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Abstract

In this thesis I advocate for the enhancement of interdisciplinary expertise between

atmospheric and interiors sciences. I illustrate the intimate connection between at-

mosphere and interior with four projects involving two major topics: giant planet

seismology, and convective inhibition by condensation. First I advance a heuristic

to evaluate generic localized excitation sources for giant planet seismicity, conclud-

ing observed oscillations on Jupiter may be caused by highly energetic rock storms

lurking deep beneath the visible clouds. Next I develop a method to use existing

spacecraft data to probe for seismic activity on giant planets, applying the method

to Cassini data. This method finds possible evidence of p-modes on Saturn, excited

to staggering amplitudes warping the surface of Saturn with kilometer scale displace-

ments. Next I explore the impact of convective inhibition on Uranus and Neptune,

finding that condensation of methane and water produces non-negligible corrections

to these planets’ thermal histories. Finally I explore a similar mechanism operating

in the limit where condensing species are highly abundant. I find that considering

convective inhibition, super-Earths can retain their primordial heat for longer than

the age of the universe.
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Chapter 1

Introduction: atmospheres are

interiors on gas planets

Since things are emerging and

dissolving all the time, you

cannot specify the point when

this division will stop.

Lie Yukou

The field of planetary science originated with the study of our nearest planet:

Earth. Earth’s surface provides a clear interface between its atmosphere and inte-

rior. Earth’s interior certainly couples to the atmosphere; much of the atmosphere

itself originated from volcanic outgassing [Zahnle et al., 2010], the atmosphere weath-

ers the crust, the ocean formed out of the atmosphere [Elkins-Tanton, 2011] which

now likely plays a crucial role in plate tectonics [Mian and Tozer, 1990], and volcanic

events today continue to impact atmospheric composition [Robock and Oppenheimer,

2003]. Nevertheless, it is an accurate approximation for many problems to treat the

interior and atmosphere of the Earth as totally distinct. For this reason, when Earth

scientists began to specialize into sub-disciplines, interiors and atmospheric sciences

1



2 CHAPTER 1. INTRODUCTION

likewise emerged as distinct. This distinction has carried over into the modern field

of planetary science, with many scientists or research groups focusing primarily on

either atmospheres or interiors. On giant planets, however, this distinction becomes

meaningless. Without a physical surface to demarcate the interface between atmo-

sphere and interior, any chosen boundary is necessarily arbitrary. Indeed, in a fully

convective planet there is absolutely no difference between them at all. A part of the

atmosphere today may become a part of the interior tomorrow, and vice versa. This

thesis will focus on a few particular problems that illustrate the intimate connection

between atmospheric dynamics and planetary interiors on giant planets.

New observations increasingly illustrate the importance of the connection between

the interior and atmosphere of giant planets. Gravity experiments aboard the Juno

and Cassini missions settled the debate about the depth of Jupiter and Saturn’s zonal

winds: the winds howl at great depths, extending far beneath the traditional ‘atmo-

sphere’ [Kaspi et al., 2020]. The ammonia distribution on Jupiter proved to be far

more complex than anticipated, with ammonia depletion extending to great depths

at most latitudes [Li et al., 2017]. The leading theory to explain this observation

require strong updrafts originating from the interior [Guillot et al., 2020b] [Guillot

et al., 2020a]. Global oceans in the deep interior of Uranus and Neptune likely set

the volatile abundances of these planets’ atmospheres [Bailey and Stevenson, 2021].

Each of these observed phenomena illustrate separate instances of a similar theme:

one cannot understand what is happening in a planet’s atmosphere without also con-

sidering what happens in the interior, and vice versa. This thesis will focus on two

major illustrative examples of this paradigm.

First, a focus on giant planet seismology. Seismology revolutionized our under-

standing of the sun, moon, and Earth. Currently, seismology is likewise beginning
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to revolutionize our understand of new celestial bodies: Mars, with the InSight mis-

sion [Knapmeyer-Endrun and Kawamura, 2020], Saturn with Cassini data [Hedman

and Nicholson, 2013] [Markham et al., 2020], and soon perhaps Jupiter with ground

based [Gaulme et al., 2011] and even Juno data [Durante et al., 2021]. Saturn’s

rings provide an exquisitely sensitive and precise natural seismograph, allowing the

clearest observations of a giant planet seismology. Seismic modes excite spiral den-

sity waves or bending waves in Saturn’s rings at radii resonant with their pattern

speed. Dozens of these waves have been detected with optical depth measurements of

the rings using stellar occultation measurements. These measurements have already

elucidated a variety of unexpected properties of Saturn’s interior, including the exis-

tence of an extended dilute core [Fuller, 2014] [Mankovich and Fuller, 2021]. Because

Saturn’s rings truncate interior to the D-ring, there exist many theoretical modes

that have no resonances with Saturn’s rings, because they are too high in frequency.

However, a growing assortment of ground-based and spacecraft measurements hint

at truly staggering acoustic oscillations propagating through the interiors of Jupiter

and Saturn [Gaulme et al., 2011] [Markham et al., 2020] [Durante et al., 2021]. The

excitation source for all these oscillations remain uncertain, but we argue that their

excitation is likely to take place near the atmosphere, where the divergence of the

displacement eigenfunctions of acoustic oscillations is greatest. Likewise, the most

efficient dissipation source we identify resides in the atmosphere. In Chapter 2, we

investigate possible excitation and dissipation sources, concluding that no confirmed

natural phenomenon is a likely candidate for exciting observed modes on Jupiter. We

then speculate about the existence of “rock storms,” moist convective events anal-

ogous to thunderstorms powered by chemical reactions of silicates. Such storms, if

they exist, could plausibly be sufficiently energetic to excite seismic oscillations to

their observed amplitudes. In Chapter 3, we invent a novel technique to use existing

spacecraft data from the Cassini mission to probe for seismic activity within Saturn.
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We conclude that the observations are compatible with gravity field perturbations

associated with huge low-order acoustic oscillations, that may warp the surface of

Saturn with kilometer-scale deformation. We comment on whether these observa-

tions are consistent with the energetic storm excitation hypothesis, and mention that

this same technique can be applied to Juno gravity data. Overall we find acoustic

oscillations that resonate throughout the interior of giant planets are likely excited

and dissipated by atmospheric phenomena—-one cannot consider the interior and at-

mosphere separately.

Second, a focus on giant planet cooling and interior modeling. Traditional interior

models assume adiabatic interiors, using equations of state and an isentropic assump-

tion in order to produce density and temperature profiles of the interior (e.g.,, [Hub-

bard and Marley, 1989]). Traditional thermal evolution models neglect the complex

dynamics at play in the atmosphere, and set a 1-bar equivalent temperature using

simple assumptions about a well-behaved photosphere. It has been demonstrated

that these assumptions are inappropriate in the case of condensation [Kurosaki and

Ikoma, 2017], and sufficiently abundant condensates can inhibit convection altogether

in the atmosphere [Guillot, 1995] [Friedson and Gonzales, 2017] [Leconte et al., 2017].

In this work, we demonstrate that many planets—-Uranus, Neptune, and the most

common exoplanets in the galaxy—-possess sufficiently abundant condensates that

this complication cannot be ignored. In Chapter 4, we place constraints on the im-

portance of convective inhibition on the thermal evolution of Uranus and Neptune.

We find that convective inhibition, which produces super-adiabatic temperature gra-

dients, tends to influence thermal evolution in the opposite direction as latent heat

release, which produces sub-adiabatic temperature gradients. The complex atmo-

spheric dynamics play a crucial role in regulating the cooling rate of these bodies,

and should be considered when formulating thermal evolution and interior models. In
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Chapter 5, we apply this heuristic to exoplanets, in particular super-Earths. We find

that considering silicate vapor profoundly impacts their thermal evolution. Contrary

to the canonical picture of super-Earths as magma oceans with an overlying pure gas

envelope (e.g.,, [Ginzburg et al., 2016] [Owen and Wu, 2017] [Vazan et al., 2018]),

we find super-Earth cores may instead be supercritical and extremely hot. This high

entropy interior state can persist for billions of years or longer if super-Earths re-

tain a hydrogen atmosphere of order 1% its total mass. Based on observational and

theoretical predictions, super-Earths with envelopes exceeding this value are likely

to be common. If this model is correct, super-Earth internal heat flux can be small

(of order Earth’s contemporary heat flux) very early in its evolution, then remains

nearly constant for billions of years. These studies demonstrate additional examples

in which atmospheric dynamics play a crucial role in the structure and evolution of

planetary interiors.

I hope this thesis can serve as a small milestone in our grappling with the fun-

damental differences between our own planet, and the striking diversity of planets

we continue to find populating the cosmos. We must inspect our biases as beings

inhabiting one particular planet, and think deeply about the extent to which the

assumptions we use here can be exported to other worlds.
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Chapter 2

Excitation and dissipation of giant

planet seismicity

And don’t the stars, each being

different, all work toward the

same purpose?

Marcus Aurelius

Summary

The objective in this chapter is to formulate a generic heuristic to consider possible

excitation and dissipation sources for seismic oscillations within Jupiter, motivated

by observations. Recent (2011) results from the Nice Observatory indicate the ex-

istence of global seismic modes on Jupiter in the frequency range between 0.7 and

1.5mHz with amplitudes of tens of cm/s. Analysis of Jupiter’s gravity field mea-

sured by Juno are consistent with ground-based observations. Currently, the driving

force behind these modes is a mystery; the measured amplitudes are many orders

of magnitude larger than anticipated based on theory analogous to helioseismology

(that is, turbulent convection as a source of stochastic excitation). One of the most

7



8 CHAPTER 2. EXCITATION & DISSIPATION

promising hypotheses is that these modes are driven by Jovian storms. This work

constructs a framework to analytically model the expected equilibrium normal mode

amplitudes arising from convective columns in storms. We also place rough con-

straints on Jupiter’s seismic modal quality factor. Using this model, neither meteor

strikes, turbulent convection, nor water storms can feasibly excite the order of mag-

nitude of observed amplitudes. Next we speculate about the potential role of rock

storms deeper in Jupiter’s atmosphere, because the rock storms’ expected energy

scales make them promising candidates to be the chief source of excitation for Jo-

vian seismic modes, based on simple scaling arguments. We also suggest some general

trends in the expected partition of energy between different frequency modes. Finally

we supply some commentary on potential applications to gravity, Juno, Cassini and

Saturn, and future missions to Uranus and Neptune.

2.1 Introduction

Jupiter is the largest planet in the solar system, and our most accurate nearby rep-

resentation of thousands of exoplanet analogues which seem to be equally or more

massive, and comprised of approximately the same material. Understanding Jupiter’s

formation history, then, is of great importance for understanding how planetary sys-

tems form in general. Understanding Jupiter’s interior is an essential part of modeling

mechanisms for its formation; for example, the most popular explanation for Jupiter’s

formation would suggest that the embryo Jupiter was a rocky planet early in its for-

mation history, and we can perhaps expect a many Earth mass core to exist as a relic

of that time [Pollack et al., 1996]. Additionally, there is an abundance of information

about thermodynamics and materials physics to be learned by probing the detailed

structure of Jupiter’s deep interior. Current methods of constraining Jupiter’s interior
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(e.g.,, gravity and magnetic field measurements) are valuable, but cannot uniquely

determine the internal structure. Therefore seismology will be an indispensable tool

as we continue to try to study Jupiter’s interior [Gaulme et al., 2014]. Techniques ap-

plied to Jupiter can also be generalized to other planetary systems, and the scientific

community has already expressed interest in applying similar techniques to Uranus,

Neptune [Turrini et al., 2014][Elliot et al., 2017], and even Venus [Stevenson et al.,

2015][Logonne and Johnson, 2015].

In 2011, a team from the Nice Observatory released a paper which claimed to

have detected normal modes from Jupiter using an interferometer called SYMPA to

perform Fourier transform spectroscopy [Schmider et al., 2007] [Gaulme et al., 2008]

[Gaulme et al., 2011]. SYMPA measures line-of-sight Doppler shifts, so the detected

displacements are primarily radial. For modes within the frequency range of sensi-

tivity (high order p-mode overtones with frequencies above about 700µHz), SYMPA

detected peak oscillation velocities on the order of 50cm/s. As outlined in Section

2.3.6, this value is the result of the superposition of multiple modes, and the velocity

amplitudes of individual modes may be lower by a factor of 2 or 3. To put this is per-

spective, compare this to the maximum velocity amplitude in any single mode found

in the sun, around 15cm/s [Christensen-Dalsgaard, 2014]. The total peak veloci-

ties measured on the sun can be substantially higher, because the solar observatory’s

exquisite spatial resolution allows them to resolve much higher spherical order modes,

and therefore more of an effect from superposition. Apparently the surface velocity

amplitudes of both bodies are of similar orders of magnitude. It should be noted

that since SYMPA’s measurements were limited to eight nights without continuous

observations, and because the instrument has low spatial resolution, that these mea-

surements are only relevant to low spherical order, high frequency modes (overtones

of global scale modes). The power spectrum for the SYMPA measurements is found
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on Figure 2.1.

Figure 2.1: The observed power spectrum obtained by Gaulme et. al. [Gaulme et al.,
2011]

This result is encouraging because it means the signal is sufficiently strong that

meaningful measurements can be taken from Earth. It is puzzling, however, because

it requires an excitation mechanism on Jupiter that is fundamentally different from

what happens in the sun. We can conduct a simple order-of-magnitude calculation to

enumerate the problem here. Since each normal mode behaves as a simple harmonic

oscillator, its total energy is equal to its maximum kinetic energy. If its eigenfunction

is described by displacement vector eigenfunction ξξξ (further discussed in Section 2.2

and illustrated in Figure 2.3) normalized to a magnitude of unity at the surface,

then integrating over the whole body yields the total energy contained within a given

normal mode.

Emode =
1

2
v2

y
ρ|ξ|2dV, (2.1)

where v is the velocity amplitude, ρ is the spatially dependent density.
t

ρ|ξ|2dV

is called the modal mass [Christensen-Dalsgaard, 2014]. The order-of-magnitude be-

havior of the eigenfunctions in the sun and in Jupiter should be similar, so we can

neglect that factor since it is not a significant distinction between Jupiter and the sun.

That is, for similar eigenfunction structure ξ, one can approximate the modal mass
t

ρ|ξ|2dV ∼ fM to zeroth order—-that is, the modal mass scales approximately

linearly with the mass of the body [Christensen-Dalsgaard, 2014]. We can therefore
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derive a zeroth order scaling relation of the form

Emode ∼Mv2, (2.2)

where M is the mass of the body. Of course, this simplistic analysis ignores relevant

details. The density contrast between the shallow and deep parts of the sun is much

more extreme than for Jupiter; this affects both the modal mass and the excitation ef-

ficiency. Still, as a zeroth order first approximation to introduce the problem, we can

place an order of magnitude estimate on the efficiency with which energy is injected

into this normal mode by comparing the squared velocity amplitude to the luminosity

per unit mass. The luminosity per unit mass in the sun is about 2 erg g−1s−1, and for

Jupiter it’s about 2× 10−6 erg g−1s−1 [Stevenson, 2021]. The problem then becomes

immediately apparent. In order to produce the observed normal modes on Jupiter,

the mechanism for injecting energy into the modes and retaining energy within the

modes must be millions of times more efficient on Jupiter than on the sun. This

excitation is computed in more detail in Section 2.5.1. At the moment, this disparity

is not understood. The focus of this paper is to attempt to identify mechanisms that

could deposit energy into Jupiter’s normal modes orders of magnitude more efficiently

than the sun.

Helioseismology revolutionized our understanding of the sun. Studying the sun’s

seismic modes definitively answered questions ranging from the solar neutrino prob-

lem, the sun’s convective and radiative zones, the existence of deep jet streams, the

age of the sun, and its differential rotation [Deubner and Gough, 1984]. Today, many

fundamental questions about Jupiter may be answered with the same treatment. Dio-

seismology (an alternative word with equivalent meaning to Jovian seismology, first

used by Mosser [Mosser, 1994]) could illuminate a condensed or diffuse core. It could
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provide more detailed information about the physical properties of liquid metallic hy-

drogen, and reveal the existence of regions of static stability or exotic chemical cloud

decks deep below the visible surface. With so much to gain from dioseismology, it is

a worthwhile endeavor to understand.

Unfortunately, the existing data for normal modes has rather low signal-to-noise

ratio and is regarded by some as suspect, in part because we lack an understanding of

how the modes could be excited. If we can develop a more quantitative understanding

of their excitation and dissipation, then we could corroborate the possibility of their

existence and motivate future observational programs. Such insights would be useful

diagnostic tools to design space-based seismometers for future missions to Jupiter, as

well as other planets in the solar system.

The 1994 comet strike of Shoemaker-Levy sparked much interest into the possi-

bility of Jovian seismic mode excitation by the cometary impact. Competing calcula-

tions made contradictory predictions at the time. Dombard & Boughn did not predict

measurable amplitudes [Dombard and Boughn, 1995], but others such as Lognonne,

Mosser and Dahlen predicted measurable amplitudes for a sufficiently energetic im-

pact [Lognonne et al., 1994]. As it turns out, the seismic modes associated with SL9

were never detected [Mosser et al., 1996]. In this work, we generalize the framework

constructed by Dombard and Baughn for the expected seismic response to the impact

of Shoemaker-Levy with Jupiter [Dombard and Boughn, 1995], as well as the work for

the sun and other stars made by Peter Goldreich and others [Goldreich and Keeley,

1977] [Goldreich and Kumar, 1994], to try to propose any plausible candidates for

Jovian seismic mode excitations. These mechanisms should be both explanatory and

predictive; if a certain model explains the observed results, it can also predict what

amplitudes should be expected in frequency ranges which have not yet been detected.
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Future measurements, then, can provide support or refutation for different models

proposed here.

This paper will begin with an introduction to our model of Jupiter and the treat-

ment of its normal mode displacement eigenfunctions. We will then outline some

general mathematical tools to abstractly model and parameterize different types of

excitation sources. Next we will investigate a few important dissipation mechanisms

to try to place some constraints on Jupiter’s modal Q. We will then apply all these

tools to some potential physical excitation sources, to try and estimate an order-of-

magnitude for what velocity amplitudes these mechanisms might excite. Finally we

will discuss our findings, with some brief remarks on potential applications of these

findings to Jupiter and other planets.

2.2 Modeling the eigenfunctions of Jupiter’s seis-

mic modes

Jupiter, like any other object, can behave as a resonator. The modes of interest for

explaining the results from SYMPA are acoustic modes. These modes are trapped

in a cavity bounded from below by Snell’s law; the ray path enters Jupiter’s interior

from the surface obliquely. As the ray descends, the sound speed increases, which

continuously deflects the ray laterally until it travels tangentially at the minimum

radius and begins to return to the surface. Modes below the acoustic cutoff frequency

are bounded from above by Jupiter’s small scale height (relative to the mode’s local

wavelength) as it approaches the photosphere. This resonator is rather efficient,

since the viscosity in Jupiter is very low. Much work on this basic physics has been

done, primarily with applications to helioseismology and asteroseismology in general

[Christensen-Dalsgaard, 2014]. There has also been some qualitative work on applying
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these ideas to Jupiter [Bercovici and Schubert, 1987]. Some progress can be made

by qualitative order of magnitude arguments, but in order to argue for a coherent

global picture, a numerical model for the structure of the eigenfunctions, the planetary

interior, and the planetary atmosphere must be specified.

2.2.1 Jupiter interior model

The first important step in this modeling process is choosing a suitable Jupiter interior

model. This model can in principle be as detailed as desired, but for our purposes

we wanted to use the simplest, most generic possible model that can still accurately

model Jupiter’s behavior because our focus here is on understanding the excitation

and dissipation, not the precise evaluation of modal eigenfrequencies. This is desired

for simplicity of outcome (no frequency splitting between modes of the same spherical

order), as well as simplicity of inputs (homogeneous adiabatic interior), and finally

for its ability to easily adapt to explain other planets. We therefore begin with a

simple n = 1 polytrope equation of state:

P = Kρ2, (2.3)

with K chosen to approximate a hydrogen/helium mixture. This model is quite

accurate for Jupiter’s interior, but does a bad job at accurately describing the behavior

near the surface. We therefore adjust the equation of state by adding a ρ1.45 term

consistent with an adiabatic ideal gas equation of state. The two should connect

smoothly in between. The equation of state then takes the form

P = K1ρ
2 +K2ρ

1.45, (2.4)

where K1 and K2 are chosen to match Galileo measurements for Jupiter’s upper tro-

posphere, and to get the right radius and mass.
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Figure 2.2: Comparison between the hydrostatic interior model using our modified
equation of state (solid) and the interior model predicted using an n=1 polytrope
equation of state (dashed).

Notice that since the ρ2 term is small near the surface, the ideal gas term will then

dominate. Additionally, we investigated the effects to the eigenfunction if we include

an isothermal component to the atmosphere above the photosphere. We found that

doing so affected observed mode amplitudes by less than 5%. Since the arguments we

are making here are generic and correct to no more than an order of magnitude, we

elected to neglect the isothermal part of the atmosphere for the purpose of generating

the global eigenfunctions. We do, however, discuss the effects of radiative damping

in the isothermal part of the atmosphere as it relates to Jupiter’s quality factor in

Section 2.4.

2.2.2 Displacement vector eigenfunction generation

After setting upon an interior model which satisfactorily represents the important

aspects of Jupiter’s interior, we used the stellar oscillation code GYRE [Townsend

et al., 2013] to generate eigenfunctions for Jupiter’s interior. The first four l=2 modes

are shown on Figure 2.3
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Figure 2.3: An example of the radial eigenfunction produced for our interior model
the first four l = 2 modes. ξ represents the amplitude of the eigenfunction in the
radial direction at that depth, normalized such that ξ = 1 at the 1 bar level.

Because we are using a non-rotating, spherically symmetric model for Jupiter, the

modes are exactly spherical harmonics. The behavior of the eigenfrequencies is shown

on Figure 2.4.

Figure 2.4: Frequencies of low-order modes. Frequency increases gradually with in-
creasing spherical order l and quickly with equal spacing with increasing radial order
n, where n defines the number of nodes of the mode as shown in Figure 2.3.

The total observed displacement on the surface of Jupiter is expressed as

x(r, t) =
∑
nlm

anlm(t)ξξξnlm(r), (2.5)
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where anlm(t) is a time-dependent amplitude for each normal mode, and ξξξnlm(r) is

a spatially dependent eigenfunction displacement vector of radial order n, spherical

order l and azimuthal order m. Canonically the eigenfunctions are separated into

a radial and horizontal part ξr(r) and ξh(r) so that the full displacement vector

eigenfunction takes the form

ξξξnlm(r, θ, φ) =

[
ξr(r)r̂ + ξh(r)θ̂θθ

∂

∂θ
+
ξh(r)

sin θ
φ̂φφ
∂

∂φ

]
Y m
l (θ, φ). (2.6)

2.3 Modeling amplitude responses

For the purposes of this problem, we will approximate the modes of Jupiter as a set

of orthogonal, undamped harmonic oscillators. This is a valid approximation because

our assumed timescales for damping are proportional to a very large Q. Specifically,

τdec = 2Q/ω for a given mode, and we expect Q to be ∼ 106 − 108, which we will

justify later in this chapter. Since Q is so large, we will approximate the timescale

between excitation events to be much less than the ringdown timescale. As another

approximation, we will assume no “leaking” energy between modes, i.e., the modes

are linear and non-linear interaction terms are neglected, but this will be discussed in

our evaluation of Q. Now we write down the equation of a driven harmonic oscillator

ä+ ω2a = F (t) (2.7)

for each mode, where a is the time-dependent coefficient from Equation 2.5, ω is the

appropriate eigenfrequency, and F (t) is an effective force. For a mass on a spring, this

effective force would simply be the physical force divided by the mass of the object.

In this simplified case, the whole driving force acts on the whole mass, but since

our excitation sources may be localized, we must define the effective force following

Dombard & Boughn [Dombard and Boughn, 1995]. This effective force should account
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for the coupling between the eigenfunction ξ and the physical force density vector field

f(r, t), and scale it by the total modal mass:

F (t) =

t
ξξξ · fdVt

ρ(r)|ξξξ|2dV
. (2.8)

In the following subsections, a few simple generic models for force density will be ex-

amined. Later in the chapter, these generic models can be combined to approximately

model physical phenomena to an order of magnitude.

2.3.1 Monopole excitation

An explosion is an example of a monopolar force density field. Following the model of

Dombard & Boughn [Dombard and Boughn, 1995] for a comet impact, we can model

a spherical explosion centered on a point r0 as

f(r, t) = δPδ(r− r0)r̂nφ(t), (2.9)

where δP is the pressure pulse caused by the explosion, δ(r − r0) is a spherical

delta function, r̂n is an unit vector pointing away from r0, and φ(t) is an arbitrary

function in time which sets the timescale of the explosion. Substituting this f into

Equation 2.8, using Gauss’ theorem, and noting that the energy of the bubble is equal

to its pressure perturbation times the volume of the bubble gives

F (t) =
Es/V φ(t)

t
s
∇ · ξd3r

t
ρ(r)|ξ|2d3r

(2.10)

where V is the volume of the bubble, Es is its energy, and the integral in the numerator

is over the volume of the explosion. Our task is now to compute this expression.

Assuming that there is very little non-radial variation in ∇ · ξ (which is a very good

approximation near the planetary surface for excitation sources with length scales on



2.3. MODELING AMPLITUDE RESPONSES 19

the order of hundreds of kilometers, as long as we are talking about spherical orders

less than several thousand), we can simplify

y

s

∇ · ξd3r → π

∫ b

−b
∇ · ξ(x2 − b2)dx, (2.11)

where b is the radius of the bubble. We can do a Taylor series ∇ · ξ up to a fourth

derivative in ξr, which is more than a good enough approximation for these length

scales with n < 100, we can compute this integral directly to be

y

s

∇ · ξd3r ≈ 4/3πb3

(
∂ξr
∂r

+ 1/10πb2∂
3ξr
∂r3

)
, (2.12)

since the displacement eigenfunction for low spherical order l modes is primarily radial

near the surface. This approximation breaks down for higher spherical order modes,

where the tangential component of the eigenfunction is more important. To ensure

the accuracy of this method, we compared the exact numerical integration of the

divergence of the eigenfunction through the bubble to this approximation, and found

excellent agreement for the first 50 modes within less than 1%. In fact, for the first

25 modes (which are the ones in the frequency range of interest), the third order term

in also unnecessary. Since 4/3πb3 is constant, we can take it out of the integral. It’s

also the volume of the bubble, so we can cancel it with V . Thus if we approximate

the spatial and time dependence to be separable quantities, we can write

F (t) '
Es

∂ξr
∂rt

ρ(r)|ξ|2d3r
φ(t) ≡ F0φ(t). (2.13)

For high radial order modes (n > 30), the ∂3ξr
∂r3

term from Equation 2.12 should be

included for accuracy. Now we can solve the harmonic oscillator equation

ä+ ω2a = F (t) = F0φ(t), (2.14)
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where F0 encodes the geometric information, assumed spatially static in space and

wrapped in a time-dependent wrapper function φ(t). Since F0 is a constant in time,

in the one dimensional harmonic oscillator equation it can be considered to be a

constant. We now solve this equation by taking its Fourier transform, so that

a(t) =
F0√
2π

∫ ∞
−∞

Φ̂(ν)

ω2 − ν2
eiνtdν, (2.15)

where Φ̂(ν) is the Fourier dual of φ(t). All that is required, then, is to choose a form

of φ(t) and Equation 2.15 is solvable.

2.3.2 Dipole excitation

The simplest way to think of a dipole is two point sources separated by some distance

ε. This is expressed mathematically as

f(r, t) = f0[−δ(r− (r0 + ε)) + δ(r− r0)]r̂, (2.16)

where r̂ is the outward pointing radial vector with respect to the center of Jupiter, and

f0 is the normalization coefficient. Provided ε is small compared to the wavelength

of the mode, a reasonable first order approximation, we can evaluate

y
f(r) · ξξξdV ≈ −f0

∂ξr
∂r

ε

=⇒ F0,dipole ∼
f0

∂ξr
∂r
ε

t
ρ(r)|ξ|2dV

(2.17)

using the fundamental theorem of calculus and the properties of the δ function. For

our purposes, this is a sufficient description of a generic dipole excitation. For a

specific model, of course, one must evaluate a physically reasonable f0 in the context

of the problem. Note the striking similarity between localized dipole and monopole
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excitation sources, which for low spherical and radial order modes are mathematically

identical, except with different expressions for F0.

