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ABSTRACT 

We study the relations between a Hilbert space operator and the 

numerical ranges of its powers in this thesis. 

Let B(W) denote the set of bounded linear operators on a complex 

Hilbert space. For TE 8('1/), let a(T) and W(T) denote its spectrum and 

numerical range, respectively. The following are proved using von Neu­

mann' s theory of spectral sets: 

(i) ·If a(T) c (v,oo) with v > 0 and if Tis not self-adjoint, then there 

is an index N such that {z E ~ : lzl ~ '111 c W(~) whenever n > N. 

(ii) r1 is accretive, n = 1, 2, ••• , k, if and only if the closed sector 

{z E a: !Arg zl ~ n/2kt U {01 is spectral for T. In this case 

llrmTx\l ~ tan(n/2k) !IReTx!I for each x E U. 

(i) remains valid if we replace ,t1 by t1n, where Dis a surjective op­

erator commuting with T. Various situations in which the commutativity 

assumption is relaxed a.re examined. 

A theorem for finite dimensional matrices by C. R. Johnson is gen­

eralized to the operator case: If O ¢ Cl(W(t1)), n = 1, 2, 3, ... , then 

an odd power of Tis normal. Furthermore, if Tis a convexoid, then T 

itself is normal; in fact, Tis the direct sum of at most three rotated 

positive operators. Using these results, we prove: Let TE B('ff), 'fl 

infinite dimensional and separable. If ef1 ¢ (Y E /3(U) : Y = AX - XA, 

A,X E B('II), A positive}, n = 1, 2, 3, ... , then there is an odd integer 

m and a compact operator K such that r/11 + K is normal. Moreover, Tis 
0 0 

a normal plus a compact if and only if n (Cl(W(T + K)) : K compact1 is a 

closed polygon (possibly degenerate). 
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CH.APrER 1 

In this chapter we shall state certain basic results, techniques 

and terminology that will be required later. Many of these results 

have appeared in the literature and are well-known. 

1. NOTATION 

We let~ denote the set of complex ntnnbers and R denote the set of 

real nmnbers. For O ca, co(O) denotes the convex hull, Cl(O) the clo­

sure, Int(O) the interior and c(O) the boundary of 0. We write 

O > (~)r, r E IR, if O CR,and each number in O> (~)r. 

Let .6.(r) denote the closed disc centered at the origin with radius 

r, 

.6.(r) = { z E C : I z I 5 r}. 

Lett(~) denote the closed sector of the complex plane symmetric with 

respect to the real axis, with vertex at the origin and angular opening 

2~, 

I:(cp) = {z E ~ : IArg zl s_ cp} U {o}. 

Note that ~(n/2) denotes the closed right half plane. For a,e E ~ and 

e E ~, 0 < € s_ 1, we let S(a,~;e) denote the closed elliptical disc 

with foci at a and a and eccentricity€, 

Note that two degenerate cases are included in the definition: 
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(i) R(a,$;1) is the line segment joining a and S, 

(ii) B(a,a,E) is the singleton {a}. 

2. HILBERT SPACE OPERATORS 

We let 'II denote a complex Hilbert space with inner product( ·,·) 

and 13('11) the algebra of all bounded endomorphisms of Jl. For 

* TE B(U), T denotes its adjoint and a(T) denotes its spectrum. a(T) 

is a nonempty compact set in~- The spectral radius r(T) of Tis de­

fined -by 

A E a (T)}. 

It can be shown that 

1/n 
r(T) = lim \\Tnl\ . 

n-+oo 

If T1 and T2 are two commuting operators in B('ii), then 

and 

These are simple consequences of the Gelfand representation for commu­

tative Banach algebras. See Chapter 11 of [32). 

o(·) is an upper semicontinuous set function on B('N) with respect 

to the uniform operator topology, i.e., for T E/S('II) and E > O, there 

exists 6 > 0 such that 

sup [dist(A,o(T)) h E a(s)} < E 
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whenever \\s - T\\ < 6. cr( ·) is not continuous unless',/ is finite-dimen­

sional. However, o(T) does change continuously with T if the perturba­

tion commutes with T. See §IV.3 of (24]. 

For TE B(U), an isolated pointµ of cr(T) is either a pole or an 

essential singularity of the resolvent (A - T)-1
, depending on whet her 

the Laurent development of the resolvent in powers of A - µ has a fi ­

nite or an infinite number of nonvanishing terms in negative powers of 

A - µ,respective:cy. See §s.8 of [38]. 

We let .7(T) denote the family of functions analytic on some neigh­

borhood of o(T). For f E .7(T), let O be an open set in~, containing 

o(T), whose boundary o(O) consists of a finite number of rectifiable 

Jordan curves, oriented in the positive sense. If Cl(O) is contained 

in the domain of analyticity off, then we define f(T) by the Dunford­

Taylor integral 

f(T) does not depend on Oas long as O satisfies the above conditions. 

We shall find the following facts useful: 

(i) For SE B(U), ST= TS, then Sf(T) = f(T)S. 

(ii) SPECTRAL MAPPING THEOREM. f(cr(T)) = o(f(T)). 

(iii) If g E 7(f(T)) and h(z) = g(f(z)), then h E 7(T) and h(T) = 

g(f(T)). 

For :further details of the operational calculus, refer to Chapter 

VII of (11 ]. A consequence of the above three properties is: 
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(1.1) PROPOSITION. Let TE B(U) and f E .7(T). Suppose f is one-to-one 

on cr(T) and that for each A E a(T ) such that A is not a simple pole of 

(A - T)-
1

, we have f
1
(A) / 0. Then T and f(T) have identical commu­

tants. 

PROOF. It is sufficient to construct a function g E .7(f(T)) such that 

T = g(f(T)). Let 0 1 = {A E a(T) : f
1 (A) IO}. We assume both o

1 
and 

o(T) \ cr1 are nonempty. o(T) \ o
1 

consists of finitely ma.ey points, 

say, _Al, ••• , Ak. There exists an open neighborhood O, of o
1 

on which f 

is one-to-one and f
1 

is nonzero, and c,(O,) n a(T) = ¢. Let 

N ., j = 1, ••• , k, be disjoint open sets in «: \ Cl(f(O_)) and f(A.) E: N .. 
J ·1 J J 

We put g(z) = 
z E f(o

1
) 

z EN. 
J 

, j = 1, •.. ,k. 

Then g E .7(f(T)) and T = g(f(T)). ■ 

Proposition 1.1 generalizes the theorem in [14). In Section 6 we 

shall show that its converse also holds if JI is finite dimensional . 

For TE B('II), we let n(T) denote the nullity of T, i.e., the di­

mension of its nullspace. We let d(T) denote the defect of T, i.e., 

the dimension of the (algebraic) quotient space "/rr,t· Tis cal.led 

semi-Fredholm if T has closed range and either n(T) < oo or d(T) < ~- T 

is called Fredholm if T has closed range and both n(T) and d(T) are fi-

nite. 

(1 .2) PROPOSITION. Let T E 8 (,t) with O E o(a(T)). Then the following 

statements are equivalent. 
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(i) Tis Fredholm. 

(ii) d(T) is finite. 

(iii) Tis semi-Fredholm. 

Furthermore, if a:ny one of these conditions hold, n(T) = d(T) and O is 

) - 1 a pole of (A - T with finite rank. 

For a proof, see Theorem 2.7 in (26). 

3. NUMERICAL RANGE 

The numerical range of an operator TE B(';/) is the set 

W(T) = {(Tx,x) : x E W, \\x\\ = 1} . 

