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ABSTRACT

The singﬁlarity method for Stokes flow is used to examine the
flow past slender bodies possessing finite centerline curvature, in a
viscous, incompreséible fluid without any appreciable inertia effects.
The motion of a slender toroidal ring in Stokes flow is ;onsidered
first. The symmetry of the geometry and absence of ends has made
an accurate analysis possible; the result of this ﬁroblem elucidates
the general flow characteristics present for bodies moving in an arbi-
trary manner with a finite centerline curvature. Using the methods
developed here it is possible to calculate the force/length to higher
orders in the slenderness parameter, e, than has previously been
possible. In particular, we find the Stokeslet strength with an error
6f Ofe 2). The solution of the torus problem serves as an effective
guide in extending the theory to slender bodies of circular cross
section with arbitrary centerline configurations and spheroidal ends.
In all the cases considered, the no-slip boundary condition is satisfied
by distributing appropriate Stokeslets, doublets, rotlets, sources,
stresslets, and quadrupoles on the body centérline up to an error term
of Olfe 2 lne), which is sufficient for practical application. From the
general slender body analysis we find an integral equation which deter-
mines the Stokeslet strength up to the term of Ofe 2). The general
theory is then applied to examine the propulsion of flagellated micro-
organisms, including an approximate solution for the interaction

between cell body and flagella. A final brief note is made on the thrust

enhancing capabilities of oscillating non-spherical cell bodies.
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1. INTRODUCTION

The hydr(omechanics of slender body theory in the Stokes flow
regime plays a fundameﬁtal role in the study of micro-organism
locomotion, sedimentation, aerosol physics, and many other areas
of biophysics and geophysics. In recent years this are; of fluid
mechanics has received considerable attention (Tuck, 1964; Cox,
1970; Tillett, 1970; Batchelor, 1970; Keller & Rubinow, 1976).

Yet most of the available literature consider only bodies with straight
centerlines. Those few authors examining the general case account
only for the lowest order_ effects of body-centerline curvature and
exclude ahy consideration 6f body ends.

Here we will construct solutions to bodies of circular cross
section by distributing flow singularities along the body centerline.
We restrict our attention to bodies whose cross-sectional radius, b,
is small compared to its length, 24, and its radius of centerline
curvature, 1/k. The velocity field is obtained in a neighborhood of
the body surface as an expansion in the slenderness parameter,
¢ = b/4. Application of the no-slip boundar# condition produces a
set of simultaneous integral equations for the Stokeslet strength. In
the previous theories the method of matched asymptotic expansions
has been applied to determine the force/length, or equivalently the
Stokeslet strength as a series in (lne)—n , n = 1,2,...

Because of the analytical complexity, however, only the first two or
three terms have been obtained. Solution of the integral equations
found here has higher accuracy, as we are able to calculate the

Stokeslet strength up to an error of Ofe 2). In order to achieve this
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' accuracy numerical computation is in general required. However,
for the special case of a slender toroidal ring, which is character-
ized by its unique rotational symmetry and lack of ends, a completely
analyﬁc énalysis is possible. This spendid example will serve as a
guide in constructing the solution to the general case. A

It may be pointed out here that in all of the existing theories
for slender bodies with a curved centerline moving in Stokes flow,
the local curvature effect has been neglected as an approximation,
but this effect will be accounted for here. For example, Cox's inner
expansion is, at the order of approximation found there, simply the
solution for flow past a étraight circular cylinder. This 'is also true
for the analysis of Keller & Rubinow. By satisfying the boundary
condition to higher orders in the slenderness parameter we will
correct thé solution for the effect of local body curvature. The
boundary condition will in fact be satisfied neglecting Ofe 21ne) by
using appropriate distributions of Stokeslets, doublets, rotlets,
sources, stresslets, and quadrupoles. Furthermore, the boundary
conditions will be satisfied at the body ends provided the body has a
spheroidal cross section near the ends.

Our investigation will begin in Chaptér IT with a study of the
arbitrary motion of a torus. The linearity of the Stokes equations
allows us to divide the arbitrary motion of torus into five fundamental
problems: a translation along and a translation perpendicular to the
generating or longitudinal axis, a rotation about an axis perpendicular
to the lo.ngitudinal axis and intersecting the torus centerline, a rota-

tion about the longitudinal axis, and a torus in a radial flow. At the
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i outset of this study an elementary discussion will be pre sentéd de -
scribing the various methods available for expanding the integrals
that result from using the singularity method.

In Chapter III we consider an extension of the methods devel-
oped for the torus problem to arbitrary slender bodies. We shall
first consider bodies with circular cross sections along a curved
centerline and with cross-sectional area satisfying a spheroidal
distribution, and then proceed to consider bodies with cross sections
that need only be spheroidal in the vicinity of the ends. Chapter III
is then concluded with an application to the flow past a partial torus.

The final chaptef is addressed to the important problem of
flagellar hydromechanics by applying.the present theory to a flagel-
lum performing a prescribed planar motion of finite amplitude. Data

are chosen for the spermatoza of Chaetopterus and oyster, for which

comparisons are made between the present slender body theory and
the classical theories. The interaction between cell body and flagel-
lum is further evaluated in an approximate sense, ‘for the special
case of spherical bodies, by applying the method introduced by
Burgers (1938). The chapter is then concluded with a brief study of
the thrust enhancement that can be achieved by organismsb which have
non-spherical cell bodies that oscillate in the direction transverse to

the direction of propulsion.
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1L STOKES FIL.OW PAST A SLENDER TORUS

The torus is chosen for the primary investigation of the
body-centerline -curvature effects in Stokes flow because it pos-
sesses two desirable features. First, it has a constant finite
curvafure since the radius of the centerline, or major radius, is
comparable to the total body length. Second, it has no ends.
These two characteristics along with the body symmetry render
the problem tractable by analytical methods. This example will
provide valuable information that proves to be enlightening in
constructing the solution_ for the general case.

Figure (2. 1. 1) shows the torus and the coordinates to be
used. It is assumed henceforth that the cross-sectional radius,‘ b,
is small compared with the’ major radius a, i.e., ¢ = bfa « 1.

The governing equations for the Stokes flow and boundary

conditions are

2
Vp = pVu
V-u=0
a=U  (xon S,
'_u;->0 as X = o

where u is the velocity field, p the pressure, U the velocity of
the body and Sb the body surface. The solution will be constructed
by applying the method of singularities which was extensively
studied for bodies which are not necessarily slender by Chwang &

Wu (1974, 1975).
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- 2.1 A torus in translation along its longitudinal axis

We consider a torus moving with velocity U along its
longitudinal axis which is taken to be the z-axis in a cylindrical
coordinate system (r, 0, z). Motivatéd by the results available for
slender bodies with straight centerlines we represent the flow
field, as a first approkimation, by a distribution of Stokeslets and
doublets directed parallel to the z-axis, along the body centerline

r = a. The velocity at 6 = 6'is given by

oM 2w
4 = Y + Uh © S‘ {HS(Big) + HD(B;E)} adf |
o

where the fundamental Stokeslet and doublet are given respectively

by
¢ (e -RR
Ug ==t
R R
(2.1.1)
B 38 BR
U, = — =« ——
DR R>
R =x -£=(rcos@'-acosfle_+(rsinf'-asinfle_+ ze ,
R = IBI = (r2+a2+zz-2arcos<p)1/2 ,
¢ = o - 9':
(see figures 2. 1.1 and 2. 1. 2).
The no-slip boundary condition u = US_Z on r, = b,
where r, = [(r—a)2 + 22]1/2’ will produce an integral equation

for the Stokeslet strength 2 (6) and the doublet strength [3(6).

However, from the flow symmetry we assume a priori that
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2 = agz and f = pg‘z where a,f arc constants. This assump-
tion will in fact be verificd a posteriori when the boundary condi-
tion is satisfied.
In terms of the unit vectors g_'r, e_'e, e, at 8 = ' (see

figures' 2. 1. 1 and 2. 1. 2) we may write
- - | 3 ! . .
R = (r acosqo)gr a31n<p_e__9+zg_z (2. 1. 2)

Furthermore, by introducing the curvilinear orthogonal coordinate

system (rl, 0,y) defined by (see figures 2. 1.1 and 2. 1. 2)

x = rcos® = (a+rycosy)cos b
y = rsinf = (a+r1 cos ) sin 6
z = T4 siny

we havé

1/2

R = [2a2(1+rl/a cos Y)(1 - cos <p)+r§ ] (2. 1',3)

This first torus problem will be examined in detail in order that
the methods are fully presented; however, in the remaining exam-
ples much of the tedious analysis will be curtailed.

We next attempt to integrate equation (2. 1. 1) and apply the
boundary coandition bn ry = b. Before doing so, it is appropriate
first to discuss more generally the methods available. For the
special case of a torus, where it is possible to presuppose the
functional form of the singularity distributions, the integrals may
be expressed in terms of complete elliptic integrals, as was shown

by Wu & Yates (1976) for the analogous potential flow problem.
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The well-known asymptotic expansions can then be used to evaluate
the velocity on ‘rl = b. However for the general case where the
functional forms of the singularity distributions are not known a

priori, a more general approach is needed, as will be discussed

P

below.
For the torus problem it is sufficient to consider the inte -
gral
Q'+2m
B f(6)de ' '
I = g R , (2. 1. 4)
e'

where R is given in (2. 1.3) and f(@) is continuously differenti-
able for as many times as necessary. Similar integrals arising
for the torus problems and those to be found when considering the
general slender body case can be evaluated by following the same
basic procedure as that to be developed here. The objective is to
expand the integrand in equation (2. 1. 4) in a neighborhood of the
body surface, i.e., Ty «a, with the resulting expansion being
easily integrated termwise. The method is essentially a general-
ization of that used by Handelsman & Keller (1967), and Tillett
(1970) for axisymmetric slender bodies.

The integral above can be rewritten as

-1/2 (7 £(0'+9) + £(0'-9)

I = |
ax) \/E(l - cos (p)+r%/ar

do (2. 1. 5)

where r =a + rycos § . In the neighborhood of the torus surface,
rl/a = Of(e) and r?/ar = Ofe Z). Consequently, if f(8) is a

sufficiently smooth function of O(1l), we clearly see that the
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‘integrand is of order e—l at ¢ = 0 and decreases monotonically and
rather rapidly to O(1) when ¢ moves away from ¢ = 0. We note
that the two terms in the square root, namely 1 - cos¢ and r?/ar,
become of the same order when ¢ is of O(e). This suggests that we
construct an inner expansion of the integrand near @ = ;) and an

outer expansion for ¢ = O(1). For this purpose we introduce the

inner or stretched variable

o = ¢ole , (2. 1. 6)

for expansion of the integrand in the 'inner region' near ¢ = 0. We
can then construct a uniformly valid or composite' expansion from the
inner expansion about ¢ = 0 and the outer expansion for ¢ = O(1),
using the standard fnethods of perturbation theory (Kaplun, 1967;
Van Dyke, 1975; Cole, 1968). |

For convenience we define

h((p, 6';¢) = f(9'+§9)+f(9"90)

= , (2.1.7)
[2(1 - cosg) +ezn2]1/2

where GZnZ = r?/ar. The inner expansion of h to n terms is then
given for ¢ - 0, holding o fixed, by
(1) ‘ n-1
E'h = lim h(eo,0%¢) = = p.(c)h.(o, 6') |
n 0 b j j
€ —> j=o
a fixed

where the coefficients pj(e) form an asymptotic sequence of functions

such that

bpe1le) = 9(“'n(e)) as ¢ =~ 0
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For ¢ —+ 0, with ¢ held fixed, we express the outer expansion of h

up to n terms as

(o) n-1

E°'h = lim  hig;0',¢)= = v.e)gle:0")
«e>0 j=o J
¢ fixed §

where vj(e) form another asymptotic sequence of funcfions, namely
vj+1(e) = 0'(vj(e })) as € -+ 0. In our case we will in fact find

Mj(e) = EZj—l, vj(e) = er, by virtue of h being even in ¢. The uni-
formly valid expansion is then formed in the usual Iﬁanner and is

given by

% = gty 4 glody o g gloy (2. 1. 8)
n n n n n

The last term represents an inner expansion and outer expansion
operated on h in succession, regardless of order, and is often
referred to as the common-part expansion. This uniformly valid
expansion as the name implies, holds uniformly for 0 ¢ £ 7, with
error of order EZn-I. Substituting (2. 1. 8) into (2. 1. 5) then allqws
termwise integration, resulting in an asymptbtic expansion for I as
¢ -+ 0. We note that the integration will modify the error of the final
result.

The algebra involved in this method is quite complex but can
be reduced for the case of a torus, where the body shape has no ends,
by following a somewhat simplified procedure. We write the integral

I as follows

2n-~1

Y T
I = (ar)-llz{g £ hdg +§ £°hdp + 0(c*7 1},
(o]

Y
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.With y chosen tobe ¢ « y «w. A particularly useful choice is to
restrict vy to O(l)‘> O(yz) > O(e) . The above integration procedurc
is justified by considering the uniformly valid expansion of h. We

regroup the terms in (2. 1. 8) as follows,

Eif)h = Efﬂi’h + Rs)h 0 ¢ £Y)
= E;O)h + Rflo)h (y< o <)
where
R(i)h _ E(o)(h _ E(i)h) ’
n n n

n n n

We observe that both 'residual expansion' R;l)h and Rg))'h are of

O(EZn-l

) in their respective regions of ¢, when the inner and outer
regions overlap. It therefore follows that

U

™ L
S hdg = S Ef;’hdq, + g (h - _Eﬁf)h)dga

o o - o

2n-1
€

Y T
- 5 EDn + 2 Mn)dg +g & + =)y + O )
o Y

W

Y
:S Eill)hdq) +S E;O)hdcp +o(e2P 1y

o Y

This method also implies that the resulting expansion of I will not
involve vy, provided it is appropriately chosen so that the regions
overlap. This process will be employed in expanding the integrals

encountered for various motions of a torus. Later, for the general
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'case, it will be necessary to employ the general uniformly valid ex-
pansion procedure in order to construct solutions valid everywhere,
including the body ends. Another comment in order is that the above
method enables one to distinguish between short and long range
contributions to the velocity field, whereas the elliptic‘integral
technique does not readily offer such physical information about the
solution,

Returning now to the motion of a torus we separate equation

(2. 1. 1) as just discussed
6+2m -y 6+y
u = gl (I_JS+-_[_ID)ad9 + g (I_JS + _[_L[D)ade ) (2. 1.9)
Oy o'~y

With respect to the region of integration in the above two integrals we
will refer to them as follows: the first will be called the far-field
singularity distribution and the second the near-field singularity
distribution.

The outer and inner expansions of R in terms of ¢ are
respectively given by

~2

R = J2a(l+c coqu)l/z(l - cos¢)1/2{1'+O(T_ic——o—-S—;)} ,
(2. 1. 10)
for y < ¢ < 2w~y
4 4 6
R = aa{l -—‘P—Z + 0(55‘12—, S‘lz)} , (2. 1. 11)
24A A A

for -y < ¢ <y

where < = rl/a, A=[(1+ ?COSLV)‘PZ'F:Z]I/Z'
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‘We retain the actual form of the error terms in order to obtain an
accurate final error estimate, since the integration, as already
mentioned, will modify that error.
In satisfying the boundary condition on the torus we will always

consider the three components of velocity at GA: ' in a cylindrical

coordinate system, namely

u = u- Slr (radial coinpon'ent)
v = u- 9_'9 (tangential component) (2. 1. 12)
W= u-e (axial component)

By examining the far-field singularity vdistribution, or equiva-
lently the outer e‘xpansion‘, we observe that up to an error of
Ole Zln ¢), the contribution to the velocity field from the far-field
doublet distribution can be neglected. In fact, the integrand of the
doublet in the outer expansion is proportional to B/a3, we easily see
then that its contribution to the velocity in the near field will be, upon
integration, of order ﬁ/az. If we expect the‘doublet strength to
leading order to be the same as found for a straight slender spheroid
(as will be verified later), namely B = abz/Z, we can then conclude
that this contribution to the velocity will be Ofae 2). Therefore the
far-field doublet distribution may be neglected. Actual integration of
the far-field doublet is straightforward and the result confirms our
expectation that the far-field doublet contribution to the velocity field

is of Ofae 2)., Equation (2. 1. 9) then becomes
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Ty Y
2
u = S l Esad¢ +§ (I_JS + _L_TD)adcp + O(ae ™) . (2.1.13)
Y -Y '
We first consider the velocity field induced by the Stokeslet
distribution, U S For the near field, the inner expansion of R,

which is simply the expansion for small ¢, is given in terms of the

(rl, 8,¢) coordinate system and the unit vectors (e e 6’—7) at

9=6 by
i~ 2, 4 3 5. .~
R = a{(e cosy+¢“/2 + Ofp )el. - (¢ - @16+ O(yp ))g’e+e s1n¢gz},

(2. 1. 14)

Using this and equation (2. 1. 11) in ES given in (2. 1. 1), and re-

calling that for this case a = ae , we find the inner expansion to be,
(1) ‘P4 + O(:¢4 6)] + [(€cosy+e 2/2
aA 24A2 2 2 2 3
9045 (- ¢/6+O(¢ ))e! +e s1n¢e (1 +0O( 2-—))
A

The velocity components of the in‘cegré.l of this near-field
Stokeslet (which is the first part of the second integral in equation
2.1.13), when expressed in the cylindrical coordinates as (u, v, w),
at 6 =6' are given by (after using the integrals defined in Appendix

A and noting that odd functions of ¢ integrate to zero),



1~
—"2"6

1
7

1

2a siny {cosy + e ln Zy/? (1 +cosz¢)~} O(ezlne )},

. ]
[ 2!

= 0 ,

n

-

2

—

[ ey

~
I

we Za{(l—-z-e cosy)ln 2Y/€+'Z'C°s‘p+7{§¥’

1~
€

+ sin2¢(1 -5 cosy) + O(ezlne)} .

The outer expansion of the Stokeslet distribution is given,
using equations (2. 1. 10) and (2. 1. 1), by
ae ' azR ~2
——-Z ——

+ . H1+O(———)),
172 a3c3(1-cos¢)3/2 . l-cosg

(0)
U, = {
=3 ac(l-cosg)

where c =J2(1 +% cos\p)ll2

and R is given in equation (2. 1. 2). Using the integrals in Appendix

A, and again noting that odd functions of ¢ give zero, we have

u(So) = a{sinq)?lné— + O(ez)} s
V(SO) = 0 »

~

(o) € 4 1 2
wg 2a{(1 -zcos¢)1ny-48 \

£ O(e%1n )}

Combining the velocity fields at 8 = 6' due to both Stokeslets

gives the following result, which is independent of y as expected.
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ug "= asiny{2cosy +e In % - e(l+ cosz¢)+ Ole 21n e)}
‘ €
Vg * o,
w = Za{(l-’:co&,\.p)lni-l~cos¢ + sin \p(l —Z cosp)
S 2 2 2

+ O(e2 In ¢)}

As already discussed, we need only consider the contribution

of the near-field doublet distribution, which is given by

gv{ﬁgz 3ﬁz£<}

Z . do .
3 P

-y

Substituting for R and R from (2. 1. 11) and (2. 1. 14) gives the inner

expansion
~ 2 4 3
g { - 45[(€COS¢+%+O(¢_ e, - (o - &
4
((P ) e +e singe ]}(1 +o(.‘:”_2)) adg
A

Upon integration we obtain the cylindrical components of u D 28

I

u

- —g— {2 cosy siny +:sin¢(1 - Zcoszd,;) + O(ez)} .

b T
1
vy = o,
Wy = _2._%. {1 -Zsinznp _52- cosy(l —ZsihZLp) + O(ezln e)}

T
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. The total velocity field produced near the body surface by the

Stokeslet and doublet distribution is then given by

u = ugtups= 2cos¢sin¢(a-g—g)+ asiny e In g
€

rZ
1
—:sinnp [a+—§2 +cosz¢(a—'§§)]+0(aezlne, —9—2 ez) ,
r r r
1 1 1
V:VS+VD‘: 0, (2.1.15)
W = Wgt wn = 20,1n§ + 2 + ZSianp(a - —Z-E)- a cos¢:1n§-
S D ~ 2 2 ~
. € r r €
1 1
+'e\'cosq;[u,-—p—2 - sinzxp(a --z-g)]-FO(aezlne, —&2 ezlne).
1 1 1

The no-slip boundary condition on Ty = b,
‘u=bv:0, w = U,
can be satisfied by the velocity given in equation (2. 1. 15), neglecting

terms of O(ae lne), if we take

2

B = 5ab’ (2. 1. 16)

a = U R (e =

y L (2. 1. 17)
2(1n~ES— + %)

As expected, we see that equation (2. 1. 16) is essentially the same
result obtained for a straight slender spheroid moving perpendicular
to its generating axis. For that case (see Chwang & Wu, 1975) the

doublet strength normal to the body axis is given by



b
1—«1

B=6"c"-t9%; &=
where £ 1is the body half length, £ is the position along the body

axis and c¢ is the focal point. Since ¢ = g - 0(62) ,
2 2 2
B = b[1-&%+06H]% -

We see that in both cases the normal doublet strength is, to the lowest
order, equal to one half the Stokeslet strength times the square of the
local cross-sectional radius. We might now expect that even for
bodies with a finite centerline curvature this result may have a general
validity.