2.3.3 Spatial randomness

In all of the above results, the predicted amplitudes implicitly include a spherical

harmonic evaluated at a particular point on Jupiter’s surface. If at any instant there

are N storms within Jupiter’s atmosphere then the total displacement would scale as

N∑
i=1

|Y m
l (θi, φi)|2= N. (2.18)

In the limit of large N and assuming the storms are randomly distributed, the RMS

value of this is simply N1/2 larger than the ampltiude of a single storm, because of the

normalization properties of spherical harmonics. Of course this would break down in

the limit of small number of storms, or storms with a preferred location, as may be

the case. In this case, there may be more complicated dependence of amplitude on

the quantum numbers than the results we report below.

2.3.4 Temporal randomness

Having shown that spatial randomness of storm occurrence can be averaged out to be

irrelevant, the next logical question is what to do about the issue of the storms being

stochastic in time. Because of the findings in the previous section, geometrical effects

can be neglected. The amplitude response from a single excitation event j takes the

form

xj(r, t) =
∑
nlm

anlm,jξξξnlm exp(iωnlm(t− tj)). (2.19)
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The full expression after N excitations can be written

x(r, t) =
∑
nlm

N∑
j=1

[anlm,j exp(−iωnlmtj)]ξξξnlm exp(iωnlmt). (2.20)

The task now is to evaluate

N∑
j=1

anlm,j exp(−iωnlmtj), (2.21)

since tj is a random variable, and exp(−iωnlmtj) is a 2π periodic function, the above

expression is simply a random walk in the complex plane. The final expression for

the amplitude without dissipation after N excitation events then can be written

x(r, t) ≈
√
N
∑
nlm

anlm,jξξξnlm cos(ωnlmt+ φ), (2.22)

where φ is an arbitrary phase and anlm,j is now the expected value of amplitude for a

given type of excitation. Because the energy of the mode scales as |x|2, energy grows

linearly with the number of excitation events, while amplitude grows with its square

root.

Now we calculate the equilibrium mode amplitudes including dissipation. If a

single excitation imparts energy E0, and the expected value for total energy input

grows linearly with the number of excitation events, then we can equate average power

input to energy dissipation,

E0

τs
=
Eeq
τdec

, (2.23)

where τs is the characteristic timescale between excitation events, and τdec is the decay

timescale, related to the quality factor Q according to

τdec =
2Q

ω
. (2.24)



2.3. MODELING AMPLITUDE RESPONSES 23

Of course this assumes that there is an equilibrium i.e., the time between excitation

events is much shorter than the time to decay. If this were not so, it would be evident

in continued observations that show a variation of mean amplitude over time. The

mean equilibrium energy associated with an excitation source that imparts energy E0

stochastically in time is

Eeq =
2E0Q

τsω
. (2.25)

It should be noted that these values are not expected to be constant in time. The

arguments here are only statements about the average equilibrium amplitudes; in

reality, one observes a specific amplitude at a specific time rather than a long term

average. It is therefore perfectly consistent with this framework to have periods of

quiescence, and periods of larger amplitudes. The expected value, however, will tend

toward the calculations shown here.

As argued in Section 2.1, the energy of a mode described by displacement eigen-

function ξ is

E0 =
1

2
a2ω2

y
ρ|ξ|2dV, (2.26)

where a is the amplitude response resulting from a single excitation. Ignoring time

dependence and focusing on amplitude, we can use a = F0/ω
2. In reality, the form of

a will depend on φ(t), but that’s the focus of the following section. Rewriting E0 as

E0 =
1

2
F 2

0ω
−2

y
ρ|ξ|2dV. (2.27)

The equilibrium amplitude is

aeq =

(
Eeq

ω2
t

ρ|ξ|2dV

)1/2

, (2.28)
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so using Equation 2.25, the equilibrium amplitude can be written

aeq = F0

(
Q

τsω5

)1/2

. (2.29)

This relation is of enormous consequence for Jovian seismic mode excitation. The

forcing magnitude of a generic source is proportional to its energy scale. Equation 2.29

implies that the equilibrium amplitude obeys

aeq ∝
Es

τ
1/2
ex

, (2.30)

While the power output of these collective excitation sources by definition follows the

relationship

Ė =
Es
τex

. (2.31)

Hence, for a fixed power budget, it is more favorable to have less frequent, more

energetic excitation events than more frequent, less energetic excitation events.

2.3.5 Excitation duration

The dynamics of storms are immensely complex. Decades of detailed research have

gone into modeling storms on Earth for which we have excellent data, and still there

is no basic universal picture for their dynamics [Ludlam, 1980]. For the purposes

of this paper, the time-dependent aspect of storms as an excitation source will be

modeled simplistically. In particular, the δ-function, a Gaussian function, and a

single sinusoidal pulse will be considered. Recalling Equation 2.15, we can solve for

each of these. For a δ-function,

φ(t)→ δ(t) =⇒ Φ̃(ν) ∼ const. (2.32)
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Figure 2.5: Relative excited energy for different forcing mechanisms with a shared
characteristic timescale for range of sample eigenfrequencies.

For a Gaussian,

φ(t)→ exp(−t2/∆t2) =⇒ Φ̃(ν) ∼ exp(∆t2ν2/4) (2.33)

where σ sets the width of the Gaussian and has dimensions of time. In this case,

the narrower the Gaussian for the input φ(t), the broader the excitation spectrum in

frequency space. For a single sinusoidal pulse,

φ(t)→ 1 for |t|< ∆t, 0 elsewhere =⇒ Φ̃(ν) ∼ sinc

(
ν − 1/∆t

2/∆t

)
−sinc

(
ν + 1/∆t

2/∆t

)
.

(2.34)

Finally, one may consider continuous sinusoidal forcing, for example due to tides,

that massively prefers modes with resonant frequencies. The excitation sources con-

sidered here are put through Equation 2.15, and the results are plotted in Figure 2.5.

Note the units on the y-axis are arbitrarily normalized to emphasize relative ex-

citation of different frequency modes. For our storm models, we will simply use a

δ-function in time so as not to bias our results to match a particular assumption of

complex dynamics, but the reader should note that an event with a characteristic
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timescale may preferentially excite certain frequencies more efficiently than others.

The resonant forcing curve on Figure 2.5 assumes Q = 108.

2.3.6 Spherical harmonic superposition in the power spec-

trum

So far these calculations have focused on the excitation of a single mode given some

source. This section remarks briefly on the expected power spectrum that would be

measured from all visible modes combined. We begin with the general mathematical

relationship ∫ 2π

φ=0

∫ π

θ=0

∣∣∣∣∣
N∑
l=0

l∑
m=−l

Y m
l

∣∣∣∣∣
2

sin θdθdφ = N. (2.35)

Recall that the expression for excitation amplitude given the sources investigated here

depend on ∂ξr
∂r

and ω. The only dependence on Y m
l is encoded in the denominator,

since

|ξ|2= ξξξ · ξξξ = ξ2
r |Y m

l |
2 + ξ2

h

∣∣∣∣∂Y m
l

∂θ

∣∣∣∣2 . (2.36)

This expression is integrated over a sphere, so the |Y m
l |

2 averages away. The
∣∣∣∂Ym

l

∂θ

∣∣∣2 is

retained, but for sufficiently low-order spherical harmonics near the surface, the mo-

tions are mostly radial, so the second term can be neglected. Since ξr is independent

of m and only weakly dependent on l for low spherical order modes, this implies that

to a good approximation the excitation amplitude is a function of frequency only.

This means that assuming SYMPA is sensitive to spherical orders up to about l = 3,

the power spectrum calculated for one spherical mode can be approximately dou-

bled to account for the full power spectrum. On the sun, where resolution is greatly

enhanced and detection of very high spherical order modes are possible, we expect

this principle to have a more substantial effect on peak measured velocity, because

the higher resolution implies detection of higher l modes and therefore larger N in
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Equation 2.35.

2.4 Constraining Q

As demonstrated in the previous section, our equilibrium mode amplitudes scale as

Q1/2. Having an idea for the order of magnitude of Jupiter’s quality factor, then,

is essential to making a predictive theory. One possibility is that the effective Q is

actually determined by the interaction of modes with each other rather than intrinsic

dissipation. However, these interactions are probably negligible [Luan et al., 2017], so

for the moment we will focus on intrinsic processes. Much work has already been done

estimating Jupiter’s tidal Q [Wu, 2005a]. The primary coupling mechanism between

Jupiter and its satellites are inertial modes, which are bounded between 0 < ω < 2Ω,

where Ω is Jupiter’s spin rate [Wu, 2005b][Wu, 2005a]. The fundamental p-mode of

Jupiter has a period on the order of two hours, much shorter than Jupiter’s spin rate.

Therefore dissipation associated with these inertial modes is irrelevant to the study

at hand. Nevertheless, it is possible to place some constraints on our expected value

of Q using mechanisms we know must dissipate energy.

2.4.1 Viscous and turbulent damping

The most obvious dissipation mechanism is viscosity. Starting with the standard

Stokes-Kirchhof viscous dissipation expression for acoustic waves [Landau and Lif-

shitz, 1959],

¯̇E = −1

2
k2v2

0V0

[(
4

3
η + ζ

)
+ κ

(
1

cV
− 1

cp

)]
, (2.37)

where k is the sound wavenumber, v0 is the fluid displacement velocity, V0 is the

volume occupied by the sound wave, η is dynamic viscosity, ζ is the second viscosity,

κ is the fluid’s thermal conductivity, cV is the specific heat capacity of the fluid

at constant volume and cp is the specific heat capacity at constant pressure. As a



28 CHAPTER 2. EXCITATION & DISSIPATION

simplifying assumption, assume ζ ∼ η. Now compare the relative importance of the

the first and second bracketed terms on the right hand side of Equation 2.37. Noting

κ(1/cV − 1/cp) = κ/cp(γ− 1) and plugging in typical values for hydrogen, the second

term is ∼ 10−12 in cgs units, compared to viscosity which is ∼ 10−3. So the second

term can be neglected. Now we write

¯̇E ≈ −k2ω2|ξ|2V0η. (2.38)

Integrating over differential volume elements, we get a total average power dissipation

of

¯̇E = ω2
y

k2η|ξ|2dV. (2.39)

Now to compute Q, note

Q ≡ 2π
Estored∮ ¯̇Edt

= ω

t
ρ|ξ|2dVt
k2η|ξ|2dV

. (2.40)

Now for order-of-magnitude estimates, assume k to be constant to zeroth order in

most of the interior. Substitute average, constant values ρ̄ and η̄ and take them out

of the integral. The expression for Q then reduces to

Q ∼ ω

k2

ρ̄

η̄
. (2.41)

Noting k ∼ 2π(n+1)
RX

where n is the radial order, and ρ̄ ≈ 1.33. This gives

Q ∼ 1018
( ω

10−3s−1

)( 1

nr + 1

)2(
10−2cm2s−1

η

)
, (2.42)

where nr is the radial order of the mode. In reality, turbulence will increase the

effective viscosity of the system. Turbulent viscosity should be weak, because Jupiter’s

convection overturn timescale is much longer than the period of the normal modes,
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which means eddies larger than the local scale height do not act viscously [Goldreich

and Nicholson, 1977]. Assuming η ∼ 103 as is assumed for tides [Goldreich and

Nicholson, 1977], the estimate for Q goes to ∼ 1013. So viscosity and turbulence turn

out to be very weak damping mechanisms.

2.4.2 Radiative damping

The most important mandatory loss of energy occurs as a result of radiative damp-

ing in Jupiter’s stratosphere. Below the tropopause, a displaced parcel of fluid will

expand or contract adiabatically, but remain in equilibrium with its convective sur-

roundings, which by definition follow an adiabat. However, the same displacement

in the isothermal atmosphere would cause a displaced parcel to warm as it was dis-

placed downward, bringing it out of equilibrium with its surroundings. The warm

parcel would then radiate away heat while displaced. Conversely, a parcel displaced

upwards will radiate less heat. Importantly, this introduces a phase difference be-

tween the oscillations in temperature associated with a wave and the oscillations in

pressure or density. The resulting hysteresis is the dissipation arising from radiative

damping. We are primarily interested in the case where the tropopause occurs at a

location where the waves of interest are no longer propagating (i.e., are evanescent)

so that the effect of the wave on the atmosphere is merely the vertical displacement

of a column of gas. In the low frequency limit, the fractional density perturbation

and the velocity amplitude increases only slightly with height, with a characteristic

e-folding distance of c2/ω2H ∼ RX.

First we calculate the radiative damping timescale τrad. Assuming the atmo-

sphere is optically thin in the stratosphere, and gray opacity such that emission and

absorption are described by the same constant, we imagine a parcel in an isothermal

environment of temperature T0 raised to temperature T0 + T ′ by being displaced by
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seismic modes. It is illuminated from below by the ammonia cloud deck of optical

depth unity at Jupiter’s effective temperature Te. The total energy radiated from the

plane parcel up and down is

2σ(T0 + T ′)4ρκdz, (2.43)

and energy absorbed from below is

σT 4
e ρκdz. (2.44)

In equilibrium with T ′ → 0, we obtain the standard result T0 = Te/2
1/4. On the other

hand, out of equilibrium with time-dependent T ′:

ρcpdz
dT ′

dt
= −8σT 3

0 T
′ρκdz (2.45)

We can write T0 in terms of Te from the standard result, so that 8σT 3
0 → 4σT 3

e . Now

defining a radiative time constant τrad according to

− T ′

τrad
=
dT ′

dt
(2.46)

reveals

τrad =
cp

4σT 3
e κ

(2.47)

using values from Galileo, and employing a functional form of pressure dependent

opacity for hydrogen as

κ ∼ 10−2
( p

1 bar

)
cm2/g (2.48)

yields

τrad ≈ 5× 107

(
1 bar

p

)
sec. (2.49)
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Now to calculate dissipation. Starting with the ideal gas law,

p =
kB
µ
ρT (2.50)

=⇒ dp =
kB
µ

(dρT + ρdT ). (2.51)

We are interested in the part of the pressure perturbation associated with the change

in temperature. So

δp ≈ kB
µ
ρ0T

′ (2.52)

to first order. In general for a displaced parcel

∂T ′

∂t
= −v

(
∂T

∂z
− ∂T

∂z

∣∣∣∣
ad

)
+

T ′

τrad
, (2.53)

where v is the local velocity of the parcel caused by normal mode oscillations. In

the isothermal atmosphere, ∂T
∂z
→ 0. In general for a plane-parallel atmosphere,

∂T
∂z
|ad = g/cp. So assuming v and T ′ oscillate with the normal mode and are therefore

∝ exp(iωt), we can rewrite

T ′ =
vg

cp(iω + 1/τrad)
. (2.54)

Assuming 1
ωτ
� 1, true using characteristic values of τ ∼ 5× 107s and ω ∼ 10−3s−1,

this can be written as

T ′ ≈ vg

iωcp

(
1− i

ωτrad

)
. (2.55)

Substituting this into the ideal gas equation yields

δp ≈ kB
µ

v

Hcpiω

(
1− i

ωτrad

)
p0, (2.56)

by noting g = c2s
γH

where cs is the speed of sound and γ is the adiabatic index; and

that p0 = c2
sρ0/γ. The task now is to compute the energy dissipated in one normal
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mode period. ∮
vδpdt =

∫ 2π/ω

0

vδpdt. (2.57)

Now because the quality factor is defined as

Q ≡ 2π
stored energy

energy dissipated in a cycle
= 2π

ω2a2
t

ρ|ξ|2dV
4πR2

X
∮
vδpdt

. (2.58)

The complex exponential of the temperature perturbation term is

eiωt

i
− eiωt

ωτrad
= −

(
sin(ωt) +

1

ωτrad
cos(ωt)

)
. (2.59)

Using the harmonic addition theorem this can be rewritten as a sinusoid with a

coefficient and a phase. Again using the fact that 1
ωτrad

� 1, we can solve the integral

over the period to be

∮
vδpdt =

kB
µ

v2

Hcpω
c

∮
cos(ωt) sin(ωt+ φ)dt ≈ πkBv

2p0

µHcpω3τrad
. (2.60)

Now computing Q to an order-of-magnitude, and noting
t

ρdV = MX and thus

taking
t

ρ|ξ|2dV ∼ MX/10 as an order of magnitude approximation based on the

behavior of the eigenfunctions, we can write

Q ∼
µHcpω

3τradMX
20πkBp0R2

X
∼ 107

( ω

10−3s−1

)3

. (2.61)

This is an upper bound for Q, and only correct to an order of magnitude. Since it’s

the best to go on, we will use Q ∼ 107 throughout this work. This estimate is an

upper bound on dissipation efficiency in the limit of high order p-modes, where the

local wave number is not too large compared to the local scale height, and the mode

is highly compressible. Dissipation could be considerably less efficient for lower order

modes that do not obey these assumptions.
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2.4.3 High-frequency modes: propagation through the strato-

sphere

For modes of frequency above the acoustic cutoff frequency, approximated as

ωa =
cs

2H
(2.62)

for an isothermal atmosphere, the modes behave differently. For Jupiter, this corre-

sponds to about 3mHz [Mosser, 1995][Gaulme et al., 2015]. Instead of being trapped

in Jupiter’s interior, with an evanescent tail in the stratosphere, modes above this

cutoff frequency propagate into the atmosphere, and eventually into space, unhin-

dered. In this case, the full power of the waves propagating into the statosphere is

lost, not just the part out of quadrature. The energy density of the waves is given by

dE

dV
∼ 1

2
ρv2 =

1

4
ρω2ξ2

r , (2.63)

where the additional factor of 1/2 comes from averaging square velocity over a period

(since ξr is an amplitude). These are acoustic modes, so they propagate at the sound

speed cs =
√

γkBT
µ

. So the energy flux through a unit area is given by

F ∼ 1

4
ρω2ξ2

rcs. (2.64)

The total average power loss then is just 〈Ė〉 = 4πR2

XF . Relating this to Q,

Q ≡ 2π
Estored∮
〈Ė〉dt

. (2.65)

By definition,
∮
〈Ė〉dt = 2π

ω
〈Ė〉 so

Q = ω

t
ρ|ξ|2dV

πR2

Xρξ
2
rcs

. (2.66)
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Substituting approximate values gives

Q ∼ 6× 103 ω

10−3s−1
. (2.67)

We will not actually use this value of Q, but we do this calculation to demonstrate

that we should not expect any modes with frequencies above the cutoff frequency to

have significant amplitudes relative to modes below the cutoff frequency.

2.4.4 Ohmic Dissipation by normal modes

From the induction equation

∂b

∂t
= −∇× (λ∇× b) +∇× (u×B), (2.68)

where b is the induced field resulting from the action of the normal mode velocity

u acting on the main planetary field B. The magnetic diffusivity is λ, whose value

is small (a metal) deep down but large (a semi-conductor) as one approaches the

surface. Evidently

|b|≡ b ∼ kuB

iω + λk2
, (2.69)

where k is the characteristic wave vector describing the spatial variation of b. the

Ohmic dissipation per unit volume is λ(∇×b)2

µ0
and scales as 1/λ at large λ but as λ at

small λ. The peak dissipation occurs in the region where ω ∼ λk2. Dividing kinetic

energy of the wave by the dissipation per wave period, we see that

QOhmic ∼ 10

(
ω

VAk

)2

, (2.70)

where VA is the Alfven velocity,
√
B2/ρµ0. The coefficient allows for the fact that

the volume of dissipation is much smaller than the entire planet and may be an
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underestimate depending on the conductivity profile. This predicts Q > 1010 for

Jupiter, so we do not expect it to be the dominant dissipation mechanism.

2.4.5 Normal mode dissipation in the core

An alternative tidal dissipation mechanism, suggested long ago [Dermott, 1979] as-

sumes that Q is dominated by the small central core, which dissipates in much the

same way as a solid terrestrial planet, but possibly aided by soft rheology [Storch and

Lai, 2015] or partial melting. In this picture, the intrinsic Q of the core is low but the

Q of the planet as a whole is higher by several orders of magnitude, simply because

of the quadratic dependence of tidal potential on the radius and the smallness of the

volume involved. For modes of spherical order greater than zero, the core is also

expected to be below the lower turning point, where the amplitudes are substantially

lower, further reducing its importance. If core dissipation is the correct interpreta-

tion of tidal Q for Jupiter then it probably implies a similar, “low” Q (relative to our

suggested value) for normal modes, but only for those that have significant amplitude

in or near the core. This will not apply to current observations of large n (see Fig-

ure 2.3). We cannot exclude this but note that it increases the difficulty of explaining

the observed normal mode amplitudes.

2.5 Possible physical excitation sources

This section focuses on possible real excitation sources for Jupiter’s seismic normal

modes. Each of these will be modeled crudely. The intent here is not to provide

highly accurate detailed descriptions of these excitation mechanisms, but rather to

simply test if the general energy scales, timescales, and coupling efficiency expected

of them could feasibly be candidates to explain the observed signal.
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2.5.1 Turbulent convection

Following the work of [Kumar, 1996], we write the the equation of continuity

ρ′ +∇ · (ρξξξ) = 0 (2.71)

and the acoustic wave equation with a source term

∂2ρξi
∂t2

+ c2 ∂ρ
′

∂xi
=
∂Tij
∂xj

, (2.72)

where

Tij ≡ ρvivj + pδij − ρc2δij. (2.73)

Combining these equations yields the relationship

∂2ρξi
∂t2

− c2∇2(ρξi) = −∂Tij
∂xj

. (2.74)

Decomposing displacement into eigenfunctions

ξξξ =
∑
nlm

anlmξξξnlm exp(−iωt), (2.75)

where the amplitudes here are normalized to unit energy according to

ω2

∫
ρ|ξ|2dV = 1. (2.76)

Solving produces

∂anlm
∂t

=
−iω√

2
exp(iωt)

∫
ξqi
∂Tij
∂xj

=
iω√

2
exp(iωt)

∫
∂ξnlmi

∂xj
TijdV. (2.77)
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Following the form of turbulent forcing [Landau and Lifshitz, 1959], Tij ∼ ρv2δij, we

can solve

∂Aq
∂t
∼ iω√

2
exp(iωt)

∫
ρv2∂ξnlmr

∂r
dV. (2.78)

So the energy input into the mode (n, l,m) follows the time average amplitude squared

dEnlm
dt

∼ 2πω2

∫
r2ρ2v3

ωh
4
ω

[
∂ξnlmr

∂r

]2

dr , (2.79)

where hω and vω are the turbulent eddies which are resonant with the mode, i.e., they

satisfy

hω
vω

=
2π

ω
. (2.80)

Assuming a Kolomogorov cascade which obeys

vh = vH

(
h

H

)1/3

, (2.81)

we have everything needed to solve for the energy input once we solve for H and vH .

From mixing length theory, we use the planetary length scale for H, and we know

the convective velocity associated with the large scale motion approximately obeys

[Stevenson, 2021]

vH ∼ 0.1

[
LFconv

ρHT

]1/3

, (2.82)

where HT is the temperature scale height. Solving this to an order of magnitude

assuming Jupiter’s entire flux is available for convective flux, using Jupiter’s average

density and assuming L/HT ∼ 10, we obtain vH ∼ 3cm s−1. Solving for hω and vω

give

hω ∼ 140cm

(
10−3s−1

ω

)3/2

, (2.83)

vω ∼ 0.03cm s−1

(
10−3s−1

ω

)1/2

. (2.84)
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The Reynold’s number for these values is of order 102−103, so it should still be above

the minimum Kolomogorov microscale. Such excitation is tremendously inefficient,

creating surface velocity amplitudes < 10−5cm/s, with more power in f-modes and

low-order p-modes than in higher frequency modes. It is worth noting that the ex-

pected convective velocities increase near the surface, as density rapidly decreases but

heat flux remains relatively constant. This can increase convective velocities by two

orders of magnitude over a small distance, which can affect the resultant energy input.

Indeed, this is the most important contribution to solar p-mode energies. We then

repeat the above calculation, but change the scaling of hω and vω to have coefficients

of 20km and 3m/s, respectively. We then calculate the energy input integral only

over the top scale height, rather than through the whole interior. We find repeat-

ing the calculation in this way does not result in substantially larger mode energies.

Therefore we discount stochastic excitation by turbulent convection as a dominant

excitation source for the observed modes on Jupiter. These modes may excite the

observed f-modes on Saturn if dissipation is significantly less efficient for f-modes

than it is for p-modes, as we argued could be the case in Section 2.4.2. We note that

the situation is actually considerably worse than our back-of-the-envelope estimate

in Section 2.1—-not only is Jupiter a million times less luminous than the sun, but

an apples-to-apples excitation comparison shows Jupiter is also tremendously less

efficient at using its internal energy to excite normal modes with turbulent convec-

tion. Therefore, the modes observed on Jupiter must be excited by a fundamentally

different mechanism.

2.5.2 Meteor strikes

As much of this paper has, the idea of a meteor strike’s excitation will closely follow

the work of Dombard and Boughn [Dombard and Boughn, 1995] for the Shoemaker-

Levy/9 Jovian cometary impact. Here the primary excitation source is a monopolar
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explosion, which occurs after the meteor reaches a certain pressure depth. Since

the explosion happens very quickly, we can approximate it as a δ-function so that

φ(t) → δ(t). Assuming the comet explodes at the 50 bar level, and taking the

energy of the explosion to be 1030ergs (an optimistic estimate; this corresponds to an

upper bound on extremely large impacts like SL9 [Dombard and Boughn, 1995] and

should be treated as an upper bound), and assuming an impact of this magnitude

happens approximately every 50 years, we get negligible equilibrium amplitudes on

the order of microns per second. If we use smaller impact energies, the excitation is

correspondingly smaller. We did not bother to include smaller, more frequent impacts

in this calculation because as argued above only the most energetic events significantly

affect the equilibrium amplitudes. We note that an unlikely extraordinarily energetic

impact occurring within the ringdown timescale of the planets could in principle excite

larger amplitudes, a hypothesis investigated by [Wu and Lithwick, 2019] for Saturn.

2.5.3 Storms

As all models in this chapter, the formulation for storm models will be greatly sim-

plified. The types of storms we are interested for these purposes form when a parcel

of moist air is lifted to the level of free convection (LFC) by some external driving

force. Once there, some moisture precipitates out of the parcel, releasing latent heat.

This heat causes the parcel to warm and expand, which causes it to become buoyant

and rise. As it rises and expands, the parcel cools, allowing more condensation and

releasing more latent heat. As this moist parcel rises, it will follow a moist adiabat,

causing it to be warmer than the surrounding environment at all levels above the

LFC. The parcel will continue to rise until it equilibrates with its surroundings. On

Earth, this happens at the inversion layer, or the tropopause. This same basic picture

applies to water storms on Jupiter [Stoker, 1986], with the important difference that

on Earth water vapor is less dense than the ambient air, while the opposite is true
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on Jupiter. To model how such a process would affect the surrounding atmosphere,

we consider the relevant forces. As the parcel rises, it pulls air along with it. The

characteristic force is the buoyancy of the parcel, so

f0 ∼ ∆ρgV, (2.85)

where V is the volume of the parcel and ∆ρ is the change in density resulting from

the release of latent heat, i.e.,

∆ρ

ρ
=
Lvf

cpT
, (2.86)

where f is the mass fraction of the condensing constituent and Lv is the latent heat of

vaporization. The distance over which this dipole acts would scale with the distance

the parcel rises. substituting these values into the equation for dipole forcing, we

obtain

F0 ∼
Es

∂ξr
∂r
|r=r0t

ρ|ξ|2dV
, (2.87)

where r0 is the height of the cloud deck. Now to calculate the appropriate storm

energy that couples to the mode. If a rising column of air like this were to originate

deep within the atmosphere, it could in principle rise all the way to the statosphere.

