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Abstract 

Computation has been an integral part of structural biology, ever since the 

first protein macromolecular structure was solved via Fourier Synthesis on the 

EDSAC Mark I electronic computer in 1958 (Kendrew et al., 1958). Throughout 

my time at Caltech, I have endeavored to develop new methods to apply 

machine learning and molecular modeling to the study of biological 

macromolecules. These efforts have taken two distinct tracks, but are unified by 

a  focus on studying proteins on a structural level.  

Through the application of molecular dynamics and modeling, I have 

studied insulin from several angles, including the incorporation of non-canonical 

amino acids, and how these modifications might be responsible for the 

modification of critical properties such as hexamer dissociation and fibrillation 

formation. Additionally, I have probed how insulin behaves at the interface of 

water and silica, a property which is critical for the effective dissemination and 

administration of this therapeutic molecule. I have helped to develop a novel 

computationally guided workflow for integrating drug conjugates into antibody 

CDRs. This technique yields molecules which exhibit synergistic binding and an 

enhanced ability for selective binding.   

The second major thrust of my research has focused on applying machine 

learning to protein engineering problems, particularly developing tools for working 

with structural data, and for making efficient re-use of data which has already 

been laboriously collected by other groups. The basic data parsing and 

processing tools which were created and refined over the course of my time at 
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Caltech has enabled many other projects, both of my own and of collaborators. 

Studies into the use of generative networks for protein-protein docking have been 

conducted which lend useful insights for network architecture, the inclusion of 

intermediate learning objectives, and overcoming sparsity. The technique 

introduced in our ICLR 2021 paper demonstrates a regularization method which 

enables data from past protein engineering campaigns to be leveraged to learn 

policies which optimally select molecules to synthesize in unrelated engineering 

efforts, to potentially save a significant amount of time and money for future 

projects. 
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Section 1: Machine Learning Projects 
 
 

1.1 Creation and refinement of enabling tools: VoxLearn 

When I began my PhD in 2017, nearly all machine learning in protein 

engineering had focused on relating amino-acid sequences directly to function.  

Such approaches had been favored out of simplicity, leaning heavily upon the 

axiom that all of the structural information about a protein may be gleaned from 

its sequence. Because protein function derives directly from structure, which in 

turn derives in part from sequence, models based only upon sequence data must 

also decode structure.  Moreover, these approaches discredit the tremendous 

efforts by the community to solve, annotate, and collect protein structures in 

databases such as the RCSB (Berman et al., 2000). Citing a lack of well-

developed code bases for doing machine learning on protein structure, or even 

on basic manipulations and preprocessing on 3D protein voxels, among my first 

projects at Caltech was to author tools to fill this gap. While such tools existed for 

2D image processing, and are growing for other 3D applications, there were 

none in the protein design domain. The problem of how to effectively encode 

protein structures is itself an open question, with only three prior works (Lau et 

al., 2017, Torng et al., 2017, Wallach et al., 2015)  having employed voxel grids 

to study proteins in any context.  The tools I created, dubbed VoxLearn, would be 

used in a variety of projects at Caltech as well as at the companies we 

collaborated with. 
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VoxLearn was designed to enable the following workflow: 

1. Generate data mapping protein structure to some label(s) 

2. Transform that data into a voxelized format 

3. Build a neural network to predict the label(s) from the voxelized data 

VoxLearn includes utilities for taking a .pdb file and converting it into an atom 

dictionary. Users can augment this data with their own additional channels such 

as descriptors derived from molecular mechanics force fields. There are also a 

variety of preprocessing tools included in the package, including 

● One hot encoding atom and amino acid feature vectors 

● Rotating features to augment 3D protein data 

● Cropping, blurring, and jittering data as inspired by image processing 

techniques 

For machine learning, one needs to encode information in a format 

conducive to matrix operations. In order to capture 3D spatial information, a 4D 

tensor format was adopted, where the first three dimensions are the (x, y, z) 

coordinates of the protein, and the last dimension is the features associated with 

that voxel, such as the atomic identity or force field derived terms. Processed 

tensors may be combined as one very large file to be read into a machine 

learning framework, or loaded incrementally with a generator function. Both 

approaches are demonstrated in the code base. In most use cases, preparing 
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one large file results in substantially faster network training, but requires a 

tremendous amount of memory to be available.  

Additional features have been added to this library over time, including the 

ability to parse and voxel encode small molecule file formats, updated generator 

functions to work with the latest version of Tensorflow, and a variety of neural 

network templates which have been adapted for protein engineering. I have 

additionally used this package to train three undergraduate students on the 

basics of neural networks and contributing to Git repositories. A separate version 

of the package has also been authored which is proprietary to Novartis, and is 

used in the modeling and cheminformatics groups. 

 

1.2 Hello world: Experiments with a model system 

Fluorescent proteins are an indispensable part of a molecular biologist’s 

toolbox, and the Mayo lab has developed several of the most widely used 

examples, including mKelly1/2 (Wannier et al., 2018), mRouge, and mRojo 

(Chica et al., 2010). In this project, we utilized voxel-based representations of 

fluorescent protein structures to train deep learning models relating structure to 

emission spectra.  

Starting from FPbase (Lambert, 2019), a dataset of fluorescent proteins 

with characterized emission spectra were cross-referenced with the RCSB to 

yield 186 structures. The data was curated to remove outliers (such as data 

collected at extreme pH’s), voxelized, and used to train deep neural networks. 
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Each protein was centered around the fluorophores and atoms were encoded as 

one-hot vectors using VoxLearn. Using automated hyperparameter and 

architecture searching tools, we tested 3D networks inspired by Dual Path 

Networks (Chen et al., 2017), ResNet (He et al., 2015), and googLeNet (Szegedy 

et al., 2015), and after significant work to overcome bugs, succeeded in training a 

network producing a useful degree of accuracy. 

This work was designed by me and used in mentoring Michelle Garcia, an 

undergraduate at Pomona College, although I ultimately learned a lot from her 

and the experience as well. Michelle began the work with minimal coding 

experience, but quickly became fluent in Python, and consumed machine 

learning research voraciously. She subsequently has presented this work at two 

conferences, and is currently doing an internship in machine learning before 

applying to grad school at Caltech in fall of 2021. 

 

The following is a manuscript prepared by myself and Michelle Garcia. I 

designed the experiments, prepared data for analysis, provided feedback on 

analysis, and edited the manuscript. M.G. wrote the manuscript and implemented 

and tuned the networks presented therein. Note that figure numbers and citations 

are independent of the rest of the thesis. 
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A Three-Dimensional Convolutional Neural Network to Predict 

Fluorescent Protein Maximum Emission Peaks 

Introduction  

Presently, a wide range of fluorescent proteins are commercially available with 

maximum emission peaks (𝜆emission) ranging from 420 nm, a deep violet, to 700 

nm, a vibrant red.1 Despite the variety, there are few fluorescent protein 

monomers with 𝜆emission in the nearinfrared window of 650 nm to 700 nm–a 

variance likely due to the occupation of lowlying excited singlet and triplet states 

that may increase fluorophore reactivity.2 The scarcity of far-red emitting fps is a 

major limitation for live-tissue imaging, where the nearinfrared window is 

favorable for light penetration and necessary for deep imaging.3,4  Moreover, the 

comparably smaller energy difference between the transition of HOMO and 

LUMO states in far-red fp fluorophores ensures a reduction of autofluorescence, 

lightscattering, and phototoxicity.2,5 Scherbo et al., 2007 reported the far-red 

fluorescent protein mKate, the current protein of choice for whole-body imaging, 

and their contributions increased deep imaging resolution with an invitation to 

close this ~50 nm gap to raise the sensitivity of whole-body imaging 

techniques.3,4  

We endeavor to create far-red fluorescent protein molecular models for eventual 

synthesis in the laboratory by applying machine learning principles to guide our 
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efforts. Machine learning is the practice of using algorithms to learn patterns from 

raw data for representation in a model; the model can then infer patterns from 

newly generated data.6 Neural networks, a type of ML model, are loosely related 

to the function of the human brain. The basic unit known as a node is the neuron, 

and the connections created between neurons happen, likewise, after a training 

period on raw data. In the past decade, neural network model performances 

have greatly improved due to the availability of larger datasets, integration of 

Graphical Processing Units (GPU), and creative model architectures. The 

remarkable network that pushed forward deep learning was the 2012 ImageNet 

LARGE Scale Visual Recognition Competition winner known as AlexNet.7 The 

deep convolutional neural network (CNN) trained and evaluated with over 10 

million labeled images corresponding to over 20,000 categories demonstrated 

that GPUs assist and greatly improve network learning rates, and CNNs can 

facilitate learning with more ease as there are sparser connections between 

nodes, thus less parameters to train. Various state-of-the-art networks since then 

have implemented unique architecture designs cross-disciplinarily with 

convolutional layers that perform a set of linear operations with an input, and 

pooling layers that create intermediate representations suitable for generalized 

learning. Thus, here, we utilize a three-dimensional convolutional neural network 

for fluorescent protein 𝜆emission prediction given a molecular model.  
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The Dataset and Data Representation  

The dataset consists of 130 fp subunits and monomer crystal structures obtained 

from FPbase, a fluorescent protein database moderated by the scientific 

community.1 All crystal structures were captured in a pH range of 6-9. An in-

house Python package named MoleculeCompletion was utilized to configure 

information in a protein data bank file to an accessible format for the neural 

network input layer. MoleculeCompletion encodes each atom in the monomer or 

subunit of an xmer on a 3D grid-like space into four-dimensional tensors, a 

process called voxelization.8  

Two encoding methods were utilized. First, the protein atoms were one-hot 

encoded with each atom type (C, H, O, N, P, S, or other) corresponding to a 

batch, and the width, height, and features representative of the voxel grid (Figure 

1). The second approach encoded the canonical amino acids and ascribed a 

random georgieV value, which would give a more descriptive numerical 

representation with the location of the amino acid, essentially it describes the 

physicochemical parameters that describe amino acid qualities such as 

hydrophobicity, volume, mutability, and more.9 While the first approach most 

adequately captured the location of each atom in the protein, especially the 

geometry of the chromophore, the second approach created a more detailed 

matrix representation of the protein. The first provides more data points, but the 

latter possibly fewer more descriptive points. Consider though that the georgieV 

encoding of the protein could not adequately capture the chromophore as it had 
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an assigned value of zero, but rather it captured the amino acids around the 

chromophore.  

In both approaches, we encoded a 32 x 32 x 32 voxel grid with 1 Å voxels 

centered around the chromophore. The complete structures of most protein 

subunits or monomers are not captured, yet the atoms around and including the 

chromophore are conserved. Given our limited data set, we created more 

structural representations of the same protein by rotating and translating the 

molecular model with quaternion rotation, a fundamental technique in 3D 

computer graphics where the sum of the coefficients of three variables 

representing vectors in space is one, and it is randomly off-centering the voxel 

grid 10% from the chromophore.10  
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Figure 1. Crystal structure to 4D tensor data generation workflow (a) stick 
representation of eqFP650 (PDBID:4EDO, generated with chimera), one of the 
130 proteins in our dataset. (b) 4D tensor with a batch size 7, width size 32, 
height size 32, feature size 32 for the one-hot encoding. The tensor batch size 
elongated to 21, when encoding with georgieV values.  

Network Architecture 

We drew inspiration from computer vision, specifically networks that have 

performed well in the IMAGENET Large Scale Visual Recognition Challenge. We 

adapted the two-dimensional network googLeNet11 (ILSVRC 2014 winner) with a 

shelled out Alexnet to form our Network (Table 1).7  We introduced the unique 

architectural motif implemented in GoogLeNet version 3 known as inception 

modules. These modules increase network depth through the organizational 



10 
 

method (Figure 2). Specifically, the 1 x 1 x 1 convolutions introduce sparsity into 

the network that addresses the overfitting of training data issue that most deep 

networks suffer.12 The construction of a new network (FPCNN) with three-

dimensional convolutions followed included the inception module adapted in 

version 3 of the GoogLeNet. FPCNN was hyperparameter tuned utilizing 

hyperband with a total of 480 different hyperparameters explored. The 14-layer 

deep model architecture that preformed best on our dataset has 3,261,785 total 

parameters for the one-hot encoding, and 3, 3,406,937 for the georgieV amino 

acid encoding (Table 1). 

 

Table 1. FPCNN architecture for one-hot and georgieV encoding  
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Figure 2. FPNET Inception Module. The 1 x 1 x 1 kernel size convolutions, 
followed by the 1x1x3, 1x3x1, 3x1x1, and 5 x 5 x 5 convolutions allow the 
network to explore more features, while reducing spatial dimension. This 
approach is adapted from the ILSVRC winner GoogLeNet.    

 

Results and Discussion 

The network was trained with the TensorFlow Keras API utilizing the Mean 

Squared Error loss function. The total set of 130 fp subunits and monomer 

crystal structures (all set) as well as a set of 35 fp’s with 𝜆emission greater than 600 

nm (RFP only set) were utilized for 10-fold cross validation training—a common 

technique for small datasets. The model was trained by augmenting each model 

by a factor of four; at testing, each model was augmented 8 
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times, as described above in the data set and data representation section. The 

all set outputted 1,040 predictions, while the RFP only outputted 344 

predictions. The Pearson 𝜌 correlation was computed to measure the linear 

relationship between the predicted and actual scaled 𝜆emission values (Table 2).  

In both data sets, one encoding outperformed the other. The georgieV 

encoding achieved a medium correlation value of 0.4977 when training and 

predicting with the RFP only data set, while the one-hot encoding achieved a 

low correlation of 0.3945 for all molecular models. The predictions of the best 

performing encoding type for each dataset linear regressions reveal a weak 

correlation indicated by a 0.2324 and 0.2478 R2. 

 

Table 2. Pearson 𝜌 Correlation and P-values regressions reveal a weak 
correlation demonstrating georgieV outperforms one-hot indicated by a 0.2324 
and 0.2478 R2 encoding with RFP only, while one-hot encoding (Figure 3).  

outperforms georgieV when trained with all.    
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Figure 3. Linear regression plots for all FPCNN models that trained on the total 
fp data set and subset. Values are scaled according to the distribution of 
proteins. (a) the high-density region of data points noticeable at x = 0.4 
corresponds to the disproportionate amount of green fluorescent proteins and 
derivatives trained. The R², 0.2324, displays a weak correlation between the 
Scaled True and Scaled Predicted values (𝜆emission). y = 0.1401x + 0.2391 is the 
regression. (b)  Qualitatively, a noticeable trend with respect to the regression 
line is the sparsity of the predictions towards the scaled value 1, which may 
represent worse predictions for non-monomeric far-red fps. The R², 0.2478, 
displays a weak correlation between the Scaled True and Scaled Predicted 
values (𝜆emission). y = 0.288x + 0.1963 is the regression. 

 

The unexpected correlation values suggest that there may not have been a 

clever diversification of the data. Of the 130 molecular models, only 36 were 

monomers, thus the encoded crystal structures may not be representative of key 

components that stabilize the chromophore for many proteins. Additionally, the 

georgieV encoding is unable to assign a descriptive value to any chromophore 

because it cannot be described within the 21 canonical amino acids. This 
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limitation may be indicated by virtually no correlation present with ρ of 0.0761 in 

the data set with 95 additional (not rfp) proteins. The correlation values may also 

have been impacted by the variation between every model trained in each fold. 

Each fold tested on a different subset of molecular models, which was chosen 

through a random seed, so controlling the ratio of monomers relative to the entire 

test set and differing λemission was not achieved. 

Conclusions 

Although the machine learning model is not yet refined, the medium correlation 

provided by the georgieV encoded trained prediction suggests that three-

dimensional convolutional neural networks can extract features relevant to the 

molecular model. Future efforts may include a binary categorization. Instead of 

predicting the  𝜆emission, the new CNN model could predict red fluorescence or 

not. Although the simplification of the problem could allow for greater accuracy, 

it would not be as robust to suggest a fully automated learning of biological 

features relevant to functional properties of biomolecules.  

Notably, in both the one-hot and georgieV encoding, the chromophore and its 

function cannot be descriptively understood by FPCNN. Perhaps, a new 

approach that captures the subtlety in electronic states between red-shifted 

proteins could more precisely predict 𝜆emission. With further improvement, a 

refined FPCNN model could be used to predict the 𝜆emission for computational 

molecular models not yet synthesized in the lab. In theory, this approach would 
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narrow the search and give some insight as to the necessary chromophore 

environment for far-red fluorescence.  
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1.3 Crystallography Package: Elucidating Density for Automatic Real Space 

Refinement 

This project was initiated in September of 2019 as a collaboration between 

the Mayo Lab and the Genomics Institute of the Novartis Research Foundation, 

to create a machine learning tool to automate the reconstruction of Cartesian 

coordinates suitable for the PDB format from electron density maps. 

The primary motivation for this project is the difficulty in refining large 

macromolecular structures when the initial model generated is outside of the 

radius of convergence. We expect that this would save users many hours of 

manually dragging residues in Coot, and be especially useful when the complete 

sequence of the protein is not known. 

In the course of this work, we authored Python 3 wrappers for Phenix 

(Liebschner et al., 2019), the foremost electron density map processing tool. This 

included supporting tools to interoperate with the RCSB to fetch and prepare 

training data suitable for training models. These tools use a list of PDB codes, 

from which structure factor data and completed PDB files are retrieved. Structure 

factor data is processed with Phenix’s Xtriage tool to generate MTZ reflection 

files, before processing with the maps tool and FFT tools to generate CCP4 

electron density maps. These steps are completed in advance of any machine 

learning and are coded so as to allow for efficient partially parallel processing. In 

our tests, preparing 3300 maps takes approximately 36 hours on a 32 core 

workstation. The resulting ccp4 electron density maps can then be stored for 

further processing and featurization. 
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To enable simple processing with TensorFlow, a Keras Sequence object 

and TensorFlow data pipeline have been written which read in the ccp4 files, 

extract the unit cell information, and orthogonalize the ccp4 maps using the 

Gemmi library. These maps are then converted to dense tensors of floats which 

represent normalized electron density at each voxel in a 64x64x64 grid, where 

each voxel is a 1 Angstrom cube. The associated PDB maps are read in parallel 

to generate voxel labels which are one-hot encoded either as residue or atom 

types. These inputs and labels are generated together on the fly in batches which 

saves >99% of the storage space which would be required to precalculate and 

store them on disk. Because the convolutional network architecture employed by 

our models mandate that inputs and outputs maintain consistent sizes, we have 

enacted a routine to slice the electron density maps (inputs) and voxel maps of 

atomic positions (outputs) to fixed sizes, and conversely a routine for 

reconstructing full size atomic maps from a series of submaps. 

The full code has been collected as a Github repository and will be 

released for others to adapt and build on. While we have implemented several 

network architectures in the repository, including SegNet (Badrinarayanan et al., 

2016) and U-Nets (Ronneberger et al., 2015), we have not been able to achieve 

acceptable performance, and have had to spend significant time debugging 

various aspects of the data cleaning and streaming. Both of the main contributors 

to this project took on increased commitments to other projects (one a promotion 

to institute level leadership, and one a new sponsored research agreement), and 

accordingly this project will need to be carried on further by others using the code 
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we have released. The work we have done will simplify future efforts to continue 

to address this problem; using our repository, one can quickly narrow their focus 

to designing neural networks without concern for the complexities of Phenix, 

Gemmi, or the file formats. 

 

1.4 Low data regimes - Transfer learning and Siamese networks: Protein 

solubility and serum albumin binding 

This project originated in early 2019 in response to an RFP from Novo 

Nordisk for computational methods which could predict the plasma protein 

binding of small-molecule-peptide conjugates, such as the GLP-1 agonist 

Semaglutide. Serendipitously, I had recently been exploring data from eSOL 

(Niwa et al., 2009), a comprehensive characterization of the solubility of E. coli 

proteins. Building upon VoxLearn, I cross-referenced this data with structural 

data from RCSB and set out to train models which used protein structures to 

predict aqueous solubility. Initially this worked poorly, as we had a highly 

restricted dataset of only 130 proteins. Drawing from image processing literature, 

I decided to experiment with using a Siamese network architecture (Koch et al., 

2015) as this setup has been known to perform well in low data settings. In the 

course of our work, it was discovered that networks trained in this way were 

capable of ranking proteins on the basis of solubility with a high degree of 

accuracy. Conjecturing that aqueous solubility is related to human serum albumin 

(HSA) binding, I next attempted to adapt the trained aqueous solubility model to 

predicting HSA binding. HSA is the most abundant protein in blood plasma 
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(Parviainen et al., 2011), and serves in a variety of roles, including as a carrier for 

aliphatic drug molecules which are otherwise poorly soluble. In this work, we 

examined the applicability of our trained solubility model to a variety of datasets, 

and found that it is capable of predicting HSA binding with a modest degree of 

accuracy, subject to several conditions. Notably, the method works better on 

smaller organic molecules rather than large macrocycles or polypeptides. We 

believe this may be related to the conformational complexity of these molecules, 

as unlike the protein dataset upon which we trained our original model, which 

had corresponding crystal structures, we must generate conformers for test data 

using non-exhaustive search algorithms.  

In the summer of 2020, I additionally used this project to teach machine 

learning and cheminformatics basics to an undergraduate SURF student. Over 

the course of three months, this highly talented student recreated the work I had 

originally performed and continued by systematically exploring the effects of 

increasing the number of data augmentations and pairwise comparisons in the 

task of ranking.  

The key difference between transfer learning and standard representation 

learning is that models are trained on a domain which has a significant amount of 

data available and subsequently applied to a different task, one where data is 

typically relatively more scarce (Ruder, 2017). The Siamese network architecture 

described above processes two input data in parallel, however the learned 

weights and biases from each input are tied until the last layers of the network, 

where the intermediate representations of the two data are compared to make a 
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conclusion about the relative label of the two data. In the case of the network we 

constructed, the output simply describes which of the two molecules input is 

more soluble (label 1) or less soluble (label 0). 

As part of this project, we illuminated key features for the model to learn 

well (aside from the tuning of model hyperparameters), including the number of 

pairs, the number of augmentations of the data, and the method of generating 

conformers. To adapt a Siamese network to predicting properties of sets, we 

aggregate the pairwise comparisons to create a ranking problem, which performs 

multiple comparisons for each data in the input set before collecting the total 

number of “more soluble” (label 1) votes each protein received. Because the 

number of pairs of data points to compare rapidly expands as a function of the 

dataset size, as calculated by , we experimented with using 

less than exhaustive sets of random pairs. Additionally, we examined the effects 

of augmenting each input point by randomly rotating and transposing within the 

input voxel grid using VoxLearn. Finally, because the small molecule datasets we 

were working with do not have experimentally determined three-dimensional 

structures, we have compared six different methods for generating conformers. 

To determine the relative contributions of each of these factors, we have 

evaluated a pretrained model by prediction on a range of small molecule sets. 
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Results 

To limit the search space required, we first evaluated a range of model 

architectures on a single dataset, eSol, before attempting to apply this model to 

additional datasets. Using automated hyperparameter tuning, we selected the 

model producing the lowest mean squared error. In general the best performing 

models had lower dropout rates and slower learning rates, and a higher number 

of pairs was better for the model, but with diminishing returns. In the training set, 

there are roughly 130 proteins. Using a number of pairs set to 40 provided the 

best result, (better than 1, 3, 5, 10, or 20 pairs). Setting the number to 80 pairs 

performed worse, and even worse (and slower) was setting the number of pairs 

to n pick 2.  

Next we evaluated the effect of increasing the number of augmentations 

(rotations and translations) that were applied to the input data representations. 

By testing and training the model on more augmentations of the 3D molecules, 

the model was better able to predict the properties of the molecules, although as 

before, a point of diminishing returns was reached at 9 augmentations. 

Spearman rho was used to evaluate the fidelity of the predicted solubility, with 

the model producing rho of 0.62 (Figure 1). 
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Figure 1: Predicted rank vs. True rank for proteins. In the graph, we tested 
our best, model and then calculated its estimate of the proteins’ solubility based 
on its prediction. Taking that number, we ranked the proteins in order of 
decreasing solubility and compared it with the actual rank of the proteins’ 
solubility. The spearman rho of this graph is 0.62. Presented results are ten fold 
cross-validated. 
 

Following hyperparameter testing, we used the best model to make 

predictions on several data sets of small molecules from ChEMBL which 

describe binding affinity to serum albumin. No fine tuning of the models was 

performed on this new problem. In our initial efforts, we used Open Babel’s 

gen3D operation (O'boyle et a., 2011) to generate conformers from the 1D 

SMILES format provided in ChEMBL, but recognizing that this is a key aspect of 

the workflow, we additionally embarked to evaluate the effects of varying the 

stringency of the conformer search, as well as including two commercial 

conformer generation packages, from Schrodinger (Watts et al., 2011), and 

Chemaxon (cxcalc). 
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Primary Results 

Figure 2: Performance of transferred model with varying datasets and 
conformer generation routines. Methods correspond to software suites used to 
generate small molecule conformers. Obabel corresponds to OpenBabel using 
the gen3d command using low, med, fast, or best flags which effects a weighted 
rotor conformational search and conjugate gradient geometry optimization used 
in the process. Datasets are described in Table 1. 
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ChEMBL Dataset Description of Assay Description of 
Compounds 
Screened 

Molecular 
Size / 
Description 

CHEMBL3110981 
(Han et al., 2013) 

Binding affinity to human 
serum albumin at 100 ug/mL 
after 3 hrs relative to control 

GLP-1 Conjugates 
of Dicoumarol 

30-mer + 
linker + 
Dicoumarol 

CHEMBL1953042 
(Yang et al., 2012) 

Binding affinity to human 
serum albumin by 
fluorescence quenching 
assay 

Novel Gossypol 
derivatives 

< 1000 MW 
small 
molecules 

CHEMBL633673 
(Knudsen et al., 
2000) 

Plasma half life determined 
in pigs 

GLP-1 derivatives 
conjugated to fatty 
acids 

30-mers + 
short chain 
fatty acids 

CHEMBL809966 
(Koehler et al., 
2002) 

In vitro binding affinity for 
rabbit serum albumin 

Small organic 
molecules which 
are conjugated to 
the terminus of 
peptides 

Mix of small 
linear 5-mers 
and large 
cyclic 
peptides 

CHEMBL888690 
(Svenson et al., 
2007) 

Binding affinity to BSA 1 by 
isothermal titration 
calorimetry 

Short Cationic 
Antimicrobial 
Micropeptides 

Chemically 
modified 
trimers 

CHEMBL894775 
(Šoškić et al., 2007) 

Binding affinity to human 
serum albumin in vitro 

Chemically modified 
indoles 

< 280 MW 

 
Table 1: Datasets evaluated for transfer learning. Six datasets characterizing 
the binding of small molecules and peptides were identified on ChEMBL and 
evaluated using the Siamese model trained on eSol. 
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Figure 3: Predicted rank vs. True rank for small molecules. Here we tested 
our trained eSol model on CHEMBL3110981, a set of GLP-1 conjugates of 
Dicoumarol. This was the original dataset that inspired further exploration. 
 
