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ABSTRACT

Programming biological materials is a daunting challenge. Although part of this
challenge is practical—cloning is difficult, synthesizing DNA is expensive at scale,
etc.—a number of the challenges of bioengineering (and synthetic biology in partic-
ular) are problems of design and specification. If we could place arbitrary molecules
on a surface with perfect precision, what should we place and where? If we could
arbitrarily change the genetic content of a cell, even with perfect knowledge of the
function and action of every component, what changes would actually enact the
functions we want that cell to have? In this thesis, we explore three specific design
and specification challenges at three different levels of abstraction, and demon-
strate methods for overcoming them. On the level of design language, we use a
specialized class of cellular automaton to probe what chemistry can do when re-
stricted to a surface. On the level of part specification, we use several models of
CRISPR/Cas9-based transcriptional regulators to understand what dynamic func-
tions those regulators can perform and why, and provide some some suggestions for
how to engineer such regulators to more robustly perform those functions. On the
level of module design, we consider an easy-to-encounter trap in when modeling a
replicating DNA species in a CRN-based biocircuit simulation, for which we suggest
a simple, flexible, biologically-plausible workaround.
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C h a p t e r 1

INTRODUCTION

Howcan you use biologically-derived things—molecules, polymers, cells, materials,
tissues, organisms, or populations—to solve problems? This is the principal question
of bioengineering.

Bioengineering itself encompasses and intersects a number of other fields and
sub-fields. Of particular interest to this thesis are molecular programming and
synthetic biology. Molecular programming solves problems using custom-built
biomolecules—usually, but not exclusively, nucleic acids (Hu and Niemeyer, 2019),
and typically in simple in vitro contexts. Synthetic biology instead uses dynamic
circuits (again usually made from nucleic acids or proteins) working in the context of
a cell (Meng and Ellis, 2020; Nielsen et al., 2016), or cell-like in vitro environment
(Sun et al., 2013; Garamella et al., 2016).

Biological systems are complex and flexible, and nature provides us with a seem-
ingly boundless toolbox of pre-built tools that we can take advantage of for our
own purposes. Biological machines can 3D print fantastically complex structures
(Pawolski et al., 2018; Wallace, Chanut, and Voigt, 2020), spin threads stronger and
lighter than steel (Foo and Kaplan, 2002), and synthesize fuels from little more than
air and light (Khan and Fu, 2020). It is tempting to claim that with the right DNA
sequence, a cell can do anything.

However, the diverse complexity that makes biology appealing as a substrate also
makes it uniquely difficult to understand and work with. Even if there exists a DNA
sequence that will solve your problem, finding that sequence is, typically, a beast of
a problem in its own right. Our understanding of biological systems is limited both
by our knowledge of those systems and our ability to predict what those systems
will do.

Therefore, many of the core problems of bioengineering can be distilled into more
general problems of design—given a function or outcome, how can you specify a
biological system that implements that function or produces that outcome? The
dual to the design problem is the problem of prediction—given a specification for a
biological system, what will it do?

This thesis demonstrates three different attacks on the design problem at three
different levels of abstraction: design language, part specification and use, and
sub-component (module) design.

1. Design Language: Many frameworks for planning and analyzing engineered
biological systems use design languages derived from the Chemical Reaction
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Network (CRN) and its associated dynamical models, sometimes with the ad-
dition of coarse-grained spatial dynamics (i.e., reaction-diffusion networks).
Although powerful, these formalisms are best suited to systems with large
numbers of molecules that can diffuse and interact freely. CRN-based models
are not well-suited to, for example, spatial patterning on a membrane, or the
interactions of molecular walkers on a synthetic surface (Thubagere et al.,
2017), where geometry and spatial arrangement are important. In Chapter 2,
we describe a formalism called the surface chemical reaction network (surface
CRN) intended to fill this gap in design language space. We use this language
to specify direct (theoretical) implementations of arbitrary synchronous cel-
lular automata, arbitrary feed-forward logic circuits, and selected examples of
molecular-scale manufacturing and swarm robotics.

2. Part Specification and Use: Chapter 3 concerns the capabilities and limi-
tations of a particular system of powerful and flexible parts recently used in
genetic circuit design known as CRISPR-based transcription factors. These
hybrid protein/nucleic acid parts can be used much like more traditional tran-
scription factors, but are much more flexible and, more importantly, scalable
than natural transcription factors and their derivatives. We use a simple kinetic
model of CRISPRi to reproduce several classic synthetic circuits, including
a repressilator and a toggle switch, even though CRISPRi lacks the explicit
cooperativity traditionally thought to be required for both of those circuits.
We also show that CRISPRi has some non-desirable kinetic properties, and
provide several suggestions for how to engineer CRISPRi components tomake
the CRISPRi system more powerful and flexible. We also consider how the
scalability of CRISPR-based transcription factors is limited by the availability
of a core enzyme, dCas9. In particular, we show that CRISPR-based repres-
sors are much more strongly affected by dCas9 limitation than CRISPR-based
activators, suggesting design principles for scaled-up CRISPR-based genetic
networks.

3. Module Design: In Chapter 4, we discuss useful ways to model a com-
mon neglected motif in biocircuit engineering—the self-replicating DNA unit
(chromosome or plasmid). The mechanics of DNA replication are typically
hidden by assumptions of biocircuit modeling; indeed, most models do not
even explicitly acknowledge that DNA replicates at all! We argue that certain
questions about DNA-based biocircuits (particularly in low-concentration,
stochastic regimes) cannot be answered without explicitly considering and
modeling DNA replication. We highlight a common pitfall for the unwary
replication-modeler, and propose a simple replication model that avoids it.
We also consider a previously-published model of ColE1 plasmid replication
(Brendel and Perelson, 1993; Freudenau et al., 2015) along with a simplified
version which, in some parameter regimes, reduces approximately to our pro-
posed model. Finally, we provide examples of two different plasmid-based
biocircuits using each of the three replication models.
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Finally we discuss future challenges and areas of further research related to each of
the three example problems in Chapter 5.
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C h a p t e r 2

PROGRAMMING AND SIMULATING CHEMICAL REACTION
NETWORKS ON A SURFACE

Clamons, Samuel, Lulu Qian, and Erik Winfree (2020). “Programming and simu-
lating chemical reaction networks on a surface”. In: Journal of the Royal Society
Interface 17 (116). doi: 10.1098/rsif.2019.0790.

This paper grew from a rotation project with Erik Winfree and Lulu Qian, which
itself was a followup to their original presentation of surface CRNs in their 2014
conference report in DNA Computing and Molecular Programming, “Parallel and
Scalable Computation and Spatial Dynamics with DNA-Based Chemical Reaction
Networks on a Surface.” That paper lays out the concept of a surface Chemical
Reaction Network (surface CRN) with several of the examples from my own work
(along with several others) and a proposed scheme for physically implementing
arbitrary surface CRNs. It made a strong statement about the power and promise
of surface CRNs, but when I began working on the project, we still had a lot of
questions about the space of possible surface CRNs.

In particular, we lacked good ways to prove the behavior of a surface CRN. As
Erik and Lulu had discovered with their Greenberg-Hastings automaton example
(discussed in some depth in this chapter), the qualitative behavior of even a very
simple surface CRN can depend on fairly complex interactions, and can be somewhat
surprisingly dependent on the exact tuning of rate parameters. We knew it was
possible to construct surface CRNs with exact, specifically defined behavior (for
example, the digital logic circuits shown in this chapter, and the Turing machine
implementations shown in the first surface CRN paper), but we wanted to be able
to more effectively explore the behaviors of surface CRNs with more “emergent”
properties.

The critical step in opening up a wider variety of surface CRNs for examination was
the construction of a simulator that made it easy to specify a new surface CRN and
watch it in action. This simulator made it practical to respond to questions of “what
if...?” and “could we...¿‘ with answers of “good question, let me go check.”

The primary goal of this paper was not to wrap up a complete story, but to encourage
exploration. We have identified a number of possible paths forward in the use of
surface CRNs, and we have shined a light a little bit of the way down each of those
paths. We hope that by providing some enticing examples and providing a tool to
make it easy to expand on our work, we will inspire other researchers to find out
what’s further down some of those paths.
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2.1 Introduction
Skilled chemists can do many things. They can make a dizzying variety of
molecules—medicines, fuels, poisons, flavoring, detergents, paints, fertilizers, ex-
plosives. They can use combinations of molecules to build materials—fabrics,
plastics, glass, concrete, metals and their alloys. They can change important prop-
erties of liquids, like salinity or acidity, or even redox potential, which lets them
make a battery. They can make molecules change form or color, which gives them
the ability to detect light, starch, oxygen, pH, and build air or water quality sensors.
With the right salts or other dissolved compounds, they can grow beautiful crystal
structures, which can be made into jewelry and pottery.

But even the most skilled chemists cannot make anything as sophisticated as life—
a large collection of molecules with impressive information-processing capabili-
ties underlying fundamental behaviors such as development, learning, and self-
repair (MacLennan, 2015). The basic components of life—lipids, nucleic acids,
and proteins—can all be chemically synthesized. Simple interactions between
chemically synthesized molecules can carry out dynamic behaviors: oscillation or
chaotic behavior (e.g., the Bray-Liebhafsky reaction (Bray, 1921), the Belousov-
Zhabotinsky reaction (Zhabotinskii, 1964; Degn, 1967b; Degn, 1967a; A. Winfree,
1984), and the Briggs-Rauscher reaction (Briggs and Rauscher, 1973)). Systems
including dozens to hundreds of chemically synthesized molecules, nucleic acids in
particular, can be built to perform information-processing tasks including Boolean
logic computation (Stojanovic et al., 2005; Seelig et al., 2006; Qian and E. Winfree,
2011), neural network computation (Qian, E. Winfree, and Bruck, 2011; Cherry
and Qian, 2018), and more (Chen, Dalchau, et al., 2013; Srinivas et al., 2017).
Chemically synthesized molecules can also be programmed to self-assemble into
structures with a variety of shapes (Rothemund, 2006; Douglas et al., 2009; Ke
et al., 2012). However, these systems are still far less complex than what is seen in
nature.

Is it possible to create much more complex chemical systems than current technolo-
gies?

Theoretically, yes. Perhaps the most well-known and well-understood formal model
of chemistry is the abstract chemical reaction network (CRN), which encodes each
chemical reaction in a system of chemical reactions as amapping from a (multi)set of
abstract reactant species to a (multi)set of abstract product species, along with a rate
constant. CRNmodels differ in how thesemappings are applied. Stochastic, discrete
CRN models give positive integer values to molecular counts and typically treat
reactions as events in a continuous-time Markov chain (Gillespie, 1977). For very
large numbers of molecules, stochastic CRNs can be approximated by continuous,
deterministic mass-action CRN models, in which chemicals have non-negative,
real-valued concentrations that change according to a set of ordinary differential
equations determined by the CRN for the system. In both types of CRN models,
molecules are well mixed—every molecule can freely float around and come into
contact with every other molecule in the system.
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Deterministic mass-action CRNs are Turing-universal (Fages et al., 2017), suggest-
ing that chemistry is, in principle, as powerful as any programming language and
can compute anything, even when restricted to reactions that can be understood
with simplistic models. Stochastic CRNs can also compute anything, although
the computation is only correct most of the time—occasionally it is wrong (Cook
et al., 2009; Soloveichik, Cook, et al., 2008). Alternatively, they can compute
anything with guaranteed correctness if we could obtain the output of the compu-
tation only when time goes to infinity (Cummings, Doty, and Soloveichik, 2016).
Conversely, some computational schemes are possible with stochastic CRNs but
not in deterministic CRNs. For example, stochastic CRNs can directly represent
complex probability distributions (Cappelletti et al., 2020), perform probabilistic
inference (Poole et al., 2017), and use the CRN’s inherent stochasticity to help solve
combinatorial search problems (E. Winfree, 2019).

Even though in theory well-mixed chemistry is sufficiently powerful for carrying out
arbitrarily complex information-processing tasks, practically, it is hard to scale up the
complexity beyond certain limits. For example, deterministic mass-action CRNs are
Turing-universal only if concentrations can be guaranteed to have arbitrarily small
relative errors, as these concentrations must encode arbitrarily precise analog values
used in the computation (Fages et al., 2017). Stochastic CRNs have a different
practical problem: the number of molecules required for a task grows exponentially
with increasingly complex tasks (Soloveichik, Cook, et al., 2008).

One problem fundamental to both deterministic and stochastic CRNs is that the
entire “program” of a CRN is encoded in the interactions between molecules, and
designing a large collection of molecules to interact with each other with specificity
is, in general, difficult. It is inevitable that when two or more molecules come
into contact with each other in a well-mixed system, even if they are not designed
to interact with each other, unwanted side reactions will occasionally occur. A
larger collection of molecules necessarily has a higher probability of side reactions,
simply because there are more possibilities for every molecule to interact with
every other molecule. High-order side reactions can be repressed by using smaller
concentrations of chemical species, but reducing the concentrations will also slow
down a CRN. Thus, there is a tradeoff between the accuracy and speed of a CRN-
based computation.

One possible solution to the problem of restraining undesirable interactions relies
on spatial separation rather than specificity. This strategy is familiar from the world
of electronic engineering: in silicon circuits, interactions between components are
encoded by spatial position. Two AND gates, for example, do not interact unless
they are physically connected by a wire, even though their design is identical and
their signal carrier (electrons) is identical. Moreover, it is relatively easy to place
electronic components with high accuracy, and we can leverage this power to build
enormously complex devices from a remarkably small set of unique interacting
component types. Biology found this solution long before engineers did. In the
brain, neural circuits are largely determined by their spatial layout and connectivity;
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release of the same neurotransmitter yields different results depending on where it
is released. Even at the subcellular level, biology exploits spatial organization to
control biochemical circuit function, with scaffold proteins being a primary exam-
ple (Good, Zalatan, and Lim, 2011). Turning back to engineering efforts to program
chemical systems, one could imagine taking similar advantage of spatial separa-
tion by, for example, assembling molecules into polymers or tethering molecules
onto a surface so that geometry will limit which molecules can reach each other
(in the best case they can only touch their immediate neighbors); this prospect has
engendered a considered body of theoretical and experimental work in DNA nan-
otechnology (Qian, Soloveichik, and E. Winfree, 2011; Lakin and Phillips, 2011;
Tai and Condon, 2019; Chandran et al., 2011; Muscat, Strauss, et al., 2013; Lakin,
R. Petersen, et al., 2014; Teichmann, Kopperger, and Simmel, 2014; Ruiz et al.,
2015; Chatterjee et al., 2017; Bui et al., 2018).

In the course of his explorations of reversible computing and the thermodynamics
of computation, Charles Bennett exhibited a theoretical polymer CRN capable of
simulating arbitrary Turing machines, with each polymer in solution acting inde-
pendently and in parallel (Bennett, 1982). However, it remains unclear how to
engineer the hypothetical enzymes needed in Bennett’s construction. Plausible im-
plementations of Turing-universal polymer CRNs have been proposed using DNA
nanotechnology, but the constructions only work when there is a single copy of
certain molecules (Qian, Soloveichik, and E. Winfree, 2011; Lakin and Phillips,
2011; Tai and Condon, 2019), which imposes significant technical challenges in
practice and eliminates the possibility of parallelism. It is natural to expect that
surface-based chemistry will have greater computational capabilities than polymer
chemistry. In their 2014 paper (Qian and E. Winfree, 2014), Qian and Winfree
proposed a simple but powerful surface CRN model, along with a plausible im-
plementation using DNA nanotechnology, which now allows us to explore (i) what
chemistry on a surface, in principle, can do, (ii) what constraints, if any, being on a
surface imposes on chemistry, and most importantly, (iii) what it is better at doing
than well-mixed CRNs and polymer CRNs.

As it happens, chemistry on a surface can do quite a lot. Like well-mixed chemistry,
even simple natural surface chemistry can encode surprisingly complex behavior.
In one striking example, administration of oxygen and carbon monoxide gasses
to a well-defined platinum surface can induce bulk oscillations, spiral patterns, or
turbulence, depending on the ratios of gasses used (Jakubith et al., 1990). Other,
somewhat more complex surface-chemistry reactions can produce Sierpiński tri-
angles (Shang et al., 2015; N. Li et al., 2017; Wang et al., 2019), labyrinthine
mazes (Setvin et al., 2018), and other complex (and switchable!) patterns (C. Li
et al., 2017). That such simple systems can produce rich behavior suggests that
surface chemistry in general ought to be quite powerful.

Of course, different chemistries do different things—alloys of metals behave differ-
ently from thin-film liquids, which behave differently from proteins embedded in a
membrane. The surface CRN model does not attempt to give an accounting of each
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and every possible kind of surface-based chemistry, but rather explore the general
class of chemical reactions between spatially-constrained molecules using a simple
model. Qian & Winfree used surface CRNs to generate complex dynamic spatial
patterns and showed them capable of directly emulating both Boolean logic circuits
and Turing machines. We will expand on these examples and demonstrate several
other things that surface CRNs can do, some of which are obvious and some not.
You can follow along with our examples using our surface CRN simulator, either
online or on your own computer with Python (see Box 1).

Throughout this paper, many of the existing systems we reference will use DNA
nanotechnology. This is because DNA is a readily-programmed substrate, in the
sense that it is straightforward to specify binding and reactions between arbitrary
species, and so DNA nanotechnology provides, for the moment, many of the best
examples of programmable chemistry (Zhang and Seelig, 2011; Chen, Groves, et
al., 2015; Bathe and Rothemund, 2017; Scalise and Schulman, 2019). We wish to
emphasize that the surface CRN framework can just as easily apply to any system
of molecules with programmable interactions that live on a surface. We hope that
in the future, this will encompass a wide range of chemistries using a wide range of
substrates.

Box 1: Following along with our simulator

If you would like to follow along with the examples in this paper,
you can do so online at http://centrosome.caltech.edu/Surface\
textunderscoreCRN\textunderscoreSimulator, which presents an in-
terface to the surface CRN simulation Python package we used for most of
our design and visualization. The website has all of the examples we present,
plus a few extra examples for fun. You can also define and test your own
surface CRNs through the website, with the restriction that they must use a
square or hex grid.

For users who prefer to run our code directly, or would like to extend it,
our simulator is also available as the pip-installable Python package “sur-
face_crns.’ You can install it from our github page at https://github.
com/sclamons/surface\textunderscorecrns. This will let you watch
your surface CRNs run in “real-time,” and lets you step through simulations
one reaction at a time. If you are comfortable programming with Python, you
can also use our Python package to define surface CRNs with more complex
custom geometry or visualization.

2.2 Review: What is a Surface CRN?
We follow the definition of a surface CRN as introduced in Qian and Winfree
(Qian and E. Winfree, 2014): informally, it is a chemical reaction network in which
individual molecules are localized to sites on a surface and can only interact with
neighboring molecules. Alternatively, a surface CRN is an asynchronous, stochastic
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cellular automaton with transition rules that resemble CRN reaction rules. The
surface CRNmodel is not intended to replicate or model all of the possible behaviors
of chemistry that happen on or near a surface; nor is the surface CRNmodel intended
to accurately describe what is known in the field of surface chemistry. Rather,
the surface CRN is a simple model of CRN-like chemistry in which molecular
interactions are restricted geometrically, which we hope will clarify understanding
and inspire construction of computational chemical systems on surfaces.

More formally, a surface CRN is a continuous-time Markov chain specified by a
lattice L of connected sites i ∈ L with a state si at each site i, along with a set
of transition rules r ∈ R of either the form A → B or A + B → C + D, each
with a reaction rate λr . The surface CRN model is defined for arbitrary graphs
of sites, but for simplicity, we will consider only square-grid lattices in this paper
(though our simulator can handle arbitrary graphs). The state at each site is always a
single species, so we will often use “state” and “species” interchangeably. A species
represents some smallest physical unit of the system (e.g., proteins covalently bonded
to a glass slide, monomers in a plastic polymer, DNA complexes attached to a DNA
origami sheet, or local lattice configurations in a crystal) such that local interactions
can be represented as reactions. The connections between sites in the graph define
which pairs of species are physically close enough to interact. Where applicable,
an “empty” state (e.g. E) may be defined for sites which do not hold anything.
Note that the state of the Markov chain under this definition encompasses the entire
surface, and thus the states of all sites together.

As in traditional CRNs, we refer to the species on the left-hand side of the “→” in a
reaction as reactants and the species on the right-hand side of the “→” as products.

Unimolecular reactions (those of the form A→ B) can occur at any site with a state
matching the reactant. For example, the rule ON → OFF would cause any ON
species to spontaneously and instantly flip to an OFF species when the reaction
(stochastically) occurs. Again, a reaction rate associated with the rule determines
the average frequency at which the reaction will occur.

Bimolecular reactions (those of the form A + B → C + D) can occur anywhere
that the two reactant species are present and next to each other according to the
connectivity of the surface on which they sit. At the moment when it occurs, a
bimolecular reaction simultaneously and instantaneously transforms both reactants
into products. Note that surface CRNs do not have any absolute orientation, so
the absolute order of the reactants does not matter; however, the orientation of the
products will match the orientation of the reactants in the lattice. Thus, the rule
A + B → X + Y can occur anywhere that an A is next to a B, no matter their
orientations, and will always convert A into X and B into Y (but never A into Y or
B into X).