However, if it started many order-of-magnitude higher in pressure, the parcel itself

would probably break apart and lose its coherence after about a scale height. Alter-

natively, it could keep rising until it hit a cloud deck above it, providing the lifting

needed to lift the parcel in front of it above the LFC, while the droplets that con-

densed down below have already rained out. The dynamics of how such a situation

would proceed are complex and uncertain. We therefore assume that the height the

parcel will rise scales with the environmental scale height ε ∝ H.

The column of rising air will have some characteristic radius r and some height H.

A thin parcel of rising air would then have volume πr2dz, implying a buoyant force of
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πr2∆ρgdz. Each parcel of rising air starts at the cloud deck, and rises a characteristic

distance H. Therefore the work done by each parcel is approximately πr2H∆ρgdz.

Now integrating over the height of the column, we find the characteristic storm energy

from Equation 2.87 to be about

Es ' πr2H2∆ρg. (2.88)

The power output by water storms in Jupiter is about 3.3Wm−2 [Gierasch, 2000],

which is a significant fraction of Jupiter’s total heat budget. The characteristic size

of convective columns can be large, on the order of 100km or more. If this is the case,

the effect of entrainment on column buoyancy is negligible [Stoker, 1986]. When a

convective plume rises, it does so by releasing latent heat. The total latent heat

released by this process is approximately the total mass of condensate in the column

EL ∼ πr2HρfLv, (2.89)

where r is the radius of the convective column. The characteristic timescale between

such a column rising, then, is just this energy scale divided by the total power output

by storms over the whole of Jupiter’s surface. This gives us EL ∼ 1.3× 1026erg =⇒

τs ∼ 65s, and Es ∼ 3.6 × 1025erg if the height of the column is 50km [Stoker, 1986].

This is compatible with our expectations about observed storm activity on Jupiter.

We not the duration should scale with the buoyancy timescale (see Section 2.3.5)

∆t ∼ H

v
, (2.90)

where

v2 ≈ Lvf

cpT
rg. (2.91)

Following through with the calculation and assuming Q ∼ 107, we obtain the ex-
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pected normal mode velocity spectrum in Figure 2.6.
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Figure 2.6: Amplitude excitation based on estimates for water storm forcing (blue
curve). For comparison, the red curve shows the expected amplitude spectrum from
stochastic excitation from turbulent convection.

Clearly, the amplitudes are orders of magnitude too small to explain the SYMPA

data. However, the behavior is qualitatively different from the result of turbulent

convection; whereas turbulent convection is expected to deposit most energy in low-

order modes, storm excitation expects more energy in higher order modes. This is

an important distinction, and these two broad classes of excitation sources can be

compared as data at lower frequencies becomes available.

However, we have not solved the problem of exciting larger amplitudes than would

be expected from turbulent convection. Thermodynamically we expect there to be

more cloud levels deeper in Jupiter’s interior. Detailed calculations about the be-

havior of chemical equilibria and condensation in Jupiter’s shallow interior have been

carried out by Fegley and Lodders [Fegley and Lodders, 1994], including the posited

existence of rock clouds. Silicate and iron clouds have been observed on brown dwarfs

and posited on hot exoplanets [Marley and Ackerman, 1999], and there has even been

some modeling of their storm dynamics [Lunine et al., 1989]. Similar dynamics may
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well be at play in Jupiter. These comparatively refractory species will have much

higher latent heats, and can thus be expected to be more energetic than water storms.

If this were the case, we could follow through the same analysis but assume the length

scales H and r used to calculate Es and EL are proportional to the relative pressure

scale heights between the water cloud deck and the rock cloud deck. We also substi-

tute the latent heat of vaporization of water (2.3× 1010erg g−1) with the appropriate

value for silica (1.2 × 1011erg g−1). Rock storms must occur deeper in the atmo-

sphere, where pressure, temperature, and density are higher. We will use parameters

at 10kbar in pressure at around 2000K, roughly where we expect silane gas to start

producing silica droplets. A visualization of this difference is illustrated in Figure 2.7.

Figure 2.7: A cartoon depicting the relative dimensions of water and rock storms. As
one dives into the interior, the scale height increases rapidly, which is important for
our estimates of storm length scales at these depths. The left y-axis shows depth while
the right y-axis shows corresponding pressure. The blue cloud represents the height
and location of water storms, while the green cloud represents these same parameters
for rock storms.
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This different depth affects the coupling efficiency for higher frequency modes.

This is one of several factors which are ignored in Figure 2.9. The justification for

using the latent heat of a silica phase transition as a stand-in for silicate droplet

condensation is not immediately obvious, since based on thermodynamic equilibrium

chemistry we expect this transition to be a complicated multi-component chemical

reaction of silane, iron-carrying vapor, magnesium-carrying vapor, and water vapor

to form silicate droplets. The dynamics of how such reactions would unfold need fu-

ture inspection to complete a detailed picture, but for our purposes we are not overly

concerned with the details, only the order-of-magnitude energy scales. If we assume

the dominant reaction is e.g., silane to silica instead of a silica vapor to liquid phase

transition, it affects the outcome by less than 30%, which is negligible in the context of

our order-of-magnitude consideration. Therefore we take a silica phase transition to

be a proxy for potentially complicated chemical reactions, noting that the important

aspect is the release of heat, not the specific mechanism which causes it. As such, we

combine the total abundances of silicon, magnesium, and iron and take this to be the

concentration of silica vapor, in order to simplify the model. Finally, we assume that

the available energy budget for rock storms is the same as for water storms relative to

Jupiter’s luminosity. Using these parameters and allowing the storm column radius

to grow, one can justify using parameters like Es ∼ 5 × 1031 =⇒ τs ∼ 1.5 × 107.

Using these parameters, coupling to five kilobar level (the midpoint of the storm on

Figure 2.7), the same model produces Figure 2.8.
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Figure 2.8: Amplitude excitation based on preliminary estimates for rock cloud forc-
ing. The non-smooth structure results from proximity to nodes in the relevant eigen-
functions at the silicate cloud level, relevant for high frequency overtones at these
non-negligible depths. The specific structure of the curve shouldn’t be taken too se-
riously; the point is the order of magnitude of the velocities which begin to approach
the observed values on order of tens of cm/s.

One could easily argue that these parameters are all highly uncertain, and that

this is an issue of fine tuning. After all, we can adjust the storm parameters to

yield any order of magnitude equilibrium mode amplitude we like, in principle. But

the important point here is not to make an accurate prediction of the behavior of

these hypothetical rock storms, whose existence and behavior is largely unconstrained.

Instead, since we know nothing about rock storms, this analysis is intended to place

constraints on the necessary parameters of storm-like activity which could produce

the observed equilibrium amplitudes. The details of the dynamics of a hypothetical

rock storm are highly speculative. In this chapter we assumed the dynamics were

identical to water storms, and just scaled the parameters to their appropriate values

accordingly. This exercise serves simply to demonstrate an example of a physically

plausible mechanism which could excite the observed amplitudes.
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2.6 Results and discussion

No excitation mechanism investigated here seems to be a clear candidate for producing

the observed amplitudes of Jovian seismic modes. However, if we are to believe the

results, we can place meaningful constraints on the type of source that may cause

these observations, and make some predictions about other frequencies based on this.

2.6.1 Excitation source parameter constraints

The expected turbulent convection is insufficient to explain to observed amplitudes

of normal modes. Point source excitations, either storms, meteor strikes, or some-

thing else, may be able to explain these amplitudes if analyzed more carefully. Both

monopole and dipole excitation types are of the same form, to first order.

˙aeq ∼
Es

∂ξr
∂r
|r=r0t

ρ|ξ|2dV

(
2Q

τsω3

)1/2

ξr(R). (2.92)

Using this general form, one can place order-of-magnitude constraints on the

necessary bulk parameters needed to excite the amplitudes observed by SYMPA.
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Figure 2.9: Assuming a storm-like excitation and holding all other parameters con-
stant, any viable candidate must lie above the black curve in order to explain the
Gaulme et. al. results [Gaulme et al., 2011], and below the red curve to satisfy
Jupiter’s luminosity constraint. The two black curves represent different values of
Q. The lowest line represents an idealistic Q = 108, above that a more pessimistic
Q = 106. The blue star represents the excitation from water storms in this parameter
space. The green point represents the same model scaled to rock clouds.

Any such mechanism must not violate Jupiter’s total energy budget, but must

be energetic and frequent enough to excite modes of the observed amplitude in the

steady state. There is a sliver of parameter space as shown in Figure 2.9 that could

theoretically satisfy these constraints.

2.6.2 Predictions for other frequencies

Using the storm or meteor strike model, or any generic short-lived, localized, stochas-

tic excitation source, we obtain some general features of the power spectrum. In
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particular, low frequencies generated in this way are orders of magnitude smaller

than their overtones, since the local gradient of the radial eigenfunction near the sur-

face is much smaller for lower frequencies, and the coupling is therefore weaker. In

contrast, the red curve on Figure 2.6 shows more power in lower frequency modes

compared to overtones. Future observations which show the power spectrum with

better resolution, and in lower frequencies could distinguish between these two basic

classes of excitation: global or point source.

2.6.3 Implications for gravity, Juno, Saturn, and ice giants

Because no unique candidate for excitation has been determined, it’s difficult to

make predictions for how this may affect Juno’s results. If the excitation sources are

point sources of the sort described in this work, the amplitudes for f-modes, which

would most significantly perturb Jupiter’s gravity field, would be orders of magnitude

smaller than the overtones detected by SYMPA. This means that even though the

displacement amplitude of normal mode overtones may be on the order of fifty me-

ters, the fundamental modes could self-consistently have displacement amplitudes of

mere centimeters. The gravity field perturbation caused by the normal modes is still

strongest for the lowest frequency modes, since the global coherence of zeroth radial

order modes as shown in Figure 2.3 makes them perturb the gravity field much more

strongly than oscillatory, higher order modes.

We can decompose the gravity field into a sum of gravity harmonics

Φ(r, θ, φ) =
1

R

∞∑
l=0

l∑
m=0

(
R

r

)l+1

(Clm cos(mφ) + Slm sin(mφ)Pm
l (cos θ)). (2.93)

Because both gravity harmonics and normal modes are defined by spherical harmon-

ics, a given normal mode’s gravity perturbation can be completely described by a
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single gravity harmonic term. If we wish to ask whether a given normal mode will

be detectable, we can compute an illustrative example by considering how J2 is af-

fected by ξn20. To calculate this change, we must compute the density perturbation

δρnlm from a displacement eigenfunction ξnlm. We can do this simply by using the

continuity equation

δρ = ∇ · (ρξ). (2.94)

The shape of these density eigenfunctions are shown on Figure 2.10.
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Figure 2.10: Normalized density eigenfunctions for the first few l=2 modes. Notice
that the n=1 density eigenfunction has no nodes, even though its corresponding
displacement eigenfunction has one. This is a simple consequence of Equation 2.94,
since the density is the divergence of the displacement.

To calculate the change in Jl associated with mode ξnl0, we use

Jl = − 1

MRl

∫
r′lPl(cos θ′)δρ(r′)d3r′. (2.95)

Juno’s ∆J2 3σ uncertainty for gravity perturbations is about 10−8ΦX [Bolton

et al., 2017], so we can compute the required amplitudes for gravitational detection

of normal modes by Juno. This is shown in Figure 2.11.
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Figure 2.11: The black curve represents the 3 sigma sensitivity limit for Juno detecting
a variation in J2, and the green curve is identical to Figure 2.8.

Evidently under the assumptions of our model, detection of some normal modes

from Juno gravity is plausible. However it’s right on the edge, and since our results

are very imprecise, detection or lack of detection are both plausible outcomes.

Identical calculations to the ones carried out for Jupiter can be replicated for any

planetary model by simply changing input parameters. In addition to Jupiter, we

have carried out these calculations for Saturn. Kronoseismology has developed in a

different trajectory from dioseismology, since the seismometers employed for Saturn

are the rings themselves. Kronoseismology is therefore most sensitive to modes which

can resonate with the orbits of ring particles. Because there is a gap between the

surface of Saturn and the C-ring, only the lowest frequency modes can be detected

this way. In contrast, dioseismology is performed using time series Doppler imaging,

which is most sensitive to the largest velocities and shorter periods, i.e., overtones.

Jupiter and Saturn are very similar planets, with similar compositions, radii, and

heat budgets. It is therefore probable that they each behave much more like each

other than like stars. Turbulent convection as a source of normal mode excitation

suffers the same deficiency on Saturn as it does on Jupiter; small convective velocities.

Convective velocities are on the order of 3cm s−1 for both, much smaller than the

sound speed in both cases. This would indicate a power spectrum comparable to the
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red curve on Figure 2.6. We must ensure that our storm excitation mechanism, which

was used to explain large mode amplitudes on Jupiter, does not produce excessively

large amplitudes on Saturn compared to estimates for Saturn’s mixed f and g-modes

[Fuller, 2014]. In particular, we can compute the mode excitation by observed storms

expected based on our model. Based on the arguments leading up to Equation 2.29,

the water storms on Saturn may be much more important for mode excitation than

the water storms of Jupiter. While Jupiter has continuous thunderstorms happening

all over its surface, Saturn has just one hugely energetic storm every few decades

[Li and Ingersoll, 2015]. The most recent Great Storm on Saturn occurred in 2011,

and was observed by Cassini, ground based telescopes, and amateur astronomers.

Similar Great Storms have been seen throughout Saturn’s history, occurring on a

characteristic timescale of roughly 30 years. As demonstrated, this type of excitation

(infrequent, large energy) is the most favorable situation to produce high amplitude

normal modes. The great storm on Saturn releases as much energy as the whole of

Saturn does in a year [Fischer et al., 2011]. Assuming Es/EL ∼ 10%, as is the case

for water storms on Jupiter, this provides an approximation for Es ∼ 4 × 1030ergs.

We know events like these occur roughly every 30 years, which directly provides the

relevant τs. We can do a similar analysis to the one applied to Jupiter, but apply

parameters relevant to the Saturnian Great Storms and scale our calculated dissi-

pation due to radiative damping to Saturn. This produces a value of Q ∼ 5 × 106

which is consistent with (although much larger than) the observational lower bound

of Q > 104 [Hedman and Nicholson, 2013]. Using these inputs we obtain Figure 2.12.



52 CHAPTER 2. EXCITATION & DISSIPATION

0.5 1.0 1.5 2.0 2.5
⋁ [mHz]0.001

0.010

0.100

1

10

100
a

[cm s-1 ]

Great White Spot

Figure 2.12: Saturn velocity amplitudes based on estimates for the Great White
Spot 30 year quasi-periodic super storm. The yellow curve represents the expected
amplitudes, while the black curve represents the detection limit for Cassini gravity,
and the dashed gray line corresponds roughly to Jim Fuller’s prediction for f-mode
amplitudes on Saturn based on inspection of optical depth variations in the spiral
density waves in Saturn’s rings raised by its normal modes [Fuller, 2014].

We can use Figure 2.12 to compare our predictions to expected measurements.

This calculation did not include dissipation from the core, which could be more im-

portant on Saturn than on Jupiter since Saturn’s core is known to be relatively large.

This indicates that for the lowest order modes, storm activity may be comparable in

importance to turbulent convection, and that for higher frequency overtones Saturn

may have comparable normal mode amplitudes to Jupiter. Importantly, the storm

excites relatively small amplitudes for Saturn’s low-order modes. If those excitation

predictions were too large, it would be evidence against our storm excitation model,

since it would be inconsistent with observations. Additionally, rock clouds may also

play a role in Saturn as they do in Jupiter. However, our analysis suggests the Great

White Spot alone could theoretically produce p-mode amplitudes on Saturn of the

same order as have been observed on Jupiter, an interesting result on its own. For this

reason we will refrain from further speculation about additional excitation sources.

Doppler imaging of Saturn may take additional technical advances or dedicated time

on larger telescopes, because the light from Saturn that reaches Earth is significantly

fainter than that of Jupiter. As with Jupiter, it is unclear whether a gravity sig-
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nal from the normal modes can be expected. Certainly additional excitation from

rock storms on Saturn could put it over the edge. However, stochastic excitation

from turbulent convection as we have calculated it certainly cannot produce normal

mode amplitudes large enough to produce a gravity signal [Marley, 1991] [Marley and

Porco, 1993]. Therefore if one wishes to invoke normal modes as the explanation for

the unexplained component of Saturn’s gravity field measured by Cassini [Iess et al.,

2019], one must consider storms or some other excitation source.

In addition to the gas giants, ice giants may prove to be of similar interest for

performing planetary seismology from orbit [Elliot et al., 2017]. Three of four multi-

billion dollar proposals for missions to either Uranus or Neptune in the coming decades

include a doppler imager, which would ideally be capable of detecting seismic nor-

mal modes. Attempts have been made to measure poseidoseismology (seismology

on Neptune) using Kepler K2, although only the reflection of solar oscillations were

detected [Gaulme et al., 2016]. Unfortunately, it is difficult to put constraints on

what amplitudes to expect without a coherent understanding of the excitation source

or an a priori knowledge of the planetary interior. Indeed, complicated interactions

between the atmosphere and the mantle of the ice giants, immense uncertainty about

interior dynamics, general ignorance of the ice giants’ bulk interior structure includ-

ing possible dissipation mechanisms, and universal uncertainty about normal mode

excitation theory in giant planets makes constraining the expected normal mode am-

plitudes exceedingly difficult. Rather than attempting a naive quantitative analysis

here, we will simply provide some remarks for future work. Using an approximation

of the equation of state from previous studies of the ice giants’ interiors [Helled et al.,

2002], we constructed hypothetical eigenfunctions for Uranus and Neptune which,

although highly uncertain, provide an order-of-magnitude estimate for the general

scale of the inertia of these modes and gradients near the surface. Uranus and Nep-
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tune have much smaller energy fluxes than Saturn and Jupiter, even relative to their

total masses. Convective velocities should be on the order of 1cm s−1, insufficient

to excite amplitudes larger than microns per second. However, methane storms have

been observed from Earth on Uranus [Gibbard et al., 2002], so it is possible that

this activity could excite higher amplitude normal mode responses. Storm systems

observable by telescope are methane storms, but just as rock storms could be at play

deeper in Jupiter, water storms could behave similarly deeper in the ice giants. Of

course, the eventual amplitude depends strongly on the energy and timescales of the

storm, as shown in Figure 2.9. Neptune has a larger luminosity than Uranus, and

could therefore in principle produce higher amplitude modes. It is possible of course

that solid-phase seismic activity in the mantle could couple very efficiently to the at-

mosphere to provide higher amplitude responses in the upper atmosphere. A Uranus

quake occurring in a solid phase mantle, for example, could couple efficiently to the

dense overlying atmosphere and produce a high amplitude signal in the stratosphere.

Such a mechanism, however, is beyond the scope of this paper. Indeed, it is very

difficult to place theoretical constraints on ice giant seismic mode amplitudes with-

out making an enormous array of assumptions. Since we don’t even understand the

very basics of ice giant interiors, such assumptions are difficult to defend. A more

focused effort to characterize normal mode couplings in the ice giants, as well as an

elementary understanding of deep moist convection in gaseous interiors, could pro-

vide some basic theoretical predictions for normal mode amplitudes for the ice giants,

which would be necessary for calibrating a Doppler imager on board a future mission.

Before such a method could be reliably employed, much further study of giant planet

seismology must be carried out, both on the observational and theoretical fronts, as

well as further study of ice giant and gas giant interior dynamics.
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2.7 Conclusion

The observed amplitudes of normal modes on Jupiter are in great excess of what

would be expected based on turbulent convective theory. Meteor strikes do not occur

frequently enough or with sufficient energy to excite the observed amplitudes either.

Water storms are extremely frequent, but relatively low energy and with very weak

coupling to the normal modes. Therefore they cannot come anywhere close to explain-

ing the observed modes. The only viable candidate examined in this paper is rock

storms. It should be mentioned that there are other possible excitation mechanisms

not examined in this work that may warrant further study. For example, baroclinic

instabilities may play a role in seismic mode excitation. Additionally, dynamics in the

helium rain layer or in a region of deep static stability are potentially worth consider-

ation. If the primary excitation source is rock storms, as suggested here, the specific

dynamics of the rock storms could significantly affect the outcome. In particular, the

timescale associated with a rock storm’s duration, and the length scales associated

with such a storm, might differ significantly from the basic simplifying assumptions

presented here. However, rock clouds are a promising candidate given the large latent

heat of silicates compared to water, as well as the large length scales expected at such

a depth with an atmospheric scale height much larger than the upper troposphere.

Preliminary crude calculations indicate that any storm mechanism invoked to explain

the observed amplitudes must occur below the red curve and at least above the low-

est black curve on Figure 2.9. Jupiter may have a rich abundance of storm activity

below the visible surface. This work suggests this storm activity could feasibly be

responsible for the much larger normal mode amplitudes seen on Jupiter compared to

predictions. More sophisticated models of storm activity may show better coupling

between storms and normal modes than we estimated here, which could make these

storms a candidate to explain Jupiter’s normal modes. Similar storms and large scale

convection may excite normal modes on the ice giants in a similar fashion, and this
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topic warrants further study.

The following link directs to the published version of this chapter:

https://www.sciencedirect.com/science/article/abs/pii/S0019103517307558



Chapter 3

Gravitational seismology

First you will come to the Sirens

who enchant all who come near

them. If anyone unwarily draws

in too close and hears the

singing of the Sirens...

Homer

Summary

The goal of this chapter is to build a heuristic for gravitational seismology, wherein

seismic signals can be searched for within existing gravity data sets of giant planets.

We analyze the residual range rate metadata from Cassini’s gravity experiment that

cannot be explained with a static, zonally symmetric gravity field. In this chapter

we reproduce the data using a simple forward model of gravity perturbations from

normal modes. To do this, we stack data from multiple flybys to improve sensitivity.

We find a partially degenerate set of normal mode energy spectra that successfully

reproduce the unknown gravity signal from Cassini’s flybys. The most likely mod-

els are dominated by gravitational contributions from p-modes between 500-700µHz,

despite the fact that f-modes have a stronger gravity signal for a given amplitude.

57



58 CHAPTER 3. GRAVITATIONAL SEISMOLOGY

This suggests strong frequency dependence in normal mode excitation on Saturn.

Favorable models have a narrow distribution around the peak frequency. We predict

peak amplitudes for p-modes on the order of several kilometers, at least an order

of magnitude larger than the peak amplitudes inferred by Earth-based observations

of Jupiter. The large p-mode amplitudes we predict on Saturn, if they are steady

state, would imply weak damping with a lower bound of Q > 107 for these modes,

consistent with theoretical predictions.

3.1 Introduction

Gravity field measurements allow us to probe the interior structure of a planet by

measuring its deviation from spherical symmetry. For giant planets, the planet’s re-

sponse to its own rotation breaks its spherical symmetry. The deviation away from

spherical symmetry depends on the planet’s internal density distribution [Stevenson,

2021]. Therefore a detailed mapping of a planet’s gravity field can corroborate or

refute interior models. Saturn’s non-spherical gravity field was first inferred from

spacecraft tracking data of Pioneer 11 [Null et al., 1981] [Hubbard et al., 1980], and

were later improved using Voyager data [Campbell and Anderson, 1989]. The arrival

of the Cassini spacecraft in the Saturnian system yielded more accurate determina-

tion of the gravity field of the gas giant by first looking at the orbits of its satellites.

Now the Grand Finale of the Cassini mission has produced exquisite gravity field

data for Saturn, providing the first concrete constraints for Saturn’s ring mass, zonal

wind depths, and evidence for internal differential rotation by offering gravity field

measurements up to J12 [Iess et al., 2019] [Galanti et al., 2019]. But behind these

spectacular new findings lurks a dark side: a small component of Saturn’s gravity

field which cannot be explained with the canonical static, zonally symmetric gravity
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field expected of gas giants.

Cassini’s radioscience experiment is carried out by measuring the Doppler shift

of a microwave signal in a two-way configuration: the signal is sent from a ground

station to the spacecraft, which retransmits it back to the station preserving phase

coherency. The Doppler shift is, to first order, proportional to the relative velocity of

the spacecraft with respect to the station. These measurements are compared with

predictions based on dynamical and observation models to obtain data residuals. The

data we used in this study are two-way Doppler residuals, converted in a radial ve-

locity time series, obtained by removing the effect of empirical acceleration from the

reference solution given by Iess, et al., 2019.

This additional and unknown source of gravity can be fit with a variety of models.

A static tesseral gravity field is possible, but there is no convincing low-order fit [Iess

et al., 2019]. A low-order tesseral field does not provide a predictive solution with

the available data, and also depends on the assumed rotation rate of Saturn. That

is, a given gravity harmonic solution for a subset of flybys will not accurately predict

the next flyby and requires additional harmonic terms. The nominal method which

was employed for the published gravity harmonic results was an agnostic “empirical

acceleration” model which, due to the unknown origin of the source of the addi-

tional gravity, included random acceleration vectors which changed on a ten minute

timescale. In this context, “random” means that each acceleration vector is allowed

to have any direction with an a priori amplitude of ±4×10−10km/s [Iess et al., 2019].

They could be correlated (non-random) even when the process used to create them

allows for randomness. This timescale between changing acceleration vectors was

determined empirically as the longest timescale which can successfully reduce range

rate residuals to the noise level.
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A time-dependent signal does not necessarily require normal modes. For example,

there may be a time-dependent or non-symmetric signature from large scale convec-

tion [Kong et al., 2016]. Additionally, Saturn’s envelope is differentially rotating

[Galanti et al., 2019] [Chachan and Stevenson, 2019]. If mass anomalies were embed-

ded at different depths or latitudes, then a spacecraft could encounter measurably

different quasi-static tesseral gravity fields during each flyby [Iess et al., 2019]. How-

ever, differentially rotating tesseral structure in Saturn’s gravity field has been shown

to produce structures in the rings [El Moutamid et al., 2017], and the magnitude of

the potential perturbation inferred from observation is orders of magnitude too small

to explain the anomalous signal. Because of Saturn’s expected internal differential

rotation rate (about 5%) [Galanti et al., 2019] [Chachan and Stevenson, 2019], it is

unlikely that such structure could measurably affect the spacecraft trajectory without

showing clear structure from resonances in the rings.

This work will specifically explore the hypothesis that Saturn’s residual gravity is

a consequence of normal mode oscillations. It has already been demonstrated that

normal modes are capable of eliminating the range-rate residuals to the noise level

[Iess et al., 2019]. This has been done by computationally optimizing for individual

mode amplitudes using a large number of free parameters. One possible solution in-

volves only zonal f-modes. This solution, however, is affected by model assumptions

such as maximum modeled spherical degree, whether to permit p-modes or g-modes,

whether to permit non-zonal normal modes, etc. These uncertainties occur because,

when optimizing with a large number of free parameters, there is a risk of over-fitting

the data using too complex of a model. These issues are not important in the context

of constraining Saturn’s zonal gravity harmonics and ring mass because the uncer-

tainty can simply be absorbed in the error ellipses for these values. However in this



3.1. INTRODUCTION 61

work we revisit the residuals data with a different purpose: to try to extract a pre-

ferred normal mode spectrum which is predictive for further flybys, robust to changes

in model assumptions, and as simple as possible to capture the qualitative behavior

of the spectrum without over-fitting the data. Bearing this in mind, although we find

a statistical preference using our simple model for signals dominated by low-order

p-modes, readers should remember that our findings are not conclusive proof of such

a spectrum on Saturn.

Our investigation has at least two important applications: first, normal modes are

themselves a promising method by which to probe the interior structure of giant plan-

ets, and this analysis provides some evidence of their power spectrum. Second, any

gravitational signal from normal modes above the noise level contaminates spacecraft

tracking data and may be aliased into the static model. As we will see, the behavior

of the modes is partially degenerate and the solution is non-unique. However, the

solutions are clustered in parameter space and predict a high probability of reproduc-

ing the observed unexplained gravity signal. The most successful models indicate the

signal is likely to be dominated by p-modes between 500 and 700µHz (see Figure 3.4).

