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ABSTRACT 

The stability of axisynnnetric, differential rotation in non-magnetic 

stars of uniform chemical composition is studied in the context of gen­

eral relativity theory. Criteria are found for stability against local, 

linear, axisyrrnnetric perturbations in conducting, viscous stars and in 

perfect fluid models. When stated in the proper language, the relativ­

istic stability conditions have the same forms as the non-relativistic 

conditions. When thennal conduction is much more efficient than vis­

cosity, a star must be barytropic (the level surfaces of the pressure, P, 

and the total density of mass energy, E, must coincide) and the gradient 

of the geometrical angular momentum (L = - u¢/U
0

) must never point toward 

the interior of the quasi-cylindrical level surfaces of L. When vis­

cosity dominates thermal conductivity by a large margin a star must be 

barytropic and must have an entropy (per baryon, S) gradient which is 

parallel to the vector (8 t / 8 S )P VP. When conduction and viscosity 

have comparable efficiencies or are absent the criteria are only 

slightly more complex. Applications of the stability conditions to 

models of specific astrophysical objects are discussed. 

The equations of hydrodynamics in the post-Newtonian approx­

imation to general relativity are applied to differentially rotating, 

barytropic stars. In this approximation the equation of hydro­

dynamic equilibrium can be integrated to yield a simple algebraic 

equation, and the gravitational field equations can be written in 

easily handled integral forms; these facts make possible an iterative 

scheme of the "self-consistent field method" type which can be used 

to construct numerical models. 
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PART ONE 

INTRO DU CTI ON 
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This thesis consists of three papers whose common goal is to 

determine, in the framework of Einstein's general theory of rel­

ativity, some of the properties of rotating, self gravitating fluid 

bodies. An investigation of these properties can be properly moti­

vated and justified purely by a desire to explore the formal, the­

oretical consequences of Einstein's theory of gravitation. But 

since a number of classes of observed astrophysical objects (white 

dwarf stars, pulsars, and quasi-stellar objects) seem likely to be 

associated with fluid systems that cannot be adequately described 

with non-relativistic gravitation theory, it is clear that knowledge 

of the behaviors of relativistic systems has a direct application 

to specific astrophysical problems. 

In part two (paper I) we find a set of constraints on the 

structures of fully relativistic, rotating systems by deriving 

criteria which must be satisfied if such a system is to be stable 

against the onset of convective motions. Of course, a stellar 

system can exist in a convecting state, but a rotating system 

which is unstable to convection will likely have its structure 

altered by a redistribution of angular momentum as a result of the 

motion of convective cells. If it is desired to model a rotating 

system whose structure persists on a time scale longer than the 

rotation time, it is necessary to build models which do not 

violate the conditions for convective stability. 

While it is fine to have conditions for the stability of 

equilibrium configurations, such conditions are useless without 

configurations to apply them to. A certain amount of progress 
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has been made by various authors in an effort to find methods of 

constructing fully relativistic, rapidly rotating equilibrium 

configurations, but a completely general method for doing so has 

thus far been elusive. One of the methods which several authors 

have used has been the application of the equations of the post­

Newtonian approximation to general relativity to schemes of 

constructing certain types of equilibrium configurations which 

could model objects in which relativistic effects are significant 

but not too large. In parts three and four (papers II and III) 

a method of this sort is presented: one which is applicable to 

configurations with barytropic fluid distributions (in which the 

level surfaces of pressure and total density of mass energy coin­

cide) with any (equilibrium) distribution of angular momentum. 

Paper II, which describes the equations governing poly­

tropic configurations, was written before paper I, and uses nota­

tions which are not always consistent with the fully relativistic 

notation of paper I. In both papers the structure of space-time 

is described with reference to the same coordinate system, but 

the coordinate distance from the axis of symmetry is called r in 

paper I and win paper II. The total density of mass energy, 

which is called E in paper I, is not referred to directly in 

paper II but is equal to p(c2 + [l) in the notation of that 

paper. The quantity Uc:p which appears in paper II is not to be 

confused with U¢, a covariant component of the four velocity in 

the notation of paper I. Similarly, the symbol v means different 

things in the two papers. The coordinate angular velocity of a 
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fluid element, called 11 in paper I, is called O* in paper II. 

In paper III the formalism of paper II is generalized to 

apply to any barytropic pressure dependence. In this paper the 

notation of Paper I is once again adopted, in order to make the 

post-Newtonian formalism more easily identified with that of the 

fully relativistic theory. 
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PART TWO 

THE STABILITY OF NON-UNIFORM ROTATION 

IN RELATIVISTIC STARS 

(To be submitted to the Astrophysical Journal) 
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I. INTRODUCTION 

Very powerful necessary and sufficient conditions for the pulsa­

tional stability of perfect fluid stellar models have been derived in 

the context of the general theory of relativity by Schutz (1972), by 

Chandrasekhar and Friedman (1972), and by Will (1974). Any viable 

perfect fluid stellar model must satisfy these stability conditions. 

Unfortunately, most of these criteria can be applied only by making 

rather complicated mathematical tests on a model after it has been con­

structed. It would be nice if some unstable models could be eliminated 

on the basis of a stability criterion which was easier to apply, and it 

would be even nicer if some of these models could be eliminated before 

the trouble has been taken to construct them. 

It is to this end that we turn in this paper to the derivation of 

criteria for local (or convective) stability in differentially rotating 

stars. We will consider models of non-magnetic stellar regions of homo­

geneous chemical composition which are more physically realistic than 

perfect fluid models by virtue of taking into account tr ansport 

phenomena: energy transport via thermal conduction (radiative or 

molecular diffusion) and momentum transfer via radiative or molecular 

viscosity. We will study per t urbations which are axisyrrnnetric and small 
I 

in size and extent (linear, local perturbations), finding necessary 

(though not necessarily sufficient) criteria for stability in realistic 

stellar interiors and (by neglec t ing the transport phe nomena ) in perfect 

fluid models. These criteria will be specific physical constraints 

which must be satisfied if a stellar model is to be stable against con­

vective motions which would change the distribution of angular momentum. 
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The results of this investigation will not, of course, eliminate 

the need for performing the more complicated pulsational stability tests 

on those stellar models which satisfy the convective stability criteria, 

but they will eliminate large classes of models which, therefore, may 

just as well not be given further consideration. In some cases it 

should be possible to build the convective stability constraints into 

methods of constructing models to guarantee that all models which are 

constructed are convectively stable. 

In order to set the stage for our calculations, and to prepare us 

with a feeling for the physical principles involved, it is helpful to 

consider for a moment what is known about convection in Newtonian theory. 

The Newtonian condition for stability against adiabatic convective 

motions in non-rotating stars has been derived by Schwarzschild (1906): 

the temperature gradient must not be superadiabatic (in other words, the 

radial derivative of the entropy per unit rest mass must not be nega­

tive). If this condition is violated, a fluid element which is dis­

placed in the radial direction will be driven farther in the same 

direction by bouyan t forces, because it will be less dense than the 

surrounding fluid at its new location by virtue of having the same 

pressure and greater entropy (we will call this a buoyant instability). 

This is a purely dynamical instability: it occurs without the help of 

any dissipative processes. Dissipative processes can only inhibit 

this type of instability in non-rotating configurations. Viscosity 

inhibits the motion. Thermal conduction tends to equali ze the 

entropy of a displaced fluid element with that of its surroundings, and 
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can therefore make the system tend toward neutral buoyant stability but 

cannot make it cross over the point of neutral stability. 

In rotating stars, on the other hand, dissipative processes can 

cause purely secular instabilities: instabilities which would not exist 

in the absence of transport phenomena. Intuitively, we expect the 

following picture. The convective stability of a rotating star should 

depend on a combination of buoyant and rotational effects. If a star is 

in a state of neutral buoyant stability, then its overall stability 

depends entirely on rotational effects. If a fluid element in this star 

is displaced to a new location, stability will depend on whether the 

angular momentum per unit rest mass, j = r
2n (where r is the distance 

from the rotation axis and n is the angular velocity), of the displaced 

element is greater or smaller than that of the ambient fluid. If it 

came from a location closer to the rotation axis, and has a larger j 

than the surrounding fluid, it will be driven further outward, resulting 

in an instability. If the state of neutral buoyant stability exists by 

virtue of a spatially constant entropy per unit rest mass, then the 

resultant overall instability is a dynamical one whether thermal conduc­

tion is present or not. If thermal conduction were absent, and if the 

entropy gradient were adjusted to give a margin of buoyant stability, 

this effect could counterbalance the rotational instability and make 

the system stable overall. On the other hand, if thermal conductivity 

were then introduced, the margin of buoyant stability would be reduced 

and the rotational effects could dominate again and make the star un­

stable overall. This would be a purely secular instability. 

/ 
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The analytical derivations of the Newtonian criteria for local 

stability in differentially rotating stars have been executed by 

Goldreich and Schubert (1967) and Fricke (1969). They have found that 

stellar models in which thermal conductivity is much more efficient 

than viscosity are stable against axisymmetric perturbations if the 

angular momentum per unit rest mass satisfies the two conditions 

and 

where z is the coordinate pointing along the a x is of rotation. The 

conditions for stability in the absence of dissipative effects are 

2n 1 
j, r - g • \JS ~ 0 

r cp ~ 

and 

- g (j, s, - j, s, ) ~ 0 . z r z z r 

(Fricke 196 9, 1971), where g is the acceleration due to gravity and 

motion., s is the entropy per unit rest mass, and Cp is the specific 

heat per unit rest mass at constant pressure. 

(1) 

(2) 

(3) 

(4) 

A direct consequence of stability condition (2) is the require­

ment that inviscid., conducting stars be barytropic: the fluid quanti­

ties must be distributed in such a way that the pres sur e, P., and the 

rest mass density ., p., have coincident l evel surfa c e s. That t his is 

true can easily be demonstrated by tak ing the curl of the hydrodynamic 
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equilibrium equation (the Euler equation), 

where U is the gravitational potential, and finding that j, = 0 if 
z 

and only if ~p X IP= O. This is, of course, just the theorem of 

von Zeipel (1924). 

(5) 

So much for Newtonian theory. In the context of general relativity 

theory, Thorne (1966) has found the generalization of Schwarzschild's 

adiabatic convection criterion and has shown that it is essentially 

identical to the Newtonian criterion (neutral stability obtains when 

the gradient of the entropy per baryon vanishes). But the relativistic 

convection criteria for rotating stars have not been found, except for 

the special case of isentropic perfect fluid stars. Bardeen (1970) and 

Abramowicz (1974) have argued that, in this special case, neutral 

stability occurs when the angular momentum per baryon is not a function 

of position. 

The more general set of relativistic criteria for local secular 

and dyn amical stability will be derived in the r emainder of this paper 

by using a method modeled after the one used by Goldreich and Schubert 

(196 7) in their treatment of Newtonian stars. We will begin by writing 

out in §II the equations describing the general time dependent behavior 

of a non-magnetic fluid of uniform chemical composition with viscosity 

and t hermal conduction. In §III these equations will be speciali zed to 

describe a time independent, ax isymmetric, differentially rotating 

star. In §IV the unperturbed stellar model will be given a gentle 

pinch, changing the fluid quantities slightl y in a small, localized 
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region. Then we will stand back and let the time dependent equations 

of §II detennine the time evolution of the perturbation. By restricting 

the perturbation in size and extent, we will be able to assume that the 

gravitational field (the metric) doesn't change, and we therefore will 

be spared the necessity of perturbing the field equations and dealing 

with the difficulties associated with gravitational radiation. The 

final result of §IV will be an equation ("dispersion relation") relating 

the temporal frequency of the perturbation to certain characteristics 

of the perturbation and the unperturbed model. Sections V and VI will 

use this equation to find the relativistic conditions for stability. 

While these two sections focus on the mathematical details of the deri-

vations, §VII discusses the physical bases of the criteria and provides 

heuristic derivations which illustrate the important physical processes. 

The approximations that go into the various calculations will be tabu­

lated in §VIII along with a discussion of the effects they are likely 

to have on the applicability of the results. Finally, §IX will contain 

a brief discussion of the application of the stability criteria to 

models of specific astrophysical objects. 

In all sections of this paper except for §IX we will use units in 

which G = c = 1. In addition, we will adopt a mathematical convention 

in which the gradient operator v refers to the three dimensional spatial 

gradient operating as if the spatial coordinates described a flat space. 

In other words., if A is a spatial coordinate and X is any quantity 

(even a vector)., then the A component of yx is equal to x.,A rather 

t h an the covariant derivative X.A· When we write the dot product C • D , 
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we will mean the sum over all spatial coordinates A of the terms CADA. 

Similarly, we will from time to time use the curl operator and the 

cross product, and we will use them as though the covariant spatial 

components of any vector used in such a context resided in a flat three­

space. These are only mathematical definitions, and are used in order 

to simplify the notation in certain calculations. All other mathemat­

ical notations will be conventional or self-explanatory, including the 

Einstein summation convention. 

II. RELATIVISTIC FLUID DYNAMICS WITH VISCOSITY 

AND THERMAL CONDUCTION 

In the context of general relativity theory, the state of any 

fluid system with a specified, uniform chemical composition and no 

macroscopic electromagnetic fields can be described by the following 

set of eighteen parameters: 

a) the number density of baryons as measured in the rest frame 

of the fluid, N; 

b) the isotropic pressure, P, measured in the fluid rest frame; 

c) the total density of mass energy as measured in the rest 

frame of the fluid, Ej 

d) the temperature, T, measured in the fluid rest frame; 

e) the four components of the four velocity~' which describes 

the macroscopic motion of the fluid; 

f) and the ten independent components of the metric tensor g, 

which describes the gravitational field. 
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Each of these parameters is, in general, a function of all four space­

time coordinates xa (where x 0 
= t and the remaining components are 

spatial). The complete specification of the behavior of the fluid con­

sists in specifying the values assumed by all eighteen parameters at all 

values of the coordinates xa. 

The components of the metric tensor are determined by the Einstein 

field equations, which we will not discuss in full generality; in the 

next section we will discuss the form that they assume for the special 

system with which we will be working. Once the metric is known, the 

remaining quantities are determined by an equation specifying the 

normalization of the four velocity, 

(6) 

the equation describing the conservation of baryons, 

(7) 

two equations of state describing the thermodynamic properties of the 

fluid material, 

P = P(N, T) (8) 

and 

E (9) 

and the four equations of motion of the fluid, 

o, 

where T is the stress-energy tensor of the fluid (to be described 
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shortly). The four equations (10) are most conveniently divided into 

two groups: one equation ensuring the conservation of energy, 

o, (11) 

and three equations guaranteeing the conservation of momentum, 

0. (12) 

The tensor H is the so-called projection tensor, 

(13) 

which, when contracted with any four vector, projects that vector into 

the three-surface orthogonal to the four velocity U. 

