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Electromagnetic Pulses at the Boundary of a Nonlinear Plasma

E. H. Satorius

ABSTRACT

This paper describes an investigation of the behavior of strong
electromagnetic pulses at the boundary of a nonlinear, cold, collision-
less, and uniform plasma. The nonlinearity considered here is due to
the nonlinear terms in the fluid equation which is used to describe
the plasma.

Two cases are studied. First, we consider the case where there
is a voltage pulse applied across the plane boundary of a semi-infinite,
nonlinear plasma. Two different voltage pulses are considered: a delta
function pulse and a suddenly turned-on sinusoidal pulse. The result-
ing electromagnetic fields propagating in the nonlinear plasma are
found in this case. In the second case, we consider the reflection of
incident E-polarized and H-polarized, electromagnetic pulses at various
angles of incidence from a nonlinear, semi-infinite plasma. Again, two
forms of incident pulses are considered: a delta function pulse and a
suddenly turned-on sinusoidal pulse. In case two, the reflected elec-
tromagnetic fields are found.

In both cases, the method used for finding the fields is to
first solve the fluid equation (which describes the plasma) for the non-
Tinear conduction current in terms of the electric field using a per-
turbation method (since the nonlinear effects are assumed to be small).
Next, this current is substituted into Maxwell's equations, and finally

the electromagnetic fields which satisfy the boundary conditions are

found.
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1. Introduction

Among the first observed nonlinear effects in a plasma was the
cross modulation of broadcast signals in the ionosphere by the strong
Luxembourg station signal. This was reported by Tellegan's paper [1]
in 1933. In order to explain Tellegan's observations, Bailey and
Martyn [2] considered the heating effect of a passing electromagnetic
wave on the collision frequency which in turn affects the propagation
of another wave in the disturbed medium. With known numerical values
for the physical parameters of the ionosphere and the broadcast sig-
nals, their theory predicts a detectable cross modulation.

A more formal approach to the problems of nonlinear wave
propagation in plasmas involves solving Boltzmann's kinetic equation
for the electron distribution function in an ionized gas in the
presence of disturbing electromagnetic waves. Then, from a knowledge
of the distribution function, the current is obtained through the re-

Tation

J(rst;E) = Ne j v f(r;tsv;E) dv (1.1)

where f(r;t;visE) is the single electron distribution function, N
is the electron density of the plasma, and E 1is the electric field.
It is noted here that throughout the rest of this thesis we assume
that only electrons contribute to the conduction current.

Expression (1.1) is expanded in a power expansion in E ,

VizZ.,
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where k s the four vector (k,w)

A s 1 miker +iwt 3
J;(kE) = ——-—T[ e j;i(r,t) d°r dt
(2m)

(31 is the ith component of j),

and
4 4
d'k d 'k

(n) 1 n 4 4
dx = « e (2m) " 8" (k =ky=+ee =k_)

(2m)* (2m)" ‘ "

Note that the nth order term in (1.2) defines the (n+1)th rank tensor
Oij]"'jn, which is the nth order conductivity tensor. Equation (1.2)
is then substituted into Maxwell's equations and the resulting non-
linear equations are solved for E . This is the approach which will
be carried out in Chapter 2.

Al'tshul and Karpman [3] derive the expansion (1.2) (for a
collisionless plasma) in terms of the unperturbed Hamiltonian,

- [NRY-
Ay = ?ﬁ'(g-' & Ao)

where P is the canonical momentum and B, = VxA, s the background

*
In this thesis all four vectors will be written with an arrow. Also,
a carat over a variable will denote the Fourier transform of that
variable with respect to space and time. A tilde over a variable
will denote the Fourier transform of that variable with respect to
time only.
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magnetic field. Melrose [4] also derives (1.2) (for a collisionless
p]asma)* using the relativistic, unperturbed Hamiltonian (which

simplifies the formal calculation),
_r.2 4 e 2 2-1/2
Hy = [m"c” + (P - £ A))7c"]

Tsytovich [5,6] develops an expression for the lowest order, nonlinear

conductivity tensor of a collisionless plasma 0330

**
considerably when it is assumed that the plasma is also cold. These

which simplifies

results of Tsytovich are further discussed and made use of in the next
chapter. Chan [11] derives an expansion similar to (1.2) for the case of
time harmonic, plane electromagnetic waves. Unlike the papers [3-6],
Chan considers a nonlinear plasma for which the nonlinearity is due
mainly to collisions. For a brief discussion of two different types
of plasma nonlinearities (due to heating and due to the Lorentz force
term) one is referred to Appendix D.

