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ABSTRACT

In this thesis the development of finite element procedures for
fluid-structure interaction problems is presented. The areas upon
which attention is focused are: numerical transient algorithms which
emphasize implicit-explicit finite element concepts; finite element
kinematical descriptions for modelling fluid subdomains in fluid-
structure interaction problems; finite element methodology for nearly
incompressible fluids and solids, and beam, plate and shell structures
based upon theories which incTude transverse shear deformations; and
finite rotation effects in numerical integration of rate constitutive
equations arising in large-deformation analysis. Al1 these nonlinear
methodologies have been integrated into a working finite element com-
puter code. A number of numerical examples are presented to demonstrate

the effectiveness of these approaches.
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Chapter 1
INTRODUCTION

]. General Remarks and Previous Studies

I-A. Introduction

Significant attention has been devoted to the development of
fluid-structure interaction procedures over the last two decades.
However, many fluid-structure interaction problems are of such complex-
ity that the method of analysis must be numerical in nature. Finite
element methods enable the modelling of such complicated problems.

The term "fluid-structure interaction” refers to either
(1) fluids contained within structures, or (2) structures surrounded by
fluids. Examples of (1) are the seismic response of ground supported,
cylindrical 1iquid storage tanks, aerospace applications such as rocket
fuel tanks, and the response of a dam due to sudden acceleration into a
contiguous reservoir. Examples of (2) are the transient motion of sub-
merged or partially submerged structures, flow-induced vibrations,
normal and abnormal operations of 1ight water reactor and pressurized
water reactor cores.

The applications of finite element methods to  fluid-structure
interaction problems have been made by several investigators. One of
the related current research areas is seismic analysis and design pro-
cedures for ground supported, cylindrical liquid storage tanks [1,2].
Another application is the use of toroidal tanks as pressure-suppression
pools in certain designs of boiling water reactors [3]. Presently used
methods are mostly based on linear small motion response and do not take

satisfactory account of nonlinear effects. For example, in the response
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of tanks to strong earthquakes, 1ift-off, finite-amplitude sloshing, and
nonlinear and inelastic response are important.

Nonlinear fluid-structure finite element procedures have been
proposed by Belytschko et al. [4-9] and Donéa et al. [10,11] among
others. However, most of these studies are orjented to particular appli-
cations, specifically nuclear reactors, and these procedures are not
flexible enough for a wide class of engineering applications.

The ability to solve general classes of fluid-structure interac-
tion problems involving finite deformations depends upon the ability to
solve the corresponding uncoupled fluid and structural problems, and
also the ability to "interface" fluid and structural subdomains. Even
though the development of general finite element procedures for fluid-
structure interactions is obviously too complicated to handle as one
thesis topic, the author's goal is to make significant strides in this

direction.

I-B. Structural/Solid Mechanics

The success of finite efement methods in structural/solid
mechanics is well known. The main thrusts of research herein were
directed toward both low- and higher-order, two- and three-dimensional
continuum elements with particular reference to near]y'incompressibie
materials [12-15,19-21] and the development of effective general thick/
thin shell elements based upon theories accounting for transverse shear
deformation [16-18]. Attention is also focused on reduced/selective
integration and allied concepts which have facilitated the development
of simple yet effective "displacement” models for these constrained

media applications [12-21]. For general nonlinear material models, the
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numerical integration of constitutive equations requires special atten-
tion since it is a major cost in the finite element calculations. Many
new techniques have been proposed [22-29] for this task. For nonlinear
shell analysis this is complicated by the fact that the stress components
are referred to a rotating basis,and a zero normal stress constraint

needs to be enforced with respect to the normal direction of this basis
[isl.

I-C. Fluid Mechanics

In the fluid mechanics area, finite element research is just
coming of age. Although much effort has been exerted in recent years,
it is fair to say that transient finite element, Navier-Stokes algorithms
have not achieved the speed and versatility of existing finite difference
methods [30-32]. The basic problems of fluid mechanics involve non-
symmetric "convection" operators. In most physical problems of engineer-
ing interest, convection is dominant. Unlike solid and structural
mechanics which involve well-understood symmetric, positive, spatial
differential dperators, ﬁonsymmetric "convection" operators are still not
fully understood [19,33,34]. Due to the ability to eliminate the incom-
pressibility constraints and pressure unknowns [19], and also to the
better understanding of the convection operators [33,35-37], it is
hoped that the finite element technique, due primarily to its geometric
versatility, will soon equal, and eventually surpass the better finite-

difference methods.

I-D. Interface Techniques

The simplest Eulerian-Lagrangian interfacing technique goes under

the name of “arbitrary Lagrangian-Eulerian® (ALE) technigue in the finite
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difference literature [38]. Donea et al. [10] and Belytschko and Kennedy
[9] generalized the procedure in straightforward fashion to finite ele-
ments. Hughes et al. [39] proposed an alternative mixed Lagrangian-
Eulerian description in which each degree-of-freedom may be assigned to
move at a fraction of the fluid particie velocity. Many problems, such
as sloshing and surface waves, may be handled by these procedures. To
illustrate the basic idea, consider a cylindrical liquid storage tank,
under the action of a strong earthquake. Field observations after

strong earthquakes indicate: (1) large amplitude free surface sloshing,
which often results in roof damage, (2) nonlinear inelastic tank re-
sponse such as the well-known elephant's foot bulge phenomenon, and

{3) Tift-off of tank from foundations. In order to model fluid-structure
problems of this type, the following description May be employed: Lagrangian
for the shell structure, Eulerian for the main core of the fluid, a

split or mixed description for the free surface, and an interpolated
description between the lLagrangian and Eulerian subdomains (see Fig.
I-C.1). In this way the motion of the fluid may be represented without

gross distortions of the mesh.

I-E. Transient Analysis

Basically, there are two general classes of algorithms for tran-
sient nonlinear problems: implicit and explicit [40,41]. Implicit
algorithms tend to be numerically stable, permitting large time steps,
but the cost per step is high and storage requirements tend to increase
dramatically with the size of the mesh. On the other hand, explicit
algorithms tend to be inexpensive per step, and require less storage
than the implicit algorithms, but numerical stability requires that

small steps be employed. There are some problems for which implicit
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algorithms are very efficient and others for which explicit algorithms
are very efficient. However, the direct time integration of the equa-
tions resulting from fluid-structure interaction proE]ems presents com-
putational difficulties that are not normally encountered in single-field
problems {structural and fluid).

To overcome these difficulties, methods have been developed in
which it is attempted to simultaneously achieve the attributes of both
classes of algorithms. Belytschko andMullen [42,43] proposed an
implicit-explicit nodal partition in which the explicit nodes are inte-
grated first in each time step and the results are used subsequently as
"houndary conditions" for the integration of the implicit nodes. Hughes
and Liu [44,45] proposed an alternate element-by-element implicit-
explicit partition which is amenable to stability and accuracy analysis,
and, at the same time, can be simply and concisely implemented. In this
approach the mesh is divided into implicit and explicit finite element
groups only. The notions of "strong coupling,” "weak coupling,"
"interface elements," explicit and implicit nodes [46,47] are completely
avoided. The coupling between the groups is fully accounted for by the
standard finite element assembly procedures. The convergence, extension
to nonlinear problems, and implicit-explicit finite element techniques
for symmetric and nonsymmetric systems have been developed in [19,50,51,
547. A general partitioned transient analysis procedure is proposed by
Park [48], which is amenable to a unified stability analysis and incor-
porates the mentioned algorithms as special cases.

Various other improvements in transient algorithms have also been
recently achieved [49,52,53,55-57]. The applications of these ideas in

different branches of engineering problems has proven to be



successful [19,39,42,53,55].

II. Scope of the Present Investigation

This report deals with the developments of finite element proce-
dures in fluid-structure interactions. Both geometrical and material
nonlinearities are accounted for.

In Chapter 2, the fundamental theories in continuum mechanics are
reviewed. A general theory of mixed Lagrangian-Eulerian descriptions
will be derived. The definitions of convective velocity and referential
or mesh time derivative are given. The balance laws, such as conserva-
tion of mass and balances of linear and angular momentum are derived with-
in "the mixed-lLagrangian-Eulerian concept. The formal statements of the
initial/boundary-value problem for the mixed description, Eulerian de-
scription and Lagrangian description and their corresponding variational
equations will be discussed. A class of rate-type constitutive equations
is introduced which represents a wide class of material models. The
Galerkin/finite element formulation and matrix equations, as well as the
incremental constitituve equations are derived. The elimination of the
continuity equation and pressure unknown for a viscous incompressible
fluid is achieved within the framework of the penalty function formula-
tion. A related idea for slightly compressible fluids is also discussed.

In Chapter 3, the numerical solution techniques are discussed.
The integrals appearingin the variational equations are carried out by
numerical integration. Selective/reduced integration procedures are
discussed in detail. "Upwind" finite elements are developed based upon
modification of standard Gauss-Legendre quadrature rules and also

Petrov-Galerkin techniques. These enable stable finite element
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approximations to highly convective flows. Consistent, Tumped and "row-
summed" mass matrices are discussed. The implementation of Lagrangian-
Eulerian finite elements is done by introducing a "Lagrange-Euler
parameter.” The numerical integration of rate constitutive equations
is reviewed, and finally, different transient analysis techniques for
the variational equations are presented.

In Chapter 4, the nonlinear finite element analysis of shells is
discussed. The geometry and kinematic descriptions are first defined.
"Laminar" coordinate systems and'fiber'coordinate systems are then
introduced in order to account for the zero-normal stress condition and
to eliminate the "torsional"degree of freedom, respectively. The numeri-
cal algorithms for integrating the constitutive equations for shells are
then discussed. The avoidance of "mesh-locking" in the thin shell Jimit
is achieved by a simple modification of the strain-displacement matrix
via selective/reduced integration. Different transformation matrices as
well as the tangent stiffness matrix, internal force vector, and mass
matrix are defined. Different shell elements, such as the selective/
reduced Lagrangian elements and heterosis elements are also discussed.
Numerical examplies involving a number of the elements are presented to
demonstrate the effectiveness of the proposed shell procedures.

Numerical examples of incompressible viscous fiows by the penalty
function formulation are presented in Chapter 5 to demonstrate the ef-
fectiveness and accuracy of the proposed formulation. A free-surface
wave generation problem is used to demonstrate the mixed Lagrangian-
Eulerian theory in Chapter 6. Also presented is an example of practical

interest concerning a nonlinear analysis of an inclined cylindrical

liquid storage tank. In addition, the axisymmetric buckling of
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circular cylinders under different boundary conditions due to a uniformly

applied axial load is presented. Finally a dynamic analysis of a Tiquid

storage tank is presented. A summary of the present study and sugges-

tions for further developments.are discussed in Chapter 7.
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Chapter 2
FUNDAMENTAL CONTINUUM MECHANICS THEORY
AND FINITE ELEMENT FORMULATION

I. General Description of Governing Equations

"A continuum is an abstraction applied to a large collection of
material particles. Continuum mechanics deals with deformations and
motions of these particles in space and time, under a variety of ex-
ternal conditions such as mechanical and thermal processes. The theory
of continuum mechanics serves to establish the mathematical formulation
of any physical phenomenon that takes place in a material body. This
is tantamount to replacement of the actual body with an idealized
‘mathematical body' in the sense that it is not an atomistic view of
matter; rather, it associates material bodies with regions of Euclidean
space," K. S. Pister [2].

Fquations describing the behavior of a continuum can generally
be divided into four major categories: (1) kinematic, (2) kinetic
(balanced laws), (3) thermodynamic, and (4) constitutive. Detailed
treatments of the subject can be found in many standard texts and ar-
ticles [1-6]. However, the two classical descriptions of motion,
Lagrangian and Eulerian [3,5,6], are not adequate for many free-surface
flows and problems of fluid-solid-structure interaction involving finite
deformation. The Lagrangian description is generally not suitable for the
fluid undergoing large displacements since the mesh will become highly
contorted. In addition, when the Eulerian descriptionis used for the fluid
it is not compatible with the large displacement of the structure for which

the geometries of the boundary are altered.
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It is the purpose of this section to develop a more versatile

description of motion based on the previous deve]opﬁents by Amsden and

Hirt [7], Donea et al. [8], Belytschko and Kennedy [9], Hughes et al.

[10], and references therein.

I-A. General Theory of Mixed Lagrangian-Eulerian Description

n
Suppose a body B occupies a region RZCIERSd. We describe the

Nsd

motion of B by a mapping ¢: R, x [to’tlj +R The image of R, at

time t is denoted by Ry, and the image of zeERZ is denoted by y, i.e.,

y = ¢(z.t) (1A.1)

Here Rz is thought to be the region occupied at t= to by the "material

particlies" which occupy Ry at time t, so we wish to think of Ry as the

nspatial” region. In order to describe the mixed formulation, we have

" to introduce a "reference" region. To this end, let us introduce

&(CIRnSd which is fixeg throughout. Its motion is defined by the map-
sd

ping @: R, X [to’tlj +R . We assume that Ry is the image of R, at t

under the mapping &, and that y is the image of x & Rx' Therefore,
y = B(x.t) (1A.2)
By composition we may define a third mapping ¥ by

x = 9p(z.t) 3 ple,t) = 7 (s(+,t),t) (1A.3)

The set-up is illustrated in Figure IA-1.
We may obtain the classical kinematic descriptions by specializ-
ing the definition of R, and $. The Lagrangian description is obtained

= ¢, whereas if R = Ry and =1, we have the

15> X

by picking Rx = RZ and



-18-

Eulerian description. By appropriate selection of Rx and @, more gen-
eral kinematic descriptions, which are useful for many free-surface and
f]uid-so]id¥structure interaction problems, may be obtained. In order
to describe this formulation, it is helpful to introduce coordinate sys-
tems. For simplicity, let us restrict ourselves to proper orthogonal
coordinate frames and let Xis ¥i» and Z:s 1<ix Ned denote the
Cartesian components of Xs ¥» and z, respectively. Partial differentia-

tion operators will be indicated by the following shorthand notation

f10]:

i = EE— ; ' = %¥ ("referential derivatives")
% x; fixed
o= §§_. .t = %f ("spatial derivatives") (1A.4)
Yy Y; fixed -’
o= 53_ : . = %€ ("material derivatives")
Z z; fixed

It follows from (IA.4) that:

x' ={ 5 ‘y'i’t =0 M .Z~ =0 (IA.S)

=8 (1A.6)

g T, T % T R

LN

where 6ij is the Kronecker delta.

A summary of useful kinematic definitions, associated with the

mappings defined above, is given as follows:
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y; = ¢1(z,t) {(motion) (IA.7)

Ui = Y5 -z (displacement) (IA.8)

¢ < u; = &i = 3¢5 /3t (velocity) (IA.9)
U, =¥; = 32¢i/8t2 {acceleration) (IA.10)
Kyi-j = 3¢]./azj = 51J-+ui.3 (deformation gradient) (IA.11)

[ ¥; = $i(§,t) (motion) (IA.12)
Gi = ¥y X (displacement) (IA.13)

$ { ﬁ% =y; = 861/3t (velocity) (IA.14)
ul = y: = 32$1/8t2 (acceleration) (IA.15)
gy1'3 = 80 /9x; = aij'kua'J (deformation gradient) (IA.16)

f X5 = wi(g,t) (motion) (IA.17)

Wi T X -z ' (displacement) (IA.18)

P < Wi = X; = 3P/t (velocity) (IA.19)
W, = k1 = azwi/atz {acceleration) (IA.20)

in.J = 3wi/azj = aij.+wi-j (deformation gradient) (IA,21)

Equations (IA.7) - (IA.11) are the classical kinematic relations of
the Lagrangian description of a continuum (e.g., Us is the particle dis-
placement, ﬁi is the particle velocity, and Ui is the particle accelera-
tion).
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Convective velocity and material time derivatives

Differentiating (IA.12) with respect to t, holding z fixed, and

using (IA.17), yields

from which it follows that

i T %95 (IA.23)
where

L= U, - Ul 1A.24
Cj = uy - U (1A.24)

is called the convective velocity.

The material time derivative, which appears in continuum conser-
vation laws, is the time derivative with the material coordinates (E)
held constant as in equation (IA.4). We assume, however, if f is a
scalar function defined on any one of the regions Rx’ Ry’ or Rz, via
composition, f can be expressed in terms of the other two functions.
Without loss of genera]ity, if f: Rxx[to,t]]+1R, then we can define

g: Ryx[to,t]]*ﬂR and h: sz[to,t]]+ﬂ% (using (IA.2) and {IA.3)), by:

gly.t)

~

g(d(x.t),t) = f(x,t)
(IA.25)

h(z,t) = h(y ' (x:t),t) = Flx,t)

In order to avoid introducing new variables (i.e., instead of writing

(1A.25)) we will simply write

Jt) = Jet), Jz., (1A.26)
referential spatial material
or or

Eulerian Lagrangian



-27-

with the understanding that the second and third f's in (IA.26) are ac-
tually g and h, respectively. Differentiating (IA.26) with respect to

t and holding z fixed, we get

flefow, = f +f .0, = f
_ i"i st 0,10 (IA.27)
referential spatial material
or or
Eulerian Lagrangian

Since Rx is fixed throughout in this formulation, it is convenient to
express the material time derivative (f) in referential form. Combining

(IA.27} and {IA.23), and by the chain rule, we have the important

relation

Fo= f'+f ;cs (14.28)

Strain measures

Let a = (1-a)z+ay, where 0 < a < 1. Also, let dsz,dsy be the

differential distances between points in RZ and Ry, respectively. We

can write
dsg = dz + dz (1A.29)
dss = dy - dy (IA.30)
Consider:
z=12(a)  and y = ya)
and define:
ds§ - dsg - 2dal - E-da (IA.31)
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~ ~ ~

Letting dz = dea and dy = Fyda, where E = 3z/0%a, Fy = az/ag, we have:

.
E = %‘{(%f) * (%§9T*‘(1- 2 (%%- (%%)} (1A.32)

-~

Ifa=0, E 1is called Green or Lagrangian strain tensor.

-~

T, E i< called Almansi or Eulerian strain tensor.

~

If o

If the motion of B is rigid, then this is equivalent to saying
E = 9 |5]. Also, for o=1/2 it was shown by Hallquist [14] and by Hughes
and Winget [13] that E has certain useful numerical calculation proper-

ties as will be discussed later.

1-B. Balance Laws (Mass and Momentum)

Mass density, conservation of mass (equation of continuity)

We assume there exists a scalar-valued function p(-,t) called mass

density defined on Ry and t <t<t, with the properties [5]:

(1) elyst) >0 ¥ yeR (tyxtst)

(ii) If thl R s a bounded subregion of R, and if Py = @(Px,t),
then

m(P ) = J ply,t) dP

Py

is the mass of material occupying Py at time t.

