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ABSTRACT

This thesis studies the near-horizon black hole physics in depth from three perspec-
tives.

An important tool for studying perturbations of black hole spacetime is the linearized
Einstein equations (LEE). In the Kerr spacetime, the variables in LEE do not
separate, which poses a lot of difficulties to obtaining analytical solutions. By
taking the near-horizon limit of extremal Kerr black holes, additional symmetries
emerge to make the LEE separable. This is achieved by decomposing the metric
perturbations using some basis functions adapted to the symmetry. I further show
that in two string-inspired low-energy effective theories of gravity, LEE can be
directly solved and analytical black hole solutions can be found.

Naively, the near-horizon perturbations of an extremal black hole may destroy the
horizon and make the singularity expose itself. This is a direct challenge of the
weak cosmic censorship conjecture (WCCC). Based on Wald’s gendanken experi-
ments to destroy black holes, I examine the WCCC for the extremal charged black
hole in possible generalizations of Einstein-Maxwell theory due to the higher-order
corrections, up to fourth-derivative terms. It turns out that, provided the null energy
condition for the falling matter, the WCCC is preserved for all possible general-
izations. I further find that for BTZ black holes, i.e. solutions to (2+1)-Einstein
gravity with asymptotically AdS3 boundary, WCCC is always preserved. Through
the AdS/CFT correspondence, this establishes the connections between black hole
thermodynamics and WCCC.

From considerations of quantum gravity and quantum information, it has been
conjectured that space-time geometry near the horizon can be modified, even at
scales larger than the Planck scale. The resulting spacetime is commonly referred
to as the exotic compact object (ECO). A viable method to look for the near-
horizon quantum structures is searching for gravitational wave echoes in the GW
signals. After discussing the stability issues associated with the ECOs, I build up
the phenomenology for gravitational echoes. I also introduce a new framework
to deal with the near-horizon boundaries by considering the tidal response of the
ECO as experienced by zero-angular-momentum fiducial observers. It is then
straightforward to apply the boundary condition to computing gravitational-wave
echoes from exotic compact objects.
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C h a p t e r 1

INTRODUCTION

A classical black hole is, by definition, a spacetime region where gravity is so strong
that nothing can escape from it. Thus the black hole has two defining features. One
is the singularity which is a spacetime point with infinitely large curvatures. The
other is the event horizon which is a spacetime boundary precluding even light from
escaping to infinity.

The research on black holes began after the birth of Einstein’ theory of gravitation,
i.e. general relativity, although the idea of the “surface of no escape” can be dated
back to the 18th century [1]. In 1916, Schwarzschild obtained the first exact vacuum
solution of Einstein’s equations with spherical symmetry. About half-century after
Schwarzschild’s discovery, Kerr discovered the exact solution for rotating black
holes. Hawking’s discovery of black hole evaporation stimulated a lot of debates of
quantum unitarity against semiclassical gravity. In superstring theory, those black
holes with quantum hairs are actively studied as the simplest solutions to the unified
theory of all interactions. The X-rays produced by accretion of gas onto central
objects has also given black holes lots of attention in the astrophysical community.

More recently, a significant breakthrough in the development of black holes physics
is the unprecedented discovery of gravitational waves from the binary BH merger
event GW150914 [2], and follow-up observations of an order of ∼ 100 binary black
hole merger events [3, 4]. We now know that these dark compact objects do exist
in our universe, and that their space-time geometry and dynamics are consistent
with those of black holes in general relativity. The event horizon telescope has
produced images from the center of the M87 galaxy that are consistent with the
shadow of a black hole in general relativity [5–12]. We are now well prepared for
further understanding of near-horizon black hole physics. Due to the teleological
nature of the event horizon, no experiments can directly confirm the existence of
this spacetime boundary. But nowwith the gravitational-wave detectors, we are able
to quantify the darkness of these objects, and even search for new physics near the
horizon.

This thesis can be regarded as an introduction to near-horizon black hole physics.
Three main topics are discussed in depth.
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I. Near-horizon symmetries and black hole perturbations

By focusing on the near-horizon region, the black hole spacetime may attain ad-
ditional symmetries. Symmetries have been widely used in solving perturbation
problems in the black hole spacetime. The equations that govern the gravitational
perturbation are the Einstein’s equations, which are coupled partial differential
equations. In the Schwarzschild spacetime, by taking advantage of the spherical
symmetry, one can decompose the perturbations into standard spherical harmonic
bases, which makes the Einstein equations decouple. This process, however, cannot
be done for spinning black holes due to lack of symmetries. Fortunately, by taking
the near-horizon extremal limit, new symmetries emerge.

Extremal black holes correspond to a family of black hole solutions whose inner and
outer horizons coincide. Equivalently, they are defined by their vanishing Hawking
temperature,

TH = 0 . (1.1)

Extremal black holes have gained a lot of importance in superstring theories because
any supersymmetric black hole is necessarily extremal. The extremal limits of four-
dimensional black holes have recently been extensively studied due to the Kerr/CFT
correspondence, which conjectures that a Kerr black hole also has a dual three-
dimensional conform field theory description.

A feature of extremal black holes is that they have a well-defined near-horizon geom-
etry. By zooming onto the near-horizon region, new symmetries occur, which leads
to further simplifications of solving physical problems. The method to decouple the
whole black hole spacetime into a near-horizon region and an asymptotically-flat ex-
terior region is known by taking the near-horizon scaling limit of the extremal black
hole solutions. The resulting spacetime, which was first discovered by Bardeen and
Horowitz [13], has an enhanced symmetry group SL(2,R) ×U (1), and is known as
the NHEK spacetime. The NHEK metric is given by

ds2 = Γ(θ)
[
−r2dt2 +

dr2

r2 + dθ2 + Λ(θ)2 (
dφ + rdt

)2
]
, (1.2)

with

Γ(θ) = 1 + cos2 θ , Λ(θ) =
2 sin θ

1 + cos2 θ
. (1.3)

At fixed polar angle θ, this geometry is a 3d warped anti-de Sitter spacetime, which
is a deformation of AdS3.
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As it will turn out, the symmetry stucture of NHEK spacetime finally decouples the
Einstein equation for spinning black holes. There are many potential applications
of the near-horizon symmetry. For instance, extreme mass-ratio inspiral (EMRI) is
the main target of Laser Interferometer Space Antenna (LISA). A important part of
obtaining thewaveformproduced byEMRI is the calculation of the gravitational self-
force. However, a full analytical computation of self force is notoriously difficult.
By isolating the near-horizon region, and making use of the additional symmetries
in the near-horizon limit, it is possible to separate the variables in the linearized
Einstein equation, and obtain the second-order metric perturbations, which are the
building blocks for self-force calculation.

II. Gedanken experiments to destroy the event horizon

The singularity is always safely hidden inside the horizon. If the event horizon
is somehow destroyed by external perturbations, we will then be able to directly
“see” the singularity. It seems Nature itself forbids this, as have been pointed out
by the weak cosmic censorship conjecture (WCCC) [14]. The WCCC asserts that
all singularities, except for the big-bang singularity, must be hidden by the event
horizon—no naked singularity can exist in our universe. A gravitational singularity
has infinitely large curvature and is mathematically ill-defined. Philosophically, the
weak cosmic censorship seems to be a smart design by the universe to avoid the
awkwardness of dealing with infinity.

It might still be possible to throw charged or spinning matter into a black hole in
particular ways that can destroy the horizon, revealing the singularity. For example
let us consider a Kerr-Newman black hole with mass M , charge Q, and angular
momentum J = Ma. The black hole must satisfy

M2 ≥ (J/M)2 +Q2 , (1.4)

with the equal sign corresponding to the extremal case. If we instead has a Kerr-
Newmanmetricwith the≥-sign inEq. (1.4) flipped to≤, then it is a naked singularity.
By throwing matters with properly tuned mass, charge, and angular momentum, it
may be possible to flip the sign in the above inequality and successfully “destroy”
the event horizon.

This kind of gedanken experiments was first proposed byWald in [15]. In this paper,
he proved that an extremal black holes cannot be overspun or overcharged in this
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way, thus WCCC is preserved. Later, Hubeny pointed out that if one instead starts
with a near-extremal black hole and then properly throws particles in, WCCC can
be violated [16]. A full understanding of this problem then seems to require the full
calculation of gravitational perturbations to the second order, i.e. the self-force as
well as the finite size effect. Recently, significant progress has been made by Sorce
and Wald [17] who derived a second order variational identity relating variations of
total mass, charg, and angular momentum, and can work for general forms of falling
matter obeying the Null Energy Condition (NEC). In this way, they were able to
avoid solving the complicated dynamical problems of the in-falling matter involving
the self-force effect, and succeeded to show that the WCCC holds for the black
holes in Einstein-Maxwell theory, up to second-order variation of the black hole’s
mass, charge, and angular momentum. They also pointed out that Hubeny’s result
of WCCC violation no longer exists after taking care of the second-order variations.

Sorce andWald’s method of examining theWCCC provides a systematic framework
for general theories other than Einstein-Maxwell. Following their line of thoughts,
it is then particularly interesting to examine the WCCC in the low-energy effective
theories of gravity, and see how the additional terms in the action alters the proof
of WCCC. If WCCC turns out to be invalid for some theories, then by demanding
that WCCC must hold for black hole solutions in the classical limit, we may be
able to derive a bound for the coupling coefficients in the low-energy theory of
quantum gravity. Due to the AdS/CFT correspondence, it would also be interesting
to check the conjecture for asymptotically AdS black holes and give a holographic
description of the gendanken experiments in terms of thermodynamics of the dual
conformal field theory.

III. Searching for near-horizon quantum structures via gravitational-wave
echoes

The event horizon cannot be directly detected due to its teleological nature. Although
LIGO has made successful detections of gravitational waves from binary merger
events, we do not yet have a quantitative way of saying, in which sense, and to what
extent had we confirmed that these dark compact objects are black holes.

Because of the Black-Hole Information Paradox, and the singularity, many believed
thatGRmust bemodified to incorporate quantumeffects, and that suchmodifications
may affect black hole spacetimes. Many horizonless black hole mimickers have
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been proposed, including gravastars, 2-2 holes, boson stars, and so on. They are
commonly referred to as Exotic Compact Objects (ECOs). The idea of ECOs,
although speculative, have attracted a lot of recent interest.

If ECOs, instead of black holes, are the final products of compact binary mergers,
they will not completely absorb the gravitational waves that were propagating toward
the black hole’s horizon, but will instead lead to gravitational-wave echoes [18–29].
That is, GWs that propagate toward the ECO can be reflected by the ECO surface,
and bounce back and forth between the ECO’s gravitational potential barrier (at
the location of the light sphere) and the ECO surface. These echoes will then
become the smoking gun of modifications to relativity. Most notably, Abedi et al.
claimed to have found evidence of echoes in Advanced LIGO data after the first few
observed compact binary coalescence events [22, 30, 31]. Though the statistical
significance of their results was questioned [32–35]. Regardless of how much one
believes in ECOs, parametrizing gravitational echoes and searching for them will be
an important way to quantify how “black” the dark compact objects really are. As
we are approaching the stage of precision measurements with future GW detectors,
the echo program is promising in helping us understand the near-horizon quantum
structure of black holes.

In order to search for the near-horizon spacetime modifications, one needs to es-
tablish a template bank for gravitational-wave echoes. The numerical solution of
echo waveform can be obtained by solving the Teukolsky equation with a modified
near-horizon boundary. This boundary condition, is usually deemed less physical
due to the unknown physical meaning of “reflecting” the curvature perturbations
on the star surface. It will then be extremely helpful to have a true physical and
systematic framework to deal with the near-horizon boundary conditions, and solve
for the waves observed at infinity. This is the main goal of the third part of this
thesis.

Organization of the thesis

The thesis is divided into three parts, which approach the near-horizon physics
from three perspectives. Part I focuses on the enhanced symmetry group in the
near-horizon region of the near-extremal or extremal Kerr black holes. The rich
symmetry structure of the so-called NHEK or near-NHEK spacetime directly admits
the separation of variables in the linearized metric perturbation equations. Part II
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is about destroying the event horizon by throwing normal matter with mass, spin,
and charge into the black hole. If the overspinning or overcharging occurs, this
immediately means a violation of the weak cosmic censorship conjecture. Part
III goes about the instability issues with ECO models, and the method to search
for near-horizon modifications of spacetime by looking for the gravitational wave
echoes in the late-time part of the GW signals.

A more detailed overview of the thesis is as follows.

Chapter 2, separatingmetric perturbations in near-horizon extremalKerr, establishes
the framework for calculatingmetric perturbations in the near-horizon extremal Kerr
spacetime. In the general Kerr spacetime, the metric equations of motion are not
separable. After taking the near-horizon extremal limit in Kerr, the new spacetime
has two additional Killing vectors, and the isometry becomes SL(2,R) ×U (1). By
choosing the scalar, vector, and tensor bases adapted to the isometry group, it is
then not difficult to show that separation of variables can be achieved in NHEK
spacetime for the scalar, Maxwell, and metric perturbation equations. This work
was the result of a collaboration with Leo Stein and was published as Chen, B.,
Stein, L. (2017) Separating metric perturbations in near-horizon extremal Kerr,
Phys. Rev. D, 96 064017 [36].

Chapter 3, metric deformations from extremal Kerr black holes, is a direct appli-
cation of the method developed in Chapter 2, which gives two analytical perturbed
solutions deformed from NHEK in two string-inspired theories: Einstein-dilaton-
Gauss-Bonnet, and dynamical Chern-Simons theory. We find that the EdGB metric
deformation has a curvature singularity, while the dCS metric is regular. With the
analytical metric forms, properties of black holes like the orbital frequencies, hori-
zon areas, and entropies can be readily obtained. This demonstrates the power of the
framework developed in Chapter 2. This work was the result of a collaboration with
Leo Stein and was published as Chen, B., Stein, L. (2018) Deformation of extremal
black holes from stringy interactions, Phys. Rev. D, 97 084012 [37].

Chapter 4, gedanken experiments to destroy an extremal black hole: the first order
study, examines the weak cosmic censorship conjecture for the extremal charged
black hole in all possible generalizations of Einstein-Maxwell theory due to the
higher-order corrections, up to fourth-derivative terms. Provided the null energy
condition for the falling matter, the WCCC is preserved for all possible general-
izations. Moreover, up to first-order variations of black hole mass and charge,
WCCC is preserved for non-rotating extremal black holes in all n-dimensional
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diffeomorphism-covariant theories of gravity with one U (1) gauge field. This
work was the result of a collaboration with Bo Ning, Feng-Li Lin, and Yanbei
Chen, and was published as Chen, B., Lin, F., Ning, B. and Chen, Y. (2021)
Constraints on Low-Energy Effective Theories from Weak Cosmic Censorship,
Phys. Rev. Lett. 126 031102 [5].

Chapter 5, gedanken experiments to destroy a BTZ black hole: the second order
study, examines theweak cosmic censorship conjecture for the BTZ black holes up to
second-order variations of black holemass. Unlike inChapter 4, the discussions only
work in first order and only consider the asymptotically flat black hole solutions,
this chapter focuses on BTZ black holes, which are vacuum solutions to (2+1)-
dimensional gravity theories, and are asymptotically AdS3. The BTZ solution is
interesting in its own right due to the AdS/CFT correspondence. By showing that
BTZ black holes cannot be overspun or overcharged by throwing normal matter into
the event horizon, one also confirms that a third law of thermodynamics holds for
the holographic conformal field theories dual to three-dimensional Einstein gravity
and chiral gravity. This work was the result of a collaboration with Bo Ning and
Feng-Li Lin, and was published as Ning, B., Chen, B., and Lin, F. (2019) Gedanken
Experiments to Destroy a BTZ Black Hole, Phys. Rev. D, 100 044043 [3].

Chapter 6, instability of exotic compact objects and implications for echoes, goes
about exploring the phenomenology related to the gravitational-wave echoes. By as-
suming the exterior spacetime of an exotic compact object is spherically-symmetric,
the hoop conjecture implies that the energy carried by gravitational waves may
cause the event horizon to form out of a static ECO—leaving no echo signals to-
wards spatial infinity. Demanding that an ECO does not collapse into a black hole
then puts a upper bound on the compactness of the ECO. This work was the result
of a collaboration with Chen, Y., Ma, Y., Lo, K. and Sun, L [4].

Chapter 7, tidal response and near-horizon boundary conditions for spinning ECOs,
approaches the problem of how to set up the physical boundary conditions near
the “would-be” horizon for incoming gravitational waves towards exotic compact
objects. In Kerr spacetime, imposing regularity conditions on the curvature pertur-
bations on the future (past) horizon corresponds to imposing an in-going (out-going)
wave boundary condition. These correspondences, however, do not exist for ECOs.
By considering a family of zero-angular-momentum fiducial observers (FIDOs) that
float right above the horizon of a linearly perturbed Kerr black hole, one can set
up a physical boundary condition near horizon using the ECO’s tidal response in
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the FIDO frame. This then provides a new framework for calculating the waveform
of the gravitational-wave echoes. This work was the result of a collaboration with
Chen, Y., and Wang, Q. and was published as Chen, B., Wang, Q. and Chen, Y.
(2021) Tidal response and near-horizon boundary conditions for spinning exotic
compact objects, Phys. Rev. D, 103 104054 [6].



Part I

Near-horizon symmetries and
black hole perturbations

9
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C h a p t e r 2

SEPARATING METRIC PERTURBATIONS IN NEAR-HORIZON
EXTREMAL KERR

Linear perturbation theory is a powerful toolkit for studying black hole spacetimes.
However, the perturbation equations are hard to solve unless we can use separation of
variables. In the Kerr spacetime, metric perturbations do not separate, but curvature
perturbations do. The cost of curvature perturbations is a very complicated metric-
reconstruction procedure. This procedure can be avoided using a symmetry-adapted
choice of basis functions in highly symmetric spacetimes, such as near-horizon
extremal Kerr. In this chapter, we focus on this spacetime, and (i) construct the
symmetry-adapted basis functions; (ii) show their orthogonality; and (iii) show that
they lead to separation of variables of the scalar, Maxwell, and metric perturbation
equations. This separation turns the system of partial differential equations into one
of ordinary differential equations over a compact domain, the polar angle.

2.1 Introduction
Linear metric perturbation theory is widely used in studying weakly-coupled grav-
ity [38]. For example, it can be applied to investigating the stability of black holes,
gravitational radiation produced bymaterial sourcesmoving in a curved background,
and so on. In the context of linearized gravity, the equations that describe gravita-
tional perturbations are the linearized Einstein equations (LEE). Although they are
linear, the LEE are still difficult to solve unless we can separate variables. In the
Kerr spacetime, while in Boyer-Lindquist (BL) coordinates t and φ can be separated,
r and θ remain coupled due to lack of symmetry [39].

A successful approach towards separating wave equations for perturbations of the
Kerr black hole was first developed by Teukolsky [40, 41]. Instead of looking at
metric perturbations, Teukolsky adopted the Newman-Penrose (NP) formalism [42]
and obtained a separable wave equation for Weyl curvature tensor components
Ψ0 and Ψ4. The spin-weighted version of this equation, known as the Teukolsky
equation, not only works for gravitational perturbations, i.e. tensor fields, but can
also be applied to scalar, vector, and spinor fields. To obtain the other Weyl
scalars and recover the perturbed metric, one has to go through a complicated
metric reconstruction procedure. The methods were independently developed by
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Chrzanowski [43] and byCohen andKegeles [44], inwhich they obtain the perturbed
metric via an analogue of Hertz potentials. However, these methods only apply to
certain gauge choices and vacuum or highly-restricted source terms [45].

The desire for separable equations, the complication of metric reconstruction along
with gauge- and source-restrictions, motivate us to try to develop a new formalism for
studying metric perturbations in the Kerr spacetime, in a covariant, gauge-invariant
way.

The metric perturbation equation may not be separable in Kerr, but Schwarzschild
perturbations have long been known as separable due to the time translation in-
variance and spherical symmetry [46–49]. The gauge-independent language of
Schwarzschild perturbationswas started by Sarbach andTiglio [50], andwas brought
to fruition byMartel and Poisson [51]. In the Schwarzschild background, metric per-
turbations are expanded in scalar, vector, and symmetric tensor spherical harmonics.
These basis functions naturally lead to separation of variables in the LEE.

Schematically, the separation of variables in some differential equations of motion,
such as the scalar wave equation, Maxwell’s equations, and the linearized Einstein
equations, can all be understood via

Dx
[(symmetry

adapted
basis

)
×

(dependence
on rest of
coordinates

)]
=

(symmetry
adapted
basis

)
×Dx′

[dependence
on rest of
coordinates

]
.

Here Dx[·] is some isometry-equivariant differential operator. If the argument is
decomposed in a natural isometry-adapted basis, then these basis functions pull
straight through the differential operator, leaving new operators Dx′[·] which only
act on the remaining non-symmetry coordinates.

We show that this type of reduction is true for a special limit of Kerr spacetime:
the near-horizon extremal Kerr (NHEK). This spacetime was introduced in [13]
as an analogue of AdS2 × S2. The NHEK limit exhibits a symmetry group that
is “enhanced” relative to Kerr: the spacetime has four Killing vector fields that
generate the isometry group SL(2,R) ×U (1). The three-dimensional orbit space of
the isometry reduces the system of partial differential equations (PDEs) to one of
ordinary differential equations (ODEs), leading to separable equations of motion.
This is achieved by expanding unknown tensors into some basis functions adapted to
the isometry. In this paper, we (i) construct these basis functions, (ii) prove orthogo-
nality in geodesically-complete coordinates, and (iii) show separation of variables in
the differential equations for some physical systems. With these accomplishments,
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we arrive at a new formalism to deal with (extremal) Kerr perturbation that differs
from using metric reconstruction on solutions to the Teukolsky equation. In this
formalism there will be no gauge preference, no complications of solving PDEs,
but rather only ODEs. This greatly reduces the amount of work while studying
perturbations of extremal Kerr black holes, whether in GR or beyond-GR theories.

We organize the chapter as follows. In Sec. 3.3we review theNHEK limit of theKerr
black hole, and elaborate on the structure of NHEK’s isometry Lie group SL(2,R)×
U (1). In Sec. 2.3, we construct the highest-weight module for NHEK’s isometry
group, and obtain the scalar/vector/symmetric tensor basis functions. In Sec. 2.4
we present a proof of orthogonality for the basis functions in global coordinates.
In Sec. 2.5 we show that with these bases, we can separate variables in the scalar
Laplacian, Maxwell system, and linearized Einstein equation. Finally we conclude
and discuss future work in Sec. 3.6.

2.2 Kerr and the NHEK limit
In this paper we choose geometric units (G = c = 1) and signature (−+ ++) for our
metric g on the spacetime manifoldM. A rotating, asymptotically-flat black hole
in vacuum general relativity is described by the Kerr metric [52]. For simplicity we
will set the mass to M = 1. In BL coordinates (t, r, θ, φ) the line element of the Kerr
black hole is given by [53]

ds2 = −
∆

Σ
(dt − a sin2 θ dφ)2 +

Σ

∆
dr2 + Σ dθ2 +

sin2 θ

Σ

[
(r2 + a2) dφ − a dt

]2
,

(2.1)

where ∆ = r2−2r +a2 and Σ = r2+a2 cos2 θ. The ranges of the BL coordinates are
given by t ∈ (−∞,+∞), r ∈ (0,+∞), θ ∈ [0, π], φ ∈ [0, 2π). In this paper we focus
on a particular scaling limit of Kerr. This limit is usually described by the scaling
coordinates (T,Φ, R) introduced in [13], which are related to the BL coordinates via

t =
2T
λ
, φ = Φ +

T
λ
, r = 1 + λR . (2.2)

We also introduce a new coordinate u for the polar angle via u = cos θ. The NHEK
limit is then obtained by taking the (a → M, λ → 0) limit of the Kerr metric in
these coordinates, which yields the line element

ds2 = 2Γ(u)
[
− R2 dT2 +

dR2

R2 +
du2

1 − u2 + Λ(u)2(dΦ + R dT )2
]
, (2.3)

where Γ(u) = (1 + u2)/2 and Λ(u) = 2
√

1 − u2/(1 + u2). This metric is interpreted
on the region T ∈ (−∞,+∞), Φ ∈ [0, 2π), R ∈ (0,+∞), u ∈ [−1, 1].



13

From now on we will refer to (T,Φ, R, u) as Poincaré coordinates. The T, R-
coordinates of NHEK are similar to the Poincaré coordinates on the two-dimensional
anti-de Sitter space AdS2, which only cover a subspace of the global spacetime called
the Poincaré patch. In particular, the u = ±1 submanifolds are both precisely AdS2.
We can make this metric geodesically complete by defining the global coordinates
(τ, ϕ, ψ, u) according to [13]

T =
sin τ

cos τ − cosψ
, R =

cos τ − cosψ
sinψ

, (2.4)

Φ = ϕ + ln
�����
cos τ − sin τ cotψ

1 + sin τ cscψ

�����
,

where τ ∈ (−∞,+∞), ψ ∈ [0, π], ϕ ∼ ϕ + 2π. The NHEK metric in global
coordinates is

ds2 = 2Γ(u)
[
(−dτ2 + dψ2) csc2 ψ +

du2

1 − u2 + Λ(u)2(dϕ − cotψ dτ)2
]
. (2.5)

The NHEK spacetime has four Killing vector fields (KVFs), which generate the
isometry group G ≡ SL(2,R) ×U (1). The four generators in Poincaré coordinates
are given by

H0 = T ∂T − R ∂R, (2.6)

H+ = ∂T,

H− = (T2 +
1
R2 ) ∂T − 2 T R ∂R −

2
R
∂Φ,

Q0 = ∂Φ.

H0 is the infinitesimal generator of dilation, which leaves the metric invariant under
R → cR and T → T/c for some constant c ∈ (0,+∞). Q0 is the generator of
the rotation along Φ which generates the U (1) group. H+ is the time translation
generator inherited from Kerr. The four generators form a representation ρP of the
Lie algebra g ≡ sl(2,R) × u(1),

[H0 , H±] = ∓H± , (2.7)

[H+ , H−] = 2 H0 ,

[Hs ,Q0] = 0 . (s = 0,±)
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In global coordinates, we can similarly obtain four (different) generators that are
KVFs of the NHEK spacetime,

L± = ie±iτ sinψ(− cotψ∂τ ∓ i∂ψ + ∂ϕ), (2.8)

L0 = i∂τ,

W0 = −i∂ϕ.

This is a different representation, ρg. But since it is still a Lie algebra representation,
they satisfy the same commutation relations as in Eq. (3.18) with all H’s replaced
by L’s, and Q0 replaced W0.

We say that the group G acts on the manifold M by translation, G 	 M. That
is, every element g ∈ G determines an isomorphism φg : M → M, and these
isomorphisms, under composition, form a representation of the group G. There is
an induced action on the space of functions/vector fields/forms/tensors/etc. living
onM by pullback under the map φg [54]. We call the pullback φ∗g, overloading this
symbol to mean the pullback from sections of any tensor bundle to itself. In this
way, the group also acts on all spaces of (p, q)-tensors.

Studying the neighborhood of the identity e ∈ G, we get the induced action of the
Lie algebra g on these same tensor bundles. The infinitesimal version of a pullback
of a tensor field is the Lie derivative of that field [54]. Thus the induced action of
g on tensors is Lie derivation along the representation of the Lie algebra element.
That is, given a representation as tangent vector fields ρ : g → X(M), for some
algebra element α ∈ g, the induced action of α on a tensor t is via the Lie derivative,

α · t = Lρ(α)t . (2.9)

One of the crucial algebra elements we will need is the Casimir element of the
sl(2,R) factor. Let h0, h± ∈ g be the algebra elements whose representations are
ρP(hs) = Hs for s = 0,±. Then the Casimir element of the sl(2,R) factor, in this
basis, is proportional to

Ω ≡ h0(h0 − 1) − h−h+ , (2.10)

which commutes with every element of g. Under the Poincaré-coordinates repre-
sentation ρP, the Casimir acts on tensors via

Ω · t =
(
LH0 (LH0 − id) − LH−LH+

)
t . (2.11)
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By construction, the differential operator on the right-hand side of Eq. (2.11) com-
mutes with LX , where X is one of {H0, H±,Q0}. Similarly, under the global-
coordinates representation ρg, the Casimir acts as in Eq. (2.11), but with H’s
replaced with L’s; and this operator will similarly commute with LX where X is
one of {L0, L±,W0}.

2.3 The highest- (lowest-) weight method
In this section we construct the scalar, vector, and symmetric tensor bases for
NHEK’s isometry group SL(2,R) ×U (1). First we briefly review the formalism of
finding basis functions adapted to the isometry group in Schwarzschild spacetime.
By drawing analogy to the Schwarzschild case and further utilizing the highest-
(lowest-)weight method for non-compact groups, we will be able to construct unitary
representations of NHEK’s isometry group.

Review: Unitary representations of SO(3) in Schwarzschild
The full spacetime manifold of Schwarzschild spacetime isMSch = M2 × S2. The
two-dimensional submanifold M2 is the (t̄, r̄)-plane, and S2 is the unit two-sphere
coordinated by (θ̄, φ̄). Here (t̄, r̄, θ̄, φ̄) are the usual Schwarzschild coordinates. Part
of the isometry group of Schwarzschild is SO(3), which acts on the S2 factors. The
three generators of the group are simply the rotations along each Cartesian axis,
i.e. Jx, Jy, Jz ∈ so(3). The Casimir operator of so(3) is given by J2 = J2

x + J2
y + J2

z .

In any space that SO(3) acts upon, we can look for bases of functions which
simultaneously diagonalize J2 and Jz—that is, they are eigenfunctions of both
operators. In the space of complex functions on the unit sphere, these eigenfunctions
turn out to be the spherical harmonic functions Y µ,ν, where µ, ν label the functions
(they are not tensor indices). The even/odd parity vector harmonics, Y µ,ν

A , X µ,ν
A ,

and tensor harmonics, Y µ,ν
AB , X µ,ν

AB , are also simultaneous eigenfunctions of J2 and Jz

(where now A, B are (co-)tangent indices on S2). All of the scalars, vectors, and
tensors here have eigenvalue −µ(µ + 1) for the operator J2, and eigenvalue iν for
Jz.

Under any rotation, scalar spherical harmonics with different values of µ may not
rotate into each other. In this sense, the function space has been split up into diagonal
blocks labeled by µ. We say that each µ block “lives in” or “transforms under” a
representation of SO(3).

Wehave not yet imposed regularity or tried tomake these representations unitary. Let
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us define the raising and lowering operators J± = Jx ± i Jy, which increase/decrease
the ν index (eigenvalue of −i Jz) by one. A highest-weight state is one which is
annihilated by the raising operator, J+ f = 0, and similarly a lowest-weight state
is annihilated by the lowering operator. For spherical harmonics, we find that
the highest-weight condition imposes that ν = µ, and Y µ,µ is annihilated by J+.
Similarly, the lowest-weight condition imposes that ν = −µ.

From the representation theory of compact simple Lie groups, irreducible unitary
representationsmust be finite-dimensional [55]. Therefore, if we start with a highest-
weight state Y µ,µ, after a finite number of applications of the lowering operator, we
must end on a lowest-weight state Y µ,−µ. This gives us the condition that 2µ + 1 is
a positive integer, or µ = 0, 1

2, 1, . . .. Periodicity in the azimuthal angle φ̄ gives the
condition that ν must be an integer m. This gives the ordinary spherical harmonics
Y l,m. The same arguments apply to the vector and tensor representations.

Since these bases are adapted to the isometry group of Schwarzschild, they readily
lead to a separation of variables in the linearized Einstein equations [51].

Unitary representations of SL(2,R) ×U (1) in NHEK
We now apply the highest-/lowest-weight formalism to NHEK. In the Schwarzschild
spacetime, the orbit space of the isometry SO(3) is S2, therefore we expect a 2 + 2
decomposition of the whole manifold. Similarly, in the NHEK spacetime, the
isometry group SL(2,R) ×U (1) acts on the three-dimensional hypersurfaces Σu of
constant polar angle θ (or u). This enables us to perform a 3 + 1 decomposition
of the spacetime. In both cases, we can simultaneously diagonalize some algebra
elements, including the Casimir, in various tensor spaces.

However there is an important difference between the two spacetimes. In the
NHEK case, we encounter the non-compact group SL(2,R). It is known that for
non-compact simple Lie groups like SL(2,R), the only irreducible unitary finite-
dimensional representation is the trivial representation [55]. As a result, one can find
two distinct unitary representations of SL(2,R) ×U (1): the highest-weight module
or the lowest-weight module. Both of them are infinite-dimensional representations
in the NHEK case. For compact groups like SO(3), these two modules coincide.

Our method to find the general (scalar, vector, and symmetric tensor) basis func-
tions ξ associated with the highest-weight module of NHEK’s isometry can be
summarized into four steps. Notice that the method presented here is not restricted
to NHEK spacetime. For instance it can also be applied to finding the basis func-
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tions in near-horizon near-extremal Kerr (near-NHEK) which has the same isometry
group as NHEK’s [56]. This will be left for future work. For readers who are more
interested in what the bases of NHEK’s isometry look like either in Poincaré or
global coordinates, the explicit expressions are given in App. 2.7.

Orbit space. For each point p ∈ M, there is the orbit Gp = {φg (p) |g ∈ G}, all
points which are related to p by an SL(2,R) ×U (1) transformation. Gp is a three-
dimensional submanifold ofM, and the collection of all the orbit spaces forms a
foliation. In this case, each leaf Σu is a surface of constant θ (or u). Thus we can
perform a 3 + 1 decomposition of the spacetime, and look for basis functions of
SL(2,R) ×U (1) acting on a hypersurface Σu.

Highest-weight states. Second, we simultaneously diagonalize {LQ0,LH0,Ω} in
the space of scalar, vector, and symmetric tensor functions. We label the eigenstates
by m, h, k respectively,

LQ0 ξ
(m h k) = im ξ (m h k) , (2.12)

Ω ξ (m h k) = h(h + 1) ξ (m h k) ,

LH0 ξ
(m h k) = (−h + k) ξ (m h k) .

Then using the raising operator LH+ , we also impose the highest-weight condition,
k = 0,

LH+ ξ
(m h 0) = 0 . (2.13)

The solutions ξ (m h 0) that satisfy both Eq. (2.12) and (2.13) are the highest-weight
basis functions. At each point on Σu, the spaces of scalars, vectors, and symmetric
tensors have dimensions 1, 3, and 6. Thus the space of solutions of this system
of equations is a linear vector space of dimension 1, 3, and 6 for scalars, vectors,
and symmetric tensors, for each choice of (m, h). Correspondingly, for each (m, h),
there will be 1, 3, and 6 free coefficients cβ for the solution, with β ranging over the
appropriate dimensionality.

Descendants. Next, we obtain basis functions with arbitrary weight by applying
the lowering operator LH− to the highest-weight states k times, i.e.

ξ (m h k) = (LH− )k ξ (m h 0) . (2.14)
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Lifting to the whole manifold. Finally, we promote the basis functions living on
Σu to functions living on the whole manifoldM by sending all unknown constant
coefficients cβ (from the end of step b) to be unknown smooth functions cβ (u).
While lifting the vector and tensor bases from Σu toM, i.e. Vi → Va and Wi j →

Wab, we also set all their projections on the u direction to be zero, i.e. Vu = 0,
Wiu = Wui = Wuu = 0.

To obtain the basis functions in global coordinates, one just replaces Hs by Ls,
where s = 0,±, and Q0 by iW0 in steps b and c. To construct the lowest-weight
modules of NHEK’s isometry group, one should instead impose the lowest-weight
condition LH− ξ

(m h 0) = 0, and the condition Ω ξ (m h k) = h(h − 1) ξ (m h k), in step
b. All descendant states will then be obtained by applying the raising operator
LH+ on the lowest-weight states. In Poincaré coordinates, we focus on the basis
functions that form the highest-weight module because their expressions are simpler.
In global coordinates, we show both representations explicitly in App. 2.7 and 2.7.
Unless otherwise specified, our basis functions will refer to those obtained using the
highest-weight method.

Let us remark on the allowed values of m, h, k. It is straightforward to see k ∈ Z+ by
construction, and m ∈ Z due to the periodic boundary conditions for the azimuthal
angle. In order to have a unitary representation of the isometry group, there are
conditions on h as well. For the scalar case, for instance, if we apply the raising
operator on a scalar in the highest-weight module, we get

LH+ F (m h k) = k (k − 1 − 2h) F (m h k−1) . (2.15)

A nontrivial unitary representation of NHEK’s isometry group then requires k −1−
2h , 0, otherwise there would be a lowest-weight state that would lead to a finite-
dimensional (and hence non-unitary) representation. The same conclusion holds for
either the vector or the tensor bases. The values of h also depend on the regularity
conditions we impose. For instance, in global coordinates, the highest-weight scalar
basis is proportional to

F (m h 0) ∝ (sinψ)−h exp[i(hτ + mϕ) + mψ]. (2.16)

Regularity at the boundaries ψ = 0 and ψ = π requires h ≤ 0. Another example is
given in Sec. 2.5 when we solve for the free massless scalar wave equation in the
NHEK spacetime, where h must take on some fixed values due to the regularity
conditions for spheroidal harmonics.
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2.4 Orthogonality in global coordinates
In this section we present a proof that all the scalar, vector, and symmetric tensor
basis functions of NHEK’s isometry group, when given in global coordinates, form
orthogonal basis sets. In this proof we will use the vector basis functions defined on
Σu as an example. That is, they are functions of τ, ϕ, ψ. As we shall see, lifting to
the whole manifoldM and extending the proof to the scalar and symmetric tensor
cases will be straightforward.

Let us introduce the metric induced on the hypersurface Σu as γi j , and D is the
unique torsion-free Levi-Civita connection that is compatible with γ. Here Latin
letters in the middle of the alphabet (i, j, k) denote three-dimensional tangent indices
on Σu. Consider the vector basis function u(m h k) (τ, ϕ, ψ) and v(m′ h′ k ′) (τ, ϕ, ψ). We
would like to show bases with different m, h, k are orthogonal,

〈u, v〉 ≡
∫
Σu

dVol u(m h k)
i vi

(m′ h′ k ′) ∝ δm,m′δh,h′δk,k ′ . (2.17)

Here the overbar denotes complex conjugation, and the volume element is given by∫
Σu

dVol = lim
T→∞

∫ T

−T
dτ

∫ 2π

0
dϕ

∫ π

0
dψ
√
−γ , (2.18)

where γ is the determinant of the three-dimensional metric, and in these coordinates
√
−γ = 2 csc2 ψ

√
1 − u4. To prove Eq. (2.17) we first note the basis components

v (m h k)
j in global coordinates have the τ and ϕ dependence,

v (m h k)
j ∼ exp (imϕ) exp [i(h − k)τ]. (2.19)

This dependence on τ and ϕ is the same for the scalar and tensor basis components.
Once we integrate over ϕ and τ in Eq. (2.17), the integral will be proportional to
δm,m′δh−k,h′−k ′. Notice that the boundaries τ → ±∞ are oscillatory, so the τ integral
needs to be regulated in the same way as Fourier integrals.

Now we only need to show bases with different weight k are orthogonal. Once
this is done we will recover Eq. (2.17). For simplicity, from now on we only track
the k-index in the vector bases. Recall that we obtain the lower weight bases by
applying the lowering operator order by order,

〈u(k), v(k ′)〉 = 〈u(k),LL−v
(k ′−1)〉 . (2.20)
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Now we try to “integrate by parts” with the Lie derivative,

〈u(k),LL−v
(k ′−1)〉 =

∫
Σu

LL−

(
u(k)

i vi
(k ′)

)
dVol − 〈LL−u

(k), v(k ′−1)〉, (2.21)

=

∫
Σu

LL−

(
u(k)

i vi
(k ′)

)
dVol + 〈LL+u

(k), v(k ′−1)〉, (2.22)

where in the last line we used the fact that L+ = −L−. Note that this relationship does
not hold between H±, so this type of proof will not work in Poincaré coordinates.

We would like to discard the first term on the RHS of Eq. (2.21), which would
show that LL+ and LL− are adjoints of each other. We can do this by converting
the Lie derivative into a covariant derivative and then a total divergence. Since L±
are KVFs, they are automatically divergence-free, so we can pull them inside the
covariant derivative:∫
Σu

dVolLL−

(
u(k)

i vi
(k ′)

)
=

∫
Σu

dVol L j
−D j

(
u(k)

i vi
(k ′)

)
=

∫
Σu

dVol D j

(
L j
−u(k)

i vi
(k ′)

)
.

(2.23)
This step is identical ifwe are considering scalars/vectors/tensors, since the argument
of the Lie derivative has all indices contracted. Using Stokes’ theorem, the integral
of the total derivative becomes a boundary integral, evaluated at ψ = 0, π. This
boundary contribution vanishes for h < −1 in the highest-weight module. To see
this, one must count the powers of sinψ which depends on h (see App. 2.7), and
take into account the volume element’s contribution, √−γ ∝ (sinψ)−2.

We repeat the procedure of extracting lowering operators from the ket as inEq. (2.21),
and arrive at

〈u(k), v(k ′)〉 = 〈
(
LL+

) k ′ u(k), v(0)〉 . (2.24)

Recall that the vector basis terminates at the highest weight. Therefore when
k′ > k,

(
LL+

) k ′ u(k) will vanish. Similarly when k′ < k, we can extract all lowering
operators from the bra and raise the weight of the states in the ket, which will
terminate upon raising the highest-weight state. Therefore the vector bases with
different weights k, k′ are orthogonal.

Since we have also proved that vector bases with different m and h−k are orthogonal,
the proof of orthogonality for vector bases is done. It may not be obvious that the
proof holds unaltered for scalars/vectors/tensors. In all the relevant steps above, we
have noted where each argument works for each of the three types of fields.

Therefore we arrive at the conclusion that the scalar, vector, and symmetric tensor
bases in global coordinates form orthogonal basis sets. �
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2.5 Separation of variables
In this section we show that with the scalar, vector, and tensor bases we have
obtained, it is possible to separate variables for many physical systems in NHEK
spacetime. One can show that all conclusions in this section hold for both Poincaré
coordinates and global coordinates. In global coordinates the results are in general
more complicated. Therefore for concreteness all results in this section are given in
Poincaré coordinates.

