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ABSTRACT 

With the progress of science, our models of the world or any of 

its aspects become more and more complex, and therefore less 

and less susceptible to analytical solution. This is especially true 

in the field of social sciences, where statistical and stochastic 

processes are indispensable tools for model examination. 

As a result, various simulation languages or packages have 

been developed to aid in the formulation and testing of such models. 

This thesis considers the directions that such languages have 

taken, and introduces a new such language, RELSIM, which 

attempts to meet present needs of the potential simulation 

designer. It features a simple structure that is also very flexible, 

and a timesharing environment, which allows dialogue, gaming 

and experimentation in the design and the actual simulation run. 

A full description of RELSIM is given, with examples illustrating 

its use, and the implementation of the language on the REL system 

is also discussed. 
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I. INTRODUCTION 

One of the most useful methods man has devised for imposing 

order on his world perception has always been the isolation of 

appropriate sul;:>sets of that perceived world for simplification of 

observation, linguistic description, and behavior prediction; the 

appropriate subsets being ones whose interaction with the universe 

can be considered as occuring in a simple, describable way. These 

subsets are now commonly called systems. 

This method, at first used in a nebulous manner, with the limits 

of the system intuited rather than described and observations made 

in a haphazard and incomplete manner (as for example in 

Aristotle's description of politics), was soon refined in its appli­

cation on what we term the scientific field. Ptolemy's analysis of 

the motion of heavenly bodies, although later improved upon, was 

nevertheless quite precise in defining the system, its parts and 

their interactions; and its predictive power was quite adequate. 

The apotheosis of the compartmentalizing technique occurs of 

course in modern electronics, where c ire ui ts are put together 

from integrated chips easily described by a few inputs and outputs 

and their internal behavior. This mirrors the current approach to 

system description, where an attempt is made to break up the 

system into simply describable .components simply interrelated. 

If, then, we regard a system as a set of elements, or sub­

systems, interacting in a regular way over time, we may proceed 



-2-

to collect a body of information about these aspects of the system 

and try to analyze it to predict the system's behavior. This body 

of information we call our model of the system, and it should be 

such as to reflect the qualities we are interested in; that is, our 

model should be a •US eful simplification of the process es of the 

system. 

The reasons for deriving a model for a system are basically 

two: Either the system considered is a nonexiste~t one which we 

are interested in constructing, in which case a model is necessa r y 

to ensure that the behavior of the system will be the desired one 

before the actual expenses of construction are met; or, the system 

is an existing one on which physical manipulation and experimen­

tation is impossible or undesirable, in which case experimentation 

on the model will provide us with an understanding of the system 

that can be tested, as always, by prediction. 

The derivation of a model is essentially made up of two 

processes: establishing a model structure and supplying the data. 

By structure we understand the determination of the boundary of 

the system and the establishment of entities, attributes, and 

activities in the system, while data provide the values of attributes 

and define the relationships involved in the activities. Our model 

of the system can be a physical one, as for example the models 

of circuits made up of mechanical analo gs utilizing springs, 

masses and shock absorbers, which were used in the past by 
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electrical engineers; or, more commonly, a mathematical one. 

In simple cases, mathematical models are susceptible to 

analytical solution of the equations governing their behavior . 

However, in the majority of cases, dynamic systems are too com ­

plex for such a description by solvable equations to be possible. 

With the increasing availability of digital computers, simulation 

has become the most important method of studying such complex 

mathematical models of systems. 

In simulation we set up a model of the system at an initial 

point in time, and we follow the changes in the state of the model 

as they occur with the progress of time. There are two main 

types of simulation models, dependent upon whether we consider 

changes in the model to occur continuously or at distinct points in 

time. 

In continuous simulations the system is represented by a s et of 

finite difference equations approximating the differential equations 

governing smooth change. Thus if X(t) is the vector of the state 

variables of the system (in which we are interested) at time t, 

and Y(t) is the vector of variables describing inputs to the system, 

i. e. the effect of the environment, then the set of equations will 

be of the form 

X(t+6t)=f(X(t), X(t), X(t-b.t), ~ ... , X(O), Y(t)) 

where f is the function specifying the behavior of the system. 
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In discrete simulation, on the other hand, the state of the system 

is regarded as changing in discrete steps. Thus the system is seen 

as consisting of elements which perform defined functions on the 

entities of the system. These elements, or subsystems, have a 

finite processing capacity and thus entities may have to be placed in 

queues pending their processing by each subsystem. In this type of 

simulation emphasis is placed on examining the capacities of the 

entire system and the manner in which entities get processed 

given the structure of the system. Stochastic processes and 

queuing techniques are the main tools used, and statistics on 

waiting times are provided to illustrate the performance of the 

system. 

Although many systems may be modeled for either continuous or 

discrete simulation, the former is more natural in the case of 

electronic or mechanical feedback systems clearly defined by 

differential equations, where the latter is useful in traffic or job 

shop type systems where flow is governed by random variables of 

a particular density function and bottlenecks imposed by the system 

structure. 

In the first efforts at system simulation, computer programs 

were designed to simulate a particular model; these programs 

were written in general purpose languages such as FOR TRAN or 

ALGOL, or in assembler languages. However it soon became 

obvious that a great number of computations are common to most 
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models; a number of general purpose simulation languages were 

designed and on occasion implemented. Such languages enable the 

user to formulate and program a simulation with less effort and 

less need for familiarity with conventional programming and 

techniques of applied mathematics. DYNAMO and CSMP are 

notable such languages for continuous simulation. There is quite a 

number of discrete simulation languages in existence; table I. 1 

contains a fairly comprehensive list. Of these we will concentrate 

on four: GPSS and SIMSCRIPT because they are the most often 

used and most developed languages, while their approaches are 

quite different; and SOL and SIMULA, which belong to a later 

generation and contain some interesting new trends. 

We will use the following terminology in order to avoid the 

confusion caused by the different names employed in each of these 

languages to describe their features. 

The fundamental objects of the system being simulated are 

the entities of the simulation. The set of all entities of a par­

ticular type is an entity class. The properties of an entity are its 

attributes. We may think of an entity as a data record, with its 

attributes being the record fields. The data on the system are 

system variables. Entities sharing certain properties may be 

placed in an entity list. 

The state of the system may be changed by an event, which is 

thought of as an instantaneous occurence, or an activity, which is 
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TABLE I. 1 CURRENT DISCRETE SIMULATION LANGUAGES 

Simulation language/Computer language base/Originating organization 

CLP 

CSL 

FORSIM 

GASP 

MILITRAN 

OPS 

QUICKSCRIPT 

SIMPAC 

SIMSCRIPT 

SIMTRAN 

SIMULA 

SOL 

UNISIM 

CORC 

FORTRAN 

FORTRAN 

FORTRAN 

SCAT 

FOR TRAN / Assembler 

FORTRAN 

ALGOL 

ALGOL 

Assembler 

Cornell U. 

IBM U. K. 

MITRE 

U.S. Steel Corp. 

Syst. Res. Gp. for ONR 

MIT 

Carnegie-Mellon 

SDC 

RAND 

MITRE 

Norwegian Comp. 

Center 

Burroughs 

Bell Labs 

an occurrence that takes time. Note that in general an activity 

may be regarded as two events, marking the activity's beginning 

and its end. 

Activities or events happen when certain conditions in the 

system are satisfied. One way of ensuring their proper sequencing 

is the use of a schedule of due ·occurrences with their times, the 

system log. Alternatively the main routine of the simulation may 
_,_ 

-,·from Teichroew( 14) 
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check all event or activity routines at each point in simulation 

time and execute those whose conditions are met. 

GPSS is an entity oriented language. There are thirty- six 

pre-programmed events, and the user can put together a simulation 

by arranging appropriate events in a block diagram. The entities 

of the simulation are pre-defined, created in a particular block 

and they flow through the system as in a network, to be ultimately 

removed. System variables must also be identified with pre­

defined concepts such as facilities, storages and logic switches. 

The sequencing of events is rigidly determined by the block 

diagram, and conditions of choice are reduced to alternative paths 

in that diagram governed by switches with possible random 

variable resolution. The selection of the next event is determined 

by interpretation of the diagram to find out what block each entity 

is due to enter. The gathering of statistics is controlled by 

certain of the block types, and so is the advancement of the 

simulation time. 

In SIMSCRIPT on the other hand, the user may specify the 

structure of different types of entities and name them and their 

attributes. The events are also written by the user, in 

SIMSCRIPT language, as closed subroutines that are executed at 

particular instants of time. T~e sequencing of these events is 

controlled by the posting of event notices on a log, programmed 

also by the user to occur when certain conditions are met. This 
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posting of event notices can occur from within an event routine or 

through what is called an exogenous event, i.e. directly before 

the main routine takes control. This main routine, then, keeps 

track of executable events rather than the flow of entities through 

the simulation. System variables and lists must all be defined by 

the user at the beginning of the program. The SIMSCRIPT lang ­

uage includes several commands for I/O, plus a REPORT format 

which can be called to produce tables of statistics. 

SOL was written as a generalization of the characteristics of 

the two previous languages. Thus the user does not define his 

types of entities as in SIMSCRIPT, but makes use of the existing 

concepts in the system such as variables and storages; and the 

sequencing is of the GPSS type, with the main processor moni ­

toring the state of the system and triggering action when conditions 

are met. The viewpoint of SOL, however, can be regarded as 

activity oriented. The user programs activity rather than event 

routines. These routines may be executed over any amount of 

simulation time, through the use of a WAIT statement that stops 

and restarts processing of the activity according to the state of 

the system. Activities are then usually performed in a pseudo­

parallel manner and as a result local variables are an important 

element in the writing of activity routines, as separate instances 

of the same activity may be processed in parallel. The syntax 

of SOL is ALGOL - like, although the commands available are 
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those specifically suited to, and common in most discrete simu­

lation packages. SOL provides the user with many automatic 

statistical summaries besides supplying specific I/0 commands, 

as in SIMSCRIPT. 

The SOL viewpoint is also used in SIMULA, probably due to an 

extent to the fact that they are both based on ALGOL. SIMULA, 

however, represents a more thorough attempt at the implementation 

of a comprehensive language that can compete with SIMSCRIPT and 

GPSS. It is a true extension of ALGOL and as such incorporates 

all the features of a high-level language augmented by the pseudo ­

parallel processing of activities as in SOL. The objects simulated 

are again simple variables and arrays rather than user defined 

entities, while attributes and local variables are attached to 

activity definitions. Instead of a SOL type main processor, SIMULA 

emphasizes the concept of an event as a phase of an activity that 

occurs on a given instant of simulation time, and makes use of a 

log in which the events to be executed are posted. Another 

important improvement over SOL is the ability to reference 

variables local to an activity from a different activity through a 

CONNECTION statement. Both SOL and SIMULA benefit from the 

recursive capability of ALGOL. 

Having examined the features of existing simulation languages 

we can see that an on-line environment would greatly augment 

the power of simulation as a user tool. Initialization of a 



-10-

simulation model can then be accomplished on an experimental 

basis, with the user testing out parts of the simulation and 

modifying his routines. During the actual run the user can stop 

and examine the simulation, and if appropriate introduce new data; 

he may indeed redirect the course of the simulation by modifying 

the parameters, the log of events, the contents of entity classes, 

or by introducing new event routines; he can reinitialize the 

entire run, using the results of the interrupted run to refine his 

parameter values; if inclined, he may design an interactive run 

where the introduction of parameters from an outside source is 

expected, and use this for gaming or teaching techniques. However, 

the only attempt at implementation of an on-line discrete simu­

lation language that we are aware of is the ongoing one at MIT 

with OPS, reported as an activity oriented language to be 

implemented on top of PL/ 1. Kiviat (9), in a recent paper, 

stresses the lack of such a language and suggests desirable goals. 

RELSIM has been designed and implemented on the REL system 

to satisfy all the above requirements. In the development of the 

syntax our main concern has been simplicity of structure for the 

benefit of the user without loss of versatility and power. We 

believe that discrete simulation is a tool principally suited for the 

humane and social sciences, where mathematical description of 

models is usually impossible, and heavy emphasis is placed on 

the use of stochastic and statistical techniques. The user, then, 
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is most likely unfamiliar with current computer languages and not 

interested in acquiring a knowledge of the field. 

With this in mind, we designed RELSIM as an event oriented 

language, believing that the activity orientation of SIMULA and 

OPS, though aesthetically pleasing to the computer scientist, 

would be more confusing to the social scientist programmer. 

Unlike SIMSCRIPT, however, RELSIM allows variables local to 

events and the pas sing of parameters from one event to another , 

thus achieving all the versatility of activity oriented languages . 

The ability to define different types of entities with their attributes 

was considered to be a conceptually useful feature and included. 

Also, to facilitate experimentation we enable the user to delete any 

kind of object of the simulation, including entities, classes, lists, 

system variables, the log in part or as a whole, and event routines . 

RELSIM includes random number generators from all common 

probability distributions, and also enables the user to define any 

density function in a simple manner and thereafter obtain random 

variables governed by that function. The definitional capability of 

REL-English is also present in RELSIM, so that the user may 

extend or simplify at will the syntax at his disposal. 

Implementation of the language on the REL System proved to be 

a natural task. The programming of additions to the features of 

the language is, and we believe will be, very effortless. The 

user furthermore benefits from the ability to input initialization 
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parameters in the batch mode and the option of saving multiple 

runs of the same simulation, so that he may check the state of the 

system at different points in simulation time, or the effect of 

different initial conditions. Also, besides regular output commands, 

RELSIM features a RECORD statement that transforms the results 

of the simulation into an REL-English data base, to be queried 

conversationally, with all the power of that data management 

language at the user's disposal. 

The declarative statements and the event routine command 

statements of RELSIM are simple and almost conversational in 

structure. They consist of a statement verb, followed by the 

objects the verb refers to, followed by modifying clauses that can 

be strung in any order and repeated any number of times. Thus, 

acquainted with the few verbs and clause prepositions plus the 

arithmetic expression capability of the language, the user may 

attempt writing a simulation and teach himself the refinements of 

the language as he goes along. We shall proceed to describe the 

syntax of RELSIM. 
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II. DESCRIPTION OF THE LANGUAGE 

In order to describe the RELSIM syntax we will first undertake 

an exposition of the language's structure, and follow by some 

clarifying simple examples of its use. For our description we 

indicate language strings in capitals; metalanguage description by 

lower case; optional strings in bracket enclosure; alternatives by 

double brackets with the default parameter underlined. 

A. Declaration statements 

These statements are used to reserve a location for a system 

variable, simple or array, initialize a list or an entity class, or 

specify an event routine. A declarative statement may not be used 

inside an event routine. In specifying a simple system ( entity or 

numerical) variable, the statement is of the form 

DECLARE "name" [{ E~~f;y}] [=numerical or entity expression J 
where ~ may be any string beginning with a letter and not 

ending in a blank. If desirable, the variable is initialized at this 

point to the current value of the expression used. Numerical and 

entity expressions will be described later on. If a system array 

variable is to be initialized, the statement will be 

DECLARE "name"(num. expression, num. expression) 

for the two dimensional case. 

In initializing a list, the declarative statement will be of the 
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form 

DECLARE"name" [{E~~fT\ }]{si'!~~} [=list expression] 

where REAL or ENTITY specifies the nature of the list elements. 

If LIST is specified the elements are accessed from top down, i.e. 

a FIFO list is obtained; STACK results in the reverse ordering, 

i.e. a LIFO list. It can also be initialized with the contents of 

another list. 

When initializing an entity class one can name up to 40 attributes 

of the class entities and also assign initial values to any number of 

them. Notice that these initial values are calculated at the time of 

creation of each entity in the class. The statement is of the form 

DECLARE "name" CLASS [wITH"name" [{E~~~;y}] [{ s~1!'.~K}] 
[ =expression)] [ AND "name" [etc.]] etc. 

In writing an event routine we also use the declarative format 

in the following form 

DECLARE { "name''} EVENT: command statement [ ;command st] 
name 

.... [; com. st.] . 

where any number of command statements, separated by semi ­

colons, may be used. The name of the event routine is not placed 

in double quotes if it has already been set in a GENERATE 

statement of a previously written event routine; for ·it is often 

necessary to refer to as yet unwritten event routines, and assign 

a name to them ahead of time. 
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B. Numerical and entity expressions 

Let us first consider numerical expressions. There are the 

following elementary numerical forms: 

(i) Constants, e.g. 35, 3. 27, 2. 4305 E09. 

(ii) System variables expressed by their declared name, 

e. g. X, LENGTH, DAY OF BIR TH. 

(iii) Numerical attributes of entities. Thus if GEORGE is an 

entity and INCOME is its attribute, then INCOME OF 

GEORGE or INCOME(GEORGE) is a valid numerical 

form. 

(iv) Elements of a real list or an array. Thus if PRIME 

is a list then the following forms are valid: 34TH 

PRIME or PRIME( 34); LAST PRIME or PRIME( L); 

PRIME(L-34);CURRENT PRIME;NEXT PRIME; 

PREVIOUS PRIME;RANOOM PRIME. The current list 

element is the last one placed in the list until set 

otherwise; NEXT and PREVIOUS refer to this current 

element above, but can also be used on any element, 

e.g. NEXT (PRIME(34)), and thus repetitively, e.g. 

NEXT(NEXT PRIME). If ARGH is a two dimensional 

array, we can refer to ARGH(2, 3) etc. 

(v) CURRENT TIME and SEED, predefined system 

variables. The latter is used to calculate uniformly 

distributed random variables in (O, 1) that are used for 
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stochastic variates. 

(vi) The number of elements in a list or entity class. Thus 

if BOY is a class, we may write NUMBER OF BOY or 

NUMBER OF BOYS. 

These elementary forms may be combined by addition, sub­

traction, multiplication, division and exponentiation into expr e s­

sions. Unary plus and minus are also available. Most common 

arithmetic functions are provided; a list follows: 

FUNCTION FORM 

Square root SQRT 

Exponential EXP 

Logarithm (base e) LN 

Logarithm (base 10) LOG 

Sine SIN 

Cosine cos 

Tangent TAN 

Cotangent COTAN 

Factorial FACT 

Integer Part IP 

Fractional Part FP 

Absolute Value ABS 

Sign SIGN 

Maximum (a, b) MAX(A, B) 

Minimum (a, b) MIN{A, B) 

a Mod b MOD(A, B) 
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The following random number generators for continuous 

probability distributions are available: 

(i) Uniform distribution over interval (A, B) 

UNIFORM(A, B). 

(ii) Normal distribution, with density function 

2 

-1/2 ( x-M) 
s 1 

f { x) = S ✓ 2 iT e 

where M is the mean and S is the standard deviation: 

NORMAL (M, S}. 

(iii) Exponential distribution, with density function 

( vi) Any distribution with density function £( X): 

DENSITY(£( X)); e. g. if f( X) is the normal distribution 

with M= 10 and S=3 we could write DENSITY ( EXP( 

Also, the following generators for discrete probability 

distributions may be used: 

(i) Uniform distribution between A and B: RANDOM 

(A, B). 

(ii} Binomial distribution with probability function 

(n, p). 
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(iii) Poisson distribution with probability function 

-A. X 
f( x) =e A. where A.>0 and x>0: POISSON ( ),._). 

x! 

(iv) Pascal distribution with probability function 

k+x-1 k x . 
f( x) =( x ) p ( 1-p) where x_2: 0 ( k 1s an integer 

denoting the total number of successes out of 

k+x trials) : PASCAL {k, p). 