One additional parameter which characterizes the thermodynamic 

state of the fluid is the entropy per baryon as measured in the fluid 

rest frame, S. This quantity is related to the other thermodynamic 

parameters through the first law of thermodynamics, 

NT dS E + p dN 
N . ( 14) 

The fluid which will concern us presently is a fluid in which the 

transport of thermal energy and the dissipative effects of viscosity 

and thermal conduction are important. The stress-energy tensor for a 

fluid of this type can be written in the following form (Eckart 1940 ): 

(15) 

The first two terms in this expression comprise the standard perfect 
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fluid stress-energy tensor. The next two terms arise from viscous 

effects. ~ is the coefficient of dynamic viscosity, s is the coeffi­

cient of bulk viscosity, and I is the shear tensor with covariant 

components 

(16) 

The last two terms in the stress-energy tensor are due to the diffusion 

of heat. The vector q is the heat flux vector, with contravariant 

components 

a 
q - KHa~ (T + TaR), 

'~ J--' 

(17) 

where K is the coefficient of thermal conductivity and a is the four 

acceleration of the fluid with components a~= u°u~;a. 

By substituting this form for the stress-energy tensor into equa­

tions (11) and (12), we obtain the e xplicit fo r ms of the equations of 

energy conservation, 

a 
q 

;a 

and momentum conservation, 

o, ( 18) 



16 

( E + P) a + P + u uf3p ~ 
µ ,µ µ ,I--' 

a 
U a q 

µ a o. (19) 

By combining equation (18) with the baryon conservation equation and 

the first law of thennodynamics we can rewrite it in the form 

dS 2 a 2 [ a•f3 t3·a a] 
NT d -r = - ( s -3 1l) ( u ; a) + 1l U a; f3 ( U ' + U ' ) + a a a 

(20) 

which relates the time derivative of S along the world line of a fluid 

element to various tenns depending on viscous and thennal conduction 

effects. 

III. THE UNPERTURBED STAR 

Now, with equations in hand for describing the general, time 

dependent fluid system, we can discuss the nature of the stationary 

equilibrium model whose stability we wish to investigate. Stationary, 

in this context, will of course mean quasi-stationary, since no star 

with dissipative processes can be truly time independent. In order 

for our analysis to make sense, it is necessary only for the unperturbed 
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stellar model to appear stationary on the time scale of the perturba­

tions that we will study in the next section. 

With this in mind, we will write the line element appropriate to 

the metric of a stationary, axisyrnrnetric, differentially rotating con­

figuration in the form 

(21) 

where r is the coordinate distance from the axis of rotation ( which 

points in the z direction), ct, is the aximuthal angle, and t is the 

coordinate time. The potentials v, ~, w, andµ are functions of r 

and z only. These functions and their first derivatives are everywhere 

continuous, and are determined by a set of field equations that are 

written in appendix A. Bardeen (1970) gives a good description of the 

physical significance of the potentials. For our purposes it is neces­

sary to know only that w(r, z) is equal to the coordinate angular 

velocity dcp/dt, or the angular velocity as seen by a distant observer, 

of any particle with zero angular momentum at position (r, z), and is 

called the angular velocity of the zero angular momentum observer at 

location (r, z). 

So much for the gravitational field of our star. Next we must 

consider the physical state of the stellar fluid. The general motion 

of the fluid will be in the ct, direction, i.e., around the z axis. 

Since energy transport by thermal conduction is to be taken into 

account, we shou l d, strictly speaking, allow for the possibility of 

meridional currents, since we are familiar with the necessity of their 
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existence in rotating stars from Newtonian theory (Eddington 1929). 

This necessity is connected with the fact that motion which is strictly 

azimuthal is inconsistent with the assumption of stationary equilibrium 

if energy transport occurs only through thermal conduction. It will be 

demonstrated in appendix C that the time scale over which this incon­

sistency manifests itself is much longer than the time scale we will be 

interested in; accordingly, we will ignore meridional motions and 

restrict the fluid to motions in the <f> direction. 

If we define n to be the angular velocity d<t,/ d t of a fluid 

element as seen by a distant observer, then we can write the contra­

variant components of the fluid four velocity U as follows: 

Uo __ -v(l 2)-½ e - V , 

U q, = uo n , 

U
2 

= o, ( 22 ) 

where v = e1jr - v( n - w) is the velocity of a fluid element as measured 

by a zero angular momentum observer (Bardeen 1970). For future refer­

ence, we can also note the covariant components of U: 

u r u = o. z 
(23) 

With the metric and four velocity that we have adopted, together 

with the assumption that our stellar model is stationary in time, we 
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find that equation (19) gives us the following equation of hydrodynamic 

equilibrium (the relativistic Euler equation): 

(24) 

(where we have now adopted a notation in which indices written as capital 

Latin letters will indicate that only the coordinates r and z are to be 

considered). The four acceleration can be evaluated in terms of the 

four velocity: 

(25) 

By substituting this expression for aA into equation (24), and dividing 

by ( E + P), we obtain the Euler equation in a form which will be handy 

for us later: 

(26) 

In a configuration with the characteristics we have specified, the 

heat flux vector q has the following components (from eq. [17]): 

K( T, + Ta ) , r r 

- K(T, + Ta ) , z z 

q = q = o. 
0 <I> 

(27) 

As far as the specific thermodynamic properties of the fluid are 

concerned, we will l eave the equations of state (8) and (9) in their 

general forms and c onsider th em to be totally arbitrary for our present 

purposes. 
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The specific values of the coefficients of thermal conductivity 

and viscosity will be left unspecified for the time being also, but we 

will assume that they depend only on the thermodynamic characteristics 

of the fluid, so that their functional dependences can be indicated by 

writing them as K(N, T), ~(N, T), and s(N, T). The thermal conductivity 

can occur, in general, by either radiative or molecular diffusion. The 

viscosity can be due to radiative or molecular velocity, but not to 

turbulent viscosity, which depends on other parameters in addition to 

the thermodynamic ones. 

In closing this section, we will mention some quantities of general 

physical interest and some general characteristics of rotating equi­

librium configurations. The quantity E + P is the inertial mass per 

unit volume as measured in the rest frame of the fluid. It is this mass 

which determines how a fluid element responds to a force acting on it. 

The inertial mass per baryon is 

E = 

( E + P) /N. 

E + p U 
N o 

The quantity 

(28) 

is, in a sense, the inertial mass per baryon in the fluid referred to 

infinity (if a machine in the star which was cornoving with the fluid 

were to take a parce 1 of energy [ E + P] /N and throw it out of the star 

"to infinity" [the energy needed to bring the parcel out of the gravi­

tational field being taken from the energy in the parcel] with its 

angular momentum unchanged, a stationary observer at infinity would 

measure the energy content of the parcel to be E). The angular 

momentum per baryon, 
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J 

is conserved in any axisyrrnnetric, inviscid, adiabatic fluid motion 

(Bardeen 1970), but is not conserved in non-adiabatic motions (see 

appendix B). The quantity 

L = J/E = - u /u 
<P 0 

(29) 

(30) 

is, in a sense, the angular momentum per unit inertial mass of a fluid 

element. It is a purely geometrical quantity in the sense that j = r 2n 

is in the Newtonian theory; it is independent of the thermodynamic 

properties of the fluid. In general, Lis not conserved even in axi­

symmetric, inviscid, adiabatic motions (see appendix c), but can, under 

some circumstances, be conserved more nearly than J when thermal 

conduction occurs (see appendix- c). Another quantity which could be 

called an angular momentum per unit inertial mass, and which is a 

purely geometrical quantity, is U~. But we will see that the quantity 

L will enter naturally into our calculations and will have some nice 

properties. Accordingly, we will henceforth refer to L as the geo-

metrical angular momentum. 

Now, in the Newtonian theory of rotating stellar equilibrium con­

figurations, the level surfaces of the angular velocity n always 

coincide with the level surfaces of the angular momentum per unit rest 

mass j = r 2n if the fluid is barytropic; i.e., if the level surfaces 

of pressure and rest mass density coincide (von Zeipel's the orem) . If 

we want to know what the equivalent situation is in the relativi s tic 

theory, we must be careful about which relativistic quantities we 
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identify with which Newtonian quantities. In the non-relativistic 

limit, E, E + P, and - ( E + P)U
0 

all reduce to the rest mass density p, 

while J and L both reduce to the angular momentum per unit rest mass 

j. If we compare the relativistic and non-relativistic Euler equations, 

we might be tempted to identify the Newtonian rest mass density with 

the quantity E + P, and to define the appropriate relativistic analogue 

of the barytropic fluid as one in which the level surfaces of pressure 

coincide with the level surfaces of the inertial mass density E + P (or, 

equivalently, one in which P = P[E]). If we then take the relativistic 

Euler equation, 

V (£n U
0

) = O, (31) 

and take its curl, we obtain 

(32) 

The quantity 1(u0 u~) can be rewritten in the form 

(33) 

and substituted into equation (32) to yield 

( ) -1 ( 0 2 
Y, E + P X JP + U U 

O
) JL X JD o, (34) 

from which we see that the level surf aces of L and D, coincide if and 

only if the fluid in the equilibrium configuration is barytrop ic. I f 

we consider the special subclass of barytropic confi gur a t i on s i n whi ch 

9S = O, we obtain the well known r es ult that t he l eve l sur face s of J 
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and n coincide (Bardeen 1970), since 

1 
VL - --

uou2 
0 

in an equilibrium fluid. In non-isentropic stars ~J X 2n f 0. 

(35) 

Abramowicz (1974) has proven a number of interesting theorems about 

the topological properties of rotating, barytropic stars, including one 

which will be of use to us a bit later: the level surfaces of n, and 

therefore the level surfaces of L, have the topology of a cylinder. 

IV. THE PERTURBED STAR 

a) Perturbations in the Fluid Quantities 

Now that we've chosen an equilibrium stellar model, we can perturb 

it a bit and see what happens. We will take the fluid variables N, T, 

r 2 ¢ d 11 ( U, U, and U, an change them by a very sma amount maintaining 

axisyrnrnetry) in a very small region of the star at some initial time, 

say t = O. If Xis one of these quantities, we will write 

X*(r, z, t = 0) = X(r, z) + 5X(r, z, t = O), (36) 

where X is the value of the variable in the unperturbed configuration, 

X* is the perturbed value of X at the same coordinate position, and 5X 

is the Eulerian perturbation in X. The perturbation in u0 
can be found 

from equation (6) , which tells us that 

(37) 

The perturbations bE and 5P will be determined by 5N and 5T through 
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the equations of state. 

Our procedure will be to substitute the perturbed variables into 

the various equations governing their behaviors, and to disregard all 

terms which are non-linear in the perturbed quantities. This process 

will give us a set of linear equations describing the evolution of the 

perturbation. If we restrict the perturbation to a region whose dimen­

sion, say A, is much smaller than the scale height of the star, R, then 

the coefficients of the perturbed variables in our linear equations 

will be essentially constant over the perturbed region. It is therefore 

convenient to do a Fourier decomposition of each perturbed quantity, 

5X(r,z,t 5X(k ,k) r z 

-i(kr+kz) r z 
e , (38) 

and to follow the time evolution of only one Fourier component, because 

each component will evolve indep endently of the others. Our 

results will be quite general if we use the following form for the 

initial perturbation: 

o) X(r, z) + 5X 
i(k r+k z) r z 

e (39) 

where 5X is now a constant. 

The square of the total "wave number" of the perturbation is 

AB 
g kAkB (40) 

Since the perturbation occurs only in a region whose dimension is much 

smaller than the scale height R, we will be interested primarily in 
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-1 
perturbations for which kT ,_A<< R, so that from now on we will make 

the assumption that 

Now we will allow our perturbations to have a time dependence: 

t -i(kr+kz) 
X*(r, z, t) = X(r, z) + oxe0 e r z • 

(41) 

(42) 

This done, we can easily find the perturbations in the components of the 

four acceleration; they are 

where the symbols I and I represent the functions 
r z 

and 

2e2(µ - \\I - v) uou3 
0 

Lr + (1 + n1)r + nr , [ 
z z z ] 
00 00 00 

a the symbols r being the connection coefficients calculated in the 
µv 

(43) 

(44) 

usual way from the metric. The functions I and y will turn out to be r z 

very important. They can be written (as we discover by calculating the 

connection coefficients) as the components of the spatial vector 

(45) 
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It is possible to verify that z can also be written in the form 

(46) 

which will turn out to be useful. 

b) The Perturbed Equations 

Now we have the general form for the perturbations in all of the 

parameters describing our fluid system except for the metric (which will 

be discussed shortly), including their specific values at the initial 

time t = 0. In order to judge whether or not a given equilibrium con­

figuration is stable, we must ask the fully time-independent equations 

of §II how our perturbation will evolve in time. To do this, we will 

take an initial perturbation with some specific but arbitrary "wave 

vector" (specific values of k and k ), and ask whether the temporal 
r z 

frequency o can have a positive real part. Clearly, if o has a positive 

real part the perturbation will grow in time, which means that the 

stellar model is unstable against perturbations with the given "wave 

vector." On the other hand, if 0 has no positive real part, we conclude 

that our equilibrium configuration is stable against the perturbation 

at hand. 

Schematically, the mathematics will work like this. Let's repre­

sent one of the equations governing the system as e(x) = O, where e is 

some function of all the parameters, which we represent now by the 

single parameter X. If we substitut e into this equation the perturbed, 

time dependent value of X as written in equation (42), we will find 
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where F is some function of X, 5X, a, k, and k which is linear in 5X. r z 

The condition that the unperturbed value of X describes an equilibrium 

configuration is the condition that e(X) = O. If we take this into 

account and neglect all terms in equation (47) of order (6X)
2 

or higher, 

we are left with the equation that governs our linear perturbation: 

F(X, 5X, a, k, k) = O. r z (48) 

Our irmnediate task is to calculate in this manner the perturbed versions 

of the baryon conservation equation, the equations of motion, and the 

equations of state. 

