
RELSIM - AN ON-LINE LANGUAGE FOR

DISCRETE SIMULATION IN SOCIAL SCIENCES

Thesis by

Pericles Nicolaides

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1975

(Submitted December 5, 1974)

-ii-

ACKNOWLEDGEMENTS

I would like to thank Dr. Frederick B. Thompson for his

guidance and moral support at all stages of my graduate and thesis

work; Dr. Thayer Scudder for his help and friendship, and the

much needed non- computer scientist point of view; Dr. Peter

Szolovits for his sterling example during the years we shared our

office; and Ms. Mary Johnson for her uncomplaining decoding of

my handwriting and its transformation into this thesis .

-iii-

ABSTRACT

With the progress of science, our models of the world or any of

its aspects become more and more complex, and therefore less

and less susceptible to analytical solution. This is especially true

in the field of social sciences, where statistical and stochastic

processes are indispensable tools for model examination.

As a result, various simulation languages or packages have

been developed to aid in the formulation and testing of such models.

This thesis considers the directions that such languages have

taken, and introduces a new such language, RELSIM, which

attempts to meet present needs of the potential simulation

designer. It features a simple structure that is also very flexible,

and a timesharing environment, which allows dialogue, gaming

and experimentation in the design and the actual simulation run.

A full description of RELSIM is given, with examples illustrating

its use, and the implementation of the language on the REL system

is also discussed.

-1v-

TABLE OF CONTENTS

Chapter

I Introduction l

II Description of the Language 13

III An Inside View 56

Bibliography 65

Appendix

A. The RELSIM Syntax 67

B. Routine Documentation 95

-1-

I. INTRODUCTION

One of the most useful methods man has devised for imposing

order on his world perception has always been the isolation of

appropriate sul;:>sets of that perceived world for simplification of

observation, linguistic description, and behavior prediction; the

appropriate subsets being ones whose interaction with the universe

can be considered as occuring in a simple, describable way. These

subsets are now commonly called systems.

This method, at first used in a nebulous manner, with the limits

of the system intuited rather than described and observations made

in a haphazard and incomplete manner (as for example in

Aristotle's description of politics), was soon refined in its appli­

cation on what we term the scientific field. Ptolemy's analysis of

the motion of heavenly bodies, although later improved upon, was

nevertheless quite precise in defining the system, its parts and

their interactions; and its predictive power was quite adequate.

The apotheosis of the compartmentalizing technique occurs of

course in modern electronics, where c ire ui ts are put together

from integrated chips easily described by a few inputs and outputs

and their internal behavior. This mirrors the current approach to

system description, where an attempt is made to break up the

system into simply describable .components simply interrelated.

If, then, we regard a system as a set of elements, or sub­

systems, interacting in a regular way over time, we may proceed

-2-

to collect a body of information about these aspects of the system

and try to analyze it to predict the system's behavior. This body

of information we call our model of the system, and it should be

such as to reflect the qualities we are interested in; that is, our

model should be a •US eful simplification of the process es of the

system.

The reasons for deriving a model for a system are basically

two: Either the system considered is a nonexiste~t one which we

are interested in constructing, in which case a model is necessa r y

to ensure that the behavior of the system will be the desired one

before the actual expenses of construction are met; or, the system

is an existing one on which physical manipulation and experimen­

tation is impossible or undesirable, in which case experimentation

on the model will provide us with an understanding of the system

that can be tested, as always, by prediction.

The derivation of a model is essentially made up of two

processes: establishing a model structure and supplying the data.

By structure we understand the determination of the boundary of

the system and the establishment of entities, attributes, and

activities in the system, while data provide the values of attributes

and define the relationships involved in the activities. Our model

of the system can be a physical one, as for example the models

of circuits made up of mechanical analo gs utilizing springs,

masses and shock absorbers, which were used in the past by

-3-

electrical engineers; or, more commonly, a mathematical one.

In simple cases, mathematical models are susceptible to

analytical solution of the equations governing their behavior .

However, in the majority of cases, dynamic systems are too com ­

plex for such a description by solvable equations to be possible.

With the increasing availability of digital computers, simulation

has become the most important method of studying such complex

mathematical models of systems.

In simulation we set up a model of the system at an initial

point in time, and we follow the changes in the state of the model

as they occur with the progress of time. There are two main

types of simulation models, dependent upon whether we consider

changes in the model to occur continuously or at distinct points in

time.

In continuous simulations the system is represented by a s et of

finite difference equations approximating the differential equations

governing smooth change. Thus if X(t) is the vector of the state

variables of the system (in which we are interested) at time t,

and Y(t) is the vector of variables describing inputs to the system,

i. e. the effect of the environment, then the set of equations will

be of the form

X(t+6t)=f(X(t), X(t), X(t-b.t), ~ ... , X(O), Y(t))

where f is the function specifying the behavior of the system.

-4-

In discrete simulation, on the other hand, the state of the system

is regarded as changing in discrete steps. Thus the system is seen

as consisting of elements which perform defined functions on the

entities of the system. These elements, or subsystems, have a

finite processing capacity and thus entities may have to be placed in

queues pending their processing by each subsystem. In this type of

simulation emphasis is placed on examining the capacities of the

entire system and the manner in which entities get processed

given the structure of the system. Stochastic processes and

queuing techniques are the main tools used, and statistics on

waiting times are provided to illustrate the performance of the

system.

Although many systems may be modeled for either continuous or

discrete simulation, the former is more natural in the case of

electronic or mechanical feedback systems clearly defined by

differential equations, where the latter is useful in traffic or job

shop type systems where flow is governed by random variables of

a particular density function and bottlenecks imposed by the system

structure.

In the first efforts at system simulation, computer programs

were designed to simulate a particular model; these programs

were written in general purpose languages such as FOR TRAN or

ALGOL, or in assembler languages. However it soon became

obvious that a great number of computations are common to most

-5-

models; a number of general purpose simulation languages were

designed and on occasion implemented. Such languages enable the

user to formulate and program a simulation with less effort and

less need for familiarity with conventional programming and

techniques of applied mathematics. DYNAMO and CSMP are

notable such languages for continuous simulation. There is quite a

number of discrete simulation languages in existence; table I. 1

contains a fairly comprehensive list. Of these we will concentrate

on four: GPSS and SIMSCRIPT because they are the most often

used and most developed languages, while their approaches are

quite different; and SOL and SIMULA, which belong to a later

generation and contain some interesting new trends.

We will use the following terminology in order to avoid the

confusion caused by the different names employed in each of these

languages to describe their features.

The fundamental objects of the system being simulated are

the entities of the simulation. The set of all entities of a par­

ticular type is an entity class. The properties of an entity are its

attributes. We may think of an entity as a data record, with its

attributes being the record fields. The data on the system are

system variables. Entities sharing certain properties may be

placed in an entity list.

The state of the system may be changed by an event, which is

thought of as an instantaneous occurence, or an activity, which is

-6-
,
-,-

TABLE I. 1 CURRENT DISCRETE SIMULATION LANGUAGES

Simulation language/Computer language base/Originating organization

CLP

CSL

FORSIM

GASP

MILITRAN

OPS

QUICKSCRIPT

SIMPAC

SIMSCRIPT

SIMTRAN

SIMULA

SOL

UNISIM

CORC

FORTRAN

FORTRAN

FORTRAN

SCAT

FOR TRAN / Assembler

FORTRAN

ALGOL

ALGOL

Assembler

Cornell U.

IBM U. K.

MITRE

U.S. Steel Corp.

Syst. Res. Gp. for ONR

MIT

Carnegie-Mellon

SDC

RAND

MITRE

Norwegian Comp.

Center

Burroughs

Bell Labs

an occurrence that takes time. Note that in general an activity

may be regarded as two events, marking the activity's beginning

and its end.

Activities or events happen when certain conditions in the

system are satisfied. One way of ensuring their proper sequencing

is the use of a schedule of due ·occurrences with their times, the

system log. Alternatively the main routine of the simulation may
,

-,·from Teichroew(14)

-7-

check all event or activity routines at each point in simulation

time and execute those whose conditions are met.

GPSS is an entity oriented language. There are thirty- six

pre-programmed events, and the user can put together a simulation

by arranging appropriate events in a block diagram. The entities

of the simulation are pre-defined, created in a particular block

and they flow through the system as in a network, to be ultimately

removed. System variables must also be identified with pre­

defined concepts such as facilities, storages and logic switches.

The sequencing of events is rigidly determined by the block

diagram, and conditions of choice are reduced to alternative paths

in that diagram governed by switches with possible random

variable resolution. The selection of the next event is determined

by interpretation of the diagram to find out what block each entity

is due to enter. The gathering of statistics is controlled by

certain of the block types, and so is the advancement of the

simulation time.

In SIMSCRIPT on the other hand, the user may specify the

structure of different types of entities and name them and their

attributes. The events are also written by the user, in

SIMSCRIPT language, as closed subroutines that are executed at

particular instants of time. T~e sequencing of these events is

controlled by the posting of event notices on a log, programmed

also by the user to occur when certain conditions are met. This

-8-

posting of event notices can occur from within an event routine or

through what is called an exogenous event, i.e. directly before

the main routine takes control. This main routine, then, keeps

track of executable events rather than the flow of entities through

the simulation. System variables and lists must all be defined by

the user at the beginning of the program. The SIMSCRIPT lang ­

uage includes several commands for I/O, plus a REPORT format

which can be called to produce tables of statistics.

SOL was written as a generalization of the characteristics of

the two previous languages. Thus the user does not define his

types of entities as in SIMSCRIPT, but makes use of the existing

concepts in the system such as variables and storages; and the

sequencing is of the GPSS type, with the main processor moni ­

toring the state of the system and triggering action when conditions

are met. The viewpoint of SOL, however, can be regarded as

activity oriented. The user programs activity rather than event

routines. These routines may be executed over any amount of

simulation time, through the use of a WAIT statement that stops

and restarts processing of the activity according to the state of

the system. Activities are then usually performed in a pseudo­

parallel manner and as a result local variables are an important

element in the writing of activity routines, as separate instances

of the same activity may be processed in parallel. The syntax

of SOL is ALGOL - like, although the commands available are

-9-

those specifically suited to, and common in most discrete simu­

lation packages. SOL provides the user with many automatic

statistical summaries besides supplying specific I/0 commands,

as in SIMSCRIPT.

The SOL viewpoint is also used in SIMULA, probably due to an

extent to the fact that they are both based on ALGOL. SIMULA,

however, represents a more thorough attempt at the implementation

of a comprehensive language that can compete with SIMSCRIPT and

GPSS. It is a true extension of ALGOL and as such incorporates

all the features of a high-level language augmented by the pseudo ­

parallel processing of activities as in SOL. The objects simulated

are again simple variables and arrays rather than user defined

entities, while attributes and local variables are attached to

activity definitions. Instead of a SOL type main processor, SIMULA

emphasizes the concept of an event as a phase of an activity that

occurs on a given instant of simulation time, and makes use of a

log in which the events to be executed are posted. Another

important improvement over SOL is the ability to reference

variables local to an activity from a different activity through a

CONNECTION statement. Both SOL and SIMULA benefit from the

recursive capability of ALGOL.

Having examined the features of existing simulation languages

we can see that an on-line environment would greatly augment

the power of simulation as a user tool. Initialization of a

-10-

simulation model can then be accomplished on an experimental

basis, with the user testing out parts of the simulation and

modifying his routines. During the actual run the user can stop

and examine the simulation, and if appropriate introduce new data;

he may indeed redirect the course of the simulation by modifying

the parameters, the log of events, the contents of entity classes,

or by introducing new event routines; he can reinitialize the

entire run, using the results of the interrupted run to refine his

parameter values; if inclined, he may design an interactive run

where the introduction of parameters from an outside source is

expected, and use this for gaming or teaching techniques. However,

the only attempt at implementation of an on-line discrete simu­

lation language that we are aware of is the ongoing one at MIT

with OPS, reported as an activity oriented language to be

implemented on top of PL/ 1. Kiviat (9), in a recent paper,

stresses the lack of such a language and suggests desirable goals.

RELSIM has been designed and implemented on the REL system

to satisfy all the above requirements. In the development of the

syntax our main concern has been simplicity of structure for the

benefit of the user without loss of versatility and power. We

believe that discrete simulation is a tool principally suited for the

humane and social sciences, where mathematical description of

models is usually impossible, and heavy emphasis is placed on

the use of stochastic and statistical techniques. The user, then,

-11-

is most likely unfamiliar with current computer languages and not

interested in acquiring a knowledge of the field.

With this in mind, we designed RELSIM as an event oriented

language, believing that the activity orientation of SIMULA and

OPS, though aesthetically pleasing to the computer scientist,

would be more confusing to the social scientist programmer.

Unlike SIMSCRIPT, however, RELSIM allows variables local to

events and the pas sing of parameters from one event to another ,

thus achieving all the versatility of activity oriented languages .

The ability to define different types of entities with their attributes

was considered to be a conceptually useful feature and included.

Also, to facilitate experimentation we enable the user to delete any

kind of object of the simulation, including entities, classes, lists,

system variables, the log in part or as a whole, and event routines .

RELSIM includes random number generators from all common

probability distributions, and also enables the user to define any

density function in a simple manner and thereafter obtain random

variables governed by that function. The definitional capability of

REL-English is also present in RELSIM, so that the user may

extend or simplify at will the syntax at his disposal.

Implementation of the language on the REL System proved to be

a natural task. The programming of additions to the features of

the language is, and we believe will be, very effortless. The

user furthermore benefits from the ability to input initialization

-12-

parameters in the batch mode and the option of saving multiple

runs of the same simulation, so that he may check the state of the

system at different points in simulation time, or the effect of

different initial conditions. Also, besides regular output commands,

RELSIM features a RECORD statement that transforms the results

of the simulation into an REL-English data base, to be queried

conversationally, with all the power of that data management

language at the user's disposal.

The declarative statements and the event routine command

statements of RELSIM are simple and almost conversational in

structure. They consist of a statement verb, followed by the

objects the verb refers to, followed by modifying clauses that can

be strung in any order and repeated any number of times. Thus,

acquainted with the few verbs and clause prepositions plus the

arithmetic expression capability of the language, the user may

attempt writing a simulation and teach himself the refinements of

the language as he goes along. We shall proceed to describe the

syntax of RELSIM.

-13-

II. DESCRIPTION OF THE LANGUAGE

In order to describe the RELSIM syntax we will first undertake

an exposition of the language's structure, and follow by some

clarifying simple examples of its use. For our description we

indicate language strings in capitals; metalanguage description by

lower case; optional strings in bracket enclosure; alternatives by

double brackets with the default parameter underlined.

A. Declaration statements

These statements are used to reserve a location for a system

variable, simple or array, initialize a list or an entity class, or

specify an event routine. A declarative statement may not be used

inside an event routine. In specifying a simple system (entity or

numerical) variable, the statement is of the form

DECLARE "name" [{ E~~f;y}] [=numerical or entity expression J
where ~ may be any string beginning with a letter and not

ending in a blank. If desirable, the variable is initialized at this

point to the current value of the expression used. Numerical and

entity expressions will be described later on. If a system array

variable is to be initialized, the statement will be

DECLARE "name"(num. expression, num. expression)

for the two dimensional case.

In initializing a list, the declarative statement will be of the

-14-

form

DECLARE"name" [{E~~fT\ }]{si'!~~} [=list expression]

where REAL or ENTITY specifies the nature of the list elements.

If LIST is specified the elements are accessed from top down, i.e.

a FIFO list is obtained; STACK results in the reverse ordering,

i.e. a LIFO list. It can also be initialized with the contents of

another list.

When initializing an entity class one can name up to 40 attributes

of the class entities and also assign initial values to any number of

them. Notice that these initial values are calculated at the time of

creation of each entity in the class. The statement is of the form

DECLARE "name" CLASS [wITH"name" [{E~~~;y}] [{ s~1!'.~K}]
[=expression)] [AND "name" [etc.]] etc.

In writing an event routine we also use the declarative format

in the following form

DECLARE { "name''} EVENT: command statement [;command st]
name

.... [; com. st.] .

where any number of command statements, separated by semi ­

colons, may be used. The name of the event routine is not placed

in double quotes if it has already been set in a GENERATE

statement of a previously written event routine; for ·it is often

necessary to refer to as yet unwritten event routines, and assign

a name to them ahead of time.

-15-

B. Numerical and entity expressions

Let us first consider numerical expressions. There are the

following elementary numerical forms:

(i) Constants, e.g. 35, 3. 27, 2. 4305 E09.

(ii) System variables expressed by their declared name,

e. g. X, LENGTH, DAY OF BIR TH.

(iii) Numerical attributes of entities. Thus if GEORGE is an

entity and INCOME is its attribute, then INCOME OF

GEORGE or INCOME(GEORGE) is a valid numerical

form.

(iv) Elements of a real list or an array. Thus if PRIME

is a list then the following forms are valid: 34TH

PRIME or PRIME(34); LAST PRIME or PRIME(L);

PRIME(L-34);CURRENT PRIME;NEXT PRIME;

PREVIOUS PRIME;RANOOM PRIME. The current list

element is the last one placed in the list until set

otherwise; NEXT and PREVIOUS refer to this current

element above, but can also be used on any element,

e.g. NEXT (PRIME(34)), and thus repetitively, e.g.

NEXT(NEXT PRIME). If ARGH is a two dimensional

array, we can refer to ARGH(2, 3) etc.

(v) CURRENT TIME and SEED, predefined system

variables. The latter is used to calculate uniformly

distributed random variables in (O, 1) that are used for

-16-

stochastic variates.

(vi) The number of elements in a list or entity class. Thus

if BOY is a class, we may write NUMBER OF BOY or

NUMBER OF BOYS.

These elementary forms may be combined by addition, sub­

traction, multiplication, division and exponentiation into expr e s­

sions. Unary plus and minus are also available. Most common

arithmetic functions are provided; a list follows:

FUNCTION FORM

Square root SQRT

Exponential EXP

Logarithm (base e) LN

Logarithm (base 10) LOG

Sine SIN

Cosine cos

Tangent TAN

Cotangent COTAN

Factorial FACT

Integer Part IP

Fractional Part FP

Absolute Value ABS

Sign SIGN

Maximum (a, b) MAX(A, B)

Minimum (a, b) MIN{A, B)

a Mod b MOD(A, B)

-17-

The following random number generators for continuous

probability distributions are available:

(i) Uniform distribution over interval (A, B)

UNIFORM(A, B).

(ii) Normal distribution, with density function

2

-1/2 (x-M)
s 1

f { x) = S ✓ 2 iT e

where M is the mean and S is the standard deviation:

NORMAL (M, S}.

(iii) Exponential distribution, with density function

(vi) Any distribution with density function £(X):

DENSITY(£(X)); e. g. if f(X) is the normal distribution

with M= 10 and S=3 we could write DENSITY (EXP(

Also, the following generators for discrete probability

distributions may be used:

(i) Uniform distribution between A and B: RANDOM

(A, B).

(ii} Binomial distribution with probability function

(n, p).

-18-

(iii) Poisson distribution with probability function

-A. X
f(x) =e A. where A.>0 and x>0: POISSON (),._).

x!