( v) Any distribution with probability function £( X): 

FREQUENCY (f(X)) e.g. FREQUENCE (. 04 IF X=l, 

. 05 IF X=3, . 0 l IF X=7, 0 OTHER WISE) ( see 

conditional numerical expressions immediately below) . 
X 

Note that we must have ~ £( X) = 1. 

A numerical expression may also be dependent upon boolean 

conditions in the following manner 

num. expression IF boolean expression, n. e. IF 

b. e., .... , n. e. OTHERWISE 

The boolean expressions available are discussed in the next 

section. 

We next consider the ways in which entities may be expressed . 

. In an analogous way to numerical forms, we may access them 

(i) by their declared name, e.g. GEORGE, BOSTON 

(ii) as entity list or class elements . Thus if PERSON 

is a class or list, the following forms are valid: 
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34TH BOY or BOY(34); LAST BOY or BOY (L); 

BOY(L-34); CURRENT BOY; NEXT BOY; LAST BOY; 

RANDOM BOY; and NEXT (NEXT(CURRENT BOY)) 

etc., as we have discussed in numerical forms. 

(iii) as entity-valued attributes of entities. Thus if 

MOTHER is an attribute of the entity GEORGE, then 

MOTHER OF GEORGE or MOTHER(GEORGE) may be 

used. Note that any level of indirection is permissible , 

e. g. MOTHER OF MOTHER OF MOTHER OF GEORGE. 

C. Boolean expressions 

These expressions are utilized in conditional numerical 

expressions,conditional clauses and scratch list generation ( see 

next section). There are four elementary forms: 

(i) (numerical expression) (comparator} (numerical 

expression) as for example 43>=AGE OF GEORGE, 

LOG(X)-.=0. 

(ii) ( entity expression) { = 
} (entity expression), e.g. --,= 

MARSHA=MOTHER( GEORGE) 
IN list 

(iii) (entity expression) { IS IN} { entity class} or, 
IN 

(numerical expression) { IS IN} (list), e.g. 

GEORGE IS IN ARMY, 127 IS IN PRIME. 
list 

(iv) EXISTS { . l _ }, e.g. EXISTS BOY. 
entity c ass 

The comparators allowed are=, >, <, >=, <=, and 

their negations, -, = etc. We may use IS for =, NOT 
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for -, , and IS NOT for -, =. 

By combining the above forms with logic operators we arrive 

at complex boolean expressions. The permitted logic operators 

are NOT or-, (unary); AND, OR, XOR (binary) . Also,NEITHER 

(meaning NOT) and NOR (meaning AND NOT) may be used. For 

example, we may say 

AGE OF GEORGE=24 AND MOTHER OF GEORGE=MARSHA 

NEITHER AGE OF GEORGE IS 24 NOR MOTHER OF GEORGE 

IS MARSHA 

-i(EXP(A)>=l2. 7 OR SIN(E) 1 =0.5) XOR 127 IN PRIME 

D. Scratch lists 

Quite often we may wish to access all elements of an entity 

class or list that meet certain requirements. In RELSIM, we 

may, by expressing these conditions, form a list with no name to 

reference it (which gets destroyed at the completion of the 

sentence). Thus the following forms yield such lists: 

(i) (entity class) WITH (boolean expression on its 

attributes). For example BOY WITH MOTHER= 

MARSHA AND FATHER=JOHN AND AGE=l2. 

(ii) { list } 
entity class 

. { list } logic operator . 
1 

; e.g. 
entity c ass 

BOY OR GIRL . We may use IN instead of AND; 

BOYS IN ARMY means the same thing as BOY AND 

ARMY. 
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The above may be combined into expressions of arbitrary 

complexity. If part or all of the information in such a list should 

be saved, a declared variable or list may be set accordingly. 

E. Event notices 

In order to modify the log, we need to be able to make refer­

ence to specific event notices. The forms available are the 

following: 

(i) Expression by given name, e.g. GEORGE'S BIR TH, 

LINEl. 

(ii) Expression by location in the log, e.g. 8TH EVENT 

or EVENT (8}; LAST EVENT or EVENT (L); EVENT 

(L-3); RANDOM EVENT. 

(iii) Expression by location in the log of a particular type 

of event routine. Thus if WEDDING is an event 

routine, we may use 8TH WEDDING etc. as in (ii) 

above. 

(vi} We may refine (ii) and (iii) above by specifying the 

simulation time at which the event is to be executed, 

e.g. RANDOM EVENT AT TIME (num. expression). 

F. Command statements 

Each command statement may be typed in as a REL sentence 

and executed immediately, or as part of an event declaration 

statement. The basic command statements are the following: 
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(i) CREATE (entity class name) [ NAMED "name"] 

or, 

CREATE {numerical expression} (entity class name) 

One or more elements of a named class are created; 

if desired, a single such created entity may be given 

a name. 

( ii) GENERA TE ( event routine name) [ NAMED "name"] 

or, 

GENERATE "name" [ NAMED "name"] 

The simulation log is updated with an instance of the 

event described by the routine named. In the first 

instance, the routine has already been declared; in 

the second, it will be declared later. Clearly, the 

second form may not be used as a direct sentence, 

since it cannot be executed before the declaration of the 

event routine. 

(iii) SET variable=expression 

SET array=num. expr., .... , num . expr. 

The value of a system variable, list or attribute of an 

entity is updated. In the second form, an array's 

entries are filled sequentially with the first index 

being the slowest - changing. 

(iv) NAME { entity . } "name" 
event notice 
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An entity or an event notice is given a name for future 

reference. 

DELETE 

DELETE LIST 

DELETE CLASS 

DELETE ALL 

DELETE LOG 

entity 

system variable 

class 

list 

array 

event routine 

event notice 

list name 

class name 

CLASSES 

EVENTS 

CONSTANTS 

ARRAYS 

LISTS 

These statements delete parts of the simulation as 

desired and remove their names from the lexicon. 

Note that DELETE (list) will empty the list of its 

contents, while DELETE LIST (list) will get rid of the 

list itself; the same holds for an entity class . DELETE 

ALL EVENTS gets rid of the routines, while DELETE 

LOG gets rid of the event notices. DELETE 
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CONSTANTS gets rid of all the system (numerical or 

entity) simple variables. 

(vi) RESET 

( vii) 

This command empties the log, all classes and lists, 

and resets the simulation time to 0. 

PUT { entity 
num. 

expr.} AFTER num. expr. l 

~

BEFORE} { entity expr. }~ 

expr. IN PLACE num. expr. ~ IN list 

A list is updated by addition of an element. If the 

optional phrases are not used, the element will be 

placed as last in a list or first in a stack. IN PLACE, 

when used, specifies the location in the list the 

element will occupy; if the number exceeds the elements 

present in the list, the element is placed last. 

(viii) REMOVE list (numerical expression) 

REMO VE { entity expr. } FR OM list 
num. expr. 

An element is removed from the list. If there are 

multiple instances of that element, the first instance 

1s removed. If there is no instance, no action occurs. 

(ix) entity 

sys. variable 

WRITE event notice [. { ' . . } ]. . . [. { . . . } ] 
C "character string" 



WRITE 

class 

list 

array 
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event routine 

LOG 

In the first form, a line of output may be formed. If 

the total number of characters exceeds those avail­

able in a line, the remaining characters are lost. In 

the second form a multi-line output results and thus no 

concatenation of quantities to be written is permissible. 

(x} DO ; comm. statement; .... ;comm. statement; END 

The statements inside the "do loop II are executed as a 

unit, and any clause attached to the DO sentence 

applies to all of them. For example, 

SET X=0;DO UNTIL X=l0; SETX=X+l;WRITE X;END 

operates as a conventional FOR TRAN do loop. 

(xi) SELECT ; (numerical expression)(command statement) 

; .... ;(n. e. )(s. c. );END 

One of the statements in the sequence is selected at 

random and executed, with a probability of selec tion 

according to the number prefacing the statement. If 

the total of these numbers is less than 1, the remain­

ing probability is assigned to no action; if the total is 

more than 1, supernumerary statements are ignor ed, 



-26-

and possibly the probability of the last statement not 

ignored is adjusted so that a total of unity is achieved. 

(xii) GO 

This statement may be used only directly. It results 1n 

the transference of control to the main program, and 

the events posted on the log begin to be executed. 

(xiii) PAUSE and CONTINUE 

The first statement may not be used directly. When 

encountered during the execution of an event, it causes 

control to be returned to the user. If, after various 

direct commands, the user types CONTINUE (which 

may be used only directly), the simulation proceeds 

exactly where it stopped, i.e. with continued execution 

of the event under way. If, on the other hand, GO is 

used, the half-finished event gets flushed and the 

simulation proceeds with the next posted event in the log. 

(xiv) EXIT 

This statement may be used only directly. It stops 

processing in the simulation language version and 

returns the user to the REL command language. 

( xv) RECORD SIMULATION 

This statement may be used only directly. It causes 

an REL English data base to be formed out of the 

results of the simulation. If the name of the simu-
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lation language is X, then the version of REL English 

containing this data base will be XDATA. 

(xvi) DEF: name: part of speech 

,:, 
This is the standard REL definitional statement. It 

may be used only directly. Any construct of the 

language may be given a name that can be used there­

after instead of that construct. For example, once 

we have defined 

DEF: C: CONTINUE 

we may use this shorthand thereafter. Also, due to 

this statement's variable capability, we may define 

random variables from a Gamma distribution at our 

disposal. 

WRITE DEF OF name 

DELETE DEF OF name 

are also available as direct statements to the user. 

There are several modifying clauses that may be used with 

statements {i) - (xi) above. They may be used repeatedly or 

strung together, unless otherwise specified in their description 

here. 

,,, 

-,- See Thompson ( 15) 
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(i) WITH attribute=expression [ AND att. =expr.] ..... 

[ AND att. =expr.] 

This clause may only occur as the first modifier of a 

CREATE statement. It initializes as many attributes 

of the created entity (ies) as desirable. 

( ii) AFTER INTERVAL num. expression 

(iii) 

The statement so modified will be executed after the 

specified interval of simulation time. 

FOR 

entity 

class 

entity list 

In the first instance, the current entity of the class to 

which the entity referenced belongs gets set to this 

entity, and the statement modified is executed. In the 

second instance, the current entity of the class is 

successively set to each of its elements and the 

statement modified is executed for each such change. 

In the third instance the list is broken down into 

sublists of entities belonging to the same class, and 

execution occurs as if there were that many succes­

sive FOR statements; in each of those, the current 

entity of the class gets set successively to each element 

of the sublist, and the statement modified is executed 

each time. After execution all current entities regain 
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their former values. 

( vi) IF boolean expression 

The statement will be executed only if the boolean is 

true. The only clause that may follow an IF clause is 

an AFTER clause or another IF clause. When several 

statements modified by final IF clauses are strung 

together and followed by the construct 

ELSE command statement 

then only the first encountered statement with a true 

boolean will be executed. 

(v) FOR INTERVAL num. expression 

This clause may only be used as the first modifier of a 

CREATE, GENERATE, SET or PUT statement. It 

results in the opposite action (DELETE, SET to 

previous value, or REMOVE) occuring after the 

specified simulation interval. 

(vi) UNTIL boolean expression 

This clause may only be used once in a statement. 

The statement will be executed over and over until the 

condition is met. Used with the GO statement, this 

clause may define the duration of the simulation run. 

(vii) AT INTERVALS OF num. expression UNTIL 

boolean expression 

This_ clause may be used only once in a statement; 
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and it cannot appear with ( vi) above in the same 

state m en t. Its re s ult i s c 1 ear. 

G. Local variables and pass parameters 

When writing an event routine, we may desire to create and 

name temporary variables, accessible only to the event being run 

and deleted after its execution. The definitional statement for 

local variables has the form 

LOCAL name(type)[ , name(type)] ..... [ , name(type)] 

and must be the first statement in an event routine; it may only 

occur once in the routine. The type of variable assigned to each 

name is given by an abbreviation as follows: 

A(number, number) 
LE 
LR 
SE 
SR 
VE 
VR 

array 
entity list 
real list 
entity stack 
real stack 
entity system variable 
real system variable 

and these are the only types of variables allowable as local. 

In order to have communication between events we must have 

an adequate parameter passing mechanism. When an event gener­

ation statement occurs, it may contain any number of parameters 

to be passed to that event from the event in which the statement 

occurs, including variables local to this latter event. The basic 

generation statement format will be 

GENERATE { name } 
"name" (name [ , name] . . .. [ , name] ) 
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where the variables to be passed are named inside the parentheses 

after the event routine name. 

Corresponding to this statement, the event to be generated must 

contain the following statement 

PASSED name(type)[, name(type)] ... [ name(type)] 

which must either be the first statement of the event, or, if a 

LOCAL statement exists, the second statement. Any local name 

may be given to the parameters passed, but they must appear rn 

the PASSED statement in the same order in which they were 

given in the GENERA TE statement. Their type must be included 

and must coincide with that of the variable passed in the GENERATE 

statement. All of the types available for the LOCAL statement 

may be used, as well as the following: 

AE 
ALE 
AR 
ARL 
C 
EN 
EP 
ER 
R 

attribute, entity valued 
attribute, entity list 
attribute, real 
attribute, real list 
class 
entity 
event notice (posting} 
event routine 
real number 

Thus, if e.g. an event routine named KELP includes the 

following statement 

PASSED X(AE), R(R), Y(EN), Z(LR} 

the declaration statement may be 

GENERATE KELP(MOTHER, 3. 4, GEORGE, PRIME} 
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H. Examples 

Let us first consider a simple shop simulation, it being an old 

favorite. Let us say that a machine is turning out parts at the 

rate of one every 5 minutes. There is a conveyor belt, and three 

inspectors in a line. Each part takes 2 minutes to reach the 

first inspector. If he is busy, it moves on to the second inspector 

taking another 2 minutes, and similarly for the third inspector. If 

all three are busy, the belt circles back to the first inspector and 

it takes the tool 6 minutes to come around to him again. The first 

in.spector takes 4_±3 minutes to check each tool; the second takes 

5_±3, and the third takes 5±2 minutes. Each of them rejects 10% 

of the parts. We would like to know the average transit time of 

an ace epted tool and the percent time that each inspector is busy; 

and we would like to run the simulation until 1000 parts have been 

judged acceptable. 

The following RELSIM program, which simulates this shop 

situation, needs no commentary. 

OP.Ci'1'RE "Ton,. CLAS! WITH 1 CRf!ATlON TI~'-"•CURRENT Tt~,. 

DF.CI Anf'. "OT1'T?ON• CLASS WITH "STATU~"•O 

AND •T □ TAL BUSV TJME"=O• 

CPtATE 3 STAT!ONS~ 

OF.Ct AnE "TtJML COUNT• r?Cl,L•O• 

. OF'Ci'ARE UTQTAL. TRANSIT TIMF.• REAL•O, 
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D f. Ct.' fd1 E " TD CH 't N TrW OU e T t ON ,, CV [ N T I 

on tr- rnrn cr1uNTE~<tooo, 

cnFATC: TD□~, 

END, 

GENE~ATE "CNTf~ STATION"C~TATION(1),CUR~ENT TOOL) 

AFTCR INTE~VAL 2t 

G ~ .,J E r: A T t TOOL I NT RO O UC T HJ t\l 1' F TE R t NT ERV A L 5 r 

FLSF. Gr:NErlATl! "WRAF' UP"·• 

DF.Ct.'AHt:. ENTC::r. STATlCN EVENT I PA~SED C~TATION CtN, ,CTOOL 0:N; J 

LOCAL BUSY TIME(VR;, 

~o IF ~TATUS(CSTATION\•Os 

n~T BUSY TI~f=UNIF □RM(l,7~ IF CSTATIONcSTATION(1), 

U~IFOR~(1,B) tF CSTATTONaSTATTONC2), 

UNIFOnM!3,7) ~THERWICE, 

SET ~TATUO!CSTATlON):t FOR INTEnVAL BUSY TIMEt 

t,Ef~E~ATE "EXIT STATTON 11 (CTL1rlL) 

AFTE~ INTERVAL BU5V TIMEt 

r;ET TOTAL. l,USV TlMf.(CSTAT?ON)i:TfJTAL 8USV 

TIMr(CSTATION)+BUSY 

TH1E J 

END, 

t: l SF OD~ 

GEN~~ATE fNTfq !TAT!ON(NE~T STATION,CTOOL) 



F.ND. 
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AFTER TNTERVAL 2 

TF EXI~T~ NEXT STATIONS 

E i .. ') E ~ E ~J [ n ATE [ ~ T F.: ,~ ST AT I □ N U3T A T ION (1 ) , C T C'1 n L ) 

AfTE~ INTF-RVAL 6t 

OP.Cl'.~HE EXIT Sl'~TtUN EVfNT1 PASSED CTOOLCEN), 

!)ELECT, 0.9 on, 

l!Nr,, 

~CT TnnL C~UNT=T□nL COUNT+t, 

~CT TOTAL TRANSIT TIME'.aTOTAL TRANSIT 

TIME+CURRENT TIME ~ 

CREATION TIME(CinoL,, 

ENDt 

D E L E T f! C TO nt .• 

DFCi
1

ARf. ~mAr•ll!1 rvt:NTt wntrr. C"TRAN~IT TIME' AVERAGE=", 

Tt1TAI. TRANSIT TIME/1000s 

wrnt-r:: C"rE!1CENT Bunv, 1ST STATI(')N : ", 

TOTAL 8USY TlMF.($TATION(2))/CURRENT TIME)•too, 

w fH ,. r: c II r r: 11 c l' r--1 ·r e , , n v , 2 N D s T A ; I □ N • " , 

TCJTAL ~U~Y TI~f:(STATimHt))/CU~RCNT TIME)•100J 

WHTTE L:"rl:~Cl::NT BUSY, 31'?0 OT1'Tl0N m 0 , 

TMTAL BUSY TlM~(STATIO~Cl)~/CURRCNT TIME)•100. 



OF.NfRATF. Tl'JOl 

GO. 
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tNTnOOUCT .tON. 

As a second example, let us consider a simulation of the 

communication of a computer central processing unit with remote 

terminals. This example is used by Knuth ( 11) to illustrate the 

features of SOL. 

Let us say that there are four processor buffer unit pairs 

that handle the input and output between the computer and site 

buffers, where each of the latter controls one or more terminals, 

or typewriters. We will consider what happens at one pair of 

the processor buffer units in detail, and do a rough simulation of 

the activity of the other three. 

Thus, the processor buffer units we are considering handle 

three site buffers; site buffer ( 1) controls three terminals, for 

which we will use the indices 1, 3, 5; site buffer (2) controls two 

terminals indexed 2 and 4; and site buffer (3) controls only 

terminal ( 6). 

As people walk in and attempt to use each terminal they wait 

in line until that terminal is free. The terminals are far enough 

from each other that people do not attempt to find another, free, 

terminal. 

Let us say there are three kinds of messages that these 

people send. Message type A requires 250 msec. of computing 

and 3 response words from the computer, and it is sent by users 
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20% of the time; message B needs 300 msec. and 4 respons e wor ds , 

and is sent 50o;10 of the time; and mes sage C, sent 30% of the tim e , 

takes 400 msec. and 5 response words. 

The processor buffer units scan the six terminals seque n t i a lly 

for input; when a positive response is observed at a s i te buffer, 

the message is transferred from site to processor buffer a nd then 

to the computer; after processing, the appropriate numbe r of 

words is sent to the site buffer and typed, one wo r d at a time , at 

the appropriate terminal. 

We will comment further on details of the simulation as we 

write events. Initialization is handled when it is needed rathe r 

than all at once in the beginning. Let us first consider the action 

of each person. 