That we will be spared the necessity of perturbing the field equa­

tions can be seen in the following way. The role played by these equa­

tions is that of supplying us with the metric. Since the metric is 

generated by the stress-energy in the fluid, the metric will necessarily 

change as a result of the perturbations in the fluid quantities. Per­

turbations in the metric will contribute to perturbations in the equa­

tions of motion, since the metric makes its presence known through the 

covariant derivatives which appear in these equations. But these 

perturbations will not concern us, for the following reasons. Let n be 

one of the fluid quantities which contributes to the stress-energy of 

the fluid (for example E). Let on/n = ~- The assumption that the 

perturbation is small in amplitude means that~<< 1. Therefore, the 

smallest terms which are retained in the linear perturbation of the 

equations of motion are terms of order~ with respect to the unperturbed 

terms. If on/n = ~ everywhere in the star, then we would expect the 
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metric functions, for example * ' to change by an amount 6* ,_ ~*· But 

since the perturbation inn vanishes everywhere outside of a region of 

size A<< R, we can expect that the potential* will change by an amount 

o* ...... a/31jr, where a<< 1, since, by analogy with the Newtonian theory, the 

gravitational potentials should depend on integrals over all of their 

sources in the star. This means that 6*/W << on/n; the perturbations 

in the metric functions will not contribute to the first order perturba­

tions in the equations of motion, so that the metric of the unperturbed 

star can be used in all of our calculations. 

Following the procedure outlined above, we can find the relevant 

perturbed equations. Since the equations will be linear, it will be 

possible to write each of them in the form 

~ a. 5X. 
i l. 1 

o, 

where, in general, each coefficient a. 
l. 

number of terms built from a, k ' k z' 
and 

r 

unperturbed configuration. If we compare 

(49) 

will be a sum of a ver y large 

the parameters describing the 

all of the terms in each ai, 

we will find that many of them will be negligible with respect to the 

others by virtue of the fact that (kTR)-l << 1. Taking this into 

account, and doing the required calculations, we find the perturbed 

equations. The r component of the equation becomes 
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+ ik 5P + q 5E - ik crU°KoT 
r r r 

(50) 

The z component gives us a similar equation. The ¢ component gives 

l ( E + P) [ g,.... 
0 

( 2U o - U o ) + g ,.;... <+- ( 2U ¢. - U </> ) ] + U P · 
'+' ;r ,r '+''+' ,r ,r ¢ ,r 

+ l ( E + p) [ g,.... 
0 

( 2U o - U o ) + g ( 2U q> - U ¢ ) ] + 
'+' ;z ,z ¢¢ ;z ,z UA-.P 

~ , z 

(51) 
(cont) 



30 

o. (51) 

The equation 0 becomes 

Uo~ Uo ( P)N-l~N [k2 ~2 (goo+ Uo2)] ~T - CJ uE + (J E + u - K T - u u 

o. (52) 

The baryon conservation equation yields 

ik our+ ik 
r z 

z O -1 
5U + crL 5U + crU N 5N 0 (53 ) 

and the equations of state become 

5P (54) 

and 

(55) 

Th,e notation )A indicates that the derivative in parenthe ses is 
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to be executed with the quantity A held constant. 

These equations can be simplified a bit. To begin with, we are 

looking at instabilities that are caused by the star's rotation, so we 

might as well restrict ourselves to perturbations which have time scales 

(a -1) ( -1) related to the rotational time scale n : 

a - n. (56) 

Secondly, the perturbations in the fluid four velocity should be related 

to the ratio of the characteristic size of the perturbation and the 

characteristic time of the perturbation: 

(57) 

This condition will allow direct comparison of the coefficients of the 

different components of 5~ in each equation, and the elimination of some 

terms via the approximation (k.rR)-l << 1. 

Since we will be interested in the ways in which thermal conduction 

and viscosity will affect stability, we will want to look at perturba­

tions whose sizes are such that the time scale of interest is comparable 

to the time scale for thermal diffusion (tT PY NT(dS/dT)p/Kk~; see 

appendix B) or the time scale for the diffusion of momentum 

( ~ ~ ( E + P) / T) ki; see eq. [ 19]), whichever is larger. Accordingly, we 

will assume, for the present, that 

(58) 

Because perturbations in the pressure will be carried away by 

sound waves, they will tend to dissipate with a time scale tp of order 
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1/k c , where c is the sound speed. This means that the ratio of the -~ s s 

time scales for the dissipation of perturbations in T and P is 

(59) 

since nR ~ c • This means that the perturbations in P always die away 
s 

much faster than those in T, so that we can write 

and use this relationship to compare the coefficients of 5P with the 

coefficients of 5T. Given equation ( 60 ), we can appeal to equation 

( 54 ) to see that 

(60) 

5N/N ,-..J 5T/T. (61) 

The perturbations in~ and K cannot be determined explicitly, since 

we do not know the details of their dependences on N and T, but we can 

say that 

(62) 

and 

(63) 

By using these approx i mations to order the various terms in each 

equation, and by using the easily verified equality 

N(J A - UA-TS A) 
' '+' ' 

u0u2 
(E + P)L A 

0 ' 

(64 ) 
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we can rewrite the perturbed equations in much simpler forms: 

and 

+ u-3 e2 (1'r+ v\ 5U<t> + ik 5P + a OE= o, 
o r r r 

a 5E z 

o 2( ) r o 2 z UU E+P L, 5U + UU (E+P)L, 5U o r o z 

o, 

(65) 

(66) 

(69) 

(70) 

( 71) 

Now, equations (65) through (71) are a set of seven linear, horno-

r z 
geneous equations for the seven quantities 5N, 5T, OE, oP, oU, 5U, and 

5U¢, and thus the determinant of the coefficients in these equations 

should vanish. We can therefore confidently calculate this determinant, 
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eliminate some of the terms with the use of condition (41), equate the 

result to zero, and divide by the quantity 
4 

- k2e2 ( 2µ+1f{ + v)Uo U-l(E + P/NT(dS/cn) to obtain the following equa-
T o p 

tion relating the perturbation frequency a to k, k, and certain 
r z 

features of the unperturbed equilibrium configuration: 

3 
a 

-1 
2Uo k2 

+ a T [ E 

2}\, + :T (¥s)p] 

+ a U0
-

2 je-4
µ (:j (L,r - :: L, 2 )(rr - :: r 2 ) 

4 
+ kT 

-4µ -3 
uo + e 

1 
E+P 

(E ~ p )[ ~ + ~~ (~t] i 
k2 _!_ (dT) (L kr L ) ( _ kr ) 

z NT dS p 'r - k
2 

'z 1r k
2 

1 z 

-4µ -3 (~) (~~t (ar 
k k 

uo k2 1 r a2 )(s,r - k: 8,2 ) - e 
E+P k z 

z 

-3 2 
+ uo k6 (~) :T (t)p o. 

T 

\ V. STABILITY IN THE PRESENCE OF TRANSPORT PHENOMENA 

Equation ( 72) is just a cubic equation for cr, and in principle 

(72) 

the roots of this equation determine the time evolution of a perturba­

tion with given values of k and k. We cannot solve explicitly fo r r z 
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the three roots of this equation, but we can specify a necessary condi­

tion for the absence of unstable roots: those with positive real parts. 

If the three roots have the values a, b, and c, then equation (72) can 

be written 

( CJ - a )( CJ - b ) ( CJ - c ) = 0, ( 73 ) 

from which we see that the constant term is equal to - abc. If this 

quantity is negative, then at least one of the roots has a positive real 

part. Therefore, a necessary condition for the stability of a stellar 

model is that the inequality 

k 
r 

k 
z 

be satisfied everywhere in the configuration for all values of k 
r 

k . 
z 

In a given stellar model, the dimensionless ratio 

( 74) 

and 

(75) 

which measures the relative efficiencies of conduction and viscosity, 

will have some specific value (or range of values). Stability condition 

(74) is most easily interpreted if we consider separately the three 

different kinds of circumstances in which Z >> 1 ( thermal conduction is 
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much more efficient than viscosity), Z -.1 1 (thermal conduction and vis­

cosity have comparable efficiencies), and Z << 1 (conduction is much less 

efficient than viscosity). 

When z >>--1, a fluid element will be able to exchange heat with its 

surrounding on the time scale of interest but will not be significantly 

affected by viscous interactions. In this case we find, with the help 

of equation (58), that inequality (74) can be written 

wheres= - k /k. Since we would like this condition to hold for r z 

( 76) 

perturbations with all reasonable values of k and k, we must insist 
r z 

that it hold for all values of s· To aid us in imposing this condition, 

we will first rewrite inequality (76) in the form 

L y ~
2 

+ (L, y + L, Y )~ + L, Y ~ 0. 'z z~ r z z'r ~ r r (77) 

2 This condition just says that a quadratic function of s, f(s) = as + 

bs + c, must never be negative. In order to insure that this be true, 

we must insist that a + c ~ 0 and b2 - 4ac :c:;; O: 

L, Y + L, Y > O, r'r z'z -

Inequality (79) can be satisfied only if the quantity in parentheses 

vanishes; the necessary conditions for stability can thus be written 

( 78) 

(79) 

(80 ) 
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and 

o. 

In other words, the vector field yL must always be parallel to the 

vector field y. 

(81) 

We can easily find a direct physical consequence of condition (81) 

by referring to the Euler equation and asking under what circumstances an 

equilibrium configuration can have a distribution of L with the required 

property. To this end, we will first rewrite equation (81) using the 

expression (46) for z, and we will find 

yL X ~D = 0, (82) 

which, as we know from §III, is consistent with the Euler equation if and 

only if the stellar model is barytropic. 

Now that we know that a stable star must be barytropic, we can use 

this fact to help us interpret condition (80). We know that the two 

surfaces orthogonal to the vector field z coincide with the level 

surfaces of L, by condition (81), and we know that in a barytropic star 

these level surfaces have the topology of cylinders (as discussed in 

§III). Condition (80) tells us that the gradient of L must point in the 

same direction as z, so a knowledge of whether the topological orienta­

tion of I is inward with respect to its quasi-cylindrical orthogonal 

surfaces (pointing toward the rotation axis from the surfaces) or out­

ward (pointing toward infinity) will help us determine how L must vary 

between its level surfaces. 

In fact, the orientation of I is always outward in the interior of 

a stable, barytropic stellar model, as we will demonstrate in appendix C. 
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By combining this fact with condition (80), we see that yL must always 

be oriented outward. 

Putting together the foregoing results, we see that two necessary 

conditions for stability in regions of stellar models in which viscosity 

is negligible with respect to thermal conduction are that i) the level 

surfaces of the pressure and the total mass-energy density must coincide 

and ii) the gradient of the geometrical angular momentum must never 

point inward from a surface of constant L. 

Now we will turn our attention to the situation in which Z << 1, 

where the perturbation will be affected by viscosity but not by heat 

conduction. Inequality (74) can then be written 

- ('oE/2Js)P(a + s:-a ) (s, + s:-s, ) ~ o r ~ z r ~ z 

and treated as we treated condition (76) to find that the necessary 

stability conditions are 

and 

If we refer to equations (24), (34), and (46), we find that 

(83) 

(84) 

(85) 

(86) 

By combining conditions (84) and (85) with equations (24)) and (86 ), we 

see that a stable star in which viscosity is more effi cient than thermal 

conduction is baryt ropic and has a pressure gradient which is parallel 

to the vector field ('oE/ "os)P~S • 
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When thermal conduction and viscosity are both important (Z ,_ 1), 

condition (74) can be written in the form 

(8 7) 

and treated in the usual way to yield the stability criteria 

(88) 

and 

(89) 

These conditions can be interpreted in two ways. They indicate, given 

a particular equilibrium configuration, what sizes of disturbances will 

be d amped out. Or they tell us that if we want stability against 

disturbances with any value of kT the necessary conditions for stability 

for any Z are 

( 90 ) 

and 
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VI. TI-IE STABILITY OF PERFECT FLUID MODELS 

We can investigate the possibilities for instabilities in perfect 

fluid models by looking at the characteristics of equation (72) with 

all of the dissipative terms neglected. In this case we set K = ~ = O, 

and the equation becomes 

2 e-4µ (z) 2 
U0 -

2 
_l ( ~) h-

k 

az) (s, r 
k 

s, z) r r 
CT -

kT E + p dS p k k 
z z 

k - kr '/ ) 
+ e -4µ( :;f u0 

-

2 
~' r - k: L, 2 ) (1 r 0 (92) 

k z 
z 

Following the same reasoning that we applied to the cubic equation dis­

cussed in the last section, we conclude that the constant term in 

equation (84) must be positive if there are to be no unstable solutions 

for CT- By insisting that this be true for any value of the quantity 

- k /k, we find that two conditions which must be fulfilled for local r z 

stability in perfect fluid stellar models are 

(93) 

and 

(94) 

In isentropic models the only condition is that 

)' · v'L 2: 0 (95) 
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VII. A PHYSICAL ANALYSIS OF THE STABILITY CRITERIA 

a) Stability in the Presence of Transport Phenomena 

The constraints which stability imposes on an equilibrium con­

figuration can be understood with the help of a heuristic derivation 

that will illustrate the physical processes involved and simultaneously 

provide a mathematical check on the results of the more rigorous analy­

tical derivations that we have already executed. For simplicity, let 

us first limit our attention to the equatorial plane of a stellar model 

and consider the situation in which we have thermal conduction but not 

viscosity. What would happen to a small ring of fluid if it were dis­

placed slowly, in an axisyrnmetric manner, and with L held fixed (in 

appendix Cit is demonstrated that Lis conserved in the type of motion 

we are interested in), from its original position ( 11 location 1, 11 with 

coordinates r = rl' z = 0) to a new., nearby position ("location 2," 

with coordinates r = r
2 

= r
1 

+ 6r., z = O), held momentarily stationary 

at this position, and then released? Its subsequent motion would depend 

on its acceleration relative to the surrounding fluid at its new loca­

tion (let's call this acceleration A). An acceleration in the direc-
r 

tion of the displacement (A /6r > 0) would indicate a convective insta­
r 

bility, while an acceleration back toward the original location of the 

fluid ring (A / 6 r ~ 0) would indicate stability. 
r 

Let us denote the value of each quantity describing the fluid that 

was originally at location 1 by the subscript 1, the value of the quan­

tities describing that same fluid after it has been displaced to loca­

tion 2 by the subscript 2, and the quantities describing the fluid 
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originally at location 2 by no subscript. If -n: is one of these quanti-

ties, then 

11'.2 - 11'. 

is the Eulerian change in -n: at position 2, and 

is the Lagrangian change in -n: for the displaced fluid ring. The 

Eulerian and Lagrangian changes are related to each other by the 

equation 

6 11'. 