The numerical radius of T, w(T), is the number 

w ( T) = sup [ p, I : A E W ( T) } • 

A detailed discussion on numerical ranges may be found in Chapter 1 7 of 

[15]. The following list contains same of the well-known properties of 

numerical ranges: 

(i) (Toeplitz-Hausdorff) W(T) is convex. 

(ii) a(T) c Cl(W(T)). 

(iii) * If U is unitary, then W(T) = W(U TU). 

(iv) Let P be a nonzero (orthogonal.) projection on W. If 

T1 = PTjw, the compression of T to "£91, then W(T1) c W(T). 

(v) If Tis normal, then Cl(W(T)) = co(o(T)). 

(vi) Tis Hermitian if and only if W(T) CIR. 
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If W(T) is real. and nonnegative, we say Tis positive and write 

T > 0. By T1 ~ T2, we mean (T1 - T2) > O. Note that a positive opera­

tor is necessarily Hermitian by (vi) and the set of all positive opera-

tors forms a cone under " >" . 

* Tis called accretive if (T + T) ~ o, or equivalently, 

W(T) C l:(11/2). 

The determination of the numerical range of an operator is o:t'ten 

difficult. However, the following theorem describes the numerical 

range·s of all 2 x 2 matrices ( [ 46], [ 4 3], [ 10], [ 42], [ 15, p. 109] ) • 

( 1. 3) THEOREM • Let A be the 2 x 2 upper triangular matrix 

(~ ~). Then 

W(A) 
a = a . 

(1.4) COROLIARY. For each positive integer n, 

{ 

n n 2 -½ 
@(a , e ; (1 + h/(a - S) I ) ) 

W(An) = 
an+ 6(nl'Pn-l l/2) a == S • 

PROOF. 

a I s 
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Remark: If A is a. matrix with distinct eigenvalues o: and ~, then the 

numerical ranges of powers of A a.re elliptical discs with a constant 

eccentricity. For our purpose line segments and singletons a.re also 

elliptical discs. If o:n = Sn for some integer n, then W(An) = {an}. 

4 • 2 X 2 OPERATOR MATRICES 

.Let V EB'( denote the direct sum of two Hilbert spaces ,t and '(. An 

operator on 'JI EB 'II is expressed as a 2 x 2 matrix whose entries are op­

erators. See Chapter 7 of [15]. 

(1. 5) LEMMA. Let T E A("i/ EB'<), 

Then 

{ (
(Ax,x) (By,x)) 

W(T) = U W( ) 
(ex, y) (Dy, y) 

x E ';I, y E '(, \\x\\ = \\y\\ = 1} . 

PROOF. Let X E ';I, y E ?(, a,~ E ~. 

Then (T(ax EB ~Y), o:x EB Sy) 

= <(~ ~) (~;), (ax\) 
ayJ 

= <((Ax,x) (By,x)) (o:) (a)) . 
(Cx,y) (Dy,y) S ' ~ ■ 
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(1.6) COROLIARY. Let TE B(W ffi '() and 

If O I Int(W(T)), then B = 0. 

PROOF. Apply Theorem 1 . 3. ■ 
Let TE A(~) with disconnected spectrum, i.e., there are two dis­

joint, nonempty and closed sets a1 and ~2 whose union is ~(T). (Some 

authors, e.g. [11], [38], call a 1 and cr2 spectral sets, but we shall 

reserve this tenn for another concept.) Let O be an open set containing 

a
1 

such that Cl(O) n u2 =¢and d(n) consists of a finite number of pos­

tively oriented rectifiable Jordan curves. Put 

E = -2
1

. J (A - T)-
1

cU • 
1(J. d(O) 

Then Eis an idempotent, ET= TE and 

Usually, the operator Eis called a spectral projection. In order to 

emphasize that Eis not necessarily Hermitian, we call it a spectral 

idempotent in this paper. 
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(1 .7) PROPOSITION. Let T and Ebe as above and let P be the (ortho­

gonal) projection on EW. Then, with respect to the decomposition 

E U'EB (E ~)'1, the operator matrix corresponding to T has the fonn 

and 

a(T.)::: a. 
l. 1 

i = 1,2. 

Furthermore, T
1 
A - AT

2 
= O if and only if A = 0. 

PROOF. From the relations EP = P and PE = E, we have 

Write 

Since TE= ET, we get C = 0 and B = T1A - AT2. The facts that ~(T.) = 
1 

~-, i = 1,2, follow from the following two equations. 
l. 

and 

(0 0 ) ( I A) == ( I A) (O -AT 2) 
0 T2 0 I O I O T2 . 
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Hence 

or 0 = ~~ A = A. ■ 

5. ESSENI'IAL NUMERICAL RANGE & ESSENTIAL SPECTRA 

* Let~ be a complex Banach algebra with unit 1. Let~ denote its 

dual space. For a E il, u(a) denotes the spectrum of a and V(~J,a) de ­

notes the algebra numerical range of a, 

* V ( ~, a) = { f ( a) : f E ij , f ( 1 ) = 1 = \ I f\ I } . 

V(~,a) is a compact, convex set containing o(a). A detailed discussion 

of the numerical ranges of Banach algebras appears in [4] and [5]. 

* Let ~l be a C -algebra with unit, then by the Gelfand- Naimark theo -

rem there exists an isometric *-isomorphism T of~ onto a closed self­

adjoint subalgebra of B(-lj), fa suitably chosen Hilbert space. See 

Theorem 12.41 of (32). Furthermore, we have 

V(~,a) = Cl(W(T(a))). ([3, Theorem 12], (2, Theorem 3]) 

For the rest of this section, we assume" is infinite dimensional 

and separable. We let '((U) denote the set of all compact operators and 

let ~(U) = B('ll)j'((U). ij(U") is a c*-algebra called the Calkin algebra 

[8). Let IT denote the canonical homomorphism from /3(',/) onto fil(.U) . 

The essential numerical range W (T) of an operator TE B(U) is by defi­
e 

nition the algebra numerical range V(~(W), TI(T)). It is shown in [35) 

that w (T) = n {cl(W(T + K)) : K E K(W) L 
e 
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~(TI(T)) is called the Wolf (or Fredholm or Calkin) essential spec­

trum [39]. We define the Weyl essential spectrum aw(T) to be the largest 

subset of a(T) which is invariant under compact perturbations of T, 

Stampfli [36] has shown that there exists K
0 

E '<(W}, K
0 

depending on T, 

such that aw(T) = a(T + K
0
). 

It is proved in [13) that aW(T) consists of a(n(T)) together with 

some of the bounded components of the complement of a(TT(T)). Conse ­

quently, if o(TI(T)) lies on a simple arc, a(TI(T)) = aW(T). Most of the 

operators to be discussed in the rest of this paper will have essential 

spectra lying on finitely many disjoint line segments . 

(1 .8) THEOREM. [44], (7, p.62] Let T E 8(,t). Suppose TI(T) is normal and 

a(TI(T)) lies on a simple a.re. Then, there exists a compact operator K 
0 

such that T + K is normal. and a(T + K) = a(TI(T)). 
0 0 

NOTE: If the simple arc is a subset of the real axis, then Theorem 1.8 

is obvious. Suppose TI(T) * = (TI(T)) . * Then T - T E '<(Al') and consequent-

ly, T - Re(T) E '<(N'). 

6. N-TH ROOTS & COMMUTATIVITY 

Given two n-th roots of an operator, we want to know when they are 

identical. The following theorem gives a sufficient condition. 

