CALIFORNIA INSTITUTE OF TECHNOLOGY

EARTHQUAKE ENGINEERING RESEARCH LABORATORY

SILENT BOUNDARY METHODS
FOR TRANSIENT WAVE ANALYSIS

By

Martin Cohen

EERL 80-09

A Report on Research Conducted under Crants
from the Natioral Science Foundation
and the Earthquake Resgarch Affliates
of the Califorria Institute’of Technology

Pasadena. California
September, 1980



SILENT BOUNDARY METHODS FOR TRANSIENT WAVE ANALYSIS

Thesis by

Martin Cohen

In Partial Fulfiliment of the Requirements
for the Degree of

Doctar of Philosaphy

California Institute of Technology

Pasadena, California

1981
(Submitted September 23, 1980)



ii

ACKNOWLEDGMENTS

I would like to express gratitude to my advisor, Dr. P. C. Jennings,
for his invaluable suggestions and guidance during the whole course of
this investigation. I am alsc indebted to Dr. T.J.R. Hughes for his
perspicacity and advice as how to proceed on several difficuit problems.

Conversations with my fellow students, Paul Yoder, Shawn Hall,
Chuck Krousgrill, Per Reinhall, and Wing Kam Liu, all proved to be
extremely productive in my work, and I appreciate their generous giving
of time to discuss my difficuities.

Gratitude is also extended to Ms. Sharon Vedrode and Ms. Gloria
Jackson for their accomplished typing of the manuscrint, and to the
National Science Foundation for their funding of this project.

Lastly, and most importantty, I thank my wife, Mary, for her

steadfast love and support through years of trying circumstances.



ABSTRACT

This thesis sets forth a dynamib model, designed to absorb
infinitely radiating waves in a finite, computational grid. The analysis
is primarily directed toward the problem of soil-structure interaction,
where enerqgy propagates from a region near a structure, outward toward
the boundaries.

The proposed method, called the extended-oaraxial boundary, is
derived from one-directional, wave theories that have been propounded by
other authors. In this thesis, the theory is presented from a more
general viewpoint and is studied for its stability properties. This
work suggests some modifications to the method as it was first pre-
sented. Innovations are also put forward in the boundary's implementa-
tion for finite element calculations. These alterations render the
boundary an effective wave absorber.

The extended-paraxial boundary is then compared, both analytically
and numerically, with two other transmitting (or silent) boundaries
currently available -- the standard-viscous and unified-viscous
methods. The analytical results indicate that the extended-paraxial
boundary enjoys a distinct advantage in cancelling wave reflections;
actual numerical tests revealed a small superiority over the viscous
approaches.

Various issues are also discussed as they relate to the silent
boundaries. Thesa include Rayleigh waves, spherically symmetric and
axially symmetric waves, nonlinear waves, anisotropic media, and

numerical stability.
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CHAPTER 1

I. INTRODUCTION

The general motivation behind this thesis is to develop improved
methods of analyzing problems in "soil-structure interaction." This
term refers to how soil deformations affect the motions of buildings

! In this thesis, we address our-

being subjected to a dynamic loading.
selves to one of the major difficulties posed by such an analysis --
the phencmenon of waves which are radiating outward from the vibrating
structure, toward infinity. In numerical calculations, only a finite
region af the foundation medium is analyzed. Unless something is done
to prevent the outwardly radiating waves from reflecting from the
region’'s boundaries, errors are introduced into the results. The present
work concerns itself with the study of such effects, using the finite-
element method, and an artificial, transmitting boundary at the adge of
the computational grid. The reasons for studying infinitely-radiating
waves, and for using this particular approach to a solution, have been
documented. A background of the analysis of soil-structure interaction
is included now in order to clarify the objective of this thesis.
Researchers have developed two major techniques for dealing with
this phenomenon: 1) the continuum method,(3’7) and 2) the finite-

element method.(sz) The central feature of the continuum method is the

1For' example, nuclear power plants, which are heavier and stiffer than
most other structures, may "interact” with the relatively softer,
underlying soil. In this case, we cannot assume that the building
shakes on a rigid base; we must account for the flexibility of the
soil.



assumption of a rigid foundation resting on an elastic medium. In
paerhaps the most common approach, one finds the relationship between
Es, the forces and moments which the foundation exerts on the ground;
and Yy the foundation displacements and rotations relative to the
ground;(a) Therefore,

Foo= [Kly, (1)

where [55] is called the impedance matrix. The second part of the
analysis calculates Es*’ the forces and moments caused by the seismic
excitation. Hence,

*

F

Fe o= [KJu™ (2)

where gs* contains the refative displacements and rotations caused by
seismic waves. By superposition, the total displacement of the founda-
tion is:

= + *
! -.u.o Es * (3)