DECLARE "PERSON" CLASS WITH "ENTRANCE TIME 11 = 

CURRENT T IM E. 

DECLARE "TERMINAL" CLASS WITH "QUEUE 11 ENTITY 

LIST AND 11 STATUS1'=0 AND 11 MESSAGE 11 AND 11 SB" 

AND "TABLE" REAL LIST. 

CREATE 6 TERMINALS. 

SET SB( TERMINAL( l))= 1. 

SET SB( TERMINAL( 2)) =2. 

SET SB( TERMINAL( 3))= l. 

SET SB(TERMINAL(4))=2. 



SET SB( TERMINAL( 5)) = 1. 

SET SB(TERMINAL(6))=3. 
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Thus far we have created the terminals and assigne d to the m, in 

the attribute SB, the site buffers that control them. Thei r queues, 

where persons wishing to use them congregate, a r e e mp ty . Their 

status will be denoted as follows: 0 means the terminal is free; 

1 means that a message is being typed; 2 that the m e ssage has been 

completed; and 3 that the answer message may b e t y ped. The 

MESSAGE attribute will be set to l, 2, or 3 , depending on the type 

of message that the user sends. We also initializ ed th e class o f 

users, with an attribute that will save their entrance time so tha t 

we find out the length of their stay in the syste m . The attribute 

TABLE of each terminal collects those statistics. 

DECLARE "USER ENTRANCE" EVENT: LOCAL X(VR); 

SET X=RANDOM( 1, 6); 

CREATE PERSON; 

PUT PERSON IN QUEUE OF TERMINAL(X); 

GENERATE USER ENTRANCE AFTER INTERVAL 

RANDOM(0, 5000) ; 

GENERA TE "MESSAGE TRANSMISSION"( X). 

This event describes the entrance of a user, it cause s another 

such entrance within 5000 units of simulation time, whi ch h ere 

represent milliseconds; and it sets up the next event , the 
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sending of a mes sage. 

DECLARE MESSAGE TRANSMISSION EVENT: PASSED X(VR); 

DO IF STATUS OF TERMINAL(X)=0; 

SET STATUS OF TERMINAL(X}=l; 

SET MESSAGE OF TERMINAL(X)=FREQUENCY( . 2 

IF X=l,. 5 IF X=Z,. 3 IF X=3, 0 OTHERWISE); 

DO AFTER INTERVAL RANDOM(6000 , 8000); 

WRITE C "TERMINAL ( ", X, C"} SENDS 

MESSAGE", MESSAGE OF TERMINAL(X), 

C II AT TIME II' CURRENT TIME; 

SET STATUS OF TERMINAL(X)=Z; 

END; 

END. 

When the terminal is free, the user that is first in line types i n 

one of the three types of messages. It takes him between 6 and 

8 seconds to type. When it is completed, we write out a line for 

our reference and change the terminal status accordingly. 

DECLARE "ANSWER RECEIVED" EVENT: PASSED X(VR); 

MAKE 1ST QUEUE OF TERMINAL(X) CURRENT PERSON; 

REMOVE CURRENT PERSON FROM QUEUE OF 

TERMINAL( X}; 
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PUT CURRENT TIME-ENTRANCE TIME OF CURRENT 

PERSON IN TABLE OF TERMINAL(X); 

DELETE CURRENT PERSON; 

WRITE C"TERMINAL(", X, C") RECEIVES REPLY AT TIME" 

CURRENT TIME; 

GENERATE MESSAGE TRANSMISSION(X) 

IF EXISTS QUEUE OF TERMINAL(X). 

When status of the terminal is set to free by an event below, this 

event is also generated, which takes the user out of the system 

and prepares the terminal for use by the next person in line, if 

any. We write out another line for reference, showing when the 

answer was received. 

The above three events handle the action at the terminals. We 

now proceed to simulate the pair of processor buffer units. 

DECLARE "LINE"=0. 

DECLARE "QUEUE OF LINE" LIST. 

DECLARE "SCAN" EVENT: PASSED T(VR); 

SET T=T+l; SET T=l IF T>6; 

PUT T IN QUEUE OF LINE; PUT 0 IN QUEUE OF LINE; 

GENERATE "SEIZE LINE" AFTER INTERVAL 1. 

The processor buffer unit, having considered terminal T, proceeds 

to look at terminal T+l (mod 6). The cyclic scanning process 
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takes 1 msec. Then an attempt is made to seize the long distance 

communication line. Such seizure attempts must be handled by 

queuing when the ling is busy, i.e. LINE=l. This is done by 

double entries in queue of LINE; the first entry is the number of 

the terminal we are working on, and the second entry denotes the 

direction of the message to be transmitted, 0 denoting a message 

from the terminal and I 0 an answer from the computer. 

DECLARE SEIZE LINE EVENT: 

DO IF LINE=0; 

SET LINE=l; 

GENERATE "SEIZE BUFFER IN"( 1ST QUEUE OF LINE) 

AFTER INTERVAL 5 IF 2ND QUEUE OF LINE=0; 

ELSE GENERATE "SEIZE BUFFER OUT"( 1ST QUEUE OF 

LINE, 2ND QUEUE OF LINE) AFTER INTERVAL 5; 

END. 

Thus the above event controls the access to the line. Now when the 

processor buffer unit finds the line free, it must then consider if 

the site buffer of the terminal scanned is free. It takes 5 msec. 

for a control signal to propagate to the buffer. 

DECLARE "SITE BUFFER" LIST. 

SET SITE BUFFER( 1)=0. 

SET SITE BUFFER( 2)=0. 



SET SITE BUFFER(3)=0. 

SET SITE BUFFER(4)=0. 

SET SITE BUFFER(5)=0. 

SET SITE BUFFER(6)=0. 
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DECLARE SEIZE BUFFER IN EVENT: PASSED T(VR) ; 

REMOVE 2ND QUEUE OF LINE; 

REMOVE 1ST QUEUE OF LINE; 

DO AFTER INTERVAL 80 IF SITE BUFFER(SB OF 

TERMINAL( T)) = l; 

SET LINE=0; 

GENERATE SEIZE LINE IF EXISTS QUEUE OF LINE; 

GENERATE SCAN(T); 

END; 

ELSE DO; 

SET SITE BUFFER(SB OF TERMINAL(T))=l; 

GENERATE "TEST TERMINAL"(T) AFTER 

INTERVAL 15; 

END. 

If the site buffer is busy, the processor buffer waits 80 more 

msec., receiving no signal back, and then releases the communi ­

cation line (which, if there is a queue, will be seized immediatel y ) 

and proceeds to scan the next terminal. If the site buffer is free , 

it is seized by the processor buffer. It takes 15 milliseconds to 

send the number T down the line. 
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DECLARE TEST TERMINAL EVENT: PASSED T(VR); 

GENERATE "MESSAGE TRANSMISSION 11 AFTER INTERVAL 

395 IF STATUS OF TERMINAL(T)=2; 

ELSE DO AFTER INTERVAL 65; 

SET LINE=0; 

GENERA TE SEIZE LINE IF EXISTS QUEUE OF LINE; 

SET SITE BUFFER(SB OF TERMINAL (T))=0; 

GENERATE SCAN(T); 

END. 

The site buffer takes 65 milliseconds to determine whether the 

terminal is ready to transmit. If not, the line and the site buffer 

are released and the next terminal is scanned. If it is, it takes 

the site buffer 225 msec. total to get ready to transmit the 

message, and 170 to send it. 

DECLARE 11 COMPUTER"=0. 

DECLARE 11QUEUE OF COMPUTER 11 LIST. 

DECLARE MESSAGE TRANSMISSION EVENT: 

PASSED T(VR); 

SELECT; 

. 02 GENERATE MESSAGE TRANSMISSION AFTER 

INTERVAL 190; 

. 98 DO; 

PUT T IN QUEUE OF COMPUTER; 

GENERATE "COMPUTATION"; 
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DO AFTER INTERVAL 20; 

SET SITE BUFFER(SB OF TERMINAL(T))=0; 

SET LINE=0; 

GENERATE SEIZE LINE IF EXISTS QUEUE OF LINE; 

SET STATUS OF TERMINAL(T)=3; 

END; 

END; 

END. 

There is a 2o/o probability that an error is detected in the trans-

mission; in this case, a signal is sent asking for retransmission, 

which takes 20 msec. ; and another transmission occurs, taking 
\ 

again 170 msec. When the transmission is correct the line and 

the site buffer are freed, and the terminal is ready to receive 

an answer; it takes 20 msec. before those actions are executed. 

The message is sent to the computer for processing and must 

wait until the computer is free. 

DECLARE COMPUTATION EVENT: 

DO IF COMPUTER=0; 

SET COMPUTER=l; 

DO AFTER INTERVAL 250 IF MESSAGE OF TERMINAL 

(1ST QUEUE OF COMPUTER)=!; 

300 IF MESSAGE OF TERMINAL 

( 1ST QUEUE OF COMPUTER)=Z; 

450 OTHERWISE; 
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SET COMPUTER=0; 

DO IF 1ST QUEUE OF COMPUTER<=6; 

PUT 1ST QUEUE OF COMPUTER IN QUEUE OF LINE; 

PUT MESSAGE OF TERMINAL( 1ST QU~UE OF 

COMPUTER)+2 IN QUEUE OF LINE; 

GENERATE SEIZE LINE AFTER INTERVAL l; 

END; 

REMOVE 1ST QUEUE OF COMPUTER; 

GENERATE COMPUTATION IF EXISTS QUEUE OF 

COMPUTER; 

END. 

The computer processes the input message for a time interval 

dependent on its type. Then, if the message came from one of 

the six terminals we are simulating, an attempt is made to seize 

the line and send the answer. The terminal number and the 

number of words in the answer are placed in the line queue. Then 

the computer considers the next message, if any. The SEIZE 

LINE event, already written above, generates an attempt to 

seize the site buffer: 

DECLARE SEIZE BUFFER OUT EVENT: PASSED T(VR), 

WORDS(VR); 

DO AFTER INTERVAL 80 IF SITE BUFFER(SB OF 
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TERMINAL( T)) = l; 

SET LINE=0; 

END; 

ELSE DO; 

SET SITE BUFFER(SB OF TERMINAL(T))=l; 

GENERATE "OUTPUT 1'(T, WORDS) AFTER INTERVAL 155; 

END. 

We find out if the site buffer is busy, as in the case of input abov e ; 

if it is, we make another attempt immediately. If we manage to 

seize the buffer, output is initiated. 

DECLARE OUTPUT EVENT: PASSED T(VR), WORDS(VR); 

SELECT 

. 01 GENERATE OUTPUT(T, WORDS) AFTER INTERVAL 

100; 

. 98 DO; 

SET LINE=0; 

SET WORDS=WORDS-1; 

REMOVE 2ND QUEUE OF LINE; 

REMOVE 1ST QUEUE OF LINE; 

SET SITE BUFFER(SB OF TERMINAL(T))=0; 

AFTER INTERVAL 325; 

DO IF WORDS=0; 

GENERATE SCAN(T); 

DO AFTER INTERVAL 495; 
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SET STATUS OF TERMINAL(T)=0; 

GENERATE ANSWER RECEIVED(T); 

END; 

END; 

ELSE DO AFTER INTERVAL 495; 

PUT TIN QUEUE OF LINE; 

PUT WORDS IN QUEUE OF LINE; 

GENERA TE SEIZE LINE; 

END; 

END; 

END. 

Again lo/c of the time there may be a transmission error. Otherwise 

a word gets typed on the terminal. It takes 325 msec. for the site 

buffer to send the word to the terminal, and 170 msec. for the 

terminal to type out the word. The site buffer is released in any 

case, as has been the line; if the word typed was the last one, the 

terminal is also released, and a new scan is initiated. Otherwise, 

we try to seize the line again to send the next word. 

Finally, we simulate the other processor buffer units' seizure 

of the computer by using dummy terminal number 7 for all their 

activity: 

CREATE TERMINAL. 

DECLARE "OTHER PBU" EVENT: 

SET MESSAGE OF TERMINAL(T}=FREQUENCY(. 2 IF X=l, 
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. 5 IF X=2,. 3 IF X=3, 0 OTHERWISE) ; 

PUT 7 IN LINE OF COMPUTER ; 

GENERATE COMPUTATION; 

GENERATE OTHER PBU AFTER INTERVAL 

RANDOM( 3200 , 5000). 

In order to start the simulation we must generate the fir st e v ents; 

GENERATE USER ENTRANCE. 

GENERATE USER ENTRANCE. 

GENERATE USER ENTRANCE. 

GENERATE SCAN(0). 

GENERATE SCAN(3). 

DECLARE "1"=7. 

DO UNTIL I=0; SET I=I-1; GENERATE OTHER PBU AF TER 

INTERVAL RANDOM(3200, 5000); END. 

GO UNTIL CURRENT TIME=60):<60):< 1000. 

Thus three users walk in; the pair of proc e ssor b uff er units 

begins scanning at the 1st and 4th terminal respectiv e l y ; a nd six 

seizures of the computer by the other processor buffer un its are 

generated. The simulation will run for one hour of the s im ulated 

time. 

It should be noted that this example was designed to d emonstrate 

the capabilities of an activity-oriented language, yet i t can b e 

programmed quite naturally in RELSIM. The programmin g 
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would become even simpler if we used the AT INTERVALS-UNTIL 

statement instead of using queues for the line and the central 

processor. Thus the process of seizing the line from event 

routine SCAN would be: 

GENERATE "SEIZE BUFFER IN"(T) AFTER INTERVAL 1 

AT INTERVALS OF l UNTIL LINE=0; 

with event routine SEIZE BUFFER IN modified to 

DECLARE SEIZE BUFFER IN EVENT: PASSED T(VR); 

DO IF LINE=0; 

SET LINE=l; 

DO AFTER INTERVAL 85 IF SITE BUFFER(SB OF 

TERMINAL( T}) = l; 

SET LINE=0; 

GENERATE SCAN( T); 

END; 

etc. , eliminating the event SEIZE LINE. This is more like the 

type of programming done in simulation languages with no log, 

where conditions must be checked with every unit of simulation 

time that goes by. The cost of extra computing outweighs in most 

cases such simplification of programming. 
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Finally, let us consider a traffic intersection simulation that 

is designed to test prospective traffic policemen. This example 

is modeled after an intersection in downtown Athens where 

conditions have proven to be unmanageable by traffic signals and 

by most policemen; the few hardened veterans that can halfway 

manage it are famous and admired. This is a simplified version. 

The intersection is a normal cross. North street has four 

lanes, which we will call, starting from the west, Nl through 

N4. The first two are southbound from 7: 00 AM to 4: 30 PM, 

and northbound during the rest of the day. N4 is open only to 

buses when N3 is southbound. Nl and N4 are the only lanes which 

buses may occupy. A car may turn left from Nl or N2. East 

street has four lanes, all westbound, which we will name El 

through E4 with El being the northernmost. Left turns are 

possible from E3 and E4, and right turns from El and, after 

4: 30 PM, E2. There are northbound buses on El and westbound 

buses on E2. South street has two lanes, both southbound. No 

buses are allowed in Sl, the easternmost lane. Finally, West 

street has four lanes named Wl through W4 from the south, two 

going each way, with buses allowed on Wl and W4, and left turns 

allowed from W2 after 4: 30. The center of town is to the south­

east. Major jams occur at 7: 00 - 9: 00 AM and 4: 30 - 6: 00 PM, 

with a lesser one at 12: 30 - 2: 00 PM. At all such times there 

are huge crowds of pedestrians waiting to cross each corner. 
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For simplicity we will assume that once a crowd starts crossing 

a street it will occupy it for 3 0 seconds. The policeman is given 

an assessment of the situation every 30 seconds and is requested 

to give further directions. The simulation lasts from 7: 00 AM 

to 6: 00 PM, and may be taken as a test at many sittings; or , 

parts of it may be considered, e.g. a particular rush hour . The 

statistics will be kept with the car simulated and used as a 

REL-English base to determine the traffic policeman's per­

formance. 

Details again follow with the programming. In coding where 

cars come from and where they go to, we use 1 for north, 2 for 

east, 3 for south and 4 for west. 

DECLARE "CAR" WITH "TIME IN"=CURRENT TIME AND 

"ORIGIN" AND 11 OLANE 11 AND "TIME OUT"=0 . 

AND "DIRECTION" AND "DLANE"=0 AND "BUS"=0 . 

DECLARE 11 ENTRY 11 EVENT: 

CREATE CAR WITH DIRECTION=3; 

DO IF CURRENT TIME<9,:,60,:,60; 

SET ORIGIN=FREQUENCY(. 44 IF X= 1, . 22 IF X=2, 

. 34 IF X=4, 0 OTHERWISE; 

SELECT IF ORIGIN=!; 

. 4 SET OLANE=3; 

. 4 DO; SET OLANE=2; SELECT; 1/8 SET DIRECTION 

=4; END; END; 
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. 2 DO; SET OLANE=l; SELECT; 1/4 SET DIRECTION 

=4 ; END; END; 

END; 

SELECT IF ORIGIN=2; 

. 25 SET OLANE=4; 

. 25 SET OLANE=3; 

. 30 DO; SET OLANE=2; SET DIRECTION=4; END; 

. 20 DO; SET OLANE=l; SET DIRECTION=4; END; 

END; 

ELSE SELECT; 

. 5 SET OLANE=l; 

. 5 SET OLANE=2; 

END; 

GENERATE ENTRY AFTER INTERVAL 7. 8; 

END; 

A car is created, and the direction it comes from, the lane it is 

in, and the direction it will go to, are determined; and the arrival 

of the next car is generated. If the time is 7: 00 - 9: 00 AM, 44o/r 

of the cars come from N, 22% from E and 34% from W; 90% of the 

cars from N want to go S, and 10% E, while for the cars from E 

50% go Sand 50% E, and all cars from E go S. Cars arrive 

every 7. 8 seconds. In the same way the event may be completed 

for the other time intervals in the day that have certain traffic 

flow characteristics. 
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Buses are scheduled every minute on each line. 

DECLARE "BUS ENTRY" EVENT: 

CREATE CAR WITH ORIGIN=l AND OLANE=l AND 

DIRECTION=3 AND BUS= l; 

CREATE CAR WITH ORIGIN=2 AND OLANE = l AND 

DIRECTION=! AND BUS=l; 

CREATE CAR WITH ORIGIN=2 AND OLANE=2 AND 

DIRECTION=4 AND BUS=l; 

CREATE CAR WITH ORIGIN=4 AND OLANE=l AND 

DIRECTION=3 AND BUS=l; 

GENERATE BUS ENTRY AFTER INTERVAL 60. 

At 16: 30 we must empty N3 for the direction change. 

DO AFTER INTERVAL 16. 5,:,60~:-60; SET OLANE=2 FOR 

CARS WITH ORIGIN=! AND OLANE=3; END. 

The next event controls intersection traffic. CONTROL will b e a 

list with entries signifying the allowable direction coded as 

origin ,:, 1 O+ destination; i. e. N to S will be entered as 13. 

DECLARE "CONTROL" LIST. 

DECLARE "PRIORITY" ENTITY LIST. 

