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ABSTRACT

The development of increasingly complex systems is often realized by adding in-
creasingly more components to a system. Periodically, a new class of optical devices
is discovered or engineered that reduces the required number of components in an
optical system, which can lead to miniaturized systems with broader functional-
ity. The ability to pattern materials at a scale comparable to the wavelength of
the radiation being controlled has enabled unprecedented control of signals across
the electromagnetic spectrum. At this scale, the properties of the device can be
precisely engineered to behave in ways that are not observed in natural materials,
thus lending these devices the name optical metamaterials.

A subset of optical metamaterials is the metasurface, which typically features an ar-
ray of sub-wavelength elements spread over a singlewavelength-thick sheet. Benefit-
ing from available planar fabrication techniques and a deterministic design method-
ology, metasurfaces have started to be investigated in the early 1990s and now are at
the point where they can enter into mainstream technology. Yet their thinness and
the assumptions employed when designing them ultimately limit the bandwidth and
complexity of the functions that metasurfaces can encode.

This thesis studies a new class of optical metamaterials that are patterned in all
3-dimensions, referred to as volumetric metaoptics. Both the design, which no
longer benefits from simplifying assumptions employed in 2D metasurface design,
and the fabrication are major challenges in the realization of these devices that the
presented work addresses. Chapter 2 motivates and describes advanced inverse-
design techniques that are suitable for finding the 3D refractive index distributions
that optimally perform complex functionalities. The devices can be designed to
respond in a desired way depending on all fundamental properties of light (inten-
sity, frequency, polarization, and :-vector), and functionalities can be combined to
enable extreme multifunctionality. Furthermore, the design methodology includes
the ability to impose fabrication constraints, thereby finding solutions that can be
fabricated with contemporary technology.

Chapter 3 showcases several examples of highly multifunctional metaoptics, in-
cluding a scattering-based Bayer filter that outperforms traditional absorptive Bayer
filters used in digital color imaging and a set of metaoptics that can be mechanically
reconfigured to change optical functionality. Prototypes of these devices are experi-
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mentally verified at microwave frequencies. A passive device capable of classifying
light according to its wavelength, polarization, and incident angle in an extremely
small footprint is also designed with the potential to be fabricated with current
CMOS processing fabrication tolerances. These devices allow massive amounts
of information to be extracted with computational post-processing and can be tiled
across a camera array to realize advanced computational imaging arrays.

Chapter 4 and Chapter 5 discuss 3Dmetaoptics at terahertz frequencies. The devices
are made of stacked silicon wafers, each patterned with silicon micromachining and
assembly technology capable of generating deeply subwavelength feature sizes and
layer-to-layer alignments. The devices are well-suited for realizing dense focal plane
arrays with large numbers of elements that are required for imaging planetary and
astrophysical phenomena.
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C h a p t e r 1

INTRODUCTION: MULTIFUNCTIONALITY IN OPTICAL
COMPONENTS

The central idea of this thesis ismultifunctionality, a term attributed to an optical

device that responds in fundamentally di�erent ways depending on the properties

of the incident light. Basic forms of multifunctionality exist in single components:

natural birefringent materials can treat polarizations di�erently, gratings separate

wavelength, lenses separate light of di�erent angles of incidence; but in general,

a complex combination of these basic functions requires a combination of those

basic optical components. This modular design paradigm follows a rough rule:

increasingly complex functionality requires increasingly more components.

Optical engineers and graduate students have likely witnessed this in the lab. An

optical setup starts with a laser whose beam size is not quite right, so we add

one or two lenses to expand the beam and collimate it. Its alignment needs to be

controlled precisely, so we add several mirrors to control that. Now, if we are for

instance making a �uorescence microscope, we shine the laser light on a sample and

observe the light that the specimen glows on a camera sensor, and quickly realize

that the re�ected laser light is saturating our camera, blinding us to the dimmer

�uorescent glow of the sample. To �x this we add a dichroic mirror or spectral �lter

to separate the high-frequency laser light from the low-frequency �uorescent light.

We can continue on, adding irises to �lter out-of-focus light, adding combinations

of polarizers and waveplates to ascertain polarization-dependent properties, and

eventually the optical table will be full of components.

Rather than obtaining complex functionality through large numbers of basic compo-

nents, we can instead obtain it through a very small number of complex components.

These complex components can be multifunctional in nature: a lens for focusing

light, a spectral splitter that routes di�erent colors to di�erent points, a polarizer

that routes di�erent polarizations to di�erent points, an iris for �ltering di�erent

angular components out �all performed simultaneously using just one device.