(1 .9) PROPOSITION. Let A,B E B(J/) such that 
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1 ~ j ~ n - 1, rn = exp(2rri/n). 

If An = Bn, th A B en = • 

Proposition (1.9) may be proved with the Dunford-Taylor integral, 

but it is a special case of 

(1 .10) THEOREM. Let A, BE /3('il) such that 

w = exp(2rri/n). 

If A~ = DBn for some D E B(JI), then AD = DB. 

With An= Bn, Theorem 1.10 is due to (12], and it is a special 

case of Proposition 1 .1 with f(z) c zn. We sketch two proofs for Theo­

rem 1. 1 O, the first one was suggested by De Prima and the second, Hille 

(18,I]. 

PROOF. For C E /3(W), define linear maps LC and RC on B(V) by LC(T) = 

CT and RC(T) = TC, respectively. 

n-1 

I) Write J = \ L R j , then O = A~ - DBn = J(AD - DB). L n-1-j 
. O A B 
J= 

Since LA¾=~ LA' we have 

n-1 

~(J) c { l an-l-j bj a E o(A), b E a(B)}. 

j=O 

(The above inclusion is actually an equality, see [27].) 

By hypothesis,O t a(A) n a(B) a.nd for a E a(A), b E o(B), a I b, then 
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n-1 

\ an-l-j bj = (an - bn)/(a - b) ~ 0. Consequently, O I a(J) and 
L 

j=O 

AD - DB = O. 

II) Assume O ~ ~(A), then 

n-1 

0 = D - A -nDB0 
= TT 

j:::O 

_, 
Therefore D - A DB= 0. ■ 

The following theorem gives the promised finite-dimensional con­

verse of Proposition 1.1. 

( 1 . 11 ) THEOREM. Let A and B be two operators on a finite dimensional 

Hilbert space. Then the following statements are equivalent. 

(i) A and B have identical commutants. 

(ii) A and B a.re polynomials of ea.ch other. 

(iii) A is a polynomial of Band they have identical eigenvectors. 

(iv) A is a polynomial of B, Ac p(B), pis one-to-one on the 

eigenvalues of Band p' is non-zero on those eigenvalues of B corres­

ponding to nonlinear elementary divisors. 

(v) A and B commute and have identical invariant subspaces. 
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PROOF. (i) ⇒ (ii) The double commutant of A is the polynomial ring 

generated by A ([19, p.113, Corollary 1 ]). 

(ii) ⇒ (iii) and (ii) ⇒ (v) are obvious. 

(iii) ⇒ (iv) is not hard to see if we first assume that Bis in 

Jordan canonical form. 

(iv) ⇒ (i) is Proposition 1.1. 

(v) ~ (ii) follows from Theorem 10 of [6]. 

The equivalence (iii)~ (iv) is the theorem in [~9). 

■ 

The following example shows that Proposition 1.1 does not have a 

converse in an infinite dimensional case: Let v = exp(2nia), where a 

is an irrational real number. Consider T € ,e(,½), 
2 

T < So, ~,' ~2' ••• > = < ~ ()' \)~,, \) ~2' •• e > • 

Then the commutant of every power of Tis the set of all diagonal 

operators. 
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CHAPl'ER 2 

1 • INI'RODOCTION 

The work in this chapter is motivated by the paper of De Prima and 

Richard [ 9). Many of the results in [ 9] are extended and generalized 

here. Using von Neumann's theory of spectral sets, we show that if T 

is a non-Hermitian operator with positive spectrum, then for large in-

n teger n, 0 lies in the numerical range of T. Hence, any semigroup of 

accretive operators is necessarily a connnutative semigroup of positive 

operators. Furthennore, the above theorem remains valid if we replace 

Tn by TnD, where D 1.·s an. t"bl t t t· ·th T inver i e opera or commu a 1ng wi . Var -

ious situations in which the commutativity assumption of T and Dis re­

laxed are examined. In the last section sane variants of these theo­

rems, which are derived with Calkin algebra techniques , are given. 

2. MAPPINGS OF SPECTRAL SETS 

Let TE B('H) and let A be a closed subset of~ containing cr(T). 

A is said to be spectral for T if, whenever q is a rational complex­

valued function with poles outside A, 

Spectral sets were introduced by von Newna.nn. Chapter XI of [31] has a 

detailed discussion on spectral sets. We list some properties of spec­

tral sets: 

(i) If A is spectral for T, then any closed set containing~ is 
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spectral for T. 

(ii) If A is spectral for T, then co A::, W(T). 

(iii) t(~/2) is spectral for T if and only if Tis accretive. 

(iv) [R is spectral for T if and only if T is Hermitian. 

If A, A, n = 1, 2, 3, .•. are closed convex subsets of~ such 
n 

that /\ ::, A, we say /\_ tends to /\, A ➔ /\, whenever for each E > O and 
n n n 

each compact set r, there exists a positive integer n (E,r) such that 
0 

n > n . ( E, r) implies A n r c (A n r) + f\( €). 
- o n 

The following two theorems about spectral sets are proved in [ 9]. 

They are the principal tools in the proof of the main theorem. 

( 2 . 1 ) THEOREM. Let A, A be closed convex subsets of~ such that 
n 

I\ ::, A and A ➔ A. Let T E B(V) with A spectral for T. If T -+ T 
n n n n n n 

(in the uniform operator topology), then A is spectral for T. 

(2.2) THEOREM. Let f be an analytic function in Int(t(n/2)). Suppose 

Tis accretive and Re a(T) > O, then Cl(co(f(Int E(~/2)))) is spectral 

for f(T). 

3. THE MAIN THEOREM 

In this section we investigate some of the relations between an op­

erator and the numerical ranges of its powers. C. A. Berger proved the 

n n 
power inequality for ntnnerical radii w(T )!S(w{T)). (41] and [15) contain 

proofs, discussions and generalizations of the theorem. An important ap-
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plication appears in (45]. The power inequality indicates the maximum 

rate of the growth of the numerical ranges of the powers of an operator. 

The following theorem shows that the numerical ranges of large powers 

of a non-Hennitian operator with positive spectrum must have a certain 

minimum rate of growth. 

(2.3) THEOREM. For TE B(U) with a(T) > V > O, then either (i) 

or 

'(ii) there is a positive integer n such that l\(yn) c W(Tn) when­
o 

ever n > n . 
- 0 

Recall that we write =(T) > (~)y if a(T) is real and for each 

A E a(T), A> (~)y. 

(2.4) COROLLA.RY. For TE B('!/) with a(T) > 1, then either (t) T ~ I or 

(ii) for each bounded subset O c i, there is a positive integer 

n (0) such that O c W(Tn) whenever n > n. 
0 - 0 

The following lemma is needed to prove Theorem 2.3. 

(2.5) LEMMA . Let T, T , n = 1, 2, 3, ••• E B(W') and T converge to T n n 

in the uniform operator topo1ogy. Let A be a neighborhood of o(T) and 

f, n = 1, 2, 3, •.. , a sequence of functions analytic on A. Then there n 

is an integer N such that f E 3(T) whenever n > N. Furthennore, if 
n n 

f converges uniformly to a function f on A, then f (T) converges to n n n 

f(T) in the unifonn operator topology. 
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PROOF. Let O be an open set containing a(T) such that Cl(O) c A and 

o(O) consists of a finite number of positively oriented rectifiable 

Jordan curves. Since o(•) is an upper semi-continuous set function and 

T converges to Tin the unifo:nn topology, there is an integer N such n 

that o(T ) c O, n > N. Consequently, f E .7(T ) whenever n > N. 
n - n n -

Pick€> 0. Since fn ➔ f uniformly on ao, there is an integer N1 ~ N 

such that r2 ~ €/2 if n ~ N1 ([11, Lemma VIIo 3.13]). 