DECLARE "CROSS" EVENT: PASSED D(NU), L(NU); 

LOCAL OUTQUEUE(LE); 

SET OUTQUEUE=CARS WITH DIRECTION=D AND 

DLANE=l; 
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DO IF NUMBER OF OUTQUEUE<l 5 

AND-, (EXISTS OUTQUEUE WITH TIME 

OUT>CURRENT TIME) 

AND(EXISTS PRIORITY WITH DIRECTION=D 

AND ORIGIN':qo+D IN CONTROL); 

MAKE 1ST PRIORITY WITH DIRECTION=D AND 

ORIGIN=l0+D IN CONTROL CURRENT CAR; 

REMOVE CURRENT CAR FROM PRIORITY; 

PUT 2ND CAR WITH ORIGIN=ORIGIN AND OLANE= 

OLANE IN PRIORITY; 

SET TIME OUT=CURRENT TIME+S; 

SET DLANE=L FOR INTERVAL 180; 

SET OLANE=0; 

END; 

GENERATE CROSS(D, L) AFTER INTERVAL 5. 

Given a lane (by street and lane numbers) that leads away, this 

event sends a car to that lane if (a) the lane is not clogged up 

(b) there is no car already in the intersection heading for that 

lane (c) there exists a car that wants to go in that direction and has 

a green light; and if many such exist the car that has been waiting 

at the intersection the longest is selected. 

To start things up we must generate one such event for each 

lane out: 

GENERATE CROSS(4, 3). 
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GENERATE CROSS(4,4). 

GENERATE CROSS(3, I). 

GENERATE CROSS(3, 2). 

GENERATE CROSS( 1, 4). 

GENERATE CROSS( 1, 3) AFTER INTERVAL 4. 5,:~60,:~60. 

The next event passes control to the traffic policeman every 30 

seconds. 

DECLARE EVENT "COPE'': 

WRITE NUMBER OF CARS WITH ORIGIN=! AND 

OLANE=l; 

etc. for all lanes in; 

WRITE NUMBER OF CARS WITH DIRECTION=! AND 

DLANE =4; 

etc. for all lanes out; 

WRITE CONTROL; 

DELETE CONTROL; 

GENERATE COPE AFTER INTERVAL 30; 

PAUSE. 

Thus the man at the console sees the situation at the moment and 

is invited to put new entries in CONTROL that will allow cars to 

move in certain ::lirections. 

To start the simulation, we must create a few cars in each lane, 

put the first car of each lane in PRIORITY and generate the first 

ENTRY, BUS ENTRY, and COPE. The simulation time must 
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also be set to some time between 7: 00 AM and 6: 00 PM. The 

GO statement determines the length of the simulation. 
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III. AN INSIDE VIEW 

In implementing RELSIM on the REL system, we have attempted 

to use the considerable latitude offered to the language writer by 

that system, and to avoid exceeding its limits. This was a 

constant temptation, as familiarity with a system implies aware­

ness of all kinds of shortcuts available to the programmer willing 

to descend to the system level and make slight, unimportant 

modifications. Certain of the condition routines concerned with 

event declaration sentences and local variables get quite close to 

the edge in their treatment of the parsing graph, but in the end 

retain their virtue. 

When the user enters a version of RELSIM for the first time, 

a context area is set up on a page whose ID is placed in the 

COMMON region. This contains the simulation time, originally 

13 
zero; the seed for the random number generator, set to 5 ; the 

page ID's of created pages where system variables, attribute 

definitions, event definitions and the log will be saved; and 

various other pointers that should be readily accessible at all 

times, and will be discussed in their context. 

A. Data structures 

On declaring a class, an initial page is set up with a header 

containing pertinent information. The first word contains the 

page ID of that page; the second one is reserved to contain the ID 

of the first continuation page; there follow locations containing the 
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number of attributes defined in the class, the number of existent 

entities, a pointer to the location where the next created entity 

will reside, a pointer to the first entity, to the last entity, to the 

current entity, and a pointer reserved for the execution of a FOR 

statement on the class or some of its entities (see below); and 

finally, forty locations reserved for attribute descriptions. 

These description pointers function as follows: If on declaration 

of the class (or in a subsequent entity creation statement) an 

attribute is declared and set equal to some expression, the 

parsed tree for that expression gets copied on a page, and a 

pointer to that location is placed in the class header. This expres­

sion will be then evaluated for each event created, at the time of 

its creation. The pages where these parsed trees are stored 

sequentially are accessible through the context area and linked. 

There follows space for created entities. Each entity is made 

up of a self ID, a next and a previous entity pointer and the ID of 

its class, followed by the values of its attributes. 

Continuation pages have a simple header with a self ID, the ID 

of the first page, and the ID of the next page, followed by entity 

entries. 

A list is essentially set up in the same way, except no space 

for attributes exists in the header or each list element. The 

elements contain a payload instead of a self ID in their first word; 

and the header's third word contains a flag signifying whether this 
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is a FIFO or a LIFO list, rather than the att ribute number. 

Arrays have a simple header containing a self ID, a next page 

ID and the dimensions of the array, followed by single word 

entries. 

System variables are placed sequentially in linked pages, 

available through the context area. 

All of the above, when declared, get placed in the lexicon and 

subsequentially parse to their page ID, with the exception of attri ­

butes. These parse to the ID of a page that contains the cla ss ID 

and the number of the attribute within that class, for all classes 

that have attributes of that name. Disambiguation then occurs 

depending on the context of the parsed sentence. 

An event routine is parsed, and the parsed tree is placed on 

pages. 

B. The~ and the central processor 

A notice for each instance of an event that is generated is 

posted on the log, which is a list structure kept in core during the 

execution of any sentence that requires its presence {and therefore 

during the entire simulation run, which is the execution of the 

sentence GO) and copied out in pages between sentences and on the 

occurrence of a PAUSE. 

The structure of the log is as follows: there is a list element 

for each time point at which an event is supposed to b e executed. 

These list elements are linked by the third word with ascending 
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time, and they contain that time in the second word. The first word 

connects all the event notices at that particular time, posted in the 

order of their generation. 

An event notice is set up in the following manner: the first 

word, as we have noted, points to the next notice at the same 

simulation time; the second contains the ID of the parsed tree of 

the event routine, and the third points, if nee es sary, to another 

list element that acts as an information header. Thus, in its 

first word there may be a lexical ID of where the name of the 

notice occurs, so that it can be deleted after the event has been 

completed; the second points to a list of variables associated to 

the event by a FOR statement ( see below); and the third points to a 

list of the values that the event's pass parameters will assume. 

The log's page ID or core address, depending on its whereabouts, 

is kept in the context area. 

The simulation central processor, which is the semantic 

routine for the GO statement, essentially passes control to the 

REL semantic processor on a copy of the parsed tree of each event 

routine,an instance of which becomes the current notice. After 

each notice is executed in this manner, it is then deleted from the 

log, and the simulation processor proceeds to find the next 

available notice. 

Before each event is executed, however, the processor has to 

perform certain preliminary tasks. In the case where the 
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GENERATE statement which resulted in the current notice had 

been modified by any FOR clauses , the variables referenced by 

those clauses are to be found in the event notice; the simulation 

processor then modifies the copy of the parsed tree so that it is 

encompassed by a DO FOR statement on those same referenced 

variables. Again, all passed parameters and local variables 

reside in a particular page, accessed through the context page, 

during the execution of each event. The simulation processor 

must then update this page prior to the execution of each event, 

using the information on the log . 

C. Other implementation aspects 

Due to the fact that RELSIM is a fairly high level language, its 

syntax is very extensive, and the associated semantic r outines 

tackle many diverse problems. A full description of the workings 

of the language here would be tedious. Appendi x A contains the 

RELSIM syntax in its entirety; and Appendix B contains docu­

mentation on all condition routines, semantic routines and utility 

routines. We will restrict ourselves to discussing here, as 

illustration of the types of programming the language requires, 

three features of RELSIM: the DENSITY state ment , the FOR 

clause and the handling of pass parameters and l ocals. 

The DENSITY (f(X)) function operates in the following way : A 

scale factor c is determined, such that the function given satisfie s 

c. f(x)< 1 in the interval it is defined, say {a , b). Then on request 
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of a random number of that distribution, we obtain two uniformly 

distributed random numbers r 
1

, r
2 

in (O, 1) from the standard 

random number generator utility. We consider whether 

r
2 
~ c. f(a+(b-a)r

1
) 

and if so, we accept x=a+(b-a)r 
1

. Otherwise another attempt is 

made. 

The major problem here is the determination of the factor c. 

In a condition routine we make all instances of X in f(X) parse into 

real numbers containing no payload and flagged to signify their 

special status. Using copies of this parsed tree by placing a 

number into each flagged spot and calling the semantic processor, 

we do a rough search for a maximum value of f( X) in (a, b) using 

a grid of about 100 points. This produces an initial estimate of 

c, which is saved in the parsed tree of f(X). The semantic 

routine performs the test outlined above; and each time it finds 

that c. f(a+(b-a)r
1 

>l, it updates the value of c. Thus the distri­

butions become more accurate as more variates are produced. 

The implementation of the FOR statement so that it meets the 

requirements outlined in chapter II, is the following: The 

semantic routine is a generator, i. e. the semantics of all parts 

of the parsed tree under the present parse have not been executed, 

contrary to normal REL procedure. If the modifier is an entity 

it is placed at the top of a stack referenced by a pointer in the 

header of the class of which it is a member. Thus it becomes 
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the current entity of that class; and the entity that was current 

before FOR modification happened occupies the bottom of the 

stack. If the modifier is a list, all of its elements are placed in 

the appropriate stacks in their classes; and the parsed tree is 

altered to look as if there were as many FOR statements as there 

were classes modified. 

The routine then calls the REL semantic processor on a copy 

of the parsed tree of the sentence being modified by the FOR 

statement. On return, it is bumped; with a new current entity 

the semantic processor is called on another copy of the statement. 

When the stack of the class contains one element, the routine 

sets that as current and exits. 

Consider what happens when we say 

WRITE CURRENT X/CURRENT Y FOR X(l) FOR Y(l) FOR X(2). 

The FOR routine is first called on X(2), which displaces the 

current X and calls the semantic processor on the sentence it 

modifies, namely 

WRITE CURRENT X/CURRENT Y FOR X( l} FOR Y(l) 

Thus the first routine called by the semantic processor is again 

the FOR routine on Y( l}, and that, too, is set as current. Next 

another FOR routine on X( 1) is called, X( 1) displaces X( 2) as the 

current entity and the sentence 

WRITE CURRENT X / CURRENT Y 

is executed, with X( l} and Y( 1) current. Control returns to the 
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last mentioned FOR notice, and the stack is bumped so that X( 2) 

is current. Another WRITE is executed, but on return this time 

the inner FOR notice finds nothing executable in the stack and thus 

replaces the old current X and destroys the stack. Then the middle 

FOR is returned in control and performs similarly on Y. Finally 

control goes to the outside FOR, which finds no X stack; it also, 

therefore, exits. 

In exception to the above, where the basic verb modified is 

GENERATE, the FOR clauses merely pass the modifying entities 

or lists to the semantic routine for GENERATE, which then 

attaches these to the event notice posted on the log. Thus, instead 

of several identical events being generated, each with different 

current entities, a single event spanned by a DO FOR is ro sted, 

resulting in the same action in a more economical manner. 

In order to handle the LOCAL and PASSED variables, a 

condition routine on the event declaration statement must first 

build a mini-lexicon of the names included, complete with pay­

loads utilizing the information given about them, and then proceed 

to search the body of the event for instances of these names and, 

when found, span them with the appropriate parse. All other 

parses are destroyed, and control is returned to the system 

parser for a second try. All variables parse to a page ID on a 

special page utilized by all events being executed. Local list and 

array ID's are passed to the semantic routine and included in the 
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parsed tree of the event routine that 1s copied in pages, so that on 

execution of an instance of the event they will get created and 

initialized before any action occurs, and they will be deleted at the 

close of the event. 

The GENERATE semantics, on the other hand, stores the values 

of the parameters it passes in the event notice. If a local list or 

array is to be passed, a new copy of it is made and marked as 

local for the event generated, so that it will be deleted by it. The 

central processing routine of the language then retrieves these 

payloads and stores them in the page where they should be at the 

time it calls on the event specified by the notice. 

The above examples provide, we hope, some feeling for the kinds 

of tasks faced in the implementation of the language. Of course, 

implementation is an open-ended process, because as a more 

complete view of the language is obtained, better ways of doing 

things and more features that can be included keep occurring to 

the implementer. We cannot say that RELSIM contains all the 

features we would like to include in it, but at this point it seems 

to encompass enough to make it a viable and useful language. 
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APPENDIX A 

PELSIM SY NTAX 
* * 
***********************************************~***** 

TbE FIRST FEW RULES ESTABLISH TH E PA RTS OF SP EECH CF 
THE LANGUAGE .hNO THEIP SYNT f... X FE ATU RE S . THE Y ARr.: NUT 
TC BE APPLIED IN THE PARSING 1JF SE NTE NCES. 
TbE R[LSIM PARTS OF SPEECH AR ~ : 

VR - V~RIA8LE OF ANY KINO 
OP - FUNCTICN OPERATOR (E.G. 1- AX, MI N ET C.) 
EN - ENTITY 
NU - NUMERICAL EXP r<E SSION 
AB - ATTRIBUTC.: 
EC - ENTITY CLASS 
BO - ECCLEtN EXPRESSION 
C Cl - COMP AR A TOR ( E • G • > , < = , E TC • ) 
CJ - CCNJUNCTION (E.G. ANO, Xf:P, ETC .) 
CN - rc~DITIONAL NUMERICAL EXPk f SSION 
P R - e O () L E AN E X PR [ S S I C i'J w I TH UN R c SO l V L-= D AT T R I AU T E S 
OE - OEFINITION~l 
CL - INDIRECT SENTE~CE 
VC - VERB CLAUSE 
DP - NUMERICAL EXPR. IN A 11 FR EQUENCY•1 STATEMENT 
DX - ~CT IN USE 
EV - EVENT ROUTINE 
PO - EVENT ~OTICE (POSfING) 
NT - EVENT NOTICE NAME 
TA - LOCAL OR PASSEC VARIABL F. IN EVEN T ROUTINE 
TR - VARIABLE TC BE ~ASSED IN " Gf:t\ER ATEtt CLA .JSE 
MA - ARRAY 
MN - NU~F.RICAL SEQUENCE FO R ARRAY DEFINI TION 
WL - CUANTITY TC PE ~RITT EN OUT 

10 11 12 13 14 1 5 16 1 7 18 
SYN:• ss• => •vR OP EN NU AB EC 80 co CJ 
SEM:SFMRfT 

lA lC 10 lE lF 2 0 21 22 23 
SYN: •ss•=)'DE CL vc OP DX EV PC NT TA 
sr::M:SfMRET 

26 21 
SYN:•ss•=>•M~ Wl' 
~FM: Sf MR ET 

l ~ 
CN 

2 4 
TB 

l.A 
PB' 

2 5 
MA' 
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SYN: •ss•=)' * * NU**' 
CHK: -~AS-NMD-~XP 
SEM:SfMRFT 

SYN: 1 SS 1 =>' * * AB * *' 
1 2 4 8 1 2 4 9 l 2 4 8 

CHK:+FPN+ENT+LIS+SEC+AOF+AOP+ENC+AB2+AB3+AB4+LOS+LAT 
SE~:SEMPET 

S~N:•ss•=>' * * VR * *' 
1 2 4 8 1 2 4 8 1 2 4 8 

CHK:+FPN+ENT+LIS+S~C+ELT+VRl+LIN+LIC+LCJ+SCR+LOS+LAT 
SfM:SFMRET 

SVN: 1 SS 1 => 1 * * DE * *' 
1 2 4 8 1 2 4 9 l 2 

C~K:+FPN•ENT+NUL+ATT+NAM+NUK+NUN+NEV+ATC +MAT 
SF. M: SE MR ET 

SYN:•ss•=>• * * vc * *' 
l 2 4 8 l 2 4 8 l 2 4 8 

CHK:+CRE+CSP+TIN+LAP+VEN+VSN+CVC+CON+DOV+VIN+FAE+SEL 
SEM:SEMRET 

SYN:'SS'=)' * * * VC 
1 2 4 8 

CHK:+SCEiGOO+ELS+NLS 
SEM:SEMRET 

S~N:•ss•=>' * * OP * *' 
CHK :+OPF +ROP 
SE M: S EMR ET 

SYN: 1 S5'=)' * * TA * *' 
1 2 4 8 l 2 4 8 1 2 4 8 

CHK:+REF+VEF+LEF+LRF+MAF+ECF+ENF+~UF+ABR+ABc+ARL+Atl 
SEM:SEMRET 

S~N:•ss•=>' * * * T~ 
1 2 

C ~K: +EVF-+POF 
SEM:SEMRET 

* * *' 

THE NEXT RULE APPLIES A PRESCAN 10 ALL SENTEi-JCES. 
BLANKS ARE HANDLED ANO NUMBERS COLLECTED. 

SYN: 1 '=>'SZ' 
. CNO: SCRPR EN 
Sf~: 
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T~E FCLLOWING RU LES HANDLE TH E WA YS IN WrlICH A 
NU~EPICAL EXPP ~SS I (N MAY BE GBTA I~E O. 

S\'N: 'NU'=> 'VR I 

C HK: - LIS +F F N 
Sfr-A:VTNU 

S'tN:. NU'=>' VR I 

C HK :-F P N-E t\ T 
SEM:VTNUIF 

SY~:•~u•=>• NUMBER 
CHK:+LIS-LAT 
SEM:NUQ9 

SYN: 'NU'=>•~u +NU' 
CHK:,-NAS 
SET: O+N~S 
SEM: ADD 

S't'N: 'NU'=>'NU -NU' 
CHK:,-NAS 
SET: O+NAS 
SEM: SUB TR ACT 

SYN: 'NU'=)'NU *NU' 
CHK:-NAS,-~AS-~MD 
SET: C+Nf'JO 
SEM: MULTIPLY 

SYN: 'NU'=>•~u /NU' 
C~K:-NAS,-NAS-NMO 
SET: O+NMO 
SEM: DIVIDE 

s YN: I NU I=>. NU * *NU' 
CHK:-NAS-N~D,-~AS-~~D-NXP 
Sf T: O+NXP 
SE~: SEt-AF-CW 

S Y N : ' NU ' = > ' ♦ NU 1 

CHK: -NAS 
CNC: SCRKA2 
SET: O+N AS 
TNF: l 
SEM:SEMRET 

0 F VR' 
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SYN: 'f\.JU'=>' -NU' 
CHK: -Nt.. S 
CI\ 0: SCP.t<.A2 
SET: O+NAS 
SEM: UNARYM 

svr-..: 'l'\U'=>' (NU ) . 
TNF:l 
Sf~:SF~RFT 

SYN: 'NU'=>' s I N ( "'u ) I 

SEM: SEMSIN 

S 'VN: 'NU'=>• C 0 s ( f\ u ) ' 
SEM: SEMCOS 

SYN: 'NU'=>' E X p (NU ) ' 
SFM: SEMEXP 

S 'f N: 'NU'=>' L 0 G ,~u ) t 

S E tJ : SEMLOG 

S '1N: 'NU'=>' s C R T ( NU ) ' 
S EM: SEMSQRT 

SYN: 'NU':)' F p ( "U ) . 
SEM: SEMFP 

S 'f N: 'NU'=>' I p (NU l I 

SEM: SEMIP 

SYN: • NU I=>. A 8 s t "u ) I 
SEM: SEMA8S 

S 'f N: 'NU'=>' s I G N ( f\U ) t 

SEM: SEMSIGN 

SYN: 'NU'=>' M A X (NU , NU ) I 

s-=: M: SEMMAX 

SYN: 'NU'-=>' M I N ( "u , NU ) I 

SEM: SEMMJ N 

SYN: 'NU'=>' M 0 0 ( NU , NU ) I 

SEM: SE M t-100 

SYN: 'NU'=>' T A N ( NU ) I 

SEM: SEMTAN 



5 Y N : • N U ' = > ' L N ( NU ) ' 
$FM: SF~L~; 

~'tN: 'OP'=>' P' A X' 
SF"'1:Cnl 

S~N: 'OP'=>' ~IN' 
SEM:fJPAl 

SYN:'NU'=>'OP (VR )' 
CHK:,+LIS+FPN-LAT 
SE~:VRY5 
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SYN:'NU'=>'OP (AB f C P VR )' 
CHK:,+FP~,+LIS+ENT-LAT 
SE~:VRY6 

S Y N : ' NU • = > • 0 P ( A B J • 
CHK:,+FPN-tOP-AOF 
SEM:VR'V7 

s y N: • NU. => I R ~ t'..: [ C ~ ( NU 'NU , • 
SFfil.:RAND 

SYN: 'NU'=>' A I N O M I A L ( NU , NU ) ' 
SE~:RINO 

SYN:'NU'=>' PASCAL (NU ,NU)' 
SE~:PASO 

SYN:'NU'=>• PO IS SC N (NU)' 
SEM:POID 

s y N: I NU' =>' u 
SEM:UNID 

SYN:'NU'=>• N 
SEt-':NOPO 

SYN:'NU'=>' E 
SEM:fXDI 

SYN:'OP'=)'NU 
SEM:SEMRET 

SYN: •OP•=) • 0 
SET:O+DPF 
SE~:SEMR.ET 

N 

0 

X 

I F C R M (NU ,NU 

R M A L ( NU ,NU ) t 

p D (NU ) . 
I F X =NU' 

C T H E R W I S E ' 

) ' 



SYN:•o~•=>'OP, OP' 
CHK:-OPF,+CPF 
SET: l+OPF 
TNF:<1><2,*> 
SEt-1:SEMRET 
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SY I\: • NU 1 => • 0 E N S I T Y ( • 
CNO:CHXT@ 
SFM:Sf:MRET 

SYN:'NU'=>' al' 
CNO:CNNCH 
SEM: S EMP ET 

SYN:•NU':)' 0 E ~SIT V "NU"' 
Cf\O:CNDEN 
SF.M:NUil (G) 

S'tN: 1 NU'=>' FR E OU f NC Y (DP)' 

SE~:NUI2 (G) 

SYN: 'NU'=>'NlJ 1' 
SE~:NUI5 

T._E NEXT FEW RULES HANDLE THE WAYS Ir--J WHICH 
F~TITIES, SYSTEM VARIABLES AND LIST VARIABL~S ARE 
OBTAINED. 

