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ABSTRACT

Physical biology offers powerful tools for quantitatively dissecting the various
aspects of cellular life that one cannot attribute to inanimate matter. Signature
examples of living matter include adaptation, self-organization, and division. In this
thesis, we explore different interconnected facets of these processes using statistical
mechanics, nonequilibrium thermodynamics, and biophysical modeling.

One of the key mechanisms underlying physiological and evolutionary adaptation is
allosteric regulation. It allows cells to dynamically respond to changes in the state
of the environment often expressed through altered levels of different environmental
cues. The first thread of our work is dedicated to exploring the combinatorial
diversity of responses available to allosteric proteins that are subject to multi-
ligand regulation. We demonstrate that proteins characterized through the Monod-
Wyman-Changeux model of allostery and operating at thermodynamic equilibrium
are capable of eliciting a wide range of response behaviors which include the kinds
known from the field of digital circuits (e.g., NAND logic response), as well as more
sophisticated computations such as ratiometric sensing.

Despite the fact that biomolecules at thermodynamic equilibrium are able to orches-
trate a variety of fascinating behaviors, the cell is ultimately ‘alive’ because it
constantly metabolizes nutrients and generates energy to drive functions that cannot
be sustained in the absence of energy consumption. One prominent example of
such a function is nonequilibrium error correction present in high-fidelity processes
such as protein synthesis, DNA replication, or pathogen recognition. We begin
the second thread of our work by providing a conceptual understanding of the
prevailing mechanism used in explaining this high-fidelity behavior, namely that of
kinetic proofreading. Specifically, we develop an allostery-based mechanochemical
model of a kinetic proofreader where chemical driving is replaced with a mechanical
engine with tunable knobs which allow modulating the amount of dissipation in a
transparent way. We demonstrate how varying levels of error correction can be
attained at different regimes of dissipation and offer intuitive interpretations for the
conditions required for efficient biological proofreading.

We then extend the notion of error correction to equilibrium enzymes not endowed
with structural features typically required for proofreading. We show that, under
physiological conditions, purely diffusing enzymes can take advantage of the existing
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nonequilibrium organization of their substrates in space and enhance the fidelity
of catalysis. Our proposed mechanism called spatial proofreading offers a novel
perspective on spatial structures and compartmentalization in cells as a route to
specificity.

In the last thread of the thesis, we make a transition from molecular-scale studies to
themesoscopic scale, and explore the principles of self-organization in nonequilibrium
structures formed in reconstituted microtubule-motor mixtures. In particular, we
develop a theoretical framework that predicts the spatial distribution of kinesin
motors in radially symmetric microtubule asters formed under various conditions
using optogenetic control. The model manages to accurately recapitulate the
experimentallymeasuredmotor profiles through effective parameters that are specific
for each kind of kinesin motor used. Our theoretical work of rigorously assessing
the motor distribution therefore offers an avenue for understanding the link between
the microscopic motor properties (e.g., processivity or binding affinity) and the
large-scale structures they create.

In all, the thesis encompasses a series of case studies with shared themes of allostery
and nonequilibrium, highlighting the capacity of livingmatter to perform remarkable
tasks inaccessible to nonliving materials.
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C h a p t e r 1

INTRODUCTION

Living organisms and cells in particular are markedly different from their non-living
counterparts. And yet, the physical laws that govern both realms of existence are
the same. Then, what sets apart the ‘living’ cells from the ‘dead’ matter? One
way to approach this question is to identify the unique functions of cells and the
means by which they implement these functions. Writ large, the goal of my PhD
has been to use the toolkit of physical biology to study some of the key functions
and mechanisms available to living cells that get implemented from the molecular
all the way to the cellular length scales.

One of the main reasons why the life of the cell is so rich is because many of the
processes taking place in it are stochastic in their nature. This stochasticity is, in
turn, a result of the fact that the energy of thermal motion at the level of atoms and
molecules is often comparable to the energies associated with alternative fates of
microscopic processes. Examples of such alternative fates are the bound vs. free
state of a transcription factor, an open vs. closed conformation of an ion channel, or
an active vs. inactive state of a cell surface receptor. One prominent mechanism that
harnesses this stochasticity and is essential for cell function is allosteric regulation.
Coined ‘the second secret of life’ by the biochemist Jacques Monod, allosteric
regulation is the modification of a protein’s affinity and/or catalytic activity for a
substrate upon binding of an effector molecule at a site that is different from the
protein’s active site. Essentially, the binding of the regulatory ligand alters the
dominant conformation of the protein by making it energetically more favorable.
This action at a distance mechanism is key in cellular processes such as signal
transduction, metabolism, or transcriptional regulation, allowing the cell to adapt to
the environment in response to varying concentrations of environmental cues which
act as the effector molecule for the allosteric protein. In Chapter II of the thesis,
we explore the array of behaviors that an allosteric protein can elicit in response to
the binding of more than one regulatory ligand (Fig. 1.1A) – a common setting in
the kinds of cellular processes mentioned earlier. Specifically, we demonstrate that
many of the logic responses known from the world of digital electronics (e.g., AND
or NOR logic gates), along with nonconventional ones such as ratiometric sensing,
are available to proteins characterized via the Monod-Wyman-Changeux model
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of allostery (Fig. 1.1B,C). Further, we found that in cases where the regulation
is performed with three different kinds of ligands (as, for instance, in cases of
the GIRK channel or the engineered N-WASP signaling protein), modulating the
concentration of one of the ligands can cause a switch in the logic response of
the other two ligands (Fig. 1.1D). Overall, this work illustrates the combinatorial
diversity of control strategies available to living cells via simple mechanisms that
operate at thermodynamic equilibrium.
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Figure 1.1: Response behaviors of allosteric proteins with multi-ligand regulation.
(A) Set of possible states of activity and binding considered in the statistical
mechanical characterization of the system. (B,C) Landscapes of protein activity
in cases of the OR logic response (B) and the ratiometric response elicited at
intermediate ligand concentrations (C). (D) Example activity cube in the 3-ligand
regulation setting, along with the set of three different logic switches induced upon
the increase in the concentration of one of the three ligands.

Despite the fact that many of the fascinating cellular processes such as allosteric
regulation, packing of DNA, or the formation of cellular microcompartments can be
explained through the principles of equilibrium thermodynamics, a fundamental
and distinguishing feature of the cell as a whole is that it is an open system
operating outside of thermodynamic equilibrium. In order to stay ‘alive,’ cells
constantly exchange matter and information with their environment and consume
energy to fuel processes that by definition assume a well-defined arrow of time.
Such processes include cell division, the different steps of the central dogma, or
the constant pumping of ions into or out of the cell for the maintenance of its
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physiological state. One intriguing aspect of the processes of the central dogma
(DNA replication, transcription, translation) as well as many others is the failure of
equilibrium thinking to account for the high accuracies at which they operate. The
random thermal noise discussed earlier, although important for generating genetic
and post-genetic diversity in cells, will often lead to a fatal amount of errors if
left unsuppressed. These errors result from the binding and subsequent catalysis
of near-cognate substrates that have a lower affinity to the enzyme compared with
the correct substrates. In 1970s, scientists John Hopfield (Hopfield, J. J. Proc.
Natl. Acad. Sci. U.S.A. 71 (1974)) and Jacque Ninio (Ninio, J. Biochimie 57
(1975)) independently proposed a generic mechanism called kinetic proofreading
now believed to be operating inmany of the high-accuracy processes of the cell. This
nonequilibrium mechanism suppresses the amount of errors (e.g., incorporations
of a wrong amino acid by the ribosome into a growing peptide chain) caused
by thermodynamic uncertainties by coupling these processes to the hydrolysis of
energy-rich molecules and giving the enzyme catalyzing the reaction a chance to
perform error correction. Chapter III of my thesis is dedicated to the conceptual
understanding of this error-correction scheme. In conventional descriptions of the
scheme (Fig. 1.2A), the concept of energy consumption is articulated in the language
of chemical potentials and near-irreversible chemical reactions, which are not as
intuitive for conveying the idea of dissipation as mechanical descriptions involving
lifting or lowering of weights against gravity. With an aim of elucidating the
necessity of energy consumption in driving the mechanism of kinetic proofreading,
we propose a mechanochemical model of a kinetic proofreader (Fig. 1.2B) that
combines ideas from allosteric regulation, nonequilibrium thermodynamics, and
mechanics to demonstrate how the amount of energy input can be dynamically
tuned through the ‘knobs’ of the engine to achieve variable levels of accuracy
(Fig. 1.2C). By drawing parallels between the elements of our proposed scheme and
those of traditional proofreading, we offer an intuitive explanation of the conditions
that need to be met for efficient error correction from the point of view of the speed-
dissipation-accuracy trade-off. We also argue for the importance of the diversity
of available biochemical states for proofreading complexes, which, as we show for
allosteric enzymes, can enable the system to beat the Hopfield limit of proofreading.

Essential as they are for ensuring the accuracy of key biochemical processes, the
traditional kinetic proofreading schemes of error correction are quite demanding in
terms of their structural requirements on the enzyme, and for that reason, the number
of enzymes known to possess this feature is low. In Chapter IV, we extend the
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Figure 1.2: Elucidating the operational principles of kinetic proofreading through a
mechanochemical model. (A) Illustration of the right and wrong catalysis pathways
in Hopfield’s proofreading scheme. The first layer of substrate differentiation occurs
during the initial substrate binding step, while the second layer happens after the
irreversible transition into the active state of the enzyme. (B) Schematic of our
proposed mechanochemical model of proofreading. It consists of a ratchet-and-
pawl engine driven by a lowering weight, a piston that dictates the activity state
of the enzyme by controlling the volume available to the regulatory ligand, and an
allosteric enzyme with its catalytic site exposed to a reservoir of right and wrong
substrates. (C) Demonstration of the varying levels of proofreading performance in
response to tuning the knobs of the mechanical engine (the mass of the weight and
the frequency at which the pawl makes a jump over the ratchet teeth).

notion of kinetic proofreading to enzymes that lack those traditional requirements
such as the presence of a nucleotide hydrolysis pocket or multiple intermediate
conformations needed for delaying product formation and discarding the wrong
enzyme-bound substrates. In our proposed mechanism called spatial proofreading,
the enzyme instead takes advantage of the localized spatial distribution of its
substrates and performs error correction while traveling from the substrate binding
site to the substrate delivery/catalysis site (Fig. 1.3A). Importantly, in this scheme,
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the dissipation of energy required for proofreading is outsourced to the substrate
localization mechanism that is decoupled from the enzyme. We demonstrate that
for physiologically relevant substrate gradients, a purely diffusing enzyme with no
specialized features of energy consumption can perform efficient error correction,
provided that the diffusion time between the substrate binding and catalysis events
is sufficiently long (Fig. 1.3B). We also offer an implementation of our proposed
scheme using a known mechanism of gradient formation, namely the joint action
of membrane-bound kinases and delocalized cytoplasmic phosphatases (Fig. 1.3C),
and show that it can achieve proofreading for physiologically relevant values of
the system parameters. This work thus offers an avenue for exploring intracellular
structures such as spatial gradients or compartmentalization as means of enhanced
specificity for enzymes that would otherwise act as equilibrium catalysts in spatially
homogeneous environments.
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Figure 1.3: Leveraging space to perform error correction. (A) The traditional
way of achieving time delays through multiple biochemical intermediates (top) and
our proposed alternative of creating a delay through spatially localized substrate
binding and diffusive transport (bottom). (B) Enhancement of enzyme fidelity
over its equilibrium value ([eq = 10) as a function of the time required to diffuse
between the binding and catalysis sites. (C) Illustration of a kinase/phosphatase-
based mechanism of gradient formation and realization of the spatial proofreading
scheme.

The nonequilibrium intracellular structures, aside from our hypothesized auxiliary
role in the enhancement of enzyme specificity, each have a designated function in the
cell, similar to how each organ has its specialized function in humans. The formation
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and maintenance of these nonequilibrium structures, such as the Golgi apparatus,
the constantly remodeling actomyosin cortex, or the spindle of the dividing cell, are
still poorly understood from the perspective of self-organization principles. Using
a recently developed optogenetic control tool, our lab studies the organization of an
in vitro reconstituted cytoskeletal system of microtubules and kinesin motors – two
key constituents of the spindle apparatus. Specifically, light is used to induce
the dimerization of kinesin motor pairs with spatiotemporal precision, thereby
controlling the region of microtubule crosslinking and force generation (Fig. 1.4A).
InChapter V, we present our theoretical efforts to characterize the spatial distribution
of kinesin motors in radially organized aster structures of microtubules created with
our experimental setup under various conditions. We develop a minimal continuum
model for the motor distribution (Fig. 1.4B) and demonstrate that it is capable of
capturing the experimentally observed motor profiles via effective motor-specific
microscopic parameters (Fig. 1.4C, D), indicating a link between individual motor
properties and the spatial structures that emerge as a result of their concerted action.
Our work of rigorously assessing the motor distribution contributes to ongoing
efforts to design and control the structure and dynamics of cytoskeletal active matter
systems.
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C h a p t e r 2

COMBINATORIAL CONTROL THROUGH ALLOSTERY

0

13

123

1
ANDN3

L2

YES1
122

23

3

23

AND

YES1

0

13

2

3

L3
123

1

12

0

13

123

1

122

23

3

L1
NONE ORN2

This chapter is based on the journal publication: Galstyan, V., Funk, L., Einav, T.
& Phillips, R. Combinatorial control through allostery. J. Phys. Chem. B 123,
2792–2800 (2019). DOI: 10.1021/acs.jpcb.8b12517

2.1 Abstract
Many instances of cellular signaling and transcriptional regulation involve switch-
like molecular responses to the presence or absence of input ligands. To understand
how these responses come about and how they can be harnessed, we develop a
statistical mechanical model to characterize the types of Boolean logic that can arise
from allosteric molecules following the Monod-Wyman-Changeux (MWC) model.
Building upon previous work, we show how an allosteric molecule regulated by two
inputs can elicit AND,OR,NAND, andNOR responses, but is unable to realizeXOR
or XNOR gates. Next, we demonstrate the ability of an MWC molecule to perform
ratiometric sensing – a response behavior where activity depends monotonically on
the ratio of ligand concentrations. We then extend our analysis to more general
schemes of combinatorial control involving either additional binding sites for the
two ligands or an additional third ligand, and show how these additions can cause
a switch in the logic behavior of the molecule. Overall, our results demonstrate the
wide variety of control schemes that biological systems can implement using simple
mechanisms.

2.2 Introduction
A hallmark of cellular signaling and regulation is combinatorial control. Disparate
examples ranging frommetabolic enzymes to actin polymerization to transcriptional
regulation involve multiple inputs that often give rise to a much richer response than
what could be achieved through a single-input. For example, the bacterial enzyme
phosphofructokinase in the glycolysis pathway is allosterically regulated by both

https://doi.org/10.1021/acs.jpcb.8b12517


8

ADP and PEP [1]. Whereas PEP serves as an allosteric inhibitor, ADP is both an
allosteric activator and a competitive inhibitor depending upon its concentration.
This modulation by multiple allosteric ligands gives rise to a complex control
of the flux through the glycolytic pathway: increasing ADP concentration first
increases the activity of phosphofructokinase (via the allosteric modulation), but
ultimately decreases it (from competitive inhibition). Another example is offered
by the polymerization of actin at the leading edge of motile cells. In particular, the
presence of two ligands, Cdc42 and PIP2, is required to activate the protein N-WASP
by binding to it in a way that permits it to then activate the Arp2/3 complex and
stimulate actin polymerization [2].

In the context of transcriptional regulation, an elegant earlier work explored the
conditions under which transcriptional regulatory networks could give rise to the
familiarBoolean logic operations, like those shown in Fig. 2.1 [3]. There itwas found
that the combined effect of two distinct transcription factors on the transcriptional
activity of a given promoter depend upon their respective binding strengths as well as
the cooperative interactions between each other and the RNA polymerase. Indeed,
by tuning the binding strengths and cooperativity parameters, one could generate a
panoply of different logic gates such as the familiar AND, OR, NAND (NOT-AND),
and NOR (NOT-OR) gates, known from the world of digital electronics [3].
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Figure 2.1: Logic gates as molecular responses. The (A) AND, (B) OR, and (C)
XOR gates are represented through their corresponding logic tables as well as target
activity profiles regulated by two ligands. The behavior of each gate is measured
solely by its activity in the absence and at saturating concentrations of each ligand
and not by the character of the active/inactive transition.
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Here we explore the diversity of combinatorial responses that can be effected by
a single allosteric molecule by asking if such molecules can yield multi-input
combinatorial control in the same way that transcriptional networks have already
been shown to. Specifically, we build on earlier work that shows that an allosteric
molecule described by the Monod-Wyman-Changeux (MWC) model can deliver
input-output functions similar to the ideal logic gates described in Fig. 2.1 [4–6].
In the MWC model, an allosteric molecule exists in a thermodynamic equilibrium
between active and inactive states, with the occupancy of each state being modulated
by regulatory ligands [7]. We use statistical mechanics to characterize the input-
output response of such a molecule in the limits where each of the two ligands is
either absent or at a saturating concentration and determine the necessary conditions
to form the various logic gates, with our original contribution on this point focusing
on a systematic exploration of the MWC parameter space for each logic gate.

We then analyze the MWC response modulated by two input ligands but outside
of traditional Boolean logic functions. In particular, we show how, by tuning the
MWC parameters, the response (probability of the allosteric protein being active)
in any three of the four concentration limits can be explicitly controlled, along with
the ligand concentrations at which transitions between these limit responses occur.
Focusing next on the profile of the response near the transition concentrations,
we demonstrate how an MWC molecule can exhibit ratiometric sensing which
was observed experimentally in the bone morphogenetic protein (BMP) signaling
pathway [8] as well as in galactose metabolic (GAL) gene induction in yeast [9].

Additionally, we extend our analysis of logic responses to cases beyond two-ligand
control with a single binding site for each ligand. We first discuss the effect of
the number of binding sites on the logic response and demonstrate how altering
that number, which can occur through evolution or synthetic design, is able to
cause a switch in the logic-behavior of an MWC molecule, such as transitioning
from AND into OR behavior. Next, we explore the increased diversity of logic
responses that can be achieved by three-ligand MWC molecules compared with the
two-ligand case and offer an interesting perspective on the role of the third ligand
as a regulator that can switch the logic-behavior formed by the other two ligands.
We end by a discussion of our theoretical results in the context of a growing body
of experimental works on natural and de novo designed molecular logic gates. In
total, these results hint at simple mechanisms that biological systems can utilize to
refine their combinatorial control.
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Figure 2.2: States and weights for the allosteric protein. The two different ligands
(blue circle (8 = 1) and red triangle (8 = 2)) are present at concentrations [!8]
and with a dissociation constant  A,8 in the active state and  I,8 in the inactive
state. The energetic difference between the inactive and active states is denoted by
ΔnAI = nI − nA. Total weights of the active and inactive states are shown below each
column and are obtained by summing all the weights in that column.

2.3 Results
2.3.1 Logic response of an allosteric protein modulated by two ligands
Consider anMWCmolecule, as shown in Fig. 2.2, that fluctuates between active and
inactive states (with ΔnAI defined as the free energy difference between the inactive
and active states in the absence of ligand). We enumerate the entire set of allowed
states of activity and ligand occupancy, along with their corresponding statistical
weights. The probability that this protein is active depends on the concentrations of
two input molecules, [!1] and [!2], and is given by

?active ( [!1], [!2]) =

(
1 + [!1]

 A,1

) (
1 + [!2]

 A,2

)(
1 + [!1]

 A,1

) (
1 + [!2]

 A,2

)
+ e−VΔnAI

(
1 + [!1]

 I,1

) (
1 + [!2]

 I,2

) , (2.1)

where  A,8 and  I,8 are the dissociation constants between the 8th ligand and the
active or inactive protein, respectively. We begin with the two-input case such that
8 = 1 or 2.

To determine whether this allosteric protein can serve as a molecular logic gate,
we first evaluate the probability that it is active when each ligand is either absent
([!8] → 0) or at a saturating concentration ([!8] → ∞). Fig. 2.3A evaluates these
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limits for Eq. 2.1, where we have introduced the parameters W1 =
 A,1
 I,1

and W2 =
 A,2
 I,2

to simplify the results.

The probabilities in Fig. 2.3A can be compared to the target functions in Fig. 2.1 to
determine the conditions on each parameter that would be required to form a given
logic gate. For example, the AND, OR, and XOR gates require that in the absence
of either ligand ([!1] = [!2] = 0), there should be as little activity as possible,
thereby requiring that the active state has a higher (more unfavored) free energy
than the inactive state (e−VΔnAI � 1). We note that in the context of transcriptional
regulation, this limit of activity in the absence of ligands is called the leakiness [10],
and it is one of the distinguishing features of the MWC model in comparison with
other allosteric models such as the Koshland-Némethy-Filmer (KNF) model that
exhibits no leakiness.

For the AND and OR gates, the condition that ?active ≈ 1 when both ligands are
saturating ([!1], [!2] → ∞) requires that W1W2e−VΔnAI � 1. The two limits where
one ligand is absent while the other ligand is saturating lead to the conditions
shown in Fig. 2.3B for the AND and OR gates, with representative response profiles
shown in Fig. 2.3C using parameter values from the single-ligand allosteric nicotinic
acetylcholine receptor [11]. We relegate the derivations to Appendix S2.1, where
we also demonstrate that the XOR gate cannot be realized with the form of ?active
in Eq. 2.1 unless explicit cooperativity is added to the MWC model. In addition,
we show that the NAND, NOR, and XNOR gates can be formed if and only if
their complementary AND, OR, and XOR gates can be formed, respectively, by
replacing ΔnAI → −ΔnAI and W8 → 1

W8
. Finally, Fig. 2.3C demonstrates that the

same dissociation constants  A,8 and  I,8 can give rise to either AND or OR behavior
by modulating ΔnAI, with the transition between these two logic gates occurring at
e−VΔnAI ≈ 1

W1
≈ 1

W2
(this corresponds to ΔnAI ≈ −9 :B) for the values of  A,8 and  I,8

in Fig. 2.3).

To explore the gating behavior changes across parameter space, we define a quality
metric for how closely ?active matches its target value at different concentration limits
for a given idealized logic gate,

&(W1, W2,ΔnAI) =
∏

_1 = 0,∞

∏
_2 = 0,∞

(1 −
��?ideal_1,_2

− ?_1,_2

��), (2.2)

where ?_1,_2 = ?active ( [!1] → _1, [!2] → _2). A value of 1 (high quality gate)
implies a perfect match between the target function and the behavior of the allosteric
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Figure 2.3: Logic gate realization of an allosteric protein with two ligands.
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that lead to an AND or OR response. (C) Realizations of the AND and OR logic
gates. Parameters usedwere A,1 =  A,2 = 2.5×10−8 M, I,1 =  I,2 = 1.5×10−4 M,
and ΔnAI = −14.2 :BT for the AND gate or ΔnAI = −5.0 :BT for the OR gate. (D)
Quality of AND (Eq. 2.3) and OR (Eq. 2.4) gates across parameter space. The
brown dots indicate the high quality gates in panel C.

molecule while a value near 0 (low quality gate) suggests that the response behavior
deviates from the target function in at least one limit.

From Eq. 2.2, the quality for the AND gate becomes

&AND = (1 − ?0,0) (1 − ?∞,0) (1 − ?0,∞)?∞,∞, (2.3)
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while for the OR gate, it takes on the form

&OR = (1 − ?0,0) ?∞,0 ?0,∞ ?∞,∞. (2.4)

Fig. 2.3D shows the regions in parameter space where the protein exhibits these
gating behaviors (the high quality gates from Fig. 2.3C are denoted by brown dots).
More specifically, for a fixedΔnAI, theANDbehavior is achieved in a finite triangular
region in the W1-W2 plane which grows larger as ΔnAI decreases. The OR gate, on
the other hand, is achieved in an infinite region defined by W1, W2 . eVΔnAI . In
either case, a high quality gate can be obtained only when the base activity is
very low (ΔnAI . 0) and when both ligands are strong activators (W1, W2 � 1),
in agreement with the derived conditions (Fig. 2.3B). Lastly, we note that the
quality metrics for AND/OR and their complementary NAND/NOR gates obey
a simple relation, namely &AND/OR (W1, W2,ΔnAI) = &NAND/NOR

(
1
W1
, 1
W2
,−ΔnAI

)
,

which follows from the functional form of Eq. 2.2 and the symmetry between the
two gates (see Appendix S2.1).

2.3.2 General two-ligand MWC response
We next relax the constraint that ?active must either approach 0 or 1 in the limits of
no ligand or saturating ligand and consider the general behavior that can be achieved
by an MWC molecule in the four limits shown in Fig. 2.3A. Manipulating the three
parameters (W1, W2 and ΔnAI) enables us to fix three of the four limits of ?active, and
these three choices determine the remaining limit. For example, the parameters in
Fig. 2.4A were chosen so that ?0,0 = 0.5 (ΔnAI = 0), ?0,∞ ≈ 0.9 (W2 = 0.1), and
?∞,0 ≈ 0.05 (W1 = 20), which fixed ?∞,∞ ≈ 0.3 for the final limit.

In addition to the limits of ?active, the locations of the transitions between these
limits can be controlled by changing  A,8 and  I,8 while keeping W8 =

 A,8
 I,8

constant.
In Appendix S2.2, we generalize previous results for the transition of a single-ligand
MWC receptor [12] to the present case of two ligands. Interestingly, we find that the
midpoint [!∗1] [!2]→0 of the response in the absence of [!2] (filled circle in Fig. 2.4A,
its value extended along a solid curve) is different from the corresponding midpoint
[!∗1] [!2]→∞ at saturating [!2] (hollow circle in Fig. 2.4A, its value extended along
a dashed curve), with analogous statements holding for the second ligand. More
precisely, the two transition points occur at

[!∗8 ] [! 9 ]→0 =  A,8
1 + e−VΔnAI

1 + W8 e−VΔnAI
, (2.5)

[!∗8 ] [! 9 ]→∞ =  A,8
1 + W 9 e−VΔnAI

1 + W1W2 e−VΔnAI
. (2.6)
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Figure 2.4: General MWC response with two ligands. (A) Three of the four limits
of ligand concentrations ([!1], [!2] → 0 or∞) can be fixed by the parameters ΔnAI,
W1, and W2. Additionally, the midpoint of the [!8] response when [! 9 ] → 0 (filled
circles, with the fixed midpoint values extended along solid curves) or [! 9 ] → ∞
(hollow circles, with the fixed midpoint values extended along dashed curves) can
be adjusted. (B) Within the region determined by the four midpoints, the MWC
response becomes ratiometric [8] where the concentration ratio of the two ligands
determines the activity of the molecule. This is illustrated by the diagonal contour
lines of constant ?active in the ratiometric response region.

Notably, the ratio

[!∗
8
] [! 9 ]→∞

[!∗
8
] [! 9 ]→0

=
(1 + W1 e−VΔnAI) (1 + W2 e−VΔnAI)
(1 + e−VΔnAI) (1 + W1W2 e−VΔnAI)

(2.7)

is invariant to ligand swapping (8 ↔ 9); hence, the transition zones, defined as the
concentration intervals between solid and dotted curves, have identical sizes for the
two ligands, as can be seen in Fig. 2.4.

The MWC response has its steepest slope when the ligand concentration is within
the range set by [!∗

8
] [! 9 ]→0 and [!∗8 ] [! 9 ]→∞, and interesting response behaviors can

arise when both ligand concentrations fall into this regime. For example, Antebi
et al. recently showed that the BMP pathway exhibits ratiometric response where
pathway activity depends monotonically on the ratio of the ligand concentrations
[8]. Similar response functions have also been observed in the GAL pathway in
yeast, where gene induction is sensitive to the ratio of galactose and glucose [9].
Such behavior can be achieved within the highly sensitive region of the MWC
model using one repressor ligand (!1) and one activator ligand (!2), as shown in
Fig. 2.4B. Parameters chosen for demonstration are ΔnAI = 0,  A,1 =  A,2 and
 I,1
 A,1

=
 A,2
 I,2

= 10−4. In this regime, the probability of the protein being active gets
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reduced to

?active ( [!1], [!2]) ≈
[!2]
 A,2

[!2]
 A,2
+ [!1]

 I,1

, (2.8)

which clearly depends monotonically on the [!2]/[!1] ratio (see Appendix S2.2
for details). We note that the region over which the ratiometric behavior is observed
can be made arbitrarily large by decreasing the ratios  I,1

 A,1
and  A,2

 I,2
.

2.3.3 Modulation by multiple ligands
A much richer repertoire of signaling responses is available to an MWC protein if
we go beyond two ligand inputs with a single binding site for each, as exhibited by
phosphofructokinase, for example. Though earlier we mentioned phosphofructoki-
nase in the context of two of its input ligands, in fact, this enzyme has even more
inputs than that, and thus provides a rich example of multi-ligand combinatorial
control [1]. To start exploring the diversity of these responses, we generalize Eq. 2.1
to consider cases with # input ligands, where the 8th ligand has =8 binding sites,
concentration [!8], and dissociation constants  A,8 and  I,8 with the molecule’s
active and inactive states, respectively. In general, it is impractical to write the states
and weights as we have done in Fig. 2.2, since the total number of possible states,
given by 21+∑#

8=1 =8 , grows exponentially with the number of binding sites. However,
by analogy with the earlier simple case, the general formula for the probability that
the protein is active can be written as

?active ( [!1], [!2], ..., [!# ]) =

∏#
8=1

(
1 + [!8]

 A,8

)=8
∏#
8=1

(
1 + [!8]

 A,8

)=8
+ e−VΔnAI ∏#

8=1

(
1 + [!8]

 I,8

)=8 .
(2.9)

We first consider an MWC molecule with # = 2 input ligands as in the previous
section but with =8 ligand binding sites for ligand 8. As derived in Appendix S2.3,
the criteria for the AND and OR gates are identical to those for a protein with
=8 = 1 binding site per ligand, except that we make the W8 → W

=8
8

substitution
in the conditions shown in Fig. 2.3B. The protein thus exhibits OR behavior if

e−VΔnAI � min
(

1
W
=1
1
, 1
W
=2
2

)
or AND behavior if e−VΔnAI � max

(
1
W
=1
1
, 1
W
=2
2

)
.

Over evolutionary time or through synthetic approaches, the number of binding sites
displayed by a single molecule can be tuned, enabling such systems to test a variety
of responses with a limited repertoire of regulatory molecules. Since W1, W2 � 1,
increasing the number of binding sites while keeping all other parameters the same
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can shift a response from AND→OR as shown in Fig. 2.5. The opposite logic
switching (OR→AND) is similarly possible by decreasing the number of binding
sites, and analogous results can be derived for the complementary NAND and NOR
gates (see Appendix S2.3). In the limit where the number of binding sites becomes
large (=1, =2 � 1), an allosteric molecule’s behavior will necessarily collapse into
OR logic provided W1, W2 < 1, since the presence of either ligand occupying the
numerous binding sites has sufficient free energy to overcome the active-inactive free
energy difference ΔnAI. In addition, having a large number of binding sites makes
the ?active response sharper (Fig. 2.5B), as was seen in the context of chromatin
remodeling where ∼150 bp of DNA “buried” within a nucleosome can be made
available for transcription by the binding of multiple transcription factors [13].

(B) 4 binding sites per ligand1 binding site per ligand(A)

conditions
γ1, γ2  <<  1

1 ,
γ1

n1

1
γ2

n2
<<  e-βΔϵAI <<1 ,

γ1
1
γ2

AND → OR, increasing n1, n2

p a
ct

iv
e

p a
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iv
e

[L2]
KA,2

[L1]
KA,1

[L2]
KA,2

[L1]
KA,1

Figure 2.5: Increased number of binding sites can switch the logic of an MWC
protein from AND into OR. (A) Parameter conditions required for AND → OR
switching upon an increase in the number of binding sites. (B) Representative
activity plots showing the AND → OR switching. Parameters used were  A,8 =
2.5 × 10−8 M,  I,8 = 2.5 × 10−6 M and ΔnAI = −7 :BT.

Next, we examine an alternative possibility of generalizing the MWC response,
namely considering a molecule with # = 3 distinct ligands, each having a single
binding site (=8 = 1). The logic response is now described by a 2 × 2 × 2 cube
corresponding to the activity at low and saturating concentrations of each of the
three ligands (an example realization is shown in Fig. 2.6A). Since each of the 8
cube elements can be either OFF or ON (red and green circles, respectively), the
total number of possible responses becomes 28 = 256. This number, however,
includes functionally redundant responses, as well as ones that are not admissible
in the MWC framework. We therefore eliminate these cases in order to accurately
quantify the functional diversity of 3-input MWC proteins.

We consider two responses to be functionally identical if one can be obtained
from another by relabeling the ligands, e.g., (1, 2, 3) → (3, 1, 2). Eliminating
all redundant responses leaves 80 unique cases out of the 256 possibilities (see
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Figure 2.6: The third ligand expands the combinatorial diversity of logic responses
and enables logic switching. (A) Cubic diagram of a representative molecular
logic response. The label “0” stands for the limit when all ligands are at
low concentrations. Each digit in the labels of other limits indicates the high
concentration of the corresponding ligand (for example, in the “12” limits the
ligands 1 and 2 are at high concentrations). Red and green colors indicate the OFF
and ON states of the molecule, respectively. (B) Diagram representing the numbers
of 3-ligand logic gates categorized by their MWC compatibility and functional
uniqueness. The area of each cell is proportional to the number of gates in the
corresponding category. (C) Demonstration of different logic transitions induced by
a third ligand (thick arrows) on the example of the 3-input gate in panel A. (D) Table
of all possible logic transitions (row → column, green cells) inducible by a third
ligand in the MWC framework. Schematics of the 14 MWC-compatible 2-ligand
gates corresponding to each column entry are displayed on top (8 and 9 represent
different ligands). Results for the transitions between logical complements (NOT
row→ NOT column) are identical to the results for row→ column transitions and
are not shown. Trivial transitions between identical gates where the third ligand has
no effect are marked with hatching lines.
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Appendix S2.4). In addition, since the molecule’s activity in the eight ligand
concentration limits is determined by only four MWC parameters, namely {ΔnAI,
W1, W2, W3}, we expect the space of possible 3-input gates to be constrained (analogous
to XOR/XNOR gates being inaccessible to 2-input MWC proteins). Imposing the
constraints leaves 34 functionally unique logic responses that are compatible with
theMWC framework (see Figure 2.6B for the summary statistics and Appendix S2.4
for the detailed discussion of how the constraints were imposed).

In addition to expanding the scope of combinatorial control relative to the two-input
case, we can think of the role of the third ligand as a regulator whose presence
switches the logic performed by the other two ligands. We illustrate this role in
Fig. 2.6C by first focusing on the leftmost cubic diagram. The gating behavior
on the left face of the cube (in the absence of !1) exhibits NONE logic while the
behavior on the right face of the cube (in the presence of saturating !1) is the
ORN2 logic (see the schematics at the top of Fig. 2.6D for the definition of all
possible gates). In this way, adding !1 switches the logic of the remaining two
ligands from NONE→ ORN2. In a similar vein, adding !2 changes the logic from
ANDN3 → YES1, while adding !3 causes a YES1 → AND switch.

We repeat the same procedure for all functionally unique 3-ligand MWC gates (see
Appendix S2.4) and obtain a table of all possible logic switches that can be induced
by a third ligand (green cells in Figure 2.6D that indicate row → column logic
switches). As we can see, a large set of logic switches are feasible, the majority of
which (the left half of the table) do not involve a change in the base activity (i.e.,
activity in the absence of the two ligands). Comparatively fewer transitions that
involve flipping of the base activity from OFF to ON are possible (the right half of
the table).

As a demonstration of the regulatory function of the third ligand, we show two
examples of logic switching induced by increasing [!3], namely AND→OR (Fig.
2.7A,B) and AND→YES1 (Fig. 2.7C,D), along with the parameter conditions that
need to be satisfied to enable such transitions (see Appendix S2.4 for derivations).
An interesting perspective is to view the !3 ligand as a modulator of the free energy
difference ΔnAI. For example, when [!3] = 0, the protein behaves identically to
the # = 2 case given by Eq. 2.1; at a saturating concentration of !3, however, the
protein behaves as if it had # = 2 ligands with a modified free energy difference
Δn′AI given by

Δn ′AI = ΔnAI − :B) log W3. (2.10)
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Figure 2.7: Example logic switches induced by the third ligand. Parameter
conditions and representative activity plots of an allosteric molecule exhibiting
AND logic in the absence of the third ligand, while exhibiting OR logic (A,B) or
YES1 logic (C,D) when !3 is present at a saturating concentration. Parameters used
were  A,8 = 2.5 × 10−8 M and  I,8 = 2.5 × 10−4 M in panel B,  A,8 = 2.5 × 10−8 M,
 I,1 = 2.5×10−4 Mand I,2/3 = 2.5×10−6 Min panel D, alongwithΔnAI = −12 :BT
in both panels.

From this perspective, the third ligand increases the effective free energy difference
in the examples shown in Fig. 2.7, since in both cases the W3 � 1 condition is
satisfied. For the AND→OR transition, the increase in ΔnAI is sufficient to let either
of the two ligands activate the molecule (hence, the OR gate). In the AND→YES1

transition, the change in ΔnAI utilizes the asymmetry between the binding strengths
of the two ligands (W1 � W2) to effectively “silence” the activity of the ligand !2. We
note in passing that such behavior for the # = 3 allosteric molecule is reminiscent
of a transistor which can switch an input signal in electronics.

2.4 Discussion
Combinatorial control is a ubiquitous strategy employed by cells. Networks of
cellular systems of different kinds, such as transcriptional [14, 15], signaling [16],
or metabolic [1], integrate information from multiple inputs in order to produce
a single output. The statistical mechanical MWC model we employ allows us to
systematically explore the combinatorial diversity of output responses available to
such networks and determine the conditions that theMWCparameters need to satisfy
to realize a particular response.
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In this paper, we built on earlier work to show that the response of an allostericMWC
molecule can mimic Boolean logic. Specifically, we demonstrated that a protein that
binds to two ligands can exhibit an AND, OR, NAND, or NOR response (also shown
by others [4–6]), where the former two cases require the protein to be inherently
inactive and that both ligands preferentially bind to the active conformation, whereas
the latter two cases require the converse conditions. We derived theMWCparameter
ranges within which an allosteric protein would exhibit an AND or OR response
(Fig. 2.3B), and showed that the corresponding parameter ranges for NAND or NOR
responses could be achieved by simply substituting W8 → 1

W8
and ΔnAI → −ΔnAI

in the parameter condition equations (Appendix S2.1.3). Since the NAND and
NOR gates are known in digital electronics as universal logic gates, all other logic
functions can be reproduced by hierarchically layering these gates. In the context
of this work, such layering could be implemented if the MWC protein is an enzyme
that only catalyzes in the active state so that its output (the amount of product)
could serve as an input for the next enzyme, thereby producing more complex logic
functions via allostery, though at the cost of noise amplification and response delays.