In the second section, we outline some fundamentals of giant planet seismology,

spacecraft tracking, and our forward model. In the third section we discuss our data

reduction method including a novel data stacking technique, as well as error sources,

and a fitting procedure. In the fourth section we present the results of our analysis,

finding a simple two parameter model that has a high probability of producing a

good fit to the spacecraft signal. In the final section we discuss the implications of

our findings.
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3.2 The forward model

In order to accurately model seismic effects on Cassini’s gravity signal, we must de-

termine the mode’s eigenfrequencies, and the scaling relationship between a mode’s

displacement amplitude and its effect on Saturn’s gravity field. These issues are

addressed in Section 3.2.1. Next we must model how given gravity potential pertur-

bations affect the spacecraft tracking signal, which is done in Section 3.2.2. Next

we need an agnostic parametric model for modal energy spectrum, discussed in Sec-

tion 3.2.3. Finally we account for the intrinsic stochasticity of the problem; a given

mode cannot be modeled deterministically, because we have no way of knowing what

the temporal phase of each mode was when Cassini was at periapse. This is par-

tially circumvented with our stacking technique, discussed in Section 3.3 with further

technical information in the appendix.

3.2.1 Background

In this paper we approximate Saturn as an adiabatic, spherical, uniformly rotating

planet. We neglect rotation to compute the eigenfunctions and potential perturba-

tions, but account for rotation when considering Coriolis force frequency splitting and

the rotating gravity potential encountered in an inertial frame. In this case, giant

planet oscillations can be decomposed into a discrete set of orthogonal normal modes

with quantum numbers (n, l,m). n corresponds to the number of radial nodes in the

displacement eigenfunction, l to the spherical harmonic degree, and m = [−l..l] to

the azimuthal degree. Each mode has a unique displacement eigenfunction

ξnlm(r) =

(
ξr,nlm(r)r̂ + ξh,nlm(r)θ̂

∂

∂θ
+
ξh,nlm(r)

sin θ
φ̂
∂

∂φ

)
Ylm(θ, φ) (3.1)

and a characteristic eigenfrequency ωnlm so that the total displacement as a function of

time is ξnlm cos(ωnlmt+αnlm). Because ωnlm is not precisely determined, the phase αnlm



3.2. THE FORWARD MODEL 63

cannot be coherently specified between flybys and is assumed random for each mode

for each flyby. ξr and ξh correspond to the radial and horizontal eigenfunctions respec-

tively, which together specify the fluid displacement at any point within the planetary

sphere. For our purposes the eigenfunctions were obtained using GYRE stellar os-

cillation code [Townsend et al., 2013], with an n=1 nonrotating polytrope model for

Saturn’s interior. Our goal here is independent of accurate interior modeling; we are

interested in the relative gravity signal between modes and their order-of-magnitude,

which is not strongly sensitive to small changes in the interior model. However, using

an adiabatic interior model precludes g-modes, so we account for contributions from

g-modes separately.

Because Saturn’s interior structure is not precisely determined, we performed our

full analysis on a variety of interior model assumptions to demonstrate that the results

are not sensitive to small errors in modal eigenfrequencies. We tested eigenfrequencies

produced by this same polytrope model generated with GYRE [Townsend et al., 2013],

as well as a sampling computed using a more sophisticated Saturn interior model

[Gudkova and Zharkov, 2006]. The nominal model uses the eigenfrequencies from

Sa8. In addition, we accounted for mode-splitting due to Coriolis forces [Christensen-

Dalsgaard, 2014]. These split according to

δωnlm = mβnlΩ, (3.2)

where Ω is Saturn’s spin rate and

βnl ≡
∫ R

0
(ξ2
r + l(l + 1)ξ2

h − 2ξrξh − ξ2
h)r

2ρdr∫ R
0

(ξ2
r + l(l + 1)ξ2

h)r
2ρdr

. (3.3)

The nominal frequencies for this paper and plotted in Figure 3.1.
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Figure 3.1: Eigenfrequencies including splitting due to the Coriolis force in the ro-
tating frame. Each curve corresponds to rising radial order n for m = 0 modes,
with l rising along the x-axis. Each eigenfrequency ωnlm is shown as a point, with
m 6= 0 modes deviating from the m = 0 curve. This frequency splitting effect is most
important for f-modes.

For computational reasons, we consider a finite subset of modes in our model. In

the nominal model we consider f-modes and p-modes up to l = 8, n = 7. We found

equivalent results when using instead l = 10, n = 5 as bounds on parameter space.

We also specially tested f-modes only up to l = 20. We do not expect g-modes to

dominate the signal for at least two reasons: first, because the stable layer where

they resonate is so deep, its effect on the gravity field would be very weak unless

its amplitude were extremely large. Second, we do not expect its amplitude to be

extremely large, because its eigenfunction is evanescent near the surface where mode

excitation is expected to be most efficient. Nevertheless for the sake of completeness

we tested g-modes using published eigenfrequencies [Gudkova and Zharkov, 2006].

After choosing eigenfrequencies, we compute the scaling between displacement

eigenfunctions and gravity potential perturbations. The gravity field perturbation

associated with displacement eigenfunction ξ can be obtained by integrating over the
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material sphere and accounting for fluid point displacements according to

δΦ = G

∫
ρ(r′)

|r− (r′ + ξ(r′))|
d3r′ − GM

r
. (3.4)

For linear perturbations, this is equivalent to the Eulerian density perturbation from

continuity δρ = ∇ · (ρξ) so that

δΦ = G

∫
δρ(r′)

|r− r′|
d3r′. (3.5)

Decomposing this potential perturbation into

(3.6)δΦ =
GM

r

∞∑
n=0

(
−
∞∑
l=2

l∑
m=−l

(
R

r

)l
Pm
l (cos θ)[δCnlm cosmφ+ δSnlm sinmφ]

)
,

one can show that the gravity harmonic coefficient perturbation associated with the

normal mode is [Stevenson, 2021] [Marley and Porco, 1993]

δCnlm(t) =
1

MRl

4π

2l + 1
cos(ωnlmt)

∫ R

0

rl+2δρnlm,r(r)dr, (3.7)

where δρnlm(r) ≡ δρnlm,r(r)P
m
l (θ) cos(mφ) normalized such that the mode surface

displacement is 1cm at the planet surface. With appropriate choice of coordinates,

δSnlm → 0. This leads to Figure 3.2 which illustrates why f-modes are a priori favored

as sources of gravity perturbations.

Higher order p-modes have nodes in their eigenfunction, leading to destructive

interference of the gravitational signature. Therefore in order for p-modes to domi-

nate the signal, they must have more than an order-of-magnitude larger energy than

f-modes (two orders of magnitude larger amplitude).

A test particle outside of the planet on a prescribed trajectory r(t) encounters the
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Figure 3.2: Gravity harmonic coefficient perturbations for various modes per meter
of surface displacement amplitude. The blue curve (top) represents f-modes, which
have the most prominent gravitational signature for a given surface amplitude, while
p-modes (below) need larger amplitudes to be detected.

potential perturbation

(3.8)δΦ(t) =
GM

r

∑
nlm

anlmδCnlm

(
R

r(t)

)l+1

Plm(cos θ(t))

cos[m(φ(t)− Ωt− φ0)− ωnlmt− αnlm],

where anlm is the maximum surface displacement of mode (n, l,m) in cm, and Ω is

Saturn’s spin rate. Notice that this equation includes two random variables: φ0 the

initial longitudinal orientation of the modes with respect to our coordinates, and

αnlm is the initial temporal phase of the mode. φ0 is shared between all modes, but

is random for each flyby. αnlm is a random variable for each mode and for each flyby.

Although the phase difference between flybys can in principle be determined from

the mode’s eigenfrequency, in practice this is impossible. Eigenfrequencies depend on

Saturn’s interior structure and cannot be predicted with perfect precision. Because

the time between encounters is much longer than the period of a mode, in practice the

phase of each mode must be regarded as randomized for each flyby. This stochasticity

introduces a complication for modeling the flyby—we do not know the initial phase
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and orientation of the modes when each flyby occurred. This issue will be addressed

in Section 3.3.

3.2.2 Numerical integration and model reproduction

The gravity experiments were conducted with an edge-on geometry from Earth’s

perspective for maximum signal to noise. The orbits were highly inclined and highly

eccentric. The closest approach (C/A) of the spacecraft is about 5% of Saturn’s radius

from its cloud tops, approaching and receding from the planet very quickly during

ingress and egress. Because of this orbital geometry, we only expect a significant

signal from the planet within about an hour of C/A. Therefore we use the spacecraft

orbital elements two hours before C/A to compute the initial conditions. We then nu-

merically integrate the equation of motion for Saturn plus the potential perturbation

associated with normal modes, neglecting oblateness. Including the measured static

zonal gravity [Iess et al., 2019] affects the simulated normal mode range rate signal

by less than 1%. We integrate the equation of motion using Mathematica’s built-in

integrator to generate a three-dimensional velocity time series. We then subtract the

Keplerian solution from the numerical solution to isolate the signal from the spectrum

of modes we are modeling. Finally we project the three-dimensional velocity vector

onto the line-of-sight vector connecting Saturn to the Earth. We verify the accuracy

of this method by reproducing the signature from static zonal J’s [Iess et al., 2019]

using the method from this chapter, finding good agreement. This method is fully

general for any potential perturbation, and we will use it to inspect the behavior of

normal modes.

We verified empirically the approximate linearity of combining the velocity per-
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turbation from various sources. That is,

δv(t) =
∑
q

vq(t) (3.9)

within <0.1% for the perturbation magnitudes in question. Strictly speaking this lin-

earity does not hold absolutely; although gravity potential perturbations are exactly

linear, a test particle encountering these perturbations may be perturbed from its

trajectory—if this perturbation is sufficiently large the linearity breaks down. But

for the small perturbation of interest, this non-linearity is not important.

It is important to discuss at this point a fundamental ambiguity in probing for

normal modes from the spacecraft’s perspective. The spacecraft is observing two

sources of variation of the gravity signal: the intrinsic geometric variation, and the

temporal variation. The geometric variation is the physical shape of the mode, which

attenuates with distance and varies with the spacecraft’s latitude and longitude rel-

ative to Saturn. As the spacecraft approaches and recedes from the planet, traveling

from the north to south and west to east, even a static gravity perturbation would

have a time-dependent signal from the spacecraft’s frame of reference. On the other

hand, the potential perturbation itself varies with time. The convolution of these ef-

fects makes it difficult to have a simple intuition for Cassini’s response to each mode.

See the Appendix for further discussion.

3.2.3 Spectral model

For the spectral model, we aim to be as agnostic as possible. We do not know with

certainty by what mechanism seismic activity is excited on Saturn, although me-

teor impacts [Wu and Lithwick, 2019] or exotic meteorological phenomena [Markham

and Stevenson, 2018] have been suggested. Therefore we only use simple parametric
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models that scale the energy of each mode as a function of parameters. We tested

a variety of scaling relationships, including power law dependence in frequency, as

well as power law dependence on quantum numbers n, l, and l−|m|
l

. We also tested

equipartition. None of these models provided convincing fits to the data.

The nominal model used is a Gaussian frequency dependent model, although here

too we aimed to be as agnostic as possible. The Gaussian is convenient because

it has the power to probe for a diverse variety of frequency dependencies by only

varying two parameters. Using this assumption, the mode energy is a function of its

eigenfrequency according to

E(ωnlm) =
1√
2πσ

exp

[
−(ωnlm − ω0)2

2σ2

]
. (3.10)

We tested extreme parameters, varying the peak of the Gaussian between 0 and

5mHz, well above the acoustic cutoff frequency. We also tested widths between an

extremely narrow distribution of 10µHz and an extremely wide distribution of 5mHz

(see Figure 3.3). By varying the parameters so widely, we can capture a wide variety

of possible frequency dependent behavior. A Gaussian with a far away peak behaves

approximately like an exponential relationship. A Gaussian with an extremely narrow

peak behaves approximately like a δ-function, and one with an extremely wide peak

approximates equipartition. As discussed in Section 3.4, we find narrowly peaked

distributions centered on low-order p-modes to be the most likely to fit the data,

although there is considerable degeneracy within that region of parameter space. We

settled on the Gaussian dependence on frequency after trying a variety of parametric

models because it provided the best fit to the data, and is flexible in qualitatively

approximating many diverse behaviors. We do not claim that the real power spectrum

behaves in exactly this way.
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This frequency dependence on energy has a straightforward connection to exci-

tation and dissipation efficiency, if the energy spectrum is in steady state. In this

case,

E(ω) =
Ėin(ω)Q(ω)

ω
, (3.11)

where Q(ω) is the frequency-dependent quality factor and Ėin(ω) is the frequency-

dependent excitation rate. The mode energy is Enlm = a2
nlmω

2
nlmMnlm where Mnlm

is the modal inertia uniquely defined for each normal mode according to Mnlm =∫
ρ|ξnlm|2d3r, where ξnlm is the mode eigenfunction normalized such that the surface

displacement in 1cm. Therefore the energy scales as the square of the amplitude.

3.3 Data stacking

There is a fundamental ambiguity when modeling normal modes that does not exist

for a static gravity field: the phase of the mode in question. If we only had one flyby,

breaking this ambiguity would be hopeless; since we have multiple, we can do better.

By combining multiple flybys, we can average out the effect of initial phases. This can

be done perfectly if there is a large number of identical flybys. Indeed, one can show

(see Appendix) for a particle on a prescribed trajectory r(t) encountering a potential

perturbation of the form of Equation 3.8 where φ0 and αnlm are random variables for

each flyby, that the summed squared potential obeys the asymptotic relationship

N∑
i

δΦ2
i (t) ∼

N

2

∑
nlm

A2
nlmf

2
nlm(t), (3.12)

where Anlm ≡ anlmδCnlm, and fnlm(t) is a deterministic function of time independent

of φ0 and αnlm. This approximation is valid at large N . It is possible to derive a

similar expression for acceleration perturbations, simply the gradient of the potential

perturbations, and for velocity perturbations (see Appendix). In fact these derivations
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depend on assuming a prescribed trajectory, but in reality the potential perturbations

perturb the trajectory itself. We verify empirically that for a sufficiently large number

of flybys
N∑
i

δv2
i =

N

2

∑
nlm

a2
nlm

N∑
i

δv2
nlm,i, (3.13)

where δv2
nlm,i is a randomly generated squared time series of velocity perturbation

associated with the spacecraft encountering the potential perturbation due to a 1cm

displacement amplitude mode with quantum numbers (n, l,m).

We note that the stochastic behavior of the modes approaches deterministic be-

havior when summing over a large number of flybys to demonstrate why such an

exercise is useful: it reduces the stochastic component of the signal and amplifies

the deterministic component. In the real experiment, however, there were only five

flybys, which is not large enough to simply stack the data and compare it against the

asymptotic average. Therefore, we ran a Monte-Carlo simulation, leaving the initial

phase as a free random variable, and combined the signal from five randomly selected

flybys with an input spectrum scaled according to Section 3.2.3. In this case, we use

the relationship from Equation 3.9 to obtain

N∑
i

δv2
i =

N∑
i

(∑
nlm

anlmδvnlm

)2

. (3.14)

This expression is equivalent to Equation 3.13 in the limit of large N , but for finite

N has stochastic components which should be accounted.

With N = 5 we can eliminate significant ambiguity. The raw data is shown in

the red scattered points in Figure 3.6 for each flyby (the black curves are model fits

to the data). The raw data were obtained by subtracting the observed spacecraft

signal from a model excluding stochastic acceleration [Iess et al., 2019]. We take
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these points and bin them into 150 second windows so that most points in time will

have contributions from all flybys (see Section 3.3.1 for why this is important). We

then average the square value of the corresponding data point across the five flybys

to obtain an average value. After accounting for various quantifiable sources of error,

we produce Figure 3.5 that shows the stacked data with error bars in red, with a

black curve as a good fit forward model.

3.3.1 Error sources

To average this data, we must propagate the errors from the input data, and account

for additional errors from the stacking process. We have identified three quantifiable

sources of error in the tracking system, which we use for the error bars. The first

source of error is the intrinsic noise in the system [Iess et al., 2019]. This source of

error affects all data points.

The second source of error is the fact that part of the “real” non-static, non-zonal

gravitational signal may have been aliased into the uncertainty about the static zonal

gravity harmonic coefficient J’s [Iess et al., 2019]. To understand how this impacts

the data, we ran a Monte Carlo simulation systematically adding the gravitational

signal δJl for each zonal gravity harmonic l, and running that modified data through

our stacking pipeline. We modeled each δJl as a statistically independent normally

distributed random variable using the published 1σ formal uncertainty [Iess et al.,

2019] (although the total values for different Jl’s are correlated, small deviations δJl

can be approximately independent). We found the impact of this effect by taking

the standard deviation of the stacked data for 1000 such simulations and used those

values as an additional independent source of error to add in quadrature with instru-

mental noise. This source of error is most important near closest approach.
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The third source of error is only applicable to a subset of points, but is the most

important source of error for those points. Because we will be comparing this data

to simulations without gaps or sampling issues, we need to account for the fact that

some data points do not average all five flybys. This occurs because the time window

in which the spacecraft is blocked by Saturn’s rings is slightly different for each flyby,

and because some of the data sets end before others. When we only average a subset

of data points together, there will be a systematic offset from the otherwise smooth

behavior of the average. We quantify this offset by taking samples of points that have

data from all five flybys, then calculate the average systematic offset caused by using

only a subset of those data points. We use this average value as an additional source

of error, which is simply a function of the number of data points averaged. If there

are five data points, this source of error is zero. Note that this error is systematic,

so a series of points all missing one data set will not be randomly scattered around

the main curve but will be systematically offset from it. Accounting for these three

quantified sources of error produces the red points and error bars in Figure 3.5, which

is the time series data set we will attempt to reproduce (with an example black curve

model fit).

There are additional sources of error that are likely to prevent us from getting

a perfect fit to the data. First, we do not know the actual eigenfrequencies of the

modes. We attempted multiple assumptions for the frequencies to verify that our

conclusion is not affected by different choices. In fact, the signature from a flyby is

a slowly varying function of mode frequency, so expected errors (less than 10% in

frequency) should not affect the general, qualitative behavior of the flyby signature.

Nevertheless, errors in frequency yield systematic modeling errors, small temporal

offsets for small errors and slowly varying qualitative behavior for larger errors, such
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that the fit will not be perfect. This impacts the goodness of fit. An additional

source of possible modeling error is the simplicity of our assumptions (a smoothly

varying amplitude spectrum). For example, the excitation mechanism may be partly

stochastic in nature [Goldreich et al., 1994] [Markham and Stevenson, 2018], and

the real frequency dependence may be more complicated or jittery than a simple

Gaussian. Accounting for this possibility, however, would violate the purpose of

this investigation: to keep the number of parameters small, and the spectral model

simple. Another cause of error we have not formally accounted is the difference in

geometry between the flybys. To first order, the orbit is similar and the Saturn-Earth

orientation is nearby during each flyby. But the subtle differences in geometry means

we should not expect the assumption of fixed geometry and identical orbit initial

conditions to reproduce the data exactly. Nevertheless, this is a necessary assumption

in order to use the stacking method to amplify the deterministic component of the

signal. We note these sources of error not to rigorously quantify their effect, but

to justify our relatively lax error tolerance for goodness of fit; the upshot here is

that we are trying to evaluate the probability of reproducing the general qualitative

behavior of the signature for a given power spectrum, not to provide a single exact

reconstruction of the gravity field Cassini encountered (doing so would be impossible

with the available data anyway).

3.4 Analysis and results

Now that we have added error bars to account for the straightforwardly quantifiable

sources of error, we can attempt to fit them. We do this with a reduced χ2 test

according to

χ2 =
1

D − f

D∑
i

(xi −mi)
2

e2
i

, (3.15)
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where D is the number of data points, f is the number of degrees of freedom in the

model (three in our case: the two Gaussian parameters and the scaling coefficient), xi

is data point i, mi is its corresponding modeled value, and ei is the error. Choosing

an appropriate model is subtle. One choice is to use the asymptotic average of an

infinite number of flybys for a given spectral model. As demonstrated in Section 3.3,

we expect the data to converge toward this average. But given the finite number

of flybys, there will be variation from this asymptotic mean. Therefore in order to

evaluate the likelihood of a given model, we conducted 2,000 tests of five simulated

flybys for each modeled spectrum.

To produce our forward model, we ran 104 simulated signals from individual

modes, for the subset of considered modes (recall our results are not sensitive to

the specific choices of considered modes or computed eigenfrequencies. For more

discussion see Section 3.2). After simulating a large number of range rate signals

for each individual mode, we chose five to combine their squared signal using Equa-

tion 3.14, where anlm for a given model is computed according to Equation 3.10 with

Enlm = a2
nlmω

2
nlmMnlm. This is the forward model we use to try to fit Figure 3.5.

Our tolerance threshold for goodness of fit is χ2 = 50. This is a large value, but

we consider it sufficient to qualitatively reproduce the essential shape of the data

(for further discussion as to why this is appropriate, see Section 3.3.1). Choosing a

different threshold does not significantly affect the results, but reduces probability of

fitting within the tolerance threshold for all models. We then use the large number

of experiments to assign a probability of reproducing the data within tolerance for a

given input spectrum. The results show a degenerate set of distributions which can

reproduce the signal. We found a strongly favored region of parameter space after

coarse sampling using extreme parameters, then followed up with a finer sampling in

that region.
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The probability plots are show in Figure 3.3, which illustrates a clearly preferred

region of parameter space, but degeneracy within that region. Each grid cell of the

Figure 3.3 represents a particular spectral model. The shading indicates the proba-

bility of reproducing the data within our tolerance threshold, if that spectrum were

Saturn’s normal mode spectrum. The degeneracy can be partly understood by con-

sidering the contributions to the gravity signal a moving spacecraft encounters. The

degeneracy can be understood in two ways. First, as shown in Figure 3.4, there is

a great deal of overlap between favored models. Second, because the spacecraft is

moving through space, a static field would have a time-dependent signature. Because

normal modes oscillate in time, there is another source of time dependence which

would be experienced even by a stationary test particle. The synthesis of these two

contributions allows gravity perturbations with different properties to produce a sim-

ilar signal along the Saturn-Earth line-of-sight axis from the spacecraft’s frame of

reference. We elaborate on this second degeneracy source in Section 3.2.2 and in the

Appendix.

Although we cannot identify a single conclusive power spectrum, we can exclude

a wide variety of simple spectra, and find the highest probability models favor a rel-

atively narrowly peaked distribution. The location of the peak is also constrained,

with the most likely models having a peak between 500 and 700 µHz.

Although the exact width and frequency peak cannot be precisely determined, we

can exclude a wide variety of models as implausible, and note a clear clustering of

models which have a high probability of reproducing the observed signal. low-order

f-modes lie generally below 200µHz (see Figure 3.1). No good-fit models favor signif-

icant contributions from f-modes. We demonstrate an example of what we consider
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Figure 3.3: Probability maps for different input parameters. Darker colors correspond
to models which have a higher probability of satisfactorily fitting the data. (a) Left
shows a coarse grained plot, which searches a wide range of parameter space includ-
ing models which approximate exponential behavior, delta-functions, or white noise,
indicating a preferred region of parameter space. (b) Right shows a finer grained
sampling in this region, illustrating the degeneracy within that region.
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Figure 3.4: Plotting different allowable solutions, with the darkness of the curve
corresponding to the probability that, if that spectrum is correct, we would observe
the data within our tolerance level. The curves are normalized in the plot such that
their integrated value is unity (using Hz rather than µHz as the ordinate).
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Figure 3.5: An example fit to the stacked data. The data is represented with error
bars according to Section 3.3.1, with the black curve corresponding to an example
energy spectrum with ω0 = 600µHz and σ = 40µHz.

to be a “plausible” fit near the cutoff threshold in Figure 3.5. This particular run has

χ2 = 4, among the better fits we were able to obtain.

We also assessed the frequency content of the residual data. This proved to be

less diagnostic than fitting the time series. This is perhaps unsurprising, because in

order to fit the frequency content, you only need a model that varies on the correct

timescales, driven largely by the geometric (r/R)l effect. By contrast, in order to

fit the time series data, you have to match much more specific behavior. Looking

at Figure 3.5, the time series model must fit several specific phenomena. From left

to right on the figure, the best models the steepness of the “ramp up” before C/A,

the timing of the peak after C/A, the width of the main curve, the timing of the

plateau/turnover, and other features. We find that the plausible time series fits are

also compatible with the data’s Fourier transform. However, the Fourier transform

is much more degenerate and possible to fit with a wide variety of models, and it is
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difficult to obtain any new information.

To verify that our results were not excessively biased by our assumptions, we ran

a variety of tests and alternatives, in addition to trying various parametric models

as described in Section 3.2.3. We also explored the possibility that the signal may

be dominated by a single mode, by testing that hypothesis against each mode in our

sample. This possibility seems plausible based on our results given the narrowness of

the peak in many best fit cases. We found some modes within the preferred region of

parameter space had a finite probability of reproducing the data, but the probability

was lower than our preferred spectral models. Consistent with our spectral method,

f-modes were not favored. No f-mode had a probability higher than 2% of producing

the observed signal.

We separately tested all f-modes up to spherical order 20 for completeness, because

of the a priori expectation that they should be the most gravitationally important

modes, and because some of their frequencies overlap with the degenerate region of

parameter space that can have some probability of providing a tolerable fit to the data.

High degree f-modes are discussed in more detail in the appendix. Even allowing for

higher order f-modes, we did not find any simple combinations that satisfactorily re-

produce the data. Perhaps f-modes are inefficiently excited for reasons beyond their

frequency; for example, some excitation models depend on compressibility [Goldreich

et al., 1994], and in the sun mode power declines for increasing l even at fixed eigen-

frequency.

We also tested g-modes. Although our interior model assumptions did not pro-

duce g-modes, we tested them specially using published eigenfrequencies [Gudkova

and Zharkov, 2006], and separately tested asymptotic approximations for their eigen-
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frequencies [Tassoul, 1980]. Without the eigenfunctions, we tested the spectral model

by varying the gravity harmonic coefficient perturbations directly with frequency de-

pendence. We did not find any solution which could satisfactorily reproduce the data

with g-modes. We also explored the possibility of using a given mode’s eigenfrequency

as a tunable parameter, varying our expectation for each f-mode’s eigenfrequency be-

tween half and thrice its theoretically predicted value. Although some frequencies fit

better than others, none came close to the goodness of fit we obtain with our spectral

model. We also tested the full pipeline omitting one flyby, testing each subset of four

flybys to ensure the results were consistent, and not a spurious peculiarity of these

five particular flybys. That is, we wanted to ensure that if one of the flybys had had

a problem such that it did not successfully transmit data, that it would not have al-

tered our conclusion. As expected, with fewer flybys the preferred region of parameter

space could not be as tightly constrained, but the results were consistent and favored

the same region shown in Figure 3.3. If future missions can perform the same ex-

periment with a larger number of flybys, we may be able to make stronger conclusions.

All plausible spectral models predict large peak mode amplitudes on the order

of several kilometers for a small number of modes (of order 5-10) near the peak fre-

quency. Mode amplitudes inferred from the velocity map time series of Jupiter are

of order 100m [Gaulme et al., 2011], so in order to explain our findings we require

the peak amplitudes to be at least an order-of-magnitude larger on Saturn than have

been observed on Jupiter.

This method also allows us to fit the range rate residuals from each individual flyby.

We begin with a sample amplitude spectrum with a high probability of reproducing

the data (see Figure 3.3). We then run a suite of simulations with random initial

phases of each mode and show the best fit results for each flyby in Figure 3.6. Each
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fit optimizes for the best fit scaling coefficient, and all are in agreement within a factor

of two.

3.5 Discussion

We can reproduce the behavior of the non-zonal and/or non-static component of Sat-

urn’s gravity field using a simple three parameter forward model for mode amplitudes

(Gaussian peak, width, and scaling). Our model uses a simple interior model and is

not sensitive to detailed assumptions about Saturn’s interior structure, spin rate, or

rotation profile. For the amplitude spectrum of the modes, we rely only on a general

understanding of Saturn’s eigenfunctions and the equation of continuity in order to

compute its gravitational effect for a given amplitude. We can also compute the mode

inertia to scale the gravity signal for a given mode energy.

