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ABSTRACT

Advances in DNA sequencing have revolutionized our ability to read genomes.
However, even in the most well-studied of organisms, the bacterium Escherichia
coli, for ≈ 65% of promoters we remain ignorant of their regulation. Until we
crack this regulatory Rosetta Stone, efforts to read and write genomes will remain
haphazard. We introduce a new method, Reg-Seq, that links massively-parallel
reporter assays with mass spectrometry to produce a base pair resolution dissection
of more than 100E. coli promoters in 12 growth conditions. We demonstrate that the
method recapitulates known regulatory information. Then, we examine regulatory
architectures for more than 80 promoters which previously had no known regulatory
information. In many cases, we also identify which transcription factors mediate
their regulation. This method clears a path for highly multiplexed investigations of
the regulatory genome of model organisms, with the potential of moving to an array
of microbes of ecological and medical relevance.
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C h a p t e r 1

INTRODUCTION: ON A QUANTITATIVE UNDERSTANDING
OF GENE REGULATION

1.1 Introduction
Adaptation is nearly synonymous with being alive. The commonly used adage ‘life
finds a way’ hints at the universality of adaptation within the living world. The
concept of adaptation should be familiar from our day-to-day lives. As an example,
our eyes are able to adjust from broad daylight to a dark room in a matter of minutes
through the dilation of our pupils, permittingmore light to enter our eyes. In this way,
we adapt to our environment in a way that makes it more suitable for our survival. It
should come as no surprise that adaptation such as this occurs across all domains of
life, although the exact mechanism of adaptation may be qualitatively different than
the example given here. In the broadest of strokes, this thesis is about adaptation,
specifically how the bacterium Escherichia coli enacts adaptation at the molecular
level. Plainly, this could be couched in the language of whether a given gene is
either “on” or “off” in a given environmental condition. However, as I will argue
here, we can move well beyond this qualitative language, to a more quantitatively
rigorous and precise formulation, one that will give as a deeper understanding of
how cells adapt.

1.2 The discovery of molecular adaptation
When exploring the fascinating ways in which bacteria and namely Escherichia coli
adapt to their surrounding environments, we must acknowledge that we are standing
on the shoulders of giants and give nod to the foundational work that began nearly
80 years ago by Jacques Monod. From a now seemingly simple experiment of
providing bacteria with two sugars (glucose and arabinose for example), Monod
discovered an interesting pattern of growth, resulting in the famed diauxic growth
curves (Figure 1.1). Such growth curves are distinguished by two distinct growth
phases, one where the preferred sugar (glucose in this case) is metabolized, followed
by growth on the secondary sugar. The transition between the two growth phases
can clearly be seen as a distinct secession of growth, a period of “adaptation". The
mystery presented by these growth curves is precisely what is occurring in the cells
during this period of adaptation.
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Figure 1.1: Examples of diauxic growth fromMonod’s thesis (1941), as reproduced
in Monod, 1966. The x-axis is time in hours and the y-axis is optical density
(arbitrary units), a metric of cell growth.

As Monod recalls in reflecting on his initial discovery, his colleague André Lwoff at
the time suggested that it might have something to do with “enzymatic adaptation”
(Monod, 1966), the idea that some protein already present in the cell responds to the
changes in relative sugar concentrations. And thus the notion of adaptation on the
molecular level was created. While the idea that enzymes themselves can change
in response to surroundings (e.g. activity changed in response to the binding of
the ligand), the primary cause of the lag in growth was due not to protein response
alone, but to the need for a new suite of genes to be expressed and produced in
response to the change in sugar. Monod’s original discovery led to a decades-long
journey of teasing apart how such gene regulation is enacted.

Next we will discuss the broad strokes nature of gene regulation, the way in which
the expression of given genes can be modulated by the binding of proteins to DNA
known as transcription factors. By way of example, we will specifically consider the
extensively studied lac operon here, but many other genes have undergone similar
dissection.

A note on adaptation
As a quick aside, I want to riff on an alternate meaning of adaptation. While
thus far we have discussed what could be referred to as physiological adaptation,
the perhaps more common use of the word adaptation is within the context of
evolutionary adaptation. Examples of adaptations in this context would be the
formation of webbed feet to aid in swimming or the use of prehensile tails for
effective climbing in trees. The timescales required for these incredible feats to
have evolved are nearly irrelevant for our present discussion regarding molecular
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adaptation and the ways in which cells respond in real time to their surroundings.
While the concept of evolutionary adaptation is not the primary focus of this thesis,
it is important to note that the molecular mechanisms that are in place to permit cells
to readily adapt to their surroundings are themselves subject to natural selection. As
such, the ability to adapt is itself an adaptation, but for now, we focus our efforts on
how cells enact their molecular adaptation rather than how such adaptions arose in
the first place.

1.3 The molecular players of gene regulation: the lac operon as an example
With decades of painstaking experiments, the field of molecular genetics was able
to make sense of the diauxic curves that Monod first discovered in the 1940s. In the
specific case of cells provided with glucose and lactose, the molecular mechanisms
of diauxic growth are illustrated in Figure 1.2. While specifically these lactose
metabolizing genes are the primary focus of this section and arguably the most
well-studied gene in E. coli, the mechanisms discussed here have far broader reach
than just this single set of genes in this single organism. Most notably, our primary
focus will be on a suite of proteins known as transcription factors, which bind to
DNA and accordingly influencing the level of transcription (i.e. gene expression).
Within the class of transcription factors, these proteins either act as activators to
increase transcription or repressors to prevent or lower transcription. As an aside, it
is possible for a given transcription factor to act as both an activator and a repressor,
a duality known as a ‘Janus molecule’. However, this switch from activation to
repression is mediated by some environmental cue, still making it reasonable to
break transcription factors into these two discrete groups at least when considering
a given gene and a given environment.

By way of example, we will work through the logic of the lac operon, illustrating
the roles that activators and repressors can play in mediating the level of gene
expression. Conveniently, the lac operon has one activator and one repressor that
modulate its expression, making it a useful example to work though. As a way
to understand the regulatory logic of this operon, it is important to remember that
the lac operon encodes a number of genes involved in lactose metabolism, thus
it make sense that the cell would only ‘want’ these genes to be turned on in the
presence of lactose. Indeed, we can see that this is precisely how the regulation
of the lac operon is enacted, with the repressor bound when there is no lactose
around (Figure 1.2). With this set up, these lactose metabolizing genes will not
be needlessly produced when their target substrate is not present. Conversely, as
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Figure 1.2: Regulation of the lac operon. The top schematic illustrates the key DNA
regions of the lac operon. The GLUCOSE and LACTOSE labels on the left indicate
the four possible environmental conditions in the presences (+) or absence (-) of
these sugars, with the resulting regulatory state on the right. From this, we can see
that the lac genes are only actively transcribed in the presence of lactose and the
absence of glucose. Figure reproduced from Physical Biology of the Cell.

hinted by the shape for the diauxic growth curves, there are some sugars that are
preferred over others. Specifically, glucose is the most preferred sugar as it can
be immediately consumed through the citric acid cycle, while other sugars are
only metabolized as an alternative. With this stipulation in mind, the cell would
also ‘want’ to not express the lactose metabolizing genes when there is a perfectly
more suitable sugar around such as glucose. Examining Figure 1.2, we can see
that such logic is encoded molecularly through the use of the catabolite activator
protein (known as CAP). That is, only in the absence of glucose does CAP serve to
promote transcription by binding upstream of the lac promoter. Together through
the action of the LacI repressor and the CAP activator, the regulation of these genes
are effectively controlled as an AND gate, where both the presence of lactose and
the absence of glucose are required for transcription.
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While I am glossing over decades worth of hard-earned results as summarized by
a single figure, it suffices to say that it is in fact possible to gain such a detailed
understanding of how a given gene is regulated, i.e. which transcription factors are
binding, where they bind, and whether they act as an activator or repressor. The
next section will delve into what we can do with such a regulatory model in hand.

1.4 Statistical mechanics of gene regulation
As will be a common theme throughout this thesis, we will argue for moving
beyond a qualitative understanding of gene regulation, as typified by the ‘cartoon’
models, like those in Figure 1.2. Instead, we would would like to be able to have a
mathematical model in addition to our pictorial one. The reason is simple: data in
molecular biology are becoming ever more quantitatively precise, and accordingly
our hypotheses should be similarly precise. For this, we will rely on an a physical
framework known as statistical mechanics. This section provides a brief overview
of how the tools of statistical mechanics can be brought to bear on gene regulation.

A key tenet of statistical mechanics is described by Boltzmann distribution which
states that the probability of a given state occurring is

%state =
4
− nstate
:
�)

Z , (1.1)

where nBC0C4 is the energy associated with the state, :� is the Boltzmann constant,
and ) is the temperature, and Z is known as the partition function, or the sum of
the probabilities of all possible states. In words, this equates to lower energy states
being more likely to occur and higher energy states becoming vanishingly less likely
to occur, due to the exponent. We can make sense of this intuitively to explain
why we don’t spontaneously begin levitating. The energy, specifically the potential
energy <6ℎ, associated with the “state” of levitating is simply too large for it to
realistically ever occur for large masses < such as ourselves. Now we must contend
with what exactly is meant by a ‘state’ in statistical mechanical sense, starting with
an example of RNA polymerase (RNAP) binding to DNA.

A state is some condition that we are interested in assessing the frequency of, such
as whether an RNAP is bound to a promoter of interest. An additional definition
is that a microstate is simply one specific manifestation of a state of interest. As
illustrated in the bottom panel of (Figure 1.3), there are many ways to realize the
binding of RNAP to DNA, each one its ownmicrostate. Specifically, if we discretize
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the genome, which is not an unreasonable assumption given that RNAP binds in
register with specific basepairs, there end up being a total of ##( nonspecifc binding
sites for the % polymerases to find themselves. The task at hand is to enumerate all
these possible microstates, which can be defined as

, (%, ##() =
(
##(

%

)
=

##(!
%!(##( − %)!

, (1.2)

where we use the notation that, stands for the number of microstates.

Figure 1.3: Microstates of RNA polymerase binding to DNA. The top panel schema-
tizes the cell’s pool of RNA polymerase (RNAP) as bound in various location along
the length of the bacterial (circular) genome. The bottom panel illustrates three
specific realizations (i.e. microstates) of the ways in which the RNAP may allocate
themselves within the ##( ‘boxes’ or basepairs of the genome. Figure reproduced
from Physical Biology of the Cell.

With the enumeration of the states, along with Boltzmann distribution (Equa-
tion 1.1), we are poised to assess the probability of a promoter being bound by
RNAP. That is, the probability of a state occurring is a function of both its associ-
ated energy (as prescribed by the Boltzmann distribution) and the number of ways
in which a given state can occur, known as the multiplicity. Put together, we end up
with the partial partition function for nonspecific binding as
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Z#( (%, ##() =
##(!

%!(##( − %)!︸            ︷︷            ︸
multiplicity

× 4
−V%n#(

?3︸   ︷︷   ︸
Boltzmann factor

, (1.3)

where we have introduced the simplifying notation that V = 1/:�) and have defined
n#(
?3

as the binding energy of polymerase to DNA at a nonspecific location. What
Equation 1.3 describes is the probabilistic weight associated with all % polymerases
being bound nonspecifically. However, if we are interesting in when a gene is being
actively expressed, we would want to assess the probability that a polymerase is
in fact bound to the promoter we are interested in, as schematized in Figure 1.4.
That is, we want to compare the probabilistic weight of the promoter being bound
relative to all possible states (promoter bound or unbound). For obtaining the
partial partition function for polymerase being bound to the promoter, this amounts
to effectively taking one polymerase out of circulation and placing the remaining
%−1 polymerases on the ##( genome positions. This results in the following partial
partition function for when a polymerase is bound to the promoter of interest:

Z#( (% − 1, ##() =
##(!

(% − 1)!(##( − (% − 1))!︸                            ︷︷                            ︸
multiplicity

× 4−V(%−1)n#(
?3 4
−Vn(

?3︸                ︷︷                ︸
Boltzmann factor

. (1.4)

Figure 1.4: Pictorial representation of ?bound. The numerator is the sum of all
the microstates in which the promoter of interest is bound by polymerase. The
denominator is the sum all all states (i.e. those where the promoter is occupied and
those where the promoter is unoccupied). Figure reproduced from Physical Biology
of the Cell.

Note how the multiplicity is described by placing %− 1 polymerases, and the Boltz-
mann factor now also has % − 1 instances of nonspecific binding in addition to one
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instance of specific binding, with energy n(
?3
. These computations of the prob-

abilistic weights are illustrated in Figure 1.5. We can simplify the multiplicities
slightly by making the approximation ##(!/(##( −%)! ≈ (##()%, with the reason-
able assumption that % � ##(. This approximation leaves us with the following
weights:

Z#( (%, ##() =
(##()%
%!

4
−V%n#(

?3 , (1.5)

and

Z#( (% − 1, ##() =
(##()%−1

(% − 1)! 4
−V(%−1)n#(

?3 4
−Vn(

?3 . (1.6)

Figure 1.5: States and weights for polymerase binding. The top panel works through
the computation for the Boltzmann weight for the state of the promoter of interest
being unoccupied by polymerase. By contrast, the bottom panel computes the
weight for an occupied promoter. Figure reproduced from Physical Biology of the
Cell.

At long last we are equipped to assess the probability that the promoter is in fact
bound by polymerase, a state we will use as a proxy for gene expression. With
Figure 1.4 as a visual aid for how to compute ?bound, we arrive at

?bound =

(##()%−1

(%−1)! 4
−V(%−1)n#(

?3 4
−Vn(

?3

(##()%
%! 4

−V%n#(
?3 + (##()%−1

(%−1)! 4
−V(%−1)n#(

?3 4
−Vn(

?3

, (1.7)

which is fairly daunting at first sight, but many values cancel out, leaving us with
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?bound =
1

1 + ##(
%
4VΔn?3

, (1.8)

where Δn?3 is defined as the difference between specific and nonspecific binding.

Figure 1.6: States and weights for simple repression. Figure adapted from Phillips
et al., 2019.

While all this effort for modeling constitutive gene expression may seem rather
arduous, there is great utility in this statistical mechanical protocol outlined here.
If we wish to add the action of some transcription factor binding, say a repressor,
it is actually quite simple to do so. The derivation we went through here applies
by analogy to any protein binding to DNA. It is precisely the regulation enacted by
a single repressor (a motif known as simple repression) that was the focus of work
done by Brewster et al., 2014. While we won’t go through the whole derivation
again, we can use the same approaches outlined here for the constitutive promoter
to arrive at the states and weights as shown in Figure 1.6.
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It is with these states and weights in hand, we can now formulate a concrete math-
ematical prediction of how gene expression should change as a result of increasing
repressor counts. It is precisely this theory-experiment dialogue that was conducted
to much avail by Brewster et al., 2014, as shown in Figure 1.7. Such experiments
serve to give us the sense that these statistical mechanical models of gene expression
do actually fare well in describing the data. These careful mathematical models
require knowing the precise regulatory structure of the promoter of interest, which
works well for the thoroughly studied lac promoter. As we will see in the following
section, however, there remain many genes for which such a treatment is not yet
possible.

Figure 1.7: Theory meets experiment for simple repression. (A) Shows the predic-
tion of how gene expression should change with increasing number of repressors,
for four different binding sites. (B) Shows how the various data land relative to these
predictions. Figure adapted from Phillips et al., 2019.

1.5 On our regulatory ignorance
Now that we have a cursory sense of the ways in which genes have been shown
to be regulated and how we might mathematically model them, we come to one
of the primary motivations of the work of this thesis: despite how much effort
has been put into understanding how genes are regulated, especially in E. coli,
there still remain many genes for which we know nothing regarding how they are
regulated. Figure 1.8 (A) concisely illustrates the extent to whichwe remain ignorant
of regulation even in the best case scenario of E. coli. Prior to the work conducted
in this thesis, nearly two-thirds of all operons had no annotated gene regulation (i.e.
any transcription factor binding sites), as annotated on RegulonDB Santos-Zavaleta
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et al., 2019. (It’s important to note that this value stated here includes the work
done by Ireland et al., 2020, and that the number of genes with no known regulation
was actually even greater prior to the work done in this thesis, as can be seen in
Figure 2.1.) Unfortunately, as the remaining panel of Figure 1.8 reveal, the status of
our regulatory ignorance only becomes worse as we move to higher organisms.
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Figure 1.8: Regulatory ignorance across the domains of life. This schematized view
of several genomes, showing each gene for which there is any known regulation (blue
dashes) as opposed to those for which there was no known regulation (red dashes).
This schematic shows our level of regulatory ignorance across (A) E. coli, (B) the
budding yest, Saccharomyces cerevisiae, (C) the fruit flyDrosophilia melanogaster,
and (D) the nematode Caenorhabditis elegans.

The primary battle cry of this thesis is that, as seen with the lac operon, we need to
know some basic facts about the regulation of a given operon before we can begin
to conduct the careful quantitative dissections discussed here. Thankfully, previous
work can shed light on where regulation may be occurring even if we don’t yet know
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the details of that regulation. One such set of key experiments were conducted by
Schmidt et al., 2016, where they assessed the full E. coli proteome over 22 unique
growth conditions. By examining proteins whose expression changes dramatically
across growth conditions, we can gain insight into genes whose expression likely
seems to be regulated (and thus is only turned on in one or few conditions). As
Figure 1.9 illustrates, there are in fact many proteins whose expression is highly
variable across these 22 growth conditions, and with respect to our mission to
explore the currently unannotated genes, we are heartened to see that both genes
with known (in blue) and no known (in red) regulation demonstrate variable gene
expression. It is precisely these genes in red with high coefficient of variation that
serve as ideal candidates for uncovering hitherto unexplored regulation. Precisely
howwe do achieve that goal is introduced in the following section and is the primary
thrust of the remainder of this thesis.

Figure 1.9: Evidence of gene regulation in unannotated genes. Each protein (cate-
gorized as having annotated regulation in blue or no known regulation in red) are
plotted according to their coefficient of variation across the 22 growth conditions
tested in Schmidt et al., 2016. Plots adapted from Belliveau et al., 2018.

1.6 From dissection to exploration
With the widespread issue of regulatory ignorance laid out clearly before us, we
must now contend with how we can go about uncovering such previously un-
explored genes. Work pioneered by Kinney et al., 2010 served to establish the
Sort-Seq method, which Belliveau et al., 2018 later used to great avail to unveil
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the regulation of some previously unexplored genes. The protocol is outline as in
Figure 1.10. In brief, the scheme is to take a promoter region of interest and make
a mutagenized library of promoter variants all driving expression of some fluores-
cent protein reporter gene. Using fluorescence-activated cell sorting (FACS), the
initially heterogeneous population of cells can be separated into four distinct bins
(Figure 1.10 (A)). The cells in each bin are then sequenced, allowing us to build up
a picture of which mutations confer changes in fluorescence.

Figure 1.10: The Sort-Seq protocol. (A) By mutagenizing a promoter region of
interest driving expression of some reporter protein, we can obtain cells with varying
levels of fluorescence. These cells are sorted via flow cytometry into four bins and
each bin is independently sequenced. The plot on the right shows the distribution
of fluorescence of the four bins after having been sorted, demonstrating that the
difference in gene expression is maintained within the disparate bin population.
(B) With the sequencing information in hand, we can begin to assess the relative
importance that each basepair has with respect to the level of gene expression. This
formation is computed and displayed as expression shift plots (on the left) and
energy matrices (on the right).

Specifically, along the length of the promoter region of interest, it is possible to assess
whether a given basepair increases or decreases expression upon being mutated.
Such information leads to an expression shift profile, as shown in left of Figure 1.10
(B). Such a plot gives a gives a quick visual aid as to where transcription factors
may be binding, as these regions are the most likely to have an impact on the level
of expression. For example, if a given mutation disrupts the ability of a repressor to
bind, we would expect such a variant to have higher gene expression than normal.
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However we can also take a more detailed look at a given binding, as depicted by an
energy matrix (right panel, Figure 1.10 (B)). Using the tools of statistical mechanics
as outlined in Section 1.4, it is possible to directly connect the changes in gene
expression to a binding energy. In this way, we are able to determine not just which
basepairs are involved in regulating expression, but we can also concretely predict
what effect various mutations will have.

With this technique in hand, it is essential to evaluate its ability to recover known
regulation if it is to be of any use in uncovering our regulatory ignorance. By way of
example, we once again return to the lac operon, whose regulation iswell understood.
Hearteningly, Belliveau et al., 2018 were in fact able to recover the known regulation
for the promoter region when giving it the full Sort-Seq treatment, as revealed by the
expression shift plot (Figure 1.11). Walking through these results, we can see that
mutating the region where the lacI repressor binds causes the expression to go up
on average. This makes sense as disrupting the binding of lacI will lead to a failure
to repress the gene, ultimately causing gene expression to be higher. Conversely,
we see that the regions where CAP and RNAP polymerase show the opposite effect,
where mutation led to lower expression.

Figure 1.11: Expression shift for the mutagenized lac promoter. The plot show
the average effect of mutating a given position with respect to the resulting gene
expression. The colored bars above the plot denote where the known binding sites
are located. Data and figure from Belliveau et al., 2018.

These results encourage us that we can in fact use the Sort-Seq method to unveil
gene regulation. In fact, the remainder of the work done by Belliveau et al., 2018
served to dissect two other promoters with known regulation and importantly four
promoters with previously no known regulation. This incredibly important study
served as an essential proof of concept as we embarked on the work discussed in
this thesis. From here, we sought to expand the utility of Sort-Seq from dissecting
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a single promoter at a time to being able to explore ten and even one hundred
promoters at a time.

1.7 A primer on mutual information
Whether we are measuring fluorescence of a reporter protein or mRNA counts, we
must now contend with how to make sense of the data in hand, specifically how
to relate sequence identity to gene expression. For this we turn to the concept of
mutual information, a metric by which we can understand how much information
one variable provides about another. In this case, we would be interested in how
much information a given DNA sequence gives us with respect to the resulting
level of gene expression. Concretely, the mutual information between two discrete
random variables - and . is defined as

� (-;. ) =
∑
H∈.

∑
G∈-

?(G, H) log
(
?(G, H)
?(G)?(H)

)
, (1.9)

where ?(G, H) is the joint probability of G and H occurring. To gain more intuition
into what this actually means, let’s walk through an example that will be more
familiar before delving into the case of gene expression. Let’s take an iconic piece
of text from the final sentence of Darwin’s On the Origin of Species:

"There is grandeur in this view of life, with its several powers, having
been originally breathed into a few forms or into one; and that, whilst
this planet has gone cycling on according to the fixed law of gravity,
from so simple a beginning endless forms most beautiful and most
wonderful have been, and are being, evolved."

As an exercise, we can ask what the mutual information is between subsequent
letters in this piece of text. That is, how much information does one letter give us
about what letter is likely to follow? As prescribed in Equation 1.9, to compute the
mutual information, we need both the joint probability of the two variables, ?(G, H)
as well as their individual probabilities, ?(G) and ?(H), respectively. Figure 1.12
(A) illustrates these frequencies of each letter as found in this text. Intuitively, we
can see that the letter ‘e’ is in fact the most common letter, and from here, we can
begin to assess the joint probabilities as shown Figure 1.12 (B). Once again, we can
make sense of the results shown here by noting the ‘t’ followed by ‘h’ as well ‘h’
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Figure 1.12: An example of mutual information on a piece of text. (A) The text from
the final sentence of Darwin’s On the Origin of Species, along with the frequencies
with which each letter appears. (B) The joint probabilities of two consecutive letters
from the original text. (C) The joint probabilities of two consecutive letters when
the text has been scrambled.

followed by ‘e’ are the most common, as expected by the common use of the word
‘the’.

Intuitively, we can see that there is in fact some information contained in this piece
of text with regards to the identity of two consecutive letters. That is, if you
were given a letter, you would be able to make a reasonable guess about which
letter will follow (performing at least better than guessing randomly). To be more
quantitatively precise, we can now plug in both the basal letter probabilities, both
?(G) and ?(H) in this case as shown Figure 1.12 (A) and the joint probabilities
form Figure 1.12 (B) into Equation 1.9 to arrive at the total mutual information.
Mechanistically, this entails looping through all possible letter combinations and
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assessing both their joint probability ?(G, H) and their ‘expected’ probabilities of
simply multiplying their independent frequencies together, ?(G) × ?(H). From this
calculation, we arrive at value of 0.76 (Figure 1.12 (B)). However, to make sense of
what this number means, we can by way of contrast scramble the text and repeat the
procedure, as shown in Figure 1.12 (C). Such scrambled text might look something
like this:

"pgfsfw ledeu e dtrxeiieui vh vtatbbetawo oo fear.di,n nor fsrmo ev ot
iaernvbws o,f lfmcatgs ebeeleruiim,tse rwohardntot dbo fctby r nndatla
f ndn in hhie ncei roocs nvn aaa, leml oes aselee uc.dhpdnltwan yeaai
htcghus xowfhgo w, iltenrhoerwaccsrau ftg;,h nedsr mmoo pon oeoer-
wioerid oit enohantosnrortgge hhhg enfttliem ylln, hwer le w,oa nmfi-
belhea ,a hfdaoo,lsna uiile fgmcsatt pifaos,loavieeocareiefnefynenn etj
s hair pgtfin ilteeyghiitrcl hdh imsttblvsanrt,i sg o vdaiedtmman ise"

We can intuit that this piece of text has now sadly been rendered meaningless. We
can see this more precisely in Figure 1.12 (C) that there are no letter combinations
that are favored and ‘e’ becomes the most likely letter to follow regardless of the
previous letter, as it is simply the most common letter. Lastly, we can quantify this
by again making use of Equation 1.9. We now see that the mutual information is
0.0015, nearly 0, which would imply no information, as expected when the text has
been scrambled and all the original meaning as been lost.

