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ABSTRACT 

In this report, we consider the problem of efficient intra­

frame encoding of digitized TV pictures using Differential Pulse 

Code Modulation (DPCM) type encoders. Our goal is to reduce the 

average number of bits used to encode a pixel while subjective qual­

ity of the picture still remains acceptable. 

To this end, we propose some new predictors and compare them 

with the existing ones using the error criteria 11 essential maximum" 

and "variance" of the prediction errors. The two criteria have al so 

been compared with respect to the subjective quality of the final 

encoded pictures. We propose to design the quantizers usinq "mean 

n-th power" distortion criterion. Effects of 11 n" on bit rate and 

subjective quality of the encoded picture have been studied as it 

varies from l to 6. In this way, we achieve reductions up to 6 to l 

in the bit rate with little degradati .on in the picture quality. We 

also consider the use of second and third order entropies of the en­

coded pictures to reduce the bit rate. 

Next, we adapt the encoding procedure to local structural vari­

ations in the picture by first segmenting it in three areas of varying 

detail and then using the concepts developed for non-adaptive encoding 

to encode the three areas differently. The resulting encoder yields 

better picture quality than before and can be used to encode a broad 

class of pictures. 
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CHAPTER l 

INTRODUCTION 

l. 1 General Background* 

In the following we shall focus our attention on a particular 

kind of communication system for transmitting TV pictures over a 

digital (i.e., binary) channel. More specifically, we shall consider 

the source encoding aspect of this transmission system. Since the 

repertoire of our digital channel is limited to l's and O's, we can 

state our source encoding problem as having to convert the given pic­

ture into a stream of l's and O's, so that 

{a) the entropy of this stream is minimized~ and 

{b) the distortion present in the picture reconstructed from 
it is · also as small as possible. 

To this end, let us assume the brightness value at · point (s1 ,s2) 

in the ·picture is represented by x(s1 ,s2), a smooth function of two 

spatial coordinates s1 and s2 , bandlimited to nH and nv, the 

maximum horizontal and vertical spatial frequencies present in the 

picture. This two-dimensional function is converted into a one­

dimensional time signal • x(t) , bandlimited to n by the process of 

scanning. No vertical infonnation is lost if 

line spacing 

* This section has been included for the convenience of .readers not 
familiar with the field of picture coding. 
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Next, we sample x(t) at the Nyquist rate so that the resulting 

samples 

n .?:. 0 

where 

represent the picture completely. 

Exact representation (transmission or storage) of these x 's 
n 

would require "infinite precision machine", which is not desirable. 

Hence, we make our first compromise in deciding to throw away some 

infonnation by dividing the range of values of xn 'sin 256{=28) equal 

sub-ranges and by represen~ing all the xn's lying in the mth such sub­

range by the number m itself. As a result of this 256-level uniform 

quantization we obtain 8-bit pulse code modulated (PCM) samples called 

pixels. We shall refer to them as x
0

's from now on. It is well known 

that distortion caused by such a quantization process is not visible 

to the human eye, therefore we shall take the ORIGINAL to be a rec­

tangular matrix (256 x 256 in this case) of these 8-bit PCM samples. 

1.2 Problem Definition and Solution Outline 

In our communication system w~ shall address ourselves to the 

differential pulse code modulator (or DPC~ encoder) shown in Fig. 1-1. 

In this predictive kind of encoder, a prediction of the current pixel 

value is made based upon the encoded values of previous pixels. The 

difference between the actual and the predicted value of the current 

pixel, called the prediction error, is then quantized using a quantizer 
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Q and transmitted. The decoder at the receiver end also makes a 

similar prediction (which would be the same as the encoder's predic­

tion in the absence of channel errors) and adds to it the received 

value of the quantized prediction error to obtain the transmitted 

value of the current pixel. Similarly, the encoder also adds predicted 

pixel value and the corresponding quantized prediction error to 

obtain the encoded value and uses it to encode the next pixel. Clearly, 

to bootstrap the process one needs to transmit the values of the first 

few pixels. We shall not be concerned about these pixels,as they con-

stitute only a negligible fraction of the total information trans­

mitted. We also assume a noise-free channel; that is, the picture 

reconstructed at the recei"er e;id would be the same as the encoded 

picture at the transmitter end. 
A 

Let xj denote the prediction of xj , the current pixel value. 
A 

Also, let ej be the quantized value of the prediction error e. . 
J 

Then 

e, = X, - X, 
J J J 

"' e.=Q(e.) 
J J 

and e. 
J 

A 

= e. e. 
J J 

where n- is the quantization error and Q is the quantizing func­
J 

tion. Then yj , the encoded value of x. , is given by 
.J 
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A A 

y. = x- + e-
J J J 

= xj + nj 

and dj , the distortion in the jth pixel value, is 

d. = y. x. = n. 
J J J J 

The quantity that should be minimized is the entropy of 

defined by 

where N 

N * 
H = - I P; 1 og pi 

i=l 

is the number of levels in the quantizer· Q , and p. 
l 

the probability of usage of the ;th level of the quantizer. 

" e. 's 
J 

is 

The second quantity we want to minimize is the subjective dis­

tortion measure Os of the reconstructed picture. The numerical value 

of Os · is inversely proportional to the viewer's subjective liking of 

the reconstructed picture. 

Thus, ideally speaking, we should solve the following set P of 

related problems: 

(P) Given a value of the subjective distortion measure Os , 

* 

find the predictor P and the quantizer Q such that the entropy 

H of the quantized prediction errors ej is min1mized; or, given 

a value of H , find P and Q such that 0
5 

is minimized. 

Logarithms appearing in definitions of various entropies are all as-
sumed to be to the base 2. 
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The solution to such a problem requires quantitative knowledge 

of the distortion measure Os , which would be based on quantitative 

description of the visibility of quantization noise nj as a function 

of its complex local surroundings. Unfortunately, such a description 

is lacking due to the lack of a good model for properties of the human 

visual system including its neurophysiology and psychophysics. In such 

a case, an approach to solving the problem set P must remain heuris­

tic in nature. 

In the first step of the heuristic approach our main emphasis is 

to reduce the magnitudes of the prediction errors e. which leads to 
J 

improved picture quality. We propose a new criterion, namely 

Ml\X(= m~x{ej}) , which with the VAR(= var~ance{ei}) should be used 
J J 

to compare different predictors. We show that in some cases (discussed 

in the quantization section) use of the MAX criterion only suffices, 

and the VAR criterion could be ignored. We also use the difference be­

tween the second order and the first order entropies of the ej's to 

judge the effectiveness of predictors in decorrelating the picture. 

Some new predic~ors are proposed which are compared with the existing 

ones by computer simulation, using four originals. Some of the new 

predictors are shown to be more effective than the existing ones. As 

a matter of side interest, we also establish conditions on the size of 

the picture and the number of values its pixels can assume, under which 

third-order entropy of the picture is a meaningful criterion of its 

redundancy. 



-7-

In the second step we turn to designing the quantizer Q. We 

wish to design it in a way that gives us some control over subjective 

quality and the output entropy. Designing the quantizer to minimize 

the "mean nth power 11 distortion enables us to do that. Based on in­

teger arithmetic, an efficient algorithm, having modest storage 

requirements, is suggested to carry out the design for any n , the 

power in the distortion criterion. Effects of n on the picture 

quality and the entropy of quantized prediction error are investigated 

as it varies from 1 through 6. It is shown as n increases that sub­

·stantial reduction in the entropy takes place, accompanied by only 

small distortion appearing in smooth areas of the picture. Quantizers 

are compared for. different orig1nals keeping the same n , and for a 

fixed original with n varying from 1 to 6. 

We show that further reduction in entropy, about 10-25%, is 

possible by using second-order entropy with respect to the vertical 

neighbor. Third-order entropies have also been considered. 

In the third step we concentrate on adapting the encoding 

strategy to the local properties of the picture. First of all, an 

algorithm is presented to segment the picture into three areas ·of 

different details. In all the three areas, previously discussed pre­

dictors are compared with respect to the MAX and the VAR criteria as 

in step 1. Finally, quantizers are designed for the three areas using 

methods of step 2. This demonstrates the gains possible by . encoding 

the three areas differently. Comparison of the quantizers is made for 

different orignals in each area, as well as for the three areas of one 
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original. Finally, an ensemble quantizer is designed for each area 

based on the prediction error statistics of all the originals in that 

area. 

1.3 Brief Literature Survey 

Contributions in the areas of standard pulse code modulation, 

predictive quantizing·, quantizer design, and adaptive source encoding 

are related to our work. 

The paper by Oliver, Pierce and Shannon [l] describes standard 

pulse code modulation. Information theoretic basis for this has been 

dealt with by Shannon [2]. Oliver [3] and Graham [4] put these con­

cepts in the context of efficient encoding of pictures. Schreiber [5] 

measured third-order probability distributions of TV pictures . 

