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ABSTRACT 

Let K be an extension of Q of degree n and OK the ring of 

integers of K. If 9 is an algebraic integer of K and K = Q(e ), then 

Z[8 J is a suborder of OK of finite index. This index is called the 

index of e. If k is a rational integer, the numbers e and e + k 

have equal indices. Define two numbers to be equivalent if their 

difference is a rational integer. 

Using Schmidt's extension of Thue' s Theorem it is shown 

that in any field of degree less than or equal to four there exist 

only a finite number of inequivalent numbers with index bounded by 

any given number. This is true for every finite extension of Q 

and a proof is given using a slight generalization of Schmidt's 

Theorem. 

An application of Schmidt's Theorem to a problem on the · 

units in a cyclic field of prime degree is given. 
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INTRODUCTION 

Let K be a finite extension of Q with [K:Q] = n. An order 

() of K is a finitely generated Z-module which contains a basis for 

K over Q and is also a ring with 1. An order is called principal 

if it is of the form Z[ 8 J for some e E K. It is well-known that K 

contains a unique maximal order and that it is the ring of integers 

of K, denoted ()K. It is easy to see that Z[e J is a principal order 

of K if and only if K = Q(9) and 9 E ()K. 

From the theory of finitely generated modules over principal 

ideal domains it follows that every order of K is a free Z-module 

and contains a free integral basis. Thus, if () is an order of K, 

then there exist numbers ill]_, ••• , wn in () such that 

and each number in () is uniquely represented in ( 1 ). The vector 

( Uii., w 2 , ••• , wn ) is called an int e g r al b a sis for (). 

Z [ J h h . 1 b . ( 1 2 n -l ) 9 as t e 1ntegra as1s , e, 0 , ••• , 0 • 

a power basis. 

The principal order 

Such a basis is called 

Let 0 1 C () be two orders of K with bases (A1 , 11. 2 , ••• , An) and 

(0i, e2 , ••• , en) respectively, then there exists unique integers ai, j 

satisfying 

(i = 1,2, ... ,n), 

and the integral matrix A = (ai,j) satisfies 
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2) A = 

Since o' and O each have rank n, the determinant of A is not 

zero. The index of O' as a subgroup of O is (0 :O') = l det Al. If 

o' = Z[A] the special notation, Index
0 

(>..), will be used for (0 :Z[;>..] ). 

If O = OK, then ( .D: Z[ 'A]) will be denoted by Index ( 'A ). 

The number 8 is a generator of the principal order .() if 

O = Z[e ]. It is easy to see that e + k is also a generator of () if k 

is any rational integer, so there are always an infinite number of 

generators of any principal order. Call two numbers equivalent if 

they differ by a rational integer. 

The following theorem was proved by Hall [ 9 J. The proof is 

given in Chapter 1. 

Theorem 1: Let [K:QJ ~ 3. For every c > 0 there exist only a 

finite number of inequivalent ;>.. E OK satisfying 

Ind ex ( A) = c . 

It is not difficult to show that for every order O in such a 

field and c > 0 there exist only a finite number of inequivalent 

A E () such that Index
0 

0.) = c. This is the corollary following 

lemma 1 in Chapter 1. An order O of an arbitrary field K with 

this property is said to have the bounded index property since 
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there exist only a finite number of inequivalent 11. E O with a given 

non-zero index. 

The major tool required for the proof of Theorem 1 is Thue' s 

Theorem on the integer solutions of certain diophantine equations, 

but this cannot be used to prove the corresponding result when 

[K: Q] > 3. The general result which is proved here uses the 

generalization of Thue' s Theorem proved by Schmidt [ 13 ]. This 

result, the proof of which is given in Chapter 4, is given by the 

following theorem. 

Theorem 2: Let K be a finite extension of Q, 0 an order of K , and 

c > 0 constant, then there exist only a finite number of inequivalent 

A E O satisfying 

Indexo ( A ) = C • 

In other words, every order of every finite extension of Q 

has the bounded index property. 

The end of each proof is indicated by the symbol § near the 

right mar gin. 
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CHAPTER 1 

A SYSTEM OF DIOPHANTINE EQUATIONS 

The following lemma is useful for the proof of Theorem 1 and 

also shows that the theorem generalizes to every order of the field. 

Lemma 1: Let K be any finite extension of Q and 0 1 , 0 2 any two 

orders of K, then 0 1 has the bounded index property if and only if 

()2 has it. 

Proof: It suffices to show that if '°1_ does not have it then 0 2 also 

will not have it. Suppose that [\ 1 , A 2 , ••• } is an infinite set of 

inequivalent numbers in ~ each with index in '°1_ equal to the non

zero constant c. The result will follow from showing that a cer

tain multiple of the A I s will all lie in the order 02 and have a 

common non-zero index in it also, so 0 2 will not have the bounded 

index property. 

If O' c; () are two orders of a field K with (0: O') = m, then 

mO c; O', since the factor group 0/0' has order m. 

Let (OK:01 ) = m 1 and (OK:02 ) = m 2, then for each "-i' i = 1, 2, ... , 

m
2

11.i E 0 2 • The set [m2 11.1 , m 2 11.2 , ••• } is an infinite set of inequiva -

lent numbers in 0 2 which satisfy 

3) Index
0 

(m2 \i) = m 1 m 2 
2 

Cn-2)Cn+1) 
2 

C ' ( i = 1, 2, ... ) . 

It is clear that they are inequivalent because if m 2 11.i - m 2 >,_j is a 

rational integer, then tv -11.• 1nust be rational, but it is also an 
l J 
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algebraic integer, so a rational integer and ")... is equivalent to ").. .. 
1 J 

To calculate the index notice that m 2 \ is also in Z [Ai J and calculate 

Index (m2 >..i) two ways. 

First by using the fact that Z[m2 11.i] is contained in Z[>..iJ 

The last index follows easily since the matrix of the transformation 

is diagonal. Similarly, Z[m2 >..i] is a suborder of 0 2, so its index 

also satisfies 

Combining these two equations gives (3 ). 

Therefore, 0
2 

does not have the bounded index property and 

the lemma follows. 

Corollary: If [K :Q] ~ 3, then every order has the bounded index 

property. 

Proof: Theorem 1 shows that OK has it, so every order must by 

lemma 1. 

The proof of Theorem 1 requires Thue' s Theorem, which is 

stated here for convenience. A proof is given in Mord ell [ 12]. 

§ 
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Theorem 2 (Thue ): The equation 

n 
+ay =m-# 0, n 

where n ~ 3 and f(x, y) is irreducible in the rational field, has only 

a finite number of integer solutions. 

Proof of Theorem 1: If n = 1, so K = Q, then every integer is 

equivalent to 1 and the result is trivial. 