(96) 

(97) 

(98) 

where -n:, is the radial derivative of -n: in the original configuration. 
r 

Now, the radial acceleration of any fluid element, as measured by 

an observer in a local Lorentz frame momentarily comoving with the fluid, 

consists of an acceleration due to gravitational and centrifugal effects, 

-µ -µ( )-1 namely - e a , and a buoyant acceleration, - e E + P P, . 
r r 

The 

total radial acceleration of an equatorial fluid element in an equili-

brium configuration is 

A 
r 

0 ( 99) 

and therefore the acceleration of the displaced fluid element can be 

written 

A - A 
r 2 r 

-e-µ(ar
2

-ar ) - e-µ [(E
2

+ P)-l - (E+P) - 1]P, r 

-e-µ[ t,ar - (E + P) -
2

P, r 5E] (1 00) 
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(where 5 P has been equated to zero, since the displacement occurred 

subsonically, allowing the pressure of the displaced fluid to adjust 

to that of its new surroundings). 

The Eulerian change in ar was calculated in §IV. If we set 

5 Ur = 0 (since we are here holding the displaced fluid element momen­

tarily stationary), we find 

ca r 
2( ~+v)u-3 u¢ _ (uou2)-l u e 1 5 - - 1 5 /4 o r o r ~ 

According to equation (91), the Eulerian change in U~ is 

(101) 

5U¢ = 6 U~ - U 6r (102) 
-P ¢ ' r 

The value of U¢'r can be found through a straightforward differentia­

tion of L: 

The value of 6 U¢ can be found by using the fact that 6L vanishes. 

combining equations (6) and (30) , and setting U Ur+ U U
2 

equal to r z 

zero (it vanishes in our linear approximation), we can write 

and calculate 6 U¢, setting 6L = 0, to find 

By combining equations ( 101) , ( 102) , ( 103 ) , and ( 105 ) , we find that 

the Eulerian change in a is r 

oa y L, 6.r 
r r r 

(103) 

By 

(104 ) 

(105) 
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In stellar models with thermal conduction, we considered pertur­

bations whose sizes were small enough to allow efficient thermal 

coupling between the perturbed and unperturbed fluids. In the present 

case, that is essentially equivalent to setting 5 T = 0. Since 5 P = 0 

also, and since any two thermodynamic parameters completely determine 

the thermodynamic state of a fluid, it follows that 6E = O. In this 

case, then, the total radial acceleration of the displaced fluid ring 

is just 

( 107) 

In order to avoid instability it is necessary that Ar
2
/6r ~ O, so t~e 

criterion for stability is 

-v L ~ 0 , 1 r 'r 

which is identical to condition (80). We know from appendix D that 

yr is always positive in a stable configuration, so our stability 

criterion means that L, cannot be negative. 
r 

Why should we expect that stability should depend on Lin this 

(108) 

manner? Why might it not depend, for example, on the distribution of 

J, instead? We have displaced a fluid element, forcing it to always 

be thermodynamically indistinguishable from the ambient fluid at its 

new location. This means that the fluid is essentially in a state of 

neutral buoy ant stability. Except for rotational effects , a fluid 

element can move about freely without feeling any net forces. Overall 

stability, or the lack of it, depends , therefore, only on the rotational 

behavior of the fluid. If the angular momentum per baryon in the 
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displaced fluid is different from that in the surrounding fluid, all 

other aspects of the two fluids being identical, we would expect the 

displaced fluid to feel an excess centrifugal force and to move in the 

direction of that force. Therefore a comparison of J between the 

ambient and displaced fluids determines whether the model is stable in 

the present case. But J was not conserved in the motion of the dis­

placed element from its original position (see appendix c), so we can't 

expect to judge stability by looking at the distribution of Jin the 

equilibrium configuration. The value of Jin the ambient fluid must 

be compared with the value of J which the displaced fluid has by virtue 

of having conserved L during its displacement. Since the displaced 

and ambient fluids are thermodynamically identical, comparing J at the 

final location is equivalent to comparing L; thus the dependence on the 

gradient of L. 

When viscosity is important and thermal conduction can be neglected, 

it is appropriate to assume that the displaced fluid will assume the 

same value of Das that of the ambient fluid. This means that 5U¢ = O, 

which means in turn that 5 a = 0. According to equation (52), there 
r 

is no first order change in the entropy of the fluid element, which 

means that the Lagrangian change in Eis 

6E (109) 

The radial derivative of E can be written 

(110) 
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and combined with equations (91) and (102) to yield a value for the 

Eulerian change in E: 

5E ( 111) 

The total radial acceleration of the displaced fluid ring is then 

(112) 

according to equation (100). The stability condition Ar
2
/6r ~ 0 dupli­

cates the analytically derived criterion (84). 

When viscosity and thermal conduction are both very efficient, we 

expect that the viscosity will eliminate differences in Din between 

the displaced and ambient fluids while the thermal conduction will elim-

inate differences in thermodynamic properties. These effects should 

damp out any disturbance regardless of the nature of the angular momentum 

and entropy distributions. If we look at the analytically derived condi­

tion (88) we will see that when Z ~ 1 the term on the right-hand side, 

which is always negative, provides a larger margin of stability the 

larger kT becomes; the smaller the disturbance, the harder it is to 

make the angular momentum and entropy gradients bad enough to cause an 

instability. 

b) The Stability of Perfect Fluid Models 

In the case of perfect fluid flow, the quantities S, L, and J are 

all conserved during the motion of our displaced fluid element. Th e 

value of 5 E is given by equation (111) and 5 a can be found from 
r 
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equation (106). The total radial acceleration is 

(113) 

and the stability condition Ar
2
/6r ~ 0 becomes identical to criterion 

(85) for dynamical stability in perfect fluid stars. 

In this case the overall stability of the system depends on a 

balancing of buoyant and rotational effects. It is particularly clear 

here that it is the geometrical angular momentum rather than the angular 

momentum per baryon which determines the effect of rotation on stability. 

The stability criterion indicates that when the ambient and displaced 

fluids have different thermodynamic properties it is the value of L 

which an element has that determines its rotational acceleration. 

c) How to Apply the Stability Criteria 

In order to apply the stability criteria to a particular model, it 

is first necessary to determine the magnitudes of the transport coef-

ficients. Then, for convenience, we can make the definitions 

( 114) 

and 

(115) 

The quantity AT is the maximum size of a disturbance for which thermal 

dissipation occurs on the time scale of interest, while A is the 
V 

analogous quantity for viscous dissipation. Disturbances on a large 

enough scale., 
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A >> the maximum of ( 116) 

will be essentially unaffected by the transport phenomena. As long as 

A is still much smaller than the scale height R, stability against these 

disturbances is determined by the perfect fluid stability criteria. 

Disturbances on a small enough scale, 

A<< the minimum of (117) 

will always be damped out by the dissipative effects. 

If Av<< AT' then disturbances in the range Av<< A$ AT will be 

governed by the conditions that were derived under the assumption that 

Z >> 1. The conditions for disturbances of smaller /\ become gradually 

weaker as A decreases through the range A~~· If AT<< /\v ' then 

disturbances in the range /\T <<I\<~ are governed by the Z << 1 

criteria... I.f /\T ~/\v (Z ~ 1) , it is necessary to apply the stability 

conditions (90) and (91). 

In general , the conditions which govern stability against a particu­

lar size of disturbance can be regarded as necessary criteria for the 

stability of the star, but the star is really subject to the strongest 

stability constraints which follow from a consideration of all relevant 

(A << R) sizes of disturbances. 

d) Th e Effects of Relativity 

Whe n cast in the proper language . t h e relativistic crite ria f or 

local s t ability are ide ntical in f or m to the non-relativistic criteria. 

Thorne ( 1966) di sc overed t hat t his was true in n on-rotating configurations 
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in the absence of dissipation. He pointed out that the non-linear 

effects of the relativistic theory of gravity should manifest them­

selves only over finite distances and should not, therefore, affect 

local processes such as those governing the onset of convection. 

VIII. LIMITATIONS ON THE APPLICABILITY OF THE STABILITY CRITERIA 

At this point we might pause and consider the limitations which 

might be placed on our results by the assumptions that have gone into 

our calculations. First of all we should recall that, because of the 

nature of their derivations, our stability criteria are necessary but 

not necessarily sufficient. In particular, we have considered only 

a x isynnnetric processes; it is possible that unstable non-axisyrnrnetric 

modes might be available to stars which are stable against all axi­

synnnetric distrubances. In addition to this limitation, the calcula­

tions are vulnerable to the following approximations and assumptions: 

i) The perturbations which we have studied were short in wavelength 

(local) and were not self-gravitating (did not affect the metric). 

Some of the consequences of these assumptions have been investigated 

in Newtonian theory, and may give a partial indication of what could 

be expected in the relativistic theory. Fricke (1971) has shown that 

the global (long wavelength) criteria for stability in rotating perfect 

fluid stars are the same as the local criteria as long as the gravita­

tional field remains unperturbed. He discussed the possibility that 

gravitational perturbations might have a destabilizing influence, but 

his results were not conclusive. For local perturbations in non-rotating 
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stars, Lebovitz (1965) has shown that gravitational perturbations do 

not alter the conditions for stability. 

ii) Our results were derived using linear perturbation theory, which 

governs the behavior of disturbances only as long as they are small in 

amplitude. Thus, when our treatment indicates that a mode is unstable 

and grows exponentially in time, we can't predict how rapidly it will 

evolve once it enters the non-linear regime. James and Kahn (1970) 

have indicated that, in the Newtonian theory, the growth rate for local 

instabilities in rotating stars is diminished by non-linear effects 

when the amplitudes become large. But since we have really been 

interested in the conditions for the onset of instability, rather than 

the details of the consequences of instability, non-linear effects will 

not change our results. The same can probably be said of gravitational 

perturbations. 

iii) Only regions of stars in which the chemical composition is homo­

geneous were properly represented in our derivations. Goldreich and 

Schubert (1967) have found in Newtonian theory that gradients of chem­

ical composition can strongly affect the conditions for stability, and 

can, in particular, stabilize some configurations which would otherwise 

be unstable. 

iv) We have complete ly ignored magnetic fields. Fricke (1969 ) has 

studied the effects of magnet ic fields on the stability of Newtonian 

stars, and has found that toroidal fields supply a stabilizing influence 

in rotating stars. 
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IX. APPLICATIONS TO MODELS OF ASTROPHYSICAL OBJECTS 

a) Non-relativistic Stars 

For application to stars in which relativistic structure effects 

are unimportant, we can take the Newtonian limits of our results, and 

we will find that they reduce to the standard Newtonian criteria, as 

they should. In the non-relativistic limit the quantities which appear 

in the relativistic equations behave in the following manner: 

L + 
2 

r n j 
' 

(118) 

-11' (119) )' ➔ 2Dr r , 

a+ -g (120) 

NT( CJS / en) p 
-1 

(121) ➔ P cP ' 
(E + P)( dS/dE)p ➔ p( dS/dp)p , (122) 

z = _! E + P (OT) 1 K (123) 
ri NT dS P + cP ~ 

When, in addition to being non-relativistic, the fluid being described 

obeys the ideal gas equation of state 

p = PKT 
m 

(where mis the mean molecular weight and K 

equation (122 ) reduces to 

(124 ) 

is the Boltzmann constant), 

( 125) 

Substitution of t hese quantities into the relativistic stability criteria 
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for Z >> 1 fluids and perfect fluids reproduces the Newtonian criteria 

written in §I (those equations all assume the ideal gas equation of 

state). 

In the radiative zones of non-massive non-relativistic stars the 

value of Z is always very large (Goldreich and Schubert 1967, Fricke 

1969), being equal, for example, to about 10
6 

in the sun. This means 

that in realistic Newtonian stellar models the convective stability 

criteria assume the simple forms of the Z >> 1 stability conditions. 

b) Supermassive Stars 

Supermassive stars have nearly Newtonian structures (Fowler 1964 ) 

which are essentially isentropic (Wagoner 1969). The pressure in a 

supermassive star includes the gas pressure of the ideal gas equation 

of state and a contribution from radiation: 

p PKT a 4 
m + 3 T (126) 

This equation is valid for stellar regions in which T ~ 10
9

, in which 

case the electrons are non-relativistic and there is no pair production 

(Wagoner 1969). The ratio of gas pressure to total pressure, ~, is 

quite small in supermassive stars, and is approximately 

~ ~ 4.28 (m /m) ,- 1
/

2 
p 

(127) 

(Wagoner 1969 ), where ?7\ is the mass of the star in units of the solar 

mass and m is the mass of a proton. 
p 

Under these circumstances both thermal conduction and viscosity 
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are dominated by radiative diffusion, and the appropriate transport 

coefficients are 

(Schwarzschild 1958) and 

16aT
4 

2 
15c K 

(128) 

(129) 

(Thomas 1930), where a is the Stefan-Boltzmann constant and c is the 

speed of light. The ratio (123) is therefore 

Chandrasekhar (1939) has calculated the values of the specific 

heats for fluids with radiation, and has found that 

(1 - 1)(4 - 3~)r2 

~2(r2 - 1) 

(130) 

(131) 

where I is the ratio of specific heats for the ideal gas part of the 

fluid, cV is the specific heat per mass at constant volume for an ideal 

gas , 

(132 ) 

and r
2 

is defined by the equation 

P ( cT) 
T dP s (133) 

For small~, r
2 

is approximate ly 4/3. If we assume, for simplicity, 
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that we are dealing with a hydrogen plasma, then m 

and Cp is approximately 

24 
m 

p 

= m /2, 1 p 

(134) 

Combining equations (127), (130), and (133) and substituting the 

values of the physical constants yields 

-3 z = 1.7 X 10 

T9'!?( 8 
(135) 

where T
9 

is temperature in units of 10
9 

Kelvin and '77
8 

is the mass of 

the star in units of 10
8 

solar masses. Evidently, Z ~ 1 for most simple 

supermassive star models of the type we are discussing. When Z ~ 1, the 

stability criteria (90) and (91) indicate that stability will depend 

equally on the distributions of Land S. But v S ~ 0, and so stability 

will in this case depend essentially on vL· a well chosen angular momen-
~ ' 

tum gradient could make the star stable against convection. For large 

enough masses and temperatures, Z << 1. In this case we probably can't 

simply use the Z << 1 stability criteria, because for small enough vS 

the terms depending on ZvL and v S could be comparable in equations (90) 

and (91); a careful examination of the specific qualities of the model 

must then be done. 

c) White Dwarf Stars 

White dwarfs evolve through stages in which they are relatively 

hot (directly following their formation) and settle down into cold, 

nearly isentropic states. The time scale for cooling is at least 
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of order NT( os/oT)p/KR
2

, which is longer than the time scale of interest 

2 
to us by a factor of (RkT) >> 1. This means that any non-magnetic, 

chemically homogeneous, differentially rotating white dwarf model must 

satisfy our stability conditions. 

