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Electromagnetic Pulses at the Boundary of a Nonlinear Plasma 

E. H. Satorius 

ABSTRACT 

This paper describes an investigation of the behavior of strong 

electromagnetic pulses at the boundary of a nonlinear, cold, collision­

less, and uniform plasma. The nonlinearity considered here is due to 

the nonlinear terms in the fluid equation which is used to describe 

the plasma. 

Two cases are studied. First, we consider the case where there 

is a voltage pulse applied across the plane boundary of a semi-infinite, 

nonlinear plasma. Two different voltage pulses are considered: a delta 

function pulse and a suddenly turned-on sinusoidal pulse. The result­

ing electromagnetic fields propagating in the nonlinear plasma are 

found in this case. In the second case, we consider the reflection of 

incident E-polarized and H-polarized, electromagnetic pulses at various 

angles of incidence from a nonlinear, semi-infinite plasma. Again, two 

forms of incident pulses are considered: a delta function pulse and a 

suddenly turned-on sinusoidal pulse. In case two, the reflected elec­

tromagnetic fields are found. 

In both cases, the method used for finding the fields is to 

first solve the fluid equation (which describes the plasma) for the non­

linear conduction current in terms of the electric field using a per­

turbation method (since the nonlinear effects are assumed to be small). 

Next, this current is substituted into Maxwell's equations, and finally 

the electromagnetic fields which satisfy the boundary conditions are 

found. 



-iv-

TABLE OF CONTENTS 

1. INTRODUCTION l 

2. NONLINEAR CONDUCTION CURRENT AND MAXWELL 1 S EQUATIONS 9 
IN A NONLINEAR PLASMA 

3. WAVE PROPAGATION IN A NONLINEAR PLASMA 21 

4. REFLECTION FROM A NONLINEAR PLASMA 53 

5. CONCLUSION 87 

APPENDIX A. INTEGRATION TECHNIQUES AND LOMMEL FUNCTIONS 88 

APPENDIX B. A NUMERICAL SOLUTION OF CONVOLUTION INTEGRALS 96 
APPEARING IN THIS THESIS 

APPENDIX C. ASYMPTOTIC EXPANSIONS OF SOME INTEGRALS IN 101 
CHAPTERS 3 AND 4 

APPENDIX D. TWO TYPES OF NONLINEARITIES IN PLASMAS 106 

REFERENCES 110 



-1-

l. Introduction 

Among the first observed nonlinear effects in a plasma was the 

cross modulation of broadcast signals in the ionosphere by the strong 

Luxembourg station signal. This was reported by Tellegan's paper [l] 

in 1933. In order to explain Tellegan's observations, Bailey and 

Martyn [2] considered the heating effect of a passing electromagnetic 

wave on the collision frequency which in turn affects the propagation 

of another wave in the disturbed medium. With known numerical values 

for the physical parameters of the ionosphere and the broadcast sig­

nals, their theory predicts a detectable cross modulation. 

A more formal approach to the problems of nonlinear wave 

propagation in plasmas involves solving Boltzmann's kinetic equation 

for the electron distribution function in an ionized gas in the 

presence of disturbing electromagnetic waves. Then, from a knowledge 

of the distribution function, the current is obtained through the re­

lation 

;j__(r_;t;f) = Ne J y_ f(r_;t;y_;f) dy_ ( l. l) 

where f(!_;t;_y_;~) is the single electron distribution function, N 

is the electron density of the plasma, and ~ is the electric field. 

It is noted here that throughout the rest of this thesis we assume 

that only electrons contribute to the conduction current. 

Expression (l.l) is expanded in a power expansion in ~, 

viz., 
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A ➔ 

j. (k;E) 
l -

( 1. 2) 

(sum on repeated indices) 

➔ * where k is the four vector (t,w) 

l·s the ,·th t f componen o j), 

and 

d>.(n) 
4 

d k 4 4 
_n_4 (2n) o (k - k

1 
- · · · -k ) 

(2n) n 

Note that the nth order term in (1.2) defines the (n+l) th rank tensor 

0
1
.. . , which is the nth order conductivity tensor. Equation (1.2) 
J1···Jn 

is then substituted into Maxwell's equations and the resulting non-

1 inear equations are solved for E . This is the approach which will 

be carried out in Chapter 2. 

Al 'tshul and Karpman [3] derive the expansion (1.2) (for a 

collisionless plasma) in terms of the unperturbed Hamiltonian, 

H = .J:- (P - ~ A )2 
0 Lm - C --0 

where P is the canonical momentum and B = vx A is the background 
-0 --0 

* In this thesis all four vectors will be written with an arrow. Also, 
a carat over a variable will denote the Fourier transform of that 
variable with respect to space and time. A tilde over a variable 
will denote the Fourier transform of that variable with respect to 
time only. 
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magnetic field. Melrose [4] also derives (1.2) (for a collisionless 

* plasma) using the relativistic, unperturbed Hamiltonian (which 

simplifies the formal calculation), 

Tsytovich [5,6] develops an expression for the lowest order, nonlinear 

conductivity tensor of a collisionless plasma oijt' which simplifies 

** considerably when it is assumed that the plasma is also cold. These 

results of Tsytovich are further discussed and made use of in the next 

chapter. Chan [ll] derives an expansion similar to (l .2) for the case of 

time harmonic, plane electromagnetic waves. Unlike the papers [3-6], 

Chan considers a nonlinear plasma for which the nonlinearity is due 

mainly to collisions. For a brief discussion of two different types 

of plasma nonlinearities (due to heating and due to the Lorentz force 

term) one is referred to Appendix D. 

Analogous expansions to (1 ~2) expressing the polarization in 

terms of the electric field are utilized in the study of nonlinear 

optics, viz., 

* Actually, [3] and [4] derive expansions for the current in terms of 
the vector potential A. But fl can be expressed in terms of I through 
the gauge equation. See, for example, Ref. [14], page 14. 

** As discussed in [5,6], a plasma is considered cold when the mean thermal 

velocity of the plasma electrons is much less than the phase velocity 
of the electromagnetic waves in the plasma. 



P.(r,w) = ,-
CX) 

E 
n=l 
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f 
~ ( ) 

X·· • (w1,w2, ... w )E. (w1) .. E. (w )dx n 
lJ1•••Jn n J1 Jn n 

~ . ( ) 1 f ( ) i wt th where Pi r..,w = ~ Pi r..,t e dt; (Pi the i · component of .E_, 

the polarizability); and dx(n) = o(w-w1- ... -wn) dw1 ..• dwn. 

( 1 . 3) 

Equation (1.3) and its Fourier inverse are further discussed 

by Owyoung [7] and Butcher [8] . Bloembergen [9] derives the lowest 

order, nonlinear susceptibility tensors x-.... j . This derivation 
lJl n 

is quantum mechanical, that is, the electron distribution function in 

phase space is replaced by the density matrix p, and the variables 

P and rare replaced by their corresponding quantum mechanical 

operators. Kubo [10] gives a further discussion of the kinetic and 

quantum mechanical approaches to the study of nonlinear media. 

After the tensors o .... . j have been derived (or x· .... j 
1J 1 n 1J 1 n 

in the case of a nonlinear crystal), one is faced with the problem of 

solving the nonlinear Maxwell's equations for the electromagentic field. 

Various approximate schemes have been devised for solving these equations. 

In the case of nonlinear plasmas reference is made to Chan [11], 

Bassaninni [12],Tsytovich [6], and the book by Ginzburg [13], especially 

Chapter 8. Ginzburg's book has a very thorough set of references dealing 

with electromagnetic wave propagation in a nonlinear plasma. Further 

references can be found in the paper by Bornatici and Engelmann [15]. 

In the case of nonlinear optics, reference is made to Armstrong, 

Bloembergen, Ducuing,and Pershan [16], Bloembergen and Pershan [17], 

Bloembergen [9], and Small [18]. 

An iterative scheme used most notably in [9], [ll] and [17] 

and which will be used in Chapter 2 is to expand the electric field in 

a perturbation expansion 
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E = r.E(l) + A2E( 2)+ ..... . ( 1.4) 

where E(l) is the solution to the linear Maxwell's equations with 

~ 
(or, Pi(.!:_,w) = xii (w)Ei(w)) 

Substitution of (l.4) into the nonlinear Maxwell 1 s equations 

will yield a hierarchy of equations--the nth equation being the wave equa-
(n) (n-1) (n-2) tion for E with a source distribution depending on~ ,f , · ··, 

~(l). Therefore, by solving for ~(l) one can generate, in principle, all 

of the E(n)_ In practice, however, one usually neglects all terms 

higher than n=3 in (l .4). 

Another approximate scheme used in [6], [16] and [9] is to 

write the solution E in the form 

ik•r - iwt e--

where A(r:._,!_) is a slowly varying function of rand t, for which 

( 1. 5) 

only the first derivatives with respect tor and t need be included. 

An equation for !l is then derived which is solved. Whitham [19] has 

developed an interesting approximate method which is used in [18]. 

This method consists of deriving equations for averaged quantities 

(which are related to the general solution) from conservation equations, 

such as the energy equation. 

With the exception of [18], harmonic time dependence is assumed 

in the above references, [ll],[16],[17]. A study of the tran-

sient behavior of electromagnetic waves in nonlinear plasmas and 
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crystals has not received quite so much attention. Among the first 

to study transients in nonlinear plasmas was fejer [20]. His paper 

dealt with the interaction of short, pulsed radio waves in the iono­

sphere. Kroll [21] considered the transient build up of electromag­

netic waves from initial noise levels in crystals which are under intense 

illumination from suddenly turned on lasers. Kroll 1 s method is to 

linearize the nonlinear, coupled electromagnetic-elastic wave equations 

by writing the electric displacement field as 

where .!2o is a constant andl~I » IQ.11. The resulting linear equations 

in Q.1 and~ (the elastic displacement) are then solved. Kryukov and 

Letokhov [22] consider the nonlinear propagation of light pulses in 

a resonantly amplifying medium. They use the approach described above 

in connection with equation (1.5). 

Aside from these papers, [20]-[22], the literature dealing 

with transient electromagnetic wave propagation in nonlinear media is 

relatively sparse. There are, however, several reasons why an investi­

gation of nonlinear transient phenomena is desirable. At present, 

various parameters of a plasma are measured by observing the linear 

transient electromagnetic fields which propagate in a plasma and are 

* reflected from a semi-infinite plasma. However, it may be possible to 

obtain more information about plasma constants such as the plasma 

frequency by observing the lowest order nonlinear transient fields which 

propagate in the plasma. We remark here that there are a number of 

* See, for example, reference [26] 
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papers concerning linear transient pulses in a plasma and pulse reflection 

from a p 1 asma. Reference is made to Case [2 3], Knop [ 24], Wait [25] , 

Chabries and Balle [26], and Kenny [27]. The papers [23]-[26] are 

concerned with the linear response to electromagnetic waves incident 

upon half-spaces and slabs of isotropic plasmas. Kenny [27] considers 

the problem of radiation in isotropic and uniaxial plasmas by a suddenly 

turned-on, harmonic dipole. 

Another reason for the study of transients, at least in the 

case of nonlinear optics, is the recent development of 11mode-locked 11 

lasers which are capable of generating intense light pulses with a 

duration on the order of a picosecond. Actually, M.J. Calles at 

Harvard University and Kaiser and his co-workers at the Technical 

University of Munich have discovered mode-locking procedures capable 

of generating pulses as short as .3 picoseconds. For a very good 

summary of the advances in this field, reference is made to the article 

by Alfano and Shapiro [28] . Reference is also made to the introduction 

of the paper by Kryukov and Letokhov [22]. 

It is the purpose of this thesis to determine the lowest 

order, nonlinear transient response as well as the steady state response, 

from an isotropic, cold, collisionless plasma. In Chapter 2 the hydro-

* dynamic equations are used to derive the lowest order nonlinear 

tensor oiki· Also in Chapter 2 we derive the nonlinear conduction 

current. In Chapter 3 we solve the nonlinear Maxwell's equations for 

the ca£e of transient propagation in an infinite nonlinear plasma. In 

this chapter we consider the case of an electromagnetic field where the 

* The use of the hydrodynamic equations is justified in the limit of a 

collisionless plasma. For a further discussion of this point, see 

Ref. [29], page 52. 
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component of the electric field E perpendicular to the direction of 

propagation is originally a delta pulse. We also consider the case 

where Eis originally in the form of a suddenly turned-on sinusiod, viz., 

E (0,t} = E o(t) - - ~ 
Case I 

Case II 

Then, writing I= I(l) + I( 2) where _g__Cl) is the appropriate linear 
'2) field with the given initial conditions, we solve for El --the lowest 

order nonlinear response. In Chapter 4, a calculation of the lowest 

order nonlinear response is made for the case of reflection from a 

semi-infinite, nonlinear plasma. In this chapter we consider the case 

when the incident electric field is a delta function, and the case 

when the incident electric field is a suddenly turned-on sinusiod. 