With what I hope is a more intuitive example in mind, we can finally return to the
primary scientific question at hand: how much information does knowing a given
DNA sequence give us about the resulting gene expression? As illustrated with a
toy example in Figure 1.13, we can use the same exact approach to assess the joint
probabilities between the identity of a given DNA nucleotide (A, T, C, or G) and
the resulting gene’s expression (as measured by binning according the fluorescence
level). In Figure 1.13, the first position can be seen to contain a high information,
as knowing the identity of the nucleotide permits you to make a suitable guess as to
which level of expression the DNA will promote. However, position 2 would have
low information, as the joint probabilities are much more uniform and no single
bin is particularly favored over another. By repeating this calculation over every
nucleotide position along the length of DNA region of interest, we can begin to build
a picture of which bases are most important for determining the level of expression.
Such bases that are found to contain more information are thus heavily implicated
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Figure 1.13: An example of mutual information between DNA sequence and gene
expression. Tables show the joint probabilities between nucleotide identity along
thes rows and gene expression along the columns. The level of gene expression
is discretized into bins, with increasing fluorescence indicated with intensity in
green. Intensity in purple represents the value of the joint probabilities. Position
1 demonstrates high mutual information between the identity of the nucleotide and
the level of gene expression (i.e. bin). By way of contrast, position 2 demonstrates
lower mutual information as the joint probabilities are much more uniform.

in serving some regulatory role, such as serving as a binding site for a transcription
factor. In the chapter that follows, it is precisely this approach that will be brought
to bear on deciphering the yet-to-be understood regulatory regions of the E. coli
genome.

1.8 In conclusion: where we go from here
With this introduction I hope I have impressed upon you two key themes: 1) the
universality of adaptation, and specifically gene regulation as a lens through which
to understand how cells adapt to their surroundings and 2) the need for a quantitative
understanding of how gene regulation is enacted. However, as a first pass we need
to know which transcription factors are even involved as well as where and how
strongly they bind to a given promoter. With these motivating points in mind and a
few “tricks of the trade” (i.e. statistical mechanics and mutual information) in hand,
we are prepared to tackle the problem of our regulatory ignorance in E. coli. What
follows is the magnum opus of my thesis, where we brought these tools to bear in
deciphering a substantial chunk of the E. coli genome, one hundred genes in one set
of experiments.

The results of my thesis can be concisely summarized in Figure 1.14. While the
precise details of how these cartoon models were elucidated is left to Chapter 2,
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Figure 1.14: For each regulated promoter, activators and their binding sites are
labeled in green, repressors and their binding sires are labeled in red, and RNAP
binding sites are labeled in blue. All cartoons are displayed with the transcription
direction to the right. Only one RNAP site is depicted per promoter. Binding sites
found for these promoters in the EcoCyc or RegulonDB databases are only depicted
in these cartoons if the sites are within the 160 bp mutagenized region studied, and
were detected by Reg-Seq.

this figure shows every binding site that was discovered across the 113 promoters
explored here. It important to note that the cartoon models shown here belie the
precise quantitative backing that supports these results. That is, each binding site
has its own information footprint and energy matrix as with the traditional Sort-Seq
approach outlined in Figure 1.10. This means that not only do we know where
transcription factors are binding, how they are regulating (i.e. as an activator or
repressor), and inmany cases the identity of the transcription factor, butwe also know
how strongly the given transcription factor binds. It is with this deep quantitative
understanding of how these genes are regulated that we can make predictions as
seen in Figure 1.7 and begin to test our understanding of how regulation is enacted
well beyond what is illustrated by a cartoon alone.

The work discussed here has transformed the utility of Sort-Seq from being able to
elucidate single genes to over a hundred genes at a time. With around 4000 genes in
the E. coli, we can see a path to having the entire regulatory genome ‘solved’ within
the coming years, hopefully radically transforming the view of Figure 1.8 (A). For
now though, let’s dive into this first feat of tackling one hundred promoters.
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C h a p t e r 2
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2.1 Abstract
Advances in DNA sequencing have revolutionized our ability to read genomes.
However, even in the most well-studied of organisms, the bacterium Escherichia
coli, for ≈ 65% of promoters we remain ignorant of their regulation. Until we
crack this regulatory Rosetta Stone, efforts to read and write genomes will remain
haphazard. We introduce a new method, Reg-Seq, that links massively-parallel
reporter assays with mass spectrometry to produce a base pair resolution dissection
of more than 100E. coli promoters in 12 growth conditions. We demonstrate that the
method recapitulates known regulatory information. Then, we examine regulatory
architectures for more than 80 promoters which previously had no known regulatory
information. In many cases, we also identify which transcription factors mediate
their regulation. This method clears a path for highly multiplexed investigations of
the regulatory genome of model organisms, with the potential of moving to an array
of microbes of ecological and medical relevance.

2.2 Introduction
DNA sequencing is as important to biology as the telescope is to astronomy. We
are now living in the age of genomics, where DNA sequencing has become cheap
and routine. However, despite these incredible advances, how all of this genomic
information is regulated and deployed remains largely enigmatic. Organisms must
respond to their environments through the regulation of genes. Genomic methods
often provide a "parts list" but leave us uncertain about how those parts are used

https://doi.org/10.7554/ELIFE.55308
https://arxiv.org/abs/2001.07396
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creatively and constructively in space and time. Yet, we know that promoters
apply all-important dynamic logical operations that control when and where genetic
information is accessed. In this paper, we demonstrate how we can infer the logical
and regulatory interactions that control bacterial decision making by tapping into
the power of DNA sequencing as a biophysical tool. The method introduced here
provides a framework for solving the problem of deciphering the regulatory genome
by connecting perturbation and response, mapping information flow from individual
nucleotides in a promoter sequence to downstream gene expression, determining
how much information each promoter base pair carries about the level of gene
expression.

The advent of RNA-Seq (Lister et al., 2008; Nagalakshmi et al., 2008; Mortazavi et
al., 2008) launched a new era in which sequencing could be used as an experimental
read-out of the biophysically interesting counts of mRNA, rather than simply as a
tool for collecting ever more complete organismal genomes. The slew of ‘X’-Seq
technologies that are available continues to expand at a dizzying pace, each serving
their own creative and insightful role: RNA-Seq, ChIP-Seq, Tn-Seq, SELEX, 5C,
etc. (Stuart and Satĳa, 2019). In contrast to whole genome screening sequencing
approaches, such as Tn-Seq (Goodall et al., 2018) and ChIP-Seq (Gao et al., 2018),
which give a coarse-grained view of gene essentiality and regulation respectively,
another class of experiments known as massively-parallel reporter assays (MPRA)
have been used to study gene expression in a variety of contexts (Patwardhan et al.,
2009; Kinney et al., 2010; Sharon et al., 2012; Patwardhan et al., 2012; Melnikov
et al., 2012; Kwasnieski et al., 2012; Fulco et al., 2019; Kinney and McCandlish,
2019). One elegant study relevant to the bacterial case of interest here by Kosuri
et al., 2013 screened more than 104 combinations of promoter and ribosome binding
sites (RBS) to assess their impact on gene expression levels. Even more recently,
the same research group has utilized MPRAs in sophisticated ways to search for
regulated genes across the genome (Urtecho et al., 2019; Urtecho et al., 2020), in
a way we see as being complementary to our own. While their approach yields a
coarse-grained view of where regulation may be occurring, our approach yields a
base-pair-by-base-pair view of how exactly that regulation is being enacted.

One of the most exciting X-Seq tools based on MPRAs with broad biophysical
reach is the Sort-Seq approach developed by Kinney et al., 2010. Sort-Seq uses
fluorescence activated cell sorting (FACS) based on changes in the fluorescence due
to mutated promoters combined with sequencing to identify the specific locations of
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transcription factor binding in the genome. Importantly, it also provides a readout
of how promoter sequences control the level of gene expression with single base-
pair resolution. The results of such a massively-parallel reporter assay make it
possible to build a biophysical model of gene regulation to uncover how previously
uncharacterized promoters are regulated. In particular, high-resolution studies like
those described here yield quantitative predictions about promoter organization and
protein-DNA interactions (Kinney et al., 2010). This allows us to employ the tools of
statistical physics to describe the input-output properties of each of these promoters
which can be explored much further with in-depth experimental dissection like
those done by Razo-Mejia et al., 2018 and Chure et al., 2019 and summarized in
Phillips et al., 2019. In this sense, the Sort-Seq approach can provide a quantitative
framework to not only discover and quantitatively dissect regulatory interactions
at the promoter level, but also provides an interpretable scheme to design genetic
circuits with a desired expression output (Barnes et al., 2019).

Earlier work from Belliveau et al., 2018 illustrated how Sort-Seq, used in conjunc-
tion with mass spectrometry, can be used to identify which transcription factors
bind to a given binding site, thus enabling the mechanistic dissection of promoters
which previously had no regulatory annotation. However, a crucial drawback of
the approach of Belliveau et al., 2018 is that while it is high-throughput at the level
of a single gene and the number of promoter variants it accesses, it was unable to
readily tackle multiple genes at once. Even in one of biology’s best understood or-
ganisms, the bacterium Escherichia coli, for more than 65% of its genes, we remain
completely ignorant of how those genes are regulated (Santos-Zavaleta et al., 2019;
Belliveau et al., 2018). If we hope to some day have a complete base pair resolution
mapping of how genetic sequences relate to biological function, we must first be
able to do so for the promoters of this "simple" organism.

What has been missing in uncovering the regulatory genome in organisms of all
kinds is a large scale method for inferring genomic logic and regulation. Here, we
replace the low-throughput, fluorescence-based Sort-Seq approach with a scalable,
RNA-Seq based approach that makes it possible to attack many promoters at once.
Accordingly, we refer to the entirety of our approach (MPRA, information footprints
and energy matrices, and transcription factor identification) as Reg-Seq, which we
employ here on over one hundred promoters. The concept of MPRA methods is
to perturb promoter regions by mutating their sequences, and then to use next-
generation sequencing (NGS) methods to read out how those mutations impact the
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expression level of each promoter. (Patwardhan et al., 2009; Kinney et al., 2010;
Sharon et al., 2012; Patwardhan et al., 2012; Melnikov et al., 2012; Kwasnieski
et al., 2012; Fulco et al., 2019; Kinney and McCandlish, 2019). We generate a
broad diversity of promoter sequences for each promoter of interest and use mutual
information as a metric to measure the information flow from that distribution of
sequences to gene expression. Thus, Reg-Seq is able to collect causal information
about candidate regulatory sequences that is then complemented by techniques such
as mass spectrometry, which allows us to find which transcription factors mediate
the action of those newly discovered candidate regulatory sequences. Hence, Reg-
Seq solves the causal problem of linking DNA sequence to regulatory logic and
information flow.

To demonstrate our ability to performReg-Seq at scale, we report here our results for
113 E. coli genes, whose regulatory architectures (i.e. gene-by-gene distributions of
transcription factor binding sites and identities of the transcription factors that bind
those sites) were determined in parallel for multiple different growth conditions.
Though we make substantial progress in mapping the regulatory information for a
swath of E. coli genes in this study (the "regulome"), the field still remains limited
in its understanding of which specific growth conditions, small molecules and
metabolites (the allosterome) are responsible for altering the milieu of transcription
factor activities (Lindsley and Rutter, 2006; Piazza et al., 2018; Huang et al., 2018).
We hope to address this shortcoming in future studies by appealing to recent work
on solving the "allosterome problem" (Piazza et al., 2018). By taking the Sort-Seq
approach from a gene-by-gene method to a larger scale, more multiplexed approach,
we can begin to piece together not just how individual promoters are regulated,
but also the nature of gene-gene interactions by revealing how certain transcription
factors serve to regulate multiple genes at once. This approach has the benefits of
a high-throughput assay without sacrificing any of the resolution afforded by the
previous gene-by-gene approach, allowing us to uncover the gene regulation of over
100 operons, with base-pair resolution, in one set of experiments.

The organization of the remainder of the paper is as follows. In the Results section,
we benchmark Reg-Seq against our own earlier Sort-Seq experiments to show that
the use of RNA-Seq as a readout of the expression of mutated promoters is equally
reliable as the fluorescence-based approach. Additionally, we provide a global view
of the discoveries that weremade in our exploration ofmore than 100 promoters in E.
coli using Reg-Seq. These results are described in summary form in the paper itself,
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with a full online version of the results (www.rpgroup.caltech.edu/RegSeq/
interactive) showing how different growth conditions elicit different regulatory
responses. This section also follows the overarching view of our results by examining
several biological stories that emerge from our data and serve as case studies in what
has been revealed in our efforts to uncover the regulatory genome. The Discussion
section summarizes the method and the current round of discoveries it has afforded
with an eye to future applications to further elucidate the E. coli genome and open
up the quantitative dissection of other non-model organisms. Lastly, in the Methods
section and Appendices, we describe our methodology and the false positive and
false negative rates of the method.

2.3 Results
Selection of genes and methodology
As shown in Figure 2.1, we have explored more than 100 genes from across the E.
coli genome. Our choices were based on a number of factors (see Appendix 2.6
Section “Choosing target genes” for more details); namely, we wanted a subset of
genes that served as a "gold standard" for which the hard work of generations of
molecular biologists have yielded deep insights into their regulation. Our set of gold
standard genes is lacZYA, znuCB, znuA, ompR, araC,marR, relBE, dgoR, dicC, ftsK,
xylA, xylF, rspA, dicA, and araAB. By using Reg-Seq on these genes, we were able
to demonstrate that this method recovers not only what was already known about
binding sites of transcription factors for well-characterized promoters (Appendix
2.7, Figure 2.14), but also whether there are any important differences between the
results of the methods presented here and the previous generation of experiments
based on fluorescence and cell-sorting as a readout of gene expression (Kinney et al.,
2010; Belliveau et al., 2018). These promoters of known regulatory architecture
are complemented by an array of previously uncharacterized genes that we selected
in part using data from a recent proteomic study, in which mass spectrometry
was used to measure the copy number of different proteins in 22 distinct growth
conditions (Schmidt et al., 2016). We selected genes that exhibited a wide variation
in their copy number over the different growth conditions considered, reasoning that
differential expression across growth conditions implies that those genes are under
regulatory control.

As noted in the introduction, the original formulation of Reg-Seq, termed Sort-Seq,
was based on the use of fluorescence activated cell sorting, one gene at a time, as
a way to uncover putative binding sites for previously uncharacterized promoters

www.rpgroup.caltech.edu/RegSeq/interactive
www.rpgroup.caltech.edu/RegSeq/interactive
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Figure 2.1: The E. coli regulatory genome. Illustration of the current ignorance
with respect to how genes are regulated in E. coli. Genes with previously annotated
regulation (as reported on RegulonDB (Gama-Castro et al., 2016)) are denoted with
blue ticks and genes with no previously annotated regulation denoted with red ticks.
The 113 genes explored in this study are labeled in gray.

(Belliveau et al., 2018). As a result, as shown in Figure 2.2, we have formulated
a second generation version that permits a high-throughput interrogation of the
genome. A comparison between the Sort-Seq and Reg-Seq approaches on the same
set of genes is shown in Figure 2.3. In the Reg-Seq approach, for each promoter
interrogated, we generate a library of mutated variants and design each variant to
express an mRNA with a unique sequence barcode. By counting the frequency of
each expressed barcode using RNA-Seq, we can assess the differential expression
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Figure 2.2: The process is as follows: After constructing a promoter library driving
expression of a randomized barcode (an average of 5 barcodes for each promoter),
RNA-Seq is conducted to determine the frequency of these mRNA barcodes across
different growth conditions (list included in Appendix 2.6 Section “Growth condi-
tions”). By computing the mutual information between DNA sequence and mRNA
barcode counts for each base pair in the promoter region, an "information footprint"
is constructed that yields a regulatory hypothesis for the putative binding sites (with
the RNAP binding region highlighted in blue and the repressor binding site high-
lighted in red). Energy matrices, which describe the effect that any given mutation
has on DNA binding energy, as well as sequence logos, are inferred for the putative
transcription factor binding sites. Next, we identifywhich transcription factor prefer-
entially binds to the putative binding site via DNA affinity chromatography followed
by mass spectrometry. This procedure culminates in a coarse-grained, cartoon-level
view of our regulatory hypothesis for how a given promoter is regulated.

from our promoter of interest based on the base-pair by base-pair sequence of its
promoter. Using the mutual information between mRNA counts and sequences,
we develop an information footprint that reveals the importance of different bases
in the promoter region to the overall level of expression. We locate potential
transcription factor binding regions by looking for clusters of base pairs that have a
significant effect on gene expression. Further details on how potential binding sites
are identified are found in the Methods Section “Automated putative binding site
algorithm” and “Manual selection of binding sites”, while determination of the false
positive and false negative rates of the method can be found in Appendix 2.7 Section
“False positive and false negative rates”. Blue regions of the histogram shown in the
information footprints of Figure 2.2 correspond to hypothesized activating sequences
and red regions of the histogram correspond to hypothesized repressing sequences.

With the information footprint in hand, we can then determine energy matrices and
sequence logos (described in the next section). Given putative binding sites, we use
synthesized oligonucleotides that serve as fishing hooks to isolate the transcription
factors that bind to those putative binding sites using DNA-affinity chromatogra-
phy and mass spectrometry (Mittler, Butter, and Mann, 2009). Given all of this
information, we can then formulate a schematized view of the newly discovered
regulatory architecture of the previously uncharacterized promoter. For the case
schematized in Figure 2.2, the experimental pipeline yields a complete picture of a
simple repression architecture (i.e. a gene regulated by a single binding site for a
repressor).



29

CRP

CRP

CRP0.01

0

0.0025

0

in
fo

rm
at

io
n 

(b
its

)

0

0.004

0.002

0

0.004

0

0.002

0

0.002

0

in
fo

rm
at

io
n 

(b
its

)

in
fo

rm
at

io
n 

(b
its

)

in
fo

rm
at

io
n 

(b
its

)

∆DgoR 

Sort-Seq

Sort-Seq

CRP RNAP

RNAP

RNAP

Reg-Seq

Sort-Seq

Reg-Seq

Sort-Seq

Reg-Seq

Sort-Seq

Reg-Seq

r = 0.98

r = 0.80

r = 0.78

r = 0.90

–70 –60 –50 –40 03–

-95-105-115-125 -85

–20 –10

–30 –20 –10 0 10 20 30

–30 –10 10

0
position

position

position

mutation decreases expression
mutation increases expression

RelBE

RelBE

RBS

MarR MarR
RBS

RBS

(A) (B)

(C) (D)

RNAP

MarR
RNAP

MarR MarR
RNAP

RNAP

RNAP

RNAP

expected
architecture

CRP RNAP

RNAP

expected
architecture

expected
architecture

expected
architecture

DgoR
0.006

0

0.001 

0

DgoR DgoR

CRP RNAP

RelBE

DgoR

Sort-Seq

Reg-Seq

Sort-Seq

Reg-Seq
Sort-Seq

Reg-Seq

Sort-Seq

Reg-Seq

lacZYA dgoRKADT

marRABrelBE

RBS

DgoR

Figure 2.3: A summary of four direct comparisons of measurements from Sort-Seq
and Reg-Seq. We show the identified regulatory regions as well as quantitative
comparisons between inferred position weight matrices. (A) CRP binds upstream
of RNAP in the lacZYA promoter. Despite the different measurement techniques
for the two inferred position weight matrices, the CRP binding sites have a Pearson
correlation coefficient of A = 0.98. (B) The dgoRKADT promoter is activated by
CRP in the presence of galactonate and is repressed by DgoR. For Sort-Seq and
Reg-Seq, type II activator binding sites can be identified based on the signals in the
information footprint in the area indicated in green. Additionally the quantitative
agreement between the CRP position weight matrices are strong, with A = 0.9. (C)
The relBE promoter is repressed by RelBE as can be identified algorithmically in
both Sort-Seq and Reg-Seq. The inferred logos for the two measurement methods
have A = 0.8. (Continued on the following page)
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Figure 2.3: (D) The marRAB promoter is repressed by MarR. The inferred energy
matrices (data not shown) and sequence logos shown have A = 0.78. The right most
MarR site overlaps with a ribosome binding site. The overlap has a stronger obscur-
ing effect on the sequence specificity of the Sort-Seq measurement, which measures
protein levels directly, than it does on the output of the Reg-Seq measurement.

Visual tools for data presentation
Throughout our investigation of the more than 100 genes explored in this study,
we repeatedly relied on several key approaches to help make sense of the immense
amount of data generated in these experiments. As these different approaches to
viewing the results will appear repeatedly throughout the paper, here we familiarize
the reader with five graphical representations referred to respectively as information
footprints, energy matrices, sequence logos, mass spectrometry enrichment plots
and regulatory cartoons, which taken together provide a quantitative description of
previously uncharacterized promoters.

Information footprints: From our mutagenized libraries of promoter regions, we
can build up a base-pair by base-pair graphical understanding of how the promoter
sequence relates to level of gene expression in the form of the information footprint
shown in Figure 2.2. In this plot, the bar above each base pair position represents
how large of an effect mutations at this location have on the level of gene expression.
Specifically, the quantity plotted is the mutual information �1 at base pair 1 between
mutation of a base pair at that position and the level of expression. In mathematical
terms, the mutual information measures how much the joint probability ?(<, `)
differs from the product of the probabilities ?<DC (<)?4G?A (`) which would be
produced if mutation and gene expression level were independent. Formally, the
mutual information between having a mutation at position 1 and level of expression
is given by

�1 =

1∑
<=0

1∑̀
=0
?(<, `) log2

(
?(<, `)

?<DC (<)?4G?A (`)

)
. (2.1)

Note that both < and ` are binary variables that characterize the mutational state
of the base of interest and the level of expression, respectively. Specifically, < can
take the values

< =


0, if 1 is a mutated base

1, if 1 is a wild-type base
(2.2)
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and ` can take on values

` =


0, for sequencing reads from the DNA library

1, for sequencing reads originating from mRNA,
(2.3)

where both < and ` are index variables that tell us whether the base has been
mutated and if so, how likely that the read at that position will correspond to an
mRNA, reflecting gene expression or a promoter, reflecting a member of the library.
The higher the ratio of mRNA to DNA reads at a given base position, the higher the
expression. ?<DC (<) in equation 2.1 refers to the probability that a given sequencing
read will be from a mutated base. ?4G?A (`) is a numeric value that gives the ratio of
the number of DNA or mRNA sequencing counts to the total number of sequencing
counts for each barcode.

Furthermore, we color the bars based on whether mutations at this location lowered
gene expression on average (in blue, indicating an activating role) or increased gene
expression (in red, indicating a repressing role). In this experiment, we targeted
the regulatory regions based on a guess of where a transcription start site (TSS)
will be, based on experimentally confirmed sites contained in RegulonDB (Santos-
Zavaleta et al., 2019), a 5’ RACE experiment (Mendoza-Vargas et al., 2009), or
by targeting small intergenic regions so as to capture all likely regulatory regions.
Further details on TSS selection can be found in the Methods Section “Library
design and construction”. After completing the Reg-Seq experiment, we note that
many of the presumed TSS sites are not in the locations assumed, the promoters
have multiple active RNA polymerase (RNAP) sites and TSS, or the primary TSS
shifts with growth condition. To simplify the data presentation, the ’0’ base pair in
all information footprints is set to the originally assumed base pair for the primary
TSS, rather than one of the TSS that was found in the experiment.

Energy matrices: Focusing on an individual putative transcription factor binding
site as revealed in the information footprint, we are interested in a more fine-
grained, quantitative understanding of how the underlying protein-DNA interaction
is determined. An energy matrix displays this information using a heat map format,
where each column is a position in the putative binding site and each row displays
the effect on binding that results from mutating to that given nucleotide (given as
a change in the DNA-transcription factor interaction energy upon mutation) (Berg
and Hippel, 1987; Stormo and Fields, 1998; Kinney et al., 2010). These energy
matrices are scaled such that the wild type sequence is colored in white, mutations
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that improve binding are shown in blue, and mutations that weaken binding are
shown in red. These energy matrices encode a full quantitative picture for how we
expect sequence to relate to binding for a given transcription factor, such that we can
provide a prediction for the binding energy of every possible binding site sequence
as

binding energy =
#∑
8=1

Y8, (2.4)

where the energy matrix is predicated on an assumption of a linear binding model
in which each base within the binding site region contributes a specific value (Y8
for the 8Cℎ base in the sequence) to the total binding energy. Energy matrices are
either given in A.U. (arbitrary units) or, for several cases where the gene has a
simple repression or activation architecture with a single RNA polymerase (RNAP)
site, are assigned k�T energy units following the procedure in Kinney et al., 2010
and validated on repression by lac repressor in Barnes et al., 2019. The details of
how and when absolute units are determined can be found in Appendix 2.8 Section
“Inference of scaling factors for energy matrices”.

Sequence logos: From an energy matrix, we can also represent a preferred tran-
scription factor binding site with the use of the letters corresponding to the four
possible nucleotides, as is often done with position weight matrices (Schneider and
Stephens, 1990). In these sequence logos, the size of the letters corresponds to
how strong the preference is for that given nucleotide at that given position, which
can be directly computed from the energy matrix. This method of visualizing the
information contained within the energy matrix is more easily digested and allows
for quick comparison among various binding sites.