With the Stokeslet density a and doublet density B already
determined, the remaining terms in the boundary value of the radial
and axial velocity components reduce to a higher order and may be

written using equation (2. 1. 16) and (2. 1. 17) as

u = asinge[(In> - 1) - 5] +Oac’me) ,
(2. 1. 18)

w - U= acosq;e[-(ln;g— - 1) - —é—] +O(a621ne)

In order to satisfy fhe no-slip boundary condition to higher orders in
¢ we must therefore incorporate other appropriate fundamental
singularities into our solution.

A physical interpretation of those velocity terms in equation
(2. 1. 18) will clearly suggest our choice of the higher order singu-
larities to be used. If we combine the remaining radial and axial

velocity components given by (2. 1. 18), using the (rl, 8, y) coordinate
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'system so that

= cbs¢'g - siny e

ry Y

e, = smq;_e__rl + cos e

b,

(see fig'ure 2. 1. 2), the combined velocify defined as q = (u, o, w-U)

-

is given by

Q= 9;+t49 - : (2.1.19)
where q, = - ae(1n§- - 1)e , ,
qs = L ac(sin2 y e +cos2¢e )

The velocity vector 9 represents, in the neighborhood of
the body, a "rotational like' flow about the torus surface (see figure
2.1.3). This description suggests that we will be able to eliminate
this term by distributing along the centerline a constant rotlet in the
€0 direction. The fact that 9 tends to increase the velocity in the
e, direction on the inside surface of the torus and decrease it on
the outside is a manifestation of the local centerline curvature. The
distance from the singularity distribution to the inside surface is
shorter than the distance to the outside surface, thus creating the
indicated departure from the required velocity.

Examining the velocity vector q, we see that it describes an
lextensional-like" flow near the body surface in the cross-sectional
plane of the torus (see figure 2. 1. 3). It also tends to increase the

induced velocity on the inside surface and decrease it on the outside

surface. Motivated by the exact solution for a two-dimensional
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circular cylinder in an”extensional flow (Chwang & Wu, 1975) we
envis>age the need for a stresslet and quadrupole to eliminate these
terms in order to satisfy the boundary condition.

| We now proceed to calculate the velocity field induced by
these additional singularity distributions just mentioned. The re-
quired rotlet distribution along the body centerline has a velocity
field given by

1
6'+2w 5 XR
3

H

R;8)add ; Up(R;8) =
T R
6" (2. 1. 20)

with the rotlet strength assumed to be of the form
- - - a} 1 el
8 = 69_9—6( s1n¢_e_r+cos<p9_9) ,

where & is a constant. Using (2. 1. 2) and retaining only even func-
tions of ¢ gives

U

. _ :
Zaéq zcosgel, + (a - rcos ¢) e,
3

Un =

N de
o R
Proceeding as we did for the far-field doublet distribution, we

note that for the rotlet the outer expansion is of order §_2 , which

a
upon integration will give a contribution to the velocity field of order

% . We will neglect a priori the velocity induced by this outer expan-
sion and show later that g— is indeed of Ofe 21ne a) , thereby verifying

our supposition.

Considering then the near-field rotlet distribution we have

Y Zcosg _e_'r + (a - rcos<p)_gz
u :Zaég. de .

=R 3
o R
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Integrating the inner expansion of the integrand as explained before
gives

2 .
up = E‘?—{sm\pg'r -cosype + O(elne)} .

The velocity term q, in equation (2. 1. 19) is canceled by including a

rotlet distribution into our solution of strength

5= c(l-mm2)%

With this result we see as already mentioned that the far-field contri-
bution from the rotlet distribution to the velocity field is of order
€ 21n €.

We next examine the distribution of stresslets and quadrupoles
necessary to eliminate the velocity term 9, in (2. 1.19). To the
leading order, the effect of the higher order singularity distribution
can be expected to be confined to a small neighborhood of the point in
question. Therefore the quidelines for choosing the appropriate
singﬁlarities come from inspecting the flow field of a constant
straight line distribution and the previously rhentioned exact solutions
of Chwang & Wu (1975). From these considerations we are led to try
constant stresslet and quadrupole distributions with velocity fields |

(e g_z) and u

~8S'—r Q

teristic directions associated with these singularities (see Chwang &

(e I‘,,_e_z),, where e r and e are the charac-

Wu, 1975).
In general the stresslet velocity field is given by

2w

BggllyLy) = S UggRipgspylade (2. 1. 21)
(o]
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‘where
£y Ly 3(e; - Rig, - R)

+ }R,
R3 R5 =

Ugg(Ripyopp) = {-

which for our case becomes, using e p = COS goe'r + sin ¢ e', and

6
equation (2. 1. 2),

2m z(r cos ¢ - a)R
S. 5 d.(P .

Ugglepre,) = 342 n

As was done in the calculation of the doublet and rotlet distribu-
tion we again neglect the contribution of the far-field distribution here,
since we can argue likewise that the velocity induced near the body
by this far-field distribution will be of O(ac 2).

Thus we need consider only the near-field strésslet, After
substituting (2. 1. 2) for R and neglecting odd functions of ¢ we

obtain the velocity components in cylindrical coordinates as

Y
o = 6Aaz5 (rcos ¢ - a)(r- acos ¢) do
SS 5
° R
Vog = 0,
2(Y rec @ - a
Wog = 6Aaz‘ g‘ os5 de .

R
o]

Constructing the inner expansion using equation (2. 1. 11) and inte-

grating, we find

2A .
ugg = I’T sin y (1 + cos 2 ¢ + O(e)) ,
ves = 0 -
Wog = %—écos¢(1-cosz¢+0(e))u

1
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"This velocity field combined with the following quadrupole velocity
will correct for the velocity term 95

The quadrupole velocity can be readily deduced from a doublet

as follows

un(Be ome) = ’a% u piBe ). (2. 1. 22)

Therefore we first calculate the doublet velocity given by

u_ (B S Tr{ £ Ae B)B} d
e )= — - ———}a s
plke ) ) 3 25 ¢

where B = ﬁgr = B cos ¢ _e_'r + B sin ¢ _e_"e . As has been discussed

before, we may neglect the far-field quadrupole since it falls off like

2> where B is its strength, and is even a weaker singularity than
R

the already neglected stresslet and doublet. Equivalently, then we

neglect the far-field of the above doublet. It is readily seen that,

after obtaining the quadrupole strength, the contribution to the velocity

by the far-field distribution will be Of(a ¢ 4).

The components of the doublet field are therefore given by

Y .
\" ;Bcos 3B(rcosg - a)(r - acosy)
D zg{ T - g =)

u,., = £ ade ,
R R
o
Vp T o,
WD _ L 6ﬁ§ rcos<p-a) adp .

Constructing the inner expansion as usual and integrating we find



23

= —Z—E {1- ZCOSZLP + O(e) }

The quadrupole, which is the quantity of interest here, is
0,¢) coordinate system we have

given by (2. 1. 22), where in the (r

or
2 %1 o L8y 2 00 0 _ . 8  cosy D
oz gz 91y 0z N oz 006 ory ry s

Differentiating the doublet velocity field then gives the result for the

quadrupole,
ug = 3-? siny (2 + 4cos 2§ + Ole))
r
1 :
g =0
2B
Wo T 3 cos y (2 - 4cos 2¢ +O(e)) ,
r :
1
where B B. Combining the stresslet and quadrupole velocity
field we have
ugg uQ:E.le_rlﬂf{A+-—)+(A+ )cosZLp+O(Ae,Bé o,
1 T r . r
1 1 1
veg * Vo= O (2. 1. 23)

Wt w2208 rp L 2By 4 L BBy os2y + OAe, Se)) .
sst Yo T 7r; 2 2 7
1 Ty 1
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Including these singularity distributions, i.e.,stresslet and
quadrupole, into our solution will allow us to counter balance the
velocity terms 9 in (2. 1. 19), and thus satisfy the boundary condi-

tion, if we require

1
A——Z—eba,

s

B = -4 AbZ - —%eb3a

Summarizing, we see that we have satisfied the boundary
condition neglecting Ofe 21ne) by using line distributions of Stokeslets,
doublets, rotlets, stresslets, and quadrupoles on the body centerline

with strengths given respectively by

@ = —g—T—
2(1n—e—+—2—)

B = 3ab? ,

6. = —;-eba(l ~-ln—) ,

B = -

The above procedure, by which the accuracy of the solution can be
improved stepwise, is a further indication that the method of singu-
larities for Stokes flows can be a powerful tool when coupled with
simple physical considerations of the flow field. Furthermore, with

the solution found here the error in the Stokeslet strength is of O(ez).
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This is a considerably improved estimate over what has been possi-
ble, i.e., O(TIIE- )‘3, using the method of matched asymptotic expansions
demonstrated by Cox (1970).

.As a note for the arbitrary body case we see that in the far-
field, only the Stokeslet was required for the order of accuracy
desired here. The leading-order effect of local centerline curvature,
i. e., the terms of O(aelne) in the velocity field, only require inclu-
sion of a rotlet with a strength of O(aelne). The stresslet, quadru-
pole and remainder of the rotlet render the boundary condition
satisfied through Of(ae). We also observe that all the singularity
strengths are determined in terms of the Stokeslet stfength.

We now compute the viscous stresses and pressure on the

- body surface. The pressure is found by integrating the individual
pressures associated with the Qarious singularities involved, whereas
the viscous stress in the vicinity of the body is calculated from deri-
vatives of the complete velocity field in the neighborhood of the body.

Combining all the velocities induced by the singularity distri- '

bution we have for ry near b the solution
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uw = 2(a - 2B) singcosy + [aSlin 2 - 1) + 22 ] siny
. : 1
1.

+singl- €L+ TeosfyBB- o)+ £ (a4 2

rl rl 1 r1
2 2 4B
+ 2S285W (A + 351 4 0(e2)
1 T
1
v = 0 , ' (2 1. 24)

w o= Zalng + ég + 2 a-—E) sm¢ [ae( 1n—-1)+ ]cosq,:
€

1 r1

z
T r1 "1 T

+ cos Y[ - T Ly Tein q;(——ﬁ ) + —-(A + ]23)

- 2c0s24 (a4 2B)] 4 O(e “me)
1 r‘1

Now the stress is given by

T =-pltue (2. 1. 25)
T

g =[Ve + (Vu)7]

(note (V_u;)T is the transpose of Vu).

Using the (rl, 0,¢) coordinate system we have

9 0
-V = e, =€ —_
~i 8x.1 —_rl arl

1 o
teyE W T2 < 38

and therefore
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Bur
e = 1
1t or
Bur u u
oy - = 84)1 e (2. 1. 26)
1 1 1 1
1 (')url 8119
e = — ( -u, cos ) +5x— ,
r19 a(l + ecosy) 06 0 E)rl

where in the (1'1, 8,§) coordinate system the velocity

u = (u. , U, u
8=, g w)

Using
u, = ucosy +wsiny
1
uqJ‘ = -usiny +wcosy
Ug =V

and equation (2. 1. 24) the velocity in the (rl, 0,4;) coordinates become

u, = [Za(lng +1)-—2-§]sinxp+[1-;g—(A +g-%)452—g]sin2¢+0(ezlne) ,
1 € ry 1 ry
uy = o , (2. 1. 27)
u = (20.1n%+2)c:osqj—acs(n§ -1)-————(e ]?;3)) os24;+Oelne)
v < € "1 rl |

- Substituting (2. 1. 27) into (2. 1. 26) we find



28

€.y (———--—«+——E ) sin ¢ - [ 12B+_] sin 2 +O(€1n€) R
171 | r1 1 rl 2a
e 8 45, (4A o , 3B, 24B 1
g = ——l—g-cosq;+——-+ —+ ;—2—~§+ _____@ ]COSZL[J—FO(G o€y,
1 Ty 1 r1 1
e —
r19 = 0 .

On the torus surface, i.e., Ty = b, we have after substituting

for the singularity strengths and neglecting O(elne)

erlrl = erle =0,

erlxb = C; +C,cos ¢+ Cj cos2y
where

c, = & (3—21n—§-)

Cp = %‘ ’

Cy =-3¢ .

The pressure fields accompanying the various flow singulari-

ties are given by (Chwang & Wu, 1975)

a- R
P = 2}.L »
S 23
Py = Pp = Py=0,
) p1p, 3pq- Rlp, R)
Pgg= 2pl-—3 5 }
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For our case the Stokeslet pressure field becomes

pS = 4‘P-§ ':ZZ?, ade

o

1

Y U
22 agp o {22 agp)
. R a R
© Y

Constructing the inner and outer expansions as usual using (2. 1. 10)

and (2. 1. 11) gives

Py = 4#%?2 s1n¢{§‘ l3(14”0(9%)) de
A A
)
+g 31 372 [”OG_—EETP]"’}
" - cos @)

Upon integrating and evaluating on ry = b we have

Py = 4“%{ sin § - % sin 2y + O(ezlne')}
Similarly for the stresslet pressure field we find

- o4, B

p 5
SS b2

(sin § + O(e)) .

The total pressure on the torus surface is then given by

elne)}

P = Pg * Pgg = 4p,{bsm¢+(2 re 2y sin2y + Of

And thus the stresses on ry = b become
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T, . = -ptupe
17 171

- - 4u{@sing + (5 - ) sin 2+ OERS)}
b

= pe = 0 R .
r 0 6 (2. 1. 28)

€ 1ne)}

= p{C+ C,cosy + C3cos2¢ + O(==

Trpp T POy

The force per unit length f on the torus defined as the total
force divided by adf can now be computed. An infinitesimal surface
area element of the torus is given by

dS = bd ya(l +¢ cos )do.

Thus in cylindrical coordinates we have for the force per unit length

2
:Er = g' (T r1r1 cos § - T?llpsin $)b(l + € cos Y)dy ,
O
2
f6 = g‘ Trle b(l + e cos Yy)dy , (2. 1. 29)
o ,
27
fz = S ('rrlrlsian + 'rrlqjcos U)b(1l + ¢ cos Y)dy
o

Substituting (2. 1. 28) into (2. 1. 29) and integrating gives,

neglecting terms of Ofe 2lne)

fl‘:fe:o,
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’i‘his yields the result we might expect; however, the force/length
being vequal to 811'(}),(1 does not follow immediately from the singularity
method. What does follow directly is that the total force on the fluid
should equal the total Stokeslet strength times 8wp. This does not
excludevthe possibility, in this case, of having a constant force/length
acting in the radial direction, which would not contrib}lte to the total
force on the fluid. We will, for the arbitrary body case, carry out
the calculation in general and, in fact, find to the order of approxima-
tion here, that the force/length is directly proportional to the
Stokeslet strength. The actual computation here gives us added confi-
dence in our result for the velocity field.

As is frequently done in resistive force theory we define a

drag coefficient, Cn’ as

Drag = pC U = Bwpa ,

where

mlm
ol

t2

This then allows us to compare our result to those for straight
slender bodies, thereby determining the effect of finite centerline
curvature. We see from figure (2. 1. 4) that the drag coefficients for
our torus deviate only slightly (less than 15% for ¢ < 0. 2) from the
results for the two straight bodies given. In both cases, however, the
drag on the torus is seen to be less than that on the straight bodies.
This result owes itself to the fact that the actual distance separating

two points on the body centerline of equal arc length away is less for
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the torus than for the straight centerline bodies. The fluid dragged
along by one point is. felt more strongly at another point in the case
of a torus where the separation distance is decreased. The apparent
fluid velocity impinging at a point is thereby reduced, resulting in
decreased drag. Although for this case the deviation isA small, we
might now suspect that for cases where points on the centerline move
in opposite directions, such as in the case of a rotating torus, there
may be considerable deviation.

With the stresses on the body available we can proceed further
and obtain the torque/length exerted on the torus about the body
centerline. Defining this- torque /iength (M) as the total torque

divided by adf we have

2w
. 2
Mr = - g' sin Trleb (1 +e cosy)dy ,
o
2w
B 2
MG = - g Tl‘ll],lb (1 +ecosy)dy , (2. 1. 30)
o
2w
2
M, = cos T Ob (I + e cos y)dy

1

Substituting (2. 1. 28) in (2. 1. 30) gives

Mr = Mz = 0, since 71”19 = 0 ;
4% e 4
M6 = -2mpblea + Y + *’gg)

H

—ZWMbe(ZlnES— - Da .
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From the above result we see that not only does the rotlet

distribution yield(a torque/length, as should have been expected, but
the Stokeslet and doublet distributions also produce a torque/length.
More precisely, the leading contribution to the total torque/length is
from the rotlet, and is of O(ae¢lne), while those contribI;tions from
the Stokeslet and doublet are of O(ae). This torque/length is a direct
result of the motion of a body possessing finite centerline curvature,
and we should anticipate this feature of the flow field to be present in

the general case.

2.2 A torus in translation perpendicular to its longitudinal axis

Having pursued the first case in a rather detailed fashion, we
will now examine the remaining cases more briefly since the major
concepts and methods are identical and should now be clear. For the
present case our torus is assumed to move in the EY direction in its

own plane. The boundary condition is

= U(sin 9_§_r + cos 99_6) on Ty = b

We again represent, as a first approximation, the velocity
field by a distribution of Stokeslets and doublets with strengths

assumed a priori to be
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g = “n—r'*“s-‘?e'
where

n n

= K cos 8 ,

a (Kn’ KS constant) ,

and
: (2.2.1)

B = p:n~—1' ’
where

pn = Bn sin 0 , (Bn constant) ,

This choice, which will b_e verified to satisfy the boundary condition,
is motivated by the fact that we might expect the Stokeslet strength
in the normal and tangential directions to be proportional to the local

normal and tangential centerline velocities, i.e.,

a o« U = Usinb , a o« U = Ucosb
1 n s s

The velocity field at 6 = 6' induced by the Stokeslet distribu-
tion is given, after using (2. 1.2), (2.2.1) and eliminating odd functions
of ¢, in cylindrical coordinates by

TT
. 2 2.1 . 2
u, = 2a sin O'S‘{(Kncos o+ Kssm ¢)—R+[Kncos¢(r cosgp-a) + Ksr sin ¢}

© 1
(r - a2 cos (p)——§-} de ,
R”

T
. 2 2 .1 . 2
v, = 2acos ! S{(Knsn’l ¢ +K_cosTp)x - asin’g [Kn(r cos ¢-a)

o 1
-K _rcosgpl—}de ,
. s R3
w_ = ZaSine'g z[K_cos¢g(rcos¢ -a)+K_r sin2 o] -—S‘Zd .
S n s R3

[¢]
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where we have used

- . N <o v os
a, = Knsm 0 = Kn(sm 0' cos ¢ + cos 0' sin @)

»

a, = Kscos 0 = Ks(cos 0' cos ¢ - sin 0' sin ¢)

+

Separating the integrals into the inner and outer regions, expanding

the integrands appropriately and carrying out the integrations gives

K
. 8 2 ~ 8 n
u_ = sin 9'{2Kn(ln;€: - 1)+ 4I<;S + 2 cos Y Kn+ Zecosq,:(ln—e':)(Ks-———2 )

’

2
+2 ¢ cos g [(1- 2P Y K. 3K_] +O(KeIne))
v = cos 0'{4K (1n-—8- - 2) + 4K - 2:c05¢(1n§-)(K + XK )
s st n ~n’ s
+2T cos $(K_ +3K) + O(Ke Ine)} ,
= 2sin 0" siny{K_cos y + ¢ (1 §-)(K -IEE)
We T b n bt+e(Inz s 2

€

Kn 2 2
[ (3 -cosy) - 2K_] + O(Ke“Ine)}

te

where

K = OK_, K )
n’ s

For precisely the same reasons as used in the last case we
neglect the far field or outer expansion of the doublet distribution.

The velocity field from the doublet distribution after using

p

—_ - — 3 ] 1 ~
= anm 0= Bn(s1n 0' cos ¢ + cos O' sin ¢)

’

equation (2. 1. 2), and omitting odd functions of ¢ is
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Y B COSz(p
oo O P 2 2 2
u, = 2asin 6 { - - 3B_cos p[(r” + a")cos ¢ - ra(l +cosg)]
D ) R3 n
o
1
- }d‘P ’
RS
Y B Sinzq) 3B_a sinz(p(r cos ¢ -a)
vp = 2a cos 6 g‘{ n»3 + n z }de ,
y R R
o
Y 3B (a - rcos ¢)
W = 2azsin 8’ Sl o d
D 5 ¢

o R

Generating the inner expansion for ¢ mnear zero and then integrating
gives

u

i

D 2 sin 0! —%1 {1 - 2cos2¢ + ¢ cos q;(coszup - -;—) + O(e z1n<~:)} .
1
Bn ~ 2
vp = 2cos 6' — {e cosy + O(e“1ne)} ,
T
1
Ba ~ 1 2 2
wp = 2siny sin §' — {-2cos y + ¢ (5 + cos™y) + Oe )}
r
1

The boundary condition at 6 = ' on ry = b is

u = Ue = U{(sin e’ + cos f'el)
- =y ~r -

Combining the expansions of the velocity field due to the Stokeslet and

doublet and equating to the boundary condition gives, after some

B
simple algebra and neglecting terms of O(Ke 21n €, —zr—l € Zlne ),

b
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. 8 ZBn 2 2B
U sin 0' = sin 6' {2K_(In — - 1) + 4K 4 —s— 4 2 cos YK - —s)
n € S bZ n AbZ

+ 2cosyel(In S)K —EB-+K 3K "n +C°£¢12Bn K )1}
e € s 2 n - S~2b2 2 ‘bZ-"n ’

U cos 6!