As in earlier work [4, 5], we showed that the XOR and XNOR responses cannot
be achieved within the original MWC framework (Eq. 2.1), but are possible when
cooperativity between the two ligands is introduced (Appendix S2.1.4). Biological
XOR and XNOR behaviors are uncommon in non-transcriptional systems and have
also been challenging for synthetic design and optimization [17]. One of the
few examples of such systems is a synthetic metallochromic chromophore whose
transmittance output level is modulated by Ca2+ and H+ ions in a XOR-like manner
[18, 19].

In addition to traditional Boolean logic, we recognized further manifestations of
combinatorial control by two-ligand MWC proteins. In particular, we showed
that the protein activity in three of the four ligand concentration limits can be
set independently by tuning the MWC parameters W1, W2, and ΔnAI, and that the
ligand concentrations at which transitions between limit responses take place can
be separately controlled by proportionally changing  A,8 and  I,8, while keeping
W8 =

 A,8
 I,8

constant (Eqs. 2.5 and 2.6). We also showed that when the ranges of ligand
concentrations are close to those transition values, then ratiometric sensing observed
in the BMP [8] andGAL pathways [9], can be recapitulated through theMWCmodel
(Fig. 2.4B), with larger regions of sensitivity achievable by an appropriate tuning
of the parameters. We note that parameter “tuning” can be realized either through
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evolutionary processes over long time scales or synthetically, using mutagenesis or
other approaches [20].

Apart from altering the thermodynamic parameters such as the ligand binding
affinity or the free energy of active and inactive protein conformations, the number
of ligand binding sites of an allosteric molecule can also be changed. This can
occur evolutionarily through recombination events, synthetically by engineering
combinations of protein domains [21], or through binding of competitive effectors
that reduce the effective number of ligand binding sites. We found that these
alterations in the number of ligand binding sites are capable of switching the logic
behavior between AND↔OR or NAND↔NOR gates (Fig. 2.5B). Since the MWC
model has been applied in unusual situations such as the regulation of promoter
accessibility in nucleosomal DNA that can unwrap upon the binding of multiple
transcription factors [13, 22], these results on combinatorial control can also be
relevant for eukaryotic transcription, where the number of transcription factor
binding sites can be tuned using synthetic approaches [23–26]. In developing
Drosophila embryos, for instance, different patterns of gene expressionwere obtained
using synthetically designed enhancers with different numbers of repressor and
activator binding sites [24]. Knowing the spatial distribution of transcription factor
concentrations across the embryo, the authors obtained gene activity profiles and
observed effectively a switch from ANDN1 logic into YES2 logic upon increasing
the number of activator binding sites [24], which is a switching behavior accessible
to an MWC molecule as well (Appendix S2.3).

Lastly, we generalized the analysis of logic responses for a molecule whose activity
is modulated by three ligands, and identified 34 functionally unique and MWC-
compatible gates out of 256 total possibilities. We offered a perspective on the
function of any of the three ligands as a “regulator” that can cause a switch in the
type of logic performed by the other two ligands and derived the full list of such
switches (Fig. 2.6D). Within the MWC model, the role of this regulatory ligand
can be viewed as effectively changing the free energy difference ΔnAI between the
protein’s active and inactive states (Appendix S2.4.2), which, in turn, is akin to the
role of methylation [27, 28] or phosphorylation [28] in adaptation, but without the
covalent linkage. Our in-depth analysis of the logic repertoire available to 3-input
MWC molecules can serve as a theoretical framework for designing new allosteric
proteins and also for understanding the measured responses of existing systems.
Examples of such systems that both act as 3-input AND gates include the GIRK
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channel, the state of which (open or closed) is regulated by the G protein GVW, the
lipid PIP2 and Na+ ions [29], or the engineered N-WASP signaling protein which
is activated by SH3, Cdc42 and PDZ ligands [30]. We note that these 3-input
AND gates exhibit a NONE→AND logic switch upon the increase of any of the
three inputs. More sophisticated logic switches can, in principle, be achieved by
engineering a similar three-ligand N-WASP protein, but this time having one of
the ligands act as a repressor and the other two as activators [2]. Our treatment
of multi-ligand gating can also serve as a theoretical framework for dissecting
the combinatorial control of the BMP signaling protein by more than 20 ligands,
different pairs of which have been shown to exhibit different response behaviors
(e.g., the action of BMP4 and BMP9 ligands results in an OR gate, while the action
of BMP4 and GDF5 ligands results in a YES1 gate) [8].

The exquisite control that arises from the web of interactions underlying biological
systems is difficult to understand and replicate. A first step to overcoming this hurdle
is to carefully quantify the types of behaviors that can arise from multi-component
systems. As our ability to harness and potentially design de novo allosteric systems
grows [21, 29–33], we can augment our current level of combinatorial control in
biological contexts, such as transcriptional regulation [3, 14, 15, 34, 35], to create
even richer dynamics.
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C h a p t e r S2

SUPPORTING INFORMATION FOR CHAPTER 2 |
COMBINATORIAL CONTROL THROUGH ALLOSTERY

Supplementary Mathematica notebook from which all protein activity response
plots and gate quality metric plots can be reproduced and supplementary Jupyter
Notebooks where the set of functionally unique gates and constraints conditions are
derived are available on the publication webpage (DOI: 10.1021/acs.jpcb.8b12517).

S2.1 Derivation of conditions for achieving different logic responses
In this section, we derive the conditions necessary for an MWCmolecule modulated
by two ligands (with one binding site for each ligand) to exhibit the behavior of
various logic gates shown in Fig. 2.1. In addition to the three logic gates shown
in Fig. 2.1, we will also discuss the three complimentary gates NAND, NOR, and
XNOR depicted in Fig. S2.1.
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Figure S2.1: Additional logic gates as molecular responses. The (A) NAND, (B)
NOR, and (C) XNOR gates are the compliments of the AND, OR, and XOR gates,
respectively, shown in Fig. 2.1.

To simplify our notation, we define the value of ?active from Eq. 2.1 in the following
limits,

?0,0 = ?active( [!1] → 0, [!2] → 0) = 1
1 + e−VΔnAI

, (S2.1)

?∞,0 = ?active( [!1] → ∞, [!2] → 0) = 1
1 + W1e−VΔnAI

, (S2.2)

https://doi.org/10.1021/acs.jpcb.8b12517
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?0,∞ = ?active( [!1] → 0, [!2] → ∞) =
1

1 + W2e−VΔnAI
, (S2.3)

?∞,∞ = ?active( [!1] → ∞, [!2] → ∞) =
1

1 + W1W2e−VΔnAI
, (S2.4)

where W8 =
 A,8
 I,8

is the ratio of the dissociation constants between the 8th ligand and
the protein in the active and inactive states. From the ideal logic gate behaviors
visualized in Fig. 2.1 and Fig. S2.1, we can then deduce the desired constraints that
model parameters need to meet for an effective realization of each gate.

S2.1.1 AND gate
Starting from the AND gate, we require ?0,0 ≈ 0, ?0,∞ ≈ 0, ?∞,0 ≈ 0 and ?∞,∞ ≈ 1,
which yields the following conditions:

e−VΔnAI � 1, (S2.5)

W1e−VΔnAI � 1, (S2.6)

W2e−VΔnAI � 1, (S2.7)

W1W2e−VΔnAI � 1. (S2.8)

Combining Eqs. S2.6-S2.8, we obtain the condition for an AND gate, namely

1
W1
,

1
W2
� e−VΔnAI � 1

W1W2
. (S2.9)

Note that the outer inequalities imply

W1, W2 � 1, (S2.10)

meaning that both ligands bind more tightly to the protein in the active than the
inactive state.

S2.1.2 OR gate
For ?active to represent an OR gate across ligand concentration space, it must satisfy
?0,0 ≈ 0, ?0,∞ ≈ 1, ?∞,0 ≈ 1 and ?∞,∞ ≈ 1. This requires that the parameters obey

e−VΔnAI � 1, (S2.11)

W1e−VΔnAI � 1, (S2.12)

W2e−VΔnAI � 1, (S2.13)

W1W2e−VΔnAI � 1. (S2.14)
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Combining Eqs. S2.11-S2.13, we obtain a constraint on the free energy difference,

1 � e−VΔnAI � 1
W1
,

1
W2
. (S2.15)

As with the AND gate, the outer inequalities imply that the ligands prefer binding
to the protein in the active state,

W1, W2 � 1. (S2.16)

S2.1.3 NAND and NOR gates
Because the NAND and NOR gates are the logical complements of AND and OR
gates, respectively, the parameter constraints under which they are realized are the
opposites of those for AND and OR gates. Hence, the conditions for a NAND gate
are given by

1
W1W2

� e−VΔnAI � 1
W1
,

1
W2
, (S2.17)

while the conditions for NOR gates are

1
W1
,

1
W2
� e−VΔnAI � 1. (S2.18)

We note that in both cases, the outer inequalities imply that both ligands bind more
tightly to the protein in the inactive state than in the active state, W1, W2 � 1.

The symmetry between AND/OR and NAND/NOR gates also implies a simple
relation between their quality metrics, namely

&AND/OR (W1, W2,ΔnAI) = &NAND/NOR

(
1
W1
,

1
W2
,−ΔnAI

)
. (S2.19)

Here we provide a proof for the AND gate and invite the reader to do the same for
the OR gate. From Eq. 2.2, the quality metrics for the AND and NAND gates can
be written as

&AND(W1, W2, l) = (1 − ?0,0) (1 − ?∞,0) (1 − ?0,∞)?∞,∞

=

(
1 − 1

1 + l

) (
1 − 1

1 + W1l

) (
1 − 1

1 + W2l

) (
1

1 + W1W2l

)
=

W1W2l
3

(1 + l) (1 + W1l) (1 + W2l) (1 + W1W2l)
, (S2.20)

&NAND(W1, W2, l) = ?0,0?∞,0?0,∞(1 − ?∞,∞)

=

(
1

1 + l

) (
1

1 + W1l

) (
1

1 + W2l

) (
1 − 1

1 + W1W2l

)
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=
W1W2l

(1 + l) (1 + W1l) (1 + W2l) (1 + W1W2l)
, (S2.21)

where we introduced l = e−VΔnAI . Substituting W1 → W−1
1 , W2 → W−1

2 , l → l−1

(equivalent to ΔnAI → −ΔnAI) in Eq. S2.21, we obtain

&NAND(W−1
1 , W−1

2 , l−1) =
W−1

1 W−1
2 l−1

(1 + l−1) (1 + W−1
1 l−1) (1 + W−1

2 l−1) (1 + W−1
1 W−1

2 l−1)
×
W2

1W
2
2l

4

W2
1W

2
2l

4

=
W1W2l

3

(1 + l) (1 + W1l) (1 + W2l) (1 + W1W2l)
≡ &AND(W1, W2, l). (S2.22)

S2.1.4 XOR and XNOR gates
Here, we show that the XOR gate (and by symmetry the XNOR gate) are not
achievable with the form of ?active given in Eq. 2.1. An XOR gate satisfies ?0,0 ≈ 0,
?0,∞ ≈ 1, ?∞,0 ≈ 1 and ?∞,∞ ≈ 0 which necessitates the parameter conditions

e−VΔnAI � 1, (S2.23)

W1e−VΔnAI � 1, (S2.24)

W2e−VΔnAI � 1, (S2.25)

W1W2e−VΔnAI � 1. (S2.26)

However, these conditions cannot all be satisfied, as the left-hand side of Eq. S2.26
can be written in terms of the left-hand sides of Eqs. S2.23-S2.25,

W1W2e−VΔnAI =
(
W1e−VΔnAI

) (
W2e−VΔnAI

)
e−VΔnAI

� 1, (S2.27)

contradicting Eq. S2.26.

The XOR gate could be realized if an explicit cooperativity energy nA,coop is added
when both ligands are bound in the active state and nI,coop when both are bound in
the inactive state. These cooperative interactions modify Eq. 2.1 to the form

?active ( [!1], [!2]) =
1 + [!1 ]

 A,1
+ [!2 ]
 A,2
+ [!1 ]
 A,1

[!2 ]
 A,2

e−VnA,coop

1 + [!1 ]
 A,1
+ [!2 ]
 A,2
+ [!1 ]
 A,1

[!2 ]
 A,2

e−VnA,coop + e−VΔnAI
(
1 + [!1 ]

 I,1
+ [!2 ]
 I,2
+ [!1 ]
 I,1

[!2 ]
 I,2

e−VnI,coop
) .

(S2.28)

Fig. S2.2 demonstrates that the same parameter values from Fig. 2.3B together with
the (unfavorable) cooperativity energy nA,coop = 15 :B) and nI,coop = 0 can create
an XOR gate.
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Figure S2.2: An XOR gate can be achieved by adding cooperativity. The activity
profile defined in Eq. S2.28 for the parameter values from Fig. 2.3B, along with
the cooperativity energies nA,coop = 15 :B) and nI,coop = 0, give rise to an XOR
response.

S2.2 The general two-ligand response: Transitioning between OFF and ON
states

In the preceding section, we have been solely concerned with the behavior of the
MWC molecule in the limits of ligand concentration ([!8] = 0 and [!8] → ∞), and
have ignored the details about the transition from ON to OFF (e.g., its shape and
steepness) and also the possibility of ?active ≠ 0 or 1. In this section, we examine and
derive in greater detail some of the additional response behaviors that are possible
for anMWCmolecule regulated with # = 2 ligands when the locations of transitions
between limit responses are taken into account.

To examine the transitions between ?active levels, we derive expressions for the
concentrations at which transitions are at their midpoint. Since ?active is a function of
two different ligand concentrations, [!1] and [!2], we define two different midpoint
concentrations of ligand !8: one in the absence of ligand ! 9 , [!∗8 ] [! 9 ]→0, and another
when ! 9 is saturating, [!∗8 ] [! 9 ]→∞. In particular, [!∗8 ] [! 9 ]→0 is defined such that

?active

(
[!∗8 ] [! 9 ]→0, [! 9] = 0

)
=
?active

(
[!8] = 0, [! 9] = 0

)
+ ?active

(
[!8] → ∞, [! 9] = 0

)
2

,

(S2.29)
i.e., the concentration of ligand 8 where ?active is equal to the mean of the two
?active limit values being transitioned between. If we evaluate the left hand side of
Eq. S2.29 with 8 = 1 and 9 = 2 using Eq. 2.1, and the right hand side using the limits
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from Fig. 2.3A, we obtain(
1 + [!

∗
1] [!2 ]→0
 A,1

)
(
1 + [!

∗
1] [!2 ]→0
 A,1

)
+ e−VΔnAI

(
1 + [!

∗
1] [!2 ]→0
 I,1

) = 1
2

(
1

1 + e−VΔnAI
+ 1

1 + W1 e−VΔnAI

)
.

(S2.30)

Introducing W1 =  A,1/ I,1, we can solve for [!∗1] [!2]→0 to find

[!∗1] [!2]→0

 A,1
=

1 + e−VΔnAI
1 + W1 e−VΔnAI

. (S2.31)

Eq S2.31 can be rewritten for [!∗2] [!1]→0 by merely interchanging all ligand and
parameter indices, i.e., 1↔ 2.

The midpoint concentration when one ligand is saturating can be derived similarly.
Specifically, to find an expression for [!∗

8
] [! 9 ]→∞, we can re-write S2.29 using

Eq. 2.1 in the case that [! 9 ] → ∞ with 8 = 1 and 9 = 2, resulting in(
1 + [!

∗
1] [!2 ]→∞
 A,1

)
(
1 + [!

∗
1] [!2 ]→∞
 A,1

)
+ W2e−VΔnAI

(
1 + [!

∗
1] [!2 ]→∞
 I,1

) = 1
2

(
1

1 + W2 e−VΔnAI
+ 1

1 + W1W2 e−VΔnAI

)
.

(S2.32)

Eq S2.32 can be solved for [!∗1] [!2]→∞ to produce,

[!∗1] [!2]→∞
 A,1

=
1 + W2 e−VΔnAI

1 + W1W2 e−VΔnAI
. (S2.33)

Again, the symmetric expression for [!∗2] [!1]→∞ is found by swapping ligand and
parameter indices, 1↔2.

This approach to define concentration transition zones can be used to produce
additional MWC behaviors, including the ratiometric response in the BMP pathway
recently analyzed byAntebi et al. [1], whichwas briefly discussed earlier. Specifically,
this response can be approximated by choosing parameter values that satisfy two
desired limits, ?∞,0 ≈ 0 (W1 e−VΔnAI � 1) and ?0,∞ ≈ 1 (W2 e−VΔnAI � 1), as
well as produce a large transition region sensitive to both ligands, i.e., the ratio
in Eq. 2.7,

[!∗
8
] [! 9 ]→∞

[!∗
8
] [! 9 ]→0

is far from 1. One way to satisfy these conditions is to set
 I,2 �  A,1 =  A,2 �  I,1 and ΔnAI = 0 in Eq. 2.1. Notice that with these
parameter choices and, provided the ligand concentrations satisfy

[!1]
 A,1

,
[!2]
 I,2

� 1,
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[!1]
 I,1

,
[!2]
 A,2

� 1, (S2.34)

the probability that the protein is active reduces to

?active ( [!1], [!2]) ≈
[!2]
 A,2

[!2]
 A,2
+ [!1]

 I,1

. (S2.35)

Hence, only the ratio of [!1] and [!2] matters, as shown in Fig. 2.4B where
Eq. S2.34 is satisfied, provided that 10−4 . [!1]

 A,1
. 100 . [!2]

 A,2
. 104.

Additionally, we consider the remaining three types of input-output computations
shown by Antebi et al. to exist in the BMP pathway which they called the additive,
imbalance, and balance responses [1]. The additive response (which responds
more to larger input concentrations) is an OR gate which we showed is possible in
Fig. 2.3B. The imbalance response (which responds maximally to extreme ratios
of the two input ligands) is similar to an XOR behavior which, as discussed in
Appendix S2.1.4, is only achievable with an explicit cooperativity energy.

The balance response is defined as

?balanceactive =


1 [!1] ≈ [!2]

0 [!1] 0 [!2]
(S2.36)

so that the protein is only ON when both ligands are present in the same amount as
shown in Fig. S2.3A. Such behavior is not possible within the MWCmodel because
starting from any point [!1] = [!2], ?active in Eq. 2.1 must either monotonically
increase or monotonically decrease with [!1] (depending on W1), whereas Eq. S2.36
requires that ?active must decrease for both [!1] > [!1] and [!1] < [!1] (with
similar contradictory statements for [!2]). The closest behavior achievable by the
MWC model is to zoom into the transition region of an XNOR gate as shown in
Fig. S2.3B. As we zoom out of the concentration ranges shown, the four square
regions of the plot will continue to expand as squares and the behavior will no
longer approximate the ideal balance response.
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Figure S2.3: Balance response behavior approximated by the MWC model. (A)
The ideal balance response from the BMP pathway and (B) the closest behavior that
an MWC molecule can exhibit using the complementary parameters from Fig. S2.2
( A,8 = 1.5 × 10−4 M,  I,8 = 2.5 × 10−8 M, ΔnAI = 5 :BT, nA,coop = −15 :B) and
nI,coop = 0).

S2.3 Logic switching by tuning the number of ligand binding sites
In this section, we show how an MWC molecule whose activity is given by Eq. 2.9
can switch between exhibiting AND↔OR, NAND↔NOR or ANDN1 ↔YES2

behaviors by tuning the number of binding sites. To begin, we define the probability
?active that the molecule is active in the case when the 8th ligand has =8 binding sites,
namely

?0,0 = ?active( [!1] → 0, [!2] → 0) = 1
1 + e−VΔnAI

, (S2.37)

?∞,0 = ?active( [!1] → ∞, [!2] → 0) = 1
1 + W=1

1 e−VΔnAI
, (S2.38)

?0,∞ = ?active( [!1] → 0, [!2] → ∞) =
1

1 + W=2
2 e−VΔnAI

, (S2.39)

?∞,∞ = ?active( [!1] → ∞, [!2] → ∞) =
1

1 + W=1
1 W

=2
2 e−VΔnAI

. (S2.40)

Note that the only effect of having an arbitrary number of ligand binding sites (as
opposed to =8 = 1 as in Appendix S2.1) is that the ratio of dissociation constants
always appears raised to the power equal to the number of binding sites, W=8

8
. Hence,

the parameter conditions derived for AND and OR behaviors for =8 = 1 can be used
in the case of general =8 by substituting W8 → W

=8
8
.

Now, suppose a molecule with # = 2 ligands and with =′1 and =′2 binding sites for
ligands 1 and 2 represents an AND gate, while this same molecule with =1 and =2

binding sites serves as an OR gate, as in Fig. 2.5B with =′1 = =
′
2 = 1 and =1 = =2 = 4.
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From Fig. 2.3B, the conditions in the former case (AND gate) are

1

W
=′1
1

,
1

W
=′2
2

� e−VΔnAI � 1

W
=′1
1 W

=′2
2

, (S2.41)

while the conditions in the latter case (OR gate) are

1 � e−VΔnAI � 1
W
=1
1
,

1
W
=2
2
. (S2.42)

Combining these conditions, we find that the requirements for the AND↔OR
switching are given by

1

W
=′1
1

,
1

W
=′2
2

� e−VΔnAI � 1
W
=1
1
,

1
W
=2
2
,

1

W
=′1
1 W

=′2
2

, (S2.43)

where we have used the fact that the outer inequalities imply W=
′
1

1 , W
=′2
2 � 1 (so that

1 � 1

W
=′1
1

, 1

W
=′2
2

). In the limit =′1 = =
′
2 = 1, Eq. S2.43 reduces to the condition shown

in Fig. 2.5A. We note that since NAND is the complement of AND while NOR
is the complement of OR, the class switching requirements in S2.43 become the
requirements for NAND↔NOR switching when W8 → 1

W8
and ΔnAI → −ΔnAI.

Lastly, we show that the switching behaviorANDN1→YES2, observed upon increasing
the number of activator binding sites in a Drosophila enhancer [2], is also available
to an MWC molecule. Let us assume that !1 is a repressor with a fixed number of
binding sites (=1), and !2 is an activator whose number of binding sites is increased
from =2 to =′2.

The requirements on the limiting ?active values for an ANDN1 gate are

?0,0, ?∞,0, ?∞,∞ � 1, (S2.44)

?0,∞ � 1, (S2.45)

which translate into conditions on the model parameters given by

1,
1
W
=1
1
,

1
W
=1
1 W

=2
2
� e−VΔnAI � 1

W
=2
2
. (S2.46)

Note that the outer inequalities suggest that W=2
2 � 1 and W=1

1 � 1, confirming that
!2 is an activator and !1 is a repressor. With these conditions, Eq. S2.46 simplifies
into

1,
1

W
=1
1 W

=2
2
� e−VΔnAI � 1

W
=2
2
. (S2.47)
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We now repeat the same procedure for the YES2 gate, this time assigning =′2 > =2

binding sites to the activator !2. The requirements on the limiting ?active values
read

?0,0, ?∞,0 � 1, (S2.48)

?0,∞, ?∞,∞ � 1, (S2.49)

which result in conditions on the model parameters given by

1,
1
W
=1
1
� e−VΔnAI � 1

W
=′2
2

,
1

W
=1
1 W

=′2
2

. (S2.50)

Using the fact that W=1
1 � 1, we simplify Eq. S2.50 into

1,
1
W
=1
1
� e−VΔnAI � 1

W
=1
1 W

=′2
2

. (S2.51)

As a last step, we combine Eqs. S2.47 and S2.51 to obtain the required conditions
for ANDN1 →YES2 switching, namely

1,
1

W
=1
1 W

=2
2
� e−VΔnAI � 1

W
=2
2
,

1

W
=1
1 W

=′2
2

. (S2.52)

An example set of parameters that satisfies these conditions is =1 = =2 = 1, =′2 = 2,
W1 =

1
W2
= 103 and e−VΔnAI = 102.

S2.4 Combinatorial control with three regulatory ligands
In this section, we first present the methodology used to identify the functionally
unique and MWC-compatible 3-ligand logic gates. We then use the full list of
admissible gates to find all possible logic switches that can be induced by increasing
the concentration of a third ligand. We finish by deriving the conditions required
for achieving the logic switches AND→OR and AND→YES1 shown in Fig. 2.7D.

S2.4.1 Functionally unique MWC gates
To identify the set of functionally unique MWC gates, we first iterate over the
256 possible responses and eliminate those redundant ones that can be obtained by
shuffling the ligand labels of already selected gates. The Python implementation
of this procedure that leaves 80 functionally unique gates can be found in the
supplementary Jupyter Notebook 1.

Having singled out the functionally unique responses, we proceed to identify those
that are admissible in the MWC framework. To that end, we first write the analytic
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forms for the probability of the protein being active (?active) at eight different ligand
concentration limits (Figure S2.4A). Since the functional form in all cases is ?active =
(1 + FI/A)−1, where FI/A is the total weight of the inactive states divided by the
total weight of the active states in the appropriate limit (as seen in Fig. 2.3A),
a Boolean response (?active ≈ 0 or 1) can only be achieved when FI/A � 1 or
FI/A � 1, respectively. Hence, the values of FI/A at the eight different limits of
ligand concentration will determine the full logic response of the protein.

Note that since cooperative interactions between ligands are absent in the MWC
framework, the eight different FI/A expressions depend on only four independent
MWC parameters, namely {ΔnAI, W1, W2, W3}. Therefore, only four of the eight
limiting FI/A values can be independently tuned, and any FI/A limit can be expressed
as a function of four different and independent FI/A limits, resulting in a constraint
condition. Since each FI/A is a product of some W8’s and e−VΔnAI (Fig. S2.4A), we
look for constraint conditions that have a multiplicative form, namely

FB∗ =

4∏
8=1

FU=B= , (S2.53)

where FB∗ is the target limit, B= ≠ B∗(1 ≤ = ≤ 4) are the labels of four different
limits and, U= are real coefficients. Searching over all conditions of such a form
(see the supplementary Jupyter Notebook 2 for details), we identify a total of eight
functionally unique constraints,

F8 9 × F0 = F8 × F 9 , (S2.54)

F123 × F 9 = F8 9 × F 9 : , (S2.55)

F8 9 × F: = F8: × F 9 , (S2.56)

F123 × F0 = F8 9 × F: , (S2.57)

F8 9 × F2
: = F0 × F8: × F 9 : , (S2.58)

F123 × F2
0 = F1 × F2 × F3, (S2.59)

F2
123 × F0 = F12 × F13 × F23, (S2.60)

F123 × F8 × F 9 = F
2
8 9 × F: , (S2.61)

where 1 ≤ 8, 9 , : ≤ 3.

Further searching for a minimum set of constraints that can account for all gates
incompatible with the MWC framework, we identify the constraints in Eqs. S2.54-
S2.57 as the necessary and sufficient ones (see the supplementary Jupyter Notebook
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2). Graphical representations of these four constraints on a cubic diagram are shown
in Fig. S2.4B. Note that these conditions are all of the form

FB1FB2 = FB3FB4 , (S2.62)

where B8 are labels corresponding to different ligand concentration limits. Logic
responses where FB1 , FB2 � 1 (� 1) while FB3 , FB4 � 1 (� 1) cannot be achieved,
since they contradict the constraint condition. Conditions 1 and 2 in Figure S2.4B,
for example, demonstrate that XOR and XNOR gates cannot be realized by any
two ligands in the absence (condition 1) or presence (condition 2) of a third ligand
– a result expected from the 2-ligand analysis done earlier. On the other hand,
conditions 3 and 4 are specific to the 3-ligand response.

Checking the 80 functionally unique gates against the four constraints in Fig. S2.4B,
we obtain a set of 34 functionally unique and MWC-compatible gates, 17 of which
are shown in Fig. S2.5A while the other half are their logical complements (i.e.
ON↔OFF swapping is performed for each of the cube elements).
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Figure S2.4: Three-ligand logic gates that are incompatible with the MWC
framework. (A) Probability that the protein is active in the 8 different ligand
concentration limits. The total weight of the inactive states relative to the active
states is indicated in gray for all limits. (B) Cubic diagrams of logic responses that
are incompatible with the MWC framework, along with the constraint equations
used to obtain them. The limits relevant to the constraint conditions are shown
in color, and a transparent gray plane containing these relevant limits is added for
clarity. In all four diagrams, 1 ≤ 8, 9 , : ≤ 3.



38

S2.4.2 Logic switching
Here we describe how the table of all possible logic switches inducible by a third
ligand (Fig. 2.6D) can be obtained from the list of MWC-compatible 3-ligand
gates (Fig. S2.5), and also derive the parameter conditions for AND→OR and
AND→YES1 logic switches.

As illustrated in Fig. 2.6C, logic switching can be achieved by increasing the
concentration of any of the three ligands. Following the same procedure, we iterate
over the list of gates shown in Fig. S2.5A and for each of them identify the set of
possible logic switches. The set of all logic switches present in Fig. S2.5A together
constitute the entries of the table in Fig. 2.6D. Note that if a gate is compatible
with the MWC framework, then its logical complement is also compatible, and
therefore, the possibility of switching between two gates, Gate 1→ Gate 2, implies
the possibility of switching between their logical complements, NOT (Gate 1) →
NOT (Gate 2).

Nowwe showhowanMWCprotein can exhibit the switching behaviors in Fig. 2.7B,D
(AND→OR and AND→YES1) by saturating the concentration of the third ligand.
We first consider the behavior of the protein in the absence of the third ligand
([!3] = 0, with ?active limits given in Figure S2.4A, left), and then consider how
the protein acts at the saturating concentration of the third ligand ([!3] → ∞, with
?active limits given in Fig. S2.4A, right). With [!3] = 0, the protein ignores the
third ligand and behaves identically to a protein with # = 2 ligands. In the limit
[!3] → ∞, however, the protein behaves as if it only has two ligands with an altered
free energy difference Δn′AI between the active and inactive states given by

Δn ′AI = ΔnAI − :B) log W3. (S2.63)

Suppose that a protein acts as an AND gate when [!3] = 0 and transitions into an
OR gate when [!3] → ∞, as in Fig. 2.7B. From Figure 2.3B, the MWC parameters
must satisfy

1
W1
,

1
W2
� e−VΔnAI � 1

W1W2
(S2.64)

in the absence of !3 (AND behavior) and

1 � e−VΔn
′
AI � 1

W1
,

1
W2

(S2.65)
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Figure S2.5: Functionally unique 3-ligand MWC gates and possible schemes of
logic switching. (A) List of functionally unique 3-ligand MWC gates that have an
inactive base state (in the absence of ligands). The set of logic switches that can
be achieved by increasing the concentration of one of the ligands is listed on the
bottom of each gate, with the gray arrows indicating the corresponding directions of
increasing ligand concentration. Transitions with swapped labels (8 ↔ 9) are also
possible and are not listed. Arrows corresponding to the ligand axes on different
faces of the cube are included to assist the derivation of possible logic switches. (B)
Schematics of 2-ligand gates adapted from Fig. 2.6D for convenience.

when [!3] is saturating (OR behavior). Using Eq. S2.63, we can rewrite the
condition S2.65 as

1
W3
� e−VΔnAI � 1

W1W3
,

1
W2W3

. (S2.66)

Combining Eq. S2.64 and Eq. S2.66, we find the second condition reported in
Fig. 2.7A, namely

1
W1
,

1
W2
,

1
W3
� e−VΔnAI � 1

W1W2
,

1
W1W3

,
1

W2W3
. (S2.67)

The first condition in Fig. 2.7A is then obtained by using the outer inequalities, that
is,

1
W:
� 1
W8W 9

⇒ W8W 9 � W: and (S2.68)
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1
W8
� 1
W8W:

⇒ W: � 1. (S2.69)

Lastly, we derive the parameter conditions needed to achieve an AND→YES1

switching by saturating the third ligand. Conditions for the AND behavior in the
absence of the third ligand are already known (Eq. S2.64). To achieve a YES1 gate,
?active at [!3] → ∞ needs to meet the following limits:

?0,0,∞ =
1

1 + W3e−VΔnAI
≈ 0, (S2.70)

?0,∞,∞ =
1

1 + W2W3e−VΔnAI
≈ 0, (S2.71)

?∞,0,∞ =
1

1 + W1W3e−VΔnAI
≈ 1, (S2.72)

?∞,∞,∞ =
1

1 + W1W2W3e−VΔnAI
≈ 1. (S2.73)

These limits suggest constraints on ΔnAI, which, combined with Eq. S2.64, result in

1
W1
,

1
W2
,

1
W3
,

1
W2W3

� e−VΔnAI � 1
W1W2

,
1

W1W3
,

1
W2W3

,
1

W1W2W3
. (S2.74)

The outer inequalities, in turn, suggest conditions for the W parameters, namely

1
W8
� 1
W8W:

⇒ W: � 1, (S2.75)

1
W2W3

� 1
W1W2

⇒ W1 � W2, (S2.76)

1
W2W3

� 1
W1W3

⇒ W1 � W3. (S2.77)

Accounting for these additional constraints, Eq. S2.74 simplifies into

1
W1
,

1
W2W3

� e−VΔnAI � 1
W1W2

,
1

W1W3
, (S2.78)

as shown in Fig. 2.7C.
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C h a p t e r 3

ALLOSTERY AND KINETIC PROOFREADING
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This chapter is based on the journal publication: Galstyan, V.&Phillips, R.Allostery
and kinetic proofreading. J. Phys. Chem. B 123, 10990–11002 (2019). DOI:
10.1021/acs.jpcb.9b08380

3.1 Abstract
Kinetic proofreading is an error correction mechanism present in the processes of
the central dogma and beyond, and typically requires the free energy of nucleotide
hydrolysis for its operation. Though the molecular players of many biological
proofreading schemes are known, our understanding of how energy consumption
is managed to promote fidelity remains incomplete. In our work, we introduce
an alternative conceptual scheme called “the piston model of proofreading” where
enzyme activation through hydrolysis is replaced with allosteric activation achieved
through mechanical work performed by a piston on regulatory ligands. Inspired
by Feynman’s ratchet and pawl mechanism, we consider a mechanical engine
designed to drive the piston actions powered by a lowering weight, whose function
is analogous to that of ATP synthase in cells. Thanks to its mechanical design, the
pistonmodel allows us to tune the “knobs” of the driving engine and probe the graded
changes and trade-offs between speed, fidelity, and energy dissipation. It provides
an intuitive explanation of the conditions necessary for optimal proofreading and
reveals the unexpected capability of allosteric molecules to beat the Hopfield limit
of fidelity by leveraging the diversity of states available to them. The framework
that we built for the piston model can also serve as a basis for additional studies of
driven biochemical systems.

https://doi.org/10.1021/acs.jpcb.9b08380
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3.2 Introduction
Many enzymatic processes in biology need to operate with very high fidelities in
order to ensure the physiological well-being of the cell. Examples include the
synthesis of molecules making up Crick’s so-called “two great polymer languages”
(i.e., replication [1], transcription [2], and translation [3]), as well as processes that
go beyond those of the central dogma, such as protein ubiquitylation mediated by
the anaphase–promoting complex [4], signal transduction through MAP kinases
[5], pathogen recognition by T-cells [6, 7], or protein degradation by the 26S
proteasome [8]. In all of these cases, the designated enzyme needs to accurately
select its correct substrate from a pool of incorrect substrates. Importantly, the
fidelity of these processes that one would predict solely based on the free energy
difference between correct and incorrect substrate binding is far lower than what is
experimentally measured, raising a challenge of explaining the high fidelities that
this naive equilibrium thermodynamic thinking fails to account for.

The conceptual answer to this challenge was provided more than 40 years ago in
the work of John Hopfield [9] and Jacques Ninio [10] and was coined “kinetic
proofreading” in Hopfield’s elegant paper entitled “Kinetic proofreading: A new
mechanism for reducing errors in biosynthetic processes requiring high specificity”
[9]. The key idea behind kinetic proofreading is to introduce a delay between
substrate binding and turnover steps, effectively giving the enzyme more than one
chance to release the incorrect substrate (hence, the term “proofreading”). The
sequential application of substrate filters on the way to product formation gives
directionality to the flow of time and is necessarily accompanied by the expenditure
of free energy,making kinetic proofreading an intrinsically nonequilibriumphenome-
non. In a cell, this free energy is typically supplied to proofreading pathways through
the hydrolysis of energy–rich nucleotides, whose chemical potential is maintained at
large out-of-equilibriumvalues through the constant operation of the cell’smetabolic
machinery (e.g., the ATP synthase).

Since its original formulation byHopfield andNinio, the concept of kinetic proofread-
ing has been generalized and employed in explaining many of the high–fidelity
processes in the cell [8, 11–17]. However, despite the fact that the molecular
players and mechanisms of these processes have been largely identified, we find that
an intuitive picture of how energy transduction promotes biological fidelity is still
incomplete. To complement our understanding of how energy is managed to beat the
equilibrium limit of fidelity, we propose a conceptual model called “the pistonmodel
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of kinetic proofreading” where chemical hydrolysis is replaced with mechanical
work performed by a piston on an allosteric enzyme. Our choice of allostery is
motivated by the fact that in proofreading schemes, hydrolysis typically triggers a
conformational change in the enzyme–substrate complex and activates it for product
formation [16, 18, 19] – an effect that our model achieves through the binding of
a regulatory ligand to the enzyme. By temporally controlling the concentration of
regulatory ligands which determine the catalytic state of the enzyme, the piston
sequentially changes the enzyme’s state from inactive to active, creating a delay in
product formation necessary for increasing the fidelity of substrate discrimination.
The piston actions are, in turn, driven by a Brownian ratchet and pawl engine
powered by a lowering weight, whose function is akin to that of ATP synthase. The
mechanical design of the piston model allows us to transparently control the energy
input into the system by tuning the “knobs” of the engine and examine the graded
changes in the model’s performance metrics, intuitively demonstrating the driving
conditions required for optimal proofreading.

We begin the presentation of our results by first introducing in section 3.3 the
high–level concept behind the piston model of proofreading, while at the same time
drawing parallels between its features and those of Hopfield’s original scheme. Then
in sections 3.4.1 and 3.4.2, we provide a comprehensive description of the two key
constituents of the piston model, namely the Brownian ratchet and pawl engine that
drives the piston actions, and the allosteric enzyme whose catalytic state is regulated
by an activator ligand. This is followed by building the full thermodynamically
consistent framework of the piston model in section 3.4.3 where we couple the
external driving mechanism to the enzyme and introduce the expressions for key
performance metrics of the model. In the remaining sections 3.4.4 and 3.4.5, we
explore how tuning the “knobs” of the engine leads to graded changes and trade-offs
between speed, fidelity and energy dissipation, and probe the performance limits of
the piston model as a function of a select set of key enzyme parameters.