(iv) Pascal distribution with probability function

k+x-1 k x .
f(x) =(x) p (1-p) where x_2: 0 (k 1s an integer

denoting the total number of successes out of

k+x trials) : PASCAL {k, p).

(v) Any distribution with probability function £(X):

FREQUENCY (f(X)) e.g. FREQUENCE (. 04 IF X=l,

. 05 IF X=3, . 0 l IF X=7, 0 OTHER WISE) (see

conditional numerical expressions immediately below) .
X

Note that we must have ~ £(X) = 1.

A numerical expression may also be dependent upon boolean

conditions in the following manner

num. expression IF boolean expression, n. e. IF

b. e., , n. e. OTHERWISE

The boolean expressions available are discussed in the next

section.

We next consider the ways in which entities may be expressed .

. In an analogous way to numerical forms, we may access them

(i) by their declared name, e.g. GEORGE, BOSTON

(ii) as entity list or class elements . Thus if PERSON

is a class or list, the following forms are valid:

-19-

34TH BOY or BOY(34); LAST BOY or BOY (L);

BOY(L-34); CURRENT BOY; NEXT BOY; LAST BOY;

RANDOM BOY; and NEXT (NEXT(CURRENT BOY))

etc., as we have discussed in numerical forms.

(iii) as entity-valued attributes of entities. Thus if

MOTHER is an attribute of the entity GEORGE, then

MOTHER OF GEORGE or MOTHER(GEORGE) may be

used. Note that any level of indirection is permissible ,

e. g. MOTHER OF MOTHER OF MOTHER OF GEORGE.

C. Boolean expressions

These expressions are utilized in conditional numerical

expressions,conditional clauses and scratch list generation (see

next section). There are four elementary forms:

(i) (numerical expression) (comparator} (numerical

expression) as for example 43>=AGE OF GEORGE,

LOG(X)-.=0.

(ii) (entity expression) { =
} (entity expression), e.g. --,=

MARSHA=MOTHER(GEORGE)
IN list

(iii) (entity expression) { IS IN} { entity class} or,
IN

(numerical expression) { IS IN} (list), e.g.

GEORGE IS IN ARMY, 127 IS IN PRIME.
list

(iv) EXISTS { . l _ }, e.g. EXISTS BOY.
entity c ass

The comparators allowed are=, >, <, >=, <=, and

their negations, -, = etc. We may use IS for =, NOT

-20-

for -, , and IS NOT for -, =.

By combining the above forms with logic operators we arrive

at complex boolean expressions. The permitted logic operators

are NOT or-, (unary); AND, OR, XOR (binary) . Also,NEITHER

(meaning NOT) and NOR (meaning AND NOT) may be used. For

example, we may say

AGE OF GEORGE=24 AND MOTHER OF GEORGE=MARSHA

NEITHER AGE OF GEORGE IS 24 NOR MOTHER OF GEORGE

IS MARSHA

-i(EXP(A)>=l2. 7 OR SIN(E) 1 =0.5) XOR 127 IN PRIME

D. Scratch lists

Quite often we may wish to access all elements of an entity

class or list that meet certain requirements. In RELSIM, we

may, by expressing these conditions, form a list with no name to

reference it (which gets destroyed at the completion of the

sentence). Thus the following forms yield such lists:

(i) (entity class) WITH (boolean expression on its

attributes). For example BOY WITH MOTHER=

MARSHA AND FATHER=JOHN AND AGE=l2.

(ii) { list }
entity class

. { list } logic operator .
1

; e.g.
entity c ass

BOY OR GIRL . We may use IN instead of AND;

BOYS IN ARMY means the same thing as BOY AND

ARMY.

-21-

The above may be combined into expressions of arbitrary

complexity. If part or all of the information in such a list should

be saved, a declared variable or list may be set accordingly.

E. Event notices

In order to modify the log, we need to be able to make refer­

ence to specific event notices. The forms available are the

following:

(i) Expression by given name, e.g. GEORGE'S BIR TH,

LINEl.

(ii) Expression by location in the log, e.g. 8TH EVENT

or EVENT (8}; LAST EVENT or EVENT (L); EVENT

(L-3); RANDOM EVENT.

(iii) Expression by location in the log of a particular type

of event routine. Thus if WEDDING is an event

routine, we may use 8TH WEDDING etc. as in (ii)

above.

(vi} We may refine (ii) and (iii) above by specifying the

simulation time at which the event is to be executed,

e.g. RANDOM EVENT AT TIME (num. expression).

F. Command statements

Each command statement may be typed in as a REL sentence

and executed immediately, or as part of an event declaration

statement. The basic command statements are the following:

-22-

(i) CREATE (entity class name) [NAMED "name"]

or,

CREATE {numerical expression} (entity class name)

One or more elements of a named class are created;

if desired, a single such created entity may be given

a name.

(ii) GENERA TE (event routine name) [NAMED "name"]

or,

GENERATE "name" [NAMED "name"]

The simulation log is updated with an instance of the

event described by the routine named. In the first

instance, the routine has already been declared; in

the second, it will be declared later. Clearly, the

second form may not be used as a direct sentence,

since it cannot be executed before the declaration of the

event routine.

(iii) SET variable=expression

SET array=num. expr., , num . expr.

The value of a system variable, list or attribute of an

entity is updated. In the second form, an array's

entries are filled sequentially with the first index

being the slowest - changing.

(iv) NAME { entity . } "name"
event notice

(v)

-23-

An entity or an event notice is given a name for future

reference.

DELETE

DELETE LIST

DELETE CLASS

DELETE ALL

DELETE LOG

entity

system variable

class

list

array

event routine

event notice

list name

class name

CLASSES

EVENTS

CONSTANTS

ARRAYS

LISTS

These statements delete parts of the simulation as

desired and remove their names from the lexicon.

Note that DELETE (list) will empty the list of its

contents, while DELETE LIST (list) will get rid of the

list itself; the same holds for an entity class . DELETE

ALL EVENTS gets rid of the routines, while DELETE

LOG gets rid of the event notices. DELETE

-24-

CONSTANTS gets rid of all the system (numerical or

entity) simple variables.

(vi) RESET

(vii)

This command empties the log, all classes and lists,

and resets the simulation time to 0.

PUT { entity
num.

expr.} AFTER num. expr. l

~

BEFORE} { entity expr. }~

expr. IN PLACE num. expr. ~ IN list

A list is updated by addition of an element. If the

optional phrases are not used, the element will be

placed as last in a list or first in a stack. IN PLACE,

when used, specifies the location in the list the

element will occupy; if the number exceeds the elements

present in the list, the element is placed last.

(viii) REMOVE list (numerical expression)

REMO VE { entity expr. } FR OM list
num. expr.

An element is removed from the list. If there are

multiple instances of that element, the first instance

1s removed. If there is no instance, no action occurs.

(ix) entity

sys. variable

WRITE event notice [. { ' . . }]. . . [. { . . . }]
C "character string"

WRITE

class

list

array

-25-

event routine

LOG

In the first form, a line of output may be formed. If

the total number of characters exceeds those avail­

able in a line, the remaining characters are lost. In

the second form a multi-line output results and thus no

concatenation of quantities to be written is permissible.

(x} DO ; comm. statement; ;comm. statement; END

The statements inside the "do loop II are executed as a

unit, and any clause attached to the DO sentence

applies to all of them. For example,

SET X=0;DO UNTIL X=l0; SETX=X+l;WRITE X;END

operates as a conventional FOR TRAN do loop.

(xi) SELECT ; (numerical expression)(command statement)

; ;(n. e.)(s. c.);END

One of the statements in the sequence is selected at

random and executed, with a probability of selec tion

according to the number prefacing the statement. If

the total of these numbers is less than 1, the remain­

ing probability is assigned to no action; if the total is

more than 1, supernumerary statements are ignor ed,

-26-

and possibly the probability of the last statement not

ignored is adjusted so that a total of unity is achieved.

(xii) GO

This statement may be used only directly. It results 1n

the transference of control to the main program, and

the events posted on the log begin to be executed.

(xiii) PAUSE and CONTINUE

The first statement may not be used directly. When

encountered during the execution of an event, it causes

control to be returned to the user. If, after various

direct commands, the user types CONTINUE (which

may be used only directly), the simulation proceeds

exactly where it stopped, i.e. with continued execution

of the event under way. If, on the other hand, GO is

used, the half-finished event gets flushed and the

simulation proceeds with the next posted event in the log.

(xiv) EXIT

This statement may be used only directly. It stops

processing in the simulation language version and

returns the user to the REL command language.

(xv) RECORD SIMULATION

This statement may be used only directly. It causes

an REL English data base to be formed out of the

results of the simulation. If the name of the simu-

-27-

lation language is X, then the version of REL English

containing this data base will be XDATA.

(xvi) DEF: name: part of speech

,:,
This is the standard REL definitional statement. It

may be used only directly. Any construct of the

language may be given a name that can be used there­

after instead of that construct. For example, once

we have defined

DEF: C: CONTINUE

we may use this shorthand thereafter. Also, due to

this statement's variable capability, we may define

random variables from a Gamma distribution at our

disposal.

WRITE DEF OF name

DELETE DEF OF name

are also available as direct statements to the user.

There are several modifying clauses that may be used with

statements {i) - (xi) above. They may be used repeatedly or

strung together, unless otherwise specified in their description

here.

,,,

-,- See Thompson (15)

-28-

(i) WITH attribute=expression [AND att. =expr.]

[AND att. =expr.]

This clause may only occur as the first modifier of a

CREATE statement. It initializes as many attributes

of the created entity (ies) as desirable.

(ii) AFTER INTERVAL num. expression

(iii)

The statement so modified will be executed after the

specified interval of simulation time.

FOR

entity

class

entity list

In the first instance, the current entity of the class to

which the entity referenced belongs gets set to this

entity, and the statement modified is executed. In the

second instance, the current entity of the class is

successively set to each of its elements and the

statement modified is executed for each such change.

In the third instance the list is broken down into

sublists of entities belonging to the same class, and

execution occurs as if there were that many succes­

sive FOR statements; in each of those, the current

entity of the class gets set successively to each element

of the sublist, and the statement modified is executed

each time. After execution all current entities regain

-29-

their former values.

(vi) IF boolean expression

The statement will be executed only if the boolean is

true. The only clause that may follow an IF clause is

an AFTER clause or another IF clause. When several

statements modified by final IF clauses are strung

together and followed by the construct

ELSE command statement

then only the first encountered statement with a true

boolean will be executed.

(v) FOR INTERVAL num. expression

This clause may only be used as the first modifier of a

CREATE, GENERATE, SET or PUT statement. It

results in the opposite action (DELETE, SET to

previous value, or REMOVE) occuring after the

specified simulation interval.

(vi) UNTIL boolean expression

This clause may only be used once in a statement.

The statement will be executed over and over until the

condition is met. Used with the GO statement, this

clause may define the duration of the simulation run.

(vii) AT INTERVALS OF num. expression UNTIL

boolean expression

This_ clause may be used only once in a statement;

-30-

and it cannot appear with (vi) above in the same

state m en t. Its re s ult i s c 1 ear.

G. Local variables and pass parameters

When writing an event routine, we may desire to create and

name temporary variables, accessible only to the event being run

and deleted after its execution. The definitional statement for

local variables has the form

LOCAL name(type)[, name(type)] [, name(type)]

and must be the first statement in an event routine; it may only

occur once in the routine. The type of variable assigned to each

name is given by an abbreviation as follows:

A(number, number)
LE
LR
SE
SR
VE
VR

array
entity list
real list
entity stack
real stack
entity system variable
real system variable

and these are the only types of variables allowable as local.

In order to have communication between events we must have

an adequate parameter passing mechanism. When an event gener­

ation statement occurs, it may contain any number of parameters

to be passed to that event from the event in which the statement

occurs, including variables local to this latter event. The basic

generation statement format will be

GENERATE { name }
"name" (name [, name] [, name])

-31-

where the variables to be passed are named inside the parentheses

after the event routine name.

Corresponding to this statement, the event to be generated must

contain the following statement

PASSED name(type)[, name(type)] ... [name(type)]

which must either be the first statement of the event, or, if a

LOCAL statement exists, the second statement. Any local name

may be given to the parameters passed, but they must appear rn

the PASSED statement in the same order in which they were

given in the GENERA TE statement. Their type must be included

and must coincide with that of the variable passed in the GENERATE

statement. All of the types available for the LOCAL statement

may be used, as well as the following:

AE
ALE
AR
ARL
C
EN
EP
ER
R

attribute, entity valued
attribute, entity list
attribute, real
attribute, real list
class
entity
event notice (posting}
event routine
real number

Thus, if e.g. an event routine named KELP includes the

following statement

PASSED X(AE), R(R), Y(EN), Z(LR}

the declaration statement may be

GENERATE KELP(MOTHER, 3. 4, GEORGE, PRIME}

-32-

H. Examples

Let us first consider a simple shop simulation, it being an old

favorite. Let us say that a machine is turning out parts at the

rate of one every 5 minutes. There is a conveyor belt, and three

inspectors in a line. Each part takes 2 minutes to reach the

first inspector. If he is busy, it moves on to the second inspector

taking another 2 minutes, and similarly for the third inspector. If

all three are busy, the belt circles back to the first inspector and

it takes the tool 6 minutes to come around to him again. The first

in.spector takes 4_±3 minutes to check each tool; the second takes

5_±3, and the third takes 5±2 minutes. Each of them rejects 10%

of the parts. We would like to know the average transit time of

an ace epted tool and the percent time that each inspector is busy;

and we would like to run the simulation until 1000 parts have been

judged acceptable.

The following RELSIM program, which simulates this shop

situation, needs no commentary.

OP.Ci'1'RE "Ton,. CLAS! WITH 1 CRf!ATlON TI~'-"•CURRENT Tt~,.

DF.CI Anf'. "OT1'T?ON• CLASS WITH "STATU~"•O

AND •T □ TAL BUSV TJME"=O•

CPtATE 3 STAT!ONS~

OF.Ct AnE "TtJML COUNT• r?Cl,L•O•

. OF'Ci'ARE UTQTAL. TRANSIT TIMF.• REAL•O,

-33-

D f. Ct.' fd1 E " TD CH 't N TrW OU e T t ON ,, CV [N T I

on tr- rnrn cr1uNTE~<tooo,

cnFATC: TD□~,

END,

GENE~ATE "CNTf~ STATION"C~TATION(1),CUR~ENT TOOL)

AFTCR INTE~VAL 2t

G ~ .,J E r: A T t TOOL I NT RO O UC T HJ t\l 1' F TE R t NT ERV A L 5 r

FLSF. Gr:NErlATl! "WRAF' UP"·•

DF.Ct.'AHt:. ENTC::r. STATlCN EVENT I PA~SED C~TATION CtN, ,CTOOL 0:N; J

LOCAL BUSY TIME(VR;,

~o IF ~TATUS(CSTATION\•Os

n~T BUSY TI~f=UNIF □RM(l,7~ IF CSTATIONcSTATION(1),

U~IFOR~(1,B) tF CSTATTONaSTATTONC2),

UNIFOnM!3,7) ~THERWICE,

SET ~TATUO!CSTATlON):t FOR INTEnVAL BUSY TIMEt

t,Ef~E~ATE "EXIT STATTON 11 (CTL1rlL)

AFTE~ INTERVAL BU5V TIMEt

r;ET TOTAL. l,USV TlMf.(CSTAT?ON)i:TfJTAL 8USV

TIMr(CSTATION)+BUSY

TH1E J

END,

t: l SF OD~

GEN~~ATE fNTfq !TAT!ON(NE~T STATION,CTOOL)

F.ND.

-34-

AFTER TNTERVAL 2

TF EXI~T~ NEXT STATIONS

E i .. ') E ~ E ~J [n ATE [~ T F.: ,~ ST AT I □ N U3T A T ION (1) , C T C'1 n L)

AfTE~ INTF-RVAL 6t

OP.Cl'.~HE EXIT Sl'~TtUN EVfNT1 PASSED CTOOLCEN),

!)ELECT, 0.9 on,

l!Nr,,

~CT TnnL C~UNT=T□nL COUNT+t,

~CT TOTAL TRANSIT TIME'.aTOTAL TRANSIT

TIME+CURRENT TIME ~

CREATION TIME(CinoL,,

ENDt

D E L E T f! C TO nt .•

DFCi
1

ARf. ~mAr•ll!1 rvt:NTt wntrr. C"TRAN~IT TIME' AVERAGE=",

Tt1TAI. TRANSIT TIME/1000s

wrnt-r:: C"rE!1CENT Bunv, 1ST STATI(')N : ",

TOTAL 8USY TlMF.($TATION(2))/CURRENT TIME)•too,

w fH ,. r: c II r r: 11 c l' r--1 ·r e , , n v , 2 N D s T A ; I □ N • " ,

TCJTAL ~U~Y TI~f:(STATimHt))/CU~RCNT TIME)•100J

WHTTE L:"rl:~Cl::NT BUSY, 31'?0 OT1'Tl0N m 0 ,

TMTAL BUSY TlM~(STATIO~Cl)~/CURRCNT TIME)•100.

OF.NfRATF. Tl'JOl

GO.

-35-

tNTnOOUCT .tON.

As a second example, let us consider a simulation of the

communication of a computer central processing unit with remote

terminals. This example is used by Knuth (11) to illustrate the

features of SOL.

Let us say that there are four processor buffer unit pairs

that handle the input and output between the computer and site

buffers, where each of the latter controls one or more terminals,

or typewriters. We will consider what happens at one pair of

the processor buffer units in detail, and do a rough simulation of

the activity of the other three.

Thus, the processor buffer units we are considering handle

three site buffers; site buffer (1) controls three terminals, for

which we will use the indices 1, 3, 5; site buffer (2) controls two

terminals indexed 2 and 4; and site buffer (3) controls only

terminal (6).

As people walk in and attempt to use each terminal they wait

in line until that terminal is free. The terminals are far enough

from each other that people do not attempt to find another, free,

terminal.

Let us say there are three kinds of messages that these

people send. Message type A requires 250 msec. of computing

and 3 response words from the computer, and it is sent by users

-36-

20% of the time; message B needs 300 msec. and 4 respons e wor ds ,

and is sent 50o;10 of the time; and mes sage C, sent 30% of the tim e ,

takes 400 msec. and 5 response words.

The processor buffer units scan the six terminals seque n t i a lly

for input; when a positive response is observed at a s i te buffer,

the message is transferred from site to processor buffer a nd then

to the computer; after processing, the appropriate numbe r of

words is sent to the site buffer and typed, one wo r d at a time , at

the appropriate terminal.

We will comment further on details of the simulation as we

write events. Initialization is handled when it is needed rathe r

than all at once in the beginning. Let us first consider the action

of each person.

DECLARE "PERSON" CLASS WITH "ENTRANCE TIME 11 =

CURRENT T IM E.

DECLARE "TERMINAL" CLASS WITH "QUEUE 11 ENTITY

LIST AND 11 STATUS1'=0 AND 11 MESSAGE 11 AND 11 SB"

AND "TABLE" REAL LIST.

