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ABSTRACT

The Borel transform of an entire function of exponential type is
defined outside a closed bounded convex set D. Paley and Wiener have
given a necessary and sufficient condition on the entire function F(z)
such that ¢(w), the Borel transform of F(z), is contained in E2(C‘\D)
for the case when D is a line segment. Kacnel'son has shown that the
natural extension of this result provides a necessary condition for a
general closed bounded convex set D. Here, by counterexample, we
show that the natural extension does not provide a sufficient condi-

tion.
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CHAPTER I

INTRODUCTION

1. For a given entire function of exponential type,

®
)

2 a
F(z) = ay + T;-z + —g-z + cee + Hg-zn + +++, the Borel transform ¢(w) of

F(z) is defined by o¢(w) = a.ow-1 + a1w_2 + a2w-3 4 oeee 4 anw'n'1 b sae,

Let D be the conjugate indicator diagram of F(z) and let h(®) be the in-
dicator function of F(z). A discussion of the indicator function and
the conjugate indicator diagram is contained in Pdlya [11, p. 571-5971,
and Boas [2, p. 66-T7]. Then the following integral transforms relate

F(z) and o(w):
F(z) = é%fhjr o(w)e" 2aw

where I' is a rectifiable Jordan curve homotopic to a positively oriented

circle with D in its interior, and

.9 3
i )eledr

o
i6
o) = | P(re™)exp(-ure
0o
ie i8
where z = re” and Re(we™ ) > h(8). [11, p. 578-585], [2, p. T3-T75].
Our work here begins with a consideration of the classical Paley-

Wiener Theorem. The theorem as formulated by Paley and Wiener is the

following:



(1.1) THEOREM. (Paley-Wiener) [9, p. 1-13], [10, p. 224-234],
[7, p. 386-389]. The two following classes of entire functions
are identical:

(1) the class of all entire functions F(z) such that

F(z) = o(eA|Z|) and F(z) € L,(~o,)

(2) the class of all entire functions of the form

A
F(z) = j f(u)eiuzdu, such that f(u) € L2(-A,A)
-A

Note that from Plancherel's theorem we have the result

[+ ]

A
I IF(x)[edx = 2x I If(u)ledu.

—o -A

In order to restate (2) in a more convenient form, we will need

the following definition.

DEFINITION. [4, p. 168]. Let D be a simply connected domain with at
least two boundary points. A function f analytic in D is said to be of
class EP(D) if there exists a sequence of rectifiable Jordan curves,

C1, Cg, STere Cn, .+. in D, tending to the boundary in the sense that Cn

eventually surrounds each compact subdomain of D, such that

[ le@]® |az| <M< a.

C
n



Restating (2), we have

(2°) the class of all entire functions F(z) of exponential type
such that the conjugate indicator diagram D is contained in the line
segment [-iA,iA], and ¢(w), the Borel transform of F(z), is contained

in E2(t1': \ D). [10, p. 224-234].

We can extend the result of Paley and Wiener so that a conjugate
indicator diagram different from a line segment slong the imaginary
axis can be considered. The first result is an extension to the case
of any line segment, and the second result is an extension to the case

of a convex polygon.

(1.2) THEOREM. The following two classes of entire functions are iden-
tical:
(1) The class of all entire functions F(z) such that

i :
e-aZF(z) = O(eA|z|), and e 9T F(rele) € L2(-w,m).

(2) The class of all entire functions F(z) such that

Otﬂ'.Ae-16

F(z) = I f(u)euzdu,where f(u) is in L, of the line segment
a-ine 18

[a - iAe‘le, a + iAe-le].

For the next theorem, let D be a convex polygon with corners a1,

a,

0y eeer By numbered clockwise. Let Aij = Iai - aj| be the length of

the side from a, to aj(j =i+lorj=1,1i=41). Let eij be defined



-18;
such that 913 € [0,21) and a; -8y Aije J. We will also let

o= %(ai + aj), A= %'Aij’ and 8 = - % xt + 913

(1.3) THEOREM. [7, p. 389-391] The following three classes of entire

functions are identical:

(1) The class of all F(z) such that F(z) is entire, D is the con-
jugete indicator diagram of F(z), and F(z) = FIE(Z) + Fés(z) + e+
EL1(z), where Fij(z) is in class (1) of Theorem 1.2, witha, A, 6 as

above.