. DPCM systems are primarily based on Cutler's work [6]. Later 

efforts in predictive quantization are due to Oliver [3], Harrison [7], 

Elias [8], Graham [9], O'Neal [10], Connor, Pease and Scholes [ll], 

Kumnerow [12], and Thoma [13]. They proposed and investigated a number 

of one-dimensional and two-dimensional predictors about which we shall 

say more later on. Connor [14] also talked about reducing visibility 

of transmission errors. Kretzmer [15] detennined some statistics of 

typical TV pictures. 

In the area of quantizer design Panter and Dite [16] discuss 

non-unifonn quantization, Max [17] discusses theoretical basis for the 

optimal quantizer design, and Bruce [18] investigates the globally 

optimal quantizer. Quantization of TV si~nals has been dealt with by 

Bernard [19], and Limb and Mounts [20]. Incorporation of some viewer 



-9-

criteria in picture coding schemes has been carried out by Graham [9], 

Limb [21 J, Candy and Bosworth [22], and Limb [23]. Entropy of quan­

tized signals was measured by Limb [24]. 

Adapting the coding scheme to local variations in the picture 

was suggested by Graham [9]. Other studies on adaptive quantization 

were done by Golding and Schultheiss [25], Wintz and Tasto [26], Brown 

and Kaminsky [27], Limb [28], Cohen [29], Kummerow [30], and Thomas 

[131. 
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CHAPTER 2 

PREDICTION 

In this chapter we define the prediction problem, following 

which we discuss a number of predictors and compare them using the MAX 

and the VAR of prediction errors. In the last section we consider the 

first and higher order entropies of the original and the 

11 predi cti on error pictures 11
• 

2.1 The Prediction Problem 
A 

We define the predicted value Xj of a pixel X . as a 1 i near 
J 

combination of the brightness values of some neighboring pixels occur­

ring prior to X. in the same line or in the preceding ~ines, see Fig. 
J 

2-1. We shall refer to this prediction as based on the original or the 

reconstructed picture, depending on from which picture the neighbors of 

X. have been chosen. 
J 

Thus to devise a predictor scheme we have to (a} choose some 

neighbors of Xj whose values will be used in the linear combination 

and ·(b) find their respective coefficients so that the difference 
A 

e. = X.-X. is as small as possible. Let us assume we know which 
J J J 

neighboring pixels to use to predict the value of Xj • Then to choose 

their coefficients optimally we need a criterion which could be used to 

measure the aggregate magnitude of ej's. One such criterion is 

VAR= variance of ej's. This leads to minimum least square predictor 

and also has the intuitive appeal of minimizing power in the error sig­

nal (see [10] and [31]). However, in such an approach we are not able 
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to· assess the magnitudes of relatively large errors that occur near 

sharp edges and the boundaries of various objects in the picture. 

Such errors, although their frequency of occurrence is small, affect 

the picture quality greatly. Besides this, the coefficients computed 

using this approach would be picture dependent, as they depend on the 

cross-correlations of X. with its neighbors. With these considera-
J 

tions in mind, \ve introduce the MAX criterion defined as 

MAX= essential maximum of ej's . 

Here, the essential maximum has been introduced to eliminate the ef­

fects of large noise spikes, etc. in the picture, which are much less 

frequent than the large errors that we are after. To compute the es­

sential maximum of a given set of ej's we make a plot of their frequency 

of occurrence versus their magnitudes. Then MAX is the maximum spread 

of this plot in either direction fr6m 0, after neglecting the isolated 

clusters of points at both the far ends that are expected to be due to 

artifacts like noise. We shall show in Chapter 3 that MAX is very use­

tul .for designing quantizers that give subjectively better pictures. 

Comind back to the problem of finding the coefficients in the 

linear combination, due to the use of the above two criteria, mathe­

matical tractabi~ity of the solution has been lost. Therefore, we 

resort to intuitive guidelines, and some concepts of extrapolation and 

interpolation from numerical analysis to find not only the coefficients 

but also which neighboring pixels to use. 
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In the following section we present various predictors that we 

shall compare using the MAX and the VAR criteria in Section 2.3. As 

will be noted later on also, some of these predictors have already ap­

peared in the literature (see Refs. [7] through [13]). 

2.2 The Predictors 

Depending upon the underlying principles behind the prediction 

algorithms, we have divided them into two major classes. As shown in 

Table 2-1, class 1 contains the predictors based on the principle of 

extrapolation, while class 2 consists of what we call interpolative 

type p•redi ctors, 

Cl ass l: 

This class of predictors contains extrapolative type of predic­

tors and has been divided into three subclasses. Predictors based on 

one-dimensional extrapolation form classes 1-A and 1-B, while those 

using two-dimensional extrapolation come under class 1-C. 

Under class 1-B, the simplest predictor, i.e., Pred #10, is 

obtained by using oth order extrapolation yielding I as the prediction 

of X. Simiiarly, 1 inear extrapolation gives us I + (I - H) as the 

prediction for X in Pred #11. Use of this predictor causes large 

errors due to overshoot near sharp edges [7]. But instead, if we were 

to use I + (I - H)/2 as the prediction, we would reduce the shape of 

the extrapolating line to half of its previous value which would re­

duce the overshoot effect. In essence, we have damped the predictor 

giving rise to Pred #9, a 1/2-order predictor in the x direction. Note 

that if we substitute the Taylor expansion about the point X of the 
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brightness function X(~,,~2), not even the first order terms cancel 

out in the expression I + (H - I)/2 . Despite this fact, this predic­

tor performs better than #11 as we shall see later. This way we obtain 

class 1-A containing various 1/2-order predictors in various directions. 

Pred #5 has been obtained by taking the average of #8 and #9, which 

extrapolate in they and x directions, respectively. 

Coming back to the other members of class 1-8, Pred # 1 s 12 and 

13 have been obtained by passing second and third order polynomials 

through three and four previous neighbors of X , respectively, and 

then using these polynomials to compute the value at X. To obtain 

Pred #14 we write Taylor expansion of the brightness function about the 

point I and keep terms only up to the second order. The;- we r-eplace 

the first and second order derivatives in the expansion by the first 

and second divided differences of the function at the point I, and 

find the value at point X. Similarly, Pred #15 is obtained by re­

taining up to third order terms and using up to third divided differ­

ences of the function; refer to Appendix B for details. 

Class 1-C contains Pred #'s 19, 20 and 22. In #20, average of 

I and E, the pixel values of the immediate horizontal and vertical 

neighbors of X are formed, while in #22 a plane is passed through I, 

E, and D to compute the ordinate (I - D + E) at X as the predicted 

value. It can also be thought of as similar to #11, except the slope 

of the extrapolatihg · line is approximated from the previous line to 

obtain I + (E - D) , instead of I + (I - H) as the prediction of X . 

Then Pred #19 is formed, just like #9, by reducing this approximated 
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slope by half to obtain I+ (E-0)/2 as the prediction of ~ X. 

Class 2: 

Class 2 consists of what we call interpolative type predictors. 

To illustrate the basic idea here we take the example of Pred #23. To 

predict X let us pretend that a and B are available. Then we pass 

a third degree polynomial through H, I, a and B whose ordinate at X 

is 

X = (-H + 4I + 4a - B)/6 (I) 

Next we approximate a and B by J and K respectively to obtain 

A 

X = (-H + 4I + 4J - K)/6 

as the pre9·i cti on of X . On the other hand, we can approximate a 

and S by a variety of other methods. For instance using Pred #22 

formula we can write 

I\, 
a = X + J - E (II) 

SI\, a+K-J (III) 

A 

Thus we can solve Eqs. I, II and III for X as 

A 

X = (-H + 41 + 4J - 3E - K) /3 

which gives us Pred #17. Pred #'s 16 and 18 are obtained similarly. 

For details please refer to Appendix B. These three predictors are 

included under class 2-B. To obtain Pred #24 we pretend that the path 

HIXJK is a straight line and then pass a "Cubic through the four known 

points. It is called kinked third order interpolative predictor. 
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Pred #25 is similar to #23 except we use fifth degree polynomial for 

interpolation. Pred #'s 21, 23, 24 and ?5 form class 2-A. Among the 

predictors we have described, Pred #'s 10 through 13,and 19 through 21 

appear in Refs [7] to [13] inclusive. 

2.3 Comparing Predictors 

As discussed in Sec. 2. 1, we shall use the MAX and VAR of the 

prediction errors to compare the various predictors of Table 2-1. In 

actual encoding, prediction of pixels is to be based on the reconstructed 

picture for which we heed a quantizer also; see Fig. 1-1. In the 

absence of a quantizer at this stage, we shall look at the MAX and the 

VAR of the e.'s when prediction is based on the original picture. J . 

W~ have thosen four originals for our work. They are MOON, 

CHECKERED GIRL (or just CHECK), KAREN and AERIAL. They appear as PHOTO 

#'s 1, 2, 3, and 4 in Appendix A. Choice of these pictures is governed 

by the range of contrast and the amounts of large and small ·details 

they contain. 

We have simulated all our predictors on the computer and ob­

tained the MAX and the VAR of the prediction errors for each original 

as shown in Figs. 2-2 and 2-3, respectively. Points in these graphs 

should be read on the scale which is on the same side of the broken 

middle line as the points themselves. 