Discussion of Results 

In examining these results, our initial observation is that the transferability 

of the model is highly dependent on the choice of conformer generation method. 

In general, the Schrodinger method, ConfGen, produced conformers that 

produced the strongest agreement with experimentally determined measures of 

serum albumin binding, in particular on assays 3110981 (Binding affinity to 

human serum albumin at 100 ug/mL after 3 hrs relative to control GLP-1 

Conjugates of Dicoumarol,  p=0.0009), 809966 (Binding affinity for rabbit serum 

albumin by mix of 5-mers and cyclic peptides, p=0.0001), and 894775 (binding of 

modified indoles to HSA p=0.0075). Notably OpenBabel outperformed the other 

paid competitor ChemAxon on two of the three datasets listed above. 
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Our second observation is that performance varied significantly between 

the six datasets. Of these, three datasets achieved p values which are 

statistically significant, as noted above. However, for the other three datasets, the 

p values achieved were quite poor (0.5956, 0.8287, 0.7980). In examining the 

experimental details of the six datasets, it is not immediately clear what may be 

influencing the performance of the transferred model. Of the three datasets which 

did not achieve statistically significant predictions with the transferred model 

using Schrodinger conformers, two were not assays of binding to human serum 

albumin, but rather bovine (in vitro) and porcine (in vivo). However, confounding 

the potential explanation of species differences is the fact that one dataset, 

CHEMBL3110981 performed poorly, despite using human serum albumin, and 

another, CHEMBL809966, performed very well, and used rabbit serum albumin. 

Variable size and complexity of the molecules in the different datasets is also not 

sufficient to explain the observed performance gap, as a mixture of datasets 

containing small molecules, peptides, and peptide-small molecule conjugates 

were evaluated, with no clear trend. To take the most conservative possible tack, 

we can state that with medium side peptides (larger than 5-mers) which were 

evaluated for binding against human serum albumin, the model performed well. 

 

1.5 Leveraging existing datasets: Learning to active learn with submodular 

regularization 

This project began when scrolling through a corpus of biochemical data 

representing a large investment of time and money and wondering how to make 
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use of it to aid in future, unrelated protein engineering projects. I worked on the 

project solo for approximately six months, before being invited by Dr. Yue to 

present it at his group’s research meeting. At this meeting Dr. Yue, and his group 

members were interested in how I was adapting the algorithm from (Liu et al., 

2018) to a batch setting, and a discussion was struck up with group members 

who were working on a method for data-driven normalization based on the 

submodular-norm loss. Ultimately, we merged our projects to form the paper we 

published at ICLR 2021. In writing this paper, my contributions were adapting the 

concept of submodularity to the active learning paradigm I had been previously 

working on, and conducting the published experiments on protein engineering. I 

contributed to writing all aspects of the paper except the set cover and Fashion 

MNIST experiments. I was also involved in the review and rebuttal process. I 

presented the paper as a poster alongside my co-author Ayya Alieva at ICLR, 

and also gave an invited talk based on the work at the AI LA Life Summit 

conference. 

This work has also been made freely available as open source software 

on GitLab, and is also being employed by a graduate student in the Arnold lab for 

new domains of protein engineering. 
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ABSTRACT

Many sequential decision making tasks can be viewed as combinatorial optimiza-
tion problems over a large number of actions. When the cost of evaluating an ac-
tion is high, even a greedy algorithm, which iteratively picks the best action given
the history, is prohibitive to run. In this paper, we aim to learn a greedy heuris-
tic for sequentially selecting actions as a surrogate for invoking the expensive
oracle when evaluating an action. In particular, we focus on a class of combinato-
rial problems that can be solved via submodular maximization (either directly on
the objective function or via submodular surrogates). We introduce a data-driven
optimization framework based on the submodular-norm loss, a novel loss func-
tion that encourages the resulting objective to exhibit diminishing returns. Our
framework outputs a surrogate objective that is efficient to train, approximately
submodular, and can be made permutation-invariant. The latter two properties al-
low us to prove strong approximation guarantees for the learned greedy heuristic.
Furthermore, our model is easily integrated with modern deep imitation learning
pipelines for sequential prediction tasks. We demonstrate the performance of our
algorithm on a variety of batched and sequential optimization tasks, including set
cover, active learning, and data-driven protein engineering.

1 INTRODUCTION

In real-world automated decision making tasks we seek the optimal set of actions that jointly achieve
the maximal utility. Many of such tasks — either deterministic/non-adaptive or stochastic/adaptive
— can be viewed as combinatorial optimization problems over a large number of actions. As an
example, consider the active learning problem where a learner seeks the maximally-informative set
of training examples for learning a classifier. The utility of a training set could be measured by
the mutual information (Lindley, 1956) between the training set and the remaining (unlabeled) data
points, or by the expected reduction in generation error if the model is trained on the candidate
training set. Similar problems arise in a number of other domains, such as experimental design
(Chaloner and Verdinelli, 1995), document summarization (Lin and Bilmes, 2012), recommender
system (Javdani et al., 2014), and policy making (Runge et al., 2011).

Identifying the optimal set of actions (e.g., optimal training sets, most informative experiments)
amounts to evaluating the expected utility over a combinatorial number of candidate sets. When
the underlying model class is complex and the evaluation of the utility function is expensive, these
tasks are notoriously difficult to optimize (Krause and Guestrin, 2009). For a broad class of deci-
sion making problems whose optimization criterion is to maximize the decision-theoretic value of
information (e.g., active learning and experimental design), it has been shown that it is possible to
design surrogate objective functions that are (approximately) submodular while being aligned with
the original objective at the optimal solutions (Javdani et al., 2014; Chen et al., 2015b; Choudhury
et al., 2017). Here, the information gathering policies no longer aim to directly optimize the target
objective value, but rather choose to follow a greedy trajectory governed by the surrogate function
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that is much cheaper to evaluate. These insights have led to principled algorithms that enable sig-
nificant gains in the efficiency of the decision making process, while enjoying strong performance
guarantees that are competitive with the optimal policy.

Despite the promising performance, a caveat for these “submodular surrogate”-based approaches
is that it is often challenging to engineer such a surrogate objective without an ad-hoc design and
analysis that requires trial-and-error (Chen et al., 2015b; Satsangi et al., 2018). Furthermore, for
certain classes of surrogate functions, it is NP-hard to compute/evaluate the function value (Jav-
dani et al., 2014). In such cases, even a greedy policy, which iteratively picks the best action given
the (observed) history, can be prohibitively costly to design or run. Addressing this limitation re-
quires more automated or systematic ways of designing (efficient) surrogate objective functions for
decision making.

Overview of main results. Inspired by contemporary work in data-driven decision making, we aim
to learn a greedy heuristic for sequentially selecting actions. This heuristic acts as a surrogate for
invoking the expensive oracle when evaluating an action. Our key insight is that many practical
algorithms can be interpreted as greedy approaches that follow an (approximate) submodular surro-
gate objective. In particular, we focus on the class of combinatorial problems that can be solved via
submodular maximization (either directly on the objective function or via a submodular surrogate).
We highlight some of the key results below:

• Focusing on utility-based greedy policies, we introduce a data-driven optimization framework
based on the “submodular-norm” loss, which is a novel loss function that encourages learning
functions that exhibit “diminishing returns”. Our framework, called LEASURE (Learning with
Submodular Regularization), outputs a surrogate objective that is efficient to train, approximately
submodular, and can be made permutation-invariant. The latter two properties allow us to prove
approximation guarantees for the resulting greedy heuristic.

• We show that our approach can be easily integrated with modern imitation learning pipelines for
sequential prediction tasks. We provide a rigorous analysis of the proposed algorithm and prove
strong performance guarantees for the learned objective.

• We demonstrate the performance of our approach on a variety of decision making tasks, including
set cover, active learning for classification, and data-driven protein design. Our results suggest
that, compared to standard learning-based baselines: (a) at training time, LEASURE requires
significantly fewer oracle calls to learn the target objective (i.e., to minimize the approximation
error against the oracle objective); and (b) at test time, LEASURE achieves superior performance
on the corresponding optimization task (i.e., to minimize the regret for the original combinatorial
optimization task). In particular, LEASURE has shown promising performance in the protein
design task and will be incorporated into a real-world protein design workflow.

2 RELATED WORK

Near-optimal decision making via submodular optimization. Submodularity is a property of
a set function that has a strong relationship with diminishing returns, and the use of submodular-
ity has wide applications from information gathering to document summarization (Leskovec et al.,
2007; Krause et al., 2008; Lin and Bilmes, 2011; Krause and Golovin, 2014). The maximization
of a submodular function has been an active area of study in various settings such as centralized
(Nemhauser et al., 1978; Buchbinder et al., 2014; Mitrovic et al., 2017), streaming (Badanidiyuru
et al., 2014; Kazemi et al., 2019; Feldman et al., 2020), continuous (Bian et al., 2017b; Bach, 2019)
and approximate (Horel and Singer, 2016; Bian et al., 2017a). Variants of the greedy algorithm,
which iteratively selects an element that maximizes the marginal gain, feature prominently in the
algorithm design process. For example, in the case of maximizing a monotone submodular function
subject to a cardinality constraint, it is shown that the greedy algorithm achieves an approximation
ratio of (1− 1/e) of the optimal solution (Nemhauser et al., 1978).

In applications where we need to make a sequence of decisions, such as information gathering, we
usually need to adapt our future decisions based on past outcomes. Adaptive submodularity is the
corresponding property where an adaptive greedy algorithm enjoys a similar guarantee for maxi-
mizing an adaptive submodular function (Golovin and Krause, 2011). Recent works have explored
optimizing the value of information (Chen et al., 2015b) and Bayesian active learning (Javdani et al.,
2014; Chen et al., 2017a) with this property. Another line of related work is online setting (typically
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bandits), which is grounded in minimizing cumulative regret (Radlinski et al., 2008; Streeter et al.,
2009; Yue and Guestrin, 2011; Ross et al., 2013; Yu et al., 2016; Hiranandani et al., 2020).

Learning submodular functions. Early work focused on learning non-negative linear combinations
of submodular basis functions (Yue and Joachims, 2008; El-Arini et al., 2009; Yue and Guestrin,
2011; Sipos et al., 2012), which was later generalized to mixtures of “submodular shells” (Lin and
Bilmes, 2012). Deep submodular functions (Dolhansky and Bilmes, 2016) extend these ideas to
more expressive compositional function classes by using sums of concave composed with modular
functions. The theoretical question of the learnability of general submodular functions is analyzed
in Balcan and Harvey (2018). Our goal is to encourage submodularity via regularization, rather than
via hard constraints on the function class design.

Learning to optimize via imitation learning. Rather than first learning a submodular function and
then optimizing it, one can instead learn to directly make decisions (e.g., imitate the oracle greedy
algorithm). This area builds upon imitation learning, which learns a policy (i.e., a mapping from
states to actions) directly from examples provided by an expert (e.g., an expensive computational
oracle, or a human instructor) (Chernova and Thomaz, 2014). Classic work on imitation learning
(e.g., the Dataset Aggregation (DAgger) algorithm (Ross et al., 2011)) reduce the policy learning
problem to the supervised learning setting, which has been extended to submodular optimization by
imitating the greedy oracle method (Ross et al., 2013). More generally, learning to optimize has
been applied generically to improve combinatorial optimization solvers for focused distributions
of optimization problems (He et al., 2014; Song et al., 2018; Khalil et al., 2016; Balunovic et al.,
2018; Gasse et al., 2019; Song et al., 2020). Our approach bridges learning to optimize and learning
submodular functions, with a focus on learning surrogate utilities using submodular regularization.

Learning active learning. Our approach is applicable to active learning, and so is related to work
on learning active learning. The closest line of work learns a utility function as a surrogate for
improvement in classifier accuracy (Konyushkova et al., 2017; Liu et al., 2018), which is then used
as the decision criterion. However, prior work either used restricted function classes (Konyushkova
et al., 2017), or very expressive function classes that can be hard to fit well (Liu et al., 2018).
Our work can be viewed as a direct extension of this design philosophy, where we aim to reliably
learn over expressive function classes using submodular regularization. Other related work do not
directly learn an active learning criterion, instead encouraging sample diversity using submodularity
(Wei et al., 2015) or the gradient signal from the classifier (Ash et al., 2020).

3 BACKGROUND AND PROBLEM STATEMENT

3.1 DECISION MAKING VIA SUBMODULAR SURROGATES

Given a ground set of items V to pick from, let u : 2V → R be a set function that measures the
value of any given subset1 A ⊆ V . For example, for experimental design, u(A) captures the utility
of the output of the best experiment; for active learning u(A) captures the generalization error after
training with set A. We denote a policy π : 2V → V to be a partial mapping from the set/sequence
of items already selected, to the next item to be picked. We use Π to denote our policy class. Each
time a policy picks an item e ∈ V , it incurs a unit cost. Given the ground set V , the utility function
u, and a budget k for selecting items, we seek the optimal policy π that achieves the maximal utility:

π∗ ∈ arg max
π∈Π

u(Sπ,k). (1)

Sπ,k is the sequence of items picked by π: Sπ,i = Sπ,i−1 ∪ {π(Sπ,i−1)} for i > 0 and Sπ,0 = ∅.
As we have discussed in the previous sections, many sequential decision making problems can be
characterized as constrained monotone submodular maximization problem. In those scenarios u is:

• Monotone: For any A ⊆ V and e ∈ V \A, u(A) ≤ u(A ∪ {e}).

• Submodular: For any A ⊆ B ⊆ V and e ∈ V \B, u(A ∪ {e})− u(A) ≥ u(B ∪ {e})− u(B).

1For simplicity, we focus on deterministic set functions in this section. Note that many of our results can
easily extent to the stochastic, by leveraging the theory of adaptive submodularity (Golovin and Krause, 2011)
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In such cases, a mypopic algorithm following the greedy trajectory of u admits a near-optimal policy.
However, in many real-world applications, u is not monotone submodular. Then one strategy is to
design a surrogate function f : 2V → R which is:

• Globally aligning with u: For instance, f lies within a factor of u: f(A) ∈ [c1 · u(A), c2 · u(A))]
for some constants c1, c2 and any set A ⊆ V; or within a small margin with u: f(A) ∈ [u(A) −
ε, u(A) + ε] for a fixed ε > 0 and any set A ⊆ V;

• Monotone submodular: Intuitively, a submodular surrogate function encourages selecting items
that are beneficial in the long run, while ensuring that the decision maker does not miss out any
actions that are “surprisingly good” by following a myopic policy (i.e., future gains for any item
are diminishing). Examples that fall into this category include machine teaching (Singla et al.,
2014), active learning (Chen et al., 2015a), etc.

We argue that in real-world decision making scenarios—as validated later in Section 6—the decision
maker is following a surrogate objective that aligns with the above characterization. In the following
context, we will assume that such surrogate function exists. Our goal is thus to learn from an expert
policy that behaves greedily according to such surrogate functions.

3.2 LEARNING TO MAKE DECISIONS

We focus on the regime where the expert policy is expensive to evaluate. Let g : 2V × V → R be
the score function that quantifies the benefit of adding a new item to an existing subset of V . For the
expert policy and submodular surrogate f discussed in Section 3.1, ∀A ⊆ V and e ∈ V:

gexp(A, e) = f(A ∪ {e})− f(A).

For example, in the active learning case, gexp(A, e) could be the expert acquisition function that
ranks the importance of labelling each unlabelled point, given the currently labelled subset. In the
set cover case, gexp(A, e) could be the function that gives the score to each vertex and determines
the next best vertex to add to the cover set. Given a loss function `, our goal is to learn a score
function ĝ that incurs the minimal expected loss when evaluated against the expert policy: ĝ =
arg ming EA,e[`(g(A, e), gexp(A, e))]. Subsequently, the utility by the learned policy is u(Sπ̂,k),
where for any given history A ⊆ V , π̂(A) ∈ arg maxe∈V ĝ(A, e).

4 LEARNING WITH SUBMODULAR REGULARIZATION

To capture our intuition that a greedy expert policy tends to choose the most useful items, we intro-
duce LEASURE, a novel regularizer that encourages the learned score function (and hence surrogate
objective) to be submodular. We describe the algorithm below.

Given the groundset V , let f : 2V → R be any approximately submodular surrogate such that f(A)
captures the “usefulness” of the set A. The goal of a trained policy is to learn a score function
g : 2V × V → R that mimics gexp(A, x) = f(A ∪ {x}) − f(A), which is often prohibitively
expensive to evaluate exactly. Then, given any such g, we can define a greedy policy π(A) =
argmaxx∈Vg(A, x). With LEASURE, we aim to learn such function g that approximates gexp well
while being inexpensive to evaluate at test time. Let Dreal = {(〈A, x〉, yexp = gexp(A, x))}m be the
gathered tuple of expert scores for each set-element pair. If the set 2V × V was not too large, the
LEASURE could be trained on the randomly collected tuples Dreal. However, 2V tends to be too
large to explore, and generating ground truth labels could be very expensive. To leverage that, for a
subset of set-element pairs in Dreal we generate a set of random supersets to form an unsupervised
synthetic dataset of tuples Dsynth = {(〈A, x〉, 〈A′, x〉)|A � A′, 〈A, x〉 ∈ Dreal}n where A′ denote
a randomly selected superset of A. Define:

Loss(g, gexp) =
∑

〈A,x〉,yexp∈Dreal

(yexp − g(A, x))2 + λ
∑

(〈A,x〉,〈A′,x〉)∈Dsynth

σ([g(A′, x)− g(A, x)]),

where λ > 0 is the regularization parameter and σ is the sigmoid function. Intuitively, such regu-
larization term will force the learned function g to be close to submodular, as it will lead to larger
losses every time g(A′, x) > g(A, x). If we expect f to be monotonic, we also introduce a second
regularizer ReLu(−g(A′, x)) which pushes the learned function to be positive. Combined, the loss
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function becomes (used in Line 11 in Algorithm 1):

Loss(g, gexp) =
∑

〈A,x〉,yexp∈Dreal

(yexp − g(A, x))2 + λ
∑

(〈A,x〉,〈A′,x〉)∈Dsynth

σ([g(A′, x)− g(A, x)])

+ γ
∑

〈A′,x〉∈Dsynth

ReLu(−g(A′, x)),

where γ is another regularization strength parameter. Such loss should push g to explore a set of
approximately submodular, approximately monotonic functions. Thus, if f exhibits the submodular
and monotonic behavior, g trained on this loss function should achieve a good local minima.

We next note that since 2V is too large to explore, instead of sampling random tuples for Dreal, we
use modified DAgger. Then g can learn not only from the expert selections of 〈A, x〉, but it can also
see the labels of the tuples the expert would not have chosen.

Algorithm 1 Learning to make decisions via Submodular Regularization (LEASURE)

1: Input: Ground set V , expert score function gexp,
2: regularization parameters λ, γ, DAgger constant β, the length of trajectories T .
3: initialize Dreal ← ∅
4: initialize g to any function.
5: for i = 1 to N do
6: Let gi = gexp with probability β.
7: Sample a batch of T−step trajectories using πi(A) = xi = argmaxx∈Vgi(A, x).
8: Get dataset Di = {〈Ai, xi〉, gexp(Ai, xi)} of labeled tuples on actions taken by πi.
9: Dreal ← Dreal

⋃
Di.

10: Generate synthetic dataset Dsynth from Dreal.
11: Train gi+1 on Dreal and Dsynth using the loss function above.
12: Output: gN+1

Algorithm 1 above describes our approach. A trajectory in Line 7 is a sequence of iteratively chosen
tuples, (〈∅, x1〉, 〈{x1}, x2〉, 〈{x1, x2}, x3〉..., 〈{x1, ..., xT−1}, xT 〉), collected using a mixed policy
πi. In Line 8, expert feedback of selected actions is collected to formDi. Note that in some settings,
even collecting exact expert labels gexp at train time could be too expensive. In that case, gexp can
be replaced with a less expensive, noisy approximate expert gexp

ε ≈ gexp. In fact, all three of our
experiments use noisy experts in one form or another.

5 ANALYSIS

Estimating the expert’s policy. We first consider the bound on the loss of the learned policy mea-
sured against the expert’s policy. Since LEASURE can be viewed as a specialization of DAGGER
(Ross et al., 2011) for learning a submodular function, it naturally inherits the performance guaran-
tees from DAGGER, which show that the learned policy efficiently converges to the expert’s policy.
Concretely, the following result, which is adapted from the original DAgger analysis, shows that the
learned policy is consistent with the expert policy and thus is a no-regret algorithm:
Theorem 1 (Theorem 3.3, Ross et al. (2011)). Denote the loss of π̂ at history state H as l(H, π̂) :=
`(g(H, π̂(H)), gexp(H,πexp(H))). Let dπ̂ be the average distribution of states if we follow π̂ for a
finite number of steps. Furthermore, let Di be a set of m random trajectories sampled with πi at
round i ∈ {1, . . . , N}, and ε̂N = minπ

1
N

∑N
i=1 EHi∼Di [l(Hi, π̂)] be the training loss of the best

policy on the sampled trajectories. If N is O
(
T 2 log(1/δ)

)
and m is O (1) then with probability at

least 1− δ there exists a π̂ among the N policies, with EH∼dπ̂ [l(H, π̂)] ≤ ε̂N +O
(

1
T

)
.

Approximating the optimal policy. Note that the previous notion of regret corresponds to the
average difference in score function between the learned policy and the expert policy. While this
result shows that LEASURE is consistent with the expert, it does not directly address how well the
learned policy performs in terms of the gained utility. We then provide a bound on the expected value
of the learned policy, measured against the value of the optimal policy. For specific decision making
tasks where the oracle follows an approximately submodular objective, our next result, which is
proved in the appendix, shows that the learned policy behaves near-optimally.
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Theorem 2. Assume that the utility function u is monotone submodular. Furthermore, assume the
expert policy πexp follows a surrogate objective f such that for all A ⊆ V , |f(A) − u(A)| < εE
where εE > 0. Let ε̂N = minπ

1
N

∑N
i=1 l(Hi, π̂) be the training loss of the best policy on the

sampled trajectories. If N is O
(
T 2 log(1/δ)

)
then with probability at least 1 − δ, the expected

utility achieved by running π̂ for k steps is

E[u(Sπ̂,k)] ≥ (1− 1/e)E[u(Sπ∗,k)]− k(εE + ∆maxε̂N )−O(1).

A closely related work in approximate policy learning is by Ross et al. (2013), which also builds
upon DAGGER to tackle policy learning for submodular optimization, via directly imitating the
greedy oracle decision rather than learning a surrogate utility. One key difference is that their ap-
proach can only yield guarantees against an artificial benchmark (a set or list of simpler policies that
each independently selects an item to add to the action set), whereas our theoretical guarantees are
with respect to the optimal policy in our class.

6 EXPERIMENTS

In this section, we demostrate the performance of LEASURE on three diverse sequential decision
making tasks, namely set cover (SC), learning active learning (LAL) and protein engineering (PE).

Baselines. We compare our approach to the Deep Submodular Function (DSF (Dolhansky and
Bilmes, 2016)) and Deep Batch Active Learning by Diverse, Uncertain Gradient Lower Bounds
(BADGE (Ash et al., 2020)). The DSF approach learns a submodular surrogate function f : 2V → R
that produces a score for each set A ⊂ V . The architecture of the DSF forces the function f to be
exactly submodular, as opposed to LEASURE, which is only encouraged to be submodular through
a regularizer. However, the architecture and the training procedure of the DSF are quite restrictive,
which does not allow the DSF to explore a large domain during training and restricts how expressive
it can be compared to a standard neural network. Moreover, DSF are restricted to small V , and the
number of parameters increases with the cardinality of V . That is not true for LEASURE, which
number of parameters grows with the dimensionality of elements in V . This makes DSF useful for
small datasets, but makes it prohibitively expensive to use on larger problems. In fact, we could not
compare LEASURE to DSF on LAL or PE tasks, as it was not feasible to train DSF on these sets. For
LAL experiment, we also compare with a recent deep active learning approach (Ash et al., 2020).
Finally, we want to add that LEASURE can be seamlessly integrated with any standard Machine
Learning library, and since the architecture of the learned policy in LEASURE is not restrictive, any
available optimization trick can be used to achieve better performance. In fact, existing ‘imitation
learning’-based approaches for LAL, such as Liu et al. (2018), can be viewed as special cases of
LEASURE (i.e. without regularization). On the other hand, DSF cannot be as easily implemented,
and the standard libraries are not optimized for the DSF architecture.

6.1 SET COVER

Before testing our approach on a real-world scenario, we showcase its performance on a simple
submodular and monotonic maximization problem. Set cover is a classical example: given a set of
elements U = {1, 2, ..., n} (called the universe) and a collection of m sets S = {s1, .., sm} whose
union equals the universe, the set cover problem is to identify the smallest sub-collection of S whose
union equals the universe. Formulated as a policy learning problem, the goal is to learn the score
function g : 2S × S → R such that for any Sl ⊂ S, x ∈ S,

g(Sl, x) ≈ gexp(Sl, x) = | ∪s∈Sl s ∪ x| − | ∪s∈Sl s|.