3.3 Model
The piston model of kinetic proofreading is designed in analogy with Hopfield’s
scheme. The main idea there was to give the enzyme a second chance to discard the
wrong substrate by introducing an additional kinetic intermediate for the enzyme–
substrate complex (Fig. 3.1A). The difference between substrate binding energies
in Hopfield’s original formulation was based solely on their unbinding rates (i.e.,
:Woff > :Roff and :Won = :

R
on = :on) – a convention we adopt throughout our analysis.
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The first layer of substrate discrimination inHopfield’s scheme is achieved during the
initial binding event where the ratio of right and wrong substrate–bound enzymes
approaches :Woff/:

R
off. The complex then moves into its catalytically active high–

energy state accompanied by the hydrolysis of an NTP molecule, after which the
second discrimination layer is realized. Specifically, right and wrong substrates are
turned into products with an additional bias given by the ratio of their Michaelis
constants, namely (:Woff + A)/(:

R
off + A). Importantly, for this second layer to be

efficiently realized, the rates of binding directly to the second kinetic intermediate
need to be vanishingly small in order to prevent the incorporation of unfiltered
substrates [9].

With this information in mind, consider now the conceptual illustration of the piston
model shown in Fig. 3.1B, where we have made several pedagogical simplifications
to help verbally convey the model’s intuition, reserving the full thermodynamically
consistent treatment to the following sections. The central constituent of the model
is an allosteric enzyme, the catalytic activity of which is regulated by activator
ligands (the orange circle). The enzyme is inactive when it is not bound to a ligand,
and, conversely, it is active when bound to a ligand. The volume occupied by
ligands and hence, their concentration is, in turn, controlled by a piston. The ligand
concentration is very low when the piston is expanded, and very high when the
piston is compressed in order to guarantee that in those piston states the ligand is
free and bound to the enzyme, respectively.

The active site of the enzyme is exposed to a container filled with right and wrong
substrates of concentrations [R] and [W], respectively, which we take to be equal
for the rest of our analysis ([R] = [W]). And unlike in Hopfield’s scheme where the
substrates exist in energy–rich and energy–depleted states (e.g., tRNAs first arrive
in the EF-Tu·GTP·tRNA ternary complex and then release EF-Tu and GDP after
hydrolysis), in the piston model substrates exist in a single state and do not carry
an energy source. In the expanded piston state (Fig. 3.1B, left), substrates can bind
and unbind to the inactive enzyme, but do not get turned into products. The highest
level of discrimination achievable in this state therefore becomes

[1 =
:Woff

:Roff
, (3.1)

in analogy to that achieved during the initial binding step of Hopfield’s scheme.

After the first layer of substrate discrimination is established in the expanded state of
the piston, mechanical work is performed to compress it. This increases the ligand
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Figure 3.1: Conceptual introduction to the piston model. (A) Hopfield’s scheme of
kinetic proofreading where two layers of substrate discrimination take place on the
driven pathway – the first one during the initial binding of energy–rich substrates (#1
in the diagram) and the second one upon the release of the energy–depleted substrates
(#2 in the diagram). Energy consumption takes place during the hydrolysis reaction
NTP 
 NDP accompanying the transition between the two intermediates. (B)
Pedagogically simplified conceptual scheme of the piston model. The orange circle
represents the activator ligand. Blue and red colors stand for the right and wrong
substrates, respectively. The closed “entrance door” along with the red cross on the
binding arrow in the active state of the enzyme suggests the vanishingly small rate
of substrate binding when in this state. The ratchet with a hanging weight stands
for the mechanical engine that drives the piston actions. Various features of the
system in the two piston states, along with the expressions for achieved fidelities are
listed below the diagram. Transparent arrows between panels A and B indicate the
analogous parts in Hopfield’s scheme and the piston model.

concentration, which, in turn, leads to the activation of the enzyme where catalytic
action is now possible. To prevent the incorporation of unfiltered substrates, we
assume that in the active enzyme state, the rate of substrate binding is vanishingly
small, similar to Hopfield’s treatment (Fig. 3.1B, right). If the piston is kept
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compressed long enough, a filtered substrate that got bound earlier when the piston
was expanded will experience one of these two outcomes: it will either turn into a
product with a rate A (which is taken to be the same for the two kinds of substrates)
or it will fall off with a rate :off. The product formation reaction will take place
with probability A/(:off + A). Thus, due to the difference in the falloff rate constants
between the right and the wrong substrates, the extra fidelity achieved after piston
compression equals

[2 =
:Woff + A
:Roff + A

. (3.2)

Once this extra fidelity is established, the piston is expanded back, repeating the cycle
(the detailed derivation of the results for [1 and [2 is provided in Appendix S3.1).
Notably, the total fidelity achieved during the piston expansion and compression
cycle, namely

[ = [1[2 =

(
:Woff

:Roff

) (
:Woff + A
:Roff + A

)
, (3.3)

exceeds theMichaelis–Mentenfidelity ([2) by a factor of [1 = :
W
off/:

R
off, demonstrating

the attainment of efficient proofreading.

The cyclic compressions and expansions of the piston in our model also stand
in direct analogy to the hydrolysis–involving transitions between the two enzyme–
substrate intermediates inHopfield’s scheme. In particular, they need to be externally
driven for the mechanism to do proofreading. We perform this driving using
a mechanical ratchet and pawl engine powered by a lowering weight. In our
pedagogical description of the model’s operation, we implicitly assumed that this
weight was very large in order to enable the mechanism to proofread, similar to how
the hydrolysis energy needs to be large for Hopfield’s scheme to operate effectively
[9]. In the full treatment of the model in section 3.4, however, we will demonstrate
how the tuning of the weight can give us graded levels of fidelity enhancement, and
will also show that in the absence of this weight the equilibrium fluctuations of the
piston alone cannot lead to proofreading.

In our model introduction, we have also made several simplifying assumption for
clarity of presentation which do not conform with the principle of microscopic
reversibility, and it is important that we relax them in the full treatment of the model
to make it thermodynamically consistent. In particular, we assumed that the ligand
is necessarily unbound and that the enzyme is necessarily inactive when the piston
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is expanded, with the reverse assumptions made when the piston is compressed. We
also assumed that substrate binding was prohibited in the active state of the enzyme.
These assumptions allowed us to claim that no premature product formation takes
place in the expanded piston state and that no unfiltered substrates bind to the
activated enzyme in the compressed piston state, which, in turn, justified the use
of long waiting times between the piston actions necessary to establish high levels
of fidelity in each piston state. In the detailed analysis of our model presented in
section 3.4, we relax these assumptions and consider the full diversity of enzyme
states at each piston position with reversible transitions between them. This, as
we will demonstrate, will not only ensure the thermodynamic consistency of our
treatment but will also reveal the possibility of doing proofreading more than once
by leveraging the presence of multiple inactive intermediates in between enzyme’s
substrate–unbound and production states which were not accounted for in our
conceptual introduction of the model.

3.4 Results
3.4.1 Ratchet and pawl engine enables a tunable control of piston actions
Todrive the cyclic compressions and expansions of the piston necessary for achieving
proofreading, we use a ratchet and pawl engine whose design is inspired by
Feynman’s original work [20]. In his celebrated lectures, Feynman presented two
implementations of the ratchet and pawl engine – one operating on the temperature
difference between two thermal baths, and another driven by aweight that goes down
due to gravity. In the piston model, we adopt the second scheme as it involves fewer
parameters and illustrates the process of energy transduction more transparently.

The ratchet and pawl engine coupled to the piston is shown in Fig. 3.2A. The engine
is powered by a weight of mass < which is hanging from an axle connected to the
ratchet. The free rotational motion of the ratchet is rectified by a pawl; when the
pawl sits on a ratchet tooth, it prevents the ratchet from rotating in the clockwise
(backwards) direction. The mechanical coupling between the engine and the piston
is achieved through a crankshaft mechanism which translates each discrete ratchet
step into a full compression (up→ down) or a full expansion (down→ up) of the
piston. We assume that the volume regulated by the piston contains a single ligand –
a choice motivated by Szilard’s thermodynamic interpretation of information, where
a piston compressing a single gas molecule was considered [21].
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The clockwise (backward) and counterclockwise (forward) steps of the microscopic
ratchet are enabled through environmental fluctuations. Specifically, a backward
step is taken whenever the pawl acquires sufficient energy from the environment to
lift itself over the ratchet tooth that it is sitting on, allowing the tooth to slip under it
(hence, the name “backward”). Following Feynman’s treatment [20], we write the
rate of such steps as

:b = g
−1e−V�0 , (3.4)

where g−1 is the attempt frequency, �0 is the amount of energy needed to lift the
pawl over a ratchet tooth, and V = 1/:B) is the inverse of the thermal energy scale
(see Appendix S3.2.1 for a detailed discussion of the ratchet and pawl mechanism).
Every backward step of the ratchet is accompanied by either a full compression or a
full expansion of the piston, as well as the lowering of the weight by an amount of
ΔI, which reduces its potential energy by Δ, = <6ΔI.

Unlike in backward stepping, for a forward step to take place, the rotational energy
acquired by the ratchet through fluctuations should be sufficient to not only overcome
the resistance of the spring pressing the pawl onto the ratchet, but also to lift the
weight and to alter the state of the piston. This is a pure consequence of the geometric
design of the ratchet and the positioning of the pawl. We assume that piston actions
take place isothermally and in a quasistatic way, and therefore, write the changes in
ligand free energy upon compression (u→ d) and expansion (d→ u) as

Δ�u→d = V
−1 ln 5 , and (3.5)

Δ�d→u = −V−1 ln 5 , (3.6)

respectively, where 5 = +u/+d ≥ 1 is the fraction by which the volume occupied by
the ligand decreases upon compression. The signs of free energy differences suggest
that piston compressions slow down the forward steps, while expansions speed them
up. These features are reflected in the two kinds of forward stepping rates that are
given by

:u→d
f = g−1e−V(�0+Δ,+Δ�) = 5 −1:b4

−VΔ, , (3.7)

:d→u
f = g−1e−V(�0+Δ,−Δ�) = 5 :b4

−VΔ, , (3.8)

where Δ� = V−1 ln 5 and was used with a “+” and “-” sign in the place of Δ�u→d

and Δ�d→u, respectively. The rates of all four kinds of transitions, namely forward
or backward ratchet steps, accompanied by either a compression or an expansion of
the piston are summarized in Fig. 3.2B.
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Figure 3.2: Ratchet and pawl mechanism coupled to the piston. (A) Schematic
representation of the mechanism. The different radii of the ratchet wheel and
the axle of the crankshaft ensure that a single ratchet step translates into a full
compression or a full expansion of the piston (i.e., a 180◦ rotation of the crankshaft).
Arrows with symbols “b” and “f” indicate the directions of backward and forward
ratchet rotation, respectively. (B) Rates of the four kinds of transitions (symbols
in shaded boxes with explicit expressions below), along with the accompanying
changes in the potential energy of the weight and the free energy of the ligand.
(C) Free energy landscape corresponding to the non-equilibrium dynamics of the
system in the presence of a non-zero weight. Discrete positions of the weight
(I=) corresponding to energy minima of the landscape are marked on the reaction
coordinate. (D) Infinite chain representation of the dynamics of discrete system
states. :net stands for the net rate at which the weight goes down. (E) Equivalent
two–state representation of the engine dynamics where the driving force Δ` = 2Δ,
breaks the detailed balance in the diagram. (F) Collapsed representation of the
diagram in panel E shown with the net transition rates from the two pathways.

In the presence of a nonzero weight (Δ, > 0), the ratchet will on average rotate
backwards – a feature reflected in the tilted free energy landscape shown in Fig. 3.2C.
As can be seen, the average dissipation per step is Δ, , and it is independent of Δ�.
In addition, the work performed on the ligand upon compression is fully returned
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upon expansion, which, as we will demonstrate in section 3.4.4, will generally
not be the case when we introduce the enzyme coupling. To further study the
nonequilibrium dynamics of the driving mechanism, we map the local minima
of the energy landscape corresponding to discrete vertical positions of the weight
(equivalently, discrete ratchet angles) into an infinite chain of transitions shown in
Fig. 3.2D. There “d” and “u” stand for the compressed and expanded states of the
piston, respectively. The net stepping rate :net at which the weight goes down can
be written as

:net =
(
:b − :d→u

f

)
cd +

(
:b − :u→d

f

)
cu, (3.9)

where cd and cu are the steady state probabilities of the compressed and expanded
piston states, respectively. These probabilities can be obtained by considering the
equivalent two–state diagram in Fig. 3.2E where the vertical position of the weight
has been eliminated, and the nonequilibrium nature of the dynamics is instead
captured via the cycle through two alternative pathways connecting the piston states.
The driving force Δ` in this cycle is given by [22]

Δ` = V−1 ln

(
:2
b

:d→u
f :u→d

f

)
= 2Δ,, (3.10)

demonstrating the broken detailed balance in the presence of a nonzero weight,
and confirming the dissipation of 2Δ, per cycle observed in the energy landscape
(Fig. 3.2C). We note that this procedure of mapping a linear network onto a cyclic
one has also been used for modeling the processivity of molecular motors, where
the linear coordinate corresponds to the position of the motor while the alternating
states correspond to different motor conformations [23, 24].

At steady state, the net incoming and outgoing fluxes at each piston state in Fig. 3.2E
should cancel each other (seen more vividly in the collapsed diagram in Fig. 3.2F),
namely (

:d→u
f + :b

)
cd =

(
:u→d

f + :b
)
cu. (3.11)

Substituting the expressions for forward stepping rates (Eq. 3.7 and Eq. 3.8) into
Eq. 3.11 and additionally imposing the probability normalization constraint (cd +
cu = 1), we can solve for cd and cu to obtain

cd =
1 + e−V(Δ,+Δ�)

2(1 + cosh(VΔ�) e−VΔ, )
, (3.12)
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cu =
1 + e−V(Δ,−Δ�)

2(1 + cosh(VΔ�) e−VΔ, )
. (3.13)

Notably, in the absence of external drive (Δ, = 0), piston state occupancies follow
the Boltzmann distribution, that is, (cd/cu)eq = e−VΔ� = 5 −1, suggesting that at
equilibrium the piston will predominantly dwell in the expanded state. Conversely,
as can be seen in Fig. 3.3A, when the work per step exceeds Δ� by several :B) ,
the occupancies of the two piston states become equal to each other. This happens
because at large Δ, values, forward ratchet stepping becomes very unlikely and the
dynamics proceeds only through backward steps with a rate :b which is identical
for both compressive and expansive steps. As will be shown in section 3.4.4,
suppressing this equilibrium bias set by Δ� is essential for achieving efficient
proofreading, analogous to the need for driving the transitions between the two
enzyme–substrate intermediates in Hopfield’s scheme (Fig. 3.1A) [9].
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Figure 3.3: Nonequilibrium features of the engine–piston coupling. (A) Steady
state probability ratio of compressed (“d”) and expanded (“u”) piston states and (B)
normalized net rate of backward stepping (:net/:b) as a function of the work per
step (Δ,) for different choices of the ligand compression energy (Δ�). The Δ,1/2
expressions stand for the values of Δ, where the corresponding value on the H-axis
is 0.5 (Appendix S3.2.2). Negative Δ, values are not considered as they further
increase the undesired bias in piston state occupancies.

With the steady state probabilities known, we can now substitute them into Eq. 3.9
to find the net rate at which the weight goes down, obtaining

:net =

(
1 − e−2VΔ, )

:b

1 + cosh(Δ�)e−VΔ,
. (3.14)

As expected, :net vanishes at equilibrium (Δ, = 0), and asymptotes to :b at large
Δ, values, as shown in Fig. 3.3B. The knowledge of :net allows us to calculate
the power (%) dissipated for the maintenance of the nonequilibrium steady state.
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Specifically, since :net is the rate at which the weight goes down and Δ, is the
dissipation per step, the power % becomes their product, namely

% = :netΔ,. (3.15)

The formalism developed in this section for characterizing the steady state behavior
of the system will be used as a basis for defining the different performance metrics
of the model in section 3.4.3.

3.4.2 Thermodynamic constraints make fidelity enhancement unattainable in
the absence of external driving

In order to implement a thermodynamically consistent coupling between the engine
and the allosteric enzyme, we need to consider the full diversity of possible enzyme
states [25], and not just the dominant ones depicted in Fig. 3.1B. Therefore, in this
section, we provide a comprehensive discussion of the enzyme in an equilibrium
setting before introducing its coupling to the engine.

The network diagram of all possible enzyme states is depicted in Fig. 3.4. As can be
seen, each of the twelve states are defined by enzyme’s catalytic activity and whether
or not a ligand and a right/wrong substrate are bound to the enzyme. Following the
principle of microscopic reversibility [26], we assign non-zero rate constants to the
transitions between enzyme states. Only the product formation (with rate A) is taken
to be an irreversible reaction under the assumption that the system is open where the
formed products are taken out and an influx of new substrates is maintained. Since in
our model neither the enzyme nor the substrates carry an energy source, the choice
of the different rate constants cannot be arbitrary. Specifically, the cycle condition
needs to be satisfied for each closed loop of the diagram, requiring the product of
rate constants in the clockwise direction to equal the product in the counterclockwise
direction (Appendix S3.3.1) [22].

With these equilibrium restrictions imposed on the rate constants, we can show
that when the ligand concentration is held fixed ([L] (C) = const), the fidelity
of the enzyme cannot exceed that defined by the ratio of the off-rates, namely
:Woff/:

R
off (see Appendix S3.3.2). What allows the enzyme to beat this equilibrium

limit of fidelity without direct coupling to hydrolysis is the cyclic alteration of the
ligand concentration between low and high values (thus, [L] (C) ≠ const). In our
model, we achieve this cyclic alteration through the ratchet and pawl engine driving
the piston actions – a choice motivated by our objective to provide an explicit
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Figure 3.4: Network diagram of enzyme states and transitions between them. Right
(“R”) and wrong (“W”) substrates are depicted in blue and red, respectively. The
orange circle represents the ligand (“L”). Active (“A”) and inactive (“I”) enzymes
are shown in green and gray, respectively.

treatment of energy management. We note, however, that fidelity enhancement can
be achieved irrespective of the driving agency as long as the cyclic alteration of
ligand concentration is maintained at a certain “resonance” frequency, the presence
of which we demonstrate in section 3.4.4.

3.4.3 Coupling the engine to the enzyme gives the full description of the piston
model

Having separately introduced the driving mechanism in section 3.4.1 and the
allosteric enzyme with the full diversity of its states in section 3.4.2, we now
couple the two together to obtain the full driven version of the piston model, shown
in Fig. 3.5A. The coupling is achieved by exposing the ligand binding site of the
enzyme to the piston compartment where the activator ligand is present. The enzyme
can therefore “sense” the state of the piston (and, thereby, the effects of driving)
through the induced periodic changes in the ligand concentration.

In the absence of enzyme coupling, the network diagramcapturing the nonequilibrium
dynamics of the system was an infinite one-dimensional chain (Fig. 3.2D), where
each discrete state was defined by the vertical position of the weight (I=) and the
state of the piston (“u” or “d”). In the layout where the engine and the enzyme
are coupled, the full specification of the system state now requires three items:
the position of the weight (I=), the piston state (“u” or “d”), and the state of the
enzyme (one of the 12 possibilities). By converting the three-dimensional view
of the enzyme state network (Fig. 3.4) into its planar equivalent, we represent the
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nonequilibrium dynamics of this coupled layout again through an infinite chain, but
this time each slice at a fixedweight position (I=) corresponding to the planar view of
the enzyme state network (Fig. 3.5B). The slices alternate between the compressed
and expanded piston states (dark and light blue circles, respectively), with high and
low ligand concentrations used in the transition network inside each slice.

Arrows between the slices (not all of them shown for clarity) represent the forward
and backward steps of the ratchet. Crucially, as a consequence of coupling, the rates
of forward stepping now depend on the state of the enzyme. In particular, when
the ligand is bound to the enzyme, it no longer exerts pressure on the piston and
therefore, in those cases, the forward stepping rates become simply

:
u→d,L
f = :

d→u,L
f = :be−VΔ, , (3.16)

where the superscript “L” indicates that the ligand is bound (orange circles in
Fig. 3.5B). We note that in the general case with # ligands, the pressure would
drop down to that of (# − 1) ligands upon ligand binding, correspondingly altering
the rates of forward stepping (see Appendix S3.4.1 for details). This adjustment of
forward rates is essential for the thermodynamic consistency of coupling the engine
to the enzyme. Specifically, it ensures that any cycle of transitions that brings
the enzyme and the weight back into their original states is not accompanied by
dissipation, consistent with the fact that in the piston model energy is spent only
when there is a net lowering of the weight. As a demonstration of this feature,
consider the cycle in Fig. 3.5C which is extracted from the larger network. Using
the expression of forward stepping rates in Eqs. 3.7 and 3.16, we can write the cycle
condition for this sub-network as

:
u→d,L
f × ℓA

off × :b × ℓA
on [L]u

:b × ℓA
off × :

u→d
f × ℓA

on [L]d
=
[L]u 5
[L]d

= 1, (3.17)

where the equality 5 = +u/+d = [L]d/[L]u was used. The fact that the products of
rate constants in clockwise and counterclockwise directions are identical shows that
no dissipation occurs when traversing the cycle.

Now, to study how driving affects the proofreading performance of the piston model,
we need to obtain the steady state probabilities of the different enzyme states. To
that end, we convert the full network diagram into an equivalent form shown in
Fig. 3.5D, where we have eliminated the position of the weight (I=), akin to the
earlier treatment of the uncoupled engine in Fig. 3.2E. Note that the transitions
between the two slices again represent piston compression and expansion events
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driven by a force Δ` = 2Δ, , as in Eq. 3.10. The steady state probabilities c8
of the 24 different states in Fig. 3.5D (12 enzyme states × 2 piston states) can
be obtained from the set of all rate constants, the details of which we discuss in
Appendix S3.4.2. With these probabilities known, we calculate the rate of energy
dissipation (%), speed of forming right products (ER), and fidelity ([) as

% =

24∑
8=1

(
:b − : (8)f

)
c8︸               ︷︷               ︸

:net

×Δ,, (3.18)

ER =
∑
8∈(A

R

c8 × A, (3.19)

[ =
ER
EW

=

∑
8∈(A

R
c8∑

8∈(A
W
c8
, (3.20)

where : (8)f is the rate constant ofmaking a forward step from the 8th state (1 ≤ 8 ≤ 24),
while (A

R and (A
W are the sets of catalytically active enzyme states with a right and

wrong substrate bound, respectively.

One significant downside of using these “raw”metrics in the numerical evaluation of
the model performance is their high sensitivity to the particular choices of parameter
values. We therefore introduce their scaled alternatives which we will use for the
numerical studies in sections 3.4.4 and 3.4.5. Specifically, as a measure of energetic
efficiency, we use the dissipation per right product formed, defined as

Y =
%

ER
. (3.21)

This way, the metric of energetics has units of :B) and is independent of the choice
of absolute timescale. Then, as a dimensionless metric of speed, we introduce the
normalized quantity

a =
ER

EMM
R

, (3.22)

which represents the fraction by which the rate of forming right products in the
proofreading setting (ER) is slower than that in the simpleMichaelis–Menten scheme
(EMM

R ) where the allosteric effects are absent. This normalizing Michaelis–Menten
speed is given in terms of the model parameters via

EMM
R =

: I
on [R]
:Roff+A

1 + : I
on [R]
:Roff+A

+ : I
on [W]
:Woff+A

× A. (3.23)
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Next, we define the proofreading index U as a fidelity metric which represents the
degree to which the fidelity is amplified in multiples of :Woff/:

R
off over its Michaelis–

Menten value ([MM), that is,

[ =

(
:Woff + A
:Roff + A

)
︸      ︷︷      ︸

[MM

(
:Woff

:Roff

)U
, (3.24)

U =
ln [ − ln [MM

ln
(
:Woff
:Roff

) . (3.25)

Note that the proofreading index of Hopfield’s scheme is UHopfield = 1, as it involves
a single proofreading realization. Also, since in the absence of external driving the
highest fidelity is [max

eq = :Woff/:
R
off, the corresponding upper limit in the proofreading

index becomes Ueq = 1 − ln [MM/ln [max
eq .

As a final descriptor of piston model’s nonequilibrium behavior, we introduce the
fraction of returned work (^) defined as the ratio of the rate at which the ligand
performs work on the piston upon expansion to the rate at which the piston performs
work on the ligand upon compression. We calculate ^ via

^ = −

∑
8∈(d

(
:b + : (8)f

)
c8Δ�

(8)
d→u∑

8∈(u

(
:b + : (8)f

)
c8Δ�

(8)
u→d

, (3.26)

where (d and (u are the sets of states where the piston is compressed and expanded,
respectively. The negative sign is introduced to account for the fact that the ligand
free energy decreases upon piston expansion (i.e., the system gets the work back).
In the absence of enzyme coupling (section 3.4.1), this ratio was 1 because the
ligand constantly exerted pressure on the piston. With enzyme coupling, however,
the work performed on the ligand upon compression may not be fully returned since
with some probability the ligand will be bound to the enzyme and exert no pressure
on the piston during expansion. We therefore expect ^ to be generally less than 1,
indicating a net rate of performing work on the ligand in the nonequilibrium setting.

Having defined analytical expressions for the key model performance metrics, we
now proceed to studying their graded changes and the trade-offs between them
numerically.

3.4.4 Energy–speed–fidelity trade-off in the piston model
Because of its mechanical construction, the piston model of proofreading has a
distinguishing feature – in it the external driving mechanism is physically separated
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holds in the sub-network. (D) The finite–state equivalent of the full network in panel
B with the weight position (I=) eliminated. Red arrows indicate the driving with a
force Δ` = 2Δ, .
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from the allosteric enzyme. This feature allows us to independently examine how
tuning the “knobs” of the engine and varying the kinetic parameters of the enzyme
alter the performance of the model.

We begin our numerical analysis by first exploring the effects of external driving,
where the tuning “knobs” include the rate of backward stepping (:b), the work
per step (Δ,), the ligand concentration in the compressed piston state ([L]d) and
the compression factor ( 5 = [L]d/[L]u). Choosing a set of enzyme’s kinetic
parameters which make proofreading possible (see Appendix S3.4.3 for the full
list of parameters), we keep them fixed for the rest of the analysis. We conduct
the first parametric study by tuning :b and Δ, and evaluating the proofreading
index (Figures 3.6A). As anticipated, the proofreading index does not exceed its
equilibrium limit in the absence of driving (Δ, = 0). This expected feature can be
paralleled by Brownian motors where purely equilibrium fluctuations of the motor’s
energy landscape are unable to generate directed motion [27]. In addition, the
proofreading index achieves its highest value if Δ, is comparable to or larger than
the ligand compression energy Δ�, and if the backward hopping rate :b is at its
“resonance” value. The presence of a “resonance” hopping rate is intuitive since
if piston actions take place very slowly, then the fidelity will be reduced due to the
small but nonzero rate of forming unfiltered products (i.e., “leakiness”) in the quasi-
equilibrated enzyme states. And, conversely, if piston actions take place too rapidly,
then the activator ligand will almost always be bound to the enzyme, preventing the
realization of multiple substrate discrimination layers through sequential enzyme
activation and inactivation. We note that analogous resonance responses were
also identified for Brownian particles which attain their highest nonequilibrium
drift velocity in a ratchet–like potential landscape when the temperature [28] or the
landscape profile [29] are temporallymodulated at specific resonance frequencies. A
similar feature is present in Hopfield’s model as well; namely, optimal proofreading
is attained only when the rate of hydrolysis is neither too low, nor too high [12].
Interestingly, when the driving is hard enough (Δ, & Δ�) and the backward
hopping rate is close to its resonance value, the fidelity of the piston model beats
the Hopfield limit (U = 1) and raises the question of the largest attainable fidelity,
which we discuss in the next section.

Trends similar to those for the proofreading index are observed for the speed of
forming right products as well (Fig. 3.6B). Specifically, product formation is very
slow in the absence of driving and increasesmonotonicallywithΔ, , until plateauing
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when Δ, & Δ�. Also, the highest speed is achieved at a resonance :b value which
is different from that of the proofreading index. The existence of such a resonance
frequency is again intuitive, since at fast rates of piston actions the enzyme is
predominantly active and unable to bind new substrates, while at slow rates the
enzyme activation for catalysis via piston compression happens very rarely. Notably,
since the enzyme parameters were chosen in a way so as to yield high fidelities,
the largest speed value is substantially lower than the corresponding speed for a
single-step Michaelis–Menten enzyme (amax ≈ 10−2).

In the last parametric study, we explore how the choice of the high and low ligand
concentrations affects the performance of the model. To that end, we tune the
high ligand concentration ([L]d) and the compression factor ( 5 = [L]d/[L]u), and
evaluate the highest proofreading index at the resonant :b value with Δ, > Δ�. As
we can see, large fidelity enhancements are achieved when [L]d is comparable
to or larger than the ligand dissociation constant in the inactive enzyme state
('I

d), which is necessary to activate the enzyme upon piston compression. In
addition, the compression factor needs to be large enough (or, equivalently, the
ligand concentration in the expanded piston state should be low enough) so as to
inactivate the enzyme when piston enters its expanded state. This requirement of
having a large free energy difference between the compressed and expanded piston
states (VΔ� = ln( 5 ) � 1) can be paralleled with a similar condition in Hopfield’s
model where for optimal proofreading the energy of the activated enzyme–substrate
complex needs to be much larger than that of the inactive complex.

Knowing separately how tuning the engine “knobs” affects the fidelity and speed,
we now explore the trade-offs between the model’s performance metrics as we
vary the driving parameters :b and Δ, , while holding the high and low ligand
concentrations at fixed values (the red dot in Fig. 3.6C). We start with the trade-
off between fidelity and speed, depicted in Fig. 3.6D, where we continuously tune
the hopping rate :b for different choices of the driving force Δ, . As expected
from the results of the individual parametric studies in Fig. 3.6A and Fig. 3.6B,
both fidelity and speed increase monotonically with Δ, . Also, since the values of
the hopping rate :b that maximize fidelity and speed are not identical, these two
performance metrics are negatively correlated in the range of :b values defined by
the two different resonance rates (region between the dotted lines in Fig. 3.6D), but
are positively correlated otherwise. Variations in the metrics in the region of their
negative correlation, however, are moderate, suggesting that for an allosteric enzyme
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Figure 3.6: Parametric studies on the changes in the piston model performance in
response to tuning the “knobs” of the engine. (A,B) Variations in the proofreading
index (A) and speed (B) as the rate of backward stepping (:b) and the work per step
(Δ,) are tuned. The dotted line corresponds to the value of Δ, equal to the ligand
free energy change upon compression (Δ�). (C)Variations in the proofreading index
when the high ligand concentration ([L]d) and the compression factor ( 5 ) are tuned.
'I
d represents the ligand dissociation constant in the inactive enzyme state. The red

dot indicates the pair of [!]d and 5 values used in the studies of the other panels.
(D) Fidelity–speed trade-off as :b is continuously varied for different choices of Δ,
(gradient arrow shows the direction of increase). The dotted black lines connect the
highest fidelity and speed values as Δ, is tuned. Between these dotted lines fidelity
and speed are negatively correlated. (E) Relation between fidelity and fraction
of returned work for discrete choices of Δ, and continuously tuned :b values
(the gradient arrow indicates increasing Δ,). (F) Fidelity–dissipation trade-off
obtained by continuously tuning Δ, for discrete choices of the hopping rate (:b).
The gradient arrow indicates the direction of increasing :b. The red dotted curve
corresponds to the case with resonance :b.

that has been optimized for doing proofreading, the largest speed and fidelity could
be achieved at similar external driving conditions.

Next, we consider the relation between fidelity and fraction of work returned, shown
in Fig. 3.6E. As can be seen, no fidelity enhancement is achieved when ^ is close to
1 which happens either in the absence of driving (lighter curves) or in the presence
of driving, provided that the hopping rate is very fast. On the other hand, ^ is much
less than 1 at the peak fidelity which is achieved when the hopping rate is at its
resonance value and when driving is large (Δ, & Δ�). Overall, this trade-off study
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demonstrates that irreversible work performed on the ligand is a required feature for
the attainment of fidelity enhancement in the piston model.

Lastly, we look at how fidelity varies with energy dissipation, with the latter
characterized through the energy expended per right product (Y). The results of
the trade-off study are shown in Fig. 3.6F. There, the driving force is continuously
tuned for different choices of the hopping rate. As can be seen, there is a minimum
dissipation per product required to attain the given level of performance. This
minimum dissipation (the first intercept at a given y-level) is achieved when the
hopping rates are less than the corresponding resonant values (the lighter curves
on the left side of the dotted red curve). Additionally, for a given hopping
rate, increasing the driving force (Δ,) could lead to an increased proofreading
performance and a decreased dissipation per product up a critical point where the
performance metric reaches its saturating value (horizontal region), demonstrating
how increasing the driving force could in fact improve the energetic efficiency of
proofreading. We note here that the minimum Y values needed for significant
proofreading are ∼ 103 − 104 :B) in Fig. 3.6F which is ∼ 2 orders of magnitude
higher than what is calculated for translation by the ribosome [12]. This low
energetic efficiency can be a consequence of our particular parameter choice for the
study as well as the performance limitations of our engine design, the investigation
of which we leave to future work.

3.4.5 Up to three proofreading realizations are available to the piston model
In the previous section, we chose a set of kinetic rate constants for the enzyme and,
keeping them fixed, explored the effects of tuning the external driving conditions
on the performance of the model. In this section, we explore the parameter space
from a different angle, namely we study how tuning the enzyme’s kinetic parameters
changes the model performance under optimal driving conditions. Since there are
more than a dozen rates defining the kinetic behavior of the enzyme, it is impractical
to probe their individual effects. Instead, we choose to vary two representative
parameters about the effects of which we have a prejudice. These include the rate
of substrate binding to the active enzyme (:A

on) and the unbinding rate of wrong
substrates (:Woff). We know already from Hopfield’s analysis that, for efficient
proofreading, direct substrate binding to the active enzyme should be very slow.
Therefore, we expect the proofreading performance to improve as :A

on is reduced.
We also expect the minimum requirement for :A

on to be lower for larger :Woff values
to ensure that wrong substrates do not enter through the unfiltered pathway [9].
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With these expectations in mind, we performed a parametric study to find the
highest fidelity, the results of which are summarized in Fig. 3.7A. There we varied
:A

on for several choices of :Woff, and for each pair numerically optimized over the
enzyme’s remaining kinetic rates and external driving conditions to get maximum
fidelity (see Appendix S3.4.4 for implementation details). As expected, the highest
attainable fidelity decreases monotonically with increasing “leakiness” (:A

on/: I
on),

and the minimum requirement on :A
on decreases with increasing :Woff.
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Figure 3.7: Proofreading performance of the piston model under optimized enzyme
parameters and external driving conditions. (A) The highest proofreading index (U)
available to the pistonmodel as a function of leakiness (:A

on/: I
on) for different choices

of :Woff. (B) The dominant trajectory that the system takes to form a wrong product in
the case where :A

on/: I
on = 10−12. Numbers 1, 2, 3 stand for the different proofreading

filters along the trajectory. The dotted arrows indicate that the respective rates are
much slower than the substrate unbinding rate :Woff (see Appendix S3.4.5 for their
numerical values for the :Woff/:

R
off = 100 case).

Interestingly, we also see that for small enough leakiness, the piston model manages
to perform proofreading (i.e., enhance the fidelity by a factor of :Woff/:

R
off) up to three

times, as Umax ≈ 3 (Fig. 3.7A). To understand this unexpected feature, we identified
the dominant trajectory that the system would take to form a wrong product for the
case where :A

on/: I
on = 10−12 (Fig. 3.7B, see Appendix S3.4.5 for details). As we can

see, after initial binding the wrong substrate indeed passes through three different
proofreading filters, and these are realized efficiently because the transitions between
intermediate states are much slower than the rate of substrate unbinding. The first
filter occurs right after piston compression, while the enzyme is waiting for the
activator ligand to bind (#1). We note that this particular filter is made possible due
to the presence of alternative piston states (equivalently, alternative environments
that the enzyme could “sense”). The remaining two filters (#2 and #3) take place
while the ligand–bound enzyme is waiting to get activated and while the active
enzyme is waiting to turn the wrong substrate into a product, respectively. The
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presence of these two filters is purely a consequence of allostery. Importantly, the
Umax ≈ 3 result in Fig. 3.7 represents the theoretical upper limit of the model’s
proofreading index – a feature that we justify analytically in Appendix S3.4.5.

In light of this analysis, we can now explain why the pedagogically simplified
version of the model introduced in section 3.3 achieved only a single proofreading
realization. There we made the implicit assumption that ligand binding after
piston compression and enzyme activation after ligand binding took place instantly.
Because of this, proofreading filters #1 and #2 were not realized, leaving filter #3 as
the only available one which we showed in Fig. 3.1B.

3.5 Discussion
Adistinctive feature of kinetic proofreading is that it is a nonequilibriummechanism,
by virtue of which its operation needs to involve energy expenditure [9, 10].
Mechanical work, being an intuitive representation of energy expenditure, has been
used in the past to elucidate important physical concepts such as information-to-
energy conversion in the thought experiment by Szilard [21], or the mechanical
equivalence of heat in Joule’s apparatus [30]. Yet, a similar demonstration of how
mechanical work could be harnessed in a graded fashion to beat the equilibrium
limit in substrate discrimination fidelity has been lacking. Our aim in this work was
to offer such a demonstration through the mechanically designed piston model of
proofreading.

We started off by providing the conceptual picture of the piston model, with its
constituents having direct parallels with Hopfield’s original proofreading scheme
(Fig. 3.1). The key idea of the model was to replace the nucleotide hydrolysis step
present in Hopfield’s scheme with piston compression which served an identical role
of activating the enzyme, but in our case achieved through allostery and mechanical
work. Just like in the case of biological proofreading, where hydrolysis itself
cannot lead to fidelity enhancement unless the nucleotide triphosphates are held at
fixed out-of-equilibrium chemical potentials, in the case of piston model too, the
compressive and expansive actions of the piston cannot result in proofreading unless
they are driven by an energy–consuming engine. Motivated by Feynman’s ratchet
and pawl mechanism [20], we then proposed a dissipative mechanical engine to
drive the cyclic piston actions, which maintained the nonequilibrium distribution of
enzyme states necessary for achieving proofreading. The function of this engine
can be paralleled to that of the ATP synthase in the cell whose constant operation
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maintains a finite chemical potential of ATP, which different biochemical pathways
can then take advantage of.