CREATE 6 TERMINALS.

SET SB(TERMINAL(l))= 1.

SET SB(TERMINAL(2)) =2.

SET SB(TERMINAL(3))= l.

SET SB(TERMINAL(4))=2.

SET SB(TERMINAL(5)) = 1.

SET SB(TERMINAL(6))=3.

-37 -

Thus far we have created the terminals and assigne d to the m, in

the attribute SB, the site buffers that control them. Thei r queues,

where persons wishing to use them congregate, a r e e mp ty . Their

status will be denoted as follows: 0 means the terminal is free;

1 means that a message is being typed; 2 that the m e ssage has been

completed; and 3 that the answer message may b e t y ped. The

MESSAGE attribute will be set to l, 2, or 3 , depending on the type

of message that the user sends. We also initializ ed th e class o f

users, with an attribute that will save their entrance time so tha t

we find out the length of their stay in the syste m . The attribute

TABLE of each terminal collects those statistics.

DECLARE "USER ENTRANCE" EVENT: LOCAL X(VR);

SET X=RANDOM(1, 6);

CREATE PERSON;

PUT PERSON IN QUEUE OF TERMINAL(X);

GENERATE USER ENTRANCE AFTER INTERVAL

RANDOM(0, 5000) ;

GENERA TE "MESSAGE TRANSMISSION"(X).

This event describes the entrance of a user, it cause s another

such entrance within 5000 units of simulation time, whi ch h ere

represent milliseconds; and it sets up the next event , the

-38-

sending of a mes sage.

DECLARE MESSAGE TRANSMISSION EVENT: PASSED X(VR);

DO IF STATUS OF TERMINAL(X)=0;

SET STATUS OF TERMINAL(X}=l;

SET MESSAGE OF TERMINAL(X)=FREQUENCY(. 2

IF X=l,. 5 IF X=Z,. 3 IF X=3, 0 OTHERWISE);

DO AFTER INTERVAL RANDOM(6000 , 8000);

WRITE C "TERMINAL (", X, C"} SENDS

MESSAGE", MESSAGE OF TERMINAL(X),

C II AT TIME II' CURRENT TIME;

SET STATUS OF TERMINAL(X)=Z;

END;

END.

When the terminal is free, the user that is first in line types i n

one of the three types of messages. It takes him between 6 and

8 seconds to type. When it is completed, we write out a line for

our reference and change the terminal status accordingly.

DECLARE "ANSWER RECEIVED" EVENT: PASSED X(VR);

MAKE 1ST QUEUE OF TERMINAL(X) CURRENT PERSON;

REMOVE CURRENT PERSON FROM QUEUE OF

TERMINAL(X};

-39-

PUT CURRENT TIME-ENTRANCE TIME OF CURRENT

PERSON IN TABLE OF TERMINAL(X);

DELETE CURRENT PERSON;

WRITE C"TERMINAL(", X, C") RECEIVES REPLY AT TIME"

CURRENT TIME;

GENERATE MESSAGE TRANSMISSION(X)

IF EXISTS QUEUE OF TERMINAL(X).

When status of the terminal is set to free by an event below, this

event is also generated, which takes the user out of the system

and prepares the terminal for use by the next person in line, if

any. We write out another line for reference, showing when the

answer was received.

The above three events handle the action at the terminals. We

now proceed to simulate the pair of processor buffer units.

DECLARE "LINE"=0.

DECLARE "QUEUE OF LINE" LIST.

DECLARE "SCAN" EVENT: PASSED T(VR);

SET T=T+l; SET T=l IF T>6;

PUT T IN QUEUE OF LINE; PUT 0 IN QUEUE OF LINE;

GENERATE "SEIZE LINE" AFTER INTERVAL 1.

The processor buffer unit, having considered terminal T, proceeds

to look at terminal T+l (mod 6). The cyclic scanning process

-40-

takes 1 msec. Then an attempt is made to seize the long distance

communication line. Such seizure attempts must be handled by

queuing when the ling is busy, i.e. LINE=l. This is done by

double entries in queue of LINE; the first entry is the number of

the terminal we are working on, and the second entry denotes the

direction of the message to be transmitted, 0 denoting a message

from the terminal and I 0 an answer from the computer.

DECLARE SEIZE LINE EVENT:

DO IF LINE=0;

SET LINE=l;

GENERATE "SEIZE BUFFER IN"(1ST QUEUE OF LINE)

AFTER INTERVAL 5 IF 2ND QUEUE OF LINE=0;

ELSE GENERATE "SEIZE BUFFER OUT"(1ST QUEUE OF

LINE, 2ND QUEUE OF LINE) AFTER INTERVAL 5;

END.

Thus the above event controls the access to the line. Now when the

processor buffer unit finds the line free, it must then consider if

the site buffer of the terminal scanned is free. It takes 5 msec.

for a control signal to propagate to the buffer.

DECLARE "SITE BUFFER" LIST.

SET SITE BUFFER(1)=0.

SET SITE BUFFER(2)=0.

SET SITE BUFFER(3)=0.

SET SITE BUFFER(4)=0.

SET SITE BUFFER(5)=0.

SET SITE BUFFER(6)=0.

-41-

DECLARE SEIZE BUFFER IN EVENT: PASSED T(VR) ;

REMOVE 2ND QUEUE OF LINE;

REMOVE 1ST QUEUE OF LINE;

DO AFTER INTERVAL 80 IF SITE BUFFER(SB OF

TERMINAL(T)) = l;

SET LINE=0;

GENERATE SEIZE LINE IF EXISTS QUEUE OF LINE;

GENERATE SCAN(T);

END;

ELSE DO;

SET SITE BUFFER(SB OF TERMINAL(T))=l;

GENERATE "TEST TERMINAL"(T) AFTER

INTERVAL 15;

END.

If the site buffer is busy, the processor buffer waits 80 more

msec., receiving no signal back, and then releases the communi ­

cation line (which, if there is a queue, will be seized immediatel y)

and proceeds to scan the next terminal. If the site buffer is free ,

it is seized by the processor buffer. It takes 15 milliseconds to

send the number T down the line.

-42-

DECLARE TEST TERMINAL EVENT: PASSED T(VR);

GENERATE "MESSAGE TRANSMISSION 11 AFTER INTERVAL

395 IF STATUS OF TERMINAL(T)=2;

ELSE DO AFTER INTERVAL 65;

SET LINE=0;

GENERA TE SEIZE LINE IF EXISTS QUEUE OF LINE;

SET SITE BUFFER(SB OF TERMINAL (T))=0;

GENERATE SCAN(T);

END.

The site buffer takes 65 milliseconds to determine whether the

terminal is ready to transmit. If not, the line and the site buffer

are released and the next terminal is scanned. If it is, it takes

the site buffer 225 msec. total to get ready to transmit the

message, and 170 to send it.

DECLARE 11 COMPUTER"=0.

DECLARE 11QUEUE OF COMPUTER 11 LIST.

DECLARE MESSAGE TRANSMISSION EVENT:

PASSED T(VR);

SELECT;

. 02 GENERATE MESSAGE TRANSMISSION AFTER

INTERVAL 190;

. 98 DO;

PUT T IN QUEUE OF COMPUTER;

GENERATE "COMPUTATION";

-43-

DO AFTER INTERVAL 20;

SET SITE BUFFER(SB OF TERMINAL(T))=0;

SET LINE=0;

GENERATE SEIZE LINE IF EXISTS QUEUE OF LINE;

SET STATUS OF TERMINAL(T)=3;

END;

END;

END.

There is a 2o/o probability that an error is detected in the trans-

mission; in this case, a signal is sent asking for retransmission,

which takes 20 msec. ; and another transmission occurs, taking
\

again 170 msec. When the transmission is correct the line and

the site buffer are freed, and the terminal is ready to receive

an answer; it takes 20 msec. before those actions are executed.

The message is sent to the computer for processing and must

wait until the computer is free.

DECLARE COMPUTATION EVENT:

DO IF COMPUTER=0;

SET COMPUTER=l;

DO AFTER INTERVAL 250 IF MESSAGE OF TERMINAL

(1ST QUEUE OF COMPUTER)=!;

300 IF MESSAGE OF TERMINAL

(1ST QUEUE OF COMPUTER)=Z;

450 OTHERWISE;

-44-

SET COMPUTER=0;

DO IF 1ST QUEUE OF COMPUTER<=6;

PUT 1ST QUEUE OF COMPUTER IN QUEUE OF LINE;

PUT MESSAGE OF TERMINAL(1ST QU~UE OF

COMPUTER)+2 IN QUEUE OF LINE;

GENERATE SEIZE LINE AFTER INTERVAL l;

END;

REMOVE 1ST QUEUE OF COMPUTER;

GENERATE COMPUTATION IF EXISTS QUEUE OF

COMPUTER;

END.

The computer processes the input message for a time interval

dependent on its type. Then, if the message came from one of

the six terminals we are simulating, an attempt is made to seize

the line and send the answer. The terminal number and the

number of words in the answer are placed in the line queue. Then

the computer considers the next message, if any. The SEIZE

LINE event, already written above, generates an attempt to

seize the site buffer:

DECLARE SEIZE BUFFER OUT EVENT: PASSED T(VR),

WORDS(VR);

DO AFTER INTERVAL 80 IF SITE BUFFER(SB OF

-45-

TERMINAL(T)) = l;

SET LINE=0;

END;

ELSE DO;

SET SITE BUFFER(SB OF TERMINAL(T))=l;

GENERATE "OUTPUT 1'(T, WORDS) AFTER INTERVAL 155;

END.

We find out if the site buffer is busy, as in the case of input abov e ;

if it is, we make another attempt immediately. If we manage to

seize the buffer, output is initiated.

DECLARE OUTPUT EVENT: PASSED T(VR), WORDS(VR);

SELECT

. 01 GENERATE OUTPUT(T, WORDS) AFTER INTERVAL

100;

. 98 DO;

SET LINE=0;

SET WORDS=WORDS-1;

REMOVE 2ND QUEUE OF LINE;

REMOVE 1ST QUEUE OF LINE;

SET SITE BUFFER(SB OF TERMINAL(T))=0;

AFTER INTERVAL 325;

DO IF WORDS=0;

GENERATE SCAN(T);

DO AFTER INTERVAL 495;

-46-

SET STATUS OF TERMINAL(T)=0;

GENERATE ANSWER RECEIVED(T);

END;

END;

ELSE DO AFTER INTERVAL 495;

PUT TIN QUEUE OF LINE;

PUT WORDS IN QUEUE OF LINE;

GENERA TE SEIZE LINE;

END;

END;

END.

Again lo/c of the time there may be a transmission error. Otherwise

a word gets typed on the terminal. It takes 325 msec. for the site

buffer to send the word to the terminal, and 170 msec. for the

terminal to type out the word. The site buffer is released in any

case, as has been the line; if the word typed was the last one, the

terminal is also released, and a new scan is initiated. Otherwise,

we try to seize the line again to send the next word.

Finally, we simulate the other processor buffer units' seizure

of the computer by using dummy terminal number 7 for all their

activity:

CREATE TERMINAL.

DECLARE "OTHER PBU" EVENT:

SET MESSAGE OF TERMINAL(T}=FREQUENCY(. 2 IF X=l,

-47-

. 5 IF X=2,. 3 IF X=3, 0 OTHERWISE) ;

PUT 7 IN LINE OF COMPUTER ;

GENERATE COMPUTATION;

GENERATE OTHER PBU AFTER INTERVAL

RANDOM(3200 , 5000).

In order to start the simulation we must generate the fir st e v ents;

GENERATE USER ENTRANCE.

GENERATE USER ENTRANCE.

GENERATE USER ENTRANCE.

GENERATE SCAN(0).

GENERATE SCAN(3).

DECLARE "1"=7.

DO UNTIL I=0; SET I=I-1; GENERATE OTHER PBU AF TER

INTERVAL RANDOM(3200, 5000); END.

GO UNTIL CURRENT TIME=60):<60):< 1000.

Thus three users walk in; the pair of proc e ssor b uff er units

begins scanning at the 1st and 4th terminal respectiv e l y ; a nd six

seizures of the computer by the other processor buffer un its are

generated. The simulation will run for one hour of the s im ulated

time.

It should be noted that this example was designed to d emonstrate

the capabilities of an activity-oriented language, yet i t can b e

programmed quite naturally in RELSIM. The programmin g

-48-

would become even simpler if we used the AT INTERVALS-UNTIL

statement instead of using queues for the line and the central

processor. Thus the process of seizing the line from event

routine SCAN would be:

GENERATE "SEIZE BUFFER IN"(T) AFTER INTERVAL 1

AT INTERVALS OF l UNTIL LINE=0;

with event routine SEIZE BUFFER IN modified to

DECLARE SEIZE BUFFER IN EVENT: PASSED T(VR);

DO IF LINE=0;

SET LINE=l;

DO AFTER INTERVAL 85 IF SITE BUFFER(SB OF

TERMINAL(T}) = l;

SET LINE=0;

GENERATE SCAN(T);

END;

etc. , eliminating the event SEIZE LINE. This is more like the

type of programming done in simulation languages with no log,

where conditions must be checked with every unit of simulation

time that goes by. The cost of extra computing outweighs in most

cases such simplification of programming.

-49-

Finally, let us consider a traffic intersection simulation that

is designed to test prospective traffic policemen. This example

is modeled after an intersection in downtown Athens where

conditions have proven to be unmanageable by traffic signals and

by most policemen; the few hardened veterans that can halfway

manage it are famous and admired. This is a simplified version.

The intersection is a normal cross. North street has four

lanes, which we will call, starting from the west, Nl through

N4. The first two are southbound from 7: 00 AM to 4: 30 PM,

and northbound during the rest of the day. N4 is open only to

buses when N3 is southbound. Nl and N4 are the only lanes which

buses may occupy. A car may turn left from Nl or N2. East

street has four lanes, all westbound, which we will name El

through E4 with El being the northernmost. Left turns are

possible from E3 and E4, and right turns from El and, after

4: 30 PM, E2. There are northbound buses on El and westbound

buses on E2. South street has two lanes, both southbound. No

buses are allowed in Sl, the easternmost lane. Finally, West

street has four lanes named Wl through W4 from the south, two

going each way, with buses allowed on Wl and W4, and left turns

allowed from W2 after 4: 30. The center of town is to the south­

east. Major jams occur at 7: 00 - 9: 00 AM and 4: 30 - 6: 00 PM,

with a lesser one at 12: 30 - 2: 00 PM. At all such times there

are huge crowds of pedestrians waiting to cross each corner.

-50-

For simplicity we will assume that once a crowd starts crossing

a street it will occupy it for 3 0 seconds. The policeman is given

an assessment of the situation every 30 seconds and is requested

to give further directions. The simulation lasts from 7: 00 AM

to 6: 00 PM, and may be taken as a test at many sittings; or ,

parts of it may be considered, e.g. a particular rush hour . The

statistics will be kept with the car simulated and used as a

REL-English base to determine the traffic policeman's per­

formance.

Details again follow with the programming. In coding where

cars come from and where they go to, we use 1 for north, 2 for

east, 3 for south and 4 for west.

DECLARE "CAR" WITH "TIME IN"=CURRENT TIME AND

"ORIGIN" AND 11 OLANE 11 AND "TIME OUT"=0 .

AND "DIRECTION" AND "DLANE"=0 AND "BUS"=0 .

DECLARE 11 ENTRY 11 EVENT:

CREATE CAR WITH DIRECTION=3;

DO IF CURRENT TIME<9,:,60,:,60;

SET ORIGIN=FREQUENCY(. 44 IF X= 1, . 22 IF X=2,

. 34 IF X=4, 0 OTHERWISE;

SELECT IF ORIGIN=!;

. 4 SET OLANE=3;

. 4 DO; SET OLANE=2; SELECT; 1/8 SET DIRECTION

=4; END; END;

-51-

. 2 DO; SET OLANE=l; SELECT; 1/4 SET DIRECTION

=4 ; END; END;

END;

SELECT IF ORIGIN=2;

. 25 SET OLANE=4;

. 25 SET OLANE=3;

. 30 DO; SET OLANE=2; SET DIRECTION=4; END;

. 20 DO; SET OLANE=l; SET DIRECTION=4; END;

END;

ELSE SELECT;

. 5 SET OLANE=l;

. 5 SET OLANE=2;

END;

GENERATE ENTRY AFTER INTERVAL 7. 8;

END;

A car is created, and the direction it comes from, the lane it is

in, and the direction it will go to, are determined; and the arrival

of the next car is generated. If the time is 7: 00 - 9: 00 AM, 44o/r

of the cars come from N, 22% from E and 34% from W; 90% of the

cars from N want to go S, and 10% E, while for the cars from E

50% go Sand 50% E, and all cars from E go S. Cars arrive

every 7. 8 seconds. In the same way the event may be completed

for the other time intervals in the day that have certain traffic

flow characteristics.

-52-

Buses are scheduled every minute on each line.

DECLARE "BUS ENTRY" EVENT:

CREATE CAR WITH ORIGIN=l AND OLANE=l AND

DIRECTION=3 AND BUS= l;

CREATE CAR WITH ORIGIN=2 AND OLANE = l AND

DIRECTION=! AND BUS=l;

CREATE CAR WITH ORIGIN=2 AND OLANE=2 AND

DIRECTION=4 AND BUS=l;

CREATE CAR WITH ORIGIN=4 AND OLANE=l AND

DIRECTION=3 AND BUS=l;

GENERATE BUS ENTRY AFTER INTERVAL 60.

At 16: 30 we must empty N3 for the direction change.

DO AFTER INTERVAL 16. 5,:,60~:-60; SET OLANE=2 FOR

CARS WITH ORIGIN=! AND OLANE=3; END.

The next event controls intersection traffic. CONTROL will b e a

list with entries signifying the allowable direction coded as

origin ,:, 1 O+ destination; i. e. N to S will be entered as 13.

DECLARE "CONTROL" LIST.

DECLARE "PRIORITY" ENTITY LIST.

DECLARE "CROSS" EVENT: PASSED D(NU), L(NU);

LOCAL OUTQUEUE(LE);

SET OUTQUEUE=CARS WITH DIRECTION=D AND

DLANE=l;

-53-

DO IF NUMBER OF OUTQUEUE<l 5

AND-, (EXISTS OUTQUEUE WITH TIME

OUT>CURRENT TIME)

AND(EXISTS PRIORITY WITH DIRECTION=D

AND ORIGIN':qo+D IN CONTROL);

MAKE 1ST PRIORITY WITH DIRECTION=D AND

ORIGIN=l0+D IN CONTROL CURRENT CAR;

REMOVE CURRENT CAR FROM PRIORITY;

PUT 2ND CAR WITH ORIGIN=ORIGIN AND OLANE=

OLANE IN PRIORITY;

SET TIME OUT=CURRENT TIME+S;

SET DLANE=L FOR INTERVAL 180;

SET OLANE=0;

END;

GENERATE CROSS(D, L) AFTER INTERVAL 5.

Given a lane (by street and lane numbers) that leads away, this

event sends a car to that lane if (a) the lane is not clogged up

(b) there is no car already in the intersection heading for that

lane (c) there exists a car that wants to go in that direction and has

a green light; and if many such exist the car that has been waiting

at the intersection the longest is selected.

