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ABSTRACT

Let K be an extension of Q of degree n and ¢ the ring of
integers of K. If © is an algebraic integer of K and K = Q(8), then
Z[6] is a suborder of O, of finite index. This index is called the
index of §. If k is a rational integer, the numbers 6 and 6 +k
have equal indices. Define two numbers to be equivalent if their
difference is a rational integer.

Using Schmidt's extension of Thue's Theorem it is shown
that in any field of degree less than or equal to four there exist
only a finite number of inequivalent numbers with index bounded by
any given number. This is true for every finite extension of Q
and a proof is given using a slight generalization of Schmidt's
Theorem.

An application of Schmidt's Theorem to a problem on the

units in a cyclic field of prime degree is given.
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INTRODUCTION

Let K be a finite extension of Q with [K:Q] =n. An order
O of K is a finitely generated Z-module which contains a basis for
K over Q and is also a ring with 1. An order is called principal
if it is of the form Z[9] for some p € K. It is well-known that K
contains a unique maximal order and 1;hat it is the ring of integers
of K, denoted . It is easy to see that Z[p] is a principal order
of K if and only if K = Q(6) and 8 € Oy.

From the theory of finitely generated modules over principal
ideal domains it follows that every order of K is a free Z-module
and contains a free integral basis. Thus, if © is an order of K,

then there exist numbers Wypeees Wy in © such that
1) D = {zym+ .. zpwy|z; € 2}

and each number in P is uniquely represented in (1). The vector
(u;l,wg,...,wn) is called an integral basis for . The principal order

Z[o] has the integral basis (1,6, 63...,6™*). Such a basis is called

a power basis.

Let 9’ C © be two orders of K with bases (A;,Ag,..., ) and

(84 92,...,en) respectively, then there exists unique integers ai,j

satisfying

As

i ~ ai,lel + ai,zez + "'ai,nen » 1= 1, 2,0:5,00) ,

and the integral matrix A = (ai,j) satisfies



6, B

02 Ag
2) A =

en AI].

Since 9’ and © each have rank n, the determinant of A is not
zero. The index of O’ as a subgroup of © is ©:9') = |det A|. If
O’ = Z[\] the special notation, I.ndex’D (), will be used for ©:Z[1]).
If 9= 9, then (D:Z[A]) will be denoted by Index (A).

The number 6 is a generator of the principal order 9 if
O = 2Z[p]. It is easy to see that 9 +k is also a generator of 9 if k
is any rational integer, so there are always an infinite number of
generators of any principal order. Call two numbers equivalent if
they differ by a rational integer.

The following theorem was proved by Hall [9]. The proof is

given in Chapter 1.

Theorem 1: Let [K:Q] < 3. For every c > 0 there exist only a

finite number of inequivalent A € O, satisfying
Index (A) = c .

It is not difficult to show that for every order  in such a
field and c > 0 there exist only a finite number of inequivalent

A € O such that Index. (A) = c. This is the corollary following

)
lemma 1 in Chapter 1. An order  of an arbitrary field K with

this property is said to have the bounded index property since




there exist only a finite number of inequivalent A € © with a given
non-zero index.

The major tool required for the proof of Theorem 1 is Thue's
Theorem on the integer solutions of certain diophantine equations,
but this cannot be used to prove the corresponding result when
[K:Q]> 3. The general result which is proved here uses the
generalization of Thue's Theorem proved by Schmidt [13]. This
result, the proof of which is given in Chapter 4, is given by the

following theorem.

Theorem 2: Let K be a finite extension of Q, © an order of K, and
c > 0 constant, then there exist only a finite number of inequivalent

A € 9 satisfying

IndexD (A) = ¢ .

In other words, every order of every finite extension of Q
has the bounded index property.
The end of each proof is indicated by the symbol § near the

right margin.



CHAPTER 1

A SYSTEM OF DIOPHANTINE EQUATIONS

The following lemma is useful for the proof of Theorem 1 and

also shows that the theorem generalizes to every order of the field.

Lemma 1: Let K be any finite extension of Q and ©,, D, any two
orders of K, then ; has the bounded index property if and only if

9O, has it.

Proof: It suffices to show that if O, does not have it then 9, also

will not have it. Suppose that {A;,A, ...} is an infinite set of

s
inequivalent numbers in O each with index in ©, equal to the non-
zero constant c. The result will follow from showing that a cer-
tain multiple of the A's will all lie in the order 9, and have a
common non-zero index in it also, so O, will not have the bounded
index property.

If ' C © are two orders of a field K with (0:0‘) = m, then
m® C 9O, since the factor group O/9’ has order m.

Let (©4:9,) =m; and (0,:0;) = m, then for each Ajs 1= L 2 s,
my); € O, The set {my\, my),, ...} is an infinite set of inequiva-
lent numbers in O, which satisfy

(n-2)(n+1)

3) I.ndexS (m:a}\i) = mym, @ c , (i=1,2,¢::)5
2

It is clear that they are inequivalent because if mz)\i—mz)\j is a

rational integer, then )\i-)\j must be rational, but it is also an



algebraic integer, so a rational integer and A is equivalent to A..
To calculate the index notice that mj); is also in ZD‘i] and calculate
Index (mg)\i) two ways.

First by using the fact that Z[mj};] is contained in Z[);]

©:2[my)]) = ©:0)®: 2[4 N2y ]:Z[mp)])

( n(n—l))
(m,) (c) \m, *

The last index follows easily since the matrix of the transformation

is diagonal. Similarly, Z[mgki] is a suborder of D, so its index

also satisfies

(©:Z[my;]) = (9:0,)(0::Z2[mg) ) -

Combining these two equations gives (3).

Therefore, 9, does not have the bounded index property and

the lemma follows. §

Corollary: If [K:Q] < 3, then every order has the bounded index

property.

Proof: Theorem 1 shows that ¢ has it, so every order must by

lemma 1. 8

The proof of Theorem 1 requires Thue's Theorem, which is

stated here for convenience. A proof is given in Mordell [12].



Theorem 2 (Thue): The equation

f(x,y) = agx™ + a,x%7ly + -+ + ay = m £ 0,

where n =2 3 and {(x,y) is irreducible in the rational field, has only

a finite number of integer solutions.

Proof of Theorem 1: If n=1, so K=, then every integer is

equivalent to 1 and the res‘ult is trivial.

Suppose now that n = 2. By lemma 1 it suffices to consider a
principal order © = Z[g]. Every finite extension of Q has such
orders. If A € Q with index ¢ > 0, then A = a5 + 2,6 for unique inte-
gers ag, a; and the matrix transforming the basis (1,0) of © into the

basis (1, A) of Z[)A] is

This has determinant a;, so |a,| = c and A is equivalent to either
cp, or to -co,.

