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ABSTRACT

Shape-morphing and self-propelled locomotion are examples of mechanical behav-
iors that can be “programmed” in structuredmedia by designing geometric features at
micro- and mesostructural length scales. This programmability is possible because
the small-scale geometry often imposes local kinematic modes that are strongly
favored over other deformations. In turn, global behaviors are influenced by local
kinematic preferences over the extent of the structured medium and by the kinematic
compatibility (or incompatibility) between neighboring regions of the domain. This
considerably expands the design space for effective mechanical properties, since
objects made of the same bulk material but with different internal geometry will
generally display very different behaviors. This motivates pursuing a mechanistic
understanding of the connection between small-scale geometry and global kinematic
behaviors. This thesis addresses challenges pertaining to the modeling and design
of structured media that undergo large deformations.

The first part of the thesis focuses on the relation between micro- or mesoscale
patterning and energetically favored modes of deformation. This is first discussed
within the context of twisted bulk metallic glass ribbons whose edges display pe-
riodic undulations. The undulations cause twist concentrations in the narrower
regions of the structural element, delaying the onset of material failure and permit-
ting the design of structures whose deployment and compaction emerge from the
ribbons’ chirality. Following this discussion of a periodic system, we study sheets
with non-uniform cut patterns that buckle out-of-plane. Motivated by computa-
tional challenges associated with the presence of geometric features at disparate
length scales, we construct an effective continuum model for these non-periodic
systems, allowing us to simulate their post-buckling behavior efficiently and with
good accuracy.

The second part of the thesis discusses ways to leverage the connection between
micro/mesoscale geometry and energetically favorable local kinematics to create
“programmable matter” that undergo prescribed shape changes or self-propelled
locomotion when exposed to an environmental stimulus. We first demonstrate the
capabilities of an inverse design method that automates the design of structured
plates that morph into target 3D geometries over time-dependent actuation paths.
Finally, we present devices made of 3D-printed liquid crystal elastomer (LCE)
hinges that change shape and self-propel when heated.
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C h a p t e r 1

INTRODUCTION

1.1 Research objectives
This thesis discusses the mechanics and design of media that derive their global
kinematic behaviors from geometric features at the micro- or mesostructural length
scales. The main objectives of the research in this thesis are (i) to understand
the connection between micro- or mesoscale patterning and energetically favored
local modes of deformation in both passive and active media and (ii) to leverage
this understanding to create “programmable matter” that change shape or locomote
according to a designer’s intention when exposed to an environmental stimulus. The
ability to program active materials’ responses to loading scenarios or environmental
stimuli offers new opportunities to create compliant systems that interact with or
navigate through their environments.

1.2 Motivation
Throughout most of history, humans have generally relied on the flexion of slender
elements and on the rigid body motions of jointed mechanisms to embed predictable
degrees of freedom in tools and structures. Levers, hinges, pulleys, and other
mechanical elements have been actuated by humans, animals, wind, and water for
thousands of years. In today’s industrial setting, actuation has mostly been delegated
to engines and electric motors, but the majority of machines still (appropriately) rely
on basic mechanisms to realize their intended kinematics.

However, several contemporary engineering practices and applications are driving
departures from conventional machine design approaches that rely on the above-
mentioned components. Causes of this include volume and mass constraints in
aerospace systems that undergo complex switches between stowed and deployed
configurations [1, 2], requirements for operating in harsh environments where elec-
tronics are inviable, and the drive to reduce part counts in assemblies. In these
situations, pure mechanisms (i.e. systems that display zero-elastic energy kinematic
modes) are often replaced by compliant elements [3] and active materials that as-
sume target shapes in response to environmental cues such as light, temperature or
humidity changes, chemical gradients, electric fields, etc. [4–10].
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In a step beyond replacing individual joints with compliant analogues, advancedma-
terials synthesis techniques and additive manufacturing technologies have enabled
the design and fabrication of structures that derive their kinematic behaviors from
geometric feature patterns at the micro- or mesostructural length scales [11, 12].
Structures with patterned geometric features are referred to as structured media
when their micro/mesoscale geometric features are much smaller than the overall
dimensions of the object as well as the size of global deformation features (e.g. the
wavelength of a buckling mode). Namely, structured media display a separation
of length scales between the small features of their micro/mesostructure and other
relevant dimensions.

Crucially, the kinematic modes that are favored by structured media can be signifi-
cantly altered by modulating the parameters that define the small-scale features [13].
These structuredmedia become “programmable”when the ability to tailor kinematic
behaviors is coupled to a mechanistic understanding of how local geometry influ-
ences global effective properties: this enables the creation of structured media that
display desired kinematic behaviors in response to an environmental stimulus or
a simple loading condition. Examples of programmable media include devices
that accurately morph into target geometries [14] or are capable of self-propelled
locomotion [15] when heated.

Several approaches have been suggested for prescribing large deformations in struc-
tured media via micro/mesostructural design. Origami is perhaps the most com-
monly known framework for doing so, and it provides a clear illustration for the
connection between mesoscale geometry and global kinematics (Fig. 1.1a-b). Be-
cause it is much easier to fold creases than to stretch planar facets, vastly different
folded shapes can be attained by altering the crease patterns [12, 20, 21]. Mi-
cro/mesostructural tailoring has been extended to many other forms of soft [5–
7, 10, 22–26] and stiff [18, 27, 28] structured media with the purpose of exerting
similar control over global deformations. These are discussed in more detail in
subsequent chapters.

This control over global deformations via micro/mesostructural design has also
been crucial for the rapidly maturing field of soft robotics: Soft robots often have
infinite degrees of freedom and are subjected to finite deformations (unlike most
of their rigid counterparts), so it can be challenging to predict their kinematics
under a continually varying set of boundary conditions and to implement control
systems. Since micro- and mesoscale patterning are avenues for favoring desired
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Figure 1.1: Examples of how deformations can be “programmed” via mesostructural
patterning. (a) A miura-ori crease pattern that leads to the kinematic behavior shown in
(b) [16]. (c) An inverse design framework is used to create the mesostructure of an initially
flat beam network that (d) morphs into the shape of Gauss’s face [14]. (e) Hygromorphic
wooden bilayers [17] are used to shape the panels that compose (f) the 14m tall Urbach
Tower [18]. (g) Pneumatic cavities in the limb of (h) a locomoting soft robot enable complex
locomotive gaits in response to pressurization and depressurization cycles [19].

kinematics over other deformations [29–31], they enable functions such as object
manipulation [32–34] and locomotion [15, 19, 35–37], as shown in Fig 1.1g-h.

Within this context of attaining desired structural functions, an important trait of
structured media (broadly speaking) is that they offer engineers a versatile platform
for obtaining desired mechanical properties via optimal design [38, 39]. These
optimal design techniques have had an especially profound impact on the design of
programmable media, as they alleviate engineering intuition’s burden in designing
non-uniform micro/mesostructures. Through optimal design, very complex global
kinematic targets can be attained by creatingmicro/mesostructures that energetically
favor the necessary local deformations [10, 12, 14, 40, 41]. Fig. 1.1c-d shows the
effectiveness of inverse design techniques, where the shape ofGauss’s face is attained
from an initially flat structure.

By using these optimal design techniques to create the micro/mesostructures of
activemedia, one can prescribe responses to environmental stimuli such as changes
in temperature [14, 22, 23], chemical concentrations [42], etc. Although active
medium programming has mostly been shown within the context of desktop-scaled
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devices, recent studies have bridged the concept to larger scales. For example, the
14m tall UrbachTower shown in Fig. 1.1e-f shows an interesting use of hygromorphic
wood panels in an architectural context [18, 27].

The ability to program shape-morphing responses to environmental stimuli through
the constitutive and geometric tuning of active media is similar to what roboticists
are able to achieve by using electronic controllers and motors. This has motivated
researchers to program additional operations that are characteristic of robots (e.g. lo-
comotion, object manipulation, logic processing) within untethered devices’ active
material-based structural frames, rather than requiring additional power sources,
control devices, and actuators [43]. An example of this is shown in Fig. 1.2 [15].
In the future, a robust integration of sensing, actuation, computation and communi-
cation capabilities as an intrinsic material property of a micro/mesostructure would
blur the distinction between structured media and robots.

Figure 1.2: A time-lapse overlay showing untethered shape-reconfiguration and locomo-
tion by a programmed structured medium. The mesogen orientation in the liquid crystal
elastomer bilayers cause the hinges to fold in response to a thermal stimulus [15].

1.3 Research approach, challenges, and methods
This thesis discusses micro/mesostructural patterning as a tool for enforcing desired
deformations. We start with the simpler case of a periodic mesostructure before
exploring the mechanical behavior of a class of non-periodic structured media. We
then introduce a method for inversely designing the non-uniform mesostructures
of initially flat shells that morph into target geometries. Finally, micro/mesoscale
patterning is discussed within the application-oriented context of designing soft
robots with easy-to-predict kinematics.

Although the internal geometry of a structured medium exerts a strong influence
on mechanical behaviors, the bulk materials’ elastic (or inelastic) properties also
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must be accounted for in compliant systems. This need to account for a structured
medium’s energetic behavior can considerably complicate the design process, and
motivates the performance of experiments and the development of models that
help us understand and predict the mechanical behavior of structured media [44].
Throughout this thesis, experimental characterizations of structured media and their
unit cells guide the construction of mechanical models that capture their behavior.
Thesemodels then inform the design of larger or non-uniformly patterned specimens
that serve as proof-of-concept demonstrations of interesting mechanical behaviors.
The challenges associated with each of these steps and the methods employed on
the problems will be discussed in the following subsections.

Specimen fabrication and characterization
Specimen fabrication and their experimental characterization are two of the main
challenges associated with many research projects, including with the work in this
thesis. Attaining statistically significant results requires collecting a large quantity
of data, which is challenging if specimen fabrication and testing is not automated.
This challenge is compounded when the research objective is to understand the
mechanics of structured media composed of non-uniformly patterned geometric
features or that display temporally varying mechanical properties because one must
conduct experiments on a broad set of unit cell geometries jubjected to a variety of
loading scenarios.

All of the specimens discussed in this thesis are structured plates that assume flat
initial configurations. Although these choices of structuredmediawere not primarily
driven by ease of fabrication, they do alleviate the above-mentioned difficulties by
allowing for the use of planar fabrication techniques such as manual cutting [45],
laser cutting [13, 46], lattice layering [40] and the direct ink writing of liquid crystal
elastomers [9], which are usually faster processes than additively manufacturing or
machining 3D structures. Details on the specific fabrication techniques used for
each project are discussed in the following chapters and in the appendices.

Two classes of structured media discussed in this thesis consist of non-uniform
tessellations of unit cells. As mentioned above, this can significantly increase the
number of characterization experiments that must be conducted for two reasons.
First, unit cell geometry exerts a strong influence on effective properties and the
broad unit cell design space must be properly sampled (Problem A). Secondly,
mesostructural non-uniformity tends to cause kinematic incompatibilities between
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neighboring regions of a medium. This often causes deformations that deviate
from a unit cell’s energetically favored kinematic modes (Problem B). For example,
origami facet bending would occur in a miura-ori tessellation if some of the creases
were badly misaligned. This usually requires characterization experiments under a
variety of loading conditions.

The first class of structured media where mesostructural non-uniformities occur
entails tessellations of unit cells made of bulky blocks that rotate about slender
elastic joints. These unit cells display a kinematic mode that is much softer than
other deformations. In this energetically favorable soft elastic mode, almost all of
the elastic energy is stored in the slender joints. Although the unit cell geometry
may vary over the extend of the structured medium, the joints are always uniformly
distributed and are subjected to nearly identical strains for a given relative rotation
angle between adjacent tiles. After measuring the effective stiffnesses of a few
specimens, the mechanical behavior of other unit cell geometries can be predicted
by varying the geometric parameters embedded in a strain energy function. This
addresses ProblemA. For this class of systems, Problem B is simplified by assuming
that all deviations from the soft kinematic mode will be very stiff in comparison,
so all of these non-ideal behaviors are lumped into being strongly penalized in the
strain energy function. More details on this aspect of the problem are presented in
a later chapter.

These two problems are approached in a very different way by the second project
that involves non-uniform tessellations of unit cells. Due to the large variance in the
geometry of the unit cells’ deformable components, Problem A was treated through
a brute force method that entailed performing a very large number of mechanical
characterization experiments to fully sample the range of unit cell geometries and
the local tractions observed in our structured media. Meanwhile, Problem B was
addressed by programming the structured media to only undergo conformal de-
formations while morphing from one surface geometry to another. This reduced
unwanted shear modes. As an additional safeguard, the unit cell geometries were
designed to be shear resistant.

Modeling the mechanics of structured media
The projects in this thesis involve a diverse set of structured media, but there
are important commonalities between them that inform the choice of modeling
techniques employed: all of the structured media presented here are thin plates
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that assume flat initial configurations and undergo finite deformations. Unless
stated otherwise, mechanical modeling is simplified by assuming that unit normal
vectors to the reference mid-surface are mapped to unit normal vectors in the
deformed configuration, with vanishing transverse strains (i.e. the Love-Kirchhoff
assumption). This assumption was used to simplify the analytical solutions of some
governing equilibrium equations via a perturbation approach, as well as in finite
element formulations throughout the text.

As stated previously, micro/mesoscale geometric features exert a tremendous influ-
ence on themechanical behaviors of structuredmedia by energetically favoring some
deformation modes over others. However, it is computationally expensive to per-
form conventional finite element simulations that resolve small geometric features
and span a large domain. Homogenization theory [47], discrete elastic rod [28, 48]
and Kirchhoff rod networks [49], bar-and-hinge models for origami [50–52], ef-
fective continuum models [46, 53–55], and many other modeling approaches have
been used as computationally efficient alternatives to fine-grained finite element
techniques.

The main mechanical modeling challenges addressed in this thesis revolve around
ways to embed the kinematic preferences imposed by the micro/mesostructure ge-
ometry into a reduced order model. Each modeling-heavy project approached this
problem in a different way, including (i) assuming the approximate shape of the
deformed configuration prior to calculating unknown strain field quantities analyt-
ically using a perturbation method, (ii) enriching an effective continuum model by
attributing an energy penalty to deviations from geometrically-favored kinematic
modes, and (iii) by coupling an effective spring network to a finite element simula-
tion of a membrane. In all of these cases, experiments were used to understand the
local behavior of structured media and to extract values for model parameters.

Modelling the mechanical behaviors of structured media is especially challeng-
ing in cases where the medium has a non-periodic micro/mesostructure (see the
discussion of Problems A and B in the previous subsection). This setting arises
frequently in shape-morphing structures and in soft robots because simple loading
conditionswill only trigger complex deformations inmedia that display non-uniform
micro/mesostructures [11, 13, 14, 40]. Some of the projects discussed in this thesis
contribute to the body of work on modeling structured media with non-uniform
mesostructures, but the mechanics community would benefit from further advances
in this area of research.
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Mathematical tools for solving equilibrium equations
A variety of mathematical tools are used to solve the equilibrium equations obtained
from the above-mentioned modeling approaches. Most solutions rely on in-house
or commercial implementations of finite element methods. Details on my collabo-
rators’ finite element implementations will be left for the Appendices because many
books have been written on the topic and most engineers are aware of these meth-
ods. Perturbation expansions are not as broadly familiar to engineers and are used
to attain an approximate closed form solution to one of the equilibrium equations in
this thesis. The specifics of the approach are discussed in a later chapter. Bender
and Orszag’s book provides an excellent introduction to this topic [56].

Inverse design of shells that undergo changes in Gaussian curvature
In many cases of shape-morphing systems that have complex deformation targets,
it is essentially impossible to design the non-uniform micro/mesoscale geometries
that accurately yield the desired behaviors using human intuition alone. This mo-
tivates using reduced order models that describe the interplay between internal
geometry and energetically favored deformations as a foundation for inverse design
approaches, where an algorithm outputs the topology, material properties, or the
geometric parameters needed to attain desired deformations [10, 14, 38, 40, 41, 57].
These inverse design processes are effectively methods for “programming” the me-
chanical responses of a material or structure.

Some of the structured media discussed in this thesis undergo programmed de-
formations in which their Gaussian curvature changes. A brief introduction to the
geometry of shells will be provided here as amathematical foundation for our inverse
design method.

Consider a shell midsurface parametrized by (G, H) over a domain * ⊂ R2 that is
embedded in R3 by a map −→< . This is shown in Figure 1.3. At each point, the
midsurface has tangent vectors m−→</mG and m−→</mH, and a normal unit vector −→= .
Any material point −→B inside a shell of thickness ℎ can be written as a normal offset
from the midsurface:

−→B (G, H, I) = −→< (G, H) + I−→= (G, H) , I ∈ [−ℎ/2, ℎ/2] .
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Figure 1.3: " is defined as an embedding < of a region of the plane * into R3. Image
reproduced from [58].

This yields a metric G on the volume* × [−ℎ/2, ℎ/2],

G(G, H, I) = (3−→B ))3−→B =
(
g(G, H, I) 0

0 1

)
,

where the 2 × 2 tensor g is given by

g(G, H, I) = (3−→< + I3−→= )) (3−→< + I3−→= ) = a(G, H) − 2Ib(G, H) +$ (I2) .

Here, a andb are the first and second fundamental forms of the surface. TheGaussian
curvature  (which corresponds to the product of the two principal curvatures at a
point) is related to these two tensors by the ratio of their determinants:

 =
det(b)
det(a) .

Gauss’s Theorema Egregium tells us that the Gaussian curvature of a smooth sur-
face is invariant under local isometries [59]. Manfredo do Carmo’s “Differential
Geometry of Curves and Surfaces” provides a succinct proof of the theorem [60].
Returning to the context of shape-morphing elastic shells, this theorem dictates that
changes in Gaussian curvature necessarily couple bending deformations to mem-
brane stretching.

Although isometric deformations are out of the question for achieving changes in
Gaussian curvature, shape-shifting along conformal (angle preserving) deformation
pathways is a compelling option for achieving those target morphing behaviors while
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minimizing shear. Importantly, any two regular surfaces are locally conformal [60],
scale distortion is smoothly distributed in conformal maps and the discrete differen-
tial geometry community has developed a number of freely available tools (such as
the one shown in Fig. 1.4) to find conformally equivalent meshes quickly [61, 62].
As a result, many approaches for inversely designing shape-morphing shells rely on
these discrete conformal mapping techniques [11, 14, 40, 63] as starting points for
design algorithms.

Figure 1.4: Discrete conformal flattening tools take 3D surface meshes as inputs and
output conformally equivalent flat meshes. In this example, the user also has the option of
prescribing the flattened boundary. Image sourced from [62].

Once a conformal map has been found between the target and reference configu-
rations, choosing a micro/mesostructural class (such as auxetics, spring networks,
beam networks, etc.) that will enforce conformal deformations is usually left to
engineering intuition. After this class is selected, optimization procedures are gen-
erally used to fine tune the non-uniform internal geometries that will impose the
target global behaviors.

Active materials
Active materials have been studied for several decades for their ability to deform
in response to environmental stimuli. With the creation of 3D printing and other
advanced materials processing techniques, the scientific community attained a set of
fabrication tools that enables graded control of material chemistry and of geometric
features at their micro/mesostructural length scales [7, 10, 25]. This consider-
ably expanded the versatility of active materials beyond homogeneous deformation
modes.

These advanced fabrication techniques led to a broad body of work on shape-
morphing structures, motile materials, and soft robots [14, 30, 35, 37, 40, 64–66].
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In most cases, the material chemistry and small-scale geometry are tailored so that a
single task is performed passivelywhen the device is exposed to a stimulus. However,
we have recently seen the development of structures that express more complex
materials-based control operations, where different environmental stimuli lead to
different active material behaviors [5, 15, 26]. Fewer examples of these materials
exist, but they include devices that behave as programmable logic gates [42] or that
rely on variations in mesoscale geometry or chemistry throughout the structural
frame to attain sequential actuation [15, 40, 64].

In the materials described above, the actions rely on passive, open loop control and
are generally pre-programmed by the designer. We are starting to see demonstrations
of structured media embedded with a capacity for closed loop feedback control [67],
as well as material reprogrammability [68]. Advancements in these directions will
enable the creation of devices that offer distinct advantages over conventional robotic
systems for many applications, such as decentralizing computing, actuation and
sensing capabilities over the entire extent of the structural frame rather than at a few
discrete locations. This would open the doors to a number of currently unrealized
applications, such as creating fully soft untethered systems that can manipulate and
navigate through their environments effectively.

However, many challenges associated with active materials present hurdles to reach-
ing this degree of technological sophistication. Active materials often display low
energy density [69], irreversible actuation (i.e. must be manually reprogrammed be-
fore every actuation cycle) [64, 70, 71], or require tethers to rigid power sources [72].
It can also be challenging to couple them to other materials in larger devices. The
liquid crystal elastomer-based soft robot presented toward the end of this thesis
overcomes these challenges thanks to recent advances in liquid crystal elastomer
3D printing technology [9, 73, 74], but its operation is limited to very specific
environmental conditions.

1.4 Chapter outlines
This thesis presents a series of explorations on themechanics and design of structured
media that display shape-morphing behaviors. The first research project on this topic
is discussed in Chapter 2, where we use experiments, numerical simulations and
analytical modeling to show how the presence of a mesoscale pattern affects the
twisting mechanics of bulk metallic glass ribbons. In this case, the introduction
of periodic undulations in the ribbon edge geometry concentrates twist in desired
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regions of the structural element and delays the onset of material failure. These
ribbons with undulated boundaries are joined to create metallic deployable systems
whose shape-changing capabilities are derived from the chirality of the ribbon
elements.

Next, we depart from periodic frameworks to investigate the effect of non-uniform
patterns on the mechanics of structured media. This is done by studying sheets
composed of bulky tiles connected by slender elastic joints. Tile rotations about
the joints are low-energy local kinematic modes that are strongly favored over
other deformations (we refer to these behaviors as “quasi-mechanisms”). In-plane
kinematic incompatibilities arise in non-periodicmesostructures, resulting in out-of-
plane buckling. A paradigm for designing these sheets such that buckling occurs in
desired regions is presented in Chapter 3. Due to the presence of geometric features
at disparate length scales, simulations of the post-buckling behavior of these sheets
would be computationally expensive using a standard finite element approach with
a fine-grained mesh. In light of this, we construct an effective continuum model for
these non-periodic systems in Chapter 4, allowing us to simulate the post-buckling
behavior of the specimens at a low computational cost.

One of the principle aims of this research is to develop architectedmaterials with pre-
programmed temporal responses to environmental stimuli. While several stimulus-
responsive materials have been used for inducing compelling demonstrations of
changes in geometry, examples of shape-shifting over time-dependent actuation
paths have only been shown in a small number of morphing processes that involve
the sequential folding of discrete hinges. We discuss an extension of this capability
to architected materials that shape-shift into non-developable geometries and can be
treated as programmable continua in Chapter 5, substantially broadening the range
of achievable geometries in shape-morphing systems.

While the soft robotics community has produced some examples of untethered,
passively controlled systems, they are generally limited in their ability to self-propel
by a lack of energy density or actuator reversibility. In Chapter 6, we present devices
made of 3D-printed liquid crystal elastomer (LCE) hinges. These hinges’ actuation
responses are programmed by varying their chemistry and printed geometry, and are
used to create devices such as a multi-stable origami polyhedron and a soft robot that
assembles into a pentagonal prism and self-propels in a rolling motion in response
to thermal stimuli.
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A summary of contributions and a discussion on avenues for future work concludes
the thesis in Chapter 7.
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Chapter preamble
In the first research project discussed in this thesis, we analyze the mechanics of
ribbon elements that display periodic boundary undulations. These mechanical
analyses are used to probe the limits to which the ribbons can be twisted prior
to failing, but are not incorporated into algorithms that inversely design ribbon
networks. Subsequent chapters discuss modeling and design techniques for non-
periodic systems.

Chapter abstract
In this work, we investigate the use of pre-twistedmetallic ribbons as building blocks
for shape-changing structures. We manufacture these elements by twisting initially
flat ribbons about their (lengthwise) centroidal axis into a helicoidal geometry, then
thermoforming them to make this configuration a stress-free reference state. The
helicoidal shape allows the ribbons to have preferred bending directions that vary
throughout their length. These bending directions serve as compliant joints and
enable several deployed and stowed configurations that are unachievable without
pre-twist, provided that compaction does not induce material failure. We fabricate
these ribbons using a bulk metallic glass (BMG), for its exceptional elasticity and
thermoforming attributes. Combining numerical simulations, an analytical model
based on a geometrically nonlinear plate theory and torsional experiments, we
analyze the finite-twisting mechanics of various ribbon geometries. We find that,
in ribbons with undulated edges, the twisting deformations can be better localized
onto desired regions prior to thermoforming. Finally, we join multiple ribbons to
create deployable systems with complexmorphing attributes enabled by the intrinsic
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chirality of our twisted structural elements. Our work proposes a framework for
creating fullymetallic, yet compliant structures that may find application as elements
for space structures and compliant robots.

2.1 Introduction
Shape-changing structures are mechanical systems designed to undergo predictable
changes of shape when subjected to external or internal stimuli. Typically, such
structures are made of separate elements that can move relative to each other and
are connected via kinematic joints, and the acts of deployment and retraction do not
require the various elements to be dismounted [1–4]. They find use as everyday
objects (e.g., foldable chairs and expandable toys), architectural elements (e.g., re-
tractable roofs and pop-up domes), space structures (e.g., deployable booms, solar
sails and starshades) and medical devices (e.g., stents and capsules for drug deliv-
ery). In space systems, deployable structures are necessary to satisfy increasingly
stringent packaging ratios and weight requirements imposed by cubesats. One way
to reduce weight and complexity in deployable systems is to replace multiple jointed
parts with continua featuring compliant hinges. Here, we call these systems “com-
pliant morphing structures.” Examples of compliant structure classes are: origami,
which feature axially-rigid, but potentially-flexible panels connected by foldable
creases [5–7]; kirigami, where creases are combined with cuts to expand the range
of achievable morphed shapes [8–10]; compliant mechanism-like structures, where
bulky components are connected via thin flexures [11–18]; and creaseless foldable
shell structures such as tape springs and slotted cylinders [19–22]. Through careful
design, some of these compliant systems achieve extreme changes of shape that are
typically unattainable with other strategies. Examples are systems that transform
from flat configurations into 3D shapes [16, 17, 23–26] and compact objects that
deploy into large surfaces [27].

In compliant structures, high stresses are typically concentrated at the creases/flex-
ures. This makes it challenging to design low-part-count systems that possess
complex and reversible morphing attributes and are simultaneously made of materi-
als that provide the load-bearing capacity or durability required by certain structural
applications. An attempt in this direction is the relization of additively manufac-
tured, metallic origami [28]. Another example is represented by bulk metallic glass
kirigami sheets [29]. Other researchers have attempted to use composites to create
morphing systems [9, 30]. These structures typically require the union of multiple
elements via pin-joints to achieve complex morphing scenarios [31] due to limita-
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tions in fabrication processes [32]. Others have considered origami systems with
more complex compliant hinge geometries to reduce stresses [33, 34].

To create compliant morphing structures made of materials relevant to structural en-
gineering, systems that feature extremely compliant, yet robust and manufacturable
hinges are needed. In recent years, ribbons (slender structural elements where length
� width� thickness) have emerged as building blocks for morphing structures, as
they can be bent and buckled [21, 35, 36], twisted [37–45], and sheared [46]. Their
dimensions can be tailored to avoid the onset of plasticity when deformed. For ex-
ample, sheets with ribbon-like features made of various materials (including metals)
can be transformed into 3D objects via compressive buckling when triggered by the
release of a pre-stretched substrate [47–51]. The main issue with this approach in a
structural setting is its limited scalability and its reliance on a substrate for deploy-
ment. The structural capacity of ribbon-based compliant systems can be improved
when ribbons are joined and used as building blocks for free-standing structures,
but few efforts have been made in this direction [31, 52–55]. One constraint is
the fact that a ribbon can only be significantly compacted by bending it about the
axis aligned with the “width” direction, thus limiting the stowing configurations of
ribbon-based structures.

In this work, we propose the combination of a design framework and a material
choice to create ribbon-based compliant morphing structures. Our fundamental
structural element is a pre-twisted bulk metallic glass (BMG) ribbon. Applying
finite twists to the ribbon sketched in Fig. 2.1(a) about its longitudinal axis produces
the beam-like structural element in Fig. 2.1(b). If we construct a fixed coordinate
system with orthonormal basis vectors {e8} and align the twist axis of the ribbon
with e1, some ribbon cross-sections have preferred bending directions about e2 and
others about e3. We will refer to these regions as “faces” throughout this article.
This expanded set of bending axes and the inherent chirality imparted via twisting
allows for extreme compaction of the ribbon. BMGs have attractive properties for
compliant structures [29, 56] due to a broad elastic range, up to 2% strain [57–
59]. Additionally, BMGs can be made into complex, stress-free geometries via
thermoforming, where the alloy is heated above its glass transition temperature,
reshaped, and quenched to avoid crystallization [60]. In this work, we choose
Zr65Cu17.5Ni10Al7.5 BMG [61] since it is widely studied in the literature and is
commercially available in melt-spun ribbon form [62]. First, we provide a complete
mechanistic analysis of the twisting process, and propose a ribbon configuration
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Figure 2.1: Twisting ribbons to create structural elements with an expanded set of bending
axes. (a) Original ribbon configuration, where {e8} are the orthonormal basis vectors of
a coordinate system aligned with the centerline of the ribbon. (b) Ribbon configuration
after a \ = 3c-degree twist about e1, viewed from two different directions. In a twisted
configuration, we call “faces” those regions that can bend about e2 or e3.

with undulated edges that allows us to localize the majority of the twist onto desired
regions. The influence of various design parameters is analyzed via finite-element
(FE) simulations and through an analyticalmodel based on a geometrically nonlinear
plate theory. We compare these results with torsion experiments on BMG ribbons.
Once we have a complete mechanistic description of twisting, we thermoform rib-
bons into twisted shapes, and assemble them into structural prototypes of deployable
mechanical systems, such as collapsible rings, spheres and auxetic structures. With
this preliminary work we (i) shed light on the twisting mechanics of non-straight
ribbons, (ii) illustrate the potential of twisted ribbons as structural elements for
deployable structures, (iii) demonstrate that the combination of advanced materials
such as BMGs and carefully-designed architectures can be leveraged to design com-
pliant shape-morphing systems made of metals. Owing to the richness of achievable
deformations we envision that, upon proper scaling, these structural systems could
find application as components of deployable space structures (e.g., booms or rings
for mesh-antennae) or as components for compliant, yet fully metallic robots.

In Section 2.2, we illustrate the fundamental design parameters of our undulated
ribbons and we provide an experimental characterization of the mechanical prop-
erties of BMG. In Section 2.3, we provide background information and results on
the twisting mechanics of ribbons. We use FE simulations to understand the in-
fluence of the various design parameters and compare it to twisting experiments
we conducted on BMG ribbons. We then adapt an analytical model introduced by
Mockensturm to our case of undulated ribbons, and use it to analyze the influence
of the design parameters on their elastic response. In Section 2.4, we describe our
thermoforming setup and show that it enables the fabrication of pre-twisted ribbons
that are subsequently spot-welded into structures that display extreme morphing
capacity. Conclusions and future outlook are reported in Section 2.5.
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2.2 Ribbon design and material characterization
One of the ribbon geometries used in our work is shown in Fig. 2.2. As in Fig. 2.1,
we define an orthonormal vector basis {e8}, with material coordinates G8. The

Figure 2.2: Undulated ribbon characterized by thin necks and wide faces, with all the
relevant geometrical parameters. The gray extremities/tabs of the ribbon are not part of the
model, but facilitate clamping of the fabricated specimens. \C is the target twisting angle to
align all necks with the e1–e3 plane and all faces with the e1–e2 plane.

ribbon has thickness � and its length is ! = 180 mm, unless otherwise specified
(excluding the shaded gray tabs used for clamping purposes). The long edges
of the ribbon have a sinusoidal profile with amplitude � and wavelength !/=,
where = is the number of necks. The width of the ribbon follows the function
, (G1) = F + 2�[cos(2c=G1/!) − 1], where F = 9 mm unless otherwise specified.
In order to achieve a twisted state where all necks represent faces that can bend
about the e3 axis, an undulated ribbon needs to be twisted through a target angle
\C = = c.

All ribbons in our work are manufactured from a melt-spun roll of the Zr65Cu17.5-
Ni10Al7.5 alloy. The roll and a micrographic image showing the melt-spinning-
induced irregularities of the cross-section are shown in Fig. 2.3(a). For modeling

Figure 2.3: Material characterization. (a) BMG roll (Zr65Cu17.5Ni10Al7.5). Themicrograph
shows the irregular cross section of the roll (Scale bar: 10 `m). (b) Tensile test setup to
characterize the BMG sheets. (c) Load-time curve indicating our testing procedure; the
specimen is pulled and the force is held constant at various force values to record images
for the DIC procedure. The insets show the DIC-computed axial strain field.

purposes, we cut several BMG pieces from the same roll and measure their thickness
using a microscope, finding an average thickness of 54 `m. All specimens used in
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this work are obtained by creating drawings in MATLAB, cutting PETGmasks with
a Silhouette Cameo cutter, using these masks to mark the edges of the ribbons on
the BMG roll, and manually cutting the roll. Since the mechanical performance of
our ribbons is affected by the cross-sectional imperfections visible in Fig. 2.3(a), we
measure the mechanical properties of several dogbone-shaped specimens. We do
so with the universal testing machine shown in Fig. 2.3(b) (ADMET eXpert 8612
Table-Top Axial Torsion Test System, with a 25 kN axial load cell), equipped with
grippers for tension tests. Our setup also features a high-definition camera (Edmund
Optics EO-5023M) to record photographs that are analyzed via 2D digital image
correlation (DIC). First, we perform a tensile test to understand the behavior of
the material and to identify the limits of the linear elastic regime (see A.1). We
realize that the material behaves linear-elastically up until the breaking point, which
occurs at a breaking strain Y1 ≈ 1.7% and at a stress f1 ≈ 1.2 GPa. In light of
this, we test three specimens of equal dimensions following the load path illustrated
in Fig. 2.3(c). A specimen is pulled up to loads of 100, 200 and 300 N. At those
values, the force is kept constant for 45 seconds to allow us to record a picture of
the specimen. We compare these images to the undeformed configuration using the
DIC software nCorr [63] to extract the strains in the plane of the specimen. As a
result, we can measure Young’s modulus � and Poisson’s ratio a for the material
by averaging these quantities across specimens. We obtain the following values:
� = 78 GPa and a = 0.355.

2.3 Twisting mechanics
This Section is dedicated to the analysis of the twisting mechanics of undulated
ribbons, with the goal of understanding what geometries yield BMG ribbons that
can be twisted into desired shapes, where the bending axes of adjacent faces are
perpendicular to each other as sketched in Fig. 2.1(b).

For some boundary conditions, it is observed that twisting a ribbon leads to me-
chanical instabilities that result in the appearance of wrinkle-like patterns. This
behavior was first observed by A. E. Green in 1936 [64, 65], and has received
renewed attention since the early 2000’s. Mockensturm’s work on the topic is the
most general from a modeling standpoint, where a fully-nonlinear plate theory is
used to model the twisting behavior and elastic instabilities of arbitrarily-wide rib-
bons subjected to large twists [37, 66, 67]. A very comprehensive article on this
phenomenon by Chopin and Kudrolli [42] used experiments and scaling arguments
to map various buckling modes of twisted, pre-stretched ribbons clamped at their
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edges. Their conclusions are that there is a critical pre-stretch at which there is
a transition between lateral and longitudinal buckling modes, and that the ribbon
geometry strongly influences the critical twists and achievable post-buckled shapes.

In our work, we are interested in avoiding these instabilities. In fact, for our ribbons
to morph into structural elements with multiple preferred bending axes, we need
to avoid any localization of curvature that would compromise their deployability
and their post-twisting response. However, special considerations need to be made
since our ribbons feature non-straight edges—a scenario that is seldom considered
in the existing literature [44]. Therefore, we use numerical simulations to predict the
principal strains and the deformed shapes achievable by twisting undulated ribbons.
These simulations are validated via torsional experiments on BMG specimens. To
gain a better understanding of the mechanics involved and of the influence of the
design parameters, we adapt the model developed by Mockensturm [37] to the case
of ribbons with non-constant cross-sections.

Numerical modeling
Our numerical, finite element (FE) simulations are conducted using the commercial
software Abaqus. The ribbon configurations we consider have the dimensions
reported in Section 2.2, and varying numbers of necks = and undulation amplitudes
�. We consider four-node reduced-integration shell elements (of the S4R type)
with 7 through-the-thickness integration points. These elements are suitable for
geometrically-nonlinear analyses. The material response is considered to be linear
over finite strains, an assumption that is acceptable for a material like BMG (see
A.1). Each ribbon is clamped at the bottom edge, while all nodes of the top edge are
fixed to a fictitious reference point where we apply the load. The solution is carried
out in two separate steps. First, we use an implicit/static analysis to model the axial
pre-stretching step necessary to avoid longitudinal instabilities. This is enforced by
applying an initial displacement of 0.1 mm between clamped boundaries. Then, we
use an explicit/dynamic analysis to model the twisting process. This is done in order
to speed up the computation time with respect to the standard implicit solver. We
use a mass-scaling approach to accelerate computations, where the density of the
material is artificially scaled to increase the stable time increment. To ensure that
the model reflects the quasi-static nature of the twisting process, we monitor the
total kinetic energy of our system and make sure it remains below 5% of the total
energy in each simulation.
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First, we analyze the response of a straight ribbon; this is summarized in Fig. 2.4(a,c).
In Fig. 2.4(a), we illustrate the undeformed configuration. The ribbon is clamped at

Figure 2.4: Numerical (FE) results on twisting. (a) Initial and deformed configurations
for an initially-straight ribbon subjected to pre-stretch and torsion. Darker colors indicate
regions of higher maximum principal strain, and serve the sole purpose of qualitatively
showing where the strains are largest. (b) Same as (a), but for an undulated ribbon with
= = 3 and � = F/6. The circular markers in the undeformed configurations indicate the
locations where strains are the largest. (c) Logarithmic strain versus twist angle for a straight
ribbon. The crosses indicate when the ribbon reached an unwanted self-folded configuration.
(d) Logarithmic strain versus twist angle for an undulated ribbon with = = 3 and � = F/6.
(e) Effects of the number of necks = on the maximum strain, with � = F/6 fixed. Recall
that the breaking strain for this material is Y1 = 1.7%.

both bottom and top ends. The load is modeled as a displacement along e1 followed
by twist about e1 applied to the top end of the ribbon. This figure also illustrates
the ribbon for various levels of twisting. Darker colors indicate regions of higher
maximum principal strain. One can qualitatively see that, as already known from
the literature [42], larger strains concentrate at the edges of the ribbon. Thus, we
extract quantitative information on the response at the critical point illustrated in the
inset (located at G1 = !/2 and G2 = −, (G1)/2 in the undeformed configuration).
Considering the total twisting angle \ between the top and bottom edges as our
variable, we monitor the evolution of the maximum principal (Y!max), axial (Y! 11)
and lateral (Y! 22) strains and plot them in Fig. 2.4(c). All strains are logarithmic.
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We can see that the maximum principal strain coincides with the axial strain, and
that they are both nonzero at \ = 0 due to the pre-stretch. On the other hand, the
lateral strain is compressive. This behavior is due to Poisson’s effects that balance
the twisting-induced tension, and it is known to lead to lateral buckling [42]. This
behavior is actually visible in our numerical results in the form of a self-folding that
takes place after \ = 2c (see also the deformed shape at 3c in Fig. 2.4(a)). After
self-folding occurs, the strains assume values that are strongly dependent on the
assumed contact parameters, and are therefore deemed unrealistic.