_Suppose now that n = 2. By lemma 1 it suffices to conside r a 

principal order O = Z[e]. Every finite extension of Q has such 

orders. If >-.. E O with index c > 0, then 11. = a 0 + a 1 8 for unique inte -

gers a 0 , a 1 and the matrix transforming the basis (1, e) of O into the 

This has determinant a 1 , so I a 1 I = c and A is equivalent to either 

c0 1 or to -c8 1 • 

If n = 3 it again suffices to prove the principal order O = Z[ e J 

has the bounded index property, where K = Q(e ). Let 8 be a root of 

the irreducible cubic equation 

4) 

where r 1 , r 2 , and r 3 are integers. Every element in O can be 

written uniquely as an integral combination of the power basis 
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(1, e, 8 2 ). In particular, 

83 = r r 8 - 3 - 2 

5) 

because of (4). If A E O, then 11. = a 0 + a 1 8 + a 28 2 for some integers 

The determinant of the matrix A which transforms the basis 

(1, 8, e2
) is easily calculated from the expressions of 1, 11., and 11.2 in 

terms of the basis (1, 8, 8 2
), giving 

Notice that a 0 does not appear in (6) since equivalent numbers 

have equal index. The polynomial in (6) may be written aff(a1 /a 2
), 

where f(t) = g(t - r 1 ). Thus f is irreducible over Q since it is 

rationally equivalent to g. 

The index of 11. in O is c if and only if the integers (a1 , a 2 ) 

determined by 11. = a 0 + a 1 e + a 2e2 are solutions to the diophantine 

equation (6 ), where det A is either c or -c. By Thue' s Theorem 

there are only a finite number of such integer pairs and thus only 

a finite number of inequivalent such "-• Thus O has the bounded 

index property and OK must also. § 
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Let K ~ C be a finite extension of Q, .0 = Z [ e J an order of K 

an_1 en-i any element of .0, where [ K: Q J = n 

and each ai is a rational integer. There are precisely n isomor 

phisms of K into the complex numbers. Let e = 0i, e2, ... , en denote 

the images of e under these isomorphisms, so that A = Ai, A2, • •• , An 

are the corresponding conjugates of A• Therefore, 

7) (i = 1, 2, ... , n) . 

. Let K~:~ = K(81, e 2' ••• ' en) and Xi, X2' ... 'Xn-1' 01, 02 be inde

pendent variables over K~:~. Define the polynomial p_ by 

Since K = 0(0 ), the n conjugates of 8 are distinct. If ei, 8 j are 

distinct, then 

8) 
A• - A• 

1 J 
e- - e. 

1 J 
e. , e.) . 

1 J 

Suppose A transforms ( 1, 8, .•. , en-i) into ( 1, A, ... , A.n-i ), then 

the determinant of A depends only on a11 ••• , an-i. A useful expres -

sion for this determinant was given by Dade and Taus sky [ 5 J. 

Lemma 2: With notation as above, let 

9) z(X1, X2, • • • 'Xn-1) = n £(x1, • • • 'Xn-1 
i<j 
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then z(a1, a 2 , ••• , an_ 1) is the determinant of A. 

Proof: By (7) the matrix A transforms the basis (1, e., ... , 9;i-1 ) to 
1 1 

n-1) (l,11.., ... ,11.. in the field Q(e. ), so A satisfies the 
1 l l 

' 

1 1 1 1 

61 82 en A1 

A = 

9 n-1 
1 

9 n-1 
2 

S n-1 At-1 
n 

Taking determinants in this expression gives 

(det A) n 
i<j 

(8. - 9.) = 
l J n 

i<j 

The result (9) follows from this by using (8 ). 

1 

A2 

11. n-1 
2 

matrix equation 

1 

~ 

An-
n 

§ 

Let G be the Galois group of K':~ over Q and for each er E G 

define the action of er on the variables x 1 , x 2 , ••• , Xn-i t o be trivial, 

then 

Since the polynomial i. is symmetric in O 1 , 0 2 and each factor in (9) 

is different, each er E G permutes these factors. Therefore, 

er z(x1 , ... , Xn-1) = n er £(Xi, ... , Xn-l 
i<j 

= n i_ (xl , • • • ' Xn -1 

i<j 

e. , e.) 
1 J 

e. , e.) . 
1 J 
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So z is fixed by the group G, has algebraic integer coefficients and 

thus has rational integer coefficients. 

For each choice of 1 ~ i < j ~ n let Gi,j be the subgroup of G 

consisting of all <YE G which stabilize the set [ei, ej}. Thus 

<YE Gi J. if and only if <Y fixes both e. and e. or else interchanges 
, l J 

them. This is the subgroup of G which fixes the polynomial 

10) e. , e.) . 
l J 

Let Li,j be the fixed field of Gi,j• The group G induces exactly 

j GI / I Gi,j j isomorphisms of Li,j into C given by the cosets of Gi,j 

in G. This is exactly the number of factors in (9) which are con

jugate to the factor given in (10 ). 

Let 

where <Y .runs over a set of coset representatives of Gi,j" There 

are exactly !GI/ JGi,jl factors in (11) and this polynomial is fixed 

by G, so it has rational integer coefficients. 

Not every pair of these polynomials need be conjugate. Let 

S be a maxim.al set of pairwise non-conjugate factors £(x1 , ••• , ~-i ; 

8 ., e.) of (9 ), so each factor in (9) is conjugate to exactly one 
l J 

element of S. 

Lemma 3: 
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Proof: Each factor of (9) is conjugate to exactly one element of S 

and appears only once in the product for the norm in ( 11 ). There-

fore, this product is the same as (9 ). § 

To prove that every order in a given field K over Q has the 

bounded index property, it is sufficient to prove it for a principal 

order () = Z[e J because of lemma 1. Since each element ).._ E () may 

be written ).._ = a 0 + a1 8 + · • • an_1 en-i with uniquely determined inte

gers a 0 , ••• , an-i, this element has index in O equal to c if and 

only if 

12) e.,e.)J = c .. 
1 J 1,J 

for each polynomial in S and with the constants c .. such that their 
1,J 

product is ± c. It is clear that all of these constants must be inte-

gers. Since the integers ± c have only a finite number of factori

zations, the bounded index property is equivalent to the system of 

diophantine equations (12) having only a finite number of simul

taneous integer solutions (ai, ... , an_1 ) for every choice of non-zero 

constants c ... 
1,J 

As an example of these lemmas, let n = 3 as in the proof of 

Theorem 1. Now equation (6) gives 

with 9 a root of (4 ). 
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As a second example, let K = Q(I; ), g a primitive fifth root of 

one. This is a normal fourth degree field and OK = Z [ g J. The 

Galois group G is cyclic and generated by er, where er (g) = ~ 2 • 

Write 81 = g, e~ = g2
, 03 = 1;4, and 84 = 1; 3

-

For the set S take 

The group G1, 2 is just the identity, while G 1 , 3 = ( 1, er 2
). Therefore, 

L 1, 2 = K and L 1 , 3 = Q({s ), the unique quadratic subfield of K. By 

lemma 3, 

Both factors have integer coefficients, the first is of fourth 

degree and the second is quadratic. 

Notice that for each pair 8i, 8 j the set 

is a Z-module. Thus, the system of norm form equations (12) is 

the same as a system of norms from certain modules. 