In white dwarfs the viscosity is dominated by electron diffusion 

because of the long mean free paths of the degenerate electrons (Durisen 

1973). The thermal conductivity due to electron diffusion becomes larger 

than the conductivity due to radiative diffusion for T ~ 10
7 

Kelvin and 

4 3 
p? 10 grams/cm (Cox and Giuli 1968). Under these circumstances, the 

value of Z can be calculated with the conductivity and viscosity of the 

electron gas only, using the fact that 

~ 1 (136) 

(Durisen 1973), where K and T) are the electron gas conductivity and 
e e 

viscosity, M is the mean mass-energy per electron in the fluid rest 
e 

frame, and e-; is the specific heat per electron at constant volume. 

If we define M to be the mean mass -energy per particle (including ions 

and electrons) , then we can write 

z K 

T) 
E + P ( oT) :: _!S 

NT oS P T) 

K 
e 

M 
e 

c/ 
V 

M 
M 

e 

(137) 

where CV and CP are the specific heats per particle at constant volume 

and pr es sure, res pe ctively. When t he electrons are de ge nerate, the 

pressure of ~h e fluid is essentially d e pe ndent only on the e l ectron 

number de nsity and is inde pe n de nt o f t he t empe ra t ure. Since the sp ecific 
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heat at constant volume is the same as the specific heat at constant 

electron number density, we can deduce that C,V ~ C,p and 

z ~ M 
M 

e 

Ce 
V 

e,,v 
(138) 

For simplicity, let us assume now that the fluid is composed of 

helium ions with number density n. and electrons with number density 
1. 

n 2n .. Then, if M. is the mean mass-energy per ion, we have 
e 1. 1. 

n.M. + nM M. 4m 
M 

1. 1. e e 1. ~ _p (139) = -
n. + n 3 3 

1. e 

where m is the rest mass energy of a proton. Although the ions are 
p 

not relativistic, the electrons may be. The relativity parameter 

X -
m 

e 

(140) 

(where me is the rest mass energy of an electron and pf is the Fermi 

momentum of the electron gas) can be expressed in terms of the total 

mass density of our fluid: 

6 3 -3 
p = 1.96 X 10 x gm cm (141) 

(Chandrasekhar 1939). In a highly degenerate electron gas the number 

2 
density of electrons as a function of momentum is proportional top 

for p < pf and vanishes for p > pf (Chandrasekhar 1939) . The mean 

total mass-energy per electron is therefore 

M 
e 

This implies that 

(142) 
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e 
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x2 )-l/2 mp= 2.44 X 103 (1 + 3 
m 5 

e 
(143) 

All that remains to be done in order to calculate Z is to find the 

ratio ey/c;. According to Chandrasekhar (1939), the appropriate value 

for ~ is 

3 ( l + x2)1/2 
1. 67 X 10- ___ c.___ T 

2 6 K 
(144) 

X 

where T6 is the temperature in units of 106 Kelvin. By writing 

i e 
niCy + neC,V 

n. + n ' 
(145) 

1. e 

i 
where Cy= (3/2) K is the specific heat per ion at constant volume, we 

can see that 

'Y!,,e 
V 

3 X 102 2 ( 2)-1/2 x 1 + x + .67 T6 

The result of combining equations (1 3 7), (141), (143), and (146) is 

(146) 

z:: 2.4(1 + 2.2 X 10-3 (1 + x2)1/2 T) ( 1 + x2 ) 1/2 p -2/3 T6 ' (147) 

X 
2 6 1 + ( 3 /5) x

2 7 

where is the ma ss density in units of 10
7 -3 

The quantity in P7 gm cm . 

the first set of parentheses is alway s of order unity as long as T6 ::S 10 

and 
4 - 3 

If T
6 

:s 1 and 10
5 -3 

it is equal 1 p ~ 10 gm cm p ~ gm cm 
' 

to 

to within 1. 6 percent, in which case 

z ~ (148) 

2 2 1/2 
The function [ (1 + x )/(1 +(3/5)x )] is a slowly varying function of 
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the mass density (through eq. [141]), equal to 1.03 at p 

8 -3 
and 1.26 at p = 10 gm cm Roughly, then, 

-3 
cm 

(149) 

Since the pressure is relatively insensitive to the temperature 

in the domain of interest, the hydrodynamic structure of the white 

dwarf will not change very much as the star cools. This means that 

the value of Z will essentially decrease monotonically with the tempera­

ture. In low density configurations (p $ 10
5 

gm cm-
3

) Z will be con­

siderably larger than unity as long as the temperature is high. In 

this situation, our calculations indicate that stability will depend 

primarily on ?L· As the star cools, Z will become smaller and give 

VS a larger role in determining stability. Buts, and therefore ? S, 

will decrease monotonically with decreasing T; this means that 9L 

will probably continue to be the dominant factor in determining 

stability as the star cools. 

In higher density stars Z never exceeds unity by a large margin. 

A detailed application of the stability conditions ( 90) and ( 91) 

must then be made in order to determine whether a given model is stable. 

d) Neutron Stars 

The transport properties of the material which constitutes neutr on 

stars are not well understood. If a region of a neutron star is a 

degenerate neutron fluid with no superfluid properties , then Z wil l most 

likely be of order unity since both energy and mome ntum will be transported 

by the same particles. If superfluidity occurs , the situation is more 

speculative. 
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APPENDIX A 

THE GRAVITATIONAL FIELD EQUATIONS 

The Einstein field equations which determine the potentials that 

appear in the time independent metric whose line element is 

ds2 2v 2 
- e dt + 2'jr 2 2µ 2 2 

e ( d<t> - wd t) + e ( dr + dz ) 

can be written in the forms 

e -w ~le\Jr + v2µ + l. e2 (\\r - v)vw·vw = - 8 ,re 2µ [ E + p2 - p] 
4 ~ ~ ' 1-v 

-V 2 V e2 ( \jr - v) yw • yw 4ne2µ [ (E+ P) l+v 
2 

2P] 1v· ~ - 1 e V e + 2 2 + 
' 1 - V 

-V 2 V 2 3 2(\jr-v) 8rce2µ [ (E+ P) 
2 

+ p] V e V e + V µ - e vw·vw 4 ~ ~ 2 ' 1-v 

V [ 3t - V ] - 16ne2 (\jr+µ) (E+P)v 
• e vw = 2 ' 1-v 

and 

- ( \jr + V) 2 \jr + V 2µ 
e v e = 16rce P 

which have been adapted from Chandrasekhar and Friedman (1972). The 

gradient operator and the dot product are calculated in the flat r, 

z two-space. Bardeen and Wagoner (1971) write the line element and 

the field equations in slightly different forms which, for some 

calculations, might be more convenient. 

(Al) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 
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APPENDIX B 

THE TIME SCALE FOR THERMAL DISSIPATION 

It is possible to find the time scale which characterizes the 

dissipation of perturbations in the temperature in the following way. 

Let Q be the heat content per unit volume as measured in the rest 

frame of the fluid. Then, if we adopt a Lorentz frame of reference 

which is momentarily comoving with the fluid, and if we assume that 

there is no energy generation in the fluid element under consideration, 

we can write a continuity equation for Q: 

(Bl) 

where q is our heat flux vector. The spatial components of q in our 

frame of reference are just 

(B2) 

Now let us add a small amount of heat, oQ, to a fluid ring of size 

A in the unperturbed configuration. How long will it take for the heat 

oQ to dissipate? In order to answer that question, we note first that, 

to first order, the Lagrangian change in position of our fluid element 

wil 1 vanish, because we have started in a state in which Ur= U2 
= 0. 

This means that the pressure of the fluid element will remain constant, 

since 6P = 0 to first order. Therefore, the change with time of oQ can 

be written 

d 
cit oQ = (dQ) ~ 5T 

dT dt p 
(dS) d NT dT P dt 5T. (B3) 
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The diffusion equation which governs the temperature perturbation can 

be found by combining equations (Bl), (B2), and (B3): 

~ oT 
dt 

The time scale for the dissipation of 5T is clearly A~T( d S/cn)p/K. 

(B4) 
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APPENDIX C 

NOTES ON THE CONSERVATION OF ANGULAR MOMENTUM 

If viscosity is neglected, the azimuthal and time components of 

the equation can each be calculated and combined with the 

baryon conservation equation (7) to yield, respectively, 

NUf3 (E+ p U) = NdJ/dT 
N <P 'f3 

(Cl) 

and 

NUf3 ( E + p U ) = -NdE/ dT 
N o , f3 

P f3 u f3 uf3 uf3 
, o - q U o; f3 - o q ; f3 - qo; f3 - qo ; f3 • (C2) 

Equation (Cl) tells us that the time derivative of J along the world 

line of a fluid element in an axisymmetric system can be written 

(c3) 

If there is no thermal conduction, then d.J/dT = O; the angular momentum 

per baryon is conserved. But if thermal conduction can occur, the un­

perturbed motion ascribed to the models discussed in §III are not 

consistent with a time independent angular momentum per baryon. Using 

the unperturbed fluid parameters, we find from equation (C3) that 

J 
KT 

2 (E + P)R 
( c4) 



63 

which indicates an apparent change of J on a time scale of order 

2 
R (E + P)/KT. But the time scale we are interested in is the time scale 

associated with the dissipation of heat in the perturbation, which was 

found in appendix B, and which is smaller than the present time scale 

essentially the thermal energy deGsity; this means that 

NT
2

( d S/dT)p/(E + P) ,$ 1. The ratio of the time scale over which the 

inconsistency of the constancy of J manifests itself to the time scale 

2 2 2 X (f + P)/KT is therefore at most of order (A /R) << 1. For our 

purposes here, there is no contradiction because J appears constant. 

For the perturbed motion, on the other hand, equation (C3) indi-

cates that the time scale for changes in J 2 
is of order A ( E + P) /KT. 

The ratio of this time scale to the time scale of interest is 

2 
NT ( d S/d T\(E + P) ~ 1. Thus, we cannot assume that the angular momentum 

per baryon is conserved in the perturbed motions we are studying if 

thermal conduction can occur. 

The geometrical angular momentum, on the other hand, is conserved 

in the perturbed motion on the time scale of interest, as long as vis­

cosity is absent. In order to demonstrate this, we can note that 

(cs) 

where, in evaluating dE/ dT with equation (C2), use has been made of 

the fact that the metric and pressure fields are essentially undisturbed 

by the perturbed motion. According to equation (C5) , 
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dT 
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KT L 
e+ P ~ 

in the perturbed motion; the time scale for changes in Lin the per­

turbed flow is of the order of RA(E + P)/KT, which is longer than the 

time scale of interest by a factor of 
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APPENDIX D 

THE ORIENTATION OF y 

In §VI it was found that the stability criteria for stellar regions 

in which Z >> 1 are 

y • VL ~ 0 (Dl) 

and 

y xVL 0 , (D2) 

where 

(D3) 

Equation (D2) implies that the fluid is barytropic and that the level 

surface of Land D coincide and have the topology of a cylinder. Equa­

tions (Dl) and (D2) together imply that y is orthogonal to these surfaces. 

We can determine the global behavior of yin the following way. 

Since the topology of each surface orthogonal toy is that of a cylinder, 

every such surface must intersect the stellar surface. The definition 

of z involves the quantities n and v, which are defined only in the 

fluid, and so these surfaces cannot, strictly speaking, be thought of 

as extending into the region beyond the surface of the star. But if we 

surround the stellar model with a fictitious, stable, equilibrium bary­

tropic fluid envelope (joined to the surface of the model in such a way 

that D and all thermodynamic quantities are continuous across the inter­

face), and if we make the radius of the envelope very much larger than 

the size of the model itself, insisting that the envelope fluid de nsity 

be so small that it does not change the metric of the original 
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configuration (i.e., consider the limit in which the density approaches 

zero), we will be able to extend our surfaces into this region. Very 

far from the original stellar surface (but still within the fictitious 

-3 
envelope), at a distance R, say, the potential w varies as R , while 

-1"' ( -2) ( -2) ( ) ~t = r r + © R and ~v = ~ R Chandrasekhar and Friedman 1972. 

At this distance, then, the vector field is asymptotically approaching 

-1 A 

the vector field 2r nr. Far from the stellar surface, therefore, the 

surfaces orthogonal to I approach simple cylinders, and I points outward 

from these surfaces. Following the surfaces back into the stellar 

interior, and noting that condition (Dl) guarantees that z has the same 

topological orientation everywhere on a given surface, we see that, is 

outwardly oriented everywhere in the interior of our original model. 

This analysis makes use of equation (Dl), which applies only to 

stable barytropic configurations in which Z >> 1. A complete under­

standing of some of the stability criteria for the cases when z is not 

very large will depend on finding a stronger indication of how 1 

behaves in arbitrary configurations. 
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I. INTRODUCTION 

A detailed study of the equilibrium configurations of rapidly rotating stars in the 
full theory of general relativity has not been possible thus far, although certain 
special cases have been investigated. Hartle and Thorne (I 968) have studied uniformly 
rotating neutron stars, white dwarfs, and supermassive stars in the limit of slow rota­
tion. Wilson (1972) has developed a method of finding the velocity fields which will 
bring certain specified mass density distributions into hydrostatic equilibrium. Bardeen 
and Wagoner (1971) have studied rotating disks, and Chandrasekhar (1965b) and 
Bardeen (1971) have studied homogeneous, uniformly rotating fluids in the post­
Newtonian approximation to general relativity. 

Another special case is studied in the subsequent sections of this paper, where the 
formalism developed by Chandrasekhar (1965a) for describing the hydrodynamics of 
perfect fluids in the post-Newtonian approximation is applied to axisymmetric, 
differentially rotating, polytropic stars with no viscosity or magnetic fields. The results 
include a method for constructing models of such stars, without having to impose 
special constraints on the mass-density profile or angular-momentum distribution, and 
some qualitative information about the properties of such models. 

II. THE NEWTONIAN APPROXIMATION 

Before considering the post-Newtonian theory of differentially rotating polytropes, 
it will be helpful to look at the problem in the context of Newtonian theory. In this 
case the equations of hydrodynamics are 

(1) 
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op o 
8t + ox (pvµ) = 0 ' 

p. 

v2 u = -47TGp. 

(2) 

(3) 

Assuming that the system under consideration is in a state of static equilibrium and 
rotates in an axisymmetric manner about the x 3 axis, the velocity field can be written 
in the form 

(4) 

where .Q* is the angular velocity of a fluid element about the x 3 axis. The continuity 
equation (2) is satisfied identically by this velocity field: · 

V • (pv) = (v • 'v)p + V • v = 0 . 