In Fig. 2-2, note the low values of MAX for Pred # 1 s 23, 24, 

and 25 in KAREN, CHECK and AERIAL. In MOON, the value of MAX is much 

higher than in other originals except for Pred #'s 8, 20 and 5. 

In Fig, 2-3, AERIAL shows relatively large value of 
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VAR. Notice the dip and the peak at Pred #22 a~d #20 respectively 

for CHECK, and the dip at #20 for MOON. To estimate the general 

trends we took the average values of MAX and VAR over all the origin­

als and plotted them against Pred #'sin Fig. 2-4. Note that the 

predictors have been ordered according to diminishing values of MAX 

and that we have focussed our attention on Pred #'s 5, 10, and 18-25 

only, as the others have larger values of MAX as well as VAR. Using 

this figure we classify these predictors in four categories in order 

of decrea~ing effectiveness with respect to MAX AND/OR VAR. Under 

each category we present the Pred #'s in order of increasing prefer­

ence in Table 2-2. Using the third column of this table, we obtain 

the following list of predictors in order of increasing preference-­

Pred #'s 10 I 18, 16,22 I 20, 19,5,21 I 23,25,24 \'✓here vertical slashes 

indicate category boundaries. Clearly, the interpolative predictors 

of class 2-A (Table 2-l) are among the better ones in the whole lot. 

At this point we would like to draw the reader's attention to PHOTO #'s 

5, 6, 7, and 8 which are prediction error pictures and the histograms 

corresponding to Pred #'s 10 and 24 for KAREN. Description of these 

is included in the PHOTO-KEY preceding the photographs. We would also 

like to point out that the MAX for Pred #24 is determined from PHOTO #8 

by neglecting the isolated little clusters at the two far ends. Such 

clusters are · absent in PHOTO #7. 

The predictors found to be relatively better in the above dis­

cussion are desirable from one more point of view, hitherto undiscussed; 

that is, propagation of transmission errors. Suppose in the case of 
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TABLE 2-2 

CLASSIFICATION OF PREDICTORS ACCORDING TO MAX AND/OR VAR IN OR~ER 

Category # 

* 

1 

2 

3 

4 

OF DECREASING EFFECTIVENESS 

Pred # Pred # 

(w.r.t. MAX) (w.r.t. VAR) 

* 5,23,25,24 23,25,24 

?0,19,21 16,22,21 

18 ,22, 16 5,20,19,18 

10 10 

Pred # 1 s are in the order of increasing preference. 

Pred # 

(w.r.t. MAX and VAR) 

23,25,24 

20,19,5,21 

18,16,22 

10 
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Pred #10 (X = I) element X is received as X + 6X • Then the predic­

tion error (and hence the reconstruction error) in all the future 

elements of the same line will also be 6X. But, if we were to use 

Pred #21 (X = (I+J)/2), the errors in the following elements would be 

1/2, 1/22, 1/23, etc. times 6X; in other words, the overall effect 

of trans miss.ion error would be much 1 ess. This property is enjoyed by 

the predictors in which coefficients of the neighboring elements are 

less than l. In particular, Pred # 1 s 5 and 20, which are averaging 

extrapolative type and all the predictors of the interpolating type 

(Class 2 in Table 2-1) except #17, are of this nature. 

2.4 Entropy Considerations 

For the original picture let us denote the average entropy per 

pixel by H and the average entropy per pixel given its previous 
0 

neighbor by S
0 

(loosely referred to as second order entropy also). 

Then the minimum rate at which we can transmit this picture using one 

pixel at a time is H
0 

[2]. But, if we were also to consider each 

pixel 1 s past 11 contained 11 in its previous neighbor, we would reduce the 

minimum required rate to S
0 

- a fractional reduction of 

We can name this quantity as second order redundancy (or just redun­

dancy) in the picture. Obviously this would be higher for a picture 

~n which there is higher element-to-element correlation. Now, in doing 

prediction on the picture we are, from information theoretic point of 
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view, making use of this correlation to generate a stream of decorre ­

lated prediction errors. Thus, if He and Se denote respectively 

the first and the second entropies of the error picture, then the quan­

tity 

represents the fractional redundancy 11 removed 11 by the predictor or the 

fractional reduction in the minimum channel capacity required to trans­

mit the picture in its modified form. Also, 

R = e 

H - S e e 
H 

e 

the redundancy still remaining in the error picture 9 indicates the maxi­

mum gain achievable by encoding pixels using their past. Thus the 

overall obtainable reduction is 

We also call it the net 11 removable 11 redundancy for the given predictor 

and it is related to R by e 

RR= R + R (l - R) r e r 

We carried out the measurement of all the four R's for the ori­

ginals and the predictors we have. The first and second order entro­

pies and the r,edundancies for the originals are tabulated in Tab.le 2-3. 

Notice the low value of R for MOON and AERIAL followed by KAREN and 
0 

CHECK. R's for various predictors are shown in Fig. 2-5. If Pred #10 r 

for KAREN were making optimal use of the previous elements, its R r 
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TABLE 2-3 

SECOND ORDER ENTROPIES AND REDUNDANCIES 

IN THE ORIGINALS 

6.707 

7.405 

7.520 

7 .312 

7.236 

5.226 

4.426 

4.870 

5.696 

5.055 

(Percent) 

22 .1 

40.2 

35.2 

22 .1 

30.1 
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should be equal to R
0 

, but on the contrary, it is much less than 

R . R for Pred #24 is greater than R
0 

• This is explicable on the o r 
grounds that this predictor uses a number of other neighboring elements 

while R
0 

is computed only on the basis of the previous neighbor. On 

the whole, MOON and AERIAL have similar behavior and such is the case 

of KAREN and CHECK also. This trend continues for Re and RR in 

Figs. 2-6 and 2-7 respectively. In Fig. 2-8 we show 
A A A A 

A A 

R , R , and r e 
the ENSEMBLE values defined using H

0
, He' S

0
, and Se , the averages 

over all the four originals of the first and the second order entropies 

of the original and the error pictures. 

The trends in these figures are self-explanatory. In Table 2-4 

we have compiled the minimum values of He and Se for all the ori­

ginals along with the predictors that attain this value. These are the 

predictors one would use in a completely information preserving scheme 

to encode the pictures. 

We shall finish this chapter with a brief note about higher order 

entropies. We could try to extend the arguments given above by using 

third order entropies, in which case we would be counting the number of 

occurrences of the triplets of intensities corresponding to three 

neighboring pixels in the picture. For the 8 bit PCM pixels there are 

224 such triplets possible while the number of triplets we can observe 

in our 256x256-pixel originals is about 216 which is much less than 

their total possible number. That is, the implicit assumption that the 

probabilities of occurrences of triplets are approximated by their 

relative frequencies would necessarily be at fault. This allows us to 

construct a picture (see PHOTO #39. See also Appendix C for more details 
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and the algorithm to construct such a picture.) in which all the trip­

lets (formed by three consecutive pixels) are distinct, i.e., we 

expect the picture to be a fully "third order random" picture but 

measurements show its first and second order entropies are 8.000 and 

7.994 respectively, while its third order entropy is O. Such an 

anomaly would not arise if we were to increase the size of the picture 

to 4096x4096, or else if we were to use 5 bits PCM pixels. Then we 

would be able to use the third order entropy in our redundancy calcu-

1 ati ons. 
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CHAPTER 3 

QUANT! ZA TI ON 

In this chapter we shall consider the design of quantizer to 

minimize 11mean nth power 11 of the quantization errors. We shall study 

the effects of 11 n11 on the picture quality and the entropy of the quan­

tized prediction errors. Finally, the second and third order 

entropies of the quantized errors and the design of Huffman codes will 

be considered. 

3.1 The Quantization Problem 

Let us denote the number of quantization levels by N and the 

levels themselves by Y1,Y~,···YN . Although in Fig. 1-1 the input 

variable to the quantizer is ej , let us temporarily call it x • 

Also, let the input thresholds be x1 ,x2 , .. •,XN+l (Fig. 3-1) such 

that 

and 

Then we define the quantizer as a function Q that assumes the value 

Yk whenever the input variable x is between Xk and Xk+l , that 

; s' 

Q(x) = Yk for 

and 1 < k < N 
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y 
~~ 

y. 
1 -~ 

I .... 
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X;: INPUT THRESHOLDS 

y i: REPRESENTATIVE L EVELS 

FIG. 3-1 
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Keeping in mind that x is a discrete variable and that 

x - Yk is the quantization error for a typical input mapped to Yk , 

"mean nth power" distortion for the kth output level is given by 

where p(x) is the probability of occurrence of x . The total dis­

tortion D , caused by the quantizer or the mean nth power of the 

quantization errors becomes 

N 
D = l Dk 

k=l 

Thus, given the probability distribution function p(x) and the 

number of quantization levels N , the quantization problem consists of 

finding the input thresholds X 's k and the output representative 

levels Yk's such that the distortion D is minimized. 

Here, since D is a function of the discrete variables X 's k 

and Yk_'s, it cannot be differentiated to find necessary conditions for 

local minimum. However, we can make use of the forward and the back­

ward differences of D with respect to X k's to characterize its 

local minimum. The necessary condition for this is given by 

( I) 

where the square brackets represent the largest integer contained in 
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the quantity inside them. 