To start things up we must generate one such event for each

lane out:

GENERATE CROSS(4, 3).

-54-

GENERATE CROSS(4,4).

GENERATE CROSS(3, I).

GENERATE CROSS(3, 2).

GENERATE CROSS(1, 4).

GENERATE CROSS(1, 3) AFTER INTERVAL 4. 5,:~60,:~60.

The next event passes control to the traffic policeman every 30

seconds.

DECLARE EVENT "COPE'':

WRITE NUMBER OF CARS WITH ORIGIN=! AND

OLANE=l;

etc. for all lanes in;

WRITE NUMBER OF CARS WITH DIRECTION=! AND

DLANE =4;

etc. for all lanes out;

WRITE CONTROL;

DELETE CONTROL;

GENERATE COPE AFTER INTERVAL 30;

PAUSE.

Thus the man at the console sees the situation at the moment and

is invited to put new entries in CONTROL that will allow cars to

move in certain ::lirections.

To start the simulation, we must create a few cars in each lane,

put the first car of each lane in PRIORITY and generate the first

ENTRY, BUS ENTRY, and COPE. The simulation time must

-55-

also be set to some time between 7: 00 AM and 6: 00 PM. The

GO statement determines the length of the simulation.

-56-

III. AN INSIDE VIEW

In implementing RELSIM on the REL system, we have attempted

to use the considerable latitude offered to the language writer by

that system, and to avoid exceeding its limits. This was a

constant temptation, as familiarity with a system implies aware­

ness of all kinds of shortcuts available to the programmer willing

to descend to the system level and make slight, unimportant

modifications. Certain of the condition routines concerned with

event declaration sentences and local variables get quite close to

the edge in their treatment of the parsing graph, but in the end

retain their virtue.

When the user enters a version of RELSIM for the first time,

a context area is set up on a page whose ID is placed in the

COMMON region. This contains the simulation time, originally

13
zero; the seed for the random number generator, set to 5 ; the

page ID's of created pages where system variables, attribute

definitions, event definitions and the log will be saved; and

various other pointers that should be readily accessible at all

times, and will be discussed in their context.

A. Data structures

On declaring a class, an initial page is set up with a header

containing pertinent information. The first word contains the

page ID of that page; the second one is reserved to contain the ID

of the first continuation page; there follow locations containing the

-57-

number of attributes defined in the class, the number of existent

entities, a pointer to the location where the next created entity

will reside, a pointer to the first entity, to the last entity, to the

current entity, and a pointer reserved for the execution of a FOR

statement on the class or some of its entities (see below); and

finally, forty locations reserved for attribute descriptions.

These description pointers function as follows: If on declaration

of the class (or in a subsequent entity creation statement) an

attribute is declared and set equal to some expression, the

parsed tree for that expression gets copied on a page, and a

pointer to that location is placed in the class header. This expres­

sion will be then evaluated for each event created, at the time of

its creation. The pages where these parsed trees are stored

sequentially are accessible through the context area and linked.

There follows space for created entities. Each entity is made

up of a self ID, a next and a previous entity pointer and the ID of

its class, followed by the values of its attributes.

Continuation pages have a simple header with a self ID, the ID

of the first page, and the ID of the next page, followed by entity

entries.

A list is essentially set up in the same way, except no space

for attributes exists in the header or each list element. The

elements contain a payload instead of a self ID in their first word;

and the header's third word contains a flag signifying whether this

-58-

is a FIFO or a LIFO list, rather than the att ribute number.

Arrays have a simple header containing a self ID, a next page

ID and the dimensions of the array, followed by single word

entries.

System variables are placed sequentially in linked pages,

available through the context area.

All of the above, when declared, get placed in the lexicon and

subsequentially parse to their page ID, with the exception of attri ­

butes. These parse to the ID of a page that contains the cla ss ID

and the number of the attribute within that class, for all classes

that have attributes of that name. Disambiguation then occurs

depending on the context of the parsed sentence.

An event routine is parsed, and the parsed tree is placed on

pages.

B. The~ and the central processor

A notice for each instance of an event that is generated is

posted on the log, which is a list structure kept in core during the

execution of any sentence that requires its presence {and therefore

during the entire simulation run, which is the execution of the

sentence GO) and copied out in pages between sentences and on the

occurrence of a PAUSE.

The structure of the log is as follows: there is a list element

for each time point at which an event is supposed to b e executed.

These list elements are linked by the third word with ascending

-59-

time, and they contain that time in the second word. The first word

connects all the event notices at that particular time, posted in the

order of their generation.

An event notice is set up in the following manner: the first

word, as we have noted, points to the next notice at the same

simulation time; the second contains the ID of the parsed tree of

the event routine, and the third points, if nee es sary, to another

list element that acts as an information header. Thus, in its

first word there may be a lexical ID of where the name of the

notice occurs, so that it can be deleted after the event has been

completed; the second points to a list of variables associated to

the event by a FOR statement (see below); and the third points to a

list of the values that the event's pass parameters will assume.

The log's page ID or core address, depending on its whereabouts,

is kept in the context area.

The simulation central processor, which is the semantic

routine for the GO statement, essentially passes control to the

REL semantic processor on a copy of the parsed tree of each event

routine,an instance of which becomes the current notice. After

each notice is executed in this manner, it is then deleted from the

log, and the simulation processor proceeds to find the next

available notice.

Before each event is executed, however, the processor has to

perform certain preliminary tasks. In the case where the

-60-

GENERATE statement which resulted in the current notice had

been modified by any FOR clauses , the variables referenced by

those clauses are to be found in the event notice; the simulation

processor then modifies the copy of the parsed tree so that it is

encompassed by a DO FOR statement on those same referenced

variables. Again, all passed parameters and local variables

reside in a particular page, accessed through the context page,

during the execution of each event. The simulation processor

must then update this page prior to the execution of each event,

using the information on the log .

C. Other implementation aspects

Due to the fact that RELSIM is a fairly high level language, its

syntax is very extensive, and the associated semantic r outines

tackle many diverse problems. A full description of the workings

of the language here would be tedious. Appendi x A contains the

RELSIM syntax in its entirety; and Appendix B contains docu­

mentation on all condition routines, semantic routines and utility

routines. We will restrict ourselves to discussing here, as

illustration of the types of programming the language requires,

three features of RELSIM: the DENSITY state ment , the FOR

clause and the handling of pass parameters and l ocals.

The DENSITY (f(X)) function operates in the following way : A

scale factor c is determined, such that the function given satisfie s

c. f(x)< 1 in the interval it is defined, say {a , b). Then on request

-61-

of a random number of that distribution, we obtain two uniformly

distributed random numbers r
1

, r
2

in (O, 1) from the standard

random number generator utility. We consider whether

r
2
~ c. f(a+(b-a)r

1
)

and if so, we accept x=a+(b-a)r
1

. Otherwise another attempt is

made.

The major problem here is the determination of the factor c.

In a condition routine we make all instances of X in f(X) parse into

real numbers containing no payload and flagged to signify their

special status. Using copies of this parsed tree by placing a

number into each flagged spot and calling the semantic processor,

we do a rough search for a maximum value of f(X) in (a, b) using

a grid of about 100 points. This produces an initial estimate of

c, which is saved in the parsed tree of f(X). The semantic

routine performs the test outlined above; and each time it finds

that c. f(a+(b-a)r
1

>l, it updates the value of c. Thus the distri­

butions become more accurate as more variates are produced.

The implementation of the FOR statement so that it meets the

requirements outlined in chapter II, is the following: The

semantic routine is a generator, i. e. the semantics of all parts

of the parsed tree under the present parse have not been executed,

contrary to normal REL procedure. If the modifier is an entity

it is placed at the top of a stack referenced by a pointer in the

header of the class of which it is a member. Thus it becomes

-62-

the current entity of that class; and the entity that was current

before FOR modification happened occupies the bottom of the

stack. If the modifier is a list, all of its elements are placed in

the appropriate stacks in their classes; and the parsed tree is

altered to look as if there were as many FOR statements as there

were classes modified.

The routine then calls the REL semantic processor on a copy

of the parsed tree of the sentence being modified by the FOR

statement. On return, it is bumped; with a new current entity

the semantic processor is called on another copy of the statement.

When the stack of the class contains one element, the routine

sets that as current and exits.

Consider what happens when we say

WRITE CURRENT X/CURRENT Y FOR X(l) FOR Y(l) FOR X(2).

The FOR routine is first called on X(2), which displaces the

current X and calls the semantic processor on the sentence it

modifies, namely

WRITE CURRENT X/CURRENT Y FOR X(l} FOR Y(l)

Thus the first routine called by the semantic processor is again

the FOR routine on Y(l}, and that, too, is set as current. Next

another FOR routine on X(1) is called, X(1) displaces X(2) as the

current entity and the sentence

WRITE CURRENT X / CURRENT Y

is executed, with X(l} and Y(1) current. Control returns to the

-63-

last mentioned FOR notice, and the stack is bumped so that X(2)

is current. Another WRITE is executed, but on return this time

the inner FOR notice finds nothing executable in the stack and thus

replaces the old current X and destroys the stack. Then the middle

FOR is returned in control and performs similarly on Y. Finally

control goes to the outside FOR, which finds no X stack; it also,

therefore, exits.

In exception to the above, where the basic verb modified is

GENERATE, the FOR clauses merely pass the modifying entities

or lists to the semantic routine for GENERATE, which then

attaches these to the event notice posted on the log. Thus, instead

of several identical events being generated, each with different

current entities, a single event spanned by a DO FOR is ro sted,

resulting in the same action in a more economical manner.

In order to handle the LOCAL and PASSED variables, a

condition routine on the event declaration statement must first

build a mini-lexicon of the names included, complete with pay­

loads utilizing the information given about them, and then proceed

to search the body of the event for instances of these names and,

when found, span them with the appropriate parse. All other

parses are destroyed, and control is returned to the system

parser for a second try. All variables parse to a page ID on a

special page utilized by all events being executed. Local list and

array ID's are passed to the semantic routine and included in the

-64-

parsed tree of the event routine that 1s copied in pages, so that on

execution of an instance of the event they will get created and

initialized before any action occurs, and they will be deleted at the

close of the event.

The GENERATE semantics, on the other hand, stores the values

of the parameters it passes in the event notice. If a local list or

array is to be passed, a new copy of it is made and marked as

local for the event generated, so that it will be deleted by it. The

central processing routine of the language then retrieves these

payloads and stores them in the page where they should be at the

time it calls on the event specified by the notice.

The above examples provide, we hope, some feeling for the kinds

of tasks faced in the implementation of the language. Of course,

implementation is an open-ended process, because as a more

complete view of the language is obtained, better ways of doing

things and more features that can be included keep occurring to

the implementer. We cannot say that RELSIM contains all the

features we would like to include in it, but at this point it seems

to encompass enough to make it a viable and useful language.

-65-

BIBLIOGRAPHY

1. BUXTON, J. N. (Ed.) (19 68) Simulati on P rogram m ing
Languages. New Holland Publishing Co. , Amste r dam.

2 . DAHL, 0. J. and NYGAARD, K. (1966) SIMULA - A n
ALGOL - Based Simulation Language. Comm. ACM
9, 9, 671-678.

3. DOSTERT, B. H. (1971) REL - An Infor mati on Sy stem for
a Dynamic Environment . CIT, Pasadena, Ca.

4. GORDON, G. (1969) System Simulation. Pr e ntice - Hall Inc.,
Englewoo d Cliffs, N. J.

5. GREENBERGER , M. (1964) A New Metho d ology for Computer
Simulation. P r oject MAC , M IT Cambridge, Mas s .
MAC-TR-13.

6. GREENBERGER, M., JONES, M. M. , MORR IS , J . H. , Jr.,
and NESS, D. N. (1966) On - Line Com p uta ti on and
Simulation: The OPS - 3 Sys t em . MIT Press,
Cambridge, Mass.

7. HEIDORN, G. E. (1972) Natural Languag e Inp uts to a
Simulation Programming System . Naval P os tgrad. School,
Monterey, Ca. NPS- 55HD7210 lA .

8. KIVIAT, P. J . (1969) Digital Compute r Si m ul a ti on:
Computer Programming Lan guag es. RAND Corp. ,
Santa Monica, Ca. RM - 5883 - PR .

9. KIVIA T, P. J. (19 74) Requi r e m ents fo r an In teractive
Modeling and Simulation System . In M ulti- Access
Computing: Modern Res earch and R equirement s.
P.H. Rosenthal and R. K . Mis h (Ed.). Hay den Book Co.,
Inc. Rochelle Park, N . J.

10. KIVIAT, P. J., VILLANUEVA, R. and MARKOWITZ, H. M.
(1968) The SIMSCRIPT II Programmi ng Lang uage.
RAND Corp., Santa Moni ca, Ca . R -46 0 - PR .

11. KNUTH, D. E. andMCNELEY, J.L . (19 64) SOL - A
Symbolic Language for General Purpos e Syst e m s
Simulation. Trans. IEEE, 401-414.

-66-

12. MC NELEY, J. L . (1967) Simulation Languages. Simulation
9, 2.

13. NAYLOR , T.H., BALINTFY, J.L., BURDICK, D. S. and
CHU, K. (1966) Computer Simulation Techniques.
Wiley & Sons, Inc., New York, N . Y.

14. TEICHROEW, D. and LUBIN, J . F. (1966) Computer
Simulation - Discussion on the Technique and
Comparison of Languages. Comm. ACM 9, 10, 723-741.

15. THOMPSON, F. B. (1974) The REL Language Processor.
CIT, Pasadena, Ca.

16. THOMPSON, F. B., LOCKEMAN, P. C. , DOSTERT, B. H.,
and DEVERILL, R . S . (1969) REL: A Rapidly Extensible
Language System. Proc. 24th ACM Natl. Conf., 399-417.

17. TOCHER, K. D. (1963) The Art of Simulation. D. Van

18.

19.

20.

21.

Nostrand Co., Inc., Princeton, N. J.

TOCHER, K. D. (1965) Review of Simulation Languages.
Operations Research Quarterly. 15, 2, 189 -218.

YOUNG, K. (1963) A User ' s Experience with Three
Simulation Languages {GPSS, SIMSCRIPT and SIMPAC)
System Development Corp. , Santa Monica, Ca.
TM-1755/000/00.

(1966) Proc. of IBM Scientific Computing
Symposium: Simulation Models and Gaming. IBM Corp.,
White Plains, N. Y.

---- (1967) General Purpose Simulation System /360
User's Manual. IBM Corp. , White Plains , N. Y.
HZ0-0326-2.

*
*

-67-

APPENDIX A

PELSIM SY NTAX
* *
~**

TbE FIRST FEW RULES ESTABLISH TH E PA RTS OF SP EECH CF
THE LANGUAGE .hNO THEIP SYNT f... X FE ATU RE S . THE Y ARr.: NUT
TC BE APPLIED IN THE PARSING 1JF SE NTE NCES.
TbE R[LSIM PARTS OF SPEECH AR ~ :

VR - V~RIA8LE OF ANY KINO
OP - FUNCTICN OPERATOR (E.G. 1- AX, MI N ET C.)
EN - ENTITY
NU - NUMERICAL EXP r<E SSION
AB - ATTRIBUTC.:
EC - ENTITY CLASS
BO - ECCLEtN EXPRESSION
C Cl - COMP AR A TOR (E • G • > , < = , E TC •)
CJ - CCNJUNCTION (E.G. ANO, Xf:P, ETC .)
CN - rc~DITIONAL NUMERICAL EXPk f SSION
P R - e O () L E AN E X PR [S S I C i'J w I TH UN R c SO l V L-= D AT T R I AU T E S
OE - OEFINITION~l
CL - INDIRECT SENTE~CE
VC - VERB CLAUSE
DP - NUMERICAL EXPR. IN A 11 FR EQUENCY•1 STATEMENT
DX - ~CT IN USE
EV - EVENT ROUTINE
PO - EVENT ~OTICE (POSfING)
NT - EVENT NOTICE NAME
TA - LOCAL OR PASSEC VARIABL F. IN EVEN T ROUTINE
TR - VARIABLE TC BE ~ASSED IN " Gf:t\ER ATEtt CLA .JSE
MA - ARRAY
MN - NU~F.RICAL SEQUENCE FO R ARRAY DEFINI TION
WL - CUANTITY TC PE ~RITT EN OUT

10 11 12 13 14 1 5 16 1 7 18
SYN:• ss• => •vR OP EN NU AB EC 80 co CJ
SEM:SFMRfT

lA lC 10 lE lF 2 0 21 22 23
SYN: •ss•=)'DE CL vc OP DX EV PC NT TA
sr::M:SfMRET

26 21
SYN:•ss•=>•M~ Wl'
~FM: Sf MR ET

l ~
CN

2 4
TB

l.A
PB'

2 5
MA'

-68-

SYN: •ss•=)' * * NU**'
CHK: -~AS-NMD-~XP
SEM:SfMRFT

SYN: 1 SS 1 =>' * * AB * *'
1 2 4 8 1 2 4 9 l 2 4 8

CHK:+FPN+ENT+LIS+SEC+AOF+AOP+ENC+AB2+AB3+AB4+LOS+LAT
SE~:SEMPET

S~N:•ss•=>' * * VR * *'
1 2 4 8 1 2 4 8 1 2 4 8

CHK:+FPN+ENT+LIS+S~C+ELT+VRl+LIN+LIC+LCJ+SCR+LOS+LAT
SfM:SFMRET

SVN: 1 SS 1 => 1 * * DE * *'
1 2 4 8 1 2 4 9 l 2

C~K:+FPN•ENT+NUL+ATT+NAM+NUK+NUN+NEV+ATC +MAT
SF. M: SE MR ET

SYN:•ss•=>• * * vc * *'
l 2 4 8 l 2 4 8 l 2 4 8

CHK:+CRE+CSP+TIN+LAP+VEN+VSN+CVC+CON+DOV+VIN+FAE+SEL
SEM:SEMRET

SYN:'SS'=)' * * * VC
1 2 4 8

CHK:+SCEiGOO+ELS+NLS
SEM:SEMRET

S~N:•ss•=>' * * OP * *'
CHK :+OPF +ROP
SE M: S EMR ET

SYN: 1 S5'=)' * * TA * *'
1 2 4 8 l 2 4 8 1 2 4 8

CHK:+REF+VEF+LEF+LRF+MAF+ECF+ENF+~UF+ABR+ABc+ARL+Atl
SEM:SEMRET

S~N:•ss•=>' * * * T~
1 2

C ~K: +EVF-+POF
SEM:SEMRET

* * *'

THE NEXT RULE APPLIES A PRESCAN 10 ALL SENTEi-JCES.
BLANKS ARE HANDLED ANO NUMBERS COLLECTED.

SYN: 1 '=>'SZ'
. CNO: SCRPR EN
Sf~:

-69-

T~E FCLLOWING RU LES HANDLE TH E WA YS IN WrlICH A
NU~EPICAL EXPP ~SS I (N MAY BE GBTA I~E O.