1

8 8
cos 6'{4KS(1nZ -2) + 4Kn+ 2cosye [(—lnz—)(Kn+ Ks)

B
n
+Kn+3KS+b—2-]} ,

2B K 3

8
_ s o1 oF - n = .2 = -
0 = 2siné smtp{(Krl 2 ) cosy + e[ (In SIE - ) + 5K 2K

n

B 2 2B
n_, cos ] (
2b2 2 bZ n'”

+

The three boundary conditions can be satisfied, neglecting

terms of O(Kelne) , by taking

K b2
B, - —2 , (2. 2.2)

and solving the following equations for Kn and Ks

8 1
U = ZKn(ln—e— - "2—) + 4KS R
U = 4K_ + 4K (In2-2)
n S €
giving 8
(In 2 - 3)U
Kp = T3 ’
n
2[(11’1—; - Z)(ll’l-e— - 2) - 2]
(2. 2. 3)
an & .3y
Ks = 8€12 8
s
4[(111'6— - *2-)(11’1 -e—" - 2)—2]
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We see here that the radial doublet strength is related to the radial
Stokeslet strength (equation 2. 2. 2) in precisely the same way as we
had in the previous case for the axial doublet and Stokeslet strengths.
This re‘inforces the proposition that this relationship between doublet
and Stokeslets strengths normal to the body centerline n{ay be true in
general.

As before we will satisfy the boundary condition to higher
orders by including other singularity distributions into the solution.
But first a physical interpretation of those higher order terms to guide
our selection will be provided. We define those higher order velocity
terms that do not satisfy fhe boundary condition as u,v,w and, realize
as before, that the new singularity distributions to be used must cancel
them. Thus we obtain, using (2. 2. 2),

K

~ 8 3
— 3 § —_— - — — -
u = 2sin 8 coque[(lne)(Ks Zn) +4:Kn 3KS] ,
¥ = 2cos8'cos ¢e[-(1n§)(K + K )+§-K + 3K |}
€ n s 2 n st ’
¥ = 2sin6 singe[ (Ind)(K EIEHZK 2K ]
w = 2sin@'sinye] no) K, - 7 K, - 2K,

N e
The radial and normal components, i.e., u,w, which will combine for

easy interpretation in the cross section plane, may be written as

4 = 2sin6 cosye(D; - D,)

w = 2sin§ sinye (D; +D,) ,

where
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D, = (Ind - 2)x K’“) 5

] = s - - 57) =
D, = ~(K_+K.)

2 0 2 Vs n’

The resultant vector of the two velocities u and \;, which we will

define as q, assumes in the (rl, 8,¢) coordinate system the form

q = uel +we, =sinf'(gy+ gé) , (2. 2. 4)
where
q; = 2e Dl_(_a_r ,
1
q, = - ZeDz(cos_Zq; Erl - sinZLp_e_Lp)

The velocity term glsin f' represents a pure ''radial-like"
flow in the meridian plane (see figure 2. 2. 1) which exhibits a constant
flow for all angles ¢ in the g_rl direction for any 6 and as such
obviously suggests the use of a source distribution or equivalently a
tangential doublet. Similar to what we had in the last case, gzsin o'
represents an ''extensional-like'" flow, although here its principal
axes are rotated and it is modulated by sin ' (see figure 2. 2.1). As
before, a stresslet and quadrupole will account for these terms. The
sum of the two velocities, i.e., 9 produces the local curvature effect
mentioned in section 2. 1 by effectively increasing the velocity in the |
direction of torus motion on the inside torus surface and decreasing it
on the outside surface. This is again due to the over-all singularity

distribution being essentially closer to the inside surface than the out-

side surface, and thus inducing larger velocities near the former.



40

The remaining tangential velocity v has, for 0 < 9' < %"W
as a typical region to examine, a positive contribution in the €
direction on the inside torus surface and a negative contribution on
the outside surface which we shall call (sce figure 2. 2. 2) a ""shear-
like' flow on the 9—6 direction, with the shear gradienfz in the e
direction. This shear flow also tends to increase the velocity induced
by the singularity distribution on the inside surface. We can produce
a velocity opposite to v by a line distribution of rotlets in the e
direction.

We first consider the rotlet distribution that will correct the
tangential velocity boundary condition through the terms of O(ae).

~
Examining the behavior of v for various 0' leads us to assume a

rotlet strength given by

6 = 6 cosfe
-z

= 6(cos @' cos ¢ - sin @' sinqo)gz

The rotlet velocity field is given in general by (2. 1. 20) which

for this case becomes

SZW 6‘Za2sin @ do
u = ,
R R3
o
em 6Zaz(r - acosg)
v, = Sv - de ,
R 3
0o R
Wp = o , since (6 XR) - e, ~ 0 ,
where 6Z = dcos 8.
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As explairied before, only the near field distributions need be consid-

ered, i.e.,the inner expansions and we find

uw. = -2sin 6" 2 ?{lmg -2+0(e Ine)} , (2.2.5)
R ry Py
& ¢ .8 < 2 2
VR = 2cos€'-i_—1-{cosd,; + 5 lnE: —§(3+cos y) + Oelne)} ,
wRp < 0

And therefore the tangential velocity term ¥ in the boundary condi-

tion is corrected for by taking the rotlet strength to be

= ¢b 8 3(K “a
5 = € {(1ne—)(Kn+Ks)— (K + 5 )} .

With this result we then see that the rotlet far field distribution will
give a contribution to the velocity field of Ofe 2). Furthermore,

the radial velocity component u_ in (2.2.5) is of O(Kezlnze) and is

R
therefore of higher order and will be neglected.

Studying the velocity term q, we observe that this term is a
source for § < 0' <m and a sink for w <6' < 2r since it is modu-

lated by sin 6'. The required source distribution strength is

appropriately taken to be
m = m sin 8§ = m(sinf' cos¢ + cos ' cosgp)

The velocity field is
2w ~

U = Um(_R_,;I;l)adga ; Um(B;T;l )



42
For the outer expansion we see that the integrand is of O(—r;—l).
Knowing a prioi‘i that the source strength will be O(ebK), we thus
note that the contribution to the velocity field from the far field source
distribution is of O(e 2K) and can be neglected. Thus we have the

-

velocity field given by
v

w = 2msing'a 5 (r—acos3¢)cos¢ do ,
R .
o 2
2 si
v. = -2mcosf'a ——fde ,
m , 3 :
- R
o
_ Y
= in 6 cose
W, = 2msin azs‘ R3 de .
o

Integrating the inner ekpansions of these integrands gives

. um = illrl sin el(COS\b + O(ﬁlne)) :
Vm = O(% ElnG) ’
‘ _ 2m. b- [
W= —;i- sin 8' siny(1 + O(e))

With this velocity field added to the solution, taking

1

m=--§

ebK ,
s

we are able to eliminate the q; term in the boundary condition.
The equivalence of a source and tangential doublet distribution

alluded to earlier is easily seen by considering the familiar potential
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function @ where u = V& For aline of tangential doublets on
r = a we have
2m
_ 0,1
® = ,g' - By 8_9(§)d9
° .
2t

The first term is identically zero, and the second term is a source with

strength
m = L &
- a0

Therefore in our case where m = msin @ the equivalent tangential

doublet strength is ﬁs = -ma cos 6. Using m we have
K _b% 2
s b
Bs = cosf = =5 a

Once again that frequently observed relationship between doublet
strength and Stokeslet appears, even here where it relates the tangen-
tial doublet and Stoké slets.

. We now proceed to satisfy the no-slip boundary conditions
through terms of Ofe 21ne) by correcting for the velocity term q,-
We consider the stresslet and quadrupole velocity fields ESS(S - gr)

and u Q(Sr’ gr) the stresslet velocity field from (2. 1. 21) is given by

2

e )= ‘A(G){--l—3+ Jcosgp(r —acos <p)—asin2¢]2 —%}Badcp .
R R

o]



44

The stresslet strength is assumed to be

A(6) = Asin 6 = A(sin ' cos¢ + cos 6' sing), A being a

constant.
The far-field contribution will again be small and, considering only

the near-field, we find after integrating the inner expansion,

Ugg = %—%— sin 6' (cos y cos 2y + O(elne)) ,
Vgg T O(E‘él- elne) ,
Weg T -2_“;‘31* sin 6'(sin y cos 2y + O(e))

The quadrupole velocity is in general given by

2w
o
where
3y = Ry +3(py » Ry + 3y« py)R
HQ(B’EPEZ) = R5

15(n; - R)lgy- RIR
- - ) (2.2.7)
R

e , with B = p.z, we have

For our case where By = By = pE.

2w
-~ . 1
EQ(e ye ) = S‘ 3B {[2(r COS(p-a)(COSgo_e_'r + s1n¢g'6)+]ﬂ_{]£{—5—
o

2 =

7 tade

- 5(rcos ¢ -a)

=
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Assuming B = B sin @, neglecting the quadrupole far field since it is

of higher order, and then integrating the inner expansion we find

u, = i}z—sine’{cos\p(Z—4cosZ\p)+O(€)} ,
rl |
VQ = O( B3 €) »
|

Wy = _?_? sin 0' sin ¢ {2 + 4cos 2y + O(e) }
1

The combined stresslet plus quadrupole velocity gives

Upe +u,.. = 2sin 6'cos¢{£]§ Ezis——2—'3k-(A———---)+O(£L— elne,—B- )},
SS Q 3 2 T 3
r o | T 1 r
1 1 1
A B
Vgg +vQ = O(—E—i elne , Y €) ,
T
1
_ ' _2B  cos2y , 4B AL B
WSS+WQ = 2s1n9 smq;{ 3+ - (A 2)+O(.r €, 3e)}
ry 1 ry 1 ry

Recalling the term q, (see equation 2. 2. 4) we see that it is

eliminated from the boundary condition after taking

A = (K +K )b ,
S n
2 3
_ AbY b
B = =z E(Ks-l'Kn) N

Here we observe the possibility of another general relationship, this
time between stresslet and quadrupole strengths. Both in the present
case and in the last case we found that the quadrupole strength, B, is

proportional to one-half the cross-sectional radius squared times the
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stresslet strength, A. The expression for the stresslet strength is
also very much alike in the two cases, being proportional to b
times the sum of the stokeslet strengths, which in the previous case
was simply a. | |

We briefly summarize the result by saying that tilrough the
use of a Stokeslet, doublet, rotlet, source, stresslet, and quadrupole
distributions we have satisfied the no-slip boundary condition'neglecting
terms of Ofe 21me). The complete velocity field in the neighborhood of
the torus, i.e., r, mnear b, may be written in the (rl, 0, §) coordi-

nates, with the terms of Of(e 2lne) neglected, as

B ~
- 2si _n (3 . = _>
1.11'1 = 251n9{(KnL + ZKS - 1‘z)cosq; -5 Kn(L 2) + eKS(L 2‘)
‘ 1
B ~
m n € A 2B
oot teos2y[-5 (K 4K )+ = - =1},
1 2r 1 T
1 1
w, = 2 cos G{ZKS(L - 2)+ 2K+ cos[ -e Kn(L - 1) - eKS(L - 3)
€B_ 5 -
+ — +—;—]} , (2. 2. 8)
T 1 :
1
’ B
-—-I-l-—-]sinq;
u, = 2sinf{-[K (L -1)+2K + 2
U] n S ry
K e B
. ~ n ~ S Tn 4B
+ cosy siny[ e > t eK _+ > -——3—]},
r T
1 1
where
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It is easily verified that these velocity fields satisfy the no-slip

boundary condition in the (rl, 0,¢) coordinates, namely

u, = Usin6 cosy

1

ug = Ucos 6 on rlzb

u = Usin@siny .

Y
Using (2. 1. 26) and (2. 2. 8) and neglecting the terms of O Elm ) we
find the rate of strain tensor on ry o= b as

4s1 6 5

erlrl = Y-k p €L - %) +2K_e(L - 3)} ,

e = Zsm9{2K sing + (2K _ + 2K)stLp}

T 2

2cos @
€. g = ————-—-—-{ 2K —cosu.p[K e(4L - 13) + K e(L ———)]}
1

The pressure is given by p = Pg t Pgg which for our case
gives

P. = 4pasind S [K cosg(rcosg-a)+ K rsin2 ]-1— d

S e n 14 @ s ' R3 @

o
W
cos 3(rcos¢-—a)2cos
Peg = 2pasinbA \[- =% + et Jdy .

R R
o

Integrating the inner and outer expansions of the integrands gives
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_ 4psing K 5 '
P = B _{KSG(L-Z)—_Z—E(L"E)+KnCOSL["
+ cos 2§ e(K + 2K ) + O( 2)}
osZpe(K + 5 n € .

The stresses on the torus neglecting terms of O(?;n() are

4“31119 ~Kn- 5 :

'Trlrl = ~ _b {'—2— e(L - '2") - KSG (L - 4:) + KnCOS l.p
3
+ e(Ks + ZKn)cos 2y},
41,5in80 3. '
- _Epsind i d i

Trlq» = 5 {K siny + e(K_ +ZK )sin2y } ,
. = - 2peosf gy L E R (4L - 13)4 K_(L- H]cos ¢}
rle b s 2 s n 2 T

Using (2. 1. 29) we find the somewhat expected results for the force

per unit length

f = -8mua_ + Ole’lne) ,
f@ = - 81r|.1,as + O(ezlne) ’
fz = O(ezlne)

Similarly the torque/length about the body centerline is obtained from

(2. 1. 30) as
Mr - MG =0,
v 1
MZ = 2mwpbcos QE[KS(4L -11)+ Kn(L - '2")]
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As in the previous case, the torque/length on the torus is not simply
8w fimes the rotlet strength/length as for straight bodies, but also
includes the contribution from the Stokéslet and other singularitics
due to the effect of centerline curvature.

.We again define drag coefficients Cn’ and Cs in order to

compare the present results with classical theory. We take

£ = 8mpa = pC U e +pC U e, ,
where
U = Usin@g ,
n
US = Ucos 6 ,
and so
C, = 8rK_ 4"(1‘1' 3) ,
(L - )L -2)-2
C, = snk_ = —2ml-5/2)
s s 1

(L - 5)(L - 2)-2

We éhould note the rather new form these coefficients take in compaf-
ison to what has always been assumed in resistive force theory.
Further, since our Stokeslet strength is accurate up to and including
terms of O(ezlne), we have in fact summed the entire series of terms
fn/ (Ine )n which result from the method of matched asymptotic
expansions. A numerical comparison between the straight body re-
sults and the exact results for a torus are given in figure (2. 2. 3).
Again the difference is rather small for moderate ranges of the

slenderness parameter. The unusual behavior for increasing ¢ is
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dﬁe to the difference in fuﬁctional form between the coecfficients herc
and thé classical ‘éheo'ry which are propértional to (lne + c)nl, C
being a con.stan’c.

The total force on the torus is
2t
_F_‘ = -8‘n'p, g a adg@

o
which gives

F =0,
x

F
Yy

~anluUaK K

This may be compared to Cox's result for this case by defining the

drag coefficient, Cy’
F_=-2ma C_nU.
Yy _ y
From the results for Kn and Ks we have

31, - A0

C. = ={ 2

2
} + O(c"1ne)
v (L - 2L - 2)-2

Approximating this by neglecting terms O(—-l—)?’v we find
P Ine

3 1.3
C, = —1 + Ol-)
Y oL+3

which is precisely the result found by Cox (1970). Our result, however,
is greatly improved over that due to Cox, being accurate neglecting

terms of order ezlne.



51

2.3 On-edge rotation
In this case our torus rotates with angular velocity Q2e x 5°

that the no-slip boundary condition becomes for 6 - @'

e

= -Qze -rsin e )
= - Q(bsiny sin 6‘_e_’r + b siny cos 6! 2'6 - rsin 0! gz) ’

onr1=b

recalling that

r =a(l + e cosy). .

To avoid much of the same analysis as has already been done
we will now include all of the needed singularities from the start.
The velocity field here will be given by a line distribution of
Stokeslets, doublets, rotlets, stresslets, and quadrupoles. As
always, only the Stokeslet far field need be retained since only ifs far
field distribution has a contribution of order greater or equal to
O(e a) where a is the magnitude of the Stokeslet strength. This will
not bé further pursued here since the precise results follow easily
from the methods used earlier in doing similar calculations.

The velocity field is given by
2w -y

.-

Y ~Y

Y
o @wade + § 0w+ o + s @s0

Ar) (R Zer(i) g .
+Al_j(ss(_f_{,gr,9_z)+BEQ (Rse_,e )lade ,
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vs}here the general form of the terms in the integrand above can be
found in the previ(ous'two sections 2. 1 and 2. 2. The strengths/length
of the Stokeslet, doublet, rotlet, stresslet, and quadrupole using the

same notation as before are respectively given by

a = asinfe ’

- L -z

B = ﬁsme_gz ,

6 = 6 _cos fe + 6 sin O e ,
- n -r s -0
A = Asing ,

B = Bsin6 ,

where

a, B, 6n’ 65, A,B are constants.

Carrying out the integration we find the velocity field in the

vicinity of the torus, with terms of O(ezlne) neglected, as

u = 2sin6'{(a - Z5)cosysiny - siny[ - 2T (1n 2 -3) + <5

1 .e 2r1
~ )
2 2 A 2B A 4B
+S-COS¢(0.-—§)-}—§--?————-cosij(; +—3)]} s
'1'1 1 rl 1 rl
~ 8 B 6
v = 2cos@'sin{- ca(lng -2) +=5 - =1},

¢ r{ 1

w = 2sin0'{a(n S - 2) + £, + sinlpla - ZB) - cosy[§ T2 - 3)
r €
1

+ 5E+€M(a-§ﬁ)+?s—-% —§—B+cosz¢(-§‘ +fl—]%)}
r 1 1 ry 1 ry
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The boundary conditions on ry = b become six equations for
the six unknowns a, B, és, (Sn, A and B. The solution of the above

equations is,

a Qa -
- 8 3
2(1n:—'2-) »
o -
= = s
B 8
6s = --—ebo.(ln-ef-—Z) ,
6n= eba ,
_ ¢ba
A = 5— 1
B = _Abz* eb3a
- 4 -~ 78 :

We see here once more that the doublet strengfh equals one-half the
Stokeslet strength times the cross-sectional radius squared. Further-
more we find, as in the previous two cases, that the quadrupole
strength is proportional to the stresslet strength times one-half the
cross-sectional radius squared. And we should note that both stress-
let and quadrupole strengths are precisely the same as found in
section 2. 1. This is due to the fact that in both cases these higher
order singularities are required to correct for precisely the same
type of "extensional-like'' flow induced by the Stokeslet and doublet
distributions alone as discussed in section 2. 1. This common flow is
reasonable since both motions are similar in that the velocity of the

body centerline is moving normal to the plane of the torus centerline.
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The solution presented then satisfies the boundary condition,
neglecting terms of Ofe 21nos ). It is then straightforward to obté,in the
components of the velocity field in the (rl, 0,y) coordinate system
from which we can calculate the necded terms in the rate of strain

tensor. We find, retaining the terms through O(% €) on Ty, s b,

erlrl = 0 ,
erle = Zsine%{—-e(ﬂn—f——%) - 2cosy -%cos 24},
erle = 4cos Gsiny ¢ % .

As for the pressure we find on Ty T b,

- = a o i £
P = Pg + Bgg = 4p,b81nes1n¢{1+zcos¢} .

We are now able to calculate the stress 7 and thus find the

force/length and torque/length as

fr = f9 = 0,
fz = - 8mpasin 6 ,
M_ = - 4mpabe cos 6,
- 4mpabsin 0 ¢ (3L - 5
0 = pab sin 0 € -3
M_ =0
Z

In figure (2. 3. 1) we have a comparison between the drag
coefficient for our torus and the straight body case. Defining the drag

coefficient in the traditional manner gives
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£, = —pLCnU ,
where
U = Qa ,
C = cu -
n_ .. 3.
(L-'z')

We see that the deviations from the classical resistive-force theory
are now quite large (as much as 40% for ¢ < 0.1), with the torus
experiencing an increased drag/length. The cause, as suggested in -
the first case, is explained by observing that two points of equal arc
lengths from the axis of rotation are moving in oppoéite directions,
dragging fluid with them and producing an increased apparent flow at
the corresponding point on the other half of the torus. This increased

incident velocity results in increased drag.

2.4 Spinning torus
A spinning torus refers to a torus rotating about its longitu-
dinal axis (of symmetry), with angular velocity . The boundary

condition on ry = b now requires

u = Qregy = fa(l +¢ C°s¢)29-

The solution is here constructed by a line distribution of Stokeslets
and rotlets with strengths

@ = a8y
(a, 6, constant)
] 6e .

