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ABSTRACT

The eflorts of this dissertation are directed toward the davelopment of a tech-
nique for understanding the dynamic response of structural elements governed
by nonlinear partial differential equations. This technigue is based on the con-
cepts of the eqiuvalent linearization method which relies on obtaining an

optimal linear set of equations to model the original nonlinear set.

In this method, the linearization is performed at the continuum level. At this
level, the equivalent linear stiffness and damping parameters are physically real-
izable and are defined in such a way that the method can be easily be incor-

porated into finite element computer codes.

Three different approaches to the method are taken with each approach
based on the minimization of a distinct difference between the nonlinear system
and its linear replacement, Existence and uniqueness properties of the minimi-

zation solutions are established.

The method is specialized for the treatment of steady-state solutions to har-
monic excitation and of stationary response to random excitation. Procedures

for solving the eguivalent Enedrization are also discussed.

The method is applied to three specific examples: one dimensional, hys-
teretic shear beams, thin plates governed by nonlinear equations of motion and
the same nonlinear thin plates but with cutouts. Solutions via the equivalent
linearization method using the stress difference minimization compare well with
Galerkin’s method and numerical integration. The last example is easily han-
dled by the continuum equivalent linearization technique, whereas other

methods prove to be inadequate.
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L INTRODUCTION

linear models of dynamic systems have enjoyed widespread use throughout
the history of engineering analysis. Due to the relative simplicity of such models
and the amount of ettention given to this type of analysis, a vast amount of
both qualitative and guantitative information is available on the response of
such systems. In fact, the simplicity of linear analysis is often the sole impetus

for using a linear mode!l in the first place.

However, the need for nonlinear analysis becomes particularly apparent when
the dynamic systems experience large amplitudes of vibration. In particular, it
is recognized that large scale civil engineering structures behave nonlinearly
when excited by damaging earthquakes, wind loadings and wave loadings. Non-
linear, dynamic models are alsoc needed for the analysis of aircr_aft and
aerospace structural components when excited by strong acoustical loadings.
The necessity for nonlinear structural models may arise from geometric con-
siderations, nenlinear elastic and inelastic material behavior and/or from the
inadequacy of linear models in describing the energy dissipation in the struc-

ture.

The difficulties of nonlinear analysis lie not so much in the lack of good
mathernatical models, but more in the inability to solve the equations of motion.
Only in rare cases can exact solutions to the system equations be cbtained, and
generally, existing analytical technigues produce cnly qualitative information on
the response. Therefore, recourse to numerical techniques or aspproximate
analysis iz generally made. Although purely numerical techniques provide
detailed information on the response of specific systems, they tenc to be expen-
sive and are not well suited to genera!l studies. Hence, emphasis in this disserta-

tion will be placed on approximate analytical techniques. The inclusion of
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purely numerical analysis will be limited to the provision of checks on the

analytical sclutions.

Considerable attention has been given to the understanding of the response
of nonlinear discrete systems. The discrete models originate either from sys-
tems where discrete dynamic components are physically apparent or from spa-
tial discretization of a continuous systems. The linearization procedures are

then applied to the resulting ordinary differential equations of motion.

A discussion of some commonly used techniques of nonlinear analysis
directed toward use in earthquake engineering is presented in reference [20].
For the analysis of systems subjected to deterministic excitation, most of these
approximate techniques rely on the assumption of a particular solutior form.
The solutions are written in terms of undetermined coefficients for which the
approximate method produces solutions. The classical metheds of harmonic
balance, energy balance and equivalent linearization can be used to obtain
first-order approximate solutions for steady-state response of the system when
excited by a harmonic input. Higher order approximations to such solutions
can be obtained through -tl;e use of perturbation technigues, asymptotic
methods [4] and Galerkin's method {27] by the inclusion of several terms in the
approximation. The specification of the sclution form in the above methods
precludes transient solutions, nor can stability information on steady-state
solutions can be obtained. The method of slowly varying parameters [20] does,

however, permit such analysis.

A number of these approximate techniques used on systems described by the
discrete, deterministic theory have been adapted for use on the nonlinear, sto-
chastic vibration problem. A complete review of these methods can be found in

references [20] and [7]. Three of the most widely used methods are the previ-
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ously mentioned perturbation and equivalent linearization techniques along
with the Fokker-Planck equation approach. The latter approach is one in which
the joint probability density functions of the displacements and velocities are
obtained, either exactly or through an approximate technique, from the

corresponding Fokker-Planck equation.

When a nonlinear continuum model is used to describe the dynamic system,
complexities are introduced in that the model now contains a spatial domain as
well as the temporal domain present in a discrete model. Existing studies deal
with the nonlinear analysis of structural elements such as beams, strings,
plates, membranes and shells. Three rather comprehensive surveys of existing
work with these nonlinear structural elements can be found in references [41],
[42] and {11]. In most studies of these types of nonlinear continua, the partial
differential equations of motion are first spatially discretized by an approximate
technique such as modal decomposition, Galerkin's method or the finite element
method. Then ihe previously described approximate discrete techniques are
directly applicable to the resulting set of nonlinear, ordinary differential equa-

tions.

The approach taken in this dissertation for the analysis of nonlinear con-
tinua is to perform the linearization prior {o the spatial discretization of the
partial differential equations. In particular, the nonlinear system is replaced by
a linear auxiliary system containing undetermined, spatially distributed damp-
ing and stiffness parameters. These parameters are then determined in suck a
way as to model the amplitude dependent energy dissipation and stiffness pro-
perties of the nonlinearity in the original system. The solution to the auxiliary
systermn can then be established in terms of the eguivalent linear parameters.

This is a continuum analog to the discrete equivalent linearization method that

has been previously mentioned.
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It is recognized that the finite element method is widely used in structural
analysis, especially for structural members with complicated boundary condi-
tions and spatially distributed material properties. The motivation for defining
the eguivalent linear system at the continuum level is for the ease of implemen-
tation inte finite element computer codes. Analysis presented in this disserta-

tion bhas been directed toward such an implementation.

In Chapter 1, a set of general equations of motion are defined for a lineariz-
able systemn for which zero-mean solutions exist. A brief survey of existing tech-
niques for solving such a system is presented. For later use, the Galerkin
method and a Ritz technigque are described in detail. The formulation for
equivalent linearization method for discrete systems is presented to provide a

basis for the new continuum equivalent linearization approach.

The general formulation for the continuum equivalent linearization method is
developed in Chapter III. Three different formulations of the method are
presented and discussed. The existence and uniqueness of solutions for the
equivalent linear parameters are investigated for the three problem formula-
tions. Considerations of the finite element discretization of the linear, auxiliary

system are also presented.

The general equivalent linearization relations from Chapter 1II are specialized
in Chapter IV for two types of analysis: steady-state solutions for harmonic exci-
tation and stationary response to random excitation. Mechanization of the
method is discussed for both types of analysis. The free vibration, amplitude-
frequency relations can be obtained as & special case of the steady-state, har-
monic analysis, and a technique is presented for solving the eguivalent linear
equations. A method for obtaining resonant response of the harmonically

excited system is also introduced.
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In Chapter V three example studies of steady-state, harmonic response is
presenied., In each study, the fundamental nonlinear response mode is investi-
gated using the continuum eguivalent linearization method, and results are

compared with those from other existing techniques.

The response of a cne-dimensional shear beam composed a hysteretic yield-
ing material is investigated in section 5.1. The convergence of the equivalent
linear solution with refinement of the mesh for the spatial domain is discussed.
Results from the equivalent linearization analysis are compared with those from

Galerkin’s method.

Section 5.2 contains the nonlinear analysis of Kirchhofl plates described by
the Berger formulation of the Von Karman nonlinear equations of motion. The
linear auxiliary equation is discretized using the Bogner-Fox-Schmidt shape
functions in the finite element formulation. The results from the three
equivalent linearization problem formulations are compared with those from

Galerkin’s method and numerical integration of the equations of motion.

In section 5.3, a further example of the nonlinear plate of section 5.2 is
treated: the response of a.rectangular plate with cufouts. The matching of the
additional boundary conditions at the hole makes analysis by standard tech-
niques difficult, while usage of the finite element-equivalent linearization tech-
niques can be as routine as for the plate without a hole. The effect of the hole
size on the resonant frequencies and forced response has been determined by
the equivalent linearization technique, and results are compared with those

found using a Ritz formulation of the nonlinear problem.
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IL GOVERNING EQUATIONS AND REVIEW OF SOME EXISTING SOLUTION TECHENIQUES

2.1 Introduction

The first section of this chapter deals with the definition of the class of non-
linear continuous systems that will be investigated in this and subsequent
chapters. The wide variety of vibration problems encountered in engineering
practice makes the definition of an all-encompassing system of equations
diﬂiéult.. if not impossible. In spite of this obstacle, an attermpt will be made to
cover as many nonlinear problems as possible, while retaining a sufficient
amount of conciseness to permit some general statements concerning their

solutions.

Limitations placed on the system operators, boundary conditions, etc., as
presented in section 2.3, should be viewed in the spirit of conciseness and not so
much as being necessary conditions to obtain solutions to 2 specific problem.
For example, the familiar property of self-adjointness of the differential opera-
tor in a eigenvalue problem is sufficient for the useful property of eigenfunction

orthogonality, but some systems which are not seif-adjoint can surely be solved.

In section 2.4, a number of existing techniques for solving nonlinear vibration
response of continua are discussed. The list of methods is not intended to be
all-inclusive; only those techniques that will be explored in iater chapters are
reviewed. These techniques, typical of all those encountered by the author, are
formulated in such a way that the system is first spatially discretized, and the
resulting time dependent relations are then linearized. This contrasts witk the
new technigque to be presented in Chapter Il in which the linearization is per-

formed in the continuous domain, followed by the spatial discretization.



2.2 Governing Equations

A number of dynamic systemns can be described by partial differential equa-
tions {PDE’s) in which the independent variables are space and time. A subclass
of the PDE's are those in which the PDE is approximately linear for small
motion. For larger amplitude of motion, the nonlinear effect becomes more pro-
nounced with the degree of nonlinearity depending on the size of subsequent
motion. Herein, consideration will be given to a further subclass of equations in
which the nonlinearities are independent of inertial stresses and will depend
only on dissipative and restoring stresses of the system. Let &£(x) and 6&(x)
represent the spatial domain and boundary of the spatial domair, respectively,
described by spatial coordinates x, and the time parameter be represented by ¢.

Consider a continuous system in £(x) described by the set of partial differential

equations:
V-r(a, w+ 7 (e ww + @b w) + m(x)W=p(xt) (2.1}

where a dof above a variable {or operator) denotes differentiation with respect
to ¢, V() is the divergence operator with respect to the spatial coordinates x,

and

+ w=w{(xt)is the dependent variable representing "displacements"
"+ a, b, c are sets of 'material” and "geometry” properties of the sys-

tem and are functions only of x

« m{x)is the "mass”distribution of the system

+ p{x,t}is the applied "load"

« - is a linear "stress" operator working only on the displacements
w and "stiffness” parameters a

+ 7™ is an operator {or functional) which is nonlinear in dispiace-

ments and/or velocities, w and involves the nonlinear "stiffness”



parameters b

. Q" is a linear "damping"” operator working on the displacements w
and damping parameters ¢

On every point on the boundary, 8 £(x), let either of the following hold:
B(w) =0 (2.2)
B*w)=10 (2.3)

where B%(w) and B*{w) are sets of geometric and naturai boundary conditions,
respectively, which are linear homogeneous operators containing derivatives

normal to and along 8 §(x).

Before continuing the discussion of the nonlinear system of equations, a

few remarks need to be made on notation and terminclogy:

1. The bold terms in equations (2.1) thru (2.3) represent sets of indexed
elements. The number and range of indices depend on the given sys-
tem under investigation. For example, the linear 'stress” operation T
may be a scalar *, a vector 'r;" or a two tensor Tf’, , depending on the
number of indices needed to describe the stress field. The boldface

notation was choseh here for the sake of generality.

2. The terms enclosed in quotes in the text following equation {2.1), such
as 'stress', should be thought of as generic descriptions. For different
systems, 7%, for example, may have different physical meanings, but in
each case 7 would have the character of stress. In further discussion,
the generic name will be used without being restricted to any physical

interpretation.

3. In order for the mathematical statement of the nonlinear problem,

equations (2.1) - (2.3), to be well-posed, appropriate initial conditions



need to be specified for w and w. However, attention will be focused
mainly on obtaining steady state solutions when p is harmonic in time
or on stationary solutions for a temporally random p. For these types
of analysis, the periodicity or stationarity conditions will alleviate the

need for specifying initial conditions.
2.3 System Properties

The following restrictions will be placed on the nonlinear continuous system
described by equations (2.1) - (2.3). These properties will be used to simplify
analysis in order that specific statements can be made about the response of

the system.
2.3.1 lLipearizability of the system

Most existing techniques, along with the technique to be presented in the
next chapter, for solving nonlinear systems of the type introduced in the
preceding section assume that the system response is nearly linear for small
amplitudes of motion. In fact, the response of this linear system is often used
for a first a approximation to the nonlinear response. The linearizability has
already been partially satisfied by the statement of the problem in equations
{2.1); that is, the restoring stress has been written in a linear part, L, and a
nonlinear part, 7. It only remains that the qualitative “effect” of * be predom-
inant over ™ as the amplitude of vibration becomes small. The idea of lineariza-
bility is dependent on the approximate method used, and therefore detailed dis-
cussion of this point will be deferred to later discussion of the specific tech-
niques, whenever possible. In all further discussion, the linearized system will

be taken to be equations {2.1) with 7 omitted, or

V- + @ + m(x)¥ = p(xt) (2.4)
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2.3.2 Positive definiteness and self-adjointness of linearized system

Definitior - Inner product

For general variables, or operators, &, b and ¢, the scalar inner product

( )() iz defined to have the following properties:
1. aab=ba
2. ma> 0 ifa= 0 and ara=0 ifa=0

3. (a+b)ec=ac+bc

Definition - Positive Definite
For a differential operator L(a, u) and for @ and u defined on the spatial

domain &(x), Lis said to be posifive definite if

Sulizu)d g(x)> 0
£

and for & = 0, the integral is zero for u = 0. The integral can vanish for u= 0 iff

a=D0

Definition - Self Adjoint
For L and u described above and for v also defined on  &(x), L is said to be

self- adjoint if

f wl{v)d A&(x):f vI{u)d 5(x)
& B

It shouid be noted that whether or not an operator is positive definite and self-

adjoint can be established by integration by parts.

According to the definitions presented above, the divergence of the linear

stress operator, V-7, will be required to be both positive definite and self
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adjoint in all further discussion of the nonlinear system {2.1). In addition, the

mass distribution m (x) will be required to satisfy
m(x) > 0 (2.5)
Consider the eigenvalue problem of the undamped, linearized system in
equation (2.4):
v 7i{u,) = Am(x)u, (2.6)

where A, and u, are the r** eigenvalue and r set of eigenfunctions. As can be
found in a number of vibrations texts, for example reference [34], the above
properties for V-t* and m(x) permit the following relationships for the eigen-

values of (2.6):
1. The eigenvalues are paositive.
A>D0 ;r=12.. (2.7}

2. For distinct eigenvalues A, and A,, u, and u; are orthogonal and can be

nermalized in such a way that

1 ifr=s
Sm@ v d £ =g irus (2.8)
& .
forr,s = 1,2...

3. A Galerkin discretization of the eigenvalue problem in equation {2.6)
will produce symmetric, positive definite 'mass" and 'stiffness”

matrices.
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2.3.3 Form of damping operator

The damping operator QL(W) will be assumed to be from the class of Rayleigh
damping operations, where Q* can be written as a linear combination of V-7*

and m(x)w, or
QL =7V -7+ ypm(x)w (=.9)
with 74 and ; being constant coefficients.

Again referring to the eigenfunctions u, and eigenvalues A, of the linearized
equation (2.8) and using properties 1 and 2 from section 2.3.2, the following

orthogonality relations can be established for the Rayleigh damping operator of

equation (2.8):

(2.10)

fur'ql(us) d

A1t 72 ifr=s
(x) = e fres

provided A, # A; forr#s;7r.s = 1,2,.. Furthermore, since Q‘:’ i5s a linear combi-
nation of V-7 and m(x)w, a Galerkin discretization of the linearized equation

will produce a symmetriz, positive definite damping matrix.