(2) The class of all F(z) such that F(z) is entire, D is the con-

jugate indicator diagram of F(z), and F(z) = F12(z) + Fés(z) PR

ELI(Z)’ where Fij(z) is in class (2) of Theorem 1.2 with @, A, 8 as

above.

(3) The class of all F(z) such that F(z) is entire, D is the con-
jugate indicator diagram of F(z), and exp(Adrele)F(rele) € L2(O,m),

with @, 6 as above for i and j as above.

The Paley-Wiener theorem has been extended by Kacnel'son [6, p. 106]
in one direction to the case of a general conjugate indicator diagram D.

The result is:

(1.4) THEOREM. Let F(z) be an entire function whose conjugate indica-
tor diagram is the bounded closed convex set D. Let ¢(w) be the Borel

transform of F(z) where ¢(w) is contained in Ez(m\\D), and let A be the



boundary of D traced counterclockwise. Then

[ 1pee'®)|? exp(-2m(e))ar < ¢, | lotw) [Fav]
0 AJa

for all © in [0,2n), where C A is a constant which depends only on A.

The question which we will answer here is whether the condition:

(o]
J. -IF(rele)leexp(—th(e))dr < M for all 0 < 8 < 2, given in Theorem 1.4
0

as a necessary condition for ¢(w) to be in E2(¢ \ D), is also a sufficient

condition,



CHAPTER II
A COUNTEREXAMPLE

2. The question we ask here is whether the necessary condition given
in Theorem 1.4 is also a sufficient condition. This would give us an
extension of the classical Paley-Wiener Theorem for the case of a seg-

ment and for the case of a polygon. (Theorems 1.2 and 1.3). The con-

jecture would be:

(2.1) CONJECTURE. Let F(z) be an entire function whose conjugate in-
dicator diagram is the closed bounded convex set D and whose indicator
function is h(¥). If

o

[ 1F(ze'*)|Pexp(-2rn(¥))ar < 1
0

for all ¢ in [0,2n), then

F(z) = JA o(w)e ™ dw

where o(w), the Borel transform of F(z), is contained in LE(A) and A is
the boundary of D traced counterclockwise, or equivalently, o(w) is in

E2((E \ D).

The following counterexample will show that the conjecture is

false for the case of a circle, even with the additional hypothesis that

<]

J |F(reiv)l2exp(—2rh(¢))dr is continuous in ¥.
0



DEFINITION. [4, p. 2} A function f(z) analytic in the unit disc is
T 18

said to be of class HY(1 < p< ) if | £(xe )|pd9 is bounded as r
0

increases to one.

NOTE. [4, p. 2]. H' D H' if 0< p < q < =; and if A is the unit disc,

then for all p > O we have that EP(A) = HP(A).

(2.2) THEOREM. [k, p. 17]. Given f£(z) in class H®, then for almost
all 8, there exist non-tangential limits for f. We will call these

Limits £(el?).

2% ©

(2.3) THEOREM. [4, p. 8]. j |f(rele)|2de = }Z Ianlzran. Hence
8 =0

2n 2n

I If(rele)lgde increases to J lf(ele)|2d6 as r increases to one.
0 0

(=]
e .
Hence f(z) is in H° if and only if f? |f(ele)lede = 2x E:{anlz is
0
n=0

finite.

(2.4) THEOREM. [4, p. 20]. Every function f(z) ¥ O of class H° can be
factored in the form f(z) = B(z)g(z), where B(z) is a Blaschke product

and g(z) is an H® function which does not vanish in lz] < 1.

NOTE: [4, p. 19]. If B(z) is a Blaschke product, then |B(z)| < 1 in

|z] < 1 and |B(z)| = 1 almost everywhere for |z| = 1.
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We shall now turn to the construction of the counterexample.

(2.5) COUNTEREXAMPLE. The main idea used in the construction of the
counterexample is the fact that for each 0 < y < 2x the function

1/(1 - e 3) is of class ', 0< p< 1, in the unit dise

D= {z : |z| <1} and not of class H in D. This will allow the con-
struction of a function analytic in the unit disc D with the property
that for all 0 < § < 2r it belongs to the class o (D(¥)), where

D(p) = {z : |z - % eiwl < 3}, but not to the class H (D).