Jumps in the surface CRN process correspond to reaction events. An event is defined
as a tuple (I,r, t + ∆t), where I is a set of one or two sites, r is a transition rule
with the same number of sites as I, t is the the time of the last event (or 0 if it is
the first event), and ∆t is the time between the event and the previous event. At the
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beginning of the process and immediately after each jump event, the possible events
are all (I,r, t + ∆t) for which {si}, i ∈ I are exactly the reactants of r , with ∆t drawn
from an exponential distribution with mean 1/λr . The event with the minimum ∆t
then occurs at time t + ∆t, at which time the reactant states at sites I are replaced
by the products of r . At this point, the list of possible events is recalculated, and
the process is repeated. Simulation of surface CRNs can therefore be considered a
variant of the Gillespie algorithm (Gillespie, 1977) for stochastic chemical kinetics,
and thus is susceptible to similar optimizations (Gibson and Bruck, 2000) (see Box
2).

It is worth acknowledging again that the surface CRN model is not general enough
to accommodate all the complexities that may arise in real surface chemistry, such as
reaction rates depending on distance in an irregular graph, or depending on higher-
order neighborhood contexts. This simplification may make it less useful as a
modeling language, but at the same time it makes it more appropriate as a molecular
programming language, since the requirements for a systematic general-purpose
implementation will be more easily met.

Note that the surface CRN is a discrete, stochastic model, related to stochastic
reaction-diffusion systems (Hattne, Fange, and Elf, 2005; Fange et al., 2010) but
with several key differences. First, whereas both surface CRNs and stochastic
reaction-diffusion networks consider a similarly discrete number of molecules, in
reaction-diffusion systems the positions of those molecules are within a continu-
ous space while the surface CRN model considers discrete molecules at discrete
positions on the surface. Therefore, surface CRNs naturally capture exclusion ef-
fects related to macromolecular crowding, which require the introduction of extra
terms in the reaction-diffusion framework (Schöneberg and Noé, 2013). Further,
reactions in reaction-diffusion formalisms typically have no local geometry (the
relative positions of reactants and products are not specified, as if the solution is
locally well-mixed), whereas surface CRN reactions explicitly track which reactant
becomes which product and positions are preserved. Finally, while having a dif-
fusion constant of zero would be an anomaly in a reaction-diffusion system, in a
surface CRN, molecules will by default not diffuse—diffusion must be explicitly
added with a reaction such as X +E

k
→ E +X , where X is the the diffusing molecule,

E represents an empty site, and the rate constant k determines the rate of diffusion.
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Box 2: Efficient Surface CRN Simulation

Surface CRNs can be simulated using a variation of the Gillespie algorithm
for simulating stochastic chemical reaction networks. Briefly, using variables
from the text:

1. Initialize with a global state at time t = 0.
2. For each reaction r that can occur at a site or pair of sites, draw a

time-to-event ∆t for that reaction from an exponential distribution with
mean 1

λr
. Schedule this reaction to occur at time t + ∆t.

3. For the reaction with the smallest scheduled time, change the reactants
of that reaction to its products and set t = t + ∆t.

4. Repeat from step 2 until a stop condition.

The naive method redundantly recalculates time-to-events for every site and
pair of neighboring sites after every reaction, with total time complexity
roughly O(N × R), where N is the number of sites in the surface CRN and
R is the total number of reaction events simulated. We instead leverage
previously calculated next-reaction times by storing all possible reactions in
a priority queue, sorted by the time at which each reaction will occur:

1. Initialize with a global state at time t = 0.
2. For each reaction that can occur, draw a time-to-event as described and

add that reaction to a priority queue sorted by t + ∆t.
3. Pop the first reaction from the queue. Change reactants to products.

Set t = t + ∆t.
4. Remove from the queue all reactions involving any of the same sites as

the current reaction.
5. If any new reactions can occur that involve any of the same sites as the

current reaction, add them to the queue as per step 2.
6. Repeat from step 3 until a stop condition.
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Box 2: Efficient Surface CRN Simulation (cont.)

Popping a reaction from the queue is an O(log Q) operation (where Q is the
maximum number of reactions in the queue at any given time) and checking
for new reactions is constant in N , R, and Q, giving total time complexity
O(N+R log Q) ignoring step 4. However, step 4 (removing outdated reactions)
is linear with Q. Our simulation avoids the need for step 4 by storing the
times when each reaction is issued and the times when each site was last
changed. When an event is popped off the queue, if any of its reactants were
updated between the reaction’s issue time and the current time, the reaction
is scrapped and another one popped off the queue. This optimization comes
at the cost of bloating the queue with outdated reactions, which can slow
dequeueing somewhat.

The move from bulk (deterministic) to low-count (stochastic) has a practical upside:
real-world realizations of surface CRNs can be very, very small. Where a whole
test tube’s worth of chemicals might be required to accurately run a bulk-reaction
chemical computer, one test tube could easily hold billions or trillions of tiny
surfaces, each with its own surface CRN. In short, surface CRNs ought to be
aggressively parallelizable.

Importantly, as we will see in several examples, putting chemical reactions on
a surface opens up an interesting tradeoff between the difficulty of controlling
specific molecular interactions and the difficulty of laying out components in a
specific spatial arrangement. If one has the technology to position many molecules
precisely on a surface, surface CRN designs with few species and reactions can
accomplish complex tasks yet it will be relatively easy to design the few desired
molecular interactions; conversely, if one has the technology to implement many
desired molecular interactions precisely, there are other surface CRN designs that
can leverage that ability to create precise, complex spatial patterns from a simple
initial spatial arrangement.

Now, what exactly can a surface CRN do?

2.3 Dynamic Spatial Patterns
The chaos of asynchronicity
To beginwith, surface CRNs canmodelmany familiar chemical processes. Consider
diffusion of gas particles in a two-dimensional (lattice) space. We define states G
and S, for gas and space, respectively, along with the reaction G+S → S+G. When
a few G species are speckled on a field of S, the gas species will diffuse about at
random on the lattice, gas-like, with a diffusion rate set by the rate of the reaction
G + S → S + G. With the addition of reactions that change the species identities,
we have a form of stochastic reaction-diffusion system, as mentioned earlier.

Surface CRNs can also model chemistry at a more coarse-grained scale. Consider
the patterns generated by the Greenberg-Hastings (GH) cellular automaton (Green-
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berg and Hastings, 1978), which is a discrete version of the beautiful and dynamic
Belousov-Zhabotinsky reaction (Zhabotinskii, 1964; Field, Koros, and Noyes, 1972;
A. Winfree, 1984). The Greenberg-Hastings cellular automaton is a discrete, syn-
chronous, deterministic automaton where each cell has one of three states: Q
(quiescent), A (active), or R (refractory). At each step of the automaton: any quies-
cent cell next to an active cell becomes active; any active cell becomes refractory;
and any refractory cell becomes quiescent. Depending on the automaton’s initial
configuration, it can produce single waves, infinite spirals, or complex spiral patterns
(Figure 2.1c-e, middle-left column).

The GH automaton can be modeled by a three-reaction surface CRN (Figure 2.1a).
This CRN has the property that if all possible reactions were examined simultane-
ously, and all species changes were applied simultaneously, then the behavior of
the synchronous GH cellular automaton would be reproduced exactly. However, as
surface CRNs have asynchronous local updates, the GH surface CRN is stochastic
and its qualitative behavior depends on each reaction’s exact rate constant. With
the rates shown in Figure 2.1a, the surface CRN approximates some features of the
behavior of the GH automaton, but the waves and spirals produced in the surface
CRN version of the GH system are thick and uneven, with ragged edges.

The GH surface CRN lacks the strict synchronicity of the GH automaton, which is
what allows the original GH automaton to produce fine-grained, structured patterns
like the spiral wave (see Figure 2.1d). Structures in the CRN are brittle—a clean
wave front will quickly break apart as some parts of the wave spread more rapidly
than others. This causes the wave front to break up, peter out, or double back
on itself, so that a spiral that lasts forever in the synchronous GH automaton will
be a temporary storm in the surface CRN. In this case, at least, asynchronicity in
reactions washes out fine structure in the surface CRN.

The GH cellular automaton can be thought of not just as a specific model of the
Belousov-Zhabotinsky reaction, but rather as a generic model of excitable media
that support propagation of temporary activity through an otherwise quiescent space.
Systems as diverse as metal surface oxidation, protein signaling on oocyte mem-
branes, neural action potentials, heart muscle contractions, slime mold aggregation,
lichen growth, forest fires, infectious disease outbreaks, and star formation, all can
exhibit spiral waves and have been studied as excitable media (A. Winfree, 2001;
Grassberger and Kantz, 1991; Ballegooijen and Boerlijst, 2004; Tan et al., 2020).
Interestingly, well-known stochastic spatial models of forest fire and infectious dis-
ease propagation correspond closely to the GH surface CRN, with the Q, A, and R
states corresponding to green, burning, and burnt trees, or to susceptible, infected,
and resistant hosts, respectively (Grassberger and Kantz, 1991; Ballegooijen and
Boerlijst, 2004).

Going back to the example of the Greenberg-Hastings model, we saw that an in-
herently asynchronous surface CRN implementation of the same local logic (and
with well-tuned rate constants) can generate some similar kinds of behaviors as
the original synchronous cellular automata (e.g., wave propagation), while other
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important features (e.g., wave fronts remaining unbroken) fail in the asynchronous
surface CRN implementation. These differences can be understood in terms of
conserved quantities that the synchronous updates preserve (Greenberg, Greene,
and Hastings, 1980), but which are not preserved by the asynchronous updates (see
Box 3). More generally, it has long been known in the cellular automaton literature
that asynchronous updates often destroy behaviors that were of great interest in
the synchronous case (Ingerson and Buvel, 1984; Schönfisch and Roos, 1999). To
produce, say, the dazzlingly complex and specific phenomena of Conway’s Game
of Life (Poundstone, 1985) (an example to which we will return shortly), some kind
of synchronization between reactions seems necessary. Can a surface CRN, which
is intrinsically asynchronous, emulate the function of a truly synchronous cellular
automaton?
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Box 3: Conserved Quantities of Surface CRNs

The GH cellular automaton has a conserved property called the “winding
number” that is important for several proofs of its behavior. Pick any directed,
closed path through lattice sites in a GH automaton. That path will cross
through zero or more “cycles” of Q → A→ R (in either direction). The net
number of such cycles the path crosses (forward minus reverse) is its winding
number. A simple way to compute the winding number is to traverse the path,
tallying+1 for each forward step,−1 for each backward step, and then dividing
the total by 3. As an example, we write down the states along a possible path,
and below them, the tallies for going from the given cell to the next cell:

AQQQAARRARRQAR
-00+0+0-+0+++-

The tallies sum to 3 so the winding number is 1.

Interestingly, the winding number of any particular spatial path in a GH
automatonwith a fixed initial conditionwill remain the same as the automaton
progresses, regardless of the initial configuration of the automaton or the
topology of the lattice (eg., square, hexagonal, triangular, irregular, etc.).
This conserved quantity can be used to prove, for example, conditions under
which a particular GH automaton will continue indefinitely or peter out to a
uniform quiescent state.

• Does the surface CRN version of the GH automaton preserve winding
number? Why or why not?

• Can you identify any other conserved quantities in the surface CRN
GH automaton, or modify the reactions such that analogous quantities
are conserved?

You may wish to revisit these exercises for the other surface CRN implemen-
tations of the GH automaton given in later sections.

One-to-one “spinning arrow” construction of locally-synchronous automata
Yes, it can, at least in the most important senses. Again, the cellular automata
literature provides some guidance: many techniques have been invented whereby an
asynchronous cellular automaton can, by incorporating extra states and extra rules,
enforce that the information flow of the synchronous system remains intact within
the asynchronous system (Nakamura, 1981; Gács, 2001; Lee et al., 2005). However,
although the surface CRN model can be seen as a subclass of asynchronous cellular
automata, the fact that surface CRN updates involve just two sites at a time, and are
orientation-invariant, poses significant constraints that make direct application of
prior techniques impossible—but as we will show, mechanisms with a similar spirit
do work.
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One way for a surface CRN to emulate the function of a synchronous automaton is
for each site to a) accumulate information about all of its neighbors and b) update
itself based on that information in a way that c) guarantees that it will not update
itself before all of its neighbors have learned its state (so that its neighbors will not
get stuck, unable to update, or update based on the wrong information about the
cell). In general, this requires careful setup of both the transition rules and initial
conditions of the surface CRN, particularly to avoid deadlocking. Here we will
describe such a scheme for emulating any cellular automaton with a square-grid
geometry and Von Neumann neighborhood (i.e., one where each cell only considers
the states of the four neighboring cells with which it shares an edge, but not the
ones that border on only a corner). The basic principle is that the identity of the
state at each site, in addition to specifying the current state of the cell that it is
emulating, also has a directional arrow pointing to the next site it needs information
from. When two sites’ arrows point toward each other, both sites spin their arrows
in opposite directions (e.g., both clockwise) and update an internal label that tracks
what information that site has gathered from its neighbors. Once a site’s arrow has
spun once all the way around, a set of unimolecular rules changes that site’s state
according to the information it has gathered from its neighbors, resetting the arrow
and preparing it for the next update. Note that care must be taken in the initial setup
of the CRN so that every cell’s arrows do spin completely without deadlocking (see
Box 4).



18
a) b)

c)

d)

e)

f)

d)

1

7

R
,1Q ,2Q

,4Q ,6Q

,3Q

,9Q,7Q

,5A

,7Q

,3Q

,3Q

,7Q

,1Q

,1Q

,8Q

,8Q

,4Q,6Q

,9Q

,9Q

,8Q

S
pi
ra
l

w
av
e

1

Q
,5A

7

R
,1Q ,2QA
,4Q ,6QQ

,3Q

,9QQ
,7Q

,7Q

,3Q

,3Q

,7Q

,1Q

,1Q

,8Q

,8Q

,4Q,6Q

,9Q

,9Q

,8Q

S
pi
ra
l

w
av
e

1

QQ
,5A

7

R
,1Q ,2QA
,4Q ,6QQA

,3Q

,9QQ
,7Q

,7Q

,3Q

,3Q

,7Q

,1Q

,1Q

,8Q

,8Q

,4Q,6Q

,9Q

,9Q

,8Q

Figure 2.1: Comparison of a Greenberg-Hastings three-state excitable media cellular
automaton with two surface CRN implementations. a) The transition rules for the surface
CRN, with color legend for snapshots. b) Behavior of the Greenberg-Hastings system
implemented as a well-mixed CRN. In bulk, this CRN displays no oscillations or other
notable features. c-e) Initial state (left column) and snapshots for the GH automaton
(middle-left column) or the direct surface CRN implementation (middle-right column) or
the spinning-arrow surface CRN implementation (right column). Examples are shown
for a single pulse wave (c), a spiral wave (d), and a random initialization (e). f) The
spinning-arrow construction for a (locally) synchronous Greenberg-Hastings automaton
using a surface CRN. Each box is a single site in the surface CRN, which emulates the
function of a single cell in a synchronous automaton. At the left, arrows are shown in initial
positions, arranged to avoid deadlock. The middle shows the surface CRN after two updates:
one between sites 2 and 5, and another between sites 6 and 9. Sites 5 and 6 are now ready
to react together. At right, we see the result of the 5-6 reaction.
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Critically, each cell cannot update its state until it has received state information
from all of its neighbors, and it cannot receive information from its neighbors
without simultaneously sending its own state information. The result is that a cell
can never be more than one “clock tick” ahead of any of its neighbors, and will
only send its state information when it is at the same “clock tick” as its neighbor.
It is locally synchronous. Note that there is no guarantee of exact synchronicity
between distant cells in a locally-synchronous automaton (although cells distance d
from each other can be at most d “clock ticks” apart). Nevertheless, because each
cell only communicates with other cells at the same “clock tick,” the state history of
each cell is guaranteed to match that of an equivalent cell in a globally-synchronous
cellular automaton. In other words, the system will behave as though it were a
synchronous automaton, but with some variation in the speed at which each cell
updates.

One immediate problem with the spinning arrow scheme is that species in a surface
CRN do not perceive local orientation. Sites can be next to each other or not next
to each other, but reactions cannot be restricted based on reactants being “to the left
of” or “to the right of” each other, so two arrows “pointing toward each other” could
just as easily be “pointing away from each other” and the same reactions will apply.
To introduce a notion of directionality to the scheme, we initialize the surface in a
pattern with location labels at each site, dividing the grid into a repeating 3× 3 grid
(see Figure 2.1f). Adding site labels allows reactions to distinguish arrows pointing
together from arrows pointing apart; for example, ← at a 2 site and → at a 1 site
point toward each other, while← at site 2 and→ at a site 3 point away from each
other.

So, each site in the spinning-arrow emulation has a state that encodes:

• The current state of the emulated cell in the synchronous automaton.

• Local positional information within a 3 × 3 repeating grid.

• The direction of an “arrow” pointing toward the next site to update from.

• A memory recording information that the site has received from neighbors
during this update cycle.

More formally, consider any synchronous cellular automaton with Von Neumann
neighborhood, k states {s1, s2, . . . , sk} = S, and an update rule f (self,N,E,W,S)
where self ∈ S is the state of a cell and N,E,W,S ∈ S are the states of the cell’s
northern, eastern, western, and southern neighbors, respectively. Each site in the
emulating surface CRN has a state of the form Xd,p

info, where X ∈ S is the state
of the emulated automaton at that site, d ∈ {←,↑,↓,→} is the direction of the
site’s arrow, p ∈ {1, . . . ,9} is the local position of the site, and info ∈ S∗ is a list
of collected information about the states of the northern, eastern, western, and/or
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southern neighbors of the site that have exchanged information with the site, in an
order based on the order of exchange.

State exchange is mediated by bimolecular reactions of the following form, where
X ∈ S is an emulated state at some position p ∈ {1, . . . ,9}, N,E,S,W are the
emulated states to the north, east, south, and west of p at positions n, e, s,w ∈
{1, . . . ,9}, respectively:

X↑,p + N↓,n →X→,pN + N←,nX

X→,pN + E←,eS′ →X↓,pNE + E↑,eS′X

X↓,pNE + S↑,sS′W ′ →X←,pNES + S→,sS′W ′X

X←,pNES+W→,wS′W ′N ′ →X↑,pNESW+W↓,wS′W ′N ′X .

While these reactions at first appear to treat only a subset of possible local configu-
rations, these are the only cases that arise if the surface CRN starts with arrows and
position labels organized as shown at the left of Figure 2.1f.

Finally, states are updated using unimolecular rules of the form:

X↑,pNESW → f (X,N,E,W,S)↑,p

X↓,pSW NE → f (X,N,E,W,S)↓,p.

The above reactions of all forms should be defined for all appropriate pairings of
p ∈ {1, . . . ,9} and n, e,w, s ∈ {1, . . . ,9} and X,N,E,W,S,N′,E′,W′,S′ ∈ S.

By construction, only one reaction is ever possible at a time at each site, and this
reaction choice is unchanged by updates elsewhere. Consequently, the rate of each
chemical reaction can only affect the timing of the surface CRN’s evolution, not its
ultimate results. Thus, for this and other similar examples, we will ignore reaction
rates (or, equivalently, assume that each reaction has rate 1).

As a specific case, consider a spiral wave in a (truly) synchronous Greenberg-
Hastings cellular automaton (Figure 2.1c, middle-left) and in an equivalent locally-
synchronous surface CRN implemented as above (Figure 2.1c, right). Under the
right initial conditions, the spiral patterns characteristic of the fully synchronous
automaton are clearly visible, but they are “fuzzy” because the molecules imple-
menting the synchronous automaton are updated inherently randomly. No site will
ever get “too far” ahead of its neighbors, or cause them to update in an order dif-
ferent from that of the synchronous version, but there is no guarantee of global
synchronicity.

Although this example shows that (local) synchronicity is possible in a surface
CRN, it is not a very satisfying construction. All of the logic handling memory
storage, state updating, and arrow-spinning has to be hard-coded by “brute force”
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into the species and reactions defining the circuit CRN. Generally speaking, a
locally-synchronous spinning-arrow surface CRN representing a cellular automaton
with k possible states requires a number of species that scales as k5 and a number
of reactions that scales as k8. For scale, the synchronous GH automata uses 70,794
reaction rules, not including the boundary reactions required for finite grids. With
further optimization that uses species subscripts to store only the information needed
by f rather than the full neighborhood state, GH can be implemented with a little
over 3,000 reactions. Still, this is not a user-friendly set of reaction rules.

Box 4: Spinning Arrow Deadlocks

The spinning-arrow emulation scheme shown in this section requires care-
ful arrangement of initial conditions—with the wrong starting arrangement,
arrows can easily become deadlocked, unable to update.

• Can you prove that the initial configuration shown in Figure 2.1f will
not deadlock?

• How many initial configurations are there, in terms of initial arrow
direction, that avoid deadlock?

• If the surface is not infinite, then extra species and reactions are needed
to mark the boundary and perform updates there that will not induce
deadlock. Can you design them?

