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ABSTRACT

The state of matter that we define as *life* is different from anything else we have

encountered so far in the universe. Living systems not only perpetuate their ex-

istence out of equilibrium against the will of the second law of thermodynamics,

but they do so while keeping up with an ever-changing environment. A key part

of this capacity to adapt to environmental changes is the ability of organisms to

gather information from their surroundings to put together an adequate response

to the challenges presented to them. This thesis presents an effort to understand,

from first principles, this fundamental feature of information gathering that all life

on earth shares. We dig into the physics behind one of the most pervasive mech-

anisms through which living systems sense and respond to the environment–the

ability to turn *on* and *off* genes. In doing so, we hope to uncover general prin-

ciples of how organisms deal with the problem of collecting information about the

world that surrounds them.

In Chapter 1, we develop the theoretical and conceptual tools to navigate the rest

of the thesis. I introduce the idea of gene regulation, as well as different theoretical

models of this pervasive biological phenomenon. We also delve into the realm

of information theory and learn how the plastic concept of information can be

mathematically defined and quantified.
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The second stop in our exploration (Chapter 2) asks the following question: can

we understand, from first principles, how it is that proteins allow cells to regulate

their genes on-demand upon sensing environmental cues? For this, we explore the

physics behind transcriptional control due to allosteric transcription factors. Us-

ing simple quasi-equilibrium models of the two processes involved in this type of

regulation—the regulation of the gene by the binding and unbinding of the tran-

scription factor, and the regulation of the activity of the transcription factor itself

by the binding and unbinding of an effector molecule—we are able to predict the

input-output function of a simple genetic circuit, and compare such predictions

with experimental determinations of the mean response of a population of bacte-

rial cells.

We then expand on these insights to ask questions about the inescapable cell-to-

cell variability that isogenic cells encounter. For this, we have to leave behind the

pure thermodynamic framework and work in the language of chemical kinetics.

This allows us to make predictions beyond the mean input-output gene expression

response of cells by reconstructing full gene expression distributions. With these

probabilistic input-output functions, in Chapter 3 we formalize the question of the

*amount of information* that cells can gather from the environment. For this, we

turn to information-theoretic concepts of maximal mutual information (otherwise

known as channel capacity) between the state of the environment and the gene

expression response from bacterial cells. Finally, we compare our predictions of the

maximum amount of information—measured in bits—that cells can gather with

single-cell inferences of this quantity.
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C h a p t e r 1

FROM BIO TO BIT: HOW DO CELLS SENSE THE WORLD
AROUND THEM?

1.1 Introduction

In his classic 1944 book What is Life?, Schrödinger brought to the attention of the

scientific community what he thought were two of the biggest challenges we had

ahead of us if we were to understand living systems in the same way we under-

stand the electromagnetic field or the universal law of gravitation [1]. The idea

that living organisms could be “accounted for” by physics and chemistry brought

with it a new agenda on what needed to be done to transition from a qualitative

and descriptive study of the phenomena of life to a quantitative and predictive sci-

ence in the spirit of the physical sciences. Since the publication of the book, there

has been an enormous amount of progress on our understanding of living sys-

tems from a first-principles perspective, nevertheless, 75 years later Schrödinger

questions are still as relevant and as vibrant as ever before [2].

One of the defining features of living organisms at all scales is their capacity of

gathering information from the environment, encode an internal representation

of the state of the environment, and generate a response based on this informa-

tion processing capacity. Researchers in the field of origins-of-life had gone as far

as declaring that life emerged when chemical systems underwent a radical phase

transition after which they were able to process and use information and free en-

ergy [3]. So, although speculative, it is highly probable that the physical theory

fulfilling Schrödinger’s vision of accounting for the phenomena of life will be the

physics of systems capable of processing information [4].
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In this context, information does not take the generic concept of possessing prac-

tical knowledge about something. In this thesis, we use a precise mathematical

definition of information [5]. This formal definition makes information a met-

ric worth quantifying and predicting in various biological contexts as theoretical

studies suggest that natural selection might act on the ability of an organism to

process information [6]. Thus, working out the physical details of how it is that

organisms sense the environment—this is, gather information about the state of the

environment, encode such information in some shape or form within their phys-

ical boundaries, and take action based on this information—is at the core of the

state-of-the-art research in biophysics [7].

The present thesis is an effort towards this vision of understanding biological sys-

tems as information processing machines. Our object of study will be gene reg-

ulation in bacteria. This particular system has been the subject of study for mi-

crobiologists and molecular biologists for decades, and we have come to learn a

lot about the microscopic mechanistic details of how bacteria turn on and off their

transcriptional machinery [8]. In particular, we will focus on what we think of

as the “hydrogen atom” of gene regulation—the so-called simple-repression motif

(more on that in the next section). In physics, calling something the hydrogen atom

of X means that for the area of study X, this “something” represents a system sim-

ple enough to be amenable to analytical models that standard mathematical meth-

ods can solve, but rich enough to capture the general features of the phenomena.

This simple genetic circuit will allow us to write tractable mathematical models to

guide our experimental efforts with the ultimate goal of testing our understanding

of such systems when predicting how much information a bacterium can gather

from the environment using this genetic module.

Professional biophysicists might wish to skip the rest of this chapter as we will

lay the foundations needed for the rest of our enterprise. We will introduce the

basics of gene expression modeling and the mathematical concept of information

and work through every single physical and mathematical prerequisite needed for
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the rest of the thesis. The following chapters are structured as follows: Chapter 2

builds on a decade of understanding this hydrogen atom of gene regulation and

expands our models’ predictive ability by including the effect of environmental

effectors. This means that we will consider how gene regulation is affected by the

presence of an extracellular inducer molecule. Chapter 3 will expand even further

our predictive capacities by building a model capable of making predictions about

the cell-to-cell variability inherent to all signaling systems working at the molec-

ular scale. Chapter 4 serves as a Supporting Information section for Chapter 2,

detailing every calculation and every inference. Likewise, Chapter 5 expands on

Chapter 3, explaining every technical detail.

1.2 Gene Regulation as a Physics 101 Problem

As organisms navigate the challenges presented by the environment, they must

constantly fight against the will of the second law of thermodynamics to bring

them back to an equilibrium state. To face such challenges, cells are equipped with

a toolkit of genes written in the language of A, T, C, and G of the genome. We can

think of a typical bacteria genome with≈ 5× 103 genes as the blueprint to produce

a repertoire of tools that allow cells to thrive under a myriad of circumstances

that they face throughout their lives. Given the vast number of challenges that

organisms face, there is constant pressure on every living system to use the right

tools for the right circumstances. From cells in the fly embryo expressing different

genes that will define their identity on the animal’s final body plan to a simple

bacteria expressing the correct enzymes to process the available nutrients in the

environment, all organisms are faced with the task of orchestrating the expression

of the correct subset of genes at their disposal when trying to survive.

Our understanding of how organisms regulate their genes’ expression is still not

as thorough as one might expect, given the effort that has gone into this question.

Take, for example, E. coli—arguably the most well-characterized model organism—

for which we know the regulatory scheme of less than 1/3 of its genes [9]. For

more complex organisms such as Drosophila, C. elegans, or even humans, we are
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even more hopeless on getting a holistic view of the regulatory landscape. Nev-

ertheless, we would not be doing justice to the field’s significant advances if we

were to pretend we are utterly ignorant about how gene regulation takes place in

bacteria. There is a rich mechanistic understanding of how the transcriptional ma-

chinery takes the information contained in DNA and transcribes it into RNA [8].

The relative simplicity of the process has inspired generations of biophysicists to

try to write down minimal models that can describe and predict features of the

process of gene regulation [10–12].

These modeling efforts come in two main flavors: equilibrium statistical mechan-

ical models and kinetic models. In the following sections, we will introduce the

necessary background for both approaches relevant to the rest of the thesis.

Minimal Model of Gene Expression

Let us begin our introduction to gene expression modeling with the simplest ex-

ample. As shown in Fig. 1.1(A), we imagine that a gene promoter (the region of the

gene where transcriptional regulation takes place) produces mRNA at a constant

rate rm. Each mRNA can stochastically decay with a rate γm. Our interest is to un-

derstand how the mRNA count m changes over time, given these two competing

processes. For that, let us write the mRNA count at time m(t + ∆t), where t is the

time—which we are thinking of as being “right now”—and ∆t is a little time step

into the future. The mRNA count can then be predicted by computing

m(t + ∆t) = m(t) + rm∆t− (γm∆t)m(t), (1.1)

where we can think of rm∆t as the probability of observing a single mRNA being

produced in the time interval [t, t + ∆t] (∆t is so small that we neglect the possibil-

ity of seeing multiple mRNAs being produced), and γm∆t the probability of seeing

a single mRNA being degraded. But since each mRNA has the same probability of

being degraded, the total number of mRNAs that we would see decay in this time

window would be the probability per mRNA times the total number of mRNAs.

This is in contrast with the production of mRNA, which does not depend on the



5

current number of mRNAs. If we send the term m(t) to the left-hand side of the

equation and divide both sides by ∆t, we obtain

m(t + ∆t)−m(t)
∆t

= rm − γmm(t). (1.2)

Upon taking the limit when ∆t→ 0, we see that the left-hand side is the definition

of the derivative of the mRNA count with respect to time. We then obtain an

ordinary differential equation of the form

dm
dt

= rm − γmm(t). (1.3)

Before even attempting to solve 1.3, we can perform a qualitative analysis of the

dynamics [13]. It is handy to plot the contribution of each of the components

(production and degradation) to the derivative dm/dt as a function of m. This is

shown in Fig. 1.1(B), where the blue horizontal line rm shows the production rate—

which does not depend on m, and the red line shows the degradation term mγm

which scales linearly with m. Notice that we do not include the negative sign for

the degradation term, i.e., we are not plotting −mγm. The point mss where both

lines intersect represents the point where the production matches the degradation.

For all values less than mss, the production term is larger than the degradation,

which means that for any value m < mss, the derivative is positive (dm/dt > 0),

so over time the system will accumulate more mRNA. The opposite is true for all

values after mss where the degradation term is larger than the production term,

implying that dm/dt < 0. This means that for m > mss, the system will tend to

lose mRNA. These opposite trends point to the idea that mss must be called a stable

fixed point of the dynamical system. This can schematically be seen at the bottom

of Fig. 1.1(B). The arrowheads’ size indicates the system’s trend to move either left

or right in m. Since all arrows point at the special value, mss, we can say that any

small perturbation of the system will be dissipated as the system relaxes back to

mss.
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This qualitative statement can be confirmed by solving Eq. 1.3. If we define the ini-

tial condition m(t = 0) = mo by separation of variables, we will obtain a solution

of the form

m(t) = moe−γmt +
rm

γm
(1− e−γmt). (1.4)

In the limit when t→ ∞, we can see that the steady-state solution is given by

mss =
rm

γm
. (1.5)

Fig. 1.1(C) shows the time evolution of m for different initial values mo. We can see

that indeed regardless of the initial mRNA count, the system relaxes exponentially

to mss = rm/γm.

So far, our model assumes a simple constant transcription rate rm; let us expand

this term a little further to include regulation by a transcriptional repressor fur-

ther down the road. We know that for a transcriptional event to occur, the RNA

polymerase (RNAP) must bind to the promoter region and undergo a series of ir-

reversible steps, such as opening the double helix to initiate the DNA sequence’s

copying into mRNA [8]. But before these irreversible steps take place, there is a

chance that the RNAP falls off the promoter. If we assume that these irreversible

steps take place on a much longer timescale compared to the initial binding and

unbinding of the RNAP on the promoter, we can separate the time scale and in-

vestigate them independently. In particular, we can write that mRNA production

happens at a rate

mRNA production = rm · pbound, (1.6)

where we split the original production term into two steps: pbound, the probabil-

ity of finding an RNAP bound to the promoter, and rm which captures all of the

irreversible downstream steps that take place once the RNAP is engaged in a tran-

scriptional event. A way to think about it—relevant to what I am doing right now

as I type my thesis—is to think that the speed at which I type this document has

to do with two things: the probability of me being actively working on these notes

times the rate at which I type these notes once I engage in the activity. The reason
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kinetic scheme for mRNA production(A)

phase portrait of mRNA dynamics mRNA dynamics(B) (C)

Figure 1.1: Minimal model of gene expression. (A) Schematic of the kinetics governing gene
expression. mRNA is produced at a constant rate rm independent of the current mRNA copy num-
ber. Degradation of each mRNA occurs at a rate γm. (B) Example of the qualitative analysis of
the mRNA dynamics via a 1D phase-portrait. The differential equation governing the dynamics
contains two terms: a constant production rate given by rm, and a degradation rate γmm, which de-
pends on the current mRNA count. The main plot shows each of the components in the m vs. dm/dt
plot. Since rm does not depend on the current number of mRNA, it gives a straight production rate
as a function of m. The total degradation rate depends linearly on the mRNA copy number, giv-
ing a line with slope γm. When the two components are equal (bot lines crossing), we obtain the
steady-state mRNA value mss. The bottom line shows a qualitative schematic of the flow of the
system towards this steady state. The further m is from mss, the faster it moves towards this point
as schematized by the arrows’ size. (C) Example of mRNA dynamics for different initial conditions.
Over time, all curves converge to the steady-state mRNA value mss = rm/γm. For this plot, γm = 1
and rm/γm = 10. The Python code (ch1_fig01C.py) used to generate part (C) of this figure can be
found on the thesis GitHub repository.

https://github.com/mrazomej/phd/blob/master/src/chapter_01/code/ch1_fig01C.py
https://github.com/mrazomej/phd
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this separation makes sense is that we can include the effect of the regulation by a

transcriptional repressor as a reduction of the time (the probability) that the RNAP

can be bound to the promoter. Furthermore, since we are assuming that the bind-

ing and unbinding of the RNAP happen at a timescale much faster than the down-

stream events, we can assume that this binding reaction is in quasi-equilibrium,

for which we can use the powerful theoretical framework of statistical mechanics.

Let us now delve into the basics of this physical theory.

The Unreasonable Effectiveness of Unrealistic Simplifications

In the preface of the textbook Molecular Driving Forces, Dill and Bromberg intro-

duce the idea of Statistical Mechanics as the unreasonable effectiveness of unrealistic

simplifications [14]. Although one could make the case that all of physics follows

this description, it is undoubtedly evident that statistical mechanics is a vivid ex-

ample of how simple ideas can have profound consequences. Statistical mechan-

ics can be defined as the theory that, upon assuming the atomic nature of matter,

explains the phenomenology that classical thermodynamics established from the

interactions of the microscopic components of a system [14]. As with any other

physical theory, statistical mechanics is built from a set of empirical facts that define

“axioms” that we take to be true. In other words, as Feynman famously described

to us: if we want to come up with a new law of nature, there is a simple recipe that

we must follow:

1. We guess the law. Literally. The most profound understanding of our physi-

cal reality we have comes from educated guesses made after a careful obser-

vation of nature.

2. We compute the consequences of such a guess. That is why mathematical the-

ories allow us to sharpen our statements about how we think nature works.

3. We compare with experiments/observations. The scientific revolution came

about when, after the dark ages, we finally learned it was okay to say “we

don’t know.”
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In such a simple statement, Feynman tells us, lies the key to science [15]. For

our purpose of understanding the basis of statistical mechanics, we will argue that

Boltzmann’s law gives the main law upon which the field is founded

P(E1)

P(E2)
=

e−E1/kBT

e−E2/kBT . (1.7)

Let us unpack this equation. The main idea behind statistical mechanics is that

macroscopic observables (temperature and pressure in classic examples) are emer-

gent properties dictated by the dynamics of the system’s microscopic components.

What Boltzmann’s law tells us is that the relative probability of a system in ther-

mal equilibrium to be found in a particular microstate with energy E1 compared

to being in a microstate with energy E2 is given by an exponential function of the

negative energy of such microstate relative to the thermal energy kBT. The mi-

nus sign in the exponent comes from the fact that states with negative energies are

more favorable by convention in physics. Thus, having a large negative energy

has a high probability when taking the exponential of minus such negative num-

ber. To provide concrete examples of what a microstate can look like, Fig. 1.2(A)

shows three molecular systems relevant to biology. In the first example, we have

the classic ligand-receptor binding problem; here, we imagine that a solution can

be discretized in space into a series of small boxes. In each of these boxes, one and

only one ligand molecule can fit in. In principle, we can list all possible spatial

arrangements of ligands. We could then calculate the relative likelihood of finding

the system in any configurations as long as we can assign an energy value to each

of them. The second example focuses on ligand-gated ion channels. In this par-

ticular system, we care about the ion channel’s state—either open or closed—and

the ligands’ binding configuration. If the channel responds to the ligand’s concen-

tration by changing its probability of gating, we can calculate using equilibrium

statistical mechanics. Finally, the third example shows different configurations of

a small patch of the cell membrane. All deformations of a membrane have ener-
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getic costs associated with them. By listing all possible membrane configurations,

we can calculate the most likely shape of a membrane given the forces and stresses

acting on it.

The macroscopic states that we observe can then be thought of as a coarse-graining

of many microstates into a single macrostate. For example, in the ligand-receptor

binding case, we rarely would care about the specific position of all the ligand

molecules in the solution. What we would be interested in is whether or not the

ligand is bound to the receptor. We can therefore define as our “macrostate” the

particular configuration of the receptor as schematically shown in Fig. 1.2(B).

If we want to know the likelihood of finding a particular system in any specific

configuration, Boltzmann’s law (Eq. 1.7) is then telling us a protocol we must

follow:

1. Enumerate all possible microstates in which the system can be found.

2. Compute the energy of each of these microstates.

3. Define the “macrostate” we care about by grouping all microstates that be-

long to the same energy.

4. Compute the Boltzmann factor. This factor, sometimes called the Boltzmann

weight, is defined as the exponential of the negative energy divided by the

thermal energy, as indicated in Eq. 1.7.

To see this protocol in action, let us apply it to the calculation of pbound, the proba-

bility of finding an RNAP bound to the promoter. We will go through each of the

protocol steps and build up the “unrealistic simplifications” that will allow us to

make this calculation.
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system microstate 1 microstate 2 microstate N 

K+

ligand-receptor
binding

ligand gated
ion channel

cell membrane
deformations

...

...

...

(A)

(B) “macrostate”microstates with free receptor

microstates with receptor bound by ligand

...

...

Figure 1.2: Boltzmann’s law and the definition of a micro- and macrostate. (A) Top panel: ligand-
receptor binding microstates. Middle panel: ligand-gated ion channel microstates. Bottom panel:
membrane patch deformations. (B) Schematic of the definition of a “macrostate.” In the ligand-
receptor binding problem, we ignore all ligand molecules’ spatial configuration and focus on the
receptor’s binding state.
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1. Enumerate possible microstates. We begin by making a drastic coarse-graining

of the bacterial genome. For us, a genome is simply made out of boxes where

the RNAP can bind. We imagine that there is a single site where RNAP can bind

specifically—the promoter of interest. There are also NNS ≈ 5× 106 non-specific

binding sites, one per basepair (bp) in the genome. This means that because of

the sequence-dependent interactions between the RNAP molecule, and the DNA,

the energy associated with specific binding to the gene promoter is more favorable

than the rest of the genome. We ignore the fact that the RNAP footprint where it

binds to the genome is roughly 30 bp. This assumption is valid if the number of

available RNAP molecules is much smaller than the number of non-specific bind-

ing sites since it is improbable that two RNAPs would fall next to each other by

pure chance. A useful analogy for this point is to think about sitting ∼ few× 10

people on a large stadium with ∼ 104 seats. If the seats are chosen randomly,

we do not need to worry about doing the sampling “without replacement” be-

cause the chances of two people ending up with the same seat number are neg-

ligible. We also ignore the possibility of RNAP not being bound to the genome.

This assumption is supported by experimental evidence on a particular type of

E. coli mutant that sheds lipid vesicles without segregating DNA into such vesi-

cles. Mass spectrometry analysis on these “min-cells” has shown that there are no

RNAP molecules to be found, implying that RNAPs are bound to DNA most if not

all of the time [11]. The exercise then consists of randomly choosing one box for

each of the P polymerases available to bind. Fig. 1.3 shows in the first column two

possible configurations of our coarse-grained genome.

2. Compute the energy for each microstate. Let us analyze the case where all

P RNAP molecules are bound non-specifically to the genome. For simplicity, we

assume that RNAP binds to all NNS non-specific binding sites with the same affin-

ity. We assign this energy to be ε
(NS)
P . This assumption could be relaxed and we

could assign instead a distribution of non-specific binding energies, as explored

in [16]. But for now, we do not have to worry about this complication. For the

statistical mechanics’ protocol, the assignment of binding energies does not come
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from some quantum first-principled calculation or anything similar. We label the

interaction of the RNAP and the rest of the genome with a single value, ε
(NS)
P , that

coarse-grains all of the hydrogen bonds and other effects that go into this physical

process and gives an average energy. The calculation continues with this “labeled

energy,” and, as we will see at the end, a very clean functional form emerges. Since

we have P such polymerases bound non-specifically, the energy of any state with

a similar configuration is then Pε
(NS)
P as shown in Fig. 1.3 second column, top row.

3. Define the “macrostate” we care about. In a sense, when we speak about

macrostate, it does not necessarily mean something that we can macroscopically

observe. What it means is that we group a bunch of states that we take to be

functionally equivalent, as shown in Fig. 1.2(B). In our case, we only care about

whether or not the RNAP is bound to our promoter of interest. The configuration

of the rest of the background sites is irrelevant to our question. What this means

in practice is that we must compute the degeneracy or multiplicity of our state. In

other words, for the specific state shown in the first column/top row of Fig. 1.3, we

know its Boltzmann weight. Eq. 1.7 tells us that the probability of this particular

configuration takes the form

Pstate ∝ e−βPε
(NS)
P , (1.8)

where we define β ≡ (kBT)−1. The probability of this binding configuration takes

this form since the P RNAP molecules are bound non-specifically. But every single

arrangement in which all RNAPs are bound non-specifically has the same Boltz-

mann weight. The question then becomes: in how many of such microstates can

the system exist? This is a combinatorics question of the form: in how many differ-

ent ways can I arrange P molecules into NNS boxes? Which of course, the answer

is

# states with all RNAPs bound non-specifically =
NNS!

P!(NNS − P)!
, (1.9)

as shown in the third column of Fig. 1.3. This multiplicity can be simplified if we

consider that NNS � P. To more easily visualize how to simplify this, let us for

a second assume NNS = 100 and P = 3. Given the definition of factorials, this
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means that

NNS!
(NNS − P)!

=
100 · 99 · 98 · · · 97 · · · 2 · 1

97 · · · 2 · 1 = 100 · 99 · 98. (1.10)

Given this result, we can simply state that 100 · 99 · 98 ≈ 1003, only making a three

percent error (100 · 99 · 98/1003 ≈ 0.97). Imagine that NNS is in the order of 106.

Then the error would become negligible. That is why, as shown in the third column

of Fig. 1.3, we can approximate

NNS!
P!(NNS − P)!

≈
NP

NS
P!

, for NNS � P. (1.11)

For our other “macrostate,” we have the case where only one out of the P RNAPs

is bound specifically for the promoter. We define the energy of this single RNAP

specifically binding to the promoter as ε
(S)
P . We assume that the other P− 1 RNAPs

are bound non-specifically with the usual energy ε
(NS)
P . The way to realize this state

is then given by

# states with one RNAP bound specifically =
NNS!

(P− 1)!(NNS − (P− 1))!
≈

NP−1
NS

(P− 1)!
.

(1.12)

What these Boltzmann weights mean is that for us, any state on which a single

RNAP is bound to the promoter while the rest are bound non-specifically is equiv-

alent. Therefore the probability of finding the promoter occupied by an RNAP

would be of the form

pbound ∝ e−βε1 + e−βε2 + e−βε3 + · · · (1.13)

where εi is the energy of the ith state that has a single RNAP bound to the promoter.

But we established that all of the εi energies are the same. So instead of writing

this long sum, we multiply the Boltzmann weight of a single state by the number

of states with equivalent energy, i.e., we multiply it by the state’s multiplicity or

degeneracy. The same logic applies for the states where none of the RNAPs are

specifically bound to the promoter.
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4. Compute the Boltzmann factor. The last step in the protocol is to follow the

recipe indicated by Eq. 1.7. We exponentiate the energy, with the caveat we

mentioned on the last point that this time we multiply by the multiplicity that

we just computed. This is because we are lumping together all microstates into a

single functional macrostate. So the Boltzmann weight for the unbound ρunbound

macrostate is given by

ρunbound =
NP

NS
P!

e−βPε
(NS)
P . (1.14)

For the bound state, we have

ρbound =
NP−1

NS
(P− 1)!

e−β
(

ε
(S)
P +(P−1)ε(NS)

P

)
. (1.15)

For reasons that will become clear later in this chapter once we work with the

entropy and derive the Boltzmann distribution, we know that to compute the

probability of a specific microstate (or a macrostate), we simply take the Boltz-

mann weight of the microstate and divide by the sum of all of the other Boltzmann

weights of the states available to the system. This sum of Boltzmann weights plays

a very special role in statistical mechanics, and it is known as the partition function

of the system. Therefore, to calculate pbound, we compute

pbound =
ρbound

ρunbound + ρbound
. (1.16)

Substituting the Boltzmann weights we derived, we find

pbound =

NP−1
NS

(P−1)! e
−β
(

ε
(S)
P +(P−1)ε(NS)

P

)
NP−1

NS
(P−1)! e

−β
(

ε
(S)
P +(P−1)ε(NS)

P

)
+

NP
NS

P! e−βPε
(NS)
P

, (1.17)

an algebraic nightmare. We can simplify this expression enormously by multiply-

ing the numerator and denominator by ρ−1
unbound. Upon simplification, we find the

neat expression

pbound =
P

NNS
e−β∆εP

1 + P
NNS

e−β∆εP
, (1.18)
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state energy multiplicity Boltzmann
weight

Normalized
weight

Figure 1.3: Statistical mechanics protocol for RNAP binding. On a discretized genome, we fol-
low the statistical mechanics’ protocol to compute the Boltzmann weight of each of the relevant
microstates. The P available RNAPs are assumed to have two binding configurations: one specific
binding to the promoter of interest (with energy ε

(S)
P ) and another non-specific to any of the NNS

non-specific binding sites (with energy ε
(NS)
P ).

where ∆εP ≡ ε
(S)
P − ε

(NS)
P . This simple expression, known as the Langmuir isother-

mal binding curve, tells us that the more RNAPs available (larger P), or the stronger

the promoter is (more negative ∆εP), the more likely it is to find the promoter

bound by an RNAP, and according to Eq. 1.6, the higher the mRNA production.

In the next section, we connect this model to experimental measurements.

Figure 1 Theory in Gene Regulation

We began this section with a simple model for the dynamics of mRNA produc-

tion and degradation. We then expanded our model to deconvolve the production

term into the rate at which mRNA is produced by RNAP, and the probability of

finding such RNAP bound to the promoter. To calculate this probability, we used

the statistical mechanics’ protocol, which culminated in Eq. 1.18. So far, we are

missing two important steps in our logical construction that will lead us to specific

quantitative predictions that we can test experimentally:

1. The inclusion of a regulatory scheme via a transcriptional repressor.

2. The connection of the model with experimentally accessible quantities.
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As hinted at earlier, for a transcriptional repressor, we imagine that the repressor’s

effect on the regulation of the gene acts only through changes in pbound. To include

the regulation, we add a series of microstates. Rather than having only P RNAP

molecules to bind the genome, we also have R repressors that can bind specifi-

cally and non-specifically. Through the same statistical mechanics’ protocol as for

the previous case, we can arrive at the Boltzmann weights shown for the three

“macrostates” in Fig. 1.4(A). For the regulated case, we have that the probability

of the promoter being bound by an RNAP takes the form

pbound(R > 0) =
P

NNS
e−β∆εP

1 + P
NNS

e−β∆εP + R
NNS

e−β∆εR
, (1.19)

where ∆εR is the binding energy difference between the repressor binding to a

specific binding site and a non-specific one. Although exciting and insightful, the

quantities we have derived so far do not have an immediate quantitative pre-

diction we can connect with experimental measurements. For example, for the

regulated case, the steady-state mRNA count takes the form

mss(R > 0) =
rm

γm
pbound(R > 0) =

rm

γm

P
NNS

e−β∆εP

1 + P
NNS

e−β∆εP + R
NNS

e−β∆εR
. (1.20)

Determining rm or γm directly from experiments, although possible, represents an

enormous technical challenge. A convenient metric we can use instead is what we

call the fold-change in gene expression. Fig. 1.4(B) shows a schematic represen-

tation of what we mean by the fold-change. This ratiometric quantity normalizes

the expression level of a gene with regulation given by a transcriptional repressor

by the expression level of the same gene in the absence of the regulation—via a

knock-out of the repressor gene, for example. Mathematically this is defined as

fold-change ≡ mss(R > 0)
mss(R = 0)

. (1.21)

This expression is convenient because upon taking the ratio of these steady-state

mRNA counts, the ratio rm/γm drops out of the equation. All we are left with is

then the ratio of the pbounds

fold-change =
pbound(R > 0)
pbound(R = 0)

. (1.22)
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Substituting Eqs. 1.18 and 1.19 results in

fold-change =
1 + P

NNS
e−β∆εP

1 + P
NNS

e−β∆εP + R
NNS

e−β∆εR
. (1.23)

We appeal to some experimental understanding of the bacterial proteome compo-

sition [17–19]. RNAP copy number in E. coli is of the order P ∼ 103− 104 [19]. The

binding affinity of these promoters is of the order ∆εP ∼ −2± 1 kBT [11]. Along

with the value of NNS ∼ 106, this results in

P
NNS

e−β∆εP ≈ 103

106 e2.3 ≈ 103 · 10
106 ≈ 10−2 � 1, (1.24)

the so-called weak-promoter approximation. For the repressor, we have that most

repressors in E. coli are in the order of R ∼ 10 [18]. Their binding affinities take

values between ∆εR ∼ −15± 5 kBT [11]. These numerical values then give

R
NNS

e−β∆εR ≈ 10
106 e15 ≈ 10 · 106

106 ≈ 10. (1.25)

If we implement these approximations, we can justify simplifying the fold-change

equation to take the form

fold-change ≈
(

1 +
R

NNS
e−β∆εR

)−1

. (1.26)

As shown in Fig. 1.4(C), this expression points directly at two experimental knobs

that we can tune using molecular biology. We can modify the number of repres-

sors by changing the ribosomal binding site sequence (RBS) of the repressor gene

[20]. What that means is that with a sequence-dependent manner, the ribosome

translates mRNAs according to a specific region of the gene known as the RBS

[21]. Furthermore, we can change the repressor’s affinity for its binding site by

mutating the binding site itself [20]. Fig. 1.4(D) shows predictions of Eq. 1.26 for

different binding energies.
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state Boltzmann
weight

(A)

(C)

(B)

fold-change = 
E. coli with repressor

E. coli without repressor

repressor copy number

RBS

binding energy

(D)

Figure 1.4: Figure 1 theory in transcriptional regulation. (A) States and (normalized) weights for
the simple repression motif. The promoter can be found in three states: 1) empty, 2) bound by
an RNAP, 3) bound by a repressor. The same statistical mechanics’ protocol as in Fig. 1.3 can be
used to derive the weights. (B) Schematic of the experimental determination of the fold-change
in gene expression. The expression level of a regulated strain is normalized by the expression
level of a strain with a repressor’s knock-out. (C) Experimentally accessible knobs predicted from
the theoretical model. The number of transcription factors can be tuned by changing the amount
of protein produced per mRNA. The binding energy of the repressor can be tuned by mutating
the basepairs in the binding site. (D) Fold-change as a function of the repressor copy number for
different binding energies. The Python code (ch1_fig04D.py) used to generate part (C) of this
figure can be found on the thesis GitHub repository.

The model and the predictions presented here were worked out by Garcia and

Phillips in a classic publication in 2011 [20]. In the next chapter, we build upon

this theoretical scaffold to expand the predictive power of the model by including

the allosteric nature of the transcription factor that allows the cells to change their

genetic program upon the presence of an external molecule as a response to the

environment.

https://github.com/mrazomej/phd/blob/master/src/chapter_01/code/ch1_fig04D.py
https://github.com/mrazomej/phd
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All Cells Are Equal, But Some are More Equal than Others

One of the great discoveries that came from the single-cell biology revolution where

we began to measure individual cellular behavior rather than bulk observations,

was the discovery of the intrinsic cell-to-cell variability in many aspects of biol-

ogy, gene expression being the canonical example [22]. This means that two cells

with the same genome exposed to the same conditions will not express the same

number of mRNAs and proteins of any specific gene. From a statistical physics

perspective, this is not entirely “surprising” since we know that a system can be

found in many different microstates as described in Fig. 1.2(A). What is different

here is that a cell does not have an Avogadro number of mRNA (or, for that matter

of anything) in it, making these fluctuations more relevant. If we think of fluc-

tuations scaling as
√

N, that means that for an N of ≈ ten molecules or so, these

variations can be significant in terms of the downstream cellular behavior. Cells

have to cope with these physical limitations on precision, many times generating

systems to actively buffer as much of the “noise” as possible [23], other times using

this intrinsic variability to their advantage [24].

The central assumption behind the thermodynamic models of gene regulation that

we studied in the last section is that the gene expression is proportional to the prob-

ability of finding an RNAP bound to the promoter [11,25]. A consequence of this

construction is that the probability space—the set of all possible events captured

by the distribution—only looks at the state of the promoter itself, not at the state of

the mRNA copy number. That is why thermodynamic models of this kind do not

speak to the intrinsic cell-to-cell variability. For this, we need to use the so-called

chemical master equation framework [26]. There are two ways of thinking about

the chemical master equation:

1. The “particle” point of view.

2. The occupation number point of view.
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“particle” point of view occupation numbers point of view(A)
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Figure 1.5: Chemical master equation in gene regulation. (A-B) Different points of view to under-
stand the chemical master equation. (A) From the “particle” point of view, we imagine following
the time trajectory of a single cell. The probability P(m, t) of finding a cell with m mRNAs at time t
is then proportional to the time this cell spent with this number of molecules. (B) On the occupa-
tion number point of view, we imagine observing a large number of isogenic cells (different colors
represent the individuality of each cell). The probability P(m, t) is then interpreted as the fraction
of the cells representing such copy number exactly at time t. (C) Chemical master equations mathe-
matize the idea of Markov processes. For the case of the unregulated promoter, the Markov process
consists of a connection of an infinite number of discrete states that cells can transition between by
producing or degrading mRNAs. (D) Spread-the-butter idea. Since probability is conserved, the
central bar’s height changes slightly by having in- and outflow of probability mass from the con-
tiguous bins. The Python code (ch1_fig05A.py) used to generate the plot in part (A) of this figure
can be found on the thesis GitHub repository.

https://github.com/mrazomej/phd/blob/master/src/chapter_01/code/ch1_fig05A.py
https://github.com/mrazomej/phd
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Depending on the context, we might want to use either of these approaches to

write down the master equation for our problem of interest. Let us look into these

two different ways of interpreting a master equation using our example of a cell

producing mRNA. For the particle point of view, schematized in Fig. 1.5(A), we

imagine following the mRNA copy number m of a single cell. The number of

mRNAs in the cell change stochastically from time point to time point. On the one

hand, there can be a transcriptional event that increases the number of mRNAs,

and on the other hand, an mRNA can be degraded, decreasing the number of

mRNAs. Suppose we imagine tracking this cell for a very long time. In that case,

we can quantify the fraction of the time that the cell spent with zero mRNAs, one,

two, and so on and from that, build the probability distribution P(m, t) of having m

mRNA at time t (there is a subtle point here of the process being memoryless, but

we will ignore this detail). The occupation number point of view, schematized in

Fig. 1.5(B), takes a different perspective. For this, we imagine tracking not one but

many cells simultaneously. Each cell can either produce or degrade an mRNA on

a short time window, changing its total individual count. The probability P(m, t)

is then built from counting how many cells out of the total have m mRNAs.

Regardless of how we think about the chemical master equation, both of these per-

spectives describe a Markov process. These are stochastic processes in which a

system transitions between different states, but the transitions between such states

are only governed by the transition rates between the states and the current state

of the system. In other words, a Markov process keeps no track of the states it pre-

viously visited; the only factor that determines where is the system going to head

is its current state, and the transition rates out of such state—that is why these are

considered memoryless processes. Fig. 1.5(C) shows a schematic of what a Markov

process looks like. The schematic of the unregulated promoter indicates that there

are two possible reactions: an mRNA production with rate rm and degradation

with rate γm. The Markov process for this simple model can then be represented
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as a series of nodes (representing the mRNA counts) connected with bi-directional

arrows (representing the transition rates between states) indicating that the transi-

tions can only take place between contiguous states.

In practice, the way we write down a chemical master equation is by a process

christened by Professor Jane Kondev as “spread-the-butter.” The idea of spread the

butter is that some probability mass (the analogous of the butter) is to be spread

over the range of possible values (the equivalent of the toast) where probability

mass migrates in and out of a particular bin keeping the total amount of probability

to add up to one. The best way to explain this concept is by following the schematic

in Fig. 1.5(D) and going through the math. Let us imagine we are keeping track of

a particular mRNA value m—the chemical master equations are in reality, a system

of many coupled equations, one for each mRNA count. We want to write down an

equation that describes what is the probability of finding a cell with this particular

count a small time window into the future P(m, t+∆t), where t represents the time

“right now,” and ∆t is a tiny time increment. The master equation is nothing more

than a checks and balances notebook to keep track of all the flow of probability

mass in and out of the bin we are interested in, as shown in Fig. 1.5(D). Informally

we would write the equation as

P(m, t + ∆t) = P(m, t) + ∑
(

transitions from
m′ to m

)
−∑

(
transitions from

m to m′

)
,

(1.27)

where we are describing the three main components that go into the equation for

P(m, t + ∆t):

1. The probability of having m mRNA right now,

2. the inflow of probability from other copy numbers m′ via production and

degradation,

3. the outflow of probability from m to other copy numbers via production and

degradation.
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Taking our time window ∆t to be sufficiently small, we can focus only on the

two contiguous mRNA counts m − 1 and m + 1, and ignore the rest since jumps

from further counts become increasingly improbable as the time step gets smaller.

Fig. 1.5(D) shows the four in- and outflows that can happen. Let us rewrite Eq. 1.27

following this schematic. If a cell has m− 1 mRNA and during the time window ∆t

produces one molecule, then it passes from state m− 1 to state m. This transition

contributes to the inflow of probability mass by a factor (rm∆t)P(m− 1, t), where

we can think of rm∆t as the probability of the transcription event taking place dur-

ing the time window, and this multiplies the probability of having m− 1 mRNA to

begin with. A similar argument can be made for all transitions in and out of m de-

picted in Fig. 1.5(D), with the only difference that as in Eq. 1.1, the degradation of

an mRNA molecule is proportional to the total number of molecules. The resulting

equation for P(m, t + ∆t) then takes the form

P(m, t + ∆t) =P(m, t) +

m−1→m︷ ︸︸ ︷
(rm∆t)P(m− 1, t) +

m+1→m︷ ︸︸ ︷
(γm∆t)(m + 1)P(m + 1, t)

−
m→m+1︷ ︸︸ ︷

(rm∆t)P(m, t)−
m→m−1︷ ︸︸ ︷

(γm∆t)mP(m, t)

. (1.28)

We send the first term on the right-hand side to the left, divide both sides by ∆t,

and take the limit when ∆t→ 0. This gives us the master equation we were search-

ing for

dP(m, t)
dt

= rmP(m− 1, t) + γm(m + 1)P(m + 1, t)− rmP(m, t) + γmmP(m, t).

(1.29)

Eq. 1.29 is not isolated. It represents an infinite-dimensional system of coupled

ordinary differential equations (one for each mRNA copy number m). It can there-

fore be tricky to work directly with these types of equations. Instead, let us take

Eq. 1.28 for a ride. With modern computational power, we can explicitly use this

equation as a recipe on how to update an mRNA distribution numerically. Fig. 1.6

shows such numerical integration for a system with initially no mRNAs present.

This could be achieved experimentally by having an inducible system, adding the

inducer, and tracking the time evolution of the single-molecule mRNA counts in-
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(A) (B)

Figure 1.6: Time evolution of mRNA distribution. (A) Heat map of the time evolution of the
mRNA distribution (Eq. 1.29) with P(m = 0, t = 0) = 1, i.e., a delta function at zero mRNAs
at time zero. (B) Snapshots of the same time-evolving distribution at different time points. The
Python code (ch1_fig06.py) used to generate the plot in part (A) of this figure can be found on the
thesis GitHub repository.

side cells. Fig. 1.6(A) presents a heatmap of such time evolution with time running

on the vertical axis, while Fig. 1.6(B) presents specific snapshots. We can see that

the distribution begins as a single peak (a delta function in the physics jargon) cen-

tered at zero mRNAs. The distribution then relaxes to a broader shape and remains

the same after that. This suggests that the distribution converges to a steady-state.

Let us compute this steady state distribution.

In this system, where we have a series of state transitions as represented in Fig. 1.5(C),

steady-state is reached when the flux of probability from two contiguous states is

zero. In other words, when the probability distribution does not change over time

anymore, the flow of probability from state m = 0 to state m = 1 should be the

same as the reverse. The same condition applies to all other pairs of states. Math-

ematically this is expressed as

0→1︷ ︸︸ ︷
rmP(0) =

1→0︷ ︸︸ ︷
γm · 1 · P(1), (1.30)

https://github.com/mrazomej/phd/blob/master/src/chapter_01/code/ch1_fig06.py
https://github.com/mrazomej/phd
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where we removed the time dependency from P(m, t) since we are at steady-state.

Solving for P(1) results in

P(1) =
(

rm

γm

)
P(0). (1.31)

The same condition applies between state m = 1 and m = 2, resulting in

1→2︷ ︸︸ ︷
rmP(1) =

2→1︷ ︸︸ ︷
γm · 2 · P(2) . (1.32)

Again, we can solve for P(2) and obtain

P(2) =
1
2

(
rm

γm

)
P(1). (1.33)

Substituting the solution for P(1) gives

P(2) =
1
2

(
rm

γm

)2

P(0). (1.34)

Let us do one more example to see the general pattern. Between m = 2 and m = 3,

we have
2→3︷ ︸︸ ︷

rmP(2) =

3→2︷ ︸︸ ︷
γm · 3 · P(3) . (1.35)

Following the same procedure and substitutions results in

P(3) =
1

2 · 3

(
rm

γm

)3

P(0). (1.36)

Deducing the pattern from these examples, we can see that for any m, we have

P(m) = P(0)

(
rm
γm

)m

m!
. (1.37)

All we have left is the unknown value P(0). To get at it, we use the fact that the

distribution must be normalized, giving

∞

∑
m=0

P(m) = 1⇒ P(0)
∞

∑
m=0

(
rm
γm

)m

m!
= 1. (1.38)

We recognize the sum as the Taylor series for ex. This means that our constant P(0)

is given by

P(0) =
1

∑∞
m=0

( rm
γm )

m

m!

= e−rm/γm . (1.39)



27

Substituting this result, we find that the mRNA steady-state distribution is a Pois-

sion distribution with mean rm/γm, i.e.,

P(m) =
e−rm/γm

(
rm
γm

)m

m!
. (1.40)

1.3 Entropy, Information, and the Math Behind the Bit

Central to the endeavor undertaken in this thesis is the idea that cells can process

information from the environment to up or down-regulate their genes to generate

an appropriate response to these external signals. Information as a concept is a

very plastic term that we commonly use to explain having helpful knowledge to

use to our advantage. Phrases such as “That person carries so much information in

her brain. She truly knows everything!” point at this somewhat imprecise concept of

what we mean by information.

In 1948, while working at Bell Labs, Claude Shannon shocked the world with his

seminal work that would go to define the field of information theory [27]. In

his paper, Shannon gave us a precise mathematical definition of information. To

understand Shannon’s logic better, we need to put it in the context that he was

thinking about: communication systems such as the telephone or the telegraph.

Although seemingly unrelated to our problem of cells sensing the environment,

these systems are incredibly powerful in their conceptual and explanatory reach.

For Shannon, the main problem of communication consisted of reproducing a mes-

sage emitted at one point in space and time with fidelity at a different point. Usu-

ally, these messages carry with them meaning (otherwise, why would we even want

to send such messages) by which we typically mean that the message “refers to or

is correlated according to some system with certain physical or conceptual enti-

ties” [27]. But for the task of engineering a reliable communication system, this

meaning is irrelevant—in the same way that whatever the cell decides to do with

the meaning of the signals obtained from the environment can be thought as irrel-

evant for the biophysics of how the signal is sensed.
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As shown schematically in Fig. 1.7(A) from Shannon’s original work, a communi-

cation system essentially consists of five components:

1. An information source which produces a message (or sequence of messages)

to be communicated to the receiving terminal.

2. A transmitter which takes the message, converts it into a suitable signal com-

patible with the communication channel.

3. The channel that is the medium used to transmit the signal from the trans-

mitter to the receiver.

4. The receiver in charge of inverting the operation done by the transmitter,

reconstructing the original message.

5. The destination for whom the message is intended.

Fig. 1.7(B) shows an analogous schematic to Fig. 1.7(A) with the relevant compo-

nents involved in the gene expression context that we focus on in this thesis. In our

bacterial gene regulation model, the information source role is played by a small

molecule’s environmental concentration. It is this signal that the cells are trying

to measure and respond to by up-regulating the expression of a gene. This sig-

nal transmitter is the allosteric transcription factor whose conformation depends

on the concentration of the small molecule. The receiver of the signal is the DNA

promoter that orchestrates the protein expression, which plays the receiver’s role.

Having this setup in mind, the question becomes: how do we mathematically de-

fine what information is? This brings a somewhat subtle difference between two

related terms that many time are incorrectly used interchangeably: Entropy and In-

formation. Information allows the entity that possesses it to make predictions with

accuracy better than random, while entropy is a quantification of how much we do

not know [5]. From these definitions, we see that having information, therefore,

reduces our uncertainty, i.e., reduces the entropy. This means that for Shannon, the

amount of information we have from a source is related to that source’s statistical
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(A)

[ ]

information
source transmitter receiver destination

message message

signal received
signal

noise source

(B)

Figure 1.7: Abstract communication system. (A) Reproduced from Shannon’s original seminal
work [27]. The schematic shows an abstract communication system with all the components.
(B) Adaptation of the Shannon communication system to the context of bacterial gene expression
regulated by an allosteric transcription factor.

structure and how much we can predict the source’s message given our knowl-

edge of this statistical structure. Let us look at a concrete example: English text.

We know that written and spoken language is not completely random. For a mes-

sage to be meaningful, the choice of words has to come from a statistical structure

that obeys the language’s grammar rules. The choice of letters within a word also

follows a certain statistical structure. Let us look at the text shown in Fig. 1.8(A).

This is arguably one of the most important and most beautiful pieces of prose ever

put together by a human mind as it is the last paragraph of On the Origin of Species

by Darwin. If we ignore the paragraph’s message and just quantify how often we

find each of the 26 letters in the English alphabet, we obtain a distribution like the

one shown in Fig. 1.8(B). This paragraph shows that the most common vowel is e,
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exactly as in English writ-large. This distribution P(x) is therefore not maximally

random. In other words, if we were to put all letters in the paragraph in a hat

and pick one letter at random, we could bet more money on the outcome being

a letter e and make money over time given this knowledge of the structure of the

distribution.

A maximally random distribution would be if all letters appeared equally frequent

in the paragraph, such that betting on any letter coming out of the hat would give

us equal chances of guessing right. If instead of looking at the distribution of indi-

vidual letters, we look at pairs of letters, the distribution P(x, y) over the paragraph

is shown in Fig. 1.8(C). Here we can see that, just as the letters were not completely

random, the pairs of letters are also not random. For example, if we take the first

letter of the pair to be t, we see that it is more commonly followed by the letter

h. This implies that knowing that the first letter of the pair was t reduced our un-

certainty of what character could come next. We would then say that knowing

the first letter gave us information about the possible outcomes of the second let-

ter. In the next section, we will follow Shannon’s original derivation to define both

entropy and information mathematically.

Choice, Uncertainty, and Entropy

So far, our discussion about what entropy and information mean has been vague

and not rigorous. To derive a formula to quantify these concepts, we need to get

more mathematical. Let us assume that an information source (see Fig. 1.7(A))

produces elements of a message following a distribution p = {p1, p2, . . . , pn},

where each pi is the probability of the ith element. These elements could be let-

ters, words, sentences, basepairs, concentrations of a small molecule, etc., of which

we have n possibilities. What we are looking for is a metric H(p) that quantifies

how much “choice” is involved in the selection of each element of the message. In

other words, how uncertain we are about the message that the information source

will produce at random? We demand our desired quantity H(p) to satisfy three

reasonable conditions [27]:
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"Thus, from the war of nature, from famine and death, the most 
exalted object of which we are capable of conceiving, namely, 
the production of the higher animals, directly follows. There is 
grandeur in this view of life, with its several powers, having 
been originally breathed into a few forms or into one; and that, 
whilst this planet has gone cycling on according to the fixed law 
of gravity, from so simple a beginning endless forms most 
beautiful and most wonderful have been, and are being, 
evolved."

- Charles Darwin, 1859
joint distribution P(x, y)distribution P(x)

(A)

(B) (C)

Figure 1.8: The statistical structure of the English language. (A) Last paragraph of On the Origin
of Species by Charles Darwin. This serves as a rather nice not-random text example. (B) Marginal
distribution P(x) of all 26 letters and space. The size of the squares is proportional to how often
each letter appears in the paragraph. (C) Joint distribution of pairs of characters P(x, y). All pairs
of characters in (A) were counted to build this histogram. The x-axis shows the first letter while
the y-axis shows the second. For simplicity in (B) and (C) all punctuation was ignored. The Python
code (ch1_fig08.py) used to generate this figure can be found on the thesis GitHub repository.

https://github.com/mrazomej/phd/blob/master/src/chapter_01/code/ch1_fig08.py
https://github.com/mrazomej/phd/blob/master/src/chapter_01/code/ch1_fig08.py
https://github.com/mrazomej/phd
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1. H should be continuous in the pis. Different information sources might have

slightly different distributions p, nevertheless H should still apply to all pos-

sible information sources.

2. If all of the elements of the distribution are equally likely, i.e., pi = 1/n,

then H should be a monotonic increasing function of n. This means that the

more options to choose from, the more uncertain we are about the possible

outcome. For example, we are more uncertain about the outcome of a fair 6-

sided die than of a fair coin just because of the number of possible outcomes

from each of these “information sources.”

3. If the act of choosing one of the possible n elements of our information source

can be broken down into two successive choices, the original H should be

the weighted sum of the individual Hs. What this means is illustrated in

Fig. 1.9(A) where we imagine having an information source with n = 3

choices, each with probabilities p = {1/2, 1/3, 1/6}, which gives H(1/2, 1/3, 1/6)

for the left case. For the right case, we imagine first choosing between the up-

per and the lower path, and then, if the lower path is chosen, a second choice

is made. This property then demands that

single choice︷ ︸︸ ︷
H(1/2, 1/3, 1/6) =

first choice︷ ︸︸ ︷
H(1/2, 1/2) +

second choice︷ ︸︸ ︷
1
2

H(1/3, 1/6) . (1.41)

Another way to think about this property is that we want our metric of un-

certainty H to be additive.

We will now prove that the only functional form that satisfies all these three prop-

erties is given by

H(p) = −K
n

∑
i=1

pi log pi, (1.42)
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1/2

1/3

1/6

1/2

1/2

1/3

1/6

1/2
2/3

1/3

SOS

... --- ...

decomposition of a choice into two steps

partitioning equally likely choices into
multiple decisions

partitioning choices with di�erent
 likelihoods into multiple decisions

examples of encoding functions(A)

(C) (D)

(B)

M G F

AUGGGCUUC

English             Morse code

amino acid             codon

codon
redundancy

equally likely
codon choices

unequal
codon choices

Figure 1.9: Shannon’s theorem. (A) One of the properties of a reasonable metric for uncertainty
is that we can partition choices into multiple steps, and the resulting uncertainty should remain
the same. (B) Example of coding functions E. The English alphabet can be converted into Morse
code. Amino acids can be encoded in codons. (C) Partitioning of 23 equally likely choices into
three decision steps, each with two choices. Eight different amino acids can be selected using two
schemes: 1) each of the eight codons is chosen at random with equally likely chances, or 2) the
codon is built by choosing one basepair at the time. (D) Partitioning of unequal choices. Given the
redundancy of the genetic code, for equally likely codons, the resulting amino acid has different
probabilities being chosen.
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where K is a constant having to do with the units (choice of the logarithm base).

To prove this, we will follow Shannon’s original work. We imagine the problem of

encoding a message. For example, imagine encoding a message from the English

alphabet into Morse code, or a protein sequence into the corresponding mRNA se-

quence, as schematically depicted in Fig. 1.9(B). In there, we take letters in the En-

glish alphabet (SOS for the English alphabet, MGF for the protein), run it through

an encoding function E and obtain the message (. . . - - -. . . for the Morse code,

AUGGGCUUC for the mRNA). This process of encoding can be thought of as tak-

ing a message mx written in an alphabet X = {x1, x2, . . . , xn}, (where n is 26 for

the English alphabet, and 20 for the number of amino acids) and converting it into

a message my written in a different alphabet Y = {y1, y2, . . . , ym} (where m = 2 for

Morse code since we only have dots and dashes, and m = 4 for the mRNA with

4 possible nucleotides). The encoding function E : X r → Y t takes a message of

length r (for our exmaples r = 3) and translates it into a message of size t (in our

examples t = 9) such that we then have

my = E(mx). (1.43)

Obviously, the larger the message mx we want to encode, the larger the corre-

sponding message my will be. Therefore we have that

L(my) ∝ L(mx), (1.44)

where L(·) is a function that counts the number of characters in a message. An es-

sential difference between both of the examples in Fig. 1.9(B) is that, for the English

to Morse code case, the number of dots and dashes for different letters is different

(e→., x→-..-). Meanwhile, for the amino acid to codon case, every single codon has

the same length. Let us focus for now on this second coding scheme where every

character from alphabet X is encoded with the same number of characters from al-

phabet Y . We have then L(mx) = r and L(my) = t. Let us call k the proportionality

constant from Eq. 1.44 such that

L(my) = kL(mx). (1.45)
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The number of messages of size r that can be encoded with the alphabet X is

given by nr—because we have n possible options to chose from for each of the

r characters, resulting in n · n · n · · · = nr. Likewise, the number of messages of

size t encoded with alphabet Y is mt. We then demand from our coding scheme

that the number of messages we can encode is at least the number of messages we

could potentially send. In other words, for our coding scheme to be able to take any

message of size r, it must be true that the number of possible encoded messages

is at least as large as the number of possible messages to encode. This demand is

expressed as

nr ≤ mt. (1.46)

If our encoding did not satisfy this, we would have to increase t, i.e., the number of

characters we use to encode our message. For example, if codons were made out

of only two basepairs, the genetic code would not be able to code for all 20 amino

acids plus the stop codons. On the other extreme, we could develop a ridiculously

long encoding scheme (imagine a version of the genetic code where 1000 basepair

represented a single amino acid). To avoid this absurd scheme, we bound the

encoded message’s size to be as long as necessary to encode all potential messages,

but not any longer. This bound is expressed as

mt−1 < nr ≤ mt. (1.47)

Let us now take the logarithm on our previous inequality—this preserves the in-

equalities since log is a monotonically increasing function—finding

(t− 1) log(m) < r log(n) ≤ t log(m). (1.48)

We are free to choose the logarithm base we find convenient; therefore, let us use

base m for this, obtaining

t− 1 < r logm(n) ≤ t. (1.49)

Dividing Eq. 1.49 by r gives

t− 1
r

< logm(n) ≤
t
r

. (1.50)
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Let us stare at Eq. 1.50. In Eq. 1.47, we established t as the minimum number of

characters from alphabet Y needed to encode a message of length r written with

alphabet X characters (such as MGF turned into AUGGGCUUC as in Fig. 1.9(B)).

