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ABSTRACT

Micro air vehicles (MAVs) face stability issues, especially as they continue to
decrease in size. A spinning disk is inherently robust to external disturbances due
to its spin stabilization, and therefore is a potential design for stable MAV flight.
However, controlled flight of a spinning disk requires a detailed understanding of
the underlying flow structures that determine the aerodynamic behavior. A spinning
disk acts to rotate and propel nearby flow tangentially outwards, while drawing in
fluid from above. In this way, spin acts as an additional source of both angular
and linear momentum from the disk’s surface, which can alter the wake structure
significantly. In this thesis, we explore how spin affects the aerodynamic forces
on a disk and characterize several instabilities that occur. To this end, we use the
immersed-boundary Lattice Green’s function (IBLGF) method to simulate flow over
a spinning disk at angle of attack for Reynolds numbers of $ (102) and tip-speed
ratios (non-dimensional spin rate) up to 3.

At these Reynolds numbers, the steady flow first undergoes a bifurcation associated
with wake instability, giving rise to vortex shedding. Increasing tip-speed ratio
leads to monotonic increases in both lift and drag, although the lift-to-drag ratio
remains fairly constant. We also identify several distinct wake regimes, including a
region of vortex-shedding suppression, and the appearance of a distinct corkscrew-
like short-wavelength instability in the advancing tip vortex. To understand the
mechanism leading to suppression of vortex shedding, we study the streamlines and
vortex lines in the wake. We show that the vorticity produced by the spinning disk
strengthens the tip vortices, inducing a spanwise flow in the trailing edge vortex
sheet. This helps to dissipate the vorticity, which in turn prevents roll up and thus
suppresses vortex shedding. For the short-wavelength instability, we use spectral
proper orthogonal decomposition (SPOD) to identify the most energetic modes
and compare it to elliptic instabilities seen in counter-rotating vortex pairs with
axial flow. The addition of vorticity from the disk rotation significantly alters the
circulation and axial velocity in the tip vortices, giving rise to elliptic instability
despite its absence in the non-spinning case. We also observe lock-in between the
frequency of the elliptic instability and twice the spin frequency, indicating that
disk rotation acts as an additional forcing for the elliptic instability. Many of these
phenomena are consistent with observations in high Reynolds number studies and
for other bluff body geometries. As a result, the mechanisms proposed here may
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serve as a basis for understanding and predicting the changing wake structures in
more complex flow configurations.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation: Spinning disks as micro air vehicles
Micro air vehicles (MAVs) face stability issues in the presence of gusty winds, espe-
cially as their size is scaled down (Pines and Bohorquez, 2006). Several authors have
studied spinning-disk flight and suggested its application to MAV design (Potts and
Crowther, 2002; Lorenz, 2007; Stilley and Carstens, 1972). An example of spinning
disks is the recreational Frisbee, which leverages spin-stabilization to achieve robust
flight when subject to environmental disturbances (Potts and Crowther, 2002). In
addition to the spin dynamics, a spinning disk in an otherwise quiescent fluid rotates
and propels fluid outward near the disk surface, drawing in fluid towards the disk
surface from above, creating a swirling flow towards the disk. This means that the
disk injects both linear and angular momentum into the flow, modulating properties
in the wake. Beyond spinning disk flight applications, wall-flush-mounted rotating
disks (Ricco and Hahn, 2013) and rotating rings (Olivucci, Ricco, and Aghdam,
2019) in turbulent channel-flow configurations can reduce drag by up to 20%. Mun-
day and Taira (2018) applied a similar concept using swirling jets, which also inject
linear and angular momentum into the flow, to suppress flow separation. These
provide examples where rotating disks can potentially be used in flow control.

However, applications in flight and flow control require a thorough understanding
of the effect that spin has on the spinning-disk aerodynamics, instabilities and wake
structures. Despite these applications, flows over spinning disks have not been
thoroughly investigated, perhaps owing to the large parameter space spanned by
three main non-dimensional parameters: Reynolds number, Re, angle of attack, U
and tip-speed ratio (TSR), _. We define the Reynolds number as

Re =
d*�

`
, (1.1)

where d is the fluid density, * is the freestream velocity, � is the disk diameter,
and ` is the dynamic viscosity. The tip-speed ratio (TSR) is the ratio between the
disk-edge velocity and the freestream velocity, and can be written as

_ =
Ω'

*
, (1.2)
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where Ω is the disk angular velocity around its axis of rotational symmetry, and '
is the disk radius. Further parameters are associated with the disk’s cross section
including an aspect ratio j = �/C3 , where C3 is the thickness, for the case of a rectan-
gular cross section; camber, for a curved disk (e.g. a Frisbee); and edge shape/rim.
We can also define a rotational Reynolds number Re><460 = dl'�/` = _Re
using the disk edge velocity instead of the incoming flow velocity. This measure
of rotation remains valid for * = 0, unlike _. Note that for the simulations in this
thesis, we model the disk as an infinitely-thin disk using a single layer of immersed
boundary points, with some caveats that are discussed in section 2.3.5. Each of these
parameters acts as a bifurcation parameter in the flow, leading to a complex and
multi-dimensional space of flow regimes. The flow configuration and parameters
are depicted schematically in figure 1.1.

In this study, we focus on Re = $ (102), where the flow initially bifurcates. While
this regime is not typically reached even for the smallest MAV, instabilities clearly
identified in this regime may persist to high Reynolds number, albeit modulated
by further bifurcations and ultimately the emergence of turbulence. Such behavior
is common to many bluff-body and aerodynamic flows, for example the vortex
shedding first occurring in two-dimensional flow over a bluff body at Re ≈ 50
persists in this way as Re → ∞. In addition, as a canonical flow, a spinning disk
at these low Re may be applicable to other applications, for example as wall-flush-
mounted actuators flow drag reduction as mentioned above (Ricco and Hahn, 2013;
Olivucci, Ricco, and Aghdam, 2019). Although these observations are made for
turbulent flows at much higher Reynolds numbers than those considered in this
study, some of the large-scale flow features share similarities, including the induced
wall-normal flow towards the rotating disk and the outward radial flow near the disk
surface (Olivucci, Ricco, and Aghdam, 2019). The ability of the rotating disk to
inject linear and angular momentum into the flow with a net-zero mass flux may be
desirable for flow-control applications, as this allows for the generation of a various
distributions of spanwise and streamwise velocity perturbations when usingmultiple
rotating disks (Keefe, 1997; Keefe, 1998).

1.2 Experimental studies of flow over Frisbee-like spinning disks
Past studies of spinning-disk flight at angle of attack consist of experimental studies
of Frisbee-like geometries with camber and rims, performed at Re = $ (105) to
match realistic Frisbee-flight Reynolds numbers. Potts and Crowther (2001; 2002)
experimentally investigated spinning-disk flight at Re = $ (105), −10° < U < 30°
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(a) (b)

(c)

Figure 1.1: Schematic of setup for (a) top view, (b) side view and (c) upstream view.
The freestream velocity,*, is in the positive G direction.

and 0 ≤ _ ≤ 1.04, reporting various aerodynamic and moment coefficient data for
a Frisbee-like geometry. They found a negligible effect of spin on lift and drag
(2001), but found that spin has some effect on pitching moment, rolling moment and
side force coefficients (2002). Early studies of thick cylindrical disks (2 < j < 3)
by Stilley and Carstens (1972) similarly found that for _ < 1, spin has a negligible
effect on lift and drag coefficients. Potts (2005) compared aerodynamic forces and
moments for various Frisbee- and discus-like disk geometries. For TSRs above_ = 1
and up to _ = 3.46, Potts (2005) found that lift and drag could increase significantly
across a broad range of angles of attack from −10° to U = 30° (Δ�! ≈ 0.5 and
Δ�� ≈ 0.2). Potts and Crowther (2002) include some aerodynamic data for the
non-spinning flat disk against angle of attack, showing that lift and drag are lower
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compared to Frisbees which have a rim. However, the lift-to-drag ratio has been
shown to be higher for the flat disk compared to the Frisbee, motivating more
investigation into rimless disks for flight purposes (Yasuda, 1999; Lorenz, 2007).

Some investigations into the wake structure at Re = $ (105) have also been per-
formed. Higuchi et al. (2000) used PIV of flow over a cambered disk with a rim to
determine the circulation in the tip vortices and found that spin (_ = 0.8) could both
increase or decrease circulation depending on the angle of attack. Using smoke vi-
sualization of a Frisbee, Nakamura and Fukamachi (1991) observed that spin values
of _ = 2.26 significantly strengthened the tip vortices and increased downwash in
the wake, leading them to conclude that spin enhances lift. Overall these studies
suggest limited to no effect on lift and drag for _ < 1, but potentially large increases
for _ > 1.

Studies of inclined spinning disks have been restricted to high-Reynolds-number
flows for cambered disks with rims, and have been limited in their ability to examine
and visualize flow structures due to the complex, unsteady, 3D nature of the flow.
As a result, it is still unclear how spin affects the vortical structures and instabilities
present in wake, especially those originating as bifurcations at low Reynolds num-
bers. We turn to the more extensive literature on flow over non-spinning disks and
spinning disks in quiescent flow to extract some helpful background on some of the
expected flow regimes present for the combined spinning and translating disk.

1.3 Flow over non-spinning flat disks
The majority of studies on flow over disks have been conducted for flow normal to
a non-spinning disk (U = 90°). Several features of the resulting bifurcations with
respect to Reynolds number persist for inclined flow as well. For flow normal to
a thin disk (j > 10), Chrust, Bouchet, and Dusek (2010) summarize the differ-
ent bifurcations and resulting flow stages. As Re increases, the six stages are (i)
steady axisymmetric, (ii) steady planar-symmetric, (iii) periodic vortex shedding
with non-zero mean lift and loss of reflectional symmetry, (iv) periodic shedding
with zero-mean lift, (v) quasi-periodic shedding with a low frequency modulation,
and (vi) chaotic. Disk thickness can affect critical numbers and slightly modify
the intermediary stages (Meliga, Chomaz, and Sipp, 2009; Auguste, Fabre, and
Magnaudet, 2010).

Calvert (1967) was the first to look at the inclined disk, investigating the periodicity
of the vortex shedding. Frequency, pressure, and velocity in the wake measurements
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were performed for Re = $ (104) while smoke visualization captured the vortex
shedding at Reynolds numbers between 500 and 1, 000. From there, experimental
work by Humphries and Vincent (1976) for 2, 000 < '4 < 40, 000 studied the base
pressure and circulation bubble length as a function of angle of attack.

More recent studies by Chrust, Dauteuille, et al. (2015), Tian et al. (2017) and
Gao et al. (2018) closely examined the bifurcations for the inclined disk as angle
of attack is varied. Increasing angle of attack leads to many similar flow stages as
seen with normal flow, namely (i) steady planar-symmetric flow, (ii) periodic vortex
shedding, (iii) quasi-periodic shedding with low-frequency modulation (PSL) and
(iv) symmetry-breaking chaotic flow (Tian et al., 2017; Gao et al., 2018; Chrust,
Dauteuille, et al., 2015). Inclination immediately breaks axisymmetry and gives
a preferred alignment for vortex shedding (Chrust, Dauteuille, et al., 2015). The
first bifurcation is a Hopf bifurcation that maintains spanwise-planar symmetry
and transitions the flow from a steady state to a periodic wake with hairpin-vortex
shedding from the trailing edge (Chrust, Dauteuille, et al., 2015). Chrust, Dauteuille,
et al. (2015) mapped the critical Reynolds number of this Hopf bifurcation for
40° < U < 90°. Tian et al. (2017) identified further wake regimes that exist for
different angles of attack at Re = 500. With increasing angle of attack, the flow
transitions from steady, to periodic vortex shedding, to periodic with low-frequency
modulation, to quasi-periodic, and finally to chaotic. The periodic state with low-
frequency modulation (PSL) regime corresponds to a strengthening and weakening
of the vortices shed from the disk, reflected in the growing and lessening amplitude
of lift and pressure signals. Gao et al. (2018) conducted a thorough Re-U parameter
study for 50 < Re < 300 and 10° < U < 90°, mapping out the boundaries between
these flow regimes. Overall, increasing angle of attack and increasing Reynolds
number lead the flow from steady to the chaotic state, passing through different
stages in the intermediate periodic states depending on the exact configuration (Tian
et al., 2017; Gao et al., 2018).

Chrust, Dauteuille, et al. (2015) also compared the infinitely thin disk (j = ∞) to
a case with a finite thickness (j = 6) and showed that for high angles of attack
(U ' 50°), increased thickness delays the Hopf bifurcation to higher Reynolds
numbers. However, this effect seems to reverse for low angles of attack (U / 40°),
with thicker disks reducing the critical Reynolds number instead (Chrust, Dauteuille,
et al., 2015; Gao et al., 2018).

Overall, these inclined disk studies are extensions of studies of the normal flow case
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(U = 90°), and they focus primarily on high angles of attack (U ≥ 30°). While these
studies serve as a good basis for comparison, for flight purposes, we are ultimately
interested in lower angles of attack up to about 30° for optimal lift-to-drag ratio.

1.4 Spinning disks in quiescent flow
Flow over spinning disks in quiescent flow have been extensively studied, starting
with vonKármán (1921), who developed a similarity solution for flowover an infinite
spinning disk, with some corrections by Cochran (1934). The disk rotation propels
fluid tangentially outward near the disk surface and thus pulls in fluid from above the
disk to replace it. This results in a swirling downward flow towards the disk surface,
which will play an important role in how the added linear and angular momentum
interacts with the rest of the flow for the translating case. For sufficiently high
TSRs, motion induced by spin dominates and the infinite disk solution represents
a reasonable approximation over the finite disk despite edge effects, even when
subjected to a parallel flow (aus der Wiesche, 2002). For more moderate TSRs, the
infinite disk similarity solution can serve as a qualitative description of the flow for
the finite disk.

1.5 Contributions and outline
In this thesis, we perform perform direct numerical simulations of the three-
dimesional, incompressible Navier-Stokes equations to explore the flow regimes
for the spinning disk at angle of attack. We vary TSR, Reynolds number, and angle
of attack, and analyze the changing wake structure in an attempt to uncover the
mechanisms leading to these bifurcations. We consider TSRs up to _ = 3, focusing
on the Re and U parameter space around the first bifurcations from steady flow.

The numerical formulation used to simulate the flow is further detailed and vali-
dated in Chapter 2. In Chapter 3, we investigate the aerodynamic forces and wake
structures as TSR is increased up to three and identify vortex-shedding suppression
and a short-wavelength instability. In Chapter 4, we further explore the stabiliz-
ing effect of spin on the vortex-shedding instability, and use streamline and vortex
line visualizations to understand the underlying mechanism. Next, in Chapter 5
we characterize the distinct short-wavelength instability that appears at higher tip
speed ratios, and use spectral orthogonal decomposition (SPOD) to isolate the most
energetic modes and compare them to elliptic instabilities. Finally, we summarize
our findings and present ideas for future work in Chapter 6.
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C h a p t e r 2

COMPUTATIONAL METHODOLOGY AND SETUP

2.1 Governing equations and numerical method
To simulate flow over a spinning disk, we use the IBLGF (Immersed Boundary
Lattice Green’s Function) method to solve the 3D incompressible Navier-Stokes
equations on a formally infinite domain (Liska and Colonius, 2017). The method
utilizes a standard second-order staggered-mesh finite-volume scheme, which, ow-
ing to the unbounded domain, leads to a number of useful commutative properties
that in turn lead to discrete conservation properties, provable stability, and an effi-
cient solution algorithm. The no-slip boundary condition at the immersed boundary
(IB) points is enforced implicitly at each step using a projection method. The as-
sociated Poisson equation is inverted, using the LGF, to predict the pressure in a
finite, adaptive region defined by a source that is nonzero only where the vorticity
is nonzero, which in practice means that it exceeds a certain user-defined threshold
value, n . Extensive details on the IBLGF formulation as well as extensive validation
for grid resolution, ΔG; temporal discretization, ΔC; domain adaption threshold, n ;
and IB point spacing, ΔB, are given by Liska and Colonius (2014; 2016; 2017).

The IBLGF method handles arbitrarily accelerating bodies by using an accelerating
reference frame that moves with the body. This results in zero velocity at large
distances. However, for a rotating body, this also results in a long downstream
grid that rotates as the body rotates, requiring small time-steps in order to satisfy
CFL conditions. For the present disk geometry, we take advantage of the disk’s
axisymmetry, which means that any rigid-body rotation about the axis of rotational
symmetry does not change the space occupied by the disk. This allows us to specify
velocities on the IB points that are consistent with its rigid-body rotation. This is far
more computationally efficient, as the highest relative velocity in the flow now scales
with* (1 + _) on the advancing side of the disk. In summary, the disk translation is
performed by translating the reference frame with the body, while the disk rotation
is handled by rigid-body boundary conditions on the immersed surface. Note that
the immersed surface does not translate relative to the flow grid. Physically, this
corresponds to a disk moving through quiescent flow, such that fluid velocity far
from the body is zero.
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In continuous form, the governing equations and boundary conditions are given by

mu
mC
+ (u · ∇) u = −∇? + 1

Re
∇2u +

∫
Ξ(C)

fΞ(b, C)X(X(b, C) − x)3b, (2.1)

∇ · u = 0, (2.2)∫
R3

u(x, C)X(x − X(b, C))3x = uΞ(b, C), (2.3)

where u(x, C) is the fluid velocity and ? is the pressure. The immersed surface is
parameterized by b, and uΞ(b, C) is the velocity across its surface. Equation 2.3
represents the no-slip condition on the immersed surface, with fΞ(b, C) denoting
the force density that is computed such that u(x, C) satisfies this condition, with
X(X(b, C) − x) as the delta function that regularizes the force onto the flow grid.
These equations are solved on an unbounded domain, resulting in a decaying far-
field boundary condition given by u(x, C) → 0 as |x| → ∞.

2.2 Numerical setup
Figure 1.1 shows the top, side and upstream views of the simulation setup. The
computational grid is fixed relative to the IB points. Disk spin is about the disk axis
of axisymmetry, defined as the H-axis for U = 0°, with positive rotation (_ > 0) in
the clockwise direction when viewed from above. Angle of attack is introduced by
rotating the flow vector relative to the grid. Throughout this thesis, the freestream
flow is in the positive G direction. For spinning cases, where _ > 0, one side of
the disk is advancing into the flow while the other side of the disk is receding away
from the flow, named the advancing side and receding side, respectively, as seen in
the upstream view in figure 1.1c. Note that although figure 1.1b denotes some finite
thickness, we model the disk as infinitely thin using a single layer of IB points. In
spite of this, by the nature of the regularization of the IB forces onto the flow grid,
there will be an apparent thickness, which will be discussed in more detail in 2.3.5.