SYN:' EN' =>'VR' 
CHK:-LtS+FNT 
SEM:VTNU 

SYN: ' VR' =>' VR' 
Ct-sK:+LJS+LAT 
SET:1-LAT 
~E~:VTNU 

SYN: 'VR'.:>'MA (NU ,NU )' 
SET:O+FPf\ 
so~:VRRl 

SYN: 1 VR'=>'A8 (EN J' 
SET:1-SEC 
SE~:NABT 

S 't N: ' VP ' = > ' AB 
SET:1-SEC 
SE~:NABT 

0 F f:N' 



S 'V N : ' VR ' = > ' A A ' 
C .,_K: -AOF-AOP 
Cf\O:CNNPE 
SET: I-SEC 
SEl":VRGl 

S 'f N: 'VP '=) 'EC ' 
SEl:O+LIS~ENT+SEC 
SEM:SFMNCP 
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SYN: 1 CE 1 =>• CURRENT VQ' 
Ct-K:+LIS-LAT 
SfT:1-LtS 
SF~ :C URC 

SYN:'VR'=>'CE' 
SfT:l+fLT 
SF.M!VTNU 

SYN:'VR 1 =>' CURR f ~ T 
SET:O+FPN 
SEM:CURT 

SYN: 1 VR'=> 1 SE F 0' 
SFM:VRSO 

S YN : ' VR ' = > ' P A N D C t' VP' 
ChK:+LtS-LAT 
SET:1-LIS+ELT 
Sf~ :RA NC 

SYN:'VR'=>'VR ( l )• 
CHK: +LIS-LAT 
SET:1-LIS+ELT 
SEM:LASC 

SYN:'VR'=>' LAST VP' 
CHK:+LIS-l.AT 
SET:1-LIS+ELT 
SEM:LASC 

S 'V N: 1 VR • = > 1 VR ( NU ) ' 
CH<:+LIS-LAT,, 
SFT: 1-LI S+EL T 
Sf~:LF.TN 



SYN: 1 VR 1 :> 1 NU TH VR' 
CHK:, +LIS-LAT 
sr:r:2-LI S+flT 
SFM:NTHC 

SYN:'VR'=>'VR. l -NU )' 
CHK:+LIS-LAT,, 
SFT:1-LIS+ELT 
SE t': L ~ NC 

SYN : • VR 1 ::: :> • N E X 1 VR • 
Ct--K:+LIS-LAT 
SE T : l - LI S+ F l T 
SEM:VRAl 

S'VN:• VR' ==>' N E X T V'<' 
CHK:-L IS+El T 
SET: 1 
SEM:VRA2 
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SYN:'VR'=>' PREVIOUS VR' 
CHK:+LIS-LAT 
SET: 1-l I S+EL T 
SEt-':VRA3 

SYN: 1 VR 1 :>• PRE VIGUS VR' 
C.,_.K:-LIS+fLT 
5FT :1 
SEM:VRA4 

S~N:'VR'=>• Al L VP' 
CHK:+LIS-l.AT 
SET:l 
Tt\F:l 
SF~:SE~?l:T 

TrE FOLLOWING RULES BUILD UP qo□ LEAN EXPRESSIONS . 

SYN: 1 A0 1 =>'NU(ONU' 
S£~:BTST 

S 'Y N: 'BC' => 'E ~COEN' 
CHK:,+ENE,, 
SEM:BTST 

I 
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S~N:'BO'=>'VR(OVR' 
CHK:+LIS-LAT,+ENE,+LIS-LAT 
Cf\D: FTFOF 
S1=~:l TST 

SY~:•Ar.•=>•~~ IN VR' 
CHK:,+LI~+ENT-LAT 
Sf.M:BCRl 

s y": ' [3 (}. = > IN u I N VR. 
C~K:,+LIS+FPN-LAT 
SEM:ACRl 

s YN:. BO. =>. E X I s T s . VR I 

C HK: +LIS -l AT 
SF.~:BCX2 

S~N: 1 B0 1 => 1 -t80' 
CHK:-BOP 
SET: l 
SEM:BRFV 

s,N: 1 8( 1 =>' NE IT~ ER BO' 
Ct--K:-AOP 
SET: l 
SF~:BREV 

SYN: ' BO• = >' ( 80 ) ' 
Tt\F:l 
SEM:SEMRET 

S~N:•eo•=>'BO CJ 80' 
CHK:,,-BOP 
SET:o+eoP 
SEM:BPil. 

SYN: 1 CC'=>' Is• 
CNO:Cf\JIS 
SET:O+ENE 
SEM:CCl 

SYN:' cc•=>' =' 
SET:04ENE 
SfM:COl 

s "N : • co• => • < • 
SF.M:C02 



5Y~:•cc•=>' >' 
SFM: C<J 3 

~'vN:'CrJ'=>• < =' 
SFM:(n4 

SYN: 'CC'=)' ) =· SE~:CC5 

SYN: •co•=>' -,(QI 

SET: l 
<;fM:CCRV 

s-vN:•co• =>' N C 
S FT: 1 
SE~:CORV 

S'VN:•co•=>• N 0 
C f\D: Cf\ NO 
SE'T:O+fNE 
SEf-l:CC6 

SYN : 'CO' => ' Cc• 
CNO:CONPR 
SET :1 
TNF: 1 
St:~: Sf MR FT 

SYN:•cc•=>•co 
s CT: l 
Tt-.F: 1 
SFM:SFMPET 

T CC' 

T' 

SYN: 1 (0 1 =)' 
SFT:l 

r sea• 

TNC:1 
Sf~:SEMR t: T 

SYN:' 
SF,-.: 

I N •=>• 

S~N: 1 CJ'=> 1 AN 0' 
SEM:UJl 

SYN:'CJ 1 =>' C R1 

SEM:cn2 

~ 'Y t\ : I CJ' => t X O R I 
SE~:C03 

I S 
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I t\J 



S'fN:'CJ'=>' f\ CR' 
SEM:CD4 
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THE FCLLCWING RULES fANDLE CClNOITIONAL NUMERICAL 
EXPRFSSICNS. 

SYN:'CN•=>•~u 
SF M: N UC l( G) 

5Y":'(N'=>'NU 
S !: T: 0 +C n P 
Tf\F:1 
Sf~: S EMR FT 

SY~: 'CN'=>'fNCN' 
CHK:-COP,+COD 
SET:2 
S t ~ : C N PU ( G ) 

SYN:' f\U' => 'CN' 
Ct-:K:+CrP 
CNO :C NCN 
TNF:l 
SE~:SFMRET 

IF BC, 

0 T ~FR WT S E' 

THE NEXT FEW RULES BUILD UP 800LF~NS ~ITH ATTRIBUTES 
I~ THEM ~~ICH ARE ~OT BOUND TO ANY ENTITY AT THIS 
STAGE. T~ESE BCCLEANS ARE USED If\ MAKING LISTS nF 
ENTITIES WITH SPECIFIC CHARACTERISTICS. 

SYN: 'PB'=)'ABCCNU' 
C~K:+FPN+AOF,,, 
SEM:BTST 

SYN: 1 PB 1 =>'ABCOEN' 
CHK:+E~T+AOF,+ENE,, 
SEM:BTST 

SVN: 1 PB 1 =:> 1 ABCOVR' 
CHK:+LIS+AOF,+ENE,+LIS-LAT 
Cf\O:FTFOE 
SEM:LTST 

SYN:'PB'=>'AB T ~ VR' 
CHK:+AOF,+LIS-LAT 
Ct\C:RfOF. 
SE~:BORl 



S-YN:'PB'=>•P~ CJ PP' 
CHK :+ PBP, ,-PBP 
SET: 1 
SEM:BPIL 

S\'N:'PB'=>' v. IT t-' PB' 
Ct-K:-PBP 
SfT:l+PR.D 
TN F: l 
SF~ :SF.MR fT 

S'tN: 'PR'=>• .,pR• 
Ct-K:-PBP 
SET: l 
SEM:BREV 
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SYN:•oe•=>' NEITHER PB' 
CHK:-P8P 
SET:l 
SEM:BREV 

SYN: 'PR•=>• (PB ) • 
SfT:l 
TNF:l 
SEtJ:SF.MRET 

r.-.E FOLLOWING RULES COLLECT LFV~ts or- UNBOUND 
ATTRlBUTfS. 

S~N:'AB'=>'AB OF AB' 
f,t-K:+ENT,+ENT+AOP 
SET:2 
SEM:FABl 

S\'N:'AB'=>'AA Of AA' 
CHK:-F.NT,+f.NT+AOP 
SET: 1 +AOP+AOF 
SEtJ:FARl 

SYN:'AB 1 =:> 1 AB (AB )' 
CHK:+ENT,~ENT+AOP 
SET:2 
SEt":FABl 

S'tN:'AB'=>'AB (AB )' 
CHK:-ENT,+ENT+AOP 
SET: l+.OCP+AOF 
SEt':fABl 



S-YN: 'AB'=>'AB' 
Ct- K ·: - ~OP 
Ct-,C:ARf:F 
SET:l+AfJP 
SEM:FAB2 

S'VN: 1 AB 1 ::)'AH' 
C~K :-MlF-+AOP 
CNO:ABIF 
SF T: l + AL1 F 
T ~ F: 1 
SE~:SEMPET 
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THE FOLLn~ING RULES ARE USEQ IN THE CREATION OF 
SCRATCH LISTS. 

SYN:'VR'=>'EC PH' 
CHK:,+PRP 
C~D :C "'NPR 
SfT:O+LIS•FNT+SCR 
SEfl':ECRl (G) 

SYN: 1 EC'=)'EC S' 
TNF :1 
SE~:SEMPET 

S~~:•VR'=)'VR IN VR' 
CHK:+LIS-LAT-LIN,+LIS-L~T 
Ct\C:BfOE 
SET:l+LIN-SEC+SCR 
SEM:E=CR2A 

SYN:'VR'=>'VR CJ IN VR' 
CHK:+LIS-l.AT-LlN-L!C,,+LIS-LAT-L!f\J 
Ct\O:FTFOE 
SET:t+lIC-SEC+SCR 
SEM:ECR2 

SY~:•VR'=>'VP N r: T IN VR' 
C HK: +LI S-LAT-l IN, +ll S-LA T 
CNC:BFOE 
SFT:l+L!N-SEC+SC~ 
SEM:fCR2B 

S Y N : ' V R ' :: > 1 V R A N C N O T 1 N VR. ' 
C~K:+LIS-LAT-LIN-LIC,+LtS-LAT-LI~ 
CI\C:BFOf 
SE T : 1 + LI C - SEC + SC R 
SfM:ECP2e 
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SYN:'vR'=)'VR AN C NOT v~• 
CHK:+LIS-LAT-LIN-LJC-LCJ,+LIS-LAT-LIN-LIC 
C NO: BFnE 
SET :l+LC J-SEC+SCR 
SEM:FCR2B 

S'vt\:'vR'=)'VR CJ VR' 
C~K:+LIS-LAT-LIN-LIC-LCJ,,+LIS-LAT-LIN-LIC 
Ct\ D: FT FOE 
SET :l+LC J-SEC+SCR 
SF.M:ECP2 

s~N: 1 vR 1 :> 1 <vR ,, 
CHK:+LIS 
SET:1-LI"-LIC-LCJ 
TNF: l 
SEf':SEr,APET 

T~E NEXT RULES HANDLE QECLARATI0~ STATEMENTS EXCEPT 
FCR EVENT PGUTINES. 

S'tN:•DE'=>' W 1 TH "' 
SET:O+ATT+FPN 
CND :CNAC 
SfM:OEf<l 

SYN: 1 DE 1 => 1 A f\ 0 "' 
SET:O+ATT+FPN 
C"-0:CNAC 
SEM:OERl 

SYt\:'DE'-=>' DEC l A R E "' 
SET:O-+FP~ 
CNO:CNAC 
Sf~:OER2 

S~N:'OE'=>' NAME n "' 
SET:O+NA~ 
Cf\C:CNAC 
SE~: SEMRET 

SYN:'DE'=>'OE RE AL' 
CHK:-NUK-NUl-~UN-NAM-NfV 
SET:l+NUK 
T~F:1 
SEt':SfMRET 



SY~:•OE'=>•OE l IS T• 
CHK:-NUL-NUN-~AM-NEV 
SET: 1 +NUL 
SftJ:OER3(G) 
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SYN: 1 DE 1 =>'DE ST ACK' 
CHK:-NUL-NUN-~A~-NEV 
SET: l+NUL 
Sf~:OEPl (G) 

SYN:'Ci:'=>'DE (NU ,NU )' 
CHK:-NUK-NUN-~Ul-NAM-NEV-MAT,,, 
SET:l+MAT 
SEM:OfXl(G) 

S~N:•oE•=>'DE F ~TI T v• 
SET:l+NUK+ENT-FPN 
C~K:-NUK-NUL-~UN-NAM-NEV-MAT 
TI\F:l 
SEM:SEMRF.T 

SYN: 1 CE 1 => 1 DE CL Ass• 
CHK:-NUK-NUL-NUN-NAM-NEV-MAT 
SET:l+NUK+ENC-fPN 
SEM:DER4(G) 

s~~:•oE•~>•DE =NU' 
CHK:+FPN-NUL-NUN-NAM-NEV,, 
SET: l+NUN 
SEt':OER5(G) 

SYN: 1 0E 1 :> 1 0E =EN' 
CHK:+ENT-NUL-1\UN-NA~-NEV,, 
SET: l +NU N 
SEM:DfR5(G) 

SYN: 'DE'=)'DE =VR' 
CHK:+NUL-NUN-~~M-NEV,+LIS-LAT 
CNO:BFOE 
SET:l+NUN 
SEM:OER5(G) 

SYN: 'DE'=)'DE' 
Ct-K:+ATT-ATC 
CI\D :POSR 
SF. T: l +ATC 
Tf\F:l 
SE~: SEM~ET 



SYN:'CE'=>'DE DE' 
CHK:+ATT-ATC, ♦ ATT+ATC 

SfT:2 
Sff':SF.MPET 

SYN:•ss•=>'DE. 
CHK :-ATT-NAM-~EV 
CNC:CNTS 
SEM:SSRl 

s \'N : I s s '=) IDE DE • I 
C~~:-ATT~ENC,+ATT+tTC 
CNO:CNTS 
S EM: S SR 1 
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THE FOLLOWING RULES ~A~DLE THE CC~ MAND STATEMENTS 
~ND MODIFYING CLAUSES LSEO IN ~VE NTS OR DI RECTLY. 