The method used is essentially that used in [17], but adapted to the 

case of arbitrary time dependent fields. 
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2. Nonlinear Conduction Current and Maxwell's Equations in a 

Nonlinear Plasma 

Throughout the rest of this thesis we consider an isotropic, 

cold, collisionless plasma and therefore will use the hydrodynamics 

* equation in its description, i.e., 

_l.X. + (v-v)v = ~ (E + l v x H) 
at - - - m - c - - ( 2. l ) 

~~ + V • ( n :!._) = 0 (2.2) 

_j_ = env (2.3) 

where, y_ is the electron velocity; n is the electron density; _j_ is 

the conduction current;~'!:!_ is the electromagnetic field; c is the 

velocity of light, and m and e are the electron mass and charge, 

respectively. 

What is desired is an expansion much like (1 . 2) for l (I<) . 

Therefore, the first step is to Fourier transform equations (2 . l) - (2.3). 

It is noted that the following definitions will be used concerning Fourier 

transforms: 

If ~(r._,t) is some function, then its Fourier transform will be 

given by 

* In most of what follows, we will be using the development found in 
refe rence · [6 ], Chapter 2. 
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¢(k) = _l -

(2n) 4 
f q,(!:_,t) ei(wt - .'s:.!:Jdrdt 

where k is the four vector (t,w). 

Of course, a function can always be recovered from its 

Fourier transfonn by the relation 

Use will also be made of the fact that if Hr_,t) = g(r·,t)h(..r,t), 

then 

def ,. ,. 
= g(i<) * h(k) 

Likewise, if ick) = g(k)h(k) > then 

~(r_,t) = (2rr)
4 I g(r_ - !:o· t - to)h(~o·to)d!:odto 

def 

= (2n) 4 g(r_,t) * h (r.,t) 

Therefore, the Fourier transforms of equations (2 . l) - (2.3) 

are given by 

-iwi(K/ + i I cick,) · _ls,,)~Ck2) dA = * tckJ +mf I ~cl<,) x Rck2) dA 

(2.4) 

(2.5) 

( 2. 6) 
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To obtain the desired expansion (1.2), we solve equations 

(2.4) - (2.6) for j(k) in terms of E(k) as follows 

We first use tha ·Maxwell equation 

aH 
l c a-f--vxE 

or,equivalently, 

Then we can write the Lorentz force as 

A . C7 

1 " ➔ ~(l<l) " ➔ (k2xE(R2)) x !j_(k2) = - ~(kl) x 
C w2 

k2 " A ➔ i(it2) A ➔ 

= -=-- Cv(k ) · E ( k )) - (Js.2. ~(kl)) - l - 2 
w2 w2 

( 2. 7) 

Substituting (2.7) into (2.4), we have 

(2.8) 

Note that all tenns on the right hand side of (2.8) except the 

first describe nonlinear effects. The first, on the other hand, describes 

the familiar small oscillations of a free charge in a wave field f(k). 
Assuming the nonlinear effects are small and neglecting them in the 

first approximation, we have 
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~(1<) % ~c n cki = ~ E(k) - - wm - (2.9) 

To find tile lowest order nonlinear effect, with respect to E(k), we 

substitute (2.9} into the nonlinear term (2.8). We see at once that 

the last term on the right-hand side of (2.8) becomes zero, and obtain 

e2 f ~ = - - --

m2w w
1
w

2 

(2.10) 

Here we have symmetrized the result for~-+ (.!5_1 + ~)_/2 = .!5_/2. This 

is always possible because the remaining expressions are syrrmetric with 

respect to the indices 1 and 2. 

Subs tit u ti n g the exp an s i on _i (i<) = y ( l) (Tt) + i ( 2 ) ( k) i n to ( 2 • 5 ) 

and assuming that in the zeroth order approximation n(r,t)~ n (r,t) = n 
- 0 - 0 

(where n
0 

is the electron density of a homogeneous plasma) we have: 

(2.11) 

where, 

~(o) (k) = l (2.12) 

(2n) 4 

and, 



-13-

(2.13) 

Substituting this expansion (2.11) into (2.6) gives the desired 

result. 

(2.14) 

where, 

= e n ~(l)(k) 
o-

Substitution of (2.9) into this relation gives, 

. 2 
A iw 

2 

1cn Ck) = 
, e n

0 f(k) = __p_ f(k) (2. 15) 
w m 4,rw 

where, 2 
2 4n n e 

0 is the plasma frequency. w = p m 

We also have: 
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After symmetrization of the first term with respect to the 

indices 1 and 2 we finally obtain 

(2.16) 

Equation (2 . 14) is the required expansion of j(k) in terms of 

the electric field. It is not quite in the same form as (1.2). We 

can, however, obtain the lowest order conductivity tensors rr ij and 

o .. by writing 
lJn 

* and 

Comparing the expansion (2.14) with (2 .17) gives, 

. 2 
=~ o . . ( k, r

1
) a . . 

lJ lJ 4nw1 

(2. 17) 

(2.18) 

(2.19) 

*rhe factor (2w)
4 

in (2.19) is not present in reference [5] or [6]. This 

is due to the definition of d\ (n) in (1.2). 
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It is seen that the first term in (2.16) is associated with 

the nonlinear velocity, y_(Z). This electron velocity arises from 

two terms in (2.1). One term is the Lorentz force which interacts 

with the linear velocity v(l) through the force ~ v(l) x H. The - me -

other is the term (~•v) ~ on the right hand side of (2.1). It is 

also seen from equation (2. 10) that 1(2) is in the direction of k. 

Therefore, the first term in (2.16) represents longitudinal conduction 

currents in the plasma which are excited by the nonlinear interaction 

of either longitudinal or transverse waves. The last two terms in 

(2.16) correspond to the first order correction of the electron 

density ~(l)(I<). These two terms can only be excited in the first 

approximation by longitudinal waves. Transverse waves, for which 

V•f=O, cannot excite those terms. Therefore, we can attribute the 

second order, nonlinearity of a cold, collisionless plasma to the 

nonlinear interaction of the Lorentz force with the linear velocity 

~(l) as well as the first order correction term ~(l) to the equilibrium 

electron density. 

Before turning to the nonlinear, Maxwell equations, we note 

that the effects of temperature and collisions have been neglected in 

deriving (2. 16). Of course, throughout this thesis we will not consider 

these effects. However, to properly include these effects one must 

start with the kinetic equation. Using the Vla~ov equation (2.20), 

Tsytovich [5] derives an expansion in the form of (1.2) for the 

conduction current of a collisionless plasma in which the equilibrium 

temperature is not zero 

~: + ~- vf + me [f + ½ y__ x ~ • v f = O 
p__ 

(2.20) 
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i Tsytovich substitutes the expansion f = L f.y into the Vlasov 
i=o 1 

00 

equation. In this expansion, f is the electron distribution function 

and y is the expansion parameter. A hierarchy of equations are 

obtained for the fi. For instance, the Fourier transform of the 

equation for f. is 
1 

where f
0

(p) is the equilibrium distribution function. 

(2.21) 

p__ = electron mementum 

T = temperature 
of electrons 

k = Boltzmann's constant 

with v £. = a~ x ex ~ a~ Y ~ + a~ z ~z , and £. ( kl = f ( I<) ( 1 -_!<_ • I I"' ) + 
1 A 

- k (v•E(I<)). 
w --

The Fourier transform of the equation for f 2 is 

(2.22) 

where 

(from (2.21)) 
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Equations (2.21) and (2.22) yield for the linear and second 

order, nonlinear currents 

(2.23) 

(2.24) 

As a matter of comparison with (2.19), Tsytovich derives the 

* nonlinear conductivity tensor oijn from (2.22) and (2.24). 

-e'sc21r)4 I v. 
[ ( 1 -

~,· ~ d V. ] 1 ) - + -1.. (k •V ) • o.. = , Jn w-k·v -1 £ 
w, apj w1 

l [ k •v a vn ] ( ~ -
- k . •V 1- ) - + - (k •V) • 

w2 -2 - w2 apn w2 ~ _p_ 

f o(P) 
( 2 .25 ) 

Equation (2.25} represents the second order conductivity tensor for a 

warm, collisionless plasma. As shown in [5], this expression for o .. 
1Jn 

reduces to that given by (2.19) when the mean thermal velocity of the 

* . 4 See footnote (2) concerning the factor (2TT) in (2.25). 
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plasma electrons, ✓kT/m , is much smaller than the phase velocity of the 

electromagnetic waves in the plasma. It is noted that some authors 

have derived the nonlinear conductivity tensors from Boltzmann's kinetic 

equation by expanding the electrom distribution function in Legendre 

* polynomials Pk(cosa}, where a is the angle between I and y_. 

We now proceed to derive Maxwell 1 s equations for a cold, 

collisionless nonlinear plasma. The nonlinear current (2. 14) is seen 

to be a function of the electric field. This current is in turn a 

source for the electromagnetic field in Maxwell 1 s equations. These 

equations are written in cgs units (the rest of this thesis will use 

cgs units). 

V X E = - c af 

V •. E = 4np 

V • B = 0 

The Fourier transforms of these equations are 

V X B =-iw E + 4w j 
C - C 

(2.26) 

( 2. 27) 

(2.28) 

(2.29) 

(2.30) 

See for example [11] chapter 3. Gi nzburg [13] (page 506) uses the 

expansion of f in terms of Legendre polynomials as a method to solve 

(approximately) Boltzmann's equation. 
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t iw ~ 
V X = - B 

C - (2.31) 

V t = 4np (2.32) 

V 's = 0 (2.33) 

Where the tilde above the variables in (2.30) - (2.33) denote 

the Fourier transform with respect to the time variable only, viz. 

00 

-oo 

Equations (2.26) and (2.27) can be combined to yield the 

wave equation for E . 

4n 8j_ 
= --2 8t 

C 

(2.34) 

Upon inverse transforming (2.14) into the space time domain and sub­

stituting this result into (2.34) for j_ yields the equation 

2 2 
l .82E w w e 8 { 

v x v x I + 2 ~ + ~ I = ~ at ~ + 2i v · 1} 
c 8t c 2mc 

(2.35) 

where _!1, i, and T are related to E by 

(2.36) 

( 2. 37) 
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lr -= = E 
at2 -

Fourier transformi rg (2. 34), we have 

2 2 . 2 
';lo, w - w ,v - , w wp e { 

v xv x t - P E = 
2
_ F.T. w + 2 s v·Tl 

c2 2mc - - -, 

(2.38) 

(2.39) 

where F.T. {¢} is the Fourier transform of ¢ (with respect to the time 

variable). 

It is equation (2.39) together with (2.36) - (2.38) which we will 

solve by a perturbation expansion in Chapter 3. This method is valid, 

however, only if the right hand side of (2.39) is very small, or, 

equivalently, if the expansion converges sufficiently fast. A further 

discussion of this point will be given at the end of Chapter 3. After 
~ 

obtaining~ in Chapter 3, we will then inverse transform to obtain the 

time response ~(r_,t). 
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3. Wave Propagation in a Nonlinear Plasma 

We wish to consider (2.39) which will be rewritten for 

convenience 

'i7 X 'i7 X E 

2 2 w -w . p 
. 2 

E = -lwwp e 

2mc2 F.T. {W+2S V•T} 
- - - ( 3. l ) 

where, 
aw· 

= v(~· ~) (3.2) 
c)t 

as 
= E (3.3) 

at 

a2T 

at2 
= E (3.4) 

To solve (3.1), we assume that the right hand side is 
~ 

very small so that its solution E is very close to the solution of 

the linearized equation. 