The main result of this section can be summarized with the schematic equation:

Dx



(
SL(2, R) ×U (1)

structure
(T, Φ, R)

) (m,h,k)

×
(
u (or cos θ)
dependence

)
=

(
SL(2, R) ×U (1)

structure
(T, Φ, R)

) (m,h,k)

× D
(m,h)
u

[
u (or cos θ)
dependence

]
.

Here,Dx is an SL(2,R)×U (1)-equivariant differential operator, which takes deriva-
tives in the T,Φ, R, u directions. We completely specify the T,Φ, R dependence by
being in a certain irreducible representation (irrep) of SL(2,R) ×U (1) labeled by
(m, h, k). Then the SL(2,R)×U (1) structure factors straight through the differential
operator Dx , leaving a new differential operator D (m,h)

u which only takes u deriva-
tives. This greatly simplifies computations, since the partial differential equations
have been converted into ordinary differential equations (ODEs). Because of the
SL(2,R) × U (1)-invariance, notice that D (m,h)

u only depends on m and h, which
label the irrep, and not on k, which labels the descendant number within the irrep.

Covariant differentiation preserves isometry group irrep labels
Let us first make a general statement about how the presence of a group of isome-
tries acting on the manifold can be useful in separation of variables. The conclu-
sions obtained in this subsection will also justify our motivations of finding group
representations for NHEK’s isometry. Consider a manifold M with metric gab,
metric-compatible connection ∇, and an isometry Lie group G acting on the man-
ifold. Let α(i) ∈ g be a basis for the Lie algebra, with representation {X(i)} on the
manifold. Further, let c(i)( j) be the inverse of the Killing form of the Lie algebra in
this basis [55]. Then we also have a quadratic Casimir element, which acts on any
tensor t as

Ω · t ≡
∑
i, j

c(i)( j)LX(i)LX( j) t . (2.25)
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Irreps ofG will be labeled by eigenvalues λi of some of the KVFs, and the eigenvalue
ω of the Casimir Ω.

First, we need a lemma on the commutation relation of manifold isometries and
covariant derivatives, [

LX(i),∇a
]

t = 0, (2.26)

where t can be a scalar, vector, or tensor. To prove Eq. (2.26), one can start by
showing the commutation relations for t being a 0-form (which follows immediately
from Cartan’s magic formula for a 0-form) and a one-form, then use the Leibniz
rule to generalize the relations to the vector and tensor cases. Eq. (2.26) says that
the operator ∇a is SL(2,R) ×U (1) equivariant: that is, its action commutes with
left-translation by the group [54].

An important consequence of the commutation relation Eq. (2.26) is that the Casimir
element Ω of the algebra g also commutes with the covariant derivative. Simply
commute each Lie derivative one at a time, and the coefficients c(i)( j) are constants.
As a result,

[Ω,∇a] t = 0. (2.27)

Now consider a tensor t living in an irrep with labels λi and ω, meaning

LX(i) t = λit , (2.28)

Ω · t = ωt . (2.29)

As an immediate consequence of Eq. (2.26) and Eq. (2.27) is that ∇t has the same
labels λi and ω,

LX(i)∇t = λi∇t , (2.30)

Ω · ∇t = ω∇t . (2.31)

Thus any linear differential operatorwhich is built just from∇a and themetric gab can
not mix tensors with different irrep labels (λi, ω). This even extends to differential
operators which include the Levi-Civita tensor ε and the Riemann tensor Rabcd ,
because these two objects are also annihilated by all of the LX(i) . As a result, when
tensors are decomposed into a sum over irreps with different labels, they will remain
separated in the same ways under this type of differential operator. This is the
underlying reason why the method of finding the unitary irreps of NHEK’s isometry
introduced in Sec. 2.3 will lead to separation of variables in many physical systems.
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Scalar Laplacian
As the first example, we look at the massless scalar wave equation �ψ = S in NHEK
space time, where S is a source term (including a mass term also works). Since
the scalar d’Alembert operator � ≡ ∇a∇a is built only from gab and ∇a, it should
commute with Ω and LX where X is any KVF. To show this explicitly, note that in
Poincaré coordinates, �ψ can be written as

�ψ =
1

2Γ(u)

{
(Ω + Ξ(u)L2

Q0
)ψ + L∂u

[
(1 − u2)L∂uψ

] }
, (2.32)

where Ξ(u) ≡ Λ(u)−2 − 1.

Assume we can decompose an arbitrary scalar field ψ(T, Φ, R, u) according to

ψ =
∑
mhk

Cmhk (u)F (m h k) (T, Φ, R) (2.33)

=
∑
mhk

ψmhk (T, Φ, R, u),

where F is the scalar basis on Σu and Cmhk are some unknown functions of
u. We also decompose the source term using the scalar basis functions via
S =

∑
mhk Smhk F (m h k). The basis functions F (m h k) are eigenfunctions of Ω and

LQ0 , and so ψmhk are also eigenfunctions. Therefore it is straightforward to see that
the (T,Φ, R)-dependence in ψmhk is invariant after applying the scalar box operator.
The equation for a specific mode labeled by (m, h, k) becomes

Smhk F (m h k) = �(m,h)ψmhk =
1

2Γ(u)
× (2.34)

×

{
[h(h + 1) − m2

Ξ(u)]ψmhk + L∂u

[
(1 − u2)L∂uψmhk

] }
.

This entire equation is proportional to the basis function F (m h k), which can thus be
divided out, leaving an ODE for one function, Cmhk (u).

Specializing to the homogeneous (source-free) case, we find the ODE

d
du

[
(1 − u2)

d
du

Cmhk

]
+

[
h(h + 1) − Ξ(u)m2

]
Cmhk = 0 . (2.35)

This equation has two regular singularities u = ±1 and an irregular singularity of
rank 1 at u = ∞, which falls into the class of confluent forms of Heun’s equation [57].
Explicitly, it is a spheroidal differential equation, whose standard form is

d
du

(
(1 − u2)

dϕ
du

)
+

(
λ + γ2(1 − u2) −

µ2

1 − u2

)
ϕ = 0, (2.36)
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where we have made the substitution λ = h(h+1)+2m2, γ2 = −m2/4 and µ2 = m2.
When γ = 0, Eq. (2.36) reduces to the Legendre differential equation and the
solutions are Legendre polynomials. Being second order, the space of solutions is
two dimensional,

ϕ(u) = a1S(1)
nµ (γ, u) + b1S(2)

nµ (γ, u). (2.37)

A solution that is regular at u = ±1 only exists for eigenvalues λ = λm
n (γ2), where

µ = m = 0, 1, 2, . . . , and n = m,m + 1,m + 2, . . .. Thus, there are only discrete
values of the irrep label h which satisfy regularity at the poles u = ±1.

Maxwell system
Let’s look at another system of physical importance, the Maxwell system, and
verify that we can separate variables in Maxwell’s equations (the Proca equation—
i.e. adding a mass term—works as well). The inhomogeneous Maxwell equations
in the presence of a source vector field J are

∇aFab = Jb, (2.38)

where the electromagnetic tensor F is built from the vector potential A according
to

Fab = ∇a Ab − ∇b Aa . (2.39)

We again assume that we can expand the vector potential in the scalar and vector
bases. Define a one-form na = du, this expansion is given by

Aa =
∑
mhk

*
,
Cu(u)naF (m h k) +

∑
B

CB (u)V B
a

(m h k)+
-
, (2.40)

where B ∈ {T,Φ, R}, CB (u) and Cu(u) are unknown functions of u. Notice that B

is not a tensor index. It is the label of a specific choice of vector bases and their
corresponding unknown C-functions. The expression of F (m h k) and the projection
of V B

a
(m h k) onto Σu, i.e. V B

i
(m h k) are both given in App. 2.7. Then at the highest

weight k = 0, the left-hand side of Maxwell’s equation can be rewritten as

∇aFab |k=0 = D
(m,h)
u [C(u)]nbF (m h 0) (2.41)

+
∑

B

D
(m,h)
B [C(u)]V B(m h 0)

b ,

where we have collected the four C-functions into the vector C(u), and defined the
general differentiation as D (m,h)[C(u)], whose expressions are given in App. 2.7.
As long as the source field can also be decomposed using the scalar and vector
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bases, the inhomogeneous Maxwell equations in NHEKwill reduce to four ordinary
differential equations with four unknown C-functions. Although we only show this
is true for the highest-weight case, this conclusion holds for any k. This is due to the
commutation of the lowering operator and the covariant differentiation. For explicit
calculations of Maxwell’s system using the highest-weight vector basis we refer our
readers to [58, 59].

Linearized Einstein system
In this subsection we show that we can separate variables on the left hand side of
linearized Einstein equation, using our scalar, vector, and tensor bases for NHEK.
Consider the metric perturbation g′ab = gab + εhab +O(ε2), where gab is the NHEK
metric and hab is a perturbation. The linearized Einstein equations (i.e. at order ε1)
are

G(1)
ab [h] = 8πTab , (2.42)

where Tab is the stress-energy tensor of a source term. The linearized Einstein
operator G(1)[h] can be written in terms of the background covariant derivative ∇
as

−2G(1)
ab [h] = �hab + gab∇

c∇d hcd − 2∇c∇(ahb)c

− gabRcd hcd + R hab , (2.43)

where hab = hab −
1
2gabg

cd hcd is the trace-reverse of hab, Rab is the background
Ricci curvature, R is the background Ricci scalar, and parentheses around n indices
means symmetrizing with a factor of 1/n!. This operator, again, is SL(2,R) ×U (1)
equivariant.

We assume that we can expand the metric perturbation in our scalar, vector, and
tensor bases, according to

hab =
∑
mhk

h(m h k)
ab =

∑
mhk

(
nanbF (m h k)Cuu(u) (2.44)

+
∑

B

2n(aV B(m h k)
b) CuB (u) +

∑
A,B

W AB(m h k)
ab CAB (u)

)
,

where A, B ∈ {T,Φ, R}, Cuu,CuB,CAB are unknown functions of u. Notice that A

and B are not tensor indices but only labels of a specific choice of the vector and
tensor bases (introduced in App. 2.7 and 2.7) and their corresponding unknown
C-functions. Thus there are no differences between a subscript and a superscript
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A or B. We choose the three highest-weight vector bases V B(m h 0)
b and the six

highest-weight tensor bases W AB(m h 0)
ab such that the metric perturbation with k = 0

can be written as Eq. (2.45). We substitute the highest-weight metric perturbation
into the left-hand side of the linearized Einstein equation and the result is given by
Eq. (2.47).

h(m h 0)
ab = RheimΦ



R+2CTT (u) R+1CTΦ(u) R+0CT R(u) R+1CuT (u)
∗ R+0CΦΦ(u) R−1CRΦ(u) R+0CuΦ(u)
∗ ∗ R−2CRR(u) R−1CuR(u)
∗ ∗ ∗ R+0Cuu(u)



(2.45)

G(1)
ab [h(m h 0)] = RheimΦ× (2.46)

×



R+2D (m,h)
TT [C(u)] R+1D (m,h)

TΦ [C(u)] R+0D (m,h)
T R [C(u)] R+1D (m,h)

uT [C(u)]
∗ R+0D (m,h)

ΦΦ
[C(u)] R−1D (m,h)

RΦ [C(u)] R+0D (m,h)
uΦ [C(u)]

∗ ∗ R−2D (m,h)
RR [C(u)] R−1D (m,h)

uR [C(u)]
∗ ∗ ∗ R+0D (m,h)

uu [C(u)]


(2.47)

Again notice that the (T,Φ, R) dependence has factored straight through the differ-
ential operator, resulting in ten coupled ODEs for the ten C-functions, which we
have collected together as C(u). The expressions for all these differential operators
are given in App. 2.7.

We can easily verify that G(1) commutes with LH− , therefore the linearized Einstein
operator acting on a basis function with arbitrary weight can be obtained easily
by repeatedly applying the lowering operator LH− , k times, on Eq. (2.47). While
applying the lowering operator, in general different components of G(1)

ab [h(m h k)]
will get mixed up, but the separation of variables still holds. Therefore we conclude
that with these scalar, vector, and tensor bases, we can separate variables in the
linearized Einstein system in NHEK.

Given some source terms, these bases can be directly applied to solving for the
corresponding metric perturbations. For instance, we have obtained the highest-
weight metric deformations in NHEK sourced by the decoupling limits of dynamical
Chern-Simons and Einstein-dilaton-Gauss-Bonnet gravity [37].

2.6 Conclusions and future work
In this chapter, we proposed an isometry-inspired method to study metric perturba-
tions in the near-horizon extremal Kerr spacetime. That is, we separated variables
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in the metric perturbation equations in the NHEK spacetime, by expanding the
perturbation in terms of basis functions adapted to the isometry group. With the
separable linearized Einstein equation, one obtains the perturbed metric directly,
without the complication of metric reconstruction. Further, our formalism does
not depend on gauge choice. Within our formalism, partial differential equations
built from SL(2,R) × U (1)-equivariant operators can be converted into ordinary
differential equations in the polar angle, which are simpler to solve. The price is that
one must solve coupled, rather than decoupled, equations in our metric formalism.

We accomplished three things: (i) we used the highest-weight method to obtain
the scalar, vector, and symmetric tensor bases for the isometry group of NHEK;
(ii) in global coordinates, we showed that these bases form orthogonal basis sets
when the labels of irreps satisfy h < −1; and (iii) with these basis functions,
we separated variables in many physical equations like the scalar wave equation,
Maxwell’s equations, and the linearized Einstein equations.

Futurework. Althoughwe have shown that bases in global coordinates are orthog-
onal, we did not mention completeness. There are clues that, in global coordinates,
combining the highest- and lowest-weight modules will give a complete set of states.
We leave a rigorous treatment of completeness to future work. However, many prob-
lems can already be attacked without worrying about completeness—for example,
if the source term lives in exactly one irrep.

Since the near-horizon near-extremal geometry exhibits the same isometry asNHEK,
we expect all discussions in this paper can be applied to understandingmetric pertur-
bations in near-NHEK, which is more astrophysically relevant. With the knowledge
of isometry-adapted bases in NHEK, we hope to enhance our understanding of the
Kerr/CFT conjecture [60] from the gravity side.

2.7 Appendix
Scalar, vector, and symmetric tensor bases
In this subsection we present the expressions of scalar, vector, and symmetric
tensor bases both in Poincaré coordinates and global coordinates, up to constant
factors. All the basis functions are defined on the three-dimensional hypersurface
Σu. To promote these basis functions to the full four-dimensional manifoldM, one
promotes all constant coefficients cβ to become unknown functions of the (cosine)
polar angle, cβ (u). The basis functions given here are (mostly) obtained using
the highest-weight method introduced in Sec. 2.3, i.e. they form the highest-weight
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modules for SL(2,R) × U (1) 	 M. Such a highest-weight module is infinite
dimensional, the length of this paper, however, is supposed to be finite. Therefore,
we give the highest three weights for scalar bases, the highest two weights for vector
bases, and only the highest weight for tensor bases. Note all other basis functions
can be generated by applying the lowering operator on the highest-weight basis
order by order. In order to compare the basis functions in different modules, in
global coordinates, we also give the expressions of the scalar bases obtained using
the lowest-weight method.

All expressions in these appendices are also available in the companion Mathemat-
ica notebooks: Sep-met-pert-in-NHEK-Poinc.nb,
Sep-met-pert-in-NHEK-global.nb,
and precomputed quantities in NHEK-precomputed.mx [61].

Basis functions in Poincaré coordinates

Scalar bases The scalar bases in Poincaré coordinates are given by

F (m h k) ∝ Rh−k eimΦ × f (m h k) , (2.48)

where

f (m h 0) =1 , (2.49)

f (m h 1) = − 2(hRT + im) ,

f (m h 2) = − 2[−2i(2h − 1)mRT+

+ h(1 − 2h)R2T2 + h + 2m2] .

Vector bases The covector bases in Poincaré coordinates can be decomposed
using the dual basis one-forms {dT, dΦ, dR} via

V(m h k) = V (m h k)
i dxi, x ∈ {T,Φ, R} . (2.50)

The covector components are given by

V (m h k)
i ∝



v (m h k)
T R+1

v (m h k)
Φ

R+0

v (m h k)
R R−1



Rh−k eimΦ , (2.51)

where

v (m h 0)
T = c1 , v (m h 0)

Φ
= c2 , v (m h 0)

R = c3 , (2.52)
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and

v (m h 1)
T = −2[c3 + c1(hRT + im)] , (2.53)

v (m h 1)
Φ

= −2c2(hRT + im) ,

v (m h 1)
R = −2[c3(hRT + im) + c1 − c2] .

Notice that there are three unknown coefficients, c1, c2, and c3. They endow us
the freedom of choosing a three-dimensional basis for covectors. In particular, we
introduce a specific set of covector bases labeled by B where B ∈ {T,Φ, R}. They
are defined by

V(m h k)
T = V(m h k) |c2=c3=0 , (2.54)

V(m h k)
Φ

= V(m h k) |c1=c3=0 ,

V(m h k)
R = V(m h k) |c1=c2=0 .

Symmetric tensor bases The symmetric tensor bases in Poincaré coordinates can
be decomposed using the dual basis one-forms {dT, dΦ, dR} via

W(m h k) = W (m h k)
i j dxi ⊗ dx j, x ∈ {T,Φ, R} . (2.55)

The tensor components are given by

W (m h k)
i j ∝



R+2w(m h k)
TT R+1w(m h k)

TΦ R+0w(m h k)
T R

∗ R+0w(m h k)
ΦΦ

R−1w(m h k)
RΦ

∗ ∗ R−2w(m h k)
RR



×

×Rh−k eimΦ , (2.56)

where

w(m h 0)
TT = c1 , w(m h 0)

ΦΦ
= c2 , w(m h 0)

RR = c3 , (2.57)

w(m h 0)
TΦ = c4 , w(m h 0)

ΦR = c5 , w(m h 0)
RT = c6 .

Notice that there are six unknown c-coefficients. They endow us the freedom of
choosing the six tensor bases. In particular, we introduce a specific set of highest-
weight tensor bases labeled by A, B where A, B ∈ {T,Φ, R}. They are defined
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by

W(m h k)
TT =W(m h k) ��cβ,1=0 , (2.58)

W(m h k)
ΦΦ

=W(m h k) ��cβ,2=0 ,

W(m h k)
RR =W(m h k) ��cβ,3=0 ,

W(m h k)
TΦ =W(m h k) ��cβ,4=0 ,

W(m h k)
ΦR =W(m h k) ��cβ,5=0 ,

W(m h k)
RT =W(m h k) ��cβ,6=0 .

This specific choice of tensor bases will be utilized to write the metric perturbation
as in Eq. (2.45).

Basis functions in global coordinates

Scalar bases (highest-weight module) The scalar bases from the highest-weight
module in global coordinates are given by

F (m h k) ∝ (sinψ)−hei[(h−k)τ+mϕ]+mψ × f (m h k) , (2.59)

where

f (m h 0) = 1 , (2.60)

f (m h 1) = −2(m sinψ − h cosψ) ,

f (m h 2) = 2
[
h2 + m2 +

(
h2 − h − m2

)
cos 2ψ + (m − 2hm) sin 2ψ

]
.

Scalar bases (lowest-weight module)

The scalar bases from the lowest-weight module in global coordinates are given by

F (m h k)
L ∝ (sinψ)+hei[(h+k)τ+mϕ]−mψ × f (m h k)

L , (2.61)

where

f (m h 0)
L = 1 , (2.62)

f (m h 1)
L = −2(m sinψ − h cosψ),

f (m h 2)
L = 2

[
h2 + m2 +

(
h2 + h − m2

)
cos 2ψ − (m + 2hm) sin 2ψ

]
.
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Vector bases The covector bases in global coordinates can be decomposed using
the dual basis one-forms {dτ, dϕ, dψ} via

V(m h k) = V (m h k)
i dxi, x ∈ {τ, ϕ, ψ} . (2.63)

The covector components are given by

V (m h k)
j ∝



v (m h k)
τ (sinψ)−1

v (m h k)
ϕ (sinψ)+0

v (m h k)
ψ (sinψ)−1



(sinψ)−hei[(h−k)τ+mϕ]+mψ , (2.64)

where

v (m h 0)
τ = −

1
4

(
c1e−iψ + 2c1eiψ − 2c2e−iψ + 4c3eiψ

)
, (2.65)

v (m h 0)
ϕ = c1 ,

v (m h 0)
ψ = +

1
4

(
c1e−iψ + 2c2e−iψ + 4c3eiψ

)
,

and

v (m h 1)
τ = −

1
4

{
c1[2(h + im)e2iψ + (3h − im − 1) + (h − im + 1)e−2iψ]− (2.66)

− 2c2[(h + im + 1) + (h − im − 1)e−2iψ] + 4c3[(h + im − 1)e2iψ + (h − im + 1)]
}
,

v (m h 1)
ϕ = − 2c1(m sinψ − h cosψ) ,

v (m h 1)
ψ = +

1
4

{
c1[(h + im + 1) + (h − im − 1)e−2iψ] + 2c2[(h + im + 1) + (h − im − 1)e−2iψ]

+ 4c3[(h + im − 1)e2iψ + (h − im + 1)]
}
.

Symmetric tensor bases The symmetric tensor bases in global coordinates can
be decomposed using the dual basis one-forms {dτ, dϕ, dψ} via

W(m h k) = W (m h k)
i j dxi ⊗ dx j, x ∈ {τ, ϕ, ψ} . (2.67)

The tensor components are given by

W (m h k)
i j ∝



w(m h k)
ττ (sinψ)−2 w(m h k)

τϕ (sinψ)−1 w(m h k)
τψ (sinψ)−2

∗ w(m h k)
ϕϕ (sinψ)+0 w(m h k)

ϕψ (sinψ)−1

∗ ∗ w(m h k)
ψψ (sinψ)−2



(sinψ)−hei[(h−k)τ+mϕ]+mψ ,

(2.68)
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where

w(m h 0)
ττ = +

1
16

(c1e−2iψ + 4c1e2iψ − 6c2e−2iψ (2.69)

+ 16c3e2iψ + 8c5e−2iψ + 16c6e2iψ + 4c1 − 8c2 + 16c3 + 8c4) ,

w(m h 0)
ϕϕ = c1 ,

w(m h 0)
ψψ = +

1
16

(−8c4 + 16c6e2iψ + c1e−2iψ + 2c2e−2iψ + 8c5e−2iψ) ,

w(m h 0)
τϕ = −

1
4

(
2c1eiψ + 4c3eiψ + c1e−iψ − 2c2e−iψ

)
,

w(m h 0)
ϕψ = +

1
4

(
4c3eiψ + c1e−iψ + 2c2e−iψ

)
,

w(m h 0)
ψτ = −

1
16

(
2c1 + 4c2 + 8c3 + 8c3e2iψ + 16c6e2iψ + c1e−2iψ + 2c2e−2iψ − 8c5e−2iψ

)
.

Expressions of D (m,h)
A [C(u)] in Maxwell systems

We have decomposed the differential operators D (m,h)
A [C(u)], A ∈ {T,Φ, R, u}, in-

troduced in Sec. 2.5, by the coefficients multiplying the second, first, and zeroth
derivatives of the C−functions. These coefficients are tabulated here in Table 2.1.
In this table, each row is labeled by D (m,h)

A , while each column is labeled by a
C-function or its derivative. Each table component is the coefficient in front of the
(derivative of) correspondingC-function inD (m,h)

A [C(u)]. To recoverD (m,h)
A [C(u)],

one just multiplies each table component with its column label and then add up all
those with the same row labelDA. Expressions in this appendix can be computed us-
ing the companion Mathematica notebook Sep-met-pert-in-NHEK-Poinc.nb
[61].

Expressions of D (m,h)
AB [C(u)] in linearized Einstein equations

The general second-order differentiationD (m,h) on the ten unknownC-functions, de-
noted asD (m,h)

AB [C(u)], can be written compactly by putting all C-functions together
to form a vector C(u),

D
(m,h)
AB [C(u)] = (AAB∂

2
u + BAB∂u + CAB) ·

(
CTT (u), . . . ,CΦu(u)

)T
. (2.70)

HereAAB,BAB, andCAB are covectorswhose components are obtained by collecting
coefficients in front of C-functions. We further stack all the covectorsAAB to form
a matrix, and similarly do for BAB and CAB. We label the resulting coefficient
matrices as A,B, and C respectively. They are given in Tables 2.2, 2.7, 2.4, 2.5,
and 2.6. They can also be computed using the companion Mathematica notebook
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DA C′′T (u) C′′

Φ
(u) C′′R (u) C′′u (u)

DT
1−u2

u2+1 0 0 0
DΦ 0 1−u2

u2+1 0 0
DR 0 0 1−u2

u2+1 0
Du 0 0 0 0

C′T (u) C′
Φ

(u) C′R(u) C′u(u)

DT − 4u
(u2+1)2 −

2u(u2−3)
(u2+1)2 0 0

DΦ 0 −
2u(u2−1)
(u2+1)2 0 im(u2−1)

u2+1

DR 0 0 − 4u
(u2+1)2

h(u2−1)
u2+1

Du − im
u2+1

im(u4+6u2−3)
4(u4−1) − h+1

u2+1 0

CT (u) CΦ(u) CR(u) Cu(u)

DT

(u4+6u2−3)m2

4(u4−1) + h(u4+6u2−3)
(u2+1)3 −

im(u4+6u2−3)
(u2+1)3

2imu(u2−3)
(u2+1)2

+
(h+1)

(
−4u2+h(u2+1)2

+4
)

(u2+1)3

DΦ
m2(u2+1)2

−4(h+1)(u2−1)
(u2+1)3

h((h+1)u4+2(h+3)u2+h−3)
(u2+1)3 −

im((h+1)u4+2(h+3)u2+h−3)
(u2+1)3

2imu(u2−1)
(u2+1)2

DR −
i(h+1)m

u2+1
ihm(u4+6u2−3)

4(u4−1)
m2(u4+6u2−3)

4(u4−1)
4hu

(u2+1)2

Du 0 0 0 4(u2−1)h2+4(u2−1)h+m2(u4+6u2−3)
4(u4−1)

Table 2.1: The coefficient table that gives the expressions of D (m,h)
A [C(u)], A ∈

{T,Φ, R, u} in Maxwell systems.

Sep-met-pert-in-NHEK-Poinc.nb, or read from the precomputed expressions
in NHEK-precomputed.mx [61].

DAB C′′TT (u) C′′TΦ(u) C′′
ΦΦ

(u) C′′RR(u) C′′Ru(u) C′′uu(u) C′′T R(u) C′′Tu(u) C′′
ΦR(u) C′′

Φu(u)

DTT −
2(u2−1)2

(u2+1)3
u6+5u4−9u2+3

(u2+1)3 −
(u4+6u2−3)2

8(u2+1)3
u6+5u4−9u2+3

2(u2+1)3 0 0 0 0 0 0

DTΦ −
2(u2−1)2

(u2+1)3
u6+9u4−17u2+7

2(u2+1)3 −u6+5u4−9u2+3
2(u2+1)3

2(u2−1)2

(u2+1)3 0 0 0 0 0 0

DΦΦ −
2(u2−1)2

(u2+1)3
4(u2−1)2

(u2+1)3 −
2(u2−1)2

(u2+1)3
2(u2−1)2

(u2+1)3 0 0 0 0 0 0

DRR
u2−1

2(u2+1)
1−u2

u2+1
u4+6u2−3
8(u2+1) 0 0 0 0 0 0 0

DRu 0 0 0 0 0 0 0 0 0 0
Duu 0 0 0 0 0 0 0 0 0 0
DT R 0 0 0 0 0 0 u2−1

2(u2+1) 0 0 0
DTu 0 0 0 0 0 0 0 0 0 0
DΦR 0 0 0 0 0 0 0 0 u2−1

2(u2+1) 0
DΦu 0 0 0 0 0 0 0 0 0 0

Table 2.2: A matrix.
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DAB C′TT (u) C′TΦ(u) C′
ΦΦ

(u) C′RR(u) C′Ru(u)

DTT
2u(u4−4u2+3)

(u2+1)4 −
4u(u2−3)(u2−1)

(u2+1)4 −
u(u10+u8−22u6+66u4−123u2+45)

8(u2−1)(u2+1)4 −
u(u6+u4−13u2+3)

(u2+1)4 −
h(u2−1)(u4+6u2−3)

(u2+1)3

DTΦ
2u(u4−4u2+3)

(u2+1)4 −
4u(u4−4u2+3)

(u2+1)4
2u(u4−4u2+3)

(u2+1)4 −
2u(u4−4u2+3)

(u2+1)4 −
2(2h+1)(u2−1)2

(u2+1)3

DΦΦ
2u(u4−4u2+3)

(u2+1)4 −
4u(u2−3)(u2−1)

(u2+1)4
2u(u4−4u2+3)

(u2+1)4 −
2u(u4−4u2+3)

(u2+1)4 −
4(h+1)(u2−1)2

(u2+1)3

DRR −
u(u2−3)
(u2+1)2

2u(u2−3)
(u2+1)2

u(u2−3)3

8(u2−1)(u2+1)2 0 u2−1
u2+1

DRu
h+1

2(u2+1) − 2h+1
2(u2+1)

h(u4+6u2−3)
8(u4−1)

1
2(u2+1) 0

Duu − u
2(u4−1)

u
u4−1 −

u(u2+3)
4(u4−1)

u
2(u4−1) 0

DT R 0 0 0 0 0
DTu

im
2(u2+1) −

im(u4+6u2−3)
8(u4−1) 0 0 0

DΦR 0 0 0 0 −
im(u2−1)
2(u2+1)

DΦu
im

2(u2+1) − im
2(u2+1) 0 − im

2(u2+1) 0

C′uu(u) C′T R(u) C′Tu(u) C′
ΦR(u) C′

Φu(u)

DTT
u(u2−1)(u6+11u4−13u2+9)

2(u2+1)4 0 −
im(u2−1)(u4+6u2−3)

(u2+1)3 0 im(u4+6u2−3)2

4(u2+1)3

DTΦ
4u(u2−1)3

(u2+1)4 0 −
im(u6+9u4−17u2+7)

2(u2+1)3 0 im(u6+5u4−9u2+3)
(u2+1)3

DΦΦ
4u(u2−1)3

(u2+1)4 0 −
4im(u2−1)2

(u2+1)3 0 4im(u2−1)2

(u2+1)3

DRR −
u(u2−1)
2(u2+1) 0 im(u2−1)

u2+1 0 −
im(u4+6u2−3)

4(u2+1)
DRu 0 im

2(u2+1) 0 −
im(u4+6u2−3)

8(u4−1) 0
Duu 0 0 0 0 0

DT R 0 −
u(u2−3)
(u2+1)2 −

(u2−1)
(
−u4−6u2+h(u2+1)2

+3
)

2(u2+1)3
u(u2−3)
(u2+1)2 −

(u2−1)(u4+6u2−3)
2(u2+1)3

DTu 0 h+2
2(u2+1) 0 0 0

DΦR 0 0 2(u2−1)2

(u2+1)3 0 −
(u2−1)

(
h(u2+1)2

+4(u2−1)
)

2(u2+1)3

DΦu 0 0 0 h+1
2(u2+1) 0

Table 2.3: B matrix.
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DAB CTT (u) CTΦ(u)

DTT
(u2−1)

(
u4+2u2+2h2(u2+1)2

+6h(u2+1)2
+9

)
(u2+1)5 −

u8−28u6−42u4+36u2+2h2(u8+8u6+10u4−3)+3h(u8+8u6+10u4−3)−15
2(u2+1)5

DTΦ
(u2−1)

(
2h2(u2+1)2

+5h(u2+1)2
+8

)
(u2+1)5 −

h2(u4+10u2−7)(u2+1)2
+h(u4+10u2−7)(u2+1)2

−8(3u6+4u4−5u2+2)
2(u2+1)5

DΦΦ

2(u2−1)
(
h2(u2+1)2

+2h(u2+1)2
+4

)
(u2+1)5 −

2(u2−1)
(
−3u4−6u2+2h2(u2+1)2

+h(u2+1)2
+5

)
(u2+1)5

DRR
8(u6−8u4+9u2−2)−m2(u2+1)4

8(u2−1)(u2+1)3
−3u4+30u2+h(u2+1)2

−7
2(u2+1)3

DRu −
(h+1)u

(u2+1)2
2u(u2+h(u2−1)−2)

(u2−1)(u2+1)2

Duu
m2(u2+1)4

+4h2(u2−1)(u2+1)2
+8h(u2−1)(u2+1)2

+8(u6−u4+u2−1)
8(u2−1)2(u2+1)3 −

3u4−2u2+2h2(u2+1)2
+3h(u2+1)2

+3
2(u2−1)(u2+1)3

DT R
im

(
u4−2u2+2h(u2+1)2

+5
)

4(u2+1)3 −
im(u4+6u2−3)

(
−u4−6u2+h(u2+1)2

+3
)

8(u2−1)(u2+1)3

DTu
imu

2−2u4
imu(u4+6u2−3)
4(u2−1)(u2+1)2

DΦR
im

(
u4+h(u2+1)2

+3
)

2(u2+1)3 −
im

(
−u4−6u2+h(u2+1)2

+3
)

2(u2+1)3

DΦu
imu

2−2u4
imu

(u2+1)2

CΦR(u) CΦu(u)

DTT −
ihm(u4+6u2−3)2

4(u2−1)(u2+1)3
imu(u4+6u2−3)2

4(u2−1)(u2+1)3

DTΦ −
ihm(u4+6u2−3)

(u2+1)3
imu(u4+6u2−3)

(u2+1)3

DΦΦ −
4ihm(u2−1)

(u2+1)3
4imu(u2−1)

(u2+1)3

DRR
im(u4+6u2−3)

4(u4−1) −
imu(u6+3u4+19u2−15)

4(u2−1)(u2+1)2

DRu
imu(u4+6u2−3)
4(u2−1)(u2+1)2 −

ihm(u4+6u2−3)
8(u4−1)

Duu −
i(h+1)m(u4+6u2−3)

4(u2−1)2(u2+1)
imu(u2+3)

2(u4−1)

DT R −u4−12u2+3
(u2+1)3

2u(u4−14u2+9)
(u2+1)4

DTu
(h+2)u(u2−3)
(u2−1)(u2+1)2 −

(h+2)(u4+6u2−3)
2(u2+1)3

DΦR
6u2−2

(u2+1)3 −
2u

(
h(u2+1)2

−2(u4−6u2+5)
)

(u2+1)4

DΦu −
2(h+1)u

(u2−1)(u2+1)2 −
(h+1)

(
h(u2+1)2

+4(u2−1)
)

2(u2+1)3

Table 2.4: Part I of C matrix.
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DAB CRR(u) CRu(u)

DTT
8(u10−2u8−6u6−8u4+21u2−6)−m2(u6+7u4+3u2−3)2

8(u2−1)(u2+1)5 −
4u((2h+3)u4+2(h−6)u2+9)

(u2+1)4

DTΦ
−(u8+8u6+10u4−3)m2+2h(u2−1)(u2+1)2

+8(u6+u4−3u2+1)
2(u2+1)5 −

4u(u2−1)(hu2+2u2+h−4)
(u2+1)4

DΦΦ

2(u2−1)
(
−m2(u2+1)2

+h(u2+1)2
+2(u4+2u2−1)

)
(u2+1)5 −

4(h+1)u(u2−1)
(u2+1)3

DRR
u2−1

(u2+1)3
4u

(u2+1)2

DRu − u
(u2+1)2

8(u6+3u4−5u2+1)−m2(u8+8u6+10u4−3)
8(u2−1)(u2+1)3

Duu
−(u8+8u6+10u4−3)m2+4h(u2−1)(u2+1)2

+16u2(u2−1)
8(u2−1)2(u2+1)3 −

(h+1)u
u4−1

DT R
im(u4+6u2−3)

4(u2+1)3 −
imu(u2−3)
(u2+1)2

DTu −
imu(u2−3)

2(u2−1)(u2+1)2
im(u4+6u2−3)

2(u2+1)3

DΦR
im(u4+4u2−1)

2(u2+1)3 −
imu(u2−1)
(u2+1)2

DΦu
imu

2(u4−1)
im

(
u4+6u2+h(u2+1)2

−3
)

2(u2+1)3

Cuu(u) CT R(u)

DTT
4h2(u6+5u4−9u2+3)(u2+1)2

+m2(u6+7u4+3u2−3)2
+8(5u8+34u6−68u4+54u2−9)

8(u2+1)5
i(2h+3)m(u4+6u2−3)

2(u2+1)3

DTΦ
(u2−1)

(
(u8+8u6+10u4−3)m2+4h2(u2−1)(u2+1)2

+2h(u2−1)(u2+1)2
+8(u6+8u4−11u2+2)

)
2(u2+1)5

im(2(u4+8u2−5)+h(u4+10u2−7))
2(u2+1)3

DΦΦ

2(u2−1)2
(
h2(u2+1)2

+m2(u2+1)2
+h(u2+1)2

+2(u4+9u2−2)
)

(u2+1)5
2i(2h+3)m(u2−1)

(u2+1)3

DRR −
(u8+8u6+10u4−3)m2+4h(u2−1)(u2+1)2

+8(u4+4u2−1)
8(u2+1)3 − im

2(u2+1)
DRu − hu

2(u2+1) − imu
(u2+1)2

Duu
u2(u2+3)
(u2+1)3

i(2h+3)m
2(u4−1)

DT R
im(u2−1)(u4+6u2−3)

4(u2+1)3
8(u6−7u4+7u2−1)−m2(u8+8u6+10u4−3)

8(u2−1)(u2+1)3

DTu −
imu(u2−3)
2(u2+1)2 −

(h+2)u

(u2+1)2

DΦR
im(u2−1)

(
h(u2+1)2

+2(u2−1)
)

2(u2+1)3 − m2

2(u2+1)

DΦu −
imu(u2−1)
(u2+1)2 0

Table 2.5: Part II of C matrix.
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DAB CΦΦ(u)

DTT
h2(u2−1)(u6+7u4+3u2−3)2

−2(3u12+68u10−5u8−128u6+153u4−36u2+9)
8(u2−1)2(u2+1)5

DTΦ −
−2(u8+8u6+10u4−3)h2+(u8+8u6+10u4−3)h+4(9u6+13u4−9u2+3)

4(u2+1)5

DΦΦ

(u2−1)
(
−3u4−6u2+2h2(u2+1)2

−2h(u2+1)2
+5

)
(u2+1)5

DRR
2(7u8−30u6+72u4−42u2+9)−h(u2+1)2(u6+5u4−9u2+3)

8(u2−1)2(u2+1)3

DRu −
u(8(u4−4u2+3)+h(u6+11u4−13u2+9))

8(u4−1)2

Duu
(u8+8u6+10u4−3)h2+(u8+8u6+10u4−3)h+2(7u6+3u4+9u2−3)

8(u2−1)2(u2+1)3

DT R −
im(u4+6u2−3)2

16(u2−1)(u2+1)3

DTu −
imu(u6+3u4−21u2+9)

8(u4−1)2

DΦR −
im(u4+6u2−3)

4(u2+1)3

DΦu −
imu(u2−3)

2(u2−1)(u2+1)2

CTu(u)

DTT −
2imu(u2−1)(u2+3)

(u2+1)3

DTΦ −
imu(u4+4u2−5)

(u2+1)3

DΦΦ −
4imu(u2−1)

(u2+1)3

DRR
4imu

(u2+1)2

DRu
i(h+1)m
2(u2+1)

Duu − imu
u4−1

DT R −
2u

(
u4−14u2+h(u2+1)2

+9
)

(u2+1)4

DTu −
4h2(u2−1)(u2+1)2

+4h(u6−3u4+7u2−5)+(u4+6u2−3)
(
−8u2+m2(u2+1)2

+8
)

8(u2−1)(u2+1)3

DΦR −
4u(u4−6u2+5)

(u2+1)4

DΦu
−m2(u2+1)2

+4h(u2−1)+4(u2−1)
2(u2+1)3

Table 2.6: Part III of C matrix.
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C h a p t e r 3

METRIC DEFORMATIONS FROM EXTREMAL KERR BLACK
HOLES

In Chapter II, we introduced a set of symmetry-adapted bases, which makes the
metric equations separable for near-horizon extremal Kerr spacetimes. In this chap-
ter, we apply our methods to solve for the deformations to the near-horizon extremal
Kerr metric due to two example string-inspired beyond-GR theories: Einstein-
dilaton-Gauss-Bonnet, and dynamical Chern-Simons theory. We accomplish this
by making use of the enhanced symmetry group of NHEK and the weak-coupling
limit of EdGB and dCS. We find that the EdGB metric deformation has a curvature
singularity, while the dCS metric is regular. From these solutions we compute
orbital frequencies, horizon areas, and entropies. This sets the stage for analytically
understanding the microscopic origin of black hole entropy in beyond-GR theories.

3.1 Introduction
General relativity (GR), despite its huge success in describing gravity on large
scales [62], must be corrected at high energies to reconcile with quantummechanics.
Black holes (BHs) may hold a key to developing a quantum theory of gravity:
quantum effects can become important when gravity is strong, such as close to
singularities. Quantum effects can also become important at the horizon over
sufficiently long times, e.g. as Hawking radiation [63] shrinks a BH, generating
arbitrarily large curvatures at the horizon, close to evaporation.

In order to go beyond GR, a huge class of alternative theories of gravity has been
proposed and studied. Analytical black hole solutions can be sensitive to corrections
to GR, but they are rare in beyond-GR theories. In the slow-rotation limit, BH
solutions [64, 65] have been found for dynamical Chern-Simons theory [66]. But
for many other theories or when it comes to generic spin, it is difficult to find analytic
rotating solutions. In this chapter we find BH solutions in the near-horizon extremal
limit for beyond-GR theories. In particular, wemake use of two theories of gravity as
examples, taking the weak-coupling limit, and find the corresponding deformations
to near-horizon extremal Kerr (NHEK). The two theories, both inspired by string
theory, are Einstein-dilaton-Gauss-Bonnet (EdGB) [67, 68] and dynamical Chern-
Simons theory (dCS) [66] respectively. They both contain a dynamical scalar field
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that couples to curvature, correcting GR with a (different) quadratic curvature term.