Equation (1) can be written in a cylindrical coordinate system (z = x 3 , w2 = x1
2 + 

_x/, r:p = the polar angle) as 

If the fluid is assumed to obey a polytropic equation of state, 

p = apl+l/n, 

equation (5) can be written in the form 

V[o(n + l)p 11n - U] - w.0* 2 c.Zi = 0. 

This equation has a solution only if 

(5) 

(6) 

(7) 

(8) 

which means that the angular velocity .Q* must be a function of w only. If new 
potentials Band Hare defined by 

equation (7) can be integrated to give 

= [H - He + a(n + J)p/'n]n, 
P a(n + 1) _ 

where He and Pc are the values of Hand p at the center of the star. 

(9) 

(10) 

(11) 

The system of equations (3), (9), (10), and (11) completely determines the structure 
of an equilibrium configuration if the function .Q*(w) and the constants a, n, and Pc 
are specified. Ostriker and Mark (1968) have used an iterative technique of the" self-
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consistent field method" type to find equilibrium configurations. They express equa­
tions (3) and (9) in their integral forms, 

U(x') = cf p(x) d 3x (12) 
Ix - x'I ' 

B{W') = J.''' c.:;Q* 2(w)dw, (13) 

and specify the angular velocity .Q*(w) by specifying the angular momentum per unit 
rest mass, 

(14) 

as a function of a Lagrangian mass coordinate 

which is the fractional mass interior to the cylinder of radius w. Their method of con­
structing a model is to specify j [m(w)], make an initial guess for the mass density p(x), 
use this p to calculate the potentials U and B through equations (I 2) and (I 3), use 
these potentials to calculate a new p with equation (II), and ' so on. They found that 
this scheme would converge to a good p(x) within IO to 100 iterations, depending on 
the magnitude of the angular momentum. 

III. THE POST-NEWTONIAN EQUATIONS 

Chandrasekhar (I 965a) has derived a system of equations describing inviscid hydro­
dynamic systems, analogous to the standard system of Newtonian equations (I) , (2), 
and (3), which take into account the effects of general relativity to second order in the 
parameter 1/ c. His derivation is based on the assumption of a stress-energy tensor of 
the form " 

(16) 

where pis the invariant rest mass density, I1 is the internal energy per unit rest mass, 
ui is the four velocity, gii is the metric tensor, and P is the pressure. The resultant 
equations are as follows, where the Greek indices assume the values 1, 2, and 3: 

and 

a * a (*)-o ot p + OX p Va - ' 
a 

(18) 

(19) 

(20) 

(21) 
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where 

u = + + ;2 (v2 + 2U +IT+~)], (22) 

<p = v2 + U + II + 3P ' 
. . . 2 2p 

(23) 

U = G f p(x')vµ(x')(xa - xa')(xµ - Xµ') d 3 , 

µ;aµ - . . Ix - x'l3 . X ' 
(24) 

p* = p[ I + ;2 (; + 3U)] , (25) 

and the vµ are the components of the ordinary velocity. 
He was also able to find expressions for conserved quantities corresponding to 

linear momentum per unit coordinate volume, 

(26) 

angular momentum per unit coordinate volume, 

(27) 

and energy per unit coordinate volume, 

<i: = (a - ½p*)v2 + p*IT - ½P* U* 

(28) 

where 

v2 u* = -41rGp*. (29) 

The metric in this approximation is 

(30) 

where the function x is defined through the equation 



74 

IV. THE EQUATIONS WHICH GOVERN EQUILIBRIUM CONFIGURATIONS 

a) Introduction 

Equations (I 7) through (30) can be applied to a polytropic, differentially rotating, 
axisymmetric fluid whose axis of rotation will be assumed to correspond to the z-axis 
of a cylindrical coordinate system defined as in § II. Under these circumstances the 
equation of state and the velocity distribution take the forms 

p = apl+l/n, 

pIT = nP; · 

V1 = -.Q*x2' 

V2 = .Q*x1' 

V3 = 0, 

(31) 

(32) 

(33) 

where .O* = drp/dt is the angular velocity of a fluid element as measured by an observer 
located at infinity. 

In the Newtonian theory it turned out that the hydrodynamic equilibrium equation 
(1) had no static solutions for equation of state (6) and velocity field ( 4) unless the 
angular velocity was a function only of w. It will turn out in part (b) of this section that 
the post-Newtonian hydrodynamic-equilibrium equation (17) will have static solutions 
for equation of state (31) and (32) and velocity field (33) only when the angular velocity 
satisfies a certain condition; in particular it will turn out to have a z dependence. For 
this reason, the square of the angular velocity~ .0*2

, will be chosen to be of the form 

(34) 

Exactly how this function is to be determined will be discussed in part (d) of this 
section. Since accuracy only to order 1/c2 will be required, .O* will be replaced by Q 
whenever it appears with the coefficient 1/c2

• 

In view of expressions (3 I) through (34), the quantities (22) and (23) become 

a = p [ I + : 2 ( v
2 + 2 U + IT + ~) ] 

= p[ I + ; 2 (ciAP + 2U + a(n + l)p 11•)] , (35) 

3P a(n + 3) 
<p = v2 + u + ½II + 2p = w2.Q*2 + u + 2 pl/n. (36) 

Equation (21), the continuity equation, is identically satisfied by the velocity (33), 
so it can be ignored from now on. 

b) The Hydrodynamic Equilibrium Equation 

Equation (17) becomes, under stationary conditions, 

a!µ (avavµ) + a!a [ ( 1 + 
2c~)p] - p :~ + ; pvµ !~: 

2 ( au act>) 4 a 
- -2 p <p - + - + -2 pVµ -a (vaU - Ua) = 0. (37) 

C axa OX a C Xµ 
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Dividing equation (37) by p and substituting into it expressions (31) and (36) for P 
and </> transforms it to 

! ~ (aVaVµ.) + ~ ~ [(1 + 2~)pl+l/n] _ au+ ~ Vµ. auµ. 
p OXµ. p OXa C axa C axa 

- 2 [-2n2 u a(n + 3) 1/n] au - 2 o<I> i ~ ( u - u) = 0 2 w + + 2 p 8 2 ~ + 2 Vµ. 8 Va a . 
C Xa C uXa C Xµ. 

(38) 

The various terms in this equation can be simplified as follows: 

x 8 1 : 
~ -

8 
(avavµ.) = - [a(v• V)v + av(V •v) + v(v• V)a] 

p Xµ. p - - -

= ! a(v• V)v = -~ wD.* 2di ; 
p p 

(39) 

XaVµ. -
8

8 
(vaU) = U(v•V)v + v(v•V)U = -wD.*2 Udi; 

Xµ. 
(40) 

= w ~ [w(V x U)•z - z(V x U)-t] 
C 

(41) 

Substituting expressions (34), (35), (39), (40), and (41) into equation (38) yields 

~ v[ ( I + 
2X)p1

+1
1n] - [ I + }2 (2W20 2 + 2U + a(n + 3)p11n)]vu 

- w .02 + - (w 2 D.2 + 6U + a(n + l)p11n) + - w [ 

Q2 h2],. 
c2 c2 

2 4 4 dQ ,. 
- 2V<I> + 2V(w.OU<P) - 2wU<P-d- w = 0. (42) 

C C C w 

In order to simplify equation ( 42) further, it will be necessary to use the following 
definitions and relationships: 

(43) 

(44) 

(45) 
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2UVU = VU2
' 

w2 r:>.2vu = V(w2 .02 U) - UV(w2 .02) 

= V(w2 n2 u) - 2wn( n + w !~) U<iJ, 

UVB = w.02 U<iJ, 

! V(Upl+l/n) = pl/nvu + !!. Vpl+l/n. 
p p 

Equation ( 42) reads 

~ Vpl+l/n - V(U + B) + o(l) = 0 P c2 , 

and implies, to the required accuracy, the equality 

~!!_ V 1 + 11n = !!_ V(U + B) = _I VU2 +!!_VB 
p c2 P c2 2c2 c2 ' 

which leads, in conjunction with relation (50), to the expression 

!!._ 11nvu = ~ _!_ V(U 1 + 11n) - _l_ VU2 _ l!_ VB. 
c2 P p c2 P 2c2 c2 

Similarly, 

~ BVpl+l/n = BV(U+ B) = Bvu+-1-VB2 
p c2 c2 c2 2c2 ' 

so that 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

!!:.. p11nv B = _!_ ~ V(p1 + l/n B) - _l V B 2 - _!_ V(UB) + !!. VB. (52) 
c2 c2 p 2c2 c2 c2 

By using relations ( 43) through ( 52), it is possible to write equation ( 42) as 

- v[ H + }, (2<1> - ½(n + I)H' + w + 2aN!.2U - 4wOU<p)] 

It can easily be seen, by expanding both sides, that 

(54) 
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If two new functions g and f3 are defined by 

and 

t( x) = I - ( n +
2 

1) H 
C 

~(x) = -V[ H + }2 ( 2<1> - (n ~ l) H' + W + 2w21.12 U - 4wl.1U0 )] 

I [ dO. ] A + c2 w 4 dw (wO.U - U/11) - h2 w 

then equation (53) can be written as 

a - V[gpl+l/n] + f3 = 0, 
p 

and transformed with the help of equation (54) to 

a(n + l)V(pl/ngit<n+l)) + f3g-n t(n + l ) = o. 

From definition (55) it is clear that 

(55) 

(56) 

(57) 

(58) 

g-n/(n+l) = [1 - (n + 1) H]-n/(n+l) = I + ~ H + o(1-) (59) 
c2 c2 c4 

and 

fl/(n+l) = [1 - (n + I) H]l/(n+l) = I - H + a(!) ' 
c2 c2 c4 (60) 

and with these expressions equation (53) can be brought into the form 

v[a(n + I)( I - ~)p"' - H - ;, (2<1> - ½H' + W + 2W2 1.12 U - 4wl.1U0 )] 

+ :, [ 4 f (wnu - u.) - h' ]i = o. (61) 

This equation has a solution only if 

J
2 

[ 4 ~~ ( w nu - u .) - h'( w, z)] = o , (62) 

which means that h2(w, z) must take the form 

(63) 

where a is any function of w. Since a(w) is an arbitrary function , it can be chosen to 
be o:(w) = 0, and then the last term in brackets in equ ation (61) vanishes. The equation 
can then be integrated directly to become 

a(n + 1)(1 - ~)p11• = H + ;, [2<1> - ~
2 

+ W + 2w' l.1'U - 4Mw . ] + K, (64) 
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where K is the constant of integration. Multiplying equation (64) by the function 

(I - H/c2
)-

1 = I + H/c2 -f: 0(1/c4
) (65) 

brings it into the form 

a(n + l)p11
" = H + K + :. [ 2(1> + ~· + W + 2w2n2 u - 4W0.U~ + KH] · (66) 

The constant of integration can be chosen so that the central density will always have 
a prescribed value, Pc· Equation (66) evaluated at the center of the star becomes 

and K is therefore given by the expression 

K = a(n + l)p/1
" - u, + :. [ul - 2ct>, - a(n + l)p/1•u,] = K, + :. Ki. (67) 

Now it is possible to solve for p(x) by taking the nth power of equation (66) and 
dividing it by [a(n + l)]n, to get 

(x) = (H + Kl + (n/c2)(H + K)n-:- 1 A *(x) , 
P [a(n + IW (68) 

where 

A*(x) = 2<!> + ½H2 + W + 2w2 D.2 U - 4wDU<P + KH. (69) 

Finally, equation (68) can be brought into a more illuminating form: 

(x) = (H+ Ko?+ (n/c 2 )(H+ K0)n- 1(A* + K1 ) 

p [a(n + l)]n 

= [ :C/+ ~) n I + ;2 ( i;; : f.1

)] , 

p(x) = [H - U,a; ~nl; l)p/'T[1 + ;, A(x)] ' (70) 

where 

A(x) 

= 2(<!> - <I>c) + ½(H - Uc) 2 + W + a(n + I)p/1n(H - Uc) + 2wO(wDU - 2U<P) 
H + a(n + l)p/1n - Uc 

(71) 

The equation of hydrostatic equilibrium, which looked very complicated in the 
form of equation (37) , has thus been reduced to a simple algebraic equation which is, 
in principle, no more complicated than the analogous Newtonian equation (11). 
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c) The Potential Equations 

The system of equations described thus far contains a bewildering array of twelve 
potential functions: the six scalar functions U, U*, <D, B, W, and x, the three com­
ponents of the vector potential U, and the three components of the function Uµ. ;aµ. • 
Fortunately, this array can be decreased somewhat in size. 

The potential x will not be used, since it appears only in a time-dependent term of 
the metric. The potentials B and Ware easily expressed in integral form as 

B(w') - f'' wn2(w)dw, (72) 

(73) 

The functions U, U*, and <D can all be written formally in integral form: 

I d 3x 
U(x') = G Ix - x'I p(x)' (74) 

U*(x') = G f Ix d~\, I p*(x) ' (75) 

j
. ds 

<D(x') = G Ix _\,I p(x) cp(x) . (76) 

Since it will eventually be necessary to calculate these functions , the integrals should 
be written in forms more explicitly conducive to computation: 

U(w', z') = G f d:dz wp(w, z) J d<p(l - fJ cos <p)- 1
'
2 

Jco _ Jco wK(k) _ 
= 4G 

O 
dw _ co dz a(l + {3) 1 12 p(w, z), (77) 

U*( _, ') - 4G {cod- Jco d wK(k) *(- ) 
w ' z - • o w - co z a(l + fJ)l /2 P w, z ' (78) 

<D(w', z') = 4G {co dw J _coco dz a(t:(1)112 p(w, z) </>(w, z), (79) 

where K(k) is the complete elliptic integral of the first kind , and the functions a, {J, and 
k are defined by 

a(w, w', z - z') = [w2 + w'2 + (z - z')2 ]112
, 

/3( _ _, ') 2ww' 
w, w ' z - z = -2 -12 ( ')2' w +w + z-z 

k = 2/3/(1 + {J). 