Put M = sup f j fn(),) j : A E au, n ~ 1} and t(orl) = length of ao. 

Applying Lemma VII. 6.3 of [11 ], we get another integer N2 ~ N such 

that 

■ 
For A E B(U) with (-~,o] n a(A) =¢and for~ E ffi, define A~ E f?J...W) 

by 

A~ = - 1- J e ~ LogA ( A - A) - l dA ( 1 ) , 
2ni r 

where Log A is the principal logarithm of A and r is the positively 

oriented curve containing a(A) in its interior domain as shown in the 
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following figure. 

If~ E (-1,1), then a(A~) c Int(t(l$ln)) by the spectral mapping 

theorem. It follows :from Proposition 1.9 that for a positive integer m 

and BE B('iil), if Bm = A and a(B) c Int(E(n/m)), then B = Al/m_ 

Now we are ready to give the proof of Theorem 2.3. 

PROOF. Assume there is an infinite subset M of the natural numbers and 

for each integer m E M, there is a complex number k , I k I < ym and 
m m -

k t Cl(W(rfl)). We sha.ll show that Tis positive. 
m 

For each m EM, O t Cl(W(T111 - ~)); hence there is a real number 

iCXm ....m a E (-n, n:) such that A == e (·1· - km) is strictly accreti ve, i.e., 
m m 

Cl(W(A )) c Int(E(~/2)). By Theorem 2.2, the closed sector r.(rr/2m) is 
m 

t al f A
l/m 

spec r or . 
m 

Consequently, lim \\km T-ml\ == 0. 
mEM 
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Put 

By Lennna 2.5 Bl/mis defined for large m 
m 

and lim \\B
1/m - rl\ = o. 

mEM m 

llXm For m E M, set C = e B 
m m 

therefore o(c) c Int(t(1t/2)). Hence Cl/mis well-defined. Since m m 

o(c1/m) c Int(l:(1t/2m)), we have 
m 

We want to show C 1 /m ➔ I in the uniform topology a.nd since r( n:/2m) 
m 

1/m 1/m . 
is spectral for A = T C , the nonnegative real numbers form a m m 

spectral set for T according to Theorem 2.1. 

lim \\k T-mll = 0 implies that there is a positive integer m such 
mEM m o 

that for each m E M, m > m , Re(a(B )) > O. 
- o m 

Since a E (-n:,n:} and Re(a(c )) > o, we have n m 

1/ i.a /m 
C m = e m 

m 

Therefore lim lie 1 
/m - r\l = O. 

mEM m 

m EM, m>m. 
- 0 

■ 
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The following is an immediate consequence of Theorem 2.3. 

(2.6) COROLLARY. Let TE B('J/) with a(T) > O. If O ¢ Int(W(Tn)) for 

infinitezy many n's, then T ~ O. 

We note that if Tis singular with a(T) ~ o, then Corollary 2.6 is 

not applicable. We give the following 

CONJECTURE. Let TE 8(11) with a(T) > 0. If O ¢ Int(W(Tn)), 

n = 1) 2, 3, ... , then T ~ O. 

We shall prove this conjecture under the additional assumption 

that O is an isolated point of a(T). First let us state a simplified 

version of a theorem of Sinclair and Crabb [34]. 

(2.7) THEOREM. If TE B('J/) and O ¢ Int(w(rr2n)), n = O, 1, 2, ... , 

then \\Tl\ ~ 8 r(T). 

An elementary proof of Theorem 2.7 appears in (5, p.27]. One imme­

diate corollary of Theorem 2.7 is: TE B(¾), T quasinilpotent, i.e., 
2n 

a(T) = [o},and O ¢ Int(W(T )), n = o, 1, 2, . •. , then T = O. 

(2.8) THEOREM. Let TE B('J/) with o(T) ~ 0. If O ¢ Int(W(Tn)), 

n = 1, 2, 3, ... ,and if O is an isolated point of a(T), then T > 0. 

PROOF. Let Ebe the spectral idempotent associated with 0. See Propo­
J. 

sition 1 .7. With respect to E 1/EB (E YI) , 
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and 

where a(Q) = {o1 and a(T1) > O. Since 

n n n 
n _ (Q Q A - AT1 ) 

T - ' 0 Tn 
1 

W(Tn)_ contains both W(Qn) and W(T~). By Theorem 2. 7 and Corollary 2. 6, 

we get Q = O and T1 ?:_ O, respectively. However, 0 f Int(W(T)) and 

(
0 -AT1 \ 

T = O Tl ) , by Corollary 1.6, - AT1 = 0 . Consequently T ~ 0. ■ 

4. A THEOREM OF JOHNSON, DEPRIMA AND RICHARD 

The following theorem was first stated and proved by C. R. Johnson 

((20, Chapter 2], (21]) for finite dimensional matrices and itwas gen­

eralized by DePrima and Richard [ 9] for arbitrary bounded operators. 

(2. 9) THEOREM. Let T E B(W). Then T > 0 if a.nd only if Tn is accre-

ti ve, n = 1 , 2, 3, .•• 

PROOF. The necessity is clear . For the sufficiency, note tha.t 

a(T) ?:_ 0 by the spectral mapping theorem. 
n 

For any y > O, (T + y) is 

also accretive, n = 1, 2, 3, ... Applying Theorem 2.3, we get 

(T + V) ?:_ yI. ■ 
At the end of this section we shall give a.n elementary proof of 
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Theorem 2.9. The proper way of viewing Theorem 2.9 appears to be: 

(2.10) THEOREM. Let TE B('il). Then Tn is accretive, n = 1, 2, ... ,k, 

if a.nd only if E(rr/2k) is spectral for T. 

PROOF. The sufficiency follows from the definition of a spectral set. 

If Tn is accretive, n = 1, ... , k, then t(rr/2k) :::> ~(T}; consequently, 

1/k 
for each y > O, ((T + y)k) = T + y. By Theorem 2 .2, ~(rr/2k) is 

spectral for T + y. We let y tend to O and apply Theorem 2. 1 ■ 

We are going to give some results related to Theorem 2.9 and Theo­

rem 2.10 . Given an accretive operator A E B('il) and a E (0,1), we de­

fine the fractional power Aaby 

(2) 

for each x E "· The integral in (2) is convergent in the Bochner or 

absolute sense; and if Of a(A), then the fractional power defined by 

(2) is the same as the one defined by (1) on page 18. Furthermore, 

lim \\(A+ y)a - l 1 1\ = o. See (24, §v. 3.11 ]. 
~+ 

(2.11) THEOREM. For an accretive operator A E B(U) and a positive in­

k 
teger k, there exists a unique operator B such that A= B and ~(rr/2k) 

is spectral for B. 

Theorem 2.11 generalizes a theorem of Macaev a.nd Palant (28]. Al­

so see [25) and [37, Proposition 5.5). The next theorem is a simpli­

fied version of (23, Theorem 1.1 ]. 
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(2.12) THEOREM. Let A E B('/1) be accretive and let a E (0,1/2]. Put 

~ = (Aa + A iE0)/2 and Ka = (Aa - A -Ma)/2i. Then for each x E 'II 

(2.14) COROLLARY. Let TE e(,:). If Tn is accretive for n = 1, ... , k, 

then \\rm T xii S tan(1t/2k) IIReTxl\, x E 'JI. 