Thue 1 s Theorem may be restated in terms of modules. Let 

K = Q(a) be an extension of degree greater than 2. Thue I s Theorem 

says that there exist only a finite number of elements in the 

module 

[x + y~ I x, y integers} 
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with a given non-zero norm from K to Q. 

Chapter 2 gives the details of Schmidt's generalization of 

Thue' s Theorem to more general modules. 
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CHAPTER 2 

NORM FORM EQUATIONS 

This chapter covers the material on Schmidt's Theorem [ 13 J 

needed to prove Theorem 2. The proofs of some statements made 

here are given in [3]. Every module is assumed to be a finitely 

generated Z-module. 

Let K be an extension of Q of degree n = s + 2t, where s 

is the number of real imbeddings and t the number of complex 

imbeddings of K into C, and let er 1, er 2 , ••• , er n be the corre spending 

isomorphisms. Let N(xi, x 2 , ••• , xm) be a norm form from K to Q; 

that is, for some fixed numbers a 1 ,a 2 , ••. , am in K 

n 
n 

i= 1 
er . (x1 a 1 + · · • x a ) 

1 mm 

where each variable is fixed by all of the automorphisms. 

Of interest here are the integer solutions (x1 , x 2 , .•• , xm) of 

the norm form equation 

( 13) 

for some constant c. 

The set of numbers of the form x 1a 1 + • • • ~Q'm where 

x1 , x 2 , ••• , xm take on all possible integer values is denoted by 
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and is a finitely generated Z-module. It follows that M has a free 

Z-basis ({\, f3 2 , ••• , f3k). The integer k is the rank of M and is less 

than or equal to n. 

The solutions to (13) are easily found from the solutions µ of 

the equation 

( 14) µEM. 

The integers (x1 , x 2 , ... , xm) are found by solving a system of equa

tions which depends on the relationship between the set (cx1 , .•. , cxm) 

and the basis (f31 , •.• , f3k) of M. Therefore, it suffices to find all 

solutions to ( 14 ). Sine e only µ = 0 is a solution if c = 0, assume 

c -/= 0 for all that follows. 

Suppose now that M is full in K, i.e. that rank M = n. It is 

possible to solve (14) for all solutions in a finite number of steps. 

First, for a full module define the coefficient ring 

OM = [ \) E K l v µ E M for all µ E M} . 

It is proved in Lemma 5 that this is an order in K. Let uKIQ be 
M 

the group of units in DM with norm from K to Q equal to +l, a 

subgroup of index 2 or 1 in the full group of units of OM depending 

on whether there exists a unit with norm -1 or not. 

By the Dirichlet Unit Theorem for orders, there exists a set 

of r = s + t - 1 units 'Th, •.. , T1r such that every unit in ~ can be 

written uniquely as 
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where ~ is a root of 1 and a 1 , ... , ar are integers. Since the units 

'fh, ... , llr can be calculated in a finite number of steps, so can 

U KIQ 
M • 

For every µ E M the set 

15) 

is the set of all associates of µ over ~ with the same norm and 

is called an (M, K)-family. 

Tinally, there exists an effectively computable constant y such 

that every solution to (14) has an associate over ~ which is also 

a solution and with height bounded by y. Each of these solutions 

can be calculated in a finite number of steps, so all solutions to 

(14) are contained in the union of a finite number of families of the 

form (15 ), where µ is one of these solutions with height bounded by 

Y· For full details on this method see [3, p. 122]. 

As an example of a norm form equation for a nonfull module 

take the equation 

16) µEM 

where M = {Xi ff + x 2 V5 + ¾ffi} and K = Q(V3, 'VS). 

All solutions to (16) with x1 x2¾ = 0 can be given. If x1 = 0, 

then µ must lie in the submodule 

This is proportional to the full module {x2 + x3 ✓3} of the field 
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L 1 = Q("✓3) and therefore 

Using this with (16) gives 

and all solutions are given by 

for every integer t. 

If x 2 = 0, then µ will lie in the submodule 

which is proportional to a full module of the field L 2 = Q('VS ). 

Again, (16) reduces to an equation from a subfield: 

The solutions to this equation are all given by 

for every integer t. 

When ~ = 0, µ will lie in the submodule 
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and for such a µ 

= 

where L 3 = Q(fil). Thus, equation (16) gives 

.Since both 3 and 5 extend to unique nonprincipal ideals in 

this field, there are no solutions to this last equation. 

Therefore, every solution to (16) with x1x03 = 0 is given by 

1 7) ± VS (2 + {s/ 

for all integer values of t. That only a finite number of other 

solutions exist will follow from Sclunidt' s Theorem. A similar 

example was given by Schmidt. 

Let M be a module in K and L any subfield. Define the 

submodule 

to be the set of µ in M such that for every "A in L there is a non

zero rational integer z such that z Aµ E M. If M denotes the vector 

space over Q generated by M, then ML is the set of µ in M such 

that 
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The last form of the definition shows that ML is a vector 

space over L, since for µ in ML and A in L 

and thus µ"A is in ML. Because of this, [ L: Q] divides rank ML. 

It is easy to calculate ML in terms of the bases for M and L. 

Extend the basis 0\, ... , (3k) of M to a basis of K, say ((31 , ••• , (3k, 

f3k+l' ... , f3n). Let (Ai, ... , "'l) be any basis for L, then µ in M is in 

ML if ·and only if 

µA. E M 
1 

for each 1 s;; i ~ 1. This will be so if the representation of µA· 
l 

with respect to the basis ((3i, ... , f3n) terminates with n-k zeroes. 

Thus, µ is in ML if and only if the k coefficients of µ with respect 

to the basis ((31 , ••. , (3k) satisfy the set of l(n-k) linear conditions 

required above. A basis for ML can be found using these conditions . 

-
For example, MQ = M for every module is easily seen and if 

the module M is full in K, then M = K, so MK = M. However, for 

any nonfull module M, M is a proper subspace of K and must have 

dimension over Q smaller than n. If µ were a non-zero element of 

M\ then 

dim µ K = n ~ dim MK < dim K = n . 

So MK = {O} if M is not full in K. 

Let AB be the composite of the two fields A and B. 
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Lemma 4: For any two subfields A, B of K 

Proof: Assurrie first that µ E (MA)8 , then µ is an element of MA such 

that 

Every element of AB is of the form a 1 (31 + · · · + a r(3r with 

ai E A and (3i E B, so µ is in MAB if and only if 

µa (3 E M 

for every a E A and (3 E B. But MA is a vector space over A, so 

µa (3 E a MA C MA C M 

Therefore, (MA)8 (: MA8 • 

Conversely, suppose µ E MA8 , then 

µA ~ µAB C M. 

Therefore, µ E MA and it is only necessary to show 

But B is a subfield of AB, so 

µ B ~ µ AB ~ MAB ~ MA 
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since being in MAB is more restrictive than being in MA. 

Thus MAB C (MA)B and the lemma follows. 