This means that, for the case where all symbols use the same number of characters

when encoded, t/r is the number of characters from alphabet Y per character from

alphabet X , i.e., the proportionality constant k from Eq. 1.45. This means that Eq.

1.50 implies

logm(n) ≤ k. (1.51)

In other words, a lower bound for the number of characters from alphabet Y

needed to encode a character from alphabet X is given by logm(n). For the amino

acid to codon case, the minimum number of letters in a codon would be log4(20) ≈

2.16 > 2. This shows why we could not encode all 20 amino acids with two base-

pair long codons. Furthermore, Eq. 1.50 implies that

t
r
− logm(n) <

t
r
− (t− 1)

r
, (1.52)

given that (t− 1)/r < logm(n). Simplifying Eq. 1.52 results in

t
r
− logm(n) <

1
r
⇒ k− logm(n) <

1
r

. (1.53)

Therefore, we can make k, the number of encoding characters, as arbitrarily close

to logm(n) as we want by increasing the length of the message being encoded, i.e.,

making r → ∞. This would imply a genetic code, not for individual amino acids

but entire polypeptides. This scheme would not work biologically; nevertheless,

this mathematical limit will help us find the functional form of our desired function

H(p).

Coming back to the function H, let us define

A(n) ≡ H
(

1
n

,
1
n

,
1
n

, . . .
)

, (1.54)
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as the maximum possible value of H when all outcomes are equally likely. Prop-

erty 2 tells us that A(n) increases monotonically with the length of the message.

This means that if we apply the function A(·) to the terms in Eq. 1.47, we conserve

the inequality, i.e.,

A(mt−1) < A(nr) ≤ A(mt). (1.55)

Using Property 3, we can divide the nr possible choices into r independent deci-

sions, each with n options to chose from. This property is depicted in Fig. 1.9(C).

On the left, it shows we can choose from eight different codons that code for 23 = 8

different amino acids. On the right, we can choose base by base, building up the

codon in three consecutive decisions, each with two equally likely choices, for a

total of 2 · 2 · 2 = 8 possible outcomes. This division of choices allows us to rewrite

Eq. 1.55 as

(t− 1)A(m) < rA(n) ≤ tA(m), (1.56)

because of our requirement of the uncertainty H being an additive property. For

the example in Fig. 1.9(C), at each of the three decision steps, the uncertainty is

given by A(2). Given that the uncertainty is additive, for each of the routes, our

total uncertainty is given by

A(2) + A(2) + A(2) = 3A(2), (1.57)

therefore A(23) = 3A(2). Dividing Eq. 1.56 by r results in

(t− 1)
r

A(m) < A(n) ≤ t
r

A(m). (1.58)

Since (t−1)
r A(m) < A(n), it is also true that

t
r

A(m)− A(n) < A(m)

(
t
r
− (t− 1)

r

)
. (1.59)

Simplifying terms, we are left with

t
r

A(m)− A(n) <
1
r

A(m). (1.60)

Dividing both sides by A(m), we find

k− A(n)
A(m)

<
1
r

. (1.61)
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We can make the ratio A(n)/A(m) as close to k as we want by making r larger. This

equation looks shockingly similar to Eq. 1.53, but what is the connection? On the

one, hand Eq. 1.53 is the result of imposing the condition that our coding scheme

must be able to encode any possible message from one alphabet X to another al-

phabet Y . This condition leads us to the conclusion that the number of characters

from alphabet Y needed to encode the characters from alphabet X (the constant

k) can be made as arbitrarily close to logm(n) as we want by writing a code, not

for individual characters (individual amino acids), but for sequences of characters

(polypeptides). On the other hand, Eq. 1.61 is a direct consequence of the three log-

ical properties we imposed on our uncertainty metric H. These properties led us

to conclude that, whatever our uncertainty function for the equally likely choices

A(·) is, the ratio of the uncertainties for each of our two alphabets A(n)/A(m) ap-

proaches the same constant k as we make the encoded message longer. Since both

logm(n) and A(n)/A(m) approach k as r grows, we can conclude that

A(n)
A(m)

→
logm(n)
logm(m)

as r → ∞. (1.62)

We wrote the ratio logm(n)/ logm(m) because our choice of the logarithm base was

arbitrary. Therefore, more generally, we have

A(n)
A(m)

→ log(n)
log(m)

as r → ∞, (1.63)

for any base. This convergence only takes place if and only if

A(n) = K log(n), (1.64)

where K is some constant. This is quite beautiful. What we just demonstrated

is that the functional form for the uncertainty metric we are after scales as the

logarithm of the number of possible characters in our alphabet. We know that our

uncertainty function H(1/n, 1/n, . . .) is a function of 1/n rather than of n. This is

easily fixed by using the properties of logarithms, writing

H
(

1
n

,
1
n

, . . .
)
= −K log

(
1
n

)
. (1.65)
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The general form of Shannon’s entropy is starting to show up. After all, for the

case where all choices are equally likely, we have pi = 1/n. We can therefore write

H
(

1
n

,
1
n

, . . .
)
= −K

n

∑
i=1

1
n

log
(

1
n

)
. (1.66)

Let us generalize the proof for cases where choices are not equally likely. To con-

tinue with the amino acid to codon encoding example, we now consider the genetic

code’s redundancy. Given that there are 43 = 64 possible codons, multiple codons

map to the same amino acid. An example of three amino acids that share the first

letter is depicted on Fig. 1.9(D). The diagram on the left shows a total of nine dif-

ferent codons; two of such codons code for asparagine (N), three for isoleucine (I),

and four for threonine (T). A way to express the asymmetry between the choices

is to have each codon as an independent and equally likely choice, as depicted on

the middle diagram of Fig. 1.9(D). Let us define the total number of codons

N =
n

∑
i=1

ni, (1.67)

where ni counts the number of codons for amino acid i, and n is the total number

of amino acid choices. Let us call H1 the uncertainty of this set of equal choices.

From Eq. 1.65, we know that the resulting uncertainty function H1 is of the form

H1 = K log

(
n

∑
i=1

ni

)
= K log(N), (1.68)

since all codons are equally likely.

Although each codon is equally likely, the resulting amino acid is not. The proba-

bility of amino acid I in this case is the number of codons encoding it (two) divided

by the total number of codons in the example (nine). In general, we assume that

each of the n choices has a probability

pi =
# codons for amino acid i

total # of codons
=

ni

N
. (1.69)
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By Property 3 of our function H, we can partition the codon’s choice into two

consecutive decisions (not three since the first codon is the same for all amino acids

in this example). This partitioning is shown on the right diagram of Fig. 1.9(D). The

uncertainty H2 for this case has two contributions, one for each of the decisions

H2 =

first choice︷ ︸︸ ︷
H(p1, p2, . . . , pn) +

second choice︷ ︸︸ ︷
K

n

∑
i=1

pi log ni . (1.70)

The first decision has an unknown functional form we are trying to figure out. The

second choice consists of choosing between ni equally likely bases for the codon’s

last position, each weighted by the probability of going to this particular branch

(the one that defines the amino acid) as demanded by Property 3. But whether

or not we choose each codon on a single decision or in two steps, the uncertainty

of this event is the same. This means that H1 = H2 as Property 3 requires. This

equality results in

K log(N) = H(p1, p2, . . . , pn) + K
n

∑
i=1

pi log(ni). (1.71)

Solving for H(p1, p2, . . . , pn) results in

H(p1, p2, . . . , pn) = K

[
log N −

n

∑
i=1

pi log(ni)

]
. (1.72)

Using Eq. 1.67 results in

H(p1, p2, . . . , pn) = −K

[
n

∑
i=1

pi log(ni)− log

(
n

∑
i=1

ni

)]
. (1.73)

Since probabilities must be normalized, i.e., ∑n
i=1 pi = 1, we can write

H(p1, p2, . . . , pn) = −K

[
n

∑
i=1

pi log(ni)−
n

∑
i=1

pi log

(
n

∑
i=1

ni

)]
. (1.74)

Using the property of logarithms, we can rewrite this as

H(p1, p2, . . . , pn) = −K

[
n

∑
i=1

pi log
(

ni

∑n
i=1 ni

)]
. (1.75)
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Using Eq. 1.69, we find the expected result

H(p1, p2, . . . , pn) = −K
n

∑
i=1

pi log pi. (1.76)

Let us dissect this result. We began this derivation by stating three logical proper-

ties that a metric for uncertainty should have. The properties could be summarized

simply as 1) the function exists for all possible pis, 2) the uncertainty grows as the

number of possible outcomes grows, and 3) the uncertainty must be additive. We

thought about a coding scheme to encode a message written in an alphabet into

a different one. We demanded that our coding scheme should be able to encode

any message we want, and this led us to conclude that the average number of

characters needed to encode each character on the original message can approach

logm(n), where n is the number of characters in the original alphabet and m is

the number of characters in the encoding alphabet. We then used the properties

of our desired uncertainty function and found a non-obvious connection between

the number of characters needed to pass from one alphabet to another and the un-

certainty on the message. When we generalized this analysis to cases where not

all outcomes are equally likely, we arrived at Eq. 1.76, the so-called Shannon en-

tropy. This is Shannon’s theorem, and what it shows is that Eq. 1.76 is the only

function that satisfies the three very reasonable conditions we established for an

uncertainty measurement.

To gain intuition on what this equation is telling us, let us look at two examples. In

our first example, we will think about the simplest random process: a coin toss. To

compute how unpredictable the outcome of our simple coin toss is, we can use Eq.

1.76. For this particular case, we only have two possible outcomes—heads with

probability p or tails with probability 1− p. The resulting entropy is of the form

H = −p log(p)− (1− p) log(1− p). (1.77)

Fig. 1.10(A) plots Eq. 1.77 as a function of the probability of heads p. Notice that

the curve is concave with a minimum at p = 0 and p = 1 and a maximum at

p = 1/2. This shape should make intuitive sense given that Eq. 1.77 quantifies
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how unpredictable the outcome of tossing the coin is. If the coin toss’s outcome

is always heads (p=1) or always tails (p=0), there is no uncertainty about the re-

sulting face. The more both outcomes become (the closer p gets to 1/2), the more

unpredictable the random even is. One mathematical subtly here is that for p = 1

or p = 0, we have to compute 0× log(0), which is undefined. For these values of p

we take 0× log(0) = 0 since the limit where x → 0+ converges to zero. Notice that

the units on the y-axis are given in bits. These units mean that we used base two

for our logarithms. An easy way to think about what a bit means is the number

of yes/no questions one would need to ask on average to infer the random event’s

outcome. For a coin, all we need is a single question (therefore one bit) to know

what the outcome was.

For our second example, we go back to the mRNA steady-state distribution we

derived in Eq. 1.40. We found that for our simple one-state DNA promoter, the

steady-state distribution resulted in Poisson with a mean 〈m〉 = rm/γm. Fig. 1.10(B)

shows the entropy of this Poisson distribution as a function of the mean mRNA.

We see a quick initial increase in this entropy up to 〈m〉 ≈ 20, after which there is

a much less steep increment. Imagine we sample a random cell from one of these

Poisson distributions. Using the interpretation of bits again as the number of yes/no

questions, what Fig. 1.10(B) tells us is that if the promoter produces ≈ 10 mRNA

on average, it will take on average 3.5 of these questions to infer the number of

mRNA for random cell. For an average of ≈ 20 mRNA, it would take four ques-

tions, and for an average of ≈ 60 mRNA, five questions. These questions would

be of the form “is it greater than the average?” or “is it less than or equal to 1/3 of the

average?,” and so on.

Information Theory and Statistical Mechanics

Our result in Eq. 1.76 is of the same functional form as the thermodynamic entropy.

The story goes that Shannon was discussing this concept with his friend John von

Neumann. It was von Neumann who allegedly convinced Shannon of calling his

metric of randomness entropy under the argument that nobody understands the



43

entropy of a coin entropy of a steady-state 
mRNA distribution(A) (B)

Figure 1.10: Shannon entropy in action. (A) The entropy of a coin as a function of the probability
of heads p. The entropy is maximum when the coin is fair, i.e., p = 0.5, meaning that this is the
most unpredictable coin one could have. (B) The entropy of the steady-state mRNA distribution as
derived in Eq. 1.40 as a function of the mean mRNA copy number. The point shows the entropy
of the distribution shown in the inset. Bot figures use base 2 for the logarithm, resulting in units of
bits for the entropy. The Python code (ch1_fig10.py) used to generate this figure can be found on
the thesis GitHub repository.

concept. But the fact that the functional forms are the same is too suggestive to

dismiss a potential connection between these concepts immediately. It was until

much later that E. T. Jaynes formalized ways to link both ideas [28]. Nevertheless,

Jaynes himself strongly discourages people from trying to map one concept to the

other explicitly. In his book “Probability Theory: The Logic of Science,” Jaynes warns

the reader about failing to distinguish information entropy, which is a property

of the mathematical object we call a probability distribution, and the experimental

entropy of thermodynamics, which is instead a property of the state of the system

as defined by experimentally measurable quantities such as volume, temperature,

pressure, magnetization, etc. Jaynes goes on to say: “they should never have been

called by the same name; the experimental entropy makes no reference to any probability

distribution, and the information entropy makes no reference to thermodynamics” [29].

https://github.com/mrazomej/phd/blob/master/src/chapter_01/code/ch1_fig10.py
https://github.com/mrazomej/phd
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When Jaynes makes such strong remarks about the disconnection between both

entropy concepts, he strictly refers to the classical thermodynamic definition. This

classical definition of entropy, due to Clausius, refers to the inability of any thermal

engine to convert all of the input energy into useful work. Clausius defined a new

quantity S as the amount of energy per unit temperature unavailable to do work.

To understand this idea is to realize that from the energy liberated in gasoline

combustion on a car engine, we only end up extracting ≈ 20% of the energy to

move the car. The other 80% is lost into heating the engine and the environment.

But this is not because the engineers are using poor designs. The second law of

thermodynamics on its classical definition states that nothing in the universe can

convert 100% of the energy into useful work; there will always be residual energy

that gets turned into heat.

At the time, the existence of atoms was not widely accepted by the scientific com-

munity. But then came Boltzmann and the statistical mechanics’ conceptual revo-

lution. The giant leap in our understanding of why the second law of thermody-

namics does not allow the total conversion of energy into useful work came with

Boltzmann’s revolutionary entropy idea. Boltzmann hypothesized that matter was

made out of atoms. Therefore, everything we can observe and measure macroscop-

ically about any system results from the microscopic configuration of all the atoms

that make up the system. Furthermore, many microscopic arrangements are indis-

tinguishable at our macroscopic scale (recall the microstate and macrostate concept

in Fig. 1.2). This line of reasoning led Boltzmann to the law we stated in Eq. 1.7.

This law and all of the classic results from statistical mechanics are founded on

several assumptions about the microscopic scale processes’ reversibility. In other

words, for Boltzmann’s law to be “a legit law of nature,” it must be the case that

if we play a movie featuring a single atom moving around the system, the same

movie played in reverse should be as equally likely to happen.
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But it might be the case that the assumptions underlying statistical mechanics laws

are not the most fundamental constructs of reality. As we will show next, we can

derive a classic result of statistical mechanics from a completely different premise

having to do more with statistical inference rather than physical laws of motion

governing atoms. This becomes a circular argument where some physicists have

the laws of motion as the defining foundation on which to base statistical mechan-

ics laws is better. For others, having an information-theoretic justification for sta-

tistical mechanics independent of the underlying physical laws is more appealing.

At the end of the day is a matter of taste. Having said all of this, let us delve into

the connection between information-theoretic entropy and the Boltzmann distri-

bution.

We already used the Boltzmann distribution when we computed the probability

of an RNAP molecule being bound to the promoter pbound. The Boltzmann dis-

tribution applies to systems in thermodynamic equilibrium in contact with a heat

bath at a constant temperature. Think of a small Eppendorf tube (≈ 2 mL) that

we perfectly seal before submerging it into the ocean. The tube’s temperature will

equilibrate with that of the ocean, but the ocean’s temperature will not be affected

by the tube’s presence. Submerging the tube into the reservoir allows the total en-

ergy of the tube not to be fixed. Sometimes the tube can borrow energy from the

ocean; sometimes, it can give energy to it. The Boltzmann distribution precisely

dictates the likelihood of such energy states. The probability of a state with energy

Ei is given by

P(Ei) =
e−βEi

Z , (1.78)

where, as before, β ≡ (kBT)−1. Z is the partition function defined by the sum of

the Boltzmann weight for all possible microstates, i.e.,

Z ≡ ∑
states

e−βEi , (1.79)

where the sum is taken over all microstates available to the system. This equation

is equivalent to Eq. 1.18 and Eq. 1.19. We can derive this functional form from

the so-called maximum entropy principle. This framework is expanded more in
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Chapter 5 of this thesis. But for our purposes here, the idea is that we are trying to

make a “best guess” of what a distribution looks like, given limited information.

For our Eppendorf tube inside the ocean, we are thinking about the distribution

of all of the molecules’ microstates inside the tube. Experimentally, we never get

to observe any of the microstates of the system. But we know that the probabil-

ity of each microstate depends on its energy, as Boltzmann told us. Let us say we

can measure the average energy 〈E〉 of our little Eppendorf tube. What is then the

optimal guess of the functional form of the distribution that does not use any in-

formation we do not have at hand? For example, we cannot say that there is only

one microstate available to the system with energy 〈E〉, because that constrains the

possibilities of the system, and measuring the average energy does not lead to such

a conclusion. The next best case we can do is to maximize the Shannon entropy,

subject to this constraint on the average energy. This makes sense because, as we

derived in the previous section, the Shannon entropy is the only functional form

that satisfies our properties for a metric of uncertainty. Maximizing the Shannon

entropy leads then to a maximally uninformative distribution. Including the con-

straints when implementing this maximization guarantees that we use all that we

know about the distribution and nothing else.

Given Property 1 of our function H, the Shannon entropy is continuous on the in-

dividual probabilities’ values pi. This means that we can maximize the Shannon

entropy by taking its derivative with respect to pi and equating it to zero. This op-

eration does not include the constraints we have on the values of the probabilities

of each microstate. Let us say that each microstate available to the system with

energy Ei has a probability pi of happening. The constraint on the average energy

is given by

〈E〉 = ∑
states

Ei pi, (1.80)

where again, the sum is taken over all possible microstates. Furthermore, we know

that the probability distribution must be normalized. This means that

∑
states

pi = 1. (1.81)
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To include these constraints in our optimization, we can use the Lagrange multipli-

ers technique. We refer the reader to any introductory text on multivariate calculus

for a quick refresher of this technique. We proceed by defining a Lagrangian L of

the form

L(p1, p2, . . . , pN, β, µ) =

Shannon entropy︷ ︸︸ ︷
−

N

∑
i=1

pi log(pi)−

average energy constraint︷ ︸︸ ︷
β

(
N

∑
i=1

Ei pi − 〈E〉
)
−

normalization constraint︷ ︸︸ ︷
µ

(
N

∑
i=1

pi − 1

)
,

(1.82)

where N is the total number of microstates available to the system, and β, and µ

are the Lagrange multipliers associated with each of the constraints. The next step

consists on computing the gradient of this Lagrangian which returns a vector of

size N where the kth entry is the derivative of the Lagrangian with respect to pk.

But notice that all of these derivatives will look the same. So taking one of these

derivatives is enough. We then take the derivative with respect to a particular pk

and equate it to zero, obtaining

dL
dpk

= − log(pk)− 1− λ− βEk = 0. (1.83)

Notice that all of the terms with i 6= k disappear, leaving a simple expression.

Solving for pk gives

pk = exp [1− λ− Ek] = e1−λe−βEk . (1.84)

Every single probability pk takes the same form. We substitute this probability pk

on our normalization constraint, obtaining

N

∑
i=1

pi = e1−λ
N

∑
i=1

e−βEi = 1. (1.85)

This tells us that the term e1−λ is given by

e1−λ =
1

∑N
i=1 e−βEi

. (1.86)

Therefore, the probability of microstate i is given by

P(Ei) = pi =
e−βEi

∑N
i=1 e−βEi

, (1.87)
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exactly the Boltzmann distribution. One can show why it is the case that our La-

grange multiplier β is exactly 1/kBT as demanded by the thermodynamic version

of this distribution, but that is out of the scope for our purposes. This section

aims only to show the subtle and deep connection between statistical mechanics

and information theory. This connection suggests that part of the unreasonable

effectiveness of statistical mechanics might not come from the physical basis of its

core theory; but instead from the statistical inference problem on which, given the

limited information we have of any thermodynamic system’s microstate, entropy

maximization gives us a recipe on what the best guess for the probability distribu-

tion over the microstates is.

Joint Uncertainty in an Uncertain World

Part of the complexity in understanding biological systems is that their compo-

nents form a network of interactions. This connectivity means that one part of the

organism’s state depends on many other parts’ states. For example, the wild-type

lac operon’s expression depends on the conformation state of two transcription

factors: CRP and LacI. The state of these transcription factors depends on the con-

centration of cyclic-AMP and allolactose, respectively. These concentrations rely

on the state of the environment and transporters’ availability to bring them into

the cell. This chain of connections continues indefinitely.

The mathematical language to express the dependence between two variables is

that of joint and conditional probability. Shannon’s entropy (Eq. 1.76) can also be

extended to account for dependence between variables. To make the notation for

this extension easier to follow, let us use a different notation from now on. Let us

express Shannon’s entropy as

H(m) = −∑
m

P(m) log P(m), (1.88)
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where instead of giving a vector of probabilities p to the function H, we now give

it a random variable m. This notation is understood as: the entropy is calculated

over the distribution of possible values that m can take. If m can take values

{m1, m2, . . . , mn}, the probability of obtaining m = mk is given by the function

P(m = mk), which for brevity we can write simply as P(mk). What Eq. 1.88 is say-

ing is: take the random variable m and all the possible values it can have; compute

the Shannon entropy by summing over the probability of all those values. In this

way, H(m) is a shorthand for writing H[P(m)].

With this notation in hand, let us think about two correlated random variables m

and p. These could be the number of mRNAs and proteins in the cells, as depicted

in Fig. 1.11(A). The joint entropy H(m, p) measures the uncertainty we have about

the outcome of a pair of variables rather than a single. All it takes is to sum over

both variables on Eq. 1.88 as

H(m, p) = −∑
m

∑
p

P(m, p) log P(m, p). (1.89)

Eq. 1.89 then does the same computation as Eq. 1.88, except that the sum is taken

over all possible pairs of random variables m and p. But what if we get to observe

the outcome of one of the two variables (observing mRNA via RNA-seq, for exam-

ple), can that tell us something about the outcome of the other one? For this, we

need to understand the concept of conditional entropy.

Thinking Conditionally, a Condition for Thinking

In Joe Blitztein’s excellent Introduction to probability [30], he clarifies how con-

ditional probability is one of the most powerful concepts in probability theory.

Through the concept of conditional probability, we can learn whether or not two

things are somehow correlated, allowing us from there to dissect the nature of such

correlation. Given the probabilistic nature of Shannon’s entropy, the power of con-

ditional entropy is extended to the so-called conditional entropy H(p | m). Let us

think of our two random variables m and p with a joint probability distribution

P(m, p). We can assume that the outcome of both random variables is correlated



50

toy model for mRNA and protein copy numbers mRNA and protein joint distribution

Venn diagram of additive relationships between entropies

(A) (B)

mRNA probability distribution

protein probability distribution

(C)

Figure 1.11: Shannon’s entropy for more than one random variable. (A) Toy model of a random
process where mRNA (random variable m) is stochastically produced as a Poisson process with
a fixed mean. Proteins (random variable p) are also stochastically produced as a Poisson process,
but the mean depends on the number of mRNAs. (B) Samples from the model presented in (A).
The center plot shows the joint distribution P(m, p), while the edge histograms show the marginal
distributions P(m) and P(p). (C) Venn diagram of the relationship of different information metrics.
The Python code (ch1_fig11.py) used to generate this figure can be found on the thesis GitHub
repository.

https://github.com/mrazomej/phd/blob/master/src/chapter_01/code/ch1_fig11.py
https://github.com/mrazomej/phd
https://github.com/mrazomej/phd
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for our mRNA-protein pair, meaning that specific pairs of values are more likely to

appear. If we observed the outcome of one of the random variables and knew the

correlation function between random variables, our guess for the variable’s value

that we did not observe would improve over a completely random choice. In our

example, if we get to observe that m is a small (or large) number, we would suspect

that p is also a small (or large) number, as shown in Fig. 1.11(B). This means that

our uncertainty on the value of p changed—it was reduced—upon observing the

value of m. The new uncertainty, i.e., the entropy of p having learned the value of

m, averaged over all possible values of m, is computed as

H(p | m) = −∑
m

∑
p

P(m)P(p | m) log P(p | m), (1.90)

where P(p | m) is read as “probability of p given that we observe m.” Finally, with

all these concepts in hand, we can discuss the idea of information in the Shannon

sense.

One Person’s Entropy is Another Person’s Information

So far, our discussion has focused on the concept of entropy. We first derived the

Shannon entropy from three basic principles that a metric of uncertainty should

satisfy. Then, we showed that one of the main statistical mechanics results, i.e., the

Boltzmann distribution, could be derived from maximizing this entropy subject

to certain constraints, suggesting that statistical mechanics could be nothing more

than an optimal statistical inference protocol, given limited information. But no

mention of information up to now. This intentional omission is because we first

needed to master the idea of entropy to understand the mathematical definition of

information.

Recall that H(p) quantifies the uncertainty about the outcome of the random pro-

cess that generates the value of the variable p. Furthermore, H(p | m) quantifies

the uncertainty about the outcome of the same variable, but this time observing

the outcome of the random variable m. In the worst-case scenario, m and p are

uncorrelated, and learning the value of m does not tell us anything about p. In that
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case, we then have that

H(p | m) = H(p) for m and p uncorrelated. (1.91)

If m and p are correlated, as depicted in Fig. 1.11(B), then the uncertainty about p

is reduced upon learning the value of m, giving us a general relationship between

marginal and conditional entropy of the form

H(p) ≥ H(p | m). (1.92)

In this latter scenario, learning the value of m reduced our uncertainty in the possi-

ble value of p. This reduction in uncertainty agrees with an informal definition of

what “obtaining information” means. We can then define the mutual information

I(m; p) between random variable m and p as the reduction in uncertainty about the

value of one of the random variables when we learn the value of the other random

variable. For our example in which we get to observe the mRNA copy number,

this would mean that the mutual information is computed as

I(m; p) ≡ H(p)− H(p | m). (1.93)

But the mutual information is symmetric, meaning that the information about the

outcome of one of the variables by observing the other variables is the same when

the roles of what we get to observe are inverted. This argument means that we can

mathematically show that

I(m; p) = H(m)− H(m | p). (1.94)

This symmetry is why traditionally, the mutual information is written with a semi-

colon rather than a regular comma, indicating that the order of the variables does

not matter. To show the above symmetry, let us substitute the definitions of the

marginal conditional entropy. This substitution for Eq. 1.93 results in

I(m; p) = −∑
p

P(p) log P(p)−
[
−∑

m
∑
p

P(m)P(p | m) log P(p | m)

]
. (1.95)
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The trick is now to use the definition of conditional probability in the right way.

We know that the conditional probability is defined as

P(p | m) ≡ P(m, p)
P(m)

. (1.96)

Furthermore, we know that we can obtain the probability P(p) by marginalizing

the joint distribution P(m, p) over all values of m. Mathematically this is written

as

P(p) = ∑
m

P(m, p). (1.97)

What Eq. 1.97 is stating is that to compute the probability of observing value p of

our random variable, we can add the probability of all pairs m, p with the desired

that have the desired value of p. For Eq. 1.95, we substitute Eq. 1.97 on the first

term (outside of the log) of the right-hand side and Eq.~1.96 on the second term

(in and outside of the log), obtaining

I(m; p) = −∑
p

[
∑
m

P(m, p)

]
log P(p) + ∑

m
∑
p

P(m, p) log
P(m, p)
P(m)

. (1.98)

Since the order of the sums do not matter, we can factorize the common terms on

the left-hand side and use the properties of logarithms to write

I(m; p) = ∑
m

∑
p

P(m, p) log
P(m, p)

P(m)P(p)
. (1.99)

It is now easier to see that we would arrive at the same result if we started with

the opposite conditional entropy P(m | p). These series of manipulations where

we write either joint or conditional entropies will become handy in this thesis as

we explore biophysical models of how to compute gene expression input-output

functions (more on that in Chapter 3). Fig. 1.11(C) shows a schematic representa-

tion of the relationship of all the entropy-based quantities that we explored in this

chapter. Although it is impossible to cover an entire field in a short introduction, I

hope this intuitive explanation will suffice to understand the rest of the thesis.
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C h a p t e r 2

TUNING TRANSCRIPTIONAL REGULATION THROUGH
SIGNALING: A PREDICTIVE THEORY OF ALLOSTERIC

INDUCTION

A version of this chapter originally appeared as Razo-Mejia, M.†, Barnes, S.L.†,

Belliveau, N.M.†, Chure, G.†, Einav, T.†, Lewis, M., and Phillips, R. (2018). Tuning

transcriptional regulation through signaling: A predictive theory of allosteric in-

duction. Cell Systems 6, 456-469.e10. DOI:https://doi.org/10.1016/j.cels.2018.02.004.

† M.R.M, S.L.B, N.M.B, G.C., and T.E. contributed equally to this work from the

theoretical underpinnings to the experimental design and execution. M.R.M, S.L.B,

N.M.B, G.C, T.E., and R.P. wrote the paper. M.L. provided guidance and advice.

2.1 Abstract

Allosteric regulation is found across all domains of life. Yet, we still lack simple,

predictive theories that directly link the experimentally tunable parameters of a

system to its input-output response. To that end, we present a general theory of al-

losteric transcriptional regulation using the Monod-Wyman-Changeux model. We

rigorously test this model using the ubiquitous simple repression motif in bacteria

by first predicting the behavior of strains that span a large range of repressor copy

numbers and DNA binding strengths and then constructing and measuring their

response. Our model not only accurately captures the induction profiles of these

strains, but also enables us to derive analytic expressions for key properties such as

the dynamic range and [EC50]. Finally, we derive an expression for the free energy

of allosteric repressors, which enables us to collapse our experimental data onto

a single master curve that captures the diverse phenomenology of the induction

profiles.
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2.2 Introduction

Understanding how organisms sense and respond to changes in their environment

has long been a central theme of biological inquiry. At the cellular level, this inter-

action is mediated by a diverse collection of molecular signaling pathways. A per-

vasive mechanism of signaling in these pathways is allosteric regulation, in which

the binding of a ligand induces a conformational change in some target molecule,

triggering a signaling cascade [31]. One of the most important examples of such

signaling is offered by transcriptional regulation, where a transcription factor’s

propensity to bind to DNA will be altered upon binding to an allosteric effector.

Despite allostery’s ubiquity, we lack a formal, rigorous, and generalizable frame-

work for studying its effects across the broad variety of contexts in which it ap-

pears. A key example of this is transcriptional regulation, in which allosteric

transcription factors can be induced or corepressed by binding to a ligand. An

allosteric transcription factor can adopt multiple conformational states, each of

which has its own affinity for the ligand and its DNA target site. In vitro stud-

ies have rigorously quantified the equilibria of different conformational states for

allosteric transcription factors and measured the affinities of these states to the lig-

and [32,33]. In spite of these experimental observations, the lack of a coherent

quantitative model for allosteric transcriptional regulation has made it impossible

to predict the behavior of even a simple genetic circuit across a range of regulatory

parameters.

The ability to predict circuit behavior robustly—across both broad ranges of pa-

rameters and regulatory architectures—is important for multiple reasons. First,

in the context of a specific gene, accurate prediction demonstrates that all compo-

nents relevant to the gene’s behavior have been identified and characterized to suf-

ficient quantitative precision. Second, in the context of genetic circuits in general,

robust prediction validates the model that generated the prediction. Possessing

a validated model also has implications for future work. For example, when we

have sufficient confidence in the model, a single data set can be used to extrapolate
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a system’s behavior in other conditions accurately. Moreover, there is an essential

distinction between a predictive model, which is used to predict a system’s be-

havior given a set of input variables, and a retroactive model, which describes the

behavior of data that has already been obtained. We note that even some of the

most careful and rigorous analysis of transcriptional regulation often entails only

a retroactive reflection on a single experiment. This raises the fear that each reg-

ulatory architecture may require a unique analysis that cannot carry over to other

systems, a worry that is exacerbated by the prevalent use of phenomenological

functions (e.g., Hill functions or ratios of polynomials) that can analyze a single

data set, but cannot be used to extrapolate a system’s behavior in other conditions

[34–38].

This work explores what happens when theory takes center stage; namely, we first

write down the equations governing a system and describe its expected behav-

ior across a wide array of experimental conditions, and only then do we set out

to experimentally confirm these results. Building upon previous work [20,39,40]

and the work of Monod, Wyman, and Changeux [41], we present a statistical me-

chanical rendering of allostery in the context of induction and corepression (shown

schematically in Fig. 2.1 and henceforth referred to as the MWC model) and use it

as the basis of parameter-free predictions, which we then test experimentally. More

specifically, we study the simple repression motif —a widespread bacterial genetic

regulatory architecture in which binding of a transcription factor occludes bind-

ing of an RNA polymerase, thereby inhibiting transcription initiation. The MWC

model stipulates that an allosteric protein fluctuates between two distinct confor-

mations —an active and inactive state— in thermodynamic equilibrium [41]. Dur-

ing induction, for example, effector binding increases the probability that a repres-

sor will be in the inactive state, weakening its ability to bind to the promoter and

resulting in increased expression. To test the predictions of our model across a

wide range of operator binding strengths and repressor copy numbers, we design

an E. coli genetic construct in which the binding probability of a repressor regulates

gene expression of a fluorescent reporter.
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In total, the work presented here demonstrates that one extremely compact set of

parameters can be applied self-consistently and predictively to different regulatory

situations including simple repression on the chromosome, cases in which decoy

binding sites for repressor are put on plasmids, cases in which multiple genes com-

pete for the same regulatory machinery, cases involving multiple binding sites for

repressor leading to DNA looping, and induction by signaling [20,39,42–45]. Thus,

rather than viewing the behavior of each circuit as giving rise to its unique input-

output response, the MWC model provides a means to characterize these seem-

ingly diverse behaviors using a single unified framework governed by a small set

of parameters.

2.3 Results

Characterizing Transcription Factor Induction using the Monod-Wyman-Changeux

(MWC) Model

We begin by considering a simple repression genetic architecture in which the

binding of an allosteric repressor occludes the binding of RNA polymerase (RNAP)

to the DNA [10,48]. When an effector (hereafter referred to as an "inducer" for the

case of induction) binds to the repressor, it shifts the repressor’s allosteric equilib-

rium towards the inactive state as specified by the MWC model [41]. This causes

the repressor to bind more weakly to the operator, which increases gene expres-

sion. Simple repression motifs in the absence of inducer have been previously

characterized by an equilibrium model where the probability of each state of re-

pressor and RNAP promoter occupancy is dictated by the Boltzmann distribution

[10,20,39,48–50] (we note that non-equilibrium models of simple repression have

been shown to have the same functional form that we derive below [51]). We ex-

tend these models to consider allostery by accounting for the equilibrium state of

the repressor through the MWC model.

Thermodynamic models of gene expression begin by enumerating all possible

states of the promoter and their corresponding statistical weights. As shown in

Fig. 2.2(A), the promoter can either be empty, occupied by RNAP, or occupied by
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Figure 2.1: Transcription regulation architectures involving an allosteric repressor. We consider
a promoter regulated solely by an allosteric repressor. When bound, the repressor prevents RNAP
from binding and initiating transcription. Induction is characterized by the addition of an effector
which binds to the repressor and stabilizes the inactive state (defined as the state which has a low
affinity for DNA), thereby increasing gene expression. In corepression, the effector stabilizes the
repressor’s active state and thus further reduces gene expression. We list several characterized
examples of induction and corepression that support different physiological roles in E. coli [46,47].
A schematic regulatory response of the two architectures shown in Panel plotting the fold-change
in gene expression as a function of effector concentration, where fold-change is defined as the ratio
of gene expression in the presence versus the absence of repressor. We consider the following
key phenotypic properties that describe each response curve: the minimum response (leakiness),
the maximum response (saturation), the difference between the maximum and minimum response
(dynamic range), the concentration of ligand which generates a fold-change halfway between the
minimal and maximal response ([EC50]), and the log-log slope at the midpoint of the response
(effective Hill coefficient). (C) Over time, we have refined our understanding of simple repression
architectures. A first round of experiments used colorimetric assays and quantitative Western blots
to investigate how single-site repression is modified by the repressor copy number and repressor-
DNA binding energy [20]. A second round of experiments used video microscopy to probe how
the copy number of the promoter and presence of competing repressor binding sites affect gene
expression and we use this data set to determine the free energy difference between the repressor’s
inactive and active conformations [40]. Here we used flow cytometry to determine the inducer-
repressor dissociation constants and demonstrate that with these parameters, we can predict a priori
the behavior of the system for any repressor copy number, DNA binding energy, gene copy number,
and inducer concentration.
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either an active or inactive repressor. The probability of binding to the promoter

will be affected by the protein copy number, which we denote as P for RNAP, RA

for active repressor, and RI for inactive repressor. We note that repressors fluctu-

ate between the active and inactive conformation in thermodynamic equilibrium,

such that RA and RI will remain constant for a given inducer concentration [41].

We assign the repressor a different DNA binding affinity in the active and inactive

state. In addition to the specific binding sites at the promoter, we assume that there

are NNS non-specific binding sites elsewhere (i.e., on parts of the genome outside

the simple repression architecture) where the RNAP or the repressor can bind. All

specific binding energies are measured relative to the average non-specific binding

energy. Thus, ∆εP represents the energy difference between the specific and non-

specific binding for RNAP to the DNA. Likewise, ∆εRA and ∆εRI represent the

difference in specific and non-specific binding energies for repressor in the active

or inactive state, respectively.

Thermodynamic models of transcription [10–12,20,39,40,48–50,52] posit that gene

expression is proportional to the probability that the RNAP is bound to the pro-

moter pbound, which is given by

pbound =
P

NNS
e−β∆εP

1 + RA
NNS

e−β∆εRA + RI
NNS

e−β∆εRI + P
NNS

e−β∆εP
, (2.1)

with β = 1
kBT where kB is the Boltzmann constant and T is the temperature of

the system. As kBT is the natural unit of energy at the molecular length scale,

we treat the products β∆ε j as single parameters within our model. Measuring

pbound directly is fraught with experimental difficulties, as determining the exact

proportionality between expression and pbound is not straightforward. Instead, we

measure the fold-change in gene expression due to the presence of the repressor.

We define fold-change as the ratio of gene expression in the presence of repres-

sor relative to expression in the absence of repressor (i.e., constitutive expression),

namely,

fold-change ≡ pbound(R > 0)
pbound(R = 0)

. (2.2)
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Figure 2.2: States and weights for the simple repression motif. RNAP (light blue) and a repressor
compete for binding to a promoter of interest. There are RA repressors in the active state (red) and
RI repressors in the inactive state (purple). The difference in energy between a repressor bound to
the promoter of interest versus another non-specific site elsewhere on the DNA equals ∆εRA in the
active state and ∆εRI in the inactive state; the P RNAP have a corresponding energy difference ∆εP
relative to non-specific binding on the DNA. NNS represents the number of non-specific binding
sites for both RNAP and repressor. A repressor has an active conformation (red, left column) and
an inactive conformation (purple, right column), with the energy difference between these two
states given by ∆εAI . The inducer (blue circle) at concentration c can bind to the repressor with
dissociation constants KA in the active state and KI in the inactive state. The eight states for a
dimer with n = 2 inducer binding sites are shown along with the sums of the active and inactive
states.
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We can simplify this expression using two well-justified approximations: (1) the

RNAP binds weakly to the promoter, implying that P
NNS

e−β∆εP � 1 (NNS = 4.6×

106, P ≈ 103 [53], ∆εP ≈ −2 to − 5 kBT [43], so that P
NNS

e−β∆εP ≈ 0.01) and

(2) RI
NNS

e−β∆εRI � 1 + RA
NNS

e−β∆εRA which reflects our assumption that the inactive

repressor binds weakly to the promoter of interest. Using these approximations,

the fold-change reduces to the form

fold-change ≈
(

1 +
RA

NNS
e−β∆εRA

)−1

≡
(

1 + pA(c)
R

NNS
e−β∆εRA

)−1

, (2.3)

where in the last step, we have introduced the fraction pA(c) of repressors in the

active state given a concentration c of inducer, such that RA(c) = pA(c)R. Since

inducer binding shifts the repressors from the active to the inactive state, pA(c)

grows smaller as c increases [54].

We use the MWC model to compute the probability pA(c) that a repressor with

n inducer binding sites will be active. The value of pA(c) is given by the sum of

the weights of the active repressor states divided by the sum of the weights of all

possible repressor states (see Fig. 2.2(B)), namely,

pA(c) =

(
1 + c

KA

)n

(
1 + c

KA

)n
+ e−β∆εAI

(
1 + c

KI

)n , (2.4)

where KA and KI represent the dissociation constant between the inducer and re-

pressor in the active and inactive states, respectively, and ∆εAI = ε I − εA is the free

energy difference between a repressor in the inactive and active state (the quantity

e−∆βεAI is sometimes denoted by L [41,54] or KRR∗ [52]). In this equation, c
KA

and
c

KI
represent the change in free energy when an inducer binds to a repressor in the

active or inactive state, respectively, while e−β∆εAI represents the change in free en-

ergy when the repressor changes from the active to the inactive state in the absence

of inducer. Thus, a repressor that favors the active state in the absence of inducer

(∆εAI > 0) will be driven towards the inactive state upon inducer binding when

KI < KA. The specific case of a repressor dimer with n = 2 inducer binding sites

is shown in Fig. 2.2(B).



62

Substituting pA(c) from Eq. 2.4 into Eq. 2.3 yields the general formula for induc-

tion of a simple repression regulatory architecture [51], namely,

fold-change =

1 +

(
1 + c

KA

)n

(
1 + c

KA

)n
+ e−β∆εAI

(
1 + c

KI

)n
R

NNS
e−β∆εRA


−1

. (2.5)

While we have used the specific case of simple repression with induction to craft

this model, the same mathematics describe the case of corepression in which bind-

ing of an allosteric effector stabilizes the active state of the repressor and decreases

gene expression (see Fig. 2.1(B)). Interestingly, we shift from induction (governed

by KI < KA) to corepression (KI > KA) as the ligand transitions from preferentially

binding to the inactive repressor state to stabilizing the active state. Furthermore,

this general approach can be used to describe a variety of other motifs such as

activation, multiple repressor binding sites, and combinations of activator and re-

pressor binding sites [11,39,40].

The formula presented in Eq. 2.5 enables us to make precise quantitative state-

ments about induction profiles. Motivated by the broad range of predictions im-

plied by Eq. 2.5, we designed a series of experiments using the lac system in E. coli

to tune the control parameters for a simple repression genetic circuit. As discussed

in Fig. 2.1(C), previous studies from our lab have provided well-characterized val-

ues for many of the parameters in our experimental system, leaving only the values

of the MWC parameters (KA, KI , and ∆εAI) to be determined. We note that while

previous studies have obtained values for KA, KI , and L = e−β∆εAI [52,55], they

were either based upon biochemical experiments or in vivo conditions involving

poorly characterized transcription factor copy numbers and gene copy numbers.

These differences relative to our experimental conditions and fitting techniques led

us to believe that it was important to perform our own analysis of these parame-

ters. After inferring these three MWC parameters (see Sec. 4.2 for details regarding

the inference of ∆εAI , which was fitted separately from KA and KI), we were able

to predict the input/output response of the system under a broad range of exper-
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imental conditions. For example, this framework can predict the response of the

system at different repressor copy numbers R, repressor-operator affinities ∆εRA,

inducer concentrations c, and gene copy numbers.

Experimental Design

We test our model by predicting the induction profiles for an array of strains that

could be made using previously characterized repressor copy numbers and DNA

binding energies. Our approach contrasts with previous studies that have param-

eterized induction curves of simple repression motifs, as these have relied on ex-

pression systems where proteins are expressed from plasmids, resulting in highly

variable and unconstrained copy numbers [52,56–59]. Instead, our approach relies

on a foundation of previous work as depicted in Fig. 2.1(C). This includes work

from our laboratory that used E. coli constructs based on components of the lac

system to demonstrate how the Lac repressor (LacI) copy number R and operator

binding energy ∆εRA affect gene expression in the absence of inducer [20]. [60]

extended the theory used in that work to the case of multiple promoters competing

for a given transcription factor, which was validated experimentally by [39], who

modified this system to consider expression from multiple-copy plasmids as well

as the presence of competing repressor binding sites.
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The present study extends this body of work by introducing three additional bio-

physical parameters—∆εAI , KA, and KI—which capture the allosteric nature of the

transcription factor and complement the results shown by [20] and [39]. Although

the current work focuses on systems with a single site of repression, in Sec. 2.5, we

utilize data from [39], in which multiple sites of repression are explored to charac-

terize the allosteric free energy difference ∆εAI between the repressor’s active and

inactive states. As explained in that section, this additional data set is critical be-

cause multiple degenerate sets of parameters can characterize an induction curve

equally well, with the ∆εAI parameter compensated by the inducer dissociation

constants KA and KI (see Sec. 4.2). After fixing ∆εAI as described in the Sec. 2.5,

we can use data from single-site simple repression systems to determine the values

of KA and KI .

We determine the values of KA and KI by fitting to a single induction profile using

Bayesian inferential methods [61]. We then use Eq. 2.5 to predict gene expres-

sion for any concentration of inducer, repressor copy number, and DNA binding

energy and compare these predictions against experimental measurements. To

obtain induction profiles for a set of strains with varying repressor copy num-

bers, we used modified lacI ribosomal binding sites from [20] to generate strains

with mean repressor copy number per cell of R = 22 ± 4, 60 ± 20, 124 ± 30,

260 ± 40, 1220 ± 160, and 1740 ± 340, where the error denotes the standard de-

viation of at least three replicates as measured by [20]. We note that R refers

to the number of repressor dimers in the cell, which is twice the number of re-

pressor tetramers reported by [20]; since both heads of the repressor are always

assumed to be either specifically or non-specifically bound to the genome, the two

repressor dimers in each LacI tetramer can be considered independently. Gene ex-

pression was measured using a Yellow Fluorescent Protein (YFP) gene, driven by

a lacUV5 promoter. Each of the six repressor copy number variants were paired

with the native O1, O2, or O3 lac operator [62] placed at the YFP transcription

start site, thereby generating eighteen unique strains. The repressor-operator bind-

ing energies (O1 ∆εRA = −15.3± 0.2 kBT, O2 ∆εRA = −13.9 kBT ± 0.2, and O3
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∆εRA = −9.7± 0.1 kBT) were previously inferred by measuring the fold-change

of the lac system at different repressor copy numbers, where the error arises from

model fitting [20]. Additionally, we were able to obtain the value ∆εAI = 4.5 kBT

by fitting to previous data as discussed in Sec. 2.5. We measure fold-change over a

range of known IPTG concentrations c, using n = 2 inducer binding sites per LacI

dimer and approximating the number of non-specific binding sites as the length in

base-pairs of the E. coli genome, NNS = 4.6× 106.

Our experimental pipeline for determining fold-change using flow cytometry is

shown in Fig. 2.3. Briefly, cells were grown to exponential phase, in which gene

expression reaches steady-state [63], under concentrations of the inducer IPTG

ranging between 0 and 5 mM. We measure YFP fluorescence using flow cytometry

and automatically gate the data to include only single-cell measurements (see Sec.

2.5). To validate the use of flow cytometry, we also measured the fold-change of a

subset of strains using the established method of single-cell microscopy (see Sec.

4.5). We found that the fold-change measurements obtained from microscopy were

indistinguishable from that of flow-cytometry and yielded values for the inducer

binding constants KA and KI that were within error.

Determination of the in vivo MWC Parameters

The three parameters that we tune experimentally are shown in Fig. 2.4(A), leaving

the three allosteric parameters (∆εAI , KA, and KI) to be determined by fitting. We

used previous LacI fold-change data [39] to infer that ∆εAI = 4.5 kBT (see Sec. 4.2).

Rather than fitting KA and KI to our entire data set of eighteen unique constructs,

we performed Bayesian parameter estimation on data from a single strain with

R = 260 and an O2 operator (∆εRA = −13.9 kBT [20]) shown in Fig. 2.4(D) (white

circles). Using Markov Chain Monte Carlo, we determine the most likely param-

eter values to be KA = 139+29
−22 × 10−6 M and KI = 0.53+0.04

−0.04 × 10−6 M, which are

the modes of their respective distributions, where the superscripts and subscripts

represent the upper and lower bounds of the 95th percentile of the parameter value

distributions (see Fig. 2.4(B)). Unfortunately, we cannot make a meaningful value-
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Figure 2.3: An experimental pipeline for high-throughput fold-change measurements. Cells are
grown to an exponential steady-state, and their fluorescence is measured using flow cytometry.
Automatic gating methods using forward- and side-scattering are used to ensure that all mea-
surements come from single cells (see Sec. 2.5). Mean expression is then quantified at different
IPTG concentrations (top, blue histograms) and for a strain without repressor (bottom, green his-
tograms), which shows no response to IPTG as expected. Fold-change is computed by dividing the
mean fluorescence in the presence of repressor by the mean fluorescence in the absence of repressor.

for-value comparison of our parameters to those of earlier studies [52,57] because

of uncertainties in gene copy number and transcription factor copy numbers in

these studies. We then predicted the fold-change for the remaining seventeen

strains with no further fitting (see Fig. 2.4(C)-(E)) together with the specific pheno-

typic properties described in and discussed in detail below (see Fig. 2.4(F)-(J)). The

shaded regions denote the 95% credible regions. Factors determining the width of

the credible regions are explored in Sec. 4.6.
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We stress that the entire suite of predictions is based upon a single strain’s induc-

tion profile. Our ability to make such a broad range of predictions stems from the

fact that our parameters of interest—such as the repressor copy number and DNA

binding energy—appear as distinct physical parameters within our model. While

the single data set in Fig. 2.4(D) could also be fit using a Hill function, such an

analysis would be unable to predict any of the other curves in the figure (see Sec.

4.7). Phenomenological expressions such as the Hill function can describe data but

lack predictive power and are thus unable to build our intuition, help us design de

novo input-output functions, or guide future experiments [12,56].

Comparison of Experimental Measurements with Theoretical Predictions

We tested the predictions shown in Fig. 2.4 by measuring fold-change induction

profiles in strains with a broad range of repressor copy numbers and repressor

binding energies as characterized in [20]. With a few notable exceptions, the re-

sults shown in Fig. 2.5 demonstrate agreement between theory and experiment.

We note that there was an apparently systematic shift in the O3 ∆εRA = −9.7 kBT

strains (Fig. 2.5(C)) and all of the R = 1220 and R = 1740 strains. This may be

partially due to imprecise previous determinations of their ∆εRA and R values.

By performing a global fit where we infer all parameters, including the repressor

copy number R and the binding energy ∆εRA, we found a better agreement for

these strains. However, a discrepancy in the steepness of the response for all O3

strains remains (see Sec. 4.8). We considered a number of hypotheses to explain

these discrepancies, such as including other states (e.g. non-negligible binding of

the inactive repressor), relaxing the weak promoter approximation, and account-

ing for variations in gene and repressor copy number throughout the cell cycle, but

none explained the observed discrepancies. As an additional test of our model,

we considered strains using the synthetic Oid operator, which exhibits an espe-

cially strong binding energy of ∆εRA = −17 kBT [20]. The global fit agrees well

with the Oid microscopy data, though it asserts a stronger Oid binding energy of

∆εRA = −17.7 kBT (see Sec. 4.8).
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Figure 2.4: Predicting induction profiles for different biological control parameters. (A)
Schematic representation of experimentally accessible variables. Repressor copy number R is tuned
by changing the sequence of the ribosomal binding site (RBS), DNA binding energy ∆εRA is con-
trolled via the sequence of the operator, and the inducer concentration c is controlled via a dilution
series. (B) Markov Chain Monte Carlo (MCMC) sampling of the posterior distribution of KA and
KI . Each point corresponds to a single MCMC sample. Distribution on top and right represent the
marginal posterior probability distribution over KA and KI , respectively. (C)-(E) Predicted induc-
tion profiles for strains with various repressor copy numbers and DNA binding energies. White-
faced points represent those to which the inducer binding constants KA and KI were determined.
(F)-(J) Predicted properties of the induction profiles in (C) using parameter values known a priori.
The shaded regions denote the 95% credible region. Region between 0 and 10−2 µM is scaled lin-
early with log scaling elsewhere. The Python code (ch2_fig04.py) used to generate this figure can
be found on the original paper’s GitHub repository.

https://github.com/RPGroup-PBoC/mwc_induction/blob/master/code/figures/fig4.py
https://github.com/RPGroup-PBoC/mwc_induction
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To ensure that the agreement between our predictions and data is not an accident

of the strain we used to perform our fitting, we also inferred KA and KI from each

of the other strains. As shown in Sec. 4.10 and Fig. 2.5(D), the inferred values of KA

and KI depend minimally upon which strain is chosen, indicating these parameter

values are highly robust. We also performed a global fit using the data from all

eighteen strains in which we fitted for the inducer dissociation constants KA and

KI , the repressor copy number R, and the repressor DNA binding energy ∆εRA

(see Sec. 4.8). The resulting parameter values were nearly identical to those fitted

from any single strain. We continue using parameters fitted from the strain with

R = 260 repressors and an O2 operator for the remainder of the text.

Predicting the Phenotypic Traits of the Induction Response

A subset of the properties shown in Fig. 2.1 (i.e., the leakiness, saturation, dynamic

range, [EC50], and effective Hill coefficient) are of significant interest to synthetic

biology. For example, synthetic biology is often focused on generating large re-

sponses (i.e., a large dynamic range) or finding a strong binding partner (i.e., a

small [EC50]) [64,65]. While these properties are all individually informative, they

capture the essential features of the induction response when taken together. We

reiterate that a Hill function approach cannot predict these features a priori and re-

quires fitting each curve individually. The MWC model, on the other hand, enables

us to quantify how each trait depends upon a single set of physical parameters as

shown by Fig. 2.4(F-J).

We define these five phenotypic traits using expressions derived from the model,

Eq. 2.5. These results build upon extensive work in [66], where many such prop-

erties were computed for ligand-receptor binding within the MWC model. We

begin by analyzing the leakiness, which is the minimum fold-change observed in

the absence of ligand, given by

leakiness = fold-change(c = 0)

=

(
1 +

1
1 + e−β∆εAI

R
NNS

e−β∆εRA

)−1

,
(2.6)
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Figure 2.5: Comparison of predictions against measured and inferred data. (A-C) Flow cytome-
try measurements of fold-change over a range of IPTG concentrations for O1, O2, and O3 strains at
varying repressor copy numbers overlaid on the predicted responses. Error bars for the experimen-
tal data show the standard error of the mean (eight or more replicates). As discussed in Fig. 2.4, all
predicted induction curves were generated prior to measurement by inferring the MWC parame-
ters using a single data set (O2 R = 260, shown by white circles in Panel (B)). The predictions may
therefore depend upon which strain is used to infer the parameters. (D) The inferred parameter
values of the dissociation constants KA and KI using any of the eighteen strains instead of the O2
R = 260 strain. Nearly identical parameter values are inferred from each strain, demonstrating that
the same set of induction profiles would have been predicted regardless of which strain was cho-
sen. The points show the mode, and the error bars denote the 95% credible region of the parameter
value distribution. Error bars not visible are smaller than the size of the marker. The Python code
(ch2_fig05.py) used to generate this figure can be found on the original paper’s GitHub repository.

https://github.com/RPGroup-PBoC/mwc_induction/blob/master/code/figures/fig5.py
https://github.com/RPGroup-PBoC/mwc_induction
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and the saturation, which is the maximum fold change observed in the presence of

saturating ligand,

saturation = fold-change(c→ ∞)

=

1 +
1

1 + e−β∆εAI

(
KA
KI

)n
R

NNS
e−β∆εRA


−1

.
(2.7)

Systems that minimize leakiness repress strongly in the absence of the effector,

while systems that maximize saturation have high expression in the presence of the

effector. Together, these two properties determine the dynamic range of a system’s

response, which is given by the difference

dynamic range = saturation− leakiness. (2.8)

These three properties are shown in Fig. 2.4(F-H). We discuss these properties in

greater detail in Sec. 4.11. Fig. 2.6(A-C) shows that the measurements of these

three properties, derived from the fold-change data in the absence of IPTG and the

presence of saturating IPTG closely match the predictions for all three operators.