2.3.4 Symmetry of nonlinear siress operator - steady-state harmanie response

Definition - Symmetric Operator

If u(x.¢) is a periodic function of period T in time, then the operation ™(u) is

said to be symmeiric if
T
J(u)dt =0 (2.11)
Q

Consider the case of the nonlinear system of equations (2.1) - (2.3) where the

right hand side of equation (2.1) is harmonic in time. Then,

Vert+ V¥ + @+ m ()W = r{x)cosut (2.12)
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B¥(w) = 0 | (2.12a)
B*w)=0 {2.12b)
It a steady-state solution of {2.12) exists, let the solution, w, be sought wkich is

periodic of period T, where T = -?-il

Since w(x, £} is periodic in time, it can be expanded in a temporal Fourier

series [52]

w(x.t) = Y¥by + }-: [an(x)sin 27;,“ t + bp(x)cos 21;," t] (2.13)
n=}

where a,(x) and b,(x) ; n=1,2,..., are the Fourier coefficients of w. Then, if 7" is

symmetric and V -7 is positive definite, it can be shown that bg(x) = 0.

In all further discussion of the steady-state solution of equation (2.12), it will
be assumed that the nonlinearity is symmetrie. The significance of this, as
shown above, is that it will not be necessary to inciude a constant (in time)
offset function in the approximate solution for the steady-state, periodic solu-
tions of the nonlinear system. The inclusion of the offset functior will generally
involve more complexities in the analysis, as can be seen in the treatment of

non-symmetric nonlinearities of discrete systems in reference [45].

2.4 Review of Existing Solution Techniques

Exact solutions to the class of nonlinear systems described in equations (2.1)
- (2.3) are generally not available. Therefore, recourse to approximate tech-
nigues is wusually made. Existing techniques fall into three general
classifications: those which are purely numerical, those which are purely analyt-
ical and those which are both analytical and numerical in character. Methods
which are purely numerical are generally quite expensive, and generalities to

solutions of the same system using different parametiers are lost. Therefore,
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further discussion will be focused only on purely analytical and numerical-
analytical methods, except when purely numerical techniques are desired to

serve as a check on other solution procedures.

A different technique is generally used to solve the temporal portion of the
problem than is used to solve the spatial part. The method chosen for each part
of the problem will depend on the type of analysis to be performed (stability,
steady-state response, etc.), on the boundary conditions to be satisfied or on
simply a personal preference of the analyst. Table 2.1 lists a number of publica-
tions that deal with the nonlinear vibration of continua by purely analytical or
numerical-analytical methods. An attempt has been made in the table to
include methods representative of current and past work, but it is by no means

inclusive of all work.

In the following sec.tion, three methods will be discussed in detail: Galerkin’s
method applied to both spatial and temporal problems, a Ritz approximation in
space and Hamiiton’s principle in time, and spatial discretization followed by

the method of equivalent linearization on the temporal problem.
2.4.1 Galerkin's method (periodic sclutions)
Consider the nonlinear system given by equation (2.12) which is forced by a
27

load that is harmonic in time with pericd T = - Let a set of functions &;(x) ;

i=1,2,..,N , be comparison functions, where a comparison function has the fol-

lowing properties:

1. ®(x); i=12,... N, satisty all the boundary conditions of (2.12); Le.

Bg(ﬁt) = 0 and Bﬂ'(!") =0
2. ®;(x): i=12..N, are linearly independent and represent the first N

of a group of functions ®;(x} i=1,2..,N... which is complete in the
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Type of Type of Spatial Temporal Ref.

System Analysis Method Method

planat forced modal equivalent

string random analysis linearlization [10]

planar string forced modal

non awtaonomous periodic analysis perturbation [33]

1-D rod traveling harmonic

hysteretic waves perturbation balance [9:

non-planar stability of

bending beam foreced, periodic Galerkin percurbation [17}

bending sub-harmeonics nodal

beam forced, periodic analysis Galerkin {5¢]

bending free modal

beam vibration analysis exact {53]

bending stability of finite

beam forced, periodic elements petturbation fel
free Ritz- finite

plate vibration Kantrorovitch difference f18]
forzed Lagrange's equivalent

plate periodic equations linearization [31]
forced multiple

plate pericdic exact scales [u€)

plate on

elastic free

foundation vibration Galerkin exact f14]

plate with forced

initial stress periodic Galerkin Galerkin f12]
free Hamilton's

rlate vibration perturbation principle [40]

cylindrical forced Lagrange's harmonic

shell periodic equations balance {157

2-D

plane strain forced finite eguivalent

hysteretic random elements linearizaticn [43]

Table 2.1 Summary of Existing Work on the Nonlinear

vibration of Continua
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given region.

Furthermore, since solutions are sought which are periodic with period 2—:~.

let f;(f) be a set of functions which are periodic with a period ET'.T Since the set

of functions [ sinwt, coswt ] form a basis for such periodic functions, let
Fi{t) = w; coswt + v; sinwt {2.14)
Using these properties of &, and f;, the solution w(x ) will be approximated

by w(x,¢), where

() = 38 (xfi(t) (2.15)

i=1
Since w is not an exact solution, substitution of % into the equations of motion

leaves a non-vanishing residual, g, where:
e=V -H{®)+ V- -7¥E, W) +QL+m(x)i";r - r{x)cosut (2.18)

With W defined as in equation {2.19), Galerkin’'s method says that the best
solution for u; and v;; i=1, 2,....N, is given by the solution to the following set

of equations (see reference [27]):

T L
[ o P—dxat=0 (2.17)
0 2 k
i aw
_{fc- o, GX @ =0
5

fork=12,... N.

Inserting egquations (2.15) end (2.18) into equations (2.17) and performing

the integrations gives:

N T
21 [-o*MG + KS1wy + @ ) Biv; + 3& = fF (2.18)
i= J=1



17

N N
-0 ) Biuy + Y [~o®M5 + KGlv, + 3§ =0
§=1 j=1

where
M= [m(x)8; 8, d H(x) (2.18a)
Bf = ?&(@j)-@i d 5(x) (2.18b)
K§ =ﬂf[v (8 )} 8 d B (x) (2.18¢)
7& =8f[v C{u, v} &; d £(x) (2.184)
3§ ={[V-S(u.v)]-m d 8(x) (2.18e)
Clu, v) = ?1_;-?1'”(11. v. ¥)cosdd (2.18f)
on
5(u, v) = i—{-r”(u, v, ¥)sin¥d ¥ (2.18g)
ff= fr(x)e,d 5(x) (2.18h)
o= af (2.18i)

Recall the properties of the nonlinear system given in section (2.3), particu-
larly those of positive definiteness, self-adjointness and Rayleigh damping. Now
suppose that ®,; k=1 2,...N, are the first N sets of eigenfunctions teo the

finearized problem, or
V-r(d,) = A2 m(x)d, (2.19)

where A represents the corresponding k% eigenvalue. Using (2.19), the ortho-
gonality property of equation (2.8), and the Rayleigh damping definiton , the

matrices of equations (2.182) - {2.18¢c) become

JM{,Z =
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Bf =24N " (2.20)

where ¢; is the damping coefficient of the <% linear mode and

L=k (i‘?’x + N72)

All future references to the Galerkin solution for the periodic nonlinear prob-
lem will be solutions to the nonlinear algebraic equations of {2.18), {2.18d) -
{2.18h) and (2.20). Note that by using the linear eigenfunctions for comparison
functions, the linear portion is uncoupled, thus leaving conly the nonlinear vec-

tors #f and 7 § to couple the equations {2.18).
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2.4.2 Ritx method (periodic sclutions)

The Ritz method will proceed from the wvariafional form of the nonlinear
problem , whereas the preceding Galerkin method started with the system being
described by a differential eguation. Let the generalized Lagrangian, L, of the

system (2.12) be written as:
L=T-U+W (2.21)

where T is the kinetic energy, U the potential energy and W the virtual work done
on the system by non-conservative forces. The generalized Hamilton’s principle
[18] says that from time #; to time £, a point in the systerm will follow a path

which extremizes the integral of L over time from ¢, to ¢, or
ty

6 fLdt=0 {2.22)
t

In the Ritz method, the solution will be approximated by a function

w(x )= f} $;(x){wycoswt + ysinwi | {2.23)

=1
where here, &,; i=1 2. .,N, are admissable functions. Admissable functions
are similar te comparison functions except that they need only satisfy the
geometric boundary conditions; that is, for the system of equations {2.12), only

the following need be satisfied:

B'(Qi) =0 ;i=1, 2,...,N
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Surely trial functions which satisfy all of the boundary conditons could be
used, but the use of admissable functions enlarges the class of functions from
which to choose. In fact, the satisfaction of geometric boundary conditions is
not necessarily required to effect a solution when dealing with the variational
form of the problem. Discussion of this can be found in references [48] and

[34].

The variation in equation (2.22) is accomplished by setting

2
3 w
—— T-U+W¥W)dt =0 2.24
aan o ¢ ) (2.24)
0
_— T-U+Widt=0

The kinetic energy for the system in equations {2.12) is given by
T(¥) =% [m(x)¥%d &(x) (2.25)
8
Suppose that the potential energy U can be written as:

U=Ut+uh

=% [FL¥ld g(x) + UM (2.26)
F

where U% is the potential energy in the linearized problem, 7£ and ¥ are linear

operations of w and UM is the contribution to the potential energy by 7.
Using the linearity of #* and #%, along with egquations (2.23), (2.25) and (2.25),

the Ritz equations can be written as:

N
LI-o® mf + ufluy = (2.27)
J=
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N
2 [=a? Z’zg + Kl = 3§

el
where

mE = {m(x}@ri, d 8(x) (2.27a)

=}éf [FL(B)TH(5) + #H(&, > 28] d £ (x) (2.27b)

38 = ;}f"a {[ (F) - UML(#)] a8 (2.27¢)

56 =— av f [W(F) - UN(#¥)] 2w (2.27¢)

V= @t (2.27¢)

If the system investigated is conservative and linear, that is if W and U are
omitted from (2.27c) and (2.27d), the system of equations reduce to the eigen-

value problem:

Z‘[—mz RE+ nflu, =0 (2.28)

j=t
It can be shown that the matrices %% and k¥ in (2.27a) and (2.27b) are identi-
cal to those one would oi:tain by directly applying the well-known Rayleigh-Ritz
method to the linear, conservative system. Therefore, this method of perform-
ing a Ritz approximation to Hamilton's principle can be shown equivalent to a

well established method for linear problems.
2.4.3 Spatial discretization and equivalent linearization

Let attention be returned to the general nonlinear system of equations given
by (2.1) - (2.3). The first step of this method is to discretize the spatial portion
by any acceptable technique, such as via the finite element method, Galerkin’s

method, or modal expansion in terms of the linearized eigenfunctions. This will
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generally lead to a set of ordinary differential eguations in time of the form:
Md+C(b)d+K(a)d+ 3(cdd)=1f() (2.29)

where d = d(# ) are discretized N-vector displacements. ¥, C and X are the mass,
damping and stiffness matrices of size NxN, resulting from the linear operators
in (2.1), while f(¢) represents the discretized forcing term. (b, d, d) is an N-
vector which is nonlinear in displacements d and velocities d and criginates
from the discretization of the nonlinear operator V-7 . Recazll that a,b and ¢
are stifiness, damping and nonlinearity parameters, respectively, in the original
nonlinear system. The explicit form of the matrices and vectors in (2.29) will

depend on the method of discretization.

By way of obtaining appproximate solutions to equations (2.29), let an auxili-

ary set of linear equations be given by:
Md+ (C+C%d + (K+K°)d = £(¢) (2.30)

where C* and K* are matrices independent of time. As will be seen later in this
section, these matrices will be adjusted in a prescribed manner such that the
difference between the nonlinear equations of (2.29) and the auxiliary, or

equivalent iinear, equations in {2.30} will be minimized.

Let d°* be a vector function of time and & member of a class of functions
containing the solutions to the linear, auxiliary equations (2.30). Let A
represent the difference between the original nonlinear system and the linear

auxiliary system both operating on the same function d*(¢), or
Az F(d'd") - Cced" - Ko (2.31)
The central idea of equivalent linearization, as applied to equations (2.28), is

to minimize the difference term A over all functions d° belonging to C. The

usual procedure is to first average over time the Euclidean norm of A. Then the
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minimization of A is stated as

G (ATA) = mimimum  foralld* € C (2.32)

where AT denotes the transpose of A and ( is a linear, time invariant opera-

tion.

The minimization is then accomplished by extremizing G {AA) with respect
to all elements of C* and K*. If € end K§: 47=1,2..,N, represent the ele-

ments of % and K® the extremization is expressed as:

a TAY =

2 G =0 (2.33)
9 a(ATA) =0 (2.34)
oKy

Since d*(¢) belongs to the class of functions which satisfy the linear auxiliary
equations, there exists an implicit relationship between the solution d of auxili-
ary equations (2.30) and the equivalent linear matrices C* and X* in equations
(2.33) and (2.34). These equations are then solved in an iterative fashion for

d,C* and K*.

For the sake of brevity. the above description of the generalized equivalent
linearization method for ordinary differential equations is by no means com-
plete. A more thorough treatment of the method can be found in references
[45] and [21]. One result, from the investigation reported in [45] on the inverti-
bility of relations {2.33) and (2.34), deserves comment at this point. It was
shown that when the dimension of the solution space described by  equaled or
was greater than 2N, the relations ir {(2.33) and (2.34) became singular. There-
fore, if solutions for C* and K® exist, they are not unique. However, it was
demonstrated that the non-uniqueness does not affect the quality of the solu-

tions in that all values of C® and K*® which satisfy the singular relationships do
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an equally good job of minimizing G(ATA). It should be noted, however, that in

the mechanization of the general method, one encounters the task of solving a
singular set of eguations. This singularity of equations (2.33) and {2.34) will
create numerical difficulties. The ideas of existence and uniqueness of the
minimization relationships resulting from the extension of equivelent lineariza-

tion to partial differential equations will be investigated in Chapter IIl
2.9 Remarks

The class of nonlinear partial differential eguations that will be investigated
has been presented in equations {2.1) - (2.3). Simplifying assumptions of linear-
izability, positive definiteness, self-adjointness, form of damping to be con-

sidered, and symmetry of the nonlinearity have been stated and discussed.

A brief survey of existing techniques for solving nonlinear continua problems
that are either purely analytical or numerical-analytical has been presented.
Galerkin's method, the Ritz approximation to Hamilton’s principle and the
method of equivalent linearization applied to the spatially discretized problem
have been discussed in further detail. These methods reduce the original non-
linear partial differential equations to a set of of nonlinear algebraic equations
for which general solution techniques exist. The algebraic equations developed
via Galerkin's method {2.18) and the Ritz method (2.27) will be used to obtain
solutions to particular problems for comparison with solutions generated by the
new equivalent linearization technique to be developed in Chapter III. It should
be noted that the striking difference between the Galerkin and Ritz method is
that the Ritz method is applied to the varizfional form of the system, while the
Galerkin method starts with the problem stated in the differential form. The
variational! statement of the problem permits the usage of admissable functions

instead of the comparison functions that are needed for Galerkin's method.
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This difference gives the edge to the Ritz method on problems in which satisfying

the natural boundary conditions becomes difficult, if not impossible.
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M. EQUIVALENT LINEARIZATION FOR CONTINUOUS SYSTEMS

3.1 Introduction

The concept of equivalent linearization was introduced in Chapter Il in the
application of the method to a sel of nonlinear ordinary differential equations.
The principle of the method was first presented in reference {4] for the case of a
single ordinary differentia! equation with harmonic excitation. Although this
original work derived the equivalent linear relationships through the methods of
power balance and harmonic balance, the relationships are now typically
developed by the residual minimization procedure discussed in Chapter II. The
method was then extended to stochastic equations in references [5] and [8], and
a generalization to multi-degree-of-freedom systems has been presented in
reference [21]. For the most part, equivalent linearization has been used
exclusively for determining periodic solutions and for stationary random solu-
tions. One exception to this is recent work in reference [45] in which the
method was applied to transient response of nonlinear single-degree-of-freedom

systems.

In this chapter, the idea of equivalent linearization is be extended to the class
of nonlinear systems by equations (2.1) - {2.3). This method differs significantly
from the discretization-equivalent linearization technique described in section
2.4.3, in that here, the linearization is performed before the spatial discretiza-
tion. More specifically, the auxiliary system for this method is a set of partial
diflerential equations containing dissipative and stifiness parameters to be
determined in such a way that a difference between the original nonlinear sys-
tem and the linear auxiliary is minimized. The difference term here is not only a
function of time but also a function of space. Therefore, its minimization

involves complexities not encountered in its discrete analog.
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This chapter deals with the mechanics of constructing such an equivalent
linear solution and the properties of their solutions. The first sections are con-
cerned with the definitions of the linear auxiliary system, system difference
terms and the averaging operators to be used on the difference terms. Following
this in section 3.5, the minimization of the egquation difference terms is dis-
cussed. Discretization of the resulting equivalent linear systemn and properties

of the equivalent linear solutions are discussed in sections 3.6 and 3.7.