2.3 Convergence studies
While the IBLGF method has been verified and subjected to convergence tests
extensively by Liska and Colonius (2017), it is necessary to select an appropriate
resolution for the current studies. In this section, we describe the four resolution
parameters: grid resolution, ΔG; temporal discretization, ΔC; IB point spacing,
ΔB; and domain adaption threshold, n . For each, we conduct a series of tests to
confirm the convergence and then select a value to use in the production simulations.
We evaluate the convergence of the disk aerodynamic forces for these resolution
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parameters for simulations at Re = 500 and U = 25◦. The lift, drag, and side force
coefficients are defined by

�! =
�!

1
2d*

2(
, �� =

��
1
2d*

2(
, and �( =

�(
1
2d*

2(
, (2.4)

respectively, where �! , �� , and �( are the corresponding dimensional forces in the
H, G, and I directions, respectively, d is the fluid density, and ( = c'2 is the disk
planform area. The rolling, pitching, and yawing moment coefficient are defined by

�"' =
"'

1
2d*

2(�
, �"% =

"%

1
2d*

2(�
, and �". =

".

1
2d*

2(�
, (2.5)

respectively, where "', "%, and ". are the corresponding dimensional moments.
These moments are defined relative to the disk geometry. Note that computational
length and velocity scales in the code are non-dimensionalized by the disk diameter,
�, and the freestream velocity,*, respectively.

2.3.1 Grid spacing, ΔG
Grid resolution comparisons by Liska and Colonius (2017) for flow over the flat
plate at Re = 300 and U = 30° showed a 4% difference in mean force coef-
ficients for ΔG/� = 0.025 when compared to finer resolution simulations with
ΔG/� = 0.015. To resolve the flow to a similar accuracy for different Reynolds
numbers, we maintain the value of (ΔG/�)Re1/2 within the same range, based on
the expected $ (Re−1/2) scaling of the laminar boundary layer thickness (Liska and
Colonius, 2017). Therefore, we select a nominal grid resolution of ΔG/� = 0.012
for simulations at Re = 500, which gives approximately the same (ΔG/�)Re1/2

value as for the fine case in the verification studies by Liska and Colonius (2017).
This gives approximately 83 grid points across the disk diameter.

To confirm the convergence at this grid resolution we compare force coefficients
between the base resolution, ΔG/� = 0.012 and a finer resolution, ΔG/� = 0.009.
The resulting mean lift and drag coefficients and their fluctuations are shown in table
2.1 for both _ = 0 (cases A1-3) and _ = 3 (cases B1-3). Cases A1 and B1 use the
base resolution (ΔG/� = 0.012), while cases AII and BII use the fine grid resolution
(Δ = 0.09). Note that for smaller grid spacing, the fractional adaptive threshold, n ,
is scaled such that the absolute adaptive threshold, n01B, is held constant, because
the maximum vorticity in the flow increases as the finer grid resolves flow closer to
the disk surface, where vorticity is greatest. This means that between cases A1/B1
and A2/B2, n01B is roughly constant.
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Case _ ΔG/� ΔC*/� n �! �� Δ�! Δ��

A1 0 0.012 0.004 5 × 10−4 0.565 0.376 0.013 0.003
A2 0 0.009 0.003 3.6 × 10−4 0.578 0.374 0.010 0.002
A3 0 0.012 0.004 5 × 10−5 0.561 0.374 0.015 0.003

B1 3 0.012 0.001 5 × 10−4 0.863 0.525 0.079 0.020
B2 3 0.009 0.00075 3.6 × 10−4 0.874 0.523 0.026 0.008
B3 3 0.012 0.001 5 × 10−5 0.866 0.526 0.079 0.020

C1 0 0.012 0.003 5 × 10−4 0.565 0.376 0.013 0.003
C2 0 0.012 0.004 5 × 10−4 0.565 0.376 0.013 0.003
C3 0 0.012 0.005 5 × 10−4 0.567 0.378 0.013 0.003

Table 2.1: Time-averaged lift �! and drag �� coefficients with different spatial
resolutions, ΔG/�, time step, ΔC and adaptive threshold, n . All simulations are
performed at '4 = 500 and U = 25°. Cases A1-3 and C1-3 are at _ = 0 and cases
B1-3 are at _ = 3. Cases A1, B1, and C2 correspond to the base resolution used
for the remaining data presented. Cases A2 and B2 are at a lower (more accurate)
adaptive threshold while cases A3 and B3 are at a finer mesh resolution. Cases C1-3
differ only by the time step value.

For the non-spinning case, results are well converged for ΔG/� = 0.012 (case A1).
Mean lift values are within 3% of those for the fine case ΔG/� = 0.009 (case A2).
The increased resolution leads to about a 20% decrease in lift oscillation amplitude,
denoting a weakening of vortex shedding. This discrepancy is in the third decimal
place. For the case of _ = 3, we see that the difference in mean lift is less than
2% between the two resolutions (cases B1 and B2). The discrepancy is mostly in
the fluctuation amplitudes, Δ�! and Δ�� , which vary in the second decimal place
(table 2.1). These error levels are in line with those from Liska and Colonius (2017),
except for larger variations in the coefficient fluctuations at _ = 3. We note that
the flat-plate convergence studies also show a decrease in fluctuation amplitude for
increasing grid resolution (Liska and Colonius, 2017).

To understand the discrepancy in the signal fluctuations, we analyze the power spec-
tral density of the lift signals. Figure 2.1 shows the PSD for these two different grid
resolutions, allowing us to differentiate between the frequency peaks that contribute
to the lift fluctuations. While the base grid-resolution case is dominated by a peak
at (C ≈ 0.5, associated with vortex shedding, the energy for the same peak is about
three orders of magnitude lower in the finer case. Both have peaks at a frequency
St ≈ 1.4, which we will later see corresponds to a short-wavelength, elliptic insta-
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Figure 2.1: PSD for '4 = 500, U = 25° and _ = 3 for grid resolutions of ΔG/� =

0.012 (left) and ΔG/� = 0.009 (right). The Nyquist frequencies are St = 500 and
St = 667, respectively. Note that H-axes are logarithmic. Frequency bin size differs
between the two plots.

bility. The energy, integrated from the PSD, of the (C = 1.4 peaks are within 5% for
both resolutions. This indicates that the discrepancy in lift fluctuation is accounted
for by the difference in vortex-shedding magnitude, while the energy of the short-
wavelength instability is preserved. We elaborate on this point in section 2.3.5,
where we discuss the effect of disk thickness on the vortex-shedding bifurcation
point.

2.3.2 Time step, ΔC
For all simulations, the time step is scaled based on the maximum relative disk-edge
velocity to freestream velocity using ΔC < ΔG

3 * (1 + _), which ensures that the CFL
number never exceeds one during the simulation. In practice, consistent with Liska
and Colonius (2017), the CFL number remains below 0.6 in the long-time simulation
after reaching a maximum of around 0.9 for the early time steps. For time steps
satisfying the CFL condition, lift and drag values are converged to at least the third
decimal place (see cases C1-3 in table 2.1. This is a result of the second-order
accuracy of the viscous integrating factor (IF) half-explicit Runge-Kutta (HERK)
time integration scheme used (Liska and Colonius, 2017).
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2.3.3 Immersed boundary point spacing, ΔB
As mentioned in section 2.1, the infinitely-thin disk geometry is represented by a
single layer of immersed-boundary points. These are generated using Distmesh, an
unstructured-mesh generator developed by Persson and Strang (2004). Distmesh
treats the IB points as a 2D lattice of unstructured points connectedwith spring edges.
The mesh-point positions are relaxed using a force-based smoothing method, opti-
mizing for uniform point spacing, while conforming to the circular disk shape. As a
result, the IB spacing is not uniform across all points but follows some distribution
with up to ±20% from the mean spacing. Figure 2.2 shows three different example
IB spacing distributions.

The distribution of IB point spacing in the disk mesh has implications for compu-
tational accuracy. Simulations by Goza and Colonius (2017) and Kallemov et al.
(2016) showed that ΔB/ΔG < 2 is sufficient to ensure body impermeability. In
addition, Liska and Colonius (2017) showed that ΔB/ΔG > 1 leads to an acceptable
condition number for the Schur complement operator used to solve the IB formu-
lation. When ΔB/ΔG / 1, the discrete Schur complement operator can become
non-singular leading to numerical instability (Liska and Colonius, 2017). We test
the convergence of the lift coefficient with different IB spacing and find that our
results are consistent with these claims. Figure 2.2 shows the distribution of IB point
spacing for different average IB point spacing, ΔB. Figure 2.3 shows the mean lift
coefficient for different average IB point spacing. For IB spacing distributions that
satisfy 1 < ΔB/ΔG < 2, mean lift values vary only in the third decimal place. For IB
distributions where some IB spacing fall beyond the acceptable limits, we see that
mean lift value start to differ to the second decimal place. Therefore, we ensure that
all IB point spacing throughout the mesh are restricted to the range 1 < ΔB/ΔG < 2.
Specifically, we use ΔB/ΔG ≈ 1.6 to minimize the number of IB points, and thus the
computational cost, without sacrificing accuracy. Figure 2.2 shows that the resulting
distribution allows all the grid spacing to comfortably satisfy 1 < ΔB/ΔG < 2. The
disk IB point geometry for ΔG/� = 0.012 contains 2585 IB points and can be seen
in figure A.1.

2.3.4 Adaptive domain threshold parameter, n
The computational domain adapts to regions of the grid that contain non-negligible
amounts of vorticity and/or the source term in the Poisson equation (Liska and
Colonius, 2016). Specifically, the adaptive threshold, n , is a fractional parameter
based on themaximum vorticity magnitude seen in the entire computational domain,



13

0.8 1 1.2 1.4 1.6 1.8 2 2.2

0

0.5

1

1.5

2
10

4

Figure 2.2: Histogram of IB point spacing for meshes with three different average
IB point spacing.
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Figure 2.3: Mean lift coefficient against average IB point spacing for Re = 500,
U = 25°, and _ = 0. The dashed line for ΔB/ΔG < 1.1 indicates that numerical
stability is poor and the simulations are ill-conditioned and may not converge. Note
that the simulation performed with ΔB/ΔG = 1.05 did not converge.
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and determines the amount of domain truncation. For example, for the vorticity term,
the domain adapts to include regions of the flow that satisfy:

| |8| | ≥ n01B = nmax
D
| |8| |, (2.6)

where 8 is the vorticity vector, n01B denotes the absolute threshold value for the
smallest vorticity magnitude values tracked, andD denotes the computational grid.
In practice, 0 < n < 1 where n = 0 means the computational grid would extend
infinitely (adaption to all values of vorticity). For simulations in this thesis, we use
n = 5 × 10−4, matching studies by Liska and Colonius (2017).

In table 2.1, we compare time-averaged lift and drag coefficients for the base adaptive
threshold at n = 5× 10−4 and a finer adaptive threshold at n = 5× 10−5. Comparing
aerodynamic coefficients for _ = 0 (cases A1 and A3) and _ = 3 (cases B1 and B3)
shows that the mean values and their fluctuations show excellent agreement for a
tenfold difference in adaptive threshold, with differences only observed in the third
decimal place. This agreement continues for ΔG/� = 0.009 as well. Note that
the noise levels in the aerodynamic signals scales approximately linearly with the
adaptive threshold due to the discrete addition and removal of computational blocks
as the domain adapts. For steady signals at ΔG/� = 0.012, the noise level in lift is
at most ±0.001 for n = 5 × 10−4 and decreases to ±0.0001 for n = 5 × 10−5.

2.3.5 Effect of thickness on the vortex shedding bifurcation
While the effect of thickness is not formally explored in this thesis, we take amoment
to discuss its potential effects on the simulation results, as it may account for the
discrepancy in lift fluctuations with changing grid resolution presented in section
2.3.1. Disk thickness has been shown to change the value of critical points of disk
flow bifurcation and even the nature of the bifurcation (Chrust, Dauteuille, et al.,
2015; Gao et al., 2018; Meliga, Chomaz, and Sipp, 2009; Auguste, Fabre, and
Magnaudet, 2010).

While we model the disk using a single layer of IB points, the regularization of
the IB forces onto the flow grid using a delta function results in a narrow strip of
grid points surrounding the IB points over which the disk surface forcing influences
the flow directly. Figure 2.4 is a schematic of the regularization of the IB forces
from the IB points. Note that the magnitude of the IB forcing falls off with the
distance from the IB points, following the delta function profile. While not directly
equivalent to a physical disk thickness, this results in an apparent thickness for the
disk. Specifically, we use a smoothed 3-point delta function which has a support
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Figure 2.4: Schematic of the IB points and the effective thickness due to the
regularization of IB forces onto the grid.

of up to two grid points in either direction (Yang et al., 2009; Roma, Peskin, and
Berger, 1999). As a result, the apparent disk thickness scales with the grid spacing,
resulting in a thinner disk for finer resolutions. For ΔG/� = 0.012, this gives an
approximate upper limit of the apparent thickness of C3 = 0.048 (or aspect ratio
j ≈ 21). For the finer resolution ΔG/� = 0.009, the apparent thickness is at most
C3 = 0.036 (j ≈ 28).

Thismakes it challenging to fully separate the effects of thickness and grid resolution
since they vary together by the nature of the IB method. However, the changing
force coefficient fluctuations with changing grid resolution observed in section 2.3.1
are consistent with the trends seen in the literature for the effect of thickness. As
mentioned in section 1.3, for U < 40°, a higher disk aspect ratio (thinner disk)
increases the critical Reynolds number at which the vortex-shedding bifurcation
occurs, i.e. it stabilizes the flow. For reference, at U = 30°, Chrust, Dauteuille, et al.
(2015) find a critical Reynolds number of Re2 = 267 for a thick disk (j = 6), while
Gao et al. (2018) determine Re2 = 377 for a thin disk (j = 50). For the current
method, we estimate Re2 ≈ 320 for U = 30° and j ≈ 21 (estimated in section
2.4.2), which falls accordingly between the thick and thin disk cases. While the
data on thickness effects at low angles of attack is sparse and involves comparisons
between multiple studies, this trend suggests that for the current simulations, as the
grid spacing and apparent IB thickness decrease, the critical Reynolds number will
increase, stabilizing the flow.

Consistent with this effect, we observe decreased lift and drag fluctuation amplitudes
as the grid spacing decreases for both _ = 0 and _ = 3 (table 2.1). As a side
note, Liska and Colonius (2017) also observe modest decreases in the lift and drag
fluctuations with decreasing grid spacing, possibly due to thickness effects on vortex
shedding as well. At Re = 500 and _ = 0, the critical angle of attack is roughly



16

24.3° (estimated in section 2.4.2). Therefore, for simulations at U = 25° which are
very close to the critical point, we can expect the vortex shedding and resulting lift
and drag fluctuation amplitudes to be particularly sensitive to thickness effects or
potential underresolution. In section 2.3.1, for _ = 3, the PSD analysis between
the base and fine resolution cases showed that vortex shedding was significantly
weakened in the fine case, with little effect on the strength of the short-wavelength
instability. We expect the elliptic instability, which is an instability in the tip vortices,
to be relatively independent of changing thickness as it depends primarily on the
tip-vortex parameters rather than on the exact geometry of the disk. However, we do
recognize that the decrease in vortex-shedding strength is much larger at _ = 3 than
at _ = 0, so we do not rule out that there may be some underresolution at play as
well for high TSRs. Potential underresolution would depend on the effect of spin on
the boundary layer thickness to be resolved. While the boundary layer caused by a
rotating disk (in quiescent flow) is significantly larger than that for a traditional flat
plate laminar boundary layer, the rotating disk boundary layer continues to decrease
with increasing TSR and may decrease the grid spacing required to accurately
resolve the flow close to the disk.

In summary, thickness effects seem to account for decreasing vortex-shedding
strength, which is consistent with results in the literature, though there may also
be some degree of underresolution at high TSRs. In production runs for this work,
we use a resolution of ΔG/� = 0.012 which represents an apparent thickness of
C3 = 0.048 or aspect ratio of j = 21. This is slightly underresolved for the purposes
of representing an infinitely thin disk, but allows us to explore high TSRs that would
otherwise be far more computationally intensive. This allows us to explore new flow
regimes that appear and understand the mechanisms behind them. The limitation
in accurately defining and maintaining a thickness for the disk means that there re-
mains uncertainty in the precise bifurcation parameters and aerodynamic forces and
moments, specifically with respect to the actual thickness. However, we maintain
that the key trends and flow features are preserved with the chosen resolution.

2.4 Comparisons with previous simulations for the non-spinning disk
In this section we verify our results by comparing aerodynamic forces and critical
points with past DNS results for non-spinning disks by Chrust, Dauteuille, et al.
(2015), Tian et al. (2017), and Gao et al. (2018). These studies focus on high
angles of attack U > 30°. In order to overlap with some of these results, we make
comparisons over the range 30° < U < 60°. Unfortunately, we are not aware of any
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Figure 2.5: Time-averaged lift and drag coefficients for the non-spinning disk at
'4 = 500. The signal length for computing time-averages is at least 170 C*/� for
unsteady cases, leading to standard error values at most 2 · 10−4. The standard error
is largest for the quasi-periodic and chaotic cases at higher angles of attack.

spinning disk cases to compare to for a flat disk at these Reynolds numbers.

2.4.1 Aerodynamic force comparisons
In figure 2.5, we compare mean lift and drag values for Re = 500 and _ = 0
over a range of angles of attack to those reported by Tian et al. (2017). Good
agreement is observed with discrepancies ranging from 3% to 12% for both lift
and drag values. We observe a small dip in �! of about 0.06 units from U = 20°
to U = 25°. This is greater than the error estimate (±0.01 units) so we expect it
to be a physical observation. This coincides with the transition from steady flow
to vortex shedding. This dip may be associated with this transition in the wake
stability or also a symptom of the flow’s sensitivity close the critical point, as we
will find that U2 = 24.3° (section 2.4.2). Direct comparisons to circular disk flows
are not available. However, Taira, Dickson, et al., 2007 observed a similar dip at
the same angle of attack for two-dimensional flow over a flat plate at Re = 100. On
the other hand, Taira and Colonius (2009) did not observe a dip in lift coefficient
for three-dimensional flow over a rectangular flat plate for aspect ratios from one to
four.

