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ABSTRACT

The impact of the discharge of primary treated effluent
of a high suspended solids concentration on the sedimentary
environment of the Palos Verdes Shelf was investigated.
Analyses of the carbon content and the isotopic composition
of sedimentary organic material with depth in the sediments
and the areal distribution of these properties relative to
the location of the Los Angeles County Sanitation Districts'
ocean outfalls indicate that the outfalls are extremely
important in determining the chemical and physical properties
of sediments on the Palos Verdes Shelf., The analyses of
various sedimentary cores specifically indicate that sludge-
like matter has accumulated to depths of as great as twenty
centimeters during the past 38 years.

Calculation of the accumulation rates of organic carbon
suggests that the present outfall-induced sedimentation rate
for organic carbon in the immediate vicinity of the discharge
is as much as about 260 times that of the natural sedimenta-
tion of organic carbon for the Palos Verdes Shelf. One result
of this rapid input of organic carbon is the occurrence of a
relatively large area of surface anaerobic sediments. The
relationship between the mass accumulation rates of organic
carbon and the areal extent of surface anaerobic conditions 1is
further discussed as related to the suspended solids concentra-
tion of discharged effluent.

The uppermost outfall-influenced sediments are shown to

be of high water content and to have a total organic carbon



concentration as high as 12 percent which has a 6013 value

of about -24.50/00. Particulate organic carbon discharged
from the outfall has narrow-ranged 6013 values of about

-23.5 o/0o, thus indicating that the sedimentary carbon has
incurred a diagenetic change resulting in the preferential
decay of a higher 6C13 fraction, or that there has been a
preferential deposition near the outfall of particulates with
a more negative 6013 value. Other possibilities are also
discussed.

The lower pre-outfall natural sediments on the Palos
Verdes Shelf have organic carbon concentrations of about
one percent. The GCls values for these natural sediments
are about -22.,5 to -23.00/00 which is typical of other data
reported in the literature for sediments of marine basins

offshore of southern California.
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I. INTRODUCTORY MATERIAL AND

PERTINENT LITERATURE REVIEW

I-1 Introduction

The relationship between man and the oceans and fresh waters
of the world has been accentuated by the threatening exponential rise in
human population. Ketchum (1972) notes that more than fifty per cent
of the United States' population lives in the counties bordering the
Great Lakes and the oceans, and that the percentage is increasing.

By the year 2000, an estimated 200 million people may live in the
coastal zones of the United States. The increase in human density,
Wi’ch the corresponding increased demand upon resources associated
with such areas, pose a threat to both the recreational and living re-
sources provided by the nearby waters. A proper and rational concern
is needed for taking the correct measures to preserve these resources
for present and future generations of the world.

One such action is the ""Water Quality Control Plan for Ocean
Waters of California' (California, State of; 1972), which was adopted
and became effective July 6, 1972. This plan has the objective of en-
hancing and preserving the quality of its coastal waters by setting
limits on various pertinent water quality parameters relating to both
discharged wastewaters and receiving waters. These include limits
on bacteriological, physical, chemical, biological,toxicological, and
radioactive characteristics.

This action was prompted by concern over the large flow of
municipal and industrial wastes discharged to the marine waters of

Southern California. The Southern California Coastal Water Research
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Project (SCCWRP, 1973) reports the following such discharges to

these waters:

Source Approximate Flow (1972)
treated municipal wastewaters 1, 000 MGD (million gallons/day)
discrete industrial wastes 180 MGD
returned cooling waters 5, 600 MGD

Four discrete treatment plants are responsible for about 93 per cent
of the above noted municipal wastewater flow. These are

(1) The Joint Water Pollution Control Plant (JWPCP) of the
Los Angeles County Sanitation Districts (LACSD) which
discharges approximately 371 MGD of primary treated
wastewater to the waters offshore of Palos Verdes;

(2) The Hyperion Sewage Treatment Plant operated by the
City of Los Angeles, which discharges approximately
235 MGD of primary treated and 100 MGD of secondary
treated wastewater through a 5-mile outfall in Santa Monica
Bay, and approximately 5 MGD of sewage sludge through a
separate 7-mile sludge outfall in Santa Monica Bay;

(3) The Orange County Sanitation Districts treatment plant
which discharges approximately 120 MGD of primary
treated and 10 MGD of secondary treated wastewater from
a location offshore of the Santa Ana River;

(4) and the Point Loma Sewage Treatment Plant, which dis-
charges about 90 MGD of primary treated wastewaters to
the waters offshore of Point Loma in San Diego.

The location of points of discharge for these four plants is shown in



Figure I-1.

The research described in this thesis deals with the discharge
of municipal wastes to the waters offshore of the Palos Verdes coastal
area. It is therefore relevant to elaborate on the general character-
istics of this particular waste. The characteristics of the other
wastewaters are discussed by both SCCWRP (1973) and CDM, Inc.
(1972).