With the module M = [x1 Y3 + x 2 VS + X:3ffi} from the pre

vious example (16) and the fields Li, L 2 ., L 3 , the submodules corr es -

ponding to these fields are M 1 , M 2 , and ~ respectively. These are 

the same submodules which appeared in the example. 

To calculate ML3
, for example, extend the basis for M to the 

basis [ l, 'V3, VS, {Ts} of K and use the basis [ l, ffi} for L 3 • 

Since 1 • µ is in M for every µ in M, the condition for µ to be in 

ML3 reduces to the one relation 

µ{Ts E M. 

If µ is written as x 1 Y3 + x 2 VS + X:3 vfs, then µ ffi E M requires 

rationals a, b, c such that 

L 
Therefore, X:3 must equal zero and M 3 = ~ of the example. 

Let D~ 1 denote the ring of coefficients of ML in L, i.e. the set 

of all A in L such that Aµ E ML for all µ in ML. 

Lemma 5: If ML -1- [ O}, then 0~ is an order of L. 

Proof: It is clear that D~ is a ring with 1, so it only remains to 

prove that it is a full, finitely generated module in L. 

Let µ be any non-zero element of ML, then µO~ C ML and 
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Since ML is a finitely generated module so is µ -l ML and thu s also 

the submodule .O~. 

To show that .O~ is full in K, it suffices to show that there 

exists an integer z f: 0 such that zOL ~ 0~, where OL is the maxi

mal order of L. For each element Ai of a basis for .O L and each 

µ- of a basis for ML there is a non-zero integer z .. such that 
J 1,J 

Z · . A·µ- E ML 1,J 1 J • 

The integer z = flzi,j satisfies the above conditions, so O~ is full in 

L and is thus an order of L. 

The procedure used for full modules can be followed in 

general to some extent by using the modules ML for each subfield. 

For each of the finite number of subfields L of K construct the 

module ML. If ML is not just zero, O~ is an order of L and has a 

group of units as given by Dirichlet's Unit Theorem. Denote by 

U LIQ the subgroup of the group of all units in O~ which consists of 
M 

those units with norm from K to Q equal to +l. This group 

actually depends on K also, but for simplicity this dependency is 

assumed. As when M is a full module, the index of U L/q in the 
M 

full group of units of L is finite. The set µ U L/Q is the set of 
M 

associates of µ over .O~ which have the same norm and is called 

an (M, L/Q)-family. A family is maximal if it is not properly 

contained in any (M, L'/Q)-family for any L' contained in K. 
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Every element µ of M is contained in a maximal family, since 

for each field L either µ {:_ ML or else it is contained in the (M, L)

family µ UL/q and no others. One of the finite number of families 
M 

containing µ must be maximal. Of course, every µ is in MQ = M. 

Theorem 3 (Schmidt): There exist a finite number of maximal 

families which give the solutions to (14). 

Applying this theorem to the equation (16 ), since MK = [ 0} for 

the nonfull module M, it is necessary to look at ML for each sub

field. It has already been calculated that ML1 = M 1 , ML2 = M 2 , 

ML3 = 1vfs, with M 1 , M 2 , and ~ the submodules' given in the example. 

Also, it is always true that MQ = M. Equation (17) gives the fami

lies of solutions for the fields ML1, ML2, and ML3 and by Schmidt's 

Theorem there are only a finite number of maximal families alto

gether. It follows that there are a finite number of other families 

of solutions which, if any exist, will be of the form 

However, ~IQ is a subgroup of the group [ l, -1 }, so all but a finite 

number of solutions to (16) are given by (17). 

In a general norm form equation it is always possible to cal

culate ML, O~, and u~IQ for each subfield L in a finite number of 

steps, but it is not known how to find all representatives for the 

maximal families. Still, for some modules it is possible to prove 

that only a finite number of solutions exist. The module M is 

called non-degenerate if ML = [ 0} for every subfield L except 
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possibly for quadratic imaginary fields or Q. By Dirichlet's Unit 

Theorem, these are the only extensions of Q for which the group 

U ~/Q will be finite. It follows from Schmidt's Theorem that equa -

tion (14) has only a finite number of solutions when M is non

degenera te. 

It is easy to show that Schmidt's Theorem generalizes Thue' s. 

It is necessary to prove that the equation 

has only a finite number of integer solutions, where K = Q(e) and 

[K: Q] ~ 3. This :will follow by showing that M = [x +ye} is non

degenerate. Clearly MK= [O}, so let L be any field strictly 

between Q and K. If ML -f. [ 0 }, then 

2 ~ [ L: Q J ~ rank ML ~ rank M = 2 . 

The ineq uali~ between [ L: Q J and rank ML is because ML is a vec -

tor space over L. It follows that ML = M. Let L = QO,..), then 

A e E M and 

A e = x + ye 

for some rational numbers x, y. Since "A is not rational, this implies 

e E L, contradicting the choice of L. So ML = [ 0} and M is non-

degenerate. 

Schmidt's Theorem has a nice extension to the more general 

problem 
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18) µEM, 

when MF = M. For each field L satisfying F C L C K define ML 

L and .OM as before, but now let 

U L/F 
M 

be the group of units in .O~ whose norm form K to F is +l. For 

each µ in ML the set µ U ~IF is an (M, L/F )-family and a maximal 

family is defined as before. 

Lemma 6: There exist a finite number of maximal families which 

give the solutions to (18). 

Proof: Taking the norm of both sides of (18) from F to Q gives 

µEM . 

So µ lies in one of a finite number of maximal families of solutions 

to this equation which are of the form 

11' U L/Q 
I M , 

for fields L below K. The fields which appear in these families 

need not be above F, but since Mf = M, 

and the field FL is a field above F. It follows that the solutions 

to (18) are contained in a finite number of families of the form 
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with La field above F. It is clea r that if µ'U~/Q has any solutions, 

then µ' can be taken to be one. The only units of UL/Q which will 
M 

give other solutions are precisely those with norm from K to F 

equal to +l, i.e. those in the group u~IQ. § 

The following lemma, a form of which was proved a different 

way by Gyory [ 7], will be used in the proof of Theorem 2. 

Lemma 7: Let Yi, Y~, and y be any integers in K with y -i 0. 

There exist only a finite number of units u1 , u 2 in K satisfying 

Proof: Every unit of K can be wr itten uniquely as 

I; a root of one in K and Th, ... , 11r a fixed fundamental system of 

units. Let p be any prime. Those units fo r which O $;a . $; p-1 
1 

form a finite set and will be called p-power free (with respect to 

'fl1 , ••• , 11r ). Every unit in K is the product of a p-power free unit 

and a unit which a pth power. Choose p > 3 so that the field Q(sp) 

is disjoint from K, where Sp is a pri1nitive pth root of 1. Then the 

representation i s unique for each unit of K. 