After taking the weak coupling limit of a beyond-GR theory, finding the vacuum
rotating solutions can be naturally formulated as finding the metric deformations
to solutions in Einstein gravity, i.e. deformations to Kerr black holes (alternatively,
one may expand Kerr around the a = 0 Schwarzschild limit, and solve for defor-
mations around the expanded spacetime, as in [69–71]). Therefore linear metric
perturbation theory is a natural tool to address the problem. However, the pertur-
bation equations are hard to solve unless we can use separation of variables. In the
Kerr spacetime, metric perturbations do not separate, but curvature perturbations
do. The most common approach is to use the Newman-Penrose formalism [42] and
solve the wave equations for Weyl scalars Ψ4 or Ψ0. This method was developed
by Teukolsky [40, 41], and the partial differential equation to solve is known as the
Teukolsky equation. The cost of curvature perturbations, however, is a very com-
plicated metric-reconstruction procedure (see e.g. discussion in [39]), which only
works for certain source terms, in certain gauges, and does not recover all pieces of
the metric. The main difficulty in the separation of the metric perturbation equations
is insufficient symmetry in the Kerr spacetime. In the near-horizon extremal scaling
limit of Kerr, additional symmetries arise, and we can separate variables, as the
authors showed in [36]. Therefore in NHEK, analytical deformed solutions can be
found by using linear metric perturbation theory.

The NHEK spacetime is interesting to study for several other reasons. For instance,
it has been shown that the horizon instability of extremal black holes [72] can be
viewed as a critical phenomenon [73]. Moreover, it was shown that near-horizon
quantum states can be identified with a two-dimensional conformal field theory
(CFT), via the proposed Kerr/CFT correspondence [60].

In this chapter, we focus on finding metric deformations of NHEK due to dCS
and EdGB interactions in the decoupling limit. Let us emphasize, though, that this
formalism is not limited to these two theories, but can be applied to finding deformed
NHEK solutions in many beyond-GR theories in the decoupling limit. With the
metric solutions, we compute physical properties including geodesic motion of
particles and their orbital frequencies, horizon areas, and entropies. We also prove
that the EdGB extremal BH is indeed singular in the decoupling limit, confirming
the conjecture of [74]. One of the most important results is the calculation of
the macroscopic extremal black hole entropies in beyond-GR theories. Although
we only consider the near-horizon limit, the entropy results agree with extremal
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BH solutions (i.e. without zooming into the near-horizon region). In the NHEK
spacetime, the entropy can be computed by counting the microscopic states of a two-
dimensional chiral CFT [60] via the Cardy formula, which leads to the Kerr/CFT
conjecture. We also expect a dual CFT description of the extremal black hole
entropy for beyond-GR theories in the decoupling limit. We will not address this
issue here, but our work lays the ground for studying the microscopic states of
deformed extremal black holes. This may provide insight into quantum theories
beyond Einstein gravity.

We organize the chapter as follows. In Sec. 3.2 we review EdGB and dCS gravity,
and introduce the decoupling limit to the two theories. In Sec. 3.3, we review the
near-horizon extremal geometry, the symmetry-adapted bases, and set up the metric
perturbations in near-horizon extremal Kerr spacetime as induced by the two stringy
interactions. In Sec. 3.4 we solve for the dynamical scalar fields, construct the
source term to the linearized Einstein field equation, and finally solve the metric
perturbations in the “attractor” gauge. In Sec. 3.5 we derive the timelike geodesic
equations for the deformed spacetimes, and calculate the corrections to horizon
areas and black hole entropies due to the two stringy interactions. We conclude and
discuss future work in Sec. 3.6.

3.2 Einstein-dilaton-Gauss-Bonnet and dynamical Chern-Simons gravity
Action
Wework in units where c = 1 = ~, and choose the metric signature (−,+,+,+). The
theories which we are considering, namely dynamical Chern-Simons gravity and
Einstein-dilaton-Gauss-Bonnet, can be motivated from both low-energy effective
field theory (EFT) and high-energy fundamental theory. DCS can arise from gravi-
tational anomaly cancellation in chiral theories [75–77], including Green-Schwarz
cancellation in string theory [78]. The low-energy compactified theory was explic-
itly presented in [79] (and see references therein). EdGB, meanwhile, can be derived
by expanding the low energy string action to two loops to find the dilaton-curvature
interaction [67, 68].

The actions of dCS and EdGB both include the Einstein-Hilbert term and a scalar
field that non-minimally couples to curvature. The Einstein-Hilbert action leads to
standard GR. In dCS the scalar field is an axion, while in EdGB it is a dilaton. In
our discussions, there is no need to distinguish between the two scalar fields. We
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treat them equally as the scalar field ϑ. For both theories, we then take as our action

I =
∫

d4x
√
−g [LEH +Lϑ +Lint] , (3.1)

with

LEH =
1
2

m2
plR , Lϑ = −

1
2

(∂aϑ)(∂aϑ) , (3.2)

and non-minimal scalar-curvature interaction terms for dCS and EdGB respec-
tively [66–68]

L CS
int = −

mpl

8
`2

CSϑ
∗RR , L GB

int = −
mpl

8
`2

GBϑ
∗R∗R . (3.3)

Here R is the Ricci scalar of the metric gab, and g is the metric determinant. The
reduced Planck mass is defined through mpl ≡ (8πG)−1/2. The scalar field ϑ has
been canonically normalized such that [ϑ] = [M]. In the interaction terms, we
define two coupling constant `CS and `GB for dCS and EdGB respectively. The two
variables are dimensionful, specifically [`CS] = [`GB] = [M]−1. That is, each of
them gives the length scale of the corresponding theory, which in principle can be
constrained observationally. In dCS, we encounter the Pontryagin-Chern density

∗RR = ∗Rabcd Rabcd , (3.4)

while in EdGB we see minus the Euler (or Gauss-Bonnet) density

∗R∗R = ∗R∗abcd Rabcd = −R2 + 4RabRab − Rabcd Rabcd . (3.5)

Here we have used the single- and double-dualized Riemann tensors,

∗Rabcd ≡
1
2
εab

e f Re f cd ,
∗R∗abcd ≡

1
2
∗Rabe f ε

e f
cd , (3.6)

where we dualize with the completely antisymmetric Levi-Civita tensor εabcd .

Equation of motion
Variation of the action in Eq. (3.1) with respect to the scalar field ϑ leads to the
scalar equation of motion for dCS and EdGB respectively,

�ϑ =
mpl

8

{
`2

CS
∗RR ,

`2
GB
∗R∗R ,

dCS
EdGB

(3.7)
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where � = ∇a∇a and ∇a is the covariant derivative compatible with the metric.
Variation of the action in Eq. (3.1) with respect to gab leads to the metric equation
of motion,

m2
plGab = Tab[ϑ, ϑ] − mpl

{
`2

CSCab[ϑ] ,
`2

GBHab[ϑ] .
dCS
EdGB

(3.8)

Here Tab[ϑ, ϑ] is the canonical stress-energy tensor for the scalar field ϑ,

Tab[ϑ, ϑ] = ∇aϑ∇bϑ −
1
2
gab∇

cϑ∇cϑ . (3.9)

We also define the C-tensor for dCS,

Cab[ϑ] = ∇c∇d [∗Rd(ab)cϑ
]
, (3.10)

and introduce the H-tensor for EdGB via

Hab[ϑ] = ∇c∇d
[
∗R∗dabcϑ

]
, (3.11)

where parentheses around n indices means symmetrizing with a factor of 1/n!.

Decoupling limit
We now introduce two distinct theories as the decoupling limit of dCS and EdGB
respectively, namely Decoupled dynamical Chern-Simons (D2CS) and Decoupled
dynamical Gauss-Bonnet (D2GB) [80]. We will briefly review the formalism of
taking the decoupling limit in dCS (see [81] for detailed discussions). The extension
of this formalism to EdGB is straightforward.

We assume the corrections to GR due to the interaction terms are small, so that in
the limit ` → 0, we recover standard GR. This allows us to perform a perturbative
expansion of all the fields in terms of powers of `CS. To make the perturbation
theory simpler, we introduce a formal dimensionless order-counting parameter ε.
We then consider a one-parameter family of theories defined by the action Iε, where
in Iε, we have multiplied Lint by ε. This parameter can be set to 1 later.

Now we expand all fields and equations of motion in a series expansion in powers
of ε. Specifically, we take ϑ = ϑ(0) + εϑ(1) + O(ε2), and similarly gab = g(0)

ab +

εh(1)
ab + ε

2h(2)
ab + O(ε3).

In order to recover GR in the limit ε → 0, at order ε0, we have ϑ(0) = 0. At order
ε1, h(1)

ab has vanishing source term and thus can be set to zero as well. It is then easy
to show that the EOM for the leading order scalar field ϑ(1) is at ε1, given by

�(0)ϑ(1) =
mpl

8
`2

CS [∗RR](0) , (3.12)
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and the leading order metric deformation enters at ε2, which satisfies

m2
plG

(1)
ab [h(2)] + mpl`

2
CSCab[ϑ(1)] = Tab[ϑ(1), ϑ(1)] . (3.13)

Here G(1)
ab [h(2)] is the linearized Einstein operator acting on the metric deformation

h(2)
cd .

We now redefine our field variables in powers of `CS, but to do so we need another
length scale against which to compare. This additional length scale is given by the
typical curvature radius of the background solution, e.g. L ∼ |Rabcd |

−1/2. For a
black hole solution, this length scale will be L ≡ GM . We can then also pull out the
scaling with powers of L from spatial derivatives and curvature tensors, by defining
∇̂ = L∇ and R̂abcd = L2Rabcd . We define ĥab and ϑ̂ via

ϑ(1) = mpl

(
`CS
GM

)2
ϑ̂ , h(2)

ab =

(
`CS
GM

)4
ĥab . (3.14)

Now our hatted variables satisfy the dimensionless field equations

�̂(0)ϑ̂ =
1
8

[∗R̂R̂](0) , G(1)
ab [ĥ] = Sab , (3.15)

with the source term Sab = Tab[ϑ̂, ϑ̂] − Cab[ϑ̂].

The equations of motion in the decoupling limit of EdGB, i.e. D2GB, are almost the
same as Eq. (3.15). The only difference is that, for EdGB, we substitute ∗R̂∗R̂ for
∗R̂R̂, and the C-tensor in the source term should be replaced by the H-tensor.

3.3 NHEK and separable metric perturbations
The metric of a generic near-horizon extremal geometry (NHEG) that makes
SL(2,R) ×U (1) symmetry manifest takes the form [82]

ds2 = (GM)2
[
v1(θ)

(
−r2 dt2 +

dr2

r2 + β
2dθ2

)
+ β2v2(θ)(dφ − αr dt)2

]
, (3.16)

where v1 and v2 are positive functions of the polar angle θ, and α and β are constants.
The spacetime has four Killing vector fields. In these Poincaré coordinates, they are
given by

H0 = t∂t − r∂r , (3.17)

H+ = ∂t ,

H− = (t2 +
1
r2 )∂t − 2tr∂r +

2α
r
∂φ ,

Q0 = ∂φ .
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The four generators form a representation of the Lie algebra g ≡ sl(2,R) × u(1),

[H0 , H± ] = ∓H± , (3.18)

[H+, H−] = 2 H0 ,

[Hs , Q0 ] = 0 . (s = 0,±)

A crucial algebra element we will need is the Casimir element of sl(2,R). The
Casimir Ω acts on a tensor t via

Ω · t =
[
LH0 (LH0 − id) − LH−LH+

]
t , (3.19)

where LX is the Lie derivative along the vector field X .

The generic metric in Eq. (3.16) has an Einstein gravity solution, which is found
with

v1(u) = 1 + u2 , α = −1 , (3.20)

v2(u) =
4(1 − u2)

1 + u2 , β = +1 ,

where we have defined a new coordinate u = cos θ. This spacetime is called near-
horizon extremal Kerr, which was first obtained by taking the near-horizon limit of
extremal Kerr black holes [13].

The enhanced symmetry due to the near-horizon extremal limit enables us to sep-
arate variables in the linearized Einstein equation (LEE) in NHEK spacetime [36].
This is achieved by expanding the metric perturbations in terms of some basis
functions adapted to that symmetry. For the non-compact group SL(2,R), one can
construct a highest-weight module, which is a unitary irreducible representation of
the group. In NHEK, that is, we simultaneously diagonalize {LQ0,Ω,LH0 } and label
the eigenfunctions ξ by m, h, k respectively. Here m labels the azimuthal direction,
h labels the representation (“weight”), and k labels “descendants” within the same
representation. We impose the highest-weight condition LH+ξ = 0, and solve for
the basis functions. Expanding the metric perturbations in terms of these bases
leads to separation of variables for the LEE in NHEK spacetime. As a result, the
system of partial differential equations in the LEE automatically turns into one of
ordinary differential equations.

If the LEE system has a source term, and that source term is a linear combination of a
finite number of representations, then the metric perturbations can also be expanded
as a sum of those same representations. As we will see, for both EdGB and dCS
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gravity in the decoupling limit, the source term on the RHS of Eq. (3.15) will have
the same SL(2,R) ×U (1) symmetry as the background spacetime. This enables us
to solve for the linear metric deformations analytically.

3.4 Solving for the metric deformations
In this section we find solutions of the leading order scalar fields, construct the
source terms on the RHS of Eq. (3.15) for D2CS and D2GB respectively, and finally
solve for the metric deformations.

Solutions for scalars and construction of source
In a Ricci-flat spacetime (like Kerr), the I curvature invariant [83] agrees with
I = 1

16 (−∗R∗R + i∗RR). In NHEK, this takes the value Î = 3/(1 − iu)6. The
imaginary and (minus) real parts of Î thus give compact ways of expressing the
source terms for the scalar equations of motion of respectively D2CS and D2GB.

In D2CS, the leading order scalar equation of motion admits an axion solution which
is regular everywhere. This scalar field is given by

ϑ̂(1) =
1
4



u
(
u4 + 2u2 − 7

)
(
u2 + 1

)3 + 2 arctan u

+ const . (3.21)

This also agrees with the solution presented in [84]. Because the theory is shift-
symmetric, we are free to set the constant term to zero. We then construct the source
Sab[ϑ̂(1), ϑ̂(1)] in Eq. (3.15) for D2CS.

In D2GB, we find the leading order scalar solution is

ϑ̂(1) = d2 +
log

(
u2 + 1

)
4

−
u4 + 4u2 − 1
2
(
u2 + 1

)3 +

(
−

d1
2
−

1
4

)
log(1 − u) + (3.22)

+

(
d1
2
−

1
4

)
log(1 + u) ,

where d1 and d2 are constants. Unlike the D2CS case, it is not possible to remove
both logarithmic divergences at u = ±1 by choosing specific values of d1 and d2.
It is possible to cancel the divergence at one pole or the other, but not both. We
set d1 = 0 so that the scalar field retains the reflection symmetry, u → −u, of the
background spacetime. Again by shift symmetry, we are free to set the additive
constant d2 = 0, and then construct the source term Sab accordingly. The source
Sab remains irregular at the two poles u = ±1.
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Let us remark on an important common feature of the two source terms. For either
theory,

LX Sab = 0 , (3.23)

where X ∈ {H0, H±,Q0}. That is, if we decompose the source term using the
symmetry-adapted scalar, vector and tensor bases, the source term only contains
the m = h = k = 0 component. Therefore on the LHS of the LEE, the metric
perturbations only have stationary axisymmetric basis components, either for D2CS
or D2GB. These components live in both the highest-weight and lowest-weight
representations of NHEK’s isometry group.

dCS-deformed NHEK
We now seek the solutions to the linearized metric perturbation equations of NHEK
sourced by the two stringy interactions. Expansions of the metric perturbations
into the basis functions turn the systems of partial differential equations in LEE
into ten coupled ordinary differential equations (ODEs) in u, which we solve in this
subsection.

So far we haven’t chosen any gauge condition. Since the linear metric perturbations
have the same SL(2,R) ×U (1) symmetry as the background NHEK spacetime, we
can fix the gauge by requiring an “attractor form” [82] of the deformed solutions as
in Eq. (3.16). That is, we only consider the following shifts in the metric parameters.
Recalling that the metric is corrected at order ε2, we have

v1(u) → v1(u) + ε2δv1(u) , α → α + ε2δα , (3.24)

v2(u) → v2(u) + ε2δv2(u) , β → β + ε2δ β .

We call this gauge choice the attractor gauge. This ansatz is, by construction, in
the m = h = k = 0 representation of NHEK’s isometry group. Therefore it always
makes the SL(2,R) ×U (1) symmetry manifest.

For D2CS, the linear metric deformations are found to be the following complicated
expressions, which we also plot in Fig. 3.1:

δv1(u) = f1(u) +
1

53760
(
u2 + 1

)5P
D2CS
1 [u] , (3.25)

δv2(u) = f2(u) −

(
u2 − 1

)
6720

(
u2 + 1

)7P
D2CS
2 [u] , (3.26)
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Figure 3.1: The metric deformation functions δv1 (solid) and δv2 (dashed) as
functions of u, for both dCS-deformed (red) and EdGB-deformed (blue) NHEK.
Note that in D2GB, δv1 blows up at the two poles u = ±1.

where

f1(u) =
1
3

c1
(
−u2 + 4u − 1

)
+

1
3

c2
(
2u2 − 5u + 2

)
(3.27)

−
1
3

c3u
√

1 − u2 −
4
3
δ β

(
u2 + 1

)
+ 2δ βu

√
1 − u2 sin−1 u

+

975u
√

1 − u2 tan−1
( √

2u
√

1−u2

)
512
√

2
−

3
16

u tan−1 u ,

f2(u) =
8c3u
√

1 − u2

3
(
u2 + 1

)2 +
4c1

(
u4 + 4u3 − 4u − 1

)
3
(
u2 + 1

)2 (3.28)

−
4c2

(
2u4 + 5u3 − 5u − 2

)
3
(
u2 + 1

)2 +
40δ β

(
u2 − 1

)
3
(
u2 + 1

)
−

16δ βu
√

1 − u2 sin−1 u(
u2 + 1

)2 +
δα

(
8 − 8u2

)
u2 + 1

−

975u
√

1 − u2 tan−1
( √

2u
√

1−u2

)
64
√

2
(
u2 + 1

)2 −
3u

(
u2 − 1

)
tan−1 u

4
(
u2 + 1

)2 ,
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and the polynomials PD2CS
1 [u] and PD2CS

2 [u] are given by

PD2CS
1 [u] = −58501u12 − 222147u10 − 255058u8 (3.29)

+ 11754u6 + 323735u4 − 149799u2 + 4416 ,

PD2CS
2 [u] = 280u12 − 52341u10 − 252928u8 (3.30)

− 472090u6 − 536680u4 + 26583u2 − 18792 .

Here c1, c2, and c3 are integration constants. It is straightforward to see these three
constants, together with δα and δ β, correspond to different homogeneous solutions
to the LEE. These solutions are finite on the domain u ∈ [−1,+1], but would have
infinite derivative at the poles u = ±1 without an appropriate choice of δ β. By
demanding regularity at the two poles and reflection symmetry of the deformed
metric, we set

δ β = −
975

1024
√

2
, c3 = 0 , c2 =

4c1
5
. (3.31)

Note that δα will shift the Killing vector H−. By demanding that the perturbed
spacetime has the same Killing vectors as NHEK, we also set δα = 0. After
inserting the solutions from (3.31) back into the metric, we only need to fix c1.
Collecting the terms proportional to c1, one immediately finds that(

coefficient of c1

)
∝
∂g(0)

ab

∂M
. (3.32)

This means the homogeneous solution associated with c1 shifts the mass of the
black hole. Since we don’t want the mass shift, we fix c1 = 0. With these parameter
choices, we obtain the regular solution to the LEE sourced by the dCS interaction
in the decoupling limit. We call the newly-found spacetime dCS-deformed NHEK.

EdGB-deformed NHEK
For D2GB, in the attractor gauge, the linear metric deformations are found to be

δv1(u) = f1(u) +
1
8

(
−u2 + u − 1

)
log(1 − u) (3.33)

+
1
8

(
−u2 − u − 1

)
log(1 + u)

+
1
8

(
u2 + 1

)
log

(
u2 + 1

)
−

3u
√

1 − u2 tan−1
( √

2u
√

1−u2

)
256
√

2

+
1

53760
(
u2 + 1

)5P
D2GB
1 [u] ,
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δv2 = f2(u) +

(
u4 − u3 + u − 1

)
log(1 + u)

2
(
u2 + 1

)2 (3.34)

+

(
u4 + u3 − u − 1

)
log(1 − u)

2
(
u2 + 1

)2 +

(
1 − u2

)
log

(
u2 + 1

)
2u2 + 2

+

3u
√

1 − u2 tan−1
( √

2u
√

1−u2

)
32
√

2
(
u2 + 1

)2 +
(u2 − 1)

6720
(
u2 + 1

)7P
D2GB
2 [u] ,

where the functions f1(u), f2(u) are identical to the D2CS case and given in
Eqs. (3.27) and (3.28); and where the polynomials PD2GB

1 [u] and PD2GB
2 [u] are

given by

PD2GB
1 [u] = −27459u12 − 82773u10 − 42302u8 (3.35)

+ 81766u6 − 18815u4 + 298479u2 + 11264 ,

PD2GB
2 [u] = 35859u10 + 152792u8 + 226230u6 (3.36)

+ 10160u4 + 205503u2 − 5632 .

As in the D2CS case, the constant δ β can be chosen so as to cancel a square-root
behavior at the poles which would have infinite derivative. However, the important
difference fromD2CS is the appearance of log terms in Eqs. (3.33) and (3.34). There
are no integration constants which can cancel these logarithmic divergences.

Still, canceling the square-root behavior and assuming reflection symmetry in u, we
find

δ β = −
969

1024
√

2
, c3 = 0 , c2 =

4c1
5
. (3.37)

We also fix δα = 0 to preserve the Killing vector fields of NHEK, and set c1 = 0
to avoid a mass shift. After fixing all constants, these functions are plotted in
Fig. 3.1. We call the corresponding spacetime EdGB-deformed NHEK. This metric
deformation has a true curvature singularity at the poles, u = ±1, which we discuss
further in Sec. 3.6.

3.5 Properties of solutions
Orbits
In this subsection we derive the geodesic equations for a particle in the deformed
NHEK spacetime. Since the NHEK background and the deformed solutions have
the same isometry group, we consider the spacetime with the general metric in
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Eq. (3.16). The relativistic Hamiltonian for geodesic motion of a particle can be
defined as

H (xa, pb) =
1
2
gabpapb , (3.38)

where pa are the conjugate momenta of the particle. By drawing analogy to geodesic
motion in Kerr spacetime, we can similarly find three constants of motion: energy
E ≡ −pt , z angular momentum Lz ≡ pφ, and Carter’s constant C. The Carter
constant comes from separating the radial and polar motions. Note, however, that
because our Killing vector field ∂t is different from the asymptotically timelike KVF
(with norm −1 at infinity), our energy is different from the usual Kerr orbital en-
ergy [85]. Following theHamilton-Jacobi approach [86], we define the characteristic
function W via

W = −
1
2
κλ − Et +

∫ √
R(r)
β2r2 dr +

∫ √
Θ(θ)dθ + Lzφ, (3.39)

where λ is the affine parameter and 1
2 κ is the value of the Hamiltonian evaluated

along the world-line of the particle. R(r) and Θ(θ) are given by

R(r) = β4(E − αLzr)2 − β2Cr2 , (3.40)

Θ(θ) = C −
v1(θ)
v2(θ)

L2
z + M2 β2v1(θ)κ .

Since pa =
∂W
∂xa , we obtain the following geodesic equations of motion,

Σ
dt
dλ
=
β2

r2 (E − αLzr) , (3.41)

Σ
dr
dλ
= ±

√
R(r) ,

Σ
dθ
dλ
= ±

√
Θ(θ) ,

Σ
dφ
dλ
=
αβ2

r
(E − αLzr) +

v1(θ)
v2(θ)

Lz ,

where Σ = M2 β2v1(θ). These integrals can be directly performed after defining the
“Mino time” τ, where dτ = dλ/Σ (this again differs from the usual Mino time in
the asymptotic region of Kerr, because our time coordinate differs).

In particular, let us consider circular equatorial motion, i.e. θ = π/2 = θ0. For such
motion we only need E and Lz to determine the orbit. For a time-like orbit with
four-velocity ua, gabuaub = −1, we have that(

dr
dλ

)2
= V (r), (3.42)
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where the effective potential V (r) is given by

V (r) =
(E − αLzr)2

M4v2
1 (θ0)

−
r2

M2v1(θ0)
−

L2
zr2

M4 β2v1(θ0)v2(θ0)
. (3.43)

Solving for the conditions of circular motion, we obtain

E = 0, Lz = ±
M β
√
v1(θ0)v2(θ0)√

−v1(θ0) + α2 β2v2(θ0)
. (3.44)

The corresponding circular orbits r = r0 are all marginally stable, i.e.V ′′

(r) |r=r0 = 0.
After integrating out the azimuthal motion we also obtain that φ = φ0 +ωφt, where
the angular frequency ωφ is given by

ωφ =

(
α −

v1(θ0)
αβ2v2(θ0)

)
r0 . (3.45)

The fact that all circular equatorial orbits are essentially the same, with a different
angular frequency, is due to the dilation symmetry of the spacetime. That is, the
metric is invariant under r → cr and t → t/c for any constant c ∈ (0,+∞). As a
result, in Eq. (3.45), the radius-frequency relationship has to be compatible with the
dilation symmetry.

Plugging in the D2CS solutions, we find the angular frequency of the equatorial
circular orbits to be

ωD2CS
φ =


−

3
4
+

25
128

(
`CS
GM

)4
+ O

(
ε3

)
r0 . (3.46)

Similarly for the D2GB solutions, the angular frequency is found to be

ωD2GB
φ =

(
−

3
4
+ O

(
ε3

))
r0 . (3.47)

Therefore at the leading order in the metric perturbations, EdGB-type interactions
do not lead to corrections to the angular frequency of circular equatorial orbits in
an extremal black hole, in the near-horizon limit.

Again, because our time differs from the time coordinate in the asymptotic region,
these frequencies are not the asymptotically observable orbital frequencies. Such
observable quantities were computed for slowly-rotating BHs in D2CS in [65] and
in D2GB in [70, 71, 87–89].
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Location and area of deformed horizons
Since NHEK is not asymptotically flat, it does not have an event horizon. However,
because of what the near-horizon limit is designed to do—to zoom in on the horizon
region—the scaling limit of the Kerr event horizon gives rise to the horizon of the
Poincaré patch. This Poincaré horizon has the same geometric properties as in Kerr,
and thus it has the same area and entropy.

We can identify the location of this Killing horizon by considering observers whose
world lines are along real linear combinations ct∂t + cφ∂φ, with ct, cφ real constants,
such that their world lines are timelike. At the horizon, these world lines are forced
to be null. For any metric of the NHEG form (3.16), the horizon is at r = 0.
Therefore in attractor gauge, the coordinate location of the horizon is not deformed
after including the scalar-gravity coupling in the action.

A cross section of the deformed-NHEK horizon is still homeomorphic to a two-
sphere S2, but the total area has changed. Because the horizon is Killing, we can
compute the area along any spatial cross section H carrying coordinates x. The
horizon areas of the two deformed solutions are both given by

Adeformed =

∮
H

√
γ d2x (3.48)

= ANHEK ×


1 + η

(
`

GM

)4
+ O(ε3)


,

where ` is `CS or `GB when appropriate. Here γ is the determinant of the induced
metric on H . ANHEK is the horizon area of an extremal Kerr black hole, which is
given by ANHEK = 8π(GM)2. The constant η varies for the two deformed solutions.
For D2CS and D2GB respectively we find

ηD2CS =
(
4875

√
2 − 1380π − 3928

)
/7680

≈ −0.18 , (3.49)

ηD2GB =
(
1615

√
2 − 300π − 464 − 320 log 2

)
/2560

≈ +0.26 . (3.50)

Despite the fact that EdGB-deformed NHEK has a true curvature singularity, this
singularity is integrable, leading to a finite correction to the horizon area.

Note that while considering deformed NHEK, the entropy no longer equals the
horizon area, since the stringy interactions also contribute microscopic degrees of
freedom. The horizon areas computed here will be used in the following subsection
to calculate the entropy of the two deformed solutions.
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Thermodynamics of horizons
Themacroscopic entropy of a Killing horizon is interpreted as theNoether charge as-
sociatedwith theKilling vector fieldwhich generates the horizon [90, 91]. In any dif-
feomorphism invariant theorywith aLagrangianL = L (φ,∇aφ, gab, Rabcd,∇eRabcd, . . .),
where φ is a matter field, the black hole entropy can be written as an integral over
a horizon cross section H [92]. Again, since the horizon is Killing, any spacelike
cross section will do. This entropy integral is

S = −2π
∮
H

δL

δRabcd
ε̂abε̂ cd ε̄ . (3.51)

Here ε̄ is the induced volume form on the D − 2 dimensional cross section, and ε̂ab

is the binormal. The binormal has been normalized such that ε̂abε̂
ab = −2.

The NHEK solution does not have an event horizon; however, we can still get the
correct entropy of the extremal black hole by performing the integral over the cross
section of the Poincaré horizon. The entropy of the NHEK solution can then be
obtained by evaluating Eq. (3.51) in Einstein-Hilbert theory L = LEH. It is not
surprising that we arrive at the Bekenstein-Hawking entropy for the extremal Kerr
black hole [63, 93],

SNHEK = 2πm2
plANHEK =

ANHEK
4G

. (3.52)

Similarly in D2CS and D2GB, by computing the entropy corrections due to stringy
degrees of freedom, we will be able to obtain the entropies of the deformed-NHEK
solutions in the two theories. Note, however, that the entropy results agree with
the extremal BH solutions, since the Poincaré horizon is the scaling limit of the
extremal BH event horizon. The corrections to the entropy are due to high-energy
stringy degrees of freedom becoming activated.

In either dCS or EdGB gravity, the scalar field Lagrangian Lϑ does not contribute
to the entropy while the interaction term Lint does. Therefore in a full theory with
action given by Eq. (3.1), the entropy of a stationary black hole solution with horizon
cross-sectionH is

S = 2πm2
pl

∮
H

ε̄ + Sint , (3.53)

where we have defined Sint via

Sint = −2π
∮
H

δLint
δRabcd

ε̂abε̂ cd ε̄ . (3.54)

Compared to Einstein gravity, dCS- and EdGB-deformed NHEK receive entropy
corrections from two sources: the deformation of the horizon area, and the string
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interaction term Sint. In dCS theory, the correction to the entropy due to the scalar-
gravity interaction term is given by

SCS
int =

π

2
mpl`

2
CS

∮
H

ϑ ∗Rabcd ε̂abε̂ cd ε̄ . (3.55)

Similarly, we find the correction to entropy via the EdGB interaction is

SGB
int =

π

2
mpl`

2
GB

∮
H

ϑ ∗R∗abcd ε̂abε̂ cd ε̄ . (3.56)

Now let us explore the effect of taking the decoupling limit and compute the leading
order corrections to the entropy of extremal Kerr in D2CS and D2GB theories.
The leading order scalar field is already at ε1 while the metric perturbations correct
at order ε2, thus we can evaluate Eqs. (3.55) and (3.56) using the original NHEK
metric. Combining the horizon area calculations given by Eq. (3.48), the entropies
of the two deformed NHEK solutions can both be written as

Sdeformed = SNHEK

1 + ξ

(
`

GM

)4
+ O(ε3)


, (3.57)

where the constant ξ for D2CS and D2GB are given by

ξD2CS =
(
4875

√
2 + 360π2 − 868π − 3928

)
/7680

≈ +0.49 , (3.58)

ξD2GB =
(
360π2 + 4845

√
2 − 1392 − 960 log 2

− 4π(480 log 2 − 607)
)
/7680

≈ +1.54 . (3.59)

Here as well, despite the EdGB scalar solution having a singularity at the poles, the
singularity is integrable, leading to a finite correction to the entropy. Note that both
entropy corrections are positive, as should be the case when adding new degrees of
freedom to the underlying microscopic theory.

3.6 Discussion and future work
We have obtained analytic solutions for the linearized metric deformations to near-
horizon extremal Kerr spacetimes as induced by dCS and EdGB interactions in
the decoupling limit. In this limit, the metric deformations solve linearized Ein-
stein equations with a source term arising from the dilaton or axion field and the
background metric. We decomposed the metric perturbations using basis functions
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adapted to the SL(2,R)×U (1) isometry, and turn the systems of field equations into
solvable ODEs. The resulting solution in D2CS, dCS-deformed NHEK, is regular
everywhere, while in D2GB, EdGB-deformed NHEK has a true curvature singular-
ity at the poles, discussed further below. We studied time-like orbits in these two
newly found spacetimes. In particular, for circular equatorial orbits, we computed
the leading order corrections to the angular frequencies, which are observables for
sub-extremal black holes by gravitational wave experiments. Finally, we computed
the corrections to the horizon areas and the macroscopic entropies of the extremal
black hole solutions in D2CS and D2GB. The positive entropy corrections are
related to the inclusion of new degrees of freedom in the theory.

EdGB-deformed NHEK is irregular at the poles u = ±1, no matter how we choose
the constants of integration. This irregular behavior originates from the source
term built from the dilaton field, since the dilaton has an unavoidable logarithmic
singularity at the poles, as discussed in Sec. 3.4. This leads to a true curvature
singularity, which can be seen as follows. We can find the singularitywithout solving
for ĥ(2) by simply tracing the equation of motion Eq. (3.15). Since the background
Ricci scalar and the first-order metric deformation both vanish (R̂(0) = 0 = ĥ(1)),
the deformation δR̂(2) is a gauge-invariant quantity. Now, the uu component of the
source tensor, SD2GB

ab , contains (∂uϑ̂)2 and ∂2
u ϑ̂, which give a pole of order two at

u = ±1. The inverse metric component guu only contributes a single zero at the
poles. Thus the trace of the source term gabSD2GB

ab blows up with a pole of order 1
at u = ±1, and we have an unavoidable curvature singularity.

This problem with extremal EdGB solutions was previously mentioned in [94] and
discussed further in Appendix B of [74]. They presented numerical evidence and
an analytic argument that the extremal limit does not admit regular solutions, for
any values of the GB coupling parameter. Here, we have proven that there are no
regular solutions, in the decoupling limit. While our analysis is restricted to the
decoupling limit, based on the gauge-invariant argument above, we have proven that
the extremal limit is indeed singular for EdGB.

We still lack a clear physical understanding of this curvature singularity. The
simplest interpretation is that this is a sign of a breakdown of EdGB when treated as
an EFT, and that this singularity is cured by the inclusion of operators at the same
or higher order (such as those which were discarded in the truncation of [68]). This
situation would be a counterexample to Hadar and Reall’s recent claim that EFT
does not break down at an extremal horizon [95].
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Future work. The near-horizon near-extremal Kerr (near-NHEK) spacetime has
the same SL(2,R) ×U (1) isometry as the NHEK spacetime. Therefore we expect
all this work can be extended to near-NHEK directly. The techniques we used
here can also be used for any other beyond-GR theory which has a continuous
limit to GR. Therefore, we can also solve for deformed NHEK solutions in a broad
class of theories. It may be possible to use matched asymptotic expansions to
combine perturbation theory about (near-)NHEK and Schwarzschild, in order to
build beyond-GR metric solutions valid for all values of spin, 0 ≤ a ≤ M .

On the observational side, the angular frequencies of the near-extremal Kerr ISCO
may be determined accurately in future gravitational wave experiments, providing
a useful way to test general relativity.

Finally, this workmay be helpful in understanding quantum theories beyond Einstein
gravity. Wehave computed themacroscopic entropies of extremal black holes, which
must be associated with corresponding microscopic entropies. This may be possible
with an analog of the Kerr/CFT correspondence.
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C h a p t e r 4

GEDANKEN EXPERIMENTS TO DESTROY AN EXTREMAL
BLACK HOLE: FIRST-ORDER STUDY

We examine the weak cosmic censorship conjecture (WCCC) for the extremal
charged black hole in possible generalizations of Einstein-Maxwell theory due to
the higher-order corrections, up to fourth-derivative terms. Our derivation is based
on Wald’s gedanken experiment to destroy an extremal black hole. We find that,
provided the null energy condition for the falling matter, the WCCC is preserved
for all possible generalizations. Thus, the WCCC cannot serve as a constraint to
the higher-order effective theories. We also show that up to first-order variations
of black hole mass and charge, WCCC is preserved for nonrotating extremal black
holes in all n-dimensional diffeomorphism-covariant theories of gravity and U (1)
gauge field.

4.1 Introduction
Even though the curvature singularity of a black hole is hidden behind the horizon,
it might still be possible to throw charged or spinning matter into a black hole in
particular ways that can destroy the horizon, revealing the singularity previously
hidden inside. This kind of gedanken experiments was first proposed long ago
by Wald [15] to test the so-called Weak Cosmic Censorship Conjecture (WCCC)
[14], which asserts that the above gedanken experiments cannot succeed in order
to prevent the singularity from being visible. Although the WCCC can be checked
easily for extremal black holes, it is nontrivial to prove for near-extremal black holes
[15, 16] and for general forms of matter. Recently, significant progress for the
general proof of the WCCC has been made by Sorce and Wald [17] who adopted
a general relativistic formulation of the energy conservation which can work for
general forms of matter obeying the Null Energy Condition (NEC). In this way, they
were able to avoid solving the complicated dynamical problems of the in-falling
matter involving the self-force effect, and succeeded to show that the WCCC holds
for the black holes in Einstein-Maxwell theory, up to second-order variation of the
black hole’s mass, charge, and angular momentum. Moreover, their method of
examining the WCCC also provides a systematic framework for general theories
other than Einstein-Maxwell.
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One compelling reason to examine the WCCC for more general theories of gravity
and electromagnetism is that the standard Einstein-Maxwell theory, which can be a
good approximation at low energies, may need to be corrected at higher energies. In
the low-energy Effective Field Theory (EFT), these quantum corrections can leave
low-energy relics in the form of higher-order derivative terms beyond Einstein-
Maxwell terms, modifying the black hole solutions, as well as the relativistic laws
of the energy-momentum conservation. These terms may also make the WCCC
fail. If we take the WCCC as a universal physical principle, then only those higher
order EFTs that admit the WCCC should be accepted. This is in a similar spirit of
using the weak gravity conjecture [96–98] which takes “gravity force is the weakest
in nature” as a new physical principle to constrain the higher-order EFTs [97]. In
this chapter, we would like to check to see if weak cosmic censorship can serve as a
constraint on the EFTs with higher-derivative terms. By the end we will show that
there is no constraint WCCC can put on the coupling coefficients of such EFTs. This
calls for the further examination of preserving WCCC at the second-order variation
for the EFTs considered 1.

4.2 EFTs, black-hole solutions, and extremality condition
To demonstrate the power of the WCCC as a constraint to the EFTs, in this work
we consider the most general quartic order corrections to Einstein-Maxwell theory,
which is given by the following EFT action:

I =
∫

d4x
√
−g(

1
2κ

R −
1
4

FµνF µν + ∆L) , (4.1)

where 2

∆L = c1R2 + c2RµνRµν + c3RµνρσRµνρσ

+ c4RFµνF µν + c5RµνF µρFν
ρ + c6RµνρσF µνF ρσ

+ c7FµνF µνFρσF ρσ + c8FµνFνρFρσFσµ . (4.2)

We will assume ci’s are small and restrict our consideration to O(ci). The afore-
mentioned self-interactions of four photons are the terms with coupling coefficient
c7 and c8 respectively.

1A technical error regarding (4.3) in the previous version of this work is pointed out by [99]. In
this version we fix the error and reach the same results as in [99].

2Wehave neglected terms proportional to∇µFµρ∇νFνρ, as it does not affect the black hole metric
or our parameter bound. Further note that terms like (∇µFνρ)(∇µFνρ) and (∇µFνρ)(∇νFµρ) can be
recasted (up to some constant factor) into ∇µFµρ∇νFνρ plus existing terms in ∆L and an additional
boundary term, upon using Bianchi identities, Ricci identities, and integrating by parts [100].
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For simplicity, we will consider only the charged non-spinning black holes. The
perturbative procedure of solving such black hole solutions has been outlined in
[101], leading to a family of solutions parametrized by the mass and the charge
(M,Q). Here we list some partial results relevant for our considerations3, namely
the Maxwell gauge field

At = −
q
r
−

q3

5r5 ×

[
c2κ

2 + 4c3κ
2 + 10c4κ + c5κ − c6κ

(
9 −

10mr
q2

)
− 16c7 − 8c8

]
,

(4.3)

and the tt-component of the metric 4

−gtt =1 −
κm
r
+
κq2

2r2 + c2

(
κ3mq2

r5 −
κ3q4

5r6 −
2κ2q2

r4

)
+ c3

(
4κ3mq2

r5 −
4κ3q4

5r6 −
8κ2q2

r4

)
+ c4

(
−

6κ2mq2

r5 +
4κ2q4

r6 +
4κq2

r4

)
+ c5

(
4κ2q4

5r6 −
κ2mq2

r5

)
+ c6

(
κ2mq2

r5 −
κ2q4

5r6 −
2κq2

r4

)
+ c7

(
−

4κq4

5r6

)
+ c8

(
−

2κq4

5r6

)
+ O(c2

i ) . (4.4)

Here we define the reduced mass m ≡ M/4π, the reduced charge q ≡ Q/4π and
κ = 8πGN , where GN is the gravitational constant. Note that in (4.4) there is no
O(c1) correction.