• Can you adapt the spinning-arrow emulation for surface CRNs with a
hex grid graph (instead of a square grid)?

Several-to-one “broadcast-swap-sum” construction of locally synchronous au-
tomata
Another way to emulate a synchronous automaton with a locally-synchronous sur-
face CRN is to emulate each synchronous automaton cell with an array of multiple
sites in the surface CRN. A several-to-one scheme also allows simulating cellular
automata with Moore neighborhoods (i.e., cellular automata whose cells communi-
cate along corners as well as edges) without requiring direct communication across
corners. We will also see that splitting a single cell into multiple sites allows us
to separate the logic of site-to-site communication from the logic of site updating,
which allows us to emulate the same automaton using dramatically fewer transition
rules.
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Figure 2.2: A “broadcast-swap-sum” construction of locally synchronous automata. a)
Nine molecules emulating a single cell in a synchronous cellular automaton. The current
state is held in position E,while the othermolecules handle communicationwith neighboring
cell blocks. b-e) A general scheme for updating such an automaton. Arrows represent
information flow at different stages of the update. f) Simulation of a glider from Conway’s
Game of Life, implemented with a 3×3 broadcast-swap-sum surface CRN emulation. Dark
red sites represent “dead” cells; dark green sites are “alive” cells; light red and green sites
are “wire” sites carrying information from “dead” and “alive” cells, respectively; gray sites
are “wire” sites in the process of counting neighboring live cells; white sites are “wire” cells
waiting for information from their corresponding sites; and purple sites represent an edge
condition. g) Simulation of a locally-synchronous spiral wave using a broadcast-swap-sum
emulation of a Greenberg-Hastings automaton, with simplified colors to make the spiral
easier to visualize.

For example, consider a surface CRN implementation of Conway’s Game of Life,
an automaton that uses information with a more complex update rule than the
Greenberg-Hastings automaton (Poundstone, 1985). In the Game of Life, each cell
represents the state of a population in some small area. The population can take one
of two values—“alive” (1) or “dead” (0). The Game of Life automaton executes
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synchronously, with the new state at each position determined by its previous state
and number of “alive” cells among its neighbors (including cells touching by a
corner) in the following way:

• Any live cell with 0 or 1 live neighbors dies (“underpopulation”).

• Any live cell with 2 or 3 live neighbors survives and remains alive.

• Any live cell with 4 or more live neighbors dies (“overpopulation”).

• Any dead cell with exactly three neighbors becomes alive (“colonization”).

• Any other dead cell remains dead.

In a broadcast-swap-sum emulation, each cell in the Game of Life is represented by
a 3 × 3 grid of sites on the surface CRN, labeled A through I from top to bottom,
left to right (Figure 2.2a). The center molecule (position E) stores the current state
of the Game of Life cell (0 or 1). The 8-molecule ring around E handles signal
communication and processing.

We will write states in this scheme in the form XS
i . X ∈ {A,B, . . . , I} indicates the

position within each 3 × 3 block that the site occupies. S ∈ {∅, b, f , h, d,w,n, s} is a
flag indicating what step of update computation the site has reached. i ∈ {0,1,2,3,4}
is a number representing either the state of the emulated cell or the current count in
a running sum of the cell’s neighbors’ states.

Update of a node begins with site E “transmitting” its state to positions B, D, F, and
H (Figure 2.2b) using the following transition rules:

Ei + B→ Eb
i + Bw

i

Eb
i + F → E f

i + Fw
i

E f
i + H → E h

i + Hw
i

E h
i + D→ Ed

i + Dw
i .

.

Here, the flags b, f , h, and d in the species’ names indicate the last position that was
updated; w indicates a state that has received information from site E but that has
not yet transmitted that information to the corner sites; and i ∈ {0,1} is the current
state of the emulated cell.

Next, similar rules transmit the emulated cell’s state from positions B, D, F, and H
to positions A, C, G, and I, respectively, and set positions B, D, F, and H to states
Bi,Di,Fi, and Hi, indicating that those sites are ready to transmit their current state
information to neighboring 3 × 3 blocks.
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Bw
i + A→ Bi + Ai

Dw
i + G→ Di + Gi

Fw
i + C → Fi + Ci

Hw
i + I → Hi + Ii.

Now emulated cells can “talk” horizontally by swapping the states in positions F
and D, and vertically by swapping the states in positions B and H (Figure 2.2c),
using the reactions

Fi + D j → Fn
j + Dn

i

Bi + Hj → Bn
j + Hn

i .

where i, j ∈ {0,1} are the states of each emulated cell and the n flag indicates
that the site has received information from the neighboring emulated cell. Concur-
rently, corners communicate in a similar fashion. However, since corners cannot
directly communicate with one another, corner sites swap states in a two-step fashion
(Figure 2.2d), first swapping horizontally

Ii + G j → I t
j + Gt

i

Ai + Cj → At
j + Ct

i

and then vertically

I t
i + Ct

j → In
j + Cn

i

Gt
i + At

j → Gn
j + An

i .

After swapping along sides and corners, each of the eight border sites will have
an n flag and will contain the state of one of the emulated cell’s eight neighbors.
At this point, the total number of active neighbors is summed in a circular fashion
(Figure 2.2e) using reactions of the form

An
x + Bn

i → A + Bs
min (x+i,4)

Bs
x + Cn

i → B + Cs
min (x+i,4)

Cs
x + Fn

i → C + Fs
min (x+i,4)

Fs
x + In

i → F + I s
min (x+i,4)

I s
x + Hn

i → I + Hs
min (x+i,4)

Hs
x + Gn

i → H + Gs
min (x+i,4)

Gs
x + Dn

i → G + Ds
min (x+i,4).
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Here, x is a running sum of the number of neighboring emulated cells with state 1,
which is capped at 4 for compression since the behavior of a cell of the Game of
Life does not change past 4 neighboring “alive” cells. The s flag indicates that the
site currently holds the running sum for the emulated cell. This set of reactions also
resets the ring and prepares it for the next round.

Finally, the sum in position D is combined with the current state, setting the new
state and resetting D, by a set of rules of the form Ds

x + Ed
i → D + EG(x,i), where

G(x, i) is the update rule for the Game of Life. That is, 1 if x = 3 or if i = 1 and
x = 2, otherwise 0. An example of a glider from the Game of Life is shown in
Figure 2.2f (dark green center squares).

A similar construction can be used to make a locally synchronous Greenberg-
Hastings automaton with a broadcast-swap-sum emulation (Figure 2.2g). This same
strategy can be used to emulate any Moore-neighborhood totalistic synchronous
cellular automaton (i.e., those automatons for which the update rule depends only
on the current state of a cell and the total number of neighbors with some state),
or, with a more complex neighbor-summarization procedure (which would require
more reactions and chemical species, but not more physical space), any Moore-
neighborhood non-totalistic cellular automaton.

Altogether, including reactions to handle boundary conditions, the broadcast-swap-
sum Game of Life automaton requires 132 rules, and nine sites for each Game of
Life cell, and the broadcast-swap-sum Greenberg-Hastings automaton requires only
102 reactions and 104 states, a considerable improvement over the spinning-arrow
emulation technique in terms of number of transition rules required to implement
the behavior. This efficiency of transition rules (which we might expect to be of
prime importance in any laboratory implementation of a surface CRN) comes at
two costs: larger surface CRN area per area of emulated cellular automaton, and
more reaction steps per cellular automaton update.

2.4 Continuously Active Logic Circuits
A properly constructed Game of Life of sufficient size can either simulate a Turing
machine (Rendell, 2002) or a Boolean circuit using streams of gliders to represent
data lines (Rennard, 2002). Since the surface CRN formalism can emulate the
Game of Life, it is therefore Turing-complete, which means that, in principle,
surface chemistry ought to be capable of performing any computation accessible to
a digital computer.

If desired, one could program a Turing machine directly as a surface CRN, as
shown by Qian and Winfree (Qian and E. Winfree, 2014). In the same paper, those
authors also provide a scheme for implementing arbitrary feed-forward Boolean
logic circuits. These circuits function similarly to digital electronic logic circuits,
with a few notable differences, as you will see below. A strength of Boolean
logic circuits is that they can compute in parallel, allowing them to make decisions
faster than equivalent Turing machines. We will show some interesting examples of
circuits made using the strategy described in (Qian and E. Winfree, 2014), updated
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slightly to accommodate feedback circuits in cases where the original strategy could
produce permanent “traffic jams” at wire crosses. (Also c.f. (Toffoli and Margolus,
1987) and (Lee et al., 2005) for Boolean circuits implemented as cellular automata.)

To review, our Boolean logic circuits are based around signal states 0 and 1, which
diffuse along linear paths of wire sites B (“Blank wire”) that are embedded in a
field of inert states I (Figure 2.3a). Information thus flows as discrete packets that
perform a random walk along wires using two diffusion reactions 0 + B → B + 0
and 1 + B → B + 1. For the sake of brevity, we will write this pair of reactions as
0/1 + B → B + 0/1. We will continue to use this notational convention—any rule
written with a “/” represents two logically related reactions, compressed for space.

To compute, we use logic gates constructed from several adjacent sites representing
input and output positions. The simplest gate we construct is the NOT gate, shown
in Figure 2.3b. The NOT gate is constructed from several states of the form SN L,
where S ∈ {B,0,1} represents the data currently held at this position (either blank, 0,
or 1), N designates the state as belonging to aNOT gate, and L ∈ {x, y} distinguishes
the input and output locations. This gate uses three sets of reactions: one to load
incoming data packets (either “0” or “1”) from a wire onto the front half of the
gate; one to invert those packets and move them to the back half of the gate; and
one to unload the inverted packet from the back half of the gate to another wire.
For example, when the front half of a NOT gate is in a waiting state BN x and is
next to an incoming 0 packet, the rule 0 + BN x → B + 0N x loads the zero signal
onto the front of the NOT gate and removes it from the wire. Similarly, a 1 can
be loaded using the reaction 1 + BN x → B + 1N x. Note that unlike wires, which
allow bidirectional information flow, NOT gates only allow signals to pass in one
direction, causing computation to ratchet forward.
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Figure 2.3: Continuously active logic circuits. B represents a blank wire, and 0 and 1
are states representing data packets. Gate locations use states with a three-symbol name,
where the first symbol denotes the data at that position (either blank, 0, or 1), the second
symbol distinguishes different gates, and the third symbol distinguishes different parts of
the gate. a)Wires, signals, and signal diffusion, b)NOT gate, c)AND gate, d)wire fan-out,
e) crossing wires, and f) synchronization gate implemented with surface CRNs.
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A two-input logic gate can be built with an architecture similar to that of the NOT
gate. A 14-reaction AND gate is shown in Figure 2.3c. Four rules load incoming
signals onto the Ax and Ay positions. Two more rules move the Ax signal onto the
Az position, putting the Ax position into a holding state (H Ax). By combining the
signals from the Ax and Ay lines, four more rules calculate the correct output signal
(now on the Az position). The output is then unloaded onto a wire, leaving the Az
position in a reset state RAz, which triggers two reactions that reset the gate and
prepare it for new incoming signals. The output signal can now diffuse away, but
cannot be re-loaded into the gate. Note that the AND logic occurs entirely in the four
rules that combine the Ax and Ay signals—the gate can be changed to implement
other logic simply by changing these four reactions. We will use OR and XOR gates
in later examples built in this way.

So far, a single wire in this implementation cannot feed a signal to more than one
gate (in parallel), as each data packet (0 or 1) is consumed when it is detected by a
gate. To make circuits where one line can feed to multiple gate inputs, we will need
an explicit fan-out mechanism. A gate implementing a 2-output fan-out is shown in
Figure 2.3d. It uses reactions similar to those of the AND gate but with opposite
flow—two rules read a signal into the center of the gate, four rules “split” the signal
into the two output positions, and four more rules unload each output position’s
signal onto its respective wire. A 3-output fan-out can be built in a similar fashion
using 14 reactions.

Finally, in order to build circuits of any reasonable complexity on a two-dimensional
grid, we will need a mechanism that allows wires to cross without mixing up their
signals. Figure 2.3e shows an example wire cross “gate.’ For each axis (horizontal
or vertical), the wire cross requires two rules to load a signal on the front end, two
rules to push the signal to the center (labeled so the gate “knows” whether the signal
is coming from Cx or Cy), two rules to push the signal to an output gate, two gates
to unload the signal onto a wire, and two rules to send a reset signal to the front of
the gate to prepare it for the next input.

Note that here (unlike in the logic gates shown earlier), holding and resetting the
input lines is important for guaranteedwire cross function, at least for use in recurrent
circuits. A circuit can be laid out such that both of the wires of the wire cross feed
the same two-input gate. In such a case, a wire cross (such as the one presented
in (Qian and E. Winfree, 2014)) without gate-locking or similar precautions can
become permanently jammed if enough inputs arrive from one line to fill up the
wire cross, blocking the inputs required to allow the backed-up line to proceed.

Finally, a gate that is not strictly necessary, but that will be helpful for a later
construction, is what we term a “synchronization gate.’ This gate is essentially two
linked repeater gates (NOT gates with the inversion logic removed) that wait until
both inputs are present before sending them on their respective journeys, which can
be used to ensure synchronization between different parts of a circuit. This gate
could instead be built purely using the other logic gates already shown above, at the
cost of clarity.
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Current
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X1
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Figure 2.4: Example logic circuits and a logic circuit emulation of locally synchronous
cellular automata. a-c) Example circuits built using the rules and gates from Figure 2.3,
plus a synchronization gate. Inset in (c) highlights the use of “sequential gates” whose
two inputs are sequential signals on the same input line, which are useful for efficiently
computing certain Boolean statements with repeated structure. Arrows show the direction
of logic flow through this motif, which outputs “1” if and only if exactly three out of four
sequential inputs are “1”s. d) General scheme for building locally synchronous cellular
automata using CRNs on a surface. Blue arrows represent outgoing state information, red
arrows represent incoming state information, and pink arrows represent information flow
through a “logic ring” that computes the next cell state. Pink rectangles are synchronization
gates, which allow signals to pass only once both inputs are present.
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Given these reactions and gate layouts, we can compose circuit elements and scale
up to larger circuits by simply laying out signals in different initial conditions on the
surface. An example surface CRN circuit that adds two 2-bit numbers is shown in
Figure 2.4a. Input signals (0 or 1) are initiated at x1, ..., x4. These signals could be set
manually during construction of the circuit, or they could be fed from an upstream
source (perhaps another circuit). Signals asynchronously propagate through the
circuit, with computations analogous to those in electronic circuits performed at
each gate. The speed and exact timing of each reaction is random, but the eventual
output of the circuit is guaranteed to be correct.

Another example that takes advantage of the continuous and reusable nature of logic
circuits on a surface CRN is a 6-bit binary counter shown in its initial condition,
after several rounds of output, and in its final state (Figure 2.4b). At the top of this
circuit, a signal diffuses around a ring with a NOT gate (which latches diffusion to
one direction), switching back and forth between 0 and 1. This signal is duplicated
and passed through a series of sequential half-adder circuits, where each half-adder’s
inputs are its last computed value and the value computed by the previous half-adder.
To make the counter’s function clearer, a wire at the output of each half-adder stores
the output history of that adder, with positions farther down the wire holding older
values than positions closer to the half-adder. The output can be read as a series
of binary numbers, where the nth packet (starting from the end) of the mth output
line is the mth bit of the nth number. These outputs could be hooked to the input
of another circuit to “clock” that circuit, or the counter could be used to create
repeating spatial patterns.

Just as we can emulate logic circuits in a Game of Life, we can emulate the Game
of Life using feedback logic circuits. Figure 2.4c shows a single cell from a Game
of Life, implemented with a roughly 40 × 40 surface CRN. For scale, if such a
cell were implemented on the scale of a metal crystal, with a single site at each
atom, it would be order of magnitude 10 nm square; if instead it were implemented
using the existing DNA origami-based scheme in (Qian and E. Winfree, 2014), with
origami tiles similar to those in (P. Petersen, Tikhomirov, and Qian, 2018), it would
be approximately 200 nm across, or between 1/10 to 1/5 the length of E. coli, with
each cell’s circuit layout approximately covering a ∼3 × 3 array of origami tiles.

Each cell consists of: a core loop in the center of the device that holds the cell’s
current state (0 or 1); an outer loop that transmits a copy of the cell’s current state
to each of its neighbors; and a ring-shaped block of logic that decides what the core
loop’s next state should be based on the values of the cell’s neighbors. This basic
structure, outlined in Figure 2.4d, is general for simulating any synchronous cellular
automata with local update rules computable by a logic circuit, with different circuits
in the logic ring yielding different automata.

At the beginning of each generation update, the state in the core loop is duplicated
and sent a) to the outer loop for transmission, and b) back to the core loop for storage
and computation of the next cycle state. The split signal runs clockwise around the
outer ring starting from the top. At each border with another cell, a copy of the state
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signal is created and waits until a matching signal is received from the neighbor.
Synchronization gates (see Figure 2.3f) at these junctions ensure that no cell can
update more than one step ahead of its neighbors. Once the neighbor’s signal is
received, it is fed into the logic ring, where a circuit in the logic ring determines
what the cell’s next state should be. Finally, the result of that computation is fed
into the core loop, replacing the previous value, and the cycle begins again.

The Game of Life update calculation involves detecting whether or not exactly three
or four out of nine neighbors are “alive” (pass a “1” signal), which is somewhat
cumbersome to check using a Boolean logic circuit. To keep this circuit to a
reasonable size, we take advantage of the digital, sequential nature of surface CRN
logic circuits to make “sequential” logic gates that act on two sequential signals
from the same input line, rather than two parallel inputs on separate input lines.
For example, the inset shown in Figure 2.4c shows a five-gate motif that produces
output with every four consecutive signals it receives, yielding “1” if exactly three
of those signals are “1”s and “0” otherwise. An equivalent standard Boolean logic
circuit would require two additional logic gates and approximately five wire crosses
and four fan-outs. Note that sequential logic gates use exactly the same states and
transition rules as a standard surface CRN logic gate, only arranged differently on
the surface.

At first glance, this implementation of the Game of Life seems cumbersome com-
pared to the much more compact emulation method described in Section 2.3. Using
logic circuits certainly requires more surface area and more running time than di-
rectly emulating the same Game of Life. However, the circuit-based implementation
uses 110 reactions as written (including synchronization gates and “repeater gates”
that serve only to speed computation; see the Game of Life examples on our website
for details). This number can be reduced to 46 by removing redundant gates and re-
using rules for data-loading using a common input state, bringing the total reaction
rule set down to less than a third the number required for the broadcast-swap-sum
Game of Life emulation (see Box 5). Moreover, the same strategy can be used to
construct any synchronous cellular automata using exactly the same rule set, varying
only the initial layout of species on the surface. This is a considerable advantage in
an experimental setting, as only one set of on-surface reactions need be designed
and validated, along with the ability to lay down arbitrary initial surface layouts, in
order to build any molecular-implemented (synchronous or asynchronous!) cellular
automata, recurrent digital circuit, or Turing machine. In principle, even a fully
functional microprocessor (Martin et al., 1989) could be implemented using exactly
the same surface CRN reactions shown here. (Implementing universal circuit con-
structions with reversible surface CRN reactions also establishes connections to the
physics of computation (Brailovskaya et al., 2019).)

This ease of scaling contrasts with existing programmable molecular implemen-
tations of logic using, for example, DNA complexes in a well-mixed test tube or
protein levels in a cell. In those schemes, each data line is encoded with a differ-
ent kind of molecule, and each new gate requires the design of a set of chemical
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reactions with new molecular species.
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Box 5: Efficient Logic Circuits

Wires, signal diffusion, 2- and 3-output fan-out, wire-crossing, synchroniza-
tion and repeater gates, NOT, OR, XOR, and NOT gates—as we have demon-
strated here—require a total of 110 transition rules. That is a lot of molecular
interactions, from the point of view of an experimenter trying to physically
build such a circuit. We can shrink this rule set considerably, sacrificing only
spatial compactness and readability of the final circuit design, by removing
repeater, sync, AND, OR, XOR, and NOT gates (as these can be emulated
with only NOR gates), and by eliminating the 3-output fan-out gate. This
brings the total number of reactions required for logic down to 46 transition
rules and about as many unique states. Can you do better?

• What is the smallest rule set you can come up with that still allows you
to build continuously active recurrent logic circuits?

• What is the smallest number of total unique states you can allow and still
create a rule set that allows you to build continuously active recurrent
logic circuits?

• Consider a surface CRN with a limited number of states available at
at each site. One might, for example, build a surface CRN with many
different species at different sites, but in which each single site may
only flip between N different species. Our logic circuit implementation
requires up to seven species at any single site. What is the minimum
number of species per site you need for logic? Can you do it with 3?
With 2?

• Can you build Boolean logic circuits using only reversible reactions?
(Hint: you can.) What would drive these gates forward?