The chemical and physical characteristics of the LACSD dis-
charge from Whites Point are shown in TableI-1. Due to the high in-
dustrial contribution to this waste and the return of digested sludge
centrate to its final effluent (Figure III-1), the JWPCP final effluent
has the highest concentration of almost all commonly monitored con-
taminants when compared to the other major discharges (SCCWRP,
1973). Of particular interest to this thesis is the concentration of
total suspended solids in the final effluent, which is about 300 milli-
grams per liter. For a flow of about 360 MGD (Table I-1), this con-
centration therefore represents a yearly flux of suspended solids to
the marine environment of approximately 1. 5(108) kilograms. The
settling velocities of these particulates (Figure III-4) are such that a
certain fraction of these particles is estimated to settle in the local
area (Hendricks, 1973) and ferm accumulations which cause im-
portant ecological disturbances.

In 1969, Grigg and Kiwala (1970) reported such ecological
changes in the benthos offshore of Whites Point to cover about six

miles of the local coastline. Their study indicated a decrease in the

number of benthic species to occur in a high sludge environment
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~Fe
when compared to a low sludge environment. Similar ecological
changes had been reported by Limbaugh (1954) to cover a distance
of only two miles, indicating an increase in the extent of ecological
disturbances with time.
North (1964) has been studying factors causing the disappear-

ance of the giant kelp Macrocystis pyrifera from the local Palos

Verdes coastline. He strongly suspects the intermittent accumula-
tion of outfall solids on rocky substrates in shallow waters to be one
of the factors that interfere with the healthful propagation of this
kelp species.

Due to the high industrial input to the JWPCP waste, the dis-
charged effluent (Table I-1) is seen to have high concentrations of
trace metals. Galloway (1972) investigated the accumulation of cer-
tain trace metals in the sediments surrounding the four major out-
falls. The sediments surrounding the LACSD's discharge at Whites
Point were shown to contain the highest concentration of these con-
taminants. Trace metal concentrations many times those of back-
ground for zinc, copper, lead, cadmium, and chromium gave ellip-
tical contours which centered on an area slightly northwest of the
Whites Point discharge. Based on trace metal convcen’trations in
sedimentary cores, Galloway estimated a sedimentation rate near
the point of discharge of approximately 0.22 gr/cmz/yr (0. 72 em/yr)
as compared to a ''matural' sedimentation rate reported by Emery
(196Q) of approximately 0. 009 gr/cmz/yr. In addition, Galloway
reported that most of these trace metals are in the particulate state

and not in solution.
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A much more lengthy and detailed summary of investigations
into the biological, chemical, and physical properties of these sedi-
ments is given in reports by SCCWRP (1973) and the LACSD (1973).
From these reports it can be concluded quite confidently that the near-
outfall benthos is markedly disturbed with respect to these properties.

This thesis will present the data, analysis, and conclusions on
the fate of particulate matter discharged from the Whites Point out-
fall system, based on its carbon content. This approach is based
upon an intensive investigation of organic and indrganic carbon asso-
ciated with particulate sedimentary matter, and includes measure-
ments of the percentage of total organic carbon and its respective
carbon isotopic content (C13/C12 ratio) in the local sediments.

The investigation of a new independent variable related to such
a complex problem as the effect of effluent on the ocean sediments is
desirable. However, the CB/C12 ratio and carbon concentration of the
sediments (both organic and inorganic)and of particulate matter in the

ocean waters is also of particular relevance to the very important

carbon cycle in the oceans.

I-2 Terminology

This thesis will present a large number of carbon isotopic data
on sedimentary organic and carbonate carbon associated with the San
Pedro Shelf sediments in the vicinity of Whites Point. The carbon iso-
topic measurements were determined on a double-collecting sixty-
degree deflection mass spectrometer of the Nier (1947) type with the

modifications of McKinney, et al. (1950). Basically, this instrument
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measures the ratio of C'7/C"~ in a sample (RS), which is introduced
to the mass spectrometer in the form of gaseous carbon dioxide, to

the Cl3/C12 ratio of a standard CO2 (RO). The desired R is there-

fore the ratio of the abundance of ions of mass 45 (Cl?’Ol()O16

abundance of ions of mass 44 (C12016016). However, R, as meas-

ured on the mass spectrometer, is actually the ratio of (CI?)OI()O16 +

2 1
C12016017) to C1 0160 6 . Therefore, a correction factor must be

17

) to the

applied to account for the abundance of O This correction factor,
and a correction factor which accounts for machine background and
mixing of sample and standard gases, was applied to all isotopic data
to be presented. A detailed account of these correction factors and
their application to measured isotopic data is provided by Craig (1957)

and Deines (1970).