Analogous expansions to (1.2) expressing the polarization in
terms of the electric field are utilized in the study of nonlinear

optics, Vviz.,

* Actually, [3] and [4] derive expansions for the current in terms of
the vector potential A. But A can be expressed in terms of E through
the gauge equation. See, for example, Ref. [14], page 14.

**As discussed in [5,6], a plasma is considered cold when the mean thermal

velocity of the plasma electrons is much less than the phase velocity

of the electromagnetic waves in the plasma.
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P.(r,u) = = J Yo N (T )E (w )E (w )dx(n) (1.3)
i A= i3y.--3, 1°72 n J] 1 J,on
= _ fwt .. .th
where Pi(r,w) = 5 Pi(r}t)e dt; (Pi the 1~ component of P,
the polarizability); and dx(n) = G(w—w]—...—wn) dw]...dwn.

Equation (1.3) and its Fourier inverse are further discussed
by Owyoung [7] and Butcher [8]. Bloembergen [9] derives the lowest
order, nonlinear susceptibility tensors Xij]"‘jn‘ This derivation
is quantum mechanical, that is, the electron distribution function in
phase space is replaced by the density matrix p, and the variables
P and r are replaced by their corresponding quantum mechanical
operators. Kubo [10] gives a further discussion of the kinetic and
quantum mechanical approaches to the study of nonlinear media.

After the tensors Oij]“'jn have been derived (or Xij]"'jn

in the case of a nonlinear crystal), one is faced with the problem of
solving the nonlinear Maxwell's equations for the electromagentic field.
Various approximate schemes have been devised for solving these equations.
In the case of nonlinear plasmas reference is made to Chan [11],
Bassaninni [12],Tsytovich [6], and the book by Ginzburg [13], especially
Chapter 8. Ginzburg's book has a very thorough set of references dealing
with electromagnetic wave propagation in a nonlinear plasma. Further
references can be found in the paper by Bornatici and Engelmann [15].
In the case of nonlinear optics, reference is made to Armstrona,
Bloembergen, Ducuingyand Pershan [16], Bloembergen and Pershan [17],
Bloembergen [9], and Small [18].

An iterative scheme used most notably in [9], [11] and [17]

and which will be used in Chapter 2 is to expand the electric field in

a perturbation expansion



Ve (1.4)

where Eﬁ]) is the solution to the linear Maxwell's equations with

35 (R3E) = o0y (RRIE, (R) (or, Pylrou) = x;, (wE,(w))

Substitution of (1.4) into the nonlinear Maxwell's equations
will yield a hierarchy of equations--the nth equation being the wave equa-

. 2 - -2
tion for E(n) with a source distribution depending on Eﬁn ]),E(n ),---

(1)

Eﬁ]). Therefore, by solving for E one can generate, in principle, all
of the Eﬂn). In practice, however, one usually neglects all terms
higher than n=3 in (1.4).

Another approximate scheme used in [6], [16] and [9] is to

write the solution E in the form

E = A(r,t) e'keD - Tut (1.5)

where A(r,t) is a slowly varying function of r and t, for which
only the first derivatives with respect to r and t need be included.
An equation for A is then derived which is solved. Whitham [19] has
developed an interesting approximate method which is used in [18].
This method consists of deriving equations for averaged quantities
(which are related to the general solution) from conservation equations,
such as the energy equation.

With the exception of [18], harmonic time dependence is assumed
in the above references, [11],[16],[17]. A study of the tran-

sient behavior of electromagnetic waves in nonlinear plasmas and
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crystals has not received quite so much attention. Among the first

to study transients in nonlinear plasmas was Fejer [20]. His paper

dealt with the interaction of short, pulsed radio wayes in the iono-
sphere. Kroll [21] considered the transient build up of electromag-
netic waves from initial noise levels in crystals wiiich are under intense
il1Tumination from suddenly turned on lasers. Kroll's method is to
linearize the nonlinear, coupled electromagnetic-elastic wave equations

by writing the electric displacement field as

D = D cos(wt - k-r) + 94(£3t)

where D is a constant and ]QO[ >> IQJ[. The resulting linear equations
in QJ and u (the elastic displacement) are then solved. Kryukov and
Letokhov [22] consider the nonlinear propagation of Tlight pulses in

a resbnant]y amplifying medium. They use the approach described above
in connection with equation (1.5).