2.4.2 Critical Reynolds number comparisons
Chrust, Dauteuille, et al. (2015) and Gao et al. (2018) determined the critical
Reynolds number for the first (Hopf) bifurcation for a range of angles of attack. To
compare to their results, we estimate the critical Reynolds number by making use of
the fact that near a supercritical Hopf bifurcation, the peak-to-peak amplitude of the
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Figure 2.6: Drag amplitude squared against Reynolds number for U = 50°. The
solid line is a linear regression whose G-intercept marks Re2.

oscillation, �, is directly proportional to the square root of the degree of criticality
of the bifurcation parameter (Ghaddar et al., 1986; Pereira and Sousa, 1993). Using,
for example, the drag coefficient, let � = max(��) −min(��), which according to
the theory is given by

�2 = � (Re − Re2) , (2.7)

where � is a constant of proportionality. By measuring �2 at several supercritical
values of '4, and performing a regression to determine <, we efficiently obtain the
resulting Re2 by measuring the intercept. We can likewise use the angle of attack as
the bifurcation parameter in which case the degree of criticality is U−U2. Figure 2.6
shows a sample extrapolation to estimate the critical Reynolds number at U = 50°.
A similar extrapolation approach is used to obtain estimates of the critical Strouhal
number, St2 = 52�/*, where 52 is the dimensional frequency.

In figure 2.7, we compare the values we obtain for critical Reynolds number, Re2,
and critical Strouhal number, St2, as a function of angle of attack to values reported
in the literature for various disk aspect ratios in the range 6 ≤ j ≤ ∞ by Chrust,
Dauteuille, et al. (2015) and Gao et al. (2018). The values show great agreement,
particularly at high angles of attack. For low angles of attack, the critical Reynolds
number varies with the disk aspect ratio. For U = 30°, Re2 = 320 for the present
work for an estimated aspect ratio j ≈ 21. This falls between the values from Gao
et al. (2018) for the thin disk (Re2 = 377 for j = 50) and from Chrust, Dauteuille,
et al. (2015) for the thick disk (Re2 = 267 for j = 6). By comparing these cases,
we see that a thicker disk results in a lower critical Reynolds number for U < 40°,
but higher critical Reynolds number for U > 40°. These results are consistent with
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(a)

(b)

Figure 2.7: (a) Critical Reynolds number and (b) critical Strouhal number against
angle of attack for the supercritical Hopf bifurcation from steady to periodic vortex
shedding.

the decreasing Δ�! and Δ�� observed as we used a finer mesh (and thus effectively
thinner disk) in section 2.3.1.
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2.5 Parameter Selection
The remaining chapters present results for various simulations of flow over the
spinning disk at angle of attack. Table 2.2 lists the production runs upon which
the results of this thesis are based and references where they appear. This does
not include the simulations performed for convergence studies. The simulations
presented in this work used the Extreme Science and Engineering Discovery Envi-
ronment (XSEDE) Stampede 2 at the Texas Advanced Computing Center through
allocation TG-CTS 120005. XSEDE is supported by National Science Foundation
grant number ACI-1548562 (Towns et al., 2014).



21

Table 2.2: Production runs and the associated parameters and sections where they are included

Description Sections Re U (°) _

_ sweep 2, 3, 4, 5 500 25 0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.6, 1.7,
1.75, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5,
2.6, 2.7, 2.8, 2.9, 3.0

U sweep 2.4, 3.1.1, B 500 0, 10, 20, 25, 27, 30,
32, 35, 40, 50, 60

0

Re2 estimation 2.4.2 320, 330, 340, 350, 360 30 0
Re2 estimation 2.4.2 140, 150, 160, 170, 180 50 0
Re2 estimation 2.4.2 120, 130, 140, 150 60 0
Shedding effects 4.1.2 500 30 0, 1, 2
Shedding effects 4.1.3 120 60 0, 1, 2
PSL effects 4.1.4 300 50 0, 1, 2
Parallel flow 4.2, C 100 0 0, 1, 2, 4
Rotation only 4.2.2, C N/A N/A Rel = 100
High Re 5.7 4000 25 0, 2



22

C h a p t e r 3

SPINNING DISK AERODYNAMICS AND WAKE STRUCTURE

Past studies have identified several wake regimes for flow over non-spinning inclined
disks at Re = $ (102) (Chrust, Dauteuille, et al., 2015; Tian et al., 2017; Gao et al.,
2018). Both Reynolds number and angle of attack serve as bifurcation parameters
that take the flow from steady to chaotic as they are increased. The goal of this
chapter is to explore the effect of spin on these bifurcations. We study the changing
aerodynamics and wake instabilities in this same Re-U parameter space. To this
end, we simulate the flow through a range of TSRs from zero to three, while fixing
the Reynolds number and angle of attack at Re = 500 and U = 25°. With no spin
(_ = 0), this flow configuration is supercritical with respect to the first bifurcation
(U2 = 24.3° at Re = 500) and exhibits mild vortex shedding. By analyzing the
changing frequency content and visualizing vorticity isosurfaces, we can identify
several distinct wake regimes of interest.

3.1 Aerodynamic forces for a spinning disk
Figure 3.1 shows the long-time time-varying and time-averaged lift and drag co-
efficients as _ varies. Both lift and drag follow similar trends with increasing _,
though the mean value and fluctuation amplitudes remain higher for lift than for drag
throughout. The mean lift and drag both increase monotonically as _ is increased.
The fluctuations in lift and drag over time show a more complex and non-monotonic
behavior. For the non-spinning case at _ = 0, at which the flow is only slightly super-
critical with respect to the wake (vortex-shedding) instability, the lift fluctuations are
small in amplitude and monochromatic. As _ increases to 1.5, the oscillation am-
plitude decreases to zero, while the fluctuations remain monochromatic. For cases
from _ = 1.5 to _ = 1.7 inclusive, the lift and drag values are steady, indicating a
steady flow, as vortex shedding is suppressed.

For _ ' 1.75, the flow becomes unsteady again. From _ = 1.7 to _ = 3, the
fluctuation amplitudes generally increases. Just past _ = 1.7, the fluctuations are
again monochromatic with a similar frequency as _ < 1.5, indicative of flow being
once again slightly supercritical. As _ is further increased, the flow remains in
a limit cycle behavior. However, the waveforms become more complex and non-
monochromatic, indicating that the flow passes through additional bifurcations. We



23

Figure 3.1: Time-varying (left column) and time-averaged (right column) lift coef-
ficients, �! , and drag coefficients, �� , for the spinning disk at different tip-speed
ratios, _, for '4 = 500 and U = 25°. Error bars indicate the min-to-max range of co-
efficient values for unsteady cases. The signal length for computing time-averages is
at least 70 C*/� for unsteady cases, leading to standard error values at most 7 ·10−5.
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will later identify a short-wavelength elliptic instability at these high TSRs.

Figure 3.2 shows mean side-force and moment coefficients and their fluctuations for
0 ≤ _ ≤ 3. The side force and its fluctuation are initially zero due to the planar
symmetry of the non-spinning disk flow at '4 = 500 and U = 25°. As _ increases,
the planar symmetry breaks, with the force acting towards the receding side of the
disk (I < 0). The overall increase in side force is non-monotonic, with a region
of decrease from _ ≈ 1.25 to _ ≈ 2, which corresponds to the steady region and
onset of the short-wavelength instability. The fluctuation amplitude increases after
the steady region, following lift and drag force trends.

The rolling moment is zero for the non-spinning case due to the planar symmetry
of the flow. It initially decreases slightly to a negative value, with a minimum at
_ ≈ 0.75 and then increases monotonically from there. The rolling moment is
negative for _ / 1.25 and positive for _ ' 1.25. This means that for _ ' 1.25
the disk will bank to the receding side of the disk, and vice versa for _ / 1.25.
Because the center of pressure center of gravity of the disk are different, the pitching
moment is positive for the non-spinning disk. This represents a moment that acts to
increase angle of attack. The rolling moment does not change significantly as TSR
is changed, compared to changes due to angle of attack. The yawing moment, which
is aligned with disk spin and can be thought of as a torque countering the spin, is
zero for the non-spinning disk. As expected, it increases as the TSR increases.

3.1.1 Lift-to-drag ratio
The lift-to-drag ratio,�!/�� , is an important variable to optimize for flight. To get a
sense of the effect spin has on the relationship between lift and drag, we examine how
the time-averaged lift-to-drag ratio changes with both angle of attack and tip-speed
ratio (figure 3.3). As angle of attack is increased from zero for the non-spinning
disk, the lift-to drag ratio increases to a peak of �!/�� = 1.9 at U = 20°. It then
decreases as angle of attack is further increased. In comparison, when the angle
of attack is fixed at U = 25° and TSR is varied, the lift-to-drag ratio increases by
about 9% from �!/�� = 1.50 at _ = 0 to �!/�� = 1.64 at _ = 3. Although
mean lift and drag values show relatively large changes with TSR (figure 3.1), since
they both increase, the change in their ratio is modest. Thus, the lift-to-drag ratio is
determined predominantly by the angle of attack rather than the TSR.

Figure 3.4 shows the lift against drag for both varying angle of attack and varying
TSR. As angle of attack increases with fixed _ = 0, drag increases monotonically
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Figure 3.2: (a) Side force, (b) rolling moment, (c) pitching moment, and (d) yawing
moment for the spinning disk at different tip-speed ratios, _, for '4 = 500 and
U = 25°. Error bars indicate the min-to-max range for unsteady cases.
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Figure 3.3: Time-averaged lift-to-drag ratio (a) against angle of attack with fixed
_ = 0 (non-spinning) and (b) against tip-speed ratio with fixed U = 25°, both at
'4 = 500.

from �� = 0.17 at U = 25° to �� = 1.04 at U = 60°. Lift increases from �! = 0
at U = 0° to a peak value of �! = 0.70 at U = 40° before decreasing to �! = 0.56
at U = 60°. When angle of attack is fixed at U = 25° and tip speed ratio is varied
instead, both lift and drag increase steadily. The magnitude of changes in lift and
drag for TSR variation from zero to three is similar to that for changes of about five
to ten degrees in angle of attack.

We can define a normal force coefficient, �⊥:

�⊥ =
�⊥

1
2d*

2(
, (3.1)

where �⊥ is the normal force on the disk, aligned with the lift force for U = 0°. The
normal force coefficient is equivalent to the surface-averaged pressure coefficient and
denotes the net pressure force experienced by the disk. The normal force coefficient
increases as angle of attack increases, except for a small dip from U = 20° to
U = 25° that corresponds to the transition from steady to vortex shedding, where the
recirculation bubble geometry will change as vorticity is shed (figure 3.5b). When
TSR is increased instead, �⊥ increases, showing an overall decrease in pressure on
the suction side versus pressure side of the disk.
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Figure 3.4: Lift against drag for varying angle of attack (0° ≤ U ≤ 60°, _ = 0) and
varying tip-speed ratio (0 ≤ _ ≤ 3, U = 25°), for the disk at '4 = 500. Red triangle
markers denote 0.5 increments in _.

(a) (b)

Figure 3.5: Time-averaged normal force coefficient (a) against angle of attack with
fixed _ = 0 (non-spinning) and (b) against tip-speed ratio with fixed U = 25°, for
the disk at '4 = 500.
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3.2 Wake regimes for a spinning disk
The transition to unsteadiness in force and moment coefficients is suggestive of
instabilities. To better understand the flow phenomenon that give rise to these
trends, we examine the frequency content of the aerodynamic forces alongside
visualizations of the wake structure. Figure 3.6 visualizes isosurfaces of streamwise
and spanwise vorticity for selected values of _ between zero to three. Figure 3.8
shows top views of the vorticity isosurface visualizations. The top view provides a
clearer view of the vortex loops that pass through the center plane, which indicates
roll-up of the trailing edge vortex sheet into hairpin vortices. These visualizations
allow us to identify several distinct wake regimes which we will describe in this
section. These regimes are:

1. regime 1 (0 / _ / 1.9), a standard wake instability, modulated from slightly
supercritical to subcritical and back to supercritical,

2. regime 2 (1.9 / _ / 2.2), a short-wavelength instability (later identified as
an elliptic instability), and

3. regime 3 (2.2 / _ / 3), a combination of both the wake instability and the
short-wavelength instability.

Figure 3.7 shows Welch’s power spectral density (PSD) estimate of the lift coeffi-
cient, which helps to distinguish between different instabilities in the wake. We use
the same time period for all of the signals, so the frequency bins are also equal in
size. Therefore, the H-axes are arbitrary, but equivalent logarithmic scales. We omit
the PSD for the steady _ = 1.5 case, which lies below the lower limit of the H-axes
and consists of frequency content from noise in the signal. By observing changes
in the wake structure in a series of visualization snapshots of the wake, we can
associate the Strouhal numbers from the PSD peaks with different wake behaviors.

To reveal trends in the changing frequency content with increasing TSR, we de-
termine the frequency peaks with total energies exceeding a certain threshold and
plot them against _ (figure 3.9). The marker sizes are scaled based on the peak’s
total energy, which is found by integrating over each peak in Welch’s PSD estimate.
The maximum frequency bin size is Δ(C = 0.04. Peaks are relatively distinct and
compact, with their energies converging to at least 90% of the total energy for inte-
gration bin sizes of about Δ(C = 0.1. These plots reveal a great deal of information
about the flow physics that is discussed in detail in the following chapters. For now,
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Figure 3.6: Isosurfaces of vorticity for the disk at '4 = 500 and U = 25° for
_ = 0, 1, 1.5, 2, 2.4, and 3. Flow is from top left to bottom right with the disk
rotating clockwise from above. Semi-transparent grey isosurfaces are vorticity
magnitude, | |l| | = 3. Streamwise vorticity, lG (left column) and spanwise vorticity,
lI (right column) are shown in opaque red and blue for positive (+3) and negative
(−3) values, respectively. The G-, H-, and I-axes reference lines are 5�, 1�, and 1�
long, respectively.
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we present a general overview of the key features that arise in order to identify the
different wake regimes.

3.2.1 Wake instability and its suppression
For the non-spinning disk (_ = 0), the wake instability causes the trailing-edge
vortex sheet to roll up and shed from the disk periodically. The roll up interacts
with segments of the tip vortices to form spanwise-symmetric hairpin vortices
which loop across the center plane with legs extending towards the disk (grey
isosurfaces in figure 3.6). The power spectrum indicates monochromatic frequency
content associated with the wake instability. For _ = 1, the magnitude of the
single frequency peak associated with vortex shedding has decreased from the non-
spinning case (figure 3.1). The wake loses its spanwise symmetry, with the hairpin
vortices becoming relatively more distinct on the advancing side of the disk (I > 0
side) compared to the receding side (I < 0 side). The frequency of these fluctuations
is (C ≈ 0.55 and remains relatively unchanged between _ = 0 and _ = 1.5 (figure
3.9).

For _ = 1.5, vortex shedding is suppressed and the flow is again steady, indicating
that the flow is subcritical with respect to the wake instability (figure 3.6). This
behavior and the corresponding lack of hysteresis is consistent with the standard
view of the wake instability arising as a supercritical Hopf bifurcation. The trailing-
edge vortex sheet no longer rolls up. This vortex-shedding suppression persists in a
range from roughly _ = 1.5 to _ = 1.7 (figure 3.9). The tip vortex on the advancing
side of the disk (I > 0) is significantly strengthened while that on the receding side
is more diffuse. This vorticity distribution and the mechanism behind the stabilizing
effect is discussed in detail in Chapter 4.

3.2.2 Short-wavelength instability
In the range of 1.9 / _ / 2.2, high-frequency content at St ≈ 1.3 dominates
the spectra (figure 3.9). This corresponds to a corkscrew-shaped instability in the
advancing tip-vortex core, with a short wavelength relative to the inter tip-vortex
distance (figure 3.8). As _ increases through this narrow range 1.9 < _ < 2.2,
the wavelength decreases slightly and the frequency increases slightly as well. The
frequencies match closely with twice the rotation frequency of the disk rotation,
indicated by the dashed line (figure 3.9). For _ = 2, most of the energy of the flow
is associated with this instability at 5 = 1.31. This short-wavelength instability
has a frequency about 2.5 times that of the vortex-shedding frequency and strongly
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Figure 3.7: Welch’s PSD estimate of the lift trace for the disk at '4 = 500 and
U = 25° for various _. All cases are performed for the same time period so the
frequency bin sizes are the same giving a frequency resolution of Δ(C = 0.03. Thus
the H-axes are arbitrary, but equivalent logarithmic scales. The Nyquist frequency
is inversely proportional to the timestep size, ranging from St = 125 for _ = 0 to
St = 500 for _ = 3.



32

Figure 3.8: Top view of isosurfaces of vorticty for the disk at '4 = 500 and U = 25°
for various _. Isosurfaces are the same as for figure 3.6.
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Figure 3.9: Frequency peaks from Welch’s method against _ for the lift coefficient
trace at '4 = 500 and U = 25°. Marker size is logarithmically scaled based on
the integrated power from the PSD peak. Only peaks with power greater than 10−7

are plotted. The dashed line indicates twice the Strouhal number associated with
the spin (St = 2_/c). Cross markers indicate steady cases. Regions are shaded
by regime, namely vortex shedding (blue), suppression (red), short-wavelength
instability (yellow) and mixed vortex shedding and short-wavelength instability
(purple).

resembles elliptic instabilities, specifically the (-2,0,1) principal mode (Lacaze,
Ryan, and Le Dizès, 2007). We refer to this short-wavelength instability as the
elliptic instability and conduct further investigation in Chapter 5.

3.2.3 Mixed wake instability and short-wavelength instability
For _ ≥ 2.3, the short-wavelength instability is no longer the dominant mode.
Additional lower frequency flow structures appear, predominantly at St ≈ 0.5 and
St ≈ 1. The regular braids of the corkscrew shape are still visible in the advancing tip
vortex, but now with additional vortex filaments that extend from the braids (figure
3.6). This appearance of the power spectra peak around (C = 0.5 corresponds
to periodic roll up of the trailing-edge vortex sheet that stretch spanwise between
the receding and advancing tip vortices (figure 3.6). For _ = 2.3 and _ = 2.4,
most energy is associated with an intermediate frequency around (C ≈ 0.9. The
lower frequency content grows until the PSD peak at (C ≈ 0.5 dominates for
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2.5 < _ ≥ 3. Although we observe distinct PSD peaks at similar frequencies to
vortex shedding and short-wavelength instability when observed in isolation, when
they occur together, they interact nonlinearly, which can impact the precise frequency
of the peaks. For 2.5 / _ / 3, we see strong harmonic behavior, with many or all of
the frequency peaks occurring at harmonics of the dominant frequency at St ≈ 0.5
(figure 3.7). This suggests some coupling between the vortex shedding and short-
wavelength instability, and we observe hairpin vortices of varying strength shedding
from the braids of the short-wavelength instability. This mixed wake behavior is
further discussed in section 5.1.2.