Two additional properties of induction profiles are the [EC50] and effective Hill

coefficient, which determine the range of inducer concentration in which the sys-

tem’s output goes from its minimum to maximum value. The [EC50] denotes the

inducer concentration required to generate a system response halfway between its

minimum and maximum value,

fold-change(c = [EC50]) =
leakiness + saturation

2
. (2.9)

The effective Hill coefficient h, which quantifies the steepness of the curve at the

[EC50] [54], is given by

h =

(
2

d
d log c

[
log
(

fold-change(c)− leakiness
dynamic range

)])
c=[EC50]

. (2.10)

Fig. 2.4(I),(J) shows how the [EC50] and effective Hill coefficient depend on the re-

pressor copy number. Sec. 4.11 discusses the analytic forms of these two properties

and their dependence on the repressor-DNA binding energy.
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Figure 2.6: Predictions and experimental measurements of key properties of induction profiles.
Data for the leakiness, saturation, and dynamic range are obtained from fold-change measurements
in Fig. 2.5 in the absence of IPTG and at saturating concentrations of IPTG. The three repressor-
operator binding energies in the legend correspond to the O1 operator (−15.3 kBT), O2 operator
(−13.9 kBT), and O3 operator (−9.7 kBT). Both the [EC50] and effective Hill coefficient are inferred
by individually fitting each operator-repressor pairing in Fig. 2.5(A-C) separately to Eq. 2.5 to
smoothly interpolate between the data points. Error bars for (A-C) represent the standard error of
the mean for eight or more replicates; error bars for (D-E) represent the 95% credible region for the
parameter found by propagating the credible region of our estimates of KA and KI into Eq. 2.9 and
Eq. 2.10. The Python code (ch2_fig06.py) used to generate this figure can be found on the original
paper’s GitHub repository.

Fig. 2.6(D) and Fig. 2.6(E) shows the estimated values of the [EC50] and the effec-

tive Hill coefficient overlaid on the theoretical predictions. Both properties were

obtained by fitting Eq. 2.5 to each individual titration curve and computing the

[EC50] and effective Hill coefficient using Eq. 2.9 and Eq. 2.10, respectively. We

find that the predictions made with the single strain fit closely match those made

for each of the strains with O1 and O2 operators, but the predictions for the O3 op-

erator are markedly off. Sec. 4.10 shows that the large, asymmetric error bars for

the O3 R = 22 strain arise from its nearly flat response, where the lack of dynamic

range makes it impossible to determine the value of the inducer dissociation con-

stants KA and KI , as can be seen in the uncertainty of both the [EC50] and effective

https://github.com/RPGroup-PBoC/mwc_induction/blob/master/code/figures/fig6_props.py
https://github.com/RPGroup-PBoC/mwc_induction
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Hill coefficient. Discrepancies between theory and data for O3 are improved but

not fully resolved by performing a global fit or fitting the MWC model individu-

ally to each curve (see Sec. 4.8). It remains an open question on how to account for

discrepancies in O3, particularly regarding the significant mismatch between the

predicted and fitted effective Hill coefficients.

Data Collapse of Induction Profiles

Our primary interest heretofore was to determine the system response at a spe-

cific inducer concentration, repressor copy number, and repressor-DNA binding

energy. However, the cell does not necessarily “care about” the precise number

of repressors in the system or the binding energy of an individual operator. The

relevant quantity for cellular function is the fold-change enacted by the regulatory

system. This raises the question: given a specific value of the fold-change, what

combination of parameters will give rise to this desired response? In other words,

what trade-offs between the parameters of the system will give rise to the same

mean cellular output? These are key questions for understanding how the system

is governed and for engineering specific responses in a synthetic biology context.

To address these questions, we follow the data collapse strategy used in a number

of previous studies [67–69], and rewrite Eq. 2.5 as a Fermi function,

fold-change =
1

1 + e−F(c)
, (2.11)

where F(c) is the free energy of the repressor binding to the operator of interest

relative to the unbound operator state in kBT units [51,68,69], which is given by

F(c) =
∆εRA

kBT
− log

(
1 + c

KA

)n

(
1 + c

KA

)n
+ e−β∆εAI

(
1 + c

KI

)n − log
R

NNS
. (2.12)

The first term in F(c) denotes the repressor-operator binding energy, the second the

contribution from the inducer concentration, and the last the effect of the repressor

copy number. We note that elsewhere, this free energy has been dubbed the Bohr

parameter since such families of curves are analogous to the shifts in hemoglobin

binding curves at different pHs known as the Bohr effect [51,70,71].
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Instead of analyzing each induction curve individually, the free energy provides

a natural means to simultaneously characterize the diversity in our eighteen in-

duction profiles. Fig. 2.7(A) demonstrates how the various induction curves from

Fig. 2.4(C-E) all collapse onto a single master curve, where points from every in-

duction profile that yield the same fold-change are mapped onto the same free

energy. Fig. 2.7(B) shows this data collapse for the 216 data points in Fig. 2.5(A-C),

demonstrating the close match between the theoretical predictions and experimen-

tal measurements across all eighteen strains.

Many different combinations of parameter values can result in the same free en-

ergy as defined in Eq. 2.12. For example, suppose a system initially has a fold-

change of 0.2 at a specific inducer concentration, and then operator mutations in-

crease the ∆εRA binding energy [72]. While this initially increases both the free

energy and the fold-change, a subsequent increase in the repressor copy number

could bring the cell back to the original fold-change level. Such trade-offs hint that

there need not be a single set of parameters that evoke a specific cellular response,

but rather that the cell explores a large but degenerate space of parameters with

multiple, equally valid paths.

2.4 Discussion

Since the early work by Monod, Wyman, and Changeux [41,73], an array of bi-

ological phenomena has been tied to the existence of macromolecules that switch

between inactive and active states. Examples can be found in a wide variety of

cellular processes, including ligand-gated ion channels [74], enzymatic reactions

[71,75], chemotaxis [68], quorum sensing [69], G-protein coupled receptors [76],

physiologically important proteins [77,78], and beyond. One of the most ubiq-

uitous examples of allostery is in the context of gene expression, where an array

of molecular players bind to transcription factors to influence their ability to reg-

ulate gene activity [46,47]. A number of studies have focused on developing a

quantitative understanding of allosteric regulatory systems. [54,66] analytically

derived fundamental properties of the MWC model, including the leakiness and
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Figure 2.7: Fold-change data from a broad collection of different strains collapse onto a sin-
gle master curve. (A) Any combination of parameters can be mapped to a single physiological
response (i.e., fold-change) via the free energy, which encompasses the parametric details of the
model. (B) Experimental data from collapse onto a single master curve as a function of the free
energy Eq. 2.12. The free energy for each strain was calculated from Eq. 2.12 using n = 2,
∆εAI = 4.5 kBT, KA = 139 × 10−6 M, KI = 0.53 × 10−6 M, and the strain-specific R and ∆εRA.
All data points represent the mean, and error bars are the standard error of the mean for eight or
more replicates. The Python code (ch2_fig07.py) used to generate this figure can be found on the
original paper’s GitHub repository.

dynamic range described in this work, noting the inherent trade-offs in these prop-

erties when tuning the model’s parameters. Work in the Church and Voigt labs,

among others, has expanded on the availability of allosteric circuits for synthetic

biology [37,38,79,80]. Recently, Daber et al. theoretically explored the induction

of simple repression within the MWC model [57] and experimentally measured

how mutations alter the induction profiles of transcription factors [52]. Vilar and

Saiz analyzed a variety of interactions in inducible lac-based systems, including

the effects of oligomerization and DNA folding on transcription factor induction

[36,81]. Other work has attempted to use the lac system to reconcile in vitro and in

vivo measurements [59,82].

Although this body of work has done much to improve our understanding of al-

losteric transcription factors, there have been few attempts to connect quantita-

tive models to experiments explicitly. Here, we generate a predictive model of

allosteric transcriptional regulation and then test the model against a thorough set

of experiments using well-characterized regulatory components. Specifically, we

used the MWC model to build upon a well-established thermodynamic model of

transcriptional regulation [11,20], allowing us to compose the model from a mini-

https://github.com/RPGroup-PBoC/mwc_induction/blob/master/code/figures/fig7_collapse.py
https://github.com/RPGroup-PBoC/mwc_induction
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mal set of biologically meaningful parameters. This model combines both theoret-

ical and experimental insights; for example, rather than considering gene expres-

sion directly, we analyze the fold-change in expression, where the weak promoter

approximation circumvents uncertainty in the RNAP copy number. The resulting

model depended upon experimentally accessible parameters, namely, the repres-

sor copy number, the repressor-DNA binding energy, and inducer concentration.

We tested these predictions on a range of strains whose repressor copy number

spanned two orders of magnitude and whose DNA binding affinity spanned 6

kBT. We argue that one would not generate such a wide array of predictions by

using a Hill function, which abstracts away the biophysical meaning of the param-

eters into phenomenological parameters [83].

More precisely, we tested our model in the context of a lac-based simple repression

system by first determining the allosteric dissociation constants KA and KI from a

single induction data set (O2 operator with binding energy ∆εRA = −13.9 kBT and

repressor copy number R = 260), and then using these values to make parameter-

free predictions of the induction profiles for seventeen other strains where ∆εRA

and R were varied significantly. We next measured the induction profiles of these

seventeen strains using flow cytometry and found that our predictions consistently

and accurately captured the primary features for each induction data set, as shown

in Fig. 2.5. Importantly, we find that fitting KA and KI to data from any other strain

would have resulted in nearly identical predictions (see Sec. 4.10 for further de-

tails). This suggests that a few carefully chosen measurements can lead to a deep

quantitative understanding of how simple regulatory systems work without re-

quiring an extensive sampling of strains that span the parameter space. Moreover,

the fact that we could consistently achieve reliable predictions after fitting only

two free parameters stand in contrast to the common practice of fitting several free

parameters simultaneously, which can nearly guarantee an acceptable fit provided

that the model roughly resembles the system response, regardless of whether the

details of the model are tied to any underlying molecular mechanism.
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Beyond observing changes in fold-change as a function of effector concentration,

our application of the MWC model allows us to predict the values of explicitly

the induction curves’ key parameters, namely, the leakiness, saturation, dynamic

range, [EC50], and the effective Hill coefficient. We are consistently able to accu-

rately predict the leakiness, saturation, and dynamic range for each of the strains.

For both the O1 and O2 data sets, our model also accurately predicts the effective

Hill coefficient and [EC50], though these predictions for O3 are noticeably less accu-

rate. While performing a global fit for all model parameters marginally improves

the prediction for O3 (see Sec. 4.8), we are still unable to predict the effective Hill

coefficient or accurately the [EC50]. We further tried including additional states

(such as allowing the inactive repressor to bind to the operator), relaxing the weak

promoter approximation, accounting for changes in gene and repressor copy num-

ber throughout the cell cycle [84], and refitting the original binding energies from

[42], but we were still unable to account for the O3 data. It remains an open ques-

tion as to how the discrepancy between the theory and measurements for O3 can

be reconciled.

The dynamic range, which is of considerable interest when designing or character-

izing a genetic circuit is revealed to have an interesting property: although chang-

ing the value of ∆εRA causes the dynamic range curves to shift to the right or left,

each curve has the same shape and in particular the same maximum value. This

means that strains with strong or weak binding energies can attain the same dy-

namic range when the value of R is tuned to compensate for the binding energy.

This feature is not immediately apparent from the IPTG induction curves, which

show very low dynamic ranges for several of the O1 and O3 strains. Without the

benefit of models that can predict such phenotypic traits, efforts to engineer genetic

circuits with allosteric transcription factors must rely on trial and error to achieve

specific responses [37,38].
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Despite the diversity observed in the induction profiles of each of our strains, our

data are unified by their reliance on fundamental biophysical parameters. In par-

ticular, we have shown that our model for fold-change can be rewritten in terms

of the free energy Eq. 2.12, which encompasses all of the physical parameters of

the system. This has proven to be an illuminating technique in a number of stud-

ies of allosteric proteins [67–69]. Although it is experimentally straightforward to

observe system responses to changes in effector concentration c, framing the input-

output function in terms of c can give the misleading impression that changes in

system parameters lead to fundamentally altered system responses. Alternatively,

suppose one can find the “natural variable” that enables the output to collapse

onto a single curve. In that case, it becomes clear that the system’s output is not

governed by individual system parameters but rather the contributions of multiple

parameters that define the natural variable. When our fold-change data are plotted

against each construct’s respective free energies, they collapse cleanly onto a single

curve. This enables us to analyze how parameters can compensate for each other.

For example, rather than viewing strong repression as a consequence of low IPTG

concentration c or high repressor copy number R, we can now observe that strong

repression is achieved when the free energy F(c) ≤ −5kBT, a condition which can

be reached in a number of ways.

While our experiments validated the theoretical predictions in the case of simple

repression, we expect the framework presented here to apply much more gener-

ally to different biological instances of allosteric regulation. For example, we can

use this model to study more complex systems, such as when transcription fac-

tors interact with multiple operators [11]. We can further explore different reg-

ulatory configurations such as corepression, activation, and coactivation, each of

which are found in E. coli (see Sec. 4.12). This work can also serve as a spring-

board to characterize not just the mean but the full gene expression distribution

and thus quantify the impact of noise on the system [85]. Another extension of

this approach would be to theoretically predict and experimentally verify whether

the repressor-inducer dissociation constants KA and KI or the energy difference
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∆εAI between the allosteric states can be tuned by making single amino acid sub-

stitutions in the transcription factor [51,52]. Finally, we expect that the rigorous

quantitative description of the allosteric phenomenon provided here will make it

possible to construct biophysical models of fitness for allosteric proteins similar to

those already invoked to explore the fitness effects of transcription factor binding

site strengths and protein stability [25,86,87].

To conclude, we find that our application of the MWC model provides an accu-

rate, predictive framework for understanding simple repression by allosteric tran-

scription factors. To reach this conclusion, we analyzed the model in the context

of a well-characterized system, in which each parameter had a clear biophysical

meaning. As many of these parameters had been measured or inferred in previ-

ous studies, this gave us a minimal model with only two free parameters, which

we inferred from a single data set. We then accurately predicted the behavior of

seventeen other data sets in which repressor copy number and repressor-DNA

binding energy were systematically varied. In addition, our model allowed us to

understand how key properties such as the leakiness, saturation, dynamic range,

[EC50], and effective Hill coefficient depended upon the small set of parameters

governing this system. Finally, we show that by framing inducible simple repres-

sion in terms of free energy, the data from all of our experimental strains collapse

cleanly onto a single curve, illustrating the many ways in which a particular output

can be targeted. In total, these results show that a thermodynamic formulation of

the MWC model supersedes phenomenological fitting functions for understand-

ing transcriptional regulation by allosteric proteins.

2.5 Materials & Methods

Bacterial Strains and DNA Constructs

All strains used in these experiments were derived from E. coli K12 MG1655 with

the lac operon removed, adapted from those created and described in [20,42].

Briefly, the operator variants and YFP reporter gene were cloned into a pZS25

background which contains a lacUV5 promoter that drives expression, as is shown



80

schematically in Fig. 2.2. These constructs carried a kanamycin resistance gene and

were integrated into the galK locus of the chromosome using λ Red recombineering

[88]. The lacI gene was constitutively expressed via a PLtetO-1 promoter [79], with

ribosomal binding site mutations made to vary the LacI copy number as described

in [89] using site-directed mutagenesis (Quickchange II; Stratagene), with further

details in [20]. These lacI constructs carried a chloramphenicol resistance gene and

were integrated into the ybcN locus of the chromosome. Final strain construction

was achieved by performing repeated P1 transduction [90] of the different opera-

tor and lacI constructs to generate each combination used in this work. Integration

was confirmed by PCR amplification of the replaced chromosomal region and by

sequencing. Primers and final strain genotypes are listed in Sec. 4.15.

It is important to note that the rest of the lac operon (lacZYA) was never expressed.

The LacY protein is a transmembrane protein that actively transports lactose as

well as IPTG into the cell. As LacY was never produced in our strains, we assume

that the extracellular and intracellular IPTG concentration was approximately equal

due to diffusion across the membrane into the cell, as suggested by previous work

[91].

To make this theory applicable to transcription factors with any number of DNA

binding domains, we used a different definition for repressor copy number than

has been used previously. We define the LacI copy number as the average number

of repressor dimers per cell, whereas in [20], the copy number is defined as the

average number of repressor tetramers in each cell. To motivate this decision, we

consider that the LacI repressor molecule exists as a tetramer in E. coli [92] in

which a single DNA binding domain is formed from dimerization of LacI proteins

so that wild-type LacI might be described as dimer of dimers. Since each dimer is

allosterically independent (i.e., either dimer can be allosterically active or inactive,

independent of the configuration of the other dimer) [57], a single LacI tetramer

can be treated as two functional repressors. Therefore, we have multiplied the
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number of repressors reported in [20] by a factor of two. This factor is included

as a keyword argument in the numerous Python functions used to perform this

analysis, as discussed in the code documentation.

A subset of strains in these experiments was measured using fluorescence mi-

croscopy to validate the flow cytometry data and results. To aid in the high-fidelity

segmentation of individual cells, the strains were modified to express an mCherry

fluorophore constitutively. This reporter was cloned into a pZS4*1 backbone [79]

in which mCherry is driven by the lacUV5 promoter. All microscopy and flow

cytometry experiments were performed using these strains.

Growth Conditions for Flow Cytometry Measurements

All measurements were performed with E. coli cells grown to mid-exponential

phase in standard M9 minimal media (M9 5X Salts, Sigma-Aldrich M6030; 2 mM

magnesium sulfate, Mallinckrodt Chemicals 6066-04; 100 µM calcium chloride,

Fisher Chemicals C79-500) supplemented with 0.5% (w/v) glucose. Briefly, 500 µL

cultures of E. coli were inoculated into Lysogeny Broth (LB Miller Powder, BD

Medical) from a 50% glycerol frozen stock (-80◦C) and were grown overnight in

a 2 mL 96-deep-well plate sealed with a breathable nylon cover (Lab Pak - Nitex

Nylon, Sefar America Inc. Cat. No. 241205) with rapid agitation for proper aera-

tion. After approximately 12 to 15 hours, the cultures had reached saturation and

were diluted 1000-fold into a second 2 mL 96-deep-well plate where each well con-

tained 500 µL of M9 minimal media supplemented with 0.5% w/v glucose (anhy-

drous D-Glucose, Macron Chemicals) and the appropriate concentration of IPTG

(Isopropyl β-D-1 thiogalactopyranoside Dioxane Free, Research Products Interna-

tional). These were sealed with a breathable cover and were allowed to grow for

approximately eight hours. Cells were then diluted ten-fold into a round-bottom

96-well plate (Corning Cat. No. 3365) containing 90 µL of M9 minimal media sup-

plemented with 0.5% w/v glucose along with the corresponding IPTG concentra-



82

tions. For each IPTG concentration, a stock of 100-fold concentrated IPTG in dou-

ble distilled water was prepared and partitioned into 100 µL aliquots. The same

parent stock was used for all experiments described in this work.

Flow Cytometry

Unless explicitly mentioned, all fold-change measurements were collected on a

Miltenyi Biotec MACSquant Analyzer 10 Flow Cytometer graciously provided by

the Pamela Björkman lab at Caltech. Detailed information regarding the voltage

settings of the photo-multiplier detectors can be found in Sec. 4.4. Prior to each

day’s experiments, the analyzer was calibrated using MACSQuant Calibration

Beads (Cat. No. 130-093-607) such that day-to-day experiments would be compara-

ble. All YFP fluorescence measurements were collected via 488 nm laser excitation

coupled with a 525/50 nm emission filter. Unless otherwise specified, all measure-

ments were taken over two to three hours using automated sampling from a 96-

well plate kept at approximately 4◦ - 10◦C on a MACS Chill 96 Rack (Cat. No. 130-

094-459). Cells were diluted to a final concentration of approximately 4× 104 cells

per µL which corresponded to a flow rate of 2,000-6,000 measurements per second,

and acquisition for each well was halted after 100,000 events were detected. Once

completed, the data were extracted and immediately processed using the follow-

ing methods.

Unsupervised Gating of Flow Cytometry Data

Flow cytometry data will frequently include a number of spurious events or other

undesirable data points such as cell doublets and debris. The process of restrict-

ing the collected data set to those determined to be “real” is commonly referred

to as gating. These gates are typically drawn manually [93] and restrict the data

set to those points which display a high degree of linear correlation between their

forward-scatter (FSC) and side-scatter (SSC). The development of unbiased and

unsupervised methods of drawing these gates is an active area of research [94,95].

For our purposes, we assume that the fluorescence level of the population should
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be log-normally distributed about some mean value. With this assumption in

place, we developed a method that allows us to restrict the data used to compute

the mean fluorescence intensity of the population to the smallest two-dimensional

region of the log(FSC) vs. log(SSC) space in which 40% of the data is found. This

was performed by fitting a bivariate Gaussian distribution and restricting the data

used for the calculation to those that reside within the 40th percentile. This proce-

dure is described in more detail in the supplementary information as well as in a

Jupyter notebook located in this paper’s Github repository.

Experimental Determination of Fold-Change

For each strain and IPTG concentration, the fold-change in gene expression was

calculated by taking the ratio of the population mean YFP expression in the pres-

ence of LacI repressor to that of the population mean in the absence of LacI re-

pressor. However, the measured fluorescence intensity of each cell also includes

the autofluorescence contributed by the weak excitation of the myriad protein and

small molecules within the cell. To correct for this background, we computed the

fold change as

fold-change =
〈IR>0〉 − 〈Iauto〉
〈IR=0〉 − 〈Iauto〉

, (2.13)

where 〈IR>0〉 is the average cell YFP intensity in the presence of repressor, 〈IR=0〉

is the average cell YFP intensity in the absence of repressor, and 〈Iauto〉 is the av-

erage cell autofluorescence intensity, as measured from cells that lack the lac-YFP

construct.

Bayesian Parameter Estimation

In this work, we determine the most likely parameter values for the inducer dis-

sociation constants KA and KI of the active and inactive state, respectively, using

Bayesian methods. We compute the probability distribution of the value of each

parameter given the data D, which by Bayes’ theorem is given by

P(KA, KI | D) =
P(D | KA, KI)P(KA, KI)

P(D)
, (2.14)

https://rpgroup-pboc.github.io/mwc_induction/code/notebooks/unsupervised_gating.html
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where D is all the data composed of independent variables (repressor copy num-

ber R, repressor-DNA binding energy ∆εRA, and inducer concentration c) and one

dependent variable (experimental fold-change). P(D | KA, KI) is the likelihood

of having observed the data given the parameter values for the dissociation con-

stants, P(KA, KI) contains all the prior information on these parameters, and P(D)

serves as a normalization constant, which we can ignore in our parameter estima-

tion. Our model assumes a deterministic relationship between the parameters and

the data, so to construct a probabilistic relationship as required by Eq. 2.14, we

assume that the experimental fold-change for the ith datum given the parameters

is of the form

fold-change(i)exp =

1 +

(
1 + c(i)

KA

)2

(
1 + c(i)

KA

)2
+ e−β∆εAI

(
1 + c(i)

KI

)2
R(i)

NNS
e−β∆ε

(i)
RA


−1

+ ε(i),

(2.15)

where ε(i) represents the departure from the deterministic theoretical prediction

for the ith data point. If we assume that these ε(i) errors are normally distributed

with mean zero and standard deviation σ, the likelihood of the data given the

parameters P(D | KA, KI , σ) is of the form

P(D|KA,KI ,σ)= 1

(2πσ2)
n
2

n
∏
i=1

exp

[
−

(fold-change(i)exp−fold-change(KA ,KI ,R(i) ,∆ε
(i)
RA ,c(i)))2

2σ2

]
, (2.16)

where fold-change(i)exp is the experimental fold-change and fold-change( · · · ) is the

theoretical prediction. The product ∏n
i=1 captures the assumption that the n data

points are independent. Note that the likelihood and prior terms now include

the extra unknown parameter σ. In applying Eq. 2.16, a choice of KA and KI

that provides a better agreement between theoretical fold-change predictions and

experimental measurements will result in a more probable likelihood.

Both mathematically and numerically, it is convenient to define k̃A = − log KA
1 M and

k̃I = − log KI
1 M and fit for these parameters on a log scale. Dissociation constants are

scale invariant, so that a change from 10 µM to 1 µM leads to an equivalent increase

in affinity as a change from 1 µM to 0.1 µM. With these definitions, we assume for

the prior P(k̃A, k̃I , σ) that all three parameters are independent. In addition, we
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assume a uniform distribution for k̃A and k̃I and a Jeffreys prior [61] for the scale

parameter σ. This yields the complete prior

P(k̃A, k̃I , σ) ≡ 1
(k̃max

A − k̃min
A )

1
(k̃max

I − k̃min
I )

1
σ

. (2.17)

These priors are maximally uninformative, meaning that they imply no prior knowl-

edge of the parameter values. We defined the k̃A and k̃A ranges uniform on the

range of −7 to 7, although we note that this particular choice does not affect the

outcome provided the chosen range is sufficiently wide.

Putting all these terms together, we can now sample from P(k̃A, k̃I , σ | D) using

Markov chain Monte Carlo (see GitHub repository) to compute the most likely

parameter as well as the error bars (given by the 95% credible region) for KA and

KI .

Data Curation

All of the data used in this work and all relevant code can be found at this ded-

icated website. Data were collected, stored, and preserved using the Git version

control software combined with off-site storage and hosting website GitHub. Code

is used to generate all figures and complete all processing steps, and analyses are

available on the GitHub repository. Many analysis files are stored as instructive

Jupyter Notebooks. The scientific community is invited to fork our repositories

and open constructive issues on the GitHub repository.

https://rpgroup-pboc.github.io/mwc_induction/code/notebooks/bayesian_parameter_estimation
http://rpgroup-pboc.github.io/mwc_induction
http://rpgroup-pboc.github.io/mwc_induction
https://www.github.com/rpgroup-pboc/mwc_induction
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C h a p t e r 3

FIRST-PRINCIPLES PREDICTION OF THE INFORMATION
PROCESSING CAPACITY OF A SIMPLE GENETIC CIRCUIT

A version of this chapter originally appeared as Razo-Mejia, M., Marzen, S., Chure,

G., Taubman, R., Morrison, M., and Phillips, R. (2020). First-principles prediction

of the information processing capacity of a simple genetic circuit. Physical Review

E 102, 022404. DOI:https://doi:10.1103/PhysRevE.102.022404.

3.1 Abstract

Given the stochastic nature of gene expression, genetically identical cells exposed

to the same environmental inputs will produce different outputs. This hetero-

geneity has been hypothesized to have consequences for how cells can survive in

changing environments. Recent work has explored the use of information theory

as a framework to understand the accuracy with which cells can ascertain the state

of their surroundings. Yet, the predictive power of these approaches is limited

and has not been rigorously tested using precision measurements. To that end, we

generate a minimal model for a simple genetic circuit in which all parameter val-

ues for the model come from independently published data sets. We then predict

the information processing capacity of the genetic circuit for a suite of biophysical

parameters such as protein copy number and protein-DNA affinity. Finally, we

compare these parameter-free predictions with an experimental determination of

protein expression distributions and the resulting information processing capacity

of E. coli cells. We find that our minimal model captures the scaling of the cell-to-

cell variability in the data and the inferred information processing capacity of our

simple genetic circuit up to a systematic deviation.
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3.2 Introduction

As living organisms thrive in a given environment, they are faced with constant

changes in their surroundings. From abiotic conditions such as temperature fluc-

tuations or changes in osmotic pressure, to biological interactions such as cell-to-

cell communication in a tissue or a bacterial biofilm, living organisms of all types

sense and respond to external signals. Fig. 3.1(A) shows a schematic of this pro-

cess for a bacterial cell sensing a concentration of an extracellular chemical. At

the molecular level, where signal transduction unfolds mechanistically, there are

physical constraints on the accuracy and precision of these responses given by in-

trinsic stochastic fluctuations [96]. This means that two genetically identical cells

exposed to the same stimulus will not have identical responses [22].

One implication of this noise in biological systems is that cells do not have an

infinite resolution to distinguish signals. Consequently, there is a one-to-many

mapping between inputs and outputs. Furthermore, given the limited number of

possible outputs, there are overlapping responses between different inputs. This

scenario can be mapped to a Bayesian inference problem where cells try to infer

the state of the environment from their phenotypic response, as schematized in

Fig. 3.1(B). The question then becomes this: how can one analyze this probabilistic,

rather than deterministic, relationship between inputs and outputs? The abstract

answer to this question was worked out in 1948 by Claude Shannon who, in his

seminal work, founded the field of information theory [27]. Shannon developed

a general framework for how to analyze information transmission through noisy

communication channels. In his work, Shannon showed that the only quantity

that satisfies three reasonable axioms for a measure of uncertainty was of the same

functional form as the thermodynamic entropy–thereby christening his metric the

information entropy [97]. Based on this information entropy, he also defined the

relationship between inputs and outputs known as the mutual information. The

mutual information I between input c and output p, given by

I = ∑
c

P(c)∑
p

P(p | c) log2
P(p | c)

P(p)
, (3.1)
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quantifies how much we learn about the state of the input c given that we get

to observe the output p. In other words, the mutual information can be thought

of as a generalized correlation coefficient that quantifies the degree to which the

uncertainty about a random event decreases given the knowledge of the average

outcome of another random event [98].

It is natural to conceive of scenarios in which living organisms that better resolve

signals might have an evolutionary benefit, making it more likely that their off-

spring will have a fitness advantage [6]. In recent years, there has been a growing

interest in understanding the theoretical limits on cellular information process-

ing [99,100], and in quantifying how close evolution has pushed cellular signaling

pathways to these theoretical limits [101–103]. While these studies have treated

the signaling pathway as a “black box,” explicitly ignoring all the molecular inter-

actions taking place in them, other studies have explored the role that molecular

players and regulatory architectures have on these information processing tasks

[23,104–109]. Despite the great advances in our understanding of the information

processing capabilities of molecular mechanisms, the field still lacks a rigorous ex-

perimental test of these detailed models with precision measurements on a simple

system in which physical parameters can be perturbed. In this work, we approach

this task with a system that is both theoretically and experimentally tractable in

which molecular parameters can be varied in a controlled manner.

Over the last decade, the dialogue between theory and experiments in gene regu-

lation has led to the predictive power of models not only over the mean level of

gene expression but the noise as a function of relevant parameters such as regu-

latory protein copy numbers, the affinity of these proteins to the DNA promoter,

as well as the extracellular concentrations of inducer molecules [20,36,110,111].

These models based on equilibrium and non-equilibrium statistical physics have

reached a predictive accuracy level such that, for simple cases, it is now possible

to design input-output functions [43,112]. This opens the opportunity to exploit

these predictive models to tackle how much information genetic circuits can pro-
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cess. This question lies at the heart of understanding the precision of the cellular

response to environmental signals. Fig. 3.1(C) schematizes a scenario in which

two bacterial strains respond with different levels of precision to three possible

environmental states, i.e., inducer concentrations. The overlap between the three

different responses precisely determines the resolution with which cells can distin-

guish different inputs. This is analogous to how the point spread function limits

the ability to resolve two light-emitting point sources.

In this work, we follow the same philosophy of theory-experiment dialogue used

to determine model parameters to predict from first principles the effect that bio-

physical parameters such as transcription factor copy number and protein-DNA

affinity have on the information processing capacity of a simple genetic circuit.

Specifically, to predict the mutual information between an extracellular chemical

signal (input c, isopropyl β-D-1-thiogalactopyranoside or IPTG in our experimen-

tal system) and the corresponding cellular response in the form of protein expres-

sion (output p), we must compute the input-output function P(p | c). To do so,

we use a master-equation-based model to construct the protein copy number dis-

tribution as a function of an extracellular inducer concentration for different com-

binations of transcription factor copy numbers and binding sites. Having these

input-output distributions allow us to compute the mutual information I between

inputs and outputs for any arbitrary input distribution P(c). We opt to compute

the channel capacity, i.e., the maximum information that can be processed by this

gene regulatory architecture, defined as Eq. 3.1 maximized over all possible input

distributions P(c). By doing so we examine the physical limits of what cells can

do in terms of information processing by harboring these genetic circuits. Never-

theless, given the generality of the input-output function P(p | c) we derive, the

model presented here can be used to compute the mutual information for any ar-

bitrary input distribution P(c). All parameters used for our model were inferred

from a series of studies that span several experimental techniques [20,39,84,113],

allowing us to make parameter-free predictions of this information processing ca-

pacity [16].
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Figure 3.1: Cellular signaling systems sense the environment with different degrees of precision.
(A) Schematic representation of a cell as a noisy communication channel. From an environmental
input (inducer molecule concentration) to a phenotypic output (protein expression level), cellular
signaling systems can be modeled as noisy communication channels. (B) We treat cellular response
to an external stimulus as a Bayesian inference of the state of the environment. As the phenotype
(protein level) serves as the internal representation of the environmental state (inducer concentra-
tion), the probability of a cell being in a specific environment given this internal representation
P(c | p) is a function of the probability of the response given that environmental state P(p | c).
(C) The precision of the inference of the environmental state depends on how well cells can resolve
different inputs. For three different input levels (left panel), the green strain responds more pre-
cisely than the purple strain since the output distributions overlap less (middle panel). This allows
the green strain to make a more precise inference of the environmental state given a phenotypic
response (right panel).

These predictions are then contrasted with experimental data, where the channel

capacity is inferred from single-cell fluorescence distributions taken at different

inducer concentrations for cells with previously characterized biophysical param-

eters [20,113]. We find that our parameter-free predictions quantitatively track

the experimental data up to a systematic deviation. The lack of numerical agree-

ment between our model and the experimental data poses new challenges towards

having a foundational, first-principles understanding of the physics of cellular

decision-making.
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3.3 Results

Minimal Model of Transcriptional Regulation

As a tractable circuit for which we have control over the parameters both theoret-

ically and experimentally, we chose the so-called simple repression motif, a com-

mon regulatory scheme among prokaryotes [114]. This circuit consists of a single

promoter with an RNA-polymerase (RNAP) binding site and a single binding site

for a transcriptional repressor [20]. The regulation due to the repressor occurs

via exclusion of the RNAP from its binding site when the repressor is bound, de-

creasing the likelihood of having a transcription event. As with many important

macromolecules, we consider the repressor to be allosteric, meaning that it can

exist in two conformations, one in which the repressor can bind to the specific

binding site (active state) and one in which it cannot bind the specific binding site

(inactive state). The environmental signaling occurs via the passive import of an

extracellular inducer that binds the repressor, shifting the equilibrium between the

two conformations of the repressor [113]. In previous work, we have extensively

characterized the mean response of this circuit under different conditions using

equilibrium-based models [16]. Here we build upon these models to characterize

the entire distribution of gene expression with parameters such as repressor copy

number and its affinity for systematically varied DNA.

As the copy number of molecular species is a discrete quantity, chemical master

equations have emerged as a useful tool to model their inherent probability distri-

bution [26]. In Fig. 3.2(A), we show the minimal model and the necessary set of

parameters needed to compute the full distribution of mRNA and its protein gene

product. Specifically, we assume a three-state model where the promoter can be

found in a 1) transcriptionally active state (A state), 2) a transcriptionally inactive

state without the repressor bound (I state), and 3) a transcriptionally inactive state

with the repressor bound (R state). We do not assume that the transition between

the active state A and the inactive state I occurs due to RNAP binding to the pro-

moter as the transcription initiation kinetics involve several more steps than sim-
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ple binding [8]. We coarse-grain all these steps into effective “on” and “off ” states

for the promoter, consistent with experiments demonstrating the bursty nature of

gene expression in E. coli [110]. These three states generate a system of coupled

differential equations for each of the three state distributions PA(m, p; t), PI(m, p; t)

and PR(m, p; t), where m and p are the mRNA and protein count per cell, respec-

tively, and t is time. Given the rates depicted in Fig. 3.2(A), we define the system

of ODEs for a specific m and p. For the transcriptionally active state, we have

dPA(m, p)
dt

= −

A→I︷ ︸︸ ︷
k(p)

off PA(m, p) +

I→A︷ ︸︸ ︷
k(p)

on PI(m, p)

+

m−1→m︷ ︸︸ ︷
rmPA(m− 1, p)−

m→m+1︷ ︸︸ ︷
rmPA(m, p) +

m+1→m︷ ︸︸ ︷
γm(m + 1)PA(m + 1, p)−

m→m−1︷ ︸︸ ︷
γmmPA(m, p)

+

p−1→p︷ ︸︸ ︷
rpmPA(m, p− 1)−

p→p+1︷ ︸︸ ︷
rpmPA(m, p) +

p+1→p︷ ︸︸ ︷
γp(p + 1)PA(m, p + 1)−

p→p−1︷ ︸︸ ︷
γp pPA(m, p),

(3.2)

where overbraces label the state transitions for each term. For the transcriptionally

inactive state I, we have

dPI(m, p)
dt

=

A→I︷ ︸︸ ︷
k(p)

off PA(m, p)−

I→A︷ ︸︸ ︷
k(p)

on PI(m, p) +

R→I︷ ︸︸ ︷
k(r)off PR(m, p)−

I→R︷ ︸︸ ︷
k(r)on PI(m, p)

+

m+1→m︷ ︸︸ ︷
γm(m + 1)PI(m + 1, p)−

m→m−1︷ ︸︸ ︷
γmmPI(m, p)

+

p−1→p︷ ︸︸ ︷
rpmPI(m, p− 1)−

p→p+1︷ ︸︸ ︷
rpmPI(m, p) +

p+1→p︷ ︸︸ ︷
γp(p + 1)PI(m, p + 1)−

p→p−1︷ ︸︸ ︷
γp pPI(m, p) .

(3.3)

And finally, for the repressor bound state R,

dPR(m, p)
dt

= −

R→I︷ ︸︸ ︷
k(r)off PR(m, p) +

I→R︷ ︸︸ ︷
k(r)on PI(m, p)

+

m+1→m︷ ︸︸ ︷
γm(m + 1)PR(m + 1, p)−

m→m−1︷ ︸︸ ︷
γmmPR(m, p)

+

p−1→p︷ ︸︸ ︷
rpmPR(m, p− 1)−

p→p+1︷ ︸︸ ︷
rpmPR(m, p) +

p+1→p︷ ︸︸ ︷
γp(p + 1)PR(m, p + 1)−

p→p−1︷ ︸︸ ︷
γp pPR(m, p) .

(3.4)
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As we will discuss later, the protein degradation term γp is set to zero since active

protein degradation is slow compared to the cell cycle of exponentially growing

bacteria, but instead, we explicitly implement binomial partitioning of the proteins

into daughter cells upon division [115].

It is convenient to rewrite these equations in a compact matrix notation [26]. For

this, we define the vector P(m, p) as

P(m, p) = (PA(m, p), PI(m, p), PR(m, p))T, (3.5)

where T is the transpose. By defining the matrices K to contain the promoter state

transitions, Rm and Γm to contain the mRNA production and degradation terms,

respectively, and Rp and Γp to contain the protein production and degradation

terms, respectively, the system of ODEs can then be written as (see Sec. 5.2 for the

full definition of these matrices)

dP(m, p)
dt

=
(
K− Rm −mΓm −mRp − pΓp

)
P(m, p)

+ RmP(m− 1, p) + (m + 1)ΓmP(m + 1, p)

+ mRpP(m, p− 1) + (p + 1)ΓpP(m, p + 1).

(3.6)

Having defined the gene expression dynamics, we now proceed to determine all

rate parameters in Eq. 3.6.

Inferring Parameters from Published Data Sets

A decade of research in our group has characterized the simple repression motif

with an ever-expanding array of predictions and corresponding experiments to

uncover the physics of this genetic circuit [16]. In doing so, we have come to un-

derstand the mean response of a single promoter in the presence of varying levels

of repressor copy numbers and repressor-DNA affinities [20], due to the effect that

competing binding sites and multiple promoter copies impose [39], and in recent

work, assisted by the Monod-Wyman-Changeux (MWC) model, we expanded the

scope to the allosteric nature of the repressor [113]. All of these studies have ex-

ploited the simplicity and predictive power of equilibrium approximations to these

non-equilibrium systems [48]. We have also used a similar kinetic model to that
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depicted in Fig. 3.2(A) to study the noise in mRNA copy number [84]. Although

these studies focus on the same experimental system described by different theo-

retical frameworks, in earlier work in our laboratory, an attempt to unite paramet-

ric knowledge across studies based on equilibrium and non-equilibrium models

has not been performed previously. As a test case of the depth of our theoret-

ical understanding of this simple transcriptional regulation system, we combine

all of the studies mentioned above to inform the parameter values of the model

presented in Fig. 3.2(A). Fig. 3.2(B) schematizes the data sets and experimental

techniques used to measure gene expression along with the parameters that can be

inferred from them.

Sec. 5.2 expands on the details of how the inference was performed for each of the

parameters. Briefly, the promoter activation and inactivation rates k(p)
on and k(p)

off , as

well as the transcription rate rm were obtained in units of the mRNA degradation

rate γm by fitting a two-state promoter model (no state R from Fig. 3.2(A)) [116]

to mRNA FISH data of an unregulated promoter (no repressor present in the cell)

[84]. The repressor on rate is assumed to be of the form k(r)on = ko[R] where ko is

a diffusion-limited on rate and [R] is the concentration of active repressor in the

cell [84]. This concentration of active repressor is at the same time determined by

the repressor copy number in the cell and the fraction of these repressors that are

in the active state, i.e., able to bind DNA. Existing estimates of the transition rates

between conformations of allosteric molecules set them at the microsecond scale

[117]. By considering this to be representative for our repressor of interest, the sep-

aration of time-scales between the rapid conformational changes of the repressor

and the slower downstream processes such as the open-complex formation pro-

cesses allow us to model the probability of the repressor being in the active state

as an equilibrium MWC process. The parameters of the MWC model KA, KI and

∆εAI were previously characterized from video-microscopy and flow-cytometry

data [113]. For the repressor off rate, k(r)off , we take advantage of the fact that the

mean mRNA copy number as derived from the model in Fig. 3.2(A) cast in the

language of rates is of the same functional form as the equilibrium model cast in
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Figure 3.2: Minimal kinetic model of transcriptional regulation for a simple repression architec-
ture. (A) Three-state promoter stochastic model of transcriptional regulation by a repressor. The
regulation by the repressor occurs via exclusion of the transcription initiation machinery, not al-
lowing the promoter to transition to the transcriptionally active state. All parameters highlighted
with colored boxes were determined from published datasets based on the same genetic circuit.
Parameters in dashed boxes were taken directly from values reported in the literature or adjusted
to satisfy known biological restrictions. (B) Data sets used to infer the parameter values. From left
to right, Garcia & Phillips [20] is used to determine k(r)off and k(r)on , Brewster et al. [39] is used to

determine ∆εAI and k(r)on , Razo-Mejia et al. [113] is used to determine KA, KI , and k(r)on , and Jones et
al. [84] is used to determine rm, k(p)

on , and k(p)
off .

the language of binding energies [51]. Therefore the value of the repressor-DNA

binding energy ∆εr constrains the value of the repressor off rate k(r)off . These con-

straints on the rates allow us to make self-consistent predictions under both the

equilibrium and the kinetic framework. Having all parameters in hand, we can

now proceed to solve the gene expression dynamics.
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Computing the Moments of the mRNA and Protein Distributions

Finding analytical solutions to chemical master equations is often fraught with

difficulty. An alternative approach is to approximate the distribution. One such

scheme of approximation, the maximum entropy principle, uses the distribution

moments to approximate the entire distribution. In this section, we will demon-

strate an iterative algorithm to compute the mRNA and protein distribution mo-

ments.

The kinetic model for the simple repression motif depicted in Fig. 3.2(A) consists

of an infinite system of ODEs for each possible pair of mRNA and protein copy

number, (m, p). To compute any moment of the distribution, we define a vector

〈mxpy〉 ≡ (〈mx py〉A, 〈mx py〉I , 〈mx py〉R)T, (3.7)

where 〈mx py〉S is the expected value of mx py in state S ∈ {A, I, R} for x, y ∈ N.

In other words, just as we defined the vector P(m, p), here we define a vector to

collect the expected value of each of the promoter states. By definition, any of these

moments 〈mx py〉S can be computed as

〈mx py〉S ≡
∞

∑
m=0

∞

∑
p=0

mx pyPS(m, p). (3.8)

Summing over all possible values for m and p in Eq. 3.6 results in an ODE for any

moment of the distribution of the form (see Sec. 5.3 for full derivation)
d〈mxpy〉

dt
= K〈mxpy〉

+ Rm〈py [(m + 1)x −mx]〉+ Γm〈mpy [(m− 1)x −mx]〉

+ Rp〈m(x+1) [(p + 1)y − py]〉+ Γp〈mxp [(p− 1)y − py]〉.

(3.9)

Given that all transitions in our stochastic model are first-order reactions, Eq. 3.9

has no moment-closure problem [23]. This means that the dynamical equation for

a given moment only depends on lower moments (see Sec. 5.3 for full proof). This

feature of our model implies, for example, that the second moment of the protein

distribution 〈p2〉 depends only on the first two moments of the mRNA distribution

〈m〉 and 〈m2〉, the first protein moment 〈p〉, and the cross-correlation term 〈mp〉.

We can therefore define µ(x,y) to be a vector containing all moments up to 〈mxpy〉
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for all promoter states,

µ(x,y) =
[
〈m0p0〉, 〈m1p0〉, . . . , 〈mxpy〉

]T
. (3.10)

Explicitly for the three-state promoter model depicted in Fig. 3.2(A), this vector

takes the form

µ(x,y) =
[
〈m0p0〉A, 〈m0p0〉I , 〈m0p0〉R, . . . , 〈mx py〉A, 〈mx py〉I , 〈mx py〉R

]T
. (3.11)

Given this definition, we can compute the general moment dynamics as

dµ(x,y)

dt
= Aµ(x,y), (3.12)

where A is a square matrix that contains all the numerical coefficients that relate

each of the moments. We can then use Eq. 3.9 to build matrix A by iteratively sub-

stituting values for the exponents x and y up to a specified value. In the next sec-

tion, we will use Eq. 3.12 to numerically integrate the dynamical equations for our

moments of interest as cells progress through the cell cycle. We will then use the

value of the distribution moments to approximate the full gene expression distri-

bution. This method is computationally more efficient than trying to numerically

integrate the infinite set of equations describing the full probability distribution

P(m, p), or using a stochastic algorithm to sample from the distribution.

Accounting for Cell Cycle Dependent Variability in Gene Dosage

As cells progress through the cell cycle, the genome has to be replicated to guaran-

tee that each daughter cell receives a copy of the genetic material. As replication

of the genome can take longer than the total cell cycle, this implies that cells spend

part of the cell cycle with multiple copies of each gene depending on the cellular

growth rate and the relative position of the gene with respect to the replication

origin [17]. Genes closer to the replication origin spend a larger fraction of the

cell cycle with multiple copies compared to genes closer to the replication termina-

tion site [17]. Fig. 3.3(A) depicts a schematic of this process where the replication

origin (oriC) and the relevant locus for our experimental measurements (galK) are

highlighted.
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Since this change in gene copy number has been shown to have an effect on cell-

to-cell variability in gene expression [84,118], we now extend our minimal model

to account for these changes in gene copy number during the cell cycle. We rea-

son that the only difference between the single-copy state and the two-copy state

of the promoter is a doubling of the mRNA production rate rm. In particular, the

promoter activation and inactivation rates k(p)
on and k(p)

off and the mRNA production

rate rm assume that cells spend a fraction f of the cell cycle with one copy of the

promoter (mRNA production rate rm) and a fraction (1− f ) of the cell cycle with

two copies of the promoter (mRNA production rate 2rm). This inference was per-

formed considering that at each cell state, the mRNA level immediately reaches the

steady-state value for the corresponding mRNA production rate. This assumption

is justified since the timescale to reach this steady-state depends only on the degra-

dation rate γm, which for the mRNA is much shorter (≈ 3 min) than the length of

the cell cycle (≈ 60 min for our experimental conditions) [119]. Sec. 5.2 shows

that a model accounting for this gene copy number variability can capture data

from single-molecule mRNA counts of an unregulated (constitutively expressed)

promoter.

Given that the protein degradation rate γp in our model is set by the cell division

time, we do not expect that the protein count will reach the corresponding steady-

state value for each stage in the cell cycle. In other words, cells do not spend long

enough with two copies of the promoter for the protein level to reach the steady-

state value corresponding to a transcription rate of 2rm. Therefore, we use the

dynamical equations developed to numerically integrate the time trajectory of the

moments of the distribution with the corresponding parameters for each phase of

the cell cycle. Fig. 3.3(B) shows an example corresponding to the mean mRNA

level (upper panel) and the mean protein level (lower panel) for the case of the

unregulated promoter. Given that we inferred the promoter rate parameters con-

sidering that mRNA reaches steady-state in each stage, we see that the numerical

integration of the equations is consistent with the assumption of having the mRNA

reach a stable value in each stage (see Fig. 3.3(B) upper panel). On the other hand,
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the mean protein level does not reach a steady-state at either of the cellular stages.

Nevertheless, it is notable that after several cell cycles, the trajectory from cycle to

cycle follows a repetitive pattern (see Fig. 3.3(B) lower panel). Previously, we have

experimentally observed this repetitive pattern by tracking the expression level

over time with video microscopy, as observed in Fig. 18 of [16].

To test the effects of including this gene copy number variability in our model,

we now compare the model’s predictions with experimental data. As detailed

in the Methods section, we obtained single-cell fluorescence values of different

E. coli strains carrying a YFP gene under the control of the LacI repressor. Each

strain was exposed to twelve different input inducer (IPTG) concentrations for≈ 8

generations for cells to adapt to the media. The strains imaged spanned three

orders of magnitude in repressor copy number and three distinct repressor-DNA

affinities. Since growth was asynchronous, we reason that cells were randomly

sampled at all cell cycle stages. Therefore, when computing statistics from the data,

such as the mean fluorescence value, we are averaging over the cell cycle. In other

words, as depicted in Fig. 3.3(B), quantities such as the mean protein copy number

change over time, i.e., 〈p〉 ≡ 〈p(t)〉. This means that computing the mean of a

population of unsynchronized cells is equivalent to averaging this time-dependent

mean protein copy number over the span of the cell cycle. Mathematically, this is

expressed as

〈p〉c =
∫ td

to
〈p(t)〉P(t)dt, (3.13)

where 〈p(t)〉 represents the first moment of the protein distribution as computed

from Eq. 3.9, 〈p〉c represents the average protein copy number over a cell cycle,

to represents the start of the cell cycle, td represents the time of cell division, and

P(t) represents the probability of any cell being at time t ∈ [to, td] of their cell

cycle. We do not consider cells uniformly distributed along the cell cycle since it is

known that cell age is exponentially distributed, having more younger than older

cells at any point in time [120] (see Sec. 5.10 for further details). All computations

hereafter are therefore done by applying an average like that in for the span of a



100

cell cycle. We remind the reader that these time averages are done under a fixed

environmental state. It is the trajectory of cells over cell cycles under a constant

environment that we need to account for. It is through this averaging over the

span of a cell cycle that we turn a periodic process like the one shown in Fig. 3.3(B)

into a stationary process that we can compare with experimental data and, as we

will see later, use to reconstruct the steady-state gene expression distribution.

Fig. 3.3(C) compares zero-parameter fit predictions (lines) with experimentally de-

termined quantities (points). The upper row shows the non-dimensional quantity

known as the fold-change in gene expression [20]. This fold-change is defined as

the relative mean gene expression level with respect to an unregulated promoter.

For protein, this is

fold-change =
〈p(R > 0)〉c
〈p(R = 0)〉c

, (3.14)

where 〈p(R > 0)i〉c represents the mean protein count for cells with non-zero

repressor copy number count R over the entire cell cycle, and 〈p(R = 0)〉c rep-

resents the equivalent for a strain with no repressors present. The experimental

points were determined from the YFP fluorescent intensities of cells with varying

repressor copy numbers and a ∆lacI strain with no repressor gene present (see

Methods for further details). The fold-change in gene expression has previously

served as a metric to test the validity of equilibrium-based models [51]. We note

that the curves shown in the upper panel of Fig. 3.3(C) are consistent with the

predictions from equilibrium models [113] despite being generated from a non-

equilibrium process as shown in Fig. 3.3(B). The kinetic model from Fig. 3.2(A)

goes beyond the equilibrium picture to generate predictions for distribution mo-

ments other than the mean mRNA or mean protein count. To test this extended

predictive power, the lower row of Fig. 3.3(C) shows the noise in gene expression

defined as the standard deviation over the mean protein count, accounting for

the changes in gene dosage during the cell cycle. Although our model systemati-

cally underestimates the noise in gene expression, the zero-parameter fits capture

the scaling of this noise. Possible origins of this systematic discrepancy could be
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the intrinsic cell-to-cell variability of rate parameters given the variability in the

molecular components of the central dogma machinery [84], or noise generated

by irreversible non-equilibrium reactions not explicitly taken into account in our

minimal model [121]. The large errors for the highly repressed strains (lower left

panel in Fig. 3.3(C)) result from having a small number in the denominator—mean

fluorescence level—when computing the noise. Although the model is still highly

informative about the physical nature of how cells regulate their gene expression,

the lack of exact numerical agreement between theory and data opens an oppor-

tunity to gain new insights into the biophysical origin of cell-to-cell variability. In

Sec. 5.8, we explore empirical ways to account for this systematic deviation. We

direct the reader to Sec. 5.4 where equivalent predictions are made, ignoring the

changes in gene dosage due to genome replication.

Maximum Entropy Approximation

Having numerically computed the moments of the mRNA and protein distribu-

tions as cells progress through the cell cycle, we now proceed to make an approx-

imate reconstruction of the full distributions given this limited information. The

maximum entropy principle, first proposed by Jaynes in 1957 [28], approximates

the entire distribution by maximizing the Shannon entropy subject to constraints

given by the values of the moments of the distribution [28]. This procedure leads

to a probability distribution of the form (see Sec. 5.6 for full derivation)

P(m, p) =
1
Z exp

− ∑
(x,y)

λ(x,y)m
x py

 , (3.15)

where λ(x,y) is the Lagrange multiplier associated with the constraint set by the

moment 〈mx py〉, and Z is a normalization constant. The more moments 〈mx py〉

included as constraints, the more accurate the approximation resulting from be-

comes.