We call p0(§) the initial mass density, viz.

po(x) = p(dlx,1,),t,)
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(iii) If PSR, is a bounded subregion of R, and if Py = Q(pz,t), then

7 = [ ot 0y = [etyt) 9y, @,

¥ z
where Jyz = det(axlag).

The principle of conservation of mass states that mass cannot be

created nor destroyed if we follow the motion of the given mass [12],

i.e.,
d _d -
dnir) - & PJ ply,t) dp, = 0 (18.1)
y
Equivalently:
[prZ]= 0 (IB.2)

Carrying out the material time derivative,(IB.2) becomes

0 Jyz +p Jyz = 0 (IB.3)
As jyz = Jy, Gk,k [5], conservation of mass says:
p + (i) =0 (18.4)

If the material is incompressible so that the density of each material
particle remains constant as it moves, the continuity equation takes the
simpier form

Uk,k = 0 (IB'S)

This is the condition of incompressibility, which has been important in

classical hydrodynamics and in plasticity theories.
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Body forces and contact forces, surface tractions 5]

Body forces

We assume there exists a vector-valued function E(-,t) (body-
force density per unit current volume) defined on Ry such that the
resultant force and resultant moment about the origin, 0, of an g™
dimensional Euclidean space due to the body force acting on the mate-

rial in Ry are given by

[ bly,t) dP. J_yxb(y,-t) ap
p ~o y P ~oo .y
y Y

Here x is a "cross product" or "vector product.”

Contact forces

We assume there exists a vector-valued function T(e,+,t) (surface-
force density per unit current area, actual surface traction, or Cauchy-

traction) defined on Ry><U, where U is the set of all unit vectors,

such that the resultant force and resultant moment about O due to the

surface forces acting on the boundary of Py, denoted BPy, are given by:

J y x T(y.n{y,t),t}) dA

J T(y,n{y,t),t) dA y

P v P
Ty Py

where n(y,t) is the unit outer normal vector at y e.BPy.

The principles of linear and angular momentum (postulates) [12]

Newton's law states that the time rate of change of Tinear momentum

of a given mass is equal to the force exerted upon the mass, i.e.,

J b(y,t)dP, + J T(y.n,t)dA, = g% j plyst) ilyst)ep, (1B.6)

P P
Py 2 y y
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Also, conservation of moment of linear momentum states that the time
rate of change of angular momentum of a given mass with respect to a
given point is equal to the applied torque referred to the same point,

i.e.,

_d :
ng_g(g,t)dpy + ngI(x,g,t)dﬂy = 4t f{xp(g,t) u(y.t) dP, (1B.7)

P
Py BPy y

Before deriving the mixed Lagrangian-Eulerian equation of motion
we have to introduce a very important lemma.
Lemma IB-1

Let ¢: R X [to,t1] +fmn5d be sufficiently regular. Let Py and o

be defined as previously. Suppose g is vector-valued, and

gly.t) = gl¢(z,t),t) = glz,t)
then

[aNial
cF

y

f ply,t) gly,t) dPy =
Py T ~ P

[ oty.t) gy.t) @
Yy

Following [5], we can define a second order tensor t{y,t) called
Cauchy, or actual, stress-tensor field on Ry. TiiQx,t) are the Carte-
sian components of the two-tensor t(y,t). If g(z,t) is the unit outer

normal vector of aPy at y, then the surface traction vector T is related

to the Cauchy stress-tensor T by:
T, = 1., N, (1B.8)

Substituting (IB.8) into (IB.6), using lemma IB-1, and invoking the

divergence theorem, we get
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.. . +b. - pli, =0 c R
PJ (t55,5+by - oi;) ¢P, VP C R
Y
Continuity of integrand implies

Tj'i,j+b1' = pli; on Ry ¥ té[to,t]] (1B.9)

Using (IA.28) on the right-hand side term of (IB.9) yields the equations

of motion in the mixed Lagrangian-Eulerian description.

b =p[{0) +{0:) scs
Ti1,5+ Py = ollug) *Lug) e

on Ry Y t-e[to,t]] (1C.10}

Using (IB.7) and following [5], we have the symmetry of the Cauchy

5 i.e. is T Tase
stress tensor, 1.e., TJ1 T}J

1I. Formal Statement of the Initial/Boundary-Value Problem

II-A. Mixed Description

We will restrict ourselves to fluid flow problems if the mixed
description is being used.

The object of the initial/boundary-value problem is to find func-
tions u;: Rxx[to’t1] +R, u,: Ryx[to,t]] + R, and p: Ryx [to’tlj + R

(pressure) (where R is the closure of R), such that

pil; = 145 5 *+ by (I1A.1)
(uj) ;=0 on R x [t,t;] (I1A.2)
Ty = P8y +ullug) o+ (i) ] (11A.3)

Y g
u; = g on agyx [to’tl] (IIA.4)
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- h A
Tis"5 T hi on Bgyx [to’ti] (IIA.5)
Uy = U on Ryx [to] (I1IA.6)
ﬁ% = a given representation on R x [t ,t;] (I1A.7)

depending on §, as will
be discussed 1n the
next chapter

el

Uy = U, on R, (ITIA.8)

where p > 0 is the density, bi is the prescribed body force (per unit
volume Ry); M is the dynamic viscosity; 9 and hi are prescribed bound-
ary velocities and tractions, respectively; n, is the unit outward

normal vector to BRy; and u_. and Goi are the given initial data.

oi
In order to eliminate the pressure unknown and the continuity

equation, we employ a penalty-function formulation of the incompressi-

bility condition in which (IIA.2) is dropped and the pressure is deter-

mined from
p = —J\(ui)’_i (11A.9)

where A > 0 is the penalty parameter; see [15] for a discussion.

An alternative is to use a"slightly compressible formulation™” in

which it is assumed that

0= p (+Usp ¥l | =Py * Ol (11A.10)

Then by using the equation of state for an isothermal process,

F{p,e) = 0
it follows that
_op 8
Pt ™5 Pt 30 Pk, k
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We further assume 3p/dp = constant = B. Then
Pt = Bl k

and the constitutive equation (IIA.3) becomes
t
_ J foil_ dt) 85 +ulliy) g+ (i) ;1 (AT

0
where Po is the pressure at t=0.

T3 T -(Pq

With the continuity equation eliminated, the variational equation

corresponding to (IIA.1) through (IIA.8) is

J (puiuii-rijui’j)dRy = J biuidRy-k Jh hiuidAy (11A.12)
Ry Ry BRy
in which
— _ g
u; 0 on aRy (IIA.13)

By virtue of Rx being fixed throughout, we recall

U, = (ﬁ{) + {u;) .c,

III. Linearized Equations of Motion Using Lagrangian Description

III-A. Constitutive Equation

In many engineering applications it is found convenient to put
constitutive equations into rate form. A wide class of plastic, visco-
elastic, and viscoplastic models can be put into this form.

Nonlinear elasticity can be put into this form by time-
differentiating the more usual forms. We will restrict our attention

here to Tinear elasticity, fhe Saint-Venant-Kirchhoff nonlinear elastic
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model, and the Krieg-Key combined isotropic/kinematic hardening plas-

ticity model [21].

A class of rate-type constitutive equations for inviscid materials

For discussion purposes, consider rate-type constitutive egquations

of the following form:

5% Ty SigkalTkae] T Sikal(k,n) (I1IA.1)

where
T?j = Cijkﬂﬁ(k,l) (I1IA.2)
Ciike = CijalTF) (1I1A.3)
Sigke = (TiaSsk * Tiabik - Tidse T Tikin) / 2 (IIIA.4)
ﬁ(k,z) = (E:k,2 + aggk)/ 2 (IIIA.5)
(I1IA.6)

&[k,ﬁ] - (&k,z B ﬁz,k)/ 2

Here Ciij is the material constitutive tensor which is a function of
Cauchy stress T and deformation gradient f. &(k’g) is the symmetric
part of the velocity gradient, whereas G[k,z] is the skew-symmetric
part. Without loss of generality, we further assume the Cijkzls possess

the minor symmetries:

Ciske = Cyike © CGijux (ITIA.7)
The tensors Sijkz and C?jki possess the following symmetries:

Sijke = Sjike T “Sijek (I1TA.8)

Clike = Ciike = Cijak (I1IA.9)

The second term on the right-hand side of equation (IIIA.1} (i.e., the
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* 5 it - H 3 .F L3 ed
Sijkx”[k,z] term) is the *rotational part" of the rate and is fix
once and for all by the so-called "objectivity" or "material frame
indifference" as it is now often called [22,23]. As has been discussed
in the paper by Hughes and Winget [13], there are several ways to
account for this rotational term numerically; for details see [13] and
[16]. The third term on the right-hand side of equation (IIIA.1)

1 * Y o : n : . 1

(i.e., the Cijkzu(k,z) term) is required to be an "objective tensor,
but is otherwise arbitrary. We find it is convenient to employ the

. . * . .
Truesdell rate of Tij in which Cijkg has the following form:

* def

C-]jkg - T T1k6k2+(Tiﬂ,ajk+Tjgaik-’-Tiksjg’-"Tjkaig)/2 (IIIA.10)

For further discussion of the "objective tensor," C?jkg’ the reader is

urged to consult [17,24].
Combining (IIIA.1), (IIIA.2) and (IIIA.10), we can write the con-

stitutive equation as follows:

T35 = Cigket(k,e) * Sigkalk,e] (111A.11)

in which

- *
Cijke Cijki * C'ijkja (T1IA.12)

Examples of Cijkz for particular materials under consideration

1. Linear elasticity

A wide class of engineering problems can be studied by linear
elastic material behavior. However, if finite rotations are involved,
the analyst must generalize the small strain linear elastic model to

account for these effects. In this way (IIIA.11) will yield a symmetric
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stiffness matrix due to the choice of Truesdell rate. The choice

C 2 = 0 (Jaumann rate) results in a nonsymmetric stiffness. As has

*,
ijk
been mentioned in the paper by McMeeking and Rice [19], the C?jkﬁrs
will have a non-negligible effect on material response in the high-
stress, finite deformation regime. Use of this model in this regime is
clearly speculative.

If we consider the isotropic linear elastic model, the material

constitutive tensor takes the following form:

ke = 2558k + 185855 * 654854 (II1A.13)

where X,u are the Lamé parameters.

2. Saint Venant-Kirchhoff model

The second {symmetric) Piola-Kirchhoff stress tensor qu is re-

lated to the Lagrangian strain tensor Ers by the following relation:

P

+ +
b [Aap 8 u{s_ 8 s 6 J]E

qrs pr-gs = “ps gr rs

= qurs Ers (IIIA.14)

where A,u are the Lamé parameters. The Cijkgls are defined by [18,20]:

T Fr F.F F. D (I1TIA.15)

J ip jgq kr 2s°pgrs

Cijke =
where Fij are the Cartesian components of the deformation gradient ten-

sor and J is the determinant of F. Carrying out the algebra and de-

fining b = FF' (the Finger tensor), (IIIA.15) becomes:

_ -]
Cigkg = 97 {Abg sbyp ¥ ulbyyboy +by b)) (ITIA.16)

1jke
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3. Krieg-Key combined isotropic-kinematic hardening plasticity
model [21]

Using the assumption made in the paper by Krieg and Key [21], we

. , .
can write the Cijkz s as follows:

C = A6,

i3ka 1j6kz4-u(61k652+ 8.,.8..) - 2u:;nijnk2 (I1IA.17)

jk7ig

where A,y are Lame parameters. ¢ is set to one during plastic loading,

that is, when ¢ > 0; otherwise, r is set to zero. ¢ is the VYon Mises

yield function defined by:

¢ = % [(511'522)2“ (522'533)2” (533'511)23 + 5122”5123*533“ %
(I1IA.18)
in which
E_ = 1. -a (IIIA.19)

rs rs rs

and the tensor Qg is the location of the center of the Von Mises yield

surface, and k is its radius. The plastic hardening rules are:

* _ 2 -p
O’.r_s = '§ (] - B)B U(r’s) (IIIA.ZO)
and
21 P
k¥ = — BBd (ITIA.21)
V3
with the effective plastic stretching, dp, defined by
P _ 2 P .P 1/2
d [{3 TR (111A.22)
An associated flow rule is used to give:
" ! (111A.23)

Ylr,s) ~ Mg
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where g = Epg ~ 6rs£kk/ 3 is the deviatoric part of Eprs?

u g
_ (g,s) rs (II1A.24)
2k<(1+B/3p)
and
n g = El/ [2k2(1 +8/3u)71"/2 (111A.25)

8 is a kinematic variable. If B is equal to one, we have the case of
isotropic hardening; if B is equal to zero, kinematic hardening , and if B
is in between, it is combined isotropic-kinematic hardening. B is the plastic
modulus and it is related to the elastic modulus, E, and plastic

modulus, ET’ in the uniaxial true stress-strain curve by:

_ B |
£ = 4o (IT1A.26)

I1I-B. Linearized Variational Equation

Before we can derive the appropriate form of the variational
equation, we have to write the constitutive equation in incremental
form. Express T as At/At and u as Au/At, where At is the time incre-

ment. Equation (II1IA.11) becomes:

Following techniques in [17-20] for deriving linearized varia-

tional equations, the linearized version of equation (IIA.27) is given

as follows:
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Y

+ J (AT.j4‘T--(AUk),k - (Auj),kai)ui,j dRy
R
Y

= J bi“i dR.y + Jh hiui dAy external force >(IIIB.2)
Ry aRy
- J Tiju(i’j) dRy internal force
Ry
- J Pl U dRy inertial force )
Ry
in which
- _ g .
u; = 0 on Ry (I11B.3)

Substituting the incremental constitutive equation (IIIB.1) into

(111B.2) yields:

5 AL U U. . d.. dR = external force
JDAuiui dRyi— J u1,3 d13k£ Auk,g y = € (1115.4)
R R - internal force
Y - inertial force
where

ke, will possess the major symmetry if the Cijklrs

do, which leads to a symmetric (tangent)stiffness matrix in a Galerkin/

We observe that dij

finite element formulation as will be discussed in the next section.
This is due to the fact that the Truesdell rate definition of C:jki in

(IITA.10) is employed. (There are other rate definitions which give a
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symmetric tangent stiffness matrix.)
Equation (IIIB.1), together with (IIIB.4) and (I1IB.5), consti-
tute a very general formulation which is applicable to arbitrarily large

deformations. If large rotations can be precluded, we set

— * =
Sijkg = Cijkﬂ 0 (111B.6)
Consequently,
dijki = Cijkﬁ (IIIB.7)

IV. Galerkin/Finite Element Formulation and Matrix Equations

IV-A. Generalized Mixed Lagrangian-Eulerian Linearized Variational
Equation

Combining the results that have been developed in the previous

two sections, we can write the general form of the linearized mixed

Lagrangian-Eulerian variational equation as follows:

] \
J pu; A(ui) dRy + quicj(ﬂui)’j dRy + J puiﬁcj(ui),j dRy
R
. y U M .
linearized part of linearized part of convective force
time derivative term
+ J ui,jdijkﬁ Auk’g dRy + J us j dijkz Auy o dRy
A — J J —~— J
linearized part of linearized part of viscosity
internal force and penalty terms
= J b, u, dRy + Jh hiuy dAy external force F
R oR

Y y
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- i Tiju(i,j) dgy internal force

Nj (IVA.1)
; f ()T OR,

Ry inertial force

in which

U. =0 on BRE (IVA.2)

The first term corresponds to the linearized part of the time-
derivative term and the second two terms correspond to the linearized
part of the convective force. If we select the Lagrangian description,
the latter terms are equal to zero. The third term is the tangential
stiffness matrix, as described in Secfion I1I-B. The fourth term is
the linearized part of the viscosity and penalty terms. We will define

~

d. .

i5Ke later in this section.

IV-B. Matrix Egquations

Background information on Galerkin/finite element formulations
may be found in [18,25,26]. Review articles and current trends in
finite element research can be found in [27,28,29].

The Galerkin/finite element method consists of the discretiza-
tion of a region, say Rx’ into non-overlapping subregions called
"elements." We label each element by an element number "e", e.g., the

eth element is denoted by Ri, e=1,2,--+,Numel. The discretization of
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Rx also consists of Numnp "nodal points.” The position vector of the
ath node, a=1,2,*,Numnp is denoted by Xq The "shape function"
associated with node a is denoted by Na and it satisfies the relation
Na(fb) = 6ab' We employ the isoparametric concept [25] that the same
shape functions are used for both geometric interpolation and kinematic
variables. Specifically, we assume for a typical element ("e"}, with

Nen nodes, that:

e
en o
X; = 1 NX5o (IVB.1)
a=1
Men o
i = azl N, Yia (1vB.2)
en o
uy = az] Na Uiy (IVB.3)
u; = azl Na Uiy (IVB.4)
- nen Ie
u; = agl N, us, (IVB.5)
A} en ~ 2
us = a§1 N, ouis (IVB.6)
e e e ~e ‘e AR th
where Xia® Yia> Yia®> Yia> Yia: and uso are the at" nodal values of the
coordinates in Rx and Ry, particle displacements and "mesh" displace-

ments, particle velocities and "mesh" velocities, respectively. Also
for programming purposes, it is convenient to introduce matrix counter-
parts of the variational equations (IVA.1) and the corresponding con-

stitutive equations (IIIB.1}. These are summarized as follows.
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n
en NumeZ T
e I DN! Ny, dR Ay
b=1 -e=1 Y
Re
y
1.7 ~1,.1 e
SRR
R
Y
[ 1.7 -2,,2 .
+ ), (B))" E“(B) dR, Ady
Ry
[T e
y
e T
Y' A RY -e
+J ?.a ?%b dRy Alﬂb
e
R
Y
_ [T T
- ] gaf)dgy + f Nab dAy
RE RS
y y
f T T,-
- | BY 1drR - j "y dR
JRe ~d I Y Re pﬁa(g ) Y
y y
- dR
ie o N, ndRy
y
where
-
N0 0
1 _
§a - 0 Na 0 T o~a
L0 N,
pt"1,1 PUy 2 pl.‘1,3
El = | PUp g PU »  PUH 3
Puz 7 PU3z p P33
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(IVB.7)

(IVB.8)

(IVB.9)
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0 0 a
0 0
0 0
Na,] 0
Na,2 0
Na,3 0
0 Na,]
0 Na,2
0 Na,3 J
C3 0 0
0 c] €y
0 0 0
063
+ T
033
0 0 |
Na,] 0
Na,2 0
0 Na,3
Na,3 Na,Z
0 Na,] |

(1VB.10)

(IVB.11)

(1vB.12)

(1vB.13)

(1vB.14)



Na,2 ~Na,] 0
8 _
?a = 0 Na,3 -Na’2 (IVB.15)
LfNa,S 0 Na,l
D = [ﬁIJ]= [6i'k2] (the components will be (IVB.16)
- J defined in the next
section)
Cuy g ¥ Cply o * 3l 3
n=| ¢y * oy 5 *+ cquy 4 (IVB.17})
| ©1Y3,1 F M3, F G333 |

where 0mn denotes the mxn zero matrix, C is a 6 x 6 matrix of material
tangent moduli whose components are given by CIJ = Cijkg in which the

relationships between the indices are given by:

1 J 3 K 3 2

1
2
2
3 (I1VB.18)
3
1

LR TR & 5 B - T R o B
W N W N = =

The ordering convention in (IVB.18) may seem strange at first, but
it is quite convenient for reducing to two-dimensional and axisymmetric
theories (see Part II of [16]).