Aside from these papers, [20]-[22], the literature dealing
with transient electromagnetic wave propagation in nonlinear media is
relatively sparse. There are, however, several reasons why an investi-
gation of nonlinear transient phenomena is desirable. At present,
various parameters of a plasma are measured by observing the linear
transient electromagnetic fields which propagate in a plasma and are
reflected from a semi-infinite p]asmaf However, it may be possible to
obtain more information about plasma constants such as the plasma
frequency by observing the Towest order nonlinear transient fields which

propagate in the plasma. We remark here that there are a number of

See, for example, reference [26]
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papers concerning linear transiént pulses in a plasma and pulse reflection
from a plasma. Reference is made to Case [23], Knop [24], Wait [25],
Chabries and Bolle [2€], and Kenny [27]. The papers [23]-[26] are
concerned with the linear response to electromagnetic waves incident
upon half-spaces and slabs of isotropic plasmas. Kenny [27] considers
the problem of radiation in isotropic and uniaxial plasmas by a suddenly
turned-on, harmonic dipole.

Another reason for the study of transients, at least in the
case of nonlinear optics, is the recent development of "mode-locked"
Tasers which are capable of generating intense Jight pulses with a
duration on the order of a picosecond. Actually, M.J. Colles at
Harvard University and Kaiser and his co-workers at the Technical
University of Munich have discovered mode-locking procedures capable
of generating pulses as short as .3 picoseconds. For a very good
summary of the advances in this field, reference is made to the article
by Alfano and Shapiro [28] . Reference is also made to the introduction
of the paper by Kryukov and Letokhov [22].

It is the purpose of this thesis to determine the Jowest
order, nonlinear transient response as well as the steady state response,
from an isotropic, cold, collisionless plasma. In Chapter 2 the hydro-
dynamic equations are used* to derive the Towest order nonlinear

tensor o.

ke Also in Chapter 2 we derive the nonlinear conduction

current. In Chapter 3 we solve the nonlinear Maxwell's equations for
the case of transient propagation in an infinite nonlinear plasma. In

this chapter we consider the case of an electromagnetic field where the

*

The use of the hydrodynamic equations is justified in the 1limit of a
collisionless plasma. For a further discussion of this point, see
Ref. [29], page 52.
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component of the electric field E perpendicular to the direction of

propagation is originally a delta pulse. We also consider the case

where E is originally in the form of a suddenly turned-on sinusiod, viz.,

m
~
=]
v
+
At
|

= E, s(t) Case I

m
>
=)
-
o
et
1

Eocos(wot) H(t) Case II

Then, writing E = Eﬁ]) 4 Eﬁz) where EF]) is the appropriate Tinear
field with the given initial conditions, we solve for Eﬁz)——the Towest
order nonlinear response. In Chapter 4, a calculation of the lowest
order nonlinear response is made for the case of reflection from a
semi-infinite, nonlinear plasma. In this chapter we consider the case
when the incident electric field is a delta function, and the case
when the incident electric field is a suddenly turned-on sinusiod.

The method used is essentially that used in [17], but adapted to the

case of arbitrary time dependent fields.
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2. Nonlinear Conduction Current and Maxwell's Equations in a

Nonlinear Plasma

Throughout the rest of this thesis we consider an isotropic,
cold, collisionless plasma and therefore will use the hydrodynamics

. 3 - - . * .
equation in 1its description, i.e.,

At (wpy=EEF LX) (2.1)
_g_r%_-]- A (ny_) =0 (2-2>
i: eny_ (2.3)

where, v is the electron velocity; n is the electron density; j is
the conduction current; E, H is the electromagnetic field; ¢ is the
velocity of light, and m and e are the electron mass and charge,
respectively.