The best way to think of these results is in the Bayesian sense; we do not claim

incontrovertible proof of p-modes on Saturn. Rather, given this particular data set,

we present the probability that different models will reproduce this data in Figure 3.3.

These probabilities should be used to update prior assumptions about Saturn’s nor-

mal mode spectrum, bearing in mind that more complex models with more degrees

of freedom (e.g., from Iess et al 2019) are not captured by our analysis.

We find a moderate preference for models which have a frequency peak between

about 500 and 700 µHz with a narrow width, although models with peaks as low as

250µHz or as high as 1000µHz also have nonzero probability. Intriguingly, the in-

ferred narrowness of the peak is analogous to the narrowly peaked five minute modes

observed on the sun. Observing the power spectrum of the solar modes, one finds

a peak frequency near 3000 µHz with a full width half maximum (FWHM) of order
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Figure 3.6: Forward calculation fits for individual flybys using our simple spectral
model. The parameters used here are ω0 = 600µHz and σ = 40µHz. The red
scattered points are the data, and the black curves are the best fits models.
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300 µHz [Frohlich et al., 1997], indicating a ratio of the FWHM to peak frequency of

order 1/10. Converting the standard deviation of our Gaussian frequency-dependence

functions to the corresponding FWHM, we likewise obtain a solution of order 1/10

(for example in the case of the fit shown in Figure 3.5). This may indicate some sim-

ilarity between the two systems, for example that the peak frequency is set by some

dynamical process with a characteristic timescale. On the sun this timescale is the

eddy turnover time in the top scale height of the convective zone. Although the same

mechanism cannot excite the observed amplitudes on Saturn, less frequent moist

convective events with a characteristic turnover timescale (see e.g., [Markham and

Stevenson, 2018]) could produce similar strong frequency dependence. On Jupiter,

new theories to explain the ammonia distribution require updrafts which traverse

100km in 1000s [Guillot et al., 2020b] [Guillot et al., 2020a]. If similar dynamics

occur on Saturn, the timescale is roughly consistent with the peak frequencies in-

ferred by this work. Others have suggested a large impact as a source of Saturn’s

oscillations [Wu and Lithwick, 2019]. Although a 150km impactor could in principle

excite km-scale oscillations in p-modes, the scaling suggests the gravity signal from

f-modes should always dominate. Therefore if this is indeed the dominant excitation

mechanism on Saturn, there must be some other reason to preferentially dissipate

f-modes or preferentially amplify p-modes.

Most notably, we cannot reproduce the time series data with f-modes; neither

with a single f-mode dominating the signal nor with a straightforward superposition

of f-modes. This finding is consistent with inferred amplitudes of f-modes which have

been measured using Saturn’s rings (kronoseismology) [Hedman and Nicholson, 2013]

[Wu and Lithwick, 2019] [Fuller, 2014], which are determined to be on the order of

a meter in amplitude and should not produce this large of a signal in Cassini’s grav-

ity experiment. Assuming the amplitudes inferred from ring data, the detectability
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should have been marginal (δv ∼ 0.05mm s−1 instead of the observed ∼ 2mm s−1).

The p-modes that are required to produce the observed signal would need surface

amplitude on the order of kilometers, implying radial velocities of meters per second.

These p-modes despite their large amplitudes, are not expected to show structure

in the rings, because the relevant resonant radius for these frequencies is well inside

Saturn’s C ring.

The required p-mode amplitudes are at least an order-of-magnitude larger than

were observed on Jupiter [Gaulme et al., 2011]. Interestingly, early analysis of the

Juno mission indicates a similar unexplained gravity signal on Jupiter that is approx-

imately 20 times weaker than the signal observed on Saturn [Durante et al., 2020].

This is interesting, because this analysis indicates that if the relevant amplitudes were

those observed by Gaulme et al 2011, then we should expect a similar time-dependent

signal diminished in scale by about an order-of-magnitude. Replicating our analysis

of Cassini’s gravity data for Juno, which has many more planned gravity orbits than

Cassini, may be a promising future application of the method outlined in this paper.

We can test to see if the inferred normal mode spectrum from gravity measurements

on Jupiter is consistent with the corresponding power spectrum obtained with Earth-

based observations.

Because we predict large peak amplitudes, we must consider if these are plausible

and consistent with existing data. Voyager radio occultation measurements of Saturn

has error estimates between 6 and 10km, and the measurements found incompatible

radii between the northern and Southern hemisphere on the order of 10km [Lindal

et al., 1985]. These uncertainties are compatible with the time-dependent shape vari-

ations our analysis predicts. Our analysis here would predict future measurements of

Saturn’s shape cannot obtain better accuracy than around a few kilometers. A series
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of highly accurate measurements of Saturn’s shape should have a time-dependent

component on the order kilometers.

We must also consider how our findings can constrain Q. Using a set of N modes

excited to 10km amplitude a (a high estimate, see Table 3.1), powered by the full

luminosity of Saturn L as a lower bound on Q, we compute

Q >
a2ω3MN

L
∼ 107 (3.16)

for the relevant peak modes we have identified, where M is the modal mass and

N ∼ 5 − 10 corresponds to the number of modes with significant amplitude (for ex-

ample, greater than a kilometer). This Q is compatible with estimates so far based

on theory [Markham and Stevenson, 2018] [Wu and Lithwick, 2019].

We must also check that the modes can still be approximated as linear pertur-

bations, i.e., u · ∇u � du
dt

where u is the velocity vector. For the peak modes we

identified, the frequency is sufficiently high that the motion is almost purely vertical.

du
dz

is most significant near the surface when the atmospheric properties vary quickly.

We know in this region du
dz
∼

(
1−

√
1−

(
ω
ωc

)2
)
u/H [Christensen-Dalsgaard, 2014],

where H is the scale height and ωc is the acoustic cutoff frequency. Therefore the

condition that the system can be treated linearly is

1−

√
1−

(
ω

ωc

)2
� ωH/u, (3.17)

the ratio of the left hand side to the right hand side using ω ∼ 5 × 10−3 for 1km

amplitude modes is about 10−3. This is the maximum value near the surface; the

value is much smaller in the interior where most of the mode inertia is. If the inferred
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amplitudes are correct, nonlinear effects are important for p-modes on both Saturn

and Jupiter.

Many questions remain, and it is clear that the field of giant planet seismology—

both observational and theoretical—is in its infancy. Here we demonstrate that

the unexpected and unexplained components of Saturn’s “dark” gravity field can

be straightforwardly modeled as simple frequency dependent seismic activity. This

provides one more piece of plausible evidence that the giant planets are seismically

active, and should motivate further observations and theoretical study.

3.6 Appendix: intuition, tables, and derivations

Table 3.1: Sample spectrum using ω0 = 600muHz and σ = 40µHz, listing modes with
amplitudes larger than 100m. This spectrum should not be taken too seriously as
good fit solutions are degenerate and non-unique—the general orders of magnitude
should be paid attention to more than the specific modes.

(n,l) ωnlm/[µHz] anlm/[m]
(2,4) 497 107
(2,5) 525 461
(2,6) 551 1220
(2,7) 575 2140
(2,8) 597 2700
(3,2) 553 1190
(3,3) 599 2350
(3,4) 633 1900
(3,5) 662 965
(3,6) 689 334
(4,2) 667 794
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3.6.1 Potential perturbation

In the following derivation, we will assume the spacecraft is on a prescribed Keplerian

orbit, and assess the gravity potential field it encounters as a function of time. In

reality, the data we have is a velocity time series; we cannot measure the gravity

potential directly. However, we demonstrate how a gravity potential with stochas-

tic elements can be averaged toward deterministic behavior that isolates information

about the amplitude spectrum. This same basic procedure will be employed to for-

ward model the velocity time series, although the details in that case are considerably

more complicated.

We begin with Equation 3.8. The full potential of all modes for a given flyby i is

Φi(t) =
∑
nlm

Anlm

(
R

r(t)

)l+1

Plm(cos(θ(t))) cos[m(φ(t)− Ωt− φi)− ωnlmt− αnlm,i],

(3.18)

with Anlm ≡ anlmδCnlm. φi is the random initial longitudinal orientation of Saturn

(the same for each mode, but random for each orbit because Saturn’s spin rate is not

precisely known), and αnlm,i is the temporal phase of each mode—random for each

mode and for each flyby because we do not know the eigenfrequency with sufficient

precision to impose phase coherency between subsequent close encounters. The un-

certainty in φ0 can be absorbed into α; for zonal modes, φ0 does not matter, and

for tesseral/sectoral modes it can be added into α so that there is only one rele-

vant random variable. We can rewrite this expression using the harmonic addition

theorem:

(3.19)Φi(t) =
∑
nlm

Anlmflm(t) (cos(gm(t)) cosαnlm,i − sin(gm(t)) sinαnlm,i) ,

where flm(t) =
(

R
r(t)

)l+1

Plm(cos(θ(t))) and gm(t) = m(φ(t)−Ωt)−ωt is the same for

every orbit and does not depend on the random variable αnlm,i. Now we square this
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expression

Φi(t)
2 =

∑
q

∑
q’

AqAq’fq(t)fq’(t)(cos(gq(t)) cos(gq′(t)) cosαq,i cosαq’,i

− cos(gq(t)) sin(gq′(t)) cosαq,i sinαq’,i − sin(gq(t)) cos(gq′(t)) sinαq,i cosαq’,i

+ sin(gq(t)) sin(gq′(t)) sinαq,i sinαq’,i),

(3.20)

where we substitute a single index q to refer to a given mode (n, l,m) for notation

convenience.

From here, we perform the crucial step of summing over many such flybys. This

total can be expressed

(3.21)

N∑
i =1

Φi(t)
2 =

N∑
i=1

∑
q

∑
q’

AqAq’fq(t)fq’(t)(cos(gq(t)) cos(gq′(t)) cosαq,i cosαq’,i

− cos(gq(t)) sin(gq′(t)) cosαq,i sinαq’,i

− sin(gq(t)) cos(gq′(t)) sinαq,i cosαq’,i

+ sin(gq(t)) sin(gq′(t)) sinαq,i sinαq’,i).

In this case, we can assume random variables behave as true statistical averages. We

make use of the fact that
∑

q,q′,i,j cosαq,i cosαq’,j → δqq′δij. Similarly
∑

q,q′,i,j cosαq,i sinαq’,j →

0. Using this asymptotic behavior, we can write for a sufficiently large number of N

flybys,
N∑
i

Φ2
i (t) ∼

N

2

∑
nlm

A2
nlmf

2
nlm(t). (3.22)

Thus a particle on a prescribed trajectory encountering potential perturbations due

to normal modes will, when averaging over many such encounters, approach a deter-

ministic curve that does not depend on the initial phase of each mode.
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3.6.2 Acceleration and velocity

The gravity experiment does not directly measure the gravity potential. The data

we have is the velocity perturbation along a single axis. Our data stacking method

is most straightforwardly derived for gravity potential perturbations. To calculate

gravitational acceleration we apply δgnlm = −∇δΦnlm to obtain

(3.23)

δgnlm
Anlm

=
GM

r2

(
R

r

)l [
−(l + 1) cos[m(φ− Ωt)− ωt− α]Pm

l (cos θ)r̂

+ cos[m(φ− Ωt)− ωt− α]
∂Pm

l (cos θ)

∂θ
θ̂

− m

sin θ
sin[m(φ− Ωt)− ωt− α]Pm

l (cos θ)φ̂

]
.

This gives us the components we need to project onto ⊕̂, the unit vector pointing

toward Earth. The total gravitational acceleration perturbation from normal modes

can be written as

δg⊕(t) =
∑
nlm

Anlmg⊕,nlm(t), (3.24)

where we can express

g⊕,nlm(t) = Anlm (f1(t) + f2(t)) (f3(t) cosα + f4(t) sinα), (3.25)

where fi(t) are tedious but nevertheless well-defined functions of time, independent of

α. Just as above, if we have an expression in this form, we can express the asymptotic

average of the sum of a large number of flybys as

N∑
i=1

g2
⊕,i(t) =

N

2

∑
nlm

A2
nlmfnlm(t)2. (3.26)

where f(t)2 is a function of f1(t) and f2(t).

A similar procedure can be followed for velocity perturbations, and this is the



90 CHAPTER 3. GRAVITATIONAL SEISMOLOGY

source of frequency dependence (absent in averaged potential perturbations) ωnlm by

temporally integrating the gravitational perturbations. In fact it is not this simple; a

perturbed spacecraft will deviate from its Keplerian trajectory, which leads to errors

from the exact solution of order (∆r/r)∆t. A better approximation is to dynamically

solve the equation of motion, accounting for displacement from the initial Keplerian

trajectory to linear order, although this method produces higher order errors from the

exact solution. The method we eventually used, solving the exact equation of motion

explicitly then subtracting the Keplerian solution, is not conducive to an analytic

expression. Because of this, we verified these results by testing them numerically

against simulations to be sure they did approach a deterministic curve when stacked.

To do this, we performed 104 Monte Carlo simulations of random flybys for each

mode. We then averaged random subsets of these samples to verify that they asymp-

totically approach an asymptotic curve. We also directly simulated various examples

of a spectral superposition of different modes, running 104 flybys. We then compared

these stacked results against the superposition of a spectrum of averaged squared

modes, finding excellent agreement with Equation 3.13. We therefore have an ana-

lytic approximation which motivates the stacking procedure, as well as more exact

numerical tests to make sure the results from the analytic approximation are robust

to this application. These tests verify the validity of our data stacking procedure. In

practice, we have a finite number N = 5 flybys. A random set of 5 flybys will deviate

somewhat from the asymptotic behavior of 104 flybys, so for the actual probabilistic

fitting routine we used Equation 3.14. We used the statistical method outlined in the

Analysis and Results section to account for this, by directly solving for the probability

that a given spectrum will produce a good fit to the data.
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3.6.3 Spacecraft sensitivity and model intuition

We must consider whether the particular orbit of Cassini biases its ability to detect

certain modes. If the convolution of a particular mode’s space dependent eigenfunc-

tion and time-dependent eigenfrequency appears stationary in Cassini’s frame during

close approach, then Cassini will preferentially detect signals from this mode. For

example, because Cassini’s orbit is nearly polar, there may be an intrinsic preference

for sectoral (m = ±l) modes, as seems to be true for f-modes (see Figure 3.7). As a

different example, there may be a preference for modes whose half period is near the

timescale of Cassini’s motion from the northern to the southern hemisphere. This

appears to be the case for tesseral modes with m = l − 1 in Figure 3.7. Moreover,

because Cassini’s orbit moves from west to east, it is plausible that it would pref-

erentially detect m > 0 modes whose pattern rotates in the prograde direction, an

intuition also supported by Figure 3.7.

According to Figure 3.7, this quasi-resonant effect does indeed make Cassini more

sensitive to certain modes. All these effects are implicitly accounted for in the forward

model in the main text.

Another important consideration is high-degree f-modes. If the strong frequency

dependence we predict applies equally to f-modes, then we must consider if Cassini

would detect them. There are two sources of attenuation: the intrinsic geometric

attenuation with distance of high degree gravity harmonics (R/r)l, and the mono-

tonically decreasing gravity potential coefficient response to each mode which obeys

(l(l + 1))−1/2 [Wu and Lithwick, 2019]. We use a characteristic radius for Cassini’s

close encounter rc ∼ v
R

∫ R/2v
−R/2v r(t)dt ∼ 1.15R where v is the periapse velocity. High

degree f-mode eigenfrequencies obey ω2 ∼ GM
R3 (l(l + 1))1/2, so the modes in the most

likely peak frequency region have l ∼ 50 − 100. Using our attenuation estimates,
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Figure 3.7: In the above plots the x-axis is the frequency in the inertial frame in
which Cassini’s orbit is defined. This is why different m-values are so spread out
in frequency when in Saturns rotating frame they are very close. The y-axis is the
average maximum squared velocity response to a particular mode, using fixed gravity
potential perturbation coefficients for each mode.
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these modes would be reduced by at least 5 orders of magnitude compared to low-

order f-modes, significantly more severe than the 2-3 orders of magnitude reduction

in low-order p-modes. Therefore, we do not expect for Cassini to detect high order

f-modes, even if they likewise had km-scale amplitudes.

The following link directs to the published version of this chapter:

https://iopscience.iop.org/article/10.3847/PSJ/ab9f21/meta
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Chapter 4

The thermal evolution of Uranus

and Neptune

In the midst of winter, I found

there was, within me, an

invincible summer.

Albert Camus

Summary

The internal heat flows of both Uranus and Neptune remain major outstanding prob-

lems in planetary science. Uranus’ surprisingly cold effective temperature is incon-

sistent with adiabatic thermal evolution models, while Neptune’s substantial internal

heat flow is twice its received insolation. In this work we constrain the magnitude

of influence condensation, including latent heat and inhibition of convection, can

have on the thermal evolution of these bodies. We find that while the effect can be

significant, it is insufficient to solve the Uranus faintness problem on its own. Self-

consistently considering the effects of both latent heat release and stable stratification,

methane condensation can speed up the cool-down time of Uranus and Neptune by

95
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no more than 15%, assuming 5% molar methane abundance. Water condensation

works in the opposite direction; water condensation can slow down the cool-down

timescale of Uranus and Neptune by no more than 15% assuming 12% molar water

abundance. We also constrain the meteorological implications of convective inhibi-

tion. We demonstrate that sufficiently abundant condensates will relax to a state

of radiative-convective equilibrium requiring finite activation energy to disrupt. We

also comment on the importance of considering convective inhibition when modeling

planetary interiors.

4.1 Introduction

Giant planet atmospheres are primarily heated by a combination of sunlight and in-

ternal heat leftover from formation. All giant planets except Uranus are observed to

emit more infrared radiation into space than the absorbed sunlight, by approximately

a factor of two. Jupiter’s present day luminosity can be approximately explained by

convective cooling from an initially hot state over the age of the solar system [Hub-

bard, 1977][Hubbard et al., 1999]. To accurately reproduce Saturn’s present day state,

one may need to account for additional heating by the settling of helium rain from

the envelope into the interior [Hubbard et al., 1999][Stevenson, 1983]. However, lumi-

nosity is a crude indicator of thermal evolution since planets can store heat internally

and may have internal heat sources (e.g., differentiation). The present luminosities

of Uranus and Neptune are not well understood because even their basic structures,

including composition, internal structure, and thermal transport properties, are not

well understood.

Measurements of the ice giants’ electromagnetic emission to space began in the
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1960s [Kellermann and Pauliny-Toth, 1966], with high-quality far infrared measure-

ments constraining the effective temperatures beginning in the 1970s [Fazio et al.,

1976][Loewenstein et al., 1977][Stier et al., 1978]. These early observations con-

cluded that Uranus appeared approximately in equilibrium with its received sunlight,

while Neptune emitted more than twice the radiation it received. These observations

were corroborated by higher quality analysis after the Voyager 2 flybys [Pearl et al.,

1990][Pearl and Conrath, 1991]. The 1σ upper limit for Uranus’ energy balance (the

ratio between its emitted and absorbed thermal flux) is 1.14. The lower limit is below

unity, indicating the results are consistent with zero internal heat flow. However, we

know the heat flow cannot be zero because Uranus has a magnetic field. Moreover,

the higher microwave temperatures at long wavelengths (e.g., [Gulkis et al., 1983])

are compatible with heat flow from depth. Uranus must be convective at depth.

Theoretical attempts to explain these observations began promptly. It was imme-

diately clear that the ice giants could not have the same thermal histories as the gas

giants. Early studies concluded that, if these planets cool convectively like the gas

giants, they must have formed at a temperature not much warmer than their current

states [Hubbard, 1978][Hubbard and MacFarlane, 1980], a highly unlikely interpreta-

tion because the energy of accretion ∼ GM2/R far exceeds their current heat content

for any plausible assumption of structure. Alternative theories suggested a large frac-

tion of gravitational heat of formation remains trapped in the interior, but by some

mechanism cannot escape to space [Podolak et al., 1991]. More recent studies suggest

that there is no problem for Neptune [Fortney et al., 2011][Linder et al., 2019], or

even that Neptune’s present luminosity is higher than expected [Nettelmann et al.,

2016][Scheibe et al., 2019]. Uranus’ very low internal heat flux, sometimes known

as the faintness problem [Helled et al., 2020], remains largely unsolved, although it

has been suggested that the problem can be solved by modeling thin layers of static
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stability near phase boundaries [Nettelmann et al., 2016]. Today it is largely accepted

that the adiabatic assumption for the interior is probably inappropriate for Uranus

and Neptune [Helled et al., 2020].

In this work we present a mechanism that inhibits convection near the methane

cloud level, thereby trapping internal heat beneath the clouds. This mechanism has

already been theorized and discussed e.g., [Leconte et al., 2017] [Friedson and Gon-

zales, 2017] [Guillot, 2005], but the effect of methane on the ice giants has not yet

been explicitly quantified and worked into a thermal evolutionary model. In hydrogen

atmospheres, sufficiently abundant condensible species can shut off convection near

the cloud level [Guillot, 1995][Guillot, 2005]. By “sufficiently abundant” we mean

greater than an analytically calculable critical mole fraction qcrit. This value is about

1.4% for methane and 1.2% for water under the relevant conditions in Uranus and

Neptune. Recent theoretical study confirms this effect is also stable against double

diffusive convection in a saturated medium in the fast precipitation limit, indicating

radiation would be the only remaining efficient thermal transport mechanism [Leconte

et al., 2017] [Friedson and Gonzales, 2017]. Methane is certainly sufficiently abun-

dant for convective inhibition to occur [Helled et al., 2020]. The long-term survival of

the configuration against entrainment is still a subject of research; the configuration

may be intermittently eroded, destroyed, and reformed [Friedson and Gonzales, 2017].

In Section 4.2 we begin by laying the heuristic groundwork and providing an-

alytic order-of-magnitude estimates of the effect of convective inhibition. Then in

Section 4.3 we outline a more detailed atmospheric model. We then use this model to

quantify the effects of condensation on the difference between the planet’s observed

effective temperature and its internal entropy. We also comment on the meteorologi-

cal implications arising from convective inhibition on Uranus, Neptune, and Saturn,
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as well as its importance for interior modeling. In Section 4.4 we constrain the im-

portance of both methane and water condensation on the planets’ thermal evolution.

Finally in Section 4.5 we make recommendations for future missions to the ice giants,

and comment on additional applications of this mechanism to the thermal histories

of exoplanets, especially super-Earths.

4.2 Intuition and analytic approximations

A hydrogen atmosphere becomes stable against convection at a critical value of the

condensate mole fraction qcrit that depends on temperature and the properties of

the condensate and the gas mixture [Guillot, 1995] [Guillot, 2005] [Li and Ingersoll,

2015] [Leconte et al., 2017] [Friedson and Gonzales, 2017]. The mechanism is as

follows: consider an isobaric open system hydrogen gas parcel saturated with a vapor

species of higher molecular weight. Assume there exists a finite reservoir of liquid

condensate in equilibrium with the saturated parcel, outside but in contact with

the system. If the parcel is relatively cool, the effect of the condensate will be a

small correction, and the parcel will approximately behave like an ideal gas such

that density decreases as temperature increases. However, as temperature increases

at fixed pressure, the mixing ratio of the condensate likewise increases. Because

the condensate vapor is heavier than the dry air, there comes a crossover where the

Arrhenius relationship in temperature governing vapor pressure saturation overcomes

the linear relationship in temperature governing mean spacing between molecules in a

gas. After this crossover point for the system outlined above, increasing temperature

actually increases the density of the parcel. For this reason, a hydrogen atmosphere

with sufficiently abundant condensate (qmax > qcrit) with an internal heat source will

not convect. It does not convect because the warmer underlying gas is Ledoux stable
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to convection for any temperature gradient if saturated at all levels. In our notation,

q−1
crit =

(
µcL

RT
− 1

)
(ε− 1), (4.1)

where R is the ideal gas constant, L is the latent heat of vaporization, µc is the molec-

ular weight of the condensate, and ε ≡ µc/µd is the ratio of the condensate molecular

mass to that of dry air. Note that our definition of q is the molar mixing ratio, and

is different from the quantity defined as q in [Leconte et al., 2017].

If we neglect radiative transfer of heat, we can analytically approximate the tem-

perature difference between the top and bottom of the stable layer. The bottom of

the upper saturated level satisfies q = qcrit, while the deep well-mixed convective

atmosphere has uniform composition of the vapor satisfying q = qmax. In the limit

of no thermal transport, the stable layer will reduce to a stable interface, with an

unsaturated convective level beneath a saturated convective level. Thus, we can ap-

proximate the top of the deep well mixed convective layer and the bottom of the

upper saturated convective layer to be at the same pressure level p. We define the

temperature at the bottom of the saturated convective layer to be T1, and the tem-

perature at at the top of the well-mixed convective layer to be T2. In this case, if

the saturation vapor pressure ps satisfies the Clausius-Clapeyron relationship where

q = ps/p, we can immediately write down

1

T2

− 1

T1

=
R

µcL
log

(
qcrit
qmax

)
. (4.2)

Equation 4.2 turns out to be a good approximation for very deep clouds (pressure

of order a hundred bars, e.g., the water cloud level in the contemporary ice giants),

where the atmosphere is relatively opaque. This approximation is less accurate when

the atmosphere is less opaque and radiative transfer is more efficient, such as the
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methane cloud deck of the contemporary ice giants, or the water cloud deck earlier

in their thermal histories. Equation 4.2 will also always be an upper bound to the

difference between T1 and T2 because it neglects thermal transport. In practice the

difference between the pressure levels at the top and bottom of the stable layer play

an important role. In Section 4.3, we solve the problem of radiative convective equi-

librium explicitly.

The goal of this analysis is to quantify the effect of condensation on a planet’s

effective temperature. For a given internal entropy, there will be three important the-

oretical effective temperatures we discuss throughout this paper: Te, Tint, and Tab. We

define these quantities here, referring to Figure 4.1 to illustrate a sample atmospheric

profile that corresponds to its respective temperature. The effective temperature Te

(corresponding to the solid red curve on Figure 4.1) accounts for convective inhibition,

and should correspond to the observed effective temperature of the planet from the

outside. The internal effective temperature Tint (faded solid blue curve on Figure 4.1)

accounts for latent heat but not convective inhibition. Finally the adiabatic effective

temperature Tab (black curve on Figure 4.1) is the effective temperature the planet

would have if no condensation occurred at all, i.e.,if the whole troposphere were dry

adiabatic.

We now approximate how this temperature difference between T1 and T2 changes

the effective temperature of the planet. Consider an initially convective atmosphere

(for example, mixed by a cosmic ladle) that has effective temperature Tint. If qmax >

qcrit, then part of this atmosphere will be stable to convection. The atmosphere

will cool from the top, but cannot carry that heat out convectively, causing the

upper layer to relax onto a cooler adiabat until radiative-convective equilibrium is

reached. We wish to estimate the difference between the initial effective temperature
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𝑞𝑇/[𝐾]

𝑝 / [bar]

Figure 4.1: Sample atmospheric profile useful for intuition. Blue curves show wet
adiabatic (wet ad) temperature (solid) and virtual temperature (dashed) profiles.
Red curves show our radiative-convective equilibrium (RCE) solutions, and the black
curve shows the dry adiabatic reference solution, all corresponding to the same interior
entropy. Magenta and purple curves correspond to saturated abundance of methane
for RCE and wet ad respectively, while the corresponding dashed curves show the
local critical mixing ratio qcrit.

Tint and the final effective temperature Te in equilibrium. Entropy increment scales as

dS ∝ dT/T in an isobaric environment, according to the first law of thermodynamics,

and adiabatic processes are isentropic. Therefore if the difference between T1 and T2

is not too large, we can approximate

Te − Tint
Tint

∼ T1 − T2

T2

∼ RT2

µcL
log

(
qcrit
qmax

)
, (4.3)

where Te is the observed effective temperature of the planet after accounting for con-

vective inhibition. This approximation neglects the non-adiabaticity due to latent

heat release, which we address in the following paragraph.