If the equation has an infinite number of solutions in units of 

K, there must be an infinite subset of solutions u1 , u;j with p-power 

free parts equal to Us, u4 respectively, for some pair (\.¼, u4 ). This 

is clear since there are only a finite number of such pairs. There

fore, the lemma will follow from showing that for every y1 , y ;j 
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and y f. 0 in K, there exist only a finite number of solutions x, y in 

units of K to the equation 

This will now be proved. 

If either Y1 or Y2 is zero, the result is obviouso If Y1 Ya f. 0, 

then 

and without loss of generality the equation can be assumed to be 

xP + y2 yP = y 

for some integers Yr,;, y in K and Ya y f. 0. Also, since pth powers 

in y2 can be absorbed in y, either Ya is not a p th power or can be 

taken to be L 

If y2 is not a p th power, then zP + y2 is irreducible over 

K, see for example [ 11 J. 

If Y;a = 1, then (zP + 1)/{z + 1) is irreducible over Ko This w ill 

follow since K and Q{sp) are disjoint. Write ~ for Sp, then 

p-1 
zP + 1 = TT (z + s i) 

i=O 

Let S be any nonempty subset of [O, l, 2,. o .,p-1} such that 

g (z) = n {z + ~ i) 
i ES 

is in K[z]. The coefficients of g are in K n Q(~p) = Q, so the 

factorization is exactly the same as over Q. 
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So suppose first that y 2 is not a pth power. Fix a p th root of 

y
2 

and call it /3. If E = K(/3), then it is sufficient to prove that there 

exist only a finite number of solutions x, y in integers of K to the 

equation 

Since [E:K] = p > 3, ME= [O} for M = fx + y/3} and there are 

no subfields between E and K. Also MK = M since x, y are integers 

of K. Thus, there exist a finite number of maximal families of 

solutions each of which is of the form 

But UK/K is a finite group, in fact just [ l} in this case, so this 
M 

gives the required result. 

19) 

Now suppose y 2 = 1, then E = K(s ) and the equation is 
p 

(x + y) NEIK (x + S y) = y . p 

Take norms from K to Q to get 

and each of the norms is an integer, so 

where c' is one of a finite set of integer factors of c. The rank of 
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M = [x + I; y} is 2[K: Q] and MK = M. Since p was chosen greater 
p 

than 3, [E:KJ = p-1 > 2, so ME = [ O}. The same argument as the 

one used to establish Thue' s Theorem from Schmidt's shows that 

ML = [ O} for every field L strictly above K. 

Every solution is thus contained in a finite number of families 

of the form 

The integers x, y of K are determined by these numbers since 

1, s are independent over K. If µ leads to a solution to (19) and 
p 

µ = Xo + spYo, then for u E u~IQ, u EK so 

and 

Thus, the only solutions to ( 19) in the family are those for which 

· uP = 1 and this is only u = 1. 

So in this case there again are only a finite number of 

solutions. 
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CHAPTER 3 

CERTAIN FIELDS WITH THE BOUNDED INDEX PROPERTY 

Because of lemma 1 it is reasonable to say K has the 

bounded index property if any order of K has it. Let K = Q(e ), 

D= Z[8] and 8 =8i,•••,8n,the conjugates of e, then K has the 

bounded index property if and only if there only exist a finite num

ber of integer solutions (x,_, ... , ~-l) to the system of norm form 

equations 

20) N / [i(x1, ... '¾-1 L .. Q 
1,J 

e.,e.)J = c .. 
1 J 1,J 

(lsi<j s n) 

for every set of non-zero constants c. .. The field L .. is the 
l,J 1,J 

field generated by the coefficients of £(x1 , ••• , xn-l ; 8. , 8. ). 
1 J 

For each pair e. , 8. define the module M .. to be 
1 J 1,J 

so each norm form in (20) is the norm of an element from some 

M. .. However, equation (20) requires a dependency between the 
1,J 

elements of the various modules with these norms in order for the 

solution (x1 , ••• , xn-l) to be integral. 

The values of x1 , x 2 , ... , ~-l are determined uniquely by the 

set of individual solutions µ .. to the equations 
1,J 

NL /Q (µ .. ) = c .. 
. . 1,J 1,J 
l,J 

µ .. E M .. 
l,J 1,J 



This is because µ .. is equal to 
l,J 
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(>,. - A.)/(e. - e.) 
1 J 1 J 

for some A E D and if A,w are two numbers in D such that 

A_. - A.. = w. - w. 
1 J 1 J 

for each i < j, then A - w is fixed by G and A, w are equivalent. Thus, 

x 11 x 2 , ••• , xn-l are uniquely determined. 

It will be useful to know the rank of M. .. Let F .. be the field fixed 
1,J 1,J 

by the group generated by all automorphisms in G which take 8. to e .. 
1 J 

F·. 
Lemma 8: The rank of M .. is n-[F .. : Q] and M .. 1,J = M ... 

1,J 1,J 1,J 1,J 

Proof: The rank of M. . is equal to the rank of (8. - e. )M .. and 
1, J 1 J 1, J 

equals the dimension of the vector space they generate over Q. 

Consider the linear transformation T from Qn-i to (e. - e. )M .. 
1 J l,J 

given by 

xi(e. - e.) + ... 
1 J 

If (x1 , •.• , Xn-i) is in the null space of T, then 

x__ 8 n-1 = 
--u-1 i 

and this element is in F .. since it is fixed by all automorphisms 
1,J 

taking 0. to e .. 
1 J 
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Since every element of F .. can be written uniquely in terms 
1,J 

of the basis 1, e ., ... , e~-1 of Q(8. ), only those elements of F .. 
1 1 1 1, J 

whose representations have zero for the first component with 

respect to this basis result from an element of the null space. 

Therefore, the dimension of the null space is [F .. : Q] - 1 and 
1,J 

this gives the rank of M .. as n-[F .. : QJ. 
1,J 1,J 

The last statement is easy since an element µ E M .. is in 
1,J 

F·. 
M l,J if 

i,j 

µF .. ~ M ... 
1,J 1, J 

Therefore, let µ be in M .. and a an element of F. . . It follows 
l,J l,J 

that there exists A E .0 such that 

µ = o .. - A-)/(e. - e.} , 
l J l J 

and since a is in F .. it is fixed by every automorphism of G taking 
1,J 

9. to e .. So there is a unique w in K such that w. =}...a and 
l J l 1 

w- =>...a. Thus 
J J 

= ( A. - "A..) a/ (e. - 8 . ) = (w. - w.) / (8. - 8 . ) E M. . 
1 J 1 . J 1 J 1 J 1, J 

F·. 
and µ is in M. _i,J 

l,J 

Although the proof of Theorem 2 covers every finite extension 

of Q, it is interesting to apply Schmidt's Theorem in a different 

manner for fourth degree fields and certain other special fields. 

The simplest fields are covered by the following theorem. 
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Theorem 5: The field K with [K: QJ = n has the bounded index 

property if n is a prime \and G(K>:~/Q) = en, or any n if G(K :;,~/ Q) is 

either An or Sn. 