Derivation of Equation I is given in Appendix D. For the con­

tinuous case and n = 2 (i.e., mean square distortion case) the 

necessary conditions have been discussed by Max [17]. Our condition 

is a counterpart of one of his conditions. Extensions of his other 

condition to values of n other than 2 and for discrete case are 

also included in Appendix D, where we also give rationale behind not 

using them in our investigation. In our approach to design the quan­

tizer, we shall use only the necessary condition given by Eq. I. 

Following is an account of the algorithm to carry out the design. 

The Algorithm Al 

In this iterative algorithm let us assume that We are given 

p(x), the probability distribution function and X~O), Y~o), l~k~N, 

as an initial guess. Then we compute the next quantizer consisting of 

x(l),s and y(l),s in two steps. 
k k 

In step 1 we fix xio),s and find Y~l),s one by one for 

1 ~ k < N. For a fixed k , Y~l) is found so that 

is the minimum value of the distortion Dk in the kth level. Since 

yk can assume only finite number of discrete value, the value of 

y(l) can be found by a search procedure. Notice that y(l) is con-
k k 

strained by 
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f~r if y(l) is outside the interval k 

smaller by bringing y~l) closer to the interval which contradicts 

the fact that y~l) was optimal. Thus our search for the optimal 

value vll) is limited to a rather small set of values and could be 

made very fast in practical situations. In our implementation we have 

used binary search procedure. See Knuth [32] for other search algo-

rithms. This procedure is repeated for all k from 1 to N • 

In the second step we use these values of y( 1 ) 
k- to compute 

x(l),s 
k by enforcing the necessary condition 

x(l) = k-1 k 
[

y(l) + y(l)] 

k 2 , 

which was presented as Eq. I above. 

With the x(l),s and y(l) 1s we can do the second iteration, and k k 

so on. In each iteration we are only reducing the distortion D which 

is bounded below by O . Hence our iterations must converge. In prac­

tice we may decide to stop iterating when the difference of the distor­

tions obtained in two successive iterations becomes smaller than a 

predetermined quantity s. As for the initial guess, we used uniform 

qua n ti z er ( i. e . , X k I s and Y k I s uni form 1 y s paced ) i n ou r work . Thi s 

completes description of the algorithm. 

This algorithm can be used to design the quantizer if we are 

given the statistics of the prediction errors ej . As portrayed in 

Fig. 1-1, in the final encoding scheme the prediction errors are based 

on the reconstructed picture, and hence they are dependent on the very 
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quantizef that we are seeking. We carry out design of such a quantizer 

by the following algorithm. 

Complete Design of the Quantizer--Algorithm A2 

To begin with, no encoding is done. As a first approximation 

we compute the statistics of the prediction errors based on the original. 

We obtain the probability density (p.d.) function of the prediction 

errors by assuming that their relative frequencies of occurrences 

closely resemble their respective probabilities. Then we use the 

algorithm Al and this p.d. function ~o design our first quantizer. Using 

this in the next iteration of the complete design, we simulate the DPCM 

loop of Fig. 1-1 and, in the process, collect the -statistics of e/s 

which are now based on the newly reconstructed picture. This gives us 

a new p.d. function which, with the aid of algorithm Al yields the 

second quantizer to be used in the DPCM loop the second time around, 

and so .on. This way we expect the resulting quantizer to be matched 

with the p.d. function of the prediction errors to which it will give 

rise in the encoding process. This should in turn lead to a reduction 

in the resulting distortion. 

The natural question that arises now is, when the iterations 

should be stopped. In the absence of precise analytic description of 

the picture, the answer to this question must remain empirical in 

nature. We simulated the algorithm A2 on the computer and tested it 

for a number of cases with varying number of levels N in the quan­

tizer and the power 11 n" in the distortion criterion. Two representa­

tive cases are shown in Fig. 3-2. In this figure the vertical axis 
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re.presents M.S. distortion for ease of presentation, althoug~h 

n = 5 and 6 was used to design the quantizers. In case 2 with 8 

levels, almost monotone convergence is obtained in six iterations, 

i.e., the quantizers obtained in the sixth and the seventh iterations 

are the same. In case 1, however, an oscillatory convergence is ob­

tained in six iterations, but we pick the fifth quantizer since it has 

lower distortion value than the sixth one. In both the cases, as ex­

pected, there is marked reduction in the distortion, while the entropy 

of the quantized prediction errors, ej's, increases by a negliglble 

amount (about .05 bits/pixel). This is accompanied with an improvement 

in the picture quality--the overall picture looks smoother. Case 1 is 

typical of quantizer design with the number of levels N < 5 while 

case 2 is typical of N 2:.. 6 • 

3.2 Discussion and Results 

As 11 n11 in the distortion criterion is increased, we observe sig­

nificant effects on the quality of the encoded picture and its entropy. 

The main reason behind both these effects is, when we increase the 

value of 11 n11
, the large errors are being weighted much more than the 

small ones in evaluating the distortion D. As a result, the quanti­

zer that minimizes D has representative levels that are spread out. 

This leads to the spreading out of the input thresholds also, because 

of Eq. I. This is shown in Fig. 3-3A with 9-level quantizers for KAREN 

using Pred #23. Similar trends are observed for the other originals 

also. 
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The coarse quantization resulting from the use of large "n" has 

two major effects on the picture quality. Because of large outer 

levels of the quantizer, reproduction of relatively sharp edges is im­

proved. On the other hand, because of large inner levels, artifacts 

begin to show up as granular noise in the smooth areas of the picture-­

the encoder is trying to track the slowly varying signal by taking 

large step jumps. We illustrate this by using 4-level quantizer and 

Pred #23 to encode KAREN. See PHOTO #16 and 17, also refer to the 

PHOTO-KEY. n = 1 was used in #16; sharp edges are poorly defined 

while little degradation is bserved in smooth areas like the hair 

region. In #17 we use n = 4 . Note the remarkable improvement in 

edge reproduction, but the hair, cheek and the neck regi~ns aµpear a 

little more granular than before. Overall, #17 is much more acceptable 

than #16. 

Second effect of increased "n" is reduction in the entropy 

brought about by spreading out of the input thresholds. To see this, 

1 et us define 

which is the probability of usage of the kth level £k of the quanti­

zer. See the shaded area in Fig. 3-4A. Then entropy of the encoded 

picture is 

N 
H - - l Pk log Pk 

k=l 

Since the probability function p(x) has a large peak near the origin, 
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spreading out of the inner thresholds causes their corresponding pk's 

to increase significantly. This makes the distribution p(£k) more 

peaked than before and thus reduces the value of H . This effect is 

observed for all the originals and is shown for KAREN in Fig. 3-5A. 

To study this figure pick some number of quantization levels and ob~ 

serve the thick dots moving down as 11 n11 increases. 

At this point we wish to draw the reader's attention to PHOTO 

#'s 9 and 11. In #9 we used n = 1 , while in #11 we used n = 5. 

The entropy has gone down from 2.482 to 1.619, while there is only 

small degradation in the picture quality. Degradation in the hair area 

is the most prominent one. We rate PHOTO #'s 9 and 11 as 10 and 8 

respectively on a scale from Oto 10. Figure 3-5B shows this rating 

index for the other cases. For n = 1 deterioration in the picture 

quality is maximum as we reduce the number of levels in the quantizer, 

while for n = 4 this effect is minimum. This means that n = 4 is 

the most desirable value if we vlish tci reduce the entropy by dropping 

levels in the quantizer. 

As we drop the levels we obtain quantizers with odd and even 

levels consecutively. What happens to the entropy then? Let us con­

sider a symmetric quantizer with 2m+1 levels whose central threshold 

range (-a.,a.) is shown in 'Fig. 3-4A, and another symmetric quantizer 

with 2m levels whose two central threshold ranges (-S,0) and (0,S) are 

shown in Fig. 3-4B. Due to large peak in p(x) near the origin, the 

distribution p(£k) for the first quantizer will have one large peak 

in the middle corresponding to the shaded area in Fig. 3-4A. On the 

other hand, p(£k) for the second quantizer will have two large central 
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peaks of ·almost equal magnitude corresponding to the two shaded areas 

in Fig. 3-4B. This factor contributes toward making the second 

entropy higher than the first one. This trend is indeed observed in 

Fig. 3-5A, thus making the (2m+l)-level quantizer more desirable than 

the 2m-level one. This is not only because it gives lower entropy, 

but also because for fixed 11 n11 the picture encoded with 2m+l levels is 

of better quality than the one with 2m levels as indicated in Fig. 

3-5B. 

A moment ago we mentioned that the most desirable value of n 

is 4 from the point of view of dropping quantization levels to reduce 

the entropy. This value is the best from another point of view also, 

portrayed in Fig. 3-5C which is a p 1 ot of the entropy versus the sub­

jective evaluation of the encoded pictures. For a fixed number of 

levels, if the value of n is made larger than 4 (shown by hollow 

squares), the resulting drop in entropy is associated with a sharp 

drop fo subjective quality. 