In reality we expect two effects arising from condensation: the tendency toward

sub-adiabatic wet pseudo-adiabaticity arising from latent heat, and the tendency

toward super-adiabatic stable stratification arising from convective inhibition. These
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two effects will be in opposite directions; while latent heat will tend to produce a

warmer effective temperature, convective inhibition will tend to produce a cooler

effective temperature with the same interior entropy. The former effect has been

studied in detail [Kurosaki and Ikoma, 2017], while the latter effect is the subject of

this work. We can estimate the magnitude of the latent heat effect using the definition

of equivalent potential temperature that is conserved along a moist adiabat.

θe(p, T ) = θ(p, T ) exp

[
εps(T )

cpT (p− ps(T ))

]
, (4.4)

where θ ≡ T (p0/p)
∇ab is the potential temperature, ∇ab ≡ γ−1

γ
is the adiabatic gradi-

ent, and γ is the Grüneisen parameter. Using this, we can estimate the temperature

change due to moist adiabaticity as Te−Tint

Tint
∼ exp

[
∇abµcqmax

RT2

]
. Comparing this to

Equation 4.3 demonstrates these two quantities should not scale in the same way.

However, they are comparable in order-of-magnitude under the conditions of interest.

Therefore both effects must be accounted for explicitly in order to fully understand

the effect of condensation on thermal evolution of planets with polluted hydrogen

atmospheres. We perform this calculation in Section 4.3.

The importance of these effects on thermal evolution are as follows. Because po-

tential temperature relates linearly to a reference temperature, the temperature at all

pressures will scale linearly with the temperature at some reference pressure. Like-

wise, the effective temperature of a planet scales linearly with a reference temperature

in the adiabatic region, assuming constant opacity (this is actually a poor assump-

tion, and a fully complete model must include opacity variations due to condensation

explicitly. See Section 4.5 for further details). Therefore, it is possible to model

thermal evolution by assuming a planet’s effective temperature is linearly related to

its internal heat content. The purpose of calculating the difference between the ob-
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served effective temperature Te and the adiabatic equivalent effective temperature Tab

is to explicitly quantify the non-linearity arising from condensation, so that thermal

evolution can be modeled self-consistently. We carry this out in Section 4.4.

4.3 Atmospheric model

We model a radiative-convective equilibrium atmosphere using a two stream gray

opacity approximation for thermal radiative transfer. We seek to uniquely define

the apparent effective temperature Te as a function of a planet’s internal equivalent

effective temperature Tint and condensate abundance qmax. Planetary and physical

properties, such as surface gravity and the physical properties of the gas mixture, are

considered to be fixed.

We also assume the planet is subject to intermittent moist convective events that

overcome the potential barrier of the stable layer. These could occur due to insta-

bilities caused by entrainment over long timescales [Friedson and Gonzales, 2017],

rare impact events, or strong updrafts from the interior. The equilibrium configura-

tion then is reached by gradual cooling, with the upper layer relaxing onto a moist

pseudo-adiabat set by a different potential temperature than the adiabat that sets the

interior. The stable layer meanwhile will have a super-adiabatic temperature gradient

set by thermal radiative equilibrium, see Figure 4.2.

In this section we explore the effect of methane abundances varying between 2–5%.

The most commonly cited number for the deep mixing ratio of methane in Uranus and

Neptune are 2.3% and 2% respectively, because these are the nominal values in the

first published work on the atmospheric structure of these planets derived from radio

refractivity data from Voyager [Lindal et al., 1987] [Lindal, 1992]. However, these
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early works provide solutions to the refractivity data using assumptions of methane

abundance between 1% and 4%, finding all these solutions to be theoretically com-

patible with the observations. Subsequent analysis from ground based and Hubble

observations have likewise found a range of acceptable values for both planets ranging

between roughly 2%-4% for both planets, as well as latitudinal variation in methane

mixing ratio [Baines et al., 1995][Rages et al., 1991] [Baines and Hayden Smith, 1990]

[Karkoschka and Tomasko, 2011]. In this work we are interested in understanding

how thermal evolution is affected by methane condensation. Since the exact mixing

ratio is not precisely constrained and we are interested in this question broadly, we

take sample values for methane concentration between 2-5% to understand how the

effect changes with methane abundance. Unsurprisingly, the effect becomes mono-

tonically more important as concentration increases within this range, as shown in

Figures 4.3 and 4.6.

4.3.1 Defining the boundaries of the stable layer

In this subsection we quantify important pressure boundaries we need to define the

radiative transfer model in the following subsection. We are interested in the case

where condensate is sufficiently abundant to inhibit convection, qmax > qcrit. We

consider an atmosphere where optical depth unity in the IR is at lower pressure than

the level at which convection is expected. At deeper levels (higher pressure) we as-

sume there is a region of rapidly varying condensate mixing ratio in the vapor phase;

this region can be convectively stable as discussed in Section 4.2. Deeper still, be-

low the conventionally defined cloud deck, the condensate mixing ratio is a constant

because the vapor pressure is always less than the saturated vapor pressure at that

temperature. We refer to this below as the “bulk mixing ratio” though it is strictly

only applicable to whatever deep, well mixed layer lies beneath the clouds and says
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prc, Trc

p1, T1

p2, T2

σTe
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(1-f)σT0
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upper layer

deep layer
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p

Figure 4.2: A schematic sketch of the model (not to scale). The red curves represent
temperature increasing to the right, while black horizontal lines demarcate important
pressure levels. The convective layers are labeled θe(Te) and θ(Tint) respectively, to
indicate that their temperature structure is dictated by setting θe and θ to a constant
value uniquely determined by Te and Tint.

nothing about the actual methane abundance at far deeper levels (i.e., the methane

abundance of the planet as a whole). Accordingly, our atmosphere has (from the top

downward) a radiative layer (the stratosphere) a convective layer, another radiative

layer (called the “stable layer” below), and a deep convective layer.

Assuming a two-stream approximation with collimated light beams, the thermal

structure of an atmosphere in radiative equilibrium as a function of optical depth

is T (τ) = Te(τ + 1/2)1/4. We assume the IR opacity to be dominated by pressure-

induced opacity of hydrogen collisions that approximately obeys κ ∼ κ0(p/p0), where

κ0 = 10−2g−1cm2 and p0 = 1 bar. Assuming a different κ0 does not significantly affect

our findings. An atmosphere in radiative equilibrium becomes unstable to convection

at the point where its lapse rate becomes superadiabatic. Under our assumptions,
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this places the pressure level of the radiative-convective boundary at

p2
rc =

4gp0Rd

(cp − 2Rd)κ0

, (4.5)

where Rd is the specific gas constant of dry air, and cp is its constant pressure heat

capacity. Note for ideal gasses Rd/cp = ∇ab. We use a dry adiabatic lapse rate to set

the radiative-convective boundary because we assume the effect of moist adiabatic-

ity is small in this relatively cold part of the atmosphere. Beneath the boundary,

we assume the atmosphere to be moist adiabatic. A moist adiabatic atmosphere

conserves the equivalent potential temperature, Equation 4.4. We set the moist adi-

abatic equivalent potential temperature using the temperature and pressure at the

radiative-convective boundary. By doing this, we define a unique moist adiabat for a

given effective temperatures.

In equilibrium, the mole mixing ratio is set by the condensate’s saturated vapor

pressure q(p, T ) = ps(T )/p(T ). When we define a moist adiabat, the temperature is

uniquely defined at every pressure level. Therefore we can solve for the level p1 where

the atmosphere becomes stable to convection by solving q(p1) = qcrit(T (p1)), where

qcrit is defined in Equation 4.1.

Similarly, we can solve for the bottom of the stable layer by solving q(p2) = qmax,

where qmax is the bulk abundance of the condensate species. This is set using the

pseudoadiabat corresponding to a planet with effective temperature that neglects con-

vective inhibition. By fixing the uninhibited effective temperature Tint that defines

p2, we can solve for the corresponding effective temperature Te that satisfied radiative

convective equilibrium, i.e.,F↑(p2)−F↓(p2) = F↑(p1)−F↓(p1) = σ(T 4
e − fT 4

0 ) where f

is the fraction of sunlight absorbed above the stable layer, and T0 is the equilibrium
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effective temperature with the sun in the absence of internal heat (see Figure 4.2).

Figure 4.2 contains apparent temperature discontinuities, which exist in the model.

Of course, temperature discontinuities are not stable in natural media, as conduc-

tive heat transport will be infinite. Additionally, a temperature discontinuity—even

if stabilized by a compositonal difference—will lead to negligible temperature dif-

ferences due to thin thermal boundary layer convection in an inviscid fluid. The

temperature discontinuities in Figure 4.2 therefore do not actually represent discon-

tinuities in nature, but steep temperature gradients. We provide the following order-

of-magnitude analysis to determine how important these steep quasi-discontinuities

are in the context of the model. The relaxation timescale for thermal diffusion in a

medium with thermal conductivity kt is τc ∼ ρcpD2

kt
, where D is the vertical length

scale of relevance. The timescale for radiative relaxation is the radiative time constant

τrad ∼ cp
8σT 3κ

. We solve for the thickness of the conductive layer by equating the two

timescales solving for D. Using appropriate parameters for hydrogen around 1 bar

(kt ∼ 104g cm s−3 K−1, ρκ ∼ 10−6) we find the length scale to be of order 10-100 me-

ters, small compared to atmospheric length scales (i.e., the scale height). Then using

Fourier’s Law, we find heat conduction to be of order 10−2erg cm−2 s−1 for disconti-

nuities of order 1K (scaling linearly with the size of the temperature discontinuity),

about four orders of magnitude smaller than σT 4
e and therefore not included in the

model. Thus the discontinuities in Figure 4.2 are really there in the model, but are

physically understood to be steep temperature gradients nevertheless unimportant

for the purposes of calculating total heat flow.

We must also comment on entrainment by convection outside the stable layer.

Entrainment will tend to erode and thin the stable layer over time [Friedson and

Gonzales, 2017]. In general for water, the erosion timescale is greater than the cooling
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timescale, indicating that the equilibrium configuration should exist at some times.

However as the stable layer is eroded and becomes thinner, heat transport across the

stable layer will be enhanced, reducing the difference between Te and Tint. Eventually

the thinning stable region will reduce to an interface that may be stable, unstable,

or conditionally stable. We acknowledge that these complications are confounding

factors for our model, and therefore our results that neglect entrainment erosion of

the stable layer should be thought of as an upper bound on the magnitude of the

effect on ∆T ≡ Te − Tint and on evolution.

4.3.2 Radiative transfer across the stable layer

Figure 4.2 is a useful visual reference for this section. In order to compute the

radiative-convective equilibrium solution, we first solve for the equilibrium heat flow

for a system specifying the boundaries of the stable layer p1 and p2, along with their

corresponding temperatures T1 and T2. The temperature structure above p1 is moist

adiabatic, while the temperature structure below p2 is dry adiabatic. In equilibrium

dT
dt
∝ dF

dp
= 0. Then using the two stream approximation of radiative transfer,

dF

dp↑
=
dF

dp↓
=

κ

2g
(F↑ − F↓) (4.6)

with appropriate boundary conditions, we can analytically solve for the upward and

downward heat flux at every level in the stable layer. Of interest for our problem is

the net heat flow from the deep/stable layers to the shallow layer that is convectively

coupled to the photosphere. This is

F↑(p1)− F↓(p1) =
4F2gp0 + F1(p2

2 − p2
1)κ0

4gp0 + (p2
2 − p2

1)κ0

− F1, (4.7)
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where F1 = F↓(p1) and F2 = F↑(p2) are the boundary conditions. We can solve

for these boundary conditions using the uniquely determined temperature structures

above and below the stable layer, i.e.,

F1 =
κ0σ

g

∫ p1

0

exp

[
κ0(p2 − p2

1)

2gp0

]
T (p)4(p/p0)dp, (4.8)

F2 =
κ0σT

4
2

g

∫ ∞
p2

exp

[
κ0(p2

2 − p2)

2gp0

]
(p/p2)4R/cp (p/p0)dp. (4.9)

Using this process, for a given (Tint, qmax) =⇒ (p2, T2) we solve the above nonlinear

equation to obtain Te =⇒ (p1, T1) using the condition F↑(p1)−F↓(p1) = σ(T 4
e −fT 4

0 ).

This defines the observed effective temperature as a function of the internal effective

temperature Te(Tint), shown as the dashed-dotted curves in Figure 4.4a. In order to

relate the observed effective temperature Te to the adiabatic effective temperature

Tab, one must additionally consider the effect of latent heat, shown as solid curves

in Figure 4.4a. Then the net effect, Te(Tab) is shown as dashed curves in Figure 4.3,

where ∆T = Te − Tab. Figure 4.1 shows a sample temperature/pressure profile to

illustrate the contributions from each source. Similar results are shown for water in

Figure 4.4. These figures show ∆T under two assumptions: an initially dry adiabatic

atmospheric profile (solid curves) where moist adiabaticity is not considered, and an

initially moist adiabatic upper layer (dashed curves), as described in detail in the

text. In the dry adiabatic case, Tint = Tab. One may notice that ∆T = Te − Tab

arising from the dry adiabatic case is substantially smaller than Te − Tint in the wet

adiabatic case (dashed-dotted curves in Figure 4.4a). There are two reasons for this.

First, the dry adiabatic lapse rate is steeper than the wet pseudo-adiabatic lapse rate,

which improves the efficiency of radiative transfer. Second, the super-adiabatic stable

region makes less of a difference when the initial profile was already comparatively

steeper than the moist adiabatic case. For this reason, the results are less sensitive

to assumptions about the initial temperature profile than one might initially expect.



4.3. ATMOSPHERIC MODEL 111

60.0 62.5 65.0 67.5 70.0 72.5 75.0 77.5 80.0
Tab / [K]

10

5

0

5

10

T 
/ [

K]

2.0%
3.0%
4.0%
5.0%

(a) Effective temperature changes arising
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the net effect (dashed).
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Figure 4.3: ∆T (Tab) for different envelope abundances of methane qmax between 2-
5%, where ∆T ≡ Te − Tab. The dashed (net ∆T ) curves are the same in (a) and
(b).

Finally we must consider the deposition of sunlight. The primary absorber of

sunlight in Uranus’ troposphere is methane vapor [Marley and McKay, 1999], while

the primary absorber of infrared light is hydrogen collisions. At 1 bar with 2%

methane for example, accounting for methane absorption plus Rayleigh scattering vs.

thermal absorption by hydrogen, the ratio between visible to thermal infrared opacity

is approximately κ�/κt < 10−2 averaging over a broad band in wavelength. This

value of course is not unique; there are windows at certain wavelengths, the methane

abundance changes rapidly with depth, and this simple calculation neglects absorption

by haze and cloud particles. Nevertheless κ�/κt is sufficiently small that we can

plausibly argue that sunlight penetrates significantly beyond the 1 bar level, and most

of the sunlight is absorbed deeper in the atmosphere. This can be parameterized by

simply arguing some fraction f of sunlight is absorbed above the cloud level, and

1 − f is absorbed below. In principle this procedure accommodates any value of f ,

but for our purposes for simplicity we approximate using the limiting cases f → 0 for
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Figure 4.4: ∆T (Tab) for different envelope abundances of water qmax between 3-12%,
where ∆T ≡ Te − Tab. The dashed (net ∆T ) curves are the same in (a) and (b).

the shallow (∼ 1bar) methane condensation level, while f → 1 for deep (∼ 100bar)

water clouds. The difference for the stable layer is that in radiative equilibrium, the

flux through the stable layer must balance with σ(T 4
e − fT 4

0 ) as explained above.

4.3.3 Meteorological implications

The equilibrium solution will be stable if the virtual potential temperature θv is

monotonically decreasing with increasing pressure between p1 and p2:

θv(p, T ) = Tv(p, T )

(
p0

p

)∇ab

, (4.10)

Tv(p, T ) = T (1− q(1− ε))−1 . (4.11)

In the equilibrium cases discussed here, this condition is always satisfied (see dashed

red curve in Figure 4.1). This result should be fully general; it does not depend

on, for example, the choice of atmospheric opacity. In order to trigger a convective

instability, the upper layer would need to become more dense than the deep layer
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(note in this section we use the word “dense” in the virtual potential temperature

sense, i.e.,accounting implicitly for adiabatic expansion/compression). In order to

accomplish this by cooling, the upper layer would need to cool such that the bottom

of the upper layer satisfies q < qcrit, so that further cooling makes the gas mixture

more dense rather than less dense. However, as soon as q becomes infinitesimally less

than qcrit, it will be more dense than the material in the stable layer directly beneath

it, even while remaining less dense than the well mixed gas in the deep layer. This

will cause a small convective instability wherein a portion of the stable layer is eroded

into the upper layer, causing the stable layer to thin and restoring the upper layer to

satisfy q = qcrit at a new pressure level. This will happen in all cases where the stable

layer is of finite thickness. Therefore, in order to trigger a convective instability with

the deep layer, the stable layer must vanish completely, reducing to a compositional

discontinuity between the upper and deep layers. Such a scenario in the limit of heat

transport by thermal conduction and an inviscid fluid results in an infinitesimal ther-

mal boundary layer with an infinitesimal temperature discontinuity. In the optically

thin radiative transfer case, the situation is somewhat more subtle, because rather

than heat flux diverging to infinity, it converges on a finite value (in the two stream

approximation: the upward heat flux from below minus the downward heat flux from

above). Nevertheless, if there is a significant temperature difference between the up-

per and deep layer (as would be required in order to trigger a convective instability),

this finite value is orders of magnitude larger than the luminosity of the planets in

question, for any appreciable temperature discontinuity. This result contrasts with

previous findings [Li and Ingersoll, 2015], which posited the system may behave as

a relaxation oscillator when the upper layer cools sufficiently to become over-dense

and trigger a convective instability. This previous study did not explicitly account for

radiative transfer across the stable layer, instead dynamically cooling from above and

treating the stable layer as a perfect insulator. In our case, we find instead that the
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profile relaxes into a state of global radiative-convective equilibrium; eventually the

upper layer stops cooling as the heat it loses to space balances with the heat radiated

across the stable layer.

After solving for the equilibrium atmospheric profile, it is possible to compute

the convective available potential energy (CAPE), as well as the activation energy

required to disrupt the equilibrium stable layer. Both quantities can be computed in

the same way, using

E =

∫ pb

pa

Rd(Tv,f − Tv,i)
dp

p
, (4.12)

where Tv,f is the final virtual temperature profile (for example, a moist adiabat) ,

Tv,i is the initial virtual temperature profile (e.g., in radiative-convective equilibrium

with a stable layer), and pa and pb are bounding pressures that satisfy Tv,i = Tv,f .

The blue and red dashed curves in Figure 4.1 provide a visual example for how

this calculation can be done. This computed activation energy in units of energy

per mass, can be converted into updraft velocities required to disrupt the stable

layer. In the case of Saturn, if qcrit ∼ qmax as suggested in [Li and Ingersoll, 2015],

then the activation energy required to disrupt this stable equilibrium is quite small,

requiring updraft velocities of only a few meters per second. Therefore the basic

premise of [Li and Ingersoll, 2015] can still be valid, although it may require some

additional mechanism to jump-start the process, for example a strong updraft or

entrainment erosion as described in [Friedson and Gonzales, 2017]. In the case of

Uranus and Neptune with methane mixing ratios further from the critical value,

the activation energy necessary to initiate a convective instability is correspondingly

larger, requiring updraft velocities of order tens of meters per second, far larger than

expected convective velocities. However, if such a disruption were able to occur by

some anomalous updraft, the resulting storm would be extremely energetic, with

CAPE exceeding 10 J/g, substantially larger than even the most extreme weather
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Figure 4.5: Apparent effective temperature Te as a function of internal equivalent
effective temperature Tint considering both methane and water. Colors correspond
to water abundance, increasing downward from 0% to 12% water. The curve style
corresponds to methane abundance, increasing downward from 0% to 5% abundance.

events on Earth.

4.3.4 Interior implications

Interior models of giant planets generally assume a 1-bar equivalent temperature that

sets the internal entropy of the planet. This is usually done using the atmospheric

temperature, and corrected for any non-adiabatic behavior in the atmosphere. Non-

adiabatic models for Uranus’ and Neptune’s interiors and thermal evolution have

recently been carried out (e.g., [Nettelmann et al., 2016], [Vazan and Helled, 2020],

[Scheibe et al., 2021]), finding self-consistent solutions to Uranus’ contemporary heat

flow. Our results are still relevant to many of these models. The so-called thermal

boundary layers at depth from [Nettelmann et al., 2016] and [Vazan and Helled, 2020]

retain an adiabatic convective envelope set by a 1-bar equivalent temperature. Fur-

thermore, the U-1 and U-2 models from [Vazan and Helled, 2020] involve a convective

envelope of homogeneous composition, whose temperature profile is also set using a
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1-bar equivalent temperature. Although our results make no direct statement about

the behavior of the deep interior of the planet that may include extended regions

of static stability, it still applies to the thermal evolution of these upper envelopes.

Because Uranus and Neptune possess magnetic fields, and the latter possesses a sub-

stantial internal heat flow, we deduce that both must be convective at depth, and

that this adiabatic description is probably relevant for at least some fraction of the

interior of Uranus and Neptune. The primary source of non-adiabatic behavior in

the atmosphere is condensation, usually accounted for by the sub-adiabatic gradients

caused by latent heat of condensation. In Figure 4.5, we show the apparent effective

temperature Te against the internal equivalent effective temperature Tint for various

envelope condensate abundances. If convective inhibition does occur, it will largely

cancel out the effect of moist adiabaticity. Therefore, using a dry adiabat to guess

the 1-bar equivalent temperature is a better approximation than accounting for latent

heat alone but neglecting convective inhibition. A better approach could be to use the

analytic scaling relationships in Section 2 to estimate the magnitude of these effects.

The best approach would be to explicitly model the effect of convective inhibition,

using methods from this work or [Leconte et al., 2017].

4.4 Evolutionary model

We present an adiabatic thermal evolution model of Uranus and Neptune. As dis-

cussed, treating the interior as adiabatic is probably inappropriate for the ice giants

[Helled et al., 2020]. Nevertheless it provides a convenient framework to understand

the effect of methane condensation on these planets’ thermal histories in the absence

of an accepted interior model. For an adiabatic model, we assume the total heat con-

tent of the planet’s interior to be a linear function of its adiabatic equivalent effective
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temperature Tab: ∫ M

Mmin

cpTdm = Ac̄pMTab. (4.13)

One way of thinking about this equation is to imagine a small set of layers, or pos-

sibly even one layer, in the form of concentric shells, each of which is isentropic and

homogeneous but of different composition to neighboring layers, with negligible ther-

mal boundary layers between them as would be fluid dynamically expected for a

low-viscosity system. Beneath this set of shells there could be a region, possibly a

substantial fraction of the planet, where there is a compositional gradient and there-

fore inefficient convective transport. This deeper region would not contribute to A

or to the resulting thermal evolution of the planet because it stores primordial heat.

In reality, there would be non-zero thermal diffusion from a stably stratified interior

portion of the planet and its convective envelope, slowing down planetary cooling.

However, if the diffusion timescale for the planet is longer than the age of the solar

system, then this contribution would be small. It is not guaranteed that the diffu-

sion timescale is in fact longer than the age of the solar system. It depends on the

(unknown) thermal transport properties of the (unknown) compositional constituents

of the ice giants’ interiors, and is further complicated by the possibility of thermal

transport by double diffusive convection. Therefore we acknowledge this description

of the interior evolution is imperfect, but it does at least approximately describe

a wide variety of possible interior behaviors, and provides a convenient framework

to self-consistently assess the relative influence of convective inhibition on thermal

evolution while remaining agnostic about the details of the ice giants’ interior struc-

tures. A full description of Uranus’ and Neptune’s thermal evolutions would require

a detailed interior model. Nevertheless under our assumptions, the parameter A is

approximately constant through time because the Gruneisen parameter is rather in-

sensitive to temperature, and its value is set by the fraction of the total mass that is

fully convective. Some fraction of the planets must be convective in order to generate
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their observed magnetic fields.

The rate of cooling depends on the apparent effective temperature Te, while the

heat content of the bulk of the interior is linearly related to the adiabatic equivalent

effetive temperature Tab. The equation governing thermal evolution is then

4πR2σ(T 4
e − T 4

0 ) = −Ac̄pM
dTab
dt

, (4.14)

where T0 is the equilibrium effective temperature of the planet with sunlight if there

were no internal heat source. The radius R is treated as constant because we are

concerned with most of the evolution where the body is degenerate, not any early

very hot phase. The steady increase in solar luminosity (i.e.,time variation of T0)

is ignored. In order to solve the thermal evolution equation, we need an explicit

relationship between Te and Tab. This is done using the method from Section 4.3,

with the results for methane in Figure 4.3 and for water in Figure 4.4. In general the

relationship between Te and Tab depends on the condensate bulk interior abundance

qmax. Without condensation, the relationship is Te = Tab. In this case, Equation 4.14

can be non-dimensionalized into the canonical form

x4 − x4
0

1− x4
0

= −τK
dx

dt
, (4.15)

where x ≡ Te/T
(∅)
e , T

(∅)
e is the apparent effective temperature today, and x0 = T0/T

(∅)
e .

The Kelvin timescale τK = Ac̄pMT
(∅)
e

4πR2σ
(T

(∅)4
e − T 4

0 )−1 scales how long it takes to cool to

T
(∅)
e from an initial arbitrarily hot state. In the asymptotic case T

(∅)
e � T0 (not true

for Uranus!), this is about τK/4, but can be a different fraction of τK in general.

Accounting for condensation, Equation 4.14 becomes

dx

dxab

x4 − x4
0

1− x4
0

= −τK
dx

dt
, (4.16)
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where xab = Tab/T
(∅)
e . The difference between Equations 4.15 and 4.16 then straight-

forwardly demonstrates the effect of convective inhibition by condensation on the

planets’ thermal evolution: it alters the rate of cooling by a factor of dx
dxab

. As we

will see, this factor can be greater than or less than unity. This means the effect can

either speed up or slow down the rate of change of the planets’ apparent effective

temperature at different points in its thermal history. This is especially important

for understanding the results for water.

The fact that Equation 4.16 retains the Kelvin timescale τK makes this formu-

lation especially convenient. This allows us to directly compare the fraction of that

timescale that a given evolutionary model takes to cool from arbitrarily hot bodies

to their current temperatures for different assumptions of the condensate abundance

qmax. Leaving the the effect in terms of the Kelvin timescale allows our results to

be roughly independent of accurate interior models, because τK implicitly encodes

an arbitrary interior model. The results for methane are shown in Figure 4.6, and

for water in Figure 4.7. The results for methane are relatively straightforward; for

the early stages of Uranus and Neptune’s thermal histories, the effect of methane is

unimportant, because the atmosphere is warm enough that methane does not con-

dense anywhere. As the atmosphere cools, methane begins to condense, at first in

the stratosphere above the radiative convective boundary. As cooling continues, con-

vective inhibition begins to extend the radiative-convective boundary downward, as

superadiabatic gradients can be stable. At this point, the measured effective temper-

ature Te departs from its adiabatic equivalent Tab, causing the effective temperature

to drop faster than the interior is cooling. As cooling continues, the layered system

described in Section 4.3 emerges, and perhaps persists today [Guillot, 1995].