Given g, we can then define a policy π : 2s → S as π(Sl) = argmaxx∈Sg(Sl, x). During train-
ing, tuples {(Sl, x), gexp} are collected, and then g is trained on this set. We trained four different
policies: a function g parametrized by a neural network with MSE(g, gexp) as the loss, a func-
tion g with the same MSE loss and just a monotonicity regularizer, a function g trained using both
monotonicity and submodular regularizers (LEASURE), as well as the Deep Submodular Function
baseline (Dolhansky and Bilmes, 2016). We use a modified Deepset architecture (Zaheer et al.,
2017) for modeling the permutation-invariant score networks g in both the SC and the LAL tasks,
and provide the details in Appendix B. Our dataset is the subset of the Mushroom dataset (Lim,
2015), consisting of 1000 sets. Each set contains 23 mushroom species, and there are a total of 119
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(a) (b)

Figure 1: Evaluating LEASURE against baselines on set cover instances

species. The goal is to train a policy to select the largest superset of these sets. We evaluate in two
settings: Exact Set Cover, where we collect tuples {(Sl, x), gexp} for training, and Noisy Set Cover,
where we have access only to {(Sl, x), gexp

ε }, where gexp
ε is a noisy score. The networks are trained

on rollouts of length 20 (i.e. on sets {Sl : |Sl| ≤ 20}), and tested on rollout of length up to 100.

Figure 1 show the value of set cover as a function of the size of the superset. LEASURE significantly
outperforms other learned policies, although Deep Submodular Function generalizes better to larger
rollout lengths – LEASURE gets most of its set cover gains in the first 10-20 selected points, while
Deep Submodular Function continues to noticeably improve past the training rollout length. Note
that in Figures 1a & 1b, the competing baselines all exhibit a “diminishing returns” effect, result-
ing in a concave-shaped value function. With a submodular-norm regularizer, LEASURE quickly
identified the sets with large marginal gains. This observation aligns with our analysis in Section 5.

6.2 LEARNING ACTIVE LEARNING ON FASHION MNIST

In this section we demonstrate the performance of LEASURE on a real-world task that is not sub-
modular or monotonic, but usually exhibits submodular and monotonic behaviour.

Figure 2: Combining submodular regularization
with a learned active learning policy for 10-class
Fashion-MNIST classification. The figure sum-
marizes the classification error of a neural net-
work trained on labelled images, as a function of
the number of labelled images. Originally, ran-
dom set of 20 images is selected, and then each
policy greedily chooses the next image to label.
The learned policies were trained on rollouts of
length up to 30, and tested on rollouts of length
200. The “no regularizer” policy corresponds to
Konyushkova et al. (2017), only in this case the
features are parametrized by the neural network
instead of being hand-engineered. “BADGE” cor-
responds to a sequential modification of (Ash
et al., 2020). The results are averaged between
500 experiments, with standard error reported.

In active learning, there is a partially labelled dataset
S = {Sl, Su}, where Sl is labelled and Su is un-
labelled, and a policy π : 2S → S. The labelled
subset Sl can be used to infer from data (learn the
image classifier, predict unlabelled protein fitness,
etc). The goal of the policy is to select the smallest
subset Sπ ⊂ Su to label such that the accuracy of su-
pervised learning from Sπ ∪ Sl is maximized. Since
selecting a subset is a prohibitively expensive combi-
natorial task, the policy is usually sequential. In par-
ticular, it selects points to add to Sπ one by one (or
in batches) using some score function g(Sπ ∪ Sl, ·) :
Su → R to score each point x ∈ Su and then the
policy labels the point with the largest score. If g
were to be the first order difference of a submodu-
lar function f , i.e. g(A, e) = f(A ∪ {e}) − f(A),
then the policy would be near-optimal. Moreover, as
discussed above, intuitively we expect g to have this
property in most cases, since adding an extra point
to a larger set usually has less effect than adding the
same point to a smaller subset of the set.

The above motivates the use of LEASURE in active
learning (Figure 2). In this experiment, the set S is
the Fashion-MNIST dataset consisting of greyscale
images from one of 10 clothes classes (Xiao et al.
(2017)). The goal was to learn a policy that greedily selects “the best” point x∗ ∈ Su to label, such
that a neural network classifier trained on the labelled set Sl ∪ {x∗} produces the most accurate
classification of the unlabelled images. In particular, we trained the above function g to predict the
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(a) Comparison to baseline methods (b) Effect of scaling parameter lambda

Figure 3: Combining submodular regularization with a learned active learning policy for a protein
engineering task. In (b), Lambda = 0 corresponds to the unregularized case. Error bars are plotted
as standard error of the mean across 50 replicates.

accuracy gain gexp from labelling a point. The accuracy gain gexp was measured by training the
neural network classifier on both Sl and Sl ∪ {x} and then recording the difference in validation set
classification accuracy. Since obtaining exact gexp for each datapoint is very expensive, we instead
collected noisy labels gexp

ε ≈ gexp, obtained by training the classifier for only 10 epochs. The tuples
{(Sl, x), gexp

ε )} were collected using DAgger with rollouts of length 30 (starting from a random
batch of 20 images). For training, we used an initially unlabelled dataset with 60000 images, 2000
of which were set aside to use for evaluating validation accuracy. We trained two neural networks to
approximate g - an unregularized one, and one with a monotonicity and a submodularity regularizer
(i.e. LEASURE). See Appendix B for details on architecture and training procedure.

The trained policies were tested on a set of 8000 images, with additional 2000 set aside for vali-
dation. At test time, we again started with a random batch of size 20 and then used each policy
to sequentially select additional 200 images to label (Figure 2). The recorded test error rate was
collected using real gexp, i.e. a classifier trained until training loss reaches a certain threshold. The
experiment was benchmarked against the “random” policy that randomly picked the next point, the
“uncertainty” policy that selected the next point by maximizing uncertainty, the “no regularizer”
policy that used DAgger with MSE loss, and “BADGE” from Ash et al. (2020). See Appendix B
for details. Even though LEASURE was trained on much shorter rollouts using very noisy labels,
it still outperformed all other baselines. This confirms our intuition that the submodular regularizer
allowed the learned score function g to find a local minima that generalizes well to out of sample.

6.3 PROTEIN ENGINEERING

By employing a large protein engineering database containing mutation-function data (Wang et al.,
2019), we demonstrate that LEASURE enables the learning of an optimal policy for imitating expert
design of protein sequences (see Appendix for detailed discussion of datasets). As in Liu et al. (2018)
we construct a fully data-driven expert which evaluates via 1-step roll-out the effect of labeling each
candidate data (in our case a protein mutant) with the objective of minimizing loss on a downstream
regression task (predicting protein fitness).

When training the policy to emulate the algorithmic expert via imitation learning, we represent each
state as two merged representations: (1) a fixed dimensional representation of the protein being
considered (as the last dense layer of the network described in Appendix C), and (2) a similar
fixed dimensional representation of the data already included in the training set (as a sum of their
embeddings), including their average label value. At each step a random pool of data is drawn from
the state space and the expert policy greedily selects a protein to label, which minimizes the expected
regression loss on the downstream regression task (prediction of protein fitness). Once the complete
pool of data has been evaluated, the states are stored along with their associated preference score,
taken as their ability to reduce the loss in the 1-step roll out. Using these scores, the expert selects a
protein sequence to add into the training set, and we retrain the model and use the updated model to
predict a protein with the maximum fitness. This paired state action data is used to train the policy
model at the end of each episode, as described in Liu et al. (2018). As we observe in Figure 3a, this
method trains a policy which performs nearly identically to this 1-step oracle expert.

The use of submodular regularization enables the learning of a policy which generalizes to a fun-
damentally different protein engineering task. In our experiments, LEASURE is trained to emulate
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a greedy oracle for maximizing the stability of protein G, a small bacterial protein used across a
range of biotechnology applications (Sjbring et al., 1991). We evaluate our results by applying the
trained policy to select data for the task of predicting antibody binding to a small molecule. As is
the case with all protein fitness landscapes, the evaluation dataset is highly imbalanced, with the vast
majority of mutants conferring no improvement at all. Because data is expensive to label in biolog-
ical settings (proteins must be synthesized, purified and tested), we are often limited in how many
labels can feasibly be generated, and the discriminative power among the best results is often more
important than among the worst. To construct a metric with real-world applicability we assess each
model by systemically examining the median Kd of the next ten data points selected at each budget,
from 10 to 110 total labels. This method is utilized in recognisance of the extreme ruggedness of
protein engineering landscapes, wherein the vast majority of labels are of null fitness, and the ability
to select rare useful labels for the next experimental cycle is of key importance.

We observe that LEASURE outperforms all evaluated baselines, and that the inclusion of submodular
optimization is mandatory to its success (Figure 3a). A greedy active learner which labels the anti-
body mutation with the best predicted Kd (the smallest) preforms approximately equivalently with
selecting random labels. Use of dropout as an approximation of model uncertainty as in Gal and
Ghahramani (2016) improves upon these baselines, although significant betterment is not achieved
until approximately 35 labels are added. In comparison, the results from LEASURE diverge from
all others nearly immediately, and the best model, which uses a lambda of 0.1, achieves a notable
improvement in Kd, 5.81µM, vs 7.27µM achieved by entropy sampling. In support of methods
success, we note that the learned policy preforms approximately as well as the greedy oracle which
it emulates (Appendix Figure 7a). We observe that the results are robust within a range of possible
lambda values (Figure Figure 3b and Appendix Figure 7b), and that without the use of submodular
regularization the trained policy fails to learn a policy better than the selection of random labels.
This is an important finding, as the method proposed by Liu et al. (2018) without LEASURE, has
been shown to be a state-of-the-art method for imitation learning.

Based on these empirical results, LEASURE demonstrates significant potential as computational
tool for real-world automated experimental design tasks: In particular, in the protein engineering
task, LEASURE achieves the SOTA on the benchmark data-sets considered in this work. While
LEASURE does involve repeated retraining of the protein engineering network, we observe that
it returns strong results even with a single step of training. Additionally, the networks that are
employed are very simple (Appendix C). This allows for reasonable training time (36 hours) and
nearly instantaneous inference. Given the considerable time and cost of protein engineering, these
computational budgets are quite modest. Protein engineering is a time consuming (months to years)
and expensive undertaking (10’s of thousands to millions of dollars). These projects usually strive to
achieve the best possible results given a fixed budget. We have demonstrated in our work the ability
deliver significant improvements in protein potency for the modest fixed budgets. Although the cost
savings of engineering and testing an individual protein (or label) vary significantly based on the
system, ranging tens to hundreds of dollars, we observe that to achieve a Kd of 8e-6 M LEASURE
delivers an approximate cost savings of 65%, or 40 fewer labels than the next best method. The
sequential synthesis and evaluation of each of these labels would likely span several months and
additionally incur several thousands of dollars of materials costs.

7 CONCLUSION

In this paper, we introduce LEASURE, a data-driven decision making framework based on a novel
submodular-regularized loss function. The algorithm was inspired by the recent developments
of submodular-surrogate-based near-optimal algorithms for sequential decision making. We have
demonstrated LEASURE on several diverse set of decision making tasks. Our results suggest
that LEASURE can be easily integrated with modern deep imitation learning pipelines, and that
it is efficient to run, while still reaching the best performance among the competing baselines.
In addition to demonstrating the strong empirical performance on several use cases, we believe
our work also provides useful insights in the design and analysis of novel information acquisition
heuristics where traditional ad-hoc approaches are not feasible.
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A PROOF FOR SECTION 5

A.1 PROOF OF THEOREM 2

Proof. The high-level idea is to first connect the total expected utility of the learned policy π̂ with
the expected utility of the expert policy πexp, following the analysis in DAgger (Ross et al., 2011).
Then, we will use the fact that πexp is greedy with respect to f , an approximation to the submodular
utility function u, to bound the one step gain of the πexp against the k step gain of running the
optimal policy, and subsequently bound the total utility of the expert policy against the optimal
policy. We would eventually obtain a similar result as Theorem 2, detailed as follows.

More concretely, following Theorem 3.4 in DAgger, we obtain that

E[u(Sπ̂,k)] ≥ E[u(Sπexp,k)]−∆maxkε̂N −O(1)

Here ∆max is the largest one-step deviation from πexp that π̂ can suffer. It is equivalent to the term
u in the DAgger paper. Since f is ε-close to a monotone submodular function u, we know that
∆max ≤ maxA⊂V,|A|=k f(A) ≤ maxA⊂V,|A|=k u(A) + εE , which is a constant once u is given.

Next, since πexp is greedily optimizing an εE-approximation to a monotone submodular function u,
we know that

E[u(Sπexp,k)] ≥ (1− 1/e)E[u(Sπ∗,k)]− kεE
following the proof from Theorem 5 in (Chen et al., 2017b).

Combining both steps, we have that

E[u(Sπ̂,k)] ≥ (1− 1/e)E[u(Sπ∗,k)]− k(εE + ∆maxε̂N )−O(1)

which completes the proof.
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B SUPPELEMENTAL DETAILS FOR THE SET COVER AND MNIST ACTIVE
LEARNING EXPERIMENTS

We provide additional results for the set cover experiments, under the same experimental setup as
Figure 1a and 1b. The subplots 4a and 4b show the mean square error of learned policy g as a
function of the size of Sl. We provide a zoomed-in version of 4b in Figure 4c. In Figure 4c, we
show it is clear that training the neural network on the monotonicity regularizer only does not help
it learn out of sample - the error rapidly increases as soon as the test rollout length becomes larger
than the training rollout length.

In Noisy Set Cover experiment (Figure 4a), each label of the element added to the superset was
perturbed with N(0, 1) noise. As a result, the variance of the total noise is linear in the number of
sets. So, it is reasonable that the MSE error grows with number of sets - the policies cannot learn to
predict random noise. While stochastic MSE of LEASURE and the no-regularizer policy are similar,
LEASURE outperforms in the number of elements added, which is what matters in practice (Fig-
ure 1). These two figures confirm our intuition that when the problem is not exactly submodular,
Leasure will still generalize better than no regularizer by learning to ignore small deviations from
submodularity. Finally, it is also expected that DSF has a lower MSE than Leasure when the label
noise is too large - Deep Submodular Functions are required to be submodular. When the stochastic-
ity in the MSE becomes overwhelmingly large, that restrictive requirement becomes an advantage.
However, when the MSE variance is not too large, the lack of expressiveness and the difficulty of
optimization of DSF make it lose its advantage compared to Leasure.

(a) (b)

(c)

Figure 4: Supplemental results: Set cover

For completion, we also provide our architecture and parameter choices for both set cover and
Learning Active Learning (LAL) on MNIST experiments. For set cover, the problem is too simple to
require DAGGER (Ross et al., 2011). Instead, the tuples are generated randomly. For active learning
on MNIST, the tuples are indeed generated using Algorithm 1. For MNIST, we first preprocessed
our dataset with PCA, leaving the number of vectors necessary to achieve 80% covariance on the
training set (24 vectors). That was necessary to allow the comparison with DSF. For set cover, each
element was a set v containing 23 elements v1, v2, .., v23, where vi was an integer corresponding
to the label of the species. As a neural network input, v was simply represented as a vector of
[v1, ..., v23].
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Both set cover and MNIST used a modified Deepset architecture (Zaheer et al., 2017) for score net-
works as follows: Given a setA = {v0, ..., vk} ⊂ V and a datapoint v ∈ V , the score network g first
preprocesses all inputs v0, ..., vk, v to obtain learned embeddings v̄0, .., v̄k, v̄. (See Figure 5) Then,
the elements in A are combined using Deepsets architecture to produce a learned set embedding Ā.
Finally, Ā and v̄ are concatenated and then a learned linear layer and a Leaky ReLu nonlinearity are
applied to produce g(A, v). (See Figure 6). All dense layers have 64 neurons and a bias term. Using
this Deepsets-like framework, we achieve permutation invariance of elements in set A while also
keeping the network expressive enough to learn a wide range of functions.

Input v ∈ V Dense Layer
+ Tanh

Dense Layer
+ Tanh

Embedding v̄

Learning element representation

Figure 5: Score neural network architecture illustration

v̄0
v̄1
. . .
v̄k

∑
i v̄i

Dense Layer
+ Tanh

Set em-
bedding Ā

v̄
Dense

Layer +
Leaky ReLu

g(A, v)

Combining element representation using DeepSets

Figure 6: Score neural network architecture illustration.

For both tasks, the score networks are trained using ADAM with a learning rate of 1e-3. Beta
parameter from Line 2 in LEASURE was picked randomly to be 4

5 . From experiments, the exact
value of the parameter did not matter as long as it starts with at least 1

2 and degrades towards almost
0 afterN iterations. The λ and γ parameters were picked using a hyperparameter sweep in log space.
As per our intuition, we have found that the strength of the parameters should reflect your certainty
that the task is submodular and/or monotone. For set cover, λ = 0.1, γ = 0.5, while for active
learning λ = 0.001 and γ = 0.001. Notice that the values are not comparable between different
experiments: for MNIST Learning Active Learning (LAL), gexp(A, v) ∈ [0, 1) outputs the accuracy
gain of adding v to A and training a supervised model on it; for set cover, gexp(A, v) ∈ {0, 1}
outputs the number of new elements added to the set by adding x to A. For LAL, the values of gexp

are usually much smaller than 1, particularly for larger sets. Thus, the values for the two regularizers
had to be smaller so that the model learns not just the regularizer.

Finally, we wanted to discuss our baselines in Fashion MNIST experiments. In Figure 2, we have
four baselines: random, uncertainty, BADGE (Ash et al., 2020), and no regularizer. The no regu-
larizer baseline was trained identically to LEASURE, except for the absense of submodularity and
monotonicity regularizers. The no regularizer baseline performed well on the sets with up to 30
additional points - corresponding exactly to the length of the training rollouts. However, it failed to
generalize. On the other hand, the submodular regularizer allowed the learned score function to find
a local minima that generalized well to out of sample. Finally, BADGE did not seem to perform well
when the number of datapoints in the set was large, likely because the gradient signal from adding
any one additional datapoint was too weak and thus the selection of the next best datapoint was too
noisy.

Some more details regarding BADGE (Ash et al., 2020). The authors do not learn a policy, instead,
they use gradients of the classifier (gradient embedding) to select a useful, diverse batch. Although
BADGE was originally made for a batch setting, the authors’ main idea is still applicable to our
case: they argued that the next datapoint(s) can be selected by looking at which fictitious labels
would produce the largest gradients in the classifier network. Therefore, we replaced the kmeans++
algorithm the authors suggested with simply selecting the datapoint that corresponds to the largest
gradient norm. This algorithm has an advantage that it does not require a trained policy network.
However, it provides no guarantees about submodularity of the resulting policy, and, in our exper-
iments, the performance degrades with the size of the set - likely because the gradient signal from
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adding any one additional datapoint was too weak and thus the selection of the next best datapoint
was too noisy. Since BADGE requires a neural network classifier/regressor, we could not use it as a
baseline for Set Cover (Set Cover regression function is simply adding all elements in the superset).

The no-regularizer baseline is similar to that of Konyushkova et al. (2017). However, the problem
considered in Konyushkova et al. (2017) is not compatible with most of the tasks we considered here
(for MNIST, yes if we use random forest classifiers; but for others not). Furthermore, Konyushkova
et al. (2017) treated the problem under a classical supervised learning setting this is often not
desirable, given that we are learning a policy from non i.i.d. data samples.
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C SUPPLEMENTAL DETAILS FOR THE PROTEIN ENGINEERING
EXPERIMENTS

Dataset Our datasets were identified in Protabank (Wang et al., 2019) for training of active learn-
ing policies and benchmarking of performance. In selecting datasets upon which to train our active
learning models several factors were considered. As the state space of possible protein variants for
typical engineering application is very large, size is our foremost criteria. Additionally it will be ad-
vantageous to use datasets which characterize mutations to all amino acids (as opposed to Alanine
scans), and those which include epistatic interactions. We also desire to identify datasets which have
a high quality, quantitative readout, such as calorimetry, fluorescence, or SPR data.

Protein Engineering Methods Embeddings of protein sequences were created using the TAPE
repository (Rao et al., 2019) according to the UniRep system as first proposed in Alley et al. (2019).
UniRep produces protein embeddings as a matrix of shape (length protein sequence, 1900), although
we average together the embeddings only of positions being engineered to produce a consistent
embedding of shape (1900,). We have implemented the active learning imitation learning algorithm
proposed in Liu et al. (2018) to work with the protein embedding representations described above.
Pseudocode for this method is presented in Algorithms 1 and 2 from the original work. As in Liu
et al. (2018), our policy network consists of a single dense unit which acts sequentially on the pool
of samples being considered to produce a preference score. Our downstream protein engineering
network (which was used to compute the preference score of the expert policy) acts on the protein
embeddings prepared using TAPE. The network consists of an attention layer, followed by a 1-
dimensional convolution layer (128 filters, kernel size 3), before being flattened and applying two
fully connected layers of 128 units each. When predicting protein fitness, dropout is applied with a
probability of 0.5 and an additional dense layer is applied with one unit and linear activation. Both
networks are trained using ADAM with a learning rate of 1e-3. The implementation of this part
of the project is nearly identical to Liu et al. (2018), only changing the data representation, protein
fitness network structure, and values of K (30), B (100) and T (20) as listed in the appendix of our
work. Beta is fixed at 0.5, although the method was shown to be robust to a range of values. At
training time, 100 labels are randomly selected for evaluating the effect of the greedy oracle, and 10
data are randomly selected to form the initial data set for learning. The superset is appended at each
step of training the policy to maintain a size of 2x the labeled dataset. The training of a policy using
these settings takes 36 hours on a modern multiprocessor computer equipped with an NVIDIA Titan
V GPU.

(a) Comparison of policy to greedy oracle which it em-
ulates

(b) Effect of scaling parameter lambda and empirical
evidence for selecting its value

Figure 7: Supplemental results for the protein engineering experiments of Section 6.3: (a) We ob-
serve that the policy learned by LEASURE preforms approximately as well as the greedy oracle
which it emulates. In this experiment the policy was derived from the training set, but the greedy
oracle is operating on the test set. (b) Lambda linearly scales the value of the regularizer term. When
lambda takes value 0.01, the magnitude of the (scaled) regularizer term (represented by the blue bar)
aligns the best with the magnitude of the cross entropy loss (represented by the orange bar). This
is consistent with what we observed in Figure 3b where λ = 0.01 leads to well-regularized model
behavior.
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1.6 Protein Docking with DNNs and CNN-F 

Protein-protein interactions are the physical interaction of two or more 

proteins, often occurring in a cell. Such interactions are non-covalent, highly 

specific, and act to regulate or directly affect biochemical processes including 

metabolism, signaling, molecular chaperoning and translocation, and more. 

Protein-protein interactions are known to be involved in a range of diseases 

including cancer and immune disorders (Andreani et al., 2014). It is an 

established precept of molecular biology that structure dictates function, and 

accordingly the structures of protein-protein complexes are an important tool to 

understand and modulate the effect of these interactions. Because 3D structures 

of pairs of proteins are limited in the available literature and databases, 

simulating the structures of protein-protein complexes (known as protein-protein 

docking) has been a topic of academic interest since the 1970’s (Wodak et al., 

1978), and continues to be studied by researchers with a variety of backgrounds 

and interests. While significant progress has been made in the speed and 

accuracy of protein-protein docking, the combinatorial space of human proteins 

(the proteome) is vast–at least 30,000 proteins have been identified by 

researchers, with estimates of the total number of human proteins ranging from 

30,000 to several billion (Smith et al., 2013). The use of deep generative models 

for protein-protein docking has the potential to further accelerate protein-protein 

docking, allowing for proteome-scale screening for new pairs of interactions, and 

the testing of newly discovered or designed molecules against the entirety of 

known protein structures. Interest in protein-protein docking has engaged 
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researchers from a variety of disciplines, with contests such as CAPRI (Lensink 

et al., 2016) serving as a unifying metric of accuracy and speed. 

The dataset employed is a set of 700 antibody and protein antigen pairs, 

obtained from AbDb: The Antibody Structure Database (Ferdous et al., 2018). 

While the protein-protein interaction of antibody to antigen represents a special 

type of interaction, the geometric features and chemical aspects governing such 

interactions are the same as the broader set of protein-protein interactions. Using 

this set offers a number of ease-of-use advantages over picking structures from 

the Protein Data Bank, such as standardized residue numbering schemas and 

consistently formatted files. We have chosen to utilize a Siamese network 

architecture to first train models to predict which structures are capable of 

protein-protein interactions, without outputting a composite structure. Because 

the training set consists of structures of proteins in their interacting 

conformations, we utilize molecular dynamics to relax these proteins and achieve 

structures of the individual proteins which are closer to how they would exist 

unpaired. Using these relaxed protein forms, we will test various methods of 

accounting for conformational changes, as discussed in the previous section. 

This is not a direct replacement for protein-protein docking, but represents a 

critical and useful first step. Existing protein-protein docking software does not 

lend itself easily to proteome-level screening, as each pair of proteins to be 

screened for potential pairing requires 10+ minutes of CPU time (Huang et al. 

2015). The proposed tool would run at GPU inference speeds, and alleviate the 
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need to screen unproductive pairs any further, whether that be by extant docking 

software or the following proposed tool. 

To extend the discriminative tool described above, we further endeavor to 

train networks which take as inputs the coordinates of putative pairing partners, 

and directly output the coordinates of the resulting complex. We begin using an 

autoencoder-like network, and investigate the effects of a range of structured 

intermediate outputs. If necessary, additional training data can be cheaply 

obtained by sampling from the molecular dynamics trajectories obtained in the 

process of relaxing the training set, or by drawing from the PDB. Further 

elaboration on the subgoals of the project is provided in the following sections. 

 

Addressing Issues of Output Sparsity 

 Mode collapse is a problem when applying generative networks to highly 

sparse voxel representations of protein structures. We have experimented with 

the use of blurring techniques which reduce sparsity (Kuzminykh et al., 2018), 

and loss functions such as Tversky loss (Salehi et al., 2017)  which are suited to 

highly imbalanced labels.  

The rendering of a composite structure with multiple modes, such as a 

protein-protein interaction depends upon information contained within both the 

individual components and  their unified surface geometry and electrostatics. The 

generation of such complexes stands to benefit from expressively modeling 

dependencies, such as the angle of interaction, or the residues which contact in 

the assembled complex. By modeling such dependencies and including them 
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with the learned latent space of our models, we will be able to increase the 

expressive power of the generative network, while simultaneously decreasing the 

amount of information the latent space must encode. Rather than train a model to 

perform protein-protein docking end-to-end, it is possible that including structured 

intermediates and training a cascade of models will improve overall performance.  