Of course, the benefits of surface CRNs are not free, and this example is the first that
clearly illustrates the design tradeoff alluded to at the end of Section 2.2—in this case,
surface CRN-based logic circuits trade difficulty in molecular interaction design for
difficulty of molecular placement. If you want to build a large logic circuit by
implementing a surface CRN, you must be able to precisely position a large number
of molecules into the correct initial state; in return, you can build circuits of arbitrary
size with a relatively small, fixed number of molecular interaction designs.
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Figure 2.5: Several examples of pattern manufacture. a) Stephen Wolfram’s rule 110
elementary cellular automata, in mid-construction. In each row, cells use transition rules
to exchange state information, then update the state of the cell below them according to
rule 110. See the “Elementary Cellular Automata Rule 110 (space-time history)” example
on our online simulator for details. b) Six final configurations of an irregular blossom of
fixed size, each produced from an identical single-molecule seed on a uniform background.
The exact pattern of the blossom is stochastic, but it will always have exactly 32 area. c)
Construction of a random-walking line with the rule S + O → L + S at four times. At the
final configuration, this surface CRN is stuck. d) Construction of a straight line. Note that
in this global state, there are no cells in an RH or LH state. e) Construction of an arbitrary
bitmap pattern from a single starting seed against a uniform background.

2.5 Manufacturing
We have now seen that a major advantage of performing chemistry on a surface
is that you can exploit power in the form of spatial arrangement and placement
of molecules in order to reduce the complexity of desired molecular interactions
for accomplishing the same task. We can also invert this paradigm to do the
opposite—harness the ability to specify and implement precise and diverse molec-
ular interactions in order to achieve complex spatial arrangement and placement
from simple initial conditions.

Readers of a certain bent may have noticed that the 6-bit binary counter presented
in Section 2.4 generated highly specific spatial patterns— in this case, alternating
stripes of various lengths. The binary counter circuit can generate an arbitrarily
long stream of patterned bits, which, given empty space to diffuse into, will create
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arbitrarily large striped patterns. What other patterns can we spontaneously generate
using surface CRNs? Can surface CRNs be used to manufacture complex patterns
from simpler initial conditions? The answers to these questions have clear relevance
to molecular manufacturing.

We have already shown that the space of surface CRNs effectively contains all cel-
lular automata, so patterns producible by a cellular automata ought to be producible
by a surface CRN as well. For example, we can make spirals with a surface CRN
Greenberg-Hastings excitable media. Any of Stephen Wolfram’s one-dimensional
elementary cellular automata, along with their time histories (Wolfram, 1984), can
be generated using a rule set similar to, but much more compact than, the spinning-
arrow class of synchronous cellular automata (Figure 2.5a). This immediately
allows the construction of striping, aperiodic chaos, tree structures and Sierpiński
triangles, and much more (see rules 184, 30, 90, and 110, respectively). There is
a rich history of using cellular automata to model biological pattern formation and
morphogenesis (Deutsch and Dormann, 2018; Mordvintsev et al., 2020) so in that
sense it is natural to expect that complex and useful structures can be built by surface
CRNs as well.

What about specific shapes that do not correspond easily to known automata, or that
might be generated more easily with a direct surface CRN implementation? We
can start with a very simple manufacturing example: construction of an irregular
“blossom” of fixed, arbitrary size. We begin with a field of blank species (O), on
which we add a single seed state (S). Here is a set of rules that converts the initial
seed into an irregular blossom with area exactly 32 (Figure 2.5b):

S +O → 4 + 4

4 +O → 3 + 3

3 +O → 2 + 2

2 +O → 1 + 1

1 +O → F + F

4 + F → F + 4

3 + F → F + 3

2 + F → F + 2

1 + F → F + 1.

The seed generates two “4” states, which each decay into two “3” states, which
continue to decay in a similar fashion until a final state (F). Five rules are required to
encode the splitting behavior, and four diffusion rules prevent intermediate numbered
states from becoming stuck in a sea of Fs. From a single seed state (say, a detection
event by some molecular sensor), we obtain a large irregular shape with a defined
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size (say, a large fluorescent dot visible under a microscope or by eye). With two
more rules, we can double the area of the blossom; in general, the number of rules
required scales with the log of the size of the blossom.

This example has the general quality of creating something large from something
small and easy to initialize, but the blossoms are not particularly complex, nor
particularly specific. What about a more structured structure?

One such example is an infinite straight line, again starting from a single seed S
against a field of open space states O. This exercise is worth trying before you read
our solution! It can be done, and relatively simply. As a warm-up exercise, note
that drawing a random one-dimensional curve is almost trivial—we can do it with
a single reaction S + O → L + S. This curve will random-walk around the surface
until it loops on itself and gets stuck (Figure 2.5c).
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Box 6: Manufacturing Challenges

It is safe to say that the field of surface CRN manufacturing is a young one,
and many challenges remain. Here are three for you to tackle:

• Our line-growing construction relies very much on an underlying
square-grid geometry. It will not, for example, work as-written on
a hexagonal grid. Can you design a version that does?

• Can you build a CRN that constructs, from an initial seed, a straight
line of a specific length, rather than an infinite line? Can you do it in
a way such that the number of rules required scales less than linearly
with the length of the line? What about a square?

• Consider the Busy Beaver problem in computer science: what is the
largest finite number of 1s that can be generated with a Turing Machine
with a given number of states and symbols, starting with a blank tape?
Similarly, we can consider the surface CRN Busy Beaver problem:
given integers R and K , define BB2D

CRN(R,K) to be the largest finite,
fixed number of 1s that can be reliably produced by every execution
of some surface CRN with R reactions and K species, starting from a
single S in a sea of O on a 2D square grid. Here, “reliably produced”
means that there are a finite number of reachable states, one or more of
which are terminal in the sense that no further reactions are possible,
every reachable state can reach a terminal state, and every terminal
state has the same number of 1s (in any arrangement, and with any
other species also present). The “blossom” construction, for example,
already provides a set of lower bounds BB2D

CRN(2n − 1,n + 2) ≥ 2n.
Can you do better? You might want to start with the similarly defined
BB1D

CRN(R,K) that is confined to a 1D line of states. Or, to illuminate
the influence of geometry, you might want to compare and contrast to
the “zero-dimensional” well-mixed case, where BBCRN(R,K) concerns
a stochastic CRN starting with a single S.

It is less obvious, however, how to build a straight line on a surface CRN. As with
the spinning-arrow construction of synchronous cellular automata, here we must
contend with the fact that the surface has no built-in orientation, no structure that
distinguishes left from right, top from bottom, straight from sideways. Our line will
have to create such a structure. One way to do this is to make the line two molecules
thick, with different states on the left and right sides. A reaction, S+O → RH+ LH
breaks the symmetry of the background and sets the line in motion. The two head
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states (reversibly) extrude probes, which look for the forward direction:

RH +O → RB + RP
RB + RP→ RH +O
LH +O → LB + LP

LB + LP→ LH +O.

The only places where the probes can be extended such that they touch is in front
of the growing line; when they are next to each other, the two probes can convert
themselves into a new head with the reaction RP+ LP→ RH+ LH, which can then
extrude its own probes and continue extending the line indefinitely. Note that the
initial direction in which the line grows is random, determined stochastically by the
first reaction and the first probe-connecting growth move, but once growth begins,
it will continue indefinitely in a straight line (Figure 2.5d).

A single line extending infinitely in a random direction is admittedly not, in itself,
a particularly compelling shape. However, a line can be used as a manufacturing
primitive in the construction of larger, more complex shapes, like a square or trian-
gle, which could themselves be combined into yet-more-complex shapes, perhaps
eventually forming a house, or a factory. The reader might enjoy trying these and
other more complex manufacturing challenges and exploring their connection to
computability via the Busy Beaver problem (Rado, 1962) (see Box 6).

As an extreme example of construction-by-reaction, it is possible to extend the line-
creation example to create a surface CRN that builds an arbitrary bitmap pattern
around a single-site seed against an otherwise-uniform background (Figure 2.5e).
In our implementation, a seed picks a random direction in which to extend a two-
pixel-wide line in which each pixel has a unique address (i.e., there are unique
species for each position), forming one edge of the image. A second, orthogonal
two-pixel-wide line with unique addressing forms a second edge of the image. Then
a series of reactions fill in the image starting from the corners, again with unique
addressing. Finally, one reaction for each pixel converts the addressed site to a
colored final state . This algorithm requires a fairly large number of reactions,
which scale linearly with the number of painted pixels. Our construction could be
easily modified to simulate tile self-assembly models (Doty, 2012), in which case
more efficient encoding could be used for some patterns that are algorithmically
compressible (Ma and Lombardi, 2008). The ability of surface CRNs to iteratively
rewrite information in place, which is not possible in tile self-assembly, ought to
allow more advanced constructions that provide more effective compression as well
as self-healing capabilities, as has been seen in other cellular automaton models or
morphogenesis (Mordvintsev et al., 2020).

Again, we wish to highlight the nature of the tradeoff in surface CRN design
between the required number of molecular interactions and the required number of
precisely-placed molecules. If you can already place molecules on a surface with
high precision, then you do not need complex manufacturing algorithms of the kind
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shown in this section, and you will probably want to leverage surface CRNs in other
ways (perhaps the ones outlined in earlier sections). If you cannot place molecules
on a surface with high precision, but you can implement many desired reactions
between molecules, then you can use a surface CRN to build complex designs
from simple initial conditions—even, given enough reactions, arbitrarily complex
patterns from a single randomly-placed seed (Figure 2.5e). Either way, surface
CRNs can be a helpful abstraction, but they perform different work depending on
what technology you already have available.

2.6 Robots and Swarms
If we wish to construct complex patterns from stochastic reactions, we would do
well to take inspiration from nature. For natural examples of complex construction,
we need only look to ant and termite colonies. Termites, for example, begin to
construct their nests using a simple set of stochastic behaviors: walk about at
random; eventually pick up a mudball; wander with the mudball and eventually put
it down, preferentially dropping it where there are other mudballs. A simple set of
rules of this sort (usually supplemented by pheromone-laying behavior) is sufficient
for a colony of termites to collectively build piles, then towers, and eventually
complex nest structures (Grassé, 1959).

While recognizing that ants are not termites, out of deference to Langton’s ant
(Langton, 1986) and the overall superior charisma of ants over termites, we shall
use a simple set of rules inspired by the nest-building behavior of termites to build
rudimentary piles using a molecular “ant swarm,” as shown in Figure 2.6a. We
begin with dirt species scattered randomly and uniformly on a field of open spaces.
We place ants on this resource-rich field, and allow the ants to diffuse at random
using rules similar to those used at the beginning of Section 2.3. Let us call this
“searching.’ The ants can pick up dirt, transforming into an “ant-with-dirt” species.
Dirt-laden ants diffuse about randomly as well until they hit another dirt, at which
point they deposit the dirt on the pile, forming a stacked-dirt species. A simple
two-rule dirt physics allows any stacked dirt to diffuse around the dirt pile until it
“falls off” onto an empty space (not unlike simple sandpile physics (Wiesenfeld,
Tang, and Bak, 1989)). This dirt physics helps the mounds develop a more round
shape. Ants which have just put down dirt enter a temporary “leaving” state in
which they cannot pick up dirt, so that they diffuse slightly away from the pile they
just added to before they can pick up additional dirt.

While an observer could hardly mistake the products of this series of reactions for
the complex nests of real ants, our surface CRN mound-builders are at least capable
of clustering scattered dirt particles into rudimentary piles. Furthermore, they do
so with considerably less underlying complexity than a real ant, and are far smaller:
using molecular implementations of surface CRNs along the same lines as those
in (Qian and E. Winfree, 2014), our surface CRN ants act on a roughly 106-fold
smaller length scale, with about 1018-fold less mass.

Ants, of course, do much more than build small piles of dirt. Collective behaviors



40
a)

b)

c)

Figure 2.6: Surface CRNs with ant-like behavior. a) A swarm of ants (lavender, blue, red)
collecting dirt (brown) into small piles. Unlabeled reactions have rates of 1/sec. b) An ant
(purple) scouting for food (brown), leaving a trail (red) to lead itself back home when it
finds the food. This ant is capable of finding food and returning to its starting position, but
it is not particularly robust—it will sometimes hem itself in with its own trail, trapping itself
in a ring that can be difficult to escape. c) A swarm of cargo-sorting robots (green) sorting
two different molecular cargoes (blue and orange) into separate piles.

in animals and insects—ants included—have inspired a remarkable variety of algo-
rithms for swarm robotics and distributed computation (Resnick, 1997; Bayındır,
2016; Dorigo and Stützle, 2019). So what other ant-like behaviors might we mimic
with a surface CRN?

What about scouting for food and bringing it back to the nest? We can make an
extremely simple (and extremely unintelligent) food-scouting ant (A) that diffuses
about randomly, converting open spaces (O) in its wake to pheromone species P,
with the reaction A+O → P + A. When the ant finds food, it picks up the food and
converts to a “food-bearing ant” state H with the reaction A+ F → P +H. A food-
bearing ant walks back down its pheromone trail with the reaction H + P→ O +H,
converting it back into open space, until it reaches its home (Figure 2.6b). This
simple ant works... so long as it does not loop back on itself and become stuck. We
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Figure 2.7: Molecular rugby. Each player submits rules defining how their team interacts
with the field. Can you come up with a strategy that beats blind diffusion?

can improve the ant scout’s performance by adding “rails” to the side of its trail to
prevent the trail from overlapping with itself, and by adding a very slow reaction that
causes the ant to spontaneously run back to the nest, destroying its trail along the
way, so that it can unstick itself from loops (see the “Genius Scouting Ant” example
on our simulator webpage for implementation details). The problem of defining and
implementing a better search algorithm for molecules on a surface is an open one.

The food-finding ant example bears some resemblance to an existing class of pro-
grammable surface chemistry: surface-based molecular robotics. Currently, molec-
ular robots can traverse pre-laid tracks or open landscapes (Lund et al., 2010;
Wickham et al., 2012; Muscat, Bath, and Turberfiel, 2011; Kudernac et al., 2011).
Surface-based DNA robots can also sort initially-dispersed cargo into separate ho-
mogeneous piles (Thubagere et al., 2017). Simple molecular robots that do little
more than walk on a DNA origami surface can take steps as often as once per
second (J. Li et al., 2018), raising the hope that more complex molecular robots
need not be slow. Surface CRNs are a natural model for DNA walkers and similar
molecular robots, and provide a natural format for designing and testing molecular
robot algorithms.

Figure 2.6c shows an algorithm for a molecular robot (R) that diffuses around a field
of open sites (O) searching for two types of cargo (C1 and C2), which it carries
back to two goal sites (GC1 and GC2, respectively). This algorithm bears close
resemblance to the ant mound-building algorithm at the beginning of this section.
The primary difference between the two is that the cargo-sorting robot distinguishes
between a cargo and its goal, and can mark dropped cargo as belonging to the goal.
Because these robots drop the cargo as soon as they encounter a goal, the resulting
piles develop shapes similar to diffusion-limited aggregation (ThomasWitten Jr and
Sander, 1981). Whether this is realistic for a molecular robot will depend on the
implementation of that robot and the nature of its cargo. An alternative formulation,
closer to ref. (Thubagere et al., 2017), could use specially-marked “destination” sites
that are replaced by the cargo.

We may notice at this point that a common pattern with surface CRN swarm robots
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is that they all must contend with the extremely limited local information available
to each species. A molecule on a surface can tell if it is next to, for example, a
“dirt” molecule, but it has no way to directly measure whether that dirt is part of a
larger pile, or how big that pile is—information which an ant brain can, presumably,
compute from a number of nonlocal sensory cues from its eyes, limbs, olfactory
system, and antennae.

Difficulties of extreme information locality can be viewed as an inherent limitation of
surface CRN chemistry, which requires extra design effort to circumvent. Viewed
another way, these difficulties are clarifying. If you are a molecule, or even an
assemblage of molecules as staggeringly complex as, say, a bacteria, you do not
necessarily have immediate access to “obvious” information like which direction
is forward, or how big a nearby object is. These are real limitations on molecular
systems, and molecular machines must either work without such information, or
dedicate resources to computing it.

To explore these and other difficulties of molecular design, we propose the world’s
first (to our knowledge) molecular sport—molecular rugby. In molecular rugby,
states representing players on two opposing teams, X and Y , compete to pick up
and move a ball to a goal protected by the other team. Fixed transition rules govern
basic mechanics (picking up the ball, tackling other players, and scoring). The game
is played between teams with various (constrained) transition rules controlling the
movement of players on their team. See Figure 2.6 and Box 7 for details.
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Box 7: Molecular Rugby

Molecular rugby is played on a fixed initial field, with a ball, seven X players
and seven Y players, and a goal for each made of GX and GY states, respec-
tively. The background of the playingfield ismade up of states n ∈ {0,1, ...,9},
initialized to 0. A set of fixed rules governs the interactions between ball,
players, and goals, allowing each team to pick up the ball, tackle other players
to steal the ball, and score by bringing the ball to the appropriate goal:

Take Ball:
{

X/Y + B→ X/Y B + 0
Tackle:

{
X/Y B + Y/X → X/Y + Y/XB

Score:
{

X/Y B + GY/X → W X/Y + GY/X

Win/Lose:


GX/Y +WY/X → WY/X +WY/X
X/Y +W X/Y → W X/Y +W X/Y
X/Y +WY/X → LX/Y +WY/X .

Your challenge as a molecular rugby coach is to program interactions between
your players (either X or Y ) and the background, i.e., reactions of the form
X + n→ X + n′ or X + n→ n′ + X , so that your team has a better chance of
winning. No other reactions are allowed. The fixed reactions each have rate
10, and you have a total rate budget of 200 to distribute among your team’s
reactions.

• We provide two team implementations (a straightforward random-walk
implementation and an implementation that changes the field) on our
simulator website, in the “Molecular Robot Rugby Competition” ex-
ample. Can you build a ruleset that beats ours more than half the
time?

• In a competition between K teams, each team plays each other team N
times. If one team makes at least

√
N goals more than the other, it is

declared the victor; otherwise the team with the fewer reaction rules is
the victor. Host a competition among your friends!

• Invent your own variant of molecular rugby. Perhaps start with different
background patterns, such as vertical stripes as yard lines. Perhaps let
the background decay like pheromones using reactions 9 → 8,8 →
7, . . .. Perhaps have more or less background states. Perhaps allow
team players to have more internal states, e.g., X1,X2, . . .. Perhaps....
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2.7 Conclusions
What, in principle, can chemistry on a surface do?

We have addressed this question with a simple asynchronous cellular-automata-like
framework—the surface CRN—that serves as a tractable and comprehensible model
of chemistry on a surface. In this model, unimolecular and bimolecular reactions
specified in a rule set can occur at any site and between any two neighboring sites
on a surface, respectively. Surface CRNs may not capture the full richness of all
possible physics that can occur on a surface surrounded by chemicals, but we claim
that they capture many of the important features of chemistry-on-a-surface in much
the same way that well-mixed CRNs capture many of the important features of
chemistry-in-a-tube.

What can chemistry do on a surface, according to the surface CRN model? The
short answer is that chemistry on a surface is Turing-universal, and so in principle
can do anything that a computer can do.

More concretely, there are relatively simple and comprehensible surface CRN de-
signs of reaction-diffusion behavior, direct simulation of synchronous cellular au-
tomata, and arbitrary Boolean logic circuits. We have also defined surface CRNs
with simple pattern formation and simple swarm behaviors, and we believe that
more complex and diverse behaviors are possible with larger rule sets involving
more surface reactions.

What constraints, if any, does being on a surface impose on chemistry?

According to the surface CRN model, as we have seen from the manufacturing
and swarm examples, computation with just local information and no absolute
orientation requires different algorithms compared to that with both local and global
information. The differences often lead to either larger numbers of reaction steps
to accomplish a task or larger rule sets to compute the information that are not
immediately available.

What is surface CRN better at doing than well-mixed CRNs and polymer CRNs?

In well-mixed CRNs, a larger number of specific molecular interactions is required
for computing a more complex task. In practice, any compromise in that specificity
would result in undesired side reactions that limit the scalability of the CRNs.
Surface CRNs trade off complexity of molecular interaction for complexity of
spatial placement; if you can precisely place molecules on a surface, then you
can program behaviors with fewer molecular interactions, which will allow skilled
chemists to build more complex chemical systems with dynamic and algorithmic
behaviors.

As an example, let us compare the logic circuit designs shown in Section 2.4 with
the seesaw logic circuit scheme described in (Qian and E. Winfree, 2011), which
is a well-mixed CRN implemented with DNA molecules. The surface CRN imple-
mentation requires between two and three times as many reactions for a single logic
gate as the seesaw implementation, but, critically, the seesaw gate implementation
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requires new molecular interactions for every gate in the circuit, while the surface
CRN implementation has a fixed set of rules for circuits of any size. The surface
CRN’s ability to reuse reactions for multiple logic gates comes directly from its abil-
ity to spatially separate components—it replaces chemical specification with spatial
separation, which for many systems should prove easier to achieve. Because of the
fixed set of rules for arbitrary circuits, undesired side reactions do not scale with
the complexity of the surface CRN. Unlike the well-mixed CRN, it is not necessary
to reduce the side reactions by reducing concentrations of chemical species in the
surface CRN, allowing each reaction in the surface CRN to be as fast as possible
regardless of the circuit size.