3.2 Class of Auxiliary Systems

Let the linear auxiliary system for the equivalent linearizaton method be

defined as:
Ve ri(a, w) + V-ri(a w) + QX(b, w) + QX w) + m (X)W = p(x,t) {3.1)
B{w) =10 (3.2)

BYw)=10

where V -7(a, w), @(b, w), m (), p. B? and B” are as defined in section 2.2. a(x)
and #{x) are the equivalent linear stiffness and damping parameters, respec-

tively, for the auxiliary system.

The form of the equivalent linear damping QL(ﬁ, w) is more restrictive than
for Q“(b, w). Q*(8, w) is limited to strain related damping; that is, in the Rayleigh

damping definition of equation (2.8), ¥, =0 or
QLB W) =V 7B W) (3.3)

It is clear that the form of the linear auxiliary system arises from the
replacement of the nonlinear operation V *7¥ in the nonlinear equation (2.1) by
the linear operation V -t2(a, w) + QX(8, w). Then if equation (3.1} is to model the

response of equation (2.1), V-7 and QL must model the response dependent
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stiffiness and dissipation properties of V -4¥ in some prescribed way.
3.3 Definition of Equation Differences

Let w' = w*(x.f) be a set of functions belonging to a class of functions C to
which solutions of (3.1) belong. The difference terms defined in this section are
differences between given nonlinear operations of the system (2.1) and given
linear operations of the auxiliary (3.1), both operating on the function w'. Three

difference terms, constituting what are referred to as problem formulations LIz
and 11I, are defined as the following.
Definjtion - Differential Stress Difference (Formuiation I)

Since w'(x.t) is not necessarily a solution of either the nonlinear system or of
the auxiliary system, substitution of w' into equations (2.1) and {3.1) will leave
non-vanishing residual terms. The difference of these residual terms, A, is

writien as
Al=v (e w' %) - V-Ti(a, w) - V 78, w') (3.4)
Definition - Energy Difference (Formulation I}
Let 8 (w') be a linear spatialtl operation on w* such that for w'= 0

f‘rl‘(a.w')- g{whd (x)=0 iTa=0

Then the difference term for formulation 11, A%, is defined as:
Al = [Ple, w' w") - H{a w*) - (B w")]- 8(w’) (3.5)

where the ( )+ { ) scalar inner product is a defined in section 2.2.

Definition - Streas Difference {Formulation III)

For formulation 11, let the system difference term, A be defined as
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A = e w'w") = (o w") ~ (A w") (3.8)
For the sake of clarity, a few observations should be made on the preceding

defintions.

1. A! for formulation ! is directly analogous to the equation difflerence

term for ordinary differential equations (2.31).

2. If 8{w'}is interpreted as the strain operator and if the system is elas-
tic, then AY would represent the difference in the strain energy density
of 7 and 7 operating on the same function w'. Although inelastic sys-
tems are not to be excluded from the analysis, A¥ will still be referred

to as an 'energy’ difference.

9. Note that A’ and AZ are functionally related to A¥L, A! is simply the

divergence of the stress difference term A, while A¥ is equivalent to

All.g |

3.4 Averaging Operators

In establishing an equivalent linear solution, one is left with the task of
minimizing a given difference, A, between the nonlinear system and the
equivalent linear system. Minimizing on a point by point basis will generally
engender too many constraints on the solutior: to make a solution possible. One
alternative is to minimize some measure of the difference: for example, its aver-

aged value over time and space. That precisely is the approach taken here.

For a given difference term, A, let its scalar inner product, as defined in sec-
tion 2.3.2, be given by A - A. Then the averaged value of A+ A will be given by

Gi(A - A), with G, ( ) defined as below
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Definition - Averaging Operator

For a given scalar function, © = u(x. £}, et G,.(u) be defined as follows:

Gee(u) = Qe Gz(u)) (3.7)
= Qe Ce(u})
where
Gz{u) = fud 8(x) (3.8)
&

and ( ¢{u) has the following properties

1. Time invariance: % Gfw)

2. Linearity: Gu(u+v)= Gi(u)+ Gi@)

3. Positive definiteness: G{u?)> 0 foru=0Oeand G(0)=0

3.5 System Difference Minimization

In order to determine the equivalent linear stifiness and damping
parameters, a{x) and g(x), 1t is necessary to minimize the averaged system
difference between systems (2.1) and (3.1). Let A represent one of the system
differences defined in section 3.3 and (. (A- A) be the averaging operation
defined in section 3.4. Formally, this minimization can be stated as the extremi-

zation of G (A - A) over all functions a(x) and g(x), or

mﬂg&ﬂ Gi{A(a, B w") Ala, B. W) =D forall we€ C (3.9)

One approach in effecting the extremization in equation (3.8} would be the
use of direct analytical variation via calculus of variation. For example, con-
sider the system difference defined for formulation Ill. Using the property of

the inner product operator { )- ( ) given in section 2.3.2 and the linearity of
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(i and 7L, the variation with respect to a can be written as:

& Gu.(ﬁ‘fﬂ . AIII) =2 Gu(AI” . MIII}

wria

= -2 Gu([™(w") - H{a w') - (8 w)]: T(6a w))

The variation with respect to § can be written in a similar way. Therefore the

extremizaton in (3.9) can be written as
G g ([7¥(w") — (e w") = 7B, w")] - T(da W) = 0 (3.10)
Goe([7(w") — e w') ~ 7B, w)] - T (68 W) = 0 (3.11)

Integration by parts over f£(x) of (3.10) and (3.11) will produce a set of
Euler equations in a and g with x being the independent variable. The Euler
equations for o and § will generally be partial differential equations for which
general solutions are not readily available. Therefore the exact minimization
has not significantly simplified the solution procedure for the original nonlinear
partial differentin! equations. In what follows, an approximate method for per-
forming the extremization of (3.9) will be explored which will produce algebraic

relationships for the minimizing stifiness and damping parameters.

Suppose the equivalent linear parameters a(x) and g(x) are approximated by

the following functions

a(x) ilmma,- (3.12)
M ~
Bx) = 3 niCof (3.13)

where &; and E.; are unknown constants and g(x); i=1,2,.. .M, are linearly

independent functions of x.
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Suffcient conditions for the minimization of G,.(A - A) with respect to the

approximations tc a and g given in (3.12) and (3.13) are

a =

SaT Gue(A-A)=0 (3.14)
8 -

35: G.(A-A)=0 (3.15)

The question of whether the & and £ that satisfy {3.14) and (8.15) truly minim-
ize (i (A A), and not mazimizes G (A A), will be examined in a later sec-
tion.

Let attention be focused on developing the minimizing relations {3.14) and
{3.15) for the specific problem formulations. Up to this poini, the equivalent
linear parameters a and f were assumed to be seis of parameters for the sake
of generality. To expedite the developing of the minimizing relationships, let it
be assumed that @ and f are sets of one parameter each, or simply a and §.

Similar relationships to those in the following sections can be established for

larger sets of @ and 8.

3.5.1 Formulation I minimization
For probiem formulation 1, the differential stress difference Al was defined as
Al =V -Fw' %) -V o w) -7 -7(8 w) (3.18)

Since T*is a linear operation,

& w') = f:"'%ai (3.17)

j=1
where ‘rf' is a shorthand notation for ‘I'L(gwj,w'). Similarly, T(w"’ %'} will be

written as 7, with the operation on w* and w' implied.

Using (3.16) and (3.17) and the linear property of (i in the first minimizing
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relation (3.14) gives:

_a_ I.Aly = I.
R G (AT~ Al) = 2 G (A

gal
80

H -
0= ‘E! Qo (V-7 -V -rfd = V-{E] [V
Equation (3.18) can be written in matrix form as:
Ald +CI8 =G

where

A= G ((V-rt]- [V 7§])

ch= Cu([v-7] [V -#]

6l = Gu([v -] [V-=D)

G, B =(Gy....8x)7 and (B4 .. BT
Sirniliarly, the minimization relation {3.15) becomes
pia +BE=H
where

Dl = Gu([V-7F1- [V-H])

Bl = G (V-7 [V 5]
Hl= Gu([Vv -] V-]

(3.18)

{3.19)

(3.20)

{3.21)

(3.22)

(3.23)

Equations (3.19) end (3.22) can simplified further by observing the form of

matrices ¢/ and D/ along with properties of the operator G,.. First note that
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cl = (pHT (3.24)
where (D/)T is the transpose of the matrix D’. For any two functions u(x,¢) and

v(xt)on 8(x), and since G () is linear and time invariant,

—t% Cez(wv) = G0 v) + Gy (u, V)

Therefore
Cg(@v) == pH(u) (3.25)
Looking at equaticns (3.20) and (3.23), it is clear that {3.25) implies
cl= (D) (3.26)
Equations (3.24) and (3.28) together say that
Cy=Dy=0 ;ij=12..M (3.27)

Therefore the equations for the formulation ] parameters & and E are uncou-

pled from =ach other.
3.5.1 Formulation Il minimization
The system difference for formulation II, the scalar A¥, was defined to be

& = [ - 7i(a) - (8] 5

Using (3.14) and the shorthand notation of § for & {(w").the minimization rela-

tions (3.14) and (3.15) can be written as :
Alg + cIF =gl (3.28)
DUz 4+ pUg =gl (3.29)

where
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Af= Cu(lrt- 8107 8 )
Bif= G ([#-8 [ 8 1)

C= Gu([7f-8 1[r-8 ] (3.30)

Df = Gl -8 1[#-8 ]

Gif= Ge({™-8 ][ -8 ]

H!'= 0 (-8 1% -8 D

As was true for the formulation ] minimization relations, the matrix DY is the

transpose of CZ, or
ol =ci | (3.31)

However C¥ and D¥ are not null matrices, as was the case for formulation L
Consequently, the equations for @ and E remeain coupled for a general system.
As will be seen in section 3.B, the uncoupling of the equations is sufficient condi-

tion to guarantee the existence of unique solutions for @ and ﬁ .

There does exist, however, at least one special definiton of the strain opera-
tion, 8. and of the basis functions, p;{(x), which permit an uncoupling of the
minimization eguations (3.28) and {3.29), It can be shown that, if
@ (x) : i=1,2..M are such that C¥ and D are diagonal matrices and the
operation 8§ is proportional to 7, C¥ and D¥ vanish identically, thereby uncou-

pling the minimization relations.
3.5.3 Formulation IIl minimization

The formulation Il system difference was given by
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A =1 - {a) - ¥(8) {(3.32)

In the same manner as for formulations ! and II, the minimization relations can

be shown to give the following equations for & and E :
Allg 4 clig = gli (3.33)
plig 4+ pilg =gl {(3.34)
where

Al = Gl 1)
Bl = Gulit- 3

Clf = Q¥ ) (3.35)

Dl = Gulr ¥
G = Gl )

Hf = G (s +)

for i,j=1,2,..M
Here again (3.35) shows that
clll = (pHyT (3.36)
Equation {3.38) and the time invariance of Gy () implies that

Cl=pl=0 ;4j=12..M

which uncouples the equations for @ and E . &85 was the case with formulation 1.
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3.6 Examination of the Minimum

In determining the values of the equivalent linear parameters a and E which
made the averaged system difference an exireme value, there is no guarantee
that the extreme value is truly a minimum and not actually a maximum. It will
be shown in this section that the values of & and E established {rom eguations
(3.14) and (3.15) do in fact make the averaged system difference term Gy (A'A)
a minimum.

Again let A represent the geheral system difference term from either formu-
lation I, Il or II, and Gy have the properties specified in section 3.4. Recall the
definitions of A for the three problemn formulations given in section 3.3. All
three definitions can be written in the following general form, when the approxi-

mations to a and g of (3.12) and (3.13) are considered:

A= 3nw) - § SR - & 3R, (3:37)

where 37, is a nonlinear operation on wand w. Sf and 32 1k=12..M are

linear operations on wand w.

Then A‘A is a scalar, quadratic polynomial in the parameters @ and g.
Therefore its mixed partial derivatives with respect to &, and E,, k=124,
of order higher than 2 vanish. With @ and £ satisfying the extremization rela-
tionships of (3.14) and (3.15), let another set of parameters @' and f' be defined

as:

&'y =0 + 00y (3.38)

Using the shorthand notation of A'=A(d', ') and A= A{&, B). the averaged

inner product G, (A’'- A’} can be expanded in a Taylor series expansion about &
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andE as

Geef{A' - A) = Gee(A- )

+ )3 Gg,(A AYSBy 4 aﬁ Ge(A-A)SE,
p=1
2 Gu(aa y 8 0u(aa)
% 2 a l!( ) +% E a“ a“
mp=1 am p myp=1 Bm ﬁp

—= = 00m 6
w5 B 0B, om0
But, from (3.14) and (3.15)},

d
Ba,

G (A-A) =0

a . —
e G (4-A) =

The higher order derivatives can be written , with the use of (3.40) as:

3° a 3A  BA

G805, CwlbA) =R G 57— g5

=2 Gy{ 35~ 3:)

g2 _94 | 8A

G,.(AaA)=2 G o

8B m0f =(88) =2 Gie 57— 2Bm O,

=2 G‘!z( Ef?l' 3;)

82 aA ,_0A
—— G, (A A} =2 —_

=2 Gg( 3% 3}3}

(3.39)

{3.40)

(3.41)

(3.42)

(3.43)
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Using equations (3.40) - (3.43) in (3.39) end simplifying throegh the linearity

of G gives
Gee{A'* A) = Cpo(A-A) + Gy (£(55, 68 ) £(d, 68 )) (3.44)

where

-~ ‘y Ll
£(08,68) = Y ( FaoGm + Fh0Bm)

m=]

The positive definite properties of Gy and ( }-{ ) prescribes that
Qi (68, 68 ) £(0&, 68 )) > © (3.45)

for f(6&,66) = O

and
Cor(F(65, 68 Y 1(5R, 66)) = 0 I (3.48)
iff  f£(é&,68)=0 ]
Hence
Gi(A(@,8")- M@ B)) 2 Ce(A(G.B) A(E.§)) (3.47)

In words, equation (3.47) says that for parameters & end £ that make
G (A'A) an extremum, the corresponding extreme value is no larger than any
other parameters &' and B'. Therefore G {A(&, B)A(& B)) is a global
minimum. Note, however, that this does not preclude the possibility of more
than one set of & and § which minimizes G;{A-A). If non-unique solutions do
exist, then relation (3.48) implies a linear dependence of the operations & & and
3% :m=1,2..M with the form of 32 and 3}, of course depending on the

problem formulation. The existence and unigqueness of the solutions for @ and
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E will be investigated in a later section for the three problem formulations.
3.7 Spatia}l Discretization of the Aurxiliary Equations

In solving the type of equations given by the linear auxiliary system (3.1),
approximate technigques are usually employed. This is especially true when the
problem contazins inhomogeneous material properties and/or has complex
boundary conditions that need to be satisfied. The former will always be true
for the equivalent linearization method due to the manner in which the linear

parameters are discretized.

The finite element method enjoys widespread usage in solving the types of
problems described by (3.1). The underlying principle of the method is the sub-
division of the total spatial domain , $£{x), into subdomains, or elements &§*(x).
¥Within each element the displacements are discretized in such a way that they
can be written in terms of linearly independent basis, or "shape”, functions of

the spatial eoordinates, or
w(xt) = N(¥)d(t) (3.48)

where N is a matrix of a set of shape functions ¥(x) and d is a set of time depen-
dent nodal coefficients. A Galerkin procedure, with w defined as in {(3.48), can be
then be used to approximate the solution to (3.1). This procedure leads to the

following discretized equation
md(t) + Ccd(t) + Kd(t)=£(¢) (3.48)

where the vector f and the matrices 7, C end X are integral functionals of the

shape functions ¥ and their derivatives.

The striking difference between the equations (3.49) from the finite element
method, and an analogous set derived from the general Galerkin formulation,

lies in the shape functions ¥. The basis functions used for the finite elerment
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method are simple polynomials which are defined over only one element. With
such a compact support, boundary conditions are easier to impose locally, along
the edge of an element, rather than globally along a more complicated boun-
dary. The accuracy of the method is increased by a refinement of the subdivi-
sions, and not by the classical Galerkin method of including more complex basis
functicns. The advantage of this is in the ease of implementation into a com-
puter code; that is, the computer instructions remain nearly the same as the

mesh is refined.