Mass spectrometry enrichment plots: As the final piece of our experimental pipeline,
we wish to determine the identity of the transcription factor we suspect is binding to
our putative binding site that is represented in the energy matrix and sequence logo.
While the details of the DNA affinity chromatography and mass spectrometry can be
found in the methods, the results of these experiments are displayed in enrichment
plots such as is shown in the bottom panel of Figure 2.2. In these plots, the relative
abundance of each protein bound to our site of interest is quantified relative to a
scrambled control sequence. The putative transcription factor is the one we find to
be highly enriched compared to all other DNA binding proteins.

Regulatory cartoons: The ultimate result of all these detailed base-pair-by-base-pair
resolution experiments yields a cartoon model of how we think the given promoter
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is being regulated. A complete set of cartoons for all the architectures considered in
our study is presented later in Figure 2.4. While the cartoon serves as a convenient,
visual way to summarize our results, it is important to remember that these cartoons
are a shorthand representation of all the data in the four quantitative measures
described above and are, further, backed by quantitative predictions of how we
expect the system to behave when tested experimentally. Throughout this paper,
we use consistent iconography to illustrate the regulatory architecture of promoters
with activators and their binding sites in green, repressors in red, and RNAP in blue.

Newly discovered E. coli regulatory architectures
Elucidating individual promoters

With the tools outlined above, we are positioned to explore individual promot-
ers, specifically those belonging to the part of the E. coli genome for which the
function of the genes is unknown. Previously christened as the ‘y-ome’, Ghatak
et al., 2019 surprisingly found that roughly 35% of the genes in E. coli lack
experimental evidence of function. The situation is likely worse for other organ-
isms. For many of the genes in the y-ome, we remain similarly ignorant of how
those genes are regulated. Figures 2.4 and 2.5 provide several examples of genes
which until now had unknown regulation. As shown in Figure 2.5, our study has
found the first examples that we are aware of in the entire E. coli genome of a
binding site for YciT. These examples are intended to show the outcome of the
methods developed here and to serve as an invitation to browse the online resource
(https://www.rpgroup.caltech.edu/RegSeq/interactive) where our full dataset is pre-
sented.

The ability to find binding sites for both widely acting regulators and transcription
factors which may have only a few sites in the whole genome allows us to get an
in-depth and quantitative view of any given promoter. As indicated in Figures 2.5(A)
and (B), we were able to perform the relevant search and capture for the transcrip-
tion factors that bind our putative binding sites. In both of these cases, we now
hypothesize that these newly discovered binding site-transcription factor pairs exert
their control through repression. The ability to extract the quantitative features of
regulatory control through energy matrices means that we can take a nearly unstud-
ied gene such as ykgE, which is regulated by an understudied transcription factor
YieP, and quickly get to the point at which we can do quantitative modeling in the
style that we and many others have performed on the lac operon (Vilar and Leibler,

https://www.rpgroup.caltech.edu/RegSeq/interactive
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Figure 2.4: For each regulated promoter, activators and their binding sites are labeled
in green, repressors and their binding sires are labeled in red, and RNAP binding
sites are labeled in blue. All cartoons are displayed with the transcription direction
to the right. Only one RNAP site is depicted per promoter. The transcription factor
binding sites displayed have either been identified by the method described in the
Section “Automated putative binding site algorithm” or have additional evidence for
their presence as described in Table 2.2. Binding sites found for these promoters in
the EcoCyc or RegulonDB databases are only depicted in these cartoons if the sites
are within the 160 bp mutagenized region studied, and are detected by Reg-Seq.

2003; Vilar, Guet, and Leibler, 2003; Bintu et al., 2005; Kinney et al., 2010; Garcia
and Phillips, 2011; Vilar and Saiz, 2013; Barnes et al., 2019; Phillips et al., 2019).

A panoply of promoter results

Figure 2.6 (and Tables 2.1 and 2.2) provides a summary of the discoveries made
in the work done here using our next-generation Reg-Seq approach. The outcome
of our study is a set of hypothesized regulatory architectures as characterized by a
suite of binding sites for RNAP, repressors, and activators, as well as the extremely
potent binding energy matrices. We do not assume, a priori, that a particular
collection of such binding sites is AND, OR, or any other logic (Galstyan et al.,
2019). Figure 2.6(A) provides a shorthand notation that conveniently characterizes
the different kinds of regulatory architectures found in bacteria. In this (=0, =A)
notation, =0 and =A correspond to the number of recovered activator and repressor
binding sites, respectively. In previous work (Rydenfelt et al., 2014b), we have
explored the entirety of what is known about the regulatory genome of E. coli,
revealing that the most common motif is the (0, 0) constitutive architecture, though
we hypothesized that this is not a statement about the facts of the E. coli genome, but
rather a reflection of our collective regulatory ignorance in the sense that we suspect
that with further investigation, many of these apparent constitutive architectures will
be found to be regulated under the right environmental conditions. The two most
common regulatory architectures that emerged from our previous datebase survey
are the (0, 1) and the (1, 0) architectures, the simple repression motif and the simple
activation motif, respectively. It is interesting to consider that the (0, 1) architecture
is in fact the repressor-operon model originally introduced in the early 1960’s by
Jacob and Monod as the concept of gene regulation emerged (Jacob and Monod,
1961). Now we see retrospectively the far reaching importance of that architecture
across the regulatory genome.
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Figure 2.5: Activator binding regions are highlighted in green, repressor binding
regions in red, and RNAP binding regions in blue. (A) From the information
footprint of the ykgE promoter under different growth conditions, we can identify a
repressor binding site downstream of the RNAP binding site. From the enrichment
of proteins bound to the DNA sequence of the putative repressor as compared
to a control sequence, we can identify YieP as the transcription factor bound to
this site as it has a much higher enrichment ratio than any other protein. Lastly, the
binding energy matrix for the repressor site along with corresponding sequence logo
shows that the wild type sequence is the strongest possible binder and it displays an
imperfect inverted repeat symmetry. (B) Illustration of a comparable dissection for
the phnA promoter.

For the 113 genes we considered, Figure 2.6(B) summarizes the number of simple
repression (0, 1) architectures discovered, the number of simple activation (1, 0)
architectures discovered and so on. A comparison of the frequency of the different
architectures found in our study to the frequencies of all the known architectures in
the RegulonDB database is provided in Appendix 2.9 Figure 2.19. Tables 2.1 and
2.2 provide a more detailed view of our results. As seen in Table 2.1, of the 113
genes we considered, 34 of them revealed no signature of any transcription factor
binding sites and they are labeled as (0, 0). The simple repression architecture
(0, 1) was found 26 times, the simple activation architecture (1, 0) was found 11
times, and more complex architectures featuring multiple binding sites (e.g. (1, 1),
(0, 2), (2, 0), etc.) were revealed as well. Further, for 18 of the genes that we
label "inactive", Reg-Seq did not reveal a potential RNAP binding site. The lack
of observable RNAP site could be because the proper growth condition to get high
levels of expression was not used, or because the mutation window chosen for the
gene does not capture a highly transcribing TSS.

The tables also include our set of 15 "gold standard" genes for which previous work
has resulted in a knowledge (sometimes only partial) of their regulatory architectures.
We find that our method recovers the regulatory elements of these gold standard
cases fully in 11 out of 15 cases, and the majority of regulatory elements in 2 of the
remaining cases. Overall the performance of Reg-Seq in these gold-standard cases
(for more details see Appendix 2.7 Figure 2.14) builds confidence in the approach.
Further, the failure modes inform us of the blind spots of Reg-Seq. For example,
we find it challenging to observe weaker binding sites when multiple strong binding
sites are also present such as in themarRAB operon. The araC case study shows that
Reg-Seq does not perform well when many repressor sites regulate the promoter.
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Figure 2.6: A summary of regulatory architectures discovered in this study. (A)
The cartoons display a representative example of each type of architecture, along
with the corresponding shorthand notation. (B) Counts of the different regulatory
architectures discovered in this study. We exclude the "gold-standard" promoters
(listed inAppendix 2.7 Table 2.4) unless new transcription factors are also discovered
in the promoter. If, for example, one repressor was newly discovered and two
activators were previously known, then the architecture is still counted as a (2,1)
architecture. (C)Distribution of positions of binding sites discovered in this study for
activators and repressors. Only newly discovered binding sites are included in this
figure. The position of the transcription factor binding sites are calculated relative to
the estimated TSS location, which is based on the location of the associated RNAP
site.

Additionally the method will fail when there is no active TSS in the mutation
window, as occurred in the case of dicA. Further details on the comparison to gold
standard genes can be found in Appendix 2.7 Section “False positive and false
negative rates”.

We observe that the most common motif to emerge from our work (with the ex-
ception of constitutive expression) is the simple repression motif. Another relevant
regulatory statistic is shown in Figure 2.6(C) where we see the distribution of bind-
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Architecture Total number
of promoters

Number of promoters
with at least one newly
discovered binding site

All Architectures 113 48
(0,0) 34 0
(0,1) 26 21
(1,0) 11 10
(1,1) 4 3
(0,2) 4 4
(2,0) 3 2
(1,2) 4 3
(2,1) 2 2
(2,2) 1 1
(3,0) 3 1
(0,3) 2 1
(0,4) 1 0

inactive 18 0

Table 2.1: All promoters examined in this study, categorized according to type of
regulatory architecture. Those promoters which have no recognizable RNAP site
are labeled as inactive rather than constitutively expressed (0, 0).

ing site positions. Our own experience in the use of different quantitative modeling
approaches to transcriptional regulation reveal that, for now, we remain largely ig-
norant of how to account for transcription factor binding site positions, and datasets
like the one presented here will begin to provide data that can help us uncover
how this parameter dictates gene expression. Indeed, with binding site positions
and energy matrices in hand, we can systematically move these binding sites and
explore the implications for the level of gene expression, providing a systematic tool
to understand the role of binding-site position.

Uncovering the action of global regulators

One of the revealing case studies that demonstrates the broad reach of our approach
for discovering regulatory architectures is offered by the insights we have gained
into two widely acting regulators, GlpR (Figure 2.7) (Schweizer, Boos, and Lar-
son, 1985) and FNR (Figure 2.8) (Körner, Sofia, and Zumft, 2003; Kargeti and
Venkatesh, 2017). In both cases, we have expanded the array of promoters that
they are now known to regulate. Further, these two case studies illustrate that even
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for widely acting transcription factors, there is a large gap in regulatory knowledge
and the approach advanced here has the power to discover new regulatory motifs.
The newly discovered binding sites in Figure 2.7(A), with additional evidence for
GlpR binding in Figure 2.7(B) and (C), more than double the number of operons
known to be regulated by GlpR as reported in RegulonDB (Santos-Zavaleta et al.,
2019). We found 5 newly regulated operons in our data set, even though we were not
specifically targeting GlpR regulation. Although the number of example promoters
across the genome that we considered is too small to make good estimates, finding
5 regulated operons out of approximately 100 examined operons supports the claim
that GlpR widely regulates and many more of its sites would be found in a full
search of the genome. The regulatory roles revealed in Figure 2.7(A) also reinforce
the evidence that GlpR is a repressor.

For the GlpR-regulated operons newly discovered here, we found that this repressor
binds strongly in the presence of glucose while all other growth conditions result
in greatly diminished, but not entirely abolished, binding (Figure 2.7(A)). As there
is no previously known direct molecular interaction between GlpR and glucose and
the repression is reduced but not eliminated, the derepression in the absence of
glucose is likely an indirect effect. As a potential mechanism of the indirect effect,
gpsA is known to be activated by CRP (Seoh and Tai, 1999), and GpsA is involved
in the synthesis of glycerol-3-phosphate (G3P), a known binding partner of GlpR
which disables its repressive activity (Larson et al., 1987). Thus, in the presence of
glucose, GpsA and consequently G3Pwill be found at low concentrations, ultimately
allowing GlpR to fulfill its role as a repressor.
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Architecture Promoter Newly discovered
binding sites

Literature
binding sites

Identified
binding sites Evidence

(0, 0) acuI 0 0 0
aegA 0 0 0
arcB 0 0 0
cra 0 0 0
dnaE 0 0 0
ecnB 0 0 0
fdoH 0 0 0
holC 0 0 0
hslU 0 0 0
htrB 0 0 0
minC 0 0 0
modE 0 0 0
ycgB 0 0 0
mscL 0 0 0
pitA 0 0 0
poxB 0 0 0
rlmA 0 0 0
rumB 0 0 0
sbcB 0 0 0
sdaB 0 0 0
tar 0 0 0
ybdG 0 0 0
ybiP 0 0 0
ybjT 0 0 0
yehT 0 0 0
yfhG 0 0 0
ygdH 0 0 0

continued on the following page
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Architecture Promoter Newly discovered
binding sites

Literature
binding sites

Identified
binding sites Evidence

(0, 0) ygeR 0 0 0
yggW 0 0 0
ynaI 0 0 0
yqhC 0 0 0
zapB 0 0 0
zupT 0 0 0
amiC 0 0 0

(0, 1) araC 0 1 0
bdcR 1 0 1 Known binding location (NsrR)

(Partridge et al., 2009)
coaA 1 0 0
dicC 0 1 0
dinJ 1 0 0
ybeZ 1 0 0
idnK 1 0 1 Mass-Spectrometry (YgbI)
leuABCD 1 0 1 Mass-Spectrometry (YgbI)
mscM 1 0 0
yedK 1 0 1 Mass-Spectrometry (TreR)
rapA 1 0 1 Growth condition Knockout (GlpR),

Bioinformatic (GlpR)
sdiA 1 0 0
tff-rpsB-tsf 1 0 1 Growth condition Knockout (GlpR),

Bioinformatic (GlpR),
Knockout (GlpR)

thiM 1 0 0
tig 1 0 1 Growth condition Knockout (GlpR),

Bioinformatic (GlpR),
Knockout (GlpR)

continued on the following page
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Architecture Promoter Newly discovered
binding sites

Literature
binding sites

Identified
binding sites Evidence

(0, 1) ybiO 1 0 0
ydjA 1 0 0
yedJ 1 0 0
phnA 1 0 1 Mass-Spectrometry (YciT)
mutM 1 0 0
rhlE 1 0 1 Growth condition Knockout (GlpR),

Bioinformatic (GlpR),
Mass-Spectrometry (GlpR)

uvrD 1 0 1 Bioinformatic (LexA)
dusC 1 0 0
ftsK 0 1 0
znuA 0 1 0
znuCB 0 1 0

(1, 0) waaA-coaD 1 0 0
rcsF 1 0 0
groSL 1 0 0
mscS 1 0 0
thrLABC 1 0 0
yeiQ 1 0 1 Growth condition Knockout (FNR),

Bioinformatic (FNR)
ycbZ 1 0 0
ygjP 1 0 0
lac 0 1 0 Bioinformatic (CRP)
yehS 1 0 0
yehU 1 0 1 Growth condition Knockout (FNR),

Bioinformatic (FNR)
(0, 2) pcm 2 0 0

yecE 2 0 1 Mass-Spectrometry (HU)
continued on the following page
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Architecture Promoter Newly discovered
binding sites

Literature
binding sites

Identified
binding sites Evidence

(0, 2) yjjJ 2 0 1 Growth condition Knockout (MarA),
Bioinformatic (MarA)

dcm 2 0 1 Mass-Spectrometry (HNS)
(1, 1) arcA 2 0 2 Growth condition Knockout (FNR),

Bioinformatic (FNR),
Mass-Spectrometry (FNR, CpxR)

dgoR 0 2 0 Bioinformatic (CRP),
Bioinformatic (DgoR)

ykgE 2 0 2 Growth condition Knockout (FNR),
Bioinformatic (FNR),
Mass-Spectrometry(YieP),
Knockout (YieP)

ymgG 2 0 0
(2, 0) asnA 2 0 0

fdhE 2 0 2 Growth condition Knockout (FNR, ArcA),
Bioinformatic (FNR, ArcA),
Knockout (ArcA)

xylF 0 2 0
(1, 2) marR 0 3 0 Mass-Spectrometry (MarR)

aphA 3 0 2 Growth condition Knockout (FNR),
Bioinformatic (FNR),
Mass-Spectrometry (DeoR)

iap 3 0 0
ilvC 3 0 1 Mass-Spectrometry (IlvY)

(Rhee, Senear, and Hatfield, 1998)
(2, 1) maoP 3 0 3 Growth condition Knockout (GlpR),

Bioinformatic (GlpR),
Knockout (PhoP, HdfR, GlpR)

rspA 1 2 1 Mass-Spectrometry (DeoR)
continued on the following page
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Architecture Promoter Newly discovered
binding sites

Literature
binding sites

Identified
binding sites Evidence

(2, 2) ybjX 4 0 4 Bioinformatic (2 PhoP sites),
Mass-Spectrometry (HNS, StpA)

(3, 0) araAB 0 3 0
xylA 0 3 0
yicI 3 0 0

(0, 3) ompR 0 3 0
ybjL 3 0 0

(0, 4) relBE 0 4 0 Mass-Spectrometry (RelBE)

Table 2.2: All genes investigated in this study categorized according to their regulatory architecture, given as (number of activators,
number of repressors). The regulatory architectures as listed reflect only the binding sites that would be able to be recovered within
our 160 bp constructs, but include both newly discovered and previously known binding sites. In those cases where binding sites that
appear in RegulonDB or Ecocyc are omitted from this tally, the Section "Explanation of included binding sites" in Appendix 2.9 has
the reasoning, for each relevant gene, why the binding sites are not shown. The table also lists the number of newly discovered binding
sites, previously known binding sites, and number of identified transcription factors. The evidence used for the transcription factor
identification is given in the final column. "Bioinformatic" evidence implies that discovered position weight matrices were compared to
known transcription factor position weight matrices. The literature sites column contains only those sites that are both expected to be
and are, in actuality, observed in the Reg-Seq data.
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Prior to this study, there were 4 operons known to be regulated by GlpR, each
with between 4 and 8 GlpR binding sites (Larson, Cantwell, and Loo-Bhattacharya,
1992; Zhao et al., 1994; Yang and Larson, 1996; Ye and Larson, 1988; Weissenborn,
Wittekindt, and Larson, 1992), where the absence of glucose and the partial induc-
tion of GlpR was not enough to prompt a notable change in gene expression (Lin,
1976). These previously explored operons seemingly are regulated as part of an
AND gate. glpTQ, glpRABC, glpD, and glpFKX have high gene expression when
grown in growth media that does not contain glucose but does contain contain G3P
(or glycerol, which leads to high concentrations of G3P). All other combinations of
growth media, such as M9 glucose with G3P, or growth in LB without G3P, lead to
low gene expression (Lin, 1976). In contrast, we have discovered operons whose
regulation appears to be mediated by a single GlpR site per operon. With only a
single site, GlpR functions as an indirect glucose sensor, as only the absence of
glucose is needed to relieve repression by GlpR.

The second widely acting regulator our study revealed, FNR, has 151 binding sites
already reported in RegulonDB and is well studied compared to most transcription
factors (Gama-Castro et al., 2016). However, the newly discovered FNR sites
displayed in Figure 2.8(A), with sequence logos of the respective sites displayed
in Figure 2.8(B), demonstrate that even for well-understood transcription factors
there is much still to be uncovered. Our information footprints are in agreement
with previous studies suggesting that FNR acts as an activator. In the presence of
O2, dimeric FNR is converted to a monomeric form and its ability to bind DNA
is greatly reduced (Myers et al., 2013). Only in low oxygen conditions did we
observe a binding signature from FNR, and we show a representative example of the
information footprint from one of 11 aerobic growth conditions in Figure 2.8(A).

We observe quantitatively how FNR affects the expression of fdhE both directly
through transcription factor binding (Figure 2.9(B) and (C)) and indirectly through
increased expression of ArcA (Figure 2.9(A), (B), (C), and (D)). Also, fully under-
standing even a single operon often requires investigating several regulatory regions
as we have in the case of fdoGHI-fdhE by investigating the main promoter for the
operon as well as the promoter upstream of fdhE. 36% of all multi-gene operons
have at least one TSS which transcribes only a subset of the genes in the operon
(Conway et al., 2014). Regulation within an operon is even more poorly studied than
regulation in general. The main promoter for fdoGHI-fdhE has a repressor binding
site, which demonstrates that there is regulatory control of the entire operon. How-
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Figure 2.7: GlpR as a widely-acting regulator. (A) Information footprints for the
promoters which we found to be regulated by GlpR, all of which were previously
unknown. Activator binding regions are highlighted in green, repressor binding
regions in red, and RNAP binding regions in blue. (B) GlpR was demonstrated
to bind to rhlE by mass spectrometry. (C) Sequence logos for GlpR binding sites.
Binding sites in the promotes of tff, tig, maoP, rhlE, and rapA have similar DNA
binding preferences as seen in the sequence logos and each transcription factor
binding site binds strongly only in the presence of glucose (As shown in (A)). These
similarities suggest that the same transcription factor binds to each site. To test this
hypothesis we knocked out GlpR and ran the Reg-Seq experiments for tff, tig, and
maoP. In (A), we see that knocking out GlpR removes the binding signature of the
transcription factor.
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Figure 2.8: FNR as a global regulator. FNR is known to be upregulated in anaerobic
growth, and here we found it to regulate a suite of six genes. In aerobic growth
conditions the putative FNR sites are weakened. (A) Information footprints for
the six regulated promoters. Activator binding regions are highlighted in green,
repressor binding regions in red, and RNAP binding regions in blue. (B) Sequence
logos for the FNR binding sites displayed in (A). The DNA binding preference of
the six sites are shown to be similar from their sequence logos.

ever, we also see in Figure 2.9(B) that there is control at the promoter level, as fdhE
is regulated by both ArcA and FNR and will therefore be upregulated in anaerobic
conditions (Compan and Touati, 1994). The main TSS transcribes all four genes in
the operon, while the secondary site shown in Figure 2.9(B) only transcribes fdhE,
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and therefore anaerobic conditions will change the stoichiometry of the proteins
produced by the operon. By investigating over a hundred promoter regions in this
experiment it becomes feasible to target multiple promoters within an operon as
we have done with fdoGHI-fdhE. We can then determine under what conditions an
operon is internally regulated.
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Figure 2.9: Inspection of a genetic circuit. (A) Here, the information footprint of the
arcA promoter is displayed along with the energy matrix describing the discovered
FNR binding site. (B) Intra-operon regulation of fdhE by both FNR and ArcA. The
information footprint of fdhE is displayed. The discovered sites for FNR and ArcA
are highlighted and the energy matrix for ArcA is displayed. A TOMTOM (Gupta et
al., 2007) search of the binding motif found that ArcA was the most likely candidate
for the transcription factor. The displayed information footprint from a knockout of
ArcA demonstrates that the binding signature of the site, and its associated RNAP
site, are no longer determinants of gene expression. (C) Sequence logos for FNR
generated from both the sites cataloged in RegulonDB, as well as the discovered
sites regulating arcA and fdhE. (D) Sequence logos for ArcA from sites contained
in RegulonDB and the ArcA site regulating fdhE.

In summary

By examining the over 100 promoters considered here, grown under 12 growth con-
ditions, we have a total of more than 1000 information footprints and data sets. In
this age of big data, methods to explore and draw insights from that data are crucial.
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Figure 2.10: Representative view of the interactive figure that is available online.
This interactive figure captures the entirety of our dataset. Each figure features a
drop-down menu of genes and growth conditions. For each such gene and growth
condition, there is a corresponding information footprint revealing putative binding
sites, an energymatrix that shows the strength of binding of the relevant transcription
factor to those binding sites and a cartoon that schematizes the newly-discovered
regulatory architecture of that gene.

To that end, as introduced in Figure 2.10, we have developed an online resource
(see https://www.rpgroup.caltech.edu/RegSeq/interactive) that makes it possible for
anyone who is interested to view our data and draw their own biological conclu-
sions. Information footprints for any combination of gene and growth condition are
displayed via drop down menus. Each identified transcription factor binding site is
marked, and energy matrices for all transcription factor binding sites are displayed.
In addition, for each gene, we feature a simple cartoon-level schematic that captures
our now current, best understanding of the regulatory architecture and resulting
mechanism.

The interactive figure in question was invaluable in identifying transcription factors,
such as GlpR, whose binding properties vary depending on growth condition. As
sigma factor availability also varies greatly depending on growth condition, studying
the interactive figure identified many of the secondary RNAP sites present. The
interactive figure provides a valuable resource both to those who are interested in
the regulation of a particular gene and those who wish to look for patterns in gene
regulation across multiple genes or across different growth conditions.

https://www.rpgroup.caltech.edu/RegSeq/interactive
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2.4 Discussion
The study of gene regulation is one of the centerpieces of modern biology. As a re-
sult, it is surprising that in the genome era, our ignorance of the regulatory landscape
in even the best-understood model organisms remains so vast. Despite understand-
ing the regulation of transcription initiation in bacterial promoters (Browning and
Busby, 2016), and how to tune their expression (Barnes et al., 2019), we lack an
experimental framework to unravel understudied promoter architectures at scale.
As such, in our view, one of the grand challenges of the genome era is the need to
uncover the regulatory landscape for each and every organism with a known genome
sequence. Given the ability to read and write DNA sequences at will, we are con-
vinced that to make that reading of DNA sequence truly informative about biological
function and to give that writing the full power and poetry of what Crick christened
"the two great polymer languages", we need a full accounting of how the genes of
a given organism are regulated and how environmental signals communicate with
the transcription factors that mediate that regulation — the so-called "allosterome"
problem (Lindsley and Rutter, 2006). The work presented here provides a general
methodology for making progress on the former problem and also demonstrates
that, by performing Reg-Seq in different growth conditions, we can make headway
on the latter problem as well.