What is desired is an expansion much 1like (1.2) for_i (K).
Therefore, the first step is to Fourier transform equations (2.1) - (2.3).
It is noted that the following definitions will be used concerning Fourier
transforms:

If ¢(r,t) is some function, then its Fourier transform will be

given by

*
In most of what follows, we will be using the development found in
reference [6], Chapter 2.
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3(R) = —L J s(rot) ellet = Krlguge
(2n)*

where K is the four vector (k,w).
Of course, a function can always be recovered from its
Fourier transform by the relation

b(r,t) = f 5 (Re-ilot-kor) o

Use will also be made of the fact that if ¢(r,t) = g(r,t)h(r,t),
then

b (R) = f 9k AR - &) dF,

def . .
= g(K) * h(K)

Likewise, if o(K) = g(K)h(K) , then

o) = (20 [ alr - g t - t)hlrgsto)drgdty

def
= (2n)* glrot) * h (r,t)

Therefore, the Fourier transforms of equations (2.1) - (2.3)

are given by

() + 1 [ QR - k)R = SER) 42 [ UKD x (R @
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where dx = dfidﬁéﬁ(ﬁ}- Eﬁ - ?é).

To obtain the desired expansion (1.2), we solve equations
(2.4) - (2.6) for jﬁE} in terms of Eﬁﬁﬁ as follows

We first use the Maxwell equation

oH
'a—t=—VXE_

o|l—

or,equivalently,

1 omy - k op
< H(k) = > x E(K)

Then we can write the Lorentz force as

i(—}]) Ay ] AL ~
x H(Ky) = — v(kq) x (ksz(kZ))
c w2 e
ky - . . EK) .
= 2 (U(R)) E(R) - =5 (k) (R))
w2 U)2
(2.7)
Substituting (2.7) into (2.4), we have
v(R) = de gy 4 le [ o (R BB + [ (ks (&)
() - i BN (2.8)

Note that all terms on the right hand side of (2.8) except the
first describe nonlinear effects. The first, on the other hand, describes
the familiar small oscillations of a free charge in a wave field E(EW.
Assuming the nonlinear effects are small and neglecting them in the

first approximation, we have



v v @) = e g (2.9)

To find the Jowest order nonlinear effect, with respect to_ﬁ(?), we
substitute (2.9) into the nonlinear term (2.8). We see at once that

the last term on the right-hand side of (2.8) becomes zero, and obtain

) 2 k . A
- - & J—-’?— (E(R,)+E(R,))da

m w s
2 k n y
- -5 [ — (E(R))-E(Ky)) (2.10)
2m-w wws

Here we have symmetrized the result for k,~ (k; + k,)/2 = k/2. This

is always possible because the remaining expressions are symmetric with

respect to the indices 1 and 2.
Substituting the expansion i(ﬁ) = i(])(?) + i(z)(kﬁ into (2.5)
and assuming that in the zeroth order approximation n(r,t)= ”0(£9t) = n,

(where o is the electron density of a homogeneous plasma) we have:

n(®) = @) + (M) (2.11)
where,
n(0)() = [ n (rot)e! K Darat- n s(R)  (2.12)
(2)*
and,



Jl

0 k3@ (2.13)

Substituting this expansion (2.11) into (2.6) gives the desired

result.
itk = 304 5@ (2.14)
where,
G EA CAMTCAT
= eny [s(0(® - Ky - RV (R ek,
=en ;(])(R3
0.__
Substitution of (2.9) into this relation gives,
R ie™n_ . iw R
i@ = — k) - 2 E® (2.15)
w m TwW
where, ?
2 4n n,e
wp = ———— 1is the plasma frequency.
m
We also have:
12 = e [ aM @M@y + 20 @ &)
noie E(R ie ¢ ndeZEV P YLE(L
e jmwz (ky -E(F, D= E(R,)- E(R))-E(K,)] o
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After symmetrization of the first term with respect to the
indices 1 and 2 we finally obtain

. wp € d
@@ - P J A [§
8 mmn w

(2.16)

Equation (2.14) is the required expansion of iﬂﬁ) in terms of
the electric field.

It is not quite in the same form as (1.2).