 

Molecular Dynamics to Account for Conformational Effects 

 Conformational changes upon binding of partner proteins are a leading 

cause of failures in rigid docking methods. Potential methods to account for such 

flexibility using probabilistic models might include naively training end-to-end 

models using the undocked  conformations, applying rigid docking techniques to 

ensembles of conformers generated by molecular dynamics or rotamer sampling 

methods (Dunbrack et al., 2002). In order to allow such inquiry, we will perform a 

large scale molecular dynamics run on the entirety of our training corpus. 

 At its crux, protein-protein docking involves determining the appropriate 

rotation and translation of a pair or set of protein structures to determine a 

composite structure from structures of the individual components. Most existing 

protein-protein docking techniques accomplish this in two steps: 1) the proposal 

of potential protein-protein complex structures and 2) the scoring and optional 

refinement of the putative complexes generated in step 1. The proposal step of 

this process has been shown to be efficiently accomplished by fast Fourier 

transformation and geometric hashing techniques (Park et al., 2015). An implicit 

assumption of the aforementioned techniques is that the conformations of the 



50 
 

docked components diverge minimally from those of the individual components, 

as these methods treat the components as rigid. While this assumption is known 

to be false in many instances, rigid docking techniques have scored among the 

top results in recent CAPRI contests (Lensink et al., 2013). It is important to note 

that the results of the proposal step are not informative of whether the attempted 

docking is feasible in a biological system. During the scoring step, physics-based 

or empirically derived scoring functions are employed to measure sterics, 

electrostatics, hydrogen-bonding, and other relevant properties of the proposed 

complexes. This process ranks the proposed complexes from step 1, and 

provides metrics which a researcher may interpret to determine if the attempted 

interaction might truly occur in-vivo. 

Despite the continued success of protein-protein docking techniques 

which treat the input structures as rigid, it has been noted that most failures to 

produce an accurate docking are due in part to protein conformational changes 

upon protein-protein interaction (Kaczor et al 2013)., Innovations for dealing with 

such flexibility can involve the application of rigid techniques to ensembles of 

conformations, or more explicitly modeling the flexibility of protein side-chains 

and backbones (Zacharias et al., 2010). 

  While generative models have been applied extensively to sequence-based 

biological representations (including the prediction of protein-protein interactions 

as in (Wang et al., 2018)),  limited work has been undertaken with structural 

representations, particularly in the area of protein-protein docking. Previous 

docking-related works utilizing probabilistic models have focused on the docking 
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of small molecules to proteins. Most such examples apply representation 

learning to conformations resulting from an empirically-derived or physics-based 

docking program, adding a neural network to re-score the results (Pereira et al., 

2016; Stepniewska-Dziubinska et al., 2018).  Other works have sought to use the 

learned latent space of autoencoders to generate novel molecules (Gómez-

Bombarelli et al., 2018), but cannot generate three-dimensional structures, and 

rely heavily on rule based refinement schemes. The most active area of 

structure-based machine learning has been concerned with the task of predicting 

protein structures from sequences. This is a problem of particular significance 

and difficulty, and deserves discussion. 

State-of-the-art approaches to predicting protein structures from 

sequences most often focus on new innovations in generating residue-level 

contact-maps, such as the application of co-evolutionary data from large 

databases of sequences (most of which lack structures). Contact maps represent 

a protein as a square matrix, with each residue (amino-acid) represented along 

both the X and Y axes in the order of their sequence. This matrix is populated to 

indicate which residues are close to one-another in 3D space, either as a step 

function (e.g. the residues are < 8.0 angstroms apart), or as a continuous 

distance measurement.  A key innovation of the recent AlphaFold technique 

introduced by DeepMind is the prediction of distributions over distances in a 

contact map.  Once generated, these contact maps generally serve as restraints 

for off-the-shelf folding engines which formulate the problem as recovering the 

gram matrix of the coordinates, though some end-to-end coordinate-generating 
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pipelines have been published (Ingraham et al., 2019). Notably, in nearly all 

modern techniques the outputs must be of fixed-size, stemming from the use of 

convolutional layers to output the final matrix. This necessitates the cropping of 

proteins into subunits which are often not natural, and introduces an additional 

re-assembly step to the overall process. 

Many prior works have demonstrated the ability of deep learning models 

to approximate complex many-to-one mappings. However the converse problem, 

learning to make diverse predictions from a simple but structured input, is less 

well understood. 

 This can be thought of as a one-to-many mapping which explicitly employs 

expressive dependencies. The use of Gaussian latent variables as explicit 

intermediates in conditional generative models has been shown to aid in 

inference tasks when the output space has multiple modes (Kihyuk et al., 2015), 

as is the case for predicting structures of mutable objects such as protein pairs. 

Sohn et al., 2015 demonstrate the use of a modified variational autoencoder 

structure, wherein the output is generated from the distribution of p θ (y | x, z), 

where z is additional conditioning information injected at both the encoding and 

decoding phases of learning to increase the expressiveness of the latent space 

and the resulting output space. Many works have built upon this idea with varying 

forms of conditioning, such as Xu et al. (2018) who demonstrated the 

conditioning of a generative model upon a learned grammatical model to 

generate highly realistic and spatially correct images of objects, even 
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demonstrating the ability to apply transformations such as color swaps and object 

rearrangements. 

In modeling physical objects with voxel based representations, binary 

voxel grids are commonly employed as indicating the occupancy of discretized 

positions. Sparsity has been a common problem for such representations, and a 

number of solutions have been put forth to address mode collapse resulting 

thusly, including re-scaling input values (Brock et al., 2016). Because atoms are 

highly localized and linked by bonds which are not easily encoded in voxel-

space, we have observed in our previous work that extreme sparsity is common 

in such representations of biological structures, often with less than 0.1%  of 

voxels populated. This has been approached by applying smoothing techniques 

such as Gaussian blurring or more complex wave transformations (Kuzminykh et 

al., 2018). 

 

Experiments and Results 

  As a matter of practicality, we divide our docking pipeline into two phases: 1) 

identification of likely docking pairs, and 2) the generation of putative structural 

complexes. This division allows each network to encode information relevant to a 

particular task, and as a result of the complexity differences of the two models, 

will accelerate the overall application of the tool. Because we expect in most 

circumstances that a tested pair of structures will not interact (the tight control of 

protein-protein interactions is critical for their biological role as signaling 

molecules), running a generative 3D model for every pair would be a waste of 
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inference time. Every potential pair of molecules that we evaluate is initially 

evaluated by a binary classification network, which predicts whether or not the 

pair of structures is an interacting pair. We note that on average our generative 

structural models contain ~ 10x the parameters of the binary models we use to 

assess pairwise compatibility.  

 

 

Figure 4: Sample input for phase 1 of docking pipeline. Output is binary decision 
of whether a pair of compounds is capable of forming productive pairing. 
 

This initial binary classification network accepts pairs of structures as 

potential halves of a binding/interacting pair of proteins. So as to not bias the 

network, each structure is rotated randomly before being centered in the voxel 

grid, as illustrated in Figure 4. After extensive architecture searching, we settled 

upon a network structure inspired by Siamese networks (Koch et al., 2018). In 
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such networks, pairs of input structures are evaluated by a typical architecture of 

convolutional layers interspersed with max pooling layers, however two inputs 

are evaluated simultaneously and separately, only being combined at the end of 

the convolutional stack. Such an architecture is commonly depicted as having 

two parallel branches, with the weights forced to be identical between the two 

branches. A contrastive  loss function was employed, which optimizes the 

Euclidean distance among points in the output space, specifically to minimize the 

distance between pairs of points with a positive label (subject to some predefined 

margin of sameness), while maximizing the distance between points bearing 

negative labels.  

Upon hyperparameter tuning, this network was able to achieve an AUC-

ROC of 0.95. We opted for this metric over accuracy, as we varied the ratio of 

positive pairs to negative pairs. Our network architecture comprises voxels grids 

of size 32x32x32 x 7 channels, where the seven channels correspond to the six 

most common atom types (C, H, O, N, P, S), with the seventh channel 

collectively denoting all other. Tools for parsing the most common molecule file 

types (PDB and SDF) were drawn from VoxLearn. Notable features of these 

parsers include the ability to alter the voxel sizes, number of voxels, apply data 

augmentation via rotations, and include Gaussian blurring or a null/empty 

channel (as will be discussed in the next section). After the input layer, the 

network consists of four 3D-convolutional layers, using a cubic kernel of size 4, 

with a rectified linear unit layer applied after each. Each of the first three 

convolutions is followed by a max pooling operation of size 2, and the final layer 
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is connected to a dense layer comprised of 4096 units with sigmoid activation. As 

is typical in Siamese networks, the Euclidean distance is calculated between the 

vectors resulting from two inputs, and the network is trained by applying the 

contrastive loss function. Using this schema, we achieve the reported AUC-ROC 

after 100 epochs of training, which takes approximately 48 hours on a single 

NVIDIA Tesla V100 GPU. We note that the AUC-ROC is reported as assessed 

on a withheld partition of 25%  of the set, and has not plateaued after 48 hours, 

although training was terminated to conserve resources. 

To accelerate learning by the network, a subsampling of ten examples of 

non-docking pairs were utilized for every positive docking pair-we observed 

similar AUC-ROCs over a range of ratios from 1:1 to 10:1. The final networks 

tested utilized voxels of size 4 angstroms, a substantial increase from the first 

networks we tested which utilized voxels of size 1 angstrom. While the choice of 

1 angstrom was rooted in the length of an alkane bond, so as to disallow the 

colocalization of two atoms in the same voxel, increasing the size of voxels to 4 

angstroms was observed to have negligible impact on AUC-ROC, but 

substantially decreased network sizes and training times.  

 After applying the binary classification network described above, one is left 

with a putative list of pairs of structures which productively interact to form bound 

complexes. To produce the desired output, a PDB file of the resulting complex, 

we introduce a second network which accepts as input the structures of each of 

the two components of the pair. A number of network architectures were tested, 

and it was quickly observed that each network would take multiple days to 
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evaluate, even with the use of techniques such as learning rate schedulers and 

early stopping. We note that this is in line with other works using voxelized 

representations of volumetric data (Wallach et al., 2015). To accelerate the 

process of architecture search, a toy problem was constructed to make use of 

much simpler data. Casting the problem to 2D, we considered the analogous 

problem of fitting together jigsaw puzzle pieces based only on the geometry of 

their edges. While previous works have described techniques for the 

arrangement of image fragments as uniform tiles (Noroozi et al., 2016), to the 

best of our knowledge, this was a novel problem. Specifically, we sought not only 

to align input shapes based on edge complementarity, but to also directly output 

an image of the aligned pair. The dataset for this problem was constructed using 

the python image library PIL. Specifically, irregular polygons were generated by 

sampling points on a circle around a center point, and adding random noise by 

varying the angular spacing and radial distance. Once a polygon was generated, 

a mask was applied to split the polygon roughly into two halves, with each half 

being saved as a separate 28x28 array of floats. Under such a scheme, we 

sought network architectures capable of predicting the rotation necessary to 

realign the two halves after a perturbation was applied. Data augmentation was 

performed in real time, with each half of the image being randomly rotated before 

learning and evaluation. This toy problem accelerated learning dramatically 

allowing us to now evaluate networks in minutes rather than days. After 

evaluating a number of potential architectures, we arrived at a network which first 



58 
 

concatenated the two input arrays along a new axis, and subjected the combined 

representation to a U-net like architecture (Ronneberger et al., 2015). 

Specifically, the images were downsampled by blocks of stacked 

convolutions, interspersed with max pooling operations and batch normalization. 

After downsampling, the images were upsampled by applying upsampling 

operations, wherein the input tensors were scaled by a factor of two before 

applying further padded convolution operations, again using batch normalization. 

We observed that maintaining the minimum size of the representation to 7x7 

before beginning upsampling improved the performance of this network, 

suggesting a lower bound to the necessary complexity of the latent space. 

Through the use of a sigmoid activation function, the network was able to output 

two channel images corresponding to the aligned input components, as shown in 

Figure 5. Upon observing some loss of fidelity at the edges of the reconstructed 

shapes, we decided to apply a GAN to further refine our output images. This 

proved to be a difficult task, requiring the careful tuning of the combined loss 

function from the GAN discriminator network and the RMSD loss assessed from 

reconstructing the images. Figure NNN demonstrates the final results from the 

best combination observed, wherein the GAN loss contributed 0.1%  to the 

overall loss. 
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Figure 5: Creation of a toy problem to aid in tuning shape complementarity 
networks. (L) Casting the problem into a 2D toy problem. (R) Using a 
discriminator network and GAN training refines results. 
 

Having found a suitable network architecture for learning the surface 

complementarity of 2D shapes, we adapted the best networks from our toy 

problem to work on voxelized representations of PDB files. After extensive 

testing the networks failed to routinely produce good results, often collapsing to 

an empty output. It was observed that the voxel representations of both the 

inputs and the ground truth results are ~99.9% empty. This is a consequence 

both of the one-hot encoding scheme used, and of the practice of only encoding 

atoms as points, rather than dispersed volumes. This issue was persistent across 

a wide range of tested conditions, including networks architectures, 

hyperparameters, and varying levels of data augmentation, and motivated us to 

undertake a treatment of the issue of sparsity in voxel representations. 
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Addressing Issues of Sparsity 

To address sparsity-driven collapse in our generative models, we 

experimented with the use of loss functions which can be weighted with respect 

to precision and recall. As before, we constructed a simpler test system on which 

to develop and test our work. This system consisted of a variational autoencoder 

trained upon small molecule structures obtained from ChEMBL (Gaulton et al., 

2017). Benefits of this system included smaller networks, and the availability of 

far more data upon which to train. Our best results were achieved with the 

Tversky loss function (Salehi et al., 2017), which is a weighted modification of the 

Dice similarity coefficient, typically written as depicted in Figure 6. Prior works 

have noted that adjusting the hyperparameters of this loss function can shift 

emphasis to rare labels, such as populated voxels in our networks. We further 

extended this loss function by including the capability for channel-wise weighting, 

first using both a simple frequency-based weighting and learned scalings thereof. 

 

Figure 6: Tversky Loss Function 
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Figure 7: Autoencoder applied to small molecules showing Tversky loss and 
Gaussian blurring allows productive reproduction. 
 

Additional performance benefits were obtained by including a channel 

explicitly demarcating empty voxels and using a softmax activation. This design 

was specifically introduced after noticing that our networks would commonly 

converge to outputting the per-channel (atom type) average uniformly across all 

voxels.  

Another way to address sparsity is to directly reduce it by altering the 

design of the data representations. We achieved this several ways with varying 

levels of effect. Firstly, by increasing the size of the voxels, sparsity is reduced as 

each position is more likely to be occupied. This has the additional benefit of 

reducing the number of voxels needed to represent structures of a given size, 
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which decreases the size of our networks, but also reduces the fidelity of the 

representations by creating positions containing multiple atoms. Extending the 

concept of reducing sparsity by altering the data representations, we 

experimented with the effect of combining all channels as a sum (with and 

without clipping to 0/1). This effectively reduces the output spartity by a factor of 

7, but similarly to increasing the voxel sizes, leads to a loss of fidelity in the 

reconstructed outputs. 

 The final technique we implemented to address sparsity in our voxelized 

representations was Gaussian blurring. Inspiration for this form of augmentation 

comes from the knowledge that atoms are not point masses, but rather clouds of 

electrons occupying a radius dictated by the atoms charge, hybridization, and 

chemical identity. Using this, we applied Gaussian blurring by setting sigma in 

accordance with the van der Waals radius of the atom type that each channel 

represented. This alteration reduced sparsity significantly, both in the input 

representations, and in the generated output voxels. Further experimentation 

revealed that applying a consistent sigma value for the Gaussian filter led to 

comparable benefit, despite lacking the neat chemical rationale of atomic radius-

based scaling. 

 While each of the aforementioned techniques lead to qualitative increases 

in the stability of the networks we trained, collapse still occurred after a short 

period of training, typically 10 to 100 epochs, dependent on the learning rate. 

Such collapses occurred both with the use of GAN-based loss functions (wherein 

the generator loss was evaluated as the failure rate of a linked network 
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discriminating between its output and ground truth voxelized representations), 

Tversky reconstruction loss, and combinations of the two. Although all networks 

collapsed before producing high quality representations of the input molecules, 

two important observations were made which motivated our subsequent work. 

Firstly, it was observed that our networks could learn rotational equivalence, 

given sufficient data augmentation. This is an important result, as the definition of 

axes in a given molecule should not contribute to its identification or 

reconstruction. Secondly, we observed that our networks could construct 

reasonable representations of complexes of two proteins, given that the proteins 

were pre-oriented relative to each other in the inputs. This was initially received 

with disappointment, as orienting the two proteins relative to each other is a 

significant part of the problem we set out to solve. However it was soon realized 

that this observation was informative about what our networks were currently 

capable of encoding and expressing, molecular geometries relative to the input 

conformations. As the networks were not learning the necessary transformations 

to permute the inputs from random poses to the correct poses of the interacting 

complex, we sought next to augment our approach by learning a discrete 

intermediate which we could use to condition the generative network, namely the 

rotation and translation to apply to the randomized input poses. 

 

Learning of Intermediate Representations 

Because we observed that our generative networks were capable of 

reconstructing their inputs as a unified complex when the components were 
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supplied in the appropriate relative orientations, we believe that encoding this 

information is a bottleneck in the learning process, and an apt choice of an 

intermediate to learn. Our initial efforts towards this problem were concerned with 

the learning of a suitable translation and rotation to position one half of a protein-

protein docking pair correctly relative to the other. Given the high level of 

redundancy in rotation matrices and the issue of gimbal lock in Euler angles, we 

initially sought to learn a quaternion representation of rotation in addition to the 

transformation in Cartesian space. Inspiration was drawn from the research area 

of camera relocalization, which seeks to determine the 6-degree-of-freedom 

camera position from either single or pairs of images. Generally these networks 

predict a position and camera angle relative to some recognized reference 

landmark, often using quaternions (Kendall et al., 2015, Kendall et al., 2017, 

Xiang et al., 2017). In these papers, it is observed that simultaneously learning 

both a translation (in the X/Y/Z planes) and a rotation to apply affords better 

results than applying either one alone, owing to the interdependence of the two 

factors. In an attempt to train networks capable of predicting the necessary 

translation and rotation to orient two proteins as they would appear in a protein-

protein interaction, we began with creating utilities to randomly rotate and shift 

pairs of proteins away from their positions in known protein-protein interactions, 

calculating training labels on-the-fly relative to their starting positions. Despite 

experimenting with a variety of network structures, label encodings, and loss 

functions, we were unable to obtain network convergence.  
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To dissect the issues plaguing our learning, we sought to learn the 

translation and rotation components separately. With some effort, we succeeded 

in training networks that could predict the translational offset to position proteins 

relative to one another, but still could not learn to predict the necessary rotation 

to apply. Turning to the literature, we discovered that this is a relatively immature 

area of research (a good overview of the current state of the field is presented in 

Worrall et al., 2018). In an attempt to explore firsthand the process of learning to 

rotate voxel structures, we shifted our focus to training networks to align 

structures with themselves, given two copies of an identical structure, one of 

which is randomly perturbed. We approached this using a variety of techniques, 

including curriculum learning (increasing the complexity or degree of the 

perturbations as learning progressed) and varying representations of the applied 

rotations. Attempts were made to learn the rotation quaternion as a vector, as 

separate output tasks accomplished by discrete sub-networks, and as a 

combination of sign classification and absolute values as in Liao et al. (2019). 

Ultimately, we were able to succeed in learning self alignment as a vector of 

length three, representing Euler angles expressed as the cosine of the rotation in 

radians. The convergence of such networks were observed after employing 

curriculum training and several days of training, and ultimately were robust to 

evaluation with a holdout set. 
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Flexibility Dataset 

 Owing to their origin as x-ray crystal structures, the training data obtained 

from AbDb consists of paired structures of proteins in their interacting 

conformations. As we have discussed previously, evaluating models upon these 

data is a somewhat contrived exercise; in a real-world application, structures of 

putative binding pairs would not be in such pair-dependent, induced 

conformations. To relax  these proteins and achieve structures of the individual 

proteins as they might exist unpaired, we sought to use molecular dynamics 

simulations. Despite decades of progress in the development of molecular 

mechanics force fields, libraries, and techniques, molecular dynamics 

calculations remain tricky to set up and run, requiring a cascade of preparation 

and post-processing steps for every molecule to be studied. Systems to be 

studied must be standardized to adhere to very strict formatting protocols before 

being patched  to add any atoms which are missing (a common occurrence when 

solving electron density maps to determine X-ray crystal structures). After 

patching, special chemical moieties are added to cap the end of protein chains, 

and a periodic cell is constructed of the protein structure padded with a 12 

angstrom margin of water molecules and pH balancing ions. Topology files 

describing the position of all atoms, bond lengths, dihedral angles, and a number 

of other constraints are prepared to correspond to a particular forcefield, in this 

case the Amber ff14SB force field (Maier et al., 2015). The system is then subject 

to an equilibration simulation to reduce the artifacts introduced in the process of 

crystallization and virtual system building. If this phase completes successfully, a 
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production run may then be undertaken to study the dynamics of the system over 

time. Because molecular dynamics is computationally very expensive, we opted 

to utilize the GPU accelerated library ACEMD (Harvey et al., 2009) and AWS. 

This required a non-trivial amount of engineering, as the academic version of 

ACEMD does not support running on machines with more than one GPU, and 

our initial approach of using an AWS Elastic Container Service Cluster did not 

support the most price efficient instance type (g2.2xlarge, per our internal 

benchmarking of ACEMD). To avert these limitations, we constructed a purpose-

built Amazon Machine Image containing all 1687 systems to be simulated, as 

well as bash scripts which could be invoked using the launch time user data 

AWS CLI command. From a local machine, we coordinated the parsing out and 

monitoring of simulations: for each, a VM was spun up, equilibration and 

production simulations were run, and the resulting data was written to an S3 

bucket. Each of the systems was simulated for 50 ns. In total 12,368 hours of 

GPU time were completed in two days, at an approximate cost of $2600. 

Substantial savings were brought about by using the optimal GPU instance type 

and preemptible spot  instances. We calculated that it would have taken over 100 

years to run these simulations on the Mayo lab’s CPU cluster (the GPU library is 

that good!)   
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Figure 8 - Workflow for generation of flexibility dataset: 1) Structures are 
split into their component halves. 2) Structures are built on a local machine, 
including patching, standardization, addition of water molecules and ions. 3) 
Amazon Machine Image is created containing all prepared structures and scripts 
for equilibration and production MD runs. 4) Using launch time user data, 
systems are farmed out to cheapest possible AWS spot instances for simulation. 
5) Results are written to S3 bucket as jobs complete. 6) Post processing is 
carried out locally: coordinates of each resulting trajectory are clustered and 
aligned to starting structures to determine divergence. 7) New PDB files are 
written for testing and training of docking networks. 
 

For the purposes of this project, the desired output of the molecular 

dynamics simulations were the most likely structures of the unpaired proteins, 

and a set of alternative conformations  for each of the systems (as a form of data 

augmentation). To achieve both of these outputs, the TTClust package was used 

to cluster the poses sampled across the dynamics trajectories on the basis of 

RMSD, with the optimal number of clusters being determined by the elbow  
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method of explained variance (Thorndike et al., 1953). The TMAlign algorithm 

(Zhang, 2005) was then used to align each cluster exemplar to the structure of 

the protein before MD, to determine how much each deviated from the structure 

of the protein as a half of the protein-protein docked pair. Using this information, 

along with the calculated occupancy of each cluster, we can infer which clusters 

are the most likely unbound  configurations of the components of each pair, as 

well as guide the mining of more difficult tests for the previously described binary 

classification system. 

Many setbacks were encountered in the process of carrying out the 

described work. Despite this, many lessons have been gained by recasting 

components of the problem as simpler toy problems, and by finding useful 

intermediate outputs that the models could solve. We believe that the highest 

yield problem yet to solve is addressing the sparsity of voxel grids, such as 

applying wave function inspired blurring, and learning the optimal rescaling of our 

currently binary occupancy labels.  
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Chapter 2: Modeling and Molecular Dynamics 
 
 

2.1 CDRexAb: Antibody Small-Molecule Conjugates with Computationally 

Designed Target-Binding Synergy 

This work is the primary thesis project of Jingzhou Wang from the Mayo 

group. In contributing to this project, I created the computational method to 

virtually screen for the optimal linker length and attachment site to conjugate 

small molecules into antibody CDRs. This consisted of a series of programs 

which generated rotamer libraries of the grafted small molecule + linker on a Sun 

Grid Engine (Gentzsch, 2001) cluster and parallelized the task of grafting them 

into the desired contact site on the molecule to be bound by the CDRExAb. This 

created many thousands of putative complexes which were then scored by their 

ability to achieve a geometry suitable for incorporation to the CDR of the starting 

antibody, without clashes. Additionally, I parameterized the exogenous small 

molecule-linker constructs using Gaussian (Frisch et al., 2016) and Ambertools 

(Case et al., 2021), and performed molecular dynamics simulations which were 

used to identify the need for framework mutations. 
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Abstract 

 Antibody-drug conjugates (ADCs), or chimeric modalities in general, combine the 

advantages and offset the flaws of their constituent parts to achieve a broader 

target space than traditional approaches of pharmaceutical development. We 

combine the concept of ADCs with the full atomic simulation capability of 

computational protein design to define a new class of molecular recognition 

agents: CDR-extended antibodies, abbreviated as CDRexAbs. A CDRexAb 

incorporates a small-molecule binding event into de novo designed 

antibody/target interactions, creating antibody small-molecule conjugates that 

bind tighter against the target of the small molecule than the small molecule 

itself. In a proof-of-concept study using monomeric streptavidin/biotin pairs at 

either a nanomolar or micromolar-level affinity, we efficiently designed nanobody-

biotin conjugates that exhibited >20-fold affinity improvement against the protein 

targets, with step-wise optimization of binding kinetics and the overall stability. 

The workflow explored through this process could be potentially used as a new 



78 
 

way to optimize small-molecule based therapeutics, and explore new chemical 

and target space of molecular-recognition agents in general.  

