341
341
341
341
341
341

246

246
246

266
265
265

262
262

328
328

213
213

276
275
275
2765
275
276
276
276
276
277
277
277
277
278
279
279
279
279
279
279
280
280
280
281
404

Name

AFORID:
AFORFR:
AFORTO:
AFORBY:
AFORIN:
AFORIS:

ARGS3:

ARGS1:
ARGSZ:

ASNt:
ASNRHS:
ASNX:

DCOUGH:
DCOUGH ¢

BIF1:
BIF2:

BIF1:
BIF2:

BOPADD:
BOPSUB:
BOPMUL:

BOPDIV:
BOPEXP:
BOPAND:
BOPOR:

BOPXOR:

BOPBIT:
BOPLSL:

BOPLSR:
BOPMIN:
BOPMAX :
BSHARP:

COMPEQ:
COMPNE :
COMPGT:
COMPGE :
COMPLT:
COMPLE:
BOPSTR:
BOPSTC:
BOPSTL:
BOPBID:
SEMNOP :

SAFOR>
CAFORX
CAFCR>
SAFOR>
CAFOR>
CAFOR)

CARGS)

CARGSXD ::
CARGSX)> ::

CASND
CASND
CASND

CBEXPR) :::
CBEXPR) :::

<BIF>
<BIF)

<BIFE)
(BIFE)

<BOP)
SROPD
<BOPD
<BOP)
<BOP)
<BOF)
<BOP)
cBor>
<BOP)
CROP>
<BOP>
<BOP>
<BOPD
<Bor>
<BoP>
SBOFPD
CBOPY
<BoP>
<BOP>
<BOP>
<BOP>
<BOP>
<Bor>
<BoP>
<8OP>

~ 423 ~

Rules Sorted by Part-of—speéch

Wit on NN R R NN NN NN R u N

1

FOR <1D>

CAFOR> FROM <EXPR>
CAFOR> TO <EXPRD
CAFOR> BY <EXPRD
CAFOR> IN <EXPRD
CAFOR> INX <EXPR)

CARGSX))

(<EXPR)
CARGSX> , CEXPR>

any
<ID> <SSRHUSD
CASKD CASKD

BEGIN <PECL> <EXFPR> END
BEGIN <ZXPR> <DECL> END

IF
CBIF> <EXPR> THEN <S§S§> EF

IF
CBIFE> <EXPR> THEN <EXPR)> EF

-0 N R+

XOR
BIT
SUIFTL
SHIFTR
MIN
Max

#

<>

A4

d=

~

=<
3>
5%
¢
\ <1
\ CFID

333 DCOUGH: <BSS)
333 DCOUGH: <BSS)

192 SCTYPED ::
- 192 SCTYPE) <
196 CDECLY
. 199 SDECL)
203 CDECL>
203 COECL)D
203 CDECL)
203 SDECL)
ENDDEFN
206 <DECL>
206 CDECL)
206 CDECL)
206 COECL)>
Qs>)
206 CDECL)
207 CDECLDY
208 CDECL> .
213 EBIF: <EXPR>
217 ENU: CEXPRD
217 EQS: CEXPRD
217 ELOG: CEXPRD
217 ELOG: CEXPR)
218 EFNU: CEXPR>
218 ETRU: SEXPR>
219 EFALS: <EXFPRD
219 ENIL: CEXPRD
219 EID: CEXPR)
221 STRGEN: <EXPR)
223 STRSEL: <EXPR)
225 ETAIL: <EXPR>
226 ERFRSH: CEXPR)
226 ERFRSH: <EXPR)
227 EREVRS: <EXPR>
227 EREVRS: <EXPR)
228 RGENF: <EXPRD
229 RSELQ: <EXPR)
231 PTSELX: <EXPR)
231 PTSELY: <EXPR)
233 ECASEE: <EXPR)
2356 TYPDIS: <EXPR>
239 ECASE: <EXPR)
244 TYPDIS: <EXPR)
246 ECALLP: <EXPR)
248 SENMNOP: <EXFPR)
248 EBOP: CEXPRD
248 EBOPG: <EXFRD
260 EUOP: CEXPRD
260 EUOP: CEXPR)
250 EUOPG: <EXPRD
261 EBOPQ: <EXPR>

e 94 00 ss e ss ts e e s ve e AW en se e ee 6 s e &9
e B IO O M OO OH N RN NN ERER