,,, 

Proof: If n is a prime and G(K'''/Q) = en, then K is normal and 

contains only Q as a proper subfield. Each of the modules M .. 
l,J 

is nonfull since their ranks are n-1 or less, so they are all non-

degenerate. It follows that (20) can have only a finite number of 

integer solutions. 

Suppose that G(K~!</Q) is Au or Sn. For n ~ 3 Theorem 1 is 

equivalent to this theorem, so assume n ~ 4. The system (20) 

reduces to one norm form equation since both An and Sn are 2-ply 

transitive for n ~ 3. The result will follow provided that the module 

M1 , 2 is non-degenerate. It will be shown that for n > 4 the field 

L 1 , 2 contains no proper subfields except Q, so M1 ,2 is non-degene

rate for these fields. When n = 4 a simple argument will be given. 

The fact that L 1 ,2 contains no proper subfields except Q when 

n > 4 follows from the following lemma. 

Lemma 9: The group G1 ,2 is maximal in G(K>:~/Q) when G(K>:~/Q) is 

either An or Sn provided n is larger than four. 

Proof: Let G = G(K* /Q) and rr be any element of G which is not in 

G 1, 2 • Let H be the group generated by G1 ,2 and rr, so it is neces

sary to prove H = G. These are permutation groups on the set 

[ 1, 2, ... , n} realized by their actions on the conjugates 81 ,9 2 , ... , an. 
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Suppose er is an arbitrary element of G and that there is a 

er' in H such that 

er(l) = er'(l) 

er(2) = er'(2), 

then er-1 er' fixes both 1 and 2 and is thus in G1 ,2 . Since er' is in H, 

this shows that er must also be in H. Therefore, to prove the 

lemma it is only necessary to show that for every pair of distinct 

a, b ip. [ 1, 2, . . . , n } there is a er in H with 

er(l) = a, er (2) = b . 

Let r and s be the numbers which satisfy 

rr(l) = r , rr (2) = s , 

then sine e rr is not in G1 2 , 

[r,s} :/: [1,2}. 

A number of cases arise depending on which of the numbers 

a, b, r, s are in the set [ 1, 2} and which ones are equal to each 

other. In each case, since n ~ 5, an element er as required above 

can be constructed using only rr and automorphisms from G1 2 • , 

A case where this lemma fails for n = 4 will be worked out 

in detail. Let r, s l [ l, 2} and a = 1, b > 2. Suppose a permutation 

er' is in H with 

er'(l) E [ 1, 2}, 
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If o-'(l) -1- 1, then by following a-' with the even permutation (1, 2)(r, s) 

will give another permutation in H which now fixes 1. So suppose 

o-'(1) is 1 and o-'(2) is not b, but is still larger than 2, then a- is 

easily constructed from a-'. Since there are at least five elements 

in [ I, 2, ... , n}, there is a c > 2 with m = o- 1(2), b, and c distinct. 

So 

T = (m, b, c) 

is even and fixes both 1 and 2, and a- = -ro-' is the desired automor

phism. An automorphism o- 1 can be easily constructed. 

Since TT rf:. G1 , 2 there is a number c > 0 with r, s, c distinct and 

such that either one or two of rr(r), rr(s) or rr(c) is in [ I, 2}. Using 

T some power of the even permutation (r, s, c) will give 

0-
1 = TT T TT • 

It follows that H = G and G 1 2 is maximal in G. , 

Since the order of the group G 1 ,
2 

is (n-2)! if G(K~:'/Q) is An 

n(n-1) 
and 2 (n-2 )! for Sn, the field L 1 , 2 is of degree 2 over Q. It 

follows that M1 , 2 is not full in L 1 , 2 for n :2: 3 and thus M 1 , 2 is non

degenerate, except possibly for n = 4. 

If n = 4, then L 1 , 2 is a sixth degree extension of Q and con

tains only one cubic subfield L as a proper subfield. As has been 

shown before, M 1 ,2 of rank 3 implies 
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which is a contradiction since M1 , 2 contains a generator for L 1 ,2 . 

So again M 1 2 is non-degenerate. , 

The following lemma is interesting by itself and is also 

needed to prove Theorem 6. 

Lemma IO: If L 1 = Q(a1 ) and L 2 = Q(a 2 ) are two distinct quadratic 

fields, then the system of norm form equations 

21) 

has only a finite number of integer solutions (x1 , x 2 , ¾, x 4 ) satisfying 

the equation 

when neither side of the equation is identically zero. 

Proof: Let a 1 , a 2 denote the conjugates of a, 1 , a, 2 in the appropriate 

fields. Since either a or b is not zero, NL
1
;q(b - aa,1 ) I- 0. 

Similarly, N(d - ca 2 ) I- 0. Without loss of generality, assume bd f. 0, 

then if 

Y1 = NL1/Q {b - a 0'1) Xi 

Y2 = ax1 + bx2 

Y3 = NL2IQ (d - CQ'2)X3 

Y4 = Y2 

equation {21) becomes 
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since for instance 

y1 + y 2 Q'(b-aci1 ) = (b-aa1 )(b-aa1 )x1 + ai(b -aci1 )(ax1 + bx2 ) 

= b(b - aa1 )(x1 + X 2 Q'1) • 

Therefore, the lemma will follow from proving the case when 

So assume a = c = 0 and b = d = 1 and without loss of genera

lity that x 2 > 0 for all solutions. Since (x1 + x 2 Q' 1 ) times (x1 + x 2 a 1 ) 

is a constant, any infinite set of solutions must contain a subset of 

solutions for which x1 + x 2 Q' 1 , say, goes to zero. Otherwise there 

would exist an infinite number of quadratic algebraic numbers with 

bounded height, which is ilnpossible. Assume that there are an 

infinite number of integer solutions to (21) with x 1 + x 2 Ql 1 and 

x3 + x 2az approaching zero, then since x1 /x2 approaches -a 1 , 

x1 /x 2 +ci1 is bounded away from zero and similarly for a 2 • There-

fore, 

I C1 I X2-
2 

= 
I X1 /x2 + e¥1 I 

< 
1 

X 2+E 
2 

E > 0 

and the corresponding inequality for a
2 

with the same E will have 

an infinite numb er of simulta~eous integer solutions. 

However, by another theorem of Schrnidt 1 s [14], it is impos

sible to silnultaneously approximate two quadratic irrationals cr 1 , cr 2 

such that 1, a 1 , a 2 are independent over Q, by an infinite number of 
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fractions x1 /x2 and ~/x2 to an exponent larger than 3/2. So (21) 

has only a finite number of solutions. 

Another proof may be given which uses only Thue' s Theorem. 

The solutions to (21) are related to rational points on the conic 

All rational points on such a curve are given by a two parameter 

formula in the parameters p and q. The solutions to (21) come 

from these parameters if and only if the norm from the fourth 

degree field Q(Ql11 Ql 2 ) of the element p + qa is a given constant, 

where QI is a fixed number such that Q(a) = Q(a1 , a 2 ). Thue' s 

Theorem proves only a finite number of such p and q exist. § 

Theorem 6: If [K: Q] = 4, then K has the bounded index property. 