If n=3 it again suffices to prove the principal order £ = Z[g]
has the bounded index property, where K = Q(p). Let 6 be a root of

the irreducible cubic equation
4) , glt) = t2 + rt® + rt + 15,

where r,, r;, and r; are integers. Every element in D can be

written uniquely as an integral combination of the power basis



(1, 9, 6%). In particular,

6% = -r; - rg8 - e
5)

6% = (ryrg) + (ryry-rg)e + (r2-r.)e?

because of (4). If A €O, then A = a, + 2,6 + a8° for some integers

ag a3, a5, and using (5)

32 = (af - 2rgaja, + ryrgaf) + (2apa; - 2rpajag, + [r;r, -1, ]a2)e

+ (2apap +a - 2ryaja, + [r2-r Ja2)e? .

The determinant of the matrix A which transforms the basis
(1,0, 0°) is easily calculated from the expressions of 1,), and A% in
terms of the basis (1,0, 6%), giving

6) det A = a® - 2rjafa, + (r°+rp)a,a2 + (rz-ryrp)al

Notice that a, does not appear in (6) since equivalent numbers
have equal index. The polynomial in (6) may be written a2f(a,/a,),
where f(t) = g(t-r;). Thus f is irreducible over Q since it is
rationally equivalent to g.

The index of A in © is c if and only if the integers (a,, a,)
determined by A = a; + 2,6 + a,9° are solutions to the diophantine
equation (6), where det A is either ¢ or -c. By Thue's Theorem
there are only a finite number of such integer pairs and thus only
a finite number of inequivalent such A. Thus  has the bounded

index property and , must also. §



Let K € C be a finite extension of Q, O = Z[g] an order of K
and A =ag + 2,0 + - an_19%7! any element of O, where [K:Q] =n
and each a; is a rational integer. There are precisely n isomor-

phisms of K into the complex numbers. Let 6 =6,,6, ..., 6, denote

the images of 6 under these isomorphisms, so that A =, A, .. s hg

are the corresponding conjugates of A\. Therefore,

7) Moo= oap t 2.8y + - an—lein_l: i=12...,0.
Let K* = K(el’ 82/‘ I en) and X9 Xg, LR °:Xn_1, Ql’ Q2 be inde-
pendent variables over K*. Define the polynomial { by
n-1
k k
Q- Q
L, %ay o ooy X1 5 (0, Q) = Z Xk(ﬁl_ﬂ—a> '
k=1 17 %2

Since K =Q(6), the n conjugates of § are distinct. If ¢;, ej are

distinct, then

Ay - As
8) G—E = ﬂ(al,az,...,an__l; el,eJ) .
Suppose A transforms (1,6,...,6%7) into (1,A, ..., "), then
the determinant of A depends only on a;,...,a,.;. A useful expres-

sion for this determinant was given by Dade and Taussky [5].

Lemma 2: With notation as above, let

9) Z(Xl,Xz,...,Xn,_l) = 1 f(Xl,-..,Xn_l 5 eir e_]) »
i<j



then z(a;,az, ...,an-;) is the determinant of A.

Proof: By (7) the matrix A transforms the basis (1, ei, e 91{1-1) to

(1, >‘i’ - .,}\in"l) in the field Q(Gi), so A satisfies the matrix equation

1 1 1 il i | 1

0, 02 On M As Ay
A = :

gt g e;l‘l AR AT )T

Taking determinants in this expression gives

(det A) T (e, —ej) = I (- 25) -
1<) 1<)

The result (9) follows from this by using (8).

Let G be the Galois group of K* over Q and for each o € G
define the action of ¢ on the variables x,,x,,...,x,_, to be trivial,

then

L P, SN ei’ej) = Byy s v p Kpyoy 3 Uei,(rej) .

Since the polynomial { is symmetric in (Q,,Q, and each factor in (9)

is different, each o € G permutes these factors. Therefore,

I olxy,..., %54 5 ei,e.)

orz(xl, vonsKpyoy)
i<j )

[T #(®ys o » oy ei,e.) A
i<j J
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So z is fixed by the group G, has algebraic integer coefficients and
thus has rational integer coefficients.

For each choice of 1=i<j<n let Gi,j
consisting of all ¢ € G which stabilize the set {ei, ej}. Thus

be the subgroup of G

o € Gi,j if and only if ¢ fixes both ei and ej or else interchanges

them. This is the subgroup of G which fixes the polynomial
10) By o s v s Xy 3 ei,ej) .

Let Lij be the fixed field of Gi

|G| /|G

i The group G induces exactly
; into C given by the cosets of Gij

in G. This is exactly the number of factors in (9) which are con-

ij| isomorphisms of L,
jugate to the factor given in (10).

Let
11) NLij/Q [ﬂ(xl,...,Xn_l;ei,ej)] = HO'Q(Xl,..-,Xn_l;ei,ej),

where o .runs over a set of coset representatives of Gij‘ There
’

are exactly |G|/ |G factors in (11) and this polynomial is fixed

i,jl
by G, so it has rational integer coefficients.

Not every pair of these polynomials need be conjugate. Let
S be a maximal set of pairwise non-conjugate factors £(xy, ..., X, ;;
Gi, ej) of (9), so each factor in (9) is conjugate to exactly one

element of S.
Lemma 3:

Z(Xl,.--,Xn_l) = I1 NL. /Q [l(xly "°’Xn_1; el’eJ)] *
S 1J



11

Proof: Each factor of (9) is conjugate to exactly one element of S
and appears only once in the product for the norm in (11). There-

fore, this product is the same as (9). $

To prove that every order in a given field K over Q has the
bounded index property, it is sufficient to prove it for a principal
order © = Z[6] because of lemma 1. Since each element A € © may

be written A = ag+ 2,0 + -+ ap_,06"™" with uniquely determined inte-

gers ag,...,an ;s this el_ement has index in  equal to c if and
only if

12) NLi J/Q [l(al,...',a.n_1 : ei,ej)] = Ci,j

for each polynomial in S and with the constants c, . such that their

H

product is *c. It is clear that all of these constants must be inte-
gers. Since the integers t*c have only a finite number of factori-
zations, the bounded index property is equivalent to the system of
diophantine equations (12) having only a finite number of simul-
taneous integer solutions (a;,...,a,_;) for every choice of non-zero

constants ci it
?

As an example of these lemmas, let n = 3 as in the proof of
Theorem 1. Now equation (6) gives
z(a;,a,,233) = 3 - 2rjafa, + (rf +r )22 + (r3 - ryry)a

NK/Q[al +a,(0,+6;)]

with § a root of (4).
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As a second example, let K = Q(§), € a primitive fifth root of
one. This is a normal fourth degree field and ©, = Z[g]. The
Galois group G is cyclic and generated by o, where o(g) = g=.
Write 0, = €, 6, = €% 05 = £% and o, = g°.

For the set S take

[ hmyy gy g 5 D10 8g) » A, %, % 3 By By )}

The group G, , is just the identity, while G, 5 = (1,0®). Therefore,
Li, =K and Iy 3 = Q(«/S—), the unique quadratic subfield of K. By

lemma 3,
Z(X1’ Xas Xa) = NK/Q [*e(xl’ XQ,XS; elr eg)] NLI,S/Q [ﬂ(Xl, Xo, X3 5 919 93)] .

Both factors have integer coefficients, the first is of fourth
degree and the second is quadratic.