3.3 Conclusions and discussion
In summary, for flow over the spinning disk at Re = 500 and U = 25°, increasing
TSR significantly increases coefficients of lift and drag. This increase is caused
by increased circulation over the disk, as a result of the vorticity added by the disk
rotation, which also leads to strengthened tip vortices. By visualizing vorticity
isosurfaces, we identify several distinct wake regimes for changing TSR. Vortex-
shedding is suppressed at moderate TSRs, while a short-wavelength instability
appears at higher TSRs. Long-time data used to characterize the wake regimes
was found through a combination of impulsively started from rest and by making
discrete changes in _. We note that there was no evidence of hysteresis effects
for the various bifurcations when using different means to approach the long-time
behavior. However, a more thorough investigation would be required to completely
rule out hysteresis effects.

Studies of Frisbee-like spinning disks (with rims and camber) at Re = $ (105) for
TSRs up to one indicate negligible effect on lift and drag (Stilley and Carstens,
1972; Potts and Crowther, 2001). However, studies at higher tip speed ratios around
two to three begin to show substantial increases in lift and drag, as well as increased
circulation and downwash (Potts, 2005; Nakamura and Fukamachi, 1991; Higuchi
et al., 2000), similar to trends observed in the present work. The magnitude of the
increase in lift and drag coefficients over this range is comparable as well. This
suggests that for sufficiently high TSR, increasing lift and drag due to spin is a
Reynolds number independent effect, at least for$ (102) < Re < $ (105). However,
we do show increasing lift and drag even for small TSRs.

At Re = $ (105), Potts (2005) also observed increasing side force towards the
receding side of the disk with increasing _. However, the changes were over a
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magnitude larger and appear to be monotonic. Potts (2005) observe a similar
increase in rolling moment (banking to the receding side) at high Reynolds numbers
for _ up to 3.46, although there is little to no change for _ < 2. Pitching moment
trends are similar for high Reynolds number studies by Potts (2005). The differences
for low TSR could be caused by a number of factors, including different Reynolds
number, the different disk camber and rim geometries, and laminar versus turbulent
flow.

In looking towards the application of these results to spinning disk flight, the present
work shows that lift-to-drag ratio changes marginally with TSR. Angle of attack is a
much stronger factor in lift-to-drag ratio. This is beneficial for being able to change
TSR depending on dynamic stability requirements, without significantly impacting
flight efficiency. While some trends in side force and moments are observed, the
magnitude of these changes is relatively small. Note that since the disk is not
accelerating in the simulations, these moment values do not include effects of
gyroscopic precession that the disk would experience in free flight. Hubbard and
Hummel (2000) and Hummel (2003) used in-flight Frisbee data to fit values of
aerodynamic force and moment coefficients for a simple rigid-body flight model.
This method produced reasonable results for short flights but are less accurate for
longer flights. They showed that moment values can change significantly with flight
conditions.

While there is limited data to compare the effect of thickness for U < 30°, available
literature indicates that bifurcation boundaries can shift with thickness, which is
consistent with convergence studies presented in Chapter 2.3 (Chrust, Dauteuille,
et al., 2015; Gao et al., 2018). As a result, while the exact transitions between the
regimes identified in this work may be sensitive to disk thickness (or profile shape),
the presence and qualitative features of the wake regimes are robust to changes in
thickness. While further investigation would be required to understand the flow
physics behind the thickness effects, we can hypothesize that it has an impact on the
separation profile, particularly at leading and trailing edges of the disk. In particular,
for low angles of attack where the leading edge faces more directly into the flow, this
thickness will become more pronounced compared to the sharp leading and trailing
edges of an infinitely thin disk. In addition, the immersed surface edge does not
compare directly with a physical disk. The closest approximation may be a disk
with a rounded edge, while most studies use a square edge with no rounding, which
again could impact separation and boundary layer formation.
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C h a p t e r 4

VORTEX-SHEDDING SUPPRESSION BY SPIN

In the previous chapter we observed that spin could suppress vortex shedding for
Re = 500 and U = 25° in the range of 1.5 ≤ _ ≤ 1.7. In this chapter we investigate
this phenomenon in more detail. We first explore select cases in the Re-U parameter
space to determine the robustness of this suppression effect. This includes cases with
stronger vortex-shedding and the periodic shedding with low frequency modulation
(PSL) regime, as well as high angle of attack cases. We find that weakening and
suppression of vortex shedding occur over a range of angles of attack and Reynolds
numbers. We then proceed to analyze the wake structure in order to propose a
mechanism by which vortex-shedding suppression occurs. To do this, we visualize
streamlines and vortex lines to elucidate how the vorticity convection changes as TSR
increases. We systematically consider flow for the rotating disk without translation,
then the rotating disk with flow parallel to the disk, and finally the rotating disk at
angle of attack. This helps us to build a comprehensive picture of how the circulation
region changes and how the vorticity produced at the spinning-disk surface convects
into the wake. This analysis shows that the disk rotation strengthens the tip vortices
which in turn induces spanwise convection in the trailing-edge vortex sheet, which
appears to dissipate vorticity and prevent roll up, thus leading to suppression.

4.1 Effect of spin at various Reynolds numbers and angles of attack
In this section, we present evidence for suppression in the periodic vortex shedding
regime. We revisit the case first presented in Chapter 3 for Re = 500 and U = 25°,
which was relatively close to the critical point (U = 24.3°). We also consider the
case at Re = 500 and U = 30°, which exhibits stronger vortex shedding. We also
consider the effect of spin on periodic vortex shedding at Re = 120 and U = 60°.
In addition to vortex-shedding suppression, the high angle of attack allows for the
appearance of a swirling wake instability at higher TSRs. Finally, we consider the
effect of spin on the PSL wake at Re = 300 and U = 50°, in which the flow has
undergone a second bifurcation.
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4.1.1 Vortex-shedding suppression for Re = 500, " = 25°
For Re = 500 and U = 25°, first explored in Chapter 3, we observe that the periodic
vortex-shedding flow at_ = 0was stabilized at_ = 1.5. Figure 4.1 shows the gradual
modification to the wake as TSR increases from 0 to 1.5. To briefly recap, for the
non-spinning case, vortex shedding is spanwise planar symmetric. The trailing-edge
vortex sheet rolls up and sheds from the disk as hairpin vortices with legs extending
from the tip vortices. The recirculation region, outlined by the leading-edge vortex
sheet (blue spanwise vorticity isosurface), is large and extends beyond the trailing
edge. For _ > 0, we see a break in spanwise planar symmetry, as the advancing
tip vortex strengthens compared to the receding tip vortex. This corresponds to the
receding-side leg of the hairpin vortices also disappearing, and vortex shedding is
primarily on the advancing side, though the undulations can be seen to weaken. At
the same time, the leading-edge vortex sheet is brought closer to the disk, signalling
a decreased in size of the recirculation region. We can also notice increased positive
streamwise vorticity around the leading edge as TSR increases. Eventually the flow
becomes steady for _ = 1.5, featuring a distinct straight tip vortex on the advancing
side, which is significantly strengthened relative to the receding-side tip vortex.
Note that the lack of a visible receding-side tip vortex is a result of the contour levels
used, and does not indicate that it has disappeared completely.

4.1.2 Vortex-shedding suppression for Re = 500, " = 30°
Although the case at U = 25° is only just above the critical angle of attack, U2 ≈
24.3°, we demonstrate that vortex-shedding suppression by spin is possible when
the flow is further from the critical point and vortex-shedding strength is higher. To
show this, we consider the flow for Re = 500 and U = 30°. Figure 4.2 shows the
changing vorticity isosurfaces in the wake as TSR increases from zero to two. The
same trends in wake behavior persist at this higher angle of attack. The strength of
vortex shedding at _ = 0 is visibly greater compared to that for U = 25°, with larger
vortical structures that persist further downstream. At _ = 1 the spanwise planar
symmetry breaks, with stronger trailing-edge vortex-sheet roll up on the advancing
side of the disk. At _ = 2, the flow is steady, with an unbroken tip vortex on the
advancing side that is much stronger than the receding-side tip vortex. While vortex-
shedding suppression is present at U = 30°, it occurs at a higher TSR compared to
the U = 20° case.
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Figure 4.1: Isosurfaces of vorticity for the disk at '4 = 500 and U = 25° for
_ = 0, 0.25, 0.5, 0.75, 1, and 1.5. Flow is from top left to bottom right with the
disk rotating clockwise from above. Semi-transparent grey isosurfaces are vorticity
magnitude, | |l| | = 3. Streamwise vorticity, lG (left column) and spanwise vorticity,
lI (right column) are shown in opaque red and blue for positive (+3) and negative
(−3) values, respectively. The G-, H-, and I-axes reference lines are 5�, 1�, and 1�
long, respectively.
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Figure 4.2: Isosurfaces of vorticity for the disk at '4 = 500 and U = 30° for
_ = 0, 1, and 1.5. Flow is from top left to bottom right with the disk rotating
clockwise from above. Semi-transparent grey isosurfaces are vorticity magnitude,
| |l| | = 3. Streamwise vorticity, lG (left column) and spanwise vorticity, lI (right
column) are shown in opaque red and blue for positive (+3) and negative (−3)
values, respectively. The G-, H-, and I-axes reference lines are 5�, 1�, and 1�
long, respectively.

4.1.3 Vortex-shedding suppression and swirling-wake instability at high angle
of attack - Xe = 120, " = 60°

We consider the weakly vortex-shedding case at Re = 120 and U = 60° to explore
the effect of spin at higher angles of attack. Figure 4.3 shows vorticity isosurfaces
for Re = 120 and U = 60° for varying TSR. For the non-spinning case, the flow
is supercritical (Re2 = 114) and exhibits periodic vortex shedding. Because of the
low Reynolds number and proximity to the critical point, the strength of the vortical
structures is much weaker than in the Re = 500 cases. Note that the vorticity contour
levels have been decreased to reflect this. The red isosurface of I-vorticity show the
trailing-edge vortex sheet beginning to oscillate before rolling up and shedding into
the wake. Isosurfaces of G-vorticity show tip vortices on both the sides of the disk.

For _ = 1, the flow is steady and the trailing-edge vortex sheet does not roll up. In
contrast to the non-spinning case, the advancing tip vortex is greatly strengthened
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Figure 4.3: Isosurfaces of vorticity for the disk at '4 = 120 and U = 60° for _ = 0, 1,
and 2. Flow is from top left to bottom right with the disk rotating clockwise from
above. Semi-transparent grey isosurfaces are vorticity magnitude, | |l| | = 0.8.
Streamwise vorticity, lG (left column) and spanwise vorticity, lI (right column)
are shown in opaque red and blue for positive (+0.8) and negative (−0.8) values,
respectively. The G-, H-, and I-axes reference lines are 5�, 1�, and 1� long,
respectively.

while the receding tip vortex disappears from the wake. The advancing tip vortex
extends past the spanwise center plane. The steady flow is observed at both _ = 0.5
and _ = 1, indicating that weaker vortex shedding can be suppressed at lower TSRs.
At _ = 2, the flow is no longer steady, and the advancing tip vortex continues to
strengthen, resulting in a tail that persists further downstream. We also see another
instability arise in the advancing tip vortex. The vortex core itself is displaced from
its center and begins to spiral around. The frequency of the spirals is almost half
that of the vortex-shedding instability.

The swirling wake structure is remarkably similar to those seen for other axisymmet-
ric spinning bluff bodies. Kim and Choi (2002) studied flow past a sphere rotating
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about its streamwise axis and found that rotation could induce a swirling wake for
both steady and planar-symmetric shedding cases. Paralleled in these cases, the
rotation strengthens one tip vortex over the other. Pier (2013) further character-
izes and maps out the parameter space for the same configuration. In addition,
Jiménez-González et al. (2014) observed a similar swirling vortical structures in
flow past a spinning axisymmetric bullet-shaped body. This flow appears to arise
when the tip vortices for the non-rotating case are weak, allowing for rotation to
completely eliminate one of the tip vortices. As a result, a single tip vortex contains
all the streamwise vorticity, and for sufficiently high vorticity, the tip vortex loses
its straight configuration and begins to swirl.

While we do not conduct further analysis into the swirling-wake instability, we
briefly comment on notable patterns between its appearance in these different con-
figurations and remark on how these results may extend to similar cases. For the
rotating disk and bullet-shaped body, where there is no fixed alignment for the wake
with respect to the body, the wake is free to rotate with the body (Kim and Choi,
2002; Jiménez-González et al., 2014). In the case of the disk, for U < 90°, the
inclination will select an alignment plane for the tip vortices. However, this selec-
tion is increasingly tenuous as U → 90°. In these cases, the rotation may be strong
enough to perturb the flow such that it begins to swirl. We propose that this swirling
instability occurs when the body’s rotation is above a critical value that overcomes
the body configuration’s wake alignment. This critical value will be lower as the
flow configuration shows increasing axissymmetry about the freestream axis.

4.1.4 Effect of spin on the PSL region - Re = 300, " = 50°
The vortex-shedding bifurcation is only the first in a series of bifurcations that take
the flow from steady to chaotic flow. Characterizing the effect of spin beyond the
single-frequency periodic vortex-shedding regime will be important for understand-
ing how the effect of spin extends to much higher Reynolds numbers, which are
supercritical with respect to this array of bifurcations. While we do not study all
of the different regimes, we consider the case at Re = 300 and U = 50°, which
has undergone a second bifurcation and exhibits quasi-periodic shedding with low
frequency modulation (PSL) for the non-spinning case (Tian et al., 2017). Tian et al.
(2017) showed that this modulation is associated with a low-frequency increase and
decrease in the size of the recirculation bubble, which modulates the strength of the
shed vortices. As with the Re = 500 and U = 25° case, we see hairpin vortices
shed from the disk, although the tip vortices are comparatively closer together and
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Figure 4.4: Isosurfaces of vorticity for the disk at '4 = 300 and U = 50° for _ = 0.
Flow is from top left to bottom right with the disk rotating clockwise from above.
Semi-transparent grey isosurfaces are vorticity magnitude, | |l| | = 1. Streamwise
vorticity, lG , (left column) and spanwise vorticity, lI, (right column) are shown in
opaque red and blue for positive (+1) and negative (−1) values, respectively.

weaker as they peel away with the trailing edge vortex sheet (figure 4.4). Since
the legs are weak, the hairpin vortices gradually form vortex loops as they convect
downstream, similar to observations by Kim (2009). The additional low-frequency
modulation appears as a gradual strengthening and weakening of the vorticity in the
hairpin vortices. Further visualizations of the PSL regime are shown for reference
in appendix B.

Figure 4.5 shows the modification to the wake with increasing TSR for a higher
vorticity contour level, allowing us to focus on the near-wake changes. We include
top views of the same isosurfaces in figure 4.6, which helps to identify the orientation
of different vortical structures. As TSR increases, spanwise planar symmetry breaks
and the advancing tip vortex dominates (figure 4.6). At _ = 2, we also see a rotation
of the planar alignment of the shedding, with the hairpin vortices orienting towards
the advancing side of the disk rather than the trailing edge. This may arise because
at higher angles of attack approaching normal flow, the selection of a plane for
alignment of vortex shedding is less distinct compared to low angles of attack. In
other words, for high angles of attack, the separation profile between spanwise sides
is increasingly similar to that for the leading and trailing edges. In these cases,
rotation can shift the alignment of vortex shedding. The low-frequency modulations
are also less intense, and the amplitude of shedding remains relatively constant in
time, rather than strengthening and weakening as for _ = 0. In PSL flow, the spin
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Figure 4.5: Isosurfaces of vorticity for the disk at '4 = 300 and U = 50° for
_ = 0, 1, and 2. Flow is from top left to bottom right with the disk rotating
clockwise from above. Semi-transparent grey isosurfaces are vorticity magnitude,
| |l| | = 3. Streamwise vorticity, lG (left column) and spanwise vorticity, lI (right
column) are shown in opaque red and blue for positive (+3) and negative (−3) values,
respectively.

does not lead to vortex-shedding suppression for TSRs up to two, but it does appear
to have a stabilizing effect on the low frequency modulations. Since decreased
low frequency modulation is observed, this suggests that the recirculation region
undergoes smaller fluctuations in size as well.

4.2 Wake structure in flow parallel to a spinning disk
The previous section showed how vortex shedding suppression occurred at various
values of Re and U. Overall, spin strengthens the advancing tip vortex and leads
to vortex shedding primarily on the advancing side of the disk, until eventually
the roll up is suppressed completely and the flow becomes steady. We seek to
gain a better understanding of the underlying mechanism behind this suppression of
vortex-shedding for low to moderate TSRs. To do this, we take a closer look at how
the wake structure changes with rotation. Specifically, we visualize streamlines and
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Figure 4.6: Top view of isosurfaces of vorticity for the disk at '4 = 300 and
U = 50° for _ = 0, 1, and 2. Flow is from top left to bottom right with the
disk rotating clockwise from above. Semi-transparent grey isosurfaces are vorticity
magnitude, | |l| | = 3. Streamwise vorticity, lG (left column) and spanwise vorticity,
lI (right column) are shown in opaque red and blue for positive (+3) and negative
(−3) values, respectively.

vortex lines in the wake to discover how the rotation at the disk surface changes the
distribution of vorticity in the wake. Streamlines demonstrate the topology of the
recirculation region and tip vortices. Since vorticity is generated by the disk rotation,
vortex lines, which are everywhere tangent to the vorticity, will reveal how vorticity
convects into the wake from the disk surface. Because of the many factors at play,
including disk rotation, streamwise flow and angle of attack, we deconstruct the
flow and attempt to build an understanding by analyzing these factors in a modular
manner. We first analyze changes in the wake structure for flow parallel to a disk
as the TSR increases. We compare these observations with the flow induced by
a rotating disk in quiescent flow. From von Kármán’s (1921) similarity solution
for the infinite rotating disk, we know that the rotating disk induces an outward,
swirling flow close to the surface while drawing in fluid from the normal direction.
This helps us to understand the interaction of the rotating disk flow with streamwise
flow, without the added complexity of the tip vortices and vortex sheets that develop
at angle of attack. Finally, we return to the case of flow over the inclined spinning
disk to understand the interaction with the tip vortices and vortex sheets, allowing
us to propose a mechanism for vortex-shedding suppression that is consistent with
the observations.
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4.2.1 Streamlines
Analyzing the changing wake for flow parallel to the disk is helpful as it avoids
the presence of tip vortices and vortex sheets in the inclined case. We first study
the associated streamlines with increasing TSR, and we observe significant changes
to the recirculation region above the disk as well as how the flow advects into the
wake. Note that this flow is symmetric about the disk plane, so we display only one
side of the disk, where rotation is clockwise. We analyze streamlines within the
recirculation region as well as those that pass above the recirculation region, and
observe how they move into the wake. By identifying the topology in the wake, we
can interpret later visualizations of vortex lines to understand how the vorticity from
the disk surface distributes itself in the wake. Note that for the cases presented in
this section, the flows are steady so streamlines are equivalent to pathlines.