The initial-stress matrix, T, is defined as follows:



where

T 1
7? 0 0 0
]
0ty 2, %
4 2 ]
' T
. 5
T3 ! 0 T
. 5
4 2
T3ty
4
SYMMETRIC
TI = T'IJ

T T =
2 6
7 0 "7
Thoo T8 18
3 7
T T
2 5
"7 7 0
T T
5 6
© -7 7
_ 6 473 T2
4 4
oo T
x g g
T}+T3 i Eﬁ. ) Eﬁ
7 Z 4
T3+T4 i Ig
T )
T3t
4 —r
(IVB.19)
{1vB.20)

The D matrix is arranged to be compatible with the following ordering of

strain and rotation components:

in which

and

Y1752Y125Y 02V 3322Y932 27372055

+ .
A5 4

(duj 5

. s o= Au.
1,1 Js1

)/2

)/ 2

2wy 32203

(IVB.21)

(1vVB.22)
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Incremental constitutive equation

The following definitions are used to derive the tangential initial
stress matrix, but an improved representation can be used to integrate

the constitutive equation (see Chapter 3, Sect. III}.

AT = Cy* Sw Incremental Constitutive Equation (IVB.23)
At = ot} (IVB.24)
T =Cc+¢C* (IVB.25)
E = [CIJ] (IVB.26)
C19 = Cijke (1vB.27)
[~ T-i T2 "'T-[ :i _T] 0 T6 B
T 4T T T
o 2 0l 77
: Truesdell—
Rate Stress
- I -
Ty T, T3, 3 o 0 Matrix
cx = e e e
2 } (IVB.28)
=T, 1] Ty { T T Tg
T [ Tat+T T
6 374
-'T5 '—2— 0] E 0 2 "2—
T | T Ta+T
5 2 475
e R A S 2
~ .
Auy 4
ﬁuhzﬁ-.&uz’1
Au nen
y = 2,2 = 7 BYaul (1vB.29)
- Au a=1] ~3 -2
3.3
Au + Au Incremental
2,3 3,2 Strain Yector
Au3’11-Au]’3




™ T, 0 ~Tg I
T3~y 29 ) Ei
2 2 2
T, Tg 0
S = | mmmmmmmmmmememmees (IVB.30)
0 ~Tg T6
w2
Z 2
R
2 2 Z
— I
Auy o = BUp 4 Ny,
- - e e
w= | Auy 5 - Bug 5 = agl B, &uj (1VB.31)
Au3,1 B Au1,3 ] Incremental Rotation Vector
S
Aua]
o o Element Nodal Displacement
Auy = My Increment Vector (1VB.32)
e
L Aua3 |

IV-C. Definition of &%jkg for Incompressible Fluid and Slightly

Compressible Fluid

We restrict ourselves to incompressible or slightly compressible

fluids. In this way S, C*, and T can be set to zero, so that:

diske™ Cigke = Yiske (ve.1)
Recall from equation (IIA.3) that
.. = -pS.. + PR )
Tij pSTJ 2u Uei,5) (1IvC.2)

For the penalty function formulation [15], we let
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p = -A(u; ;) (1vC.3)

where A > 0 is the penalty parameter. Substituting (IVC.3) into

(IVC.2) yields

T_ij = Aaijuk,k + 21.[ U(_[’J) (IVC.4)
and therefore
DIJ = [dijkg] {IVC.5)
and
[ at2p 0 A A 0 0
0 i 0 0 0 0
- Py 0 A 2y D 0
0 0 0 0 U 0
L 0 0 0 0 0 U

(Note that the D is formally the same as the matrix for classical linear
isotropic elasticity.)
If we consider the slightly compressible formulation, recall

equation (IIA.11),

t
715 = =Py - J Bo Uy | dt) &4
0

+ 2u 13(1-,;;) (1vC.7)

A time-discrete form of the pressure part of the constitutive
equation is

-Ap = Atp B ﬁk,k (1vC.8)

from which it follows that



[ = )

At pR + 2u

Atpg

AtpB

Lo S o N o E v o
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AtpB AtpB
0 0
AtoR+ 21 AtpB
AtpB AtpBR + 2y
0 0
0 0

o O O O

—

(IVC.9)
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Chapter 3
NUMERICAL SOLUTION TECHNIQUES

I. Numerical Integration of the Variational Equations

The exact integration of the expressions appearing in the varia-
tional equation (IVB.7 of Chapter 2} is, for all practical purposes,
impossible, especially for complex, distorted elements. So instead, we
employ numerical integration formulas to carry it out. For purposes of
finite element analysis it is only necessary to use "sufficiently accu-
rate” rules. With numerical integration we replace the integrals by a
weighted sum of values of the integrand. However, the cost of numerical
integration (i.e., computer time) can be quite significant. It is
therefore of interest to determine the mwinimum integration requirement
permitting "convergence", and yet to preserve the “"rate of convergence"
which would result if "exact integration" were used.

There are many numerical integration rules which may be used. In

finite element work, the Gauss numerical integration or Gauss-lLegendre

quadrature, as it is now frequently called [1,2,3], is well suited for

Cartesian produce subdomains {e.g., quadrilaterals and bricks).

I-A. Selective Integration

Historically, kinematical constraints have proven difficult to
deal with by the standard "displacement" finite element method.
Examples of these kinematical constraints are:

1) "Nearly-incompressible" solids, in which the volumetric deformation
is much much less than the deviatoric deformations.

2} "Incompressible" fluids, in which the divergence of the velocity
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field is zero.

3) Beams, plates, and shells based upon theories which account for
transverse shear deformations in which the transverse shear defor-
mations approach zero in the thin beam (plate, shell, respectively)
Timit.

Simple, low-order elements have behaved particularly poorly. "Mixed"

and "hybrid" [2,4-7,11] elements have been proposed as alternatives.

The whole subject was poorly understood throughout the 1960's. 1In the

early 1970's reduced integration procedures began to be used. However,

they were also poorly understood and not generally adopted. In 1974,

Fried [8], Nagtegaal et al. [9], and Malkus [10] performed important

investigations focusing on the rank condition, constraint counts, and

equivalence theorems, respectively. These workers created renewed in-
terest in reduced/selective integration techniques and allied topics
and, as a result, successful methods for kinematically constrained media
could be developed within the displacement method.

Within recent years, a greater understanding of this subject has
been achieved. Two techniques have proved very popular. They are the

reduced/selective integration procedure as advocated by Malkus and

Hughes [7], and the mean-dilatation formulation proposed by Nagtegaal

et al. [9]. Both techniques have proven successful, but both have their
limitations.

The reduced/selective integration technique is a fairly general
concept and has been applied to a wide variety of finite elements. For
details see [2,7,12-17]. 1In [12], Hughes and coworkers applied this

technique to finite element analysis of plates, employing the basic
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isoparametric elements [2]: the four-node bilinear quadrilateral and the
nine-node biquadratic quadrilateral. In [13], Hughes and Cohen proposed
the "heterosis" finite element for plate bending in which they used nine-
node biquadratic shape functions for rotation fields and eight-node
"serendipity” shape functions for displacement field, together with the
reduced/selective integration technique. In [14] Hughes and Liu suc-
cessfully extended the technique to nonlinear finite element analysis of
shells as will be discussed in more detail in the next chapter. In
[15,16] Hughes and coworkers applied the technique, together with the
penalty function formulation, to finite element analysis of incompressible
viscous flows and Lagrangian-Eulerian descriptions for
incompressible fluids. They will be discussed in detail in Chapter 5.
In [17] Hughes and Prevost employed the same ideas in nonlinear quasi-
static finite element analysis of soil via the computer program . DIRT II.
The mean-dilatation formulation is a more special technique

which has been used mostly in the context of basic isoparametric ele-

ments. The two approaches are identical for the four-node quadrilateral
in two-dimensional plane strain and the eight-node brick in three-dimen-
sional analysis. However, the mean-dilatation formulation appears to
behave somewhat better in axisymmetric analysis than does the correspond-

ing reduced/selective integration procedure [9].

The rationale behind these two techniques has been discussed at
Tength in [2,7-10,12-17], so we only provide a brief summary here.

The reduced/selective integration procedure for the continuum
elements case goes as follows: The "stiff" term (dilatation term)

may be segregated from the remainder (deviatoric term). A reduced

qguadrature rule is then used on the stiff term to lessen the constraint
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("Tocking") and a normal, quadrature is used on the remainder such that
correct rank is maintained. If the segregated terms are tensor invari-
ants, that is, the resulting matrices transform properly with respect to
rotation of the global reference frame [12], then the resulting arrays
are similarly invariant. An example of selective Gauss-Legendre inte-
gration rules for two-dimensional isoparametric Lagrange elements is
presented in Figure IA-1. Extension to three-dimensional isoparametric
Lagrange elements is straightforward. One drawback of the reduced/
selective integration procedure is that triangular elements and "seren-
dipity" quadrilaterals generally exhibit inferior behavior [18].

In the context of the general material laws, such as eguation
(IVB.23) of Chapter 2, explicit segregation of the contributions to the
matrix equations into dilatation, deviatoric, and coupling terms proves
very inconvenient. In principle, a decomposition of this kind is pos-
sible, however, it is not at all clear how to treat the coupling terms.
Also the element implementation is awkward. Clearly an alternative
general scheme is ca]ledifor.

Hughes proposed a generalization of selective integration pro-
cedures to anisotropic and nonlinear media [19]. Instead of separating

the d. (in eq. (I1IB.5) of Chapter 2) into dilatation, deviatoric,

ijke
and coupling terms, the matrix Bg appearing in equation (IVB.7) of

Chapter 2 is modified. A summary of the procedure is as follows; for

details the reader is urged to consult [19]. The original Bg is
dil

a and Egev which are defined as:

divided into B

y _ pdil dev
ga ?a + Ea (IA.1)
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where
r —
By B, By
0 0 0
B B B
. 1 2 3
dil _ v | T
Ea -1 (IA.2)
B1 82 B3
0 0 0
L 0 0 0 J

B1 0 0 31 B2 B3
B2 B1 0 0 0 0
dev 0 BZ 0 : B] 82 B3
By = | - -3 | TTmmmmmmmmmmmoooes (IA.3)
0 0 B3 B-l B2 B3
0 B3 BZ 0 0 0
LB, 0 By _ L0 0 0 J

We construct a new B; called EZ (which replaces Bg) by:

BY - pdev | wdil :

Ba =% * B (1A.4)
in which 5211 is the "improved" dilatational contribution and is defined
by ™ B1 B2 B3"1

0 0 0
B B. B.
i1 _ 1 1% 3
Ea =3 mommees Tmots . (IA.5}
B1 82 83
0 0 0
- 0 0 0 ~




The resulting EZ is

By By Bg ]
B, B 0
. B, B, Bg
Ea S hmmmm————-—————-—— (IA.6)
B, Bg Bg
0 By B,
L By 0 B, J
where
_ =\
84 = (B] - B1)/ 3
By = By + By
B, = (B, - B,)}/3
6 2 2 > (IA.7)
B, = B, + Bg
By = (B3 - B3)/ 3
By = By + Bg )

With EZ defined, the stiffness matrix and internal force vector are

integrated within one *poLooP" [20], using a single integration rule.

§i1} can be constructed to be equivalent to: (1) selective in-

tegration of all orders; (2) mean-dilatation and higher-order general-
izations. Similar procedures have been employed by Hughes and Liu
[14] in nonlinear finite element analysis of plates and shells (see
also Chapter 4).

As an example, let us pick §g11

such that it is equivalent to
selective integration. A quadrature rulg is specified to integrate the
element stiffness matrix and internal force vector. This rule is con-
sidered the 'hormal" one. Introduce a “reduced” rule; let ﬁfnt and

Eh be the numbers of integration points and the corresponding Tocations
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for the "reduced" rule. A specified set of shape functiong'ﬁis, is de-
fined with the nodal points equal to Eﬁ's(i.e., ﬁk(E&) = §,,). The

general form of E% is
N1'nt__
B,(g) = Ezﬂ N, () By (IA.8)

The equivalent of selective integration is achieved if B, = Bi(Ei).

The specialization of equation (IA.8} to mean-dilatation formula-
tion and other generalizations has been discussed by Hughes [19], and
will not be discussed here. A flow chart of the computer programming
aspects is presented in Table IA-1.

Table IA-1. Flow Chart of Generalizations of Selective Integration

Procedures

1. Loop over each element.

2. Pick up position vector arrays.

3. Define the shape functions F@(E&) and derivatives Bin(gk) for
1 <k 5ﬁint’ and store.

4. Loop on the "normal” integration points (gg).

5. Compute the "normal" shape functions, Ni(ég)’ and corresponding
derivatives Ei(gm).

6. Define Eg(gl) using equation {IA.8}.

7. Define EZ(EE) using equations (IA.6) and (IA.7).

8. Form stiffness matrix and internal forces.

9. If L <N, 60704

63 T0 1

t

If 22 N,
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I-B. "Upwind" Finite Elements by Modifying the Standard Gauss-Legendre

Rules

As can be seen from equation (IVB.7) of Chapter 2, the second
and third terms constitute a nonsymmetric operator. The Galerkin finite
element method has been successful in structural and solid mechanics
in which the operator is a symmetric one. Until recently, nonself-
adjoint cases (nonsymmetric operators) have not been well understood.

If we use Gauss quadrature on the convective terms appearing in the
above-mentioned equation, spurious spatial oscillations are exhibited
for some high Reynolds number flows. These noisy results can only be
corrected by mesh refinements. However, in most problems of engineer-
ing interest, convection is dominant and the geometry is so complex
that severe mesh refinement is not economically feasible. To circum-
vent these problems, "upwind" finite elements [15,16,25-29] or Petrov-
Galerkin methods [22-25] are used as alternatives to generate stable
finite element approximations to highly convective flows.

As observed in thé finite difference literature, "upwind" dif-
ference schemes [21] may be employed to preclude such oscillations, but
due to excessive numerical diffusion, the accuracy of the solution may
degrade considerably. Among the proposed upwind-type finite element
procedures , some schemes are subject to the same criticisms. However,

some have been shown to be superior (see e.g., [28,39,401).

In fact, for some convection-dominated flows, the basic Galerkin/
finite element method is adequate, and a great deal of success and
progress has been reported in the finite element literature (see e.g.,
[30-36]). Nevertheless, based on the "Comments" and "Reply to the

Comments” made by Gartling [37] and Zienkiewicz [38], respectively, and
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also from the numerical example shown in [15], basic Galerkin/finite ele-
ment methods exhibit spurious behavior wherever there is a downstream
essential, or "hard" boundary condition, in convection dominated situa-
tions.

The first method used is based upon numerical integration rules
which are simple, efficient, very easy to implement, and yet effective.
Instead of using the standard Gauss-Legendre rules, a modified "upwind"
integration rule was employed. The positions of the integration points
are determined from the "element Reynolds number." Since it has been
adequately documented elsewhere [see 16, and Sec. 4.3 of 15], this modi-
fied "upwind" integration rule will not be discussed here, However, we

will show some numerical examples to demonstrate the effectiveness of

the proposed theories in Chapter 5.

The performance of the ”upwind“ scheme used was found to be sat-
isfactory for a wide class of slow problems, as will be discussed later.
However, for some time-dependent convection-dominated flow problems it
was found that the "spurious crosswind diffusion" produced by the upwind
scheme degrades the accuracy of the solution [see 28,39]. A multidimen-
sional upwind scheme with no "crosswind diffusion" was designed and
shown to be superior to the guadrature scheme [28,39].

Computational fluid dynamics is still a relatively young science
so it is still too early to evaluate the relative merits of thevarious
proposed schemes. Although these schemes differ considerably in concept
and implementation, they are "designed" to achieve similar ends. There-
fore, it is beyond the scope of this thesis to design the "ultimate"
scheme for computational fluid dynamics. The interested reader may

profitably consult [25-39] and references cited therein for further in-

formation on this topic.
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While the objective of this thesis is development of finite
element procedures for fluid-structure interaction, it is worthwhile to
implement new ideas and examine relative merits. Therefore, the upwind
scheme with no "crosswind diffusion" proposed in [39] will be used for
the examples shown in Chapter 6. However, for fluid-structure interac-
tion problems in which the mixed Lagrangian-Eulerian formulation is
" employed, the scheme in [39], which is restricted to the Eulerian case,
has to be modified. Following [39], we modify the equation of motion
in the mixed Lagrangian-Eulerian description {equation IB.10) of

Chapter 2) to:

o(u]) + pey(lg) 5 = (Ty5 * Dy5) 5 (18.1)

where Dij is an artificial viscous force and is determined by:

Dij = Uy Mk (1B.2)
in which
iy = ueey (18.3)
6 =/ llicll (18.4)
and 1 is defined as follows:
(NED_ ) (1B.5)
3= E. cps hos} /N IB.5
i85 0 g1 &l SD

where

£ coth o 'I/ot51

or approximately



= _ Oﬂg.i/B '3£{I£i£3
5 (1B.6)
Sgn o !agi{ > 3
in which
Qpj = PG hgi/Zu (1B.7)
and B
Cey = € ° c (IB.8)

The meaning of hgi and egi is illustrated in Fig. IB-1 for the four-node
bilinear quadrilateral. The corresponding variational equation for

(IB.1) can be written as follows:

J oy (0) + 73585 51 R

1 Y
R
Y
+ i p(u1+u1)cJ us j dRy
A
= J biui dRy + fh hiui dAy (1B.9)
Ry aRy
in which
- . g
u 0 on aRy (18.10)
and
U, = —— U (1B.11)

T ollcll ik

In [28], it is suggested to use "consistent weighting." For the
intended applications it was thought to be sufficient at this stage of
development to neglect consistent weighting. Nevertheless, it is anti-
cipated that a consistent weighted formulation (Petrov-Galerkin scheme)

would lead to improved results in transient analysis. (This is being
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— X

Fig.IB-1
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undertaken in the thesis of Brooks [40].)