- on

.« ea ee »
ou

+ ev oo e
Hauuan

wu

~ 424 ~

BEGIN <(PECL> <SS> END
BEGIN <S§5§> <DECL> END

CIDLISTY : <TYPED

CCTYPE) <CTYPED

STDECLD

SVDECLD

DEFINE <I1D> : <85> ENDDEFN

DEFINE <ID> = <TYPED : <EXFR> ENDDEFN
DEFINE <I0> (<CTYPE)>) : <SS> ENDDEFN
DEFINE <10> (<CTYPE>) = <TYPE)> : <EXPR>
DEFINE <Ip> : MACRO-10(<QS>)

DEFINE <ID> = <TYPE> : MACRO-10(<QS§>)
DEFINE 10> (<CTYPE)>) : MACRO-10(<@S5>)
DEFINE <ID> (<CTYPE>) = <TYPE> : MACRO-10(

LET <ID> BECOME <ID> BY <EXPR)> ;
LET <ID> BECOME <ID> BY MACRO-10(<QS)>)
CDECL> <DECL>

CBIFE> <EXPR> THEN <EXPR> ELSE <EXPR> F1
€. 7/p]

<Qs)

L (<AU))

L (<UD <HUD)

a floating number
TRUE

FALSE

NIL

<10>

{ <REXPR>

CEXPRY [CEXPR>]
CEXPR)Y [<EXPR> -]
REFRESH (<EXPR>)
REFRESH ' <EXPR))
REVERSE (<EXPR))
REVERSE ! <EXPR)>)
CRECX)D

SEXPR> . <IDD

CEXPR> . X

SEXPRY . Y

CASE <EXPR> OF <EXPRV)
<ID> :: <EXPR)

CASE <ID)> OF <CEXPRV)
SID> :: <EXPR)

C10> <ARGS)

(<EXIR>)

CEXPR> <BOP> <EXPR)
CEXPR)> <EOP)> <EXPR)
SYoP> <EXPRD

CEXPR> <RRUOP)
SEXPRY <RRUOCP)

SBOP> <EXPR> <QUANT)

l‘ 272 ECOPY: <EXPRD

~ 425 ~

261 EBOPQ: <EXPR)
251 EBOPQ: <EXPRD
254 QBOOL1: <EXFRD
254 QBOOL1: <EXPRD
2564 QBOOL1: <EXPR)
264 QBOOL1: <EXPR>
258 EGIVE: <EXPRD
258 EGRAB: <EXPR>
2568 EGRAB: <EXPRD

CQUANT > GIVE <BOP> <EXPR> END
SQUANT > <BOP> <EXPR)

CQUANT > CEXPRD> <QROOLD

CQUANT > <QBQOCGL> <EXPRD

CQUANT > GIVE <QBOOL> <EXPR> END
<QBOOL> <EXPRY <QUANT)

DO <SS> GIVE <EXPR)

GIVING <EXPR> DO <S5> END

DO <SS> GRABBING <EXFR>

Wit un i unn

259 SETQX: <EXPR> :::= (<EXPR> <SSRHS)>)

262 EDECL: <EXFR> ::= CBEXPRD

2656 HOLDIT: <EXPR> :::= HOLDING <ASAV> GIVE <EXPR> ENDHOLD
270 EAT: CEXPRY @ (<EXPR>)

COPY (<EXPR>)

corY ! <EXPR>)
DEFINED (<EXPR))

% <10>

PUBLICIZE:::(<EXFPR))
CID> :::(<EXPR))
CSUSB> <EXPR> \\
CSUSBY <(SS> \N\

272 ECOPY: <EXPR>
274 EDEF: CEXPRY
372 EIDID: <EXPR> ::
377 PUBLC: <EXPR> :
377 PRIVY: <EXPR)
388 SUSF1: <EXPBR> :::
388 SUSF1S: CEXPRY ' :::

403 FID1: CEXPRY ~ :: CFIDD
403 FIbDZ: CEXPR) CFID) <ARGS)
403 FID3: SEXPRD A {/PEH

CFID> <ARGS) ;

CQSUSB> <QSUSED

<QSUSB> (<IDLIST>) <QSUSE>

<QSUSB> <SARGS> <QSUSE>

CQSUSB> (<IDLIST>) <SARGS> <QSUSE>

403 FIDA4: SEXPR>
406 QSUS2: <EXPR>

406 QSUS3: <EXPRD
406 QSUS4: <EXPR)
406 QSUS5: <EXPRD

RN

233 EVCASE: <EXPRY)
233 EVCASB: CEXPRUD
239 EVCASE: <EXPRV)Y ::
239 EVCASB: <EXPRV)> :::

<ID> : <EXPR> ENDCASE
CID> - CEXPR> CEXPRVD
<ID> : <EXPR> ENDCASE
SID> : <EXPR> <EXPRU)>

ee s+ e
-

nuumn

403 SEMNOP: <FID>

{* CEXPR> *>

200 SEMNOP: <GUOP> ::= <UOP)

290 SEMNOP: CGUOP> ::= CRHUOP> ‘
175 CIDLIST::= <ID>

175 CIDLISTS::= <IDLIST> , <ID>

290 KUOP1: <RUOP)
290 RUOP2: <KRUOFP>

<Guor>
CGUOP> <KUOP)