Figure 4.7 shows the pathlines of particles that pass adjacent to the disk with
increasing TSR at Re = 100. As a result, these streamlines for _ > 0 comprise of
particles that pass through the recirculation region. For _ = 0, there is no separation
so particles remain close to the disk surface throughout, with some turning due to
the curved disk leading edge and resulting boundary layer formation. For _ > 1, a
small recirculation region forms that increases in size with increasing TSR (figures
4.7b and 4.7c). The separation and resulting recirculation region is most pronounced
on the advancing side. This is caused by the upstream movement of the disk on
the advancing side of the disk, which promotes separation, whereas the streamwise
movement of the disk on the receding side minimizes the boundary layer formation.
As a result, close to the disk surface the fluid follows the disk spin and rotates, and
this swirling flow extends into a cone-shaped recirculation region that tilts to the
advancing side of the disk. The recirculation lifts flow up near the center of the disk
and then brings it quickly down, leading to reattachment on the disk surface. The
flow reattachment occurs earlier for higher TSR. For _ = 0, the streamlines contract
slightly past the disk, whereas for _ = 4, the streamlines from the disk are expelled
much further in the spanwise direction, due to the tangential velocity from the disk
that pushes fluid out towards the advancing side.

Figure 4.8 shows the pathlines for particles released above the disk that pass above
the recirculation region. For _ = 0, these pathlines are almost unaffected by the
presence of the disk. However, for increasing TSR, the rotation draws in the fluid
closer to the disk plane as it passes over the disk. Figure 4.9 shows a couple
streamwise cross-section of these streamlines at different downstream distances.
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Figure 4.7: Streamlines that pass through the rake at G = 0�, H = 0.05� and
−0.5� ≤ I ≤ 0.5�, spaced every 0.05�, for the steady flows at Re = 100, U = 0°.
Columns from left to right use _ = 0, 1, 2 and 4. Different rows show (a) a top
view, (b) an upstream elevated view, and (c) a side view. Flow is in the +G direction.
Streamlines are colored by particle number. The flow is steady so streamlines are
equivalent to pathlines.

These reveal more about the spanwise motion of particles. For _ = 0, the particles
are slightly higher compared to their release height. This is in line with positive wall-
normal velocity for a developing boundary layer. As TSR increases, the particles
are brought downwards to the disk plane and also towards the advancing side of
the disk. There is a clear spanwise convection in the +I direction as particles move
downstream. This spanwise movement is quite large in magnitude, with particles
shifting past I = +1� at G/� = 2, and shifting to almost I = +1.5� by G/� = 4.
Overall, spin creates a significant spanwise movement towards the advancing side
of the disk for particles passing over the recirculation region.

We next take a look at streamlines that pass closer to the disk surface, and thus
give a better indication of separation and reattachment profiles. In figure 4.10, the
streamlines are initialized upstream of the disk, but close to the disk plane. As these
streamlines approach the disk, they conform to the flow around the recirculation
region. For _ > 1, the flow is first accelerated to the receding disk side when
passing over the first half of the disk, and then is accelerated to the advancing side as
it passes over the second half of the disk, matching the velocity on the disk surface.
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Figure 4.8: Side view of a rake of streamlines initialized at G = −0.6, H = 0.25
and −0.5 ≤ I ≤ 0.5, spaced every 0.05� across the I extent of the computational
domain, for Re = 100, U = 0° and changing _. Streamlines are colored by particle
number. The flow is steady so streamlines are equivalent to pathlines.

Figure 4.9: Streamwise plane showing the intersection of streamlines on the G/� = 2
plane (top) and G/� = 4 plane (bottom) when released at G/� = −0.6, H = 0.25 and
across the I extent of the computational domain for Re = 100, U = 0° and changing
_. The disk profile is shown in red. The flow is steady so streamlines are equivalent
to pathlines.
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Figure 4.10: Streamlines from a rake initialized at G = −0.6, H = 0.05, spaced
every 0.05D across the I extent of the computational domain, for Re = 100, U = 0°.
Columns from left to right use _ = 0, 1, 2 and 4. Different rows show (a) a top
view, and (b) an upstream elevated view. Flow is in the +G direction. Streamlines
are colored by particle number. The flow is steady so streamlines are equivalent to
pathlines.

We again see the reattachment of the flow after the separation region. For _ = 4, we
see a very strong recirculation region that extends beyond the sides of the disk. This
gives rise to two connected vortical structures, one on either spanwise side, which
resemble tip vortices in the sign of their streamwise vorticity content. Overall the
streamlines show that the disk rotation induces a spanwise-outward flow close to the
disk plane. Fluid passing above the disk is brought abruptly downwards to replace
this fluid. We see that the recirculation region naturally tilts to the advancing side
of the disk, such that on the advancing side, flow is upstream at the surface of the
disk, and downstream towards the top of the recirculation region. This allows flow
passing over the disk to be in the same direction as the flow in the recirculation
region. A clear pattern emerges where the rotation of the disk creates a recirculation
region that points towards the advancing side of the disk and connects to a vortical
structure akin to a tip vortex. Much of the flow is directed into this vortex.

4.2.2 Vortex lines
With an understanding of the changing recirculation region and flow in the wake,
we turn to analyzing the arrangement of vortex lines. Vortex lines illuminate
flow structures such as the tip vortices and the trailing-edge vortex sheet. Since
vortex lines are everywhere tangent to the local vorticity vector, they indicate the
contribution of vorticity generated at the disk surface contributes to different negative
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or positive components of vorticity in the wake. While this flow is not inviscid and
we observe some viscous dissipation of vorticity, we can drawn on Helmholtz’s
theorems as a basis for understanding the vortex line motion. They state that vortex
lines must extend to the fluid boundaries or form a loop. In this case, vortex lines
begin on either side of the disk surface due to the rotation. In a purely rigid-body
rotating flow, vortex lines are parallel to the axis of rotation and extend normal
from the surface. For the finite disk, these vortex lines extend into the wake and
eventually loop back to end on the other side of the disk. Figure 4.11 shows the
arrangement of vortex lines for a rotating disk with and without freestream flow.
For additional configurations of the vortex lines from the disk surface, see appendix
C. The loops are symmetric about the disk plane. For the non-spinning case, loops
leave the surface on one side, extend out past the disk radius and loop back to the
other side of the disk, forming a closed loop. The loops swirl around the disk since
the angular velocity of the flow decays beyond the disk radius.

When streamwise flow is introduced, we still see the overall loop structure and
swirling configuration, with some added modifications. Vortex loops on the up-
stream side of the disk are concentrated around the leading edge, while vortex loops
towards the trailing edge are convected downstream into the wake. The vortex
lines that proceed downstream on the advancing side consist of negative streamwise
vorticity and concentrate themselves in the vortical tube emerging from the recircu-
lation region. Note that the sign of streamwise vorticity depends on the orientation
of the vortex line. Vortex lines that originate at the top disk surface have negative
streamwise vorticity when oriented downstream, as a result of the clockwise disk
rotation (when viewed from above). When the vortex lines orient themselves up-
stream, as in the case of some of the vortex lines that have turned back upstream,
then they have positive streamwise vorticity values. Note that if we were to take a
look at the bottom side of the disk, the vorticity signs will be opposite, since the
bottom side of the disk introduces positive streamwise vorticity into the flow.

4.3 Wake structure in flow over an inclined spinning disk
Overall, from the parallel flow simulations, we observed that disk rotation creates
a recirculation region that orients itself to the advancing side of the disk, while
increasing the downwash over the top of the disk helps to bring the leading-edge
vortex sheet closer to the disk. Vorticity from the top side of the disk contributes
to negative streamwise vorticity as it convects downstream, and predominantly
concentrates into a vortex on the advancing side of the disk. We remark that this is
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Figure 4.11: Top view of vortex loops from the disk surface for (a) Rel = 100 and
(b) Re = 100, _ = 4, and Rel = 400). Vortex lines are colored by G-vorticity.

the same sign of streamwise vorticity as in tip vortices that form on the advancing
side of the disk for inclined flow. We will see that this is important for allowing the
vorticity from the disk to strengthen the advancing tip vortex. We now apply the
same streamline and vortex line analysis from section 4.2.1 for the case with disk
inclination and describe the effect of disk rotation on the wake structure. There are
several connections to the case of flow parallel to the disk, although inclination leads
to separation at the trailing edge even without spin, as well as tip vortices from the
sides of the disk. As we consider the inclined disk case at Re = 500 and U = 25°,
we keep in mind the vorticity signs from the top and bottom surfaces, which are
significant for how they interact with tip vortices and vortex sheets.

4.3.1 Streamlines
Returning to the case of inclined flow at Re = 500 and U = 25°, at _ = 0, there
is already a recirculation region because of the separation at the leading edge.
The pressure difference between the top and bottom surfaces gives rise to counter-
rotating tip vortices on either side of the disk, which are not present for the parallel
flow case. Again, we analyze streamlines within the recirculation region. Because
of the angle of attack, it is important to look at streamlines that pass both above
and below the disk, as these are no longer symmetric as in the parallel flow case,
and they illuminate different parts of the wake structure. Figure 4.12 shows the
pathlines for particles starting upstream and passing both above and below the disk.
Note that in this case, the flow is steady so streamlines and pathlines are equivalent.
We see that streamlines pass over the recirculation bubble. Because of the strong
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Figure 4.12: Pathlines for the steady flow for Re = 500, U = 25° and _ = 1.5.
Particles pass through every 0.01� along (a) a spanwise line with a parallel distance
of 0.1� from the disk leading edge and (b) a spanwise line below the disk with a
normal distance of 0.05�. Flow is from top left to bottom right and streamlines are
colored by particle.

tip vortices and resulting downwash, the streamlines are swept towards the center
spanwise plane and also brought quickly downwards. They spread into the top side
of the trailing edge vortex sheet and are also entrained into each tip vortex, causing
them to swirl. None of the streamlines end up in the recirculation region but instead
continue downstream in the tip vortices.

For streamlines passing close to the pressure side of the disk, most particles are
entrained into the tip vortices as well. As in the case of flow parallel to the disk
(figure 4.9), we see significant spanwise-outward velocity in the trailing-edge vortex
sheet, induced by the entrainment of the tip vortices. However, there is a narrow
region of fluid that is entrained into the advancing tip vortex and then proceeds
to swirl upstream into the recirculation region. Ultimately, these streamlines exit
the recirculation region primarily on the receding side of the disk, where the disk
velocity is in line with the freestream velocity. This behavior indicates that there
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is a boundary in the advancing tip vortex, slightly downstream of the disk, that
separates fluid that travels upstream into the recirculation bubble, and fluid that
proceeds downstream in the tip vortex. Figure 4.13 distinguishes between these
sets of streamlines for a clearer view. We see that a narrow region of upstream
points are entrained into the advancing tip vortex and pulled upstream into the
recirculation region. Meanwhile points towards the advancing side are entrained
into the advancing tip vortex but proceed downstream. Points on the receding side
are much more greatly diffused in the trailing edge vortex sheet and end up entrained
in both the advancing and receding tip vortices. These visualizations also show how
the rotation induced by the advancing tip vortex is much stronger than that in the
receding tip vortex.

To grasp the structure of the recirculation bubble and how this affects the distribution
and advection of vorticity in the wake, we examine streamlines that all pass through
the recirculation region, shown in figure 4.14. While the recirculation bubble is
spanwise symmetric in the non-spinning case, we see here that the recirculation
region elongates along the advancing side of the disk, while shortening on the
receding disk side. This follows from the differential in local Reynolds number
on either spanwise side of the disk due to the rotation (higher on the advancing
side and lower on the receding side), as seen in the case of flow parallel to the
disk (figure 4.7). The recirculation region takes on a cone-like shape that shares
many similarities with the flow profile caused by rotating disk in quiescent flow
(non-translating), which exhibits a spiralling, viscous pump action that draws in
fluid towards the rotating disk. This cone of swirling fluid has its nose shifted into
the advancing tip vortex. This is a result of the match in orientation of rotation in
both the recirculation region and the advancing tip vortex (streamwise negative).
The flow in the recirculation region swirls around and towards the disk. Flow in
this region comes predominantly from a narrow upstream region of fluid that passes
below the disk, is brought above the disk by the advancing tip vortex, and spirals
inward to the disk surface. Most particles are then released near the disk surface on
the receding side.

4.3.2 Vortex lines
The rigid-body rotation of the disk generates vorticity on both the pressure and
suction surfaces. Examining the resulting vortex lines at Re = 500 and U = 25°
demonstrates how vorticity convects in the wake for inclined flow. The vortex lines
from the parallel flow case in section 4.2.2 revealed that vorticity from the top
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Figure 4.13: Pathlines below the disk for the steady flow for Re = 500, U = 25°, and
_ = 1.5. Particles pass through every 0.01� along a spanwise line below the disk
with a normal distance of 0.05�, with (a) 0.1� < I < 0.5�, (b) 0� < I < 0.06�,
and (c) −0.5� < I < 0�. Flow is from top left to bottom and streamlines are
colored by streamwise vorticity, lG .
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Figure 4.14: Pathlines below the disk for the steady flow for Re = 500, U = 25°
and _ = 1.5. Particles are initialize in a ring parallel to the disk with a normal
distance 0.1� and diameter 0.5�. Flow is from top left to bottom and streamlines
are colored by streamwise vorticity, lG .

disk surface contributed to negative streamwise vorticity in the wake, primarily on
the advancing side of the disk, following the alignment of the recirculation region
towards the advancing side of the disk as well. We channel this understanding to
interpret the vortex lines in the wake of flow for the rotating disk at Re = 500,
U = 25°, and _ = 1.5.

Figure 4.15 displays two sets of vortex lines, one showing how the vortex lines
extend into the wake and eventually loop back towards the disk (top image in figure
4.15) and another that displays just the vortex lines as they extend into the wake,
so that we can see them unobstructed (bottom image in figure 4.15). Following the
orientation of the recirculation cone into the advancing-side tip vortex, the vortex
lines originating from the top surface of the disk extend directly into the advancing
tip vortex. On the other hand, vortex lines from the bottom surface are more diffused
in the wake, distributed into both the receding tip vortex and the leading-edge and
trailing-edge vortex sheets. The spanwise-outwardmotion seen from the streamlines
in figure 4.12 helps to entrain vorticity from the trailing-edge vortex sheet around
the advancing tip vortex, and we see these vortex lines circle the vortex core. While
this configuration may seem complicated at first, we can make comparisons to the
non-spinning case to help explain this geometry. For the non-spinning disk flow
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Figure 4.15: Vortex lines extending from the suction surface of the disk for the
steady flow for Re = 500, U = 25°, and _ = 1.5. All vortex lines are initialized in
a ring parallel to the disk with a normal distance 0.1� and diameter 0.5�. Flow
is from top left to bottom and streamlines are colored by streamwise vorticity. The
maximum length of vortex lines is (a) 40� and (b) 10�. In (b) only the vortex lines
primarily in the advancing tip-vortex core are revealed while in (a), longer vortex
lines eventually loop back towards the disk. Vortex lines are colored by streamwise
vorticity, lG .

with vortex shedding, vortex lines follow the hairpin-vortex loops. The strengthened
advancing tip vortex for the spinning case causes the ends of these vortex loops to
become entrained and swirl around the advancing tip vortex, as seen by the vortex
loops that circle around the advancing tip-vortex core.

4.4 A mechanism for vortex shedding suppression by vorticity advection
This picture of the recirculation region and how vortex lines distribute in the wake
help us to understand how the vorticity generated from the disk distributes itself
in the wake and leads to vortex-shedding suppression. While the magnitude of
vorticity generated from the disk is the same for both surfaces, their orientation and
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how they advect into the wake differ greatly. Vortex lines from the top surface have
the same streamwise sign as the advancing tip vortex, while vortex lines from the
bottom disk surface have the same streamwise sign as the receding tip vortex. Since
vortex lines from the top surface enter into the cone-shaped recirculation region,
they are then fed into the advancing tip vortex directly, greatly strengthening the
advancing tip vortex. However, vorticity from the bottom disk surface enter the
wake from outside the recirculation region and so are more distributed around the
tip vortices and trailing-edge vortex sheet. This leads to the behavior observed in
the vorticity-isosurface visualizations, where the advancing tip vortex dominates
and the receding tip vortex is more diffuse. The increased circulation in the tip
vortices increases downwash above the disk, so the leading edge vortex sheet hugs
closer to the disk (figure 4.1). It also induces a significant spanwise-outward flow in
the trailing edge vortex sheet, helping to advect vorticity in the trailing edge vortex
sheet outwards. This diffusion of vorticity in the trailing edge vortex sheet prevents
its roll up, thus suppressing roll up.