I-C. Mass Matrix

If we use the standard Gauss quadrature on the first term of
equation {IVb.7) of Chapter 2, the resulting matrix is called the con-
sistent mass matrix. It is symmetric and positive-definite.

However, for several computational reasons, "lumped" mass matrices are
desired. For two- and three-dimensional, rectilinear cases we employ
product Lobatto integration rules [2] on Lagrange elements which gives
rise to a diagonalized mass matrix. The first two Lobatto rules are the
trapezoidal and Simpson's rules, whose products are appropriate for the
4- and 9-node elements, respectively, in the 2-dimensional case, and
whose triple products are appropriate for the 8- and 27-node elements,
respectively, for the 3-dimensional case.

In the axisymmetric case, zero masses along the z-axis, due
to the factor r (radius) appearing in the volume element, would result
if Lobatto integration rules were employed. This can cause difficulties
in transient analysis. Thus a "row sum" technique is employed to cir-
cumvent the problem. The consistent mass matrix term is

me, = J oNy N, R (1C.1)
ke
Yy

The row sum matrix is defined to be

N
e _ ven _e -
moa = gz] m_p nosumon a, . as1, ... ,N, (IC.2)

and thus we arrive at the row sum mass definition:
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e _
My = Gab Je pya dRy no sum on a, - ],---,Nen (IC.3)
R
N
Nen
using the fact that N, = 1. We employ Gauss quadrature to evalu-
a=1

ate the integral in (IC.3).

For direct integration procedures, the type of mass matrix that
should be used depends on the method of temporal integration as will be
discussed later in this chapter. It is interesting to point out that
consistent mass matrices tend to overestimate the frequencies, whereas
Tumped masses underestimate the fréquencies. However, mass lumping is

sti1l a controversial issue in fluid mechanics, due primarily to the

results of Gresho et al. [41].

II. Implementation of Lagrangian-Eulerian Finite Elements

Since all the volume and surface integrals in the variational equa-
tions and thus the matrix equations are in terms of Ry and aRy,
respectively, it is important to specify what Ry is in our finite ele-
ment discretization. We wish to think of the region RX as our finite
element mesh in the referential domain. Ry is the image of Rx at time
t é;[to,t]]. Hence, @ is the “motion” of the mesh. In general § is

~

arbitrary. The selection of ¢ is generally made depending on the use-
fulness for the intended application. For our purpose, fluid-structure
interaction, it is useful to specify u', or equivalently to specify g

and thus $. So u is the mesh displacement, u' is the mesh velocity,

~

and u" is the mesh acceleration.

If we select u' = 0, we have the Eulerian description, ' If we

select 4' = u, we have the Lagrangian description. If we select a'
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between 9 and é, we have a mixed description which is employed in Chapter
6 for fluid-structure interaction problems.

We will employ the idea of split descriptions and relate g' to g
and g, following classical ideas [42]. In this way the unknowns g, g',
and 9“ can be solved by temporal numerical integration [2,3,46], and

$ is then uniquely specified. For further generalizations see [43-45].

~

I1I-A. Generalized Description Using Isoparametric Finite Elements

In this section it is assumed that unless otherwise indicated,
there is no sum on repeated i indices. Let us introduce a "Lagrange-

Euler parameter array” defined by:

o = [a;;] = [oy;845] (11A.1)

where o, € [0,1], for i=1,--+,No,. We relate u' to 0 and u by:

N ~ A
sd 'sd a(u, +x.)
I - J J
Ui jZI kz] 1303 " %9i% ax, ) (11A.2)
#j £ or n fixed
where
Cp = U -y = (ij - akj)uj (IIA.3)

We assume that the aii's are constants in the present developments.

As an example, consider a two-dimensional mesh, and let 1 ® 0,

Uy = 1, {IIA.2) becomes
ui =0

and (11A.4)

3(u2+-x2).
X

>
N -

1
.
[ )

[}
v
—_

1 ‘g or n fixed
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If a.. = 0 we have u' = Q, the Eulerian description. If a.. =4.. W
ij ~ < iJ ij

have g‘ = é, the Lagrangian description. We may have split or mixed

e

Lagrangian-Eulerian descriptions as in IIA.4. If O g takes on values
strictly between 0 and 1, we have a very general description which is
suitable for bubble dynamics and other related applications. See
[43-45,47,48] for further details. However, for our applications we
restrict ourselves to the first three cases.

For finite element implementation, we assign a value of ¢ to each
nodal point. Further, we employ isoparametric interpolation and let

Nen

— e 1 = . b ®
Gy = E Na“ia i=1, ’Nsd (IIA.5)
a=1
However, in attempting to evaluate the derivatives in (IIA.2), by
virtue of the fact that we are using c®-continuity shape functions, dis-
continuities will result across element interfaces. Consequently, a

sweakened" interpretation of (IIA.2) is necessitated. To this end we

may introduce Galerkin approximations of (11A.2).

Let
V= vyl (11A.6)
v = {v,,} (IIA.7)
A= Logpl (11A.8)

where v, v, and A are the generalized global vectors of nodal mesh

velocities (G'), material velocities (i), and Lagrange-Euler parameters
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{a diagonal matrix), respectively. The subscript A takes the values

1,2,+-+,Numnp. The subscript i takes the values 1,---,N_,. With these
definitions, the Galerkin eguations may be written as:
¢ Av-LTS) (11A.9)
where
Nume £
L= ) J NN R, (1IA.10)
~ e=1 pe ™ 7
X
NumeZ2 n R .
$= ) J ral f Nge (05, + %) )R, (11A.11)
T e=sl pe a=l a~ ~
X

Here Ri is the referential region of the eth element. We employ Lobatto
rules to evaluate the integrals in (IIA.10) and (IIA.11). The resulting
matrix L is symmetric, positive definite, and diagonal. One drawback of
using Lobatto rules is that only Lagrange elements can be used, since
"zeroes" or "negative" weighting will result if other element types are
employed. In the axisymmetric case, we employ area average instead of
volume average to avoid zeroes along the z-axis. If Gauss quadra-
ture rules are employed to evaluate (IIA.10) and (IIA.11), L is non-
diagonal though banded; also, a"diffusion' of the description (Lagrangian-

Fulerian) may take place [16].

III. Numerical Integration of Rate Constitutive Equations

The incremental constitutive equations in Chapter 2 (IVB.23) is a
linearized expression. In a numerical formulation, the stresses will
be calculated at all Gauss quadrature points which correspond to a set

of material particles. As we have noticed before, the first term on
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the right-hand side of the mentioned equation represents the material
response due to deformations, whereas the second term accounts for rota-
tional effects, which are uniquely specified by "objectivity." However,
standard time-discretization procedures [49,51,57,58,60] when applied to
this incremental constitutive equation typically only achieve objectiv-
ity in the limit of vanishingly small time steps, which is not economicai
in practical computing.

If one employs the polar decomposition to separate deformation and
rotation effects [59]1, much larger time steps can be accommodated.
However, it is too time consuming to extract the eigenvalues and eigen-
vectors [52] at each Gauss point.

Hallquist [50] has shown, in the context of two-dimensional analy-
sis, how to maintain objectivity for larger time steps. However, there
are some awkward aspects of the implementation, and the generalization to
three dimensions is not apparent. Hughes [54] proposed an improved algo-
rithm for integrating rate constitutive equations in large-deformation
analysis. The aTgorithm is fairly simple and is shown to be objective
with respect to large rotation increments.

Therefore we employed the mentioned technique in [54] to account
for the rotational term (i.e., §§9 and the various standard numerical

integration algorithms [53,55,56] to account for the material response

part (i.e., Cy).

III-A. Numerical Algorithm for Rotational Term

We represent the position vector of a particle at time tne‘[to’t1]

by yn.

~

Let At be the time increment. The position vector at
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tn+-At is denoted by yn+] which may be written as a function of !n and

the time step; hence,

y = Yyt (I11A.1)

The particle displacement increment over the step is

5= u" o n (ITIA.2)

~o

Here un+1 and u" are the approximated values of u at time tn4-At and
time tos respectively. Consider the following one-parameter family of

configurations

Y™ = (1-a)y" + oy (I11A.3)

in which o€ [0,1]. Let 9 denote the gradient of § with respect to

yn+a_ In component form

_ n+é
G5 = 38;/3y] (I1IA.4)

The incremental strain vector .y, and the incremental rotation vector,

w, may be defined in terms of G as follows:

(G+6) /2 (111A.5)

Y

fl

‘B

i (6-6') /2 (III1A.6)
The numerical algorithm for integrating the constitutive equation is as

follows:

(IIIA.7)

1
+
(g
—

H
?
?

zr—-1:|’
x

Lo
=
_!

T Q (I11A.8)



Q=1+ caw) e (IIIA.9)
4t = Cy (ITIA.10)

The expression for @ is obtained by applying the generalized midpoint
rule (see e.g., [61]) to the generating equation dg/dt =40 If
a = 1/2 it is a second order accurate algorithm.

For further details of the properties of the algorithm, consult

[54].

III-B. Numerical Algorithms for Integration of Eq. {(IIIA.10)

As already emphasized, the incremental equations derived in
Chapter 2 admit a wide variety of material constitutive models.
However, the application of these equations to physically nonlinear
probiems requires detailed knowledge of the material characterization,
that is, 9 and El The constitutive algorithms one should use then
depend solely on the definition of-g. Therefore we will consider
numerical algorithms for linear elasticity, the Saint-Vemant-Kirchhoff
nonlinear elastic model, the Krieg-Key combined isgtropic-kinematic
hardening plasticity model, incompressible viscous fluids via the
penalty function formulation, and the slightly compressible fluid.

These are sufficiently general for the developments herein.

1. Linear Elasticity

The E matrix in this case is constant and is given by:
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(a2 0 A a0 07
o u 0 0 0 O
c=f *» & a0 0 (111B.1)
~ A 0 A aM2p 0 0
0 0 0 0 U 0
. 0 0 0 0 0 B

If the Truesdell rate is neglected, At can be computed easily by taking

advantage of sparseness. Otherwise, a general matrix multiplication

"routine" is employed.

2. Saint-Venant-Kirchhoff Nonlinear Elastic Model

The C matrix is defined by the following algorithm:
a) Compute the deformation gradient matrix F (Fij = a(uii-xi)/ axj).
b) Compute determinant of F; J = det(F).

c) Calculate the Finger tensor B = EET

d) Define an array B(1-6) with: B{(1) = B(1,1), B(2) = B(2,2), B(3)=B(3,3),
B(4) = B(1,2), B(5) = B(2,3), and B(6) = B(3,1).
e) Define an array A(1-21) using the following algorithms:
K =1 |
el. LOOP ON I = 1,6
BB = B(I)
eZ. LOOP ON J = I,6
A(K} = BB*B(J)
K = K+1
IF{J.LT.6} GO TO e2.
IF{1.LT.6) GO TQ el.
f) Define constants C1 to C5
Cl = x/d

u/d

C2



C3 =C2+C2
C4 = C1+C2
€5 = C1+C3

~72-

g) With the shorthand notation AI=A(I), the C matrix is then defined

as follows:
[ C5%AT | CHxA4 C1#A2 C1#A3 CT#A5 C5+A6 )
+C3+A16 | +C3+A21 | +C3*AT8
Ca+A16 | C5%A9 C1+A13 | Ca%A17 | CcaxAl8
+C24A2 +03%A20 | +C2%A11 | +C2*A5
C5 A7 C1%A8 C5%A10 | CT*A11
+C3%ATY +C3%AT7
C:
~ C5%A12 | C5%Al14 | C5+AT5
Ca«A19 | CA*A20
SYMMETRIC $02%A8 | +C2*A13
CAxA2]
+C2*A3
L J
(ITIB.2)

AT can then be computed using a general matrix multiplication routine.

3. Krieg-Key Combined-Isotropic-Kinematic Hardening Plasticity Model

The

For this model the radial return method [60] is employed.

numerical algorithm is as follows:
a) Compute the elastic "trial" stress increment as described in the

linear elasticity section. Update the elastic trial stress and call

it <%, using (IIIA.7).
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b) Obtain the deviatoric part of (It— o)
Et

rs rs rs

c) Compute the second invariant, Jos
2 2 2

= deviatoric part of (Tt o) (ITIB.3)

3y=t L(eh - g5 )%+ (8, - eb)%+ (e, - eb )P0 w b, 4 b4 el (111BL0)

d) If (3J2— (kn)Z) is less than or equal to zero, In+1 = It; go to h.
e) Compute plastic strain increment AdP,
ad® = (2-K")/(3u+B) (111B.
where Z = V33,
f) Compute the following quantities:
AS = 3u AdP/Z (I11B.
ra = (1-8)B adP/z (111B.
g) Radial return for stresses, In+1; position of yield centers, gn+1;
and yield stress kn+1:,
M=t as gt (1118
L (1118
K™= k" +gBadP (I11B.

h) If the tangent stiffness matrix is not required, exit.
i) Compute the E matrix for tangent stiffness calculation as follows:

t

2

t t ou
g <« */ > (11IB.
S AT

(3u+B)

6)

7)

.8)

.9)

10)

11)

< means "is replaced by."
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[ A+2p -
2 %152 A T A L S N S
]
u
L2 "Bt | &R | "B | ~ %%
2
At2u
2 | M 838 | T E3f5 | &35
- 53
C =
- A+2u
2 “Egbs | - G4
- g4
SYMMETRIC
2
M- ‘55 - £5€6
2
H= 66
(111B.12)

In (IIIB.12) the shorthand notation E; = Eij is employed (as described

by (IVBJ18 ) in Chapter 2.

4. Incompressible Viscous Fluid via Penalty Function Formulation

By virtue of the fact that the incompressible viscous fluid wused

is isotropic, equations (IIIA.7) through (IIIA.10} are replaced by:

B (111A.13)

(IIIA.14)

i

AT

~

Cy
where C is defined by (IIIB.1) and .y is defined by (IIIA.1) through

(I1IA.5) in which (IIIA.2) is replaced by:
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5= oo
The Lamé constant X appearing in (IIIB.1) is interpreted as the ‘“penalty
parameter” » which has been described in detail in [15]. Of course,
due to the sparseness of C in (IIIB.1), At can easily be computed with-

out employing a matrix muitipiication routine.

5. Slightly Compressible Viscous Fluid

We assume the fluid is slightly compressible. Equations (IITA.13)
and (IITA.14) are employed. However, we divide the AT computation into
two parts, the viscous part and the pressure part. The viscous part
can be computed using the procedures described above for the incom-
pressible viscous fluid with A set equal to zero. The pressure part
is computed as follows. We assume the pressure at step n,pn,is known
and stored at each Gauss point. The divergence of the material velocity

field, 8,is computed at the n+a geometry, that is:

g

- N+ .
6 = a(ui. )/ aly; ) sumon i=T,00,Ngp (IIIA.15)

in which

WM (ea)a” ™, et (111A.16)

Then the new pressure pn+] is:

g™ = " - at ogs (11IA.17)

Since we approximate ﬁ(tn) by 4", the divergencepart of the linearized
expression A div Q (appearing in the 5th term of eq. (IVB.7) in
Chapter 2) is approximated by A div "% = & div Aé which is consis-

tent with the pressure computation in which we evaluate & at the n+a
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geometry. For implementational purposes, we include o in the tangent

matyrix @ (eq. (IVC.9) in Chapter 2} and

[ _ — — =
PR all 0 A A 0 0
0 u 0 0 0 0
R X 0 PV Y 0 0
D ={ _ _ _ (I1IA.18)
- A 0 A Aty 0 0
0 0 0 0 u 0
_ 0 0 0 0 0 u

in which X = At pBa.

IV. Transient Analysis Techniques for the Variational Equations

There are two strategies used in dealing with the transient prob-
lem: (1) modal superposition, and (2) direct integration [2,3]. In
modal superposition methods, the variational equations or matrix equa-
tions are diagonalized by finding the eigenvalues and eigenvectors.
These eigenvalues and eigenvectors correspond to the natural frequencies
and modes. In direct 1ﬁtegration the matrix equations are integrated
using a numerical step-by-step procedure without transformation of the
equations into a different form Tike modal superposition. In 1inear
analysis, the choice of method depends on the frequency content of the
load and on which portion of the frequency response is of interest.

For some particular cases, a combination of both methods is very effec-
tive [62].

In modal superposition procedures, the most critical and time-
consuming aspect of the coﬁputation is the determination of the eigen-
values. There are a number of eigenvalue methods used in practice

[1,3,46]; each one of them has its own merits. Modal superposition is
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used very little in nonlinear analysis. It appears that it is not suit-
able for path-dependent material and finite deformation problems.

For most nonlinear problems, direct integration is the only ef-
fective method in transient analysis. Since we are dealing mostly with
nonlinear problems, only direct integration techniques will be discussed.

Basically, there are two general classes of direct integration
methods: (1) implicit integration, and {2) explicit integration [2,3,
46]. Both methods are developed from difference formulas that relate
the accelerations, velocities, and displacements. Implicit algorithms,
some of which are unconditionally stable, permit large time steps, but
the cost per step is high and storage requirements tend to increase
dramatically with the size of the mesh. On the other hand, explicit
algorithms, which are conditionally stable, tend to be inexpensive per
step and require less storage than implicit algorithms; but numerical
stability requires the size of the time step to be inversely propor-
tional to the highest frgquency of the mesh.

Belytschko and Mullen [63,64], Hughes and Liu [65,66], and Park
et al. [67-69] proposed implicit-explicit nodal partition, implicit-
explicit mesh partition, and staggered solution procedures, respec-
tively, to circumvent these difficulties. Other procedures in transi-
ent analysis algorithms have also been proven to be successful [70-83].
Nevertheless, a generalization of all these ideas in one package,
though desirable, requires further research in theoretical and imple-

mentation aspects.
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IV-A. Temporal Integration of the Variational Equations

In this section we are going to employ the new family of implicit-
explicit algorithms developed in [65,66] for the temporal discre-
tization of the variational equations. Although there are many dif-
ference formulas that can be used in time discretization [2,3],based
on previous studies, the Newmark family of methods [84] appears most
suitable for fluid-structure interaction problems.