 

Significance 

 We defined a generalizable new method of optimizing molecular recognition 

reagents that involve synthetic small molecules, and demonstrated a successful 

application of this method on a model system. Instead of optimizing the functional 

groups of a small molecule by organic chemistry methods, we used 

computational protein design to build a conjugating antibody domain to create 

chimeric molecules with target-binding strength and other physicochemical 

properties efficiently tunable by the amino acid sequence of the antibody 

scaffold. This method expands the application scenarios of antibody-drug 

conjugates and brings in a previously-irrelevant chemical space into the 

optimization of small molecule binding events, potentially addressing some long-

standing challenges of developing molecular binders.  

 

Introduction 

 Most pharmaceutical mechanisms involve drug-target interactions that are 

mediated by synthetic small molecules or monoclonal antibodies—the two major 

drug modalities [1,2]. Despite impressive successes, many biological pathways 

are still difficult or even impossible to be pharmaceutically intervened, often 

because through existing approaches either the desired interactions are 

fundamentally difficult to be engineered, or the pharmacological trade-offs for 
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establishing the interactions outweigh potential benefits [3-6]. Therefore, new 

modalities that incorporate new chemistry and new biology are constantly 

created to realize a versatile toolkit that more easily tackles certain challenging 

targets, and also expands the targetable molecular space itself [7]. To create 

new modalities, one common way is combining existing modalities to consolidate 

individual advantages and offset individual flaws [7,8]. Antibody-drug conjugates 

(ADCs), for example, takes advantage of the excellent specificity and biological 

compatibility of monoclonal antibodies to improve therapeutic indices of existing 

small-molecule drugs [8,9]. Traditionally, the antibody and drug components of 

ADCs are separately developed and bind to different targets while in action [8,9]. 

Most current ADCs improve the specificity of conjugated drugs as they deliver 

the small molecules into cell targets through specific antibody-induced receptor 

endocytosis [9,10]. Some ADCs and peptide-drug conjugates were also reported 

to improve the metabolic stability, circulation half-life, and solubility of linked 

small molecules through antibody-associated pharmacokinetics, chemical 

environment around the conjugation sites, and linker design, indicating that 

protein conjugation could modulate a wide range of small-molecule properties 

[10-14]. Recently, Cheng et al. from Amgen developed ADCs whose antibody 

and drug components bind to an identical protein target to achieve synergistic 

binding/inhibition effects [15]. In their study, the co-crystal structure of a small 

molecule drug sitagliptin, a separately-developed antibody 11A19, and the 

protein target DPP-IV was solved first [16]. Based on the structure, optimal 

conjugation sites and linker sequences were then searched to create ADCs that 



80 
 

exhibited 13 to 32-fold IC50 improvement than sitagliptin alone against the target 

[15]. Cheng et al.’s work suggested that small molecule binding events could be 

directly optimized by conjugated antibodies, turning ADC technology into a 

potential tool to expand the chemical space and therefore target space of 

molecular recognition agents that involve synthetic small molecules.  

Overall, the above discoveries demonstrated the potential for using 

rationally-designed antibody conjugation to optimize the mechanism of action, 

along with many other pharmacologically-relevant properties, of small-molecule 

based binders. However, to engineer the binding synergy required for this kind of 

applications, established methods that separately develop and characterize the 

antibody and small molecule components would be resource intensive, thus 

limiting the application scenarios. To realize the above-mentioned potential, a 

workflow that can rapidly determine a compatible antibody sequence and 

conjugation strategy for a to-be-improved small molecule binding event would be 

ideal. However, whether such workflow is technically achievable is still a 

question. 

In this study, we explored the feasibility of computationally designing the 

antibody component of synergistically-binding ADCs. We introduced the concept 

of CDR-extended antibodies (CDRexAbs), which refer to computationally-

designed antibodies whose complementary-determining regions (CDRs) contain 

a small molecule ligand that binds to a certain target, with surrounding CDR 

sequences tailored to strengthen the target-binding interactions (Figure 1A). At 

this initial stage, we focused our design on nanobodies, which are llama-derived 
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single-domain antibody fragments that can function by themselves, with attached 

Fc domains, or reformatted into IgGs [17-19]. Using a modified streptavidin-biotin 

interaction pair as model system, we demonstrated that with only the structural 

knowledge of small-molecule/target interactions, nanobody small-molecule 

conjugates can be computationally designed to bind tighter against the target 

than the small molecule itself. Through subsequent sequence design, the affinity, 

binding kinetics, and overall stability of the conjugates can be improved in a step-

wise manner. ≥ 20-fold affinity improvements together with targeted kinetic-tuning 

can be achieved when the starting small-molecule/target affinity is as weak as 1 

µM, or as strong as 7 nM. Exploration of various computational methods revealed 

key design principles, from which we proposed a general design strategy for this 

new potential modality. 

 

Results and Discussion: 

Computationally-designed nanobody small-molecule conjugation creates tighter 

binders against the small-molecule target protein 

We first asked whether computationally-determined nanobody sequences 

and their designed conjugation to a small molecule can exhibit an enhanced 

binding affinity to the small-molecule target. Designing the antibody components 

of synergistically-binding ADCs will involve creating new antibody/target 

interface, which is challenging, largely because of the difficulty in predicting the 

global minimum conformation of antibody CDR loops against a targeted surface, 

while accurately modeling long structured loops remains a challenge in general 
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[20-23]. To restrict unpredicted CDR conformations that could lead to non-

binding designs, we decided to adopt an approach similar to the anchored-design 

methods [24]. Anchored-design creates new protein-protein interfaces by first 

identifying hotspot residues that favorably interact with the target, then designing 

protein scaffolds to stabilize the anchoring hotspots [24-26]. For synergistically-

binding ADCs, the conjugated small molecule can be viewed as a hotspot 

“residue” that interacts with the target protein. Therefore, to create co-targeting 

ADCs, the drug can be designed as an anchoring non-natural CDR residue that 

is strengthened by additional CDR-target interactions, integrating the drug-target 

interaction into the antibody-target binding event, and forcing the CDRs to more 

likely adopt the designed conformation. 

We therefore finalized the design strategy into the following steps: 

predicting the optimal CDR binding poses against the target surface, and 

searching for the ideal conjugation strategy that accommodates both the 

optimized CDR pose and the target-small molecule interaction. For 

demonstration purpose, we chose monomeric streptavidin as our model target 

and biotin as our model small molecule. Streptavidin-biotin interactions have 

been extensively studied with high-resolution crystal structures available for 

reliable design. Tetrameric streptavidin binds to biotin with almost the highest-

possible affinity, but multiple monomeric streptavidin constructs were reported 

with >105-fold reduced biotin-binding affinity [27,28]. So as a model system, 

monomeric streptavidin-biotin interaction pairs not only provide room for affinity 



83 
 

improvement, but also have a known affinity upper limit, thus ideal for method 

development. 

 To search the optimal CDR binding conformations, we first docked a 

starting nanobody scaffold onto a monomeric core-streptavidin structure with 

computationally-modeled side chain replacements S45A/T90A/D180A, which 

were reported to monomerize streptavidin and reduce the biotin-binding affinity to 

1.7 µM [27], and then performed loop-modeling on docked poses to attempt 

optimizing CDR conformations against the target surface. Most of the top loop 

modeling solutions were not representative of naturally occurring interactions. To 

sample realistic CDR structures, we instead only searched around previously-

observed nanobody CDR binding conformations [29]. We curated nanobody 

structures with diverse target-binding CDR conformations from PDB, and 

individually docked them onto the target surface (Fig. S1A). 2310 docked poses 

were generated and filtered to potentially identify most realizable binding 

conformations, returning 7 final binding poses (Fig. S1C). Optimal conjugation 

strategy was then searched on the finalized poses. We chose to conjugate biotin 

onto nanobody CDRs by the cysteine-maleimide chemistry, which is a commonly 

used conjugation method in ADCs (Fig. S2A) [30]. Biotin C2 maleimide was 

chosen to be the conjugation reagent. Optimal nanobody scaffolds and 

conjugation sites were determined by computationally screening a rotamer library 

of the cysteine-conjugated side chain on the finalized nanobody-streptavidin 

poses. The top-ranked conjugation plan was amino acid site 103 of the nanobody 

scaffold 4NBX.B (chain B of PDB structure 4NBX), which originally binds to a 
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target unrelated to any streptavidin construct [31]. From the relaxed structure of 

the conjugate named as “4NBX.B-biotin103” in complex with monomeric 

streptavidin, Y112 and R27 of 4NBX.B are predicted to form hydrogen bonds 

with the target surface, whereas in the original PDB structure, these two residues 

also participated in H-bond formation, indicating that the designed pose is closely 

related to the natural binding mode of 4NBX.B, and potentially stabilized by 

specific CDR-target interactions upon biotin anchoring (Fig. S2B-C).  

We then synthesized 4NBX.B with site 103 mutated to cysteine, and 

performed conjugation with biotin C2 maleimide. We attempted to purify and 

refold the S45A/T90A/D128A mutant of core-streptavidin to perform binding 

measurement, but the resulted construct was unstable, as most proteins 

precipitated during refolding, and the refolded materials also quickly precipitated. 

Therefore, we aligned another previously-reported monomeric streptavidin 

construct, mSA, onto the triple-mutation streptavidin model that mSA is 

homologous to (sequence pairwise identity: 57%, structure RMSD: 0.5Å), and 

relaxed 4NBX.B-biotin103 against mSA (Fig. S2D) [28]. The 4NBX.B-

biotin103/mSA model preserved the rotamer configuration of conjugated biotin 

against the triple-mutation streptavidin, and H bonds contributed by Y112 and 

R27 were also recapitulated, and potentially participated in a broader predicted 

H-bond network that incorporated biotin/mSA interactions, suggesting that 

4NBX.B-C103biotin may bind to mSA with the designed beneficial synergy (Fig. 

S2D, 1B-C). Indeed, surface plasmon resonance (SPR) binding experiments 
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confirmed that under 25℃ 4NBX.B-biotin103 binds to immobilized mSA with a KD 

of 1.8±0.1 nM, and mSA binds to immobilized biotin with a KD of 7.0±0.1 nM, 

indicating a moderate 4-fold affinity improvement that is contributed by a higher 

kon (Fig. 1D-E, 5A). Wildtype 4NBX.B did not show binding signal to mSA at 

concentrations up to 100 nM, indicating that the 4NBX.B-biotin103 conjugate 

binds to the targeted biotin binding pocket (Fig. 1E left panel). The SPR-

measured biotin/mSA affinity is similar to previously-published fluorescence 

polarization spectroscopy data, which is 2.8±0.5 nM under 4℃ and 5.5±0.2 nM 

under 37℃ [28]. However, because the data fitting quality of the mSA/biotin 

binding curves is lower than the 4NBX.B-biotin103 binding curves, to confirm the 

estimated mSA/biotin affinity, we performed an alternative estimation by binding 

immobilized mSA to Smt3 SUMO protein that was biotinylated at the N terminus 

by biotin C2 maleimide. Smt3 SUMO protein has an unstructured N-terminus that 

we hypothesized would minimize the interaction between the protein components 

[32]. A similar KD is estimated with high data-fitting quality, indicating that the 

measured biotin/mSA affinity is an accurate SPR estimation (Fig. 1D right panel).  

To know whether computationally-designed nanobody conjugation shows 

improved affinity with weakly-binding small molecules, we created a single 

mutation S27A on mSA, whose counterpart S45A in wild type streptavidin 

reduces biotin-binding strength and was predicted by molecular dynamics (MD) 

simulation to minimally affect the overall structure [33]. On size-exclusion 

chromatography (SEC), mSAS27A is eluted at the same time as mSAWT (Fig. 
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S3A). SPR estimated that mSAS27A binds to biotin with a KD of 1.14±0.02 µM, 

while 4NBX.B-biotin103 binds to mSAS27A with a KD of 245±41 nM, indicating a 

similarly-moderate 5-fold improvement (Fig. 1F, 5B). Together, the above results 

showed that based on the sole structural information of a small molecule-target 

interaction, nanobody conjugation to the small molecule can be designed entirely 

by computational methods to exhibit an affinity-enhancing synergistic binding 

effect.  

 

Sequence design further improves the binding affinity and kinetics for 

computationally designed conjugates 

 Next, we performed sequence design on the CDR loops of 4NBX.B-biotin103 to 

improve its binding affinity against mSA and further validate the accuracy of the 

modeled binding pose. We in silico analyzed each CDR amino acid site for its 

favorability of accepting mutations, and performed combinatorial designs on the 

mutable sites. Four combinations with different site-selection biases were tested 

in parallel, and the residue choices for each site were decided according to a 

published study on the sequence diversity of nanobody CDR loops [34]. Analysis 

of design outputs revealed that the design with sites 31, 32, 104, and 105 most 

frequently returned sequences that were likely to form additional H-bonds with 

mSA and were also energetically stable. The top-ranked variant by energy, v119 

with CDR1 mutations M31H/D32A and CDR3 mutations N104S/W105H, was 

predicted to form new H-bonds with residue Q108 of mSA by H31 and with E105 

of mSA by H105 (Table S1, Fig. 2A). The D32A mutation also eliminates a buried 
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and unpaired charged residue that does not participate in extensive H-bond 

network formation. SPR measured the KD of 4NBX.B-biotin103 v119 against 

mSAWT to be 0.9±0.2 nM, indicating a ~2-fold improvement from 4NBX.B-

biotin103 WT (Fig. 2A, 5A). However, the KD improvement was again mainly 

contributed by kon increase, while the observed koff values were only minimally 

different (Fig. 2A, 5A). To obtain a variant that would more significantly reduce 

the koff, we picked variant v149 that has the highest number of predicted H-bond 

formation from the top 20 output sequences. 4NBX.B-biotin103 v149 has 

mutations M31R/D32S/N104A/W105R that were predicted to form more 

extensive H-bonds with Y96, E105, and Q108 of mSA, with a potential salt bridge 

between the nanobody R105 and mSA E105 (Fig. 2B). Interestingly, R-E 

interactions seemed to be frequently used by nanobodies, further validating this 

designed interaction [35]. Indeed, compared to v119, SPR measured a ~2-fold 

slower koff and a ~4-fold faster kon for v149, which together contribute to the KD of 

0.12±0.01 nM, indicating a >20-fold KD improvement from biotin/mSAWT affinity 

(Fig. 2B, 4A). However, according to SEC traces, v149 seemed to be very prone 

to aggregation, indicating protein instability (Fig. 3A).  

 

Sequence design reduces aggregation while preserving the binding strength for 

the designed conjugates 

One SEC, both 4NBX.B-biotin 103 WT and v119 showed single peaks 

eluted roughly at the same time as wild type 4NBX.B nanobody, indicating 

stabilized monomer foldedness (Fig. 3A). The reduced monomer stability of v149 
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agrees with its predicted lower energy score than v119 (Table S1). Since only 

four residues were designed, to improve the stability of v149, we hypothesized 

that further CDR designs would better accommodate the biotin103 side chain 

and the four H-bond contributing mutations, thus stabilizing the loop and overall 

structure. We therefore performed two additional rounds of CDR residue 

mutability analysis followed by in-parallel combinatorial designs on v149 until no 

further CDR mutations were predicted to be energetically favorable. Mutations 

accumulated in previous rounds of design were kept intact in subsequent rounds. 

In top 20 sequences ranked by energy score of both rounds of design, no 

additional H-bond was predicted to form with mSA, so the sequences with the 

best energy improvement were selected. The resulted variant, v186, has 6 

additional CDR mutations Y101L/R107F /R56T/Y106K/D108A/Y110S on top of 

v149, and was predicted to preserve the H-bonds contributed by v149 mutations. 

Indeed, v186 seemed to bind to mSAWT with very similar KD as v149 (Fig. S5). 

However, SEC traces of v186 showed even worse aggregates formation than 

v149 (Fig. 3A).  

MD simulations have been successfully applied to reveal the source of 

unexpected functional properties in designed proteins [36]. To understand the 

flaws of the structure and inform next design strategy, we perform MD simulation 

of 4NBX.B-biotin103 v186 in complex with mSAWT. From the simulation, we 

noticed that the CDR3 loop that originally folded over the β-barrel framework 

region became gradually widened from the initial conformation, and eventually 

protruded away from the framework (supplementary movie). The apparently 
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destabilized loop-framework geometry suggests that the framework sequence is 

not fully compatible with the mutated CDR sequences, and needs to be 

optimized. We therefore performed framework sequence design on v186, and the 

top-ranked variant v186_Fr was predicted to form additional H-bonds with CDR3 

residues through the F37Y mutation (Fig. 3C, Top). In addition, the A12V 

mutation also apparently increases the hydrophobic shielding of the β-barrel core 

(Fig. 3C, Bottom). Interestingly, when the same framework sequence design was 

performed on v149, different from the v186 design, the A12V/F37Y mutations 

were predicted to be less energetically favorable than the parent v149, 

suggesting that the v186 mutations were a prerequisite for the A12V/F37Y 

mutations to be beneficial (Table S1-2).  

4NBX.B-biotin103 v186_Fr showed significantly reduced aggregation on 

SEC. Collected fractions excluding the aggregates peak did not re-aggregate 

once rerun on SEC (Fig. 3A, S3B). SPR measured the KD of v186_Fr to be 

0.20±0.03 nM, which preserved the >20-fold KD improvement from biotin/mSAWT 

(Fig. 3B top panel, 5A). The kinetics profile of v186_Fr against mSAWT was also 

similar to v149 (Fig. 3B top panel, 5A). When binding to mSAS27A, v186_Fr 

exhibited KD to be 54±3 nM, indicating a ~20-fold KD improvement contributed by 

both improved association rate and dissociate rate (Fig. 3B bottom panel, 5B).  

 To further investigate the functionally-relevant structural features of v186 and 

v186_Fr, we performed additional 100 ns MD simulations of v186 and v186_Fr 

against mSAWT in triplicate. In general, during the simulations both the overall 

binding geometry of the conjugates and the conformation of the biotin103 side 
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chain remained constant with small structural RMSDs (Fig. S4, 4B first panel).  

The 4NBX.B nanobody scaffold has two solvent-inaccessible clusters of 

hydrophobic residues in the framework, one being the β-barrel core and another 

shielded by the CDR3 loop (Fig. 4A). Stable solvent inaccessibility and packing 

of hydrophobic patches is usually correlated with protein folding stability, which is 

in turn related to aggregation [9,37]. For the majority of time in the MD 

simulations, the solvent-accessible area for the two hydrophobic clusters of both 

v186 and v186_Fr was distributed around similarly-low values, indicating that 

both variants should be generally foldable (Fig. 4A). However, in contrast to 

v186_Fr, v186 displayed apparent sub-populations whose hydrophobic core and 

CDR3-shielded hydrophobic residues were significantly more solvent-accessible, 

indicating possible structural instability that agrees with the expected stabilization 

effects of F37Y and A12V in v186_Fr (Fig. 4A). Additional analysis of the 

v186_Fr/mSAWT interface from the simulations indicates high shape 

complementarity, large buried interface area, and close interface distance that 

remained generally constant along the timescale, in agreement with the 

measured sub-nanomolar affinity (Fig. 4B). Overall, the design calculation, 

experimental data, and MD simulations are well-correlated with each other.  

Affinity and kinetics estimation of 4NBX.B-biotin103 WT, v119, v149, and 

v186_Fr were performed in biological triplicates. To make sure the prepared 

conjugates homogeneously harbor one biotin-maleimide “side chain” per 

nanobody molecule, we used intact-protein mass spectrometry (MS) to analyze 



91 
 

one of the SPR-measured triplicates for each of the above-mentioned nanobody-

biotin variants, as we reason one replicate should be representative given the 

small batch-to-batch variations in measured affinities (Fig. 5A-B). Deconvolution 

of MS spectra only returned components with molecular weights (MWs) within 

20Da from the expected values of mono-biotin conjugates, while each 

conjugated biotin-maleimide “side chain” would add an additional mass of 366Da, 

indicating that all tested materials were effectively mono-conjugated with biotin 

C2 maleimide (Fig. S6). Subpopulations with ~+/-17Da from the expected MWs 

were observed, and could be contributed by ring-open products of succinimides 

or ion adducts (Fig. S6).  

Although the affinity and kinetics improvements are well correlated to the 

designed mutations, confirming whether the predicted interactions were 

accurately established require structural determination. Crystallization attempts 

using mSAWT in complex with v186_Fr and v119 only produced crystalline that 

failed to increase in size. This observation and the fact that the affinities of the 

designed conjugates in this study are predominantly affected by the biotin-

binding affinity potentially indicate that the protein-protein interactions are 

relatively flexible and dependent on the biotin anchoring, suggesting that further 

improvements over the protein-protein interface are possible. Testing whether in 

vitro evolution methods could further improve the affinity and kinetics of the 

designed conjugates against their target would be a necessary next step.  
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Summary and further testing of a computational workflow for creating 

synergistically-binding nanobody small-molecule conjugates 

 Based on the above design results, we summarized the design process into the 

following general workflow: docking a library of nanobody structures with diverse 

CDR sequences and conformations onto a desired target in complex with the to-

be-conjugated small molecule, filtering binding poses to preserve ones that 

closely resemble the original binding mode of the original nanobody scaffold, 

screening the rotamer library of the conjugated small molecule onto the poses to 

identify most tolerable conjugation plan, and finally re-designing the sequences 

of both the nanobody CDR loops and framework to improve binding affinity, 

kinetics, and overall stability (Fig. 5C). Because 4NBX.B was not obtained by 

directly docking nanobody scaffolds against mSA, we re-performed the docking, 

filtering, and rotamer screening steps on mSA, and selected a different scaffold, 

2X89.A, with biotin conjugated to site 57 (Fig. S7A, and B top panel). Similar to 

4NBX.B-biotin103 v186_Fr, the selected pose of 2X89.A was predicted to 

interact with mSAWT through a R-E interaction, together with other potential 

intermolecular H-bonds (Fig. S7B top panel). Since the original 2X89.A has an 

additional intra-CDR disulfide bond, to avoid over conjugation, the disulfide bond 

was replaced by two alanine residues. The resulted final conjugate, 2X89.A-

CCAA-biotin57 binds to mSAWT with a KD of 0.8±0.2 nM, and remarkably, a koff 

that is slightly better than our best designed 4NBX.B variant v186_Fr (Fig. 5A, 

S7B bottom panel). 2X89.A-CCAA-biotin57 aggregated obviously on SEC (Fig. 

S7C). To reduce aggregation, we constructed a rudimentary sequence design 
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pipeline that sways between CDR and framework design based on our previous 

experience on designing 4NBX.B conjugates, and applied the pipeline on 2X89.A 

(Fig. S7D). Top-ranked variants along the six rounds of CDR designs and one 

round of framework design showed first worsened then improved aggregation 

profile after 18 mutations were accumulated (Fig. S7E), similar to what we 

observed in the design process of 4NBX.B conjugates.  

 

Conclusion: 

Using mSA/biotin system, we demonstrated for the first time to our 

knowledge that with the sole structural information of a small molecule binding to 

its target, a complementary immunoglobulin domain conjugating to the small 

molecule can be designed entirely by computational methods to bind tighter 

against the target, further bridging the two worlds of small molecules and 

biologics. The binding interface for the designed conjugates comprise of both an 

ultra-deep pocket that is uncommon for antibodies, and broad contacting 

interface that is uncommon for small molecules [38,39]. Therefore, the chemical 

space and target space of traditional molecular recognition agents could be 

expanded in this manner, offering new potential solutions to a wide range of 

challenges, such as reutilizing failed small molecules or tackling undruggable 

targets in pharmaceutical development. Our results showed that the affinity, 

kinetics, and stability of the conjugates can be designed in a step-wise manner, 

indicating that the development process is highly tunable and multiple 

physicochemical properties can be simultaneously optimized.  
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Testing whether the design strategy introduced in this study works for 

therapeutically-relevant targets would be a crucial next step. It will also be 

beneficial to study whether the workflow works with virtually-docked small-

molecule/target complexes. In addition, testing whether the workflow can 

engineer specificity in addition to affinity will be also highly desirable. There are 

many computational methods that could be used to improve the design strategy. 

Virtually recombining structural fragments was reported to help affinity maturation 

of computationally designed antibodies [26,40,41]. Specifically-tailored 

algorithms that put more bias in the formation of hydrogen-bonding networks 

were also proven to be useful to the affinity and specificity of designed 

protein/protein interfaces [42]. Advanced loop-modeling methods and ensemble 

design could also facilitate more accurate assessment of binding poses for the 

conjugates, and potentially engineer specificities [43,44].  

Because the designed conjugates have the CDR loops chemically 

extended beyond the natural repertoire, we name the computationally-designed 

synergistically-binding antibody small-molecule conjugates to be CDR-extended 

antibody, abbreviated as CDRexAb.  

 

Materials and Methods: 

 Computational design workflow for nanobody-biotin conjugates: The detailed 

description of the computational design workflows for the nanobody-biotin 

conjugates introduced in this study is included in the supplementary material. 
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Plasmids, expression cell lines, and cloning of protein variants: pRSET-

mSA was a gift from Sheldon Park (Addgene plasmid # 39860) [28]. S27A 

mutation was created by site-directed mutagenesis using commercially-available 

kits (NEB). 4NBX.B_C103 and 2X89.A_CCAA_C57 sequences were directly 

ordered from IDT, and cloned into pHen6c vector by Gibson assembly using 

commercially-available reagents (NEB) [45]. The assembled pHen6c vectors 

harbor a PelB signal sequence before the N terminus of the nanobody sequence, 

allowing bacterial periplasmic expression [46]. Variants of 4NBX.B_C103 and 

2X89.A_CCAA_C57 were created by mutagenic PCR and assembled into 

pHen6c vector by Gibson assembly using commercially-available reagents (NEB) 

[45]. 4NBX.B WT sequence with C103A mutation was created by site-directed 

mutagenesis using commercially available kits (NEB). Smt3 SUMO protein with 

an N-terminal cysteine was created from wild type Smt3 SUMO by mutagenic 

PCR, and subcloned into pY71A(lc) vector by Gibsom assembly using 

commercially-available reagents (NEB) [45].  