2564 QBALW: <QBooL) ::= ALWAYS
254 QBNVR: <QBOOL) ::= NEVER
254 QBEXS: <@BOCOL> ::= EXISTS
264 QBEXS: <QBOOL) ::= THERE_IS
406 SEMNOP: <QSUSBY ::= //: <ID
406 - - -: <QSUSE) ::= \\

406 - - -: <QSUSE> ::= AN

338
339
340
341
346
348
361
361
361
366
366
366
366
366
366
366
366

221
221
221
221

228

228
228

221
221
221
221
221

286

406

406

406
406

288
328
328
329
330
331
333
334
334
334
334
336

QWHIL:
QUNTL:
REPET:
AFORGO:
QFORE:
QFORC:
QOR:
QAND:
QTHEN:
QWITH:
QINH:
QRES:
QECH:
QFTM:
QOTH:
QFST:
QFIN:

RFUNC:
RFUNC:
RFUNC:
RFUNC:

SEMNOP :

RGENQ:
RGEN1:

SEXP:
SEMNOP:
SCRNG:
SCEXP:
SCCONX:

UOPBID:
SEMNOP:

ARGS3:

ARGS2:
ARGS1:

SSASS:
EBIF:
SBIF:
ECASEE:
ECASE :
HOLDIT:
EDECL:
SSQ:
SSQ:
SSCALP:
SSICAL:
SSS8S:

SQUANT > ::
SQUANTY . :
SQUANTD ::
SQUANT) ::
SQUANT > ::
SQUANT) .
SQUANT Y ::
<QUANT) ::
SQUANTD ¢
<SQUANT) ::
SQUANT) ::
SQUANT)
SQUANT) ::
<SQUANT) ::
CQUANT) ::
SQUANT) ::
CQUANT) ::

CRANGE)Y ::
CRANGE) ::
CRANGEY ::
CRANGE) ::

CRECX)

CRECXT) ::
CRECXT) ::

CREXPR) ::
SREXPR) ::
SREXPR> ::
CREXPRY ::
CREXPR)> ::

CRHUOP) ::
SRHUQP) ¢

CSARGS) ::

CSARGX) ::
<SARGXD ::

<85>
88>
(88>
(58>
(88>
<85>
88>
<885
88>
<§8)
<SS)
<§8>

L E LT T D I ¥ N (I U LU O OO L LI (IO B 1}

.
nanumw nn

o un

~ 426 ~

WHILE <EXPR> ;
UNTIL <EXPR> ;
REPEAT <EXPR> ;
CAFOR>

" FOR CEXFR> BE <EXPR) ;

FOR CEXPR> $C <EXPR> ;
CQUANTY 1! CQUANT)
CQUANT) 88 <QUANT)
CQUANT) THEN <QUANT>
CQUANT> WITH <EXPRY ;
CQUANT> INHIBIT_IF CEXPR> ;
CQUANT) RESET_IF CEXPR) ;
CQUANT) EACH_DO ¢S5 ;
CQUANT> FIRST DO (58> ;
<QUANT> OTHER_DO <SS> ;
CQUANT> INITIALLY <S§> ;
CQUANT> FINALLY DO <S5 ;

$ <CEXPR> <QUANT)
COLLECT <EXPR> <QUANT>
CQUANT> $ <EXFRD
CQUANT> COLLECT <EXFR)

[CRECXT>

CID> @ CEXPRD]
C10> : CEXPRY <RECXT>

CEXPRD }
CRANGED }
SRANGE> ; <REXPR)
CEXPR> ; <REXPR)
CEXPR> ;* <REXPR>

\ <ID
\ CFID

CSARGX)]

CSARGX)> , <EXPR)
[<EXPR>

CEXPRY <SSHHSD

CBIF> <EXPR> THEN <¢§S> ELSE (S§S> FI
CRIF> <EXPR> THEN (§8) FI
CASE CEXFR> OF <SSU>

CASE <ID> OF <SS¥>

HOLDING <AS¥> DO ¢SS> ENDHOLD
CBSS>

DO <S8> <QUANT)

CQUANT> DO <SS> END

10> <ARGS) ;