The case of water, shown in Figure 4.7, the behavior is more subtle. In this case,



120 CHAPTER 4. THERMAL EVOLUTION

1.0 0.8 0.6 0.4 0.2 0.0
t / tab

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

T e
 / 

T e
(t

=
no

w)
2.0%
3.0%
4.0%
5.0%
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(b) Neptune thermal evolution

Figure 4.6: Thermal evolution model for Uranus and Neptune, with different colored
curves representing different methane abundances. The x-axis is the time before the
present day, scaled to the cool-down time in the dry adiabatic (no condensation) case.
The y-axis is x from Equation 4.16. Line styles and colors are identical to Figure 4.3.

thermal evolution is actually slowed down compared to the adiabatic case. This con-

trasts with previous findings [Kurosaki and Ikoma, 2017], which considered the effect

of moist adiabaticity (i.e., latent heat) but did not quantify the effects of convective

inhibition. If we consider latent heat only, we obtain results in good agreement with

this previous study. In their case, thermal evolution is sped up, because the atmo-

sphere initially remains warm while the interior cools. This allows the planet to lose

heat efficiently when condensation first occurs, speeding up evolution. Our findings

demonstrate that the effect of convective inhibition overwhelms the effect of moist

adiabaticity, so that our story is the opposite. Early on, as condensation occurs, we

find the atmosphere cools faster than the interior, reducing cooling efficiency. Later

on, dx
dxab

from Equation 4.16 becomes less than unity, as demonstrated by the negative

slope at low temperatures in Figure 4.4. Therefore in the case of water, condensa-

tion early in the ice giants’ thermal histories caused the effective temperature to drop

faster than the internal temperature, analogous to what happened with methane con-

densation more recently. However, this temporary speedup of dTe
dt

coincides with a

loss of luminosity, slowing down the rate at which the interior loses heat. Then, over

subsequent evolution, the interior cools inefficiently, and in recent history the effec-
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(b) Neptune thermal evolution

Figure 4.7: Thermal evolution model for Uranus and Neptune, with different colored
curves representing different water abundances. Axes are identical to Figure 4.6. Line
styles and colors are identical to Figure 4.4.

tive temperature changes slower than the internal temperature. The net effect is a

cool-down time that is longer than the dry adiabatic case.

Because the water and methane cloud decks are well separated, the superposition

of the two effects is straightforward. Immediately beneath the methane cloud deck,

the behavior can be accurately modeled as a dry adiabat, because the water mixing

ratio is so small at these relatively low temperatures. Therefore the results of modeling

the whole atmosphere with both cloud decks explicitly is virtually identical to using

∆Ttot = ∆TCH4 + ∆TH2O from Figures 4.3 and 4.4.

4.5 Discussion

Provided qmax > qcrit, when the planet cools to a temperature low enough for conden-

sation, convection can be interrupted. At this point the apparent effective temper-

ature departs from the internal equivalent effective temperature, by the mechanism

described in Section 4.3. We can solve for the equilibrium configuration to derive the

apparent effective temperature Te as a function of qmax and Tint. These results are

shown as the dashed-dotted lines in Figure 4.3 for methane and Figure 4.4 for water.
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Interior modelers should bear in mind that the internal 1-bar equivalent temperature

may depart from simple adiabatic extrapolation of the troposphere by nearly a sig-

nificant factor (see Section 4.3.4 and Figure 4.5).

This behavior leads to the evolutionary behavior observed in Figure 4.6. Before

condensation occurs, the planet cools normally. Upon the onset cloud formation, the

apparent effective temperature drops rapidly. However, upon reaching the minimum,

the apparent effective temperature actually begins to decrease more slowly than the

fully adiabatic case. This effect is present in Figure 4.3 but is more apparent in Fig-

ure 4.4. The net effect for the ice giants is a net speedup of thermal evolution for

methane, and a net slowdown for water. The magnitude of this speedup or slow down

can be no more than 15% in either case, assuming 5% methane molar abundance or

12% water molar abundance. Both effects can occur simultaneously, and superimpose

straightforwardly because their cloud decks are well separated.

As Neptune continues to cool, methane will begin to behave similarly to water,

exhibiting a local minimum in ∆T (Tab). This local minimum is seen most clearly for

water in Figure 4.4 around Tab =180K, but can also be seen for the dashed curves in

Figure 4.3 around 75K, and would be present in the solid curves if the x-axis extended

to lower temperatures. As the planet continues to cool below this local minimum, the

slope of ∆T (Tab) becomes negative, and the rate of change of the thermal state of the

atmosphere slows. Consider the implications of this for methane clouds near the 1-

bar level. This state persists for longer from a thermal evolution perspective than an

arbitrary/random thermal state. That is, this state is a local minimum in ∆T (Tab),

meaning the planet reaches this state faster than it would if it were cooling adiabati-

cally, and leaves this state more slowly than it would if it were cooling adiabatically.

Therefore these planets will spend a longer portion of their thermal histories in the



4.5. DISCUSSION 123

state where the cloud level is ∼ 1 − 10bars than they would in a thermal evolution

model that does not consider convective inhibition by condensation. Perhaps this

consideration renders the surprising similarity of Uranus and Neptunes’ atmospheres’

shallow temperature structures despite their vast difference in insolation somewhat

less improbable than it first appears.

We must consider whether this atmospheric structure is compatible with existing

data, especially Voyager radio refractivity data. The current data has been shown

to be consistent with many different models, including subadiabatic, adiabatic, moist

adiabatic, and superadiabatic temperature gradients [Helled et al., 2020]. The data

has also been shown to be compatible with a wide range of temperature structures and

methane abundances [Lindal et al., 1987] [Lindal, 1992]. The data itself shows a layer

of rapidly varying refractivity near the condensation level, generally interpreted to

be methane clouds [Lindal et al., 1987] [Lindal, 1992][Marley and McKay, 1999]. An-

other interpretation of the same data supports a layer of superadiabatic temperature

lapse rate in the cloud-forming regions of these planets [Guillot, 1995]. In general, our

understanding of the thermal structure of the ice giant atmospheres is incomplete, as

the results from Voyager 2 refractivity data are model dependent, with a particular

degeneracy between assumed methane enrichment and temperature structure. In or-

der to disentangle these variables and have a more confident understanding of these

planets’ atmospheres’ thermal structures, we must return with a mission. It should

be a priority for a future mission to independently measure methane abundance and

temperature, perhaps with entry probes or a well designed microwave radiometer ex-

periment.

These general findings do not consider the long term stability of stable layers in

the atmosphere. As long as the stability timescale is greater than the relaxation
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timescale for a stable layer, the results should approximately reflect reality. However,

the stability timescale is poorly constrained [Friedson and Gonzales, 2017]. If it is

sufficiently short, this could further complicate the dynamics. If that condition is

satisfied, then even if stable layers are intermittently interrupted by massive internal

plumes, large meteor impacts, or instability due to long term erosion by entrain-

ment, they will reform again on geologically short timescales (∼ 100yr). Therefore

the thermal evolution will be governed primarily by the equilibrium state, and not

possible intermittent periods of enhanced activity. Intermediate states where the

equlibrium configuration is thinned over time but not totally destroyed by entrain-

ment erosion would in general reduce the magnitude of ∆T (Tint), so the findings

in this paper should be considered an upper bound. Furthermore, we use a highly

simplified thermal evolution model, not considering changes in planetary radius or

explicitly accounting for the effects of non-adiabaticity at depth. Seasonal variations

in insolation were not included in the model, as these variations average out over

geologic time. However, seasonal variations have been shown to create local tempera-

ture variations of order 10K [Orton et al., 2007], comparable to the magnitude of the

effect of convective inhibition by methane. The possible dynamical and evolutionary

consequences could be the subject of future work. Our atmospheric model also did

not explicitly include the condensate opacities, and may therefore not capture possi-

ble feedback mechanisms. We discuss further the possible effects of opacity variation

due to condensation in the following paragraphs. For these reasons, this work should

be considered exploratory, and further work is needed in order to more confidently

establish the thermal histories of the ice giants while accounting for convective inhi-

bition.

Here we must include a discussion about the effects of opacity variation due to

condensation, which are not considered in this model but which are certainly impor-
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tant for a fully complete understanding of Uranus and Neptune’s thermal states and

thermal histories, and has been considered explicitly by prior works, e.g., [Kurosaki

and Ikoma, 2017]. The variation of opacity affects our results in two important ways:

first, by changing the radiative-convective boundary as vapor condenses out of the

stratosphere; and second, by affecting radiative transfer within and across the layer

of stable stratification caused by convective inhibition.

We begin by discussing the stratospheric effect of opacity variations due to con-

densation. Water and methane are both more opaque than hydrogen in the thermal

infrared, therefore as the planet cools and these volatiles begin to condense and rain

out of the stratosphere, the stratosphere becomes more transparent and the radiative-

convective boundary deepens. At fixed effective temperature, the temperature at the

radiative-convective boundary is relatively unchanged, therefore decreasing the opac-

ity of the stratosphere has the net effect of decreasing the entropy of the troposphere

at fixed effective temperature. Therefore during this stage, the temperature of the

troposphere is cooling faster than the effective temperature of the planet as the strato-

sphere extends downward. Convective inhibition only begins to become relevant when

the stratosphere has cooled sufficiently such that the radiative-convective boundary

has a lower vapor mixing ratio than the bulk abundance. By the time this occurs,

the bulk of the stratosphere is cooler than the radiative convective boundary by ap-

proximately a factor of 21/4, and therefore relatively dry due to the highly sensitive

dependence of saturation vapor pressure on temperature. So the important strato-

spheric effect due to opacity variation we have just described qualitatively, essentially

predates the onset of convective inhibition. This allows us to neglect these dynamics

in our context, although we caution the reader that a fully realistic consideration of

the effects of condensation must also include the effects of opacity variations, which

are important.
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The second effect of opacity variation is on the radiative transfer across the stable

layer. To estimate the importance of this effect, we modifed our method so that

we increased the opacity of the deep layer and stable layer (see Figure 4.2) by an

order-of-magnitude. This changes our results for contemporary methane clouds by

no more than 2%, and for contemporary deep water clouds by <0.01%. The effect

for water clouds is larger earlier in its evolution, but is always <2%. In either case,

the direction of this consideration is to increase the magnitude of ∆T . The reason

this matters less for deep clouds is because the opacity is already very large, and the

effect due to deep clouds is accurately approximated by Equation 4.2, which assumes

a high opacity limit. For shallower clouds where the details of thermal transport are

more relevant, it affects the results, but only as a relatively small correction even

assuming a very large order-of-magnitude change in opacity.

If there are indeed layers of static stability in the troposphere or deep atmosphere

of Uranus and/or Neptune, then they should support gravity waves. Whether we

expect gravity waves to be excited, what their general characteristic would be, and

whether they could be detected from space (for example using an Doppler imager) is

a subject worthy of future theoretical consideration.

Whatever the uncertainties about the specifics, the basic physical mechanism is

likely to be important in the ice giants because of their highly enriched atmospheres.

There may be additional stable layers, for example a silicate cloud level beneath the

water cloud level, or a sulfide/ammonia cloud level. We focus on only two in this

work to demonstrate the general principle without getting bogged down by largely

unconstrained assumptions about the envelope enrichment in each species. However,

the intuition we build here for methane and water can be straightforwardly applied
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to other cloud levels using exactly the same method. This method is also likely to be

applicable to the majority of exoplanets, ranging from super-Earths and water worlds

with hydrogen envelopes, to metal-enriched gas giants. It is clear from this work that

thermal evolution and internal thermal structure may be profoundly influenced by

convective inhibition by condensation. Any complete model of thermal evolution or

internal structure is advised to consider convective inhibition.

The following link directs to the published version of this chapter:

https://iopscience.iop.org/article/10.3847/PSJ/ac091d
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Chapter 5

The cooling and interiors of

super-Earths

I have come to lead you to the

other shore; into eternal

darkness; into fire and into ice.

Dante Alighieri

Summary

In this section we will propose a new model for super-Earth internal structure and

evolution, based on thermodynamic arguments about the coexistence of hydrogen

and silicate vapor. We argue that for hydrogen envelope masses exceeding roughly

10−3−10−2M⊕, the convective contact between the envelope and core may shut down.

The core then cools inefficiently, potentially remaining in a high-entropy supercritical

state for long timescales. The core cooling time scales with envelope mass, cooling

over (Gyr) geologic time for lower mass (∼ 10−3 − 10−2M⊕) envelopes, and longer

than the age of the universe for higher mass (> 10−2M⊕) envelopes. We predict that

super-Earth internal luminosity decreases with increasing envelope mass, and should

129
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be roughly independent of planetary system age for higher mass envelopes. This

model predicts small internal heat flow (of order Earth’s internal heat flux today)

even at early times. If core-powered mass loss is indeed a dominant mechanism for

atmospheric escape, our model predicts it cannot operate efficiently for envelopes

more massive than ∼ 10−2M⊕. Overall we find that super-Earths, rather than mere

larger cousins to our home world, may be truly and profoundly alien with no concrete

“surface” to speak of.

5.1 Introduction

Super-Earths were among the very first observed exoplanets, with Poltergheist and

Phobetor found orbiting the pulsar Lich in 1992 [Wolszczcan and Frail, 1992]. The

structure and composition of these bodies, intermediate in mass between Earth and

Neptune with no analogues in the solar system, has only gradually come into focus

since. The deluge of data from the Kepler mission represents the greatest advance-

ment in our understanding of these bodies, making clear that planets do not have

to become very much larger than Earth before they begin to rapidly increase in size

[Borucki et al., 2011]. These bodies’ mean densities can be described by a composition

dominated by water [Seager et al., 2007], although the dearth of observed high mass,

high density planets suggests many are likely to be a mixture of primarily silicates

and hydrogen. Canonical models usually involve an extended gas envelope in thermal

contact with a magma ocean (e.g.,, [Ginzburg et al., 2016] [Vazan et al., 2018]). This

model, involving a silicate core with an overlying gas envelope, will be the focus of this

chapter. In particular, we will discuss the implications of convective inhibition (see

e.g.,, [Guillot, 1995] [Friedson and Gonzales, 2017] [Leconte et al., 2017] [Markham

and Stevenson, 2021]) as a result of the condensation of silicate vapor.
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Recent observations of Jupiter and Saturn indicate both planets possess an ex-

tended diffuse core [Stevenson, 2020] [Mankovich and Fuller, 2021], indicating that sig-

nificant metal enrichment may go alongside gas accretion during planetary formation.

In this chapter we argue that if the initial envelope of super-Earths is substantially

enriched in silicates, as recent formation models contend [Bodenheimer et al., 2018]

[Brouwers and Ormel, 2020], this can meaningfully complicate our understanding of

super-Earth structure and evolution. We argue that such enrichment leads naturally

to a layer of static stability at depth such that the envelope convectively decouples

from the core, if the envelope mass exceeds ∼ 10−3 − 10−2M⊕. This mechanism is

similar to convective inhibition by condensation [Guillot, 1995] [Friedson and Gonza-

les, 2017] [Leconte et al., 2017] [Markham and Stevenson, 2021], and we extend these

arguments to apply more generally to phase separation of coexisting mixtures. Plan-

ets that satisfy these criteria are likely to be among the most common in the universe

[Borucki et al., 2011]. A layer of static stability at depth dramatically reduces super-

Earth luminosity at early times, so that the core loses heat extremely inefficiently.

Because of the expected low thermal conductivity under the relevant conditions (see

Section 5.3.1), the layer of static stability is likely to be thin compared to the full

extent of the atmosphere, and the temperature change across the stable layer can

be thousands of Kelvin. In the thin stable layer limit, we can precisely predict a

super-Earth’s steady state internal heat flow based on the mass of its envelope. For

massive envelopes with very low luminosity, there can be a non-negligible correction

to the thin stable layer approximation.

We further argue that the core of these planets can be a supercritical mixture

of gases and silicates if the mass of its atmosphere exceed about 10−3M⊕, and that

this high entropy state can persist on geologically long timescales. This model pre-

dicts that the luminosity of planets drops rapidly after isolation, but then remains
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nearly constant for geologically long timescales. This is an exploratory work focused

primarily on constraining the relevant orders of magnitude, but we comment on the

potential import of these findings.

A supercritical core could mix with hydrogen in all proportions, potentially leading

to less dense regions of the core, or extended stable compositional gradients depend-

ing on its formation conditions. Such a scenario has been explored in prior works

[Bodenheimer et al., 2018] [Brouwers and Ormel, 2020], although these works did not

account for the possibility of convective inhibition due to the coexistence of hydrogen

with silicate vapor. The existence of a polluted “outer core” (following the verbiage of

[Bodenheimer et al., 2018]) or “inner envelope” (following the verbiage of [Brouwers

and Ormel, 2020]) is not the subject of this work, although we do find that such an

interior configuration can persist for longer than the age of the universe.

Exoplanet observations demonstrate a bimodal distribution of planetary radii,

with a relative absence of planets in the size range between 1.5− 2R⊕. The prevail-

ing theories to explain this observation posit rapid atmospheric mass loss early in a

planet’s evolution, either by intense stellar radiation [Owen and Wu, 2017] or by the

heat flow originating from a hot core [Gupta and Schlichting, 2019], or a combina-

tion of both effects. This work does not question either result, but adds a caveat to

the core powered mass loss mechanism. If the atmospheric mass loss rate is set by

heat flow from the core, we argue the magnitude of this heat flow may be limited by

convective inhibition. As we will argue, the luminosity of planets with envelopes less

massive than ∼ 10−3M⊕ is not significantly affected by the inhibition of convection.

We note that if the luminosity of the core is indeed a major source of atmospheric

mass loss as has been suggested [Gupta and Schlichting, 2019], that we expect this

process to be considerably less efficient for higher envelope masses. We note this as
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a possible future application of the principles we will outline in this chapter, but do

not explore this particular possibility in detail, leaving it instead as a potentially ripe

subject for related future work.

This work more generally predicts that luminosities for sub-Neptune/super-Earth

class planets with envelope masses exceeding about 2% M⊕ will be roughly inde-

pendent of the planetary system’s age. For planets with lighter envelopes, between

0.1-1%M⊕, this state can persist for billions of years, but may evolve over geologic

time. Subsequent evolution would involve gradual hydrogen degassing from a polluted

core.

5.2 Convective inhibition by silicate vapor

This work largely follows the logic of convective inhibition by condensation in hydro-

gen atmospheres [Guillot, 1995]. In the previous chapter, we investigated a situation

wherein the atmosphere is dominated by hydrogen, with some pollution by volatile

condensible species. In this chapter, we investigate the same mechanism operating

in the opposite extreme—a relatively low-mass hydrogen atmosphere with an infinite

reservoir of volatile condensibles. We note that the difference between a super-Earth

planet and a Neptune-like planet is subtle. In this case, rather than the mixing ratio

trending toward some value qmax � 1, the mixing ratio approaches unity. If the rel-

evant condensing species are silicates, this situation roughly describes super-Earths,

as a deep magma ocean or silicate vapor core provides an infinite reservoir of silicate

condensates available to dissolve in the atmosphere.

First we will present a generalized argument for convective inhibition involving a

mixture of phases. In general, convection will be shut off for a negative temperature
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gradient (that is, temperature increasing with depth) if the coefficient of thermal ex-

pansion becomes negative. This is a familiar enough phenomenon on Earth in the case

of water, where the local minimum of density is above the freezing point. In the case

of water, as you cool from the top convection is shut off as cooler, lower density water

is stable against convection by warmer, higher density water—hence why lakes freeze

from the top down. We therefore begin by considering two coexisting species that

we call “dry” (subscript d) and “condensate” (subscript c). At relatively cool tem-

peratures (“cool” refers to the relative magnitude of kBT and inter-molecular bond

energies), the substances are nearly unmixed and the coexisting phases are nearly

pure. Above the critical temperature, both phases become indistinguishable and can

mix in all proportions. In the limits of low pressure and domination of the dry species

by molar abundance, the partial pressure of the condensate in the gas phase is de-

scribed by an Arrhenius relationship ∝ exp
(
− L
kBT

)
where L is the molar latent heat

of vaporization. Meanwhile, the abundance of the dry species in the liquid phase is

described by Henry’s Law, negligible to first order. In this case, the critical mixing

ratio is the ratio described in Chapter 3 and prior works.

This approximation breaks down at higher pressures and temperatures likely to be

relevant on super-Earths. At higher temperatures, one cannot extrapolate the satura-

tion vapor pressure to pressures approaching the hydrostatic pressure in a coexisting

multi-component system—one must use an empirical phase diagram to determine the

coexistence under these conditions. At higher pressures, the relative abundances of

both species become more symmetrical, and the approximations of both saturation

vapor pressure and Henry’s Law (or negligible pollution) break down. We therefore

present the following derivation that makes no explicit assumption about the nature

of the relative abundances within the coexisting phases, and seek the point at which

the coefficient of thermal expansion α becomes negative. At this point, convection
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is shut off. This derivation still makes the assumption that the gas phase behaves

like an ideal gas, and that the system is in thermodynamic equilibrium (saturation).

The latter especially is a nontrivial assumption as it relies on transport (e.g.,, dif-

fusive, turbulent) of silicates into the gas phase, but prior works demonstrate that

even imperfect transport can nevertheless exhibit convective inhibition [Friedson and

Gonzales, 2017] [Leconte et al., 2017].

We begin with the simple ideal gas case. If we increase the temperature of a

parcel of gas at temperature T by an increment δT at constant pressure, its specific

volume per molecule changes by an amount independent of composition or molecular

mass, δv/v = δT/T . If the composition is fixed this yields the familiar coefficient

of thermal expansion α = 1/T . We now inspect the same temperature increment

δT , but do so while the gas remains saturated with some condensing vapor. For

simplicity we consider a fixed mass of gas whose total number of molecules changes

from N to N + δN as additional condensate vapor molecules enter the system. The

corresponding change in the molar ratio x is δx. By conservation of mass, the total

quantity N [xµc + (1− x)µd] must remain invariant before and after the temperature

increment. Therefore δx(µc − µd) = −δN/N [xµc + (1 − x)µd]. For convective inhi-

bition, we seek the point at which α → 0, i.e., δ(Nv) = vδN + Nδv = 0. Under the

ideal gas approximation, we obtain the criterion for convective inhibition,

δT

T
= δx

µc − µd
xµc + (1− x)µd

. (5.1)

If we assume saturation vapor pressure obeys an Arrhenius relationship (as it will for

low pressure and temperature), ps/p ≡ x ∝ exp
(
− L
kBT

)
, then at constant pressure

dx
dT

= − L
kBT 2x. In general if we assume dx

dT
is linear in x, Equation 5.1 is equivalent to
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the statement

x−1
crit =

(
d lnx

d lnT
− 1

)
(ε− 1), (5.2)

where xcrit is the so called “critical” concentration where the coefficient of thermal

expansion is zero. We use the word “critical” here in the sense of the minimum mix-

ing ratio to initiate convective inhibition following the language of prior works (e.g.,,

[Guillot, 1995] [Leconte et al., 2017] [Friedson and Gonzales, 2017]), but note that this

critical mixing ratio is distinct from the critical temperature and critical pressure at

which the fluid becomes a supercritical state of matter. For all saturated concentra-

tions above this limit, negative temperature gradients (temperature increasing with

depth) will be stable against convection. If x(T ) obeys an Arrhenius relationship,

then Equation 5.1 yields an expression identical to Equation 4.1 in Chapter 3 for xcrit

(qcrit in the notation of that chapter).

Now that we have identified the mixing ratio at which convection is shut off, what

then will be the mixing ratio at which convection reasserts itself? In the previous

chapter, this occurs after the mixing ratio reaches its “bulk” value called qmax. How-

ever, this bulk value as such only applies in the limit where the system is dominated

by gases. In the limit we consider now, where there exists an infinite reservoir of

condensible species (for example in an ocean), what then will be the mixing ratio at

depth? The naive answer is unity, if one is considering simply the saturation vapor

pressure. Under this line of reasoning, the mixing ratio of condensate will continue

to increase as temperature increases, until the saturation vapor pressure of the con-

densate approaches the hydrostatic pressure. Then a stable gas atmosphere would

possess a stable layer that terminates at an ocean with condensate mixing ratio unity.

In reality, it depends on the local pressure.

Figure 5.1 shows empirical coexistence curves of a gas/liquid mixture of water
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Figure 5.1: Empirical coexistence curves between water and hydrogen. At low pres-
sures, saturation vapor pressure is a reasonably good approximation, but at higher
pressures the coexistence is more symmetrical. Data from [Seward and Franck, 1981],
Figure from [Bailey and Stevenson, 2021].
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and hydrogen. At low pressures (e.g., .03GPa purple curve), the liquid phase remains

nearly pure, while more and more water enters the gas phase as temperature increases.

Above the critical temperature of water (about 650K, note the y-axis in Figure 5.1

is in Centigrade), the phases no longer separate and both species can coexist in a

well-mixed supercritical fluid. We expect the basic thermodynamics to play out in

much the same way for a mixture of silicates and hydrogen. Likely the coexistence

curves will look qualitatively similar, albeit increasing both pressure and tempera-

tures by about an order-of-magnitude owing to the order-of-magnitude larger bond

energies within silicate atoms compared to weaker hydrogen bonding between water

molecules. Therefore we expect the mixing ratio beneath the stable layer to depend

on the pressure formation conditions. In the high pressure limit x→ 1/2, and in the

low pressure limit x → 1. This complication may be important from the perspec-

tive of understanding planetary densities and internal composition, and may impact

evolution in the sense that hydrogen may degas from the core as it cools. We will

discuss hydrogen pollution of the core in the conceptual sense in more detail in this

thesis, but will leave the more involved topic of a numerical analysis as the subject of

a future work. From the perspective of understanding the heat content of the core,

this detail is of secondary importance. Even in the limit where the mole ratio is 1:1

between silicates and hydrogen, the mass ratio will still be dominated by silicates.

Therefore in this work, we operate under the assumption that the core remains pure

in order to constrain the circumstances in which this analysis will be relevant. If con-

vection is inhibited at or above the critical pressure of silicates, then regardless of the

mixing ratio at depth, the temperature must be the critical temperature at the top

of the core. Below the critical temperature, the composition of the vapor phase con-

tinues to become increasingly enriched in silicates as temperature increases and the

coefficient of thermal expansion remains negative, therefore the critical temperature

uniquely determines the temperature beneath the stable layer and a new convective
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layer begins. If convective inhibition initiates below the critical pressure, then the

temperature beneath the stable layer cannot be uniquely determined, and depends

on the formation and evolutionary state. In this case, the core will be a magma

ocean as previous studies predicted, although the thermal contact between the core

and envelope will be less efficient due to the existence of a superadiabatic stable

layer. In this work, we will focus on the cases where the pressure at which convec-

tion is shut off is greater than the critical pressure, and the core is a supercritical fluid.

We must add the following caveat particular to silicates that does not apply to

ices that condense at temperatures cool enough that individual molecules do not

dissociate. For silicates, unlike water, the atomic composition of the condensate

in the condensed phase will not in general be identical to the atomic composition

of the vapor phase [Xiao and Stixrude, 2018]. Furthermore, unlike a mixture of

hydrogen and water, hydrogen can react chemically with silicates, complicating the

approximation of pure substances in coexisting phases. The chemistry is varied and

complex, but likely to be of greatest importance especially under extreme partial

pressures of hydrogen is the equilibrium between silicate vapor and silane gas, e.g.,

SiO2 (l) + 4H2 (g) ⇀↽ 2H2O(g) + SiH4 (g). (5.3)

Le Chatelier’s principle states that the equilibrium concentration scales with chemical

activity raised to the power of its stoichiometric coefficient. In high pressure hydro-

gen dominated environments, the above chemical equilibrium reaction will be driven

strongly to the right, indicating that our approximated treatment of silicate vapor

obeying results from ab initio simulations that did not include hydrogen is incomplete.

Detailed modeling of the complicated series of hundreds of simultaneous equilibrium

chemical reactions is beyond the scope of this work (but has been modeled in prior
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works, see e.g., [Schaefer and Fegley, 2009]), though we note its effect with respect to

convective inhibition can still be accurately modeled using the generalized approach

from the preceding paragraphs. The derivation will be different, because the number

of gaseous molecules is actually greater on the left hand side of the equation, such that

δN will be negative when δT is positive. Our more generalized framework is more

flexible and intuitive than previous formulations, allowing for this general principle

to be re-derived straightforwardly in more exotic thermodynamic environments.

In the following sections, we will neglect these caveats, treating the coexistence

between liquid and vapor phases as an Arrhenius relationship while the liquid phase

remains pure. For the behavior of silicate vapor, we use the results from ab initio

quantum mechanical simulations [Xiao and Stixrude, 2018].