2 2 
~ w - w 

V X V X E ~ E = 0 
c2 

(3.5) 

Therefore, we expand E as follows: 

~ AE( 1) 2 ~ (2) 
E = + A. E + (3.6) 
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where Eis the solution to (3.5). The particular form of E (l) 

which is considered in this chapter is 

E (l) = A(l) (w) 
✓ 2 2 

ei w -wp x/c 

We will consider the two cases: 

and, 

( l) iwA0 A ( w ) = -----=,------=--

2 ,r (w2 - w2) 
0 

Substituting (3.6) into (3.l) gives: 

where, 

at 

~(2) 
E 

e -z (3. 7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 
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at 

.at 

and, 
as(n) 

E(n) -
= 

at 

a2r(n) 
E(n) -

= 

at2 

Equating coefficients of A in (3.10) gives, 

V X V X 
~ ( l ) 
E 

2 2 
w -w p 

2 2 
w - w p 

~ ( l ) 
E = 0 

. 2 
~( 2) 1ww e 
E = -~P-=---

2mc2 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

Equation (3. 16) is just the linear wave equation which is satisfied 

by (3.7). Equation (3. 17) represents the wave equation with the source 

distribution . 2 
1wwp e 

2mc2 
~(2) w 

With the help of the various relations (3.11), (3. 14), (3.15), and 

(3.7), we have the following expression for w( 2). 
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... i/2) -i a wl) * E (, ) \ 
= ~r e (3.18) w ax -x 

where, 

•✓ 2 2 
x/c ~(1) A(l)(w) e 

1 w -w 
E = p 

and the symbol 11 *11 denotes convolution. Therefore, (3.17) becomes 

~(2) 
'iJ X 'iJ X E 

(3.19) 

where, for convenience, we define 

(3.20) 

The solution to (3.19) can be written as the sum of a 

particular solution and a homogeneous solution. In this chapter we 

are only interested in the particular solution to (3. 19). However, 

since the particular solution is longitudinal (as will later be seen), 

the solution we obtain f = f(l) + i( 2) is, to second order, that solution 

which, at x = 0, reduces to A(l)(w) e . -z 
To find the particular solution to (3.19), we consider 

the two Maxwell 1 s equations (2.30) and (2.31) which reduce to* 

*The following method is the one used by Bassanini [12] to solve 

for the fields generated by a time harmonic dipole oscillating in a 

spherical cavity which is immersed in a non-linear plasma. 
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'v X H = ( 
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'v X E = H 
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2 
wp e 

2mc 
F. T. OJ+ 2S V•T} - -

Equation (3.21) and (3.22) are obtained from (2. 14), 

(3.21) 

(3.22) 

(2. 30), and (2.31) by first inverse transforming 1 given by (2.14) 

into the space frequency domain, and then substituting the result into 

( 2. 30). 
~ ~ Expanding for f and .t!_, 

(3.23) 

(3.24) 

and substituting (3.23) and (3.24) into (3.21) and (3.22), 

we have the following equations for E( 2) and H( 2). 

. . 2 

(
-lw lw) 
-+_£ 

C .illC 

iw 
C 

~(2) 
H 

(3.25) 

(3.26) 

. a ~(1) ~(1) . Noting that - {G * G }e 1s irrotational, we find, ax -x 
upon taking the curl of both sides of (3.25), 
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( 
. . 2) . :...1 w l w 

- + _£_ 
c we 

Substituting (3.26) into (3.27) gives: 

(
' . . . 2) ~ ":"lW lw 

V XV X H(2) = - + ~ 
- c we 

2 2 
w - w p = 

. i w 

-
C 

~(2) 
H 

The particular solution for (3.28) is just, 

( 3. 27) 

(3.28) 

(3.29) 

Substituting (3.29) into (3.25) gives, for the particular 

E~(2): solution 

~(2) -1 
E = ----2 2 

w - w p 

(3.30) 

It is noted that E( 2) is longitudinal. It is also seen that 

we can inverse transform (3.30) to obtain the following expression for E( 2), 

a 
ax 

e .. I 00 

-x -oo 

-iwt e 

2 2 
w - w p 

~ 
G (w-w 1

) G (w 1
) dw 1 dw 

( 3. 31) 
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Using the properties of convolution integrals and Fourier 

transforms, we can change (3.31) to 

* where , 

3 

ax 

-iwT e 

(3.32) 

dw 
w 

The upper limit on the integral in (3.32) follows from the 

fact that the inverse Fourier transform of - ---.2.---
1----2 

** represents a causal signal, 

2m 
WP 

is given by 
w - WP 

which 

where H(t) is the Heaviside unit step function. The presence of 

H(t-T) in the integrand of (3.32) cuts the integral off at T=t. There 

will also be a lower limit on this integral at T=x/c. This arises from 

the exponential factor rVw2-"wP2 x/c in (3.7). It is this factor 
e 

*Actually, G(l)(T) also depends on x, as can be seen from (3.7), but this 

variable is suppressed for sake of brevity. 

** Throughout the rest of this thesis, we wil l only consider causal signals. 

Therefore, all singularities which lie on the real axis in the frequency 

domain will be displaced infinitesimally below the real axis. 
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which introduces a factor of H(t-x/c) in the inverse transform 

G(l)(t) (as can be seen in Appendix A). Therefore, (3.32) can be 

wri tte·n : 

8 
e { f t sinw (t-,)t2(,,x)d,} H (t-x/c) 

8x -x x/c P 

= Le 
2mc -x 

(3.33) 

where we have written G(l)(T) as, 

(3.34) 

It is noted from (3.33) that E( 2) turns on at t = x/c as 

expected from causality, viz., none of the higher order, non-linear 

responses of the plasma should propagate faster than the speed of 

light. 

We now consider case one (where A(l)(w) is given by 

(3.8)). Then, we have, 

i/ w2 - w 
2 x/c p 

-iwt 
e dwe

2 
2n 

= e A { o ( t- ~) --z O C 

/
- -- ---------· 
2 2 2 

xw J1(w t -x /c ) x} 
p p H ( t- -) 

/ 2 2 2 C 
C / t - X /C 

(3.35) 
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where, Jn(x) represents a Bessel function bf the first kind. 

Equation (3.35) can be obtained using the integration formula 

(A.3) or (A.8). To compute f( 2), we must first compute G(l)(t) 

defined by, V 2 zl iw - w x/c 

G(l)(t) Ao r e P -iwt 
= e dw 

2n w 

Using the integration formula (A.8), we have, 

-iwt 
e dw 

- _Ao ( f 2o1T 
2-rri 

1_~2 iqcostlJ ) 
------- e dtP H(t- z) 

1+~2 

= A~ ( 2U
0

(yiq,q) - J
0
(q)) H(t- fl 

l 

* where, Un(w,z) is the Lommel function of two variables ; 

( 3. 36) 

(3.37) 

q = w /t2 -x2/c2 . _ / t-x/c 
p ' y - t+x/ C • 

Therefore, from (3.34) we have, for 

f(t,x), 

(3.38) 

* See Appendix A (equations (A.12)-(A.19)) for a more thorough discussion 

of Lommel functions of two variables. 
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Also, from formulas ( A. 9) and (A.10), 

af(t,x) 
=~ 

iJl(q)t 
- fx(t,x) [ 2U1( yiq,q) J 

/ 2 2 2 ax C \t -X / C 

( 3. 39) 

Therefore, from equation (3.33), we have the following 

expression for I( 2)(x,t), 

I(2) (x, t) = 2 wpe 
A ------ e 

0 2mc -x It sin wp(t-T)[2U
0
{yiq,q)-J

0
{q)]· 

x/c 

iJ 1(q) T 

[2U1( y iq,q) - -_-_-_-_- ]d-r + sin w (t-x/c)} • H(t- -~) 
/ p C 

1l-x21c2 
(3.40) 

Before turning to case two, we wish to make some comments 

in connection with (3.40). First we are reminded that the sum 

I= I(l) + I( 2), given by equations (3.35) and (3.40) represent, to 

second order, the propagation of a pulse in the x direction whose 

*" z component is originally a delta function. A priori one might 

expect that since the intensity of a delta function, i.e., [o(t)J2, 

is infinite, there would be difficulties in computing the second order, 

nonlinear field. However, it is seen from (3.32) that the quantity of 

interest in evaluating I( 2) is G(l)(-r), not E(l)(x,-r). That is, to 

evaluate §_( 2i we must first find G(l)(T) from the equation: 

* This corresponds to applying an impulse voltage v(t)= o(t) across 

the plane, bounding face of a semi-infinite plasma. 
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E(l)(X,T1) dT' 

Therefore, it is the area under the E(l)(x,t) curve from Oto t 

which is important in evaluating ~(l) and not the instantaneous 

field strength, E(l)(x,t). Actually, this is expected since 

(3.40A) 

m 
is just the linear velocity of the electron, 

and as this velocity becomes larger, the nonlinear Lorentz force also 

becomes larger. 

To see that the expression (3.40) for the second order 

field due to a delta pulse is indeed valid, we could instead consider 

a rectangular pulse, viz., 

0 t < 0 

l 

T 
0 < t < T 

0 t > T 

(3.40B) 

To compute E(l)(x,t), we note that hT(t) is the difference of two 

step functions displaced in time by T. Therefore, E(l)(x,t) is given 

by : 

21TT 

. /22 X 
l ✓w -w 

_e __ w_P_ c { e-iwt -e-iw(t-T) } 
dw 

(3.40C) 
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Using (3.37), we have: 

(2U (y 1 iq 1 ,q 1
) - J (q 1

)) H(t-T-~)} 
0 0 C 

( 3. 40D) 

where 

Y • =)! -T - x/ c 
- T + x/c 

We have from (3.40D) the following result: 

1 im E ( l ) ( x .. t) = ~ t [ ( 2 U
0 

( . ) J ( ) ) H ( t X) ] , 0 ylq, q - 0 q - C (3.40E) 

Of course, the expression in (3.40E) is just the linear field due to 

a delta function disturbance at x = 0, as expected. From (3.40E), we 

also have that: 

T ➔ o T ➔ o J Q
t E(l) (x,-r.) dT = {2U ( y iq,q) - J (q)} • H(t- ~) 

0 0 C 

(3.40F) 
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Therefore if Tis small enough, I,( 2) generated by a delta pulse at 

x = 0 is very similar to I,( 2) which is generated by a rectangular 

pulse. To get an idea of how small T should be for our approximations 

to be valid, we can examine E(l) given by (3.400). It consists of some 

oscillations at t = x/c followed by more oscillations at t = x/c + T. 

E(l)(x,t) will look roughly as follows: 

I 

T 

X t =­c 
t 
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If Tis so small that the first oscillations at t = x/c and t = x/c + T 

overlap, then E(l)(x,t) will be quite similar to the function given by 

(3.40E). That is, we wish to choose Tso small that E(l)(x,t) looks 

as fo 11 ows: 

I 
T 

X t =­c 

As T goes to zero, E(l)(x,t) will look like: 

- X t -­c 

t 

t 
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(In the previous figure, the arrow denotes a delta function) 

Therefore, we wish to choose T smaller than the time of the first 

oscillation of the function, 2U
0

( yiq,q) - J
0

(q). To determine this 

ti me , we n o t e that for s ma 11 t , we have : 

Where 6t = t - x/c, and we note that for small 

6t; t + x/c ~ 2x/c. Therefore, we must choose T smaller than 

6t, where 6t is given by: 

wp ✓ 2~t x/c = 2.42 

(3 . 40G) 

(3.40H) 

(2.42 is the first zero of J
0

(x)). This means that T must be small 

enough so that: 

( 3. 40 I) . 

Therefore, (3.401) must hold in order that the results for E(Z) 

due to a rectangular pulse give a good approximation to the response 

of E( 2) due to a Dirac delta function. 
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Finally, we wish to comment that even though I_( 2) is 

longitudinal and represents a discontinuity in Ex at x=O, D =E +4nP 
X X X 

is continuous at x=O. Actually, since Dx=O for x<O, then we must 
~ 

have that Dx=O in the nonlinear plasma. To see this, we write Ox as: 

(3.40J) 

where in (3.40K), X is the linear susceptibility and ~NL is given p 
X 

by: 

~NL i ~ NL 
PX = J ( 3. 40 K) w X 

E
~(1) __ 

Since 0, we must show that: 
X 

-4ni 
w 

( 3. 40 L) 

2 

-
wn 

where s = 1 ~ 
w 

But (3.40l) is satisfied everywhere (x>o) by virtue of the fact that: 

'v X 'v X 
~(2) 
E 

or, since ~(2) 
E is longitudinal 

2 
w -4niw ( 1 - .J?..) E(2) = 2 X 2 w w 

which is the same as (3.40L}. 