Notice that for each pair ei,ej the set

LRy cmu s By 3 ei,ej)|xke Z for each k=1,2,...,n-1}

is a Z-module. Thus, the system of norm form equations (12) is
the same as a system of norms from certain modules.

Thue's Theorem may be restated in terms of modules. Let
K = Q@) be an extension of degree greater than 2. Thue's Theorem
says that there exist only a finite number of elements in the

module

{x + ya | %,y integers}
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with a given non-zero norm from K to Q.
Chapter 2 gives the details of Schmidt's generalization of

Thue's Theorem to more general modules.
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CHAPTER 2

NORM FORM EQUATIONS

This chapter covers the material on Schmidt's Theorem [13]
needed to prove Theorem 2. The proofs of some statements made
here are given in [3]. Every module is assumed to be a finitely
generated Z-module.

Let K be an extension of Q of degree n = s + 2t, where s

is the number of real imbeddings and t the number of complex

imbeddings of K into C, and let oj,0,,.. L, be the corresponding
isomorphisms. Let N(x, x, .. .,xm) be a norm form from K to Q;
that is, for some fixed numbers o,,05, ..., o, in K
n
N(xp, 05 Xp) = .[11 000 + - x o)
1=

where each variable is fixed by all of the automorphisms.

Of interest here are the integer solutions (x;,x,,...,x__ ) of

m

the norm form equation

(13) N(xl,xz,...,xm) = €
for some constant c.

The set of numbers of the form xy, +... x o, where
X1y Xgp oo 09 Xppy take on all possible integer values is denoted by

M = {x + - X5,0m]
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and is a finitely generated Z-module. It follows that M has a free
Z-basis (B, By, - - .,ﬁk). The integer k is the rank of M and is less
than or equal to n.

The solutions to (13) are easily found from the solutions p of

the equation
(14) NK/Q(P') = c, pe M.

The integers (x,x,, .. .,xm) are found by solving a system of equa-
tions which depends on the relationship between the set (x;,...,a.,)
and the basis ($,, .. .,Bk) of M. Therefore, it suffices to find all
solutions to (14). Since only p =0 is a solution if ¢ = 0, assume
c # 0 for all that follows.

Suppose now that M is full in K, i.e. that rank M =n. It is

possible to solve (14) for all solutions in a finite number of steps.

First, for a full module define the coefficient ring

Qv = {veEK| vp€ M for all p € M} .

It is proved in Lemma 5 that this is an order in K. Let U’lf,‘/Q be
the group of units in 9, with norm from K to Q equal to +1, a
subgroup of index 2 or 1 in the full group of units of 9, depending
on whether there exists a unit with norm -1 or not.

By the Dirichlet Unit Theorem for orders, there exists a set
of r=s +t -1 units T, ..., T, such that every unit in {, can be

written uniquely as

a1

§nl $ e ’nr
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where € is a root of 1 and a,, -..,a, are integers. Since the units
Ts «+-» M. can be calculated in a finite number of steps, so can

K/Q
U,

For every p € M the set

15) n UK/

is the set of all associates of p over £, with the same norm and

is called an (M, K)-family.

Finally, there exists an effectively computable constant y such
that every solution to (14) has an associate over g, which is also
a solution and with height bounded by y. FEach of these solutions
can be calculated in a finite number of steps, so all solutions to
(14) are contained in the union of a finite number of families of the
form (15), where p is one of these solutions with height bounded by
y. For full details on this method see [3, p. 122].

As an example of a norm form equation for a nonfull module

take the equation
16) Neso(k) = 3%.5°, peM

where M = {xV3 + x,V5 + x,V15} and K = QW3 ,5).
All solutions to (16) with xx %3 = 0 can be given. If x, = 0,

then p must lie in the submodule
M = {x,V5 + x,V15]} .

This is proportional to the full module {x, + x;¥'3 } of the field
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L, = Q(V3) and therefore

Nesq LOVE )y + 3x5W3)] = 52IN /qlxs + x3V3 )72 .

Using this with (16) gives
N,_l/Q(x2 +X3’\/-§) = +3

and all solutions are given by

x, + %V3 = £43 2 +43)F

for every integer t.

If x, =0, then p will lie in the submodule

M, = {43 + x,\15}

which is proportional to a full module of the field L, = Q(V5).

Again, (16) reduces to an equation from a subfield:
NLz/Q(Xl + Xa'\/_S—) = #*5 ,

The solutions to this equation are all given by

(x; + %V5) = £V5 (2 + N/—S_)Ic
for every integer t.

When x5 = 0, p will lie in the submodule

M, = {xlﬂ/? + X2V—5_}
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and for such a p

NK/Q(Xl/\/_3- + XE,\/—S_)

Ne/q [(1/V3)(3x, + x,415)]

1
38 [N /q(3x + x,W15)]°
where L; = Q(W15). Thus, equation (16) gives

N, 7q(3% + x,N15) = *32.5 ,

Since both 3 and 5 extend to unique nonprincipal ideals in

this field, there are no solutions to this last equation.

Therefore, every solution to (16) with x;x.x, = 0 is given by

17) V3 @2 +V3)E, +V5 2 +45)

for all integer values of t. That only a finite number of other

solutions exist will follow from Schmidt's Theorem. A similar
example was given by Schmidt.

Let M be a module in K and L any subfield. Define the

submodule
ML

to be the set of p in M such that for every A in L there is a non-
zero rational integer z such that zAp € M. If M denotes the vector

space over (Q generated by M, then M' is the set of p in M such
that

N
gl

pL
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The last form of the definition shows that M is a vector

space over L, since for p in M' and A in L

(AL = pL C M

and thus pA is in M'. Because of this, [L: Q] divides rank M-*.

It is easy to calculate M' in terms of the bases for M and L.
Extend the basis (By,..., Bk) of M to a basis of K, say By, ..., B
Bi+1s + + -5 Bp)e  Let (A, .. .,)\1) be any basis for I, then p in M is in

Mt if and only if
w‘i € M

for each 1<1i<1. This will be so if the representation of MA;
with respect to the basis (B, ..., B,) terminates with n-k zeroes.
Thus, p is in M' if and only if the k coefficients of p with respect
to the basis (B,..., Bk) satisfy the set of 1(n-k) linear conditions
required above. A basis for M' can be found using these conditions.
For example; M? = M for every module is easily seen and if
the module M is full in K, then M = K, so MX = M. However, for
any nonfull module M, M is a proper subspace of K and must have

dimension over Q smaller than n. If p were a non-zero element of

M*) then
dim pK = n < dim MK < dim K = n .

So MK = {0} if M is not full in K.

Let AB be the composite of the two fields A and B.
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Lemma 4: For any two subfields A, B of K

(MA)e = M™ .

Proof: Assume first that p € (M*)®, then p is an element of M* such

that
nB C MA .

Every element of AB is of the form o;f, + - +a B. with

; € A and B; € B, so p is in M® if and only if
pap € M

for every ¢ € A and B € B. But M* is a vector space over A, so

pap € oM € MAC M.

Therefore, (M*)? C MA"8,

Conversely, suppose p € MM, then
BMA C uAB C M.