In Fig. 2.4(b,d), we report the response of an undulated ribbon with = = 3 necks and
undulation amplitude � = F/6. In this case, themaximum strains are achieved at the
edge of a neck region. The strain plot illustrates that the maximum strains achieved
are less than those in the straight ribbon and remain below the breaking strain of
1.7%. Moreover, no self-folding is observed prior to the target angle \C = 3c due to
smaller lateral compressive strains. The final twisted configuration is illustrated in
Fig. 2.4(b) and, as expected, it features necks parallel to the e1–e3 plane and wide
faces parallel to e1–e2.

Now that we have illustrated the benefits of the undulated edge geometry, we use
our numerical model to analyze the effects of the number of necks = on the twisting
response. A more detailed parametric analysis is then carried out analytically in
Section 2.3. In Fig. 2.4(e), the markers indicate the maximum principal strain as a
function of the number of necks. Each value is recorded at a target twist angle that is
dependent on the number of necks. We also superimpose the color-coded silhouettes
of the ribbons as a visual aid. Increasing the number of necks causes the maximum
principal strain to increase. For the 4 and 5 neck cases, we reach the breaking strain
before reaching the target angles of 4c and 5c, respectively. This indicates that, for
the ribbon dimensions we selected, more than 3 necks (wavelengths less than 6 cm)
are not admissible.

Experimental validation
To experimentally validate our numerical predictions, we perform torsional tests on
ribbons of various geometries. These tests are carried out using the same apparatus
we used for the axial experiments described in Section 2.2, using grippers designed
for torsion. The comparison between experimental and numerical results for three
ribbon geometries is shown in Fig. 2.5. In all cases, we plot the axial reaction
force developed during twisting, as a function of the twisting angle. For the straight
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Figure 2.5: Experimental validation of the numerical predictions on twisting. (a) Axial
reaction force versus twist angle for a straight ribbon. The dark gray line is the mean and
the shaded light gray area indicates the standard deviation of measurements performed on
three specimens. The cross marker indicates the \ angle at which the simulation indicates
self-folding. (b), (c) Same as (a), but for a 3-neck and 5-neck ribbon, respectively. Both
cases feature � = F/6. A sharp drop in the experimental curve indicates failure.

ribbon configuration, shown in Fig. 2.5(a), we can see that the numerical response
follows the experimental trend both during the monotonic force increase that is
observed before self-folding and during the non-monotonic regime that occurs after
the ribbon self-folds. The self-folding point achieved numerically is indicated by
the cross marker. Despite the incidence of self-folding, the experiments illustrate
that the ribbon does not fail in the 0-4c twist range. When considering a ribbon
with = = 3 and � = F/6, as illustrated in Fig. 2.5(b), we can see that numerics
and experiments agree well. Moreover, as predicted in Section 2.3, the experiments
confirm that this ribbon does not fail at the target angle of 3c. Finally, in Fig. 2.5(c),
we confirm the numerical prediction that a ribbon with = = 5 and � = F/6 fails
(reaching the breaking strain) long before reaching the target angle 5c.

These experiments serve as a partial validation of our numerical model. They
provide insight into the axial response of the ribbons, but offer no information on
the lateral stresses that arise during twisting. Since twisting induces out of plane
deformations, we cannot reliably use 2D DIC; moreover, 3D DIC would only be
useful for small twists. For these reasons, we develop an analytical model to verify
the numerical prediction that ribbons with undulated edge geometries experience
considerably smaller compressive stresses in the lateral direction, thus delaying the
onset of buckling due to twist.

Analytical modeling
The model we employ to analyze the state of strain in the ribbons prior to thermo-
forming is heavily based on a fully nonlinear, geometrically exact description of
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rectangular ribbons that was developed by Mockensturm [37]. We re-derive this
model while making minor modifications in order to extend it to ribbons with edges
that are symmetric, but not straight. We provide an overview of the model and its
assumptions, compare the analytical and computational predictions, and perform a
more extensive parametric analysis on undulated ribbons, while highlighting some
limitations of the approach.

Reference and deformed configurations

A ribbon’s material particle positions in an untwisted reference configuration are
X = GUeU+G3e3. Throughout this text, the indices U and V pertain to the mid-surface
of the ribbon, the index ‘3’ corresponds to the direction normal to the surface, and
we use the Einstein summation convention for repeated indices. The coordinates G8
are convected and material, and 0 < G1 < !, |G2 | < , (G1)/2, |G3 | < �/2 for a
ribbon of uniform length ! and thickness �, and varying width , (G1). Our fixed
coordinate frame {e8} is orthonormal. Themappingχ∗(G8) = χ(GU)+G3v̂3 describes
these particles in the twisted configuration, whereχ(GU) is the deformationmapping
of the midplane of the ribbon, and v̂3 is the outward unit normal to the surface S
defined by χ(GU). It is assumed that unit normals to the surface GUeU are mapped to
unit normals of S, with vanishing transverse strains. This is an assumption that is
validwithin the thin plate approximation framework and is called the Love-Kirchhoff
hypothesis.

After the ribbon is subjected to a pre-stretch and torsion, its mid-surface assumes a
helicoidal geometry, where the expression for χ(GU) is shown in Eq. 2.1 below. For
a cross-section located at G1, 5 (G1, G2) is the mapping of the particles in the lateral
direction G2, _1(G1) is the local axial pre-stretch, and \ (G1) is the local twist angle
relative to the supported edge at G1 = 0. Throughout this text, when the material
coordinate is not specified, we are evaluating the twist angle function at the end of
the ribbon. Namely, \ ≡ \ (!).

χ(GU) = _1(G1)G1e1 + 5 (G1, G2) cos(\ (G1))e2 + 5 (G1, G2) sin(\ (G1))e3 . (2.1)

The expression above is slightly different from what is used by Mockensturm, as it
accounts for variations in _1, 5 , and \′ as a function of axial position G1. These
functions are calculated in the following subsection.
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Pre-stretch and twist as a function of axial position

Static equilibrium implies that the total axial force � acting on each cross-section is
independent of position G1. Therefore, the local linear axial strain 3D1/3G1 due to
pre-stretch can be written as:

3D1(G1)
3G1

=
�

��, (G1)
. (2.2)

The total stretch _C>C of the ribbon is obtained by integration:
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∫ !

0
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1
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This total pre-stretch is prescribed in our experiments, and therefore we know the
total force � that is being exerted at all ribbon cross-sections:

� =
��! (_C>C − 1)∫ !

0
1

, (G1) 3G1
. (2.4)

Knowing �, the local axial pre-stretch _1(G1) of an infinitesimally long cross-section
at G1 is obtained from the previously calculated quantities:

_1(G1) = 1 + 3D1(G1)
3G1

= 1 + ! (_C>C − 1)
, (G1)

∫ !

0
1

, (G1) 3G1
. (2.5)

Recalling the assumption that unit normals to the reference surface are mapped to
unit normals of the deformed surface and that transverse strains vanish, we calculate
the twist of the ribbon as a function of G1. We note that the shear modulus � is a
constant and that the torque ) is the same at all ribbon cross-sections, so the twist
rate of a ribbon is given by:

\′(G1) =
)

�� (G1)
. (2.6)

The polar moment of inertia for a slender rectangular cross section (, � �) is
� = ,�3/3. Since we prescribe the total twist of the ribbon’s supported edges
\ (!), we can calculate the ratio )/� (for brevity, we omit the algebraic steps that
are similar to the calculation of � above) and thus know the twist rate as a function
of axial position G1:

\′(G1) =
\ (!)
, (G1)

1∫ !

0
1

, (G ′1)
3G′1

. (2.7)

We integrate this expression to find that the twist of the ribbon at G1 relative to the
fixed support at G1 = 0 is:

\ (G1) = \ (!)

∫ G1
0

1
, (G ′1)

3G′1∫ !

0
1

, (G ′1)
3G′1

. (2.8)
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Kinematic measures

Now that expressions for _1(G1) and \ (G1) are given in Eqs. 2.5 and 2.8, we must
calculate 5 (G1, G2) to complete our description of the deformed surface χ, repre-
sented by Eq. 2.1. Here, we follow Mockensturm’s calculations closely but, unlike
in his work, we account for the non-constant nature of _1 and \′.

Each term that appears in the final elastic equilibrium equation is a function of the
covariant and/or contravariant basis vectors of the ribbon’s deformed configuration.
The covariant basis on S is given by vU = mχ/mGU, and the reciprocal, contravariant
basis vU to S is constructed such that v̂3 · vU = 0, v̂3 = v̂3, v8 · v 9 = X89 . Here, X89
is the Kronecker delta. To simplify our calculations, we note that m 5 (G1, G2)/mG1

is very small compared to 5 (G1, G2) and m 5 (G1, G2)/mG2 everywhere in the ribbon
(this is supported by shear being negligible in our numerical simulations). We also
can calculate that G1_

′
1(G1) � _1(G1) everywhere in the ribbon and that G1\

′′(G1) �
\′(G1) in the regions surrounding the narrowest and widest cross-sections of the
ribbon. In particular, _′1(G1) = \′′(G1) = m 5 (G1, G2)/mG1 = 0 where ,′(G1) = 0
(the width extrema). Note that the numerical results tell us that stresses are global
minima or maxima at these exact cross-sections. In the following, we keep our
derivation general to a small region surrounding these width extrema, and we ignore
these small terms in the expressions for the basis vectors E8 and E8. Note that, given
the above simplifications, we denote 5 ′(G1, G2) ≡ m 5 (G1, G2)/mG2 for the purpose of
concise notation.

Our covariant basis vectors v8 are:

v1 =


_1(G1)

− 5 (G1, G2)\′(G1) sin
(
\ (G1)

)
5 (G1, G2)\′(G1) cos

(
\ (G1)

)
 , v2 =


0

5 ′(G1, G2) cos
(
\ (G1)

)
5 ′(G1, G2) sin

(
\ (G1)

)
 , (2.9)

v3 =
1√(

_1(G1)2 + \′(G1)2 5 (G1, G2)2
)
5 ′(G1, G2)


−\′(G1) 5 (G1, G2) 5 ′(G1, G2)
−_1(G1) 5 ′(G1, G2) sin

(
\ (G1)

)
_1(G1) 5 ′(G1, G2) cos

(
\ (G1)

)
 .

We then calculate the contravariant basis vectors:

v1 =
1

_1(G1)2 + 5 (G1, G2)2\′(G1)2


_1(G1)

− 5 (G1, G2)\′(G1) sin
(
\ (G1)

)
5 (G2)\′(G1) cos

(
\ (G1)

)
 , (2.10)
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v2 =
1

5 ′(G1, G2)


0

cos
(
\ (G1)

)
sin

(
\ (G1)

)
 ,

v3 =
1√(

_1(G1)2 + \′(G1)2 5 (G1, G2)2
)
5 ′(G1, G2)


−\′(G1) 5 (G1, G2) 5 ′(G1, G2)
−_1(G1) 5 ′(G1, G2) sin

(
\ (G1)

)
_1(G1) 5 ′(G1, G2) cos

(
\ (G1)

)
 .

The first and second fundamental forms 0UV and 1UV, respectively, and theChristoffel
symbols of the second kind Γ:

8 9
are used to provide local descriptions of S, and are

given by:
0UV = vU · vV , 1UV = Γ3

UV = vU,V · v̂3 , (2.11)

Γ_UV = vU,V · v_ , ΓV3U = −1
V
U = v̂3,U · vV , Γ3

38 = Γ
8
33 = 0 .

In the definitions shown above (and throughout the remainder of the text), the un-
derscore comma designates partial differentiation with respect to the corresponding
coordinate component (v,8 ≡ mv/mG8). We note that our tensors 1UV and 1VU have
identical matrix components. See [68] for a more thorough discussion of the re-
lationship between the second fundamental form and Christoffel symbols of the
second kind. The matrix components of these forms are given below:

[0UV] =
[
_1(G1)2 + 5 (G1, G2)2\′(G1)2 0

0 5 ′(G1, G2)2

]
, (2.12)

[1UV] = [Γ3
UV] =

_1(G1)\′(G1) 5 ′(G1, G2)√
_1(G1)2 + \′(G1)2 5 (G1, G2)2

[
0 1
1 0

]
,

[Γ1
UV] =

5 (G1, G2) 5 ′(G1, G2)\′(G1)2

_2
1 + 5 (G1, G2)2\′(G1)2

[
0 1
1 0

]
,

[Γ2
UV] =

1
5 ′(G1, G2)

[
− 5 (G1, G2)\′(G1)2 0

0 5 ′′(G1, G2)

]
,

Γ3
38 = Γ

8
33 = 0.

When the ribbons are mapped into the deformed configuration, the first fundamental
form 0UV characterizes the in-plane stretches and the second fundamental form 1UV

describes the inner products between the partial derivatives of the covariant basis
vectors and the unit normal, thus capturing out-of-plane bending. The mixed
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component form 1
V
U defined in Eq. 2.12 has the same matrix components as 1UV in

our case and captures the inner products between the partial derivatives of the local
unit normal and the contravariant basis vectors, essentially describing the rotation
of the unit normal as we move along the surface. The connection between these
forms and the tensors for in-plane strain C and bending � commonly used in plate
and shell mechanics is described more precisely below [69]:

C = 0UV (eU ⊗ eV) , � = −(1UV + 1VU) (eU ⊗ eV) . (2.13)

Material model and stress resultants

Mockensturm’s usage of a Saint-Venant-Kirchhoffmaterialmodel is also appropriate
for our ribbons due to the large regime of elastic linearity displayed by the BMG.
This model uses the following strain energy function:

i(C,�) =  �
2

24

(
a
(� · I)2

4
+ (1 − a)� · �

4

)
+ ...

 

2

(
a
(C · I − 3)2

4
+ (1 − a) (C − I) · (C − I)

4

)
, (2.14)

where  = ��/(1 − a2), � is Young’s modulus, and a is Poisson’s ratio. The
in-plane and bending stress resultants are:

N = 2
mi(C,�)
mC

, M = 2
mi(C,�)
m�

. (2.15)

In matrix component form, these resultants are:

#11 =
 

2
_1(G1)2 − 1 + \′(G1)2 5 (G1, G2)2 + a

(
5 ′(G1, G2)2 − 1

)
,

#12 = #21 = 0 ,

#22 =
 

2
a
(
_1(G1)2 − 1 + \′(G1)2 5 (G1, G2)2

)
+ 5 ′(G1, G2)2 − 1,

"11 = "12 = 0 ,

"12 = "21 −
 �2(1 − a)_1(G1)\′(G1) 5 ′(G1, G2)

12
√
_1(G1)2 + \′(G1)2 5 (G1, G2)2

. (2.16)

We must now enforce our assumptions that transverse strains vanish and that unit
normals to the reference configuration remain unit normals after deformation. The
following constraint stress tensor is used to this purpose in this restricted kinematics
plate theory and is calculated through the equilibrium equations in the next section:

Q = &U (eU ⊗ e3 + e3 ⊗ eU) +&3e3 ⊗ e3 . (2.17)
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Resolving the PDEs governing equilibrium onto the contravariant basis

The two equations describing equilibrium are derived fully in Mockensturm’s doc-
toral dissertation [66] and are given below:

[#UΓvU +&Γv̂3 + "UΓv̂3,U] ,Γ = 0 , (2.18)

["UΓvU] ,Γ − [&UvU +&3v̂3] = 0 . (2.19)

By resolving Eq. 2.19 onto vV and v3 we obtain, respectively:

&V = "
VΓ

,Γ
+ "UΓΓ

V

UΓ
, (2.20)

&3 = "UΓ1UΓ .

By inserting Q into Eq. 2.18, resolving the PDEs onto the contravariant basis v8 and
eliminating the zero-valued terms, we obtain the following statement of equilibrium:

#11
,1 + #

22
,2 + #

11Γ2
11 + #

22Γ2
22 + 2("12

,12 + "
12
,1 Γ

1
12 + "

12Γ1
12,1) + ...

− 2("12
,1 + "

12
,2 + "

12Γ1
12)1

2
1 − "

12(12
1,1 + 1

2
1,2 + Γ

2
111

2
1 + Γ

2
221

2
1) = 0 . (2.21)

The difference between our result at this point and what is shown in Mockensturm’s
work is the inclusion of terms where there are partial derivatives of the stress tensors
in the G1 direction due to the non-constant functions _1(G1) and \′(G1).

Computing the lateral stretch using a perturbation method

We proceed by stating that for this analytical model to be accurate, the amplitude of
the edge undulations must be much smaller than the wavelength. This holds for most
of our ribbons and we discuss the limitations of the model in Section 2.3. In light
of this consideration, we make a few simplifications driven by ,′(G1) being small
everywhere. We now focus our analysis at the width extrema (where ,′(G1) = 0).
At these specific cross-sections, #11

,1 = "12
,1 = "12

,12 = 12
1,1 = Γ

1
12,1 = 0 and the

equilibrium statement given by Eq. 2.21 becomes:

#22
,2 +#

11Γ2
11+#

22Γ2
22−2("12

,2 +"
12Γ1

12)1
2
1−"

12(12
1,2+Γ

2
111

2
1+Γ

2
221

2
1) = 0 . (2.22)

This is the same as what Mockensturm obtained for rectangular, homogeneous
ribbons. By also noting that ,′′(G1) is small, the boundary conditions on the
traction free lateral edges in regions where,′(G1) = 0 are:

#22 − 212
1"

12 = 0 , "12
,1 = 0 , "22 = 0 . (2.23)
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Inserting the expressions for fundamental forms, Christoffel symbols and stress
resultants calculated in previous sections (see Eqs. 2.12 and 2.16), we obtain a single
nonlinear ODE for the lateral stretch of the ribbons. (We assume the dependence of
all variables on G1 to be fixed and remove the dependence of the variables on this
coordinate in our notation for simplicity.)

6 5 ′′(G2)
(
a(_2

1 − 1 + \′2 5 (G2)2) + 5 ′(G2)2 − 1
)

5 ′(G2)
+ ...

−
6\′2 5 (G2)

(
_2

1 − 1 + \′2 5 (G2)2 + a( 5 ′(G2)2 − 1)
)

5 ′(G2)
+ ...

+
4�2_2

1\
′2(1 − a) 5 ′(G2) 5 ′′(G2)
_2

1 + \′2 5 (G2)2
+ ...

−
�2_2

1\
′4(1 − a) 5 (G2) 5 ′(G2)

(
_2

1 + \
′2 5 (G2)2 + 5 ′(G2)2

)
(_2

1 + \′2 5 (G2)2)2
+ ...

+ 12 5 ′(G2) (\′2a 5 (G2) + 5 ′′(G2)) = 0 . (2.24)

The boundary condition #22 − 212
1"

12 = 0 at the lateral edges becomes:

3( 5 ′(±,/2)2 − 1 + E(\′2 5 (±,/2)2 + _2
1 − 1)) +

�2_2
1\
′2(1 − E) 5 ′(±,/2)2

\′2 5 (±,/2)2 + _2
1

= 0 .

(2.25)
We set changes of variables 4 ≡ (_2

1−1)/2, [ = �/, , and define a non-dimensional
parameter )? = ,\′. To proceed with the solution of this differential equation, we
note that )? is small and 4 and [ are on the order of )2

? . This determination of
order stems from the pre-stretch being very small and from the ribbons having
very slender cross-sections, and has been validated numerically for the ribbon
geometries we study. We then use a perturbation 5 (G2) =

∑∞
�=0 5(2�) (G2) which

has a slightly different form compared to what Mockensturm proposed. Inserting
this into Eqs. 2.24 and 2.25 gives us an ODE for each order of the lateral stretches
5(2�) (G2):

Zeroth order :

(3 5 ′(0) (G2)2 − 1) 5 ′′(0) (G2) = 0 ,

BCs : 5 ′(0) (±,/2)
2 − 1 = 0 , 5(0) = 0 ,

Solution : 5(0) (G2) = G2 .

(2.26)
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Second order :

5 ′′(2) (G2) +
a)2

?

,2 G2 = 0 ,

BCs : 5 ′(2) (±,/2) +
)2
? a

8
+ 4a = 0 , 5(2) = 0 ,

Solution : 5(2) (G2) = −4aG2 −
a)2

?G
3
2

6,2 .

(2.27)

Fourth order :

5 ′′(4) (G2) +
)4
?

(
2E2 − 3

)
6,4 G3

2 −
4)2

?

,2 G2 = 0 ,

BCs: 5 ′(4) (±,/2) +
1

24
a2(1242 − 34)2

? −
)4
?

16
) = 0 , 5(4) = 0 ,

Solution : 5(4) (G2) =
1

1920

((
15)4

? (a2 − 1) + 2404)2
? (a2 − 1) − 96042a2

)
G2 + ...

3204)2
?

,2 G3
2 +

16)4
? (3 − 2a2)
,4 G5

2

)
.

(2.28)

Now that we have calculated 5 to fourth order, we can insert the function into
the expressions for strains (Eq. 2.13) and stresses (Eq. 2.16) in order to compare
predictions from this analytical model to those from the numerical simulations.

Analytical results and comparison with the numerical ones

We first compare the strains predicted by numerical simulations and by this analysis
for the case of ribbons with straight edges in Fig. 2.6(a-b). We do the same for
a ribbon with three necks and edge undulation amplitude � = F/6 (where F is
the maximum width of the ribbon) in Fig. 2.6(c-d). In both of these scenarios,
we plot the principal logarithmic strains as a function of clamp twist angle at the
region of the ribbon that experiences the greatest principal strains (marked with dots
in Fig. 2.6(a,c)), showing good agreement between the numerical and analytical
methods. From Fig. 2.6(b), we can see that the analytics, unlike the numerics, do
not capture any self-folding behavior. In Fig. 2.6(d), we can see that analytics and
numerics follow the same trend, especially for the lateral strains. Discrepancies in
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Figure 2.6: Comparison between analytical and numerical results. (a) Schematic diagram
of a straight ribbon. (b) Principal logarithmic strains at the free edges of a straight ribbon.
(c) Schematic diagram of a ribbon with undulated edges and � = F/6. (d) Principal
logarithmic strains at the free edges of a “neck” region. In (b), (d), the strains are plotted
as a function of total relative twist of the clamped edges. (e) Analytical prediction of the
axial stress resultant as a function of twist and normalized lateral position in ribbons with
straight edges and ribbons with three neck regions. For the undulated-edge ribbon, we plot
the stresses at a neck cross-section, where the stresses are greatest. (f) Analytical prediction
of the lateral stress resultant as a function of twist and normalized lateral position in ribbons
with straight edges and ribbons with three neck regions. The greatest lateral compressive
stresses (plotted here) in undulated-edge ribbons emerge in the center of the neck regions.

this case have to be ascribed to the fact that our theory is only valid for small � =/!,
i.e., for small amplitude to wavelength ratios of the undulation.

Having shown a consistency between the two methods of analysis, we can now
use our analytical results to study the stress evolution within the most vulnerable
(narrowest) cross-section. Fig. 2.6(e-f) shows that the introduction of undulated
edges reduces the principal stress resultants considerably. In particular, Fig. 2.6(f)
highlights the emergence of compressive lateral stresses toward the center of the
ribbon as twist is increased. These lateral stresses induce buckling at a critical twist.
It is clear that the stresses are much greater for ribbons with straight edges than for
ribbons of equal length, maximum width and thickness, but with undulated edges.
This highlights the benefits of our design strategy when trying to obtain twisted
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ribbons that do not buckle during twisting. Our analytical model can be extended to
the analysis of buckling, as done by Mockensturm [37], but this is beyond the scope
of this work.

Parametric study

We now leverage our analytical model to perform a broader parametric analysis than
the one reported in Section 2.3. The results of this analysis are reported in Fig. 2.7.
First, in Fig. 2.7(a), we analyze the effects of � on the maximum principal strain,

Figure 2.7: Extended parametric analysis. All curves are obtained using our analytical
model. The dots are numerical data points and are useful to understand the limitations of the
analytical model. (a) Effects of the amplitude of undulation � on the maximum principal
strain, for various = and with !/F = 20 fixed. (b) Effects of !/F for various =, with
� = F/6 fixed.

for various = and keeping the aspect ratio !/F = 20 fixed. All values correspond to
points at the edge of a neck region. We can observe that increasing the undulation
amplitude from 0 (straight ribbon) to F/5 causes the maximum strains to decrease.
We also observe that increasing = causes the level of strain to increase during
twisting, noting that \C increases proportionally with =. This is consistent with
what is shown in Fig. 2.4(e). The superimposed circular markers follow the same
color coding of the analytical lines and represent numerical data points. They allow
us to evaluate the performance of the analytical model. We can see once again
that the analytical model is more accurate for ribbons where the edge undulation
amplitude is much smaller than the undulation wavelength, and tends to significantly
underestimate the maximum principal strain for smaller values of !/(= �). Also
note that the analytical model does not capture whether self-folding occurs before
the breaking strain is reached.

In Fig. 2.7(b), we analyze the effects of !/F, the aspect ratio of the ribbon, on
the maximum principal strain. In this case, we fix � = F/6. We can see that
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increasing !/F causes an exponential decrease of the maximum principal strain.
While increasing !/F helps delay the onset of failure, it comes at the expense of
having compact ribbon geometries.

2.4 From ribbons to structures
We now have the theoretical and numerical tools to choose geometrical configura-
tions that yield desired shapes upon twisting. Based on previous considerations,
we choose ribbons where = = 3 and � = F/6. In this section, we describe the
thermoforming process and the setup we designed for twisted ribbon fabrication.
We also investigate the potential of single twisted ribbons and assemblies of them
as deployable mechanical systems. We do so by analyzing the bending behavior of
pre-twisted ribbons and by illustrating prototypes of deployable mechanical systems
capable of reversible compaction and deployment cycles.

Thermoforming
The steps required to thermoform an initially-flat ribbon into a twisted configura-
tion are illustrated in Fig. 2.8(a). A picture of the fabrication setup is shown in
Fig. 2.8(b). First, a ribbon is manually cut. Then, we use a custom setup to clamp its
supporting tabs (described in Section 2.2) and apply a pre-stretch to avoid longitudi-
nal instabilities during the twisting process. The ribbon is then twisted to its target
angle and is subsequently immersed in a hot salt bath (Dynalene MS-2). The bath
temperature is continuously monitored using a thermocouple and is kept constant
at a value that is between the BMG’s glass transition )6 and its crystallization tem-
perature )G . This is required for the material to be thermoformable while avoiding
the onset of crystallization, which would cause the material to become brittle. For
our BMG alloy, we perform Differential Scanning Calorimetry experiments and
measure )6 = 370 °C and )G = 445 °C. Thus, we keep the salt bath at ∼ 400 °C.
Our thermoforming protocol consists of immersing a specimen in the bath for 10
seconds, and then quenching it in water at room temperature. This procedure leads
to stress-free BMG ribbons that assume the desired twisted shape while preserving
the material’s elasticity. Note that thermoforming also corrects any curvature in-
duced by the melt-spinning process. Pictures of the 3-neck ribbon before and after
thermoforming are shown in Fig. 2.8(c). The insets in the twisted configuration
image show that the neck regions can bend about the e3 axis and the wide faces can
bend about e2, as desired. One interesting aspect of these twisted ribbons is that
they have an inherent chirality, which is imposed by choosing the twisting direction
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during fabrication. The case shown in Fig. 2.8(c), for example, is such that the
normal to the surface of the ribbon rotates in a counterclockwise fashion along e1.

Figure 2.8: BMG ribbon thermoforming. (a) Sketch illustrating the various steps of the
thermoforming process, from an initial planar ribbon to a final twisted and stress-free
configuration. (b) Thermoforming setup. (c) BMG ribbon before and after thermoforming,
with insets illustrating how wide faces and neck regions can be bent about e2 and e3,
respectively.

Bending behavior of twisted ribbons
To allow for repeated stowage and deployment of our structures, it is important that
bending the necks about e3 and the wide faces about e2 does not produce strains
that exceed the breaking strain of the material. To verify that this is the case, we
perform bending simulations on the pre-twisted ribbons, using the same FE model
discussed in Section 2.3. To speed up computations, we only consider portions
of the selected ribbon geometry. A segment of the pre-twisted stress-free ribbon
that includes a single neck and terminates at the midpoints of two consecutive wide
faces (thus having length !/3 = 60 mm) is illustrated at the top of Fig. 2.9(a).
To simulate bending of a neck about e3, we constrain all points belonging to the
top and bottom edges of the ribbon segment to remain in the e1–e2 plane, and
we force the two left extremes of the top and bottom edges to displace towards
each other (3 is the distance between these two points). The bent configurations
for 3 values of 20 mm and 0 mm are also shown in Fig. 2.9(a). The evolution of
the maximum principal strain in the ribbon and of the moment "3 about e3 as 3
decreases are illustrated in Fig. 2.9(b). We can see that the strains produced during
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Figure 2.9: Numerical (FE) bending response of different regions of the same twisted ribbon
(with = = 3 and � = F/6). (a) Snapshots of the bending deformation of the neck about
e3. All dimensions are in mm. (b) Performance of the neck region as a joint, indicating the
maximum strain involved and the moment about the rotation axis. (c) Snapshots illustrating
how a wide face bends about e2. (d) Bending performance of the wide face.

bending remain below the breaking strain threshold of 1.7%. The moment versus
displacement plot (de facto a moment-angle plot), is obtained by monitoring the
resultant force along e1 at the left extreme of the top edge of the ribbon, and by
multiplying it by the displacement along e2 of the center of the neck. We can see
that the moments are two orders of magnitude smaller compared to hinges that
are designed specifically for aerospace applications [22]. This implies that small
moments are needed to go from the fully-deployed to the stowed configuration and
that the deployed structure has limited stiffness. This behavior could be improved
either by increasing the structure’s dimensions (especially the ribbon’s thickness—a
choice that would require monitoring strains to prevent failure), or by altering the
design to introduce a curvature about e1 that could yield a bistable behavior similar
to that displayed by tape-spring hinges. This would require a modification of the
thermoforming setup that is not discussed in this article.

We also simulate bending of the wide faces about e2, as illustrated in Fig. 2.9(c,d). In
this case, the maximum principal strains achieved are extremely low, since bending
a wide face produces low curvatures. However, moments are larger than those
in Fig. 2.9(b), indicating that bending a wide face is more difficult than bending
a neck. From Fig. 2.9(a) and (c), we can see that both necks and faces do not
behave like perfect planar hinges. Due to the chirality of the ribbons, these regions
feature asymmetric bending profiles (e.g., the neck region in Fig. 2.9(a) does not
remain symmetric about the e1–e2 plane). This aspect can be leveraged to introduce
additional degrees of freedom and enrich the shape-changing capacity of structures
made from twisted ribbons.
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Figure 2.10: Elastic stowage and deployment of twisted ribbons. In all cases, deformations
are reversible and do not induce any plastic deformation. Note that we use tape to keep
together the stowed configurations for illustration purposes. (a) A twisted ribbon can be
compacted by folding it about the necks/hinges, and by finally bending the wide faces. (b)
Assembling four ribbons in a circle leads to a ring structure that can be compacted following
the same procedure shown in (a). (c) The chirality of the ribbons can be leveraged to create a
sphere that can be compacted by applying a twisting load, similarly to Hoberman’s Twist-O.
(d) Planar auxetic lattice made of twisted ribbons. The dashed lines highlight the global
curvature achievable by taping together selected pairs of necks.

Tabletop-scale structural prototypes
Now that we verified that pre-twisted ribbons can bend without breaking, we investi-
gate several deployment-stowage scenarios for single twisted ribbons and assemblies
of them. First, we consider a single ribbon, shown in Fig. 2.10(a). In order to com-
pact this one-dimensional structural element, we first fold one of the wide faces
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onto another, leveraging the hinge-like behavior of one of the necks. We repeat this
process sequentially for all wide faces, until we obtain the configuration indicated
in the second image from the right. At that point, we bend the stack of wide faces
to further compact the system, obtaining the stowed configuration illustrated in the
right-most panel. The longest dimension of this compacted ribbon is one order of
magnitude smaller than the initial size, highlighting its potential as a deployable
system. It is to be noted that the stowed configurations are kept together with double
sided tape for illustration purposes, and that the ribbon goes back to the original
configuration upon tape removal, owing to the fact that we are not exceeding the
breaking strain.

The full potential of these systems as deployable structures can be achieved by
combining multiple twisted ribbons in order to create two- and three-dimensional
systems. A reliable way of joining multiple ribbons is via spot-welding. By joining
four ribbons feturing the same chirality, we obtain the ring shown in Fig. 2.10(b),
that has an initial diameter of 25 cm. By folding wide faces on top of each other
and leveraging the joint-like behavior of the necks as we did in Fig. 2.10(a), we can
compact the ring, and obtain the final configuration shown in the right-most panel.
One can also create three-dimensional structures, as shown in Fig. 2.10(c). This
sphere is obtained by first creating two rings from ribbons that all have the same
chirality. Then, the rings are joined at two couples of wide faces. There are many
ways to compact this system, but a particularly interesting one can be achieved by
pushing down on the sphere from its top-most point, while simultaneously applying
a rotation. This behavior is reminiscent of Hoberman’s Twist-O toys, i.e., spheres
made by pin-jointed polymeric crosses that can also be compacted by twisting one
of their units. In our case, applying a counterclockwise or clockwise twist produces
different stowed configurations owing to the chirality of the ribbons. This further
highlights the potential that twisted ribbons have to create structures with many
stowage configurations.

Finally, in Fig. 2.10(d), we show that twisted ribbons can be used as building blocks
for structures with negative Poisson’s ratio (a behavior known as auxeticity). From
the undeformed lattice, the planar stowed configuration that displays an auxetic
behavior (i.e., global shrinkage along e1 and e2) is obtained by taping together alter-
nating pairs of necks, as illustrated in the central panel of the figure. If fewer pairs
of necks are joined together, the structure curves into a three-dimensional surface,
owing to the chirality and non-planar nature of our hinges. This phenomenon can
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potentially be tailored by assembling ribbons with different chirality, can be lever-
aged to create freeform structures from planar precursors, and deserves a separate
treatment in future work.

2.5 Conclusions and outlook
This work represents a first attempt at utilizing thin structural elements made of
bulk metallic glass to create compliant deployable structures. We do this by taking
initially-flat ribbons and twisting them into structural elements that feature regions
that behave as compliant hinges with different preferred bending axes, and assem-
bling these ribbons into more complex three-dimensional structures. Along the way,
we use numerical and analytical models to understand the mechanics of twisting
and to design ribbons that can be twisted and thermoformed into desired configura-
tions. We also use simulations to verify that pre-twisted ribbons do not fail when
they are bent and used as deployable structural systems. Here, we only consider
twisted ribbons as building blocks for our structures. However, it could be possible
to include ribbons with different deployability attributes, e.g., axial extension, to
create structures featuring more complex deformation patterns.
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Chapter preamble

Following the discussion on periodically patterned ribbon elements in the previous
chapter, we now turn our attention to structured media composed of patterns of
non-uniform unit cells. This chapter serves as an introduction to this class of
structured media and provides a design paradigm for inducing in-plane kinematic
incompatibilities that lead to the out-of-plane buckling of these elastic sheets. A
more thorough mechanical modeling effort is presented in Chapter 4, where an
effective continuum model is constructed to capture the buckling behavior of these
systems.

Chapter abstract
Structuring geometrical features in a two-dimensional elastic sheet, which buckles
in response to external actuation, allows faster and more scalable fabrication of
three-dimensional objects. Here, we investigate the out-of-plane shape morphing
capabilities of single-material elastic sheets with architected cut patterns. The sheets
are laser-cut into an array of tiles connected by flexible hinges, which enable large
deformations with small applied forces. We demonstrate that a non-periodic cut
pattern can make a sheet buckle into selectable three-dimensional shapes, such as
domes or patterns ofwrinkles, when pulled at specific boundary points. These global
buckling modes are observed in experiments, predicted by numerical simulations,
and rationalized by a kinematic analysis that highlights the role of the geometric
frustration arising from non-periodicity. The study focuses initially on elastic sheets,
and is later extended to sheets made of elastic-plastic materials, which can retain
their shape upon load removal. Our results provide a novel method for obtaining
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three-dimensional objects from initially-flat sheets by the application of tensile loads.

3.1 Introduction
Imparting elastic sheets with a mesoscale architecture by folding [1, 2], perforat-
ing [3–5], or patterning them [6–8], enables the creation of materials with unusual
characteristics, such as extreme extensibility [9], deployability [10, 11], and auxetic-
ity [12]. These properties can be leveraged to design sheets that morph into complex
three-dimensional objects. For example, origami sheets can be turned into nearly-
arbitrary shapes [13, 14], but are typically challenging to fold [15] or actuate [16–18].
Patterned elastomeric sheets [6, 19], bilayers [20], and sheets with smart hinges [21–
23] can morph into three-dimensional surfaces via non-mechanical stimuli, but their
fabrication is complex. Ribbon- and membrane-like flat mesostructures, made of
elastic or brittle materials, can buckle out of plane and produce three-dimensional
geometries when subject to mechanical actuation in compression [24, 25] or ten-
sion [26, 27]. However, compressive actuation requires pre-stretched substrates and
non-trivial assembly processes, and the geometries obtained via tensile loads are
limited to thin, arch-like features.

In contrast to shape-morphing origami or bilayer films, sheets with architected cut
patterns can be easily fabricated via subtractive technologies. Their out-of-plane
deformation can be triggered by manual forming [28, 29], via the actuation of smart
hinges [30], or by applying compressive boundary loads [25, 31, 32]. Recently, it
has been demonstrated that sheets with periodic perforations can also buckle locally
in tension [27, 33–36], producing crease patterns that can be used for soft robotic
locomotion [37] or as coatings for sunlight control [36]. However, since these
buckling modes take place at the scale of the unit cells, the size of the transverse
features they can produce cannot significantly exceed the typical length of the cuts.
Non-periodic cut patterns have been seldomexplored in this context: non-periodicity
is known to lead to geometric frustration [38, 39], i.e., the desired deformation mode
is impeded by the geometric incompatibility between neighboring cells. In the few
cases where non-periodic cut patterns have been explored, frustration has been
avoided [40–42]. In particular, the effect of geometric frustration on the out-of-
plane deformations of thin architected sheets has been ignored so far.

In this work, we study the tensile response of elastic sheets featuring non-periodic
cut patterns, and intentionally leverage geometric frustration to induce controllable,
global shape changes via buckling. In most of our designs, we use point-like
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boundary loads that induce large deformations in selected sub-domains of the sheets.
The inhomogeneous distribution of strains results into global buckling modes that
make the sheets bend out of plane: we use this principle to obtain both dome-like
surfaces, and patterns of wrinkles confined to pre-determined regions of the sheets.
We show that the buckling pattern can be changed by applying the load at different
points. We also extend the method to initially cylindrical—rather than planar—
sheets and to cut patterns arranged into non-rectangular grids, and we demonstrate
the formation of persistent three-dimensional surfaces by using sheets made of
elastic-plastic materials [35].

3.2 Design paradigm
We start by analyzing a simple cut pattern featuring a large-amplitude, planar mode
of deformation. A 108-by-108 mm, 1.55 mm-thick natural rubber sheet is laser-
cut [43] following a pattern of (i) diamond-shaped cut-outs and (ii) straight cut lines
ending close to the diamonds’ vertices. These two types of cuts are visible in black
in the insets of Fig. 3.1. The result is an array of 18×18 rhomboid tiles, visible in

Figure 3.1: Uniaxial tension test of a periodic sheet whose undeformed geometry is shown
in (a). The plot in the background shows the loading curve when the applied tension is
either along the horizontal direction (black lines) or along the vertical direction (grey lines),
both from experiments (solid lines) and from finite element simulations (dashed lines).
The vertical dash-dot line shows the maximum stretch predicted by the kinematic analysis,
where a geometric-to-elastic transition takes place. Insets (a-d) show snapshots of a 4×4-tile
portion of the sheet at different levels of deformation (scale bar is 6 mm). The red and blue
overlaid lines are obtained by joining the diagonals in a particular row and column of tiles,
respectively, and are used to predict the maximum stretch by a kinematic analysis.

grey in the pictures, connected by thin hinges. The experimental traction curves
(Fig. 3.1) for unaxial tension reveal a strongly anisotropic and non-linear behavior
(see Appendix B.1 for more details). When the tension is applied in the in-plane
direction referred to as the G-direction (horizontal direction in the figure, black lines)
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the response is initially compliant up to a stretch value _ ∼ 1.3, and then becomes
much stiffer. When the tension is applied in the perpendicular H-direction (vertical
direction in the figure, gray lines), the response is stiff and approximately linear
for the range of stretch investigated; no initial compliant regime is observed. We
simulated the mechanical response of the architected sheet numerically as well, by
meshing a rectangular domain with periodic cut-outs, and by using a finite-element
(FE) model for a neo-Hookean material in plane strain (the plane strain assumption
is applicable as the in-plane width of the hinges is smaller than their out-of-plane
thickness, see Appendix B.2). The traction curves predicted by simulation are in
good agreement with the experiments (Fig. 3.1).