Moreover, surface CRNs can be massively parallel. Billions to trillions of tiny
surfaces could float around in one test tube, each carrying out a distinct computation.
In contrast, a well-mixed CRN in one test tube can compute exactly one thing at
any time. In principle, polymer CRNs can be parallel (Bennett, 1982), but existing
constructions of polymer CRNs using DNA nanotechnology require a single copy of
certain polymers in order to be Turing universal (Qian, Soloveichik, and E. Winfree,
2011; Lakin and Phillips, 2011; Tai and Condon, 2019), severely limiting their
capability for parallel computation.

The theoretical understanding that we have explored in this work will hopefully
inspire construction of increasingly interesting chemical systems on surfaces. There
already exist systematicmethods for implementing arbitrarywell-mixedCRNs using
DNA nanotechnology, both in theory (Soloveichik, Seelig, and E. Winfree, 2010)
and practice (Chen, Dalchau, et al., 2013; Srinivas et al., 2017), as well a theoretical
approach for implementing arbitrary surface CRNs using DNA strand displacement
reactions attached to a DNA origami surface (Qian and E.Winfree, 2014). Thus, the
surface CRN is more than a theoretical tool for understanding the abstract properties
of surface chemistry—it can, in principle, be physically implemented in a real-world
laboratory. These implementations will provide a starting point for the development
of complex, programmed molecular systems that may someday be extended to other
types of molecules including RNA and proteins.

Besides the engineering effort on molecular machines, studies on the surface CRN
model will also help answer a fundamental question: what capabilities and con-
straints of molecular interactions guided the origin and evolution of life? While
surface CRNs are more scalable and parallel than well-mixed and polymer CRNs,
no single type of chemistry alone provides the sole solution for life-level complexity.
The receptors on cell membranes represent an example of surface chemistry. The
filaments in cytoskeletons represent an example of polymer chemistry. The tran-
scription factors in genetic regulatory circuits represent an example of well-mixed
chemistry. Understanding the advantages and tradeoffs of each type of chemistry
will clarify the design principles for both engineered and natural molecular systems,
for example defining what the best geometry (or combination of geometries) is for
solving a given molecular task. Naturally, this will require investigation of more
complex possibilities, including three-dimensional geometry, reconfiguration be-
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tween different geometries, and integration of different geometries, and will put us
on the road toward understanding and engineeringmolecular systemswith behaviors
as sophisticated as those seen in biology.
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C h a p t e r 3

MODELING DYNAMIC TRANSCRIPTIONAL CRISPRI
CIRCUITS

3.1 Introduction
A central challenge of modern bioengineering is that of “programming” cells with
complex, dynamic behaviors. Simple examples of genetically encoded dynamic
functions include cell state oscillation (Elowitz and Leibler, 2000; Stricker et al.,
2008; Swaminathan et al., 2016), event detection and logging (Hsiao et al., 2016),
molecular fold-change detection (Goentoro et al., 2009; Kim et al., 2014), and signal
level discrimination (Rubens, Selvaggio, and Lu, 2016). A common challenge when
engineering complex behavior is the need for numerous specific interactions between
components. In general, engineering specific, efficient, non-promiscuous reactions
from scratch is difficult for a number of reasons, so bioengineers typically use natural
systems whose components have built-in specificity and selectivity.

One such natural molecular system is that of the gene regulatory network. Synthetic
gene regulatory networks exploit the ability of transcription factors to specifically
control the actions of target promoters to “wire” together transcriptional units, much
the same way microchip manufacturers use spatial arrangements to wire together
silicon-based components like transistors and logic gates. Gene regulatory networks
have been successfully used to build small circuits (Elowitz and Leibler, 2000;
Gardner, Cantor, and J. J. Collins, 2000; A. a. K. Nielsen et al., 2016), but they
have not been used to build systems with more than about a dozen regulators. Major
barriers to scaling up genetic regulatory networks include a lack of orthogonal
transcription factors (the largest verified-orthogonal library of repressors currently
consists of about 16 genes (A. A. Nielsen and C. A. Voigt, 2014)), mismatches in
output and input levels between different regulators, and metabolic burden on the
host cell (Ceroni et al., 2015).

One system that promises to scale better than classical genetic regulators is CRISPRi,
a system of repression that uses a catalytically inactive mutant of the programmable
endonuclease Cas9 (“dCas”). A dCas protein is inactive until loaded with a guide
RNA (gRNA) containing a roughly 20-bp variable region. Once loaded, dCas will
bind to any double-stranded DNA sequence matching the variable region of the
gRNA, so long as it is immediately upstream of a short PAM region (NGG for the
commonly-used S. pyogenes dCas9, but different for different dCas variants) (Esvelt
et al., 2013). Binding of dCas can interfere with prokaryotic transcription, either
preventing initiation of transcription (if the gRNA is targeted within or immediately
around a promoter) or blocking elongation (if the gRNA is targeted downstream of
a promoter) (Qi et al., 2013). Other dCas-based transcription factors, collectively
known as CRISPRa transcription factors, activate instead of repress by using native
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polymerase-recruiting factors fused to dCas9 or recruited by a binding domain on
the gRNA (Bikard et al., 2013; Mali et al., 2013; Gilbert et al., 2013; Chavez et al.,
2016; Dong et al., 2018).

CRISPRi repressors (and CRISPRa activators) have several potential advantages
over traditional transcription factors. The clearest advantage of CRISPRi is that it
provides an almost limitless supply of orthogonal repressors. Another advantage of
CRISPRi is the relative uniformity of CRISPRi repressors. Since many CRISPRi
operators can be made using the same core promoter sequence, it might be expected
that different CRISPRi repressors should act with similar input/output relationships.

Since it was first proposed (Jinek et al., 2012), CRISPRi has been widely used for
biophysical characterization of Cas9 (Ma et al., 2016; Mekler et al., 2016; Singh
et al., 2016; Boyle et al., 2017; Gong et al., 2017; Jones et al., 2017) and for
control of host gene expression (Zalatan et al., 2015; Nissim et al., 2014; Gilbert
et al., 2013). More rarely, CRISPRi has been used as a synthetic tool in eukaryotic
systems. Layerable CRISPRi endpoint logic gates have been designed at least twice
(A. A. Nielsen and C. A. Voigt, 2014; Gander et al., 2017), and circuits up to eight
gates deep and utilizing up to a dozen gates in total have been constructed (although
signal degradation over multiple layers has been a consistent problem). CRISPRi
has also been used to make circuits with simple dynamic behavior (Santos-Moreno,
Taisiudi, et al., 2020; Kuo et al., 2020) but has not yet been widely adapted to create
scalable prokaryotic circuits.

We use a simple model to demonstrate that CRISPRi can be used to build both toggle
switches and repressilators, despite the fact that CRISPRi displays no cooperativity.
We predict that the CRISPRi repressilator should function under physiological
conditions in E. coli, but only barely (an observation backed up by other experiments
in the literature), and suggest several interventions that shouldmake theCRISPRlator
more robust. Finally, we compare the performance of CRISPRi and CRISPRa under
increasingly harsh gRNA competition for dCas enzyme, and find that CRISPRa is
much more robust to gRNA competition than CRISPRi.

3.2 A Model of CRISPRi
Most of our analyses will use a mass-action ODE model, even though there is good
reason to believe that at least some components of a CRISPRi network will be
present at low concentrations (< 10 molecules/cell), on the grounds that 1) ODE
models are easier to write, simulate, understand, and analyze than stochastic models,
and 2) ODEmodels can provide insight even in systems where the bulk assumptions
of a mass-action may not be justified. See Chapter 4 for stochastic modeling of one
of our example circuits.

Our model describes dCas activity at the level of explicit binding and unbinding.
We do not use a Hill function approximation, on the grounds that dCas binding and
unbinding is relatively slow compared to typical timescales of biocircuit activity,
and so we cannot assume that dCas will come to equilibrium quickly.
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A description of the model
A simple CRISPRi model, as shown in Figure 3.1, includes the following processes:

• Production of dCas;

• Production of gRNAs from free promoters;

• (Optional) Leak production of gRNAs from dCas-bound promoters;

• Active degradation of free gRNAs (by RNAses);

• (Optional) Active degradation of dCas and dCas complexes (in addition to
global dilution, e.g., by proteases);

• Global dilution;

• Maintenance of promoter copy number, and unbinding of gRNA:dCas com-
plexes triggered by replication;

• Binding and unbinding of gRNAs from dCas;

• Binding and unbinding of gRNA:dCas complexes from target promoters;

Production of dCas is taken to be constant; gRNA production is constant from un-
bound promoters, and constant from bound promoters with a lower rate (possibly
zero). Guide RNAs (and, optionally, dCas and dCas complexes) are actively de-
graded at a rate proportional to their abundance. Binding reactions (and unbinding
of gRNA from dCas) follow standard mass action binding and unbinding kinetics.
Except where explicitly stated otherwise, all CRISPRi promoters are assumed to
have identical dynamics (aside from the identity of their repressors). This model
can be modified for CRISPRa by changing gRNA production to only occur from
dCas-bound promoters, instead of from free promoters, again with optional leak
from unbound promoters.

Unbinding of dCas from its target promoters is a little unusual in our model. dCas
binds extremely tightly to its targets. In bacterial cells, the rate of dCas unbind-
ing from DNA is substantially slower than the rate of bacterial replication, even in
non-lab-adapted strains with division times of over 100 minutes (Jones et al., 2017)
(though possibly not (Gong et al., 2017)). This means that dCas effectively only un-
binds as a consequence of DNA replication, with the bacterial replication machinery
forcing dCas from its target. Any CRISPRi circuit with complex, non-monotonic
dynamics will require either dilution, dCas degradation, or some mechanism that
actively unbinds dCas from its DNA targets.

Accordingly, all models in this report apply global cell dilution to all components
(including DNA, dCas, and complexes of the two), using a series of reactions of
the form X → ∅, where X is any species in the model. A caveat is that total
promoter concentrations need be held constant, as dilution of DNA is assumed to
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be equally balanced by replication. We implement this with a reaction DN Ai j →

DN Ai j + DN Ai j at the rate of dilution for each DN Ai j in the model, where DN Ai j
is any unbound promoter for gRNA i that is repressed by gRNA j. DNA bound
to dCas follows a combined replication/unbinding reaction DN Ai j : dCas j →

DN Ai j + dCas j , again at the rate of dilution, where dCas j is a dCas molecule
complexed to gRNA j. This reaction represents the current understanding that
dCas is removed from DNA by DNA replication. These approximations of DNA
replication will be sufficient for now, but will need to be changed when we move to
stochastic simulations in Chapter 4.

Note that the reactions DN Ai j → DN Ai j + DN Ai j and DN Ai j → ∅ make DN Ai j
only neutrally stable – they do not reject disturbances to DNA levels. This will need
to be addressed in Chapter 4, when we simulate a CRISPRlator circuit stochastically,
but for the deterministic simulations we will use in this chapter, the precarious
balance this simple replication mechanism achieves will be sufficient.

∅Degradation
+ Dilution

∅

...

gRNA

dCas9 Target
Promoter
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Figure 3.1: Diagrammatic representation of the CRISPRi model used in this report.
Rates for active degradation of dCas and leak activity of dCas-bound promoters are
set to zero in some simulations.

The full model consists of the following reactions, for a set of N expressed gRNAs
G = {gRN Ai, i = 1, ...N} and a set of indices D such that every ( j, k) ∈ D
corresponds to a promoter DN A j k in the network that produces gRN A j and is
repressed by gRN Ak (where k is possibly null):
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DNAjk
αg
−−−→ DNAjk + gRNA j ∀( j, k) ∈ D

DNAjk:dCask
αg0
−−−→ DNAjk:dCask + gRNA j ∀( j, k) ∈ D

∅
αC
−−−→ dCas

gi + dCas
k f

g:c
−−−⇀↽−−−

krg:c
dCasi ∀i ∈ {1, ...N}

dCask + DNAjk

k f
c:p
−−−⇀↽−−−

krc:p
DNAjk:dCas j ∀( j, k) ∈ D

gRNAi
γg
+γd
−−−−→ ∅ ∀i ∈ {1, ...N}

dCas
γd
−−−→ ∅

dCasi
γd
−−−→ ∅ ∀i ∈ {1, ...,N}

DNAjk
γd
−−−→ ∅ ∀( j, k) ∈ D

DNAjk
γd
−−−→ 2 DNAjk ∀( j, k) ∈ D

DNAjk:dCask
γd
−−−→ 2 DNAjk + dCask ∀( j, k) ∈ D

Parameterization of the model
A set of typical parameters used in simulations below is given in Table 3.1. DNA
concentrations will be assumed to be 2 nM unless otherwise noted, which roughly
corresponds to the concentration of a genomically-integrated CRISPRi system in
actively growing E. coli cells.

Parameter Typical Value Units
gRNA Production (αg) 5 min−1

dCas Production (αC) 1 min−1

gRNA/dCas Binding (k f
g:c) ln 2

375 (≈ 1.8e − 3) nM−1sec−1

gRNA/dCas Unbinding (kr
g:c) 0 sec−1

gRNA:dCas/Promoter Binding (k f
c:p) ln 2

60 (≈ 1.2e − 2) nM−1sec−1

gRNA:dCas/Promoter Unbinding (kr
c:p) 0 sec−1

gRNA Degradation log 2
100 (≈ 6.9e − 3) sec−1

Dilution log 2
30 (≈ 2.3e − 2) min−1

Table 3.1: Typical parameter values used for simulating CRISPRi circuits. Param-
eters are estimated from the literature, except where noted in the text

It is worth mentioning that there is still a great deal of uncertainty around the kinetics
of dCas binding. The rates given above for binding and unbinding of gRNAs to dCas
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were taken from measurements of dCas/gRNA association rates in vitro (Mekler
et al., 2016). It is unclear how closely this estimate follows in vivo kinetics. For
example, the same authors show that the addition of total human lung RNA to an
in vitro dCas:gRNA assembly reaction slowed dCas:gRNA binding by at least an
order of magnitude. Therefore, the estimate in Table 3.1 may be an optimistic one.

Rates of association between gRNA-loaded dCas and its DNA targets have been
more widely studied, but there the literature is still conflicted on their actual values.
For example, (Gong et al., 2017) report an unbinding rate of dCas from DNA of
about 1/(6.5 min) in a radiolabeled pulse chase assay, but that is incompatible with
the observation of (Jones et al., 2017) that dCas dissociation in vivo is driven by cell
division, orwith the real-time, single-moleculemeasurements of (Boyle et al., 2017),
who could not observe sufficient unbinding events over several hours to estimate an
unbinding rate for matched gRNAs (setting an upper bound on unbinding time on
the order of hours). The parameters for dCas:DNA interactions chosen in Table 3.1
use binding rates from Mekler et al., and reflect the canonical understanding in the
field that, for all practical purposes, dCas does not unbind from DNA.

3.3 Modeling Results
The full CRISPRi model predicts that a variety of dynamic circuits can be con-
structed from CRISPRi, including a repressilator, a toggle switch, a pulse generat-
ing type I incoherent feed forward loop (IFFL), and multiple IFFLs independently
driven by a 5-node oscillator (Figure 3.2). However, these circuits do not operate
well under all possible (or even all “reasonable”) parameter values.

To better understand the parameter requirements of CRISPRi circuits, and the kinds
of engineering we might perform to improve CRISPRi circuit robustness, we will
start by using a simple approximation of the CRISPRi model before moving to
simulations using a more complete model under varying parameters.
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Figure 3.2: Four examples of dynamic circuits made from CRISPRi components,
simulated with the full CRISPRi model. Nodes in circuit diagrams represent gRNA
expression units; blunted arrows represent dCas-mediated repression. (a) Steady
states of a toggle switch for a variety of initial conditions of gRNA concentration.
(b) A 5-node oscillator. (c) A type-I IFFL (pulse generator). The purple trace
tracks the IFFL output. Vertical blue and red lines mark activation and return to
baseline of the input gRNA promoter, respectively. (d) Outputs of three IFFLs
driven by a 5-node oscillator. When the node of the oscillator driving the IFFLs is
removed (vertical red line), pulses cease. Note that not all nodes of the oscillator
have corresponding visible IFFL outputs, and that the peak heights of the three
IFFLs are not symmetric.
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An approximation
Can we understand CRISPRi dynamics in rational, analytical terms? Should we
expect an oscillator made from CRISPRi components to actually oscillate? A
toggle switch? An IFFL? According to traditional genetic circuit analysis, the
toggle switch (Gardner, Cantor, and J. J. Collins, 2000) and repressilators (Elowitz
and Leibler, 2000) rely on cooperative binding. There is no obvious “cooperative”
mechanism in the CRISPRi model, so we might wonder whether we should expect
these circuits to function at all.

Unfortunately, the full CRISPRi model outlined in Section 2.2 is not particularly
amenable to analysis—even the steady state binding between a single gRNA, dCas,
and the gRNA’s target is barely analytically tractable without making an unrealistic
quasi-steady state assumption (finding it requires the roots of a rather messy fourth-
order polynomial). To attempt to make some headway, we split the model into
those parts making up an “idealized,” easy-to-analyze CRISPRi process (informally,
“first-order” considerations, though this should not be taken to imply linearity)
and kinetic considerations that make CRISPRi difficult to analyze (“second-order”
considerations).

We propose the following assumptions for a first-order CRISPRi model: dCas is
always present in abundance relative to both DNA targets and gRNAs; binding
between gRNAs, dCas, and DNA is instantaneous; and binding of dCas to DNA
targets is irreversible. Under these assumptions, the binding of gRNA to dCas to
target DNA reduces to a simple “linear” model—with increasing concentrations
of gRNA, dCas binds 1:1 with DNA until the DNA is completely saturated. This
simplification obviously neglects some important features of CRISPRi (binding
kinetics and loading effects on dCas, to name two), but it can still provide insights
into how CRISPRi circuits work (or don’t).

Consider a CRISPRi toggle switch consisting of two gRNAs repressing each other.
The first-order model of the CRISPRi toggle switch can be modeled with just two
differential equations:

dg1
dt
= αmax (0,P1 − g2) + α0 min (P1,g2) − γg1,

dg2
dt
= αmax (0,P2 − g1) + α0 min (P2,g1) − γg2,

Here, g1 and g2 are concentrations of two mutually-repressing gRNAs, P1 and P2
are total concentrations of promoters for those guides, α is the production rate of
gRNA from an unbound promoter, α0 is the production rate of gRNA from a bound
promoter (leak), and γ is the division rate of the cell (dilution).

Under what conditions does this system admit two stable steady states? To answer
this, we should consider the intermediate steady state of the system, far from the
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bounds set by 0, P1, and P2. In general, toggle-switch-like circuits undergo a
supercritical pitchfork bifurcation at this point. When it is stable, the system admits
only one state (Figure 3.3A), but when it is unstable, the system will have two steady
states (the “togglable” steady states) (Figure 3.3B). In particular, the middle steady
state will be unstable (and the toggle switch will correctly “toggle”) if and only if
that system has a single non-trivial steady state that is unstable. This corresponds
to the case where at least one of the eigenvalues of the Jacobian of the system has
positive real part. To find when this is true, we note that far from any saturating
bounds (where we are likely to find the central steady state), the system reduces to

Figure 3.3: Flow fields for the first-order approximation model of a CRISPRi toggle
switch. Depending on the parameters chosen, the toggle could (a) admit two stable
steady states separated by an unstable steady state or (b) admit a single stable steady
state.
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dg1
dt
= αP1g2(α − α0) − γg1,

dg2
dt
= αP2g1(α − α0) − γg2,

whose Jacobian has eigenvalues −(α−α0)−γ and (α−α0)−γ. The first eigenvalue
always has negative real part. The first eigenvalue has positive real part (and the
system “toggles”) when α−α0 > γ. In short, a toggle should function as long as the
difference between production rates of bound and unbound promoters is sufficiently
large relative to dilution.

We can apply a similar analysis to a three-node CRISPRi repressilator, which is an
oscillator consisting of an odd number of guide RNAs in a circular circuit topology,
each gRNA repressing the next in the cycle (similar to Figure 3.2B). Bounded
dynamical systems with repressilator-like architecture typically have a single non-
trivial steady state. As with the toggle, the desired behavior (oscillations, in this
case) can occur only when that central steady state is unstable. In principle, an
unstable central steady state is not sufficient to guarantee oscillations; in practice,
molecular species concentrations are bounded by dilution, and there are no other
possible stable steady states to the repressilator system, which leaves little room for
non-oscillitory (or chaotic) behavior.

The Jacobian for a three-node CRISPRi repressilator has eigenvalues
1
2

(
±
√
−3(α − α0)2 + (α − α0) − 2γ

)
and −(α − α0) − γ. The last eigenvalue al-

ways has negative real part. The first pair of eigenvalues each have positive real part
(and the system oscillates) when α−α0

2 > γ. As with the toggle switch, the difference
between production rates of bound and unbound promoters must be sufficiently great
for the CRISPRi repressilator to oscillate.

We will soon see that this simplified model is a poor predictor of exactly what
behavior a CRISPRi circuit with particular parameters or will not exhibit. This
is beside the point; what we learn from the simplified CRISPRi model is that
cooperativity is not necessary for either a toggle switch or a repressilator, despite
classical understanding in the literature (Gardner, Cantor, and J. J. Collins, 2000;
El-Samad, Vecchio, and Khammash, 2005). Cooperativity, it seems, is necessary
only when genes are expected to bind in a Hill-like fashion. Perfectly linear binding
with sharp saturation, as we should expect in CRISPRi, is another perfectly viable
path to useful instability.