—Z

H
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With the lack of motion normal to the centerline there is no need to
include stresslefs and quadrupoles in our solution, as was necessary
in the previous cases where motion of the centerlines in the normal
direction was always present.

The velocity field is
2w

u = S (U _Ria) + Up(Rsd))ady ,
g ‘
o
where _I_JS and _T_.TR are given in (2. 1. 1) and (2. 1. 20). After con-
structing the inner and outer expansions of the integrand and carrying

~ out the integration we find only the tangential velocity component to be

nonzero
u=w =20,
) 26 2
v = 4a(L - 2) - cosy[2ae(L - 3) --r—-] + O(e “1ne)
1

The boundary condition is satisfied with

q = —— a0
4(1n§-_2)

6 = eb(31n-§~-7)a

Calculating the stresses on ry = b we find
T = T -
ryTy rld,a = 0,
Tr0 = -2u{ 2% 4 cos y[Ss + & (3L - 8)]+ o(ElRE)
1 L 2 'b a

b
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From (2. 1.29) and (2. 1. 30)

f = £ =0 ,
r Z
f9 = - 8mpa |,
Mr = M6 = 0 ,
()
MZ = —-ZTrp,b[E- + 3ae(l, - 2)] .

In this solution it is of interest to note that the contribution to Mz
from the rotlet distribution and Stokeslet distribution are of the same
order of magnitude. The total torque exerted on the fluid about the

torus center, i.e., r = 0, z = 0, is

I:—g}xtds,o

re +bsinyge
-—Xr —z

M

On the torus surface,

t = 7 e .
- r.0—60 (since T = T = 0)
1 ryr rlq;
and therefore
2w 21r
T = .. [bsiny 'rrleg_r— a(l+e cosq;)'rrleg_z]
o o

ab(l + e cos y)dy dé

= 2ma(8mpaa - 1\/Iz)_e_Z .

The total rotlet strength times 8wy does not equal, as we might have

expected, ZTraMz. This discrepancy is because the Stokeslet velocity
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field genera’ces stresses that contribute to the term Mz and thus to
the total torque.

In figure (2. 4. 1) we have a comparison of the tangential drag
coefficients for a torus and straight slénder spheroid which shows
dramatically how the actual body shape and motion interact to produce
significant departures from the result of a straight body. The altera-
tion of the result is due to the two quite different far-fields involved
in the two situations. On physical grounds, we see that for a torus
‘spinning about its longitudinal axis, a material point on the body
centerline is dragging fluid with it, effectively increasing the incident
flow at a point across the‘torus aperture. Accordingly, we find in-
creased drag coefficients. This is very similar to the discussion in
section 2. 3 for on-edge rotation. For a straight body moving tangen-
tially each point of the body helps to reduce the oncoming velocity seen
at any other point, thus resulting in a rather different situation. The

tangential drag coefficient, CS, for the torus defined by

f, = -8mpa = -pC U
where
U = QRa
C = ZS‘T
$ In--2
€

is seen to have deviations as large as 25% to 50% even for small

values of e( < 0.2) where the theory is accurate.
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2. 5 Torus in radial flow

In this final section our torus is allowed to expand (or contract)
rédially so long as it remains circular and slender, i.e., b/a « 1.
The major radius is assumed to be changing with velocity U, such

that

a = a +Ut , a_ = constant
o o}

The no-slip boundary condition now requires

u=— e = Ue, onr, = b
—_— T —p 1

At the end of this section we will extend the solution to the case of a
torus with an infinite line source along its longitudinal axis.

The velocity field is given by a Stokeslet, doublet, source,
stresslet, and quadrupole distribution with only the Stokeslet contri-
buting a velocity term of order ea (or less) froﬁ the outer region,
i.egfor y £ ¢ € 2w - y. We have then

2T~y

-

Y -Y

Y . » -
B Rsgade + { (0 Rs0+ VR + U (Rsmm)

+A_té;’(1?~_;sr’sr)+BH(g(B;Sz’Sz)} ade

The general expressions for the Stokeslet, doublet, source, and
stresslet may be fpund in sections 2.1 and 2. 2, however the quadru-

pole is most easily calculated from

, -
Un = By uple,)



60
The Stokeslet and doublet strengths/length are from the flow symme-
try assumed conétant and in the radial direction (S:_r).
‘Expansion of the integrands and integration gives the velocity

field in the body vicinity, neglecting terms of Ofe 21ne ), as

u = Za(ln% - 3) +Eg + 2(a - -%g)COSZL!J'I‘COSLP[-Q,:(ln%— %)
€ €

N | 1
2m 4B 2A 8B < a
E R 2“'*;-—3“ 5 - 201
| 1 1
v = 0 , (2. 5. 1)

w = 2sinycosy(a - 2B) + sinp[-at(in 2 - )+ 28L 4+ 2D

rl € ry 1
4B 2A 8B, ¢B <ca
-—?)- + cos 2\'}(—‘-1—-—34' 7) —-2-] R
o SRR |

where Stokeslet, doublet, source, stresslet and quadrupole strengths
per unit length are given by a, B, m, A, and B respectively.

The boundary condition is satisfied up to Ofe 21noz) if

u.ﬁ— U
= 55 ,
2(11‘1-; -7)
B = abz
- &,
- 8
m = L2 £, (2. 5. 2)
A = -¢ebha ,
Ab2  ¢ba
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Once more the now familiar Stokeslet-doublet relationship is present.
With a normal centerline motion present we again need a stresslet
and quadrupole with the same relationship between them as found
before. Also in this case, as in the case of translation of section
2. 2, the centerline possesses a velocity component normal to itself
in the plane of the torus, and we find in both cases that the stresslet
strength equals eb times the total Stokeslet strength/length except
for a sign change.

For this case the body is changing volume with respect to time
and therefore the time rate of change of the body volume should equal
thé total mass flux from fhe sources. This is easily seen from first
principles. The continuity equation in integral form for an incom-

pressible fluid with distributed sources is

t
vit) = vo+ S. g 4rmdvdtt , (v(t) = torus valume) ,
Q vit)
where Vo T v(t = o) and we note that the 4w enters from our

choice of the form of the source velocity I_J'm, Differentiating the

above equation gives

dv(t)
dt

m, . (2. 5. 3)

= S. drmdv = 4n
v(t)

In our case v(t) = 1Tb2(21ra) = 21r2b2(a0+Ut) and so

dv _ 2.2
-&-E-—Z‘ITbU
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The ng:t flux = %m'total

yields the net flux = Z'rrzsz., Thus (2. 5. 3) is indeed satisfied as
expected.

The stresses on ry = b are found, as before, neglecting

terms of O

€ 1lne
——) as
a

5
- 4}»%(%(1n€§—-3—)+cos¢ -Z€ cosy) ,

'T =

1*1

T = 4 3(sin¢ -Ee sin 2¢)
r1¢ o) 4 ’
T 8 = 0 .

And thus the result for the force/length and moment/length on the

&
torus are found by using (2. 1. 29) and (2. 1. 30), with an error of

O(ezlne)
fr = - 8mpa ,
£, = £, =0,
M, = MB = M, = 0

- We define the normal force coefficient, Cn, in the usual

manner

rh
H
1

-
Q
c

= 81r2am,, and substituting m from (2. 5. 2)
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in order to make comparison against the straight slender body
coefﬁcients. Figure (2. 5.1) shows the large deviations as can be
expected by motions of this type since the points on the body center-
line arve moving everywhere in radial directions.

The alternate radial flow problem produced by a line source

on the longitudinal axis has an undisturbed velocity field given by
-'[—1. =

The boundary condition on the torus surface then becomes

u = Q — e
- a(l +e cosy) =r
= U(l-¢cosy+0()e (2. 5. 4)
o =r
where
u =2
o) a

Here we certainly know that there can be no net source
strength present in the solution, therefore we use the same velocity
field (2. 5. 1) as before taking m = 0. The boundary condition is

| 2

therefore satisfied, neglecting in this case the terms of O(¢“), by

taking

_@
I

|
&

>
!
1
mn
g
|
a
o
+4-
G



64
As expected, the Stokeslet strength to this order is unchanged, and
the stresslet and(quadrupole arc altered by the slightly different flow

field near the body surface.

2.6 Conclusion .

We have presented the solution for Stokes flow past a slender
torus. The accuracy of the solution demonstrates how effective the
method of flow singularities could be for constructing solutions to
Stokes flow involving slender bodies of arbitrary centerline configu-
rations. Furthermore, by first considering a torus we begin to obtain
a physical feel for what singularities are necessary for various types
of body centerline motions. The fundamentals learned here will be of
great assistance in developing the solutions for the more difficult
problems of slénder—body theory to follow. For the simple case of a
torus we have found many new features not presently available in the
literature.

The primary importance of this preliminary study is to serve
as a guide for the general case. Therefore it is fitting that we con-
clude with some general observations. First of all, during this
analysis we always found that the boundary condition can be satisfied
to lowest order by including a near and far field Stokeslet and a near
field doublet. In fact, the normal or tangential doublet strength is
always equal to —;—bz times the Stokeslet strength in the same direc-
tion. This might be expected since only the near field doublet
distribution contributes to the velocity and thus the straight body

results are found to be correct to lowest order. Furthermore, for
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satisfying the boundary condition up to the error term of Ofe Z1ne) we
found that only the Stokeslet was required in the far field distribution,
or in the outer reglon. The role of the higher order singularities is
to correct -for centerline curvature effects. We found fhat stresslets
and quadrupoles are needed whenever the body centerlir;e moves
normal to itself. Also the quadrupole strength is always equal, except
for a possible sign change, to EI times the stresslet strength, with
the latter being proportional to e¢b. The motion of the body centerline
in its osculating plane (i. e. the plane containing e .. _e_e), as in the
case of translation discussed in section 2.‘2 or spinniﬁg, invariably
requires use of a rotlet distribution normal to that plane. For the
motion of the torus normal to its plane our solution also requires a
rotlet, except now its direction is tangential to the bédy centerline.
The rotlet strengths are, in all cases, proportional to eb. We will
see that many of the characteristics for flow past a torus found here
will be of use in the more challenging problem to be discussed in the
next chapter.

Considerable deviations between the dfag coefficients of the
torus and a straight body have been found, often for very small values
of ¢ where it might not be expected. These deviations are particu-
larly large when the motion is such that there are points o_h the
centerline moving in opposition to one another. This long range effect
in Stokes flow clearly indicates how important it is to develop a
general uniformly valid theory for undulatory motions of a flagellum
where points separated by half a wavelength are moving in opposite

directions. One further, rather surprising, result is that it has been



66
i)os sible to correct the boundary condition up to an error of Ofe 2'lne)
withoﬁt affecting(the'Stokeslet streﬁgth previously found by satisfying
the boundary coﬁdition to the lowest order. Therefore, extending

the theory to higher orders in ¢ has not changed the force/length,

although it has given an improved error estimate of that result.
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III. THE STOKES FLLOW PAST A FLEXIBLE SLENDER BODY IN

ARBITRARY MOTION

"We now consider the case of arbitrary motion of a flexible
slender body with circular cross section and length 2{.. The center-
line configuration of the slender body motion can be‘generally

prescribed in the parametric form
X = Eo(syt) = (Xl(S,t), XZ(S’t): X3(S)t)) (-4<s<2) ,

where s is the arc length along the centerline and t is the time.

The parametric function 'gc_o(s,t) is assumed at least twice differen-
tiable in s and t. In the sequel, all quantities having the dimensions
of length will be nondimensipnalized by the body half length £

(unless otherwise stated).

3.1 The case of spheroidal cross section

In this case we restrict our attention to bodies with circular

cross sections whose area satisfied the spheroidal distribution:

2.1/2
s

ry = en(s) =e(l -s7) (-1g<s 1), (L1

where as already mentioned we have nondimensionalized by £ and

here ¢ = }f— « 1. The body is further assumed to be inextensible,
i. e.,

ax01 ol

— — =1 , (3. 1. 2)
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vx;here the sﬁmmaﬁon convention (over the repeated indicies i = 1,2, 3)
is employed and A(xl, X5) x3) arc used interchangeably with (x, vy, z).
Therefqre, associated with the centerline the unit vectors in the
tangential, normal, and binormal directions are given by (see figure

3.1. 1)

1
e = X , e =-—
K

e
=8 =o, s ~n ’ -

Xgn,

-}Eo, ss b Zs
(3. 1. 3)
where x 1is the local nondimensional curvature of the body center-

line, i.e.,

kK =(x . X )]‘/2

~o0,s8s8s =—o,ss

Here a subscript s refers to differentiation with respect to the arc
length variable s.
The body centerline velocity is

d'}EO v
YNy © T*® T £ (s,t) (-1< s € 1),

where the velocity is nondimensionalized by some characteristic
velocity U. The admissible motions will be limited to those in which
the radius of curvature, K-l, is for all s and t large compared to
the cross-sectional radius of the body. It is particularly convenient,
as in the torus problem, to decompose the velocity into its components

along the (_e_s, e _e_b) directions,



Y(s,t) :(ngs + Vn-ein +Vb3b ’
where
V = x X
s ~o *o,s .
Vo= %
n K —o ~o,ss
v - l 2 o | X )
b~ k 2o -}Eo,s 2{—o,ss

The motion of the body surface at any station s may be re-
garded as consisting of a translation of velocity V and a rotation

about the point gc_o(s, t) with angular velocity, nondimensionalized by

U/e,
$2(s,t) = Qs s + Qn—e-n+ ﬂbgb’
where
Qs B A N Qn: £p " E5 2y, = £s° &n
de . |
since in general, _JEY = e, = 2 X e, (v = n, s,b).
The no-slip boundary condition on the body surface is given by
E-:—Y+-S—2-Xr19—rl on r, = emn,
where
g_rlz s1n¢gb-cos¢3n, (3.1.4).

with (rl,qJ) denoting the familiar polar coordinates in the body cross-

se ctional plane. In terms of the unit vectors ey €58y WE have



u = Usgs +_Un;n 4 Ubf-:—b on r; = b, (3. 1. 5)
where

Us = Vs + en(Qnsmq; + 3 cos ) o,

Un = Vn—enS?Ssqu »

Uy, = Vb - enﬂs cos §y .

Following the same method as developed earlier for the torus
problem, we assume that the velocity field is given to the first
approximation by a line distribution of Stokeslets and doublets along
the body centerline. The extent of the distribution, guided by the
exact solution for straight prolate spheroid (Chwang & Wu, 1975), is
taken to lie between the generalized foci of the body, i.e.,the foci of

the stretched straight body

2.1/2
€

‘s:(l- ) = e . (3. 1. 6)

1
where e is the generalized eccentricity.

The velocity field is therefore given by
. 5\
(s, r),¢) = g (Ug(Rsa) + UL (R;p)ds' (3.1.7)

-8

1

where ES and L_ID are the nondimensionalized forms of the equations
given in (2. 1. 1). Here the Stokeslet and doublet strengths are functions
of s and t and are nondimensionalized by U and U{ 2 respectively.

Also we have (see figure 3. 1. 1)



I

- 1
x (s, 1) zo(s 1)

(3. 1.8)
]1/2

~
i

-— 2 2 .
IR | = [R0 +r1+2r15:_r1 R

2

Since evaluating the integrals by applying the simplified pro-
cedure used for the torus encounters difficulty near the body ends,
we resort to the construction of uniformly valid expansions near the
body surface as discussed in Chapter II

In the vicinity of the body we let ry = eq. where n = (1) and
write- |

2 , 22 1/2
R = (R] +e¢“y +2€qgr1°Bb)/ . (3. 1. 9)

We further limit our analysis to the consideration of bodies for which

Ro> O(e) , for all (s' - s) > Ofe) ,

i. e., we exclude from our study slender bodies in which the center-
line reapproaches itself. | In particular, the distance between the
centerline must be greater than order ¢ for any two points on the
centerline which are separated by a distance along the arc length
greater than O(e), for exé.mple, we must omit a helix of high pitch
or a nearly closed partial torus. With this restriction the outer

expansion of 'R—1 which is valid in the neighborhood of the body,
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éxcluding the inner region centered at the point s at which section
the boundary condition is to be applied, is

ene,. - RS
1 ~ 1 1 2
g g 0- 5 + O(e)) (3. 1. 10)
o) RO )
for (s' = 8) > Ole) .
e

Writing _I_{o in terms of the unit vectors
ey En’gb at s, i.e.,

Bo = Rosia-s + Ron—e—n * Robgb ?
we have upon using (3. 1. 4)
L ?-—1—{1 +2d[R cosy - R sin¢]+0(ez)}
R RO RZ n ob ¢
o

(3.1.11)
For the inner expansion we will make use of the inner or
stretched variable introduced in Chapter IIL.

Here it is given by

(3. 1. 12)

We expand Ro and R for ¢ fixed and ¢ - 0, or equivalently in a
Taylor series about s

s, giving
RZ T . L
o]

iz € 0k + 0(55) P (3. 1. 13)
R Z (e'or<s ) + ¢ 031'(33))35 + (er(l) + e 02'1‘( ) +e G3ril3))en
+ (er(bl) + e 3e3:3)
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rgl) = —i, r(:) = z];'KZ ’
r(l) Q_q cos |, rf'12) = -%K, rf) = —lx,s ,
1‘](31) = -1 sin lp, 1’{)3) = - zl)-K’T s A

with 7 being the torsion, i.e.,the measure of the rate at which the
curve ;Eo(s, t) twists out of the osculating plane. In equation (3. 1. 14)

the base vectors e 88 assume their values at s.

~b
Using (3. 1. 13), (3. 1.14) and (3. 1. 8) we find the inner expan-
sion of R™! as
2 2
1 ~ 1 €0 e 4 3 3
—Ifi) = GA{1 + Ale +A2(o R, + 0 R;) + Ole )},
(3. 1. 15)
where
Ry = - 5 MK cos § ,
2 2 2
R. = ¥ (14 9m cos 5|5)’
2 24 2
A
R, = -+ + kT sin )
3 = - 6nx,scos¢ kT sin ) ,
A = (@Z+nD)/?
The Stokeslet strength, a, which is to be determined as a
function of s and t, has the inner expansion about s' = s,

a(i)(S',t) = 2(0) + ecrg(l) + 620'2_0_._(2) + 0(63) , (3. 1. 16)
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where
2(0) = ‘_G';(S’.t) »
a(l) = (a' -xa )e +(a' + ka_ +Ta e + (al - Ta )e
- —8 n’ —s n s “b’En b n'=b '’
202 - (a 2 ‘

:1, - Zxail - K'an -k a, —K'rab)_e_S (3.1.17)

. 2 2
1 1 1 1 v _
+((1n + K a + T ay + ZKCLS + 2'Tab ka -T an)gn

+(q,"3' - 2'7'0,;1_- 'r'aI1 - KTa - Tzab).elb .

In the above expressions the primes denote differentiation with respect
to s, (_(_a_s,_e_n, gb) are the unit vectors at s, and av(v =n,s,b) are the
components of a at s in terms of these unit vectors.

The doublet distribution may also be similarly expanded as a
function of s, however, that particular choice makes the analysis
unnecessarily complicated. By making use of the previous results for
the torus and straight slender spheroids, namely, that the doublet
strength is always proportional to the cross-s»ectional radius squared,
we are led to take

si’ _ s%) (3. 1. 18)

E(S, t) = _%(S, £, )

This doublet strength, B, can then be expanded in the inner region

about s' = s as,

where
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Bs, t)(s5 - s'%)

o
~
i

E(l) = E(l)(s,t)(si - 5'2) »

®
1

@) - B, t)s? - 5% :

with E(l) and _]§(2) given by equation (3. 1. 17) if all the a, are
replaced by Bv° What we have done here is to expand the B about
s'= s while leaving the parabolic modulation intact, and by so doing
we have generated a series in which the ordering of the terms is
explicit, since all of the terms tend to zero at the same rate near
s' =+ Sy- Had we expanded f(s'), as was done for afs'), without

making use of the form (3. 1. 18), we would have constructed an
2

expansion in which the first term, Bv (s, t) (s 1 - sz), was not
always of the leading order, i.e., it would tend to zero near the ends
whereas some of the higher order terms in the Taylor series would
not. This procedure is in direct analogy with the two-timing or two-
variable expansion method found in perturbation theory, in which we
have a fast and slow variable (Van Dyke, 1975).

For satisfying the boundary conditions we will, in general, be
considering the velocity components in the e 8y directions at
s, denoted respectively by (u, v, w). First, the inner expansion for
the normal velocity component due to the Stokeslet distribution is
given using (3. 1. 14) and (3. 1. 16) by,

u(si) = (aflo) + eca(nl) + ezczailz)) _}—11—(—.1_) + (a - B)(i)(e r](;) +

620'21';2) +e 30'31‘;3)) —1-1—1(—].')3 + 0(62) P (3. 1. 19)
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where R is given in (3. 1. 15) and

(@ B = e0c) 4 ¢ ) + PoPc, 4 0C,1) + e (6°Cy,
+0°C,,) + Ofe ) ) (3.1.20)

o oD )

Car = o xl+all el

Caz = ol 4 (D) 4 g1, 00 (00, (3] f0) (3)

The outer expansion of the normal velocity component due to the
Stokeslet, by using (3. 1. 8) and (3. 1. 11), is

an(s') Ron - encosy

0)3 !