The salient features of the loading curves can be explained by a kinematic analysis,
in which the sheet is modeled as an array of rigid tiles connected by pin joints.
Such networks can feature modes of deformation known asmechanisms [44], which
are mapped to low-energy configurations of the elastic sheet involving bending and
shear [5] at the joints only. A mechanism relies on the coordinated rotation of
the tiles in response to applied tension (Fig. 3.1, Appendix B.3 and [45, 46]). In
particular, the maximum stretch attainable via a mechanism can be derived by a
geometric argument, considering the broken lines connecting the diagonals of the
tiles in a given row or column, see red and blue lines overlaid in Fig. 3.1(a). As the
length of these lines is preserved by mechanisms, the maximum stretch in the G or H
direction is attained when the corresponding line is fully stretched out. For the cut
design used in Fig. 3.1, this maximum stretch is calculated by a geometric argument
as _G = 1.33 in the G-direction, as indicated by the dash-dotted line in the figure;
this is indeed where the compliant-to-stiff transition is observed in the experimental
and numerical traction curves. For this particular cut design, the line of diagonals
in the H-direction is already straight in the initial configuration, see the blue line in
Fig. 3.1(a), meaning that no mechanism can be activated when the tension is applied
in the H-direction; this is consistent with the absence of an initial compliant regime
in the grey curves in Fig. 3.1.

Next, we introduce a family of periodic cut patterns parameterized by design vari-
ables. Our generic pattern, sketched in Fig. 3.2(a), is obtained by cutting out
diamonds with alternating directions, centered at the nodes of a grid of #G × #H
rectangles, each with dimensions ;G × ;H. The two families of diamonds are assigned
different widths, FG and FH, so that the previous design comprising line-cuts can
be recovered as the special case FH = 0. The length of the diamonds is such that a
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Figure 3.2: Unit cell generalization. (a) Sketch of a generic periodic architecture param-
eterized by design variables. (b-d) Digital images of details of three periodic undeformed
specimens, corresponding to different values of (FG , FH) listed in Appendix B.4; scale bar
is 6 mm. (e) Transverse stretch _H as a function of the axial stretch _G for simple traction
along the G-direction, and for the same set of specimens: experiments (open symbols) versus
predictions of the kinematic model (solid curves).

gap (hinge) of width X is present between adjacent diamonds. Three examples of
periodic geometries cut out in natural rubber sheets are shown in Fig. 3.2(b-d), for
#G = #H = 18, ;G = ;H = 6 mm, and out-of-plane thickness C = 1.55 mm; note that
the shape of the tiles, shown in light grey, can now vary from rhomboid to square.
Experimental traction curves for three particular cutting patterns are plotted in the
plane of stretches (_G , _H) in Fig. 3.2(e), and compared with the predictions of the
kinematic analysis (see Appendix B.3 for a detailed derivation),

_H (_G) =
3E

;H
sin

[
W + arccos

(
_G;G

3ℎ

)]
, (3.1)

where 3ℎ =
√
;2G + [;H − 2FH − X]2 and 3E =

√
;2H + [;G − 2FG − X]2 are the lengths

of the diagonals of a tile, and W is the angle between these diagonals. The design
variables have a strong influence on tension tests. The cut pattern in Fig. 3.2(b)
gives rise to an auxetic mechanism [12] having a negative Poisson’s ratio a = −1;
this is reflected by the positive slope of the black curve in Fig. 3.2(d). By contrast,
the mechanism associated with the cut pattern in Fig. 3.1 and 3.2(c) has a positive
Poisson’s ratio. For both these cut patterns, the kinematic model in Equation (3.1)
provides an accurate prediction of the transverse stretch _H (_G) up to around _G ∼
1.3, where the joints start to stretch, see Fig. 3.2(e). Finally, the cut pattern in
Fig. 3.2(d) is stiff when loaded in tension since the maximum stretch _G = 1
predicted by the kinematic analysis is attained in the undeformed configuration (the
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diagonals of adjacent tiles are aligned). The effect of the design parameters X and C
on the in-plane response is investigated in Appendix B.5.

3.3 Non-periodicity
Having analyzed a family of periodic cut patterns parameterized by the design vari-
ables FG and FH, we now investigate non-uniform designs, obtained by specifying
arbitrary values of FG and FH in every cell of a rectangular grid; the cell size ;G × ;H
is uniform throughout the sheet. Upon deformation, we expect that every unit cell
of these non-periodic sheets will try to follow the mechanism corresponding to the
local values of FG and FH, as described by Equation (3.1). However, mechanisms
corresponding to neighboring cells are not geometrically compatible in general (see
Appendix B.3). Thus, we investigate how this incompatibility is resolved at the
global level by buckling. As a first example, we consider a cut geometry where FG
is constant while FH varies sinusoidally in the H-direction, see Fig. 3.3(a1), using a
1.55 mm-thick natural rubber sheet with #G = 36, #H = 18, ;G = 6 mm, ;H = 2 ;G .
This choice of maps for FG and FH ensures that the top and bottom parts of the sheet
are virtually undeformable, see the inset in Fig. 3.3(a1), while the center is highly
stretchable. When the sheet is stretched by point-like forces, as in Fig. 3.3(a2), the
strong geometric incompatibility between the center and the edges produces a global
buckling mode spanning the central region. Note that this buckling instability takes
place in tension, unlike in the classical Euler buckling. For a given cut pattern,
the dependence of the buckled configuration on the sheet’s thickness C is similar to
what can be expected from the classical theory of plates without cut-outs, see Ap-
pendix B.6 for details. As C increases, the onset of buckling occurs at larger critical
stretches, consistent with the fact that the effective bending modulus is larger. An
increased thickness also yields larger deflections and makes the buckling pattern
spread further away from the the line of application of the force.

More complex buckling patterns can be obtained by letting both FG and FH vary
along the sheet, either smoothly or abruptly. As an example, we study a sheet
comprising two stretchable and auxetic islands surrounded by unstretchable and
non-auxetic regions, see Fig. 3.3(b1). This geometry induces strong geometric in-
compatibilities: when the sheet is stretched, the auxetic islands tend to swell in the
transverse direction. This swelling is prevented by the surrounding stiff regions,
and compressive in-plane stress appears, as confirmed by the FE simulations in
Fig. 3.3(b2). Ultimately, this leads to a buckling pattern made up of two domes
localized on the auxetic islands, see Fig. 3.3(b2). As another example, we study the
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Figure 3.3: Out-of-plane morphing of sheets with non-periodic cut patterns. (a1) Cut
patternwith gradient in the H direction. The inset to the right of the undeformed configuration
highlights the tile diagonals (in red), that are inextensible by the local kinematic analysis,
as well as a plot of the corresponding maximum stretch _"G (H): this shows that the sheet
is highly stretchable in the center, but inextensible along its upper and lower edges. (a2) A
dome shape obtained when the sheet is pulled from two boundary points. (b1) Undeformed
configuration of a specimen featuring two soft and auxetic regions in its interior, which give
rise to two localized bumps upon pulling at the four corners (b2). (c1-c3) Undeformed and
deformed configurations of another specimen, highlighting the influence of the boundary
loading on the pattern of wrinkles. The right-halves of (b2), (c2) and (c3) are the stress
maps of fII = a(fGG + fHH) (under the plane strain assumption); negative values of the
average in-plane stress (fGG + fHH) are taken as an indicator for buckling. (d1-d2) Shaping
wrinkles: a C-shaped soft and auxetic region is embedded in a sheet by a suitable choice of
the maps of FG and FH in the reference configuration (d1). The wrinkles localize upon the
application of boundary loads (d2). The orange arrows indicate the boundary loads. Scale
bar: 12 mm.

response of a sheet with a more complex cut pattern obtained by varying both FG
and FH sinusoidally along both the horizontal and vertical directions. The experi-
mental results in (c2) and (c3), corresponding to actuation at the structures’ corners
or boundary mid-points, respectively, show markedly different wrinkle patterns,
thereby highlighting the role of the applied force in selecting the pattern. Finally, in
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Fig. 3.3(d1-d2), we show the response of a sheet featuring a C-shaped auxetic region
separated from the rest of the sheet, which is unstretchable, by a sharp boundary. In
this case, pulling the specimen as indicated by the orange arrows leads to wrinkles
localized along the C-like domain. The wavelength of the wrinkles is comparable to
the width of the C-shaped domain. These examples show that the buckling patterns
can be tailored by engineering the sheet’s local properties through the maps of FG
and FH, and by choosing the points of application of the load.

Our approach can be extended to solids of revolution. For example, we pattern a
sheet by varying FG and FH in vertical stripes, alternating regions of auxetic and
not-auxetic behavior. We then roll the sheet, forming a tube, and pull on its ends.
The applied tractions force the tube to expand at prescribed, auxetic sections and
to contract at others [47], see Fig. 3.4(a). Stretching the tube further produces

Figure 3.4: Cylindrical structures and extension to plastic sheets. (a) An architected tube
can expand or contract radially based on an initial stripe pattern. Beyond a critical tensile
load, an azimuthal buckling pattern appears in the expanded regions. (b) Petal-shaped
specimen generated from a non-rectangular grid. This sheet morphs into a pea pod-shaped
object when pulled from its ends. (c-d) Sculpting axisymmetric shapes from a sheet made
of an elastic-plastic material; the shapes are obtained by using graded cut patterns and by
stretching out the sheets locally by hand. Scale bars: 12 mm.

a non-axisymmetric buckling bifurcation, with an azimuthal wavelength roughly
comparable to the stripes’ width. Cut patterns can also be attached to non-Cartesian



61

grids, as illustrated in the example in Fig. 3.4(b), where the petal-like sheet closes
up into a pea pod shape when pulled at its ends.

The design strategy is not limited to elastic materials such as rubber. Permanent
three-dimensional shapes can be obtained by using an elastic-plastic material [35].
This requires modifying the hinge design to avoid breakage: the new design, shown
in the insets in Fig. 3.4(c), was inspired by [48] and is discussed in Appendix B.7.
The deformation of two sheets featuring the same initial cut pattern, one made of
natural rubber and one made of stiff PETG are compared in Fig. B.12. While they
feature a similar buckling pattern, the second sheet deforms irreversibly, leaving
a permanent pattern after load removal. We leverage the elastic-plastic behavior
to sculpt axisymmetric shapes out of a planar PETG sheet, see Fig. 3.4(c-d). As
earlier with the tube, the cut patterns are graded along the axis, which allows us
to select the radial expansion (hence the target radius) as a function of the axial
coordinate. To obtain an even larger stretchability contrast, we use non-regular
rectangular grids, i.e., we set ;H (H) to take on larger values in the regions of large
stretch. The irreversible deformations are obtained by stretching the sheet locally by
hand, and a similar effect could be achieved using localized smart-material actuators
or pressurized membranes. These structures are reminiscent of gridshells [49] and
are easier to fabricate, especially at small scales.

3.4 Conclusions
In this work, we have demonstrated that geometric incompatibility can be leveraged
to create three-dimensional objects from sheets with non-periodic cut-outs. By
choosing the properties of the cuts locally, one can prescribe a map of maximum
stretch, which is resolved when the sheet bends out of plane in response to boundary
loads or local stretching. While the shapes we have obtained are relatively simple,
these design principles could be extended to different families of mechanisms,
and could be coupled to optimization and inverse-design strategies to obtain more
complex shapes. Due to the flexibility of the fabrication process, which involves
cuttingmono-layer sheets, this approach could be used to produce three-dimensional
structures at vastly different scales.

3.5 Materials and methods
Specimen fabrication. A Universal ILS9 120W laser cutter is used to create perfo-
rations. We mainly use 1.55mm-thick natural rubber sheets (McMaster-Carr, item
no. 8633K71), but some 3.1mm- and 0.75mm-thick ones were also used (Grainger,
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items no. 1XWE5 and 8611K18). For the 1.55mm-thick specimens, the machine
is set to cut at 35% power and 5% speed, with an air assist flow rate of 100% to
avoid burning the specimens. For the 3.1mm-thick specimens, 45% power and
2.3% speed are selected. For the 0.75mm-thick specimens, 30% power and 5%
speed are selected. Since the laser beam has a finite cutting diameter, the hinges
are not characterized by sharp corners but are de-facto beams having a finite length.
The tube specimens are closed using double-sided tape glued to some tiles. PETG
sheets (0.5mm-thick) were perforated with the same laser cutter, with 3.0% power
and 2.2% speed, and were also closed into surfaces of revolution using double-sided
tape.

Material testing. Uniaxial tensile tests are conducted using an Instron ElectroPuls
(Model E3000) system equipped with a 250 N load cell at a constant deformation
rate of 2 mm s−1. The specimens are stretched by pulling on some of the hinges
using a customized fixture which allows for lateral expansion or contraction of
the sheets being pulled (see Appendix B.1). The tensile forces and displacements
are measured with 1 mN and 5 `m accuracy, respectively, at an acquisition rate
of 1 kHz. The force-displacement data obtained from the Instron WaveMatrix
software is converted to stress-stretch data using the original sample dimensions.
The data obtained is then subsampled to remove some of the noise (one every 10
measurements is kept). Finally, the stretch is adjusted to account for the self-weight
elongation experienced by some specimens featuring a pronounced mechanism-like
behavior along the direction parallel to the load.
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Chapter preamble
This chapter focuses on the construction of an effective continuum model for the
structured media introduced in the previous chapter. This model captures the out-
of-plane buckling instabilities that arise due to in-plane kinematic incompatibilities
in non-periodic mesostructures and computes post-buckled equilibrium. The model
is not included in an inverse design method for designing these buckling sheets.
Chapter 5 will broach this topic for a different class of structured media.

Chapter abstract
In this work, we construct an effective continuum model for architected sheets
that are composed of bulky tiles connected by slender elastic joints. Due to their
mesostructure, these sheets feature quasi-mechanisms – low-energy local kinematic
modes that are strongly favored over other deformations. In sheets with non-uniform
mesostructure, kinematic incompatibilities arise between neighboring regions, caus-
ing out-of-plane buckling. The effective continuum model is based on a geometric
analysis of the sheets’ unit cells and their energetically favorable modes of deforma-
tion. Its major feature is the construction of a strain energy that penalizes deviations
from these preferred modes of deformation. The effect of non-periodicity is entirely
described through the use of spatially varying geometric parameters in the model.
Our simulations capture the out-of-plane buckling that occurs in non-periodic spec-
imens and show good agreement with experiments. While we only consider one
class of quasi-mechanisms, our modeling approach could be applied to a diverse set
of shape-morphing systems that are of interest to the mechanics community.
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4.1 Introduction
Advancedmanufacturing and synthesis technologies have given engineers the ability
to designmediawith complexmicro- andmesostructures that strongly influence bulk
constitutive properties [1–3]. For example, the micro/mesoscale geometry can be
designed to attain extreme or unconventional global mechanical behaviors such
as high stiffness-to-weight ratios [1] and bistable auxeticity [4]. These fabrication
processes have considerably expanded the design space for shape-shifting media [5–
7] and deployable structures [8, 9]. In this context, mesoscale design has been used
to create compliant features that replace conventional hinges, extensional elements
and flexures [10–12], or to create structures whose mechanical behaviors can be
tailored by adjusting the geometry of a pattern [13–21].

In structured media, the mesoscale geometry can be designed to energetically fa-
vor desired local modes of deformation [22, 23]. We refer to these behaviors as
“quasi-mechanisms” when they accompany a non-negligible change in the system’s
energetic state. This distinguishes quasi-mechanisms from pure mechanisms, which
are zero-energy kinematic modes. We emphasize that quasi-mechanisms are local
behaviors: these energetic preferences can be spatially modulated by designing
non-uniform mesostructures.

Within this context, origami [10, 14, 24, 25], kirigami [15, 26–28] and auxetic
motifs [4, 16, 29–32] are the most popular classes of mesostructures that lead to
quasi-mechanisms. However, demonstrations of shape-shifting materials have also
been achieved using thermally responsive bilayer lattices [20] and in 3D struc-
tures such as snapology origami [33]. Quasi-mechanisms can be used to attain
non-homogeneous strain field objectives (even under uniform loading conditions)
by relying on non-uniform internal structures that spatially modulate local effective
material properties. Morphing from a planar state to a doubly curved 3D geometry is
an example of where this non-uniformity is important: Gauss’ Theorema Egregium
tells us that changing a surface’s Gaussian curvature requires a non-isometric map-
ping [34], which in turn requires mesostructural non-uniformity if the actuation is
driven by a spatially uniform stimulus [9, 20].

However, optimally designing non-uniform micro/mesostructures that lead to de-
sired global behaviors can be challenging. The presence of geometric features at
disparate length scales means that conventional finite element approaches become
computationally expensive due to the need for meshes that resolve the finest fea-
tures and yet span the entire structure. Homogenization theory provides a way to



70

determine effective properties of periodic structures [35], but in practice it is often
only viable in the limited context of linear elasticity, as the presence of non-linearity
and instabilities significantly complicates the methods [36]. In light of this, en-
gineers have used a variety of reduced order modeling techniques to investigate
forward elastic equilibrium and stability problems, as well as to inversely design
non-uniform mesostructures at a lesser computational expense. These techniques
range from bar-and-hinge [37–39] and structural frame [40] models that capture the
mechanics of folded sheets, to representations of structural element networks that
are based on effective springs [41], equivalent lattices [42], Chebyshev nets [43],
discrete elastic rods [43, 44], and Kirchhoff rods [45].

Despite the above-mentioned advancements in modeling using networks of reduced
order elements, there are limitations to the existing approaches. They can be
computationally expensive in cases where the structure is much larger than the
mesoscale unit cell size and a reduced order element (such as a discrete elastic rod)
is needed for every constituent of the physical network (e.g., in hierarchical systems).
Additionally, some of these models lack the generality needed to make themselves
useful to the study of other systems. For example, bar-and-hinge origami models
would not be suitable for extensional spring networks. It can also be challenging to
calibrate constants such that accurate results are achieved using these models.

For these reasons, the mechanics community has pursued the development of ef-
fective continuum models. These models are powerful approaches to capturing the
behavior of structures with internal geometric patterns in instances where there is
a sufficient separation of length scales between the local geometric parameters and
the global behaviors [46]. When this separation of scales exists, an energy density
function can be constructed to capture the mechanical behaviors of the structure
as if it were a bulk material, thus removing the need to resolve the geometric fea-
tures at the smaller length scales with a fine mesh. This coarse meshing allows for
significantly faster finite element simulations of complex physical behaviors. To
this end, effective continuum models have been used to understand the behavior
of periodic structured media that display quasi-mechanism behaviors [47] and can
capture their responses to non-uniform loading conditions [48, 49]. However, these
effective continuum modeling frameworks have not been applied to modeling the
quasi-mechanism behaviors of graded media.

This article demonstrates how geometric analyses of unit cells can be used to con-
struct effective continuummodels for architected sheets with gradedmesostructures.
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Figure 4.1: Themechanical behaviors of periodic and non-periodic architected sheets. (a-b)
A sheet with a periodic cut pattern that displays a quasi-mechanism mode of deformation:
rotation of tiles about slender elastic joints. As the tiles rotate, the unit cell dimensions
change from !8U to ! 5U . Although tile rotations are low-energy kinematic modes compared
to other deformations, the energetic cost associated with the deformation of the joints is
not negligible. (c) Introducing a gradient in the cut pattern modulates the quasi-mechanism
kinematics over the sheet. The scale bar represents 3 cm. (d) The mesostructural non-
uniformity shown in (c) affects the extent to which tiles can rotate in different regions of
the sheet, creating kinematic incompatibilities between the quasi-mechanism behaviors of
different regions. Here, _G is the maximum stretch a unit cell can attain in the direction of
loading through quasi-mechanism behaviors. (e) These in-plane kinematic incompatibilities
lead to out-of-plane buckling. The design of the buckling sheets shown in (c-e) was first
discussed in our prior work [16].

We illustrate this approach by studying generalizations of the auxetic sheets intro-
duced by Grima et al. [29] to spatially varying distributions of diamond-shaped
cuts [16, 50, 51]. The tessellated unit cells consist of bulky tiles connected by
slender joints, and display two elastic regimes: a soft regime that occurs when the
tiles rotate about the joints (as shown in Fig. 4.1a-b), and a stiff regime when the
joints are subjected to tension. We design heterogeneous cut patterns to provoke
in-plane kinematic incompatibilities under simple point-loading scenarios, which
leads to out-of-plane buckling in a region of the structure [16] (shown in Fig. 4.1e).

This article is organized as follows. In Section 4.2, we discuss our effective con-
tinuum model for non-periodically patterned sheets that display quasi-mechanism
behaviors. Our modeling approach entails first performing a geometric analysis
of unit cells to derive their energetically favorable kinematic modes. Specifically,
we derive the effect of geometric parameters on the rotational behavior of the tiles
about the joints. Next, we begin constructing our strain energy density function
by attributing an energy penalty to deviations from the above-mentioned kinematic
modes, which may occur due to kinematic incompatibilities between neighboring



72

regions of the sheets. Since the joints are not ideal pins, the rotation of tiles is an
elastic process, albeit softer than deviations from this preferred local behavior. We
use a common constitutive model for elastic materials to approximate the elastic en-
ergy associated with the tile rotations. We extract the value of a few non-geometric
constants from tensile experiments on periodically patterned structures and these
parameters are then used to simulate the non-periodic structure. This type of ef-
fective material modeling enables us to use a coarse mesh to solve for pre-buckled
equilibrium, the onset of instabilities, and post-buckled equilibrium. The numerical
approach is discussed in Section 4.3, and we compare these numerical results to a
new set of experiments in Section 4.4, highlighting the good agreement between
coarse mesh finite element simulations and experiments. Our concluding remarks
and perspective for future work are presented in Section 4.5. While our modeling
method is demonstrated for the class of quasi-mechanisms discussed above, we be-
lieve it would be straightforward to apply it to many other quasi-mechanisms that
are of interest to the mechanics community, such as origami tessellations [25] and
shape-shifting bilayer lattices [20].

4.2 Modeling approach
In this section, we discuss how a strain energy density function can be extracted
by modeling the effect that mesoscale geometric features have on a structure’s
energetically favorable local modes of deformation. Our approach is presented for
modeling effective continua within the context of initially flat sheets with diamond-
shaped cut patterns, although it could be generalized to other types of 2D or 3D
architected media.

Quasi-mechanism kinematics
Our aim is to create an effective continuummodel that captures the quasi-mechanism
kinematics of sheets with diamond-shaped cut patterns (Fig. 4.2a). These sheets are
tessellations of unit cells that are composed of four bulky tiles connected by slender
elastic joints (Fig. 4.2b). The structures may be either periodic or non-periodic
tessellations of unit cells (as in Fig. 4.2a or Fig. 4.1c, respectively). In either case,
the quasi-mechanism local modes of deformation can be derived from a simple
geometric analysis relating unit cell geometry to the rigid body rotations of the
bulky tiles about the joints (Fig. 4.2b-c).

Five spatially varying geometric parameters constitute a geometry vector field
φ(GU) and define the quasi-mechanism kinematics of our sheets. Namely φ =
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Figure 4.2: Quasi-mechanism kinematics. (a) An example of a sheet with a uniform pattern
of diamond-shaped cuts. (b) A unit cell (shaded) consists of four tiles (boxed). (c) The
quasi-mechanism kinematics consist of tile rotations about the slender elastic joints. This
deformation mode can be entirely described by the projection of the tile diagonals onto
the fixed orthogonal coordinate frame. This rotational mode has a non-negligible energetic
cost, but one that is still much lesser than deformations where the joints are under tension
or shear. (d) The reference configuration of the boxed tile shown in (b). Five parameters
define the geometry of a unit cell: ;1 and ;2 are the reference configuration lengths of the
unit cell grid spacing in the e1 and e2 directions, X is the width of the slender joints, and F1
and F2 are the half-widths of the two diamond-shaped cuts that define the tiles’ inclinations.
The diagonals 3E and 3ℎ and the angle W between these two can be computed from those
parameters. Finally, \ is the angle between the red diagonal, 3ℎ, and the e1 direction. As
the tile rotates from one configuration to another, this angle varies (as shown in b-c). The
projected lengths of the tile’s deformed configuration in the e1 and e2 directions are 3ℎ cos(\)
and 3E sin(W + \), respectively. This allows us to compute the unit cell stretches: only the
rotation of one tile about a joint needs to be analyzed to determine the quasi-mechanism
kinematics of the unit cell. (a-d) Adapted from [16] by permission of The Royal Society of
Chemistry.

{;1, ;2, X, F1, F2}, where ;1(GU) and ;2(GU) are the lengths of the unit cell grid spac-
ing in the e1 and e2 directions, X(GU) is the width of the slender joints, and F1(GU)
and F2(GU) are the half-widths of the two diamond-shaped cuts that define the tiles’
inclinations. These parameters are illustrated in Fig. 4.2d. A few geometric param-
eters that are functions of the five mentioned above are also shown in Fig. 4.2d and
will be discussed below.

We seek to identify a function 6(C,φ) such that the local quasi-mechanisms are
described by the implicit relation 6(C,φ) = 0. Here, C is the right Cauchy-Green
strain tensor. To do so, wefirst define a unit cell as a 2×2 arrangement of quadrilateral
tiles. Due to the symmetry of the unit cell, we can fully describe its quasi-mechanism
kinematics by analyzing the geometry and rotation of a single tile. We use the bottom
left tile in the unit cell, such as the one boxed in Fig. 4.2b-c. For a unit cell located
at GU with geometry defined by φ(GU) = {;1(GU), ;2(GU), X(GU), F1(GU), F2(GU)},
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the respective lengths 3ℎ and 3E of the diagonals illustrated in Fig. 4.2d in red and
blue are

3ℎ (φ) =
√
;21 + (;2 − 2F2 − X)2 and 3E (φ) =

√
;22 + (;1 − 2F1 − X)2 . (4.1)

The angle W between these two diagonals is given in terms of the geometric param-
eters φ as

W(φ) = c
2
− arctan

(
;2 − 2F2 − X

;1

)
− arctan

(
2F1 + X − ;1

;2

)
. (4.2)

As the tile rotates about the joint, the angle \ between the diagonal 3ℎ and the e1

direction varies, as shown in Fig. 4.2b-c. During this tile rotation, the projected
lengths of the tile diagonals on the fixed orthogonal frame e8 change, and the unit
cell will have effective stretches _1 and _2 of

_1(\) =
3ℎ cos \
;1

and _2(\) =
3E sin(W + \)

;2
. (4.3)

We can invert the function for _1(\) to obtain \ (_1) as

\ (_1) = arccos
(
_1;1
3ℎ

)
. (4.4)

Substituting (4.4) into the expression for _2(\) in (4.3) leads to the following explicit
formula for _2(_1):

_2(_1) =
3E

;2
sin

[
W + arccos

(
_1;1
3ℎ

)]
. (4.5)

We first derived this explicit function for the quasi-mechanism kinematics in our
prior work [16]. Through trigonometric identities and algebraic manipulation, this
can be written in implicit form:

(
;1_1
3ℎ

)2

+
(
;2_2
3E

)2

− 2 sin(W) ;1_1
3ℎ

;2_2
3E
− cos2(W) = 0 . (4.6)

In our reference frame, the implicit function (4.6) can be rewritten using the com-
ponents of C, since C11 = _

2
1e1 ⊗ e1 and C22 = _

2
2e2 ⊗ e2:

6(C,φ) =
;21C11

32
ℎ
(φ)
+
;22C22

32
E (φ)

− 2 sin
(
W(φ)

) ;1;2
3ℎ (φ)3E (φ)

√
det C − cos2

(
W(φ)

)
= 0 .

(4.7)
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The quasi-mechanism kinematics expressed in (4.7) describe the unit cells’ preferred
modes of local deformation as a function of geometric parameters. We emphasize
that a unit cell may not deform according to this function. For example, this
may occur if neighboring unit cells have a different geometry and cause kinematic
incompatibility or if global loading conditions make these modes of deformation
energetically unfavorable. In these cases, 6(C,φ) ≠ 0. In Section 4.2, we will
model the stiffening that occurs when (4.7) cannot be satisfied by embedding this
kinematic description as a penalty term in our strain energy function.

Kinematics of a thin elastic plate
Our aim is to embed the quasi-mechanism behavior described by (4.7) into an
effective continuum model. We consider a thin elastic plate whose material particle
positions of the mid-plane in an initially flat reference configuration are X = GUeU.
The indices U and V in this subsection relate to the mid-plane of the plate (we use the
Einstein summation convention for repeated indices), and the index ‘3’ corresponds
to the direction normal to the reference surface. The coordinate frame {e8} is fixed
and orthonormal. The domains for the material coordinates GU are G1 ∈ [0, 0] and
G2 ∈ [0, 1], where 0 and 1 are constants. The thickness C is much smaller than the
other material domain dimensions, and we seek the mid-surface mapping χ(GU):

χ(GU) =
(
GU + DU (GV)

)
eU + F(GV)e3 , (4.8)

where DU and F are the in-plane and out-of-plane components of the mid-plane
displacement vector, respectively. The deformation gradient tensor F̃ = ∇χ can
be expressed in terms of the gradients of DU and F. We label F as the in-plane
component of the deformation gradient tensor (F ≡ I + ∇DU). Since we have two
material coordinates embedded in three spatial dimensions, the deformation gradient
assumes the following form:

F̃ =


1 + D1,1 D1,2

D2,1 1 + D2,2

F,1 F,2

 =
[

F
∇F

]
. (4.9)
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We use the right Cauchy-Green deformation tensor, C, as our measure for in-plane
strain, and the Laplacian of the out-of-plane deflections, ΔF, as our bending strain
measure:

C = F̃TF̃ = FTF + ∇F ⊗ ∇F , ΔF =
m2F

mG2
1
+ m

2F

mG2
2
. (4.10)

Strain energy
Now that we have an implicit function (4.7) describing the quasi-mechanism be-
havior and a formulation of thin plate kinematics, we can construct a strain energy
density function for our sheets. The first step is to attribute an energy penalty Ψ?

for deviations from the quasi-mechanism behavior. As discussed in Section 4.2,
6(C,φ) = 0 when local deformations correspond to quasi-mechanism behaviors,
and 6(C,φ) ≠ 0 when there is a deviation from these energetic preferences. There-
fore we can write our energy penalty Ψ? as

Ψ? =
1

2[
62(C,φ) , (4.11)

where [ is a small parameter. For our perforated sheets, 6(C,φ) is given in (4.7).
Therefore,

Ψ? =
1

2[

(
;21C11

32
ℎ

+
;22C22

32
E

− 2 sin(W) ;1;2
3ℎ3E

√
det C − cos2(W)

)2

. (4.12)

For elastic bodies, deforming according to these preferential modes will still entail
non-zero energy. Thus, we must also assign a soft elastic energy density ΨB to
this scenario (this softness is relative to the energy expense of deviating from quasi-
mechanism behaviors). A compressible Neo-Hookeanmodel provides the flexibility
to approximate our experimental data from tensile tests well while using only two
material parameters. Therefore, the total membrane strain energy density function
Ψ< (C,φ) = Ψ? (C,φ) +ΨB (C) is

Ψ< (C,φ) = Ψ? (C,φ) +
`

2
( �̄1 − 2) + _

2
(� − 1)2 , (4.13)
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where � =
√

det(C), �̄1 = tr(C)�−1, ` and _ are the Lamé parameters and Ψ? is
given in (4.12). Our bending energy density function is

Ψ1 =
�(ΔF)2

2
, (4.14)

where � is a bending stiffness constant. Our strain energy per unit thickness is the
sum of Ψ< and Ψ1, integrated over the 2D domain spanned by the mid-plane of the
sheet, Ω:

E(u, F) =
∫
Ω

(
Ψ< (C,φ) +Ψ1 (ΔF)

)
3� . (4.15)

All of the parameters in the energy function are either geometric or can be extracted
from three simple tensile experiments: one on a dogbone specimen of the bulk
rubber with no cut patterns, and two (conducted in orthogonal directions) on a sheet
with periodic but anisotropic cuts.

Contact model
In the case where the sheet lies on a rigid surface, we wish to enforce the contact
condition F ≥ 0. While techniques such as the active set method directly impose
this constraint, we opt to relax this condition and instead use a rather simple penalty-
based contact model. Thus, for problems where the sheet is lying on a flat surface,
we consider a contact penalty energy for negative out-of-plane deflections:

Ψ2 (F) =
%

2
(3F−)2, 3F− = min(0, F + Y) , (4.16)

where % is the penalty stiffness and Y > 0 is a small tolerance length. Notice that
the contact energy is nonzero only when F < −Y. This ensures that the contact
condition does not interfere with the stability of the initially flat, unbuckled plate,
and only becomes active post-bifurcation. We add this contact energy onto (4.15)
to give the total energy functional

E(u, F) =
∫
Ω

Ψ< (C,φ) +Ψ1 (ΔF) +Ψ2 (F) 3� . (4.17)

We will discuss the variations of this energy to compute equilibrium and stability in
Section 4.3.
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4.3 Finite element implementation
In this section, we present the equilibrium conditions for the system. Using a mixed
formulation, we compute the solution using standard first order Lagrange polynomial
finite elements. More details for our solution procedure and stability analysis are
provided in the appendices. We implement this formulation in the deal.II open
source finite element library [52].

Figure 4.3: An example of a domain and of a set of boundary conditions used in our
simulations. In-plane displacements are prescribed on a portion of the boundary and
in-plane traction-free edges are observed on the remainder. Additionally, we constrain out-
of-plane displacements and have no applied moments on the entire boundary. This drawing
displays the boundary conditions used to model the sheet with non-uniform cut patterns
shown in Fig 4.1c-e.

We consider a rectangular domain in a displacement-controlled setting. The in-
plane displacements u are prescribed on mDΩ ⊂ mΩ and we have in-plane traction
free edges on the remainder, m 5Ω = mΩ\mDΩ. Additionally, we constrain out-of-
plane displacements F and have moment-free edges on the entire boundary. Fig 4.3
shows an example of a domain and of a set of boundary conditions used in some of
our simulations. While the boundary conditions may be altered for a more general
case, the mixed formulation discussed in Subsection 4.3 may not be appropriate for
situations such as clamped boundaries.

Equilibrium and mixed formulation
The equilibrium condition is the stationarity of our energy functional from (4.17) in
both u and F,

d
d^

[
E(u + ^Xu, F + ^XF)

]
^=0

= 0 for all Xu ∈ U0, XF ∈ �2
0 (Ω) , (4.18)

whereU0 is the set of kinematically admissible in-plane displacement variations

U0 =

{
u ∈

(
�1(Ω)

)2
, u = 0 on mDΩ

}
, (4.19)
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and we search for solutions u ∈ U and F ∈ W where

U =

{
u ∈

(
�1(Ω)

)2
, u = u0 on mDΩ

}
, W =

{
F ∈ �2(Ω), F = F0 on mΩ

}
.

(4.20)
A common issue for plate problems is the bi-harmonic operator onF that arises from
the Gateaux derivative of the bending energy. In this case, the weak form contains
a product of the second derivative of F and its variation, so that the usual Galerkin
finite element method with even quadratic Lagrange polynomial shape functions is
not appropriate.1 Therefore, we turn to a mixed formulation that is widely used for
linear biharmonic problems [53]. We introduce a scalar function E ∈ �1

0 (Ω) and
set it equal to ΔF by considering an augmented energy

Ê (u, F) = sup
E∈�1

0 (Ω)

∫
Ω

Ψ< (C) +Ψ2 (F) − �
(
∇F · ∇E − 1

2
|E |2

)
3� . (4.21)

Stationarity of Ê in both u and F, along with the suprema condition on E, gives the
weak form of equilibrium

0 =
∫
Ω

(
2F
mΨ<

mC

)
: ∇Xu 3� ∀Xu ∈ U0 ,

0 =
∫
Ω

(
2
mΨ<

mC
∇F

)
· ∇XF + mΨ2

mF
− �∇E · ∇XF 3� ∀XF ∈ �1

0 (Ω) ,

0 =
∫
Ω

−�∇F · ∇XE − �EXE 3� ∀XE ∈ �1
0 (Ω) .

(4.22)

The first two lines in (4.22) are the equilibrium relations for in-plane and out-of-plane
displacements, respectively. The final line is the constraint that E = ΔF weakly.
The strong form of these relations can be found in Appendix C.1. Notice that (4.22)
only contains first derivatives of the displacements and their variations. It is shown
in [53] that we may now consider F ∈ �1(Ω). Therefore, we use a Galerkin finite
element formulation with p = 1 shape functions for the fields u, F and E. We solve
the nonlinear system with typical Newton-Raphson iterations. Details on the finite
element formulation and solution procedure can be found in Appendix C.2.

Stability analysis
To probe the stability of an equilibrium configuration, it is common practice to
calculate the eigenvalues of the tangent stiffness matrix. A negative eigenvalue

1Standard Lagrange polynomial shape functions have discontinuous first-derivatives at the
boundaries of elements. This would result in integrating the product of two Dirac delta functions,
which is undefined.
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implies an instability, and the equilibrium solution can then be perturbed in the
direction of the corresponding eigenvector to explore the buckled solution. However,
the mixed formulation complicates this procedure. To assess stability, we must
restrict the eigenvectors to the subspace upon which the constraint E = ΔF is
satisfied. To this end, we consider an effective stiffness matrix on this subspace.
By solving the linear constraint explicitly, we can condense E out of the system
matrix. Then, we calculate eigenvalues of this reduced stiffness matrix to asses
stability. We use the linear constraint to map the corresponding eigenvector back
to the full variable set and perturb the system. The magnitude of the perturbation
is chosen to be on the same order as the displacement increment. The direction of
the perturbation is decided such that the F component at the middle of the sheet is
positive. The full details of the stability analysis can be found in Appendix C.3.

4.4 Results
In this section, we discuss the extraction of effective material model constants from
experiments on sheets with uniform cut patterns and we compare experimental
and numerical results on the post-buckling behavior of sheets with non-periodic
mesostructure.

Extracting model constants from experiments on sheets with uniform cut pat-
terns
As discussed in Section 4.2, our energy given in (4.17) requires the extraction
of four parameters from experiments: the Lamé moduli (_ and `), the energy
penalty parameter ([), and the bending stiffness (�). We obtained _, ` and [ from
tensile tests on the specimen with uniform cut patterns shown in Fig. 4.2a, where
;1 = ;2 = 6 mm, X = ;1/8, F1 = (;1 − X)/2, and F2 = 0 mm. The sheets have
a thickness of C = 1.55 mm, width dimensions of 108 mm in each direction and
are made of natural rubber gum. The diamond-shape cuts were made using a laser
cutter.