It can be seen by rewriting equation (19) in the form 

\7 2 U = -41rGpv 

(80) 

(81) 

(82) 

(83) 
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that, because of the form of the velocity field, the only component of U with a non­
vanishing particular solution is U(J). Equation (83) can most easily be solved in Car­
tesian coordinates. Clearly 

'Viw, z) = U1(x1 = w, x 2 = 0, x3 = z), 

so that 

Uiw', z') = G J Ix d~\,
1 

O(w)x1p(x) 

= G J Ix d~\,
1 

wO(w) cos ((Jp(x) 

I I f 2n d'P cos 'P = G dwdzw20(w)p(x) -a 
O 

(I - /3 cos ({J ) 112 

2G f co Ico = -:-; dw dzQ(w)p(w, z)wa>..(/3), 
W O - co 

where 

>..(8) = (I + f3)-1l2K(k) - (I + fJ)ll2£(k) 

and E(k) is the complete elliptic integral of the second kind. 
The function Uµ;aµ will turn out to appear only in the form 

(84) 

(85) 

(86) 

(where this expression defines the new function A(J)). In view of expression (24), A(J) 
can be calculated as follows: 

A ( _, ') = GI p(x)vJx)xz(xµ - xµ') d 3 
(J) w' z I '13 X x-x 

= -'G J p(x)O(w)x22 d3 
w I '13 X x-x 

I 1 f zn: dcp sin 2 'P 
= w'G dwdzp(x)w 3Q(_w) a3 

0 

(I - /3 cos cp ) 312 

2G ra:) Ia:) 
= w' . 

0 
dw _ co dzQ(iu)p(w, z)wa>..(/3). 

Thus we have the pleasant result that 

(87) 

(88) 

and the total number of potentials that must be dealt with has been reduced to six. 

d) The Angular Momentum 

When an equilibrium configuration is constructed , it will be necessary to specify 
the angular velocity distribution. As Ostriker and Mark (I 968) point out, it is better 
to do this by specifying an angular momentum distribution than by giving the angular 
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velocity directly. In order to accomplish this, it will be necessary to have at hand an 
expression for the angular momentum. 

In light of expression (27), the angular momentum per unit coordinate volume about 
the z axis is 

J(w, z) = 121 = a.O.*(x1
2 + xl) + ; 2 [ ~

2 (U1 - Uµ.; 1 µ.) - ~1 (U2 _ , Uµ.; 2µ.) 

+ 4.0. U(xi2 + x 2
2) - 4(x2 U1 - X1 U2)] 

= aw2 .0.* + .!!__ [4w 2 .0.U - 4wU ] 
c2 (f) ' 

J(w, z) = W2pQ + ;, [ w4 Q 3 + 2w2QU + a(n + J)w2Qp11" 

+Ad: (w 2 .0.)(w.O.U - U(P)] 

= w2p.o. + ;2 [ w4.Q3 + w2.Q(B - Uc + a(n + l)p/'n) 

2 d ] + 3w2 .0.U + TI dw (w 2 £2)(w.O.U - U(P) , 

(89) 

(90) 

where use has been made of equation (70) in evaluating the term a(n + l)p/1n/c2 to 
order 1/c2

. 

Expression (90) can be converted to an angular momentum per unit rest mass if it 
is divided by the rest mass per unit coordinate volume. To this end, it can be noted 
from expression (30) that the space part of the metric is 

g a8 = - ( 1 + }2 U) () a8 , (91) 

so that the relationship between an element of proper volume, dV, and an element of 
coordinate volume, d 3 x, is 

dV = I + -!:!..__ + - U d 3x. ( 
-2.0,2 3 ) 
2c2 c2 

(92) 

Since pis a rest mass per· unit proper volume, dividing expression (90) by p, dV / d 3x 
yields an expression for the angular momentum per unit rest mass: 

j(W, z) = w'Q + ;, [ w;n' + w'Q(B - U, + a(n + l)p/1") 

+ ~ d: (w 2 .0.)(w.O.U - U(P)] = w2 .0.(w) + }2 r(w, z). (93) 

The most convenient way to specify the angular-velocity distribution is to specify 
the angular momentum per unit rest mass on the equatorial plane as a function of 
the fractional radius w/ R, where R is the value of u• on the surface of the model at the 



82 

equator. If this function is called j( w/ R), the function Q( w) can be found in the 
following manner. First calculate 

Q'(w) = J(wjf) ' 
w 

(94) 

which is in error only by a quantity of order l/c2 . Then calculate I'(w, z = 0) in 
terms of Q'(w). This r will also be in error by a quantity of order I/c2

, but (1/c2)I' will 
be accurate to the proper order. Then the expression 

D(w) = i(wjf) - 21-2 I'(w, z = 0) 
w cw 

(95) 

will also be correct to the proper order. This D(w) determines j(w, z) and D*(w, z) 
over the entire star through equations (93), (34), and (63). 

e) The Method of Constructing Models 

If the constants a and n in the equation of state (31 ), the central density Pc, and the 
angular momentum density j( w/ R) are specified, there is a unique equilibrium con­
figuration which is determined by the six equations (70), (77), (72), (73), (79), and (84) 
relating the rest-mass density distribution p and the five potentials U, B, W, <D, and 
U(f) . The rest-mass density distribution p(w, z) which satisfies this set of coupled equa­
tions can be found with the same kind of iterative method that was described in § II. 
First a guess is made for the function p(w, z), which is used in conjunction with D(w) 
[as determined from j(w/ R) through eq. (93)] to calculate the five potentials. These 
potentials are then used to calculate a new p through equation (70). At this point a 
convergence test is made by comparing the new p with the old p. If their difference is 
small enough , then .O*(w , z) is calculated through equations (34) and (63), and 
p(w , z) together with .O*(w , z) completely describes the equilibrium configuration. If 
the difference is too large, the new p is used to calculate a new set of potential func­
tions , and the cycle is started again. A flow chart illustrating the procedure is shown 
in figure I . 

Specif y n,a,pc, j (w / R) 

~--Cal cu lale !l (w ) 

Cal cul a1e U, 8 , W, U9-, ¢>, Uc, 4'c 

Calc ulate p (w. z ) 

Test for Convergence 

'-__ __, no yes 

p (w, z) and n*(w, z) 

Describe the Eauilib r ium Configuration 

FIG. I .- Fl ow diagram for t he iterative method of finding equilibrium configurat ions 
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f) The Mass and Binding Energies of a Mode/ 

Once an equilibrium configuration has been constructed, its mass and binding 
energies can be found. The total rest mass energy of a star (the energy of its con­
stituents when dispersed to infinity) is given by 

M0c
2 

= c2 J pdV = c2 J p( 1+ ~:~• + ;. U )d'x. (96) 

Expression (28) is an energy per unit coordinate volume, and includes ail of the energy 
of the system except for that which comes from the rest mass. Substituting into this 
expression the values of v2

, TI, and p* and contracting on repeated indices brings it 
into the form 

G: = ½ w2f'J.2p + anpl+l/n - ½U*p 

+ _!_ p[~w40 4 + .!...! w2 0 2 U + a(n + 1)w2 0 2p11n + 2anUp11n - U 2 - 2wnu<P]. 
c2 8 4 · 

(97) 

The total mass energy of the star, the mass which governs the Keplerian orbits of 
distant particles, is then 

Mc2 = J [pc2 (1 + w
202 

+ 
3

? U) + ~]d3x. (98) 2c2 c- J 

The binding energy of a star is defined as the difference between the rest mass energy 
and the total energy, and is given in this case by 

Eb = - J rid 3x. (99) 

V. THE GEOMETRICAL FEATURES OF THE ROTATION 

It was demonstrated in§ IVb that the angular velocity Q* must in general have a z 
dependence. In view of equation (93), the same is true of j , the angular momentum per 
unit rest mass. Since this indicates a possible qualitative departure from the situation 
in the Newtonian theory, it is of interest to take a closer look at the properties of the 
rotation. 

First, however, it may be noted that in the relativistic theory there is a third function 
of physical interest associated with the rotation. This is the function Q* - w, where 
w(w, z) is the angular velocity, as measured by an observer located at infinity, of the 
local nonrotating frame at the location (w, z) (Bardeen 1970). In the Newtonian theory, 
of course, the relativistic phenomenon of the dragging of inertial frames does not exist 
(gept = 0) , so that Q* - w is always the same as Q*. 

The function w can be found from the metric, and is equal to 

(100) 

In the present case the metric is given by equations (30), and can be written in cylin­
drical coordinates as 

ds 2 = (c2 - 2U + ~ U 2 - i <fl) dt 2 + '§...wu dr:pdt 
c2 c2 c 2 <P 

(101) 
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so that 

(102) 

The significance of this function is that any particle in orbit in the field described by 
the metric (101) has zero angular momentum about the z-axis if its trajectory satisfies 
the condition dr:p/dt = w, a fact which can easily be verified to order 1 /c2 by substituting 
Q* = w into equation (89) for the angular momentum. This means that if an observer 
at infinity were to throw a particle toward the w = 0 axis he would observe it to have 
an angular velocity of dr:p/dt = w(w, z) when its location was described by the coordin­
ates (w, z). 

Now, in order to compare the geometrical features of different functions , it will be 
necessary to have a method for describing the level surfaces of various functions of the 
form 

I 
A(w, z) = X(w) + 2 Y(w, z), 

C 
(103) 

where it will be assumed that 

A( w, z = 0) = X( w) . (104) 

It is possible to solve for that surface w(z) on which A(w, z) is constant and has the 
value A(w0 , z = 0) by writing 

' 1 
w(z) = w0 - 2 /(w, z), 

C 

where w(z = 0) = w0 , and evaluating expression (103) at the position [w(z), z]: 

1 ax I 1 ( 1) A(w0 , z = 0) = X(w 0 ) - 2 f(w 0 , z) ~ + 2 Y(w 0 , z) + 0 4 c uw w=wo c c 

From this equation and equalities (104) and (I 05) it follows that 

1 (axl )- 1 

w(z) = w0 - c2 Y(w 0 , z) ow _ _ • 
W=Wo 

(105) 

(106) 

(107) 

This derivation is valid only when the level surfaces of A differ from the level surfaces 
of w by small amounts, or when 

oA/oz < 0 (1-) . 
oA/ow - c2 (108) 

This method can now be used to find the level surfaces of O.*, } , and Q* - w. In 
the case of O*, it follows from expressions (34) and (65) that 

n*( _ ) _ n( _) 1 2 dQ ( _ n . ) 
!.I. w, Z - ~'- W + c2 Q dw W':.,U - u({) 

I 2 dQ [ ] + c2 TI dw wD.(U - U0 ) - (U<P - U({) 0 ) , (109) 
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where U0 and U(/) 0 are defined as U0 = U(w, z = 0) and U(/) 0 = Uiw, z = 0). These 
functions are introduced in order that the expression for O* comply with condition 
(103). According to equation (107), then, the level surfaces of O* are described by the 
function 

In the case of j, 

- w2n + }, [ w;n' + wD(B - U, + a(n + l)p/1") 

+A~ (w 2 D)(wDU0 - U(P 0)] 

(110) 

+ }2 Ad: (w 2 D)[wD(U - U0 ) - (U(P U(P 0)], (11 I) 

so that 

In view ?f expression (102), Q* - w is equal to 

D. (w z) - w(w z) = O(w) + - w - U - - - - - U , * _ _ _ 2 [ _ dQ ( I dD. 2) ] 
' ' c2 dw Q dw w (/J 

and 

(I 14) 

This particular expression is not valid for small values of dD. /dw, because when 
dD/w approaches zero the level surfaces of Q* - w approach the level surfaces of w , 
and this function does not satisfy condition (108). 

The behaviors of the functions (110), (112), and (114) are, of course, dependent on 
the properties of the coordinate system in which they are written, so that the functions 
themselves do not necessarily exhibit explicitly the physical behaviors of the surfaces. 
The surfaces should be compared with surfaces which are chosen for physical proper­
ties. To this end it is desirable to find the functions w(z) of surfaces whose int rin sic 
geometries are, in some sense, that of a cylinder. The only surfaces which qualify 
reasonably as" proper" cylinders, and are physically related to the system under con­
sideration, are those axisymmetric surfaces whose circumferences a re con stant as a 
function of z as measured by observers who are (I) stationary with respect to infinity, 
(2) rotating with drp/dt = w, (3) rotating with dcp/dt = D.*, or ( 4) rotating with dcp/dt = 
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D* - w. In the case of the stationary observer, it is clear from the metric (101) that 
the proper circumference of a circle about the z-axis is equal to 

(115) 

so that surfaces of constant C are described by the function 

(116) 

For an observer rotating with some dcp/dt -/= 0, the circumference is related to expres­
sion (115) through the usual special relativistic transformation: 

C(w, z) = 21rw(l + U/c2)(1 - v2/c2
)-

112 

= 21rw(1 + ~)( 1 + w2(~~dt)2) 

= 2 -( 1 !!_ w2(dcp/dt)2) . 
1TW + 2 + 2 2 C C 

(117) 

When dcp/dt = w = 4U(/)/wc2, expression (115) is unchanged to order l/c2
, and there­

fore the surfaces of constant circumference are given by the function (116). When 
dcp/dt = D* or D* - w, 

C(w, z) = 21rw(I + U/c2 + w2D* 2/2c2
) + O(l/c4

), 

and the level surfaces are 

w(z) = w,[ I - ; 2 (U - U0) - ~;: (Q*2 
- n0*2

)] 

= + -~ (U - U,)] + o(:,), 
equal once again to expression (116). 

(118) 

(119) 

The surface (I 16) is not the same as either of the surfaces (110), (112), or (114), so 
that, in contrast to the situation which occurs for rotating polytropes in the Newtonian 
theory, the level surfaces of the functions describing the rotation in the relativistic 
theory are not surfaces which can be called cylinders in any nice physical sense. 

Another interesting consequence of the a bove derivations is the fact that in equi­
librium configurations the surfaces of constant angular momentum per unit rest mass 
coincide with the surfaces of constant angular velocity dcp/dt = D* (since the functions 
[110] and [l 12] descri bing these surfaces are the same). This is not true, of course, for 
arbitrary, nonequilibrium di stributions of angular velocity . This result may be slightly 
surprising , since an intuitive guess might have been more likely to associate the level 
surfaces of j with the level surfaces of D* - w , if with anything at all, because it is 
the quantity D* - w , rather than D*, which is the physicall y signi fica nt local quantity. 
On the other hand, the angu lar mom entum is a global qu antity, so it is not u nreason­
able that it should be associated in some way with the global qua ntity D*. 

Although it has been demon strated here to be true only in the post-Newtonia n 
approximation , it is tempting to conjecture that the coincidence of the level surfaces 
of j and D* may also be true for pol ytropes in the full theory of general relativity . This 
seems likely beca use the post-Newtonian approximation already includes, to the order 
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to which it is accurate, all of the physical effects, such as the dragging of inertial frames, 
which are important in relativistic, stationary, axisymmetric systems and do not appear 
in the Newtonian treatment. 