+ (9. . B)(O)

( (3. 1. 21)
R

where

(g- 5)(0) =a- _1_2_.0 - aneqcosqu + o,bensimp ’

11 ¢ : 2
r(®) ~ R U +1_>:%](Ron°°s"‘ " Ropsing) + O}

o
In the above, the vector components are expressed in terms of the
unit vectors at s. The common part expansion is most easily

obtained by taking the inner limit of the outer expansion. This



1

amounts to substituting into equation (3. 1. 21) the inner expansion for

a and
‘ 2 2 2
1 ~ 1 3
—) i o] (1’“"—5’4“& o)) ,
R

o ‘ .

OIS ¢ DN I N ) T
S S

os

(3. 1. 22)
R(l) = 6202 (2) +e o r(3) + O(e4) ,
on n

RS% = 630'31'](33) _+ 0(64) .

The inner expansion for the tangential velocity component, v ,

is readily obtained from (3. 1. 19) by replacing a;k), rill), r£12)’ rS) by

o,(sk), dr(sl), 0, r(s3) respectively and using (3. 1. 20). Similarly, the
outer expansion is obtained from (3. 1. 21) by replacing a.» Ron by

a, and Ros and omitting the term encos y. The common part
expansion is constructed in precisely the same manner using (3. 1.22).
Likewise, the inner and outer expansions for ithe binormal velocity
component, w, are given by replacing ailk), r](nl), r§:12)’ rS) in (3. 1. 19)
by o,f)k), r{)l), 0, r}()?’) respectively, and a Ron - encosy in (3. 1.21)
by a, and Ry *tem sin 5, with the common part given by the inner
1imit of the outer expansion, using (3. 1. 22).

The uniformly valid integrand of the velocity is, as discussed

in section 2. 1, given by

S e

) 4 ql0) _ ,(od)
-5

gt lg "ig
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(ol)

S represents the common part expansion. The actual

expression for the above will not be presented here since it is rather

where u

lengthy and of no particular interest.
For the dotblet distribution we observe that the outer expan-

-

sion is 6f order ;B/RO3 where B is the nondimensional strength and
R’o = O(1l) for the outer region, since we require that the centerline
does not reapproach itself. Assuming a prio>ri, as for the torus, that
O(B) = Ofe Za) we can conclude that the contribution to the velo city field
from the far field doublet distribution is of higher order and can be
neglected. This assumption on the order of the doublet strength will
of course be ve 1;ified later. Furthermore the common part expansion
is readily obtained from the inner limit of the outer expansion and is
therefore also of order ezaa This can be checked by considering the
outer limit of the inner expansion which is a more formidable task.
Therefore we need only calculate the inner expansion of the doublet

distribution. This is easily obtained by replacing q(i()(v:n,s,b), l('i )and
R

)3 by p(k) , ~—(11—)-3-, and —-(%—5— respectively in the inner expan-
R v R R -

sion of the Stokeslet distribution.

Our first approximation to the velocity field thus becomes,

2 . ) 1 .
ais, v T @D+ uheao + ( @)~ vPMast + o(ela)

L]
3./

S S
-01 -sl
where
) s1 +?
01 - E ’
s1 - 8
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Integrating the uniformly valid expansion and evaluating the
resulting velocity; on the body surface gives, using the integrals in
Appendix B and neglecting terms of Ofe 2lnea)

(0)

'u':VZ(d.l(qo) L+ ) hl(s)cosq;G(a ,B )+ h (s)cosq;F(q; a s Oy, Bn’ Bb)

) (1)
n

+encosyu’’ + ensin Lpu(z') , (3. 1. 23)

glo)

v T 4L -——2——-)- h,(s)Gla_, B_) ~h(s)F(ysa_, a,, B_, B, )
€
+ u(s°) + en cosupv(l) + e siny A2 (3. 1. 24)
B(O)
W= Z(a,go)L + ———-—) +h (s)s1nq,aCr(a ,B )-h (s)31n¢Fup a ,ab,B B ) |
+ u](oo) + en cosy w(l) +en sinq;w(z) , (3. 1. 25)
where
L = lneE s
h,(s) = 2enq ——
l-e”'s
2
_ 1-s
h,(s) = 2 o252 ’
(o)
2B
Gla,B ) = al®- (v = n,5,b) ,

F(q;;an, aps Bn’ Bb) = cos¢G(an, Bn) - sinq;G(ab, Bb) .
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The velocity terms uf}on) (v = n, s,b), u(k), v(k) and W(k) {(k = 1,2) are
given by |
s
0 _ ¢! |
u = S‘ Kv(Bo;g)ds' , (v =mns,b) ,
..51 -
(o) (1)
3B 'k 2B
u(l) - (20531) N Kaf,lo))(L"l) _ 1‘2 - SZ - cosz¢k G(an, Bn)
€ €
°1 (1)
+Sv K, (R a)ds' ,
.."sl
(o) s
kB 1
u(Z) = a,l(oo)K(l_L)+ ezb +cosZ¢KG(ab, Bb)+S K(b(B ; a)ds',
‘ | s,
(o) (1) s
2B 2B 1
o1 a(s?)_K(s_4L)+za;1)(L-1)+ = - — -g K(Si)@o:g_)dsh
€ € -5
(1) ]
2B 1
(2) _ (1) b (2)n . '
v = Zab (I-L) +'—e—z— + Ksb (__R_.o,g._)ds
-sq ’
n(0)
W(1) _ al(Oo)K(l-L) ) KBb

- 5 + Ksinpr(q;;an, ay Bn’ Bb)

s

1
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wherg
s a (s',t) (a(s,t) - R )R D a (s,t)
K(R;g_):v + - 3—-0 ov vV
vooT R R |s-s']
o (o)
] (v = n,s,b, no sum on the subscript v) (3. 1. 26)
Dn = Db = 1 > DS = 2, -
n_ e B R ( (1), k(o)
KE)): — 3_0 (1 - Zov)+ & 3[0.:)+§(¢;1,s +%ano )]
R_ R, 13
(v = n,s,b)
a- R
k2 - 1l 4R R a -32—=2R R _)+k
mp R3 P om op m RZ op om mp
o o
(m’p— n’ S’b) 3
(o)
Koy,
k = - = »
nb kbn ZIS—S'I
(o)
3ka
ko, = - —= + =5 (ol sgEl) -5 o),
STt Zlﬁl i§l3 n n 2 S
_ & (o) (1)
kyp = 3 (o + Eop)
¢ |
£ = s -s' .

The vector components in the above kernels are referred to the base

vectors e 08y at s where the boundary condition is to be
satisfied.
We observe that equations (3. 1. 23), (3. 1. 24) and (3. 1. 25) are

capable of satisfying the boﬁndary conditions (equations 3. 1. 5) to the
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lowest ordeAr, with an error of Ofaelne), provided the nondimension-
alized rotation, £, is of O(1) or less. With this restriction the
terms involving £ in the boundary condition become of order e or

smaller, and we take for all s

BS,O) _ %ezas’o) (v = ﬁ’ s, b), : (3.1.27)

in order to eliminate the terms which depend on the angle {. We are
then left with the following integral equation for a, neglecting terms

of Ofaelne)

Vv(s,t) = (s, t)L S K ,a )ds! (v = s,n,b)
(3. 1. 28)
(no sum over subscript v) ,
where
LS = 2(2L-1) , Ln = Lb =2L.+1
and

Kv(_I}_.O;_(_J,_) is given by (3. 1. 26).

A similar integral equation is found by Keller and Rubinow (1976) by
using the method of matched asymptotic expansions. Further discus-
sion of this equation will be given later.

We now proceed to satisfy the boundary condition to higher
orders in e¢. Following the procedure used in the torus solution we
define the remaining terms in the boundary condition after néglecting

the terms of Ofe Zlne a) as
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-«

}

(1)

u = enfcosy u + sinxp(u(z) +Qs)] ,

»

u = enfcosy (V(l)

- &) + sin q;(v(?‘) - Qn)] ,

»

w = en[cos (w(l)

’

+a) + sin g w'?)]

-~ A

where (u, v,v:r) are the velocity components in the direction of
(_e_n,'_t_a_s,gb). Higher order singularities will be required to cancel
the above residual velécities on the body surface so that the boundary
condition is satisfied to a higher order.

We begin by considering the velocity components in the n-b

or cross section plane of the body, i.e., u and w. The components

can be rewritten as

enf-at+b)cos ¢ + (-c+d)sin bl .

a?
H

w = en[(atb)sin ¢ + (ctd)cos y] ,

where

12 .

(1)
5 )

u

b= o (w? 4l

»

¢ = = (wh) - ul®)

s

N

2)

w4 ul? g 22) .

DN s

The terms are easily identified by combining velocities u and w and
converting the basg vectors from the (_e_n, g_b) system to the (g_rl, 941)

system. Thus we find
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)

~b:?'9—r1 - b(cos 2¢gr1 - sin 2§ 9_\“

+c(sin2gp_eir + cos2y "e"lll) + d9—¢ (3. 1. 29)
1

in which we have used

e -cosy e + siny e

o
i

sin\pg_r + cosye
1

We now recognize the familiar term s that were encountered for the
torus. The first term with coefficient a is a ''radial-like' flow and
can be corrected for by a source distribution. The last term in
(3.1.29) is a "rotational-like' flow about ti’le body centerline which
will be eliminated by admitting a tangential rotlet distribution. The
remaining two terms represent two separate '"extensional-like' flows,
with their principal axes subtending an angle of % Each of these
will be canceled by an appropriate stresslet-quadrupole pair.

The higher order tangential velocity term, :r, represents
two '"'shear-like'' flows in the e direction and can be adjusted to
satisfy the boundary condition by introducing a rotlet oriented in the
e, and ey direction.

We further note that if we only desire to satisfy the boundary
conditions up to terms of O(aeclne), with an error of O(ae), then only

a rotlet and source distribution is needed, since to this order, we

have, by using (3. 1. 27),
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SN @) 2
u = -w o= (ZaS - Kan) In "
(2) _ (1) _ z
u = W = -apk In .
and therefore b = c = 0. In practice, to satisfy the boundary

condition to this order is a much easier task since the integrals in
k) (k)

the terms u“/, v/, and w(k) (k = 1,2) may be neglected.

The velocity field induced by the rotlet is given by

°1
up = | Upmsas

-sl

where }_IR is given in (2. 1. 20) and the rotlet strength here is non-
difnensionalized by TUf. Based on the fact that for the torus the

dimensional rotlet strength was found to be always proportional to
%2 » where a was the torus radius, we shall assume that the rotlet

strength here is given by

_(S_(S,t) = 52( Gn(s’t)?—n -+ 65(5,1:)_@_8 + 6$(S’t)§_b)(si _ SZ)

As will be verified later, év(v = mn, s,b) is of O(alne) and hence the
outer and common part ex;;ansions will be of Ofae 2lne) to leading
order and can therefore be neglected. Thus the uniformly valid
expansion consists, to the order retained here, of only the inner
expansion. Substituting (3. 1. 14), (3. 1. 15) and the expansion for

8(s',t) about s'=s in the integral representation of u we find after

R

integration and neglecting terms of O(ée¢ 2lne)
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u, = -Zem s;nn}:és s

<
1

= 2en(cos Yoy + sin 6n) ,
Wr = ~-2¢m cos Pé

Thus we see that by incorporating the rotlet distribution into our

solution the terms v and de  are canceled by taking

¥

d = LelD 4 @

1
és =2 4 + Zns) ’

6, = %—(nb Sy (3. 1. 30)
' _ 1 (2)

5n = 'Z'(Qn -v ) .

In the case when the boundary condition is satisfied up to O(aelne)

these results reduce to

1 2
s 2 (ﬂs - aklin e_) ’

[~ ]
il

1 2
oy = _Z_Qb-l-(Ka’s —TO’b'a'n)lne_ ¢

1 ' 2
6n 5 Qn + (ab - 'ran)ln -

we further note that the assumption on the outer expansion is also
verified since 6v = Ofalne), v=mn,s,b.

In precisely the same manner as was done for the rotlet, we
conclude that the source strength is of the form

;n = m(s,t)ez(si - SZ)
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The qontribution from this source distribution to the velocity field is
due to the inner ;esxpé,nsion of the integrand, since the outer and
common part expansions are of higher order than retained here.

Therefore after integration we find

v in ¢ 210
CN -Zenm(cos¢_§_n - s1n¢3b) + O(me "1ne).

Accordingly, the radial-like flow term is canceled by taking

i

m = -2a = gD @) (3. 1. 31)

The leading order term of this source strength is given by

1 2
-_— r —_—
m = 2(2(1s Kan)ln -
It remains only to eliminate the extensional-like flow terms.
This can be accomplished by introducing two stresslet-quadrupole
pairs with characteristic directions (_e_n,g_n) and (~e—n’ gb), Based on
the torus solution, in which we found the stresslet strength to be
2 4

proportional to ha—- and the quadrupole strength proportional to P;— ,

we assume the required strengths to be of the form

Ak = Ak(s,t)e 2(s? - sz) ,
~ 4 2 2.2
By = Bk(s,t)e (s1 -s") k = 1,2) ,
where k = 1 and 2, respectively for the characteristic directions

(gn, :e__n) and (g_n,_e_a_b). As has been explained, we neglect the outer

and common part expansions of these two distributions since the
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contributions to the velocity field will be of Of(ae 2) and Ofae 4)

for the stresslet and ‘quadrupole, respectively.

<

L4
The inner expansions of the integrands can be constructed as

before making use of the expansions of the base vectors En(s') and

eb(s') é.bout s' = s, which are

2
1 —_—

e, = g_n—eo(Kg_S-i-’T_e_b) + O(e )
e! = e, teoTe_ + O(ez)

= b —b -n

where the primes indicate the unit vectors at s'. Upon integration

you find, neglecting the term of Of(ae 2'lne),

uSS(En’En) + 'uQ(_e_n,_e_n) = . Zencosq;[ZBl + cos ZLp(A1 - 4Bl)] ,

VSS(En’En)+VQ(Sn’Sn) =0,

= -2en sing[2B; - cos2y(A; - 4B,)] ,

se ) +WQ(gn,;e_n)

wsgley

and

ugglepep) tugle Ley) = 2ensiny[A, - 2B, + cos 24(A, - 4B,)] ,

Veslen &) tvplepeqy) = 0,

WSS(En’Eb) + WQ(g_n,gb) - 2em cost[A2 - ZB2 - coSs 2¢(A2—4B2)].
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Those two remaining terms in the boundary condition are now

eliminated by taking ’
¢

A = b L@y

A, = c = >V aPy (3. 1. 32)
B, = 1 A

By = "}IAz

As was anticipated in the torus case we see that the quadrupole
strength is % the stresslet strength. If we satisfy the boundary

conditions only up to order Of(aelne), we have

i. e., no stresslet or quadrupole is needed as mentioned earlier.



90

3.2 Slender bodies with arbitrary circular cross sections

We now extend the previous analysis to the more general case
for slender bodies having circular cross sections with arbitrary but

slowly varying distribution of cross-sectional area
r1=en(s) , -1 s g1, (3.2.1)

except we still require that the body has spheroidal ends, namely we
require qz(s) ~ (1 - sz)(l +O(e2)) as s> + 1. For this case, we
construct separate expansions for the velocity field, one being valid
for the center region away from the body ends (at s = + 1) and the
other for the end regions Qith s ~+ 1. The Stokeslet strength
assumes the same functional form as in the precéeding case, with its
inner expansion given by (3. 1. 16). For the doublet distribution, how-

ever, we assume

B (s, t)-qz(s) (center region)
B(s,t) = (3. 2. 2)

B (s,t)(s? - sz) (end regions)

The inner expansion of the doublet strength is given by

E(o) + eoﬁ(l) + O(ez) (center region)
B(s' t) ~ (3. 2. 3)
(1_3(O)+ eal?g(l) + 0(62))(5% - S'Z) (end regions) ,

where in the end regions we find it convenient to use a two-variable
expansion to account for the quadratic modulation, while in the center

region this is unnecessary so we simply use a one-variable Taylor
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(k)

series expansion. The explicit expressions for § k)

and _]3(
(k =0,1,2) can be obtained directly from equation (3. 1. 17) by re-
placing av(v = mn, s,b) by anz or by Bv for the respective regions.
In the end regions the inner and outer expansions for the Stokeslet

and doﬁblet distributions are therefore identical to thosc; of section
3.1, since the expansions of the strengths and cross-sectional shapes
are the same. Consequently, we see that the velocity field in the
neighborhood of each body end will be given by (3. 1. 23), (3. 1.24) and
(3. 1.25). The boundary conditions in the end regions, by virtue of
the spheroidal shape of the body ends, are therefore again given by

equations (3. 1. 26) and (3. 1. 27) and hence are satisfied just as before.

The expansions of the velocity field integrands in the center region

2 2
1 - 8)

must be replaced by B (s,t) q 2(s); with this change the integrands

are also similar to those of section 3. 1 except that B (s, t)(s

there will generally yield different results.

If we now use the integral table given in Appendix C for the
present general. case we find that the expansions for the velocity field
valid in the center region are given by equations (3. 1. 23), (3. 1. 24)

and (3. 1. 25) with the following changes

hz(s) -2 ,
2,1/2
2(1-87)
L=~ ln - en(s) ’
(0) (o)
2B 2B
h(s)al® - —%—) > Zen(s) " ol -5
€ -S €

(v=n,s,b) . (3. 2. 4)



92
From this fesult we see that for the center region, after substituting
the changes (3. 2. 4) in (3. 1. 23), (3. . 24) and (3. 1. 25), the boundary

condition is satisfied, neglecting terms of Of(aelne), by
1 .
B = ze0 (v =n,b) , - (3.2.5)

and the solution for a from the integral equation (3. 1. 27) where L
assumes the new expression giveﬁ in (3. 2. 4). We note that in the
center region the tangential doublet strength cannot be fully deter-
mined as yet. This term will be determined from the matching
condition between the expansions of the velocities in the center and
end regions. Namely, we must requiré the end limit of the center
velocity expansion to equal the center limit of the end velocity

expansion. In the end limit of the center expansion we have

n(s) ~ (1-s32 (1 + 0(?)
and therefore
2(1-1:(25))”2. ~2+0(?) ,
1n—z-éin—‘(:-)z—’}—/-—2 ~ ln% + o?) (3. 2. 6)
% LN 1-::2 + O(e?)

From these expressions (equations 3. 2. 6) and the relations for the
doublet strengths (3. 1. 27) and (3. 2. 5) we find that the leading order
term and the terms v(l), v(z), u(z),w(l) of the center and end velocity

expansions match completely. Matching of the remaining terms
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(1) (2)

namely u and® w'~’, requires that
‘2B 2B
0 2s 2 s,
- 55 (o _—ZS) + =% (1 +O0(e“)Na, -—5) = 0
€ 1l-s €
and
2B -
2s 2 s, _
] 2(1+O(e ))(as- 2)— 0
-5 €

which are satisfied, as expected, by

The uniformly valid expansion of the velocity field near the

body surface is
u~uo tun-@oly

- where U Up and (P-C)E represent, respectively, the center
expansion, end expansion, and common part or end limit of the center
expansion. Thus on the body surface r; = en(s) we have

R 1 (1) . (2)
ava + Kv(Bo;g)ds + encosy a + ensiny u,

~

_sl.
(v = n, s, b) (3.2.7)

where Lv(v = mn, s, b) is given in equation (3. 1. 28) except now

2,1/2
L o= 1p 2=s)V "

€n

and
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Llill) - a;(ZL_?))_Kan(L_ %) - Zasf(S) - ?1<n1) >
°
u](QZ) - K“b(% - L) +?1(f) ,
ol o (@t - wa +7a,)(2L-3)-20 f(s) + 5,
| (3.2.8)
o2 (a'y - Ta )(3-2L) + 20, f(s) - G‘(SZ) ’

s . b

(@' -3 @ )(3-2L) + Zasﬂs)_+ag2)

i
i

The terms 3(15) (v=mn,s,b; k=1,2) refer to the integral terms
(k) (k) (k)

found in u"/, v ', and w of section 3.1 (see equations 3. 1. 23 -

3. 1. 25) and

on
ds

[
1
17)
™)
3=

These equations clearly reduce to those found for a body of spheroidal
cross section when n = (1—52)1/2.

We may further extend the solution to satisfy the boundary
condition to higher orders in ¢ by including the near field distribu-

tions of the same higher order singularities as used before. Their

strengths are given respectively for the center and end regions by
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. : J 6v(s,t)e2n2(s)
6v(s,t) =
l Gv(s,t)e 2(s? - sz) | (v = n,s,b) ,
Y[ m(s, t)e “n’(s) -
m(s, t) =

m(s,t)ez(S? - SZ) ,

) A(s,t)ePn’(s)
Ay (s, t) =
| Ak(s,t)ez-(sf - %) k=1,2) ,
B, (s,t)e n"
By (s, t) =
B, (s, t)e “(s2 - s%)° (k=1,2) .