Once the generalized forces or displacements of the foundation have been
computed, many different methods can be used to calculate the superstruc-
ture's response. For example, either a Tumped mass model or the finite-
element method could be employed to estimate the structure's motion.(z'S)
The principal advantages of the continuum approach are its accuracy
and its relative simplicity and Tow cost. In performing this type of
analysis, one probably gains more physical insight into the problem
than resuits from doing a comparable amount of finite-element computa-

tions. The continuum method, however, is severely limited in that it

can only treat linearly-elastic, or visco-elastic soils. The technique



is also restrictive in the range of foundation geometries it can analyze,
being limited to simple shapes, such as circles and rectangles. This
method also runs into complications when confronted by embedded struc-
tures.(4’5) For these reasons, we focus our attention on the finite-
element method. Although the application of finite-element technigues

to soil-structure interaction problems is burdened Dy its own con-
siderable difficulties, as we discuss below, the continuous upgrading

of computer technalogy, and the method's geometrical advantages, make

it a prumising approach,

The reader can refer to Zienkiewicz(sz) for details of the finite-
element method; Suffice it to say that it is conveniently able to
handle geometrical irregularities and material nonlinearities. The
method's major drawback, for soil-structure interaction problems, is
that present computer hardwars is unable to manage the enormous storage
and computational requirements of a full-scale, three-dimensional
transient calculation. Attempts to reduce the‘problem's scale can often
produce large errors in the solution. For example, if the boundaries of
the finite element mesh are situated too near a source of wave radiation,
then spurious boundary reflections will significantly distort the solu-
tion. Likewise, making the element size too large filters the motions
of the higher frequencies which participate in the response.

Researchers have proposed a number of ideas to reduce the computa-
tional demands. One of the most important has been the use of artifi-
cial boundaries, which allow radiating energy to exit from the system,
Ideally, with the use of these mechanisms, one can obtain the same

solution hy employing a relatively small number of elements, as one



does when using a much larger mesh. The resulting economy in computa-
tional effort would then be considerable. Unfortunately, most of the
boundary schemes with this aim suffer from significant drawbacks, or
they are not applicable for this type of problem. Recent works on this
subject are summarized in Section II.

Analysts have also attempted to utilize two-dimensional models in

k(ZS’Gz) indicates

the solution of three-dimensional problems. Some wor
that this simplification causes an underestimation of the building
response. Other errars in estimation may also result.

The substructuring(64) of'the system is another method of reducing
the problem's size. Here, the structure and the soil are analyzed
separately, so that two smaller problems are solved instead of having
to solve the original coupled system. This procedure may be viable when
many analyses are to be performed.

Another problem is that the material properties of soils are both
highly variable and highly nonlinear, and they have proved to be diffi-
cult to model correct!y.(sg) Often, crude approximations of soil beha-

(60,61) and it is not always clear how this oversimpiifi-

vior are used,
cation affects the system's general response.

At present, an ignorance of the variation of seismic motion with
depth, and distance, impedes soil-structure interaction studies. The
current dearth of underground seismic data prevents a truly accurate
representation of the input to the system. Analysts must postulate

(63)

seismic inputs which will produce reasonable approximations of

accelerograms obtained at a point on the surface of the ground.



In summary, we have reviewed several of the more important limita-
tions to soil-structure interaction analysis. As is evident, much can
be done to improve the state-of-the-art of these techniques, In this
thesis, we focus our attention on one of these problems, the transmitting
or silent boundary, and attempt to make additions to the current metho-

dology.

II. REVIEW OF PAST WORK CN TRANSMITTING BOUNDARIES

Several different methods for the treatment of absorbing boundaries
have been proposed and employed with varying success. We comment on
several of them here, and 1ist others. In all cases, the object of the
wark has been to make the artificial boundary behave, as nearly as
possible, as if the mesh extended to infinity. In particular,-since
economy dictates that the boundary be near the central field of the
mesh, the metheds all try to avoid large, direct reflections of energy.
The resulting techniques, or boundary elements, are variously known
as transmitting boundaries, absorbing bohndaries, or silent boundaries.
These terms are used interchangeably in this thesis.

Lysmer and Kuhlemeyer(47) conceived of using viscous damping
forces, which act along the boundary, as a means of absorbing, rather
than reflecting, the radiated energy. The method, being directly
analogous to the use of viscous dashpots, is relatively easy to imple-
ment, and it appears to treat both dilatational and shear waves with
acceptable accuracy in many applications. The viscous forces, or
dashpots, enjoy a third advantage, in that they do not depend upon the
frequencies of the transmitted waves. This technique is thus suitable

for transient analysis.



It is commonly believed ([11], [33], [34], [24], [47]) that one
drawback to the viscous boundary is its inability to transmit Rayleigh
waves as effectively as it does the body waves. A special viscous

(47) in which dashpots, which are suitable for the

boundary was devised,
transmission of Rayleigh waves, have coefficients that depend upon the
frequency of the waves. The accuracy of this Rayleigh-wave boundary is
not well established. It has been noted(44) that in order to avoid
inaccuracies, the computational mesh may have to be especially refined
near the ground surface. This is because one of the dashpot's parameters,
at a point somewhat below the surface, goes to infinity. In addition,
there have been few comparisons between the standard- and Rayleigh-
viscous boundaries, except for one axisymmetric problem which was dis-
cussed in [47]. The use of a standard-yiscous boundary, for problems
which involve Rayleigh waves, should not necessarily be ruled out.