In order to determine suitable shape functions for a particular problem, the
convergence properties of the finite element method must be considered. Con-
vergence of the method, as the mesh of elements is refined, depends on the con-
tinuity of the shape functions used. In particular, the stiffness matrix L in
equation (3.49) will generally be the strain-energy integral for the system, which
will involve a number, say m, of derivatives of the shape functions. Then, if the
m-1 derivatives are continuous across the elements, the integrand is finite and
the strain-energy integral exists. This is a simmplified explanation of one eri-
terion of convergence, which is sufficient continuity of the shape functions [54].
The use of shape functions which do not satisfy this continuity reguirement
does appear in the literature { for example [49] ), but attention here will only be

given to shape functions which satisfy continuity.

Another requirement for convergence of the fnite element method is
mathematical completeness. From a physical standpoint, completeness implies
that the finite element mesh must be capable of modeling a constant strain con-
dition throughout the domain. Completeness can be established for iso-
parametric elements ( see [54] ): that is, elements which use the same shape
functions on the spatial coordinates as on the displacement field. For the case

of non-isoparametric elements, the constant strain condition can be established
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through an element 'patch test” ( reference [48] ).

Continuity of the shape functions is also a consideration in the minimization
procedure for determining the equivalent linear parameters a(x) and £(x). For
example, in the formulation III minimization relations of equations (3.33) -

(3.35), a typical integration that must be performed is:
A = G ([ (g w) (e wd 8(x)) (3.50)

From (3.50), it is seen that T must be continuous in the mean square sense for
derivatives of w up to n-1, where n is the number of spatial derivatives of w in 7=,
Generally n will be greater than m, where m has previously been defined as the
number of derivatives in the strain energy integral. Therefore, continuity
requirements of the displacement field imposed by equivalent linearization tend

to be more restrictive than those of the finite element method,

3.8 Existence and Uniqueness of Equivalent Linear Parameters

In section 3.5, a set of relationships were established between the equivalent
linear parameters and the solution of the linear auxiliary system such that the
difference between given properties of the nonlinear system and :ihe auxiliary
system are minimized. The preceding section dealt with the spatial discretiza-
tion of the auxiliary system, which produces a second set of relations between
the eguivalent linear solution and the equivalent linear stiffness and damping
parameters. Before these ideas are applied to specific problems, some con-
sideration must be given to whether this technigue is capable of producing rea-
sonable solutions. Therefore this section deals with the question of whether the
minirnization technique yields equations for which solutions exist and, if solu-

tions exist, whether they are unique.
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The equations for the equivalent linear pararneters & and E which minimized
the system differences for problem formulations 1, 1l and III can be written in

the general form {see equations (3.19), {3.22), (3.28), (3.29), (3.33) and (3.34)):

A Clfa G
cT B|lBfT|H (3.51)
where the matrices 4, B and { and the vectors G and H depend on the problem

formulation and are functions of the auxiliary equation solutions.

As shown in section 3.5.1 - 3.5.3, the matrix C aiways vanishes for formula-
tions [ and IIl. Therefore, for the case of uncoupled equations, the existence of
unique solutions for & and E depend on the invertibility of matrices A and 8.
The question of whether a matrix is non-singular can be answered by showing
that it is sign definite; that is, if all the eigenvalues of a matrix tend away from

zero, then its determinant will never vanish,
| The following claims will show that the matrices 4 and 5 for all three problem
formulations are positive definite according to the definition:
Definition - Matrix Positive Deﬂni.tenma
A matrix T of size Mxn.d' will said to be posilive definite if for an M~ vector r
r’Tr>0 ;ifr=0 (3.52)

Tr=0 ; iffr=0

where ¢! is the transpose of r.

Claim - Positive Definiteness of Al and B!

For matrices A’ and B! defined in eguations {3.20) and (3.23) with w= 0,

w= Ofor all x and £, 4 and B! are positive definite.
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Proof

Recall that for formulation I, 4/ and B! were derived to be

Al = Gu([V-THpu W] [V -(ps W)
Bjy= Geo([V -7 (ps )] [V -7y w)])

Then

Talp = ui}_lf; Ges ([V “THpi. W] - [V -74(,, w7,

G ([V - 72(F . W)} - [V-7(F. w)]) (3.53)

M
where ¥ = ) pi(x)r;. Note that the linearity of G4 and 7 were used in obtain-
t=1

ing (3.53). Taking into account the positive definitenes of G t= and the inner

product operation, equation {3.53) says that:
r’4‘rz o ' (3.54)
rfAlr=0 i v-(F.w=0 '

Forming the inner product of w and Vv -+, integrating over $(x), and using

the last equation in (3.54) gives
Sw- [v-rF, w]d £{x) =0 (3.55)

Since V-7, w) is positive definite according to section 2.3.2, equation (3.55)

can be salisfied forw= 0iff
- Fy
F = iza%(x)ri =0 {3.586)

The basis functions ¢;(x}) :i=1,2...M. are linearly independent. Hence
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r=[ryre - - - ,7x]7 = 0, and therefore A is positive definite.

Now looking at B/,

rBlr= Gu((V-F, w]- [V-7(F, w)])

and by the same arguments as with 4/,
r’fBirz 0 (3.57)

r’Blr=0 if V-¥#(F, w=0

1! is a linear operation. Therefore (7, w) = 74(7, W), and with (3.57)
Jw [V-1F, w)]d s(x)=0 (3.58)

Again for positive definite V -7t, W # 0 and linearly independent g, r = 0 if (3.57)

holds, and A/ is positive definite. Q.E.D.

Clairm

The matrices A¥ and B¥ developed for formulation I are pousitive definite.

Claim

The matrices A7 and 8% developed for formuiation III are positive definite.

The proofs for the preceding two claims are quite similar to the proof for for-

mulation ] and therefore are not included here.

In conclusion, solutions for the formulation 1 and Il equivalent parameters
always exist for non-zero displacements and are unique. For the special case
described in section 3.5.2 in which the eguations for & and ﬁ uncouple, unique
solutions for formulation 1] parameters exist. Unfortunately, attempts to show
existence and uniqueness of the general! formulation Il minimization solutions

have not been successful,
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IV. SPECIAL CASES OF THE GENERAL APPROACH

Chapter Il dealt with the development of the general equivalent linearization
approach for nonlinear continuous systems. The relationships between the
equivalent linear nodal parameters, @ and E and the displacements w which
belong to the class of functions C were established. Describing C are the basis
functions which are solutions to the linear auxiliary system given by equations
(3.1) and (3.2). In this chapter, the equivalent linear parameter relationships
are specialized for two types of excitation, g(#), for the nonlinear system of

equations (2.1) written in the form

V-ti(a) + V- 7¥(c) + QL(b) + m(x)w=p(x)g(t) (4.1)
The linear auxiliary equations are written as

v -7(a) + V- r{a) + QX(b) + V -¥(B) + m(x)¥ = p(x)g (¢) (4.2)
where, as before, the functional dependence of 7%, 7 and Q* on w and w is under-

stood. For the excitation g(¢) in (4.1) and (4.2), attention is focused on the

cases of monofrequency harmonic and stationary Gaussian excitation.

Interest in harmonic response often arises when rotati.ﬁg machinery serves
as the excitation of the structural element, 6r when adjoining structural ele-
ments filter the excitation to a single frequency input. In addition to this, the
forced vibration tests of structural elements to determine stiffness and energy
dissipation properties frequently use harmonic excitation. Therefore, steady-
state response of a nonlinear system has significant relevance to engineering

problems.

The random nature of excitations due to earthquakes and acoustical noise is
also of engineering importance. If the analyst considers a large number of

independent records of the random process where no one record's contribution
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is more significant than the others, the central limit theorem says that process
can be considered normal, or Gaussian. If the average and second moments of
these records can be assumed to be good substitutes for the actual records of
the process, then the use of a Gaussian excitation would appear to be a good

approach to these engineering problems.

For simplicity of notation, the displacements w{x.¢) will be assumed to be
simply a scalar function w({xt¢). The examples to be considered in the next
chapter will fit into this category. Therefore use of relations developed can be
applied to Lthe examples in a straight forward manner. Extension of the results
of this chapter can be made to problems requiring a vector representation of

displacements but only at the expense of notation.

4.1 Steady-State Harmonic Response

Consider the case where g(t) = coswt in the nonlinear equation and auxiliary
linear equation in (4.1) and (4.2). The nonlinearity, ¥, of equation (4.1) has
been assumed to be symmetric in accordance to the definition of section 2.3.4.
Therefore, if the linear auxiliary system of equations {4.2) is to mode! the norn-
linear system, the steddy-state, linear solution can be expanded in the first

terms of its Fourier series as

wix ) = U{x)coswt + V(x)sinwt (4.3)
Hence, the set of basis functions for steady-state harmonic response is
[coswé, sinwt ] .

In discretizing the auxiliary system, the functions U(x) and V(x) from eque-

tion (4.3} will be approximated by

U@)* 3 vz (4.4)

i=l
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V@ o (45)
where ¥; is a set of N spatial basis functions and % and «; are undetermined
coefficients for i=1,2,...N. Then the discretization can be carried out through
the finite element method, Galerkin’s method, modal analysis, ete. Equating the
coeflicients of the sine and cosine functions will give a set of matrix algebraic

equations for u and v in terms of the eguivalent linear parameters & and E as:
[~® 7+ X (@)]u+w C(f)v=*f (4.8)
~w C{B)u+[-u® 7+ K (@)]v=0 (4.7)
where 7, C and X are the mass, damping and stiffness matrices, respectively.
I is the discretized excitation term. The form of the matrices and vector will
depend on the method used for discretization. Equations (4.8) and (4.7) can
then be solved for the 'in-phase" and "quadrature” (w.r.t. the excitation) solu-

tions u and v, respectively, once the stiffiness and damping parameters & and E

are known.

The system difference minimization procedure produces a set of relations for
a and ﬁ in terms of the auiﬂiary equation solution w, as were developed in sec-
tion 3.5. These equations were written in terms of the general temporal averag-
ing operator G, . Since the steady-state solution for the auxiliary system {4.2)

with g(¢) harmonic is periodic with period

_2n
T -— © » (4'8)

a logical choice of G ; which satisfies the properties of G, in section 3.4 is

T
G )= ,{(- ) dt (4.8)

Using this definition of Gy, the minimization relations
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9 Co(AA) =
"a'—a: G.(AA)=0 (4.10)

g ‘ A=
'é‘E-;Cg,(A A)=0

for k=1,2....M, will be specialized for steady-state harmonic analysis for the

three problem formulations.

Recall first that the equations (4.10) could be written in the general matrix

equation form of:

[:r g]{g}={§} (4.11)

where the form of matrices 4,8 and C and vectors G and H depend on the prob-

lem formulation. In faect, for formulations | and III, the matrix { vanishes.

These matrices will be discussed in the foilowing sections,
4.1.1 Formulation I - steady-state harmonic response

Equations (3.20) and {(3.23) give the form of 47,87, G/ and H for formulation
1 Since T is a linear operation and with w defined in (4.3), the linear stress

operalor becomes:
7h(w) = t¥(U)coswt + TH(V)sinwt (4.12}
where TH(w) = (g, w)

Using (4.9), (4.12), the definition of (. and the orthogonality of sinwf and

coswt over one period of oscillation gives

Al = G GV )] [V - (w)])

= I 9 ) [9 )] + (97N (9o e 5x)
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nal 4.13
ub g} (4.13)

Bl = G G [V -ri@)} [V -7f(w)]))
= o f{I9 V)] [V -7HU)] + [7 )] [V 74N} 8()
= med (4.14)
G{ = C( G {([Vv-(ww)] [V rH{w)])

= ‘E‘f{[v COU VY- [V -m(U)] + [V -SO(U,V))- [V --rg-(-v)],d 5 (x)

Lg! | (4.15)
[

Hl= Go( Q([V -M(ww)] [V ¥ (@)])

n f{lv €@ [V )] - [V -SOUI]- (9 -H0)])d @)

= nH! (4.16)
where
1 2r
U V)= ;‘f‘l’"(UCOS‘l?, Vsin®) cosdd (4.17)
[+
1 an
sy, v) = = S (U cos8 Vsind) sinvd 9 (4.18)
[¢]

V= ot

The formulation ] equations for & and § can then be written as
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Alg =G/ (4.19)
iz = 1lal
Alg = mﬁ {(4.20)

A few observations are pertinent to the above expressions for a and £:

1. The solutions & and E depend on the first Fourier coefficients of the
nonlinearity " as seen by eguations (4.17) and (4.18). A number of
other approximate methods including Galerkin's method (see equa-
tions (2.18f) and (2.1Bg)) also require the evaluation of such

coefficients.

2. In solving for & and E ocnly one matrix A 1 needs to be computed and
inverted. Thus a saving of computation effort has appeared for

steady-state harmonic analysis.

3. With 4/ and B/ not being explicit functions of w, equation (4.20) shows

that the effect of the equivalent linear dampi_ng,ﬁ. will diminish with

higher frequencies.
4.1.2 Formulation II - steady-state harmonic response

For the steady-state solutions of w given by (4.3), the stress and strain opera-

tions can be written as
H(w) = #(U)coswt + 7F(V)sinat (4.21)
8 (w) =8(U)coswt + g(V)sinwt (4.22)

where TH{w) = ™(p;, w). With the above relations, the general matrices and vec-
tors for the formulaton Il minimization take on the following special form for

steady-state solutions:
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Al = fi )-8 (V) + ) 8 W) 8(V) + TH(V)-8(U)]

+ [rH(U)- S(UBTHW)-8(U) + TH(V)- 8(V)]

+ [(V)- s(VTHU)-8(U) + sr;f*(V)eS(V>]} d 8(x) (4.230)
clf = o [{-{HUV) 8 (U) - (V)-8 M[HU)-8 (V) + TH(V)- $(U)]

— [(U): 8(NIITHU )-8 (U) + 37H(V) 8 (V)]

+ [TH(V) s(U)I[BTH(U)- 8{U) + T}'(V):S(V)]} d $(x) (4.23b)
pif =cfl (4.23¢)

BY = o [{[r(U)- 8:0) - (V)-8 (N]ITHU)- 8 (1) = TH(V)-8 (V)]
+ [ 8WBTHY) -8 (V) ~ THV)-8(V))

= [r(v) 8 (U (U)-8(V) = f(V)- w-S(U)]}d £(x) (4.23d)
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Gl = [ [C0-3 (U)[BrHU) S (V) + V) 8(7)]
+ [(C? + @) 3(V) + (S + S@)- s (U)I[+H(U)-S(V) + (V) -$(U)]
+[C®. g(U) + 5@ s(V)[7U)-8(U) ~ (V)3 (V)]

+ [SW.s(M[+HU)- S W) + 374V} - 8(V)] d £{x) (4.23¢)

Al = o [ —-[C.8 (U)][TH(U)S(V) = 37E(V)-8(U)]
+ [(-C) + @Y. g (V) - (S + SO s ([T $(U) = #(¥)-8 (V)]

+ [C®- 3(U) + S®-g(N[H(U) 8 (V) + THV)- 8(U)]

- [sW-s (V)I[3r(U)- 8(V) = TH(V) 8(U)] d & (x) (4.231)
where
c® = %_ZFT”(U. V, $)cos3dd v (4.23g)
S = %_Z'"r”(u. V, 9)sin30d 9 (4.23h)

and ClU) and S{Y) are as defined in (4.17) and (4.18).

It should be noted that the formulation II minimization requires not only the
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first Fourier coefficients ) and S(!), as did formulation I, but also the third
coefficients C%) and S®), It appears then that this formulation extracts more
information from the nonlinearity than formulation L

4.1.3 Formulation If - steady-state harmonic response

Looking back at the general minimization relations for formulation I, (3.20}

and (3.23), and for formulation III, (3.30), one can see that the matrices and

vectors A, Bl GHI and HY are the same as those for formulation I if the V - 7*
operation is replaced by 7£. Using this equivalence, the minimization relations
for steady-state harmonic response with formulation IIl can be written directly

using those of formulation 1, equations (4.13) - (4.20). That is

g = gl (4.24)

AUg = -}J—I’ifﬂ (4.25)

where

A = fTekU)- THU) + V) THV)]d (x)

C#= [TV fH(U) + 8- (V)] d (x) (4.26)

A= fTcV). of(v) - s (U)ld (x)

with C(¥? and SV as defined in (4.17) and (4.18).
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4.2 Stationary Random Response

For the case of g(t ) in equation {4.1) being a stationary, Gaussian excitation,
stationary solutions to {4.1) with zero mean value will be sought. Since the
replacement auxiliary system is linear and the input is Gaussian, it is well known

that the response w will also be Gaussian.