Expression and purification of mSA streptavidin wild type and S27A 

variant: Expression, purification, and refolding of mSA variants followed 

published protocols with slight variations [28]. The expression plasmids were first 

transformed to E. Coli BL21-Gold (DE3) chemically competent cells (Agilent), 

which were then grown overnight in LB with 100 µg/mL of ampicillin (amp 100) at 

37°C and 250 rpm. 1 mL of the overnight culture was used to inoculate 300 mL of 

TB medium (2.3 g KH2PO4, 16.4 g K2HPO4, 12 g tryptone, 24 g yeast extract, 4 

mL glycerol, dissolved in water to 1 L volume) supplemented with 2 mM MgCl2, 
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0.1% glucose, and amp 100. Inoculation was done at 37°C and 250 rpm until 

OD600 hit 1.5-2. Expression was induced by 1 mM IPTG at 28°C and 250 rpm for 

18 hours. Cells were then centrifuged by 4500 g for 15 minutes at 4°C, and 

protein extraction was then performed using 50 mL of chemical lysis buffer. The 

buffer was composed of 1x PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 

1.8 mM KH2PO4, pH 7.4), 1x CelLytic B reagent (Sigma), 0.02 mg/mL DNase1, 

0.2 mg/mL lysozyme, and 1 mM protease inhibitor AEBSF (Sigma). Pellets were 

resuspended in lysis buffer and nutated for 4 hours at room temperature. Cell 

lysate was then centrifuged at 15000 g for 30 minutes at 4°C, and the 

precipitates were used to refold and purify the protein. 

Precipitates were first resuspended into 3 mL of 6 M guanidine 

hydrochloride in 1x TBS (50 mM Tris, 150 mM NaCl, pH 8.0) and incubated 

under 37°C for 30 minutes to solubilize the proteins. Un-dissolved materials were 

cleared by 15000 g centrifugation for 5 minutes at 4°C. Supernatants were then 

chilled on ice before added drop by drop into 40 mL of pre-chilled refolding buffer 

(50 mM Tris-HCl, 150 mM NaCl, 0.3 mg/mL D-biotin, 0.2 mg/mL oxidized 

glutathione, 1 mg/mL reduced glutathione, pH 8.0) while stirring. The refolding 

buffer with added mSA protein was then allowed to incubate on ice for another 2 

hours with stirring before centrifuged by 15000 g for 30 minutes at 4°C to remove 

insoluble materials. The supernatants were then supplemented with 20 mM 

imidazole and then loaded onto 1 mL bed volume of Ni-NTA agarose beads 

(Qiagen) which were pre-washed with 5 column volumes of 1x PBS. Sample 

loading was performed by gravity flow. Column was then washed with 10 column 
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volumes of 1x PBS supplemented with 20 mM imidazole before 3 mL of 1x PBS 

supplemented with 500 mM of imidazole was used to elute the proteins. The 

entire Ni-NTA purification process was done at 4°C. The 3 mL of purified proteins 

were then dialyzed against fresh 1 L of 1x PBS (pH 8.0) under 4°C for 3 times 

using Slide-A-Lyzer 10 kDa molecular-weight cutoff dialysis cassettes (Thermo). 

Each dialysis step took longer than 4 hours. The dialyzed mSA products were 

further purified at 4°C by Superdex 75 10/300 GL SEC column (GE) using 1x 

PBS (pH 7.4) as running buffer, and the fractions corresponding to the 

monomeric peak were collected for subsequent experiments. 

Expression and purification of Smt3 SUMO protein with N-terminal 

cysteine: The expression plasmids were first transformed into E. Coli BL21-Gold 

(DE3) chemically competent cells (Agilent), which were then grown overnight in 

LB with amp 100 and 1% glucose at 37°C and 250 rpm. 1 mL of the overnight 

culture was then used to inoculate 300 mL of TB medium with 2 mM MgCl2, 0.1% 

glucose, and amp 100 at 37oC and 250 rpm until OD600 hit 1.5-2. Expression was 

then induced by 1 mM IPTG at 28°C and 250 rpm for 18 hours. Cells were then 

pelleted under 4500 g for 15 minutes at 4°C, resuspended in 50 mL of chemical 

lysis buffer supplemented with 5mM 2-mercaptoethanol (BME), and incubated for 

4 hours at room temperature to extract the expressed proteins. Lysate 

supplemented with 20 mM imidazole was cleared by 15000 g centrifugation at 

4°C for 30 minutes, and the supernatant was loaded onto 1 mL bed volume of Ni-

NTA agarose beads (Qiagen) pre-washed with 5 column volumes of 1x TBS (pH 

7.3). Sample loading was performed by gravity flow. The loaded column was 
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then washed with 5 column volumes of 1x TBS (pH 7.3) supplemented with 20 

mM imidazole and 5 mM BME and another 5 column volumes of 1x TBS (pH 7.3) 

supplemented with 20 mM imidazole. 3 mL of 1x TBS (pH 7.3) supplemented 

with 500 mM of imidazole was used to elute the proteins. All Ni-NTA purification 

procedures were performed under 4°C. Purified proteins were then concentrated 

to ~0.5 mL using Amicon 10 kDa molecular-weight cutoff centrifuge filters (GE), 

and stored for subsequent experiments. 

Expression and purification of nanobodies: The pHen6c expression 

plasmids were first transformed into E. Coli BL21-Gold (DE3) chemically 

competent cells (Agilent), which were then grown overnight in LB with amp 100 

and 1% glucose at 37°C and 250 rpm. 1 mL of the overnight culture was then 

used to inoculate 300 mL of TB medium with 2 mM MgCl2, 0.1% glucose, and 

amp 100 at 37oC and 250 rpm until OD600 hit 1.5-2. Expression was then induced 

by 1 mM IPTG at 28°C and 250 rpm for 18 hours. Cells were then pelleted under 

4500 g for 15 minutes at 4°C, and suspended in 12 mL of TES periplasmic 

extraction buffer (0.2 M Tris, 0.5 mM EDTA, 0.5 M sucrose, pH 8.0), 

supplemented with 5 mM BME if the nanobody had a cysteine handle for 

conjugation, before incubated on ice with shaking at 32 rpm for 1 hour [47,48]. 18 

mL of 4x diluted TES buffer, supplemented with 5mM BME if the nanobody had a 

cysteine handle, was then added to the cells which were incubated on ice at 32 

rpm for another hour [47,48]. After periplasmic extraction, the cells were pelleted 

by 15000 g at 4°C for 30 minutes, and the supernatants were supplemented with 

20 mM of imidazole before loaded onto 1 mL bed volume of Ni-NTA agarose 
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beads (Qiagen) pre-washed with 5 column volumes of 1x TBS (pH 7.3). Sample 

loading was performed by gravity flow. The loaded column was then washed with 

10 column volumes of 1x TBS (pH 7.3) supplemented with 20 mM of imidazole, 

before 3 mL of 1x TBS (pH 7.3) supplemented with 500 mM of imidazole was 

used to elute the proteins. For nanobodies with a cysteine handle, 5 mM BME 

was added to the first 5 column volumes of wash buffer, and the elution buffer 

was supplemented with 5 mM TCEP. The elution buffer was incubated with the 

beads for 30 minutes before eluting the proteins. The entire Ni-NTA purification 

process was done at 4°C. Purified nanobodies with a cysteine handle in 3 mL of 

the elution buffer were concentrated to ~0.5 mL using Amicon 10 kDa molecular-

weight cutoff centrifuge filters (GE), and stored for subsequent experiments. 

4NBX.B WT was instead further purified by Superdex 75 10/300 GL SEC column 

(GE) using 1x PBS (pH 7.4) as running buffer, and the fractions corresponding to 

the monomeric peak were collected for subsequent experiments. 

Biotin C2 maleimide conjugation and purification of conjugates: Maleimide 

labeling on surface cysteines of nanobodies followed a published protocol with 

some modifications [49]. Purified nanobodies in storage were first incubated with 

another 5 mM TCEP supplement under 4°C for 2 hours, and then buffer 

exchanged to 1x TBS (pH 7.3) using HiTrap desalting columns (GE) under room 

temperature to remove TCEP. Thawed stock solutions (100 mM in DMSO) of 

biotin C2 maleimide (AnaSpec) were immediately added to the buffer-exchanged 

nanobodies to 1 mM final concentration before the reaction mixture was nutated 

under 4°C for 4 hours with tinfoil cover to avoid light contact. Excess maleimide 
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stock solutions were tossed away and not re-frozen for future experiments. Biotin 

C2 maleimide was in >20-fold molar excess over the nanobody in the reaction 

mixture. Finished reaction mixture was then filtered by 0.2 µm syringe filters 

(Thermo) to remove precipitated proteins, and then buffer exchanged to 1x TBS 

(pH 7.3) using PD-10 desalting columns (GE) under room temperature to remove 

excess maleimide reagents. The labeled nanobodies were further purified at 4°C 

by Superdex 75 10/300 GL SEC column (GE) using 1x TBS (pH 7.3) as running 

buffer, and the fractions corresponding to the monomeric peak were collected for 

subsequent experiments. Maleimide labeling of Smt3 SUMO protein with N-

terminal cysteine followed the identical procedures as above.  

Intact protein mass spectrometry (MS) workflow to analyze conjugation 

efficiency: HPLC-MSD (HP, Agilent) was used to assess the labeling efficiency of 

prepared nanobody-biotin conjugates. Conjugates were first dried out using a 

spin vacuum evaporator, and resuspended in 0.2% formic acid. A C3 HPLC 

column was used first to separate the protein sample before MS analysis. Before 

running samples, the column was first washed with isopropyl alcohol (IPA) to 

clean the column and also reveal background peaks irrelevant to our samples. 

Aanalysis of conjugation efficiency of 4NBX.B-based conjugates was performed 

by deconvoluting the eluted sample HPLC peak using the following parameters: 

positive adduct ion +H 1.0079 Da, negative adduct ion –H -1.0079 Da, molecular 

weight cutoff 5000-80000 Da, maximum charge 90, minimum peaks 5, ion 

PWHH 0.6 Da, molecular weight agreement 0.05%, noise cutoff 0, abundance 

cutoff 10%, molecular weight assignment cutoff 40%, and envelope cutoff 50%. 
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Deconvolution was performed in ChemStation (Agilent). For each sample of 

interest, about 0.1-1 µg of material was used for the above analysis. 

Surface plasmon resonance (SPR) analysis of binding affinity and kinetics: 

A Biacore T200 instrument (GE) was used to perform SPR analysis. 4NBX.B 

WT, 4NBX.B-biotin103 conjugates, and 2X89.A-CCAA-biotin57 conjugates were 

first buffer-exchanged to HBS-EP+ buffer (Teknova) using Amicon 10 kDa 

molecular-weight cutoff centrifuge filters (GE). The concentrations of the 

conjugates were then determined by BCA assay using commercially-available 

kits (Thermo). The calibration curve for BCA assay was prepared using purified 

4NBX.B WT, which was also buffer exchanged to HBS-EP+ but had 

concentrations determined by A280 readings using extinction coefficient 30035 M-

1cm-1. For SPR analysis, biotin pentylamine (Thermo), mSAWT, and mSAS27A 

were respectively immobilized on CM5 censor chip (GE) by EDC/NHS amine 

coupling kit following standard protocol (GE). Binding kinetics were measured by 

single-cycle kinetics experiments. Biotin pentylamine was immobilized at 7.5 mM 

concentration to reach target surface density of ~200 resonance units (RUs) [50]. 

In order to compare how binding events changed in response to different surface 

densities, surfaces with three different densities of immobilized mSAWT at ~1000 

RU, ~2500 RU, and ~3000 RU were respectively prepared under immobilization 

concentrations 0.1 µM, 0.5 µM, and 1 µM. Immobilization of mSAS27A was also 

performed at 0.01 µM and 0.05 µM concentrations with target surface density of 

~200 and ~600 RU. The fitted affinities and kinetics of identical conjugates 

against the different densities were minimally different. Reference channels were 
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either treated with EDC/NHS using blank HBS-EP+ buffer, or 1 µM of 4NBX.B 

WT to assess if the conjugates would self-associate and roughly see if the 

conjugates un-specifically interacted with proteins not of interest. No visible 

signal differences against reference channels with or without immobilized 

4NBX.B WT were observed for various tested conjugates. All immobilization 

samples were dissolved in acetate buffer (pH 4.5).  

Binding experiments were performed under 25oC. HBS-EP+ was used as 

running buffer. The flow channels were first incubated in the running buffer 

before analytes at 5 different concentrates were consecutively injected at 30 

µL/min flow rate through both the reference channel and the sample channel with 

immobilized molecules of interest. After injections, the surface-bound analytes 

were allowed to dissociate for 10 minutes to generate dissociation curves. HBS-

EP+ buffer then washed through both reference and sample channels 

continuously to allow the rest of the bound analytes to dissociate, in order to 

regenerate the surfaces for next binding experiments. Curve fitting of 

sensorgrams processed by subtracting the reference channel signal from the 

sample channel signal was performed in Biacore evaluation software using 1:1 

kinetics model. No incompletely subtracted bulk contributions were observed in 

binding against immobilized biotin. For binding curves against immobilized 

mSAWT, global fitting of bulk shifts was turned on as small bulk shift contributes 

before and after each injection event were distinctively observed. Bulk shift fitting 

was turned off in binding curves involving mSAS27A, because potential bulk shift 



103 
 

signals would be obscured by the kinetics curves with fast dissociation rates and 

therefore not distinctively visible.  

Molecular dynamics (MD) simulation protocols: Molecular Dynamics 

simulations were carried out using ACEMD (Acellera) [51]. Each system studied 

was placed in a box with dimensions selected to allow an excess length of 12 

angstroms on each side. The system was solvated using the TIP3P water model 

[52], and ions were added to neutralize the overall charge. The built system was 

then minimized for 500 steps. Subsequently, a 5 ns equilibration was completed 

to allow the system to reach a stationary state, and a 100 ns production run was 

carried out at 300 degrees K. All experiments utilized the Amber ff14SB force 

field and a 4 femtosecond timestep [53]. Data from the equilibration run was not 

included in subsequent analysis, and where replicates were collected no part of 

the intermediate data was reused. Parameters for the biotin-CH2-CH2-

succinimide-S-CH3 “side chain” were prepared using Antechamber and utilized 

RESP charges calculated with Gaussian 09 [54,55]. Calculation of solvent 

accessible surface area was performed using MDTraj, and hydrogen bonding 

was assessed using a tcl script written for VMD [56, 57]. 
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Figure 1: Computationally-designed nanobody-biotin conjugates bind 

stronger than biotin itself against mSA streptavidin. For SPR-measured KD, 

kon, and koff results, data from one of the triplicates is shown here, and data from 

the other two replicates is in Fig. S5. (A). Schematic representation of the 

envisioned workflow. Given the availability of a small molecule and its target, the 

sequence of a complementary immunoglobulin domain and a conjugation plan 

with the small molecule are computationally determined to create conjugates that 

synergistically bind to the target. (B). Finalized model of 4NBX.B-biotin103 in 

complex with mSA streptavidin. The mSA is colored green, and nanobody 

scaffold is colored cyan. Biotin103 side chain is shown as stick, and the H-bond 
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forming potential of Y112 and R27 with mSA residues is also represented. (C). 

Y112 and R27 are predicted to participate in a broader potential H-bond network 

that involves biotin/mSA interactions. (D). SPR estimation of mSA/biotin binding 

parameters by two methods. (E). SPR measurements determined that 4NBX.B-

biotin103 occupies the biotin-binding pocket of mSA with improved affinity and 

kinetics. (F). SPR measurements determined that 4NBX.B_biotin103 binds 

stronger towards a weaker biotin-binding mutant of mSA than biotin itself.  

 

 

Figure 2: CDR sequence design enhanced the mSA-binding affinity and 

kinetics of 4NBX.B-biotin103. In the structural models, the mSA is colored 

green, and nanobody scaffold is colored cyan. Biotin103 side chain is shown as 

stick. For SPR-measured KD, kon, and koff results, data from one of the triplicates 

is shown here, and data from the other two replicates is in Fig. S5. (A). Predicted 
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affinity-contributing mutations and SPR-measured binding profiles of 4NBX.B-

biotin103 v119 against mSAWT. (B). Predicted affinity-contributing mutations and 

SPR-measured binding profiles of 4NBX.B-biotin103 v149 against mSAWT.  
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Figure 3. CDR sequence design followed by framework design 

monomerically stabilized the designed conjugates without imposing 

affinity penalty. (A). SEC traces of biological triplicates (colored by blue with 

different intensity) for designed 4NBX.B-biotin103 conjugates, normalized by 

monomer peak height for better comparison of aggregates formation. SEC trace 
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of 4NBX.B WT is overlaid with 4NBX.B-biotin103 WT traces and colored orange. 

* indicates peaks of sample-irrelevant instrument defect of the overall FPLC, 

please refer to Figure S3C for more details. SEC trace of 4NBX.B WT nanobody 

was overlaid with 4NBX.B-biotin103 WT traces as reference. (B). SPR-measured 

binding profile of v186_Fr against mSAWT and mSAS27A indicates that the 

improved binding affinity and kinetics in v149 are preserved. Data from one of the 

triplicates is shown here, and data from the other two replicates is in Fig. S5. (C). 

Structural representation of nanobody amino acid position 12 and 37 before and 

after framework redesign. v186 is colored as green, and v186_Fr is colored as 

cyan. Additional H-bonds introduced by F37Y with CDR3 residues are shown as 

dashes, while the relevant CDR3 residues are also shown in both v186 and 

v186_Fr models.  
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Figure 4. MD simulation reveals design flaws and validates design success. 

(A) MD simulation revealed possible origins for the improved monomeric stability 

of 4NBX.B-biotin103 v186_Fr compared to v186. Here shows the analysis of the 

solvent-accessible area for the selected hydrophobic residues of v186 and 

v186_Fr from 100ns MD simulations performed in triplicates. The selected 

residues are presented as spheres in the nanobody models shown on both 

panels. The observed distributions of the solvent accessible area for the selected 

residues from the 3X simulations of v186 and v186_fr are plotted into 80 bins 

along the x-axis (bars) with respective kernel density estimation (lines). Left 
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panel: analysis of the hydrophobic core residues. Right panel: analysis of the 

CDR3-shielded residues. (B). Analysis of the interaction interface in the triplicate 

MD simulations of 4NBX.B-biotin103 v186_Fr against mSAWT. Traces from 

simulation replicates are plotted on top of each other along the 100ns timescales. 

Changes of whole-structure RMSD, interface shape complementarity, buried 

surface area, and interface separation distance along the time trajectories are 

plotted. 
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Figure 5: Summary of the design results for mSA-targeting CDRexAbs and 

the overall design workflow. (A-B). Summary of SPR-measured binding affinity 

and kinetics of nanobody-biotin conjugates and controls against mSAWT and 

mSAS27A. Experimental designs for each SPR binding experiment are depicted by 

the cartoon above the lanes. Blue square: SPR cheap for immobilization. 

Spheres: molecules that are immobilized (attached to chip) or flew through 

(floating above the chip) during binding experiments. Different molecules are 
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represented by different colors. Individual data points represent measurements 

from biological triplicates. Error bars represent standard deviation. (C). Summary 

and proposal of a general design workflow for synergistically-binding nanobody-

small molecule conjugates.   

 

Supplementary Figures and Tables:  

 

Figure S1: Searching for optimal CDR conformation against monomeric 

streptavidin model. (A). Whole structural-alignment of 154 curated PDB 

nanobody scaffolds with diverse CDR conformations and sequences. (B). 

Interface statistics of naturally occurring nanobody-target complexes. Error bars 

represent standard deviations. (C). The final 7 docked poses of nanobody 

scaffolds that passed the filters selecting poses that most likely recapitulate the 
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natural binding modes of the corresponding nanobody scaffolds. Streptavidin 

S45A/T90A/D180A is colored green, and nanobody scaffold is colored cyan.  
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Figure S2: Identification of optimal conjugation strategy and finalized 

conjugate models. (A). Biotin conjugation was performed by biotin C2 

maleimide with mutated cysteine residues. (B). Prepared structure of 4NBX.B-

biotin103 in complex to streptavidin S45A/T90A/D180A. Streptavidin 

S45A/T90A/D180A is colored green, and nanobody scaffold is colored cyan. (C). 

The H-bond forming potential of Y112 and R27 in 4NBX.B nanobody was 
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predicted to be recapitulated in the designed binding pose with the streptavidin 

model. Streptavidin S45A/T90A/D180A is colored green, and nanobody scaffold 

is colored cyan. Biotin103 side chain is shown as stick. Y112 and R27 together 

with their predicted H-bond partners are shown as line. (D). Alignment results for 

prepared structures of 4NBX.B-biotin103 in complex with streptavidin 

S45A/T90A/D180A and mSA. Streptavidin models are colored green, and 

nanobody scaffolds are colored cyan. Residues that were identified by sequence 

alignment as pair-wise identical sequences are colored red. Biotin103 side chain 

from both models are shown as stick.  

 

 

 

Figure S3: Additional Supporting SEC traces. A). SEC traces of mSAWT and 

mSAS27A. B). SEC rerun trace of collected monomeric fraction for 4NBX.B-

biotin103 v186_Fr. * indicates peaks of sample-irrelevant instrument defect of the 

overall FPLC, please refer to section C for more details. C). Blank run of the 

FPLC to reveal the sample-irrelevant periodic peaks that were constantly 

observed in SEC data. 
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Figure S4. Summary of MD simulations performed for 4NBX.B-biotin103 

v186 and v186_Fr against mSAWT. For each simulation, 400 snapshots evenly 

spaced along the 100ns timescale are aligned together. green: mSAWT. cyan: 

nanobody-biotin conjugates. The biotin103 “residue” is shown as stick.  
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Figure S5: SPR measurements from the intermediate design variant 

4NBX.B-biotin103 v186, and from additional biological replicates not shown 

in the main text but were included for affinity and kinetics estimation. 
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Figure S6: Intact-protein mass spectrometry (MS) confirmed mono-

conjugated materials. MS deconvolution of nanobody-biotin conjugates only 

returned MWs within 20Da from expected MW of mono-conjugated materials. 
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Figure S7: Designing and testing of a nanobody scaffold obtained by 

directly docking against mSA. (A). Finalized nanobody scaffolds and binding 

poses against mSA streptavidin. (B). Predicted H-bond formation profile and SPR 

binding curve for 2X89.A-CCAA-biotin57 WT against immobilized mSAWT. Data 

from one of the triplicates is shown here, and data from the other two replicates 

is in Fig. S5. (C). Size-exclusion chromatography (SEC) traces of biological 

triplicates for 2X89.A-CCAA-biotin57, normalized by monomer peak height for 

better comparison of aggregates formation. * indicates peaks of sample-

irrelevant instrument defect of the overall FPLC, please refer to figure S3C for 

more details. (D). A rudimentary sequence design pipeline that performs CDR 

and framework design in a step wise manner. (E). SEC traces and newly 
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accumulated mutations for sequence-designed variants of 2X89.A-CCAA-

biotin57 conjugates. Peak of the monomeric fractions were normalized to 

identical heights. * indicates peaks of sample-irrelevant instrument defect of the 

overall FPLC, please refer to figure S5C for more details.  

Supplementary Notes: 

Computational design workflow for nanobody-biotin conjugates 

 Our in-house developed protein design suite TRIAD [58] together with third-party 

software PyMOL (Schrodinger) and OpenBabel [59] were used to perform protein 

computational design and analysis in this study. The detailed process and setup 

are described below.  

 

A. Design process of 4NBX.B-derived nanobody-biotin conjugates 

Searching optimal streptavidin-binding nanobody CDR conformations by docking 

and loop modeling 

 Monomeric streptavidin model S45A/T90A/D180A was prepared from crystal 

structure of wild type core tetrameric streptavidin (PDB ID: 1MK5). A single 

subunit was extracted and standardized by an in-house computational protein 

design suite TRIAD [58]. S45A/T90A/D128A substitution was then performed by 

the TRIAD sequence-design module. Initially, we attempted optimizing 

nanobody/streptavidin binding conformations by protein-protein docking followed 

by loop modeling of nanobody CDRs. We used a published nanobody structure 

(PDB ID: 5VNW, chain C) as the starting nanobody scaffold, with all CDR 

residues replaced to alanine by TRIAD sequence design, in a hope to avoid 
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sequence bias [60]. The nanobody scaffold was docked onto a set of manually 

selected surface residues surrounding the binding pocket of monomeric core 

streptavidin model S45A/T90A/D128A. Docking was performed by a previously-

developed FFT-based docking program, and top 15 CDR binding poses were 

kept [61]. CDR loop modeling of each pose was then performed to attempt 

optimizing CDR conformation against the target by the TRIAD loop modeling 

module. Only the top one solution for each pose was kept, and no solution had 

reasonable CDR conformations beneficial for a good binding interface. The 

sequence of the core streptavidin with the triple-alanine mutations is attached 

below, and the residues selected as docking targets are highlighted in brackets:  

EAGITGTWY(NQLGS)TFIVTAGADGALTGT(YEAAVGNAESRY)VLTGRY

DSAPATDGSGTALGWTVA(WKNNYRNAHSA)ATWSGQYVGGAEARINTQ(WLL

TSGTTEANAWKSTLVGHATFT)KVK.  

 

Searching optimal streptavidin-binding nanobody CDR conformations by docking 

native CDR sequences and conformations 

 154 nanobodies that have higher-than-3Å resolution and continuous electron 

density with diverse target-binding CDR conformations were fetched from 

published nanobody/target complexes from PDB (please refer to section C 

below), and CDRs for each nanobody were subsequently annotated, following 

the nanobody CDR-mapping criteria in a previously-published study [34] but with 

softer edge cutoffs so that the sampled geometries of nanobody approaching are 

not too stringent. Each nanobody was docked against the previously-selected 
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binding pocket surface of the triple-mutation monomeric streptavidin model by 

the annotated CDRs, and top 15 poses for each docking trial were kept. Initially, 

we still performed alanine-replacement on all CDR residues before docking. 

However, several CDR sequence design trials on a docked structure output 

mostly small amino acids, indicating that the designability might be restricted in 

alanine-replaced docking complexes. Therefore, we decided to dock the 154 

nanobody structures with native CDR sequences. The TRIAD surface-

complementarity module was used to perform interface analysis of naturally-

occurring nanobody-target complex structures to return respective statistics of 

interface separation distance, shape complementary, and buried interface area 

for future design reference (Fig. S1B) [62]. 2310 docked poses were generated, 

and then filtered by three selection steps to identify most realizable binding 

poses. Step one selected poses with interface separation distance, shape 

complementary score, and buried interface area within 1 standard deviation of 

naturally-occurring nanobody-target structures (Fig. S1B), returning 231 poses. 