1By ;

(58> <85>

288
288
288
290
290
329
329

388
388
388
388

196
196

190
190
190
190
190
190
190
192

193
193
193
372
375
387
387
387
387

284
286
288
285
285
286
288
286

199
199

- 183
193

178
178
178
178

SSRHS1:
SSRHSZ:

SSRHS3:
SSRHS4 :

SSRHS4 :

EVCASE:
EVCASB:

SUSB1:
SusB2:
SUSB3:
SUSB4 «

UOPMIN:
UTALLY:
ULFTZ0:
UENCOD:
UDECOD:
UUNARY :
UNORM:
UBITSW:

CSSARHSD ::
CSSRHSD ::
CSSRHS>
CSSRHAS> ::
CSSAHSY ::

(§SV>
<SSV

<SUSs>
<SUsB>
Csuss>
CSUss>

nou N

STDECL) :::
CTOECLY :::

STYPED
KTYPE)
STYPED
CTYFPED
STYPED
STYPE)
STYFPED
<TYPE)
<TYPED
STYPE)
STYPED
<TYPED
CTYPED
STYPED
STYPED
<TYPE)
STYPE)
STYPED

<yor>
cuor>
cuor)
<uers
<oor)
<uop>
<uor>
<uor)

.. “e se e se o s e
(U N T T N N | IO S (A (| O C O L IO (I [}

n N aun i

SUDECLY :::
SVDECLY :::

SUTYPED ::
SUTYPED ::

(file)
Cfiled
<filed
<filed

inu

"

~ 427 ~

= CEXPRY
: CBOPY CEXPR)
CEXPRY <BOP)
<Ryor>
<KUoP)

wounonon

<Ip> : <§5> ENDCASE
<ID> : (S§S> <SSV>

//

CSUSE> (<CTYPE))
CSUSBY [<ASK)]
CSUSBY { CASND }

TYPE <ID> = <TYFPE) ;
STOECL> <ID> = <TYPE) ;

INT

REAL

POINT

BooOL

CHAR

Qs

LOGICAL (<AUD)

{ <TYPED)

[<CTYPES]

EITHER <VTYFPE)> ENDOR
SCALAR (<1DLIST))
1o

1D

PRIVATE <TYPED

/7 \\

/7 <TYPE> \\

/7 (<IDLIST)) \\
/7 <TYPE> (<IDLIST)>) \\

TALLY
LEFTZEROS
ENCODE
DECODE
UNARY
NORM
BITSWAP

VAR <IDLIST> = <TYPE)> ;
SVDECL> <IDLIST> = <TYPE>

CIDLIST> = <TYPED
SVTYPEY <UTYPE>

<100

<1n> .

G/ P § /]
<filed> - (filed

I3
1

178

178 .

175
175

(Jited
<Jiled

{
}

]

~ 428 ~

<ID> : <file) ;
<filed [<UD , <ID>]

L)
(1]

~ 429 ~

Rules Sorted by Name

Fage Name

175 SIDLIST)::= <IDD
176 CIPLIST)::= <IDLISTY> , <I1D>
176 { pi= [)
176 } = (]
178 CJiled = Um
178 (filed = <In .
178 ' <filed = 1D . <ID>
178 (filed = (Jiled - <{filed
178 (riled = ID> : (file> ;
178 (filed = Cfile> [<WNU> , <IDD]
190 STYFPE> = INT
190 STYPE> = REAL
190 STYPED = POINT
190 STYFPED = BOOL
190 STYPE)> ::= CHAR
190 STYPED> - ::= QS
130 <TYPED> = LOGICAL { <AUD)
192 o KTYPED = { CTYPED }
192 STYPE> ::= [<CIYPE)]}
192 SCTYPED ::= <IDLIST> : CTYPE)
192 CCTYPEY ::= <CIYPE)Y <CIYPED
193 CTYPE> ::= EITHER <UTYPE> ENDOR
© 193 CVTYPED ::= <IDLIST) = <TYPED
193 SVTYPED> ::= <VTYPE> SVTYPE)
1938 STYPEY ::= SCALAR (<IDLIST))
193 STYPED = <Im
196 SDECL> ::= <TDECL)
196 STOECLD :::= TYPE <id> = KTYlrE> ;
196 STDECL). :::= <STPRECLY <ID> = <TYPE> ;
199 COECLY ::= <VDECL>
199 SVDECL> :::= VAR CIDLIST> = <TYPE> ;
199 CVOECL> :::= <VDECL)> <IDLIST> = KTYFPE) ;
203 CDECLY :::= DEFINE <ID> : <S55> ENDDEFN
203 CDECL)Y = DEFINE <ID> = CTYPE) : <EXFPR> ENDDEFN
203 CDECL) = DEFINE <ID> (<CTYPE)) : <85> ENDDEFN
203 SDECL) = DEFINE <ID> (<CTYPE)>) = <TYPE> : <EXPR)
ENDDEFN
206 SRECLD = DEFINE <ID> : MACRO-10(<@QS))
206 SDECL) := DEFINE <10 = <TYPE)> : MACRO-10(<@S>)
206 : SDECLD := DEFINE <ID> (<CTYPE>') : MACRO-10(<QS»>)
206 SDECL)> := DEFINE <ID> (<CTYPE>) = <TYPE> : MACRO-10(
Qs>) : ‘
206 SPECL)> = LET <ID> BECOME <ID)> BY <EXPR) ;
207 SDECL) := LET <ID> BECOME <ID> BY MACRO-10(<@QS>)
208 SBECL> = (DECL> <DECL>
372 STYPED> ::= In-
375 STYPE> ::= PRIVATE <TYPE)
387 STYPED ::= [/ \\ S 1
387 STYPED = /11 <TYPE> \\
387 STYPE) = /] (<IDLISTY) \\