Because w({x.¢) is a random process, the temporal averaging operator for this
type of analysis must be a stochastic average. If the process is alsc ergodic the

stochastic operator may be written as an ensemble average, or
Gy Ge(a-A))=FE[ dz(a-4)] (4.27)
where £ ] is the mathematical expectation operator.

Before the minimizaton relations are developed for stationary random
response, the solution will be expanded in terms of deterministic spatial basis

functions ¥, and stochastic coefficients d,(¢) :k=12,.. N, as
N
w(xt) = EE Y {x)di (¢) (4.28)
=1

If L and M represent linear operators on w, then, with {4.28). the following can

be written:

E[Lw)] = kiwk E[dy] (4.25)

ElLw) M(w)] = hiiuw Y M) Ed ]

Recall that w has a zero mean in time. Therefore

Elw]= 3 %E[d] =0
K=l

and since the 9, are linearly independent
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El{d,]=0 : k=12..N {4.30)

The zero mean property of d along with the properties of stationarity and
normality permit further statements to be made about certain averaged values

of d. It can be shown that for a stationary random vector d{f) which is

differentiable
E[dd"] = -E[dd7] (4.31)

E[dd"] = E[ddT] = —E[dd"]

The normality of d with (4.30) can be used to show that for a function ¢ = g(y)

{reference [1]):

ElyeM=E71E[V 9 ()] (4.32)
where V, = [i—,——g—-—, v ,-—Q—]T These properties can also be used to show
Oy Oye dyn

that the higher order moments of d can be expressed in terms of the second

order moments [30]. In particular,
Eldydpdady] = E[d dz]E[dgd,] + E[d;d3] E[d2d,4) (4.33)

+E[d :.d-s]E [dzds]

Using the discretized form of w({x,¢) given by (4.28), the linear auxiliary equa-
tion (4.2) can be spatially discretized via a number of methods to produce a set
of stochastic differential equations for d in the form of

md + C{B)d + ¥{a)d=£fg(t) {4.34)
where as before the matrices 7, C and X and the vector f depend on the

discretization method.

The relationships (4.31) for a stationary randorm vector permits the discre-

tized auxiliary equation to be written in terms of its correlation matrices as (see
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reference [51]):
AX +XAaT=38 (4.35)

where
0 -5

7t we) gt c(8)

E[ddT] E[dd"]

o
H

E[dd"] E[dd"]

0 Efatm) 7T
mE[fdT)  moE[£dT] + E[df7] T
where 0 and / ere the null and identity matrices, respectively.

It g{t) is white noise, i.e. having a constant spectral density, the matrices
E(fd"] and E[fd”] on the right hand side of {(4.35) can be written as:
E[fdT] =0 (4.386)

ElfdT =~ 7w

where ¥ is the spectral density of g{(¢).

Therefore the stationary random solutions to the linear auxiliary equations
with Gaussian excitation can be written in terms of the correlation matrices
£[dd"], £[dd"] and E[dd”] where these matrices are related to the equivalent
linear parameters a and § through (4.35). The minimization relationships will

now be expressed in terms of these correlation matrices.
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4.2.1 Formulation ] - stationary random response

The coefficient matrix, A7 , for the equivalent linear stiffness parameters @

were given in equation (3.21) as

Ay = Cu(V-ri@w)] [V -f(w))

where, again 7&{w) = (g, w) and g,(x) are the basis functions for a and §£.

With w(x, ¢ ) spatially discretized as

weEt) = R )

the divergence of the linear stress operator 7~ can be written as

Vor(w) =V -kziré(% Y

Then for stationary random response G;{)=F[ ]and
N
A= IZ= Eklf[v )] [V THw)]d s(x) (4.37)

where Em E [dk d;]

Similarly the coefficent matrix for the damping parameters §, B/, along with

the right hand side vectors ¢/ and A7 for both & and f are:

= 2 £u 19 -] 9 Hw) (4.38)
6l = 3 [EUT ww)): (V-] 4 5 (4.39)
Hl = kz:fE [V - M(uw)) (V- (% ))de] d 5(x) (4.40)

where, for example, B, = £[d,d,].
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From the property given in equation (4.32) for a Gaussian vector d with a

Zero mean

E{(V ¥ (w,w))- (V-riy))de] = EE[ (v -, )] (V) By

Therefore (4.39) can be written as

E E'ufE'[ ~(v- P d D)) (V) d S(x) (4.41)

kl=1

and in a similar way {4.40) becomes

2 Fu ﬁ[ (v P d d)] (Vi) d §(x) (4.42)

Generally the nonlinearity V *7" can be written in a power series of d and d as

M .
Vo= Y Bmamgngng o (W Gy daydn,
nong

which says that E[ (V -r¥}] and E[——-—(V -}] can be expressed in terms of

the higher order moments of the jointly distributed Gaussian vectors d and d.
From reference [30], it can be shown that such higher order moments of Gaus-
sian processes can always be expressed in terms of second order moments, for
example equation (4.33) of this chapter. Hence the formglation I minimization
relationships for stationary, Gaussian response can be written in terms of the

correlation matrices for the response of the linear auxiliary sclutions.

4.2.2 Formulation H - stationary random response

Using a similar specialization as performed in the last section, the formula-

tion Il minimization for stationary random response can be written as:

AII + C‘”ﬁ GII
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Dﬂa -+ BIIE =g
I x
Al= Y AfnnlEuwFmn + ExmEw + ExnEim]
Eimn=1

N »
cl= 3 AdmulEuEpn + EinlEm + EnEi)
klimn=1

of = ci

N .
Bif= Y AimlEuZpn + Einfn + EpnEi,]
kimn=1

N
Gi” = 2 [EklEmn + EkmE!n + EknElm]
klmmn=1

f[E[;T"r"]- 8591 ) [TE(Wm) . 8(¥n)1d S(x)
B = f} [ pn + EiBin + BByl
klmn=1 . m

ST s IH¥m) 8Ga)]d ()

AMlpn = [TrE( ), 8 W[ (¥m): 8 ()] 2 8(x)

423 Formulation Il - stationary random response

In section 4.1.3, the formulation Il minimization equations for steady- state

harmonic response were obtained from the corresponding formulation I rela-

tions by replacing V ¥ and V -7* by 7" and 7%, respectively. Again this similarity
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between the two formulations is used to obtain the formulation Il relations.

Replacing V7" and V-1 in equations (4.37), (4.38), {4.41) end (4.42) by

7 and 7* gives
Allg = gl {4.43)
B = gl (4.44)
where

Al = ui Fu [Trtn) il ¢ 5

Bl = ,..,zﬁ Eu JlR w4 5 (4.45)

cit = ¥ Em-fE[:—mr"'w,d. D} i) d s(x)

ki=1

Bt = 3 Ey [E[L— d D} rhW)d 5(x)
El=t ad,

Remarks made in section 4.2.1 are herein applicable.
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4.3 Discussion of Solution Procedures

This chapter has dealt with the development of two sets of equations describ-
ing the response of a nonlinear dynamic system via the equivalent linearization
technique for the two special cases of steady-state periodic solutions and sta-
tionary random response. The first set of these equations arise from the minim-
ization of a given system difference with respect to the equivalent linear stiflness
and damping parameters o and f , respectively. The second set results from the
spatial discretization of the auxiliary linear system. These two sets of equations
are interrelated through o and § and the linear displacements w. This suggests
that such equations will have to be solved in an iterative fashion. Techniques for
soiving different types of vibration problems described by the equations

developed in this chapter will now be discussed.
4.3.1 Free vibration response

Consider the case of a nonlinear, conservative system excited only by
prescribed initial displacements. Since the system is conservative, the response
W(x,t) will continue to oscillate at a frequency, say w. Then the linear auxiliary

response wll be governed by the singular matrix equation

[-? 7+ H{(a &)Ju=0 (4.48)
which is constrained by the minimization equations

A(u)a = G(u) {4.47)

where
N
+ w(nt) = (3 ve(®u) coswt
i=1

+ 7, & are the mass and stiffness matrices, respectively, for the discre-

tized auxiliary equation
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+ a is the stiffness parameter of the linearized equation

N
e af{x) = ) ¢(x)3@, is the equivalent linear stiffness parameter

i)
« A4 (u) and G{u) depend on the problem formulation used

If the constraint between @ and u in equation (4.47) is not imposed, eguation
{4.48) is simply a linear eigenvalue problem in w and u, and therefore the fre-
quency of vibration is independent of the amplitude of the response. However
the inclusion of this constraint introduces the well known dependence of fre-
quency on the amplitude of vibration. To determine this dependence, an itera-

tive scheme will be introduced.

Let wy be the lowest value of @ which satisfies (4.48) with & =0 ( i.e. the
linearized problem ) and ey the corresponding eigenvector. Let ¢ be a measure

of the amplitude of response, and define the first approximation of u be equal to
u; =ceg . {4.48)
Using (4.48), the first approximation to & can be obtained from (4.47)
&y = 47 (uy)G(uy) . (4.49)
Substituting (4.49) into {4.48) gives the next approximation to w:

[~of %+ ¥ (a &)le1 = 0

This iteration continues with
W = Cepng {4.50}

until the nonlinear frequency on the k™ step, w, , converges to prescribed accu-

racy or the mode shape e, satisfies some convergence criterion, where

[~ 7+ K (@.d,)le. =0 (4.51)
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8 = 47 (g )G(u,) (4.52)

This method can be extended to higher modes of nonlinear vibration. As in
the case of the first mode, the complete eigenvalue problem of (4.51) need not
be solved. A number of approximate eigenvalue/eigenvector technigues allow
for the extraction of the first few modes without having to solve for the higher

ones.
4.3.2 Forced response to harmonic excitation

As described in section (4.1), the equivalent linear response w(x,¢) is given by

the solutions to

(4.53)
[oc(6B)] [ %+ u(ad)]

and constrained by

[f 7+ w@ad)] [ CA) lnl £
v 0

i~}

(A(u,v) C(uv)

G
= I (4.54)

cTuv) Buv)| |B] &
where w(x,¢) = ¥'u cosut + ¥'vsinwt . The rest of the terms in (4.53) and (4.54)

are as defined before.

A "secant” method” method might appear to be a logical way to solve equa-
tions (4.53) and (4.54). That is, for a given value of w and an initial guess for
uandv, @ and £ are determined from (4.54). This approximation is then used
to obtain a next approximation for u and vin (4.53) and so on until u and v con-
verge according to a prescribed criterion. It has been found, however that such
a2 scheme is unstable, especially for the case of small damping. In this case, the
coefficient matrix for u and v in {4.53) can become nearly singular for w near a

natural frequency of the linearized response.

Equations {4.53) and (4.54) together are nonlinear in u,v,& and § . Hence
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the well established Newton-Raphson method for nonlinear algebraic equations
can be used to obtain a nonlinear frequency response curve. In the case where
good initial guesses for u, v, & and g are difficult to obtain, a hybrid technigque
such as the Levenberg/Marguardt method (see references [38] and [39]) might
be used. This method, which combines features of both Newton’s method and
the method of steepest descent, has convergence properties less dependent on

the initial guess.

If uw and v are N - vectors and & and § are M - vectors, solution via the above
two methods will require the solution of a 2{N+M)x 2(N+M) system of equa-
tions a number of times for only one point on the response curve. For large
problems, such a number of inversions may prove to be prohibitively expensive
in computing a nonlinear frequency spectra. It is often the case that only the
resonant response of say the first nonlinear mode of response is desired Jor a
given applied load. A new method will now be presented for establishing a rela-
tionship between applied load in the forced problem and the response of the sys-
tem under free vibration. This method will be restricted to systems with conser-

vative nonlinearities.

In equation (4.53), let the excitation vecter f on the right hand side be

written as
f=p,3 (4.55)

where p, can be thought of as a spatially constant applied pressure. Since
(4.53) is a linear system, resonance occurs when the response is nearly 20° ocut
of phase with the excitation { Le. u® 0 } provided the freguencies are well-
separated and the damping is small. With E = 0, for a conservative nonlinearity

in the original system, equations (4.53) and (4.54) reduce to
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wC(blv=p, & (4.56)
[—m?m_ + k(a,&)]v=0 {4.57)
A(v)a = G(v) (4.58)

But equations (4.57) and (4.58) are simply the equivalent linear free vibration

problem of (4.46) and {4.47). Premultiplying (4.56) by v’ and solving for p, gives

Cv

_ .Y 4.59
Vp. YT 3 (4.59)
Equation (4.58) can be thought of as a system power balance relationship at

resonance. Here the input power po(wv) & is balanced by the dissipated power
(¥ C(wv) .

Consequently, the damped resonant response can be obtained once the free
vibration response is known. The steps for such a method are as follows: First
the free vibration is solved for v using (4.57) and (4.58) through the method in
section 4.3.1. Then the applied load reguired for the systemn to resonate at w
with displacement v and damping given by C can be found by using equation
{4.59). This will be considerably more cost efficient than solving equations (4.53)

and {4.54) directly.
4.3.3 Forced response to stationary random excitation

The eguivalent linear equations for stationary random response to Gaussian
excitation were written in the form of equation (4.35) and the minimization rela-
tions developed in sections 4.2.1 - 4.2.3. These equations can be solved itera-
tively by a secant method such as the one described in section 4.3.2. The auxili-
ary system equation of (4.35) is the familiar Liapunov matrix equation which
often arises in stability theory of linear systems. References [25] and [35] dis-

cuss some computationally efficient algorithms for solving Liapunov’s equation.
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V. EXAMPLE STUDIES
5.1 Hesponse of a One-Dimensional Yielding Continuum

Many tall structures can be modeled by a continuous shear beam where the
base of the beam is excited by a prescribed function of time. Such a system is
shown in figure 5.1.1. For large amplitude of response, the need may arise for a
mathematical model which includes nonlinearities due to geometric considera-

tions and/or the behavior of the material.

Consider the case of nonlinear material behavior in the beam. Let the spatial
domain g§{z) of the beam be z ¢[0, 1] and the boundary 8 &(z) be at =0 and
z=1. If the bending eflects are negligible compared to the effects of shearing
strains, the equation of motion and boundary conditions for the harmonically

excited beam of figure 5.1.1 may be written as

- + [a(z) 2] + %[.—N(w,w )] = reosot (5.1.1)
w(0,t)=10 . (5.1.2)
-%'5;4(1.t) + Mw(Lt) w(Lt) =0 (5.1.3)

in which w = w{z.t) is the deflection of the beam from its unstrained equili-
brium position at a distance z from the base. 7 is a nonlinear stress
function/functional of the strain and possibly strain rate, a(z) is the linear
stifiness and r is the amplitude of the excitation. The boundary conditons in

equations {5.1.2) and (5.1.3) are those of a beam fixed at the base and stress

free at the top.

The linear auxiliary equation to be used in solving (5.1.1) - (5.1.3} is written in

the following form:
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}aw
dz

- + —g—z-[a(z) ?_;:] +2 [a{z 1+ %[B(z)s—a:] = r coswi (5.1.4)

oz

where a{z) and #(z ) are the equivalent linear stiffness and damping parameters,
respectively. The other terms in (5.1.4) are as defined for (5.1.1) and the boun-

dary conditions of (5.1.2) and (5.1.3) also apply to {5.1.4).

It should be noted that equations (5.1.1) and (5.1.4) are simply special cases

of the nonlinear and linear auxiliary systems of equation (2.1) and (3.1). The

positive definiteness and self-adjointness of -%% = %[a(z)%w;] can be shown

using the boundary conditions stated In (5.2) anad (5.3). The stress operations,
-~ and ™ and the displacements are scalar guantities, which implies that the

dot product defined in Chapter II is simply a scalar multiplication.