Step two then selected nanobody poses that use >80% of the residues that 

participate in the original target-binding interface in the docked interface, and 

returned 31 poses. Identification of interface residues in both original PDB 

structures and docked structures was performed by a publically-available PyMOL 

script that selects interface residues by changes of solvent accessibility [63]. The 

last step selected poses that directly blocked the biotin binding pocket, and 

returned the final 7 poses (Fig. S1C). The degree of binding pocket blockage was 

reflected by using PyMOL to calculate the change of solvent accessible area of 
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the following selected residues that are a subset of the docking target residues 

and closely surround the biotin molecule (highlighted in brackets below with the 

rest of the streptavidin sequence shown as reference):  

 EAGITGTWYN(QLGS)TFIVTAGADGALTGTYEAA(VGNA)ESR(Y)VLTGRYDSA

PATDGSGTALGWTVA(W)KNNYRN(AHS)AATWSGQYVGGAEARINTQ(W)L(L)

T(S)GTTEANAWKSTLV(G)H(A)T(FT)KVK.  

 

Rotamer library generation of biotin C2 maleimide side chain and conjugation 

plan determination 

A rotamer library of the biotin-CH2-CH2-succinimide-S-CH3 “side chain” 

was constructed by OpenBabel [59], and virtually screened against CDR amino 

acid locations of the 7 poses to find the optimal conjugation sites. In the rotamer 

library, the biotin portion remains intact, while the CH2-CH2-succinimide-S-CH3 

portion is diverse in torsion angles. Screening was done by measuring the 

distance between the terminal carbon of the rotamer and the Cβ of respective 

CDR residues, steric clash between the rotamer and the streptavidin, steric clash 

between the rotamer and the nanobody, and the angle of the rotamer terminal 

carbon approaching the respective attachment spot. Conjugation geometries that 

clashed with streptavidin by <1 unit, clashed with the nanobody by <15 units, 

approached the attachment spot by 100-120 degree, and were <1 Å away from 

the Cβ of screened conjugation sites were kept. Measurements were performed 

only against CDR residues that are originally alanine, which is similar to cysteine 

in size and usually does not perform important structural role, as we 
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hypothesized that making an alanine to cysteine mutation would less likely cause 

serious structural consequences to the nanobody. Alanine 103 on 4NBX.B was 

the only conjugation site that passed the above filters, and the rotamer that 

clashed least with both the streptavidin and nanobody was selected for further 

processing. To prepare the final conjugation structure, excess atoms were 

deleted and a bond was made between the Cβ of the biotin-CH2-CH2-

succinimide-S-CH3 “side chain” to the Cα of 4NBX.B site 103. The conjugated 

structure of 4NBX.B-biotin against the S45A/T90A/D128A streptavidin was then 

relaxed by Biograf [67], with force restraints placed to maintain the biotin-

streptavidin hydrogen bonds and torsion angles of the aliphatic arm portion of 

biotin. To prepare 4NBX.B-biotin103/mSA structure, the crystal structure of mSA 

(PDB ID: 4JNJ) was aligned to the modeled triple-mutation streptavidin structure, 

and 4NBX.B-biotin103 structure was relaxed by Biograf with the same force 

restraints [67].  

 

Subsequent sequence design of 4NBX.B-biotin103 conjugates 

 CDR sequence design was first performed on the prepared 4NBX.B-

biotin103/mSAWT model. CDR residues were determined following the CDR-

mapping criteria in a published study [34], and specifically by first aligning the 

4NBX.B model with an example nanobody structure in agreement with that 

criteria (PDB ID: 5VNW, chain C), and then selecting the corresponding CDR 

residues on 4NBX.B. Residues 27-34 were selected as CDR1, 47-60 were 

selected as CDR2, and 98-111 were selected as CDR3. Single-point mutation 
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scan was performed on each CDR location with reduced sets of amino acids that 

were reported to be frequently used in each corresponding CDR position [34]. 

The amino acid sets for each position were as follows: 27-WT/N/S/T/Y, 28/51-

WT/I, 29-WT/S/F, 34-WT/M, 47-WT/F/L, 48-WT/V, 49/60/98-WT/A, 50/55-

WT/A/G/S/T, 52-WT/A/D/G/Q/S/T, 54-WT/G, 56-WT/I/N/S/T, 57/58-WT/T, 59-

WT/N/Y, 60/111-WT/Y, 109-WT/F/H/L/Y, and 

30/31/32/33/53/99/100/101/102/104/105/106/107/108/110-

WT/A/R/N/D/Q/E/G/H/I/L/K/F/P/S/T/W/Y/V. Position 103 with the attached biotin 

“side chain” was left un-designed and the coordinates for all atoms were left 

unchanged. Rosetta force field with covalent terms was used during the 

calculations [64]. Biograf-relaxed 4NBX.B-biotin103/mSAWT structure was used 

as structural input. During the design calculations, residues that were within 10 Å 

from the site under design calculation were allowed to repack. Each rotamer 

optimization for the site under design calculation was initiated by random rotamer 

configurations, and then repacked while the Cα backbone was allowed to relax 

through Cartesian minimization to optimize the structures with different sequence 

choices, which were then ranked given the energy scores of the corresponding 

modeled structures after iterative rotamer repacking and backbone relaxation. 

The chemical attributes of the biotin103 “side chain” were generated by TRIAD 

and then used during the design calculations of the energy scores. 10 runs with 

different random seeds were performed for each design calculation, and 

averaged to reflect the final amino acids preference for each site that underwent 

single-site mutation calculations. Mutation choices with lower Rosetta energy unit 
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than the WT amino acids were kept as designable mutations. Designability of 

each site was reflected by the sum of Rosetta energy unit differences of 

designable mutations from the corresponding WT amino acid choice. As the 

result, the output designable sites ranked by designability were as follows: 105, 

109, 107, 104, 106, 32, 108, 31, and 56. Those sites were also separately 

grouped into two bins. Bin 1 contains sites that interact with the original target of 

4NBX.B: sites 105, 104, 32, and 31, of which the order was ranked by 

designability. Bin 2 contains sites that do not interact with the original target of 

4NBX.B: sites 109, 107, 106, 108, and 56, of which the order was ranked by 

designability.  

 Combinatorial designs with different choices of designable sites were performed 

in parallel. Combinatorial design 1 was performed on all the 9 designable sites. 

Combinatorial design 2 was performed on the designable sites in bin 1 only. 

Combinatorial design 3 was performed on the designable sites in bin 1 and bin 2, 

with an exception that for bin 2 sites, only mutation choices that are different from 

WT amino acid with >1 Rosetta energy units were used. Combinatorial design 4 

was performed on the designable sites in bin 1 and bin 2, with an exception that 

for bin 2 sites, only the top-ranked mutation choice by energy score was used.  

 Combinatorial designs were performed with the same configurations as single-

site mutation designs that were described before, with one difference: the output 

sequences from the 10 parallel design runs were re-ranked by threading the 

sampled sequences in each run individually onto the backbone of the input 

structure, followed by rotamer repacking and backbone Cartesian minimization. 



134 
 

The TRIAD-modeled structures and Rosetta energy scores of the top 20 

sequences of the re-ranked sequences were used to evaluate design results.  

 Structures of the top 20 sequences for the 4 combinatorial designs were 

analyzed by PyMOL to identify intermolecular H-bonds between mSAWT and 

4NBX.B-biotin103 variants, and intramolecular H-bonds within 4NBX.B-biotin103 

variants, using a publically-available PyMOL script that relies on the “find_pairs” 

command module of PyMOL [65]. The goal was to find sequences with improved 

overall energy score, new intermolecular H-bonds with mSAWT, and 

intramolecular H-bond profile comparable to 4NBX.B-biotin103 WT, as the 

imbalance of forming new interactions with targets and keeping the structural 

integrity was a common reason behind the failure of designing protein-protein 

interactions [66]. All combinatorial designs output sequences with improved 

energy scores, but only combinatorial design 2 output the top 20 sequences with 

an average number of intermolecular H-bond higher than that of the 4NBX.B-

biotin103 WT against mSAWT. The top 20 sequences in combinatorial design 2 

also had the highest average number of intramolecular H-bonds in the 

nanobodies among the 4 designs. Variant v119 was the top-ranked sequence in 

combinatorial design 2, and variant v149 had the highest number of predicted 

intermolecular H-bonds among the top 20 sequences (Table S1).  

 To improve the stability of v149, we hypothesized that a suitable method would 

optimize the protein structure while keeping the designed interactions contributed 

by R31/S32/A104/R105, the new anchoring spots, unchanged, without altering 

the target backbone structure too much. Therefore, we devised a sequential 
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design workflow that creates stepwise local structural optimizations that 

compensate for the mutations built-up in previous steps. As the result, 

subsequent rounds of CDR sequence designs were performed on v149. For 

each round, single-point mutation scan was first performed on the CDR residues 

using the identical setup as the first round of design. The calculation results were 

processed in the same way as the first round of design, with an exception that 

only mutation choices that are different from WT amino acid with >1 Rosetta 

energy units were kept for all further combinatorial design calculations. Next, 

skipping the sites that were mutated in previous rounds of design, four 

combinatorial designs were performed on the designable sites reported by the 

single-point mutation scan calculation. Combinatorial design 1 was performed on 

all designable sites with the reported designable mutation choices. Combinatorial 

design 2 was performed only the designable sites in bin 1 with the reported 

designable mutation choices. Combinatorial design 3 was performed on top 5 

designable sites with the reported designable mutation choices. Combinatorial 

design 4 was performed on 5 designable sites ranked by designability, but with a 

bias on sites in bin 1. In other words, sites in bin 2 were not used unless the 

number of sites in bin 1 was smaller than 5. All combinatorial design calculations 

were performed and processed under the same setup as the first round of 

design.  

The second round of design was performed using the output structure of 

v149 from the first round of design as input. No improvement in the number of 

intermolecular H-bond formation was observed for the outputs of all the 4 
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combinatorial designs, while the numbers of intramolecular H-bond were 

minimally different among the designs. Therefore, the design result with the 

biggest overall difference in energy score among the top 20 sequences against 

v149, combinatorial design 4, was chosen, and of which the sequence with the 

best energy score, v149 plus Y101L/R107F, was selected as the input structure 

for the third round of design. Combinatorial design 4 was performed with sites 

27/59/101/107/110. In the third round, again no improvements in the number of 

intermolecular and intramolecular H-bonds were observed among the 4 

combinatorial designs. So, the sequence with the best energy score, v186 (v149 

plus Y101L/R107F/R56T/Y106K/D108A/Y110S), of combinatorial design 1 

whose top 20 sequences showed biggest overall improvement in energy scores 

against the input sequence was selected. Combinatorial design 1 was performed 

with sites 27/29/56/106/108/110. A further round of CDR design was performed 

on v186 and all combinatorial design results returned sequences with worse 

energy score than v186.  

Because v186 turned out to be even more prone to aggregation than 

v149, and based on MD simulation results of v149 against mSAWT, we 

hypothesized that only mutating CDRs was not sufficient. Therefore, we 

proceeded to design the framework regions of v149. Because the frameworks of 

nanobodies are highly conserved [34], a suitable sets of amino acid choices and 

locations would be crucial for the design calculation. Because the previous CDR 

designs were based on a published summary of nanobody CDR sequence 

diversity, we referred to the framework sequence used in that study for 
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framework sequence design [34]. We aligned 4NBX.B-biotin103 v186 with chain 

C of 5VNW, identified framework sites where the two nanobodies differ, and 

performed a combinatorial design with the selected sites being one or the other 

amino acid choice. Site positions and sequence choices were as follows: 5-V/G, 

12-A/V, 35-A/G, 37-F/Y, and 40-P/A. The v186 structure output by the third round 

of design was used as input, and the configurations and processing of design 

calculation were the same as the combinatorial CDR sequence designs 

described previously. The top-ranked sequence by energy score was v186_Fr 

(v186 plus A12V/F37Y) (Table S2). Framework design with identical amino acid 

sites, sequence choices, and calculation configurations was performed using 

v149 as input, and the design results were also reported in this study for 

comparison (Table S3).  

As a comparison, we performed two rounds of CDR sequence design 

using the above-described configurations on v119. Combinatorial designs in both 

rounds failed to produce variants with new inter-molecular H-bond formation in 

the top 20 variants, so the combinatorial designs with best overall energy 

improvement than the input sequence were chosen, and the top-ranked 

sequences by energy score in those designs were used as input for further 

rounds of design and experimental testing. No improvements in kinetics and 

affinity were observed in these selected sequences (data not shown), in 

agreement with the unchanged inter-molecular H-bond profiles and with what we 

observed for v186 versus v149.  
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B. Design process of 2X89.A-derived nanobody-biotin conjugates 

Docking, pose filtering, rotamer screening, and binding pose generation for 

2X89.A-CCAA-biotin57 WT against mSAWT 

The 154 nanobody structures from PDB with native CDR sequences were 

docked against a manually-selected set of surface residues around the biotin-

binding pocket of mSA, in the same way as described in part A. The amino acids 

being docked against are highlighted below by brackets with the rest of mSA 

sequence shown for reference: 

GAEAGITGTWYN(QSG)STFTVTAGADGNLTGQY(ENRAQGTG)C(QNSP

)YTLTGRYNGTKLEWRVEWN(NSTENCH)SRTEWRGQYQGGAEARINTQWNLT

(YEGGSGPATEQGQDT)FTKVK.  

Filtering procedures of the docked poses were also identical to those 

introduced in part A, with an exception that the following residues (highlighted by 

brackets) were selected as the target for binding pocket blockage filter: 

GAEAGITGTWYN(QS)GSTFTVTAGADGNLTGQYENRAQGTGCQNSPY

TLTGRYNGTKLEWRVEWNNSTENCHSRTEWRGQYQGGAEARINTQWNLT(YE

GGSGPATEQGQDT)FTKVK.  

6 poses that respectively comprised nanobodies 2X89.A, 3EBA.A, 

4LHQ.B, 4OCL.C, 3V0A.C, and 4P2C.G passed the series of filters. Visual 

inspection of the poses revealed that the 4OCL.C and 3V0A.C binding poses 

showed significant contacts that are mediated by nanobody residues outside of 

the CDRs, so the corresponding two poses were discarded since these binding 
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modes were potentially unrealistic. As the result, 4 final binding poses were kept 

for the evaluation of optimal conjugation sites (Fig. S7A). 

The biotin-CH2-CH2-succinimide-S-CH3 rotamer library built in part A was 

used again for rotamer screening. Because the design process of the 4NBX.B-

derived CDRexAbs demonstrated that our design capability allowed structural 

stability of the conjugates to be designed after binding synergy was designed, we 

did not put much emphasis on preserving structural integrity in the early stage of 

the design process of 2X89.A-derived CDRexAbs. Therefore, instead of 

screening only against alanine CDR residues, all CDR residues were screened 

by measuring the distance between the terminal carbon of the rotamer and the 

Cβ of respective CDR residues, steric clash between the rotamer and the 

streptavidin, steric clash between the rotamer and both proteins, and the angle of 

the rotamer terminal carbon approaching the respective attachment spot. 

Conjugation geometries that clashed with streptavidin by <0.5 unit, clashed with 

both proteins by <10 units, approached the attachment spot by 100-120 degree, 

and were <2 Å away from the Cβ of screened conjugation sites were kept. Only 

one rotamer that was screened against I57 of 2X89.A passed the filter. The final 

conjugation structure was prepared by Biograf, under the same parameters as 

described in part A [67].  

To remove the intra-CDR disulfide bond in the Biograf-relaxed structure, 

C33A/C104A mutations were introduced by TRIAD sequence design module to 

create the finalized model of 2X89.A-CCAA-biotin57/mSA for further sequence 

design optimization. 



140 
 

Subsequent sequence design of 2X89.A-CCAA-biotin57 conjugates 

 Summarizing the experience from the design process of the 4NBX.B-biotin103 

conjugates, we gained the following insights into the sequence design principles 

of CDRexAbs: 

1. Performing sequential rounds of design on limited sets of amino acid 

sites and choices that are recommended by iterative energetic and structural 

analysis allows functionally-improved CDRexAb mutants to be discovered 

without experimentally screening a large set of sequences. 

2. New intermolecular interactions between the nanobody scaffold and the 

target can be engineered first before further mutations are introduced to optimize 

the structural integrity of the conjugates. 

3. Simply mutating CDR residues is not sufficient for structural 

optimization of the conjugates, and mutated CDR residues likely need 

accommodation by introducing mutations in the β-barrel framework region.  

Based on the above principles, we established a rudimentary sequence 

design pipeline, and tested it on 2X89.A-CCAA-biotin57 to create mutants that 

are less prone to aggregation. The pipeline is detailed below (Fig. S7D): 

1. The pipeline performs sequential rounds of sequence design that is 

either restricted on CDR residues or framework residues. The first round of 

design is performed on CDR residues. Residues that are mutated in previous 

rounds are kept from mutation in further rounds.  

2. H-bonds are still the only intermolecular interactions that are explicitly 

evaluated after design calculations and biased towards for sequence selection, 
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but other types of interactions can be evaluated if they are deemed to be crucial 

for specific scenarios.  

3. CDR sequence design follows the procedures of designing the CDR 

loops of v149, as described in part A, with one exception: besides the four 

combinatorial designs, it is optional that two additional combinatorial designs can 

be performed in parallel, respectively on all identified sites and amino acid 

choices in bin 2, and on the top 5 designable sites with a bias on sites in bin 2. 

All combinatorial designs are evaluated together as described in part A. 

4. Framework design follows the procedures of designing the framework 

of v186, as described in part A.  

5. To evaluate the design results of CDR design, the following steps are 

used: 

 a). Sequences that showed worse energy score than the immediate 

parent sequence are discarded. 

 b). Sequences with the number of intermolecular H-bonds lower than the 

immediate parent sequence are discarded.  

 c). If no sequences survived filters a and b, perform framework design on 

the immediate parent sequence. 

 d). For sequences pass the filters, the sequence that has the highest 

number of intermolecular H-bonds and the best energy score among sequences 

that share the same number of intermolecular H-bonds is kept as input for the 

next round of CDR design. 



142 
 

6. To evaluate the design results of framework design, the following steps 

are used: 

 a). Sequences that showed worse energy score than the immediate 

parent sequence are discarded. 

 b). Sequences with the number of intermolecular H-bonds lower than the 

immediate parent sequence are discarded. 

 c). Sequences with the number of nanobody intramolecular H-bonds lower 

than the immediate parent by >1 are discarded. 

 d). If no sequences survived filters a-c, design fails. 

 e). For sequences pass the filters, the sequence that has the highest 

energy score is kept as input for the next round of CDR design.  

 The outputs after rounds 3, 5, 6, and 7, which are variants v37, v42, v20, 

and v5 were selected for experimental testing.  
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2.2 ncAA containing insulins: Design insights via molecular dynamics 

Recombinant insulin is a crucial therapeutic protein which is administered 

to millions of patients affected by diabetes mellitus (WHO, 2016). In normal 

function, insulin is produced and secreted from beta cells of the pancreas, and 

binds to the insulin receptor to induce the cellular uptake of blood glucose 

(Haeusler et al., 2018). Patients with diabetes have decreased pancreatic output 

of insulin, which must be supplemented by therapies to enhance insulin 

signaling, or in some cases turn to insulin replacement therapy via regular self-

administered subcutaneous injections. 

Over the past fifty years of recombinant insulin use, significant effort has 

gone into creating stable formulations, as well as variations which have modified 

pharmacokinetics, particularly fast-acting insulins. Insulin exists as a hexamer 

bound to zinc and phenolic ligands, (Derewenda et al., 1989) and upon injection 

into subcutaneous tissue, dissociates from a hexamer to a dimer, before finally 

crossing the capillary membrane as a monomer. The rate limiting step between 

the injection of inactive hexamer and insulin monomers reaching their intended 

receptors is the dissociation of hexamer to monomer. A typical paradigm for 

managing diabetes is reactive management which involves patients measuring 

their blood glucose after meals and administering a calculated dose of insulin. In 

this case, it is desirable that insulin enacts its biological effects as rapidly as 

possible. Because of this, significant engineering work has been done to create 

insulin variants which are destabilized in the hexameric form through 

mutagenesis. 
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Figure 9: Insulin oligomeric states. Pharmaceutical preparations of insulin 
exist as a hexamer bound to zinc and phenolic ligands. Upon injection into 
subcutaneous tissue, hexamers dissociate as to dimers, before finally crossing 
the capillary membrane as a monomer. Image used with permission from 
Stephanie L. Breunig (SLB). 

 

Insulin lispro, the first marketed fast acting insulin (Holleman et al., 1997), 

disfavors the association of subunits into higher order oligomers by switching 

Proline B28 and Lysine B29 near the C-terminus of the B-chain (Bakaysa et al., 

1996). By moving lysine further from the terminus of the chain, additional 

backbone flexibility is imparted compared to the constrained phi and psi angles of 

proline. This is believed to remove hydrophobic packing interactions at the dimer 

interface (Brems et al., 1992). As proline is unique in its restricted conformational 

range, an intriguing approach to further modify insulin is through the introduction 

of non-canonical proline variants. 

The Tirrell lab has done pioneering work for incorporating novel non-

canonical prolines and other amino acids (Lieblich et al., 2018, Fang et al., 2018, 

2019), including incorporating nine variants into both insulin and insulin lispro, 

and for each variant, characterizing dissociation rates and fibrillation (Figure 10).  
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Figure 10: Incorporation of non-canonical prolines into insulin and insulin 
lispro. Courtesy of SLB, used with permission. 
  

Containing a single, key proline residue, insulin is an ideal system to study 

the biophysical effects of non-canonical proline variants. We have built structures 

of all oligomeric (R6, T6, T2, and monomer) forms incorporating each non-

canonical proline, including wild-type, insulin, and lispro variants. Recognizing 

the need to develop rapid acting insulins which are simultaneously resistant to 

fibrillation, we use all-atom molecular dynamics to understand the variabile half-

lifes and fibrillation of insulin analogs containing these ten non-canonical 

prolines. Through the simulation and analysis of more than 50 distinct systems, 

we have arrived at the hypothesis that ring puckering contributes to both the 

fibrillation of insulin and the proposed additional novel non-canonical prolines to 

synthesize and incorporate. 
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Figure 11: Non-canonical prolines integrated into insulin and characterized 
From Fang et al. (2018) and Lieblich et al. (2018). 
 

In order to conduct molecular dynamics studies of the prolines containing 

the non-canonical amino acids engineered by the Tirrell lab, we first set out to 

derive force field parameters for each proline. For each variant, MarvinSketch 

was used to generate an initial conformer, with three-dimensional coordinates 

refined in accordance with the Dreiding force field (Mayo et al., 1990). These 

conformers included N-methyl and acetyl caps. Gaussian 09 (Frisch et al., 2016) 

was used to optimize geometry and fit RESP charges1, and Antechamber (Wong 

et al., 2006) was used to complete the remaining fields of Amber ff14SB force 

field (Maier et al., 2015) library files. 

Starting with a crystal structure of hexameric insulin determined by the 

Tirrell lab, we performed in silico mutagenesis using xleap (Ambertools) and our 

previously generated library files to generate hexamers of insulin containing each 

non-canonical proline. These hexamers were subsequently split into dimers and 

 
1 Note to anyone following this path: there is a silent bug in G09 Rev B that complicates this step. Please see 

http://www.ub.edu/cbdd/?q=content/gaussian09-bug-fix for a patch. 

http://www.ub.edu/cbdd/?q=content/gaussian09-bug-fix
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monomers in silico to further allow for study of the lower order oligomers. 

Although this may not be as ideal as starting from crystal structures of an insulin 

dimer or monomer, crystal structures of such oligomeric forms are not available. 

This process was also recreated using an insulin lispro crystal structure as a 

starting point to generate variants containing each non-canonical proline. 

All systems except monomers were simulated with three independent 

replicates, with six replicates  performed for monomers. Each simulation includes 

independent minimization, equilibration, and 100 ns production run using the 

AceMD engine (Harvey et al., 2009).  

Table 3: Occupancy of hydrogen bonds as assessed by molecular 
dynamics. We observe significantly enhanced hydrogen bonding in insulin 
containing HZP vs. insulin containing HYP, particularly in the R6 oligomeric form. 
This is in good agreement with what is observed in crystal structures collected by 
the Tirrell lab. 
 

In prior work, the Tirrell lab had identified a unique hydrogen bond formed 

by insulin containing Hzp, which formed across the intersubunit interface,  
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Figure 12: Crystal structures of HZP and HYP. Adapted from Lieblich et al. 
(2018). 
 
involving Glu 21, it is hypothesized that this bond helps to stabilize dimers, and 

could be part of the reason that Hzp-containing proline is resistant to fibrillation, 

which begins from the monomeric form (Ahmad et al., 2005). This hydrogen bond 

was similarly observed in our molecular dynamics studies, where we compared 

the hydrogen bonding of Hzp and diastereomer Hyp. Notably, in the T2 (dimeric) 

form, Hzp forms hydrogen bonds across the intersubunit interface in 27.98% of  

simulation frames, versus 11.68% of the time for Hyp. This difference is even 

more pronounced in the R6 (hexameric) form, where Hzp forms an intersubunit 
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hydrogen bond involving Glu 21 in 35.84% of frames, as opposed to in only 

0.90% of frames in insulin containing Hyp. 

To further extend the examination of roles of hydrogen bonds in these 

variants, we continued to perform a detailed examination of hydrogen bonding in 

monomer, dimer, and hexameric form of each insulin, both in wild-type insulin 

and lispro variants. While some interesting observations were made, ultimately 

we tested 100’s of putative hydrogen bonding pairs in each variant, and it 

became difficult to ascertain which correlations were meaningful. Upon applying 

multiple hypothesis corrections, it became clear that these correlations were 

spurious. This was an important moment for the project, as it underlined how rich 

the dataset we had was, and that it would be crucial not to brute search for 

statistically significant correlations. From this point forward, we decided that all 

analyses needed to be directed by specific hypotheses. 