The expansions of the velocity field, which afe uniformly valid |
for all s, induced by these singularity distributions can be constructed
here as in the previous case, yielding the same expressions for the
velocity field near the body surface as were found for the higher order
singularities in section 3. 1, except here n(s) need not be (l-sz)l/z.
This should be expected since it is only the leading order term of
1;hese higher order singularities which generally contributes to the
velocity field at the order required here. Therefore the results for

the strengths 6v(v = n, s,b),m,A_k and Bk(k = 1,2) are the same

as given in section 3. 1 by equations (3. 1. 30), (3. 1. 31) and (3. 1. 32)
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except with u(k), v(k),w(k) (k = 1, 2) respectively replaced by

o) R ()

o o ruy which are given in (3. 2. 8).

In summary, we have satisfied the boundary condition up to an
error term of Ofe 2lne) for the case of a body having an arbitrary
distribution of circular cross sections over most of its length except
for its spheroidal ends.. The remaining task is to solve the set of
simultaneous integral equations (3. 1. 27) for the Stokeslet strength and
its counterpart for the more general case in which we have to replace
In EZ— by 1n[2(1-sz)1/2/e11] in (3. 1. 27). Once the Stokeslet strength
is known we have also obtained the higher-order singularity strengths,
since they are given in terms of the Stokeslet strength and its first
derivative with respect to arc length.

We now conclude this section with a verification that the
force/length exerted on the body is in faét -8rpa. As was already
mentioned in Chapter II, this result does not follow immediately from
the method of singularities and therefore we include this calculation.

In general, the total force is given by

F = S (-pn + Tn)ds ,
Sb ‘
where n is the outward unit normal to the body surface Sb. For
incompressible flows this may be written in terms of the vorticity w
as
F = § (-pn + po X n)dS

Sp
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For bodies with circular cross sections considered here we have

1

n = (e, - en'e))
(1 +e2q‘2)1/2 ry s
and . ® , .
dS = ben(l + ezn'z)l/2 (1 +enk cos y)dyds ,
where
‘ 9
A 1]
" T Bs

Defining the force/length, f, as F/fds (note s is dimensionless),

we then have

2m
f = S’ (-PN + pw X N) b(1 + enx cosy)dy , (3.2.9)
o
where
2 ,2.1/2
N = nq(l+ey = me, -em'e .

1

The pressure due to the various singularities was given in
Chapter II, while the vorticity, after being nondimensionalized by U/¢,

is

51 2a X R
Lg :S. | 37— ds'
—Sl
S
S‘ 1 8 3(6+ RR
) = (- + ydst
—R ;5 R>
-8
1
1 3[(py » Rlpy + (g, - Rlp ;1 XR
@55 :S 1 L= 1 s
—S R
1
®m T @p = eq =0
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We represent the total pressure and vorticity by
P = PgtPgg = Sv Pds' ,

51 .

8

1
wg * ep tegy :g ks’ .

i€
1

The analysis is conveniently carried out by substituting the
above expressions into (3. 2. 9) and then interchanging the order of
integration to take advantage of the fact that many of the terms
dependent on ¢ will integrate to zero. We will calculate f, negl.ecting
terms of order ¢ 2, by constructing the uniformly valid expansions for
P and { precisely as has been done before for the velocity fields.

As already explained, to the order of accuracy desired here, only the
Stokeslet pressure and vorticity has an outer expansion which must be
retained. The outer expansions, now given in dimensional form up to

an error term of O(aez), are found as

ti) a Bo

=g - 2pUen 3 (sinxp_e_b -cosye ) ,
o

7 (o) 2XBO .

E’-S = 2uUen ; X(s1n¢9_b -COSLp_e_n) )

R
o
where
jI_) = UPNe(l +enk cosy) ,

pUL X Ne(l + enk cos )

e
i
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We also note that the common-part expansions, which are given by
the inner limit of the outer expansion, will have the same | depen-
dence. It is thus clear that upon integration with respect to { these
terms will vanish. Thus it remains only to examine the contribution
of the inner expansibn. The inner expansions of the pre% sure and
vorticity due to the Stokeslet distribution are, leaving out an error of

Olae?),
i) ~ (@ B .
s = 2pUen W (1 + enx cos y)(siny e, - cos gp_e_n-eq'gs) ,

A(l

Es

) T ZHUGW{(%Rn’anR-b)(COS " gb+ sin e )+

T (abRS- aSRb)(sin Y _gs+ e'q'gb) + (aSRn - anRS)(cos Y e

' 1+enx cosy
- €m _e_n)} R(i)3 s
where .
e - oy T D) o030 2 H g oD HG

: a(;)‘l‘,(ri) 3 aiz) ;(;)) . e3(&;2) ;(IL) 52 “fle) ;;1) o2

. (pl);(Z) S € Bl ¢ (o)“g) (0) 2630 4 o h

and
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;(sl) = oir(sl)_’ ;5,1) = 1‘5,1) (v =n,b) ,
;1(12) . azrilz), ;12) = 0 (v =s,b) ,
6 e

Integrating these two inner expansions with respect to § and then
with respect to s' gives the expected result,

£gq = -8mua . (3. 2. 10)

where here a is taken as the dimensional Stokeslet strength. This

will be the total force/length within an error of Ofe 2) provided the

higher order singularities have no contribution up to this order.
The contribution from the rotlet distribution is due to its

vorticity which has an inner expansion

~(1) 3(5 - RARX N) (i)

bR T Culele) [-aXN) 4+ Lt enecosy

R2 R(1)3

where the rotlet strength is given by ezég(s), g(s) being 112(5) or

(s? - sZ) as is appropriate for the center or end regions, and (6 - E)(i)
is given in (3. 1. 20) with as’k) replaced by 65}1{) . We also have

G XN = n{(Gnsinq; + Gycosyle (- (G siny + en'Gye

—(Gscos Y - en'Gn)g_b} ,

G being _<‘_3_(1) or 5(1) as the case may be. Integrating the expres-

sion for ;g:) with respect to ¢ gives a nonzero result, however, the
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subsequent integration over s' gives zero, after neglecting terms of

Ofe 2). Therefore the contribution to the force/length by the rotlet

distribution, at the order of interest here, is zero.

vSimilarly, by constructing the expressions for the pressure
and vorticity due ::o the stresslets with characteristic di;'ections
(_e_n,gnj and (g_n,g_b) and then integrating those expressions with
respect to ¢y and s’ we find no contribution from them to the same
order of approximation as specified. The details of this calculation

will be curtailed here since they are quite lengthy and identical to

what we have done above. Therefore we have, in fact, verified that

2

equation (3. 2.10) is the force/length if we neglect the terms of O(e ).

3.3 Application to the partial torus

In order to elucidate the combined effects of centerline curva-
ture and the body ends we svhall seek in this section the solution of the
integral equations for a for a partial torus, that is a segment of a |
torus. The equation for this case, to be repeated here for convenience,
is given by

S

1
— - . 1 —
Vv(s,t) = av(s,t)Lv + S Kv(go,g)ds (v = s,n,b) ,
-s
1 (3.3.1)
where
LS=2(2L-1), anLb:2L+1 s
2.1/2
L = m2l-s) ,

€n



a (S',t) (_],_(S',t) - B )R D a (S,t)
K,(Roia) = + T -
R R IS - S'I
o) o]
. ® 1
BO = XO(S’ t) - _}_C_O(S ) = Ro € s + Ron n + ROb S'b ’

. _ .
als',t) = asgs+ansn+°’b9—b

Here we recall that the base vectors Sls’—ein’ ey in the above
expression assume their values at s where Vv(s,t) is specified.

| Some general observations can be made concerning these
equations. For bodies with a planar centerline, i.e., bodies for
which ey &g lie in the same plane for all s and 7 =0, we see
that Rob = 0 and thus the integral equation for a, separates from
the equations for a, and a. Thus, if Vb = 0 we have the trivial
solution 0 = 0, and we are left with two coupled integral equations
for a.» and a.. Furthermore, if Vn = VS =0 but Vb # 0, we
have the trivial solution a =a, = 0 and have simply one integral
equation for Q- For the torus problem of Chapter II the integral
equation (3. 3. 1) holds valid if 4 is taken to be w, s replaced by 6,
and I, = .1n-§- . In that particular case we have, in fact, solved
analytically the integral equation. When examining bodies of othei-
shapes and with ends, it is generally necessary to resort to approxi-
mate numeriéal techniques.

One rather obvious procedure is to use the iteration scheme

defined by
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. S
1 ,
as}k-i—l)(s’t) - ]:_1_ {VV(S’t) - S Kv(Bo;a(k)(s',t))ds!}
v
-5
1

k =0,1,2,....) , (3.3.2)

where _g_(k) is the kth iterate of a. With the initial guess E(o) =0
we see that _q_(l) gives the familiar result for a straight, slencier
spheroid. We may thus expect that in higher-order iterations the
integral in (3. 3. 2) will provide increasingly improved corrections to
the solution sought for the actual body shape and motion. This itera-
tion scheme generates an expansion for a, in a series of (Elf- )n ,
(—Ll-— )k+1. The vexpan-
v

sion here is of a somewhat more general nature than the expansions

with an error in the kth iterate being of order

in terms of (l—nlL'E-)n given by Cox (1970) and a similar iteration
procedure proposed by Keller & Rubinow (1976). In fact, if we have
the same number of terms in the two expansions we rﬁust neglect
certain terms in the expansion found from (3. 3. 2) to obtain the expan-
sion in terms of (-h}x_e Y. This suggests that ‘thke expansions in terms
of (El_)n may be more accurate than those introduced by Cox or
Kelle: & Rubinow. We will illustrate this point shortly when we
examine somé simple examples.

Although the iteration method given by (3. 3. 2) seems reason-
able, the kth iterate has an error of O(——l—— k+l and therefore the

L
v

sequence is slowly convergent. Accordingly, many iterates may often
be needed to obtain accurate results. Also we see that it is impossible

with this method to take full advantage of the true accuracy of a
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inherent in the original integral equation, which ‘cheoreticaily deter-
mines a up to an error of O(ez). For this reason we introduce what
will be referred to as the direct computation method to be used here
and in fhe following chapter. This procedure involves replacing the
integrals in equation (3. 3. 1) by a sum, using a convenient quadrature
formula, thus giving a set of linear equations. Here a quadratic
quadrature fomula has been employed to approximate the integral in
equation (3. 3. 1) and from the many direct and indirect methods
available for solving linear systems we have chosen to use thé
Gaussian elimination procedure with iterative improvement as dis-
cussed by. Isaé.cson & Kelier (1966). We should note that the original
integral equation which results from the singularity method is a
Fredholm equation of the first kind and as such is generally quite
difficult to solve numerically, however, the expansions performed on
the integrands have allowed us to single out part vof the integral, i.e.,
the term ava, and we find that this modified Fredholm integral
equation of the first kind is successfully solved by the above mentioned
procedure.

A useful example to clarify the iteration procedure prescribed
by (3. 3. 2) is to consider the translation of a closed torus along its
longitudinal axis. As already mentioned (3. 3. 1) also holds for the
closed torus provided we take the integration limits to be -w "and .

-~

For this case Vn = Vs = O, V. = 1, and therefore a_ =a_ = O.

b n s
We then have,
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U
(2) (1) 1 1 1
e ) L2 g { IZs1n£| —I I Yo
b - 2 ¢

and similarly for the higher-order iterates. Therefore it is easy to

see that the kth iterate is given by

2ln w/ 4)n

Now recalling the exact solution found in section 2.1, we have

g_‘ _ 1 _ 1 _ 1 (2111 Tr/4)n
U a , 1 - 2In /4 T L L ’
2(111 8 E + —2") Lb(l —'——L_——) b n=o b

b
which is precisely the limit of infinite iterations uéing the previous
approximate solution technique.

We can also easily obtain the second iterate for the similar
translation of a partial spheroidal torus, i.e., a body with a
spheroidal cross section and a centerline given in polar corrdinates

by r = a. For this case

(2)
“b

_ ! 1 S [ —1 L 14
N . : 0}
o VT, |2sing] o]

~(6,+
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where 91 = eGo, Goa being the body half length f£. Upon integration,

(2) 1 2 1.3
% T - — t o), (3. 3. 3)
o, o
where
16 ?1 ¢2
F, = 1In tan — tan —— ,
2 ((P1§92. 4 4 )
(Pl = 61 +0 ,
(pz = 91 - 9 .
The equivalent expansion in terms of (inie- 3 is
2In2 +1+F
-1 2 1.3
% 7 ZIne (2 1) + Olyz7) (3.3..4).

A comparison of the results from (3.3.3) and (3. 3. 4) given in figure
(3. 3. 2) for itwo typical cases shows that they differ by approximately
40%. However, if we compare the result from the expansion in terms
of (Ll—]—o)n (equation 3.3.3) with the solution obtained from the direct
numevrical solution method, we find that they differ by less than 1%
and are essentially indistinguishable in figure (3. 3. 2). Apparently |
the terms -ng have summed an infinite number of terms, in a way
similar to that found for Padé approximants, to produce a result more
accurate than is indicated by the error term. For this simple case
the accuracy is rather dramatic and we should note that for more
complex body centerlines and motions we find that it is overly
optimistic to expect this method to have such a high degree of accu-~

racy with so few iterates.
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An example which will allow us to compare the present theory
with that of Cox's; in which the end effects are neglected, is the
translation of a partial spheroidal torus in its own plane. The no-slip
boundary condition in dimensional form, namely u = Ue x .on

ry =, gives

d,sin 8 -d, cos 6§ ,

Vn AR | 2
VS = -dlcos 6 - d2 sin 6 ,
Vy = 0,
where d1 = sin 9.1, d2 = cos Bi, Gi being the angle between e _

and the unit radial vector at the midpoint of the body, i.e., 6 = 0
(see figure 3.3.1). Here, e, = -8, since we have taken the
curvature, k, to be positive. As discussed earlier, we have ay = 0

and the first iterates for a and ag become

all(6") = (V_(6) cos ¢ - V_(6) sin o) =
n
aDig) = (V_(0) cos ¢ + V_(8) sin ¢) ——
s - s 4 n 4 LS ’
p = 6' -0 .

The second iterates are given by

v._(6) F_(6)
aPig) = B . 2+ o)
n L n
° (3. 3. 5)
v (6) F_(6)
(2) _ s s 1 3
aS (8) - 1, - 2 + O(:-[:—) ’
s L s

where
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v_(6)

1 .
F (6) S‘ {L .'a ()9)(3c0<;(p 1H3a( )(()')sin 0] l4sin5§-]— |<p| } de,
..(Pl ¥
2 2V
F_(6) = S (L [a{V(61(3 cos g +1)-3al ) (6") sing] — L —— - — S}y,
) o1 [4sing]| o]
~?1

901:91—!'9, 902=91-9.

Carrying out the integrals for Fn and Fs yield

e
&)
{i

v (0)k(0) - V_(6)k,(6) ,

F (6) = V_(6)k

. n(03(6) +V () ,(0)

where
kl(e) = A+ a(l -3%) +c(l -£)-2(1 - 2X) s
kz(e) = b(1l - 3Ly +d(1 -%) ,
-1 -1
ky(6) = b(5 -3 ) +d(1-LT)
-1 -1 -1
k4(9) = 2A+a(5-3L ) +c(l - 7)) -2(3-2L" ) ,
and Ln
I- = o
s
a = cos -?l cos—e—
- 2 2’
6
b = -coszlmng ,
¢ = cos o oq30
- 2 2 7
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4 - et f1 . 36
= = COS8 —2. S:ll’l'-——2 ’
16 ?1 ?2
A = 1ln (—— tan —Z}-tan—;f) .

?192

In order to compare the present result with that of Cox for the

force/length in the x-direction we again need to further approximate

expression (3. 3. 5) by neglecting the terms of O(T;lle-)?), giving
v ¥

(2) _ n 1 )

% “Zine " @)z (Va1 - ViB2) -
. :

(2) s 1
a ~= - (V g, t v g ) ’
s 21ne (41ne)2 n°3 s®4

; 1
g, = A+21n2+1+-2-(c-a) ,
(3. 3. 6)
1

gz = -2— (d"b) »
gy = -b-d ,
84 < 2A + 4 1In2-a-c .

In figure (3. 3. 3) we compare the Stokeslet strengths given by
the two expansions (3. 3. 5) and (3. 3. 6) with the results computed by the
direct numerical method for a hemi-~-torus with 60 = nw/2, Oi =0,e=0.1,

As we have already noted, the generalized expansion in terms of
(El—)n, v = n,s, yields results in closer agreement with those found by
14

the direct numerical method. We note, however, that the difference
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between the results of the two expansions here is not nearly as large
as we found in the previous case (figure 3. 3. 2).
The present result for a  to be compared with that of Cox

(1970) is given by
a, = -a_cos(f + 6.) - a _sin(8 + 6.)
n i s i

X

Substituting (3. 3. 6) into the above expression gives

1 . L 1 1 | 2= 1
% T Fin: (sin”6-2) - _T‘{(l - 5 sin 6)[ A+2In2+1 -—Z—(a—c)]
4In"e
1 - = 1 .| 2—-
- 7 cos 6 sin §(3d-b) - 5 sin 68(1+c)} , (3.3.7)

&

where 6= 6+ 0;-

rvI‘he expression (3.3.7) is foundv to agree with that given by
Cox if we further expand the present (uniformly valid) solution for
points away from the body ends. This amounts to substituting the

following approximation for A into (3. 3.7),

?1 92 2 g2
A = In(l6 tan -~ tan T) - 111(91 -67)
o o e292
= In(16 tan —= tan —2) - In(6% - 62)(1 - ——2.)
4 4 o 2 .2
_ 6”-6
_ o
1. %2 2 ¢’
~ In(lé6 tan -4—-tan -4—) - lnn~ + O(—z————z— ) .
0~ -0
o
Thus we see that the error given by Cox as being of O(l—r:ll—e—)3 is not
unifoi'mly valid since at the ends it is actually of O(l?le-—)z. Although

the region over which this error exists is small, it is necessary to
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fake an accurate account of it as has been done here, in order to
satisfy the boundéry condition to higher orders in .

It is instructive to examine the solution for the planar trans-
lation of a partial torus obtained by using the accurate direct
numerical method. In figures (3.3.4 - 3. 3. 8) some typ{cal results
for the force /leﬁgth in the radial and tangential directions of several

representative cases are compared with the classical resistive force

theory which is based on the following (generally approximate)

relations,
-fr = "Lcnvn’ f9 = p.CSVs : (3.3.8)
where
_ 8t _ 8m
Ch = - T > Co= 1 >
n s

Cn and CS being the coefficients for é straight slender spheroid.
As may be expected, for very small e the results are reasonably
good while for moderately small values the error becomes significant.
We also see that the error is often largest near the body ends. From
these examples it mi‘ght appear that (3. 3. 8) would be a good approxi-
mation to the force/length for slender bodies in general, however, for
bodies with more complex cénterline motions, as in the case of
finite ~amplitude flagellar undulations, equations (3. 3. 8) are’r‘ather ‘
poor approximations even for very small values of ¢, as we shall see
later.

Figures (3. 3. 9) and (3. 3. 10) give an indication of the long

range effect present in low-Reynolds-number flows. In these figures
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We have a comparison of the force/length for a half torus (extending
from 6 = - w/2 to w/2) with that of a quarter torus which has its
centerline coinciding with the half torus for 6 = 0 to w/2. Although
the qualitative behavior of the solution deoes not change, we s'ee that
neglecting the contribution from the f§r~fie1d distributién can result
in a considerable error. This suggests that if results of high accu-
racyare required, it would be insufficient to approximate a given
slender body by superposing segments of bodies of specified local
shape, since the present results have shown that the force densities
at the corresponding points on these body segments are appreciably
different from those in the actual case. Therefore the class of hydro-
mechanical models of flagellum based on representing a finite flagel-
lum by a segment of an infinitely long flagellum in determining the

hydromechanical forces and moments, such as that adopted by Shen,

J.S., et al, (1975), should be examined with scrutiny.
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IV. FLAGELLAR HYDRODYNAMICS

4.1 Finite amplitude planar motion of a flagellum

We now apply the theory developed in the previous chaptgrs to
the finite-amplitude motion of a flagellum. The undulatory motion of
a flagellum is modeled by a slender spheroidal body whose centerline
is in a coordinate frame translating with the propulsive velocity of

the organism -Ug_x, given in dimensional form by

= (x(s,t), - a cos(ks - £(t)), 0) 2L sg L,
(4. 1. 1)

X
—0

where k is the wave number 27/A, A being the wave length mea-
sured along the centerline and f£(t) is at this point an arbitrary function
of time. The coordinate frame is chosen so that x(-£,t) = 0. This
particular description, i.e., (4. 1. 1), is chosen since it is a fairly

good representation of the observed waveforms of many spermatozoa
and its parametric form is particularly convenient for calculating the
positions and velocities of material points on the body centerline. The

inextensibility condition (3. 1. 2) can be written as

= V1 - 2% Psinl(ks - £(8) (4. 1.2)
and therefore
ks-f
x(s,t) = S. —kl—\/l-azkzsinzt; at ,
-kg -f

kx(s,t) = E(ks - £/a’k’) + BE(kt + £/a’k?) (4. 1. 3)

L

where E represents an elliptic integral of the second kind.
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The velocity of a material point on the body centerline with

respect to the laboratory or absolute frame is

- dx dy
Vo= (-Utggle,t @& &y
where y = -acos(ks - f(t)). We note that a more general description

of an actual micro-organism motion might inclﬁde an additional y
component of velocity and a pitching of the x axis. For rectilinear
locomotion of a self—pi‘opelling flagellate, however, both the above
motions are expected to be small.