Therefore, p € M* and it is only necessary to show
LB C MA

But B is a subfield of AB, so

LB C wAB C M™

N
=
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since being in M"® is more restrictive than being in MA,

Thus M?® C (M*) and the lemma follows. 8

With the module M = {xV3 + xeﬁ + %,/ 15} from the pre-
vious example (16) and the fields L., L, Ls, the submodules corres-
ponding to these fields are M,, M,, and M, respectively. These are
the same submodules which appeared in the example.

To calculate MLS, for example, extend the basis for M té the
basis {1, V3, V5, V15 } of K and use the basis {1, 15} for L.
Since 1. is in M for every p in M, the condition for p to be in

M'3 reduces to the one relation

pA15 € M .

If pis written as xlﬁ + xgv'g + x3 V15, then pV15 € M requires

rationals a, b,c such that
RAVI5E = 15x%; + 5x,43 + 345 = av3 + b5 + c415 .

Therefore, x; must equal zero and M8 = M; of the example.
Let D; denote the ring of coefficients of M!' in I, i.e. the set

of all A in L such that Ap € M' for all p in ML,
Lemma 5: If M' # {0}, then O is an order of L.

Proof: It is clear that D; is a ring with 1, so it only remains to
prove that it is a full, finitely generated module in L.

Let p be any non-zero element of M', then p9; C M and
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D; C p™t Mt

Since M! is a finitely generated module so is p™* M! and thus also
the submodule Df.

To show that O, is full in K, it suffices to show that there
exists an integer z # 0 such that z9_ C 9, where D, is the maxi-
mal order of L. For each element A of a basis for O, and each

B of a basis for M' there is a non-zero integer z3 such that

Zi,j )\i}ij € Mt .

The integer z = nzij satisfies the above conditions, so O is full in

L and is thus an order of L. §

The procedure used for full modules can be followed in
general to some extent by using the modules M' for each subfield.
For each of the finite number of subfields L of K construct the
module Mt. If M! is not just zero, .‘DL‘,’ is an order of L and has a
group of units as given by Dirichlet's Unit Theorem. Denote by
U;/Q the subgroup of the group of all units in D; which consists of
those units with norm from K to Q equal to +1. This group
actually depends on K also, but for simplicity this dependency is
assumed. As when M is a full module, the index of U;/Q in the
full group of units of L is finite. The set pUP‘;’/Q is the set of
associates of p over D; which have the same norm and is called

an (M, LL/Q)-family. A family is maximal if it is not properly

contained in any (M, L'/Q)-family for any L’ contained in K.
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Every element p of M is contained in a maximal family, since
for each field L either p ¢ M- or else it is contained in the (M, L)-
family HU;/Q and no others. One of the finite number of families

containing p must be maximal. Of course, every p is in MQ® = M.

Theorem 3 (Schmidt): There exist a finite number of maximal

families which give the solutions to (14).

Applying this theorem to the equation (16), since M = {0} for
the nonfull module M, it is necessary to look at M- for each sub-
field. It has already been calculated that M1 = M;, M'2= M,,
M = My, with M;, M,, and M, the submodules given in the example.
Also, it is always true that MR = M. Equation (17) gives the fami-
lies of solutions for the fields M4, M!2, and M's and by Schmidt's
Theorem there are only a finite number of maximal families alto-

gether. It follows that there are a finite number of other families

of solutions which, if any exist, will be of the form
Q/Q
kU,

However, L[ﬁ/Q is a subgroup of the group {1, -1}, so all but a finite
number of solutions to (16) are given by (17).

In a general norm form equation it is always possible to cal-
culate M+, D;, and Uo‘i/q for each subfield L in a finite number of
steps, but it is not known how to find all representatives for the
maximal families. Still, for some modules it is possible to prove
that only a finite number of solutions exist. The module M is

called non-degenerate if M- = {0} for every subfield L except
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possibly for quadratic imaginary fields or Q. By Dirichlet's Unit
Theorem, these are the only extensions of Q for which the group
U;/Q will be finite. It follows from Schmidt's Theorem that equa-
tion (14) has only a finite number of solutions when M is non-
degenerate.

It is easy to show that Schmidt's Theorem generalizes Thue's.

It is necessary to prove that the equation
Nysolx + x58) = ¢ # 0

has only a finite number of integer solutions, where K = Q(§) and
[K:Q] 2 3. This will follow by showing that M = {x+y6} is non-
degenerate. Clearly MK = {0}, so let L be any field strictly

between Q and K. If M: # {0}, then
2 < [L:Q] = rank M* < rank M = 2 .

The inequality-between [L:Q7] and rank M' is because M. is a vec-
tor space over L. It follows that M = M. Let L = Q(A), then

AB € M and

AB = x + yO

for some rational numbers x,y. Since ) is not rational, this implies

9 € L, contradicting the choice of L. So M!' = {0} and M is non-
degenerate.

Schmidt's Theorem has a nice extension to the more general

problem
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18) Nye) = y #0,  peM,

when MFf = M. For each field L satisfying F C L C K define M*

and D:}, as before, but now let

UL/F
M

be the group of units in D; whose norm form K to F is +1. For

each p in M! the set }LU;/F is an (M, L/F)-family and a maximal

family is defined as before.

Lemma 6: There exist a finite number of maximal families which

give the solutions to (18).
Proof: Taking the norm of both sides of (18) from F to Q gives
Nesglk) = Ngly) = ¢ # 0, pREM .

So p lies in one of a finite number of maximal families of solutions

to this equation which are of the form
/ L/Q
pUS,

for fields L below K. The fields which appear in these families

need not be above F, but since MFf = M,
MfL = (MF)L - Mt

and the field FL is a field above F. It follows that the solutions

to (18) are contained in a finite number of families of the form
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with L a field above F. It is clear that if p’UI';q/Q has any solutions,
then p’ can be taken to be one. The only units of U;/Q which will

give other solutions are precisely those with norm from K to F

equal to +1, i.e. those in the group Up';l/Q. §

The following lemma, a form of which was proved a different

way by Gyory [7], will be used in the proof of Theorem 2.

Lemma 7: Let Yy, Y3, and Yy be any integers in K with vy # O.

There exist only a finite number of units u;, u, in K satisfying
wmy, t+ ug¥z = Y .

Proof: Every unit of K can be written uniquely as

g'ﬂlal .o ’n?r s
g a root of one in K and TM;,..., 7N, a fixed fundamental system of
units. Let p be any prime. Those units for which 0=<a; < p-1
form a finite set and will be called p-power free (with respect to
MNas -« + .,T]r). Every unit in K is the product of a p-power free unit
and a unit which a pth power. Choose p >3 so that the field Q(gp)

h root of 1. Then the

is disjoint from K, where gp is a primitive pt
representation is unique for each unit of K.

If the equation has an infinite number of solutions in units of
K, there must be an infinite subset of solutions u;,u; with p-power
free parts equal to uz, uy respectively, for some pair (uz, uy). This

is clear since there are only a finite number of such pairs. There-

fore, the lemma will follow from showing that for every v,, v,
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and y # 0 in K, there exist only a finite number of solutions x,y in

units of K to the equation

'lep + Vsz =Y
This will now be proved.