To accomplish this we shall first prove a series of lemmas. In the
remainder of this chapter we shall denote the circle {z: |z - % ei*l = 3},
the boundary of D(%), by I'(¥). Furthermore, for each O < A < 1 we de-
fine

W=2] -z laz|, o<y<ean
H)\ 2x L..(‘#)

where the function (1 - z) "} denotes that branch in |z] < 1 which for
z =0 is equal to 1.
. . -\/2 .
The power series expansion of (1 - z) in the neighborhood of

the point z = a, |a] < 1, is of the form

@ -M2e Y (MR (2 - Y - 2)mME,
=0

which holds for all |z - a| <1 - |a|. In particular, for

z = (el" + eie)/E, 0< 4, 6<2r, and & = elq/2 we obtain the expansion

(1 - :z:.)—}‘/'2 = i (' ?/2)(_1 )n eine/en (a - 819/2)11*)\/2

=0



(2.6) LEMMA. If O < A< 1, then for all 0 < ¢ < 2 we have

H)\(O) <1/(1 - 1),

PROOF. If 0< A< 1, by

| sin g—l > J%I-for le| < =,

L 2™ |
= e -Z dZ'
2 4} a1y |
2n Y 7
=3 . -1-.[ |sin(3)| de < % P J 8~ ae
= 2n 2 - o
_ % ﬂ)\-1 (- )\)-11(1 -\

=30 -0T</0 -

(2.7) LEMMA. For all 0< A< 1, Hl(ir) is a 2n-periodic even function
of ¢ which attains its maximum at ¢ = O and its minimum at ¢ = n. 1In

particular, Hk(¢) 5_}:)\(0) <1/(1 - 1) for al1 0 < ¢ < 2r.

PROOF. From Parseval's relation it follows immediately that

= 2
(2.8) H (4) = Z (- i/Q) AP - cos y)m2
=0
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Since (g- - cos *) is a 2n-periodic continuous even function attaining
its minimum at ¥ = O and its maximum at ¢ = 5, the result follows easi-

ly from Lemma 2.6.

(2.9) I1EMMA. If cos ¥ > ,1:, then H)\(xb) is increasing in A, 0 < A < 1.
PROOF. If 0< a< 1, then a.)‘ is a decreasing function in A for

0< A< 1. For cos $>}I-weha.vetha.‘b (E——cosxb)<1, and so

5 A - /2
(E_ - cos ¢) is increasing in A. If we then observe that < n ) is

increasing in A, the required result follows from (2.8).

(2.10) LEMMA. If ¢ # O and |#| < 1, then for all 0 < A < 1 we have

B (1) <K (4) < 3/

PROOF. For z € I'(#) we have that |1 - zl'1 < W E— - cos ¢ - %)-1.
Hence, if ¢ # O, H,)\(\!:) 5_1-11(\” <z W E— - cos ¢ - -’z')—‘. From the ele-

2 L
mentary inequality cos ¢ < 1 - %— + g—,- and |¢| < 1, it follows easily

2 4
tha’c«/,—i—— cos % - 3> %—- %—, and so, finally, since |¥| < 1, we ob-

tain B (¥) < 1/(4° - 24°/3) < 3/4°; and the proof is finished.

We are now in a position to show that there exist functions in the

(o]
. -A
unit disc¢ of the type F(z) = Z o fn(z) where f‘n(z) = (1 - ze"l""n) B

n=1
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with0< A <1, 0< ¢ < 2n, and fn(O) =1 foralln=1, 2, ... such
that F € HI(D(Q)) for al1 0< ¢ < 2x and F £ }{1(1)). For this purpose,
we will see that it is necessary that the sequence { An} increase suf-
ficiently rapidly to 1 and the sequence Hn} decrease sufficiently

slovly to 0. Fram |£ (z)| < (1 - |z|)'1 it follows immediately that, if
o0
an > 0 for all n and z an < o, then F exists and is analytic in the

=1

unit disc. In view of this fact we shall assume from now on that

o0

ZQ < o,
n

n=1

We begin with the following theorem.

o0 o0
: N 5
(2.11) THEOREM. If Z an< o and /. ax/tbn < =, where "n is a se-
=1 n=1

quence strictly decreasing to O, then H, (¢,F) = '21{]‘ )IF(z)I |az| is
T'(¥

a 2n-periodic function of #, continuous for all 0 < % < 2n and contin-

uous from below at & = 2x.

PROOF. TFor each § > O let S§= {% : H - in >86, n=1, 2, ...}

Then from Ifn(z)| < («/E—- cos (¥ - v!vn) - %)_1 on I‘(Ql), n=1, 2, ...,

it follows that |F(z)| is bounded on the set U(D(%) : ¢ € SG)' Hence,
from the bounded convergence theorem it follows immediately that
K, (¢,F) is finite and continuous in ¢ for all § except possibly at the

points ¥ = xbn(n'-: 1, 2, ...) and ¥ = O. To show that H1(w,F) is
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continuous at ¢ = #n(n =1, 2, ...), let On be a small neighborhood of
¥ such that I*k- ¥| > 6 for all k # n and for all ¥ €0 . Sucha

neighborhood exists since vn is a sequence strictly decreasing to zero.