For discussion purposes, let §n’ gn’ and §n be the nodal vectors
of mesh displacements, mesh velocities, and mesh accelerations {i.e.,
Qn’ gh, g;) respectively; likewise, gn’ v.»> and a_ are the material dis-

placements, material velocities and material referential accelerations

(i.e., U &n’ ﬁh), respectively. The solution at time step n+l is

determined by the following equations (in order):

i=0 (i is the iteration counter) (IVA.1)

(1) _ 5 A

§n+1 - gn+1 : (1VA.2)
(i) _ ¢

Ynel T Yn predictor phase for (IVA.3)
(1) material displacements,

a =0 velocities, and ac- (IVA.4)
n+1

- - celerations

~ _ l- 2

9n+1 - én'FAt !n'F(Z B)at o (IVA.5)

Voo = Y, F (1"Y)At§n ) (IVA.6)

~G) _ % A

diii = do (IVA.7)

NOE: predictor phase for

Verl = Ynt mesh displacements, (IVA.8)

- h and velocities

P A N 1 2.

A1 = dptat !n'F(E"'B)At 4 (IVA.9)

Vopp = U (1=t A (IVA.10)
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M*Ag = AF* momentum equati

M+ yat D-N_(V o) () ali),

*
M Y12 Yn+12904

+ yAt K (gﬁlg)

- et (a4

ons

matrix

J

* _ ext ~(1) ~(1)
AP = En+1 * EB(Q +]) * Es(gn+1)
(i) () ~(1) (i) 5(4)
- ] amt) - N Wpe¥piyadoiy)
gint (1) S0 G)
- ~n+1( n+1’dn+1’dn+])
Numef T
M o= ) pN'N dR mass
- e=1 ]JQE - Y
NumekX
N, = 1 | YT EE) + PR R
e=] ﬁe ~ T v
Y
-
Tt
tangential convective matrix
Nume® T A
) j BY' D BY dR
- e=1 pe oo J tangent
Y
Nume £ T
Ky = 1 J B'DB dR
- e=1 Re v
h
Eﬁi%-— discrete nodal applied forces
Nume 2 T
Fa = 1 J N'b dr body forces
e=] le~~ Y

pressure and viscous

matrix

tangent stiffness matrix

(IVA.

(IVA.

(IVA.

(IVA.

(IVA.

(IVA.

(IVA.

(IVA.

(IVA.

11)

12)

13)

14)

15)

16)

17)

18)

19)
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Numef T
Fe = ) J N'h dA surface forces (IVA.
~ e=1 3RE ~~ Y
Y
Nume? T (i)
1 = E J py a,4] dRy inertia forces (IVA.
e=1 Re
b
Numef T
Ne = ) J oN'n dR, convective forces  (IVA.
e=1 Re -
Y
s Nume £ T .
E;2$ = L Je §Y Eél? dRy internal forces (IVA.
R
Y
21 = Gl ] (IVA.
- - corrector phase
. - . for material
Vng1) = Vo *oyht a£1¥1) ) displacements, (IVA.
- - ~ velocities, and
( ) ( ) accelerations
i+1) _ o~ 2_(i+1
§n+1 - gn+1 *BAtTa J (IVA.
~(1+1) _ (i+1) -1 mesh velocity
Yn+1 5(!n+1 -Ls) representation (IVA
~(i+1) _ ~(i41) X
o B (!n+1 ‘ln+])/'YAt corrector phase (IVA.
( ) ( ) for mesh
~(i+1) _ 2 2 ~i+] accelerations and
9n+] = doaq B 3, displacements (IVA

The notations used in equations (IVA.14) through (IVA.23) have been

20)

21)

22)

23}

24)

25)

26)

.27)

28}

.29)

defined in Chapter 2 (equation IVB.7). The numerical integration for

1(1) that appears in equation {IVA.23) has been discussed in the pre-

~nt+l

vious section. The mesh velocity update formula, equation (IVA.27),

has been discussed in Section II of this chapter.
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Let T be the total number of iterations. If I=0, the algorithm is
a predictor-corrector algorithm. If more iterations are required (i.e.,
I1>0), it is a predictor-multicorrector algorithm. The generalizations of
(IVA.1) through (IVA.29) to implicit, explicit, implicit-explicit mesh par-
titions, implicit-explicit operator splitting, dynamic relaxation, and
quasi-Newton updates for symmetric and nonsymmetric equation systems have
been discussed in detail in [66,72,79]. The stability, accuracy, and
convergence have been discussed in [65,72,73]. For detailed analyses of

the above algorithms, the reader should consult {75,66,72,73,79] and

references cited therein.

IV-B. Computer Implementation of Equations (IVA.1) through (IVA.29)

We assume the initial data 90’ Vos 3gs @o’ Vyr 8, are all given.
If the mixed description is used, the global array L is computed accord-
ing to equation (IIA.10) and stored. For computer implementation pur-
poses, let "I" and "E" denote "implicit" and "explicit" element groups.

If the entire mesh is treated explicitly,

E

M* =M which is a diagonal matrix (IVB.1)

E_nE L (p1nhE (1VB.2)

aF* = (FXNE 4 F R - T

~

The terms on the right-hand side of equation (IVB.2) are defined by
equation (IVA.18) to (IVA.23) with i set to zero. If the entire mesh
is treated implicitly, ﬂ* is defined as in equation (IVA.12) and equa-
tions (IVA.13) through (IVA.17). M* can be reformed and factorized
whenever necessary. However, (Af*)I is recomputed for every iteration.

If a Tinear implicit/nonlinear explicit splitting is desired, @* is
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defined as
ME = M+ At 5\11 N BAtZE(Ij (1VB.3)

where M* is constant and is computed once and stored. The corre-
sponding AE* is recomputed according to equation (IVA.13) for every
jteration. We notice that MI + ME = M, and (EEXt)I + (EQXt)E = EEXt.

With these definitions in mind, the solution procedures are as follows:

a) Loop on number of time steps, N.

b) Define predictor material” values according to equations (IVA.1)
through (IVA.6).

c) Define predictor "mesh" values according to equations (IVA.7)
through (IVA.10),if required.
)E

d) Form FEXt and (AF*)" as described previously and store.

~htl

e) Loop on number of iterations, i=1,...,I.

f) Reform and factorize M* if required, where M* = (M*)I4-(M*)E.

g) Form (AF*)i and Af* = (AF*)Ii-(AF*)E.
h) Soive for Aa according to equation (IVA.11}).

i) Update material displacements, velocities, and accelerations ac-
cording to equations (IVA.24) through (IVA.27).

j) Form S according to equation (IIA.11) if required.
k) Update mesh velocities according to equation (IVA.27), if required.

1} Update mesh accelerations and mesh displacements according to equa-
tions (IVA.28) and (IVA.29), if required.

m) Check convergence,if required. If convergence check is required
then for ||Aal| <e goto o.

n) If convergence check is required and i=1 stop. If i < I, go toe.

. (i41)
0) T, s replaced by Tog]



p)
q)
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(i+1) _(i+1)
dy» Yy 3, arve replaced by S?H » Ypyp > and 2
aos 2 4(i+1)  ~(9+1) 2
gn’ V> 8, are replaced by 9n+1 s Vgl o and &

If N < maximum number of time steps, go to a.

(i+1)
n+1
(i+1)
n+1

, respectively.

, respectively.
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Chapter 4
NONLINEAR FINITE ELEMENT ANALYSIS OF SHELLS

I. Introduction

Within recent years, shell structures have assumed increased im-
portance due to new developments in industry; in particular in off-
shore structures, nuclear reactors, cooling towers, and oil tanks. The
demand for "better" design of a shell structure requires improved shell
analysis procedures, and in many cases the safety of shell structures
cannot be estimated unless a nonlinear analysis is undertaken.

As a result of the increased speed and storage capacity of present
computers, many nonlinear numerical analyses of shells have been at-
tempted. Finite element procedures for plate and shell analysis now
span over 20 years. A history of finite element shell analysis is
traced in [1,2]. Descriptions and references to many important works
may be obtained by consulting standard texts [3,4], the review articles
[5], and thesis [6]. The innumerable proposed shell and plate elements
demonstrate the wide dissatisfaction with available methodology.

There are two classical approaches in finite element analysis of
shells: {1) the direct approach which is deduced from a classical shell
theovy [7]; (2) the degeneration approach [4,8] which is deduced from
the field equations of the three-dimensional theory with various assump-
tions. The associated shell differential equations derived from the
direct approach, often higher than second order, may require a higher-

order interpoiation function by the finite element process. Another

disadvantage of this approach is the unavailability of a convenient,
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general enough nonlinear shell theory. It is concluded that to develop
a general enough nonlinear shell theory which can accommodate finite
strains and finite rotations, and permits use of arbitrary, three-
dimensional nonlinear constitutive equations, one must adopt the
"degeneration" approach. Mindlin theory [9] is the most widely adopted
basis of the degeneration approach, since generalization to the fully-
general nonlinear case is straightforward, and an analogous two-dimen-
sional formulation which includes several special cases of practical
interest, namely the axisymmetric case for shells of revolution, the
plane strain case for long tubes, and the plane stress case for rings
and two-dimensional beam/frame structures, can be deduced fromthe three-
dimensional formulation. This theory was originally employed in the
linear case by Ahmad et al. [10], Tater by Hughes and coworkers [11-14].
Recent works in the nonlinear area which may be mentionedare [8,15-20,
39]. However, there are still certain numerical difficulties remaining
in the development of a fully-general nonlinear shell theory. As has
been mentioned by Hughesland Liu [20], they are (1) selective integration
techniques, (2} numerical integration of constitutive equations, and

(3) rank-deficiency problems associated with the in-ptane rotational
mode.

Of course, there are other approaches to develop nonlinear shell
theory. - The interested reader may consult [6,21-23] and references
therein.

The equations of motion derived in Chapter 2 can be used directly
in shell analysis. The Lagrangian formulation will be adopted (i.e.,

RX = Rz). For discussion purposes we will denote x as an undeformed
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position vector and y as the deformed position vector.

In Section II, the geometrical and kinematical behavior of a
typical shell element will be described. The construction of "lamina"
and “fiber" coordinate systems is derived along with the corresponding
transformation arrays which relate these systems to the global frame.
In Section III, numerical integration of the constitutive equations
and the "corotational approximation" [22,24,25] are discussed. The
definitigns of element arrays, selective/reduced integration tech-
niques, numerical integration of the lumped mass matrix and shear
correction factors are discussed in Section IV. In Section V, we
discuss the reduced integration Lagrange elements and the heterosis
element. Sample problems involving a number of the elements are con-

tained in Section VI.

1I. Geometric and Kinematic Descriptions

I1I-A. Geometry

We denote the position vector of a generic point of the shell in
the undeformed configuration, which is also the reference configuration,
by x. It is equal to the sum of the position vector of a point in the
reference surface g'and a position vector based at a point in the
reference surface which defines the "fiber direction" through the point
X. Following the finite element discretization procedures described

in Section IV-A of Chapter 3, a smooth mapping of the biunit cube into

the physical shell domain (see Figure IIA-1) is defined by the follow-
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ing equations:

x(g,n,z) = x(€,n) + x(E,n,7) (ITA.1)
x(g,m) = 321 N, (£:n) X, (11A.2)
nen

x(g.m,z) = ) N (E,m) X (z) (1IA.3)
A L A

Ea(;) = za(c) gd {no sum)} (IIA.4)
2 () = N(2) z; + N_(2) 7 (IIA.5)
M) =2 (1+2), N(D) = 5 (1-1) (11A.6)

In equations (IIA.2}- (IIA-6), gé is the position vector of nodal point
a; Na denotes a two-dimensional shape function associated with node a;

Nen is the number of element nodes; Xa is a unit vector emanating from

node a 1in the fiber direction; and Z, is a "thickness function," asso-

ciated with node a, which is defined by the location of the reference

surface. A lamina surface is defined by equation (IIA.1) for 7 fixed;

and a fiber line is defined by the same equation for &£,n fixed. In
general, the fibers are not perpendicular to the laminae. It has been
found convenient to take as input the coordinates of the top and bottom
surfaces of the shell along each nodal fiber (52 and f;’ respectively)
and a parameter ze[-1,+1] which defines the location of the reference
surface. For example, if £=-1,0,+1 (respectively}, then the reference
surface is taken to be the bottom, middle, top (respectively) of the

, ', and z_

shell. From these input data, we may calculate gé, ga a a

(a=1,2,:+,ng,) from:
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Loz (-0 5 vz 04D g (11A.7)
Ro= 0G5/ =%l (112.8)
28 = 2 (1-D) - %l (11A.9)
Z2 = -5 (147 |Ix; - x|l (114.10)

denotes the Euclidean norm (i.e., x| = (x$*-x§*-xg)1/2)-

An illustration of these ideas is presented in Figure IIA-2. By virtue
of the fact that the top- and bottom-surface coordinates are uniquely
defined at element interfaces, there are no gaps or overlaps along ele-
ment boundaries.

Similarly, the position vector y of the same generic point of

the shell in the deformed configuration is defined by:

y(Em,z) = y(&.n) + Y(E:n,2T) (IIA.11)

y(g.n) = Z] N, (E.m) v, (11A.12)
a=
flen

Y(g.n,z) = Ei N, (€.m) ¥, (2) (I1A.13)
as

Xa(;) = za(;) Ya (no sum) (IIA.14)

where za(g) and N_,N_ are defined by (I1IA.5) and (IIA.6}, respectively.
We observe from equations (IIA.4) and (IIA.14) that the nodal fibers are
assumed to be inextensible, i.e., they may rotate, but cannot stretch or

contract. Therefore Ya is a unit vector.
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1I-B. Kinematics

We define the displacement u of a generic point to be the dif-
ference between the deformed and the reference configurations of the
same point. It can be written in terms of the sum of the displacement
of that point on the reference surface g} and the"fiber displacement"

U. Therefore (see Figure IIB-1),

~

u =y-x=u+l (11B.1)
Ij =§-"g (I1B.2)
U =Yy X, (I1B.3})
U =Y-X | (I1B.4)
U, = Yo - Ea =z aga (no sum) (I11B.5)
0 =Y -X (11B.6)

a ~ ~a

By virtue of the definition of u, the kinematics of the shell element
are defined by invoking the isoparametric hypothesis that the same ex-
pressions are used for kinematics as for geometry with displacement
variables in place of coordinate variables. In order to define Y, @
trial value of Qa is calculated (i.e., Q:ria]) and projected radially

to maintain inextensibility. The steps in the procedure are as

follows {see Figure IIB-2):

¥ ¢ 4 ptrial o, ~trial
Vo= O+ U i, Ul (IB.7)

o, =Y -% (18.8)

We have found the present scheme to be both economical and effective
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unit sphere about
node @

Fig. T B-2 Nodal fiber inextensibility condition
maintained by radial return
normalization
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in practice.

II-C. Lamina Coordinate Systems

In order to invoke the plane stress hypothesis, at each integration

point in the element a coordinate system is defined as follows:

RJ =

ey =¥ /Y gl (IIC.1)
L 2 £

ey = ey xy T‘/[Ig] X y,n|| (11C.2)
L _ 1 L

ey = €3x ¢y (I1€.3)

where a comma is used to denote partial differentiation (e.g.,
X,g = BX/BE) and "x" denotes the cross product. We call this coordinate
system the lamina coordinate system (see Fig. IIC-1). The gg direction is
used for the purpose of invoking the zero normal stress hypothesis. We
should note that gg in general is not parallel to the g axis (see

Figure IIC-2), that is, the fiber direction. In order to have a global

finite element formulation, an oﬁthogona] transformation matrix q is

~

defined:
q = [e} el ef1": global > Tamina (11C.4)

I1-D. Fiber Coordinate Systems

Due to the plane stress hypothesis, the rank of the material re-
sponse matrix C is five, even though it is a 6x6 matrix in the gen-

eral three-dimensional constitutive theory. In order to remove
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the in-plane twist mode, we define a unique local Cartesian coordinate
system at each node which is used as a reference frame for rotation in-

crements. The algorithm is as follows:

1. let a; = 9.0 i=1,2,3 (11D.1)
2. j=1 (11D.2)
3. If a > a5, then a5 = a5 and j = 2. (11D.3)
4. If ay,>ay, §=3. (11D.4)
5. er - (11D.5)
-F A ~
_ = . . D.6
6. ey = (Yxey)/il¥xeyll (110.6)
7. el = elx¥ (11D.7)

This orthonormal fiber basis is chosen in such a way that if 3
is "close" to the third axis of the global system, then ST’ E;’ gg will
be "close" to the global axes (see Figure IID-1). With these
definitions, an orthogonal transformation matrix r is defined such that
for each time step the three incremental fiber displacements in the global
coordinate system can be contracted tp two incremental rotations.

lLet Aﬂl, AGZ, Aﬂ3 be the gfoba] incremental vector components
of AQ, also let 48, and A8, be the rotation increments about the basis
f

vectors gf and ers respectively.  The sign convention is defined in

Figure IID-1. The relationship between AQ and A8 1is:

(11D.8)

>
tco
I
i1
¢t
L=
s

where r: fiber » global (I1D.9)

-~
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and -1 ]
(11D.10)

i
i
L]
1
wasnad

AU AU (1ID.11)

AG = (IID.12)

Fquations (IID.8) through (IID.12) enable the reduction of the nodal
degrees-of-freedom from six to five in the matrix incremental equilib-
rium equations. This obviates the need to develop artificial in-plane
torsional stiffnesses tonumerically stabilize rotation about the fiber
direction [17].

When beam-type stiffeners are assembled with shell elements, the
bending stiffness of the beam naturally provides the in-plane torsional
stiffness of the compos{te structure, equations (I1ID.8) through (IID.12)
can be ignored, and six degrees-of-freedom are retained in the globatl

incremental equilibrium equations.

III. Integration of Constitutive Equations

ITI-A. Numerical Algorithms

The numerical algorithms described in Section III of the last
chapter cannot be used directly, due to the stress components being
referred to a rotating basis, Also, the zero normal-stress constraint

needs to be enforced with respect to the third direction of the lamina
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basis. So the integration of the rate type constitutive equations re-

gquires special considerations.

We define y and w according to equations (IIA.1} through (IIIA.

of Chapter 3. The orientations of the lamina bases at time tn and tn

are defined, respectively by:

qn: global - lamina at t (I11A,

~

n+1, .
g : global + lamina at t ., (ITIA.

~

Consequently, the incremental transformation between lamina bases is

given by:

_ontl, n.T, . .
b =g (q7) : lamina at t -~ lamina at t .4 (ITIA.