387

406
406

341
341
341
341
341
341
341
246
406
246
406
246
406
265
265
268

213
328
213
328
278
276
281
276
275
275
277
277
277
277
275
276
280
280
280
2756
276

- 278

279
279
279
279
279
279

262
262
333

AFORBY:
AFORFR:
AFORGO:
AFORID:
AFORIN:
AFORIS:
AFORTO:
ARGS1:
ARGS1:
ARGSZ :

ARGS2Z:
ARGS3:
ARGS3:
ASN1:

ASNRHS:
ASNX:

BIF1:
BIF1:
BIF2:
BIFZ:
BOPADD:
BOPAND:
BOPBID:
BOPBIT:
BOPDIV:
BOPEXP:
BOPLSL:
BOPLSR:
BOPMAX :
BOPMIN:
BOPMUL :
BOPOR:
BOPSTC:
BOPSTL:
BOPSTR:
BOPSUB:
BOPXOR:
BSHARP:

COMPEQ:
COMPGE :
COMPGT:
COMPLE:
COMPLT:
COMPNE :

DCOUGH ¢
DCOUGH :
DCOUGH :

STYPED

<QSUSED> ::
CQSUSE) ::

CAFOR>
CAFORD

CQUANT) :

CAFORD
SAFORD
CAFOR>
CAFOR)

CARGSX) ::
CSARGX) ::
CARGSX)
CSARGX) ::

CARGS)

CSARGS) :

CASKD
CASND
CASN)

SBIFE)>
CBIF)
CBIFE)
CBIF)
CROPY
<BOPD
<BOPD
<BOP)>
<BOP>
<BOPD
<BOP>
<BOPD
<BOP>
CBOPD
cror>
<ROP>
<BOP>

<BOP)

<BOP>
C8OP)
<8orP>
<BOP>

<BoP>
<BOP>
caor)
<BOP>
<BOP>
<BOP>

oW oo N H o

e W 1 W

<BEXPR> :::
CBEXPR) :::

<BSS>

Wagaanunennnui o ua.

~ 430 ~

/1 KTYPE> (<IDLIST>) \\

W\
AN

CAFOR> BY <EXFPR>
CAFOR> FROM <EXPR)
<AFORS>

FOR 10>

CAFOR> IN <EXPR)
CAFOR> IN* <EXPRD
CAFOR> TO <EXPR)
(CEXPR)

[<EXPR>

CARGSX) , <EXPR>
CSARGX) ', <EXPRD
CARGSX)D)

CSARGXD]

<1

10> <SSRIS>
CASKD> CASND

IF

IF

CBRIFE> <EXFR> THEN <EXPR)> EF
CBIF> CEXPR> THEN <SS> EF

+

&

\ <am

BIT

/
t

. SHIFTL

SHIFTR
MAX
MIN

x

!
8
<3
b
XOR
/

AN v
~

A4

BEGIN <DECL> <EXPR> END
BEGIN <EXPR> <DECL> END .
BEGIN CDECL> <SS)> END

~ 431 ~

333 DCOUGH: <BSS> HHH BEGIN <S55 CDECL> END
270 EAT: CEXFR)
213 EBIF: CEXPR)
328 EBIF: (8§82

248 EBOP: CEXPR)
248 EBOPG: <EXPR)
251 EBOPQ: <EXPRD
251 EBOPQ: <EXPR>
251 EBOPQ: <EXPR)> :
246 FECALLP: <EXPR> ::
239 ECASE: <EXPRY ::
330 ECASE: <S§8) :
233 ECASEE: <EXPRD
329 ECASEE: <882
272 ECOPY: <EXPR)
272 ECOPY: <EXPR>