To study how the cyclic variations in ligand concentration generated by the engine
alter the occupancies of enzyme states, we performed a thermodynamically consistent
coupling between the engine and the enzyme (Fig. 3.5). There we considered the
full diversity of states that the enzyme could take and, importantly, the feedback
mechanism for the engine to “sense” the state of the enzyme. The accounting
of this latter feature, which makes the piston model an example of a bi-partite
system [31, 32], was motivated by our aim of proposing a framework where we
could consistently calculate the total dissipation as opposed to only the minimum
dissipation needed for maintaining the nonequilibrium steady state of the enzyme
(without considering the driving engine) [12, 33, 34]. Although the dissection of
different contributions to dissipation and their interconnectedness was not among
the objectives of our work, the framework that we proposed in our model can
serve as a basis for additional studies of periodically driven molecular systems
(e.g., Brownian clocks or artificial molecular motors) where the driving protocol
and thermodynamics are of importance [35–37]. As noted earlier, however, in the
presence of a periodically changing ligand concentration, the allosteric enzyme could
perform proofreading irrespective of the driving agency, which suggests a possible
biochemical mechanism of fidelity enhancement without the direct coupling of the
enzyme state transitions to hydrolysis.

Having explicit control over the “knobs” of the mechanical engine, we then probed
the performance of the model under different driving conditions. We found that both
speed and fidelity increased as we tuned up the mass of the hanging weight, until
plateauing at a point where the free energy bias of the expanded piston state was
fully overcome (Δ, & Δ�), beyond which increasing the weight only increased
the dissipation without improving the model performance (Fig. 3.6A,B). This result
can be paralleled with the presence of a minimum threshold for the strength of
driving in Hopfield’s model, past which the highest fidelity becomes attainable [9].
In addition, we found that in the piston model there is a “resonance” rate of piston
actions which maximizes fidelity, analogous to the similar feature of Hopfield’s
scheme where both very fast and very slow rates of hydrolysis reduce the quality of
proofreading [12].

The tunable control over the driving parameters also allowed us to study the trade-off
between fidelity, speed, and energy spent per right product. These studies revealed
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that the correlation between speed and fidelity could be both positive and negative
when varying the rate of driving. Notably, theoretical investigations of translation by
the Escherichia coli ribosome under Hopfield’s scheme identified a similar behavior
for the fidelity–speed correlation in response to tuning the GTP hydrolysis rate, with
the experimentally measured values being in the negative correlation (i.e., trade-off)
region [17]. In contrast to the ribosome study, however, where the two metrics
vary by several orders of magnitude in the trade-off region, in the piston model
the variations in fidelity and speed in the negative correlation region are moderate
(Fig. 3.6D), calling for additional investigations of the underlying reasons behind
this difference and search for the realization of the latter advantageous behavior in
biological proofreading systems. Furthermore, our studies showed that theminimum
dissipation required to reach the given level of fidelity was achieved for hopping
rates necessarily lower than their resonance values, and that increasing the work
performed per step (analogously, the chemical potential of ATP) could actually
improve the energetic efficiency of the model – features that again motivate the
identification of their realization in biochemical systems.

In the end, we explored the limits in the proofreading performance of the piston
model for various choices of the allosteric enzyme’s “leakiness” (:A

on/: I
on) and the

ratio of the wrong and right substrate off-rates (:Woff/:
R
off). We found that the trends

for the highest available fidelity matched analogously with the features of Hopfield’s
original scheme, suggesting their possible ubiquity for general proofreading networks.
More importantly, our analysis revealed that the piston model could do proofreading
not just once but up to three times in the limit of very low leakiness, despite the
fact that energy consumption takes place during a single piston compression. This
is in contrast to the typical involvement of several energy consumption instances
in multistep proofreading schemes which manage to beat the Hopfield limit of
fidelity, as, for example, in the cases of the T-cell or MAPK activation pathways
which require multiple phosphorylation reactions [5, 6, 33]. Our finding therefore
suggests the possibility of achieving several proofreading realizations with a single
energy consuming step by leveraging the presence of multiple inactive intermediates
intrinsically available to allosteric molecules. We would like to mention here that
the presence of a similar feature was also experimentally demonstrated recently for
the ribosome which was shown to use the free energy of a single GTP hydrolysis to
performproofreading twice after the initial tRNA selection – first, at the EF-Tu·GDP-
bound inactive state and second, at the EF-Tu-free active state [38].
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In the presentation of the pistonmodel, we focused on the thermodynamic consistency
of the framework for managing the energy dissipation and did not consider strategies
for improving the performance of the mechanism. One such possibility that can be
considered in future work is to use a more elaborate design for the ratchet and
pawl engine with alternating activation barriers for pawl hopping which would
allow to have different rates of piston compression and expansion, analogous to
how hydrolysis and condensation reactions generally occur with different rates in
biological proofreading [17, 39]. Another avenue is to consider alternative ways of
allocating the mechanical energy dissipation across the different ratchet transition
steps, similar to how optimization schemes of allocating the free energy of ATP
hydrolysis were studied for molecular machine cycles [40]. Incorporating these
additional features would allow us to probe the performance limits of the piston
model and compare them with the fundamental limits set by thermodynamics [41].

Acknowledgements
We thank Tal Einav, Erwin Frey, Christina Hueschen, Sarah Marzen, Arvind
Murugan, Manuel Razo-Mejia, Matt Thomson, Yuhai Tu, Jin Wang, Jerry Wang,
Ned Wingreen, and Fangzhou Xiao for fruitful discussions. We also thank Haojie
Li and Dennis Yatunin for their input on this work, Alexander Grosberg, David
Sivak, and Pablo Sartori for providing valuable feedback, and Nigel Orme for his
assistance in making the illustrations. This work was supported by the National
Institutes of Health through the grant 1R35 GM118043-01 (MIRA), and the John
Templeton Foundation as part of the Boundaries of Life Initiative grants 51250 and
60973.

References

1. Kunkel, T. A. DNA replication fidelity. J. Biol. Chem. 279, 16895–16898
(2004).

2. Sydow, J. F.&Cramer, P.RNApolymerase fidelity and transcriptional proofreading.
Curr. Opin. Struc. Biol. 19, 732–739 (2009).

3. Rodnina, M. V. & Wintermeyer, W. Fidelity of aminoacyl-tRNA selection on
the ribosome: Kinetic and structural mechanisms. Annu. Rev. Biochem. 70,
415–435 (2001).

4. Lu, Y., Wang, W. & Kirschner, M. W. Specificity of the anaphase-promoting
complex: A single-molecule study. Science 348, 1248737 (2015).

5. Swain, P.&Siggia, E. The role of proofreading in signal transduction specificity.
Biophys. J. 82, 2928–2933 (2002).



67

6. Mckeithan, T. W. Kinetic proofreading in T-cell receptor signal transduction.
Proc. Natl. Acad. Sci. U.S.A. 92, 5042–5046 (1995).

7. Goldstein, B., Faeder, J. R.&Hlavacek,W. S.Mathematical and computational
models of immune-receptor signalling. Nat. Rev. Immunol. 4, 445 (2004).

8. Bard, J. A., Bashore, C., Dong, K. C. & Martin, A. The 26S proteasome
utilizes a kinetic gateway to prioritize substrate degradation. Cell 92, 5042–
5046 (2019).

9. Hopfield, J. J. Kinetic proofreading: A new mechanism for reducing errors in
biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. U.S.A.
71, 4135–4139 (1974).

10. Ninio, J. Kinetic amplification of enzyme discrimination. Biochimie 57, 587–
595 (1975).

11. Murugan, A., Huse, D. A. & Leibler, S. Speed, dissipation, and error in kinetic
proofreading. Proc. Natl. Acad. Sci. U.S.A. 109, 12034–12039 (2012).

12. Wong, F., Amir, A. & Gunawardena, J. Energy-speed-accuracy relation in
complex networks for biological discrimination. Phys. Rev. E. 98, 012420
(2018).

13. Sartori, P. & Pigolotti, S. Kinetic versus energetic discrimination in biological
copying. Phys. Rev. Let.. 110, 188101 (2013).

14. Depken,M., Parrondo, J.M.&Grill, S.W. Intermittent transcription dynamics
for the rapid production of long transcripts of high fidelity. Cell Rep. 5, 521–
530 (2013).

15. Qian, H. Phosphorylation energy hypothesis: Open chemical systems and their
biological functions. Annu. Rev. Phys. Chem. 58, 113–142 (2007).

16. Semlow, D. R. & Staley, J. P. Staying on message: ensuring fidelity in pre-
mRNA splicing. Trends Biochem. Sci. 37, 263–273 (2012).

17. Banerjee, K., Kolomeisky, A. B. & Igoshin, O. A. Elucidating interplay of
speed and accuracy in biological error correction. Proc. Natl. Acad. Sci. U.S.A.
114, 5183–5188 (2017).

18. Blanchard, S. C., Gonzalez Jr, R. L., Kim, H. D., Chu, S. & Puglisi, J. D.
tRNA selection and kinetic proofreading in translation. Nat. Struct. Mol. Biol.
11, 1008 (2004).

19. Yan, J., Magnasco, M. O. & Marko, J. F. Kinetic proofreading can explain the
supression of supercoiling of circularDNAmolecules by type-II topoisomerases.
Phys. Rev. E 63, 031909 (2001).

20. Feynman, R. P., Leighton, R. B.& Sands,M. The Feynman Lectures on Physics
(Addison-Wesley, Reading, MA, 1963).



68

21. Szilard, L.Über die entropieverminderung in einem thermodynamischen system
bei eingriffen intelligenter wesen. Z. Phys. 53. [Szilard, L. On the decrease of
entropy in a thermodynamic system by the intervention of intelligent beings.
Behav. Sci. 1964, 9, 301-310], 840–856 (1929).

22. Hill, T. L. Free Energy Transduction in Biology (Academic Press, New York,
NY, 1977).

23. Qian, H. A simple theory of motor protein kinetics and energetics. Biophys.
Chem. 67, 263–267 (1997).

24. Wagoner, J. A. & Dill, K. A. Molecular motors: Power strokes outperform
Brownian ratchets. J. Phys. Chem. B 120, 6327–6336 (2016).

25. Einav, T.,Mazutis, L.&Phillips, R. Statisticalmechanics of allosteric enzymes.
J. Phys. Chem. B 120, 6021–6037 (2016).

26. Tolman, R. C. The Principles of Statistical Mechanics (Dover, New York,
1979).

27. Astumian, R. D.&Hänggi, P. Brownianmotors.Phys. Today 55, 33–39 (2002).

28. Reimann, P., Bartussek, R., Häussler, R. & Hänggi, P. Brownian motors driven
by temperature oscillations. Phys. Lett. A 215, 26–31 (1996).

29. Faucheux, L. P., Bourdieu, L. S., Kaplan, P. D. & Libchaber, A. J. Optical
thermal ratchet. Phys. Rev. Lett. 74, 1504 (1995).

30. Joule, J. P. On the mechanical equivalent of heat. Phil. Trans. R. Soc. Lond.
140, 61–82 (1850).

31. Horowitz, J. M. &Esposito,M. Thermodynamics with continuous information
flow. Phys. Rev. X 4, 031015 (2014).

32. Barato, A. C., Hartich, D. & Seifert, U. Efficiency of cellular information
processing. New J. Phys. 16, 103024 (2014).

33. Cui, W. & Mehta, P. Identifying feasible operating regimes for early T-cell
recognition: The speed, energy, accuracy trade-off in kinetic proofreading and
adaptive sorting. PloS One 13, e0202331 (2018).

34. Horowitz, J.M., Zhou, K.&England, J. L.Minimum energetic cost tomaintain
a target nonequilibrium state. Phys. Rev. E 95, 042102 (2017).

35. Barato, A. C. & Seifert, U. Thermodynamic cost of external control. New J.
Phys. 19, 073021 (2017).

36. Barato, A. C. & Seifert, U. Cost and precision of Brownian clocks. Phys. Rev.
X 6, 041053 (2016).

37. Leigh, D. A., K., W. J., Dehez, F. & Zerbetto, F. Unidirectional rotation in a
mechanically interlocked molecular rotor. Nature 424, 174–179 (2003).



69

38. Ieong, K. W., Uzun, Ü., Selmer, M. & Ehrenberg, M. Two proofreading steps
amplify the accuracy of genetic code translation. Proc. Natl. Acad. Sci. U.S.A.
113, 13744–13749 (2016).

39. Chen, K. Y., Zuckerman, D. M. & Nelson, P. C. Stochastic simulation to
visualize gene expression and error correction in living cells.ArXiv 1809.05619v1
(2018).

40. Brown, A. I. & Sivak, D. A. Allocating dissipation across a molecular machine
cycle tomaximize flux.Proc. Natl. Acad. Sci. U.S.A. 114, 11057–11062 (2017).

41. Qian, H. Reducing intrinsic biochemical noise in cells and its thermodynamic
limit. J. Mol. Biol. 362, 387–392 (2006).



70

C h a p t e r S3

SUPPORTING INFORMATION FOR CHAPTER 3 |
ALLOSTERY AND KINETIC PROOFREADING

Python scripts and Jupyter notebooks used for generating the results of the different
numerical studies are available as supplementary files on the publication webpage
(DOI: 10.1021/acs.jpcb.9b08380).

S3.1 Discrimination fidelity in the conceptual scheme of the piston model
In this section, we derive the expressions for the fidelities achieved at the two piston
steps introduced in section 3.3 of the main text, namely [1 = :Woff/:

R
off when the

piston is expanded, and [2 = (:Woff + A)/(:
R
off + A) when the piston is compressed. In

our discussion, we retain the simplifying assumptions made during the presentation
of the model concept.

As discussed in section 3.3, the first level of substrate discrimination occurs in
the expanded piston state. If the waiting time for compression is long enough for
the substrates to equilibrate with the inactive enzyme, we can impose the detailed
balance condition at the two pairs of edges in Fig. S3.1A to obtain

?RI :
R
off = ?I :on [R], (S3.1)

?WI :
W
off = ?I :on [W] . (S3.2)

Here ?I, ?RI , and ?
W
I stand for the probabilities of the empty, right substrate–bound,

and wrong substrate–bound inactive states of the enzyme, respectively. Taking the
substrate concentrations to be identical ([R] = [W]), we can equate the left sides of
Eqs. S3.1 and S3.2 to find

?RI

?WI
=
:Woff

:Roff
. (S3.3)

The above ratio of probabilities represents the proportion in which right and wrong
substrate–bound inactive enzymes enter the active state, and therefore, becomes
equivalent to the fidelity [1 achieved in the first discrimination step.

The second level of substrate differentiation takes place when the piston gets
compressed, leading to the activation of the enzyme. We assume that in its active

https://doi.org/10.1021/acs.jpcb.9b08380
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kon[W]kon[R] koff r

first level of discrimination second level of discrimination

Rkoff
Wkoff

(A) (B)

Figure S3.1: The two substrate discrimination levels in the conceptual scheme of
the piston model. (A) The first level is achieved when the piston is expanded and
a roughly equilibrium distribution of substrate–bound and free enzyme states is
established. (B) The second level is achieved in the compressed state of the piston
where the enzyme is active and can either release the bound substrate or turn it into
a product.

state, the enzyme can no longer bind new substrates. If we wait long enough, a
substrate that was already bound before piston compression will either unbind with
a rate :off or get turned into a product with a rate A. The probability that a product
is formed can be written as

?prod =

∫ ∞

0
dC′ ?bound(C′) × A, (S3.4)

where ?bound(C′) is the probability that the substrate is still bound by time C′.
Using the fact that the waiting time distribution of substrate release (either through
unbinding or product formation) is %release(C) = (:off + A)4−(:off+A)C , the probability
?bound(C) can be found as

?bound(C) =
∫ ∞

C

dC′ %release(C′) = 4−(:off+A)C . (S3.5)

Substituting this result into Eq. S3.4 and performing the integration, we obtain

?prod =
A

:off + A
. (S3.6)

Due to the difference in the off-rates of the right andwrong substrates, their respective
probabilities of production will also be different, resulting in the second level of
fidelity given by the ratio of these probabilities, namely

[2 =
?Rprod

?Wprod
=
:Woff + A
:Roff + A

. (S3.7)
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S3.2 Ratchet and pawl engine
In this section, we first provide a detailed discussion of the ratchet and pawl
mechanism in the absence of piston coupling. Then, for the case of piston coupling,
we derive the expressions for the work per step (Δ,1/2) shown in Fig. 3.3 that take
the ratio of piston state probabilities (cd/cu) and the net rate of backward stepping
(:net) to 50% of their respective saturation values.

S3.2.1 Details of the ratchet and pawl mechanism in the absence of piston
coupling

The ratchet and pawl mechanism was originally proposed by Richard Feynman with
an aim of demonstrating the validity of the second law of thermodynamics [1]. In
his description, the mechanism had an additional element, namely vanes that were
connected to the ratchet through a massless axle (Fig. S3.2A). The purpose of the
vanes was to induce forward ratchet steps through thermal fluctuations. When the
temperature in the vane compartment was maintained at a higher value than that in
the ratchet compartment ()2 > )1), the mechanism could utilize this difference to
operate as a heat engine and lift a weight hanging from the axle.

In the piston model, instead of running the ratchet and pawl mechanism as a
heat engine, we drive it at a constant temperature through the expenditure of the
gravitational potential energy of the hanging weight. We have therefore removed the
vane compartment from our description of the engine and ascribed forward stepping
to random rotational fluctuations of the ratchet instead (Fig. S3.2B).

As mentioned in section 3.4.1, backward stepping takes place whenever the pawl
borrows sufficient energy from the environment to overcome the potential energy
barrier �0 of the spring and lift itself over the ratchet tooth that it is sitting on,
allowing the tooth to slip under it (Fig. S3.2C). Once the pawl gets over the ratchet
tooth (step 2 in Fig. S3.2C), the hanging weight and the recovering pawl start
applying torque on the ratchet, causing it to rotate in the clockwise direction (step
3 in Fig. S3.2C). Following Feynman’s treatment, we assume that when the pawl
hits the bottom of the next tooth (step 4 in Fig. S3.2C), the total kinetic energy of
the system, which is the sum of the energy borrowed by the pawl and the change in
the potential energy of the weight per step (Δ, = <6ΔI), gets dissipated due to the
perfectly inelastic collision of the pawl with the ratchet. Therefore, as a result of a
single backward step, the net heat dissipated into the environment becomes Δ, , as
reflected in the free energy landscape in Fig. S3.2E.
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Figure S3.2: Working details of the ratchet and pawl mechanism. (A) Feynman’s
original ratchet and pawl mechanism operating as a heat engine [1]. (B) Ratchet
and pawl engine driven by a hanging weight that is used in the piston model.
Arrows with symbols “b” and “f” indicate the directions of backward and forward
ratchet rotation, respectively. (C)-(D) Breakdown of backward (C) and forward
(D) steps of the ratchet, accompanied by the lowering or the lifting of the weight,
respectively. �s stands for the potential energy of the spring. (E) Free energy
landscape corresponding to the directionally biased rotations of the ratchet due to
a net lowering of the weight. Discrete positions of the weight (I=) corresponding
to the energy minima of the landscape are marked on the reaction coordinate. (F)
Infinite chain representation of the discrete state dynamics. When a non-zero weight
is hung from the axle, the ratchet makes backward steps with a net rate :net.

A similar set of arguments for forward stepping would imply that initially the
mechanism needs to borrow enough energy from the environment to overcome the
spring barrier and to lift the weight by an amount of ΔI (step 3 in Fig. S3.2D). We
again assume, that once the pawl passes over the next tooth and inelastically hits the
ratchet, it dissipates all its accumulated potential energy. Therefore, in the end of a
single forward step, the total energy extracted from the environment is equal to the
increase in the potential energy of the weight per forward step (Fig. S3.2E).
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Implicit in our treatment of ratchet stepping has been the assumption that we could
discretize the possible configurations of the mechanism into states where the pawl
fully rests on ratchet teeth. Within this formalism, we took �0 to be the activation
energy of backward stepping and (�0 + Δ,) to be the activation energy of forward
stepping, resulting in rate constants given by

:b = g
−1e−V�0 , (S3.8)

:f = g
−1e−V(�0+Δ,) , (S3.9)

where g−1 is the attempt frequency. The choice of identical attempt frequencies
for forward and backward steps is, in a way, a requirement in the discretization
formalism to ensure that in the absence of driving (Δ, = 0) no net rotation of the
ratchet is generated, since :net = :b − :f (Fig. S3.2F). We note that a more rigorous
treatment of ratchet stepping kinetics would need to account for the precise shape of
the energy landscape, defined both by the position of the weight (equivalently, the
ratchet angle) and the angular position of the fluctuating pawl, similar to the analysis
done by Magnasco and Stolovitzky [2].

S3.2.2 Derivation of Δ,1/2 expressions
We begin by deriving the Δ,1/2 expression at which the ratio cd/cu is 1/2. From
Eqs. 3.12 and 3.13, this ratio, evaluated at Δ,1/2, can be written as

cd
cu

����
Δ,1/2

=
1 + e−V(Δ,1/2+Δ�)

1 + e−V(Δ,1/2−Δ�)
=

1
2
. (S3.10)

Solving for Δ,1/2, we obtain

Δ,1/2 = Δ� + ln
(
1 + e−2VΔ�

)
= Δ� + ln

(
1 + 5 −2

)
, (S3.11)

where in the last step, we used the expression for the ligand free energy change
written in terms of the compression factor, that is, Δ� = V−1 ln 5 . Since for efficient
proofreading the compression factor needs to be large ( 5 � 1), theΔ,1/2 expression
reduces into

Δ,1/2 ≈ Δ�. (S3.12)

To estimate how much the work per step needs to exceed Δ� in order for the ratio
cd/cu to reach its saturation value of 1, we calculate the derivative of the ratio at
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Δ,1/2 ≈ Δ�, namely

5
m

mΔ,

(
cd
cu

) ����
Δ,1/2

=
−V e−V (Δ,1/2+Δ� )

(
1 + e−V (Δ,1/2−Δ� )

)
+

(
1 + e−V (Δ,1/2+Δ� )

)
Ve−V (Δ,1/2−Δ� )

(1 + e−V (Δ,1/2−Δ� ) )2

=
V(1 − e−2VΔ� )

4

≈ 1
4:B)

, (S3.13)

where we again employed the e−2VΔ� � 1 approximation. These results indicate
that in order to overcome the equilibrium bias in piston state probabilities caused by
the higher ligand entropy in the expanded state, the work per step needs to exceed
the ligand free energy change upon compression (Δ�) by several :B) values.

Now, we perform a similar set of calculations for the net rate of backward stepping
(:net). Using its expression in Eq. 3.14, we obtain

:net
��
Δ,1/2

=

(
1 − e−2VΔ,1/2

)
:b

1 + cosh(VΔ�)e−VΔ,1/2
=
:b
2
. (S3.14)

Rearranging the terms, we obtain a quadratic equation for eVΔ,1/2 , namely

e2VΔ,1/2 − cosh(VΔ�)eVΔ,1/2 − 2 = 0. (S3.15)

Since eVΔ,1/2 > 0, we take the positive solution and obtain

eVΔ,1/2 =
cosh(VΔ�) +

√
cosh2(VΔ�) + 8
2

. (S3.16)

For large degrees of compression (eVΔ� � 1), we can make the approximation
cosh(VΔ�) ≈ eVΔ�/2 and ignore the constant term in the square root, which yields

eVΔ,1/2 ≈ eVΔ�

2
, (S3.17)

Δ,1/2 ≈ Δ� − V−1 ln 2. (S3.18)

Like in the treatment of the ratio cd/cu, we now estimate how much the work per
step needs to exceed Δ,1/2 in order for the backward stepping rate (:net) to reach
its saturating value :b. To that end, we calculate the derivative of :net/:b at Δ,1/2,
namely

m

mΔ,

(
:net
:b

) ����
Δ,1/2

=
2Ve−2VΔ,1/2 (1 + cosh(VΔ�)e−VΔ,1/2) + (1 − e−2VΔ,1/2) cosh(Δ�)Ve−VΔ,1/2(

1 + cosh(VΔ�)e−VΔ,1/2
)2

≈
2Ve−2VΔ,1/2 (1 + 1

2e
VΔ�e−VΔ,1/2) + (1 − e−2VΔ,1/2) 1

2e
VΔ� Ve−VΔ,1/2

(1 + 1
2eVΔ�e

−VΔ,1/2)2
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=
4Ve−2VΔ,1/2 + V(1 − e−2VΔ,1/2)

4

≈ 1
4:B)

. (S3.19)

Here wemade the approximation cosh(Δ�) ≈ eVΔ�/2 in the first step, used the result
from Eq. S3.17 to write 1

2e
VΔ�e−VΔ,1/2 = 1 in the second step, and in the last step

ignored the e−2VΔ,1/2 terms since from Eq. S3.17, we have e−2VΔ,1/2 = 4e−2VΔ� � 1
for large degrees of compression.

As we can see, when the work per step exceeds Δ� by several :B) values, the
chances of forward stepping become vanishingly small compared with backward
stepping, resulting in a net backward stepping rate :net ≈ :b.

S3.3 Equilibrium properties of the allosteric enzyme
In this section, we introduce the constraints on the choices of rate constants for
the enzyme stemming from the cycle condition (based on the fact that it does not
consume energy), and also, discuss the fidelity available to it when the ligand
concentration is held at a fixed value.

S3.3.1 Constraints on the choice of enzyme’s rate constants
Consider the network of enzyme states and transitions in the absence of engine
coupling redrawn in Fig. S3.3A for convenience. Because the transitions between
the states of the enzyme are not coupled to external energy consuming processes,
the choice of the rate constants is constrained by the cycle condition which states
that the products of rate constants in the clockwise and counterclockwise directions
should be equal to each other in all the loops of the network diagram [3]. Imposing
the cycle condition results in the constraint equations for the different loops shown
in Fig. S3.3B. In our analysis, we choose substrate unbinding to be the only process
whose rate is different between right and wrong substrates (:Woff > :

R
off). Therefore,

the rate constants of all other identical processes are chosen to be the same between
the substrates, i.e.,

:R
A = :

W
A ≡ :

S
A, (S3.20)

:R
I = :

W
I ≡ :

S
I , (S3.21)

:
R,L
A = :

W,L
A ≡ :S,L

A , (S3.22)

:
R,L
I = :

W,L
I ≡ :S,L

I , (S3.23)

where the superscript “S” stands for both right (“R”) and wrong (“W”) substrates.
Using this general notation, we write the full set of constraint conditions on the rate
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constants obtained from the different loops (mid, front, and back) as

mid:
:L

I

:L
A
=
ℓA

off/ℓ
A
on

ℓI
on/ℓI

off

:I
:A
, (S3.24)

front:
:S

I

:S
A
=
: I

on

:A
on

:I
:A
, (S3.25)

back:
:

S,L
I

:
S,L
A

=
: I

on

:A
on

:L
I

:L
A
. (S3.26)

Note that the conditions imposed on the side loops follow directly from those of the
other three loops via

side =
mid × back

front
, (S3.27)

which is why the side loops do not contribute a unique condition.

When writing the cycle conditions, we did not include the product formation rate
constant A, despite the fact that production takes the enzyme into its substrate–free
state, just like what unbinding through :off reactions does. The reason for this is
that A is an effective rate constant for the process E:S r−−−→ E + P representing the
coarse–grained version of the full biochemical pathway of enzymatic production,
namely E:S −−−⇀↽−−− E:P ↽−−−−⇀ E + P, which is distinct from the :off pathway of
emptying the enzyme. In our treatment, we assume that product formation is
practically irreversible which will be true if the product concentration is kept low
and, optionally, if the reverse reaction P −−−→ S is energetically highly unfavorable
(e.g., requires a spontaneous formation of a covalent bond).

If the product formation rate is nonzero (A > 0), the enzymewill be out of equilibrium
despite the fact that its individual transitions are not coupled to an energy source.
This is due to the implicit assumption of having the right and wrong substrate
concentrations fixed, which makes the system open (i.e., new substrates enter and
products exit the system). We discuss the implications of this open system feature
on the fidelity of the enzyme in the absence of driving in the next section.

S3.3.2 Enzyme fidelity at a fixed ligand concentration
As mentioned in the previous section, the presence of a nonzero production rate
(A > 0) makes the system open and thereby takes the enzyme out of equilibrium
even at a fixed ligand concentration where the engine–enzyme coupling is absent.
For Hopfield’s scheme, it can be shown that in an analogous situation where driving
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Figure S3.3: The allosteric enzyme in the absence of engine coupling. (A)
Network diagram of enzyme states and transitions between them at a fixed ligand
concentration. The diagram is redrawn identically from Fig. 3.4 for convenience.
(B) Cycle condition on rate constants applied for the different loops of the diagram.
The lighter color of the side loop conditions indicates that they are redundant and
follow from the conditions on the other three loops.

is absent but the system is open, the “equilibrium” (un-driven) fidelity is confined
in a range defined by the ratio of the Michaelis and dissociation constants, which,
for equal on-rates (:Ron = :Won), becomes

[eq ∈
[
:Woff + A
:Roff + A

,
:Woff

:Roff

]
. (S3.28)

We hypothesize that the same holds true for the allosteric enzyme as well despite
the much wider diversity of states available to it. To demonstrate that, we first
consider the limiting A → 0 case where the product formation is so slow that the
system effectively exists in a thermodynamic equilibrium. All possible enzyme
states along with their statistical weights in this equilibrium setting are shown in
Fig. S3.4. Fidelity can be found by adding the statistical weights of the right and
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wrong substrate–bound active states and dividing them, yielding

[eq(A → 0) = [R][W]
 

W,A
D

 
R,A
D

=
:Woff

:Roff
, (S3.29)

where we used [R] = [W] and the equal on-rate assumption to go from dissociation
constants to unbinding rates. This corresponds to the upper limit in Eq. S3.28.
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Figure S3.4: Table of possible enzyme states and their statistical weights in the
A → 0 limit where the system is effectively at equilibrium. Here nA and nI stand
for the energies of the enzyme in its active and inactive states, respectively. The
dissociation constants of the ligand and the substrates are denoted by 'D and  D,
respectively.

Intuitively, the presence of a nonzero production rate (A > 0) should reduce the
fidelity since the enzyme would have less time to perform substrate filtering in its
active state before product formation takes place. To study how large this reduction
can be, let us first consider a limiting case where the enzyme is exclusively in its
active state – a settingwherewe expect the reduction effect to bemanifested themost.
The active “slice” of the full network diagram corresponding to this limiting case
is depicted in Fig. S3.5A. Since product formation is just another path to substrate
unbinding, we can derive a corresponding reduced network diagram by adding the
production rate to the off-rates, as shown in Fig. S3.5B.

A peculiar feature of this network is that the cycle condition holds in its two loops,
despite the fact that the system is open (A > 0). This means that at steady state, the
detailed balance condition will hold on all edges of the network (cf. Schnakenberg
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[4], section X), allowing us to assign effective statistical mechanical weights to the
different states (Fig. S3.5C).
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Figure S3.5: The enzyme in the limit of constant activity and in the absence of engine
coupling. (A) The active “slice” of the enzyme’s full network diagram depicted in
Fig. S3.3A. (B) The reduced diagram corresponding to the network in panel A with
the production and off-rates combined under the same reaction arrow. (C) Table of
the different enzyme states and their effective statistical weights.  M stands for the
Michaelis constant. Total weights of the wrong and right substrate–bound states are
shown below the left and right columns, respectively.

Dividing the total weights of the right and wrong substrate–bound states, we obtain
the fidelity in this special limit where the enzyme is exclusively in its active state,
namely

[activeeq (A > 0) = [R][W]
 

W,A
M

 
R,A
M

=
:Woff + A
:Roff + A

. (S3.30)

Here we again used [R] = [W] and the equal on-rate assumption. Note that this
corresponds to the lower fidelity limit in the un-driven Hopfield model (Eq. S3.28).
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We now hypothesize that the enzyme’s fidelity falls between these two limits in
the general case where the system is open (A > 0) and when the states are not
constrained to be in the active “slice” of the full network diagram. Since obtaining
the exact expression of fidelity in the general case is highly complicated due to the
presence of a large number of states and loops in the network diagram, and since
a paper–and–pencil approach where the symmetries existing between the left and
right “wings” of the network could potentially be taken advantage of to provide an
analytical proof is also not straightforward, we use a numerical method instead to
justify our hypothesis.

To that end, we fixed the ratio of the wrong and right substrate off-rates to be
:Woff/:

R
off = 100, sampled values for enzyme’s remaining transition rate constants

from the [10−4:Roff, 104:Roff] range (generating 20,971,520 independent sets in total),
and evaluated the fidelity for each parameter set. The results of the numerical study
are summarized in Fig. S3.6. As can be seen, despite the wider diversity of allosteric
enzyme’s states, its fidelity in the absence of engine coupling still falls between the
“equilibrium” limits of Hopfield’s model (Eq. S3.28).
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Figure S3.6: Allosteric enzyme’s fidelity in the absence of engine coupling (fixed
[L]) for different choices of transition rates. The upper and lower red curves
correspond to the ratios of the dissociation (Eq. S3.29) and Michaelis constants
(Eq. S3.30), respectively. Only the data points with fidelity values different up to
the third significant digit were used in the plot.

S3.4 Full description of the piston model with engine–enzyme coupling
In this section, we provide details on the analytical and numerical explorations of the
full model. In section S3.4.1, we discuss the thermodynamics of coupling the engine
to the allosteric enzyme. Then, in section S3.4.2, we present the methodology for
obtaining the steady state probabilities of system states under external drive. In
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sections S3.4.3 and S3.4.4, we provide the parameters used in the numerical study
of main section 3.3 and describe the fidelity optimization strategy used in study of
the main section 3.4, respectively. Lastly, in section S3.4.5, we investigate in detail
the Umax ≈ 3 result for the highest fidelity of the model.

S3.4.1 Equilibrium fidelity of the piston model in the absence of external
driving

In Appendix S3.3.2, we showed that at a fixed ligand concentration the fidelity of
the allosteric enzyme was constrainted within the range given in Eq. S3.28. Here
we demonstrate that the same result holds also for the full model in the absence of
external driving when a thermodynamically consistent coupling is made between
the engine and the enzyme.

In the absence of driving, the finite–state equivalent of the full network (Fig. 3.5D)
can be reduced into the one shown in Fig. S3.7 where we have combined the
ratchet transitions through forward and backward pathways under a single arrow
– a procedure allowed when the transitions are not driven [5]. Because of the
equilibrium constraints imposed on the enzyme’s transition rates discussed in
Appendix section S3.3.1, the cycle condition will hold for the loops in the left
and right “layers” of the diagram in Fig. S3.7. The loops where the cycle condition
could possibly be violated are the ones that involve transitions between the two
layers, i.e., piston compressions and expansions.

The first class of such loops does not involve ligand binding and unbinding events
(e.g., the shaded vertical rectangle in Fig. S3.7), and therefore, the cycle condition
is automatically satisfied in such loops since for each clockwise transition there is a
corresponding counterclockwise transition with an identical rate. The second class
of loops that connect the two layers involves ligand binding and unbinding events
which affect the rate of switching between the layers (e.g., the shaded horizontal
rectangle in Fig. S3.7). The driving force in these loops is given by

Δ` = V−1 ln
(:u→d

f + :b) (:d→u,L
f + :b) [L]d

(:d→u
f + :b) (:u→d,L

f + :b) [L]u
, (S3.31)

where we used the fact that the ligand binding rates are proportional to ligand
concentrations. Now, in the general case where there are # ligands under the piston
(one of which can be bound to the enzyme), the different forward stepping rates
become

:u→d
f = :be−V(Δ,eq+V−1# ln 5 ) = :b 5

−# , (S3.32)
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Figure S3.7: The effective network diagram of the piston model in the absence
of driving. The forward and backward pathways connecting the two layers of the
diagram are combined to yield effective rates. The two kinds of cycles where ligand
binding events are present or absent are shown as horizontal and vertical shaded
rectangles, respectively. The crossed cycling arrows indicate the absence of driving
forces in the shaded loops.

:
u→d,L
f = :be−V(Δ,eq+V−1 (#−1) ln 5 ) = :b 5

−(#−1) , (S3.33)

:d→u
f = :be−V(Δ,eq−V−1# ln 5 ) = :b 5

# , (S3.34)

:
d→u,L
f = :be−V(Δ,eq−V−1 (#−1) ln 5 ) = :b 5

#−1. (S3.35)

Here we set Δ,eq = 0 to account for the absence of driving and used the fact that the
free energy change of # ligands upon isothermal compression is V−1# ln 5 (with a
negative sign upon expansion) and that # should be replaced with # − 1 when one
of the ligands is bound to the enzyme.

Substituting these expressions into Eq. S3.31 and using the identity [!]d = 5 [!]u,
we find

Δ` = V−1 ln
( 5 −# + 1) ( 5 #−1 + 1) 5
( 5 # + 1) ( 5 1−# + 1)

= V−1 ln
(
5 −# (1 + 5 # )
5 # + 1

× 5 #−1(1 + 5 1−# )
5 1−# + 1

× 5
)

= V−1 ln
(
5 −# × 5 #−1 × 5

)
= V−1 ln 1 = 0. (S3.36)

This shows that in the absence of external driving (Δ, = 0) the cycle condition
holds for all loops of the network, demonstrating the thermodynamic consistency of
the coupling between the engine and the enzyme.
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As in our separate treatment of the allosteric enzyme in Appendix S3.3.2, here too
in the A → 0 limit, the system will approach a thermodynamic equilibrium. Since
we already know that in the equilibrium limit the fidelity of the enzyme at a fixed
ligand concentration is given by the ratio of the wrong and right off-rates, we can
apply this result to the left and right layers of the diagram in Fig. S3.7 and obtain a
relation between the net statistical weights of the right and wrong substrate–bound
active states, namely

FR
u

FW
u
=
FR
d

FW
d
=
:Woff

:Roff
. (S3.37)

Here “u” and “d” stand for the expanded (left layer) and compressed (right layer)
states of the piston. We can then write the fidelity of the full network in terms of
these weights as

[eq(A → 0) =
FR
u + FR

d

FW
u + FW

d
=

FW
u

(
:Woff
:Roff

)
+ FW

d

(
:Woff
:Roff

)
FW
u + FW

d
=
:Woff

:Roff
, (S3.38)

which corresponds to the upper limit of the equilibrium fidelity range in Eq. S3.28.

To demonstrate that in the absence of driving the coupled system meets also the
lower fidelity limit given by (:Woff + A)/(:

R
off + A), we again use a numerical approach

and sample the parameter space, evaluating the fidelity at each of the 10,628,820
sampled sets of parameters. As in the study of Fig. S3.7, here too we set the ratio
of off-rates to be :Woff/:

R
off = 100. The results are summarized in Fig. S3.8, where it

can be seen that all points lie between the limits of Eq. S3.28. Overall, this study
shows that in the absence of driving, the coupling of the engine to the enzyme alone
cannot lead to fidelity enhancement.