SYN:•vc•=>' CR EAT E EC' 
SET:O+CRE+CSP 
Sf::'.M:VCRl 

SYN:•~c•=>' CREATE EC DE' 
Cf-lK:, +NA f<I 

SET:O+CRE♦CSP 

SE~:VCR4(G) 

SYN:•vc•=>'VC DE' 
CHK:+CRE,+ATT+ATC 
SET :1 
SFM:VCR2(G) 

s 'tN : • ~c • => • vc PB• 
CHK:+CRE,+PBP 
CNO:CNNPB 
SET: l 
SEM:VCYl(G) 

5 '1N:' VC' => 1 VC F O R I N T E R V /:. L NU' 
CHK:-TIN+CSP-LAP-FAE-VIN-CON,, 
SET:l+TIN 
SEM:VCR3(G) 

SVN: 1 vC 1 => 1 CREATE NU EC' 
SET: O+CR E+C SP 
SfM:VCR5 

SYN:'OG'=>' GENE PATE EV' 
SFM:SfMRET 
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SYN:'DG'=>' GENER~ TE "' 
CNC:CNOVC 
SF,-,:SE~PFT 

SYN: 1 VC'=> 1 DG 1 

SET:O+Gnc 
TNF:<l,*) 
SE~:VCAl 

s 'tN: I vc I==> I DG ( TB , I 

CHK:,+TeF 
SET:O+GCC 
TNF:<1,*)<2> 
SE~:VCTl (G) 

s~N:•vc•=>•vc DE' 
CfK:+GOO-OOV,+NAM 
SET:l 
SE M: VC A 2 ( G) 

SVN:•vc•=>•vc AFTER INT CR VAL NU' 
CHK:-LAP-VEN-CVC-VSN-ELS-CCN,, 
SET: 1 +LAP 
SE fl : VC A 3 ( G ) 

SYN: •vc•=>'VC I F BO' 
CHK:-CON-VEN-CVC-VSN-ELS,, 
SFT:1-+CON 
SEM:NUCl(G, 

SYN:•vc•=>' EL sf vc• 
CHK:-OOV-SEL-CON 
CNO:POSR 
SfT:1-+ELS 
TNF:l 
SF~:SEMRET 

SYN: •vc•=>•vc ; vc• 
CHK:+CON,+ELS 
SET: 1-+f LS 
SE~:CNPU(G) 

S '1 N: • \IC ' = > 'V C • 
CbK:+CON-NLS-COV-SEL-ElS 
CNO:NELSR 
SET: 1-+Nl S 
TNF:l 
SEM:SEt-'1RET 
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SYN:•vc•=>' s ET VR =NU' 
CHK:+FPN-LIS-SCR,, 
5 FT: 0 +CSP+ SC E 
SE:~:VCA8 

SYN:'VC'=>• 5 ': T VP =NU' 
C~K:-FPN-ENT-LIS,, 
SF. T :Q+C SP+SCE 
SE~:VCA8A 

SYN:•vc•=>' s ET VR =EN' 
C HK:+ ENT-LI S- SEC- S CR , , 
SET :Q+CSP+SCE 
SEt-1:VCA8 

SYN:•vc•=)' NI AKE VR CE' 
CHK:-us,, 
CND:RFOE 
SfM:VCARP 

SYN: 1 VC 1 => 1 SET VR =VR' 
CHK:+LIS-L~T-SCO,+LIS-LAT 
Ct\O:BFOfl 
SET :O+-CSP-+SCE 
SFM:VCLl 

SVf\:•Mf',.;':)'NlJ' 
St~:Sffv'PET 

SYN: 1 MN 1 => 1 NU ,MN' 
TNF:<1><2,*> 
SEf;l:SF.~P=T 

SYN:•vc•:)• s ET MA =MN' 
SET:O-+CSP+SCf 
SEM :VCC4(G) 

SYN:•vc•=>' CELE TE EN' 
C NO: S ! F!'I 
SEM:VCBl 

SYN:•vc•=>• CE Lt TE VP' 
CHK :-SEC-L 1 S 
C NC: S 1 FN 
SE~ : VC A ?i 

SYN: • vc • =) • 0 E L E T E V Q_ ' 

CHt<:+LIS-SCR-L.AT 
SEM:VCFA 
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sv~:•vc•=>' CELE TE VR' 
CHK:+LIS+SCR-LAT+ENT 
SEto1:VCF 8 

SYN:'VC'=>' CE l ET f 
CHK:+LIS-SEC-SCR-LAT 
CNC:SIFN 

L I S T VR' 

Sf~:VCFl 

SYN:•vc•=>· DEL ET E 
CNO: S I HJ 

C l A S S tC' 

SEt':VCFl 

SYN:•vc•=>· DE l ET E EV' 
CNO:SIFN 
SE,.,: VCB 3 

S~N:•vc•=>' 0 EL f TE PO' 
SEM:VCAt..(G) 

SYN:•vc•=>' D EL ET t MA' 
S0'1:VCE 4 

SVN:'VC'=>' CF LET E 
SEM: VCF3 

SYN:•vc•~>· 0 f LET E 
SE~:VCF4 

SYN:•vc•=>• 0 El FT E 
SEt-1:VCF~ 

SVN:•vc•=>· 0 El ET E 
SF.Pt1:VCF7 

SYN:•vc•=)• 0 El ET E 
SfM:VCG2 

SYN:•vc•=)' CE l ET E 
SEfi':VCF8 

S~N:•vc•=>· RE sf T' 
SEM:VCF9 

SYN:•vc•=>' p Aus f' 
SE~:VC84 

A l L 

A L L 

A L L 

A l l 

A L L 

L O G' 

C L AS S r. 5' 

E \/ E N T s• 

L I S T S' 

C C ~ST ANT s• 

A R R A Y 5' 
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SYN:•vc•=)' D n• 
SET :O tOOV-+GOC 
SEr-' :SEMPfT 

SYN:•vc•=>'VC u NT I l eo• 
~HK:-VIN-CVC-ELS-VFN-VSN-CC~,, 
SET:l+VIN 
SE~: VCHl (G) 

SYN:'VC'=>•vc A T I NT ERV~ Ls 
O ·K :-V H!-CVC-ELS-Vf.N-VSN-fC'~l ,,, 
SET:l+VIN 
SFM:VCB6(G) 

SYN:•vc•=>'VC F ( ~ VP 1 

C~K:-CVC-FLS-\EN-VSN-CCN,+ENT+LIS-LAT 
~ET:l 
SFM:\ICB8(G) 

SY~:•vc•=)'VC FOR EN' 
CHK:-CVC-FLS-VEN-VSN-CON,, 
SfT:l 
SEM:V(Il(Gt 

s 'VN: • V( I:::> • f N D. 
Ct\C:CNCP 
SET:O+VE~ 
SEM: SEMP f T 

S~N:'VC'=)'VC vc• 
CHK:-VEN-orv-SEL-VSN,+VF~ 
sr-r:o+vfN 
Tf\F:<1><2,*> 
SE~:Sft-1RET 

s~N:•vc•=>•vc vc• 
CHK:+OOV,+VEN 
SET:l+CVC-COV-COD 
SEt-':VCCl (G) 

SYN: •vc•=)' s E L E C T' 
SFT:O+SEL 
SEtJ:SEMRET 

SYN:'OP'=>'NU vc• 
CHK:,-VEN-CCV-SEL 
SF.~:SEMRET 

C i: NU U N T 

TL RO ' 



SYN : '() P • = > 'DP VC' 
CHK:-CPF,+VEN 
StT!O ♦ f)PF 

TNF:<l> 
SE "1: Sf MP FT 

SYN:'CP'=>'OP OP' 
CHK:-OPF,+CPF 
SF.T:2 
Tf\F:<1><2,*> 
Sffi':SE~RET 

SYN:•vc•=>•vc OP' 
CHK:+SEL,+OPF 
SET:l+CVC-SEL 
SE~: VCC3 (G) 
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S'VN:•vc•=>• p u T EN I N V'<' 
(~K:,+LIS+ENT-SEC-LAT-SCR 
SF.T:O+CSP 
SEM:VCC'3 

SYN:'VC'=>' PUT VR IN VR' 
C~K:+lIS-LAT,+LIS-SfC-SCR-LAT 
CND:BFOE 
SET: 0 +CSP 
SE~:VCQl 

SYN:'V('=>' PUT NU 
C~K:,+LIS+FPN-SCR-LAT 
SET:O+CSP 
SEM:VCC5 

I "l VR I 

S Y N : ' VC ' :: > ' P u T f\ U B E F O P ~ V R 
CHK:,-LIS+FPN+ELT,+LIS+FPN-SCR-L~T 
SET :o +CSP 
5EM:VCD1 

I N V RI 

SYN:•vc•:)I p u T EN BEFORE VR IN v~• 
CHK:,-LIS+E~T+El T,+LIS+ENT-SEC-SCP-LAT 
SET:O+CSP 
SEM:VCOl 

SYN: 'VC • = >' P L T EN A F T E R VR I N V R' 
r.fK:,-LIS+ENT+ElT,+LIS+ENT-SEC-SCR-LAT 
SET:O+CSP 
SFM:V(02 
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SYN:•vc•=)' p LT NU ~FT ER VR I N VR' 
CHK:,-LIS+FPN+FLT,+LIS+FPN-SCR-LAT 
SET:O+CSP 
SEM:VC02 

SYN:•vc•=)' p u T EN IN 
CHK:,,+LIS+E~T-SEC-SCR-LAT 
SET:O+CSP 
SE~:VCD3 

SVN:•vc•=>' p LT NU I N 
CHK:,,+lIS+FP~-SCR-LAT 
SfT:O+CSP 
SEM: \ICD3 

P L A C · NU 

P L A C c: NU 

SYN:•vc•=>' REM CV E EN F ROM VR' 
CHK:,+LIS+E~T-SEC-SCP-LAT 
SfM:VCfl 

S~N:•vc•=>' Rf MC~ E VP F ROM VR' 
CHK:+LIS-LAT,+LIS-SEC-SCR-LAT 
Cf\C:8FOE 
SEM:VCQZ 

SYN:•vc•=)' REMOVE NU 
CHK:,+LIS+fPN-SCR-LAT 
SEM:VCEl 

F R O M VR' 

SYN:•vc•=>' R EMO V E VR (NU )' 
CHK:+LTS-LAT-SFC-SCR,, 
SEM:VCE5 

SYN:•vc•=>· REM CV E VR { l }' 
C~K:+LIS-SEC-SCR-LAT 
SEM:VCE6 

SYN:'VC'=)' WRITE VR' 
CHK: +-LIS-LAT 
SEM:VCZ3 

SYN:•vc•=)' w p IT E MA' 
SE~:VCE2 

SYN:•vc•=>• w fl IT E PO' 
SEM: VCA5 (G > 

S~N:•vc•=)' w R IT E WL' 
CHK:+WLF+~LC 
~EM: VCB 7(G > 

I N V R • 

I N VP' 
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SYN:'VC'=>' w R I T f L 0 G ' 
SF r,t: VC A A 

S\'N:•vr.• =>' w R I T F FV' 
Sf::rJ.: VC07 

sv~:•vc•=>' N A M E EN " ' 
Cf\O:CNACX 
SE M: V[ A 7 

sv~:•vc•=>' " fl M E PC ". 
CNO:CNACX 
SEt':VCB2(G) 

T~E NEXT FEh RULES HANCLF CCMPLETE SFNTENCES, DIRECT 
OR PARTS 0~ AN EVFNT OECLA~ATION SENTENCE. 

SYN:•ss•=)'VC ·' 
Ct\C:Ct\TS 
CHK:-DOV-SEL-VEN-VSN-ELS-CCN-NLS 
SEM:SSRl 

SVt\:'SS'=>'VC • 
c~o=c~rs 
Cf-K:+CON+NLS 
SfM:SSRl 

SYN: •ss•=>'VC .• 
C"C:C~TS 
CHK:+CON+ELS 
SE~:SSRl 

<; V N : 'Cl' => 'VC ' 
CHK:-oov-SEL-CON-ELS-VEN-VSN 
CN0:SCLCFR 
TNF: l 
SEtJ:SF.MRET 

5 V N : ' C l • => 1 vc • 
CHK:+CON+ELS 
CN0:SCLCFR 
TNF: l 
SE~: SE MR ET 

S V N: •CL':)' VC ' 
CHK:+CON+NLS 
c"o: SCLCFR 
TNF: l 
SE ft': S EMR ET 



5YN: 1 CL' =>'CL 
CbK:-CLX 
SET:l+CLX 
s F ~:sf'. MP CT 

S-YN:'CL'=>'CL CL' 
CHK:-CLX,+CLX 
SET:2 
T~F:<1><2~*> 
SE~:StMRET 
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THE FCLLOWING RULES ARE US£D TO OE:LARE AN EVENT. 

S~N: 1 DV 1 => 1 0E EV F. NT' 
C~K:-ATT-NUK-~UL-NUN-~tM-N~V 
CND:CNTSE'v 
SEM:SEMRf1 

SYN:•ov•=>' DEC l ARE EV 
C ND: PA SL OC 
SEM:OVAl 

SYl\l:•ss•=>'DV: CL' 
Ct-K:,+CLX 
SF:~:SSQ7(G) 

T~E FOLLOWING RULES CfNCERN SThTEMF~TS THAT MAY CNLY 
BE D!RFCT. 

SYt\: •ss•=). E X I T' 
SErvi:EXITSI~ 

SYN:•ss•=>· CONT IN U I:' 
SFM:VCJl 

SYN:•ss•=>' RECORD 
SFM:VCJ2 

SYN:•ss•=)• GO.• 
SF~:SSQl 

S I M L L A T I O N' 

SYN:'SS'=)' G C 
SEM:SS2 

UN T IL BO' 

SYN: •ss•=>' 0 E F : ' 
Cf\D:SCRDEF 
Sft-1:SSRl 
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svf\:•ss•=>' w p I T E 0 E F 0 F I 

CNO:SCPNDEFl 
SEf':SEMRET 

SYN:•ss•=>' D f: l f. T E 0 E F 0 F' 
CN0:SCRNDEF2 
Sft-1:SEMRfT 

SYN: 1 SS 1 =) 1 D F L E T F D E F I\IU 0 F' 
CNC:SCRNOEF3 
SEt':SEMRET 

TrE RULES TrAT FOLLOW HANDLE THE PASSING OF PARAMETF.~S 
ANO THE ASSIGN~ENT OF LOCALS. 

SYf\:'VR 1 =) 1 TA' 
CHK:+REF 
Sf.T:O+FPN-LIS 
SF~:VTNU 

S'VN: 1 VR'=>'TA' 
CHK:+VEF 
SF.T:O+ENT 
SEt-:VlNU 

SYt\: • F.N'=) •r~ • 
CHK :.ENF 
SEPJ:VTNU 

s y N: • NU. => IT A' 
Ct-tK:+NUF 
SfM:\ITNU 

s YN: • AB. =>IT A. 
C HK: +ABR 
SET:O+FPN 
SEfll:VTNU 

SYN: 'AB'=>'TA' 
CHK:+ABE 
SET:O+ENT 
SE~: VTNU 

SYN:'AB'=>'TA' 
CHK:+ARL 
SET:O+FP~+LIS+LAT 
SEM:VTNU 



SYN:'AB'=)'TA' 
CH~:+Afl 
SFT:U+ENT+LIS+LAT 
SF~: VT NU 

<;)'N: 1 Ff.'=> 1 TA' 
Ct-K:+ECF 
SEM:VTNU 

SYN:'EV'=>'TA' 
CHK:+EVF 
SEtJ.:VTNU 

SYN: 1 PC'=)•TA• 
CHK: +POF 
SE"-1:vTNU 

SYt\: 1 VP'=>•T~• 
CHK :+t.PF 
SET:O+LIS-LAT+FPN 
SE~:V1NU 

s YN : I VP • = > • T ,A. I 

Ct,-K:+LEF 
SET:O+LIS-LAT+ENT 
SE M: V TNU 
SYN:'MA'=>'TA' 
CHK:+Ml\f= 
SEM:VTNU 

S~N:•TB'=>'VR' 
CNO:NCAA 
Ct-K:-LIS-ENT 
SEM:SEMRET 

SY~:•TB'=>'VR' 
CHt<:+LIS-LAT 
CNO:NOAR 
Sft':SEMRET 

s YN : I TB I =>.EN I 
Cf\0:NOAB 
SEM:SEMRET 

S\'N: 1 TB 1 :>'NU' 
CI\C:NGVRJN 
~ E ~: SEMR ET 
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S'YN: •rs•=>'Ae• 
SE~:SF.MRFT 

SYl\:'TB'=>'EC' 
SE~:SEMRET 

SYt\: 'TB'=> 'EV' 
SEM:SEMRET 

SYN: •re• =>'PO' 
SE~:SfMRET 

SYr\: 'TA'=)'TP.• 
CHK:-TBF 
CND:Cf\PRR 
si=,:o+TRF 
Tr,, F: l 
SE-M:SE~RET 

S~~:•TB'=>'TB ,TB' 
CHt< :-TBF ,+TBF 
SET: 2 
T~F: < l ,*><2 ,*> 
SEM.:SEMRET 
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THE NEXT FEW RULES HANDLE fXPRfSSin~s OENOTING EVENT 
NCTif.ES. 

SYt-..:•PC'=> 1 NT' 
SF.M:POAl 

s 't N: ' PO I =>'EV (Nu ) • 
SEM:POA2 

SYN: 1 PO'=>'EV ( l )' 
SEM:POA3 

SYN: 1 P0 1 =>'EV ( l -"-'U )' 
SEM:POA4 

SYN:•PO'=>' R ANO C ~ f:V' 
SEM:POA5 

S~N:•po•~>•Nu TH EVEN r• 
SEM:POA7 

SYN:'PG'=>' l ~ST EVENT• 
SEM:POA8 
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S~N:'PO'=>' EVENT ( L -NU)' 
Sf M: P OA 9 

SY~:•P□ '=>' R ~NCC M 
SEM:POBl 

F. VEN T1 

SY": I P0 1 =.>. PO 
CHK :-POT,, 
SfT:l+POT 
SE~:PCA6(G) 

A T T I M E NU' 

THE LAST FEW RULES HANOLE THE WRITING OUT CF COMPLEX 
LINES. 

s YN: • Wl • =>. N {.j I 

SfT:O+WLO 
SE~:SF.MR~T 

SYt\: 'WL'=)'EN' 
SET:O+WLD 
SfM:SfMRET 

S'VN:'kl'=>• C "' 
CNC:CNACW 
Sft,,:SEMRET 

s-v~:•wt• =>•wt• 
Ct-K:-Wl("I 
SET:O+WLD 
SEM:SFMPET 

SYN:. Wl I =>. Wl' 
CHK:-\-.LF+kLD 
C~C:CNCN 
SET:l+WLF 
TNF:l 
SE~:SEMRET 

SYN: 1 WL 1 =>'Wl, WL' 
CHK:+Wlf+WLO,-WLF+WLD 
SET:l 
TNF: <l,*)<2,*> 
SE t": S EMRET 
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B. ROUTINE DOCUMENTATION 

In this appendix we describe the workings of all syntax 

completion routines, semantic routines and utility routines used 

by RELSIM. Listings of all these routines are available through 

Professor Frederick B. Thompson at C. I. T. We shall consider 

each set of routines alphabetically by their names, so that they 

can be referenced easily from the syntax rules in Appendix A; 

and we include flow charts wherever the routine is complex enough 

to merit it. The name in parentheses next to the routine name 

refers to the deck in which the routine is to be found. 

B. 1. Syntax Completion Routines 

B. 1. 1. ABEF ( STC 1): Determines whether an attribute is part of 

an unbound boolean. This is done by checking the parsing graph 

to the right of the attribute, and succeeding if there is a comparator 

or a right parenthesis immediately following. 

B. 1. 2. ABIF (STC 1): Given an unbound attribute, this determines 

whether it is a complete element in a boolean comparison, i. e. 

there is no level of indirection of the form AB OF AB with the 

attribute considered being the latter. This is done by checking the 

parsing graph to the left and making sure that the attribute is 

preceded by a conjunction or the word WITH, possibly before a 

left parenthesis. 
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. B. 1. 3. BFOE (STC3): Allows a parse only if the first two parts 

of speech on the right side of the rule are both either numerical 

expressions or entity expressions. This is done by checking the 

relevant features of the parts of speech. 

B. 1. 4. BFOEL (STC3): Same as BFOE, but succeeds only if the 

first part of speech has no constituents. This is because when we 

apply this routine the first part of speech is a list, but it should 

not be an entity class. 

B. 1. 5. CHXTO@ (STCZ): This routine is applied to the function 

given in a DENSITY statement and changes all instances of the free 

variable X in the graph to at signs, and the parentheses enclosing 

the function to the double quotes. All parses to the right are then 

destroyed and the parse fails. This results in the rule 'NU'=>' @' 

applying to all instances of the free variable, and subsequently the 

rule 'NU'=>' DENSITY "NU" ' applying. 

B. 1. 6. CNAC (STCl): Collects all characters to the right of a 

double quote until the next double quote in the parsing graph is 

reached, and places their PI's as constituent elements of the 

left hand side part of speech. The parse fails if no second double 

quote exists, or if the string does not start with a letter. 

B. 1. 7. CNACW (STCl): Same as CNAC, but does not check 

whether the string starts with a letter. 

B. 1. 8. CNACX (STCl): Same as CNAC, but, due to the fact that 

the left hand side part of speech already has a constituent, places 
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the character PI' s under that constituent. 

B. l. 9. CNCN (STCl): Allows a conditional expression to become 

unconditional if there are no more conditional expressions to the 

left. This is done by checking to see if there is no comma to the 

left in the parsing graph. 

B. 1. 10. CNCP {STC3): Places a dummy constituent under the 

left hand part of speech so that a transformation of the form 

<2, >:C> may be applied to it. 