The equivalent linearization approach developed in Chapters III and IV can be
applied directly to this problem. The use of problem formulation III for this

nonlinear system will be detailed in the following sections.
4.1.1 Minimization relations and discretization of the auxiliary equations

The relationships for a{z) and (z) which minimize the system difference
term for steady state harmonic solutions in formulation Il were developed in
section 4.1.3 and are given by equations {(4.24) - (4.26), Recell that for the one-

dimensional continuum model of eguation {(5.1.1}, the linear stress operation

(p;, w) is given by
paw) = m(z)—:% (5.1.5)

where ¢; ;i=1,2,.. .M , are the linear independent basis functions for the
equivalent linear parameters a{z) and f{z), as specified in equations (3.12) and

(3.13).

let the spatial domain of the beam be subdivided into ‘elements”
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S.(z): zel e;.l,ff} for e=1, 2.....M . Furthermore let the basis functions be

defined as

1 ¥z €8,

volz)=\o it z ¢85, {5.1.8)

Therefore the basis functions are defined in such a way that a{z) and §{(z) are

constant within each element but discontinuous across the element boundaries.

Substituting {5.1.5) and (5.1.8) into (4.24) - (4.26) gives the Iollowing explicit
relations for the elemental equivalent linear parameters of formulation III in

terms of the equivalent linear solution w(z.¢):

JICW. VW, +S(UVIV.]dz
~ BDi
o JTUZ + VElds 527

JIeW.vyv, - S(U.V)U:]dz
L (5.1.8)

;=
' o flU% + Vi]dz
A

where

w(z,t) = U(z)coswt + V{z)sinwt
_8u av
Ve Ve = fz' Bz
1 2n
c(U.v)y=— f (U,V. %cosvdv
LU

2n
S(UV) = %{T"(U.V,t?)sinﬂdﬂ

t=cat
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Let ¥ {(z)and A? :i=1,2,.. be the eigenfunctions and eigenvalues of the
linearized form of equation (5.1.1). The auxiliary linear system will now be

discretized in terms of the N eigenfunctions; that is

Ulz) = ;}:%(z Jus =¥Tu (5.1.9)
Viz)= ;2_%1“’*(’ we=yv (5.1.10)

Substituting (5.1.9) and (5.1.10) into (5.1.4), premultiplying by ¥(z ) , integrating
over £{z) using orthogonality properties of ¥{z} , and equating coefficients of

coswt and sinwé gives the modally discretized form of the linear auxiliary equa-

tion as
Au+ Au+ Bv=rf (5.1.11)
Av+ Av—- Bu=0 (5.1.12)
where
A=[4A] (5.1.13)
Ay =Af-af | (5.1.14)
M
A=Ya [ ¥vv¥eds (5.1.15)
k=t ,g.k
Mo
B =w) A ¥ ¥ndz (5.1.18)
k=1 Sk
t= fyd & (x) (5.1.17)
- 32101 aa"pﬁ' T
2 _[622' "o ] (5.1.18)

It will be assumed that the linearized form of equation (5.1.1) has spatially
constant stiffness properties, i.e. 2 # a(z). Then its eigenvalues and normalized

eigenfunctions take on the form:
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A= %(zi-n\/aT (5.1.19)

%(z) = \Esin%(ai-l)z

for i=1,2,... . The spatial basis functions, ¥, used in all further analysis will be

written as in{5.1.19) unless otherwise stated.

The solution of the equivalent linearized problem is the solution to the set of
equations given in (5.1.7). (5.1.8), (5.1.11) and (5.1.12). These can be solved once
the nonlinear stress functional 7¥ is specified. In the next section, a form of -
will be introduced to model a yvielding material behavior in the one-dimensional

beam.
5.1.2 Specification of the yielding model

In reference {24], a model for yielding behavior in one dimension has been
presented which consists of an infinite collection of ideal elastic-plastic ele-
ments with continuous distributed yield levels. The same author, in reference
[23], extended this yielding model to cyclic loading for a yielding level distribu-
tion whiph is constant for strains up to.a level, say W% and zero for strains levels

above W% where

L (5.1.20)

and u is a constant specifying the nonlinearity of the material. The resulting
cyclic stress functional, as given in [23], is an integral relationship in terms of
the strain level ¥, . This stress-strain relationship is shown in figure 5.1.2 for

L =02,

A solution of the nonlinear vibration problem using the above yielding model
has been obtained in reference [23] by the application of Galerkin's method. In

developing a solution, the same Fourier coefficients C(/,¥) and S(U,V) as in the
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equivalent linear parameter relations in (5.1.7) and (5.1.8) of this chapter were

evaluated as
o

CUV:)= —-}g* (U2 +VE]E (5.1.21)

3
SWaVs) = ~Eu[Ug + V22

1
for W, S WY and where W = [J2+V2]%. The relationships for C and S become
more complicated when ¥, > WY%. Therfore, as in reference [23], only strain

levels satisfying W, £ W% will be considered herein.

Substituting (5.1.21) into (5.1.7) and (5.1.8) with the use of the expansions of
U{z) and V(z) in {5.1.9) and (5.1.10) give the following relations for the discre-

tized equ.iva.lent linear parameters:

m=]

N

15 2 e

e (gumt vm) KR
g = £{‘)

(5.1.22)

N
15 2 :
5,2 (g vm ~um) ¥
- m=1
<® (5.1.23)

™
!

where

a N i _3-
K = uz-}-l(ukuz +u)? bf(%zﬂz)a"’mz ¢z

. N
2= 3 (wew +viwr) [Yrsvie de
k=1 8

_ %%
Yz = 3z
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5.1.3 Convergence of equivalent linear parameters

Recall from Chapter IIl1 that the eguations for the discretized eguivalent
parameters & and E were established by an approximation to the exact minimi-

zation in equation (3.9). The question may arise as to how well the approxima-

tions
M
a(z) ® 3 pi(z)a; (5.1.24)
i=1
. ~
flz}= iZgllm(x)ﬁe {5.1.25)

compare with the values of @ and 8 that satisfy (3.9). In this section, it will be
shown for the basis functions ¢; ;1=1, 2,....M , defined in (5.1.8) how the approx-
imate values for a and § approach their exact counterparts as & - =. For the
special yielding nonlinearity specified in the last section, the convergence rate

will also be given.

The formulation IlI stiffness parameters &; for the one-dimensional problem

of this chapter were shown to be {equation (5.7} ):

Sf(z)dz
a; = m {5.1.28)
&

where

F@) = CUVIU, + STV,
g{z)=UZ +VE

If the minimization of {3.9) is carried out ezractiy for the formulation III equa-

tion difference, it can be shown that a{z) must satisfy the relationship:
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o{z) = -ﬁ:—:))- | (5.1.27)

Recall that the displacement functions U(z)and V{(z) were expanded in
terms of the basis functions ¥(z) :i=12,...,N , as shown in equations (5.1.9)
and (5.1.10). Suppose that the functions ;{z) are such that f(z) and g (z) are
continuous except at say the boundaries of 8,(z), where they may be discon-
tinuous but finite. These types of discontinuities may arise if, for example, the
functions ¥;(x) are finite element shape functions and f(z)andg(z) are
differential functions of ¥;(z)} . Let z; ;i=1,2..., , be the equally spaced coor-

dinates of the possible discontinuities. Then a at the discontinuities will be

defined to be
a(zy) = % [a(z7) + alz)] (5.1.28)

where z;” = ﬁﬂg(’-i -&)and z;* = 1'1n61(::,; +£).
= [

Since f(z) and g(z) are continous on z € {z;,z;41) . the mean value theorem

can be applied to &, in (5.1.28) to show that

P

lim & = L%/ 5.1.29

"1'1?6 . g{z*) ( )
and

T .
m &y = M (5.1.30)

h~0 g(z)

whereh =z ~2y =2~z = % Therefore, from (5.1.28) - (5.1.30)

I (z) + L (-‘a‘:i')]

w LA B =R e )

af{z;) {5.1.31)

Equation (5.1.31) says that the approximate equivalent linear stiffness
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parameters @ converge as h—0 to their exact counterpart o in an "average”
sense across & discontinuity of the functions f(z) and g{z). If no discontinui-
ties exist, it is clear that f{z;*) = f(zy") and g(z*) = g(z;") . implying that &;

converges exactly to a{z;) or

};i_{ré &; = a{z;)

Similar statements can be made about the convergence of 8, to 8(z;)

Consider now the equivalent linear parameter relations (5.1.22) and (5.1.23)
for the yielding nonlinearity, with I/{z) and V{z) expanded in terms of only cne
mode of the linearized problem. That is, from (5.1.9), (5.1.10) and (5.1.19), U

and VV are written as

U(z) = [VZ singz Juy

V(z) = [\/Iz_sin%x]v,

The equivalent linear parameters then reduce to

fcos*-—g—:c dz

& =g ¥ ——— (5.1.32)
s M
bfcos -z dz
X, 2
fcos*%z dz
Bimcy P — (5.1.33)
f 2
cos > zdr
F

where

- 115 2
Ca = —Eu(g)a{uf +v§)? [‘fé"uz +;‘Uz]
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Ll 3 15 2
Cy = ‘2":'—’ (SP i +vi)® [fgvi~—ui]

The exact minimization of the formulation III equation difference with

respect to o and £ gives:;

a(z) =c, cosz%z (5.1.34)
f(z) = ¢, cos? g (5.1.35)

2

Let e be defined as the mean sguare value of the error between a{z) and its

M
approximation a{z) ® ) gi(z)&; ,or
i=]

1
e = [lae)- 3 pula)a 2 az

i=1

=ciEy
¥ 1 f cos? %-ﬁi‘t
where g, =3 l[ [cos? Xz - £ : P dz
=1 g cos? - zdz
: 2

M
The rate of convergence of ), p;{z)&; > a will be determined by investigating
i=1

how Ey -+ 0 as M ~» = , Figure 5.1.3 shows the relationship of log(j—";,—) vs. logFEy .
For large values of M , the slope of this curve is about 2; therefore, the error

decreases at a nearly quadratic rate as ]1{7 - 0.

k. -~
From (5.1.33) and (5.1.35) it is clear that the convergence of Dwi(z)Bi~ B(z)
=1

as M + = is governed by the same error function Ey. Therefore the approxi-

mate equivalent linear damping parameters also converge at a guadratic rate.
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Figure 5.1.3

LOG,, (1/M]

Convergence Rate for Equivalent Linear
Parameters
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$.1.4 Numerical results

In this section, a one term expansion on w(z,¢)} will be used to calculate the
response of the yielding shear beam by means of the egquivalent linearization
technique and Galerkin’'s method. The equivalent linearization egquaticns to be
solved are equations (5.1.11), {5.1.12), (6.1.22) and (5.1.23) with N = 1 while the

Galerkin eguations can be found in reference [22].

obtained from the

Figure 5.1.4 shows the base shear strain ratio W:
Z
equivalent linearization method with M = 10 and Galerkin's method in terms of

the dimensionless excitation frequency {1, where

a0 = T“’- (5.1.36)
1

These response curves are shown on a2 somewhat expanded scale in order that
the characteristics of the two types of solutions can be seen in detail. As can be
seen, with M = 10 the equivalent linearization technique predicts a slightly lower
level of response and lower resonant frequency than Galerkin's method. This

difference is more pronocunced for iarger levels of excitation R where

R= (5.1.37)

%)

Figure 5.1.5 shows the effect of mesh subdivision for the equivalent linear
parameters on the peak response of the beam. In the last section, it was shown
that as M - = , the eguivalent linear parameters obtained by the approximate
minjmization technique converged to their counterparts obtained by the exact
minimization technique. An interesting result is that when the exact linear
parameters are used in the one term expansion of the auxiliary linear equa-
tions, the equivalent linear solutions are exactly the same as the one term

Galerkin solution. This is displayed in figure 5.1.5 by the coincidence of the
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M - « equivalent linearization curve with the Galerkin response. Therefore, for

this special case, there appears to be an equivalence between the two methods.
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5.2 Steady-State Harmonic Response of a Nonlinear Plate

A typical assumption used in the vibration of thin plates governed by the
Poisson-Kirchofl theory is that the amplitude of response is small in comparison
to the thickness of the plate. This assumption permits the use of a linear egua-
tion of motion for describing the response of the plate. Whenever the deflection
becomes of the same corder of magnitude as the thickness, geometric nonlineari-
ties arise from the coupling of the membrane and bending stresses. In this case

a linear model of the response of the plate would not be appropriate.

The nonlinear theory used in this example is based on the so-called Berger
approximation to the coupled nonlinear Von Karman equations for static
analysis. Berger’s analysis, which originally appeared in reference [2], is essen-
tially based upon neglecting the strain energy due to the second invariant of the
middle surface. This assumption permits the nonlinear equations for the in-
plane and transverse displacernents to become uncoupled. The work presented
in reference [38] extended the Berger approximation to the dynamic equations

of motion.
5.2.1 Equations of motion

The nonlinear equations of motion can be derived through the application of

the generalized Hamilton’s principle (see section 2.4.2) which states that
tz
6_[ (T+W=-U)dt =0 (5.2.1)
1

where 7, U, and W are the kinetic energy, potential energy and non-conservative
virtual work of the system, respectively. Let the spatial domain of the plate be
defined for rectangular coordinates x=(z; zz) on $(x) and the boundary
8 &£(x). Then if the in-plane kinetic energy is negligible compared to that due to

transverse motion, the kinetic energy can be written as:
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T=Y% fpuwld &(x) (5.2.2)
&

and the work done by an externally applied, harmonic load is

= —[fp (x)wd &(x)] coswt (5.2.3)
&

where w = w(x,{) is the transverse displacement of the plate for whichw = 2
p is the mass per unit area and p (x) is the distributed applied load. From refer-

ence [2], the potential energy of the plate which neglects the second invariant of

strain energy can be written for a non-homogeneous elastic material as:

U =% [[MyeDow ), g8+ ff e*ld 5(x) (5.2.4)
&

where the summation convention is implied on 7, 6=1, 2 and

My =D (wyy +vw )
Miz=D (1~v)w 12 = M2
Mez =D (vwyy + wz)

e=u+vugt+huww,

= the first invariant of the strains at the midplane surface
w, ¥ = in—plane displacements of the plate
in the z, and r, directions, respectively
v = Poisson's ratio for the material

h = thickness of the plate
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ER3

= 12 (17 - Dexurel rigidity of the plate

D

E = modulus of elasticity for the material

-7
.7 627
Using the energy relations (5.2.2) - (5.2.4) in the variational equation (5.2.1)

and integrating (5.2.1) by parts produces the following set of eguations of

motion for the plate:

( l:f €),=0 for y=12 (5.2.5)
12D .\
Moz s(Dow) = ( ew ,) 4 + pi = p(x)coswt (5.2.8)

hB

Equation (5.2.5) states that the gquantity 1,?,1? e is not a function of the spa-

tial coordinates. Therefore, the integration of 1529 e over the domain £{x)

gives:
flfaﬂed Hx) = l:fefd &(x}
& &
= 1:£e(Afea)
or
120 _ N{w) (5.2.8)

ne ° - (Area)
where Area is the surface area of the plate and

12D

Nw)= f —zed 8 (5.2.9)
8
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It should be noted that if o # D(x), h # h(x), and if the inplane displacements
vanish at the boundaries of the plate, N{w) becomes a functional involving only

the transverse displacements, or

N(w)= lhngfe d £(x)
£

= :—'gfw_.,w.,, d &(x) (5.2.9a)
£

Substitution of (5.2.8) with (5.2.9a) into equation of motion {(5.2.6) gives

Mg p(Dw) = p[fw_.,w.., d Sx)}w .+ pi = p(x) coswi (5.2.10)
&
h o _.........B_g—
woere = (Area )h?®’

Eguation (5.2.10} is the dynamic analog to the uncoupled form of Berger's
equations discussed in reference [2]. The damped response of the plate will be
given by the solution to (5.2.10) with the addition of an absolute , or "mass pro-

portional", damping term bw(x.¢) where b = (x).
5.2.2 Equivalent linear system

The linear auxiliary equation of motion which serves as a replacement for the

damped form of the nonlinear equation of motion (5.2.10) is defined to be:
Mg 5(Dow) + Mo pslaw) + b + plo = pcoswt (5.2.11)

where a = alx) is the equivalent linear flexural rigidity of the plate and all cther

terms are as defined before.

Referring to the notation used in chapters II and 111, it can be seen by inspec-
tion that the stress operators for the nonlinear and linear auxiliary plate equa-

tions are are vector operations. Specifically 7 and 1% can be written as
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= (A A (5.2.12)
o = (oh, )
where
= —pw, fwowed S(x) (5.2.13)
&
T’Jt" =Myss
fory=12.