S3.4.2 Obtaining the steady–state occupancy probabilities
The kinetics of the full piston model is characterized by a 24 × 24 transition rate
matrix Q, which has the block form

Q =
©­«
Qenzyme

u Qd→u

Qu→d Qenzyme
d

ª®¬ . (S3.39)

Here the non-diagonal elements of the 12×12matricesQenzyme
u andQenzyme

d represent
the transition rates between the different enzyme stateswhen the ligand concentration
is [!] = [!]u and [!] = [!]d, respectively. These non-diagonal terms at a given
ligand concentration [!] are depicted in Fig. S3.9.
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to the ratios of the dissociation (Eq. S3.29) and Michaelis constants (Eq. S3.30),
respectively. Only the data points with fidelity values different up to the third
significant digit were used in the plot.

The other two matrices, namely, Qd→u and Qu→d, are diagonal whose elements
stand for the net piston compression (d→ u) and expansion (u→ d) rates that alter
the piston state but leave the state of the enzyme unchanged. They are given by

Qd→u = diag
( (
:b + :d→u

f
)
, ...,

(
:b + :d→u

f
)︸                               ︷︷                               ︸

6 terms

,
(
:b + :d→u,L

f
)
, ...,

(
:b + :d→u,L

f
)︸                                    ︷︷                                    ︸

6 terms

)
,

(S3.40)

Qu→d = diag
( (
:b + :u→d

f
)
, ...,

(
:b + :u→d

f
)︸                               ︷︷                               ︸

6 terms

,
(
:b + :u→d,L

f
)
, ...,

(
:b + :u→d,L

f
)︸                                    ︷︷                                    ︸

6 terms

)
.

(S3.41)

Note that since the forward stepping rates depend on whether the ligand is bound
or not, they appear without a superscript “L” in the first 6 terms (where the ligand
is unbound), and with a superscript “L” in the last 6 terms (where the ligand is
bound). Lastly, the diagonal elements of Q are assigned such that& 9 9 = −

∑
8≠ 9 &8 9 ,

ensuring that the columns sum to zero.

The dynamics of the coupled engine–enzyme system is described via

d ®?
dC
= Q ®?, (S3.42)

where ®? is a column vector whose 24 elements stand for the probabilities of the
different system states (12 enzyme states × 2 piston states). We are interested
in the steady state behavior of the piston model, where d ®?/dC = ®0. Since the
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involving the binding or release of incorrect and correct substrates, respectively.
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exact analytical expression for the steady state probability vector ®?ss ≡ ®c is highly
convoluted, in our parametric studies we use numerical methods to find ®c from
Q®c = ®0 and

∑
8 c8 = 1, where the latter equation guarantees that the probabilities

sum to 1.

S3.4.3 Enzyme’s kinetic parameters used for the numerical study in the main
section 3.4

Here we provide the list of enzyme’s transition rates used for numerically studying
the effects of tuning the engine “knobs” in section 3.4. Since none of the performance
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metrics used in the study depend on the absolute timescale of the model’s dynamics,
we set the unbinding rate of the right substrate to be unity (:Roff = 1), and defined all
other rates relative to it. Specifically, we chose :Woff = 100 so that the fidelity after a
single proofreading realization roughly matched that of the ribosome ([translation ∼
104) [6]. Also, we chose the catalysis rate to be much slower compared with the
off-rates (A = 0.2) – a condition for high fidelity suggested in Hopfield’s original
paper.

The remaining rate constantswere assigned values thatmeet the intuitive expectations
from the conceptual introduction of the model in section 2. Specifically, the rate of
substrate binding to the active enzyme was chosen to be much less than the rate of
binding to the inactive enzyme in order to yield low leakiness (:A

on/: I
on = 10−5 � 1).

Next, the enzyme was chosen to be predominantly inactive in its native state to allow
for new substrate binding events (:I/:A = 50 � 1). Lastly, the rates of ligand
binding and unbinding were assigned values that ensure that the ligand acts as a
strong activator ( ℓ

I
off/ℓ

I
on

ℓA
off/ℓ

A
on
= 106 � 1).

The values of the independent parameters :L
A and :S

A were assigned after manually
inspecting the effect of different numerical choices on the model performance.
Finally, the values of the remaining four parameters (lower section in Table S3.1)
were calculated from the cycle conditions in Eqs. S3.24-S3.26 under the assumption
that ligand binding does not alter the ratio of inactivation or activation rates in the
substrate–bound and substrate–unbound states (i.e., :S,L

I /:
L
I = :

S
I /:I and :S,L

A /:
L
A =

:S
A/:A).

S3.4.4 Details of the numerical optimization procedure for finding the highest
fidelity

In our optimization scheme, we first chose the values of rates which were kept fixed
for the rest of the study. These include the unbinding rate of right substrates (:Roff =
1), the catalysis rate (A = 0.2), and the effective first–order rate of substrate binding
to the inactive enzyme state (: I

on [S] = 1). Also, since no limits were imposed on
the amount of energy expenditure, we chose large values for the compression factor
( 5 = 10100) and the work per step (Δ, = 1000 :B)) to maximize the quality of
proofreading.

Then, we considered a set of 144 different initialization options for the remaining
parameters to be used in our numerical optimization procedure. To avoid the
completely independent tuning of related enzyme activation and inactivation rates,
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Transition rate Value
:Roff, :

W
off 1, 100

A 0.2
:A

on [S] 10−5

: I
on [S] 1
:A 20
:I 1000
ℓA

on 0.1
ℓA

off 5
ℓI

on 0.01
ℓI

off 500000
:L

A 2000
:S

A 0.01
:L

I 0.1
:S

I 50000
:

S,L
A 1
:

S,L
I 5

Table S3.1: Values of different transition rates used in the studies of Fig. 3.6.

we considered three possible options that met the cycle condition. Namely, 1)
:S

A = :A and :S
I = :I/W, 2) :S

A =
√
W:A and :S

I = :I/
√
W, 3) :S

A = W:A and
:S

I = :I, where W = :A
on/: I

on. All of these three options satisfy the cycle constraint
:A

on:
S
I :A = : I

on:
S
A:I (Fig. S3.3B). Options for the transition rates between ligand–

bound enzyme states (i.e., :S,L
A and :S,L

I ) were chosen analogously.

In our custom–written maximization algorithm, we iteratively perturbed all the
parameters for multiple rounds with decreasing amplitudes until the convergence
criterion was met or until the number of iterations exceeded the specified threshold
(at most 20 iterations for each of the 6 decreasing amplitudes). The results from
each of these local maximization procedures are summarized in Fig. S3.10. We
chose the largest among the different local maxima to represent the highest fidelity
available for the given

(
:A

on, :
W
off

)
pair.

S3.4.5 Investigation of the Umax ≈ 3 result for the highest available proof-
reading index

Our numerical scheme for optimizing the fidelity (Appendix S3.4.4) revealed that
the piston model could perform proofreading up to three times (Umax ≈ 3). To
gain intuition on how this is possible, let us consider the wrong “wing” of the full
reaction network (Fig. S3.11A). Each system state is characterized by the piston
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Figure S3.10: Fidelity optimization results for each of the 144 parameter
initialization options. (A) :Woff/:

R
off = 10. (B) :Woff/:

R
off = 100. (C) :Woff/:

R
off = 1000.

The dotted lines in each panel represent the trends for the globally optimal fidelities.

position (up or down) and the state of the enzyme (one of 8 possibilities). To turn
a wrong substrate into a product, the system needs to traverse a trajectory that starts
at a substrate–unbound state on the right side of the diagram and reaches one of
the substrate–bound active states on the left side, at which point catalysis can take
place. Using the terminology introduced in Murugan et al.[7], we can say that a
proofreading filter can be realized every time the system makes a transition parallel
to the “discriminatory fence” of the network (Fig. S3.11A). Rates which are on
either side of the fence do not discriminate between the two kinds of substrates;
only those that cross the fence do, which in our case are the off-rates (:Woff > :Roff).
Thus, the number of such parallel transitions that the system makes before reaching
the catalytically active state represents the largest number of proofreading filters
available to the given trajectory.

Fig. S3.11B shows the full list of unique trajectories that start on the right side of the
network, cross the discriminatory fence, and eventually reach an active enzyme state
after traversing through a series of inactive states. The trajectories are grouped by the
number of these inactive states visited on the left side of thewing prior to reaching the
active state. For example, entries of the first group represent trajectories where the
substrate binds directly to the active enzyme and hence, undergoes zero proofreading
filtrations. The discriminatory capacity of the piston model will therefore depend
on which of the trajectories dominates in product formation.

To compare the contributions from different trajectories, we assign each of them a
probability flux, which approximates the average rate of product formation through
the trajectory. We define this flux via

�®B = cB0:B0→B1

(
#−2∏
8=1

?B8→B8+1

)
?catB#−1 , (S3.43)
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where ®B is the set of # states in the trajectory, cB0:B0→B1 is the substrate binding
flux that crosses the fence at the start of the trajectory, ?B8 ,B8+1 are the probabilities
of staying on the trajectory during traversal, and, lastly, ?catB#−1 is the probability
of catalysis once the system has reached the active enzyme state B#−1. Note that
the flux expression does not account for backtracking events whose contribution
we expect to be insignificant for efficient proofreading trajectories, since for them,
?B8→B8+1 � 1.

Having defined a flux metric for each trajectory, we then calculated its value for all
trajectories listed in Fig. S3.11B in the case where :Woff/:

R
off = 100 and :A

on/: I
on =

10−12 (low leakiness). Fig. S3.11C shows the fluxes normalized by the highest one
and grouped by the number of proofreading filters. As we can see, the dominant
trajectory indeed contains three filters. This dominant trajectory is highlighted in
red in Fig. S3.11B and also corresponds to the one shown in Fig. 3.7B of the main
text.

Wewould like to note here that themodel parameters inferred from the unconstrained
fidelity optimization were degenerate, and there was an alternative set with U ≈ 3
proofreading index whose corresponding dominant trajectory was different from
the one highlighted in Fig. S3.11B. Some of the parameters of this set, however,
contradicted ourmodel criteria (e.g., the binding rate in the expanded piston statewas
very high), which is why we did not use this alternative set for our main discussion.
Parameters that did satisfy our model criteria are shown for the :Woff/:

R
off = 100

case in Fig. S3.11D. The transition rates between intermediates are much slower
compared with the off-rate, as expected for an efficient proofreading performance.

Lastly, as can be seen in Fig. S3.11B, the highest number of filters that a unique
trajectory could, in principle, realize is 4 and not 3. This raises the question of why a
trajectory with 4 potential filters cannot be a dominant one, as our numerical results
in Fig. S3.11C have suggested. We answer this question for three representative
cases and invite the reader to work through the remaining examples. Our approach
will be to show that the flux through a given 4-filter trajectory is necessarily less
than that of some other trajectory with fewer filters, which would suggest that it
cannot be a dominant one.

Fig. S3.12 shows three different 4-filter trajectories next to corresponding trajectories
with fewer filters, flux through which, as we will show, will necessarily be greater.
Throughout our analysis, we will be making use of the fact that the rates of piston
expansion and compression are identical (and equal to :b) in the large driving limit
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Figure S3.11: Determination of Umax using a trajectory approach. (A) The wrong
“wing” of the full reaction network along with the discriminatory fence. Ligand
concentrations that enter the ligand binding rates are shown to indicate the difference
between the upper and lower halves of the diagram. (B) The full set of unique
trajectories that start on the right side of the network and end up at an active enzyme
state on the left side. Numbers of proofreading filters available to trajectories
are shown on the side. Piston state transitions are marked with dotted lines for
clarity. The dominant trajectory in panel C is highlighted in red. (C) The relative
product formation fluxes of all possible trajectories calculated for the case where
:Woff/:

R
off = 100 and :A

on/: I
on = 10−12, and grouped by the number of filters. The

red dot indicates the dominant one. (D) Schematic illustration of the dominant
trajectory in panel C along with the numerical values of the rates. The dotted arrows
suggest that the intermediate transitions are much slower than the off-rate.

considered here. Let us start from the first example. Using Eq. S3.43, we can write
the fluxes through 4-filter (�(4)) and 3-filter (�(3)) trajectories, respectively, as

�(4) = c0:0→1 × ?1→2?2→3?3→4?4→5 × ?cat5 , (S3.44)
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�(3) = c0:0→1 × ?1→2?2→3?3→6 × ?cat6 . (S3.45)

Since the states (3) and (4) correspond to the same enzyme state and have identical
outgoing rates, we have ?4→5 = ?3→6. From the same argument for states (5) and
(6), we find ?cat5 = ?cat6 . With these identities at hand, we can write the ratio of the
two fluxes as

�(4)
�(3)

= ?3→4 < 1. (S3.46)

Therefore, the 4-filter trajectory is necessarily slower than the 3-filter one and cannot
dominate the dynamics of wrong product formation.
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Figure S3.12: Three representative 4-filter trajectories paired with ones which have
a lower filter number and, necessarily, a higher product formation flux. The state
indices are added to facilitate the comparison between the corresponding trajectories.

Now let us look at the slightly more complicated second example. There the fluxes
of the 4-filter and 1-filter trajectories are

�(4) = c0:0→1 × ?1→2?2→3?3→4?4→5 × ?cat5 , (S3.47)

�(1) = c0:0→1 × ?1→6 × ?cat6 , (S3.48)

respectively. The full expression of the transition probability ?4→5 is

?4→5 =
:4→5

:4→5 + :4→3 + :4→1 + :4→7
. (S3.49)

Similarly, the expression for ?1→6 is

?1→6 =
:1→6

:1→6 + :1→2 + :1→4 + :1→0
. (S3.50)

All corresponding rates in the above probability expressions are equal to each other
(i.e., :4→5 = :1→6 = :S

A, :4→1 = :1→4 = :b, :4→7 = :1→0 = :Woff), with the
exception of :4→3 = ℓ

I
on [L]d and :1→2 = ℓ

I
on [L]u. Now, since [L]d > [L]u, we
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obtain ?4→5 < ?1→6. With an identical reasoning, we can also find that ?cat5 < ?cat6 .
Therefore, the ratio of the 4-filter and 1-filter trajectory fluxes becomes

�(4)
�(1)

= ?1→2?2→3?3→4

(
?4→5
?1→6

)
︸   ︷︷   ︸

<1

(
?cat5
?cat6

)
︸ ︷︷ ︸
<1

< 1, (S3.51)

proving our claim.

Lastly, we consider the third example in Fig. S3.12. We again start off by writing
the trajectory fluxes, namely

�(4) = c0:0→1 × ?1→2?2→3?3→4?4→5 × ?cat5 , (S3.52)

�(1) = c6:6→4 × ?4→5 × ?cat5 . (S3.53)

The two rates appearing in the flux expression represent the substrate binding rate
and are equal to each other, that is, :0→1 = :6→4 = :

I
on [S]. Now, note that c6 is

the steady state probability of the inactive ligand–unbound enzyme state at a low
ligand concentration, whereas c0 is the probability of the same enzyme state at a
high ligand concentration. Since these are ligand–unbound states, the one in the
presence of a lower ligand concentration will have a higher probability, i.e., c6 > c0.
Thus, taking the ratio of the two fluxes, we obtain

�(4)
�(1)

=

(
c0
c6

)
︸︷︷︸
<1

?1→2?2→3?3→4 < 1, (S3.54)

suggesting that the 4-filter trajectory in the third example also cannot be the dominant
one.
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C h a p t e r 4

PROOFREADING THROUGH SPATIAL GRADIENTS

binding catalysis

effector

kon r

physical space

koff

proofreading

This chapter is based on the journal publication Galstyan, V., Husain, K., Xiao, F.,
Murugan, A. & Phillips, R. Proofreading through spatial gradients. eLife 9:e60415
(2020). DOI: 10.7554/eLife.60415

4.1 Abstract
Key enzymatic processes use the nonequilibrium error correction mechanism called
kinetic proofreading to enhance their specificity. The applicability of traditional
proofreading schemes, however, is limited since they typically require dedicated
structural features in the enzyme, such as a nucleotide hydrolysis site or multiple
intermediate conformations. Here, we explore an alternative conceptual mechanism
that achieves error correction by having substrate binding and subsequent product
formation occur at distinct physical locations. The time taken by the enzyme-
substrate complex to diffuse from one location to another is leveraged to discard
wrong substrates. This mechanism does not have the typical structural requirements,
making it easier to overlook in experiments. We discuss how the length scales of
molecular gradients dictate proofreading performance, and quantify the limitations
imposed by realistic diffusion and reaction rates. Ourwork broadens the applicability
of kinetic proofreading and sets the stage for studying spatial gradients as a possible
route to specificity.

4.2 Introduction
The nonequilibrium mechanism called kinetic proofreading [1, 2] is used for
reducing the error rates of many biochemical processes important for cell function
(e.g., DNA replication [3], transcription [4], translation [5, 6], signal transduction
[7], or pathogen recognition [8–10]). Proofreading mechanisms operate by inducing

https://doi.org/10.7554/eLife.60415
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Figure 4.1: Error correction schemes that operate by delaying product forma-
tion. (A) The traditional proofreading scheme with multiple biochemically
distinct intermediates, transitions between which are typically accompanied by
energy–consuming reactions. The T-cell activation mechanism with successive
phosphorylation events is used for demonstration [8, 10]. (B) The spatial
proofreading scheme where the delay between binding and catalysis is created
by constraining these events to distinct physical locations. The wavy arrows stand
for the diffusive motion of the complex. Binding events primarily take place on the
length scale _S of substrate localization.

a delay between substrate binding and product formation via intermediate states for
the enzyme–substrate complex. Such a delay gives the enzyme multiple chances to
release the wrong substrate after initial binding, allowing far lower error rates than
what one would expect solely from the binding energy difference between right and
wrong substrates.

Traditional proofreading schemes require dedicated molecular features such as an
exonuclease pocket in DNA polymerases [3] or multiple phosphorylation sites on
T-cell receptors [8, 9]; such features create intermediate states that delay product
formation (Fig. 4.1A) and thus allow proofreading. Additionally, since proofreading
is an active nonequilibrium process often involving near–irreversible reactions, the
enzyme typically needs to have an ATP or GTP hydrolysis site to enable the use of
energy supplies of the cell [5, 11]. Due to such stringent structural requirements,
the number of confirmed proofreading enzymes is relatively small. Furthermore,
generic enzymes without such dedicated features are assumed to not have active
error correction available to them.
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In this work, we propose an alternative scheme where the delay between initial
substrate binding and product formation steps is achieved by separating these events
in space. If substrates are spatially localized and product formation is favorable only
in a region of low substrate concentration where an activating effector is present,
then the time taken by the enzyme–substrate complex to travel from one location
to the other can be used to discard the wrong substrates, which are assumed to
unbind from the enzyme more readily than the right substrates (Fig. 4.1B). When
this delay is longer than substrate unbinding time scales, very low error rates of
product formation can be achieved, allowing this spatial proofreading scheme to
outperform biochemical mechanisms with a finite number of proofreading steps.

In contrast to traditional proofreading, the nonequilibrium mechanism here does
not require any direct energy consumption by the enzyme or substrate itself (e.g.,
through ATP hydrolysis). This liberates the enzyme from any proofreading–specific
molecular features; indeed, any ‘equilibrium’ enzyme with a localized effector can
proofread using our scheme if appropriate concentration gradients of the substrates
or enzymes are set up. In this way, the energetic and structural requirements of
proofreading can be outsourced from the enzyme and substrate to the gradient
maintaining mechanism. It also means that spatial proofreading is easy to overlook
in experiments, and that the fidelity of reconstituted reactions in vitro could be lower
than the fidelity in vivo.

The lack of reliance on structure makes spatial proofreading more adaptable. We
study how tuning the length scale of concentration gradients can trade off error
rate against speed and energy consumption on the fly. In contrast, traditional
proofreading schemes rely on nucleotide chemical potentials, e.g., the out of
equilibrium [ATP]/[ADP] ratio in the cell, and cannot modulate their operation
without broader physiological disruptions.

Our proposed scheme can be leveraged for specificity if appropriate concentration
gradients are set. Such gradients arise in multiple cellular contexts (e.g., near
the nucleus, the plasma membrane, the Golgi apparatus, the endoplasmic reticulum
(ER), kinetochores, microtubules [12–14]), and several gradient–formingmechanisms
have been discussed in the literature [14–16]. We conclude our analysis of spatial
proofreading by quantifying its limitations as set by realistic reaction rates and
gradient formation mechanisms, and discuss examples from the literature, including
the localization of mRNAs in polarised cells, and the non-vesicular transport of
lipids in eukaryotic cells, in which this mechanism might be in play. Our work
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motivates a detailed investigation of spatial structures and compartmentalization in
living cells as possible delay mechanisms for proofreading enzymatic reactions.

4.3 Results
4.3.1 Slow transport of enzymatic complex enables proofreading
Our proposed scheme is based on spatially separating substrate binding and product
formation events for the enzyme (Fig. 1B). Such a setting arises naturally if
substrates are spatially localized by having concentration gradients in a cellular
compartment. Similarly, an effector needed for product formation (e.g., through
allosteric activation) may have a spatial concentration gradient localized elsewhere
in that compartment. To keep our model simple, we assume that the right (R)
and wrong (W) substrates have identical concentration gradients of length scale _S

but that the effector is entirely localized to one end of the compartment, e.g., via
membrane tethering.

We model our system using coupled reaction–diffusion equations for the substrate–
bound (“ES” with S = R,W) and free (“E”) enzyme densities, namely

mdER

mC
= �

m2dER

mG2 − :
R
offdER + :ondRdE , (4.1)

mdEW

mC
= �

m2dEW

mG2 − :
W
offdEW + :ondWdE , (4.2)

mdE

mC
= �

m2dE

mG2 +
∑

S=R,W
:SoffdES −

∑
S=R,W

:ondSdE . (4.3)

Here, � is the enzyme diffusion constant, :on and :Soff (with :Woff > :Roff) are the
substrate binding and unbinding rates, respectively, and dS (G) ∼ 4−G/_S is the
spatially localized substrate concentration profile which we take to be exponentially
decaying, which is often the case for profiles created by cellular gradient formation
mechanisms [17, 18]. We limit our discussion to this one-dimensional setting of the
system, though our treatment can be generalized to two and three dimensions in a
straightforward way.

The above model does not explicitly account for several effects relevant to living
cells, such as depletion of substrates or distinct diffusion rates for the free and
substrate–bound enzymes. More importantly, it does not account for the mechanism
of substrate gradient formation. We analyze a biochemically detailed model with
this latter feature and experimentally constrained parameters later in the paper. Here,
we proceed with the minimal model above for explanatory purposes. To identify the
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key determinants of the model’s performance, we assume throughout our analysis
that the amount of substrates is sufficiently low that the enzymes are mostly free with
a roughly uniform profile (i.e., dE ≈ constant). This assumption makes Eqs. (4.1)-
(4.3) linear and allows us to solve them analytically at steady state. We demonstrate
in Appendix S4.5 that proofreading is, in fact, most effective under this assumption
and discuss the consequences of having high substrate amounts on the performance
of the scheme.

In our simplified picture, enzyme activation and catalysis take place upon reaching
the right boundary at a rate A that is identical for both substrates. Therefore, the
density of substrate–bound enzymes at the right boundary can be taken as a proxy
for the rate of product formation ES, since

ES = AdES (!), (4.4)

where ! is the size of the compartment. In order to keep the analytical results
concise and intuitive, we perform our main analyses under the assumption that
catalysis is slow, mirroring the study of traditional proofreading schemes [1]. In
Appendix S4.3, we derive the precise conditions under which this treatment is valid,
and generalize our analysis to arbitrary catalysis rates.

To demonstrate the proofreading capacity of the model, we first analyze the limiting
case where substrates are localized to the left end of the compartment (_S → 0). In
this limit, the fidelity [, defined as the number of right products formed per single
wrong product, becomes

[ =
ER
EW

=
√
[eq

sinh
(√
g�:

W
off

)
sinh

(√
g�:

R
off

) , (4.5)

where [eq = :Woff/:
R
off is the equilibrium fidelity, and g� = !2/� is the characteristic

time scale of diffusion across the compartment (seeAppendix S4.1 for the derivation).

Eq. 4.5 is plotted in Fig. 4.2 for a family of different parameter values. As can be
seen, when diffusion is fast (small g�), fidelity converges to its equilibrium value and
proofreading is lost ([ ≈ √[eq ×

√
g�:

W
off/g�:

R
off = [eq). Conversely, when diffusion

is slow (large g�), the enzyme undergoes multiple rounds of binding a substrate
at the left end and unbinding midway until it manages to diffuse across the whole
compartment as a complex and form a product. These rounds serve as ‘futile cycles’
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circles. Dominant processes in the two limiting regimes are highlighted in red in
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that endow the system with proofreading. In this regime, fidelity scales as

[ ∼ 4

(√
:Woff−

√
:Roff

)
√
g�
. (4.6)

To get further insights, we introduce an effective number of extra biochemical
intermediates (=) that a traditional proofreading scheme would need to have in order
to yield the same fidelity, i.e., [/[eq = [=eq. We calculate this number as (see
Appendix S4.1)

= ≈

√
g�:

W
off

ln [eq
. (4.7)

Notably, since g� ∼ !2, the result above suggests a linear relationship between the
effective number of proofreading realizations and the compartment size (= ∼ !).
In addition, because the right-hand side of Eq. 4.7 is an increasing function of :Woff,
the proofreading efficiency of the scheme rises with larger differences in substrate
off-rates (Fig. 4.2) – a feature that ‘hard–wired’ traditional proofreading schemes
with a fixed number of proofreading steps lack.

4.3.2 Navigating the speed–fidelity trade-off
As is inherent to all proofreading schemes, the fidelity enhancement described
earlier comes at a cost of reduced product formation speed. This reduction, in our
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case, happens because of increased delays in diffusive transport. Here, we explore
the resulting speed–fidelity trade-off and its different regimes by varying two of
the model parameters: diffusion time scale g� and the substrate localization length
scale _S .

Speed and fidelity for different sampled values of g� and_S are depicted in Fig. 4.3A.
As can be seen, for a fixed g� , the reduction of _S can trade off fidelity against
speed. This trade-off is intuitive; with tighter substrate localization, the complexes
are formed closer to the left boundary. Hence, a smaller fraction of complexes
reach the activation region, reducing reaction speed. The Pareto–optimal front of
the trade-off over the whole parameter space, shown as a red curve on the plot, is
reached in the limit of ideal substrate localization (_S → 0). Varying the diffusion
time scale allows one to navigate this optimal trade-off curve and access different
performance regimes.
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Specifically, if the diffusion time scale is fast compared with the time scales of
substrate unbinding (i.e., g� � 1/:Roff, 1/:

W
off), then both right and wrong complexes

that form near the left boundary arrive at the activation region with high probability,
resulting in high speeds, though at the expense of error–prone product formation
(Fig. 4.3B, top). In the opposite limit of slow diffusion, both types of complexes
have exponentially low densities at the activation region, but due to the difference
in substrate off-rates, production is highly accurate (Fig. 4.3B, bottom). There also
exists an intermediate regime where a significant fraction of right complexes reach
the activation region while the vast majority of wrong complexes do not (Fig. 4.3B,
middle). As a result, an advantageous trade-off is achieved where a moderate
decrease in the production rate yields high fidelity enhancement – a feature that was
also identified in multi-step traditional proofreading models [19].

In Appendix S4.3, we also study this trade-off caused by varying the catalysis rate
A. Briefly, we find that when all other parameters are fixed, increasing A trades off
fidelity against speed in a linear fashion, with the ratio of highest and lowest fidelity
values falling in the [√[eq, [eq] range. The Pareto–optimal front of the trade-off,
however, monotonically shifts toward the higher speed region, suggesting that faster
catalysis is, in fact, more favorable if the diffusion time scale g� can be adjusted
accordingly (see Appendix S4.3 for details).

We saw in Fig. 4.3A that in the case of ideal substrate localization, the slowdown of
diffusive transport necessarily reduced the production rate and increased the fidelity.
The latter part of this statement, however, breaks down when substrate gradients
are weak. Indeed, fidelity exhibits a non-monotonic response to tuning g� when
the substrate gradient length scale _S is non-zero (Fig. 4.3C). The reason for the
eventual decay in fidelity is the fact that with slower diffusion (larger g�), substrate
binding and unbinding events take place more locally and therefore, the right and
wrong complex profiles start to resemble the substrate profile itself, which does not
discriminate between the two substrate kinds. We show in Appendix S4.1 that the
optimal diffusion time scale can be roughly approximated as g∗

�
/gRoff ≈ [

−1
eq (!/_S)2,

which increases monotonically with !/_S , consistent with the shifting peaks in
Fig. 4.3C.

Not surprisingly, the error–correcting capacity of the scheme improves with better
substrate localization (lower _S). For a fixed g� , the bulk of this improvement takes
place when !/_S is tuned in a range set by the two key dimensionless numbers of
the model, namely,

√
g�:

R
off and

√
g�:

W
off (Fig. 4.3C, inset). In Appendix S4.1, we
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provide an analytical justification for this result. Taken together, these parametric
studies uncover the operational principles of the spatial proofreading scheme and
demonstrate how the speed–fidelity trade-off could be dynamically navigated as
needed by tuning the key time and length scales of the model.

4.3.3 Energy dissipation and limits of proofreading performance
A hallmark signature of proofreading is that it is a nonequilibrium mechanism with
an associated free energy cost. In our scheme, the enzyme itself is not directly
involved in any energy–consuming reactions, such as hydrolysis. Instead, the free
energy cost comes from maintaining the spatial gradient of substrates, which the
enzymatic reaction tends to homogenize by releasing bound substrates in regions of
low substrate concentration. As the activating effectors are assumed to be tethered
at G = !, they do not require dissipation to remain localized.

While mechanisms of substrate gradient maintenance may differ in their energetic
efficiency, there exists a thermodynamically dictated minimum energy that any such
mechanism must dissipate per unit time. We calculate this minimum power % as

% =
∑

S = {R,W}

∫ !

0
9S (G)`(G) dG. (4.8)

Here 9S (G) = :ondS (G)dE − :SoffdES (G) is the net local binding flux of substrate
“S”, and `(G) is the local chemical potential (see Appendix S4.2.1 for details).
For substrates with an exponentially decaying profile considered here, the chemical
potential is given by

`(G) = `(0) + :B) ln
dS (G)
dS (0)

= `(0) − :B)
G

_S

, (4.9)

where :B) is the thermal energy scale. Notably, the chemical potential difference
across the compartment, which serves as an effective driving force for the scheme,
is set by the inverse of the nondimensionalized substrate localization length scale,
namely

VΔ` =
!

_S

, (4.10)

where V−1 = :B) . This driving force is zero for a uniform substrate profile (_S →∞)
and increases with tighter localization (lower _S), as intuitively expected.

WeusedEq. 4.8 to study the relationship between dissipation andfidelity enhancement
as we tuned Δ` for different choices of the diffusion time scale g� . As can be seen
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in Fig. 4.4, power rises with increasing fidelity, diverging when fidelity reaches
its asymptotic maximum given by Eq. 4.5 in the large Δ` limit. For the bulk
of each curve, power scales as the logarithm of fidelity, suggesting that a linear
increase in dissipation can yield an exponential reduction in error. Notably, such a
scaling relationship has also been calculated in the context of E. coli chemoreceptor
adaptation [20]. In particular, it was shown that the adaptation error decreases
exponentially with energy dissipated through multiple methylation–demethylation
cycles which are used to stabilize the activity state of the receptor. Analogies in the
cost–performance trade-off across these functionally distinct mechanisms contribute
to the search for overarching thermodynamic themes underlying cellular information
processing [20–23].

The logarithmic scaling is achieved in our model when the driving force is in a range
where most of the fidelity enhancement takes place, namely

VΔ` ∈
[√
g�:

R
off,

√
g�:

W
off

]
. (4.11)

At the end of this range, the cost per substrate binding event approaches √[eq in
:B) units (see Appendix S4.2.1 for details). Beyond the range, additional error
correction is attained at an increasingly higher cost.

Note that the power computed here does not include the baseline cost of creating
the substrate gradient, which, for instance, would depend on the substrate diffusion
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constant. We only account for the additional cost to be paid due to the operation
of the proofreading scheme which works to homogenize this substrate gradient.
The baseline cost in our case is analogous to the work that ATP synthase needs
to perform in order to maintain a nonequilibrium [ATP]/[ADP] ratio in the cell,
whereas our calculated power is analogous to the rate of ATP hydrolysis by a
traditional proofreading enzyme. We discuss the comparison between these two
classes of dissipation in greater detail in Appendix S4.2.3.

Just as the cellular chemical potential of ATP or GTP imposes a thermodynamic
upper bound on the fidelity enhancement by any proofreading mechanism [24], the
effective driving force Δ` imposes a similar constraint for the spatial proofreading
model. This thermodynamic limit depends only on the available chemical potential
and is equal to 4VΔ`. This limit can be approached very closely by our model,
which for Δ` & 1 achieves the exponential enhancement with an additional linear
prefactor, namely ([/[eq)max ≈ 4VΔ`/VΔ` (see Appendix S4.2.2). Such scaling
behavior was theoretically accessible only to infinite–state traditional proofreading
schemes [24, 25]. This offers a view of spatial proofreading as a procession of
the enzyme through an infinite series of spatial filters and suggests that, from the
perspective of peak error reduction capacity, our model outperforms the finite–state
schemes.

4.3.4 Proofreading by biochemically plausible intracellular gradients
Our discussion of the minimal model thus far was not aimed at a particular
biochemical system and thus did not involve the use of realistic reaction rates and
diffusion constants typically seen in living cells. Furthermore, we did not account for
the possibility of substrate diffusion, as well as for the homogenization of substrate
concentration gradients due to enzymatic reactions, and have thereby abstracted
away the gradient maintaining mechanism. The quantitative inspection of such
mechanisms is important for understanding the constraints on spatial proofreading
in realistic settings.

Here, we investigate proofreading based on a widely applicable mechanism for
creating gradients by the spatial separation of two opposing enzymes [12, 18, 26].
Consider a protein ( that in its free state is phosphorylated by a membrane–bound
kinase and dephosphorylated by a delocalized cytoplasmic phosphatase, as shown
in Fig. 4.5A. This setup will naturally create a gradient of the active form of protein
((∗), with the gradient length scale controlled by the rate of phosphatase activity
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Figure 4.5: Proofreading based on substrate gradients formed by spatially separated
kinases and phosphatases. (A) The active form (∗ of many proteins exhibits
gradients because kinases that phosphorylate ( are anchored to a membrane while
phosphatases can diffuse in the cytoplasm [14]. An enzyme can exploit the resulting
spatial gradient for proofreading. (B) At low enzyme activity (i.e., low :ondE), the
gradient of (∗ is successfully maintained, allowing for proofreading. The upper
dashed line corresponds to the peak fidelity when the substrate profile is exponential.
At high enzyme activity (large :ondE), the dephosphorylation with rate :p = 5 s−1 is
no longer sufficient to maintain the gradient and proofreading is lost. (C) Profiles of
right substrates for different choices of enzyme activity. Numbers indicate :ondE in
s−1 units. The black line shows an exponential substrate profile with a length scale
_S =

√
�/:p ∼ 0.5 µm.

:p ((∗
:p−→ (). Such mechanisms are known to create gradients of the active forms

of MEK and ERK [14], of GTPases such as Ran (with GEF and GAP [27] playing
the role of kinase and phosphatase, respectively), of cAMP [14], and of stathmin
oncoprotein 18 (Op18) [28, 29] near the plasma membrane, the Golgi apparatus,
the ER, kinetochores, and other places.

We test the proofreading power of such gradients, assuming experimentally constrained
biophysical parameters for the gradient forming mechanism. Specifically, we
consider an enzyme � that acts on active forms of cognate ('∗) and non-cognate
(,∗) substrateswhich have off-rates 0.1 s−1 and 1 s−1, respectively (hence, [eq = 10).
These off-rates are consistent with typical values for substrates proofread by cellular
signalling systems [10, 30]. The kinases and phosphatases in our setup act identically
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on right and wrong substrates. We consider a dephosphorylation rate constant
:p = 5 s−1 that falls in the range 0.1 − 100 s−1 reported for different phosphatases
[18, 31, 32], and a cytosolic diffusion constant � = 1 µm2/s for all proteins in this
model. With this setup, exponential gradients of length scale ∼ 0.5 µm are formed
for '∗ and ,∗. We evaluate the proofreading and energetic performance of the
model in a compartment of size ! = 10 µm – a typical length scale in eukaryotic
cells (see Appendix S4.4 for details).

Though not cost–efficient, this setup achieves proofreading in a wide range of
regimes. Specifically, it is most effective when the enzyme–substrate binding is
slow, in which case the exponential substrate profile is maintained and the system
attains the fidelity predicted by our earlier explanatory model (Fig. 4.5B). The
system’s proofreading capacity is retained if the first–order on-rate is raised up to
:ondE ∼ 10 s−1, where around 10-fold increase in fidelity is still possible. If the
binding rate constant (:on) or the enzyme’s expression level (dE) is any higher, then
enzymatic reactions overwhelm the ability of the kinase/phosphatase system to keep
the active forms of substrates sufficiently localized (Fig. 4.5C) and proofreading is
lost. Overall, this model suggests that enzymes can work at reasonable binding rates
and still proofread, when accounting for an experimentally characterized gradient
maintaining mechanism.

4.4 Discussion
We have outlined a way for enzymatic reactions to proofread and improve specificity
by exploiting spatial concentration gradients of substrates. Like the classic model,
our proposed spatial proofreading scheme is based on a time delay; but unlike
the classic model, here the delay is due to spatial transport rather than transitions
through biochemical intermediates. Consequently, the enzyme is liberated from
the stringent structural requirements imposed by traditional proofreading, such
as multiple intermediate conformations and hydrolysis sites for energy coupling.
Instead, our scheme exploits the free energy supplied by active mechanisms that
maintain spatial structures.

The decoupling of the two crucial features of proofreading – time delay and free
energy dissipation – allows the cell to tune proofreading on the fly. For instance,
all proofreading schemes offer fidelity at the expense of reaction speed and energy.
For traditional schemes, navigating this trade-off is not always feasible, as it needs
to involve structural changes via mutations or modulation of the [ATP]/[ADP] ratio
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which can cause collateral effects on the rest of the cell. In contrast, the spatial
proofreading scheme is more adaptable to the changing conditions and needs of the
cell. The scheme can prioritize speed in one context, and fidelity in another, simply
by tuning the length scale of intracellular gradients (e.g., through the regulation of
the phosphotase or free enzyme concentration in the scheme discussed earlier).

On the other hand, this modular decoupling can complicate the experimental
identification of proofreading enzymes and the interpretation of their fidelity. Here,
the enzymes need not be endowed with the structural and biochemical properties
typically sought for in a proofreading enzyme. At the same time, any attempt to
reconstitute enzymatic activity in awell–mixed, in vitro assay, will showpoor fidelity
compared to in vivo measurements, even when all necessary molecular players are
present in vitro. Therefore, more care is required in studies of cellular information
processing mechanisms that hĳack a distant source of free energy compared to the
case where the relevant energy consumption is local and easier to link causally to
function.