~(2) E = -,__ 
c2 

4niw 

~NL 
Jx (3.40M) 
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We will now find the second order field, I_( 2), for case two, 

- i.e., where A( 1\w) is given by (3.9). We have, using (A.8) 

[ 
· / 2 2 x/c -iwt 

I(l)(x,t) 
Ao iw 1 w - WP 

--
2 2 e e dw e 

211 -z w - WO 

A [ f :n 1 - ~4 
i qcOSlJJ 

d1/!] H(t-fl 0 - -
(~2-lH~2- ~-2) 

e e 
2ni -z 

0 0 

H (t - x/c) 

where, 
> w 

p 

or, 

Proceeding as in the first case, we next compute (using (A.8)), 

ie 

·/ 2 2 / . t l w - w X C -lw 
p 

e 

i qcoslJ) 
e 

dw 

dlJJ H( t- ~) 
C 

(3.41) 



iA 
0 

= - --

This implies, from (3.34), that 

f(t,x) 

Using formulas (A.9) and (A.10), 

iA E,2 - 1 
f (t,x) 0 [Jo(q) - 0 --

E,2 + 1 X 
C 

0 

Therefore, using (3.33), we have: 
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(3.42) 

(3.43) 

we have, 

( -1 { U O y -~ 0 q ' q ) - LJ O ( y E, 0 q 'q ) } ] 

(3.44) 

I(2) (x, t) = e 
--x 

t 

[ f s i n wp ( t -T ) { U 1 ( y E, -
1 q , q ) + U 1 ( y E, 

0 
q , q ) } 

x/c 0 

E,2 - 1 
• {JO ( q) - 0 ( uo ( y E,0- 1 q 'q) -

E,2+ l 
0 

(3.45) 

The sum t = I_(l) + 1_( 2) given by equations (3.41) and (3.45) 

represent, to second order, the propagation of a wave whose z component 

is originally a suddenly turned-on sinusoid, We shall now obtain 

asymptotic formulas for the second order fields as t-x/c > 0, correspondin~ 

to times just after the arrival of the wave. To do this, we will expand 

the integrands of (3.40) and (3.45) in powers of (t-x/c). For case 1, we 

have from (3.40) 



A2 we 
0 p 
2mc 
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• H ( t- ~) 
C 

sinw (t--r).(-iwpx)d-r + sinw H- ~)L 
p 2c p C j 

_.._p _ [cosw (t- ~) -1] + sinw (t -~) H (t- ~) -w X } 

C p C p C X 

A2 
o wp e x x 

- e { w ( t - -) } H ( t - -) (3.46) 
2mc -x p c c 

For case 2, we have from (3.45): 

~ e 
-x 

(3.47) 

The asymptotic behavior of the second order fields at a 

point x as t + 00 is now obtained. The method used is that which is out­

lined in Appendix C (equations (C.8) - (C.13)). Considering first case 

1, we note that ~( 2) can be written: 



where, 

i 
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Q(t) = f(t,x) fx(t,x) H (t- z? 

To asymptotically expand (3 . 48) (according to (C.13)), 

we first determine the asymptotic expansion of Q(t), which is the 

same as the product of the asymptotic expansion for f(t,x) and 

fx(t,x). To obtain the asymptotic expansion of f(t,x), we rewrite 

f(t,x) as (see (3.37)), 

- 1 f(t,X) - 2TT 
e 

i / w2- w~ x/c 

w 

-iwt 

e dw (3.49) 

Since the integrand of (3.49) has a pole at w=O, the leading term 

in the asymptotic expansion for f(t,x) is: 

-w x/c 
f(t,x) ~ -i e P (3.50) 

The next term in the expansion for f(t,x) is a decreasing function 

oft and comes from the branch point singularities at 

(3.49). Differentiating (3.50), we have: 

w= + w in - p 

(3.51) 
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We therefore have, for the asymptotic expansion of Q(t), 

(3.52) 

Denoting the asymptotic expansion for Q(t) by QA5(t), we have: 

(3.53) 

Substituting (3.53) into (C.13), we have the following asymptotic 

expansion for f( 2), 

where, 

2 A w e 
0 p 

2mc 

-iw t p 

+ sin w (t - ~) } p C 

for t » x/c 

+iw t 
p 

f (t,x) fx(t,x) e dt 

(3.54) 

We proceed in a similar manner in obtaining the asymptotic 

expansion of E( 2) for case 2. In this case, we write E( 2) as, 
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(3.55) 

where, for this case, 

Q(t) = f(t,x) fx(t,x) H (t- x/c) 

-1 [Ul ( Y ~o q,q) + u, ( Y ~oq,q)J . 

~ 2_, 
. [ Jo(q) - -~-o--2+_1_ {Uo ( Y ~~lq,q) - Uo( Y ~oq,q)}] H (t - z) 

0 

To obtain the asymptotic expansion of Q(t), we first write f(t,x) 

as follows, (see 3.42)) 

i / w2-w 2 x/c -iwt 

[ 
p 

ie 
f(t,x) - -

2 2 e 
2n w - w 

0 

Considering the poles in the integrand of (3.59) at 

we have for the asymptotic expansion of f(t,x), 

l 2ni 
f(t,x) ~ 

-iw t - _x ;/ w 2-w 2 

[ e O C O p 
-e 

= sin ( X / 2 2) w t - - w - w 
0 C O p 

dw 

w = +w - o' 

(3.56) 

. t X ·I 2 -lw + - lw -
0 C 0 

(3.57) 
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Differentiating (3.57), we have, 

i / w 2_ 2 

fx(t,x) ~ 0 WP 
(w

0
t - ~ II w2 cos -w 

w
0
c C 0 

Multiplying (3.60) and (3.61), we have for Q(t) 

/ w 2_ w 2 
Q (t) ~ __ o _ _..p_ 

2c 2 
WO 

/ w 2_ 2 
0 WP 

= 

4ciw
0 

2 

sin 2 (w t - ~ / w 2 
0 C 0 

- w p 

2iw
0
t - 2i~ ✓ w 2_ w 2 

[ C O p e 

Equation (3.59) gives: 

2 

2 
p (3.58) 

. 2ix ✓ 2 2 -2lw t + -- w - wp] 0 C 0 
-e 

(3.59) 

2 2 
✓ w -w 

0 p 2 -2iw
0

t + 2i~ ✓ w 2_ 
- WP C 0 

-e 

(3.60) 

Proceeding in a similar manner as for case l, we have the following 

asymptotic expansion for E( 2) in case 2: 



I(2) ( x, t) ~ 

A 2 2 
0 WE 

2mc 

+ 

2 2 
A0 wE e [ e 

2mc -x 

2ni 
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[ -i 
2 2 2cos (2w

0
t - 2~ ✓ w 2-✓ w - WE WE 0 e -x 

·; 2 l w - w 
E o 

4i 2 
WO 

-iw t p 

C 0 
2 2 2 

WO WP 4w 

-2 ~ ✓ w 2- w 2 
2 e C p 0 

2 4w
0 WP -

~ iw t ] 
-Q ( -w ) e P } 

p 

2 

for w 
0 

0 

2 cos 2w t + 
0 

< w 
p 

2 

+ 

(3.61) 

We now wish to briefly summarize the results of the analysis 

presented on the preceding pages. For case 1, we see that at a point 

x, the nonlinear field E( 2) builds up from a zero value at t = x/c 

to an oscillation at wp' sin wp(t-x/c). This is borne out by computer 

plots of E~2) corresponding to case 1 (figures 3.1-3.2). For case 2, 

we find that t( 2) also builds up from a zero value at t = x/c . How­

ever, as t + 00 , t( 2) approaches an oscillation at the second harmonic, 

2w
0 

as well as an oscillation at wp . The computer plots of 

(figures 3.2-3.6) corresponding to case 2 with w
0 

= 2wp and w
0 

=lOwp 

show a strong beating of the two frequencies at 2w
0 

and wp . As a 

matter of comparison, computer plots of the linear fields E(l) for 

case two (figures 3.7-3.10) are also given. It is noted that 

the method of evaluating E( 2) on the computer is to_ 
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I 
I 

. I 

\ / 
V 

-0.281 

Figure 3.1: E (2) for x = SOc corresponding to case 1 
X W 

0.866, 

-0.866 

Figure 3.2: 

p 

(E(l)(O,t) = o(t) ~). 

( 2) 150c 
E for x • --x w p 

corresponding to case 1 

o(t) e ). 
-z: 

120 

,' T = Wp,t 
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0.111 1 

W mcE(2) p X 

eAt 

i 
: f\ ( \ ' \ 

1 

•\ I\ 
'J\ . .JJ /\ 

,ao V\fJ \2° 

-0.111 : 

Figure 3.3: E(Z) for x = ?Oc, w = 2w corresponding to case 2 
X W O p 

0 

(_E(l)(O,t) = cos w t•H(t) el. 
0 -1: 

Figure 3.4: E (Z) for x s 1SOc 
X W 

0 

w = 2w corresponding to case 2 
0 p 

(E(l)(O t) 
- ' ~ cos wt • H(t) e) 

0 --z 



0.071 

-0.071 

Figure 3.5. 

0 .053 

-0.053 

Figure 3.6: 
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E (Z) for x = SOc w = 10 w corresponding 
X W ' 0 p 

0 

to case 2 (~(l)(O,t) = cos wt · H(t) ~2 ) 
0 

E( 2) for x = lSOc w = lOw corresponding to case 2 
X W 1 0 p 

(f(l)(O,t) = cos
0
w

0
t H(t) ~

2
) 



1.371 , 

-1.371 ' 

Figure 3.7: 

1.404 

-1.404 

Figure 3.8: 
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70 I 

\ ! 
\_/ 

E(l) for x = 5oc w = 2w corresponding to case 2 
Z W ' 0 p 

(I,(l)(O,t) = cos
0
w

0
t H(t) ~

2
) 

'\ 
\ 
220 

\ 

E(l) for x = i 5oc w = 2w corresponding to case 2 
Z w

0 
' 0 p 

(~(l)(O,t) = cos w
0
t H(t) ~

2
) 
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E(I) 
_z 
Ao 

-1 .147 

Fiqure 3.9: 

130l 

l 

E~l : 
Ao 150 

1 
-uo I l 

F i g u re 3 • l O : 
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,, 

\ I / 
' \ i 

I 

I I 
L_ -- ~roo ~L ,,,,; . 

r 
120 

I \; 

E(l) for x = SOc w = lOw corresponding to case 2 
Z W ' 0 p 

0 

(~(l) = cos wt H(t) e) 
0 -z 

E(l) for x =ill£, w = lOw corresponding to case 2 
z w

0 
0 p 

(~(l) = cos w
0
t H(t) ~

2
) 
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numerically integrate the convolution integrals (3.40) and (3.45). 

This method is discussed in Appendix B. 

Before turning to the case of reflections from a nonlinear, 

cold plasma, we will examine the requirement of the electric field 

strength so that the second order nonlinear effects in a cold plasma 

are appreciable. Certainly, by comparing }(l) and _y( 2) given by 

(2.9) and (2.10), one can determine the conditions of the electric 

field strength so that the nonlinear velocity ;( 2) is, say, 1% of 

the linear velocity. However, as a rough approximation, we will 
V X H 

compare the Lorentz force e --­c 

Maxwell 1 s equations, we have that 

H=~kxE 
w-

with the force eE. From 

This, of course, implies that the magnitude of!:!_ is the same order 

of magnitude as --~- (I_), where vphase is th~ phase velocity of 
vphase 

the electromagnetic wave. Assuming that __ c __ ~ l (that is, we 
vphase 

assume that the frequency of the electric field is greater than wp), 

we see that IHI is the same order of magnitude as IEI. Therefore, 
- - el~I 

the Lorentz force is on the same order of magnitude as -c--1£.1. 

If we assume that y_ is approximately the linear electron velocity, 

~ E , we then have that the magnitude of the Lorentz force is mw -
e2 2 approximately given by -- ltl . Requiring the Lorentz force to 

mew 
be 1% of the linear force e£, we see that 1£1 must satisfy the following 

requirement, 



( 

e2 

mew 

or, I fl ~ • 01 
mew 

e 
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= _e III ~ .01 
mew 

Taking w to be 108 sec-l, we have that 

III ~ (.01) 
3 X 10 l O X 108 

5.3 X 1017 
= 5_7 x 10-2 statvolts = 

cm 

This gives the following energy density 

u ~ I §_I 2 
~ 

-4 3 1.3 x 10 ergs/cm 
8n 

In terms of field intensity, one has that, 

(3.62) 

17 v/cm 

I ~ u 
C C 

-1 
~ 4 x 106 erg sec 

2 
= 4 x 10 -1 watts = 

2 400 mW/cm2 

cm cm 

where Ic is the required intensity of the electric field for the 

nonlinear effects to be appreciable. Actually, in laboratory plasmas 

this value for Ic is easily obtained with the use of radio wave 

transmitters. Of course, it is remembered that the above value for 

Ic is obtained by comparing the Lorentz force with the force eE. 

Actually, one should also consider the nonlinearity due to the 

v • v v term. The above determination of Ic is, however, a fairly 
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good order of magnitude estimate. It is also noted that the above 

analysis of obtaining f( 2) from f(l) is invalid if the amplitude 
V 

of the fields is such that lzl ? • 1. When the electron velocities are 

this high, special relativistic effects come in to play, and the 

governing equations of the plasma (2.1) and (2.2) are invalid. 
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4. Reflection from a Nonlinear Plasma 

Consider an E-polarized, electromagnetic signal incident 

on a linear, isotropic plasma (figure 4. 1). 