As shown by Ref. [101], as long as

m ≥

√
2
κ
|q |

(
1 −

4
5q2 c0

)
, (4.5)

the singularity of the space-time will be hidden by a horizon; more precisely, the
outer horizon located at the outer-most solution of gtt (rH ) = 0. Here

c0 ≡ c2 + 4c3 +
c5
κ
+

c6
κ
+

4c7

κ2 +
2c8

κ2 , (4.6)

and c0 → 0 recovers the Reissner-Nordstrom solution of Einstein-Maxwell. For a
fixed m, as q increases to, and then exceeds, the critical value at which equality

3See Sec. I of the supplemental materials for the full explicit expressions.
4See Sec. II of the supplemental materials for the full expressions.
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holds in (4.5), two horizons will merge and subsequently disappear, revealing the
singularity. In this way, the extremal solution is defined by imposing equality in
(4.5). This implicitly defines a function qext (m) for the extremal solution. For each
m, the horizon radius of the extremal solution is given by

rext
H =

mκ
2
+

4
5m

(
c2 + 4c3 +

10c4 + c5 + c6
κ

−
16c7 + 8c8

κ2

)
. (4.7)

On this extremal horizon, the electrostatic potential is

Φ
ext
H = −

(
ξa Aa

)
|H =

√
2
κ

(
1 +

4c′0
5q2

)
, (4.8)

where ~ξ = ~∂t is the time-like Killing vector of the space-time, and

c′0 = c2 + 4c3 +
c5
κ
+

c6
κ
+

4c7

κ2 +
2c8

κ2 . (4.9)

One immediately notes that c′0 = c0, but we shall discuss the conseqeunce later. We
refer to (m, q) solutions that strictly satisfy the inequality (4.5) as regular solutions,
those that take equality as extremal solutions, and those that violate the inequality
as singular solutions. We may still refer to them as “black holes”—even though the
horizon may or may not be destroyed.

4.3 Gedanken experiment to destroy the horizon
In gedanken experiments that attempt to destroy the horizon, e.g., as set up by
Wald [15, 17], we shall always (if tacitly) assume stability of our family of solutions.
That is, starting off with a regular solution (m, q), as we “throw matter into” it,
the final space-time geometry and field configuration will settle down to another
solution in our family.

If our “way-of-throwing-matter”, for example described by the on-shell metric per-
turbations, field perturbations, and matter stress-energy tensor in the initial slice, is
parameterized by w, then the final solution should be given by (m(w), q(w)).

In this language, the WCCC dictates that a starting regular solution (m, q) long
before “throwing matter” will only lead to (m(w), q(w)) that are still regular. As
a special case, let us now consider a starting extremal solution (m, qext (m)), and a
particular approach of throwing matter, we can write

m(w) = m + wδm +O(w2) , q(w) = qext (m) + wδq +O(w2) . (4.10)
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The condition for the starting extremal solution to not become singular, at first order
in w, is given by

δm −

√
2
κ

(
1 +

4c0

5q2

)
δq ≥ 0 . (4.11)

We therefore need to find out whether physical laws in our modified theory imposes
that (4.11) must hold for all infalling matter— or to find a particular way of throwing
matter that violates (4.11). The advantage of starting off at the extremal solution is:
once Eq. (4.11) is violated, then any infinitesimal w will lead to destruction of the
horizon, and we can restrict ourselves to linear perturbation.

By contrast, starting from a non-extremal black hole with (m, qext (m) − ε ), a finite
step size for w must be made to surpass the extremality contour, and in this case
the higher derivatives of m(w) and q(w) may become important, requiring the
computation of higher-order variations. This was indeed the situation encountered
by Hubeny [16], which was latter addressed by Sorce and Wald [17] by considering
the second-order variations. Intuitively, one would expect the sub-extremal black
holes will obey the WCCC if the extremal ones do, but the second-order variations
are needed for a rigorous examination on the sub-extremal case. In this paper we
shall restrict ourselves to the extremal black holes.

As it turns out, condition (4.11) coincides with the requirement that the horizon area
must increase as matter fall into extremal black holes 5. More specifically, if we
denote by A(m, q) the area of the horizon, then one can show that

∂mA(m, q)/∂qA(m, q) |q=qext (m) = dqext (m)/dm , (4.12)

and that dA(m + wdm, qext (m) + wdq)/dw = 0 is equivalent to the equality in
Eq. (4.11). In this way, the violation of condition (4.11), or the destruction of the
extremal horizon, relies on the possibility of area decrease at linear order. This can
be possible for the theories we consider even when the NEC is satisfied, because
Raychaudhuri equation is now modified, and the NEC does not always lead to
attractive gravity.

4.4 Test particle
For a regular solution (m, q), consider a test particle with reduced mass δm0 and
reduced charge δq0, falling in from infinity. Using the minimally coupled action of

Sp = 4π
∫

dτ (δm0 − δq0~u · ~A) , (4.13)

5See Sec. IV of the supplemental materials for details
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the reduced canonical momentum of the particle, ~p = δm0 ~u − δq0 ~A, satisfies
~ξ · ~p = const along the particle’s trajectory; at linear order in δm0 and δq0, we do
not have to consider the radiation reaction. Applying this to the particle at infinity
and on the horizon, we obtain

δm0
(
~u H · ~ξ

)
− Φc

Hδq0 = δm0
(
~u∞ · ~ξ

)
= −δE∞ , (4.14)

where ~u∞ and ~u H are the four-velocities of the particle at infinity and on the horizon,
andwe have used the fact that At does not depend on t, hence ~ξ · ~A vanishes at infinity.

For the final space-time, we assume that it still belongs to the same family, with
(m + δm, q + δq). We can argue from the charge conservation that δq = δq0,
and, from the conservation of ADM mass, as well as the fact that the energy of
gravitational radiation emitted by the in-fall process is O(δm2), that δm = δE∞:
basically, the charge and the energy of the particle are added to those of the black
hole. We will soon give a more rigorous justification, but with this in hand we can
write

δm − Φc
Hδq = −δm0

(
~u H · ~ξ

)
≥ 0 . (4.15)

The latter inequality is because ~u H · ~ξ ≤ 0: the 4-velocity of the particle must be
pointed toward the future as the particle crosses the horizon. This can be saturated
if the particle is able to rest right on top of the horizon. Inserting Eq. (4.8) into
Eq. (4.15), we obtain the relation between δq and δm in this in-falling test particle
situation:

δm ≥

√
2
κ

(
1 +

4c′0
5q2

)
δq . (4.16)

This is clearly the same as Eq. (4.11) since c′0 = c0. However, before discussing its
consequences, we shall introduce the framework by Sorce andWald, which provides
more rigorous treatment of the energy conservation, and is able to treat more general
infalling matter.

4.5 Sorce-Wald method for generic matter
We now sketch the method of Sorce and Wald developed in [17, 102]. We follow
the notation of Wald, and denote by φ = (gab, Aa) the metric and field degrees of
freedom. We start off with an extremal black hole, with (m, qext (m)), and define a
Cauchy surface Σ0 at early time, and a hypersurface Σ1 which starts at sufficiently
late time when the matter all fall in, and terminates at null infinity. We denote by
H the portion of the extremal horizon between Σ0 and Σ1 (see Fig. 4.1). We then
apply perturbation δφ, as well as matter, with stress-energy tensor δTab and electric
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Figure 4.1: The gedanken experiment to destroy an extremal black hole. Charged
matter, occupying the shaded region, crosses theH portion of the extremal horizon.

current δ ja, also a form of perturbation, in an open neghborhood of Σ0. We will
set up our initial value problem in such a way that δφ, δTab and δ ja all vanish in an
open neighborhood U surrounding the intersection of H and Σ0. In principle, δφ
and δTab, δ ja should be evolved jointly into the future, but here we assume stability
of our family of solutions, and therefore can impose that space-time geometry in an
open neighborhood of Σ1 is that of (m + δm, q + δq)6.

A general Noether method to derive the law of energy conservation for such an
in-falling process is developed by Iyer and Wald [91], which we will briefly sketch
as follows. Given a theory Lagrangian L(φ) of gravity and matter, we can introduce
the Lagrangian 4-form L = Lε , where ε is the volume form associated with the
metric. Then, variation of L yields

δL = E(φ)δφ + dΘ(φ, δφ) , (4.17)

where E(φ) = 0 is Euler-Lagrangian equation, and Θ(φ, δφ) is the symplectic
6We note that in general Σ1 is only a portion of a “Cauchy surface"—with the remaining portion

completed by a portion of the future null infinity. A Cauchy surface that ends at spatial infinity does
not approach (m + δm, q + δq), fast enough; its ADM mass is not equal to m + δm either, because it
contains the energy-momentum content of gravitational waves emitted during the in-fall process, see
e.g. [102]. Sorce and Wald simply assumed that the late time solution is stable and non-radioactive
to bypass the above concern [17]. On the other hand, in this paper we consider only the infall of
matter into an extremal black hole for which the dynamics is non-radioactive, thus the above issue
does not exist in our consideration.
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potential three-form. For an arbitrary vector ξa, one can construct the associated
Noether current Jξ = Θ(φ,Lξφ)−iξL , which, because Jξ is conserved, i.e., dJξ = 0,
can be rewritten as Jξ = dQξ + ξ

aCa with the 3-form constraint Ca = 0 when
equations of motion are satisfied. For instance, in Einstein-Maxwell theory, the
3-form constraint is given by

(Ca)bcd = ε ebcd (T e
a + j e Aa), (4.18)

with Tab =
1
κ

(
Gab − κTEM

ab

)
the non-electromagnetic stress energy tensor, and

j a = ∇bFab the charge current of the Maxwell source. Thus the on-shell condition
Ca = 0 gives the equations of motion Gab = κTEM

ab and ∇bFab = 0. The form (4.18)
also holds when the higher-order derivative corrections ∆L are present. Assuming
E(φ) = 0 and ξa is a Killing vector, i.e., Lξφ = 0, it is easy to show that δJξ =
diξΘ(φ, δφ) which is then combined with δJξ = dδQξ + ξ

aδCa, and is integrated
over the hypersurfaceH ∪ Σ1 to yield∫

∞

[δQξ − iξΘ(φ, δφ)] = −
∫
H∪Σ1

ξaδCa , (4.19)

where we have used the Stoke’s theorem to turn the 3-surface integral into the
boundary integrals at the spatial infinity ∞ and at the intersection H ∩ Σ0, by also
imposing δφ = 0 atH ∩ Σ0.

If we assume ξa is the time-like Killing vector ta = (∂t )a for non-spinning black
holes, then we denote the change of the ADM mass as

δM =

∫
∞

[δQξ − iξΘ(φ, δφ)] , (4.20)

and the charge crossing the horizon as,

δQ ≡

∫
H

ε abcd δ j a , (4.21)

where the electric current δ j a and the stress tensor δT a
b can be read off from the

following on-shell relation 7

(δCa)bcd = ε ebcd
(
δT e

a + Aaδ je) . (4.22)

After combining all above and requiring vanishing of δ je and δT e
a on Σ1 as depicted

in Fig. 4.1, we can turn (4.19) into the the following law of energy conservation for
7To arrive (4.22) we have imposed the on-shell conditions for the theory (4.29) along with the

additional minimally coupled matter of stress tensor δTab and charge current δ ja.



66

the in-falling process of Wald’s gedanken experiment,

δM − Φc
HδQ = −

∫
H

ε ebcd ξ
aδT e

a . (4.23)

On horizon H we can relate the 4-volume form ε to the 3-volume form ε̃ by the
relation ε ebcd = −4n[eε̃ bcd] where ne is the null vector normal to H . Using this
relation and the fact ξa ∝ na onH , the R.H.S. of (4.23) turns into 4

∫
H
ε̃δTabnanb,

which is non-negative if matter’s stress tensor obeys the NEC. Thus, the variational
identity (4.23) becomes an inequality for matter obeying the NEC,

δM − Φc
HδQ ≥ 0 . (4.24)

This inequality serves as a constraint on the changes of the black hole’s mass and
charge for the in-falling process, and will be used to check the WCCC by comparing
with the condition (4.11).

4.6 Parameter bounds from WCCC
The Noether method by Iyer and Wald provides a systematic way to calculate δM
of (4.20) and δQ of (4.21) for general theory by evaluating Θ, Q, and Ca. For
example, these quantities for Einstein-Maxwell theory have been derived in [91],
and the results δM = 4πδm and δQ = 4πδq are then used to show that the WCCC
holds for Einstein-Maxwell theory.

Here we apply the samemethod for our higher-order theory (4.29). The derivation is
tedious but straightforward, and the result is given in the supplemental materials 8,
based on which we can evaluate the corresponding δM and δQ. As a result, we
find that δM = 4πδm because the corrections due to higher-order Lagrangian
∆L fall off too quickly to contribute asymptotically to δM. Similarly, we arrive
δQ = 4πδq + O(c2

i ) after tedious calculations9. The results are consistent with
the test particle case. Therefore, we conclude that (4.24), which holds for general
forms of matter obeying the NEC, gives the same condition Eq. (4.16) as for the test
particle.

8See Sec. III of the supplemental materials for the explicit expressions.
9This can also be seen as follows. By the construction of source theory, ja = ∇b (Fab − Sab) in

which Sab is given in (5) of supplemental materials and is of O(ci), and using (3) of supplemental
materials, Fab = F (0, j)

ab
+ Sab + O(c2

i ) where the superscript (0, j) means to evaluate by plugging
the background Reissner-Nordström configurations and keeping up to O(ci) terms. We then arrive
ja = ∇bF (0, j)

ab
+ O(c2

i ), and use the Gauss’s law the integral Q =
∫
H
εabcd ja =

∫
B
∗F (0, j) + O(c2

i ).
Then, δQ =

∫
B

(∗F (0, j) − ∗F (0)) + O(c2
i ) = δQ + O(c2

i ), where δQ = 4πδq is the charge carried by
the in-falling matter. Thus, δQ = 4πδq + O(c2

i ) is obtained.
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Compare the energy condition (4.16) and the WCCC condition (4.11), it is not hard
to see that we must have c′0 ≥ c0 for the WCCC to hold for theory (4.29).

In our case, we simply have c′0 = c0, thus the WCCC is preserved no matter how
we choose the coupling coefficients ci. Thus there is no bound that one can put on
these coefficients using the WCCC.

4.7 Extension to more general theories
We have shown that for the effective field theory with higher derivative terms, the
WCCC is always preserved and it yields no bound on the coupling coefficients of
the theory. This conclusion is still interesting in the following two aspects: (i) for
near-extremal black holes, our result calls for check of WCCC at the quartic order
for low-energy effective theories (EFTs) considered in this chapter; (ii) for extremal
black holes, one might wonder whether WCCC holds for all other EFTs in general,
i.e., whether c′0 coincides with c0 for a reason.

While more technical work is needed to clarify (i), definite conclusions can be drawn
for (ii). More specifically, one can prove that WCCC is preserved for nonrotating
extremal black holes in all n-dimensional diffeomorphism-covariant theories of
gravity and U (1) gauge field; this has also been done by Ref. [99].

As has been correctly argued in the paper, in order for matter to fall into the black
hole we must have

δM − ΦHδQ ≥ 0 , (4.25)

assuming that the infalling matter obeys the null energy condition. On the other
hand, the condition for the extremal solution to not become singular, i.e, to preserve
the WCCC , is given by

δM −
(

dM
dQ

)
ext
δQ ≥ 0 , (4.26)

where (dM/dQ)ext is derivative taken along the extremal trajectory in the (M,Q)
space. Here we have also assumed that (dM/dQ)ext > 0 and that non-extremal black
holes have M > Mext (Q). Some example violating these assumptions is discussed
in [103] , however, the associated physical implication is obscure.

We then write the first law of black hole thermodynamics for non-extremal black
holes,

δM = TδS + ΦHδQ , (4.27)
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where S in the entropy of the black hole. As we approach the extremal solution, we
have T → 0, and (

dM
dQ

)
ext
= ΦH . (4.28)

This relation can be verified explicitly for the quartic EFTs studied in this paper. Be-
cause of (4.25) and (4.28), (4.26) always holds and concludes our proof. Obviously,
the above proof will not work for near-extremal cases because (4.28) does not hold.

In conclusion, no matter how we change the action of the EFTs, the condition for
the matter falling into the extremal black hole always coincides with the condition
for WCCC. Thus, WCCC for extremal black holes will not constrain the form of
low energy EFTs. For near-extremal black holes, however, one needs to consider
second-order variations of black hole mass and charge. It is still possible that after
the second-order results are taken into consideration, the WCCC only permits a
certain region of the parameter space. We shall leave the second-order calculations
for the future work.

4.8 Appendix
Corrections to the Maxwell source and stress tensor
We consider the most general fourth-derivative higher-order corrections to Einstein-
Maxwell theory, namely,

I =
∫

d4x
√
−g(

1
2κ

R −
1
4

FµνF µν + ∆L) (4.29)

where

∆L = c1R2 + c2RµνRµν + c3RµνρσRµνρσ (4.30)

+ c4RFµνF µν + c5RµνF µρFν
ρ + c6RµνρσF µνF ρσ

+ c7FµνF µνFρσF ρσ + c8FµνFνρFρσFσµ .

The field equations obtained by the variation of the action (4.29) with respect to Aµ

and gµν are given respectively by

∇ν (F µν − Sµν) = 0 , (4.31)

and
Rµν −

1
2
gµνR = κTµν = κ(T̃µν + ∆Tµν) , (4.32)

where T̃µν = FµρFνρ − 1
4gµνFρσF ρσ is the stress tensor of the Maxwell theory,

and ∆Tµν and Sµν are the corrections respectively to the stress tensor and Maxwell
source field from the higher-dimension operators.
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Here we list the details of the corrections to the Maxwell source field and stress
tensor, i.e., Sµν in Eq. (9) and ∆Tµν in Eq. (10) of the main text:

Sµν = 4c4RF µν + 2c5(RµρFρν − RνρFρµ) + 4c6RµνρσFρσ +

+ 8c7FρσF ρσF µν + 8c8FρσF ρνF µσ , (4.33)

and

∆Tµν = c1
(
gµνR2 − 4RRµν + 4∇ν∇µR − 4gµν�R

)
+

+ c2
(
gµνRρσRρσ + 4∇α∇νRα

µ − 2�Rµν − gµν�R − 4Rα
µRαν

)
+

+ c3
(
gµνRαβγδRαβγδ − 4RµαβγRνα βγ − 8�Rµν

+4∇ν∇µR + 8Rα
µRαν − 8RαβRµαν β

)
+

+ c4
(
gµνRF2 − 4RFµσFνσ − 2F2Rµν + 2∇µ∇νF2 − 2gµν�F2

)
+

+ c5
(
gµνRκλFκρFλ ρ − 4RνσFµρFσρ − 2RαβFαµFβν)

−gµν∇α∇β (Fα
ρF βρ + 2∇α∇ν (FµβFαβ) − �(FµρFν ρ)

)
+

+ c6
(
gµνRκλρσFκλFρσ − 6FανF βγRα

µβγ − 4∇β∇α (Fα
µF β

ν)
)
+

+ c7
(
gµν (F2)2 − 8F2FµσFνσ

)
+

+ c8
(
gµνF ρκFρσFσλFκλ − 8FµρFνσFρκFσκ

)
. (4.34)

Note that F2 = FρσF ρσ and � = ∇a∇
a.

Corrections to the Reissner-Nordström black hole
The functions λ(r) and ν(r) are related to the components of Ricci curvature tensor
Rµν via

1
2

(
Rt

t − Rr
r

)
− Rθ

θ =
1
r2

d
dr

[
r (e−λ(r) − 1)

]
, (4.35)

Rt
t − Rr

r = −
e−λ(r)

r
[
ν′(r) + λ′(r)

]
.

To solve for λ and ν explicitly, we need an additional boundary condition. Assuming
that at r → ∞ the metric approaches the Schwarzschld solution, the results are then
given by

e−λ(r) = 1 −
κM
4πr
−

1
r

∫ ∞

r
dr r2

[
1
2

(
Rt

t − Rr
r

)
− Rθ

θ

]
, (4.36)

ν(r) = −λ(r) +
∫ ∞

r
dr r

(
Rt

t − Rr
r

)
eλ(r) .
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We further take the trace-reverse of Eq. (10) from the main text and obtain that

Rµν = κ

(
Tµν −

1
2

Tgµν

)
, (4.37)

where T is the trace of the total energy-momentum tensor Tµν, and is given by
T = T t

t + Tr
r + 2T θ

θ . Plugging the trace-reversed Einstein field equation into the
integral expression (4.36), we get

e−λ(r) = 1 −
κM
4πr
−
κ

r

∫ ∞

r
dr r2T t

t , (4.38)

ν(r) = −λ(r) + κ
∫ ∞

r
dr r

(
T t

t − Tr
r

)
eλ(r) .

Once we know the diagonal components of the energy-momentum tensor, it will
be straightforward to compute the corrections to the spherically symmetric static
spacetime as induced by Tµν.

We now take our background spacetime to be Reissner-Nordström black hole in
four-dimension. That is,

eν
(0)
= e−λ

(0)
= 1 −

κM
4πr
+

κQ2

32π2r2 , (4.39)

F (0)
µν dxµ ∧ dxν =

Q
4πr2 dt ∧ dr .

Here ν(0) (r) and λ (0) (r) refer to themetric components in the unperturbed black hole
spacetime, and F (0)

µν is the background electromagnetic energy-momentum tensor.
Considering the action in Eq. (2) of the main text, we treat the corrections from
higher-dimension operators as perturbations. For convenience, we also introduce
a power counting parameter ε, and consider a one-parameter family of actions Iε,
which is given by

Iε =
∫

d4x
√
−g(L0 + ε∆L) . (4.40)

The original action will be recovered after setting ε = 1. We then expand everthing
into powers series in ε. For instance,

gµν = g(0)
µν + εh(1)

µν + O(ε2) , Fµν = F (0)
µν + ε f (1)

µν + O(ε2) . (4.41)

At order ε1, the stress energy tensor is given by

T (1)
µν = T̃µν[g(0), f (1), F (0)] + T̃µν[h(1), F (0), F (0)] + ∆Tµν[g(0), F (0)] . (4.42)

Noting that in order to compute the corrections to the metric, we need to calculate
Tµν instead of Tµν. At order ε1, Tµν (1) is given by

Tµν
(1)
= T̃µν[g(0), F (1)] + ∆Tµν[g(0), F (0)] . (4.43)
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We solve for the corrections to Maxwell equations, and obtain that the gauge field
Aa is given by

At = −
q
r
−

q3

5r5×

[
c2κ

2 + 4c3κ
2 + 10c4κ + c5κ − c6κ

(
9 −

10mr
q2

)
− 16c7 − 8c8

]
,

(4.44)

Ar = Aθ = Aφ = 0 .

(4.45)

With the new Aµ, we can solve for the corrected energy-momentum tensor Tµν (1).
We then find the corrected metric tensor component to be

e−λ =1 −
κm
r
+
κq2

2r2 + c2

(
3κ3mq2

r5 −
6κ3q4

5r6 −
4κ2q2

r4

)
+ c3

(
12κ3mq2

r5 −
24κ3q4

5r6 −
16κ2q2

r4

)
+ c4

(
14κ2mq2

r5 −
6κ2q4

r6 −
16κq2

r4

)
+ c5

(
5κ2mq2

r5 −
11κ2q4

5r6 −
6κq2

r4

)
+ c6

(
7κ2mq2

r5 −
16κ2q4

5r6 −
8κq2

r4

)
+ c7

(
−

4κq4

5r6

)
+ c8

(
−

2κq4

5r6

)
,

e+ν =1 −
κm
r
+
κq2

2r2 + c2

(
κ3mq2

r5 −
κ3q4

5r6 −
2κ2q2

r4

)
(4.46)

+ c3

(
4κ3mq2

r5 −
4κ3q4

5r6 −
8κ2q2

r4

)
+ c4

(
−

6κ2mq2

r5 +
4κ2q4

r6 +
4κq2

r4

)
+ c5

(
4κ2q4

5r6 −
κ2mq2

r5

)
+ c6

(
κ2mq2

r5 −
κ2q4

5r6 −
2κq2

r4

)
+ c7

(
−

4κq4

5r6

)
+ c8

(
−

2κq4

5r6

)
. (4.47)

We have defined the reduced quantities m = M/4π and q = Q/4π. Note that the
R2-term in the action has no contributions to the equation of motion at leading
order in ε. The contributions from RµνRµν and RµνρθRµνρθ can be canceled out
by choosing c2 = −4c3. This directly confirms that the Gauss-Bonnet term is a
topological invariant and does not influence the equation of motion. Due to the fact
that only the tr− and rt−component of Fµν are nonzero, the term FµνF µνFρσF ρσ

always has twice the contributions from FµνFνρFρσFσµ towards the equation of
motion.

Explicit forms of Qξ and Ca for the higher theory
The Lagrangian four-form L for the higher theory can bewritten as L = L0+

∑
i ciLi.

In this appendix, by following the canonical method developed by Iyer and Wald,
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we derive and present the Noether charge and constraint associated with each term
in L .

Variation of the Lagrangian 4-form L0 yields

δL0 = δgab

(
−

1
2κ

Gab +
1
2

TEM
ab

)
ε + δAa

(
∇bFba

)
ε + dΘ0 , (4.48)

where Gab = Rab −
1
2gabR is the Einstein tensor, and TEM

ab is the electro-magnetic
stress-energy tensor, which is defined by

TEM
ab = FacFb

c −
1
4
gabFdeFde . (4.49)

The symplectic potential can be written as

Θ0 = ΘGR +ΘEM , (4.50)

where

Θ
GR
abc

(
φ, δφ

)
=

1
2κ
εdabcg

deg f g
(
∇gδge f − ∇eδg f g

)
, (4.51)

Θ
EM
abc

(
φ, δφ

)
= −εdabcFdeδAe . (4.52)

Let ξa be any smooth vector field on the spacetime. We find that the Noether charges
associated with the vector field are respectively,(

QGR
ξ

)
ab
= −

1
2κ
εabcd∇

cξd , (4.53)(
QEM
ξ

)
ab
= −

1
2
εabcdFcd Aeξ

e . (4.54)

The equations of motion and constraints are given by

E0δφ = −ε

(
1
2

T abδgab + jaδAa

)
, (4.55)

Cbcda = ε ebcd
(
T e

a + je Aa
)
, (4.56)

where we have defined Tab =
1
κ

(
Gab − κTEM

ab

)
as the non-electromagnetic stress

energy tensor, and ja = ∇bFab is the charge-current of the Maxwell sources.

We similarly obtain the Noether charges and constraints for all higher-derivative
terms. The results are presented below.
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L1 Variation of L1 yields

δL1 = δgab(E1)abε + dΘ1 , (4.57)

where we have defined

(E1)ab =
1
2
gabR2 − 2RRab + 2∇b∇a R − 2gab∇c∇

c R . (4.58)

The Noether charge associated with the vector field ξa is

(Q1
ξ )ab = εabcd

(
−4ξc ∇d R + 2R∇dξc

)
. (4.59)

The constraints are given by

Cbcda = −2ε ebcd (E1)e
a . (4.60)

L2 Variation of L2 yields

δL2 = δgab(E2)abε + dΘ2 , (4.61)

where we have defined

(E2)ab =
1
2
gabRcd Rcd +∇c∇

bRac +∇c∇
a Rbc −gab∇d∇c Rcd −∇c∇c Rab−2Rac Rb

c .

(4.62)
The Noether charge associated with the vector field ξa is

(Q2
ξ )ab = εabcd

(
4ξ[ f ∇c]R f

d + R f
d∇ f ξc + R f

c∇dξ f
)
. (4.63)

The constraints are given by

Cbcda = −2ε ebcd (E2)e
a . (4.64)

L3 Variation of L3 yields

δL3 = δgabc3(E3)abε + dΘ3 , (4.65)

where we have defined

(E3)ab =
1
2
gabR2+2gabRcd Rcd +2RabR−8Rcd Racbd +2∇b∇a R−4�Rab . (4.66)

The Noether charge associated with the vector field ξa is

(Q3
ξ )ab = εabcd

(
−4ξe∇ f Re

f cd + 2Re f
cd∇ f ξe

)
. (4.67)

The constraints are given by

Cbcda = −2ε ebcd (E3)e
a . (4.68)
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L4 Variation of L4 yields

δL4 = δgab(Eg
4 )abε + δAa (E A

4 )aε + dΘ4 , (4.69)

where we have defined the equations of motion for gab and Aa respectively as

(Eg
4 )ab =

[
−Rab +

1
2
gabR − gab∇2 + ∇(a∇b)

]
F2 − 2RFacFb

c , (4.70)

(E A
4 )a = 4∇b

(
RFab

)
. (4.71)

The Noether charge associated with the vector field ξa is

(Q4
ξ )ab = εabcd

(
F2∇dξc − 2ξc∇dF2 + 2RFcd Aeξ

e
)
. (4.72)

The constraints are given by

Cbcda = −2ε ebcd (Eg
4 )e

a − ε ebcd (E A
4 )e Aa . (4.73)

L5 Variation of L5 yields

δL5 = δgab(Eg

5 )abε + δAa (E A
5 )aε + dΘ5 , (4.74)

where we have defined the equations of motion for gab and Aa respectively as

(Eg

5 )ab = 2F (bcFc
d Ra)

d − FacFbd Rcd +
1
2

Fc
eFcdgabRde (4.75)

− ∇(aFb)c∇dFc
d − Fcd∇d∇

(aFb)
c − F (bc∇d∇

a)Fc
d − F (bc�Fa)

c

− ∇(bFcd∇
dFa)c − Fcdgab∇(d∇e)Fc

e − ∇dFb
c∇

dFac

+
1
2
gab∇cFcd∇eFd

e −
1
2
gab∇dFce∇

eFcd ,

(E A
5 )a = 2∇c

(
RbcFa

b + Fbc Ra
b
)
. (4.76)

The Noether charge associated with the vector field ξa is

(Q5
ξ )ab = εabcd

[
−2ξe AeF f c R f

d − 2ξcF f (e∇eFf
d) + ξe∇d

(
F f cFe f

)
+ Ff

dFe
f∇[cξe]

]
.

(4.77)
The constraints are given by

Cbcda = −2ε ebcd (Eg

5 )e
a − ε ebcd (E A

5 )e Aa . (4.78)
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L6 Variation of L6 yields

δL6 = δgab(Eg

6 )abε + δAa (E A
6 )aε + dΘ6 , (4.79)

where we have defined the equations of motion for gab and Aa respectively as

(Eg

6 )ab =
1
2

FcdFe f gabRcde f − 3F (acFdeRb)
cde (4.80)

− 2F (ac∇c∇dFb)d − 2F (ac∇d∇cFb)d − 4∇cF (ac∇dFb)d ,

(E A
6 )a = 4∇d

(
Fbc Rad

bc
)
. (4.81)

The Noether charge associated with the vector field ξa is

(Q6
ξ )ab = εabcd

[
2ξe AeF f gR f g

cd − 2ξe∇ f
(
FcdFe

f
)
+ FcdFe f∇

f ξe
]
. (4.82)

The constraints are given by

Cbcda = −2ε ebcd (Eg

6 )e
a − ε ebcd (E A

6 )e Aa . (4.83)

L7 Variation of L7 yields

δL7 = δgab(Eg
7 )abε + δAa (E A

7 )aε + dΘ7 , (4.84)

where we have defined the equations of motion for gab and Aa respectively as

(Eg
7 )ab =

1
2
gabF2F2 − 4FacFb

cF2 , (4.85)

(E A
7 )a = 8∇b

(
FabF2

)
. (4.86)

The Noether charge associated with the vector field ξa is

(Q7
ξ )ab = εabcd

(
4ξe AeFcdF2

)
. (4.87)

The constraints are given by

Cbcda = −2ε ebcd (Eg
7 )e

a − ε ebcd (E A
7 )e Aa . (4.88)
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L8 Variation of L8 yields

δL8 = δgab(Eg
8 )abε + δAa (E A

8 )aε + dΘ8 , (4.89)

where we have defined the equations of motion for gab and Aa respectively as

(Eg
8 )ab =

1
2
gabFc

dFd
eFe

f Ff
c − 4FacFbdFc

eFde , (4.90)

(E A
8 )a = −8∇d

(
Fa

bFb
cFcd

)
. (4.91)

The Noether charge associated with the vector field ξa is

(Q8
ξ )ab = εabcd

(
4ξe AeFf

dFg
cFg f

)
. (4.92)

The constraints are given by

Cbcda = −2ε ebcd (Eg
8 )e

a − ε ebcd (E A
8 )e Aa . (4.93)

Finally, the above results can be summarized in the following compact form:

(Qξ )c3c4 = εabc3c4

(
Mabc ξc − Eabcd ∇[c ξd]

)
, (4.94)

where
Mabc ≡ −2∇d Eabcd + Eab

F Ac , (4.95)

and

(Cd)abc = ε eabc(2EpqreR d
pqr +4∇ f∇hEe f dh+2Eeh

F Fd
h−2Ad∇hEeh

F −g
edL) (4.96)

with
Eabcd ≡

δL

δRabcd
, Eab

F ≡
δL

δFab
. (4.97)

Proof that constant area direction is along the extremality curve
Suppose the radius, hence area A of the horizon is determined implicitly by the
following equation

F (M,Q, A) = 0 . (4.98)

The extremality condition requires, in addition, that

∂AF (M,Q, A) = 0 . (4.99)

This is because the two roots of 1/grr coincide at this location.
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Naked singularity region
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Figure 4.2: Extremality contour and constant area contours. Extremal black holes
live on the red solid line which divides the whole parameter space into the naked sin-
gularity region and the non-extremal black hole region. The constant area contours
are always tangent to the extremal line. A small perturbation around an extremal
point then shifts the spacetime to one of the following: (i) a naked singularity
when the horizon area is decreased; (ii) another extremal solution when the area is
unchanged; and (iii) a nonextremal black hole when the area is increased.

Extremal black holes are of a one-parameter family, with Qext (M), Aext (M) deter-
mined jointly by Eqs. (4.98) and (4.99). In practice, when Q < Qext (M), we will
have contours of constant A (as shown in Fig. 6.4), determined by

∂M FdM + ∂QFdQ = 0 , (4.100)

or
(dQ/dM)A = −∂M F/∂QF . (4.101)

On the other hand, we can find out the direction of the extremality curve in the
(M,Q, A) space. The tangent vector satisfies

∂M F∆M + ∂M F∆Q + ∂AF∆A = 0 . (4.102)
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However, because we have ∂AF on that curve, we have ∂AF = 0 and also

(dQ/dM)ext = −∂M F/∂QF . (4.103)

This means, on the extremality contour, the direction at which area remains constant
is the same as the contour itself. This does not mean that the contour all has the same
area — instead, constant area contours reach the extremality contour in a tangential
way, as shown in the figure.
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C h a p t e r 5

GEDANKEN EXPERIMENTS TO DESTROY A BTZ BLACK
HOLE: SECOND-ORDER STUDY

We consider gedanken experiments to destroy an extremal or near-extremal BTZ
black hole by throwing matter into the horizon. These black holes are vacuum solu-
tions to (2+1)-dimensional gravity theories, and are asymptotically AdS3. Provided
the null energy condition for the falling matter, we prove the following: (i) in a
Mielke-Baekler model without ghost fields, when torsion is present, an extremal
BTZ black hole can be overspun and becomes a naked conical singularity; (ii) in
three-dimensional Einstein gravity and chiral gravity, which both live in the tor-
sionless limits of Mielke-Baekler model, an extremal BTZ black hole cannot be
overspun; and (iii) in both Einstein gravity and chiral gravity, a near-extremal BTZ
black hole cannot be overspun, leaving the weak cosmic censorship preserved. To
obtain these results, we follow the analysis of Sorce and Wald on their gedanken
experiments to destroy a Kerr-Newman black hole, and calculate the second-order
variation of the black hole mechanics. Furthermore, Wald’s type of gedanken ex-
periments provides an operational procedure of proving the third law of black hole
dynamics. Through the AdS/CFT correspondence, our results on BTZ black holes
also indicate that a third law of thermodynamics holds for the holographic conformal
field theories dual to three-dimensional Einstein gravity and chiral gravity.

5.1 Introduction
Weak cosmic censorship conjecture (WCCC) was formulated by Penrose [14] to
postulate that a gravitational singularity should not be naked and should be hidden
inside a black hole horizon. A gravitational singularity is usually mathematically
ill-defined due to the divergent spacetime curvature. Thus, the WCCC helps to
avoid seeing such an unphysical part of the universe and retains the predicted
power of physical laws. Its philosophical incarnation was summarized by Hawking
that “nature abhors a naked singularity"1. In this sense, a special case worthy
of consideration is the three-dimensional Banados-Teitelboim-Zanelli (BTZ) black
hole, for which there is no curvature singularity but a conical one. The conical

1See the story in https://www.nytimes.com/1997/02/12/us/a-bet-on-a-cosmic-scale-and-a-
concession-sort-of.html
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singularity will thus cause no physical divergence unlike the curvature one. It is
then interesting to check if WCCC holds for this case or not, and partly motivates
the study of this chapter.

The general proof or demonstration of WCCC is notoriously difficult. One way is to
find the critical situation in which a black hole almost turns into a naked singularity
due to small perturbations. This is when a Kerr-Newman black hole is in its near-
extremal regime. A super-extremal solution possesses the naked singularity, thus
checking WCCC is to see if a sub-extremal black hole in the near-extremal limit
can turn into a super-extremal one by throwing some matter. Along this line of
thought, a gedanken experiment was first proposed by Wald [15] to demonstrate the
impossibility of destroying an extremal Kerr-Newman black hole by throwing the
matter obeying the null energy condition. The key ingredient in [15] is the linear
variation of black hole mechanics [104, 105], i.e.,

δM −ΩHδJ − ΦHδQ ≥ 0 , (5.1)

where M is the mass of the black hole, J the angular momentum, Q the charge, and
ΩH and ΦH are respectively the angular velocity and chemical potential evaluated
on the horizon. A similar consideration for the near-extremal Reissner-Nordstrom
black hole was examined by Hubeny [16], who found that it can be overcharged to
violate WCCC by throwing a charged particle. See [106–109] for follow-up works.

Recently, it was realized by Sorce and Wald [17] that the analysis in Hubeny’s
type of gedanken experiments is insufficient at the linear order so that the second-
order variation must be taken into account to check WCCC for near-extremal black
holes. Based on an earlier development of the second-order variation of black hole
mechanics [102], they went beyond the first-order analysis in [16] and derived the
following inequality

δ2M −ΩHδ
2 J − ΦHδ

2Q ≥ −THδ
2S , (5.2)

with TH the Hawking temperature and S the Wald’s black hole entropy [90][91],
which equals to theBekenstein-Hawking entropy of area law for the case of Einstein’s
theory of gravity, but receives modifications for non-Einstein theories of gravity [92]
((5.40) for the case of Mielke-Barkler gravity). Under the situation that the linear
variation is optimally done, i.e., the inequality (5.1) is saturated, Sorce and Wald
adopted (5.2) to show that the WCCC holds for Kerr-Newman black holes in four-
dimensional Einstein-Maxwell gravity. In [17] it is assumed that the near-extremal
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black hole is linearly stable, so that at very late time the linear perturbation induced
by falling matter becomes the perturbation towards another Kerr-Newman black
hole. Thus, the WCCC prohibits the possibility of a naked singularity, and can
be formally described as the condition for a one-parameter family of black hole
solutions

f (λ) > 0, for all λ ≥ 0 (5.3)

with f (λ) = 0 being the condition for extremal black hole. For examples, f (λ) =
M (λ)2 − J (λ)2

M (λ)2 − Q(λ)2 for a Kerr-Newman black hole of mass M (λ), angular
momentum J (λ) and charge Q(λ), and f (λ) = M (λ)2 + ΛJ (λ)2 for a BTZ black
hole in three-dimensional anti-de Sitter (AdS) space of cosmological constantΛ < 0.
Note that there is no need in this formulation of examining WCCC to consider the
self-force effects of the in-falling matter as done in [110–114].

In this chapter, we will check WCCC for a BTZ black hole in three-dimensional
torsional Mielke-Barkler gravity (MBG) [115–117] with the general falling matter2.
In some special limits ofMBG,wehave either Einstein gravity or chiral gravity [120],
both of which have the known dual descriptions by a two-dimensional conformal
field theory (CFT) in the context of AdS/CFT correspondence [121]. Especially,
the extremal black hole has zero surface gravity, and corresponds to a dual CFT
state at zero temperature. The motivation of our study is two-fold. First, we would
like to see if WCCC holds even for the naked conical singularity such as the one in
BTZ, and at the same time extend the formulation of [17] to more general gravity
theories. Second, Wald’s type of gedanken experiments provide an operational
procedure of proving the third law of black hole dynamics [107, 122]: One cannot
turn the non-extremal black hole into an extremal one in the finite time-interval
by throwing into the black hole the matter satisfying the null energy condition.
We can turn the above third law into the one of black hole thermodynamics if we
adopt Bekenstein and Hawking’s point of view. Moreover, through the AdS/CFT
correspondence, this third law also corresponds to the third law of thermodynamics
for the dual two-dimensional CFT3. Our results indicate that such a third law of
thermodynamics holds for the holographic CFTs dual to three-dimensional Einstein
gravity and chiral gravity. Intuitively, the cooling procedure can be holographically
understood as throwing the coolant, i.e., matter of spin J and energy E with J > E,
into the black hole.

2See also recent papers [118, 119] for the related discussion for special falling matter.
3See [123] for the earlier discussion on AdS5 cases in context other than WCCC.
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We organize the rest of the chapter as follows. In Sec. 5.2 we derive the linear and
second-order variational identities for the MB model, with which we can proceed to
the consideration of gedanken experiments for three ghost-free limits of MB model,
i.e., the Einstein gravity, chiral gravity and torsional chiral gravity. In Sec. 5.3
we consider the gedanken experiments for an extremal BTZ black hole by using
the linear variational identity and the null energy condition. In Sec. 5.4 we check
WCCC for nonextremal BTZ black holes for the chiral gravity and Einstein gravity.
Finally in Sec. 5.5 we summarize our results and conclude with some discussions on
the issue of proving the third law and its implication to the holographic dual CFTs.