We conclude this section by giving the promised elementary proof 

of Theorem 2.9. 

(2 , 3) T~,. L t A B E r:J('II) If A = A*, B > 0 and B
2 

:::_ A
2

, then • ~•ll'Jt1. • e 1 /.;/ • 

B > A. 

PROOF. Pick A < 0 and x E 'II, \\x\l = 1 • 

Hence 

ll(B - A - ">--)xii:::_ \\(B - A)x\l - llrucl\ 

> 0. 

Since B - A is Hermitian, we have a(B - A) ~ 0. Consequently, B > A. ■ 

( 2. 1 4) LEMMA. Let T E /3 (JI) . If T and 1f are accreti ve, then 

W(T) c l:(1t/4). 

PROOF. 
2 2 

( ( (Re T) - ( Im T) ) x , x) 



25 

2 
= Re(T x,x). 

Hence T
2 

is accretive if and only if (ReT,2 ~ (Im T)
2 . By Lemma 2.13 

and the fact that T is accretive, we get Re(T) :::, Im T and ReT ~ - Im T. 

Therefore, W(T) c t(n/4). 

(2.15) COROLIARY. Let TE 8('11). If Tis accretive and W(T2) c 

I:(an/2), 0 ~ a 5 1, then W(T) c t(an/4). 

PROOF. By Lemma 2.14, exp(±in/4)T are accretive. Hence 

exp(± i(1-a)n/4)T are accretive. The hypothesis W(T
2

) c t(alf/2 ) im­

plies that ex:p(±i(1 - a)n/2)ef are accretive. Applying Lemma 2.14 

again, we get both exp(in/4)(exp(i(1 - a)1t/4)T) and 

exp(-in/4)(exp(-i(1 - a)n/4)T) are accretive. Therefore, 

exp(±i(1 - a/2)n/2)T are accretive and W(T) c t(an/4). 

■ 

■ 

( 2. 9 ') THEOREM. Let T E /3(,t) . 

then T > 0. 

2n 
If T is accretive, n = o, 1, 2, ... , 

PROOF. Corollary 2. 1 5 shows that if 

2n 
T is accretive, 

/ 
k+1 then W(T) C t(n 2 ). 

n = O, 1, •.• , k, 

■ 
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5. PERTURBATIONS OF THE HYPOTHESIS OF THE MAIN THEOREM 

n The sequence TD, n = 1, 2, 3, ••• is studied in this section. ~ 

seek conditions which imply T is positive. This structure a.rises natu­

ra.lly in the study of multiplicative commutators. Let A, D E B(YI), put 

T -- ADA-1D-1. n IL.-n E If Kr = TA, then T D = A ilA. , n ~. See [ 9, §4] a.nd 

[ 30]. 

The following theorem generalizes Theorem 2.3. 

(2.16) THEOREM. Let T,D E /3(~) with a(T) > y > 0 and TD == DT. If 

there are infinitely many n's such that ~(yn) ¢ W(TnD), then 
i8 

a(D) c e O t(n:/2) for some e E ~. Furthermore, if Dis invertible, 
0 

then T ~ y I. 

The proof of this theorem follows lines similar to that of Theorem 

2.3. 

PROOF. Assume there is an infinite subset M of the natural numbers and 

for each integer m EM there exists a ccmplex number k, lk I< vm and 
m m -

km %. Cl(W(rfln)). For each m E M, there is crm E (-n:,rr) such that 

Am= e IDm(,tnn - \i) is strictfy accretive. Put Bm = (D - kmT-m), then 

11m I I B - nil = o. 
mEM m 

-ia 
Since TD= ur, a(B) c Int(e m t(~/2)) and o(B) ➔ o(D). Hence m m 

1eo 
there is a real number 9 such that a(D) c e ~(~/2). 

0 

If O I a(D), we may assume a(D) n (-~,o] = ¢. By Lemma 2.5, there 

is a positive integer m such that Bl/mis defined form> m and 
o m - o 
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lim !IB
1/m - r!l = o. 

mEM m 

For m E M, m > m , we have 
- 0 

Al/m = exp(i(a + 2~€(m))/m) 
m m 

where €(m) = 1, 0 or -1. 

Applying Theorem 2.1 and Theorem 2.2, we get [o,~) as a spectral set for 

T. ■ 
As in ~2.3 we do not know what conclusions can be drawn if we re­

place the eypothesis a(T) > 0 by a(T) ~ 0 in Theorem 2.6. However, if 

we assume O is a pole of the resolvent (A - T) -
1

, then we have the fol­

lowing 

(2.17) THEOREM. Let T,D E B('I:/) with ~(T) ~ 0 and D invertible. Sup­

pose O f. Int(W(TnD)), n = 1, 2, 3, ... If O is a pole of (X - T) - 1 

and if' TD = IJ.r, then T ~ o. 

REMARK. Since O is a boundary point of ~(T), 0 is a pole of (A - T)-1 

if either 

(i) Tis semi-Fredholm (Proposition 1.2), or 

(ii) the ascent of T, a(T), is finite and Ta(T)+k(J/) is closed for 

some positive integer k((26], Theorem 2.7). 

Recall that a(T) is the sma.llest nonnegative integer p such that~ and 

p+1 
T have identical nullspaces. 

PROOF. Let E be the spectral idempotent associated with {o} . See Prop­

osition 1.7. With respect to E 11 ffi (E .,_,)~, we have 
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and 

D = (; ;2) . 
3 4 

Let m be an integer such that if1 = 0. Since rf1n = DT111, we get D3 = 0. 

Thus TD = DT implies ND1 = D1 N and T1 J\ = I\. T1. Now the first half of 

Theorem 2.16 is applicable to the sequence T~ J\, n = 1, 2, 3, ... , and 

we get O I Int(a(J\)). Furthermore, D4 is onto since Dis invertible. 

By Proposition 1.2, I\ is invertible. Therefore T1 >Oby the second 

half of Theorem 2.16 and D1 is also invertible [15, pp . 220-221 ]. The 

conditions that the operator N is nilpotent and commutes with n1 imply 

ND1 is also nilpotent. Since O, Int W(ND1) and D1 invertible, we have 

N = 0. Hence 

TD= (0 -AT1 D4). o T1n4 

By Corollary 1. 6 and O , Int W(TD), - AT1 l\ = 0. Consequently A = 0 

and T = (g ~ ) with T1 :::_ 0. ■ 
1 

One may ask what happens to Theorem 2. 16 if the commutativity as­

sumption on T and D is dropped. Since a(T) lies on a.n open half re,y 

originating from the origin, the condition TD a DT is equivalent to 
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that~= r:,r1Il for same nonzero integer m by Theorem 1.10 . In general, 

we cannot drop the commutativity condition as demonstrated in the fol­

lowing 

(2.18) PROPOSITION. Let T,D E B('i/) with a(T) > O, D invertible and 

D > 0. Suppose O ¢ Int (W(TnD)) for infinitely many n's, then T > O 

if and only if TD = DT. 

PROOF. The sufficiency follows from Theorem 2.16. For the necessity 

note that 

By Corollary 2. 6 we have D -½TD½ ~ 0. 

imply that D commutes with D-½TD½. 

,1 .!. 1 3/2 
Hence D2 TD2 = D-2 TD , and we get Dr = TD. ■ 
Proposition 2.18 remains valid if we merely assume Dis normal and 

restrict" to be finite dimensional. 