PLASMA 

Figure 4.1 

( 4. 1 ) 

Taking Fourier transforms of (4.1) on the time variable gives: 

i w 
Ei = ii (w) e c 

.w r 
1- r•n 

Er = Er (w) e c--

i kt . r ~t ~t 
(w) -E = E e 

~i i ~ r 
= E (w) e c -

•W ,- r . 
= E \w) e c-

; kt . 
~t (w) = E e 

., n i 

nr 

r -

e -y 

~y 

~y 

(4.2) 
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; r where!!., n are unit vectors pointing in the direction of propagation 

and kt is the propagation vector in the plasma. Continuity of 

Ey and Hx at z=O gives, 

~ n i = ~ nr = ~ sin e = k t 
C X C X C X 

where, 

·i n
2 

= cos e r 
= -n z 

Using (4.3), we have: 

= cos 
C 

e / w2~ 

2 = 2 sec2 e ex. WP 

2 
ex. 

From the continuity of E Y and Hx at z=O, we also have: 

Er (w) /w2 2 
Ei = w - - ex. (w) lw 2 2 

w + - Ct 

Et (w) = 2w E; (w) 

w + /w2 2 
- ex. 

Combining the results of (4.2) - (4.5) gives: 

(4.3) 

(4.4) 

(4.5) 
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i ~(x sine+ z cos e) 

Ei= Ei(w) e c 

if (x sin e - z cos e) 
e ~ (4.6) 

w + ✓ 2 2 w -a 

Ft = E \ w) -----==2=w ==---
::;: w +/w2 - ~2 

i (1l 

e C 
x sine 

e 
i cos e 2 ✓ w2- a2 

C 

Equation (4.6) represents the Fourier transformed fields due to the 

incidence of an E-polarized signal. As an example of what these 

fields might look like in the time domain, we consider the case 

where the incident pulse is a delta function. Then, 

( 4. 7) 

The inverse Fourier transforms of the fields given by 
~i * (4.6) (with E (w) given by (4.7)) are 

* The following expressions are generated from the following integral 

00 If 2 2 
i w - a 

1 2 2 r -i wt raL11 ( a It - r ) 

e 
-y 

I(r,t) = e dw = 8(t-r) - -----H(t-r) 
/t2- r2 

by the appropriate differentiation of I(r,t) with respect to t and r • 

Of course, these expressions could also be obtained directly from 

(4.6) and (4.7) by using the integration formulas (A.3) or (A.8). 
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l . 
= o(t - - n1 •r) e 

C - - -y 

r n • r 
-2J [a(t - - - )] nr. r 

2 c H( t - - - ) 
t - !!.r • rJ c c e Y 

= {o(Y-B) - ~ y + B 
2 Jv2_ s2 

ni = sin e e + --x 

nr = sin e e -x -

Y = t - ~ sin e 
C 

B = ~ cos e 
C 

cos 8 e -z 

cos 8 e -z 

Jl(ap) + 

(4.8) 

The above expression for [r(t,r) given by (4.8) is also the one ob­

tained by Chabries [26]. 

Suppose now that the plasma to the right of z = 0 is non­

linear, i.e., electromagnetic wave propagation in this plasma is des­

cribed by (2.39), which is rewritten here: 



2 2 
~ 

V X V X E 
w - w ,., 

p E = --2-
c 
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. 2 
-1w wp e F. T. {~ + 2~ V • D 

2mc2 (4.9) 

where ~, i, and T are related to f in equations (2.36)-(2.38). To 

solve (4.9) with the appropriate boundary conditions at z = 0, we 

proceed in the same manner as in reference [17],that is, in the non-

~ linear plasma, we write 

z > 0 (4.10) 

where Et is given by (4.6); rs is the particular solution to (3.19) 

with E(l) = ft; and ~ is the homogeneous solution of (3.19) chosen 

to satisfy the boundary conditions at z = O . In the region z ~ 0 
~ 

we write E as follows: 

z ~ 0 (4.11) 

~i ~r ~r where E and E are given by (4.6) and ~ satisfies the wave 

equation: 

2 ~ w ~ vxvx~-~~=O (4.12) 
C 

~r 
~ is also chosen to satisfy the boundary conditions at z = O . 

Analogous to the analysis in Chapter 3, ((3.19)-(3.31)), we obtain 
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✓ 2 2 i z s i n ex i cos 8 2 ✓ (;J I 2 - (1. 2 
• (w-w 1 -(w-w 1

) - a )e e c 

00 s 

I 
ik (w,w 1

) ·r 
= ~s(w,w' )e - - dw' (4.13) 

-00 

where 
2 

1 4 ~ E~i (,. 1 ,) ~i (,, 1 ,_ jw•2_r)) 
2 2 4 ~ w E (w-w') w \A 

w - w a p 

• (w-w' - j(w-w' )2- a
2) i~s(w,w') 

and 

S ( ) (;J COS 8 (. / I 2 2 Ji 2 2 t_ w,w' = - sin 8 e +-- vw - a + (w-w') - a ) e 
C -X C -z 

Equation (4. 13) suggests that we write ~ and ~ as follows: 

00 ikt(w,w')•r n = I ~(w,w') e ~ - dw' (4.14) 
-oo 

~r oof i~(w,w')·.r:_ 
~ = ~(w,w') e dw' (4.15) 

-oo 

where !iJ., ~(w,w'), ~(w,w'), and ~(w,w') are chosen to satisfy 

the boundary conditions at z = 0 . Continuity of tangential compon­

ents at z = 0 is satisfied if: 

(4.16) 
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and 
(4.17) 

Equation (4.16) implies that 

(4.18) 

Since, k = - w - w t l J 2 2 
2 C p 

and 

we have that 

kt = cos 8 J w 2 _ a 2 
2z C 

(4.19) 

k r = - ~ cos e 
2z C 

(4.20) 

From (4.16) and (4.17), plus the fact that 'v • il = 'v • ~ = O , 

we have 

(4.21) 

(4.22) 

(4.23) 

(4.24) 
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t w2 tan e s A ---------A 2z - X 
J 2 2 2 2 w-a +w-w p 

(4.25) 

Equations (4.18)-(4.25) completely specify the second order reflected 

and transmitted.fields. Since we are only interested in the second 

order reflected fields in this chapter, we will just work with the set 

of equations (4.21) and (4.22). Using (4.15), we see that (4.21) im­

plies: 

where 

00 

-oo 

00 00 

= I dw e-iwt I dw' A;x (w,w 1
) 

-oo -oo 

2 00 

w e f dw' (w' j ,2 2) - 4 i sin e (- --k-) -4 C 
-W - Cl 

Cl 
-00 

00I -iwri( ) (w-w 1 -J(w-w 1
)

2
- a

2) w dw e E w-w' -
w j w2 - a2 + w2 - w2 

p 
-00 

T = t - ~sine+ 2 cos 8 
C C 

E;(w') 

(4.26) 

From the form of the integrals appearing in (4.26), it is seen 

that we can express E;x and E~y in terms of the following convolu­

tion integrals: 
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t 

. I 
s/c 

s = x sine - z cos e 

00 

f(t) = E (w)(w - w - a) e dw I ~i J 2 2 -iwt 

-oo 

00 • 

_ 1 J we - 1 wt dw -
g( t) - ~ 

LTT / 2 2 2 2 
- 00 WyW - a + W - W p 

( 4. 27) 

(4.28) 

(4.29) 

The expression for g(t) (4.29) can be readily evaluated with the use 

of the integration formula (A.3). This formula gives: 

* 

00 • 

-
- _1 I w e-,wt dw 

g(t) 2TT ./ 2 2 2 2 
- 00 wYw - a + w - w p 

TT • -iat COS cp 
_ l f d~ 2(cos ¢ sin ¢)e 
- 2TT 't' Z 

2i(cos ¢sin¢)+ 2(cos ¢ 
-TT 

TT 
l J i sin 2: e-ia t cos ¢ 

= - . dcp ----~-----
2TT -TT i Sin 2¢ + COS 2cp - COS 20 

2 cos e) 

H(t) 

H ( t) 

1 1 - e -ia t cos¢ _H(t) TTf -4icp 
= -4. dcp 2·~ e 

TTl 1 - COS 20 e- l't' 
-TT 

For the rest of this chapter, s will always be defined as s = x sin e -
z cos e. 



* 
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CX) 

= h l (-cos 2e)n {J2n(at) - J2n+4(at)} H(t) 
1 n=O 

(4.30) 

It is noted that we can also express g(t) in terms of Lommel 

f~nctions of two variables as follows: 

g(t) = ~i {U
0

( ✓cos 2e at,at) - (cos 28)-2 u4 ( ✓cos 28 at,at)} 

( 4. 31) 

As in Chapter 3, we now wish to consider two cases. These cases are 

as follows: 

( Case 1) 

(Case 2) = 
1 WO 

- 21r 2 2 
w - w 

0 

(4.32) 

(4.33) 

The first case corresponds to a delta pulse incident on a non­

linear plasma. This is described mathematically as 

i n • r 
= o(t - - C =) ~ (4.34) 

( Case l) 

The second case corresponds to a suddenly turned on sinusoid incident 

on a nonlinear plasma, viz., 
i ; 

n ·r n ·r 
= sin w

0
(t - - c -) H(t-- c -) (4.35) 

(Case 2) 

* This last equality follows from the Bessel definition (A.5). 
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Equation (4.27) (with E;Y = 0) represents the second order, nonlinear 

electric field response to any incident, E-polarized electromagnetic 

wave. Before considering the individual cases one and two above, we 

remark that ~ is perpendicular to both ~i and Er. We also note 

that for normal incidence (e=O), there is no second order, nonlinear 

reflected fie 1 d. 

We now consider the first case. For this case, f(t) is 

evaluated using (A.3) (with Ei(w) given by (4.32)) as follows: 

00 

f(t) = k f (w -}w2- a2) e-iwt dw 
-oo 

2 TI 

= 5 f (cos ~ - i sin ~)e-ia t cos ~ sin ~ d~ H(t) 

-TI 

2 TI 

a f (l _ e-2i¢) e-ia t cos¢ dcp H(t) 
= 4Tii 

-TI 

Again using (A.5) and the Bessel recursion relations, we have 

(Case 1) 

(4.36) 

( 4. 37) 

For case 2, we evaluate f(t) (with Ei(w) given by (4.33)) 

using (A.8): 

-wo 
00

f w -Jw2- a
2 -iwt f(t) = 21r 2 2 e dw 

w - w 
-00 0 
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or 
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2TI 
= ~ J dlJ) e i q cos 1J; [ 1 ( 1 1 ) 

TI ~2- ~-2 ~2- ~2 - ~2- ~-2 
0 0 0 O 0 

_ ~2 _ ~-2 ~2 ~-2 
+ 0 0 ( 0 0) 

~2 _ ~-2 ~2- ~2 - ~2- ~-2 
0 0 0 0 

(Case 2) 

/i 2 2 W + W -Cl 
~ = 0 0 

0 Cl 

w + i /a2 - w~ 
~ = _o ____ _ 

0 Cl 

for 

for 

W > Cl 
0 

W < Cl 
0 

- l] 

(4.38) 

Equation (4.37) together with (4.31) and (4.27) give the ex­

pression for ~ for case 1. Similarly (4.38), (4.31), and (4.27) 

give E~ for case 2. It is noted that Er and Er can be writ-
-.:. 2x 2z 

ten as: 

(4.39) 

(Case 1) 

where t 
_ Cl2 J J1(a(t-T)) 2 

1,(s,t) - 2 [ t-T ] 
s/c 

• {U0 ( ✓ cos 28 a(T -f), ah-f))-(cos 20)-2 
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(4.40) 

(4.41) 

(Case 2) 

where 

2 t 
r2(s,t) = ~ f {~

0
U2(~~1aT,aT) + ~~

1u2(~
0
aT,aT)}

2 

s/c 

{ U ( ✓cos 2 8 a(T - i.), a(T - i.)) 
0 C C 

- (cos 28)-2 U4( ✓cos 2e a(T - z), ah-z))}d-r 

(4.42) 

We will consider the limiting forms of ~ for large and 

small t . However, before doing so, we will derive ~ for the 

case when the incident fields are H-polarized. In this case, the 

transforms of the linear transmitted, reflected, and incident fields 

* are given by 

~i 
Et = 2wE ( w) { -cos 8 J w 2 - a 2 e 

w/w2- a2 + w2- w2 -x 
~~ sin ex i cos e z J.-w2 ___ a.,...2 

+ w sin 8 ~
2

} e e c 

For a derivation of the following equations, see, for example, Refer­
ence [30], pp. 39-40. 
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J 2 2 ~r E; (w) ( 1 
2w .w - a 

)(cos e e + sin e e ) E = -
2 2 w/w2- a2 

-x -z 
w - w + p 

.w . ex -i ~ cos 8 z ,- sin 
X e C e C (4.43) 

E; = Ei (wH -cos 
i ~ x sin 8 i ~ z cos 8 

e e + sin e e ) e C e C 
-x -z 

The transmitted field given by (4.43) generates a second order 

pulse in the nonlinear plasma which is obtained as in the case of the 

E-polarized incident field {equation (4.13)). The result is 

2 ~t - ~t 
~s 1 w e E. (w) E. 
E = - 2 2 -fn,v(( Jw ) * (wJ)) (4.44) 

w - w p 

where ~t E. (w) 
J 

is the j th component of Et, and the sum on the j in 

(4.44) is implied. From equation (4.44) and (4.43), we have: 