Then for ¢ € O and z € I'(4) we have that |F(z)| <

zak |fk(z)| + an|fn(z)|' For the same reason as above the func-
n

tion Zaklfk(z)l is bounded on U(D(¥) : ¢ € On)’ and Ifn(z)| gn! (T(¥))
k#n

with the L1 norm uniformly bounded for ¢ € 0n by the L1 norm for *n by

Lemma 2.7. Hence it follows again from the bounded convergence theorem

that H‘(ﬁv,F) is continuous at the points # = xyn(n =1, 2, ...). For

% = 2x, we first note that it is clear from (2.8) that Hh(!v) increases

as |\§| decreases to zero. Hence,
- dz
| o F Hezl = [ R el

b1
[ Ir@E+ 3 -r@ e+ 3 ™) as
-7

IN

= & . . :
< Z anf £ (3 + % eh%y £ (% e? 4 3 Y| @
-%

n=1

+ b Z %n Hln(*n)

=m+1
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m bi¢
R ENC TR T IO T I
-
n=1

o

2
+ 12n Z o’ n/¢n
n=m+1
The last step is from Lemma 2.10. Since the second term converges to
zero as m tends to infinity by hypothesis, and for any fixed m the first
sum clearly goes to zero as @ increases to 2, H, (¥,F) is continuous

from below at 2x, completing the proof.

Note that if we prove I-I1 (4,F) is contimuous from above at 0, we
then will have H, (#,F) continuous for all ¢ and hence uniformly bounded
in ¢.

So far, no particular hypotheses on the sequences {an}, {Xn} , and

-}

H’n} have been placed other than a > 0, z an <o 0L )‘n t 1,

=1

(- ]
0< g;n {1 0, and z (.7ln/¢n2 < », We shall now show that there are se-

=1

quences {an} % D\n} and {)\n} such that the resulting function FEI—!1 (D),

but H1 (§,F) is continuous for all ¥. To this end, we shall first prove

a lemnma.
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(2.12) LEMMA. Assume that 124> >4, > 0 10, 0<A t 1,

(-]
a.ndan> O,n=1, 2, ... with Z an<oo. Letp1> \1-1 a.ndpkbe the

n=1

midpoint between ¥, , and ¥ (k=2, ...). Then H‘(D,F) =

1 v % 1-A
k=1

- }; }i (P, - Ppq) z o (a(I, xyn))‘ln , where d(I, % ) is the distance
k=1 nfk

of ¢ from the interval I, = {v: Pryq < ¥ <__pk}.

PROOF. With I as defined above we have J |F(z) | laz| >
z|=1
F(z)] laz| = ) oz (2)]) laz| >
k; Ilk 121 ‘[Ik <n; a )

2 ) %] In@l el - 7Y e [ le ) el
k=1 k=1 nfk k

8

=X
| —=ile
Observe that J Ifk(z)I laz| = J. 2 sin( 5 ) as >
I

k

] =i
l¥. -p .| Tk
d9=——k;:‘—]§;:—1— . Now
" Tk

Pk Y Y 2
>[ le-yl Fax] Je-| k
Pier Py
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consider the sum Z o ‘[ |fn(z)| |az|. For this case observe that,

itk
-A
6 - ¢ n
r Ifn(z)l laz| = II |2 sin( 5 n>| as <
k
ayn Ay T Aa
<@ JI lo - v | ® a8 <k (p - pp,y) * (AT,4)) ™ where
k

d(Ik, ¢n) is the distance of ¥ to the interval Ik(k # n); and the re-

quired result follows.

We shall now make the following selections: @ = n-s, 4 =1 /v/n,

o

-2
a.ndkn=1 -(n+1) ,n=1,2, ... . Then Z Otn<co, and so F

n=1
o0 co
2 o
exists; E an/iyn = E n = < o, and so Theorem 2,11 holds. What is
n=1 n=1

left to show is that F £ i (D) and H, (¢,F) is continuous from above at
% = 0. To prove that F £ H' (D) we shall use the result contained in

Lemma 2,12.