The computational challenge then becomes an optimization routine in which the

values for the Lagrange multipliers λ(x,y) that are consistent with the constraints

set by the moment values 〈mx py〉 need to be found. This is computationally more



102

(A) (B)

(C)

oriC

galK

replication
forks

0

20

40

m
RN

A/
ce

ll

single promoter two promoters

0 100 200 300
time (min)

5000

10000

15000

pr
ot

ei
n/

ce
ll

Figure 3.3: Accounting for gene copy number variability during the cell cycle. (A) Schematic of
a replicating bacterial genome. As cells progress through the cell cycle, the genome is replicated,
duplicating gene copies for a fraction of the cell cycle before the cell divides. oriC indicates the repli-
cation origin, and galK indicates the locus at which the YFP reporter construct was integrated. (B)
mean (solid line) ± standard deviation (shaded region) for the mRNA (upper panel) and protein
(lower panel) dynamics. Cells spend a fraction of the cell cycle with a single copy of the promoter
(light brown) and the rest of the cell cycle with two copies (light yellow). Black arrows indicate
the time of cell division. (C) Zero parameter-fit predictions (lines) and experimental data (circles)
of the gene expression fold-change (upper row) and noise (lower row) for repressor binding sites
with different affinities (different columns) and different repressor copy numbers per cell (different
lines on each panel). Error bars in data represent the 95% confidence interval on the quantities as
computed from 10,000 bootstrap estimates generated from > 500 single-cell fluorescence measure-
ments. In the theory curves, dotted lines indicate plot in linear scale to include zero, while solid
lines indicate logarithmic scale. For visual clarity, data points in the noise panel with exceptionally
large values coming from highly repressed strains are plotted on a separate panel. The Python code
used to generate part (B) (ch3_fig03B.py) and part (C) (ch3_fig03C.py) of this figure can be found
on the original paper’s GitHub repository.

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/fig03B.py
https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/fig03C.py
https://github.com/RPGroup-PBoC/chann_cap
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efficient than sampling directly from the master equation with a stochastic algo-

rithm (see Sec. 5.6 for further comparison between maximum entropy estimates

and the Gillespie algorithm). In Sec. 5.6 we derive our implementation of a ro-

bust algorithm to find the values of the Lagrange multipliers. Fig. 3.4(A) shows

an example of predicted protein distributions reconstructed using the first six mo-

ments of the protein distribution for a suite of different biophysical parameters

and environmental inducer concentrations. From the predicted distributions at

different inducer concentrations we can see that as repressor-DNA binding affin-

ity (columns in Fig. 3.4(A)) and repressor copy number (rows in Fig. 3.4(A)) are

varied, the responses to different signals, i.e., inducer concentrations, overlap to

varying degrees. For example, the upper right corner frame with a weak bind-

ing site (∆εr = −9.7 kBT) and a low repressor copy number (22 repressors per cell)

have virtually identical distributions regardless of the input inducer concentration.

This means that cells with this set of parameters cannot resolve any difference in

the concentration of the signal. As the number of repressors is increased, the de-

gree of overlap between distributions decreases, allowing cells to resolve the value

of the signal input better. On the opposite extreme, the lower-left panel shows a

strong binding site (∆εr = −15.3 kBT) and a high repressor copy number (1740

repressors per cell). This parameter combination shows an overlap between distri-

butions since the high degree of repression centers all distributions towards lower

copy numbers, giving little ability for the cells to resolve the inputs. In Fig. 3.4(B),

we show the comparison of these predicted cumulative distributions with the ex-

perimental single-cell fluorescence distributions. Given the systematic deviation

of our predictions for the protein copy number noise highlighted in Fig. 3.3(C),

the theoretical distributions (dashed lines) underestimate the width of the experi-

mental data. We again direct the reader to Sec. 5.8 for an exploration of empirical

changes to the moments that improve the agreement of the predictions. In the fol-

lowing section, we formalize how well cells can resolve different inputs from an

information-theoretic perspective via channel capacity.
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(A) (B)

Figure 3.4: Maximum entropy protein distributions for varying physical parameters. (A) Pre-
dicted protein distributions under different inducer (IPTG) concentrations for different combina-
tions of repressor-DNA affinities (columns) and repressor copy numbers (rows). The first six mo-
ments of the protein distribution used to constrain the maximum entropy approximation were
computed by integrating as cells progressed through the cell cycle. (B) Theory-experiment com-
parison of predicted fold-change empirical cumulative distribution functions (ECDF). Each panel
shows two example concentrations of inducer (colored curves) with their corresponding theoret-
ical predictions (dashed lines). Distributions were normalized to the mean expression value of
the unregulated strain to compare theoretical predictions in discrete protein counts with experi-
mental fluorescent measurements in arbitrary units. The Python code used to generate part (A)
(ch3_fig04A.py) and part (B) (ch3_fig04B.py) of this figure can be found on the original paper’s
GitHub repository.

Theoretical Prediction of the Channel Capacity

We now turn our focus to the channel capacity, a metric by which we can quantify

the degree to which cells can measure the environmental state (in this context, the

inducer concentration). The channel capacity is defined as the mutual information

I between input and output (Eq. 3.1), maximized over all possible input (IPTG)

distributions P(c). If used as a metric of how reliably a signaling system can in-

fer the state of the external signal, the channel capacity, when measured in bits, is

commonly interpreted as the logarithm of the number of states that the signaling

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/fig04A.py
https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/fig04B.py
https://github.com/RPGroup-PBoC/chann_cap
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system can adequately resolve. For example, a signaling system with a channel

capacity of C bits is interpreted as resolving 2C states, though channel capacities

with fractional values are allowed. We, therefore, prefer the Bayesian interpreta-

tion that the mutual information quantifies the improvement in the inference of the

input when considering the output compared to just using the prior distribution

of the input by itself for prediction [23,122]. Under this interpretation, a fractional

bit channel capacity still quantifies an improvement in the ability of the signaling

system to infer the value of the extracellular signal compared to having no sensing

system at all.

Computing the channel capacity implies optimizing over an infinite space of pos-

sible distributions P(c). For special cases in which the noise is small compared to

the dynamic range, approximate analytical equations have been derived [108]. But

given the high cell-to-cell variability that our model predicts, the so-called small

noise approximation conditions are not satisfied. We, therefore, appeal to a numer-

ical solution known as the Blahut-Arimoto algorithm [123] (see Sec. 5.7 for further

details). Fig. 3.5(A) shows zero-parameter fit predictions of the channel capacity

as a function of the number of repressors for different repressor-DNA affinities

(solid lines). These predictions are contrasted with experimental determinations

of the channel capacity as inferred from single-cell fluorescence intensity distribu-

tions taken over 12 different inducer concentrations. Briefly, we can approximate

the input-output distribution P(p | c) from single-cell fluorescence measurements.

Once these conditional distributions are fixed, the task of finding the input dis-

tribution at channel capacity becomes a computational optimization routine that

can be undertaken using conjugate gradient or similar algorithms. For the par-

ticular case of the channel capacity on a system with a discrete number of inputs

and outputs, the Blahut-Arimoto algorithm is built to guarantee the convergence

towards the optimal input distribution (see Sec. 5.7 for further details). Fig. 3.5(B)

shows example input-output functions for different values of the channel capacity.

This illustrates that having access to no information (zero channel capacity) is a
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consequence of having overlapping input-output functions (lower panel). On the

other hand, the more separated the input-output distributions are (upper panel)

the higher the channel capacity can be.

All theoretical predictions in Fig. 3.5(A) are systematically above the experimental

data. Although our theoretical predictions in Fig. 3.5(A) do not numerically match

the experimental inference of the channel capacity, the model captures interest-

ing qualitative features of the data worth highlighting. On one extreme, there is

no information processing potential for cells with no transcription factors as this

simple genetic circuit would be constitutively expressed regardless of the environ-

mental state. As cells increase the transcription factor copy number, the channel

capacity increases until it reaches a maximum before falling back down at a high

repressor copy number since the promoter would be permanently repressed. The

steepness of the increment in channel capacity and the height of the maximum ex-

pression are highly dependent on the repressor-DNA affinity. For strong binding

sites (blue curve in Fig. 3.5(A)), there is a rapid increment in the channel capac-

ity, but the maximum value reached is smaller compared to a weaker binding site

(orange curve in Fig. 3.5(A)). In Sec 5.8, we show using the small noise approxima-

tion [101,108] that if the systematic deviation of our predictions on the cell-to-cell

variability was explained with a multiplicative constant, i.e., all noise predictions

could be corrected by multiplying them by a single constant, we would expect the

channel capacity to be off by a constant additive factor. This factor of ≈ 0.43 bits

can recover the agreement between the model and the experimental data.
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(A) (B)

Figure 3.5: Comparison of theoretical and experimental channel capacity. (A) Channel capac-
ity as inferred using the Blahut-Arimoto algorithm [123] for varying number of repressors and
repressor-DNA affinities. All inferences were performed using 12 IPTG concentrations as detailed
in the Methods. Curves represent zero-parameter fit predictions made with the maximum entropy
distributions as shown in Fig. 3.4. Points represent inferences made from single-cell fluorescence
distributions (see Sec. 5.7 for further details). Theoretical curves were smoothed using a Gaussian
kernel to remove numerical precision errors. (B) Example input-output functions in opposite limits
of channel capacity. The lower panel illustrates that zero channel capacity indicates that all distri-
butions overlap. The upper panel illustrates that as the channel capacity increases, the separation
between distributions increases as well. Arrows point to the corresponding channel capacity com-
puted from the predicted distributions. The Python code used to generate part (A) (ch3_fig05A.py)
and part (B) (ch3_fig04B.py) of this figure can be found on the original paper’s GitHub repository.

3.4 Discussion

Building on Shannon’s formulation of information theory, there have been sig-

nificant efforts using this theoretical framework to understand the information

processing capabilities of biological systems, and the evolutionary consequences

for organisms harboring signal transduction systems [6,96,101,124–126]. Recently,

with the mechanistic dissection of molecular signaling pathways, significant progress

has been made on the question of the physical limits of cellular detection and the

role that features such as feedback loops play in this task [23,99,107,127,128]. But

the field still lacks a rigorous experimental test of these ideas with precision mea-

surements on a system that is tractable both experimentally and theoretically.

In this chapter, we take advantage of the recent progress on the quantitative mod-

eling of input-output functions of genetic circuits to build a minimal model of the

simple repression motif [16]. By combining a series of studies on this circuit span-

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/fig05A.py
https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/fig05B.py
https://github.com/RPGroup-PBoC/chann_cap
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ning diverse experimental methods for measuring gene expression under a myriad

of different conditions, for the first time, we possess complete a priori parametric

knowledge—allowing us to generate parameter-free predictions for processes re-

lated to information processing. Some of the model parameters for our kinetic

formulation of the input-output function are informed by inferences made from

equilibrium models. We use the fact that if both kinetic and thermodynamic lan-

guages describe the same system, the predictions must be self-consistent. In other

words, if the equilibrium model can only make statements about the mean mRNA

and mean protein copy number because of the way these models are constructed,

those predictions must be equivalent to what the kinetic model has to say about

these same quantities. This condition, therefore, constrains the values that the ki-

netic rates in the model can take. To test whether or not the equilibrium picture can

reproduce the predictions made by the kinetic model, we compare the experimen-

tal and theoretical fold-change in protein copy number for a suite of biophysical

parameters and environmental conditions (Fig. 3.3(C) upper row). The agreement

between theory and experiment demonstrates that these two frameworks can in-

deed make consistent predictions.

The kinetic treatment of the system brings with it increasing predictive power com-

pared to the equilibrium picture. Under the kinetic formulation, the predictions

are not limited only to the mean but any of the moments of the mRNA and pro-

tein distributions. Furthermore, our formulation in terms of dynamical equations

allows us to account for the time-varying nature of the moments of the mRNA and

protein copy numbers. Specifically, since the protein mean lifetime is compara-

ble with the cell cycle length, the protein copy number does not reach a steady-

state over the cell cycle duration. Accounting for this effect increases the expected

cell-to-cell variability when measuring non-synchronized cells. We first test these

novel predictions by comparing the noise in protein copy number (standard de-

viation/mean) with experimental data. Our minimal model predicts the noise up

to a systematic deviation. The physical or biological origins of this discrepancy

remain an open question. In that way, the work presented here exposes the status
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quo of our understanding of gene regulation in bacteria, posing new questions to

be answered with future model refinements. We then extend our analysis to in-

fer entire protein distributions at different input signal concentrations using the

maximum entropy principle. This means that we compute moments of the pro-

tein distribution and then use these moments to build an approximation to the full

distribution. These predicted distributions are then compared with experimental

single-cell distributions, as shown in Fig. 3.4(B) and Sec. 5.5. Again, although our

minimal model systematically underestimates the width of the distributions, it in-

forms how changes in parameters such as protein copy number or protein-DNA

binding affinity will affect the full probabilistic input-output function of the ge-

netic circuit to a multiplicative constant. We then use our model to predict the

information processing capacity.

By maximizing the mutual information between input signal concentration and

output protein distribution over all possible input distributions, we predict the

channel capacity of the system over a suite of biophysical parameters such as vary-

ing repressor protein copy number and repressor-DNA binding affinity. Although

there is no reason to assume the simplified synthetic circuit we used as an exper-

imental model operates optimally given the distribution of inputs, the relevance

of the channel capacity comes from its interpretation as a metric of the physical

limit of how precise of an inference cells can make about what the state of the

environment is. Our model, despite the systematic deviations, makes non-trivial

predictions such as the existence of an optimal repressor copy number for a given

repressor-DNA binding energy, predicting the channel capacity up to an additive

constant (see Fig. 3.5). The origin of this optimal combination of repressor copy

number and binding energy differs from previous publications in which an ex-

tra term associated with the cost of producing protein was included in the model

[107]. This optimal parameter combination is a direct consequence of the fact that

the LacI repressor cannot be fully deactivated [113]. This implies that as the num-

ber of repressors increases, a significant number of them are still able to bind to

the promoter even at saturating concentrations of inducer. This causes all of the
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input-output functions to be shifted towards low expression levels, regardless of

the inducer concentration, decreasing the amount of information that the circuit

can process. Interestingly, the number of bits predicted and measured in our sys-

tem is similar to that of the gap genes in the Drosophila embryo [102]. Although

this is a suggestive numerical correspondence that sets current experimental data

on the information processing capacity of genetic circuits between 1 and 2 bits,

more work is required to fully understand the effect that different regulatory ar-

chitectures have on the ability to resolve different signals.

We consider it important to highlight the limitations of the work presented here.

The previously discussed systematic deviation for the noise and skewness of the

predicted distributions (see Sec. 5.8), and therefore of the predicted distributions

and channel capacity, remains an unresolved question. Our current best hypoth-

esis for the origin of this unaccounted noise pertains to cell-to-cell variability in

the central dogma machinery. More specifically, our model does not account for

changes in RNAP and sigma factor copy numbers, changes in ribosome numbers,

and even the variability in the repressor copy number. This possibility deserves to

be addressed in further iterations of our minimal model. Also, as first reported in

[113], our model fails to capture the steepness of the fold-change induction curve

for the weakest repressor binding site (see Fig. 3.3(B)). Furthermore, the minimal

model in (A), despite being widely used, is an oversimplification of the physical

picture of how the transcriptional machinery works. The coarse-graining of all

the kinetic steps involved in transcription initiation into two effective promoter

states—active and inactive—ignores potential kinetic regulatory mechanisms of

intermediate states [129]. Moreover, it has been argued that even though the

mRNA count distribution does not follow a Poisson distribution, this effect could

be caused by unknown factors, not at the level of transcriptional regulation [130].

The findings of this work open the opportunity to accurately test intriguing ideas

that connect Shannon’s metric of how accurately a signaling system can infer the

state of the environment with Darwinian fitness [6]. Beautiful work along these
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lines has been done in the context of the developmental program of the early

Drosophila embryo [101,103]. These studies demonstrated that the input-output

function of the pair-rule genes works at channel capacity, suggesting that selec-

tion has acted on these signaling pathways, pushing them to operate at the limit

of what the physics of these systems allow. Our system differs from the early

embryo because we have a tunable circuit with variable amounts of information

processing capabilities. Furthermore, compared with the fly embryo in which the

organism tunes both the input and output distributions over evolutionary time, we

have experimental control of the distribution of inputs that the cells are exposed to.

Consequently, this means that instead of seeing the final result of the evolutionary

process, we would be able to set different environmental challenges and track over

time the evolution of the population. These experiments could shed light on the

suggestive hypothesis of information bits as a trait on which natural selection acts.

We see this exciting direction as part of the overall effort in quantitative biology of

predicting evolution [131].

3.5 Materials and Methods

E. coli Strains

All strains used in this study were originally made for [113]. We chose a subset

of three repressor copy numbers that span two orders of magnitude. We refer the

reader to [113] for details on the construction of these strains. Briefly, the strains

have a construct consisting of the lacUV5 promoter and one of three possible bind-

ing sites for the lac repressor (O1, O2, and O3) controlling the expression of a YFP

reporter gene. This construct is integrated into the genome at the galK locus. The

number of repressors per cell is varied by changing the ribosomal binding site

controlling the translation of the lac repressor gene. The repressor constructs were

integrated in the ybcN locus. Finally, all strains used in this work constitutively ex-

press an mCherry reporter from a low copy number plasmid. This serves as a vol-

ume marker that facilitates the segmentation of cells when processing microscopy

images.
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Growth Conditions

For all experiments, cultures were initiated from a 50% glycerol frozen stock at

−80◦C. Three strains—autofluorescence (auto), ∆lacI (∆), and a strain with a known

binding site and repressor copy number (R)—were inoculated into individual tubes

with 2 mL of Lysogeny Broth (LB Miller Powder, BD Medical) with 20 µg/mL

of chloramphenicol and 30 µg/mL of kanamycin. These cultures were grown

overnight at 37◦C with rapid agitation to reach saturation. The saturated cultures

were diluted 1:1000 into 500 µL of M9 minimal media (M9 5X Salts, Sigma-Aldrich

M6030; 2 mM magnesium sulfate, Mallinckrodt Chemicals 6066-04; 100 mM cal-

cium chloride, Fisher Chemicals C79-500) supplemented with 0.5% (w/v) glucose

on a 2 mL 96-deep-well plate. The R strain was diluted into 12 different wells with

minimal media, each with a different IPTG concentration (0 µM, 0.1 µM, 5 µM, 10

µM, 25 µM, 50 µM, 75 µM, 100 µM, 250 µM, 500 µM, 1000 µM, 5000 µM) while the

auto and ∆ strains were diluted into two wells (0 µM, 5000 µM). Each of the IPTG

concentrations came from a single preparation stock kept in 100-fold concentrated

aliquots. The 96-well plate was then incubated at 37◦C with rapid agitation for 8

hours before imaging.

Microscopy Imaging Procedure

The microscopy pipeline used for this work exactly followed the steps from [113].

Briefly, twelve 2% agarose (Life Technologies UltraPure Agarose, Cat.No. 16500100)

gels were made out of M9 media (or PBS buffer) with the corresponding IPTG con-

centration (see growth conditions), and placed between two glass coverslips for

them to solidify after microwaving. After the 8 hour incubation in minimal media,

1 µL of a 1:10 dilution of the cultures into fresh media or PBS buffer was placed

into small squares (roughly 10 mm × 10 mm) of the different agarose gels. A total

of 16 agarose squares—12 concentrations of IPTG for the R strain, 2 concentrations

for the ∆ and 2 for the auto strain—were mounted into a single glass-bottom dish

(Ted Pella Wilco Dish, Cat. No. 14027-20) that was sealed with parafilm.
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All imaging was done on an inverted fluorescent microscope (Nikon Ti-Eclipse)

with a custom-built laser illumination system. The YFP fluorescence (quantitative

reporter) was imaged with a CrystaLaser 514 nm excitation laser coupled with a

laser-optimized (Semrock Cat. No. LF514-C-000) emission filter. All strains, in-

cluding the auto strain, included a constitutively expressed mCherry protein to

aid the segmentation. Therefore, for each image, three channels (YFP, mCherry,

and bright field) on average 30 images with roughly 20 cells per condition were

taken. Twenty-five images of a fluorescent slide and 25 images of the camera back-

ground noise were taken every imaging session to flatten the illumination. The

image processing pipeline for this work is the same as in [113].

Data and Code Availability

All data and custom scripts were collected and stored using Git version control.

Code for raw data processing, theoretical analysis, and figure generation is avail-

able on the GitHub repository (https://github.com/RPGroup-PBoC/chann_cap).

The code can also be accessed via the paper website (https://www.rpgroup.caltech.

edu/chann_cap/). Raw microscopy data are stored on the CaltechDATA data repos-

itory and can be accessed via DOI https://doi.org/10.22002/d1.1184. Bootstrap

estimates of experimental channel capacity are also available on the CaltechDATA

data repository via https://doi.org/10.22002/D1.1185.

https://github.com/RPGroup-PBoC/chann_cap
https://www.rpgroup.caltech.edu/chann_cap/
https://www.rpgroup.caltech.edu/chann_cap/
https://doi.org/10.22002/d1.1184
https://doi.org/10.22002/D1.1185
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C h a p t e r 4

SUPPORTING INFORMATION FOR TUNING
TRANSCRIPTIONAL REGULATION THROUGH SIGNALING: A

PREDICTIVE THEORY OF ALLOSTERIC INDUCTION

A version of this chapter originally appeared as Razo-Mejia, M.†, Barnes, S.L.†,

Belliveau, N.M.†, Chure, G.†, Einav, T.†, Lewis, M., and Phillips, R. (2018). Tuning

transcriptional regulation through signaling: A predictive theory of allosteric in-

duction. Cell Systems 6, 456-469.e10. DOI:https://doi.org/10.1016/j.cels.2018.02.004.

4.1 Abstract

Allosteric regulation is found across all domains of life, yet we still lack simple,

predictive theories that directly link the experimentally tunable parameters of a

system to its input-output response. To that end, we present a general theory of al-

losteric transcriptional regulation using the Monod-Wyman-Changeux model. We

rigorously test this model using the ubiquitous simple repression motif in bacteria

by first predicting the behavior of strains that span a large range of repressor copy

numbers and DNA binding strengths, and then constructing and measuring their

response. Our model not only accurately captures the induction profiles of these

strains, but also enables us to derive analytic expressions for key properties such as

the dynamic range and [EC50]. Finally, we derive an expression for the free energy

of allosteric repressors which enables us to collapse our experimental data onto

a single master curve that captures the diverse phenomenology of the induction

profiles.
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4.2 Inferring Allosteric Parameters from Previous Data

The fold-change profile described by Eq. 2.5 features three unknown parameters

KA, KI , and ∆εAI . In this section, we explore different conceptual approaches to

determining these parameters. We first discuss how the induction titration profile

of the simple repression constructs used in this paper are not sufficient to deter-

mine all three MWC parameters simultaneously, since multiple degenerate sets of

parameters can produce the same fold-change response. We then utilize an addi-

tional data set from [39] to determine the parameter ∆εAI = 4.5 kBT, after which

the remaining parameters KA and KI can be extracted from any induction profile

with no further degeneracy.

Degenerate Parameter Values

In this section, we discuss how multiple sets of parameters may yield identical

fold-change profiles. More precisely, we shall show that if we try to fit the data into

the fold-change and extract the three unknown parameters (KA, KI , and ∆εAI), then

multiple degenerate parameter sets would yield equally good fits. In other words,

this data set alone is insufficient to determine the actual physical parameter values

of the system uniquely. This problem persists even when fitting multiple data sets

simultaneously, as we will see later.

In Fig. 4.1(A), we fit the R = 260 data by fixing ∆εAI to the value shown on the

x-axis and determine the parameters KA and KI given this constraint. We use the

fold-change function, but with β∆εRA modified to the form β∆ε̃RA in Eq. 2.5 to ac-

count for the underlying assumptions used when fitting previous data (see Section

3.2 for a full explanation of why this modification is needed).



116

Figure 4.1: Multiple sets of parameters yield identical fold-change responses. (A) The data for
the O2 strain (∆εRA = −13.9 kBT) with R = 260 in Fig. 2.4(D) was fit using Eq. 4.5 with n = 2. ∆εAI
is forced to take on the value shown on the x-axis, while the KA and KI parameters are fit freely.
(B) The resulting best-fit functions for several value of ∆εAI all yield nearly identical fold-change
responses.

The best-fit curves for several different values of ∆εAI are shown in Fig. 4.1(B).

Note that these fold-change curves are nearly overlapping, demonstrating that

different sets of parameters can yield nearly equivalent responses. Without more

data, the relationships between the parameter values shown in Fig. 4.1(A) repre-

sent the maximum information about the parameter values that can be extracted

from the data. Additional experiments which independently measure any of these

unknown parameters could resolve this degeneracy. For example, NMR measure-

ments could be used to directly measure the fraction (1 + e−β∆εAI )−1 of active re-

pressors in the absence of IPTG [132,133].

Computing ∆εAI

As shown in the previous section, the fold-change response of a single strain is

not sufficient to determine the three MWC parameters (KA, KI , and ∆εAI), since

degenerate sets of parameters yield nearly identical fold-change responses. To cir-

cumvent this degeneracy, we now turn to some previous data from the lac system

to determine the value of ∆εAI in Eq. 2.5 for the induction of the Lac repressor.

Specifically, we consider two previous sets of work from (1) [20] and (2) [39], both

of which measured fold-change with the same simple repression system in the ab-

sence of inducer (c = 0) but at various repressor copy numbers R. The original
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analysis for both data sets assumed that in the absence of inducer, all of the Lac

repressors were in the active state. As a result, the effective binding energies they

extracted were a convolution of the DNA binding energy ∆εRA and the allosteric

energy difference ∆εAI between the Lac repressor’s active and inactive states. We

refer to this convoluted energy value as ∆ε̃RA. We first disentangle the relationship

between these parameters in Garcia and Phillips, and then use this relationship to

extract the value of ∆εAI from the Brewster et al. dataset.

Garcia and Phillips determined the total repressor copy numbers R of different

strains using quantitative Western blots. Then they measured the fold-change at

these repressor copy numbers for simple repression constructs carrying the O1,

O2, O3, and Oid lac operators integrated into the chromosome. These data were

then fit to the following thermodynamic model to determine the repressor-DNA

binding energies ∆ε̃RA for each operator,

fold-change(c = 0) =
(

1 +
R

NNS
e−β∆ε̃RA

)−1

. (4.1)

Note that this functional form does not exactly match our fold-change in the limit

c = 0,

fold-change(c = 0) =
(

1 +
1

1 + e−β∆εAI

R
NNS

e−β∆εRA

)−1

, (4.2)

since it is missing the factor 1
1+e−β∆εAI

which specifies what fraction of repressors

are in the active state in the absence of inducer,

1
1 + e−β∆εAI

= pA(0). (4.3)

In other words, Garcia and Phillips assumed that in the absence of inducer, all

repressors were active. In terms of our notation, the convoluted energy values

∆ε̃RA extracted by Garcia and Phillips (namely, ∆ε̃RA = −15.3 kBT for O1 and

∆ε̃RA = −17.0 kBT for Oid) represent

β∆ε̃RA = β∆εRA − log
(

1
1 + e−β∆εAI

)
. (4.4)
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Note that if e−β∆εAI � 1, then nearly all of the repressors are active in the absence

of inducer so that ∆ε̃RA ≈ ∆εRA. In simple repression systems where we defini-

tively know the value of ∆εRA and R, we can use Eq. 4.2 to determine the value

of ∆εAI by comparing with experimentally determined fold-change values. How-

ever, the binding energy values that we use from [20] are effective parameters

∆ε̃RA. In this case, we are faced with an undetermined system in which we have

more variables than equations, and we are thus unable to determine the value of

∆εAI . To obtain this parameter, we must turn to a more complex regulatory sce-

nario which provides additional constraints that allow us to fit for ∆εAI .

A variation on simple repression in which multiple copies of the promoter are

available for repressor binding (for instance, when the simple repression construct

is on a plasmid) can be used to circumvent the problems that arise when using

∆ε̃RA. This is because the behavior of the system is distinctly different when the

number of active repressors pA(0)R is less than or greater than the number of

available promoters N. Repression data for plasmids with known copy number

N allows us to perform a fit for the value of ∆εAI .

To obtain an expression for a system with multiple promoters N, we follow [40],

writing the fold-change in terms of the grand canonical ensemble as

fold-change =
1

1 + λre−β∆εRA
, (4.5)

where λr = eβµ is the fugacity, and µ is the chemical potential of the repressor. The

fugacity will enable us to enumerate the possible states available to the repressor

easily.

To determine the value of λr, we first consider that the total number of repressors

in the system, Rtot, is fixed and given by

Rtot = RS + RNS, (4.6)

where RS represents the number of repressors specifically bound to the promoter

and RNS represents the number of repressors non-specifically bound throughout
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the genome. The value of RS is given by

RS = N
λre−β∆εRA

1 + λre−β∆εRA
, (4.7)

where N is the number of available promoters in the cell. Note that in counting

N, we do not distinguish between promoters that are on plasmid or chromosoma-

lly integrated provided that they both have the same repressor-operator binding

energy [40]. The value of RNS is similarly give by

RNS = NNS
λr

1 + λr
, (4.8)

where NNS is the number of non-specific sites in the cell (recall that we use NNS =

4.6× 106 for E. coli).

Substituting Eq. 4.7 and 4.8 in Eq. 4.6 into the modified RA yields the form

pA(0)Rtot =
1

1 + e−β∆εAI

(
N

λre−β∆εRA

1 + λre−β∆εRA
+ NNS

λr

1 + λr

)
, (4.9)

where we recall from Eq. 4.4 that β∆εRA = β∆ε̃RA + log
(

1
1+e−β∆εAI

)
. Numerically

solving for λr and plugging the value back into Eq. 4.5 yields a fold-change func-

tion in which the only unknown parameter is ∆εAI .

With these calculations in hand, we can now determine the value of the ∆εAI pa-

rameter. Fig. 4.5(A) shows how different values of ∆εAI lead to significantly dif-

ferent fold-change response curves. Thus, analyzing the specific fold-change re-

sponse of any strain with a known plasmid copy number N will fix ∆εAI . Interest-

ingly, the inflection point of Eq. 4.9 occurs near pA(0)Rtot = N (as shown by the

triangles in Fig. 4.5(A)), so that merely knowing where the fold-change response

transitions from concave down to concave up is sufficient to obtain a rough value

for ∆εAI . We note, however, that for ∆εAI ≥ 5 kBT, increasing ∆εAI further does

not affect the fold-change because essentially every repressors will be in the active

state in this regime. Thus, if the ∆εAI is in this regime, we can only bound it from

below.
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Figure 4.2: Fold-change of multiple identical genes. (A) In the presence of N = 10 identical pro-
moters, the fold-change Eq. 4.6 depends strongly on the allosteric energy difference ∆εAI between
the Lac repressor’s active and inactive states. The vertical dotted lines represent the number of
repressors at which RA = N for each value of ∆εAI . (B) Using fold-change measurements from
[39] for the operators and gene copy numbers shown, we can determine the most likely value
∆εAI = 4.5 kBT for LacI.

We now analyze experimental induction data for different strains with known

plasmid copy numbers to determine ∆εAI . Fig. 4.5(B) shows experimental mea-

surements of fold-change for two O1 promoters with N = 64 and N = 52 copy

numbers and one Oid promoter with N = 10 from [39]. By fitting these data to

Eq. 4.5, we extracted the parameter value ∆εAI = 4.5 kBT. Substituting this value

into Eq. 4.3 shows that 99% of the repressors are in the active state in the absence

of inducer and ∆ε̃RA ≈ ∆εRA so that all of the previous energies and calculations

made by [20,39] were accurate.
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4.3 Induction of Simple Repression with Multiple Promoters or Competitor

Sites

We made the choice to perform all of our experiments using strains in which a

single copy of our simple repression construct had been integrated into the chro-

mosome. This stands in contrast to the methods used by a number of other studies

[34,36,52,57,59,62,65,134], in which reporter constructs are placed on a plasmid,

meaning that the number of constructs in the cell is not precisely known. It is also

common to express repressor on plasmid to boost its copy number, which results in

an uncertain value for repressor copy number. Here we show that our treatment of

the MWC model has broad predictive power beyond the single-promoter scenario

we explore experimentally. Indeed, we can account for systems in which multiple

promoters compete for the repressor of interest. Additionally, we demonstrate the

importance of precise control over these parameters, as they can significantly affect

the induction profile.

Chemical Potential Formulation to Calculate Fold-Change

This section discusses a simple repression construct that we generalize in two ways

from the scenario discussed in the text. First, we will allow the repressor to bind

to NS identical specific promoters whose fold-change we are interested in measur-

ing. Each promoter contains a single repressor binding site (NS = 1 in Chapter

2). Second, we consider NC identical competitor sites which do not regulate the

promoter of interest, but whose binding energies are substantially stronger than

non-specific binding (NC = 0 in Chapter 2). As in Chapter 2, we assume that the

rest of the genome contains NNS non-specific binding sites for the repressor. We

can write the fold-change in the grand canonical ensemble as

fold-change =
1

1 + λre−β∆εRA
, (4.10)

where λr is the fugacity of the repressor and ∆εRA represents the energy difference

between the repressor’s binding affinity to the specific operator of interest relative

to the repressor’s non-specific binding affinity to the rest of the genome.
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We now expand our definition of the total number of repressors in the system, Rtot,

so that it is given by

Rtot = RS + RNS + RC, (4.11)

where RS, RNS, and RC represent the number of repressors bound to the specific

promoter, a non-specific binding site, or a competitor binding site, respectively.

The value of RS is given by

RS = NS
λre−β∆εRA

1 + λre−β∆εRA
, (4.12)

where NS is the number of specific binding sites in the cell. The value of RNS is

similarly given by

RNS = NNS
λr

1 + λr
, (4.13)

where NNS is the number of non-specific sites in the cell (recall that we use NNS =

4.6× 106 for E. coli), and RC is given by

RC = NC
λre−β∆εC

1 + λre−β∆εC
, (4.14)

where NC is the number of competitor sites in the cell and ∆εC is the binding en-

ergy of the repressor to the competitor site relative to its non-specific binding en-

ergy to the rest of the genome.

To account for the induction of the repressor, we replace the total number of re-

pressors Rtot in Eq. 4.11 by the number of active repressors in the cell, pA(c)Rtot.

Here, pA denotes the probability that the repressor is in the active state (Eq. 4.13),

pA(c) =

(
1 + c

KA

)n

(
1 + c

KA

)n
+ e−β∆εAI

(
1 + c

KI

)n . (4.15)

Substituting Eq. 4.15 in Eqs. 4.12-4.14 into the modified Eq. 4.11 yields the form

pA(c)Rtot = NS
λre−β∆εRA

1 + λre−β∆εRA
+ NNS

λr

1 + λr
+ NC

λre−β∆εC

1 + λre−β∆εC
. (4.16)
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For systems where the number of binding sites NS, NNS, and NC are known, to-

gether with the binding affinities ∆εRA and ∆εC, we can solve numerically for λr,

and then substitute it into 4.10 to obtain a fold-change at any concentration of

inducer c. In the following sections, we will theoretically explore the induction

curves given by Eq. 4.16 for a number of different combinations of simple repres-

sion binding sites, thereby predicting how the system would behave if additional

specific or competitor binding sites were introduced.

Variable Repressor Copy Number (R) with Multiple Specific Binding Sites (NS > 1)

In Chapter 2, we consider the induction profiles of strains with varying R but a

single, specific binding site NS = 1 (see Fig. 2.5). Here we predict the induction

profiles for similar strains in which R is varied, but NS > 1, as shown in Fig. 4.3.

The top row shows induction profiles in which NS = 10 and the bottom row shows

profiles in which NS = 100, assuming three different choices for the specific oper-

ator binding sites given by the O1, O2, and O3 operators. These values of NS were

chosen to mimic the common scenario in which a promoter construct is placed

on either a low or high copy number plasmid. A few features stand out in these

profiles. First, as the magnitude of NS surpasses the number of repressors R, the

leakiness begins to increase significantly since there are no longer enough repres-

sors to regulate all copies of the promoter of interest. Second, in the cases where

∆εRA = −15.3 kBT for the O1 operator or ∆εRA = −13.9 kBT for the O2 operator,

the profiles where NS = 100 are notably sharper than the profiles where NS = 10,

and it is possible to achieve dynamic ranges approaching 1. Finally, it is interest-

ing to note that the profiles for the O3 operator where ∆εRA = −9.7 kBT are nearly

indifferent to the value of NS.
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Figure 4.3: Induction with variable R and multiple specific binding sites. Induction profiles are
shown for strains with variable R and ∆εRA = −15.3, −13.9, or −9.7 kBT. The number of specific
sites, NS, is held constant at ten as R and ∆εRA are varied. NS is held constant at 100 as R and ∆εRA
are varied. These situations mimic the common scenario in which a promoter construct is placed
on either a low or high copy number plasmid.

Variable Number of Specific Binding Sites NS with Fixed Repressor Copy Num-

ber (R)

The second set of scenarios we consider is when the repressor copy number R =

260 is held constant while the number of specific promoters NS is varied (see

Fig. 4.4). Again we see that leakiness is increased significantly when NS > R,

though all profiles for ∆εRA = −9.7 kBT exhibit high leakiness, making the effect

less dramatic for this operator. Additionally, we find again that adjusting the num-

ber of specific sites can produce induction profiles with maximal dynamic ranges.

In particular, the O1 and O2 profiles with ∆εRA = −15.3 and −13.9 kBT, respec-

tively, have dynamic ranges approaching 1 for NS = 50 and 100.
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Figure 4.4: Induction with variable specific sites and fixed R. Induction profiles are shown for
strains with R = 260 and ∆εRA = −15.3 kBT, ∆εRA = −13.9 kBT, or ∆εRA = −9.7 kBT. The
number of specific sites NS is varied from 1 to 500.

Competitor Binding Sites

An intriguing scenario is presented by the possibility of competitor sites elsewhere

in the genome. This serves as a model for situations in which a promoter of inter-

est is regulated by a transcription factor that has multiple targets. This is highly

relevant, as the majority of transcription factors in E. coli have at least two known

binding sites, with approximately 50 transcription factors having more than ten

known binding sites [114,135]. If the number of competitor sites and their average

binding energy is known, they can be accounted for in the model. Here, we pre-

dict the induction profiles for strains in which R = 260 and NS = 1, but a variable

number of competitor sites NC with strong binding energy ∆εC = −17.0 kBT. In

the presence of such a strong competitor, when NC > R, the leakiness is greatly

increased, as many repressors are siphoned into the pool of competitor sites. This

is most dramatic for the case where ∆εRA = −9.7 kBT, in which it appears that no

repression occurs at all when NC = 500. Interestingly, when NC < R, the effects of

the competitor are not especially notable.

Properties of the Induction Response

As discussed in the main body of the paper, our treatment of the MWC model

allows us to predict key properties of induction responses. Here, we consider the
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Figure 4.5: Induction with variable competitor sites, a single specific site, and fixed R. Induction
profiles are shown for strains with R = 260, Ns = 1, and ∆εRA = −15.3 kBT for the O1 operator,
∆εRA = −13.9 kBT for the O2 operator, or ∆εRA = −9.7 kBT for the O3 operator. The number of
specific sites, NC, is varied from 1 to 500. This mimics the common scenario in which a transcription
factor has multiple binding sites in the genome.

leakiness, saturation, and dynamic range (see Fig. 2.1) by numerically solving Eq.

4.16 in the absence of inducer, c = 0, and in the presence of saturating inducer

c→ ∞. Using Eq. 4.15, the former case is given by

Rtot
1

1 + e−β∆εAI
= NS

λre−β∆εRA

1 + λre−β∆εRA
+ NNS

λr

1 + λr
+ NC

λre−β∆εC

1 + λre−β∆εC
, (4.17)

whereupon substituting in the value of λr into Eq. 4.10 will yield the leakiness.

Similarly, the limit of saturating inducer is found by determining λr from the form

Rtot
1

1 + e−β∆εAI

(
KA
KI

)2 = NS
λre−β∆εRA

1 + λre−β∆εRA
+ NNS

λr

1 + λr
+ NC

λre−β∆εC

1 + λre−β∆εC
.

(4.18)
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Figure 4.6: Phenotypic properties of induction with multiple specific binding sites. The leakiness
(A, D), saturation (B, E), and dynamic range (C, F) are shown for systems with a number of specific
binding sites NS = 10 or NS = 100 . The dashed vertical line indicates the point at which NS = R.

In Fig. 4.6, we show how the leakiness, saturation, and dynamic range vary with R

and ∆εRA in systems with NS = 10 or NS = 100. An inflection point occurs where

NS = R, with leakiness and dynamic range behaving differently when R < NS

than when R > NS. This transition is more dramatic for NS = 100 than for NS =

10. Interestingly, the saturation values consistently approach 1, indicating that full

induction is easier to achieve when multiple specific sites are present. Moreover,

dynamic range values for O1 and O2 strains with ∆εRA = −15.3 and −13.9 kBT

approach 1 when R > NS, although when NS = 10, there is a slight downward dip

owing to saturation values of less than 1 at high repressor copy numbers.
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Figure 4.7: Phenotypic properties of induction with a single specific site and multiple competitor
sites. The leakiness, saturation, and dynamic range are shown for systems with a single specific
binding site NS = 1 and a number of competitor sites NC = 10 or NC = 100 . All competitor sites
have a binding energy of ∆εC = −17.0 kBT. The dashed vertical line indicates the point at which
NC = R.

In Fig. 4.7, we similarly show how the leakiness, saturation, and dynamic range

vary with R and ∆εRA in systems with NS = 1 and multiple competitor sites NC =

10 or NC = 100. Each of the competitor sites has a binding energy of ∆εC =

−17.0 kBT. The phenotypic profiles are very similar to those for multiple specific

sites shown in Fig. 4.7, with sharper transitions at R = NC due to the greater

binding strength of the competitor site. This indicates that introducing competitors

has much the same effect on the induction phenotypes as introducing additional

specific sites. In either case, the influence of the repressors is dampened when

there are insufficient repressors to interact with all of the specific binding sites.
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This section of the appendix gives a quantitative analysis of the nuances imposed

on induction response in the case of systems involving multiple gene copies as

are found in the vast majority of studies on induction. In these cases, the intrinsic

parameters of the MWC model get entangled with the parameters describing gene

copy number.

4.4 Flow Cytometry

In this section, we provide information regarding the equipment used to make ex-

perimental measurements of the fold-change in gene expression in the interests

of transparency and reproducibility. We also provide a summary of our unsuper-

vised method of gating the flow cytometry measurements for consistency between

experimental runs.

Equipment

Due to past experience using the Miltenyi Biotec MACSQuant flow cytometer dur-

ing the Physiology summer course at the Marine Biological Laboratory, we used

the same flow cytometer for the formal measurements in this work graciously pro-

vided by the Pamela Björkman lab at Caltech. All measurements were made us-

ing an excitation wavelength of 488 nm with an emission filter set of 525/50 nm.

This excitation wavelength provides approximately 40% of the maximum YFP ab-

sorbance [136], which was sufficient for these experiments. A useful feature of

modern flow cytometry is the high-sensitivity signal detection through the use of

photomultiplier tubes (PMT), whose response can be tuned by adjusting the volt-

age. Thus, the voltage for the forward-scatter (FSC), side-scatter (SSC) and gene

expression measurements were tuned manually to maximize the dynamic range

between autofluorescence signal and maximal expression without losing the de-

tails of the population distribution. Once these voltages were determined, they

were used for all subsequent measurements. The extremely low signal-producing
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particles were discarded before data storage by setting a basal voltage threshold,

thus removing the majority of spurious events. The various instrument settings

for data collection are given in Table 4.1.

Table 4.1: Instrument settings for data collection using the Miltenyi Biotec MACSQuant flow

cytometer. All experimental measurements were collected using these values.

Laser Channel Sensor Voltage

488 nm Forward-Scatter (FSC) 423 V

488 nm Side-Scatter (SSC) 537 V

488 nm Intensity (B1 Filter, 525/50nm) 790 V

488 nm Trigger (debris threshold) 24.5 V

Experimental Measurement

Before each day’s experiments, the analyzer was calibrated using MACSQuant

Calibration Beads (Cat. No. 130-093-607) such that day-to-day experiments would

be comparable. A single data set consisted of seven bacterial strains, all sharing the

same operator, with varying repressor copy numbers (R = 0, 22, 60, 124, 260, 1220,

and 1740), in addition to an autofluorescent strain, under twelve IPTG concentra-

tions. Data collection took place over two to three hours. During this time, the

cultures were held at approximately 4◦C by placing the 96-well plate on a MAC-

SQuant ice block. Because the ice block thawed over the course of the experiment,

the samples measured last were approximately at room temperature. This means

that samples may have grown slightly by the end of the experiment. To confirm

that this continued growth did not alter the measured results, a subset of experi-

ments were run in reverse, meaning that the fully induced cultures were measured

first and the uninduced samples last. The plate arrangements and corresponding

fold-change measurements are shown in Fig. 4.8(A) and (B), respectively. The mea-

sured fold-change values in the reverse ordered plate appear to be drawn from
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Figure 4.8: Plate arrangements for flow cytometry. (A) Samples were measured primarily in the
forward arrangement with a subset of samples measured in reverse. The black arrow indicates
the order in which samples were processed by the flow cytometer. (B) The experimentally mea-
sured fold-change values for the two sets of plate arrangements show that samples measured in
the forward arrangement appear to be indistinguishable from those measured in reverse order.

the same distribution as those measured in the forward order, meaning that any

growth that might have occurred during the experiment did not significantly affect

the results. Both the forward and reverse data sets were used in our analysis.

Unsupervised Gating

Flow cytometry data will frequently include a number of spurious events or other

undesirable data points such as cell doublets and debris. The process of restricting

the collected data set to those determined to be “real” is commonly referred to as

gating. These gates are typically drawn manually [93] and restrict the data set

to those points which display a high degree of linear correlation between their

forward-scatter (FSC) and side-scatter (SSC). The development of unbiased and

unsupervised methods of drawing these gates is an active area of research [94,95].
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For this study, we used an automatic unsupervised gating procedure to filter the

flow cytometry data based on the front and side-scattering values returned by the

MACSQuant flow cytometer. We assume that the region with the highest density

of points in these two channels corresponds to single-cell measurements. There-

fore, everything extending outside of this region was discarded to exclude sources

of error such as cell clustering, particulates, or other spurious events.

To define the gated region, we fit a two-dimensional Gaussian function to the log10

forward-scattering (FSC) and the log10 side-scattering (SSC) data. We then kept a

fraction α ∈ [0, 1] of the data by defining an elliptical region given by

(x− µ)T
Σ−1 (x− µ) ≤ χ2

α(p), (4.19)

where x is the 2× 1 vector containing the log(FSC) and log(SSC), µ is the 2× 1

vector representing the mean values of log(FSC) and log(SSC) as obtained from

fitting a two-dimensional Gaussian to the data, and Σ is the 2× 2 covariance matrix

also obtained from the Gaussian fit. χ2
α(p) is the quantile function for probability p

of the chi-squared distribution with two degrees of freedom. Fig. 4.9 shows an ex-

ample of different gating contours that would arise from different values of α in Eq.

4.19. In this work, we chose α = 0.4, which we deemed as a sufficient constraint to

minimize the noise in the data. As explained in Section 4.6, we compared our high

throughput flow cytometry data with single-cell microscopy, confirming that the

automatic gating did not introduce systematic biases to the analysis pipeline. The

specific code where this gating is implemented can be found in GitHub repository.

https://github.com/RPGroup-PBoC/mwc_induction/blob/master/code/analysis/unsupervised_gating.ipynb
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Figure 4.9: Representative unsupervised gating contours. Points indicate individual flow cytom-
etry measurements of forward scatter and side scatter. Colored points indicate arbitrary gating
contours ranging from 100% (α = 1.0) to 5% (α = 0.05). All measurements for this work were made
computing the mean fluorescence from the 40th percentile (α = 0.4), shown as orange points.

Comparison of Flow Cytometry with Other Methods

Previous work from our lab experimentally determined fold-change for similar

simple repression constructs using a variety of different measurement methods

[39,42]. Garcia and Phillips used the same background strains as the ones used

in this work, but gene expression was measured with Miller assays based on col-

orimetric enzymatic reactions with the LacZ protein [20]. Ref. [39] used a LacI

dimer with the tetramerization region replaced with an mCherry tag, where the

fold-change was measured as the ratio of the gene expression rate rather than a

single snapshot of the gene output.
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Figure 4.10: Comparison of experimental methods to determine the fold-change. The fold-change
in gene expression for equivalent simple-repression constructs has been determined using three
independent methods: flow cytometry (this work), colorimetric miller assays [20], and video mi-
croscopy [39]. All three methods give consistent results, although flow cytometry measurements
lose accuracy for fold-change less than 10−2. Note that the repressor-DNA binding energies ∆εra
used for the theoretical predictions were determined in [20].

Fig. 4.10 shows the comparison of these methods along with the flow cytometry

method used in this work. The consistency of these three readouts validates the

quantitative use of flow cytometry and unsupervised gating to determine the fold-

change in gene expression. However, one crucial caveat revealed by this figure

is that the sensitivity of flow cytometer measurements is not sufficient to accu-

rately determine the fold-change for the high repressor copy number strains in O1

without induction. Instead, a method with an extensive dynamic range such as

the Miller assay is needed to resolve the fold-change at such low expression levels

accurately.
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4.5 Single-Cell Microscopy

In this section, we detail the procedures and results from single-cell microscopy

verification of our flow cytometry measurements. Our previous measurements of

fold-change in gene expression have been measured using bulk-scale Miller assays

[20] or through single-cell microscopy [39]. In this work, flow cytometry was an

attractive method due to the ability to screen through many different strains at dif-

ferent concentrations of inducer in a short amount of time. To verify our results

from flow cytometry, we examined two bacterial strains with different repressor-

DNA binding energies (∆εRA) of−13.9 kBT and−15.3 kBT with R = 260 repressors

per cell using fluorescence microscopy and estimated the values of the parameters

KA and KI for direct comparison between the two methods. For a detailed expla-

nation of the Python code implementation of the processing steps described below,

please see this paper’s GitHub repository. An outline of our microscopy workflow

can be seen in Fig. 4.11.

Strains and Growth Conditions

Cells were grown identically to those used for measurement via flow cytometry

(see Methods). Briefly, cells were grown overnight (between 10 and 13 hours) to

saturation in rich media broth (LB) with 100 µg ·mL−1 spectinomycin in a deep-

well 96-well plate at 37◦C. These cultures were then diluted 1000-fold into 500 µL

of M9 minimal medium supplemented with 0.5% glucose and the appropriate con-

centration of the inducer IPTG. Strains were allowed to grow at 37◦C with vigor-

ous aeration for approximately 8 hours. The cultures were diluted 10-fold into M9

glucose minimal medium without IPTG before mounting for microscopy. Each

construct was measured using the same range of inducer concentration values as

was performed in the flow cytometry measurements (between 100 nM and 5 mM

IPTG). Each condition was measured in triplicate in microscopy, whereas approx-

imately ten measurements were made using flow cytometry.

https://rpgroup-pboc.github.io/mwc_induction/code/notebooks/unsupervised_gating.html
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Figure 4.11: Experimental workflow for single-cell microscopy. For comparison with the flow cy-
tometry results, the cells were grown in an identical manner to those described in Chapter 2. Once
cells had reached mid to late exponential growth, the cultures were diluted and placed on agarose
substrates and imaged under 100× magnification. Regions of interest representing cellular mass
were segmented, and average single-cell intensities were computed. The means of the distributions
were used to compute the fold-change in gene expression.

Imaging Procedure

During the last hour of cell growth, an agarose mounting substrate was prepared

to contain the appropriate concentration of the IPTG inducer. This mounting sub-

strate was composed of M9 minimal medium supplemented with 0.5% glucose

and 2% agarose (Life Technologies UltraPure Agarose, Cat. No. 16500100). This

solution was heated in a microwave until molten, followed by the addition of the

IPTG to the appropriate final concentration. This solution was then thoroughly

mixed, and a 500 µL aliquot was sandwiched between two glass coverslips and

was allowed to solidify.



137

Once solid, the agarose substrates were cut into approximately 10 mm × 10 mm

squares. An aliquot of one to two microliters of the diluted cell suspension was

then added to each pad. For each concentration of inducer, a sample of the autoflu-

orescence control, the ∆lacI constitutive expression control, and the experimental

strain were prepared, yielding a total of thirty-six agarose mounts per experiment.

These samples were then mounted onto two glass-bottom dishes (Ted Pella Wilco

Dish, Cat. No. 14027-20) and sealed with parafilm.

All imaging was performed on a Nikon Ti-Eclipse inverted fluorescent microscope

outfitted with a custom-built laser illumination system operated by the open-source

MicroManager control software [137]. The YFP fluorescence was imaged using a

CrystaLaser 514 nm excitation laser coupled with a laser-optimized (Semrock Cat.

No. LF514-C-000) emission filter.

For each sample, between fifteen and twenty positions were imaged, allowing for

the measurement of several hundred cells. At each position, a phase-contrast im-

age, an mCherry image, and a YFP image were collected in that order with expo-

sures on a time scale of ten to twenty milliseconds. Thus, each channel used the

same exposure time across all samples in a given experiment. All images were col-

lected and stored in ome.tiff format. All microscopy images are available on the

CaltechDATA online repository under DOI: 10.22002/D1.229.

Image Processing

Correcting Uneven Illumination

The excitation laser has a two-dimensional gaussian profile. To minimize non-

uniform illumination of a single field of view, the excitation beam was expanded

to illuminate an area larger than that of the camera sensor. While this allowed for

an entire field of view to be illuminated, there was still approximately a 10% differ-

ence in illumination across both dimensions. This non-uniformity was corrected

for in post-processing by capturing twenty images of a homogeneously fluorescent

plastic slide (Autofluorescent Plastic Slides, Chroma Cat. No. 920001) and averag-
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Figure 4.12: Correction for uneven illumination. A representative image of the illumination profile
of the 512 nm excitation beam on a homogeneously fluorescent slide is shown in the left panel. This
is corrected for using Eq. 4.20 and is shown in the right panel.

ing to generate a map of illumination intensity at any pixel IYFP. To correct for shot

noise in the camera (Andor iXon+ 897 EMCCD), twenty images were captured

in the absence of illumination using the exposure time used for the experimental

data. Averaging over these images produced a map of background noise at any

pixel Idark. To perform the correction, each fluorescent image in the experimental

acquisition was renormalized with respect to these average maps as

Iflat =
I − Idark

IYFP − Idark
〈IYFP − Idark〉, (4.20)

where Iflat is the renormalized image and I is the original fluorescence image. An

example of this correction can be seen in Fig. 4.12.

Cell Segmentation
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Each bacterial strain constitutively expressed an mCherry fluorophore from a low

copy-number plasmid. This served as a volume marker of cell mass, allowing

us to segment individual cells through edge detection in fluorescence. We used

the Marr-Hildreth edge detector [138], which identifies edges by taking the sec-

ond derivative of a lightly Gaussian blurred image. Edges are identified as those

regions which cross from highly negative to highly positive values or vice-versa

within a specified neighborhood. Bacterial cells were defined as regions within

an intact and closed identified edge. All segmented objects were then labeled and

passed through a series of filtering steps.

To ensure that primarily single cells were segmented, we imposed area and eccen-

tricity bounds. We assumed that single cells projected into two dimensions are

roughly 2 µm long and 1 µm wide, so that cells are likely to have an area between

0.5 µm2 and 6 µm. To determine the eccentricity bounds, we assumed that a single

cell could be approximated by an ellipse with semi-major (a) and semi-minor (b)

axis lengths of 0.5 µm and 0.25 µm, respectively. The eccentricity of this hypotheti-

cal cell can be computed as

eccentricity =

√
1−

(
b
a

)2

, (4.21)

yielding a value of approximately 0.8. Any objects with an eccentricity below

these values were not considered to be single cells. After imposing both an area

(Fig. 4.13(A)) and eccentricity filter (Fig. 4.13(B)), the remaining objects were con-

sidered cells of interest (Fig. 4.13(C)), and the mean fluorescence intensity of each

cell was extracted.