S\'N: 'NU'=> 'VR I

C HK: - LIS +F F N
Sfr-A:VTNU

S'tN:. NU'=>' VR I

C HK :-F P N-E t\ T
SEM:VTNUIF

SY~:•~u•=>• NUMBER
CHK:+LIS-LAT
SEM:NUQ9

SYN: 'NU'=>•~u +NU'
CHK:,-NAS
SET: O+N~S
SEM: ADD

S't'N: 'NU'=>'NU -NU'
CHK:,-NAS
SET: O+NAS
SEM: SUB TR ACT

SYN: 'NU'=)'NU *NU'
CHK:-NAS,-~AS-~MD
SET: C+Nf'JO
SEM: MULTIPLY

SYN: 'NU'=>•~u /NU'
C~K:-NAS,-NAS-NMO
SET: O+NMO
SEM: DIVIDE

s YN: I NU I=>. NU * *NU'
CHK:-NAS-N~D,-~AS-~~D-NXP
Sf T: O+NXP
SE~: SEt-AF-CW

S Y N : ' NU ' = > ' ♦ NU 1

CHK: -NAS
CNC: SCRKA2
SET: O+N AS
TNF: l
SEM:SEMRET

0 F VR'

-70-

SYN: 'f\.JU'=>' -NU'
CHK: -Nt.. S
CI\ 0: SCP.t<.A2
SET: O+NAS
SEM: UNARYM

svr-..: 'l'\U'=>' (NU) .
TNF:l
Sf~:SF~RFT

SYN: 'NU'=>' s I N ("'u) I

SEM: SEMSIN

S 'VN: 'NU'=>• C 0 s (f\ u) '
SEM: SEMCOS

SYN: 'NU'=>' E X p (NU) '
SFM: SEMEXP

S 'f N: 'NU'=>' L 0 G ,~u) t

S E tJ : SEMLOG

S '1N: 'NU'=>' s C R T (NU) '
S EM: SEMSQRT

SYN: 'NU':)' F p ("U) .
SEM: SEMFP

S 'f N: 'NU'=>' I p (NU l I

SEM: SEMIP

SYN: • NU I=>. A 8 s t "u) I
SEM: SEMA8S

S 'f N: 'NU'=>' s I G N (f\U) t

SEM: SEMSIGN

SYN: 'NU'=>' M A X (NU , NU) I

s-=: M: SEMMAX

SYN: 'NU'-=>' M I N ("u , NU) I

SEM: SEMMJ N

SYN: 'NU'=>' M 0 0 (NU , NU) I

SEM: SE M t-100

SYN: 'NU'=>' T A N (NU) I

SEM: SEMTAN

5 Y N : • N U ' = > ' L N (NU) '
$FM: SF~L~;

~'tN: 'OP'=>' P' A X'
SF"'1:Cnl

S~N: 'OP'=>' ~IN'
SEM:fJPAl

SYN:'NU'=>'OP (VR)'
CHK:,+LIS+FPN-LAT
SE~:VRY5

-71-

SYN:'NU'=>'OP (AB f C P VR)'
CHK:,+FP~,+LIS+ENT-LAT
SE~:VRY6

S Y N : ' NU • = > • 0 P (A B J •
CHK:,+FPN-tOP-AOF
SEM:VR'V7

s y N: • NU. => I R ~ t'..: [C ~ (NU 'NU , •
SFfil.:RAND

SYN: 'NU'=>' A I N O M I A L (NU , NU) '
SE~:RINO

SYN:'NU'=>' PASCAL (NU ,NU)'
SE~:PASO

SYN:'NU'=>• PO IS SC N (NU)'
SEM:POID

s y N: I NU' =>' u
SEM:UNID

SYN:'NU'=>• N
SEt-':NOPO

SYN:'NU'=>' E
SEM:fXDI

SYN:'OP'=)'NU
SEM:SEMRET

SYN: •OP•=) • 0
SET:O+DPF
SE~:SEMR.ET

N

0

X

I F C R M (NU ,NU

R M A L (NU ,NU) t

p D (NU) .
I F X =NU'

C T H E R W I S E '

) '

SYN:•o~•=>'OP, OP'
CHK:-OPF,+CPF
SET: l+OPF
TNF:<1><2,*>
SEt-1:SEMRET

-72-

SY I\: • NU 1 => • 0 E N S I T Y (•
CNO:CHXT@
SFM:Sf:MRET

SYN:'NU'=>' al'
CNO:CNNCH
SEM: S EMP ET

SYN:•NU':)' 0 E ~SIT V "NU"'
Cf\O:CNDEN
SF.M:NUil (G)

S'tN: 1 NU'=>' FR E OU f NC Y (DP)'

SE~:NUI2 (G)

SYN: 'NU'=>'NlJ 1'
SE~:NUI5

T._E NEXT FEW RULES HANDLE THE WAYS Ir--J WHICH
F~TITIES, SYSTEM VARIABLES AND LIST VARIABL~S ARE
OBTAINED.

SYN:' EN' =>'VR'
CHK:-LtS+FNT
SEM:VTNU

SYN: ' VR' =>' VR'
Ct-sK:+LJS+LAT
SET:1-LAT
~E~:VTNU

SYN: 'VR'.:>'MA (NU ,NU)'
SET:O+FPf\
so~:VRRl

SYN: 1 VR'=>'A8 (EN J'
SET:1-SEC
SE~:NABT

S 't N: ' VP ' = > ' AB
SET:1-SEC
SE~:NABT

0 F f:N'

S 'V N : ' VR ' = > ' A A '
C .,_K: -AOF-AOP
Cf\O:CNNPE
SET: I-SEC
SEl":VRGl

S 'f N: 'VP '=) 'EC '
SEl:O+LIS~ENT+SEC
SEM:SFMNCP

-73-

SYN: 1 CE 1 =>• CURRENT VQ'
Ct-K:+LIS-LAT
SfT:1-LtS
SF~ :C URC

SYN:'VR'=>'CE'
SfT:l+fLT
SF.M!VTNU

SYN:'VR 1 =>' CURR f ~ T
SET:O+FPN
SEM:CURT

SYN: 1 VR'=> 1 SE F 0'
SFM:VRSO

S YN : ' VR ' = > ' P A N D C t' VP'
ChK:+LtS-LAT
SET:1-LIS+ELT
Sf~ :RA NC

SYN:'VR'=>'VR (l)•
CHK: +LIS-LAT
SET:1-LIS+ELT
SEM:LASC

SYN:'VR'=>' LAST VP'
CHK:+LIS-l.AT
SET:1-LIS+ELT
SEM:LASC

S 'V N: 1 VR • = > 1 VR (NU) '
CH<:+LIS-LAT,,
SFT: 1-LI S+EL T
Sf~:LF.TN

SYN: 1 VR 1 :> 1 NU TH VR'
CHK:, +LIS-LAT
sr:r:2-LI S+flT
SFM:NTHC

SYN:'VR'=>'VR. l -NU)'
CHK:+LIS-LAT,,
SFT:1-LIS+ELT
SE t': L ~ NC

SYN : • VR 1 ::: :> • N E X 1 VR •
Ct--K:+LIS-LAT
SE T : l - LI S+ F l T
SEM:VRAl

S'VN:• VR' ==>' N E X T V'<'
CHK:-L IS+El T
SET: 1
SEM:VRA2

-74-

SYN:'VR'=>' PREVIOUS VR'
CHK:+LIS-LAT
SET: 1-l I S+EL T
SEt-':VRA3

SYN: 1 VR 1 :>• PRE VIGUS VR'
C.,_.K:-LIS+fLT
5FT :1
SEM:VRA4

S~N:'VR'=>• Al L VP'
CHK:+LIS-l.AT
SET:l
Tt\F:l
SF~:SE~?l:T

TrE FOLLOWING RULES BUILD UP qo□ LEAN EXPRESSIONS .

SYN: 1 A0 1 =>'NU(ONU'
S£~:BTST

S 'Y N: 'BC' => 'E ~COEN'
CHK:,+ENE,,
SEM:BTST

I

-75-

S~N:'BO'=>'VR(OVR'
CHK:+LIS-LAT,+ENE,+LIS-LAT
Cf\D: FTFOF
S1=~:l TST

SY~:•Ar.•=>•~~ IN VR'
CHK:,+LI~+ENT-LAT
Sf.M:BCRl

s y": ' [3 (}. = > IN u I N VR.
C~K:,+LIS+FPN-LAT
SEM:ACRl

s YN:. BO. =>. E X I s T s . VR I

C HK: +LIS -l AT
SF.~:BCX2

S~N: 1 B0 1 => 1 -t80'
CHK:-BOP
SET: l
SEM:BRFV

s,N: 1 8(1 =>' NE IT~ ER BO'
Ct--K:-AOP
SET: l
SF~:BREV

SYN: ' BO• = >' (80) '
Tt\F:l
SEM:SEMRET

S~N:•eo•=>'BO CJ 80'
CHK:,,-BOP
SET:o+eoP
SEM:BPil.

SYN: 1 CC'=>' Is•
CNO:Cf\JIS
SET:O+ENE
SEM:CCl

SYN:' cc•=>' ='
SET:04ENE
SfM:COl

s "N : • co• => • < •
SF.M:C02

5Y~:•cc•=>' >'
SFM: C<J 3

~'vN:'CrJ'=>• < ='
SFM:(n4

SYN: 'CC'=)') =· SE~:CC5

SYN: •co•=>' -,(QI

SET: l
<;fM:CCRV

s-vN:•co• =>' N C
S FT: 1
SE~:CORV

S'VN:•co•=>• N 0
C f\D: Cf\ NO
SE'T:O+fNE
SEf-l:CC6

SYN : 'CO' => ' Cc•
CNO:CONPR
SET :1
TNF: 1
St:~: Sf MR FT

SYN:•cc•=>•co
s CT: l
Tt-.F: 1
SFM:SFMPET

T CC'

T'

SYN: 1 (0 1 =)'
SFT:l

r sea•

TNC:1
Sf~:SEMR t: T

SYN:'
SF,-.:

I N •=>•

S~N: 1 CJ'=> 1 AN 0'
SEM:UJl

SYN:'CJ 1 =>' C R1

SEM:cn2

~ 'Y t\ : I CJ' => t X O R I
SE~:C03

I S

-76-

I t\J

S'fN:'CJ'=>' f\ CR'
SEM:CD4

-77-

THE FCLLCWING RULES fANDLE CClNOITIONAL NUMERICAL
EXPRFSSICNS.

SYN:'CN•=>•~u
SF M: N UC l(G)

5Y":'(N'=>'NU
S !: T: 0 +C n P
Tf\F:1
Sf~: S EMR FT

SY~: 'CN'=>'fNCN'
CHK:-COP,+COD
SET:2
S t ~ : C N PU (G)

SYN:' f\U' => 'CN'
Ct-:K:+CrP
CNO :C NCN
TNF:l
SE~:SFMRET

IF BC,

0 T ~FR WT S E'

THE NEXT FEW RULES BUILD UP 800LF~NS ~ITH ATTRIBUTES
I~ THEM ~~ICH ARE ~OT BOUND TO ANY ENTITY AT THIS
STAGE. T~ESE BCCLEANS ARE USED If\ MAKING LISTS nF
ENTITIES WITH SPECIFIC CHARACTERISTICS.

SYN: 'PB'=)'ABCCNU'
C~K:+FPN+AOF,,,
SEM:BTST

SYN: 1 PB 1 =>'ABCOEN'
CHK:+E~T+AOF,+ENE,,
SEM:BTST

SVN: 1 PB 1 =:> 1 ABCOVR'
CHK:+LIS+AOF,+ENE,+LIS-LAT
Cf\O:FTFOE
SEM:LTST

SYN:'PB'=>'AB T ~ VR'
CHK:+AOF,+LIS-LAT
Ct\C:RfOF.
SE~:BORl

S-YN:'PB'=>•P~ CJ PP'
CHK :+ PBP, ,-PBP
SET: 1
SEM:BPIL

S\'N:'PB'=>' v. IT t-' PB'
Ct-K:-PBP
SfT:l+PR.D
TN F: l
SF~ :SF.MR fT

S'tN: 'PR'=>• .,pR•
Ct-K:-PBP
SET: l
SEM:BREV

-78-

SYN:•oe•=>' NEITHER PB'
CHK:-P8P
SET:l
SEM:BREV

SYN: 'PR•=>• (PB) •
SfT:l
TNF:l
SEtJ:SF.MRET

r.-.E FOLLOWING RULES COLLECT LFV~ts or- UNBOUND
ATTRlBUTfS.

S~N:'AB'=>'AB OF AB'
f,t-K:+ENT,+ENT+AOP
SET:2
SEM:FABl

S\'N:'AB'=>'AA Of AA'
CHK:-F.NT,+f.NT+AOP
SET: 1 +AOP+AOF
SEtJ:FARl

SYN:'AB 1 =:> 1 AB (AB)'
CHK:+ENT,~ENT+AOP
SET:2
SEt":FABl

S'tN:'AB'=>'AB (AB)'
CHK:-ENT,+ENT+AOP
SET: l+.OCP+AOF
SEt':fABl

S-YN: 'AB'=>'AB'
Ct- K ·: - ~OP
Ct-,C:ARf:F
SET:l+AfJP
SEM:FAB2

S'VN: 1 AB 1 ::)'AH'
C~K :-MlF-+AOP
CNO:ABIF
SF T: l + AL1 F
T ~ F: 1
SE~:SEMPET

-79-

THE FOLLn~ING RULES ARE USEQ IN THE CREATION OF
SCRATCH LISTS.

SYN:'VR'=>'EC PH'
CHK:,+PRP
C~D :C "'NPR
SfT:O+LIS•FNT+SCR
SEfl':ECRl (G)

SYN: 1 EC'=)'EC S'
TNF :1
SE~:SEMPET

S~~:•VR'=)'VR IN VR'
CHK:+LIS-LAT-LIN,+LIS-L~T
Ct\C:BfOE
SET:l+LIN-SEC+SCR
SEM:E=CR2A

SYN:'VR'=>'VR CJ IN VR'
CHK:+LIS-l.AT-LlN-L!C,,+LIS-LAT-L!f\J
Ct\O:FTFOE
SET:t+lIC-SEC+SCR
SEM:ECR2

SY~:•VR'=>'VP N r: T IN VR'
C HK: +LI S-LAT-l IN, +ll S-LA T
CNC:BFOE
SFT:l+L!N-SEC+SC~
SEM:fCR2B

S Y N : ' V R ' :: > 1 V R A N C N O T 1 N VR. '
C~K:+LIS-LAT-LIN-LIC,+LtS-LAT-LI~
CI\C:BFOf
SE T : 1 + LI C - SEC + SC R
SfM:ECP2e

-80-

SYN:'vR'=)'VR AN C NOT v~•
CHK:+LIS-LAT-LIN-LJC-LCJ,+LIS-LAT-LIN-LIC
C NO: BFnE
SET :l+LC J-SEC+SCR
SEM:FCR2B

S'vt\:'vR'=)'VR CJ VR'
C~K:+LIS-LAT-LIN-LIC-LCJ,,+LIS-LAT-LIN-LIC
Ct\ D: FT FOE
SET :l+LC J-SEC+SCR
SF.M:ECP2

s~N: 1 vR 1 :> 1 <vR ,,
CHK:+LIS
SET:1-LI"-LIC-LCJ
TNF: l
SEf':SEr,APET

T~E NEXT RULES HANDLE QECLARATI0~ STATEMENTS EXCEPT
FCR EVENT PGUTINES.

S'tN:•DE'=>' W 1 TH "'
SET:O+ATT+FPN
CND :CNAC
SfM:OEf<l

SYN: 1 DE 1 => 1 A f\ 0 "'
SET:O+ATT+FPN
C"-0:CNAC
SEM:OERl

SYt\:'DE'-=>' DEC l A R E "'
SET:O-+FP~
CNO:CNAC
Sf~:OER2

S~N:'OE'=>' NAME n "'
SET:O+NA~
Cf\C:CNAC
SE~: SEMRET

SYN:'DE'=>'OE RE AL'
CHK:-NUK-NUl-~UN-NAM-NfV
SET:l+NUK
T~F:1
SEt':SfMRET

SY~:•OE'=>•OE l IS T•
CHK:-NUL-NUN-~AM-NEV
SET: 1 +NUL
SftJ:OER3(G)

-81-

SYN: 1 DE 1 =>'DE ST ACK'
CHK:-NUL-NUN-~A~-NEV
SET: l+NUL
Sf~:OEPl (G)

SYN:'Ci:'=>'DE (NU ,NU)'
CHK:-NUK-NUN-~Ul-NAM-NEV-MAT,,,
SET:l+MAT
SEM:OfXl(G)

S~N:•oE•=>'DE F ~TI T v•
SET:l+NUK+ENT-FPN
C~K:-NUK-NUL-~UN-NAM-NEV-MAT
TI\F:l
SEM:SEMRF.T

SYN: 1 CE 1 => 1 DE CL Ass•
CHK:-NUK-NUL-NUN-NAM-NEV-MAT
SET:l+NUK+ENC-fPN
SEM:DER4(G)

s~~:•oE•~>•DE =NU'
CHK:+FPN-NUL-NUN-NAM-NEV,,
SET: l+NUN
SEt':OER5(G)

SYN: 1 0E 1 :> 1 0E =EN'
CHK:+ENT-NUL-1\UN-NA~-NEV,,
SET: l +NU N
SEM:DfR5(G)

SYN: 'DE'=)'DE =VR'
CHK:+NUL-NUN-~~M-NEV,+LIS-LAT
CNO:BFOE
SET:l+NUN
SEM:OER5(G)

SYN: 'DE'=)'DE'
Ct-K:+ATT-ATC
CI\D :POSR
SF. T: l +ATC
Tf\F:l
SE~: SEM~ET

SYN:'CE'=>'DE DE'
CHK:+ATT-ATC, ♦ ATT+ATC

SfT:2
Sff':SF.MPET

SYN:•ss•=>'DE.
CHK :-ATT-NAM-~EV
CNC:CNTS
SEM:SSRl

s \'N : I s s '=) IDE DE • I
C~~:-ATT~ENC,+ATT+tTC
CNO:CNTS
S EM: S SR 1

-82-

THE FOLLOWING RULES ~A~DLE THE CC~ MAND STATEMENTS
~ND MODIFYING CLAUSES LSEO IN ~VE NTS OR DI RECTLY.