(2.19) LEMMA: Let Pi, i = 1, ... , k, be k pairwise orthogonal pro-

k k 

jections on,: and l Pi = I. Let T = l AiPi 

i=1 i=l 

with A1 > A2 > ··· > Ak:::: 0. Suppose DE 8('1/) and O, Int (W(T°n)) for 

infinitely many n's. Then 

P.D P. = 0 
l. J 

< i < j 5 k. 
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PROOF. It is sufficient to consider the case 

T _ (a 0) 
- 0 ~ 

a>S>O 

and D = (~ :). We shall show that b = O. 

and O ¢ Int (W(T~)), there is a real nurn-

ber 8 such that 
n 

i8 
O < det (Re(e n(T~))) 

1e i8 
= a~n Re(e na) Re(e nd) 

1 I i8 -i8 ,
2 

n n - n - 4 a¾e + ~ c e . 

Thus 

Therefore b = 0 because O 5 f3/a < 1 and ther e are infinitely many n's 

for which the above inequality holds. • 
(2.20) PROPOSITION. Let,: be finite-dimensional. Let T,D E R(W) with 

T > O and D normal. If O ,- Int (W(T°:n)) for infinitely many n's, then 

TD= IJr. 

k 

PROOF. Let T = \ A. P. L ]. ]. 
i=l 
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where 11. 1 > A2 > • • • > Ak ~ 0 and [Pi} is a set of k pairwise orthogonal 

projections, t P. = I. 
l 

< i < j ~ k. Since Wis finite di -

mensionaJ. and Dis normal 

= 0 Yi,j ' i I j . 

There fore TD = ur. ■ 

Proposition 2.20 is not true if J/ is infinite dimensional. The 

following counterexample is suggested by J. H. Anderson. 

Let U denote the unilateral shi:f't on t
2

, 

Let B denote the projection on t 2 given by 

B < ~O' ~,, ~2' •.• > = < ~O' O, O, .•. >. 

Put 

* * (IQ\ then VV = V V = I. Put D = 2I + V; D is normal. Let T = O o) , 

* 
then TnD = ( 21

0
+U 0 ) hi h i t· 1 2 3 

0 
w c s accre ive, n = , , , .•• But 

TD - Dr= (_~ g). 
We conclude this section with the following 
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(2.21) THEOREM. Let T,D E B(JI) with the descent of T finite a.nd D 

strictly accretive. Suppose T~ is accretive for n = 1, 2, 3, ... 

If i11n = rJt11 for some positive integer m, then T::: O. 

Recall that T has finite descent if there exists a nonnegative in­

teger q such that T<\/ = Tq+1v. This hypothesis is not necessary in The­

orem 2.21 if m = 1. In fact we have 

(2.22) PROPOSITION. (cf. [9], Theorem 3) Let T,D E B(W) with 

a(D) c Int (E(~/2)). Suppose T~ is accretive for n = 1, 2, 3, 

If TD = DT, then T ~ 0. 

PROOF. First we show ~(T) > 0. 

There is a real number O ~ ~ < 1 such that o(D) c Int(r(~~/2)). 

TD = DT implies that 

We note that the hypotheses of the theorem are not changed if T is 

replaced by T + r, r > 0. Hence ( r + a ( T) ) n = ( a ( T + r) ) n c I ( ( 1 + S) rc/2) 

for a.11 r::: o, n = 1, 2, 3, •.. This is possible only if rr(T) ~ 0. For 

any V > O, (T + y)~ is a.ccretive, n = 1, 2, 3, .•. Now Theorem 2.16 is 

applicable. ■ 

Before we can give the proof of Theorem 2.21, we need one more 

lemma. 

(2.23) LEMMA. [30, Theorem 4.18] Let S,C E B(W). Suppose there is a 

*2 * * * vector x E Ker S \ Ker S such that (CS x ,s x) I 0. Then 
0 0 0 
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0 E Int (W(SC)). 

PROOF. For a E ~, 

* * (sc(x + as x) , x + as x) 
0 0 0 0 

* * * = (C X' s X) + a(cs X' s X) 
0 0 0 0 

* * Hence ti = t J ( ( SC ( x + as x ) , x + as x ) : a E ct} . 
0 0 0 0 

Consequently, 0 f Int (W(SC)). ■ 

PROOF OF THEOREM 2.21. Since if1n = IJ.rm and a(D) c Int (t(~/2)), we 

have rffD' ~ 0 by Proposition 2.22. Hence the ascent of T, a(T) ~ m. By 

hypothesis the descent of Tis also finite, and applying Theorem 2.1 of 

(26), we have that O is a pole of (A - T)-1. 

Let Ebe the spectral idempotent associated with fo }. With respect 

.1. 
to E W © (E Ji'), put 

E = (~ ~), then 

~ ~ O implies -rf1 = O, ~ ~ 0 and -A~= 0. Thus A== O and T1 > 0 . 

Hence T = N ffi T1• 

0 f W(D), 0 I Int (W(TD)) and by Lemma 2.23, we conclude that the 

* * ascent of N, a(N) < 2. The operator N is nilpotent, therefore, N c 0. 

Hence T > 0 . ■ 
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6. OTHER REIATED RESULTS 

In this section 'II is infinite dimensional and separable. For 

T E B('II) , let 

w (T) = n (Cl(W(T + K)) K canpact} and 
e 

~w(T) = n fa(T + K) : K compact} 

as in §1 .5. Corresponding to Theorem 2.3, Theorem 2.9 and Theorem 2.16, 

we have the following theorems: 

(2.25) THEOREM. Let TE B('i/) with ~W(T) > V > O, then either (i) there 

is a compact operator K such that T + K ~ VI, or 

(ii) there is a positive integer n such that ~(yn) cw (Tn) when-
o e 

ever n > n . 
- 0 

(2.26) THEOREM. (cf. (9, Theorem 4]) For TE B(W), then 

W (Tn) c ~(~/2), n = 1, 2, 3, .•. , if and only if there is a compact 
e 

operator K such that T + K > O. 

(2.27) THEOREM. Let T,D E /3('11) with aw(T) > y > 0 and (T111n - mm) com­

pact for some positive integer m. If there are infinitely many n's such 

n n... iGo 
that l:)_(y) ¢. W(T v), then ~W(D) c e t(~/2) for sane 8

0 
~ ~- Further-

more, if Dis semi-Fredholm, then there is a compact operator K such 

that T + K ~ YI. 

We sketch the proof of Theorem 2.27. As in §I.5, we let 

TT : 8(11) ➔ al{,t), the quotient map, and 
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a faithful* representation. 

,- 0 TI(T) and 

,. 0 TI(D) commute by Theorem 1. 10. Furthermore, w(,- o TI(TnD)) c 

Cl(W(ri1n)). Applying the first half of Theorem 2 .1 6, we get 

i8 
o(T • TI(D)) c e O I:(1t/2) for some 8 E [R. 

0 

Consequently, 0 ¢ Int(o(D)). If Dis semi-Fredholm, then Dis Fredholm 

by Proposition 1.2. By a theorem of Atkinson, Dis Fredholm if and 

only if TI(D) is invertible ([40}, _ [15, Problem 142)). Thus it follows 

from the second half of Theorem 2.16 that 

T O TI(T) :::_ V I-j . 