If either Y, or Y; is zero, the result is obvious. If v,Y; # O,

then
VPP 4 v PyyP o= v Py
and without loss of generality the equation can be assumed to be
xP 4+ vyP = v

for some integers v, Y in K and vy, vy # 0. Also, since p'Ch powers

h

in v, can be absorbed in y, either y; is not a p’C power or can be

taken to be 1.

h power, then zP + Yo is irreducible over

If v, is not a pt
K, see for example [11].
If v =1, then (zP + 1)/(z + 1) is irreducible over K. This will

follow since K and Q(gp) are disjoint. Write £ for gp, then

p-1 .
zP + 1 = [ (z+¢gh)
i=0
Let S be any nonempty subset of {0,1,2,...,p-1} such that

g(z) = M (z +¢g%)
i1€S

is in K[z]. The coefficients of g are in K N Q(gp) = Q, so the

factorization is exactly the same as over Q.
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So suppose first that v, is not a pth power. Fix a pth root of
Yo and call it B. I E = K(B), then it is sufficient to prove that there

exist only a finite number of solutions x,y in integers of K to the

equation

Ne(x +By) = v .

Since [E:K] =p >3, Mf = {0} for M = {x + yB} and there are
no subfields between E and K. Also M = M since X,y are integers
of K. Thus, there exist a finite number of maximal families of

solutions each of which is of the form

K/K
pU,

But U;/K is a finite group, in fact just {1} in this case, so this
gives the required result.

Now suppose y, = 1, then E = K(gp) and the equation is

19) G+ )Ny + 8 y) = v -

Take norms from K to Q to get

NK/Q(X+Y)NE/Q(X+§pY) = Nysly) = ¢ £ 0,

and each of the norms is an integer, so

/

NE/Q(x + gpy) =

where ¢’ is one of a finite set of integer factors of c. The rank of
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M ={x+ gpy} is 2[K:Q] and MX = M. Since p was chosen greater
than 3, [E:K] = p-1>2,s0 Mf = {0}. The same argument as the
one used to establish Thue's Theorem from Schmidt's shows that

M' = {0} for every field L strictly above K.

Every solution is thus contained in a finite number of families

of the form

/
b UK

The integers x,y of K are determined by these numbers since
l,gp are independent over K. If p leads to a solution to (19) and

H:Xo+§pYo» then for u € U;/Q, u € K so

up = uxy t §p‘~1Yo

and

(a%o + uyo) Nesx (uXo + § uyo) = uPy .

Thus, the only solutions to (19) in the family are those for which
uP =1 and this is only u = 1.
So in this case there again are only a finite number of

solutions.
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CHAPTER 3

CERTAIN FIELDS WITH THE BOUNDED INDEX PROPERTY

Because of lemma 1 it is reasonable to say K has the
bounded index property if any order of K has it. Let K = Q(s),
O=2[6)] and ¢§ = 6,, Y the conjugates of 9, then K has the
bounded index property if and only if there only exist a finite num-
ber of integer solutions (x,,...,x,_;) to the system of norm form

equations

20) NLi J/Q [:ﬁ(xl,...,x'n_1 ; ei,ej)] = Ci,j , (l<i<j<n)
for every set of non-zero constants e The field Lij is the
field generated by the coefficients of f(x,, .. N S ei, ej).

For each pair 91’ ej define the module Mij to be

’

{08, 0on s Xy 5 ei,ej)!xl_,...,xn_l integers} ,

so each norm form in (20) is the norm of an element from some

M However, equation (20) requires a dependency between the

i,j
elements of the various modules with these norms in order for the
solution (x;,...,X, ;) to be integral.

The values of x,%x,,...,%, , are determined uniquely by the

set of individual solutions Hij to the equations
14

NLiJ./Q (50 = €45 i € My -
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This is because Hij is equal to
(A - AJ.)/(ei - ej)

for some X € © and if A,w are two numbers in © such that

for each i< j, then A -w is fixed by G and A, w are equivalent. Thus,
Xy, Xg, « « o X1 are uniquely determined.
It will be useful to know the rank of M.1 .. Let Fij be the field fixed

»)

by the group generated by all automorphisms in G which take 6, to ej.
By g
Lemma 8: The rank of M, . is n-[F, .: Q] and M, ."J = M. ..
- 1) 1,) 1] 1)
Proof: The rank of Mi 3 is equal to the rank of (ei—ej)MiJ. and
equals the dimension of the vector space they generate over Q.
Consider the linear transformation T from QP! to (ei-ej)Mi .

»J
given by

TXys v » 0 pXyyoy) = xl(ei-ej) + ... xn_l(ein‘l-ejn‘l) .

¥ (x3,...,%X4-;) is in the null space of T, then

xlel 4+ e }{Tl‘leirl-l = Xlej + e Xn_lejn-l

and this element is in Fij since it is fixed by all automorphisms

’

taking ei to ej.
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Since every element of F. . can be written uniquely in terms
’

of the basis l’ei’ . ..,91.1'1"1 of Q(ei)’ only those elements of Fij
whose representations have zero for the first component with

respect to this basis result from an element of the null space.

Therefore, the dimension of the null space is [Fij:Q] -1 and

this gives the rank of Mij as n-[Fij:Q].
The last statement is easy since an element p € Mij is in
Fy j ’
M, 7 if
i,j
F.. S M, ..
B 1,] 1,]
Therefore, let p be in Mi . and o an element of Fi .. It follows
» 4

that there exists )\ € © such that
M= (Al - )\_])/(el - eJ) ’

and since o is in Fij it is fixed by every automorphism of G taking

03 to ej. So there is a unique w in K such that w =A@ and

w :)\J.oz. Thus

po = (A - Aj)oz/(ei - ej) = (- wj)/(ei - ej) S Mi,j

Fs »
and p is in M J.l’J ) §
Although the proof of Theorem 2 covers every finite extension
of QQ, it is interesting to apply Schmidt's Theorem in a different
manner for fourth degree fields and certain other special fields.

The simplest fields are covered by the following theorem.
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Theorem 5: The field K with [K: Q] = n has the bounded index
property if n is a prime and G(K*/Q) = Cp» or any n if G(K*/Q) is

either A, or Sn'

Proof: If n is a prime and G(K*/Q) = Cp» then K is normal and
contains only Q as a proper subfield. Each of the modules Mi .
is nonfull since their ranks are n-1 or less, so they are all non-

degenerate. It follows that (20) can have only a finite number of

integer solutions.

Suppose that G(K™/Q) is A, or S . For ns< 3 Theorem 1 is
equivalent to this theorem, so assume n = 4. The system (20)
reduces to one norm form equation since both A and S, are 2-ply
transitive for n > 3. The result will follow provided that the module
M,, , is non-degenerate. It will be shown that for n> 4 the field
L,,» contains no proper subfields except Q, so M, is non-degene-
rate for these fields. When n = 4 a simple argument will be given.

The fact that L, , contains no proper subfields except Q when

n > 4 follows from the following lemma.

Lemma 9: The group G, , is maximal in G(K*/Q) when G(K*/Q) is

either A) or S, provided n is larger than four.