B. I. 11. CNDEN {STC2): Examines the ·function supplied in a 

DENSITY statement and calcu).ates the first estimate of the scale 

factor required for the semantic routine of this statement, placing 

it in a special page and modifying the parsed tree of the function 

so that multiplication by the variable to be found on that page is 

performed. A flow chart follows: 

CNDEN 

BEGIN 

Expand parsed 
EXPAND 

Search for conditions of the form 
IF X < n, IF X > n in the function 
definition; obta1n the interval in 
which the function is defined from 
them. 



-98-

No 
ERROR 

Calculate £( x) on a grid in its interval 
n 

Obtain ~£( x) and max £( x) 

A 

n 
~f(x) 

n>:'max f(x) 
n 

n 

an estimate of the 

efficiency of the variate calculation 

The-area under the function is too 
small compared to the area of the 
rectangle enclosing it, making the 
calculation too inefficient. Truncate 
the function and use 

n 
c = l / ~ f ( x), A= 0. 0 1 

Use c= 1/max f(x), A as above 
n 

EXIT 

Place c and A on a 
special page 

Modify the parsed tree of 
f( x) to look like c =f( x) 

---- where c is a NU parse on a 
------ VR with a pointer to the 

special page. 
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B. l. 12. CNDVC (STCl): Collects a string that must be the name 

of an underlined event and fails if it is already defined or does not 

start with a letter. If it succeeds, it puts the string in the lexicon 

with a newly created, blank page as its payload; and it also puts 

that payload, under an event PI, as a constituent of the left hand 

part of speech. 

B. 1. 13. CNIS (STCl): Allows the word IS to parse as a comparator 

if there is no other comparator following it in the parsing graph . 

B. 1. 14. CNNCH (STCZ}: When an at sign parses to a number , t he 

payload of that number is set to zero, and a flag is set signifying 

that this is a free variable. 

B. 1. 15. CNNO (STCl}: Allows the word NOT to parse as a 

comparator if there is no comparator following it in the parsing 

graph. 

B. 1. 16. CNNPB (STC l}: Allows the parse if there is no further 

boolean to the right. This is done by checking to see if there is 

a conjunction to the right. 

B. 1. 17. CNNRE ( STC l}: Determines whether an attribute should 

be bound to a current entity. This is done by checking that there is 

no left parenthesis or the word OF following it in the parsing graph. 

B. 1. 18. CNPRR (STCZ): Allows the parse if there is no right 

parenthesis to the right. 

B. 1. 19. CNRET (STC3): This is the dummy condition routine. 

It always allows the parse. 
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B. 1. 20. CNTS (STCl): Allows the parse to occur only if the 

parse is at the beginning of a sentence. This is done by following 

the stack and finding if there is a $A to the left. 

B. 1. 21. CNTSEV (STC3): First calls the condition routine 

PASLOC; then collects the name of the event, failing if it is an 

already defined event name, and placing it in the lexicon otherwise. 

Thus in the re-parse that has already been caused by PASLOC, all 

self-references of the event may parse correctly. The event name 

string is replaced in the parsing graph by an event PI, with a 

payload, as in the lexicon, of a newly created page where the 

event parsed tree will reside. 

B. 1. 22. CONBR ( STC 1): Allows the parse if there is a blank to 

the right of the string being parsed. 

B. 1. 23. FTFOE (STC3}: Same as BFOE, except that it examines 

the first and the third part of speech on the right hand side of the 

rule. 

B. 1. 24. GDSP (STC3}: Checks the type of command verb and 

succeeds if it is GENERA TE, DO, SET or PUT. This is handled 

by looking at the feature of the VC PI. 

B. 1. 25. MATIR (STC3): Not in use at present; set to CNRET. 

B. 1. 26. NELSE (STC3}: Examines the VC to the right of the 

present one, and determines whether it has a feature on signifying 

that it is an ELSE sentence, or, recursively, that it has a con­

ditional clause a~d is followed by a VC with the same feature on. 
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The parse is allowed only if this is not the case. 

B. 1. 27. NOAB (STC3): Examines the constituents of the parse, 

and fails if there is a single attribute as a constituent. 

B. I. 28. NOVRAB (STC3): Same as NOAB. 

B. 1. 29. NOVRIN (STC3): Allows the parse if the first constituent 

of the quantity parsed has no constituents of its own. 

B. 1. 30. PASLOC (STC4): After calling CNTS (and failing if 

CNTS fails), checks for PASSED and LOCAL statements in the 

event. If they exist, it collects the strings naming the variables 

in a mini-lexicon, with payloads of PI' s referring to the event 

context page. Then the body of the event is checked for instances 

of such strings. When such a string is found, it gets spanned by 

the appropriate parse. The LOCAL and PASSED statements are 

then removed from the parsing graph. A flow chart follows: 

PASLOC 

BEGIN 

No RETURN 
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Yes 

. Cheek body of event for 
instances of strings in 
the mini-lexicon. When 
found, span, by parse. 

Remove PASSED and 
LOCAL statements 
from the parsing graph. 

RETURN 



CHCL 

BEGIN 

initialize mini-lexicon 
if it does not exist 
already 

collect string, put it 
in mini-lexicon 
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create TA p-list for mini-lexicon 
payload; features from KTON; 
location of variable on the event 
context page assigned sequentially 

KTON 

C BEGIN ) 

examine string denoting 
type of variable which 
follows in parentheses 
after variable name 

set up features for TA 
p-list; if local list or stack 
an appropriate flag; if local 
array, its dimensions. 

RETURN 

hang a list element containing I 
Yes flag, dimensions if array, 

Yes 

RETURN 

~-----4 .... and address in the event 
context area as a constituent 
of the EV p-list 
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B. l. 31. POSR (STCl): Allows the parse only if there is a period 

or a semicolon to the right in the parsing graph. 

B. l. 32. SCCL (STCl): Allows the parse only if there is a 

semicolon or a colon to the left in the parsing graph. 

B. l. 33. SCLCFR (STCl): Allows the parse only if both POSR and 

SCCL succeed. 

B. l. 34. SCRKA2 (STC2): Succeeds if there is no right parenthesis 

or digit to the left in the parsing graph. 

B. l. 35. SCRDEF, SCRNDEFl, SCRNDEF2, SCRNDEF3: These 

are the condition routines that handle the d efinitional capability. 

They have been written for REL-English. 

B. 1. 36. SCRPREN (SCRPRE): This routine is the sentence 

prescanner. It takes care of blanks, continuation over lines, and 

collects all real numbers, replacing the digi ts by a NU parse in the 

graph. It also initializes the lexicon and parses all lexical items 

in the graph. This routine has been written for REL-English. In 

the RELSIM version a prologue has been added that checks to see 

if the context area has been created, and, if not, proceeds to 

create and initialize it. The context area has been described in 

Chapter III. 

B. 1. 37. SIFN (STC2): Collects the character string that is being 

parsed and hangs it as a constituent list of the PI. 
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B. 2. Semantic Routines 

B. 2. l. ADD (PSM6): Adds two floating-point numbers. 

B. 2. 2. BIND (PSM16): Calculates a random variate with a 

binomial frequency function . Given N and P, it obtains N numbers 

uniformly random in (0, 1) and counts the number of these that are 

smaller than P. This count is the random variate desired. 

B. 2. 3. BOR l ( PSM4): Searches a list or class to find whether 

a given element is in it. Return s a boolean O or l accordingly. 

B. 2. 4. BOX2 (PSM6): Checks whether a list or class is empty, 

and returns a boolean O or l accordingly . 

B . 2. 5. BPIL (PSM2): Applies a conjunction to two booleans to 

generate a boolean. 

B. 2. 6. BREV (PSM3): Takes the complem ent of a b o olean number. 

B. 2. 7. BTST (PSM3): Compares two numerical expressions and 

generates a boolean depending on whether the condition on their 

relation is true or false. 

B. 2. 8. CNPU (PSM4): Calls SEM on the first conditional expres­

sion and returns i t s numerical expression as an unconditional 

number if the boolean is true; otherwise calls SEM on the second 

conditional expression , essentially recursing on itself. 

B. 2. 9. COl through CO6 (PSM3): These ass ign a fixed-point 

value to each comparator or conjunction. 

B. 2. 10. CORV (PSM3): This routine reverses the negation flag on 

a comparator PI. 
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B.2.11. CURC (PSM12): Returns a pointer to the current entity 

of the class referenced. 

B. 2. 12. CURT (PSM12): Returns a pointer to the current time 

location in the context area. 

B. 2. 13. DEPl (PSMl): Initializes a stack and places its name 

in the lexicon. 

B. 2. 14. DERl {PSM3): Puts the name of an attribute in the 

lexicon and sets up the attribute definition with respect to the proper 

entity class. 

B. 2. 15. DER2 (PSMl): Initializes a system variable and places 

its name in the lexicon. 

B. 2. 16. DER3 (PSMl): Initializes a list and places its name in 

the lexicon. 

B. 2. 17. DER4 (PSMl): Initializes an entity class and places its 

name in the lexicon. 

B. 2. 18. DER5 (PSM3): Places the parsed tree of an attribute 

definition on a page and a pointer to that page in the header of the 

appropriate entity class. 

B. 2. 19. DEXI (PSM5): Initializes a two-dimensional array and 

places its name in the lexicon. 

B. 2. 20. DIVIDE (PSM6): Divides a floating-point number by 

another one . 
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B. 2. 21. DVAl (PSM16): Bumps the event payload and the possible 

local list, stack and array references from the constituent EV or 

DE to the DV list element. A sort of a SEMNOP or TNF: 1 effect. 

B. 2. 22. ECRl (PSM9): Creates a scratch list. Attaches the 

boolean with free attributes to each member of the entity class 

and evaluates it each time. Whenever the boolean is true, the 

entity referred to gets placed in the scratch list. 

B. 2. 23. ECR2 (PSM9): Creates a scratch list that is the resul t 

of the given conjunction applied to the two lists given. 

B. 2. 24. ECR2A (PSM9): Same as ECR2, but instead of a given 

conjunction, AND is as sum ed. 

B. 2. 25. ECR2B ,(PSM9): Same as ECR2, but the complement of 

the list obtained in ECR2 is placed in the scratch list. 

B. 2. 26. EXDI (PSM15): Calculates a random variate with an 

exponential distribution. Given k, a uniformly distributed random 

number r in (O, 1) is obtained and its natural logarithm is cal ­

culated. The variate returned is obtained as -k~:(ln(r). 

B. 2. 27. EXITSIM (PSM12): Calls on the EXITLANG system 

macro to return to the command language and prints a message to 

that effect. 

B. 2. 28. FABl (PSM23): Stacks the attribute page ID's of the 

constituent attributes in a data list under the attribute they parse 

to, for later evaluation when the class and entity referred to by the 

last, free, attribute is determined. 
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B. 2. 29. FAB2 PSM19): Starts the stack that FABl continues to 

build up by moving the data element of the constituent attribute 

under the attribute it parsed to and making its second word a link. 

B. 2. 30. FEVP (PSM18): Frees the pages that contain the second 

constituent event and then calls SEM on the first constituent. 

B.2.31. LASC (PSM2): Given a class, returns the last entity 

of that cla s s. 

B. 2. 32. LETN (PSM2): Given a class, and a floating-point 

number n, returns the nth entity in the class. 

B. 2. 33. LISRT (PSM20): Restores the original contents of a list 

from a copy that was made of them at some previous point. Frees 

the pages of the copy. 

B. 2. 34. LMNC (PSM2): Given a class and a number n, returns 

the nth from the bottom entity of the class. 

B. 2. 35. LTST (PSM21): Compares two lists and produces the 

appropriate boolean value. 

B. 2. 36. MULTIPLY (PSM6): Multiplies two floating-point 

numbers and returns the result. 

B. 2. 37. NABT (PSM2): Given an attribute and an entity, this 

routine gets the pointer to the entity page where the payload referred 

to resides. 

B. 2. 38. NORD (PSM2): Calculates a random variate with a 

normal distribution. Given a mean m and a deviation s, the sum 

t of 24 random numbers uniformly distributed in (O, 1) is obtained, 
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and the desired variate xis calculated as x=s):~(sqrt(2}/2)):'(t-12}+m. 

B. 2. 39. NTHC (PSM2}: Same as LETN except that in the input 

p-list the number is the first component and the class the second. 

B. 2. 40. NUCl (PSMl): Given a numerical expression and a 

boolean expression, evaluates the boolean and, if true, evaluates 

and returns the number. If false, returns a zero flagged to show 

it is a failure, rather than a real zero. 

B. 2. 41. NUII (PSM12): Given the function p-list from CNDEN, 

two random numbers r rr
2 

uniform in (0, 1) are obtained, and a 

random variate calculated as follows: If r
1

~ f(a+(b-a}r
2

}, 

where (a, b) is the interval off, we accept x=a+(b - a}r 2 ; otherwis e 

we obtain two new values for r 
1

, r 
2 

and try again. If 

f(a+(b-a)r
2

}>1 at any time, we modify c (which was calculated in 

CNDEN), so that f( a+( b-a) r 
2

) = 1. 

B. 2. 42. NUI2 (PSM16): Utilizes SELFR to select one of the 

discrete points over which f(x) is defined and returns that point 

as the variate desired. 

B. 2. 43. NUQ9 (PSM7): Obtains and returns the total numbe r of 

elements contained in the class or list that is given. 

B. 2. 44. OPAl (PSM20): Gives the value X'30000000 ' to the MIN 

operator . 

B. 2. 45. PASD (PSM15): Given k and pas floating-point numbers, 

obtains a random variate by taking the product t of k random 

numbers uniform in (O, 1) and setting x=t/ln(l-p}. 
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B. 2. 46. POAl (PSMI 7): Given the name of an event notice, the 

notice is located on the log and its address returned. 

B. 2. 47. POAZ (PSMl 7): Given an event routine and a number, 

n, the nth notice of the routine is located on the log and its address 

returned. 

B. 2. 48. POA3 ( PSMI 7): Given an event routine, the last notice of 

the routine is located on the log and its address returned. 

B. 2. 49. POA4 ( PSMI 7): Given an event routine and a number n, 

the nth from the last notice of the routine is located on the log and 

its address returned. 

B. 2. 50. POA5 ( PSMI 7): Given an event routine, a notice of the 

event,randomly selected, is located on the log and its address 

returned. 

B. 2. 51. POA6 (PSMl 7): Given a p-list of an event notice and a 

time figure, the search for the notice is limited to log entries 

under that time. 

B. 2. 52. POA 7 ( PSMI 7): Given a number n, the nth event notice 

on the log is located and its address returned. 

B. 2. 53. POA8 (PSM24): The last event notice is found on the log 

and its address returned. 

B. 2. 54. POA9 ( PSM24): Given a number n, the nth from the last 

event notice is located on the log and its address returned. 

B. 2. 55. FOB I ( PSM24): An event notice is selected randomly 

from the log and its address returned. 
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B. 2. 56. POID (PSM9): Given k, obtains random numbers in (0, l} 

and takes their product t until t<e-k. Then returns the number of 

random numbers in that product as a random variate with Poisson 

distribution. 

B. 2. 57. RANC (PSM2): Given a list or class, one of its elements 

is selected at random and returned. 

B. 2. 58. RAND (PSM15): Given an interval (a, b), an integer 

random variate uniformly distributed in (a, b} is returned. 

B. 2. 590 RSCR (PSM22): Obtains list page ID's from the data 

p-list of the first constituent, and frees the pages of all these lists. 

B. 2. 60. SEMABS (PSM5): Given a number, returns its absolute 

value. 

B. 2. 61. SEMCOS (PSM6): Given a number,considers it to refer 

to radians and calculates its cosine. 

B. 2. 62. SEMCOTAN (PSM6): Given a number in radians, calculates 

and returns its cotangent. 

B. 2. 63. SEMEXP (PSM7): Given a number n, calculates and 

n 
returns e . 

B. 2. 64. SEMFP (PSM5): Given a number, returns its fractional 

part. 

B. 2. 65. SEMIP (PSM5): Given a number, returns its integer part. 

B. 2. 66. SEMLN (PSM7): Given a positive number, calculates and 

returns its natural logarithm. 

B. 2. 67. SEMLOG (PSM7): Given a positive number, calculates 
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and returns its base 10 logarithm. 

B. 2. 68. SEMMAX ( PSM5): Given two numbers, returns the 

larger one. 

B. 2. 69. SEMMIN (PSMS): Given two numbers, returns the 

smaller one. 

B. 2. 70. SEMMOD (PSM5): Given two numbers, n
1 

and n
2

, 

returns n
1 

mod n
2

. 

B. 2. 71. SEMNOP (PSM9): Moves the data element of the first 

component to become the data element of the part of speech parsed. 

B. 2. 72. SEMPOW (PSM7): Given two numbers a and b, calculates 

B. 2. 73. SEMRET (PSM3): Attaches a zeroed out data element to 

the part of speech parsed. 

B. 2. 74. SEMSIGN (PSM5): Given a number, returns 1 if the number 

is positive, 0 if the number is zero and -1 if the number is negative. 

B. 2. 75. SEMSIN (PSM6): Given a number in radians, calculates 

and returns its sine. 

B. 2. 76. SEMSQRT (PSM6): Given a number, calculates and returns 

its square root. 

B. 2. 77. SEMTAN (PSM6): Given a number in radians, calculates 

and returns its tangent. 

B. 2. 78. SSZ (PSM8): Same as SSQl, but a boolean is given that 

will stop the run when it becomes true. See flow diagram below, 

under SSQl. 
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B. 2. 79. SSJl (PSM24): After a PAUSE has stopped a run, this 

routine recreates the conditions existing before the pause and 

restarts the run. 

B. 2. 80. SSJ2 (PSM24): Transforms the simulation's data into 

an REL data base. Entity classes become English classes and 

attributes form English relations. 

B. 2. 81. . SSQ l ( PSM3): Causes a simulation run. Obtains an event 

notice from the log, brings in the appropriate event routine, and 

executes it (by calling SEM on a copy of its parsed tree). Deletes 

the notice and obtains the next one. Stops the run when the log is 

empty. A flow diagram follows. 

SSQl ssz 

BEGIN ( BEGIN ) 

-I 
set no boolean restriction set boolean restriction 

get log in core 

No 
EXIT 



( 

obtain next event 
notice 

a.ssed or 

al varia 

Yes 

No 

place all pass parameters 
in their page; initialize 
all local lists and arrays 
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Yes EXIT 

bring event notice 
copy in core 

call SEM 
execute 
event 

Yes 

attach FOR 
clauses to event 
routine copy 
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B. 2. 82. SSQ7 (PSM19}: Takes the parsed tree of an event routine 

and stores it on pages after modifying the tree by including an 

extra clause (with XXX as its semantic routine) that will create all 

local lists and place their ID's on the event context page. 

B. 2. 83. SSRl (PSM3): If no clause has printed out a message 

this routine prints out the message 'OK'. 

B. 2. 84. SUBTRACT (PSM6): Given two numbers n
1 

and n
2

, 

calculates and returns n
1 

- n
2

. 

B. 2. 85. TASEM (PSM23): Obtains a displacement and adds it to 

the top of the event context page to obtain a page ID for a local or 

parsed variable. 

B. 2. 86. UNARYM (PSM6): Given a number returns its complement . 

B. 2. 87. UNID (PSM2): Given an interval (a, b} calculates a 

random variate uniform in that interval. Obtains a random number 

r uniform in (0, l} and returns a+(b-a)r. 

B. 2. 88. VCAl(PSM15): Given an event routine page ID, generates 

an event notice for it at the current time. 

B. 2. 89. VCAZ ( PSM 19): Puts a name for an event notice being 

generated in the lexicon. 