Recall that problem formulation Il defined in Chapter III required the use of 2
strain-type function $(w) . For the analysis of the plate response using formu-

lation II, ${w) will be a vector operation defined as

S =(8,; &) (5.2.14)
where

S w)=w, (5.2.15)

The nonlinearity in the equation of motion (5.2.10) influences the stifiness of
the plate and not the energy dissipat.ion. It should therefore be expected that
the inclusion of the equivalent linear damping parameter £ will not be neces-
sary. By not including § in the minimization relations, the approximation for

the eguivalent linear Aexural rigidity a

M
a(x) & _Z_)isoi(x)&‘ i

must satisfy the following minimization relationship:
Ad =G (5.2.16)

where & =(8 . 82 ..., &) . The form of the matrix 4 and vector G will

depend on the problem formulation used and are given in section 4.1 for the
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steady-state response of the general system. It should be observed that in sec-
tion 3.8 the matrix 4 was shown to be invertible for all three problem formula-

tions, and henceforth unique solution for @ and B always exist.

Let attention now be focused on developing the specific form of 4 and G in
(5.2.18) for problem formulations I, I and IIl. The linear operations 2, v-7

and from (5.2.13) and {5.2.15) are expressed as:

mh(piw) = ME s (U) cosut + M5D5(V) sinwt (5.2.17)
V r(piw) = M5D,5(U)coswt + M{E,a(V)sinwt (5.2.18)
8 {w)=U,, coswt +V,, sinet (5.2.18)
where
w(x,t) = U(x) coswt + V(x) sinwt (5.2.20)
MPU) = MyslonU) (5.2.21)

The time integrals C.;‘) . C.SBJ . S.§” and S.f.a} ry=1,2 , defined in equations
(4.17), (4.18), (4.23g) and (4.23h), respectively, can be written for the plate prob-

lem as:

A e S XA CA R AR AR RACAA (5.2.22)
S{UY) ==& 2 UV, + [N (UU) +3 VYV, (5.2.23)
cE(D V) = —% [ (UU) = T (W)U, =R (U VIV, (5.2.24)
SPU.YV) = -{:— 2 UV, + [T (UU) = NV.VIIV., (5.2.25)

where
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%(WU.V)= fUqVsd 8(x) (5.2.26)
5
The preceding relations, (5.2.17) - (56.2.26) are then used to derive the matrix

A and vector G for the three problem formulations, as shown below. As before,

repeated Greek subscripts will imply summation on indices from 1 to 2.

Formulation 1

= [ RO U ) + U VPV ) (227
6l = -£{13 nw.v) + 1 WUV MRy, d 8(x) (5.2.28)
b

+2 WUV MUV, ¢ + M s (VIU ged 8(x)
5

+[ WUUY + 38 RV MR (VI ed s(x)}

£
Formulation IT
Alf = { (D5 (U, + MBP(VIU ] MG, U ¢ + M (VIV, ] (5.2.29)

+ [M3Re(U)U,,] [3Y [ (U, ¢ + ME) (V)V, ]
+ (R (V)Y ) MG (U0 + 3G VIV, )}d 8(x)

6 = ~£ [l W(U.UY+ R (VWU U.e+2 MU VIV, U] (5.2.30)
&

[BMES (U, +M P (VIV,]
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+[2( TUU)~ 0.V V=4 (U VU U J MR (U, - M s(VIU,]
+[ U UY= 7(VVIU U ¢+ V.V HM B (UIU, - M (VIV,]
+[2 NV V. +{ (U +B R AV, VIV, V]

[ Ra(0)0, + 3 Re(VV, ) 52)

Formulation Il

Al = [IMR(UME(U) + M B (VM H) (V)] £(x) (5.2.31)
&
it = [ 7 (WU + 7 PN MR 52 503 (5.2.32)

+ 27 (U V) f[IMP(UIW, +MPs(VIU,]d 5(x)
£

+[ OO +3 RV [HP (VI pd s(x)}
&

5.2.3 Finite element analynis of the auxiliary equations

The finite element method was briefly discussed in Chapter Ill. A more com-
plete discussion of the mechanics of constructing the finite element equations
can be found in a number of finite elemnent textbooks. Only the results of the

discretization will be presented here.

Recall from egquation {5.2.11) that the auxiliary equation for the thin plate

problem was chosen to be:
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Moz s(Dyw) + M4z ys(aw) + bw + pid = peoswt (6.2.33)

where repeated Greek subscripts imply summation of the indices from 1 to 2

and with all other terms and notation are as before. If the displacements w are

written as
N
wixt) = Elw,-(x)d,(t) . (5.2.34)
:=

then the finite element equations can be written as:

7d(t) + cd(t) + Xd(t)= 3 coswt (5.2.35)
where
Ty = foviv;d 8 (x) (5.2.36)
Cy = oty d 8 (x) (5.2.37)
Ly =f 8. B;d8 (x) (5.2.38)
Fi= fp(xd 8 (x) (5.2.39)
By=(Yi1n Vize Yare) (5.2.40)
(D +a) v - 0
R=| v (D +a) 0 (5.2.41)
0 0 2(1-v)(D+a)

and ¥;(x) and d;{f) ;i=12,...N , being the shape functions and nodal "dis-
placements’, respectively.

The domain of the plate is to be divided into N, , four-node gquadrilateral ele-
ments with each element having nodal peints as x =x®* ;a=1,2 3,4 . Consider

a trans{ormation from a set of local coordinates £ = (¢, £z} to the global set x

given by

x(¢) = i Nq(6)x® (5.2.42)
a=l
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where

N.(¢) = 11“(1 + e 1+ £260)

and the local coordinates of the nodes £* ;a=1,23,4 , are as shown in figure
5.2.1. The sheape functions for the displacement w will now be defined in terms
of the local coordinates, with the understanding that the transformation of the

shape functions to global coordinates is accomplished through {5.2.42).

Recell from section 3.7 that one sufficient condition for convergence of the
finite element method is the continuity of the m-1 derivatives of the shape func-
tions, where m is the highest order derivative in the strain energy integral
(5.2.38). f‘rom (5.2.40) it is clear that m=2 for Kirchoff plates, and consequently
the shepe functions must have continuous first derivatives across the element
boundaries. A set of shape functions developed in reference [3} constructed

from Hermite cubic functions satisfies this reguirement. Using these shape

dw Bw _Pw
a:r,’ BIE' dr8zp

functions, the unknown prarameters at each node are w,

which leads to a total of 18 degrees-of-freedom/element. let d, ;a=1,2 3.4

be defined as

- Bwﬂwaaw)r

= =28
d. (w' 631' azg'axxazg atg=¢

Then the set of noda! parametersd, ;e=1,2....Ny will be ordered as

df =(d, G, da d )

With this, the shape functions in local coordinates from reference [3] are as

shown in table 5.2.1.
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€2
g? =(-1,1) £3=(1,1)
® 2
€1
¢ ¢

tl=(=1,-1) | &2=(1,-1)

Figure 5.2.1 Domain of Plate Element in Local Coordinates
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a Ya

1 F1(¢1) 1(¢e)
2 Va(€1) F(¢2)
3 Vil€1) Va(te)
4 Pal£1) Palte)
5 Palt1) 1(£2)
6 Pa(t1) V1)
7 Ve(£1) Paléa)
8 Va(£1) Ya(t2)
9 Veo(£1) Vole)
10 | P81} Paléa)
11 V(1) Fulé2)
12 Palt1) Pulte)
13 Pr(£1) Poléa)
14 Pa(£1) Yalte)
15 Pul€s) Yulée)
16 Va(£1) Vult2)

Table 5.2.1.

where

Pi(z) = (z-1)% (2+z) 4
Ve(z) = (z+1)? (R—2) 4
Va(z) = h, (z+1) (2 -1)°/8
Vulz) =k, (2+1)*(z-1)/8B

The Bogner—Fox-Schmidt Shape Functions
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The finite element discretization of plates governed by the Kirchoff theory has
an inherent difficulty in modeling curved boundaries. As mentioned in reference
[19]. such modeling of a simply-supported, curved boundary boundary will
impose a "clamped” boundary condition as the mesh is refined. Consequently,
analysis will be restricted to plates having straight edges and , in particular,

only rectangular elements will be used.
5.2.4 Convergence considerations for equivalent linear parameters

For the previous example of the one-dimensionel shear member, the conver-
gence of the equivalent linear parameters with mesh refinement was readily
established. In this example of the nonlinear response of thin plates, complexi-
ties arise which do not permit such a simple analsysis. Recall from the last sec-
tion that the finite element analysis of the auxiliary linear equation was per-
formed using bi-cubic shape functions in which their first derivatives were con-
tinuous across the element boundaries. But from the minimization relations of
formulation 111, for example, in equations (5.2.18), (5.2.31) and (5.2.32), it can be
seen that continuity of the second derivatives of the displacements are required.
Otherwise the terms contairﬁng three spatial derivatives such as M ,‘,’26 will pos-
sess singularities at the element boundaries which are not square integrable.
The technigue used herein to avoid this difficulty is to compute the integrals
within each separate element, and then simply add together the results, thus

ignoring the contribution of the interelement discontinuities.

Using this type of construction of the mirimization equations, one should be
concerned with how the omission of the singularities on the element boundaries
afiects the solution. This is also a concern in the finite element area when "non-
conforming” elements are used (reference [48]). In this latter case, a "patch

test” of elements can be used to determine the completeness convergence cri-
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terion of the element. If the element passes such a test, it is then concluded
that the discontinuities in the "non-conforming"” elements do not contribute to
the strain energy. For the minimization equations, it is not clear whether such
a test would be applicable, and therefore the convergence of such a scheme has

not been resolved.

In spite of these uncertaintities, the minimization relations will be formed at
the element level, as mentioned above, for all three problem formulations.
Investigation of how these considerations affect the convergence of the method

will be deferred to further investigations.

5.2.5 Numerical results

This section will deal with the symunetric, steady-state, harmonic response of
a simply supported rectangular plate governed by the nonlinear theory intro-
duced in secticn 5.2.1. The numerical results from the equivalent linearization
technique will be compared with those from Galerkin’s method described in sec-

ticn 2.4.1.
Let the domain of the rectangular plate £ (x) be defined as

S(x)=(-aSz,Sa —bS 2,5 b)

The simply supported boundary conditions are therefore given by:

w(—-a,zgt) =w(azst) =0

w(zy, =bi)=w(z,bt)=0 (5.2.43)

32w 8w
h—— _alI ]t = ——— I Jt = D
azla ( 2 ) 61'12 (a' 2 )

35w
az

8%w
—(ry, —-b.i) =
aIé?‘( 1 )

(z,b,t)=0
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That is, the displacements and tangential moments must vanish on the boun-
dary of the plate. If the material properties are constant throughout the plate,
the symmetric eigenfunctions $,(x) and corresponding eigenvalues A, for the

linearized problem with the boundary conditions of {5.2.43) are

$,(x) = cos[ﬂ(zk-—l);-ai] cos[ﬂ(zk—l):—s] (5.2.44)

A = 'F;"(Zk“l)z[fg +g1é-]\/%_ (5.2.45)

Let the applied load to the plate be due to a spatially constant pressure Py,

- and define the following dimensionless parameters

= &
Q—-AI
__ﬁ_ . 2
T=Y

T h

If the nonlinear plate solution is expanded in terms of the first ¥ eigenfunctions
of the linearized problem, the non-dimensinal form of the general Galerkin
equations (2.18) is:
= G
A T|la F¢| [£€
+ = (5.2.46)

- AF) (3§] (o
where for i,j=1,2.....N

MN-0% ifisj
Ay =)o if i
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_J2enn =y
Te =)o i imj

¢ _ 3072(1-1%) 5
F= G-

Pqb*
ERA1+ (2P

B=

3, = 3%, TR+ 50N +Tiy]

¥ = '%ii h[zﬁaﬁt +(@f +352)5 ]

i=t

N
W = Y, ;1 coswt + 7; sinwt ]
i=i

and {; is the damping ratio in the i# linear mode. £ and v are the elastic

modulus eand Poisseon’s ratio of the material , respectively.

Therefore, the steady-state Galerkin response is governed by & set of non-
linear algebraic equatioﬁs in the 'in-phase” and 'quadrature” { with respect to
the forcing term ) components of displacement, @ and ¥, respectively. It is
interesting to note that for the egquations written in the normalized form of
(5.2.48) that the plate dimensions a, b and h enter in only through the forcing
term. Consequently, the normalized free vibration response of the plate can be

presented independent of its aspect ratio or thickness.

$.2.5.1 Free vibration response

If the undamped, unloaded nonlinear plate is given an initial prescribed dis-
placement, it should be expected that the freguency of response will depend on

the amplitude of the resulting motion. This contrasts with the linear theory in
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which the frequency is independent of the amplitude of response.

For free vibration response that can be modeled sufficiently well by the first
mode of the linearized problem, the normalized frequency of response, {1, given

by Galerkin’s method takes on the rather simple form of

1
0=[1+ —g-ﬁf-]a (5.2.47)

where 12; is the normalized amplitude at the center of the plate. This one-mode

Galerkin response is shown in figure 5.2.2.

The equivalent linear free vibration response is governed by the free vibration
form of the discretized auxiliary eguation {5.2.35) and the minimization rela-
tions of (5.2.27) - (5.2.32) for the three problem formulations. Scolutions to
these equations have been effected through the use of the matrix iteration
method detailed in section 4.3.1. Results for the the first nonlinear mode of
vibration are presented in figure 5.2.2 for a finite element mesh with 9 degrees-

of-freedom ( DOF's } and in figure 5.2.3 for a 49 DOF mesh. .

In order to determine the validity of the eguivalent linear sclutions, a direct
numerical integrétion procedure was appliéd to the discretized for;m of the ori-
ginal nonlinear equation (5.2.10). The discretization was accomplished by using
the finite element bi-cubic shape functions in section 5.2.3, which produces a set
of nonlinear, ordinary differential equations in terms of the nodal displace-
ments. With prescribed initial displacements, these differential equations were
solved by a Runge-Kutta time integration algorithm. The frequency-amplitude
results are given in figures 5.2.2 and 5.2.3 for finite element meshes with 9 and

49 DOF's.
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linear

equiv. lin, {(form.l)
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Figure 5.2.2 Free Vibration Response of Simply Supported

Rectangular Plate (for 9 DOF finite element

mesh)
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Figure 5.2.3 Free Vibration Response of Simply Supported
Rectangular Plate (for 49 DOF finite element mesh)
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5.2.5.2 Forced response

The forced response to the one mode Galerkin equations are given by
[(1-0%)%,+ JA7 P + (2004, F = (5.2.48)

where

L
Ay=[uf +vf]?

f1=48(2)1-A)P

and the normalized pressure, Pis as given following (5.2.46). A plot of 2 versus

A in (5.2.48) is given in figure (5.2.4) for P= i— and —E— . Also in figure (5.2.4) is

the formulation II! forced response.

5.2.6 Discussion

From figure 5.2.2, it can be seen that solutions from both Galerkin's method
and formulation III (stress minimization) of equivalent linearization compare
well with the results of direct integration, even for a somewhat "crude” finite ele-
ment mesh having ® DOFs. The difference between formulation IIl and numeri-
cal integration becomes somewhat more pronounced at larger amplituces of
vibration. The other two problem formulations, I and II {(differential stress and
energy difference minimization, respectively), on the other hand, predict a
"stifler’ response. That is, for a given amplitude, the frequency of oscillation
given by the two methods is significantly higher than that given by numerical

integration.

The results from using a more refined finite element mesh are as presented
in figure 5.2.3. The difference between formulation III eguivalent linearization
and numerical integration solutions are less pronounced at larger amplitudes

than in figure 5.2.2. Formulation II solutions were not significantly affected by
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the change in finite element meshes.

On the other hand, the formulation 1 approach to the equivalent linearization
method behaves rather erratically for the 49 DOF model. The results show that
the eguivalent linear parameters become small, which in effect makes the free
vibration results nearly linear, as can be seen in figure 5.2.3. The reason for
such an erratic response could lie in the shape functions used in the finite ele-
ment model. Recall from section 5.2.2 that the integrands in the eguations for
the formulation I equivalent linear stiffiness parameters are singular at the ele-
ment boundaries for the bi-cubic shape functions. These singularities are more
severe than those encountered by the other two formulations. Therefore the

poor performance of formulation I is not particularly surprising.

In conclusion, formulation I appears to be the most attractive of the three
approaches to equivalent linearization. The results from formulation Il agree
with those form direct integration and compare well with free and forced solu-
tions of Galerkin's method. The fact that the one term Galerkin expansion of
this simple example produced simpler expressions for the solutions than that
given for equivalent linearization is noteworthy. In the next example, however,
it can be seen that the simpler Galerkin approach (and the similar Ritz method)
can not handle a problem with somewhat more complicated boundary condi-

tions as well as the finite element-equivalent linearization technique.
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5.3 Steady-State Harmonic Response of a Nonlinear Plate with & Hole

In this section, the nonlinear response of a plate with somewhe! more com-
plex boundary conditions will be investigated. The simply supported rectangular
plate of the last section will again be dealt with, but here the effect of a rec-

tangular cutout centered in the plate will be of interest.