Calculation of Fold-Change

Cells exhibited background fluorescence even in the absence of an expressed fluo-

rophore. We corrected this autofluorescence contribution to the fold-change cal-

culation by subtracting the mean YFP fluorescence of cells expressing only the

mCherry volume marker from each experimental measurement. The fold-change
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Figure 4.13: Segmentation of single bacterial cells. Objects were selected if they had an eccentric-
ity greater than 0.8 and an area between 0.5 µm2 and 6 µm2. Highlighted in blue are the regions
considered to be representative of single cells. The black lines correspond to the empirical cumula-
tive distribution functions for the parameter of interest. A representative final segmentation mask
is shown in which segmented cells are depicted in cyan over the phase contrast image.

in gene expression was, therefore, calculated as

fold-change =
〈IR>0〉 − 〈Iauto〉
〈IR=0〉 − 〈Iauto〉

, (4.22)

where 〈IR>0〉 is the mean fluorescence intensity of cells expressing LacI repressors,

〈Iauto〉 is the mean intensity of cells expressing only the mCherry volume marker,

and 〈IR=0〉 is the mean fluorescence intensity of cells in the absence of LacI. These

fold-change values were very similar to those obtained through flow cytometry

and were well described using the thermodynamic parameters used in Chapter

2. With these experimentally measured fold-change values, the best-fit parame-

ter values of the model were inferred and compared to those obtained from flow

cytometry.
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Figure 4.14: Comparison of measured fold-change between flow cytometry and single-cell mi-
croscopy. Experimentally measured fold-change values obtained through single-cell microscopy
and flow cytometry are shown as white-filled and solid-colored circles, respectively. Solid and
dashed lines indicate the predicted behavior using the most likely parameter values of KA and KI
inferred from flow cytometry data and microscopy data, respectively. The red and blue plotting el-
ements correspond to the different operators O1 and O2 with binding energies ∆εRA of −13.9 kBT
and −15.3 kBT, respectively [20]. The marginalized posterior distributions for KA and KI are
shown in the top and bottom panels, respectively. The posterior distribution determined using the
microscopy data is wider than that computed using the flow cytometry data due to a smaller fig
collection of data sets (three for microscopy and ten for flow cytometry).

Parameter Estimation and Comparison

To confirm quantitative consistency between flow cytometry and microscopy, the

parameter values of KA and KI were also estimated from three biological replicates

of IPTG titration curves obtained by microscopy for strains with R = 260 and op-

erators O1 and O2. Fig. 4.14(A) shows the data from these measurements (orange

circles) and the ten biological replicates from our flow cytometry measurements

(blue circles), along with the fold-change predictions from each inference. In com-

parison with the values obtained by flow cytometry, each parameter estimate over-

lapped with the 95% credible region of our flow cytometry estimates, as shown in

Fig. 4.14(B). Specifically, these values were KA = 142+40
−34 µM and KI = 0.6+0.1

−0.1 µM
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from microscopy and KA = 149+14
−12 µM and KI = 0.57+0.03

−0.02 µM from the flow cy-

tometry data. We note that the credible regions from the microscopy data shown

in Fig. 4.14(B) are much broader than those from flow cytometry due to the fewer

number of replicates performed.

4.6 Fold-Change Sensitivity Analysis

In Fig. 2.5, we found that the width of the credible regions varied widely depend-

ing on the repressor copy number R and repressor operator binding energy ∆εRA.

More precisely, the credible regions were much narrower for low repressor copy

numbers R and weak binding energy ∆εRA. In this section, we explain how this

behavior comes about. We focus our attention on the maximum fold-change in the

presence of saturating inducer given by Eq. 2.7. While it is straightforward to con-

sider the width of the credible regions at any other inducer concentration, it shows

that the credible region is widest at saturation.

The width of the credible regions corresponds to how sensitive the fold-change is

to the fit values of the dissociation constants KA and KI . To be quantitative, we

define

∆fold-changeKA
≡ fold-change(KA, Kfit

I )− fold-change(Kfit
A , Kfit

I ), (4.23)

the difference between the fold-change at a particular KA value relative to the best-

fit dissociation constant Kfit
A = 139× 10−6 M. For simplicity, we keep the inactive

state dissociation constant fixed at its best-fit value Kfit
I = 0.53× 10−6 M. A larger

difference ∆fold-changeKA
implies a wider credible region. Similarly, we define

the analogous quantity

∆fold-changeKI
= fold-change(Kfit

A , KI)− fold-change(Kfit
A , Kfit

I ) (4.24)

to measure the sensitivity of the fold-change to KI at a fixed Kfit
A . Fig. 4.15 shows

both of these quantities in the limit c → ∞ for different repressor-DNA binding

energies ∆εRA and repressor copy numbers R. See our GitHub repository for the

code that reproduces these plots.

https://github.com/RPGroup-PBoC/mwc_induction/blob/master/code/analysis/sensitivity_analysis.ipynb
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To understand how the width of the credible region scales with ∆εRA and R, we

can Taylor expand the difference in fold-change to first order, ∆fold-changeKA
≈

∂fold-change
∂KA

(
KA − Kfit

A
)
, where the partial derivative has the form

∂fold-change
∂KA

=
e−β∆εAI n

KI

(
KA
KI

)n−1

(
1+e−β∆εAI

(
KA
KI

)n)2
R

NNS
e−β∆εRA

1+ 1

1+e−β∆εAI
(

KA
KI

)n
R

NNS
e−β∆εRA


−2

. (4.25)

Similarly, the Taylor expansion ∆fold-changeKI
≈ ∂fold-change

∂KI

(
KI − Kfit

I
)

features

the partial derivative

∂fold-change
∂KI

=−
e−β∆εAI n

KI

(
KA
KI

)n

(
1+e−β∆εAI

(
KA
KI

)n)2
R

NNS
e−β∆εRA

1+ 1

1+e−β∆εAI
(

KA
KI

)n
R

NNS
e−β∆εRA


−2

. (4.26)

From Eqs. 4.25 and 4.26, we find that both ∆fold-changeKA
and ∆fold-changeKI

increase in magnitude with R and decrease in magnitude with ∆εRA. Accordingly,

we expect that the O3 strains (with the least negative ∆εRA) and the strains with

the smallest repressor copy number will lead to partial derivatives with smaller

magnitude and hence to tighter credible regions. Indeed, this prediction is carried

out in Fig. 4.15.

Lastly, we note that Eqs. 4.25 and 4.26 enable us to quantify the scaling relationship

between the width of the credible region and the two quantities R and ∆εRA. For

example, for the O3 strains, where the fold-change at saturating inducer concen-

tration is ≈ 1, the right-most term in both equations which equal the fold-change

squared is roughly one. Therefore, we find that both ∂fold-change
∂KA

and ∂fold-change
∂KI

scale linearly with R and e−β∆εRA . Thus the width of the R = 22 strain will be

roughly 1/1000 as large as that of the R = 1740 strain; similarly, the width of the

O3 curves will be roughly 1/1000 the width of the O1 curves.
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Figure 4.15: Determining how sensitive the fold-change values are to the fit values of the dissoci-
ation constants. (A) The difference ∆fold-changeKA

in fold change when the dissociation constant
KA is slightly offset from its best-fit value KA = 139+29

−22× 10−6 M, as given by Eq. 4.23. Fold-change
is computed in the limit of saturating inducer concentration (c→ ∞, see Eq. 2.7) where the credible
regions in Fig. 2.4 are the widest. The O3 strain (∆εRA = −9.7 kBT) is about 1/1000 as sensitive as
the O1 operator to perturbations in the parameter values, and hence its credible region is roughly
1/1000 as wide. All curves were made using R = 260. (B) As in Panel (A), but plotting the sen-
sitivity of fold-change to the KI parameter relative to the best-fit value KI = 0.53+0.04

−0.04 × 10−6 M.
Note that only the magnitude, and not the sign of this difference, describes the sensitivity of each
parameter. Hence, the O3 strain is again less sensitive than the O1 and O2 strains. (C) As in Panel
(A), but showing how the fold-change sensitivity for different repressor copy numbers. The strains
with lower repressor copy numbers are less sensitive to changes in the dissociation constants, and
hence their corresponding curves in Fig. 2.4 have tighter credible regions. All curves were made
using ∆εRA = −13.9 kBT. (D) As in Panel (C), the sensitivity of fold-change with respect to KI is
again smallest (in magnitude) for the low repressor copy number strains.
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4.7 Alternate Characterizations of Induction

In this section, we discuss a different way to describe the induction data, namely,

through using the conventional Hill approach. We first demonstrate how using a

Hill function to characterize a single induction curve enables us to extract features

(such as the midpoint and sharpness) of that single response, but precludes any

predictions of the other seventeen strains. We then discuss how a thermodynamic

model of simple repression coupled with a Hill approach to the induction response

can both characterize an induction profile and predict the response of all eighteen

strains, although we argue that such a description provides no insight into the

allosteric nature of the protein and how mutations to the repressor would affect

induction. We conclude the section by discussing the differences between such a

model and the statistical mechanical model used in Chapter 2.

Fitting Induction Curves using a Hill Function Approach

The Hill equation is a phenomenological function commonly used to describe data

with a sigmoidal profile [37,56,58]. Its simplicity and ability to estimate the coop-

erativity of a system (through the Hill coefficient) has led to its widespread use in

many domains of biology [139]. Nevertheless, the Hill function is often criticized

as a physically unrealistic model and the extracted Hill coefficient is often difficult

to contextualize in the physics of a system [140]. In the present work, we note that

a Hill function, even if it is only used because of its simplicity, presents no mech-

anism to understand how a regulatory system’s behavior will change if physical

parameters such as repressor copy number or operator binding energy are varied.

In addition, the Hill equation provides no foundation to explore how mutating the

repressor (e.g., at its inducer-binding interface) would modify its induction profile,

although statistical mechanical models have proved capable of characterizing such

scenarios [68,69,71].

Consider the general Hill equation for a single induction profile given by

fold-change = (leakiness) + (dynamic range)

( c
K
)n

1 +
( c

K
)n , (4.27)
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where, as in Chapter 2, the leakiness represents the minimum fold-change, the dy-

namic range represents the difference between the maximum and minimum fold-

change, K is the repressor-inducer dissociation constant, and n denotes the Hill

coefficient that characterizes the sharpness of the curve (n > 1 signifies positive

cooperativity, n = 1 denotes no cooperativity, and n < 1 represents negative coop-

erativity). Fig. 4.16 shows how the individual induction profiles can be fit (using

the same Bayesian methods as described in Sec. 4.8 to this Hill response, yielding

a similar response to that shown in Fig. 2.5. However, characterizing the induction

response in this manner is unsatisfactory because each curve must be fit indepen-

dently, thus removing our predictive power for other repressor copy numbers and

binding sites.

The fitted parameters obtained from this approach are shown in Fig. 4.17. These

are rather unsatisfactory because they do not reflect the properties of the physi-

cal system under consideration. For example, the dissociation constant K between

LacI and inducer should not be affected by either the copy number of the repres-

sor or the DNA binding energy. Yet, we see upward trends as R is increased or

the binding energy is decreased. Here, the K parameter ultimately describes the

midpoint of the induction curve and, therefore, cannot strictly be considered a dis-

sociation constant. Similarly, the Hill coefficient n does not directly represent the

cooperativity between the repressor and the inducer. The molecular details of the

copy number and DNA binding strength are subsumed in this parameter. While

the leakiness and dynamic range describe important phenotypic properties of the

induction response, this Hill approach leaves us with no means to predict them

for other strains. In summary, the Hill equation (Eq. 4.27) cannot predict how an

induction profile varies with repressor copy number, operator binding energy, or

how mutations alter the induction profile. To that end, we turn to a more sophis-

ticated approach where we use the Hill function to describe the available fraction

of repressor as a function of inducer concentration.
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Figure 4.16: Hill function and MWC analysis of each induction profile. Data for each individual
strain was fit to the general Hill function in Fig. 2.5. (A) strains with O1 binding site, (B) strains
with O2 binding site, and (C) strains with O3 binding site. Shaded regions indicate the bounds of
the 95% credible region.

Fitting Induction Curves using a Combination Thermodynamic Model and Hill

Function Approach

Motivated by the inability in the previous section to characterize all eighteen strains

using the Hill function with a single set of parameters, here we combine the Hill

approach with a thermodynamic model of simple repression to garner predictive

power. More specifically, we will use the thermodynamic model in Fig. 2.2(A),

but substitute the statistical model in Fig. 2.2(B) with the phenomenological Hill

function (Eq. 4.27).

Following Eqs. 2.1, 2.2, 2.3 and fold-change is given by

fold-change =

(
1 + pA(c)

R
NNS

e−β∆εRA

)−1

(4.28)
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Figure 4.17: Parameter values for the Hill equation fit to each individual titration. The resulting
fit parameters from the Hill function fits of Fig. 4.16 are summarized. The large parameter intervals
for many of the O3 strains are due to the flatter induction profile (as seen by its smaller dynamic
range) and the ability for a large range of K and n values to describe the data.

where the Hill function

pA(c) = pmax
A − prange

A

(
c

KD

)n

1 +
(

c
KD

)n (4.29)

represents the fraction of repressors in the allosterically active state, with pmax
A de-

noting the fraction of active repressors in the absence of inducer and pmax
A − prange

A

the minimum fraction of active repressors in the presence of saturating inducer.

The Hill function characterizes the inducer-repressor binding while the thermody-

namic model with the known constants R, NNS, and ∆εRA describes how the induc-

tion profile changes with repressor copy number and repressor-operator binding

energy.
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Figure 4.18: A thermodynamic model coupled with a Hill analysis can characterize induction.
Combining a thermodynamic model of simple repression with the Hill function to characterize the
repressor-inducer binding successfully characterizes the induction profiles of all eighteen strains.
As in the main text, data was only fit for the O2 R = 260 strain using Eq. 4.27 and the parameters
pmax

A = 0.90+0.03
−0.01, prange

A = −0.90+0.02
−0.03, n = 1.6+0.2

−0.1, and KD = 4+2
−1 × 10−6 M. Shaded regions

indicate bounds of the 95% credible region.

As in Chapter 2, we can fit the four Hill parameters—the vertical shift and stretch

parameters pmax
A and prange

A , the Hill coefficient n, and the inducer-repressor dis-

sociation constant KD—for a single induction curve and then use the fully charac-

terized Eq. 4.27 to describe the response of each of the eighteen strains. Fig. 4.18

shows this process carried out by fitting the O2 R = 260 strain (white circles in

Panel (B)) and predicting the behavior of the remaining seventeen strains.
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Although the curves in Fig. 4.18 are nearly identical to those in Fig. 2.5 (which were

made using the MWC model), we stress that the Hill function approach is more

complex than the MWC model (containing four parameters instead of three) and

obscures the relationships to the physical parameters of the system. For example,

it is not clear whether the fit parameter KD = 4+2
−1 × 10−6 M relays the dissociation

constant between the inducer and active-state repressor, between the inducer and

the inactive-state repressor, or some mix of the two quantities.

In addition, the MWC model naturally suggests further quantitative tests for the

fold-change relationship. For example, mutating the repressor’s inducer binding

site would likely alter the repressor-inducer dissociation constants KA and KI , and

it would be interesting to find out if such mutations also modify the allosteric en-

ergy difference ∆εAI between the repressor’s active and inactive conformations.

For our purposes, the Hill function falls short of the connection to the physics of

the system and provides no intuition about how transcription depends upon such

mutations. For these reasons, we present the thermodynamic model coupled with

the statistical mechanical MWC model approach in the paper.

4.8 Global Fit of All Parameters

In Chapter 2, we used the repressor copy numbers R and repressor-DNA binding

energies ∆εRA as reported by [20]. However, any error in these previous measure-

ments of R and ∆εRA will necessarily propagate into our own fold-change predic-

tions. This section takes an alternative approach to fitting the system’s physical

parameters to that used in Chapter 2. First, rather than fitting only a single strain,

we fit the entire data set in Fig. 2.5 along with microscopy data for the synthetic op-

erator Oid (see Sec. 4.9). In addition, we also simultaneously fit the parameters R

and ∆εRA using the prior information given by the previous measurements. By us-

ing the entire data set and fitting all of the parameters, we obtain the best possible

characterization of the statistical mechanical parameters of the system, given our

current state of knowledge. As a point of reference, we state all of the parameters

of the MWC model derived in the text in Table 4.2.
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To fit all of the parameters simultaneously, we follow a similar approach to the

one detailed in the Methods section. Briefly, we perform a Bayesian parameter es-

timation of the dissociation constants KA and KI , the six different repressor copy

numbers R corresponding to the six lacI ribosomal binding sites used in our work,

and the four different binding energies ∆εRA characterizing the four distinct oper-

ators used to make the experimental strains. As in Chapter 2, we fit the logarithms

k̃A = − log KA
1 M and k̃I = − log KI

1 M of the dissociation constants, which grants bet-

ter numerical stability.

As in Eqs. 4.28 and 4.29, we assume that deviations of the experimental fold-

change from the theoretical predictions are normally distributed with mean zero

and standard deviation σ. We begin by writing Bayes’ theorem,

P(k̃A, k̃I , R, ∆εRA, σ | D) =
P(D | k̃A, k̃I , R, ∆εRA, σ)P(k̃A, k̃I , R, ∆εRA, σ)

P(D)
, (4.30)

where R is an array containing the six different repressor copy numbers to be fit,

∆εRA is an array containing the four binding energies to be fit, and D is the exper-

imental fold-change data. The term P(k̃A, k̃I , R, ∆εRA, σ | D) gives the probability

distributions of all of the parameters given the data. The term P(D | k̃A, k̃ I , R, ∆εRA, σ)

represents the likelihood of having observed our experimental data given some

value for each parameter. P(k̃A, k̃I , R, ∆εRA, σ) contains all the prior information

on the values of these parameters. Lastly, P(D) serves as a normalization constant

and hence can be ignored.

Given n independent measurements of the fold-change, the first term in Eq. 4.30

can be written as

P(D|k̃A,k̃I ,R,∆εRA,σ)= 1

(2πσ2)
n
2

n
∏
i=1

exp

[
−

(fc(i)exp−fc(k̃A ,k̃ I ,R(i) ,∆ε
(i)
RA ,c(i)))2

2σ2

]
, (4.31)

where fc(i)exp is the ith experimental fold-change and fc(· · ·) is the theoretical pre-

diction. Note that the standard deviation σ of this distribution is not known and

hence needs to be included as a parameter to be fit.



152

The second term in Eq. 4.30 represents the prior information of the parameter

values. We assume that all parameters are independent of each other so that

P(k̃A, k̃I , R, ∆εRA, σ) = P(k̃A) · P(k̃I) ·∏
i

P(R(i)) ·∏
j

P(∆ε
(j)
RA) · P(σ), (4.32)

where the superscript (i) indicates the repressor copy number of index i and the

superscript (j) denotes the binding energy of index j. As above, we note that a

prior must also be included for the unknown parameter σ.

Because we knew nothing about the values of k̃A, k̃I , and σ before performing the

experiment, we assign maximally uninformative priors to each of these parame-

ters. More specifically, we assign uniform priors to k̃A and k̃I and a Jeffreys prior

to σ, indicating that KA, KI , and σ are scale parameters [61]. We do, however, have

prior information for the repressor copy numbers and the repressor-DNA bind-

ing energies from [20]. This prior knowledge is included within our model using

an informative prior for these two parameters, which we assume to be Gaussian.

Hence each of the R(i) repressor copy numbers to be fit satisfies

P(R(i)) =
1√

2πσ2
Ri

exp

(
− (R(i) − R̄(i))2

2σ2
Ri

)
, (4.33)

where R̄(i) is the mean repressor copy number and σRi is the variability associated

with this parameter as reported in [20]. Note that we use the given value of σRi

from previous measurements rather than leaving this as a free parameter.

Similarly, the binding energies ∆ε
(j)
RA are also assumed to have a Gaussian informa-

tive prior of the same form. We write it as

P(∆ε
(j)
RA) =

1√
2πσ2

ε j

exp

(
−
(∆ε

(j)
RA − ∆ε̄

(j)
RA)

2

2σ2
ε j

)
, (4.34)

where ∆ε̄
(j)
RA is the binding energy and σε j is the variability associated with that

parameter around the mean value as reported in [20].
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The σRi and σε j parameters will constrain the range of values for R(i) and ∆ε
(j)
RA

found from the fitting. For example, if for some i the standard deviation σRi is

very small, it implies strong confidence in the previously reported value. Mathe-

matically, the exponential in Eq. 4.33 will ensure that the best-fit R(i) lies within a

few standard deviations of R̄(i). Since we are interested in exploring which values

could give the best fit, the errors are taken to be wide enough to allow the parame-

ter estimation to explore parameter space in freely the vicinity of the best estimates.

Putting all these terms together, we use Markov chain Monte Carlo to sample the

posterior distribution P(k̃A, k̃I , R, ∆εRA, σ | D), enabling us to determine both the

most likely value for each physical parameter as well as its associated credible re-

gion (see the GitHub repository for the implementation).

Fig. 4.19 shows the result of this global fit. When compared with Fig. 2.5, we can

see that fitting for the binding energies and the repressor copy numbers improve

the agreement between the theory and the data. Table 4.3 summarizes the values

of the parameters as obtained with this MCMC parameter inference. We note that

even though we allowed the repressor copy numbers and repressor-DNA binding

energies to vary, the resulting fit values were very close to the previously reported

values. The fit values of the repressor copy numbers were all within one standard

deviation of the previously reported values provided in [20]. And although some

of the repressor-DNA binding energies differed by a few standard deviations from

the reported values, the differences were always less than 1 kBT, representing a

small change in the biological scales we are considering. The biggest discrepancy

between our fit values and the previous measurements arose for the synthetic Oid

operator, which we discuss in more detail in Sec. 4.9.

https://rpgroup-pboc.github.io/mwc_induction/code/notebooks/global_fits.html
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Fig. 4.20 shows the same key properties as in Fig. 2.6, but uses the parameters

obtained from this global fitting approach. We note that even by increasing the

number of degrees of freedom in our fit, the result does not change substantially

due to only minor improvements between the theoretical curves and data. For

the O3 operator data, again, the agreement between the predicted [EC50] and the

effective Hill coefficient remains poor due to the theory being unable to capture

the steepness of the response curves.

Table 4.2: Key model parameters for induction of an allosteric repressor.

Parameter Description

c Concentration of the inducer

KA, KI Dissociation constant between an inducer and the

repressor in the active/inactive state

∆εAI The difference between the free energy of repressor in

the inactive and active states

∆εP Binding energy between the RNAP and its specific

binding site

∆εRA, ∆εRI Binding energy between the operator and the

active/inactive repressor

n Number of inducer binding sites per repressor

P Number of RNAP

RA, RI , R Number of active/inactive/total repressors

pA = RA
R Probability that a repressor will be in the active state

pbound Probability that an RNAP is bound to the promoter of

interest, assumed to be proportional to gene

expression
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Parameter Description

fold-change Ratio of gene expression in the presence of repressor to

that in the absence of repressor

F Free energy of the system

NNS The number of non-specific binding sites for the

repressor in the genome

β = 1
kBT The inverse product of the Boltzmann constant kB and

the temperature T of the system

Table 4.3: Global fit of all parameter values using the entire data set in Fig. 2.5. In addition to

fitting the repressor inducer dissociation constants KA and KI as was done in the text, we also fit

the repressor DNA binding energy ∆εRA as well as the repressor copy numbers R for each strain.

The middle columns show the previously reported values for all ∆εRA and R values, with ± repre-

senting the standard deviation of three replicates. The right column shows the global fits from this

work, with the subscript and superscript notation denoting the 95% credible region. Note that there

is overlap between all of the repressor copy numbers and that the net difference in the repressor-

DNA binding energies is less than 1 kBT. The logarithms k̃A = − log KA
1 M and k̃I = − log KI

1 M of the

dissociation constants were fit for numerical stability.

Reported Values [20] Global Fit

k̃A − −5.33+0.06
−0.05

k̃I − 0.31+0.05
−0.06

KA − 205+11
−12 µM

KI − 0.73+0.04
−0.04 µM

R22 22± 4 20+1
−1

R60 60± 20 74+4
−3

R124 124± 30 130+6
−6
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Reported Values [20] Global Fit

R260 260± 40 257+9
−11

R1220 1220± 160 1191+32
−55

R1740 1740± 340 1599+75
−87

O1 ∆εRA −15.3± 0.2 kBT −15.2+0.1
−0.1 kBT

O2 ∆εRA −13.9± 0.2 kBT −13.6+0.1
−0.1 kBT

O3 ∆εRA −9.7± 0.1 kBT −9.4+0.1
−0.1 kBT

Oid ∆εRA −17.0± 0.2 kBT −17.7+0.2
−0.1 kBT

4.9 Applicability of Theory to the Oid Operator Sequence

In addition to the native operator sequences (O1, O2, and O3) considered in Chap-

ter 2, we were also interested in testing our model predictions against the syn-

thetic Oid operator. In contrast to the other operators, Oid is one base pair shorter

in length (20 bp), is fully symmetric, and is known to provide stronger repression

than the native operator sequences considered so far. While the theory should be

similarly applicable, measuring the lower fold-changes associated with this YFP

construct was expected to be near the sensitivity limit for our flow cytometer due

to the especially strong binding energy of Oid (∆εRA = −17.0 kBT) [42]. Accord-

ingly, fluorescence data for Oid were obtained using microscopy, which is more

sensitive than flow cytometry. Sec. 4.6 gives a detailed explanation of how mi-

croscopy measurements were used to obtain induction curves.

We follow the approach of Chapter 2 and make fold-change predictions based on

the parameter estimates from our strain with R = 260 and an O2 operator. These

predictions are shown in Fig. 4.21(A), where we also plot data taken in triplicate

for strains containing R = 22, 60, and 124, obtained by single-cell microscopy. We

find that the data are systematically below the theoretical predictions. We also

considered our global fitting approach (see Sec. 4.8) to see whether we might find
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Figure 4.19: Global fit of dissociation constants, repressor copy numbers, and binding energies.
Theoretical predictions resulting from simultaneously fitting the dissociation constants KA and KI ,
the six repressor copy numbers R, and the four repressor-DNA binding energies ∆εRA using the
entire data set from Fig. 2.5 as well as the microscopy data for the Oid operator. Error bars of
experimental data show the standard error of the mean (eight or more replicates), and shaded
regions denote the 95% credible region. Where error bars are not visible, they are smaller than
the point itself. All of the data points are shown for the Oid operator since a smaller number of
replicates were taken. The shaded regions are significantly smaller than in Fig. 2.5 because this fit
was based on all data points, and hence the fit parameters are much more tightly constrained. The
dashed lines at 0 IPTG indicate a linear scale, whereas solid lines represent a log scale.

better agreement with the observed data. Interestingly, we find that the major-

ity of the parameters remain essentially unchanged, but our estimate for the Oid

binding energy ∆εRA is shifted to −17.7 kBT instead of the value −17.0 kBT found

by [20]. In Fig. 4.21(B), we again plot the Oid fold-change data with theoretical

predictions using the new estimate for the Oid binding energy from our global fit.

This parameter modification gives substantially better agreement between theory

and data.
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Figure 4.20: Key properties of induction profiles as predicted with a global fit using all avail-
able data. Data for the (A) leakiness, (B) saturation, and (C) dynamic range are obtained from
fold-change measurements in Fig. 2.5 in the absence and presence of IPTG. All prediction curves
were generated using the parameters listed in Table 4.3. Both the (D) [EC50] and (E) effective Hill
coefficient are inferred by individually fitting all parameters–KA, KI , R, ∆εRA–to each operator-
repressor pairing in Fig. 2.4(A)-(C) separately to Eq. 2.5 to smoothly interpolate between the data
points. Note that the error bars are smaller than some of the points.

Fig. 4.22 shows the cumulative data from [20] and [39], as well as our data with

c = 0 µM, which all measured fold-change for the same simple repression archi-

tecture utilizing different reporters and measurement techniques. We find that the

binding energies from the global fit, including ∆εRA = −17.7 kBT, compare rea-

sonably well with all previous measurements.

4.10 Comparison of Parameter Estimation and Fold-Change Predictions across

Strains

The inferred parameter values for KA and KI in Chapter 2 were determined by

fitting to induction fold-change measurements from a single strain (R = 260,

∆εRA = −13.9 kBT, n = 2, and ∆εAI = 4.5 kBT). After determining these pa-

rameters, we were able to predict the fold-change of the remaining strains without
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Figure 4.21: Predictions of fold-change for strains with an Oid binding sequence versus ex-
perimental measurements with different repressor copy numbers. Experimental data is plotted
against the parameter-free predictions that are based on our fit to the O2 strain with R = 260. Here
we use the previously measured binding energy ∆εRA = −17.0 kBT [20]. The same experimental
data is plotted against the best-fit parameters using the complete O1, O2, O3, and Oid data sets
to infer KA, KI , repressor copy numbers, and the binding energies of all operators (see Sec. 4.8).
Here the major difference in the inferred parameters is a shift in the binding energy for Oid from
∆εRA = −17.0 kBT to ∆εRA = −17.7 kBT, which now shows agreement between the theoretical
predictions and experimental data. Shaded regions from the theoretical curves denote the 95%
credible region. These are narrower in Panel because the inference of parameters was performed
with much more data, and hence the best-fit values are more tightly constrained. Individual data
points are shown due to the small number of replicates. The dashed lines at 0 IPTG indicate a linear
scale, whereas solid lines represent a log scale.

any additional fitting. However, the theory should be independent of the specific

strain used to estimate KA and KI ; using any alternative strain to fit KA and KI

should yield similar predictions. For the sake of completeness, here we discuss

the values for KA and KI that are obtained by fitting to each of the induction data

sets individually. These fit parameters are shown in Fig. 2.4(D), where we find

close agreement between strains, but with some deviation and poorer inferences

observed with the O3 operator strains. Overall, we find that regardless of which

strain is chosen to determine the unknown parameters, the predictions laid out by

the theory closely match the experimental measurements. Here we present a com-

parison of the strain-specific predictions and measured fold-change data for each

of the three operators considered.
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Figure 4.22: Comparison of fold-change predictions based on binding energies from Garcia and
Phillips and those inferred from this work. Fold-change curves for the different repressor-DNA
binding energies ∆εRA are plotted as a function of repressor copy number when IPTG concentra-
tion c = 0. Solid curves use the binding energies determined from [20], while the dashed curves
use the inferred binding energies we obtained when performing a global fit of KA, KI , repressor
copy numbers, and the binding energies using all available data from our work. Fold-change mea-
surements from our experiments (outlined circles) [20] (solid circles), and [39] (diamonds) show
that the small shifts in binding energy that we infer are still in agreement with prior data. Note
that only a single flow cytometry data point is shown for Oid from this study, since the R = 60 and
R = 124 curves from Fig. 4.21 had extremely low fold-change in the absence of inducer (c = 0) to be
indistinguishable from autofluorescence, and their fold-change values in this limit were negative
and hence do not appear on this plot.

We follow the approach taken in Chapter 2 and use Eq. 2.5 to infer values for KA

and KI by fitting to each combination of binding energy ∆εRA and repressor copy

number R. We then use these fitted parameters to predict the induction curves of

all other strains. In Fig. 4.23, we plot these fold-change predictions along with ex-

perimental data for each of our strains that contain an O1 operator. To make sense

of this plot, consider the first row as an example. In the first row, KA and KI were

estimated using data from the strain containing R = 22 and an O1 operator (top

leftmost plot, shaded in gray). The remaining plots in this row show the predicted

fold-change using these values for KA and KI . In each row, we then infer KA and

KI using data from a strain containing a different repressor copy number (R = 60

in the second row, R = 124 in the third row, and so on). In Fig. 4.24 and Fig. 4.25,



161

we similarly apply this inference to our strains with O2 and O3 operators, respec-

tively. We note that the overwhelming majority of predictions closely match the

experimental data. The notable exception is that using the R = 22 strain provides

poor predictions for the strains with large copy numbers (especially R = 1220 and

R = 1740), though it should be noted that predictions made from the R = 22 strain

have considerably broader credible regions. This loss in predictive power is due to

the poorer estimates of KA and KI for the R = 22 strain as shown in Fig. 2.4(D).

4.11 Properties of Induction Titration Curves

In this section, we expand on the phenotypic properties of the induction response

that were explored in Chapter 2 (see Fig. 2.1). We begin by expanding on our

discussion of dynamic range and then show the analytic form of the [EC50] for

simple repression.

As stated in Chapter 2, the dynamic range is defined as the difference between

the maximum and minimum system response, or equivalently, as the difference

between the saturation and leakiness of the system. Using Eqs. 2.6, 2.7, and 2.8,

the dynamic range is given by

dynamic range=

1+ 1

1+e−β∆εAI
(

KA
KI

)n
R

NNS
e−β∆εRA


−1

−
(

1+ 1
1+e−β∆εAI

R
NNS

e−β∆εRA

)−1
. (4.35)

The dynamic range, saturation, and leakiness were plotted with our experimental

data in Fig. 2.6(A)-(C) as a function of repressor copy number. Fig. 4.26 shows

how these properties are expected to vary as a function of the repressor-operator

binding energy. Note that the resulting curves for all three properties have the

same shape as in Fig. 2.6(A)-(C), since the dependence of the fold-change upon the

repressor copy number and repressor-operator binding energy are both contained

in a single multiplicative term, Re−β∆εRA . Hence, increasing R on a logarithmic

scale (as in Fig. 2.6(A)-(C)) is equivalent to decreasing ∆εRA on a linear scale (as in

Fig. 4.26).

An interesting aspect of the dynamic range is that it exhibits a peak as a function of

either the repressor copy number (or equivalently of the repressor-operator bind-
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O1 15.3

Figure 4.23: O1 strain fold-change predictions based on strain-specific parameter estimation of
KA and KI . Fold-change in expression is plotted as a function of IPTG concentration for all strains
containing an O1 operator. The solid points correspond to the mean experimental value. The solid
lines correspond to Eq. 2.5 using the parameter estimates of KA and KI . Each row uses a single set of
parameter values based on the strain noted on the left axis. The shaded plots along the diagonal are
those where the parameter estimates are plotted along with the data used to infer them. Values for
repressor copy number and operator binding energy are from [20]. The shaded region on the curve
represents the uncertainty from our parameter estimates and reflects the 95% highest probability
density region of the parameter predictions.



163

Figure 4.24: O2 strain fold-change predictions based on strain-specific parameter estimation of
KA and KI . Fold-change in expression is plotted as a function of IPTG concentration for all strains
containing an O2 operator. The plots and data shown are analogous to Fig. 4.23, but for the O2
operator.

ing energy). Differentiating the dynamic range Eq. 4.35 and setting it equal to zero,

we find that this peak occurs at

R∗

NNS
= e−β(∆εAI−∆εRA)

√
e∆εAI + 1

√
e∆εAI +

(
KA

KI

)n
. (4.36)

The magnitude of the peak is given by

max dynamic range =

(√
e∆εAI + 1−

√
e∆εAI +

(
KA
KI

)n
)2

(
KA
KI

)n
− 1

, (4.37)
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O3 9.7

Figure 4.25: O3 strain fold-change predictions based on strain-specific parameter estimation of
KA and KI . Fold-change in expression is plotted as a function of IPTG concentration for all strains
containing an O3 operator. The plots and data shown are analogous to Fig. 4.23, but for the O3 op-
erator. We note that when using the R = 22 O3 strain to predict KA and KI , the large uncertainty in
the estimates of these parameters (see Fig. 2.4(D)) leads to correspondingly wider credible regions.
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Figure 4.26: Dependence of leakiness, saturation, and dynamic range on the operator binding
energy and repressor copy number. Increasing the repressor copy number or decreasing the
repressor-operator binding energy suppresses gene expression and decreases the leakiness and
saturation. The dynamic range retains its shape but shifts right as the repressor copy number in-
creases. The peak in the dynamic range can be understood by considering the two extremes for
∆εRA: for small repressor-operator binding energies, the leakiness is small, but the saturation in-
creases with ∆εRA; for large repressor-operator binding energies, the saturation is near unity, and
the leakiness increases with ∆εRA, thereby decreasing the dynamic range. Repressor copy num-
ber does not affect the maximum dynamic range. Circles, diamonds, and squares represent ∆εRA
values for the O1, O2, and O3 operators, respectively, demonstrating the expected values of the
properties using those strains.

which is independent of the repressor-operator binding energy ∆εRA or R, and will

only cause a shift in the location of the peak but not its magnitude.

We now consider the two remaining properties, the [EC50] and effective Hill coef-

ficient, which determine the horizontal properties of a system—that is, they deter-

mine the range of inducer concentration in which the system’s response goes from

its minimum to maximum values. The [EC50] denotes the inducer concentration

required to generate fold-change halfway between its minimum and maximum

value and was defined implicitly in Eq. 2.9. For the simple repression system, the
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Figure 4.27: [EC50] and effective Hill coefficient depend strongly on repressor copy number and
operator binding energy. [EC50] values range from very small and tightly clustered at weak op-
erator binding energies (e.g. O3) to relatively large and spread out for stronger operator binding
energies (O1 and O2). The effective Hill coefficient generally decreases with increasing repressor
copy number, indicating a flatter normalized response. The maximum possible Hill coefficient is
roughly 1.75 for all repressor-operator binding energies. Circles, diamonds, and squares represent
∆εRA values for the O1, O2, and O3 operators, respectively.

[EC50] is given by

[EC50]

KA
=

KA
KI
− 1

KA
KI
−
((

1+ R
NNS

e−β∆εRA
)
+
(

KA
KI

)n(
2e−β∆εAI+

(
1+ R

NNS
e−β∆εRA

))
2
(

1+ R
NNS

e−β∆εRA
)
+e−β∆εAI+

(
KA
KI

)n
e−β∆εAI

) 1
n
− 1. (4.38)

Using this expression, we can then find the effective Hill coefficient h, which equals

twice the log-log slope of the normalized fold-change evaluated at c = [EC50] (see

Eq. 2.10). In Fig. 2.6(D)-(E), we show how these two properties vary with repressor

copy number, and in Fig. 4.27 we demonstrate how they depend on the repressor-

operator binding energy. Both the [EC50] and h vary significantly with repressor

copy numbers for sufficiently strong operator binding energies. Interestingly, for

weak operator binding energies on the order of the O3 operator, it is predicted

that the effective Hill coefficient should not vary with repressor copy number. In

addition, the maximum possible Hill coefficient is roughly 1.75, which stresses the

point that the effective Hill coefficient should not be interpreted as the number of

inducer binding sites, which is precisely 2.
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4.12 Applications to Other Regulatory Architectures

This section discusses how the theoretical framework presented in this work is

sufficiently general to include various regulatory architectures outside of simple

repression by LacI. We begin by noting that the same formula for fold-change given

in Eq. 2.5 can also describe corepression. We then demonstrate how our model

can be generalized to include other architectures, such as a coactivator binding

to an activator to promote gene expression. In each case, we briefly describe the

system and describe its corresponding theoretical description. For further details,

we invite the interested reader to read [11,54].

Corepression

Consider a regulatory architecture where binding of a transcriptional repressor

impedes the binding of RNAP to the DNA. A corepressor molecule binds to the

repressor and shifts its allosteric equilibrium towards the active state in which it

binds more tightly to the DNA, thereby decreasing gene expression (in contrast,

an inducer shifts the allosteric equilibrium towards the inactive state where the

repressor binds more weakly to the DNA). As in Chapter 2, we can enumerate

the states and statistical weights of the promoter and the allosteric states of the

repressor. We note that these states and weights exactly match Fig. 2.2 and yield

the same fold-change equation as Eq. 2.5,

fold-change ≈

1 +

(
1 + c

KA

)n

(
1 + c

KA

)n
+ eβ∆εAI

(
1 + c

KI

)n
R

NNS
e−β∆εRA


−1

, (4.39)
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where c now represents the concentration of the corepressor molecule. Mathemat-

ically, the difference between these two architectures can be seen in the relative

sizes of the dissociation constants KA and KI between the inducer and repressor in

the active and inactive states, respectively. The corepressor is defined by KA < KI

since the corepressor favors binding to the repressor’s active state; an inducer must

satisfy KI < KA, as was found in Chapter 2 from the induction data (see Fig. 2.4).

Much as was performed in Chapter 2, we can make some predictions about the re-

sponse of a corepressor. In Fig. 4.28(A), we show how varying the repressor copy

number R and the repressor-DNA binding energy ∆εRA influence the response.

We draw the reader’s attention to the decrease in fold-change as the concentration

of the effector is increased.

Activation

We now turn to the case of activation. While this architecture was not studied

in this work, we wish to demonstrate how the framework presented here can be

extended to include transcription factors other than repressors. To that end, we

consider a transcriptional activator that binds to DNA and aids in the binding

of RNAP through energetic interaction term εAP. Note that in this architecture,

binding of the activator does not occlude binding of the polymerase. The binding

of a coactivator molecule shifts its allosteric equilibrium towards the active state

(KA < KI), where the activator is more likely to be bound to the DNA and promote

expression. Enumerating all of the states and statistical weights of this architecture

and making the approximation that the promoter is weak generates a fold-change

equation of the form

fold-change =

1 +

(
1+ c

KA

)n(
1+ c

KA

)n
+eβ∆εAI

(
1+ c

KI

)n
A

NNS
e−β∆εAA e−βεAP

1 +

(
1+ c

KA

)n(
1+ c

KA

)n
+eβ∆εAI

(
1+ c

KI

)n
A

NNS
e−β∆εAA

, (4.40)
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where A is the total number of activators per cell, c is the concentration of a coac-

tivator molecule, ∆εAA is the binding energy of the activator to the DNA in the ac-

tive allosteric state, and εAP is the interaction energy between the activator and the

RNAP. Unlike in the cases of induction and corepression, the fold-change formula

for activation includes terms from when the RNAP is bound by itself on the DNA

and when both RNAP and the activator are simultaneously bound to the DNA.

Fig. 4.28(B) explores predictions of the fold-change in gene expression by ma-

nipulating the activator copy number, DNA binding energy, and the polymerase-

activator interaction energy. Note that with this activation scheme, the fold-change

must necessarily be greater than one. An interesting feature of these predictions is

the observation that even small changes in the interaction energy (< 0.5 kBT) can

dramatically increase fold-change.

As in the case of induction, the Eq. 4.40 is straightforward to generalize. For exam-

ple, the relative values of KI and KA can be switched such that KI < KA in which

the secondary molecule drives the activator to assume the inactive state represents

induction of an activator. Thus, while these cases might be viewed as separate bi-

ological phenomena, they can all be described by the same underlying formalism

mathematically.

4.13 Definition of the non-specific background NNS

In this section, we will explore the definition of the non-specific background NNS.

As raised by an anonymous reviewer, the nature of this parameter seems to raise

some controversy on what the right value should be, or whether or not the arbi-

trary definition of its value should also be applied to the ∆εAI parameter.

Specifically, during the first round, a reviewer did not like the idea that the value

of NNS = 4.6× 106 assumed that the entirety of the genome was available for non-

specific binding of the repressor. We will consider how reasonable this is at the

end of the section. However, as we will show first, the specific value of NNS is

analogous to the zero potential energy or the reference concentration state. Thus,

it is only the free energy differences that matter at the end of the day. For the
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Figure 4.28: Representative fold-change predictions for allosteric corepression and activation.
(A) Contrary to the case of induction described in Chapter 2, the addition of a corepressor decreases
fold-change in gene expression. The left and right panels demonstrate how varying the values of
the repressor copy number R and repressor-DNA binding energy ∆εRA, respectively, change the
predicted response profiles. (B) In the case of inducible activation, binding of an effector molecule
to an activator transcription factor increases the fold-change in gene expression. Note that for
activation, the fold-change is greater than 1. The left and center panels show how changing the
activator copy number A and activator-DNA binding energy ∆εAA alter the response, respectively.
The right panel shows how varying the polymerase-activator interaction energy εAP alters the fold-
change. Relatively small perturbations to this energetic parameter drastically change the level of
activation and play a major role in dictating the dynamic range of the system.

second round of reviews, the same reviewer was willing to agree on our point if

and only if we were to acknowledge that other parameters such as ∆εAI , the free

energy difference between the active and inactive state of the repressor, also had

an arbitrary definition that could be set to any value. In this section, we will show

that such a statement is an erroneous interpretation of the parameters. This free

energy difference value cannot be re-defined to take any value if one is consistent

with the experimental data.

Let us start by showing why the specific value of NNS is not the critical variable.

Under the weak promoter approximation, the fold-change equation is equivalent
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to a two-state Fermi function of having the promoter occupied by a repressor or

having an empty promoter. This is

fold-change→ pr
bound =

1
1 + R

NNS
e−β∆εRA

. (4.41)

This expression can be rewritten as

pr
bound =

1
1 + e−β∆E , (4.42)

where ∆E is the free energy difference between the empty and occupied promoter.

This definition implies that

∆E ≡
enthalpic term︷ ︸︸ ︷

∆εRA −

entropic term︷ ︸︸ ︷
kBT ln

(
R

NNS

)
. (4.43)

Given that the parameter ∆εRA is inferred rather than directly measured, this puts

us in the position of being able to re-define NNS at will as long as ∆E is in accor-

dance with the experimental data. In other words, the parameter that matters is

the free energy difference rather than its components. For example, if for a given

operator and a given repressor copy number we choose a different value of NNS,

it still should hold that

∆E = ∆ε′RA − kBT ln
(

R
N′NS

)
, (4.44)

where N′NS is the changed value of the non-specific background and ∆ε′RA is a

different value for the repressor binding energy that compensates for the difference

in the non-specific background.

Let N′NS ≡ αNNS. Since the value of ∆E has to be preserved, it should be true that

∆E = ∆ε′RA − kBT ln
(

R
αNNS

)
= ∆εRA − kBT ln

(
R

NNS

)
. (4.45)

Solving Eq. 4.45 for ∆ε′RA gives

∆ε′RA = ∆εRA + kBT ln
(

NNS

αNNS

)
= ∆εRA − kBT ln α.

(4.46)
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Eq. 4.46 implies that we can redefine NNS to be any value as long as ∆εRA com-

pensates to maintain the value of ∆E. This statement holds true whether we are

considering a single promoter or multiple promoters. The same cannot be said

about the ∆εAI parameter. The parameter ∆εAI by itself sets the fraction of inactive

repressors in the absence of inducer via

pact =
1

1 + e−β∆εAI
, (4.47)

where we have a Fermi function for a two-state system in which the repressor can

be in an active or inactive state again.

As shown before, the reason why we could define NNS to be any value is that

the parameter that matters is itself ∆E the free energy difference. Therefore the

repressor binding energy ∆εRA could compensate for changes in the value of NNS.

For the case of ∆εAI Eq. 4.47 tells us that ∆εAI has no entropic term that can be

compensated with an enthalpic term, or vice versa.

One could argue that for the case of a single promoter, the fold-change equation

does allow this parameter to be re-defined arbitrarily since the full equation in the

absence of inducer can be written as

fold-change =
1

1 +
(

1
1+e−β∆εAI

)
R

NNS
e−β∆εRA

. (4.48)

So when we define the free energy ∆E, we would include an extra term of the form

∆E = ∆εRA − kBT
[

ln
(

R
NNS

)
+ ln

(
1

1 + e−β∆εAI

)]
. (4.49)

If we were only to use Eq. 4.49, the statement brought up by the anonymous re-

viewer would be true since changes in ∆εAI could be compensated by changes in

∆εRA or NNS. But as specified in Sec. 4.2, this is not the case for cells with multiple

promoters.
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The case of multiple promoters can be handled using the Canonical ensemble as

is or using the Grand Canonical ensemble as detailed in [40]. Our point is more

clearly seen in the case of the Canonical ensemble. Under this formalism, the fold-

change equation is given by [39]

fold-change =
∑

min(N,R)
m=0

R!
(NNS)m(R−m)! (

N
m)e
−βm∆εRA(N −m)

N ∑
min(N,R)
m=0

R!
(NNS)m(R−m)! (

N
m)e
−βm∆εRA

, (4.50)

where N is the number of promoters. Notice that we can group the terms including

NNS and ∆εRA as

fold-change =
∑

min(N,R)
m=0

R!
(R−m)! (

N
m)
(

e−β∆εRA
NNS

)m
(N −m)

N ∑
min(N,R)
m=0

R!
(R−m)! (

N
m)
(

e−β∆εRA
NNS

)m , (4.51)

to highlight that it is a combination of these two parameters that matter, rather

than their individual values. For the case of the ∆εAI parameter, this is not the

case. Every term containing R on Eq. 4.51 is effectively multiplied by Eq. 2.4.

Since these terms are included inside the factorials, it is not true that a simple

compensation by the other parameters allows us to define ∆εAI to be any value.

Therefore as defined in Sec. 4.3, the parameter ∆εAI can be independently inferred

using multiple promoter measurements of fold change.

As a final note, we can also check whether NNS = 4.6× 106 is at all a reasonable

value to use. One potential point of concern is whether the chromosomal DNA

is occupied by other transcription factors that may reduce the availability of the

DNA for repressor or RNAP to bind. Here we consider data from a recent census

of protein abundance across the E. coli genome. In that work, Schmidt et al. [135]

measured the protein copy number across more than half the coding genes (greater

than 95% by total protein mass). During exponential growth in M9 minimal media

with 0.5 % glucose, they found that about 6 % of the protein mass, or 311,000

monomer copies per cell, are proteins such as transcription factors that will be

bound to the DNA (about two-thirds of these are nucleoid-associated proteins such

as HNS and HU).
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To make a simple estimate of DNA occupancy, let us assume that all transcription

factors bind DNA as dimers and occupy a DNA length of 15 bp (this appears to

vary from 7 bp to 38 bp in E. coli on RegulonDB [141]), we find that about 2.3 kbp

or about half of the genome will be occupied. In the most extreme case, we could

assume that this fraction is inaccessible, which would reduce NNS by a factor of

about 2. Applying this to Eq. 4.46, we see that this has a negligible effect on the

actual binding energy that we would infer and only corresponds to a change in

energy εRA by about 0.7 kBT.

4.14 Measurement of Steady State

All measurements have been performed with cells in an exponential growth phase,

where we expect an average expression to be maintained across the cell popula-

tion. Here we wanted to use one of our strains (O2 ∆εRA = −13.9 kBT, R = 260) to

show that gene expression is under steady-state for our experimental conditions.

As a reminder, we begin by growing an overnight culture in Lysogeny Broth for

each of the required strains under our standard protocol. After approximately 12

hours, the saturated cultures are diluted 1000-fold into a 2 mL 96-deep-well plate.

Each well contains 500 µL of M9 minimal media supplemented with 0.5% w/v

glucose and the appropriate IPTG inducer concentration.
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(A) (B)

Figure 4.29: Time course measurement of single-cell fluorescence by flow cytometry—data set
1. Flow cytometry measurements were performed at different time points following a 1000-fold
dilution of an overnight culture. Cell strains were grown in M9 minimal media supplemented
with 0.5% w/v glucose and IPTG c = 50 µM. OD600nm measurements are shown for the three
strains. (B) The fold-change is calculated for each measurement shown in Panel (A). Note that each
measurement represents a different culture grown in a 96-deep-well plate.

Here we follow the protocol as noted above but take measurements in one-hour

increments after the 1000-fold dilution. We performe this in triplicate with our O2

∆εRA = −13.9 kBT, R = 260 strain (IPTG inducer concentration c = 50 µM), and

also include an autofluorescence strain and O2 ∆lacI strain. In Fig. 4.29(A) we plot

the optical density (OD600nm) as a function of time and see that growth is reason-

ably consistent between strains and their replicates. The shaded gray bar indicates

an OD 0.3, which is the density at which we typically make our measurements.

In Fig. 4.29(B), we show the associated fold-change measurements (using flow cy-

tometry). While it does look like there is a steady increase in fold-change from 0

to 4 hours, it seems to level off past this time point. However, there was also a

large degree of variation in our measurements, making it difficult to say that the

fold-change is not changing over time.

In Fig. 4.31, we also plot the raw fluorescence values against the measured OD600nm

values. The variation is rather large, but it does appear that the overall expression

is relatively constant across two decades of OD600nm.
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Figure 4.30: Time course measurement of single-cell fluorescence versus OD600nm—data set 1.
Fluorescence measurements used to calculate fold-change from Fig. 4.29(B) are plotted against their
OD600nm. Error bars represent standard deviation from the triplicate culture measurements from
growth in a 96-deep-well plate.

In a separate set of replicates, we observed more consistent fold-change measure-

ments over these later time points. Fig. 4.31(A) shows the average single-cell flu-

orescence from these measurements. While there does appear to be a downward

trend in both the R = 260 strain and the ∆lacI strain, this is perhaps due to cul-

tures leaving exponential growth (mistakenly, OD600nm was not measured in this

attempt). In contrast to the data in Fig. 4.30(B), we found that fold-change did not

appreciably change across these measurements (Fig. 4.31(B)). Given the differences

across these two sets of experiments, it will be essential to perform more experi-

ments before drawing any definite opinions about the above results.
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Figure 4.31: Time course measurement of single-cell fluorescence by flow cytometry - data set
2. Flow cytometry measurements were performed at different time points following a 1000-fold
dilution of an overnight culture. Cell strains were grown in M9 minimal media supplemented
with 0.5% w/v glucose and IPTG c = 50 µM. Mean fluorescence values are shown for strain O2
∆εRA = −13.9 kBT with R = 260, O2 ∆lacI, and an autofluorescence strain. Data points represent
measurements from separate 500 µL cell cultures. The fold change is calculated for each measure-
ment shown in Panel .

E. coli Primer and Strain List

Here we provide additional details about the strains’ genotypes and the primer

sequences used to generate them. E. coli strains were derived from K12 MG1655.

For those containing R = 22, we used strain HG104, which additionally has the

lacYZA operon deleted (positions 360,483 to 365,579) but still contains the native

lacI locus. All other strains used strain HG105, where both the lacYZA and lacI

operons have both been deleted (positions 360,483 to 366,637).

All 25x+11-yfp expression constructs were integrated at the galK locus (between

positions 1,504,078 and 1,505,112) while the 3*1x-lacI constructs were integrated

at the ybcN locus (between positions 1,287,628 and 1,288,047). Integration was

performed with λ Red recombineering [88] as described in [20]. We follow the

notation of Lutz and Bujard [79] for the nomenclature of the different constructs

used. Specifically, the first number refers to the antibiotic resistance cassette that is

present for selection (2 = kanamycin, 3 = chloramphenicol, and 4 = spectinomycin),

and the second number refers to the promoter used to drive the expression of ei-
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ther YFP or LacI (1 = PLtetO−1, and 5 = lacUV5). Note that in 25x+11-yfp, x refers

to the LacI operator used, which is centered at +11 (or begins at the transcription

start site). For the different LacI constructs, 3*1x-lacI, x refers to the different ri-

bosomal binding site modifications that provide different repressor copy numbers

and follows from [20]. The asterisk refers to the presence of FLP recombinase sites

flanking the chloramphenicol resistance gene that can be used to lose this resis-

tance. However, we maintained the resistance gene in our constructs. A summary

of the final genotypes of each strain is listed in Table 4.4. In addition, each strain

also contained the plasmid pZS4*1-mCherry and provided constitutive expression

of the mCherry fluorescent protein. This pZS plasmid is a low copy (SC101 origin

of replication) where like with 3*1x-lacI, mCherry is driven by a PLtetO−1 promoter.

Table 4.4: E. coli strains used in this work. Each strain contains a unique operator-yfp construct

for measurement of fluorescence, and R refers to the dimer copy number as measured by [20].