The specimen was placed on a custom apparatus that grips the edges with roller pins,
thus allowing free sliding in the direction perpendicular to the tension. To obtain _
and `, the sheet was loaded in the direction that induces quasi-mechanism behavior
(rotation of the tiles about the elastic joints). Since the sheet’s cut pattern is uniform,
no kinematic incompatibilities arise and only the soft elastic mode is present. The
values of ` = 17 kPa and _ = 0.1 kPa provided a good fit to our data, as shown
in Fig. 4.4. To attain [, the sheet was loaded in the perpendicular direction, where
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tiles do not rotate because their diagonals are aligned in the direction of loading
and the elastic joints are in tension. We attain a good fit of our data by setting
[ = 0.002 kPa−1. Fig. 4.4 shows a comparison of effective continuum simulations
of the in-plane elastic behaviors with experiments and Abaqus/Standard simulations
from prior work [16], where the mesh fully resolves the fine features of the specimen
geometry.

Figure 4.4: Effective stress vs. stretch for a sheet with a periodic cut pattern. The insets
show four unit cells of this structure, see Fig. 4.2a for an image of the entire sheet. We
compare our effective continuum model (solid red and blue lines) represented by (4.17)
to experiments (solid black lines) and fine-grain finite element simulations (gray dashes)
that fully resolve the small geometric features in our sheets. These experiments and the
fine-grain simulations (using Abaqus/Standard) were conducted in our prior work [16]).
The experimental curve for the soft loading direction does not start at _ = 1 due to the effect
of gravity in a vertically loaded tensile testing machine. The inset on the bottom left of
the figure shows a small region of the mesh used in the Abaqus simulations to capture the
geometry of the elastic joints. The large number of elements needed for these fine grain
simulations motivates the usage of effective continuum models. The insets in this image
were adapted from [16] by permission of The Royal Society of Chemistry.

We adjust the classic bending stiffness for a Kirchhoff-Love plate [54] by including
a scaling factor U( 5 ) that accounts for the reduced bending stiffness of a sheet with
porosity 5 . Therefore, the bending stiffness of the patterned sheet can be written in
the following form:

� =
U( 5 )�C2

12(1 − a2)
. (4.23)

Here, � = 2 MPa is Young’s modulus (obtained from linear regime tensile tests
on a 55 mm × 9.2 mm × 1.5 mm dogbone sample of natural rubber), C is the sheet
thickness, and a = 0.5 is Poisson’s ratio. A recent paper by Shrimali, et al. [55]
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showed that the effective bending stiffness of thin perforated plates is much more
dependent on the plate’s porosity 5 than on the shape or size of the perforations.
This holds both for plates where the sheet thickness is much smaller than the unit
cell dimension, and vice versa. Given the porosity of our sheets ( 5 ≈ 0.5), we adopt
a scaling value of U( 5 ) = 0.25, as suggested by the results in [55]. Their results
also justify our use of a uniform bending stiffness. Again, (4.17) is the strain energy
per unit thickness, hence the scaling of � with C2. Based on these considerations,
no additional experiment is required to obtain the bending stiffness.

Out-of-plane buckling of sheets with graded mesostructure
We now consider a more interesting pattern of cuts that is non-periodic, and
where spatial variations in the local quasi-mechanism behavior lead to kinematic
incompatibilities. To model the behavior of these sheets, we update the ge-
ometry vector φ(GU) = {;1(GU), ;2(GU), X(GU), F1(GU), F2(GU)}. We have three
specimens of equal thickness C = 1.55 mm, but varying aspect ratios. Now,
;1 = {4.5 mm, 6 mm, 7.5 mm} for the three sheets (the overall width dimen-
sions of the square sheets scale linearly with ;1 to 162 mm, 216 mm, and 270 mm,
respectively). The other parameters are ;2 = 2;1, X = ;1/8, F1 = (;1 − X)/2, and
F2(GU) = ;1−X

2

(
1 − sin cG2

18;2

)
. The non-uniform geometry is accounted for by con-

sidering spatially varying F2(GU) in the finite element formulation. We note that,
although the geometric parameter F2(GU) is non-uniform, we still use a uniform soft
elastic energy density, ΨB, because it represents the energetic cost of the non-ideal
mechanism and the joint density is still uniform.

The geometric gradation of the mesostructure leads to variations in the local quasi-
mechanism behavior over the extent of the sheet. This causes in-plane kinematic
incompatibilities, which lead to out-of plane buckling after each sheet’s critical
stretch is reached, as shown in Fig. 4.5a-b. We show the buckled mode nucleation
and the evolution of the post-buckled height of the central point in the sheets as a
function of boundary point displacement in Fig. 4.5c. We compare simulations of
our effective continuummodel (computed using the deal.II finite element library [52]
on a 36 × 36 uniform quadrilateral mesh) to measurements of the physical samples
(using a level-calibrated mounted caliper) and see excellent agreement between
the two, especially at larger boundary displacements. As expected, the stretch at
which buckling occurs is delayed by increasing the thickness-to-width ratio. The
difference between the computational predictions and experimental measurements
of buckling nucleation and height at lower stretch values can be partially attributed



83

to the fact that our simulations do not account for friction with the table or gravity.
These two physical processes are important since the material is soft and bending
is a low-energy deformation for shells with small gaussian curvature. As the dome
height increases, the structure becomes less susceptible to the effect of gravity.

Finally, to better visualize how the post-buckling behavior evolves and is affected
by the aspect ratio of the sheet, we show laser scans of the physical specimens
and deformed simulation meshes at three different boundary point displacements
in Fig. 4.6. Accurate quantitative comparisons are challenging due to the manual
stitching process that follows the acquisition of laser scan data patches, which
introduces slight distortions and puts certain regions of the scanned sheet at an
inclined plane relative to the rest of the structure. As expected, the post-buckled
domes are wider (relative to the overall width of the sheets) for specimens that
have larger thickness-to-width ratios, showing good qualitative agreement between
experiments and simulations. Furthermore, the onset of buckling occurs at greater
stretches as C/;1 increases.

Figure 4.5: Buckling behavior of sheets with non-uniform cut patterns. (a) Up to a certain
stretch _, point displacements lead to in-plane deformations. (b) Following a critical value of
_, the in-plane kinematic incompatibilities will lead to out-of-plane buckling. The scale bar
represents 3 cm. (c) Comparison of dome height between effective continuum simulations
(solid lines) and experiments (dots) for sheets of three aspect ratios. Here, ℎ<83 is the height
of a sheet’s center point, _ is the stretch of the sheet’s center line in the e1 direction, C is the
sheet thickness, and ;1 is the length of the unit cell grid spacing in the e1 direction.

These results show that this effective continuum modeling framework is a powerful
tool for understanding the physics of quasi-mechanisms in non-periodic media. In
our previous work [16], we only captured in-plane deformation mappings using
standard, fine-grained finite element procedures since the large number of elements
needed to resolve the small mesostructural features (in the range between 105 and
106 elements depending on the structure being simulated) caused the calculation
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Figure 4.6: Post-buckling behavior of sheets with three thickness-to-width ratios. These
are the same three sheets represented in Fig. 4.5c. Here, C is the sheet thickness, ;1 is the
length of the unit cell grid spacing in the e1 direction, and _ is the applied stretch at the
midpoint of the sheet edge. In each entry of the stretch vs. aspect ratio grid, the laser scans
are plotted directly above the simulated deformed meshes. As expected, we see that sheets
with higher thickness-to-width ratios will nucleate at larger stretches and will buckle into
wider domes relative to the overall sheet width.

of out-of-plane buckling modes to have an inviable computational cost. Using the
effective continuum approach we can get accurate results merely using a 36 × 36
uniform quadrilateral mesh, a reduction of two to three orders of magnitude in the
number of elements used. Each of the bifurcation curves in Fig 4.5 took roughly
5 minutes to compute running on a single core of a Intel® Xeon® 5218 processor.
Meanwhile, we could not make simulations for the post-buckling behavior of our
sheets converge in a reasonable amount of time using a standard fine-grained FEM
approach.

4.5 Conclusions
We present an effective continuum modeling framework for architected media that
display quasi-mechanism behaviors and demonstrate its validity on sheets that are
patterned with diamond-shaped cuts. The model incorporates a penalty for devi-
ations from quasi-mechanism behaviors and relies on material model parameters
extracted directly from experiments. We show that the approach correctly predicts
the mechanical behavior of non-periodic media, even when the model’s parame-
ters are derived from experiments on periodic specimens. Our approach permits
accurate and efficient simulations of mechanical behaviors that would otherwise be
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impractical to model using fine-grained simulations that fully resolve the material’s
small geometric features.

We note that the implicit relation (4.7) does not define the function 6(C,φ) uniquely,
implying that other choices of the functions Ψ? from (4.12) and Ψ< from (4.13) are
possible. A good agreement with experiments is still attained, suggesting that the
buckling behavior of the sheet is robust with respect to the choice of the function 6.

There are a few limitations to this approach. First, it requires a sufficient separation
of length scales between the global deformation mode dimensions and the unit
cell size. Therefore, it would not be able to capture the local buckling modes
observed in some kirigami sheets [56] or handle the dome kinking that occurs in
our systems if they are fabricated from extremely thin sheets [16]. Furthermore,
although we believe that this modeling approach could be applied to a broad range
of architected media that display quasi-mechansims, extracting the material model
constants from experimentsmay bemore challenging in other systems in comparison
to the perforated sheets we have discussed. Finding a suitable soft elastic energy
density ΨB that is appropriate for the quasi-mechanism regime also requires the
modeler to have an intuition for which constitutive models can be appropriately
tailored to fit experimental data attained from experiments on their system.

In the future, this modeling framework could be adapted to 3D media and materials
with temporally varying mechanical properties, provided that they also display
quasi-mechanisms.

Acknowledgements
C.M. and C.D. were supported by the US Army Research Office Grant W911NF-
17-1-0147. This work was also supported by a NASA Space Technology Research
Fellowship to C.M. We thank Andrei Constantinescu and Kaushik Bhattacharya for
helpful discussions, and Paul Stovall for assistance with fabrication.

Permissions
This chapter is currently under review for publication in a journal.

References

[1] T.A. Schaedler, A. J. Jacobsen, A. Torrents, A. E. Sorensen, J. Lian, J. R. Greer,
L. Valdevit, and W. B. Carter. Ultralight metallic microlattices. Science, 334
(6058):962–965, 2011.



86

[2] T. H. Ware, M. E. McConney, J. J. Wie, V. P. Tondiglia, and T. J. White.
Voxelated liquid crystal elastomers. Science, 347(6225):982–984, 2015. doi:
10.1126/science.1261019.

[3] W. P. Moestopo, A. J. Mateos, R. M. Fuller, J. R. Greer, and C. M. Portela.
Pushing and pulling on ropes: Hierarchical woven materials. Advanced Sci-
ence, 7(20):2001271, 2020. doi: 10.1002/advs.202001271.

[4] A. Rafsanjani and D. Pasini. Bistable auxetic mechanical metamaterials in-
spired by ancient geometric motifs. Extreme Mechanics Letters, 9:291–296,
2016. doi: 10.1016/j.eml.2016.09.001.

[5] Y. Klein, E. Efrati, and E. Sharon. Shaping of Elastic Sheets by Prescription of
Non-Euclidean Metrics. Science, 315(5815):1116–1120, 2007. ISSN 0036-
8075. doi: 10.1126/science.1135994.

[6] A. S. Gladman, E. A. Matsumoto, R. G. Nuzzo, L. Mahadevan, and J. A.
Lewis. Biomimetic 4d printing. Nature Materials, 15:413–418, 2016. doi:
10.1038/nmat4544.

[7] P. Plucinsky, B. A. Kowalski, T. J. White, and K. Bhattacharya. Patterning
nonisometric origami in nematic elastomer sheets. Soft Matter, 14:3127–3134,
2018. doi: 10.1039/C8SM00103K.

[8] M. Schenk, A. D. Viquerat, K. A. Seffen, and S. D. Guest. Review of inflatable
booms for deployable space structures: packing and rigidization. Journal of
Spacecraft and Rockets, 51(3):762–778, 2014.

[9] J. W. Boley, W. M. van Rees, C. Lissandrello, M. N. Horenstein, R. L. Truby,
A. Kotikian, J. A. Lewis, and L. Mahadevan. Shape-shifting structured lat-
tices via multimaterial 4d printing. Proceedings of the National Academy of
Sciences, 116(42):20856–20862, 2019. doi: 10.1073/pnas.1908806116.

[10] H. C. Greenberg, M. L. Gong, S. P. Magleby, and L. L. Howell. Identifying
links between origami and compliant mechanisms. Mechanical Sciences, 2
(2):217–225, 2011.

[11] P. Celli, A. Lamaro, C. McMahan, P. Bordeenithikasem, D. C. Hofmann, and
C. Daraio. Compliant morphing structures from twisted bulk metallic glass
ribbons. Journal of the Mechanics and Physics of Solids, 145:104129, 2020.

[12] S. Ferraro and S. Pellegrino. Topology and shape optimization of ultrathin
composite self-deployable shell structures with cutouts. AIAA Journal, pages
1–14, 2021.

[13] S. D. Guest and S. Pellegrino. The folding of triangulated cylinders, part i:
geometric considerations. Journal of Applied Mechanics, 61:773–777, 1994.



87

[14] L. H. Dudte, E. Vouga, T. Tachi, and L. Mahadevan. Programming curvature
using origami tessellations. Nature Materials, 15(5):583–588, 2016. doi:
10.1038/NMAT4540.

[15] F. Wang, X. Guo, J. Xu, Y. Zhang, and C. Q. Chen. Patterning curved
three-dimensional structures with programmable kirigami designs. Journal of
Applied Mechanics, 84(6):061007, 2017. doi: 10.1115/1.4036476.

[16] P. Celli, C. McMahan, B. Ramirez, A. Bauhofer, C. Naify, D. Hofmann, B. Au-
doly, and C. Daraio. Shape-morphing architected sheets with non-periodic cut
patterns. Soft Matter, 14:9744–9749, 2018. doi: 10.1039/C8SM02082E.

[17] E. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim, E. D. Demaine,
D. Rus, and R. J. Wood. Programmable matter by folding. Proceedings of the
National Academy of Sciences, 107(28):12441–12445, 2010. doi: 10.1073/
pnas.0914069107.

[18] X. Shang, L. Liu, A. Rafsanjani, and D. Pasini. Durable bistable auxetics made
of rigid solids. Journal of Materials Research, 33(3):300–308, 2018.

[19] E. Siéfert, E. Reyssat, J. Bico, and B. Roman. Programming stiff inflatable
shells from planar patterned fabrics. Soft Matter, 16(34):7898–7903, 2020.

[20] R. Guseinov, C. McMahan, J. Pérez, C. Daraio, and B. Bickel. Programming
temporal morphing of self-actuated shells. Nature Communications, 11(1):
1–7, 2020. doi: 10.1038/s41467-019-14015-2.

[21] F. Agnelli, M. Tricarico, and A. Constantinescu. Shape-shifting panel from
3D printed undulated ribbon lattice. Extreme Mechanics Letters, 42:101089,
2021.

[22] K. Bertoldi, V. Vitelli, J. Christensen, and M. van Hecke. Flexible mechanical
metamaterials. Nature Reviews Materials, 2(11):1–11, 2017.

[23] N. Singh and M. van Hecke. Design of pseudo-mechanisms and multistable
units for mechanical metamaterials. Physical Review Letters, 126:248002,
2021. doi: 10.1103/PhysRevLett.126.248002.

[24] K. Liu, T. Tachi, and G. H. Paulino. Invariant and smooth limit of discrete
geometry folded from bistable origami leading to multistable metasurfaces.
Nature Communications, 10(1):1–10, 2019. doi: 10.1038/s41467-019-11935-
x.

[25] S. J. P. Callens and A. A. Zadpoor. From flat sheets to curved geometries:
Origami and kirigami approaches. Materials Today, 21(3):241–264, 2018.
doi: 10.1016/j.mattod.2017.10.004.

[26] T. Castle, Y. Cho, X. Gong, E. Jung, D. M. Sussman, S. Yang, and R. D.
Kamien. Making the cut: Lattice kirigami rules. Physical Review Letters,
113:245502, 2014. doi: 10.1103/PhysRevLett.113.245502.



88

[27] Y. Tang and J. Yin. Design of cut unit geometry in hierarchical kirigami-based
auxetic metamaterials for high stretchability and compressibility. Extreme
Mechanics Letters, 12:77–85, 2017. doi: 10.1016/j.eml.2016.07.005.

[28] C. Jiang, F. Rist, H. Pottmann, and J. Wallner. Freeform quad-based kirigami.
ACM Transactions on Graphics, 39(6), 2020. ISSN 0730-0301. doi: 10.1145/
3414685.3417844.

[29] J. N. Grima, V. Zammit, R. Gatt, A. Alderson, and K. E. Evans. Auxetic
behaviour from rotating semi-rigid units. Physica Status Solidi B, 244(3):
866–882, 2007. doi: 10.1002/pssb.200572706.

[30] K. Bertoldi, P. M. Reis, S. Willshaw, and T. Mullin. Negative Poisson’s ratio
behavior induced by an elastic instability. AdvancedMaterials, 22(3):361–366,
2010.

[31] M. Konaković, K. Crane, B. Deng, S. Bouaziz, D. Piker, and M. Pauly. Be-
yond developable: Computational design and fabrication with auxetic materi-
als. ACM Transactions on Graphics, 35(4):89, 2016. doi: 10.1145/2897824.
2925944.

[32] M. Konaković-Luković, J. Panetta, K. Crane, and M. Pauly. Rapid deployment
of curved surfaces via programmable auxetics. ACMTransactions onGraphics,
37(4):106, 2018. doi: 10.1145/3197517.3201373.

[33] J. T. B. Overvelde, J. C. Weaver, C. Hoberman, and K. Bertoldi. Rational
design of reconfigurable prismatic architected materials. Nature, 541(7637):
347–352, 2017.

[34] C. F. Gauss. Disquisitiones generales circa superficies curvas. Typis Diteri-
cianis, 1828.

[35] G. Allaire. A brief introduction to homogenization and miscellaneous applica-
tions. ESAIM: Proceedings, 37:1–49, 09 2012. doi: 10.1051/proc/201237001.

[36] S.Müller, N. Triantafyllidis, andG.Geymonat. Homogenization of nonlinearly
elastic materials, microscopic bifurcation and macroscopic loss of rank-one
convexity. Archive for Rational Mechanics and Analysis, 122, 09 1993. doi:
10.1007/BF00380256.

[37] M. Schenk and S. D. Guest. Origami folding: A structural engineering ap-
proach. Origami, 5:291–304, 2011.

[38] E. T. Filipov, K. Liu, T. Tachi, M. Schenk, and G. H. Paulino. Bar and hinge
models for scalable analysis of origami. International Journal of Solids and
Structures, 124:26–45, 2017. doi: 10.1016/j.ĳsolstr.2017.05.028.



89

[39] K. Liu and G. H. Paulino. Nonlinear mechanics of non-rigid origami: An
efficient computational approach. Proceedings of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences, 473(2206):20170348, 2017. doi:
10.1098/rspa.2017.0348.

[40] K. Hayakawa and M. Ohsaki. Form generation of rigid origami for ap-
proximation of a curved surface based on mechanical property of partially
rigid frames. International Journal of Solids and Structures, 2020. doi:
10.1016/j.ĳsolstr.2020.12.007.

[41] C. Coulais, C. Kettenis, and M. van Hecke. A characteristic length scale
causes anomalous size effects and boundary programmability in mechanical
metamaterials. Nature Physics, 14(1):40–44, 2018. doi: 10.1038/nphys4269.

[42] K. Leimer and P. Musialski. Reduced-order simulation of flexible meta-
materials. In Symposium on Computational Fabrication, SCF ’20, New
York, NY, USA, 2020. Association for Computing Machinery. doi: 10.1145/
3424630.3425411.

[43] C. Baek, A. O. Sageman-Furnas, M. K. Jawed, and P. M. Reis. Form finding
in elastic gridshells. Proceedings of the National Academy of Sciences, 115
(1):75–80, 2018. doi: 10.1073/pnas.1713841115.

[44] C. Lestringant and D. M. Kochmann. Modeling of flexible beam networks
and morphing structures by geometrically exact discrete beams. Journal of
Applied Mechanics, 87(8):081006, 2020. doi: 10.1115/1.4046895.

[45] T. Yu, L. Dreier, F. Marmo, S. Gabriele, S. Parascho, and S. Adriaenssens.
Numerical modeling of static equilibria and bifurcations in bigons and bigon
rings. Journal of the Mechanics and Physics of Solids, 152:104459, 2021.

[46] P. M. Reis, F. Brau, and P. Damman. The mechanics of slender structures.
Nature Physics, 14(12):1150–1151, 2018. doi: 10.1038/s41567-018-0369-4.

[47] Y. Bar-Sinai, G. Librandi, K. Bertoldi, and M. Moshe. Geometric charges and
nonlinear elasticity of two-dimensional elastic metamaterials. Proceedings
of the National Academy of Sciences, 117(19):10195–10202, 2020. doi: 10.
1073/pnas.1920237117.

[48] M. Czajkowski, C. Coulais, M. van Hecke, and D. Rocklin. Conformal elas-
ticity of mechanism-based metamaterials. arXiv preprint arXiv:2103.12683,
2021.

[49] R. Khajehtourian and D.M. Kochmann. A continuum description of substrate-
free dissipative reconfigurable metamaterials. Journal of the Mechanics and
Physics of Solids, 147:104217, 2021.



90

[50] G. P. T. Choi, L. H. Dudte, and L. Mahadevan. Programming shape using
kirigami tessellations. Nature Materials, 18(9):999–1004, 2019. doi: 10.
1038/s41563-019-0452-y.

[51] L. Jin, A. E. Forte, B. Deng, A. Rafsanjani, and K. Bertoldi. Kirigami-inspired
inflatables with programmable shapes. Advanced Materials, 32(33):2001863,
2020. doi: 10.1002/adma.202001863.

[52] D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler,
M. Maier, J.-P. Pelteret, B. Turcksin, and D. Wells. The deal.II finite ele-
ment library: Design, features, and insights. Computers & Mathematics with
Applications, 81:407–422, 2021. doi: 10.1016/j.camwa.2020.02.022.

[53] D. Boffi, F. Brezzi, and M. Fortin. Mixed Finite Element Methods and Appli-
cations, volume 44. 01 2013. ISBN 978-3-642-36518-8. doi: 10.1007/978-
3-642-36519-5.

[54] S. Timoshenko and S. Woinowsky-Krieger. Theory of plates and shells. 1959.

[55] B. Shrimali, M. Pezzulla, S. Poincloux, P. M. Reis, and O. Lopez-Pamies. The
remarkable bending properties of perforated plates. Journal of the Mechanics
and Physics of Solids, 2021.

[56] A. Rafsanjani, Y. Zhang, B. Liu, S. M. Rubinstein, and K. Bertoldi. Kirigami
skins make a simple soft actuator crawl. Science Robotics, 3(15):eaar7555,
2018. doi: 10.1126/scirobotics.aar7555.



91

C h a p t e r 5

PROGRAMMING TEMPORAL MORPHING OF
SELF-ACTUATED SHELLS

R. Guseinov, C. McMahan, J. Pérez, C. Daraio, and B. Bickel. Programming
temporal morphing of self-actuated shells. Nature Communications, 11(1):1–7,
2020. doi: 10.1038/s41467-019-14015-2.
C.M. designed the mechanical characterization experiments and participated in the
conduction of unit-cell characterization experiments, in data analysis, in mechani-
cal modeling, and in writing and revising the manuscript.

Chapter preamble
This chapter discusses an inverse design technique for the first time in this thesis.
The technique enables the programming of self-actuated tri-layer shells that morph
into target 3D geometries, allowing a degree of control over the rates at which each
region of the structures deforms. Discrete conformal mappings are used as the
starting point for the method. The inverse design of the non-uniform mesostructure
geometry then relies on an extensive set of unit cell characterization experiments to
couple effective spring network representations of the outer shell layers to a finite
element mesh description of the mid-layer membrane.

Chapter abstract
Advances in shape-morphing materials, such as hydrogels and shape-memory poly-
mers have enabled prescribing self-directed deformations of initially flat geometries.
However, most proposed solutions evolve towards a target geometry without con-
sidering time-dependent actuation paths. To achieve more complex geometries and
avoid self-collisions, it is critical to encode a spatial and temporal shape evolution
within the initially flat shell. Recent realizations of time-dependent morphing are
limited to the actuation of few, discrete hinges and cannot form doubly curved sur-
faces. Here, we demonstrate a method for encoding temporal shape evolution in
architected shells that assume complex shapes and doubly curved geometries. The
shells are non-periodic tessellations of pre-stressed unit cells that soften in water
at rates prescribed locally by mesostructure geometry. A midplane contraction is
coupled to the formation of encoded curvatures. We propose an inverse design tool
based on a data-driven model for unit cells’ temporal responses.
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5.1 Introduction
Morphing flat sheets into complex, three-dimensional geometries is a challenge that
has been pursued for centuries by artists, and more recently by mathematicians
and scientists [1–3]. In engineering, the search for materials suitable for such
transformations has been motivated by the ease of two-dimensional fabrication
[4], which relies on subtractive processes, such as punching, machining, water
jetting or laser cutting. Flat objects can be stacked in volumetrically efficient
arrangements, which simplifies transportation and storage. While flat sheets are
easy to fabricate and store, many structural and functional applications across scales
rely on changing surface curvatures (e.g., tunable mirrors [5, 6] and parabolic
antennae [7]). Morphing between flat geometries and desired curved surfaces
requires methods for prescribing local deformations.

To reach non-zero Gaussian curvatures from initially flat shells, bending must be
coupled to in-plane stretches, according to Gauss’ Theorema Egregium [8]. Several
frameworks have been proposed to achieve this. Notably, the out-of-plane defor-
mations of auxetic and kirigami sheets are defined by the architecture of voids or
cut patterns [9–11]. Kinematic frustration has recently been embraced for chang-
ing the curvature of initially flat shells [12, 13]. These examples are suitable for
light-weight structures, but require mechanical stimuli to achieve 3D shapes through
manual forming, boundary loading, or through the release of a pre-stretched sheet.
Self-actuation is desirable in morphing shells because it enables untethered struc-
tural adaptation to changing environmental stimuli. To this end, responsivematerials
combine structural, sensing, and actuation capabilities in structures that remain flat
until a non-mechanical environmental stimulus triggers the actuation process.

For example, self-actuation has been demonstrated in shells through hydrogel
swelling [2, 14] and nematic-to-isotropic phase changes in liquid crystal elastomers
[15]. A variety of 4D-printed systems can also be used to achieve desired shapes
by coupling locally prescribed in-plane kinematics to changes in curvature [16–22].
Self-actuation has been extended to the folding of origami [23, 24], which is one of
the most common and well-studied methods for inducing shape changes in initially
flat objects [1, 4, 25, 26]. However, none of these proposed solutions demon-
strate control over deformation rates during morphing processes. Consequently,
self-collisions may occur in attempts to realize more complex geometries.

The ability to locally control the shape evolution in time drastically expands the
design space of self-morphing shells. More broadly, an intrinsic capacity for pre-
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programmed temporal responses allows designing materials that can perform com-
plex tasks, like self-deployment and locomotion, without the need for external
controllers or power supplies [27]. While time-dependent folding has been demon-
strated in structures that are wired to power sources and electronic control devices
[28, 29], a small number of architected shells made of materials with intrinsic actu-
ation capabilities have incorporated temporal programming through the sequential
folding of discrete hinges [30–32]. However, none of these examples allow for
changes in Gaussian curvature. They realize sequential folding of few discrete
hinges [32], must be fabricated in their target shape prior to manual programming
[30], or rely on ad-hoc empirical designs that do not account for characterizations
of their materials’ time-dependent constitutive responses [31].

Here, we show that spatio-temporal information can be embedded in the geometry
of architected shells that morph from flat to smooth three-dimensional shapes. This
programmed temporal evolution enables reaching target geometries that would be
impeded by collisions if shells actuated with uniform or unplanned deformation
rates. Furthermore, our shells use polymers that actuate when the temperature in
their environment is set to a critical value. At room temperature, they remain flat,
storing the energy necessary to drive the deformation.

5.2 Results
Spatio-temporal programming of self-actuated shell mechanisms
We propose an inverse design algorithm for shell architectures and the temporal
evolution of their shapes (Fig. 5.1a). The algorithm collects user inputs at two stages:
the first input is the desired 3D target surface, and the second is the specification
of local deformation rates. We term this temporal map input an actuation time
landscape. The algorithm outputs the mesostructure for initially flat shells that we
fabricate and test. These shells have three layers, with a ∼ 4.6 mm total thickness.
The two outer layers are 3D-printed tessellations of non-uniform unit cells, made
of Vero PureWhite (Stratasys). The middle layer is a 0.5 mm thick pre-stretched
elastic membrane, which stores the energy required to drive the morphing process.
Actuation from the flat to the curved profile is triggered by immersing the shells into
56◦� water, which causes the outer layers to soften over the course of approximately
30 to 80 s.

The unit cells have a grid spacing of∼ 10 mm, and are composed of cylindrical bases
connected at the external shell surfaces by pairs of V-shaped brackets (Fig. 5.1b).
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Figure 5.1: Encoding spatial and temporal shape evolution in a flat shell mesostructure.
(a) A user-specified target surface and actuation time landscape (a field of deformation
completion times) are inputs to an inverse design procedure that defines the mesostructure
of flat-fabricated shells that morph into the target geometries. The shells are composed
of inhomogeneous tessellations of unit cells with an interior pre-stretched membrane. (b)
Each unit cell has an initial central length l. Brackets control actuation time through their
softening rate, which is controlled by their thickness, h, and a set of bumpers prescribe final
local curvatures upon collision. (c) Morphing of a petalled structure with an actuation time
landscape ensuring that larger petals cover their smaller neighbors avoiding collisions on the
way. Simulation and experiments are compared at 3, 30, 50, and 80 seconds in water. The
structure replicates the encoded actuation time landscape shown in (a). Scale bars, 3 cm.

The bases serve as attachment points to the elastic membrane and asmounting points
for the brackets. The brackets serve as nonlinear springs: they hold the structure flat
prior to being placed in water, and then they guide the temporal morphing process,
softening at rates determined by their geometric parameters when heated (thicker
brackets soften at slower rates). There are also bumpers attached to the bases in
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the space between the brackets, which collide when the local contraction reaches
the target magnitude and control the contact angle between adjacent unit cells. The
membrane provides energy for actuation, compressing the brackets as they soften.
All of these components play an important role for reaching targeted geometries
through spatio-temporal programming. For example, the petalled structure shown in
Fig. 5.1c has been programmed so that the petals reach their target shape sequentially,
actuating from smallest to largest (Supplementary Movie 1 – see Appendix D.7 to
access all videos). If all petals deformed at the same rate, they would collide and
would not reach the target geometry. More details on shell design are available in
Appendix D.1.

We incorporated a discretized mechanical model of our shells in an inverse de-
sign algorithm for obtaining desired temporal morphing. Given a target geometry
and a smooth time landscape, the algorithm automatically generates the flat shell
mesostructure that will produce the corresponding morphing process. It first com-
poses a continuous target shell out of compressed unit cells. To do this, the target
surface is isotropically triangulated, producing a stencil that serves as a placeholder
for base locations. With the arrangement of bases in the target shape, the bumper
geometries are defined to ensure that they are in contact in this target shape (Fig. 5.1b
top-right). Then, a minimal distortion conformal map [33] flattens the stencil. The
bases with bumpers are then relocated to the flat stencil and are interconnected
by brackets. Note that this stencil has to be free of overlaps to enable fabrication.
Therefore, base placement, bumper arrangements and bracket lengths are configured
automatically given a target surface input. However, the selection of bracket thick-
nesses is governed by the designer’s specification of the actuation time landscape.
Thicker brackets soften at a slower rate than narrower ones, enabling distinct target
deformation times to be realized in each region of the shell for collision avoidance,
visual impression or other desired functionalities. Given that there can be a broad
range of morphing sequences that yield certain target geometries, the morphing pro-
cess can be designed according to the designer’s goals by iterating through actuation
time landscapes and observing their effect.

The time evolution of the shells is simulated quasistatically by coupling a finite
element simulation of the rubber membrane with a data-driven spring model for the
brackets and a rigid body model for bases. Bumper collisions are described as sharp
increases in bracket stiffness in the model. A summary of the energy model is given
below. Its constitutive parts are the energy associated with bracket compression
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(,c) obtained from fitting and interpolating experimental data, an energy penalty to
shearing (,s) that replicates the effect of the shear-resisting bracket geometry, and
the elastic membrane energy (,m):

, (x) =
∑
28 9

,c +
∑
B8 9

,s +
∑
T8
,m(G8). (5.1)

Here, 28 9 refers to the contractile springs that join the 8-th and the 9-th bases. Each
unit cell is modeled with four of these springs to capture bending effects. Bumper
collisions are modelled as a sharp stiffening of these elements. Shear-resisting
elements B8 9 have analogous indexing. T8 refers to the 8-th element of the membrane
discretization, and G8 is the deformation gradient of the membrane evaluated at
this element. A complete description of the simulation procedure is available in
Appendix D.2.

To construct the constitutive model for bracket softening, we conducted experiments
(Fig. 5.2a) on brackets of varying length ; (in a range 5–9 mm) and thickness ℎ (0.3–
0.65 mm), applying constant forces (1–5 N) and tracking their compression over
time spent in water using a Zwick tensile tester (Figs. 5.2b and 5.2c). Fits to the
experimental data were then sampled from the space of bracket parameters and
immersion times to build a time-dependent force-displacement model used in the
simulation (Fig. 5.2d). Material measurement and modelling are discussed more
extensively in Appendix D.3. From this sampling, we select bracket thicknesses that
yield target deformation timings under the loads generated by the membrane (see
Appendix D.4).

Examples of temporally programmed structures
We highlight the effect that different actuation time landscapes have on the final
shapes of initially flat shells by comparing the example discussed in Fig. 5.1c to
the shell shown in Fig. 5.3a. Both shells have similar flat geometries but different
actuation time landscapes are encoded in their mesostructures. In the first example,
smaller petals are covered by their larger neighbors. Meanwhile, each petal shown in
the second example has an edge that covers a neighbor and one edge that is covered.
For the latter case, all the petals have been programmed with the same actuation
time landscape so they deform simultaneously. We slightly increased target actuation
times for some petal tips to increase the distance between neighboring petals on their
morphing paths (Supplementary Movie 2). This way, the interior edge of each petal
completes its deformation before being covered by its neighbor. Shape-morphing
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Figure 5.2: Modeling bracket softening and prescribing an actuation time landscape. (a)
Load-controlled tensile tests were used to determine the deformation rates of unit cells in
56◦ C water. (b) Average deformation rates for specimens subject to constant loads of 4 N
for l < 7 and 5 N for l ≥ 7 N. These values are close to the inner membrane tractions on each
unit cell in real shells. (c) Deformation rate measurements (solid lines) are fit (dashed lines)
to produce a model of bracket softening. Here we show the fit for l = 6 mm, h = 0.4 mm. (d)
The model is interpolated and queried to infer the mesostructure that yields target curvatures
and deformation completion times in each section of the shell. Here, we show deformations
of unit cells with central length l = 6 mm and a range of bracket thicknesses from 0.3 mm
to 0.65 mm. (e) Smooth actuation time landscape that induces the sequential deformation
process demonstrated in Fig. 5.1c. (f) Bracket thickness fields for both sides of the petalled
shape. Though the prescribed time landscape is smooth, the field of bracket thickness is
highly irregular because bracket thicknesses also depend on initial unit cell lengths and their
target deformations.

precision was measured using a 3D scan of the final geometry. The blue markers
were matched with their simulated locations. The resulting mean error for the
pairwise distances in the experimental realization of the structure shown in Fig. 5.3a
was 3.6% relative to the diameter of the target markers’ point cloud.

Developable target surfaces can also be achieved using this structural framework.
The actuation time landscape for the double-loop spiral shown in Fig. 5.3b is a
constant gradient from one end to the other. This allows the interior to curl without
colliding with the outer loop (Supplementary Movie 3). The 3D scan reveals a 2.4%



98

mean error. Geometries with negative Gaussian curvature can also be realized, such
as the saddle shown in Fig. 5.3c (Supplementary Movie 4). The relative mean error
for the saddle’s base positions was 0.8%.

We showcase the complexity of achievable shapes through the self-interweaving
structure shown in Fig. 5.3d. This shape requires embedding precise morphing
trajectories and time landscapes in the flat-printed structure in order to thread each
arm through the loop created by a neighboring onewithout colliding (Supplementary
Movie 5). The experimental replication of this challenging target geometry yields a
9.7% 3D scan mean error, and highlights the versatility of our design and simulation
framework.

5.3 Discussion
The realization of complex 3D geometries from flat-fabricated structures, which
are easier to manufacture and transport, is a compelling motivation for developing
shape-morphing frameworks. However, to be used in a broad range of engineering
applications, the morphed structures must remain structurally stable. In our exam-
ples, the shells’ outer layers soften during deformation in hot water, but become
stiff when returned to room temperature (see the details on the shells’ fabrication
procedure in the Appendix D.5). Data from simple mechanical tests on flat struc-
tures are available in Appendix D.6. Structural stability could be further increased
by using snap-locking mechanisms instead of bumpers or coating the structure after
actuation has completed.

Our method for programming temporal morphing in shells is based on a combina-
tion of a pre-stressed midplane and outer layers with effective stiffness differentials
that are configured to evolve over time according to user specifications. The en-
codement is performed using an inverse design algorithm that takes a target surface
and an actuation time landscape as inputs and outputs a mesostructure with embed-
ded self-morphing information. The significance of this method is that it enables
collision-avoidance during deformations from flat shapes to curved geometries. We
built a design system based on a data-driven mechanical model of mesostructures to
predict shape evolution in time, enabling temporal morphing design. Applications
of self-actuating shells to biomedical and construction industries are close to be-
coming reality with the fast advances in this field of study. Further generalizations
of our approach to other materials such as liquid-crystal elastomers, bio-compatible
polymers, and conventional engineering materials whose properties evolve in time
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Figure 5.3: Spatio-temporally programmed shells. Each panel shows a real shell (top),
its actuation time landscape (bottom-left), and its corresponding simulated shell (bottom-
right). (a) Doubly-curved shell where petals morph synchronously to cover each other in
a cyclic manner. One corner of each petal is programmed to morph slower to increase
the distance between petals during morphing. (b) A double spiral that approximates a
developable surface. A gradient time landscape enables the inner spiral to curl first. (c) A
saddle shape with negative curvature. (d) A shell with a complex self-interweaving shape
prone to multiple collisions in the course of its morphing process. Scale bars, 3 cm.

due to other stimuli such as temperature, humidity, light, pH, etc., could enable rapid
manufacturing of load-bearing structures that can only assume desired geometries
through temporally planned deformations upon deployment as well as robotic ma-
terials temporally programmed for a broader range of functionalities.
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5.4 Methods
Experiments
All specimens used for bracket characterization and the outer layers of the shape-
morphing structures were 3D-printed using a Stratasys J750 using Vero Pure White
material. Colored markers were included in the bases to facilitate visualization.
Water was kept at 56◦ C using a temperature controller, and two Canon 700D
cameras were used for imaging.

The mechanical properties of the brackets were measured using a Zwick tensile
tester with a custom-built water tank attachment. Experiments measuring strain
restitution after unloading were conducted to estimate the plastic fraction of the
deformation. These experiments are discussed more extensively in Appendix D.3.

All shells were fabricated by first uniformly stretching a latex sheet of thickness
0.5 mm to 900% its initial area. After cleaning the membrane surfaces with 2-
Propanol, the printed lattices are glued to the membrane. In each structure, several
bases have holes to align the opposite shell layers using push-pins. Latex surplus
surrounding the assembled flat shell is removed, then the shells are submerged into
a 350× 350× 350mm water tank to induce shape-morphing. See Appendix D.5 for
more details.