The advent of cheap DNA sequencing offers the promise of beginning to achieve this
grand challenge in the formofMPRAs as reviewed inKinney andMcCandlish, 2019.
A particular implementation of such methods was christened Sort-Seq (Kinney
et al., 2010) and was demonstrated in the context of well understood regulatory
architectures. A second generation of the Sort-Seq method (Belliveau et al., 2018)
established a full protocol for regulatory dissection through the use of DNA-affinity
chromatography and mass spectrometry which made it possible to identify the
transcription factors that bind the putative binding sites discovered by Sort-Seq.
However, there were critical shortcomings in the method, not least of which was
that it lacked the scalability to uncover the regulatory genome in a more multiplexed
manner.

The work presented here builds on the foundations laid in previous studies by invok-
ing RNA-Seq as a readout for the level of expression of the promoter mutant libraries
needed to infer information footprints and their corresponding energy matrices and
sequence logos. The original inference and hypothesis generation is followed by a
combination of mass spectrometry, comparison of binding motifs, and gene knock-
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outs to identify the transcription factors that bind those sites. The case studies
described in the main text showcase the ability of the Reg-Seq method to deliver
on the promise of beginning to uncover the regulatory genome systematically. The
extensive online resources hint at a way of systematically reporting those insights
in a way that can be used by the community at large to develop regulatory intuition
for biological function and to design novel regulatory architectures using energy
matrices.

However, several shortcomings remain in the approach introduced here. First, the
current implementation of Reg-Seq is not fully automated for various aspects in the
experimental pipeline; for example, manual examination of information footprints
is used to generate testable regulatory hypotheses. As the method is scaled up
further, this can limit throughput of the analysis. To address this for future work,
we have created an automated methodology for identifying putative binding sites,
which we describe in the methods section, that will simplify future scaled up
efforts at identifying putative binding sites. All putative binding sites reported
in this study either were identified through the automated methodology or have
additional evidence for their presence such as mass spectrometry. In addition, these
regulatory hypotheses can be converted into gene regulatory models using statistical
physics (Buchler, Gerland, andHwa, 2003; Bintu et al., 2005). However, here too, as
the complexity of the regulatory architectures increases, it will be of great interest to
use automated model generation as suggested in a recent biophysically-based neural
network approach (Tareen and Kinney, 2019).

Another key challenge faced by the methods described here is that the mass spec-
trometry and the gene knockout confirmation aspects of the experimental pipeline
remain low-throughput and, at times, inconclusive. Occasionally, we have found it
challenging to observe weaker binding sites when multiple strong binding sites are
also present. This was the case for the marRAB operon. To make our transcription
factor identification methods more high-throughput, we have begun to explore a new
generation of experiments such as in vitro binding assays that will make it possible to
accomplish transcription factor identification in a multiplexed manner. Specifically,
we are exploring multiplexed mass spectrometry measurements and multiplexed
Reg-Seq on libraries of gene knockouts as ways to break the identification bottle-
neck. Transcription factor identification using Reg-Seq is also complicated by the
growth conditions that we can test; for the 18 genes that we tested and labeled as
"inactive" in this study, Reg-Seq did not reveal even an RNAP binding site, suggest-
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ing that the proper growth condition to get high levels of expression was not used,
or perhaps that the mutation window chosen for the gene does not capture a highly
transcribing TSS. While information on the location of a TSS is available for 2500
of 2600 operons in E. coli (Santos-Zavaleta et al., 2019), this information does not
guarantee those sites will have high transcription in the growth conditions studied.
Similarly, many genes have multiple TSS that can be active under different growth
conditions. In these cases we are limited both by the finite set of growth conditions
we test as well as by the length of the mutation window, as it cannot always capture
all TSS.

Another shortcoming of the current implementation of the method is that it misses
regulatory action at a distance. Indeed, our laboratory has invested a significant
effort in exploring such long-distance regulatory action in the form of DNA looping
in bacteria (S. Johnson, Lindén, and Phillips, 2012; Han et al., 2009) and V(D)J
recombination in jawed vertebrates (Lovely et al., 2015; Hirokawa et al., 2020). It is
well known that transcriptional control through enhancers in eukaryotic regulation
is central in contexts ranging from embryonic development to hematopoiesis (Mel-
nikov et al., 2012). The current incarnation of the methods, as described here, have
focused on contiguous regions in the vicinity of the transcription start site (within
the 160 base pair mutagenized window). Clearly, to dissect the entire regulatory
genome, these methods will have to be extended to non-contiguous regions of the
genome.

Despite their limitations, the findings from this study provide a foundation for
systematic, multiplexed regulatory dissections. We have developed a method to pass
from complete regulatory ignorance to designable, regulatory architectures and we
are hopeful that others will adopt these methods with the ambition of uncovering
the regulatory architectures that preside over their organisms of interest.

2.5 Methods
Here, we provide an overview of the key methodological aspects of Reg-Seq. Ex-
tensive details of the methods used in this study can also be found on the GitHub
Wiki associated with this work.

Library design and construction
We selected 113 TSS from the E. coli K12 genome for experiments. The promoter
regions analyzed in this study were each 160 base pairs in length, a region that
includes 45 base pairs downstream and 115 base pairs upstream of each TSS. The

https://github.com/RPGroup-PBoC/RegSeq/wiki
https://github.com/RPGroup-PBoC/RegSeq/wiki
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general principles by which we selected each TSS were to first prioritize those
TSS which have been extensively experimentally validated and catalogued in Regu-
lonDB (Santos-Zavaleta et al., 2019) or EcoCyc (Keseler et al., 2017). Secondly, we
selected those sites which had evidence of active transcription from RACE experi-
ments (Mendoza-Vargas et al., 2009) and were listed in RegulonDB. If a TSS lacked
both experimental evidence and active transcription as indicated by RACE exper-
iments, we used the computationally predicted TSS as indicated on RegulonDB
(Santos-Zavaleta et al., 2019) or EcoCyc (Keseler et al., 2017) and determined pre-
viously by (Huerta and Collado-Vides, 2003). If there were multiple TSS located
upstream of the gene in question, we selected the TSS closest to the gene start, unless
selecting one further upstream would allow for multiple TSS to be contained in the
160 base pair mutated region analyzed for each promoter. Not all TSS locations are
known, and many genes have multiple TSS. The exact start sites used, as well as the
reasoning behind our selection of each TSS, are listed in Supplementary File 1.

Promoter variants were synthesized on a microarray (TWIST Bioscience, San Fran-
cisco, CA). The sequences were designed computationally such that each base in
the 160 base pair promoter region has a 10% probability of being mutated. For each
promoter’s oligonucleotide library, we ensured that the mutation rate as averaged
across all sequences was kept between 9.5% and 10.5%, otherwise the library was
regenerated. There are an average of 2200 unique promoter sequences per gene (for
an analysis of how our results depend upon number of unique promoter sequences
see Appendix 2.8 Figure 2.16). The library arrived lyophilized (76 pmol) and was
resuspended in 100 `L of TE (pH 8.0). 1 `L of the resuspended oligonucleotide
was amplified for 12 cycles with New England Biolabs Q5 High-Fidelity 2x Master
Mix (NEB, Ipswich, MA) to increase the quantity of DNA in the library. Unless
otherwise stated, all amplifications were performed using this polymerase mixture.

The PCR product was then run on a 2% TAE agarose gel, and approximately 200
base pair amplicons were extracted using a Zymoclean Gel DNA Recovery Kit
(Zymo Research, Irvine, CA). To add a random 20-nucleotide barcode to each
oligonucleotide, 1 ng of the purified DNA library was amplified for 10 PCR cy-
cles using primers containing random 20-nucleotide DNA overhangs. All primer
sequences can be found in Supplementary File 2. After cleaning this PCR product
using a Zymo Clean and Concentrator Kit (Zymo Research, Irvine, CA), the library
was cloned into the plasmid backbone of pJK14 (SC101 origin) (Kinney et al.,
2010) using Gibson Assembly. An illustration of this plasmid is displayed in Ap-
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pendix 2.6 Figure 2.12. Genetic constructs were electroporated into E. coli K-12
MG1655 (Blattner, 1997) and plated on LB plates with kanamycin. After 24 hours
of growth on plates, libraries were scraped and inoculated into M9 media with 0.5%
glucose in preparation for DNA sequencing.

All genetic barcodes were inserted 120 base pairs from the 5’ end of the mRNA,
containing 45 base pairs from the targeted regulatory region, 64 base pairs containing
primer sites used in the construction of the plasmid, and 11 base pairs containing a
three frame stop codon. Exact sequences of primers and spacer sequences for the
constructs are listed in Supplementary File 2. Following each genetic barcode, there
is an RBS, a GFP coding region, and a terminator.

Preparation of libraries for sequencing
To prepare cDNA libraries for sequencing, cells were grown to an optical density of
0.3 and RNAwas stabilized using Qiagen RNA Protect (Qiagen, Hilden, Germany).
Lysis was performed using lysozyme (Sigma Aldrich, Saint Louis, MO) and RNA
isolated using the Qiagen RNA Mini Kit. Reverse transcription was preformed
using Superscript IV (Invitrogen, Carlsbad, CA) with a specific primer for the
labeled mRNA. qPCR was then performed in triplicate to check the level of DNA
contamination. Any sample that had contaminating DNA at a level of 5% or more of
the mRNA concentration was discarded. DNA libraries were prepared by growing
cells to an optical density of 0.3 and isolating plasmid DNA with a spin miniprep
kit (Qiagen, Hilden, Germany).

Sequencing
After preparing the barcoded libraries, we used next-generation sequencing (NGS)
tomap promoters to their respective barcodes. Sequencing libraries (both cDNA and
DNA) had unindexed illumina flow cell adaptors attached via PCR, using primers
that amplified a 221 base pair region that included the random barcode. We limited
PCR cycles to exponential amplification, as determined by qPCR. Specifically,
when we performed qPCR to check for DNA contamination, we also determined
the number of cycles at which each sample reached exponential amplification, and
then repeated the PCR reactions with the determined number of cycles to limit bias.
After amplification, libraries were cleaned using a Zymo Clean and Concentrator kit
and analyzed on an Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA). Samples
were submitted to NGX Bio (NGX Bio, South Plainfield, NJ) for 150 base pair
paired-end sequencing on a Hi-Seq 2500 (Illumina, San Diego, CA). We typically
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acquired 250 million total reads for mapping of libraries. Further details of how we
process the sequences can be found in Appendix 2.6 Section “Sequencing Analysis”
and the GitHub Wiki associated with this work.

To quantify relative gene expression values for each promoter mutant in our library,
we next grew cells expressing the DNA libraries in various growth conditions to
an OD600 of 0.3. DNA and cDNA libraries were prepared in the same way as
stated previously, and were sequenced at the Millard and Muriel Jacobs Genetics
and Genomics Laboratory at Caltech on a HiSeq 2500 with a 100 base pair single
read flow cell. An average of 5 unique 20 base pair barcodes per variant promoter
was used for the purpose of counting transcripts. Specifically, for each promoter
variant the number of sequences from the DNA library and the number of sequences
produced from mRNA are determined.

Determination of energy matrices.
Energy matrices are used to represent the binding energy contribution for each
nucleotide in a DNA sequence. We use relative gene expression values, as deter-
mined by counting genetic barcodes from NGS data for each mutated variant of
a given regulatory sequence, and infer the energy contribution of each nucleotide
by maximizing the mutual information between the rank-ordered binding strength
predictions from the energy matrix and the gene expression data. We also perform
this maximization using MCMC. Further discussion of how energy matrices are
inferred can be found in Appendix 2.8 Section “Energy matrix inference” and on
the GitHub Wiki that accompanies this study.

In each energy matrix plot, a red box indicates that a mutation to a nucleotide
in that position decreases the energy of transcription factor binding, while a blue
box indicates that a mutation at a given nucleotide position increases transcription
factor binding energy. Energy matrices are typically given in arbitrary units, but the
method by which we can assign absolute units in :1) is covered in Appendix 2.8
Section “Inference of scaling factors for energy matrices”.

DNA affinity chromatography and mass spectrometry
Upon identifying a putative transcription factor binding site, we used DNA affinity
chromatography, as performed in (Belliveau et al., 2018), to isolate and enrich
for the transcription factor of interest. In brief, we order biotinylated oligos of
our binding site of interest (Integrated DNA Technologies, Coralville, IA) along
with a control, "scrambled" sequence, that we expect to have no specificity for

https://github.com/RPGroup-PBoC/RegSeq/wiki
https://github.com/RPGroup-PBoC/RegSeq/wiki
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the given transcription factor. We tether these oligos to magnetic streptavidin
beads (Dynabeads MyOne T1; ThermoFisher, Waltham, MA), and incubate them
overnight with whole cell lysate grown in the presences of either heavy (with 15N)
or light (with 14N) lysine for the experimental and control sequences, respectively.
The next day, proteins are recovered by digesting the DNA with the PtsI restriction
enzyme (New England Biolabs, Ipswich, MA), whose cut site was incorporated into
all designed oligos.

Protein samples were then prepared for mass spectrometry by either in-gel or in-
solution digestion using the Lys-C protease (WakoChemicals, Osaka, Japan). Liquid
chromatography coupled mass spectrometry (LC-MS) was performed as previously
described by (Belliveau et al., 2018), and is further discussed in Appendix 2.8
Section “Processing of mass spectrometry experiments”. SILAC labeling was per-
formed by growing cells (ΔLysA) in either heavy isotope form of lysine or its natural
form.

It is also important to note that while we utilized the SILAC method to identify the
transcription factor identities, our approach doesn’t require this specific technique.
Specifically, our method only requires a way to contrast between the copy number
of proteins bound to a target promoter in relation to a scrambled version of the
promoter. In principle, one could use multiplexed proteomics based on isobaric
mass tags (Pappireddi, Martin, and Wühr, 2019) to characterize up to 10 promoters
in parallel. Isobaric tags are reagents used to covalently modify peptides by using
the heavy-isotope distribution in the tag to encode different conditions. The most
widely adopted methods for isobaric tagging are the isobaric tag for relative and
absolute quantitation (iTRAQ) and the tandem mass tag (TMT). This multiplexed
approach involves the fragmentation of peptide ions by colliding with an inert gas.
The resulting ions are resolved in a second MS-MS scan (MS2).

Only a subset (13) of all transcription factor targets were identified by mass spec-
trometry due to limitations in scaling the technique to large numbers of targets. The
transcription factors identified by this method are enrichedmore than any other DNA
binding protein, with p < 0.01 using the outlier detection method as outlined by Cox
and Mann, 2008, with corrections for multiple hypothesis testing using the method
proposed by Benjamini and Hochberg, 1995. Details on data processing can be
found in Appendix 2.8 Section “Processing of mass spectrometry experiments”. A
detailed explanation of all experimental and computational steps can be found in the
GitHub Wiki that accompanies this work.

https://github.com/RPGroup-PBoC/RegSeq/wiki/5.-Mass-Spectrometry
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Construction of knockout strains
Conducting DNA affinity chromatography followed by mass spectrometry on puta-
tive binding sites resulted in potential candidates for the transcription factors that
bind to the target region. For some cases, to verify that a given transcription factor is,
in fact, regulating a given promoter, we repeated the RNA sequencing experiments
on strains in which the transcription factor of interest has been knocked out.

To construct the knockout strains, we ordered strains from the Keio collection
(Yamamoto et al., 2009) from the Coli Genetic Stock Center. These knockouts were
put in a MG1655 background via phage P1 transduction and verified with Sanger
sequencing. To remove the kanamycin resistance that comeswith the strains from the
Keio collection, we transformed in the pCP20 plasmid (Datsenko andWanner, 2000),
induced FLP recombinase, and then selected for colonies that no longer grew on
either kanamycin or ampicillin, verifying both loss of the chromosomally integrated
kanamycin resistance and the pCP20 plasmid which confers ampicillin resistance.
Finally, we transformed our desired promoter libraries into the constructed knockout
strains, allowing us to perform the RNA sequencing in the same context as the
original experiments.

Automated putative binding site algorithm
We introduce a systematized way of identifying the locations of binding sites to
supplement manual curation (described in the Section “Manual selection of binding
sites”). As illustrated in Figure 2.11, for a given information footprint, we average
over 15 base pair "windows". We then determine which base pairs are part of a
regulatory region by setting an information threshold of 2.5 ×10−4 bits. Threshold
selection is described in Appendix 2.7 Section “False positive and false negative
rates”. All base pair positions that pass the information threshold were then joined
into regulatory regions. We consider "activator-like" (mutation decreases expres-
sion) and "repressor-like" (mutation increases expression) base pairs separately.
This means that it is possible to have overlapping repressor and activator binding
sites identified. We join any base pair positions within 4 base pairs of each other
into single regulatory regions. We then find the edges of the region by trimming off
any base pairs at the edge that are below the information threshold (even if the 15
base pair average is above the threshold). While we can often resolve overlapping
or nearby repressors from activators, a limitation of this method of identification is
that it cannot resolve two activators or two repressors that are very close to each
other or overlapping.
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To identify RNAP binding sites, we compare the sequence preference (through
energymatrices and sequence logos) to experimentally validated examples of RNAP
sites. We have examples of energy matrices for the f70 RNAP site from Belliveau
et al., 2018. For energy matrices of other f factor binding sites, such as f32 and
f28, we use energy matrices generated from within the Reg-Seq experiment itself.
For a f32 binding site, for example, we used the example from the hslU gene. For
a f28 binding site, we used the energy matrix generated from the dnaE gene. We
"scan" the example energy matrices across the mutated region. For each position
in the region, we calculate the Pearson correlation coefficient between the example
RNAP energy matrix and the inferred energy matrix at that position. We find RNAP
binding site locations by thresholding the Pearson correlation coefficients at a value
of 0.45. When performingmanual curation of binding sites, we visually compare the
sequence logos of the example RNAP binding sites to the sequence logos of putative
binding sites. Further details of the method to create energy matrices and compare
them to known motifs are given in Appendix 2.8 Section “Energy matrix inference”
and Appendix 2.8 Section “TOMTOM motif comparison”, respectively. Further,
a detailed discussion of energy matrix construction is provided in the Sequencing
Analysis GitHub Wiki page that accompanies this work.

Manual selection of binding sites
Similarly to the automated method of locating putative binding regions, we look
for regions of high mutual information in the information footprints. While there
was no hard cut-off for mutual information values during manual curation, we select
clusters of base pairs that have a similar average information value (2.5 ×10−4 bits)
to that described in the Section “Automated putative binding site algorithm”.

During manual curation of binding sites, we also disqualify any binding sites where
there are only 3 or fewer base pairs with high values in the mutual information
footprint. The logic behind this decision is that individual bases with very high
mutual information can potentially indicate that a putative binding site is only active
when a certain mutation occurs. In turn, the binding site would not be active
in wild-type conditions. To explain why this is, consider that a typical binding
site mutation, at any given base pair, will significantly weaken the binding site of
interest. Therefore, each of those mutated base pairs is said to have a "large effect"
on expression. For a very poor binding site that is not active in the wild-type case,
most mutations will further weaken a site which already will have only a minor

https://github.com/RPGroup-PBoC/RegSeq/wiki/4.-Sequence-Analysis
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Figure 2.11: Procedure to identify binding site regions automatically. First, an
information footprint is generated for the target region. Next, the information
footprint is smoothed over a 15 base pair sliding window and a threshold of 2.5
×10−4 bits is applied to identify regions of interest. RNAP binding sites are first
identified (in blue), and the remainder of the regulatory regions are identified as
repressor binding sites (if they tend to increase expression on mutation from wild
type) or activator binding sites (if they tend to decrease expression upon mutation).

effect on gene expression. However, for a small number of base pairs, a mutation
can occur that makes the DNA bind more tightly to the transcription factor, making
it relevant for gene expression. Therefore, in the case of an extremely weak binding
site that is not relevant in the wild type condition, there can still be a small number
of highly informative bases. Initial hypothesis generation in Reg-Seq was done
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manually. However, all those sites that are reported in Table 2.2 that do not have
additional validation through mass spectrometry, gene knockouts, or bioinformatics
appear in the set of putative binding sites generated by the method described in
Section “Automated putative binding site algorithm”.

Code and Data Availability
An in-depth discussion of all experimental protocols and mathematical analysis
used in this study can be found on the GitHub Wiki for this study (https:
//github.com/RPGroup-PBoC/RegSeq/wiki). All code used for processing
data and plotting as well as the final processed data, plasmid sequences, and
primer sequences can also be found on the GitHub repository(archived by Zenodo;
https://doi.org/10.5281/zenodo.3953312). Energy matrices were gener-
ated using the MPAthic software (Ireland and Kinney, 2016). All raw sequencing
data is available at the Sequence Read Archive (accession no.PRJNA599253 and
PRJNA603368). All inferred information footprints and energy matrices can be
found on the GitHub repository (archived by Zenodo; https://doi.org/10.
5281/zenodo.3953312). All mass spectrometry raw data is available on the Cal-
techData repository (https://doi.org/10.22002/d1.1336).

2.6 Supplementary information: Extended details of experimental design
Choosing target genes
Genes in this study were chosen to cover several different categories. 29 genes had
at least one transcription factor binding site listed in RegulonDB and were picked to
validate our method under a number of conditions (15 with relevant high evidence
sites). 37 were chosen because the work of Schmidt et al., 2016 demonstrated
that gene expression changed significantly under different growth conditions. A
handful of genes such asminC ,maoP, or fdhE were chosen because we found either
their physiological significance interesting, as in the case of minC, whose product
is crucial for cell division and proper partitioning of the cell into two equal sized
daughters in E. coli (Lutkenhaus, 2007). Alternatively, for some cases we found
the gene regulatory question interesting, such as for the intra-operon regulation
demonstrated by fdhE. The remainder of the genes were chosen because they had
no regulatory information, often had minimal information about the function of the
gene, and had an annotated transcription start site (TSS) in RegulonDB. A list of all
genes chosen can be found in Supplementary File 1.

https://github.com/RPGroup-PBoC/RegSeq/wiki
https://github.com/RPGroup-PBoC/RegSeq/wiki
https://doi.org/10.5281/zenodo.3953312
https://doi.org/10.5281/zenodo.3953312
https://doi.org/10.5281/zenodo.3953312
https://doi.org/10.22002/d1.1336
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library

Figure 2.12: Schematic of the genetic construct used in this study. Mutated DNA
libraries for each regulatory region were expressed from a pSC101 plasmid with
kanamycin resistance (kanR). Each mutated sequence is 160 bp in length, which
includes 45 bp downstream and 115 bp upstream of a given TSS. Each mutated
sequence is flanked by primer binding sites to facilitate cloning. The genetic
construct also contains a random barcode, a ribosome binding site (RBS), a GFP
gene, and a terminator labeled with a large "T".

Sequencing Analysis

In this Appendix section, we provide further details associated with the analysis of
next-generation sequencing (NGS) results, from both the "mapping" experiment,
in which each unique barcode is "linked" to its corresponding mutated promoter
region, and from the barcode sequencing experiments, in which the frequency of
each barcode is counted and relative gene expression values determined. It is
important to perform two sequencing experiments, in this manner, for a couple of
reasons. Oligonucleotide libraries ordered from Twist Bioscience, which we use
to construct promoter regions mutated at a 10% rate, are prone to random errors.
This means that we do not fully know what is in the ordered library, and so it is
necessary to sequence the full library and determine which mutations are present in
each promoter region. The "mapping" phase of experiments also serves to connect
each random, genetic barcode (which is added via PCR with primer overhangs) to
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its corresponding, mutated promoter. By linking barcodes to promoters, we are able
to build a "codex" that enables us to count genetic barcodes and, in turn, understand
the relative gene expression values for each mutant promoter sequence.

For the "mapping" of genetic barcodes to their corresponding mutant promoter, we
use paired-end sequencing, with 150 cycles for both Read 1 and Read 2, on a Hi-Seq
2500 machine. We acquired 250 million total reads for mapping of libraries.

In our analysis of FASTQ files, we removed any barcodes that were associated with a
promoter variant which had insertions or deletions. Similarly, any genetic barcodes
associated with multiple promoter variants were removed from the analysis, as were
any sequences which appeared only once (barcodes must appear at least two times
to be analyzed, as the appearance of a single, unique barcode sequence could be
attributed to a sequencing error). The paired end reads from this sequencing step
were assembled using the FLASH tool (Magoč and Salzberg, 2011). Any sequence
with a PHRED score less than 20was then removed using the FastX toolkit (Hannon,
2010). The specific commands used for this step of our analysis are listed on the
GitHub Wiki associated with this work.

To analyze the "mapping" data and link each genetic barcode to its unique, muta-
genized promoter region, we used a custom Python module, which can be found
on the GitHub repository associated with this work. This module contains func-
tions to check that sequences are the expected length, map unique barcodes to
their corresponding promoter regions, and extract barcode sequences for subse-
quent sequencing experiments. We also provided a Jupyter notebook on the GitHub
repository which provides a step-by-step walkthrough of the code used in processing
sequencing data.

After mapping each barcode to its corresponding, mutated promoter region, we next
"count" barcodes, both DNA and cDNA, to determine the relative gene expression
values for eachmutated promoter. For barcode counting experiments, only the region
containing the random, 20 bp barcode was sequenced. For each growth condition,
each promoter library yielded 20,000 to 500,000 usable sequencing reads. If the
dataset for a gene in a given growth condition did not have at least 20,000 reads,
it was not analyzed further, as we consistently found that, below this threshold, we
reached a regime wherein the inference reliability of MCMC was reduced.