5.2 BTZ black hole and variational identities
BTZ black holes are topologically non-trival solutions to the three-dimensional
Einstein gravity as well as the topological massive gravity (TMG) [124–126]. In
fact, they are solutions to a quite general category of gravity theories called Mielke-
Baekler (MB) model [115, 116] which also incorporates torsion, with Einstein
gravity and TMG arising as special limits in its parameter space. In this section,
we derive the variational identities and canonical energy for this model following
Wald’s formulation.

In three-dimensional spacetime, it is convenient to express the gravity theory in
the first-order formalism. The Lagrangian of a general chiral gravity with torsion,
namely the MB model, is as follows:

L = L EC + LΛ + L CS + L T + L M , (5.4)

where

L EC =
1
π

ea ∧ Ra , (5.5)

LΛ = −
Λ

6π
εabc ea ∧ eb ∧ ec , (5.6)

L CS = − θL

(
ωa ∧ dωa +

1
3
εabc ω

a ∧ωb ∧ωc
)
, (5.7)

L T =
θT

2π2 ea ∧Ta , (5.8)

in which Λ < 0 is the cosmological constant, θL and θT are coupling constants,
L EC is the Einstein-Cartan term, LΛ is the cosmological constant term, L CS is
the Chern-Simons (CS) terms for curvature, L T is a translational Chern-Simons
term, and L M is the Lagrangian for the matter. Ta is the torsion 2-form defined
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by T a = dea + ωa
b ∧ eb with ea the dreibeins. We have also defined the dual spin

connection ωa and the dual curvature 2-form Ra for simplicity:

ωa =
1
2
εa

bc ω
bc , Ra =

1
2
εa

bc Rbc , (5.9)

Variations of the Lagrangian (5.4−5.8) with respect to the dreibeins ea and the dual
spin connectionsωa give rise to the equations of motion E (e)

a = 0 and E (ω)
a = 0 with

E (e)
a =

1
π

(
Ra +

θT
π

Ta −
Λ

2
εabc eb ∧ ec

)
, (5.10)

E (ω)
a =

1
π

(
Ta − 2πθL Ra +

θT
2π

εabc eb ∧ ec
)

(5.11)

for vanishing matter. For the case 1+2θTθL , 0 , the equations of motion are solved
by

T a =
T

π
εa

bc eb ∧ ec , (5.12)

Ra = −
R

2π2 ε
a
bc eb ∧ ec , (5.13)

in which

T ≡
−θT + 2π2ΛθL

2 + 4θTθL
, R ≡ −

θ2
T + π

2Λ

1 + 2θTθL
. (5.14)

The MBmodel was originally proposed as a torsional generalization of TMG. It has
a Poincaré gauge theory description, and there are propagating massive gravitons
just like in TMG. We will be especially interested in three limits:

(i) Einstein gravity (with negative cosmological constant). This could be approached
by taking the limit θL → 0 and θT → 0 .

(ii) Chiral gravity. The torsionless branch of the MB model, which is equivalent
to TMG, could be obtained by setting T = 0 according to (5.12) . It was pointed
out in [120] that TMG is only well defined at the critical point in which the dual
CFT becomes chiral. In our convention, the critical point is located at θL =

− 1/(2π
√
−Λ) . Hence the chiral gravity is approached by setting T = 0 first and

then taking the limit θL → − 1/(2π
√
−Λ) .

(iii) Torsional chiral gravity. For the branch with non-vanishing torsion, we note
from the Lagrangian (5.4-5.8) that the torsion field Ta could not be kinematic since
there is no second-order derivative of ωa. The torsion field should just contribute to
the interaction term in the linearized theory, while the propagators of the gravitons
should not be changed compared with TMG. We then expect that the MB model
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also behaves well with no ghost at the critical point θL → − 1/(2π
√
−Λ) . Note that

by taking this limit first, we obtain T → π
√
−Λ / 2 hence the torsion field could

not be vanishing. This is a different limit from the case (ii), and we refer it as the
torsional chiral gravity.

An interesting class of solutions to the Eqs. (5.12)(5.13) are the BTZ-like solutions
with non-vanishing torsion [127]. They are described by the following dreibeins,

e0 = Ndt , e1 =
dr
N
, e2 = r

(
dφ + Nφdt

)
, (5.15)

and the dual spin connections,

ωa = ω̃a +
T

π
ea , (5.16)

with the torsion free parts

ω̃0 = Ndφ, ω̃1 = −
Nφ

N
dr , ω̃2 = −Λeff rdt + r Nφdφ, (5.17)

in which
N2(r) = −M − Λeff r2 +

J2

4r2 , Nφ(r) = −
J

2r2 , (5.18)

where M and J are constants corresponding to mass and angular momentum of BTZ
black hole, respectively, for the case of Einstein’s gravity, and

Λeff ≡ −
T 2 + R

π2 . (5.19)

Taking the torsion free limit T → 0, the above solutions recover the usual BTZ
black holes with Λeff = Λ . The horizons are located at

r2
± =

1
2Λeff

(
−M ∓

√
M2 + ΛeffJ2

)
, (5.20)

(note that Λeff < 0 for asymptotic AdS solutions), and the angular velocity of the
outer horizon is

ΩH =
J

2r2
+

=
r−
r+

√
−Λeff . (5.21)

The black hole temperature is fixed by the vanishing of the conical singularity of
the corresponding Euclidean metric:

TH = −
Λeff

(
r2
+ − r2

−

)
2πr+

, (5.22)

and the surface gravity is κH = 2πTH .



85

First-order variations
Wald’s gedanken experiment to destroy a black hole begins with considering a
general off-shell variation of the fields, which in principle incorporates all kinds of
possible perturbations of a black hole, including throwing matter into it. From the
variational identities one obtains general constrains obeyed by these perturbations.

The first-order variation of the Lagrangian (5.4-5.8) gives rise to the equations of
motion as well as a surface term:

δL = δea ∧ E (e)
a + δωa ∧ E (ω)

a + dΘ(φ, δφ) , (5.23)

in which φ = (ea, ωa), E (e)
a and E (ω)

a are given by (5.10) and (5.11). The surface
term Θ(φ, δφ), called the symplectic potential, is evaluated to be

Θ(φ, δφ) =
1
π
δωa ∧ ea +

θT

2π2 δea ∧ ea − θL δω
a ∧ωa . (5.24)

InWald’s approach, the space of field configurations is the phase space of the theory,
and the variation δφ ≡ (dφ/dλ) |λ=0 is the phase space flow vector associated with
a one-parameter family of field configurations φ(λ). For a two-parameter family of
field configurations φ(λ1, λ2), one could define the symplectic current

Ω(φ, δ1φ, δ2φ) = δ1Θ(φ, δ2φ) − δ2Θ(φ, δ1φ) , (5.25)

in which δ1, δ2 denote derivatives with respect to parameters λ1, λ2:

δ1 =
∂

∂λ1

����λ=0
, δ2 =

∂

∂λ2

����λ=0
. (5.26)

One can show that the symplectic current is conserved when the linearized equations
of motion are satisfied:

dΩ = 0 . (5.27)

The Noether current two-form associated with a vector field ξ is defined by

jξ = Θ(φ,Lξφ) − iξL , (5.28)

in which iξL represents the interior derivative which contracts ξ µ into the first index
of the three-form L. Then, jξ could be written in the form

jξ = dQξ + Cξ , (5.29)
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in which the Noether charge Qξ and the constraints Cξ are given by

Qξ =
1
π

(iξωa) ∧ ea +
θT

2π2 (iξea) ∧ ea − θL (iξωa) ∧ωa , (5.30)

Cξ = −(iξea) ∧ E (e)
a − (iξωa) ∧ E (ω)

a . (5.31)

Suppose the field configuration is a family of asymptotic AdS spacetime. Variation
of (5.28)(5.29) gives rise to the following linear variational identity after integrating
over an achronal hypersurface Σ:∫

∂Σ
δQξ − iξΘ(φ, δφ) =

∫
Σ

Ω(φ, δφ,Lξφ) −
∫
Σ

δCξ −

∫
Σ

iξ (Eδφ) . (5.32)

The first term on the right hand side is recognized as the variation of the Hamiltonian
hξ associated with the diffeomorphism generated by the vector field ξ

δhξ =
∫
Σ

Ω(φ, δφ,Lξφ) . (5.33)

Note that δhξ (or the first term on the R.H.S. of (5.32)) vanishes if ξ is a Killing
field, i.e., Lξφ = 0. If the φ is on-shell so that Ea = 0, then the last two terms
on the R.H.S. of (5.32) also vanish. This then motivates the following definition of
the conserved ADM quantity Hξ conjugate to the Killing field ξ for an on-shell φ
[90][91]:

δHξ =

∫
∞

δQξ − iξΘ(φ, δφ) , (5.34)

where
∫
∞

is the integration over the circle at spatial infinity. For a black hole
solution, the boundary of Σ contains also horizon as the “inner boundary" besides
the “outer boundary" at spatial infinity, then there will be contribution to the L.H.S.
of (5.32) from the “inner boundary" as well (i.e., the area law term for Einstein
gravity). Combining all the above, (5.32) finally yields the first law of black hole
mechanics/thermodynamics.

For the timelike Killing field ∂/∂t and the rotational Killing field ∂/∂ϕ , the above
integration gives rise to the variation of the total mass M and the total angular
momentum J , respectively. For the BTZ-like black holes (5.15-5.17), it could be
evaluated that [128]

M = M − 2θL (T M + πΛeffJ) , (5.35)

J = J + 2θL (πM − T J) . (5.36)
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For the case that the equations of motion are satisfied and ξ is a Killing field, the
linear variational identity (5.32) yields∫

∂Σ
δQξ − iξΘ(φ, δφ) = −

∫
Σ

δCξ . (5.37)

For nonextremal black holes, the boundaries includd infinity as well as the bifurca-
tion surface B . If ξ is the horizon Killing field ξa = ∂/∂t +ΩH∂/∂ϕ , the boundary
integral over infinity is given by∫

∞

δQξ − iξΘ(φ, δφ) = δM −ΩHδJ . (5.38)

For Einstein’s theory of gravity, the boundary contribution from the bifurcation
surface B turns out to be proportional to the variation of the Bekenstein-Hawking
entropy [90][91]: ∫

B
δQξ − iξΘ(φ, δφ) = TH δS , (5.39)

in which S = AB/4 where AB is the area of the bifurcation surface. We will take
the above equation as a rightful definition of the modified black hole entropy in the
MBmodel so that the first law of the black hole thermodynamics still holds but with
Wald’s generalized black hole entropy. It has been evaluated for the BTZ-like black
holes that [128]

S = 4πr+ − 8πθL
(
T r+ − π

√
−Λeff r−

)
. (5.40)

(5.37) then takes the form

δM −ΩHδJ − TH δS = −
∫
Σ

δCξ . (5.41)

We will consider the special situation the perturbation vanishes near the internal
boundary of the surface Σ, (5.41) with δS = 0 would hold for both extremal and
non-extremal black holes. Noting (5.35)(5.36) and δS = 0 , (5.41) turns out to be

(1 − 2θLT − 2πθLΩH) (δM − ΩHδJ) − 2πθLΛeff

(
r2
+ − r2

−

r2
+

)
δJ = −

∫
Σ

δCξ .

(5.42)
for BTZ-like black holes in the MB model.

(5.41)(5.42) are derived from the Lagrangian without matter. It might be puzzling
that the vacuum configuration could be perturbed without matter; however, this
is physically possible since there are gravitational waves in the MB model with
general couplings. In general, δM and δJ should be understood as variations



88

allowed mathematically in the parameter space, rather than consequences of certain
physical evolutions. On the other hand, since we didn’t enforce the linearized
equations of motion to be satisfied, it should be expected that these equations could
also be used for considering perturbed configurations due to matter contribution4.
The right hand side of (5.42) would be related to the energy-momentum tensor of
the matter. To see this explicitly, we first define the “energy-momentum 2-form” Σa

and “spin current 2-form” τa as follows:

Σa ≡
δL M
δea , τa ≡

δL M
δωa . (5.43)

The equations of motion with matter would be

E (e)
a = − Σa , E (ω)

a = − τa . (5.44)

Since Σa = τa = 0 in the background spacetime, from (5.31) we get

δCξ = (iξea) ∧ δΣa + (iξωa) ∧ δτa . (5.45)

Σa should be related to the conserved canonical energy-momentum tensor Σ µ
a de-

fined by
√
−g Σ

µ
a ≡

∂L

∂ea
µ
= e µ

a L −
∂L

∂(∂µψ)
Daψ , (5.46)

in which ψ is the matter field, L is the Lagrangian density of the matter related
to L M by L M = L d3x, and Da is the covariant derivative defined by Da =

e µ
a (∂µ +ω bc

µ fcb) where fab are the representations of the generators of the Lorentz
group associated with ψ. From (5.46) we obtain

Σa =
1
2
ε µνλ Σ

λ
a dxµ∧ dxν . (5.47)

Note that
ε µνλ = − 3k[µε̂ νλ] , (5.48)

in which k µ is the future-directed normal vector to the horizon, and ε̂ is the volume
element on the horizon. The first term on the right hand side of (5.45) then turns
out to be

(iξea) ∧ δΣa = − ξµkνδΣµν
√
−γ d2x , (5.49)

4For the matter field, we impose Dirichlet condition on asymptotic AdS boundary, as conven-
tionally used in AdS/CFT dictionary for black holes dual to thermal states in CFT. This choice will
not affect the argument for WCCC as we only care about the matter that falls in.
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as ξ µ ∝ k µ , thus the contribution of this term to the right-hand side of equations
(5.42) is non-negative if and only if the null energy condition of matter energy-
momentum tensor δΣµν is satisfied:

k µkνδΣµν ≥ 0 . (5.50)

For the second term on the right hand side of (5.45), our “spin current two-form” τa

is related to the canonical spin angular momentum tensor τ µ
ab defined by

√
−g τ

µ
ab ≡

∂L

∂ω ab
µ

= −
∂L

∂(∂µψ)
fab ψ , (5.51)

Comparing (5.51) with (5.43), we obtain

τa = −
1
2
ε bc

a ε µνλ τ
λ

bc dxµ ∧ dxν , (5.52)

hence the second term on the right hand side of (5.45) is reduced to

(iξωa) ∧ δτa = − (ξσωab
σ) kλ δτ λ

ab
√
−γ d2x . (5.53)

For axially symmetric stationary black holes, in general we have [128]

iξωa |H = −
1
2
κH ε

a
bc nbc + iξKa |H , (5.54)

in which nab is the binormal to the horizon and Ka is the dual contorsion one-form
defined byT a = εa

bc Kb ∧ ec , satisfying the identityωa = ω̃a + Ka. For BTZ-like
black holes, (5.16) gives

Ka =
T

π
ea . (5.55)

Using (5.54)(5.55), (5.53) turns out to be

(iξωa) ∧ δτa =

(
κHnµν +

T

π
ε σ
µν ξσ

)
kλδτµνλ

√
−γ d2x . (5.56)

The first term on the right hand side is vanishing for extremal black holes. We note
that the sign of the second term could not be determined for torsional chiral gravity
unless the spin angular momentum tensor satisfies ε σ

µν kσkλδτµνλ ≥ 0 , of which
the physical meaning is not clear yet for us.

Combining all the results above, we obtain the following linear variational identity
for the BTZ-like black holes in the MB model, with the additional assumption that
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the perturbation δφ vanishes near the internal boundary of Σ

δM − ΩHδJ

= (1 − 2θLT − 2πθLΩH) (δM − ΩHδJ) − 2πθLΛeff

(
r2
+ − r2

−

r2
+

)
δJ

=

∫
Σ

d2x
√
−γ

{
ξµkνδΣµν −

(
κHnµν +

T

π
ε σ
µν ξσ

)
kλδτµνλ

}
. (5.57)

For extremal BTZ black holes with κH = 0 and r+ = r− , the above identity takes
the following simpler form:

δM − ΩHδJ =
(
1 − 2θLT − 2πθL

√
−Λeff

) (
δM −

√
−Λeff δJ

)
=

∫
Σ

d2x
√
−γ

{
ξµkνδΣµν −

T

π
ε σ
µν ξσkλδτµνλ

}
. (5.58)

Second order variations
As pointed out in [17], for near-extremal black holes it is in general not sufficient to
consider just the linear order variation due to Hubeny-type violations. We therefore
construct further the second-order variational identity. A second variation of (5.32)
gives rise to

EΣ (φ; δφ) =
∫
∂Σ

[
δ2Qξ − iξδΘ(φ, δφ)

]
+

∫
Σ

δ2Cξ +

∫
Σ

iξ
(
δE ∧ δφ

)
, (5.59)

in which
EΣ (φ; δφ) ≡

∫
Σ

Ω(φ, δφ,Lξδφ) (5.60)

is Wald’s canonical energy of the off-shell perturbation δφ on Σ . For the case that
the background φ is a stationary black hole solution and ξ is the horizon Killing
field, the boundary contribution from infinity is simply∫

∞

δ2Qξ − iξδΘ(φ, δφ) = δ2M − ΩHδ
2J (5.61)

according to (5.38). The contribution from interior boundary would be vanishing if
there’s no perturbation in its neighborhood, as supposed before. Then (5.59) turns
out to be

δ2M − ΩHδ
2J = EΣ (φ; δφ) −

∫
Σ

iξ
(
δE ∧ δφ

)
−

∫
Σ

δ2Cξ . (5.62)

Noting (5.44), (5.47), and(5.52), the integrand of the second term on the right hand
side is evaluated to be

iξ
(
δE ∧ δφ

)
≡ iξ

(
δE (e)

a ∧ δea + δE (ω)
a ∧ δωa

)
= ξτ Ξ[µντ] dxµ ∧ dxν , (5.63)
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in which
Ξµντ = −

3
2
ε µνλ

(
δΣ λ

a δea
τ + δτ λ

ab δωab
τ

)
. (5.64)

Since ξ is tangent to the horizon, the pullback of (5.63) to the horizon vanishes,
hence this term gives no contribution. From (5.31), it turns out that

δ2Cξ = δ2
{
− d2x

√
−γ

[
ξµkνΣµν −

(
κHnµν +

T

π
ε σ
µν ξσ

)
kλτµνλ

]}
. (5.65)

Substituting the above expression into (5.62) leads to the following identity for the
second-order variation:

δ2M − ΩHδ
2J = EΣ (φ; δφ)

+ δ2
∫
Σ

d2x
√
−γ

{
ξµkνΣµν −

(
κHnµν +

T

π
ε σ
µν ξσ

)
kλτµνλ

}
.

(5.66)

5.3 Gedanken experiment to destroy an extremal BTZ
We now consider our gedanken experiment to destroy a BTZ black hole along the
line of Wald’s proposals [15, 17]. In this section, we will deal with an extremal BTZ
black hole with mass parameter M and angular momentum parameter J. We wish
to see if a naked singularity can be made via throwing matter into the extremal black
hole. Without losing generality, we take our gravity theory as MB model, and then
discuss its three limits, torsional chiral gravity, chiral gravity, and three-dimensional
Einstein gravity.

Considering a one-parameter family of solutions φ(λ), φ0 = φ(0) is an extremal
BTZ black hole, which is a vacuum solution in MB model. The existence of event
horizon is determined by a function,

f (λ) = M (λ)2 + ΛeffJ (λ)2 . (5.67)

If f (λ) ≥ 0, the spacetime is a BTZ black hole. If f (λ) < 0, it is a naked conical
singularity and WCCC is violated. We now consider perturbations to the extremal
black hole φ0. Then, to the first order in λ, we have

f (λ) = 2λ
√
−Λeff |J |

(
δM −

√
−Λeff δJ

)
+ O(λ2) , (5.68)

where we have used the extremal condition M =
√
−Λeff |J | to eliminate M . It is

then evident that if δM <
√
−Λeff δJ, f (λ) can be negative.

We would like to see whether this sort of violation of WCCC is possible if we
throw matter into the BTZ black hole in a certain way. Let Σ0 be an asymptotically
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AdS hypersurface which extends from the future horizon to the spatial infinity. We
consider a perturbation δφ whose initial data for both fields δea and δωa on Σ0

vanish in the neighborhood of the intersection between Σ0 and the horizon. We
assume that the initial data for the matter sources δΣµν and δτµνλ also vanish
in this neighborhood, and, only exist in a compact region of Σ0. That is, we
consider perturbations whose effects at sufficiently early times are negligibly small.
To simplify the discussion, we only consider the case where, as we evolve the
perturbation, all of the matter will fall through the horizon. Therefore, the whole
evolution of the matter source δΣµν and δτµνλ stays in a shaded region as shown
in Fig. 5.1. As matter falls in, we further define a hypersurface Σ in the following
way—it starts on the future horizon in the region where the perturbation vanishes
and extends along the future horizon till all matter falls into the horizon; then
it becomes spacelike, approaches the spatial infinity and becomes asymptotically
AdS. We denote the horizon portion of Σ asH , and the spatial portion as Σ1.

r
=

��0

�1Hr
=

0

�� = 0

Figure 5.1: Carter-Penrose diagram of an extremal BTZ black hole. The shaded
region consists of the falling matter which all goes into the black hole. The pertur-
bation δφ vanishes in a neighborhood of Σ0 ∩H .

We now use the linear variational identity with vanishing inner boundary contribu-
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tions (5.58) for this choice of Σ. As we will show later, this identity constrains the
sign of f (λ). We notice that in e.q. (5.58), the integral in the second line is not
positive definite due to the spin angular momentum term and its coupling to torsion.
That is, in torsional chiral gravity, whether WCCC can hold depends on an addi-
tional relation between the spin angular momentum and the torsion. The physical
origin of this additional information needed is unclear, and is beyond our scope of
this chapter. We will leave it to a future work. In the torsionless limit T → 0 ,
however, this integral would be non-negative as long as the null energy condition is
satisfied. From now on, we will focus on this limit, and assume the falling matter
satisfies the null energy condition. Then f (λ) is non-negative only if the constant
factor on the right hand side of the first line of Eq. (5.58) is non-negative,

1 − 2θLT − 2πθL
√
−Λeff ≥ 0 . (5.69)

For chiral gravity, we choose θL = −1/(2π
√
−Λ), and send T → 0. The inequal-

ity (5.69) is then satisfied. Therefore extremal BTZ black hole in chiral gravity
cannot be destroyed in our experiment, and WCCC is preserved.

For three-dimensional Einstein gravity with a negative cosmological constant, both
torsion and Chern-Simons interaction vanish, thus we set θL → 0 and θT → 0.
The inequality (5.69) is then satisfied. Consequently, extremal BTZ black hole in
three-dimensional Einstein gravity cannot be destroyed, leaving WCCC preserved.

5.4 Gedanken experiment to destroy a near-extremal BTZ
For extremal BTZ black holes, we have found that WCCC can be violated in the
presence of torsion. With torsion being turned off, we have seen that WCCC is
preserved in both chiral gravity and three-dimensional Einstein gravity, provided
that the matter obeys the null energy condition. In four-dimensional Einstein gravity,
Hubeny [16] proposed that violations ofWCCCmight be possible if one threwmatter
into a near-extremal black hole in an appropriate manner. In order to examine
whether Hubeny-type violations can truly happen, one has to calculate the energy
and momentum of the matter beyond the linear order. In this section, we will
examine the Hubeny-type violations for a near-extremal BTZ black hole in chiral
gravity and three-dimensional Einstein gravity respectively.

As shown in Fig. 5.2, we make similar choices of Σ0 and Σ like those for the extremal
BTZ case. The only difference is that, the two hypersurfaces now terminate at the
bifurcation surface B. We further assume that the second-order perturbation δ2φ for



94

both fields δea and δωa also vanishes in a neighborhood of B. Again, we simplify
our discussions by restricting to the case where all matter falls into the black hole.
We will also make the following additional assumption:

Assumption: The non-extremal BTZ black hole is linearly stable to
perturbations, i.e., any source-free linear perturbation δφ approaches a
perturbation δφBT Z towards another BTZ black hole at sufficiently late
times.

Although our perturbations are not source-free in general, we will only apply the
above assumption on the late-time spatial surface Σ1 long after all of the matter has
fallen in the the black hole. We emphasize that this linear stability assumption does
not indicate WCCC which we wish to prove. This is because a finite perturbation
is needed to overspin a non-extremal black hole, while a linear perturbation can
always be scaled down to a infinite small one. Hence the linear instability of a non-
extremal BTZ black hole should be independent of the instability associated with
overspinning, i.e., a linearly stable non-extremal BTZ black hole could possibly be
overspun by a finite perturbation, just like the situation for the Kerr-Newman black
hole in [17].

Chiral gravity
We now consider our thought experiment to destroy a near-extremal BTZ black
hole (M, J) in chiral gravity for which T = 0 and θL = − 1

2π
√
−Λ

. Thus, using
(5.35−5.36) it is straightforward to see

δM −ΩHδJ =

(
1 +

ΩH
√
−Λ

) (
δM −

√
−ΛδJ

)
, (5.70)

and the first law of black hole thermodynamics yields

THδS = δM −ΩHδJ . (5.71)

where the black hole entropy is given by [128]

S = 4π (r+ − r−) . (5.72)

Recall (5.57), the null energy condition for the falling matter yields the first-order
relation that

δM ≥
√
−ΛδJ . (5.73)
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Figure 5.2: Carter-Penrose diagram of a near-extremal BTZ black hole. The shaded
region consists of the falling matter which all goes into the black hole. The pertur-
bation δφ and δ2φ vanishes in a neighborhood of B.

The first-order perturbation has been optimally done, i.e. δS = 0, such that

δM =
√
−ΛδJ . (5.74)

For some constant entropy S, we can then plot the line of constant entropy in the
parameter space of BTZ black holes, which is shown in Fig. 5.3.

We are now ready to discuss our experiment to destroy the near-extremal BTZ black
hole. Starting from a point (M0, J0) in the parameter space, after a perturbation of
the spacetime as induced by falling matter, we will always arrive at another point
(M1, J1). At the linear order, the change from one point to another will correspond
to a tangent vector in the parameter space. For any S, the line of constant entropy is
given by

M =
(√
−Λ

)
J −

Λ

16π2 S2 . (5.75)

The slope of the constant entropy line is then equal to that of the line representing
extremal BTZ black holes. Since the tangent to the constant entropy line is a lower
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Naked Conical Singularity

�S = 0

Figure 5.3: The parameter space of BTZ black holes in chiral gravity. The black
solid line corresponds to extremal BTZ black holes. Any point above this line
corresponds to a non-extremal BTZ black hole, while any point below the line is
a naked conical singularity. The orange dashed line is one of the lines of constant
entropy, which is parallel to the line for extremal BTZ black holes. Starting with
some point on the constant entropy line, any tangent vector will always be parallel to
the extremal BTZ line. That is, there is no Hubeny-type violation that can overspin
a near-extremal BTZ black hole in chiral gravity.

bound to all physically-realizable perturbations, a non-extremal BTZ black hole will
at most be perturbed to another BTZ black hole with the same entropy. There is
no Hubeny-type violation of weak cosmic censorship for the BTZ black hole in
three-dimensional chiral gravity, thus WCCC is preserved.

Einstein gravity
The discussions above can be applied to the BTZ black holes in three-dimensional
Einstein gravity as well, for which we turn off both torsion and Chern-Simons
interactions in MB model. In this theory, the linear variational identity is given by

δM −ΩHδJ = δM −ΩHδJ . (5.76)

Given the material null energy condition, we similarly find that

δM −ΩHδJ ≥ 0 . (5.77)
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Once a first-order perturbation is optimally done by choosing δM = ΩHδJ, accord-
ing to the first law of black hole thermodynamics, we will also find a lower bound
for all perturbations given by δS = 0. In Einstein gravity, the entropy of the BTZ
black hole is S = 4πr+, and the curve of constant entropy is given by

M =
4π2

S2 J2 −
Λ

16π2 S2 . (5.78)

We plot one of such curves in Fig. 5.4.

BTZ BH

Naked Conical Singularity

�S = 0

0 1 2 3 4 5
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2
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5

Figure 5.4: The parameter space of BTZ solutions in the three-dimensional Einstein
gravity. The black solid line corresponds to extremal BTZ black holes. Any point
above this line corresponds to a non-extremal BTZ black hole, while any point below
the line is a naked conical singularity. The orange dashed curve is one of the curves
of constant entropy, which meets the extremal BTZ line tangentially. The tangent
vector at the point of an extremal BTZ black hole will always bring it to another
extremal BTZ black hole. However, starting from a slightly non-extremal BTZ black
hole, to linear order, the tangent vector can perturb the spacetime to become a naked
conical singularity.

As shown in Fig. 5.4, if the initial spacetime is an extremal BTZ black hole, a
tangent vector at this point is also tangent to the line representing extremal BTZ
solutions. Therefore given extremality, the best one can do is to deform the black
hole to another extremal BTZ black hole. WCCC is then preserved and no naked
singularities will form. However, if one starts at a slightly non-extremal BTZ black
hole, the tangent to the curve of constant entropy is possible to move the original
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point to another point located in the region representing naked conical singularities.
This type of violation of WCCC is exactly the Hubeny-type violation, which can
be found at the linear order for near-extremal black holes. As we will see in the
following discussions, a conclusive answer to whether this type of perturbations
truly leads to a violation of WCCC requires calculations to the second order.

Now we consider a one-parameter family of solutions φ(λ), φ0 = φ(0) is a nearly
extremal BTZ black hole in three-dimensional Einstein gravity. We then expand
f (λ) in e.q. (5.67) to second order in λ,

f (λ) =
(
M2 − α2 J2

)
+ 2λ

(
MδM − α2 JδJ

)
+ (5.79)

+ λ2
[
(δM)2 − α2(δJ)2 + Mδ2M − α2 Jδ2 J

]
+ O(λ3) ,

wherewe have introduced a parameter α =
√
−Λ. For conveniencewe also introduce

a parameter ε according to

ε =
r2
+ − r2

+,extremal

r2
+,extremal

=

√
M2 − α2 J2

M
. (5.80)

The background spacetime corresponds to ε � 1, and ε → 0 is the extremal limit.
The null energy condition for the matter fields yields δM − ΩHδJ ≥ 0, which
is equivalent to the statement that black hole entropy always increases. If we only
consider perturbations to first order in λ, that entropy always increases will constrain
f (λ) by

f (λ) ≥ M2ε2 − 2λε
(
α2 JδJ

)
+ O(λ2) . (5.81)

It is then evident from this inequality that, when δJ ∼ εM/α, it is possible to make
f (λ) < 0 by some careful choice of δJ. This is exactly the Hubeny-type violation
of WCCC. The problem is that when δJ ∼ εM/α, the violation of f (λ) ≥ 0 is of
order M2ε2 ∼ α2(δJ)2, which is not fully captured to first order in λ. Therefore
to determine whether there is a true violation of WCCC, one needs to calculate all
quantities in (5.81) to the appropriate order.

We now consider the second-order variations in order to give a bound for f (λ).
Given the null energy conditions for the falling matter, we can obtain the following
relation from the second-order variational identity with no inner boundary contri-
butions (5.66),

δ2M −ΩHδ
2 J ≥ EΣ (φ; δφ) , (5.82)
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where the canonical energy EΣ is given by

EΣ (φ; δφ) = EH (φ; δφ) + EΣ1 (φ; δφ) (5.83)

=

∫
H

Ω(φ, δφ,Lξδφ) +
∫
Σ1

Ω(φ, δφ,Lξδφ) .

In (3+1)-dimension, the term EH (φ; δφ) is identified as the total flux of gravitational
wave energy into the black hole [102]. In (2+1)-dimensional Einstein gravity,
however, there is no propagating degree of freedom in the bulk, i.e. there is no
gravitational wave solution. Thus EH (φ; δφ) = 0. A more rigorous way to see this
can be done by following the calculation of the canonical energy as in [102], and
we similarly find that∫

H

Ω(φ, δφ,Lξδφ) =
1

4π

∫
H

(κu)δσabδσ
abε̂ +

1
16π

∫
H∩Σ1

(κu)δgabδσabε̂ ,

(5.84)
where κ is the surface gravity, u is an affine parameter on the future horizon, δσab

is the perturbed shear of the horizon generators, and ε̂ is the volume element. In
three dimension, it is found that every null geodesic congruence is shear-free [129],
i.e. σab = 0, therefore δσab = 0 onH and the canonical energy onH vanishes.

Then we only need to calculate the canonical energy on Σ1. According to our
assumption, the perturbation δφ, as induced by the falling matter, approaches a
perturbation δφBT Z towards another BTZ black hole on Σ1. Also since δφBT Z has
no gravitational wave energy throughH , we may replace Σ1 by Σ and obtain that

EΣ1 (φ; δφ) = EΣ (φ; δφBT Z ) . (5.85)

We use the general second-order variational identity (5.59) on this Σ. As before,
we consider a one-parameter family of BTZ black holes, φBT Z (β). The black hole
mass and angular momentum are given by M (β) = M + βδMBT Z and J (β) =
J + βδJBT Z , where δMBT Z and δJBT Z are fixed by the first-order perturbation for
φ(λ). Therefore for this family of solutions, we have δ2M = δ2 J = δE = δ2C = 0.
In Eq. (5.59), the only nonvanishing contribution in the evaluation of the canonical
energy EΣ (φ; δφBT Z ) then comes from the integral over the bifurcation surface B,
which yields

EΣ1 (φ; δφ) = −THδ
2SBT Z . (5.86)

Here, the minus sign is due to the fact that the bifurcation surface is the inner
boundary of Σ.
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With the canonical energy being calculated, (5.82) now reads

δ2M −ΩHδ
2 J ≥ −THδ

2SBT Z . (5.87)

Here the temperature of the BTZ black hole is given by

TH = −
Λ(r2

+ − r2
−)

2πr+
=

αMε

π
√

2M (1 + ε )
. (5.88)

The second-order variation of the black hole entropy is calculated as

δ2SBT Z = (δJ)2 *.
,
−
παM

[
α2 J2(3ε + 2) + 2M2ε2(ε + 1)

]

√
2ε3 [

M3(ε + 1)
]3/2

+/
-

(5.89)

+ (δJδM) *
,

π
√

2αJ (ε + 2)

Mε3
√

M3(ε + 1)
+
-
+ (δM)2 *

,

π(ε − 2)(ε + 1)
√

2αε3
√

M3(ε + 1)
+
-
.

where we have used the relation that for this family of solutions, δ2M = δ2 J = 0.
We assume that the first-order perturbation is optimally done, i.e. δM = ΩHδJ, and
we use the inequality (5.87) to constrain f (λ) in (5.79). We obtain that

f (λ) ≥ M2ε2 − 2λε
(
α2 JδJ

)
+ λ2α

4 J2(δJ)2

M2 + O(λ3, ελ2, ε2λ, ε3) , (5.90)

which can be further written as

f (λ) ≥
(
Mε − λ

α2 JδJ
M

)2

+ O(λ3, ελ2, ε2λ, ε3) . (5.91)

Consequently, f (λ) ≥ 0 when second-order variations in λ are also taken into
account. Our gedanken experiment cannot destroy a near-extremal BTZ black hole
in three-dimensional Einstein gravity, leaving WCCC preserved.

5.5 Conclusions and discussions
Along the line ofWald’s proposals [15, 17] for 4DEinstein gravity, in this chapter we
have considered the gedanken experiments of destroying a BTZ black hole for three
different limits of Mielke-Baekler (MB) model of 3D gravity. They are (i) Einstein
gravity, (ii) chiral gravity, and (iii) torsional chiral gravity. All three limits are free
of perturbative ghosts and show different behaviors in the gedanken experiments.
We find that there are Hubeny-type violations for Einstein gravity but none for chiral
gravity when trying to destroy a nonextremal BTZ black hole. However, in these
two theories, the WCCC holds for both extremal and nonextremal BTZ black holes
if the falling matter obeys the null energy condition. It is philosophically interesting
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to see that WCCC prevails here even though the BTZ singularity is just a conical
one.

On the other hand, for the torsional chiral gravity there is an additional contribution
to the null energy condition from the spin angular momentum tensor even at the
linear order of variations. Thus, that the WCCC will hold or not depends on the
imposition of additional null energy-like condition for the spin angular momentum
tensor. If WCCC does not hold for the first-order variations, one needs to check the
second-order variation to see if there is Hubeny-type violation. However, the full
formalism of deriving the second-order variational identity for MB model is out of
scope of this chapter, and it deserves to be a future work.

The third law of black hole dynamics was first proposed by Israel and a sketchy proof
was also given [122], which states that one cannot turn a nonextremal black hole into
an extremal one by throwing the matter in a finite time interval. Later, the detailed
proof was given by Sorce and Wald [17] as described and adopted in this chapter.
In the context of AdS/CFT correspondence, the temperature of the boundary CFT is
the same as the Hawking temperature of the black hole in the bulk. Thus, our results
in this chapter can serve as an operational proof of the third law of thermodynamics
by holographically mapping our gedanken experiments around a near-extremal BTZ
black hole into the cooling processes of the boundary CFT toward zero temperature.
Generalizations to BTZ black holes though seems straightforward, its implication
to the third law of thermodynamics for holographic condensed matter systems is
nontrivial and deserves further study. Especially, the generalization to the higher-
dimensional AdS black holes for more general gravity theories will give holographic
tests of the third law of thermodynamics for the more realistic systems. We plan to
attack this problem in the near future.

Before ending the chapter, we comment on one more point about the proof of the
third law by noticing that the equality of (5.91) holds for one particular choice of
parameter λ. This implies that one can reach the extremal black hole at the second
order for this particular case. To pin down the issue, one needs to check the third
order of variation for this particular λ value. This is too involved to carry out just
for a measure-zero possibility. However, it is still an interesting issue for the future
work.
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C h a p t e r 6

INSTABILITY OF EXOTIC COMPACT OBJECTS AND
IMPLICATIONS FOR ECHOES

Exotic compact objects (ECOs) have recently become an exciting research subject,
since they are speculated to have a special response to the incident gravitational
waves (GWs) that leads to GW echoes. We show that energy carried by GWs can
easily cause the event horizon to form out of a static ECO— leaving no echo signals
towards null infinity. To show this, we use ingoing Vaidya spacetime and take into
account the back reaction due to incoming GWs. Demanding that an ECO does not
collapse into a black hole puts an upper bound on the compactness of the ECO, at
the cost of less distinct echo signals for smaller compactness. The trade-off between
echoes’ detectability and distinguishability leads to a fine tuning of ECO parameters
for LIGO to find distinct echoes. We also show that an extremely compact ECO
that can survive the gravitational collapse and give rise to GW echoes might have
to expand its surface in a non-causal way.

6.1 Introduction
Black holes are important predictions of classical general relativity, and shown to be
robust products of gravitational collapses. The event horizon, describing the bound-
ary within which the future null infinity cannot be reached, is the defining feature of a
black hole [130]. It is hoped that gravitational-wave (GW) observations can provide
evidence for the event horizon. Absence of the event horizon, as well as deviations
from the Kerr geometry near the horizon, can be motivated by quantum-gravity and
quantum-information considerations. Objects whose spacetime geometries mimic
that of a black hole, except in the near-horizon region, have been speculated to exist,
and are referred to as exotic compact objects (ECOs) [131, 132]. The boundary
between the Kerr and non-Kerr regions of the ECO are often placed at Planck scale
above the horizon.

Pani et al. argued that GWs emitted from a gravitational collapse or a compact binary
coalescence (CBC), which results in an ECO, should be followed by echoes [18,
19, 133, 134]. GWs that propagate toward the ECO can be reflected by the ECO
surface — or penetrate through the ECO and re-merge at its surface — and bounce
back and forth between the ECO’s gravitational potential barrier (at the location of
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the light sphere) and the ECO itself [21, 135–138]. GW echoes, as the smoking
gun of ECOs [20], have generated enormous interest. Most notably, Abedi et
al. claimed to have found evidence of echoes in Advanced Laser Interferometer
Gravitational Wave Observatory (Advanced LIGO) data after the first few observed
CBC events [22, 30, 31], and the statistical significance of these signatures was
being questioned [32–35]. Alternative techniques in searching for echoes have been
proposed [33–35, 139, 140].

It was realized that ECOs may suffer from nonlinear instabilities [141]. Moreover,
the accreting matter can trigger the instability of ECOs, which then puts a bound
on the compactness of the existing ECO models, using the Vaidya geometry [142].
We would like to consider the possible instability of ECOs induced by incoming
gravitational wave radiations. As radiations propagate near the ECO surface, they
get increasingly blue shifted (for observers with constant Schwarzschild/Boyer-
Lindquist r , e.g., those who sit on the ECO surface); energy is also crammed into
a compact region (in terms of ∆r), and we need to consider its back reaction to the
spacetime geometry [143]. As Eardley [144] and Redmount [145] were studying
the stability of white holes and worm holes in an astrophysical environment, they
concluded that the “blue sheet” made up by in-falling material and radiations can
cause the formation of an event horizon. Another point of view of such instability is
through Thorne’s hoop conjecture [146], as shown in Fig. 6.1, which says a certain
amount of mass/energy will collapse into a black hole when it is inside the “hoop”
located at its own Schwarzschild radius. Similarly, ECOs may suffer from such
instability caused by GWs and collapse into black holes. In this paper, we study the
condition for ECO to remain stable and the impact of back reaction on GW echoes.

6.2 Set up of the problem
We would like to consider a particle (or a star) plunging into an ECO. During the
ringdown process, gravitational waves can be emitted near the light ring both towards
the ECO and the infinity. For simplicity, we consider a spherically symmetric initial
ECO with mass M and areal radius rECO = 2M + ε , and an incident GW packet with
energy E. Here ε is a small distance that quantifies the compactness of the ECO;
∆ ≡
√

8Mε is also used to characterize “the spatial distance between ECO surface
and the horizon”. For the ringdown phase of a CBC, cumulative energy emitted
from the potential barrier towards the ECO, up to Schwarzschild time t is given by

ERD(t) ≈ αH(4η)2M (1 − e−2γt ) , (6.1)
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ECO

GWs

hoop 

Figure 6.1: A pulse of GW with energy E incident on a static ECO with mass M .
A hoop is placed at the Schwarzschild radius 2(M + E). When the spatial extent of
the GWs becomes compacted within the hoop in every direction, the event horizon
forms.

where γ is the imaginary part of the quasinormal modes (QNM) frequency, η =
M1M2(M1 + M2)−2 is the symmetric mass ratio, with M1 and M2 being the masses
of the two objects in the binary, and the numerical factor αH is typically estimated
to be 3%-10% depending on the choice of ringdown time [147]. Here we fix this
parameter to be 5%. We define the tortoise coordinate r∗ from the Schwarzschild
radius r as r∗ = r + 2M log (r/2M − 1). The conventional estimate for the time lag
between the first echo and the beginning of the ringdown signal is given by

∆tconv
echo = 2|rLR

∗ − rECO
∗ | ≈ 2M + 4M log(M/ε ). (6.2)

where LR stands for the light ring at rLR = 3M , and rECO
∗ is the tortoise coordinate

for rECO 1.