Data fitting and simulation
Experimental data was used to generate a force-displacement model of brackets by
combining simpler fitting components. First, displacement-force curves were fitted
so that the initial state corresponded to the behavior at room temperature. Second,
displacement rates dependent on time inwater were fitted. Based on the combination
of these two fittings, the parameter domain was resampled to yield time-dependent
force-displacement relationships. Data from the plasticity experiments were used to
build the final elastoplastic model used in the simulation software for inverse design.

In addition to implementing this data-driven bracket compression model in simu-
lations, shear-resisting elements are included to capture brackets’ geometry-based
shear resistance. Bases are simulated as rigid bodies and a FEM approach is used
for the membrane simulation. Bumper collisions are modelled as abrupt bracket
stiffness increases. All simulation elements are coupled via shared vertices. We
implemented the simulations using a C++ code developed in-house. A simple user
interface was designed to import target surfaces and specify time landscapes. User
inputs are automatically processed to configure the simulated structure and display
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resulting morphing processes. Once the desired morphing is achieved, the system
automatically generates structures for 3D printing.

The data-fitting and simulation procedures are explained in more detail in Appen-
dices D.2 and D.3.

3D scanning
An HP David SLS-3 structured light scanner with two cameras was used to generate
textured 3D meshes in OBJ format. Then, the textures were filtered to obtain binary
images with markers. Markers were lifted to their actual scanned positions using the
3D mesh and resolved to single points. The obtained point clouds were registered
to the clouds generated by the simulation software and points were matched using
Munkres’ algorithm.
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Chapter preamble
In this chapter, micro- and mesoscale patterning are discussed within the context
of designing soft robots with easy-to-predict kinematics. The extrusion of liquid
crystal elastomer (LCE) inks during a direct ink writing 3D printing process causes
the liquid crystal mesogens to be aligned in the direction of the printing path. Self-
folding hinges are attained by stacking LCE layers with orthogonal microstructural
geometry. These active hinges can then be embedded in larger devices that change
shape and self-propel in response to environmental stimuli.

Chapter abstract
There is growing interest in creating untethered soft robots that can repeatedly shape-
morph and self-propel in response to external stimuli. Toward this goal, we printed
soft programmable materials composed of liquid crystal elastomer (LCE) bilay-
ers with orthogonal director alignment and different nematic-to-isotropic transition
temperatures ()#�) to form active hinges that interconnect polymeric tiles. When
heated above their respective actuation temperatures, the printed LCE hinges exhibit
a large, reversible bending response. Their actuation response is programmed by
varying their chemistry and printed architecture. Through an integrated design and
additive manufacturing approach, we created passively controlled, untethered soft
programmable materials that adopt task-specific configurations on demand, includ-
ing a self-twisting origami polyhedron that exhibits three stable configurations and
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a “rollbot” that assembles into a pentagonal prism and self-rolls in programmed
responses to thermal stimuli.

6.1 Introduction
Soft robots are versatile in ways that rigid systems are not. Their compliant nature
allows them to safely interact with living organisms [1, 2] and fragile objects [2, 3].
They can perform complex motions as a result of simple actuation inputs [4–6],
conform to arbitrary geometries [7], perform multigait propulsion [8], morph into
different shapes [8, 9], and withstand large deformation or impact without dam-
age [10]. However, challenges associated with the integration of untethered, fully
soft actuationmodalities currently limit their broader utilization. To date, soft robots
have primarily relied on pneumatic networks embedded within elastomeric matrices
for actuation and propulsion [2, 6, 8, 11]. Yet, most pneumatically actuated soft
robots must be tethered to rigid power and control systems to generate sufficient
forces for locomotion [6, 12]. Recently, activematter that self-actuates in response to
external and internal stimuli (e.g., temperature, light, chemical gradients, and elec-
tric fields) has been explored as an alternative for soft robots [5, 13–20]. However,
active materials also have limitations that must be overcome. For example, elec-
troactive actuators must be tethered to rigid power sources [19, 20], shape-memory
polymers require manual reprogramming [17, 21, 22], bilayer strips made of mate-
rials that undergo differential growth are volumetrically expensive [18, 23, 24], and
hydrogel-based actuators must be paired with pneumatic systems to produce large
forces quickly [1, 25].

The creation of untethered, soft robots that perform complex tasks is difficult. For
example, pneumatically actuated soft robots typically undergo large deformations
across their entire structural frame [8, 10]. Predicting the kinematics of these systems
is not straightforward because nonlinear elastic models that satisfy a diverse set of
boundary conditions are required. These challenges are compounded when the
implementation of control systems is desired. Origami-based strategies offer a
compelling alternative for designing soft robots that exhibit large shape changes
through a reduced set of predictable motions. One can greatly simplify the design
space by localizing deformations to creases within the robotic structure, e.g., using
actuating hinges connected to planar facets. Recently, reconfigurable robots with
rigid on-board power sources and electronic controls have been constructed by this
method [25–29].
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Soft robotsmay also benefit fromhinge-based actuation, inwhich compliant, energy-
dense actuators are placed at creases, whereas stiffer structural elements serve as
planar facets [30]. Folding patterns can be modeled and predicted geometrically us-
ing existing mathematical tools [31–33]. The design and implementation of controls
in origami-based untethered systems can be achieved solely through the constitu-
tive response of the actuating hinges, and locomotive gaits can be encoded within
their frames via programmable folding sequences. Although controlled folding se-
quences have been realized in rigid and hybrid (soft/rigid) systems [26, 34], fully
soft systems implemented to date are typically irreversible [17, 22, 35], geometri-
cally constrained [36], or tethered to rigid power sources [18, 37]. New advances
are needed to generate untethered soft robots that exhibit repeatable actuation [38],
self-morphing [25], and self-propulsion in response to external stimuli [39].

Liquid crystal elastomers (LCEs) have recently emerged as a promising class of soft
active matter because they generate large, powerful, and repeatable deformations
upon heating above their nematic-to-isotropic transition temperature ()#�) [40, 41].
The direction of contractile strain (director) can be programmed by aligning rigid
mesogens during fabrication [40, 41]. In addition to thermal stimuli, LCEs that
respond to electric [42], light [43, 44], or chemical stimuli [13, 45] have been syn-
thesized. However, despite their remarkable behavior, LCEs have not been widely
integrated within untethered robotic structures because of fabrication challenges
that relegate them to simple unidirectional actuators [40] or voxelated thin films
(∼ 50 `m thick) [45, 46]. Current LCEs are either too compliant to support large
loads or lack the capability to output large torques in compact, untethered arrange-
ments [18, 47–49]. Recent attempts to achieve LCE-based untethered locomotion
have relied on using small-scale actuators that are not integrated with other func-
tional components [14, 15, 50]. Recently, voxelated LCEs have been produced in
thick-film geometries (∼ 1 mm thick) via three-dimensional (3D) printing [51–53].
These 3D LCEs actuate reversibly and exhibit large work capacities. However, the
ability to combinemultiple LCE actuators with programmed director alignment with
soft structural materials has not yet been demonstrated in a single-step fabrication
process.

Here, we created untethered, soft programmable materials that can reversibly shape-
morph and propel itself in response to thermal stimuli. Specifically, we printed LCE
hinges that interconnect structural polymeric tiles to produce active architectures
that exhibit large, repeatable deformations. Using this method, the folding orienta-



109

tion, hinge angles, and actuator geometry are fully programmable. By incorporating
LCEs with two different )#� , we created soft programmable materials that exhibit
sequential folding and unfolding in response to different temperatures. Through
an integrated design and manufacturing method, we demonstrated simple embodi-
ments of origami-inspired soft robots, whose shape morphing and self-propulsion
were passively controlled via the constitutive response of the printed matter. As an
exemplar, we produced an origami-based architecture that could adopt three differ-
ent stable configurations, depending on its exposure to varying thermal conditions.
Next, we characterized the mechanical response of the active LCE hinges, which
generated a torque capable of folding and lifting objects that were more than two
orders of magnitude heavier than the hinges themselves. Last, we exploited their
torque response to create a printed (flat) structure that was reconfigured to a pen-
tagonal prism and propelled itself by rolling on a hot surface, which we refer to as
a “rollbot.”

6.2 Results
Printing soft active hinges and structural tiles
The active hinges and structural tiles were fabricated as shown in Fig. 6.1. All
inks were formulated with the desired viscoelastic behavior needed to facilitate
direct ink writing (Fig. E.1) [54]. The hinges were composed of LCE bilayers that
exhibit orthogonally programmed nematic order, which interconnect each structural
tile. Two oligomeric LCE inks were synthesized with low and high )#� values
of 24o and 94oC and are referred to as !)#� and �)#� inks, respectively. Such
differences arise because of disparities in their backbone flexibility and cross-linking
chemistry (Fig. E.2). The !)#� ink was composed of a thiol-terminated liquid
crystalline oligomer and trivinyl-functionalized cross-linker [52], whereas the �)#�
ink was composed of an acrylate-terminated liquid crystalline oligomer analogous
to previously reported inks composed of main-chain mesogens (Fig. 6.2a) [45, 51,
53, 55]. To ensure strong adhesion between the printed hinges and tiles, we used
a structural ink for printing the tiles that was composed of a photopolymerizable
diacrylate resin and an acrylate cross-linker that chemically binds to the reactive
LCE groups. The ink rheology was modified by adding fumed silica to achieve the
desired yield stress and a shear thinning behavior needed for printing (Fig. E.1).

The LCE inks were printed using high operating temperature direct ink writing
(HOT-DIW) [51]. To facilitate director alignment during printing, we printed the
!)#� ink at 26oC and the �)#� ink at 50o to 55oC (Fig. E.1) [51]. Ink cross-linking
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Figure 6.1: 3D printing of soft programmable materials. (a) Active hinges were printed
from oligomeric LCE inks, whose rigid mesogens aligned along the print path during HOT-
DIW (left). Immediately upon printing, LCE ink cross-linking was photo-initiated to lock
in the desired director alignment. Structural tiles were then printed from an ink composed
of acrylate resin that chemically bonded to LCE hinges upon photo-initiated cross-linking
(right). (b) The LCE hinges were printed in the form of 0o/90o and 90o/0o bilayers, which
bend into mountain and valley folds, respectively, when actuated above )# � . A simple
structure composed of two hinges, with mountain and valley folds, that interconnect three
structural tiles is shown as printed (middle and top) and as actuated (middle and bottom).
(c) A more complex, square-twist reconfigurable structure was printed (left) and actuated at
125oC (right). The LCE hinges that form the central square and the four LCE hinges that
point toward the center of the structure (left) are mountain folds, whereas the other LCE
hinges are valley folds. Scale bars, 1 cm.

was photo-initiated immediately upon printing to lock in the programmed director
alignment along the print path (Fig. E.3). After printing and cross-linking, the low
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)#� LCE structures became fully isotropic at 92oC, and high )#� LCE structures did
so at 127oC [51, 53], enabling these structures to sequentially actuate in response
to thermal stimuli. We note that LCE actuation can occur over a wide temperature
range [52]. Unidirectionally printed �)#� LCE films (0.375 mm thick) exhibited a
repeated contraction of −49.8± 0.9% along the printing direction and an expansion
of 41.7 ± 5.7% perpendicular to that direction, whereas the !)#� LCEs exhibited
respective values of −31.1 ± 0.6% and 21.5 ± 0.6% (Fig. E.4). The structural tiles
were printed under ambient conditions via DIW. The placement of each structural
tile induced a bending axis that is parallel to the LCE hinge interface (Fig. 6.1a,
right). Upon curing, the printed tiles exhibited a stiffness of 766 ± 41 MPa, which
provided the structural integrity to prevent collapse of the printed architectures under
self- and applied loading conditions.

To achieve controlled bending, we fabricated eachLCEhinge in a “bilayer” design, in
which the bottomhalf is composed ofmultiple layers printed along the samedirection
and the top half is composed of multiple layers printed in the orthogonal direction
(Fig. 6.1A, left). A spontaneous strain mismatch caused each hinge to bend when
heated above their actuation temperature. We chose an orthogonal bilayer design
because the spontaneous strains in each layer favored a single bending direction
around a given axis. Consequently, greater curvatures were achieved compared with
bilayer hinges composed of a top LCE layer and a bottom inactive layer [47, 48].
The folding orientation of each LCE hinge is defined by the print path. The bilayer
(bottom/top) orientation relative to the printing direction determines whether they
exhibit mountain (0o/90o) or valley (90o/0o) folds (Fig. 6.1b). Because self-folding
is reversible, the printed structures could be repeatedly actuated by cycling above
and below their respective actuation temperatures. To demonstrate this, we printed
both mountain and valley hinges in a simple structure composed of two LCE hinges
that interconnected three structural tiles, as shown in Fig. 6.1b (center), which
repeatedly folded and unfolded without manual intervention. By varying the specific
arrangement of active hinges and structural tiles, we could realize more complex
self-folding structures, including the square twist unit cell shown in Fig. 6.1c (movie
S1). In both cases, the architectures contained hinges printed using a single LCE ink
(�)#�). Below, we demonstrate the broad versatility that arose from the integration
of multiple LCE hinges of different )#� values with structural tiles.
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Programmed sequential self-folding
Sequential self-folding is essential for untethered origami-inspired structures be-
cause this capability enables collision prevention during shape morphing and loco-
motive gaits with multiple degrees of freedom triggered by distinct stimuli [30, 35].
By printing LCE inks with different actuation temperatures, we created soft mate-
rials with programmable sequential folding upon heating (Fig. 6.2a). The unbiased
bending angle (where hinges do not bear a load) increases with temperature for
both !)#� and �)#� LCE hinges. From direct observations, we found that both the
onset and the completion of folding for the !)#� LCE hinges occur at considerably
lower temperatures, relative to their �)#� counterparts (Fig. 6.2b). Specifically, the
!)#� LCE hinges begin to fold below 40oC, whereas the onset of folding occurs
near 60oC for �)#� LCE hinges. Because of the residual stress that arose from
cross-linking the !)#� LCE hinges in their isotropic phase [56], these hinges had a
negative bending angle under ambient conditions (Fig. E.5). Although both types
of hinges could achieve a 180o folding angle, their temperature response depended
strongly on their composition and overall dimensions (Figs. E.5 and E.6). Lever-
aging these capabilities, we printed a simple structure that integrated both !)#�
and �)#� LCE mountain hinges, which interconnected three structural tiles and
sequentially actuated when heated (Fig. 6.2c). As expected, the !)#� LCE hinge
folded completely before the �)#� LCE hinge actuated. The structure unfolded in
reverse upon cooling to room temperature; i.e., the �)#� LCE hinge unfolded to
its flat configuration first, followed by the !)#� LCE hinge. This demonstration
highlights our ability to create soft materials with programmed sequential folding
in untethered motifs (movie S2).

Folding temperatures were programmed by the LCE chemistry, and hinge angles
were prescribed geometrically by the printing process. We defined the hinge length
and width as the in-plane geometric parameters in the directions parallel and per-
pendicular to the folding axis, respectively. The hinge thickness was defined in
the surface normal direction and varied in discrete increments of 0.25 mm, which
corresponds to twice the nozzle diameter used during HOT-DIW.By varying the
number of printed layers, we produced hinges with thicknesses between 0.25 mm
(one layer in each direction) and 1 mm (four layers in each direction). The sponta-
neous curvature that the actuators assume at temperatures above )#� decreased with
hinge thickness (Fig. 6.2d), akin to other bilayer systems [57–59]. We discuss the
LCE hinge mechanics in further detail in the Supplementary Materials. �)#� LCE
hinges exhibited greater unbiased folding angles compared with !)#� LCE hinges
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Figure 6.2: Untethered, sequential, and reversible folding of active hinges. (a) Chemical
composition of the !)# � (blue) and �)# � (orange) oligomeric LCE inks (where = = 3 and
6, and < = 6 in the molecular structures). (b) Bending angle \ as a function of temperature
for !)# � and �)# � LCE hinges with length of 10 mm, width of 4 mm, and thickness of
0.25 mm. (c) A printed structure composed of !)# � and �)# � LCE hinges with mountain
folds that interconnect three structural tiles, which undergo sequential actuation when heated
(left to center) and cooled (center to right). Scale bar, 1 cm. (d) Bending angle \ as a function
of thickness, ℎ, for !)# � and �)# � LCE hinges of fixed length of 10 mm and width of
3 mm. Their bending angle decreased with thickness. Other bilayer systems display inverse
proportionality between curvature and thickness [57–59]. We plot this relationship, where
2 is a constant, for comparison. Both hinges exhibited a maximum bending angle of 180o,
where panels contact one another. (e) Bending angle \ as a function of hinge width, F, for
!)# � and �)# � LCE hinges of fixed length of 10 mm and thickness of 0.5 mm. Error bars
indicate SD.

of identical geometry, because the strain differential between directions parallel and
perpendicular to their director alignment is more pronounced [57, 59]. For a given
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hinge thickness, the folding angle increased proportionally with the hinge width
(Fig. 6.2e) because the curvature remained constant when their width was varied.
Our additive manufacturing approach is both scalable and flexible, so there is no
limit on the hinge thickness or geometry. However, the director was misaligned
near each edge of the LCE hinges, where the printing nozzle changed direction in a
semicircular arc to enable continuous printing of adjacent-aligned filaments. Hence,
because of this effect, the minimum LCE hinge width must exceed two nozzle diam-
eters (in this case, 0.25 mm). We note that the minimum hinge width also increased
with LCE thickness because the misalignment radius increased when LCE layers
were printed on top of one another compared with those printed directly on the
underlying glass substrate. This misalignment caused hinges programmed as valley
folds to have marginally smaller bending angles compared with those programmed
as mountain folds. This is because their top layer is parallel to hinge width, which
is a smaller in-plane geometric parameter than hinge length (Fig. E.7). The printed
LCE hinges could bend repeatedly without bias weight, and their maximum folding
angle remained constant over multiple heating and cooling cycles (Fig. E.8). Their
repeatable actuation is an essential feature for untethered soft robotic applications
that operate without manual intervention.

Next, we demonstrate that soft programmable materials can be designed and printed
with geometric locking mechanisms. As one example, we created the triangulated
polyhedron shown in Fig. 6.3, which is based on a well-known origami design [60].
The structure was printed in a planar layout (Fig. 6.3a) before manually joining the
edges (Fig. 6.3b) to create an open polyhedron that was stable at room temperature
(Fig. 6.3c). The top and bottom sections of the polyhedron were identical, except
that different LCE inks were used to print their respective hinges. Specifically,
the top section contained !)#� LCE hinges that facilitated folding into a compacted
formwhen heated above 95o C. The bottom section contained�)#� LCE hinges that
remained unfolded when the top layer actuated (Fig. 6.3d) yet compact when heated
above 155oC (Fig. 6.3e and movie S3). An environment temperature well above the
)#� of both materials was used to accelerate the folding process. All hinges were
constructed with a 6 mm width and 0.5 mm thickness to ensure 180o folding angles
upon actuation. This geometry was stable after each intermediate folding stage,
even when the structure returned to room temperature (Fig. E.9). This behavior is
similar to what was observed in paper origami structures that locked in intermediate
folding states due to bending of the facets between two flat-faceted states [60, 61].
Guest and Pellegrino [60] provided a good overview of these multistable geometries
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Figure 6.3: Printed soft materials with programmed sequential folding and deformation.
(a) A triangulated polyhedron was printed in the form of a flat sheet composed of both !)# �
hinges (top section) and �)# � hinges (bottom section) that interconnect the structural tiles.
All diagonal LCE hinges are valley folds, whereas all vertical and horizontal LCE hinges are
mountain folds. (b) The printed flat sheet was manually assembled into a 3D triangulated
structure that exhibited sequential folding upon heating from (c) ambient temperature to
(d) 100oC, where the !)# � LCE hinges actuated, and to (e) 150oC, where the �)# � LCE
hinges actuated. Scale bars, 1 cm.

and their kinematics. The observed behavior (Fig. E.9) for these printed structures
suggests that a variety of multistable architectures can be created by our approach.

Programmed self-propulsion
Untethered self-propulsion is a requirement for autonomous and preprogrammed
robotic systems that navigate large distances in uncertain environments [21]. This
poses challenges, especially given that untethered operation often requires onboard
power and control systems that add mass to the robot [25, 62]. LCE bilayers
offer a promising option for these tasks because they are energy dense and are
capable of performing multiple loading and unloading cycles in response to external
stimuli. However, because of the inherently soft nature of LCE hinges, large external
moments induce bending and lead to actuated hinge angles that are different from
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the unloaded hinge measurements (Fig. 6.2). As an example, a printed !)#� LCE
hinge achieved a 79o bending angle when unbiased (Fig. 6.4a), but when a 10 g
mass was suspended 1 cm away from the hinge at room temperature, it deflected to
−72o because of its compliance. When heated above )#� , the hinge bent by 55o,
and the mass was lifted 6.5 mm (Fig. 6.4b), corresponding to a work output of about
0.6 mJ. This actuation is remarkable for a soft actuator with dimensions 10 mm by
3 mm by 1 mm. It corresponds to an energy density of 29 J/kg when accounting
for the combined mass (22 mg) of the LCE hinge and structural panels, which is in
good agreement with our earlier work [51]. The mass of the lifted object was more
than 450 times greater than the hinge mass.

Figure 6.4: Torque capacity of printed active hinges. (a) !)# � LCE hinge (10 mm by
4 mm by 1 mm) folds to a 75o bending angle while unbiased. (b) When a 10 g mass was
suspended 1 cm away from the LCE hinge at room temperature, it deflected to −72o. The
mass was lifted by about 1 cm when actuated above )# � . (c) Exerted torque as a function
of hinge folding angle, \, as defined by the inset. Hinge composition and thickness, ℎ, are
the primary factors that affect torque output. (d) LCE hinges (5 mm by 3 mm by 0.5 mm)
undergo multiple actuation cycles with negligible changes in the torque output. Error bars
indicate SD. Scale bars, 1 cm.

We quantified the torque output of LCE bilayer hinges to further explore their
suitability for reconfigurable and propulsive soft robots. Both types of LCE hinges
were tested in different geometries. For a given thickness, !)#� LCE hinges output
more torque than their �)#� counterparts (Fig. 6.4c). Torque increases with hinge
thickness for both LCE chemistries but diminishes with increasing folding angle.
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Consequently, heavier self-assembling and self-propelling structures will require
hinges that are capable of greater torque outputs because hinges will only fold until
there is equilibrium between external moments and their curvature-dependent torque
capacity. Torque output remained constant over multiple heating and cooling cycles
(Fig. 6.4d), which is essential for repeatable propulsion in untethered robots. We
noticed an asymmetry in the torque produced by the actuatorswhen heated compared
with the relatively lower restoration torque exerted by hinges during cooling. This
asymmetry is disadvantageous for applications that require large torque outputs
in both rotational directions, but leads to energy savings in deployable structures
that require a permanent post-actuated configuration, such as the printed structure
shown in Fig. 6.3, which remained locked in a post-actuated configuration rather
than unfolding under ambient conditions.

We exploited the large torque output by the printed LCE hinges to achieve pas-
sive control of self-assembly and propulsion in a rolling architecture (i.e., rollbot)
(Fig. 6.5). The entire structure was printed flat with a total mass of 1.67 g. The
structural frame was composed of two outer rails that use !)#� LCE hinges to
morph from a flat state (Fig. 6.5a) to a pentagonal prism with edge lengths of 15 mm
(Fig. 6.5b). These rails were connected by bridges that hold propelling �)#� LCE
hinges. A hot plate held at an average surface temperature of 200o C and a con-
vective environment that sustains the ambient temperature at 45o C were used to
passively induce the desired assembly and rolling motion. Under these conditions,
the !)#� LCE hinges actuated to a ∼ 72o hinge angle and remained folded through-
out the rolling process because of the modest difference between their )#� and the
ambient temperature, even away from the hot plate. The actuated !)#� hinges pro-
vided enough torque to allow the structure to maintain a pentagonal shape during
rolling, obviating the need for a locking mechanism. A free-body analysis was
used to determine the torque requirements for shape reconfiguration and propulsion
(Fig. E.10). To transform into a pentagonal prism, the !)#� LCE hinges must have
a minimum torque output of 9.9 mN-cm at a 0o hinge angle (flat configuration) and
a sustained torque of 0.3 mN-cm when fully folded (Fig. E.11). Given these torque
and angle requirements, we printed !)#� LCE hinges with a width of 4 mm and a
thickness of 0.75 mm. In the assembled 3D configuration, the �)#� LCE hinges
actuated when in contact with the hot plate, rolling the structure over the adjacent
vertex and onto the next hinge, which carried out the same action. Propelling the
structure over vertices required a 36o tipping angle, and the corresponding torque
needed to initiate this action was 6.9 mN-cm exerted by the hinge (Fig. E.11). To
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realize this, we printed �)#� LCE hinges that were 2 mm wide and 0.50 mm thick
as propelling actuators. These hinges were also printed with a 4 mm offset from
the tipping vertex to provide mechanical advantage. Because of this offset, �)#�
LCE hinges must fold by 63o. A greater hinge angle was needed for tipping over an
open vertex, so 4 mm �)#� LCE hinges were used for propulsion over a small gap.
Both !)#� and �)#� LCE hinge dimensions were chosen on the basis of the torque
measurements described above, and a pentagonal frame was selected to showcase
the torque capabilities of LCE hinges (rolling over vertices requires large torque
outputs). Because these hinges unfolded away from the hot surface, their repeated
actuation was possible. This allowed temperature gradient-driven propulsion to
continue even after the structure completed a full roll without a need for manual
reprogramming, traveling ∼ 12 cm in 95 s (Fig. 6.5c and movie S4). This simple
concept can be expanded upon to passively control soft programmable matter and,
ultimately, robots with more sophisticated reversible functions and locomotive gaits.

6.3 Discussion
We have demonstrated a design and additive manufacturing method for integrating
LCE bilayer actuators, into shape-morphing and self-propelling structures. We inte-
grated programmable LCE hinges that actuate at different temperatures. The orthog-
onal orientation of these bilayer hinges induces anticlastic bending (i.e., saddle-like
surfaces) and reduces their bending energy [49]. Even so, torque outputs are large
enough for lifting objects that are substantially heavier than the hinges themselves
and, importantly, for self-propulsion. We envision that given the modular nature of
these inks, it would be relatively straightforward to incorporate LCEs that respond
to other stimuli (e.g., light, pH, and humidity) within these printed architectures.
Through the introduction of multiple stimuli-responsive actuators and more com-
plex folding sequences, we can further expand the functionality of untethered soft
robotic systems capable of task-specific reconfiguration and locomotion.

6.4 Materials and methods
Ink synthesis and characterization
The !)#� ink was synthesized by a previously reported thiol-acrylate “click” re-
action (52). As-received 2,2’-(ethylenedioxy)diethanethiol (Sigma-Aldrich), 1,4-
bis-[4-(6-acryloyloxy-hexyloxy)benzoyloxy]-2-methylbenzene (Wilshire Technolo-
gies Inc.), 1,4-bis-[4-(3-acryloyloxypropypropyloxy) benzoyloxy]-2-methylbenzene
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Figure 6.5: Printed self-propelling structure. (a) Self-propelling rollbot is shown in its
printed configuration. In the legend (inset), the blue (!)# � ) and orange (�)# � ) LCE
hinges denote valley and mountain folds, respectively, and gray indicates structural tiles. (b)
Printed structure in its rolling configuration, in which the !)# � LCE hinges induced folding
into a pentagonal prism and the �)# � LCE hinges propelled the rollbot when heated above
their actuation temperature. (c) Still images (from movie S4) of the rollbot that show its
self-propelling locomotion when heated. The structure self-propels at least six times over
the time sequence shown. [The heated surface was held at 200oC, and the average ambient
temperature was 45oC. Scale bars, 1 cm.]

(Matrix Scientific), and 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (Sigma-
Aldrich) in a mole ratio of 1.0:0.6:0.2:0.133, and 1 weight % (wt %) triethylamine
(Sigma-Aldrich), 2 wt % butylated hydroxytoluene (Fisher Scientific), and 1.5 wt
% Irgacure 651 (BASF) were melted and mixed in an amber scintillation vial with a
heat gun (MHT3300, Milwaukee) and vortexed for about 5 min. The reaction was
subsequently heated and stirred for 3 hours at 65oC in an oil bath. The �)#� ink was
synthesized by a previously reported aza-Michael addition method [51]. A 1.1:1
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mole ratio of 1,4-bis-[4-(6-acryloyloxyhexyloxy) benzoyloxy]-2-methylbenzene and
n-butyl amine (Sigma-Aldrich), 0.2 wt % butylated hydroxytoluene, and 2 wt % Ir-
gacure 651 were added to a 25 ml round-bottom flask fitted with a condenser.
The reaction was stirred at 105oC for 18 hours while protecting it from ambient
fluorescent light.

The structural ink was prepared by mixing Ebecryl 8413 resin (Allnex) and pen-
taerythritol tetraacrylate (TCI Chemicals) in a 1:1 weight ratio with 10 wt % fumed
silica (CAB-O-SIL EH-5, Cabot) and 4 wt % Irgacure 651. Irgacure 651 was added
as a solution in dichloromethane (Sigma-Aldrich) at a concentration of 750 mg/ml.
After each reagent was added, the ink was mixed in a SpeedMixer (FlackTek Inc.)
for about 3 min. The solvent was evaporated before printing. An Instron tensile
testing machine was used to measure the stiffness of dogbone-shaped structural tiles.

The respective )#� of each oligomeric LCE ink was determined by differential scan-
ning calorimetry (DSC) measurements (TA Q200 calorimeter). Uncross-linked
LCE ink samples (10 to 15 mg each) were hermetically sealed inside TZero alu-
minum pans. Samples were analyzed via a heat-cool-heat cycle between −50o and
150oC with ramp rates of 10oC/min to clear the thermal history on the first heating
ramp and to access both the glass transition temperatures and nematic-to-isotropic
transition temperatures of the inks. Samples were held isothermally for 1 min at
both high and low temperatures. Data from the second heating ramp were analyzed
to determine their )6 and )#� values.

The rheological properties of inksweremeasured using a controlled-stress rheometer
(DiscoveryHR-3HybridRheometer, TA Instruments) equippedwith a 20 mm peltier
plate geometry with a 250 `m gap. Before each test, LCE inks were brought to
100oC, then to testing temperature for 300 s to erase structural history of the inks
during the loading process. During the viscometry measurements, shear rate was
swept from 0.001 to 1000 s−1. During the oscillatory measurements, stress was
swept from 0.01 to 1000 Pa at 1 Hz. The rheological properties of the elastomeric
ink used to pattern the structural tiles were measured using a 40 mm cone geometry
under ambient conditions. During the viscometry measurements, the ink viscosity
was measured as the shear rate was swept from 0.0001 to 10, 000 s−1. During the
oscillatory measurements, its storage and loss moduli were determined by carrying
out stress sweeps from 0.0001 to 10, 000 Pa at 1 Hz.

Alignment of printed LCE samples was characterized by x-ray scattering mea-
surements on a SAXSLAB system with a Rigaku 002 microfocus x-ray source
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(_ = 1.5409 Å) with a sample-to-detector (PILATUS 300K) distance of 109 mm
to capture the mesogen-mesogen correlations at @ ∼ 1.5 Å−1. Wide-angle x-ray
scattering samples consisted of two-layer printed LCE unidirectional strips (200 to
250 `m thick). Samples were exposed for 300 s. Data reduction was performed us-
ing the Nika Macro for Igor Pro. Herman’s orientational order parameter <%2> was
calculated by extracting the intensity of the mesogen scattering peak as a function
of azimuthal angle, masking low-intensity regions due to the beamstop and gaps in
the PILATUS 300K detector and then using a custom MATLAB script. The order
parameters of printed !)#� and �)#� LCEs are 0.1707 and 0.2688, respectively.

Unbiased linear actuation of unidirectional LCE as a function of temperature was
determined by increasing temperature at 4o C/min with a programmable heating
stage (modified HCS302, Instec) on 20 mm–by–5 mm–by–0.375 mm unidirectional
samples from 25o to 150o C. The stage was covered in a thin layer of silicone oil to
enhance heat transfer and reduce friction. Images were collected from above every
15 s via a Canon EOS Rebel T2i camera with a Canon 100 mm macro lens, and
dimensions were analyzed via ImageJ.

Fabrication and operation of programmed soft materials
LCE hinges were printed using a customized HOT-DIW printhead (operating at
) < 100o C). The printhead composed of a machined copper block that was
designed to couple to a Nordson 3-cc high-pressure adapter (Nordson EFD). For
heating control, a resistance temperature detector sensor in the block (Omega)
monitored the temperature adjacent to the nozzle, two 100 W 1/4–by–2 in cartridge
heaters (Omega) in the copper block provided heating, and a Teflon mounting block
provided insulation. Feedback control was provided via an Omega platinum series
single-zone temperature controller. The LCE inks were loaded into a custom SS
3-cc syringe with a 250 `m nozzle (TecDia Inc.). !)#� and �)#� inks were printed
at 26o C and 50o to 55o C and at print speeds of 25 and 28 mm/s, respectively. Both
were printed at a print height of 0.125 mm, a filament spacing of 0.125 mm, and a
pressure of 455 psi using a 3-cc high-pressure adapter controlled with a pressure box
(Ultimus V, Nordson EFD). On-the-fly ultraviolet (UV) curing (OmniCure S2000)
was carried out at 20, 000 `W/cm2 for !)#� LCE ink and 8000 `W/cm2 for �)#�
LCE ink. Structural tiles were printed by extruding the ink through a 410 `m
tapered nozzle (Nordson EFD) at an average speed of 30 mm/s, a print height
of 0.25 mm, a filament spacing of 0.2 mm, and a pressure of 60 psi (Ultimus V,
Nordson EFD). Inks were printed using our multimaterial 3D printer (customized
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ABG 10000, Aerotech Inc.) and G-Code (MeCode). All samples except the shape-
morphing element and self-propelling structure were printed on an untreated glass
slide (VWR). The triangulated polyhedron and the self-propelling structure were
printed on a sacrificial polyvinyl alcohol (99% hydrolyzed; Sigma-Aldrich)–coated
glass substrate. After printing, all samples were cross-linked upon exposure to UV
light (6000 `W/cm2) for about 15 min per side.

The triangulated polyhedron was fully printed in a single step in a flat configuration.
The 3D configuration was achieved by bonding the edges of outlying LCE hinges to
structural tiles with the structural ink. All hinges in the structure were 0.5 mm thick
and 6 mm wide. The triangulated polyhedron was actuated in two steps. First, it is
placed in an oven at 100o C to actuate the !)#� LCE hinges. Next, it was placed
in an oven at 155o C to actuate the �)#� LCE hinges (Fig. 6.4 and movie S3).
After each actuation in the sequence, the structure was imaged at room temperature
(Fig. E.9).

The self-propelling structure (Fig. 6.5) was printed with !)#� LCE hinges that were
0.75 mm thick and 4 mm wide and �)#� LCE hinges that were 0.5 mm thick and
2 mm wide. The last �)#� LCE hinge that propels the structure at the open vertex
of the pentagonal prism was 0.5 mm thick and 4 mm wide. The self-propelling
structure was tested on a substrate with a sand-covered silicone adhesive (Rutland).
The substrate was heated with a hotplate to have a surface temperature of about
200o C. To provide a heated and convective environment, we placed a space heater
(Sunbeam) 4 in away and set at 27o C. To ensure a thin boundary layer of heat at
sand surface, we used a fan. Both the convective heater and the fan were aligned to
be parallel to the self-propelling structure.

Characterization of programmed soft materials
Images of actuated samples in Fig. 6.1b-c and movie S1 were taken in an oil bath
with a temperature of 125o C acquired from above. The sample in Fig. 6.4a-b
was heated with a heat gun (MHT3300, Milwaukee) until the sample was optically
clear, indicating full actuation. All unbiased folding angle measurements were
conducted by printing one stiff panel longer than the other to fit in an acrylic holder
perpendicular to the panel face. Hinges were printed as mountain folds unless
otherwise specified. The hinges were inverted into an oil bath of the temperature
of measurement and imaged from above with a camera (Canon EOS 5D Mark III).
For repeatable bending measurements (Fig. E.8), hinges were alternated between
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room temperature and a hot oil bath. For !)#� and �)#� LCE hinges, the oil bath
was at 120o and 150o C, respectively. Images were taken after 30 s in the hot oil
bath and after 2 min at room temperature. Sequential folding images (Fig. 6.2c and
movie S2) were taken from above, as samples were heated from room temperature
to 150oC in an oil bath and cooled passively to room temperature again. The edges
of all hinges analyzed for bending angle were colored black with permanent marker
(Sharpie) to enhance contrast for image analysis (MATLAB). All images analyzed
for bending angle were taken using a Canon EOS 5D Mark III camera from above.

To measure their torque output, we fixed one of the LCE hinges’ structural panels to
a rotary stage that was used to control hinge angle. The second panel was attached
to a thin string 10 mm away from the edge of the LCE. The string, with negligible
bending stiffness, was axially stiff and was fixed to a force sensor at the other end. A
linear stage was used in conjunction with the near-inextensible string for fine-tuning
the target hinge angle, ensuring that the force vector being measured by the sensor
was normal to the second hinge panel and to the sensor plate. The actuators were
heated using a 24 W metal ceramic heater (Thorlabs Inc.), causing them to bend
away from the sensor until reaching the target hinge angle. At this target angle, the
string experienced axial forces, which were measured by a Mettler Toledo XS205
scale. Themeasured force plateaued with the completion of the nematic-to-isotropic
phase transition. Torque cycling experiments were carried out at a 0o hinge angle
by turning the heater off upon reaching full actuation. See Fig. E.12 for images of
the experimental setup and Fig. E.13 for additional torque measurements.
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C h a p t e r 7

CONCLUSIONS

7.1 Summary of contributions
The global kinematic behaviors of structured media (such as shape-morphing and
locomotion) can be “programmed” by designing micro- and mesoscale geometries
that energetically favor desired modes of deformation. Methods for programming
these media require a sound mechanistic understanding of the interplay between
internal geometry and the elastic properties of the bulk materials. The preceding
chapters in this thesis describe a series of experimental, numerical, and analytical
studies on the mechanics of structured media and outline methods for programming
their behavior.

Chapter 2 discusses how the onset of failure in twisted ribbons can be consider-
ably delayed by introducing a periodic undulation in the ribbons’ edge geometry.
Experimental, analytical, and numerical investigations into the mechanics of bulk
metallic glass ribbons establish the bounds for the maximum applied twist that the
ribbons can be subjected to without failing before thermoforming. This guides the
design of metallic ribbon networks that display interesting stowing and deployment
kinematics as a result of the ribbon chirality.

In Chapter 3, we discuss a novel method for attaining three-dimensional objects
from initially flat sheets. Namely, we induce out-of-plane buckling by leveraging
the kinematic frustrations that arise in non-periodically patterned sheets when they
are subjected to tensile loads. We study the mechanics of these buckling systems in
more depth in Chapter 4. One of the significant challenges of modeling structured
media is that the presence of geometric features at disparate length scales makes
it computationally expensive to simulate their behavior using conventional finite
element methods that fully resolve the small-scale geometry yet span the entire
structure. This motivates our development of an effective continuum model that
attributes an energy penalty to deviations from the mesostructure’s local quasi-
mechanism behaviors. The model enables us to capture the global post-buckling
behavior of the system. To the best of our knowledge, this is the first demonstration
of an effective continuum model for capturing the behavior of quasi-mechanisms in
graded media.
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All of the studies mentioned above were conducted on passive materials that do not
undergo deformations in response to an environmental stimulus (aside from applied
loads). In Chapter 5, we discuss the inverse design of trilayer shells that morph into
target smooth surfaces when inserted in warm water. The main novelty of our work
stems from introducing amethod for controlling the deformation rates in every region
of our system. This considerably broadens the design space for smooth morphing
surfaces, as it permits sequential actuation steps and the avoidance of self-collisions
that would impede reaching the target geometry otherwise. This feat is demonstrated
through the inverse design of a doubly-looped spiral and a self-interweaving structure
that would be unobtainable without programming deformation sequences.