Proof: Let G = G(K*/Q) and m be any element of G which is not in
G, Let H be the group generated by G;, and m, so it is neces-
sary to prove H=G. These are permutation groups on the set

{1,2,...,n} realized by their actions on the conjugates 6,,65,..., 3.
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Suppose ¢ is an arbitrary element of G and that there is a

o’ in H such that

a(l) a’(1)

c(2) = o¢'(2),

then o ‘¢’ fixes both 1 and 2 and is thus in Gy,

& P o .
Since ¢’ is in H,

this shows that ¢ must also be in H. Therefore, to prove the

lemma it is only necessary to show that for every pair of distinct

a,bin {1,2,...,n} there is a ¢ in H with
o(l) = a, c(2) = b .
Let r and s be the numbers which satisfy
m(l) = r, m2) = s,
then since m is not in G,

{r,s} # {1,2} .

A number of cases arise depending on which of the numbers

a,b,r,s are in the set {1,2} and which ones are equal to each

other. In each case, since n =5, an element ¢ as required above

can be constructed using only m and automorphisms from G ..

A case where this lemma fails for n = 4 will be worked out

in detail. Let r,s ¢ {1,2} and a =1, b> 2. Suppose a permutation

o’ is in H with

0—/(1) E {1»2} ’ 0-,(2) é {1’2} N
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If ¢'(1) # 1, then by following ¢’ with the even permutation (1,2)(r, s)
will give another permutation in H which now fixes 1. So suppose
c’(1) is 1 and o’(2) is not b, but is still larger than 2, then ¢ is
easily constructed from ¢'. Since there are at least five elements
in {1,2,...,n}, there is a ¢>2 with m =¢/(2), b, and c distinct.

So
T = (m,b,c)

is even and fixes both 1 and 2, and o = 7¢’ is the desired automor-
phism. An automorphism o/ can be easily constructed.

Since 7 ¢ G,,, there is a number c >0 with r,s,c distinct and
such that either one or two of w(r), m(s) or w(c) is in {1,2}. Using

T some power of the even permutation (r,s,c) will give

It follows that H=G and G,; is maximal in G. 8

Since the order of the group G, is (n-2)! if G(K*/Q) is A,
and 2(n-2)! for Sy, the field L, is of degree 281 over 0. 1t
follows that M, , is not full in L,, for n 2 3 and thus M, , is non-
degenerate, except possibly for n = 4.

If n =4, then Ly, is a sixth degree extension of Q and con-

tains only one cubic subfield L. as a proper subfield. As has been

shown before, M,, of rank 3 implies
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which is a contradiction since M, , contains a generator for L, ;.

So again M, , is non-degenerate. 8

The following lemma is interesting by itself and is also

needed to prove Theorem 6.

Lemma 10: If L, = Q(o,) and L, = Q(o,) are two distinct quadratic

fields, then the system of norm form equations
21) Ny, /q (x; + x,07) = ¢y , NLE/Q(x3+x4a/2) = ¢y, cc, £ 0
has only a finite number of integer solutions (x;, x,, X, x,) satisfying

the equation

ax, + bx, = cx; + dx,
when neither side of the equation is identically zero.

Proof: Let @, @, denote the conjugates of a;, @, in the appropriate
fields. Since either a or b is not zero, N_ /(b -aw;) # 0.
Similarly, N(d -cay) # 0. Without loss of generality, assume bd # 0,
then if

y, = NLl/Q (b-aw,)x,

Vo = ax + bx,

Yy = NLQ/Q(d-CQE)XS

Yo = Y2

equation (21) becomes
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NLl/Q [y, + yeon(b-aw,)] ngLl/Q (b-aw)c; # 0O

NLQ/Q [ys + yooa(d -cay)] dzNLg/Q(d"Cal)Ce # 0,

since for instance

yl + Yza(b -aal) = (b —aQ’l)(b ‘aal)xl + a’l(b "aal)(axl + sz)

= b(b—aal)(xl + ngl) "

Therefore, the lemma will follow from proving the case when
X, = X4 in (21).

So assume a =c =0 and b=d =1 and without loss of genera-
lity that x,> 0 for all solutions. Since (x; + x,a,) times (x; + x;@,)
is a constant, any infinite set of solutions must contain a subset of
solutions for which x; + x,a;, say, goes to zero. Otherwise there
would exist an infinite number of quadratic algebraic numbers with
bounded height, which is impossible. Assume that there are an
infinite number of integer solutions to (21) with x; + x o, and
Xz + X, approaching zero, then since x,/x, approaches -o,,
X, /X, + @ is bounded away from zero and similarly for a,. There-

fore,

lea| %572 1
IX]_/X2+0'1| = < €e>0

%, /3y + T | x2S

and the corresponding inequality for o, with the same ¢ will have
an infinite number of simultaneous integer solutions.

However, by another theorem of Schmidt's [14], it is impos-
sible to simultaneously approximate two quadratic irrationals o, o,

such that 1,a,, o, are independent over Q, by an infinite number of
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fractions x /x, and X3/%X, to an exponent larger than 3/2. So (21)
has only a finite number of solutions.
Another proof may be given which uses only Thue's Theorem.

The solutions to (21) are related to rational points on the conic
CaNLl/Q[(X1+X2°fl)/X3] - ClNLg/Q[(Xs"'XgOlg)/Xa] =0

All rational points on such a curve are given by a two parameter
formula in the parameters p and q. The solutions to (21) come
from these parameters if and only if the norm from the fourth
degree field Q(a,, @) of the element p + qo is a given constant,
where o is a fixed number such that Q(o) = Q(o;, ;). Thue's

Theorem proves only a finite number of such p and g exist. $
Theorem 6: If [K:Q] = 4, then K has the bounded index property.

Proof: If G(K*/Q) is A, or S,, Theorem 5 gives the result. Each

of the remaining Galois groups is treated separately.

Case 1: G(K*/Q) = C;x C,. Let G(K*/Q)={1l,0, 7,07} and 6 = g,

8, =006, 63 = T, 64 =076, then with

S = {‘e(xl’XE’XG; 01, 92)’ f(xl»xe'XQE 01, 93): I(le Xor X3 ; 01, 94)}

lemma 3 gives

Z(Xlrxz'xs) = n N [ﬂ(xl’xgyxa; e~’ 6-)] .
res  Li,i/R vl
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Each of the fields Lij is quadratic, each module has rank 2,
and the hypotheses of lemma 10 hold, so only a finite number of

solutions (x;, X, x3) exist.

Case 2: G(K¥/Q)=C,. Let G(K*/Q) = (¢) and L the field fixed by

(¢®). Take 6 to be one of the integers of K such that K = Q(8) and

L = Q(°). Let 6 =6, 6,=00, 63 =00, 6, = ¢, then
Z(Xl, xg’ XG) = NL]_’E/Q['Q(Xlrxz’XG ; elr 62)] NL],,S/Q [ﬂ(xlrxgrxs 5 91’ 63)]

with Ly, =K, L, 5= L. Since F;, is Q and Fi,a is L, the modules
M, ,, and M, ; have ranks 3 and 2 respectively.