When preparing DNA and cDNA for NGS, we add a 4nt barcode, via PCR, to the
library isolated from each growth condition. These 4nt barcodes are used during

https://github.com/RPGroup-PBoC/RegSeq/wiki/4.-Sequence-Analysis
https://github.com/RPGroup-PBoC/RegSeq/blob/master/regseq/create_key.py
https://github.com/RPGroup-PBoC/RegSeq/blob/master/notebooks/3_1_create_keys.ipynb
https://github.com/RPGroup-PBoC/RegSeq/blob/master/notebooks/3_1_create_keys.ipynb
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data analysis both to map each library to its particular growth condition and to
keep track of biological replicates, while the 20 bp barcodes can be used to identify
each mutated promoter region. We performed all experiments with two biological
replicates.

After collecting the FASTQ files, we perform quality filtering with FastX. We then
perform barcode splitting with the FastX toolkit to separate each FASTQ file based
on its growth condition, as well as separate the sequencing files based on whether
they are derived from the DNA or cDNA library. Each experimental condition (both
biological replicates, RNA vs. DNA, and growth conditions) receives a unique, 4nt
barcode sequence, which enables us to identify where each library came from. Full
details of our sequencing analysis methodologies, as well as all Python scripts, can
be found on the GitHub repository associated with this work.

Growth conditions
The growth conditions used in this study were inspired by Schmidt et al., 2016, a
study which observed changes in the E. coli proteome under growth conditions sim-
ilar to the ones presented. The growth conditions utilized in this study are tabulated
in Appendix 2.6 Table 2.3. The growth conditions explored here involved a range of
environmental perturbations including altering the carbon source, inducing stress,
or introducing trace metals. Unless otherwise noted in the caption of Appendix 2.6
Table 2.3, the cells were grown in the medium at 37 °C until reaching an OD of
0.3, at which point the cells were harvested and the RNA extracted. These growth
conditions were chosen so as to span a wide range of growth rates, as well as to
illuminate any carbon source specific regulators.

All knockout experiment were performed in M9 with glucose except for the knock-
outs for arcA, hdfR, and phoP which were grown in LB.

2.7 Supplementary information: Validating Reg-Seq against previous meth-
ods and results

The work presented here is effectively a third-generation of the use of Sort-Seq
methods for the discovery of regulatory architecture. The primary difference be-
tween the present work and previous generations (Kinney et al., 2010; Belliveau
et al., 2018) is the use of RNA-Seq rather than fluorescence and cell sorting as
a readout of the level of expression of our promoter libraries. As such, there are
many important questions to be asked about the comparison between the earlier
methods and this work. We attack that question in several ways. First, as shown in

https://github.com/RPGroup-PBoC/RegSeq/wiki/3.-Sequencing
https://github.com/RPGroup-PBoC/RegSeq


65

Growth conditions
M9 with glucose (0.5%)
M9 with acetate (0.5%)
M9 with arabinose (0.5%)
M9 with xylose (0.5%) and arabinose (0.5%)
M9 with succinate (0.5%)
M9 with trehalose (0.5%)
M9 with glucose (0.5%) and 5 mM sodium salycilate
LB
heat shock in M9 with glucose (0.5%)
LB in low oxygen
zinc, 5 mM ZnCl in M9 with glucose (0.5%)
iron, 5 mM FeCL in M9 with glucose (0.5%)
no cAMP in M9 with glucose (0.5%)

Table 2.3: All growth conditions used in the Reg-Seq study. Heat shocked cells were
exposed to 42 °C for 5 minutes upon reaching OD 0.3 as this is known to induce
transcription by f32 (Arsène, Tomoyasu, and Bukau, 2000). Low oxygen growth
cells were grown in a flask sealed with parafilmwithminimal oxygen, although some
was present as no anaerobic chamber was used. This level of oxygen stress was still
sufficient to activate FNR binding, thus activating anaerobic metabolism. For cells
grown with iron, upon reaching OD of 0.3 iron was added and cells were incubated
for 10 minutes before harvesting RNA. Growth without cAMPwas accomplished by
the use of the JK10 strain (Kinney et al., 2010) which does not maintain its cAMP
levels.

Figure 2.3, we have performed a head-to-head comparison of the two approaches to
be described further in this section. Second, as shown in the next section, our list
of candidate promoters included roughly 20% for which there is at least one experi-
mentally validated transcription factor binding site. In these cases, we examined the
extent to which our methods recover the known features of regulatory control about
those promoters.

Comparison between Reg-Seq by RNA-Seq and fluorescent sorting
As the basis for comparing the results of the fluorescence-based Sort-Seq approach
with our RNA-Seq-based approach, we use information footprints and position
weight matrices as our metrics.

When making these comparisons between the two methods, we compare the values
of a position weight matrix (PWM), often displayed as a sequence logo, generated
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from the Sort-Seq and Reg-Seq methods. PWMs contain the probabilities that a
given base will occur at a given position in the binding site. We calculate the Pearson
correlation coefficient between the PWM values (represented as the height of the
letters at each position) for the two methods. To compute the correlation coefficient,
we use

A =

∑4
U=1

∑#
8=1(G8,U − Ḡ) (H8,U − H̄)√∑4

U=1
∑#
8=1(G8,U − Ḡ)2

√∑4
U=1

∑#
8=1(H8,U − H̄)2

, (2.5)

where G8,U and H8,U are the entries of the PWM of nucleotide U at position 8 obtained
from Sort-Seq and Reg-Seq respectively, # is the total length of the binding site,
and Ḡ and H̄ are the means of G8,U and H8,U, respectively. As an example, consider the
following sequence logo from a Sort-Seq experiment,

position A C G T

1 0.01 0.01 0.03 0.95
2 0.04 0.83 0.06 0.07
3 0.70 0.17 0.11 0.02
4 0.86 0.01 0.10 0.03

and the same region resulting from a Reg-Seq experiment:

position A C G T

1 0.01 0.04 0.03 0.92
2 0.05 0.85 0.07 0.03
3 0.74 0.14 0.09 0.03
4 0.81 0.02 0.13 0.04

We see that for both sequence logos, the preferred nucleotides from position 1
through 4 are T-C-A-A, as indicated by the values in bold. Plugging in these
values into equation 2.5, we get a Pearson correlation coefficient of A = 0.997,
indicating substantial agreement between the Sort-Seq and Reg-Seq methods in this
example. As a way to visualize similarity, for each position in the sequence logo
we can plot the numerical value as resulting from the Sort-Seq experiment (G8,U)
vs. the corresponding value obtained from the Reg-Seq experiment (H8,U). Perfect
correspondence between the methods would result in all the data lying on the G = H
line (Appendix 2.7 Figure 2.13).
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Figure 2.13: Mock data comparing Sort-Seq and Reg-Seq sequence logo values.
These data have a Pearson correlation coefficient of A = 0.997. This high correlation
is also indicated by the data deviating little from the G = H line.

Figure 2.3 shows examples of this comparison for four distinct genes of interest.
Figure 2.3(A) shows the results of the two methods for the lacZYA promoter with
special reference to the CRP binding site. Both the information footprint and the the
position weight matrices (displayed with sequence logos) identify the same binding
site.

Figure 2.3(B) provides a similar analysis for the dgoRKADT promoter where the
position weight matrices for the CRP binding site from Reg-Seq and Sort-Seq have
a correlation coefficient of r = 0.90. Figure 2.3(C) provides a quantitative dissection
of the relBE promoter which is repressed by RelBE. Here we use both information
footprints and expression shifts as a way to quantify the significance of mutations
to different binding sites across the promoter. Finally, Figure 2.3(D) shows a
comparison of the two methods for themarRAB promoter. The two approaches both
identify a MarR binding site.

False positive and false negative rates.
We introduce a systematized way of identifying the locations of binding sites, as
shown in Figure 2.11, that allows the false negative and false positive rate of binding
site identification to be clearly assessed. For a given information footprint, we
average over 15 base pair "windows". We then determine which base pairs are
part of a regulatory region by setting an information threshold of 2.5 ×10−4 bits,
which is explained below. All base pair positions that pass the information threshold
are then joined into "regulatory regions", which we consider to be "activator-like"
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(if a mutation decreases expression) or "repressor-like" (if a mutation increases
expression). This means that it is possible to identify overlapping repressor and
activator binding sites. We join any base pair positions within 4 base pairs of each
other into a single regulatory region. We then find the edges of each binding site
region by trimming off any base pairs at the edge that are below the information
threshold (even if the 15 base pair average is above the threshold). A limitation of
this method of identification is that is cannot resolve transcription factor binding
sites that are very close to each other. The primary reasons for this is that putative
binding sites will overlap after the smoothing step. While the method could be tuned
to avoid treating nearby regions as the same site, many transcription factor binding
sites will have sections of base pairs within their site where base identity has little to
no effect on gene expression. Helix-turn-helix type transcription factors like CRP
(whose binding site can be observed in Figure 2.3) are common examples of this
phenomenon.

To determine which information threshold to use as a cutoff for a putative binding
site, as displayed in Figure 2.11, we selected a training set of genes which included
two of our "gold standard" genes with previously studied binding sites, DgoR (the
upstream site from the dgoR promoter) and CRP (from the araAB promoter), two
genes with only RNAP binding sites, including hslU (under heat shock) and poxB,
and several genes that we classified as inactive, wherein no RNAP binding sites
or other binding sites could be identified. These inactive genes included hicB,
mtgA, eco, hslU (without heat shock), and yncD. The growth condition (heat shock)
is specified for the hslU promoter as transcription occurs from a f32 RNAP site,
which will be inactive except during heat shock. We selected the threshold such
that the RNAP sites and known binding sites were identified, while no binding sites
were identified in the inactive regions.

We then determine a set of binding sites uponwhich to test thismethod and determine
a false negative rate for the Reg-Seq experiment. In this set of binding sites, we
include those sites which are "high-evidence" according to EcoCyc. Such "high
evidence" binding sites have been validated experimentally with the binding of
purified protein or through site mutation. Some "high-evidence" sites are excluded
because they are not included within our 160 base pair, mutagenized sequence,
or because they are not active in any of the growth conditions that we tested.
Justifications for those binding sites which were not included are now listed in a new
appendix; Appendix 2.9 Section “Explanation of included binding sites”. A full list
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gene Transcription factor Transcription factor type
rspA CRP activator
rspA YdfH repressor
araAB AraC (2 sites) activator
znuCB Zur repressor
xylA CRP activator
xylA XylR (2 sites) activator
xylF XylR (2 sites) activator
dicC DicA repressor
relBE RelBE repressor
ftsK LexA repressor
znuA Zur repressor
lac CRP activator
marR Fis activator
marR MarA activator
marR MarR (2 sites) repressor
dgoR CRP activator
dgoR DgoR (right site) repressor
ompR IHF (3 sites) repressor
ompR CRP repressor
dicA DicA repressor
araC AraC (2 sites) repressor
araC AraC (2 sites) activator
araC CRP activator
araC XylR (2 sites) repressor

Table 2.4: A suite of experimentally validated and high-evidence binding sites used
to test our automated binding site finding algorithm. Specifically, this list of genes
was used to test the false negative rate of our Reg-Seq method by examining what
fraction of high-evidence sites were also identified with Reg-Seq.

of promoters and binding sites that were included in the set of genes used to validate
our automated binding-site finding algorithms are also provided in Appendix 2.7
Table 2.4.

For each promoter contained in Appendix 2.7 Table 2.4, we used the automated
procedure outlined above and in Figure 2.11 to identify the activator and repressor
binding sites. A visual display of the expected binding sites, the information
footprints for the promoters in Appendix 2.7 Table 2.4, and the discovered binding
sites are all displayed in Appendix 2.7 Figure 2.14. To assess the false negative
rate, we compare the identified regulatory regions to the known binding sites from
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Appendix 2.7 Table 2.5. At this stage, we did not consider the identities of the
binding sites; we merely consider their presence or absence. Inferred binding
sites are declared to "match" the known binding site if the automated identification
procedure classifies at least half of the base pairs reported in EcoCyc as belonging
to a transcription factor binding site and correctly determines whether the binding
site belongs to an activator or repressor.

We do not require exact matching of the edges of the binding sites for several
reasons. One such reason is that, in some cases, the sequence of half of a binding
site (for example, corresponding to one half of a helix-turn-helix binding motif)
can contribute relatively little to gene expression, and so will not have high mutual
information values in the corresponding information footprint for that binding site.
While this may appear unintuitive for transcription factors where both sections of
the binding site are bound by identical halves of a dimer, we see several examples
of this in our Reg-Seq experiment results, including for CRP binding sites of the
rspA promoter studied during our analysis of false negative rates. We can see
in Appendix 2.7 Figure 2.14 that the downstream half of the binding site is not
identified as important for gene expression. If we examine the wild type sequence of
the rspA promoter, we also see that, for the upstream half of the sequence, the wild
type matches the five most conserved bases of the consensus sequence (TGTGA)
perfectly. The downstream half of the sequence, however, has 3 mismatches out
of 5 bases. The downstream half of the binding site already binds to its target
transcription factor poorly, so further mutations have little effect. While it is true
that CRP binds to that sequence region, it is also true that CRP binds only extremely
weakly to that section of the region. A similar effect can be seen in previous work
from Belliveau et al., 2018, where a mutation in the downstream half of a CRP
binding site in the xylE promoter had more than a 10 fold greater effect on binding
energy thanmutation in the upstream half of the binding site. As such, we are lenient
when evaluating the successes of our algorithm in this regard. Furthermore, the
methods that have been used to determine the presence of "high evidence" binding
sites in the past, such as ChIP-Seq, do not typically have base pair resolution with
which to precisely determine the edges of binding sites (Skene and Henikoff, 2015).

Lastly, a known weakness of our algorithmic approach is that binding sites that are
extremely close or overlapping cannot be distinguished from each other initially. For
example, the XylR sites in the xylF promoter are only separated by 3 bases according
to RegulonDB. While the sites can be distinguished upon later investigation through
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gene Transcription factor Was the region
classified correctly?

rspA CRP Yes
rspA YdfH Yes
araAB AraC (2 sites) Yes
znuCB Zur Yes
xylA CRP Yes
xylA XylR (2 sites) Yes
xylF XylR (2 sites) Yes
dicC DicA Yes
relBE RelBE Yes
ftsK LexA Yes
znuA Zur Yes
lac CRP Yes
marR Fis No
marR MarA Yes
marR MarR (2 sites) Yes
dgoR CRP Yes
dgoR DgoR (right site) No
ompR IHF (3 sites) Yes
ompR CRP No
dicA DicA No
araC AraC (4 sites) 1 site identified
araC CRP No
araC XylR (2 sites) No

Table 2.5: The results of the comparison between experimentally verified, high
evidence binding sites and Reg-Seq binding sites. A visual illustration of the
comparison can be found in Appendix 2.7 Figure 2.14.

gene knockouts, mass spectrometry, or motif comparison, our initial algorithm
joins the sites into one large site. While this is a weakness of the algorithm, for
our purposes it does not constitute a false negative, as the important regions for
regulation are still discovered. All regions for all promoters that are classified as
regulatory regions, their identities as activators, repressors, or RNAP binding sites,
as well as their starting and ending base pairs, can be found in Supplementary File 3.
Furthermore, we summarize the success and failures of the method at each binding
site in Appendix 2.7 Table 2.5 below.

We see in Appendix 2.7 Table 2.5 that 11 of the 15 promoter regions included
in Appendix 2.7 Table 2.4 have all transcription factor binding sites classified as
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putative transcription factors, two have the majority of sites correctly classified,
and two do not have any of their binding sites correctly classified as regulatory
elements. We can see the information footprints used in the correct identifications
in Appendix 2.7 Figure 2.14. We could alternatively consider that 23 out of 33
binding sites are correctly classified. However, we argue that the false negative rate
should be considered on a per promoter basis, rather than on the basis of individual
binding sites. The reason for this argument can be seen in the two "worst" cases of
correct binding site identification, namely, for the araC and dicA promoters.

The araC promoter is repressed by multiple repressor binding sites in all growth
conditions tested. araC only has high expression transiently after addition of arabi-
nose (C. M. Johnson and Schleif, 1995), and while growth in arabinose is utilized in
this experiment, RNA was not collected during the window of high expression. The
case study shows that Reg-Seq does not perform well when many repressor sites
regulate the promoter. Reg-Seq relies on mapping the effect on expression of mu-
tating a particular site, and when many strong repressor sites are present, expression
change will be minimal unless all repressor sites are weakened through mutation.
Additionally, in this highly repressed case, the RNAP binding site we observe in the
mutagenized region is not the documented RNAP site in RegulonDB, indicating that
we are seeing transcription primarily from an alternative TSS. Different RNAP sites
are often regulated differently, and in this case, the presence of an alternative and
dominant RNAP binding site (in the repressed case), likely contributes to a failure
to observe six of the seven binding sites in the araC promoter. Similarly, in the dicA
promoter, we did not find an RNAP binding site in the studied region, which would
make it very unlikely for any transcription factor binding sites to be identifiable.

In order to determine false positive rates, we test against promoters for which we
are certain there are not additional, unannotated binding sites. Most known binding
sites were not determined using a method like Reg-Seq, which looks for regulatory
elements across an entire promoter region at base pair resolution. Rather, many
efforts to pinpoint transcription factor binding site locations use assays like ChIP-
Seq, which prioritizes looking for all binding sites of a given transcription factor
across the entire genome. For those promoters studied with Reg-Seq, there are
five promoters for which we have reason to believe that there are no undiscovered
binding sites. There is evidence that the zupT promoter is constitutive (Grass et al.,
2005), and the marR, relBE, dgoR, and lacZYA promoters have all been examined
for binding sites at base pair resolution previously (in the Sort-Seq experiment
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(Belliveau et al., 2018; Kinney et al., 2010)).

To evaluate false positive rates, we examine the putative activator and repressor
binding sites as identified using our automated methodology (described previously),
and compare any known binding sites to the known binding sites for the target
promoters. We also classify any putative regulatory regions that are outside of
known transcription factor binding sites as false positives. Similarly, any identified
RNAP binding sites which were outside of the known RNAP binding locations were
classified as false positives. In the zupT promoter, only the correctly placed RNAP
site was identified. There were similarly no false positives identified in the marR,
relBE, dgoR, or lacZYA promoters.

We additionally compare the energy matrices from putative regulatory regions to
known binding site motifs. The known motifs are obtained either from RegulonDB
or are generated from data from our prior Sort-Seq experiments (see (Belliveau et al.,
2018)). We utilize the TOMTOM motif comparison software from (Gupta et al.,
2007) to perform these comparisons. TOMTOM generates a p-value under the null
hypothesis that the two compared motifs are drawn independently from the same
underlying probability distribution. We test 95 motifs against each target motif that
we are attempting to identify. The 95 resulting p-values (for each target) generated
by TOMTOM are displayed in Appendix 2.7 Figure 2.15. A full discussion of
TOMTOM can be found in Appendix 2.8 Section “TOMTOM motif comparison”.
We only included those transcription factors that either have over 50 known binding
sites in RegulonDB or have experimental measurements of binding site preference,
such as in Sort-Seq (Belliveau et al., 2018). As such, we used TOMTOM on the
XylR, CRP, MarA, MarR, and RelBE sites in Appendix 2.7 Table 2.5. We utilized
a p-value cutoff of 0.05, corrected for multiple hypothesis testing. 95 motifs were
tested against each target, and using the Bonferroni correction leads to a p-value
cutoff of 0.05

95 = 5 × 10−4. In Appendix 2.7 Figure 2.15 we show that the correct
transcription factor falls below the p-value threshold in all cases. For the CRP
binding site in the lacZYA promoter, FNR also falls below the cutoff, but CRP has a
calculated p-value that is ≈ 6 orders of magnitude lower, and so is clearly identified
as the correct binding site. The results show that motif comparisons can be used
reliably in those cases where we have high-quality energy matrices for comparison.
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Figure 2.14: A visual comparison of the literature binding sites (left panel) and the
extent of the binding sites discovered by our algorithmic approach (right panel).
RNAP binding sites are also labeled in the right panel, but RNAP binding sites are
not included in the false positive analysis.

2.8 Supplementary information: Extended details of analysis methods
Information footprints
We favor the use of information footprints as a tool for hypothesis generation to
identify regions which may contain transcription factor binding sites. In general, a
mutation within a transcription factor site is likely to weaken that site. We look for
groups of positions where mutation away from wild type has a large effect on gene
expression. Our datasets consist of nucleotide sequences, the number of times we
sequenced a given, specific mutated promoter in the plasmid library, and the number
of times we sequenced its corresponding mRNA. A simplified illustrative dataset
on a hypothetical 4 nucleotide sequence is shown in Appendix 2.8 Table 2.6.

One strategy to measure the impact of a given mutation on expression is to take all
sequences which have base 1 at position 8 and determine the number of mRNAs
produced per read in the sequencing library. By comparing the values for different
bases we can determine how large of an effect amutation has on gene expression. For
example in Appendix 2.8 Table 2.6, for the second position (8 = 2) those sequences
that contain the wild type base A (1 = A) have 20 sequencing counts out of 50
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TOMTOM Motif Comparisons
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Figure 2.15: A visual display of the results of the TOMTOM motif comparison
between the discovered binding sites and known sequence motifs from RegulonDB
and our prior Sort-Seq experiment (Belliveau et al., 2018). Each dot in a given
panel represents a comparison between the target position weight matrix (given
in the figure title) and a position weight matrix for a given transcription factor.
The p-value is calculated using the null hypothesis, that both motifs are drawn
independently from the same underlying probability distribution. The red dotted
line is displayed at a p-value of 5 × 10−4. The line represents a p-value threshold
of 0.05 that has been corrected for multiple hypothesis testing using the Bonferroni
correction (95 motifs were compared against the target for a p-value threshold of
0.05
95 = 5 × 10−4).



77

Sequence Library sequencing counts mRNA counts
ACTA 5 23
ATTA 5 3
CCTG 11 11
TAGA 12 3
GTGC 2 0
CACA 8 7
AGGC 7 3

Table 2.6: Example dataset of 4 nucleotide sequences, and the corresponding counts
from the plasmid library and mRNAs.

(23+3+11+3+0+7+3 = 50) from theDNA library and 10 sequencing counts from the
50 (5+5+11+12+2+8+7 = 50) mRNA reads. For all other sequences (1 = C,G,
or T), there are 30 sequencing counts from the DNA library and 40 sequencing
counts from mRNA. A measure of the effect of mutation on expression would be to
compare the ratios mRNA counts / total mRNA counts

library counts / total library counts between mutated and wild
type sequences. For the data in Appendix 2.8 Table 2.6, sequences with a wild type
base at position 2 will have a ratio of purple(10/50)/(20/50) = 0.5 and sequences
with a mutated base at position 2 will have a ratio of (40/50)/(30/50) ≈ 1.3.

While directly comparing ratios is one way to measure the effect on gene expression,
we use mutual information to quantify the effect of mutation, as Kinney et al., 2010
demonstrated could be done successfully. In Appendix 2.8 Table 2.6, the frequency
of the nucleotide A in the DNA library at position 2 is 0.4, as 20 out of 50 sequencing
counts have an A at position 2. Similarly, the other frequencies at position 2 are 0.32
for C, 0.14 for G and 0.14 for T. In the observed mRNA sequence counts, we find
C at 34 of of 50 total mRNA counts, which gives a frequency of 0.68, indicating
that Cytosine is enriched in the mRNA transcripts compared to the DNA library.
The frequencies for the other bases are 0.2 for A, 0.06 for T and 0.06 for G. Large
enrichment of a base compared to others in mRNA sequencing counts occurs when
base identity is important for gene expression.

We are classifying bases as either wild type (< = 0) or mutated (< = 1). A
discussion of this assumption can be found at the end of this section. We compute
mutual information at position 8 as

�8 =

1∑
<=0

1∑̀
=0
?(<, `) log2

(
?(<, `)

?<DC (<)?4G?A (`)

)
, (2.6)
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where ?4G?A (`) is the ratio of the number of DNA (` = 0) or mRNA (` = 1)
sequencing counts to the total number of counts,

?4G?A (`) =

∑
(mRNA counts)/(total counts) if ` = 1∑
(Library Sequencing counts)/(total counts), if ` = 0.

(2.7)

From the example data in Appendix 2.8 Table 2.6 we can calculate ?4G?A (`). To do
so, we sum up DNA counts and mRNA counts from all sequences and divide by the
total number of counts (50 + 50 = 100) to obtain

?4G?A (`) =


0.5, if ` = 1

0.5, if ` = 0.
(2.8)

In addition, ?<DC (<) is the fraction of the total counts that either have a mutation
(< = 1) at the given position or the fraction that have a wild type base (< = 0) at
the position. ?<DC has to be computed for each position individually. For position
1, the wild type base is an A, and we see that there are a total of 100 sequencing
counts, of which 46 counts (DNA and mRNA combined) contain an A at position
1. Therefore ?(<) can be calculated for position 1 as

?<DC (<) =


0.46, if < = 0

0.54, if < = 1.
(2.9)

Lastly, the joint distribution ?(<, `) is the probability that a given sequencing read in
the dataset will have expression level ` and mutation status<. ?(<, `) is calculated
by dividing the number of sequencing reads at the chosen position with mutation
status < and expression status ` by the total number of sequencing reads. In the
case of the example dataset in Appendix 2.8 Table 2.6 and for < = 0 and ` = 0, we
sum the sequencing reads that are wild type at position 1 and also are in the DNA
library. As there are 17 sequences that fit the criteria out of 100 total sequences,
?(< = 0, ` = 0) = 0.17. The other values of ?(<, `) can be calculated to be

?(<, `) =



0.17, if < = 0 (wild type base) and ` = 0 (DNA)

0.21, if < = 1 (mutated base) and ` = 1 (RNA)

0.33, if < = 1 and ` = 0

0.29, if < = 0 and ` = 1.