 As the non-canonical prolines being integrated are all at the C-Terminus of the B-

chain of insulin, we focused several of our analyses of the systems on this 

region. Using the monomeric simulations previously described, we measured the 

solvent accessible surface area of the last four residues of the B-chain, frame by 

frame using VMD (Humphrey et al., 1996). It was observed that the mean 

surface area of each variant correlated positively with increasing fibrillation lag 

time as shown in Figure 13. We additionally calculated the backbone RMSD of 

the B-chain C-terminus and observed a similar trend. Together these data 

suggest that insulin variants possessing large solvent-exposed and mobile B-

chain C-termini are more resistant to fibrillation. This combination of properties 
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may reduce the ability of insulin to form polymers by allowing monomers to adopt 

a wider range of conformations, including those which are divergent from and 

incompatible with those of nascent fibrils. 

 

Figure 13: Fibrillation lag time versus (Left) Solvent accessible surface area of 
the B-chain C-terminus and (Right) the RMSD of the B-chain C-terminus. 
 

Seeking to understand this observation with higher granularity, we 

examined the torsional angles of the C-terminus of the B-chain and tested 

several theories about hydrogen bonding (both inconclusive) before looking into 

the puckering of the proline variants in the molecular dynamics simulations. 

Proline is unique among amino acids as its side chain composes a heterocycle 

which significantly influences its backbone conformation. Proline is known to 

adopt a puckered state which relieves steric strain, and to exist in both endo and 

exo conformations in crystal structures (Wu, 2013). As the pucking preference of 

proline controls the position of beta, gamma, and delta hydrogens, and in the 

case of non-canonical prolines, other substituents, we hypothesized that 

puckering preferences may impact the properties of proline in multiple ways. 
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Figure 14: Exo (L) and Endo (R) puckering of proline as seen in an insulin 
monomer 
 

Using cpptraj (Roe et al., 2013), we calculated the pseudorotation angle 

and amplitude of pucker of all simulations, and using this information we 

classified each frame as being either endo or exo. This data is presented in 

Figures 15 and 16. Across the 7 proline variants which contain five-membered 

rings, it was observed that fibrillation lag time is positively correlated with 

preference for endo pucking (Figure 14). We additionally observe that the slower 

fibrillating variants of insulin exhibit a longer dwell in the endo pucker, that is 

once they adopt an endo pucker, they are more likely to stay in it for subsequent 

frames of the simulation. Interestingly, this trend is insignificant for lispro variants 

containing the non-canonical amino acids, potentially hinting that the effect of 

being in the endo puckering state is additionally dependent on the proline’s 

interaction with residues in proximity to position B29. To explore this idea, we 

proceeded to investigate hydrogen bonding involving the engineered prolines, 

however no significant correlations were observed between bonding patterns and 

puckering states. 



160 
 

 

Figure 15: Fibrillation lag time of insulin monomers versus (L) propensity for 
staying in an endo pucker and (R) the overall amount of time spent in an endo 
pucker. 
 

To further explore the function of introducing non-canonical prolines into 

insulin, our collaborators in the Tirrell lab next will synthesize an additional set of 

proline variants and integrate them into insulin for characterization. This set of 

thirteen proline variations is shown in Figure 18. Based on our previous 

observation of pseudorotation as a key correlate of monomer fibrillation, we have 

prioritized variants AB and CB for immediate characterization. Each of these 

variants has considerable bias towards endo pucker, even more so than the slow 

fibrillating, highly endo biased 4SOH variant. 
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Figure 16: Puckering preferences of characterized non-canonical amino acids 
integrated at B28 (wild-type insulin). 
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Figure 17: Puckering preferences of characterized non-canonical amino acids 
integrated at B29 (insulin lispro). 
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Figure 18: Non-canonical prolines which can be integrated by the Tirrell 
lab. We have modeled each of these variants and apply our hypothesis about 
endo puckering to prioritize future work. 

 

Figure 19: Endo puckering preference (L) existing, characterized non-
canonical amino acids and (R) proposed variants to be synthesized and 
integrated. 
 
 Together, these results suggest that the puckering of proline is potentially a 

contributing factor to the rate at which insulin fibrillation. Based on this 

hypothesis, our collaborator in the Tirrell lab was produced insulin containing the 

“AB” proline mutant which was subsequently characterized and found to have a 

fibrillation half-life of 16.6 +/- 2 hours. This is the second longest fibrillation lag 

time of any non-canonical variant studied, and in close agreement with what 

would be expected based on the endo preference of the molecule, as shown in 
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Figure 20. Luckily, old data was additionally uncovered concerning insulin 

containing proline AD, which similarly showed good agreement with our model. 

Further testing of this theory by integrating the proposed insulin variant CB and 

others will help us to gain confidence and motivate further investigation of the 

mechanism of this effect.  

 

Figure 20: Data collected based on predictions from puckering. Prolines AB 
and AD were characterized after we proposed the link between fibrillation and 
endo puckering bias. 
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2.3 Simulation of insulin in solution and on surfaces: Becton Dickinson 

project  

In the Fall of 2020, we began a project with Becton Dickinson, a leading 

global producer of diabetes injection devices with approximately 8 billion injection 

devices produced annually and generating over one billion dollars in revenues. 

When insulin and other proteins are stored in glass vials and syringes, they are 

subject to undergoing unfolding and aggregation on the surfaces that they 

contact. Studying the mechanisms by which this unfolding occurs is difficult, 

slow, and requires specialized techniques (Angelo et al., 2013, Weltz et al., 

2015). Building upon our previous work in modeling insulin, we have endeavored 

to develop molecular dynamics models which can be used to understand 

interfacial unfolding events. 

In the first phase of this project, we constructed hexameric and monomeric 

models of insulin, insulin lispro (Humalog), and insulin aspart (Novolog), and 

conducted simulations using NAMD (Phillips et al., 2020). Although we had 

already done similar simulations in our non-canonical proline project, we now 

switched from using AceMD to NAMD, as the latter offers a wider range of force 

fields and more granular control over simulations. To begin our analysis, we 

simulated each of the insulin varieties using standard minimization, equilibration, 

and production protocols. Each system was simulated for three independent 

replicates of 100 nanoseconds. Upon visual review of each system, we observed 

that the termini of the B-chain in each protein were highly mobile, while the rest 

of the proteins were relatively stationary. To investigate in a quantitative manner, 
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we next identified two areas of interest, the C and N termini of the B-chain, with 

the C terminus being identified as the final 10 residues of the chain 

(ERGFFYTPKT) and the N terminus being six residues (FVNQHL). These 

selections were made upon viewing the molecular dynamics trajectories of the 

protein monomers, and observing that these segments bookend the relatively 

stationary helix between them in the B chain. To facilitate analysis, an exemplar 

structure was selected for each trajectory by clustering the simulation frames 

according to the method described by (Kelly et al., 1996), and selecting the frame 

with the closest RMSD to the most populous cluster. Following this, for each 

simulation, each frame was aligned to its respective exemplar structure, 

excluding the N and C termini of the B-chain from the calculation. The RMSD of 

each terminus was subsequently calculated using the position of the backbone 

atoms compared to the reference structure. We observe statistically significant 

differences between the RMSD of aspart and lispro for both termini, although 

significant variability is present in between the replicates of each system, and no 

clear trend is observable between fibrillation and either RMSD. We observe from 

plotting the frame-by-frame RMSDs that while the mean RMSDs of each 

replicate/system are generally similar, the systems sample rare but highly 

divergent conformations (Figure 21). 
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Figure 21: Examination of the RMSD of B-chain C-terminus (final 10 
residues). Clockwise from top left: image of insulin monomer; RMSD 
calculations are done by aligning on the segments highlighted in green and 
calculating the backbone RMSD of the bracketed red section; the mean RMSD of 
each simulation is plotted; frame-by-frame plots of RMSD over the course of the 
simulations. 
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Figure 22: Examination of the RMSD of B-chain N-terminus (final 6 
residues). Clockwise from top left: image of insulin monomer; RMSD 
calculations are done by aligning on the segments highlighted in green and 
calculating the backbone RMSD of the bracketed red section; the mean RMSD of 
each simulation is plotted; frame-by-frame plots of RMSD over the course of the 
simulations. 

In addition to the RMSD of each terminus, we additionally examined the 

solvent accessible surface area and subset of that surface which is hydrophobic 

across each simulation. While considering the mean values of these properties 

produced indistinguishable results, the correlation matrices of the solvent 

accessible surface area for each residue across the simulations revealed insights  

about the dynamics of the proteins. In particular, we observe the last seven 

residues of insulin’s B-chain C-terminus to behave in a concerted manner, with 
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particularly strong  correlations between this section and both termini of the A-

chain (Figure 23). 

Figure 23: Correlation matrix of solvent accessible surface area between 
residues of insulin: highlighted on the right are residues which are observed to 
interact in a concerned manner with the B-chain C-terminus. 

However, this observation does not hold true for insulin aspart, where the solvent 

accessible surface area of Leucine A12 is instead seen to correlate negatively with 

that of the adjacent residues both preceding and following it (Figure 24). 

 

Unlike either wild-type or aspart insulin, insulin lispro does not exhibit any 

discernible correlation among the solvent accessible surface area of its residues.  

 



170 
 

Figure 24: Correlation matrix of solvent accessible surface area between 
residues of insulin aspart: highlighted on the right are residues which are 
observed to interact at A12. 

 

Figure 25: Torsional angles of B-Chain C-terminus: (Top) schematic of wild-
type insulin, with bonds labeled 1-8 corresponding with violin plots left to right; 
(Bottom) Violin plots of torsional angles adopted by each system. 
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To understand the variability of backbone torsional angles in the three 

variants, we further examined the range of phi, psi, and omega angles exhibited 

in the backbones of each of the three variants (Figure 25). The violin plots 

generated show the expected shift of phi angle flexibility when proline is either 

removed (insulin aspart) or shifted one position closer to the C-terminus (insulin 

lispro). 

Having demonstrated that we could simulate the relevant systems in 

solution, we next moved to simulating them in the presence of glass surfaces. 

The simulation of silica surfaces represents a much more challenging application 

than the simulation of proteins in solution. Although efforts have been made for 

many years to create tools for such simulations, a poor understanding of the 

surface properties of silica limited the implementation of atomistic forcefields. 

Progress with magic angle spinning, atomic force microscopy, and tunneling 

microscopy have recently allowed groups to characterize silica containing 

materials, and subsequently refine computational forcefields to useful standards 

of accuracy (Emami et al., 2014). While previous studies have identified surface 

polarity as a potentially driving factor of insulin adsorption onto silica surfaces 

(Nejad et al., 2017, 2018), we believe our work is the first study of insulin 

interacting with pH appropriate siloxide deprotonation. 

 Silicon dioxide surfaces have a highly variable range of surface chemistries 

depending on the conditions of manufacture and ionic strength of exposed 

solution. In this project we have simulated quartz, a geometrically consistent form 
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of silica characterized by two silanol groups per superficial silicon atom in a 

geminol configuration.  

 

Methods 

We construct sheets of quartz which are 75x75x15 Angstroms and ionize 

the surface in a manner consistent with a pH of 7.4. These sheets are placed in 

fully periodic cells which are 75x75x90 Angstroms in diameter, with the quartz 

sheet placed normal to the long axis of the box, and precisely in the middle of the 

system (Figure 26). TIP3 water molecules (MacKerell et al., 1998) are placed in 

the box for an average of 13,100 waters per system. In simulations containing 

protein, the completed system is generated by adding insulin or a derivative at 

the center of the system, before moving 30 angstroms along the Z-axis to start 

approximately 10 angstroms from the surface of the quartz sheet. The protein is 

then rotated about its geometric center by applying a randomly generated 

rotational matrix and waters clashing with the protein are removed to yield the 

completed system. 

In order to prevent the quartz slab from drifting, we apply positional 

restraints to the internal SiO subunits which are > 5 angstroms from the water 

interface. The system is minimized before a standard equilibration protocol and a 

100 nano second production run using the CHARMM-IFF forcefield (Emami et 

al., 2014). 
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Figure 26: Quartz slabs as simulated: (Top) Side view of slab. Residues 
colored in green are restrained to prevent slab from drifting in the periodic box. 
(Left) Top view demonstrating randomly deprotonated silanols. (Right) Side view 
with 90x75x75 Angstrom water box with ~13,100 TIP3 waters. 
 
 

Results 

We first validate the size of our simulation system by assessing the 

formation of distinct water layers on the surface of the quartz sheet. By 

calculating the radial distribution function describing the distance between water 

molecules and surface silanols, we are able to see the arisal of three distinct 

layers of water solvating the surface of quartz (Figure 27). The first layer spans 

from the surface of quartz to approximately 1.8 angstroms, the second from 1.8 
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to 3.25 angstroms, with the remainder of waters being the bulk disordered phase. 

Using a similar protocol, we additionally observe an approximately three 

angstrom layer of ordered water around insulin which is restrained to negate 

translational motion. Together these results support that the 9 angstrom distance 

separating insulin (and derivatives) from quartz in our systems is sufficient to not 

introduce bias to the behavior of the combined system.  

 

Figure 27: Radial distribution function: (L) Before simulation, water molecules 
are uniformly distributed and exhibit a monotonically increasing cumulative 
probability density. (R) After simulation, three distinct layers are observed. 

 We performed three replicates of each insulin, insulin aspart, and insulin 

lispro in the system described, employing distinct, randomly generated surfaces 

(differing in sites of silanol deprotonation), and randomized starting orientations 

of proteins. Somewhat surprisingly, we observed that close contacts between 

proteins and quartz occurred in each simulation. In simulations of wild-type 

insulin, A8-10 (TSI), B1-2 (FV), and B29 (K) interact with the surface in each 

respective replicate (Figure 28). In all three replicates of insulin lispro, B1-2 (FV) 

interacts with the surface with B28,30 (K,T) participating transiently in one 

replicate. In two of three replicates of insulin aspart, B1-2 (FV) interacts with the 
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quartz surface, and B22 (R) interacts with the quartz in the third. 

 

Figure 28: Wild-type insulin monomers interacting with quartz surface. (L) 
WT + Surface 1: A8-10 (TSI) binds to surface (R) WT + Surface 2: B1-2 (FV) 
interacts with surface transiently. 

 

Figure 29: Insulin lispro interacts with quartz surface: (L) Lispro + Surface 3: 
B1-2 (FV) interacts with surface (R) Lispro + Surface 1: B1-2 (FV) interacts with 
surface. B28,30 (K,T) participate transiently. 
 

The observation that insulin and its derivatives contacted the quartz 

surface in every simulation was unexpected, so to further validate that we were 

not starting the proteins too close to the surface, and thus introducing an artificial 
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effect, we next expanded the size of the systems. Larger periodic cells of size 

200Å x 75Å x 75Å were constructed to allow the protein to start an additional 55 

angstroms away from the surface, and the vertical motion of the protein was 

analyzed. To characterize the position of the protein relative to the quartz 

surface, the Z-coordinate of the geometric center of all protein atoms was 

calculated, and plotted for the duration of the simulations (Figures 30, 31). 

Figure 30: Z-Coordinate of protein center over simulated trajectory. Green 
line depicts the absolute value of the insulin center of mass. Blue line depicts 
RMSD of molecule against reference structure (crystal structure). (Top) Wild-type 
insulin; (middle) insulin aspart; (bottom) insulin lispro. 
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Figure 31: Z-Coordinate of enlarged system 

In the simulation of the larger system, in which insulin starts 85 angstroms away 

from the quartz sheet, we observe that two of three replicates drift 45 angstroms closer 

to the quartz over the course of 100 ns, and the third system moves roughly 15 

angstroms closer. In none of these simulations does insulin contact the surface of the 

quartz despite an average maximum displacement in this system of 35 angstroms. 

Given that the original systems started with a gap of 10 angstroms between protein 

and quartz surface, it stands to reason that the contact could have thus been caused 

by random walk. Although we could further extend the size of our systems, or run 

longer simulations to ensure that even in this setting protein-surface contact was 

reliably achieved, taken together the data suggests that our initial 90x75x75 angstrom 

systems are of  sufficient size to view the contact as random and not influenced by the 

starting state of the systems.  

To appropriately represent the protonation state of the surface at a pH of 7.4, we 

have randomly deprotonated 51 silanols and added sodium counter ions to the quartz 

surface. While these sodium ions are free to diffuse about the system and sometimes 
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do, they often are retained in close proximity to the quartz surface. In viewing the 

trajectories of the systems, we observed transient interactions between aromatic amino 

acids and ions on the surface of quartz that resemble cation-pi interactions. As an 

initial test of this, we next prepared fully protonated, ion-free quartz surfaces, and 

replicated our simulations with wild-type insulin. These experiments disproved our 

hypothesis that cation-pi interactions are the primary driver of surface interaction, as all 

three replicates quickly contacted the quartz surface, and were retained for an 

extended amount of time despite a complete lack of ions (Figures 32, 33). 

 

Figure 32: Wild-type insulin interacting with fully protonated quartz surface. 
 

Figure 33: Z-coordinate of insulin interacting with quartz surface. 
 

To cross-examine this hypothesis, we next evaluated the angles between 

each aromatic side chain and the quartz surface. If cation-pi interactions were 
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occurring, we would expect to see a bias for the aromatic rings of side chains to 

adopt conformations perpendicular to the quartz sheet (Figure 34). 

 

Figure 34: Representation of angle between quartz surface and aromatic 
rings. Note that values range between 0 and 90 degrees. 

To test this, we first calculated normal vectors to the surface and each 

aromatic ring at every step in the trajectory. The angle between these vectors 

can subsequently be calculated as the arc cosine of the normalized dot product 

of the vectors. Despite our initial visual observation of transient cation-pi 

interactions, they were generally not observed in this numerical analysis. 
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However, A14 (Y) was observed to be biased toward adopting a perpendicular 

angle to the surface in a distance dependent manner (Figure 35). 

Figure 35: Distribution of angles between aromatic side chains and quartz 
surface, stratified by distance from surface: (Top) Wild-type insulin; (Middle) 
insulin aspart; (Bottom) insulin lispro. 

To closer examine this, we constructed a more granular analysis by 

identifying the closest sodium ion to each aromatic ring at every step of the 

simulations and plotting these distances as a function of time. These plots are 

shown in Figures 36-38, and allow for a relatively easy view of when aromatic rings 

are in proximity to cations on the surface of the quartz sheet. Filtering for when 

these rings are within 6 angstroms of the surface to identify when a cation pi 
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interaction can occur (Gallivan et al., 1999), we observe that A14 (Y), B1 (F), and 

B25(F) fall within range for 1% or more of frames for each system. Notably, in one 

simulation of insulin aspart, B25 is observed to be in range to form a productive 

cation-pi interaction for 51% of frames, or more than 200x more frequently than 

A19 (Y). In another replicate of insulin aspart, B1 is in range for a cation-pi 

interaction for 23% of frames. Similarly for a replicate of insulin lispro, B25 is in 

range for a cation-pi interaction for 11% of frames. Taken together, these data 

support that cation-pi interactions contribute to the association of insulin 

derivatives and quartz surfaces, but are likely not the sole driver. We note that in 

many of the frames, the aromatic ring of B1 is at the wrong angle to form cation-pi 

interactions and instead appears to be perpendicular to the face of the quartz 

sheet. 
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Figure 36: Distance from each aromatic ring in protein side chain to the 
closest ion. Wild-type insulin. 
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Figure 37:  Distance from each aromatic ring in protein side chain to the 
closest ion. Insulin aspart. 
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Figure 38: Distance from each aromatic ring in protein side chain to the 
closest ion. Insulin lispro. 
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To further assess key aspects of the interactions between insulin and 

quartz, we conducted a similar analysis to assess the distance from all side chain 

residues to the quartz surface, regardless of amino acid identity (Figures 39-41). 

This revealed that the termini of the proteins were by far the most likely to be in 

close proximity to the quartz surface, and most so the N-terminus of the B chain. 

In all three lispro replicates, and one replicate each of aspart and wild-type insulin, 

this region spends 10%+ of the simulation in close proximity to the quartz surface. 

To gain insight to the factors governing hydrogen bonding to the simulated quartz 

surfaces, we next examined the hydrogen bonding patterns of the three studied 

insulin variants. In three of the nine simulations, we note that B1 (F) is the most 

common hydrogen bond, including being present for nearly 70 of 100 nanoseconds 

in one replicate of insulin aspart. This observation aligns well with our previous 

observations that the B-chain N-terminus is a key contributor to association with 

quartz surfaces. Interestingly, des-B1 insulin is known to exhibit similar insulin 

receptor binding and glucose reduction efficacy in human subjects, suggesting 

further investigation of this variant in applications sensitive to fibrillation in the 

presence of glass surfaces. 
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Figure 39: Distance from side chain geometric centers to quartz surface. 
Wild type insulin. 
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Figure 40: Distance from side chain geometric centers to quartz surface. 
Insulin aspart. 
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Figure 41: Distance from side chain geometric centers to quartz surface. 
Insulin lispro. 
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Figure 42: Average distance between insulin side chains and quartz 
surface. (Top) Wild-type insulin; (Middle) Insulin lispro; (Bottom) Insulin aspart. 
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Figure 43: Hydrogen bonding occupancy (Top) Wild-type insulin; (Middle) 
Insulin lispro; (Bottom) Insulin aspart. 
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Chapter 3: Mentoring and Other Experiences 
 

  While it may not be following canon to include activities outside of the 

(computer) lab in one’s thesis, I have spent a significant amount of time 

mentoring, volunteering, and working as an intern, and these experiences have 

shaped my life and impacted others, so a depiction of my time at Caltech would 

be incomplete without them. 

 

Mentoring 

I have been extremely privileged to have had my mother as a mentor and model 

of educational and professional success, and I recognize that this privilege 

comes with the responsibility to help others as a mentor whenever possible. 

While an undergraduate, I spent a significant amount of time tutoring and 

mentoring high school students at an economically disadvantaged high school, 

so when the opportunity was presented for me to mentor college undergraduates 

while at Caltech, I eagerly accepted it. This began in the summer of 2020, when I 

was tasked with helping three bright young women to learn the basics of machine 

learning, and how it can be applied to protein engineering.   

  For each student I mentored, I designed a curriculum and adapted past work to 

create a project suitable for full-time study. This involved weekly scheduled 

meetings, intervening calls, and many daily exchanges to help maintain a smooth 

progression.  
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  Two of the three students came not knowing how to program whatsoever. 

Indeed, when asked to log into the campus HPC cluster, one remarked that she 

could not find the login button on the website. This was an important reminder for 

me! After three years in a small bubble of Caltech graduate students, I was 

forced to stop assuming things about what people know and retool my 

communications. This took some work, especially since I was working with 

students a decade younger than me. 

  Over the course of the summer and fall working with these students, they each 

became proficient, then masters at using tensorflow, compute clusters, and 

cheminformatics / protein libraries. Working with three students in parallel was an 

interesting lesson as well in the varied styles by which different people learn. 

  In addition to helping these students learn about how computation can be 

applied to protein engineering, we also spent a significant amount of time 

discussing possible career paths and graduate school. One student I worked with 

presented our work at multiple conferences over the summer, and at one site, 

she was offered a spot in a competitive internship program at a leading 

pharmaceutical company. I am tremendously proud to have been in my own 

small way involved in helping this student to find a career path that excited her, 

doubly so because she was the first person in her family to graduate from 

college. I remain in touch with all three students and have continued to work with 

them after their fellowships formally ended, including helping to review and edit 

graduate school applications.  
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  In addition to working with these undergraduate students, I have also assumed a 

primary role in training three new graduate students (all in the 2020-2021 school 

year) to use molecular dynamics, high performance computing resources, and to 

perform data analysis on the resulting experiments. 

 

Leadership and Work Experiences 

Internships 

  In early 2018, Jay Bradner visited Caltech and gave a great talk about his 

lab’s work developing PROTACs. After the talk, I approached him to chat about 

how cheminformatics and machine learning might be applied to the space. After 

a few minutes discussing potential approaches, Jay offered to put me in touch 

with the head of bioinformatics at the Novartis Institutes for BioMedical Research 

(NIBR). A few months later, I started an internship at NIBR San Diego working 

with the head of structural biology to build tools for studying RNA structure. This 

work drew closely from the work I had done in the previous terms on VoxLearn, 

and would ultimately lead to the structural biology project I worked on in 

subsequent years, and a lasting friendship with the NIBR head of biologics. 

Another key part of this internship was the experience of working in a large 

company. Although NIBR San Diego operates semi-independently from NIBR 

and Novartis, with 600 employees on site, this was by far the biggest company I 

had worked for. There were many nice aspects of this environment (such as 

being on the beach every day by 4:00 PM), but ultimately I realized that this was 

not a match for my personality. This internship taught me that I need to work 
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somewhere where I can be involved in multiple aspects of any given project, and 

assume greater responsibility  for the overall success of the work.  

 

 In the summer of 2020, I began my second internship, working for Vida 

Ventures. In the course of my time here, I helped the team to source, evaluate, 

and present several dozen deals, including working on two that the group funded. 

Working as part of a team of five investment professionals, this was a great 

opportunity to own all aspects of the workflow. Additionally, with the very high 

rate of work, this position brought me into contact with a tremendous number of 

entrepreneurs and technologies. This aspect was doubly valuable to me, as it 

allowed me to realize, one, that I deeply enjoy the social aspects of the work, 

building a network and rapport with fellow scientists and business people, and 

two, that working in VC would be a great finishing school before I returned to my 

long term goal of being an entrepreneur.  

 

Leadership Positions 

 On my third day at Caltech, I attended an orientation event and met the 

then current head of the Caltech biotech club, who was soon to depart for a 

postdoc position. Seizing upon the opportunity, I quickly agreed with another new 

student seated with us that we would restart the club and start planning events 

for that fall. Over the past four years of leading and co-leading this group, I have 

planned and run events which brought executives, alumni, entrepreneurs, and 

financiers to campus. These events have scaled from large lecture halls to 
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intimate dinners, and provided a glimpse into a wide range of career paths 

outside of academia. I am proud of the time I committed to this group, as it 

helped many of my peers to form connections, get internships, and will hopefully 

soon lead to careers. This leadership position was a good learning experience for 

me as well, as it required me to practice delegating to others, as well as to learn 

how to motivate. This experience has also helped forge ties to the Catech 

community which will endure long beyond the time of my attendance. 