We
can, however, obtain the Towest order conductivity tensors o.. and
%3 3n by writing

1 > o oy ooy,

1272
-Ej(k’])En(IZZ) (2.17)
Comparing the expansion (2.14) with (2.17) gives,
Tw
0. (KK) = —B— 6.
IN 1 4ﬂw] iJ (2.18)
d *
and
N -—ewpz(ZTr)4 k2n k]. k1.
o5 3n(Kskpsko) = —— (85 . * Sin ;']—““ 83n ;‘“)
(2.19)

*
The factor (2v)" in (2.19) is not present in reference [5] or [6]. This
is due to the definition of dk(n) in (1.2).
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It is seen that the first term in (2.16) is associated with
the nonlinear velocity, iﬁZ). This electron velocity arises from
two terms in (2.7). One term is the Lorentz force which interacts
with the linear velocity !ﬁ]) through the force m%' yﬂl) x H. The
other is the term (v-v) v on the right hand side of (2.1). It is
also seen from equation (2.10) that Q‘Z) is in the direction of k.
Therefore, the first term in (2.16) represents longitudinal conduction
currents in the plasma which are excited by the nonlinear interaction
of either longitudinal or transverse waves. The last two terms in
(2.16) correspond to the first order correction of the electron
density ﬁ(])(f). These two terms can only be excited in the first
approximation by longitudinal waves. Transverse waves, for which
v-E=0, cannot excite those terms. Therefore, we can attribute the
second order, nonlinearity of a cold, collisionless plasma to the
nonlinear interaction of the Lorentz force with the Tinear velocity
if]) as well as the first order correction term ﬁ(]) to the equilibrium
electron density.

Before turning to the nonlinear, Maxwell equations, we note
that the effects of temperature and collisions have been neglected in
deriving (2.16). Of course, throughout this thesis we will not consider
these effects. However, to properly include these effects one must
start with the kinetic equation. Using the Vlasov equation (2.20),
Tsytovich [5] derives an expansion in the form of (1.2) for the
conduction current of a collisionless plasma in which the equilibrium

temperature is not zero

1 -
st vevf +ome [E + TV X H] - vEf =0 (2.20)
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[ee]

Tsytovich substitutes the expansion f = = fiyi into the Vlasov
equation. In this expansion, f is the e};gtron distribution function
and y is the expansion parameter. A hierarchy of equations are
obtained for the fi' For instance, the Fourier transform of the

equation for fi is

i(akev)F) (R2K) = eF(R)-7,7, (p) (2.21)

where fo(P) is the equilibrium distribution function.

2
- ?%FT p = electron mementum
_ m
olR)= ng 3/2 © T = temperature
(27kT)
of electrons
: k = Boltzmann's constant

: _ L) 0 r .
WITh Vp = = &t apr &y g &g and F(K) = E(R)(T-k-v/w) +

The Fourier transform of the equation for f2 is

1(w-k-v)f,(p,K) = e JE(I?]MR%] (p,K,)dx (2.22)
where
X eE("‘(')).V - (E_) (from (2.2]))
F.(p,R)= £0
1 Fky)
and dx = d ]dkza( —k]—kz).
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Equations (2.21) and (2.22) yield for the Tinear and second

order, nonlinear currents

dp

(1) g o
Al ( ) (2'IT)3

n

Q2 E(?)-vgfo(g) dp

B ﬁﬁfﬂ - kv (2n)3 (2.23)
M2y e [, ; dp
370 (k) = = f Efz(p_JZ)(zﬂ)3 (2.28)

As a matter of comparison with (2.19), Tsytovich derives the

*
nonlinear conductivity tensor 944 from (2.22) and (2.24).

V. [ ke v V.
T oo = -e3(2n)4 J —1 | - = QY —l-(gq-v )L
TJn w-Kev { w.l op w R
[ k,ev v ]
1 LS n )
iy ~ Xl L(]_ oy ) %, * g (EQ'VR)_
; d (2.25)
o(E) A
(2m)

Equation (2.25) represents the second order conductivity tensor for a

warm, collisionless plasma. As shown in [5], this expression for % in

reduces to that given by (2.19) when the mean thermal velocity of the

*See footnote (2) concerning the factor (27r)4 in (2.25).
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plasma electrons, vKT/m , is much smaller than the phase velocity of the
electromagnetic waves in the plasma. It is noted that some authors
have derived the nonlinear conductivity tensors from Boltzmann's kinetic
equation by expanding the electrom distribution function in Legendre
polynomials Pk(COSa), where o 1is the angle between E and Xf

We now proceed to derive Maxwell's equations for a cold,
collisionless nonlinear plasma. The nonlinear current (2.14) is seen
to be a function of the electric field. This current is in turn a

source for the electromagnetic field in Maxwell's equations. These

equations are written in cgs units (the rest of this thesis will use

cgs units). O 4r
-1 = .