(2.10)
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The marginal distributions ?4G?A and ?<DC can be obtained by summing over one of
the two variables, i.e.,

?4G?A (`) =
∑
<

?(<, `), (2.11)

?<DC (<) =
∑̀

?(<, `). (2.12)

Plugging the values calculated above into equation (2.6) yields a mutual information
value of 0.06 bits at position 1. The unit is bits because the mutual information
is computed with a logarithm of base 2. Other bases can be chosen, however, that
results in different units for the mutual information.

Mutual information is a measurement that quantifies how much the measurement of
one of two variables reduces uncertainty of the other variable. For example, very low
mutual information means that by knowing one variable one gains no information
about the other variable, while on the other hand highmutual informationmeans that
by knowing one variable our knowledge about the others increases. At a position
where base identity matters little for expression level, there would be little difference
in the frequency distributions for the library and mRNA transcripts. The entropy of
the distribution would decrease only by a small amount when considering the two
types of sequencing reads separately.

We seek to determine the effect on gene expression of mutating a given base.
However, if mutation rates at each position are not fully independent such that
?(<8, <8′) ≠ ?(<8)?(<8′), then the information value calculated in equation (2.6)
will also encode the effect of mutation at correlated positions. For instance, if
position 8 is part of an activator binding site, mutating it will have a large effect on
gene expression. If position 8′ is not within the activator site, then mutating position
8′ will have minimal true effect on gene expression. However, if mutations at the
two bases are correlated, mutating position 8′ will make it more likely for 8, and
therefore the activator binding site, to be mutated. Knowledge that 8′ is mutated is
predictive of overall expression, and so position 8′ will have high mutual information
according to equation (2.6), even though that position has no regulatory function.
In our experiment we designed sequences to be synthesized such that each position
had a probability of mutation that was independent of mutation at any other position.
However, due to errors in the oligonucleotide synthesis process, additionalmutations
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in the ordered sequences were introduced. Sequencing our DNA libraries reveals
that mutation at a given base pair can make mutation at another base pair more likely
by up to 10%, where neighboring base pairs are the most likely to have correlations
between mutations. This is enough to cloud the signature of most transcription
factors in an information footprint calculated using equation (2.6).

We need to determine values for ?8 (< |`) when mutations are independent, and to
do this we need to fit these quantities from our data. We assert that

〈�mRNA〉 ∝ 4−V�4 5 5 (2.13)

is a reasonable approximation to make, which we will justify by considering a num-
ber of possible regulatory scenarios. 〈�mRNA〉 is the average number of mRNAs
produced and �4 5 5 is an effective binding energy for the sequence that can be deter-
mined by summing contributions from each position in the sequence independently.
There are many possible underlying regulatory architectures, and those that have
been discovered with Reg-Seq are summarized in Table 2.1. While we will show
that under reasonable assumptions this approach is useful for any of these regula-
tory architectures, let us first consider the simple case where there is only an RNAP
site in the region under study. We can write down an expression for average gene
expression per cell as

〈�mRNA〉 ∝ ?1>D=3 ∝
%
##(

4−V�%

1 + %
##(

4−V�%
, (2.14)

where ?1>D=3 is the probability that the RNAP is bound to DNA and is known to be
proportional to gene expression in E. coli (Ackers, A. D. Johnson, and Shea, 1982;
Buchler, Gerland, and Hwa, 2003; Garcia and Phillips, 2011), �% is the energy of
RNAP binding, ##( is the number of nonspecific DNA binding sites, and % is the
number of RNAP. If RNAP binds weakly then %

##(
4−V�% << 1, and we can simplify

equation (2.14) to

〈�mRNA〉 ∝ 4−V�% . (2.15)

Using this relation, we can compute the ratio of average mRNA counts in wild type
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Mut8
mRNA

〉 =4−V(�%WT8
−�%Mut8

)
, (2.17)

where �%WT8
is the binding energy of RNAP to the wild type binding site and �%Mut8

is the binding energy of RNAP to the mutant binding site. Using the assumption
that each position contributes independently to the binding energy, we can simplify
the differences in energies to �%WT8

− �%Mut8
= Δ�%8 . We can now calculate the

probability of finding a specific base in the expressed sequences. If the probability
of finding a wild type base at position 8 in the DNA library is ?8 (< = 0|` = 0), then

?8 (< = 0|` = 1) =
?8 (< = 0|` = 0)

〈
�

WT8
mRNA

〉〈
�

Muti
mRNA

〉
?8 (< = 1|` = 0) + ?8 (< = 0|` = 0)

〈
�

WT8
mRNA

〉〈
�

Mut8
mRNA

〉 , (2.18)

?8 (< = 0|` = 1) = ?8 (< = 0|` = 0)4−VΔ�%8
?8 (< = 1|` = 0) + ?8 (< = 0|` = 0)4−VΔ�%8

. (2.19)

Under certain conditions, we can also infer a value for ?8 (< |` = 1) using a linear
model when there are any number of activator or repressor binding sites. We will
demonstrate this in the case of a single activator and a single repressor, although a
similar analysis can be done when there are greater numbers of transcription factors.
Define ? = %

##(
4−V�% and 0 = �

##(
4−V�� where � is the number of activators, and

�� is the binding energy of the activator. Also define A = '
##(

4−V�' where ' is the
number of repressors and �' is the binding energy of the repressor. Then we can
compute the average number of produced mRNA as

〈�mRNA〉 ∝ ?1>D=3 ∝
? + ?04−Vn�%

1 + 0 + ? + A + ?04−Vn�%
, (2.20)

where n�% is the interaction energy of activators and the RNAP. One assumption we
make is that activators and RNAP bind weakly to their binding sites (0 << 1 and
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? << 1) but interact strongly (?04−Vn�% >> ?). Under this assumption RNAP and
associated activators are much more likely to bind DNA as a unit than separately.
The binding energy measurements by Forcier et al., 2018 support this assumption
in the case of CRP in the lac operon. The DNA-protein binding energy of CRP is
measured to be -3.18 :�) and the interaction energy between CRP and RNAP is
measured to be n�% = −6.56:�) . The copy number of CRP is � ≈ 4000 (Schmidt
et al., 2016), the copy number of RNAP is % ≈ 2000 in slowly growing cells (Bremer
and Dennis, 1996), and the RNAP binding energy for the wild type lac promoter is
�% ≈ −5.2 :�) (Brewster, Jones, and Phillips, 2012). As ##( ≈ 4.6×106, the value
of 0 can be calculated to be 0 ≈ 4000

4.6×106 4
3.18 ≈ 0.02. Similarly ? can be calculated

to be ? ≈ 2000
4.6×106 4

5.2 ≈ 0.08. Lastly, we can calculate ?04−Vn�% ≈ ?046.56 ≈ 1.
We can see that these numbers satisfy the assumptions 0 << 1, ? << 1, and
?04−n�% >> ?. We can simplify equation (2.20) to

〈�mRNA〉 ∝ ?1>D=3 ∝
?04−Vn�%

1 + A + ?04−Vn�%
. (2.21)

The last assumption we make is that repressors bind very strongly (A >> 1 and
A >> ?04−n�% ). To justify this assumption we once again look to the lac operon.
Wild type LacI copy number is ' ≈ 10 and the wild type binding energy for the O1
operator is �' ≈ −16:�) (Garcia and Phillips, 2011). We can use these values to
compute A ≈ 10

4.6×106 4
16 ≈ 20. We can simplify equation (2.21) to

〈�mRNA〉 ∝
?04−Vn�%

A
(2.22)

〈�mRNA〉 ∝ 4−V(−�%−��+�') , (2.23)

As we typically assume that RNAP binding energy, activator binding energy, and
repressor binding can all be represented as sums of contributions from their con-
stituent bases, the combination of the energies can be written as a total effective
energy �4 5 5 which is a sum of independent contributions from all positions within
the binding sites.

We fit the parameters for each base using Markov Chain Monte Carlo Method
(MCMC). Two MCMC runs are conducted using randomly generated initial condi-
tions. We require both chains to reach sufficiently similar distributions to prove the
convergence of the chains or we repeat the runs. During the analysis we artificially



83

treat mutation rates at all positions as equal, as we do not wish for mutation rate to
play a role in mutual information calculations. The information values are smoothed
by averaging with neighboring values.

By only considering wild type or mutated energy contributions to the total effective
binding energy rather than having separate values for energy contributions from all
four base pairs, our methods will not be accurate in the case of calculating mutual
information at locations with degenerate base pairs. However, the information foot-
prints are intended to be hypothesis generation tools that can identify transcription
factor binding sites. As such, the most important test for the assumption that we can
approximate effective energy contributions from all 4 bases as contributions from
only wild type or mutated bases is to assess whether the approximation has any
effect on determining binding site locations. We re-ran the false positive and false
negative assessments discussed in Appendix 2.7 Section “False positive and false
negative rates”, but instead calculated the effective energy parameters for producing
information footprints as a sum of contributions from all four bases. We find that the
literature binding sites that were properly identified, as summarized in Appendix 2.7
Table 2.5, are identically identified. Specifically, any site which was identified using
the previous method is still identified and any site that failed to be identified is still
not observed. Similarly, when we only fit effective energy parameters for mutated
or wild type bases there are no false positives identified in the promoters for marR,
relBE, dgoR, zupT, or lacZYA. There are also no false positives when repeating the
procedure while considering all 4 bases in the effective energy fits, implying that
the simplification to only considering mutated or wild type bases does not have an
effect on our ability to identify binding sites.

Processing of mass spectrometry experiments
Mass spectrometry results were processed using MaxQuant (Cox and Mann, 2008;
Cox et al., 2009). Spectra were searched against the UniProt E. coli K-12 database
as well as a contaminant database (256 sequences). LysC was specified as the
digestion enzyme. Proteins were considered if they were known to be transcription
factors, or were predicted to bind DNA (using gene ontology term GO:0003677, for
DNA-binding in BioCyc).

Uncertainty due to number of independent sequences
1400 promoter variants were ordered from TWIST Bioscience for each promoter
studied. Due to errors in oligonucleotide synthesis, additional mutations are ran-
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domly introduced into the ordered oligos. We have found that, as a result of these
random, additional errors, the final number of variants received was an average of
2200 per promoter.

To demonstrate that our results are not strongly dependent on the number of se-
quences in each promoter library, and also to assess how a reduction in the number
of sequences per promoter library could facilitate larger scale experiments in the fu-
ture, we generated examples of smaller data sets by computationally sub-sampling
the Reg-Seq experimental data from 7 mutated promoter libraries; (maoP, hslU,
rpsA, leuABCD, aphA, araC, and tig). These promoters are representative of a
large cross section of the variety of regulation we see in our study, as they in-
clude promoters with constitutive expression (hslU), simple repression(leuABCD,
tig), simple activation (aphA), as well as more complicated regulatory architectures
(maoP, rspA, araC). Each sub-sampling was done three times, and we then use
the Pearson correlation coefficient (Appendix 2.7 Section “Comparison between
Reg-Seq by RNA-Seq and fluorescent sorting”) as a comparison metric between the
inference based on the full data set and the computationally sub-sampled data sets.

Based on our analysis, the results of which are displayed in Appendix 2.8 Fig-
ure 2.16, we find that there is only a small effect on the resulting sequence logo until
the library has been reduced to approximately 500 promoter variants. We could,
therefore, reasonably lower the resolution of the experiment to approximately 1000
or fewer unique sequences before large deviations in the inference are experienced.
Decreasing the number of unique sequences can give modest boosts to the number
of genes that can be studied, but will not be able to give order of magnitude increases
in the number of genes that can be explored.

Effect on calculated energy matrices when transcription factor copy number ≈
plasmid copy number
Throughout this study, we utilize plasmids to express GFP from mutated promoters,
and then use the ratio of mRNA/DNA, based on sequencing results, to handle the
effect of variability in plasmid copy number between cells. It is necessary, however,
to consider the situation wherein the plasmid copy number is of a similar magnitude
to the transcription factor copy number, and whether this can impact the calculated
energy matrices and binding energies. The genetic expression levels are determined
not only by the binding energy, but also by the transcription factor availability, and
so it is necessary to consider whether, for those cases where transcription factor
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Figure 2.16: Pearson correlation as a function of the number of unique DNA
sequences (as explained in Appendix 2.7 Section “Comparison between Reg-Seq
by RNA-Seq and fluorescent sorting”). For seven different genes, we studied how
the number of mutated DNA sequences affects the reproducibility of our MCMC
inference models. As the number of unique sequences increases, so too does the
Pearson correlation value, approaching 1.0.

copy number ≈ plasmid copy number, there is a corresponding under-estimation of
binding energies. Prior work from our laboratory was precisely aimed at rigorously
predicting and measuring this effect (Weinert et al., 2014). In that study, we
demonstrated how to control this effect, wherein transcription factor copy number ≈
plasmid copy number, in a parameter-freemanner. However, tomitigate this effect in
future studies, we plan to use genome-integrated libraries, rather than plasmid-based
expression.

The plasmid used in our experiments is derived from pUA66, which contains a
pSC101 origin of replication (Zaslaver et al., 2006). The copy number of plasmids
with a pSC101 origin is, in log phase, approximately 3 or 4 (Lutz and Bujard, 1997).
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Transcription
factor name Glucose LB

FNR 609 1101
YieP 158 261
YciT 82 104
NsrR 872 136
LexA 560 1027
DeoR 26 34
CRP 2048 3450
YdfH 96 154
ArcA 3367 5464
Zur 70 130
GlpR 75 145
PhoP 2967 3132
HNS 22541 47133
StpA 6863 5241
DicA 20 25
YgbI 2 6
XylR 1 8

Table 2.7: Global, absolute quantification for most transcription factors identified in
this study, as determined for E. coliK12 grown in both glucose (5 g/L concentration
in M9 minimal media) and LB medias. The values in this table are reprinted from
Schmidt et al., 2016 Supplemental Table S6.

We have not independently assessed the copy number of the plasmid used in this
study.

The absolute copy number of thousands of proteins in E. coli have been determined
using whole-proteome LC-MS. Specifically, a 2016 study that provides the absolute
quantification for roughly 55 percent of predicted proteins in the E. coli K12 pro-
teome (see Supplementary Table S6) (Schmidt et al., 2016). For those transcription
factors that were quantified in that study, and also show up in our Reg-Seq experi-
ments, we provide their absolute quantification in E. coli K12 for both glucose and
LB growth media in Appendix 2.8 Table 2.7.

For most transcription factors, the copy number as determined by LC-MS is much
greater than the expected, low copy number of the plasmid used in this study, thus
mitigating the concern that the limited availability of a transcription factor could
impact gene expression.
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There are a few transcription factors that have copy number on the order of the
plasmid copy number, however, including XylR, DicA, and YgbI. Prior work from
our group (Weinert et al., 2014) has explored how gene expression behaves in the
regime where transcription factor copy number is ≈ plasmid copy number. Here,
we will discuss the case of simple repression to demonstrate how the relationship
between transcription factor and plasmid copy number could impact our results.
The standard thermodynamic model for gene expression under simple repression
with a weak promoter, as described by Bintu et al., 2005, is

� ∝ ?1>D=3 =
%
##(

4−VΔY%

1 + '
##(

4−VΔY'
, (2.24)

where � is a measurement for gene expression level, ##( is the number of nonspe-
cificDNAbinding sites, % is the number of RNAP, and ' is the number of repressors.
ΔY' and ΔY% represent the difference in the repressor binding energy and RNAP
binding energy between the specific binding site and the averaged nonspecific ge-
nomic background respectively. Weinert et al., 2014 demonstrated experimentally
that, in the presence of multiple target binding sites, such as from a multi-copy
plasmid, the gene expression level can be described by a very similar functional
form to equation (2.24), namely,

� ∝ ?1>D=3 =
_%4

−VΔY%

1 + _'4−VΔY'
, (2.25)

where _% and _' are the fugacity of RNAP and the repressor and describe the relative
availability ofRNAPor repressor as a function of plasmid copy number, transcription
factor copy number, and binding site strength. The presence of additional plasmid
copies does weaken the effect of repressor binding when the repressor copy number
is ≈ plasmid copy number. Thus, our information footprint calculations will be
affected and the information signature of binding sites such as YgbI, DicA, or XylR
will be decreased.

For transcription factor-binding site interactions that are sufficiently weak, together
with a low transcription factor copy number, the effect of having multiple plasmids
expressed in a cell could cause us to have a false negative, and thus miss the presence
of a binding site. However, the Reg-Seq method does not claim to capture every
regulatory feature for a given promoter, as the activity of some transcription factors is
induced only in certain growth conditions, we use a finite, 160 bp mutation window
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that may miss "regulation at a distance", and the presence of extremely weak and
nonspecific binding sites may cause Reg-Seq to "miss" some transcription factors
(indeed, for the bdcR promoter, the GlaR binding site is outside of the mutagenized
region and so is not observed). The effect of additional plasmids within the cellular
confines will always decrease the fugacity in equation (2.25), as an increase in the
number of sites competing for a limited pool of transcription factors will decrease
the relative availability of those transcription factors. As a result, the effect on
gene expression of a given transcription factor will always lessen in the presence
of additional plasmids. This means that, while multi-copy plasmids can introduce
false negatives into Reg-Seq, it will not introduce false positives. Additionally, we
see empirically that, even for the lowest copy transcription factor for which we have
a measurement, XylR (≈ 1 copy per cell), we can identify its transcription factor
binding site. In Appendix 2.7 Figure 2.14, 2 (previously known) XylR sites are
identified for the xylA promoter, and 2 (previously known) XylR sites are identified
in the xylF promoter.

Finally, the energy matrices, which are a quantitative output of the Reg-Seq exper-
iment, will be unaffected by the presence of multi-copy plasmids. As discussed in
Appendix 2.8 Section Energy matrix inference, energy matrix inference relies on
calculating the mutual information between the energy predictions of the model and
the experimental data. Mutual information is invariant under transformations to the
input variables that do not affect their rank order. While the presence of multiple
plasmid copies will affect the fugacity in equation (2.25), and so will also affect
any quantitative prediction of gene expression, a weaker repressor binding site will
still be predicted to have higher gene expression than a stronger repressor binding
site, regardless of the relative availability of the transcription factor. The rank-order
is always preserved and so the presence of a multi-copy plasmid will not change the
mutual information between model predictions and experimental data. As a result,
the final inference of energy matrices will remain the same.

Energy matrix inference
Energy matrices in this experiment are of the form shown in Appendix 2.8 Table
2.8,

where each entry gives the energy contribution from a base pair at a given location.
As an example from Appendix 2.8 Table 2.8, an A at position 1 would give a total
energy contribution of −0.01 (A.U.). All energy matrices used in our analysis are
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pos A C G T
0 −0.01 −0.01 −0.01 0.03
1 0.002 0.05 −0.06 0.008
2 −0.0002 −0.04 0.008 0.03
3 −0.02 0.02 −0.01 0.01

Table 2.8: Example energy matrix. This matrix is in arbitrary units, and the process
to obtain absolute units (in :�)) is described in Appendix 2.8 Section Inference of
scaling factors for energy matrices.

linear energy matrices, where the total energy is the sum of contributions from each
base pair. As a result, total binding energy is

binding energy =
!∑
8=1

)∑
9=�

\8 9 · X8 9 , (2.26)

where X8 9 is the Kronecker delta, which takes on a value of 1 if the base at position
8 is equal to 9 and is 0 otherwise, ! is the length of the binding site, and \8 9 is the
energy contribution of nucleotide 9 and position 8 in arbitrary units. To infer the
parameters \8 9 in equation (2.26) from the experimental data, we perform Bayesian
inference using a MCMC method, which requires us to calculate the likelihood
of the model given the experimental data. The likelihood function is difficult to
determine, but Kinney et al., 2010 found that, given a large amount of data, the
likelihood function is related to the mutual information between energy predictions
and data by the equation

! (� |\) ∝ 2#� (`,�) , (2.27)

where # is the total number of independent sequences, � is the data consisting of
sequences and measured sequencing counts, � is the mutual information between
gene expression label ` and energy predictions � . ` is a discrete variable that
characterizes the gene expression level as described in equation (2.3) in the main
text. We can calculate mutual information using the formula for mutual information
between a continuous and a discrete variable, namely,

� (`, �) =
∫ ∞

−∞
d�

1∑̀
=0
?(`, �) log2

(
?(`, �)
?(�)?(`)

)
. (2.28)
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` = 0 ` = 1 Energy (:�))

5 23 0.05
5 3 0.008
11 11 0.09
12 3 −0.03
2 0 0.03
8 7 −0.07
7 3 −0.04

Table 2.9: Example dataset with energy predictions. Energy predictions are made
by applying the example energy matrix in Appendix 2.8 Table 2.8 to the example
dataset in Appendix 2.8 Table 2.6 according to equation (2.26).

While equation (2.28) is used for continuous energy predictions, there are only #
total sequences, and so only # discrete energy predictions. For a simple example
of calculating the joint probability distribution ?(`, �), consider the hypothetical
dataset of only 4 nucleotides in Appendix 2.8 Table 2.6. We first predict the binding
energy of each of the example sequences, shown in Appendix 2.8 Table 2.9.

We use kernel density estimation with kernel width of 4% to estimate the true
joint distribution ?(`, �B<>>Cℎ) from the data contained in the joint distribution
in the matrix in Appendix 2.8 Table 2.9. This process estimates an underlying
continuous distribution from a discrete set of energy predictions. The details of
kernel density estimation can be found in Hastie, Tibshirani, and Friedman, 2009.
We can do the final calculation of the mutual information by splitting the smoothed
joint distribution into 500 energy "bins" I and calculating

� (`, �) =
500∑
I=1

1∑̀
=0
?(`, �I) log2

(
?(`, �I)
?(�I)?(`)

)
. (2.29)

With the ability to calculate the likelihood of an energy matrix model, MCMC can
be used to infer the posterior distribution for our model. First a randommatrix model
is generated. The model is perturbed and the new model is accepted or rejected
based on the Metropolis-Hastings algorithm (Patil, Huard, and Fonnesbeck, 2010).
After an initial burn in period of 60000 steps, iterations are saved every 60 steps.
A total of 600000 iterations are performed. This procedure is performed twice for
each model, and if inferred models do not have a Pearson correlation coefficient of
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0.99 or higher they are discarded and computed again. A complete overview of the
computational pipeline can be found at the GitHub wiki page.

Inference of scaling factors for energy matrices
For the majority of energy matrices reported in our work, the results are given in
arbitrary units. This is a direct result of using the method of Kinney et al., 2010
to infer our matrices. The method appeals to information theory to write an "error-
model-averaged" likelihood function for a given model. The likelihood function is
given in equation (2.27). A property of mutual information is that it is invariant
to changes in the input variables as long as those transformations do not affect the
rank-order of those variables. As a result, we can scale the energy predictions by any
constant without changing the likelihood of the model, which means that in the case
of simple linear models for transcription factor binding we cannot assign absolute
units to energy matrix values. When we widen our view to considering promoter
regions rather than single binding sites we can overcome this drawback. Using
thermodynamic modeling as outlined in Bintu et al., 2005 we can predict the gene
expression from any given transcriptional architecture. In the case a thermodynamic
model of simple repression the expression is given by

� ∝ ?1>D=3 =
%
##(

4−VΔY%

1 + %
##(

4−VΔY% + '
##(

4−VΔY'
, (2.30)

where� is a measurement for expression, % is the number of RNAP, ' is the number
of repressors and ##( is the number of nonspecific binding sites. ΔY' and ΔY%
represent the difference in the repressor binding energy and RNAP binding energy
between the specific binding site and the averaged nonspecific genomic background
respectively. As we use linear energy matrix models as described in Appendix 2.8
Section Energy matrix inference, ΔY' and ΔY% will be given by equation (2.26).
In these cases the overall rank order of gene expression predictions will change if
you scale the energy matrix, and so the absolute units can be determined (Kinney
and Atwal, 2014). Equation (2.30) is a more complicated and non-linear functional
form for predicting� than a simple linear binding model, and has a correspondingly
more difficult to sample posterior. To address complications in the inference, we
first only use the non-linear fits to fix overall scale and wild type energy for energy
matrices rather than fit all parameters in this way. In other words we use the standard
fitting procedure to find the \8 9 in the equation (2.26) using the standard MCMC
procedure.

https://github.com/RPGroup-PBoC/RegSeq/wiki
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gene growth scaling factor �
tff-rpsB-tsf Heat shock −8.1 :�)
tig Heat shock −26.3 :�)
yjjJ Heat shock −11.3 :�)
bdcR Heat shock −9.9 :�)
fdhE Anaerobic growth −6.34 :�)
ykgE Arabinose −12.1 :�)
dicC Arabinose −15.1 :�)
rspA Arabinose −5.5 :�)

Table 2.10: Scaling factors to convert arbitrary units to absolute units in :�) .
Growth conditions indicate the energy matrix and dataset used in the fit. In some
growth conditions additional regulatory featureswill be present, meaning the specific
condition used for inference is important.

The binding energymatrices can bewritten �·\8 9+�where � is a constant that scales
the matrix from arbitrary units to absolute units (:�)) and � is an additive constant
that relates to the wild type energy. We fit the constants � and � for the transcription
factor binding energy using the thermodynamic model in equation (2.30).

While we can in principle fit thermodynamic models to any given architecture, these
models are non-linear and, due to numerical difficulties, unreliable for sufficiently
complex models. We only use this method on examples of simple repression or
activation without more than one prominent RNAP model, whose transcription
factor binding site does not overlap significantly with RNAP −10 or −35 sites. The
scaling factors we discovered are given in Appendix 2.8 Table 2.10.

We perform the inference using parallel tempering MCMC, where multiple chains
are run in parallel with different "temperatures". High temperature chains widely
explore parameter space, escaping any local optima, while low temperature chains
optimize locally. The current parameter values of the chains are exchanged period-
ically. The fitting procedure is done using the emcee ensemble sampler (Goodman
and Weare, 2010) with 10 temperatures ranging from 1 to 10000 on a log scale.