The geometry of the problem is as shown in figure 5.3.1. Let @ £o(x) be the
outer boundary of the plate and 8 £;(x) be on the perimeter of the cutout, Sim-
ply supported conditions are to be imposed on @ &4, and on @ §;, moment and
shear free conditions exist. It should be noted , however, that in order for the
nonlinear theory to be applicable to this problem, the inplane displacements of
the plate must be constrained at the hole. Therefore a membrane stress will

exist on 8 &; although 8 8 is free of bending stresses.
5.3.1 Ritz method

For the continuous plate (that is, a plate without cutouts) a Galerkin method
has been used in the analysis. This was possible because of the availability of
trial functions which satisfied all of the boundary conditions, i.e. comparison
functions. However, the presence of the hole, and its associated boundary con-
ditions, create difficulties in finding usuable comparison functions. As can be
recalled from section 2.4.1, the class of trial functions that can be used with the
Ritz method need only satisfy the geometric boundary conditions. Thus the field
of candidates for use with the Ritz method is larger than that which can be used

with Galerkin's method.

The use of the linear mode shapes of the continuous plate for analysis of a
plate with a cutout is suggested in reference [28]. Reference [26] used a set of
trial functions which modeled the appropriate singularities within the hole. For

a square plate, the trial functions used in [26] are
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e ¢ —=f=c

Figure 5.3.1 Geometry of Rectangular Plate with
Centered Rectangular Cutout



where

Both types of trial functions will be used in later analysis.
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#,(x) = £(x)
2ol = f (0 T2

2 2
B5(x) = £ (Nog[ A2 ]

£ () = [~ (- (227

(5.3.1)

(5.3.2)

(5.3.3)

(5.3.4)

Substitution of the energy and virtual work expressions for the undamped,

nonlinear plate into the Ritz equations of section 2.4.2 gives the following nor-

malized relations

where

[~? 7+ K Ju+ F{u)=f

?72,;3 = f@it"d E(X)
8

g = %f[(l—v)‘?;; 78255 + VB85 5]d 8(x)

8

3, = —3———3— 5t [f8:,8,,d 8(x)]
S

ph®(ab — cd) 4=

fi= f‘“'qfq’-;d B (x)
P g

g%,
Py = 6::::

e b o
Jere s@= [ [V amdzg= [ [ () duzs

(5.3.5)

[f‘I’k. 188 S{X)uymyy

Y
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and repeated Greek subscripts imply summation of indices from 1 to 2.
5.3.2 Fundamental natural frequency

For low levels of amplitude, the response of the nonlinear plate should be
expected to approach that of the linearized response. Before investigating the
nonlinear, free vibration of the plate with a hole, its linearized response should
be understood. The satisfaction of the free boundaries at the hole creates
difficulties in obtaining exact solutions for the linearized natural frequencies.
In this section, the fundamental frequency of a square plate governed by the
linear theory will be investigated by three methods: (1) Rayleigh-Ritz method
with the mode shapes for the plate without a hole, (2) Rayleigh-Ritz method with

the singular trial functions of (5.3.1) - (5.3.4) and (3) the finite element element

method.

Recall from section 2.4.2 that the Ritz method reduces to the Rayleigh-Ritz
eigenvalue formulation, equation (2.28), for a linear conservative system. The
mass and linearized stiffness matrices, % and X , for the Ritz method are given
in equation {5.3.5). Substitution of the first eigenvalue and eigenfunction of the
continuous plate into the expressions for 7{ and h give the following relation-

ship for the non-dimensional natural frequency, A,

2(1-[F(Z2) - 1] (&)
A= 1+ e b (5.3.6)
[1+ (PP

where
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e 1 . gqrd 1. .4

F-l [a n_su:ma][b ﬂsmﬂb]
- c 1. cird 1. d
1= [ +opsinn 1[5+ Josinme]

and Ay and Ayy are the fundamental natural frequencies of the linear plate with
and without a hole, respectively. The use of the three singular trial functions of
(5.3.1) - (5.3.4) in the Rayleigh-Ritz equations produces a 3x3 eigenvalue prob-
lem. The solution for the lowest eigenvalue for a square plate with a square
cutout is shown in figure 5.3.2 for the full range of hole sizes. Equations (5.3.8)
with a=b and ¢ = d is also plotted in figure 5.3.2. The fundamental eigenvalue
for the finite element formulation of the linear plate has also been determined

using typical element meshes of figure 5.3.3 are also shown in figure 5.3.2.

It can be seen from figure 5.3.2 that the Rayleigh-Ritz frequencies are always
as large as those obtained via the finite element method. In fact, for hole-
width-to-plate-width ratios less than = 0.34 , the finite element frequencies are
actually lower than those of the plate without a hole. Reference [48] provides a
proof that eigenvalues from the finite element method are an upper bound for
the actual eigenvalues. Consequently, it should be assumed from figure 5.3.2
that the finite element freclluencies are better estimates of the actual frequen-

cies than those of either of the two Rayleigh-Ritz formulations.
5.3.3 Nonlinear free vibration response

Substitution of the first eigenfunction of the linear, continuous plate from
equation (5.2.44) into the Ritz equations (5.3.5) for a sguare plate with a square

cutout gives the following amplitude-frequency relationship:

1
0 =[R2+ 2put)?

5 (5.3.7)

where



3.2 | T 1 ! | 1 { | I

30 —— finite element

—e— Rayleigh-Ritz

28 I (cosine, N=1)

-— Rayleigh-Ritz
( singular, N=3)

26 I~

22 I-

20

\——— no hole
< <

I 1 1 ! ] | ! I I
O 01 ©02 03 04 05 06 07 08 09 10

FUNDAMENTAL NATURAL FREQUENCY, A

HOLE WIDTH/PLATE WIDTH, cra

Figure 5.3.2 Linear Fundamental Natural Freguency of
Simply Supported Square Plate with Square Hole
for v= 0.3



112

c/la=0.2 c/la=0.4

c/a=0.6 c/a=0.8

Figure 5.3.3 Finite Element Meshes for Eigenvalue Analysis
of Simply Supported Plate with Hole
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and w .. is the maximum displacement in the plate. A is the Rayleigh-Ritz fun-
damental frequency of the plate given in (5.3.8) fora=bandec=d. Ifc=0,ie.
no hole, both A in (5.3.8) and & in (5.37) are equal to one , and the amplitude
frequency relationship (5.3.7) reduces to that derived by Galerkin's method,
equation (5.2.47). This is consistent with the fact that the Ritz method is

equivalent to Galerkin's method when comparison functions are used (reference
[34]).

In the same meanner as for the continuous plate, the free vibration response
using the formulation IIl equivalent linearization technique has been deter-
mined for a range of moderately sized holes. The results are presented in figure

5.3.4 along with the Ritz relﬁtionship (5.3.7). Alsc shown in figure 5.3.4 is the
free vibration response fo a hole size of % = 0.5 obtained by numerical integra-
tion technique described in section 5.2.5.1.

The effect of hole size on the nonlinear resonant frequency shift of the plate
can be seen by looking at a given level of strain, say max(—?a}-;-) , rather than for

a given level of displacement, as before. Recall that the nonlinear stifiness in
the plate i= related to the total midplane stretch, which is in itself a functional
of the strain and not the displacement. In figure 5.3.5, the difference in the

linear and nonlinear resonant frequencies , Afl.is plotted versus hole size for
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‘two normalized levels of strain , &, , where

W - Ay

A Y

]

— dw
Uy = % max(—a?)

and Ay , as before , is the linear, fundamental natural frequency of the plate

without a hole.
5.3.4 Nonlinear forced response

As with the analysis of the continous plate, the nonlinear response of the
cutout plate to a temporally harmonic and spatially constant pressure load will
be investigated. Here the emphasis will be on establishing a relation between

the size of the hole and the resonant response experienced by the plate.

In section 4.3.2, a method was introduced to determine the relationship
between applied pressure and the resonant amplitude of response of a lightly
.damped system via the equivalent linearization technigue. The method esta-
blished a rather éimple relationship, equation (4.59), between the applied load
and resonant response, once the free vibration "backbone” curve had been cal-

culated.

Results of the analysis are shown in figure 5.3.6 for a damping ratio of
¢=0.03 and for 2 range of moderately sized holes. If the linear theory for the
vibration of plates were used, a linear relationship would exist between the
applied load and the resonant amplitude. This linear relation is also shown in
figure 5.3.8 and, as consistent with the usual hypothesis implied by the use of

the linear theory, is tangent to the nonlinear curve at small amplitudes.
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5.3.5 Discussion

As shown in section 5.3.2, the finite element method provided a means of
obtaining a better estimate of the eigenvalues than by the Rayleigh-Ritz
approach. In particular, the finite element method was able to model an initial
decrease in the fundamental frequency with an increase in hole size. This
phenomena is qualitatively similar to that experienced by a circular, simply sup-
ported plate with a concentric circular hole . as reporied in [28], where, for
hole-width-to-plate-width ratios up to 0.4, the fundamental frequency was less
that that of the same plate without a hole. The inability of the Ritz procedure to
accurately determine the linear eigenvalues will introduce an artificial fre-
quency shift when considering nonlinear analysis for even small amplitudes of

response.

In section 5.3.3, the nonlinear free vibration response has been reported in
two different ways. The physically appealing maximum displacement-frequency
response has been shown in figure 5.3.4 while in figure 5.3.5, a mathematically
appealing maximum strain amplitude-frequency response has been presented.
It can be seen from figure 5.3.4 that the equivalent linearization predicted a fre-
quency shift in displacements due to the nonlinearity for hole sizes of c/a= 0.2
and 0.3 to be less than the frequency shift for the plate without a hole. For all
hole sizes, the nonlinear frequency shift predicted for displacement response by

the Ritz approach is always larger than that given by equivalent linearization.

In figure 5.3.5, the frequency shift in the maximum strain response has been
normalized by the fundamental natural frequency of the cutout plate. Here
both methods show that the frequency shift monotonically increases up to a
maximum value with increasing hole size, and then decreases. The diflerence

between the two methods is that the Ritz frequency shift for the cutout plate is
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always larger than that for the continuous plate, whereas with the equivalent
linearization method, the frequency shift for large holes is less than for the con-
tinuous plate. Hence the two methods predict significantly different type of

behavior in the vibration of a plate with a hole.

Figure 5.3.6 shows that for small holes, say c/a = 0.2, the nonlinear forced
response remains nearly linear for larger amplitudes than for the same plate
without a hole. However, for hole sizes of at least ¢/a = 0.5, the need for non-

linear analysis becomes more apparent, even for lower amplitudes of response.
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V1. CONCLUDING REMARKS

The analysis presented in this dissertation has been focused on the type of
nonlinear dynamic system introduced in Chapter II. The system described there
was one for which the limiting behavior for low level response can be
represented by a linear model. This linear model was prescribed to be one of

which the restoring stress.operation was positive definite and self-adjoint.

The linearizability of the nonlinear systemm has been the foundation of the
new continuum equivalent linearization method presented in Chapter III. That
is, it was fell that the behavior of the nonlinear systern could be modeled
sufficiently well by a replacement, auxiliary linear system. The auxiliary system
was determined three ways by the minimization of differences between three dis-
tinct quantities of the nonlinear and auxiliary linear systems. These difference

guantities were:
1. differential stress difference (formulation 1)
2. energy difference (formulation II)
3. stress difference (formulation 111)

At this point, the new continuum equivalent equivalent linearization method
became significantly different from its well-established egquivalent linearization
counterpart for discrete systems. Since the auxiliary system was defined at the
continuum level, the system difference was not only a function of time, as with
the discrete method, but also a function of the spatial coordinates. Hence the
equivalent linear parameters were expanded in terms of trial functions (of the
spatial coordinates), and the minimization between the system difference terms

was performed with respect to the eguivalent linear parameters.

It was shown in section 3.8 that, through the use of the positive definiteness
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and self-adjointness of the stress operation in the auxiliary system, the minirni-
zation relationships for the eguivalent linear stifiness and damping parameters
were always invertible for formulations I and Ill. For formulation I}, the inverti-
bility was established for special systems. This contrasts with the minimization
relations for discrete equivalent linearization. As pointed out in section 2.4.3, if
the nonlinear system is discretized first followed by linearization of the resuiting
ordinary differential equations, the invertibility of the minimization relations is
guaranteed for only a small number of degrees-of-freedom. Therefore, an
advantage has been established for the continuum approach to the equivalent

linearization over its discrete counterpart.

The above minimization procedure delineates one set of relations between the
equivalent linear parameters and solutions to the auxiliary equations. Another
set of relationships arise from the spatial discretization of the auxiliary equa-
tions. The finite element method to be used in the spatial discretization has
been described in section 3.7 in terms of its convergence requirements. Of
importance was the fact that continuity requirements on the displacement
shape functions are generally more restrictive for the minimization relations
than for the discretization of the auxiliary equations. Therefore consideration
of the linearization technique must be made in choosing the displacement shape

functions,

In Chapter IV, the general equivalent linear relationships from Chapter 111
were applied to the specific analysis of steady-state response to harmenic input
and stationary response to stochastic excitation. For harmonic input, the
minimization relations have been written in terms of the in-phase and quadra-
ture components of the auxiliary eguation sclutions, whereas for random
response the relations are written in terms of the covariance matrix of the

discretized auxiliary system.
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The continuum equivalent linearization technique was applied to the steady-
state, harmonic analysis of three specific types of structural elements governed
by nonlinear models. The first, the one-dimensional shear beam, was included
to clarify the concepts and mechanics of one formulation of the method. The
second and third examples, both pertaining to the nonlinear vibration of thin
plates, were used to compare the results from the three problem formulations
to solutions from existing methods and to demonstrate the applicability of the

new method to problems to which standard techniques are not well suited.

In section 5.1, the response of a one-dimensional shear beam composed of a
hysteretic material was investigated. Convergence of the formulation III
approach was established. Single mode solutions were obtained for the
equivalent linearization method and compared with results obtained from
Galerkin's method. It was found that, in the limit as the mesh for the equivalent
linear parameters is further subdivided, the formulation IIl solutions were pre-
cisely those of Galerkin’s method. For finite subdivisons of the mesh, it was seen

that the peak response underestimated the Galerkin solution.

The second example, found.in section 5.2, was the vibration of a thin plate in
which nonlinear coupling exists between the membrane and bending stresses.
Use of the Poisson-Kirchhofl theory of thin plates dictated that the displace-
ment shape functions have continuous first derivatives. Therefore Hermite bi-
cubic shape functions were chosen. However, the minimization relations in sec-
tion 5.2.2 required the use of displacements that had continuous second deriva-
tives {formulations II and III) and third derivatives (formulation I). In lieu of
using displacement fields with higher levels of continuity, it was decided that the
resulting inter-element singularities would be discarded in the formation of the

minimization equations.



123
Results from section 5.2 showed that the problem formulation 1 did not per-
form well in the analysis of nonlinear plates, and that the poor performance
could possibly be attributed to the previously mentioned singularities in the
minimization relations. The formulation Il results compared well with the
numerical integration solutions while formulation 1I consistently predictec a
stiffer response. Formulaion Il was therefore chosen to be the best approach

for further investigation.

Section 5.3 dealt with the further examination of the nonlinear plate from
section 5.2, whereas in section 5.3 the plate was permitted tc have a concentri-
cally located cutout. The Ritz procedure described in section 2.4.2 was not capa-
ble of satisfying the stress free boundary conditions at the hole. This resulted in

an artificial frequency shift in the nonlinear response.

A finite element linear eigenvalue analysis of the cutout plate showed that for
& range of small hole sizes, the fundamental natural frequency is less than that
of the plate with no cutout. The use of the finite element-equivalent lineariza-
tion technique predicted a similar, more flexible response of the nonlinear dis-

placerments for small heles than for the same plate without a hole.

In conclusion, it is felt that the continuum approach to eguivalent lineariza-
tion holds promise for use in the nonlinear analysis of structural members. The
formulation of the method is such that the method can easily be incorporated
into existing finite element computer codes. The construction of the method
has been such that an understanding of the solution properties has been possi-
ble in this dissertation. Most importantly, the stress difference formulation has
been successfully applied to structural elements in which both stiffness and

energy dissipation properties are response dependent.
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