@ (<EXPR))

CBIFE> <EXPR> THEN CEXPR> ELSE <EXPR> FI
CBIF> <EXFPR> THEN <SS> ELSE <SS8)> FI
CEXPRY <BOP)> <EXPR)

CEXPR> <BOP)> <EXPRD

CROPY CEXPR> <QUANTD

CQUANT) GIVE <BOP)> <EXPR> END
CQUANT D <BOF) <EXPR>

<ID> <ARGSD

CASE <ID> OF CEXPRV)

CASE <ID> OF <SS¥>

CASE <EXFR> OF <EXFRU)D

CASE <EXPR> OF <SSU>

COPY (<CEXPR>)

COPY ! <EXPR))

unn

..

262 EDECL: <EXPR> SBEXPRD

333 EDECL: <SS iz CBSS)

274 EDEF: CEXPRY DEFINED (<EXPR>)
219 EFALS: <EXPR) . FAILSE

218 EFNU: CEXPR)
258 EGIVE: <EXFRD
268 EGRAB: <CEXPR)
268 EGRAB: <EXPR)

a floating number

DO <SS)> GIVE <EXPAR)
GIVING <EXPR> DO <SS)> END
DO <SS8> GRABBING <EXPR)>

219 EID: CEXTR> <Ib> "
372 EIDID: <EXPR> % <1D> .

217 ELOG: SEXPR> L (<¥UD)

217 ELOG: CEXPR) L (<¥U> <AUD)

219 ENIL: CEXPR) NIL

217 ENU: CEXFPRD <hNU D

217 EQS: CEXPRD Qs>

227 EREVRS: CEXPR)
227 EREVRS: CEXPR)
226 ERFRSH: CEXPR)
226 ERFRSH: CEXPR)
225 ETAIL: <EXPR>
218 ETRU: <EXPRY
250 EUOP: CEXPR>
250 FEUOP: CEXPR)
250 EUOPG: CEXPRY :
233 'EVCASB: CEXPRU) :::
239 EVCASB: CEXPRU) :::
329 EVCASB: <SSU> ::
233 EVCASE: CEXPRUY :::
239 EVCASE: CEXPRUD :::
329 EVCASE: <SSU>

REVERSE (<EXPR))
REVERSE ! <EXPR))
REFRESH (<EXPR))
REFRESH ' CEXPR))
CEXPR) [<CEXPRY -]
TRUE

cvor)y <EXrto

SEXPR> <RUUOPD

CEXPRY <RIUOFPD

CID> : <EXPR> CEXFPRV)
CID> : <EXPR> CEXPRYUD
SIp> @ <SS> <SS
<IP> : <EXPR> ENDCASE
CID> : CEXPR> ENDCASE
CID> : ¢(S558> ENDCASE

. . . . se 23 e
oo 0ol R ee HOHON se e e

Wunnuwan

403 FID1: CEXPR) = CFID) '
403 FID2: CEXPRD = FID> <ARGS)
403 FID3: CEXPRD = <FIDD

403 FIDb4: CEXPR) CFIB> <ARGS) ;

2656 HOLDIT: <EXPR> :::
331 HOLDIT: <88 T

HOLDING <AS¥> GIVE <EXPR> ENDHOLD
HOLDING <ASH> DO (SS> ENDHOLD

~ 432 ~

290 KUOP1: <KRUOP>
290 RUOPZ2: <KUOF)

<Guor)
CGUOFP> <RUOP>

"

377 PRIVY: <EXPR)
281 PTSELX: <CEXPR)
231 PTSELY: <EXFR)
377 PUBLC: <EXPR)

CID> s::(<EXPRD)
CEXPR> . X

CEXPR> . ¥
PUBLICIZE:::(<EXPR))