vVXxB-= < 3t t i (2.26)

1 B

VEE = = == =
= c ot (2.27)
V. E = dmp (2.28)
V.B=0 - (2.29)

The Fourier transforms of these equations are

VXBz—J__
- Cc

S

vl

jrme
(@]

(2.30)

*
See for example [11] chapter 3. Ginzburg [13] (page 506) uses the
expansion of f in terms of Legendre polynomials as a method to solve

(approximately) Boltzmann's equation.
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yxf=1op (2.31)
v E= g (2.32)
v-B=0 (2.33)

Where the tilde above the variables in (2.30) - (2.33) denote

the Fourier transform with respect to the time variable only, viz.

Equations (2.26) and (2.27) can be combined to yield the

wave equation for E .

2
o E j
VXVXEH+ 1 = o A .E% (2.34)
= c2 2

Upon inverse transforming (2.14) into the space time domain and sub-

stituting this result into (2.34) for j yields the equation

2
e

2
VX UXE+ 1—2-75- ‘P‘Z B—t{w+2sv T} (2.35)
ot c

where MW, S, and T are related to E by

9
= 0(ss) (2.36)
3s
5t E (2.37)



—=E (2.38)

Fourier transforming (2.34), we have

2 2

w - W ~ ‘iww e
VXVXE—__Z_LE=__?P__F_T,{LJ_+2§V°I} (2.39)
C 2mc

where F.T.f¢} is the Fourier transform of ¢ (with respect to the time

variable).

It is equation (2.39) together with (2.36)-(2.38) which we will
solve by a perturbation expansion in Chapter 3. This method is valid,
however, only if the right hand side of (2.39) is very small, or,
equivalently, if the expansion converges sufficiently fast. A further
discussion of this point will be given at the end of Chapter 3. After
obtaining E_in Chapter 3, we will then inverse transform to obtain the

time response E(r,t).
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3. MWave Propagation in a Nonlinear Plasma

We wish to consider (2.39) which will be rewritten for

convenience
N w2—w 2 . -'iu)wz e
YXVXE-—sb E=—F—F.T. (WS v} (3.1)
C 2mc
where,
M
— = v(S:9) (3.2)
ot
S
— = E (3.3)
ot
22T
— = E (3.4)
at2 -

To solve (3.1), we assume that the right hand side is

very small so that its solution E 1is very close to the solution of

the Tinearized equation.
~ w - W ~
vxvxE- SR - E=0 (3.5)

Therefore, we expand E_as follows:

E‘= AEF]) + »AZ E»(Z) + (3.6)
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(1)

where E_is the solution to (3.5). The particular form of E

which is considered in this chapter is

- ./ 2 2
E (-l) = A(]) (UJ) e1 W '(I.)p X/C e, (3 7)
We will consider the two cases:
Al () - A /2 (3.8)
and, '
iwA
Al () = 2 (3.9)
2 (™ - wo)
Substituting (3.6) into (3.1) gives:
‘ w2_w2
AV XV X Eﬂ]) s Az VX VX Eﬂz) - A ————751——_2(]) -
c
2 (.02 = w2 .,(2) '10)(.028 2 (2) 3 (3)
o B o= —h— T 0 e WY e
C 2me
A oulh) (3.10)
where,
(2)
W



(3}

K
E gD L 5@ (1) (@) ps(2) () (3.12)
ot
au (%)
ot

and, n)

n
B g(n)
3t - (3.14)
,2r(n)

=S g(n) (3.15)
ot

Equating coefficients of A in (3.10) gives,

2 2
o w -w =
VXV X Eﬂ1) s "‘7§L‘ E}]) =0 (3.16)
c
~(2) (1)2 - w 2 ~(2) Tww Ze ,.,(2)
vxVXEY - e Py (3.17)
C 2mc

Equation (3.16) is just the linear wave equation which is satisfied
by (3.7). Equation (3.17) represents the wave equation with the source

distribution fos 2e
p ~ (2)
2mc2 -

With the help of the various relations (3.11), (3.14), (3.15), and

)
(3.7), we have the following expression for ﬂ
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<2} _ =i B E E
SN S P (3.18)
where,
)Ly S e
EV = AV (w) e P

and the symbol "*" denotes convolution. Therefore, (3.17) becomes

2 2 2
~ w -w - w. € 23 = -
C 2mc oX
(3.19)
where, for convenience, we define
- e(1)
61 - E—w (3.20)