Applying Theorem 1.8, we conclude that there is a compact operator K 

such that T + K~YI. ■ 
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CHAPTER 3 

1 • INTRO~TION 

In this chapter we give some applications of the theory developed 

ear lier. The main problem we study is the following: for T E B(J/) , if 

each of the powers of Tis not a commutator with a positive factor, 

then what conclusions can we draw about T? When JI is a.n infinite di­

mensional separable Hilbert space, we show that there is a positive in­

teger m and a compact operator K such that T11 + K is nonnal. The main 

tools used to prove this fact are (i) a characterization of commutators 

with self-adjoint factor due to J. H. Anderson [1 ], 

(ii) a number-theoretic result of C.R. Johnson and M. New-man (22], 

and 

(iii) Theorem 2.3. 

The author wishes to thank C. R. Johnson for informing him of the 

result in (22). 

2. A THEOREM OF J. H. ANDERSON 

A derivation on the algebra 8(,t) is a linear map 6 from B(W) into 

itself with the property 6(XY) = o(X)Y + X 6 (Y) for every pair of oper­

ators X, Y in B(W) . It is known that all derivations a.re inner, i.e., for 

each derivation o, there is an operator A in B(J/) such that 

6(X) = 6A(X) = AX - XA. 

Let R denote the set 

U f 6 A (,e (,t) ) A ?:_ 0) 
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Thus the problem we are interested in is the following: what are the 

operators T with the property that Tn ~ R, n = 1, 2, 3, ... ? 

For the rest of this section 1:1 will denote an infinite-dimensional 

separable Hilbert space. J. H. Anderson in his thesis [1, Theorem 7.2) 

proved the following deep result: 

(3.1) THEOREM. R =[TE 8(11) : 0 E we(T)}. 

As in §1 .5 we let n denote the quotient map of/S(U) onto the Cal­

kin algebra a.nd let T denote a faithful* representation of the Cal.ki n 

algebra onto a self-adjoint subalgebra of S(F, f some suitably cho-

sen Hilbert space. For TE S(V), W (T) = Cl(W(T•Il(T))). 
e 

Hence the cypothesis that Tn t R, n = 1, 2, 3, ... is equivalent to 

0/Cl(W(-r 0 Il(T)n)), n= 1, 2, 3, ••• 

In §4 of this chapter we shall show: 

if Of Cl(W(T°)) n = 1, 2, 3, •.• , then a power of Tis normal. 

3. A THEOREM OF JOHNSON AND NEWMAN 

The following question is raised in [22]: how many distinct points 

a1, ..• , at on the unit circle of~ are in general required to insure 

that for some positive integer m, 0 E cofcf,1, •.• , ~}? A complete solu­

tion is given by 

(3.2) THEOREM [22]. Let a, ~, y be distinct complex numbers with 

!al= le!= Iv!= 1. Then there exists a positive integer m such that 

0 E co{cl1, '3m, ymJ if a.nd only if fa, $, y} cannot be obtained ftom 
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f, 2~i/7 tnr.i/7} r1 2~i/7 1(}J(i/7} , e , e or l , e , e via any combination of per-

mutation, reflection and simultaneous rotation. 

NOTATION. + . Let IR denote the set of strictly positive numbers, 

+ IR = (O,oo). For(!, c ~ \ {o}, let I Arg C, denote the cardinality of the 

set [Arg A : A Ee}, and let C,m denote the set { '111 : y E e}, m an integer. 

(3.3) COROLIARY. Let e be a set of nonzero complex numbers such that 

C. n R+ / ¢. If O, co(en), n = ,, 2, 3, ... , and if# Arg (!,~ 3, then 

. 7 + # Ar g C, = 3 and C, c R • 

PROOF. For any three nonzero complex numbers a, 8, y, 0 E co[a, S, y} 

■ 

(3.4) THEOREM. Let TE B(J✓-) with a(T) n IR+/.¢. Suppose 

0 f Cl(W(rt1)), n = 1, 2, 3, •.. We have the following cases: 

(i) # Arg c(T) = 1, then T > O. 

(ii) # Arg a(T) ~ 3, then# Arg a(T) = 3 and T7 > O. 

(iii) ~ Arg a(T) = 2, then either there is a positive odd number m 

such that rfil > O or there exists a closed subspace .u1 of JI and positive 
. 8 

operators T1 and T2 on Y.1 and 'r," respectively such that T == T1 EB e 1. T2, 

e being irrational modulo 2~. 

PROOF. Case (i). Since c(T) > o, T ~ 0 by Corollary 2.6. 
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Case (ii). 0 ¢ Cl(W(Tn))::, co(a(T)n), n = 1, 2, 3, .• . By Corol­

lary 3.3, we have# Arg a(T) = 3 and a(T7) > O. Applying Corollary 2 . 6 

again, we get T7 ~ 0. 

Case (iii). There exists a real number 8 E [0,21f) such that 

+ H~ + a(T) ClR U e lR . If 9 is rational modulo 21t, there is a positive odd 

integer m such that a(T111) > o, thus rJ!ll ~ 0. Before we can treat the 

case where e is irrational modulo 21f, we need the following 

(3. 5) . LEMMA. Let € E (O, 1), a, ~ E (t, a·~ I 0. If IArg (a/~) I > arccos 

2 (-E ), then OE~ (a,~;€). 

PROOF. By definition of an ellipse, 0 E@ (a, e; E) if and only if 

Put + = IArg (a/e) I. Then we have to show 

or equivalently, 

The above inequalities hold if 

.. I. 2 
2 

2 2 0 ~ (1 +cos"€) - (1/€ - 1) , 

or l / l - 1 > I 1 + cos ,Vl I , 
or 1/E

2 
- 1 ~ -(1 + cos ,fe

2
) 

2 since , ~ arccos ( -E ) • 

But the last inequality is always true. ■ 
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We now come back to the proof of the last part of Theorem 3. 4 . Let 

Ebe the spectral idempotent associated with a(T) nm+. See Proposition 

1.7. With respect to E JI EB (E JI)~, put 

E = (~ t), then 

where· T
1 
~ o, T

2 
~ O and & is irrational modulo 2n:. We note that 

iA To show that T = T1 EB e T2, we have to show A= 0. Assume A~ O. For 

a positive integer n and y E (E ui·, with I\Y\l == 1 and Ay I o, let 

8 [n,y] denote the numerical range of the 2 x 2 matrix 

0 

By Lemma 1 .5, 8 [n,y] C W(Tn). By Theorem 1 .3, S[n,y) = 8 (a,a; E[n,y]) 

where a E IR+, $ E ein9lR + and 

e[n,y] = 

Let y , m = 1, 2, 3, •.• be a sequence in (E V)~ such that IIY I! = 1 and m m 
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lim IIAymfl = \\All. For each n, 
m--+oe 

= 1 + ➔ 1 as m ➔ a, • 

.l. 
2 -2 

Hence lim E[n,y ] = (1 + l!All ) (cf. Corollary 1.4). Thus for each 
m-too m 

integer n, there is an integer m(n) such that 

Since e is irrational modulo 2~, pick an integer N for which 

jArg eiNE91::: arccos (-1/(1 + \IA!l2/2)). Then OE@ [N,ym(N)] by Lemma 

3.5. However, O ~ W(TN) by hypothesis; therefore, A= 0 and 

T = T1 ~ e
18

T2 . The proof of Theorem 3.4 is now completed. ■ 

The following is an immediate consequence of Theorem 3 . 4. 

(3.6) COROLLARY. Let TE B(JI). If O ¢ Cl(W(Tn)), n = 1, 2, 3, .•. , 

then an odd power of T is normal. 