To summarize our discussion above, we find that n = 4 with 

odd number of quantization levels is the most suitable combination to 

encode KAREN. For other originals, we t8ok some test cases and found 

that these conclusions are valid for them also. Figure 3-3B shows 

the quantizers for various originals using Pred #24. Notice the dif­

ference in the levels for different pictures. The ENSEMBLE quantizer 

was designed by taking an average of all the other four probability 

functions. The resulting pictures have been evaluated as in Table 

3-1. Deterioration is most severe in KAREN and the encoded picture 
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TABLE 3-1 

SUBJECTIVE EVALUATION OF PICTURES ENCODED WITH ENSEMBLE QUANTIZER 
OF FIG. 3-38 

PIX 

AERIAL 

CHECK 

MOON 

KAREN 

ENSEMBLE QUANT. 
ENCODING 

6 

7 

5 

4 

INDIVIDUAL QUANT. 
ENCODING 

8 

9 

8 

8 
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is subjectively unacceptable. This should be contrasted with the re­

sult obtained using adaptive encoding in Chapter 4. 

3.3 Predictors Revisited 

In this section we shall see what effects the predictors have 

on the encoded picture. Let us look at PHOTO #'s 12 and 13 which use 

Pred #10 and compare them with PHOTO #'s 9 and 11 which use Pred #23. 

Notice poor edge reproduction and general graininess in the former ones. 

In this case both the MAX and the VAR of Pred #23 are smaller than for 

#10. To see the usefulness of MAX criterion we pick Pred #22 and 24 

for CHECK, because 

MAX ( Pred #24) < Ml\X ( Pred #22) 

while, 
VAR (Pred #24) > VAR (Pred #22) 

Results of encoding in the two cases with n = 4 are shown in PHOTO 

#'s 18 and 19 (also, see the PHOTO-KEY). The latter picture uses 

Pred #22 (which has low variance), has more contouring in the left­

hand side background, and has more granular noise in the neck and the 

shirt regions. This is so because in the case of large MAX, spread 

of the probability distribution p(x) is larger. hence the quantizer 

levels get spread out as large errors receive more weight than the 

small ones for n = 4 . Such is the case for all n > 2 as shown in 

Fig. 3-6. Similar results are obtained for KAREN with Pred #22 and 23, 

where 

and 

MAX (Pred #23) < MAX (Pred #22) 

VAR (Pred #23) ~ VAR (Pred #22) , 
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see Figs. 2-2 and 2-3. Thus we observe for more interesting values 

of n (i.e., the large ones), the MAX criterion is more useful as an 

aggregate measure of prediction errors than the VAR. 

3.4 Huffman Codes and Higher Order Entropies 

The first order entropy defined in Sect. 3.2 serves as only 

the lower bound on the infonnation/pixel at which we can transmit the 

pictures. As a matter of practical interest we designed the variable 

length Huffman codes for the encoded pictures with the source alphabet 

consisting of £k , 1 2- k ~ N, the N levels of the quantizer. The 

average word length of this binary code comes to within 0.05 - 0.1 of 

the entropy per pixel for all the pictures. 

Now we wish to consider the role of second order entropy as a 

means of further bit saving. For simplicity of the argument let us 

consider the last element predictor (i.e., #10) encoding. Let W and 

X be two nearest horizontal neighbors of Z , and let V and Y be 

its two nearest vertical neighbors as shown in Fig. 3-7. Also, let 

the pixels X, Y, etc. be encoded using the£ th,£ th levels of the 
X y 

quantizer, etc. Then H(£zl£x), the second order entropy of the en-

coded picture given the previous element in the same line as Z, and 

H(£
2

1£y), the same quantity given the previous element in the same 

column are expected to bear the following relation 

The reasoning behind this is outlined in -the following steps. 
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1. A second order entropy H(a!B) is small when the joint proba­

bility distribution p(a,S) has large peaks near the "main 

diagonal 11 (i.e., near a ::::: S). This happens when the proba­

bility of the event a::::: S is large. 

2. p(£
2

1£x) is expected to be less peaked near its main diagonal 

than p(£
2

1£y) because 

3. £
2

::::: ix implies that the picture is approximately a ramp 

through the pixels W, X, and Z, while 

4. £
2

::::: £y only implies similarity between the slopes in the 

current and the preceding lines, and 

5. the condition 3 is less likely to be met thaA the condition 4. 

Hence the relation between the two second-order entropies. 

Similarly, we also expect 

Results of entropy measurements on various encoded pictures are 

shown in Fig. 3-7. The trend of all the results is the same as dis­

cussed above. Percentage reductions over H(£
2
), obtained by using 

H(£
2

j'£x) ar-2 4, 4, 10, and 12% for MOON, AERIAL, KAREN, and CHECK 

respectively, while the corresponding figures for H(£
2

1£y) are 7, 10, 

26, and 26% respectively. Another observation of interest is that 

H(£ j£ ,£) yields 12, 
2 X y 

13, 30, 30% reduction in the four pictures in the same order as above. 

Similar trends are observed for other predictors also. 
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We also designed a Huffman code corresponding to H( i
2

l1y) 

This was done by converting the two-dimensional source alphabet 

(1
2

,iy) corresponding to the probability distribution p(1
2

,1y) to 

the one-dimensional source alphabet (1
2
-iy) w~ose probability dis­

tribution p(1
2
-1y) is used to design the code. The average word · 

length of this code comes to within about 0.1 bits/sample 6f H(1
2

l1y). 
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CHAPTER 4 

ADAPTIVE ENCODING 

In this chapter we consider schemes that make use of variations 

in the local structural properties of pictures, and thus encode them 

more efficiently. Such encoding can be done by dividing the picture 

in areas of low, medium and high details based upon the infonnation 

available at_ the receiver end only. Encoding is done by both adaptive 

prediction and quantization based upon the three areas. Finally, we 

consider, using prediction error statistics in the three areas of all 

four originals, an ensemble quantizer that could be used to encode a 

class of pictures. 

4.1 Segmentation 

To predict the value of a pixel X depending on its local surround­

ings we first have to decide about the nature of these surroundings. 

This can be done by looking at the pixels that are in the vicinity of 

X in the picture. In order that we do not use additional bits to 

transmit information as to what area X belongs to, we must consider 

only the pixels occurring previous to X so that the same segmentatior 

process can be carried out by the decoder also. Furthennore, in order 

to reduce the probability of getting the 11 segmenter 11 at the decoding 

end confused by spurious noise signals, we should use a number of neigh­

boring pixels in the segmentation algorithm. Being led by these con­

siderations, let us consider the neighborhood A(X) consisting of 22 

of X's previous neighbors, as shown in Fig. 4-1. We wish to classify 

X in one of the three areas of low, medi u·m and high details, ca 11 ed 



-59-

r NEIGHBORHOOD A(X) 

,-- - - - - - - - - - - - - ' r. Q) • o 0 \ 

I ________ _./ 

I ,. 

I e 0 ( □1--------\ ; ... ____ _/ X 

FIG. 4-l. ADAPTIVE PREDICTION OF THE PIXEL X 
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area 1, 2, and 3 respectively. For this, let us define N(X) as the 

number of pixels in X's neighborhood A(X), that differ from their 

immediately preceding vertical or horizontal neighbors by more than a 

given threshold T. For properly chosen T, this quantity N(X) 

can serve as a measure of 11 actiyity 11 in the picture near the pixel X. 

·since there are only 22 pixels in A(X) we observe 

0 ~ N(X) ~ 22 

Next, we choose two integers n1 and n2 between O and 22, and clas­

sify X as belonging to areal, 2, or 3 depending on whether the 

value of N(X) lies in the interval [O,n1J, [n1+1,n2J or [n1+1 ,22], 

respectively. 

By computer simulation of the above algorithm, we determined 

that the following set of values give satisfactory results: 

Th res ho 1 d T = 7 

n - 5 1 -

n2 = 13 . 

The three areas in KAREN are shown in PHOTO #23 which has three 

brightness levels. White corresponds to the high details, while grey 

and black correspond to medium and low detail areas respectively. In 

Table 4-1 we show the fractional values of the three areas in various 

pictures. Note that MOON is predominantly a medium detail picture 

while AERIAL is a high detail one. 

In the next step of our segmentation scheme we take area 3 

which is predominant in high details, sharp edges, etc. and divide it 

in horizontal or vertical-edge areas. This is done by considering 
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TABLE 4-1 

FRACTIONAL VALUES OF LOW, MEDIUM, AND HIGH DETAIL 

AREAS IN PICTURES 

PIX LOW DETAIL MED DETAIL HIGH DETAIL 

MOON 

CHECK 

KAREN 

AERIAL 

0.04 

0.48 

0.30 

0.06 

0. 71 

0.30 

0.40 

0.33 

0.25 

0.22 

0.30 

0.61 
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H(X) and V(X), the sums of vertical and horizontal pixel differ­

ences in the neighborhood A(X) of X . The pixel X is classified 

in 

Horizontal-edge-area if H(X) > V(X) 

or Vertical-edge-area if H(X) ~ V(X) • 

In PHOTO #24 we "paint" these areas over the original as white and 

black respectively. 