The final study in this thesis is presented in Chapter 6. It shows that micro- and
mesostructural design can be used to induce shape-shifting and self-propulsion
in soft robotic media. We created liquid crystal elastomer (LCE) bilayers that
fold when heated due to the orthogonal relative alignment of the mesogens in the
two layers. Incorporating these LCE hinges into an origami-inspired framework
allows us to localize large deformations to desired regions, thus simplifying the
kinematic modeling and control of soft systems that often have infinite degrees of
freedom. In a given structure, the hinge folding sequence is determined by the LCE
chemistry, while the folding angle and torque output are determined from the hinge
thickness and width. The LCEs display energy dense, reversible actuation and do
not require a tether to external power or control devices, enabling the creation of
media that are capable of structural reconfiguration and self-propulsion in response
to environmental stimuli.

7.2 Outlook on future research directions
As discussed throughout this thesis, materials synthesis techniques and additive
manufacturing technology have led to the creation of novel structured media whose
behavior can be “programmed.” Based on the lessons learned from the above
explorations, there are many natural avenues for future research on these structured
media. The following subsections outline some interesting possibilities.

Deployable compliant devices made of engineering materials
There are several methods for morphing structures between two geometries in re-
sponse to environmental stimuli using soft materials [5, 6, 9, 22]. However, this
can be challenging to do in larger structures made of metal or other engineering
materials because large strains induced by the morphing process can lead to material
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failure. Fig. 7.1 shows a metallic analogue to the structures discussed in Chapters 3
and 4, highlighting that localized plasticity can occur at joints/flexures and impeding
morphing structures from reaching their target shapes. This can be avoided if the
compliant elements are carefully designed (tools such as topology optimization can
help with this) or by working with structured media that undergo relatively small
local strains [18, 27].

Figure 7.1: Plastic kinking of slender joints in a structured metallic medium.

The research in Chapter 2 discusses an initial effort to address these challenges,
where ribbon-based structures rely on the chirality of their constituting elements to
undergo extreme and fully reversible compaction/deployment. Within this context,
it would be interesting to continue exploring the use of thermoformable metallic rib-
bons as building blocks for morphing structures in applications such as deployment
mechanisms for offset surfaces or woven metallic fabrics.

As highlighted by Chapter 2, the inherent chirality of twisted ribbons allows them
to be used as multi-DOF hinges in structures that undergo extreme compaction and
deployment cycles. However, in this work we explored the mechanics of individual
ribbons in great depth, but the design of networks of these ribbons was left to our
engineering intuition. It would be worthwhile to study the mechanics of ribbon
assemblages in greater depth and develop reduced order models for these networks
to have tools that guide the design of this new class of structures.

Reduced order modeling of structured media
In general, techniques for modeling the behavior of structured media are still fairly
limited [46] and usually involve reducing an object to a network of beams, rods,
plates, shells, springs, and hinges. These network-based methods could be extended
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by creating elements that represent the collective behavior of assemblies [46], to be
used in simulations of hierarchical systems.

As alternatives to these network-based approaches, effective continuummodels hold
promise for analyzing the behavior of structured media. Despite progress by the
mechanics community on this front, there is still a significant need to formalize
general approaches for describing the behavior of non-periodic systems. The study
described in Chapter 4 is an early effort that could be adapted to other classes of
structured media, but it is limited to cases that display quasi-mechanisms. Further-
more, it would also be valuable to couple network-based approaches to effective
continuum models for modeling and designing non-uniform hierarchical structures.

Additionally, it would be interesting to develop a method for predicting local failure
while still capturing global behaviors, including how global mechanical properties
are affected by local failure. This could be informed by controlled desktop-scale
experiments and through the development of reduced order models that elucidate
the effect of topology (i.e. the connectivity of lattices, woven microstructres, ribbon
networks, etc.) on macro-scale effective properties. In a similar vein, it is important
to understand the impact that local material failure at compliant joints and flexures
has on the global properties of these structures, with the goal of developing stochastic
models for the phenomena. Inverse designmethods would benefit from the inclusion
of these models to infer where local failure is likely to happen, and to perform
topology optimization in these locations to avert catastrophic damage.

Optimal design of deployable devices
The optimal design of complex material properties and behaviors that emerge from
micro/mesostructural heterogeneity can be very challenging, especially when mul-
tiple design objectives must be met (for example, achieving a desired shape change
and then being able to withstand an anticipated loading condition). The coupling of
reduced order mechanical modeling frameworks for structured media to optimiza-
tion techniques would be an interesting approach for overcoming the limitations of
engineering intuition. These methods could be used to create devices that attain
unprecedented functionalities.

For example, a growing number of industries use 3D printers to manufacture de-
vices that are both resilient to mechanical loads and undergo shape changes when
deployed in a new operating environment (e.g. printed NiTi scaffolds for coronary
artery stents that expand when heated by the bloodstream). However, it can be com-
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putationally expensive to optimally design mesostructures for even moderately large
deployable devices if their global dimensions are much larger than their smallest ge-
ometric features, especially if the devices have multiple functional needs (e.g. high
stiffness-to-weight ratios, multistability, resilience to fracture, etc.). These problems
would benefit from a framework that combines discrete differential geometry tools
with reduced order modelling and multi-objective optimization techniques. Poten-
tial applications include load-bearing deployable structures made of engineering
materials geared toward space, architectural and biomedical applications.

Mechanics-informed control of soft robots
As discussed in Chapters 5 and 6, several polymers, metals, and biological materials
can be engineered to undergo “programmed” deformations and exertions of me-
chanical work in response to environmental cues. Their use as passively controlled
replacements for external power and logic systems (therefore enabling “untethered”
soft robots) has been explored recently. However, autonomous and active control
are challenging within fully soft systems. In part, this is due to limitations in soft
actuator technology (they often lack reversibility, produce small actuation forces,
need very specific environments to operate, etc.), but it can also be difficult to predict
the extreme elastic deformations that soft robots experience, especially if they are
subjected to a diverse set of harsh contact boundary conditions.

In light of this context, the soft robotics community would benefit from methods for
optimizing hole patterns or stiffness variations in fully soft robotic frames so that
they deform in predictable ways when actuated or squashed. The field would also
benefit from improvements to “approximate” elastic body simulation techniques
developed for computer graphics applications to create efficient design methods
for soft robotic structures. Furthermore, soft robotics will become more broadly
applicable to industrial needs with the development of active structured materials
that integrate actuation, sensing and communication capabilities more fully. This
would permit active control of untethered, work-capable soft structures that operate
in a broader set of environmental conditions than what is currently possible.
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A p p e n d i x A

COMPLIANT MORPHING STRUCTURES FROM TWISTED
BULK METALLIC GLASS RIBBONS

A.1 Details on the material properties of BMG
In this Appendix, we report additional results on the characterization of the BMG
chosen in this work, the Zr65Cu17.5Ni10Al7.5 alloy. The engineering stress-strain
response of strips of BMG having identical dimensions (up to the precision of our
manual cutting process) is shown in Fig. A.1. We can see that all three specimens

FigureA.1: Stress-strain response of aBMGstrip. Each curve corresponds to an experiment
carried out under identical conditions on three specimens.

behave linearly until breaking, and no evidence of plastic deformation is observed.
The average breaking stress we obtain from these curves is f1 ≈ 1.2 GPa, while
the breaking strain (that also represents the elastic strain limit) is Y1 ≈ 1.7%. The
breaking strain value is slightly smaller than the nominal one, Y1 = 2% [1], since our
experiments are performed in tension and since themelt-spinning process introduces
cross-sectional irregularities that can accelerate failure.

References
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A p p e n d i x B

SHAPE-MORPHING ARCHITECTED SHEETS WITH
NON-PERIODIC CUT PATTERNS

B.1 Additional information on the tensile tests
A detail of our tensile experimental setup is shown in Fig. B.1. The insets represent
a few stages of the deformation of the specimen studied in Fig. 3.1. To accomodate

Figure B.1: Response of a 18 × 18 tile, anisotropic sheet with X/;G = 1/8 and C/;G ∼ 0.26.
The insets depict the experimental setup and the response at three stretch values. (Scale bar,
12 mm)

lateral expansions and/or contractions of the specimens undergoing tensile loads,
we employ a fixture where specimens are hung in a curtain-like fashion. We use
3D-printed parts (Formlabs Form 2, clear resin) to connect horizontal steel rods to
the Instron’s clamps; we then use paper clips as “hooks” to hang the specimens (at 5
locations on each side). Upon pulling, the paper clips can slide on the steel rod; the
friction between these components will inevitably affect the response. Note that,
due to the very small forces involved in our experiments, we claim that the elasticity
of paper clips and steel rods only minimally affects the response. From Fig. B.1,
we see that the response is recorded only for values of stretches larger than ∼ 1.08.
This is due to the fact that, when attached to our fixtures, some of the sheets we
consider tend to deform due to their self weight. This self-stretching happens only
when specimens feature mechanism-like deformation in the pulling direction. For
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example, in Fig. 3.1, the curve corresponding to horizontal stretching starts at 1.08,
while the one for vertical stretching starts at 1.

From Fig. 3.1, we can see that the slopes of the elasticity-dominated portions of
the experimental curves corresponding to horizontal and vertical stretching are not
identical. This is caused by the fact that the size of the vertical and horizontal
hinges in our anisotropic specimens are not identical. This is clearly visible from
Figure B.2. In particular, the laser cutting process causes vertical hinges to be

FigureB.2: Size difference between vertical and horizontal hinges in anisotropic specimens.
(a) Detail of one of the anisotropic architectures analyzed in this work (Scale bar, 6 mm). (b)
and (c) Microscope images (2.5× zoom) representing the details of vertical and horizontal
hinges, respectively.

thicker than the horizontal ones. This explains why in Fig. 3.1 the continuous light
gray curve is steeper than the elasticity-dominated portion of the continuous black
curve.

In Figure B.8, we report the tensile response of the isotropic auxetic architecture
displayed in Fig. 3.2(b) and Fig. B.5(a). The two continuous lines, dark and light,
represent the experimental curves obtained by pulling the specimen along the hor-
izontal and vertical directions, respectively. The two almost overlap, as expected,
due to the isotropic nature of the specimen’s response. The dashed line is obtained
from FE simulations. The superimposed dash-dot curve represents the mechanism-
to-elasticity transition.

B.2 Details on the finite element model
In this work, finite element simulations are carried out using Abaqus/Standard.
The investigated sheets present different lengthscales: the hinge in-plane width
and length (∼ 1mm), the length of a tile (∼ 10mm), and the total size of the
sheet (∼ 100mm). Since the mechanical behavior of the sheets is, to a large extent,
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Figure B.3: Tensile response of a periodic sheet featuring the undeformed architecture in
(a). Black lines represent the sheet’s response to horizontal stretching and light gray lines
to vertical stretching. Solid lines are experimental curves. The dashed line represent the
numerical response to both horizontal and vertical loading. The vertical dash-dot line shows
the theoretically-predicted value for the transition from amechanism-dominated deformation
to an elastic deformation. Insets (a-c) show different stages of the sheet’s deformation (Scale
bar, 6 mm); the red and blue lines highlight the diagonals of each tile in a given row and
column, respectively.

governed by the design of the hinges, a sufficiently finemesh is required to accurately
capture the correct response. Another challenge stems from the large nonlinearities
involved and from the large distortions happening at large stretches. In order to
efficiently identify regions that are prone to out-of-plane bending, we conduct two-
dimensional finite element simulations. In all simulations, we resort to a plane strain
assumption, accounting for the fact that the response is primarily determined by the
hinge dimensions, and the hinges’ in-plane width (∼ 0.5mm) is smaller than their
out-of-plane thickness (∼ 1.55mm). Throughout this work, we consider geometric
nonlinearities and model the nonlinear material behavior of natural rubber gumwith
a Neo-Hookean material model. This model is fit to the experimental response of a
natural rubber dogbone specimen to tensile loading. Fig. B.4(a) shows a detail of the
mesh at one of the hinges. We check mesh convergence for one of the simulations
used to obtain the numerical curves in Fig. 3.1. We change the element size and
monitor the stress values recorded for a given stretch along a given direction. The
errors we obtain for doubling the average element size are below 0.73%.

The results reported in Fig. 3.1 and Figure B.3 show that the numerics capture
the features observed experimentally, even though some discrepancies between
experiments and numerics arise at large stretches. These discrepancies can be
attributed to several factors: 1) the inability of the Neo-Hookean model to capture
the correct mechanical behavior at large stretches; 2) the fact that the CAD models
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Figure B.4: Details of the FE model. (a) Detail of the mesh used for one of the hinges in
the simulation of the anisotropic specimen tensile test. (b) Detail of the stress map for the
simulation in Fig. 3.3(b2).

used for our numerical simulations do not account for the exact hinge dimension that
results from the laser cutting process; 3) the simulated loads might not be exactly
identical to the experimental ones.

The stress maps in Fig. 3.3 represent the out-of-plane stress fI = a(fG + fH). The
colormap is designed to give relevance only to compressive stresses—those that are
responsible for the onset of buckling. The stresses are not averaged over subdomains.
Thus, the red areas in Fig. B.4(b) correspond to the compressive stress of the hinges.
We also observe that the compressive stresses partially percolate into the tiles. This
is likely responsible for out-of-plane buckling. From Fig. 3.3(c2-c3), we can see
that the stress maps for the two loading configurations are almost identical. For this
reason, the stress maps do not contain enough information to determine the exact
shape of the resulting buckling patterns in complex scenarios, but give a useful
guideline on where buckling is likely to occur in simple cases like that depicted in
Fig. 3.3(b1-b2).

B.3 Kinematic analysis
The sheets discussed in this work are designed to display mechanisms of inex-
tensional deformation, i.e., low energy modes of compliant mechanism-like defor-
mation. In this section, we consider the pin-jointed truss analogs of some of our
sheets, and resort to the matrix analysis detailed by Pellegrino & Calladine [3] and
Hutchinson & Fleck [2] to determine what these mechanisms are. This analysis
consists of the following steps. First, we calculate the equilibrium matrix A, that



140

relates bar tensions t and joint forces f according to A · t = f, and the kinematic
matrix B, relating joint displacements d and bar elongations e according to B ·d = e.
Note that equilibrium imposes that B = AT. Then, we apply boundary conditions
to suppress rigid body motions; in this case, we block the G and H displacements
of node (1,1), the node at the bottom left of the specimen, and the H displacement
of node (2,1). Finally, we compute the null space of B. If the system is properly
constrained, each vector belonging to this null space represents a mode of inexten-
sional deformation. The results of this analysis for two cut patterns are shown in
Figure B.5. First, we consider the periodic architecture in Figure B.5(a-b), known

Figure B.5: Kinematic analysis of periodic perforated sheets featuring tiles connected by
thin hinges. (a) Isotropic sheet and (b) detail. (c) Mechanism of inextensional deformation
for the truss analog of (a), obtained by computing the null space of the kinematic matrix.
(d) Detail of one of the tiles of (a), indicating all the quantities necessary for the kinematic
analysis. (e-h) Same as (a-d), but for the architecture in (e). (Scale bar, 6 mm)

for its auxeticity [1]. The matrix analysis of the pin-jointed truss analog to this
system predicts only one mechanism, shown in Figure B.5(c), and characterized by
the tile rotations highlighted by the black arrows. Note that this geometry features
no states of self-stress. Thus, even though the analysis assumes small deformations,
the same mechanism should extend to large stretch regimes [2]. The periodic sheet
in Figure B.5(e) (same as the one shown in Fig. 3.1) features a very similar mech-
anism of inextensional deformation, characterized by the same relative rotations of
the tiles, but with an equivalent positive Poisson’s ratio. The tensile tests in Fig. 3.1
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and Fig. 3.2 demonstrate that the rubber sheets, despite presenting non-idealities
such as finite-sized hinges, deform according to the corresponding mechanisms up
to certain stretch values.

Knowing how these periodic sheets deform in plane, we resort to a kinematic model
in order to quantify their mechanism-like deformation. The unit cells for these
periodic architectures consist of four adjacent tiles. It is sufficient to consider a
single tile to determine the whole system’s response. In Fig. B.5(d,h) we show
a single tile from the sheets in Fig. B.5(a,e), such that (8 + 9)/2 ∈ Z, and we
indicate all the useful geometric parameters. Here, (8, 9) indicates a generic tile,
with 8 = 1, ..., #G + 1, 9 = 1, ..., #H + 1 and #G , #H being the number of tiles along
the horizontal and vertical directions. Note that, if we consider a tile such that
(8 + 9)/2 ∉ Z, the following formulae will only slightly vary. For the remainder of
this section, we assume that we are dealing with periodic architectures; this implies
that FH (8, 9) = FH (8 + 1, 9 + 1) = FH, and FG (8 + 1, 9) = FG (8, 9 + 1) = FG . The red
and blue lines indicate the diagonals of each tile. Their lengths are

3ℎ =

√
;2G + [;H − 2FH − X]2 and 3E =

√
;2H + [;G − 2FG − X]2 . (B.1)

Ideally, tiles can rotate until the diagonal lines corresponding to the selected stretch
direction are straightened. With this in mind, we can determine the maximum
horizontal and vertical stretches for any periodic architecture designed following
our paradigm, as

_"G =
3ℎ

;G
and _"H =

3E

;H
. (B.2)

We can also use kinematics to derive formulae for the tangential stretches as functions
of _"G or _"H . First, we determine the angle U between 3ℎ and the G-axis in the
undeformed configuration, and V between 3E and the H-axis, as

U = arctan
(
;H − 2FH − X

;G

)
and V = arctan

(
2FG + X − ;G

;H

)
. (B.3)

Note that we define U to be positive counterclockwise and V to be positive clockwise.
We also define W = c/2−U− V as the angle between 3ℎ and 3E. During mechanism-
like deformation, W remains fixed since we assume the tiles are rotating rigidly.
On the other hand, the inclinations of 3ℎ and 3E with respect to G and H change
during the deformation process. To determine the intermediate stages of the sheet’s
deformation, we define U∗ and V∗ as angles varying from 0 to U and 0 to V,
respectively. Consider now the case of stretching along G. We can write

_G (U∗) =
3ℎ cosU∗

;G
and _H (U∗) =

3E sin(W + U∗)
;H

. (B.4)
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From the first of the two equations, we obtain U∗(_G) as

U∗(_G) = arccos
(
_G;G

3ℎ

)
. (B.5)

Substitution leads to the following formula for _H (_G):

_H (_G) =
3E

;H
sin

[
W + arccos

(
_G;G

3ℎ

)]
. (B.6)

This formula is used to determine the analytical curves in Fig. 3.2(e), representing
the evolution of the tangential stretch as a function of the applied one. Note that a
similar formula can be obtained for _G (_H).

In our work, we fix the design parameters ;G , ;H and X most of the time, and vary FG
and FH. Different combinations of FG and FH allow to span a wide design space in
terms of achievable deformations. To get a better idea of the available design space,
in Fig. B.6, we report plots for the maximum stretch _"G , and the related tangential
stretch _H (_"G ), as a function of FG and FH. Note that the values in the colormaps are

Figure B.6: Design space in terms of maximum stretches, _"G and _H (_"G ), as a function of
FG and FH , with ;G = ;H = 6 mm and X = ;G/8 fixed. Insets A-D represent specific examples
extracted from the space.

specific for ;G = ;H = 6 mm and X = ;G/8. We can see that choosing FG and FH allows
to obtain a wide range of responses to stretching. Some significant examples (A, B,
C and D) are extracted from the design space. A, corresponding to FG = FH = 0,
is characterized by _"G = _H (_"G ) = 1.33; B, corresponding to FG = (;G − X)/2
and FH = 0, is characterized by _"G = 1.33 and _H (_"G ) = 0.75; C, corresponding
to FG = (;G − X)/2 and FH = (;H − X)/2, is kinematically undeformable albeit
featuring bulky tiles connected by thin hinges; D, corresponding to FG = ;G − X
and FH = 0, does not behave like a mechanism since the rigid tiles assumption
does not hold for these specific parameters. From these examples, it is clear that
not all the configurations available in the design space allow to obtain the in-plane
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mechanism-like deformation behavior we are interested in. Therefore, particular
care is needed when choosing the design parameters; in light of this, in this work,
we limit ourselves to the ranges 0 ≤ FG ≤ (;G − X)/2 and 0 ≤ FH ≤ (;H − X)/2.

An example of non-periodic sheet is shown in Fig. B.7(a). Non-periodicity leads to

Figure B.7: Kinematic analysis of non-periodic perforated sheets featuring tiles connected
by thin hinges. (a) Example of non-periodic sheet. (b) Detail of the sheet in (a). (c) The null
space of the kinematic matrix of the pin-jointed truss analog to (a) contains no mechanism.
(d) Detail of one of the tiles of the sheet in (a), with all the quantities necessary for the
kinematic analysis. (e-h) Same as (a-d), but for the architecture in (e). (Scale bar, 6 mm)

frustration and to the disappearance of mechanisms of inextensional deformation.
This is confirmed by the matrix analysis of the pin-jointed truss analog of the
architecture in Fig. B.7(a), that has no mechanisms. In these non-periodic cases,
we can still use kinematics to infer something about the local deformation of the
sheet, even though it cannot be used to quantify global deformations as it did in
periodic scenarios. For this reason, in the main article, we sometime consider the
maximum stretches that a tile belonging to a non-periodic sheet can undergo. We
interpret these stretches as measures of a local ability to deform. The local ability
to behave like a mechanism is what makes these systems buckle out of plane. For
a generic tile in a non-periodic scenario, whose bottom-left gridpoint (8, 9) is such
that (8 + 9)/2 ∈ Z, the maximum stretches are calculated as in Eq. B.2, with 3ℎ and
3E computed as

3ℎ =

√
;2G + [;H − FH (8, 9) − FH (8 + 1, 9 + 1) − X]2 and (B.7)

3E =

√
;2H + [;G − FG (8, 9 + 1) − FG (8 + 1, 9) − X]2 . (B.8)

B.4 Cut pattern generation
Our cut patterns are generated and kinematically analyzed using custom MATLAB
scripts. The first step of the design process is to generate a grid of points. The grid
can be non-Cartesian, as long as it can be mapped to a rectangular one. At each grid
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point (8, 9) with 8 = 1, ..., #G + 1 and 9 = 1, ..., #H + 1 with #G and #H being the
number of tiles along the horizontal and vertical directions, we cut a diamond-shaped
hole. For each diamond, we define either its horizontal or vertical half-diagonal, i.e.
FG orFH. If (8+ 9)/2 ∈ Zwe define the diamond’s H-oriented half-diagonalFH (8, 9).
Its G-dimensionwill be determined by the neighboring diamonds—;G−X−FG (8−1, 9)
to the left and ;G − X − FG (8 + 1, 9) to the right of the grid point. Otherwise, if
(8 + 9)/2 ∉ Z, we define FG (8, 9) while the diamond’s H-dimension follows from the
neighboring diamonds. This design paradigm guarantees geometric continuity and
that no perforations overlap, even in non-periodic architectures where we let FG and
FH vary (smoothly or not) from diamond to diamond. In the case of architectures
designed to allow for plastic deformations, instead of defining a diamond, we define
an octahedron at each gridpoint.

The FG , FH functions corresponding to all cut patterns shown throughout this
manuscript are listed in the following.

• “Anisotropic” sheet.
Appearing in Fig. 3.1, Fig. 3.2(c), Fig. B.5(e), Fig. B.4(a), Fig. B.6(b), Fig. B.1,
Fig. B.2, Fig. B.8.
Loading: Uniform horizontal or uniform vertical.
Material: Natural rubber gum of various thicknesses (1.55, 3.1 mm).
Parameters: #G = #H = 18, ;G = ;H = 6mm, X = ;G/8.
Hole size distribution (with 8 = 1, ..., #G + 1, 9 = 1, ..., #H + 1):

FG (8, 9) = (;G − X)/2 , FH (8, 9) = 0 .

• “Isotropic” sheet.
Appearing in Fig. 3.2(b), Fig. B.5(a), Fig. B.6(a), Fig. B.3.
Loading: Uniform horizontal or uniform vertical.
Material: Natural rubber gum, 1.55mm thick.
Parameters: #G = #H = 18, ;G = ;H = 6mm, X = ;G/8.
Hole size distribution (with 8 = 1, ..., #G + 1, 9 = 1, ..., #H + 1):

FG (8, 9) = 0 , FH (8, 9) = 0 .

• “Unstretchable” sheet.
Appearing in Fig. 3.2(d), Fig. B.6(c).
Loading: Uniform horizontal or uniform vertical.
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Material: Natural rubber gum, 1.55mm thick.
Parameters: #G = #H = 18, ;G = ;H = 6mm, X = ;G/8.
Hole size distribution (with 8 = 1, ..., #G + 1, 9 = 1, ..., #H + 1):

FG (8, 9) = (;G − X)/2 , FH (8, 9) = (;H − X)/2 .

• “Graded” or “Dome” sheet.
Appearing in Fig. 3.3(a1-a2), Fig. B.9, Fig. B.10, Fig. B.12(a).
Loading: Horizontal point loads at H = H"/2 along the left and right bound-
aries.
Material: Natural rubber gum of various thicknesses (1.55, 3.1 and 0.75
mm).
Parameters: #G = 36, #H = 18, ;G = 6mm, ;H = 2;G , X = ;G/8.
Hole size distribution (with 8 = 1, ..., #G + 1, 9 = 1, ..., #H + 1):

FG (8, 9) =
(;G − X)

2
, FH (8, 9) =

;H − X
2

����cos
9c

#H + 2

���� .
• “Two bumps” sheet.
Appearing in Fig. 3.3(b1-b2) and Fig. B.4(b).
Loading: Point loads at the four corners, directed along ±5o with respect to
the horizontal.
Material: Natural rubber gum, 1.55mm thick.
Parameters: #G = 37, #H = 18, ;G = ;H = 6mm, X = ;G/8.
Hole size distribution (with 8 = 1, ..., #G + 1, 9 = 1, ..., #H + 1):

FG (8, 9) =


;G−X

2

���cos 8c
(#G+1)/2

��� if 8 < (#G + 1)/2 + 1

;G−X
2

���cos (8−(#G+1)/2)c(#G+1)/2

��� if 8 ≥ (#G + 1)/2 + 1
,

FH (8, 9) =
;H − X

2

����cos
9c

#H + 2

���� .
• “Flower” sheet.
Appearing in Fig. 3.3(c1-c3).
Loading: Point loads at the four corners (directed at ±45o with respect to
the horizontal), or point loads at the centerpoints of the four edges (and
perpendicular to those edges).
Material: Natural rubber gum, 1.55mm thick.
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Parameters: #G = 37, #H = 37, ;G = ;H = 6mm, X = ;G/8.
Hole size distribution (with 8 = 1, ..., #G + 1, 9 = 1, ..., #H + 1):

FG (8, 9) =
;G − X

2

����cos
28c
#G + 1

���� ����cos
2 9c
#H + 1

���� ,
FH (8, 9) =

;H − X
2

����cos
28c
#G + 1

���� ����cos
2 9c
#H + 1

���� .
• “C pattern” sheet.
Appearing in Fig. 3.3(d1-d2).
Loading: Point loads at few points along each boundary. All loads are
perpendicular to the boundaries.
Material: Natural rubber gum, 1.55mm thick.
Parameters: #G = 30, #H = 30, ;G = ;H = 6mm, X = ;G/8.
Hole size distribution: We did not use analytical functions of 8 and 9 to
create this pattern. The FG , FH couples we use are FG = (;G − X)/2 and
FH = (;H − X)/2 outside the C, and FG = 0, FH0 inside the C.

• “Bulging tube.”
Appearing in Fig. 3.4(a).
Loading: Axial loads applied at the ends of the tube through 3D printed rings.
Material: Natural rubber gum, 1.55mm thick.
Parameters: #G = 18, #H = 40, ;G = ;H = 6mm, X = ;G/8.
Hole size distribution (with 8 = 1, ..., #G + 1, 9 = 1, ..., #H + 1):

FG (8, 9) = 0 ,

FH (8, 9) =


(;H − X)/2 if 9 ≤ 6 | ( 9 ≥ 15 & 9 ≤ 20) | ( 9 ≥ 26 & 9 ≤ 31) | 9 ≥ 35

0 if ( 9 ≥ 7 & 9 ≤ 14) | ( 9 ≥ 21 & 9 ≤ 26) | ( 9 ≥ 32 & 9 ≤ 34)
.

• “Petal” sheet.
Appearing in Fig. 3.4(b).
Loading: Axial loads applied at the petal’s extremities.
Material: Natural rubber gum, 1.55mm thick.
Parameters: We used FG = (;G − X)/2 and FH = (;H − X)/2 along the petal’s
boundaries and in those regions that we want to remain stiff; we used FG = 0,
FH = 0 elsewhere.

• “Plastic chalice.”
Appearing in Fig. 3.4(d).



147

Loading: Manual forming.
Material: 0.5mm-thick PETG sheet.
Parameters: #G = 36, #H = 18, ;G = 6mm, ;H varies linearly from 6mm at the
bottom of the specimen to 18mm at the top, X = ;G/10, ℎ = ;G/8.
Hole size distribution (with 8 = 1, ..., #G + 1, 9 = 1, ..., #H + 1):

FG (8, 9) =
(;G − X)

2
, FH (8, 9) =

;H − X
2
−
;H − X

2

����cos
9c

#H + 2

���� .
• “Plastic vase.”
Appearing in Fig. 3.4(c).
Loading: Manual forming.
Material: 0.5mm-thick PETG sheet.
Parameters: #G = 36, #H = 18, ;G = 6mm, ;H varies linearly from 6mm at the
bottom of the specimen to 18mm at the top, X = ;G/10, ℎ = ;G/8.
Hole size distribution (with 8 = 1, ..., #G + 1, 9 = 1, ..., #H + 1):

FG (8, 9) =
(;G − X)

2
, FH (8, 9) =

;H − X
2
−
;H − X

2

����cos
9c

2#H + 4

���� .
• “No mechanism” sheet.
Appearing in Fig. B.7(a).
Loading: None.
Material: Natural rubber gum, 1.55mm thick.
Parameters: #G = 18, #H = 18, ;G = ;H = 6mm, X = ;G/8.
Hole size distribution (with 8 = 1, ..., #G + 1, 9 = 1, ..., #H + 1):

FG (8, 9) =
;G − X

2

����cos
8c

#G + 2

���� , FH (8, 9) =
;H − X

2

����cos
9c

#H + 2

���� .
• “Plastic dome.”
Appearing in Fig. B.12(b).
Loading: Horizontal point loads at H = H"/2 along the left and right bound-
aries.
Material: 0.5mm-thick PETG sheet.
Parameters: #G = 36, #H = 18, ;G = 6mm, ;H = 2;G , X = ;G/10, ℎ = ;G/8.
Hole size distribution (with 8 = 1, ..., #G + 1, 9 = 1, ..., #H + 1):

FG (8, 9) =
(;G − X)

2
, FH (8, 9) =

;H − X
2

����cos
9c

#H + 2

���� .
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B.5 Influence of the designparameters on the in-planedeformation of periodic
specimens

To analyze the influence of the design parameters on the in-plane response of
perforated sheets, we consider the cut pattern discussed in Figure 1 as reference
case. The results of this analysis are reported in Figure B.8. In Fig. B.8(a), we show

Figure B.8: Influence of design parameters on sheet stiffness. (a) Dependence of the
mechanism-like response on the in-plane hinge width, X. We keep C/;G ∼ 0.26 constant, and
we vary X/;G . The dashed vertical lines represent the mechanism-to-elasticity transitions
for all X/;G cases. (b) Dependence of the mechanism-like response on the sheet’s thickness,
C, with X/;G = 1/8 constant.

the dependence of the horizontal stretch response on the in-plane width of the hinges
X, for a constant out-of-plane thickness of the sheet C/;G ∼ 0.26 (corresponding to
C = 1.55 mm). If X is increased, the sheet tends to lose its mechanism-like behavior.
This is evident from the fact that the red and yellow continuous curves do not display
a clear mechanism-to-elasticity transition. On the other hand, this transition is more
pronounced for small X. Note that the dash-dot lines represent the mechanism-to-
elasticity transitions for each X value. They are different from each other since the
lengths of the tile diagonals 3ℎ and 3E differ when we change X.

In Fig. B.8(b), we superimpose the responses of two specimens featuring the same
architecture with X/;G = 1/8, and different sheet thicknesses, C. We observe that
the two responses overlap in the mechanism region, and in part of the elasticity-
dominated regime. The curves deviate for stretches larger than 1.35.
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B.6 Influence of the design parameters on the out-of-plane deformation of
non-periodic sheets

Fig. B.9 and Fig. B.10 provide information on the influence of X and C on the doming
of an elastic sheet. Figure B.9 is discussed in detail in the main manuscript. Note
that these shapes have been obtained by 1) pulling the specimen by hand up to a
desired stretch value, 2) nailing it to a wooden board, 3) pinching the center of the
specimen to trigger out-of-plane buckling. This guarantees that all the images in
Figure B.9 and Figure B.10 are obtained with consistent loading conditions. It also
ensures that, if two stable solutions exist for a certain stretch value, we jump on the
one that corresponds to out-of-plane deformation. For these reasons, the critical
buckling stretches observed in experiments made with tensile test apparati are bound
to differ from the results shown here.

In addition to the comments in the main text, we here discuss the influence of
X/C. When C is decreased below the in-plane hinge width X, the out-of-plane
(rather than the in-plane) bending of the hinges becomes favorable: this translates
into the formation of localized crease patterns [4, 5]. In our case, this behavior
introduces local undulations superimposed to the global three-dimensional profile
and concentrated near the loading sites. This is shown in Figure B.10(c).

B.7 Alternative design for stiff materials and plastic deformations
In order to fabricate sheets out of stiff materials, and to have our sheets retain their
3D shape upon load removal, we slightly modify our cut pattern design. To achieve
shape retention, we leverage plastic deformations that occur at the hinges when
elastic-plastic materials are used. If the same hinge geometry used for soft materials
were used for stiff ones, both periodic and non-periodic specimens would shatter at
the hinges when pulled open. This is why we modify our hinge design. To do so,
we follow the guidelines offered by Shang, Pasini, et al. [6]. This entails defining
octahedra-shaped cuts instead of diamond-shaped ones at each grid point. This new
design strategy is illustrated in Fig. B.11(b). It represents the compliant mechanism
version of the architecture in Fig. B.11(a). As a result, the hinges produced with
the new design strategy have a finite length ℎ. Note that the overall response of this
alternate geometry is similar to the original one. The requirement is for the hinge
length ℎ to be much smaller than the distances between gridpoints, ;G and ;H.
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Figure B.9: Out-of-plane deformation of three graded sheets with different thicknesses,
for different stretches. Rows of images correspond to specific stretch values. Columns
correspond to different thicknesses of the sheets. In each image, ℎ indicates the height of
the highest point of the 3D shape with respect to its undeformed position. (Scale bar, 12
mm)

In Fig. B.12, we compare the response of the natural rubber sheet also shown in
Fig. 3.3(a1), to the response of a sheet made of PETG, featuring a similar cut pattern
albeit modified by selecting X = ;G/10 and introducing ℎ = ;G/8. Upon load removal,
the PETG sheet partially retains its deformed, three-dimensional shape, while the
rubber one does not.
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A p p e n d i x C

EFFECTIVE CONTINUUMMODELS FOR THE BUCKLING OF
NON-PERIODIC ARCHITECTED SHEETS THAT DISPLAY

QUASI-MECHANISM BEHAVIORS

C.1 Strong form of equilibrium
The strong form of the equilibrium relations under the mixed formulation are

−∇ ·
(
2F
mΨ<

mC

)
= 0 in Ω,

−∇ ·
(
2
mΨ<

mC
∇F

)
+ mΨ2
mF
+ �ΔE = 0 in Ω,

�(ΔF − E) = 0 in Ω,

(C.1)

with boundary conditions(
2F
mΨ<

mC

)
· = = 0 on m 5Ω,

D = D0 on mDΩ,

F = F0, E = 0 on mΩ.

(C.2)

The first two equations in (C.1) are the in-plane and out-of-planemomentum balance
equations, respectively. The last equation is the constraint that E = ΔF.

C.2 Finite element formulation and Solution Procedure
The fields u, F, and E are �1(Ω), so we may consider a Galerkin finite element
formulation with p = 1 shape functions for them. Therefore,

u =
=D∑
8=0

D8�
D
8 , F =

=F∑
8=0

F8Φ
F
8 , E =

=E∑
8=0

E8Φ
E
8 , (C.3)

where {�D
8 } is the set of vector-valued shape functions for the in-plane displace-

ments. {ΦF
8
} and {ΦE

8
} are the scalar-valued sets of shape functions for F and E,

respectively. Because we assume homogeneous boundary conditions for both of
these fields, we can then consider {ΦF

8
} = {ΦE

8
}. Then, using these shape functions

for the variations in (4.22), the discrete equilibrium equations can be written as
RD

RF

RE

 = R = 0 , (C.4)
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where
'D8 =

∫
Ω

(
2F
mΨ<

mC

)
: ∇�D

8 3�,

'F8 =

∫
Ω

(
2
mΨ<

mC
∇F − �∇E

)
· ∇ΦF8 +

mΨ2

mF
ΦF8 3�,

'E8 =

∫
Ω

−� EΦE8 − �∇F · ∇ΦE8 3�.

(C.5)

To solve for this equilibrium, we use Newton-Raphson updates of the form

K(x)Δx = −R(x), (C.6)

where x = [D0, . . . , D=D , F0, . . . , F=F , E0, . . . , E=E ] is the vector of degrees of free-
dom, Δx are their updates, and K is the tangent stiffness matrix

K =


KDD KDF 0
KFD KFF KFE

0 KEF KEE

 , (C.7)

where
 DD8 9 =

∫
Ω

∇�D
8 :

m2Ψ<
mFmF

: ∇�D
9 3�,

 FF8 9 =

∫
Ω

∇ΦF8 ·
m2Ψ<

m∇Fm∇F · ∇Φ
F
9 3�,

 EE8 9 =

∫
Ω

−�ΦE8ΦE9 3�,

 DF8 9 =  FD98 =

∫
Ω

∇�D
8 :

m2Ψ<
mFm∇F · ∇Φ

F
9 3�,

 FE8 9 =  
EF
98 =

∫
Ω

−�∇ΦF8 · ∇ΦE9 3�.

(C.8)

The displacements u0 on the boundary are incremented, and Newton-Raphson is
used to reach an equilibrium configuration. The previous equilibrium configuration
is used as an initial guess for the subsequent iterations.

C.3 Stability analysis with mixed method constraint
To probe the stability of an equilibrium configuration, it is common practice to
calculate the eigenvalues of the tangent stiffness matrix. A negative eigenvalue
implies an instability, and the equilibrium solution can be perturbed in the direction
of the corresponding eigenvector to explore the buckled solution. In our case,
we must restrict ourselves to eigenvectors in the subspace where the constraint
E = ΔF is satisfied. To this end, we consider an effective stiffness matrix from
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the quadratic form, upon which the constraint is satisfied. Consider the discrete
constraint equation:

RE = KEFw +KEEv = 0. (C.9)

This can also be written in the following form:

v = − (KEE)−1 KEFw. (C.10)

We can then use a reduced variable set xA under which the constraint is satisfied, as

x =


u
w
v

 =

I=D×=D 0

0 I=F×=F
0 − (KEE)−1 KEF


[
u
w

]
= PxA . (C.11)

Then, the quadratic form gives

x)Kx = x)A K̃ xA , (C.12)

where

K̃ = P)KP =

[
KDD KDF

KFD
(
KFF −KFE (KEE)−1 KEF

)] . (C.13)

Then to assess stability, we probe the eigenvalues of this effective stiffness matrix
K̃. An eigenvalue passing through zero along the principle deformation path im-
plies an instability. The corresponding eigenvector can then be used to produce a
perturbation, using P to map back to the full variable set. The magnitude of the
perturbation is chosen to be on the same order as the displacement increment. The
direction of the perturbation is decided such that the F component at the middle of
the sheet is positive.
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A p p e n d i x D

PROGRAMMING TEMPORAL MORPHING OF
SELF-ACTUATED SHELLS

D.1 Shell design
Our shells have three layers. Two 3D-printed non-uniform tessellations form the
outer layers. These are glued to either side of a pre-stretched latex membrane. This
section describes the design of the flat-printed geometries.