Strain Genotype

O1, R = 0 HG105::galK <>25O1+11-yfp

O1, R = 22 HG104::galK <>25O1+11-yfp

O1, R = 60 HG105::galK <>25O1+11-yfp, ybcN <>3*1RBS1147-lacI

O1, R = 124 HG105::galK <>25O1+11-yfp, ybcN <>3*1RBS1027-lacI

O1, R = 260 HG105::galK <>25O1+11-yfp, ybcN <>3*1RBS446-lacI

O1, R = 1220 HG105::galK <>25O1+11-yfp, ybcN <>3*1RBS1-lacI

O1, R = 1740 HG105::galK <>25O1+11-yfp, ybcN <>3*1-lacI (RBS1L)

O2, R = 0 HG105::galK <>25O2+11-yfp

O2, R = 22 HG104::galK <>25O2+11-yfp

O2, R = 60 HG105::galK <>25O2+11-yfp, ybcN <>3*1RBS1147-lacI

O2, R = 124 HG105::galK <>25O2+11-yfp, ybcN <>3*1RBS1027-lacI

O2, R = 260 HG105::galK <>25O2+11-yfp, ybcN <>3*1RBS446-lacI
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Strain Genotype

O2, R = 1220 HG105::galK <>25O2+11-yfp, ybcN <>3*1RBS1-lacI

O2, R = 1740 HG105::galK <>25O2+11-yfp, ybcN <>3*1-lacI (RBS1L)

O3, R = 0 HG105::galK <>25O3+11-yfp

O3, R = 22 HG104::galK <>25O3+11-yfp

O3, R = 60 HG105::galK <>25O3+11-yfp, ybcN <>3*1RBS1147-lacI

O3, R = 124 HG105::galK <>25O3+11-yfp, ybcN <>3*1RBS1027-lacI

O3, R = 260 HG105::galK <>25O3+11-yfp, ybcN <>3*1RBS446-lacI

O3, R = 1220 HG105::galK <>25O3+11-yfp, ybcN <>3*1RBS1-lacI

O3, R = 1740 HG105::galK <>25O3+11-yfp, ybcN <>3*1-lacI (RBS1L)

Oid, R = 0 HG105::galK <>25Oid+11-yfp

Oid, R = 22 HG104::galK <>25Oid+11-yfp

Oid, R = 60 HG105::galK <>25Oid+11-yfp, ybcN <>3*1RBS1147-lacI

Oid, R = 124 HG105::galK <>25Oid+11-yfp, ybcN <>3*1RBS1027-lacI

Oid, R = 260 HG105::galK <>25Oid+11-yfp, ybcN <>3*1RBS446-lacI

Oid, R = 1220 HG105::galK <>25Oid+11-yfp, ybcN <>3*1RBS1-lacI

Oid, R = 1740 HG105::galK <>25Oid+11-yfp, ybcN <>3*1-lacI (RBS1L)
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C h a p t e r 5

SUPPORTING INFORMATION FOR FIRST-PRINCIPLES
PREDICTION OF THE INFORMATION PROCESSING CAPACITY

OF A SIMPLE GENETIC CIRCUIT

A version of this chapter originally appeared as Razo-Mejia, M., Marzen, S., Chure,

G., Taubman, R., Morrison, M., and Phillips, R. (2020). First-principles prediction

of the information processing capacity of a simple genetic circuit. Physical Review

E 102, 022404. DOI:https://doi:10.1103/PhysRevE.102.022404.

5.1 Abstract

Given the stochastic nature of gene expression, genetically identical cells exposed

to the same environmental inputs will produce different outputs. This heterogene-

ity has been hypothesized to have consequences for how cells are able to survive

in changing environments. Recent work has explored the use of information the-

ory as a framework to understand the accuracy with which cells can ascertain the

state of their surroundings. Yet the predictive power of these approaches is lim-

ited and has not been rigorously tested using precision measurements. To that

end, we generate a minimal model for a simple genetic circuit in which all param-

eter values for the model come from independently published data sets. We then

predict the information processing capacity of the genetic circuit for a suite of bio-

physical parameters such as protein copy number and protein-DNA affinity. We

compare these parameter-free predictions with an experimental determination of

protein expression distributions and the resulting information processing capacity

of E. coli cells. We find that our minimal model captures the scaling of the cell-to-

cell variability in the data and the inferred information processing capacity of our

simple genetic circuit up to a systematic deviation.
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5.2 Three-State Promoter Model for Simple Repression

To tackle the question of how much information the simple repression motif can

process, we require the joint probability distribution of mRNA and protein P(m, p; t).

To obtain this distribution, we use the chemical master equation formalism. Specif-

ically, we assume a three-state model, where the promoter can be found 1) in a

transcriptionally active state (A state), 2) in a transcriptionally inactive state with-

out the repressor bound (I state), and 3) with the repressor bound (R state). (see

Fig. 3.2(A)). These three states generate a system of coupled differential equations

for each of the three state distributions PA(m, p), PI(m, p), and PR(m, p). Given the

rates shown in Fig. 3.2(A), let us define the system of ODEs. For the transcription-

ally active state, we have

dPA(m, p)
dt

= −

A→I︷ ︸︸ ︷
k(p)

off PA(m, p) +

I→A︷ ︸︸ ︷
k(p)

on PI(m, p)

+

m−1→m︷ ︸︸ ︷
rmPA(m− 1, p)−

m→m+1︷ ︸︸ ︷
rmPA(m, p) +

m+1→m︷ ︸︸ ︷
γm(m + 1)PA(m + 1, p)−

m→m−1︷ ︸︸ ︷
γmmPA(m, p)

+

p−1→p︷ ︸︸ ︷
rpmPA(m, p− 1)−

p→p+1︷ ︸︸ ︷
rpmPA(m, p) +

p+1→p︷ ︸︸ ︷
γp(p + 1)PA(m, p + 1)−

p→p−1︷ ︸︸ ︷
γp pPA(m, p) .

(5.1)

For the inactive promoter state I, we have

dPI(m, p)
dt

=

A→I︷ ︸︸ ︷
k(p)

off PA(m, p)−

I→A︷ ︸︸ ︷
k(p)

on PI(m, p) +

R→I︷ ︸︸ ︷
k(r)off PR(m, p)−

I→R︷ ︸︸ ︷
k(r)on PI(m, p)

+

m+1→m︷ ︸︸ ︷
γm(m + 1)PI(m + 1, p)−

m→m−1︷ ︸︸ ︷
γmmPI(m, p)

+

p−1→p︷ ︸︸ ︷
rpmPI(m, p− 1)−

p→p+1︷ ︸︸ ︷
rpmPI(m, p) +

p+1→p︷ ︸︸ ︷
γp(p + 1)PI(m, p + 1)−

p→p−1︷ ︸︸ ︷
γp pPI(m, p) .

(5.2)



182

And finally, for the repressor bound state R, we have

dPR(m, p)
dt

= −

R→I︷ ︸︸ ︷
k(r)off PR(m, p) +

I→R︷ ︸︸ ︷
k(r)on PI(m, p)

+

m+1→m︷ ︸︸ ︷
γm(m + 1)PR(m + 1, p)−

m→m−1︷ ︸︸ ︷
γmmPR(m, p)

+

p−1→p︷ ︸︸ ︷
rpmPR(m, p− 1)−

p→p+1︷ ︸︸ ︷
rpmPR(m, p) +

p+1→p︷ ︸︸ ︷
γp(p + 1)PR(m, p + 1)−

p→p−1︷ ︸︸ ︷
γp pPR(m, p) .

(5.3)

For an unregulated promoter, i.e., a promoter in a cell that has no repressors present

and therefore constitutively expresses the gene, we use a two-state model in which

the state R is not allowed. All the terms in the system of ODEs containing k(r)on or

k(r)off are then set to zero.

It is convenient to express this system using matrix notation [26]. For this, we

define P(m, p) = (PA(m, p), PI(m, p), PR(m, p))T. Then the system of ODEs can be

expressed as

dP(m, p)
dt

= KP(m, p)− RmP(m, p) + RmP(m− 1, p)

−mΓmP(m, p) + (m + 1)ΓmP(m + 1, p)

−mRpP(m, p) + mRpP(m, p− 1)

− pΓpP(m, p) + (p + 1)ΓpP(m, p + 1),

(5.4)

where we defined matrices representing the promoter state transition K,

K ≡


−k(p)

off k(p)
on 0

k(p)
off −k(p)

on − k(r)on k(r)off

0 k(r)on −k(r)off

 , (5.5)

mRNA production, Rm, and degradation, Γm, as

Rm ≡


rm 0 0

0 0 0

0 0 0

 , (5.6)
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and

Γm ≡


γm 0 0

0 γm 0

0 0 γm

 . (5.7)

For the protein, we also define production Rp and degradation Γp matrices as

Rp ≡


rp 0 0

0 rp 0

0 0 rp

 (5.8)

and

Γp ≡


γp 0 0

0 γp 0

0 0 γp

 . (5.9)

The corresponding equation for the unregulated two-state promoter takes the same

form with the definition of the matrices following the same scheme without includ-

ing the third row and third column, and setting k(r)on and k(r)off to zero.

A closed-form solution for this master equation might not even exist. The approx-

imate solution of chemical master equations of this kind is an active area of re-

search. As we will see later in this chapter, the two-state promoter master equation

has been analytically solved for the mRNA [116] and protein distributions [142].

For our purposes, we will detail how to use the Maximum Entropy principle to

approximate the full distribution for the two- and three-state promoter.

5.3 Parameter Inference

(Note: The Python code used for the calculations presented in this section can be

found in the following link as an annotated Jupyter notebook.)

To generate falsifiable predictions with meaningful parameters, we infer the ki-

netic rates for this three-state promoter model using different data sets generated

in our lab over the last decade concerning different aspects of the regulation of

the simple repression motif. For example, for the unregulated promoter transi-

tion rates k(p)
on and k(p)

off and the mRNA production rate rm, we use single-molecule

https://www.rpgroup.caltech.edu//chann_cap/software/chemical_master_mRNA_FISH_mcmc.html
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mRNA FISH counts from an unregulated promoter [84]. Once these parameters

are fixed, we use the values to constrain the repressor rates k(r)on and k(r)off . These

repressor rates are obtained using information from mean gene expression mea-

surements from bulk LacZ colorimetric assays [20]. We also expand our model

to include the allosteric nature of the repressor protein, taking advantage of video

microscopy measurements done in the context of multiple promoter copies [39]

and flow-cytometry measurements of the mean response of the system to different

levels of induction [113]. In what follows, we detail the steps taken to infer the

parameter values. At each step, the values of the parameters inferred in previous

steps constrain the values of the parameters that are not yet determined, building

in this way a self-consistent model informed by work that spans several experi-

mental techniques.

Unregulated Promoter Rates

We begin our parameter inference problem with the promoter on and off rates k(p)
on

and k(p)
off , as well as the mRNA production rate rm. In this case, there are only

two states available to the promoter— the inactive state I and the transcription-

ally active state A. That means that the third ODE for PR(m, p) is removed from

the system. The mRNA steady-state distribution for this particular two-state pro-

moter model was solved analytically by Peccoud and Ycart [116]. This distribution

P(m) ≡ PI(m) + PA(m) is of the form

P(m|k(p)
on ,k(p)

off ,rm,γm)=

Γ

 k(p)
on
γm +m


Γ(m+1)Γ

 k(p)
off +k(p)

on
γm +m


Γ

 k(p)
off +k(p)

on
γm


Γ

 k(p)
on
γm

 ( rm
γm )

m
F1

1

(
k(p)
on
γm +m,

k(p)
off +k(p)

on
γm +m,− rm

γm

)
,

(5.10)
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Figure 5.1: lacUV5 mRNA per cell distribution. Data from [84] of the unregulated lacUV5 pro-
moter as inferred from single-molecule mRNA FISH. The Python code (ch5_fig01.py) used to
generate this figure can be found on the original paper’s GitHub repository.

where Γ(·) is the gamma function, and F1
1 is the confluent hypergeometric function

of the first kind. This rather complicated expression will aid us in finding param-

eter values for the rates. The inferred rates k(p)
on , k(p)

off , and rm will be expressed in

units of the mRNA degradation rate γm. This is because the model in Eq. 5.10 is

homogeneous in time, meaning that if we divide all rates by a constant, it would

be equivalent to multiplying the characteristic time scale by the same constant. As

we will discuss in the next section, Eq. 5.10 has degeneracy in the parameter val-

ues. What this means is that a change in one of the parameters, specifically rm, can

be compensated by a change in another parameter, specifically k(p)
off , to obtain the

same distribution. To work around this intrinsic limitation of the model, we will

include information from what we know from equilibrium-based models in our

inference prior.

Bayesian Parameter Inference of RNAP Rates

To make progress at inferring the unregulated promoter state transition rates, we

make use of the single-molecule mRNA FISH data from Jones et al. [84]. Fig. 5.1

shows the distribution of mRNA per cell for the lacUV5 promoter used for our

inference. This promoter, being very strong, has a mean copy number of 〈m〉 ≈ 18

mRNA/cell.

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS01.py
https://github.com/RPGroup-PBoC/chann_cap
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Having these data in hand, we now turn to Bayesian parameter inference. Writing

Bayes’ theorem, we have

P(k(p)
on , k(p)

off , rm | D) =
P(D | k(p)

on , k(p)
off , rm)P(k(p)

on , k(p)
off , rm)

P(D)
, (5.11)

where D represents the data. For this case, the data consists of single-cell mRNA

counts D = {m1, m2, . . . , mN}, where N is the number of cells. We assume that

each cell’s measurement is independent of the others such that we can rewrite Eq.

5.11 as

P(k(p)
on , k(p)

off , rm | {mi}) ∝

[
N

∏
i=1

P(mi | k(p)
on , k(p)

off , rm)

]
P(k(p)

on , k(p)
off , rm), (5.12)

where we ignore the normalization constant P(D). The likelihood term P(mi |

k(p)
on , k(p)

off , rm) is exactly given Eq. 5.10 by with γm = 1. Given that we have

this functional form for the distribution, we can use Markov Chain Monte Carlo

(MCMC) sampling to explore the 3D parameter space in order to fit 5.10 to the

mRNA-FISH data.

Constraining the Rates Given Prior Thermodynamic Knowledge

One of the Bayesian approach’s strengths is that we can include all the prior knowl-

edge on the parameters when performing an inference [97]. Basic features such

as the fact that the rates have to be strictly positive constrain these parameters’

values. We know more than the simple constraint of non-negative values for the

specific rates analyzed in this section. For example, the expression of an unregu-

lated promoter has been studied from a thermodynamic perspective [43]. Given

the underlying assumptions of these equilibrium models, in which the probability

of finding the RNAP bound to the promoter is proportional to the transcription

rate [50], they can only make statements about the mean expression level. Never-

theless, if both the thermodynamic and kinetic models describe the same process,

the mean gene expression level predictions must agree. That means that we can
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use what we know about the mean gene expression and how this is related to pa-

rameters such as molecule copy numbers and binding affinities to constrain the

values that the rates in question can take.

In the case of this two-state promoter, it can be shown that the mean number of

mRNA is given by [26] (see Sec. 5.3 for moment computation)

〈m〉 = rm

γm

k(p)
on

k(p)
on + k(p)

off

. (5.13)

Another way of expressing this is as rm
γm
× p(p)

active, where p(p)
active is the probability

of the promoter being in the transcriptionally active state. The thermodynamic

picture has an equivalent result where the mean number of mRNA is given by

[43,50]

〈m〉 = rm

γm

P
NNS

e−β∆εp

1 + P
NNS

e−β∆εp
, (5.14)

where P is the number of RNAP per cell, NNS is the number of non-specific binding

sites, ∆εp is the RNAP binding energy in kBT units and β ≡ (kBT)−1. Using Eq.

5.13 and Eq. 5.14, we can easily see that if these frameworks are to be equivalent,

then it must be true that
k(p)

on

k(p)
off

=
P

NNS
e−β∆εp , (5.15)

or equivalently

ln

(
k(p)

on

k(p)
off

)
= −β∆εp + ln P− ln NNS. (5.16)

To put numerical values into these variables, we can use information from the

literature. The RNAP copy number is of order P ≈ 1000− 3000 RNAP/cell for

a one-hour doubling time [53]. As for the number of non-specific binding sites

and the binding energy, we have that NNS = 4.6× 106 [50] and −β∆εp ≈ 5− 7

[43]. Given these values, we define a Gaussian prior for the log ratio of these two

quantities of the form

P

(
ln

(
k(p)

on

k(p)
off

))
∝ exp

−
(

ln
(

k(p)
on

k(p)
off

)
−
(
−β∆εp + ln P− ln NNS

))2

2σ2

 , (5.17)
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where σ is the variance that accounts for the uncertainty in these parameters. We

include this prior as part of the prior term P(k(p)
on , k(p)

off , rm) of Eq. 5.12. We then use

MCMC to sample the posterior distribution given by Eq. 5.12. Fig. 5.2 shows the

MCMC samples of the posterior distribution. For the case of the k(p)
on parameter,

there is a single symmetric peak. k(p)
off and rm have a rather long tail towards large

values. The 2D projection of k(p)
off vs. rm shows that the model is sloppy, meaning

that the two parameters are highly correlated. This feature is a common prob-

lem for many non-linear systems used in biophysics and systems biology [143].

What this implies is that we can change the value of k(p)
off , and then compensate

by a change in rm to maintain the shape of the mRNA distribution. Therefore, it

is impossible for the data and the model to narrow down a single value for the

parameters. Nevertheless, since we included the prior information on the rates

as given by the analogous form between the equilibrium and non-equilibrium ex-

pressions for the mean mRNA level, we obtained a more constrained parameter

value for the RNAP rates and the transcription rate we will take as the peak of this

long-tailed distribution.

The inferred values k(p)
on = 4.3+1

−0.3, k(p)
off = 18.8+120

−10 and rm = 103.8+423
−37 are given in

units of the mRNA degradation rate γm. Given the asymmetry of the parameter

distributions, we report the upper and lower bound of the 95th percentile of the

posterior distributions. Assuming a mean life-time for mRNA of ≈ 3 min (from

this link), we have an mRNA degradation rate of γm ≈ 2.84 × 10−3s−1. Using

this value gives the following values for the inferred rates: k(p)
on = 0.024+0.005

−0.002s−1,

k(p)
off = 0.11+0.66

−0.05s−1, and rm = 0.3+2.3
−0.2s−1.

Fig. 5.3 compares the experimental data from Fig. 5.1 with the resulting distribu-

tion obtained by substituting the most likely parameter values into Eq. 5.10. As

we can see, this two-state model fits the data adequately.

http://bionumbers.hms.harvard.edu/bionumber.aspx?&id=107514&ver=1&trm=mRNA%20mean%20lifetime
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Figure 5.2: MCMC posterior distribution. Sampling out of Eq. 5.12, the plot shows 2D and 1D pro-
jections of the 3D parameter space. The parameter values are (in units of the mRNA degradation
rate γm) k(p)

on = 4.3+1
−0.3, k(p)

off = 18.8+120
−10 and rm = 103.8+423

−37 which are the modes of their respec-
tive distributions, where the superscripts and subscripts represent the upper and lower bounds of
the 95th percentile of the parameter value distributions. The Python code (ch5_fig02.py) used to
generate this figure can be found on the original paper’s GitHub repository.
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Figure 5.3: Experimental vs. theoretical distribution of mRNA per cell using parameters from
Bayesian inference. Dotted line shows the result of using Eq. 5.10 along with the parameters
inferred for the rates. Blue bars are the same data as Fig. 5.1 obtained from [84]. The Python code
(ch5_fig03.py) used to generate this figure can be found on the original paper’s GitHub repository.

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS02.py
https://github.com/RPGroup-PBoC/chann_cap
https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS03.py
https://github.com/RPGroup-PBoC/chann_cap
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Accounting for Variability in the Number of Promoters

As discussed in ref. [84] and further expanded in [118], an essential source of cell-

to-cell variability in gene expression in bacteria is the fact that, depending on the

growth rate and the position relative to the chromosome replication origin, cells

can have multiple copies of any given gene. Genes closer to the replication origin

have, on average, higher gene copy numbers compared to genes at the opposite

end. For the locus in which our reporter construct is located (galK) and the dou-

bling time of the mRNA FISH experiments, we expect to have ≈ 1.66 copies of the

gene [17,84]. This implies that the cells spend 2/3 of the cell cycle with two copies

of the promoter and the rest with a single copy.

To account for this variability in gene copy, we extend the model assuming that

when cells have two copies of the promoter, the mRNA production rate is 2rm

compared to the rate rm for a single promoter copy. The probability of observing a

particular mRNA copy m is therefore given by

P(m)=P(m|one promoter)·P(one promoter)+P(m|two promoters)·P(two promoters). (5.18)

Both terms P(m | promoter copy) are given by Eq. 5.10 with the only difference

being the rate rm. It is important to acknowledge that Eq. 5.18 assumes that once

the gene is replicated, the time scale in which the mRNA count relaxes to the new

steady state is much shorter than the time that the cells spend in this two pro-

moter copies state. This approximation should be valid for a short-lived mRNA

molecule, but the assumption is not applicable for proteins whose degradation

rate is comparable to the cell cycle length as explored in Sec. 5.5.

To repeat the Bayesian inference, including this variability in gene copy number,

we must split the mRNA count data into two sets—cells with a single copy of the

promoter and cells with two copies of the promoter. There is no labeling of the

locus for the single-molecule mRNA FISH data, making it impossible to determine

the promoter’s number of copies for any given cell. We, therefore, follow Jones et

al. [84] in using the cell area as a proxy for the stage in the cell cycle. They sorted

cells by area in their approach, considering cells below the 33th percentile having
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Figure 5.4: Separation of cells based on cell size. Using the area as a proxy for position in the
cell cycle, cells can be sorted into two groups—small cells (with one promoter copy) and large cells
(with two promoter copies). The vertical black line delimits the threshold that divides both groups
as weighted by Eq. 5.19. The Python code (ch5_fig04.py) used to generate this figure can be found
on the original paper’s GitHub repository.

a single promoter copy and the rest as having two copies. This approach ignores

that cells are not uniformly distributed along the cell cycle. As first derived in

[120], populations of cells in a log-phase are exponentially distributed along the

cell cycle. This distribution is of the form

P(a) = (ln 2) · 21−a, (5.19)

where a ∈ [0, 1] is the stage of the cell cycle, with a = 0 being the start of the cycle

and a = 1 being the cell division (see Sec. 5.10 for a derivation of Eq. 5.19). Fig. 5.4

shows the separation of the two groups based on the area where Eq. 5.19 was used

to weight the distribution along the cell cycle.

A subtle but important consequence of Eq. 5.19 is that computing any quantity for

a single cell is not equivalent to computing the same quantity for a population of

cells. For example, let us assume that we want to compute the mean mRNA copy

number 〈m〉. For a single cell, this would be of the form

〈m〉cell = 〈m〉1 · f + 〈m〉2 · (1− f ), (5.20)

where 〈m〉i is the mean mRNA copy number with i promoter copies in the cell, and

f is the fraction of the cell cycle that cells spend with a single copy of the promoter.

For a single cell, the probability of having a single promoter copy is equivalent to

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS04.py
https://github.com/RPGroup-PBoC/chann_cap
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Figure 5.5: mRNA distribution for small and large cells. (A) histogram and (B) the cumula-
tive distribution function of the small and large cells as determined in Fig. 5.4. The triangles
above histograms in (A) indicate the mean mRNA copy number for each group. The Python code
(ch5_fig05.py) used to generate this figure can be found on the original paper’s GitHub repository.

this fraction f . But Eq. 5.19 tells us that if we sample unsynchronized cells, we are

not sampling uniformly across the cell cycle. Therefore for a population of cells,

the mean mRNA is given by

〈m〉population = 〈m〉1 · φ + 〈m〉2 · (1− φ) (5.21)

where the probability of sampling a cell with one promoter φ is given by

φ =
∫ f

0
P(a)da, (5.22)

where P(a) is given by Eq. 5.19. What this equation computes is the probability of

sampling a cell during a stage of the cell cycle < f where the reporter gene has not

been replicated yet. Fig. 5.5 shows the distribution of both groups. As expected,

larger cells have a higher mRNA copy number on average.

We modify Eq. 5.12 to account for the two separate groups of cells. Let Ns be the

number of cells in the small size group and Nl the number of cells in the large size

group. Then the posterior distribution for the parameters is of the form

P(k(p)
on ,k(p)

off ,rm|{mi})∝
[
∏Ns

i=1 P(mi|k
(p)
on ,k(p)

off ,rm)
][

∏
Nl
j=1 P(mj|k

(p)
on ,k(p)

off ,2rm)
]

P(k(p)
on ,k(p)

off ,rm), (5.23)

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS05.py
https://github.com/RPGroup-PBoC/chann_cap
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where we split the product of small and large cells.

For the two-promoter model, the prior shown in Eq. 5.17 requires a small modifica-

tion. Eq. 5.21 gives the mean mRNA copy number of a population of asynchronous

cells growing at a steady-state. Given that we assume that the only difference be-

tween having one vs. two promoter copies state is the change in transcription rate

from rm in the single promoter case to 2rm in the two-promoter case, we can write

Eq. 5.21 as

〈m〉 = φ · rm

γm

k(p)
on

k(p)
on + k(p)

off

+ (1− φ) · 2rm

γm

k(p)
on

k(p)
on + k(p)

off

. (5.24)

This can be simplified to

〈m〉 = (2− φ)
rm

γm

k(p)
on

k(p)
on + k(p)

off

. (5.25)

Equating Eq. 5.25 and Eq. 5.14 to again require self-consistent predictions of the

mean mRNA from the equilibrium and kinetic models gives

(2− φ)
k(p)

on

k(p)
on + k(p)

off

=
P

NNS
e−β∆εp

1 + P
NNS

e−β∆εp
. (5.26)

Solving for k(p)
on

k(p)
off

results in (
k(p)

on

k(p)
off

)
=

ρ

[(1 + ρ)(2− φ)− ρ]
, (5.27)

where we define ρ ≡ P
NNS

e−β∆εp . To simplify things further, we notice that for the

specified values of P = 1000− 3000 per cell, NNS = 4.6× 106 bp, and −β∆εp =

5− 7, we can safely assume that ρ� 1. This simplifying assumption has been pre-

viously called the weak promoter approximation [20]. Given this, we can simplify

Eq. 5.27 as
k(p)

on

k(p)
off

=
1

2− φ

P
NNS

e−β∆εp . (5.28)

Taking the log of both sides gives

ln

(
k(p)

on

k(p)
off

)
= − ln(2− φ) + ln P− ln NNS − β∆εp. (5.29)



194

30
0

60
0

90
012

00

(
)

6.0 6.6 7.2 7.8
( )

50
010

00
15

00
20

00
25

00

30
0

60
0

90
0

12
00

( )
50

0
10

00
15

00
20

00
25

00

Figure 5.6: MCMC posterior distribution for a multi-promoter model. Sampling out of Eq. 5.23,
the plot shows 2D and 1D projections of the 3D parameter space. The parameter values are (in units
of the mRNA degradation rate γm) k(p)

on = 6.4+0.8
−0.4, k(p)

off = 132+737
−75 and rm = 257+1307

−132 which are the
modes of their respective distributions, where the superscripts and subscripts represent the upper
and lower bounds of the 95th percentile of the parameter value distributions. The sampling was
bounded to values < 1000 for numerical stability when computing the confluent hypergeometric
function. The Python code (ch5_fig06.py) used to generate this figure can be found on the original
paper’s GitHub repository.

With this, we can set as before a Gaussian prior to constrain the ratio of the RNAP

rates as

P

(
ln

(
k(p)

on

k(p)
off

))
∝ exp

−
(

ln
(

k(p)
on

k(p)
off

)
−
[
− ln(2− φ)− β∆εp + ln P− ln NNS

)]2

2σ2

 .

(5.30)

Fig. 5.6 shows the result of sampling out of Eq. 5.23. Again we see that the model

is highly sloppy with large credible regions obtained for k(p)
off and rm. Neverthe-

less, the prior information allows us to get parameter values consistent with the

equilibrium picture.

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS06.py
https://github.com/RPGroup-PBoC/chann_cap
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Figure 5.7: Experimental vs. theoretical distribution of mRNA per cell using parameters for
multi-promoter model. (A) Solid line shows the result of using Eq. 5.18 with the parameters
inferred by sampling Eq. 5.23. Blue bars are the same data as Fig. 5.1 from [84]. (B) Split distribu-
tions of small cells (light blue bars) and large cells (dark blue) with the corresponding theoretical
predictions with transcription rate rm (light blue line) and transcription rate 2rm (dark blue line).
The Python code (ch5_fig07.py) used to generate this figure can be found on the original paper’s
GitHub repository.

Using again a mRNA mean lifetime of ≈ 3 min gives the following values for the

parameters: k(p)
on = 0.03+0.004

−0.002s−1, k(p)
off = 0.7+4.1

−0.4s−1, and rm = 1.4+7.3
−0.7s−1. Fig. 5.7

shows the result of applying Eq. 5.18 using these parameter values. Specifically

Fig. 5.7(A) shows the global distribution, including cells with one and two pro-

moters and Fig. 5.7(B) split the distributions within the two populations. Given

that the model adequately describes both populations independently and pooled

together, we confirm that using the cell area as a proxy for the stage in the cell

cycle and the doubling of the transcription rate once cells have two promoters are

reasonable approximations.

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS07.py
https://github.com/RPGroup-PBoC/chann_cap
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It is hard to compare literature-reported values because these kinetic rates are ef-

fective parameters hiding a lot of the complexity of transcription initiation [8].

Also, the parameters’ non-identifiability restricts our explicit comparison of the

actual numerical values of the inferred rates. Nevertheless, from the model, we

can see that the mean burst size for each transcription event is given by rm/k(p)
off .

We obtain a mean burst size of ≈ 1.9 transcripts per cell from our inferred values.

This mean burst size is similar to the reported burst size of 1.15 on a similar system

on E. coli [144].

Repressor Rates from a Three-State Regulated Promoter

Having determined the unregulated promoter transition rates, we now proceed

to determine the repressor rates k(r)on and k(r)off . These rates’ values are constrained

again by the correspondence between our kinetic picture and what we know from

equilibrium models [51]. For this analysis, we again exploit the feature that, at the

mean, both the kinetic language and the thermodynamic language should have

equivalent predictions. Over the last decade, there has been a great effort in devel-

oping equilibrium models for gene expression regulation [48,50,145]. In particular,

our group has extensively characterized the simple repression motif using this for-

malism [20,39,113].

The dialogue between theory and experiments has led to simplified expressions

that capture the phenomenology of the gene expression response as a function of

natural variables such as molecule count and affinities between molecular players.

A particularly interesting quantity for the simple repression motif used by Garcia

& Phillips [20] is the fold-change in gene expression, defined as

fold-change =
〈gene expression(R 6= 0)〉
〈gene expression(R = 0)〉 , (5.31)

where R is the number of repressors per cell and 〈·〉 is the population average. The

fold-change is simply the mean expression level in the presence of the repressor

relative to the mean expression level in the absence of regulation. In the language
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of statistical mechanics, this quantity takes the form

fold-change =

(
1 +

R
NNS

e−β∆εr

)−1

, (5.32)

where ∆εr is the repressor-DNA binding energy, and as before, NNS is the number

of non-specific binding sites where the repressor can bind [20].

To compute the fold-change in the chemical master equation language, we com-

pute the first moment of the steady-state mRNA distribution 〈m〉 for both the

three-state promoter (R 6= 0) and the two-state promoter case (R = 0) (see Sec.

5.3 for moment derivation). The unregulated (two-state) promoter mean mRNA

copy number is given by Eq. 5.25. For the regulated (three-state) promoter, we

have an equivalent expression of the form

〈m(R 6= 0)〉 = (2− φ)
rm

γm

k(r)offk
(p)
on

k(p)
off k(r)off + k(p)

off k(r)on + k(r)offk
(p)
on

. (5.33)

Computing the fold-change then gives

fold-change =
〈m(R 6= 0)〉
〈m(R = 0)〉 =

k(r)off

(
k(p)

off + k(p)
on

)
k(p)

off k(r)on + k(r)off

(
k(p)

off + k(p)
on

) , (5.34)

where the factor (2− φ) due to the multiple promoter copies, the transcription rate

rm, and the mRNA degradation rate γm all cancel out.

Given that the number of repressors per cell R is an experimental variable that

we can control, we assume that the rate at which the promoter transitions from

the transcriptionally inactive state to the repressor bound state, k(r)on , is given by

the concentration of repressors [R] times a diffusion-limited on rate ko. For the

diffusion-limited constant ko, we use the value used by Jones et al. [84]. With this

in hand, we can rewrite Eq. 5.34 as

fold-change =

(
1 +

k0[R]

k(r)off

k(p)
off

k(p)
on + k(p)

off

)−1

. (5.35)
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We note that both Eq. 5.32 and Eq. 5.35 have the same functional form. Therefore

if both languages predict the same output for the mean gene expression level, it

must be true that
ko[R]

k(r)off

k(p)
off

k(p)
on + k(p)

off

=
R

NNS
e−β∆εr . (5.36)

Solving for k(r)off gives

k(r)off =
ko[R]NNSeβ∆εr

R
k(p)

off

k(p)
on + k(p)

off

. (5.37)

Since the reported value of ko is given in units of nM−1s−1 for the units to cancel

properly, the repressor concentration must be given in nM rather than absolute

count. If we consider that the repressor concentration is equal to

[R] =
R

Vcell
· 1

NA
, (5.38)

where R is the absolute repressor copy number per cell, Vcell is the cell volume, and

NA is Avogadro’s number. The E. coli cell volume is 2.1 fL [146], and Avogadro’s

number is 6.022× 1023. If we further include the conversion factor to turn M into

nM, we find that

[R] =
R

2.1× 10−15L
· 1

6.022× 1023 ·
109 nmol

1 mol
≈ 0.8× R. (5.39)

Using this, we simplify Eq. 5.37 as

k(r)off ≈ 0.8 · ko · NNSeβ∆εr ·
k(p)

off

k(p)
on + k(p)

off

. (5.40)

What Eq. 5.40 shows is the direct relationship that must be satisfied if the equi-

librium model is set to be consistent with the non-equilibrium kinetic picture.

Table 5.1 summarizes the values obtained for the three operator sequences used

throughout this work. To compute these numbers, the number of non-specific

binding sites NNS was taken to be 4.6 × 106 bp, i.e., the size of the E. coli K12

genome.
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Table 5.1: Binding sites and corresponding parameters.

Operator ∆εr (kBT) k(r)off (s
−1)

O1 -15.3 0.002

O2 -13.9 0.008

O3 -9.7 0.55

In-vivo measurements of the Lac repressor off rate have been done with single-

molecule resolution [147]. The authors report a mean residence time of 5.3± 0.2

minutes for the repressor on an O1 operator. The corresponding rate is k(r)off ≈

0.003 (s−1), very similar value to what we inferred from our model. In this same

reference, the authors determined that, on average, the repressor takes 30.9 ±

0.5 seconds to bind to the operator [147]. Given the kinetic model presented in

Fig. 3.2(A), this time can be converted to the probability of not being on the repres-

sor bound state Pnot R. This is computed as

Pnot R =
τnot R

τnot R + τR
, (5.41)

where τnot R is the average time that the repressor does not occupy the operator,

and τR is the average time that the repressor spends bound to the operator. Sub-

stituting the numbers from [147] gives Pnot R ≈ 0.088. From our model, we can

compute the zeroth moment
〈
m0p0〉 for each of the three promoter states. This

moment is equivalent to the probability of being on each of the promoter states.

Upon substitution of our inferred rate parameters, we can compute Pnot R as

Pnot R = 1− PR ≈ 0.046, (5.42)

where PR is the probability of the promoter being bound by the repressor. The

value we obtained is within a factor of two from the one reported in [147].
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5.4 Computing Moments from the Master Equation

This section will compute the moment equations for the distribution P(m, p). With-

out loss of generality, here, we will focus on the three-state regulated promoter.

The computation of the two-state promoter’s moments follows the same proce-

dure, changing only the matrices’ definition in the master equation.

Computing Moments of a Distribution

(Note: The Python code used for the calculations presented in this section can be

found in the following link as an annotated Jupyter notebook.)

To compute any moment of our chemical master equation, let us define a vector

〈mxpy〉 ≡ (〈mx py〉A , 〈mx py〉I , 〈mx py〉R)
T, (5.43)

where 〈mx py〉S is the expected value of mx py in state S ∈ {A, I, R} with x, y ∈

N. In other words, just as we defined the vector P(m, p), here we define a vector

to collect the expected value of each of the promoter states. By definition, these

moments 〈mx py〉S are computed as

〈mx py〉S ≡
∞

∑
m=0

∞

∑
p=0

mx pyPS(m, p). (5.44)

To simplify the notation, let ∑x ≡ ∑∞
x=0. Since we are working with a system of

three ODEs, one for each state, let us define the following operation:

〈mxpy〉 = ∑
m

∑
p

mx pyP(m, p) ≡


∑m ∑p mx pyPA(m, p)

∑m ∑p mx pyPI(m, p)

∑m ∑p mx pyPR(m, p)

 . (5.45)

With this in hand, we can then apply this sum over m and p to Eq. 3.9. For the

left-hand side, we have

∑
m

∑
p

mx py dP(m, p)
dt

=
d
dt

[
∑
m

∑
p

mx pyP(m, p)

]
, (5.46)

https://www.rpgroup.caltech.edu//chann_cap/software/moment_dynamics_system.html
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where we made use of the linearity property of the derivative to switch the order

between the sum and the derivative. Notice that the right-hand side of Eq. 5.46

contains the definition of a moment from Eq. 5.44. That means that we can rewrite

it as
d
dt

[
∑
m

∑
p

mx pyP(m, p)

]
=

d〈mxpy〉
dt

. (5.47)

Distributing the sum on the right-hand side of Eq. 3.9 gives

d〈mxpy〉
dt

= K ∑
m

∑
p

mx pyP(m, p)

− Rm ∑
m

∑
p

mx pyP(m, p) + Rm ∑
m

∑
p

mx pyP(m− 1, p)

− Γm ∑
m

∑
p
(m)mx pyP(m, p) + Γm ∑

m
∑
p
(m + 1)mx pyP(m + 1, p)

− Rp ∑
m

∑
p
(m)mx pyP(m, p) + Rp ∑

m
∑
p
(m)mx pyP(m, p− 1)

− Γp ∑
m

∑
p
(p)mx pyP(m, p) + Γp ∑

m
∑
p
(p + 1)mx pyP(m, p + 1).

(5.48)

Let us look at each term on the right-hand side individually. For the terms in

Eq. 5.48 involving P(m, p), we can again use Eq. 5.44 to rewrite them in a more

compact form. This means that we can rewrite the state transition term as

K ∑
m

∑
p

mx pyP(m, p) = K〈mxpy〉. (5.49)

The mRNA production term involving P(m, p) can be rewritten as

Rm ∑
m

∑
p

mx pyP(m, p) = Rm〈mxpy〉. (5.50)

In the same way, the mRNA degradation term gives

Γm ∑
m

∑
p
(m)mx pyP(m, p) = Γm

〈
m(x+1)py

〉
. (5.51)

For the protein production and degradation terms involving P(m, p), we have

Rp ∑
m

∑
p
(m)mx pyP(m, p) = Rp

〈
m(x+1)py

〉
, (5.52)
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and

Γp ∑
m

∑
p
(p)mx pyP(m, p) = Γp

〈
mxp(y+1)

〉
, (5.53)

respectively.

For the terms of the sum in Eq. 5.48 involving P(m ± 1, p) or P(m, p ± 1), we

can reindex the sum to work around this mismatch. To be more specific, let us

again look at each term case by case. For the mRNA production term involving

P(m− 1, p) we define m′ ≡ m− 1. Using this, we write

Rm ∑
m

∑
p

mx pyP(m− 1, p) = Rm

∞

∑
m′=−1

∑
p
(m′ + 1)x pyP(m′, p). (5.54)

Since having negative numbers of mRNA or protein does not make physical sense,

we have that P(−1, p) = 0. Therefore we can rewrite the sum starting from 0 rather

than from -1, obtaining

Rm

∞

∑
m′=−1

∑
p
(m′ + 1)x pyP(m′, p) = Rm

∞

∑
m′=0

∑
p
(m′ + 1)x pyP(m′, p). (5.55)

Recall that our distribution P(m, p) takes m and p as numerical inputs and returns

a probability associated with such a molecule count. Nevertheless, m and p them-

selves are dimensionless quantities that serve as indices of how many molecules

are in the cell. The distribution is the same whether the variable is called m or m′;

for a specific number, let us say m = 5, or m′ = 5, P(5, p) will return the same

result. This means that the variable name is arbitrary, and the right-hand side of

Eq. 5.55 can be written as

Rm

∞

∑
m′=0

∑
p
(m′ + 1)x pyP(m′, p) = Rm〈(m + 1)xpy〉, (5.56)

since the left-hand side corresponds to the definition of a moment.

For the mRNA degradation term involving P(m + 1, p), we follow a similar proce-

dure in which we define m′ = m + 1 to obtain

Γm ∑
m

∑
p
(m + 1)mx pyP(m + 1, p) = Γm

∞

∑
m′=1

∑
p

m′(m′ − 1)x pyP(m′, p). (5.57)
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Since the term on the right-hand side of the equation is multiplied by m′, starting

the sum over m′ from zero rather than one will not affect the result since this factor

will not contribute to the total sum. Nevertheless, this is useful since our definition

of a moment from Eq. 5.44 requires the sum to start at zero. This means that we

can rewrite this term as

Γm

∞

∑
m′=1

m′∑
p
(m′ − 1)x pyP(m′, p) = Γm

∞

∑
m′=0

m′∑
p
(m′ − 1)x pyP(m′, p). (5.58)

Here again, we can change the arbitrary label m′ back to m, obtaining

Γm

∞

∑
m′=0

m′∑
p
(m′ − 1)x pyP(m′, p) = Γm〈m(m− 1)xpy〉. (5.59)

The protein production term involving P(m, p− 1) can be reindexed by defining

p′ ≡ p− 1. This gives

Rp ∑
m

∑
p
(m)mx pyP(m, p− 1) = Rp ∑

m

∞

∑
p′=−1

m(x+1)(p + 1)yP(m, p′). (5.60)

We again use the fact that negative molecule copy numbers are assigned with prob-

ability zero to begin the sum from 0 rather than -1 and the arbitrary nature of the

label p′ to write

Rp ∑
m

∞

∑
p′=0

m(x+1)(p + 1)yP(m, p′) = Rp

〈
m(x+1)(p + 1)y

〉
. (5.61)

Finally, we take care of the protein degradation term involving P(m, p + 1). As

before, we define p′ = p + 1 and substitute this to obtain

Γp ∑
m

∑
p
(p + 1)mx pyP(m, p + 1) = Γp ∑

m

∞

∑
p′=1

(p′)mx(p′ − 1)yP(m, p′). (5.62)

Just as with the mRNA degradation term, having a term p′ inside the sum allows

us to start the sum over p′ from 0 rather than 1. We can therefore write

Γp ∑
m

∞

∑
p′=0

(p′)mx(p′ − 1)yP(m, p′) = Γp〈mxp(p− 1)y〉. (5.63)
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Putting all these terms together, we can write the general moment ODE. This is of

the form

d〈mxpy〉
dt

= K〈mxpy〉 (promoter state transition)

− Rm〈mxpy〉+ Rm〈(m + 1)xpy〉 (mRNA production)

− Γm

〈
m(x+1)py

〉
+ Γm〈m(m− 1)xpy〉 (mRNA degradation)

− Rp

〈
m(x+1)py

〉
+ Rp

〈
m(x+1)(p + 1)y

〉
(protein production)

− Γp

〈
mxp(y+1)

〉
+ Γp〈mxp(p− 1)y〉 (protein degradation).

(5.64)

Moment Closure of the Simple-Repression Distribution

A very interesting and useful feature of Eq. 5.64 is that for a given value of x and

y, the moment 〈mxpy〉 is only a function of lower moments. Specifically 〈mxpy〉 is

a function of moments
〈

mx′py′
〉

that satisfy two conditions:

1)y′ ≤ y,

2)x′ + y′ ≤ x + y.
(5.65)

To prove this, we rewrite Eq. 5.64 as

d〈mxpy〉
dt

= K〈mxpy〉

+ Rm〈py [(m + 1)x −mx]〉

+ Γm〈mpy [(m− 1)x −mx]〉

+ Rp

〈
m(x+1) [(p + 1)y − py]

〉
+ Γp〈mxp [(p− 1)y − py]〉,

(5.66)

where the factorization is valid given the linearity of expected values. The objec-

tive is to find the highest moment for each term once the relevant binomial, such

as (m − 1)x, is expanded. Take, for example, a simple case in which we want to

find the second moment of the mRNA distribution. We then set x = 2 and y = 0.
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Eq. 5.66 then becomes〈
m2p0〉

dt
= K

〈
m2p0〉

+ Rm
〈
p0 [(m + 1)2 −m2]〉

+ Γm
〈
mp0 [(m− 1)2 −m2]〉

+ Rp

〈
m(2+1) [(p + 1)0 − p0]〉

+ Γp
〈
m2p

[
(p− 1)0 − p0]〉.

(5.67)

Simplifying this equation gives

d
〈
m2〉
dt

= K
〈
m2〉+ Rm〈[2m + 1]〉+ Γm

〈[
−2m2 + m

]〉
. (5.68)

Eq. 5.68 satisfies both of our conditions. Since we set y to be zero, none of the

terms depend on any moment that involves the protein number. Therefore y′ ≤ y

is satisfied. Also, the highest moment in Eq. 5.68 also satisfies x′+ y′ ≤ x + y since

the second moment of mRNA does not depend on any moment higher than
〈
m2〉.

To demonstrate that this is true for any x and y, we now rewrite Eq. 5.66, making

use of the binomial expansion

(z± 1)n =
n

∑
k=0

(
n
k

)
(±1)kzn−k. (5.69)

Just as before, let us look at each term individually. For the mRNA production

term, we have

Rm〈py [(m + 1)x −mx]〉 = Rm

〈
py

[
x

∑
k=0

(
x
k

)
mx−k −mx

]〉
. (5.70)

When k = 0, the term inside the sum on the right-hand side cancels with the other

mx so that we can simplify to

Rm〈py [(m + 1)x −mx]〉 = Rm

〈
py

[
x

∑
k=1

(
x
k

)
mx−k

]〉
. (5.71)

Once the sum is expanded, we can see that the highest moment in this sum is given

by
〈

m(x−1)py
〉

which satisfies both of the conditions on Eq. 5.65.
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For the mRNA degradation term, we similarly have

Γm〈mpy [(m− 1)x −mx]〉 = Γm

〈
mpy

[
x

∑
k=0

(
x
k

)
(−1)kmx−k −mx

]〉
. (5.72)

Simplifying terms, we obtain

Γm

〈
mpy

[
x

∑
k=0

(
x
k

)
(−1)kmx−k −mx

]〉
= Γm

〈
py

[
x

∑
k=1

(
x
k

)
(−1)kmx+1−k

]〉
.

(5.73)

The largest moment in this case is 〈mxpy〉, which again satisfies the conditions on

Eq. 5.65.

The protein production term gives

Rp

〈
m(x+1) [(p + 1)y − py]

〉
= Rp

〈
m(x+1)

[
y

∑
k=0

(
y
k

)
(−1)kpy−k − py

]〉
. (5.74)

Upon simplification, we obtain

Rp

〈
m(x+1)

[
y

∑
k=0

(
y
k

)
(−1)kpy−k − py

]〉
= Rp

〈
m(x+1)

[
y

∑
k=1

(
y
k

)
(−1)kpy−k

]〉
.

(5.75)

Here the largest moment is given by
〈
mx+1py−1〉, that again satisfies both of our

conditions. For the last term, for protein degradation, we have

Rp

〈
m(x+1) [(p + 1)y − py]

〉
= Rp

〈
m(x+1)

[
y

∑
k=1

(
y
k

)
(−1k)py−k

]〉
. (5.76)

The largest moment involved in this term is therefore
〈
mxpy−1〉. With this, we

show that the four terms involved in our general moment equation depend only

on lower moments that satisfy Eq. 5.65.

As a reminder, we showed in this section that the kinetic model introduced in

Fig. 3.2(A) has no moment-closure problem. In other words, moments of the joint

mRNA and protein distribution can be computed from knowledge of lower mo-

ments. This allows us to cleanly integrate the distribution moment dynamics as

cells progress through the cell cycle.
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Computing Single Promoter Steady-State Moments

(Note: The Python code used for the calculations presented in this section can be

found in the following link as an annotated Jupyter notebook.)

One of the main factors contributing to cell-to-cell variability in gene expression

is the change in gene copy number during the cell cycle as cells replicate their

genome before cell division. Our minimal model accounts for this variability by

considering the time trajectory of the distribution moments given by Eq. 5.66.

These predictions will be contrasted with the predictions from a kinetic model that

does not account for gene copy numbers changes during the cell cycle in Sec. 4.4.

Suppose we do not account for the change in gene copy number during the cell

cycle or the partition of proteins during division. In that case, the dynamics of

the moments of the distribution described in this section will reach a steady state.

To compute the kinetic model’s steady-state moments with a single gene across the

cell cycle, we use the moment closure property of our master equation. By equating

Eq. 5.66 to zero for a given x and y, we can solve the resulting linear system and

obtain a solution for 〈mxpy〉 at steady state as a function of moments
〈

mx′py′
〉

that satisfy Eq. 5.65. Then, by solving for the zeroth moment
〈
m0p0〉 subject to the

constraint that the probability of the promoter being in any state should add up

to one, we can substitute back all of the solutions in terms of moments
〈

mx′py′
〉

with solutions in terms of the rates shown in Fig. 3.2. In other words, through

an iterative process, we can get at the value of any moment of the distribution.

We start by solving for the zeroth moment. Since all higher moments depend on

lower moments, we can use the solution of the zeroth moment to compute the first

mRNA moment. This solution is then used for higher moments in a hierarchical

iterative process.

5.5 Accounting for the Variability in Gene Copy Number During the Cell Cy-

cle

(Note: The Python code used for the calculations presented in this section can be

found in the following link as an annotated Jupyter notebook.)

https://www.rpgroup.caltech.edu//chann_cap/software/chemical_master_steady_state_moments_general.html
https://www.rpgroup.caltech.edu/chann_cap/src/theory/html/moment_dynamics_cell_division.html
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When growing in rich media, bacteria can double every ≈ 20 minutes. With two

replication forks, each traveling at ≈ 1000 bp per second, and a genome of ≈ 5

Mbp for E. coli [148], a cell would need ≈ 40 minutes to replicate its genome. The

apparent paradox of growth rates faster than one division per 40 minutes is solved

because cells have multiple replisomes, i.e., molecular machines that replicate the

genome running in parallel. Cells can have up to 8 copies of the genome being

replicated simultaneously, depending on the growth rate [17].

This observation implies that during the cell cycle, gene copy number varies. This

variation depends on the growth rate and the relative position of the gene with

respect to the replication origin, having genes close to the replication origin spend-

ing more time with multiple copies than genes closer to the replication termination

site. This change in gene dosage directly affects cell-to-cell variability in gene ex-

pression [84,118].

Numerical Integration of Moment Equations

(Note: The Python code used for the calculations presented in this section can be

found in the following link as an annotated Jupyter notebook)

For our specific locus (galK) and a doubling time of ≈ 60 min for our experimental

conditions, cells have on average 1.66 copies of the reporter gene during the cell

cycle [84]. This means that cells spend 60% of the time having one copy of the

gene and 40% of the time with two copies. To account for this variability in gene

copy number across the cell cycle, we numerically integrate the moment equations

derived in for a time t = [0, ts] with an mRNA production rate rm, where ts is the

time point at which the replication fork reaches our specific locus. For the remain-

ing time before the cell division t = [ts, td] that the cell spends with two promoters,

we assume that the only parameter that changes is the mRNA production rate from

rm to 2rm. This simplifying assumption ignores potential changes in protein trans-

lation rate rp or changes in the repressor copy number that would be reflected in

changes on the repressor on rate k(r)on .

https://www.rpgroup.caltech.edu//chann_cap/software/moment_dynamics_cell_division.html
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Computing Distribution Moments After Cell Division

(Note: The Python code used for the calculations presented in this section can be

found in the following link as an annotated Jupyter notebook)

We have already solved a general form for the dynamics of the moments of the dis-

tribution, i.e., we wrote differential equations for the moments d〈mx py〉
dt . Given that

we know all parameters for our model, we can numerically integrate these equa-

tions to compute how the distribution moments evolve as cells progress through

their cell cycle. Once the cell reaches a time td and divides, the mRNA and proteins

that we are interested in undergo a binomial partitioning between the two daugh-

ter cells. In other words, each molecule flips a coin to decide to which daughter

cell to go. The question then becomes given that we have a value for the moment

〈mx py〉td
at a time before the cell division, what would the value of this moment

be after the cell division takes place 〈mx py〉to
?

The probability distribution of mRNA and protein after the cell division Pto(m, p)

must satisfy

Pto(m, p) =
∞

∑
m′=m

∞

∑
p′=p

P(m, p | m′, p′)Ptd(m
′, p′), (5.77)

where we are summing over all the possibilities of having m′ mRNA and p′ pro-

teins before cell division. Note that the sums start at m and p; this is because for a

daughter cell to have these copy numbers before cell division, it is a requirement

that the mother cell had at least such a copy number since we are not assuming

that there is any production at the instantaneous cell division time. Since we as-

sume that the partition of mRNA is independent of the partition of protein, the

conditional probability P(m, p | m′, p′) is given by a product of two binomial dis-

tributions, one for the mRNA and one for the protein, i.e.

P(m, p | m′, p′) =
(

m′

m

)(
1
2

)m′

·
(

p′

p

)(
1
2

)p′

. (5.78)

https://www.rpgroup.caltech.edu//chann_cap/software/binomial_moments.html
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Because of this product of binomial probabilities, we are allowed to extend the sum

from Eq. 5.77 to start at m′ = 0 and p′ = 0 as

Pto(m, p) =
∞

∑
m′=0

∞

∑
p′=0

P(m, p | m′, p′)Ptd(m
′, p′), (5.79)

since the product of the binomial distributions in Eq. 5.78 is zero for all m′ < m

and/or p′ < 0. Thus, to simplify notation, from now on in this section we will

assume that a sum of the form ∑x ≡ ∑∞
x=0 .

We can then compute the distribution moments after the cell division 〈mx py〉to
as

〈mx py〉to
= ∑

m
∑
p

mx pyPto(m, p), (5.80)

for all x, y ∈N. Substituting Eq. 5.77 results in

〈mx py〉to
= ∑

m
∑
p

mx py ∑
m′

∑
p′

P(m, p | m′, p′)Ptd(m
′, p′). (5.81)

We can rearrange the sums to be

〈mx py〉to
= ∑

m′
∑
p′

Ptd(m
′, p′)∑

m
∑
p

mx pyP(m, p | m′, p′). (5.82)

The fact that Eq. 5.78 is the product of two independent events allows us to rewrite

the joint probability P(m, p | m′, p′) as

P(m, p | m′, p′) = P(m | m′) · P(p | p′). (5.83)

With this, we can then write the moment 〈mx py〉to
as

〈mx py〉to
= ∑

m′
∑
p′

Ptd(m
′, p′)∑

m
mxP(m | m′)∑

p
pyP(p | p′). (5.84)

Notice that both terms summing over m and p are the conditional expected values,

i.e.

∑
z

zxP(z | z′) ≡
〈
zx | z′

〉
, for z ∈ {m, p}. (5.85)

These conditional expected values are the expected values of a binomial random

variable z ∼ Bin(z′, 1/2), which can be easily computed, as we will show later in

this section. We then rewrite the expected values after the cell division in terms of

these moments of a binomial distribution

〈mx py〉to
= ∑

m′
∑
p′

〈
mx | m′

〉 〈
py | p′

〉
Ptd(m

′, p′). (5.86)
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To see how this general formula for the moments after the cell division works,

let us compute the mean protein per cell after the cell division 〈p〉to
. That means

setting x = 0, and y = 1. This results in

〈p〉to
= ∑

m′
∑
p′

〈
m0 | m′

〉 〈
p | p′

〉
Ptd(m

′, p′). (5.87)

The zeroth moment
〈
m0 | m′

〉
by definition must be one, i.e.,〈

m0 | m′
〉
= ∑

m
m0P(m | m′) = ∑

m
P(m | m′) = 1, (5.88)

since the probability distribution must be normalized. This leaves us then with

〈p〉to
= ∑

m′
∑
p′

Ptd(m
′, p′)

〈
p | p′

〉
. (5.89)

If we take the sum over m′, we simply compute the marginal probability distribu-

tion ∑m′ Ptd(m
′, p′) = Ptd(p′); then we have

〈p〉to
= ∑

p′

〈
p | p′

〉
Ptd(p′). (5.90)

For the particular case of the first moment of the binomial distribution with pa-

rameters p′ and 1/2, we know that

〈
p | p′

〉
=

p′

2
. (5.91)

Therefore the moment after division is equal to

〈p〉to
= ∑

p′

p′

2
Ptd(p′) =

1
2 ∑

p′
p′Ptd(p′). (5.92)

Notice that this is just 1/2 of the expected value of p′ averaging over the distribu-

tion before cell division, i.e.