Such complex components are, unfortunately, not naturally occurring (at least not

to our current knowledge) and must be engineered instead, thus lending them the

nameoptical metamaterials. This term alludes to the broader �eld of metamaterials
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which includes acoustic metamaterials, mechanical metamaterials, and generally

components whose physical properties cannot be found in naturally occurring ma-

terials.

Metasurfaces are two-dimensional (2D) optical metamaterials. These components

are typically operated as free-space components, like lenses and gratings, that can be

placed in the path of some propagating beam. They are distinguished by their small

feature sizes, which typically must be comparable to the wavelength of light that

they are designed to control. In fact, asserting complex control of lighte�ciently

in a small form factor device requires these small feature sizes. The metasurface

features tend to vary spatially, thus imposing some spatially dependent function on

the light input.

Optical metasurfaces (operating at near-infrared or visible wavelengths) were demon-

strated in the 1990s. The spatial pro�le ingrained into the metasurface layer by

varying the shape of low-loss dielectric elements provides a high-transmission way

of manipulating the phase of light as it propagates through the metasurface, and in

this way lenses (quadratic phase pro�les) and beam de�ectors (linear phase pro�les)

could be made in wavelength-thin layers. Initially most metasurfaces were made

of long bars, bearing a resemblance to 1-dimensional di�raction gratings but with

spatially varying periods or duty cycles [1, 2]. The importance of sub-wavelength

feature size elements here becomes apparent when considering di�raction e�ciency

� the periodicity of the grating should be su�ciently small to suppress high-order

di�raction components. 2D metasurfaces were demonstrated a few years later,

replacing the long bars with small posts [3�5]

Major developments that enabled high e�ciencies complex multifunctionality to

be synthesized in single metasurface began by the early 2010s [6�8]. With im-

proved fabrication techniques, the ability to reliably control the speci�c shape of

the metasurface elements permitted more speci�c control of optical properties with

improved e�ciencies. For example, a metasurface consisting of circular elements

exhibited polarization independent functionality, whereas a metasurface with ellip-

tical elements could a�ect two orthogonal polarizations di�erently. Metasurface

capabilities reached a critical milestone in 2015 with the demonstration ofcomplete

phase and polarization control[9]. Here it was demonstrated that metasurfaces

could be designed to encode two arbitrary phase pro�les into a single layer for

two orthogonal polarizations. In other words, when illuminated with one polar-

ization an arbitrary phase hologram can be projected, and when illuminated with
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the other polarization a completely di�erent hologram can be projected. A further

capability demonstrated here was the ability to encode di�erent polarization rota-

tions at di�erent points along the metasurface, essentially creating a geometrically

varying polarization waveplate. However, the arbitrary control of phase and the

arbitrary control of polarization cannot be simultaneously controlled with a single

metasurface (at least not without sacri�cing e�ciency).

The inability to simultaneously control phase and polarization e�ciency is partially

rooted in the design process of metasurface, but more fundamentally it is rooted

in the thin nature of the metasurface. A single, thin layer metasurface simply does

not have enough degrees of freedom to encode increasingly arbitrary functionalities

[10]. The metasurface is also a di�ractive device, owing to its quasi-periodic nature.

The physics of di�raction is fundamentally wavelength-dependent, which introduces

chromatic aberration and thus poses a problem for broadband behavior. Some of

these problems can be overcome by cascading multiple metasurfaces [11, 12] or by

applying post-processing algorithms to correct for certain aberrations [13].

These limitations on increasing multifunctionality, including operating across mul-

tiple wavelengths, is the primary problem that the work in this thesis seeks to

solve. The subject of further increasing multifunctionality of metasurfaces has

been the subject of intense research over the past several years. Cascading meta-

surfaces to improve performance falls back on the original, modular approach of

enhancing functionality by adding more basic components rather than increasing

the complexity of just a few components. Computational techniques can extract

more functionality out of a single metasurface under certain assumption but cannot

overcome the fundamental limitations inherent in the physics of thin metasurface

[14, 15].

This thesis studies a di�erent approach: add a third dimension to the metasurface.

The term "metasurface" no longer applies when the device is three-dimensional (3D),

so the termvolumetric metaopticsor simplymetaopticsis used instead. An extreme

challenge in the realization of 3D metaoptics is the design procedure. Chapter 2

details one of the standard procedures for designing metasurface, with a particular

emphasis on the assumptions that both render metasurface design tractable but also

preclude its applicability to 3D devices. Tossing aside these assumptions, we are

left with unsimpli�ed electromagnetic problems that require e�cient algorithms to

solve. For this we turn toinverse-design algorithmsthat can take a large collection of

arbitrary electromagnetic �gure-of-merit functions, and �nd the optimal 3D material
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