VI. THE DOMAIN OF V ALIDlTY OF THE APPROXIMATION 

Since the post-Newtonian approximation is an approximation, it is important to 
know something about the conditions under which it is a good approximation to 
general relativity. For nonrotating stellar configurations, the important parameter in 
the expansion that is used to find the post-Newtonian equations is the parameter 
U/c2

• The errors in this approximation would then be expected to go as the next higher 
order terms (the post-post-Newtonian terms) in the expansion, or as (U/c2)2. This 
parameter is largest at the center of the star, where it is of the order of 

(120) 

(for an n = 3 polytrope; slightly less when n < 3). If the radius of a star is m 
Schwarzschild radii, 

then the error should go as 

2GM R=m-2-, 
C 

(121) 

(122) 

which is quite small even for reasonably small radii (I percent for m = 20, 4 percent 
form = 10). 

When rotation is added, the relevant parameter is v2/c2
. The error in the rotational 

terms should then go as (v2/c2)2. The maximum angular velocity which can occur on 
the surface of the star at the equator is no larger than the angular velocity for which 
rotational shedding will occur, 

0 2 ~ GM/R3
, (123) 

so that on the surface at the equator the error goes at most as 

(
v
2)2 ~ (GM) 2. 

c2 c2R 
(124) 

This is smaller than expression (I 20), so that whenever the post-Newtonian approxi­
mation is good for a nonrotating star it will be good for a rotating star with the same 
approximate parameter m whose angular velocity is arbitrarily high on its surface at 
the equator, a nd whose angular velocity doesn't increase toward the axis of rotation 
faster than Q ~ 1 /w (since v2 = w2 0 2

). Care must be exercised when the angular 
velocity increases faster than this. 

VII. A METHOD OF CALCULATION 

The calculations which are necessary in order to execute the program described in 
§ IV can be done numerically on the computer. The following is a brief outline of one 
method of doing the calculations. Thi s is a very straightforward treatment. It works 
quite well, alth ough it requires careful programing in order to minimize the necessary 
computer storage space. 

The stell ar model wi ll have an axis of rotation coinciding with the z-axis , and its 
equatorial plane will correspond to the plane z = 0. Since the system is symmetrical 
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with respect to reflections through the equatorial plane, it will be necessary to record 
the values of functions only in the region w ~ 0, z ~ 0. This region can be divided 
into a grid of mesh points extending far enough away from thew- and z-axes to contain 
the model completely and to allow for the changes of size and shape which will occur 
during the iterative process. Functions can then be represented in the form 

/(/, J) = f( w = I, z = J) , (125) 

where the indices I and J are integers which vary from O to maximum values of M 
and N, respectively, and where lengths are expressed in dimensionless form for 
convenience. 

The one-dimensional integrals (72) and (73) for B(w) and W(w) can then be done 
with the usual Simpson's rule method, 

I 

B(I) = 2 A(L)LD.2(L), (126) 
L=O 

I 

W(I) = 2 A(L)L3D.4(L) , (127) 
L=O 

with the coefficients A(L) appropriately chosen. Integrals over both w and z, such as 
the integral (99) for the binding energy, can be done with a two-dimensional equivalent 
of the Simpson's rule, 

J 
M N 

dwdzf(w, z) = 
1
~ ,~ AA(/, J)f(I, J) , (128) 

with appropriate coefficients AA(/, J). 
In order to do the integrals for U, U*, <I>, and U<P, define the arrays 

C(l, J, L) = 4GJK(k)/a(I + f3) 1
'
2 (129) 

and 

D(I, J, L) = 2GJa>-.(f3)/J, (130) 

where k, a, {3, and >-.({3) are the functions defined in § IV c, and are evaluated at w = I, 
w' = J, and z - z' = L. If there were no singularities in the integrands of integrals (77) 
and (84), the potentials V and U<P could be written in the forms 

M N 

U(l, J) = 2 2 AA(K, L)[ C(J, K, I J - LI) 
K=OL=O 

+ C(J, K, J + L)]p(K, L), (131) 

I= 0, 

M N 

= I 2 AA(K, L)[D(I, K, IJ - LI)+ D(J, K,, + L)] 
K=O L=O 

x D.(K)p(K, L) , I> 0, (132) 

where the integral for U<P has been written in terms of D. rather than D.* because U({) 
always appears with a coefficient of 1/c2

• Since there is one p ole in each integral , when 
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I = Kand J = L, the contributions to the above sums corresponding to the integrals 
over the squares in the (w, z)-plane whose corners are K = I ± I, L = J ± 1 can be 
dropped, and the integrals U' and U/ over these regions can be done separately: 

U' = p(l,J)F(I), 

Uc/ = p(l, J)Q.(I)G(I) , 

where F(J) and G(/) are _the values of the integrals 

J
l+l I 1 J21t 

F(I) = 4G wdw dz dcp/(1 2 + w2 + z2 
- 2/w cos cp) 112 

, 

/-1 -1 0 

2G Jl+l Jl J21t di cos 
G(I) = -1 wdw dz (/2 _ 2 cp2 ;1,- )1,2 , 

/ - l - 1 o + W + Z - W cos <p 
I> 0, 

(133) 

(134) 

(135) 

(136) 

which can be calculated numerically once and for all, and the approximation is made 
in writing in equations (133) and (134) that, over the regions involved, the values of 
p and Q. are constant and equal to their values at the locations of the singularities. 

The integrals for <D and U* are calculated by replacing p(l, J) by p(I, J)ef>(/, J) 
and p*(/, J), respectively, in equations (131) and (133). 
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PART FOUR 

THE POST-NEWTONIAN STRUCTURE OF 

BARYTROPIC STARS 
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I. INTRODUCTION 

It has been shown (Seguin 1974, "paper I") that convective stabil­

ity in non-magnetic, differentially rotating relativistic stars requires 

that the stellar fluid be barytropic (P = P[e], where Pis the pressure 

and f is the total density of mass-energy as measured in the rest frame 

of the fluid) whenever either thermal conductivity or viscosity is more 

efficient than the other by a large margin. It is therefore of interest 

to have at hand a scheme for constructing relativistic, barytropic 

stellar models. Seguin (1973, "paper II") has exhibited a scheme for 

constructing post-Newtonian models of differentially rotating, isentropic 

stars in which the pressure depends on the density of rest mass as meas­

ured in the fluid rest frame, p, through the polytropic relation 

p 1 + 1/n 
a p ( 1) 

where a and n are constants. Fluids with this property are a subclass of 

the class of barytropic fluids. The same formalism can be extended to 

cover the completely general barytropic fluid. In this paper we will do 

just that, changing the notation of paper II slightly in order to make 

the connection between the post-Newtonian equations and the fully rela­

tivistic equations of paper I more clear. 

An appendix closes this paper by deriving the post-Newtonian hydro­

dynamic equilibrium equation directly from the fully relativistic equa­

tion and the post-Newtonian metric. The result is the same as the equa­

tion derived from Chandrasekhar's post-Newtonian hydrodynamic equilibrium 

equation, indicating consistency in the post-Newtonian formalism. 
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II. THE GEOMETRY 

We will assume that the geometry of space-time in the vicinity 

of our axisymmetric, stationary stellar model can be described by 

the asymptotically flat ("at infinity") metric whose line element 

is 

2 2v 2 2 21/1 2 2µ 2 2 
ds = - e c dt + e (d¢ - wcdt) + e (dr + dz ) , (2) 

where tis the coordinate time and r, z, and¢ are polar cylindrical 

spatial coordinates. For computational purposes, it is convenient 

to re-express several of the metric coefficients in the fonns 

and 

2v 
e 

2t/, 
e = 

2µ 
e 

1 - ~ 2 
+ g_ (U2 

4 
C C 

r 2 (1 2 
+ - U) 2 , 

1 + _g U 
2 

C 

C 

- 2</>) , 

(paper II), and to calculate U, ii!, and w by using the integral fonns 

of the post-Newtonian limits of the Einstein field equations as 

derived by Chandrasekhar (19 65). Under the present circumstances 

these equations can be written in the fonns 

</)(r', z') 

U(r', z') 

CD 

rdrJ 
-CD 

CD CD 

4G 1 rdrf dz K(k) P 
o -CD O'. (l + /3 )1/2 

dz K(k) c/n 2 + U + 
o: (l + /3 ) 1/2 

€ + 3P 
2 P 

(3) 

(4) 

(5) 

( 6 ) 

(7) 
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and 

w(r'., z') 
8G m m ~1 rdr1 dz0'.A(/3)p!1 

r c o -m 
., 

where G is the Newtonian gravitational constant., Dis the angular 

velocity a9/dt of a fluid element in the star as seen by an observer 

"at infinity.," K(k) and E(k) are the complete elliptic integrals of 

the first and second kinds., respectively., and ex., (3., k., and .i\ are 

defined as 

[ 
2 2 2] 1/2 cx(r., r'., z - z') - _r + r' + (z - z') . ., 

2rr' 
(3(r., r'., z - z') = _________ _ 

2 2 2 
r + r' + (z - z') 

k(/3) - 213/(1 + /3)., 

and 

( see paper II). 

(8) 

(9) 

(10) 

(11) 

(12) 
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III. THE FLUID MOTION 

The rotational velocity of a fluid element in the stellar model 

that would be measured by a local observer with zero angular momentum 

(d</-1/'dt = w) is 

V 

(Bardeen 1970), which, to post-Newtonian accuracy, is 

V 
2 

r(fl - <W) (1 + -
2
U). 

C 

The four velocity of a fluid element has contravariant components 

and covariant components 

[ 2v w u - e + c2c.n 0 

2tp 
U¢ = e ( f2 

u 
r 

u 
z 

o, 

- (J.J) u 0 

0 

210 1 
1 - .!_r2n 2) - w) e U = - + - (U , 

2 2 
C 

r 2 (n - w) [1 1 
+ ½r2 02)] + -

2
(3U , 

C 

(13) 

(14) . 

(15) 

(15) 

(1 6 ) 

where all terms beyond the post-Newtonian terms have been dropped (as 

they will be from this point onward). The angular momentum per unit 

rest mass in the stellar fluid is 
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, (17) 

while the geometrical angular momentum (see paper I) is 

2 4 
r CO -w)(l +~) (18) 

C 
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IV. THE EQUATION OF HYDRODYNAMIC EQUILIBRIUM 

Chandrasekhar (1965) has derived the relativistic equations of 

at3 . 
motion T ;t3 = 0 for a perfect fluid in the post-Newtonian approximation. 

The spatial components of this equation can be specialized to describe 

the time-independent system under consideration here and written 

A 2[ E + p 1 2 2 ] - r r O 
2 

+ 2 ( r fl + 2U) 
pc C 

E + p 
2 

pc 

4 2 A 2 
2 r n u r + nvr w = 0 
C 

(19) 

(by combining equations 35J 3 6J 37J 39J 40J 41J and 102 of paper II and 

using the fact thatJ in the notation of that paper, E = 2 
p(c + fl), 

where the gradient operator V is the simple (not covariant) gradient 

operator in the r, z, ¢ three-space. If we now combine terms in equation 

(19), multiply through be the quantity 1 - 2U/c
2

, and divide by the 

quantity (E + P)/ pc
2 

= 1 + fl(l/c
2

)J we obtain 

2 
_c_ V P -
E + p 

2 
r wn 

- i r n2
c1 + 1 r 2n 2 ) + r

2
(-w + ~ Uu)VO 

C C 

0 (20) 
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V. SOLUTIONS FOR BARYTROPIC FLUIDS 

In the Newtonian approximation, the level surfaces of · Q always 

coincide with the surfaces of constant r in barytropic equilibrium 

configurations (von Zeipel 1924). It is safe to assume, then, that 

post-Newtonian barytropic equilibrium configurations will have level 

surfaces of D which deviate only slightly from surfaces of constant 

r in such a way that it will be possible to write 

2 --2 1 2 
Q (r, z) = Q (r) + -

2
h (r, z) , 

C 

where the function h(r, z) must be found. If we substitute equation 

( 21 ) into equation ( 20 ), we find that the equation of hydro-

dynamic equilibrium can be written 

le c: p v' P - v' [ B + U - r 2 
w Q + ) (W + 2 <f> + 2r

2 
Q 2u)] 

- 1 [r
2 

w 0.,r + )(rh
2 

- 4r
2
u 0.0.,r)] 0 

' 

where we have introduced the definitions 

rr """2 
B ( r) = Jo r I n ( r I ) d r I 

and 

rr 3 ,..,4 
W ( r) = j O r I f! ( r 1 

) dr 1 

Now let us restrict ourselves to fluid distributions in which 

(21) 

(22) 

(23) 

(24) 

p = P( E ). Once this pressure dependence has been specified, it will be 

possible to write 2 
_c_ v p 
E + p 

VF (P) ( 25 ) 
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where Fis some function of P only. Substituting equation (25) into 

equation (22), we find 

- ) (W + 2 ,P + 2r
2 0 2il)] 

- 4ru O O, r)] O 

This equation has a solution only if 

which can be true only if 

C 

= 0 

( \ u n - w )r n,r + f (r) 
C 

(26) 

(27) 

(28) 

where f is some function of r only. But if f is a function of r only, 
,.J 

it is possible to formally absorb it into the function n (r) in equation 

(21) and to equate it to zero in equation (28). Equation (26) can then 

be integrated to yield a simple algebraic equation: 

2 
F (P) - U - B + r w [2 0 (29) 

where C is a constant of integration. 

Once a barytropic pressure dependence has been specified, it should 

be possible to use the integrated equation of hydrodynamic equilibrium 

(29) to gether with the machinery described in paper II to construct, 

numerically, equilibrium configurations to model relativistic stars. 
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APPENDIX 

ALTERNATIVE DERIVATION OF THE HYDRODYNAMIC EQUILIBRIUM EQUATION 

The fully relativistic hydrodynamic equilibrium equation for 

stationary, axisyrrrrnetric stellar models can be written 

-1 0 0 
( € + P) VP + u U¢VO - V(£n u ) 0 

(paper I, equation 26). If we evaluate the second and third terms in 

this equation in terms of the fully relativistic metric potentials . 

(with the help of equations 15 and 16) and then substitute the post-

(Al) 

Newtonian limits of the metric potentials from equations (3), (4), and 

(5), we find 

2 
= C VP - vu - _g_V<I> 

€ + p 2 
C 

I\ [ ( ) 2 4 n 2 --+- cl
2 

r3 n 4] r r O - w + c2 r HU , u 

- ~ r0
2

(1 + +2 
0

2
) + r

2
(- w + ~OU)VO 0 (A2) 

C C 

which is identical to the post-Newtonian equation (20). 
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