‘361 QAND: SQUANTD :: CQUANT D 88 <QUANTD

254 QBALW: <QBooL) :: ALWAYS
264 QBEXS: <QBOOL) :: EXISTS

- 254 QBEXS: <QBOOL) :: THERE_IS
254 QBNVR: <QRBOOL) :: NEVER

254 QBOOL1: <EXPR>
254 QBOOL1: <EXPR)
254 QBOOL1: <EXPR)
2564 QBOOL1: <EXPR>
366 QECH: <QUAMT)_::
366 QFIN: SQUANT)Y
348 QFORC: <QUANT) ::
346 QFORE: <QUANT) ::
366 QFST: <QUANT) ::
-366 QFTH: CQUANT)D ::
3G6 QINH: CQUANT) ::
361 QOR: SQUANT) ::
366 QOTH: SQUANT) ::
366 QRES: SQUANT)Y ::
406 QSUS2: <EXPR>
406 QSUS3: <EXPR>
408 QSUSA: <EXPR>
406 QSUS5: <EXPRY
361 QTHEN: <QUANT) ::
339 QUNTL: <QUANT)> ::
338 QWHIL: <QUANT) ::
366 QWITH: <QUANT)Y ::

CQUANT> <EXPR> <QBOOL>
CQUANT > <QBOCL> <EXPR>
CQUANT> GIVE <QRBROOCL) <EXPR> END
SQBOOL> <EXPR> <QUANT)D
CQUANTD EACH_DO <582
<QUANT> FINALLY_DO <SS ;
FOR CEXPR> BC CEXPR)

FOR CEXPRY BE CEXFPR)> ;
CQUANT> INITIALLY <S5 ;
CQUANT) FIRST_DO <SS ;
CQUANT> INHIBIT_IF <EXPR> ;
CQUANTD 1) CQUANT D

<QUANT> OTHER_DO <S§§) ;
CQUANT > RESET_IF <EXPR> ;
CQSUSR> <QSUSED

SQSUSE> (<IDLIST>) <QSUSED
<QSUSB> <SARGS> <QSUSE>
SQSUSB> (<IDLIST>) <SARGS)> <QSUSE)
SQUANT > THEN <QUANT) :
UNTIL <EXPR> ;

WHILE <EXPRD ;

CQUANT > WITH CEXPR) ;

LU N L | SN N R N IO [N U LI I T T T JO F DN E OO N T AN L N (T N AN E R E IO E O 1}

340 REPET: <QUANT) ::
221 RFUNC: <RANGE) ::
221 RFUNC: <RANGE) ::
221 RFUNC: <RANGE) ::
221 RFUNC: <RANGE) ::
228 RGEN1: <RECXT) ::
228 RGENF: <EXPR>
228 RGENQ: <RECXT) ::
229 RSELQ: <EXPRY ::

REPEAT <CEXFR) ;

3 CEXPR> CQUANT)
COLLECT <EXFPR> <QUANT)
CQUANT > & <EXPR)
CQUANT> COLLECT <EXPR>
C10> @ CEXPR> CRECXT)
CRECX)D

SID> : <EXPR)]

SEXPR> . <TI0

L LI { T R I T £ I L I I 1]

328 SBIF: <58 tii= CBIF) CEXPR> THEN <(S8S) FI
221 SCCONX: <REXPR)Y :: CEXPR> ;* <REXPR>

221 SCEXP: <REXPR> :: CEXPR> 3 CREXrRD

221 SCRNG: <REXPR> :: SRAVGED ; <HREXPRD

221 SEMNOP: <REXPR> ::= <CRANGED '}

228 SEMNOP: <RECX) ::= [<RECXT>

248 SEMNOP: <EXPR) = (CEXrR>)
290 SEMNOP: <GUOP> = <Uor>

290 SEMNOP: <aUor) = <CRHUOPD

403
404
405
406
269
221
288
334
334
334
334
288
288
288
290
290
336
221
223
388
388
388
388
388
388

2356
244

286
285
286
285
286
286
284
285
286

SEMNOP :
SEMNOP:
SEMNOP
SEMNOP:
SETQX:
SEXP:
SSASS:
SSCALP:
SSICAL:
SSQ:
SSQ:
SSRHS1 ¢
SSRHS2:
SSRHS3:
SSRHSA:
SSRHSY:
S88S:
STRGEN:
STRSEL:
SUSB1:
SUSB2:
SUSB3:
SUSB4 :
SUSF1:
SUSF1S:

TYPDIS:
TYPDIS:

UBITSW:
UDECOD:
UENCOD:
ULFTZ0:
UNORM:

UOPBID:
UOPMIN:
UTALLY:
UUNARY:

SFID>
<BOF>

SRARUOP> ::
<QASUSBY ::

CEXPRD

CREXPRY ::

55>
(58>
<85>
{§SD
(P

C{SSRHS) ::
CSSRRS> ::
<SSRAS> ::
CSSRHSD ::
CSSRRS) ::

<§S§>
CEXPR)
CEXPR)
<SUSB>
(SUsB>.
<SUSB>
SSUSB>
SEXPR>
CEXFPR>

CEXPR)
CEXPR)

uoer>
<uopr>
<yopP>
<gor>
<or>

CRHUOP) ::