Note that the result that a CRISPRi oscillator does in fact oscillate contradicts the
modeling results by (Santos-Moreno, Tasiudi, et al., 2020). In that work, the authors
model a CRISPRi toggle as a slightly more tractable proxy for the oscillator. The
authors analyze this model using BioSWITCH, a toolbox for limit point detection
and bistability analysis across the space of all “reasonably” bounded parameters.
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Figure 3.4: Steady-state analysis with theBioSWITCH toolbox shows that bistability
is possible with dCas:gRNA complex dilution (right), but not without it (left). Plots
show possible steady-state values of gRNA #1 as a function of one parameter, with
the others held fixed at values computed to optimally detect bifurcation points.

The authors show that a simple model similar to our full model fails to predict the
steady-state instability required for bistability in the toggle (Figure 3.4, left). The
authors additionally show that bistability can be recovered by adding off-target and
cross-target binding.

This analysis contradicts ours in two ways. Firstly, our model predicts that a
CRISPR toggle switch should function even without any off-target or cross binding.
Secondly, our model predicts that off-target binding should decrease the robustness
of a CRISPRlator, not increase it (Figure 3.5A).

One difference between our model and that of Santos-Moreno and Taisiudi is that
our model includes degradation of gRNA-bound dCas complexes. Adding these
degradation reactions to their model is sufficient to allow steady-state instability ac-
cording to BioSWITCH (Figure 3.4A). Our own model shows that with gRNA:dCas
dilution removed, the toggle switch’s “on” steady state becomes unstable, causing
the high-state gRNA to increase without bound (Figure 3.4B).

Now that we have some theoretical justification for believing that a CRISPRi toggle
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Figure 3.5: Addition of off-target binding destroys oscillations in the 3-node
CRISPRlator, contra Santos-Moreno, Taisiudi, et al., 2020. In the top row, ad-
ditional non-target binding sites have been added. In the bottom row, additional
non-target binding sites have been added and guides can bind at a low rate to
mismatched target sites.

switch or repressilator should be possible to build, we will explore what conditions
allow those circuits to function under the full CRISPRi model.

Repressilators can be made with CRISPRi, but they can display strong initial
condition dependence
Consider, again, the 3-node CRISPRi repressilator, or CRISPRlator. Our model
predicts it to be quite slow, with a period of about seven hours (about three times as
long as the original protein-based repressilator (Elowitz and Leibler, 2000)). This
is because where the time scale of the repressilator is limited by active protein
degradation, the timescale of the CRISPRlator is set by dilution.

Interestingly, even under parameterizations that allow oscillations, the CRISPRlator
does not oscillate for all initial conditions (Figure 3.6). It is possible for the 3-node
CRISPRlator to possess both a stable limit cycle and an unstable limit cycle inside
the stable limit cycle which screens off trajectories with insufficient differences in
concentrations of different gRNAs. These latter trajectories, which fall inside the
unstable limit cycle, spiral to a stable steady state.

Note that this behavior differs from the behavior of the classic repressilator, which
(in its reduced three-species form) can only have up to a single, stable limit cycle
(V. P. Golubyatnikov and Ivanov, 2018; Likhoshvai, Vladimir P. Golubyatnikov,
and Klebodarova, 2020). Also note that the existence of multiple limit cycles in
the CRISPRlator implies that linearization characterization of the steady state of
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a CRISPRlator is insufficient to determine whether the CRISPRlator will actually
oscillate. If the CRISPRlator’s steady state is unstable, then it will oscillate; but
if the steady state is stable, then it could either have a pair of stable/unstable limit
cycles (in which case it can oscillate), or no limit cycles (in which case it will
not). Accordingly, when we computationally screen for oscillations in various
CRISPRlators, as in Figure 3.7, we do so using numeric simulation and heuristic
oscillation detection rather than with stability analysis.

A)

B)

Two identical CRISPRlators with slight differences in initial condition
Initial [gRNA #2] = 15 nM

Multiple limit cycles in a 3-node CRISPRlator

Initial [gRNA #2] = 17 nM

Figure 3.6: (a)The same CRISPRlator (with the same rate parameters) oscillates
for some initial conditions but not for others. In both cases, dCas begins at 43 nM
and all other non-DNA species other than gRNA #2 start at 0 nM. (b) Trajectories
for a variety of initial conditions reveal multiple nested limit cycles in the 3-node
CRISPRlator under some parameterizations. In this example, an unstable limit cycle
(dotted red loop) screens trajectories with too little total gRNA from a stable limit
cycle (solid blue loop).

The CRISPRlator is fragile
Unfortunately, the CRISPRi repressilator is fragile, and appears to sit close to a
bifurcation in parameter space. It is, for example, fairly sensitive to dCas production
rate, and ceases to oscillate with less than about 10% or more than about 150% of
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the default dCas production rate in Table 3.1. This indicates that dCas production
levels may have to be fine-tuned specifically for any particular CRISPRi circuit.
Luckily, this is a relatively easy parameter to tune in a real cell.

The repressilator is also not generally robust against transcriptional leak. The first-
order model predicts that an increase in leak should stabilize the system towards
a steady state, eventually driving it to equilibrium with no oscillations. This is
reflected in the full model, and not only for the CRISPRlator—addition of as little
as 1% leak destroys oscillations in all but one of the simulations shown in Figure 3.2
(the exception is the CRISPRlator-driven triple IFFL of Figure 3.2D, which breaks
between 2 and 4% leak).

That a CRISPRlator has, in fact, been built successfully suggests that CRISPRi
might, in fact, have extremely low leak in the true sense of allowing transcription
while the repressor is bound (Santos-Moreno, Taisiudi, et al., 2020; Kuo et al.,
2020). Repression with dCas has been reported in cell-free extract with fold-
repression between 7 and 100, and in vivo with similar repression strengths, which
puts the best CRISPRi repression in a leak range that should not be likely to allow
a repressilator to work. Our model of the CRISPRlator suggests that the “leak”
observed in these experiments may be a function of slow binding, not failure of a
bound repressor—that is, observed “leak” occurs because a promoter is not bound
some of the time, not because a promoter is bound to dCas and produces transcripts
anyway.

Active degradation can offset leak-based circuit fragility
There are a few different knobs we can turn to make the CRISPRi repressilator
more robust to transcriptional leakiness. We can decrease the rate of production of
either dCas or gRNAs; we can speed the binding between dCas:gRNA complexes
and DNA (in contrast, speeding binding between dCas and gRNAs appears to have
little effect); we can add active degradation of dCas (also increasing the speed of
the oscillator considerably); and we can grow the repressilator from three nodes to
five nodes.

As an example, let us consider the interaction between dCas degradation rate and
leak rate. Figure 3.7 shows the performance of simulations of several circuits as
a function of the degradation rate and leak rate parameters, with other parameters
as shown in Table 3.1. We can think of these charts as a sort of two-dimensional
“specification sheet” for dCas to allow different circuits to function properly. For
any particular leak rate, the circuit will either oscillate (Figure 3.7A, B, D, E,
and F) or toggle (Figure 3.7C) only when dCas is degraded at a rate within a
proper range. Too much dCas degradation will destroy all examined circuits, and
a minimum amount of degradation is required for some. Notably, the “correct”
dCas degradation specification is different for different circuits (compare Figures
3.7A, 3.7B, and 3.7C), dCas expression rates (Figures 3.7D and E), and background
activity (different numbers of oscillators in Figure 3.7F). Interestingly, the toggle
switch has similar parameter requirements on these two axes, suggesting that there



67

may be some requirements shared by some interesting class of dynamic CRISPRi
circuits.

We can produce a similar “specification sheet” for dCas degradation and leak for a
5-node CRISPRi repressilator, as shown in Figure 3.7B. The 5-node repressilator is
more robust than the 3-node oscillator. Indeed, the 5-node repressilator can operate
with as much as 10% leak or as little as no dCas degradation at all. In the case of
CRISPRi repressilators, bigger is not only better, but potentially easier.

On the other hand, the parameter requirements of the toggle switch appear to be
quite similar to those of the 3-node repressilator (Figure 3.7C). Admittedly, the
toggle switch and 3-node repressilator have very similar architecture, but the fact
that both circuits require similar degradation rates and minimum promoter leak
suggests that the regime of functional repressilators may have not-yet-understood
underlying properties that are broadly useful for constructing CRISPRi circuits.

There are more than two tunable knobs in the CRISPRi system. One that we have
already seen to be important is the production rate of dCas. Figure 3.7D shows how
the target parameter set changes with different levels of dCas production. The good
news is that with low enough dCas expression there is no need for dCas degradation
(though with dCas steady state levels that low, stochastic fluctuations become amore
serious problem). The bad news here is that at least one engineerable but not readily
tunable parameter of CRISPRi (namely, dCas degradation rate) has acceptable value
ranges that don’t overlap for some choices of dCas production rate. This should not
be too much of a problem for making a single repressilator, but it does complicate
the design and integration of multiple CRISPRi circuits in the same cell. For
example, Figure 3.7E shows the expected effect of expressing two identical CRISPRi
repressilators in parallel with no directly cross-interacting nodes. The increased load
on dCas drops the effective steady-state concentration of dCas as perceived by each
individual oscillator, which has a similar effect as dropping dCas production rate.
Namely, this shifts the required rate of dCas degradation. A repressilator that works
on its own can be expected to fail when a second repressilator is added, unless
dCas’s degradation rate is exquisitely well-tuned. More generally, it seems likely
that different circuits may require dCas variants with different degradation rates.

Reciprocally, we could tune degradation rate to compensate for changes in other
parameters. The CRISPRlator requires dCas to be produced at a tuned rate—too
much or too little dCas production will destroy the circuit’s function. Changing the
rate atwhich dCas is degraded also changes those dCas production rate requirements,
potentially allowing degradation to compensate for any lack of control over dCas
concentration (Figure 3.7D).

Finally, we can consider the robustness of the CRISPRlator to differences in the
strengths of the promoters driving gRNA production. In general, repressilators
require nodes with roughly similar repression strengths. The more sensitive the
CRISPRlator to gRNA promoter strengths, the more difficult a CRISPRlator will be
to engineer. Fortunately, as shown in Figure 3.8, the 5-node CRISPRlator is robust
to (most) changes of at least 10-fold in two adjacent gRNA.



68

Figure 3.7: Acceptable degradation rates vary by circuit architecture and parame-
terizations. Leak is given in units of the rate of gRNA production from an unbound
promoter. Degradation rate is in units of cell division rate. Colors at each point in
parameter space indicate whether the circuit oscillates (blue) or not (red) for those
given parameters. Results are given for a) a 3-node CRISPRlator, b a 5-node oscil-
lator, and c) a CRISPRi toggle switch. In c, Colors indicate the separation distance
between the two gRNAs at steady state; red indicates no detectable bistability. d)
Changes in degradation requirements for a 3-node CRISPRlator with different lev-
els of dCas expression. Areas under each curve represent parameters for which the
circuit oscillates. Production rates are given in units of min−1 (the “default” dCas
speed used in (textbfa)). e) Changes in dCas expression requirements for the 3-node
CRISPRlator with different rates of dCas9 degradation. The shaded region repre-
sents production rates that admit oscillations. Oscillations could not be recovered
with any higher degradation rate. Transcriptional leak is set to 0. f) Parameters for
which different numbers of independent 3-node CRISPRlators oscillate while oper-
ating in the same cell. Larger number of oscillators become steadily less tolerant of
both degradation and leak.
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Figure 3.8: The 5-node CRISPRlator functions under many possible changes to the
strengths of two adjacent gRNA promoters. Other parameters are as in Figure 3.2b.
Each panel shows simulation results with one combination of promoter strengths.

3.4 CRISPR Activators Scale Better Than CRISPR Inhibitors
A crucial limit on the scalability of CRISPRi circuits is bottlenecking of dCas9. Any
expression of one gRNA in a network of CRISPR transcription factors sequesters
shared dCas9 away from other gRNAs, decreasing their effectiveness as outlined
in detail in (Chen, Qian, and Del Vecchio, 2019). The dCas9 bottleneck can be
loosened by producing more dCas9, but this strategy is limited by the toxicity of
dCas9 when expressed at high concentration, especially in prokaryotes (Cui et al.,
2018; Cho et al., 2018).

Zhang and Voigt (2018) quantify this bottlenecking effect in E. coli. They show that
under physiological, circuit-like conditions, dCas9 bottlenecking causes CRISPRi
target repression to drop off as roughly 1

N , where N is the number of competing
gRNAs expressed. Furthermore, they show that E. coli expressing near-maximal
sustainable levels of dCas9 repressor cannot support more than about ∼7 simulta-
neous gRNAs at a 10-fold level of repression (or about ∼15 simultaneous gRNAs
using a low-toxicity dCas9 variant, dCas9∗-PhlF).

Prior to 2018, CRISPR transcription factors in bacteria were largely limited to
repressors, as existing CRISPR activators typically exhibited ≤ 10-fold activation
and only functioned in an unusual RpoZ-knockout strain; accordingly, the Zhang
and Voigt analysis of resource bottlenecking reasonably considered only CRISPRi.
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There are now more effective CRISPRa activators made using other activators that
do not require RpoZ knockout, which makes CRISPRa a feasible alternative to
CRISPRi for synthetic gene circuit construction (Dong et al., 2018; Ho et al., 2020).

In this section, we use a simple model of gRNA competition for dCas9 to show
that CRISPR activators are substantially less vulnerable than CRISPR repressors
to dCas9 bottlenecking. Our model anticipates that CRISPRa should be able to
support many times more simultaneous gRNAs than CRISPRi under most condi-
tions, although CRISPRi may be more effective for very small networks under ideal
conditions.

Why activators are less sensitive to bottlenecking than repressors
CRISPR activators should scale better than CRISPR repressors because, in general,
activators are not affected as badly bas repressors by removal of a small amount of
regulator when they are already saturating.

Consider a repressor and an activator of equal strength and at high enough concen-
tration that every target promoter is bound. What happens if the concentration of
each regulator drops enough that one of the targets becomes unbound? How much
is each system affected? We could equivalently consider the fraction-of-time-bound
for a regulator with a single-copy target, but for conceptual simplicity, we will con-
sider a system with a “large number” (say > 5) of targets that are each either bound
or not.

When one activator drops off a target, total expression falls by a little less than a
fraction 1

N of maximum expression, where N is the number of target promoters. The
fold change in expression caused in this decrease in activators is therefore roughly

1
1− 1

N

= N
N−1 = 1+ 1

N−1 . If N is reasonably large, this fold change will be quite small
(consider N = 10).

When all target promoters are bound by repressors, the total expression of the bound
promoters is 1

R , where R is the fold-repression of a single repressor binding to a
single promoter. When a single repressor is removed, the change (increase, this time)
in expression is, again, roughly 1

N , but this change occurs against a background of
“leak” experienced when all repressors are bound (which is hopefully a small value)
rather than maximum possible promoter expression (which is hopefully a larger
value). The fold change experienced due to this removal is roughly

1
N +

1
F

1
F

= 1 + F
N ,

where F is the fold-change in expression between bound and unbound promoter (i.e.,
F = 10 for a repressor that reduces its target to 1/10th its constitutive strength when
bound). This fold change is only small if the number of targets is large compared to
the fold-repression of the repressor, and for most reasonably capable repressors in
most reasonably-sized cells it will be at least 2-fold.

Viewed another way, the changes in expression experienced when a small amount of
activator or repressor are removed are of roughly the same absolute magnitude, but
the relative impacts of those effect are quite different. For an activator, the change
should be compared against maximum expression (which should be large), whereas
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Figure 3.9: Activators and repressors respond differently to changes in regulator
concentration in highly saturated and highly unsaturated conditions. Both the re-
pressor and the activator change expression 10-fold (top table). At low saturation
of target promoter by the regulators, the activated promoter is more sensitive to
changes in regulator concentration than the regulated promoter (middle table). Con-
versely, at high target saturation, the activated promoter is more robust to changes
in regulator concentration (bottom table).

for a repressor, the change should be compared against promoter leak (which should
be small). Figure 3.9 shows this difference for a concrete example of a 10-fold
activator and a 10-fold repressor targeting a 5-copy promoter.

Note that the asymmetry between sensitivities of activators and repressors reverses
at low concentrations of regulator. There, activators are more sensitive to regulator
changes and repressors are more robust. Compare Figure 3.9, middle and bottom
rows. Activators trade off high sensitivity to concentration changes at low saturation
for robustness to concentration changes at high saturation, while repressors make
the opposite tradeoff.

Simulations show that CRISPRa scales better than CRISPRi
Using a steady-state solution for a simple ODE model of CRISPR, we numerically
investigated the effects of gRNA competition on minimal CRISPRi and CRISPRa
systems consisting of a repressing or activating dCas9:gRNA complex targeting a
reporter gene. See Section 3.2 for a description of the model and details on how we
calculate fold change.
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We calculate fold change for three different concentrations of target promoter roughly
representing a genomically-integrated reporter, a reporter on a low-copy plasmid,
and a reporter on a high-copy plasmid (Figure 3.10A, B, and C, respectively). We
use parameters estimated for this model from in vivo data by Zhang and Voigt
(2018). We vary the concentration of dCas9 from 100 nM up to 530 nM, which is
roughly the maximum concentration of dCas9 the E. coli used by Zhang and Voigt
can support before suffering significant growth defects.

Figure 3.10: Simulated fold change of activationwithCRISPRa (green) or repression
with CRISPRi (perfect repression, orange; or 50x repression, purple) with various
dCas9 concentrations and either (a) 1 nM, (b) 10 nM, or (c) 100 nM of target
promoter. Parameters taken from (Zhang and Christopher A. Voigt, 2018). The
horizontal line in each plot marks the10x fold change.

The same model that (correctly) predicts that the scalability of CRISPRi is severely
hampered by inter-gRNA competition also predicts that CRISPRa should be far
more robust against inter-gRNA competition.

We also predict that CRISPRi may produce higher-fold changes than CRISPRa at
low numbers of competing guide RNAs, especially when dCas9 is abundant with
respect to the target promoter. Note that this prediction is a direct consequence of the
assumption that dCas9 is a perfect repressor, but a finite activator. This means that
the effectiveness of CRISPRi repression is unbounded above—as binding becomes
more efficient, the fold change of repression approaches infinity—while CRISPRa
activation effectiveness is bounded above at 50x. If we relax this assumption so
that CRISPRi is equally as “effective” as CRISPRa (i.e., it represses 50x when



73

Figure 3.11: Predicted maximum number of competing guide RNAs before compe-
tition reduces fold change to below 10x, for various dCas9 concentrations and (a) 1
nM, (b) 10 nM, or (c) 100 nM of target promoter. Parameters taken from (Zhang and
Christopher A. Voigt, 2018). “0 Max gRNA” means that a single gRNA competitor
is sufficient to drive fold change below 10x.

fully bound), then it fails to exceed (or even match) the overall fold-repression of
CRISPRa at any number of competing gRNAs (Figure 3.10, purple curves).

These results are not unduly sensitive to the particular parameters estimated in Zhang
and Christopher A. Voigt, 2018. We computed maximum “acceptable” competing
gRNA number (the largest number of competing gRNAs that still allows 10-fold
regulation of the target) for 1,000 randomly sampled parameters (see Figure 3.12
for results from 100 representative parameter sets; see figure legend for details
on parameter sampling). Although there was a significant degree of variation in
CRISPRa scalability across simulations, only rarely did we observe CRISPRa with
worse scaling than any simulated CRISPRi system (Figure 3.12B).

The model
We adapt the modeling framework derived in (Chen, Qian, and Del Vecchio, 2019)
and adapted by Zhang and Voigt in their analysis of gRNA competition in CRISPRi.
We recapitulate their analysis and extend it to CRISPRa.

Following the analysis in (Zhang and Christopher A. Voigt, 2018) (originally for-
mulated in (Chen, Qian, and Del Vecchio, 2019)), we will consider a model of
dCas9 repression in which a gRNA g1 is in competition with some number N of
functionally identical, non-targeting gRNAs for a fixed amount of core dCas9. We
wish to calculate the fold change of repression of the target of g1 as a function of N .
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A) B)

Figure 3.12: (a) Predicted maximum number of competing guide RNAs that still
allow 10-fold regulation for 100 of the 1,000 tested CRISPRi/a systems with ran-
domly sampled parameters. Thin lines represent single sampled parameter sets; bold
lines represent averages across all sampled parameter sets. Target copy number was
held fixed at 10. Transcription speed for competing gRNAs was held to a constant
multiple of that of the primary gRNA (changes in one transcription rate relative to
another are equivalent to a compression or expansion of the gRNA concentration
axis). Fold-activation of the CRISPRa activator was sampled from a normal distri-
bution with mean 50x and a 20% standard deviation, reflecting our high confidence
in our estimates of that parameter from (Dong et al., 2018). All other parameters
were log-normally distributed around their best-estimate values, as determined in
(Zhang and Christopher A. Voigt, 2018), with a log10 standard deviation of 0.5, very
roughly representing a half-order-of-magnitude “50% confidence range.’ (b) The
fraction of sampled parameter sets (out of 1,000) in which CRISPRa was predicted
to perform better than any sampled CRISPRi, at each possible dCas9 concentra-
tion (CRISPRi was never observed to perform better than CRISPRa with the same
parameters).