The solution to (3.19) can be written as the sum of a
particular solution and a homogeneous solution. In this chapter we
are only interested in the particular solution to (3.19). However,
since the particular solution is longitudinal (as will later be seen),

2)

the solution we obtain E_= Eﬂ1) # E} is, to second order, that solution

which, at x = 0, reduces to A(])(w) e,.
To find the particular solution to (3.19), we consider

the two Maxwell's equations (2.30) and (2.31) which reduce to *

*The following method is the one used by Bassanini [12] to solve
for the fields generated by a time harmonic dipole oscillating in a

spherical cavity which is immersed in a non-linear plasma.



- -iw Tw ~ w. e
vXxHs= < g s > E-—L2 —F.T. (W+25vT) (3.21)

vxE=12 g (3.22)

Equation (3.21) and (3.22) are obtained from (2.14),
(2.30), and (2.31) by first inverse transforming j_ given by (2.14)
into the space frequency domain, and then substituting the result into
(2.30).

Expanding for E_and H,

. 3 E(]) b B 5(2) (3.23)

e

=2 1) 4,2 (@) (3.24)

==

and substituting (3.23) and (3.24) into (3.21) and (3.22),

we have the following equations for Eﬂz) and B‘Z).

. .2 2
Rl (;L“i Top ) x(2), % & 3 (1) 4 a(])
vxH - e e ) BTy 2mciw  9x {6 * 6 rey
(3.25)
vx (2 - Jo g(2) (3.26)

Noting that g;-{é(]) * é(])}gx is irrotational, we find,

upon taking the curl of both sides of (3.25),



-26-

c

e i 2
- =Tw 1w -
VX VX ﬂﬁz) = <——-+ _Eg_> UxX Eﬂz) (3.27)
Substituting (3.26) into (3.27) gives:

E wC c
2 2

w - w

- 2 @ (3.28)
C

‘. . 2 :
vax&mu(l"_ . ‘_p_> 18 e

The particular solution for (3.28) is just,
@) - g (3.29)

Substituting (3.29) into (3.25) gives, for the particular
solution Eﬁz):

- -1 w2 - -
E.(2) _ p-e d {G(]) * G(])} e, (3.30)
W= w 2m X

It is noted that EﬂZ) is Tongitudinal. It is also seen that
)

we can inverse transform (3.30) to obtain the following expression for Eﬁz R

2 -iwt
w. € e o ~
E.(Z) - _ P~ 9 g_x J —% 7 f G (w‘w') G (w') duw' dw
2m oX - wp - W s

(3.31)
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Using the properties of convolution integrals and Fourier

transforms, we can change (3.31) to

w. e t (]) 2
e(2) 2 p” 8 4 H(t - ©) wp (t - 06/ (1)1 e
- 2m ax X .
(3.32)
*
where ,
S =(1)
. E (w)
G(]) (1) = J R KR
it ”
The upper limit on the integral in (3.32) follows from the
fact that the inverse Fourier transform of - ——7—1—-—?- which
w - W
represents a causal signa]f* is given by P
2m sin w_t H(t)
wp P

where H(t) is the Heaviside unit step function. The presence of
H(t-t) in the integrand of (3.32) cuts the integral off at t=t. There

will also be a Tower 1imit on this integral at t=x/c. This arises from

the exponential factor i w2_ wp2 x/c in (3.7). It is this factor
e

*
Actually, G(1)(T) also depends on x, as can be seen from (3.7), but this
variable is suppressed for sake of brevity.

* %
Throughout the rest of this thesis, we will only consider causal signals.

Therefore, all singularities which 1ie on the real axis in the frequency
domain will be displaced infinitesimally below the real axis.
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which introduces a factor of H(t-x/c) in the inverse transform
G(])(t) (as can be seen in Appendix A). Therefore, (3.32) can be

written :

(2) ~ w_e ] t . 2 )
E SUNR N sinw_ (t-t)f (r,x)dt pH (t-x/c)
- 2m x X { f x/c “p }

w_e t
e zzc f sin w (t-T)fX(T,X)f(T,X)dT -
2mc * y 4 P

; Xy 20X _ X
sin w_(t c) f (c’ x)$ H(t C) (3.33)
where we have written G(])(r) as,

6 (0) = (rax) H (c - B) (3.34)

It is noted from (3.33) that Eﬁz) turns on at t = x/c as
expected from causality, viz., none of the higher order, non-linear
responses of the plasma should propagate faster than the speed of

Tight.