~

With these definitions, the numerical algorithms are:

f”” =R "R (ITIA.
= (1TIA.
where
R = ({+(£—J2—tg)']n3) Aq (IIIA.
ATij = Cijk2 Yio, (ITIA.
and _ o =ntl = —
v33 = (33 - b Casigvis)/ Casss (ITTA.

1j#33

The matrix R is in general an approximation to the rotation of
the material particle relative to the lamina basis; (ITIA.8) is used t
insure satisfaction of the zero normal-stress condition in the Tamina

o o).

basis at tn+1 (i.e., T33 In many situations of practical in-

terest, the particle rotation will be closed to the rotation of the

6)

+1

1)

2)

0
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lamina basis and thus R = E. This is the case for what is classically
known as the "small strain-finite potation approximation. In this
case, the calculation of B may be omitted. This philosophy has been
exploited in the works of Argyris [21,23,26,27] and Belytschko [22,24,

25].

1V. Element Arrays

IV-A. Material Tangent Matrix

The element tangent matrix D is defined by equations (IVB.13)
of Chapter 2. For application to shell analysis, the
D matrix needs to be modified to account for the zero normal-stress
condition. We define a zero normal-stress projection operator E such

that the row and column of D corresponding to Y33 are removed, 1.e.,

5=pipp (IVA.1)
where
P 0
p=| ~ ~63 (1VA.?2)
O35 13
i o0 o 0 0
o 1 0 0 0
0o 0 1 0 0
E = (IVA.3)
PP, Py Pg P
o 0 0o 1 0
(o 0 0o 0o 1]
and

Pr = - C3315/ C3333 (IVA.4)



-110-

IV-B.. Strain-Displacement Matrix

In order to prevent "mesh-locking" phenomena [11-14, 17-20],
special treatment needs to be given to transverse shear terms. We will
employ the same idea, namely reduced/selective integration techniques,
which have been discussed in Chapter 3. We implement the selective
integration procedure by a simple modification of the strain-displace-
ment matrix. The definition of the strain-displacement matrix adopted

is given as follows:

B = {B B 9"'9B ] (IVB.1)
- <1°-2 ~Nan
Y
_ | ~a _
~a ’ a=1,2,-+ 50, (IVB.2)
BUJ
~a
- -
B1 0 0 : B4 0 0
|
B2 B.I 0 E 85 84 0
0 B 0 ) 0 B 0
BY = . ! 5 (1VB. 3)
“d | e mmmmmmmmmmeee-
— _
0 B3 32 | 0 86 85
By O B, | Bg O By |
-
B, -8, 0 ! B -B, O
W o_ I
?a = 0_ B3 -B2 l 0 B6 -85 (IVB.4)
k
By 0 By ;B 0 B |

N, 5 | , i=1,2,3
B, = (1VB.5)
(N,z) (1.3 o i=4,5,6



-111-

Note that Na,i = BNa/Byf where y? are the components of the coordinates
in lamina systems. The definition of the E}'s is found in eguation
(1A.8) of Chapter 3. For details consult [20,28]. For the two-
dimensional case, uniform reduced-integration Lagrange elements are em-
ployed. In this case,Bi’s are taken to be equal to §}'s.

There appears to be no general nonlinear theory which includes
shear correction effects. An ad hoc procedure, which amounts to replac-
ing each E} in (IVB.3) by 172 E} where « is the shear correction factor,
is employed herein. (For the example problems in Section VI we have em-

ployed k=5/6.) The strain increments may be computed as follows:

nfn v AUQ ( )
v =7 8Y . IVB.6
lvec a=1 ~8 AUg
a
where
r~N =
" 1
Yo aty;
Zvec=< Y3 >:< Vo2 > (1v8.7)
Y5 2Y53
\.Yﬁ_) L2Y3] -

IV-C. Transformation Matrices

Since we employ a global finite element formulation, all the ar-
rays have to be transformed to the global system before they can be
assembled by the standard finite element procedures. The stiffness
matrices and internal force vectors are defined with respect to the

lamina coordinate systems. Two transformation matrices are required:
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9 033
6 dof
L 035 9
0, = ¢ (1VC.1)
~ ~3 5 dof
0 r
- 233 ~a
10
ry=r, 0 -1 (IvC.2)
0 0
('
16 6 dof
s =¢ _ (1VC.3)
% = ¢ I3 05
5 dof
(. 933 §a
Fa1 0
S, =S, 1 0 - (1vC.4)
Lo o

IV-D. Tangent Stiffness Matrix and Internal Force Vector

The element stiffness and internal force are defined as follows:

k=[k.1 ., Fint - peinty (1vD.1)
- ~ab - -
+]
k., = of BT D B.Q jdr dO (1VD.?)
~ab la <a -~ ~bib '
0 -1
+1
int _ T,0Y\T .
fa - J I Qa(ga) Tvec? dz dU (1vD.3)
0 -i

where



-113-

+1 +1
J see d0= J J sar dE dn (Taminar integral) (IVD.4)
7 -1 -1
B .
Y16 i N1t
Jomdet| Yoe Yom Yo (1VD.5)
| 3,8 Y3on Y30

™
T2 T2
Tvec ~ < T3 )= < T22 >

6 U3t
In most situations the variation of Qa with Z will be insignifi-

cant. For this reason we can take Qa outside the fiber integral, viz,

~

4
o = | G| | 81D Bydde g, ¢D (1v0.7)
|j \_-.[
r—+]
int _ T YT .
e ° J Q J(I;a) Tyecd 42| d0 (1VD.8)
D L..']

IV-E. External Force Vector

We allow for both body and surface force vectors.

Body force

The element body force vector is given by:

ghody _ {fEOdy} (IVE.T)

~
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+]
body _ T T .
fa §a J J Na E Podo dz dO (IVE.2)
0O -1

where Po is the mass density in the initial configuration, b is the pre-

scribed body force vector (per unit mass),

x.lag x.lon X-IQC
jo =| X2 Xon Xo.r (IVE.3)
3,6 M3 M3t
and
Na 0 0 E Nz, 0 0
Npo=p 0 N 0 0 Nz O (IVE.4)
0 0 Na ! 0 0 Naza
Surface force
The element surface vector is defined by
fsurf - {fzurf} (1VE.5)
+1  top
et [ng ad ., e (1VE.6)
~ - B -1 bottom
O
ig = lly - xy n” surface Jacobian (IVE.7)

where Q is the surface force vector per unit surface area.
Since we consider vyather general nonlinear behavior, the
fiber integrals need to be evaluated by a numerical integra-
tion techniqgue instead of analytically. When the shell consists of one

homogeneous layer , Gaussian quadrature is most efficient. If

it is desired to include the outermost fiber points (i.e., £=#1) then
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Lobatto rules are most accurate. If the shell is built up from a series
of layers of different materials, then Gaussian rules may be effectively
used over each layer. If there are a large number of approximately

equal-sized layers, then midpoint rule on each layer should suffice.

IV-F. Stress Resultants

Bending moments, membrane forces, and transverse shear resultants
may be computed at the Tamina guadrature points of the "normal" rule at

which stresses are stored. Let E£= (Eg,gg) be the quadrature points,

1<% E-nint; the resultants are:
moments +]
maB(éz) = J TGB(ER,;) z(E,,z)dz Z,c(gk)’ 1<a, <2 (IVF.1)
-1 ‘
2(E,.0) = Ny(2) Z'(8,) + N_(2) 2 () (1VF.2)
n
—— en _ 4
2 (E,) = a; N (E,) 7, (IVF.3)
z (&) = [27(E) - 27(E,)1/2 (IVF.4)

membrance forces

+1
16y - j oEpt) dz (B) . T<a 822 (1VF.5)
shears
+1]
o (E,) =2 ! t E.,0) dzz (E,) (IVF.6)
o<l a3’ s 2 :

The sign conventions for the stress resultants are illustrated in
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Figure IVF-1.

IV-G. Mass Matrix
If the consistent mass matrix is desired, Gaussian integration rules

are used. The consistent mass matrix is:
+1

my = J Jpo NN, §, dz do (1VG.1)
(] -
where jo and Na are defined by (IVE.3) and (IVE.4), respectively.

If lumped mass is required, Lobatto rules are employed. However,

the At restriction is stringent for explicit transientcalculations [13,38]1.

Therefore, the following algorithm 1is wused to obtain a Tumped mass
matrix for shells such that a much larger time step can be employed with

no convergence rate loss.

Algorithm

rot

a) Define variables; Ma translational mass

= pptational mass, Mgasa=

1. Clear necessary variables and arrays.

2. lLoop on laminar integration points.

3. Loop on fiber integration points.

4.wmt=Mmt
a a 0avo

integration point.

2. v o
+p N (Eg’”z’zg) W, where W, is the weight of the

o th

dis .
5. Ma P = M;°t if not heterosis.

disp _ ,disp 2 . x0T
6. Ma M 4—pD(Na+-Pa(O)N9) Jo(gg,nz,cg) W, if heterosis.

, _ disp _
7. If heterosis and a=9, My P-o. (Here Pa's are the serendipity
shape functions.)

b} Normalizatibn

1. .Mr‘ot - Een Mrot

a=1 @
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Na
o pdisp | y Md]Sp
a=1
rot rot; XM
3. Ma © Ma {Mrot}
disp wdisp
4. Ma < a 1I[~d15p}

where XM is the total mass.

c) Adjustment to rotational mass:

R O S T Y
oo, =7 (Za+ a) 12 (za' Za)
- Men
2. Zeffective §=1 (Za -2)/ Nen

3. A = effective area = volume / Zeffective

4. o, = max{ua; A/8}

rot rot
5. Ma + Ma oy

For further details of mass lumping for shells and the critical

time step calculation, see [13,38].

V. Shell Elements

The elements employed in this work are generalizations of ones

that have been proposed by Hughes [11-14].

IV-A. Reduced Integration Lagrange Elements and Heterosis Elements

The tamina shape functions and quadrature rules for the Lagrange
elements are shown in Figure VA-1. In each case the appropriate re-
duced rule is one order lower than the normal vule. The corresponding
Jamina shape functions and quadrature rules for the two-dimensional
cases are shown in Figure VA-2. For this case uniform reduced inte-

gration is optimal. As has been discussed in detail by Hughes and
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coworkers [11-13,20], selective reduced integration elements behave well
in thin shell applications, but may occasionally engender rank defici-
ency [11-13]. Research has been undertaken to efficiently remove the
mechanisms. Hughes and Cohen [11,12] proposed the heterosis concept in
which the 9-node Lagrange shape functions are used for rotation fields
and the 8-node serendipity shape functions are used for the displace-
ment fields. The resulting element possesses correct rank and behaves
well in the thin shell 1imit. The heterosis element is implemented by
first constructing the arrays for the selectively integrated Lagrange
element (say, e.g., E]ag’ Af}ag’ etc.), then a projection matrix, ﬁ,is
constructed from the serendipity shape functions associated with the
element-boundary nodes. For details of H see [11,12]. The heterosis
arrays are then defined by

ol
Kpet = 1 K1ag H

(VA.1)

T
Mfpet = M Af]ag

VI. Sample Problems

A1l computations were performed on an IBM 3032 computer at the
California Institute of Technology Computing Center in double precision
(64 bits per floating-point word). If Tinear elastic properties were
used, two-point Gaussian fiber integration was employed. If plasticity
theory was used, four-point Gaussian fiber integration was employed.
The following notations will be used for identifying the types of ele-

ments in three dimensions:
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U1 - 4-node, uniform reduced integration
ST - 4-node, selective reduced integration
S2 - 9-node, selective reduced integration
HS2 - 9-node, selective reduced integration heterosis elements

The full definition of the rotation matrix R and the corotational
approximation B==E were both employed. In no case were the differ-
ences discernible. The material model is considered to be homogeneous
and Tinearly elastic unless otherwise specified. The shear correction
factor, «, was taken to be 5/6 throughout, and for three-dimensional
case, the five-degree-of-freedom nodal system was employed;
for the two-dimensional case the three-degree-of-freedom nodal system
was employed.

For dynamic analysis, the Newmark parameters were taken to be

8 = 1/4 and v = 1/2 throughout, unless otherwise indicated.

VI-A. The Elastica

The post-buckling behavior of a clamped beam column was analyzed
with a mesh of twenty 2-node elements. The analytical solution is
available in Timoshenko and Gere [29]. The beam column is tilted ini-
tially off center with a slope of 1:500. This imperfection is intro-
duced to initiate a non-trivial solution after bifurcation
(buckling) . . Data employed in the calculations are given as fol-
Tows: Young's modulus = 4.8x 109; Poisson's ratio = 0, Tength (L)=10,
and thickness (h) = 0.01. Load-deflection results and deformed pro-

files are shown in Figure VI-A.
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VI-B. Pure Bending of a Cantilevered Beam

A thin cantilevered beam was subjected to an end moment. The
anqutical solution for this problem is given by the deformed midsur-
face curvature = ML/EI, where M is the applied bending tip moment, L
is the length of the beam, I is the moment of inertia about the axis
of bending and E is Young's modulus. The end moment was increased
Tinearly up to a final value of 2m. Two-hundred Toad steps were em-
ployed and approximately two iterations per step were needed for con-
vergence. The parameters of the beam were chosen such that the exact
final diameter to length ratio (D/L) equaled 7 | = 0.3183. Both twenty
2-node elements and ten 3-node elements were employed to model this
beam and the results were found to be virtually indistinguishable.
Deformed profiles are shown in Figure VI-B. The approximate D/L

equaled 0.3182.

VI-C. Large Deflection of a Diamond-Shaped Frame

A pinned-hinged diamond shaped frame was analyzed, and results
were compared with analytical and experimental data from [30] (see
Figure VI-C). Thirty 2-node elements were employed to model one-
quarter of the frame structure due to the double symmetries. Seventy-
six equal load steps were employed. The average number of jterations
per step over the first forty steps was Tess than three. Subsequently
the number of iterations necessary for convergence increased. During
the last six steps between sixteen and thirty iterations per step were

required.
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VI-D. Clamped Spherical Cap Subjected to a Concentrated Load

A thin spherical cap which is clamped around the circumferential
edge is subjected to a concentrated force at the vertex. Twenty and
thirty 2-node elements and ten and fifteen 3-node elements were employed
for the spatial discretizations. Deformed profiles and Toad-deflection
results are shown in Figure VI-D. The different spatial discretizations
did not produce discernible difference in results. However, refining
the load discretization from fifty to one-hundred did bring the results

in closer agreement with results of other investigators [31-33].

VI-E. Clamped Circular Plate Subjected to Uniform Pressure

A clamped circular plate subjected to uniform pressure (noncon-
servative) was analyzed using thirty-two and sixty-four 2-node elements.
The displacement versus load results and bending moment versus displacement
results are compared with analytical results [34] in Figure VI-E.
Twenty-four equal load steps were used. Both meshes gave virtu-

ally identical results.

VI-F. Plate Strip under Uniform Load

This problem is actually one-dimensional and an analytical solu-
tion is available in Timoshenko and Woinowsky-Krieger [34]. We applied
the plane strain assumption to a mesh of five 4-node elements for half of
the plate. The plate is simply supported. Pertinent data and results
are shown in Figure VI-F. The Toad was treated as nonconservative.
Comparison is made with the analytical solution and resuits of

Horrigmoe [6] who employed hybrid elements. As expected, both ST and
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. ® Mescall (finite difference solution) /
80 o present study 100 steps xd H
x present study 50 steps !
(twenty and thirty 2-node xd !
elements, and ten and /
fifteen 3-node elements
60— yield the same results) o VA
a /
= x
(a .
linear
40} solution . 7
-
>
20 -
o) 1 | | ]
04 0.8 .2 1.6 20
wgo /H

Fig.¥I D Clamped spherical cap subjected
to concentrated load



-129-

ainssaid wuojlun o} pajodalgns a4p|d up|noa1d padwo|)d I KBy

Juswadn|ds|p sa jusawow bulpuaq pDO| SA juswadbp|ds|p
u/m (,43)/,00 POO|
gt 91 21 80 v0 O il 0Ol 8 9 t e 0
_ _ _ _ o) 1 1 T T _ o)
| 41 — —4t°0
- ) —+2 | da*
._m@wﬂh:ooc.“__ 1Dau||uou sjuawala 8 OoM
18juadJ—_ apou-¢ ~
~ € - nop-Ajxis 42| =
m|2 puD oMi-ALiy}
u.va ‘ IDaul| ‘Apnis juasaid e |
.Emro:m%_._:_ 1t N B 1abapiy-Aysmoutomy 197!
1089 pUD OYUBYSOW|] —
g _ ! _ | ! | 02
— m o
_ M
sz =1 4 t X
4 gOl = 3 Z| R
! AN 'O =\ b
1Daul| ipauljuou . ﬂ ﬂ
‘Juswow abpa ‘juswow abpa (snippd)0°0l = D ﬂ ﬁ a



-130-

pPDO| WJopun Japun diys 3jo|d 4 [ B4

[wuw] Om
0] 0% 0z o 5
I S— Lo/ — o
/co_S_ow ipaul|
(1N puo |S)
woadq jo J|oy 10}
| S|UdWg|a spou-{7 BAlj o,
Apnys juasaid

(4914}) Ww g 2| =y
ww 0806 =

€0 =1

ZWW/NY G8°902 =3

o
.hAMn\\.\\..mB |l..|...........,.

.

[DJ1}A[DUD

ono_:oIl\Q\

|
[pUw/N] b

—0¢

Oov



-131-

Ul elements yielded virtually identical results for this case, even
though the S1 elements took approximately two jterations per load step,
whereas the Ul elements took 4 to 5. Nevertheless, CPU time for the Sl
elements was more than double that for the Ul elements. For small prob-
Jems of this type, all other things being equal, the CPU time is

dominated by the number of numerical integration points.

VI-G. Shallow Circular Arch under Concentrated Load

The problem statement of this one-dimensional problem is depicted
in Figure VI-G. This problem has been solved by Bathe et al. [35] using
8-node continuum elements. We employed sixteen 4-node elements for half
of the arch. Aplane strain assumption in the out-of-plane direction was
used. As in the previous analysis, the results for S1 and Ul elements
were virtually identical. In each case snap-through occurred at
P = 35.8 1b. The number of iterations per step was 1 to 2 for the §]
elements and averaged slightly over 4 per step for the Ul elements.
Again, however, the S1 analysis required more than double the CPU time
of the Ul analysis. The load-deflection curve was compared with the

results due to Bathe et al. [35] and was shown in Figure VI-G.