4.5 Unsteadiness at high tip-speed ratios
While we have focused on the changes in wake structure from periodic vortex
shedding to steady flow, we have also seen that there are additional instabilities at
high TSRs. Revisiting figures 3.6 and 3.9, we recall that for high TSRs beyond the
steady region (_ ' 1.75), we saw unsteadiness in the wake. The high-frequency
content is associated with elliptic instability that will be discussed in more detail in
Chapter 5. Meanwhile the low frequency content corresponds to the reappearance
of vortex shedding, which continues to grow with TSR. This means that rotation
serves to modulate the flow from subcritical to supercritical with respect to the
vortex shedding instability. A potential explanation for the reappearance of vortex
shedding is related to the addition of vorticity into the wake by the disk rotation.
Previously, we discussed that some of this vorticity enters the tip vortices, which
in turn helps them to dissipate vorticity in the trailing-edge vortex sheet before it
rolls up. At the same time, some vorticity from the bottom side of the disk ends
up in the trailing edge vortex sheet (figure 4.15). As TSR increases, the strength
of the trailing-edge vortex sheet increases as well. Whether or not the trailing-edge
vortex sheet rolls up may then be a function of the competing effects of the spanwise
convection of vorticity out of the trailing-edge vortex sheet and the addition of
vorticity into the trailing-edge vortex sheet.
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4.6 Conclusions and Discussion
In summary, we observe that disk rotation helps to reduce and, in some cases,
suppress vortex shedding in flow over an inclined spinning disk. This occurs over a
range of supercritical Re-U combinations, including into higher bifurcations such as
the quasi-periodic vortex-shedding (PSL) flow, where low-frequency modulations
are inhibited. The TSR required to suppress vortex shedding differs depending on
the original strength of vortex shedding in the non-spinning case. Streamline and
vortex line analyses show that, as _ increases, more vorticity is generated at the
disk surface and ultimately advected into the wake. The rotation induces a cone-
shaped recirculation region that orients itself into the advancing tip vortex, greatly
strengthening the advancing tip vortex. This induces a spanwise-outward flow in
the trailing-edge vortex sheet, causing it to be entrained into the tip vortices. This
serves to dissipate vorticity from the trailing-edge vortex sheet, preventing it from
rolling up and resulting in weakened or suppressed vortex shedding. At higher
TSRs, the vortex-shedding instability reappears, which may be caused by the disk
rotation strengthening the trailing-edge vortex sheet beyond the ability of the tip
vortices to dissipate it. Overall, disk rotation causes two competing effects: (1) the
increase in vorticity in the tip vortices, especially the advancing tip vortex, which
helps to dissipate the trailing edge vortex sheet, and (2) the addition of vorticity into
the trailing-edge vortex sheet. The stronger effect determines whether or not vortex
shedding occurs.

This vortex-shedding suppression and subsequent destabilization by spin is not
unique to the case of the spinning disk. Kim (2009) studied flowpast a sphere rotating
in the transverse direction and observed that moderate rotation rates suppressed
vortex shedding while even higher rotation rates could destabilize the flow and
cause vortex shedding to appear again. Poon et al. (2010) explored different axes of
rotation between streamwise and transverse rotation, observed similar phenomenon
for a range of rotation axes. Similarly, Kang, Choi, and Lee (1999) found that
in two-dimensional flow past a circular cylinder, rotation could suppress vortex
shedding and lead to a steady flow. By studying higher TSR regimes for the same
configuration, Mittal and Kumar (2003) observed a second critical rotation beyond
which the flow was unsteady. Karabelas et al. (2012) also observed suppression of
vortex shedding in turbulent two-dimensional flow over a rotating circular cylinder
for Re = 5 · 106, Given similarities in the trends and wake structures, it is possible
that the underlying mechanisms in these various flows may be related as well, with
the rotation strengthening the tip vortices and helping to dissipate vorticity before
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it rolls up. Further study would be required to understand this non-monotonic
behavior, which is relevant to a variety of rotating bluff-body flow configurations.
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C h a p t e r 5

ELLIPTIC INSTABILITY IN TIP VORTICES

In this chapter, we consider spinning disk flowatRe = 500 andU = 25° for highTSRs
(_ ≥ 1.9). At these TSRs, a short-wavelength instability appears, both in isolation
and in conjunction with other instabilities. We use spectral proper orthogonal
decomposition (SPOD) to isolate the instabilities in the flow and characterize their
features. We find that the short-wavelength instability shows remarkable qualitative
and quantitative similarities to the (−2, 0, 1) principal mode of elliptic instability. To
make comparisons, we model the tip vortices as a pair of counter-rotating Batchelor
vortices and estimate the flow parameters that are relevant to elliptic instability.
Our parameter estimates are consistent with instability of the (−2, 0, 1) principal
mode. We also observe frequency lock-in between the disk rotation and the short-
wavelength instability, which suggests the importance of disk rotation for forcing
the short-wavelength instability.

5.1 Short-wavelength instabilities at high tip-speed ratio
5.1.1 Isolated short-wavelength instability
While vortex-shedding is stabilized for low to moderate TSRs, higher TSRs excite
a short-wavelength instability, see for example figure 5.1. This short-wavelength
instability appears as a corkscrew-shaped double-helical twisting of the vorticity
isosurfaces. It is particularly distinct for 1.9 ≤ _ ≤ 2.2, but persists into higher
TSRs as well. At _ = 1.8, just above the steady range, we see the onset of the
instability in the advancing tip vortex, with a shallow corkscrew shape starting to
take hold. At _ = 1.9, this corkscrew or double-helical shape is distinct with regular
"braids" of vorticity twisting around themselves. The wavelength of this instability
is on the same order as the inter-tip-vortex distance, making it wavelength relative
short relative to the wavelength of vortex shedding, which is about 2-3 times greater.

As _ increases further, the shape is maintained but the wavelength decreases visibly,
corresponding to a gradual increase in frequency aswell (figure 3.9). We can observe
the grooves of the corkscrew deepening as _ increases. As a result of the decreasing
wavelength, the helix angle decreases as well, and we can see some of the vortical
structures in the braids orienting themselves increasingly in the spanwise direction,
leading to stronger spanwise vorticity around the advancing tip vortex (figure 5.1).



60

Figure 5.1: Isosurfaces of vorticity for the disk at Re = 500 and U = 25° for
_ = 1.8, 1.9, 2.0, 2.1 and 2.2. Flow is from top left to bottom right with the
disk rotating clockwise from above. Semi-transparent grey isosurfaces are vorticity
magnitude, | |8 | | = 3. Streamwise vorticity, lG (left column) and spanwise vorticity,
lI (right column) are shown in opaque red and blue for positive (+3) and negative
(−3) values, respectively. The G-, H- and I-axes reference lines are 5�, 1� and 1�
long, respectively.

This short-wavelength instability closely resembles the elliptic instability, which has
been extensively studied in the literature and will be described in detail in section
5.3.

5.1.2 Mixed short-wavelength instability and vortex shedding
While the short-wavelength instability is dominant in the range of 1.9 ≤ _ ≤ 2.2,
for _ > 2.3, the vortical structures in the wake become more complicated, although
they still exhibit strongly periodic behavior (figure 3.9). Figure 5.2 shows the
modification to the wake with increasing TSR for 2.3 ≤ _ ≤ 3. We refer back to
figure 3.9 to track the changes in frequency content over this range as well. For
1.9 ≤ _ ≤ 2.2, the flow is largely monochromatic, with the short-wavelength elliptic
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instability providing the dominant frequency content at St ≈ 1.4. For_ ≥ 2.3, we see
additional lower frequencies appear and take over as the highest energy peaks. The
dominant frequency for _ = 2.3 and _ = 2.4 is St ≈ 0.9. Meanwhile for 2.5 ≤ _ ≤ 3,
the dominant frequency is St ≈ 0.5, which is close to the vortex shedding frequency
at low TSR (figure 3.9). This results in a transitionary region for 2.3 ≤ _ ≤ 2.6
where the spectra are quite colorful, with many distinct peaks appearing. Visually,
we are still able to see the corkscrew shape of the short-wavelength instability, though
we have the addition of more complex vortical structures. The grey isosurfaces of
vorticity magnitude reveal non-planar-symmetric vortex shedding that extends from
the advancing tip vortex and loops partially towards the receding side. This vortex
shedding is associated primarily with the low frequency peak at St ≈ 0.5.

It is noteworthy that the frequency of the intermediate peak (St ≈ 0.9) is equal
to the difference between the high frequency (St ≈ 1.4) and low frequency values
(St ≈ 0.5), which are associated with the short-wavelength and vortex shedding
instabilities, respectively. As a result, the three highest energy frequencies for each
case in this range form frequency triads. This suggests that the vortex shedding
and the elliptic instability are coupling together. Upon closer inspection, we can
see that the legs of the shedding hairpin vortices align with braids of the elliptic
instability (figure 5.2). For 2.7 ≤ _ ≤ 3, the frequencies are more organized and
form harmonics of one another, indicating even stronger coupling. There are also
irregular globules of vorticity being shed from the leading-edge vortex sheet, which
has accumulated more streamwise vorticity as TSR has been increasing. In section
5.2.3, we analyze the SPOD modes for the flow at _ = 3 to gain more insight into
the interaction between the two instabilities.

5.2 Spectral proper orthogonal decomposition for identifying energeticmodes
To better characterize the short-wavelength instability, we use spectral proper or-
thogonal decomposition (SPOD) to identify the most energetic modes in the flow at
various frequencies (Towne, Schmidt, and Colonius, 2018). SPOD at _ = 2 isolates
the short-wavelength instability. We also compute the SPOD modes at _ = 1 to
understand the mode shapes for non-planar-symmetric vortex shedding. Then, we
examine the SPOD modes at _ = 3 to understand the mixed behaviour of these
instabilities.

The SPOD analysis is similar to a PSD in that sequential snapshots of the flow
over a long time period are required, with the snapshot frequency determining the
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Figure 5.2: Isosurfaces of vorticity for the disk at Re = 500 and U = 25° for
_ = 2.3, 2.4, 2.5, 2.6, 2.7, and 3.0. Flow is from top left to bottom right with the
disk rotating clockwise from above. Semi-transparent grey isosurfaces are vorticity
magnitude, | |l | | = 3. Streamwise vorticity, lG (left column) and spanwise vorticity,
lI (right column) are shown in opaque red and blue for positive (+3) and negative
(−3) values, respectively. The G-, H-, and I-axes reference lines are 5�, 1�, and 1�
long, respectively.
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Nyquist limit and the time series length determining the resolution. Statistical
variability in the flow allows SPOD to identify multiple coherent structures for the
same frequency, if present. Using the Welch method the cross-spectral-density is
estimated by dividing the time series into a number of segments—this number of
segments is then equal to the number of modes that can be resolved for a given
frequency. For the laminar flows analyzed here, the flow fields are periodic or nearly
so, so the primary mode for each frequency contains the overwhelming majority of
the energy at that frequency. Since many instances of the flow field are necessary
for SPOD, it can be memory intensive, especially for 3D flows. To aid with this, we
use a streaming SPOD algorithm developed by Schmidt and Towne (2019), which
efficiently processes the the snapshots one by one, and makes SPOD for the 3D flow
field viable (Schmidt and Towne, 2019). To minimize the data, we also coarsen the
flow field data by a factor of five in each spatial direction.

5.2.1 SPOD modes for vortex shedding - _ = 1
At Re = 500, U = 25° and _ = 1, the flow exhibits non-planar-symmetric vortex
shedding. Figure 5.3 shows the most energetic mode corresponding to the vortex
shedding, which occurs at St = 0.6. The streamwise-vorticity isosurfaces shows the
advancing-side legs of the hairpin vortices. The vortical structures in the spanwise-
vorticity isosurfaces reach across the spanwise center plane of the disk, but do not
connect to a tip vortex on the receding side. This indicates the roll up of the trailing
edge vortex sheet, though biased to the advancing side.

5.2.2 SPOD modes for the short-wavelength instability - _ = 2
For _ = 2, the highest energy SPOD mode occurs at (C = 1.31 and is shown in
figure 5.4. The mode is confined to the advancing tip vortex core and we clearly
see the double-helical braiding of positive and negative vorticity. Other frequency
peaks are over an order of magnitude weaker than the highest frequency, and we can
see from the flow reconstruction using just the mean flow and the first SPOD mode
at (C = 1.31 that the corkscrew-like structure of the advancing tip vortex is fully
captured in this first mode (figure 5.5). The missing features that are associated with
the lower energy modes are the shedding of vortical blobs from the leading edge
vortex sheet.

There are some evident parallels between the hairpin vortex structure within the
advancing tip vortex and the short-wavelength instability structure. The hairpin
vortex legs also result in alternating braids of positive and negative vorticity, though
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Figure 5.3: Top view of streamwise (top) and spanwise (bottom) vorticity isosurfaces
of the most energetic (vortex shedding) SPOD mode for Re = 500, U = 25°, and
_ = 1, occurring at (C = 0.6.

Figure 5.4: Top view of streamwise (top) and spanwise (bottom) vorticity isosurfaces
of the most energetic SPOD mode for Re = 500, U = 25° and _ = 2, occurring with
temporal frequency l = 1.31 and axial wavenumber : = 1.9

there are only two strands of vorticity per streamwise section (one positive and
one negative) as opposed to four (two positive and two negative) for the short-
wavelength instability. The wavelength of the hairpin vortices is longer as well,
with a correspondingly lower frequency.
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Figure 5.5: Isosurfaces of streamwise vorticity for the reconstruction of the flow
by the superposition of the mean flow and the first SPOD mode at (C = 1.31 (left)
alongside a snapshot of the full flow field (right) for Re = 500, U = 25° and _ = 2.

5.2.3 SPOD modes for the mixed wake - _ = 3
For _ = 3, the frequency content is more rich, with the presence of both vortex-
shedding and short-wavelength instability. SPOD allows us to isolate the mode
shapes for each of these frequency peaks to better understand the flow. Figure 5.6
shows the three most energetic SPOD modes for the _ = 3 case at Re = 500 and
U = 25°. These modes occur at frequencies that harmonics of the primary frequency
peak at St = 0.47. The low-frequency SPOD mode at St = 0.47 shows structures
mainly present in the advancing tip-vortex, with fluctuations in the streamwise
vorticity akin to hairpin vortex legs. The SPOD mode at St = 0.94 shares a
similar structure to that seen for non-planar-symmetric vortex shedding in figure
5.3, although with a shorter wavelength and higher frequency. It also displays some
of the same double-helical braiding of four lobes of positive and negative vorticity
as with the short-wavelength instability, though much less distinct and also modified
by the presence of additional vortical structures. The spanwise vortical structures
indicates some fluctuations in vorticity along the trailing-edge vortex sheet as well.
The SPOD mode at St = 1.41 also shows structures in both the advancing tip vortex
and the trailing-edge vortex sheet. There is positive-negative vorticity braiding in
the advancing tip vortex, though its structure is not as clean as with the mode at
St = 0.97. The spanwise vortical structures that merge into the advancing tip vortex
are reasonably distinct for this mode. Overall, the structure of the various SPOD
modes demonstrates that the vortex shedding and short-wavelength instabilities no
longer occur at their own distinct frequencies but instead interacting nonlinearly.
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The presence of both is clearly seen for St = 0.97 and St = 1.41 as the structures
align with one another.

5.2.3.1 Frequency lock-in between vortex shedding and the short-wavelength
instability

For _ ≥ 2.3 we observe a mixed wake behavior with both vortex shedding and
the short-wavelength instability, previously described in 5.1.2. In this region, we
observe a separate frequency lock-in phenomenon for 2.5 ≤ _ ≤ 3. The SPOD
modes at St = 0.94 and St = 1.41 possess features of both vortex shedding and the
short-wavelength instability. These modes also occur at harmonics of St = 0.47,
indicating that the frequency of vortex shedding and the short-wavelength instability
have locked in to one another. This corresponds to the legs of vortex shedding
structure being aligned with the braids of the short-wavelength instability in the
advancing tip vortex. To provide a possible explanation for this phenomenon, we
note that the orientation and position of the hairpin vortex legs (figure 5.3) are similar
to those of the corkscrew-like braids of the short-wavelengthmode (figure 5.4). They
differ in their wavelength and that the corkscrew instability does not have filaments
of spanwise vorticity crossing the spanwise centerline. In this case, it appears that
the shedding occurs preferentially from the braids in the short-wavelength instability,
allowing the different instabilities to lock in to each other’s frequencies.

Wepresent twopossible explanations based on the vortical structures present. Firstly,
the close match in vortical structures between the legs of hairpin vortices and
the short-wavelength braids affects how the roll up the trailing-edge vortex sheet
interacts with the advancing tip vortex. As the trailing edge vortex sheet rolls up,
its legs will preferentially align themselves and merge with the co-rotating braids
of the short-wavelength instability, resulting in the formation of hairpin-vortex
legs that merge with the corkscrew braids. Alternatively, in figure 5.1 we saw
the increasing spanwise alignment of the short-wavelength braids, which leads to
increased spanwise vorticity around the the tip vortex. With enough vorticity, these
spanwise braids eventually begin to shed and interact with the trailing edge vortex
sheet, causing roll up. In either case, the braids and vortex-sheet roll up will tend
to align due to the merging of co-rotating vortical elements. In the transitionary
region, the two frequencies don’t quite line up, so a myriad of other frequencies
arise as the vortex shedding and short-wavelength instabilities interact at different
phases.
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(a) St = 0.47

(b) St = 0.94

(c) St = 1.41

Figure 5.6: Top view of streamwise (top) and spanwise (bottom) vorticity isosurfaces
of the most energetic SPOD mode for Re = 500, U = 25° and _ = 3.
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5.3 The elliptic instability in a pair of counter-rotating Batchelor vortices
In order to understand the presence of the short-wavelength instability, we first note
its close resemblance to one of the elliptic instability modes. Elliptic instability
occurs as a result of the amplification of Kelvin modes in a vortex core due to an
external strain field, often from an adjacent vortex (Widnall, Bliss, and Tsai, 1974).
Elliptic instabilities are so called because the strain field imposed by one vortex on
the other causes an elliptic deformation of the otherwise circular vortices in the base
flow (Ryan and Sheard, 2007).

The elliptical instability has been studied in a variety of vortex-pair configurations,
including various vorticity profiles, both counter- and co-rotating vortex pairs, and
with and without axial flow. The most unstable mode depends on these details and
is summarized by Kerswell (2002) and Leweke, Le Dizès, and Williamson (2016).
For this chapter, we will focus specifically on elliptic instability in a pair of counter-
rotating Batchelor vortices, which was investigated in detail by Ryan and Sheard
(2007) and Lacaze, Ryan, and Le Dizès (2007). The Batchelor vortex has both
Gaussian axial vorticity and axial velocity profiles, and thus matches closely to the
velocity profile for a pair of tip vortices behind wings (Batchelor, 1964). While
the elliptical instability is typically studied in pairs of equal strength vortices, it can
occur for unequal strength pairs as well or in single vortices as long as a strain field
is applied (Ryan, Butler, and Sheard, 2012).