SYN:•vc•=>' CR EAT E EC'
SET:O+CRE+CSP
Sf::'.M:VCRl

SYN:•~c•=>' CREATE EC DE'
Cf-lK:, +NA f<I

SET:O+CRE♦CSP

SE~:VCR4(G)

SYN:•vc•=>'VC DE'
CHK:+CRE,+ATT+ATC
SET :1
SFM:VCR2(G)

s 'tN : • ~c • => • vc PB•
CHK:+CRE,+PBP
CNO:CNNPB
SET: l
SEM:VCYl(G)

5 '1N:' VC' => 1 VC F O R I N T E R V /:. L NU'
CHK:-TIN+CSP-LAP-FAE-VIN-CON,,
SET:l+TIN
SEM:VCR3(G)

SVN: 1 vC 1 => 1 CREATE NU EC'
SET: O+CR E+C SP
SfM:VCR5

SYN:'OG'=>' GENE PATE EV'
SFM:SfMRET

-83-

SYN:'DG'=>' GENER~ TE "'
CNC:CNOVC
SF,-,:SE~PFT

SYN: 1 VC'=> 1 DG 1

SET:O+Gnc
TNF:<l,*)
SE~:VCAl

s 'tN: I vc I==> I DG (TB , I

CHK:,+TeF
SET:O+GCC
TNF:<1,*)<2>
SE~:VCTl (G)

s~N:•vc•=>•vc DE'
CfK:+GOO-OOV,+NAM
SET:l
SE M: VC A 2 (G)

SVN:•vc•=>•vc AFTER INT CR VAL NU'
CHK:-LAP-VEN-CVC-VSN-ELS-CCN,,
SET: 1 +LAP
SE fl : VC A 3 (G)

SYN: •vc•=>'VC I F BO'
CHK:-CON-VEN-CVC-VSN-ELS,,
SFT:1-+CON
SEM:NUCl(G,

SYN:•vc•=>' EL sf vc•
CHK:-OOV-SEL-CON
CNO:POSR
SfT:1-+ELS
TNF:l
SF~:SEMRET

SYN: •vc•=>•vc ; vc•
CHK:+CON,+ELS
SET: 1-+f LS
SE~:CNPU(G)

S '1 N: • \IC ' = > 'V C •
CbK:+CON-NLS-COV-SEL-ElS
CNO:NELSR
SET: 1-+Nl S
TNF:l
SEM:SEt-'1RET

-84-

SYN:•vc•=>' s ET VR =NU'
CHK:+FPN-LIS-SCR,,
5 FT: 0 +CSP+ SC E
SE:~:VCA8

SYN:'VC'=>• 5 ': T VP =NU'
C~K:-FPN-ENT-LIS,,
SF. T :Q+C SP+SCE
SE~:VCA8A

SYN:•vc•=>' s ET VR =EN'
C HK:+ ENT-LI S- SEC- S CR , ,
SET :Q+CSP+SCE
SEt-1:VCA8

SYN:•vc•=)' NI AKE VR CE'
CHK:-us,,
CND:RFOE
SfM:VCARP

SYN: 1 VC 1 => 1 SET VR =VR'
CHK:+LIS-L~T-SCO,+LIS-LAT
Ct\O:BFOfl
SET :O+-CSP-+SCE
SFM:VCLl

SVf\:•Mf',.;':)'NlJ'
St~:Sffv'PET

SYN: 1 MN 1 => 1 NU ,MN'
TNF:<1><2,*>
SEf;l:SF.~P=T

SYN:•vc•:)• s ET MA =MN'
SET:O-+CSP+SCf
SEM :VCC4(G)

SYN:•vc•=>' CELE TE EN'
C NO: S ! F!'I
SEM:VCBl

SYN:•vc•=>• CE Lt TE VP'
CHK :-SEC-L 1 S
C NC: S 1 FN
SE~ : VC A ?i

SYN: • vc • =) • 0 E L E T E V Q_ '

CHt<:+LIS-SCR-L.AT
SEM:VCFA

-85-

sv~:•vc•=>' CELE TE VR'
CHK:+LIS+SCR-LAT+ENT
SEto1:VCF 8

SYN:'VC'=>' CE l ET f
CHK:+LIS-SEC-SCR-LAT
CNC:SIFN

L I S T VR'

Sf~:VCFl

SYN:•vc•=>· DEL ET E
CNO: S I HJ

C l A S S tC'

SEt':VCFl

SYN:•vc•=>· DE l ET E EV'
CNO:SIFN
SE,.,: VCB 3

S~N:•vc•=>' 0 EL f TE PO'
SEM:VCAt..(G)

SYN:•vc•=>' D EL ET t MA'
S0'1:VCE 4

SVN:'VC'=>' CF LET E
SEM: VCF3

SYN:•vc•~>· 0 f LET E
SE~:VCF4

SYN:•vc•=>• 0 El FT E
SEt-1:VCF~

SVN:•vc•=>· 0 El ET E
SF.Pt1:VCF7

SYN:•vc•=)• 0 El ET E
SfM:VCG2

SYN:•vc•=)' CE l ET E
SEfi':VCF8

S~N:•vc•=>· RE sf T'
SEM:VCF9

SYN:•vc•=>' p Aus f'
SE~:VC84

A l L

A L L

A L L

A l l

A L L

L O G'

C L AS S r. 5'

E \/ E N T s•

L I S T S'

C C ~ST ANT s•

A R R A Y 5'

-86-

SYN:•vc•=)' D n•
SET :O tOOV-+GOC
SEr-' :SEMPfT

SYN:•vc•=>'VC u NT I l eo•
~HK:-VIN-CVC-ELS-VFN-VSN-CC~,,
SET:l+VIN
SE~: VCHl (G)

SYN:'VC'=>•vc A T I NT ERV~ Ls
O ·K :-V H!-CVC-ELS-Vf.N-VSN-fC'~l ,,,
SET:l+VIN
SFM:VCB6(G)

SYN:•vc•=>'VC F (~ VP 1

C~K:-CVC-FLS-\EN-VSN-CCN,+ENT+LIS-LAT
~ET:l
SFM:\ICB8(G)

SY~:•vc•=)'VC FOR EN'
CHK:-CVC-FLS-VEN-VSN-CON,,
SfT:l
SEM:V(Il(Gt

s 'VN: • V(I:::> • f N D.
Ct\C:CNCP
SET:O+VE~
SEM: SEMP f T

S~N:'VC'=)'VC vc•
CHK:-VEN-orv-SEL-VSN,+VF~
sr-r:o+vfN
Tf\F:<1><2,*>
SE~:Sft-1RET

s~N:•vc•=>•vc vc•
CHK:+OOV,+VEN
SET:l+CVC-COV-COD
SEt-':VCCl (G)

SYN: •vc•=)' s E L E C T'
SFT:O+SEL
SEtJ:SEMRET

SYN:'OP'=>'NU vc•
CHK:,-VEN-CCV-SEL
SF.~:SEMRET

C i: NU U N T

TL RO '

SYN : '() P • = > 'DP VC'
CHK:-CPF,+VEN
StT!O ♦ f)PF

TNF:<l>
SE "1: Sf MP FT

SYN:'CP'=>'OP OP'
CHK:-OPF,+CPF
SF.T:2
Tf\F:<1><2,*>
Sffi':SE~RET

SYN:•vc•=>•vc OP'
CHK:+SEL,+OPF
SET:l+CVC-SEL
SE~: VCC3 (G)

-87-

S'VN:•vc•=>• p u T EN I N V'<'
(~K:,+LIS+ENT-SEC-LAT-SCR
SF.T:O+CSP
SEM:VCC'3

SYN:'VC'=>' PUT VR IN VR'
C~K:+lIS-LAT,+LIS-SfC-SCR-LAT
CND:BFOE
SET: 0 +CSP
SE~:VCQl

SYN:'V('=>' PUT NU
C~K:,+LIS+FPN-SCR-LAT
SET:O+CSP
SEM:VCC5

I "l VR I

S Y N : ' VC ' :: > ' P u T f\ U B E F O P ~ V R
CHK:,-LIS+FPN+ELT,+LIS+FPN-SCR-L~T
SET :o +CSP
5EM:VCD1

I N V RI

SYN:•vc•:)I p u T EN BEFORE VR IN v~•
CHK:,-LIS+E~T+El T,+LIS+ENT-SEC-SCP-LAT
SET:O+CSP
SEM:VCOl

SYN: 'VC • = >' P L T EN A F T E R VR I N V R'
r.fK:,-LIS+ENT+ElT,+LIS+ENT-SEC-SCR-LAT
SET:O+CSP
SFM:V(02

-88-

SYN:•vc•=)' p LT NU ~FT ER VR I N VR'
CHK:,-LIS+FPN+FLT,+LIS+FPN-SCR-LAT
SET:O+CSP
SEM:VC02

SYN:•vc•=)' p u T EN IN
CHK:,,+LIS+E~T-SEC-SCR-LAT
SET:O+CSP
SE~:VCD3

SVN:•vc•=>' p LT NU I N
CHK:,,+lIS+FP~-SCR-LAT
SfT:O+CSP
SEM: \ICD3

P L A C · NU

P L A C c: NU

SYN:•vc•=>' REM CV E EN F ROM VR'
CHK:,+LIS+E~T-SEC-SCP-LAT
SfM:VCfl

S~N:•vc•=>' Rf MC~ E VP F ROM VR'
CHK:+LIS-LAT,+LIS-SEC-SCR-LAT
Cf\C:8FOE
SEM:VCQZ

SYN:•vc•=)' REMOVE NU
CHK:,+LIS+fPN-SCR-LAT
SEM:VCEl

F R O M VR'

SYN:•vc•=>' R EMO V E VR (NU)'
CHK:+LTS-LAT-SFC-SCR,,
SEM:VCE5

SYN:•vc•=>· REM CV E VR { l }'
C~K:+LIS-SEC-SCR-LAT
SEM:VCE6

SYN:'VC'=)' WRITE VR'
CHK: +-LIS-LAT
SEM:VCZ3

SYN:•vc•=)' w p IT E MA'
SE~:VCE2

SYN:•vc•=>• w fl IT E PO'
SEM: VCA5 (G >

S~N:•vc•=)' w R IT E WL'
CHK:+WLF+~LC
~EM: VCB 7(G >

I N V R •

I N VP'

-89-

SYN:'VC'=>' w R I T f L 0 G '
SF r,t: VC A A

S\'N:•vr.• =>' w R I T F FV'
Sf::rJ.: VC07

sv~:•vc•=>' N A M E EN " '
Cf\O:CNACX
SE M: V[A 7

sv~:•vc•=>' " fl M E PC ".
CNO:CNACX
SEt':VCB2(G)

T~E NEXT FEh RULES HANCLF CCMPLETE SFNTENCES, DIRECT
OR PARTS 0~ AN EVFNT OECLA~ATION SENTENCE.

SYN:•ss•=)'VC ·'
Ct\C:Ct\TS
CHK:-DOV-SEL-VEN-VSN-ELS-CCN-NLS
SEM:SSRl

SVt\:'SS'=>'VC •
c~o=c~rs
Cf-K:+CON+NLS
SfM:SSRl

SYN: •ss•=>'VC .•
C"C:C~TS
CHK:+CON+ELS
SE~:SSRl

<; V N : 'Cl' => 'VC '
CHK:-oov-SEL-CON-ELS-VEN-VSN
CN0:SCLCFR
TNF: l
SEtJ:SF.MRET

5 V N : ' C l • => 1 vc •
CHK:+CON+ELS
CN0:SCLCFR
TNF: l
SE~: SE MR ET

S V N: •CL':)' VC '
CHK:+CON+NLS
c"o: SCLCFR
TNF: l
SE ft': S EMR ET

5YN: 1 CL' =>'CL
CbK:-CLX
SET:l+CLX
s F ~:sf'. MP CT

S-YN:'CL'=>'CL CL'
CHK:-CLX,+CLX
SET:2
T~F:<1><2~*>
SE~:StMRET

-90-

THE FCLLOWING RULES ARE US£D TO OE:LARE AN EVENT.

S~N: 1 DV 1 => 1 0E EV F. NT'
C~K:-ATT-NUK-~UL-NUN-~tM-N~V
CND:CNTSE'v
SEM:SEMRf1

SYN:•ov•=>' DEC l ARE EV
C ND: PA SL OC
SEM:OVAl

SYl\l:•ss•=>'DV: CL'
Ct-K:,+CLX
SF:~:SSQ7(G)

T~E FOLLOWING RULES CfNCERN SThTEMF~TS THAT MAY CNLY
BE D!RFCT.

SYt\: •ss•=). E X I T'
SErvi:EXITSI~

SYN:•ss•=>· CONT IN U I:'
SFM:VCJl

SYN:•ss•=>' RECORD
SFM:VCJ2

SYN:•ss•=)• GO.•
SF~:SSQl

S I M L L A T I O N'

SYN:'SS'=)' G C
SEM:SS2

UN T IL BO'

SYN: •ss•=>' 0 E F : '
Cf\D:SCRDEF
Sft-1:SSRl

-91-

svf\:•ss•=>' w p I T E 0 E F 0 F I

CNO:SCPNDEFl
SEf':SEMRET

SYN:•ss•=>' D f: l f. T E 0 E F 0 F'
CN0:SCRNDEF2
Sft-1:SEMRfT

SYN: 1 SS 1 =) 1 D F L E T F D E F I\IU 0 F'
CNC:SCRNOEF3
SEt':SEMRET

TrE RULES TrAT FOLLOW HANDLE THE PASSING OF PARAMETF.~S
ANO THE ASSIGN~ENT OF LOCALS.

SYf\:'VR 1 =) 1 TA'
CHK:+REF
Sf.T:O+FPN-LIS
SF~:VTNU

S'VN: 1 VR'=>'TA'
CHK:+VEF
SF.T:O+ENT
SEt-:VlNU

SYt\: • F.N'=) •r~ •
CHK :.ENF
SEPJ:VTNU

s y N: • NU. => IT A'
Ct-tK:+NUF
SfM:\ITNU

s YN: • AB. =>IT A.
C HK: +ABR
SET:O+FPN
SEfll:VTNU

SYN: 'AB'=>'TA'
CHK:+ABE
SET:O+ENT
SE~: VTNU

SYN:'AB'=>'TA'
CHK:+ARL
SET:O+FP~+LIS+LAT
SEM:VTNU

SYN:'AB'=)'TA'
CH~:+Afl
SFT:U+ENT+LIS+LAT
SF~: VT NU

<;)'N: 1 Ff.'=> 1 TA'
Ct-K:+ECF
SEM:VTNU

SYN:'EV'=>'TA'
CHK:+EVF
SEtJ.:VTNU

SYN: 1 PC'=)•TA•
CHK: +POF
SE"-1:vTNU

SYt\: 1 VP'=>•T~•
CHK :+t.PF
SET:O+LIS-LAT+FPN
SE~:V1NU

s YN : I VP • = > • T ,A. I

Ct,-K:+LEF
SET:O+LIS-LAT+ENT
SE M: V TNU
SYN:'MA'=>'TA'
CHK:+Ml\f=
SEM:VTNU

S~N:•TB'=>'VR'
CNO:NCAA
Ct-K:-LIS-ENT
SEM:SEMRET

SY~:•TB'=>'VR'
CHt<:+LIS-LAT
CNO:NOAR
Sft':SEMRET

s YN : I TB I =>.EN I
Cf\0:NOAB
SEM:SEMRET

S\'N: 1 TB 1 :>'NU'
CI\C:NGVRJN
~ E ~: SEMR ET

-92-

S'YN: •rs•=>'Ae•
SE~:SF.MRFT

SYl\:'TB'=>'EC'
SE~:SEMRET

SYt\: 'TB'=> 'EV'
SEM:SEMRET

SYN: •re• =>'PO'
SE~:SfMRET

SYr\: 'TA'=)'TP.•
CHK:-TBF
CND:Cf\PRR
si=,:o+TRF
Tr,, F: l
SE-M:SE~RET

S~~:•TB'=>'TB ,TB'
CHt< :-TBF ,+TBF
SET: 2
T~F: < l ,*><2 ,*>
SEM.:SEMRET

-93-

THE NEXT FEW RULES HANDLE fXPRfSSin~s OENOTING EVENT
NCTif.ES.

SYt-..:•PC'=> 1 NT'
SF.M:POAl

s 't N: ' PO I =>'EV (Nu) •
SEM:POA2

SYN: 1 PO'=>'EV (l)'
SEM:POA3

SYN: 1 P0 1 =>'EV (l -"-'U)'
SEM:POA4

SYN:•PO'=>' R ANO C ~ f:V'
SEM:POA5

S~N:•po•~>•Nu TH EVEN r•
SEM:POA7

SYN:'PG'=>' l ~ST EVENT•
SEM:POA8

-94-

S~N:'PO'=>' EVENT (L -NU)'
Sf M: P OA 9

SY~:•P□ '=>' R ~NCC M
SEM:POBl

F. VEN T1

SY": I P0 1 =.>. PO
CHK :-POT,,
SfT:l+POT
SE~:PCA6(G)

A T T I M E NU'

THE LAST FEW RULES HANOLE THE WRITING OUT CF COMPLEX
LINES.

s YN: • Wl • =>. N {.j I

SfT:O+WLO
SE~:SF.MR~T

SYt\: 'WL'=)'EN'
SET:O+WLD
SfM:SfMRET

S'VN:'kl'=>• C "'
CNC:CNACW
Sft,,:SEMRET

s-v~:•wt• =>•wt•
Ct-K:-Wl("I
SET:O+WLD
SEM:SFMPET

SYN:. Wl I =>. Wl'
CHK:-\-.LF+kLD
C~C:CNCN
SET:l+WLF
TNF:l
SE~:SEMRET

SYN: 1 WL 1 =>'Wl, WL'
CHK:+Wlf+WLO,-WLF+WLD
SET:l
TNF: <l,*)<2,*>
SE t": S EMRET

-95-

B. ROUTINE DOCUMENTATION

In this appendix we describe the workings of all syntax

completion routines, semantic routines and utility routines used

by RELSIM. Listings of all these routines are available through

Professor Frederick B. Thompson at C. I. T. We shall consider

each set of routines alphabetically by their names, so that they

can be referenced easily from the syntax rules in Appendix A;

and we include flow charts wherever the routine is complex enough

to merit it. The name in parentheses next to the routine name

refers to the deck in which the routine is to be found.

B. 1. Syntax Completion Routines

B. 1. 1. ABEF (STC 1): Determines whether an attribute is part of

an unbound boolean. This is done by checking the parsing graph

to the right of the attribute, and succeeding if there is a comparator

or a right parenthesis immediately following.

B. 1. 2. ABIF (STC 1): Given an unbound attribute, this determines

whether it is a complete element in a boolean comparison, i. e.

there is no level of indirection of the form AB OF AB with the

attribute considered being the latter. This is done by checking the

parsing graph to the left and making sure that the attribute is

preceded by a conjunction or the word WITH, possibly before a

left parenthesis.

-96-

. B. 1. 3. BFOE (STC3): Allows a parse only if the first two parts

of speech on the right side of the rule are both either numerical

expressions or entity expressions. This is done by checking the

relevant features of the parts of speech.

B. 1. 4. BFOEL (STC3): Same as BFOE, but succeeds only if the

first part of speech has no constituents. This is because when we

apply this routine the first part of speech is a list, but it should

not be an entity class.

B. 1. 5. CHXTO@ (STCZ): This routine is applied to the function

given in a DENSITY statement and changes all instances of the free

variable X in the graph to at signs, and the parentheses enclosing

the function to the double quotes. All parses to the right are then

destroyed and the parse fails. This results in the rule 'NU'=>' @'

applying to all instances of the free variable, and subsequently the

rule 'NU'=>' DENSITY "NU" ' applying.