2 j 2 2j 2 2 . 2 • [ cos 8w 1 -a ( w-w 1 
) -a + s ,n 8 w 1 

( w-w 1 
) ] } 

= r/1s(w,w') ei)s_s(w,w'). r:. dw' (4.45) 
-oo 
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and 

s 1 (w,w') 

Analogous with the expressions obtained for the nonlinear reflected 

fields (4.26), we have: 

00 00 2 2 

= I dw' I dw e-iw, w - w A!(w,w') 

w JT-:l +w
2

- w
2 
p 

(4.46) 

-oo -oo 

where 

t X • Z e T = - - S ,n 8 + - COS 
C C 

Equivalently, we can write (4.46) in terms of the convolution integral: 

E2rx = E2rz cote= -4iw~me si~ e ft [v2(~-,) + u2(t-,)J 
cos e sin2e 

s/c 

• g(-r _ .?..) dT 
C 

(4.47) 

where g(t) is given by either (4.29) or (4.31); 

00 ~ . 2 j 2 2 

I 
E1 (w) cos e ,w -a 

-iwt v( t) = e dw (4.48) 
J 2 2 2 2 -00 w w - a +w - w 

p 
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00 

sin2e w e-iwt 
u(t) = I E; (w) 

dw 
j 2 2 2 2 

-00 w w - a + w - w 
p 

(4.49) 

It is noted that 

v(t) -2 f(t) - u(t) = a (4.50) 

where f(t) is defined by (4.28). In evaluating u(t) we again consi ­

der the two cases specified by equations (4.32) and (4.33). When 

E; (w) = 2! , we have that 

sin20 
00 

-iwt 
u(t) = I we dw (4.51) 2n j 2 2 2 2 

-00 WW - a + W - W p 

(Case 1) 

We note the similarity between this integral and (4.29) for g(t) . We 

can therefore immediately write: 

u(t) 
2 ...-- . 

(cos 28)- u4 ( ✓cos 28 at,at)} 

(4.52) 
(Case 1) 

v(t) for case 1 can be obtained from (4.50). When Ei(w) 
1 

2 2 w - w 
0 

we have that 

u(t) 
-iwt we dw (4.53) 

(Case 2) 
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To do this integral we can use (A.3) for the case when w
0 

>a. Then 

we have: 

. 2 'TT • t 
u(t) = - wos1~ e J d$ cos$ sin$ e-1a cos$ (4.54) 

2na (. . 2 ~) ( 2 Wo) -n , cos 0 s, n ¢ + cos ¢ - 2 cos ¢ - 2 
a a 

(Case 2) 

After expressing the integrand of (4.54) in terms of complex 

exponentials (as in (4.30)), and then partial fractioning and manipul­

ating the integrand, we obtain the following for u(t): 

2 . . 2 ,w sin 0 
1 u(t) = __ o2__ 2 

a (cos 20 - ~
0

)(cos 28 

[cos 28 U
0

(/cos 20 at,at) 

( -1 ) ( -2) - cos 28 U -~ at,at + cos 28 - ~o 
0 0 

(4.55) 

(Case 2) 

When w <a, we can use (A.8), but the result is the same as (4.55). 
0 

Therefore, u(t) is given by (4.55) for all w
0 

• Of course, v(t) for 

case 2 can be obtained from (4.50) with f(t) given by (4.38). 

Equations (4.52), (4.50), and (4.47) give the expression for 

~ for case 1. Equations (4.55), (4.50), and (4.47) give the expres­

sion for ~ for case 2. It is remembered that ~ as given in 
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(4.47) represents the second order, nonlinear electric field response 

to any incident, H-polarized electromagnetic wave. It is noted that 

Er and Er can be written as: 2x 2z 

(4.56) 

(Case l) 

where 

(4.57) 

and u3(t) = u(t); v3(t) = f(t), with u(t), v(t) given by (4.52) and 

(4.50), respectively. For case 2, we have the following: 

(4.58) 

(Case 2) 

where 

f
t u~(t-T) v~(t-T) 

= [ . 2 + 2 ] g ( T - ~) dT 
sine cos e c 

s/c 
(4.59) 

and u4(t) = u(t)/w
0 

; v4(t) = v(t)/w
0 

, with u(t), v(t) given by 

(4.55) and (4.50), respectively. 

We will now consider the limiting forms of ~ for large and 

small t for all the various cases (equations (4.39), (4.41), (4.56), 

and (4.58)). Actually, we need only consider the asymptotic expan­

sions of the four integrals r1-r4, since these integrals are simply 

related to ~ by the equations (4.39), (4.41), (4.56), and (4.58). 

To simplify the following asymptotic analysis, we will write r1 and 
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I2 as: 
t 

r1(s,t) i I 2 g(T - .?..) dT (4.60) = f ,' t-T) 
C 

s/c 
t 

r2(s,t) i I 2 g(T - .?..) dT (4.61) = f 2(t-T) 
C 

s/c 

where 

fl ( t) 
J 1(at) 2 . 

(4.62) = Ct t = a (J
0

(at) + J2(at)) 

and 

f2(t) = a{~
0
U2(s~l at,at) + ~~1u2(~

0 
at,at)} (4.63) 

To carry out the expansions of r1-r 4 for small t, we will make use 

of equation (C.6). This equation states the following: 

If 

and 

then 

t 

~(t) = J f2(t-T) g(T-r) dT 
r 

00 

f(t) = l a J (at) 
n=O n n 

00 

g(t) = l b J (at) 
n=O n n 

(4.64) 

for small t. Making use of equations (4.30), (4.50), (4.52), (4.55), 

(4.62), and (4.63), and expressing all Lommel functions in terms of 
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* their Bessel sums (equations (A.12) and (A. 13)). we have, using (4.64) 

I1(s,t) ~ ¼ a3 
J1(a(t - f)) 

4w2 
I2(s,t) ~ ao J5(a(t - f)) 

(4.65) 

(4.66) 

( 4. 67) 

(4.68) 

Equations (4.65)-(4.69) represent the expansion of the integrals for 

small t . We now consider these integrals for large t. They can 

all be expressed in the following form: 

t 

I(t) = f f
2(t-T) g(,-r) d, 

r 

(4.69) 

The form of (4.69) is quite similar to the integrals in Chapter 3 

((3.40) and (3.45)) in that the integrand of (4.69) contains both a 

complicated function squared, f2(t-T), and a transfer function g(t-r). 

However, whereas the transfer function in the integrals of (3.40) and 

(3.45) is sin wPT, g(T-r) in (4.69) is a complicated function. It 

is for this reason that an exact asymptotic analysis of the integrals 

11-1 4 is impossible. It is, however, reasonable to expect that the 

To obtain (4.66) and (4.68) one must use the total expansion (C.5). 
Equation (C.5) gives an expansion for ¢(t) up to the 5th order 
Bessel function. This expansion is necessary as a

0 
= a1 = 0, and 

b
0 

t O for 12 and 14 . 
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integrals r1 and r3 will go to zero for large times, as they cor­

respond to the second order reflected field due to a delta function 

incident wave. Indeed, (4.69) can be written as: 

where 

and 

00 

-oo 

00 

T = t - r; F(w) = Jn f f2(t) eiwt dt 
0 

00 

G(w) = 217T I g(t) eiwt dt = _1 __ w ___ _ 
27T / 2 2 2 2 

0 wvw -a + w - w p 

(4.70) 

(4. 71) 

Therefore, since G(w) has no poles, we would expect that for the 

case of a delta impulse incidence, the reflected field will go to zero 

for large times. This is borne out by numerical calculations of E~x 

for case 1 for both incident E and H polarization (Figures 4.2-

4. 7) . . 

The integrals r2 and r4 correspond to a suddenly turned on 

sinusoidal incidence of frequency w
0 

• We therefore expect r2 and 

r4 to asymptotically approa~h a wave at the second harmonic fre­

quency. To get a better idea of the asymptotic behavior of r2 and 

r4 , we look at the steady state solution to the second order fields. 

First, examining r2 (equation (4.61)), we see that in the steady 

state, f 2(t) (4.63) is given by 
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00I I 2 2 . t w-\Jw -a -1w d 
2 2 e w 

w - w 
-00 0 

·( J 2 2) t ~ 1 w - w - a cos w 
0 0 0 

for w > a 
0 

~i(wcoswt-Ja2-w2sinwt) for w <a 
0 0 0 O 0 

(4. 72) 

We will now assume that f2(t) is given by its asymptotic 

expansion (4.72) for all t. Then we have for [f2(t)J 2 

w2 ---- 2iw t -2iw t 
f~ ( t) = - ; ( 1 - J l ( ~) 2 ) 2 { 2 + e O + e O 

} 
WO 

1 2iw
0 

t 2 2 w j 2 2 -2iw t 
= - ~e {wo - T - f a - wo) + e o 

2 2 w j 2 2 2 
• (w - ~ + _g_a - w ) + ~] 

0 t.. 1 Q L 
for w

0 
< a (4.73) 

Substituting (4.73) into (4.61) and changing into the form (4.70) gives 

w 3(1 -)1- (~) 2)2sin 2w (t - 2-) 
0 W O C 

I 2(s,t) = --~o 
2w )4w2 -a2+ 4w2 - w2 

0 0 0 p 

; w > a 
0 

a> w > a/2 
0 
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-2iw ( t - ~) 
e O C 

= iw3(1 - 1(~)2) { --------
o 2 w ✓ 2 2 2 2 0 2iw a - 4w + 4w - w 

0 0 0 p 

2i w ( t - ~) 
e O C 

------} 

-2iw ✓ a2- 4w
2 

+ 4w
2 

- w2 
0 0 0 p 

2iw ( t - ~) 
e O C 

+ ----------- } ; 

-2iw /a2- 4w
2 

+ 4w2 
- w

2 
0 0 0 p 

An analogous expression for r4(t) can also be derived: 

i w ( w 2 - w 2 )s i n 2 w ( t - ~) 
r
4
(t) = O p O o c 

A(2w J4w
2 

-a2 
+ 4w2 -w2) 

for w > a 
0 

0 0 0 p 

2 2 
-2iw (t - 2-) w0 (wp - w ) 

= 0 {Be o c 

2(2w j 4w2 _ a2 + 4w2 2 - w ) 0 0 0 p 

2iw ( t - 2-) 
- C e o c } for a 

2 < WO < a 

2 2 
-2iw ( t - 2-) 2iw ( t - 1) w

0
(w - w) 

= Q 0 {D e o c F e o c } 
2 

(4.74) 

a for w
0 

< -2 
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where in the above 

B = ----------
(. j 2 2 2 2)2 lW · ~ - W + W - W 

0 0 0 p 

B 
D = -----------

(2iw0 }a.2 - 4w~ + 4w~ - w~) 

C 
F = -----------

2. j 2 4w2 + 4w2 2 - ,wo a - o o - wp 

Expressions (4.74) and (4.75) are the values of 12 and 14 if the 

incident field were purely sinusoidal instead of a suddenly turned on 

sinusoid. It is reasonable to expect that (4.75) and (4.74) are also 

the asymptotic expansions of 12 and 14 . This is borne out by com­

puter calculations of E;x for case 2, for both incident E and H polar­

ization (Figures 4.8-4.13). 