5.3.1 The Batchelor vortex
For a single Batchelor vortex, the non-dimensionalized axial vorticity, l0(A), and
axial velocity,, (A), are given by:

l0(A) = 2 exp(−A2), and (5.1)

, (A) = ,0 exp(−A2), (5.2)

where A is the radial distance,,0 = 2c'0b/Γ is the axial velocity strength, Γ is the
circulation, b is the dimensional axial velocity, and '0 is the vortex radius. Note
that the axial velocity strength, ,0, can also be written in terms of the ratio of the
maximum axial velocity to the maximum azimuthal velocity to the maximum,0 =

(0.638 max+)/(max,), where+ is the azimuthal velocity. The azimuthal velocity
is non-dimensionalized by the angular velocity in the vortex Ω0 = Γ/(2c'2

0), and
can be written as

+ (A) = 1
A

(
1 − exp(−A2)

)
. (5.3)
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(a)
(b)

Figure 5.7: Setup for the Batchelor vortex: (a) axial and azimuthal velocity profiles,
and (b) diagram for configuration of a counter-rotating pair of Batchelor vortices.

Figure 5.7a depicts the velocity profile for,0 = 1. We can consider a pair of counter-
rotating vortices, where one vortex imposes a strain on the other (figure 5.7b). The
flow is then parameterized by the circulation Reynolds number, ReΓ = Γ/(2ca), the
axial velocity strength, ,0, and the strain rate imposed on the vortex, Y. Using a
point-vortex approximation, the strain rate can be approximated by

Y ≈ Γ

2c12 , (5.4)

where 1 is the distance between the centers of the two vortices.

5.3.2 Conditions for elliptic instability
The elliptic instability arises from resonance of Kelvin modes in the vortex core.
Kelvin modes are the linear normal perturbation modes in the core of a columnar
vortex in the inviscid limit (Thomson, 1880). For the Batchelor vortex, the Kelvin
modes are given in cylindrical coordinates (A, \, I) for the velocity field, u′, and
pressure field, ?′, by

u′ = u (A)4G? (8:I + 8<\ − 8lC) , and (5.5)

?′ = ? (A)4G? (8:I + 8<\ − 8lC) , (5.6)

where : is the axial wavenumber, < is the azimuthal wavenumber, and l is the
temporal frequency (not to be confused with the vorticity vector, 8) (Thomson,
1880; Lacaze, Ryan, and Le Dizès, 2007). Individual Kelvin modes are all neutrally
stable or damped (Ryan and Sheard, 2007). However, the strain imposed by one
vortex on the adjacent vortex causes a coupling of pairs of Kelvin modes. These
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pairs are referred to as principal modes, and they are able to resonate in certain
conditions, giving rise to the elliptic instability.

The pairs of modes follow strict rules in order to achieve resonance. First, their
temporal frequency and axial wavenumbers must match. In addition, their azimuthal
wavenumbers must differ by two (see Eloy and Le Dizès, 2001; Lacaze, Birbaud,
and Le Dizès, 2005). This can be written as

l1 = l2, :1 = :2, <1 = <2 ± 2, (5.7)

where the subscripts denote the first and second mode of the pair. The branch
label, ;, gives the numuber of zeros in the radial velocity along the radial direction.
Typically, the most unstable configuration is for ;1 = ;2 = ;. As a result, principal
modes are referenced by their azimuthal wavenumbers, <1 and <2, and a branch
label, ;, as (<1, <2, ;). The condition for perfect resonance is given by Eloy and Le
Dizès (2001) as

l − :,0 =
<1 + <2

2
, (5.8)

relating the wavenumbers and temporal frequency to the axial velocity strength.

Lacaze, Ryan, and Le Dizès (2007) performed a stability analysis to identify the
most unstable principal modes in the pair of counter-rotating Batchelor vortices for
a range of ReΓ, ,0 and Y values. They find that the principal modes (<1, <2, ;) of
the elliptic instability are unstable for sufficiently high circulation Reynolds number
and strain rate. Though the exact principal modes that are most unstable do depend
on ReΓ and Y, the axial velocity strength,,0, is the strongest factor in determining
the most unstable principal modes. This is due to the presence or absence of
a critical layer and its associated damping for the various Kelvin modes as ,0

changes. As a result, the amount of axial flow plays a key role in the nature of
the elliptic instability. While the (−1, 1, 1) principal mode is dominant for vortex
pairs with no axial flow, the modes become damped in the presence of axial flow.
Instead, the (−2, 0, 1) principal mode is most unstable in flows with sufficient axial
flow (,0 ≥ 0.2), where the critical-layer damping rate decreases in magnitude
as ,0 increases (Lacaze, Ryan, and Le Dizès, 2007). This (−2, 0, 1) principal
mode consists of the resonant coupling between the < = 0 Kelvin mode, which
produces axial swelling and contracting of the vortex core, and the < = −2 Kelvin
mode, which consists of the alternating braiding of positive and negative vorticity
perturbations (Ryan and Sheard, 2007). The < = −1 mode is strongly damped at
low,0 but is neutrally stable for,0 ≥ 0.5 (Lacaze, Ryan, and Le Dizès, 2007). In
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Figure 5.8: Vorticity isosurfaces for the theoretical (-2, 0, 1) principal mode. The
image is reproduced with permission from Leweke, Le Dizès, and Williamson
(2016).

combination, this results in a cork-screw vortical structure with an axial wavelength
on the order of the inter-vortex distance, seen in figure 5.8.

Comparing these vorticity isosurface representations, we see substantial qualitative
match in the short-wavelength instability and the (−2, 0, 1) principal mode shown
by (Leweke, Le Dizès, and Williamson, 2016) (figure 5.8. They both feature a
double-helical, corkscrew shape of the vortex core. In order to provide a more
detailed quantitative comparison, we will use spectral proper orthogonal decompo-
sition (SPOD) to isolate the short-wavelength mode and compare its frequency and
wavenumbers with that seen in studies by Lacaze, Ryan, and Le Dizès (2007).

5.4 Modeling tip vortices as a pair of counter-rotating Batchelor vortices
To provide a quantitative comparison between the short-wavelength instability and
the elliptic instability, we estimate the flow parameters in the advancing tip vortex
that are relevant to the elliptic instability. These parameters are the axial velocity
strength, ,0, the circulation Reynolds number, ReΓ, and the strain rate, Y. To
estimate these parameters, we model the mean flow in the tip vortices as a pair of
counter-rotating Batchelor vortices. These values can change along the length of the
tip vortex so we estimate the values at several streamwise distances to evaluate the
range of values found in the vortex. We use vortices with unequal strengths since
the advancing tip vortex is considerably stronger than the receding tip vortex. The
mean flow is shown in figure 5.9. Note that the receding tip vortex is present, but
weaker than the advancing tip vortex.

5.4.1 Axial velocity strength,,0

The axial velocity strength scales with the ratio of maximum axial velocity to
maximum azimuthal velocity. In the tip vortex configuration, the non-zero axial
velocity arises from the velocity deficit in the vortex cores, with axial velocity
tending to the freestream velocity away from the vortex core. By changing to
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Figure 5.9: Streamwise vorticity isosurface (lG = 1) for the mean flow at '4 = 500
and U = 25° for _ = 2.

the freestream-fixed reference frame, this is equivalent to the general configuration
outlined by the vortex profiles in equations 5.1 and 5.3, namely a peak axial velocity
at the vortex center that goes to zero with increasing radial distance. As TSR is
increased, we saw that the rotation induces a recirculation region that aligns with the
advancing tip vortex and creates a region of upstream flow. Overall, this increases
the velocity deficit in the vortex cores, resulting in higher,0 as TSR increases.

To determine the axial velocity strength,,0, we determine the maximum azimuthal
velocity and maximum axial velocity in the advancing tip vortex at a given stream-
wise plane. Note that the azimuthal velocity profile can be fit using either the
maximum azimuthal velocity (equation 5.3) or using the maximum axial vorticity
(equation 5.1). The maximum axial vorticity provides the center of the vortices
for estimating the inter-vortex distance 1. Figure 5.10 provides an example fit for
the Batchelor vortices based on fitting the Gaussian profiles to the maximum axial
vorticity and maximum axial velocity. We include the resulting azimuthal velocity
estimate to show that while this model provides a reasonable estimate, it does not
fully capture the tip-vortex configuration. While a more involved optimization could
be performed, this crude approximation is quite reasonable given that the Batchelor
vortex model is incomplete and will not be able to account for the presence of other
vortical structures in the wake such as the leading-edge and trailing-edge vortex
sheets.

The estimates of axial velocity strength using both azimuthal velocity estimates are
shown in figure 5.11. There is some variability along the length of the vortex and
between the two methods, with an average value of,0 ≈ 1.2.

5.4.2 Circulation Reynolds number, ReΓ
To determine the circulation Reynolds number, we estimate the total circulation
in the advancing tip vortex by integrating the negative streamwise vorticity in the
vortex for each streamwise plane. Figure 5.12 shows the evolution of the circulation
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(a) (b)

(c)

Figure 5.10: Comparison of the real profiles and the modeled Batchelor vortex
profiles determined usingmax, andmaxl0 for (a) axial vorticity, (b) axial velocity,
and (c) azimuthal velocity.

Figure 5.11: Axial velocity strength with streamwise distance estimated from either
fitting the Batchelor vortex profile to the maximum axial vorticity or the maximum
axial velocity.
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Figure 5.12: Circulation Reynolds number with streamwise distance.

Figure 5.13: Strain rate estimate using equation 5.4 as a function of streamwise
distance.

Reynolds number with streamwise distance. The circulation Reynolds number
decreases as vorticity diffuses by viscous effects. We can estimate the circulation
Reynolds number as ReΓ ≈ 35 in the mid wake.

5.4.3 Strain rate, Y
The strain rate, Y, can be estimated for a known circulation, Γ, and inter-vortex
distance, 1, by equation 5.4. Note that the circulation used is for the adjacent vortex,
namely the receding tip vortex. The inter tip-vortex distance is determined by the
distance between the peaks in axial velocity in both tip vortices. Figure 5.13 shows
the strain rate estimate against streamwise distance. Strain decreases since it is
dependent on the circulation, which decreases with downstream distance. We can
estimate the strain as Y ≈ 1.5 in the mid wake.
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5.5 Comparisons between the short-wavelength instability and the elliptical
instability

Having estimated the parameters in the tip vortices using the Batchelor vortexmodel,
we perform several different comparisons between the short-wavelength instability
and the elliptic instability. First, we check that the tip-vortex parameters estimated in
5.4 match the expected unstable ranges for the elliptic instability, particularly of the
(−2, 0, 1) mode. Then we compare streamwise cross-sections of the mode shapes
and discuss the corresponding wavenumbers and frequencies. Finally, we consider
the conditions for perfect resonance between pairs of Kelvin modes in the elliptic
instability, and ensure that this condition is indeed satisfied for the short-wavelength
instability.

Lacaze, Ryan, and Le Dizès (2007) show the most unstable modes in the (,0,YReΓ)
parameter space. For Y = 0.1 within the range 0 ≤ ,0 ≤ 0.6, all of the prin-
cipal modes are stable at least up to YReΓ ≈ 4. Increasing strain rate lowers the
Reynolds number at which the modes first become unstable, since strain amplifies
the resonance of the modes. The most unstable principal mode at ReΓ = $ (10) for
,0 ≥ 0.18 is the (−2, 0, 1) mode (Lacaze, Ryan, and Le Dizès, 2007). The lowest
ReΓ at which the mode is unstable depends on,0, but is as low as about YReΓ = 4
at,0 = 0.4. Since Lacaze, Ryan, and Le Dizès (2007) only consider,0 up to 0.6,
it is not possible to make a direct comparison. However, we do expect the (−2, 0, 1)
principal mode to continue to show resonant properties, since the individual Kelvin
modes are neutrally stable for,0 ≥ 0.5 (Lacaze, Ryan, and Le Dizès, 2007). From
section 5.4, we estimate that the tip vortices have YReΓ ≈ 5 with,0 ≈ 1.2. There-
fore, the advancing tip vortex for Re = 500, U = 25° and _ = 2 does possess the
correct order of magnitude of flow parameters for the (−2, 0, 1) mode to be unstable,
when modeled by the Batchelor vortex pair. This is consistent with the onset of the
elliptic instability at around _ = 1.8, where the circulation Reynolds number and
strain will be slightly lower than for the _ = 2 case since the advancing tip vortex is
weaker. For the highest axial velocity strength considered by Lacaze, Ryan, and Le
Dizès (2007), the axial wavenumber of the flow is : ≈ 2 and is fairly independent
of ,0, ReΓ and Y for ,0 > 0.5. This matches well with the axial wavenumber of
the short-wavelength SPOD mode at about : = 1.9.

Figure 5.14 shows streamwise cross-sections of the SPOD modes for comparison
with various elliptic-instability principal modes. Although principal modes can
show resonance for a range of (:, l) combinations depending on ,0 (by the res-
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onance condition in equation 5.8), the mode shapes themselves maintain the same
qualitative features. As a result, while we do not have direct literature comparisons
for our estimated vortex configuration ReΓ ≈ 35 and Y ≈ 0.15, we can still find
strong qualitative comparisons across different (ReΓ, Y) values. We compare to the
(−2, 0, 1), (−3,−1, 1), and (−4,−2, 1) principal modes presented by Lacaze, Ryan,
and Le Dizès (2007) for ,0 = 0.482, Re = 3180, and Y = 0.063, shown in fig-
ure 5.15. The SPOD mode at St = 1.31 displays the same structure as the (−2, 0, 1)
principal mode, with four lobes of alternating vorticity sign arranged in a circle
(figure 5.15). The same is true comparing the SPOD modes at St = 2.1 and St = 2.5
to the (−3,−1, 1) and (−4,−2, 1) principal modes, respectively, but for additional
numbers of lobes. Note that while the energies of the SPOD modes at St = 2.1 and
St = 2.6 are about three orders of magnitude lower than that of the most energetic
SPOD mode at St = 1.3, they form distinct peaks above the noise level. The axial
velocity strength required for the perfect resonance of these SPODmodes at St = 2.1
and St = 2.6 are ,0 ≈ 1.4 and ,0 ≈ 1.5, respectively. These are in line with the
rough estimate of,0 from section 5.4, although the estimate is too crude to state for
certain the level of resonance achieved. This matches with the analysis by Lacaze,
Ryan, and Le Dizès (2007) which shows that for,0 ≥ 0.5, the (−2, 0, 1) principal
mode is more unstable than both the (−3,−1, 1) and (−4,−2, 1) principal modes.
Regardless, we draw attention to them because they are still present with very low
spectral energy, indicating that they may be neutrally stable or weakly damped.

5.5.1 Condition for perfect resonance
To provide further confirmation that the observed short-wavelength instability is the
(−2, 0, 1) principal mode of the elliptic instability, we can determine if it satisfies
the conditions for perfect resonance that allow two Kelvin modes to couple. We
can rewrite equation for the condition of perfect resonance (equation 5.8) to get an
expression for,0 in terms of the wavenumbers and temporal frequency, which gives

,0 =
1
:

(
l − <1 + <2

2

)
. (5.9)

Using this equation, we can use the wavenumbers and frequency of the short-
wavelength SPOD mode, and estimate the axial velocity strength that would lead to
perfect resonance. For the SPOD mode at _ = 2 with St = 1.31, : = 1.9, <1 = −2
and <2 = 0, equation 5.9 gives perfect resonance for axial velocity strength of
,0 = 1.22. This matches closely with our axial velocity strength estimate of
,0 ≈ 1.2 from section 5.4.1, indicating that the tip-vortex configuration supports
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(a) : = 1.9, l = 1.31 (b) : = 3.0, l = 2.06 (c) : = 3.8, l = 2.59

Figure 5.14: Streamwise vorticity in a streamwise cross-section of SPOD modes
at l = 1.3, 2.1 and 2.5 for Re = 500, U = 25°, and _ = 2. The solid black line
represents the disk’s streamwise projection.

(a) (−2, 0, 1), : = 1.88 (b) (−3,−1, 1), : = 3.23 (c) (−4,−2, 1), : = 4.57

Figure 5.15: Cross-sections of the vorticity perturbation fields at ,0 = 0.482,
Re = 3180, and Y = 0.063 for various principal modes from simulations by Lacaze,
Ryan, and Le Dizès (2007).

perfect resonance of the (−2, 0, 1) principal mode.

5.6 Frequency lock-in between the short-wavelength instability and disk ro-
tation

Revisiting the changing frequency content displayed in figure 3.9, we see that the
frequency of the short-wavelength instability increases with TSR for 1.9 ≤ _ ≤ 2.2.
In fact, this frequency increase coincides closely with twice the frequency of disk
rotation. This demonstrates a lock-in phenomenon between the short-wavelength
instability and the disk rotation. Lock-in suggests that the disk rotation may play a
role in helping to force the (−2, 0, 1) principal mode, especially for this region where
the flow is very close to the critical point. Fluctuations associated with the rotation
could force the (−2, 0, 1) principal mode, even if it is neutrally stable or damped. We
also observe a range of TSRs right after the lock-in region (2.3 ≤ _ ≤ 2.6) for which
the energy of the elliptic instability first declines. The strength of the (−2, 0, 1)
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mode may be enhanced specifically in this lock-in region thanks to resonance with
the disk rotation forcing, allowing it to appear distinctly within this range, even
though it is less apparent just beyond the lock-in range. For 2.6 ≤ _ ≤ 3, the energy
of the (−2, 0, 1) mode continues to grow. This is consistent with the increasing
growth rates of the mode as ReΓ and Y increase with increasing _.