VI-H. Clamped Square Plate under Uniform Load

The problem configuration is defined in Figure VI-H. Plotted
results are for four HS2 elements and sixteen Ul elements. We also
used meshes of four S2 elements, and sixteen and sixty-four S1 ele-
ments. In the latter three cases, the results fell pointwise between
the former two plotted cases. For clarity, the latter three cases were

omitted from the plotted results. Our finite element results were
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compared to the classical Rayleigh-Ritz solution obtained by Way [36]
and the finite element results of Kawai and Yoshimura [37]. For this
problem we experimented with treating the Toad as conservative and non-
conservative. This produced no discernible differences. We also ex-
perimented with omitting the I and ? matrices in the calculations. The
results were almost identical, even though the number of iterations per
load step was increased from an average of 3 when we included both I

and ﬁ, to about 7 or 8.

VI-I. Hinged Cylindrical Shell under Concentrated lLoad

Figure VI-I shows a circular cylindrical shell with a concen-
trated central load applied on the convex side. The straight edges
are hinged, whereas the curved edges are completely free. Due to sym-
metry, four-element meshes of S2 and HS2 elements and sixteen 4-node
elements (both S1 and U1) are used to model one-quarter of the shell.
A11 of our results were in close agreement and could not be distinguished
on the scale of the p1of. Comparison is made with the results obtained

by Horrigmoe [6] and Bathe and Bolourchi [15].

VI-J. Transient Elastic-Plastic Response of a Simply-Supported Plate

Thi's problem was solved previously by Liu and Lin [40] who used
small deflection theory, ignoring membrane effects. In our calcula-
tions we assumed full geometric as well as material nonlinearity. One
would anticipate some stiffening in this case due to the tensiie
stresses developed as the plate deforms. Since the center displacement
js of the order of half the plate thickness, one would expect small,

but not insignificant differences. As may be seen from the results of
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Figure VI-J, the expected behavior is produced by our calculations which
tend to be slightly stiffer than Liu and Lin's with respect to peak
response. This is more pronounced in the elastic perfectly plastic

case than in the purely elastic case as may be seen. This is also
reasonable, since larger membrane effects would tend to develop due to
the smaller bending resistance in plasticity.

Comparisons between Tumped and consistent mass matrices, and im-
plicit and explicit algorithms tend to be quite good. Despite the fact
that the explicit time step was taken to be one-fourth the implicit, an
economy of approximately a factor of seven was noted for the explicit
calculations in the elastic-plastic case. In the purely elastic case

this was reduced to a factor of four favoring the explicit technique.

VI-K. Impulsively Loaded Elastic-Plastic Strip

Experimental results for this problem were given by Balmer and
Witmer [41] and results of a finite element calculation were presented
by Belytschko and Marchertas [42] who used an elastic, perfectly
plastic model with artificial viscosity. In our calculations, we ex-
perimented with different types of hardening, but did not include any
viscous effects. Another difference between the Belytschko-Marchertas
calculation and ours was transverse shear effects which were not in-
cluded in theirs, but were included in both the kinematics and consti-
tution of ours. A comparison of results is presented in Figure VI-K.
The displacement is quite large, being approximately six times the
strip thickness. Our peak responses tend to be in good agreement with
the experimental value, although they tend to occur at somewhat earlier

times. The closest agreement we are able to get is attained with
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purely kinematic hardening, as may be seen. Considering the ambiguities

in material modeling, the calculation is felt to be quite reasonable.
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Chapter 5

NUMERICAL EXAMPLES OF FINITE ELEMENT ANALYSIS OF INCOMPRESSIBLE
VISCOUS FLOWS BY THE PENALTY FUNCTION FORMULATION

I. Introduction

In this chapter, sample numerical examples are presented and com-
pared with available data to illustrate the accuracy and versatility of
this technique, namely, finite element analysis of incompressible vis-
cous flows by the penalty function formuiation. As has been mentioned
in Chapters 2 and 3, the selection of the penalty parameter A is not
trivial. Clearly, X must be Targe enough so that the compressibility
and pressure errors are negligible, yet not so large that numerical i11-
conditioning ensues. Dimensional analysis reveals that, for Stokes

flow, % should be picked according to the relation
A= cu (1.1)

where ¢ is a constant which is computer word length dependent only.
Numerical studies reveal that for floating-point word iengths of 60 to
64 bits an appropriate choice of ¢ is 107. However, in the presence of
the convective momentum which generally dominates the viscous term, the

criterion for the Navier-Stokes equation is empirically defined as:

A = ¢ max{u,puRe} (1.2)

where u is the dynamic viscosity and Re is the Reynolds number as given

by
Re = UL/v (1.3)
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Here U and L are "characteristic" velocity and length, respectively,

v = /o is the "kinematic viscosity," and p is the density. Usually U
was taken to be the maximum expected velocity and L the maximum dimen-
sion.

The solution strategy used for the steady Navier-Stokes equations
is an incremental Newton-Raphson scheme in which density is used as a
“load parameter," see [1-4] for details. The solution of the Stokes
problem is the initial guess. Within each Toad level, iterations are
performed until convergence is achieved, and the converged solution is
used as the initial guess for the next load level. It should be noted
that the matrix to be inverted [equation (IVA.12) of Chapter 3] is non-
symmetric, but possesses a symmetric band-profile structure [4]. Even
though it is well known that, under appropriate hypothesis, the Newton-
Raphson scheme exhibits second-order convergence of the iterates, the
reforms and factorizations of the nonsymmetric stiffness are very expen-
sive. Furthermore, the storage requirement is extremely demanding.
Research in developing more effective solution algorithms has been a
very active area of late (see, e.g., [5-71).

The solution strategy we used for the transient Navier-Stokes equa-
tions in this chapter is a one-step linear implicit/nonlinear explicit
operator splitting algorithm. The advantages of this linear-implicit
predictor-corrector method are that the matrix is symmetric and need be
formed and factorized only once; also the critical time step is indepen-
dent of the Reynolds number. The computer program developed may be run
at a constant (input) time step, or at a step redefined adaptively, for

each tn’ according to the formula below:



Nsg Ju_.
Atg/(i P, (1.4)
i=1 gi

where Ugi is the velocity component in the gi direction and hEi is the

element length 1in the & direction,

It is important to cut down on reform and factorization costs
when At is being selected adaptively. We have employed a scheme such
that, instead of refactorization, vy is redefined to compensate for the
step-size change. Specifically, we proceed as follows. Let Atfact
and Yeact denote the values of At and y respectively, used during the

Tast factorization, and Tet

A (I.5)

c= Yfact tfact

Based on the velocity field at step n, Atcritis calculated according to

(I.4). Define

Yn+1 © C/Atcrit (1.6)

For stability, ¥y must be between 1/2 and 1. If Yn+1€E E%,I], do not

nt1

refactorize, but set y = Y1 and At = At in AF. If, on the other

crit

hand, yn+]€g;[%,]], set At = At v = 3/4 and refactorize. This

crit’
value of vy is picked to reduce the 1ikelihood of refactorization in
subsequent steps. There are other procedures along these 1ines under
investigation [8-10].

There is a drawback to the present schemes due to the convection

stability condition (I.4). For example, if we are interested in an

essentially steady flow, and the length of time interval, T, required
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to attain steady conditions engenders many steps (e.g., see cavity flows
in the next section), a "fully implicit," unconditionally stable scheme
is no doubt superior. Gresho et al. [11] and Smith and Brebbia [12] have
described such fully implicit schemes. However, we believe that the
storage (due to nonsymmetric matrix) and computational effort engendered
by fully implicit algorithms are prohibitive in most cases, as often
accuracy dictates taking as small a time step as the convective stabil-
ity condition.

To solve large, implicit, three-dimensional problems, iterative
or at least partially iterative methods seem to be a necessity. Although
there is much interest in this topic, a generally reliable iterative
scheme, competitive with direct schemes, does not yet seem to be avail-
able. Attempts have been made to overcome the mentioned difficulties;
see [5-7,13-18] and references therein for details.

A least-squares type smoothing procedure [19] is used to perform
the necessary filtering qf the "checkerboard mode" [4] of the pressure
field. A comprehensive study of such techniques has been performed by
tee et al. [20]. We employed the same ideas in [20] with slight modifi-
cation for our purposes. As these have been documented in [4], the

smoothing procedures are omitted here.

I1. Sample Problems

A11 computations were performed on an IBM 3032 computer at the
California Institute of Technology Computing Center in double precision
(64 bits per floating-point word). The penalty parameter is picked
according to (I.1) or (I.2). Variable time stepping and "upwinding”

are employed throughout the transient analysis problems, according to
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equations (I1.4) to (1.6}, unless otherwise specified. Lumped mass
matrices are used for two-dimensional problems, and row sum mass

matrices are used for axisymmetric problems.

IT-A. Driven Cavity Flow

Several investigators have studied the problem (see [3,4,20-23]).
A problem description is shown in Figure IIA-1. We observe that the
boundary conditions are discontinuous at the upper corners. Two
meshes of 4-node elements, employing different approximations of the
boundary conditions, are shown in Figure IIA-2. The midplane velocity
profiles employing the 20x 20 and 20x 21 meshes for Re = 100 and 400
are presented in Figure IIA-3. As can be clearly seen from Figure IIA-3,
different treatments of the boundary conditions can result in signifi-
cant quantitative differences, especially as the Reynolds number is
increased. By virtue of the sensitivity of the result to the treatment
of the boundary conditions, care must be taken in interpretation. For
this problem, the fully ‘implicit Newton-Raphson method without "upwind"
technique is employed.

The boundéry condition problem may also create discrepancies when
different elements are compared.  Consider a 10x 10 mesh of square,
9-node elements. This mesh would have the same number of degrees-of-
freedom as the 20 x 20 mesh of 4-node elements, and it may seem appro-
priate to compare results. However, one should keep in mind that the
setting of the nodal boundary conditions in identical fashion actually
implies different representations along the vertical edges of the corner
elements (c.f., Figures IIA-2 and IIA-4) since a linear variation in

velocity is employed for the 4-node element, whereas a quadratic
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variation in velocity is employed for the 9-node element, and thus the
amount of fluid "injected" into the cavity is different. Discrepancies
noted between midplane velocity profiles (see [24]) may be attributed to
the different boundary conditions, and are not indicative of the
respective merits of the elements.

The velocity field, streamlines, pressure contours, and velocity
contours for Re = 0 employing the 20x 21 mesh are presented in Figure
1IA-5. The corresponding plots for Re = 100 and Re = 400 using the same

mesh are presented in Figure IIA-6 and Figure IIA-7, respectively.

I1-B. Entry Flow in a Channel

In order to demonstrate the necessity of the "upwind" scheme,
entry flow in a channel is studied. The problem statement and the cor-
responding finite element mesh are shown in Figure IIB-1. We obtained
the velocity field by employing the steady Navier-Stokes algorithm
described above. Four different integration treatments of the advection
terms are used and comparisons are presented in Figure I1B-2 for a
Peclet number of 150. For details of the upwind scheme, consult Chapter
3 and Ref. [4]. As can be seen, the upwind schemes are superior to the
Gauss schemes. For this high a Peclet number, there is little differ-
ence between the optimal and fully upwind schemes.

A much higher Peclet number (1.5)(107) was studied. The optimal

and full upwind schemes give identical results, whereas the Gauss schemes

plot off scale (see Figure IIB-3).
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1I-C. Couette Flow

This problem actuaily is one-dimensional. The exact
solution can be found in standard texts [25,26]. The
problem description and mesh are shown in Figure IIC-1 and results are
shown in Figure IIC-2. This is a simple problem in which the convec-
tion term is identically zero. A boundary layer develops along the
Jower edge and diffuses upward, forming a steady, linear velocity pro-

file as t increases.

1I1-D. Dam-Reservoir Problem

It is very important for engineers to know the hydrodynamic
pressure along the inclined upstream face of a dam, due to earthquake
motions. Explicit analytic formulas for calculating total horizontal,
vertical, and normal loads are due to Chwang and Housner [27,28].
Approximate solutions and numerical solutions of the same problems
have been given in [29,30]. The problem statement is shown in Figure
IID-1. The dam is assumed rigid. The fluid is assumed to be incom-
pressible and inviscid. The initial conditions are quiescent and at
Tt = O+ the dam face is set in constantly accelerating motion toward
the reservoir. Data for the problems are given as follows: wu = 03
p=1;L=2H=1; A= 107; v = 1; At = 0.025; and T = 0.1 (4 time
steps). Meshes and results for the 60° dam and 90° dam are shown in
Figure IID-2. Pressures are compared in Figure IID-3 with the exact,
potential flow solution due to Chwang [27]. As can be seen, the re-
sults are in good agreement. Also from Figure I1ID-2, the pressure
contours are orthogonal to the streamline contours. It is expected

from potential theory even though the full Navier-Stokes equation is
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empioyed here.

II-E. Hamel Problem

A problem statement is depicted in Figure IIE-1. The Hamel
problem of convergent flow in a channel ("inflow problem") has been
considered recently by several investigators (see [3,4,24,31]). The
exact solution can be found in [25]. For the particular mesh employed,
a radial velocity profile, in accord with the high Reynolds number
approximation to the exact solution, is set at the outer radius (r=4)
having constant value of 1/4. The Reynolds number thus may be taken as
Re = w/{6v). The circumferential velocity at r=4 is set to zero. The
outflow boundary corndition at r=1/4 is assumed traction free. At high
Reynolds number this approximates the situation adequately. Results
for Re = 500 and 5x 107 are presented in FigUres I1E-2 and ITE-3. As
can be seen, the correlation with the exact solution is very good.
(Pressures in Figure IIE-2 and IIE-3 are reported at the element centers

and are “unsmoothed.")

II-F. Flow over a Step

A problem statement is depicted in Figure IIF-1. We used this
problem to demonstrate the necessity of "upwinding" when there is a
"hard" upwind-facing boundary condition (see upwind section of Chapter
3) and too coarse a mesh is used. In Figure IIF-1 we present results
of a calculation performed with 9-node Lagrange elements. A (product)
Simpson‘s rule was used to construct the mass matrix, whereas Gauss-
Legendre rules of order 3x 3, 3x3, and 2x 2 were used on the convec-

tion, u and X terms, respectively. Data employed were: u=1, p=200;
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Fig.IIE-2. Hamel flow: Comparison of finite element (o) with
exact {——) results at low Reynolds number,
(2} Velocity; and (b) pressure.
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Fig. IIE-3., Hamel flow: Comparison of finite element (#) with

exact (—) results at high Reynolds number.
‘(a) Velocity; and (b) pressure.
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F'inite element results
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A= 109; vy = 1; and At = 0,07, As is clearly visible, "wiggles" appear

upstream of the step. Similar results are obtained for the 4-node
elements employing Gauss-Legendre integration of the convective term. It
is felt that this problem demonstrates the inappropriateness of Gauss-

Legendre integration of the convected terms under the circumstances de-
- scribed.

As can be seen from Figures IIF-3 and IIF-4, results for the
4-node elements which employ the modified upwind treatment of the con-
vection term at Re = 200 and 107, respectively, are smooth, and the
upstream "wiggles" are removed in both cases. The data employed in
these cases were: {Re = 200) u=1; p = 200; » = 108; vy =1; (Re= 107)

u=1; p= 1013; and v = 1. Time steps were selected adaptively.

1I-G.  Axisymmetric Flow through a Sudden Enlargement

The problem description and finite element mesh used are depicted
in Figure IIG-1. The domain and mesh are split at Section iii for pic-
torial purposes only. Macagno and Hung [32] have obtained both experi-
mental and numerical results for this problem. A fixed time step of
At=0.5 was employed, and y= 0.75 was used for the transient algorithm.
The dynamic viscosity, p, was set to 1 throughout. Thus Re=p and the
penalty parameter was taken to be 107p. One point integration of the
A term was employed. The calculations were performed in three se-
quences and were compared to experimental and numerical results due to

Macagno and Hung. In the first sequence, the initial conditions were
quiescent and Re=30. The sequence consisted of 60 time steps and a
steady flow was achieved after approximately 30 steps. The flow was
used as the initial condition for the second sequence in which Re = 60.

This sequence consisted of 40 steps and a steady condition was attained
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Axisymmetric flow through a sudden enlargement

(b} vorticity con-

(d) streamlines; and

(a) Pressure contours;
(e) detail of streamlines in recirculation region.

tours; (¢} velocity vectors;

(Re = 60):

Fig.IIG-2,
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after 20 steps. Results for this flow are presented in Figure II1G-2.
With this flow as an initial condition, the final sequence in which

Re = 200 was run for 90 steps. It took almost all this time for the
region just upstream of section iii to become steady. Results are pre-
sented in Figure IIG-3.

The overall flow patterns and length scales of the trapped annular
eddies are in good agreement with [32]. To study flows at higher Re
would require refinement and extension of the mesh downstream of section
iii, as the recirculation regime tends to stretch out considerably with

increasing Re.

II-H. Viscous Flow about an Airfoil

Viscous flow about an NACAOO18 airfoil geometry is studied. The
problem statement is shown in Figure IIH-1, The finite element mesh is
shown in Figure ITH-2. We employed unit chord length (i.e., L) through-
out. The dynamic viscosity, u, was set to 1. The input inlet velocity
is 1, therefore Re = p.

Several runs were made with this mesh. The first, at low
Reynolds number (i.e., 400) and quiescent initial conditions, shows
well the diffusion of vorticity with the development of the boundary
fayer; see Figures IIH-3 and IIH-4. Accompanying pressure profiles are
shown in Figure IIH-5.

Steady, high Reynolds number results with guiescent initial
conditions are presented in Figures IIH-6 and IIH-7. Obviously, from
the velocity vector plots, this mesh is not adequate for such a high

Reynolds number. The infinite-domain, potential flow, pressure profiles

are presented in Fig. IIH-7 for comparison purposes. It is conjectured
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t=3.0986 (n=280)

Fig.IH-3. Viscous flow about an airfoil (Re = 400): Velocity
vectors.



-182-

t=.2098 (n=20)

1=.3299 (n=30}

t=.4493 (n=40)

t=1.3293 (n=120)

t=3.0986 (n=280)

Fig.IIH-4, Viscous flow about an airfoil (Re = 400): Vorticity
contours.
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infinite-domain potentiol-flow solution

——— Re=10°, t=.5559

Finite element
0.6} _.._“._{Re=I06,T=.559O Rrp g

108 -
ZD/P Re=10%, t = 5573

_0.8 -

Fig.IH-7, Viscous flow about an airfoil: Comparison of pres-
sures at different Reynolds numbers,
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that enlarging the domain and refining the leading-edge region of the
mesh would bring the results in closer agreement, although the pressure
drop at the trailing edge is to be expected in a viscous computation,

6 calculation was made using the Re = 400 solution at

An Re = 10
time 3.0986 as an initial condition. In this case the flow separated;
sample results are shown in Figures IIH-8 and IIH-9. At later times
(not shown) the separation point and recirculation regime moved down-

~ stream.