While we focused on spatially localized substrates and delocalized enzymes, our
framework would apply equally well to other scenarios, e.g., a spatially localized
enzyme (or its active form [27, 33]) and effector with delocalized substrates, an
example of which would be an alternative version of the scheme in Fig. 4.5A where
the target of the kinase/phosphatase activity is changed from substrates to enzymes.
Our framework can also be extended to signaling cascades, where slightly different
phosphatase activities can result in magnified concentration ratios of two competing
signaling molecules at the spatial location of the next cascade step [14, 34, 35].

The spatial gradients needed for the operation of our model can be created and
maintained through multiple mechanisms in the cell, ranging from the kinase/phos-
phatase systemmodeled here, to the passive diffusion of substrates/ligands combined
with active degradation (e.g., Bicoid and other developmentalmorphogens), to active
transport processes combined with diffusion. A particularly simple implementation
of our scheme is via compartmentalization – substrates and effectors are localized
in two spatially separated compartments with the enzyme–substrate complex having
to travel from one to another to complete the reaction.

Many molecular localization pathways involving the naturally compartmentalized
parts of the cell require high substrate selectivity and are therefore potential candidates
for the implementation of spatial proofreading. For example, in polarized, asymmetric
cells (e.g., budding yeast or neuronal cells), gene expression often needs to be
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spatially regulated [36, 37]. Such regulation is achieved with designated ribonucleo-
proteins that bind specific mRNAs near the cell nucleus, perform a biased random
walk to the mRNA localization site, and deliver them for translation. During
transport, mRNAs are protected from ribosome binding and when they unbind, they
are subject to degradation which would prevent rebinding events at intermediate
locations. Another example process is the non-vesicular transport of lipids between
the membrane–bound domains of the cells (e.g., the ER, mitochondria, the Golgi
apparatus, or the plasma membrane). This transport mechanism is mediated by
lipid–transfer proteins that bind lipids on the donormembrane, diffuse to the acceptor
membrane and upon interactingwith it, undergo a conformational change, delivering
the ‘cargo’ [38]. Though the higher proximity of the two membranes is thought to
enhance the transport efficiency, it would be interesting to study the optimality of
the inter–membrane distance in the context of fidelity–transport efficiency trade-off,
given the fact that some of the lipid–transfer proteins are known to exhibit specificity
for their cognate substrates.

Our scheme may also be applicable as a quality control mechanism in protein
secretion pathways [39, 40], in high–fidelity targeting ofmembrane proteinsmediated
by signal recognition particles [41, 42], as well as in selective glycosylation reactions
in the Golgi apparatus [43]. Lastly, considering the recent advances in generating
syntheticmorphogen patterns inmulticellular organisms [44, 45], spatial proofreading
could also be employed in pathways acting on engineered protein gradients. Experi-
mental investigations of these processes in light of our work will reveal the extent
to which spatial transport promotes specificity.

In conclusion, we have analyzed the role played by spatial structures in endowing
enzymatic reactions with kinetic proofreading. Simply by spatially segregating
substrate binding from catalysis, enzymes can enhance their specificity. This
suggests that enzymatic reactions may acquire de-novo proofreading capabilities
by coupling to pre-existing spatial gradients in the cell.
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C h a p t e r S4

SUPPORTING INFORMATION FOR CHAPTER 4 |
PROOFREADING THROUGH SPATIAL GRADIENTS

The code files used for performing the different numerical studies are available as
supplementary files on the publication webpage (DOI: 10.7554/eLife.60415).

S4.1 Analytical calculations of the complex density profile and fidelity
We begin this section by deriving an analytical expression for the density profile of
substrate–bound enzymes (dES (G)) in the casewhere the d(G) ≈ constant assumption
holds. Based on this result, we then obtain expressions for fidelity in low, high, and
intermediate substrate localization regimes. We reserve the studies of speed and
fidelity in the general case of a nonuniform free enzyme profile to Appendix S4.5.

S4.1.1 Derivation of the complex density profile dES (G)
The ordinary differential equation (ODE) that defines the steady state profile of
substrate–bound enzymes is

�
d2dES

dG2︸   ︷︷   ︸
diffusion

− :SoffdES (G)︸      ︷︷      ︸
unbinding

+ :ondS (0)4−G/_S dE (G)︸                     ︷︷                     ︸
binding

= 0. (S4.1)

Here dS (0) is the substrate density at the leftmost boundary, whose value can be
calculated from the condition that the total number of free substrates is (total, namely

(total =

∫ !

G=0
dS (0)4−G/_S dG

= dS (0)_S

(
1 − 4−!/_S

)
⇒ (S4.2)

dS (0) =
(total

_S

(
1 − 4−!/_S

) . (S4.3)

In the limit of low substrate amounts where the approximation dE (G) ≈ constant is
valid, Eq. S4.1 represents a linear nonhomogeneous ODE. Hence, its solution can
be written as

dES (G) = d(h)ES (G) + d
(p)
ES (G), (S4.4)

https://doi.org/10.7554/eLife.60415
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where d(h)ES (G) is the general solution to the corresponding homogeneous equation,
while d(p)ES (G) is a particular solution.

Looking for solutions of the form �4−G/_ for the homogeneous part, we find

�

(
�

_2 − :
S
off

)
4−G/_ = 0. (S4.5)

The two possible roots for _ are ±
√
�/:Soff. Calling the positive root _ES , which

represents themean distance traveled by the substrate–bound enzymebefore releasing
the substrate, we can write the general solution to the homogeneous part of Eq. S4.1
as

d(h)ES (G) = �14
−G/_ES + �24

G/_ES , (S4.6)

where �1 and �2 are constants which will be determined from the boundary
conditions.

Since the nonhomogeneous part of Eq. S4.1 is a scaled exponential, we look for
a particular solution of the same functional form, namely d

(p)
ES (G) = �p4

−G/_S .
Substituting this form into the ODE, we obtain

�p

(
�

_2
S

− :Soff

)
4−G/_S = −:ondS (0)4−G/_S dE . (S4.7)

The constant coefficient �p can then be found as

�p =
:ondS (0)dE

:Soff −
�

_2
S

=
:ondS (0)dE

:Soff

(
1 −

�/:Soff
_2

S

)
=

:ondS (0)dE

:Soff

(
1 −

_2
ES

_2
S

) , (S4.8)

where we have used the equality _ES =

√
�/:Soff.

Now, to find the unknown coefficients �1 and �2, we impose the no-flux boundary
conditions for the density dES (G) at the left and right boundaries of the compartment,
namely

ddES

dG
��
G=0 = −

�1
_ES

+ �2
_ES

−
�p

_S

= 0, (S4.9)
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ddES

dG
��
G=!

= −�1
_ES

4
− !
_ES + �2

_ES

4
!
_ES −

�p

_S

4
− !
_S = 0. (S4.10)

Note that we did not take into account the product formation flux at the rightmost
boundary when writing Eq. S4.10 in order to simplify our calculations. This is
justified in the limit of slow catalysis – an assumption that we make in our treatment.
The above system of two equations can then be solved for �1 and �2, yielding

�1 = −
_ES

2_S

4!/_ES − 4−!/_S
sinh(!/_ES)

�p, (S4.11)

�2 =
_ES

2_S

4−!/_S − 4−!/_ES
sinh(!/_ES)

�p. (S4.12)

With the constant coefficients known, we obtain the general solution for the complex
profile as

dES (G) = �14
−G/_ES + �24

G/_ES + �p4
−G/_S

= �p

(
_ES

_S sinh(!/_ES)

[
−4
(!−G)/_ES + 4 (G−!)/_ES

2
+ 4
−G/_ES + 4G/_ES

2
4−!/_S

]
+ 4−G/_S

)
=

:ondS (0)dE

:Soff

(
1 − _2

ES/_2
S

) (
_ES

_S sinh(!/_ES)

[
− cosh

(
! − G
_ES

)
+ cosh

(
G

_ES

)
4−!/_S

]
+ 4−G/_S

)
=

:ondS (0)dE

:Soff

(
1 − _2

ES/_2
S

) (
_ES

_S sinh(!/_ES)

[
− cosh

(
! − G
_ES

)
+ cosh

(
G

_ES

)
4−!/_S

]
+ 4−G/_S

)
.

(S4.13)

S4.1.2 Density profile in low and high substrate localization regimes
If substrate localization is very poor (_S � !), the substrate distribution will be
uniform (dS (G) = d̄S = (total/!), resulting in a similarly flat profile of enzyme–
substrate complexes with their density d∞ES given by

d∞ES =
:ondS (0)dE

:Soff

=
:on d̄SdE

:Soff
. (S4.14)

This is the expected equilibrium result where the complex concentration is inversely
proportional to the dissociation constant (:Soff/:on).

In the opposite limit where the substrates are highly localized (_S � _ES , ! and
dS (0) ≈ (total/_S from Eq. S4.3), the complex density profile simplifies into

dES (G) ≈
:on(totaldE

:Soff_S (−_2
ES/_2

S)

(
−

_ES

_S sinh(!/_ES)
cosh

(
! − G
_ES

))
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=
:on(totaldE

:Soff!

!/_ES

sinh(!/_ES)
cosh

(
! − G
_ES

)
= d∞ES ×

!/_ES

sinh(!/_ES)
cosh

(
! − G
_ES

)
. (S4.15)

The G-dependence through the cosh(·) function suggests that the complex density is
the highest at the leftmost boundary and lowest at the rightmost boundary, with the
degree of complex localization dictated by the length scale parameter _ES . Notably,
this localization of complexes does not alter their total number, since the average
complex density is conserved, that is,

〈dES〉 =
∫ !

0
dES (G) dG

= d∞ES ×
!/_ES

sinh(!/_ES)
× 1
!

∫ !

0
cosh

(
! − G
_ES

)
dG

= d∞ES ×
!/_ES

sinh(!/_ES)
×
_ES

!
sinh(!/_ES)

= d∞ES . (S4.16)

Eq. S4.15 for the complex profile can be alternatively written in terms of the
diffusion time scale g� = !2/� and the substrate off-rate :Soff. Noting that !/_ES =√
!2:Soff/� =

√
g�:

S
off and introducing a dimensionless coordinate G̃ = G/!, we

find

dES (G) = d∞ES ×

√
g�:

S
off

sinh
(√
g�:

S
off

) cosh
(√
g�:

S
off(1 − G̃)

)
. (S4.17)

The above equation is what was used for generating the plots in Fig. 4.3B of the
main text for different choices of the diffusion time scale.

S4.1.3 Fidelity in low and high substrate localization regimes
Let us now evaluate the fidelity of the model in the two limiting regimes discussed
earlier. In the poor substrate localization case, which corresponds to an equilibrium
setting, the fidelity can be found from Eq. S4.14 as

[eq =
Ad∞ER
Ad∞EW

=
:Woff

:Roff
, (S4.18)

where we have employed the assumption about the right andwrong substrates having
identical density profiles. This is the expected result for equilibrium discrimination
where no advantage is taken of the system’s spatial structure.
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In the regime with high substrate localization, the enzyme–substrate complexes
have a nonuniform distribution. What matters for product formation is the complex
density at the rightmost boundary (G̃ = 1), which we obtain from Eq. S4.17 as

dES (!) = d∞ES ×

√
g�:

S
off

sinh
(√
g�:

S
off

) . (S4.19)

Substituting the above expression written for right and wrong complexes into the
definition of fidelity, we find

[ =
AdER (!)
AdEW (!)

= [eq ×

√√
:Roff

:Woff

sinh
(√
g�:

W
off

)
sinh

(√
g�:

R
off

)
=
√
[eq

sinh
(√
g�:

W
off

)
sinh

(√
g�:

R
off

) . (S4.20)

This is the result reported in Eq. 5 of the main text. To gain more intuition about it
and draw parallels with traditional kinetic proofreading, let us consider the limit of
long diffusion time scales where proofreading is the most effective. In this limit, the

hyperbolic sine functions above can be approximated as sinh(
√
g�:

S
off) ≈ 0.5 4

√
g�:

S
off ,

simplifying the fidelity expression into

[ =
√
[eq

4

√
g�:

W
off

4

√
g�:

R
off

=
√
[eq4

√
g�:

W
off−

√
g�:

R
off

=
√
[eq4

√
g�:

R
off(√[eq−1)

, (S4.21)

where we have used the definition of equilibrium fidelity (Eq. S4.18). In traditional
proofreading, a scheme with = proofreading realizations can yield a maximum
fidelity of [/[eq = [=eq. The value of = for the original Hopfield model, for instance,
is 1. It would be informative to also know the effective parameter = for the spatial
proofreading model. Dividing Eq. S4.21 by [eq, we find

[

[eq
=

1
√
[eq

4

√
g�:

R
off(√[eq−1)

= [=eq,
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4

√
g�:

R
off(√[eq−1)

= [
=+ 1

2
eq ,√

g�:
R
off

(√
[eq − 1

)
=

(
= + 1

2

)
ln [eq ⇒

= + 1
2
=

√
[eq − 1
ln [eq

√
g�:

R
off. (S4.22)

This exact result can be simplified into an approximate form when diffusion is slow
and [eq � 1, yielding the expression reported in Eq. 7 of the main text, namely,

= ≈
√
[eq

√
g�:

R
off

ln [eq
=

√
g�:

W
off

ln [eq
. (S4.23)

S4.1.4 Fidelity in an intermediate substrate localization regime
The generic expression for complex density at the rightmost boundary (G = !) can
be written using Eq. S4.13 as

dES (!) =
:ondS (0)dE

:Soff

(
1 − _2

ES/_2
S

) (
_ES

_S sinh(!/_ES)

[
cosh

(
!

_ES

)
4−!/_S − 1

]
+ 4−!/_S

)
.

(S4.24)

For the system to proofread, substrates need to be sufficiently localized (_S < !)
and diffusion needs to be sufficiently slow (g�:Soff > 1 or, _ES < !). Under
these conditions, the substrate profile can be approximated using Eq. S4.3 as
dS (G) ≈ _−1

S (total4
−G/_S , while the hyperbolic sine and cosine functions used above

can be approximated as sinh(!/_ES) ≈ cosh(!/_ES) ≈ 0.5 4!/_ES . With these
approximations, the complex density expression simplifies into

dES (!) =
:on(totaldE

:Soff_S

(
1 − _2

ES/_2
S

) (
_ES

_S

[
4−!/_S − 24−!/_ES

]
+ 4−!/_S

)
=

:on(totaldE

:Soff(_2
S − _2

ES)

(
(_S + _ES)4−!/_S − 2_ES4

−!/_ES
)
. (S4.25)

Now, depending on how _S compares with _ES , there can be two qualitatively
different regimes for the complex density, namely

dES (!) = d∞ES ×


2!
_ES

4−!/_ES , if _S � _ES

(
!/_S �

√
g�:

S
off

)
!

_S

4−!/_S , if _ES � _S

(√
g�:

S
off � !/_S

) (S4.26)

where we used the equilibrium complex density d∞ES defined in Eq. S4.14.
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Notably, the first regime effectively corresponds to the case of ideal substrate
localization where complex density is independent of the precise value of _S . The
dimensionless number

√
g�:

S
off sets the scale for the minimum !/_S value beyond

which ideal localization can be assumed. Conversely, the second regime corresponds
to the case where the distance traveled by a complex before dissociating is so short
that the complex profile is dictated by the substrate profile itself. Because of that, the
complex density reduction from its equilibrium limit is independent of the precise
values of g� and :Soff, as long as the condition _ES � _S is met.

_S � _ER _S � _ER

_S � _EW

_EW

_ER

4
!

(
_−1
EW−_

−1
ER

)
-

_S � _EW

2_S

_ER

4
!

(
_−1
S −_

−1
ER

)
[eq

Table S4.1: Fidelity of the scheme in different regimes of right and wrong complex
densities. The upper–right cell is empty because the two conditions on _S cannot be
simultaneously met, since _ER > _EW by construction (follows from :Roff < :

W
off).

The scheme yields its highest fidelity when both right and wrong complex densities
are in the first regime (ideal localization). When both densities are in the second
regime, fidelity is reduced down to its equilibrium value [eq (Table S4.1). The
transition between these two extremes happens when the density profiles of right
and wrong complexes fall under different regimes. Fidelity can be navigated in the
transition zone by tuning the substrate gradient length scale _S . This is demonstrated
in Fig. S4.1 for three different choices of [eq. In all three cases, the dimensionless
numbers

√
g�:

R
off and

√
g�:

W
off set the approximate range in which the bulk of fidelity

enhancement occurs, as stated in the main text.

S4.1.5 Optimal diffusion time scale for maximum fidelity
Fig. 4.3C of the main text illustrated the non-monotonic dependence of fidelity on
the diffusion time scale g� for different fixed values of _S . Here, we further explore
this feature by asking what sets the optimal g� .

To gain analytical insights, we focus on the case where the system can proofread,
which, as we argued in the previous section, happens when _S , _ES < !. Under
this condition, we identified two qualitatively different regimes of complex density
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Figure S4.1: The effective number of proofreading realizations (=eff) as a function
of !/_S . The shaded region represents the range of !/_S values set by the
key dimensionless numbers

√
g�:

R
off and

√
g�:

W
off. g� values chosen for the

demonstration were 60, 40, and 20 (in 1/:Roff units) for the three different choices of
[eq, respectively.

reduction (Eq. S4.26). Namely, we found that for sufficiently fast diffusion the
system acted as if the substrates were localized ideally, whereas for sufficiently
slow diffusion the complex density reduction was dictated solely by _S and did not
discriminate between the two substrate kinds. These two limiting behaviors are
indeed reflected in Fig. 4.3C where in the low g� limit (fast diffusion), the family of
curves matches the dotted ideal localization curve, while in the high g� limit (slow
diffusion), all curves decay to 1, corresponding to the loss of error correction.

An intuitive approach for identifying the optimal g� is to slow down diffusion up
to the point where the density of wrong complexes at G = ! approaches a plateau
and effectively stops decreasing. Going past this threshold would only reduce the
density of right complexes at G = !, and thereby, reduce the fidelity. We know
from Eq. S4.26 that plateauing for wrong complexes happens when _EW � _S

(equivalently,
√
g�:

W
off � !/_S). Hence, our first guess for the optimal diffusion

time scale g∗
�
is

g∗�:
W
off ∼

(
!

_S

)2
⇒ (S4.27)

g∗�:
R
off ∼

:Roff

:Woff

(
!

_S

)2
⇒ (S4.28)

g∗�/gRoff ∼
1
[eq

(
!

_S

)2
. (S4.29)
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To test the soundness of this expression, we compared its predictions to the optimal
g� values in Fig. 4.3 that were identified numerically for different choices of _S . The
results of the comparison are shown in Fig. S4.2. As can be seen, for sufficiently
high degrees of substrate localization (!/_S), the prediction of Eq. S4.29 provides a
good approximation of the true optimum. However, it is apparent that the prediction
consistently underestimates the true g∗

�
, which was expected since plateauing of

dEW (!) happens not under equality but a strict inequality condition (i.e.,
√
g∗
�
:Woff �

!/_S). Because an exact analytical expression for g∗� is not available, we performed
different approximations to the fidelity formula and found an empirical correction
term for our earlier estimate given by 2(!/_S)/

√
[eq. The prediction for g∗� with the

correction term is now accurate starting a much lower value of !/_S , corresponding
to a regime where the system proofreads once (=eff ≈ 1). Overall, these analytical
results provide good initial guesses for g∗

�
which should be refined using a numerical

approach for a higher accuracy.

100

101

102

0 5 10 15 20 25

10-1

L/λS

τ D
 /τ

of
f

R
*

n =
1

n =
2 n =

3 n =
4

n =
5

Figure S4.2: Optimal diffusion time scale for different choices of _S . Blue dots
represent the exact values obtained numerically for the data in Fig. 4.3C. Dashed
and solid lines represent the analytical estimates with and without the correction
term. Vertical lines correspond to those values of !/_S that yield an integer number
of effective proofreading realizations.

S4.2 Energetics of the scheme
We start this section by deriving an analytical expression for the minimum dissipated
power, which was used in making Fig. 4.4 of the main text. Then, we calculate the
upper limit on fidelity enhancement available to our model for a finite substrate
gradient length scale and compare this limit with the fundamental thermodynamic
bound. We end the section by providing an estimate for the baseline cost of setting
up gradients and compare this cost with the maintenance cost reported in the main
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text. Similar to our treatment of Appendix S4.1, here too our calculations are based
on the dE ≈ constant assumption to allow for intuitive analytical results.

S4.2.1 Derivation of the minimum dissipated power
As stated in the main text, we calculate the minimum rate of energy dissipation
necessary for maintaining the substrate profiles as

% =
∑

S=R,W

∫ !

0
9S (G)`(G)dG, (S4.30)

where 9S (G) = :ondS (G)dE − :SoffdES (G) is the net local substrate binding flux and
`(G) = `(0)+:B) ln dS (G)/dS (0) = `(0)−:B) ·G/_S is the local chemical potential.

Our choice for the expression of power at steady state is motivated by that fact
that the enzyme transport is passive and therefore, energy needs to be spent only
on counteracting the local binding/unbinding events that tend to homogenize the
substrate profile. To demonstrate the validity of our proposed expression more
formally, we invoke the standard approaches for calculating power [1, 2]. In
particular, for a system that is described through discrete states with transition
rates :8→ 9 between them, the rate of energy dissipation at steady state is given by

% = :B)
∑
8> 9

(�8→ 9 − � 9→8) ln
:8→ 9

: 9→8
, (S4.31)

where �8→ 9 is the flux from state 8 into state 9 . We note here that a similar expression
for the rate of total entropy production involves a ln(�8→ 9/� 9→8) term (statistical
forces) instead of the ln(:8→ 9/: 9→8) term (deterministic driving forces). At steady
state, however, these two expressions are mathematically equivalent [2]. Our choice
for Eq. S4.31 stems from the better physical intuition that it provides in our context.

So far, the description of our system has been in terms of continuous density
functions. To apply Eq. S4.31 for calculating power, we consider the discrete–
state representation of enzyme dynamics shown in Fig. S4.3. There, space is
discretized into intervals of size XG and diffusion is represented through jumps
between neighboring sites with a rate �/XG2. What keeps the system out of
equilibrium is the spatially varying substrate profile dS (G).

Because forward and backward diffusive transitions have identical rates, according
to Eq. S4.31 they will not contribute to energy dissipation (since ln(1) = 0). The
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Figure S4.3: Discrete–state representation of diffusive transport and substrate
binding/unbinding events. Transparent clusters of different numbers of substrates
illustrate the spatial variation of substrate concentration.

contribution from the remaining substrate binding/unbinding events can then be
written as

% = :B)
∑

S=R,W

∑
8

(
:ondS (G8) × X=E8 − :Soff × X=

ES
8

)
ln
:ondS (G8)
:Soff

, (S4.32)

where X=E
8
= dEXG and X=ES

8
= dES (G8)XG are the numbers of free and substrate–

bound enzymes, respectively, in the [G8, G8 + XG] interval. In the limit of a large
number of discrete spatial intervals, the sum over 8 in Eq. S4.32 can be rewritten as
an integral over the coordinate G, namely

% = :B)
∑

S=R,W

∫ ∞

G=0

(
:ondS (G)dE − :SoffdES (G)

)
︸                            ︷︷                            ︸

9S (G)

ln
:ondS (G)
:Soff

dG. (S4.33)

Comparing the form of Eq. S4.33 to that of Eq. S4.30 (with `(G) substituted), one
can notice a difference in the terms that multiply 9S (G). Specifically, in Eq. S4.30
we have `(G) = `(0) − :B) ln dS (0) + :B) ln dS (G) while the corresponding term
in Eq. S4.33 is :B) ln(:on/:Soff) + :B) ln dS (G). The difference between them,
however, is in the parts that do not depend on G, while the spatially varying parts
(namely, the :B) ln dS (G) contributions) are identical. Now, since the number of
bound complexes is constant at steady state, we have

∫ ∞
0 9S (G) dG = 0. This means

that the G-independent parts discussed earlier all integrate to zero, making the power
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estimates by Eq. S4.30 and Eq. S4.33 identical, thereby justifying our proposed
expression.

To estimate power, we substitute the analytical expression for dES (G) found earlier
(Eq. S4.13) into 9S (G) and, performing a somewhat cumbersome integral, obtain

V% = �bind
∑

S=R,W

1
1 − _2

S/_2
ES

(
_ES

_S

tanh
(
!/2_ES

)
tanh

(
!/2_S

) − 1
)
, (S4.34)

where V−1 = :B) , and �bind = :on(totaldE is the net binding rate of each substrate.
Fig. 4.4 in the main text was made using this expression for power.

To get additional insights about this result, let us consider the case where substrates
are highly localized (_S � !) and diffusion is slow (_ES � !) – conditions needed
for effective proofreading. Under these conditions, the hyperbolic tangent terms
become 1 and the expression for the power expenditure simplifies into

V% = �bind
∑

S=R,W

_2
ES

_S (_ES + _S)
. (S4.35)

The monotonic increase of power with _ES suggests that energy is primarily spent
on maintaining the concentration gradient of right substrates. This is not surprising,
since typically right complexes travel amuch greater distance into the lowconcentration
region of the compartment before releasing the bound substrate (i.e., _ER � _EW).
Therefore, neglecting the contribution from wrong substrates and considering the
range of _S values where the bulk of power–fidelity trade-off takes place (_ER >

_S > _EW), we further simplify the power expression into

V% ≈
�bind_ER

_S

=
�bind · VΔ`√

g�:
R
off

, (S4.36)

where we used the identities VΔ` = !/_S and _ER = !/
√
g�:

R
off. This simple

linear relation suggests that in order to maintain the exponential substrate profile,
the minimum energy spent per substrate binding event should be at least %/�bind ≈
:B) · _ER/_S > 1 :B) (since _ER > _S).

We can also use Eq. S4.36 to estimate the minimum dissipation per substrate binding
event at _S ≈ _EW where the logarithmic power–fidelity scaling regime ends (see
Fig. 4.4 of the main text). Substituting the value of _S , we obtain V%/�bind ≈
(_ER/_EW) =

√
[eq, which is the result illustrated in Fig. 4.4.
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S4.2.2 Limits on fidelity enhancement
The error reduction capacity of the spatial proofreading scheme improves with a
greater difference in substrate off-rates, as was demonstrated in Fig. 4.2 of the main
text. At the same time, Fig. 4.3C showed that the finite length scale of substrate
localization (or finite driving force) sets an upper limit on fidelity enhancement
for substrates with fixed off-rates. It is therefore of interest to consider these two
features together to find the absolute limit on fidelity enhancement available to our
model, and then compare it with the fundamental bound set by thermodynamics.

Intuitively, fidelity will be enhanced the most if the density of right complexes does
not decay across the compartment, while that of wrong complexes decaysmaximally.
The first condition can be met if diffusion is fast or if the unbinding rate of right
substrates is low, in which case we have

dER (!) ≈ d∞ER , (S4.37)

where d∞ER is the equilibrium density of right complexes. Conversely, when the
unbinding rate of wrong substrates is very large, the density of wrong complexes is
maximally reduced at the rightmost boundary and can be obtained from Eq. S4.24
by taking the _ES → 0 limit, namely

dEW (!) ≈
:ondEdS (0)4−!/_S

:Woff
=

:ondE(total4
−!/_S

_S

(
1 − 4−!/_S

)
:Woff

=
:ondE(total

:Woff!
× !4−!/_S

_S

(
1 − 4−!/_S

)
= d∞EW ×

VΔ` 4−VΔ`

1 − 4−VΔ`
. (S4.38)

Here d∞EW is the equilibrium density of wrong complexes, and VΔ` = !/_S is the
effective driving force of the scheme. Taking the ratio of Eqs. S4.37 and S4.38, we
obtain the largest fidelity enhancement of the scheme for the given driving force,
namely

[max =
dER (!)
dEW (!)

=
d∞ER
d∞EW︸︷︷︸
[eq

×4
VΔ` − 1
VΔ`

⇒ (S4.39)

(
[/[eq

)max
= (4VΔ` − 1)/VΔ`. (S4.40)

When VΔ` & 1 (or, _S . !), the limit above gets further simplified into(
[/[eq

)max ≈ 4VΔ`/VΔ`. (S4.41)
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Figure S4.4: Fidelity enhancement as a function of the effective driving force for
varying choices of :Woff. The red dashed line indicates the thermodynamic bound
given by 4VΔ`. The black dashed line corresponds to the model’s upper limit on
fidelity enhancement given by Eq. S4.40.

Now, thermodynamics imposes an upper bound on fidelity enhancement by any
proofreading scheme operating with a finite chemical potential Δ`. This bound is
equal to 4VΔ` and is reached when the entire chemical potential is used to increase
the free energy difference between right and wrong substrates [3]. Comparing it
with the result in Eq. S4.41, we can see that fidelity enhancement in the spatial
proofreading model has the same exponential scaling term, but with an additional
linear factor. Since the dominant contribution comes from the exponential term (as
captured also in Fig. S4.4), we can claim that our proposed model can operate very
close to the fundamental thermodynamic limit.

S4.2.3 Energetic cost to set up a concentration gradient
Earlier in the section, we calculated the rate at which energy needs to be dissipated
to counteract the homogenizing effect that enzyme activity has on the substrate
gradient. In addition to this cost, however, there is also a baseline cost for setting
up a gradient in the absence of any enzyme. Here, we calculate this cost in the case
where the gradient formation mechanism needs to work against diffusion that tends
to flatten the substrate profile.

As before, we consider an exponentially decaying substrate gradient with a decay
length scale _S and a total number of substrates (total. We write the minimum power
%� required for counteracting the diffusion of substrates as

%� = −
∫ !

0
�� (G)`′(G) dG, (S4.42)
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where �� = −�S∇dS (G) is the diffusive flux, with �S being the substrate diffusion
constant. The rationale for writing this form is that diffusionmoves substrates from a
higher chemical potential region into a neighboring lower chemical potential region.
The gradient maintaining mechanism would need to spend at least this chemical
potential difference (X` = −`′(G)XG) per each substrate diffusing a distance XG
down the chemical potential gradient. Adding up the contribution from all local
neighborhoods with a local diffusive flux �� (G) results in Eq. S4.42.

Now, substituting dS (G) ∼ 4−G/_S for the substrate profile and `(G) = `(0) +
:B) ln

(
dS (G)/dS (0)

)
for the chemical potential, we obtain

V%� =

∫ !

0
�Sd

′
S (G)

(
ln dS (G)

)′ dG

= �S

∫ !

0

(
d′S (G)

)2

dS (G)
dG

= �S

∫ !

0

dS (G)
_2

S

dG

=
�S(total

_2
S

, (S4.43)

where in the third step, we used the relation d′S (G) = −dS (G)/_S . This suggests
that the minimum dissipated power required for setting up an exponential gradient
increases quadratically with decreasing localization length scale _S .

It is informative to also make a comparison between this result and the earlier
calculated minimum dissipation needed to counteract the enzyme’s homogenizing
activity. Recall that when substrates were sufficiently localized and when diffusion
was sufficiently slow, proofreading power could be approximated as (Eq. S4.35)

V% ≈ �bind
_2

ES

_S (_ES + _S)
, (S4.44)

where �bind = :on(totaldE is the total substrate binding flux. Using the identities
_ES =

√
�/:Soff and  S

d = :Soff/:on, we can calculate the ratio of the proofreading
power to baseline power as

%

%�
=
:on(totaldE_

2
ES

�S(total
×

_2
S

_S

(
_ES + _S

)
=
�

�S

×
dE

 S
d
×

_S/_ES

1 + _S/_ES

. (S4.45)
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Presuming for simplicity that the enzyme and substrate diffusion constants are the
same, we see that two factors determine the power ratio: 1) the amount of free
enzyme in the system (dE/ S

d ) and 2) the substrate localization length scale relative
to the characteristic length scale of complex diffusion (_S/_ES). Now, recall that
the proofreading cost is spent largely on counteracting the homogenizing activity
of the enzyme on right substrates (Appendix S4.2.1) and that the bulk of fidelity
enhancement takes place when _S . _ER (Appendix S4.1.4). Therefore, when
tuning _S down, initially the power ratio would only depend on the amount of free
enzyme in the system (dE/ S

d ), and then, with tighter substrate localization, the
relative contribution of the proofreading power would start to decrease.

In the end, we would like to note that spatial gradients can also be set up using an
external potential without a continuous dissipation of energy. In an in vivo setting,
gravity can give rise to spatial structures in oocytes [4], while in an in vitro setting,
electric fields can create gradients and power the transport of the complex [5]. We
leave the investigations of such alternative strategies to future work.

S4.3 Studies on the effect of catalysis on the model performance
In Appendix S4.1, we considered the rate of catalysis at the right boundary to be very
small for the analytical simplicity of our derivations. This resulted in expressions
for fidelity that were independent of the rate of catalysis A and allowed us to use the
complex density at the right boundary as a proxy for speed. In this section, we relax
this assumption and explore the consequences of having non-negligible catalysis
rates on the model’s fidelity and on the speed–fidelity trade-off.

S4.3.1 Derivation of the complex density profile dES (G)
Accounting for catalysis in our model should be done through a boundary condition
for the complex density equation (Eq. S4.1). Earlier, we imposed a no-flux boundary
condition at G = ! under the slow catalysis assumption. With non-negligible
catalysis, this assumption is no longer valid, and the boundary condition is modified
into

−�
ddES

dG
��
G=!

= AdES (!)︸   ︷︷   ︸
catalysis flux

. (S4.46)

Recall from Eqs. S4.4, S4.6 and S4.8 that the general solution for the complex profile
had the form

dES (G) = �14
−G/_ES + �24

G/_ES + �?4−G/_S , where (S4.47)
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�? =
:ondS (0)dE

:Soff

(
1 −

_2
ES

_2
S

) . (S4.48)

Imposing the no-flux boundary condition at G = 0 allows us to eliminate one of the
integration constants, namely,

−�
ddES

dG
��
G=0 = −�

(
−�1
_ES

+ �2
_ES

−
�?

_S

)
= 0⇒ (S4.49)

�2 = �1 +
_ES

_S

�? ⇒ (S4.50)

dES (G) = �1

(
4−G/_ES + 4G/_ES

)
+
�?

_S

(
_ES4

G/_ES + _S4
−G/_S

)
= 2�1 cosh(G/_ES) +

�?

_S

(
_ES4

G/_ES + _S4
−G/_S

)
. (S4.51)

Next, we impose the new boundary condition at G = ! (Eq. S4.46), which yields

−�
(

2�1
_ES

sinh(!/_ES ) +
�?

_S

(
4!/_ES − 4−!/_S

))
= A

(
2�1 cosh(!/_ES ) +

�?

_S

(
_ES4

!/_ES + _S4
−!/_S

))
⇒

2�1 sinh(!/_ES ) +
�?

_S

_ES

(
4!/_ES − 4−!/_S

)
= −

_ESA

�︸︷︷︸
Y

(
2�1 cosh(!/_ES ) +

�?

_S

(
_ES4

!/_ES + _S4
−!/_S

))
.

(S4.52)

Note that we have introduced the dimensionless variable Y, which, as we will see
later, will define the extent to which the presence of catalysis affects the fidelity. For
convenience, here we write different equivalent forms for Y as

Y =
_ESA

�
=

A√
�:Soff

=
A

!:Soff

√
g�:

S
off. (S4.53)

Solving for the remaining unknown coefficient �1 in Eq. S4.52, we find

�1 = −
�?

2_S

_ES

(
4!/_ES − 4−!/_S

)
+ Y

(
_ES4

!/_ES + _S4
−!/_S

)
sinh(!/_ES) + Y cosh(!/_ES)

. (S4.54)

Lastly, we substitute this result for�1 into Eq. S4.51 and obtain a general expression
for the complex density profile as

dES (G) = −
�?

_S

_ES

(
4!/_ES − 4−!/_S

)
+ Y

(
_ES4

!/_ES + _S4
−!/_S

)
sinh(!/_ES ) + Y cosh(!/_ES )

cosh(G/_ES ) +
�?

_S

(
_ES4

G/_ES + _S4
−G/_S

)
.

(S4.55)

One can show in a straightforward way that this result reduces to Eq. S4.13 in the
Y → 0 limit.
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S4.3.2 Effects on fidelity in low and high substrate localization regimes
Accounting for the catalysis flux has made the general expression for the complex
density profile even more incomprehensible. In order to gain insights about the
qualitative as well as quantitative changes introduced by catalysis, we will focus
on two characteristic limits of substrate localization – uniform substrate profile
(_S →∞) and ideal substrate localization (_S → 0).

S4.3.2.1 Uniform substrate profile

In this case, no mechanism for localizing substrates is in play. Let us start off by
evaluating the coefficient �? (Eq. S4.48) in the _S → ∞ limit. Recalling from
Eq. S4.3 that dS (0) = (total/(_S (1 − 4−!/_S )), we find

dS (0) ≈
(total
!
⇒ (S4.56)

�? ≈
:ondS (0)dE

:Soff

≈
:on(totaldE

!:Soff

=
�bind

!:Soff
, (S4.57)

where �bind = :on(totaldE is the total substrate binding flux.

Substituting the expression for �? into Eq. S4.55 and eliminating all the terms that
vanish upon taking the _S →∞ limit, we obtain

dES (G) ≈ �?
(
1 −

Y cosh(G/_ES)
sinh(!/_ES) + Y cosh(!/_ES)

)
=
�bind

!:Soff
×

sinh(!/_ES) + Y
(
cosh(!/_ES) − cosh(G/_ES)

)
sinh(!/_ES) + Y cosh(!/_ES)

. (S4.58)

Ultimately, we are interested in knowing the rate of product formation defined via
ES = AdES (!). We therefore evaluate the complex density at G = ! and multiply it
by A, which yields

ES = AdES (!) = �bind ×
(
A

!:Soff

)
×

sinh(!/_ES)
sinh(!/_ES) + Y cosh(!/_ES)

= �bind ×
(
A

!:Soff

)
×

tanh(!/_ES)
tanh(!/_ES) + Y
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≡ �bind ×
(
A

!:Soff

)
×

tanh
(√
g�:

S
off

)
tanh

(√
g�:

S
off

)
+ Y

, (S4.59)

where in the last step, we wrote an equivalent expression using the !/_ES =

√
g�:

S
off

identity. To analyze this result further, we will consider two limiting cases.