B. 1. 6. CNAC (STCl): Collects all characters to the right of a

double quote until the next double quote in the parsing graph is

reached, and places their PI's as constituent elements of the

left hand side part of speech. The parse fails if no second double

quote exists, or if the string does not start with a letter.

B. 1. 7. CNACW (STCl): Same as CNAC, but does not check

whether the string starts with a letter.

B. 1. 8. CNACX (STCl): Same as CNAC, but, due to the fact that

the left hand side part of speech already has a constituent, places

-97-

the character PI' s under that constituent.

B. l. 9. CNCN (STCl): Allows a conditional expression to become

unconditional if there are no more conditional expressions to the

left. This is done by checking to see if there is no comma to the

left in the parsing graph.

B. 1. 10. CNCP {STC3): Places a dummy constituent under the

left hand part of speech so that a transformation of the form

<2, >:C> may be applied to it.

B. I. 11. CNDEN {STC2): Examines the ·function supplied in a

DENSITY statement and calcu).ates the first estimate of the scale

factor required for the semantic routine of this statement, placing

it in a special page and modifying the parsed tree of the function

so that multiplication by the variable to be found on that page is

performed. A flow chart follows:

CNDEN

BEGIN

Expand parsed
EXPAND

Search for conditions of the form
IF X < n, IF X > n in the function
definition; obta1n the interval in
which the function is defined from
them.

-98-

No
ERROR

Calculate £(x) on a grid in its interval
n

Obtain ~£(x) and max £(x)

A

n
~f(x)

n>:'max f(x)
n

n

an estimate of the

efficiency of the variate calculation

The-area under the function is too
small compared to the area of the
rectangle enclosing it, making the
calculation too inefficient. Truncate
the function and use

n
c = l / ~ f (x), A= 0. 0 1

Use c= 1/max f(x), A as above
n

EXIT

Place c and A on a
special page

Modify the parsed tree of
f(x) to look like c =f(x)

---- where c is a NU parse on a
------ VR with a pointer to the

special page.

-99-

B. l. 12. CNDVC (STCl): Collects a string that must be the name

of an underlined event and fails if it is already defined or does not

start with a letter. If it succeeds, it puts the string in the lexicon

with a newly created, blank page as its payload; and it also puts

that payload, under an event PI, as a constituent of the left hand

part of speech.

B. 1. 13. CNIS (STCl): Allows the word IS to parse as a comparator

if there is no other comparator following it in the parsing graph .

B. 1. 14. CNNCH (STCZ}: When an at sign parses to a number , t he

payload of that number is set to zero, and a flag is set signifying

that this is a free variable.

B. 1. 15. CNNO (STCl}: Allows the word NOT to parse as a

comparator if there is no comparator following it in the parsing

graph.

B. 1. 16. CNNPB (STC l}: Allows the parse if there is no further

boolean to the right. This is done by checking to see if there is

a conjunction to the right.

B. 1. 17. CNNRE (STC l}: Determines whether an attribute should

be bound to a current entity. This is done by checking that there is

no left parenthesis or the word OF following it in the parsing graph.

B. 1. 18. CNPRR (STCZ): Allows the parse if there is no right

parenthesis to the right.

B. 1. 19. CNRET (STC3): This is the dummy condition routine.

It always allows the parse.

-100-

B. 1. 20. CNTS (STCl): Allows the parse to occur only if the

parse is at the beginning of a sentence. This is done by following

the stack and finding if there is a $A to the left.

B. 1. 21. CNTSEV (STC3): First calls the condition routine

PASLOC; then collects the name of the event, failing if it is an

already defined event name, and placing it in the lexicon otherwise.

Thus in the re-parse that has already been caused by PASLOC, all

self-references of the event may parse correctly. The event name

string is replaced in the parsing graph by an event PI, with a

payload, as in the lexicon, of a newly created page where the

event parsed tree will reside.

B. 1. 22. CONBR (STC 1): Allows the parse if there is a blank to

the right of the string being parsed.

B. 1. 23. FTFOE (STC3}: Same as BFOE, except that it examines

the first and the third part of speech on the right hand side of the

rule.

B. 1. 24. GDSP (STC3}: Checks the type of command verb and

succeeds if it is GENERA TE, DO, SET or PUT. This is handled

by looking at the feature of the VC PI.

B. 1. 25. MATIR (STC3): Not in use at present; set to CNRET.

B. 1. 26. NELSE (STC3}: Examines the VC to the right of the

present one, and determines whether it has a feature on signifying

that it is an ELSE sentence, or, recursively, that it has a con­

ditional clause a~d is followed by a VC with the same feature on.

-101-

The parse is allowed only if this is not the case.

B. 1. 27. NOAB (STC3): Examines the constituents of the parse,

and fails if there is a single attribute as a constituent.

B. I. 28. NOVRAB (STC3): Same as NOAB.

B. 1. 29. NOVRIN (STC3): Allows the parse if the first constituent

of the quantity parsed has no constituents of its own.

B. 1. 30. PASLOC (STC4): After calling CNTS (and failing if

CNTS fails), checks for PASSED and LOCAL statements in the

event. If they exist, it collects the strings naming the variables

in a mini-lexicon, with payloads of PI' s referring to the event

context page. Then the body of the event is checked for instances

of such strings. When such a string is found, it gets spanned by

the appropriate parse. The LOCAL and PASSED statements are

then removed from the parsing graph. A flow chart follows:

PASLOC

BEGIN

No RETURN

-102-

Yes

. Cheek body of event for
instances of strings in
the mini-lexicon. When
found, span, by parse.

Remove PASSED and
LOCAL statements
from the parsing graph.

RETURN

CHCL

BEGIN

initialize mini-lexicon
if it does not exist
already

collect string, put it
in mini-lexicon

-103-

create TA p-list for mini-lexicon
payload; features from KTON;
location of variable on the event
context page assigned sequentially

KTON

C BEGIN)

examine string denoting
type of variable which
follows in parentheses
after variable name

set up features for TA
p-list; if local list or stack
an appropriate flag; if local
array, its dimensions.

RETURN

hang a list element containing I
Yes flag, dimensions if array,

Yes

RETURN

~-----4 and address in the event
context area as a constituent
of the EV p-list

-104-

B. l. 31. POSR (STCl): Allows the parse only if there is a period

or a semicolon to the right in the parsing graph.

B. l. 32. SCCL (STCl): Allows the parse only if there is a

semicolon or a colon to the left in the parsing graph.

B. l. 33. SCLCFR (STCl): Allows the parse only if both POSR and

SCCL succeed.

B. l. 34. SCRKA2 (STC2): Succeeds if there is no right parenthesis

or digit to the left in the parsing graph.

B. l. 35. SCRDEF, SCRNDEFl, SCRNDEF2, SCRNDEF3: These

are the condition routines that handle the d efinitional capability.

They have been written for REL-English.

B. 1. 36. SCRPREN (SCRPRE): This routine is the sentence

prescanner. It takes care of blanks, continuation over lines, and

collects all real numbers, replacing the digi ts by a NU parse in the

graph. It also initializes the lexicon and parses all lexical items

in the graph. This routine has been written for REL-English. In

the RELSIM version a prologue has been added that checks to see

if the context area has been created, and, if not, proceeds to

create and initialize it. The context area has been described in

Chapter III.

B. 1. 37. SIFN (STC2): Collects the character string that is being

parsed and hangs it as a constituent list of the PI.

-105-

B. 2. Semantic Routines

B. 2. l. ADD (PSM6): Adds two floating-point numbers.

B. 2. 2. BIND (PSM16): Calculates a random variate with a

binomial frequency function . Given N and P, it obtains N numbers

uniformly random in (0, 1) and counts the number of these that are

smaller than P. This count is the random variate desired.

B. 2. 3. BOR l (PSM4): Searches a list or class to find whether

a given element is in it. Return s a boolean O or l accordingly.

B. 2. 4. BOX2 (PSM6): Checks whether a list or class is empty,

and returns a boolean O or l accordingly .

B . 2. 5. BPIL (PSM2): Applies a conjunction to two booleans to

generate a boolean.

B. 2. 6. BREV (PSM3): Takes the complem ent of a b o olean number.

B. 2. 7. BTST (PSM3): Compares two numerical expressions and

generates a boolean depending on whether the condition on their

relation is true or false.

B. 2. 8. CNPU (PSM4): Calls SEM on the first conditional expres­

sion and returns i t s numerical expression as an unconditional

number if the boolean is true; otherwise calls SEM on the second

conditional expression , essentially recursing on itself.

B. 2. 9. COl through CO6 (PSM3): These ass ign a fixed-point

value to each comparator or conjunction.

B. 2. 10. CORV (PSM3): This routine reverses the negation flag on

a comparator PI.

-106-

B.2.11. CURC (PSM12): Returns a pointer to the current entity

of the class referenced.

B. 2. 12. CURT (PSM12): Returns a pointer to the current time

location in the context area.

B. 2. 13. DEPl (PSMl): Initializes a stack and places its name

in the lexicon.

B. 2. 14. DERl {PSM3): Puts the name of an attribute in the

lexicon and sets up the attribute definition with respect to the proper

entity class.

B. 2. 15. DER2 (PSMl): Initializes a system variable and places

its name in the lexicon.

B. 2. 16. DER3 (PSMl): Initializes a list and places its name in

the lexicon.

B. 2. 17. DER4 (PSMl): Initializes an entity class and places its

name in the lexicon.

B. 2. 18. DER5 (PSM3): Places the parsed tree of an attribute

definition on a page and a pointer to that page in the header of the

appropriate entity class.

B. 2. 19. DEXI (PSM5): Initializes a two-dimensional array and

places its name in the lexicon.

B. 2. 20. DIVIDE (PSM6): Divides a floating-point number by

another one .

-107-

B. 2. 21. DVAl (PSM16): Bumps the event payload and the possible

local list, stack and array references from the constituent EV or

DE to the DV list element. A sort of a SEMNOP or TNF: 1 effect.

B. 2. 22. ECRl (PSM9): Creates a scratch list. Attaches the

boolean with free attributes to each member of the entity class

and evaluates it each time. Whenever the boolean is true, the

entity referred to gets placed in the scratch list.

B. 2. 23. ECR2 (PSM9): Creates a scratch list that is the resul t

of the given conjunction applied to the two lists given.

B. 2. 24. ECR2A (PSM9): Same as ECR2, but instead of a given

conjunction, AND is as sum ed.

B. 2. 25. ECR2B ,(PSM9): Same as ECR2, but the complement of

the list obtained in ECR2 is placed in the scratch list.

B. 2. 26. EXDI (PSM15): Calculates a random variate with an

exponential distribution. Given k, a uniformly distributed random

number r in (O, 1) is obtained and its natural logarithm is cal ­

culated. The variate returned is obtained as -k~:(ln(r).

B. 2. 27. EXITSIM (PSM12): Calls on the EXITLANG system

macro to return to the command language and prints a message to

that effect.

B. 2. 28. FABl (PSM23): Stacks the attribute page ID's of the

constituent attributes in a data list under the attribute they parse

to, for later evaluation when the class and entity referred to by the

last, free, attribute is determined.

-108-

B. 2. 29. FAB2 PSM19): Starts the stack that FABl continues to

build up by moving the data element of the constituent attribute

under the attribute it parsed to and making its second word a link.

B. 2. 30. FEVP (PSM18): Frees the pages that contain the second

constituent event and then calls SEM on the first constituent.

B.2.31. LASC (PSM2): Given a class, returns the last entity

of that cla s s.

B. 2. 32. LETN (PSM2): Given a class, and a floating-point

number n, returns the nth entity in the class.

B. 2. 33. LISRT (PSM20): Restores the original contents of a list

from a copy that was made of them at some previous point. Frees

the pages of the copy.

B. 2. 34. LMNC (PSM2): Given a class and a number n, returns

the nth from the bottom entity of the class.

B. 2. 35. LTST (PSM21): Compares two lists and produces the

appropriate boolean value.

B. 2. 36. MULTIPLY (PSM6): Multiplies two floating-point

numbers and returns the result.

B. 2. 37. NABT (PSM2): Given an attribute and an entity, this

routine gets the pointer to the entity page where the payload referred

to resides.

B. 2. 38. NORD (PSM2): Calculates a random variate with a

normal distribution. Given a mean m and a deviation s, the sum

t of 24 random numbers uniformly distributed in (O, 1) is obtained,

-109-

and the desired variate xis calculated as x=s):~(sqrt(2}/2)):'(t-12}+m.

B. 2. 39. NTHC (PSM2}: Same as LETN except that in the input

p-list the number is the first component and the class the second.

B. 2. 40. NUCl (PSMl): Given a numerical expression and a

boolean expression, evaluates the boolean and, if true, evaluates

and returns the number. If false, returns a zero flagged to show

it is a failure, rather than a real zero.

B. 2. 41. NUII (PSM12): Given the function p-list from CNDEN,

two random numbers r rr
2

uniform in (0, 1) are obtained, and a

random variate calculated as follows: If r
1

~ f(a+(b-a}r
2

},

where (a, b) is the interval off, we accept x=a+(b - a}r 2 ; otherwis e

we obtain two new values for r
1

, r
2

and try again. If

f(a+(b-a)r
2

}>1 at any time, we modify c (which was calculated in

CNDEN), so that f(a+(b-a) r
2

) = 1.

B. 2. 42. NUI2 (PSM16): Utilizes SELFR to select one of the

discrete points over which f(x) is defined and returns that point

as the variate desired.

B. 2. 43. NUQ9 (PSM7): Obtains and returns the total numbe r of

elements contained in the class or list that is given.

B. 2. 44. OPAl (PSM20): Gives the value X'30000000 ' to the MIN

operator .

B. 2. 45. PASD (PSM15): Given k and pas floating-point numbers,

obtains a random variate by taking the product t of k random

numbers uniform in (O, 1) and setting x=t/ln(l-p}.

-110-

B. 2. 46. POAl (PSMI 7): Given the name of an event notice, the

notice is located on the log and its address returned.

B. 2. 47. POAZ (PSMl 7): Given an event routine and a number,

n, the nth notice of the routine is located on the log and its address

returned.

B. 2. 48. POA3 (PSMI 7): Given an event routine, the last notice of

the routine is located on the log and its address returned.

B. 2. 49. POA4 (PSMI 7): Given an event routine and a number n,

the nth from the last notice of the routine is located on the log and

its address returned.

B. 2. 50. POA5 (PSMI 7): Given an event routine, a notice of the

event,randomly selected, is located on the log and its address

returned.

B. 2. 51. POA6 (PSMl 7): Given a p-list of an event notice and a

time figure, the search for the notice is limited to log entries

under that time.

B. 2. 52. POA 7 (PSMI 7): Given a number n, the nth event notice

on the log is located and its address returned.

B. 2. 53. POA8 (PSM24): The last event notice is found on the log

and its address returned.

B. 2. 54. POA9 (PSM24): Given a number n, the nth from the last

event notice is located on the log and its address returned.

B. 2. 55. FOB I (PSM24): An event notice is selected randomly

from the log and its address returned.

-111-

B. 2. 56. POID (PSM9): Given k, obtains random numbers in (0, l}

and takes their product t until t<e-k. Then returns the number of

random numbers in that product as a random variate with Poisson

distribution.

B. 2. 57. RANC (PSM2): Given a list or class, one of its elements

is selected at random and returned.

B. 2. 58. RAND (PSM15): Given an interval (a, b), an integer

random variate uniformly distributed in (a, b} is returned.

B. 2. 590 RSCR (PSM22): Obtains list page ID's from the data

p-list of the first constituent, and frees the pages of all these lists.

B. 2. 60. SEMABS (PSM5): Given a number, returns its absolute

value.

B. 2. 61. SEMCOS (PSM6): Given a number,considers it to refer

to radians and calculates its cosine.

B. 2. 62. SEMCOTAN (PSM6): Given a number in radians, calculates

and returns its cotangent.

B. 2. 63. SEMEXP (PSM7): Given a number n, calculates and

n
returns e .

B. 2. 64. SEMFP (PSM5): Given a number, returns its fractional

part.

B. 2. 65. SEMIP (PSM5): Given a number, returns its integer part.

B. 2. 66. SEMLN (PSM7): Given a positive number, calculates and

returns its natural logarithm.

B. 2. 67. SEMLOG (PSM7): Given a positive number, calculates

-112-

and returns its base 10 logarithm.

B. 2. 68. SEMMAX (PSM5): Given two numbers, returns the

larger one.

B. 2. 69. SEMMIN (PSMS): Given two numbers, returns the

smaller one.

B. 2. 70. SEMMOD (PSM5): Given two numbers, n
1

and n
2

,

returns n
1

mod n
2

.

B. 2. 71. SEMNOP (PSM9): Moves the data element of the first

component to become the data element of the part of speech parsed.

B. 2. 72. SEMPOW (PSM7): Given two numbers a and b, calculates

B. 2. 73. SEMRET (PSM3): Attaches a zeroed out data element to

the part of speech parsed.

B. 2. 74. SEMSIGN (PSM5): Given a number, returns 1 if the number

is positive, 0 if the number is zero and -1 if the number is negative.

B. 2. 75. SEMSIN (PSM6): Given a number in radians, calculates

and returns its sine.

B. 2. 76. SEMSQRT (PSM6): Given a number, calculates and returns

its square root.

B. 2. 77. SEMTAN (PSM6): Given a number in radians, calculates

and returns its tangent.

B. 2. 78. SSZ (PSM8): Same as SSQl, but a boolean is given that

will stop the run when it becomes true. See flow diagram below,

under SSQl.

-113-

B. 2. 79. SSJl (PSM24): After a PAUSE has stopped a run, this

routine recreates the conditions existing before the pause and

restarts the run.

B. 2. 80. SSJ2 (PSM24): Transforms the simulation's data into

an REL data base. Entity classes become English classes and

attributes form English relations.

B. 2. 81. . SSQ l (PSM3): Causes a simulation run. Obtains an event

notice from the log, brings in the appropriate event routine, and

executes it (by calling SEM on a copy of its parsed tree). Deletes

the notice and obtains the next one. Stops the run when the log is

empty. A flow diagram follows.

SSQl ssz

BEGIN (BEGIN)

-I
set no boolean restriction set boolean restriction

get log in core

No
EXIT

(

obtain next event
notice

a.ssed or

al varia

Yes

No

place all pass parameters
in their page; initialize
all local lists and arrays

-114-

Yes EXIT

bring event notice
copy in core

call SEM
execute
event

Yes

attach FOR
clauses to event
routine copy

-115-

B. 2. 82. SSQ7 (PSM19}: Takes the parsed tree of an event routine

and stores it on pages after modifying the tree by including an

extra clause (with XXX as its semantic routine) that will create all

local lists and place their ID's on the event context page.

B. 2. 83. SSRl (PSM3): If no clause has printed out a message

this routine prints out the message 'OK'.

B. 2. 84. SUBTRACT (PSM6): Given two numbers n
1

and n
2

,

calculates and returns n
1

- n
2

.

B. 2. 85. TASEM (PSM23): Obtains a displacement and adds it to

the top of the event context page to obtain a page ID for a local or

parsed variable.