6.3 Estimates based on the hoop conjecture
According to the hoop conjecture [146], the event horizon forms when a certain
amount of mass gets compacted within its own Schwarzschild radius. This cor-
responds to a zeroth-order estimate on the effect of the incoming energy towards
an ECO, in the sense that we neglect the back reactions of the GWs to the ECO

1In some existing literature, the time lag between the first echo and the beginning of the ringdown
signal is denoted by techo, and notation ∆techo is used to denote the time lag between two echoes.
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Figure 6.2: A Vaidya spacetime with an incoming null packet spatially bounded
by the black dashed line. The trapped surface evolves along the blue solid line.
The event horizon evolves along the red dashed line, and coincides with the trapped
surface after all energy goes into the horizon. Any ECO with its surface crossing
the pink line will promptly collapse, while those cross the green line does not. Static
ECOs can then be divided into three different types (a), (b), and (c), separated by
the gray dashed lines (not world lines), and are discussed in detail in the main text.

Schwarzchild spacetime. As shown in Fig. 6.1, at the instant when all incoming
energy gets compacted within the “hoop”, the event horizon forms. If we consider
the null packet carrying the ringdown energy (6.1), to prevent horizon formation,
the location of the ECO surface must satisfy

rECO − 2M > 0.015(4η)2M (Mγ/0.1)(αH/0.05) . (6.3)

This means, stable, static ECOs cannot be very compact—ε or ∆ are far from Planck
scale.
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6.4 In-going Vaidya spacetime
To approach a more accurate study of the back reaction of the incoming GWs, we
consider a Vaidya geometry,

ds2 = − [1 − 2M (v)/r] dv2 + 2drdv + r2dΩ2 , (6.4)

where v is the advanced time, and M (v) is the total gravitational mass that has
entered the spacetime up to v. The Vaidya geometry, as an approximation, describes
a spherically symmetric spacetime with (gravitating) in-falling dust along radial null
rays, but does not capture the fact that GW energy is not spherically symmetrically
distributed — nor does it capture GW oscillations. For incident GWs during
vmin < v < vmax, we have

M (v) = Mmin + E(v) , (6.5)

where E(v) is total GW energy that has entered since vmin. M grows from Mmin to
Mmax ≡ Mmin+Etot. During the process of incoming GWs, as shown in Fig. 6.2, the
apparent horizon (AH) traces the total energy content, and is located at rAH = 2M (v).
The event horizon (EH), on the other hand, follows out-going radial null geodesics,
parameterized by r (v), which satisfies

2dr/dv = 1 − 2M (v)/r (v) . (6.6)

We also need to impose a final condition of rEH(vmax) = 2Mmax. Assuming Ṁ � 1,
writing rEH(v) = 2M (v) + δ(v) with δ � M , we have δ̇ − δ/(4M) = −2Ṁ , and the
solution is given by

δ(v) = 2
∫ vmax

v

dv′Ṁ (v′)exp

−

∫ v′

v

dv′′
1

4M (v′′)


. (6.7)

The required final condition for δ, as well as the dependency of δ(v) on Ṁ (v′) at
v′ > v, embodies the teleological nature of the EH: the location of the EH right now
is determined by what shall happen in the future.

For the ringdown of a CBC, we substitute E(v) = ERD(v − vmin) into the solution
and obtain

δ(v) =
16(4η)2αHM (Mγ)

1 + 8Mγ
e−2(v−vmin) ≡ ε the−2(v−vmin) . (6.8)

Next, we use Vaidya spacetime only as the exterior of the ECO, and consider two
scenarios: (i) GW-induced collapse of a static ECO and (ii) an ECO with expanding
surface.
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Figure 6.3: (a) A static ECO scenario where the ECO surface is outside the event
horizon and, which can give rise to GW echoes. The spatially nearest incoming
ray, denoted by the green dashed line, reflects at the potential barrier and the ECO
surface, leading to a time delay ∆techo between the main wave and the echo as
observed at spatial infinity. (b) A static ECO scenario where part of the incoming
GW energy gets reflected at the ECO surface and gives rise to echoes until “the-last-
ray-to-escape”. The subsequent echoes are highly redshifted due to the formation
of event horizon, leading to a weak echo signal. (c) Spherically symmetric ECO
absorbing GWs and expanding in radius. The event horizon grows along the red
dashed line. If the ECO surface always remains outside the event horizon, incoming
rays can lead to GW echoes, as shown by the green dashed lines.

6.5 Back reaction: static ECO with future incoming pulse
For static ECOs with radius r = rECO and initial mass Mmin, we can divide them
into three types as in Fig. 6.2:

(a) For rECO < 2Mmin + ε th, the ECO will promptly collapse and there will be no
GW echoes, since the first incoming ray reaches the ECO inside the EH.

(b) For rECO > 2Mmax, the ECO does not collapse, and conventional echoes (gener-
ally more than one) will form, as individually shown in Fig. 6.3(i).

(c) For 2Mmin + ε th < rECO < 2Mmax, the ECO enters the EH (hence collapses)
during the incoming GW pulse. Only one echo, with reduced magnitude, could
form, as individually shown in Fig. 6.3(ii).

The magnitude of ε th indicates that static ECOs that can produce echoes will deviate
from a black hole at a distance far from Planck scale above the horizon. In terms of
compactness, for Mγ ≈ 0.1, we have

ε th/(2M) = 0.022(αH/0.05)(4η)2 . (6.9)

For a comparable-mass binary (e.g., η = 0.25), this corresponds to a moderate
bound on the compactness; for extrememass-ratio inspirals (EMRIs) with η = 10−7,
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compactness ε th/(2M) reaches 3.5 × 10−15 for typical values of αH and Mγ. In
terms of proper distance above the horizon, we have, Mγ ≈ 0.1,

∆th = 8

√
2αH(4η)2M3γ

1 + 8Mγ
≈ 2.4ηM

√
αH/0.05 . (6.10)

For stellar mass CBC, ∆th is at least kilometer-scale, far from Planck scale.

6.6 Back reaction: expanding ECO
If the ECO has an expanding surface, as shown in Fig. 6.3c, its increasing radius
could in principle keep up with the influx of GW energy, so that the horizon will
not form. For example, if

rECO(v) = rEH(v) + ε = 2M (v) + δ(v) + ε , (6.11)

with a constant positive ε which can be aribitrarily small, ECO surface will be time-
like. We need to emphasize that the expansion trajectory (6.11), although being
time-like, is teleological in nature, since its rate of expansion must be determined
by the future in-going GW flux. In other words, internal physics of the ECO must
know how much energy is going to come in the future, and adjust the ECO radius
accordingly, before the waves arrive.

6.7 Implications for GW-echo phenomenology
The back reaction of incoming GWs substantially affects the phenomenology of
GW echoes by imposing constraints on ∆techo, which is the first echo’s time lag
behind the main wave. When ∆techo is comparable to the ringdown time scale 1/γ,
the echoes will interfere with the main wave [21], giving rise to less distinct echo
signals. To better illustrate this, we define a ratio R between these two time scales
via R ≡ γ∆techo. Then the echo is separated form the main wave when R ≥ 1.

For static ECOs of type (a), which promptly collapse, there are no echoes. For types
(b) [Fig. 6.3a] and (c) [Fig. 6.3(ii)], the ratio R can be obtained from

rECO/M − 2 = ε th/M + exp[−R/(4Mγ) + 1/2] . (6.12)

In Fig. 6.4, we plot the contour of R as function of rECO/M−2 and αH(4η)2. For type
(b), echo arises from the entire duration of incoming GW, there will be subsequent
echoes, when GW reflected from the ECO further travel back and forth between the
potential barrier and the ECO. For type (c), echo arises only from the first part of
the incoming GW, up till the “last ray to escape” shown in Fig. 6.3(ii), and there
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Figure 6.4: Contour plot for R as function of rECO/M − 2 and αH(4η)2. Regions
in red, white, and yellow indicate types (a), (b), and (c), respectively. Along the
vertical axis, the ranges indicate comparable, intermediate, and extreme mass ratio
inspirals.

can only be one echo. The reflected GWwill first oscillate and then be “frozen" due
to ECO gravitational collapse. Since the low-frequency component of the reflected
GW can not propagate to infinity due to the filtering of the frequency-dependent
potential barrier, the distant observer will just see a weakened QNM waveform.

For CBCs observable by LIGO, we choose, for instance, η = 0.25, αH = 0.05 and
Mγ = 0.1, which are consistentwithGW150914 [148]. We then have ε th = 0.044M .
Type (b) ECOs should have rECO > 2.1M . In particular, for 2.1M < rECO < 2.18M ,
we have 1 < R < 1.4. For type (c) ECOs, we could have much larger R, but that
would correspond to a small region in parameter space.

Previously, one could have argued that exotic physics could create static ECOs that
have rECO/M very close to 2. However, to have a moderately large R, Eq. (6.12)
requires that rECO/M be exponentially close to 2 + ε th, with ε th depending on the
incoming GW. This seems a fine tuning for static ECOs which is very unlikely to
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happen.

For EMRIs targeted by Laser Interferometer Space Antenna (LISA), less incoming
GWs allowsmore compact ECOs to be probed. Let us consider αH = 0.05, η = 10−7

and Mγ = 0.1, and use the boundary between type (b) and type (c) as the typical
ECO compactness. In this case, we will have Rtypical ≈ 13, which corresponds to a
distinct echo signal.

In the case of expanding ECOswith rECO = 2M (v)+ε , under the approximation that
Ṁ (v) � 1,∆techo is given by∆texpand

echo = 2M+4M log[M/ε], which is equal to∆tconv
echo .

Here we see that a teleologically expanding ECO has the same phenomenology
proposed in existing literature.

6.8 Discussions
As an attempt to use simplified analytical solutions to capture features of a highly
complex spacetime geometry, governed by yet unknown physics, our work has
several limitations. (i) We have focused on the echo of reflective type, i.e., the
echo generated by the reflection of the main wave on the ECO surface. For those
echoes of transmissive type, i.e., the echo generated by the GW penetration into and
re-emerging out of the ECO surface, the delay of echo signal depends on the specific
ECO model. (ii) Our Vaidya spacetime model only captures the back reaction of
the ingoing GW flux, while in reality the reflected outgoing GWs also gravitate.
The back reaction of the reflected waves may have qualitatively significant effects
on the echoes when the surface reflectivity is large. (iii) We have not attempted
to describe what happens as the other object impacts the ECO, which takes place
roughly at the same time as the ringdownwave starts to impinge on the final compact
object. Finally, while the teleological response necessary for the expanding ECO
sounds unnatural, it might arise due to non-local interactions that were speculated
to exist near the event horizon [149]; we also note that the final-state projection
model [150, 151] may also be regarded as teleological in nature.

6.9 Appendix
Derivation of the ECO compactness bound via the hoop conjecture
In this section, we present a derivation of Eq. (6.3), which gives the compactness
bound on ECOs using the hoop conjecture. For simplicity, we assume that there is a
pulse of gravitational wave carrying energy E and incidenting on a static ECO with
mass M , as shown in We further assume that the spatial extents of the gravitational
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wave are bounded by rmax
∗ and rmin

∗ . Therefore at any given moment, we have

rmax
∗ − rmin

∗ = T , (6.13)

whereT is the duration of the GWpulsemeasured in Schwarzschild time. According
to the hoop conjecture, when the spatial extents of the gravitational wave are all
within a “hoop” located at the Schwarzschild radius 2(M + E), a black hole forms.
Therefore in a threshold case, when rmin

∗ coincides with the ECO surface, rmax
∗

happens to coincide with the location of the event horizon (or the “hoop”). That is,
to avoid the event horizon formation, it requires

T < 2E + 2M log
(

2E
rECO − 2M

)
. (6.14)

In the threshold case, we can solve for a critical duration Tc using

Tc = 2E(Tc) + 2M log
(

2E(Tc)
rECO − 2M

)
. (6.15)

Weplug in the ringdown energy E(T ) = αH(4η)2M (1−e−2γT ), and takeT-derivative
on both sides. For the threshold case, we obtain

4αHγηMe−2γTc +
4γMe−2γTc

1 − e−2γTc
= 1 . (6.16)

The critical duration Tc is then given by

e−2γTc = −

√
(4αHγ(4η)2M + 4γM + 1)2 + 16αHγ(4η)2M

8αHγ(4η)2M
(6.17)

+
1
2
+

1
2αH(4η)2 +

1
8αHγ(4η)2M

.

Thus using (6.14), one can show that, in order to avoid horizon formation, the bound
on the ECO compactness is given by

rECO − 2M >
32αHη

2(Mγ)
e

M + O
(
α2

H, (Mγ)2
)
, (6.18)

which reduces to Eq. (6.3) when αH and Mγ are both small.
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C h a p t e r 7

TIDAL RESPONSE AND NEAR-HORIZON BOUNDARY
CONDITIONS FOR SPINNING ECOS

Teukolsky equations for |s | = 2 provide efficientways to solve for curvature perturba-
tions aroundKerr black holes. Imposing regularity conditions on these perturbations
on the future (past) horizon corresponds to imposing an ingoing (outgoing) wave
boundary condition. For exotic compact objects (ECOs) with external Kerr space
time, however, it is not yet clear how to physically impose boundary conditions for
curvature perturbations on their boundaries. We address this problem using the
Membrane Paradigm, by considering a family of zero-angular-momentum fiducial
observers (FIDOs) that float right above the horizon of a linearly perturbed Kerr
black hole. From the reference frame of these observers, the ECO will experience
tidal perturbations due to ingoing gravitational waves, respond to these waves, and
generate outgoing waves. As it also turns out, if both ingoing and outgoing waves
exist near the horizon, the Newman Penrose (NP) quantity ψ0 will be numerically
dominated by the ingoing wave, while the NP quantity ψ4 will be dominated by the
outgoing wave — even though both quantities contain full information regarding
the wave field. In this way, we obtain the ECO boundary condition in the form of a
relation between ψ0 and the complex conjugate of ψ4, in a way that is determined
by the ECO’s tidal response in the FIDO frame. We explore several ways to mod-
ify gravitational-wave dispersion in the FIDO frame, and deduce the corresponding
ECO boundary condition for Teukolsky functions. Using the Starobinsky-Teukolsky
identity, we subsequently obtain the boundary condition for ψ4 alone, as well as for
the Sasaki-Nakamura and Detweiler’s functions. As it also turns out, reflection of
spinning ECOs will generically mix between different ` components of the per-
turbations fields, and be different for perturbations with different parities. It is
straightforward to apply our boundary condition to computing gravitational-wave
echoes from spinning ECOs, and to solve for the spinning ECOs’ quasi-normal
modes.

7.1 Introduction
A black hole (BH) is characterized by the event horizon, a boundary of the space-
time region within which the future null infinity cannot be reached. The existence
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of a horizon has lead to the simplicity of black-hole solutions in general relativity
and modified theories of gravity, although the notion of a horizon has also led
to technical and conceptual problems. First of all, at the classical level, the even
horizon has a teleological nature: its shape at a particular time-slice of a spacetime
depends on what happens to the future of that slide. Even if we are provided with
a full numerical solution of the Einstein’s equation (e.g., in the form of all metric
components in a particular coordinate system), it is much harder to determine the
location of the event horizon than trapped surfaces, whose definitions are more
local.

In classical general relativity, it has been shown that a singularity (or singularities)
should always exist inside the event horizon [14]. This requires that quantum gravity
must be used to study the space-time geometry inside black holes. Naively, one
expects corrections when space-time curvature is at the Planck scale. However, the
unique causal structure of the horizon already leads to non-trivial quantum effects,
e.g., Hawking radiation [63, 152]. From considerations of quantum gravity, it has
been proposed that space-time geometry near the horizon can be modified, even at
scales larger than the Planck scale [153, 153–163]. It has also been conjectured
that a phase transition might occur during the formation of black holes, leading to
non-singular, yet extremely compact objects [164, 165]. All these considerations (or
speculations) lead to a similar class of objects: their external space-time geometries
mimic those of black holes except very close to the horizon. We shall refer to these
objects as Exotic Compact Objects (ECOs).

Followed by the unprecedented discovery of gravitational waves from the binary
BH merger event GW150914 [2], and follow-up observations of an order of ∼ 100
binary black-hole merger events [3, 4], we now know that dark compact objects do
exist in our universe, and that their space-time geometry and dynamics are consistent
with those of black holes in general relativity, better than order unity, and at scales
comparable to the sizes of the black holes. Observations by the Event Horizon
Telescope (EHT) provides yet another avenue toward near-horizon physics of black
holes [5–12].

Since the horizon is defined as the boundary of the unreachable region, hence it
“absorbs” all radiation. Instead of asking whether the horizon exists, a more testable
question might be how absorptive the horizon is: any potential modifications to
classical general relativity near the surface of an ECO, be it quantum or not, may
impose a different physical boundary condition near the horizon. That is, for any
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incoming gravitational radiations, they not only can fall into the dark object, but
may also get reflected, and then propagate to the infinity. In the context of a
point particle orbiting a black-hole candidate, this was studied as a modified tidal
interaction [166–168]. Alternatively, a stronger probe of the reflectivity is provided
by waves that propagate toward the horizon of the final (remnant) black hole after
the merger of two black holes — in the form of repeated GW echoes at late times
in the ringdown signal of a binary merger event [18–29]. Following this line of
thought, the gravitational echoes have been extensively studied in different models
of near-horizon structures [140, 169–175]. Even though the idea of ECOs might
be speculative, one can always regard the search for ECOs as one to quantify the
darkness of the final objects in binary merger events, and in this way its importance
cannot be overstated.

The key problem for calculating the echoes from spinning ECOs is how to apply
boundary conditions near the horizon for curvature perturbations obtained from the
Teukolsky equation. This was discussed, by Nakano et al. [176] and Wang and
Afshordi [170], but for Kerr there are still more details to fill in — even though
Kerr echoes have already been studied by several authors [23–27]. This is the main
problem we would like to address in this paper.

Imposing a near-horizon boundary condition ismore straightforward in Schwarzschild
spacetime. The Schwarzschild metric perturbations can be fully constructed from
solutions of the Regge-Wheeler equation [46] and the Zerilli equation [49], both of
which are wave equations that have regular asymptotic behaviors at horizon and in-
finity. These metric perturbations can then be used to connect to the response of the
ECO to external perturbations. In the Kerr spacetime, perturbations are most effi-
ciently described by the s = ±2 Teukolsky equations [41] for curvature components
that are projected along null directions, and therefore are less directly connected to
tidal perturbations and responses of an ECO. Furthermore, the Teukolsky equations
for the s = ±2 cases do not have short-range potentials, and result in solutions that
do not have the standard form of incoming and outgoing waves, leading to certain
difficulties in finding numerical solutions.

To solve the second issue, the Teukolsky equations can be transformed into wave-like
equations with short-ranged potentials, namely the Sasaki-Nakamura (SN) equa-
tions, via the Chandrasekhar-Sasaki-Nakamura (CSN) transformation [177–179].
In order to define the near-horizon reflection of waves in the Kerr spacetime, it
was proposed that the reflection should be applied to the SN functions — as has
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been widely used in many literatures regarding gravitational wave echoes [23–
26, 26, 136, 138, 140, 167]. Despite the short-rangedness of the SN equation,
the physical meaning of SN functions are less clear than the Teukolsky functions,
especially in the Kerr case.

For the Kerr spacetime, Thorne, Price, and MacDonald introduced the “Membrane
Paradigm” (MP) [180], by considering a family of fiducial observers (FIDOs) with
zero angular momentum. World lines of the collection of these observers form a
“membrane”—which can be used as a proxy to think about the interaction between
the black hole and the external universe. In order to recover the pure darkness of the
black hole, the membrane must have the correct complex (in fact purely resistive)
impedance for each type of flux/current, so that nothing is reflected. For example, the
membrane must have the correct specific viscocity in order for gravitational waves
not to be reflected, and the correct (electric) resistivity in order for electromagnetic
waves not to be reflected. Extensive discussions were made on the physics viewed
by the FIDOs, in particular tidal tensors measured by these observers in the presence
of gravitational waves. The picture was more recently used to visualize space-time
geometry using Tendex and Vortex picture [181–183].

It has been proposed that reflectivity of ECOs can be modeled by altering the
impedance of the ECO surface [170, 176, 184]. In this paper, we generalize this
point of view to ECOs with nonzero spins. It is worth mentioning that the the
membrane paradigm point of view has been taken by Datta et al. [168, 185] to study
the tidal heating of Kerr-like ECOs, although reflection of waves by the ECO was
not described. In this paper we shall continue along with the membrane paradigm,
and propose a physical definition of the ECO’s reflectivity.

In order to do so, we make a careful connection between Teukolsky functions, which
efficiently describe wave propagation between the near-horizon region and infinity,
and ingoing and outgoing tidal waves in the FIDO frame of theMembrane Paradigm.
We then obtain boundary conditions for the Teukolsky equations in terms of tidal
responses of the ECO in the FIDO frame. Here the fundamental assumption that we
rely upon— as has also beenmade implicitly in previous ECO reflectivity literatures
— is that the ECO has a simple structure in the FIDO frame — for example as a
distribution of exotic matter that modifies dispersion relation of gravitational waves
in the FIDO frame.

We organize the paper as follows. In Sec. 7.2, by considering individual FIDOs,
we introduce the modified boundary conditions in Teukolsky equations based on
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the tidal response of the ECO, and obtain input-output relations for Teukolsky
equations in terms of that tidal response. In Sec. 7.3, we more specifically consider
a Rindler coordinate system near the horizon, and put our discussion into a more
firm ground by relating the Teukolsky functions to Riemann tensor components in
this coordinate system. We further consider modified gravitational-wave dispersion
relations in the Rindler frame, and relate these relations to the ECO’s tidal response.
In Sec. 7.4, we translate our reflection model into a model which fits most literatures
on gravitational-wave echoes, in particular making connections to the SN formalism.
In Sec. 7.5, we apply our method to obtain the echo waveform as well as the quasi-
normal modes (QNMs) of the ECOs. Showing that even- and odd-parity waves will
generate different echoes, and generalize the breaking of QNM isospectrality found
by Maggio et al. [184] to the spinning case. In Sec. 7.6, we summarize all results
and propose possible future works.

Notation.We choose the natural units G = c = 1, and set the black hole mass M = 1.
The following symbols are also used throughout the paper:

∆ = r2 − 2r + a2 , (7.1)

Σ = r2 + a2 cos2 θ , (7.2)

ρ = − (r − ia cos θ)−1 . (7.3)

Here (t, r, θ, φ) are the Boyer-Lindquist coordinates for Kerr black holes and a is
the black hole spin. The Kerr horizons are at the Boyer-Lindquist radius rH =

1+
√

1 − a2, while the inner horizons are at rC = 1−
√

1 − a2. The angular velocity
of the horizon is given by ΩH = a/ (2rH ). The tortoise coordinate is defined by

r∗ = r +
2rH

rH − rC
ln

(r − rH

2

)
−

2rC

rH − rC
ln

(r − rC

2

)
. (7.4)

7.2 The reflection boundary condition from tidal response
In a (3 + 1)-splitting of the spacetime, the Weyl curvature tensor Cabcd naturally
gets split into an “electric” part, which is responsible for the tidal effect, and a
“magnetic” part, which is responsible for the frame-dragging effect. From now on,
we will focus on the electric part, as it gives rise to the gravitational stretching and
squeezing, i.e. the tidal force, which drives the geodesic deviations of particles that
are slowly moving with respect to that slicing.

In MP, a relation is established between the Newman-Penrose quantity ψ0 near the
future horizon and components of the tidal tensors in the FIDO frame. In this
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r cos ϕ r sin ϕ

t

Figure 7.1: Trajectory of the FIDO in a constant θ slice of the Kerr spacetime in
the (t, r cos φ, r sin φ) coordinate system. Here the green surface indicates the ECO
surface with r = b, while the black surface indicates the Kerr horizon. Each FIDO
has r = b, but has (t, φ) = (t, φ0 +ΩH t).

section, we will extend this to include waves “originating from past horizon”, which
really are waves in the vicinity of the horizon but propagate toward the positive r

direction, see Fig. 7.2. More specifically, we seek to derive the relation among the
tidal tensor components, the incoming waves, and the “reflected” (outgoing) waves
due to the tidal response. This will establish our model of near-horizon reflection
for the Teukolsky equations.

FIDOs
Starting from the Boyer-Lindquist coordinate system (t, r, θ, φ), FIDOs in the MP
are characterized by constant r and θ, but φ = const + ωφt, with

ωφ =
2ar
Ξ

. (7.5)

and
Ξ = (r2 + a2)2 − a2

∆ sin2 θ . (7.6)
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Figure 7.2: Waves that propagate toward the ECO surface can be approximated as
propagating toward the future horizon, while those originate from the ECO surface
can be approximated as originating from the past horizon.

Each FIDO carries an orthonormal tetrad of 1

~er̂ =

√
∆

Σ
~∂r , ~eθ̂ =

~∂θ
√
Σ
, (7.7)

~eφ̂ =

√
Σ

Ξ

~∂φ

sin θ
, ~e0̂ =

1
α

(
~∂t + ωφ

~∂φ
)
,

with

α =

√
Σ∆

Ξ
. (7.8)

Here ~e0̂ is the four-velocity of the FIDO. The FIDOs have zero angular momentum
(hence are also known as Zero Angular-Momentum Observers, or ZAMOs), since
~e0̂ has zero inner product with ~∂φ. Here α is called the redshift factor, also known as
the lapse function, since it relates the proper time of the FIDOs and the coordinate
time t.

Near the horizon, we have α → 0; FIDO’s tetrads are related to the Kinnersly
1Note that MP uses different notations for the ρ, Σ.
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tetrad [186] via

~l ≈

√
Σ

∆
(~e0̂ + ~er̂ ) , ~n ≈

√
∆

Σ

~e0̂ − ~er̂

2
, ~m ≈

ei β (~eθ̂ + i~eφ̂)
√

2
, (7.9)

where
β = − tan−1

(
a cos θ

rH

)
. (7.10)

Tidal Tensor Components
Let us now introduce the electric-type tidal tensor E as viewed by FIDOs, which
can be formally defined as [182]

Ei j = hi
ah j

cCabcdUbUd . (7.11)

HereU = ~e0̂ is the four-velocity of FIDOs as in Eq. (7.7), and hi
a = δi

a+UiUa is the
projection operator onto the spatial hypersurface orthogonal to U. In particular, we
look at the mm-component of the tidal tensor, as the gravitational-wave stretching
and squeezing will be along these directions. Near the horizon, the tidal tensor
component is then given by

Emm = C0̂m0̂m ≈ −
∆

4Σ
ψ0 −

Σ

∆
ψ∗4 . (7.12)

For convenience, let us define a new variable sΥ which is the solution to the
Teukolsky equation with spin weight s. For s = ±2 we have

−2Υ ≡ ρ
−4ψ4 , +2Υ ≡ ψ0 . (7.13)

We briefly review the Teukolsky formalism in Appendix. 7.7. For perturbations
that satisfy the linearized vacuum Einstein’s equation (in this case the Teukolsky
equation), at r∗ → −∞, in general we can decompose sΥ using the spin-weighted
spheroidal harmonics sS`mω (θ), and write

−2Υ(t, r∗, θ, φ) =
∑
`m

∫
dω
2π

e−iωt
−2S`mω (θ) eimφ (7.14)

×
[
Zhole
`mω∆

2e−ikr∗ + Z re f l
`mω eikr∗

]
,

+2Υ(t, r∗, θ, φ) =
∑
`m

∫
dω
2π

e−iωt
+2S`mω (θ) eimφ (7.15)

×
[
Y hole
`mω ∆

−2e−ikr∗ + Y re f l
`mω eikr∗

]
,

where k ≡ ω − mΩH . We use the shorthand
∑
`m ≡

∑∞
`=2

∑`
m=−`, in which ` is the

multipolar index, and m is the azimuthal quantum number. Note this m here should
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not be confused with the label m in the Kinnersly tetrad basis. Here Z`mω and Ỳ mω

are amplitudes for the radial modes, with “hole” labeling the left-propagation modes
into the compact object (in this paper, left means toward direction with decreasing
r), and “refl” labeling the right-propagation (reflected) modes (in this paper, “right”
means toward direction with increasing r)2.

Note that for outgoing modes of either +2Υ or −2Υ, we have

e−iωt eikr∗ eimφ = e−iω(t−r∗) eim(φ−ΩHr∗) , (7.16)

therefore the outgoing modes are functions of the retarded time u = t − r∗, and the
position-dependent angular coordinate φ − ΩHr∗. Similarly for ingoing modes, we
have

e−iωt e−ikr∗ eimφ = e−iω(t+r∗) eim(φ+ΩHr∗) , (7.17)

indicating that the ingoing modes are functions of the advanced time v = t + r∗, and
another position-dependent angular coordinate φ + ΩHr∗. We can then write down
one schematic expression for either +2Υ or −2Υ, by decomposing both of them into
left- and right- propagation components:

+2Υ(t, r∗, θ, φ) =+2Υ
R(u, θ, ϕ−) +

1
∆2 +2Υ

L (v, θ, ϕ+) , (7.18)

−2Υ(t, r∗, θ, φ) =−2Υ
R(u, θ, ϕ−) + ∆2

−2Υ
L (v, θ, ϕ+) , (7.19)

where we have defined

ϕ− = φ −ΩHr∗ , ϕ+ = φ +ΩHr∗ . (7.20)

Here both the L and R components are finite, and the ∆ represents the diver-
gence/convergence behaviors of the components. As we can see here, once we
specify these L, and R components on a constant t slice, as functions of (r∗, θ, φ),
we will be able to obtain their future, or past, values by inserting t.

Here we also note that, while the vacuum/homogeneous perturbation of space-time
geometry encoded in both ψ0 and ψ4 — either of them suffices to describe the
perturbation field [187, 188]3. Near the horizon, the numerical value of ψ0 is

2Of course here we refer to ECOs instead of black holes, the label “hole” is for matching the
notations from [187].

3One may imagine a very rough electromagnetic analogy: for a vacuum EM wave (without
electro- or magneto-static fields), both E and B fields contain the full information of the wave, since
one can useMaxwell equations to convert one to the other. Nevertheless, when it comes to interacting
with charges and currents, E and B play very different roles, and sometimes it is important to evaluate
both E and B fields.
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dominated by left-propagating waves, while the numerical value of ψ4 is dominated
by right-propagating waves. According to Eq. (7.12), we then have

Emm ≈ −
1

4Σ∆+2Υ
L (v, θ, ϕ+) −

ρ∗4Σ

∆

[
−2Υ

R(u, θ, ϕ−)
]∗
. (7.21)

Note that both terms diverge toward r∗ → −∞ and at the same order. This divergence
correctly reveals the fact that the FIDOs will observe gravitational waves with the
same fractional metric perturbation, but because the frequency of the wave gets
increased, the curvature perturbation will diverge as α−2.

Linear Response Theory
Now, suppose we have a surface, S at a constant radius r∗ = b∗ (or in the Boyer-
Lindquist coordinates r = b), with eκb∗ � 1. Here κ = (rH − rC)/2(r2

H + a2) is
the surface gravity of the Kerr black hole. To the right of the surface, for r∗ > b∗,
we have completely vacuum, and to the left of the surface, we have matter that are
relatively at rest in the FIDO frame, we shall refer to this as the ECO region. The
ECO is assumed to be extremely compact and S is close to the position, as viewed
as part of its external Kerr spacetime.

For the moment, let us assume that linear perturbation theory holds throughout the
external Kerr spacetime of the ECO. On S and to its right, Emm will be the sum of
two pieces,

Emm = E
src
mm + E

resp
mm , (7.22)

with the first term
Esrc

mm = −
∆

4Σ+2Υ
src(v, θ, ϕ+) (7.23)

a purely left-propagating wave that is sourced by processes away from the surface,
e.g., an orbiting or a plunging particle. The second term can be written as

E
resp
mm = −

ρ∗4Σ

∆

[
−2Υ

refl(u, θ, ϕ−)
]∗
, (7.24)

as the ECO’s response to the incoming gravitational wave.

Now we are prepared to discuss the reflecting boundary condition of the Teukolsky
equations in terms of the tidal response of the ECO. According to the linear response
theory, we can assume the linear tidal response of the ECO is proportional to the
total tidal fields near the surface of the ECO. That is, we may introduce a new
parameter η, and write

E
resp
mm = η(b, θ) Emm . (7.25)
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Here η is analogous to the tidal love number. This leads to the following relation at
r∗ = b∗:

[
−2Υ

refl(t − b∗, θ, φ −ΩH b∗)
]∗

+2Υsrc(t + b∗, θ, φ +ΩH b∗)
=

η

1 − η
e−4i β

4
∆

2 . (7.26)

In particular, when η → ∞, we will have the Dirichlet boundary condition,
[
−2Υ

refl(t − b∗, θ, φ −ΩH b∗)
]∗

+2Υsrc(t + b∗, θ, φ +ΩH b∗)
= −

e−4i β

4
∆

2 . (7.27)

This then provides us with a prescription for obtaining the boundary condition at
r∗ = b∗. Once we know the left-propagating ψsrc

0 , the reflected waves due to the
tidal response are simply given by Eq. (7.26).

Let us now define a new parameter R (b, θ) as

R (b, θ) ≡ −
η

1 − η
. (7.28)

This parameter has the physical meaning of being the reflectivity of the tidal fields
on the ECO surface. This local response assumes that different angular elements of
the ECO act independently, which is reasonable since on the ECO surface, and in
the FIDO frame, the gravitational wavelength is blue shifted by α, hence, much less
than the radius of the ECO.

This parameter has the physical meaning of being the reflectivity of the tidal fields
on the ECO surface. In terms of R (b, θ), we can write

[
−2Υ

refl(t − b∗, θ, φ −ΩH b∗)
]∗

= −
e−4i β

4
R (b, θ)∆2

+2Υ
src(t + b∗, θ, φ +ΩH b∗) (7.29)

This local response, constructed for the surface element with Boyer-Lindquist co-
ordinates (t, b, θ, φ), assumes that different angular elements of the ECO act inde-
pendently, which is reasonable since on the ECO surface, and in the FIDO frame,
the gravitational wavelength is blue shifted by α, hence, much less than the radius
of the ECO.

Furthermore, the ECO’s response may not be instantaneous, but may instead depend
on the history of the exerted tidal perturbation. In order to account for this, we should
construct a more general boundary condition, in which reflected field emitted at
(t, b, θ, φ) —more specifically, emitted by a FIDO at spatial coordinates (b, θ, φ) at
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Boyer-Lindquist time t — is the result of incoming fields at (t′, b, θ, φ−ΩH (t − t′)),
with t′ ≤ t; these are points on the past of the world line of this same FIDO [See
Fig. 7.1]. To implement this, we rewrite the right-hand side of Eq. (7.29) as an
integral. In this integral, we evaluate the incoming tidal field +2Υ

src at arguments
t → t′, θ → θ, and φ → φ − ΩH (t − t′) (t′ ≤ t). For the response, we replace the
instantaneous response R (b, θ) by a Green function, which, assuming stationarity,
only depends on the time difference t − t′: R (b, θ; t − t′). In this way, we can now
write

[
−2Υ

refl(t − b∗, θ, φ −ΩH b∗)
]∗
= (7.30)

−
e−4i β

4

∫ t

−∞

dt′R (b, θ; t − t′)∆2
+2Υ

src(t′ + b∗, θ, φ +ΩH b∗ −ΩH (t − t′)) .

Here the −ΩH (t − t′) term has been inserted into the argument of +2Υ
src because the

FIDO follows φ = φ0 +ΩH t (see Fig. 7.1). This is the key equation of our reflection
model.

Mode Decomposition
We now have obtained the modified boundary condition (7.30) in terms of the
Newman-Penrose quantities, and are ready to apply it to the Teukolsky formalism.
The solutions to the s = −2 Teukolsky equation, −2Υ, admits the near-horizon
decomposition as in Eq. (7.14). In this equation, Zhole is the amplitude of the
ingoing wave down to the ECO, which is contributed by the source, and Z refl is
the amplitude of the reflected wave due to the tidal response. For s = +2, the
corresponding amplitudes are Y hole and Y refl. We would like to derive a relation
among the four amplitudes.

Near the ECO surface S, +2Υ
src is given by

+2Υ
src(v, θ, ϕ+) =

∑
`m

∫
dω
2π

e−iωvY hole
`mω ∆

−2
+2S`mω (θ, ϕ+) , (7.31)

where we have kept only the dominant piece—the left-propagating mode, and Y hole
`mω

is the amplitude of that mode. The quantity −2Υ
refl is given by

−2Υ
refl(u, θ, ϕ−) =

∑
`m

∫
dω
2π

e−iωu Z refl
`mω −2S`mω (θ, ϕ−) . (7.32)
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Inserting the above two equations into Eq. (7.30), we obtain∑
`

Z refl
`mω −2S`mω (θ, φ)

=
1
4

∑
`′

e4i β−2ikb∗ (−1)m+1R∗
−k∗ Y hole∗

`′ -m -ω∗ −2S`′mω∗ (θ, φ) , (7.33)

where Rω (b, θ) is the Fourier transform of R (b, θ; t− t′), and k ≡ ω−mΩH . During
the derivation, we have used the fact that the spheroidal harmonic functions satisfy
the relation

−2S∗`mω (θ, φ) = (−1)m
+2S` -m -ω∗ (θ, φ) . (7.34)

Assuming the normalization that∫ 2π

0

∫ π

0
−2S`mω (θ, φ)−2S`′m′ω (θ, φ) sin θdθdφ = δ`

′

` δ
m′
m , (7.35)

from Eq. (7.33), we can write

Z refl
`mω = (−1)m+1 1

4
e−2ikb∗

∑
`′

M``′mωY hole∗
`′ -m -ω∗ , (7.36)

with

M``′mω =

∫ π

0
R∗−ω∗+mΩH

(b, θ) e4i β(θ)× (7.37)

× −2S`′mω (θ)−2S∗`mω (θ) sin θ dθ .

In general the reflection will mix between modes with different `, but not different
m. Note that the mixing not only arises from the θ dependence of R (θ, b), but
also from the θ dependence of β. This mixing vanishes for the Schwarzschild case.
For our calculation, it will be good to discard the phase term e4i β and make the
assumption that R is independent of the angle θ. But we should keep in mind that
these assumptions only work well in the Schwarzschild limit a → 0.

In the simplified scenario where mode mixing is ignored, we can write

Z refl
`mω ≈ (−1)m+1 1

4
e−2ikb∗ R∗−ω∗+mΩH

Y hole∗
` -m -ω∗ , (7.38)

In this way, the ω frequency component of the ψ4 amplitude of each (l,m) mode
is related to the −ω∗ frequency component of ψ0 of the (l,−m) mode. Here in a
Fourier analysis, ω is always real, but we have kept ω∗ so that our notation will
directly apply to quasi-normal modes, where frequency can be complex.
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7.3 Wave propagation in the vicinity of the horizon
In the previous section, we have obtained a new reflecting boundary condition (7.30)
relating Newman-Penrose quantity ψ0 and ψ4 on a spherical surface near the Kerr
horizon. This was further converted as a relation between frequency components of
the in-coming ψ0 and the outgoing ψ4. Before moving on to the applications of these
boundary conditions, in this section, we put the discussions of the previous section
onto a more solid ground. We consider a concrete coordinate system associated with
the FIDOs, and relate condition (7.30) to modified refractive indices or dispersion
relations of gravitational waves in this coordinate system. This way of modeling the
ECO can be thought of as a generalization of Refs. [169, 170, 176] to the spinning
case.

Rindler approximations
Let us now study the propagation of waves near the horizon, and explore how
emergent gravity might influence the boundary condition there.

Inside the ECO boundary S, we can consider propagation of metric perturbations
in the near-horizon FIDO coordinate system. According to MP, the unperturbed
metric takes the simple form [180]:

ds2 = −α2dt̄2
+

dα2

g2
H

+ ΣH dθ̄2 +
4r2

H

ΣH
sin2 θ̄dφ̄2 , (7.39)

where

gH =
rH − 1

2rH
, ΣH = r2

H + a2 cos2 θ̄ . (7.40)

This metric, only valid for α � 1, is a Rindler-like spacetime with spherical sym-
metry, with horizon located at α = 0. According to the membrane paradigm [189],
the new radial coordinates (α, θ̄, φ̄) are defined as

t̄ = t , (7.41)

α =
(
2gH − 2aΩHgH sin2 θ

) 1
2 (r − rH )

1
2 , (7.42)

θ̄ = θ −
ΣH,θ

4g2
HΣ

2
H

α2 , (7.43)

φ̄ = φ −ΩH t . (7.44)

The Kinnersley tetrad, near the horizon, can then be expressed in terms of the
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Rindler coordinates as

~l =
2rH

∆
(~∂t̄ + gHα~∂α) , (7.45)

~n =
rH

Σ
(~∂t̄ − gHα~∂α) , (7.46)

~m =
−ρ∗
√

2

[
ia sin θ̄ ~∂t̄ −

aΩH sin θ̄ cos θ̄
1 − aΩH sin2 θ̄

α~∂α

+ ~∂θ̄ +

(
i

sin θ̄
− iaΩH sin θ̄

)
~∂φ̄

]
, (7.47)

where we have used the near-horizon approximations and discarded all O(α2)
corrections.