We now consider case one (where A(])(w) is given by

(3.8)). Then, we have,

e (x,t) = —2°
2T

A = Wl - w? x/c -iet
e P e dweZ

« Xw Ji(w /f£2_x2/c2) .
= e A {6(t- 4. R L2P H(t- E)}
z "o c . //tz i x2/c2 (3.35)
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where, Jn(x) represents a Bessel function of the first kind.

Equation (3.35) can be obtained using the integration formula
(A.3) or (A.8). To compute gﬁz), we must first compute G(])(t)
defined by,

A “ P -jwt
sy) = —° J ° e dy (3.36)

alM(e) = 2

= ( abglrtana) - Jo(q>> M- (3.37)

.i

*
where, Un(w,z) is the Lommel function of two variables ;

q= wp/tz-xz/c2 ;Y= v E;i;i . Therefore, from (3.34) we have, for

Rl taX]) s

F(t,x) = + (20 ( via,a) - I (q)) (3.38)

*
See Appendix A (equations (A.12)-(A.19)) for a more thorough discussion
of Lommel functions of two variables.
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Also, from formulas (A.9) and (A.10),

af(t,x) w id,(q)t
= f (t,x) = £ T 2U;( v;9,0) ]

—_— = e ] (3.39)
9X ¢ \/tz—xz/c2
Therefore, from equation (3.33), we have the following

expression for 5‘2)(x,t),

t
w_e 2w
£t = af e [ | sin o (t-0)20,(vig,a)-d (@]
2mc i
x/c
iJ](q) T "
[20,( v 19,q) - ———= Jdt + sin w (t-x/c)} « H(t- %) (3.40)
»/42—x2/c2 P ‘

Before turning to case two, we wish to make some comments
in connection with (3.40). First we are reminded that the sum
E = EK]) + Eﬂz), given by equations (3.35) and (3.40) represent, to
second order, the propagation of a pulse in the x direction whose
z component is originally a delta function.*' A priori one might
expect that since the intensity of a delta function, i.e., [G(t)]z,
is infinite, there would be difficulties in computing the second order,
nonlinear field. However, it is seen from (3.32) that the quantity of
interest in evaluating Eﬂz) is G(])(T), not E(])(x,r). That is, to

)

evaluate Eﬂz, we must first find G(])(T) from the equation:

This corresponds to applying an impulse voltage v(t)= s(t) across
the plane, bounding face of a semi-infinite plasma.



-6t () = J AR (3.40R)

Therefore, it is the area under the E(])(x,t) curve from 0 to t

(1)

which is important in evaluating E and not the instantaneous

field strength, E(])(x,t). Actually, this is expected since
t
= (1) . . .
E' /(x,t) dr is just the linear velocity of the electron,

and as this velocity becomes larger, the nonlinear Lorentz force also
becomes larger.

To see that the expression (3.40) for the second order
field due to a delta pulse is indeed valid, we could instead consider

a rectangular pulse, viz.,

g
0 t<o0
ﬂ”®¢)=W“)=ﬁ % 0<t=<T (3.40B)
0 > T
X =

To compute E(1)(x,t), we note that hT(t) is the difference of two

step functions displaced in time by T. Therefore, E(])(x,t) is given

by :

i " P it -iw(t-T)
E(])(x,t) = 1 [ —E—————————— { e ] -e 1 } dw

&
IN
E

NV]
| >

(3.40C)
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Using (3.37), we have:

et = 3 { @y ia.a) - 3@) HE - D -

(20, (v '10"50") - 3(a")) H(t-T- %) } (3.400)

where

Y|=/t'T'X/C ; q|=w ‘/(t_T)Z_XZ/CZ
t-T+ x/c P

We have from (3.40D) the following result:

\

tim B M ¢x, ) = gf[ (zuo (e, g - Jo(q)) H(t - EC‘-)] (3.40F)

T>o0

Of course, the expression in (3.40E) is just the 1inear field due to
a delta function disturbance at x = 0, as<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>