(2.13) THEOREM. If o = n‘3, 4 = 1/s/n, and A=1 - (n + 1)'2

(n=1, 2, ...), then F is analytic in |z| < 1 satisfying the following
properties: (i) H, (¢, F) is a continuous function in #, 0 < % < 2x,

(i) F £H (D), and, (iii) F € HP(D) for all 0< p< 1.



16

PROOF. From Theorem 2.11 it follows that to establish (i) we need only
show that H.,(\&,F) is continuous from above at § = O.

To this end, let & € (0,8), &> O.

men | [ JF@ lasl - [ Cle@)] ezl

L T I
< z o I |fn(% e1® 3 eié) - fn(% + % eig)l as + Z o H (vn) &
-1t n
n=2 n=1+1

[}
Z % Hkn(wn « B = T1 * T2 * TS'
n=1+1

For any fixed L, T, converges to zero as O goes to zero. From Lemma

1
2.10 it follows immediately that T2 converges to zero as L tends to in-

finity. Let N be defined such that 6 € («&NH,G;N], and let A = [N -Ns/h],
/ ¢
B= [N+ N ]J. Then we write T, = ) O Hln(*n - 8)
=11

0

L Oan)\n(*n°9)+ z an}{)\n(?n'e);-sl ¥ By * 8y
n=A+1 n=Bt+1

|

To estimate the parts T1 3 T2, and T, we observe first that, by Lem-

3
mas 2.7 and 2.10, H)\(‘p) < min ((1 - x)", 3/¢2) and that

X
-2 & g N
{k ~ ks/l‘) -kF> 3 ks/h-k 5/2_ %ks/h for k > 1. Hence, if n < A,

then H, (e:n -8)<2 n3/2, and if n > B + 1, then Hx(*n‘e) _<_2h(N+1)3/2,
n

2
3/ )

and for A+1<n<B we have that H, (¢n-e) < (N+N . Observing that
n
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Zk - K <2(L+1)% Zk < 2(N - N”'S/h Nz’/l‘,and

k=I+1 k=A+1
z K> < (N + NS/ 4) we obtain, finally, that S, + S, + 55 <
k=B+1
=3 -2
2k (L + 1)'% + 2(N - NS/I*) . Ns/h. (N + Ns/“) +21|-(N+1)3/2(N+ NS/}*)

which tends to zero as N* « and I + ». For a given € > O, first
choose L so large that T, < e/3 and 8, < €/6. Then with this L fixed

choose 6 > O so small that S, + S, < ¢/6 and T, < €/3. Hence }{1(¢,F) is

2 3
continuous from above at ¥ = O and (i) holds. For (ii) we use Lemma

2.12. Observe that

2
% 1A _ T (k+1 ‘1(_1___ 1 )(k”) .

) (4 = Py 7 = 3
}én-xk k Tkt o e e+ T

(.N+

(k+1)"2 « 112
<l4(k+11)Jk+1> Z&_ZQ%_‘_)_=@,

[}
>3 ) &
k=1

Observing that for k # n, AT, ¥,) >

1 1 !
> (¥, - n+1)=%<ﬁ—_rx—:—1_>=%ﬁﬁl+1 (W + o+ 1)

1

1
ZE(n+ 1)Wn + 1

(o] (=<}

) @y - ) ) an(d(lk,wn))‘*n < ) (By ~Peyq) Z h(nﬂ)«/nT <
k=1 #k k=1 o1

, we obtain the result that
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[+ <]
<_1+p1 Z (nt1 5.n+1 < w. Hence, F £ H (D). In order to show that

n=1 =

F € HP(D) for all 0 < p < 1 we observe that

J

(o]
N
72) P laz| < ) o« P [ |F ()P |az|.
|z]=1 |z]=1
n=1
From Lemma 2.7 it follows that JI | |fn(z)|p laz| < 2x/(1 -pA ), and
z|=1

o0

(o]
so, J—J |F(z)|® Jaz| < z o 1 ___ 1 Z n">P; and the
2x |z|1 : n

" l-p)\n——1-p

n= n=1
latter sum converges for all 1 > p > 1/3. Hence, from the Note (before
Theorem 2.2) it follows that F(z) € H® for all p satisfying 0 < p < 1.

This completes the proof of the theorem.