Single unit cell design
The shells’ outer layers are tessellations of the structures shown in Fig. D.1. Each of
these unit cells is bounded by four cylinders of diameter 4 mm and height 2.3 mm,
called bases. The bases are connected to their neighbors by two symmetric V-shaped
spring elements (called brackets) that form an angle of 37> relative to the central
axis and have a height of 1 mm. At room temperature, brackets are sufficiently stiff
to prevent finite deformations due to compression by the pre-stretched elastic mem-
brane that constitutes the shells’ mid-planes. The brackets soften when placed in
hot water, inducing in-plane contraction. This contraction occurs until the bumpers
attached to the bases in the space between the brackets collide. This collision occurs
in each unit cell once the target in-plane deformation for that unit is reached. Local
curvatures are programmed in a unit cell by setting different bumper lengths for the
opposite outer layers. To facilitate aligning the two outer layers with respect to each
other during shell fabrication, cylindrical holes are subtracted from several bases
(see Appendix D.5 for more information).

The feature dimensions were chosen for the following reasons. Bases interface the
membrane to the brackets, so they must have a sufficiently large gluing area to be
reliably connected to the membrane, but should be small enough to allow large
curvatures in decimeter-scaled specimens. The bracket shape is designed to reduce
both in-plane and out-of-plane shearing. In-plane shearing is prevented due to the
large (37◦) angle between the bracket and the central axis. Out-of-plane shearing
is prevented due to the rectangular shape of the bracket section. The 1 mm bracket
height is always larger than its thickness (ℎ ≤ 0.65 mm), which makes in-plane
bending energetically favorable.
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Figure D.1: Unit cell scheme. The configurable parameters are the central length ; (constant
difference with bracket length 1), bracket thicknesses ℎ (which can be different for the two
opposite layers), and the bumper cutting plane.

Tessellating unit cells
The design pipeline starts with a user-provided target surface (Fig. D.2), which
is isotropically remeshed into a triangular mesh T with a target number of ver-
tices # [1]. Each pair of adjacent triangles of this mesh represents one unit cell
with two bases placed on opposite faces of each triangle, centered on its barycenter.
Thus, the whole mesh T serves as a stencil for our structure’s final state, when
deformation has completed. It is scaled to ensure there is a minimal bumper length
(0.3 mm) to limit bracket deformations in the final state. The actual size of the shell
depends on the number of vertices in T .

In order to generate a shell of dimensions close to the input surface, we aim to
minimize the required scaling of the stencil. First, we find the best fitting number
of vertices of the stencil. It can be coarsely estimated as # ≈ 0.38�/;2avg where �
is total surface area and ;avg = 7 mm is the average unit cell length (using heuristic
knowledge that the number of triangles is twice the number of vertices, assuming
triangles are close to regular, and approximating unit cell lengths as twice the radius
of circumscribed circles). Then, # can be varied to find a value leading to minimal
stencil scaling.

Given the layout of bases on the stencil, the bumpers are first constructed as boxes
that are aligned along the lines connecting the centers of the triangles and projected
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target surface actuated stencil

flat stencil

2. define bases and bumpers

3. conformal
flattening

1. isotropic
triangulation

5. define brackets

4. relocate
bases with
bumpers

Figure D.2: Shell design pipeline: 1. A target surface is isotropically triangulated. 2.
This “actuated” stencil is populated with bases and bumpers touching their corresponding
neighbors. 3. The “actuated” stencil is conformally flattened. 4. Bases with bumpers are
relocated to the flat stencil. 5. Bracket lengths are set by the distance between bases in this
configuration. Bracket thickness is defined later during the temporal programming phase.

onto the corresponding stencil triangle. Matching pairs of boxes are trimmed by
the bisector plane between the triangles, defining the interface between neighboring
bumpers.

The flat arrangement of bases is then constructed using a minimal distortion con-
formal map [2] from T to a resulting 2D mesh, F . We exploit conformal flattening
since it circumvents shearing which would result in undesired shear forces in the
membrane as it contracts. The mesh F serves as a stencil for the structure’s initial,
printed state. We relocate the bases by translation from triangle centers in the final
state’s stencil to triangle centers in the initial state’s stencil. The bases are rotated to
align one of its bumper axes in the direction of the corresponding neighbor’s center
since it is generally not possible to perfectly align all of them. Then, F is scaled so
that the relocated bases with bumpers do not intersect with their neighbors, moreover
specifying the minimal gap between them necessary for fabrication (0.1 mm).

Once the flat layout of bases with bumpers is complete, V-shaped brackets that
bridge the gaps between bases are generated. This produces a flat structure that
fully encodes the target geometry. Conformal flattening may produce overlaps of
unit cells, or some of the unit cells may be longer than our upper bound (9.5 mm),
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making the target shape impossible to replicate. Large unit cell lengths may occur
if the target surface has regions with high curvatures or that require substantial
stretching during conformal flattening. It is in certain cases possible to resolve the
latter issue by placing cuts across the surface [3] or by editing the input geometry.
Morphing times are programmed by configuring the thicknesses of the brackets (see
Appendix D.4).

OpenSCAD1 scripts were used to generate STL meshes for the fabricated structures
in this study.

D.2 Simulation
Our framework builds on physical simulation to predict the deformed configuration
of the system at a given instant in time. We consider a discrete mechanical model
that determines the mechanical behavior of a deformable object based on an elasto-
plastic model with elastic energy potential, (x, x̄(C),κ(C)) ∈ R and plastic energy
dissipation formulated through the rest configuration update. Here, x(C) ∈ R= is a
vector containing = generalized coordinates that spatially discretize the kinematic
state of the shell in different configurations, x̄(C) refers to the undeformed configu-
ration, κ(C) is a vector grouping all material stiffness parameters, and C is the time
instant.

Temporal effects are modeled through the explicit dependencies of the undeformed
configuration and material stiffness on time. In the next section, we describe how
these dependencies are estimated from empirical data. Because our structuresmorph
at low strain rates, we neglect all dynamic effects and take discrete time increments of
constant duration, X = 0.5 s. After each time increment, the undeformed configura-
tion and stiffness parameters are updated quasistatically. We denote the magnitudes
corresponding to the :-th time step of the morphing process as x: , x̄: , κ: . For
notation simplicity, we will drop the superscript corresponding to the morphing
time step unless specified. Simulating the static behavior of this mechanical system
at the :-th morphing time step implies solving the nonlinear system of differential
equations defined by net force equilibrium, i.g., F(x: , x̄: ,κ: ) = −∇x, = 0, using
standard numerical optimization methods.

Our computational model couples a FEM simulation of the membrane, a rigid body
model for bases, and a data-driven spring model for the brackets. In the following
sections, we describe the kinematics and mechanics of each of these subsystems

1http://www.openscad.org
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separately, and then specify how we model the coupling between them and solve the
numerical problem.

Discrete kinematics
The bases are modeled using #r prismatic rigid bodies. Each rigid body represents
two bases attached to the membrane from the opposite sides. The kinematic state of
the 8-th rigid body can be determined by the position of the center-of-mass v8 ∈ R3,
togetherwith its rotation r8 ∈ R3, expressed in angle-axis format. The corresponding
rotation matrix R8 can be easily computed using the well-known Rodrigues formula

R(r) = I + sin(\) [u]× + (1 − cos(\)) [u]2×, (D.1)

where \ = | |r| |, u = r/| |r| | and [u]× is the cross product matrix of u, i.e., the
matrix such that [u]×x = u × x. This allows us to express the position of any point
p 9 in the local coordinates of the 8-th rigid body through the non-linear relation
p 9 = R8 (r8)p0

98
+v:

8
, where p0

98
= p0

9
−v0

8
, are the coordinates of the point in the local

frame of the rigid body.

Each pair of neighboring bases are joined by two brackets. The #B brackets are
modeled using two types of components: data-driven springs and shear-resisting
elements. Both components are composed by line segments denoted s8 9 = (s8, s 9 ),
where s8 and s 9 are a pair of points on the surface of the 8-th and 9-th bases.

• Data-driven springs (Fig. D.3, left), c@
8 9
, for @ = 1, . . . , 4, are responsible

for modeling the time-evolving resistance to deformation as well as bumper
collisions.

• Shear-resisting elements (Fig. D.3, center), represented by crossing pairs of
segments s@

8 9
= {s@0

8 9
, s@1
8 9
}, for @ = 1, . . . , 4, are responsible for penalizing un-

desired in-plane and out-of-plane shearing during the simulation. Resistance
to shearing is inherent to the fabricated brackets due to their V-shaped design.

Finally, we represent the elastic membrane as a piecewise linear mesh of trian-
gles (Fig. D.3, right), with #< vertices. The set of membrane vertices M =

{m1, . . . ,m#<} can be partitioned into two subsets: free vertices,Mf = {f1, . . . , f#f},
and vertices coupled to the bases,Mg = {g1, . . . , g#g}.

All points lying on the surface of a base are coupled to it implicitly. The positions of
these points can be expressed in terms of the center-of-mass and rotation of the rigid
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bodies following the non-linear expression (D.1). Therefore, the geometric config-
uration of the shell can be completely determined by the positions and orientations
of the rigid bodies together with the membrane vertices that are not coupled to the
rigid bodies. This leads to a total of #t = 6#r + 3#f degrees of freedom which we
group in the state vector x = {v1, r1, . . . , v#r , r#r , f1, . . . , f#f}.

data-driven springs shear-resisting elements membrane FEM

base base base

Figure D.3: Discretization elements: data-driven springs, representing brackets’ time-
evolving stiffness and bumper collisions (left); shear-resisting elements, representing brack-
ets’ resistance to undesired shearing (center); and membrane FEM (right).

Discrete energies
Given this discretization, the mechanical behavior of the shell can be described by
a conservative elastic potential , aggregating the contributions of the data-driven
springs,c, shear-resisting energy,s, and the membrane,m:

, (x) =
∑
*8 9

©«
4∑
@=1

,c(c@8 9 ) +
4∑
@=1

,s(s@08 9 , s
@1

8 9
)ª®¬ +

∑
T8
,m

(
G8 (mT8 )

)
. (D.2)

Here,*8 9 refers to the unit cell joining the 8-th and the 9-th bases, T8 refers to the 8-th
element of the membrane discretization, and G8 is the deformation gradient of the
membrane evaluated at this element. Let us separately explain each of the energy
terms:

• The data-driven spring energy,c, has the following expression:

,c(c@8 9 ) =

,d

(
1, ℎ, C, !̄ − ! (c@

8 9
)
)

if ! (c@
8 9
) > !c,

^2
2

(
! (c@

8 9
) − !c

)2
if ! (c@

8 9
) ≤ !c,

(D.3)

where !c is the collision distance for the spring determined by the bumpers
geometry. Initially, the elastoplastic behavior of the spring follows a data-
driven model ,d(1, ℎ, C, G) for a given bracket length, 1, bracket thickness,
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ℎ, and time spent under water, C (see next section). It depends on spring
deformation, G = !̄ − ! (s@

8 9
), where !̄ is the rest length of the spring. To

account for plastic effects, the rest length of the spring is updated after each
time increment following the scheme !̄:+1 = min

(
!̄: , !̄0 − [( !̄0 − !: )

)
with

constant plasticity fraction [. Once the current length of the spring is smaller
than the collision distance, the actuation is stopped and the collision distance
is enforced using a soft constraint defined through a high stiffness constant,
^2.

• The shear-resisting energy,s, has the following expression:

,s
(
s@0
8 9
, s@1
8 9

)
=
^B

2

(
! (s@0

8 9
) − ! (s@1

8 9
) − '0

)2
, (D.4)

where ! (s8 9 ) = ‖s8 − s 9 ‖, is the distance between the spring segment end
points, '0 is the difference between distances in the initial morphing time
step, and ^B is a constant.

• For the membrane energy ,m, we use a classical FEM formulation with
an incompressible Neo-Hookean material [4]. Continuum magnitudes are
interpolated from nodal values using linear basis functions which allows us
to discretely approximate the deformation gradient G = ∇m̄m. Here, the
undeformed configuration can be computed from the membrane state at the
initial configuration m̄ = g−1m0, where g is the pre-stretch factor.

Coupling and solver
At each time step of the morphing process, we formulate and solve the nonlinear
system of differential equations defined by the net force equilibrium −∇x, = 0,
by minimizing the discrete elastic potential (D.2). We solve this problem using
Newton-Raphson method with Strong Wolfe convergence conditions for step length
selection.

Solving this problem efficiently requires analytically computing both the first ∇x,

and second ∇2
xx, derivatives of the elastic potential. As introduced above, points

lying on the surface of the bases, p, are implicitly coupled to the rigid bodies
through (D.1). Hence, these derivatives can be easily computed using the chain-
rule:

m,

mx
=
m,

mf
mf
mx
+ m,
mp

mp
mx
,

m2,

mx2 =
mf
mx

) m2,

mf2
mf
mx
+ mp
mx

) m2,

mp2
mp
mx

m,

mp2
m2p
mx2 , (D.5)
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where ∇xf is a selection matrix of the free membrane vertices and ∇xp and ∇2
xxp

can be computed from (D.1). One common technique in rigid-body simulation to
simplify this computation is to keep rotational degrees of freedom r8 close to zero.
This is done by updating the local coordinates of the coupled points in the base
frame after each successful iteration, i.e., for the 9-th point attached to the 8-th rigid
body, p0

98
← R(r8)p0

98
, r8 ← 0.

We provide the following data as an example of the simulation scales. Our most
complex model with self-interweaving shape (Fig. 5.3d) contains 549 rigid bodies
and 7942 membrane elements. The full morphing process simulation (240 time
increments) takes 43 minutes in total.

D.3 Material measurement and modeling
As discussed in Section D.2, we represent brackets in simulations by data-driven
springs and shear-resisting elements. Here we describe our approach to the me-
chanical modeling of the data-driven components. The brackets in our structure
undergo large deformations and are made of a material with nonlinear elastic prop-
erties and time-dependent softening. This combination of material and geometric
nonlinearities leads us to a data-driven effective spring model. We performed all
measurements in settings that resemble conditions brackets are subjected to in an
assembled structure. We first formulate the data-driven elastoplastic spring model
,d(1, ℎ, C, G) (introduced in the previous section) and then describe our fitting strat-
egy. We discuss several polynomial fittings in this section and display their output
units in square brackets.

Physical model of brackets
Our elastoplastic bracket model is motivated by a set of material tests described
below. The elastic component is expressed through an effective stiffness, and
the plastic behavior is described as a dissipation of internal elastic energy due to
deformation. We make the approximation of assuming a constant plasticity fraction,
[, which we obtained experimentally. The plastic part of the displacement is then
given by Gpl = [G and the elastic part is Gel = (1 − [)G.

We aim to obtain elastic energy formulations ,d(1, ℎ, C, Gel) that are functions of
time C spent in hot water for each valid combination of bracket length 1 and thickness
ℎ. These formulations are modelled as trilinear interpolations between polynomials
?1,ℎ,C (Gel) that are defined on a regular grid.
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Under the assumption of a constant plasticity fraction and with material properties
corresponding to time C, we relate elastic energy,d(1, ℎ, C, Gel) to the total external
work ,̄ done through monotonic bracket displacements G in the following manner:

,d(1, ℎ, C, Gel) = (1 − [),̄
(
1, ℎ, C,

Gel
1 − [

)
. (D.6)

Here, ,̄ are trilinear interpolations of polynomials ?work
1,ℎ,C
(G) [N −m] that are simi-

larly related to ?1,ℎ,C (Gel):

?1,ℎ,C (Gel) = (1 − [)?work
1,ℎ,C

( Gel
1 − [

)
. (D.7)

These polynomials are obtained by integrating force over displacement:

?work
1,ℎ,C (G) =

∫ G

0
?load
1,ℎ,C (G̃)3G̃ , (D.8)

where ?load
1,ℎ,C
(G) [N] are polynomials representing the loads exerted on bracket over

applied displacements. The polynomials ?load
1,ℎ,C
(G) are fourth-order in G with no

free term. The fitting methods for obtaining these polynomials are discussed in the
following subsection.

It is challenging to measure time-dependent force-displacement relationships di-
rectly in an experimental setup since specimen submersion and loading takes a
significant amount of time relative to our actuation time ranges. Specimen submer-
sion and loading takes 8 seconds while the target deformations last approximately
30 to 80 seconds. This restrains us from an assumption that material properties
are “fixed” at time C for the material measurements. Additionally, we collected a
higher density of data in time rather than in displacement due to the capabilities of
our experimental setup. This leads us to dividing the fitting problem into simpler
components. We first fit (inverted) displacement-force relationships and then use
the obtained model to reconstruct the desired force-displacement model ?load

1,ℎ,C
(G).

Our displacement-force model is the following:

G(1, ℎ, C, �) = ?dry(1, ℎ, �) +
∫ C

0
� exp

(
?wet(1, ℎ, C̃, �)

)
3C̃, (D.9)

where ?dry [m] is a third-order polynomial (limited to first order in 1 and ℎ) for
which all terms have � as a multiplier and ?wet [log

(
m/(N − s)

)
] is a fourth-order

polynomial. Polynomial ?dry represents displacement-force relationships before
putting into water while ?wet is the logarithmic evolution of deformation rates,
divided by load, in water. The latter formulation restricts the deformation speed
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to be always positive which is a desirable property for our model and assures zero
displacement under zero load. The integral does not generally have a simple explicit
representation.

We apply the transformation mentioned above to the measured deformation speeds
and fit the resulting data

?wet(1, ℎ, C, �) = log
(
�−1 mG

mC

)
. (D.10)

The logarithmic function improves the quality of fitting by reducing extreme varia-
tion in deformation rates. Note that the formulation of displacement-force relation-
ships is defined as a single continuous function across all parameters in our setup.
This allows us to build a consistent model of data collected from all experimental
measurements.

Data collection and fitting
(a) (b) (c)

Figure D.4: Experimental setup for characterizing unit cell behaviors. (a) Specimens
used for material measurements are assembled from two printed parts to mimic a unit cell.
Assembled specimens have holes to ensure consistent boundary conditions in a gripper
that was fabricated in-house. (b) Custom-built gripper for quick specimen exchange and
a “boot” for firm specimen compression against the floor. (c) Zwick tensile tester for
measuring bracket deformations in hot water.

A Zwick tensile tester (shown in Fig. D.4c) was used for all bracket characterization
experiments. The specimens tested (shown in Fig. D.4a) were attached to a pair of
prismatic grippers (Fig. D.4b) to enforce uniaxial movement.

Three types of experiments were conducted: compression tests in both dry and wet
states, as well as effective plasticity measurements. For the dry compression tests,
displacement-force relations for brackets that had not been immersed in water were
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obtained quasi-statically. For the wet compression tests, we immersed specimens
into hot water and immediately applied constant loads. These specimens deformed
gradually over time since exposure to hot water causes them to soften. For the
effective plasticity tests, we compressed brackets by a prescribed displacement,
unloaded them, and measured the restoration to derive the plastic component of the
deformation. For all tests we used the same sampling of central lengths ; (from
Figure 5.1b, it is easy to see that ; = 1 + 4 cos 37◦) and bracket thicknesses ℎ (in
millimeters): ; ∈ {5, 6, 7, 8, 9}, for ; ≤ 7, we choose ℎ ∈ {0.3, 0.4, 0.5, 0.6} and for
9 > 7, we choose ℎ ∈ {0.35, 0.45, 0.55, 0.65}. This set of parameters amounts to
20 total combinations.

Fitting polynomials with constrained derivatives

Empirical knowledge (such as the fact that thicker brackets deform at slower rates)
was used to derive constraints on fitted functions. Similar to standard polynomial
regression, we solve a quadratic programming problem H = -V + n , but instead of
V = (-)-)−1-) H, we solve:

minimize 1
2 V

)-)-V − H)-V
subject to �V ≤ 0 ,

(D.11)

where � expresses row-wise derivative constraints per point. By providing suffi-
ciently many points in � we significantly improve fitted curve quality. We impose
these constraints at all given data points. All the constraints used for each polynomial
fitting are listed below.

Compressive loading of dry specimens

This experiment is conducted once for each specimen by increasing the applied load
quasi-statically from 0 to 10 N. We fit to this data a polynomial ?dry expressing
resulting displacements G given the loading�. Note that displacement is amonotonic
function of bracket length 1, unlike strain. We impose the following derivative
constraints:

m?dry

m1
> 0,

m?dry

mℎ
< 0,

m?dry

m�
> 0. (D.12)

The resulting curves are in Fig. D.5.
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Figure D.5: Compressive loading of dry specimens. Data (solid lines) and fitted curves
(dashed lines).

Compressive loading of specimens in water

The next step is to model the evolution of the displacement-force curves over time
spent in water. In order to do so, we test the behavior of each specimen under
various loads (which are held constant throughout an individual test).

Since the initial force-displacement relationships ?3AH are known with relatively
high precision, we use those curves as our model for C = 0. We fit the displacement
rate data to reconstruct the time-evolution of bracket behavior in water. We impose
the following constraints on the derivatives:

m?wet

m1
> 0,

m?wet

mℎ
< 0,

m?wet

mC
> 0, and

m?wet

m�
> 0. (D.13)

Then we reconstruct time-evolving displacement-force relationships (D.9). The
resulting curves are shown in Fig. D.6. We filter out displacements larger than
2/3 of the initial length since brackets may be damaged and display inconsistent
behavior at that point.

After obtaining a displacement-force relationship, we invert it with respect to dis-
placement. We densely resample our target parameter space of 1, ℎ, C and refit
force-displacement curves represented by polynomials ?load

1,ℎ,C
(G) with constrained

derivatives:
m?load

1,ℎ,C
(G)

mG
> 0 and

m2?load
1,ℎ,C
(G)

mG2 < 0. (D.14)

Effective plasticity tests

In order to properly simulate actuation of the structure, we examine elastic energy
dissipation during bracket compression. We approximate this phenomenon through
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Figure D.6: Compressive loading of specimens in water. Data (solid lines) and fitted curves
(dashed lines).
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Figure D.7: Plasticity does not depend on deformation rates. Three different deformation
rates are shown for a unit cell specimen of length ; = 8 mm and thickness ℎ = 0.4 mm.
Dashed line represents 20% of maximal deformation which we use as a constant plasticity
fraction in our simulations.

an elasto-plasticmodel. We do not study the dependence of plasticity on temperature
because all experiments occur at 56 >�. Thus, we analyze the dependence of
plasticity on deformation rates. This experiment is done for specimens with fixed
chosen parameters ; = 8 mm and ℎ = 0.45 mm. We do multiple loading tests with
different deformation rates and measure the restored strain after unloading. We
observed that there is no significant dependence on deformation rates (see Fig. D.7).
We did not observe consistent strain restoration across different bracket thicknesses
and lengths, with mean plastic fractions in a range 15%–25%. We use a constant
mean plasticity fraction [ = 20% in our simulations.

D.4 Temporal programming
In our design pipeline, the user specifies a time landscape. This is a smooth scalar
field over the target surface that represents the desired deformation completion time
at each point. In our implementation, we define it as a piecewise linear function
on top of the flat stencil triangulation. For each unit cell, we compute the average
desired actuation time, C∗, using values specified at the ends of the associated stencil
edge. Then we use C∗ to configure the thicknesses of the brackets associated with
the unit cell. This computation is based on the effective force-displacement curves
modelled by trilinear interpolation of polynomials ?load

1,ℎ,C
(G), which we denote as

� (1, ℎ, C, G). Each unit cell’s deformation is consistent with its neighbors’ so long
as the time landscape is sufficiently smooth.

Both pairs of brackets on the opposite sides of the unit cell have the same initial
length 10 by construction. We first compute their length in the fully actuated state
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(a) (b)

Figure D.8: Predicting applied tractions and selecting bracket thicknesses. (a) Linearized
model of themembrane (dashed lines) in comparison to FEMmembrane (solid lines) for a set
of unit cells of various initial lengths. The membrane tractions decrease with displacement
as the pre-stretch is relaxed. (b) Configuring thicknesses for two pairs of brackets on
opposite sides of a unit cell. Note that the one requiring larger target displacement is thinner
to finish deformation at the same time as the one with smaller target deformation. The
dashed horizontal line shows a sample approximation to the target membrane traction.

11 (in general, different for different sides). Then, for the target actuation time C∗,
we can formulate the bracket thickness ℎ configuration problem as follows:

� (10, ℎ, C
∗, 10 − 11) = �mem(10, 31), (D.15)

where �mem is an approximation of the traction generated by the membrane depen-
dent on the initial unit cell length, 10, and on a parameter describing membrane
deformation, 31 with its value at the actuated state. Here we use the force balance
between the brackets and the membrane at the target deformation after time C∗ spent
in water, ignoring plasticity (Fig. D.8b).

We build a linearized model of the membrane, representing it as a segment spring
connecting the centroids of the end points of all brackets in a unit cell, and setting
�mem(1, 3) as a first-order polynomial in each of the variables. Here 1 mimics
an initial membrane spring length and 3 is its displacement. We fit this model by
sampling initial bracket lengths and deformations. It captures membrane forces well
in our setting (Fig. D.8a).

Our approach to finding the thickness ℎ is a binary search through our interpolated
model of � (10, ℎ, C

∗, 10 − 11) to match a known value of �mem(1, 3).

We need a specific treatment of boundary unit cells since the membrane ends there
and has less stretch initially. To account for this, we reduce the force evaluation by a
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(a) (b) (c)

(d) (e) (f)

Figure D.9: Fabrication process landmarks. (a) Star-shaped membrane stretching device
back side up. Bottom part of the membrane is uniformly stretched due to markers. (b)
Transferring glue from a plastic foil to the bases of the shell. (c) Passing a pin through
one of the bases and the membrane to align with the second lattice. (d) Membrane surplus
is covered by glue in order to “freeze” it and enable its easy removal. (e) Cutting out the
shell from the membrane surplus by a scalpel. (f) Flat-fabricated shell ready for actuation
in water.

factor of 0.6whichwas empirically found by comparing simulations of our examples
with the membrane represented by linear springs to FEM membrane simulations.

Once the desired time landscape is specified and bracket thicknesses are computed
accordingly, we start the simulation process described in Appendix D.2. Unit
cells’ actuation completion might deviate from the specified time landscape due to
imperfections in the linearized membrane force estimation and plastic effects. Apart
from that, the resulting morphing process might not reach the final goal, for example
there might be collisions on the way. In these cases time landscape has to be edited
and the simulation of morphing has to be recomputed until the goal is achieved.

D.5 Fabrication procedure
We developed a custom fabrication procedure for the shells. It is described in detail
in this section.

1. 3D print the outer layers of the shells using a Stratasys J750 printer. We
also printed an outer frame to reduce undesired deformation of the structure
during fabrication. Printing time for all of our shells is approximately 2 hours



172

Figure D.10: Membrane stress relaxation over the course of 24 hours. Evolution of the
force generated by a dog-bone membrane specimen under a constant stretch factor of 3.

(it mostly depends on the number of layers, which is fixed). It is twice as
long for the first petalled shape (Fig. 5.1c) since both sides do not fit on a
single printing tray. We remove all overhangs, which does not affect shape
replication but makes the cleaning process drastically easier: we only quickly
remove almost all support material by several shavingmovements with a sharp
scraper and airflow the lattice to erase the rest.

2. Use a star-shaped device to manually stretch a latex sheet uniformly by grad-
ually wrapping it around and fixing at the device’s teeth (Fig. D.9a). Friction
between the membrane and the device is sufficient to keep the membrane
stretched without any additional clamps. A stretch factor of 3 (900% the area)
is enforced by matching markers on the sheet to the tips of the device’s teeth.
Note that large deformations of the membrane lead to slight stress relaxation
in the long run. Given the variability of the rest of the system and our sim-
plified membrane model, we neglect this effect. It is however possible to take
it into account since after approximately 1.5 hours stress relaxation does not
progress much further (Fig. D.10).

3. Clean both surfaces of the sheet with 2-Propanol for better gluing. Apply
super glue on a plastic film and distribute it uniformly with a brush. Transfer
glue from the film to the 3D printed structures through contact with the plastic
film (Fig. D.9b).

4. Glue one lattice to the membrane and pass push pins through the alignment
holes on the lattice and through the latex membrane (Fig. D.9c). The mem-
brane does not rip since we pinch it through an isolated area.
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5. Glue the opposite side to the latex sheetmatching the holeswith corresponding
alignment pins.

6. Distribute additional super glue on the latexmembrane in the region surround-
ing the lattice perimeter (Fig. D.9d).

7. Wait 5 minutes and then release the latex sheet to a stretch factor near 2. Then
using a scalpel cut out the structure, keeping a tiny amount of degenerated
latex at the border to prevent membrane ripping (Fig. D.9e).

8. Submerge the structure in 56◦ C water and wait for morphing to complete.

9. Take out the deformed shape and let it dry. Under normal conditions, the
drying process may take roughly 15 minutes.

The whole fabrication process after 3D printing and before drying takes 30–50
minutes.

D.6 Mechanical measurements of shells
We performed a set of mechanical measurements of the shells for estimation of their
load-bearing capabilities. We fabricated flat regularly tessellated shells composed
of identical unit cells of length 7 mm, bracket thickness 0.5 mm, and bumpers
0.3 mm with total dimensions 60×55 mm. Since the shell structure is not isotropic,
we performed the tests aligning the deformation to one of the three axes parallel to
the edges of the hexagonal pattern. The resulting plots are shown in Fig. D.11. In
all tests the deformation speed was approximately 1 mm/min. It is intuitive that
the shells have higher resistance to pure in-plane compression due to the bumper
contacts in contrast to the other cases when only the membrane and the brackets are
loaded.
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(a) (b)

(c) (d)

Figure D.11: Mechanical tests of a flat regularly tessellated shell. Since our shells have
cross-sections with a complex geometry, we provide the effective stress values (assuming
shell homogeneity). (a) Stretching, (b) bending, (c) shearing, and (d) compression tests.

D.7 Supplementary movies
Supplementary Movies 1-5 can be found at the following URL:

https://www.nature.com/articles/s41467-019-14015-2#Sec10
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A p p e n d i x E

UNTETHERED SOFT ROBOTS WITH PASSIVE CONTROL OF
SHAPE MORPHING AND PROPULSION

E.1 Mechanics of thin nematic elastomer bilayers
In this section, we discuss the mechanics of nematic elastomer bilayers. In partic-
ular, we show that the model developed by Agostiniani and DeSimone [1] for thin
nematic elastomer bilayers yields an inverse proportionality between curvature, ^,
and thickness, ℎ, as what is observed in our experiments. This relation is observed in
our specimens (particularly for !)#� hinges), even though the majority of our spec-
imens are thick plates. For a more relevant comparison between our experimental
results and the calculation of ^ discussed below, we highlight the direct proportion-
ality between curvature and hinge angle, \, in specimens with near-homogeneous
curvature (such as ours). Namely, \ ≈ ^F, where F is hinge width.

Their model is derived based on the condition that there is an isometry constraint on
the midplane of thin bilayers due to kinematic frustration (i.e. there is no stretching,
and only deformed configurations with zero Gaussian curvature can be achieved).
This constraint is an approximation that can be rationalized by contrasting the
scaling of stretching and bending energies with regards to plate thickness, ℎ. While
the former is linear with ℎ, the latter scales with ℎ3. This means that bending
deformations are heavily favored as structures become increasingly slender, hence
the inclusion of the midplane isometry constraint.

Some of the LCEs we fabricate are thin and behave in accordance with this regime,
but most of our samples are thick because they yield higher torque outputs. In
this case, anticlastic bending is observed at the free edges of the hinges, meaning
that midplane isometry is not preserved. Because we have limited data on thin
LCE actuators, we do not directly compare our results to fittings of parameters used
in their model. However, we note that the decreasing curvature with increasing
thickness observed in our experiments is characteristic to other bilayer growth
systems [2, 3] and is consistent with the behavior predicted by their model for
thin nematic elastomers. We offer an intuition for the mechanics that govern our
hinges by summarizing a calculation based on their model, which illustrates that
sheet thickness is the characteristic length scale that determines curvature in the
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thin specimen limit. It is beyond the scope of this study to develop a theory for the
curving of thick LCE bilayers.

Kinematics
Denote the coordinate frame for an initially flat midsurface as X = {-,. }. The
deformed configuration is χ = {G(-,. ), H(-,. ), I(-,. )}. The unit-normal to
the deformed surface is

n =
mχ

m-
∧ mχ
m.

/��������mχm- ∧ mχm. �������� .
The second fundamental form of the midsurfaces is given by:

AH = −∇χ ∇n = −mj:
m-8

m=:

m- 9
.

We re-express this form through the following identity:

∇χ · n = 0⇒ ∇(∇χ · n) = 0 .

In Einstein summation notation, this can be written as:

m

m- 9

(
mj:

m-8
=:

)
= 0⇒ m2j:

m-8m- 9
=: +

mj:

m-8

m=:

m- 9
= 0⇒ A8 9 =

m2j:
m-8m- 9

=: .

Thus, the second fundamental form can be expressed as follows:

AH =

[
χ,-- · n χ,-. · n
χ,-. · n χ,.. · n

]
.

At a fixed point on the surface, given an orthonormal tangent vector basis, the
principal curvatures are the eigenvalues of AH.

Summary of the Agostiniani & DeSimone model
Consider a nematic elastomer sheet with a small thickness ℎ0 and reference con-
figuration domain lY × (−ℎ0/2, ℎ0/2). The material has a shear modulus ` > 0,
energy per unit volume 2 > 0, and a dimensionless material parameter U0 > 0 which
couples the magnitude of spontaneous in-plane strains in each layer to the nematic
director, n. Taking (n⊗ n)̌ as the 2× 2 upper left part of n⊗ n, the symmetric tensor
"̌ is a function of U0, ℎ0, n:
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"̌ =
1
2
U0
ℎ0

[
(n ⊗ n)̌ − I2

3

]
,

and is related to the spontaneous linear strain in each layer E as follows:

"̌ = − E
ℎ0
.

Agostiniani and DeSimone’s model for LCE bilayers gives the following functional
for the limiting 2D plate theory. The isometric deformation H ∈ W2,2

iso : (∇′H))∇′H =
�2 which minimizes this functional corresponds to equilibrium.

ℱ̂
Y
ℎ0
(Eℎ0) � min

H∈W2,2
iso (lY ,R3)

ℎ3
0

2

∫
lY

&2
(
AH (G′)

)
dG′ .

In this functional,&2 is a doubly-relaxed energy density that is related to "̌ through
the following set of functions:

• A volumetric term,,E>; :

,E>; (C) = 2(C2 − 1 − 2 log C) ⇒ ,′′E>; (C) = 22
(
1 + 1

C2

)
.

• An effective bulk modulus, W:

W :=
,′′
E>;
(1)

2` +,′′
E>;
(1) .⇒ W =

42
2` + 42

.

• The relaxed energy density, &2:

&2(�) = 2` ( |sym(�) |2 + W tr2�) ,

where |�| =
√

tr(��) ).

• The doubly-relaxed energy density &2:

&2(�) =
1

12
&2

(
� + 3

2
("̌1 − "̌2)

)
− 1

16
&2("̌1 + "̌2) .
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Calculation for orthogonal bilayer
To compare the results of this model to a thin bilayer with same director as our
fabricated samples, we consider a bilayer where n1 = (1, 0, 0) in the top layer
defined by / ∈ [0, ℎ0/2), and n2 = (0, 1, 0) in the bottom layer / ∈ (−ℎ0/2, 0).
Then,

"̌1 =
U0
6ℎ0

[
2 0
0 −1

]
, "̌2 =

U0
6ℎ0

[
−1 0
0 2

]
.

Inserting into the strain energy, we have

&2(AH) =
`

72

[
12

(
02

11 + 0
2
22 + W(011 + 022)2

)
+ 18

U0
ℎ0
(011 − 022) +

U2
0 (13 − W)
ℎ2

0

]
,

where 08 9 are the elements of AH. We seek to minimize

ℱ̂
Y
ℎ0
(Eℎ0) � min

H∈W2,2
iso (lY ,R3)

ℎ3
0

2

∫
lY

&2
(
AH (G′)

)
dG′ .

under the constraint of isometric deformations H ∈ W2,2
iso : (∇′H))∇′H = �2 over the

entire domain. The sheet’s flat initial configuration, nematic order symmetry, and
the isometric deformation constraint require solutions of the form

AH =

[
: 0
0 0

]
or AH =

[
0 0
0 :

]
.

The boundary conditions impose H,.. · n = 0 at the edges located at - = 0 and
- = n (in the reference configuration), so we restrict ourselves to deformations
which result in curvatures of the form

AH =

[
: 0
0 0

]
.

Assuming homogeneous curvature in the deformed configuration, the minimization
problem becomes:
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ℱ̂
Y
ℎ0
(Eℎ0) � min

H∈W2,2
iso (lY ,R3)

` |ln |ℎ0
144

(
12ℎ2

0(1 + W):
2 + 18U0ℎ0: + (13 − W)U2

0

)
.

This has the solution

ℱ̂
Y
ℎ0
(Eℎ0) �

`U2
0 |l

n |ℎ0
(
25 + 4W(12 − W)

)
576(1 + W)

,

with
: = − 3U0

4(1 + W)ℎ0
.

Since W = 42/(2` + 42), we get:

: = − 3U0(22 + `)
(162 + 4`)ℎ0

.

Remembering that U0, 2 and ` are material parameters, this is consistent with
the inverse proportionality between curvature and thickness that is observed in
many systems with differential growth across bilayers, including our experiments.
We remind the reader that hinge angle is directly proportional to curvature for
homogeneously-curved specimens. As such, the Agostiniani & DeSimone model
predicts the following relation between hinge angle and thickness for thin LCEs:

\ ∝ 1
ℎ0
.

Our experiments show that this prediction may extend to thicker specimens. We
believe this model provides an intuition for the mechanics that govern our hinges,
but remind readers that the observation of anticlastic bending in our thicker samples
shows that the isometric assumption should not be maintained in a rigorous theory
for thick LCE bilayers.
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E.2 Supplemental figures
A B

C D

Shear stress (Pa)

Shear stress (Pa)

Figure E.1: LCE and structural tile ink rheology. (a) Apparent viscosity as a function of
shear rate for !)# � and�)# � LCE inks at printing temperature 26oC and 55oC, respectively.
(c) Storage (� ′) and loss (� ′′) moduli as a function of shear stress at 1 Hz for !)# � and
�)# � LCE inks at the respective printing temperatures of 26oC and 55oC. (c) Apparent
viscosity as a function of shear rate for the structural polymer ink under ambient conditions.
(d) Storage (� ′)and loss (� ′′) moduli as a function of shear stress at 1 Hz for the structural
polymer ink under ambient conditions.

References

[1] V. Agostiniani and A. DeSimone. Dimension reduction via W-convergence for
soft active materials. Meccanica, 52(14):3457–3470, 2017.

[2] S. Timoshenko. Analysis of bi-metal thermostats. Journal of the Optical Society
of America, 11(3):233–255, 1925.

[3] P. Nardinocchi and E. Puntel. Unexpected hardening effects in bilayered gel
beams. Meccanica, 52(14):3471–3480, 2017.



182

Tg
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Figure E.2: Differential scanning calorimetry curves for the LCE inks. The two oligomeric
LCE inks exhibit !)# � and �)# � values of approximately 24oC and 94oC, respectively.
[Note: From this data, the )6 and smectic-to-nematic transition temperature ()(# ) for the
�)# � ink are approximately −20oC and 20oC, respectively.]