Since M, ; has rank 3, x,x,,%; are uniquely determined by
the element in this module, so if an infinite number of solutions
exist they must belong to the module M'l‘,2 as L is the only proper
subfield of K.

Since the element 8.°+ 6,6,+ 685 is fixed by o®, but not by o it
must be a generator‘for L over Q. Thus, 1 and 6+ 0,08,+ 62

form a basis for L and L C 1‘_41,2- It follows that

(62 + 0,0, + 62)L = L C M,

so 1 and 0°+0,6,+ 62 are in M;z. Because [L:Q] divides rank

M'l"z, these must both be 2 and
M'i,z = {x + %(8° + 0,05+ 65))

The system of norm form equations (20) has been reduced

to
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Niyglx + %(8° + 610, + 65)] = ¢
22)

Ny/gl= + %50 °] = B ,
since 63 = -8, gives

M, = {x +x;0, - 6;) + %02 - 67+ 6,7} .

An infinite number of solutions can exist to the equation (22)
only if 8,°+ 6,6,+ 62 and g2 are conjugates, which they are not.

.Again K has the bounded index property.

Case 3: Dihedral Galois Group. Let G(K*/Q)= (o, v) where

c*=12=1 and 10 = c3r. The field K can be taken to be the fixed
field of r. Let 6 =6;, 6, =060, 05 =0°9, 6, =0°. The set S can be

taken to be

{I(Xlr Xg’xa H 91; eg)’ 1(X.1, Xz:xa 5 ely 93)} ’

and Fl'2 = Q, F,,; the quadratic subfield of K, so the rank of Ml,2
is 3 and the rank of M; 5 is 2. Again the only possibility for an
infinite number of solutions is in M;.z» but Ll'2 is a fourth degree
field which is disjoint from K. Thus M—t,z will be full in a quad-
ratic subfield which is distinct from F, ; and only a finite number
of solutions can exist again by lemma 10.

These are the only Galois groups for n = 4 and thus the

theorem is proved. §
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CHAPTER 4

THE PROOF OF THEOREM 2

It turns out that lemma 7 is exactly the required tool for
proving that the system of equations (20) has only a finite number
of solutions. Gyo6ry [7] proved a stronger result than lemma 7 by
using the results of Baker [1] and Baker and Coates [2] on the
existence of a fundamental system of units of a special type. He
used his result to prove that there exist only a finite number of
inequivalent algebraic integers of a given bounded discriminant [6],
which is equivalent to Theorem 2. The use of Baker's results
gives explicit bounds on the heights of the representatives of the
equivalency classes and thus a theoretical method of finding them
all. This is almost always impossible in practice, but an example
of a type of field for which it may be done will be given.

Schmidt's Theorem has already been used in the proof of
lemma 7. The rest of the proof uses lemma 7 to get the result,
following Gyory's original proof.

Proof of Theorem 2: By considering the module (ei - ej)Mij

which is similar to Mi 3 equation (20) becomes

23) NK/Q(Ai'Aj) = Ci,j’ (].Si<j5n)

’

for some A € © and all non-zero constants cij has only a finite
number of solutions. It has been shown that the set of values

A - )\j determine )\ up to equivalence.
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The set of solutions to any one of the equations in (23) is
described by Schmidt's Theorem, but the weaker result that every
number with a given norm is associated with one of a finite set of

numbers will be sufficient here. Thus, there exists a finite set of

numbers My, ..., P such that
)\i - A.j E HUK
for every pair of distinct i,j and some p in the set {p,, .. .,pk}.

The ’group of units U, is the group of units with norm +1 in the
maximal order of K.

Because of the finiteness of the set {P‘u ...,pk}, the only way
there can exist an infinite number of ) satisfying (23) is for some

infinite set of such A to exist satisfying

24) A -y € by s U

for each i, j and a fixed number “i,j in the set {p, .. .,pk} inde -
pendent of A. It suffices to prove that only a finite number of )
exist satisfying (24).

Suppose M - Ay = €y 2, Az-As = €Mp s and Ay - Ay = €5 ;. Then

since

(Mm-23) + (Ao-2) + (Ag-X) = 0O
it follows that

=1 - -
et t eaelpa'a + Mg, = 0.
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By lemma 7, the units ﬁle'l, eze‘l can have only a finite num-

ber of values and so for every ) satisfying (24)

et (M -2Azs Aa-Aar As- N)

is one of a finite number of possible triples for some unit e¢. This

will be extended to show that for some unit ¢

25) e-l(xi-xj)

is one of a finite set of numbers for each choice of i <j.
Repeating the same technique with X, 5, ); for each i # 1,2

gives for some unit 1
- /
T] 1()\1"A2) )\2_>\i, Ai-xl) = (al’,z’ael,i’ai,l)
and with 1 = 3 as before

G_l (Al_)\gi >\2'>\3’ )\'3")\1) = (a]_'g, Q’l'a’ 03,1)

o e / ’ /
for some finite set of numbers ¥y ,50 01,35 U315 X155 Op j» Xi 1+ Thus,

_ o
M=ty = Moy, = €a,

and

It follows that
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/ 0’12 ’
Avmh = Moy, = € =% a5,
¥q,2
so that et ()‘i- A,) is also contained in a finite set of values with
the same unit €. This same trick will work for each A - Aj by
using the triple (), - Ai),‘(ki- )\j), ()\j - ), ) and gives (25).
It only remains to show that ¢ is restricted to some finite

set. However, for any integer ) in K the discriminant of )\, D(2)

satisfies

D()) = Index®(A)D(K)

with D(K) the discriminant of K, and thus

D(A) = M (y-Af = ea@Dg
i<j ]
with o one of a finite set of numbers depending on the numbers
given by (25) for each i,j. The unit € is therefore restricted to a
certain finite set of values and only a finite number of ) exist

satisfying (24). This proves Theorem 2. §

If K is a field such that s+t -1 =1, i.e. with unit group
generated by one fundamental unit, then every number with a given

index can be calculated. As an example let £ be a primitive

thirteenth root of one and K,, = Q(g). Then if K is the unique
fourth degree subfield of K,,, it is generated by try L/ () =g +eg°+¢g°
and this number and its conjugates form an integral basis for the

integers of K.
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Since the prime ideal (3) splits completely in K, for every
A € O¢ the index of A in ©, is a multiple of 3 [10] and thus there
is no power basis for this order. There are integers ) with index
3 and all of these will be found.

Let 6, =€ +£%+€°, 6,=€°+¢€°+¢€° 6,=¢*+¢"°+¢?, and
6, =67+ €E® + €. These are the conjugates of 9, and form an inte-
gral basis for ©,. Using this basis gives D(K) = 13% This can
also be shown from ramification theory since 13 is tamely rami-
fied. Every integer )\ can be written uniquely in terms of the

basis (1, 0,, . 05) as
A= Xot+ %0, + X0, + %30,
for integers x,, X;,X,, Xy and satisfies
26) D(A) = Index?())D(K) .
Suppose Index ()) = 3 and number the conjugates of )\ such that

(M -23) = %(0;-085) + x,(85 - 63) + X3(065 - 04)
27)

1t

(A - A3) X (6, -683) + x3(05-64) + X3(05-6,1)

then (26) becomes

[Nesq (- A2)PNg /g (N - 2g) = 32-13% .