Proof: If G(K':</Q) is A 4 or S4 , Theorem 5 gives the result . Each 

of the remaining Galois groups is treated separately. 

lemma 3 gives 

e., e.)J . 
1 J 
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Each of the fields L .. is quadratic, each module has rank 2, 
1,J 

and the hypotheses of lemma 10 hold, so only a finite number of 

solutions (x1 , x 2 , x 3 ) exist. 

(er2 ). Take 9 to be one of the integers of K such that K = Q(e) and 

L = Q(9 2
). Let 9 = 91 , 9 2 = ere, 93 = o-2 8, 84 = er 3 9, then 

with L 1 , 2 = K, L 1 , 3 = L. Since F 1 , 2 is Q and F 1 , 3 is L, the modules 

M1 ,2 and M1 , 3 have ranks 3 and 2 respectively. 

Since M1 2 has rank 3, x1 , ~, ¾ are uniquely determined by , 

the element in this module, so if an infinite number of solutions 

exist they must belong to the module ~,2 as L is the only proper 

subfield of K. 

Since the element 81
2 + 81 8 2 + e; is fixed by a- 2

, but not by er it 

must be a generator for L over Q. Thus, 1 and e? + 91 8 2 + et 

form a basis for L and L ~ M1 , 2 • It follows that 

so 1 and et+ 91 8 2 + 8 2
2 are in M~ 2 • Because [ L: Q] divides rank , 

Mi,2 , these must both be 2 and 

The system of norm form equations (20) has been reduced 

to 
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22) 

since 83 = -9 1 gives 

An infinite number of solutions can exist to the equation (22) 

only if et+ 81 8 2 + e; and 81
2 are conjugates, which they are not. 

Again K has the bounded index property. 

Case 3: Dihedral Galois Group. Let G(K~:</Q) = (a-, T) where 

a- 4 = -r2 = 1 and -ra- = a- 3 -r. The field K can be taken to be the fixed 

taken to be 

and F 1 ,2 = Q, F 1 , 3 the quadratic subfield of K, so the rank of M1 ,2 

is 3 and the rank of M1 3 is 2. Again the only possibility for an , 

infinite number of solutions is in Mi 2 , but L 1 2 is a fourth degree 
' ' 

field which is disjoint from K. Thus ~,2 will be full in a quad

ratic subfield which is distinct from F 1 , 3 and only a finite number 

of solutions can exist again by lemma 10. 

These are the only Galois groups for n = 4 and thus the 

theorem is proved. 
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CHAPTER 4 

THE PROOF OF THEOREM 2 

It turns out that lemma 7 is exactly the required tool for 

proving that the system of equations (20) has only a finite number 

of solutions. Gyory [ 7] proved a stronger result than lemma 7 by 

using the results of Baker [ 1] and Baker and Coates [2 J on the 

existence of a fundamental system of units of a special type. He 

used his result to prove that there exist only a finite number of 

inequivalent algebraic integers of a given bounded discriminant [ 6 ], 

which is equivalent to Theorem 2. The use of Baker's results 

gives explicit bounds on the heights of the representatives of the 

equivalency classes and thus a theoretical method of finding them 

all. This is almost always impossible in practice, but an example 

of a type of field for which it may be done will be given. 

Schmidt's Theorem has already been used in the proof of 

lemma 7. The rest of the proof uses lemma 7 to get the result, 

following Gyory' s original proof. 

Proof of Theorem 2: By considering the module (8. - 8. )M .. 
1 J 1, J 

which is similar to M .. , equation (20) becomes 
1,J 

23) NK/ Q o .. - A • ) = C .• 
1 J 1,J 

for some ;\ E O and all non-zero constants c .. has only a finite 
1,J 

number of s olutions. It has been shown that the set of values 

;\. - A· determine 11. up to equivalence. 
1 J 
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The set of solutions to any one of the equations in (2 3) is 

described by Schmidt's Theorem, but the weaker result that every 

number with a given norm is associated with one of a finite set of 

numbers will be sufficient here. Thus, there exists a finite set of 

numbers µ1 , ••• ,µk such that 

for every pair of distinct i,j and some µ in the set [ µ1 , ••. , µk}. 

The group of units UK is the group of units with norm tl in the 

maximal order of K. 

Because of the finiteness of the set [~, ... , µk}, the only way 

there can exist an infinite number of "A. satisfying (2 3) i s for some 

infinite set of such A to exist satisfying 

24) A. - "A_. E µ .. u K 
1 J 1, J 

for each i, j and a fixed number µ .. in the set [ ~, ... , µ.k} inde-
1,J 

pendent of A• It suffices to prove that only a finite number of A 

exist satisfying (24). 

since 

it follows that 
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By lemma 7, the units e1e-1 , e2 e-1 can have only a finite num

ber of values and so for every A satisfying (24) 

is one of a finite number of possible triples for some unit E. This 

will be extended to show that for some unit e 

2 5) 

is one of a finite set of numbers for each choice of i < j. 

Repeating the same technique with "-i, >..2 , ''-i for each i f:. 1, 2 

gives for some unit 'Tl 

and with 1 = 3 as before 

I I I 
for some finite set of numbers Q'1 , 2 , cr1 , 3 , Q'3 , 1 , a 1 ,2 , cr 2 ,i, ai,i. Thus, 

and 

It follows that 

I 
crl,2 
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I I 

= Tl Q' i, 1 Cl' i, 1 

so that e-1 (\. - 11.1 ) is also contained in a finite set of values with 
1 

the same unit E. This same trick will work for each \. - A. by 
1 J 

using the triple ()..1 - A.,), · ()... - >i_.), (A. - )..1 ) and gives (25). 
1 1 J J 

It only remains to show that E is restricted to some finite 

set. However, for any integer \ in K the discriminant of >.., D(>._) 

satisfies 

DO,) = Index2 
( A) D(K) 

with D(K) the discriminant of K, and thus 

D(,.) = n 
i<j 

= En(n-1) a 

with ex one of a finite set of numbers depending on the numbers 

given by (25) for each i,j. The unit E is therefore restricted to a 

certain finite set of values and only a finite number of 11. exist 

satisfying (24). This proves Theorem 2. 

ff K is a field such that s + t - 1 = 1, i.e. with unit group 

generated by one fundamental unit, then every number with a given 

index can be calc ulated. As an example let g be a primitive 

thirteenth root of one and Ki3 = Q(~ ). Then if K is the unique 

fourth degree subfield of Ki3 , it is generated by trK
13

;K (!;) = s + g3 + !; 9 

and this number and its conjugates form an integral basis for the 

integers of K. 



45 

Since the prime ideal {3) splits completely in K, for every 

A E £\ the index of >.. in OK is a multiple of 3 [ 10] and thus the re 

is no power basis for this order. There are integers A with index 

3 and all of these will be found. 