A

B

C

D

Figure E.3: LCE alignment.2D wide angle X-Ray scattering patterns of unidirectional
printed (a) !)# � and (b) �)# � LCEs. (c) Normalized intensity as a function of azimuthal
angle. (d) Normalized radial intensity as a function of the momentum transfer vector
@ = (4c/_) sin \.
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Figure E.4: Actuation response of unidirectional printed LCEs.The measured contractile
and expansion strain observed perpendicular and parallel to the print direction, respectively,
as a function of temperature for unidirectional aligned LCE actuators printed from !)# �
and �)# � inks. [Note: Sample dimensions are approximately 20 mm×5 mm×0.375 mm.]

Figure E.5: Bending angle as a function of temperature. Bending angles \ of (a) !)# � and
(b) �)# � LCE hinges (0.25 mm thick) with varying width (F = 1 − 4 mm) as a function of
temperature. Due to residual stress that arises from printing and cross-linking the !)# � LCE
hinges in the isotropic phase, their measured bending angle is negative at low temperatures.
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A B

Figure E.6: Bending angle as a function of hinge dimensions. Bending angles of LCE
hinges of varying thickness (ℎ) and width (F), when actuated above their )# � . Hinge angles
\ are measured at 120oC and 150oC for the !)# � and �)# � LCE hinges, respectively.
Maximum bending angle is 180o due to panel collision.

Figure E.7: Valley fold bending angles. Printed LCE hinges (0.25 mm thick) of vary-
ing width F exhibit valley folds with smaller bending angles \ than their mountain fold
counterparts.
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Figure E.8: Repeatable hinge folding. Bending angles \ of !)# � and �)# � LCE hinges
(0.25 mm thick and 2 mm wide) when cycled above and below )# � .

Figure E.9: Triangulated polyhedron actuation sequence at ambient temperature. (a) The
triangulated polyhedron in its second, partially folded configuration after heating to actuate
the top !)# � section. (b) The triangulated polyhedron in its third, fully folded configuration
after heating to actuate the bottom �)# � section. All images are taken under ambient
conditions.
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Figure E.10: Free body diagrams of self-propelling rollbot. (a) Moment diagrams for
calculating the torque at the !)# � LCE hinge (1) that requires the greatest torque for self-
reconfiguration into a pentagonal prism. Here,< is the mass of each panel, 6 is gravitational
acceleration, ! is the length of each panel. (b) Moment diagrams for calculating the torque
requirements of �)# � LCE hinges that induce self-propulsion. Here, " is the entire mass
of the structure, n is the offset of the center of mass �.". from the tipping point, ; is the
length of the propelling plate, X is the offset of the hinge from the tipping vertex, >. A
no-friction assumption is taken for the contact between the structure and the ground. Only
forces that affect a torque about the tipping point are shown for clarity in the image.
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A B

Figure E.11: Torque requirements of hinges for self-propelling rollbot. (a) Torque required
from !)# � LCE hinges for self-assembly into a pentagon as a function of folding angle \.
(b) Torque required from �)# � LCE hinges as a function of hinge angle for self-propulsion.
The required moment is zero at the tipping point. A 63o hinge angle induces a 36o tipping
angle about the vertex.
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Figure E.12: Torque measurement experimental setup. Torque of the LCE hinges can be
measured (left) as a function of angle \ by rotating a rotary stage (right). The force sensor is
attached to the hinge at the end of the panel, approximately 1 cm from the edge of the LCE
component, which is in contact with a thin heater. A linear stage is used to ensure that the
hinge tile attached to the force sensor is parallel to the sensor surface. Scale bars are 1 cm.
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Figure E.13: Torque measurements for hinges of varied dimensions. ℎ indicates hinge
thickness in mm, F indicates hinge width in mm, and \ is the folding angle.
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LIST OF ILLUSTRATIONS

Number Page
1.1 Examples of how deformations can be “programmed” via mesostruc-

tural patterning. (a) A miura-ori crease pattern that leads to the kine-
matic behavior shown in (b) [4]. (c) An inverse design framework
is used to create the mesostructure of an initially flat beam network
that (d) morphs into the shape of Gauss’s face [9]. (e) Hygromorphic
wooden bilayers [17] are used to shape the panels that compose (f)
the 14m tall Urbach Tower [18]. (g) Pneumatic cavities in the limb
of (h) a locomoting soft robot enable complex locomotive gaits in
response to pressurization and depressurization cycles [8]. . . . . . . 3

1.2 A time-lapse overlay showing untethered shape-reconfiguration and
locomotion by a programmed structured medium. The mesogen
orientation in the liquid crystal elastomer bilayers cause the hinges to
fold in response to a thermal stimulus [63]. . . . . . . . . . . . . . . 4

1.3 " is defined as an embedding < of a region of the plane * into R3.
Image reproduced from [20]. . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Discrete conformal flattening tools take 3D surface meshes as inputs
and output conformally equivalent flat meshes. In this example, the
user also has the option of prescribing the flattened boundary. Image
sourced from [62]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Twisting ribbons to create structural elements with an expanded set
of bending axes. (a) Original ribbon configuration, where {e8} are
the orthonormal basis vectors of a coordinate system aligned with
the centerline of the ribbon. (b) Ribbon configuration after a \ = 3c-
degree twist about e1, viewed from two different directions. In a
twisted configuration, we call “faces” those regions that can bend
about e2 or e3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Undulated ribbon characterized by thin necks and wide faces, with
all the relevant geometrical parameters. The gray extremities/tabs of
the ribbon are not part of the model, but facilitate clamping of the
fabricated specimens. \C is the target twisting angle to align all necks
with the e1–e3 plane and all faces with the e1–e2 plane. . . . . . . . . 24



191

2.3 Material characterization. (a) BMG roll (Zr65Cu17.5Ni10Al7.5). The
micrograph shows the irregular cross section of the roll (Scale bar:
10 `m). (b) Tensile test setup to characterize the BMG sheets. (c)
Load-time curve indicating our testing procedure; the specimen is
pulled and the force is held constant at various force values to record
images for the DIC procedure. The insets show the DIC-computed
axial strain field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Numerical (FE) results on twisting. (a) Initial and deformed config-
urations for an initially-straight ribbon subjected to pre-stretch and
torsion. Darker colors indicate regions of higher maximum princi-
pal strain, and serve the sole purpose of qualitatively showing where
the strains are largest. (b) Same as (a), but for an undulated ribbon
with = = 3 and � = F/6. The circular markers in the undeformed
configurations indicate the locations where strains are the largest.
(c) Logarithmic strain versus twist angle for a straight ribbon. The
crosses indicate when the ribbon reached an unwanted self-folded
configuration. (d) Logarithmic strain versus twist angle for an undu-
lated ribbon with = = 3 and � = F/6. (e) Effects of the number of
necks = on the maximum strain, with � = F/6 fixed. Recall that the
breaking strain for this material is Y1 = 1.7%. . . . . . . . . . . . . 27

2.5 Experimental validation of the numerical predictions on twisting. (a)
Axial reaction force versus twist angle for a straight ribbon. The dark
gray line is the mean and the shaded light gray area indicates the
standard deviation of measurements performed on three specimens.
The cross marker indicates the \ angle at which the simulation indi-
cates self-folding. (b), (c) Same as (a), but for a 3-neck and 5-neck
ribbon, respectively. Both cases feature � = F/6. A sharp drop in
the experimental curve indicates failure. . . . . . . . . . . . . . . . . 29
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2.6 Comparison between analytical and numerical results. (a) Schematic
diagram of a straight ribbon. (b) Principal logarithmic strains at the
free edges of a straight ribbon. (c) Schematic diagram of a ribbon
with undulated edges and � = F/6. (d) Principal logarithmic strains
at the free edges of a “neck” region. In (b), (d), the strains are
plotted as a function of total relative twist of the clamped edges. (e)
Analytical prediction of the axial stress resultant as a function of
twist and normalized lateral position in ribbons with straight edges
and ribbons with three neck regions. For the undulated-edge ribbon,
we plot the stresses at a neck cross-section, where the stresses are
greatest. (f) Analytical prediction of the lateral stress resultant as
a function of twist and normalized lateral position in ribbons with
straight edges and ribbons with three neck regions. The greatest
lateral compressive stresses (plotted here) in undulated-edge ribbons
emerge in the center of the neck regions. . . . . . . . . . . . . . . . 38

2.7 Extended parametric analysis. All curves are obtained using our
analytical model. The dots are numerical data points and are useful
to understand the limitations of the analytical model. (a) Effects of
the amplitude of undulation � on the maximum principal strain, for
various = and with !/F = 20 fixed. (b) Effects of !/F for various =,
with � = F/6 fixed. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.8 BMG ribbon thermoforming. (a) Sketch illustrating the various steps
of the thermoforming process, from an initial planar ribbon to a final
twisted and stress-free configuration. (b) Thermoforming setup. (c)
BMG ribbon before and after thermoforming, with insets illustrat-
ing how wide faces and neck regions can be bent about e2 and e3,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.9 Numerical (FE) bending response of different regions of the same
twisted ribbon (with = = 3 and � = F/6). (a) Snapshots of the
bending deformation of the neck about e3. All dimensions are in
mm. (b) Performance of the neck region as a joint, indicating the
maximum strain involved and the moment about the rotation axis. (c)
Snapshots illustrating how a wide face bends about e2. (d) Bending
performance of the wide face. . . . . . . . . . . . . . . . . . . . . . 42
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2.10 Elastic stowage and deployment of twisted ribbons. In all cases, de-
formations are reversible and do not induce any plastic deformation.
Note that we use tape to keep together the stowed configurations for
illustration purposes. (a) A twisted ribbon can be compacted by fold-
ing it about the necks/hinges, and by finally bending the wide faces.
(b) Assembling four ribbons in a circle leads to a ring structure that
can be compacted following the same procedure shown in (a). (c)
The chirality of the ribbons can be leveraged to create a sphere that
can be compacted by applying a twisting load, similarly to Hober-
man’s Twist-O. (d) Planar auxetic lattice made of twisted ribbons.
The dashed lines highlight the global curvature achievable by taping
together selected pairs of necks. . . . . . . . . . . . . . . . . . . . . 43

3.1 Uniaxial tension test of a periodic sheet whose undeformed geometry
is shown in (a). The plot in the background shows the loading curve
when the applied tension is either along the horizontal direction (black
lines) or along the vertical direction (grey lines), both from experi-
ments (solid lines) and fromfinite element simulations (dashed lines).
The vertical dash-dot line shows the maximum stretch predicted by
the kinematic analysis, where a geometric-to-elastic transition takes
place. Insets (a-d) show snapshots of a 4 × 4-tile portion of the sheet
at different levels of deformation (scale bar is 6 mm). The red and
blue overlaid lines are obtained by joining the diagonals in a particu-
lar row and column of tiles, respectively, and are used to predict the
maximum stretch by a kinematic analysis. . . . . . . . . . . . . . . . 55

3.2 Unit cell generalization. (a) Sketch of a generic periodic architecture
parameterized by design variables. (b-d) Digital images of details
of three periodic undeformed specimens, corresponding to different
values of (FG , FH) listed in Appendix B.4; scale bar is 6 mm. (e)
Transverse stretch _H as a function of the axial stretch _G for simple
traction along the G-direction, and for the same set of specimens: ex-
periments (open symbols) versus predictions of the kinematic model
(solid curves). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
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3.3 Out-of-plane morphing of sheets with non-periodic cut patterns. (a1)
Cut pattern with gradient in the H direction. The inset to the right of
the undeformed configuration highlights the tile diagonals (in red),
that are inextensible by the local kinematic analysis, as well as a
plot of the corresponding maximum stretch _"G (H): this shows that
the sheet is highly stretchable in the center, but inextensible along its
upper and lower edges. (a2) A dome shape obtained when the sheet is
pulled from twoboundary points. (b1)Undeformed configuration of a
specimen featuring two soft and auxetic regions in its interior, which
give rise to two localized bumps upon pulling at the four corners
(b2). (c1-c3) Undeformed and deformed configurations of another
specimen, highlighting the influence of the boundary loading on the
pattern of wrinkles. The right-halves of (b2), (c2) and (c3) are the
stress maps offII = a(fGG+fHH) (under the plane strain assumption);
negative values of the average in-plane stress (fGG + fHH) are taken
as an indicator for buckling. (d1-d2) Shaping wrinkles: a C-shaped
soft and auxetic region is embedded in a sheet by a suitable choice
of the maps of FG and FH in the reference configuration (d1). The
wrinkles localize upon the application of boundary loads (d2). The
orange arrows indicate the boundary loads. Scale bar: 12 mm. . . . . 59

3.4 Cylindrical structures and extension to plastic sheets. (a) An archi-
tected tube can expand or contract radially based on an initial stripe
pattern. Beyond a critical tensile load, an azimuthal buckling pattern
appears in the expanded regions. (b) Petal-shaped specimen gen-
erated from a non-rectangular grid. This sheet morphs into a pea
pod-shaped object when pulled from its ends. (c-d) Sculpting ax-
isymmetric shapes from a sheet made of an elastic-plastic material;
the shapes are obtained by using graded cut patterns and by stretching
out the sheets locally by hand. Scale bars: 12 mm. . . . . . . . . . . 60



195

4.1 The mechanical behaviors of periodic and non-periodic architected
sheets. (a-b) A sheet with a periodic cut pattern that displays a quasi-
mechanism mode of deformation: rotation of tiles about slender
elastic joints. As the tiles rotate, the unit cell dimensions change
from !8U to ! 5U. Although tile rotations are low-energy kinematic
modes compared to other deformations, the energetic cost associated
with the deformation of the joints is not negligible. (c) Introducing a
gradient in the cut patternmodulates the quasi-mechanism kinematics
over the sheet. The scale bar represents 3 cm. (d) The mesostructural
non-uniformity shown in (c) affects the extent to which tiles can rotate
in different regions of the sheet, creating kinematic incompatibilities
between the quasi-mechanism behaviors of different regions. Here,
_G is the maximum stretch a unit cell can attain in the direction
of loading through quasi-mechanism behaviors. (e) These in-plane
kinematic incompatibilities lead to out-of-plane buckling. The design
of the buckling sheets shown in (c-e) was first discussed in our prior
work [16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
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4.2 Quasi-mechanism kinematics. (a) An example of a sheet with a
uniform pattern of diamond-shaped cuts. (b) A unit cell (shaded)
consists of four tiles (boxed). (c) The quasi-mechanism kinematics
consist of tile rotations about the slender elastic joints. This defor-
mation mode can be entirely described by the projection of the tile
diagonals onto the fixed orthogonal coordinate frame. This rotational
mode has a non-negligible energetic cost, but one that is still much
lesser than deformations where the joints are under tension or shear.
(d) The reference configuration of the boxed tile shown in (b). Five
parameters define the geometry of a unit cell: ;1 and ;2 are the ref-
erence configuration lengths of the unit cell grid spacing in the 41

and 42 directions, X is the width of the slender joints, and F1 and F2

are the half-widths of the two diamond-shaped cuts that define the
tiles’ inclinations. The diagonals 3E and 3ℎ and the angle W between
these two can be computed from those parameters. Finally, \ is the
angle between the red diagonal, 3ℎ, and the 41 direction. As the tile
rotates from one configuration to another, this angle varies (as shown
in b-c). The projected lengths of the tile’s deformed configuration in
the 41 and 42 directions are 3ℎ cos(\) and 3E sin(W + \), respectively.
This allows us to compute the unit cell stretches: only the rotation
of one tile about a joint needs to be analyzed to determine the quasi-
mechanism kinematics of the unit cell. (a-d) Adapted from [16] by
permission of The Royal Society of Chemistry. . . . . . . . . . . . . 73

4.3 An example of a domain and of a set of boundary conditions used in
our simulations. In-plane displacements are prescribed on a portion
of the boundary and in-plane traction-free edges are observed on the
remainder. Additionally, we constrain out-of-plane displacements
and have no applied moments on the entire boundary. This drawing
displays the boundary conditions used to model the sheet with non-
uniform cut patterns shown in Fig 4.1c-e. . . . . . . . . . . . . . . . 78



197

4.4 Effective stress vs. stretch for a sheet with a periodic cut pattern.
The insets show four unit cells of this structure, see Fig. 4.2a for an
image of the entire sheet. We compare our effective continuummodel
(solid red and blue lines) represented by (4.17) to experiments (solid
black lines) and fine-grain finite element simulations (gray dashes)
that fully resolve the small geometric features in our sheets. These
experiments and the fine-grain simulations (using Abaqus/Standard)
were conducted in our prior work [16]). The experimental curve for
the soft loading direction does not start at _ = 1 due to the effect of
gravity in a vertically loaded tensile testing machine. The inset on
the bottom left of the figure shows a small region of the mesh used in
the Abaqus simulations to capture the geometry of the elastic joints.
The large number of elements needed for these fine grain simulations
motivates the usage of effective continuummodels. The insets in this
image were adapted from [16] by permission of The Royal Society
of Chemistry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Buckling behavior of sheets with non-uniform cut patterns. (a) Up to
a certain stretch _, point displacements lead to in-plane deformations.
(b) Following a critical value of _, the in-plane kinematic incompat-
ibilities will lead to out-of-plane buckling. The scale bar represents
3 cm. (c) Comparison of dome height between effective continuum
simulations (solid lines) and experiments (dots) for sheets of three
aspect ratios. Here, ℎ<83 is the height of a sheet’s center point, _ is
the stretch of the sheet’s center line in the 41 direction, C is the sheet
thickness, and ;1 is the length of the unit cell grid spacing in the 41

direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.6 Post-buckling behavior of sheets with three thickness-to-width ratios.

These are the same three sheets represented in Fig. 4.5c. Here, C is
the sheet thickness, ;1 is the length of the unit cell grid spacing in
the 41 direction, and _ is the applied stretch at the midpoint of the
sheet edge. In each entry of the stretch vs. aspect ratio grid, the laser
scans are plotted directly above the simulated deformed meshes. As
expected, we see that sheets with higher thickness-to-width ratios will
nucleate at larger stretches and will buckle into wider domes relative
to the overall sheet width. . . . . . . . . . . . . . . . . . . . . . . . 84
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5.1 Encoding spatial and temporal shape evolution in a flat shellmesostruc-
ture. (a) A user-specified target surface and actuation time landscape
(a field of deformation completion times) are inputs to an inverse de-
sign procedure that defines the mesostructure of flat-fabricated shells
that morph into the target geometries. The shells are composed of in-
homogeneous tessellations of unit cells with an interior pre-stretched
membrane. (b) Each unit cell has an initial central length l. Brackets
control actuation time through their softening rate, which is con-
trolled by their thickness, h, and a set of bumpers prescribe final local
curvatures upon collision. (c) Morphing of a petalled structure with
an actuation time landscape ensuring that larger petals cover their
smaller neighbors avoiding collisions on the way. Simulation and
experiments are compared at 3, 30, 50, and 80 seconds in water. The
structure replicates the encoded actuation time landscape shown in
(a). Scale bars, 3 cm. . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Modeling bracket softening and prescribing an actuation time land-
scape. (a) Load-controlled tensile tests were used to determine the
deformation rates of unit cells in 56◦ C water. (b) Average deforma-
tion rates for specimens subject to constant loads of 4 N for l < 7 and
5N for l ≥ 7N. These values are close to the innermembrane tractions
on each unit cell in real shells. (c) Deformation rate measurements
(solid lines) are fit (dashed lines) to produce a model of bracket soft-
ening. Here we show the fit for l = 6 mm, h = 0.4 mm. (d) The model
is interpolated and queried to infer themesostructure that yields target
curvatures and deformation completion times in each section of the
shell. Here, we show deformations of unit cells with central length
l = 6mm and a range of bracket thicknesses from 0.3 mm to 0.65 mm.
(e) Smooth actuation time landscape that induces the sequential de-
formation process demonstrated in Fig. 5.1c. (f) Bracket thickness
fields for both sides of the petalled shape. Though the prescribed time
landscape is smooth, the field of bracket thickness is highly irregular
because bracket thicknesses also depend on initial unit cell lengths
and their target deformations. . . . . . . . . . . . . . . . . . . . . . 97
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5.3 Spatio-temporally programmed shells. Each panel shows a real shell
(top), its actuation time landscape (bottom-left), and its correspond-
ing simulated shell (bottom-right). (a) Doubly-curved shell where
petals morph synchronously to cover each other in a cyclic manner.
One corner of each petal is programmed to morph slower to increase
the distance between petals during morphing. (b) A double spiral
that approximates a developable surface. A gradient time landscape
enables the inner spiral to curl first. (c) A saddle shape with negative
curvature. (d) A shell with a complex self-interweaving shape prone
to multiple collisions in the course of its morphing process. Scale
bars, 3 cm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1 3D printing of soft programmable materials. (a) Active hinges were
printed from oligomeric LCE inks, whose rigid mesogens aligned
along the print path during HOT-DIW (left). Immediately upon
printing, LCE ink cross-linking was photo-initiated to lock in the
desired director alignment. Structural tiles were then printed from
an ink composed of acrylate resin that chemically bonded to LCE
hinges upon photo-initiated cross-linking (right). (b) The LCE hinges
were printed in the form of 0o/90o and 90o/0o bilayers, which bend
into mountain and valley folds, respectively, when actuated above
)#� . A simple structure composed of two hinges, with mountain
and valley folds, that interconnect three structural tiles is shown as
printed (middle and top) and as actuated (middle and bottom). (c)
A more complex, square-twist reconfigurable structure was printed
(left) and actuated at 125oC (right). The LCE hinges that form the
central square and the four LCE hinges that point toward the center of
the structure (left) are mountain folds, whereas the other LCE hinges
are valley folds. Scale bars, 1 cm. . . . . . . . . . . . . . . . . . . . 110
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6.2 Untethered, sequential, and reversible folding of active hinges. (a)
Chemical composition of the !)#� (blue) and�)#� (orange) oligomeric
LCE inks (where = = 3 and 6, and< = 6 in the molecular structures).
(b) Bending angle \ as a function of temperature for !)#� and �)#�
LCE hinges with length of 10 mm, width of 4 mm, and thickness of
0.25 mm. (c) A printed structure composed of !)#� and �)#� LCE
hinges with mountain folds that interconnect three structural tiles,
which undergo sequential actuation when heated (left to center) and
cooled (center to right). Scale bar, 1 cm. (d) Bending angle \ as
a function of thickness, ℎ, for !)#� and �)#� LCE hinges of fixed
length of 10 mm and width of 3 mm. Their bending angle decreased
with thickness. Other bilayer systems display inverse proportionality
between curvature and thickness [1–3]. We plot this relationship,
where 2 is a constant, for comparison. Both hinges exhibited a max-
imum bending angle of 180o, where panels contact one another. (e)
Bending angle \ as a function of hinge width, F, for !)#� and �)#�
LCE hinges of fixed length of 10 mm and thickness of 0.5 mm. Error
bars indicate SD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 Printed soft materials with programmed sequential folding and defor-
mation. (a) A triangulated polyhedronwas printed in the form of a flat
sheet composed of both !)#� hinges (top section) and �)#� hinges
(bottom section) that interconnect the structural tiles. All diagonal
LCE hinges are valley folds, whereas all vertical and horizontal LCE
hinges are mountain folds. (b) The printed flat sheet was manually
assembled into a 3D triangulated structure that exhibited sequential
folding upon heating from (c) ambient temperature to (d) 100oC,
where the !)#� LCE hinges actuated, and to (e) 150oC, where the
�)#� LCE hinges actuated. Scale bars, 1 cm. . . . . . . . . . . . . . 115
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6.4 Torque capacity of printed active hinges. (a) !)#� LCE hinge (10 mm
by 4 mm by 1 mm) folds to a 75o bending angle while unbiased. (b)
When a 10 g mass was suspended 1 cm away from the LCE hinge at
room temperature, it deflected to −72o. The mass was lifted by about
1 cm when actuated above )#� . (c) Exerted torque as a function of
hinge folding angle, \, as defined by the inset. Hinge composition and
thickness, ℎ, are the primary factors that affect torque output. (d) LCE
hinges (5 mm by 3 mm by 0.5 mm) undergo multiple actuation cycles
with negligible changes in the torque output. Error bars indicate SD.
Scale bars, 1 cm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5 Printed self-propelling structure. (a) Self-propelling rollbot is shown
in its printed configuration. In the legend (inset), the blue (!)#�)
and orange (�)#�) LCE hinges denote valley and mountain folds,
respectively, and gray indicates structural tiles. (b) Printed structure
in its rolling configuration, in which the !)#� LCE hinges induced
folding into a pentagonal prism and the �)#� LCE hinges propelled
the rollbot when heated above their actuation temperature. (c) Still
images (from movie S4) of the rollbot that show its self-propelling
locomotion when heated. The structure self-propels at least six times
over the time sequence shown. [The heated surface was held at
200oC, and the average ambient temperature was 45oC. Scale bars,
1 cm.] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.1 Plastic kinking of slender joints in a structured metallic medium. . . . 132
A.1 Stress-strain response of a BMG strip. Each curve corresponds to an

experiment carried out under identical conditions on three specimens. 135
B.1 Response of a 18 × 18 tile, anisotropic sheet with X/;G = 1/8 and

C/;G ∼ 0.26. The insets depict the experimental setup and the response
at three stretch values. (Scale bar, 12 mm) . . . . . . . . . . . . . . . 136

B.2 Size difference between vertical and horizontal hinges in anisotropic
specimens. (a) Detail of one of the anisotropic architectures analyzed
in this work (Scale bar, 6 mm). (b) and (c) Microscope images
(2.5× zoom) representing the details of vertical and horizontal hinges,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



202

B.3 Tensile response of a periodic sheet featuring the undeformed archi-
tecture in (a). Black lines represent the sheet’s response to horizontal
stretching and light gray lines to vertical stretching. Solid lines are
experimental curves. The dashed line represent the numerical re-
sponse to both horizontal and vertical loading. The vertical dash-dot
line shows the theoretically-predicted value for the transition from a
mechanism-dominated deformation to an elastic deformation. Insets
(a-c) show different stages of the sheet’s deformation (Scale bar, 6
mm); the red and blue lines highlight the diagonals of each tile in a
given row and column, respectively. . . . . . . . . . . . . . . . . . . 138

B.4 Details of the FE model. (a) Detail of the mesh used for one of the
hinges in the simulation of the anisotropic specimen tensile test. (b)
Detail of the stress map for the simulation in Fig. 3.3(b2). . . . . . . 139

B.5 Kinematic analysis of periodic perforated sheets featuring tiles con-
nected by thin hinges. (a) Isotropic sheet and (b) detail. (c) Mecha-
nism of inextensional deformation for the truss analog of (a), obtained
by computing the null space of the kinematic matrix. (d) Detail of
one of the tiles of (a), indicating all the quantities necessary for the
kinematic analysis. (e-h) Same as (a-d), but for the architecture in
(e). (Scale bar, 6 mm) . . . . . . . . . . . . . . . . . . . . . . . . . 140

B.6 Design space in terms of maximum stretches, _"G and _H (_"G ), as
a function of FG and FH, with ;G = ;H = 6 mm and X = ;G/8 fixed.
Insets A-D represent specific examples extracted from the space. . . . 142

B.7 Kinematic analysis of non-periodic perforated sheets featuring tiles
connected by thin hinges. (a) Example of non-periodic sheet. (b)
Detail of the sheet in (a). (c) The null space of the kinematic matrix
of the pin-jointed truss analog to (a) contains no mechanism. (d)
Detail of one of the tiles of the sheet in (a), with all the quantities
necessary for the kinematic analysis. (e-h) Same as (a-d), but for the
architecture in (e). (Scale bar, 6 mm) . . . . . . . . . . . . . . . . . 143

B.8 Influence of design parameters on sheet stiffness. (a) Dependence
of the mechanism-like response on the in-plane hinge width, X. We
keep C/;G ∼ 0.26 constant, and we vary X/;G . The dashed vertical
lines represent the mechanism-to-elasticity transitions for all X/;G
cases. (b) Dependence of the mechanism-like response on the sheet’s
thickness, C, with X/;G = 1/8 constant. . . . . . . . . . . . . . . . . . 148



203

B.9 Out-of-plane deformation of three graded sheets with different thick-
nesses, for different stretches. Rows of images correspond to specific
stretch values. Columns correspond to different thicknesses of the
sheets. In each image, ℎ indicates the height of the highest point of
the 3D shape with respect to its undeformed position. (Scale bar, 12
mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

B.10 Out-of-plane deformation of three graded sheets with different thick-
nesses, for the same stretch value. (a) Corresponds to C/;G ∼ 0.13,
(b) to C/;G ∼ 0.26 and (c) to C/;G ∼ 0.53. The left images represent
lateral views of the buckled shapes. The details highlight the local
deformations of hinges and tiles near the load application points.
(Scale bar, 12 mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B.11 An alternative design startegy for stiff materials. (a) Detail of an
architecture obtained with our initial design strategy. (b) Compliant
beam version of the same architecture, where we have introduced the
additional parameter ℎ, representing the in-plane hinge length. . . . . 151

B.12 Plastic dome. (a) Three stages of the deformation of the natural
rubber specimen studied in Fig. 3.3(a). (b) Deformation of a similar
sheet, made of PETG and featuring the design variation shown in
Fig. B.11(b). (Scale bar, 12 mm) . . . . . . . . . . . . . . . . . . . . 152

D.1 Unit cell scheme. The configurable parameters are the central length
; (constant difference with bracket length 1), bracket thicknesses ℎ
(which can be different for the two opposite layers), and the bumper
cutting plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

D.2 Shell design pipeline: 1. A target surface is isotropically triangulated.
2. This “actuated” stencil is populated with bases and bumpers
touching their corresponding neighbors. 3. The “actuated” stencil is
conformally flattened. 4. Bases with bumpers are relocated to the
flat stencil. 5. Bracket lengths are set by the distance between bases
in this configuration. Bracket thickness is defined later during the
temporal programming phase. . . . . . . . . . . . . . . . . . . . . . 158

D.3 Discretization elements: data-driven springs, representing brackets’
time-evolving stiffness and bumper collisions (left); shear-resisting
elements, representing brackets’ resistance to undesired shearing
(center); and membrane FEM (right). . . . . . . . . . . . . . . . . . 161



204

D.4 Experimental setup for characterizing unit cell behaviors. (a) Speci-
mens used formaterial measurements are assembled from two printed
parts to mimic a unit cell. Assembled specimens have holes to en-
sure consistent boundary conditions in a gripper that was fabricated
in-house. (b) Custom-built gripper for quick specimen exchange and
a “boot” for firm specimen compression against the floor. (c) Zwick
tensile tester for measuring bracket deformations in hot water. . . . . 165

D.5 Compressive loading of dry specimens. Data (solid lines) and fitted
curves (dashed lines). . . . . . . . . . . . . . . . . . . . . . . . . . . 167

D.6 Compressive loading of specimens in water. Data (solid lines) and
fitted curves (dashed lines). . . . . . . . . . . . . . . . . . . . . . . 168

D.7 Plasticity does not depend on deformation rates. Three different
deformation rates are shown for a unit cell specimen of length ; =
8 mm and thickness ℎ = 0.4 mm. Dashed line represents 20% of
maximal deformation which we use as a constant plasticity fraction
in our simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

D.8 Predicting applied tractions and selecting bracket thicknesses. (a)
Linearized model of the membrane (dashed lines) in comparison
to FEM membrane (solid lines) for a set of unit cells of various
initial lengths. The membrane tractions decrease with displacement
as the pre-stretch is relaxed. (b) Configuring thicknesses for two
pairs of brackets on opposite sides of a unit cell. Note that the one
requiring larger target displacement is thinner to finish deformation
at the same time as the one with smaller target deformation. The
dashed horizontal line shows a sample approximation to the target
membrane traction. . . . . . . . . . . . . . . . . . . . . . . . . . . 170

D.9 Fabrication process landmarks. (a) Star-shaped membrane stretching
device back side up. Bottom part of the membrane is uniformly
stretched due to markers. (b) Transferring glue from a plastic foil to
the bases of the shell. (c) Passing a pin through one of the bases and
the membrane to align with the second lattice. (d) Membrane surplus
is covered by glue in order to “freeze” it and enable its easy removal.
(e) Cutting out the shell from the membrane surplus by a scalpel. (f)
Flat-fabricated shell ready for actuation in water. . . . . . . . . . . . 171



205

D.10 Membrane stress relaxation over the course of 24 hours. Evolution
of the force generated by a dog-bone membrane specimen under a
constant stretch factor of 3. . . . . . . . . . . . . . . . . . . . . . . . 172

D.11 Mechanical tests of a flat regularly tessellated shell. Since our shells
have cross-sections with a complex geometry, we provide the effec-
tive stress values (assuming shell homogeneity). (a) Stretching, (b)
bending, (c) shearing, and (d) compression tests. . . . . . . . . . . . 174

E.1 LCE and structural tile ink rheology. (a) Apparent viscosity as a
function of shear rate for !)#� and �)#� LCE inks at printing tem-
perature 26oC and 55oC, respectively. (c) Storage (�′) and loss (�′′)
moduli as a function of shear stress at 1 Hz for !)#� and �)#� LCE
inks at the respective printing temperatures of 26oC and 55oC. (c)
Apparent viscosity as a function of shear rate for the structural poly-
mer ink under ambient conditions. (d) Storage (�′)and loss (�′′)
moduli as a function of shear stress at 1 Hz for the structural polymer
ink under ambient conditions. . . . . . . . . . . . . . . . . . . . . . 181

E.2 Differential scanning calorimetry curves for the LCE inks. The two
oligomeric LCE inks exhibit !)#� and �)#� values of approximately
24oC and 94oC, respectively. [Note: From this data, the )6 and
smectic-to-nematic transition temperature ()(# ) for the �)#� ink are
approximately −20oC and 20oC, respectively.] . . . . . . . . . . . . 182

E.3 LCE alignment.2D wide angle X-Ray scattering patterns of unidirec-
tional printed (a) !)#� and (b) �)#� LCEs. (c) Normalized intensity
as a function of azimuthal angle. (d) Normalized radial intensity as
a function of the momentum transfer vector @ = (4c/_) sin \. . . . . 182

E.4 Actuation response of unidirectional printed LCEs.The measured
contractile and expansion strain observed perpendicular and parallel
to the print direction, respectively, as a function of temperature for
unidirectional aligned LCE actuators printed from !)#� and �)#�
inks. [Note: Sample dimensions are approximately 20 mm×5 mm×
0.375 mm.] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183



206

E.5 Bending angle as a function of temperature. Bending angles \ of (a)
!)#� and (b) �)#� LCE hinges (0.25 mm thick) with varying width
(F = 1 − 4 mm) as a function of temperature. Due to residual stress
that arises from printing and cross-linking the !)#� LCE hinges in
the isotropic phase, their measured bending angle is negative at low
temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

E.6 Bending angle as a function of hinge dimensions. Bending angles of
LCE hinges of varying thickness (ℎ) and width (F), when actuated
above their )#� . Hinge angles \ are measured at 120oC and 150oC
for the !)#� and �)#� LCE hinges, respectively. Maximum bending
angle is 180o due to panel collision. . . . . . . . . . . . . . . . . . . 184

E.7 Valley fold bending angles. Printed LCE hinges (0.25 mm thick) of
varying width F exhibit valley folds with smaller bending angles \
than their mountain fold counterparts. . . . . . . . . . . . . . . . . . 184

E.8 Repeatable hinge folding. Bending angles \ of !)#� and �)#� LCE
hinges (0.25 mm thick and 2 mm wide) when cycled above and below
)#� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

E.9 Triangulated polyhedron actuation sequence at ambient temperature.
(a) The triangulated polyhedron in its second, partially folded con-
figuration after heating to actuate the top !)#� section. (b) The
triangulated polyhedron in its third, fully folded configuration after
heating to actuate the bottom �)#� section. All images are taken
under ambient conditions. . . . . . . . . . . . . . . . . . . . . . . . 185

E.10 Free body diagrams of self-propelling rollbot. (a) Moment diagrams
for calculating the torque at the !)#� LCE hinge (1) that requires
the greatest torque for self-reconfiguration into a pentagonal prism.
Here, < is the mass of each panel, 6 is gravitational acceleration, !
is the length of each panel. (b) Moment diagrams for calculating the
torque requirements of�)#� LCE hinges that induce self-propulsion.
Here, " is the entire mass of the structure, n is the offset of the center
of mass �.". from the tipping point, ; is the length of the propelling
plate, X is the offset of the hinge from the tipping vertex, >. A no-
friction assumption is taken for the contact between the structure and
the ground. Only forces that affect a torque about the tipping point
are shown for clarity in the image. . . . . . . . . . . . . . . . . . . . 186



207

E.11 Torque requirements of hinges for self-propelling rollbot. (a) Torque
required from !)#� LCE hinges for self-assembly into a pentagon as
a function of folding angle \. (b) Torque required from �)#� LCE
hinges as a function of hinge angle for self-propulsion. The required
moment is zero at the tipping point. A 63o hinge angle induces a 36o

tipping angle about the vertex. . . . . . . . . . . . . . . . . . . . . . 187
E.12 Torque measurement experimental setup. Torque of the LCE hinges

can be measured (left) as a function of angle \ by rotating a rotary
stage (right). The force sensor is attached to the hinge at the end of
the panel, approximately 1 cm from the edge of the LCE component,
which is in contact with a thin heater. A linear stage is used to ensure
that the hinge tile attached to the force sensor is parallel to the sensor
surface. Scale bars are 1 cm. . . . . . . . . . . . . . . . . . . . . . . 188

E.13 Torque measurements for hinges of varied dimensions. ℎ indicates
hinge thickness in mm, F indicates hinge width in mm, and \ is the
folding angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189


	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	Introduction
	Research objectives
	Motivation
	Research approach, challenges, and methods
	Chapter outlines

	Bibliography
	Compliant Morphing Structures from Twisted Bulk Metallic Glass Ribbons
	Introduction
	Ribbon design and material characterization
	Twisting mechanics
	From ribbons to structures
	Conclusions and outlook

	Bibliography
	Shape-Morphing Architected Sheets with Non-Periodic Cut Patterns
	Introduction
	Design paradigm
	Non-periodicity
	Conclusions
	Materials and methods

	Bibliography
	Effective Continuum Models for the Buckling of Non-Periodic Architected Sheets that Display Quasi-Mechanism Behaviors
	Introduction
	Modeling approach
	Finite element implementation
	Results
	Conclusions

	Bibliography
	Programming Temporal Morphing of Self-Actuated Shells
	Introduction
	Results
	Discussion
	Methods

	Bibliography
	Untethered Soft Robots with Passive Control of Shape Morphing and Propulsion
	Introduction
	Results
	Discussion
	Materials and methods

	Bibliography
	Conclusions
	Summary of contributions
	Outlook on future research directions

	Compliant Morphing Structures from Twisted Bulk Metallic Glass Ribbons
	Details on the material properties of BMG

	Bibliography
	Shape-Morphing Architected Sheets with Non-Periodic Cut Patterns
	Additional information on the tensile tests
	Details on the finite element model
	Kinematic analysis
	Cut pattern generation
	Influence of the design parameters on the in-plane deformation of periodic specimens
	Influence of the design parameters on the out-of-plane deformation of non-periodic sheets
	Alternative design for stiff materials and plastic deformations

	Bibliography
	Effective Continuum Models for the Buckling of Non-Periodic Architected Sheets that Display Quasi-Mechanism Behaviors
	Strong form of equilibrium
	Finite element formulation and Solution Procedure
	Stability analysis with mixed method constraint

	Programming Temporal Morphing of Self-Actuated Shells
	Shell design
	Simulation
	Material measurement and modeling
	Temporal programming
	Fabrication procedure
	Mechanical measurements of shells
	Supplementary movies

	Bibliography
	Untethered Soft Robots with Passive Control of Shape Morphing and Propulsion
	Mechanics of thin nematic elastomer bilayers
	Supplemental figures

	Bibliography
	List of Illustrations