Still further subdivision can be made by considering the pixels 

for which 

IH(Xl - V(Xll < 10% 
H(X + V(X - 0 

and grouping them in +45° or -45° slope areas. We present these in 

PHOTO #25 in dark black and white shades respectively, superimposed 

over the original. Since the total fraction of such pixels is very 

small, we shall not use such a fine subdivision in our encoding 

schemes. 

4.2 Encoding 

Similar to the nonadaptive case, the first step in designing 

an adaptive encoding scheme would be to investigate effectiveness of 

the various predictors in the three areas. In area 3, however, we 

have one more predictor available. In this predictor, referred to as 

(8,9), in the vertical edge area prediction is done by 

Pred #8: X = (3E-B)/2 

while in the horizontal edge area we use 

Pred #9: X = (31-H)/2 
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As was done in Chapter 2, based on the original pictures we measure 

MAX and VAR of the prediction errors in the three areas. The average 

of these quantities, taken over the four originals has been plotted in 

Figs. 4-2, 4-3, and 4-4 for areas 1, 2, and 3 respectively. From these 

figures, as shown in Table 4-2, we determine Pred #'s 5, 24 and (8,9) 

to be the best for the three areas. respectively. For these predictors 

the values of MAX and VAR for KAREN have been tabulated in Table 4-3. 

Notice a reduction in both the values as compared to the nonadaptive 

case (Figs,. 2-2 and 2-3). The prediction error picture and the corres­

ponding histograms for the three areas have been presented in PHOTO #'s 

26-29. See also the PHOTO-KEY. 

Next, for each area, we choose the value of the power "n" in 

the distortion criteria and ddesign the quantizer using prediction 

error statistics of that particular area using algorithm Al of Chapter 

3. Now the encoder has three predictors and three quantizers. Thus, 

to encode the pixel X , it uses the available reconstructed picture to 

decide which area X belongs to, and then it uses the appropriate pre­

dictor and the quantizer to encode the pixel. From here on we shall 

denote the adaptive predictor by Pred # a1SIY where Pred #'s a, Sand 

y are used in areas l, 2, and 3 respectively. We shall adopt similar 

notation for the number of quantizer levels and the value of "n" also. 

By doing adaptive encoding, since we are making use of the local 

variations in the picture, we hope to improve the picture quality and 

we also hope to reduce the entropy by treating the three areas of the 

picture differently. To see how much improvement in the picture 

quality is achieved by quantizing the three error signals differently, 
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TABLE 4-2 

CHOICE OF PREDICTORS BASED ON ENSEMBLE AVERAGES 

FOR ADAPTIVE PREDICTION 

AREA 

l 

2 

3 

* . 

PRED # 1s 

* 25,23,16,24,5 

21,25,5,23,24 

21,23,25,24,(8,9) 

In order of increasing preference 
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TABLE 4-3 

ADAPTIVE PREDICTION ON KAREN--MAX AND 

VAR OF PRED. ERRORS 

AREA . PRED # 

1 5 

2 24 

3 ( 8 ~9) 

Total 

MAX 

29 

64 

67 

67 

VAR 

11 

41 

140 

60 



-69-

we used Pred # 23123123 and 91919 level quantizer with n = 61616 to 

encode KAREN ( See Tables 4-4 and 4-5). The qua 1 ity of this picture 

(rated 9) is better than the one obtained by nonadaptive encoding with 

Pred #23, 9-levels and n = 6 (rated 8). The main difference is in 

smooth rendition of the hair region which was quite "grainy" in the 

nonadaptive case. However, the entropy has increased by about 0.19 

bits/pixel. Now to reduce the entropy we have two alternatives avail­

able to us (1) we can reduce the number of levels in the three quan­

tizers, or (2) we can use still higher values of n to design the 

quantizers. It is clear from the discussion in Chapter 3 that the 

. second approach has al ready reached a state of dimini-shing returns as 

we are using "n" as high as 6. Therefore, we turn to U·2 fi rst alter­

native and use 91917 level quantizers. The entropy does reduce to 

1.751 but the picture looks grainy near the eye region due to coarse 

quantization. This forces us to retain more than 7 levels in area 3 

but we can drop two levels each in areas l and 2, obtaining 71719 

level quantizers. Entropy goes down to 1.767 while there is no visi­

ble deterioration in the picture. Then we introduce the Pred # 

5124124 fo1 ·1owed by# 51241(8,9). With the latter one we obtain a 

1 . 683 bit/pi xe 1 picture with out 1 os i ng any addi ti ona l picture quality. 

This is due to low values of MAX and VAR with Pred # (8,9) in area 3. 

Now we reduce the number of quantizer levels to 41718 and 41618 to 

obtain 1.514 and 1.452 b~ts/pixel pictures, respectively. The quan­

tizers are given in Table 4-4, while the encoded pictures are shown 

in PHOTO #'s 36 and 37. In both these pictures, the hair and the edge 

reproduction is quite good, while the cheek region is somewhat granular. 
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TABLE 4-4 

* Representative Levels of Quantizers for Adaptive 

Pict. 

KAREN 
CHECK 
MOON 
AERIAL 
ENSEMBLE 

KAREN 

CHECK 
MOON 
AERIAL 
ENSEMBLE 

KAREN 
CHECK 
MOON 
AERIAL 
ENSEMBLE 

Encoding with Pred # 5/24/(8,9) and n = 6/6/6 

A. Area l 

# of Levels 

4 

4 

4 

4 

4 

B. Area 2 

6 

6 

6 

6 

6 

C. Area 3 

8 

8 

8 

8 

8 

Representative Levels 

3, 16 

4, 33 

5, 23 

6, 38 

4, 31 

4, 25, 50 

6, 26) 58 

6, 26, 57 

9, 38, 80 

6, 29, 74 

7, 29, 58, 96 

4, 16, 34, 59 

6, 21, 45, 80 

9, 33, 63, 103 

7, 26, 52, 92 

In view of Eq. I, Sect. 3.1, we omit the input thresholds. Also, 
because of symmetry, only positive half of the quantizer is pre­

sented. 
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TABLE 4-5 

ENCODING KAREN 

n = 6/6/6 IN AREAS 1/2/3 

PRED #Is # OF QUANT . SUBJECTIVE 
LEVELS ENTROPY E VAL U/\TI ON 

AREA l AREA 2 AREA 3 TOTAL 

23/23/23 9/9/9 1.667 l • 714 2.208 1.845 9 

II 9/9/7 1.659 L72l l .887 l .751 6 

II 7/7/9 1.639 1.546 2.202 l. 767 9 

5/24/24 II 1.632 1.540 2.200 l. 760 9 

5/24/(8,9) II 1.640 1.544 l. 917 1.683 9 

II 4/7/8 1. 173 1.562 l. 799 1 • 514 8 

II 4/6/8 l. 183 1.400 l .801 1 .452 8 

II 4/6/8 * 1.071 1 • 194 1.803 1 .306 6 

* Quantizer based on ensemble statistics 
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These pictures have been given a rating of 8. 

Next, we take combined statistics of the prediction errors with 

Pred # 51241 (8,9) from all the originals in the three areas. This is 

used to design the "ensemble quantizer" with 41618 levels (Table 4-4). 

Such a quantizer could be used to encode any of the four pictures in­

c"luded in the ensemble. We used it to encode KAREN. The resulting 

picture as shown in PHOTO #38 has entropy of 1.3 bits/pixel. It ap­

pears more grainy in the face region than the previous two, while 

edge reproduction in it is quite good. Notice that in this case the 

subjective quality has dropped from 8 to 6 in going from the "indivi­

dual" quantizer to the "ensemble" quantizer, while in . the case of 

nonadaptive encoding the drop was from 8 to 4 (Table 3-1). 

We summarize the above discussion by noting that the use of 

adaptive quantizer (with nonadaptive prediction) yields better picture 

quality than otherwise. Along with adaptive prediction, we can reduce 

the entropy of the encoded picture by reducing the number of levels in 

the quantizers without much deterioration in the picture quality. The 

number of levels could be reduced much more in the low detail areas 

than in the high detail ones. Furthemiore, adaptive encoding schemes 

enable us to design "ensemble" quantizers that may be used to encode 

a given class of pictures such that the encoded pictures are subjec­

tively acceptable. 
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APPENDIX B 

In this appendix we present proofs of the basic expressions 

behind extrapolative and interpolative type of predictors. The under­

lying concepts are Lagrange interpolation and Taylor series expansion 

* which could be found in any standard text on Numerical Analysis. For 

the sake of illustration we shall discuss third order predictors only as 

the first, second and fifth order ones can be derived in an an analogous 

fashion. 

B.l Third Order Polynomial Extrapolation and Interpolation 

X X X X X 

Suppose we are given that a function f(x) assumes the values 

f
0

, f
1

, f
2 

and f
3 

at points x
0

, x1, x2 and x3 respectively. This 

allows us to find a unique third degree polynomial p(x) passing 

through the four given points. Thus the third order extrapolated 

value of the function f(x) to the point x4 is given by p(x4). 