II-I. Axisymmetric Flow around a Sphere

The problem description and mesh are shown in Figure ITI-1.
Initial conditions were assumed quiescent and the "mean-incompressible"
treatment of the A-term was employed.

Runs at Re = 10 and 40 were made; sample results are shown in
Figures I11-2and II1-3. After the flows became steady, comparisons
were made with the infinite-domain, analytical results of Dennis and
Walker [33]. As can be seen from Figure III-3, vorticity (z) and
pressure are in good agreement. It is somewhat surprising that the
results at Re = 40 are in such good agreement, as our finite-domain
model seems hardly adequate for this high a Reynolds number. In Table
II-1, pressure-drag (Cp), viscous-drag (CV), and total drag (CD) coef-
ficients are compared with the results of Dennis and Walker. {The
coefficients are normalized as follows: drag/(wp(D/Z)z.) The
agreement is quite good overall, but better at Re = 10 than at

Re = 40, as may be expected.
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(a) Problem statement

5
[

(b) Finite element mesh

Fig. I I-1. Axisymmetric flow around a sphere: Problem
description and finite element mesh. '



{(c)

Fig. Il 1-2. Axisymmetric flow around a sphere (Re = 10);
(a) Velocity vectors; (b) pressure contours; and
vorticity contours, :
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Table II-I

Comparison of Drag Coefficients for Flow around a Sphere

Re = 10 Re = 40
Present Dennis & Present Dennis &
Coefficients Study Walker Study Walker
Cp 0.774 0.785 0.347 0.368
CV 1.419 1.427 0,520 0.536
CD 2.194 2.212 0.868 0.904

III. Remark on Slightly Compressible Formulation for Viscous Fluid Flow

The slightly compressible formulation for viscous fluid flow (see
Chapters 2 and 3) has. been programmed and studied. The dam-reservoir
(I1ID), Hamel flow (IIE), and the free-surface wave generation flow prob-
lem (see Chapter 6) have been solved. The results obtained using this
formulation are virtually identical with the penalty function formulation
described above. So the sample examples will not be presented here.

One of the main advantages of this formulation over the penalty
function formulation is that when a static solution is reached,
all accelerations and velocities will approach zero {due to the fact

that it is a rate type constitutive equation, see Chapters 2 and 3).

In the penalty formulation, a small nonzero velocity is produced to
create a bulk viscous effect to support the loading (e.g., gravity).
Hence, the slightly compressible approach is preferred and has been
developed for the purpose of fluid-structure interaction problems which

will be discussed in great detail in the next chapter.
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Chapter 6
APPLICATION TO FLUID-STRUCTURE INTERACTION

I. Introduction

In Chapter 4 a general three-dimensional finite element formula-
tion was described for quasistatic and dynamic nonlinear shell analysis.
This shell theory can easily be degenerated to an analogous two-
dimensional formulation which includes several special cases of prac-
tical interest. MNumerical examples indicate the good behavior of the
elements studied.

In Chapter 3,the penalty function/finite element formulations of
the Navier-Stokes equations was described. HNumerical examples indicate
the effectiveness of this scheme. The sltightly compressible formulation
for viscous fluid flow has been programmed and studied. As has been
mentioned, one of the main advantages of this formulation over the
penalty function formulation is that when a static solution is reached,
all accelerations and velocities will approach zero. Hence, this
stightly compressible approach will be used for the purpose of fluid-
structure interactions.

As a practical application, the proposed finite element proce-
dures are employed for the dynamic, three-dimensional, nonlinear,
inelastic response of ground-supported, cylindrical liquid storage
tanks which accounts for fluid-structure interaction and free-surface

sloshing.
Early studies relevant to this topic were performed by

Westergaard [1], Hoskins and Jacobsen [2], Jacobsen [3], Werner and



-197-

Sundquist [4], and Jacobsen and Ayre [5]. They assumed the tank to be
rigid and the hydrodynamic wall pressures are then determined. Housner
[6] developed an analytical method for determining hydrodynamic wall
pressure under the same assumption that the tank is rigid. A mechanical
equivalent model is developed and is widely used in current earthquake
design practice [7].

Within recent years, studies performed by Veletsos [8], Yang
[9], and Veletsos and Yang [10] have shown, however, that the rigid-
tank assumption may lead to a significant under-estimation of the
magnitude of the resulting forces. The first use of a digital computer
in analyzing this problem with the aid of finite element methods was
completed in 1969 by Edwards [11]. This investigation treated the
coupled interaction between the elastic wall of the tank and the con-
tained 1iquid. Recent developments along the same Tine were performed
by Wu et al. [12] and Shaaban and Nash [13].

Haroun [14] recently conducted a theoretical and experimental
investigation of the dynémic behavior of cylindrical liquid storage
tanks to seek possible improvements in the design of such tanks to
resist earthquakes. In this study, natural frequencies of vibration
of the associated mode shapes are found through the use of a discreti-
zation scheme in which the elastic shell is modeled by finite elements
and the fluid region is treated as a continuum by boundary solution
techniques.

However , the methods cited are based on small motion
linear response, and do not take satisfactory account of nonlinear

effects observed in the field under the action of strong earthquakes,
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such as lift-off of tanks from foundations, finite-amplitude sloshing,
and nonlinear and inelastic tank response. Obviously a more advanced
approach is called for. The whole subject is indeed very complicated
and it is not the purpose of this thesis to perform a nonlinear tank
study, yet the author hopes to have developed a tool which can be used
eventually for that purpose and others.

Before we can perform a fluid-structure interaction calculation,
a contact/sliding element is regquired to handle the siiding assumption
of the fluid on the tank wall. We begin with the discussion of such a
sliding element. A free-surface wave-propagation problem is then used
to determine the effectiveness of the proposed mixed Lagrangian-Eulerian
scheme. The classical static axisymmetrical buckling of elastic cylind-
rical shells subjected to three types of boundary conditions is then
studied, followed by a buckling analysis of a tilted cylindrical liquid
storage tank subjected to internal hydrostatic loading. Finally, a dyn-
amic analysis of a liquid-filled cylindrical tank is performed to demon-

strate the finite element fluid-structure interaction procedures.

IT. Contact/Stiding Element

Contact elements may be used to impose inequality constraints
between nodes. Either perfect friction (i.e., "stick") or frictionless
{(i.e., "slide") conditions may be achieved.

A contact element is defined by three nodes and a spring constant,
or "penalty parameter," k, for our purposes. The connection from node
A to node B defines the "slide line" direction; whereas, node C is the
contact node (see Fig. II-1). The normalized projected distance of

node C to node A is denoted by a € [0,1] and is given by:
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a

Fig. II-1 A contact element is defined by three nodes
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-
o= AC- AB/ ||AB]|? (11.1)

(s
Here XY denctes a vector connecting point X to point Y and "«"is the dot

product. The normal vector £ from node C to AB is defined by:

. - -
=" (AB x AC) x AB (11.2)

10

e

<1/ 2l (11.3)

where "x" is the cross product and "<" means "is replaced by." The

local contact stiffness matrix KE is:

-2 afl-0) -(1-a)

) V4
ki sym o ) (11.4)

[
1

1

The rows and columns of the contact stiffness matrix are arranged in
such a way that the first row or co1umn‘corresp0nds to node A, while
the 2nd row (or column) and 3rd row {or column) correspond to nodes

B and C, respectively. Before the global assembly procedure, the local

contact stiffness matrix is rotated to the global form ﬁG (for the

s1liding case) via:

G- Tkt T (11.5)
T ]
A E R T
T=l0 L (11.6)
T=1%3 % 0Oy :
3
0.. 0 3
B
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0 [0 0 0] (11.7)

213 7

For the sticking case KG is

((1-0)2 0 0 o&(l-a) O 0 -(1-=a) 0 0
(1-a)® 0 0 all-a) O 0 -(1-a) 0

(1-)2 0 0 ofl-a) O 0 (1-)
Z 0 0 - 0 0
KE = 0 0 -a 0
) SYMMETRIC & 0 0 -
1 0
0

L 1
(11.8)

III. Numerical Examples

II1I-A. Free-Surface Wave-Propagation Problem

The problem statement and finite element meshes are shown 1in
Figure IIA-1. We generate a wave numerically by prescribing a displace-
ment-time history at the left-hand boundary of the domain. This pre-
scribed function is designed in such a way that it is consistent with
the experimental studies performed at Keck Laboratory of the California
Institute of Technology. Its function is to produce a solitary wave--
one in which the nonlinear and dispersive effects are balanced so that
the wave propagates without distortion.

Data used in the analysis are given as follows: ¢ = 13
L = 949.095; D = 10; H = 0.86, h = 5.895; and At = h/c = 1.7888.

Meshes 1 and 2 consist of 160 and 320, 4-node elements, respectively.

The flow was assumed inviscid, p =1 and A = 2.6089 x 107.
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The finite element calculations employing a one-dimensional
depth averaged theory [15] are compared with calculations for mesh 1,
one element through the depth. The results are shown in Figure IIIA-Z.
The figure shows the results agree remarkably well, considering the two
approaches are quite different. Notice that the rate of growth of the
trough is a little greater with the present scheme than it is for the
one-dimensional theory. Even though there is good agreement between
the two theories, experimental results are not consistent with the
previously obtained numerical results. The differences are: (1) the
experimental waveform propagates somewhat faster and exhibits less
amplitude decay; and (2) dispersion emanating from the back of the wave
is not seen experimentally.

The reason for the discrepancy between the numerical and experi-
mental results is the variation of the velocity -through the depth
is not Tlinear. Both the one-dimensional depth average theory and
one element through the depth, two-dimensional theory invoke this assump-
tion. As can be seen in'Figure I1IA-3, with two elements through the
depth, the trough has been reduced and the relative wave height is
essentially constant with propagation. The difference in having two
instead of one element in depth is that the distribution of velocity

is no longer constrained to be linear with depth.

It is also noted experimentally that "noise" superposed upon
a solitary wave tends to propagate at a slower velocity than the main
pulse. A numerical simulation of this phenomenon is shown in Figure

ITIA-4. The noise is generated by setting a no-slip boundary condition
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along the left-hand edge of the domain, in contrast to previous calcula-
tions in which a s1ip condition was employed. Note how the solitary

wave emerges, unaffected by the initial perturbations.

I11-B. Static Axisymmetric Buckling of Elastic Cylindrical Shells

Three types of boundary conditions were employed in this study:

a) bottom fixed--top free;

b) bottom fixed--top fixed with respect to horizontal displacement and
rotation; and

c) bottom simply supported--top fixed with respect to horizontal dis-
placement.

Load versus displacement data and deformed profiles are shown in Figure
111B-1 up to the buckling loads at which time the calculations were ter-
minated. Comparison is made with analytical results based upon eigen-

value analysis (see e.qg., [16]).

I1I-C. Cylindrical Shell Containing a Fluid

An analysis was performed of a tilted cylindrical shell sub-
jected to interna] hydrostatic loading. The problem statement is shown
in Figure IIIC-1, along with the stress results prior to any significant
nonlinear phenomena. Data employed in this analysis are given as fol-
Tows:

E=7.35%10° 1b/in? (Young's modulus)

v=20.3 (Poisson's ratio)
D=16.0 in
L =20.0 in
R=4.01n
h = 0.01 in

a = 30.0°
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v = 0.0361 1b/1'n3 (density of water)

The effective specific gravity, Yopps WS defined to be Yofs = Y9- The
value of g used in obtaining the stresses shown in Figure ITIC-1 was
1.8. Comparison with a membrane theory solution [17] confirmed the cor-
rectness of the numerical results outside of the boundary layer at the
fixed end. Buckling calculations were performed by incrementing g.
Results are shown in FiguresIIIC-2 and IIIC-3. As may be seen, the
initial bifurcation occurred in attempting to increment g beyond 1.8.
This corresponds to a maximum axial membrane stress of 547.53 psi at

x =L, ¢ = m which is approximately half the classical value. Although
this result was not anticipated, it bears a great deal of similarity to
results obtained by Argyris andDunne [18] in their penetrating study of
a compressed cylindrical panel. They too found an initial bifurcation
of approximately half classical. When they pursued the analysis into
the post-buckled regime, a drop in load of only 3% was noted, &t which
time the load was able td be increased again to a value in the vicinity
of classical. At this point a second, and more significant bifurcation
ensued, and this was followed by several more bifurcations. An impor-
tant point in considering the results of Argyris and Dunne was that a
preliminary eigenvalue analysis, employing the same mesh used in the
finite deformation case, yielded a buckling load approximating the
classical value on the high side. This Tends credence to the analysis,
but a full understanding of the computed initial bifurcation in this case,
and the present case,does not yet seem to exist. The results shown

were obtained using $1 elements. Similar results were also obtained
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with heterosis elements.

I1I-D. Dynamic Analysis of a Liquid Filled Cylindrical Tank

A dynamic analysis was performed of a 1iquid filled cylindrical
tank subjected to a periodic saw-tooth ground acceleration excitation.
The problem statement is shown in Figure ITID-1, along with displace-
ment, velocity, and acceleration time histories at three different
positions (node A, B, and C}. The tank is subjected to the mentioned
excitation in the x-direction only. Therefore all the bottom nodes of
the tank are subjected to the same excitation with the other two direc-
tions {y and z) fixed. A typical input ground excitation (acceleration,
velocity, and displacement) is given for node A. Due to symmetry, only
half the tank is modeled by 36 S1 shell elements, 80 uniform-reduced in-
tegration 8-node fluid elements, and 30 sliding elements. The height
of the tank is 864 ins (i.e., distance between A and C). The mean dia-
meter of the tank is 577 in. (i.e., distance between B and C). The
tank thickness is 1 inch. It is filled with water up to 720 in. The
material properties of the tank and water are:

Tank (steel):

E=3.0x10 psi

v = 0.3
o = 7.324x 1074 1b sec’/in’
oy = 3JJx104 psi (yield stress)
B =10.0 ' (plastic modulus)
Water:
8= 6.991x10'2 psi ( bulk modulus)

u=0,0 (dynamic viscosity)
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9.349 x 10”° 1b sec/in”

©
1}

3.864)<]02 'in/sec2 (gravity)

[iw]
[4

The spring constant, k, of the contact elements is taken to be 4.44 x 1010

psi. The Newmark parameters are: 3=0.5625,v=1.0, and At=0.02 sec. A
Tinear implicit-nonlinear explicit operator splitting algorithm with
one iteraction is employed. A smail deformation analysis option is
used. The maximum computed stress occurringin the tank is less than oy
even though the peak ground excitation is 1.5 g. The relative free
surface motion as well as the relative tank displacement is within the
small motion region. Therefore, no further analysis of this problem was
performed. The computed acceleration, velocity, and displacement time
histories of nodes B and C as well as the relative displacement between
nodes B and A and between nodes C and A are shown in Figure IIID-1.
It is expected that the fundamental mode is dominant for this kind of
excitation; also nodes B and C are expected to respond in
"phase." This phenomenon can be seen from the absolute displacement-
time histories of nodes B and C in the figure.

The deformed shape of the tank and the free surface motion (with
the input translational motion subtracted) are shown in Figure IIID-2
at a time interval of 0.2 seconds. The magnification factor of these
plots is 7.81. Frequency responses higher than the fundamental slosh-
ing freguency were observed. The sloshing period is approximately 6
seconds. Since the free surface motion is much larger than the tank
deformation, plots of the tank response (with the input transiational

motion subtracted) are shown in Figure IIID-3, magnified by a factor

of 76.31.
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Chapter 7
SUMMARY AND SUGGESTIONS FOR FURTHER DEVELOPMENT

In this thesis, finite element procedures for fluid-structure
interaction problems have been deveioped. Different aspects of non-
linear methodologies have been studied. A working finite element method
computer code [15], which will be discussed in a separate report, has
been developed which may be applied to the dynamic, three-dimensional,
nonlinear, inelastic analysis of ground-supported, cylindrical liquid
storage tanks subjected to strong shaking, and various other fluid-
structure phenomena. This is a significant step toward the development
of a clean general purpose, modularized, fluid-structure interaction,
finite element computer program that engineers will find helpful.

Future fluid-structure analysis developments will need to
include improved transient aTlgorithms, better fluid-structure interfac-
ing techniques, and contact-impact techniques.

Automatic time stepping strategies based upon accuracy consid-
erations [1,2], subcycling techniques [3-5], and effective iterative
equation solvers [6-9] will be generalized and eventually included in
this fluid-structure computer program. The presently developed,
slightly compressible fluid formulation is a step towards the inclusion
of a compressible formulation, although further studies are clearly
required.

The mixed Lagrangian-Eulerian method seems to treat fluid-
structure interaction problems with large motions of the structure

naturally and economically. However, for large-deformation bubble
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dynamics calculations [10] that occur, for exampie, in light water
reactor systems, "continuous rezoning" of meshes, together wifh mixed
Lagrangian-Fulerian methods are required. As rezoning is expensive

and difficult to do adaptively, other techniques are called for. Hirt
and Nichols [11] proposed a volume-of-fluid finite difference method
(VOF) in which the boundary of the free surface is not specified
directly, but instead is defined by the fraction of fluid in each cell.
The fraction of fluid is treated as a cell variable and governed by a
transport equation. This technique can permit the solution of very
complicated free-surface problems (e.g., bubble dynamics, etc.) . It is
not yet clear how to develop VOF finite element methods due to the more
general topology of finite element meshes compared with finite differ-
ences. A combination of VOF and mixed Lagrangian-Eulerian methods may
be an effective compromise.

The contact/sliding element proposed here for fluid-structure
interaction problems cannot be used directly for tanks 1ifting off from
their foundations, and the resulting large-amplitude sloshing causing
roof damage. This contact element, together with the contact-impact
technique developed by Hughes et al. [12,13] and Hallquist [14] can
serve the purpose and would be a worthwhile generalization.

Finally, a word of caution is in order regarding the ability of
the present capabilities to solve general problems of fluid and struc-
tural response. Although a degree of confidence has been established
in certain realms of phenamena, it should be emphasized that the

present developments are incapable of solving many problems of
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physical interest and application of these techniques in such circum-
stances is speculative at best. Areas which are particularly difficult
and presently beyond the developed capabilities are (among others) high
Reynolds' number flows and complex shell buckiing. Much numerical

research still needs to be done in these areas.
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