With JI finite dimensional Corollary 3.6 is first proved in (21 ]. 
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(3.7) THEOREM. Let 1/ be an infinite dimensional separable Hilbert 

space and let T E B(';/J • Suppose Tn f. R, n = 1 , 2, 3, • . . Then we have 

the following cases: 

(i) # Arg aw(T) = 1, then there exist 8 E [0,2~) a.nd compact op­

·e 
erator K such that (e1 T + K) ~ 0. 

(ii) # Arg aw(T) ~ 3, then I Arg aw(T) = 3 and there exist 
· ·e 7 

8 E [0,2~) and compact operator K such that (e1 T + K) ~ O. 

(iii) I Arg aW(T) = 2, then either there exist a positive odd inte­

·e 
germ, 8 E [0,2n) and canpact operator K such that (e1 r'J!1 + K) ~ o, or 

there exist a closed subspace 11
1 

of 11 and positive operators T1 and T2 
1e

1 
u 2 on ,:1 and 111.1. respectively such that (T - e T1 ~ e T2) is compact 

where (8
1 

- e
2

) is a number irrational modulo 2n. 

PROOF. By Theorem 3. 1, R = [ S E 8(J/) : 0 I. Cl(W(T O TI(S)))}. Now, most 

of the conclusions in the theorem follow directly from Theorem 3. 4. How­

ever, a little more explanation is needed in the second half of case 
1~, i82 

(iii). We know T • Il(T) = e v1 EB e v2 on f1 ffi f 1 .1. = ?-, where 

v1 ~ O and v2 ~ O. Thus Il(T) is normal and a(Il(T)) lies on a simple arc. 

By Theorem 1 .8, there is a compact operator K such that T + K is normal 

and o-(T + K) = c(Il(T)). Consequently, there exist '11 closed subspace of 

'fl and positive operators T1 andT2 on .u1 and 11
1 

.L , respectively such that 

i81 i82 
(T - e T1 EB e T2) is compact. ■ 
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( 3. 8) COROLIARY. Let T E B(',/), 'JI infini te-d.imensional and separable. 

If Tn ~ R, n = 1, 2, 3, ••. , then an odd power of Tis a normal plus a 

compact. 

REMARK. One may ask if a stronger conclusion can be drawn when the 

hypothesis that each of the powers of Tis not a commutator with a posi­

tive factor is replaced by the hypothesis that each of the powers of T 

is not a commutator with a normal factor. However, these two hypotheses 

are actually equivalent, i.e., R = U {~N(B('JI)): N normal}. It follows 

immediately from Theorem 3. 1 that ~, is a norm closed subset of B(?I) . 

The theorem in (16] states that for each normal operator N, there is a 

Hermitian operator A and a function~ continuous on o(A) such that 

~(A)= N. By the Weierstrass approximation theorem, oN(B('JI)) is a sub­

set of the norm closure of o A (B(¾)) ( 1, Corollary 13. 11 ] . Consequently, 

R = U {o N(B('JI)) : N normal}. 

6. SUFFICIENT CONDITIONS FOR NORMALITY 

In this section we present some variants of the results in the last 

two sections. We give additional conditions which make the operator T 

itself normal or normal plus compact. 

(3: 9) THEOREM. Let T E ~('ft) and O ,. Cl(W(Tn)), n = l, 2, 3, . . . If T 

is a convexoid, i.e., co(cr(T)) = Cl(W(T)), then for 1 ~ j ~ k, where k 

is some positive integer~ 3, ' there exist positive operators T. E B(W.) 
J J 

k k i8. 

and real numbers 8 j such that 'I/= l EB 'Jlj and T = l EB e JT j. 

j=l j=1 
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Moreover, if k = 3, then e 
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PROOF. Put k = ~ Arg a(T) and k ~ 3 by Theorem 3.4. First, we consider 

the case k = 2, i.e., there are two real numbers 8
1 

and 8
2 

such that 

i81 + i82 + 
o(T) c e ~ U e ~. Let Ebe the spectral idempotent associated 

i81 + 
with a(T) n e ~. With respect to E 'JI EB (EN')~, put 

E = (~ ~) , then 

T , 

where T
1 
~ 0 and T2 ~ 0. .Assume A I O; thus there is a two-dimensional 

compression of T whose numerical range consists of an elliptical disc 

18. + 
with foci on each of the two half-raJ'S e J ~, j = 1, 2, and eccentri-

city strict]s- less than unity. However, Tis a convexoid by hypothesis 

and co(cr(T)) is a quadrilateral, a triangle or a line segment with all of 
18. + 

its vertices ]s-ing on the two half-rays J IR · 1 2 he :f e , J = , • T re ore, 

i81 i82 
A= 0 a.nd T = e T1 ffi e T2 • 

The case that l. Arg rr(T) = 3 is treated in a similar fashion. 

ertheless, we note that the above geometric argument fails if 

# Arg cr(T) ~ 4. Fortunately this case cannot arise. 

Nev-

■ 

(3.10) COROLLARY. Let TE 8(9/) and suppose O ¢ Cl(W(Tn)), n = 1, 2, ... 

Then Tis normal if and only if Cl(W(T)) is a closed polygon (possibly 

degenerate). 
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PROOF. Cl(W(T)) is a closed polygon implies that Tis a convexoid 

([17], [33, Corollary 2.1 ]). 

We note that the polygon mentioned in Corollary 3.10 may have at 

most six sides. 

■ 

(3.11) THEOREM. Let TE 8(11), W infinite dimensional and separable. 

Suppose ,t1, R, n = 1, 2, 3, ... Then Tis a normal plus a compact if 

and only if We(T) is a closed polygon (possibly degenerate) . 

PROOF. Apply Corollary 3.10 and Theorem 1 .8. ■ 

We conclude this chapter with the following theorem on finite di­

mensional ma:brices (cf. (21 ]). 

(3.12) THEOREM. Let T be a finite dimensional square matrix. Suppose 

0 ~ Int(W(Tn)), n = 1, 2, 3, •.. If for each positive integer n, T and 

Tn have identical eigenvectors or identical com.mutants, then Tis nor-

ma.l. 

PROOF. By a theorem of Schur, there is a unitary matrix U such that 

* * U TU is upper triangular. We have to show that U TU is actually diago-

nal. 

* Assume U TU is not diagonal; then we can find, if necessary after 

applying a suitable simultaneous row and column permutation (which of 

course will preserve the upper triangular structure), a 2 x 2 submatrix 

T1 = (~ ;) along the main diagonal with y -/ O. 
n 

For each n, W(T) 
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contains W(T~) . 

Suppose a=~= o, then OE Int(W(T1)). If a=~ Io, W(T~) is 

the closed circular disc an+ Ll(nl-.,on-l l/2) by Corollary 1.4. Hence for 

n > 2" la/y I, o E Int(W(T~)). 

Suppose a/ S, then W(T~) is the closed elliptical disc (possibly 
J,_ 

n 2 -2 
a singleton) e (an, ~ ; €), where E= (1+lv/(a - ~)I ) . Consequently, 

OE Int(T~) if Ian!+ IS 0 1 < Ian - A0 1/e. If !al I l$I, this inequality 

holds for large n since E < 1 • 

. For the case a i a and lal = lal, we apply the additional hypothe­

sis and Proposition 1.11 to conclude that an I en, n = 1, 2, 3, . . . , or 

equivalently, a/9 = exp(2ni8) for sane irrational real number 8. W(T~) 

is the ellipse with foci at an and ~n and constant eccentricity€< 1 . 

Thus OE Int(W(T~)) for infinitely many n's. 

We conclude that y = 0 and T is normal. 
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