Let 81 = s + s3 + !;9' 82 = !;2 + !;6 + !;6, 83 = s4 + slO + g12, and 

8 4 = I; 7 + !; 8 + s11 . These are the conjugates of 81 and form an inte

gral basis for DK. Using this basis gives D(K) = 133
• This can 

also be shown from ramification theory sinc e 13 is tamely rami

fied. Every integer A can be written uniquely in terms of the 

basis {l, 0i, 8 2 , 83 ) as 

for integers x 0 ,x1 ,x2 ,X:3 and satisfies 

26) D {;U = Index2 { A) D(K) . 

Suppose Index OJ = 3 and number the conjugates of >... such that 

2 7) 

then {26) becomes 

It is easy to find every integer in "A with norm equal to 3 or 

to 13, since {3) splits completely into the four prime ideals gene

rated by the conjugates of 01 and (13) ramifies. Thus, every 
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number with norm 3 is an associate of 81 , 8~:p 83 , or 04 and eve r y 

number with norm 13 is an associate of 81 - 03 , a generator of the 

unique ideal above (13 ). It is also easy to check that the no r m of 

each 0. - 0. is a multiple of 13, so A· - A· is a multiple of 81 - 93 1 J 1 J 

for every pair i,j and each A. 

Thus, the norms in (28) must have either 

or 

since there is no unit with norm -1. 

The fact that (13) ramifies from Q(J13) to K can be used t o 

prove that every unit of K is actually in the field Q(JTI ). Thus , 

the fundamental unit for K can be chosen to be Tl where 

Tl = 
3 + ,/"IT 

2 

Pick a particular complex thirteenth root of l for the value 

of ~ which makes 

Then an easy calculation shows 

2 9) 

-1 + ,/"IT 
2 

In solving (28) the calculations are simplified by notin g that 

±A and all conjugates of A have the same index. Thus, a conjugate 
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might be used in the calculation in place of >.. without any specific 

mention of the fact. The final set of solutions must be checked to 

insure that the conjugates of >.. and - A are included. 

First take the cas e where 11.1 - >.. 2 has norm 13. Then as 

above, take 11. such that 

Applying cr 2 to this equality gives 

which with (2 7) implies 

Therefore, x 1 - x 2 + ~ = 0 and the two norm forms are 

These are both proportional to full modules in Q(jTI). In 

the second form, dividing out the factor 0 1 - 83 and using (29) gives 

Thus, this reduces to 

The sign is required since this norm is only from Q(JTI) to Q. 
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The other norm is easier and reduces to 

The only common solutions are (x11 ¾) = (± 1, 0), (0, ± 1 ), and 

the triples (x1 , x 2 , ¼) are given by ±(1, 1, 0) and ±(0, 1, 1 ). The full 

set of solutions will be determined from these by taking conjugates. 

Now suppose 11.1 - 11. 2 has norm 3 · 13, then it is eq ual to (8 1 - 83 ) 

times an associate of 81 , 8 2 , 83 , or 84 • Therefore, 

= 

for i = 1, 2, 3, or 4 and some integer a. Changing A to -11., if 

necessary, will eliminate the minus sign. It is always possible to 

take a conjugate to get the form 

30) 

or 

But 8 2 - 8 4 is an as s oc ia t e of 81 - 8 3 , s o ( 3 0 ) is always 

reachable by these transformations. 

Assuming 11.1 - 11. 2 satisfies (30) and applying cr 2 to it, it follows 

that 

With (2 7) this implies 
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and thus Xi = ¾ = 0. 

Index A 6 
= X2 Index 8 2 • 

It just happens that 8 2 has index 3, so x 2 = ± 1. 

Finally, by checking all possible signs and conjugations, it 

follows that every A with index 3 in this field is equivalent to, or 

a conjugate of a number equivalent to, either ± 8 1 or ± (8 1 + 8 2 ) . 

Furthermore, it can be checked that the four conjugates to each of 

these two sets of numbers give different orders. So there are 

exactly eight distinct principal orders of index 3 in this field . 

A similar problem which can be partially answered using 

Schmidt's Theorem involves the fundamental system of units for 

certain fi .elds. Brumer [ 4] considered cyclic extensions of prime 

degree over Q. Let K be such a field and let E denote the units 

of K with norm +l. Sometimes E is generated by a unit E and its 

conjugates. Such a unit is called a Minkowski unit. The cyclo-

tomic units of K form a subgroup of E of index h, where h is the 

class number of the field K [8]. There is always a unit T1 which 

together with its conjugates generate H. 

If the Galois group of K over Q is G and is generated by er, 

then E is a module over the ring 

Z [G] / ( 1 + er + · • • + erP- 1 ) 
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The multiplication of an element in t he module by an element 

of the ring is written exponentially, so that for E in E with con-

. t p-l d th . 1 JUga es E = E1 , E2 = <TE, ••• , EP = CT E an e ring e ement 

= Xo t X 1 <T t • • • t X CT p-.2 p- 2 

the product /:i is given by 

X X = ( El ) 0 ( E 2 ) 1 . . . 

Since this ring is isomorphic to the ring of integers in KP, 

denoted here by £), E is a module over O also. The multiplication 

in this case is exactly as described abov e, except with CT replaced 

by s · 
The ring O is also isomorphic with H by the isomorphism 

sending 1 to T1 and this extends uniquely to an isomorphism between 

E and il-1 , for some integral ideal fil in (). Since the index of H in 

E is equal to the norm of this ideal, 

There exists a Minkowski unit if and only if E is a free ()

module, which is exactly when the ideal fil is principal. 

Brumer used this setup to give sufficient conditions both for 

a field to have such a unit and for a field not to have such a unit. 

The problem considered here is to find every Minkowski unit 

which is generated by some fixed finite set of units in E . 
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Since the group H is of index h in E, every unit E of E satis -

fies Eh E H. Thus, there exists a unique number °' in .O such that 

where 17°' is the multiplication described above. Therefore, every 

unit E in E can be written uniquely as 17 °' with hQI in o. 

Let E1 , .•• , Es be arbitrary units in E with 

for each 1 s; is; s. If E is in the group generated by these units 

and is a Minkowski unit, then there exist integers a 1 , •.. , as such 

a 
that E = 11 and 

°' = a1 al + . . . + a s a s 

is a generator of the ideal ~.i-1 • This requires 

NK /Q(Ot) = 1/h, 
p °' E M 

with the module M = [x1 cx1 + • • • +xsas} . The structure of possible 

solutions can be given using Schmidt's Theorem. 

For example, let p-1 be twice an odd number, so the quadratic 

subfield of KP is imaginary, and let m be the smallest non-trivial 

divisor of (p-1 )/2. There can only exist a finite number of 

Minkowski units in any group generated by fewer than m units of 

E. This is because the module M has rank less than m and thus 

less than the degree of all of the subfields of KP, except the 
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imaginary quadratic subfield. Therefore, M is non-degenerate and 

Schmidt's Theorem shows the number of solutions must be finite. 

The most interesting case is when p = 2q + 1 with q a prime, since 

as many as q-1 units can be allowed and still only a finite number 

of Minkowski units will be possible. 
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