B. 2. 90. VCA3 (PSMl 3}: Puts a VC parsed tree out on a page and 

sets up a notice on the log for it to be executed after an interval as 

requested. 

B.2.91. VCA4 (PSM19): Deletes an event notice from the log, 

given its location on it. 
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B. 2. 9 2. VCA5 ( PSM24): Writes out an event notice given its 

location on the log. 

B. 2. 93. VCA6 (PSM24): Writes out the contents of the entire log . 

B. 2. 94. VCA7 (PSM18): Puts a name assigned to an entity in 

the lexicon. 

B. 2. 95. VCA8 (PSM4): Puts a given payload in a given location 

on a page. 

B. 2. 96. VCA8A(PSM4): Transforms a given floating-point numb e r 

to integer and puts the result in a given location on a page. 

B. 2. 97. VCA8B (PSM16): Puts a given element (given by its 

address in the list or class) in the current entity location on a page. 

B. 2. 98. VCBl (PSM22): Removes an entity from a class, its 

name, if any, from the lexicon, and destroys any list or array 

attributes attached to it. 

B. 2. 99. VCB2 (PSM18): Puts a name assigned to an event notice 

in the lexicon and a pointer to the lexicon entry in the event notice. 

B. 2. 100. VCB3 (PSM22): Deletes an entry from the lexicon given 

a page ID type payload. 

B. 2. 101. VCB4 (PSM24): Saves all the list area on pages and 

copies all scratch pages; then terminates execution of the present 

sentence ( a GO sentence) and returns control to the users. 

B. 2. 102. VCB6 (PSM13}: Puts a copy of the VC p-list out on a 

page and creates an event notice for its execution after an interval 

if the boolean is not met; also executes a copy of the same VC p-list 
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at the current time. 

B. 2. 103. VCB7 (PSM21): Writes out a line of numbers and characters 

as given. 

B. 2. 104. VCB8 (PSM14): Evaluates the entity list given and splits 

it into n lists,each containing exclusively members of one class. 

Places the ID of each element in the current entity queue of the 

appropriate class. Modifies the input tree to look like n FOR 

statements, each with one of the lists as payload. Calls SEM on 

the VC given. 

B. 2. 105. VCCl (PSM8): Puts the second component VC, which 

forms the contents of the DO loop, in the location of the DO VC 

in the first component, thus applying all modifying clauses of the 

loop to this VC directly, and calls SEM on the changed first component. 

B. 2. 106. VCC3 (PSM16): Selects one of the VC's in the SELECT 

loop, using SELFR; places that VC in the location of the SELECT VC 

in the first component; calls SEM on the changed first component. 

B. 2. 107. VCC4 (PSM20): Given an array and a string of numbers, 

places the numbers sequentially (last index moving fastest) in the 

array. 

B. 2. 108. VCC5 (PSM4): Places an element in the last position 

of a list. 

B. 2. 109. VCDl (PSM24): Places an element before another element 

in a list. 

B. z. 110. VCD2 (PSM24): Places an element after another element 
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in a list. 

B. 2. 111. VCD3 (PSM24): Given a number n and an element, 

places the element in the nth position in the list, or if there are 

less than n elements, in the last position. 

B. 2. 112. VCD7 (PSM24): Writes out an event routine in the form 

it was written in as a declaration. 

B. 2. 113. VCEl (PSMlO): Removes an element from a list . 

B. 2. 114. VCE2 (PSM24): Writes out an array . 

B. 2.115. VCE4 ( PSM22): Frees all pages of an array and removes 

its name from the lexicon. 

B. 2. 116. VCES ( PSM 10): Given a number n, and a list, removes 

the nth element of that list. 

B. 2. 117. VCE6 (PSMlO}: Removes the last element of a list. 

B. 2. 118. VCFl (PSM22): Frees the pages of a list and removes 

its name from the lexicon. 

B. 2. 119. VCF3 (PSMll): Frees all pages of all classes, all pages 

of list or array attributes of their entities, all attribute definition 

pages, and deletes all attribute, entity and class names from the 

lexicon. 

B. 2. 120. VCF4 (PSMll): Frees all event routine pages and deletes 

their names from the lexicon. 

B. 2. 121. VCFS (PSMl I): Frees all pages of all lists and d e letes 

their names from the lexicon. 

B. 2. 122. VCF7 (PSMl 1): Frees all system variable pages and 
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deletes their names from the lexicon. 

B. 2. 123. VCF8 (PSM21): Frees all pages of the log and deletes 

all event notice names from the lexicon. 

B. 2. 124. VCF9 (PSMZl): Empties the log, all lists and classes 

( removing event notice names and entity names from the lexicon 

and freeing all list and array attribute lists) and resets the simulation 

time to zero. 

B. 2. 125. VCFA (PSM21): Empties a list of all its elements. 

B. 2. 126. VCFB (PSM21): The elements in an entity scratch list 

are deleted from their respective classes. 

B. 2. 127. VCG2 (PSMll): Frees the pages of all arrays and removes 

their names from the lexicon. 

B. 2. 128. VCHl (PSM19): Evaluates a copy of the given boolean, 

and if it is false, evaluates the given VC. Then repeats the same 

action, until the boolean evaluated is true, in which case it returns. 

B. 2. 129. VCil (PSM14): Puts the entity given at the top of the 

current entity stack of the appropriate class, and calls SEM on 

a copy of the VC given. On return from SEM bumps the current 

entity stack, and if this action does not empty it, again calls 

SEM on a copy of the VC. 

B. 2. 130. VCLl (PSMl0): Sets the contents of a given list equal 

to those of another. 

B. 2.131. VCQl (PSMlO): Adds the contents of one list to the 

contents of another one. 
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B. 2. 132. VCQ2 (PSM9): Removes the contents of one list from 

the contents of another one. 

B. 2. 133. VCR! (PSM4): Adds a new entity to an entity class and 

evaluates all its attributes that are defined. 

B. 2. 134. VCR2 (PSM9): Assigns values as given to attributes of 

a new entity that has just been created by VCRl. 

B. 2. 135. VCR3 (PSM13): Posts an event to reverse the action of 

the VC given after a time interval also given. 

B. 2. 136. VCR4 (PSM20): Performs as VCR! and also adds a name 

for the new entity in the lexicon. 

B. 2. 137. VCR5 (PSMl0): Performs the action of VCRl n times 

according to a number given. 

B. 2. 138. VCTl (PSM16): Hangs the values of all pass parameters 

from the event notice generated, making new copies in the case of 

local arrays or lists being passed. 

B. 2. 139. VCYl (PSMIO): Defines new attributes for an entity class 

prior to creating a new entity of that class as described in VCRl. 

B. 2. 140. VCZ3 (PSM15): Writes out the contents of a list or an 

entity class. 

B. 2. 141. VRAl (PSM24): Obtains the element of a list or class that 

is next to the current one. 

B. 2. 142. VRAZ (PSM24): Obtains the element of a list or class 

that is next to a given element. 

B. 2. 143. VRA3 (PSM24): Obtains the element of a list or class 

that is previous to the current one. 
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B. 2. 144. VRA4 ( PSM24): Obtains the element of a list or class 

that is previous to a given element. 

B. 2. 1450 VRGl (PSM8}: Given an unattached attribute, this routine 

attaches it, if unambiguously pas sible, to the current entity of the 

appropriate class, and returns its address. 

B. 2. 146. VRRl (PSM20): Obtains a pointer to an element of an 

array, given its indices. 

B. 20 147. VRSD (PSM18}: Obtains a pointer to the location in the 

context area where the seed for the random number generator is 

kept. 

B. 2. 148. VRY5 (PSM20): Depending on the operator given, obtains 

the maximal or minimal element in a numerical list. 

B. 2. 149. VRY6 (PSM20): Depending on the operator given, obtains 

the maximal or minimal number valued attribute from all entities 

of a class that are members of a given list. 

B. 2. 150. VRY7 (PSM20}: Same as VRY6 but looks at all entities 

of the class. 

B. 2. 151. VTNU (PSM4): Given the address of a variable returns 

the payload. 

B. 2. 152. VTNUIF (PSM7}: Given the address of a fixed-point 

variable, transforms the payload to floating-point and returns it. 

B. 2. 153. XXX (PSM23}: Creates all lists and arrays to be local 

for an event notice and places their ID' s in the event notice context 

page. 
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B. 3. Utilities 

B. 3. 1. ABLDL (PSM22): On call, Rl points to an entity in core 

and R3 contains the class page ID. The utility finds all list 

attributes of the entity and deletes these lists. Rl and R3 are 

returned unchanged. 

B. 3. 2. CKDF (PSMl): Given a p-list of a part of speech with the 

characters representing its name as constituents in Rl, the ID of 

the part of speech in the top byte of RZ, and its features in the 

bottom halfword of R3, this utility searches the lexicon and checks 

if such a name for such a part of speech has already been defined. 

If so, R2 returns the lexical page ID of that definition; otherwise it 

remains unchanged. Rl and R3 are always returned unchanged. 

B. 3. 3. CLST (PSM20): Given the page ID of a list in Rl this 

routine copies all the pages of the list (unmodified) onto newly 

created pages which are linked together by the second word. The 

page ID of the first page of the copied list is returned to R 1. 

B. 3. 4. CSTD (PSM20): Given the core address of the top page 

of an entity class in R 1 and the page ID of an entity of that class in 

R4, this utility places the entity at the top of the current entity 

stack for the FOR statement. 

B. 3. 5. CSTU (PSM14): Given the core address of the top 

of an entity class in RI, this routine rem aves an entity from the 

top of the current entity stack and places it in the current entity 

location of the class page. Rl is returned unchanged. If the 
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flag of the entity in the stack is not zero, RO returns its location 

in the stack (as a page ID) and R8 returns the page ID of the stack. 

Otherwise RO is returned as 0, and R8 is destroyed but carries no 

information. 

B. 3. 6. DATEC (PSM22): On entry, R2 points to an EC p-list. 

The routine deletes all attribute definitions for this class and all 

attribute names from the lexicon that refer to no other class. On 

return R2 is unchanged. 

B. 3. 7. DEDEF (PSMl): On entry, Rl points to the p-list of a pas 

with the characters representing its name as constituents; RO has 

the ID for the part of speech in the bottom byte; R2 contains the 

page ID that the part of speech should parse to, and R3 contains 

the features of the pas in the bottom halfword. This routine puts 

an entry for the name of this part of speech in the lexicon. 

B. 3. 8. DELLEX (PSMll): Deletes the entire lexicon of the version. 

B. 3. 9. DELNN (PSMl 1): On entry, Rl points to a p-list of a part 

of speech. The name string of the part of speech is not included 

but the lexicon is searched on the basis of pas, flags and payload 

page ID. The entry is deleted. RO returns 0 if the entry was not 

found and l if it was deleted successfully. Rl remains unchanged. 

B. 3. 10. DELNNQ (PSM22): Same as DELNN; included in this 

deck also to ensure efficiency in the running of certain semantic 

routines that reside in the same deck. 
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B. 3. 11. DELPOS (PSMl 1): On entry, Rl contains the ID of a 

part of speech in the bottom byte. All entries in the lexicon of that 

kind of part of speech are deleted. R 1 remains unchanged. 

B. 3. 12. DELSL (PSMll): On entry, RO contains the number of 

characters in the name of a part of speech; Rl points to the 

character string; and RZ points to the p-list of the part of spe e ch. 

The entry referred to is deleted from the lexicon. On exit, Rl 

and RZ are unchanged, and RO is O if the entry was not found and 

1 if it was successfully deleted. 

B. 3. 13. DER? (PSM19): Requires the p-list of a part of speech 

with a c harac te r string as constituents in R 1, its ID in the top byte 

of RZ and the page ID to be assigned to it in the CXT location of the 

context area. Puts an entry for the string in the lexicon. 

B. 3. 14. DPG (PSMll): Obtains a displacement in R2 and gets a 

page ID from the context area location with that displacement. 

Deletes that page and all pages linked to it by pointer ID's in the 

first word of each page. Leaves only the last page and puts the ID 

of its top back in the appropriate word of the context area. 

B. 3. 15. EEXP (PSM7): Requires a floating-point number in 

FPR-0. Calculates the exponential of the number, and returns it 

in FPR-0. This utility was written for REL-English. 

B. 3.16. ENDEL (PSMlO): On entry, R3 contains the page ID of a 

class and R4 that of an entity belonging to it. This routine removes 

the entity from the class. R3 remains unchanged. 
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B. 3. 17. EVDEL (PSM8): On entry, RS points to the top of the 

log, R3 points to the log header for a specific time and R4 points 

to an event notice to occur at that time. The notice is deleted and 

its name, if any, is removed from the lexicon. R4 and RS are 

returned unchanged. 

B. 3. 18. EVGEN (PSMlS): Obtains a pointer to the context area 

in RZ ,the page ID for an event routine in R3, and a time figure in 

FPR-4. Posts a notice for that event under the time given in the 

log. Returns R2 and R3 and FPR-4 unchanged. 

B. 3. 19. EVLVR (PSM13): On call R4 points to a VC p-list. The 

routine evaluates all numerical and entity variables and lists in the 

p-list. If there are any scratch lists evaluated, they get copied 

onto regular pages, which are used as the VR payloads; and a VC 

p-list is built up with all such VR' s as constituents and RSCR as 

its semantic routine. This VC p-list is returned in RS; if there 

are no scratch lists evaluated R 5 is returned zeroed out. R4 is 

returned unchanged. 

B. 3. 20. EXPI (PSM7): On call FPR-0 and FPR-2 contain two 

numbers,n
1 

and n
2

. The routine calculates n
1

~:n:,n
2 

and returns 

the number in FPR-0. 

B. 3. 21. FIND (LEXUTIL): On entry RO contains the length of a 

lexical string, Rl points to an address in the lexicon where 

a search is supposed to start, and R2 points to the lexical string. 

This utility finds the entry for the string in the lexicon and returns 
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the address for it in Rl. If the search is unsuccessful, Rl is zero 

on return. R2 returns unchanged. 

B. 3. 22. FIPID (PSM12): On entry, R2 contains a page ID. The 

lexicon is searched for an entry with this page ID as payload. On 

return, R2 contains the ID of the lexicon page where the entry 

occurs. If the search fails, R2 is returned zeroed out. 

B. 3. 23. FIPSTR (PSM18): On entry R3 contains a page ID. The 

action is the same as in FIPID, but on return R2 contains the 

length of the referrent lexical string, and R3 contains the page ID 

in the lexicon where the string begins. If the search fails, R2 and 

R3 are returned unchanged. 

B. 3. 24. FLA (PSM14): When called from VCil, R5 contains 1 or 

-1. The second word of each entity stack entry is modified by 

having RS added to it. When called from VCB6, R5 contains 

X'l01', in which case the second word of each entry is OR'd with 

X' 100' and then 1 is added to it. X' 100' acts as a flag signifying 

the entry is a list; the last byte counts the level of recursion of 

the FOR clause routine. 

B. 3. 25. FNEV (PSM12): Given the p-list of a function with free 

variables (from a DENSITY statement) in Rl, and a number in 

FPR-0, this utility copies the p-list, substitutes the contents of 

FPR-0 in each instance of the free variable, and calls SEM on the 

copy. On return, Rl points to the evaluated copy of the p-list and 

FPR-0 remains unchanged. 
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B. 3. 26. FPTOIN ( PSM2): Receives a floating-point numbe r in 

FPR-2. Transforms it into a fixed-point number, which is r eturned 

in R2. The contents of FPR- 2 remains unchanged. 

B. 3. 27 . LEXUTIL (LEXUTIL): Places a lexical item in the 

lexicon. On entry , RO points to a lexical string preceded by on e 

byte containing its length, and RI to the p-list of the part of s peech; 

on return, RO and R 1 are unchanged. 

B . 3. 28 . LISLIS (PSMl0): Sets the 'contents of one l i s t t o tho se of 

another one. On entry, R3 contains the page ID of the list that 

becomes a copy and R4 that of the list that is copied. On return , 

the registers are unchanged. 

B. 3. 29. LOGE (PSM7): On entry, FPR-0 contains a floating ­

point number. The routine calculates the natural logarithm of 

the number and returns it in FPR-0. 

B. 3. 30. LOGl0 (PSM7): On entry , FPR-0 contains a floati n g­

point number. The routine calculates the base 10 logarithm of 

the number and returns it in FPR-0. 

B. 3. 31. LPD (PSM16): Given the core address of an event 

notice in R4, this routine frees the pages of all lists and arrays 

local to the notice, preparatory to the deletion of the notice from 

the log. 

B. 3. 32. NT DEL (PSMl 1): Deletes an entry from the lexicon 

given its page ID payload. On. entry, R4 contains the page ID; it 

remains unchanged. On exit RO is 0 if the deletion attempt fai l ed, 
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and 1 if it succeeded. 

B. 3. 33. PUTELT (PSM4): On entry, R4 contains the page ID of 

a class or list. R6 is 0 if it is a class and 1 if it is a list; and RS 

contains the payload if it is a list. The routine places a new 

element in the class (without assigning the attribute values) or in 

the list. On return, R4 and RS are unchanged, R6 contains the page 

ID of the new element, and RO is 1 if a new page had to be created 

for continuation of the class or list, and 0 otherwise. 

B. 3. 34. RANDOM (PSM2): Obtains a seed number from the 

context area. Multiplies the seed by s 13 and takes the result 

mod 2
31 

as the next integer random number, r. Puts this numbe r 

back in the context area as a seed for the next one. Then cal­

culates r/2
31 

to obtain a real number uniformly distributed in 

(0, l); this is returned in FPR-0. The integer random number in 

(0, 2
31

) is returned in R2. 

B. 3. 35. SELFR (PSM16): On entry Rl points to a p-list associating 

probabilities to parts of speech. On the basis of these probabilities, 

one of the parts of speech is selected and returned, with semanti cs 

not yet performed on it. 

B. 3. 36. SRCG (PSM14): Finds any GENERATE clauses in the 

structure modified by a FOR clause and hangs the current entity 

under it. On entry, R2 points to the VC p-list, R3 contains the 

current entity, and R4 the past current entity. On return they all 

remain unchanged. 
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B. 3. 3 7. UTYKA 1 ( PSMS): Given a floating-point number in FPR-0, 

this utility returns an EBCDIC decimal representation of that 

number in an LDD list structure with the characters in the last 

two words. Rl points to this list on return. 

B. 3. 38. 

B. 3. 39. 

B. 3. 40. 

B . 3.41. 

B. 3. 42. 

VCC2A (PSM12): Currently not used. 

VCF3A (PSMl 1): Does all the freeing of pages for VCF3. 

VCFSA (PSMll): Does all the freeing of pages for VCF5. 

VCF7 A ( PSM 11): Does all the freeing of pages for VCF7. 

VCFAA (PSM21): On entry, Rl points to a list. The list 

is emptied of all its elements. On return, Rl is unchanged. 

B. 3. 43. VCG2A (PSMll): Does all the freeing of pages for VCGZ. 

B. 3. 44. VCZB ( PSM 12): On entry, R 1 points to an in core entity 

and R6 to a location in a buffer. A name or description of that 

e ntity, in EBCDIC, is placed in the buffer. Rl remains unchanged, 

and R6 points to the next location in the buffer. 

B. 3. 45. VCZC (PSMS): On entry, Rl points to a floating-point 

number and R6 to a location in a buffer. A decimal representation 

of that number, . in EBCDIC, is placed in the buffer. Rl remains 

unchanged, and R6 points to the next location in the buffer. 