B. 2. 86. UNARYM (PSM6): Given a number returns its complement .

B. 2. 87. UNID (PSM2): Given an interval (a, b} calculates a

random variate uniform in that interval. Obtains a random number

r uniform in (0, l} and returns a+(b-a)r.

B. 2. 88. VCAl(PSM15): Given an event routine page ID, generates

an event notice for it at the current time.

B. 2. 89. VCAZ (PSM 19): Puts a name for an event notice being

generated in the lexicon.

B. 2. 90. VCA3 (PSMl 3}: Puts a VC parsed tree out on a page and

sets up a notice on the log for it to be executed after an interval as

requested.

B.2.91. VCA4 (PSM19): Deletes an event notice from the log,

given its location on it.

-116-

B. 2. 9 2. VCA5 (PSM24): Writes out an event notice given its

location on the log.

B. 2. 93. VCA6 (PSM24): Writes out the contents of the entire log .

B. 2. 94. VCA7 (PSM18): Puts a name assigned to an entity in

the lexicon.

B. 2. 95. VCA8 (PSM4): Puts a given payload in a given location

on a page.

B. 2. 96. VCA8A(PSM4): Transforms a given floating-point numb e r

to integer and puts the result in a given location on a page.

B. 2. 97. VCA8B (PSM16): Puts a given element (given by its

address in the list or class) in the current entity location on a page.

B. 2. 98. VCBl (PSM22): Removes an entity from a class, its

name, if any, from the lexicon, and destroys any list or array

attributes attached to it.

B. 2. 99. VCB2 (PSM18): Puts a name assigned to an event notice

in the lexicon and a pointer to the lexicon entry in the event notice.

B. 2. 100. VCB3 (PSM22): Deletes an entry from the lexicon given

a page ID type payload.

B. 2. 101. VCB4 (PSM24): Saves all the list area on pages and

copies all scratch pages; then terminates execution of the present

sentence (a GO sentence) and returns control to the users.

B. 2. 102. VCB6 (PSM13}: Puts a copy of the VC p-list out on a

page and creates an event notice for its execution after an interval

if the boolean is not met; also executes a copy of the same VC p-list

-117-

at the current time.

B. 2. 103. VCB7 (PSM21): Writes out a line of numbers and characters

as given.

B. 2. 104. VCB8 (PSM14): Evaluates the entity list given and splits

it into n lists,each containing exclusively members of one class.

Places the ID of each element in the current entity queue of the

appropriate class. Modifies the input tree to look like n FOR

statements, each with one of the lists as payload. Calls SEM on

the VC given.

B. 2. 105. VCCl (PSM8): Puts the second component VC, which

forms the contents of the DO loop, in the location of the DO VC

in the first component, thus applying all modifying clauses of the

loop to this VC directly, and calls SEM on the changed first component.

B. 2. 106. VCC3 (PSM16): Selects one of the VC's in the SELECT

loop, using SELFR; places that VC in the location of the SELECT VC

in the first component; calls SEM on the changed first component.

B. 2. 107. VCC4 (PSM20): Given an array and a string of numbers,

places the numbers sequentially (last index moving fastest) in the

array.

B. 2. 108. VCC5 (PSM4): Places an element in the last position

of a list.

B. 2. 109. VCDl (PSM24): Places an element before another element

in a list.

B. z. 110. VCD2 (PSM24): Places an element after another element

-118-

in a list.

B. 2. 111. VCD3 (PSM24): Given a number n and an element,

places the element in the nth position in the list, or if there are

less than n elements, in the last position.

B. 2. 112. VCD7 (PSM24): Writes out an event routine in the form

it was written in as a declaration.

B. 2. 113. VCEl (PSMlO): Removes an element from a list .

B. 2. 114. VCE2 (PSM24): Writes out an array .

B. 2.115. VCE4 (PSM22): Frees all pages of an array and removes

its name from the lexicon.

B. 2. 116. VCES (PSM 10): Given a number n, and a list, removes

the nth element of that list.

B. 2. 117. VCE6 (PSMlO}: Removes the last element of a list.

B. 2. 118. VCFl (PSM22): Frees the pages of a list and removes

its name from the lexicon.

B. 2. 119. VCF3 (PSMll): Frees all pages of all classes, all pages

of list or array attributes of their entities, all attribute definition

pages, and deletes all attribute, entity and class names from the

lexicon.

B. 2. 120. VCF4 (PSMll): Frees all event routine pages and deletes

their names from the lexicon.

B. 2. 121. VCFS (PSMl I): Frees all pages of all lists and d e letes

their names from the lexicon.

B. 2. 122. VCF7 (PSMl 1): Frees all system variable pages and

-119-

deletes their names from the lexicon.

B. 2. 123. VCF8 (PSM21): Frees all pages of the log and deletes

all event notice names from the lexicon.

B. 2. 124. VCF9 (PSMZl): Empties the log, all lists and classes

(removing event notice names and entity names from the lexicon

and freeing all list and array attribute lists) and resets the simulation

time to zero.

B. 2. 125. VCFA (PSM21): Empties a list of all its elements.

B. 2. 126. VCFB (PSM21): The elements in an entity scratch list

are deleted from their respective classes.

B. 2. 127. VCG2 (PSMll): Frees the pages of all arrays and removes

their names from the lexicon.

B. 2. 128. VCHl (PSM19): Evaluates a copy of the given boolean,

and if it is false, evaluates the given VC. Then repeats the same

action, until the boolean evaluated is true, in which case it returns.

B. 2. 129. VCil (PSM14): Puts the entity given at the top of the

current entity stack of the appropriate class, and calls SEM on

a copy of the VC given. On return from SEM bumps the current

entity stack, and if this action does not empty it, again calls

SEM on a copy of the VC.

B. 2. 130. VCLl (PSMl0): Sets the contents of a given list equal

to those of another.

B. 2.131. VCQl (PSMlO): Adds the contents of one list to the

contents of another one.

-120-

B. 2. 132. VCQ2 (PSM9): Removes the contents of one list from

the contents of another one.

B. 2. 133. VCR! (PSM4): Adds a new entity to an entity class and

evaluates all its attributes that are defined.

B. 2. 134. VCR2 (PSM9): Assigns values as given to attributes of

a new entity that has just been created by VCRl.

B. 2. 135. VCR3 (PSM13): Posts an event to reverse the action of

the VC given after a time interval also given.

B. 2. 136. VCR4 (PSM20): Performs as VCR! and also adds a name

for the new entity in the lexicon.

B. 2. 137. VCR5 (PSMl0): Performs the action of VCRl n times

according to a number given.

B. 2. 138. VCTl (PSM16): Hangs the values of all pass parameters

from the event notice generated, making new copies in the case of

local arrays or lists being passed.

B. 2. 139. VCYl (PSMIO): Defines new attributes for an entity class

prior to creating a new entity of that class as described in VCRl.

B. 2. 140. VCZ3 (PSM15): Writes out the contents of a list or an

entity class.

B. 2. 141. VRAl (PSM24): Obtains the element of a list or class that

is next to the current one.

B. 2. 142. VRAZ (PSM24): Obtains the element of a list or class

that is next to a given element.

B. 2. 143. VRA3 (PSM24): Obtains the element of a list or class

that is previous to the current one.

-121-

B. 2. 144. VRA4 (PSM24): Obtains the element of a list or class

that is previous to a given element.

B. 2. 1450 VRGl (PSM8}: Given an unattached attribute, this routine

attaches it, if unambiguously pas sible, to the current entity of the

appropriate class, and returns its address.

B. 2. 146. VRRl (PSM20): Obtains a pointer to an element of an

array, given its indices.

B. 20 147. VRSD (PSM18}: Obtains a pointer to the location in the

context area where the seed for the random number generator is

kept.

B. 2. 148. VRY5 (PSM20): Depending on the operator given, obtains

the maximal or minimal element in a numerical list.

B. 2. 149. VRY6 (PSM20): Depending on the operator given, obtains

the maximal or minimal number valued attribute from all entities

of a class that are members of a given list.

B. 2. 150. VRY7 (PSM20}: Same as VRY6 but looks at all entities

of the class.

B. 2. 151. VTNU (PSM4): Given the address of a variable returns

the payload.

B. 2. 152. VTNUIF (PSM7}: Given the address of a fixed-point

variable, transforms the payload to floating-point and returns it.

B. 2. 153. XXX (PSM23}: Creates all lists and arrays to be local

for an event notice and places their ID' s in the event notice context

page.

-122-

B. 3. Utilities

B. 3. 1. ABLDL (PSM22): On call, Rl points to an entity in core

and R3 contains the class page ID. The utility finds all list

attributes of the entity and deletes these lists. Rl and R3 are

returned unchanged.

B. 3. 2. CKDF (PSMl): Given a p-list of a part of speech with the

characters representing its name as constituents in Rl, the ID of

the part of speech in the top byte of RZ, and its features in the

bottom halfword of R3, this utility searches the lexicon and checks

if such a name for such a part of speech has already been defined.

If so, R2 returns the lexical page ID of that definition; otherwise it

remains unchanged. Rl and R3 are always returned unchanged.

B. 3. 3. CLST (PSM20): Given the page ID of a list in Rl this

routine copies all the pages of the list (unmodified) onto newly

created pages which are linked together by the second word. The

page ID of the first page of the copied list is returned to R 1.

B. 3. 4. CSTD (PSM20): Given the core address of the top page

of an entity class in R 1 and the page ID of an entity of that class in

R4, this utility places the entity at the top of the current entity

stack for the FOR statement.

B. 3. 5. CSTU (PSM14): Given the core address of the top

of an entity class in RI, this routine rem aves an entity from the

top of the current entity stack and places it in the current entity

location of the class page. Rl is returned unchanged. If the

-123-

flag of the entity in the stack is not zero, RO returns its location

in the stack (as a page ID) and R8 returns the page ID of the stack.

Otherwise RO is returned as 0, and R8 is destroyed but carries no

information.

B. 3. 6. DATEC (PSM22): On entry, R2 points to an EC p-list.

The routine deletes all attribute definitions for this class and all

attribute names from the lexicon that refer to no other class. On

return R2 is unchanged.

B. 3. 7. DEDEF (PSMl): On entry, Rl points to the p-list of a pas

with the characters representing its name as constituents; RO has

the ID for the part of speech in the bottom byte; R2 contains the

page ID that the part of speech should parse to, and R3 contains

the features of the pas in the bottom halfword. This routine puts

an entry for the name of this part of speech in the lexicon.

B. 3. 8. DELLEX (PSMll): Deletes the entire lexicon of the version.

B. 3. 9. DELNN (PSMl 1): On entry, Rl points to a p-list of a part

of speech. The name string of the part of speech is not included

but the lexicon is searched on the basis of pas, flags and payload

page ID. The entry is deleted. RO returns 0 if the entry was not

found and l if it was deleted successfully. Rl remains unchanged.

B. 3. 10. DELNNQ (PSM22): Same as DELNN; included in this

deck also to ensure efficiency in the running of certain semantic

routines that reside in the same deck.

-124-

B. 3. 11. DELPOS (PSMl 1): On entry, Rl contains the ID of a

part of speech in the bottom byte. All entries in the lexicon of that

kind of part of speech are deleted. R 1 remains unchanged.

B. 3. 12. DELSL (PSMll): On entry, RO contains the number of

characters in the name of a part of speech; Rl points to the

character string; and RZ points to the p-list of the part of spe e ch.

The entry referred to is deleted from the lexicon. On exit, Rl

and RZ are unchanged, and RO is O if the entry was not found and

1 if it was successfully deleted.

B. 3. 13. DER? (PSM19): Requires the p-list of a part of speech

with a c harac te r string as constituents in R 1, its ID in the top byte

of RZ and the page ID to be assigned to it in the CXT location of the

context area. Puts an entry for the string in the lexicon.

B. 3. 14. DPG (PSMll): Obtains a displacement in R2 and gets a

page ID from the context area location with that displacement.

Deletes that page and all pages linked to it by pointer ID's in the

first word of each page. Leaves only the last page and puts the ID

of its top back in the appropriate word of the context area.

B. 3. 15. EEXP (PSM7): Requires a floating-point number in

FPR-0. Calculates the exponential of the number, and returns it

in FPR-0. This utility was written for REL-English.

B. 3.16. ENDEL (PSMlO): On entry, R3 contains the page ID of a

class and R4 that of an entity belonging to it. This routine removes

the entity from the class. R3 remains unchanged.

-12S-

B. 3. 17. EVDEL (PSM8): On entry, RS points to the top of the

log, R3 points to the log header for a specific time and R4 points

to an event notice to occur at that time. The notice is deleted and

its name, if any, is removed from the lexicon. R4 and RS are

returned unchanged.

B. 3. 18. EVGEN (PSMlS): Obtains a pointer to the context area

in RZ ,the page ID for an event routine in R3, and a time figure in

FPR-4. Posts a notice for that event under the time given in the

log. Returns R2 and R3 and FPR-4 unchanged.

B. 3. 19. EVLVR (PSM13): On call R4 points to a VC p-list. The

routine evaluates all numerical and entity variables and lists in the

p-list. If there are any scratch lists evaluated, they get copied

onto regular pages, which are used as the VR payloads; and a VC

p-list is built up with all such VR' s as constituents and RSCR as

its semantic routine. This VC p-list is returned in RS; if there

are no scratch lists evaluated R 5 is returned zeroed out. R4 is

returned unchanged.

B. 3. 20. EXPI (PSM7): On call FPR-0 and FPR-2 contain two

numbers,n
1

and n
2

. The routine calculates n
1

~:n:,n
2

and returns

the number in FPR-0.

B. 3. 21. FIND (LEXUTIL): On entry RO contains the length of a

lexical string, Rl points to an address in the lexicon where

a search is supposed to start, and R2 points to the lexical string.

This utility finds the entry for the string in the lexicon and returns

-126-

the address for it in Rl. If the search is unsuccessful, Rl is zero

on return. R2 returns unchanged.

B. 3. 22. FIPID (PSM12): On entry, R2 contains a page ID. The

lexicon is searched for an entry with this page ID as payload. On

return, R2 contains the ID of the lexicon page where the entry

occurs. If the search fails, R2 is returned zeroed out.

B. 3. 23. FIPSTR (PSM18): On entry R3 contains a page ID. The

action is the same as in FIPID, but on return R2 contains the

length of the referrent lexical string, and R3 contains the page ID

in the lexicon where the string begins. If the search fails, R2 and

R3 are returned unchanged.

B. 3. 24. FLA (PSM14): When called from VCil, R5 contains 1 or

-1. The second word of each entity stack entry is modified by

having RS added to it. When called from VCB6, R5 contains

X'l01', in which case the second word of each entry is OR'd with

X' 100' and then 1 is added to it. X' 100' acts as a flag signifying

the entry is a list; the last byte counts the level of recursion of

the FOR clause routine.

B. 3. 25. FNEV (PSM12): Given the p-list of a function with free

variables (from a DENSITY statement) in Rl, and a number in

FPR-0, this utility copies the p-list, substitutes the contents of

FPR-0 in each instance of the free variable, and calls SEM on the

copy. On return, Rl points to the evaluated copy of the p-list and

FPR-0 remains unchanged.

-127-

B. 3. 26. FPTOIN (PSM2): Receives a floating-point numbe r in

FPR-2. Transforms it into a fixed-point number, which is r eturned

in R2. The contents of FPR- 2 remains unchanged.

B. 3. 27 . LEXUTIL (LEXUTIL): Places a lexical item in the

lexicon. On entry , RO points to a lexical string preceded by on e

byte containing its length, and RI to the p-list of the part of s peech;

on return, RO and R 1 are unchanged.

B . 3. 28 . LISLIS (PSMl0): Sets the 'contents of one l i s t t o tho se of

another one. On entry, R3 contains the page ID of the list that

becomes a copy and R4 that of the list that is copied. On return ,

the registers are unchanged.

B. 3. 29. LOGE (PSM7): On entry, FPR-0 contains a floating ­

point number. The routine calculates the natural logarithm of

the number and returns it in FPR-0.

B. 3. 30. LOGl0 (PSM7): On entry , FPR-0 contains a floati n g­

point number. The routine calculates the base 10 logarithm of

the number and returns it in FPR-0.

B. 3. 31. LPD (PSM16): Given the core address of an event

notice in R4, this routine frees the pages of all lists and arrays

local to the notice, preparatory to the deletion of the notice from

the log.

B. 3. 32. NT DEL (PSMl 1): Deletes an entry from the lexicon

given its page ID payload. On. entry, R4 contains the page ID; it

remains unchanged. On exit RO is 0 if the deletion attempt fai l ed,

-128-

and 1 if it succeeded.

B. 3. 33. PUTELT (PSM4): On entry, R4 contains the page ID of

a class or list. R6 is 0 if it is a class and 1 if it is a list; and RS

contains the payload if it is a list. The routine places a new

element in the class (without assigning the attribute values) or in

the list. On return, R4 and RS are unchanged, R6 contains the page

ID of the new element, and RO is 1 if a new page had to be created

for continuation of the class or list, and 0 otherwise.

B. 3. 34. RANDOM (PSM2): Obtains a seed number from the

context area. Multiplies the seed by s 13 and takes the result

mod 2
31

as the next integer random number, r. Puts this numbe r

back in the context area as a seed for the next one. Then cal­

culates r/2
31

to obtain a real number uniformly distributed in

(0, l); this is returned in FPR-0. The integer random number in

(0, 2
31

) is returned in R2.

B. 3. 35. SELFR (PSM16): On entry Rl points to a p-list associating

probabilities to parts of speech. On the basis of these probabilities,

one of the parts of speech is selected and returned, with semanti cs

not yet performed on it.

B. 3. 36. SRCG (PSM14): Finds any GENERATE clauses in the

structure modified by a FOR clause and hangs the current entity

under it. On entry, R2 points to the VC p-list, R3 contains the

current entity, and R4 the past current entity. On return they all

remain unchanged.

-129-

B. 3. 3 7. UTYKA 1 (PSMS): Given a floating-point number in FPR-0,

this utility returns an EBCDIC decimal representation of that

number in an LDD list structure with the characters in the last

two words. Rl points to this list on return.

B. 3. 38.

B. 3. 39.

B. 3. 40.

B . 3.41.

B. 3. 42.

VCC2A (PSM12): Currently not used.

VCF3A (PSMl 1): Does all the freeing of pages for VCF3.

VCFSA (PSMll): Does all the freeing of pages for VCF5.

VCF7 A (PSM 11): Does all the freeing of pages for VCF7.

VCFAA (PSM21): On entry, Rl points to a list. The list

is emptied of all its elements. On return, Rl is unchanged.

B. 3. 43. VCG2A (PSMll): Does all the freeing of pages for VCGZ.

B. 3. 44. VCZB (PSM 12): On entry, R 1 points to an in core entity

and R6 to a location in a buffer. A name or description of that

e ntity, in EBCDIC, is placed in the buffer. Rl remains unchanged,

and R6 points to the next location in the buffer.

B. 3. 45. VCZC (PSMS): On entry, Rl points to a floating-point

number and R6 to a location in a buffer. A decimal representation

of that number, . in EBCDIC, is placed in the buffer. Rl remains

unchanged, and R6 points to the next location in the buffer.