We model dCas9 as a Shea-Ackers repressor of cooperativity 1 and a single binding
site per promoter (Shea and Ackers, 1985). We can then write down the average
transcription rate of a target promoter as a sum of rates r f and rC of transcription
from free and dCas9-bound promoter, respectively, weighted by the concentration
of promoter in each of those states:

r = r f P + rCPC , (3.1)

where r is the average transcription rate from the target promoter. If no gRNA is
expressed, PC = 0 and Equation 3.1 simplifies to r = r f Ptot . We assume that rC = 0
(i.e., repression by bound dCas9 is perfect, allowing no leak), so when the gRNA is
active, Equation 3.1 simplifies to r f P, where P will vary with dCas9 concentration,
gRNA expression level, number of competing gRNAs, etc. We can then write the
fold change of repression (RFC) as
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Parameter Description Value Units
r f Transcription rate from free (unbound) promoter. various s−1

rC Transcription rate from dCas-bound promoter various s−1

K
Association constant for dCas:gRNA complex
binding to promoter. 2.9 nM−1sec−1

Ptot Total promoter concentration. various nM
α1 Transcription rate of g1 7.6 × 10−3 nM/s
αx Transcription rate of competing gRNAs. 2.3 × 10−2 nM/s
β δ

K1
, δ =(degradation plus dilution) rate for gRNAs. 3.0 × 10−2 nM−1s−1

Ctot Total steady-state dCas pool. various nM
N Number of competing gRNAs (not including g1). various unitless

Table 3.2: Parameter notation and values used in this model. Where possible, values
were taken from fits to endpoint repression data in (Zhang and Christopher A. Voigt,
2018) (see Figure 3 of that paper).

Variable Description
P Concentration of free promoter.
PC Concentration of promoter bound to dCas9 repressor or activator.
Cg1 Concentration of dCas9:g1 complex.
C Concentration of free dCas9 regulator.

Table 3.3: Dynamic variables used in our model.

RFC =
r f Ptot

r f P
. (3.2)

Now we can solve RFC at steady-state. We assume total promoter concentration
is held constant, so Ptot = P + PC . At steady state, there will be flux balance
between dCas9 binding to P and dCas9 unbinding from PC , so PC = KCg1P, where
K = k f

kr
is the association constant of binding between dCas9:gRNA complex and

free promoter. RFC then becomes

RFC =
r f Ptot

r f P
=

r f (P + KCg1P)
r f P

= 1 + KCg1. (3.3)

Now we make the informal quasi-steady state assumption that total dCas9 con-
centration Ctot is a constant set upstream by dCas9 production rates and dilu-
tion/degradation. Using a conservation law for dCas9 and steady-state flux balance
of dCas9 and guide RNAs, the steady-state concentration of dCas9:g1 (Cs1) can be
calculated as

Cg1 =
α1Ctot

β + α1 + Nαx
− PC . (3.4)
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To find the steady-state concentration of PC , we use 1) flux-balance between bound
and free promoter and 2) mass conservation of promoter:

PC = KCg1P, (3.5)

Ptot = PC + P. (3.6)

Combining these and rearranging to solve for PC , we get

PC =
KCSPtot

1 + KCg1
, (3.7)

where, again, K is the association constant for binding between dCas9:gRNA and
promoter. Substituting this into (3.4) and rearranging yields a quadratic polynomial
in CS:

0 = −KC2
g1 + Cg1 (KC∗ − KPtot − 1) + C∗, (3.8)

where

C∗ =
α1Ctot

β + α1 + NαX
. (3.9)

Cg1 is then well-specified algebraically, and can easily be computed numerically.

A simple model of CRISPRa

We apply a similar analysis to the case of an activating CRISPR system under
varying gRNA competition. The most salient changes from the analysis in Section
3.4 are 1) rC 0 0 (and r f 0 0), and 2) the fold change we wish to calculate is the
reciprocal of that in the CRISPRi case. This gives a fold change of activation (AFC)
of

AFC =
r f P + rCKCg1P
r f (P + KCg1P)

=
1 + rC

rf
KCg1

1 + KCg1
, (3.10)

again with Cg1 specified by Equations 3.8 and 3.9. We are left with an additional
parameter in the activation case, the ratio of activation rC

rf
= rA for a single target

promoter by a bound activator. This is because we cannot assume zero expression
from an un-activated promoter the way we assumed perfect repression of the bound
promoter in CRISPRi; in practice, engineered activatable CRISPRa promoters are
built from weak, but functional, constitutive core promoters that produce some
transcription when unbound. We estimate an activation ratio of 50:1 based on the
optimized dCas9-SoxSR93A activation system from (Dong et al., 2018).
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Sensitivity to Parameters

We investigated the robustness of our results to errors in parameters by subjecting
our model to a local, gradient-based sensitivity analysis, using two summary statis-
tics of CRISPRa performance relative to CRISPRi. We define the “fold change
overperformance” of a pair of CRISPRa/CRISPRi systems with a specific set of
parameters (including a specific number of competing guides) as the fold change
of activation for a CRISPRa system with that set of parameters divided by the fold
change of repression for a CRISPRi system with that set of parameters:

Fold Change Overperformance(params) =
AFC(params)
RFC(params)

.

We also measure the advantage in scalability of CRISPRa over a CRISPRi system
with the same parameters with a measure we call “scaling overperformance,” which
we define as the maximum number of competing gRNAs that the system can tolerate
with fold change caused by g1 remaining above 10-fold for the CRISPRa system,
divided by the same number for the CRISPRi system:

Scaling Overperformance(params) =
max (N) s.t. AFC > 10
max (N) s.t. RFC > 10.

For each overperformance measure, we numerically calculate sensitivity of that
measure to each parameter as the derivative of overperformance with respect to
that parameter at our best-guess parameter set. These raw sensitivity values were
normalized against parameter scale (i.e., errors in parameter estimation are assumed
to be proportional in scale to the values of those parameters) and overperformance
at the best-guess parameter value (so that sensitivity is given as a relative error):

sensitivity(params) =
params ∗ raw sensitivity(params)

overperformance (params)
.

For N = 30 competing gRNAs, Ptot = 10 target copies, Ctot = 530 copies of dCas9
(roughly the maximum number an E. coli cell can support with negligible growth
defect), rA = 50, and all other parameters set as in Table 3.2, we find the sensitivities
of fold change overperformance and scaling overperformance listed in Tables 3.4
and 3.5, respectively.

Unsurprisingly, fold change overperformance is most sensitive to rA, the fold change
of activation for promoters bound to a CRISPR activator. Fold change overperfor-
mance is also somewhat sensitive to Ctot , Ptot , α1, and αx . We have already shown
how CRISPRi and CRISPRa performances change over realistic values of Ctot and
Ptot .

The parameters α1 and αx—the transcriptional speeds of the target gRNA and com-
peting gRNAs, respectively—are effectively different ways of scaling N . Increasing
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Parameter Sensitivity (normalized) Description
rA 0.848310 Fold change of activation

Ctot 0.716537 Total steady-state dCas pool
α1 0.709052 Transcription rate of g1
Ptot -0.690079 Target promoter concentration
αx -0.679508 Transcription rate of other gRNAs
β -0.029544 δ

K1
, δ =(degradation plus dilution) rate for gRNAs

K 0.026457 Association constant for dCas:gRNA complex
binding to promoter.

Table 3.4: Sensitivity of fold change overperformance to each parameter.

Parameter Sensitivity (normalized) Description
rA 1.079925 Fold change of activation

Ctot -0.335800 Total steady-state dCas pool
α1 -0.267926 Transcription rate of g1
β 0.267926 δ

K1
, δ =(degradation plus dilution) rate for gRNAs

Ptot 0.207065 Target promoter concentration

K -0.128736 Association constant for dCas:gRNA complex
binding to promoter.

αx -0.000000 Transcription rate of other gRNAs

Table 3.5: Sensitivity of scaling overperformance to each parameter.

αx changes the concentration of competing guide RNA in the same way that increas-
ing N does, while changing α1 is equivalent to changing both αx andCtot . Therefore,
changes to these two variables are roughly equivalent to shifting the performance
curves shown in Figure 1 along the "# Competing Guides" axis, albeit in a nonlinear
way.

Fold change overperformance is relatively unaffected by K and β, which both
incorporate binding constants and are therefore parameters of particularly high
uncertainty.

In contrast, scaling overperformance is fairly sensitive to β, though only somewhat
more so than to Ptot (and less than to Ctot , which we can see from Figure 3.11 is
still not particularly large (remember that overperformance is a relative measure
of the effectiveness of CRISPRa vs. CRISPRi). We are therefore less confident
in our ability to quantitatively predict scaling overperformance than fold change
overperformance, but we believe the overall trend that CRISPRa performs better
than CRISPRi under conditions of high gRNA competition will hold.

3.5 Engineering Requirements of CRISPRi
Although we do not yet have a complete set of guidelines for engineering arbi-
trary CRISPRi systems or combinations of systems, the models and simulations in
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Sections 3.3 and 3.4 do provide a few key lessons:

• Active degradation of dCas can improve circuit performance, and may be
necessary.

• Almost any amount of transcriptional leak can be quite destructive to CRISPRi
circuits.

• The speed at which dCas:gRNA complexes bind to DNA is important for
circuit function, and implementing CRISPRi circuits in vivo may require
increasing this binding rate.

• CRISPRi circuits should fall off in performancewith scale faster thanCRISPRa
circuits.

Each of these lessons is accompanied by an engineering requirement. Some possible
strategies for fulfilling these requirements are outlined below.

Degradation of dCas
E. coli can actively degrade proteins using the ClpXP system, which uses the
proteases ClpXP and ClpXA to selectively degrade proteins bearing ssrA, a small
C-terminal peptide tag. The native ClpXP system degrades at least 400 times faster
than the rate of cell dilution, which is far too fast for any of the circuits outlined in
Section 3.3 (Farrell, Grossman, and Sauer, 2005). However, targeted mutations to
the ssrA tag have been used to tune degradation rates to anywhere between 2 and
100 times the rate of dilution, which falls solidly into the target degradation range
outlined in Figure 3.7 (Landry, Stöckel, and Pakrasi, 2013). Alternatively, dCas
could be degraded using the mf -Lon protease system, which is similar to the ClpXP
system in function and tunability but is orthogonal to any system in E. coli (Gur and
Sauer, 2008; Cameron and J. Collins, 2014).

Improving fold-repression
The CRISPRi repressors reported in the literature typically repress with strengths
between 10x and 100x. Moreover, the strongest CRISPRi repressors are typically
targeted inside the target promoter, which limits their design space severely. Simula-
tions suggest that leaks reported for elongation-blocking CRISPRi will break toggle
switch and oscillator circuits unless degradation rates are extremely well-tuned. En-
gineering high fold-change in a promoter may be challenging, but several simple
strategies are possible for improving repressor performance.

However, any “transcriptional leak” of the kind observed in any repression exper-
iment can be explained as a consequence of slow DNA binding or weak binding
equilibrium, rather than proper leak from bound promoters; in fact, real-world
“leak” is likely to be a combination of the two. Our models predict that CRISPRla-
tors without dCas degradation should only function if proper leak from dCas-bound
promoters is extremely low.
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Real-world CRISPRlators, though not particularly robust, do oscillate, suggesting
that a consequence of our model would be that proper leak in CRISPRi systems is
much smaller than leak from un-bound targets. If true, this suggests that efforts to
reduce CRISPRi leak should be targeted at improving binding speed, rather than
binding strength.

Faster dCas:DNA binding
As previouslymentioned, the results shown in this report assume “best-case” binding
rate of dCas:gRNA complexes to their target DNAs, with binding rates taken from
in vitro association rate measurement. In live E. coli, dCas binding to DNA is
much slower, with a single dCas complex estimated to require a few hours to bind
to its target (Jones et al., 2017). A likely explanation for Cas9’s slow binding time
is that dCas spends most of its time transiently bound to off-target PAM sites in
the genome. The dCas protein can temporarily bind to any double-stranded DNA
site with a correct PAM sequence. When it does, it briefly opens the DNA helix
to “check” whether its associated guide RNA matches the sequence immediately
adjacent to the PAM.Each non-target PAMpresent in the cell slows the rate of correct
binding by acting as a low-affinity “decoy” binding site, which slows binding to the
target promoter. The S. pyogenesCas9 (by far the most widely-used Cas variant, and
the one used exclusively in this report) uses the PAM "NGG", which can be expected
to appear roughly 750,000 times in the (approximately diploid) genome of a growing
E. coli cell. This represents substantial barrier to correct target identification.

There are several possible solutions to the problem of slow dCas:DNA binding in
vivo. The most straightforward, at least conceptually, would be to move out of cells
entirely and construct circuits exclusively in TX-TL or another cell-free system.
Since cell-free systems do not have DNA replication or dilution to remove dCas
from DNA, this would have to be done either in a microfluidic device capable of
manually diluting a running reaction (see (Niederholtmeyer et al., 2015)) or using
degradation-tagged dCas proteins.

Another simple way to speed up dCas:DNA binding rates would be to simply
increase the concentration of either dCas (by increasing the baseline production of
dCas) or target (by either genomically integrating multiple copies of the CRISPRi
circuit or by expressing the circuit off of a plasmid). Simulations so far suggest that,
all other things being equal, increasing the rate of dCas production has the effect of
narrowing the window of acceptable dCas degradation rates. More simulation will
be required to determine the feasibility of either of these two interventions.

Another possible solution would be to use a dCas (or another programmable binding
protein) with a different, more complex PAMsequence. For example, the Treponema
denticolaCas9 (TD-Cas) uses the PAMNAAAAC. After accounting for nonspecific
PAM recognition, TD-Cas PAM sites ought to occur between 64 and 1024 times
less frequently than S. pyogenes Cas PAM sites, with a corresponding increase in
binding rate (Esvelt et al., 2013). If the other kinetics of TD-dCas are similar to
those of S. pyogenes dCas, then we should expect TD-dCas binding to DNA to be
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only perhaps twice as slow as in vitro dCas, which should be quite manageable.

Use CRISPRa where possible
There are good reasons to use CRISPRi instead of CRISPRawhen building bacterial
biocircuits, at least in the near future. CRISPRi requires fewer moving parts,
produces larger best-case fold changes (and unquestionably higher fold changes in
single-gRNA systems), and is less likely to drastically interfere with host genetic
expression, at least in E. coli, as current-generation prokaryotic CRISPRa activators
use modified versions of E. coli activators that upregulate some native promoters.

Repression is arguably also a more useful tool than activation. In particular, several
simple, classic genetic circuits rely exclusively on repression (e.g., the repressilator
(Elowitz and Leibler, 2000), the two-gene genetic toggle switch (Gardner, Cantor,
and J. J. Collins, 2000), and NOR-gates (Gander et al., 2017)).

Finally, CRISPRa is more difficult to use on natural genomic targets, as it requires a
PAMwithin a ∼10 bp window of an ideal position upstream of the target promoter’s
-35 box. For some genes, this target simply does not exist.

Nevertheless, CRISPRa has a distinct advantage over CRISPRi—it should be sig-
nificantly less impacted by bottlenecking of core dCas9. CRISPRi effectiveness
is predicted to drop precipitously for systems above about a dozen gRNAs, while
CRISPRa should still function in the presence of dozens-to-hundreds of competing
gRNAs.

As CRISPR-based synthetic circuits grow in scale and complexity past about a
dozen components, we anticipate that the usefulness of CRISPRi will drop off
precipitously, while CRISPRa should still function even in the presence of dozens
of competing gRNAs (at least, for circuits with low target concentrations). We urge
anyone who dreams of building large CRISPR-based biocircuits to consider using
CRISPRa.

3.6 Conclusions
CRISPRi remains an intriguing technology for scaling up genetic regulatory net-
works. However, building functional CRISPRi circuits is not as simple as sketching
a repression net and targeting gRNAs against each other accordingly. In particu-
lar, ODE simulations of CRISPRi reveal specific functional requirements regarding
dCas9 protein regulation and repressor characteristics. Some degradation of dCas
may be required, but not too much; some leak from dCas-repressed promoters is
acceptable, but not toomuch. Long timescales of DNA binding make CRISPRi con-
struction more difficult, but not fatally so. Using these and other insights, it should
be an achievable goal to build and express CRISPRi circuits, which would consti-
tute an important milestone toward engineering cells with complex programmable
behavior.
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C h a p t e r 4

HOW TO MODEL REPLICATING DNA (AND WHY)

4.1 Introduction
Although most synthetic biocircuits use DNA, models of synthetic biocircuits typ-
ically do not explicitly describe the dynamics of those DNA species. For example,
the original repressilator model tracked mRNA and protein species, but not DNA
(Elowitz and Leibler, 2000), and the model for the first genetic toggle switch simply
tracked “repressor 1” and “repressor 2” (Gardner, Cantor, and Collins, 2000). For
many circuits under many modeling assumptions, it is sufficient to assume that all
DNA species are held at a fixed concentration by the cell, by means of mysterious
machinery whose details are irrelevant to understanding the circuit.

In some cases, however, it is useful or necessary to explicitly represent DNA as
a dynamic species. Some circuits, for example, use DNA in different states as
a dynamic component or readout (for example, integrase-based state machines
(Roquet et al., 2016)). It can also be useful to explicitly represent DNA when DNA
binding is slow relative to the other circuit processes (for example, CRISPR-based
transcription factor networks under some conditions (Jones et al., 2017)). Stochastic
models, in particular, are often most naturally expressed using explicit DNA species.
We will primarily deal with the case of a plasmid of reasonably high copy number,
for which we should be able to largely neglect the possibility of plasmid loss by
copy number fluctuation.

Explicitly-modeled DNA often requires some mechanism of replication—again
particularly in stochastic models. Unfortunately, the obvious replication implemen-
tation DN A→ DN A + DN A is a trap that leads to pathological circuit behavior.

4.2 Trivially-Replicating Plasmids Have No Well-Defined Copy Number
An obvious way to model replication of a DNA species is the straightforward

DN A
α
→ DN A + DN A,

shown visually in Figure 4.1A. Here we use a non-indexed DNA representing a
single plasmid or genome, which may contain many functional sub-units (or none
at all). We refer to this simple replication mechanism as “trivial self-replication.’
Although trivial replication is intuitively appealing, we strongly recommend against
its use.

First, consider trivial self-replication in the mass-action, high-concentration regime
(we will consider stochastic dynamics shortly). Coupled with a dilution reaction
DN A

γ
→ ∅, trivially self-replicating DNA has dynamics
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dDN A
dt

= (α − γ)DN A.

Notice that at steady state, we have α − γ = 0, independent of DNA concentra-
tion. In other words, the only finite, non-zero steady state of the trivial replication
mechanism occurs when production is precisely balanced by dilution, and such a
steady state is structurally unstable. If production is slightly faster than dilution,
thenDNA’s concentration will explode unphysically (and unbiologically) to infinity.
Conversely, if dilution is slightly faster than production, DNA will always fall to
zero concentration and die out.

In a deterministic models of a trivially-replicating plasmid, production and dilution
can be balanced perfectly, giving a nominally constant concentration of DNA, but
this mechanism of replication rejects no disturbances—any addition or removal of
DNA will remain permanently uncorrected.

Stochastic simulation of the trivial model cannot even achieve this level of marginal
stability. Stochastic simulation is, by its nature, noisy; a stochastically simulated,
trivially replicating DNA will random walk in copy number until, practically speak-
ing, it either dies out by wandering to zero or explodes to a concentration too large
to simulate (shown in Figure 4.1A).

4.3 Zero-Order Replication Recovers Good Steady-State Properties
The trivial replication mechanism is unstable because it makes both production
and degradation of DNA linearly dependent on the concentration of DNA itself. A
simple way to add stability to the replication model is to remove that dependence
by conditioning replication on a “dummy replication trigger” produced at a constant
rate (shown diagramatically in Figure 4.1B):

∅
α
→ R,

DN A + R
k
→ DN A + DN A.

This mechanism has ODE dynamics

dR
dt
= α − kR ∗ DN A

dDN A
dt

= kR ∗ DN A − γDN A.

At steady state, R = α
k∗DN A , which cancels out DNA in DNA’s production term

and gives DN A = α
γ . This steady state is stable. As long as k is fast relative to
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Figure 4.1: a) The trivial replication mechanism, in which DNA spontaneously
self-replicates. This mechanism is unstable and produces random-walking DNA
concentrations. b) The dummy-triggered replication mechanism, in which replica-
tion is triggered by a dummymolecule produced at a constant rate. This mechanism,
coupled to dilution, is stable and rejects small disturbances.

other replication dynamics (α and γ), the dummy-triggered replication mechanism
emulates zero-order replication of DNA.

Dummy-triggered replication leads to a stable steady state concentration of DNA,
as shown in Figure 4.1B. We therefore recommend them over the trivial replication
mechanism.