For convenience, we introduce a new radial coordinate x, which is related to the
lapse function via

α = egH x . (7.48)

The regime x → −∞ is the horizon, where α → 0. In fact, (t, x) is exactly
the Cartesian coordinate of the Minkowski space in which this Rindler space is
embedded. Now we consider metric perturbations of the trace-free form

hθ̄ θ̄ (t, x, θ̄, φ̄) = ΣH H+(t, x, θ̄, φ̄) , (7.49)

hθ̄ φ̄(t, x, θ̄, φ̄) = 2rH sin θ̄H×(t, x, θ̄, φ̄) , (7.50)

hφ̄φ̄(t, x, θ̄, φ̄) = −4r2
H sin θ̄2H+(t, x, θ̄, φ̄)/ΣH . (7.51)

Note that H+,× are metric perturbations in the angular directions, measured in
orthonormal bases. We first find that the Einstein’s equations reduce to

(−∂2
t + ∂

2
x )Hp = 0 , p = +,×. (7.52)

Again, to obtain the equations above we have only kept the leading terms in α-series.
The absence of θ̄ and φ̄ derivatives in this equation supports the argument that tidal
response of the ECO is local to each angular element on its surface, as we have
made in Sec. 7.2.

We can further decompose Hp(t, x) to the left- and right-propagating piece as

Hp(t, x, θ̄, φ̄) = H L
p (t + x, θ̄, φ̄) + H R

p (t − x, θ̄, φ̄) , (7.53)

Using the Rindler approximations, we then find that the Weyl quantities ψ0 and ψ4

near horizon can be written as

ψ0(t, x, θ̄, φ̄) =
8r2

H e2i β

∆2 (∂2
t − gH∂x)H L (t, x, θ̄, φ̄) , (7.54)

[
ρ−4ψ4(t, x, θ̄, φ̄)

]∗
= 2r2

H e−2i β (∂2
t − gH∂x)H R(t, x, θ̄, φ̄) , (7.55)
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r*

ECO cos θ

+1

−1

constant x contours

Figure 7.3: Illustration of the constant-x contours in the (r∗, cos θ) plane. Reflections
from the same x for different θ will appear as being reflected at different r∗ for
different θ.

where we have defined

H L = H L
+ + iH L

× , H R = H R
+ + iH R

× . (7.56)

Note that in this approximation, we only extract the leading behavior of ψ0 and ψ4

near the horizon, namely a left-going wave ∼ (r − rH )−2 for ψ0, and a right-going
wave ∼ (r − rH )0 for ψ4. Here, we are considering wave propagation and reflection
independently for each (θ̄, φ̄). Eq. (7.54) and Eq. (7.55) are consistent with our
reflection model given in Eq. (7.30). For instance, in the case of total reflection, we
have R = −1, and all left-propagating modes H L

p become right-propagating modes
H R

p .

Let us now evaluate the Riemann tensor components in an orthonormal basis whose
vectors point along the (t, x, θ̄, φ̄) coordinate axes. The results are

Rˆ̄t ˆ̄θ ˆ̄t ˆ̄θ = −Rˆ̄t ˆ̄φˆ̄t ˆ̄φ = −
e−2gH x

2
[
−∂2

t + gH∂x
]

H+ , (7.57)

Rˆ̄t ˆ̄θ ˆ̄t ˆ̄φ = −
e−2gH x

2
[
−∂2

t + gH∂x
]

H× . (7.58)

This also confirms the reflection model that we have obtained from the previous
section.

We also point out that near the horizon, x and r∗ differ by an additive constant for
each (θ̄, φ̄). Let’s work out the θ̄ dependence of the asymptotic shift between x and
r∗. More specifically, near the horizon, the tortoise coordinate r∗ is approximately
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given by
r∗ ≈

1
2gH

ln[2gH (r − rH )] + I , (7.59)

with a constant
I = rH + ln

(rH

2

)
−

1
2rHgH

ln
(
8rHg

2
H

)
. (7.60)

Here we have neglected O(r − rH ) terms. Note that r∗ is independent of θ̄. We
define the difference between the two radial coordinates as

x − r∗ ≡ δ(θ̄) − I , (7.61)

where
δ(θ̄) =

1
2gH

ln(1 − aΩH sin2 θ̄) . (7.62)

This may influence the mode mixing of reflected waves from an ECOwhose surface
has a constant redshift. In Fig. 7.3, we illustrate contant-x contours in the (r∗, cos θ)
plane.

Finally let us derive the Teukolsky reflectivity R using the Rindler approximation.
Supposing for x in certain regions we can write the wave solution as

H (t, x, θ̄, φ̄) = H L (t, x, θ̄, φ̄) +H R(t, x, θ̄, φ̄) , (7.63)

with

H L (t, x, θ̄, φ̄) =
∑

m

∫
dk
2π
Θk (θ̄)e−ik xe−ikteimφ̄ , (7.64)

H R(t, x, θ̄, φ̄) =
∑

m

∫
dk
2π
Θk (θ̄)ζk eik xe−ikteimφ̄ . (7.65)

Here Θk (θ̄) gives the k-dependent angular distribution. ζk ≡ ζ (k) is the reflection
coefficient that converts left-propagating to right-propagating gravitational waves.
Thus ψ0 and ψ4 are respectively given by

ψ0(t, x, θ̄, φ̄) =
8r2

H e2i β(θ̄)

∆2

∑
m

∫
dk
2π
Θk (θ̄)(−k2 + igH k)e−ik xe−ikteimφ̄ ,

(7.66)

(ρ−4ψ4)∗(t, x, θ̄, φ̄) = 2r2
H e−2i β(θ̄)

∑
m

∫
dk
2π
Θk (θ̄)(−k2 − igH k)ζk eik xe−ikteimφ̄ .

(7.67)

Now that we have obtained ψ0 and ψ4 using the Rindler approximations, and would
like to relate ζ to the Teukolsky reflectivity R. To accomplish this, recall that in
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Sec. 7.2 we have obtained a reflection relation (7.30) between ψ0 and ψ4 on the ECO
surface. Since the relation is written in the Boyer-Lindquist coordinates, we first
perform the coordinate transformations on ψ0 and ψ4 according to x = r∗+δ(θ)−I,
θ̄ = θ, and φ̄ = φ − ΩH t. During the coordinate transformation, we have used the
near-horizon approximations and discarded all O(α2) terms. The results are given
by

ψ0(v, θ, ϕ+) =
8r2

H e2i β(θ)

∆2

∑
m

∫
dk
2π
Θk (θ)(−k2 + igH k)e−i(k+mΩH )ve−ikδ(θ)eikIeimϕ+ ,

(7.68)

(ρ−4ψ4)∗(u, θ, ϕ−) = 2r2
H e−2i β(θ)

∑
m

∫
dk
2π
Θk (θ)(−k2 − igH k)ζk e−i(k+mΩH )ueikδ(θ)e−ikIeimϕ− .

(7.69)

Using the reflection model (7.30), we obtain that

Rk = ζk

(
−k − igH

−k + igH

)
exp [2ikb∗ + 2ikδ(θ) − 2ikI] . (7.70)

Thus once we know ζ , the Teukolsky reflectivityR can be readily obtained. Here we
point out that the phase factor e2ikb∗ here will cancel the e−2ikb∗ factors in Sec. 7.2.
This is because in the previous section we chose b∗ as the location for the “surface of
the ECO”, while in this section, the ECO is embedded into the x coordinate system,
therefore we no longer need to introduce a reference location b∗ as “surface of the
ECO”. The information of ECO location will now be incorporated into ζk .

Before the end of this subsection, let us look at the factor M``′mω in Eq. (7.37),
and see how the mode mixing shows up in the reflected waves. We can pull out the
angular dependence of this factor by defining

M``′mω =

(
−k − igH

−k + igH

)
ζ∗−ω∗+mΩH

e2ikb∗−2ikIM̂``′mω , (7.71)

where

M̂``′mω =

∫ π

0
eiΦmω (θ)

−2S`′mω (θ)−2S∗`mω (θ) sin θ dθ , (7.72)

with
Φmω (θ) = 2(ω − mΩH )δ(θ) + 4β(θ) . (7.73)

This M̂``′mω directly shows the mixing of modes due to the phases δ(θ) and β(θ),
which arises due to the non-spherical nature of the ECO surface. Since eiΦmω (θ) is
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a unitary operator, we must have∑
`

M̂``′mωM̂∗``′′mω = δ
`′′

`′ . (7.74)

We plot the absolute value of M̂``′mω for ` = 2, m = 2 and for various spin and `′ in
Fig. 7.4. For a = 0, we have M̂``′mω = 1, indicating no mode mixing. As we raise
the spin, modes get more mixed and the reflected waves attain more contributions
from `′ > 2 modes. This quantitatively shows the mixing of different `-modes is a
significant feature for reflection of waves near horizon.
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Figure 7.4: The absolute values of the factor M̂``′mω for various spin a and `′. This
factor shows the mixing between different `-modes after an incoming single mode
gets reflected on the surface of an exotic compact object. Here we have chosen
` = 2, m = 2 as an example. In general for spacetimes with higher spins, the
reflected waves gain more contributions from higher `′-modes, thus the effect of
mode mixing is not negligible for rapidly spinning ECOs.

Position-dependent damping of gravitational waves
We now calculate the reflectivity R in a simplest setting — by adding dissipating
terms in the linearized Einstein equation in the Rindler coordinate system, obtaining
ζ , and then converting to R. Wang et al. already introduced a model in which the
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wave is damped, by introducing a complex “Young’s modulus” of space-time [170].
They name the reflection coefficient they found as the Boltzman reflectivity. As an
alternative approach, let us introduce a position-dependent damping to gravitational
waves, which increases as we approach the horizon. This model has the feature of
being able to provide more well-posed differential equations.

To do so, we modify the linearized Einstein equation by adding an extra dissipation
term, with coupling coefficient ε , to the equation satisfied by the perturbation H
defined in Eq. (7.63):

−∂2
t H − εe−gH x∂tH + ∂

2
xH = 0 . (7.75)

Assuming harmonic time decompositionH (x, t) = H̃ (x)e−ikt , we have
[

d2

dx2 + k2 + ikεe−gH x
]
H̃ (x) = 0 . (7.76)

Here k has the physical meaning of being the angular frequency of the perturbation
measured by FIDOs, before blue shift. The modified Einstein equation then admits
a general solution given by

H̃ (x) = C1Γ(1 − iν)J (1)
−iν (z) + C2Γ(1 + iν)J (1)

iν (z) , (7.77)

where

ν = 2k/gH , z = 2e
iπ
4 −

gH x

2
√
εk/gH , (7.78)

and J (1)
ν (z) is the Bessel function of the first kind. The appropriate solution which

damps on the horizon is given by

C1
C2
= −

Γ(1 + iν)
Γ(1 − iν)

e−πν . (7.79)

Here we shall assume ε � 1. In this way, there is a region where x � −1, but still
with εe−gH x � 1. In other words, this is a region very close to the Kerr horizon, but
here the damping has not yet turned on. In this region, the damping solution can be
written as

H̃ (x) ∝ e−ik x + ζDeik x , (7.80)

with

ζD (k) = −
Γ(1 + 2ik/gH )
Γ(1 − 2ik/gH )

e−
2ik
gH

ln k
gH e−

πk
gH e−

2ik
gH

ln ε
, k > 0 . (7.81)
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Here we have imposed k > 0 because the sense of ingoing and outgoing waves
changes for k < 0, where we need to write

ζD (−k) = ζ∗D (k) . (7.82)

This is the same form of reflectivity proposed by Wang et al. In Eq. (7.81), the first
factor involving two Γ functions is a pure phase factor that has a moderate variation
at the scale k ∼ gH , and the phase factor e−

2ik
gH

ln k
gH is similar; the amplitude factor

e−
πk
gH provides unity reflectivity for k ∼ 0 and this reflectivity decreases as |k |

increases. We plot |ζD (k) | for gH = 1 in Fig. 7.5.

The final phase factor in ζD can be written in the form of

e−
2ik
gH

ln ε
= e−2ik xeff , xeff =

1
gH

ln ε . (7.83)

This provides an effective x location around which most of the wave is reflected —
as we can see, we no longer have a single location r = b for the ECO surface at
which all the waves are reflected. To obtain the reflectivity R, we simply insert ζD

into Eq. (7.70), which adds an additional θ-dependent phase factor.

GW Propagation in Matter
The damping term in the linearized Einstein equation causes reflection in the near-
horizon region. In this subsection we consider another scenario where there exists
some effectivematter fields in the vicinity of the horizon. The effective stress-energy
tensor is denoted as Teff

AB, and its existence may be related to the emergent nature of
gravity. We now modify the linearized (1 + 1)-Einstein equation (7.52) by adding
the effective source, and get

−∂2
t H + ∂

2
xH = −16πe2gH xTeff

AB . (7.84)

In this equation, on the left-hand side, we have a freely propagating GW in (1 + 1)-
Minkowski spacetime, while on the right-hand side, we have the effect of emergent
gravity.

Tidal response of matter

We now discuss how Teff
AB should respond toH . Suppose theses effective degrees of

freedom act as matters that stay at rest in the FIDO frame. The AB component of
the Riemann tensor is given by

Rt AtB =
1
2

(
−∂2

t + gH∂x
)
H . (7.85)
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We postulate that the response of the effective matter is given by

Teff
AB =

µ

8π
RτAτB , (7.86)

where τ is the proper time for the Rindler metric (7.39), and µ is a physical cou-
pling constant measured in the local Lorentz frame of the FIDO, which can be
dependent on the driving frequency felt by the FIDO. Physically speaking, µ is the
linear response of the matter towards external perturbations, which is similar to the
permeability of gravitational waves in matter. Thus we have

Teff
AB =

µ

8πα2 Rt AtB =
µ

16πα2

(
−∂2

t + gH∂x
)
H . (7.87)

Note that the Einstein’s equation is now modified into

GAB = µRτAτB . (7.88)

With the effective stress-energy tensor, the metric equation of motion can now be
written as [

−(1 + µ)∂2
t + gH µ∂x + ∂

2
x

]
H = 0 . (7.89)

Here (1 + µ) acts as the permeability of gravitational waves in matter, and de-
creases the speed of gravitational waves. Now let us consider two kinds of matter
distributions for the exotic compact object.

Homogeneous star

For simplest model, let us look at a homogeneous star with uniform µ in the interior
region. For a frequency-independent µ, we can write H ∝ e−ikt+i k̃ x , and the
modified dispersion relation is given by k̃ = k̃+ or k̃−, with

k̃± =
igH µ

2
±

√
(1 + µ)k2 −

g2
H µ

2

4
. (7.90)

We immediately note that gravitational waves become evanescent when

|k | ≤ |kth | =
|gH µ|

2
√

1 + µ
. (7.91)

That is, we have a total reflection of all waves below ωth. Substantial reflection
also takes place near the ωth frequency. For |k | > kth and positive µ, waves will
be amplified when propagating towards the x → −∞ direction, i.e., towards the
horizon.
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Wemay further postulate that µ is of order unity inside a surface at which the surface
gravity is blue-shifted to the Planck frequency ωP:

µ =




µ0 , α−1gH > ωP ,

0 , otherwise .
(7.92)

The surface is then located at x = xP, where

xP =
1
gH

ln
(
gH

ωP

)
. (7.93)

As before, wewrite down the general solutions to Eq. (7.89) asH (x, t) = H̃ (x)e−ikt .
Outside the surface, we can write

H̃ (x) ∝ e−ik x + ζM eik x . (7.94)

Inside the surface we have
H̃ (x) ∝ ei k̃−x . (7.95)

Matching the solutions on the surface gives

ζM =
*..
,

k + igH µ
2 −

√
(1 + µ)k2 −

g2
H µ

2

4

k − igH µ
2 +

√
(1 + µ)k2 −

g2
H µ

2

4

+//
-

e−2ik xP , k > 0 . (7.96)

Similarly to the previous section, ζM (−k) = ζ∗(k). For |k | ≤ kth, we have |ζM | = 1,
indicating a total reflection of low frequency waves. For higher frequencies, |ζM |

approaches a constant

lim
k→∞
|ζM | =

√
1 + µ − 1

1 +
√

1 + µ
. (7.97)

We plot |ζM | for different µs in Fig. 7.5. Since µ is supposed to be a small
number, high-frequency waves have nearly zero reflection near the surface. This
ζM is qualitatively similar to the Lorentzian reflectivity model adopted, e.g., by
Ref. [138].

Inhomogeneous star

Let us make µ grow as a function of the location, with

µ = µ0e−ηx , (7.98)

where µ0 and η are positive constants. In this way, we successfully “revive” µ near
the horizon.
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Figure 7.5: Absolute values of ζD and ζM as functions of the frequency k. We have
set gH = 1. As indicated by Eq. (7.70), ζ and the Teukolsky reflectivity R only
differ by a phase, |ζ | is the same as |R |. The blue solid line represents |ζD |. The
yellow dotted line, the green dashed line, the red dot-dashed line, and the purple
long dashed line give |ζM | for µ = 0.1, 0.2, 0.5,∞ respectively. The Boltzman
reflectivity, i.e. ξD, exponentially decays for higher frequencies. For our model of
homogeneous stars, we have total reflection of waves on the ECO surface below a
certain threshold frequency. Beyond the threshold frequency, the reflectivity gets
decreased and converges to a constant. When µ → ∞, we have total reflection of
waves for all the frequency range, which is equivalent to the case of inhomogeneous
stars we have introduced.

We write down the general solutions to Eq. (7.89) as H (x, t) = H̃ (x)e−ikt , and
obtain that

H̃ (x) =A1e−ik xe
ik
η ln

( µ0gH
η

)
− πkη M (a, b, z)+ (7.99)

A2eik xe−
ik
η ln

( µ0gH
η

)
+ πkη M (a∗, b∗, z) ,

where

a =
ik
η
−

k2

gHη
, b = 1 +

2ik
η
, z =

µ0gH

η
e−ηx , (7.100)

A1, A2 are some constants, and M (a, b, z) is the confluent hypergeometric function.

The hypergeometric function behaves asymptotically as

M (a, b, z) ∼ ez za−b Γ(b)
Γ(a)

, z → ∞ , (7.101)

M (a, b, z) ∼ 1 , z → 0 . (7.102)
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The solution that damps on the horizon is then given by

A2
A1
= −e−

2πω
η
Γ(b)
Γ(b∗)

Γ(a∗)
Γ(a)

. (7.103)

For x in the region that µ0gH e−ηx � 1 and positive k, this solution can then be
written as

H̃ (x) = e−ik x + ζN eik x , (7.104)

where

ζN = − e
[
− 2ik

η ln
( µ0gH

η

)] Γ
(
1 + 2ik

η

)
Γ

(
1 − 2ik

η

) Γ(− ik
η −

k2

gHη
)

Γ( ik
η −

k2

gHη
)
. (7.105)

One immediately notes that |ζN | = 1 for all real k, indicating a total reflection of
waves. This may be due to the fact that our assumption of µ in (7.98) is equivalent
to putting infinite numbers of reflecting surfaces near the horizon, i.e. the µ → ∞
case in Fig. 7.5.

7.4 Boundary condition in terms of various functions
In calculations for gravitational waveforms, one does not usually compute both ψ0

and ψ4; the Sasaki-Nakamura formalism was also used to obtain faster numerical
convergence. In this section, let us convert our boundary condition (7.36), which
involves both ψ0 and ψ4 amplitudes, into those that only involve ψ4 amplitudes, and
compare our reflectivity with the one defined using the Sasaki-Nakamura functions.

Reflectivity for ψ4 mode amplitudes
The Newman-Penrose quantities ψ0 and ψ4 can be tranformed into each other using
the Teukolsky-Starobinsky identities. The amplitude Zhole and Y hole are related
by [187]

C`mωY hole
`mω = D`mωZhole

`mω , (7.106)

with
D`mω = 64(2rH )4(ik)

(
k2 + 4ε2

)
(−ik + 4ε) , (7.107)

and C is given by

|C`mω |
2 =

(
(λ + 2)2 + 4aωm − 4a2ω2

)
(7.108)

×
[
λ2 + 36aωm − 36a2ω2

]

+ (2λ + 3)(96a2ω2 − 48aωm) + 144ω2(1 − a2) ,
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with

ImC = 12ω, (7.109)

ReC = +
√
|C |2 − (ImC)2 . (7.110)

Here we have defined

ε =

√
1 − a2

4rH
, (7.111)

and λ ≡ −2λ`mω is the eigenvalue of the s = −2 spin-weighted spheroidal harmonic.
See Sec. 7.7 for more discussions on the Teukolsky-Starobinsky identity.

Combining Eq. (7.36) with Eq. (7.106), we finally arrive at the relation between
Z refl and Z in, which is given by

Z refl
`mω =

∑
`′

G``′mωZhole∗
`′ -m -ω∗ , (7.112)

where
G``′mω = (−1)m+1 1

4
e−2ikb∗M``′mω

D`′mω

C`′mω
. (7.113)

We have used the relations D`mω = D∗
` -m -ω∗ and C`mω = C∗

` -m -ω∗ in order to obtain
the above equation.

If we restrict ourselves to the simple case where `- and `′- modes do not mix up, we
may simply write Eq. (7.112) as

Z refl
`mω = Ĝ`mω Zhole∗

` -m -ω , (7.114)

with

Ĝ`mω ≡
D`mω

4C`mω
R∗-ω+mΩH

eiϕrefl
`mω , (7.115)

and
ϕrefl
`mω = (m + 1)π − 2kb∗ . (7.116)

Eq. (7.114) says that, the (`, m, ω)-mode of gravitational-wave echoes is not in-
duced by the reflection of the incoming (`, m, ω)-mode but the (`, −m, −ω∗)-mode
instead. The mixing of these two types of modes essentially indicates the breaking
of isospectrality as pointed out by Ref. [184]. We will get back to this point later.
The other new result is the extra phase term ϕrefl for the reflected waves, which may
be important for observations.



139

Reflectivity for Sasaki-Nakamura Mode Amplitudes
Since most previous literatures on gravitational wave echoes based their models
on the reflection of Sasaki-Nakamura (SN) functions, one may ask how the tidal
reflectivity can be related to the SN reflectivity. (See Appendix 7.7 for a brief review
of the SN formalism.) In the vicinity of the horizon, the s = −2 SN function, i.e.,
the one associated with ψ4, can be written as

XECO
`mω = ξ

hole
`mω e−ikr∗ + ξrefl

`mω eikr∗ . r∗ → b∗ . (7.117)

Under the Chandrasekhar-Sasaki-Nakamura transformation, we have

ξhole
`mω = Zhole

`mωd`mω , ξrefl
`mω =

Z refl
`mω

f`mω
(7.118)

with

d`mω =
√

2rH[(8 − 24iω − 16ω2)r2
H

+ (12iam − 16 + 16amω + 24iω)rH

− 4a2m2 − 12iam + 8] , (7.119)

and

f`mω = −
4k
√

2rH [2krH + i(rH − 1)]
η(rH )

. (7.120)

Inserting Eqs. (7.118) into Eq. (7.112), we obtain boundary condition for the `mω

components of the SN functions:

ξrefl
`mω =

(−1)m+1e−2ikb∗

4 f`mω

∑
`′

M``′mω
D`′mω

C`′mωd`′mω
ξhole∗
`′ -m -ω∗ , (7.121)

Here we have used the identity that

d`mω = d∗` -m -ω∗ . (7.122)

As we will see later, the fact that reflection at the ECO surface turns the ingoing
(`,−m,−ω) SN components into outgoing (l,m, ω) SN components leads to the
breaking of isospectrality, which has also been pointed out by Maggio et al. [184];
here we take the further step of relating these coefficients to the tidal response of the
ECO.

For the most simplified scenario where Zhole∗
` -m -ω∗ = Zhole

`mω and different `′-modes do
not mix, we may simply write

ξrefl
`mω = R

SN
lmoξ

hole
`mω , (7.123)
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where
RSN
`mω = K

T→SN
`mω R∗-ω+mΩH

, (7.124)

with
K T→SN
`mω =

(−1)m+1D`mω

4C`mω f`mωd`mω
. (7.125)

This is a simple linear factor that converts R into the RSN that are used in SN
calculations. In the Schwarzschild limit, we have

K T→SN
`mω =

(−1)m(4ω − i) [12ω + iλ(λ + 2)]
(4ω + i) [12ω − iλ(λ + 2)]

, a = 0 , (7.126)

where λ = (` − 1)(` + 2). One immediately notes that |K T→SN
`mω | = 1 in the

Schwarzschild limit. For spinning ECOs, we numerically investigate K T→SN
`mω for

the (2, 2) mode for different spins in Fig. 7.6.
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Figure 7.6: Conversion factorK T→SN
`mω from the TeukolskyR to the Sasaki-Nakamura

RSN. Here we have ignored the `-`′ mode mixing. We plot real and imaginary
parts, as well as the modulus, of K T→SN

`mω for the (2, 2)-mode with a = 0, 0.3, 0.7, 1
respectively. The gray dot-dashed line marks the horizon frequency mΩH . In the
Schwarzschild case, the two reflection coefficients only differ by a phase. For Kerr
spacetimes we have |K T→SN

`mω | > 1 for both low and high frequencies, but |K T→SN
`mω |

dips below 1 for some frequencies. Also note that |K T→SN
`mω | = 1 when ω equals to

the horizon frequency.
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Energy Contents of Incoming and Reflected Waves
The reflection coefficient we defined in last subsection is indeed the (square root
of) power reflectivity of the gravitational waves on the ECO boundary. To see this,
consider a solution to s = −2 Teukolsky equation near the ECO surface. The energy
flux down to the surface is given by [187]

dEhole
dω

=
∑
`m

ω

64πk (k2 + 4ε2)(2rH )3 |Y
hole
`mω |

2 , (7.127)

while the energy propagating outward from the surface is given by
dErefl

dω
=

∑
`m

ω

4πk (k2 + 4ε2)(2rH )3 |Z
refl
`mω |

2 . (7.128)

Here ω are all taken as real numbers. See Appendix 7.7 for detailed discussions on
the energy flux and the energy conservation law. In the simple case of neglecting
`-`′ mixing, incoming energy from the (` -m -ω)-mode will return from the (`mω)-
mode, with (

dErefl
dω

)
`mω
= |R-ω+mΩH |

2
(

dEhole
dω

)
` -m -ω

. (7.129)

This means our reflectivity R indeed acts as an energy reflectivity.

7.5 Waveforms and quasi-normal modes of the ECO
In this section, we show how our ECO boundary conditions can be applied to echo
computations and resonant conditions for quasi-normalmodes. We shall also restrict
ourselves to the case of

Ĝ`mω = Ĝ
∗
` -m -ω∗ . (7.130)

This is satisfied by all the reflectivity models discussed in this paper, since in these
cases the tidal response in the time-domain, R (b, θ; t) [Cf. (7.30)] is real-valued.

Even and Odd-Parity Echoes
In this subsection, we derive the gravitational-wave echo waveform based on our
reflection model. Note that this echo can be the additional wave due to the reflection
at the ECO surface during the inspiral phase — it does not necessarily has to be the
echo that follows the ringdown phase of the coalescence wave.

Suppose now we have some small perturbations towards the ECO spacetime. We
assume that the source in the Teukolsky equation drives a −2Υ

(0), which has the
following form at r∗ → −∞:

−2Υ
(0) =

∑
`m

∫
dω
2π

Zhole (0)
`mω ∆

2e−ikr∗
−2S`mω (θ, φ)e−iωt . (7.131)



142

This satisfies the Teukolsky equation with the appropriate source term away from
the horizon, the outgoing condition at infinity, but not the ECO boundary condition
near the horizon. We will need to add an additional homogeneous solution, which
satisfies the outgoing boundary condition at infinity. Recall that for the radial part,
we have

R+∞`mω =




Din
`mω∆

2e−ikr∗ + Dout
`mωeikr∗ , r → b ,

r3eiωr∗ , r → +∞ .

Thus we add the following homogeneous solution to Υ(0):

−2Υ
echo =

∑
`m

∫
dω
2π

c`mωR+∞`mω−2S`mω (θ, φ)e−iωt , (7.132)

so that −2Υ
(0)+−2Υ

echo is of the form (7.14), also satisfying (7.114). The asymptotic
behavior of −2Υ

echo is given by

−2Υ
echo =




∑
`m

∫
dω
2π

c`mωr3e+iωr∗e−iωt
−2S`mω (θ, φ) , r∗ → +∞ ,

∑
`m

∫
dω
2π

c`mω
[
Din
`mω∆

2e−ikr∗ + Dout
`mωeikr∗

]
e−iωt

−2S`mω (θ, φ) , r∗ → b∗ .

(7.133)
Here we already see that the amplitudes clmω directly give us the additional grav-
itational waves due to the reflecting surface. Identifying term by term between
−2Υ

(0) + −2Υ
echo and Eq. (7.14), we find

Zhole
`mω = Zhole (0)

`mω + c`mωDin
`mω , Z refl

`mω = c`mωDout
`mω . (7.134)

Applying Eq. (7.112), we obtain

c`mωDout
`mω =

∑
`′

G``′mω
[
Zhole (0)∗
`′ -m -ω + c∗`′ -m -ωDin ∗

`′ -m -ω

]
,

c∗` -m -ωDout ∗
` -m -ω =

∑
`′

G∗``′-m-ω

[
Zhole (0)
`′mω + c`′mωDin

`′mω

]
. (7.135)

Here we restrict ourselves to real-valuedω only. Using the symmetry of the Teukol-
sky equation, for real-valued ω, it is straightforward to show that the homogeneous
solutions have the symmetry that

Din
`mω = Din ∗

` -m -ω , Dout
`mω = Dout ∗

` -m -ω . (7.136)
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We can then write

*
,

δ``′Dout
`mω −G``′mωDin

`mω

−G``′mωDin
`mω δ``′Dout

`mω

+
-

*
,

c`′mω
c∗
`′ -m -ω

+
-
= *

,

G``′mω 0
0 G``′mω

+
-

*
,

Z in (0)∗
`′ -m -ω
Z in (0)
`′mω

+
-
,

(7.137)

G``′mω ≡ G
∗
``′ -m -ω , (7.138)

where the components in all matrices are also block matrices with ` and `′ repre-
senting sections of rows and columns. This will allow us to solve for c`mω, therefore
leading to the additional outgoing waves at infinity, i.e. the gravitational-wave
echoes.

In the simple case where there is no `-`′ mixing for reflected waves (so that the
relation between reflectedwaves and incomingwaves is simply given byEq. (7.114)),
and that

Ĝ∗` -m -ω ≡ Ĝ`mω , (7.139)

we can have simpler results. For each harmonic for the Z components (similar
for the c components), we can define symmetric and anti-symmetric quadrature
amplitudes

Zhole (0),S
`mω ≡

Zhole (0)
`mω + Zhole (0) ∗

` -m -ω
√

2
, (7.140)

Zhole (0),A
`mω ≡

Zhole (0)
`mω − Zhole (0) ∗

` -m -ω
√

2i
. (7.141)

We then have

cS
`mω =

Ĝ`mω

Dout
`mω − Ĝ`mωDin

`mω

Zhole (0),S
`mω , (7.142)

cA
`mω = −

Ĝ`mω

Dout
`mω + Ĝ`mωDin

`mω

Zhole (0),A
`mω . (7.143)

Here we see that the A quadrature has a reflectivity of −Ĝ`mω, compared with Ĝ`mω

for the S quadrature. These quadratures correspond to electric- and magnetic-type
perturbations.

As it turns out, non-spinning binaries, or those with spins aligned with the orbital
angular momentum, only excite the S quadrature — although generically both
quadratures are excited — they will have different echoes. In the case when echoes
are well-separated in the time domain, the first, third, and other odd echoes, the A
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and S will have transfer functions negative to each other, while for even echoes, they
will have the same transfer function.

If we further simplify the problem by demanding c`mω = c∗
` -m -ω, Eq. (7.137) gives

that

c`mω =
Ĝ`mω

Dout
`mω − Ĝ`mω Din

`mω

Zhole (0)
`mω . (7.144)

This expression coincides, for instance, with the one obtained in [21] for the
spherically-symmetric spacetime with a reflecting surface. Note that the phase
factor e−2ikb∗ has been absorbed into our definition of Ĝ.

Echoes driven by symmetric source terms
In our reflection model (7.114), as discussed in Ref. [190], the coefficients Zhole∗

` -m -ω∗

and Zhole
`mω are related for quasi-circular orbits. For such orbits, one can define a

series of frequencies as
ωmk = mΩφ + kΩθ , (7.145)

whereΩφ andΩθ are two fundamental frequencies defined for periodic motions in φ
and θ. Then, for real frequencies, we can decompose the amplitude Z in

`mω according
to

Zhole
`mω =

∑
k

Zhole
`mk δ(ω − ωmk ) . (7.146)

It is easy to check that for Kerr black holes,

Zhole∗
`-m-k = (−1)`+k Zhole

`mk . (7.147)

That is, if we consider a specific circular orbit, we have the symmetry that Zhole∗
` -m -ω∗ is

either equal to Zhole
`mω, or they differ by aminus sign. In this simple case, our reflection

model (7.114) does not involve different modes, and the model becomes similar to
those reflection models based on Sasaki-Nakamura functions like in Ref. [170].
However, if we consider the full quasi-circular motions, i.e. adding up all orbits,
this symmetry no longer exists, and one has to consider the mixing of modes when
dealing with the reflecting boundary. For general orbits that are not quasi-circular,
the symmetry between Zhole∗

` -m -ω∗ and Zhole
`mω may not exist.

Now for the symmetric source, where there is no mode mixing, let us consider a
solution −2Υ

(0) to the Teukolsky equation, which has the following form at r∗ → −∞:

−2Υ
(0) =

∑
`m

∫
dω
2π

Zhole (0)
`mω ∆

2e−ikr∗
−2S`mω (θ, φ)e−iωt . (7.148)
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Following the same steps as in the last subsection, it is straightforward to show that
the echo solution to the Teukolsky equation at infinity is given by

−2Υ
echo =

∑
`m

∫
dω
2π

Zecho
`mω−2S`mω (θ, φ)e−iωt , (7.149)

with

Zecho
`mω =

Ĝ`mω

Dout
`mω − Ĝ`mω Din

`mω

Zhole (0)
`mω , (7.150)

where we have chosen the normalization D∞
`mω = 1. The tidal reflectivity can also

be directly related to the SN reflectivity as

RSN
`mω = (−1)m+1 D`mω

4C`mω f`mωd`mω
R∗-ω+mΩH

. (7.151)

In this simple scenario, the tidal reflectivity is exactly the energy reflectivity for each
mode.

Quasi-Normal Modes and Breakdown of Isospectrality
For Quasi-Normal Modes, we set Z to zero, and analytically continue Eq. (7.137) to
complexω. The QNM frequencies can be directly solved by setting the determinant
of the lhs matrix of Eq. (7.137) to zero, i.e.

det *
,

δ``′Dout
`mω −G``′mωDin

`mω

−G∗
``′ -m -ω∗D

in
`mω δ``′Dout

`mω

+
-
= 0 . (7.152)

This will in general cause a mixing between QNMs with different `, and break the
isospectrality property of the Kerr spacetime and lead to two distinct QNMs for
each (`,m).

Neglecting the `-`′ mixing, we can simply write
[
Dout
`mω

]2
= Ĝ`mω

¯̂
G`mω

[
Din
`mω

]2
, ¯̂

G`mω ≡ Ĝ
∗
` -m -ω∗ . (7.153)

In the special case of Ĝ`mω =
¯̂
G`mω (which is satisfied by all the reflectivity models

discussed in this paper), we note that the ECO’s QNMs split into S and A modes,
with ωS

n`m and ωA
n`m satisfying different equations:

Dout
`mωS

− Ĝ`mωS Din
`mωS

= 0 , (7.154)

Dout
`mωA

+ Ĝ`mωADin
`mωA

= 0 . (7.155)

This still breaks the isospectrality properties of Kerr spacetime. Note that this
property has also been found and studied in Ref. [184] with their echo model which
describes the ECO as a dissipative fluid. Since modes of the ECO are usually excited
collectively, the main signature of the breakdown of isospectrality is still the fact
that S and A echoes have alternating sign differences in even and odd echoes.
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7.6 Conclusions
In this paper, we developed a more physical way to impose boundary conditions for
Teukolsky functions near the surface of extremely compact objects. We adopted
the Membrane Paradigm, and assumed that the ECO structure is well adapted to
the coordinate system of the Fiducial Observers, which is an approximate Rindler
coordinate system near the horizon. More specifically, assuming that the additional
physics near an ECO can be viewed as modified propagation laws of gravitational
waves in the Rindler coordinate system, we were able to obtain reflectivity models
for spinning ECOs that are similar to those proposed by previous literature, when
taking the Schwarzschild limit. In particular, the Boltzmann reflectivity of Oshita
et al. was obtainable from a position-dependent damping of gravitational waves in
the Rindler coordinate system, which might be thought of as due to the emergent
nature of gravity.

As it has turned out, the most directly physical condition is between ingoing com-
ponents of ψ0 and outgoing components of ψ4, although relations between ingoing
and outgoing components of ψ4, as well as those of the Sasaki-Nakamura functions,
can be obtained by using the Starobinsky-Teukolsky transformation, as well as the
Chandrasekhar-Sasaki-Nakamura relations.

The deformation of space-time geometry due to the spin of the ECO causes a mixing
between different ` modes during reflection at the ECO surface; reflection at the
ECO also takes (m, ω) → (−m,−ω∗). This means an incoming (`,m, ω) mode is
reflected into (`′,−m,−ω∗) modes. For moderately rapidly spinning holes, such `-`′

mixing is moderate, but non-negligible, which means accurately modeling echoes
will indeed have to take such mixing into account. For incoming waves toward the
ECO caused by a quasi-circular inspiral of a non-spinning particle, the waveform
has a definite partiy, and is invariant under the (m, ω) → (−m,−ω∗) transformation.
For more general waves, the (m, ω) → (−m,−ω∗) map causes echoes from even-
and odd-parity waves to differ from each other; it also causes the breakdown of
quasi-normal mode isospectrality, as has been pointed out by Maggio et al. in the
Schwarzschild case.

7.7 Appendix
The homogeneous Teukolsky and Sasaki-Nakamura equations
Perturbations of Kerr spacetime can be described by the Teukolsky equations [41].
In the vacuum case, one can decompose solutions to the homogeneous Teukolsky
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equation as

sΥ =
∑
`m

∫
dω
2π

e−iωt+imφ
s R`mω (r)sS`mω (θ) , (7.156)

where sS`mω (θ) is the spin-weighted spheroidal harmonic function, and s is the spin
weight. The Teukolsky equations are then separable, and the equations for R and S

are respectively
[
∆
−s d

dr

(
∆

s+1 d
dr

)
+

K2 − 2is (r − 1) K
∆

+ 4isωr − sλ`mω

]
s R`mω = 0 , (7.157)

[
1

sin θ
d
dθ

(
sin θ

d
dθ

)
− a2ω2 sin2 θ −

(m + s cos θ)2

sin2 θ
− 2aωs cos θ + s + 2maω + sλ`mω

]
sS`mω = 0 ,

(7.158)

where K = (r2 + a2)ω − ma, and sλ`mω is the eigenvalue of the spin-weighted
spheroidal harmonic.

For s = −2, the radial equation (7.157) admits two independent solutions, −2RH
`mω

and −2R∞
`mω, which have the following asymptotic forms:

−2RH
`mω =




Bout
`mωr3eiωr∗ + Bin

`mωr−1e−iωr∗ , r → ∞ ,

Bhole
`mω∆

2e−ikr∗ , r → rH ;
(7.159)

−2R∞`mω =




D∞
`mωr3eiωr∗ , r → ∞ ,

Dout
`mωeikr∗ + Din

`mω∆
2e−ikr∗ , r → rH .

(7.160)

The Sasaki-Nakamura-Chandrashekar transformation [178] takes the Teukolsky ra-
dial function −2R(r) to the Sasaki-Nakamura function X (r), and the Teukolsky
equation becomes the Sasaki-Nakamura equation. The homogeneous SN equation
is given by

d2X`mω

dr2
∗

− F (r)
dX`mω

dr∗
−U (r)X`mω = 0 . (7.161)

The explicit expressions for F (r) and U (r) are given in Ref. [191]’s Eqs. (51-58).
The SN equation also admits two independent solutions, XH

`mω and X∞
`mω, which
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have the asymptotic values:

XH
`mω =




Aout
`mωeiωr∗ + Ain

`mωe−iωr∗ , r → ∞ ,

Ahole
`mωe−ikr∗ , r → rH ;

(7.162)

X∞`mω =




C∞
`mωeiωr∗ , r → ∞ ,

Cout
`mωeikr∗ + Cin

`mωe−ikr∗ , r → rH .

(7.163)

The amplitudes A and C can be related to the amplitudes B and D by matching the
asymptotic solutions to the SN and the Teukolsky equation on the horizon and at
infinity. The B-coefficients and A-coefficients are related by

Bin
`mω = −

1
4ω2 Ain

`mω , (7.164)

Bout
`mω = −

4ω2

c0
Aout
`mω , (7.165)

Bhole
`mω =

1
d`mω

Ahole
`mω , (7.166)

and the D-coefficients and C-coefficients are related by

Din
`mω =

1
d`mω

Cin
`mω , (7.167)

Dout
`mω = f`mωCout

`mω , (7.168)

D∞`mω = −
4ω2

c0
C∞`mω , (7.169)

where

d`mω =
√

2rH[(8 − 24iω − 16ω2)r2
H (7.170)

+ (12iam − 16 + 16amω + 24iω)rH

− 4a2m2 − 12iam + 8] ,

(7.171)

and

f`mω = −
4k
√

2rH [2krH + i(rH − 1)]
η(rH )

. (7.172)

Here η(r) is defined by

η(r) = c0 +
c1
r
+

c2

r2 +
c3

r3 +
c4

r4 , (7.173)
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with

c0 = −12iω + λ(λ + 2) − 12aω(aω − m) , (7.174)

c1 = 8ia[3aω − λ(aω − m)] ,

c2 = −24ia(aω − m) + 12a2[1 − 2(aω − m)2] , (7.175)

c3 = 24ia3(aω − m) − 24a2 ,

c4 = 12a4 ,

where λ ≡ −2λ`mω is the eigenvalue of the s = −2 spin-weighted spheroidal
harmonic.