5.3 When does convective inhibition matter?

Having established the theoretical foundations for convective inhibition by silicate

vapor, we now seek to delineate under what circumstances these considerations are

relevant. We will do this under the following approximations: neglecting self-gravity

of the atmosphere, an ideal gas equation of state, an adiabatic temperature gradient

below the radiative-convective boundary, and a plane-parallel geometry. We further

use the approximations for the coexistence of silicate vapor with hydrogen gas out-

lined in the previous section. Under the cold Murnahan equation of state, the radius

of a silicate planet scales as the quarter power of its mass, Rc = R⊕(Mc/M⊕)1/4.

We model the saturation vapor pressure as

ps = exp(A−B/T ), (5.4)
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where ps is the saturation vapor pressure in GPa, and the parameters A and B are

11.8 and 45,000 respectively, fitting ab initio simulations from [Xiao and Stixrude,

2018]. Convective inhibition is initiated at pressure p1 and temperature T1 satisfying

ps(T1)

p1

= xcrit(T1). (5.5)

Under our approximations, the total pressure at the bottom of the envelope (or

equivalently the top of the core) is pc = MeMcg
4πR2

c
where Me is the total mass in the

envelope. Conveniently, because Rc ∝M
1/4
c , this can be rewritten to be independent

of core mass and radius:

pc =
GMeM⊕

4πR4
⊕

. (5.6)

The total pressure at the core includes both gas mass MXY and some mass from

silicate vapor, which can be non-negligible. The total mass of the envelope, then, is

Me = MXY + 4πR4
⊕

∫ p1

prcb

εps(T (p))

pGM⊕
dp, (5.7)

where prcb is the pressure at the radiative-convective boundary. This quantity is like-

wise independent of core mass. Therefore for a given envelope mass, the mass at the

top of the core is uniquely determined.

We now make the assumption that the stable layer is thin compared to the full

extent of the envelope, and possesses negligible gas mass. This is equivalent to as-

suming a high opacity, low thermal conductivity limit. We assess the validity of

these assumptions in Section 5.3.1. In this case, we can insist p1 = pc. Because T1 is

uniquely determined for a given p1 according to Equation 5.5, this sets the adiabat for

the convective part of the envelope. Highly irradiated super-Earths are expected to

have effective temperatures very near their equilibrium temperatures (e.g.,, [Ginzburg
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Figure 5.2: Pressure temperature profiles for a sample of envelope properties. Note
the thermodynamic conditions at the base of the envelope, (p1, T1), depend on enve-
lope mass only. Higher equilibrium temperature planets have deeper RCBs.
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et al., 2016]), and the temperature at the radiative-convective boundary will be near

the effective temperature. Using the adiabatic relationship

T1 = Teq

(
p1

prcb

)∇ab

, (5.8)

where ∇ab ≡ d lnT
d ln p
|ab is the adiabatic temperature gradient, invariant if the Gruneisen

parameter is invariant. By combining these considerations, we can uniquely determine

the radiative-convective boundary pressure by specifying the total mass MXY of gas

in the envelope. The luminosity scales with the depth of the radiative-convective

boundary according to [Ginzburg et al., 2016]

L =
64πσT 4

rcbR
′
B

3(ρκ)rcb
, (5.9)

where R′B is the so-called “modified Bondi radius,”

R′B ≡
γ − 1

γ

GMcµd
kBTrcb

. (5.10)

Equation 5.9 intuitively states that the planetary flux is inversely proportional to the

optical depth of the radiative convective boundary, i.e., F ∼ σT 4
e /τ , and is valid for

large τ . Following [Freedman et al., 2008], we assume the opacity scales linearly with

pressure, so that the planetary flux diminishes rapidly with increasing depth of the

radiative-convective boundary. We plot the planetary flux as a function of envelope

mass in Figure 5.3.

Figure 5.3 is centered around an envelope mass of 10−2M⊕. We note for clar-

ity that this value is in Earth masses, not as a fraction of the core mass. So, for

example, a 5M⊕ sub-Neptune/super-Earth that is 1% gas by mass should be read

as 5 × 10−2 on Figures 5.3 and 5.4. We further note that an atmospheric mass of
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Figure 5.3: Core-envelope heat flux in cgs units as a function of envelope mass. This
value should be roughly constant until the core temperature cools to T1. Dashed
horizontal lines show the contemporary flux for three sample planets in our solar
system for comparison.
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∼ 10−2Mc is a realistic estimate for super-Earths based on hydrostatic equilibrium

between the core and the gas disk during formation (see e.g.,, [Ginzburg et al., 2016]).

The behavior of Figure 5.3 shows a monotonically decreasing relationship for plan-

etary flux as a function of envelope mass. Intuitively, one can understand the behavior

this way: the pressure at the bottom of the envelope scales linearly with envelope

mass. Under the thin stable layer approximation, we can then use the relationship

from 5.1 to uniquely determine the temperature T1 at the bottom of envelope such

that x → xcrit. Given the effective temperature, we can use the adiabatic relation-

ship to place the radiative-convective boundary. Assuming fixed T1, we can then use

Equation 5.9 to estimate that the luminosity (or flux, for fixed radius) should scale

approximately as the inverse square of the envelope mass. In reality this is an over-

estimate; accounting for the fact that T1 will increase as p1 increases accounts for the

somewhat shallower dependence of flux on envelope mass.

Figure 5.3 also shows that the flux of the planet is not too sensitive to the planet’s

effective temperature, and that the flux decreases with increasing effective tempera-

ture. From Equation 5.9, we see that F ∼ T 4
e /p

2
rcb, where the flux is the core-envelope

internal heat flux. For fixed Matm =⇒ (p1, T1) will likewise be fixed. Therefore we

can infer the expected scaling for prcb from Equation 5.8. We then find the scaling

relationship for flux as a function to be F ∼ T−1
e , consistent with Figure 5.3. We note

that this result is sensitive to the adiabatic lapse rate, i.e., the Grüneisen parameter.

We note that the critical pressure of silicates, about 1.4kbar, corresponds to an

envelope mass of about 10−3M⊕. We see from Figure 5.3 that the luminosity of plan-

ets near this limit is relatively large, and the core can cool efficiently. Therefore we

consider this the lower bound for which the consideration of convective inhibition is
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interesting. For much lower mass, the flux is sufficiently high that the core can cool

quickly, and prior models subsequently work to a good approximation. Therefore for

all cases of interest to us, the core will initially be in a supercritical state, rather than

a magma ocean.

5.3.1 Estimating the thickness of the stable layer

We must challenge our assumption that the stable layer can be treated as infinites-

imally thin. Furthermore, we will challenge our assumption that the layers of the

planet behave distinctly—either fully convective or fully stable—given the intrusion

of eddy diffusivity. The thermal transport properties of the materials of interest under

the relevant thermodynamic conditions are poorly constrained, but we can set rea-

sonable estimates on their order-of-magnitude. We consider three thermal transport

mechanisms of interest: conductive, radiative, and advective.

In the absence of thermal transport data at high temperatures and pressures, we

resort to the ideal gas estimate k ∼ ρλcv

√
2kBT
πm

. Thermal conductivity should be

roughly independent of density, and the mean free path λ is inversely proportional to

density. Using characteristic numbers, and using the critical temperature of silicates

as an upper bound, we find the thermal conductivity to be k ∼ 105.

Radiative heat transport in the limit where the mean free path is small com-

pared the length scales of the problem (valid for high pressures), we can estimate the

equivalent thermal conductivity due to radiative transfer as k ∼ 4σT 3

ρκ
. The relevant

parameters are reasonably well-constrained in this context, except the opacity. It

is unlikely that the opacity is extremely small. According to hydrogen’s absorption

spectrum, hydrogen can be nearly transparent for blackbody temperatures of order
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1400K. However, in our case the stable layer is a mixture of hydrogen and silicates.

In this case, the stable layer should be a cosmic mixture of many elements, not dom-

inated by hydrogen or any other single element. The diversity and abundance of

composition will make atmospheric windows unlikely. Following [Freedman et al.,

2008], the opacity for kbar to 100s of kbar (the pressure range of interest) should be

significant, plausibly of order 1-100cm2g−1. To be cautious we assume a low opacity

of order 1cm2g−1. In this case we obtain a characteristic thermal conductivity of order

107. If the material is more opaque, the corresponding equivalent thermal conduc-

tivity will be smaller, plausibly comparable to the microscopic thermal conductivity

∼ 105. Our upper estimate is two orders of magnitude larger than the estimate for

conduction, and would therefore dominate thermal transport.

Finally we consider advective heat transport. Although the stable layer is called

such because it is stable against ordinary large scale overturning convection, we can-

not assume this layer is completely stagnant. We know statically stable layers of the

Earth’s atmosphere can nevertheless involve considerable eddy diffusivity due to, for

example, breaking gravity waves [Dornbrack, 1998] [Garcia and Solomon, 1985]. We

can attempt to constrain the order-of-magnitude of this process, although it is highly

uncertain. In order to move material upward, one must do work against gravity. We

can assume as a first approximation that the eddy diffusivity behaves like thermal dif-

fusivity, but acts on deviations away from adiabaticity. For heat flux of order 103cgs

(see Figure 5.3), this predicts an eddy diffusivity of comparable order-of-magnitude

to ordinary thermal diffusivity. Accounting for all these considerations, it appears

radiative heat transport is most likely to dominate.

Using our rough upper bound for equivalent thermal conductivity of the system,

we can estimate the thickness of the stable layer. From Fourier’s Law, F = −k∇T ,
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or L ∼ k∆T/F . For a 1%M⊕ envelope, we estimate that F should be of order 103cgs,

and in general ∆T ∼ 103K. Therefore the thickness of the stable layer should be of

order 100km, or about <1% the expected radius of a super-Earth. The corresponding

pressure drop would be of order a kbar, about 10% the pressure overlying the stable

layer for 1M⊕. For smaller atmospheric masses, the thermal flux will be greater and

the density/opacity smaller, while for larger atmospheric masses the thermal flux can

be smaller but the density/opacity larger. Therefore for our conservative estimates

for relatively efficient radiative heat transport, the stable layer can be non-negligble

in thickness and mass content, and this will add a small but non-negligible correction

to Figures 5.3 and 5.4.

5.4 Implications for thermal evolution

Previous works (e.g.,, [Vazan et al., 2018]) have identified that the existence of a gas

envelope can considerably slow the thermal evolution process, such that a magma

ocean evolutionary phase may persist for billions of years. Our findings here indicate

that thermal evolution of the core could take place even more slowly, owing to the

inefficient thermal transport through a stable layer. We begin by computing the

cooling timescale of a body beginning in the state described in the previous section,

with the top of core at the critical temperature and the bottom of the envelope at

T1 such that convection is inhibited. We assume in the radiative-convective quasi-

equilibrium state that the envelope temperature profile is frozen, that is does not

change in time. This occurs because, if the luminosity of the planet exceeds the heat

transport from the core the envelope, that the convective envelope will cool, further

thinning the stable layer, until the stable layer is sufficiently thin that the heat flow

through the stable layer balances the heat flow out of the planet. As we will argue

later in this section, even if the planetary luminosity initially exceeds the heat flow
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between the core and envelope, the envelope will quickly relax into the equilibrium

state. In radiative-convective quasi-equilibrium,

Lplanet = Lcore = Lradiogenic −Mcorecv
dT

dt
. (5.11)

The cooling timescale, then, is

tcool =
Lplanet − Lradiogenic

Mcorecv
. (5.12)

For simplicity, we assume the radiogenic heat production of silicates matches the

radiogenic heat production in the Earth today. Following [Guillot et al., 1995] we

use Lradiogenic ∼ 2 × 1020Mc/M⊕erg s−1, although of course this quantity is time-

dependent. Furthermore we assume the heat capacity of the core agrees with the

ideal gas limit [Bolmatov et al., 2013]. We use the Earth’s contemporary value 5Gyr

after formation as a lower bound; radiogenic heating is likely substantially larger at

early times, plausibly by more than an order-of-magnitude [Nettelmann et al., 2011].

Assuming the luminosities computed in Figure 5.3, we compute cooling timescales

shown in Figure 5.4 assuming a 2M⊕ core.

As can be inferred from Figure 5.4, the cooling timescale of the core can exceed

the age of the universe for a 2M⊕ planet with an envelope 1% of its mass. For smaller

envelope masses, its cooling timescale can still be geologically long (billions of years).

From these considerations, we infer it is likely that the cores of most observed sub-

Neptune/super-Earths may in fact currently be a high-entropy supercritical fluid,

rather than a magma ocean or a solid core.

We must now inspect the assumption that we can treat the envelope as initialized

in the equilibrium state. An envelope 1% the mass of the core contains about 10% of
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Figure 5.4: Cooling timescales for a 2M⊕ super-Earth.

the molecules. Therefore if the envelope were warm at early time, then the envelope

could cool to a lower luminosity state on timescales short compared to the time it

would take to cool the core and envelope simultaneously. We demonstrate this with a

toy model simulation of the early atmospheric evolution, assuming initially the core

is in a marginally supercritical state and the envelope is adiabatic, with the radiative-

convective boundary at 10 bars. In this sample simulation, the core mass is 2M⊕ and

the envelope is 0.1% of the core mass. We compare two evolutionary pathways in

Figure 5.5.

Over the first million years of evolution, we see that the radiative-convective

boundary (RCB) and the luminosity of the inhibited planet (solid) plunges rapidly,

while these quantities change much more slowly in the uninhibited (dashed) case. We

truncate the simulation after the RCB extends to a depth such that the top of the

stable layer approaches the top of the core, at which point the atmosphere will freeze
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Figure 5.5: Early evolution from an initially adiabatic envelope assuming convective
inhibition as described in the preceding section occurs (solid), and no convective
inhibition (dashed). The radiative-convective boundary pressure level is shown in
black and the left vertical axis, while the luminosity is shown in red and the right
vertical axis.
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and the core begins to cool. If the envelope were initially more massive, the timescale

for it to cool off will be correspondingly larger. This demonstrative simulation is not

intended to represent realistic initial conditions (see Section 5.4.1 for further com-

mentary), but merely intended to demonstrate that even an initially hot state can

relax onto the equlibrium state discussed in the previous section on a short timescale.

In order to compute the thermal evolution of a planet, we assume radiative-

convective quasi-equilibrium at all times. We compute the total energy contained

within the planet, both internal heat content and gravitational potential. The rate of

change of planetary energy is equal to the magnitude of its luminosity. Assuming the

planet’s equilibrium temperature is invariant, and the effective temperature is near

the equilibrium temperature, then according to Equation 5.9 luminosity is set by the

depth of the RCB. Therefore, we are interested in the quantity

dprcb
dt

= −dprcb
dE

L(prcb), (5.13)

where L is the luminosity and E is the total energy content of the planet. E = Q+U ,

where Q is the internal heat and U is gravitational energy. Therefore we are interested

in the total derivative

dE

dprcb
=

dQ

dprcb
+

dU

dprcb
. (5.14)

Focusing first on the internal heat, we begin by splitting up the layers of the planet

(stratosphere, troposphere, stable layer, core):

Q = Qs +Qt +Qstab +Qc. (5.15)

We now compute these quantities analytically, under our assumptions for the envelope
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outlined in the previous section.

Qs = 2πRBcpTeρrcbH
2, (5.16)

where RB is the Bondi radius and H is the scale height.

Qt =
4πR2

icγkB
µ(γ − 1)(2γ − 1)g

(p1T1 − prcbTe) , (5.17)

where T1 is the temperature at the bottom of the troposphere.

Qstab = 2πR2
iccp/g(Toc − T1)(pc − p1), (5.18)

assuming temperature varies linearly with temperature in the stable layer (this is a

contestable assumption, but it matters very little because the stable layer is so short

lived and contains a very small fraction of the total planetary heat anyway).

Next we compute the gravitational energy contributions.

U = Us + Ut + Ustab, (5.19)

where we neglect thermal inflation of the core consistent with our assumption of the

cold Murnahan equation of state. The stratosphere is straightforward:

dUs
dprcb

=
4πR2

ickBTe
gµD

. (5.20)

The troposphere’s gravitational energy is

Ut ∼ 4πR2
icg

∫ r1+∆r

r1

ρrdr +MZ,tgr1, (5.21)
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where r1 is the radius corresponding to pressure level p1, ∆r is the troposphere’s

thickness (recall this is under the plane-parallel approximation). pcloud =
MZ,tg

4πR2
ic

is

the additional pressure at the bottom of the troposphere caused by the integrated

metal mass in the troposphere. Here we model the metal mass of all the vapor in

the troposphere as a shell at a fixed radius, and count the additional density of gas

above that point. It makes the calculation much easier to assume all this mass is

concentrated at the cloud level, rather than allowing the mean molecular weight to

vary in the stratosphere. This should be a good approximation, because most of the

metal mass is indeed near the cloud level. Using the adiabatic temperature gradient

dT
dr

= −g/cp and hydrostatic equilibrium we can derive the density structure

ρ(r) =
(p1 − pcloud)µXY (cpToc + g(r1 − r))∇ab

kB(Toc + (r1 − r)g/cp
, (5.22)

r1 =
kBToc

µocg(∇ab − 1)

[(
pic
poc

)∇ab

− 1

]
+Ric, (5.23)

∆r =
kBTe

µXY g(∇ab − 1)

[(
p1 − pcloud

prcb

)∇ab

− 1

]
, (5.24)

dUt
dprcb

=
∂Ut
∂p1

dp1

dprcb
+
∂Ut
∂T1

dT1

dprcb
+

∂Ut
∂(∆r)

d(∆r)

dprcb
+
∂Ut
∂r1

dr1

dprcb
+

∂Ut
∂MZ,t

dMZ,t

dprcb
. (5.25)

The integral in Equation 5.21 can be solved analytically, and its derivatives with re-

spect to r1 and ∆r are straightforward using the fundamental theorem of calculus.

This is the method used in order to compute the early envelope evolution using

Equation 5.5. The difference between the dashed and solid curves are whether we

include the contribution of the heat content of the core in the cooling Qc = TccvMc,

or if we assume while the stable layer is highly extended that negligible heat escapes

the core. Modeling subsequent evolution is more complicated and will be discussed

further in Section 5.4.2, laying the groundwork for future work.
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5.4.1 Formation considerations

Our analysis so far has focused exclusively on the planet after formation, and assumes

conservation of mass. We must include a brief discussion of the dependence of these

results on formation conditions. The consequential elements to consider are the ini-

tial temperature of the core, the initial placement of the RCB, atmospheric loss at

early times, the distribution of silicate vapor in the envelope, and possible pollution

of hydrogen in the core. We will discuss each of these points individually.

The upper bound for the initial temperature of the core is the accretion energy.

The gravitational binding energy is 3GM2
c

5R2
c

. Under our assumptions for the relationship

between mass and radius for silicate cores, this corresponds to a temperature of

approximately

Taccretion ∼ 2.9× 104

(
Mc

M⊕

)7/4

K, (5.26)

well above the critical temperature for silicate super-Earths. However, such extreme

temperatures imply extremely efficient cooling according to the Stefan-Boltzmann

Law. Therefore a detailed formation model is needed in order to determine the ac-

tual core temperature at early times. Prior modeling of super-Earth planets shows

the core temperature can be maintained at high ∼ 104K temperatures at early times

after the emplacement of the hydrogen envelope [Bodenheimer et al., 2018] [Brouw-

ers and Ormel, 2020]. We point to these results from detailed formation studies to

justify our assumption that the core can exist at or above the critical temperature of

∼ 6.6× 103K [Xiao and Stixrude, 2018] at early times.

The radiative-convective boundary at early time will be determined by the disk

conditions during formation. Formation models find this value to initialize near

roughly 10 bars [Bodenheimer et al., 2018] [Brouwers and Ormel, 2020], varying
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somewhat depending on specific formation conditions. This motivates our choice of

an initial RCB at 10 bars in our illustrative simulation from Figure 5.5, that simply

demonstrates how rapidly a low mass, convectively decoupled envelope can cool off

at early times.

We further did not consider atmospheric loss at early times, a highly complex and

poorly understood phenomenon that is likely a diagnostic phase of planetary forma-

tion and early evolution. This phenomenon has been investigated in detail in prior

works, both atmospheric loss by photoevaporation [Owen and Wu, 2017] or by core

luminosity [Gupta and Schlichting, 2019]. With the exception of the toy demonstra-

tion model for early evolution and cooling of the envelope, this should not be relevant

to our analysis. We are not in this work performing detailed evolution models, but

rather considering a planet in equilibrium in a snapshot in time. We do comment,

however, that the core powered mass loss mechanism may be interrupted when con-

sidering convective inhibition, as it effectively shuts off significant heat flow from the

core to the envelope until the luminosity has been substantially reduced.

Our model assumes the envelope is saturated in silicate vapor, and that the core

is pure silicates. The assumption of a saturated envelope is supported by formation

models that explicitly consider silicate vapor [Brouwers and Ormel, 2020] [Boden-

heimer et al., 2018]. The mechanism for this is the simultaneous accretion of hydro-

gen and silicates, where at early times accretion is dominated by silicates with some

gas pollution, and at later times dominated by gas accretion with silicate pollution

ranging from pebbles to planetesimals vaporizing in the atmosphere before cooling

and raining out, ensuring a saturated envelope. These formation models also find a so

called “outer core” polluted with hydrogen as a consequence of the stage of formation

when some hydrogen is accreted alongside the continued accretion of silicates. At
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later evolutionary phases, this outer core may condense and rain out magma, effec-

tively growing the inner, embryonic core [Brouwers and Ormel, 2020]. According to

our model, we expect a polluted outer core to gradually undergo phase separation,

as we will describe in more detail in Section 5.4.2, although a full evolutionary model

is beyond the scope of this exploratory work. We do however lay the theoretical

groundwork to motivate future work on this topic. We further note that according

to Figure 5.4, for sufficiently massive envelopes the core can stay hot for longer than

the age of the universe, and evolutionary considerations are of secondary importance.

However, we consider the topic of interest because many super-Earth planets with

less massive envelopes may undergo evolution over geologic time.

5.4.2 Hydrogen pollution in the core and commentary on the

evolution of intermediate envelope mass planets

Recent formation models of super-Earths indicate a high metallicity region outside

of the embryonic core polluted with hydrogen. Above the critical temperature and

pressure, silicates and hydrogen can mix in all proportions. The exact nature of the

mixture depends on thermodynamics, and the formation scenario. In the thermody-

namic sense, the mixing ratio depends on the ambient pressure (Figure 5.1), ranging

from a 1:1 mixture in the high pressure limit, and nearly pure silicate in the lower-

pressure limit. As gas accretes on top of the core, the pressure at the top of the core

will increase, potentially allowing more hydrogen to dissolve into the core. Here we

will outline a general heuristic for the subsequent evolution of a hydrogen polluted

outer core underlying an envelope, although a detailed evolutionary model will be

reserved as the subject of future work.

We begin in the configuration outlined in the previous sections: the envelope con-

sists of a deep RCB, a convective troposphere, a thin stable layer truncated above
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by the critical mixing ratio of a saturated envelope, and below by a supercritical

core. The top of the core will be at the critical temperature. The difference for the

current consideration involves an “outer core” consisting of a non-negligible mixing

ratio of hydrogen. How does the core subsequently cool? Initially, the stable layer

is sufficiently thin that the luminosity of the planet is balanced by the luminosity of

the core, and the envelope temperature structure remains frozen. Allow for an in-

finitesimal time step in which the core cools by a small quantity δθ. As this happens,

a thin shell at the top of the core will cool to a marginally subcritical temperature,

and the mixture will phase separate into two coexisting phases of somewhat higher

and somewhat lower metallicity. Each phase will have different density depending on

their composition. The higher density phase will rain down into the outer core and

dissolve in the supercritical mixture, net enriching the outer core in silicates. The

temperature gradient within the subcritical top layer of the outer core will then cause

the layer to become stable against convection due to the arguments from Section 5.2,

joining the overlying thin stable layer. In a timescale short compared to geologic

time, then, an equilibrium temperature gradient will emerge, and the stable layer

will become thicker than it was before. This thicker stable layer will no longer ac-

commodate the full luminosity of the planet with heat flow between the core and the

envelope, meaning the envelope can now continue to cool. The RCB will increment

deeper, until the stable layer has thinned sufficiently that the full heat flow of the

planet can be accommodated by the core. At this point the configuration has reset,

matching the initial conditions but with a somewhat enriched core, a somewhat more

massive envelope, and a deeper RCB. By this process, the outer core can gradually

degas, separating into an increasingly enriched outer core and an increasingly mas-

sive envelope, until the outer core approaches a silicate mixing ratio of unity and the

configuration considered in the previous section emerges.
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The timescale for this cooling can be estimated to first order from Figure 5.4,

although a detailed model is necessary for more precise results. The cooling of a

hydrogen-polluted core will proceed slower than a simple cooling of a pure core,

because the luminosity of the planet will continue to appreciably decrease as the RCB

increases in depth, and the phase separation and settling of higher density of material

at depth will provide an additional source of heat through gravitational energy. A

detailed model of this generalized evolution will be the subject of a future work,

following this heuristic outlined above and the equations from the main Section 5.4.

In this more generalized case, the derivatives dQ
dprcb

and dU
dprcb

will be considerably more

complicated when the relevant pressure levels and compositions are time variable.

Additionally, the ideal gas approximation is unlikely to be appropriate for the extreme

pressures present in the outer core, and a more sophisticated equation of state must

be adopted.

5.5 Discussion

We have presented a new model for the interior and evolution of sub-Neptune/super-

Earth class planets, likely to be the most common planets in the universe [Silburt

et al., 2015]. Similar to the concept of convective inhibition that has been in the lit-

erature for decades [Guillot, 1995] and has generated renewed interest in recent years

[Leconte et al., 2017] [Friedson and Gonzales, 2017] [Markham and Stevenson, 2021],

we generalize these arguments to apply in the limit where the condensing species

rather than the dry gas dominates in abundance. We find an extreme case of con-

vective inhibition, wherein a hydrogen atmosphere with a layer of static stability can

effectively insulate a core at very high temperatures (103 − 104K) for geologic time,

or potentially longer than the age of the universe.
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This model should be thought of as exploratory, and further work is necessary.

To begin with, more work needs to be done demonstrating the general mechanism

of convective inhibition in either a laboratory setting or a high-quality physics-based

simulation as an emergent phenomenon. Details about our assumptions, including

the assumption of saturation and thermodynamic equilibrium, must be assessed in

a dynamical context. Furthermore, this model must be coupled with a realistic for-

mation scenario, as the subsequent evolution may be sensitive to the planet’s initial

conditions. Additionally our simplified assumptions of a plane-parallel atmosphere

and an ideal gas equation of state are not likely to be appropriate, as the radii ob-

served on super-Earths from transit depths indicate nearly half the total radius may

be the envelope, implying the necessity of a spherical geometric treatment. The stable

layer, which for low heat flows may not be extremely thin, must also be considered

explicitly along with relevant thermal transport properties. Finally a serious inves-

tigation must explicitly account for the possibility of hydrogen pollution in the core,

likely to be substantial based on both formation and thermodynamics arguments.

Our model is of interest for the following reasons. First, we predict the luminos-

ity of these planets will be very low, roughly between the luminosity of Earth and

Neptune or less, and will also be rather insensitive to the planetary system’s age.

This can potentially be tested by direct imaging of further out exoplanets in the mass

range of interest. Second, if the luminosity of the planet does not significantly exceed

the production of heat by the core, e.g., by radiogenic heating, convection within the

core may shut off, thereby shutting down any dynamo producing a magnetic field.

Third, the temperatures within the core may be so extreme that the contribution

to the planet’s density due to heat cannot be neglected, and the required quantity

of hydrogen to match observed exoplanet radii may be smaller than usually thought

(see e.g., [Bodenheimer et al., 2018]). Finally, this model for super-Earth interiors
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further demonstrates the importance of considering exoplanetary systems holistically,

thinking about fundamental thermodynamics, and remembering that our own planet

may be atypical. Indeed, the term “super-Earth” itself may be misleading, as bodies

significantly larger than Earth likely do not resemble our planet at all.
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