4.4 Biological Models of Plasmid Replication Approximately Reduce to Zero-
Order Replication

Dummy-triggered replication is not meant to accurately describe a real biological
processes. Real cells do not control replication using consumable molecules like R.
The critical property of the dummy-triggered replication mechanism is its ability
to achieve the (biologically important!) property of having a defined, stable steady
state.

Nevertheless, we will show that under a few relatively mild assumptions, at least one
real-world DNA replication mechanism can be reduced to a zero-order replication
mechanism equivalent to the dummy-triggered replication mechanism, .

Consider the ColE1 plasmid replication system, first crystallized mathematically
by Brendel and Perelson in 1993, shown on the left in Figure 4.2. We use ColE1
as an example because it has a particularly simple and well-understood replication
mechanism.
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Figure 4.2: A mechanistic model of ColE1 (left), which can be conceptually ap-
proximated by a simplified ColE1 model (middle), which under fast RNA dynamics
reduces zero-order replication equivalent to that of the dummy-triggered replication
model (right).

Briefly, ColE1 plasmids replicate using a cis-acting RNA primer, called RNAII.
That primer can be blocked by a complementary RNA called RNAI, which is
constitutively produced by the ColE1 plasmid. This means that the per-plasmid rate
of ColE1 replication drops as the concentration of ColE1 plasmids increases, which
gives ColE1 a finite steady state.

In the absence of RNAI, a ColE1-based DNA species are duplicated by initiation
of RNAII transcription (DN A → DN ARIIs), elongation of RNAII (DN ARIIs →

DN ARIIL), attachment of a DNA polymerase to the RNAII-primed DNA complex
(DN ARIIL → DN AP), and, finally, replication by the attached DNA polymerase
(DN AP → DN A + DN A). If a DNA polymerase does not bind to an elongated
RNAII, the RNAII will be cleaved off, returning the plasmid to its initial state
(DN ARIIL → DN A).

ColE1 does, however, produce RNAI (DN A → DN A + RI). RNAI can bind
to RNAII while it’s being transcribed, blocking elongation (DN ARIIs + RI →
DN AI I:Iu). The RNAI:RNAII complex formed this way is unstable and can reverse
easily, but can switch into a much more stable form (DN AI I:Iu → DN AI I:Is) from
which both RNAs can be cleaved off the plasmid by RNase action, resetting the
plasmid (DN AI I:Is → DN A). This serves as the negative feedback mechanism that
lowers ColE1’s replication rate as its copy number increases.

In their original description of this model, Brendel and Perelson also describe
optional sequestration of the DN AI I:Is state by Rom binding, which leads to a lower
steady state copy number (Brendel and Perelson, 1993). Freudenau et al further
extend this model with additional feedback by uncharged tRNA, which occurs under
starvation conditions, and experimentally parameterize the model. For simplicity, I
omit these two extensions in this work.

Although the details of Brendel and Perelson’smodel are a bitmessy, they implement
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a straightforward logic:

• DNA produces an RNA species RI. More DNA leads to more RI.

• Occasionally, DNA will spontaneously enter a primed state from which it can
replicate. (Biologically, the plasmid produces an RNA primer RN AII which
can initiate replication.)

• RI can react with a replication-primed DNA, un-priming it and destroying the
RI. (RI binds to RII to form an inert complex that is removed by RNases.)

• If not stopped by an RI, a primed DNA can spontaneously replicate into
two non-primed DNA. (DNA polymerase initiates replication using RII as a
primer.)

We can represent this logic more clearly with a three-species reduction of Brendel
and Perelson’s model, shown in the middle in Figure 4.2, consisting of “unprimed”
DNA, “primed” DN Ap, and feedback RNA R.

Under realistic parameter regimes (specifically, when R dynamics are fast and kp
is relatively fast compared to krep), this three-species ColE1 model can be approx-
imated by a single-species model equivalent to the dummy-triggered replication
model with replication rate krepkp(γ + γI)/(kI(kt x − kp)).

This approximation requires:

1. Dynamics of creation and destruction of R must be fast (i.e., R must be at
quasi-steady state compared to DNA and DN Ap.

2. Replication must be bottlenecked by the DN Ap → DN A + DN A reaction
(i.e., kp � krep). This is true for the three-species model with parameters fit
against simulations from the full ColE1 model.

3. kt x > kp > γ and krep > γ (required for stability of the three-species ColE1
model).

Since R dynamics are fast, we’ll assume that R is at quasi-steady state:

dR
dt
= kt x DN A − (γ + γI)R − kI DN ApR

At steady state: R =
kt x DN A

(γ + γI) + kI DN Ap
.

Because krep is, by assumption, relatively slow, we can also consider the quasi-
steady state concentration of DN Ap. At quasi-steady state, the equilibrium condition
between DNA and DN Ap means that
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kI ∗ DN Ap ∗
kt x DN A

(γ + γI) + kI DN Ap
= kp ∗ DN A,

so

DN Ap =
kp(γ + γI)

kI(kt x − kp)
.

Surprisingly, we have discovered that the concentration of DN Ap is roughly constant
regardless of the copy number of the plasmid. As long as this is true, the rate of
replication (i.e., the rate at which DN Ap goes to 2DN A) is

kp ∗ DN Ap =
krepkp(γ + γI)

kI(kt x − kp)
.

Since this is constant, we are back to the zero-order (e.g., dummy-triggered) replica-
tion model where DNA species replicate at a constant, DNA-independent rate! This
zero-order, one-species reducedmodel will bringDNA to the same copy number and
usually has behavior qualitatively very similar to the three-species model (Figure
4.3).

Figure 4.3: Simulated trajectories of replicatingDNA the three-species ColE1model
(black lines), with trajectories for the equivalent one-species reduced model (dashed
red lines), for 25 random parameter sets chosen so that DNA has a finite, nonzero
steady state and kp > krep.

Note that in the opposite regime, where krep � kp, a similar reduction can be made
to a single-species model where DNA replicates at rate
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kp

1 + βDN A
, where β =

kI kt x

krep(γ + γI)
.

4.5 Worked Examples
The CRISPRlator
One example of a circuit that can benefit from explicitly representing replicating
DNA is the CRISPRlator from Chapter 3 (Figure 4.4).

Figure 4.4: a) A simple model of general CRISPRi systems. Guide RNAs (gRNAs)
complex with a shared pool of dCas9. dCas9:gRNA complexes bind to DNA
targets, blocking transcription from those targets. Dashed arrows represent catalytic
production (transcription). Targets can be other gRNAs, as in the 5-node CRISPRi
oscillator (CRISPRlator) (b). c) Deterministic and stochastic (SSA, non-lineage)
simulation of the 5-node CRISPRlator.

We have already noted that dCas9 has shockingly slow binding kinetics—a single
dCas9 molecule has been calculated to take an average of six hours to find a single
DNA target in an E. coli cell, necessitating large numbers of targets and/or dCas9
molecules for circuits to operate on reasonable timescales (Jones et al., 2017).
Thus, we have opted to dispose of the usual Hill function approximation of gene
repression (one of the most common simplifying assumptions in the gene circuit
literature) because that assumption assumes fast binding kinetics. To see the effects
of slow binding kinetics, we have to explicitly model slow binding kinetics, which
means explicitly tracking of bound and unbound DNA species. DNA replication
might be a nice feature in such a model.

We might also want to probe how fluctuations in plasmid copy number affect the
performance of the CRISPRlator. Can the CRISPRlator function if DNA copy
numbers fluctuate in ways consistent with noisy DNA replication? Can it survive
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random partitioning of plasmids during cell division? Will a CRISPRlator stay syn-
chronized across a population of growing cells? Simulations with DNA replication
can help answer those questions.

A few problems will immediately pop up if we try to simulate a CRISPRlator in a
lineage of growing, dividing cells. The first is that if a cell keeps a constant copy
number of a plasmid while growing in volume, then the concentration of plasmid
will consistently and unrealistically drop by a factor of two with every growth cycle.
We also run into a thorny question of how to add more plasmids to cells when they
divide. The obvious thing to do is to instantaneously replicate all of the plasmids at
cell division time, but this will instantaneously create many un-repressed plasmids,
which can scramble the state of the CRISPRlator and kill oscillations.

A simpler solution is to add self-replication to the plasmid bearing the CRISPRlator.
Figure 4.5 shows representative simulations of a single-cell 5-node CRISPRlator
using each DNA replication method.

More interestingly, we can now simulate lengthy lineages of growing, replicating
cells expressing the CRISPRlator. Figure 4.5E shows results from a lineage simula-
tion using the dummy-triggered replication model parameterized identically to the
one used for Figure 4.5B. This simulation begins with a single cell, which grows and
divides every doubling of cell size. The total population is capped at 64 by killing
a random cell whenever a cell division would bring the population above 64. Each
dot is the concentration of total gRNA for one of the five gRNA in one cell at one
time. These simulations show that over 150 generations, the CRISPRlator remains
largely coherent, although increasingly less so as the simulation progresses (note
the spread in the “tails” where each gRNA species falls to zero concentration).

Finally, we can simulate the effect of dropping down the copy number of the plasmids
bearing the CRISPRlator. Figure 4.6 shows representative traces from one of the
five gRNAs in CRISPRlator variants on plasmids varying from single-copy to copy
number ten. Guide RNA production rates are scaled so that the expected gRNA
production rate are the same as in the simulations used for Figure 4.5, and selection
has been added to the models to counteract plasmid loss.

A single-cell temporal logic circuit
As a second case study, consider the integrase-based temporal logic circuit (Hsiao
et al., 2016), which is a special case of the general recombinase-based state machine
(one implementation of which is given by Roquet et al., 2016). This circuit uses two
different serine DNA integrases int A and intB under inducible control of molecules
A and B, respectively, to flip pieces of a shared reporter module. Induction of
either integrase permanently alters the reporter module so that the circuit produces
different outputs depending on whether it has been exposed to A only, B only, A
followed by B (A⇒ B), B followed by A (B⇒ A), or no inducer at all.

A single cell expressing a temporal logic circuit is an imperfect sensor. Even if the
cell is exposed to A ⇒ B, it is possible that it could, by stochastic fluctuation, not
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Figure 4.5: The five-node CRISPRlator in a single growing cell with DNA replica-
tion modeled using (a) the trivial replication model (note the shorter time scale), (b)
dummy-triggered replication, (c) Brendel and Perelson’s ColE1 replication model,
and (textbfd) the simplified 3-species ColE1 replication model. Each line is a sum
of the concentrations of all species containing one of the five gRNAs. (e) Lineage
simulation of the 5-node CRISPRlator in growing, dividing cells over approximately
150 generations, with a population cap of 64 cells.

flip with integrase int A for so long that it eventually runs into a B molecule and
integrates first with intB. The shorter the time delay between the introduction of A
and B, the more likely this sort of mis-firing will be.

In a large population of temporal-logic-circuit bearing cells, this imperfection can be
exploited to create a population-level, analog measurement of not just which input
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Figure 4.6: 5-node CRISPRlator at different copy numbers.

appeared first, but the time delay between the appearance of the two. If one input
appears rapidly after the other, then many cells will “misfire” and report the wrong
temporal value; if the two inputs are separated by a significant amount of time, then
almost all cells will react to the first input before the second input arrives, and the
population will homogeneously report the correct value. With proper calibration,
the final distribution of cell states can be used to back out the time difference between
inputs.

Equivalently, this type of population-level circuit can be used to measure differences
in concentration of inputs that appear at the same time.

Importantly, the population-level circuit assumes that each cell has a single, simple
state. This is achieved by using a chromosomally-integrated reporter module, so
that the cell has a single, unique state (or, at least, will after a round or two of
division). One could easily imagine performing the same type of population-level
measurement in a single cell by using a state-bearing plasmid with a high copy
number. This could make the circuit much more compact, and potentially simpler
to sample depending on the circuit’s intended environment.

Will a single-cell, plasmid-based temporal logic gate still perform as advertised?
There are practical, integrase-related difficultieswithmaking such a circuit—as orig-
inally designed, multiple copies of the gate’s reporter module would recombine in
unexpected and unwanted ways—but even setting those aside, moving a population-
level circuit into a single cell adds new complications and sources of noise. For one
thing, recording events between modules are no longer independent—transcription
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Figure 4.7: Overview of the temporal logic gate. (A) State machine describing
a single temporal logic gate unit. “Detection” is classically implemented with
integrases whose activities are induced by signals A and B. (B) The behavior
of a population of cells where each cell contains a single temporal logic gate.
The final distribution of cell states can be used as a readout of the time delay
between introduction of A and introduction of B. (C) Representative simulation of a
genomically-integrated temporal logic gate (i.e., without explicitly replicating DNA
species). Each curve is the fraction of cells in state AB over time for a different
delay time tB between introduction of A and B.

of a single integrase mRNA can produce a number of module-flipping events. The
frequency of a plasmid state in a cell might also not be stable over generations, due
to random partitioning at division.

A straightforward way to ask whether or not a single-cell temporal logic gate can
still give analog measurements is to simulate it. To do so, we should use stochastic
simulation (since stochastic fluctuations are likely important for plasmid dynamics)
and we will need to model plasmid replication (since stateful plasmids are the
principle species acted on by the circuit).

When we add plasmid replication to the temporal logic gate, we can see that it
still functions on a replicating plasmid, although with more noise than the original
genome-located temporal logic gate (Figure 4.8)—but this version only requires a
single cell, where the original was designed to work in a population of thousands to
millions of cells.

4.6 Discussion
This work is far from the first to consider models of plasmid replication, and
many modelers have crafted their own solutions to the problems that crop up when
modeling replicating DNAs. There is not, however, any widespread consensus on
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Figure 4.8: The temporal logic gate on a replicating plasmid. (a) Total counts of
plasmids of copy number 30 or 100 in each state across a population of 1,056 cells
introduced to A at time 2 hours and B at time 10 hours. (b) Same data as in (a),
disaggregated into individual cells’ copy numbers of plasmids in each state. Points
are shifted and jittered slightly on the time axis for visibility. Solid ticks mark the
1st, 25th, 50th, 75th, and 99th percentile copy numbers for each state at each time.

how to handle DNA replication in the context of synthetic biocircuit modeling.

One reason such a gap exists is that biocircuit modeling is rarely performed in the
stochastic regime. In a deterministic ODE model, trivial DNA replication can be
balanced perfectly against dilution. Such a trivially-replicating plasmid would be
merely neutrally-stable, which is sufficient so long as no perturbations are applied
to total DNA concentration. It is not clear that any more sophisticated replication
mechanism is really required for deterministic models.

Oncewemove to theworld of stochastic simulations (as predictivemodelers ought to
do, if their computational resources are adequate to the task!), trivial replication fails
spectacularly, and the dummy-triggered mechanism (or something similar) becomes
absolutely necessary.

Another possible benefit of dummy-triggered replication is that it does not hide
itself. When trivial replication is used in deterministic models, the terms represent-
ing DNA replication in the model’s ODEs tend to cancel out entirely, leaving no
record of the replication mechanism in the system’s mathematical description. In
practice, replication is often also dropped from a model’s CRN description. From
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the perspective of a scientist or engineer studying a single model, this disappearing
act may appear advantageous as it “cleans up” the relevant math, but this strategy
has allowed DNA replication mechanisms to go largely undiscussed and unnoticed
in the synthetic biology literature.

It is our hope that this document can serve as a reference guide for modelers
first encountering DNA replication, at least until the field develops better standard
practices around the subject.



100

References

Brendel, V and A S Perelson (1993). “Quantitative model of ColE1 plasmid copy
number control”. In: Journal of Molecular Biology 4 (299), pp. 860–872. doi:
10.1006/jmbi.1993.1092.

Elowitz, Michael B. and Stanislas Leibler (2000). “A synthetic oscillatory network
of transcriptional regulators”. In: Nature 403.6767, pp. 335–338. doi: 10.1038/
35002125.

Gardner, Timothy S., Charles R. Cantor, and James J. Collins (2000). “Construction
of a genetic toggle switch in Escherichia coli”. In: Nature 403.6767, pp. 339–342.
doi: 10.1038/35002131.

Hsiao, Victoria, Yutaka Hori, Paul WK Rothemund, and Richard MMurray (2016).
“A population-based temporal logic gate for timing and recording chemical
events”. In:Molecular Systems Biology 869.12. doi: 10.15252/msb.20156663.

Jones, Daniel, Cecilia Unoson, Prune Leroy, Vladimir Curic, and Johan Elf (2017).
“Kinetics of dCas9 Target Search in Escherichia Coli”. In: Biophysical Journal
112.3, 314a. doi: 10.1016/j.bpj.2016.11.1700.

Roquet, Nathaniel, Ava P. Soleimany, Alyssa C. Ferris, Scott Aaronson, and Timothy
K. Lu (2016). “Synthetic recombinase-based state machines in living cells”. In:
Science 353.aad8559 (6297). doi: DOI:10.1126/science.aad8559.



101

C h a p t e r 5

CONCLUSIONS AND FUTURE WORK

5.1 Programming and Simulating Chemical Reaction Networks on a Surface
Wehave only scratched the surface ofwhat a surfaceCRNcan do. Wehave suggested
a number of specific problems and exercises for the reader in Chapter 2; much more
open-ended is the basic question, what should we design next? We have shown that
synchronous cellular automata can be built with a surface CRN; what such automata
would be most useful to construct? We have shown that surface CRNs are capable
of both primitive and sophisticated pattern-manufacture; how do we increase the
scale and complexity of surface CRN manufacturing in an efficient way? We have
shown that surface CRNs are capable of simple swarm robot behavior; how much
behavioral complexity can be efficiently packed into a surface CRN?

There also remains the practical challenge of physically implementing a surface
CRN. To anyone with passing familiarity with chemistry, the idea of designing
custom molecules that undergo specific, tunable reactions may seem difficult in the
extreme, but DNA nanotechnology can get us surprisingly close to just that even
today. DNA origami tiles with loose single strands as functionalization sites provide
uswith a simple and semi-scalable programmable surface onwhich to precisely place
DNA complexes, which themselves can be programmed with sequence-targeted
binding and strand displacement reactions. We may not currently have a fully
programmable surface CRN breadboard, but the technology required to build one
likely already exists.

We firmly believe the most important and revelatory applications of the surface
CRN may be ones that have yet to be conceived, and we hope that this work serves
as a gateway to a much vaster realm of molecular design.

5.2 Modeling Dynamic Transcriptional Circuits with CRISPRi
Afundamental problemwehave encountered repeatedly in ourmodeling ofCRISPRi
is that parameters matter, and our knowledge of most biological rate parameters is
thin at best. Our knowledge of the parameters of CRISPRi is better than that of most
transcription factors in the literature, but there remains a great deal of uncertainty
about how CRISPRi actually behaves in real cells.

That said, at least two different physical realizations of the CRISPRlator analyzed
in Chapter 3 have been built to date, so we can now start to compare our mod-
els of CRISPRi against real circuit performance (Santos-Moreno et al., 2020; Kuo
et al., 2020). So far, those models are somewhat informative but only partially
capture the complexity of real CRISPRlator behavior. Even stochastic simulations
of the CRISPRlator do not consistently display as much variability in pulse tim-
ing, duration, or amplitude as real implementations, and physically implemented
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CRISPRlators appear to be consistently slower than their simulated counterparts.
Elucidating the causes of these differences would help make existing CRISPRi
models more useful design tools.

Furthermore, the dCas9 CRISPRlator of (Kuo et al., 2020) turned out to be largely
inferior to a similar CRISPRlator built from a deactivated version of Cas12a. It
may well turn out that future CRISPRi work will be done with Cas12a, another
Cas-family protein, or another CRISPR component altogether; in any of these cases,
we would do well to expand our CRISPR models.

5.3 How to Model Replicating DNA (and why)
We argue that the replication mechanism proposed in Chapter 4 is sufficient for most
modelers’ needs, and has some biological plausibility. It is not, however, a detailed
mechanistic model, and may well generate unrealistic plasmid distributions (though
still far better than those of the trivial replication mechanism).

Shao et al., 2021 measure copy number distributions empirically using fluorescent
transcriptional repressors that bind to tandem arrays on the plasmid (though we
would caution that plasmid copy number measurement is difficult and fraught with
hard-to-detect biases (Tal and Paulsson, 2012)). The dummy-triggered replication
model is unable to replicate those empirical distributions—the model only has a one
(non-dimensionalized) degree of freedom in its parameters, andwhen that parameter
is tuned so that our model’s mean matches any empirically-observed mean, the
model predicts a distribution with far lower variance than the empirically-measured
distribution.

Interestingly, Brendel and Perelson’s ColE1model, usedwith their suggested param-
eters, agrees far more closely with the dummy-triggered replication model than with
empirical measurements, and in practice it has proven difficult to independently tune
themean and variance of copy number distributions producedwith the ColE1model.
Rigorous parameter inference on the ColE1 model would be a straightforward way
to determine whether or not that model is capable of matching empirical copy num-
ber observations at all. Inference on stochastic models (required for distribution
measurements) is non-trivial, but may be possible using noise-tolerant optimiza-
tion algorithms such as simultaneous perturbation stochastic approximation (SPSA)
(Spall, 1998).
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