Isotopic data of this type are typically reported as 6-values,

where
(R -R_)1000 R_
5 (0/00) = R = ('R'; -1)1000 . (L.1)

Therefore, carbon samples depleted in carbon of mass 13 relative to
the standard will have negative 6-values, and samples enriched in
carbon-13 will have positive 6-values. As an example, a sample with
a b (C13/C12) = -20.0 o/oo indicates that the sample is depleted in
C13 relative to the standard, such that the Cl3/C12 ratio differs by
20 o/00, or 2 per cent. Such mass spectrometric measurements are
reproducible to £ 0.1 o/oo (+0.01 per cent). All isotopic data in this
thesis are reported relative to the standard (RO) of CO2 prepared

from a Cretaceous belemnite, Belemnitella americana, from the Pee-
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dee formation of South Carolina. This is the common reference used

in most isotopic work of this kind.

I-3 Theoretical Considerations in Isotope Effects

Differences exhibited by isotopic molecules between coexisting

phases are primarily due to either:
(1) kinetic differences between isotopic molecules resulting in
differences in such properties as diffusional rates, or
(2) purely chemical differences due primarily to differences in
the vibrational frequencies of isotopic molecules.
Urey (1947) points out that the isotopic species of hydrogen differ in
many ways, including heats of fusion, vaporization, molar volumes,
and heats of solution.

Differences in the kinetic energy of isotopic molecules result
in different diffusional velocities and rates of vaporization. Graham's
law predicts the ratio of the diffusional fluxes of two molecular spe-
cies to be inversely proportional to the square root of the ratios of
the masses. For example, for CIZOZ and C13O2 , the ratio of diffu-
sional fluxes would be predicted by
T (ﬂ)% = 1.011
Dy~ 44/ = 7
Wahl and Urey (1935) showed that the vapor pressures of the isotopic
species of water varied such that at a temperature of 23°C the vapor
pressures of the species H2016, D2016, HDOlé, and HZO18 were
21.0, 18.25, 19.51, and 20. 82 mm Hg, respectively.

It is not in the domain of this thesis to delve deeply into the

rigorous theoretical considerations, which are based upon statisti-
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cal mechanics, relating to the chemical equilibrium properties of
isotopic exchange reactions. A comprehensive account of the formu-
lations is given by Urey (1947). It is pertinent, however, to briefly
mention some of the basic considerations.

A typical exchange reaction expressing the distribution of two
isotopic species between two coexisting phases is represented by the
isotopic exchange of gaseous carbon dioxide with aqueous bicarbonate:

3 3

c'?0, (gas) + HC'?0] (aq.) == c'?0, (gas) + HC? 0; (aq.)
(1.2)
Such a reaction can be generalized as
—
aA; +bB, T= aA, +bB, , (1.3)

where A and B are different molecules, both of which contain a com-
mon element existing in the light isotopic form (denoted by subscript
1) and the heavy isotopic form (subscript 2).

A fractionation factor, @, between two molecular species A

and B is defined for the case of carbon as:

13 12
(C_/Cc_)A (1.4)

(c*?/c'®) B

The fractionation factor is directly related to the thermodynamic
equilibrium constant K which, for reaction (. 2), is given by
12 13 .~
[c™"0,(g)] [HC "0, (aq)]

K = 2 : (1.5)
[c*?0,(g)] [HC “03(aq) ]

where the brackets denote molar concentrations. For this reaction
it is seen that @ = K. In general, for -an isotopic equilibrium reac-
tion such as (1.3), the fractionation factor is related to the equilibri-

um constant by the following expression:



« = K*® . (1.6)

The equilibrium constant K for an isotopic exchange reaction
can furthermore be calculated from the ratios of the statistical me-
chanic partition functions which, for the representative reaction (1. 3)

is shown (Urey, 1947) to be equal to
a
(Qu,/Qy,)

K = (1.7)

b s
(Qp2/Qp))

where Qij = statistical mechanical partition function for species ij.

At ordinary temperatures and above, it is further shown that

Q o. u -u2/2 |
i2 1 2 e l-e . .
= — = = ey for a diatomic molecule (1. 8a)
il 2 1 2 ™%
l-e e
-u,./2 -u,,
Qo 9 Ui e 4 1. M .
= 5 = = 77 for polyatomic mole- (1.8b)
il 2 j 1j 1-e- 2j o U cules

The parameters % and 0, are the symmetry numbers of the two
molecules, which are identical for this type of isotopic exchange, and

hy,

a = ?f"‘ (1. 9)

where \)J. denote the various vibrational frequencies of a polyatomic
molecule, h equals Planck's constant, and k equals Boltzmann's
constant. Therefore, it is seen that the equilibrium constants for
isotopic exchange reactions are dependent upon the vibrationa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>