Case 1: Fast diffusion (
√
g�:

S
off � 1). If diffusion is fast, we can approximate

the hyperbolic tangent functions as the arguments themselves (i.e., tanh(I) ≈ I for
I � 1). Then, using the last form of Y in Eq. S4.53, we simplify the expression for
speed as

ES ≈ �bind ×
(
A

!:Soff

)
×

√
g�:

S
off√

g�:
S
off +

A

!:Soff

√
g�:

S
off

= �bind ×
(
A

!:Soff

)
× 1

1 + A

!:Soff

⇒ (S4.60)

ES = �bind ×
Ã

:Soff + Ã
, where (S4.61)

Ã = A/!. (S4.62)

This is an intuitive result, suggesting that an enzyme that diffuses fast acts like a
standard Michaelis–Menten enzyme with an effective catalysis rate Ã. For such an
enzyme, the probability of catalysis for a bound substrate is Ã/(:Soff+ Ã). Multiplying
this probability by the net substrate binding flux yields the expression for speed in
Eq. S4.61.

Fidelity of the model in this fast diffusion setting can be written as

[ =
ER
EW

=
:Woff + Ã
:Roff + Ã

. (S4.63)

In the limit where catalysis is very slow (Ã � :Roff), the equilibrium fidelity given by
the ratio of off-rates is recovered, and in the opposite limit of very fast catalysis (Ã �
:Woff), the discriminatory capacity of the enzyme disappears altogether (Fig. S4.5A).

Case 2: Slow diffusion (
√
g�:

S
off & 1). A more interesting case is when diffusion

is slow. Now, the hyperbolic tangent functions in Eq. S4.59 are approximately 1,
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Figure S4.5: Dependence of fidelity on the catalysis rate in the case where the
substrate profile is uniform. (A) Fast diffusion setting (

√
g�:

R
off � 1). The highest

fidelity reduction is a factor of [eq. (B) Slow diffusion setting (
√
g�:

R
off & 1). The

highest fidelity reduction is a factor of √[eq. In both cases, [4@ = 10 was used.

allowing us to simplify the expression for speed into

ES = �bind ×
(
A

!:Soff

)
× 1

1 + A

!:Soff

√
g�:

S
off

= �bind ×
Ã

:Soff + Ã
√
g�:

S
off

. (S4.64)

Drawing an analogy between the above result and Eq. S4.61, one can notice the
presence of an extra

√
g�:

S
off factor for Ã in the denominator.

Evaluating the speeds of right and wrong product formation, we can write fidelity
in this slow diffusion setting as

[ =
ER
EW

=
:Woff + Ã

√
g�:

W
off

:Roff + Ã
√
g�:

R
off

. (S4.65)

Like the fast diffusion case, when catalysis is very slow (Ã �
√
:Roff/g� or,

equivalently, A �
√
�:Roff), the equilibrium fidelity is recovered. Unlike the fast

diffusion case, however, if catalysis is very fast (A �
√
�:Woff), the enzyme partly

preserves its discriminatory capacity (Fig. S4.5B). In this limit, a fidelity equal to
the square root of the equilibrium fidelity is still attainable, namely



133

[ ≈

√
:Woff√
:Roff

=
√
[eq. (S4.66)

This unexpected result suggests a potential advantage of localizing fast catalytic
reactions instead of having them occur in a well–mixed solution.

S4.3.2.2 Ideal substrate localization

We next consider the effect of catalysis on model fidelity in the ideal substrate
localization limit (_S → 0). We begin by evaluating the �?/_S ratio that appears in
the density profile expression (Eq. S4.55). Using Eqs. S4.48 and S4.3, we find

dS (0) ≈
(total
_S

(S4.67)

�?

_S

=
:ondS (0)dE

_S:
S
off(1 − _2

ES/_2
S)

≈ −
:on(totaldE

−:Soff_2
ES

= −�bind
�

, (S4.68)

where in the last step, we invoked the identities _2
ES = �/:

S
off and �bind = :on(totaldE .

We then substitute our result for �?/_S into Eq. S4.55 and simplify the complex
density expression into

dES (G) =
�bind
�
× _ES

(
4!/_ES + Y4!/_ES

sinh(!/_ES) + Y cosh(!/_ES)
cosh(G/_ES) − 4G/_ES

)
= �bind ×

_ES

�

cosh((! − G)/_ES) + Y sinh((! − G)/_ES)
sinh(!/_ES) + Y cosh(!/_ES)

. (S4.69)

To obtain the speed, we evaluate dES (G) at the right boundary (G = !) and multiply
it by A, namely

ES = AdES (!) = �bind
_ESA

�︸︷︷︸
Y

1
sinh(!/_ES) + Y cosh(!/_ES)

= �bind ×
Y

sinh
(√
g�:

S
off

)
+ Y cosh

(√
g�:

S
off

) . (S4.70)
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To evaluate the effect of catalysis further, we again consider two special limits –
those of fast and slow diffusion.

Case 1: Fast diffusion (
√
g�:

S
off � 1). In this limit, the hyperbolic sine function

can be approximated by its argument (i.e., sinh(I) ≈ I for I � 1), while the
hyperbolic cosine function is approximately 1. Making these approximations and
substituting the expression for Y, we obtain

ES ≈ �bind ×

A

!:Soff

√
g�:

S
off√

g�:
S
off +

A

!:Soff

√
g�:

S
off

= �bind ×

A

!:Soff

1 + A

!:Soff

= �bind ×
Ã

:Soff + Ã
. (S4.71)

This result is identical to what we found in the fast diffusion limit for the _S → ∞
setting (Eq. S4.61), which is reasonable, since the location of substrate binding is
irrelevant if diffusion is very fast (Fig. S4.6A).
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Figure S4.6: Fidelity as a function of the catalysis rate in an ideal substrate
localization setting. (A) Fast diffusion case, where the behavior of the system is
identical to that in Fig. S4.5A. (B) Slow diffusion case where efficient proofreading
is achieved. Catalysis can reduce the fidelity by up to a factor of√[eq. In both cases,
[4@ = 10 was used.
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Case 2: Slow diffusion (
√
g�:

S
off � 1). In this limit, the hyperbolic sine and cosine

functions can be approximated as exponentials with a 1/2 prefactor, simplifying the
expression of speed into

ES ≈ �bind ×
2Y

1 + Y 4
−
√
g�:

S
off . (S4.72)

Recalling the identity Y = A/
√
�:Soff (note that Y depends on the substrate kind), we

evaluate the speed for right and wrong product formation and, dividing them, obtain
the fidelity as

[ =
ER
EW
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√
�:Woff

1 + A/
√
�:Roff

×

√
:Woff√
:Roff
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√
�:Roff

× √[eq4
√
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R
off (
√
[eq−1)

. (S4.73)

In the case where catalysis is slow (A �
√
�:Roff), the first term in the fidelity

expression becomes approximately 1, and our earlier result obtained with no account
of catalysis is recovered (Eq. S4.21). In the opposite limit of fast catalysis (A �√
�:Woff), the first term is no longer 1, and we find

[ ≈

√√
:Roff

:Woff

√
[eq︸       ︷︷       ︸

1

4

√
g�:

R
off (
√
[eq−1)

= 4

√
g�:

R
off (
√
[eq−1)

. (S4.74)

As we can see, fast catalysis in the slow diffusion regime reduces the fidelity by
√
[eq or, equivalently, reduces the effective number of proofreading realizations by

one half, without affecting the exponential amplification term (Fig. S4.6B).

To conclude, our study demonstrated the expected reduction of fidelitywith increasing
catalysis rate. In the case of fast diffusion, up to a factor of [eq reduction is possible,
as is the case for the original Hopfield model [6, 7]. In the case of slow diffusion,
however, the cap on the amount of reduction is decreased to √[eq. The advantage
of this feature is most notable in the limit of a non-localized (i.e., uniform) substrate
profile and fast catalysis where a diffusing enzyme is still capable of discriminating
between substrates. This behavior would not be possible for a Michaelis–Menten
enzyme in a well-mixed solution.
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S4.3.3 Effects on the speed–fidelity trade-off
In Fig. 4.3A of the main text, we explored the speed–fidelity trade-off in the slow
catalysis limit. This trade-off arose in response to tuning the substrate localization
length scale (_S) and the diffusion time scale (g�). Here, we explore the changes to
this trade-off behavior in the case where the effects of catalysis are not negligible.
For concreteness, we focus on alterations to the Pareto front of the trade-off achieved
in the _S → 0 limit.

Fig. S4.7A compares the Pareto fronts in the cases of slow and fast catalysis limits.
In each case, speed is normalized by the corresponding effective Michaelis–Menten
speed that is reached in the fast diffusion limit and is given by EMM = �bind× Ã/(:Roff+
Ã), where Ã = A/!. One can notice a shift of the fast catalysis front toward the low
fidelity region, which was expected since earlier, we observed the complete loss of
substrate discrimination when diffusion and catalysis were both fast (Fig. S4.6A).
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Figure S4.7: Pareto front of the speed–fidelity trade-off at different levels of catalytic
activity. (A) Cases of slow and fast catalysis limits, with the H-axis for speed
normalized to the [0,1] interval. (B) Family of Pareto fronts for different choices of
the catalysis rate. Speed on the H-axis is reported relative to the substrate binding
flux �bind.

Fig. S4.7A may leave an impression that faster catalysis leads to a less favorable
speed–fidelity trade-off. Note, however, that the speed EMM (Ã) used to normalize the
H-axis is itself a function of the catalysis rate and penalizes the fast catalysis case
more than its slow counterpart. To eliminate this ambiguity, we plotted a family
of Pareto fronts for increasing values of the catalysis rate but this time normalizing
the H-axis by the A-independent quantity �bind (Fig. S4.7B). As can be seen, faster
catalysis in fact improves the speed–fidelity trade-off, meaning that in order to
maximize fidelity at a given speed level, the best strategy would be to increase the
catalysis rate and correspondingly slow down the diffusion. A trade-off between
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speed and fidelity also arises in response to the sole alteration of the catalysis rate,
while keeping the rest of the model parameters fixed. To explore this trade-off for an
arbitrary fixed choice of _S and g� , we begin by evaluating speed from Eq. S4.55,
namely

ES = AdES (!)

= A ×
(
−
�?

_S

_ES

(
4!/_ES − 4−!/_S

)
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(
_ES4

!/_ES + _S4
−!/_S

)
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sinh(!/_ES) + Y cosh(!/_ES)︸                                                                                                          ︷︷                                                                                                          ︸
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= A ×
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(_S sinh(!/_ES) + _ES cosh(!/_ES))4−!/_S − _ES

sinh(!/_ES) + Y cosh(!/_ES)

=
0SA

1 + 1SA
. (S4.75)

In the last step we introduced coefficients 0S and 1S that are independent from A,
and used the fact that Y ∼ A.

Now, using the definition of fidelity and the result obtained above, we can write

[ =
ER
EW

=
0R

0W

1 + 1WA

1 + 1RA
. (S4.76)

Notice that the ratio 0R/0W ≡ [0 is the fidelity in the limit of very slow catalysis
(A → 0). Substituting it, we write

[ = [0

(
1 + 1RA − (1R − 1W)A

1 + 1RA

)
= [0

(
1 − (1R − 1W) ×

A

1 + 1RA︸   ︷︷   ︸
ER/0R

)
⇒ (S4.77)

[ = [0

(
1 − Δ1

0R

ER

)
, (S4.78)

where Δ1 = 1R − 1W . Recalling that Y = _ESA/� and noting the function form of
the denominator in Eq. S4.75, one can show that 1S = �

−1_ES/tanh(!/_ES). This
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is an increasing function of _ES , and hence, a decreasing function of :Soff, implying
that Δ1 > 0.

With this condition in mind, we can see from Eq. S4.78 that speed and fidelity are
anticorrelated with a linear slope when tuning the catalysis rate, unlike the more
sophisticated trade-off relations when tuning the other model parameters. The peak
fidelity [0 is attained in the limit of vanishing speed. And conversely, speed is the
highest when fidelity is the lowest for the given fixed values of _S and g� (Fig. S4.8).
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Figure S4.8: Linear trade-off between speed and fidelity when tuning the rate of
catalysis. [min is the fidelity in the fast catalysis limit and is up to [eq lower than [0
(based on the results of the previous section). Linear scale is used for both axes.

Overall, our result illustrates the simple speed–fidelity trade-off that can be navigated
by tuning the catalysis rate. This, for instance, can be achieved by changing the
concentration of effectors that activate the enzyme for catalysis.

S4.4 Proofreading for substrates with different localization conditions
Following the original treatment by Hopfield [6], we have performed the studies
of our model under the assumption that discrimination between right and wrong
substrates is solely based on their off–rates (:Woff > :Roff). Though this is often the
signature difference between substrates, in a cellular setting, substrate discrimination
may occur through other factors also. For example, substrates may be present at
different amounts or they may have non-identical on–rates. These differences,
however, have a multiplicative effect on the fidelity (i.e., [ ∼ :Ron/:Won × [R]/[W]) and
do not highlight the proofreading capacity of a particular model.

Unlike these two features, differences in the degree to which right and wrong
substrates are localized can have a non-trivial effect on the proofreading performance.
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In this Appendix, we generalize our study of the model fidelity to cases where right
andwrong substrates have unequal localization length scales_R and_W , respectively.

S4.4.1 Limiting cases
We start off by exploring the limiting cases first. From the earlier derived Eq. S4.14
and Eq. S4.15, we know that the complex density at G = ! in very low (_S � !)
and very high (_S � !) substrate localization regimes is given by

d∞ES =
:on d̄SdE

:Soff
and (S4.79)

didealES (!) = d
∞
ES ×

!/_ES

sinh(!/_ES)
, (S4.80)

respectively. Note that the complex density in the ideal localization case is necessarily
lower than that in the case of a uniform profile, since the inequality sinh(!/_ES) >
!/_ES holds for all choices of _ES . If _R and _W are not constrained to be equal,
then the highest fidelity for a given g� will be attained when the right substrates are
distributed uniformly while the wrong substrates are highly localized (_R � ! and
_W � !, respectively). We obtain the fidelity in this case as

[max =
d∞ER

didealEW (!)

=
d∞ER
d∞EW
×

sinh(!/_EW)
!/_EW

= [eq ×
sinh(!/_EW)
!/_EW

⇒ (S4.81)
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sinh
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W
off

)
√
g�:

W
off

. (S4.82)

Notably, this result for maximum fidelity enhancement is independent of :Roff.
Furthermore, it exceeds the ideal localization fidelity reported in the main text
(Eq. 5, derived in the _R , _W → 0 limit), which was expected since now the right
complexes on average travel a shorter distance to reach the activation site than the
wrong complexes.

In the opposite scenario where the wrong substrates are uniformly distributed and
the right ones are highly localized (_R � ! and _W � !, respectively), the system
attains its lowest fidelity for a given g� , namely,

[min =
didealER (!)
d∞EW



140

=
d∞ER
d∞EW
×

!/_ER

sinh(!/_ER)

= [eq ×
!/_ER

sinh(!/_ER)
⇒ (S4.83)
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off

sinh
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R
off

) . (S4.84)

Since !/_ER < sinh(!/_ER), the lowest fidelity is less than the equilibrium fidelity
itself ([min < [eq), suggesting that the enzyme may in fact do anti-proofreading [8]
if the wrong substrates are generally closer to the catalytic site.

S4.4.2 Intermediate levels of substrate localization
In Fig. 4.3 inset as well as in Appendix S4.1.4, we explored the dependence of
fidelity on the substrate localization length scale _S when it was the same for the
two substrate kinds. Here, we expand this study to the case where this constraint is
relaxed.

In particular, using Eq. S4.24, we calculate complex densities and corresponding
fidelity values as a function of _R for different fixed choices of the length scale
ratio _R/_W . The results of the study are captured in Fig. S4.9. In the special case
where the two length scales are equal (_R = _W , solid black line), fidelity exhibits
a monotonic dependence on !/_R , and in the limit of ideal localization (very large
!/_R) the result in Eq. 5 of the main text is recovered.

When _R ≠ _W , the dependence of fidelity on !/_R is no longer monotonic. If right
substrates are more localized than the wrong ones (red curves), then the fidelity
curves have a minimum where the enzyme does anti-proofreading (i.e., [ < [eq).
The proofreading portion of the curves (when [ > [eq) is shifted to the right,
suggesting that much higher substrate localization is needed for the enzyme to
proofread.

The opposite case is when the right substrates have a shallower gradient than the
wrong ones (blue curves). The fidelity curves are now shifted to the left and have
a peak that is greater than the large !/_R limit of fidelity. This means that there is
an optimal degree of substrate localization, going beyond which makes the model
performance worse in terms of both error correction and energy consumption.

Over the course of its diffusive transport, a bound enzyme is more likely to deposit
a right substrate in a substrate–depleted region than a wrong one, because right
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Figure S4.9: Fidelity as a function of !/_R for different choices of the ratio _R/_W .
The solid black line corresponds to the earlier studied regime where substrates had
identical localization length scales. The blue curves represent the cases where
_R > _W , while the red curves represent the cases where _R < _W . Numbers next to
the curves correspond to the _R/_W ratios used for generating them. Expressions for
the highest and lowest fidelity values, as well as the fidelity expression in the limit
where both substrates are highly localized are shown on the right side of the figure.
g� = 40 gRoff and [eq = 10 were used for demonstration.

substrates stay attached to the enzyme for a longer time. Therefore, if the gradient–
maintainingmechanism does not discriminate between substrates (which we assume
is the case for the kinase/phosphatase–based one), then it will be easier for it to
maintain the wrong ones localized since they tend to get deposited closer to the
localization site (see Fig. S4.14C as an example). This means that in a realistic
setting, the spatial organization of substrates is more likely to be in the advantageous
blue region of Fig. S4.9 where _R > _W , facilitating the realization of spatial
proofreading.

S4.5 Studies on the validity of the uniform free enzyme profile assumption
In our treatment of the model so far, we have assumed for mathematical convenience
that free enzymes are in excess, which suggested the approximation dE (G) ≈
constant. Example enzymedensity profiles shown inFig. S4.10, however, demonstrate
that this assumption does not hold in general. Specifically, there is a depletion of
free enzymes near the substrate localization site and abundance near the catalysis
site. Because of this depletion at the leftmost edge, we expect a reduction in speed in
comparison with our earlier treatment where a flat profile was assumed. In addition,
if substrates have a weak gradient, we expect the fidelity to also be reduced, since
more enzymes will bind substrates at intermediate positions, reducing the average
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travel distance to the catalytic site. In what follows, we discuss in greater detail
the consequences of having a nonuniform free enzyme distribution on the model
performance.
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Figure S4.10: Example profiles of free and substrate–bound enzymes. Enzyme
profiles are normalized so that the sum of areas under the curves is 1. The substrate
profile (rescaled on the H-axis) is shown in transparent gray.

S4.5.1 Effects that relaxing the dE (G) ≈ constant assumption has on the Pareto
front

We begin by studying the effects of relaxing the uniform free enzyme profile
assumption on the Pareto front of the speed–fidelity trade-off (Fig. 4.3A of the
main text). This front is reached in the ideal substrate localization limit (_S → 0).
Though in general enzyme profiles need to be obtained using numerical methods due
to the nonlinearity of reaction–diffusion equations, in this particular limit (_S → 0),
an analytical solution is available. To obtain it, we write the reaction–diffusion
equations in the bulk region of space as

mdER

mC
= �

m2dER

mG2 − :
R
offdER (S4.85)

mdEW

mC
= �

m2dEW

mG2 − :
W
offdEW (S4.86)

mdE

mC
= �

m2dE

mG2 +
∑

S=R,W
:SoffdES . (S4.87)

Substrate binding reactions did not enter the above equations, as they occur at the
leftmost boundary only. They are instead accounted for via boundary conditions,
which read

−�
mdER

mG

����
G=0

= :on(totaldE (0), (S4.88)
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−�
mdEW

mG

����
G=0

= :on(totaldE (0), (S4.89)

−�
mdE

mG

����
G=0

= −2:on(totaldE (0), (S4.90)

where (total is the total amount of free substrate of each kind concentrated at G = 0.

Relating local enzyme concentrations. Considering the system at steady state, we
add Eqs. S4.85-S4.87 and obtain

0 = �
d2dER

dG2 + �
d2dEW

dG2 + �
d2dE

dG2 , (S4.91)

where we replaced the partial derivatives with the total derivative since the profiles
are time–independent. Dividing Eq. S4.91 by � and integrating once, we find

ddER

dG
+

ddEW

dG
+

ddE

dG
= �1. (S4.92)

The above relation must hold for arbitrary position G. Choosing G = 0 and noting
that from Eqs. S4.88-S4.90, the sum of fluxes should be zero, we can claim that
�1 = 0. Integrating for the second time, we obtain

dER (G) + dEW (G) + dE (G) = �2, (S4.93)

where �2 is now a different constant. To find it, we perform an integral for the last
time across the entire compartment, namely∫ !

0

(
dER (G) + dEW (G) + dE (G)

)
dG = �total = �2!. (S4.94)

Here we introduced the parameter �total as the total number of enzymes in the system
(in free or bound forms). The constant �2, which we will rename into d0, is then
the average enzyme density, i.e.,

d0 = �total/!. (S4.95)

Substituting this result into Eq. S4.93, we find an insightful relation between free
and bound enzyme densities at an arbitrary position, namely

dE (G) = d0 − dER (G) − dEW (G). (S4.96)

This relation suggests that whenever the local concentration of bound enzymes is
high, the local concentration of free enzymes should be correspondingly low, as we
see reflected in the profiles of Fig. S4.10.
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Deriving the fidelity expression. Next, we consider Eqs. S4.85 and S4.86 separately
at steady state, written in the form

�
d2dES

dG2 − :
S
offdES = 0. (S4.97)

The general solution to this ODE reads

dES (G) = �S
1 4
−G/_ES + �S

2 4
G/_ES , (S4.98)

where _ES =

√
�/:Soff, and �

S
1 and �S

2 (S = R,W) are constants which are different
for right and wrong complexes. The no-flux boundary condition at G = ! can be
used to relate these constants and simplify the complex profile expression, namely
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1 4
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�S
2 = 4
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1 ⇒ (S4.100)

dES (G) = �S
1 4
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1 4
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1 4
−!/_ES cosh

(
! − G
_ES

)
= �̃S

1 cosh
(
! − G
_ES

)
, (S4.101)

where �̃S
1 = 2�S

1 4
−!/_ES is a new constant coefficient introduced for convenience.

Now, the fidelity of the scheme is the ratio of right and wrong complex densities at
G = !. Using the result above, the fidelity can be written as

[ =
dER (!)
dEW (!)

=
�̃R

1

�̃W
1
. (S4.102)

The ratio of these constant coefficients can be obtained by noting that the diffusive
fluxes of right and wrong complexes at G = 0 are identical (from Eqs. S4.88 and
S4.89), that is,
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. (S4.105)
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Substituting this result into Eq. S4.102, and recalling the equality !/_ES =

√
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S
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we obtain
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) . (S4.106)

This expression is identical to that in Eq. S4.20 which was derived under the
dE (G) ≈ constant assumption, suggesting that when substrates are highly localized,
the shape of the free enzyme profile does not dictate the fidelity.

Deriving the speed expression. To keep the expression of speed compact while still
illustrating the key consequences of relaxing the d(G) ≈ constant assumption, we
will assume moving forward that the density of wrong complexes is much lower
than that of the right complexes, i.e., dEW (G) � dER (G). This assumption holds as
long as the right and wrong complexes have sufficiently different off-rates. To see
why it is the case, note that the ratio dEW (G)/dER (G) is the highest at G = 0. We
therefore calculate an upper bound for the ratio using Eq. S4.101 and Eq. S4.105 as

dEW (G)
dER (G)

<
dEW (0)
dER (0)

=
_EW

_ER

tanh(!/_ER)
tanh(!/_EW)

<
_EW

_ER

=

√√
:Roff

:Woff
=

1
√
[eq

. (S4.107)

As long as [eq & 10, it is fair to assume that the right complexes greatly outnumber
the wrong ones, which allows us to approximate the free enzyme density from
Eq. S4.96 as dE (G) ≈ d0 − dER (G).

The specification of the right complex density profile requires the knowledge of the
unknown coefficient �̃R

1 . To find this coefficient, we use the boundary condition in
Eq. S4.88 and the approximation dE (G) ≈ d0 − dER (G) to write

�
�̃R

1
_ER

sinh(!/_ER) = :on(total
(
d0 − �̃R

1 cosh(!/_ER)
)
⇒ (S4.108)
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(S4.109)
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With the constant coefficient known, the right complex density then becomes

dER (G) = d0 ×

d̄S

 R
d
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d̄S

 R
d

×
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(
! − G
_ER

)
, (S4.110)

where we used the definitions of the mean substrate density d̄S = (total/! and the
dissociation constant  R

d = :
R
off/:on.

To enable a direct parallel between this general treatment and the earlier one with the
dE (G) ≈ constant approximation, let us introduce d∞ER as the uniform right complex
density when diffusion is very fast (_ER � !) and calculate it from Eq. S4.110 as

d∞ER = d0 ×

d̄S

 R
d

1 +
d̄S

 R
d

. (S4.111)

Now, using the d∞ER expression, we rewrite Eq. S4.110 as

dER (G) =
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 R
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1 + !

_ER

cosh(!/_ER)
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d̄S

 R
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W

d̄S

 R
d

× dconstER (G), (S4.112)

where dconstER (G) is the complex density obtained under the dE (G) ≈ constant assumption
(Eq. S4.15). The extra factor that appears on front does not exceed 1 since
W ≥ 1, indicating a reduction in speed, as we anticipated in our more qualitative
discussion at the beginning of the section. The presence of the extra factor suggests
two possibilities for the approximation to hold true; first, W ≈ 1 which happens
when _ER & ! or when the right complex does not decay noticeably across the
compartment, and second, when W > 1 and d̄S � W−1 R

d , which is when right
complexes do decay, but their fraction is low compared with free enzymes because
of low substrate concentration.

Let us demonstrate the last statement more explicitly. Specifically, let us show that
the validity of the approximation dE (G) ≈ constant is indeed linked directly to the
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fraction of bound enzymes. To that end, we evaluate dE (0)/dE (!) as a metric that
quantifies the degree to which dE (G) ≈ constant holds. If there is a large depletion
of free enzymes near the substrate binding site, then the metric will be significantly
less than 1; conversely, if the free enzyme profile is practically flat, then the metric
will be close to 1. Invoking the relation dE (G) ≈ d0 − dER (G) and using our result
for the complex density (Eq. S4.110) as well as the definition of W in Eq. S4.112,
we evaluate this metric as

dE (0)
dE (!)

≈
d0 − dER (0)
d0 − dER (!)

=

1 −
Wd̄S/ R

d

1 + Wd̄S/ R
d

1 −
Wd̄S/ R

d

cosh(!/_ER) (1 + Wd̄S/ R
d )

=
1

1 +
(
1 − 1

cosh(!/_ER)

)
Wd̄S/ R

d

. (S4.113)

Next, we calculate the fraction of bound enzymes ?bound from Eq. S4.110 as

?bound ≈ �−1
total

∫ !

0
dER (G) dG

=
d0!

�total

d̄S/ R
d

1 + Wd̄S/ R
d

=
d̄S/ R

d

1 + Wd̄S/ R
d
. (S4.114)

Note that W−1 emerges as the highest fraction of bound enzymes (?max
bound) reached in

the large substrate concentration limit.

To link the metric dE (0)/dE (!) to the fraction of bound enzymes, we express d̄S/ R
d

in terms of ?bound and substitute it into Eq. S4.113, namely

d̄S/ R
d =

?bound
1 − W?bound

⇒ (S4.115)

dE (0)
dE (!)

=
1

1 +
(
1 − 1

cosh(!/_ER)

)
W?bound

1 − W?bound

=
1 − W?bound

(1 − W?bound) +
(
1 − 1

cosh(!/_ER)

)
W?bound
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=
1 − W?bound

1 − W?bound/cosh(!/_ER)

=
?max
bound − ?bound

?max
bound − ?bound/cosh(!/_ER)

. (S4.116)

Now, when the complexes do not decay appreciably across the compartment (_ER &

! and thus, cosh(!/_ER) ≈ 1), the metric becomes roughly equal to 1, suggesting
that the free enzyme profile is practically flat. A more interesting case is when the
complexes do decay (_ER < !), as in Fig. S4.10. In this case, applying the condition
cosh(!/_ER) � 1, we find

dE (0)
dE (!)

≈ 1 − ?bound
?max
bound

. (S4.117)

The anti-correlation between the dE (0)/dE (!) and ?bound in the above result demon-
strates that the degree to which the approximation dE (G) ≈ constant is violated is
indeed dictated by the fraction of bound enzymes.

Pareto front shift. The previous calculations showed that in the ideal substrate
localization limit, relaxing the d(G) ≈ constant assumption keeps the fidelity the
same while the speed gets reduced, and this reduction is greater for higher substrate
concentrations. We therefore expect a shift in the Pareto front when going to the high
substrate concentration limit, as is illustrated in Fig. S4.11A. To get more intuition
about the effect of this shift caused by tuning the amount of substrates, we consider
the effective number of proofreading realizations at half–maximum speed (=50) and
study how this number changes as a function of the fraction of enzymes bound
(?bound), which increases monotonically with (total as suggested by Eq. S4.114.
Fig. S4.11B shows this dependence. As can be seen, =50 reduces roughly linearly
with ?bound; e.g., if 10% of the enzymes are bound, then a 10% reduction in =50 is
expected. This suggests that as long as the fraction of bound enzymes is low, our
findings related to the Pareto front made under the dE ≈ constant assumption will
generally hold true.

S4.5.2 Effects that relaxing the dE (G) ≈ constant assumption has on fidelity
in a weak substrate gradient setting

In this section, we study how accounting for the spatial distribution of free enzymes
affects our results on the model’s fidelity in the setting where substrates have a finite
localization length scale _S . In this setting, Eqs. (1)-(3) (in the main text) describing
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Figure S4.11: Consequences of relaxing the dE (G) ≈ constant assumption on the
Pareto front. (A) Pareto fronts in the low and high substrate concentration limits.
(B) Reduction in the effective number of proofreading realizations at half–maximum
speed as a function of the fraction of enzymes bound. [eq = 10 was used in making
the plots.

the system’s dynamics become a system of nonlinear equations, which we solve at
steady state using numerical methods.

An example curve of how fidelity changes with tuning diffusion time scale in a finite
_S setting is shown in Fig. S4.12. As expected, the nonuniform free enzyme profile
leads to a reduction in fidelity. This reduction is not significant when diffusion is
relatively fast as, in that case, the free enzyme profile manages to flatten out rapidly.
The reduction is not significant also in the very slow diffusion limit where binding
events that lead to production primarily take place in the proximity of the activation
region, and hence, the nonuniform profile of free enzymes across the compartment
has little impact on fidelity. The greatest reduction happens at intermediate diffusion
time scales; in particular, when the system achieves its peak fidelity.

To quantify the extent of this highest reduction, we calculated the peak value of
the effective number of proofreading realizations (=max) for different free substrate
amountswhich regulate the fraction of bound enzymes (?bound). The results obtained
for different choices of _S are summarized in Fig. S4.13. As can be seen, for the
high substrate localization case (_S/! = 0.04), there is a roughly linear dependence
between =max and ?bound. The initial decrease in =max with growing ?bound is even
slower when substrates are less tightly localized (_S/! = 0.10, 0.30).

Taken together, these results suggest that if the substrate concentration is low enough
to leave most of the enzymes unbound, then our proposed scheme will proofread
efficiently. This requirement on substrate amount will be further relaxed if diffusion
is fast, or if substrates are not very tightly localized.
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S4.6 Proofreading on a kinase/phosphatase-induced gradient
In this section, we introduce themathematicalmodeling setup for the kinase/phosphatase–
based gradient formation scheme and describe how its fidelity is calculated numerically.
In the end, we discuss the energetics of setting up the substrate concentration gradient
and link our calculations to the lower bounds on energy cost obtained earlier in
Appendix S4.2.

S4.6.1 Setup and estimation of fidelity
In the analysis thus far, we have imposed a gradient of free substrates and analyzed
the proofreading capability of an enzyme acting on this gradient. In a living cell,
gradients themselves are maintained by active cellular processes. However, the
action of the enzyme – that is, binding a substrate in one spatial location, diffusing
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away, and releasing the substrate elsewhere – can destroy the gradient, and thereby
lead to a loss of proofreading. Here, we analyze the consequences of free substrate
depletion and gradient flattening caused by the enzyme.

We model the formation of a substrate gradient by a combination of localized
activation and delocalized deactivation. We suppose that substrates can exist in
phosphorylated or dephosphorylated forms, and that only the phosphorylated form
is capable of binding to the enzyme. The substrates are phosphorylated by a kinase
with rate :kin = 0.2 s−1, and dephosphorylated by a phosphatase with rate :p = 5
s−1. Crucially, we assume that phosphatases are found everywhere in the domain
of size ! ∼ 10 µm (a typical length scale in a eukaryotic cell), while kinases are
localized to one end of the domain (at G = 0), as may occur naturally if kinases are
bound to one of the membranes enclosing the domain.

Theminimal dynamics of phosphorylated substrates and enzyme–substrate complexes
is then given by

mdS

mC
= �∇2dS − :bdS + :SoffdES − :pdS ,

mdES

mC
= �∇2dES + :bdS − :SoffdES , (S4.118)

augmented by the boundary conditions

Substrate phosphorylation: − �∇dS |G=0 = :kin,

No-flux: − �∇dS |G=! = −�∇dES |G=! = −�∇dES |G=0 = 0. (S4.119)

Here, we have supposed that the densities of free enzymes, dephosphorylated
substrates, and phosphatases are fixed and uniform, and have absorbed them into
the relevant rate constants (:b = :ondE , :kin, and :p, respectively). For simplicity,
we have also assumed that the free substrates and enzyme–substrate complexes have
the same diffusion coefficient � = 1 µm2/s. We note that accounting for distinct
diffusivities of phosphorylated and unphosphorylated substrate forms [9] would
affect the speed, while accounting for the slower diffusion of the enzyme–substrate
complex would alter the estimates of both speed and fidelity of the model. One or
several of these effects can be considered when studying a specific biological system
where these microscopic details are known.

We numerically solve Eqs. S4.118 and S4.119 at steady state to obtain the
concentration profiles. First, the equations of dynamics are made dimensionless
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by setting units of length and time by ! (Ḡ = G/!) and g� ≡ !2/� (C̄ = C/g�),
respectively. At steady state, the dimensionless equations read

∇̄2 d̄S =
(
:̄b + :̄p

)
d̄S − :̄Soff d̄ES ,

∇̄2 d̄ES = −:̄b d̄S + :̄Soff d̄ES , (S4.120)

with boundary conditions

∇̄d̄S |Ḡ=0 = −:̄kin,
∇̄d̄S |Ḡ=1 = ∇̄d̄ES |Ḡ=1 = ∇̄d̄ES |Ḡ=0 = 0, (S4.121)

where concentrations have been rescaled as d̄ = d!, and kinetic rates as :̄ = : g� .

Wediscretize the steady state equations on a gridwith spacingΔḠ = 0.01, approximating
the second derivative as

∇̄2 d̄ ≈ 1
ΔḠ2

(
d̄(Ḡ + ΔḠ) + d̄(Ḡ − ΔḠ) − 2d̄(Ḡ)

)
. (S4.122)

This is ill-defined at the boundaries Ḡ = 0 and Ḡ = 1, which is addressed by
incorporating the boundary conditions. For illustration, consider the left boundary,
Ḡ = 0, and suppose that our domain included also a point at Ḡ = −ΔḠ. Then, we
could approximate the boundary condition ∇̄d̄S |Ḡ=0 = −:̄kin by a centered difference
scheme, and solve out for the fictional point at Ḡ = −ΔḠ, namely

∇̄d̄S |Ḡ=0 = −:̄kin

⇒ 1
2ΔḠ

(
d̄S (ΔḠ) − d̄S (−ΔḠ)

)
= −:̄kin

⇒ d̄S (−ΔḠ) = d̄S (ΔḠ) + 2ΔḠ :̄kin,

which, when inserted into Eq. S4.122, specifies ∇̄2 d̄S at Ḡ = 0, i.e.,

∇̄2 d̄S |Ḡ=0 =
1
ΔḠ2

(
2d̄S (ΔḠ) − 2d̄S (0)

)
+ 2
ΔḠ
:̄kin. (S4.123)

For the boundary at the right (Ḡ = 1) as well as for the boundary conditions for d̄ES ,
we similarly implement no-flux boundary conditions. After discretizing, Eq. S4.120
can then be written in a matrix form as

MS︷                                                           ︸︸                                                           ︷©­­­­­­­­«
1
ΔḠ2

©­­­­­­­­«

−2 2 0 · · · 0
1 −2 1 · · · 0
...

...
...

. . .
...

0 · · · 1 −2 1
0 0 · · · 1 −1

ª®®®®®®®®¬
− ( :̄b + :̄p)I

ª®®®®®®®®¬
®dS = −:̄Soff ®dES +

®1︷      ︸︸      ︷©­­­­­­­­«

− 2
ΔḠ
:̄kin

0
...

0
0

ª®®®®®®®®¬
,
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©­­­­­­­­«
1
ΔḠ2

©­­­­­­­­«

−1 1 0 · · · 0
1 −2 1 · · · 0
...

...
...

. . .
...

0 · · · 1 −2 1
0 0 · · · 1 −1

ª®®®®®®®®¬
− :̄SoffI

ª®®®®®®®®¬︸                                                  ︷︷                                                  ︸
MES

®dES = −:̄b ®dS, (S4.124)

where ®dS, ®dES are column vectors of the nondimensionalized concentration profiles
evaluated at the spatial grid points, i.e., [ d̄(0), d̄(ΔḠ), · · · ]) . Solving these matrix
equations yields

®dS =
(
MS − :̄Soff :̄bM

−1
ES

)−1 ®1,

®dES = −:̄b
(
MSMES − :̄Soff :̄bI

)−1 ®1. (S4.125)

We compute Eqs. S4.125 numerically for two substrates: a cognate (‘R’) and a
non-cognate (‘W’), which differ in their off-rates (:Roff = 0.1 s−1 and :Woff = 1 s−1,
respectively). Having the density profiles, the fidelity of the model becomes [ ≈
d̄ER (Ḡ = 1)/d̄EW (Ḡ = 1). We calculate the fidelity for different choices of the first–
order rate of enzyme–substrate binding (:b = :ondE); this may be thought of as
varying the concentration of free enzymes in the cell. The results are shown in
Fig. 4.5 of the main text.

S4.6.2 Energy dissipation
InAppendices S4.2.1 and S4.2.3, we estimated lower bounds on theminimumpower
that needs to be dissipated in order to counter the homogenizing effect that enzyme
activity and substrate diffusion, respectively, have on localized substrate profiles.
Here, we calculate the energy dissipation required to run the kinase/phosphatase–
based mechanism and compare it with these lower bounds estimated earlier.