Examination of promoters for which no RNAP site was found
We failed to find an RNAP site for 18 promoter sequences. In order to understand
these sequences in more detail we examine the sequences within 50 bases of the
TSS for the 18 genes in question for sequences which resemble the known consensus
RNAP binding site. For this comparison we use thef70 consensus binding sequence
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−35TTGACA - spacer sequence - TGNTATAAT−7 (where the superscripts −35 and
−7 indicate the position relative to the TSS). The consensus sequence we use for
comparison contains the extended −10 element, consisting of a TG at bases −15
and −14 as we have found those to be important for gene expression in our study.
The spacer length is between 15 and 13 bases (the typically reported spacer length
is between 18 and 16 but this does not include the extended minus 10 element). The
consensus sequence for the heat shock f factor was used for the promoter yajL.

Previously, to analyze RNAP sites, we have examined energy matrices produced by
Reg-Seq. Now we add an examination of wild type sequences. For each promoter,
we found the best match to the consensus site, namely the sequence with the fewest
mutations compared to the consensus sequence. We use the number ofmutations as a
measure of howwell the site resemble consensus. Wefind that 16 out of 18 promoters
have at least 5 mutations in the sequence that most closely resembles RNAP, one
promoter has 4mutations, and the last has threemutations. To put these numbers into
context, Brewster, Jones, and Phillips, 2012 measured the RNAP binding energies
of several RNAP binding site mutants. Mutations away from the strongest sequence
tested (lacUV5, which is 2 mutations away from consensus) yields a change in
binding energy of ≈ 1 − 2 :�) . If the promoters are constitutive, then (in the weak
promoter approximation) expression level will be proportional to 4−VΔn% where Δn%
is the RNAP binding energy relative to the nonspecific background. Therefore, as
an approximation, a sequence with 3 mutations would be predicted to be 3− 10 fold
weaker than a "strong" RNAP site, and as such could be said to show a resemblance
to the consensus RNAP site. However, 16 out of 18 of these promoter regions have,
at best, extremely weak RNAP sites. It is important to note however, that even
extremely weak RNAP sites often transcribe, especially when aided by activators.
We do not intend to claim that RNAP does not bind to these promoter regions,
merely that we do not detect it in our experiment. In fact, while the RNAP sites are
weak, there is experimental evidence in EcoCyc of some level of transcription for 9
out of 18 promoters.

TOMTOMmotif comparison
In some cases, we used an alternative approach to mass spectrometry to discover
the transcription factor identity regulating a given promoter based on sequence
analysis using a motif comparison tool. TOMTOM (Gupta et al., 2007) is a tool
that uses a statistical method to infer if a putative motif resembles any previously
discoveredmotif in a database. It accounts for all possible offsets between themotifs.
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Figure 2.17: Motif comparison using TOMTOM for the two PhoP binding sites in
the ybjX promoter. Searching our energy motifs against the RegulonDB database
using TOMTOM allowed us to guide our transcription factor knockout experiments.
Here we show the sequence logos of the PhoP transcription factor from RegulonDB
(top) and the ones generated from the ybjX promoter energy matrix. E-value = 0.01
using Euclidean distance as a similarity matrix.

Moreover, it uses a suite of metrics to compare between motifs such as Kullback-
Leibler divergence, Pearson correlation, Euclidean distance, among others. All
TOMTOM analyses in Reg-Seq utilize Euclidean distance. The method calculates
a p-value under the null hypothesis that the two compared motifs are independently
drawn from the same underlying distribution probability distribution.

We performed comparisons of the motifs generated from our energy matrices to
those generated from all known transcription factor binding sites in RegulonDB.
Appendix 2.8 Figure 2.17 shows a result of TOMTOM, where we compared the
motif derived from the -35 region of the ybjX promoter and found a good match
with the motif of PhoP from RegulonDB.

The information derived from this approach was then used to guide some of the
transcription factor knockout experiments, in order to validate its interaction with a
target promoter characterized by the loss of the information footprint. Furthermore,
we also used TOMTOM to search for similarities between our own database of
motifs, in order to generate regulatory hypotheses in tandem. This was particularly
useful when looking at the group of GlpR binding sites found in this experiment.
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Figure 2.18: Two cases in which we see transcription factor binding sites that
we have found to regulate both of the two divergently transcribed genes. (A) An
information footprint and regulatory cartoon for the divergently transcribed bdcA and
bdcR promoters. A single NsrR site regulates both promoters. (B) An information
footprint and regulatory cartoon for the ilvC and ilvY promoters. Both promoters
are repressed by IlvY when grown without acetolactate. Only the IlvY site is labeled
on the information footprint.

2.9 Supplementary information: Additional Results
Binding sites regulating divergent operons
In addition to discovering new binding sites, we have discovered additional functions
of known binding sites. In particular, in the case of bdcR, the repressor for the bdcA
gene, which is transcribed from the same promoter in the opposite direction of
transcription (Partridge et al., 2009), is also shown to repress bdcR in Appendix 2.9
Figure 2.18(A). Similarly in Appendix 2.9 Figure 2.18(B) IvlY is shown to repress
ilvC in the absence of inducer. Divergently (transcription in opposite directions from
the same promoter) transcribed operons that share regulatory regions are plentiful
in E. coli, and although there are already many known examples of transcription
factor binding sites regulating several different operons, there are almost certainly
many examples of this type of transcription that have yet to be discovered.

In the case of ilvC, IlvY is known to activate ilvC in the presence of inducer.
However, we now see that it also represses the promoter in the absence of that
inducer. The production of ilvC is known to increase by approximately a factor of
100 in the presence of inducer (Rhee, Senear, and Hatfield, 1998). The magnitude
of the change is attributed to the cooperative binding of two IlvY binding sites, but
the lowered expression of the promoter due to IlvY repression in the absence of
inducer is also a factor.
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Comparison of results to RegulonDB
One area in which our work can be compared to current repositories of regulatory
information such as RegulonDB is in comparing the prevalence of different regula-
tory architectures in the database to Reg-Seq. Appendix 2.9 Figure 2.19 shows the
prevalence of each type of architecture (not including architectures more complex
than 2 activators and 2 repressors), and shows how simpler architectures are more
common in both cases.

Another point of comparison between RegulonDB and Reg-Seq can be found in
comparing sequence motifs from Reg-Seq to those generated from binding sites
in RegulonDB. This can often produce useful results, such as in Appendix 2.8
Section “TOMTOM motif comparison”. For other cases the data used to generate
the RegulonDB motifs can be lacking. We believe the GlpR motif in RegulonDB
highlights some of the issues with using the reported motifs in RegulonDB to predict
binding preference. First, there are only 4 promoters regulated by GlpR, with a total
of 17 binding sites for GlpR in RegulonDB. 9 of these binding sites differ by 9
mutations or more from the consensus site (out of 22 total base pairs). 9 mutations
is more than even the weak O3 operator for LacI. We do believe that a relatively low
number of weakly conserved binding sites likely do not reveal quality sequence logos
for a binding site, especially as compared to Reg-Seq which constructs sequence
logos from over a thousand promoter variants. Generation of such sequence motifs
is a point on which we believe Reg-Seq can improve the current status of regulatory
knowledge.

Explanation of included binding sites
This section is intended to clarify cases in which the regulatory cartoon or the
displayed "expected" binding sites differs from what can be found in RegulonDB
or EcoCyc. The primary reason for these discrepancies is that our experiment only
targets a 160 base pair mutation window. Some known binding sites will be outside
of this window. Additionally, while some genes are known to be regulated by a
specific transcription factor, the exact location of that transcription factor’s binding
site is unknown and so we cannot be certain during the design of the 160 base pair
mutagenized window whether or not the transcription factor binding site will be
present in our experiment. The locations of the TSS selected in this experiment
can be found in Supplementary File 1. Additionally, some transcription factors are
known to only be active under certain growth conditions. Information footprints are
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Figure 2.19: A comparison of the types of architectures found in RegulonDB
(Santos-Zavaleta et al., 2019) to the architectures with newly discovered binding
sites found in the Reg-Seq study. For each type of architecture, labeled as (number
of activators, number of repressors), the fraction that architecture comprises of the
total number of operons is given both for the data found in RegulonDB and from
the results of the Reg-Seq experiment.

depictions of the regulatory information for a specific growth condition; accordingly,
not all transcription factor binding sites can be identified using a single growth
condition. Throughout the main text and SI, however, we depict regulatory cartoons
with their full milieu of transcription factors (based on experiments performed in
multiple growth conditions).

When devising this study, we sought to test the reliability of the Reg-Seq method
by testing experimentally-validated transcription factor binding sites, as reported
by EcoCyc or RegulonDB, to assess our ability to recapitulate prior experiments.
EcoCyc labels some transcription factor binding sites as "low-evidence" in their
database, most of which were identified via sequence motif matching. We have
repeatedly observed that transcription factor binding sites identified from sequence
matching are unreliable in relation to the empirical data collected in our experiment,
and so we choose not to include them in the set of "gold standard" genes which were
used for this purpose of assessing Reg-Seq’s accuracy.

All of our "gold standards" are genes for which there is high quality experimental
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evidence of their transcriptional regulation and the location of related transcription
factor binding sites and, again, they were used to evaluate the false negative rates
of our experiment. In those cases where the binding sites are either ’low-evidence’
according to EcoCyc, the location of a binding site is not known, a gene is only
actively transcribed in certain or unknown growth conditions, or the binding site
location is outside of the 160 bp mutagenized region, we do not include them in
the list of sites we use to test our method even though they appear as binding sites
in RegulonDB or EcoCyc. Regulatory features that are not transcription factors,
including regulatory RNAs, are also not labeled in our reported results.

Accordingly, in some cases, the regulatory cartoons or architectures we present in
this study may appear to be incomplete relative to previous reports of promoter
architectures. For each gene below, we explain these discrepancies. This section is
intended to explain why annotations on information footprints or regulatory cartoons
do not match what is seen in RegulonDB or EcoCyc.

sdiA

sdiA is known to be regulated by both Nac as well as CsrA (which has two binding
sites), the CsrA sites are downstream of the mutated region and the location of the
Nac binding site is unknown. Thus, none of these binding sites are reported in our
regulatory architectures for this gene.

yqhC

yqhC is known to be regulated by GlaR, but the location of this binding site is
unknown. As a result, we were unable to identify this binding site in our analysis,
and the architecture for yqhC is listed in this study as (0,0).

bdcR

bdcR is known to be regulated by GlaR, but this binding site is outside of the targeted
mutation window of 160 bp. A known binding site for NsrR is included within the
160 bp region, but it was not previously known to regulate bdcR; the binding site for
NsrR is included as a new discovery as shown in Section Binding sites regulating
divergent operons.
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aegA

aegA has a predicted CRP binding site, but the location of this binding site is
unknown and it is also listed as low-evidence in EcoCyc. As a result, the site is not
included within this study’s analysis.

hicB

The CRP site associated with hicB is cited as low-evidence in EcoCyc and the HicB
binding site is outside of the 160 base pair mutated region. As a result, neither site
is included in this study.

rplKAJL-rpoBC

The known RplA binding site for this operon is outside of the targeted, 160 base
pair mutation window. As a result, the RplA site is not included in this study.

tff-rpsB-tsf

RpsB is not contained in themutated region. Additionally, the nearby predictedMar-
Sox-Rob binding site is listed as low-evidence in EcoCyc and is also not directly
predicted to regulate tff-rpsB-tsf, even though it may be present within the region.
As a result, neither site is included in this study.

yodB

GlaR is known to regulate yodB. However, the location of this binding site is
unknown. As a result, we do not include the GlaR binding site in our reported
regulatory architecture for this gene.

maoP

HdfR is known to regulate maoP. However, the location of the binding site is
unknown. Additionally, the HdfR site is listed as low-evidence in EcoCyc. During
the Reg-Seq experiment, however, we confirmed the presence of the low-evidence
HdfR site with a gene knockout and located the binding site position. Thus, we
include it in all regulatory cartoons and report the HdfR site in our discoveries.
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poxB

MarA and Sox have low-evidence binding sites in the mutagenized region. There
is also a low-evidence site for Cra with an unknown binding location. As a result,
neither site is included in the reported regulatory architectures in this study.

mscM

While there is a known CpxR binding site for mscM, the binding site exists outside
of the mutagenized region. As a result, it is not included in the reported regulatory
architectures in this study.

tar

There is a low-evidence FNR site for tar. Its location is unknown. For both of these
reasons we do not include the binding site in our reported regulatory architectures
for this gene.

dpiBA

While there are 10 total binding sites for dpiBA, including an FNR site. However,
the only ones that are known to regulate the particular TSS we chose (at position
652172 in E. coli) are 2 DcuR sites and a (low-evidence) NarL site. DcuR is induced
by growth conditions like succinate or fumarate, neither of which were tested in this
study. As a result, none of the sites are included in this study.

araAB

There are a total of 5 AraC binding sites and one CRP binding site that regulate
araAB. However, the three furthest upstream AraC binding sites are outside of the
160 bp mutagenized region, and so only 2 AraC sites and one CRP site is included
in the reported regulatory architecture in this study.

xylF

There are two XylR sites, as well as 3 low-evidence Fis sites that regulate xylF in the
mutagenized region. There is also a low-evidence CRP site outside the mutagenized
region. Only the 2 XylR sites are included in the reported regulatory architectures,
as the remaining sites are low-evidence or outside the mutagenized region.
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xylA

There are 2 XylR sites, 2 AraC, and a CRP site that regulates xylA. In our analysis,
we utilize a growth condition containing xylose and arabinose. Under growth with
xylose, XylR will bind DNA and activate expression. Under growth with arabinose,
AraC will not bind DNA.We would only expect to see two XylR sites and a CRP site
under growth in xylose and arabinose, so we only include these sites in our study.

dicB

DicA has a low-evidence repressor binding site for dicB. Additionally the binding
location is unknown, and so we do not include the binding site in the reported
regulatory architecture.

xapAB

XapR has two low-evidence binding sites. The binding site furthest upstream is
outside of the 160 bp mutagenized region. As the remaining site is low-evidence, it
is not included in our reported regulatory architectures.

ilvC

There are two IlvY binding sites for ilvC. IlvY is known to be induced by acetolactate
and activated in its presence. We do not utilize this growth condition in this
experiment, however, nor do we include the two IlvY binding sites in our "gold
standard" experimental analysis. We find that IlvY acts as a repressor when grown
in other growth conditions. As repressor activity at these sites was not previously
reported, we include this in our list of new discoveries.

asnA

There are 4 low-evidence AsnC binding sites in the mutated region. As they are low-
evidence, however, we do not include these binding sites in the reported regulatory
architectures for this gene.

idnK

While there are 3 GntR sites, a CRP site, and one IdnR site, they are all low-
evidence. As a result, we do not include any of these sites in our reported regulatory
architectures.
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dinJ

While dinJ is regulated by DinJ-YafQ and LexA, they are both outside of the
mutagenized window. As a result, neither are included in our reported regulatory
architectures.

yjiY

yjiY is regulated by both BtsR and CRP. However, CRP is outside of themutagenized
window and so CRP is not included in our reported regulatory architectures.

cra

cra is regulated by a low-evidence binding site of PhoB. The location of the binding
site is not known, however. As a result, the site is not included in the reported
regulatory architecture.

uvrD

uvrD is regulated by a low-evidence binding site for LexA. This binding site is not
included in the reported regulatory architectures for this study.

znuCB

There are binding sites for Zur and OxyR in the mutagenized region for znuCB.
OxyR is known to act as an activator under oxidative stress. As we do not utilize an
oxidative stress growth condition in this study, we do not include this binding site
in the reported regulatory architectures for this study.

znuA

There are binding sites for Zur and OxyR in the mutagenized region for znuA. The
OxyR binding site is outside of the mutagenized region. Only the Zur binding site
is included our reported regulatory architectures.

pitA

There is a low-evidence binding site for FNR in the mutagenized region. The
location of this binding site, however, is unknown. Thus, this binding site is not
included in our reported regulatory architectures.
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ecnB

There is a low-evidence OmpR binding site for ecnB. The binding site is not included
in our reported regulatory architectures.

lacZYA

The mutagenized region extends from the TSS (the primary TSS p1) to 75 base
pairs upstream of the TSS. The location of the mutagenized region excludes the
LacI sites, while including a single CRP binding site, a MarA binding site, and
two HNS binding sites. The expression from marA is expected to be low, as we do
not grow the cells in the presence salicylate or antibiotic stress and so we do not
expect to observe the MarA site. In fact, the precursor of the Reg-Seq experiment,
Sort-Seq, mutagenized and studied the same 75 base pair region, and only observed
binding by CRP (Kinney et al., 2010). As such, we only include CRP in Table 2,
the regulatory cartoons, or the analysis of false positives and false negatives.

leuABCD

There is a binding site for LeuO regulating leuABCD. The site is low-evidence and
also has no known binding location. As a result, the site is not included in our
reported regulatory architectures.

arcA

There is a binding site for FNR within the mutagenized region listed as "low-
evidence" in EcoCyc. We find substantial additional evidence for the presence of
the FNR binding site. As such, we include the site in Table 2.2 as an "Identified
Binding Site."

relBE

The relBE promoter contains 4 RelBE binding sites and 2 RelB binding sites in
EcoCyc and RegulonDB. While the all 4 RelBE sites are listed as high evidence,
Belliveau et al., 2018 mutagenized the RelBE promoter and did not identify binding
in the furthest downstream or furthest upstream binding sites. Also, the original
identification of the RelBE binding sites presented (Li et al., 2008), claims that the
furthest upstream and downstream sites are only identified by similarity to consensus
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sequence. As a result only 2 of the RelBE and 2 of the RelB sites are included in
this study.

marR

The marR promoter contains a CpxR, CRP, Cra, and AcrR in EcoCyc that are not
included in the "gold standard" analysis or Table 2. Belliveau et al., 2018 performed
mutagenesis experiments on themarR promoter and did not identify these additional
sites and so they have been excluded.

2.10 Supplementary information: Key Resource Table
(Table included on the following pages.)



105

Reagent type
(species) or resource Designation Source or

reference Identifiers Additional information

Cell line (Escherichia coli) E. Coli K12 E. Coli Stock Center
Cell line (Escherichia coli) E. Coli ΔYieP E. Coli Stock Center
Cell line (Escherichia coli) E. Coli ΔGlpR E. Coli Stock Center
Cell line (Escherichia coli) E. Coli ΔArcA E. Coli Stock Center
Cell line (Escherichia coli) E. Coli ΔLrhA E. Coli Stock Center
Cell line (Escherichia coli) E. Coli ΔPhoP E. Coli Stock Center
Cell line (Escherichia coli) E. Coli ΔHdfR E. Coli Stock Center
Strain (Escherichia coli) E. Coli ΔGlpR This paper Knockout transferred

in K12 strain to E. coli K12
Strain (Escherichia coli) E. Coli ΔArcA This paper Knockout transferred

in K12 strain to E. coli K12
Strain (Escherichia coli) E. Coli ΔLrhA This paper Knockout transferred

in K12 strain to E. coli K12
Strain (Escherichia coli) E. Coli ΔPhoP This paper Knockout transferred

in K12 strain to E. coli K12
Strain (Escherichia coli) E. Coli ΔHdfR This paper Knockout transferred

in K12 strain to E. coli K12
commercial assay or kit RNEasy Mini kit Qiagen Cat.: 74104
chemical compound, drug Q5 Polymerase Qiagen Cat.: M0491L
chemical compound, drug qPCR master mix QuantaBio Cat.: 101414-166
chemical compound, drug Lysyl Endopeptidase Wako Chemicals Cat.: 125-05061
chemical compound, drug RNAprotect Qiagen Cat.: 76506

bacteria reagent
other streptavin coated dynabeads Thermo Fisher Cat.: 65601
software, algorithm mpathic Kinney Lab Ireland et al. 2016
software, algorithm FastX Hannon Lab RRID:SCR_005534
software, algorithm FLASH CBCB RRID:SCR_005531

continued on following page
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Reagent type
(species) or resource Designation Source or

reference Identifiers Additional information

sequence based reagent oligo Pool Twist Bioscience
sequence based reagent fwd oligo 101 IDT TTCGTCTTCACCTCGAGCAC

GCTTATTCGTGCCGTGTTAT
sequence based reagent fwd oligo 102 IDT TTCGTCTTCACCTCGAGCAC

TTTGCTTCAGTCAGATTCGC
sequence based reagent fwd oligo 103 IDT TTCGTCTTCACCTCGAGCAC

GTCGAGTCCTATGTAACCGT
sequence based reagent fwd oligo 104 IDT TTCGTCTTCACCTCGAGCAC

GTAAGATGGAAGCCGGGATA
sequence based reagent fwd oligo 105 IDT TTCGTCTTCACCTCGAGCAC

GGTGTCGCAACATGATCTAC
sequence based reagent fwd oligo 106 IDT TTCGTCTTCACCTCGAGCAC

GTGCTAAGTCACACTGTTGG
sequence based reagent fwd oligo 107 IDT TTCGTCTTCACCTCGAGCAC

TCTAAACAGTTAGGCCCAGG
sequence based reagent fwd oligo 108 IDT TTCGTCTTCACCTCGAGCAC

GTCTTTATACTTGCCTGCCG
sequence based reagent fwd oligo 109 IDT TTCGTCTTCACCTCGAGCAC

CACCGCGATCAATACAACTT
sequence based reagent fwd oligo 110 IDT TTCGTCTTCACCTCGAGCAC

TTCGGATAGACTCAGGAAGC
sequence based reagent fwd oligo 111 IDT TTCGTCTTCACCTCGAGCAC

CCATTGATAGATTCGCTCGC
sequence based reagent fwd oligo 112 IDT TTCGTCTTCACCTCGAGCAC

TTTTCTACTTTCCGGCTTGC
sequence based reagent fwd oligo 113 IDT TTCGTCTTCACCTCGAGCAC

ATGACTATTGGGGTCGTACC
sequence based reagent fwd oligo 114 IDT TTCGTCTTCACCTCGAGCAC

TCGACAATAGTTGAGCCCTT
continued on following page



107

Reagent type
(species) or resource Designation Source or

reference Identifiers Additional information

sequence based reagent fwd oligo 115 IDT TTCGTCTTCACCTCGAGCAC
GAGCCATGTGAAATGTGTGT

sequence based reagent fwd oligo 116 IDT TTCGTCTTCACCTCGAGCAC
CGTATACGTAAGGGTTCCGA

sequence based reagent fwd oligo 117 IDT TTCGTCTTCACCTCGAGCAC
TTATGATGTCCGGATACCCG

sequence based reagent fwd oligo 118 IDT TTCGTCTTCACCTCGAGCAC
TCTTAGAAATCCACGGGTCC

sequence based reagent rev oligo 101 IDT TGTAAAACGACGGCCAGTGACT
AGCGCTGAGGAGAAGCCTAATA
GGGCACAGCAATCAAAAGTA

sequence based reagent rev oligo 102 IDT TGTAAAACGACGGCCAGTGAGG
AGCGCTGAGGAGAAGCCTAATA
CCGGGATTCAGTGATTGAAC

sequence based reagent rev oligo 103 IDT TGTAAAACGACGGCCAGTGAGT
CCCGCTGAGGAGAAGCCTAATA
TGAAGATATGACGACCCCTG

sequence based reagent rev oligo 104 IDT TGTAAAACGACGGCCAGTGACC
GACGCTGAGGAGAAGCCTAATA
TTCCACAGCTCTATGAGGTG

sequence based reagent rev oligo 105 IDT TGTAAAACGACGGCCAGTGATT
GGCGCTGAGGAGAAGCCTAATA
GCAAACATGACTAGGAACCG

sequence based reagent rev oligo 106 IDT TGTAAAACGACGGCCAGTGAGA
TACGCTGAGGAGAAGCCTAATA
CCGGGACGAGATTAGTACAA

sequence based reagent rev oligo 107 IDT TGTAAAACGACGGCCAGTGAAC
TCCGCTGAGGAGAAGCCTAATA
CACGCCAGTTGTGAACATAA
continued on following page
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Reagent type
(species) or resource Designation Source or

reference Identifiers Additional information

sequence based reagent rev oligo 108 IDT TGTAAAACGACGGCCAGTGATA
CTCGCTGAGGAGAAGCCTAATA
CAAAGGCCAAATCAGTTCCA

sequence based reagent rev oligo 109 IDT TGTAAAACGACGGCCAGTGACC
AACGCTGAGGAGAAGCCTAATA
GGTGCATGGGAGGAACTATA

sequence based reagent rev oligo 110 IDT TGTAAAACGACGGCCAGTGAAG
GCCGCTGAGGAGAAGCCTAATA
TGCATGGGTCTGTCTATTGT

sequence based reagent rev oligo 111 IDT TGTAAAACGACGGCCAGTGAAA
TTCGCTGAGGAGAAGCCTAATA
CTCCTATGCTAGCTCGACTC

sequence based reagent rev oligo 112 IDT TGTAAAACGACGGCCAGTGATT
GTCGCTGAGGAGAAGCCTAATA
ATGGTAAGAAGCTCCCACAA

sequence based reagent rev oligo 113 IDT TGTAAAACGACGGCCAGTGATT
TACGCTGAGGAGAAGCCTAATA
CTATGGTCATTCCCGTACGA

sequence based reagent rev oligo 114 IDT TGTAAAACGACGGCCAGTGAAC
CGCGCTGAGGAGAAGCCTAATA
TAATCGGCTACGTTGTGTCT

sequence based reagent rev oligo 115 IDT TGTAAAACGACGGCCAGTGATG
GCCGCTGAGGAGAAGCCTAATA
TGACTCGATCCTTTAGTCCG

sequence based reagent rev oligo 116 IDT TGTAAAACGACGGCCAGTGAGG
CCCGCTGAGGAGAAGCCTAATA
ACGCTTTGTGTTATCCGATG

sequence based reagent rev oligo 117 IDT TGTAAAACGACGGCCAGTGAGG
TGCGCTGAGGAGAAGCCTAATA
ACCACGGTGGAGTATACATC
continued on following page
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Reagent type
(species) or resource Designation Source or

reference Identifiers Additional information

sequence based reagent rev oligo 118 IDT TGTAAAACGACGGCCAGTGACA
ATCGCTGAGGAGAAGCCTAATA
GGCACCAGGTACATATCTCA

sequence based reagent mRNA rev IDT GCAGGGGATAATATTGCCCA
sequence based reagent fwd sequencing 94 IDT AATGATACGGCGACCACCGAGATCTACAC