We now wish to summarize and comment on the results of the above 

asymptotic analysis. It is noted that from the results of formulas 

(4.65)-(4.68) that for short times,the second order, nonlinear reflected 

fields (for both E-polarized and H-polarized incident waves) represent 

oscillations whose frequency approaches a= wpsec e. For the case 

when a delta pulse is incident on the nonlinear plasma, it was argued 

that ~ goes to zero for long times. From formulas (4.74) and (4.75) 

it was argued that when a suddenly turned on sinusoid of frequency w
0 

is incident on the nonlinear medium,~ is asymptotic to a sinusoid 

at the second harmonic frequency 2w
0 

• It is also noted that in the 

two formulas (4.74) and (4.75), there are three ranges of w
0 

which 
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are of interest: w
0 

>a,~< w
0 

<a, and w
0 

< ~. This is con­

trasted with the case of reflection from a linear, isotropic plasma 

where there are just two ranges of interest for w: w > a and 
0 0 

w <a. The reason for this difference is that in the case of a nan-o 

linear plasma, an incident wave whose frequency w
0 

is below the 

cutoff frequency a, but yet greater than a/2 can generate a second 

harmonic at 2w in the plasma which is above the cutoff frequency 
0 

and therefore will propagate. This behavior is also noted in reference 

[17 J where it is commented that, "The variety of non 1 i near phenomena 

involving evanescent (exponentially decaying) waves is much wider than 

in the linear case. 11 

In Figures 4.2 to 4.13 plots are made of E;x(O,t) correspond­

ing to both E and H-polarized incidence for cases l and 2 for various 

values of w and e . Unfortunately, due to numerical difficulties 
0 

no plots were made for the interesting case w < a • 
0 

For sake of 

comparison, plots are made of E; (Figures 4. 14-4. 16) for the case of 

an E-polarized incident wave (equation (4.6)) where Ei(w) is given 

by (4.33). According to (4 .6) and (4 .33) , we can wri te Er as y 

.w 
1- s -iwt 

e c e 
2 2 w - w 

0 

dw (4.76) 

With the use of (A.8) and the indicated substitutions in Appendix A, 

we have 



where 

s 
T = t - -

C 

(4.77) 

Corresponding plots of ~r given by (4.43) and (4.33) were not made 

due to numerical difficulties. Also, plots of ~r corresponding to 

E-polarized and H-polarized incident delta pulses were not made but 

can be found in Chabries' paper [26]. The numerical method used to 

compute all the graphs in this chapter can be found in Appendix B. 
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Figure 4.2: · E2r (0,t) for e = 30°, E-polarization incidence corres­x -
ponding to case 1 (Ei(Q,t) = c(t) ~) 

_\ --1\ C':, C> =- --V O V ' 7 20= ---= 30 40 50 60 70 
T = Wpt 

-0.079 

Figure 4.3: E2xCQ_,t) for e = 45°, E-polarization incidence corres­

ponding to case 
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20 30 40 50 60 
T = Wpt 

E;x(~,t) for e = ~0°, E-polarization incidence cor­

responding to case l (Ei(Q_,t) = o(t) ~) 

70 

Figure 4.5: Efx(Q,t) for e = 30°, H-polarization incidence cor­

responding to case 1 (fi(Q,t) = O(t)·(-cos0~+sine~)) 
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·;gure 4.6: Efx(Q.,t) for e = 45°, H-polarization incidence corres­

ponding to case 1 (Ei(O,t) = o(t)•(-cosee +sinee )) 
-- -x -z 
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Figt.1re 4.7: E;x(Q_,t) for e = 60°, H-polarization incidence corres-

ponding to case 1 (~i(.Q_,t) = o(t)•(-cos e~x+ sin 01
2

)) 

70 
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5.834 1 

Figure 4.8: E~x(Q_,t) for e = 30°, w
0

= 4wp• E-polarization incidence 

corresponding to case 2 (Ei(O,t) = sin wt H(t) e) 
- - 0 -y 

Figure 4,9: E;x(O,t) for e = 45°, w
0

= 4wp• E-polarization incidence 

corresponding to case 2 (~i(.Q_,t) = sin w
0
t H(t) ~) 

70 
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Figure 4.10: E~x(Q.t) for e = 60°, w
0

= 4wp, E-polarization incidence 

corresponding to case 2 (Ei(O,t) = sin wt H(t) e) 
- - 0 ~ 
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IO4 wpmcE~x 
128e 
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-8.0 

Figure 4. 11: E2rx(O,t) for e = 30°, w = 4w • ·H-polarization incidence 
- 0 p 

corresponding to case 2 (fi(.Q..t) = sin w
0
t H(t)·(-cos e~ 

+sine e )) -z 
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'igure 4.12: Efx(Q,t) for e = 45°, w
0

= 4wp• H-polarization incidence 

corresponding to case 2 (Ei (0,t) = sin w t · H(t) • 
- - 0 

(-cos e ~+sine ~
2
)) 

7.0 

I03 wpmcE;x 

128e 0 

-3.0 

Fi g u re 4 • 1 3 : 

20 

E;x(Q,t) for e = 60°, w
0

= 4wp' H-polarization incidence 

corresponding to case 2 ([1(.Q.,t) = sin w
0
t H(t) • 

(-cos e tx +sine ~-z)) 
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0.041 

-0 .041 

Figure 4. 14: E;(Q_,t) for e = 30°, w
0
= 4wp• E-polarization incidence 

corresponding to case 2 (Ei(0 1 t) = sin wt H(t) e) 
- - 0 -y 

0 .054 1 

l 
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-0.054 l 

Figure 4.15: Er(O,t) for e = 45°, w = 4w, E-polarization incidence 
y - 0 p 

corresponding to case 2 (Ei(O,t) = sin wt H(t) e) 
- - 0 -y 
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0.088 t 

-0 .088 I 

Fi g u re 4 . 16 : Er(O,t) for e = 60°, w = 4wp, E-polarization incidence y - 0 

corresponding to case 2 (Ei(O,t) = sin wt H(t) e) 
- - 0 -y 
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5. Conclusion 

In this thesis expressions for the second order, nonlinear 

electric field which is generated in and reflected by a nonlinear, 

isotropic, cold, collisionless plasma have been found. In chapter 

3 this second order field is generated in the plasma by a voltage 

applied across the boundary of the nonlinear plasma. We consider two 

types of voltages--a delta impulse voltage and a suddenly turned on 

sinusoidal voltage. The resulting second order field is found to be 

longitudinal and oscillates at the second harmonic frequency (for the 

case of the sinusoidal input) as well as the plasma frequency. It is 

also found in this chapter that field intensities on the order of 

400 mW/cm2 at an angular frequency of 108rad/sec will produce a sec­

ond order field which is on the order of 1% of the first order, linear 

electric field. 

In chapter 4, we found the second order, nonlinear reflected 

field which is due to an E- or H-polarized wave incident on a semi­

infinite, isotropic, cold, collisionless plasma. We consider the two 

cases where the incident wave is either a delta function or a suddenly 

turned on sinusoid. The resulting second order reflected field (for 

the case of the sinusoidal incident wave) oscillates at the second 

harmonic of the incident wave. The case of second order nonlinear re­

flection and transmission by a nonlinear plasma slab was not considered. 

This case is important, however, since in the laboratory the transmit-
* ted fields of a plasma slab are frequently of interest. 

* For the case of transmission and reflection by a slab of nonlinear 
crystal, see reference [9], page 83, or reference [17]. 
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Appendix A 

Integration Techniques and Lommel Functions 

In this appendix we consider integrals of the type: 

00 / 2 2 
- 1 I 

A1 ( w, v w -a ) . t . / 2 2 
A(t) d ___ ..,,_.__ -,w 1 vw -a r 

- 2,r w - e e 

-
00 A2(w, ~) 

(A. 1) 

where A1 and A2 are polynomials in their arguments. As w goes 
a 

to infinity, A1;A2 ~ a
0 

+ -d- + in the instances considered here. 

If a
0 

1 O, then there is a Dirac delta function in the expression 

for A( t) . This can be subtracted away and invert{wQd se arately in 
. 2 

view of the fact that the inverse transform of e1
~ w -a is 

J1 (a Jt2-r2) 
o(t-r) - ra J 2 2 

H(t-r) . Therefore, we only consider integrals 
t - r 

where A1/A2 ~ a1/w + ••• • 

We will consider two separate cases. The first case is when 

the integral in (A.l) has no poles in its integrand. In this case, we 

deform the initial path of integration into a path C which shrinks 

* to the branch cut on the real line from -a to a (see Figure A.l) . 

Therefore, equation (A.l becomes) 

A(t) 
/ 

2 2 
l I 

A1 (w, · w -a ) . t . j 2 2 -,w 1 w -a r ( ) 
= - ~ ---;:::.=.-:..- e e dw H t-r 

l'TT I 2 2 
CA2(w,..;w-a) 

(A. 2) 

Similar integrals are treated by this change of contour method by 

Chabries [26]. 
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<X) 

Figure A. 1 

Integration path 

along the branch cut. 

Equation (A.2) reduces to 

1 aI A 1 ( w , i J a 
2 -u:l ) i t j 2 2 

A( t) = - - { ----:::.-::..-=..-:..- e- w e- a -w r dw 
2

TT j 2 2 / 
- a A2 ( w, i a -w ) 

I
a A 1 ( w, - i J a 

2 
-w 

2 ) _ ,· t J 2 _ 2 r 
+ ----_--_-_-___ - e w e a w dw} H(t-r) 

-a ~(w,-i /a2
-w

2) 

With the substitution w = a cos¢, we have 

= --
r., {- ITT A1(a cos ¢,ia sin¢) . ( . . ) A(t) v. ________ e-,a t cos ¢-1r srn ¢ sin¢ d¢ 
2TT A ( . . ) 

0 2 a cos cp,1a sin¢ 

-I
o A, ( Cl cos ¢. i a sin ¢) . ( . . ) 
-------- e-,a t cos ¢ - ,r sin ¢ sin¢ d¢} H(t-r) 
A2(a cos ¢,ia sin¢) 

-TT 
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Cl 'ITJ A1 (a cos ¢,ia sin¢) -ia./t2-r2 cos(¢+<P) 
= - { -------e sin¢d¢} H(t-r) 2

TI -TI A2(a cos ¢,ia sin¢) 
(A.3) 

where 

Expressing the sines and cosines in (A.3) in terms of complex exponen­

tials and using the geometric series, one can express (A.3) in terms of 

(A.4) 

where f(n) is a first degree polynomial in n . Equation (A.4) fol­

lows from the Bessel definition 

'IT 

J (x) = i-n J ei(x cos¢+ n¢) d~ 
n 2TI 't' 

(A.5) 
-TI 

In deriving (A.4) from (A~3), use is also made of the relation 
n 1 i i+z J_n(x) = (-) Jn(x); and the identity tan- z = 2 log -r:z. 

When the integral in (A. l) has poles in its integrand, then we 

have to modify (A.4) to include the appropriate residue contributions. 

If these poles all lie outside the segment lwl <a, then the formula 

for A(t) becomes 
f(n) 

A(t) = I Cn(i:~)""""z" Jn(a)t2-r
2

)H(t-r) 
n=O 

- 2TTi ~ Res -[i- eir Jw2-a2 
e-iwt] (A.6) 

J J 2 

where Resj[¢(w)J is the jth residue of ¢(w) . If the poles are all 
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situated within the segment lwl < a, then we must modify the initial 

path of integration into an ellipse*,** (as shown in Figure A.2) by 

the successive transformations: 

where 

w = is 

s = ~ (1 + ~2
) ( s on c') 

rr-s 
y = ✓ i+s S = r/t 

' 

Imw = s 

( s 1 , s 2 , • • • , s i a re po 1 es ) 

Figure A.2 

(A. 7) 

Rew 

One is referred to Appendix B of Reference [27] for a fuller treatment 
of the following method. 

** It is noted that the case where all the poles are situated outside 
the segment lwl < a could also be treated using the following 
method. The two different integration techniques are used for the 
sake of diversity. 
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Note that we can also write s on C' as 

s = a (s sin~+ i cos~) 

M 
From the above formula for s on C' we see that the ellipse has a 

semimajor axis of length a and a semiminor axis of length 

/i7 
as . Also note from the transformation formulas (A.7) that we 

Q 
have the following relations: 

Js2+a2 = ai (l _ ~2) 
2t,; 

ds = ft{ 1 - ~
2

) d~ 

2 2 s + w = 
0 

-4 (~2- ~2)(~2- ~-2) 
4~ o o 

Therefore, the integral in (A.l) becomes 

l fioo Al (is, i j s2+c.2J st - r )s2+a2 
A( t) = 2TTT ---,::=--::..- e ds 

TTl -ioo A2(is,i )s2+ch 

(A.8) 

where P and Q are polynomials in ei~. By the method of partial 
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fractioning, one can expand P/Q as: 

(A.9) 

By expanding the double sum in a gemoetric series, one obtains for P/Q 

the infinite sum: 

00 

P - l C eim1J; 
Q - m=l m 

Therefore, using the relationship: 

2n 
2nin Jn(q) = f e±inW eiq cos W dW 

0 

(A. l O) 

(A.11) 

one obtains for A(t) an infinite series of Bessel functions. This 

can be expressed in terms of Lommel functions of 2 variables, viz., 

* Un(w,z) and Vn(w,z) where 

00 

(-)m (!'!.)n+2m J (z) Un(w,z) = I 
m=O z n+2m (A. 12) 

00 

(-)m (~fn-2m J (z) Vn(w,z) = I 
m=O z -n-2m (A.13) 

The two types of Lommel functions defined by (A.12) and (A. 13) 

are interrelated in the following ways: 

* For a further discussion of Lorrmel functions, see Reference [32], 
pp. 537-550. 
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(A. 14) 

(A. 15) 

From the defining series (A. 12) and (A. 13) it is seen that these func­

tions satisfy the recursion relations: 

(A. 16) 

(A . 17) 

One also has: 

(A. 18) 

(A.19) 

All of the integrals occurring in this thesis can be reduced from (A.8) 

to 
2rr . 