<oor>
<yor>
<uor)

LI { I L T I €N I © I U T £ O T I O [N T2 S |

unn

nu

u n

~ 433 ~

<{x CEXPRY *>

\ <FID)

\ <FID>

//: <10

(CEXPR> <SSRHS))
SCEXPRD 1}

CEXPR> <SSRHS)
<In> <ARGS> ;

<1y ;

DO <SS> <QUANT>
SQUANT > DO <SS> END
1= CEXPRY

: CBROP> <EXPRD
CEXPRY <EOPY
<RUQr>

sz CKUOFD

¢88> <§5>

{ <REXFPR>

CEXPRY [<CEXPRY)
1/

CSUSBY (CCIYFE))
SSUSBY [<ASN)]
SUSBY { <ASAD }
CSUSBY <EXFR> \\
CSUSB)Y <58> \\

<ID> :: <EXPR)>
<1 :: <EXPR)

BITSWAP
DECODE
ENCODE
LEFTZEROS
NORM

\ <ID

TALLY
UNARY

fage

262
262

328

333
333

2083
203
203
203

Name

DCOUGH :
DCOUGH :

BIF2:

DCOUGH :
DCOUGH :

ENDDEFN

206
206
206
206

Qs>)

206
207

213
233
239
269
265
388
388

233
233
239
239

328
328
329
330
331
333

329
329

196
196

199
199

EBIF:
ECASEE:
ECASE:
SETQX:
HOLDIT:
SUSF1:
SUSF1S:

EVCASE :
EVCASB:
EVCASE:
EVCASB:

EBIF:
SBIF:
ECASEE:
ECASE:
HOLDIT:
EDECL:

EVCASE :
EVCASB:

- CDECLY

CBEXPR) :::
CBEXPR) :::

CBIF)

<BSS>
<BSS>

SDECL)
SDECLD>
COECLY
CDECL>

SDECL>
CDECL)

CDECLY :::

<DECL)
<DECL)

CEXPRY ::
SEXPRY :::
CEXPR>

CEXPR)
SEXPRD
<EXPR)
CEXPR)>

CEXPRV) :::
SEXPRUD :::
SEXPRV) :::
CEXPRV) :::

<SS>
<S§8>
58>
s8>
<§8>
{S§8>

<SSV
<SSV

CTDECLY :::
CTDECL) :::

SVOECLY :::
CVDECLY :::

an " nu

wwnn

Hunauy

~ 434 ~ -

Deterministic Rules

BEGIN <DECLY CEXPR> END
BEGIN <CEXPR> <DECL> END

CBIF> CEXPR> THEN <(SS> EF

BEGIN <RECL> <SS> END
BEGIN <85> <DECL> END

DEFINE <ID> : <SS> ENDDEFN

DEFINE <ID> = <TYFE)> : <EXFR> ENDDEFN
DEFINE <ID> (<CTYPE>) : <S5S> ENDDEFN
DEFINE <ID)> (<CTYPE)) = <TYPE> : <EXPR>

DEFINE <10) : MACRO-10(<QS)>)

DEFINE <ID> = <TYPE> : MACRO-10(<QS>)
DEFINE <18> (<CTYPE>) : MACRO-10(. <QS>)
DEFINE <I10> (<CTYPE>) = <TYPE) : MACRO-10(

LET <ID> BECOME <I1D> BY <EXFR) ;
LET <I10> BECOME <ID> BY MACRO-10(<QS5>)

CBIFE> <EXPR> THEN <EXPR> ELSE CBEXPR> FI
CASE <EXFPR> OF CEXPRV>

CASE <10> OF CEXPRUD

{ CEXPR> (SSRHS>)

HOLDING <ASN> GIVE <EXPR> ENDHOLD

CSUSBY CEXPR> \\

CSUSBY ¢58> \\

CID> : <EXMR> ENDCASE
<ID> : <EXPR> <EXPRV)
SID> : <EXPR> ENDCASE
CI10> : <EXPR> CEXPRV)>

CBIF> CEXPR> THEN <(SS> ELSE <(S8S> FI
CRIF> CEXPR> THEN (88> FI

CASE CEXTR> OF <SSV

CASE <1D> OF <SSU>

HOLDING <AS¥> DO <S55> ENDHOLD

CBSS>

<ID> : <SS> ENDCASE
<I1D> : <S8> <SSV

TYPE <105 = <TYPED> ;
STDECLY <ID> = <TYPE> ;

VAR <IDLISTY = <TYPE) ;
CVDECLY <IDLISTY = <TYPE) ;