Let us assume that phosphorylation and dephosphorylation reactions by kinases
and phosphatases are nearly irreversible with associated free energy costs of ΔYkin
and ΔYphosph per reaction, respectively. The net rate at which active substrates
get dephosphorylated is :p(phosphorylated, and it needs to be identical to the net
phosphorylation rate of inactive substrates in order for (phosphorylated to remain
constant. With the costs of each reaction known, we can write the rate of energy
dissipation %k/p as

%k/p = :p(phosphorylated(ΔYkin + ΔYphosph). (S4.126)
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To gain analytical intuition, we first consider the case where the enzyme activity is
very low, so that the kinase/phosphatase–basedmechanismmaintains an exponential
profile of active substrates with a decay length scale _S =

√
�S/:p. Expressing the

rate of phosphorylation in terms of _S and �S (i.e., :p = �S/_2
S), and substituting it

into Eq. S4.126, we obtain

%k/p =
�S(phosphorylated

_2
S

(ΔYkin + ΔYphosph). (S4.127)

Comparing this result with the lower dissipation bound found earlier (Eq. S4.43),
we can note the presence of an extra factor V(ΔYkin + ΔYphosph). Since the free
energy consumption during ATP hydrolysis is ∼ 10 :B) , we can say that the power
dissipated by the kinase/phosphatase system for setting up an exponential gradient
surpasses the lower limit necessary for counteracting diffusion roughly by an order
of magnitude.

Next, we explore the energetics of the kinase/phosphatase–based mechanism in
the context of the power–fidelity trade-off. Our study of the trade-off in Fig. 4.4
of the main text was performed under the assumption that substrate profiles were
exponentially decaying in the entire spatial domain. In Fig. S4.14A, we show the
trade-off curves obtained under this assumption and compare them with the trade-
off curve for the kinase/phosphatase–based mechanism that arises in response to
changing the substrate localization by tuning :p. As can be seen, the predicted lower
bound (sum of the minimum powers needed to counteract the enzyme action and
substrate diffusion) is roughly an order of magnitude lower than the total dissipation
of the mechanism, and this difference increases with higher fidelity.

Note, however, that the assumption about an exponential substrate localization is not
generally valid for the kinase/phosphatase–based mechanism because substrates can
be deposited in low–concentration regions and not get immediately dephosphorylated
(Fig. S4.14C). We therefore refine our lower bounds on the dissipated power by
estimating them numerically using their generic definitions, namely, Eq. S4.30
for counteracting the enzymatic action, and Eq. S4.42 for counteracting substrate
diffusion. These refined estimates suggest a factor of ∼ 10 difference between the
total cost and its lower bound consistently across a wide region of the trade-off curve.
This means that substrate gradient maintenance through practically irreversible
phosphorylation and dephosphorylation reactions has low energetic efficiency for
doing spatial proofreading, which, however, may be sustainable depending on the
energy budget of the cell.
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C h a p t e r 5

SPATIAL ORGANIZATION OF MOTORS IN MICROTUBULE
ASTERS
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This chapter is based on the theory and modeling components of a manuscript
in preparation: Banks, R. A., Galstyan, V., Lee, H. J., Hirokawa, S., Ross, T.,
Ierokomos, A., Bryant, Z., Thomson, M. & Phillips, R. Kinesin motor properties
determine size and formation speed of motor-microtubule assemblies.

5.1 Introduction
The cytoskeleton, comprised of a mixture of filaments, motors, and passive crosslin-
kers, is an integral component of the cell responsible for many of its vital functions.
One of the key cytoskeletal structures is the spindle – a football-shaped bipolar
organization of motors, microtubules, and microtubule-associated proteins, that is
responsible for chromosome segregation during cell division.

While many of the spindle components are known, our understanding of the
principles of its self-organization andmaintenance is still incomplete. To understand
these principles with a bottom-up approach, in vitro experiments with mixtures of
minimal components (tubulin, motors, and energy source) have been conducted,
managing to recapitulate various ordered structures present in the spindle such
as dynamic asters of microtubules or microtubule bundles. Since the earliest
reconstitution work [1], experimental techniques and the complexity of studies have
advanced [2, 3], with one of the most recent developments being the optogenetic
control of microtubule organization through a light-activatable dimerization of the
crosslinking motors [4] .

Applying this novel optogenetic tool, we formed asters using motors of different
kinds (kinesin-1 (K401), kinesin-5 (Kif11), and kinesin-14 (Ncd)) and studied the
link between themicroscopic properties ofmotors (Table 5.1) and their corresponding
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Motor Speed Processivity Direction

K401 600 nm/s 100 steps [5] plus [6]
Ncd236 115 nm/s ≈ 1 step [7] minus [8]
Kif11(513) 70 nm/s 10 steps [9] plus [9]

Table 5.1: Motor proteins used and their properties.

structures. Here, we present our theoretical efforts to capture the spatial distribution
of the various motors in the formed aster structures. Developing a minimal model,
we identified key effectivemicroscopic parameters that define themotor distribution.
Our model manages to capture the measured profiles with high accuracy, yielding
motor-specific effective parameters that can be linked to theirmicroscopic properties,
such as their speed or processivity. Further, we explore the shapes of the motor and
tubulin distributions and find that the latter is necessarily broader. We use our
minimal model to provide insights on this observation and end by commenting
on its physiological relevance. Overall, the modeling work presented here is a
rigorous characterization of the self-organization principles of microtubule-motor
assemblies.

5.2 A minimal model accurately captures the observed motor profiles
The nonuniform distribution of filaments and motors in an aster is a key feature
of its organization and has been the subject of previous studies. In these studies,
continuum models were developed for motor-filament mixtures which predicted the
radial profile of motors in confined two-dimensional systems [10–13]. A notable
example is the power-law decay prediction by Nedelec et al., who obtained it for a
prescribed organization of microtubules obeying a 1/A decay law [10]. Measuring
the motor profiles in asters formed in a quasi-two-dimensional geometry (with the I
dimension of the sample being only a fewmicrons deep) and fitting them to a power-
law decay, the authors found a reasonable yet noisy match between the predicted
and measured trends in the decay exponent.

In our work, we also develop and test a minimal model that predicts the motor
profile from the microtubule distribution and the microscopic properties of the
motor. In contrast to the earlier study [10], asters formed in our experiments are
three-dimensional due to the much larger depth of the flow cells (roughly 100
µm). While the largest asters are likely partially compressed in the I-direction,
we assume that this effect does not significantly alter the protein distributions in
the central I-slice and hence, for modeling purposes we consider our asters to be
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radially symmetric, as depicted schematically in Fig. 5.1A. Our modeling applies to
locations outside the central disordered region (called aster ‘core’), beyond which
microtubules have a predominantly polar organization.

Similar to the treatment in earlier works [10, 12, 13], we introduce two states of
the motor - an unbound state where the motor can freely diffuse with a diffusion
constant � and a bound state where the motor walks towards the aster center with
a speed E (Fig. 5.1B). In the steady-state of the system, which we assume our
asters have reached at the end of the experiment, microtubules on average have
no radial movement and hence, do not contribute to motor speed. We denote the
rates of motor binding and unbinding by :on and :off , respectively. When defining
the first-order rate of motor binding, namely, :ondMT (A), we explicitly account for
the local microtubule concentration dMT (A) extracted from fluorescence images.
This is unlike the previous models which imposed specific functional forms on the
microtubule distribution (e.g., a constant value [11, 12], or a power-law decay [10]),
making them unable to capture the specific features often seen in our measured
microtubule profiles, such as the presence of an inflection point.

The governing equations for the bound (<b) and free (<f) motor concentrations
are shown in Fig. 5.1C. They involve binding and unbinding terms, as well as a
separate flux divergence term for each population. Solving them at steady-state,
we arrive at an equation for the total local concentration of motors defined as
<tot(A) = <b(A)+<f(A). The derivation of this result can be found inAppendix S5.1.
As seen in the equation for<tot(A) (Fig. 5.1C), knowing the microtubule distribution
dMT (A) along with two effective microscopic parameters, namely the dissociation
constant  d = :off/:on and the length scale _0 = �/E, one can obtain the motor
distribution up to a multiplicative constant (� in the equation). Note that in the
special case where the motors do not move (E → 0 or _0 → ∞), the exponential
term becomes 1 and an equilibrium relation between the motor and microtubule
distributions dependent only on  d is recovered.

To test this model, we extract the average radial distributions of microtubule and
motor concentrations for each aster. Then, using the microtubule profile as an input,
we fit our model to the motor data and infer the effective parameters  d and _0

(see Appendices S5.2 and S5.3 for details). A demonstration of this procedure on
an example Kif aster is shown in Fig. 5.1D where a good fit to the average motor
data can be observed. As a validation of our inference method, we additionally
extract the radial concentration profiles inside separate wedges of the aster and show
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Figure 5.1: Modeling the motor distribution. (A) Schematic of the radial micro-
tubule organization in an aster. Modeling applies to locations outside the disordered
core region at the aster center. (B) Motor states and transitions between them.
(C) Governing equations for the bound and free motor populations, along with our
solution for the totalmotor distribution at steady state (seeAppendix S5.1 for details).
(D) Demonstration of the model fitting procedure on an example Kif aster. Fits to
the average motor profile as well as to 5 out of 16 wedge profiles are shown. The
outlier case with a lower concentration corresponds to wedge 13 in the fluorescence
images. (E) Mean fitting errors for all asters calculated from the fits to the wedge
profiles. The error is defined as the ratio of the mean residual to the concentration
value at the inner boundary. (F) Inferred parameters  d and _0 grouped by the kind
of motor. Box plots indicate the quartiles of the inferred parameter. The white dots
in panels E and F represent the corresponding values for the Kif aster in panel D.

that they can be accurately captured by only choosing an appropriate multiplicative
constant � for each wedge, while keeping the pair ( d, _0) inferred from average
profile fixed (fits to 5 out of 16 different wedge profiles are shown in Fig. 5.1D for
clarity). The fitting error for other asters is similarly low (Fig. 5.1E, see Fig. S5.3
for the collection of fitted profiles).
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Plotting the inferred parameters  d and _0 from all fits (Fig. 5.1F), we find that they
are clustered around single values for each motor type and vary between the motors.
Based on the single-molecule motor properties, our expectation was that the highly
processive K401 motors would have the lowest  d, while the opposite would be
true for Ncd motors. However, the inferred  d for Ncd looks comparable to that of
K401. One possible resolution of this discrepancy comes from the finding of an in
vitro study that suggested a substantial increase in the processivity of Ncd motors
that act collectively [14]. Specifically, a pair of Ncd motors coupled through a DNA
scaffold was shown to have a processivity reaching 1 µm (or, ≈ 100 steps) – a value
similar to that reported for K401 motors. This collective effect, likely realized for
Ncd motors in highly concentrated aster structures, is therefore a possible cause for
the low inferred values of their effective  d.

Next, looking at the inference results for the _0 parameter (Fig. 5.1F), we can see
that Kif and Ncd motors have an average _0 value of ≈ 10 − 20 µm, while the
average value for K401 motors is ≈ 40 µm. From the measured diffusion coefficient
of � ≈ 1 µm2/s for tagged kinesin motors [15] and the single-molecule motor
speeds reported in Table 5.1, our guess for the _0 parameter for Kif and Ncd motors
was ≈ 10 − 15 µm, and ≈ 2 µm for K401. While the inferred values for the two
slower motors are well within the order-of-magnitude of our guess, the inferred
_0 for K401 is much higher than what we anticipated. This suggests a significant
reduction in the effective speed. One contributor to this reduction is the stalling of
motors upon reaching the microtubule ends. Recall that in our model formulation
(Fig. 5.1B), we assumed an unobstructed walk for bound motors. Since the mean
length of microtubules (≈ 2 µm) is comparable to the processivity of K401 motors
(≈ 1 µm), stalling events at microtubule ends will be common, leading to a reduction
of their effective speed by a factor of ≈ 1.5 (see Appendix S5.4 for details). This
correction alone, however, is not sufficient to capture the factor of ≈ 25 discrepancy
between our inference and the estimate of _0. We hypothesize that an additional
contribution may come from the jamming of K401 motors in dense aster regions.
This is motivated by the experiments which showed that K401 motors would pause
when encountering obstructions during their walk [16, 17]. Overall, our study shows
that the minimal model of motor distributions proposed in Fig. 5.1 is able to capture
the distinctions in aster structure through motor-specific effective parameters.
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5.3 Microtubules in an aster have a broader distribution than motors
In addition to being able to tell themotor distribution from themicrotubule distribution,
it is also of interest to study how the shapes of these two distributions compare to
each other. Such a question was studied theoretically for actomyosin asters, where
the formation of a broader ‘cloud’ of myosin motors over a narrower actin profile
was predicted, and this particular arrangement was shown to be important for aster
integrity and dynamics [18].
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Figure 5.2: Relationship between motor and microtubule distributions. (A) An
idealized exponentially decaying motor profile with a constant offset. (B) Set
of sigmoidal tubulin profiles corresponding to the exponentially decaying motor
profile. The precise curve depends on the shape parameters of the motor profile
and the motor type via an effective constant W (see Appendix S5.5 for details). (C)
Two example profiles from Ncd asters that resemble the setting in panels A and B.
Blue and green dots represent measured concentrations of motors and microtubules,
respectively. (D) Radial positions in the [Ain, Aout] interval where the motor and
tubulin concentrations take their middle values. (E) The ratio A (t)1/2/A

(m)
1/2 calculated

for all of the aster profiles.

To gain analytical insights about this question for our system, we first consider an
idealized scenario where the motor profile can be represented as an exponential
decay with a constant offset for the free motor population (Fig. 5.2A). Such a
scenario is approximately met for many of our measured motor profiles. Using
the modeling framework in Fig. 5.1A-C, we find that the microtubule distribution
corresponding to such amotor profile has the shape of a truncated sigmoid (Fig. 5.2B,
see Appendix S5.5 for the derivation). Indeed, microtubule distributions resembling



162

a sigmoidal shape are observed often in our asters (Fig. S5.3), two examples of which
are shown in Fig. 5.2C.

One notable implication of this analytical connection between the two profiles is that,
unlike the analogous actomyosin case [18], microtubules necessarily have a broader
distribution thanmotors, once the offset levels at the aster edge are subtracted off. To
find whether this is a ubiquitous feature of our asters, we introduce radial distances
A
(m)
1/2 and A (t)1/2 standing for the positions where the motor and tubulin distributions,
respectively, are at their mid-concentrations (Fig. 5.2D). The ratio A (t)1/2/A

(m)
1/2, if

greater than 1, would then be an indicator of a wider tubulin profile. Calculating
this ratio for all of our asters, we find that it is always greater than or very close to 1
for all motor types (Fig. 5.2E), suggesting the generality of the feature. This feature
may be an important factor in the spatial organization of end-directed motors (e.g.,
dynein) in the spindle where their localization to the spindle pole is of physiological
importance.
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C h a p t e r S5

SUPPORTING INFORMATION FOR CHAPTER 5 |
SPATIAL ORGANIZATION OF MOTORS IN MICROTUBULE

ASTERS

S5.1 Model formulation
To predict the spatial distribution ofmotors in aster structures, wemodel the dynamic
steady state of free (‘f’) and bound (‘b’) motor concentrations via

m<b
mC

= :ondMT (r)<f(r) − :off<b(r) − ∇ · JE = 0, (S5.1)

m<f
mC

= −:ondMT (r)<f(r) + :off<b(r) − ∇ · J� = 0. (S5.2)

Here, :on and :off are the motor binding and unbinding rates, respectively, dMT (r)
is the spatially varying steady state microtubule concentration (measured as µM
tubulin), JE is the advective flux of bound motors, and J� is the diffusive flux of
free motors. Our modeling approach is similar to that used by Nédélec et al. [1]
with the main difference being in the handling of dMT (r). Namely, they imposed
a particular functional form on this distribution (dMT (r) = 1/|r|3−1 with 3 as the
spatial dimension) based on an idealized representation of microtubule organization
in an aster, whereas in our treatment, dMT (r) stands for the experimentally measured
microtubule profiles which cannot be captured through an analogous idealization.

If the free motors have a diffusion coefficient �, then, in the radially symmetric
setting considered in our modeling, the diffusive flux will be given by

J� (A) = −�∇<f(r) = −�<′f(A)r̂, (S5.3)

where r̂ is an outward-pointing unit radial vector. And if E is the advection speed
of bound motors, then the advective motor flux on radially organized microtubules
will be

JE (A) = −E<b(A)r̂. (S5.4)

Here, we are implicitly assuming that motors constantly walk when bound, ignoring
the fact that they can stall upon reaching a microtubule end. We discuss the impact
of this effect later in Appendix S5.4.
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At steady state, the net flux of motors at any radial distance A should be zero
(J� (A) + JE (A) = 0), which implies a general relation between the profiles of free
and bound motors, namely

0 = −�<′f(A)r̂ − E<b(A)r̂⇒

<b(A) = −
(
�

E

)
︸︷︷︸
_0

<′f(A). (S5.5)

Above we introduced _0 as a length scale parameter that can be interpreted as the
distance which is traveled by free and bound motors at similar time scales, i.e.,
diffusion time scale (_2

0/�) = advection time scale (_0/E). Note also that the ‘-’ sign
at the right–hand side indicates that the free motor population should necessarily
have a decaying radial profile (<′f(A) < 0) which is intuitive since at steady state the
outward diffusion needs to counteract the inward advection.

Tomake further analytical progress, wewill assume thatmotor binding and unbinding
events are locally equilibrated [2]. This assumption is valid if motor transport is
sufficiently slow compared with binding/unbinding reactions. We will justify this
quasi-equilibrium condition for themotors used in our study at the end of the section.
It follows from this condition that

:off<b(A) ≈ :ondMT (A)<f(A) ⇒

<b(A) ≈
dMT (A)
 d

<f(A), (S5.6)

where  d = :off/:on is the dissociation constant. Since the experimental readout
reflects the total motor concentration (<tot = <f +<b), we use our results (Eq. S5.5
and Eq. S5.6) to link<tot(A) with the microtubule profile dMT (A). Specifically, using
Eq. S5.6, we find

<tot(A) = <b(A) + <f(A)

=

(
1 +

dMT (A)
 d

)
<f(A) ⇒ (S5.7)

<f(A) =
 d

 d + dMT (A)
<tot(A), (S5.8)

<b(A) =
dMT (A)

 d + dMT (A)
<tot(A). (S5.9)
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Next, substituting the above expressions for<f and<b into Eq. S5.5 and simplifying,
we relate the motor and microtubule profiles, namely

dMT (A)
 d + dMT (A)

<tot(A) = −_0

(
 d

 d + dMT (A)
<′tot(A) −

 d d
′
MT (A)

( d + dMT (A))2
<tot(A)

)
︸                                                          ︷︷                                                          ︸

<′f (A)

⇒

<′tot(A)
<tot(A)

= −
dMT (A)
 d_0

+
d′MT (A)

 d + dMT (A)
⇒(

ln<tot(A)
)′
= −

dMT (A)
 d_0

+
(
ln( d + dMT (A)

)′⇒
ln<tot(A) = −

'MT (A)
 d_0

+ ln( d + dMT (A)) + �1 ⇒

<tot(A) = �
(
1 +

dMT (A)
 d

)
exp

(
−
'MT (A)
 d_0

)
, (S5.10)

where 'MT (A) =
∫
dMT (A) dA is the integrated microtubule concentration, and � =

 d 4
�1 is a positive constant. The presence of the multiplicative constant � is a

consequence of the fact that the two equations used for deriving our result (Eq. S5.5
and Eq. S5.6) specify the ratios of motor populations. Therefore, the result in
Eq. S5.10 predicts the relative level of the total motor concentration, given the two
effective model parameters ( d and _0), which we infer in our fitting procedure.

Note that the two variable factors on the right–hand side of Eq. S5.10 have quali-
tatively different structures. Thefirst one is local and depends only on the dissociation
constant (an equilibrium parameter), while the second term involves an integrated
(hence, non-local) microtubule density term and _0 = �/E which depends on the
advection speed E (a non-equilibrium parameter). As anticipated, in the limit of
vanishingly slow advection (E → 0 or, _0 → ∞) the second factor becomes 1 and
an equilibrium result is recovered.

Connections to related works
Before proceeding further into our analysis, we briefly compare the expression for the
motor distribution (Eq. S5.10) with analogous results in the literature. Specifically,
Nédélec et al. [1] studied quasi-two-dimensional asters and in their modeling treated
microtubules as very long filaments, all converging at the aster center. This setting
implied ∼ 1/A scaling of the microtubule concentration. With this scaling, the
integrated microtubule concentration in our framework becomes 'MT (A) =

∫
U
A

dA =
U ln A where U is a constant. Substituting this form into the exponential term in
Eq. S5.10, we find exp{−( d_0)−1'MT (A)} = exp{−U( d_0)−1 ln A} ∼ 1/A V, where
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V = U( d_0)−1. It then follows from Eq. S5.10 and the scaling dMT (A) ∼ 1/A that
the motor concentration is a sum of two decaying power laws (namely ∼ 1/A V and
∼ 1/A V+1) – the result obtained by Nédélec et al. [1]. A more detailed calculation
can be done to demonstrate that the exponent V matches exactly with the result
derived in the earlier work, but for the purposes of our study we do not elaborate
further on this comparison. We note that the experimentally measured microtubule
profiles in asters (e.g., Fig. 2b or Fig. 3d) often have an inflection point and cannot
be fitted to decaying power law functions (e.g., 1/A2 for 3D asters), which is why the
idealized setting considered by Nédélec et al. [1] cannot be applied to our system.

Another set of works [3, 4] also studied motor distributions in asters, but this time
under the assumption of a uniform microtubule concentration (dMT (A) ∼ constant).
In such a setting, our framework predicts an exponentially decaying motor profile,
because 'MT (A) =

∫
dMT (A) dA ∼ dMTA and thus, <tot(A) ∼ 4−dMTA/ d_0 . An

exponential decay was also the prediction of Lee and Kardar [3], although in their
treatment, all motors were assumed to be in the bound state. The two distinct motor
states were considered in the work by Sankararaman et al. [4] who predicted an
exponential decay of motor concentration modulated by a power–law tail. One can
show, however, that when the decay length scale of motor concentration greatly
exceeds the motor processivity (as in the case of asters which we generated), the
prediction of Sankararaman et al. [4] also reduces into a pure exponential decay,
matching the prediction of our model. But since the assumption of a uniform
microtubule profile is clearly violated in our system, these predictions are not
applicable for us.

Validity of the quasi-equilibrium assumption
Earlier in the section, we assumed that motor binding and unbinding reactions
were locally equilibrated, from which Eq. S5.6 followed. Looking at the governing
equation of bound motor dynamics (Eq. S5.1), we can see that this assumption will
hold true if :off<b(A) � |∇ · JE |. Substituting the expression of advective flux
(Eq. S5.4) and recalling that in three dimensions, the divergence of a radial vector
A = �r̂ takes the form A−2mA (A2�), we rewrite the quasi-equilibrium condition as

:off<b(A) � |∇ · (−E<b(A)r̂) | ⇒ (S5.11)
:off
E
<b(A) �

����<′b(A) + 2
A
<b(A)

���� . (S5.12)

Now, many of the motor profiles can be approximated reasonably well by an
exponentially decaying function (see Fig. S5.3 for a collection of experimental
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motor processivity (steps) processivity, _E (µm) decay length scale, _ (µm) _/_E
K401 ≈100 1 10−40 10−40
Ncd236 ≈1 10−2 5−20 500−2000

Kif11(513) ≈10 10−1 10−20 100−200
Table S5.1: Processivities of motors, decay length scales of motor profiles, and
corresponding ratios of these two length scales. Step size of ≈ 10 nm corresponding
to the length of a tubulin dimer was used for estimating the motor processivities in
µm units. Estimates for the decay length scales _ were made based on the motor
profiles in Fig. S5.3.

profiles). This suggests an empirical functional form <b(A) ∼ 4−A/_ for the con-
centration of bound motors, where _ is the decay length scale (note that the constant
saturation level contributes to the free motor population). This functional form
implies that <′b(A) ≈ −<b(A)/_, which, upon substituting into Eq. S5.12, leads to

:off
E︸︷︷︸
_−1
E

<b(A) �
����−1
_
<b(A) +

2
A
<b(A)

����⇒ (S5.13)

_

_E
�

����2_A − 1
���� , (S5.14)

where _E = E/:off is introduced as the motor processivity (distance traveled before
unbinding). The processivities (_E) of the three different kinesins used in our study,
together with the observed ranges of decay length scales (_) of corresponding motor
profiles are listed in Table S5.1. As can be seen, in all cases the ratio _/_E is much
greater than one, verifying the intuitive expectation that the length scales of aster
structures are much greater than the single run lengths of motors.

It is obvious from the presence of the A−1 term on the right-hand side of Eq. S5.14
that the condition can only be satisfied past a certain radius, since A−1 becomes very
large when A approaches zero. This threshold radius (A∗) is set by A∗ ∼ 2_E, where
the two sides of Eq. S5.14 become comparable. The threshold radial distance that
we choose to isolate the core is at least 5 − 10 µm for the asters of our study (see
the lower G-limits in the profiles of Fig. S5.3) which exceed A∗ at least a few times.
This suggests that Eq. S5.14 is valid, justifying our use of the quasi-equilibrium
assumption for modeling the motor distribution.

S5.2 Extraction of concentration profiles from raw images
In this section, we describe our approach for extracting the radial profiles of motor
and microtubule concentrations from raw fluorescence images.
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Fluorescence normalization and calibration
When taking images with a microscope, several sources contribute to the detected
pixel intensities: the camera offset, autofluorescence from the energy mix, and
fluorescence coming from the tagged proteins (tubulin or motors). In addition, due
to the uneven illumination of the field of view, the same protein concentration may
correspond to different intensities in the raw image.

We begin the processing of raw images by first correcting for the uneven illumination.
For microtubule images, we use the first movie frames as references with a uniform
tubulin concentration in order to obtain an intensity normalizationmatrix. Each pixel
intensity of the final image frame is then rescaled by the corresponding normalization
factor.

Although themotor concentration is also initially uniform, the light activation region
in the first frame appears photobleached, making it unsuitable for the construction
of a normalization matrix. Instead, we obtain this matrix from the final frame, after
masking out the neighboring region of the aster, outside of which the nonuniformity
of the fluorescence serves as a proxy for uneven illumination. Intensity normalization
factors inside the masked out circular region are obtained through a biquadratic
interpolation scheme. The steps leading to a normalized motor image are depicted
in Fig. S5.1A.

After fluorescence normalization, we convert intensities into units of protein concen-
tration using calibration factors estimated from images of samples with known
protein contents. For K401 and Kif motors, we use the conversion 1000 intensity
units → 815 nM motor dimer. For Ncd dimers, which have fluorescent tags on
both iLid and Micro units, we use the 1000 intensity units→ 407 nM conversion.
In all three cases, 200 ms exposure time is used in the imaging. For tubulin, we
make a rough estimate that after spinning the energy mix with tubulin, around 1 µM
of tubulin remain, all of which polymerize into GMP-CPP stabilized microtubules.
This leads to the calibration of 360 intensity units→ 1 µM tubulin (100 ms exposure
time).

Aster center identification
In the next step of the profile extraction pipeline, we crop out the aster region from
the normalized image and identify the aster center in an automated fashion. In
particular, we divide the aster into 16 equal wedges, calculate the radial profile of
motors within each wedge, and define the aster center as the position that yields
the minimum variability between the motor profiles extracted from the different
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wedges. Having identified the center, a mean radial profile for the aster is defined
as the average of the 16 wedge profiles (Fig. S5.1B).
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Figure S5.1: Procedure for extracting protein concentration profiles demonstrated
on an example aster. (A) Steps taken in normalizing the fluorescence of motor
images. The immediate aster region is shown with a saturated color to make
it possible to see the nonuniform background fluorescence. (B) Aster center
identification and extraction of radial concentration profiles. The numbers indicate
the wedges at different angular positions. The two circles in the images indicate the
inner and outer bounds. (C) Determination of inner and outer bounds based on the
motor and tubulin profiles, respectively.

Inner and outer boundary determination

Since ourmodeling framework applies to regions of the aster where themicrotubules
are ordered, we consider the concentration profiles in a limited radial range for the
model fitting procedure. As we do not have a PolScope image for every aster to
precisely identify the disordered core region, we prescribe a lower threshold on the
radial range by identifying the position of the fastest intensity drop and adding to
it a buffer interval (equal to 15% of the outer radius) to ensure that the region of
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transitioning from the disordered core into the ordered aster ‘arms’ is not included
(Fig. S5.1C, top panel). As for the outer boundary, we set it as the radial position
where the tubulin concentration exceeds its background value by a factor of two
(Fig. S5.1C, bottom panel).

S5.3 Model fitting
Here we provide the details of fitting the expression we derived for the motor
distribution (Eq. S5.10) to the profiles extracted from aster images. Since smaller
asters are typically irregular and hence, do not meet the polar organization and radial
symmetry assumptions of the model, we constrain the fitting procedure to larger
asters formed in experiments with a minimum light illumination disk diameter of
200 µm.
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Figure S5.2: Demonstration of the model fitting procedure for average as well as
separate wedge profiles. (A,B) Fluorescence images of an example Kif aster. 16
different wedges are separated and numbered. (C) Landscape of fit residuals when
varying the two effective parameters  d and _0. For each pair, an optimal scaling
coefficient � is inferred before calculating the residual. The dot at the brightest
spot stands for the optimal pair (or, the arrow indicates the location of the optimal
pair in the landscape). (D) Average motor profile and the model fit, along with
the inferred parameters. (E) Collection of fits to separate wedge profiles using the
optimal ( d, _0) pair inferred from the average profile.

The different aspects of the fitting procedure are demonstrated in Fig. S5.2. Extracting
the average tubulin and motor profiles, we fit our model to the motor profile and
obtain the optimal values of the effective parameters  d and _0. With the exception
of a few cases, the optimal pair ( d, _0) corresponds to a distinct peak in the residual
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landscape (Fig. S5.2C, note the logarithmic scale of the colorbar), suggesting that
the parameters are well-defined. The fit to the motor data for the example aster is
shown in Fig. S5.2D.
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Figure S5.3: Collection of all fits to motor profiles. The green and blue dots
represent the radially averaged motor and tubulin concentrations. The solid black
lines represent the model fits.

As stated in the main text, we then use the data from the separate aster wedges to
assess the quality of fit for each aster. Specifically, keeping the ( d, _0) pair inferred
from the average profile fixed, we fit the 16 separate wedge profiles by optimizing
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over the scaling coefficient � for each of the wedges, and use the model residuals to
assess the fit quality. In the set shown in Fig. S5.2E, with the exception of wedge 9
which contains an aggregate near the core radius, fits to all other wedge profiles are
of good quality, translating into a low fitting error reported in Fig. 5.1E of the main
text.

Repeating this procedure for all other asters, we obtain the best fits to their motor
profiles and the corresponding values of the optimal ( d, _0) pairs. The collection
of all average profiles, along with the best model fits and inferred parameters are
shown in Fig. S5.3.

S5.4 Accounting for finite MT lengths
Analysis of purifiedmicrotubule images shows that themicrotubule length distribution
is roughly exponential with a mean of ℓMT ≈ 2 µm (Fig. S5.4). Taking the size of
a tubulin dimer to be 8 nm, this mean length translates into the distance traveled in
≈250 motor steps, which is comparable to the processivity of K401 motors reported
in Table 1 of the main text. Since motors stall when reaching microtubule ends,
their effective advection speed will get reduced. Here, we account for this reduction
and estimate its magnitude for the different motors used in our study.
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Figure S5.4: Measured cumulative distribution of microtubule lengths. See the
supporting Jupyter notebook for details on how the distribution was extracted.

Consider the schematic in Fig. S5.5 where a motor is shown advecting on a
microtubule with length !. If the distance G between the motor and microtubule end
at the moment of binding is less than the motor processivity _E, then the motor will
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reach the end and stall for a time period g = 1/:endoff before unbinding. On the other
hand, if G is greater than _E, the motor will not stall while bound to the microtubule
and hence, its effective speed will not be reduced.

v

L

koff
end

x

koff

Figure S5.5: Schematic representation of initial motor binding, advection, and
stalling at the microtubule end.

Assuming that the location of initial binding is uniformly distributed in the [0, !]
interval (hence, the chances of binding between G and G + dG is dG/!), we can
calculate the effective speeds in the above two cases as

Eeff(! < _E) = !−1
∫ !

0

G

G/E + g dG,

= E

(
1 − Eg

!
ln

(
1 + !

Eg

))
, (S5.15)

Eeff(! > _E) = !−1
∫ _E

0

G

G/E + g dG︸                    ︷︷                    ︸
initial position < _E

+ !−1
∫ !

_E

E dG︸          ︷︷          ︸
initial position > _E

= E

(
_E

!
− Eg
!

ln
(
1 + _E

Eg

))
+ E

(
1 − _E

!

)
= E

(
1 − Eg

!
ln

(
1 + _E

Eg

))
. (S5.16)

As can be seen, in both cases the effective speed is lower than the walking speed E.
Now, if ?(!) = ℓ−1

MT4
−!/ℓMT is the exponential distribution of microtubule lengths,

then themean effectivemotor speed evaluated over thewholemicrotubule population
becomes

〈Eeff〉 =
∫ ∞

0
Eeff(!) ?(!) d!. (S5.17)

An exact analytical expression is not available for the integral, and therefore, we
evaluate it numerically for each motor.

The end-residence time g was measured for rat kinesin-1 motors to be ≈ 0.5 s [5].
We take this estimate for our K401 motors (D. melanogaster kinesin-1) and since,
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to our knowledge, there is no available data on end-residence times for Ncd and Kif
motors, we use the same estimate for them.

Using this g estimate, the value for the mean microtubule length (ℓMT ≈ 2 µm), and
the motor speed (E) and processivity (_E) values from Table 5.1, we numerically
evaluate the relative decrease in the effective speeds of the motors as

K401: 〈Eeff〉/E ≈ 0.65, (S5.18)

Kif: 〈Eeff〉/E ≈ 0.87, (S5.19)

Ncd: 〈Eeff〉/E ≈ 0.98 (0.65). (S5.20)

Here we made two estimates for Ncd, first using its single-molecule processivity
(≈ 1 step) reported in Table 5.1, and then the 100-fold increased processivity that
is potentially reached due to collective effects mentioned in the main text. As a
consequence of this effective speed reduction, we expect factors of ≈ 1.5, ≈ 1.15,
and ≈ 1.02 (1.5) increase in the inferred _0 values of K401, Kif, and Ncd motors,
respectively.

S5.5 Broader spread of the tubulin profile
In this section, we first derive the analytical form for the tubulin distribution in the
idealized scenario where the motor profile can be approximated as an exponential
decay. We then demonstrate that, when normalized, this distribution is always
broader than the motor distribution.

We start off by writing the motor distribution as

<tot(A) ≈ <∞ + Δ< 4−(A−Ain)/_, (S5.21)

where _ is the decay length scale, <∞ is the background motor concentration
corresponding to the freemotor population, andΔ< is the amplitude of the exponential
decay. Next, using Eq. S5.5 as well as the definition <tot(A) = <b(A) +<f(A), we set
out to obtain the distributions of bound and free motor populations. From Eq. S5.5,
we have

<b(A) = −_0 <
′
f(A)

= −_0
(
<′tot(A) − <′b(A)

)
⇒ (S5.22)

<′b(A) −
<b(A)
_0

= <′tot(A) = −
Δ<

_
4−(A−Ain)/_. (S5.23)

Solving for <b(A), we find

<b(A) = �b 4
(A−Ain)/_0 + Δ< _0

_ + _0
4−(A−Ain)/_, (S5.24)
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where �b is an integration constant. Because the approximation Eq. S5.21 applies
to a finite radial interval A ∈ [Ain, Aout], the constant �b is generally nonzero. It
specifies the relative contributions of free and bound motor populations to the total
motor distribution <tot(A).

The free motor population is found by simply subtracting Eq. S5.24 from Eq. S5.21,
that is,

<f(A) = <tot(A) − <b(A)

= <∞ + Δ<
_

_ + _0
4−(A−Ain)/_ − �b 4

(A−Ain)/_0 . (S5.25)

Having obtained expressions for the two motor populations (bound and free), we
now recall Eq. S5.6 that relates these two populations through the local tubulin
density. Using Eq. S5.6, we find the tubulin density as

dMT (A) =  d
<b(A)
<f(A)

=  d
Δ<

_0
_+_0

4−(A−Ain)/_

<∞ + Δ< _
_+_0

4−(A−Ain)/_

=  d
_0
_

4−(A−Ain)/_

<∞
Δ<
(1 + _0/_) + 4−(A−Ain)/_

=  d
_0
_

4−(A−Ain)/_

W + 4−(A−Ain)/_
, (S5.26)

where we introduced the effective parameter W ≡ (<∞/Δ<) (1 + _0/_). Eq. S5.26
represents a partial sigmoid, the precise shape of which in the A > Ain region is
defined through the parameter W (Fig. 5.2B).

To formally demonstrate that the tubulin profiles predicted inEq. S5.26 are necessarily
broader than the motor profile, we first normalized them after subtracting off the
concentration values at the outer boundary, namely

<̂tot(A) =
<tot(A) − <tot(Aout)
<tot(Ain) − <tot(Aout)

=
Δ< 4−(A−Ain)/_ − Δ< 4−(Aout−Ain)/_

Δ< − Δ< 4−(Aout−Ain)/_

=
4−(A−Ain)/_ − 4−(Aout−Ain)/_

1 − 4−(Aout−Ain)/_
, (S5.27)

d̂MT (A) =
dMT (A) − dMT (Aout)
dMT (Ain) − dMT (Aout)
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=

4−(A−Ain)/_

W+4−(A−Ain)/_ −
4−(Aout−Ain)/_

W+4−(Aout−Ain)/_

1
W+1 −

4−(Aout−Ain)/_

W+4−(Aout−Ain)/_

=
(W + 1) (W + 4−(Aout−Ain)/_)

(W + 4−(A−Ain)/_) (W + 4−(Aout−Ain)/_)
× W4

−(A−Ain)/_ − W4−(Aout−Ain)/_

W − W4−(Aout−Ain)/_

=
W + 1

W + 4−(A−Ain)/_
× 4
−(A−Ain)/_ − 4−(Aout−Ain)/_

1 − 4−(Aout−Ain)/_︸                          ︷︷                          ︸
<̂tot (A)

=
W + 1

W + 4−(A−Ain)/_
× <̂tot(A). (S5.28)

The local ratio of normalized tubulin and motor densities then becomes

d̂MT (A)
<̂tot(A)

=
W + 1

W + 4−(A−Ain)/_
> 1, (S5.29)

which is always greater than 1 in the A > Ain region. This is indicative of the
‘shoulder’ that the normalized tubulin profile often forms over normalized motor
profile and demonstrates the broader spread of the tubulin distribution in this
idealized setting.
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