5.7 Flow over spinning disks at high Reynolds number
To predict the presence of the short-wavelength instability at higher Reynolds num-
bers, we briefly present some preliminary results for flow over a spinning disk at
Re = 4000 and U = 25°. We observe many of the same flow features that are present
at Re = 500, including vortex shedding, its reduction, and elliptic instability. These
simulations are performed with grid resolution ΔG = 0.0048, scaled based on the
$ (Re−1/2) laminar boundary layer thickness. Figures 5.16 and 5.17 show isosur-
faces of streamwise and spanwise vorticity for _ = 0 and _ = 2, respectively. The
non-spinning case shows distinct vortex shedding and tip vortices, though several
smaller scale structures are present throughout as well. At _ = 2, we see significantly
strengthened tip vortices that persist further downstream, along with weakened vor-
tex shedding. A close look at the tip-vortices shows some corkscrew-like braids
reminiscent of elliptic instability. The legs of the spanwise vortical structures align
with these braids as well, and there is spanwise roll up all around the tip vor-
tices. Towards the end of the wake, we see long-wavelength mirrored sinusoidal
perturbations in both tip vortices, characteristic of the onset of Crow instability in
trailing vortices (Crow, 1970). If allowed to develop, the Crow instability causes
the tip vortices to pinch together and eventually form vortex rings in the wake.
These simulations demonstrate the persistence of vortex-shedding suppression and
elliptic instability at higher Reynolds numbers, although modulated by additional
instabilities and small-scale structures.
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Figure 5.16: Top view of isosurfaces of vorticity, l, for the wake behind a disk at '4 = 4000, U = 25°, and _ = 0. Flow is from left
to right with the disk rotating clockwise (from above). Grey isosurfaces are for vorticity norm | |l| | = 3. In the top image, red and blue
isosurfaces represent positive and negative streamwise vorticity (lG = +3 andlG = −3) and in the bottom image, red and blue isosurfaces
represent positive and negative spanwise vorticity (lI = +3 and lI = −3)
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(a)

Figure 5.17: Same as figure 5.16 but for _ = 2.
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5.8 Conclusions and Discussion
At high TSRs (_ ≥ 1.9) beyond the region of vortex-shedding suppression, we ob-
serve the appearance of a distinct, short-wavelength instability that closely resembles
the (−2, 0, 1) principal mode of the elliptical instability. By using SPOD to isolate
the mode shape and estimating the relevant parameters of the tip-vortex profiles, we
find that the frequency and wavenumbers match the conditions for perfect resonance
that is characteristic of elliptic instability. At the same time, we observe a lock-in
phenomenon between twice the disk rotation frequency and the short-wavelength
instability that appears to act as additional forcing, enhancing the resonance of the
(−2, 0, 1) principal mode. For the highest TSRs considered (2.3 ≤ _ ≤ 3), the
wake exhibits a mixture of vortex shedding and short-wavelength instability. At
certain TSRs, for example for 2.6 ≤ _ ≤ 3, the frequency peaks of these combined
phenomena organize into harmonics of one another, with hairpin-vortex shedding
occurring quasi-periodically with the braids of the elliptic instability. In summary,
it appears that these two main instability modes characterize the flow seen over the
range of TSRs. These are the vortex shedding mode, which consists of trailing-
edge vortex-sheet roll up, and the (−2, 0, 1) principal mode, which is an elliptic
instability within the tip-vortex core. We observe either their individual distinct
presence when only one is supercritical, of their combined nonlinear interactions
when both are excited. Vortex shedding occurs as a result of growing perturbations
in the wake for a sufficiently strong trailing edge vortex sheet. On the other hand,
the (−2, 0, 1) principal mode arises when resonance conditions are achieved with
sufficient circulation, axial velocity, and strain in the advancing tip vortex. While
these instabilities arise by different mechanisms and are located in different parts of
the wake, their proximity and similar structures allow them to interact when they
are both present.

We remark that the (−2, 0, 1) principal mode does not appear in the non-spinning
parameter space. While Re and U can both change the vorticity in the tip vortices,
they seem not able to create the conditions required for resonance of the elliptic
instability modes. Rather, increasing TSR allows for appropriate values of ReΓ, Y
and,0 for the elliptic instability to occur. This is the result of the suction effect from
the rotating disk’s recirculation region, which additionally injects linear momentum
directly into the advancing tip vortex, modifying the axial velocity significantly.

While there is a strong match with features from studies of the (−2, 0, 1) principal
mode in Batchelor vortices, some of the discrepancies in the flow configuration will



82

likely affect the prediction of the exact critical points. In addition to the discrepancy
between the actual tip vortex profile compared to the idealized Batchelor vortex
shape, there is also the presence of the trailing-edge vortex sheet just outside the
vortex core. It could be that this vortex sheet imposes a significant strain on the tip
vortex, as it does possess opposite streamwise vorticity to the advancing tip vortex.
This affects the estimation of the strain parameter, Y. Despite these discrepancies
in the flow configuration, the strong match in mode shapes shows the robustness of
these modes over a range of frequencies, wavenumbers and axial velocity strength,
as long as resonance conditions are met. Therefore, while we have considered here
only a single (Re, U) combination, we expect these principal modes to emerge for
a range of flow parameters if there is sufficient spin to produce the required flow
profile in the tip vortices. Similarly, the frequency lock-in effect between the disk
rotation and the elliptic instability, as well as that between vortex shedding and the
elliptic instability in the mixed wake, is a condition specific phenomenon that will
arise when frequencies align appropriately.

We also observe many of the same wake structures at an order of magnitude higher
Reynolds number of Re = 4000. Although high Reynolds number flow is more
complex, with small-scale structures and additional instabilities, vortex shedding
is known to persist for bluff bodies at high Reynolds numbers, for example in
flow over inclined disks (Calvert, 1967) and flow over axisymmetric bluff bodies
(Rigas et al., 2014). While separation profiles and boundary layer formation are
different for high Reynolds numbers, disk rotation inevitably injects both linear
and angular momentum into the wake, leading to increased circulation in the wake
(Nakamura and Fukamachi, 1991; Higuchi et al., 2000). However, it remains to be
seen if elliptic instability will continue to persist as Reynolds number increases into
turbulent regimes.
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C h a p t e r 6

CONCLUSIONS

In this thesis, the flow over a spinning disk at angle of attack was investigated
in regimes that lie at the intersection between available studies on laminar flow
over non-spinning disks and on spinning-Frisbee flight in turbulent regimes. We
observed bifurcations associated with instabilities that alter the aerodynamic forces
and wake dynamics. In this chapter, we summarize the main conclusions from each
chapter, discuss their implications, and suggest noteworthy avenues for future work.

In Chapter 2, we proposed a method to simulate disk rotation using rigid-body-
rotation boundary conditions applied to the immersed-boundary points. We vali-
dated the results using comparisons of aerodynamic forces for non-spinning disks,
showing that the disk thickness can affect the location of critical points for the
vortex-shedding bifurcation.

In Chapter 3, we swept over a range of TSRs up to three to observe the effect of
spin on the aerodynamics. We observed a monotonic increase in lift and drag for all
TSR values. This effect appears to be largely Reynolds number independent, with
studies at Re = $ (105) showing similar increases in lift and drag for _ > 1, though
changes are negligible for _ < 1 (Potts, 2005). The effect of spin on lift-to-drag ratio
and moment coefficients is marginal, showing promise for application in spinning
disk flight with consistent flight properties. We also observe several interesting
phenomenon, including the suppression of vortex shedding for moderate TSRs, and
the short-wavelength corkscrew-shaped (−2, 0, 1) principal mode from the family
of elliptic instabilities, which form the basis of study in further chapters.

In Chapter 4, we explored the vortex-shedding-suppression phenomenon in greater
detail, demonstrating that spin acts to reduce and/or suppress vortex-shedding in-
stabilities over a broad range of Re and U. The mechanism behind this suppression
relates to the vorticity generation at the spinning disk surface and how this vorticity
convects into the wake. By analyzing the pattern of streamlines in wake, we show
that the disk rotation produces a cone-shaped recirculation region that tilts into the
advancing tip vortex and draws in fluid towards the disk surface. As a result, the
vortex lines originating from the top disk surface align with the advancing tip vortex
and add significantly to its strength. The vorticity from the pressure side of the disk
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distributes itself more diffusely in both the receding tip vortex and the trailing-edge
vortex. The increased circulation in the tip vortices induces a spanwise stretching of
the trailing edge vortex sheet, helping to dissipate vorticity and prevent roll up, sup-
pressing vortex shedding. Similar trends are observed in the wake of other spinning,
axisymmetric bluff bodies, including the sphere (Kim and Choi, 2002; Kim, 2009),
the bullet-shaped body (Jiménez-González et al., 2014), and the circular cylinder
(Kang, Choi, and Lee, 1999; Mittal and Kumar, 2003). The similarity in changes
in wake structure suggest that the strengthening of the tip vortices and spanwise
vorticity dissipation may play a role across these different cases. This may serve to
help predict wake changes in rotation of general axisymmetric bluff bodies.

Finally, in Chapter 5, we compare the distinct short-wavelength instability that
appears at high TSRs to the (−2, 0, 1) principal mode associated with elliptic in-
stability. We perform SPOD to isolate the associated modes and compare them to
characterizations of this principal mode studied in a pair of counter-rotating Batch-
elor vortices, demonstrating strong qualitative and quantitative agreement (Lacaze,
Ryan, and Le Dizès, 2007). Principal modes of the elliptic instability are unstable
when resonant conditions are met for sufficiently high circulation Reynolds number
and strain. While this condition is not satisfied for non-spinning disks, increasing
TSR, in contrast to Re or U, is uniquely able to modify the axial velocity strength in
the advancing tip vortex, as a result of the upstream flow generated by the recircu-
lation region. For a narrow range of TSRs, the frequency of the (−2, 0, 1) principal
mode locks in to twice the frequency of disk rotation, suggesting that the rotation
acts as an additional forcing that helps to enhance the resonance of the elliptic in-
stability. We also observe cases for higher TSRs where both vortex shedding and
the (−2, 0, 1) principal mode are apparent. SPOD shows that these modes lock-in
to one another, with the hairpin-vortex shedding aligning with the braids of the
short-wavelength instability.

While the observations in this thesis were made for low Reynolds number flow
($ (102)) over a disk, we note that many trends are consistent with observations for
high Reynolds number and for other bluff-body geometries.

The structure of vortex-shedding instabilities observed at low Reynolds numbers
has been shown to persist statistically as large-scale coherent structures at turbulent
Reynolds numbers, as seen for flow over the inclined disk for up to Re = 5 · 104

(Calvert, 1967) and for the axisymmetric bluff body for up to Re = 2 · 105 (Rigas
et al., 2014).
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Therefore, while we require further investigation at high Reynolds number to draw
definitive conclusions, we speculate that the mechanisms uncovered here may offer
some insight into the underlying flow physics for flow over different rotating bodies
at high Reynolds number.

6.1 Future work
In this thesis, we focused primarily on characterizing and exploring mechanisms
for vortex-shedding suppression and elliptic instability in flow over a spinning disk.
However, there is still much to investigate in order to comprehensively understand
and predict these instabilities throughout the large parameter space of spinning-disk
flow. Below, we outline several ways to expand upon the present work.

Since disk rotation plays a key role in suppressing vortex shedding and creating the
conditions for elliptic instability in the tip vortices, it would be beneficial to precisely
quantify the convection of vorticity from the rotating disk into the wake. This would
involve measuring the change in strength of the tip vortices and trailing-edge vortex
sheet. In terms of vortex shedding, this could help to characterize the opposing
effects of both the increased vorticity input and the increased spanwise dissipation
of vorticity in the trailing-edge vortex sheet as TSR increases. This would shed
light on the modulation of the flow from supercritical to subcritical and back to
supercritical, which is relevant in a number of flow configurations featuring rotating
bodies (Kim, 2009; Mittal and Kumar, 2003). In addition, spin affects values of
axial velocity strength, circulation Reynolds number, and strain rate, which affect
the stability of the elliptic-instability principal modes. If these changes could be
quantified for different wake regimes, this would allow for amore accurate prediction
of when elliptic instability occurs.

The observations made here hint at the presence of similar phenomenon at high
Reynolds number. This thesis has focused on a relatively narrow range of Reynolds
numbers and angles of attack close to the first (vortex-shedding) bifurcation. High-
Reynolds-number studies could help to extend these results to MAV flight regimes.
These studies could be done experimentally, which would comfortably reach Re =
0(105). Experiments would allow for the added benefit of efficiently studying
a range of disk profiles for flight applications. Alternatively, Dorschner et al.
(2020) and Yu (2021) have expanded on the current IBLGF method with adaptive
grid refinement and LES capabilities. These would allow for simulations at high
Reynolds numbers as well. Increasing Reynolds number will undoubtedly affect the
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separation characteristics and wake structures, especially in turbulent regimes. One
might consider whether disk spin will still affect the axial velocity in the tip vortices
at high Reynolds numbers where the recirculation region will change significantly.
Reynolds number (and angle of attack) will ultimately affect the strength of both
the trailing-edge vortex sheet and the tip vortices, which are key factors in the
appearance of the various instabilities discussed.

The flow topology, and therefore the effect of spin, are a function of the disk
geometry. The changing wake structure with disk geometry parameters such as
aspect ratio, camber and edge shape is still largely unstudied. Investigating these
effects are necessary to understand how vorticity generated by disk rotation will
convect into the wake. Since the disk’s thickness or aspect ratio can effect the
bifurcations, itmay also beworthwhile to estimate the effect of the apparent thickness
from the finite regularization when using the immersed boundary method (see
section 2.3.5). One way to do this would be to study a laminar boundary layer
developing over a flat plate modelled using immersed boundary points. Carefully
comparing the resulting flow field to the Blasius boundary layer solution could
help to quantify the apparent thickness of the immersed boundary surface for a
given resolution and highlight any other ways that the immersed boundary support
effects the thickness. Clearly, there remains a large parameter space to explore as a
fundamental step towards being able to quantify and predict wake parameters as a
function of spin. Such developments would be vital for optimal spinning-disk flight
design.

Extending the stability analysis and numerical simulations performed by Lacaze,
Ryan, and Le Dizès (2007) to cover ,0 ≥ 0.6 would allow for an improved com-
parison with the present work and would provide a more accurate picture of which
principal modes of the elliptic instability are unstable for high ,0. However, this
would still be limited due to discrepancies from the ideal Batchelor vortex configura-
tion. Ideally, it would also be important to consider and model the effect of the disk
rotation and/or the nearby trailing-edge vortex sheet, as these change the structure of
the base flow significantly. While it may prove challenging to model these effects,
it is possible that the effect of the trailing-edge vortex sheet could be captured by
incorporating its effect in the strain field appropriately, instead of assuming the strain
field from a single adjacent vortex. As it stands, our comparison is indirect and relies
on the robustness of the mode shapes and resonance characteristics, which compare
well despite the discrepancy in,0. A more accurate assessment of the growth rates
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of the elliptic instability in the absence of the disk rotation would shed light on
the lock-in phenomenon and help us understand the degree to which rotation can
enhance the resonance of the modes and modify the elliptic-instability frequency.

We can also look beyond spinning-disk flight and consider a mounted spinning disk
as an actuator for flow control. We have already seen how spin injects linear and
angular momentum into the wake, modifying the wake structure significantly. Ricco
and Hahn (2013) demonstrated that rotating wall-flush-mounted disks could reduce
drag in channel flow. Wise, Alvarenga, and Ricco (2014) and Olivucci, Ricco, and
Aghdam (2019) studied a similar configuration using rotating rings instead of disks,
which are able to achieve similar drag reduction levels via a similarmechanism, while
using less power. Similarly, Munday and Taira (2018) studied swirling jet actuators
on an airfoil and found that the injection of wall-normal and angular momentum
helped to control separation. The spinning disk could offer similar applications for
wings where zero net mass flux is required. This could open up the possibility of
using small rotating-disk actuators in an overall fixed-wing configuration.

The future work proposed above all tie in to ultimately being able to quantify and
predict how the vorticity produced by the spinning disk convects into the wake
and influences the flow regimes. The present work is only the start of a more
comprehensive understanding of the complexwake structure for flow over a spinning
disk at angle of attack.
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A p p e n d i x A

IMMERSED BOUNDARY MESH FOR THE DISK

Figure A.1 shows the mesh used for the disk simulations at Re = 500. The mesh
is generated by Distmesh (Persson and Strang, 2004). The vertices indicate the
location of IB points. Measuring the length of the connective edges gives the IB
spacing. This mesh has a total of 2585 points.

Figure A.1: Mesh used for disk immersed surface with ΔB = 0.1875, generated
by Distmesh (Persson and Strang, 2004). Immersed boundary points are located at
vertices while the edges represent the distance between IB points.



94

A p p e n d i x B

NON-SPINNING DISK AERODYNAMICS AND FLOW
REGIMES

The lift and drag time series are shown for various U in figure B.1, while the
corresponding wake visualization shown with isosurfaces of vorticity magnitude
are shown in figure B.2. The angle of attack serves as a bifurcation parameter. For
low U, the flow is steady and develops two tip vortices on either side of the disk.
As angle of attack is increased to U = 30°, the flow undergoes a supercritical Hopf
bifurcation and transitions to a periodic vortex shedding flow. At U = 40, the flow
is quasi-periodic with a low frequency modulation. The amplitude of lift and drag
oscillation changes regularly, corresponding to a strengthening and weakening of
the vortex shedding B.3. For even higher angle of attack, the flow becomes chaotic
and loses its spanwise symmetry, shown visually and also by the non-zero side force
that develops. These flow regimes have been characterized extensively by Tian et al.
(2017).
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(a) (b)

(c) (d)

Figure B.1: Lift, drag and side force coefficients over time for the non-spinning disk
at Re = 500 for (a) U = 20°, (b) U = 30°, (c) U = 40°, and (d) U = 70°.
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Figure B.2: Isosurfaces of vorticity magnitude (|8 | = 3 for the non-spinning disk at
Re = 500 at various angles of attack.



97

(a)

(b)

Figure B.3: (a) Time-varying force coefficients and (b) isosurfaces of vorticity
magnitude (|8 | = 3) for the non-spinning disk flow with periodic vortex shedding
with a low frequency modulation, occurring at Re = 500 and U = 40°. The two
isosurface images correspond to (A) strengthened vortex-shedding and (B)weakened
vortex-shedding, as marked on the time series plots.
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A p p e n d i x C

VORTEX LINES FOR FLOW PARALLEL TO THE DISK

Because of the complexity of vortex line distribution in wakes, we provide some
additional visualizations to help the reader understand how the arrangement of vortex
lines change when spin is introduced. Figures C.1 and C.2 compare vortex lines
from different parts of the disk for the spinning disk with and without streamwise
flow. For the spinning disk without streamwise flow, vortex lines are axissymetric.
Vortex lines start on one side of the disk, loop out and around back to the opposite
side of the disk. Vortex lines starting closer to the center of the disk form larger
loops than those started close to the disk edge.

When streamwise flow is added, the vortex lines tend near the leading edge are
compressed, while those towards the trailing edge are stretched downstream. Those
on the advancing side of the disk concentrate into a vortical structure on the advanc-
ing side, which contains negative streamwise vorticity. The vortical structure with
positive streamwise vorticity on the receding side is more diffused.
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Figure C.1: Top view of various groups of vortex lines initialized in rings on the
disk surface for Rel = 100. Vortex lines are colored by streamwise vorticity, red for
positive and blue for negative.

Figure C.2: Top view of various groups of vortex lines initialized in rings on the
disk surface for Re = 100, Rel = 400 (or _ = 4) and U = 0°. Flow is in the +G
direction and disk rotation is clockwise. Vortex lines are colored by streamwise
vorticity, red for positive and blue for negative
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