REMARK. It was shown by R. M. Gabriel and F. Carlson (see [5],[3])
that, if £ is analytic in the unit disc D and v is a closed rectifiable

curve inside D, then for 811 p> O

J P el < 5] 12@PP vGe) Jeal,

when V(z) = J 'dx arg(x - z)|dx. If vy is the circle T'(¥), then
Y

V(z) < 2x for all |z| = 1, and so,

() I

£(z)|®P laz| < 2 £(z)|® |az]| .
ey P ezl < ﬁdﬂl()ll |
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The function F of Theorem 2.13 shows that the inequality in (*) cannot
be reversed, that is, even if the left-hand side of (¥) is uniformly

bounded in ¥, the right-hand side need not be finite.

We return now to the construction of the counterexample. From
F€R (0<p<1) it follows from Theorem 2.4 that

F(z) = B(z) * G(z), |z| < 1, where B is a Blaschke product and G € H'
for all 0 < p< 1 and G(z) £ O for all |z| < 1. Let g(z) =

1
B(z)-(G(z))%, where (G(z))* is a well-defined branch of the square root
function. Then |B| < 1 shows that g € n2( D(%)) for all ¢ and

J

|g|2 |az | <_J |F(z)| |az| for all 0 < ¥ < 2x. Furthermore,
INC)) r'(y)

since |B| < 1, the fact that I " |g|2 |az| is continuous in ¢ can be
T(w

shown in exactly the same way as in the proof of Theorems 2.11 and 2.13.
1

Since F £ H (D) it follows from |B| = 1 almost everywhere on |z| = 1,

that g £ HZ(D).

Now let @(w) = — g (37) Then ¢ is analytic for |w| > 1, |g(w)]| =+ 0

VI N K

as |w| + o ,and 9 € L along every line in the complex plane touching the

unit circle (for each ¥, 1/w maps I'(¥) into a line 4(y) tangent to
[w|l = 1 at e-i‘?, a.ndj lgo(w)l2 law| = I |g(z)|2 |dz|) with the =
L(y) T(¥)

norm continuous as the point of tangency is varied. However,

o £ #(c \ D).
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Let £(z) = 5%3-1 o(w)e™aw, where v is a simple closed contour
Y

containing the unit circle in its interior, be the entire function of
exponential type whose Borel transform is equal to 9. Then by

Plancherel's theorem we have that for all 0 < ¥ < 2x

(-]

(2.14) 21:[ e‘2r|f(re”)|2dr = J lcp(e'”(w:u:))|2 at
0 -0

Hence, we have obtained the following result disproving the Con-

Jjecture 2.1.

(2.15) THEOREM. There exists an entire function f of exponential type

such that the function p(8) = jm e-2r|f(reie)|2 dr is a continuous func-

0

tion in 8, 0 < 8 < 2n, whose indicator diagram is contained in the unit

disc and whose Borel transform ¢ is not of class H?(& \ D).

REMARKS 1. By means of a conformal mapping argument the above counter-
example can be shown to exist for domains bounded by convex curves
which have a continuously turning tangent. The result of Levin con-
cerning convex polygons quoted in the introduction shows, however, that

the conjecture holds for convex polygons.

2. To find an entire function f with indicator diagram equal to
the unit disc and violating the conjecture one simply adds to f an en-

20 1
tire function of exponential type of the form Ej zn°/n2(n!)! whose

n=1



21

Borel transform has |w| = 1 as a natural boundary and is nevertheless

in the class f(az \ D).

3. If we integrate (2.14) with respect to & from O to 2x, then we

obtain the formula

(-]

I g2 ( Ji“ If(reie)|2 d9> dr =

0

+00

= é%j lcp(e'lau & .m))|2 ae dt.
=00

By means of the change of coordinates x + iy = é19(1 + it), the latter

integral can be written in the form

-1
~ J _[ lo(x + iy)|2 (WA° + ¥° - 1) axay =

2n
2
x +y >1
2n o
S 2
o e R T
1 X -1 0 =0
2 5 . 1 |a |2 T (n+3%
= ) la_| J = ir = —= where
/ n 2n+2 T(n+1) ’
- T A +1 T
e az"
£(z) = : L . since I(n + %)/n! ~ 1/A/m, we obtain that, if
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2 ® 2 18,2 1
z Ia,nl W+ 1 < w, thenj e F|£(re*®)|” ar €L (0,2r). Since

n=0 0

¢ € 1{2(0 \ D) if and only if z |a.n|2 < o, it follows now easily that
n=0

00

j e |f(reie)|2 ar € 1) (0,21) need not imply that ¢ € H2(C \ D). 1In-
0

co

deed, the function z z%/Ja - (n!) has the required properties.
n=1
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