= f ~.Q, e,q cos~ d,,, 
In (q,K) 2 2 ~ 
N,m 

O 
(F; _ K )m 

(A.20) 

For a tabulation of these integrals (for small £,m) one is referred to 

Appendix C of Reference [27]. The integrals encountered in this thesis 

are copied below from Appendix C in [27]. 

I ( c-± 1 ) o,l q,so (A.21) 
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(A.22) 
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Appendix B 

A Numerical Solution of Convolution Integrals Appearing in 
This Thesis* 

In this appendix a method is described for evaluating the con­

volution integral: 

where 

t 

x(t) = f f(t-,) g(,) d, 
0 
t 

= I f ( t-T ) h ' ( T ) d T 

0 

g(t) = h'(t) = * 
(B. l) 

To evaluate x(t) we must first break up the interval [O,t] into n 

subintervals of equal length 6t (6t = ¼) . Then x(t) can be written 

as: 
t n6t 

x(t= Mt) = l f(t-,) g(T) d, = ) f(t-,) g(T) d, 

6t 26t 

= f Fn g(,) d, + f Fn-1 g(,) dT + ••• 
0 6t 

n6t 
+ f F, g(T) dT 

(n-~)6t 
(B.2) 

where 

* See Reference [33]. 
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Since Fi remains constant in each integral, it may be taken out of 

the integral sign. Therefore, 

Let 

n 
x(n6t) = I Fn-i+l 

i=l 

n 
= l Fn-i+l{h(i6t) - h((i-l)6t)} 

i =l 

H. = h(i6t) - h((i-l)6t) 
1 

Then we have 

n 
x(t=n6t) = l Fn-i+l Hi 

i=l 
(B.3) 

Thus the evaluation of x(t) at t =n6t is reduced to the addition 

of n readings. By using (B.3), computer evaluations have been made 

of all convolution integrals in this paper. The form of the two 

integrals in Chapter 3 (equations (3.40) and (3.45)) are 

t 

I 
x/c 

t-x/c 

dT= I 
0 

f(t-T)f (t-T)sin w T dT 
X p 

w (t-x/c) 
- 1 PI u u = w f( t - -) f ( t - -) 
p O WP X WP 

• ~-cos u) du (B.4) 

where 
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2U1(Yiq,q) 
f(t) f (t) = w (2U (Yiq,q) - J

0
(q))( i 

X p 0 

for case l in Chapter 3 

f(t) fx(t) = ~ [Ul(Y~~1q,q) + Ul(Y~oq,q)] 
0 

for case 2 in Chapter 3 

jt2- x2 /c2 

(B.5) 

Comparing (B.4) with (B.l), we see that h(t) = - cos wpt. We also 
WP 

see that 

H. = -
1 [cos w (i-l)6t - cos w i6t] , WP p p 

2 . w 6t w 
= - sin(~) sin(f (2i-l)6t) 

WP 
(B . 7) 

Therefore, with (B.7) and (B.6) or (B.5), we can generate the two con­

volution integrals given by (B.4) by numerically summing (B.3). The 

form of the four integrals of interest in Chapter 4 (equations (4.40), 

E4.42), (4.57), and (4.59)) are 

(B.8) 
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where 

(B.9) 

(B. 10) 

(8.11) 

(8.12) 

' g(t) = ½ [U0 ( ✓cos 20 at,at) - (cos 20)-2 u 4 ( ✓cos 20 at,at)J (B. 13) 

and 

2 
a 

2 ( -1 ) ( -1 ) + ~o u4 ~o at,at - cos 20 U
0 

~o at,at 

(8.14) 

Comparing (B.8) with (B. 1), we see that 

(8.15) 

or 

h(t) = 
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'TT 

I e-iat cos¢ sin¢ d¢ 
.2 rh 'A, 2 2 2 , a cos 'f s 1 n 'f + a cos ¢ - w 

-TI p 

=----
a✓cos 28 

(B.16) 

Therefore, with (B.16) and either (B.9), (8.10), (B.11), or (8.12) we 

can generate the four convolution integrals (B.8) by summing (B.3). 



-101-

Appendix C 

Asymptotic Expansions of some Integrals in Chapters 3 and 4 

In this appendix, we derive some asymptotic formulas 

for integrals which appear in chapters 3 and 4. Consider the 

integral: 

where, 

and, 

Then, 

t 
~ ( t ) = f f 2 (T - t ) g ( , - r ) d, 

r 

00 

f ( t) = L 
n=O 

00 

g (t) = L 
n=O 

00 

t2(t) = L 
n,m=O 

00 

an 

b n 

Jn (at) 

J (at) n 

an am Jn (at) Jm (at) 

00 

t=O 

(-/' c}at)n+-2t 

i! r(n+i+l) 

(C.l) 

(C . 2) 

(C.3) 

(C.4) 
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(C.4) (C.3) ( C. l) * Substituting and into gives: 

00 00 00 (-) t (-l_)n+2 t 

I: ¢(t) L bs L L 2 ( I )n+2 ,Q, - - x-u 
a 

s=O n,m=O Q,=Q i! r(n+ i+l) 

00 00 

'J (x-u') J (u') du' = ~ m s a L 
n,m,s=O 

00 

( - )P r (n+2t+l+s+p )( A) _____ ___ _ p 

p=O P \ r ( s+p+ l) 

· J2t + n + l + s + m + 2p (x) (C.5) 

where 

x = a (t-r) 

We note that (C.5) is an exact solut i on to the convolution integral, 

¢(t). We also note that for small (t -r), when we keep only the lowest 

order terms in (C.5), ¢(t) is given approximately by : 

* In evaluating (C.l) we have used the results found in reference [31], 
page 354 (equation (25)). 
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(C.6) 

The integral (C. l) occurs frequently in chapter 4. 

We now wish to look at the asymptotic behavior for large t 

of integrals which occur frequently in chapter 3. Consider the 

integral: 

( C. 7) 

where, r = x/c; and ¢(t,r) = f(t,r) fx (t,r). 

What is desired is the asymptotic expansion of I(t) for 

large t. To expand ( C. 7) we rewrite it as follows: 

l [ iwpt r -iw T -iw t r iw T 
I(t) - - e ¢{T,r) e P dT - e P ¢{T ,r) e P 

2i r r 

( C. 8) 

We will expand each term for I ( t) in ( C. 8), however, s i nee these 

terms are similar we will just consider the asymptotic expansion of 

one of them, i~e., 

i wpt r -iw T 
I l ( t) = e cp(T,r) e p dT ( C. 9) 

r 

Equation (C.9) can be rewritten as: 

dT] 
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eiwpt{ I cor -iw T I1(t) = ¢(T,r) e P dT -

= e 
iwpt -iw T 

¢(T,r) e P 
i w t 

e p 

The first term on the right hand side of (C.10) is one term in 

(C.10) 

the asymptotic expansion for I(t) and represents a plasma oscillation. 

The magnitude of this oscillation is given by: 

+iw T 

¢(t,r) e P dT = 2TI ¢ (wp,r) (C.11) 

The second term on the right hand side of (C.10) can be further 

expanded by substituting the asymptotic expansion for ¢(T,r) into 

the integral, viz., 

-iw T 

¢(T,r) e P dT ~ 

-iw T 

¢As (T, r) e P (C.12) 

where ¢As (T,r) is the asymptotic expansion of ¢(T,r). Therefore, 

using the results of (C.11) - (C.12), we have that: 
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} -

(C.13) 

(C.13) is the desired expansion for I(t). 
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Appendix D 

Two Types of Nonlinearities in Plasmas 

A plasma can become nonlinear under an intense electric field. 

This nonlinearity can be due to the raising of the plasma electron 

temperature by collisions, or the Lorentz force term in the equation 

* of motion of the plasma particles . This thesis has considered non-

linearities in a collisionless plasma and therefore, the nonlineari­

ties considered here arise from the Lorentz force term (as well as 

the (y_ • V)y_ term). 

In this appendix we will discuss both types of nonlinearities. 

First, we will consider the nonlinearities in a collisionless plasma 

due to the Lorentz force acting on the plasma electrons. Since there 

are no collisions to prevent the plasma electrons from losing their 

energy (from the external electromagnetic field), the electrons all 

respond coherently to the external electromagnetic field, and there­

fore can reach very high velocities if the electric field is strong 

enough. In the linear approximation, this velocity y_ is given by 

qs'rm.i, where q and m are the electron's charge and mass, E is 

the external field, and w is the frequency of the external field. 

As this linear velocity becomes large (so that v/c ~ .1, say), there 

is an appreciable Lorentz force acting on the electron, .9.. v x B, 
c- -

which must be taken into account in the electron's equation of motion 

and therefore makes all the equations nonlinear. It is this non­

linearity which is considered in this paper. 

* There is also nonlinearity due to the y_ • Vy_ term in the equation 
of motion. This term arises when one transforms from the plasma 
electron's rest frame to the laboratory rest frame. 
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Of course, if there are collisions present in the plasma, these 

collisions may prevent plasma electrons from obtaining high enough 

* velocities so that the Lorentz force becomes appreciable. However, 

even in this case, the plasma can still be nonlinear. This nonline­

arity is due to the heating of the plasma electrons by the electric 

field. When there is no field present, the plasma electrons collide 

with other electrons, ions, or molecules present in the plasma. When 

these electrons are subject to an electric field, they try to speed up 

in response to the field but the net effect is an increase in the 

collision frequency (and thus electron temperature). It is this 

dependence of the collision frequency on the electric field which 

causes the plasma to be nonlinear. 
** Ginzburg derives the dependence of the collision frequency 

*** on the electric field. His results are as follows 

collision frequency= v = vmo? (D.l) 

where vmo is the effective collision frequency for collisions with 

molecules; T = equilibrium temperature of the plasma; and Te is the 
**** effective electron temperature when an external field is present 

*chan [11], pp. 25-26, under the assumption that the electron distrib­
ution remains Maxwellian for certain layers of the ionosphere subject 
to an external field, has shown that the plasma electrons in these 
layers can only reach a velocity which is three orders of magnitude 
less than c. 

** See reference [13], pp. 498-505. 
*** The following results pertain to collisions of plasma electrons 
with molecules. Ginzburg also gives results for collisions of plasma 
electrons with ions. 

**** . Since, when an external field is present the electron velocity dis-
tribution is by no means always Maxwellian, the temperature Te is 
in general an effective electron temperature. 



* 
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In a weak field Te= T and v in (D.l) is an independent parameter. 

In a strong field, Te and E
0 

are related as follows: 

w2+ v2 
Te= T {l + __ m_o 

2v2 
mo 

4v2 

[l + 2 mo2 
W + V mo 

where w = frequency of the external field, 

the external field, and 

E = 4.2 x ,o-10JoT(w2+ v2 ) volts 
p mo cm 

(D.2) 

E is the amplitude of 
0 

(D.3) 

In (D.3), o is the effective(mean) relative fraction of energy trans­

ferred by the electron in a collision with a heavy particle (in elastic 

collisions o = 2m/M). 

Equations (D.2) and (D.l) exhibit the nonlinear relationship 

between v and E • It is this relationship which makes the equa­
o 

tion of motion (and therefore Maxwell's equations) nonlinear. It 

should be mentioned that the concept of the effective electron tempera-

* ture, as Ginzburg points out, is based on an elementary picture of a 

plasma. To derive the nonlinear equations of the plasma in the general 

case, one must use the Boltzmann equation for the electron distribution 

function. However, this elementary picture is often of use even in 

strong f i e 1 d s . 

We have briefly discussed the two types of nonlinearities--one 

due to heating (type I) and the other due to the Lorentz force acting 

See reference [13], page 498. 
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on the plasma electron (type II). In general type II will be observed 

in a plasma where the collision frequency is much smaller than the fre­

quency of the external field, and the field strength of the external 

field is strong enough. In Chapter 3, it was found that a field 

strength of 1.7 x 10-7 wv/cm would cause type II nonlinearities to 

become appreciable. Type I nonlinearities will be observed in collision 

dominated plasmas where the external electric field is intense enough. 

As might be expected from (D.3) and (D.2), a field strength at which 
* one might observe type I nonlinearities is Ep . Ginzburg gives some 

typical values for EP in the ionosphere and the solar corona. At low 

( 2 2) -5 -7 frequencies w << vmo Ep ~ 10 to 10 v/cm in the E and Flayers 
-7 of the ionosphere. In the solar corona, Ep ~ 10 v/cm. At high fre-

quencies (w2 >> v~)EP ~ 10-3 to 10-2 v/cm {in the ionosphere). In 

the solar corona, EP ~ 10 to 104 v/cm. 

Therefore, we see that there are cases when the critical field 

for type I nonlinearities is much less than that for type II nonlinear 

arities and thus type I will be observed first, and vice versa. There 

are also cases when the critical field for type I and II nonlinearities 

are approximately the same, and one will see both nonlinear effects 

present simultaneously. 

Reference [13], page 497. 
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