〈p〉to
=
〈p′〉td

2
, (5.93)



212

where 〈·〉td
highlights that the moment is computed prior to the cell division. This

result makes perfect sense. What this is saying is that the mean protein copy num-

ber right after the cell divides is half of the mean protein copy number just before

the cell division. That is exactly what we would expect. So, in principle, to know

the first moment of either the mRNA distribution 〈m〉to or the protein distribution

〈m〉to right after cell division, it suffices to multiply the moments before the cell di-

vision 〈m〉td or 〈p〉td
by 1/2. Let us now explore how this generalizes to any other

moment 〈mx py〉to
.

Computing the Moments of a Binomial Distribution

The last section’s result depended on us knowing the functional form of the first

moment of the binomial distribution. For higher moments, we need some system-

atic way to compute such moments. Luckily for us, we can do so by using the

so-called moment generating function (MGF). The MGF of a random variable X is

defined as

MX(t) =
〈

etX
〉

, (5.94)

where t is a dummy variable. Once we know the MGF, we can obtain any moment

of the distribution by simply computing

〈Xn〉 = dn

dtn MX(t)
∣∣∣∣
t=0

, (5.95)

i.e., taking the n-th derivative of the MGF returns the n-th moment of the distribu-

tion. For the particular case of the binomial distribution X ∼ Bin(N, q), it can be

shown that the MGF is of the form

MX(t) =
[
(1− q) + qet]N . (5.96)

As an example, let us compute the first moment of this binomially distributed

variable. For this, the first derivative of the MGF results in

dMX(t)
dt

= N[(1− q) + qet]N−1qet. (5.97)
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We just need to follow Eq. 5.95 and set t = 0 to obtain the first moment

dMX(t)
dt

∣∣∣∣
t=0

= Nq, (5.98)

which is precisely the expected value of a binomially distributed random variable.

So according to Eq. 5.86, to compute any moment 〈mx py〉 after cell division, we

can just take the x-th derivative and the y-th derivative of the binomial MGF to ob-

tain 〈mx | m′〉 and 〈py | p′〉, respectively, and take the expected value of the result.

Let us compute the specific case for the moment 〈mp〉 to illustrate the procedure.

When computing the moment after cell division 〈mp〉to
which is of the form

〈mp〉to
= ∑

m′
∑ p′

〈
m | m′

〉 〈
p | p′

〉
Ptd(m

′, p′), (5.99)

the product 〈m | m′〉 〈p | p′〉 is then

〈
m | m′

〉 〈
p | p′

〉
=

m′

2
· p′

2
, (5.100)

where we used the result in Eq. 5.98, substituting m and p for X, respectively, and

q for 1/2. Substituting this result into the moment gives

〈mp〉to
= ∑

m′
∑
p′

m′p′

4
Ptd(m

′, p′) =
〈m′p′〉td

4
. (5.101)

Therefore to compute the moment after cell division 〈mp〉to
we simply have to

divide by 4 the corresponding equivalent moment before the cell division.

Not all moments after cell division depend only on the equivalent moment before

cell division. For example, if we compute the third moment of the protein distri-

bution
〈

p3〉
to

, we find 〈
p3
〉

to
=

〈
p3〉

td

8
+

3
〈

p2〉
td

8
. (5.102)
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For this particular case, the third moment of the protein distribution depends on

the third moment and the second moment before the cell division. In general, all

moments after cell division 〈mx py〉to
linearly depend on moments before cell di-

vision. Furthermore, there is “moment closure” for this specific case in the sense

that all moments after cell division depend on lower moments before cell divi-

sion. To generalize these results to all the moments computed in this work, let us

then define a vector to collect all moments before the cell division up the 〈mx py〉td

moment, i.e.

〈mxpy〉td
=

(〈
m0p0

〉
td

,
〈

m1
〉

td
, . . . , 〈mx py〉td

)
. (5.103)

Then any moment after cell division
〈

mx′ py′
〉

to
for x′ ≤ x and y′ ≤ y can be

computed as 〈
mx′ py′

〉
to
= zx′y′ · 〈mxpy〉td

, (5.104)

where we define the vector zx′y′ as the vector containing all the coefficients that

we obtain with the product of the two binomial distributions. For example, for

the case of the third protein moment
〈

p3〉
to

the vector zx′y′ would have zeros for

all entries except for the corresponding entry for
〈

p2〉
td

and for
〈

p3〉
td

, where it

would have 3/8 and 1/8 accordingly.

If we want then to compute all the moments after the cell division up to 〈mx py〉to
,

let us define an equivalent vector

〈mxpy〉to
=

(〈
m0p0

〉
to

,
〈

m1
〉

to
, . . . , 〈mx py〉to

)
. (5.105)

Then we need to build a square matrix Z such that each row of the matrix contains

the corresponding vector zx′y′ for each of the moments. Having this matrix, we

would simply compute the moments after the cell division as

〈mxpx〉to
= Z · 〈mxpx〉td

. (5.106)

In other words, the matrix Z will contain all the coefficients that we need to mul-

tiply by the moments before the cell division to obtain the moments after cell di-

vision. The matrix Z was then generated automatically using Python’s analytical

math library sympy [149].
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Fig. 5.8 (adapted from Fig. 3.3(B)) shows how the first moment of both mRNA and

protein changes over several cell cycles. The mRNA quickly relaxes to the steady-

state corresponding to the parameters for both a single and two promoters copies.

This is expected since the parameters for the mRNA production was determined in

the first place under this assumption. We note that there is no apparent delay be-

fore reaching the steady-state of the mean mRNA count after the cell divides. This

is because the mean mRNA count for the two promoter copies state is precisely

twice the expected mRNA count for the single promoter state (see Sec. 5.1). There-

fore, once the mean mRNA count is halved after the cell division, it is already at

the steady-state value for the single promoter case. On the other hand, given that

the degradation rate determines the relaxation time to steady-state, the mean pro-

tein count does not reach its corresponding steady-state value for either promoter

copy number state. Interestingly, once a couple of cell cycles have passed, the first

moment has a repetitive trajectory over cell cycles. We have observed this experi-

mentally by tracking cells as they grow under the microscope. Comparing cells at

the beginning of the cell cycle with the daughter cells that appear after cell division

showed that, on average, all cells have the same amount of protein at the start of

the cell cycle (see Fig. 18 of [16]), suggesting that this dynamical steady state takes

place in vivo.

When measuring gene expression levels experimentally from an asynchronous

culture, cells are sampled from any time point across their cell cycles. This means

that the moments determined experimentally correspond to an average over the

cell cycle. In the following section, we discuss how to account for the fact that cells

are not uniformly distributed across the cell cycle to compute these averages.

Exponentially Distributed Ages

As mentioned in Sec. 5.2, cells in exponential growth have exponentially dis-

tributed ages across the cell cycle, having more young cells than old ones. Specif-

ically, the probability of a cell being at any time point in the cell cycle is given by
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Figure 5.8: First and second moment dynamics over the cell cycle. Mean ± standard deviation
mRNA (upper panel) and mean ± standard deviation protein copy number (lower panel) as the
cell cycle progresses. The dark shaded region delimits the fraction of the cell cycle that cells spend
with a single copy of the promoter. The light-shaded region delimits the fraction of the cell cycle
that cells spend with two copies of the promoter. For a 100 min doubling time at the galK locus, cells
spend 60% of the time with one copy of the promoter and the rest with two copies. The Python
code (ch5_fig08.py) used to generate this figure can be found on the original paper’s GitHub
repository.

[120]

P(a) = (ln 2) · 21−a, (5.107)

where a ∈ [0, 1] is the stage of the cell cycle, with a = 0 being the start of the cycle

and a = 1 being the cell division. In Sec. 5.10, we reproduce this derivation. It

is a surprising result, but it can be intuitively thought as follows: if the culture is

growing exponentially, that means that all the time, there is an increasing number

of cells. That means, for example, that if in a time interval ∆t N “old” cells divided,

these produced 2N “young” cells. So at any point, there are always more younger

than older cells.

Our numerical integration of the moment equations gave us a time evolution of

the moments as cells progress through the cell cycle. Since experimentally we

sample asynchronous cells that follow Eq. 5.107, each time point along the moment

dynamic must be weighted by the probability of having sampled a cell at such a

specific time point of the cell cycle. Without loss of generality, let us focus on

the first mRNA moment 〈m(t)〉 (the same can be applied to all other moments).

As mentioned before, to calculate the first moment across the entire cell cycle, we

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS08.py
https://github.com/RPGroup-PBoC/chann_cap
https://github.com/RPGroup-PBoC/chann_cap
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must weigh each time point by the corresponding probability that a cell is found

at such a point of its cell cycle. This translates to computing the integral

〈m〉c =
∫ end cell cycle

beginning cell cycle
〈m(t)〉 P(t)dt, (5.108)

where 〈m〉c is the mean mRNA copy number averaged over the entire cell cycle

trajectory, and P(t) is the probability of a cell being at a time t of its cell cycle.

If we set the time in units of the cell cycle length, we can use Eq. 5.107 and compute

instead

〈m〉 =
∫ 1

0
〈m(a)〉 P(a)da, (5.109)

where P(a) is given by Eq. 5.107.

What Eq. 5.109 implies is that to compute the first moment (or any moment of

the distribution), we must weigh each point in the moment dynamics by the cor-

responding probability of a cell being at that point along its cell cycle. That is why

when computing a moment, we take the time trajectory of a single cell cycle as the

ones shown in Fig. 5.8 and compute the average using Eq. 5.107 to weigh each

time point. We perform this integral numerically for all moments using Simpson’s

rule.

Reproducing the Equilibrium Picture

Given the large variability of the first moments depicted in Fig. 5.8, it is worth

considering why a simplistic equilibrium picture has shown to be very successful

in predicting the mean expression level under diverse conditions [20,39,112,113].

This section compares the simple repression thermodynamic model with this dy-

namical picture of the cell cycle. But before diving into this comparison, it is worth

recapping the assumptions that go into the equilibrium model.

Steady-State Under the Thermodynamic Model

For the thermodynamic model we can only describe the first moment’s dynam-

ics using this theoretical framework [51]. This is because these models are based

on the probability distribution of the promoter microstates rather than the distri-
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bution over the mRNA and protein counts. Let us only focus on the mRNA first

moment 〈m〉. The same principles apply if we consider the protein first moment.

We can write a dynamical system of the form

d〈m〉
dt

= rm · pbound − γm〈m〉, (5.110)

where rm and γm are the mRNA production and degradation rates, respectively,

and pbound is the probability of finding the RNAP bound to the promoter [50].

This dynamical system is predicted to have a single stable fixed point that we can

find by computing the steady-state. When we solve for the mean mRNA copy

number at steady-state 〈m〉ss, we find

〈m〉ss =
rm

γm
pbound. (5.111)

Since we assume that the only effect that the repressor has over the promoter’s reg-

ulation is the exclusion of the RNAP from binding to the promoter, we assume that

only pbound depends on the repressor copy number R. Therefore when computing

the fold-change in gene expression, we are left with

fold-change =
〈m(R 6= 0)〉ss
〈m(R = 0)〉ss

=
pbound(R 6= 0)
pbound(R = 0)

. (5.112)

As derived in [20], this can be written in the language of equilibrium statistical

mechanics as

fold-change =

(
1 +

R
NNS

e−β∆εr

)−1

, (5.113)

where β ≡ (kBT)−1, ∆εr is the repressor-DNA binding energy, and NNS is the

number of non-specific binding sites where the repressor can bind.

To arrive at Eq. 5.113, we ignore the physiological changes that occur during the

cell cycle; one of the most important being the variability in gene copy number

that we are exploring in this section. It is, therefore, worth thinking about whether

or not the dynamical picture exemplified in Fig. 5.8 can be reconciled with the

predictions made by Eq. 5.113 both at the mRNA and protein level.
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Figure 5.9: Comparison of the equilibrium and kinetic repressor titration predictions. The equi-
librium model (solid lines) and the kinetic model with variation over the cell cycle (solid circles and
white triangles) predictions are compared for varying repressor copy numbers and operator bind-
ing energy. The equilibrium model is directly computed from Eq. 5.113, while the kinetic model is
computed by numerically integrating the moment equations over several cell cycles, and then av-
eraging over the extent of the cell cycle as defined in Eq. 5.109 . The Python code (ch5_fig09.py)
used to generate this figure can be found on the original paper’s GitHub repository.

Fig. 5.9 compares the predictions of both theoretical frameworks for varying re-

pressor copy numbers and repressor-DNA affinities. The solid lines are directly

computed from Eq. 5.113. The hollow triangles and the solid circles represent the

fold-change in mRNA and protein, respectively, as computed from the moment

dynamics. To compute the fold-change from the kinetic picture, we first numer-

ically integrate the moment dynamics for both the two- and the three-state pro-

moter (see Fig. 5.8 for the unregulated case), and then average the time series ac-

counting for the probability of cells being sampled at each stage of the cell cycle as

defined in Eq. 5.109. The small systematic deviations between both models come

partly from the simplifying assumption that the repressor copy number, and there-

fore the repressor on rate k(r)on remains constant during the cell cycle. In principle,

the gene producing the repressor protein itself is also subjected to the same dupli-

cation during the cell cycle, changing, therefore, the mean repressor copy number

for both stages.

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS09.py
https://github.com/RPGroup-PBoC/chann_cap
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Figure 5.10: Comparison of the equilibrium and kinetic inducer titration predictions. The equi-
librium model (solid lines) and the kinetic model with variation over the cell cycle (solid circles
and white triangles) predictions are compared for varying repressor copy numbers and inducer
concentrations. The equilibrium model is directly computed as Eq. 5 of reference [113] with
repressor-DNA binding energy ∆εr = −13.5 kBT, while the kinetic model is computed by numeri-
cally integrating the moment dynamics over several cell cycles, and then averaging over the extent
of a single cell cycle as defined in Eq. 5.109 The Python code (ch5_fig10.py) used to generate this
figure can be found on the original paper’s GitHub repository.

For completeness, Fig. 5.10 compares the kinetic and equilibrium models for the

extended model of [113] in which the inducer concentration enters into the equa-

tion. The solid line is directly computed from Eq. 2.5. The hollow triangles and

solid points follow the same procedure as for Fig. 5.9, where the only effect that

the inducer is assumed to have in the kinetics is an effective change in the number

of active repressors, affecting, therefore, k(r)on .

Comparison Between Single- and Multi-Promoter Kinetic Model

After these calculations, it is worth questioning whether this change in gene dosage

is drastically different from the more straightforward picture of a kinetic model

that ignores the gene copy number variability during the cell cycle. To this end, we

systematically computed the average moments for varying repressor copy num-

bers and repressor-DNA affinities. We then compare these results with the mo-

ments obtained from a single-promoter model and their corresponding parame-

ters. The derivation of the steady-state moments of the distribution for the single-

promoter model is detailed in Sec. 4.3.

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS10.py
https://github.com/RPGroup-PBoC/chann_cap
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Fig. 5.9 and Fig. 5.10 both suggest that, since the dynamic multi-promoter model

can reproduce the results of the equilibrium model at the first-moment level, it

must then also be able to reproduce the results of the single-promoter model at

this level (see Sec. 5.2). The interesting comparison comes with higher moments.

A useful metric to consider for gene expression variability is the noise in gene ex-

pression [142]. This quantity, defined as the standard deviation divided by the

mean, is a dimensionless metric of how much variability there is with respect to

the mean of a distribution. As we will show below, this quantity differs from the

commonly used metric known as the Fano factor (variance/mean). For experi-

mentally determined expression levels in arbitrary fluorescent units, the noise is a

dimensionless quantity while the Fano factor is not.

Fig. 5.11 shows the comparison of the predicted protein noise between the single-

(dashed lines) and the multi-promoter model (solid lines) for different operators

and repressor copy numbers. A striking difference between both is that the single-

promoter model predicts that, as the inducer concentration increases, the standard

deviation grows much slower than the mean, giving a very small noise. In com-

parison, the multi-promoter model has a much higher floor for the lowest value of

the noise, reflecting the expected result that the variability in gene copy number

across the cell cycle should increase the cell-to-cell variability in gene expression

[84,118]

Comparison with Experimental Data

Having shown that the kinetic model presented in this section can not only re-

produce the results from the equilibrium picture at the mean level (see Fig. 5.9

and Fig. 5.10), but make predictions for the cell-to-cell variability as quantified by

the noise (see Fig. 5.11), we can assess whether or not this model can predict ex-

perimental measurements of the noise. For this, we take the single-cell intensity

measurements (see Methods) to compute the noise at the protein level.
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Figure 5.11: Comparison of the predicted protein noise between a single- and a multi-promoter
kinetic model. Comparison of the noise (standard deviation/mean) between a kinetic model that
considers a single promoter at all times (dashed line) and the multi-promoter model developed in
this section (solid line) for different repressor operators. (A) Operator O1, ∆εr = −15.3 kBT, (B) O2,
∆εr = −13.9 kBT, (C) O3, ∆εr = −9.7 kBT. The Python code (ch5_fig11.py) used to generate this
figure can be found on the original paper’s GitHub repository.

This metric differs from the Fano factor since the noise is a dimensionless quantity

for arbitrary fluorescent units. To see why, consider that the noise is defined as

noise ≡

√
〈p2〉 − 〈p〉2

〈p〉 . (5.114)

We assume that the intensity level of a cell I is linearly proportional to the absolute

protein count, i.e.,

I = αp, (5.115)

where α is the proportionality constant between arbitrary units and absolute pro-

tein number p. Substituting this definition on Eq. 5.114 gives

noise =

√
〈(αI)2〉 − 〈αI〉2

〈αI〉 . (5.116)

Since α is a constant, it can be taken out of the average operator 〈·〉, obtaining

noise =

√
α2
(
〈I2〉 − 〈I〉2

)
α 〈I〉 =

√(
〈I2〉 − 〈I〉2

)
〈I〉 . (5.117)

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS11.py
https://github.com/RPGroup-PBoC/chann_cap
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Notice that in Eq. 5.115, the linear proportionality between intensity and protein

count has no intercept. This ignores the autofluorescence that cells without re-

porter would generate. To account for this, in practice, we compute

noise =

√(
〈(I − 〈Iauto〉)2〉 − 〈I − 〈Iauto〉〉2

)
〈I − 〈Iauto〉〉

. (5.118)

where I is the intensity of the strain of interest and 〈Iauto〉 is the mean autofluores-

cence intensity, obtained from a strain that does not carry the fluorescent reporter

gene.

Fig. 5.12 shows the comparison between theoretical predictions and experimental

measurements for the unregulated promoter. The reason we split the data by op-

erator despite the fact that, since these are unregulated promoters, they should, in

principle, have identical expression profiles, is to make sure that this is the case

precisely. We have found in the past that sequences downstream of the RNAP

binding site can affect the expression level of constitutively expressed genes. We

can see that both models, the single-promoter (gray dotted line) and the multi-

promoter (black dashed line), underestimate the experimental noise to different

degrees. The single-promoter model does a worse job predicting the experimental

data since it does not account for the differences in gene dosage during the cell

cycle. But still, we can see that accounting for this variability takes us to within a

factor of two of the experimentally determined noise for these unregulated strains.

To further test the model’s predictive power, we compare the predictions for the

three-state regulated promoter. Fig. 5.13 shows the theoretical predictions for the

single- and multi-promoter model for varying repressor copy numbers and repressor-

DNA binding affinities as a function of the inducer concentration. Again, we

can see that our zero-parameter fits systematically underestimate the noise for all

strains and all inducer concentrations. We highlight that the y-axis is shown in a

log-scale to emphasize this deviation more, but, as we will show in the next sec-

tion, our predictions still fall within a factor of two from the experimental data.
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Figure 5.12: Protein noise of the unregulated promoter. Comparison of the experimental noise for
different operators with the theoretical predictions for the single-promoter (gray dotted line) and
the multi-promoter model (black dashed line). Each datum represents a single date measurement
of the corresponding ∆lacI strain with ≥ 300 cells. The points correspond to the median, and the
error bars correspond to the 95% confidence interval as determined by 10,000 bootstrap samples.
The Python code (ch5_fig12.py) used to generate this figure can be found on the original paper’s
GitHub repository.
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Figure 5.13: Protein noise of the regulated promoter. Comparison of the experimental noise for dif-
ferent operators ((A) O1, ∆εr = −15.3 kBT, (B) O2, ∆εr = −13.9 kBT, (C) O3, ∆εr = −9.7 kBT) with
the theoretical predictions for the single-promoter (dashed lines) and the multi-promoter model
(solid lines). Points represent the experimental noise as computed from single-cell fluorescence
measurements of different E. coli strains under 12 different inducer concentrations. The dotted
line indicates the plot in linear rather than logarithmic scale. Each datum represents a single date
measurement of the corresponding strain and IPTG concentration with ≥ 300 cells. The points cor-
respond to the median, and the error bars correspond to the 95% confidence interval as determined
by 10,000 bootstrap samples. White-filled dots are plot at a different scale for better visualization.
The Python code (ch5_fig13.py) used to generate this figure can be found on the original paper’s
GitHub repository.

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS12.py
https://github.com/RPGroup-PBoC/chann_cap
https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS13.py
https://github.com/RPGroup-PBoC/chann_cap
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Figure 5.14: Systematic comparison of theoretical vs. experimental noise in gene expression.
Theoretical vs. experimental noise both in linear (left) and log (right) scale. The dashed line shows
the identity line of slope one and intercept zero. All data are colored by the corresponding experi-
mental fold-changes value in gene expression, as indicated by the color bar. Each datum represents
a single date measurement of the corresponding strain and IPTG concentration with ≥ 300 cells.
The points correspond to the median, and the error bars correspond to the 95% confidence interval
as determined by 10,000 bootstrap samples. The Python code (ch5_fig14.py) used to generate this
figure can be found on the original paper’s GitHub repository.

Systematic Deviation of the Noise in Gene Expression

Fig. 5.12 and Fig. 5.13 highlight that our model underestimates the cell-to-cell vari-

ability as measured by the noise. To further explore this systematic deviation,

Fig. 5.14 shows the theoretical vs. experimental noise both in linear and log scale.

As we can see, the data is systematically above the identity line. Their correspond-

ing experimental fold-change values color the data. The data with the largest devi-

ations from the identity line also corresponds to the data with the largest error bars

and the smallest fold-change. This is because measurements with very small fold-

changes correspond to intensities very close to the autofluorescence background.

Therefore minimal changes when computing the noise are amplified given the

ratio of std/mean. In Sec. 4.8, we will explore empirical ways to improve the

agreement between our minimal and experimental data to guide future efforts to

improve the minimal.

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS14.py
https://github.com/RPGroup-PBoC/chann_cap
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5.6 Maximum Entropy Approximation of Distributions

(Note: The Python code used for the calculations presented in this section can be

found in the following link as an annotated Jupyter notebook.)

On the one hand, chemical master equations like the one here represent a hard

mathematical challenge. Peccoud and Ycart derived a closed-form solution for the

two-state promoter at the mRNA level [116]. In an impressive display of mathe-

matical skills, Shahrezaei and Swain were able to derive an approximate solution

for the one- (not considered in this work) and two-state promoter master equation

at the protein level [142]. Nevertheless, both of these solutions do not give instan-

taneous insights about the distributions as they involve complicated terms such as

confluent hypergeometric functions.

On the other hand, there has been a great deal of work to generate methods that can

approximate the solution of these discrete state Markovian models [150–154]. In

particular, for master equations like the one that concerns us here, whose moments

can be easily computed, the moment expansion method provides a simple method

to approximate the full joint distribution of mRNA and protein [154]. This section

will explain the principles behind this method and show the implementation for

our particular case study.

The MaxEnt Principle

The principle of maximum entropy (MaxEnt), first proposed by E. T. Jaynes in 1957,

tackles the question of, given limited information, what is the least biased inference

one can make about a particular probability distribution [28]. In particular, Jaynes

used this principle to show the correspondence between statistical mechanics and

information theory, demonstrating, for example, that the Boltzmann distribution

is the probability distribution that maximizes Shannon’s entropy subject to a con-

straint that the average energy of the system is fixed.

https://www.rpgroup.caltech.edu//chann_cap/software/MaxEnt_approx_joint.html
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To illustrate the principle, let us focus on a univariate distribution PX(x). The nth

moment of the distribution for a discrete set of possible values of x is given by

〈xn〉 ≡∑
x

xnPX(x). (5.119)

Now assume that we have knowledge of the first m moments 〈x〉m = (〈x〉 ,
〈

x2〉 , . . . , 〈xm〉).

The question is then how we can use this information to build an estimator PH(x |

〈x〉m) of the distribution such that

lim
m→∞

PH(x | 〈x〉m)→ PX(x), (5.120)

i.e., that the more moments we add to our approximation, the more the estimator

distribution converges to the real distribution.

The MaxEnt principle tells us that our best guess for this estimator is to build it

based on maximizing the Shannon entropy, constrained by the information we

have about these m moments. Shannon’s entropy maximization guarantees that

we are the least committed to information that we do not possess. The Shannon

entropy for a univariate discrete distribution is given by [27]

H(x) ≡ −∑
x

PX(x) log PX(x). (5.121)

For an optimization problem subject to constraints, we make use of the method of

the Lagrange multipliers. For this, we define the constraint equation L(x) as

L(x) ≡ H(x)−
m

∑
i=0

[
λi

(〈
xi
〉
−∑

x
xiPX(x)

)]
, (5.122)

where λi is the Lagrange multiplier associated with the ith moment. The inclusion

of the zeroth moment is an additional constraint to guarantee the normalization

of the resulting distribution. Since PX(x) has a finite set of discrete values, when

taking the derivative of the constraint equation with respect to PX(x), we chose a

particular value of X = x. Therefore from the sum over all possible x values, only

a single term survives. With this in mind, we take the derivative of the constraint

equation, obtaining

dL
dPX(x)

= − log PX(x)− 1−
m

∑
i=0

λixi. (5.123)



228

Equating this derivative to zero and solving for the distribution (that we now start

calling PH(x), our MaxEnt estimator) gives

PH(x) = exp

(
−1−

m

∑
i=0

λixi

)
=

1
Z exp

(
−

m

∑
i=1

λixi

)
, (5.124)

where Z is the normalization constant that can be obtained by substituting this

solution into the normalization constraint. This results in

Z ≡ exp (1 + λ0) = ∑
x

exp

(
−

m

∑
i=1

λixi

)
. (5.125)

Eq. 5.124 is the general form of the MaxEnt distribution for a univariate distribu-

tion. The computational challenge then consists of finding numerical values for

the Lagrange multipliers {λi} such that PH(x) satisfies our constraints. In other

words, the Lagrange multipliers weigh the contribution of each term in the expo-

nent such that when computing any of the moments, we recover the value of our

constraint. Mathematically what this means is that PH(x) must satisfy

∑
x

xnPH(x) = ∑
x

xn

Z exp

(
−

m

∑
i=1

λixi

)
= 〈xn〉 . (5.126)

As an example of applying the MaxEnt principle, let us use a six-face die’s classic

problem. If we are only told that after a large number of die rolls, the mean value

of the face is 〈x〉 = 4.5 (note that a fair die has a mean of 3.5), what would the least

biased guess for the distribution look like? The MaxEnt principle tells us that our

best guess would be of the form

PH(x) =
1
Z exp (λx) . (5.127)
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Figure 5.15: Maximum entropy distribution of six-face die. (A) Biased distribution consistent with
the constraint 〈x〉 = 4.5. (B) MaxEnt distribution also consistent with the constraint. The Python
code (ch5_fig15.py) used to generate this figure can be found on the original paper’s GitHub
repository.

Using any numerical minimization package, we can easily find the value of the

Lagrange multiplier λ that satisfies our constraint. Fig. 5.15 shows two examples

of distributions that satisfy the constraint. Panel (A) shows a distribution consis-

tent with the 4.5 average where both 4 and 5 are equally likely. Nevertheless, in

the information we got about the nature of the die, it was never stated that some

of the faces were forbidden. In that sense, the distribution is committing to infor-

mation about the process that we do not possess. Panel (B), by contrast, shows

the MaxEnt distribution that satisfies this constraint. Since this distribution maxi-

mizes Shannon’s entropy, it is guaranteed to be the least biased distribution given

the available information.

The mRNA and Protein Joint Distribution

The MaxEnt principle can easily be extended to multivariate distributions. For

our particular case, we are interested in the mRNA and protein joint distribution

P(m, p). The definition of a moment 〈mx py〉 is a natural extension of Eq. 5.119 of

the form

〈mx py〉 = ∑
m

∑
p

mx pyP(m, p). (5.128)

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS15.py
https://github.com/RPGroup-PBoC/chann_cap
https://github.com/RPGroup-PBoC/chann_cap
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As a consequence, the MaxEnt joint distribution PH(m, p) is of the form

PH(m, p) =
1
Z exp

− ∑
(x,y)

λ(x,y)m
x py

 , (5.129)

where λ(x,y) is the Lagrange multiplier associated with the moment 〈mx py〉, and

again Z is the normalization constant, given by

Z = ∑
m

∑
p

exp

− ∑
(x,y)

λ(x,y)m
x py

 . (5.130)

Note that the sum in the exponent is taken over all available (x, y) pairs that define

the moment constraints for the distribution.

The Bretthorst Rescaling Algorithm

The Lagrange multipliers’ determination suffers from a numerical underflow and

overflow problem due to the difference in magnitude between the constraints. This

becomes a problem when higher moments are taken into account. The resulting

numerical values for the Lagrange multipliers end up being separated by several

orders of magnitude. For routines such as Newton-Raphson or other minimiza-

tion algorithms that can be used to find these Lagrange multipliers, these different

scales become problematic.

To get around this problem, we implemented a variation to the algorithm due to

G. Larry Bretthorst—Jaynes’ last student. With a straightforward argument, we

can show that linearly rescaling the constraints, the Lagrange multipliers, and the

“rules” for computing each of the moments, i.e., each of the individual products

that go into the moment calculation should converge to the same MaxEnt distribu-

tion. To see this, let us consider a univariate distribution PX(x) that we are trying

to reconstruct given the first two moments 〈x〉, and
〈

x2〉. The MaxEnt distribution

can be written as

PH(x) =
1
Z exp

(
−λ1x− λ2x2

)
=

1
Z exp (−λ1x) exp

(
−λ2x2

)
. (5.131)
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We can always rescale the terms in any way and obtain the same result. Assume

that, for some reason, we want to rescale the quadratic terms by a factor a. We can

define a new Lagrange multiplier λ′2 ≡
λ2
a that compensates for the rescaling of the

terms, obtaining

PH(x) =
1
Z exp (−λ1x) exp

(
−λ′2ax2

)
. (5.132)

Computationally it might be more efficient to find the numerical value of λ′2 rather

than λ2 maybe because it is of the same order of magnitude as λ1. Then we can

always multiply λ′2 by a to obtain back the constraint for our quadratic term. This

means that we can always rescale the MaxEnt problem to make it numerically more

stable, then we can rescale it back to obtain the value of the Lagrange multipliers.

The key to the Bretthorst algorithm lies in selecting what rescaling factor to choose

to make the numerical inference more efficient.

Bretthorst’s algorithm goes even further by further transforming the constraints

and the variables to make the constraints orthogonal, making the computation

much more effective. We now explain the algorithm’s implementation for our joint

distribution of interest P(m, p).

Algorithm Implementation

Let the M× N matrix A contain all the factors used to compute the moments that

serve as constraints, where each entry is of the form

Aij = m
xj
i · p

yj
i . (5.133)

In other words, recall that to obtain any moment 〈mx py〉, we compute

〈mx py〉 = ∑
m

∑
p

mx pyP(m, x). (5.134)

If we have M possible (m, p) pairs in our truncated sample space (because we

ca not include the sample space up to infinity) {(m, p)1, (m, p)2, . . . (m, p)N}, and

we have N exponent pairs (x, y) corresponding to the N moments used to con-

straint the maximum entropy distribution {(x, y)1, (x, y)2, . . . , (x, y)N}, then ma-

trix A contains all the possible M by N terms of the form described in Eq. 5.133.
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Let also v be a vector of length N containing all the constraints with each entry of

the form

vj = 〈mxj pyj〉 , (5.135)

i.e., the information that we have about the distribution. That means that the con-

straint equation L to be used for this problem takes the form

L = −∑
i

Pi ln Pi + λ0

(
1−∑

i
Pi

)
+ ∑

j>0
λj

(
vj −∑

i
AijPi

)
, (5.136)

where λ0 is the Lagrange multiplier associated with the normalization constraint

and λj is the Lagrange multiplier associated with the jth constraint. This constraint

equation is equivalent to Eq. 5.122, but now all the details of how to compute the

moments are specified in matrix A.

With this notation in hand, we now proceed to rescale the problem. The first step

consists of rescaling the terms to compute the entries of the matrix A. As men-

tioned before, this is the crucial feature of the Bretthorst algorithm; the particu-

lar choice of rescaling factor used in the algorithm empirically promotes that the

rescaled Lagrange multipliers are of the same order of magnitude. The rescaling

takes the form

A′ij =
Aij

Gj
, (5.137)

where Gj serves to rescale the moments, providing numerical stability to the infer-

ence problem. Bretthorst proposes an empirical rescaling that satisfies

G2
j = ∑

i
A2

ij, (5.138)

or, in terms of our particular problem,

G2
j = ∑

m
∑
p
(mxj pyj)2 . (5.139)

What this indicates is that each pair m
xj
i p

yj
i is normalized by the square root of the

sum of all pairs of the same form squared.
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Since we rescale the factors involved in computing the constraints, the constraints

must also be rescaled simply as

v′j = 〈mxj pyj〉′ = 〈m
xj pyj〉
Gj

. (5.140)

The Lagrange multipliers must compensate for this rescaling since the probability

must add up to the same value at the end of the day. Therefore, we rescale the λj

terms as

λ′j = λjGj, (5.141)

such that any λj Aij = λ′j A
′
ij. If this empirical value for the rescaling factor makes

the rescaled Lagrange multipliers λ′j be of the same order of magnitude, this by

itself would already improve the algorithm convergence. Bretthorst proposes an-

other linear transformation to make the optimization routine even more efficient.

For this, we generate orthogonal constraints that make Newton-Raphson and sim-

ilar algorithms converge faster. The transformation is as follows

A′′ik = ∑
j

ejk A′ij, (5.142)

for the entires of matrix A, and

v′′k = ∑
j

ejku′j, (5.143)

for entires of the constraint vector v, finally

λ′′k = ∑
j

ejkβ j, (5.144)

for the Lagrange multipliers. Here ejk is the jth component of the kth eigenvector of

the matrix E with entries

Ekj = ∑
i

A′ik A′ij. (5.145)

This transformation guarantees that the matrix A′′ has the property

∑
i

A′′ij A
′′
jk = β jδjk, (5.146)

where β j is the jth eigenvalue of the matrix E and δjk is the Kronecker delta func-

tion. This means that, as desired, the constraints are orthogonal to each other,

improving the algorithm convergence speed.
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Predicting Distributions for Simple Repression Constructs

Having explained the theoretical background and the practical difficulties, and a

workaround strategy proposed by Bretthorst, we implemented the inference using

the moments obtained from averaging over the variability along the cell cycle (see

Sec. 5.4). Fig. 5.16 and Fig. 5.17 present these inferences for both mRNA and pro-

tein levels, respectively, for different values of the repressor-DNA binding energy

and repressor copy numbers per cell. From these plots, we can easily appreci-

ate that even though the mean of each distribution changes as the induction level

changes, there is a lot of overlap between distributions. This, as a consequence,

means that at the single-cell level, cells cannot perfectly resolve between different

inputs.

Comparison with Experimental Data

Now that we have reconstructed an approximation of the probability distribution

P(m, p), we can compare this with our experimental measurements. But just as

detailed in the single-cell microscopy, measurements are given in arbitrary units

of fluorescence. Therefore, we cannot directly compare our predicted protein dis-

tributions with these values. To get around this issue, we use the fact that the

fold-change in gene expression that we defined as the ratio of the gene expres-

sion level in the presence of the repressor and the expression level of a knockout

strain is a non-dimensional quantity. Therefore, we normalize all of our single-cell

measurements by the mean fluorescence value of the ∆lacI strain with the proper

background fluorescence subtracted as explained in the noise measurements. In

the case of the theoretical predictions of the protein distribution, we also normal-

ize each protein value by the predicted mean protein level 〈p〉, having now non-

dimensional scales that can be directly compared. Fig. 5.18 shows the experimental

(color curves) and theoretical (dark dashed line) cumulative distribution functions

for the three ∆lacI strains. As in Fig. 5.12, we do not expect differences between

the operators, but we explicitly plot them separately to ensure that this is the case.

We can see right away that as we would expect, given the model’s limitations to
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Figure 5.16: Maximum entropy mRNA distributions for simple repression constructs. mRNA
distributions for different biophysical parameters. From left to right, the repressor-DNA affinity
decreases as defined by the three lacI operators O1 (−15.3 kBT), O2 (−13.9 kBT), and O3 (−9.7 kBT).
From top to bottom, the mean repressor copy number per cell increases. The curves on each plot
represent different IPTG concentrations. Each distribution was fitted using the first three moments
of the mRNA distribution. The Python code (ch5_fig16.py) used to generate this figure can be
found on the original paper’s GitHub repository..

predict the noise and skewness of the distribution accurately, the model does not

accurately predict the data. Our model predicts a narrower distribution compared

to what we measured with single-cell microscopy.

The same narrower prediction applies to the regulated promoters. Fig. 5.19, shows

the theory-experiment comparison of the cumulative distribution functions for dif-

ferent repressor binding sites (different figures), repressor copy numbers (rows),

and inducer concentrations (columns). In general, the predictions are systemati-

cally narrower compared to the actual experimental data.

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS16.py
https://github.com/RPGroup-PBoC/chann_cap
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Figure 5.17: Maximum entropy protein distributions for simple repression constructs. Protein
distributions for different biophysical parameters. From left to right, the repressor-DNA affinity
decreases as defined by the three lacI operators O1 (−15.3 kBT), O2 (−13.9 kBT), and O3 (−9.7 kBT).
From top to bottom, the mean repressor copy number per cell increases. The curves on each plot
represent different IPTG concentrations. Each distribution was fitted using the first six moments of
the protein distribution. The Python code (ch5_fig17.py) used to generate this figure can be found
on the original paper’s GitHub repository..

5.7 Gillespie Simulation of the Master Equation

(Note: The Python code used for the calculations presented in this section can be

found in the following link as an annotated Jupyter notebook.)

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS17.py
https://github.com/RPGroup-PBoC/chann_cap
https://www.rpgroup.caltech.edu//chann_cap/software/gillespie_simulation.html
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Figure 5.18: Experiment vs. theory comparison for ∆lacI strain. Example fold-change empirical
cumulative distribution functions (ECDF) for strains with no repressors and different operators.
The color curves represent single-cell microscopy measurements while the dashed black lines rep-
resent the theoretical distributions as reconstructed by the maximum entropy principle. The theo-
retical distributions were fitted using the first six moments of the protein distribution. The Python
code (ch5_fig18.py) used to generate this figure can be found on the original paper’s GitHub
repository.

So far, we have generated a way to compute an approximated form of the joint

distribution of protein and mRNA P(m, p) as a function of the moments of the

distribution 〈mx py〉. This is a non-conventional form to work with the resulting

distribution of the master equation. A more conventional approach to work with

master equations whose closed-form solutions are not known or not computable

is to use stochastic simulations, commonly known as Gillespie simulations. To

benchmark our approach’s performance based on distribution moments and max-

imum entropy, we implemented the Gillespie algorithm. Our implementation, as

detailed in the corresponding Jupyter notebook, makes use of just-in-time compi-

lation as implemented with the Python package numba.

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS18.py
https://github.com/RPGroup-PBoC/chann_cap
https://github.com/RPGroup-PBoC/chann_cap
http://numba.pydata.org
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Figure 5.19: Experiment vs. theory comparison for regulated promoters. Example fold-change
empirical cumulative distribution functions (ECDF) for regulated strains with the three opera-
tors (different colors) as a function of repressor copy numbers (rows) and inducer concentrations
(columns). The color curves represent single-cell microscopy measurements, while the dashed
black lines represent the theoretical distributions as reconstructed by the maximum entropy princi-
ple. The theoretical distributions were fitted using the first six moments of the protein distribution.
The Python code (ch5_fig19.py) used to generate this figure can be found on the original paper’s
GitHub repository.

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS19.py
https://github.com/RPGroup-PBoC/chann_cap
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Figure 5.20: Stochastic trajectories of mRNA counts. 100 stochastic trajectories generated with the
Gillespie algorithm for mRNA counts over time for a two-state unregulated promoter. Cells spend
a fraction of the cell cycle with a single copy of the promoter (light brown) and the rest of the cell
cycle with two copies (light yellow). When trajectories reach a new cell cycle, the mRNA counts
undergo binomial partitioning to simulate the cell division. The Python code (ch5_fig20.py) used
to generate this figure can be found on the original paper’s GitHub repository.

mRNA Distribution with Gillespie Simulations

To confirm that the Gillespie simulation’s implementation was correct, we per-

form the simulation at the mRNA level, for which the closed-form solution of the

steady-state distribution is known as detailed in Sec. 5.2. Fig. 5.20 shows example

trajectories of mRNA counts. Each of these trajectories was computed over sev-

eral cell cycles, where the cell division was implemented, generating a binomially

distributed random variable that depended on the last mRNA count before the

division event.

To check the implementation of our stochastic algorithm, we generated several

of these stochastic trajectories to reconstruct the mRNA steady-state distribution.

These reconstructed distributions for a single- and double-copy of the promoter

can be compared with Eq. 5.10—the steady-state distribution for the two-state

promoter. Fig. 5.21 shows the excellent agreement between the stochastic simula-

tion and the analytical result, confirming that our implementation of the Gillespie

simulation is correct.

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS20.py
https://github.com/RPGroup-PBoC/chann_cap
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Figure 5.21: Comparison of analytical and simulated mRNA distribution. Solid lines show the
steady-state mRNA distributions for one copy (light blue) and two copies of the promoter (dark
blue) as defined by Eq. 5.10. Shaded regions represent the corresponding distribution obtained us-
ing 2500 stochastic mRNA trajectories and taking the last cell cycle to approximate the distribution.
The Python code (ch5_fig21.py) used to generate this figure can be found on the original paper’s
GitHub repository.

Protein Distribution with Gillespie Simulations

Having confirmed that our implementation of the Gillespie algorithm that includes

the binomial partitioning of molecules reproduces analytical results, we extended

the implementation to include protein counts. Fig. 5.22 shows representative tra-

jectories for both mRNA and protein counts over several cell cycles. Especially for

the protein, we can see that it takes several cell cycles for counts to converge to the

dynamical steady-state observed with the deterministic moment equations. Once

this steady-state is reached, the ensemble of trajectories between cell cycles looks

very similar.

From these trajectories, we can compute the steady-state protein distribution, tak-

ing into account the cell-age distribution, as detailed in Sec. 5.5. Fig. 5.23 shows the

comparison between this distribution and the one generated using the maximum

entropy algorithm. Although the notorious differences between the distributions,

the Gillespie simulation and the maximum entropy results are indistinguishable

in terms of the mean, variance, and skewness of the distribution. We remind the

reader that the maximum entropy approximates the distribution that gets better

the more moments we add. We, therefore, claim that the approximation works

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS21.py
https://github.com/RPGroup-PBoC/chann_cap
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Figure 5.22: Stochastic trajectories of mRNA and protein counts. 2500 protein counts over time
for a two-state unregulated promoter. Cells spend a fraction of the cell cycle with a single copy
of the promoter (light brown) and the rest of the cell cycle with two copies (light yellow). When
trajectories reach a new cell cycle, the molecule counts undergo binomial partitioning to simulate
the cell division. The Python code (ch5_fig22.py) used to generate this figure can be found on the
original paper’s GitHub repository..

sufficiently well for our purpose. The enormous advantage of the maximum en-

tropy approach comes from the computation time. For the number of distributions

needed for our calculations, the Gillespie algorithm proved to be a very inefficient

method given the ample sample space. Our maximum entropy approach reduces

the computation time by several orders of magnitude, allowing us to explore dif-

ferent regulatory models’ parameters extensively.

5.8 Computational Determination of the Channel Capacity

(Note: The Python code used for the calculations presented in this section can be

found in the following link as an annotated Jupyter notebook.)

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS22.py
https://github.com/RPGroup-PBoC/chann_cap
https://www.rpgroup.caltech.edu//chann_cap/software/blahut_algorithm_channel_capacity.html
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Figure 5.23: Comparison of protein distributions. Comparison of the protein distribution gener-
ated with Gillespie stochastic simulations (blue curve) and the maximum entropy approach (orange
curve). The upper panel shows the probability mass function. The lower panel compares the cu-
mulative distribution functions. The Python code (ch5_fig23.py) used to generate this figure can
be found on the original paper’s GitHub repository.

This section details the computation of the channel capacity of the simple genetic

circuit shown in Fig. 3.5. The channel capacity is defined as the mutual information

between input c and output p maximized over all possible input distributions P(c)

[27]. In principle, there is an infinite number of input distributions, so the task

of finding P̂(c), the input distribution at channel capacity, requires an algorithmic

approach that guarantees the convergence to this distribution. Tkačik, Callan, and

Bialek developed an analytical approximation to find the P̂(c) distribution [108].

The validity of their so-called small noise approximation requires the standard de-

viation of the output distribution P(p | c) to be much smaller than the distribution

domain. For our particular case, such a condition is not satisfied given the spread

of the inferred protein distributions shown in Fig. 3.4.

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS23.py
https://github.com/RPGroup-PBoC/chann_cap
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Fortunately, a numerical algorithm can approximate P̂(c) for discrete distributions.

In 1972, Blahut and Arimoto independently came up with an algorithm mathemat-

ically shown to converge to P̂(c) [123]. To compute both the theoretical and the

experimental channel capacity shown in Fig. 3.5, we implemented Blahut’s algo-

rithm. In the following section, we detail the definitions needed for the algorithm.

Then we describe how to compute the experimental channel capacity when the

distribution bins are not clear given the arbitrary intrinsic nature of microscopy

fluorescence measurements.

Blahut’s algorithm

Following [123], we implemented the algorithm to compute the channel capacity.

We define pc to be an array containing the probability of each of the input inducer

concentrations (twelve concentrations, See Methods). Each entry j of the array is

then of the form

p(j)
c = P(c = cj), (5.147)

with j ∈ {1, 2, . . . , 12}. The objective of the algorithm is to find the entries p(j)
c that

maximize the mutual information between inputs and outputs. We also define Q

to be a |pc| by |pp|c| matrix, where | · | specifies the length of the array, and pp|c is

an array containing the probability distribution of an output given a specific value

of the input. In other words, the matrix Q recollects all of the individual output

distribution arrays pp|c into a single object. Then each entry of the matrix Q is of

the form

Q(i,j) = P(p = pi | c = cj). (5.148)

For the case of the theoretical predictions of the channel capacity (solid lines in

Fig. 3.5), the entries of the matrix Q are given by the inferred maximum entropy

distributions as shown in Fig. 3.4. In the next section, we will discuss how to

define this matrix for the single-cell fluorescence measurements. Having defined

these matrices, we proceed to implement the algorithm shown in Figure 1 of [123].
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Channel Capacity from Arbitrary Units of Fluorescence

A difficulty when computing the channel capacity between inputs and outputs

from experimental data is that ideally, we would like to compute

C(g; c) ≡ sup
P(c)

I(g; c), (5.149)

where g is the gene expression level, and c is the inducer concentration. But in

reality, we are computing

C( f (g); c) ≡ sup
P(c)

I( f (g); c), (5.150)

where f (g) is a function of gene expression that has to do with our mapping from

the YFP copy number to some arbitrary fluorescent value as computed from the

images taken with the microscope. The data processing inequality, as derived by

Shannon himself, tells us that for a Markov chain of the form c → g → f (g), it

must be true that [27]

I(g; c) ≥ I( f (g); c), (5.151)

meaning that information can only be lost when mapping from the real relation-

ship between gene expression and inducer concentration to a fluorescence value.

On top of that, given the limited number of samples that we have access to when

computing the channel capacity, there is a bias in our estimate given this under-

sampling. The definition of accurate, unbiased descriptors of mutual information

is still an area of active research. For our purposes, we will use the method de-

scribed in [155]. The basic idea of the method is to write the mutual information

as a series expansion in terms of inverse powers of the sample size, i.e.

Ibiased = I∞ +
a1

N
+

a2

N2 + · · · , (5.152)
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where Ibiased is the biased estimate of the mutual information as computed from

experimental data, I∞ is the quantity we would like to estimate, being the unbiased

mutual information when having access to an infinity number of experimental

samples and the coefficients ai depend on the underlying distribution of the signal

and the response. This is an empirical choice to be tested. Intuitively, this choice

satisfies the limit that as the number of samples from the distribution grows, the

empirical estimate of the mutual information Ibiased should get closer to the actual

value I∞.

In principle, for a good number of data points, the terms of higher-order become

negligible. So we can write the mutual information as

Ibiased ≈ I∞ +
a1

N
+O(N−2). (5.153)

This means that if this particular arbitrary choice of functional form is a good

approximation, when computing the mutual information for varying numbers of

samples—by taking subsamples of the experimental data—we expect to find a lin-

ear relationship as a function of the inverse of these number of data points. From

this linear relationship, the intercept is a bias-corrected estimate of the mutual in-

formation. Therefore, we can bootstrap the data by taking different sample sizes

and then use the Blahut-Arimoto algorithm we implemented earlier to estimate

the biased channel capacity. We can then fit a line and extrapolate when 1/N = 0,

which corresponds to our unbiased estimate of the channel capacity.

Let us go through each of the steps to illustrate the method. Fig. 5.24 show a

typical data set for a strain with an O2 binding site (∆εr = −13.9 kBT) and R = 260

repressors per cell. Each of the distributions in arbitrary units is binned into a

specified number of bins to build matrix Q.
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Figure 5.24: Single-cell fluorescence distributions for different inducer concentrations. Fluo-
rescence distribution histogram (A) and cumulative distribution function (B) for a strain with 260
repressors per cell and a binding site with binding energy ∆εr = −13.9 kBT. The different curves
show the single-cell fluorescence distributions under the 12 different IPTG concentrations used
throughout this work. The triangles in (A) show the mean of each of the distributions. The Python
code (ch5_fig24.py) used to generate this figure can be found on the original paper’s GitHub
repository.

Given a specific number of bins used to construct Q, we subsample a fraction of the

data and compute the channel capacity for such matrix using the Blahut-Arimoto

algorithm. Fig. 5.25 shows an example where 50% of the data on each distribution

from Fig. 5.24 was sampled and binned into 100 equal bins. The counts on each

of these bins are then normalized and used to build matrix Q that is then fed to

the Blahut-Arimoto algorithm. We can see that for these 200 bootstrap samples, the

channel capacity varies by≈ 0.1 bits. Not a significant variability; nevertheless, we

consider it essential to bootstrap the data multiple times to estimate the channel

capacity better.

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS24.py
https://github.com/RPGroup-PBoC/chann_cap
https://github.com/RPGroup-PBoC/chann_cap
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Figure 5.25: Channel capacity bootstrap for experimental data. The cumulative distribution func-
tion of the resulting channel capacity estimates obtained by subsampling 200 times 50% of each
distribution shown in Fig. 5.24, binning it into 100 bins, and feeding the resulting Q matrix to the
Blahut-Arimoto algorithm. The Python code (ch5_fig25.py) used to generate this figure can be
found on the original paper’s GitHub repository.

Eq. 5.153 tells us that if we subsample each of the distributions from Fig. 5.24 at

different fractions and plot them as a function of the inverse sample size, we will

find a linear relationship if the expansion of the mutual information is valid. To

test this idea, we repeated the bootstrap estimate of Fig. 5.25 sampling 10%, 20%,

and so on until taking 100% of the data. We repeated this for different numbers

of bins since a priori for arbitrary units of fluorescence, we do not have a way to

select the optimal number of bins. Fig. 5.26 shows the result of these estimates. We

can see that the linear relationship proposed in Eq. 5.153 holds for all number of

bins selected. We also note that the value of the linear regression intercept varies

depending on the number of bins.

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS25.py
https://github.com/RPGroup-PBoC/chann_cap
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Figure 5.26: Inverse sample size vs. channel capacity. As indicated in Eq. 5.153, if the channel
capacity obtained for different subsample sizes of the data are plotted against the inverse sample
size, there must exist a linear relationship between these variables. Here, we perform 15 bootstrap
samples of the data from Fig. 5.24, then we bin these samples using a different number of bins, and
finally perform a linear regression (solid lines) between the bootstrap channel capacity estimates
and the inverse sample size. The Python code (ch5_fig26.py) used to generate this figure can be
found on the original paper’s GitHub repository..

To address the variability in the estimates of the unbiased channel capacity I∞ we

again follow the methodology suggested in [155]. We perform the data subsam-

pling and computation of the channel capacity for a varying number of bins. As

a control, we perform the same procedure with shuffled data, where the structure

that connects the fluorescence distribution to the inducer concentration input is

lost. The expectation is that this control should give a channel capacity of zero if

the data is not “over-binned.” Once the number of bins is too high, we expect some

structure to emerge in the data that would cause the Blahut-Arimoto algorithm to

return non-zero channel capacity estimates.

Fig. 5.27 shows the result of the unbiased channel capacity estimates obtained for

the data shown in Fig. 5.24. For the blue curve, we can distinguish three phases: 1.

A rapid increment from 0 bits to about 1.5 bits as the number of bins increases. 2.

A flat region between ≈ 50 and 1000 bins. 3. A second rapid increment for a large

number of bins.

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS26.py
https://github.com/RPGroup-PBoC/chann_cap
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Figure 5.27: Channel capacity as a function of the number of bins. Unbiased channel capacity
estimates we obtained from linear regressions as in Fig. 5.26. The blue curve shows the estimates
obtained from the data shown in Fig. 5.24. The orange curve is generated from estimates where
the same data is shuffled, losing the relationship between fluorescence distributions and inducer
concentration. The Python code (ch5_fig27.py) used to generate this figure can be found on the
original paper’s GitHub repository.

We can see that the randomized data presents two phases only: 1. A flat region

where there is, as expected, no information being processed since the structure of

the data was lost when the data was shuffled. 2. A region with a fast growth of

the channel capacity as the over-binning generates separated peaks on the distri-

bution, making it look like there is a structure in the data.

We take the flat region of the experimental data (≈ 100 bins) to be our best unbiased

estimate of the channel capacity from this experimental dataset.

Assumptions Involved in the Computation of the Channel Capacity

An interesting suggestion by Professor Gasper Tkacik was to dissect the different

physical assumptions that went into the construction of the input-output function

P(p | c), and their relevance when comparing the theoretical channel capacities

with the experimental inferences. In what follows, we describe the relevance of

four important aspects that all affect the predictions of the information processing

capacity.

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS27.py
https://github.com/RPGroup-PBoC/chann_cap
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Figure 5.28: Comparison of channel capacity predictions for single- and multi-promoter models.
Channel capacity for the multi-promoter model (solid lines) vs. the single-promoter steady-state
model (dot-dashed lines) as a function of repressor copy numbers for different repressor-DNA
binding energies. The single-promoter model assumes Poissonian protein degradation (γp > 0)
and steady-state, while the multi-promoter model accounts for gene copy number variability dur-
ing the cell cycle and has protein degradation as an effect due to dilution as cells grow and divide.
The Python code (ch5_fig28.py) used to generate this figure can be found on the original paper’s
GitHub repository.