It is easy to find every integer in )} with norm equal to 3 or
to 13, since (3) splits completely into the four prime ideals gene-

rated by the conjugates of 8, and (13) ramifies. Thus, every
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number with norm 3 is an associate of 6,, 6,5, 65, or 6, and every
number with norm 13 is an associate of 9, - 65, a generator of the
unique ideal above (13). It is also easy to check that the norm of
each ei- ej is a multiple of 13, so )\i- )\J. is a multiple of 9, - 9,
for every pair i,j and each A.

Thus, the norms in (28) must have either

Nejg (i - 25) = 13 N (N -2g) = 3%-13
or '

NK/Q()\l-}\E) = 3-13 NK/Q()\I-)\S) = 13 4

since there is no unit with norm -1.
The fact that (13) ramifies from Q(Jﬁ) to K can be used to
prove that every unit of K is actually in the field Q(J—1_3). Thus,

the fundamental unit for K can be chosen to be T where

Pick a particular complex thirteenth root of 1 for the value

of & which makes

-1+ ,/13
0y + 83 = ——5— .
Then an easy calculation shows

29) B, - 84 = N (6 - 83) -

In solving (28) the calculations are simplified by noting that

+) and all conjugates of A have the same index. Thus, a conjugate
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might be used in the calculation in place of A without any specific

mention of the fact. The final set of solutions must be checked to

insure that the conjugates of A and -A are included.

First take the case where ) - A, has norm 13. Then as

above, take ) such that
M- Ay = (8, - 8507 .
Applying o® to this equality gives

o2 -2g) = (M -2g),

which with (27) implies

(Xl - X, + Xa)(el - 62 + 93 - 94)

|
(@]

Therefore, x; - x, + x; = 0 and the two norm forms are

NK/Q[:xl(el_ 83) + Xg(eg - 94)] = 13
Ni/q[%,(6,+ 65 - 83 - 84) + X3(-6;+ 0, +65-04)] = 3%-13

These are both proportional to full modules in Q(,/13). In

the second form, dividing out the factor 6, - 65 and using (29) gives
Ny/q (81 - 8a)Ny/o[x (M + 1) + x5(0 - 1)] = 3%.13 .
Thus, this reduces to
3%° - 4dxx; - 3x%F = £3 .

The sign is required since this norm is only from Q(/13) to Q.
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The other norm is easier and reduces to

X° + 3x% - x° = 1

The only common solutions are (x,,x;)=(x1,0), (0,%£1), and
the triples (%, x,,X;) are given by +(1,1,0) and %£(0, 1, 1). The full
set of solutions will be determined from these by taking conjugates.

Now suppose )\ - A, has norm 3-13, then it is equal to (9, - 63)

times an associate of 6,, 65, 03, or 64. Therefore,

M=Ay = (E1)(8, - es)eina

for i =1,2,3, or 4 and some integer a. Changing A to -}, if
necessary, will eliminate the minus sign. It is always possible to

take a conjugate to get the form

30) M-As = (8; - 85)0, 1%

or

)\1">\2 (92' 94)91Tla .

But 6, - 64 is an associate of 8; - 65, so (30) is always
reachable by these transformations.
Assuming ); - A, satisfies (30) and applying ¢? to it, it follows

that
B3N - Az) + 0.0%(A -25) = 0.

With (27) this implies
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(-8x%, + %3)(8, + 65) + (-5%; - %3)(6,+64) = O

and thus x, = x; = 0.

Therefore, A = x,0, and
Index A = x; Index 6, .

It just happens that 6, has index 3, so x,= *1.

Finally, by checking all possible signs and conjugations, it
follows that every A with index 3 in this field is equivalent to, or
a conjugate of a number equivalent to, either +6, or (8, +6,).
Furthermore, it can be checked that the four conjugates to each of
these two sets of numbers give different orders. So there are

exactly eight distinct principal orders of index 3 in this field.

A similar problem which can be partially answered using
Schmidt's Theorem involves the fundamental system of units for
certain fields. Brumer [4] considered cyclic extensions of prime
degree over Q. Let K be such a field and let E denote the units
of K with norm +1. Sometimes E is generated by a unit ¢ and its
conjugates. Such a unit is called a Minkowski unit. The cyclo-
tomic units of K form a subgroup of E of index h, where h is the
class number of the field K [8]. There is always a unit 7 which
together with its conjugates generate H.

If the Galois group of K over Q is G and is generated by o,

then E is a module over the ring

Z[G)/ (L +o + -+ +0oP°1) .
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The multiplication of an element in the module by an element
of the ring is written exponentially, so that for ¢ in E with con-

-1

. _ _ _ p .
jugates € = €, €, =0¢ ...,€, =0” "¢ and the ring element

= p-2
a = Xg t+ %0 + + X,_ 50

(0%

the product ¢ 1is given by

X0 X X

@ = (q) (ez)l (ep—l) p-2 |

Since this ring is isomorphic to the ring of integers in Kp,
denoted here by O, E is a module over O also. The multiplication
in this case is exactly as described above, except with ¢ replaced
by €.

The ring © is also isomorphic with H by the isomorphism
sending 1 to 7 and this extends uniquely to an isomorphism between

E and 9%, for some integral ideal % in 9. Since the index of H in

E is equal to the norm of this ideal,
NKP/Q (¥) = h .

There exists a Minkowski unit if and only if E is a free 9O-
module, which is exactly when the ideal ¥ is principal.

Brumer used this setup to give sufficient conditions both for
a field to have such a unit and for a field not to have such a unit.

The problem considered here is to find every Minkowski unit

which is generated by some fixed finite set of units in E.
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Since the group H is of index h in E, every unit ¢ of E satis-

fies € € H. Thus, there exists a unique number o in O such that

where T]a is the multiplication described above. Therefore, every
unit ¢ in E can be written uniquely as 'na with he in 9.

Let €, ...,¢, be arbitrary units in E with

S

for each 1<is<s. If € is in the group generated by these units
and is a Minkowski unit, then there exist integers a;,...,ag such

that € = T]a and

a = a9, + -+ + a0
is a generator of the ideal Y™'. This requires
Ne sqla) = 1/h, o € M

with the module M = {xa; + .-+ +Xgag}. The structure of possible
solutions can be given using Schmidt's Theorem.

For example, let p-1 be twice an odd number, so the quadratic
subfield of Kp is imaginary, and let m be the smallest non-trivial
divisor of (p-1)/2. There can only exist a finite number of
Minkowski units in any group generated by fewer than m units of

E. This is because the module M has rank less than m and thus

less than the degree of all of the subfields of Kp, except the
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imaginary quadratic subfield. Therefore, M is non-degenerate and
Schmidt's Theorem shows the number of solutions must be finite.

The most interesting case is when p = 2q + 1 with q a prime, since
as many as -1 units can be allowed and still only a finite number

of Minkowski units will be possible.
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