Conservation of energy for gravitational perturbations
In this section, we derive a new conservation relation among four energies, which
corresponds to waves that are outgoing at infinity, ingoing at infinity, coming down
to the “horizon”, and being reflected from the “horizon”, respectively. A derivation
has been done by Teukolsky and Press in [187] for the relation among the first three
energies. Here we extend their results to include the reflected one.

From the Newman-Penrose equations, one can derive the Teukolsky-Starobinsky
identities for s = ±2, which can be written as

L−1L0L1L2 2S + 12iω−2S = C−2S , (7.176)

DDDD−2R =
1
4 2R , (7.177)

where we have omitted (`mω)-indices in R and S for the sake of brevity. We will
adopt these abbreviated notations throughout this section. The operators L and D
are defined by

Ln = ∂θ + m csc θ − aω sin θ + n cot θ , (7.178)

D = ∂r − iK/∆ , (7.179)

and C is given by

|C |2 =
(
(λ + 2)2 + 4aωm − 4a2ω2

)
(7.180)

×
[
λ2 + 36aωm − 36a2ω2

]

+ (2λ + 3)(96a2ω2 − 48aωm) + 144ω2(1 − a2) ,

with

ImC = 12ω, (7.181)

ReC = +
√
|C |2 − (ImC)2 . (7.182)
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Similarly we define

L †
n = Ln(−ω,−m) , (7.183)

D† = D (−ω,−m) = ∂r + iK/∆ . (7.184)

A complementary set of equations to Eqs. (7.176) and (7.177) then gives

L †

−1L
†

0 L †

1 L †

2 C−2S + 12iωC∗2S = C2
2S , (7.185)

D†D†D†D†∆2
2R=4|C |2∆−2

−2R . (7.186)

Now let us derive the relation betweenψ0 andψ4 by using the Teukolsky-Starobinsky
identities. Note that at large r , the radial function s R has the following asymptotic
behavior,

2R = Yin
e−iωr∗

r
+ Yout

eiωr∗

r5 , (7.187)

−2R = Zin
e−iωr∗

r
+ Zoutr3eiωr∗ . (7.188)

Plugging these asymptotic expressions into Eq. (7.177), and keep the terms leading
in (1/r)-expansions, we have

CYin = 64ω4Zin . (7.189)

A set of useful identities can be used during the derivations are

∆DD = 2(−iK + r − 1)D + 6iωr + λ , (7.190)

∆
2DDD = [4iK (iK − r + 1) + (λ + 2 + 2iωr)∆]D (7.191)

− 2iK (λ + 6iωr) + 6iω∆ ,

∆
3DDDD = [∆ (−4iK (λ + 2) − 8iωr (r − 1)) (7.192)

+ 8iK
(
K2 + (r − 1)2

)
+ 8iω∆2

]
D

+ ∆ [(λ + 2 − 2iωr)(λ + 6irω)

−12iω(iK + r − 1)]

+ 4iK (iK + r − 1)(λ + 6irω) .

Similarly, plugging the asymptotic expressions of the radial functions ±2R into
Eq. (7.186), we obtain that

4ω4Yout = C∗Zout . (7.193)
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On the horizon, the radial function s R is given by

2R = Yhole∆
−2e−ikr∗ + Yrefleikr∗ , (7.194)

−2R = Zhole∆
+2e−ikr∗ + Zrefleikr∗ . (7.195)

Plugging these expressions into Eq. (7.177) and (7.186), we obtain that

CYhole = 64(2rH )4(ik)(−ik + 4ε )(k2 + 4ε2)Zhole , (7.196)

4(2rH )4(ik)(−ik − 4ε )(k2 + 4ε2)Yrefl = C∗Zrefl . (7.197)

In the Schwarzschild case, the energy conservation relations can be most easily
seen from the Wronskian of two linearly independent homogeneous solutions to
the perturbation equations such as the Regge-Wheeler equation. In the Teukolsky
equation, due to the existence of the dR/dr∗-term, the Wronskian is then dependent
on r . To resolve this, one can rewrite the radial Teukolsky equation (7.157) in a
form of

d2Y/dr2
∗ + VY = 0 , (7.198)

which is possible if one defines

Y = ∆s/2(r2 + a2)1/2R , (7.199)

V =

[
K2 − 2isK (r − 1) + ∆(4irωs − λ − 2) − s2(1 − a2)

]

(r2 + a2)2 −
∆(2r3 + a2r2 − 4ra2 + a4)

(r2 + a2)4 .

(7.200)

The Wronskian of any two solutions of Eq. (7.198) is then conserved. By equating
the Wronskian evaluated at infinity and that on the horizon, we have(

dsY
dr∗

−sY ∗ − sY
d−sY ∗

dr∗

)
r=rH

=

(
dsY
dr∗

−sY ∗ − sY
d−sY ∗

dr∗

)
r=∞

. (7.201)

For s = 2, we substitute Eqs. (7.187), (7.188), (7.194), and (7.195) into the Wron-
skian equation, and we use Eqs. (7.189), (7.193), (7.196), and (7.197) to obtain
that

−iC∗ |Yhole |
2

32k (2rH )3(k2 + 4ε2)
+

256(ik)r5
H (k2 + 4ε2)(k2 + 16ε2) |Yrefl |

2

C
=
−iC∗ |Yin |

2

32ω3 +
8iω5 |Yout |

2

C
,

(7.202)
where ε is defined in Eq. (7.111).

This is indeed the energy conservation law relating the ingoing energy at infinity
Ein, the outgoing energy at infinity Eout, the energy absorbed by the “horizon” Ehole,
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and the energy reflected from the horizon Erefl. The conservation law can be written
as

dEin
dω
−

dEout
dω

=
dEhole

dω
−

dErefl
dω

, (7.203)

in which the explicit expressions for the four energies are

dEin
dω
=

∑
`m

1
64πω2 |Yin |

2 =
∑
`m

64ω6

π |C |2
|Zin |

2 , (7.204)

dEout
dω

=
∑
`m

1
4πω2 |Zout |

2 =
∑
`m

4ω6

π |C |2
|Yin |

2 , (7.205)

dEhole
dω

=
∑
`m

ω

64πk (k2 + 4ε2)(2rH )3 |Yhole |
2 (7.206)

=
∑
`m

64ωk (k2 + 4ε2)(k2 + 16ε2)(2rH )5

π |C |2
|Zhole |

2 , (7.207)

dErefl
dω

=
∑
`m

ω

4πk (k2 + 4ε2)(2rH )3 |Zrefl |
2 , (7.208)

=
∑
`m

4ωk (k2 + 4ε2)(k2 + 16ε2)(2rH )5

π |C |2
|Yrefl |

2 . (7.209)



153

BIBLIOGRAPHY

[1] V. P. Frolov and I. D. Novikov, editors. Black hole physics: Basic concepts
and new developments. 1998.

[2] B.P. Abbott et al. Observation of Gravitational Waves from a Binary Black
Hole Merger. Phys. Rev. Lett., 116(6):061102, 2016.

[3] B.P. Abbott et al. GWTC-1: A Gravitational-Wave Transient Catalog of
Compact Binary Mergers Observed by LIGO and Virgo during the First and
Second Observing Runs. Phys. Rev. X, 9(3):031040, 2019.

[4] R. Abbott et al. GWTC-2: Compact Binary Coalescences Observed by LIGO
and Virgo During the First Half of the Third Observing Run. 10 2020.

[5] Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. I. The
Shadow of the Supermassive Black Hole. Astrophys. J., 875(1):L1, 2019.

[6] Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. II.
Array and Instrumentation. Astrophys. J. Lett., 875(1):L2, 2019.

[7] Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. III.
Data Processing and Calibration. Astrophys. J. Lett., 875(1):L3, 2019.

[8] Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. IV.
Imaging the Central Supermassive Black Hole. Astrophys. J. Lett., 875(1):L4,
2019.

[9] Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. V.
Physical Origin of the Asymmetric Ring. Astrophys. J. Lett., 875(1):L5,
2019.

[10] Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VI. The
Shadow and Mass of the Central Black Hole. Astrophys. J. Lett., 875(1):L6,
2019.

[11] Samuel E. Gralla, Daniel E. Holz, and Robert M.Wald. Black Hole Shadows,
Photon Rings, and Lensing Rings. Phys. Rev. D, 100(2):024018, 2019.

[12] Steven B. Giddings. Searching for quantum black hole structure with the
Event Horizon Telescope. Universe, 5(9):201, 2019.

[13] JamesM. Bardeen and Gary T. Horowitz. The Extreme Kerr throat geometry:
A Vacuum analog of AdS(2) x S**2. Phys. Rev., D60:104030, 1999.

[14] R. Penrose. Gravitational collapse: The role of general relativity. Riv. Nuovo
Cim., 1:252–276, 1969.



154

[15] Robert Wald. Gedanken experiments to destroy a black hole. Annals of
Physics, 82(2):548–556, 1974.

[16] Veronika E. Hubeny. Overcharging a black hole and cosmic censorship. Phys.
Rev. D, 59:064013, 1999.

[17] Jonathan Sorce and Robert M. Wald. Gedanken experiments to destroy a
black hole. II. Kerr-Newman black holes cannot be overcharged or overspun.
Phys. Rev. D, 96(10):104014, 2017.

[18] Vitor Cardoso, Edgardo Franzin, and Paolo Pani. Is the gravitational-wave
ringdown a probe of the event horizon? Phys. Rev. Lett., 116(17):171101,
2016. [Erratum: Phys.Rev.Lett. 117, 089902 (2016)].

[19] Vitor Cardoso, Seth Hopper, Caio F. B. Macedo, Carlos Palenzuela, and
Paolo Pani. Gravitational-wave signatures of exotic compact objects and of
quantum corrections at the horizon scale. Phys. Rev. D, 94(8):084031, 2016.

[20] Vitor Cardoso and Paolo Pani. Tests for the existence of black holes through
gravitational wave echoes. Nature Astron., 1(9):586–591, 2017.

[21] Zachary Mark, Aaron Zimmerman, Song Ming Du, and Yanbei Chen. A
recipe for echoes from exotic compact objects. Phys. Rev. D, 96(8):084002,
2017.

[22] Jahed Abedi, Hannah Dykaar, and Niayesh Afshordi. Echoes from the Abyss:
Tentative evidence for Planck-scale structure at black hole horizons. Phys.
Rev. D, 96(8):082004, 2017.

[23] Luis Felipe LongoMicchi, Niayesh Afshordi, and Cecilia Chirenti. How loud
are echoes from Exotic Compact Objects? 10 2020.

[24] Luis Felipe Longo Micchi and Cecilia Chirenti. Spicing up the recipe for
echoes from exotic compact objects: orbital differences and corrections in
rotating backgrounds. Phys. Rev. D, 101(8):084010, 2020.

[25] Randy S. Conklin. Gravitational Wave Perturbations on a Kerr Background
and Applications for Echoes. Phys. Rev. D, 101(4):044045, 2020.

[26] Norichika Sago and Takahiro Tanaka. Gravitational wave echoes induced by
a point mass plunging to a black hole. 9 2020.

[27] C.P. Burgess, Ryan Plestid, and Markus Rummel. Effective Field Theory of
Black Hole Echoes. JHEP, 09:113, 2018.

[28] Sayak Datta and Sukanta Bose. Probing the nature of central objects
in extreme-mass-ratio inspirals with gravitational waves. Phys. Rev. D,
99(8):084001, 2019.



155

[29] Sayak Datta, Khun Sang Phukon, and Sukanta Bose. Recognizing black
holes in gravitational-wave observations: Telling apart impostors in mass-
gap binaries. 4 2020.

[30] Jahed Abedi, Hannah Dykaar, and Niayesh Afshordi. Echoes from the Abyss:
The Holiday Edition! 1 2017.

[31] JahedAbedi andNiayeshAfshordi. Echoes from theAbyss: Ahighly spinning
black hole remnant for the binary neutron star merger GW170817. JCAP,
11:010, 2019.

[32] Gregory Ashton, Ofek Birnholtz, Miriam Cabero, Collin Capano, Thomas
Dent, Badri Krishnan, Grant David Meadors, Alex B. Nielsen, Alex Nitz,
and Julian Westerweck. Comments on: ”Echoes from the abyss: Evidence
for Planck-scale structure at black hole horizons”. 12 2016.

[33] Julian Westerweck, Alex Nielsen, Ofek Fischer-Birnholtz, Miriam Cabero,
Collin Capano, Thomas Dent, Badri Krishnan, Grant Meadors, and Alexan-
der H. Nitz. Low significance of evidence for black hole echoes in gravita-
tional wave data. Phys. Rev. D, 97(12):124037, 2018.

[34] R. K. L. Lo, T. G. F. Li, and A. J. Weinstein. Template-based Gravitational-
Wave Echoes Search Using Bayesian Model Selection. Phys. Rev. D,
99(8):084052, 2019.

[35] Alex B. Nielsen, Collin D. Capano, Ofek Birnholtz, and Julian Westerweck.
Parameter estimation and statistical significance of echoes following black
hole signals in the first Advanced LIGO observing run. Phys. Rev. D,
99(10):104012, 2019.

[36] Baoyi Chen and LeoC. Stein. Separatingmetric perturbations in near-horizon
extremal Kerr. Phys. Rev., D96(6):064017, 2017.

[37] Baoyi Chen and Leo C. Stein. Deformation of extremal black holes from
stringy interactions. Phys. Rev. D, 97(8):084012, 2018.

[38] Robert M. Wald. General Relativity. University of Chicago Press, Chicago
and London, 1984.

[39] Saul A. Teukolsky. The Kerr Metric. Class. Quant. Grav., 32(12):124006,
2015.

[40] S. A. Teukolsky. Rotating black holes - separable wave equations for gravi-
tational and electromagnetic perturbations. Phys. Rev. Lett., 29:1114–1118,
1972.

[41] Saul A. Teukolsky. Perturbations of a rotating black hole. 1. Fundamental
equations for gravitational electromagnetic and neutrino field perturbations.
Astrophys. J., 185:635–647, 1973.



156

[42] Ezra Newman and Roger Penrose. An Approach to gravitational radiation by
a method of spin coefficients. J. Math. Phys., 3:566–578, 1962.

[43] P. L. Chrzanowski. Vector Potential and Metric Perturbations of a Rotating
Black Hole. Phys. Rev., D11:2042–2062, 1975.

[44] L. S. Kegeles and J. M. Cohen. Constructive Procedure For Perturbations Of
Space-Times. Phys. Rev., D19:1641–1664, 1979.

[45] B. F. Whiting and L. R. Price. Metric reconstruction from Weyl scalars.
Class. Quant. Grav., 22:S589–S604, 2005.

[46] Tullio Regge and John A. Wheeler. Stability of a Schwarzschild singularity.
Phys. Rev., 108:1063–1069, 1957.

[47] C. V. Vishveshwara. Stability of the schwarzschild metric. Phys. Rev.,
D1:2870–2879, 1970.

[48] Frank J. Zerilli. Effective potential for even parity Regge-Wheeler gravita-
tional perturbation equations. Phys. Rev. Lett., 24:737–738, 1970.

[49] F. J. Zerilli. Gravitational field of a particle falling in a schwarzschild geom-
etry analyzed in tensor harmonics. Phys. Rev., D2:2141–2160, 1970.

[50] Olivier Sarbach and Manuel Tiglio. Gauge invariant perturbations of
Schwarzschild black holes in horizon penetrating coordinates. Phys. Rev.,
D64:084016, 2001.

[51] Karl Martel and Eric Poisson. Gravitational perturbations of the
Schwarzschild spacetime: A Practical covariant and gauge-invariant formal-
ism. Phys. Rev., D71:104003, 2005.

[52] Roy P. Kerr. Gravitational field of a spinning mass as an example of alge-
braically special metrics. Phys. Rev. Lett., 11:237–238, 1963.

[53] Robert H. Boyer and Richard W. Lindquist. Maximal analytic extension of
the Kerr metric. J. Math. Phys., 8:265, 1967.

[54] John M. Lee. Introduction to smooth manifolds, volume 218 of Graduate
Texts in Mathematics. Springer, New York, second edition, 2013.

[55] A. O. Barut and R. Raczka. Theory of Group Representations and Applica-
tions. Singapore: World Scientific, 1986.

[56] Irene Bredberg, Thomas Hartman, Wei Song, and Andrew Strominger. Black
Hole Superradiance From Kerr/CFT. JHEP, 04:019, 2010.

[57] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Re-
lease 1.0.15 of 2017-06-01. F.W. J. Olver, A. B. Olde Daalhuis, D.W. Lozier,
B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders,
eds.



157

[58] Alexandru Lupsasca, Maria J. Rodriguez, and Andrew Strominger. Force-
Free Electrodynamics around Extreme Kerr Black Holes. JHEP, 12:185,
2014.

[59] G. Compère and R. Oliveri. Near-horizon Extreme Kerr Magne-
tospheres. Phys. Rev., D93(2):024035, 2016. [Erratum: Phys.
Rev.D93,no.6,069906(2016)].

[60] Monica Guica, Thomas Hartman, Wei Song, and Andrew Strominger. The
Kerr/CFT Correspondence. Phys. Rev., D80:124008, 2009.

[61] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevD.96.064017 or https://arxiv.org/src/1707.
05319/anc for Mathematica notebooks which compute highest-weight
bases and Maxwell/linearized Einstein operators.

[62] Clifford M. Will. The Confrontation between General Relativity and Exper-
iment. Living Rev. Rel., 17:4, 2014.

[63] S. W. Hawking. Particle Creation by Black Holes. Commun. Math. Phys.,
43:199–220, 1975.

[64] Nicolas Yunes and Frans Pretorius. Dynamical Chern-Simons Modified
Gravity. I. Spinning Black Holes in the Slow-Rotation Approximation. Phys.
Rev., D79:084043, 2009.

[65] Kent Yagi, Nicolas Yunes, and Takahiro Tanaka. SlowlyRotating BlackHoles
in Dynamical Chern-Simons Gravity: Deformation Quadratic in the Spin.
Phys. Rev., D86:044037, 2012. [Erratum: Phys. Rev.D89,049902(2014)].

[66] Stephon Alexander and Nicolas Yunes. Chern-Simons Modified General
Relativity. Phys. Rept., 480:1–55, 2009.

[67] R.R. Metsaev and Arkady A. Tseytlin. Order alpha-prime (Two Loop) Equiv-
alence of the String Equations of Motion and the Sigma Model Weyl Invari-
ance Conditions: Dependence on the Dilaton and the Antisymmetric Tensor.
Nucl.Phys., B293:385–419, 1987.

[68] Kei-ichi Maeda, Nobuyoshi Ohta, and Yukinori Sasagawa. Black Hole Solu-
tions in String Theory with Gauss-Bonnet Curvature Correction. Phys.Rev.,
D80:104032, 2009.

[69] P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis, and E. Winstanley. Dila-
tonic black holes in higher curvature string gravity. Phys. Rev., D54:5049–
5058, 1996.

[70] Paolo Pani and Vitor Cardoso. Are black holes in alternative theories serious
astrophysical candidates? The Case for Einstein-Dilaton-Gauss-Bonnet black
holes. Phys. Rev., D79:084031, 2009.



158

[71] Paolo Pani, Caio F. B. Macedo, Luis C. B. Crispino, and Vitor Cardoso.
Slowly rotating black holes in alternative theories of gravity. Phys. Rev.,
D84:087501, 2011.

[72] Stefanos Aretakis. Horizon Instability of Extremal Black Holes. Adv. Theor.
Math. Phys., 19:507–530, 2015.

[73] Samuel E. Gralla and Peter Zimmerman. Critical Exponents of Extremal
Kerr Perturbations. Class. Quant. Grav., 35(9):095002, 2018.

[74] Burkhard Kleihaus, Jutta Kunz, Sindy Mojica, and Eugen Radu. Spinning
black holes in Einstein–Gauss-Bonnet–dilaton theory: Nonperturbative solu-
tions. Phys. Rev., D93(4):044047, 2016.

[75] Robert Delbourgo and Abdus Salam. The gravitational correction to pcac.
Phys. Lett., 40B:381–382, 1972.

[76] Tohru Eguchi and Peter G. O. Freund. QuantumGravity andWorld Topology.
Phys. Rev. Lett., 37:1251, 1976.

[77] Luis Alvarez-Gaume and Edward Witten. Gravitational Anomalies. Nucl.
Phys., B234:269, 1984.

[78] Michael B. Green and John H. Schwarz. Anomaly Cancellation in Supersym-
metric D=10 Gauge Theory and Superstring Theory. Phys. Lett., 149B:117–
122, 1984.

[79] Bruce A. Campbell, Malcolm J. Duncan, Nemanja Kaloper, and Keith A.
Olive. Gravitational dynamics with Lorentz Chern-Simons terms. Nucl.
Phys., B351:778–792, 1991.

[80] Kent Yagi, Leo C. Stein, and Nicolas Yunes. Challenging the Presence
of Scalar Charge and Dipolar Radiation in Binary Pulsars. Phys. Rev.,
D93(2):024010, 2016.

[81] Leo C. Stein. Rapidly rotating black holes in dynamical Chern-Simons grav-
ity: Decoupling limit solutions and breakdown. Phys. Rev., D90(4):044061,
2014.

[82] Dumitru Astefanesei, Kevin Goldstein, Rudra P. Jena, Ashoke Sen, and
Sandip P. Trivedi. Rotating attractors. JHEP, 10:058, 2006.

[83] Hans Stephani, Eduard Herlt, Malcolm MacCullum, Cornelius Hoenselaers,
and Dietrich Kramer. Exact Solutions of Einstein’s Equations. Cambridge
Univ. Press, Cambridge, 2003.

[84] Robert McNees, Leo C. Stein, and Nicolás Yunes. Extremal black holes
in dynamical Chern–Simons gravity. Class. Quant. Grav., 33(23):235013,
2016.



159

[85] Geoffrey Compère, Kwinten Fransen, Thomas Hertog, and Jiang Long. Grav-
itational waves from plunges into Gargantua. 2017.

[86] Wolfram Schmidt. Celestial mechanics in Kerr space-time. Class. Quant.
Grav., 19:2743, 2002.

[87] Dimitry Ayzenberg and Nicolas Yunes. Slowly-Rotating Black Holes
in Einstein-Dilaton-Gauss-Bonnet Gravity: Quadratic Order in Spin
Solutions. Phys. Rev., D90:044066, 2014. [Erratum: Phys.
Rev.D91,no.6,069905(2015)].

[88] AndreaMaselli, Paolo Pani, LeonardoGualtieri, andValeria Ferrari. Rotating
black holes in Einstein-Dilaton-Gauss-Bonnet gravity with finite coupling.
Phys. Rev., D92(8):083014, 2015.

[89] Pedro V. P. Cunha, Carlos A. R. Herdeiro, Burkhard Kleihaus, Jutta Kunz,
and Eugen Radu. Shadows of Einstein–dilaton–Gauss–Bonnet black holes.
Phys. Lett., B768:373–379, 2017.

[90] Robert M. Wald. Black hole entropy is the Noether charge. Phys. Rev.,
D48(8):R3427–R3431, 1993.

[91] Vivek Iyer and Robert M. Wald. Some properties of Noether charge and a
proposal for dynamical black hole entropy. Phys. Rev., D50:846–864, 1994.

[92] Ted Jacobson, Gungwon Kang, and Robert C. Myers. On black hole entropy.
Phys. Rev., D49:6587–6598, 1994.

[93] Jacob D. Bekenstein. Black holes and entropy. Phys. Rev., D7:2333–2346,
1973.

[94] Burkhard Kleihaus, Jutta Kunz, and Eugen Radu. Rotating Black Holes
in Dilatonic Einstein-Gauss-Bonnet Theory. Phys. Rev. Lett., 106:151104,
2011.

[95] Shahar Hadar and Harvey S. Reall. Is there a breakdown of effective field
theory at the horizon of an extremal black hole? JHEP, 12:062, 2017.

[96] Cumrun Vafa. The String landscape and the swampland. 9 2005.

[97] Nima Arkani-Hamed, Lubos Motl, Alberto Nicolis, and Cumrun Vafa. The
String landscape, black holes and gravity as the weakest force. JHEP, 06:060,
2007.

[98] Clifford Cheung, Junyu Liu, and Grant N. Remmen. Proof of the Weak
Gravity Conjecture from Black Hole Entropy. 2018.

[99] Jie Jiang, Aofei Sang, and Ming Zhang. Comment on ”Constraints on Low-
Energy Effective Theories from Weak Cosmic Censorship”. 1 2021.



160

[100] Stanley Deser and P. van Nieuwenhuizen. One Loop Divergences of Quan-
tized Einstein-Maxwell Fields. Phys. Rev. D, 10:401, 1974.

[101] Yevgeny Kats, Lubos Motl, and Megha Padi. Higher-order corrections to
mass-charge relation of extremal black holes. JHEP, 12:068, 2007.

[102] Stefan Hollands and Robert M. Wald. Stability of Black Holes and Black
Branes. Commun. Math. Phys., 321:629–680, 2013.

[103] Jie Jiang and Ming Zhang. Testing the Weak Cosmic Censorship Conjecture
in Lanczos-Lovelock gravity. Phys. Rev. D, 102(8):084033, 2020.

[104] Gabor Zsolt Toth. Test of the weak cosmic censorship conjecture with a
charged scalar field and dyonic Kerr-Newman black holes. Gen. Rel. Grav.,
44:2019–2035, 2012.

[105] Jose Natario, Leonel Queimada, and Rodrigo Vicente. Test fields cannot
destroy extremal black holes. Class. Quant. Grav., 33(17):175002, 2016.

[106] F. de Felice and Yun-Qiang Yu. Turning a black hole into a naked singularity.
Class. Quant. Grav., 18:1235–1244, 2001.

[107] Goffredo Chirco, Stefano Liberati, and Thomas P. Sotiriou. Gedanken ex-
periments on nearly extremal black holes and the Third Law. Phys. Rev. D,
82:104015, 2010.

[108] Alberto Saa and Raphael Santarelli. Destroying a near-extremal Kerr-
Newman black hole. Phys. Rev. D, 84:027501, 2011.

[109] Sijie Gao and Yuan Zhang. Destroying extremal Kerr-Newman black holes
with test particles. Phys. Rev. D, 87(4):044028, 2013.

[110] Enrico Barausse, Vitor Cardoso, and Gaurav Khanna. Test bodies and
naked singularities: Is the self-force the cosmic censor? Phys. Rev. Lett.,
105:261102, 2010.

[111] Enrico Barausse, Vitor Cardoso, and Gaurav Khanna. Testing the Cosmic
Censorship Conjecture with point particles: the effect of radiation reaction
and the self-force. Phys. Rev. D, 84:104006, 2011.

[112] Peter Zimmerman, Ian Vega, Eric Poisson, and Roland Haas. Self-force as a
cosmic censor. Phys. Rev. D, 87(4):041501, 2013.

[113] Marta Colleoni and Leor Barack. Overspinning a Kerr black hole: the effect
of self-force. Phys. Rev. D, 91:104024, 2015.

[114] Marta Colleoni, Leor Barack, Abhay G. Shah, and Maarten van de Meent.
Self-force as a cosmic censor in the Kerr overspinning problem. Phys. Rev.
D, 92(8):084044, 2015.



161

[115] Eckehard W. Mielke and Peter Baekler. Topological gauge model of gravity
with torsion. Phys. Lett. A, 156:399–403, 1991.

[116] P. Baekler, E. W. Mielke, and F. W. Hehl. Dynamical symmetries in topolog-
ical 3-D gravity with torsion. Nuovo Cim. B, 107:91–110, 1992.

[117] F. W. Hehl, P. Von Der Heyde, G. D. Kerlick, and J. M. Nester. General
Relativity with Spin and Torsion: Foundations and Prospects. Rev. Mod.
Phys., 48:393–416, 1976.

[118] KorayDüztaş, Mubasher Jamil, Sanjar Shaymatov, andBobomurat Ahmedov.
Testing cosmic censorship conjecture for extremal and near-extremal (2 + 1)-
dimensional MTZ black holes. Class. Quant. Grav., 37(17):175005, 2020.

[119] Deyou Chen. Weak cosmic censorship conjecture in BTZ black holes with
scalar fields. Chin. Phys. C, 44(1):015101, 2020.

[120] Wei Li, Wei Song, and Andrew Strominger. Chiral Gravity in Three Dimen-
sions. JHEP, 04:082, 2008.

[121] Juan Martin Maldacena. The Large N limit of superconformal field theories
and supergravity. Int. J. Theor. Phys., 38:1113–1133, 1999.

[122] W. Israel. Third Law of Black-Hole Dynamics: A Formulation and Proof.
Phys. Rev. Lett., 57(4):397, 1986.

[123] Eric D’Hoker and Per Kraus. Charged Magnetic Brane Solutions in AdS (5)
and the fate of the third law of thermodynamics. JHEP, 03:095, 2010.

[124] Stanley Deser, R. Jackiw, and S. Templeton. Topologically Massive Gauge
Theories. Annals Phys., 140:372–411, 1982. [Erratum: Annals Phys. 185,
406 (1988)].

[125] Stanley Deser, R. Jackiw, and S. Templeton. Three-Dimensional Massive
Gauge Theories. Phys. Rev. Lett., 48:975–978, 1982.

[126] Stanley Deser and Bayram Tekin. Massive, topologically massive, models.
Class. Quant. Grav., 19:L97–L100, 2002.

[127] Alberto A. Garcia, Friedrich W. Hehl, Christian Heinicke, and Alfredo Ma-
cias. Exact vacuum solution of a (1+2)-dimensional Poincare gauge theory:
BTZ solution with torsion. Phys. Rev. D, 67:124016, 2003.

[128] Cheng-HaoWei andBoNing. Quasi-local Energy in 3DGravitywith Torsion.
7 2018.

[129] David D. K. Chow, C. N. Pope, and Ergin Sezgin. Kundt spacetimes as
solutions of topologically massive gravity. Class. Quant. Grav., 27:105002,
2010.



162

[130] S. W. Hawking. Black holes in general relativity. Commun. Math. Phys.,
25:152–166, 1972.

[131] Pawel O. Mazur and Emil Mottola. Gravitational condensate stars: An
alternative to black holes. 9 2001.

[132] Franz E. Schunck and Eckehard W. Mielke. General relativistic boson stars.
Class. Quant. Grav., 20:R301–R356, 2003.

[133] Paolo Pani, Emanuele Berti, Vitor Cardoso, Yanbei Chen, and Richard Norte.
Gravitational wave signatures of the absence of an event horizon. I. Nonradial
oscillations of a thin-shell gravastar. Phys. Rev. D, 80:124047, 2009.

[134] Paolo Pani, Emanuele Berti, Vitor Cardoso, Yanbei Chen, and Richard Norte.
Gravitational-wave signatures of the absence of an event horizon. II. Extreme
mass ratio inspirals in the spacetime of a thin-shell gravastar. Phys. Rev. D,
81:084011, 2010.

[135] Richard H. Price and Gaurav Khanna. Gravitational wave sources: reflections
and echoes. Class. Quant. Grav., 34(22):225005, 2017.

[136] Hiroyuki Nakano, Norichika Sago, Hideyuki Tagoshi, and Takahiro Tanaka.
Black hole ringdown echoes and howls. PTEP, 2017(7):071E01, 2017.

[137] Qingwen Wang and Niayesh Afshordi. Black hole echology: The observer’s
manual. Phys. Rev. D, 97(12):124044, 2018.

[138] Song Ming Du and Yanbei Chen. Searching for near-horizon quantum struc-
tures in the binary black-hole stochastic gravitational-wave background. Phys.
Rev. Lett., 121(5):051105, 2018.

[139] Ka Wa Tsang, Michiel Rollier, Archisman Ghosh, Anuradha Samajdar,
Michalis Agathos, Katerina Chatziioannou, Vitor Cardoso, Gaurav Khanna,
and Chris Van Den Broeck. Amorphology-independent data analysis method
for detecting and characterizing gravitational wave echoes. Phys. Rev. D,
98(2):024023, 2018.

[140] Randy S. Conklin, Bob Holdom, and Jing Ren. Gravitational wave echoes
through new windows. Phys. Rev. D, 98(4):044021, 2018.

[141] Pedro V. P. Cunha, Emanuele Berti, and Carlos A. R. Herdeiro. Light-Ring
Stability for Ultracompact Objects. Phys. Rev. Lett., 119(25):251102, 2017.

[142] Raúl Carballo-Rubio, Pawan Kumar, and Wenbin Lu. Seeking observational
evidence for the formation of trapping horizons in astrophysical black holes.
Phys. Rev. D, 97(12):123012, 2018.

[143] RaúlCarballo-Rubio, FrancescoDi Filippo, StefanoLiberati, andMattVisser.
Phenomenological aspects of black holes beyond general relativity. Phys. Rev.
D, 98(12):124009, 2018.



163

[144] Douglas M. Eardley. Death of White Holes in the Early Universe. Phys. Rev.
Lett., 33:442–444, 1974.

[145] Ian H Redmount. Blue-sheet instability of schwarzschild wormholes.
Progress of theoretical physics, 73(6):1401–1426, 1985.

[146] K. S. Thorne. NONSPHERICAL GRAVITATIONAL COLLAPSE: A
SHORT REVIEW. 1972.

[147] Eanna E. Flanagan and Scott A. Hughes. Measuring gravitational waves from
binary black hole coalescences: 1. Signal-to-noise for inspiral, merger, and
ringdown. Phys. Rev. D, 57:4535–4565, 1998.

[148] B. P. Abbott et al. Tests of general relativity with GW150914. Phys. Rev.
Lett., 116(22):221101, 2016. [Erratum: Phys.Rev.Lett. 121, 129902 (2018)].

[149] Steven B. Giddings. Gravitational wave tests of quantum modifications to
black hole structure – with post-GW150914 update. Class. Quant. Grav.,
33(23):235010, 2016.

[150] Rainald Flume, Francesco Fucito, Jose F. Morales, and Rubik Poghossian.
Matone’s relation in the presence of gravitational couplings. JHEP, 04:008,
2004.

[151] Seth Lloyd and John Preskill. Unitarity of black hole evaporation in final-state
projection models. JHEP, 08:126, 2014.

[152] S.W. Hawking. Breakdown of Predictability in Gravitational Collapse. Phys.
Rev. D, 14:2460–2473, 1976.

[153] Oleg Lunin and Samir D. Mathur. AdS / CFT duality and the black hole
information paradox. Nucl. Phys. B, 623:342–394, 2002.

[154] Samir D. Mathur. The Fuzzball proposal for black holes: An Elementary
review. Fortsch. Phys., 53:793–827, 2005.

[155] Chanda Prescod-Weinstein, Niayesh Afshordi, Michael L. Balogh, Niayesh
Afshordi, and Michael L. Balogh. Stellar Black Holes and the Origin of
Cosmic Acceleration. Phys. Rev. D, 80:043513, 2009.

[156] Samuel L. Braunstein, Stefano Pirandola, and Karol Życzkowski. Better
Late than Never: Information Retrieval from Black Holes. Phys. Rev. Lett.,
110(10):101301, 2013.

[157] Ahmed Almheiri, Donald Marolf, Joseph Polchinski, and James Sully. Black
Holes: Complementarity or Firewalls? JHEP, 02:062, 2013.

[158] Massimo Bianchi, Dario Consoli, Alfredo Grillo, Jose Francisco Morales,
Paolo Pani, and Guilherme Raposo. The multipolar structure of fuzzballs. 8
2020.



164

[159] Massimo Bianchi, Dario Consoli, Alfredo Grillo, Josè Francisco Morales,
Paolo Pani, and Guilherme Raposo. Distinguishing fuzzballs from black
holes through their multipolar structure. Phys. Rev. Lett., 125(22):221601,
2020.

[160] Steven B. Giddings. Astronomical tests for quantum black hole structure.
Nature Astron., 1:0067, 2017.

[161] Iosif Bena and Daniel R. Mayerson. Multipole Ratios: A New Window into
Black Holes. Phys. Rev. Lett., 125(22):221602, 2020.

[162] Iosif Bena and Daniel R. Mayerson. Black Holes Lessons from Multipole
Ratios. 7 2020.

[163] Daniel R. Mayerson. Fuzzballs and Observations. Gen. Rel. Grav.,
52(12):115, 2020.

[164] Pawel O. Mazur and Emil Mottola. Gravitational vacuum condensate stars.
Proc. Nat. Acad. Sci., 101:9545–9550, 2004.

[165] Samir D. Mathur. Fuzzballs and the information paradox: A Summary and
conjectures. 10 2008.

[166] Hua Fang and Geoffrey Lovelace. Tidal coupling of a Schwarzschild black
hole and circularly orbiting moon. Phys. Rev. D, 72:124016, 2005.

[167] ChaoLi andGeoffreyLovelace. AGeneralization of Ryan’s theorem: Probing
tidal couplingwith gravitational waves from nearly circular, nearly equatorial,
extreme-mass-ratio inspirals. Phys. Rev. D, 77:064022, 2008.

[168] Sayak Datta, Richard Brito, Sukanta Bose, Paolo Pani, and Scott A. Hughes.
Tidal heating as a discriminator for horizons in extreme mass ratio inspirals.
Phys. Rev. D, 101(4):044004, 2020.

[169] Naritaka Oshita and Niayesh Afshordi. Probing microstructure of black hole
spacetimes with gravitational wave echoes. Phys. Rev. D, 99(4):044002,
2019.

[170] Qingwen Wang, Naritaka Oshita, and Niayesh Afshordi. Echoes from Quan-
tum Black Holes. Phys. Rev. D, 101(2):024031, 2020.

[171] Vitor Cardoso, Valentino F. Foit, and Matthew Kleban. Gravitational wave
echoes from black hole area quantization. JCAP, 08:006, 2019.

[172] Luca Buoninfante. Echoes from corpuscular black holes. 5 2020.

[173] Pablo Bueno, Pablo A. Cano, Frederik Goelen, Thomas Hertog, and Bert
Vercnocke. Echoes of Kerr-like wormholes. Phys. Rev. D, 97(2):024040,
2018.



165

[174] Bob Holdom. Damping of gravitational waves in 2-2-holes. Phys. Lett. B,
813:136023, 2021.

[175] Randy S. Conklin and Bob Holdom. Gravitational wave echo spectra. Phys.
Rev. D, 100(12):124030, 2019.

[176] Naritaka Oshita, Qingwen Wang, and Niayesh Afshordi. On Reflectivity of
Quantum Black Hole Horizons. JCAP, 04:016, 2020.

[177] Misao Sasaki and Takashi Nakamura. A Class of New Perturbation Equations
for the Kerr Geometry. Phys. Lett. A, 89:68–70, 1982.

[178] Misao Sasaki and Takashi Nakamura. Gravitational Radiation From a Kerr
Black Hole. 1. Formulation and a Method for Numerical Analysis. Prog.
Theor. Phys., 67:1788, 1982.

[179] Scott A. Hughes. Computing radiation fromKerr black holes: Generalization
of the Sasaki-Nakamura equation. Phys. Rev. D, 62:044029, 2000. [Erratum:
Phys.Rev.D 67, 089902 (2003)].

[180] Kip S. Thorne, R.H. Price, and D.A. Macdonald, editors. BLACK HOLES:
THE MEMBRANE PARADIGM. 1986.

[181] David A. Nichols et al. Visualizing Spacetime Curvature via Frame-Drag
Vortexes and Tidal Tendexes I. General Theory and Weak-Gravity Applica-
tions. Phys. Rev. D, 84:124014, 2011.

[182] Fan Zhang, Aaron Zimmerman, David A. Nichols, Yanbei Chen, Geoffrey
Lovelace, Keith D. Matthews, Robert Owen, and Kip S. Thorne. Visualiz-
ing Spacetime Curvature via Frame-Drag Vortexes and Tidal Tendexes II.
Stationary Black Holes. Phys. Rev. D, 86:084049, 2012.

[183] David A. Nichols, Aaron Zimmerman, Yanbei Chen, Geoffrey Lovelace,
Keith D. Matthews, Robert Owen, Fan Zhang, and Kip S. Thorne. Visual-
izing Spacetime Curvature via Frame-Drag Vortexes and Tidal Tendexes III.
Quasinormal Pulsations of Schwarzschild and Kerr Black Holes. Phys. Rev.
D, 86:104028, 2012.

[184] Elisa Maggio, Luca Buoninfante, Anupam Mazumdar, and Paolo Pani. How
does a dark compact object ringdown? Phys. Rev. D, 102(6):064053, 2020.

[185] Sayak Datta. Tidal heating of Quantum Black Holes and their imprints on
gravitational waves. Phys. Rev. D, 102(6):064040, 2020.

[186] WilliamKinnersley. Type DVacuumMetrics. J. Math. Phys., 10:1195–1203,
1969.

[187] S.A. Teukolsky and W.H. Press. Perturbations of a rotating black hole. III
- Interaction of the hole with gravitational and electromagnet ic radiation.
Astrophys. J., 193:443–461, 1974.



166

[188] Alexei A. Starobinskil and S.M. Churilov. Amplification of electromagnetic
and gravitational waves scattered by a rotating "black hole". Sov. Phys. JETP,
65(1):1–5, 1974.

[189] W.M. Suen, R.H. Price, and I.H. Redmount. Membrane Viewpoint on Black
Holes: Gravitational Perturbations of the Horizon. Phys. Rev. D, 37:2761–
2789, 1988.

[190] Scott A. Hughes. The Evolution of circular, nonequatorial orbits of Kerr black
holes due to gravitational wave emission. Phys. Rev. D, 61(8):084004, 2000.
[Erratum: Phys.Rev.D 63, 049902 (2001), Erratum: Phys.Rev.D 65, 069902
(2002), Erratum: Phys.Rev.D 67, 089901 (2003), Erratum: Phys.Rev.D 78,
109902 (2008), Erratum: Phys.Rev.D 90, 109904 (2014)].

[191] Misao Sasaki and Hideyuki Tagoshi. Analytic black hole perturbation ap-
proach to gravitational radiation. Living Rev. Rel., 6:6, 2003.