(i) Cell Cycle Variability.

We think that the inclusion of the gene copy number variability during the cell

cycle and non-Poissonian protein degradation is crucial to our estimation of the

input-output functions and channel capacity. This variability in gene copy number

is an additional source of noise that systematically decreases the system’s ability

to resolve different inputs. The absence of the effects that the gene copy number

variability and the protein partition have on the information processing capacity

leads to an overestimate of the channel capacity, as shown in Fig. 5.28. When these

noise sources are included in our inferences, we capture the experimental channel

capacities with no additional fit parameters.

(ii) Non-Gaussian Noise Distributions.

For the construction of the probability distributions used in Chapter 3 (Fig. 3.4), we

utilized the first six moments of the protein distribution. The maximum entropy

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS28.py
https://github.com/RPGroup-PBoC/chann_cap
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formalism tells us that the more constraints we include in the inference, the closer

the maximum entropy distribution will be to the real distribution. But a priori

there is no way of knowing how many moments should be included to capture

the distribution’s essence. In principle, two moments could suffice to describe

the entire distribution as happens with the Gaussian distribution. To compare the

effect of including more or fewer constraints on the maximum entropy inference,

we constructed maximum entropy distributions using an increasing number of

moments from 2 to 6. We then computed the Kullback-Leibler divergence DKL of

the form

DKL(P6(p | c)||Pi(p | c)) = ∑
p

P6(p | c) log2
P6(p | c)
Pi(p | c)

, (5.154)

where Pi(p | c) is the maximum entropy distribution constructed with the first

i moments, i ∈ {2, 3, 4, 5, 6}. Since the Kullback-Leibler divergence DKL(P||Q)

can be interpreted as the amount of information lost by assuming the incorrect

distribution Q when the correct distribution is P, we used this metric as a way of

how much information we would have lost by using fewer constraints compared

to the six moments used in Chapter 3.

Fig. 5.29 shows this comparison for different operators and repressor copy num-

bers. We can see from here that using fewer moments as constraints gives the same

result. This is because most of the values of the Kullback-Leibler divergence is sig-

nificantly smaller than 0.1 bits. The entropy of these distributions is, in general,

> 10 bits, so we would lose less than 1% of the information contained in these

distributions by utilizing only two moments as constraints. Therefore the use of

non-Gaussian noise is not an essential feature for our inferences.
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Figure 5.29: Measuring the loss of information by using a different number of constraints.
The Kullback-Leibler divergence was computed between the maximum entropy distribution con-
structed using the first six moments of the distribution and a variable number of moments. The
Python code (ch5_fig29.py) used to generate this figure can be found on the original paper’s
GitHub repository.

(iii) Multi-State Promoter.

This particular point is something that we are still exploring from a theoretical per-

spective. We have shown that, to capture the single-molecule mRNA FISH data, a

single-state promoter would not suffice. This model predicts a Poisson distribution

as the steady-state, and the data shows super Poissonian noise. Given the bursty

nature of gene expression, we opt to use a two-state promoter to reflect effective

transcriptionally “active” and “inactive” states. We are currently exploring alter-

native formulations of this model to turn it into a single state with a geometrically

distributed burst size.

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS29.py
https://github.com/RPGroup-PBoC/chann_cap
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(iv) Optimal vs Log-Flat Distributions.

The relevance of having to use the Blahut-Arimoto algorithm to predict the maxi-

mum mutual information between input and outputs was to understand the best-

case scenario. We show the comparison between theoretical and experimental

input-output functions P(p | c) in Fig. 5.19. Given the good agreement between

these distributions, we could compute the mutual information I(c; p) for any arbi-

trary input distribution P(c) and obtain a good agreement with the corresponding

experimental mutual information.

The reason we opted to report the mutual information at the channel capacity was

to put the results in context. By reporting the upper bound in performance of these

genetic circuits, we can start to dissect how different molecular parameters such as

repressor-DNA binding affinity or repressor copy number affect the ability of this

genetic circuit to extract information from the environmental state.

5.9 Empirical Fits to Noise Predictions

(Note: The Python code used for the calculations presented in this section can be

found in the following link as an annotated Jupyter notebook.)

In Fig. 3.3(C), we show that our minimal model has a systematic deviation on the

gene expression noise predictions compared to the experimental data. This sys-

tematics will need to be addressed on an improved version of the minimal model

presented in this work. To guide the insights into the origins of this systematic

deviation in this appendix, we will explore the model’s empirical modifications to

improve the agreement between theory and experiment.

Multiplicative Factor for the Noise

The first option we will explore is to modify our noise predictions by a constant

multiplicative factor. This means that we assume that the relationship between

our minimal model predictions and the data for noise in gene expression are of the

form

noiseexp = α · noisetheory, (5.155)

https://www.rpgroup.caltech.edu/chann_cap/src/theory/html/empirical_constants.html


254

0.0 0.5 1.0 1.5 2.0
theoretical noise

0.0

0.5

1.0

1.5

2.0

ex
pe

rim
en

ta
l n

oi
se

linear scale

10 1 100 101

theoretical noise

10 1

100

101

102

103

ex
pe

rim
en

ta
l n

oi
se

log scale
1

0.1

0.01

0.001 fo
ld

-c
ha

ng
e

Figure 5.30: Multiplicative factor in improving theoretical vs. experimental comparison of noise
in gene expression. Theoretical vs. experimental noise both in linear (left) and log (right) scale.
The dashed line shows the identity line of slope 1 and intercept zero. All data are colored by the
corresponding experimental fold-changes in gene expression as indicated by the color bar. The
x-axis was multiplied by a factor of ≈ 1.5 as determined by linear regression from the data in
Fig. 5.11. Each datum represents a single date measurement of the corresponding strain and IPTG
concentration with ≥ 300 cells. The points correspond to the median, and the error bars corre-
spond to the 95% confidence interval as determined by 10,000 bootstrap samples. The Python code
(ch5_fig30.py) used to generate this figure can be found on the original paper’s GitHub reposi-
tory..

where α is a dimensionless constant to be fit from the data. The data, especially

in Fig. 5.12, suggests that our predictions are within a factor of ≈ two from the

experimental data. To further check that intuition, we performed a weighted lin-

ear regression between the experimental and theoretical noise measurements. The

weight for each datum was proportional to the bootstrap errors in the noise esti-

mate (this to have poorly determined noises weigh less during the linear regres-

sion). This regression with no intercept shows that a factor of two systematically

improves the theoretical vs. experimental predictions. Fig. 5.30 shows the im-

proved agreement when the noise’s theoretical predictions are multiplied by≈ 1.5.

For completeness, Fig. 5.31 shows the noise in gene expression as a function of

the inducer concentration, including this factor of ≈ 1.5. Thus, overall a simple

multiplicative factor improves the predictive power of the model.

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS30.py
https://github.com/RPGroup-PBoC/chann_cap
https://github.com/RPGroup-PBoC/chann_cap
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Figure 5.31: Protein noise of the regulated promoter with multiplicative factor. Comparison of
the experimental noise for different operators ((A) O1, ∆εr = −15.3 kBT, (B) O2, ∆εr = −13.9 kBT,
(C) O3, ∆εr = −9.7 kBT) with the theoretical predictions for the multi-promoter model. Linear
regression revealed that multiplying the theoretical noise prediction by a factor of ≈ 1.5 would
improve agreement between theory and data. Points represent the experimental noise as computed
from single-cell fluorescence measurements of different E. coli strains under 12 different inducer
concentrations. The dotted line indicates the plot in linear rather than logarithmic scale. Each
datum represents a single date measurement of the corresponding strain and IPTG concentration
with ≥ 300 cells. The points correspond to the median, and the error bars correspond to the 95%
confidence interval as determined by 10,000 bootstrap samples. White-filled dots are plot at a
different scale for better visualization. The Python code (ch5_fig31.py) used to generate this figure
can be found on the original paper’s GitHub repository.

Additive Factor for the Noise

As an alternative way to empirically improve our model’s predictions, we will

now test the idea of an additive constant. What this means is that our minimal

model underestimates the noise in gene expression as

noiseexp = β + noisetheory, (5.156)

where β is an additive constant to be determined from the data. As with the multi-

plicative constant, we performed a regression to determine this empirical additive

constant, comparing experimental and theoretical gene expression noise values.

We use the error in the 95% bootstrap confidence interval as a weight for the linear

regression. Fig. 5.32 shows the resulting theoretical vs. experimental noise where

β ≈ 0.2. We can see a great improvement in the agreement between theory and

experiment with this additive constant.

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS31.py
https://github.com/RPGroup-PBoC/chann_cap
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Figure 5.32: Additive factor in improving theoretical vs. experimental comparison of noise in
gene expression. Theoretical vs. experimental noise both in linear (left) and log (right) scale. The
dashed line shows the identity line of slope 1 and intercept zero. All data are colored by the cor-
responding experimental fold-change in gene expression as indicated by the color bar. A value of
≈ 0.2 was added to all values in the x-axis as determined by linear regression from the data in
Fig. 5.11. Each datum represents a single date measurement of the corresponding strain and IPTG
concentration with ≥ 300 cells. The points correspond to the median, and the error bars corre-
spond to the 95% confidence interval as determined by 10,000 bootstrap samples. The Python code
(ch5_fig32.py) used to generate this figure can be found on the original paper’s GitHub reposi-
tory..

For completeness, Fig. 5.33 shows the noise in gene expression as a function of

the inducer concentration, including this additive factor of β ≈ 0.2. If anything,

the additive factor seems to improve the agreement between theory and data even

more than the multiplicative factor.

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS32.py
https://github.com/RPGroup-PBoC/chann_cap
https://github.com/RPGroup-PBoC/chann_cap
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Figure 5.33: Protein noise of the regulated promoter with an additive factor. Comparison of the
experimental noise for different operators ((A) O1, ∆εr = −15.3 kBT, (B) O2, ∆εr = −13.9 kBT,
(C) O3, ∆εr = −9.7 kBT) with the theoretical predictions for the multi-promoter model. Linear
regression revealed that an additive factor of ≈ 0.2 to the theoretical noise prediction would im-
prove agreement between theory and data. Points represent the experimental noise as computed
from single-cell fluorescence measurements of different E. coli strains under 12 different inducer
concentrations. The dotted line indicates the plot in linear rather than logarithmic scale. Each da-
tum represents a single date measurement of the corresponding strain and IPTG concentration with
≥ 300 cells. The points correspond to the median, and the error bars correspond to the 95% confi-
dence interval as determined by 10,000 bootstrap samples. White-filled dots are plot at a different
scale for better visualization. The Python code (ch5_fig33.py) used to generate this figure can be
found on the original paper’s GitHub repository.

Correction Factor for Channel Capacity with a Multiplicative Factor

A constant multiplicative factor can reduce the discrepancy between the model

predictions and the data concerning the noise (standard deviation/mean) in pro-

tein copy numbers. Finding the equivalent correction for the channel capacity re-

quires gaining insights from the so-called small noise approximation [108]. The

small noise approximation assumes that the input-output function can be modeled

as a Gaussian distribution in which the standard deviation is small. Using these

assumptions, one can derive a closed-form for the channel capacity. Although our

data and model predictions do not satisfy the small noise approximation require-

ments, we can gain some intuition for how the channel capacity would scale given

a systematic deviation in the cell-to-cell variability predictions compared with the

data.

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS33.py
https://github.com/RPGroup-PBoC/chann_cap
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Using the small noise approximation, one can derive the form of the input distri-

bution at channel capacity P∗(c). To do this, we use the fact that there is a de-

terministic relationship between the input inducer concentration c and the mean

output protein value 〈p〉, therefore we can work with P(〈p〉) rather than P(c) since

the deterministic relation allows us to write

P(c)dc = P(〈p〉)d 〈p〉 . (5.157)

Optimizing over all possible distributions P(〈p〉) using calculus of variations re-

sults in a distribution of the form

P∗(〈p〉) = 1
Z

1
σp(〈p〉)

, (5.158)

where σp(〈p〉) is the standard deviation of the protein distribution as a function of

the mean protein expression, and Z is a normalization constant defined as

Z ≡
∫ 〈p(c→∞)〉

〈p(c=0)〉

1
σp(〈p〉)

d 〈p〉 . (5.159)

Under these assumptions, the small noise approximation tells us that the channel

capacity is of the form [108]

I = log2

(
Z√
2πe

)
. (5.160)

From the theory-experiment comparison we know that the standard deviation pre-

dicted by our model is systematically off by a factor of two compared to the exper-

imental data, i.e.,

σ
exp
p = 2σ

theory
p . (5.161)

This then implies that the normalization constant Z between theory and experi-

ment must follow a relationship of the form

Zexp =
1
2
Z theory. (5.162)

With this relationship, the small noise approximation would predict that the differ-

ence between the experimental and theoretical channel capacity should be of the

form

Iexp = log2

(
Zexp
√

2πe

)
= log2

(
Z theory
√

2πe

)
− log2(2). (5.163)
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Figure 5.34: Additive correction factor for channel capacity. Solid lines represent the theoretical
predictions of the channel capacity shown in (A). The dashed lines show the resulting predictions
with a constant shift of -0.43 bits. Points represent single biological replicas of the inferred channel
capacity. The Python code (ch5_fig34.py) used to generate this figure can be found on the original
paper’s GitHub repository.

Therefore under the small noise approximation, we would expect our predictions

for the channel capacity to be off by a constant of 1 bit (log2(2)) of information.

Again, the conditions for the small noise approximation do not apply to our data

given the intrinsic level of cell-to-cell variability in the system; nevertheless, what

this analysis tells us is that we expect that an additive constant should be able to ex-

plain the discrepancy between our model predictions and the experimental chan-

nel capacity. To test this hypothesis, we performed a “linear regression” between

the model predictions and the experimental channel capacity with a fixed slope of

1. The intercept of this regression, -0.56 bits, indicates the systematic deviation we

expect should explain the difference between our model and the data. Fig. 5.34

shows the comparison between the original predictions shown in Fig. 5.5(A) and

the resulting predictions with this shift. Thus, other than the data with zero chan-

nel capacity, this shift can correct the systematic deviation for all data. We, there-

fore, conclude that our model ends up underestimating the experimentally deter-

mined channel capacity by a constant amount of 0.43 bits.

https://github.com/RPGroup-PBoC/chann_cap/blob/master/src/figs/figS34.py
https://github.com/RPGroup-PBoC/chann_cap
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Figure 5.35: One-state Poisson promoter. (A) Schematic of the kinetics of the one-state promoter.
mRNA is produced and degrade stochastically with a rate rm and γm, respectively. (B) Represen-
tation of the Markov chain for the state space that the promoter can be. The distribution P(m, t)
represents the probability of having a certain discrete number of mRNA m at time t. The transition
between states depends on the previously mentioned rates.

5.10 Derivation of the Steady-State mRNA Distribution

In this section, we will derive the two-state promoter mRNA distribution we quote

in Sec. 5.2. For this method, we will make use of the so-called generating func-

tions. Generating functions are mathematical objects on which we can encode a

series of infinite numbers as coefficients of a power series. The power of gener-

ating functions comes from the fact that we can convert an infinite-dimensional

system of coupled ordinary differential equations–in our case, the system of dif-

ferential equations defining all probabilities P(m, t) for m ∈ Z–into a single partial

differential equation that we can then solve to extract back the probability distri-

butions.

To motivate the use of generating functions, we will begin with the simplest case:

the one-state Poisson promoter.

One-state Poisson promoter

We begin by defining the reaction scheme that defines the one-state promoter.

Fig. 5.35 shows the schematic representation of the Poisson promoter as a sim-

ple cartoon (part (A)) and as the Markov chain that defines the state space of the

system (part (B)).
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The dynamics of the probability distribution P(m, t) are governed by the chemical

master equation

dP(m, t)
dt

=

m−1→m︷ ︸︸ ︷
rmP(m− 1, t)−

m→m+1︷ ︸︸ ︷
rmP(m, t) +

m+1→m︷ ︸︸ ︷
γm(m + 1)P(m + 1, t)−

m→m−1︷ ︸︸ ︷
γmmP(m, t) .

(5.164)

When solving for the distribution, our objective is to obtain the equation that de-

fines P(m, t) for all possible values of m ∈ Z. The power of the generating func-

tions is that these probability distribution values are used as a power series’s coef-

ficients. To make this clear, let us define the generating function G(z, t) as

G(z, t) ≡
∞

∑
m=0

zmP(m, t), (5.165)

where z is a “dummy” variable that we do not care about. The reason this is useful

is that if we find the closed-form solution for this generating function, and we are

able to split the factor zm from its coefficient P(m, t), then we will have to find

the solution for the distribution. Furthermore, the generating function allows us

to compute the moments of the distribution. For example, for the zeroth moment

〈m0〉, we know that

〈m0〉 =
∞

∑
m=0

m0P(m, t) = 1, (5.166)

i.e., this is the normalization constraint of the distribution. From the definition of

the generating function, we can then see that

G(1, t) =
∞

∑
m=0

1mP(m, t) = 1. (5.167)

Furthermore, the first moment of the distribution is defined as

〈m〉 =
∞

∑
m=0

mP(m, t). (5.168)

From the definition of the generating function, we can construct this quantity by

computing

∂G(z, t)
∂z

∣∣∣∣
z=1

=
∂

∂z

[
∞

∑
m=0

zmP(m, t)

]
z=1

=
∞

∑
m=0

mP(m, t). (5.169)
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Therefore we have that

〈m〉 = ∂G(z, t)
∂z

∣∣∣∣
z=1

. (5.170)

Similar constructions can be built for higher moments of the distribution.

Let us then apply the definition of the generating function to Eq. 5.164. For this,

we multiply both sides by zm and sum over all values of m, obtaining

∞

∑
m=0

zm dP(m, t)
dt

=
∞

∑
m=0

zm [rmP(m− 1, t)− rmP(m, t)

+ γm(m + 1)P(m + 1, t)− γmmP(m, t)] .

(5.171)

Distributing the sum, we find

d
dt

∞

∑
m=0

zmP(m, t) =
∞

∑
m=0

zmrmP(m− 1, t)−
∞

∑
m=0

zmrmP(m, t)

+
∞

∑
m=0

zmγm(m + 1)P(m + 1, t)−
∞

∑
m=0

zmγmmP(m, t).
(5.172)

We see that the terms involving zmP(m, t) can be directly substituted with Eq.

5.165. For the other terms, we have to be slightly more clever. The first trick will

allow us to rewrite the term involving zmmP(m, t) as

∑
m

zm ·m · P(m, t) = ∑
m

z
∂zm

∂z
P(m, t),

= ∑
m

z
∂

∂z
(zmP(m, t)) ,

= z
∂

∂z

(
∑
m

zmP(m, t)

)
,

= z
∂G(z, t)

∂z
.

(5.173)
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Next, let us deal with the term involving (m + 1). We first define k = m + 1. With

this, we can write
∞

∑
m=0

zm · (m + 1) · P(m + 1, t) =
∞

∑
k=1

zk−l · k · P(k, t),

= z−1
∞

∑
k=1

zk · k · P(k, t),

= z−1
∞

∑
k=0

zk · k · P(k, t),

= z−1
(

z
∂G(z)

∂z

)
,

=
∂G(z)

∂z
,

(5.174)

where for the third step, we reindexed the sum to include k = 0 since it does not

contribute to the total sum. Finally, for the term involving P(m− 1, t), we define

k = m− 1. This allows us to rewrite the term as
∞

∑
m=0

zmP(m− 1, t) =
∞

∑
k=−1

zk+1P(k, t),

=
∞

∑
k=0

zk+1P(k, t),

= z
∞

∑
k=0

zkP(k, t),

= zG(z, t).

(5.175)

For the second step, we reindexed the sum from −1 to 0 since P(−1, t) = 0.

All of these clever reindexing allows us to rewrite Eq. 5.172 as

∂G(z, t)
∂t

= rzG(z, t)− rG(z, t) + γ
∂G(z, t)

∂z
− γz

∂G(z, t)
∂z

. (5.176)

Factorizing terms, we have

∂G(z, t)
∂t

= −rG(z, t)(1− z) + γ
∂G(z, t)

∂z
(1− z). (5.177)

Let us appreciate how beautiful this is: we took an infinite-dimensional system of

ordinary differential equations—the master equation—and turned it into a single

partial differential equation (PDE). All we have to do now is solve this PDE, and

then transform the solution into a power series to extract the distribution.
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Let us focus on the steady-state case. For this, we set the time derivative to zero.

Doing this cancels the (1− z) term, leaving a straightforward ordinary differential

equation for G(z)
dG(z)

dz
=

r
γ

G(z). (5.178)

Solving this equation by separation of variables results in

G(z) = Ce
r
γ z. (5.179)

To obtain the integration constant, we use the normalization condition of the prob-

ability distribution (Eq. 5.167), obtaining

1 = Ce
r
γ ⇒ C = e−

r
γ . (5.180)

This means that the generating function takes the form

G(z) = e−
r
γ e

r
γ z. (5.181)

All we have left is trying to rewrite the generating function as a power series on

z. If we succeed in doing so, we will have recovered the probability distribution

P(m, t). For this, we simply use the Taylor expansion of ex, obtaining

G(z) = e−
r
γ

∞

∑
m=0

(
r
γ z
)m

m!
. (5.182)

From this form, it becomes clear how to split the zm term from the coefficient that,

by the definition of the generating function, is the probability distribution we are

looking for. The separation takes the form

G(z) =
∞

∑
m=0

zm

 e−r/γ
(

r
γ

)m

m!

 , (5.183)

where we can see that we recover the expected Poisson distribution for this one-

state promoter

P(m) = e−r/γ

(
r
γ

)m

m!
. (5.184)
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Two-state promoter

Having shown the generating function’s power, let us now turn our attention to

the relevant equation we are after: the two-state mRNA distribution. This model

assumes that the promoter can exist in two discrete states (see Fig. 5.36(A)): a tran-

scriptionally active state A from which transcription can take place at a constant

rate rm, and an inactive state I where no transcription takes place. The mRNA

is stochastically degraded with a rate γm regardless of the state of the promoter.

Fig. 5.36(B) shows the Markov chain that connects all of the possible states of

the promoter. For this particular case, there are not only “horizontal” transitions

where the mRNA copy number changes, but “vertical” transitions where only the

promoter’s state changes. Because of this, we need to define two coupled master

equations that take the form

dPA(m, t)
dt

= −k(p)
off PA(m, t) + k(p)

on PI(m, t)

+ γm(m + 1)PA(m + 1, t)− γmmPn(m, t)

+ rmPA(m− 1, t)− rmPA(m, t)

(5.185)

for the active state, and

dPI(m, t)
dt

= k(p)
off PA(m, t)− k(p)

on PI(m, t)

+ γm(m + 1)PI(m + 1, t)− γmmPI(m, t),
(5.186)

for the inactive state.

Obtaining the partial differential equation for the generating function

The first thing we must do is to transform this infinite-dimensional system of or-

dinary differential equations in m to a single partial differential equation using the

generating function. For this particular case, there are two generating functions of

the form

Gx(z, t) =
∞

∑
m=0

zmPx(m, t), (5.187)
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(A)

(B)
Markov chainMarkov chainpromoter statepromoter state

0 1 2 ∞...

0 1 2 ∞...

STATE I STATE A

Figure 5.36: Two-state Poisson promoter. (A) Schematic of the kinetics of the two-state promoter.
The promoter is imagined to exist in two states—a transcriptionally active state A and an inactive
state I. The transition between these states is governed by the rates k(p)

on and k(p)
off mRNA is pro-

duced and degrade stochastically with a rate rm and γm, respectively. (B) Representation of the
Markov chain for the state space that the promoter can be in. The distribution P(m, t) represents
the probability of having a certain discrete number of mRNA m at time t. The transition between
states depends on the previously mentioned rates.

where x ∈ {A, I}. The probability of having m mRNA at time t regardless of the

promoter state is given by

P(m, t) = PA(m, t) + PI(m, t). (5.188)

Therefore, the corresponding generating function for the whole system is given by

G(z, t) = GA(z, t) + GI(z, t). (5.189)

As with the one-state promoter case, let us transform our master equations by

multiplying both sides by zm and sum over all m. For the active state A, we have

∑
m

zm dPA(m, t)
dt

= ∑
m

zm
[
−k(p)

off PA(m, t) + k(p)
on PI(m, t)

+ γm(m + 1)PA(m + 1, t)− γmmPm(m, t)

+rmPA(m− 1, t)− rmPA(m, t)] .

(5.190)
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After distributing the sum, we can use the tricks from the previous section, allow-

ing us to write this as a partial differential equation of the form

∂GA(z, t)
∂t

= −k(p)
off GA(z, t) + k(p)

on GI(z, t)

− γm(z− 1)
∂GA(z, t)

∂z
+ rm(z− 1)GA(z, t).

(5.191)

An equivalent process can be done for the inactive state I, obtaining

∂GI(z, t)
∂t

= k(p)
off GA(z, t)− k(p)

on GI(z, t)

− γm(z− 1)
∂GA(z, t)

∂z
+ rm(z− 1)GI(z, t).

(5.192)

We turned the infinite-dimensional system of ordinary differential equations into

a system of two coupled partial differential equations. Let us transform the equa-

tions further. Since we have a common term (z− 1), it will be convenient to define

v ≡ (z− 1). From the chain rule, it follows that

dv = d(z− 1) = dz⇒ ∂G
∂v

=
∂G
∂z

dz
dv

. (5.193)

Making this substitution in Eqs. 5.191 and 5.192 results in

∂GA(v, t)
∂t

= −k(p)
off GA(v, t) + k(p)

on GI(v, t)

− γmv
∂GA(v, t)

∂v
+ rmvGA(v, t)

(5.194)

for the inactive state, and

∂GI(v, t)
∂t

=k(p)
off GA(v, t)− k(p)

on GI(v, t)

− rmv
∂GI(v, t)

∂v
,

(5.195)

for the active state.

Since we care about the steady-state distribution, it is at this point that we set the

time derivative of both equations to zero. Doing this results in

γmv
dGA(v)

dv
= −k(p)

off GA(v) + k(p)
on GI(v). + rmvGA(v), (5.196)

and

γmv
dGI(v)

dv
= k(p)

off GA(v)− k(p)
on GI(v). (5.197)
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Adding Eqs. 5.196 and 5.197 gives a simple result

γm
dG(v)

dv
= rmGA(v). (5.198)

Our objective is not to write Eqs. 5.196 and 5.197 as a function of only one of the

generating functions, i.e., we want two independent differential equations. These

equations are both functions of GA(v) and GI(v), but Eq. 5.198 tells us how to

relate both generating functions via the first derivative. This suggests that taking

another derivative of Eqs. 5.196 and 5.197 with respect to z could be useful. Let us

go ahead and compute these derivatives. For the active state, we find

γm
dGA(v)

dv
+ γmv

d2GA(v)
dv2 = −k(p)

off
dGA(v)

dv
+ k(p)

on
dσI(v)

dv
+ rmGA(v, t) + rmv

dGA(v)
dv

.

(5.199)

Upon simplification, we can write this equation as

γmv
d2GA

dv2 +
(

γm + k(p)
off − rmv

) dGA

dv
− k(p)

on
dGI

dv
− rmGA(v) = 0. (5.200)

From Eq. 5.198, we have that

GI

dv
=

rm

γm
GA(v)−

dGA

dv
. (5.201)

Substituting this into Eq. 5.200 results in

γmv
d2GA

dv2 +
(

γm + k(p)
off + k(p)

on − rmv
) dGA

dv
− rm

(
1 +

k(p)
on

γm

)
GA(v) = 0. (5.202)

For the inactive state, upon taking a derivative with respect to v, we find

γmv
d2GI

dv2 +
(

γm + k(p)
on

) dGI

dv
− k(p)

off
dGA

dv
= 0. (5.203)

Again from Eq. 5.198, we have that

dGA

dv
=

rm

γm
GA −

dGI

dv
. (5.204)

Substituting this result into Eq. 5.203 gives

γmv
d2GI

dv2 +
(

γm + k(p)
on + k(p)

off

) dGI

dv
−

k(p)
off rm

γm
GA(v) = 0. (5.205)
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So far, we have not removed the dependence on GA(v). But we notice that from

Eq. 5.197, we have that

GA(v) =
γmv

k(p)
off

dGI

dv
+

k(p)
on

k(p)
off

GI . (5.206)

Using this identity allows us to write Eq. 5.205 as

γmv
d2GI

dv2 +
(

γm + k(p)
on + k(p)

off − rmv
) dGI

dv
− k(p)

on rm

γm
GI = 0. (5.207)

To obtain a single partial differential equation, we add Eqs. 5.202 and 5.207, ob-

taining

γmv
d2G
dv2 +

(
γm + k(p)

off + k(p)
on − rmv

) dG
dv
− rmk(p)

on

γm
G(v)− rmGA(v) = 0, (5.208)

where we substituted GA(v) + GI(v) = G(v). To remove the last GA(v), we utilize

again Eq. 5.198, obtaining

γmv
d2G
dv2 +

(
k(p)

off + k(p)
on − rmv

) dG
dv
− rmk(p)

on

γm
G(v) = 0. (5.209)

Solving the partial differential equation

Eq. 5.209 looks almost like the so-called Kummer’s equation also known as the

confluent hypergeometric differential equation—a second order differential equa-

tion of the form

z
d2w
dz2 + (b− z)

dw
dz
− aw = 0. (5.210)

The solution for the Kummer equation can be expressed as the sum of two func-

tions: 1. The confluent hypergeometric function of the first kind, 2. The Tricomi

function. This is written as

w(z) = A1F1(a, b, z) + Bz1−b
1F1(a + 1− b, 2− b, z), (5.211)

where A and B are constants, and 1F1 is the confluent hypergeometric function of

the first kind defined as

1F1(a, b, z) =
∞

∑
m=0

a(m)zn

b(m)m!
, (5.212)
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where a(n) and b(n) are the rising factorials, i.e.,

a(0) = 1, (5.213)

and

a(n) = a(a + 1)(a + 2) · · · (a + n− 1). (5.214)

To write Eq. 5.209 in the form of Eq. 5.210, we can define s ≡ rmv/γm. The chain

rule tells us that

ds =
rm

γm
dv⇒ dG

ds
=

dG
dv

dv
ds

=
γm

rm

dG
dv

. (5.215)

From the chain rule, we also conclude that

d2G
ds2 =

d
dv

(
dG
dv

dv
ds

)
dv
ds

=
γ2

m
r2

m

d2G
dv2 . (5.216)

So the three relationships of v with s that we have derived take the form

v =
γm

rm
s,

dG
dv

=
rm

γm

dG
ds

, and
d2G
dv2 =

r2
m

γ2
m

d2G
dv2 . (5.217)

Substituting these definitions results in

γm

(
γm

rm
s
)

r2
m

γ2
m

d2G
ds2 +

[
k(p)

off + k(p)
on − rm

(
γm

rm
s
)]

rm

γm

dG
ds
− rmk(p)

on

γm
G(s) = 0.

(5.218)

Upon simplifying terms, we find an equation that is now in the form of Eq. 5.210

s
d2G
ds2 +

(
k(p)

off + k(p)
off

γm
− s

)
dG
ds
− k(p)

on

γm
G(s) = 0. (5.219)

Having put this in the form of the Kummer Eq., we can use Eq. 5.211 to write G(s)

as

G(s) = A1F1

(
k(p)

on

γm
,

k(p)
on + k(p)

off
γm

, s

)

+ Bs1−
k(p)
on +k(p)

off
γm 1F1

(
k(p)

on

γm
+ 1−

k(p)
on + k(p)

off
γm

, 2−
k(p)

on + k(p)
off

γm
, s

)
.

(5.220)
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We can write down this solution in terms of the original variable of the generating

function. We have that s = rm/γmv, and v = z− 1. With this, we then write

G(z) =A1F1

(
k(p)

on

γm
,

k(p)
on + k(p)

off
γm

,
rm

γm
(z− 1)

)
+ B

[
rm

γm
(z− 1)

]1−
k(p)
on +k(p)

off
γm

×

1F1

(
k(p)

on

γm
+ 1−

k(p)
on + k(p)

off
γm

, 2−
k(p)

on + k(p)
off

γm
,

rm

γm
(z− 1)

)
.

(5.221)

Finding the Coefficients for the Solution

We can now use the normalization condition for the generating function; this is,

G(1) =
∞

∑
m=0

1mP(m) = 1. (5.222)

Evaluating z = 1 in Eq. 5.221 results in

G(1) = A1F1

(
k(p)

on

γm
,

k(p)
on + k(p)

off
γm

, 0

)
. (5.223)

Let us look at the hypergeometric function evaluated of the form 1F1(a, b, 0). This

takes the form

1F1(a, b, 0) =
∞

∑
m=0

a(m)0n

b(m)m!
. (5.224)

All of the terms but one (n = 0) are zero. The first term involving 00 is undefined.

Taking the limit as z→ 0 from the positive side, we find

1F1(a, b, 0) = lim
z→0+

1F1(a, b, z) = lim
z→0+

z0 = 1. (5.225)

Using this property in Eq. 5.223 tells us that A = 1.

We do not have another constraint for B. Nevertheless, recall that Eq. 5.170 tells us

how to compute the first moment of the distribution from the generating function.

For this, we need to compute the derivative of the confluent hypergeometric func-

tion. Let us derive this identity. Rather than computing the derivative directly, we

will compute

z
d
dz 1F1 = z

d
dz

[
∞

∑
m=0

a(m)zm

b(m)m!

]
. (5.226)
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Taking the derivative inside the sum gives

z
d
dz 1F1 = z

[
∞

∑
m=0

a(m)

b(m)m!
d
dz

zm

]
=

[
∞

∑
m=0

a(m)

b(m)

mzm

m!

]
. (5.227)

Simplifying the term m/m! gives

z
d
dz 1F1 =

[
∞

∑
m=0

a(m)

b(m)

zm

(m− 1)!

]
. (5.228)

Note that the rising factorials can be rewritten as

a(m) = a(a + 1)(a + 2) · · · (a + m− 1)

= a · (a + 1)[(a + 1) + 1][(a + 1) + 2] · · · [(a + 1) + m− 2]

= a · (a + 1)(m−1).

(5.229)

Therefore, we can rewrite Eq. 5.228 as

∞

∑
m=0

a(m)

b(m)

zm

(m− 1)!
=

∞

∑
m=0

a · (a + 1)(m−1)

b · (b + 1)(m−1)

z · z(m−1)

(m− 1)!
,

=
az
b

∞

∑
m=0

(a + 1)(m−1)

(b + 1)(m−1)

zm−1

(m− 1)!
.

(5.230)

If we define m′ = m− 1, we have

az
b

∞

∑
m=0

(a + 1)(m−1)

(b + 1)(m−1)

zm−1

(m− 1)!
=

az
b

∞

∑
m′=−1

(a + 1)m′

(b + 1)m′
zm′

m′!
. (5.231)

The term on the left is almost of the form of the confluent hypergeometric function

again. The only difference is that the sum starts at m′ = −1. This first term of

the sum would then involve a term of the form 1/(−1)! But what does this even

mean? To find this out, we can generalize the factorial function using the Gamma

function such that

(x− 1)! = Γ(x). (5.232)

The Gamma function diverges as x → 0, therefore 1/Γ(x) → 0 as x → 0. This

means that the first term of the sum is zero, so we can begin the sum at m′ = 0,

recovering a confluent hypergeometric function. With this, we find that

z
d
dz 1F1 =

az
b

∞

∑
m=0

(a + 1)m

(b + 1)m
zm

m!
=

a
b

z1F1(a + 1, b + 1, z), (5.233)
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therefore
d
dz 1F1 =

a
b 1F1(a + 1, b + 1, z). (5.234)

After this small but necessary detour, we can come back to computing the first

moment of our distribution from the generating function. To evaluate Eq. 5.170 on

Eq. 5.221, we first compute the derivative of the generating function. This can be

easily evaluated using the relationship we derived for derivatives of 1F1. The only

thing to be aware of is that of the chain rule. In particular for the third entry of the

function, we have rm/γm(z− 1) rather than simply z as we had in Eq. 5.234. This

means that by the chain rule, we have that if we define u = rm/γm(z− 1), we have

du =
rm

γm
dz⇒ dG

dz
=

dG
du

du
dz

=
dG
du

rm

γm
. (5.235)

So there is an extra factor of rm/γm that will come along when we compute the

derivative of our generating functions. Computing the derivative of Eq. 5.221

results in

dG
dz

=
k(p)

on

k(p)
on + k(p)

off

rm

γm
1F1

(
k(p)

on

γm
+ 1,

k(p)
on + k(p)

off
γm

+ 1,
rm

γm
(z− 1)

)

+ B

(
1−

k(p)
on + k(p)

off
γm

)[
rm

γm
(z− 1)

] k(p)
on +k(p)

off
γm
×

1F1

(
k(p)

on

γm
+ 1−

k(p)
on + k(p)

off
γm

, 2−
k(p)

on + k(p)
off

γm
,

rm

γm
(z− 1)

)

+ B
[

rm

γm
(z− 1)

]1−
k(p)
on +k(p)

off
γm

(
k(p)

on + γm

k(p)
on + k(p)

off + γm

)
rm

γm
×

1F1

(
k(p)

on

γm
+ 2−

k(p)
on + k(p)

off
γm

, 1−
k(p)

on + k(p)
off

γm
,

rm

γm
(z− 1)

)
.

(5.236)

This rather convoluted result is enormously simplified upon evaluating the deriva-

tive at z = 1 (see Eq. 5.170). This results in

dG
dz

∣∣∣∣
z=1

=
k(p)

on

k(p)
on + k(p)

off

rm

γm
1F1

(
k(p)

on

γm
+ 1,

k(p)
on + k(p)

off
γm

+ 1, 0

)
=

rm

γm

k(p)
on

k(p)
on + k(p)

off

,

(5.237)
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which is precisely the mean mRNA copy number we derived before. Since B does

not contribute to the mean, we can safely assume that B = 0. This means that the

final result for the generating function takes the much more compact form

G(z) = 1F1

(
k(p)

on

γm
,

k(p)
on + k(p)

off
γm

,
rm

γm
(z− 1)

)
. (5.238)

Extracting the steady-state mRNA distribution

Let us quickly recapitulate where we are. We started with a system of infinite many

ordinary differential equations, one for each promoter state and mRNA copy num-

ber that defined the master equation for our two-state promoter. We then used

the generating function to transform this system into a single partial differential

equation. The resulting differential equation for the generating function took the

form of the so-called Kummer differential equation, which has as a solution the

confluent hypergeometric function and the Tricomi function. After imposing the

normalization condition on the generating function, we found that the confluent

hypergeometric function’s coefficient was A = 1. We then used the fact that the

mean mRNA copy number 〈m〉 exists to show that the Tricomi function’s coeffi-

cient is B = 0. All that effort lead us to Eq. 5.238, the generating function for

the two-state promoter mRNA steady-state distribution. All we have left is trying

to beat Eq. 5.238 into the form of a standard generating function to extract the

probability distribution from it.

Let us begin this task by writing down Eq. 5.238 with the full definition of the

confluent hypergeometric function. This gives us

G(z) =
∞

∑
m=0

(
k(p)

on
γm

)(m)

(
k(p)

on +k(p)
off

γm

)(m)

[
rm
γm

(z− 1)
]m

m!
. (5.239)
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Let us now split apart the term (z− 1), obtaining

G(z) =
∞

∑
m=0

(
k(p)

on
γm

)(m)

(
k(p)

on +k(p)
off

γm

)(m)

(
rm
γm

)m

m!
(z− 1)m. (5.240)

We now rewrite this last term (z− 2)m using the binomial expansion. This results

in

G(z) =
∞

∑
m=0

(
k(p)

on
γm

)(m)

(
k(p)

on +k(p)
off

γm

)(m)

(
rm
γm

)m

m!

[
m

∑
n=0

(
m
n

)
zn(−1)m−n

]
. (5.241)

We can take out the sum over the index n to the front, obtaining

G(z) =
∞

∑
m=0

n

∑
n=0

(
k(p)

on
γm

)(m)

(
k(p)

on +k(p)
off

γm

)(m)

(
rm
γm

)m

m!

[(
m
n

)
zn(−1)m−n

]
. (5.242)

To make further progress, we must reindex the sum. The trick is to reverse the

default order of the sums as

∞

∑
m=0

m

∑
n=0

=
∞

∑
n=0

∞

∑
m=n

. (5.243)

To see the logic of the sum, we point the reader to Fig. 5.37. The key is to notice that

the double sum ∑∞
m=0 ∑m

n=0 is adding all possible pairs (m, n) in the lower triangle,

so we can add the terms vertically as the original sum indexing suggests, i.e.

∞

∑
m=0

m

∑
n=0

x(m,n) = x(0,0) + x(1,0) + x(1,1) + x(2,0) + x(2,1) + x(2,2) + . . . , (5.244)

where the variable x is just a placeholder to indicate the order in which the sum is

taking place. But we can also add the terms horizontally as

∞

∑
n=0

∞

∑
m=n

x(m,n) = x(0,0) + x(1,0) + x(2,0) + . . . + x(1,1) + x(2,1) + . . . , (5.245)

which still adds all of the lower triangle terms.
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0,00,0 1,01,0 2,02,0 3,03,0

1,11,1 2,12,1 3,13,1

2,22,2 3,23,2

3,33,3

Figure 5.37: Reindexing double sum. Schematic for reindexing the sum ∑∞
m=0 ∑m

n=0. Blue circles
depict the 2D grid of nonnegative integers restricted to the lower triangular part of the m, n plane.
The trick is that this double sum runs over all (m, n) pairs with n ≤ m. Summing m first instead of
n requires determining the boundary: the upper boundary of the n-first double sum becomes the
lower boundary of the m-first double sum.

Rewriting the sum in this way results in

G(z) =
∞

∑
n=0

∞

∑
m=n

(
k(p)

on
γm

)(m)

(
k(p)

on +k(p)
off

γm

)(m)

(
rm
γm

)m

m!

[(
m
n

)
zn(−1)m−n

]
. (5.246)

This allows us to separate the variable zn from the rest of the equation, leaving

the standard format generating function to read the probability distribution P(m).

This looks as

G(z) =
∞

∑
n=0

zn

 ∞

∑
m=n

(
k(p)

on
γm

)(m)

(
k(p)

on +k(p)
off

γm

)(m)

(
rm
γm

)m

m!

(
m
n

)
(−1)m−n

 . (5.247)

Given the “dummy” nature of z, it does not matter what the sum variable name is.

We can simply rename m = n and n = m and conclude that our distribution takes

the form

P(m) =
∞

∑
n=m

(
k(p)

on
γm

)(n)

(
k(p)

on +k(p)
off

γm

)(n)

(
rm
γm

)n

n!
n!

m!(n−m)!
(−1)n−m. (5.248)

We can simplify Eq. 5.248 further. First, we split the term (−1)n−m = (−1)−m(−1)n.

Furthermore, we absorb the (−1)n term on the (rm/γm)n term. We also cancel the

obvious n!/n! term, obtaining

P(m) =
∞

∑
n=m

(−1)−m

m!

(
k(p)

on
γm

)(n)

(
k(p)

on +k(p)
off

γm

)(n)

(
− rm

γm

)n

(n−m)!
. (5.249)



277

We recognize in Eq. 5.249 that we have almost all the terms for a confluent hyper-

geometric function 1F1. The problem is that the sum starts at n = m rather than

n = 0. Since the upper limit of the sum is ∞, we can simply define u = n−m ⇒

n = m + u. We can then use the following property of raising factorials

a(n) = a(a + 1)(a + 2) · · · (a + n− 1),

= a(a + 1)(a + 2) · · · (a + (u + m)− 1),

= a(a + 1) · · · (a + m− 1)(a + m)(a + m + 1) · · · (a + m + u− 1),

= a(m)(a + m)(u).

(5.250)

Making these substitutions results in

P(m) =
∞

∑
u=0

(−1)−m

m!

(
k(p)

on
γm

)(m) (
k(p)

on
γm

+ m
)(u) (

− rm
γm

)u (
− rm

γm

)m

(
k(p)

on +k(p)
off

γm

)(m) (
k(p)

on +k(p)
off

γm
+ m

)(n)
1
u!

. (5.251)

Taking out of the sum the terms that do not depend on u gives

P(m) =
(−1)−m

m!

(
k(p)

on
γm

)(m)

(
k(p)

on +k(p)
off

γm

)(m)

(
− rm

γm

)m

 ∞

∑
u=0

(
k(p)

on
γm

+ m
)(u)

(
k(p)

on +k(p)
off

γm
+ m

)(u)

(
− rm

γm

)u

u!

 .

(5.252)

We recognize the term in the square brackets to be the necessary component for a

confluent hypergeometric function. We can therefore write the mRNA steady-state

distribution as

P(m) =
1

m!

(
k(p)

on
γm

)(m)

(
k(p)

on +k(p)
off

γm

)(m)

(
rm

γm

)m

1F1

(
k(p)

on

γm
+ m,

k(p)
on + k(p)

off
γm

+ m,− rm

γm

)
.

(5.253)

For the last ingredient, we remove the rising factorials using the identity

a(m) = (a)(a + 1)(a + 2) · · · (a + m− 1),

=
(a + m− 1) · · · (a)(a− 1) · · · (1)

(a + 1) · · · (1) ,

=
(a + m− 1)!
(a− 1)!

.

(5.254)
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This allows us to write

P(m) =
1

m!

(
k(p)

on
γm

+ m− 1
)

!(
k(p)

on
γm
− 1
)

!

(
k(p)

on +k(p)
off

γm
− 1
)

!(
k(p)

on +k(p)
off

γm
+ m− 1

)
!

(
rm

γm

)m

× 1F1

(
k(p)

on

γm
+ m,

k(p)
on + k(p)

off
γm

+ m,− rm

γm

)
.

(5.255)

Or in terms of Gamma functions, we obtain the final form of the steady-state

mRNA distribution

P(m)= 1
Γ(m+1)

Γ

 k(p)
on
γm +m


Γ

 k(p)
on
γm


Γ

 k(p)
on +k(p)

off
γm


Γ

 k(p)
on +k(p)

off
γm +m


( rm

γm )
m×1F1

(
k(p)
on
γm +m,

k(p)
on +k(p)

off
γm +m,− rm

γm

)
, (5.256)

The equation used to fit the kinetic parameters for the unregulated promoter.

5.11 Derivation of the Cell Age Distribution

E. O. Powell first derived in 1956 the cell age distribution for a cell population

growing steadily in the exponential phase [120]. This distribution is of the form

P(a) = ln(2) · 21−a, (5.257)

where a ∈ [0, 1] is the fraction of the cell cycle, 0 being the moment right after the

mother cell divides, and 1 being the end of the cell cycle just before cell division.

In this section, we will reproduce and expand the details on each of the steps of

the derivation.

For an exponentially growing bacterial culture, the cells satisfy the growth law

dn
dt

= µn, (5.258)

where n is the number of cells, and µ is the growth rate in units of time−1. We

begin by defining P(a) to be the probability density function of a cell having age

a. At time zero of a culture in exponential growth, i.e., when we start considering

the growth, not the initial condition of the culture, there are NP(a)da cells with an

age range between [a, a + da]. In other words, for N � 1 and da� a

NP(a ≤ x ≤ a + da) ≈ NP(a)da. (5.259)
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We now define

F(τ) =
∫ ∞

τ
f (ξ)dξ, (5.260)

as the fraction of cells whose division time is greater than τ. This is because in

principle, not all cells divide exactly after τ minutes, but there is a distribution

function f (τ) for the division time after birth. Empirically it has been observed that

a generalized Gamma distribution fits well to experimental data on cell division

time, but we will worry about this specific point later on.

From the definition of F(τ), we can see that if a cell reaches an age a, the probability

of surviving to an age a + t without dividing is given by

P(age = (a + t) | age = a) = F(a + t | a) =
F(a + t)

F(a)
. (5.261)

This result comes simply from the definition of conditional probability. Since F(a)

is the probability of surviving a or more minutes without dividing, by the defini-

tion of conditional probability, we have that

F(a + t | a) =
F(a, a + t)

F(a)
, (5.262)

where F(a, a + t) is the joint probability of surviving a minutes and a + t minutes.

But the probability of surviving a + t minutes or more implies that the cell already

survived a minutes, therefore, the information is redundant, and we have

F(a, a + t) = F(a + t). (5.263)

This explains Eq. 5.261. From this equation, we can find that out of the NP(a)da

cells with age a, only a fraction

[NP(a)da] F(a + t | a) = NP(a)
F(a + t)

F(a)
da (5.264)

will survive without dividing until time a + t. During that time interval t, the

culture has passed from N cells to Neµt cells, given the assumption that they are

growing exponentially. The survivors NP(a)F(a+ t | a)da then represent a fraction

of the total number of cells

# survivors
# total cells

=
[NP(a)da] F(a + t | a)

Neµt = P(a)
F(a + t)

F(a)
da

1
eµt , (5.265)
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and their ages lie in the range [a+ t, a+ t+ da]. Since we assume that the culture is

in a steady-state, then it follows that the fraction of cells that transitioned from age

a to age a + t must be P(a + t)da. Therefore we have a difference equation—the

discrete analogous of a differential equation—of the form

P(a + t)da = P(a)
F(a + t)

F(a)
e−µtda. (5.266)

What this equation shows is a relationship that connects the probability of having

a lifetime of a + t with a probability of having a shorter lifetime a and the growth

of the population. If we take t to be very small, specifically if we assume t � µ−1,

we can Taylor expand around a the following terms:

F(a + t) ≈ F(a) +
dF
da

t, (5.267)

P(a + t) ≈ P(a) +
dP
da

t, (5.268)

and

e−µt ≈ 1− µt. (5.269)

Substituting these equations gives

P(a) +
dP
da

t = P(a)

(
F(a) + dF

da t
F(a)

)
(1− µt). (5.270)

This can be rewritten as

1
P(a)

dP
da

=
1

F(a)
dF
da
− µ− µt

F(a)
dF
da

. (5.271)

Since we assumed t � µ−1, we approximate the last term to be close to zero. We

can then simplify this result into

1
P(a)

dP
da

=
1

F(a)
dF
da
− µ. (5.272)

Integrating both sides of the equation with respect to a gives

ln P(a) = ln F(a)− µa + C, (5.273)

where C is the integration constant. Exponentiating both sides gives

P(a) = C′F(a)e−µa, (5.274)
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where C′ ≡ eC. To obtain the unknown constant value, we recall that F(0) = 1

since the probability of having a life equal to or longer than zero must add up to

one. Therefore we have that P(0) = C′. This gives then

P(a) = P(0)e−µaF(a). (5.275)

Substituting the definition of F(a) gives

P(a) = P(0)e−µa
∫ ∞

a
f (ξ)dξ. (5.276)

The last step of the derivation involves writing P(0) and the growth rate µ in terms

of the cell cycle length distribution f (τ).

The growth rate of the population cell number (not the growth of cell mass) is

defined as the number of cell doublings per unit of time divided by the number of

cells. This is more clear to see if we write as a finite difference

N(t + ∆t)− N(t)
∆t

= µN(t). (5.277)

If the time ∆t is the time interval it takes to go from N to 2N cells, we have

2N − N
∆t

= µN. (5.278)

Solving for µ gives

µ =

# doubling events per unit time︷ ︸︸ ︷
2N − N

∆t

1
population size︷︸︸︷

1
N

. (5.279)

We defined F(a) to be the probability of a cell reaching an age a or greater. For a

cell to reach an age a + da, we can then write

F(a + da) =
∫ ∞

a+da
f (ξ)dξ =

∫ ∞

a
f (ξ)dξ −

∫ a+da

a
f (ξ)dξ. (5.280)

We can approximate the second term on the right-hand side to be∫ a+da

a
f (ξ)dξ ≈ f (a)da, (5.281)
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for da� a, obtaining

F(a + da) ≈ F(a)− f (a)da. (5.282)

What this means is that from the original fraction of cells F(a) with age a or greater,

a fraction f (a)da/F(a) will not reach age (a + da) because they will divide. So, out

of the NP(a) cells that reached exactly age a, the number of doubling events on a

time interval da is given by

# doublings of cells of age a on interval da =

# cells of age a︷ ︸︸ ︷
NP(a)

fraction of doublings per unit time︷ ︸︸ ︷
f (a)da
F(a)

.

(5.283)

The growth rate then is just the sum (integral) of each age contribution to the total

number of doublings. This is

µ =
1
N

∫ ∞

0
NP(a)

f (a)da
F(a)

. (5.284)

Substituting gives

µ =
∫ ∞

0
[P(0)e−µaF(a)]

f (a)da
F(a)

=
∫ ∞

0
P(0)e−µa f (a)da. (5.285)

We now have the growth rate µ written in terms of the cell cycle length probability

distribution f (a) and the probability P(0). Since P(a) is a probability distribution,

it must be normalized, i.e., ∫ ∞

0
P(a)da = 1. (5.286)

Substituting into this normalization constraint gives∫ ∞

0
P(0)e−µaF(a)da = 1. (5.287)

From here, we can integrate the left-hand side by parts. We note that given the

definition of F(a), the derivative with respect to a is − f (a) rather than f (a). This

is because if we write the derivative of F(a), we have

dF(a)
da

≡ lim
da→0

F(a + da)− F(a)
da

. (5.288)

Substituting the definition of F(a) gives

dF(a)
da

= lim
da→0

1
da

[∫ ∞

a+da
f (ξ)dξ −

∫ ∞

a
f (ξ)dξ

]
. (5.289)
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This difference in the integrals can be simplified to

lim
da→0

1
da

[∫ ∞

a+da
f (ξ)dξ −

∫ ∞

a
f (ξ)dξ

]
≈ − f (a)da

da
= − f (a). (5.290)

Taking this into account, we now perform the integration by parts obtaining

P(0)
[

e−µt

−µ
F(a)

]∞

0
− P(0)

∫ ∞

0

e−µa

−µ
(− f (a))da = 1. (5.291)

On the first term on the left hand side, we have that, as a → ∞, both terms e−µa

and F(a) go to zero. We also have that eµ0 = 1 and F(0) = 1. This results in

P(0)
µ
− P(0)

∫ ∞

0

e−µa

µ
f (a)da = 1. (5.292)

The second term on the left-hand side is equal to 1 since

µ =
∫ ∞

0
P(0)e−µa f (a)da⇒ 1 =

∫ ∞

0
P(0)

e−µa

µ
f (a)da. (5.293)

This implies that we have

P(0)
µ
− 1 = 1⇒ P(0) = 2µ. (5.294)

With this result in hand, we can rewrite it as

P(a) = 2µe−µa
∫ ∞

a
f (ξ)dξ. (5.295)

Also, we can rewrite the result for the growth rate µ as

µ = 2µ
∫ ∞

0
e−µa f (a)da⇒ 2

∫ ∞

0
e−µa f (a)da = 1. (5.296)

As mentioned before, the distribution f (a) has been empirically fit to a generalized

Gamma distribution. But if we assume that our distribution has almost negligible

dispersion around the mean average doubling time a = τd, we can approximate

f (a) as

f (a) = δ(a− τd), (5.297)

a Dirac delta function. Applying this to Eq. 5.293 results in

2
∫ ∞

0
e−µaδ(a− τa)da = 1⇒ 2e−µτd = 1. (5.298)
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Solving for µ gives

µ =
ln 2
τd

. (5.299)

This delta function approximation for f (a) has as a consequence that

F(a) =

1 for a ∈ [0, τd],

0 for a > τd.
(5.300)

Finally, we can rewrite it as

P(a) = 2
(

ln 2
τd

)
e−

ln 2
τd

a
∫ ∞

a
δ(ξ − τd)dξ ⇒= 2 ln 2 · 2

−a
τd . (5.301)

Simplifying this, we obtain

P(a) =

ln 2 · 21− a
τd for a ∈ [0, τd],

0 otherwise.
(5.302)

This is the equation we aimed to derive. The distribution of cell ages over the cell

cycle.
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