The dimensional centerline velocity can be written in terms of

the base vectors e ,e ,e as
—s’—n’=b

V. = (C-U)x, -c
8 s
= (U- | 4.1.4
V, = (U-C)y, s _ ( )
Vb = 0
where we have taken e, = (-v, o X g 0), and we have
C = c(t) \/1 - azkzsinz(M + f)
c(t) = #t)/x (4. 1. 5)
Y, = 9y/ds = ak sin (ks - f)

S

with x, g 7 ox/9s given by (4. 1.2) and f = ?1{" . Recalling the

original definition of e, (equation 3. 1. 3), we see that taking e, as
given above requires k to be positive or negative according as y is
negative or positive. We note that C is the wave speed in the

x%-direction with respect to the translating x,y frame, while c is
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the velocity with which the wave propagates along the arc length. For
the purpose of cdmparison between various theories we require C

to be constant. Therefore we take

af Ck .
5 (4. 1. 6)

J1-22126im20 4+ 8)

and for convenience f(0) = 0. This equation is easily solved for f£(t)
with given data by using any of the numerical schemes available, such
as the method of Runge-Kutta. For a few of the special cases to
follow we also bri'eﬂy considered f£(t) = wt,i.e., c = co.nstant and
C = C(t), and found that the qualitative behavior of the solutions for the
force/length is similar to the behavior of those solutions corres-
ponding to (4. 1. 6). The accuracy of the data available at present
actually precludes a definite conclusion as to which of the above
choices for C is more accurate and therefore we make use of the
more common choice, namely C = constant.

One restriction on our geometry arises from condition (4. 1. 2)
which requires that ak ¢ 1. Now in_tegrating (4. 1, 2) from x =0 to )\,

where M\ 1is the wavelength measured along the x-axis, we obtain for

t=0
LA
A = S / 1 - YZ, s ds
1
= £ {Ek(A2)/2%%) + Bkt /a%P)}
= & E@n/a%) = 2ERAD (4. 1.7)
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where E(azkz) denotes the complete elliptic integral of the second

kind. From (4. 1. 7) it follows that

ak 1
- 2k <1 (4. 1. 8)
il 4

o

This limitation is not particularly troublesome, however, since the
amplitude -to-wavelength ratio of many spermatozoa fall within this

range (see Brennen & Winet, 1977).

The terms in dimensional form needed for use in the integral

equation (3. 3. 1) are

R =Xe_ + Ye
o Zx —y

R = 1301 ’

{E(ks-f(t )/ak )-E(ks! ft))/ak )} ,

bl

Y = -a{ cos(ks-f(t)- cos(ks'-£(t))} ,

R’on = _130 . gn(s) = - sz(s) + le(s) ,
Ros = Bo . g_s(s) = le(s) +Yv2(s) ,
a(s') = als": e (s) = al & +alf, ,

a(s') = a(s e (s) = al & -al &, ,

where a;} refers to the components (v = n, s) of the vector a(s')

corresponding to the unit vectors e and e at the point s!', and
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We now apply our model to the spermatozoa of oyster and the

spermatozoa Chaetopterus variopedatus, using the data of Denehy

(1975)and Brokaw (1965, From these data we can specify for our
numerical scheme, the number of waves along the flagellum n, the
amplitude -to -wavelength ratio a/\, the slenderness parameter e,
the nondimensional wave speed C/U, and the frequency of the
oscillatory motion. The data taken from the above papers are given

in table (4. 1.1). A sketch of a typical waveform for Chaetopterus

calculated from equation (4. 1. 1) with the given data is shown for a
few time intervals in figure (4. 1. 1). Satisfactory agreement over
most of the flagellum 1.ength is found between the waveform calculated
from equation (4. 1. 1) and the photographs given by Brokaw (1965). In
particular, we note that equation (4. 1. 1) describes the curved regions
well and simulates the waveform used by Brokaw (1965) which con-
sisted of circular arcs joined by straight segments. We should note,
hgwever, that the waveform observed on the proximal part of the
flagellum, i.e., that part nearest the point of attachment to the cell
body, is not in general accurately described by equation (4. 1. 1).
Nevertheless, we apply equation (4. 1. 1) since the region of the flagel-
lum that is inadequately described by (4. 1. 1) is rather small.

We proceed to make comparisons between the results of the

existing theories and those obtained by using the methods developed
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here. First, we remark here that numerical experiments on the
direct computation method for both the partial torus and the undulating
slender body were carried out by varying the number of intervals
used iﬁ the quadrature formula in computing the integral in equation
(3. 3. 1). The results indicated that one can generally determine the
Stokeslet strength to an accuracy of 3 or 4 significant figures with
only 20 divisions per wave length. This accuracy is quite sufficient
for practical application and therefore the results to be presented in
the seqﬁel are obtained from computations with at least 20 divisions
per wavelength. With respect to the time the motion was divided into
20 intervals per cycle, While at each of these instants the integral
equations (3. 3. 1) were solved for a.

In figures (4. 1. 2) and (4. 1. 3) we present a comparison of the

average thrust per cycle versus C/U for Chaetopterus and oyster,

calculated separately by the present method, the resistive-force
theory, and the methods developed by Lighthill (1975b). For the
resistive-force theory we make use of the force/length in the normal

and tangential directions given by Gray & Hancock (1955), i.e.,

fn = anVn, fs = p’CsVs (4. 1. 9)
where
_ 4w _
Cn = m s Csv = 0.5 Cn
b 2

From the figures (4. 1. 2) and (4. 1. 3) we see that the Gray & Hancock
resistance coefficients consistently overestimate the thrust. This

is partly because the second equation in (4. 1. 9) often underestimates
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the tangential- force/length, which is always contributing to the drag,
by as much as 30%. A more accurate estimate of the zero thrust
point is obtained by increasing the ratio of CS/Cn used in equation
(4. 1. 9), see figure (4. 1. 8), however, variation of Cs/cn alone can
not produce uniform agreement with the present results over the
entire range of C/U. The normal force/length found using Gray &
Hancock theory is not altered by the above changes in Cs/cn and
often underestimates the correct result by 20% or more as indicated
in figure (4. 1. 9) for a typical case.

In a recent‘ study Denehy (1975) found the theoretical propulsive
velocity of oyster spermétozoa to be 239 um/sec by using the Gréy &
Hancock coefficients while her observed value was 163. 8 um/sec.
This finding also supports the contention that the classical formulas
(4. 1. 9) overestimate the thrust of a flagellum. We also note that
corresponding to the error in the force/length calculated by equations
(4. 1. 9), we see in figures (4. 1. 4) and (4. 1. 5) that the mean energy

expenditure, given as a first approximation by the time average of

is also underestimated, by a large amount (approximately 30%), by

the Gray & Hancock theory. Using the present theory it is now possible
to accurately calculate the energy expenditure of a finite amplitude

| flagellar motion. |

The force coefficients given by Lighthill (1975b) for a flagel-

lum which is not generating any thrust, i.e., a self propelling
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flagellum which has no cell body drag to overcome, are

4y 2w

C = —"—7 , C_=—%5—, (4. 1. 10)
oy ° mEh

with q = 0. 09A . These expressions are shown by Lighthill to be a
suboptimal representation of the resistance coefficients for spiral or
planar motions of small amplitude, neglecting end effects. As shown
in figures (4. 1. 2) and (4. 1. 3) pertaining to finite -amplitude planar
motions, it is remarkable how well Lighthill's coefficients predict
the zero thrust point, i.e., the intercept of the thrust curve with the
C/U axis. Also plo£ted in figures (4. 1. 2) and (4. 1. 3) is the thrust

resulting from the approximate expression for the thrust/length,

thrust/length = IJ.CX(UO -,
c, = —G— ,
ln—];l

given by Lighthill (1975b) for a flagellum which is producing a non-
zero thrust. For an extended application of the above expressions
.Lighthill argues that a reasonable choice of q is % n\ if U is the
actual propulsive veiocity and Uo is the zero-thrust swimming
speed given for planar undulations by Lighthill (1975a) as

o (A-p)y(1-y) _

B being the mean square cosine of the angle between the flagellar
tangent and the swimming direction. Using the above approximation

to the thrust we see from figures (4. 1. 2) and (4. 1. 3) that it generally
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ﬁndere stimates the mean force on the flagellum. Furthermore, we
should note that tirlese non-zero thrust results given by Lighthill are
oBtained by assuming a constant mean thrust/length along the flagel-
lum. For this reason, we may expect that accurate instantaneous
results for the force/length acting on the flagell‘uxn whici'l is important
for the study of internal flagellar mechanics, can not be obtained
froi’n this approximate method. However, solving the integral equa-
tion presented by Lighthill (1975b) more precisely is expected to
produée more accurate results for the instantaneous force/length.

In figure (4. 1. 6) we plot the average thrust generated by the

flagellum of Chaetopterus versus number of waves along the flagellum

as the flagellum is hypothetically being lengthened, other factors being

equal. We note that Chaetopterus, which has an observed value of

n = 1,25, operates in one of the 'favorable' regions with respect to
the variable n. In searching for further evidence of the significance
that this behavior for the thrust versus number of waves may exist in
general for other spermatozoa, we note that many spermatozoa have
been observed to have a value of n between 1.. 25 and 1. 5 (Brokaw,
1965; Brennen & Winet, 1977). Plotting the thrust and energy
expenditure versus ak, or a/\ using equation 4. 1.8, (figure 4. 1.7)
. we see that the thrust and energy expenditure is momnotonically
increasing over the entire range 0 £ a/\ < % . Unfortunately,

our kinematical description, which is particularly convenient for the
desired type of waveforms, requires major modification for examining
the rather interesting cases in which —g—g- can be negative, i.e.,

waveforms that bend back over themselves, as observed by Brokaw
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(1965) for Chaetopterus in solutions of high viscosity. Further
reseafch along these lines should yield interesting information on the
behavior of the solution for very large values of a/\.

From the present numerical re‘sults we further note that due
to the velocity field induced by the moving flagellum, the local
differential forces generally do not vanish with the local velocity of
the centerline. Therefore the resistive-force theory in which the
force is assurnéd to be proportional to the centerline velocity is not
entirely correct. However, if we define Cr1 and CS, excluding
points on the body centerline with very small local velocities, the
numerical results show th.a‘c the values of Cn and CS will ofﬁen
vary, with respect to position along the flagellum and time, by 20%
as should be expected for planar waves, with the maximum differences
in time or space being much larger. Therefore the classical resistance
coefficients which are independent of s and t, such as equations
(4. 1.9) and (4. 1. 10), require major modification in order to be used
to accurately calculate the instantaneous force/length acting on the
body. Furthermore, the numerical solutions indicate that assigning
an appropriate empirical expression, which would properly account
for the above mentioned variations with respect to s and t, is a
rather difficult problem. If it is still desirable to use the classical
resistive-~force theory, we might mention that the coefficients given
by Lighthill (equation 4. 1. 10), offer a more reasonable approximation
to the force/length than does the Gray & Hancock coefficients, as is
suggested by the figures. Although constant resistive force coeffi-

cients are fairly accurate when calculating time-average values of the
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thrust, there is no better way at present to evaluate instantaneous
forces acting on a slender body ‘than to solve integral equation (3. 3. 1),
which is easily accomplished numerically, as has been demonstrated

here.

4,2 An approximate solution for the interaction between a spherical

cell body and its flagellum

We now wish to examine the behavior of the solution when we
include the interaction between a cell body and its flagellum. The cell
body of the spermatozoa is assumed to be a spherical surface of
radius d centered at a distance d in the negative x-direction from
the end of our flagellum, s = -f. Using the method introduced by
Burgers (1938) we approximately satisfy the no-slip boundary condi-
tion on the sphere surface by placing a Stokeslet at the sphere center
with its étrength chosen such that the surface mean value of the
velocity on the sphere induced by the flagellum plus this Stokeslet
equals the velocity of the cell body. We then include the velocity
induced along the length of the flagellum by this cell-body Stokeslet
into our integral equation (3. 3. 1), thereby acquiring an approximate
account of the flagellar-cell body interactions. | Very little Wérk has
been done on this interaction problem, although Lighthill (1975b) has
proposed an approximate method of solution in which he essentially
places a Stokeslet in the center of a cell body with a strength chosen
such that the total force on the flagellum plus cell body equals zero.
No attempt, however, is made to satisfy a no-slip boundary condition

on the cell body. Here we expect to more accurately account for the
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presence of a cell body by approximately satisfying the boundary
condition on the spherical surface. This boundary condition based on

the surface mean velocity is given by

g dy(-,t) = _ _1 S | _h .
Uey *=ar — &y ~ ;7 ) et Uglxia Nds - (42.1)
sphere

where U, and ES are the velocities induced by the flagellum and
cell body (or head), respectively. We approximate the velocity in-
duced by the flagellum on the spherical surface by the contribution of
only its Stokeslet distribution because the contribution from the higher
order singularities is negligible as we have repeatedly noted in our

previous discussion. The velocities B and Es(i‘;&h) are given by

51
u, = g LJS(R,a)ds' R
-sl
h h
h a (@ - x)x
HS(E’E) = T + 1-3 ’

where R is the position vector from a point s' on the flagellum
centerline to a field point and x is the position vector from the
sphere center to a field point with r = | x |[.

The integral equation (3. 3. 1) becomes, after including the
Stokeslet that represents the cell body,

51

Py = :
V. (s;t)-e (s,t)-Ug(Ry5a7) =a L +S K (R ;a)ds’

—sl

(v=mn,s8Db) , (4. 2. 2)



125
where Ry is the position vector from the sphere center to the point
s on the flagellum centerline. Equations (4. 2. 1) and (4. 2. 2) are then
four scalar equations for the four unknown components of gh and a.
.The numerical calculation is reduced immensely by an
analytical evaluation of the integral in the boundary condition (4. 2. 1).

First, the term involving ES(E;E}I) is easily evaluated by choosing

the base vectors €1:8,:83 such that . g,_h = ahgl and using the
spherical coordinates such that
e, = cos 931 + sin@ cos g e, + sin 6 sing e ,

we then have

1
4nd

i l

> g S(Xu. )ds S S (a e, +ah cos Ggr)sinededcp

sphere
E.h '
ruk (4. 2. 3)

SM N

The other integral term in (4. 2. 1) can be written as,

1 22 _a-R
Ef:g {K"V(T)}dsl

_sl

where R = x - x', x' being the position vector from the sphere

center to a point s' on the flagellum and V = e 0

€; -5';1' This may

be written
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where V' = e; T}?—' .  Now we take the surface integral and change
S|

the order of integration, giving

a a- R |
Su ds g S -—-—+V'(R )}des‘/

sphere -5y sphere

where the integration over the sphere is with respect to the variable

2a
x. Noting that —R: is a harmonic functmn, we use the mean value
theorem to find
1 29_ 2a
'—'—Z . —ﬁ— dS = . (4:. 2. 4)
4r Ix' I
) sphere =

For the second term we may interchange the gradient operator and

the integration since the gradient is with respect to x', i.e., we have

sphere
On the sphere we have R = d_e_r - x' where e. is the radial unit

vector of a polar coordinate system with its origin at the sphere

center. The above expression therefore may be written as

(@ e d-a-x
v'{g = ds }

sphere

We see that the second term above is also a harmonic function, there-

fore by the mean value theorem,

1 a - x a- x
g——R-— ds = I . (4. 2. 5)

2 L3
4md sphere

x!|
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Thus it only remains to evaluate

1 . e Sy
m ? —1{—-—-‘-—- dS ° (4. 2. ())
sphere "

This is done by making use of the _e_n,g coordinate system

£ 2y

shown in figure (4. 2. 1), chosen such that

a = a e + a, e R
- n—n € —¢

cos Ogn + sin 6 cos cp_e_g + sinfsinge

g

€
—-T

We now substitute in (4. 2, 6) the result for aq - e. and the well-

known Legendre polynomial expansion for R'l, which for ]_:51 =d is

1 «© 1 1 ¢
- 3 —— (—— )" P,(cos 0)
S TS P R

After integrating the resulting expression for (4. 2. 6) with respect to
¢ we find,

ki

00 1 d . '
a X (——) S-cos@ Pﬁ(cos 6)d(cos @) .

Tie fwl | g

d
2

From the orthogonality relations for the Legendre polynomials we

have

2

1 4
= = ) . 4,2.7
7% e, (4.2.7)

|=']

Therefore from equations (4. 2. 4), (4. 2.5) and (4. 2. 7), using

a- x
a = , we have
T x|
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- §, 2a a-x 42 a- x'
1 g’ S’ = v+ S vE—2)) ds!
— u dS = 3 3
oz ) 2] U ' | I | |
sphere -8
= S Ugx"ie)+ = U p(x'5a)}ds!
_Sl

We have found that the mean velocity, averaged over a sphere, of a
Stokeslet of strength a located at x' outside the sphere is equal to
the velocity field evaluated at the sphere center due to the same

2 ,
Stokeslet plus a doublet of strength 4 a also located at x'. This is,

3
in some sense, a mean value theorem for the Stokes equations.
From equation (4. 2. 1) and (4. 2. 3) we then find that the

Stokeslet strength g,_h is given by

S
1
_Sl

where
: dz

Hx';a) = Uglx'ia)+ 5 Up(x'ia)
We now sﬁbstitute g,_h given above into equation (4. 2. 2) and solve the
resulting equation, pi‘ecisely as before, for the Stokeslet strength
distributed along the flagellum centerline, a .

The spermatozoa of oyster were particularly well suited for
applying the present analysis since they have. a very nearly spherical
cell body with %— = 0. 057 whereas the cell bodieé of Chaetopterus

have a length-to-width ratio of 2. For Chaetopterus we approximate

the head radius-to -ﬂagellar length ratio by assuming the sphere
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radius to be the mean of the actual dimensions, thus giving % = 0. 080;
we aléo reduced this value by 20% to ascertain the trend of the effect
of head sizc on the results.

In figures (4. 2. 2),. (4. 2. 3) and (4. 2. 4) we repeat the thrust
curves for the headless spermatozoa and compare them to the thrust
generated by the equivalent flagellum possessing a cell body. In all
the cases examined we note that the presence of a head enhahces the
thrust generation by the flagellum. The physical reason for this is
that the large cell body is dragging fluid with it thereby increasing
the velocity component in the negative e % direction incident on the
traveling flagellar wave. This then increases the thrust in regions
between the wave peaks and decreases the drag everywhere by de-
creasing the force/length in the tangential direction. ~ Also shown in
these figures is a comparison of the total force on the head and
flagellar system with the thrust of the headless case minus the Stokes
drag on a sphere of the same radius. This comparison provides an
estimate of the interactioh effect since it is absent in the latter case.
The difference in the value of C/U at the zero total thrust point is in
all cases slightly less than 15%. The result shows that the effects of
cell-body and flagellar interactions will always increase the

swimming speed for a fixed wave speed. We also note that decreasing

the head size of Chaetopterus by 20% (see figure 4. 2. 4) only decreases

slightly the thrust of the flagellum while the drag on the head is
decreased by about 25%, thus resulting in a decrease of C/U at the

zero total thrust point by approximately 10%. It was also found that
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the energy expenditure of the flagellum when the head was present
was décreased, from the case without a head, by about 5%.
It should be pointed out that in both cases the observed values

for C/U, 4.9 and 6. 7 respectively for Chaetopterus and oyster, do

-

not agree very well with the zero thrust point in figures (4. 2. 2) and
(4. 2.3). However, the data were collected from and averaged over
many organisms; consequently we should perhaps examine the range
in which the data fall. Denehy (1975) has furnished a standard
deviation for the measured swimming velocity U to be about 20% of
the mean value, with similarly large deviations in the measured wave
speed C. Although Brokaw (1965) has not included such information
we might suspect similar deviations from one specimen to another
within a species. Under this qualification, the zero thrust point
certainly falls within the observed limits. With variations inthe data
of this sort it makes it difficult to assess the accuracy of the present
results. It is of great importance to obtain accurate data on one
organism and then to model carefuliy the waveform based on the
observations in order to closely examine the fheoretical results. One
further comment concerning the data is in order at this point. It is
very clear how important the long range effect is in low-Reynolds-
number flows, as we saw for the torus which for various modes of
motion éxperiences drags considerably different from those of a
corresponding straight slender body. Therefore, as has often been
pointed out, the effect of neighboring boundaries on bodies in the
Stokes flow regime is significant. Since the data are taken for

spermatoza swimming in a proximity to either a glass or air surface,
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the problem of boundary effect on slender bodies performing finite-
amplifude motions warrants further study. It is well known that for
straight slender bodies the ratio of axial to normal foxice coefficients
decreases when it comes closer to a rigid boundary. This would
suggest an increased or more effective thrust product'ioﬂ by a flagel-
lum and therefore increased swimming speed. However, we aiso
note that for a sphere moving parallel to a rigid boundary the drag
increases with decreasing distance to the wall, this suggests that in
the above analysis the strength of the Stokeslet located in the cell
body, gh, will increase when coming closer to a rigid boundary. The
result of this will have an- effect similar to that due to an increase in
head size and thus, as we saw for a variation in head size of

Chaetopterus, the zero-thrust value of C/U will increase with in-

creasing head size, or equivalently the swimming speed decreases
for fixed wave speed. We therefore have two conﬂicﬁng mechanisms,
one suggesting an increase while the other is implying a decrease in
propulsive velocity. The figures (4. 2. 2) and (4. 2. 3) do not help to
clarify as to which is the more dominating since we have seen the
present calculation overestimate the zero-thrust value of C/U for

Chaetopterus and underestimate it for oyster spermatozoa. We also

note that data indicating the distance the organism was from a boundary
when the measurements were taken is not available.
In figure (4. 2. 5) we have a comparison of the instantaneous

thrust forces for the flagellum of Chaetopterus with and without a cell

body. In this typical case we have plotted the thrust/length for

-4 £ s £ -4/2, i.e., the proximal or first part of the flagellum
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connegted to the cell body, the result being given at five instants (in
equal btime progréssibn) during half a cycle. We observe that the
presence of the cell body results in enhancing the thrust production
of the flagellum, since the value of fx is greatly increalsed within
the first stretch of flagellum close to the cell body. Generally when
the cell body is present the thrust and drag in the range - s -0.64
are respectively increased and decreased by 10% or more from the
values found for fhe headless case., After the point s = -0. 62 the
cell body interaction effect becomes rather small, giving only a
slightly increased thrust. Similar behavior has been found for oyster
spermatozoa. Since the flow around a cell body has a long range
effect, it will have a significant effect on normal and tangential force
components such that the forward thrust is enhanced. We note that
our model does not accurately describe a flagellum when it bends only

slightly near the cell body, however, large reductions in the tangential

force can always be expected.