Let us assume that X; 's are uniformly spaced with spacing h 

between them, i~e., 

x. - x. l = h , 
1 1 -

Then the third degree polynomial is given by 

* See, for instance, Isaacson and Keller, Analysis of Numerical Methods 

(John Wiley, 1966). 
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where <Pi(x) have the property that 

0 if i ; j 
cp.(x.) = 

1 J 
1 if i = j 

and they are given by 

For example, 
(x-x

0
)(x-x1)(x-x3) 

= --.-----.--..--.--.----
( x 2 - x o) ( x 2 -x 1) ( x 2 -X 3) 

Note that 

while 

0 ~ i ~ 3 
O~j~3 

for i = 0,1 and 3. 

Using this formulation we need cpi{x4) ·for O < i < 3 to 

compute p(x4)._ For example, 

Similarly we obtain 

Therefore, we obtain the expression for Pred #13 as 

, 
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which has error of approximation O(h4) if f( 4)(x) exists. For de­

tails on the error tenns, see the reference· cited in the beginning of 

this appendix. 

Now to derive the basic expression for Pred #23 assume that f ' 0 

f 1, f 3 and f4 are given. Then the interpolated value of f(x) at x2 
can be computed by forming another cubic q(x) passing through x

0
, x1 , 

x3 and x4 using Lagrange interpolation as discussed above. This 

yields the interpolated value as 

which is the same as Eq. I of Sect. 2.2. This approximation also has 

error tenns of 0(h4). 

B.2 Deriving Expression for Pred #14 

In this section we derive the expression for Pred #14. Suppose 

we know f;, i ~ 3 , then expand f(x) in Taylor series about x3 to 

obtain 

where we retain only up to second order terms. Now approximate the 

derivatives by finite differences of the function f(x) as 

f'(x2) ~ ~ (f2- f 1) 

f'(x 3) ~} (f3- f 2) , 

f II ( X 3) ~ * ( f I ( X 3) - ft ( Xz) ) 

'v 1 
=2(f3-2f2+f1) . 

h 
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Substituting these in the Taylor expansion we obtain 

The expression for Pred #15 can be derived in a similar way. 

B.3 

In Sect. 2.2 we gave a derivation of Pred #17. Here, we shall 

use the same nomenclature and derive expressions for Pred #'s 16 and 

18 also. With reference to Fig. 271 we can write 

X ~ {-H + 4I + 4a - S)/6 . (r ) 

In addition, let us also approximate a and S using Pred #21 as 

I'\, 

a = {X + K)/2 (II) 

and 
S;; (a+ L)/2 {III) 

Equations I, II and III are solved sim~ltaneously to obtain Pred #16 

as 
A 

X = (-4H + 161 + 7K - 2L)/17 

To obtain Pred #18 we use expression for Pred #23 to approxi­

mate a and 8 as 

a ~(-1+4X+4K-L)/6 (IV) 

and 
S t'\, ( - X + 4a + 4L - M) / 6 , (V) 

which are solved together with Eq. I, to obtain 
A 

X = (-18H + 621 + 40K - 22L + 3M)/65 . 
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APPENDIX C 

In this appendix we discuss the third order entropy of digitized 

and sampled pictures. We also present the algorithm to make the demon­

stration picture (PHOTO #39) mentioned at the end of Sect. 2.4. 

C. 1 

Let X, Y, Z denote the genera 1 trip 1 et of three consecutive 

pixels in the picture. Then the third order entropy is 

· H ( Z I X, Y) - - l p ( i , j ,-k) 1 og p ( i , j , k) 
i ,j, k 

+ l P ( i ,j) 1 og P ( i , j) 
i ,j 

= H(X,Y,Z) - H(X,Y) 

where p's are joint probability distributions and H's denote entropies. 

In order to carry out the measurement of H(ZIX,Y) on a given 

picture we count the number of occurrences n(i ,j,k) of the triplets 

(i ,j,k) in which X,Y,Z assume values i,j,k respectively. In our 

case i, j and k can take on values between O and 255 for 8 bit PCM 

pictures. Then, letting N (=256x254 ~ 210 ) be the total number of 

triplets encountered in the picture, we make the assumption 

( .. k) ~ n(i,j,k) p , ,J' N ( I) 

Now, since i, j and k can assume 28 values each, there could 

be 224 possible triplets. But out of these 224 possible triplets we 

can observe at most about 216 , which constitute a very small fraction 
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(~ -1 ) of the sample space. This implies that the probability as-
28 

signments made according to Eq. I are necessarily at fault. This is 

so because in a probability experiment, for the relative frequencies 

to be close to their respective probabilities, it is necessary that 

the number of trials be at least as many as the total number of out­

comes. (Consider the case of throwing a dice only 3 times and trying 

to assign probabilities based on the relative frequencies.) 

To illustrate the point we have constructed the "random picture" 

PHOTO #39·in which 

Hence 

and 

1. all the 256 pixel values occur equally frequently, i.e., 

H(X) = 8 bits/pixel, 

2. all the 216 doublets occur equally frequently, i.e., 

H(X,X) = 16 bits/doublet, and 

3. all the 216 triplets in it are distinct, i.e., H(X,Y,Z) = 

16 bits/triplet. 

H(YjX) = H(X,Y) - H(X) = 8 

H(ZIX,Y) = H(X,Y,Z) - H(X,Y) = 0 

The measurements show that H(YIX) is 7.994 instead of 8. This 

is because irleally the picture should have had 256x258 pixels, but 

PHOTO #39 has only 256x256. Construction of such a picture has been 

described in the next section. 
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Such situations can be avoided if we make sure that the number 

of triplets (~ M2 for Mx M picture) in the -picture is at least as 

large as the total number of possible triplets (= 23n for n-bit/pixel 

picture). This would be the case if 

We present this relation in tabular form below. 

n Smallest Picture Size for 

(# of bits/pixel) H(ZIX,Y) Measurement 

8 4096 X 4096 

7 2048 X 2048 

6 512 X 512 

5 256 X 256 

4 64 X 64 

According to this table, for 256 x256 pictures we should not 

have more than 5 bits/pixel for the third order entropy measurement to 

be meaningful. 

C.2 

In this section we show how to make the demonstration picture 

PHOTO #39. Since intensities of pixels are represented by integers, 

we can use the terms "table of integers" and 11 picture" interchangeably. 

- * Let us consider pictures with n bits/pixel, where n is even , 

i.e., n = 2m 

* For odd n, the resulting table is not sq·uare, but the conclusions of 

Sect. C.1 are still valid. 
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total number of triplets = 26m 

total number of doublets = 24m 

Thus, using integers from Oto (22m_ 1), we propose to 

make a table of numbers in which all the 24m possible doublets occur 

only once and no triplet is repeated. The size of such a table would 

be 22m x (22m+ 1). Note that for an 8-bit picture, i.e., m = 4 , 

this corresponds to 256x257. 

The following observation will be useful. 

· Lemma l: In the table of numbers mentioned above, if all the doublets 

are distinct, so are all the triplets. 

Proof: Suppose there are two triplets (a1,a2,a3) and (b1,b
2

,b
3

) 

that are identical. Then the doublets (a 1,a2) and (b1,b2) 

are also equal. This implies the result. Q.E.D. 

Because of Lemma l, we only have to fonn the table in which all 

doublets are distinct. We shall be working with the column of numbers 

given below and its cyclic permutations. 

c
0 

= ( 0, l , 2, • · · , 22m- 1 ) T 

where 11 T11 stands for transpose. We .also call it column O , meaning 

it is an upward cyclic shift of c
0 

by O places. Similarly, C. ' J 

or simply column j , would be obtained from c
0 

by cyclically shift­

ing it upwards by j places. For example, 

( 2m ) T c2 = 2 , 3, 4 , · · · , 2 - l , 0, l • 
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A column ·of pairs obtained by putting c2 after c
0 

will be called 

c2c
0 

or [2,0], i.e., 

[2,0] = 
2m T (2,0; 3,1; 4,2; ·••; 1,2 -1) . 

Similarly for other pairs. Thus we construct the sets C and S 

as 

and 

= set of all cyclic permutations of c , 
0 

S = {col umn pa i r [ i , j ] I 6 ~ i ~ /m -1 · 

= set of all column pairs c.c .. 
1 J 

Now note that the column pair [2,0] has the same pairs in it as 

[3,l], [4,2], etc., as they have been obtained by cyclic shifts of 

[2,0]. This observation allm\ls us to partition the set s in dis­

joint classes, such that column pairs belonging to the same class are 

cyclic shifts of each other. This is done by putting an equivalence 

relation on the set S , defined by 

[i ,j] and [k,£] are related to each other iff, 

1) they are cyclic shifts of each other, 

or 2) (i - j) = (k- £)(mod 22m) . 