TCTTTCCCTACACGACGCTCTTCCGAT
CTGACCTATTAGGCTTCTCCTCAGCG

sequence based reagent fwd sequencing 95 IDT AATGATACGGCGACCACCGAGATCTACAC
TCTTTCCCTACACGACGCTCTTCCGATCT
CAGTTATTAGGCTTCTCCTCAGCG

sequence based reagent fwd sequencing 96 IDT AATGATACGGCGACCACCGAGATCTACAC
TCTTTCCCTACACGACGCTCTTCCGATCT
TCTATATTAGGCTTCTCCTCAGCG

sequence based reagent fwd sequencing 97 IDT AATGATACGGCGACCACCGAGATCTACAC
TCTTTCCCTACACGACGCTCTTCCGATCT
AGAGTATTAGGCTTCTCCTCAGCG

sequence based reagent fwd sequencing 98 IDT AATGATACGGCGACCACCGAGATCTACAC
TCTTTCCCTACACGACGCTCTTCCGATCT
GCATTATTAGGCTTCTCCTCAGCG

sequence based reagent fwd sequencing 99 IDT AATGATACGGCGACCACCGAGATCTACAC
TCTTTCCCTACACGACGCTCTTCCGATCT
CTTATATTAGGCTTCTCCTCAGCG

sequence based reagent fwd sequencing 100 IDT AATGATACGGCGACCACCGAGATCTACAC
TCTTTCCCTACACGACGCTCTTCCGATCT
TAGCTATTAGGCTTCTCCTCAGCG

sequence based reagent fwd sequencing 101 IDT AATGATACGGCGACCACCGAGATCTACAC
TCTTTCCCTACACGACGCTCTTCCGATCT
CAAGTATTAGGCTTCTCCTCAGCG
continued on following page
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Reagent type
(species) or resource Designation Source or

reference Identifiers Additional information

sequence based reagent fwd sequencing 102 IDT AATGATACGGCGACCACCGAGATCTACAC
TCTTTCCCTACACGACGCTCTTCCGATCT
GTACTATTAGGCTTCTCCTCAGCG

sequence based reagent fwd sequencing 103 IDT AATGATACGGCGACCACCGAGATCTACAC
TCTTTCCCTACACGACGCTCTTCCGATCT
TGAATATTAGGCTTCTCCTCAGCG

sequence based reagent fwd sequencing 104 IDT AATGATACGGCGACCACCGAGATCTACAC
TCTTTCCCTACACGACGCTCTTCCGATCT
TCGTTATTAGGCTTCTCCTCAGCG

sequence based reagent fwd sequencing 105 IDT AATGATACGGCGACCACCGAGATCTACAC
TCTTTCCCTACACGACGCTCTTCCGATCT
ATGCTATTAGGCTTCTCCTCAGCG

sequence based reagent fwd sequencing 106 IDT AATGATACGGCGACCACCGAGATCTACAC
TCTTTCCCTACACGACGCTCTTCCGATCT
GTCATATTAGGCTTCTCCTCAGCG

sequence based reagent fwd sequencing 107 IDT AATGATACGGCGACCACCGAGATCTACAC
TCTTTCCCTACACGACGCTCTTCCGATCT
CTCATATTAGGCTTCTCCTCAGCG

sequence based reagent fwd sequencing 108 IDT AATGATACGGCGACCACCGAGATCTACAC
TCTTTCCCTACACGACGCTCTTCCGATCT
AGTATATTAGGCTTCTCCTCAGCG

sequence based reagent rev sequencing IDT AAGCAGAAGACGGCATACGAGATCGGTCT
CGGCATTCCTGCTGAACCGCTCTTCCGAT
CTCAAAGCAGGGGATAATATTGCCCA

database RegulonDB RRID:SCR_003499
database EcoCyc RRID:SCR_002433

Table 2.11: Key Resource Table. This table contains the resources needed to replicate the Reg-Seq experiment.
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C h a p t e r 3

QUANTITATIVE DISSECTION OF A SINGLE PROMOTER
USING RNA-SEQ

The followingwork is currently being conducted in collaborationwithManuel Razo-
Mejia, Tom Röschinger, and Scott Saunders. Nicholas McCarty also conducted key
preliminary experiments that served as a foundation for the work included here.
What follows is a work in progress for what will ideally be published in the coming
months. The primary focus of this chapter is to introduce the motivation for the
project and to outline some of the key materials and methods that have been used.

3.1 Motivation
In Chapter 1, we laid out what it means to quantitatively dissect a regulatory region,
with the lac operon as our gold standard. However, we also laid out the enormous
issue of our regulatory ignorance, which was the entire focus of Chapter 2. Now we
would like to come full circle: once we have completed the ‘fact finding mission’
of conducting a Reg-Seq experiment in full, can we actually give these newly found
regulatory architectures the same predictive treatment that the lac operon has now
been put through time and time again (as illustrated in Figure 3.1)? To be truly
scalable, we would like this quantitative dissection to be sequencing-based, just like
the process of regulatory discovery enabled via Reg-Seq.

In the work that is currently in progress, we have a number of goals, in increasing
scope and complexity: (1) We would like to be able to first and foremost confirm
that we can use RNA-Seq to quantitatively validate what is already known for the
lac operon. For this, we will use the most minimal ‘library’ of sequences of just the
native lac repressor operators: O1, O2, and O3. (2) Increasing the complexity to
more than just a few native operators, we would like to be able to dissect an entire
library of operator mutants, expanding on the work done by Barnes et al., 2019,
where each mutant had to be painstakingly cloned independently. For this, we have
a library containing over 3000 operator variants, all of which we will be able to test
in a single sequencing experiment. (3) And finally, while repeating and building off
of the work already done on lac serves as a great proving ground, we ultimately want
to bring these tools to bare on novelly discovered regulation, such as purR found by
Belliveau et al., 2018 or any of the number of recently discovered architectures from
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Figure 3.1: Theory meets experiment for simple repression. (A) Shows the predic-
tion of how gene expression should change with increasing number of repressors,
for four different binding sites. (B) Shows how the various data land relative to these
predictions. Figure adapted from Phillips et al., 2019.

Ireland et al., 2020. For this, we are first exploring the regulation of tetR and purR,
but look forward to expanding even further in the coming years. While this is still a
work in progress, we are well on our way to having goals (1) and (2) addressed.

3.2 Preliminary results
Mapping barcodes
As with the Reg-Seq protocol, our experiments involve two sequencing runs: one
in each we map the barcodes to the promoter regions, and one where we actually
expose our cells to the experimental condition of interest and quantify the effect on
gene regulation (as measured by barcode counts). Thus far, we have conducted the
mapping sequencing run for both the ‘library’ containing the three wildtype operator
sequences (O1, O2, and O3) as well as the O1 library mutagenized at 10%.

For the wildtype library, the coverage of barcodes is shown in Figure 3.2. As
expected for a library with only three unique operator sequences, we see that we
have immense coverage, with at least 8000 barcodes for each of the operators.
Encouragingly, out of the 25,686 total barcodes found, just 24 (less than 0.1%)
were found associated with more than one operator. While this immense number of
barcodes is surely excessive, this minimal library will serve as a proof of concept and
will allow us to readily assess precisely how many barcodes are needed to acquire
reliable results.
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Figure 3.2: Barcode coverage for the three wildtype operator sequences. Venn
diagram depicts the number of barcodes found for the O1, O2, and O3 operators.
Numbers in the overlapping regions indicate barcodes that were found associated
with more than one operator.

In addition to the simple wildtype library, we also mapped the the mutagenized O1
library, for which we ordered 3259 sequences from Twist Bioscience. Of these, we
recovered all but 12 in the mapping run, and we even obtained an additional 619
sequences that were errors from the oligo synthesis (Figure 3.3 (A)). While errors
are generally a nuisance, these single basepair mistakes actually serve to increase the
diversity of our library, giving us even more sequences to work with than what we
originally ordered. Furthermore, we are encourage to see that the predicted binding
energies seem uniformly distributed, as we designed when selecting which mutants
to order (Figure 3.3 (B)).

While we only have the first sequencing run completed for now, these preliminary
results are promising with respect to having good coverage of the sequences we
expected to see, and we are well-poised to analyze the data for the experimental
sequencing runs as soon as they come in.

3.3 Supplementary information: library content and design
The oligo libraries used in this study were ordered from Twist Bioscience, and
the complete file of sequences ordered can be found here: https://github.com/
RPGroup-PBoC/Reg-Seq2/blob/master/data/twist_order/twist_order_

https://github.com/RPGroup-PBoC/Reg-Seq2/blob/master/data/twist_order/twist_order_full.csv
https://github.com/RPGroup-PBoC/Reg-Seq2/blob/master/data/twist_order/twist_order_full.csv
https://github.com/RPGroup-PBoC/Reg-Seq2/blob/master/data/twist_order/twist_order_full.csv
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Figure 3.3: Operator coverage of the O1 library. (A) Counts for all the operators that
were associated with at least 10 unique barcodes. ‘twist’ refers to those sequences
which were specifically ordered, and ‘sequencing’ refers to those recovered in the
mapping sequencing run. (B) Cumulative distribution function for the predicted
binding energies of the operators.

full.csv. Brief descriptions of each sub-library and reference to the repository
code used to create the set of sequences are as follows:

• lacUV5+O1 mutants at
code/experimental_design/twist_order/lacI_titration/

generate_sequences.ipynb.

• constitutive lacUV5 mutants at
code/experimental_design/twist_order/lacUV5_mutants/

generate_sequences.ipynb.

• lacUV5+tetOx single and double mutants at
code/experimental_design/twist_order/tetR_regulation/

generate_sequences.ipynb.

• natural tet promoters mutants
code/experimental_design/twist_order/tetR_regulation/

generate_sequences.ipynb.

• purR simple repression single and double mutants at
code/experimental_design/twist_order/purR_titration/

purR_twist_order.ipynb.

https://github.com/RPGroup-PBoC/Reg-Seq2/blob/master/data/twist_order/twist_order_full.csv
https://github.com/RPGroup-PBoC/Reg-Seq2/blob/master/data/twist_order/twist_order_full.csv
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In the library design, each sub-library was given a unique set of orthogonal primers,
such that out of the total oligo pool, these individual experimental libraries could be
amplified.

3.4 Supplementary information: ORBIT cloning protocol
This protocol walks through the basic steps of how to perform anORBIT integration.
This protocol is general and should work for a variety of integration plasmids and
targeting oligos that can be used for many different types of insertions and deletions
on the E. coli genome.

This protocol has been adapted from “Orbit: A new paradigm for genetic engi-
neering of mycobacterial chromosomes” 2018. As an overview, recall that ORBIT
modifications require three components that work together: the helper plasmid, an
integrating plasmid, and a targeting oligo. The targeting oligo contains a 38 bp
attachment sites (attB) flanked by homology arms and it gets incorporated into the
genome during DNA replication directed by its homology arms. The integrating
plasmid contains a 48 bp cognate attachment site (attP), which recombines with the
oligo attachment site, thus integrating the entire plasmid at the location targeted in
the oligo. The oligo incorporation, also called single stranded DNA recombineering
(orMAGE formany oligos), is catalyzed by a single strandedDNA annealing protein
(SSAP), and the modification is stablized by temporarily suppressing the mismatch
repair machinery. The recombination between the oligo attB site and the plasmid
attP site is catalyzed by the site specific recombinase Bxb-1. The helper plasmid
contains all of the necessary genes to acheive these reactions: SSAP - CspRecT,
MutL E32K, and Bxb-1. Note that CspRecT and MutL E32K are inducibly con-
trolled by m-toluic acid (XylS - Pm system) and Bxb-1 is separately inducible with
L-arabinose (AraC - ParaB system).

Here we assume that you already have a helper plasmid strain that has been induced
with m-toluic acid (CspRecT + MutL E32K) and is electrocompetent.

Materials:

1. Targeting oligo stock at 25 µM

2. Integrating plasmid stock at ∼100 ng/`L

3. Electrocompetent cells with induced helper plasmid, stored in ∼50 `L frozen
aliquots
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Protocol:

1. Consider setting up a control condition with integrating plasmid but no target-
ing oligo. This control will help you assess the likelihood that your ORBIT
experiment worked before performing any molecular or phenotypic confir-
mation. It tests the background off target integration and provides a useful
comparison to your + oligo conditions that should be a much higher on target
integration. Typically the off target integration rate should be less than 1% of
the on target integration rate.

2. Set up electroporation cuvettes and cool on ice.

3. Thaw frozen competent cells (with induced helper plasmid) on ice for 10 min.

4. Prepare the recovery culture tubes while competent cells are thawing. With
sterile technique, add 30 `L of 10% L-arabinose stock (0.1% final) and 3 mL
of LB to each culture tube. You may also thaw other stock solutions during
this time.

Arabinose induces the Bxb-1 integrase. Note that cells need to divide during
the recovery, so 3 mL cultures allows recovery cultures to be less dense and
more likely to divide than smaller volumes.

5. AddORBITmaterials to competent cells: Add∼100 ng of integrating plasmid
to each competent cell aliquot. Add 2 `Lof targeting oligo stock (∼1 `Mfinal)
to each competent cell aliquot (with the exception of the negative control).

6. Transfer to electroporation cuvettes: Gently mix competent cell mixtures and
transfer to electroporation cuvettes. Tap cuvettes gently to eliminate bubbles,
and replace cuvettes in ice.

7. Electroporate with typical E. coli settings of 1.8 kV, 25 `F, 200 Ω. Immedi-
ately resuspend cuvette cells in 1 mL of recovery medium from the respective
culture tube. Be gentle, and transfer the cells to the culture tube. Electroporate
and resuspend all conditions and then proceed to recovery.

8. Recover electroporated cells: Transfer the recovery tubes to a 37°C shaker at
∼250 rpm and recover for ∼1 hour. Recovery time has been optimized for a 1
kb deletion with no payload on the integrating plasmid. Longer deletions and
other modifications may require longer recovery periods.
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9. Prepare plates: During recovery make sure agar plates are at least at room
temperature. Dry plates with lids open during this time, if necessary.

10. Plate recovered cells: Plate a dilution series on kanamycin plates. Optionally,
plate on LB as well as kanamycin: this allows you to calculate the overall
efficiency (of all surviving cells, how many got the modification). Typically
overall efficiency is ∼0.5% of all cells for a 1 kb galK deletion.

Because of the high efficiency, 50 `L of undiluted culture can yield a lawn of
colonies, so we strongly recommend trying multiple dilutions. The preferred
method is the drip plate, which can be used to accurately count 10 - 109

colonies on a single plate.
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C h a p t e r 4

CONCLUDING THOUGHTS AND FUTURE DIRECTIONS

In concluding, I wish to impress upon the reader the progress that has been made
throughout the course of the work of my thesis, as well as future questions that
this work permits the exploration of, and the limitations that still exist. In brief, I
hope this work has clearly illustrated the issue of ‘regulatory ignorance’ as well as
provided concrete steps toward understanding genomes.

4.1 Progress
First and foremost I would like to emphasize the progress that has been made
throughout the course of my PhD, although it is important to acknowledge that none
of this work was a completely solitary process. When I first joined the Phillips lab,
several of the more senior graduates students in the lab were well on their way to
using the Sort-Seq method to elucidate the previously unexplored regulation of a
handful of genes, with their work culminating in the results shared by Belliveau
et al., 2018. With these advances on the horizon, I, in collaboration with William
Ireland, sought to expand the utility of Sort-Seq beyond that of a gene-by-gene
endeavour.

The work done here in some ways serves as a proof of principle, but even with
‘just’ the ∼100 genes explored here, we have made a non-negligible dent of a couple
percent of E. coli’s roughly 4000 genes. This progress can in part be seen in the
increase of the percent of genes with known regulation as illustrated in Figure 2.1
(34% prior to our study being completed, around 2018) as opposed to that in Figure
1.8 (38% at the time of this writing in 2021).

The work as presented here glosses over many of the difficulties we faced along the
way as well as some of the intermediate steps of progress in favor of presenting the
final result of over 100 genes elucidated all at once. In reality, our progress was
more step-wise, first validating a library of 10 genes before tackling a full set of 100
genes. Such progress gives us hope that similar orders of magnitude of progress can
be made in the coming years, allowing us to ‘finish’ the rest of the E. coli.
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4.2 Future goals
As discussed in the introduction, the problem of regulatory ignorance extends well
beyond that of E. coli. In fact, our regulatory knowledge drops off precipitously for
higher organisms, as was illustrated in Figure 1.8. So while this specific study was
done in E. coli, the hope is that the core principle can be extended to any number
of organisms (permitted that the tools of molecular genetics are available). At first
blush, there is no reason to think that the core principle of mutating regulatory
regions and assessing their impact could not be carried over to other systems of
interest (with some challenges, of course, as acknowledged in the following section).

In addition to expanding this work to more genes and other organisms, it’s vitally
important to consider precisely what we do with the information gained from such
experiments. In this respect, I often think of the following quote from Henri
Poincaré: “Science is built of facts the way a house is built of bricks: but an
accumulation of facts is no more science than a pile of bricks is a house.” I worry
that this work may rightfully face this critique, that we are simply gathering a set of
unrelated facts, without building true understanding, but I argue that there are two
useful threads to be pursued upon gathering more regulatory knowledge via Reg-
Seq: 1) in-depth analysis of individual genes, and 2) regulome-wide interactions.

My work so far has given a brief glimpse into what these two divergent paths may
look like. On the side of exploring networks of an entire regulome, Figure 2.9
provides a small example of a single genetic circuit, where we explored both the
regulation of the arcA gene as well as revealed the role that the ArcA protein plays
in regulating another gene. While this example is quite small, it’s easy to conclude
that more circuits such as this one will be unveiled as more and more genes are
explored in E. coli. So what might otherwise be seen as a disjointed set of facts may
eventually produce entire genetic networks to be explored.

On the opposite side of the spectrum, the results of Reg-Seq experiment also permit
the in-dept analysis of individual genes. Our very preliminary efforts to do so for
both the lac operon as well as the pur and tet promoters was discussed in Chapter
3. While other techniques such as ChIP-Seq can permit the elucidation of where
proteins are binding, they fail to give as detailed a view as the basepair-by-basepair
energy matrices that result from a Reg-Seq experiment. And if we wish to not only
be able to read genomes, but also write them (which can be of great interest in
synthetic and bio engineered systems), this deeper understanding of how the protein
interacts with a segment of DNA and not just that it does interact is essential.
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While we have just began the process of bringing the theory to bear on a handful
of genes beyond the already extensively-studied lac operon, I expect many more
to be validated in the coming years. It is only through the careful dissection and
validation of our predictions (say, of how a given mutation should impact protein
binding and ultimately gene expression) that can we hope to reliably design other
constructs with a desired input-output relationship at will.

4.3 Outstanding challenges
Despite the advances that have been made here, it is important to acknowledge
a number of challenges that may be faced when tackling the issue of regulatory
ignorance both for the rest of E. coli as well as for many other organisms of interest.
Below I outline a handful of these present challenges, as well as some potential
headway that can be made in spite of theses obstacles.

Need for prior knowledge
First and foremost, it’s important to acknowledge precisely how much prior knowl-
edge went into the design of the experiments conducted here. We relied on decades
of prior E. coli knowledge to inform precisely which regions of the genome to ex-
plore in-depth. As a concrete example, we relied on the documentation of known
or predicted transcription start sites as annotated on RegulonDB (Santos-Zavaleta
et al., 2019) as a guide for which regions to mutagenize. That is, we expect most
regulation, especially inE. coli, to take place in the regions immediately surrounding
the transcription start site (Rydenfelt et al., 2014a), so we prioritized these regions
when designing our mutagenized sequences.

In addition to simply knowing where genes are being transcribed from, we also
relied on existing proteomic data (such as from Schmidt et al., 2016) to get a hint at
both which genes may be regulated and also which environmental growth conditions
influence their expression. Such data was presented in Figure 1.9, and almost taken
for granted, but this information was essential to unearthing the regulation at play,
and comparable data may not yet exist for other organisms.

Sequences and sequencing limitations
As alluded to in the previous section, in the current iteration of Reg-Seq, we had
to be fairly decisive with which regions to explore with our library mutagenized
promoter segments. Such targeted mutagenesis allowed us to get at the heart of
the regulation of a given gene without having to approach the genes blindly. As a
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small back-of-the-envelope estimate, if we were to explore the entire 4.6 Mb E.coli
genome with our fairly small 160 bp regions, we would have to prescribe nearly
30,000 promoter regions. In other words, such an endeavour would require the work
done here (on around 100 such 160 bp regions) to be done 300 times over, which
might be unattainable at least with the current technologies. However, as sequencing
approaches continue to improve, I suspect this to become less of a bottleneck.

Even with the current constraints on sequencing (financial or otherwise), work from
others provides a way forward that does not rely on blindly examining all regions
of the genome at this perhaps excessive basepair-by-pair resolution. In a related
approach, Urtecho et al., 2020 were able to perturb binding sites wholesale by
mutating regions of ten consecutive basepairs (as opposed to our scattered single-
basepair mutations). With this more blunt approach, they were able to tile these
mutated 10 bp chunks across all the entire genome. While such an a approach
cannot yield a predictive energy matrix or other quantitative measures of how a give
protein binds to DNA, it is the perfect discovery tool for finding precisely where
regulation seems to be occurring. Moving forward, I envision using an approach
akin to Urtecho et al., 2020, followed by a more in-depth Reg-Seq approach upon
the regions that were discovered by the broader method.

What are the relevant environmental conditions?
Perhaps the largest issue when it comes to discovering gene regulation writ large is
knowing which environmental condition (or conditions) are most relevant to a given
gene’s expression. That is, just because we fail to capture gene regulation even
across a wide range of environmental conditions, that does not imply that a given
gene is necessarily not regulated, but that we may have failed to test in a relevant
condition such that the regulation would be enacted.

This issue is concisely posed by the title of work by Lindsley and Rutter, 2006:
“Whence cometh the allosterome?". That is, the modern era of molecular biology
is filled with various ‘-omes’: the genome, the transcriptome, the proteome, etc.
But even with the development of all these sequencing approaches, until recently, it
seemed out of reach that we would be able to readily detect all the possible allosteric
effectors (i.e. ligands) of a given protein. However, progress has been made even
here, as shown by the work of Piazza et al., 2018, where they are able to detect which
protein regions are bound to metabolites, through an approach akin to footprinting
used to detect protein-DNA interactions. By cross-linking proteins under different
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environmental conditions (e.g. in the presence of differentmetabolites), exposing the
proteins to protease digestion, and then quantifying the digested samples via mass
spectrometry, they were able to detect differential abundance of protein regions.
That is, a region of a protein bound by metabolite will be less amenable to protease,
causing the corresponding amino acid sequence in that region of the protein to
be less abundant in the final quantification. While Piazza et al., 2018 specifically
looked at the role of metabolites, I can imagine this being expanded to a wider range
of potential effectors, including those that interact with transcription factors.

Challenges in other organisms
The issues mentioned above become more pertinent when considering organisms
beyond E. coli. That is, as we move to less well-studied organisms, there will
inherently be less information to build of off. Thankfully, what has taken decades to
be elucidated in E. coli can hopefully be achieved in much faster time scales for other
organisms. The recent development of various ‘atlases’, such as The Human Cell
Atlas, The Human Protein Atlas, The Tabula Muris Consortium, and others, suggest
that such foundational information may very well become more readily available in
the coming years. Even for a completely new organism, the prospect of getting the
genome, transcriptome, and proteome within a month’s time is becoming evermore
reasonable.

In addition to having less current information to go off of for other organisms, it’s
also the case that regulation is simply much more complicated in higher organisms.
With enhancers often enacting their regulation from kilobases, and sometimes even
megabases away, it is clear that our approach of selecting single 160 bp regions will
not suffice in many eukaryotic systems. This problem of regulation occurring at a
distance likely poses the largest hurdle in developing Reg-Seq in other organisms.
However, I remain optimistic that advances in technology will trivialize this problem
in the coming decades, if not years. Even with just existing technologies, I imagine
it could be possible to pair Reg-Seq on a proximal regulatory region with some
sort of chromatin conformation capture technology to assess the distal regulatory
regions simultaneously. And we might just be able to piece together how specific
transcription factors bind to enhancer regions, with the same level of detail as we
have here for promoters in E. coli.
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In closing, despite the caveats discussed here, I feel that many of the challenges
posed here present solvable problems, especially as sequencing approaches and
technologies advance in the coming years. With this perspective, my cautiously
optimistic hope is that this work and others like it have set a foundation such that we
might be able to truly say that we as a field “understand genomes" at some point in
the coming decades of my scientific career.
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