4.3 A note on possible drag reduction by prolate spheroidal cell

Spermatozoa have been observed to possess cell bodies which
not only have a component of velocity in the direction of propulsion
but also perform periodic motions with respect to the transverse
direction and angle of attack to the direction of swimming. A particu-
larly good example of the motion of this type is shown by Yanagimachi
(1970) for the capacitated spermatozoa of the golden hamster. One

can visualize the type of motion of the cell body to be discussed here
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bjr considering the similar motion of a small segment of the flagellum.
Here we consider‘the'possibility of non-spherical cell bodies reducing
their drag, as a result of this motion coupled with the fluid flow
induced by the flagellar undulations. We consider a prolate spheroid
with an angle of attack, i.e., the angle between the majo; axis and the

direction of propulsive velocity U, given by
6 = 6 cos wt
o

(see figure (4. 3.1)). The velocity of the fluid incident on the body is

taken to be
Vo= ¥y o+ Vg
where
-YT = Ule -Ulcos(wt +'?)Ey)
-YR = -2 X x
Q= Qe = %c@_e_z = -0 wsinote

and x' is the position vector of a point on the body surface in the body
frame of reference. The velocity term Ul’ which is nondimension-
alized by U, includes the velocity of the head oscillations in the
y-direction plus a contribution due to the motion of the flagellﬁrn
wlhich induces a flow near the cell body. We have also incorporated
an arbitfary phase angle ¢. It is a straightforward calculation

to consider an additional oscillation of the same frequency in the
x-direction; this term, however, has been found to make no contribu-

tion to the time average force in the x-direction although it does
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pi'oduce a non-zero average transverse force. In order to curtail
some of the details we will neglect this x-component oscillation
since we are at present interested in drag reduction. The force on

the cell body moving in the above prescribed manner is

F=200(CUe_ +CUe ) ,
~ s s—s n n—

n
where
Us = U(cos 08 + Ulcos(wt + ¢)sin 6) ,
Un = U(sin 0 - Ulcos(wt + ¢)cos 6) ,

L is the cell body half length, and CS and Cn are given for a
prolate spheroid by Chwang & Wu (1975). In terms of the x-y coordi-

nates we have

F 2pC_L {(Uscos 6 + YU _sin 9)9_x + (yU_cos 6 - U sin 9)gy},

where

C /C and 6=0 cos wt.
n' s o

<
1

The average force over one period is therefore,

F_ = pC LUF , (4. 3. 1)
F =0,
y
where

Fo= 14y +(1-y)NI (20) +Ujcos 9T (26.) (43.2)

and Jk(ZGO), k = 0,1, represent Bessel functions of the first kind.

The energy expended by such a motion is
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E = 24C L(U% + vU%) + Mg
Mg 78 Y n ’

2
M = BWHQLC CMR ’

where CM is given for a prolate spheroid by Chwang & Wu (1975).

R

Upon calculating the time average we find

= _ 2 2. 2
E = pC_LU E + 4rp(6_w)"Le"Cyp s
where
1.2 v
E = (L+y)1 +5UDH (1 - [T (28,) + 2U cos ¢J,(26)

_ %U?(JO(ZGO) - cos 2¢7,(26))]

In figure (4. 3. 2) we have plotted the force on the cell body with
reference to the force on a stationary cell body, HCSZLU, of the same
dimensions for the case ¢ = 0 which corresponds to observations.

We first note that the maximum drag reductions for U, = 1.0, 2.0

O, and 450, which are

and 3. 0 occur respectively at 90 = 25°, 34
within the range of Qbserved head oscillations. We see in the figure
that drag reductions of 10% or more are possible for values of
U1 > 2.0 when the cell body aspect ratio c¢/L = 1/4 and for

>

U 3.0 when c/L = 1/2. Although data are not readily available,

1
suppose we construct what might be a typical hypothetical case. We
consider an organism with a swimming speed U = 125 pm/sec, a

frequency of 30 hertz or 188 radians per second, a wave amplitude of

the flagellum of 4. 5 um and suppose the amplitude of the head motion
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in the transverse direction is 1. 5 pm, i.e., the ratio of head ampli-
tude to ﬂagellumkamplitude has a moderate value of 1/3. For this
organism we would have a transverse head velocity nondimensionalized
by U of 2.26. This head velocity plus the fluid velocity induced by
the flagellum near the head, which can be estimated :Ero;n the numeri-
cal data for the spherical head case, gives a value for Uy in the
neighborhood of 2. 75. Therefore depending on the aspect ratio of the
cell body, c¢/L, it seems quite possible to obtain drag reductions of
10% or more. From the observations of Yanagimachi (1970) for
capacitated spermatozoa we see that the ratio of heaci oscillation
amplitude to flagellar amplitude can be considerably larger than 1/3
and therefore could result in a still larger drag reduction than found
for our hypothetical organism. |

These force considerations on a cell body can be extended
slightly based on some observations made on the nunﬁerical results
for flagellar undulations. It was regularly found that maximum thrust
was generated by the flagellum when the point s = - £ was at a peak,
i.e., y = + a, and minimum thrust was geﬁerated when s = - was
at y = 0. This suggests for our present purposes that the maximum
and minimum fluid velocities in the [ direction near the cell body
should occur when y(-£,t) = + a and y(-f,t) = 0 respectively.
Therefore in the previous analysis we include a second harmonic in
the [ velocity component, i.e., replace U_e_x by U(1 - Uzcos Zwt)g_x.

Upon calculating the time average forces we find

H

F pC LU 3%
x s

0

1
I

y
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Where
o= F i (1-y)U,T,020,)
Therefore for positive U2 the new term further enhances the drag
reduc/tion capability of the cell body. However, estimation of U2
from the numerical results for spheroidal cell bodies indicates that
a value of 0.6 is appropriate and therefore this new term gives only
a few per cent additional drag reductioﬁ for ¢/L = 1/2 and 1/4 at
moderate angles of attack, 60. We will briefly mention that any of
the oscillatory cell body motions discussed above generally produce
a significant increase in energy expenditure over that found for the
stationary case, as should be expected.

Although the precedihg discussion has been of a very simpli-
fied nature it clearly presents an interesting concept to planar motion
of flagellated micro-organisms, namely that the cell body may in
some cases play an active part in propulsion. This area of research
certainly deserves furfher study in which the cell bddy motions are
accurately described with a proper account of the flagellar-cell body.

interactions for non-spherical bodies.
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V. = CONCLUSION

We have s(een’ that by applying the method of singularities it
has been possible to construct a solution, in a stepwise fashion, for
the Stokes flow past slender bodies with finite centerline curvature.

In fact, this procedure has enabled us to satisfy the no-;lip boundary
condition to a high degree of accuracy, designated by an error only of
Ole 2lne ), along the entire body lengtifl,' including the ends. Accounting
for the end effects and satisfying the boundary condition to such a high
order in the slenderness parameter has not previously been accom-
piished for slender bodies having finite curvature. One of the
principal results is that a set of simultaneous integral eciuations have
been obtained for determining the Stokeslet strength with an error of
O(e 2). We note that this errc;r in the Stokeslet strength is a éonsider-
able improvement over those results found by using the previoﬁs
method of matched asymptotic expansions, which gives the same
result in terms of thé Weak expansion in (ﬁz)n. For the torus, fhe
exact solution of these integral equations was found by assuming the
appropriate functional form for the Stokeslet étrength a priori. The
torus solution exhibited many new features of the Stokes flow past
slender bodies having finite centerline cuivature, such as the higher
order singularities which are required for improved accuraéy and the
large differences, found in certain classes of motion, between the
actual force coefficients and those of classical resistive-force theory.
The present theory Wasb then applied to finite—amplitﬁde planar motions
of the flagellum of flagellated micro-ofganisms. Comparisons were

ma_,de between both the classical theories and available data. We also
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included, for the first time to this author's knowledge, the interaction
between cell body and flagellum by approximately satisfying the no-
slip boundary condition on the cell body. Significant differences
betweeh the results with and without the cell body-fiagellar inter -
actions were observed. A brief note was given to introdkuce the
concept that the cell body may, in some cases, play a partially active
role in propulsion.

It is now worthwhile to conclude with a brief éomment on some
of the remaining problems that need to be studied. First, in order to
assess more carefully the accuracy of the theory developed here in
application to micro-orgaﬁism propulsion, it is becoming increasingly
important to accurately model the observed waveforms of spermatozoa
specimen. This is a rather formidable data collection task, since we
require not only the positions but also the velocities of a set of materi-
al points on a flagellar centerline. Along these lines it is also a
challenging problem to construct the motion of a freely swimming
micro-organism from a theoretical model that makes use of the inte-
gral equation presented here for calculating the forces on the flagellum
and accounts for the internal mechanics (or elastic response) of the
flagellum. In such a model it would be necessary to require the total
force and moment on the organism to vanish at each instant in time.
With respect to cell body-flagellar interaction a further study is
desirable to produce a solution that can accurately satisfy the no-slip
boundary condition on the cell body, especially for non-spherical cell
bodies. Another extremely important area of research is the prob-

lem of wall effects. This is important for comparing theoretical
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results with éxperimental data where the organism is in close prox-
imity to the air or glass interface of a microscope slide and for the
study of spermatozoa swimming in tubes, such as the oviduct. One
further problem of interest, to which the integral equations developed
here can be easily adapted to handle, is the interaction between
slender bodies that are separated by a distance large compared to
their cross-sectional radius, b. A qualitative study of this problem
has been carried out.by Sir G. I. Taylor (1951). The list of new
problems to consider is numerous, the few menfioned above are in-
tended only to indicate the areas that should be of great importance.
We believe that the preseﬁt work forms the solid foundation needed

for treating many of the remaining difficult and challenging problems.
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APPENDIX A

1.~ Here we present the integrals used to compute the velocity
field induced near the body surface by the near-field singularity distri-
butions that arise from the various motions of a torus (Chapter 1I).

We define

Y n
Imnzg%nd‘p’
o A ,

where

A= {1 -f-e coqu)_goz +ez}1/2

Recall that y is chosentobe ¢ «y «m. We have,

. : 2
IlO = (1 -%cost)anEJ- +% cosy- + O(ezlne, -?2-) s
2 2 2
Iz = %5 + Oley%,e“ne) ,
4
I,4 = Ok,
1 € . le2.3 2 2 >
130 = G—Z{I-EC?SL]J-E(-Y—) +—8-€ cos Lb'l-O(;—Z-)} ’
3 e 2Y 1 2
I = (1 -5 ¢ cos y)ln ~1+2e cosy +O(e"Ine) ,
32 2 : €
1 2 2 2
In4 = > ¥ o+ Oley ,e Ine) ,
1 4 4
1 /‘. ez
Igg = 7 (2 - € cosy + 0(7)) s
3e Y
1 3 ¢ 2
152 =—-2-(1-§e cos Y +O(—2-)) ,

3¢ Y
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2
I, = 1n—€¥ + o,
1 2
156 = -2—y_+0(ey,e Ine),
2
Isg < v Igq > . -
2
8 2
‘170 = ——6-(1 -,52— cos § + O(%, €))
- 1b¢ Y
I, = OWy) , I, = O(—) , L, = O(lne)
72 A S A A (A ’
2
Lg S ¥ Iyg
Iy, = O , I, = O(%) , 1,4 = O(1)
94 296 20 98

2. Integrals arising from the far-field or outer expansions
for the motion of a torus are given below. We define
™
J. = g de ,

Rk

Y

where here

R = J2a(l +¢ cos ) /2 (1 - cos ¢)172
We find,
2

1 4 4 2
Jl =—a-{(l-%cosq;)ln-§- -i% + Oy ,elny) ,
3 2 37 »

Y a
_ 1

Jg = Ot—Z5
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We also define

™

' n .. 1
c - { oo 4, . g S’ sing 4,
mn m mn m
Y R Y &

We have . i

1 ¢ 4 4 .23 2 2
CIZ = g{(l-z-cos¢)ln-§---§+48y + 3 e cos

+ Ofe yz, ¢ %1ne )}

4 3 2 4
S5 = 57(1 -3V --ez-cosq,: + Oy ,

4 .11 2
Cyp = -—{(1 -.Ecos q;)ln?- 2475 Y +ecosy

+ oyt elme)

1

32
a’y

Czp = Of

1 3 5 2,3
Sz, = a‘3{(1 -5 coqu)an -1tz y +5 e cosy

Csp = Ol—3) . Cgp = O3 , S, = O
ay ay ay



We also have

D =

=~
I
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T2
S sin"¢ cos dcp:%{lni'%’—e cosq;lné
“ _____‘E?)___S”_ . 2
R a
Y
17 2 5 4
tZg Y t zecosy + Oy)} ,
" SinZ cos 1
Sin ¢ cos ¢ = :
d(p—O( ) ’
5 5 2
R ay

Y

T
‘S‘ (1 - cos <p)1/2 de

Y

If
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APPENDIX B
In this appendix we present the integrals used in evaluating
the velocity field on the surface of an arbitrary slender body having

a spheroidal cross-section. We define

<p2/e
I —S o
mn ‘%EI do ,

where
(pl =sl+s, goz:sl-s, slze,
e = (1 52)1/2- ,
1
A = (Gz+n2) /2 ’
s' - s

o = . ,
v €
‘rlz = l-sz .

For convenience we define

L :1n1+e ,
e 1 -e
gls) = 1-e%s%
2
N 1-s
h,(s) = 2——-—1 —
- S

It is also useful to make use of the following recursion relations,

poo1 1t P20 1
0 ~ %2 T8 "¢ &l -

2
Lz = Tez0 M Ixo
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The integrals evaluated on the body surface an =1 -5
given by
g = n 12 ~ 2In 2 + O(?)
10 l-e ’
2es 2s i
= - ~ - + 0,
‘ , ILZ-
Lig = 7z +s)- 5 L,
€
N Zes 2 2 2
113 = (e ~s  ~-e7) ,

I = 2e/g(s)

Iy = - 2ees/g(s) ,
I3p = Lg - ehyls) ,
(2
_ 2es
133 - 2 hz(s)) ’
L, = & {e®(1 +s%) +c2(3 - s2- ezh 9} - 3n°L
34 © 2
2e(3 - %)  8e (l-e%)s>
Iso = z + 3 ’
3g 3g
— ZeSe3 4ezs2
gy = -=—2— U+ =———)
g 3g
222
_ 2e 1 2, 4e"e s
152“?{1"6'h2(3'e + — )},
2 h
_ - 2ese € 2 222 72
153_ P (-1+—2——h2+§ees g) s
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L, s P41+ h) +L p 2ees’
54 = "3 el 2~ JBp) + Lg g |
2
2 22
-§§(5-3s +2e“s°h,)] ,
2nIgs ~ - 2ens +Ole”) ,
2 |
€ Is6 ~ (1+5% + O(elne) ,
1 8e3(5--3e,2)+ 4.8e5ezs2 : Ze4e(5+10e2s2+e4s4)
70 15 g° 15 g* | 5 g°
2 - 4.4
I,, = - £ e;(5+10ezs'?'+e s)

5¢g

ezn2174 < O(ezln €), ezn3175 = O(ez) , ezq2176= O(ez).

We also define

S-"’Z/e (si‘ - S,Z)Gn

Jmn = m do ,
A
-'(plle
and note the recursion relations
9J. :
_ € k-21 1
Y2 = ¥2 "85 Tz Tk-20 ~ €Tk -
2 2 2
oJ
5 1 k-20
Ie1 = <&z 55—~ ko)
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Integrals arising from the common part expansion are

0 = S -2 d(p = - 28 P
‘ le|
?2 2
c1=§ £ dp = s+ % ~14s%+ 0D,
‘o, lo |
%2 3
2=S. -(E-3d<p=C0=-Zs.
lo]



Here we present the center region approximation of the

integrals that arise when considering slender bodies having arbitrary
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APPENDIX C

circular cross sections. The integrals, I

Appendix B and we find,
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We note that in the end region where 7~ ~ (1-s7)(1+O(e”)) on

the body surface we have

1 1 1 2
~ ~ = (1+0(e™)) ,
(0_2+ "12)1/2 [02 + (1_52)(1_'_0(62))]1/2 A
where
A= @®+1-4512

Therefore we see that to the order of terms retained here the end

region integrals become the same as those given in Appendix B.
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Figure 2. 1.1 Torus and coordinates.

Figure 2. 1.2 Sectional view of torus at 8' = constant.
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Longitudinal Axis

Figure 2. 1.3 Rotational and extensional like velocity field induced
near torus surface by Stokeslet and doublet distribution.
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Figure 2. 1. 4 Drag coefficient comparisons for a torus translating
along its longitudinal axis.
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¥

Figure 2. 2.1 Radial and extensional like velocity field induced near
torus surface by Stokeslet and doublet distribution.
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Figure 2. 2.3 Drag coefficient comparisons for a torus translating
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Figure 2. 4.1 Drag coefficient comparison for a torus rotating in its
plane (spinning).
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Figure 2. 5.1 Drag coefficient comparison for a torus in a radial flow.
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Figure 3.3.1 Description of geometry used for a partial torus.
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Figure 3.3.2 Second iterate of the Stokeslet strength found using the
present theory (L™ expansion) and the previous
methods for the translation of a partial torus perpendic-
ular to its plane.
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| Figure 3.3.3 Second iterate of the Stokeslet strength found using the

present theory (Ly,"~ expansion) and the previous
methods compared to the numerical solution for the
translation of a partial torus in its plane.
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TABLE 4.1.1

Mp  n c=ty freagym

Spermatozoa b(u) £(p) a(w) sec’! (sec-1) Ulgeg

Chaetopterus 0.1 15.94 3.8 19.5 1.25 517 26. 5 105

Oyster 0.1 23.5 4.65 25.6 1.4 1100 43.1 163. 8
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Figure 4. 1.2 The average thrust/cycle calculated using the methods
indicated for a headless spermatozoa.
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Figure 4. 1.3 The average thrust/cycle calculated using the methods
indicated for a headless spermatozoa.
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Figure 4. 1. 4 Average energy expended per cycle by the flagellum

calculated using the present theory and the Gray and
Hancock theory.
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Figure 4. 1.5 Average energy expended per cycle by the flagellum
calculated using the present theory and the Gray and
Hancock theory.
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Figure 4. 1.7 Average thrust and energy expenditure per cycle
- 2ra

A .

versus ak =
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Figure 4. 1. 8 Comparison of present theory to Gray & Hancock theoxy
with various values of Cq/Cn.
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Figure 4. 2. 2 Average thrust force produced by a flagellum with and .
without a head present and the total average force on
the organism with and without cell body-flagellar
interactions.
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Average thrust force produced by a flagellum with and
without a head present and the total average force on
the organism with and without cell body-flagellar
interactions.
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Figure 4. 2. 4

Average thrust force produced by a flagellum with and
without a head present and the total average force on
the organism with and without cell body-flagellar
interactions (head size decreased by 20%).
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Figure 4. 2. 5 The instantaneous thrust/length at a few instants in
time calculated with and without the cell body-
flagellar interaction. '
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Figure 4.3.1 Cell body and coordinates used.
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Figure 4. 3.2 Drag reduction of a prolate spheroidal cell body that
has a periodic transverse motion.