Thus .we obtain 22m equivalent classes named e
0

,e1,··· '\2m_
1 

• 

The name e. of the jth class is derived from the fact that 
J 

[Q,j] Ee. 
J 
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At this point we give an example for m = l . We have 

T co= (0,1,2,3) , 

and S has 16 column pairs in it, which are divided into four equiva­

lent classes as follows: 

eo el e2 e3 

[0,0] [0,1] [0,2] [0,3] 

[1 , 1] [l , 2] [l ,3] [1 ,OJ 

[2,2] [2,3] [2,0] [2, l] 

[3,3] [3,0] [3, 1] [3,2] 

The rest of the discussion we shall present through this example 

for simplicity. · We make a 4x5 table of numbers with the desired prop­

erty in the following steps: 

1. Pick any permutation of symbols e
0

, e1, e2, e3 say, we pick 

2. We shall translate this into a sequence of column numbers as fol­

lows. First replace e1 by any one of its members, say by [2,3]. 

Then the sequence becomes 

Then choose the member of e2 which has the fonn [3,*]. This will 

be a unique choice, which in this case is [3,l]. Replacing e2 by 

the second column number which is 1, we get 
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Next we replace e3 by O to obtain 

2,3,l,O,e
0 

and finally 

2,3,l ,O,O 

Note that these numbers refer to column numbers. 

into the table as follows: 

c2 C3 cl co co 

2 3 l 0 0 

3 0 2 1 l 
0 1 3 2 2 

1 2 0 3 3 

In general we shall choose a sequence of ej's 

They translate 

of length 2 2m 

which will translate into a sequence of column names having length 

22m+l. This, in turn, will yield a table of size 22m x (22m+l). 

That there is no repetition of doublets in such a table follows 

from 

e. n e . = ¢ 
1 J 

for i 1 1 

In addition, the table has 24m doublets, each of which occurs only once, 

as there are only 24m total number of them. This completes the des­

cription of our method. 

We give another example for m = 2 , i.e., 4-bit/pixel picture, 

for which 

c
0 

= ( 0, 1 , 2 , 3 , 4 , 5 , 6 , 7) . 

The sequence of ej's used is 
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e
0

,e1,e7,e2,e6,e3,e5,c4 ' 

which converts into the following sequence of column numbers 

0, 0, l ' o, 2, 0, 3, 0, 4 . 

The tabu 1 ar form of this is 

co co c, co c2 co C3 co C4 

0 0 1 0 2 0 3 0 4 

1 1 2 1 3 1 4 1 5 

2 2 3 2 4 2 5 2 6 

3 3 4 3 5 3 6 3 7 

4 4 5 4 6 4 7 4 0 

5 5 6 5 7 5 0 5 1 

6 6 7 6 0 6 1 6 2 

7 7 0 7 1 7 2 7 3 

For PHOTO #39 we used m = 4 and 

whose column numbers are 

o, 0, 1, o, 2, o, 3, 0, , 0, 128. 
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APPENDIX D 

In this appendix we derive Eq. I, Sect. 3.1, and then we dis­

cuss extension of Max's condition to the case of "mean nth power" 

distortion criterion. 

D. 1 

Recall from Sect. 3.1, that the discrete variable x , input 

to the quantizer Q , assumes only integral values, and that the input 

thresholds for the N-level quantizer are x1, x2 , ···, XN+l such that 

and 

Then the representative levels 

for 

V 's are such that k 

and 1 < k < N . 

Let us, for our discussion here, write the distortion as 

where f(~) is a strictly monotone increasing function for ~ > 0 , 

and 

(I) 

Note also that X 'sand V 's are also integer valued variables. We k k 

prove the main result in two lemnas. 
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Lemma 1: For D to be minimum we must have 

(I I) 

for 1 ~ k ~ N • 

Proof: Note that D is the sum of N tenns of the fonn 

each of which is minimized only when Eq. II is satisfied for 

the particular value of k . . This is so because if 

Yk > Xk+l or Yk ~ Xk then the value of Dk can be reduced 

by respectively reducing or increasing the value of Yk as 

f is an increasing function satisfying Eq. I. 

Q.E.D. 

Lemma 2: Given the values of Yk's, a necessary condition for D to 

be minimum is 

(III) 

for 2 ~ k .:s_ N , where the square brackets indicate the largest inte­

ger smaller than the quantity inside them. 

Proof: We shall need the following property of local minimum of a 

function of discrete variable. 

Let F be a function of a discrete variable sn 

Define the forward difference of F at a point ~n as 

Then sn is a point of local minimum of F if the 
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following two conditions hold. 

1. L\(sn) > 0 , and if Msn) = 0 , there exists a smallest 

positive integer N1 such that L\(s +N) > 0. 
n l 

2. L\(s 
1

) < 0, and if L\(s 1 ) = 0 , there exists a n- n-
smallest positive integer N2 such that L\(sn-N ) < 0 . 

2 

Here we consider D as a function of N-1 independent variables 

x2 , x3 , ···, XN. Then its forward difference along the kth 11 axis 11 is 

where we have made use of the fact that Xj's assume integer values. 

Substituting for D we obtain 

and 

Now, under the additional assumption that p(s) t 0 for all ~, 

we see that 

and 

as f is a strictly monotone function, and Yk-l < Yk. Therefore, 

applying properties l and 2 stated above we obtain 
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IXk+l - Yk_11 > 1xk+1 - Ykl 

Then application of Lemma l yields 

and 

That is, 

and 

which is the same as 

[
yk-

2
1+ yk] 

Xk = 

The condition that p(~) f O for all ~ is very easily relaxed 

by observing if we allow p(~) to be zero for some ~ then there 

exist integers m and n such that 

m ~ 0 , n > 0 , 

p(Xk+ m + 1) f O , ~k(Xk+ m) > 0 

and 
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Similar to the previous case, we obtain 

and 

which also yield the desired result. 

Q.E.D. 

D.2 

In this section we present extension of Max's condition to the 

· case of "mean nth power" distortion criterion. Let us assume that x, 

andYk's 

is given by 

are all continuous variables in which case distortion 

Then, one necessary condition which is also counterpart of Eq. 

I, Sect. 3.1, for D to be minimum is 

as given by Max [17]. Proof of this condition is valid even if 

Ix - Ykln is replaced by f(x - Yk) in the expression for D , where 

f is a monotone increasing function sattsfying Eq. I. The second 

condition given by him was for the case n = 2 which is generalized 

in the following. 

We shall need the following result in the main proof. 
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Lemma 3: 

Suppose f(x,y) is differentiable with respect to y , and 

that f(x,y) and fy(x,y) both are continuous functions integrable 

with respect to x over all intervals of interest for all fixed 

values of y . Let 

y 

F{y) = f f(x,y) dx , 

a 

Then F is differentiable with respect to y and 

FI (y) -- y_J 

a 

Proof: We shall investigate the following as h + 0 . 

y+h y 
F{~+h) - F(~} - 1 

J f(x,y +h) dx -} f f{x,y) h - h 
a a 

dx 

y y+h 
= J f(x,y+ h\- f(x,y) dx + J f(x,y+ h) dx . 

a Y 

Then, by mean value theorem for integrals 
y+h 

~ J f(x,y +h) dx = f(i;,y+ h) (y+ h~ - y for y < i; < y+h 

y 

which goes to f(y,y) as h + 0. 

In addition to this, since f(x,y+~\- f(x,y) +fy(x,y) as 

h + 0 we see, for sma 11 enough h and s < 1 , 
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l
f{x,y+h\- f(x,y)I If ( )I 1 - y X ,y < E: < • 

That is, for fixed y , 

I 
f{x,y+h)h- f(x ,y) I I ( ) I :5.. l + f y X ,y 

and by dominated convergence theorem we get 

YJ y f(x,y+h)h- f{x,y) dx + J fy(x,y) dx as h + 0. 
a a 

Corollary 5: For 
a 

F(y) = J f(x,y) dx 
y 

a 

F'(y} = f fy(x,y) dx - f(y,y) 
y 

Now we present the necessary condition. 

Lemma 6: 

A necessary condition for D to be minimum is 

Xk+l 
f n-1 p(x) dx = Yk jx - Ykl p(x) dx 

for 1 ..:s_ k ..:s_ N , n > 1 • 

For even n , i.e., n = 2m, it could be rewritten as 

m ~ 1 , 

Q.E.D. 
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which reduces to Max's condition for m = 1 • 

For odd n , i.e., n = 2m+l, it becomes 

Proof: 

For n = 2m we can write D as 

Then 

yields the result. 

For n = 2m+l we write Dk as 

D -k -

m > 0 

2m+l 
( X - Y k ) p ( x ) dx • 

Then using Lemma 4 and Corollary 5 we obtain 
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Xk+l (x -

J 
Xk Ix -
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y k 

- - (2m+l) J 
Xk 

Xk+l 
+ (2m+l} f 

yk 

y )2m+ 1 
k p(x) dx = 

Ykl 
0 m~O 

Q.E.D. 

We feel that in Max's algorithm [17], to design the quantizer, 

enforcement of above conditions for general n will be quite cumber­

some and therefore we resort to a different algorithm presented in Sec. 

3.1. We make this algorithm efficient by making use of the discrete 

nature of the input variable x , as integer arithmetic on digital 

computer is much faster than floating point arithmetic. 