Unlike the Rayleigh boundary, it is independent of frequency and is much

15)

easier to implement. For example, Haupt,( using the standard-viscous
boundary along with some af his ogwn boundary innovations, achieved good,
steady-state, Rayleigh-wave solution. Another Rayleigh-wave example is
presented in Chapter 4.

White, Valliappan, and Lee(57)

attempted to improve upon Lysmer and
Kuhlemeyer's scheme, and also to broaden the theory to inciude aniso-
tropic materials. To do this, they selected, and then minimized with
respect to Cij’ a certain norm, Iij’ where

2 2
I., = } (Bij + Cij) cos“ 8 d&8 (4)



i = the number of stress components and j = the number of displacement

components; & is the angle of incidence of the wave. C.. is the desired

ij
damping matrix that is used to cancel the stresses, [B]{g}, of the

incoming waves. Therefore, Iij is a measure of residual stress, or

energy, that is not removed by the boundary terms, and will cause
refiected waves.

After the minimization of Iij to find Ci is completed, this cij is

J
used as a starting point to iterate for more "energy efficient” vailues

This second minimization is performed on the energy ratio,

r‘i!‘l"'[et:tf.'d/E
and the previous values of Cij‘

of C
£

i3’
£ which is calculated by using harmonic wave forms

inciden
The benefit to this approach is that anisotropic materials having
infinite dimensions can be modeled. The authors have not clarified,
however, just how efficient this boundary is for such materials. For
the isotropic case, the method offers virtually no improvement upon the
Lysmer/Kuhlemeyer boundary, and is more compiicated to implement.

(83) devised the idea of creating equations which transmit

Claerbout
waves in only one direction. He derived these equations, termed
paraxial approximations, for the two-dimensional, scalar-wave case.
Clayton and Engquist(3g) tater expanded Claerbout's ideas to include
elastic waves, and conceived the notion of applying it as an energy-
absorbing boundary. In their approach, one takes the triple Fourier

Transform (two spatial and one temporal) of the following two-dimensional,

elasticity equations in plane strain.



2 2 2 2 _
Upy = Cg Upx ~ (cd - cs)wxz TG Uy G o
(5)
2 2 _ 2 2.
Wit T % Wex T (cd - cs)uxz = 4 Y2z o

where Cq = the dilatational wave speed, c, = the shear wave speed, and
u and w are the respective horizontal and vertical displacements; x and
z represent the spatial coordinates, and t = time.

The authors use the scalar-wave, paraxial equations "to provide a
hint as to the general form of the paraxial approximation" for elasti-
city. They then take the Fourier transform of this general paraxial
'form, and "fit the coefficients by matching to the full, elastic wave
equation.” Using these derived coefficients, the general paraxiai form
becomes the governing equation for the boundary.

The authors implemented these equations using a finite-difference,
numerical technique and, in the cases they presented, they obtained good
body-wave transmission. The method, however, suffers from several diffi-
culties. First, the techﬁique, as formﬁ]ated, does not lend itseif to
finite-element utilization. A straightforward, finite-element analysis
divides the domain into two parts: the interior, where the regular
equations of elasticity hold, and the boundary, where the paraxial equa-
tions are valid. The interface between the two discretized regions
(elastic and paraxial) does not permit smooth wave transmission, and
waves which do arrive in the paraxial area do not propagate correctly.

A significant part of the wave energy is reflected into the elastic

medium.



The effectiveness of the finite-alement paraxial boundary,
developed in this thesis, was notabiy improved by our utilization of

(73) and by our introduc-

some upwinding techniques suggested by Hughes,
tion of an interface element. The details of this approach are presented
in Chapter 3, along with some comparisons between this boundary and
others,

Anocther major difficuity with the earlier paraxial technique is that
when Poisson's ratic is greater than 1/3, a negative stiffness term is
introduced into the paraxial equations. This term clearly Teads to
instabilities; the boundary erroneously causes the displacements and
stresses to grow in time. This problem is discussed in Chapter 2.

( (49)

In a series of papers [Lysmer, 48) Lysmer and Waas, and Lysmer
and Drake(zs)], a boundary was developed in order to transmit either
Love waves or Rayleigh waves. The boundary was especially designed for
a2 layered medium.

The method first assumes that a wave of a certain frequency is
propagating in a certain layer. If another finite element having width
h were present beyond the boundary, then its displacements would be
e'ikh (x equals the wave number) times those of the last element at the
boundary. They then calculate the stiffness contribution of the supposed
elements and put them into the equations of motion for the Tumped masses

at the boundary. Therefore,

2

Mi + Ku - kKK*u = 0, (6)

2

If the frequency, w, is known, and having set C = w™M + K,

~

equation (6) becomes
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[c- k°%*Ju = 0 (7)

k, the wave number, is different for each of the various layers, so the
eigenvalue problem (7) must be solved. The impinging wave (shear or
Rayleigh) causes stresses at the boundary. The idea is to apply oppo-
sitional forces to effectively nullify them. For the shear wave
example, these stresses are proportional to both the displacements at
the boundary and to the wave numbers (eigenvalues) solved in egquation
(7). This enables the authors tg find the matrix, R, which relates the
nullifying forces to be applied at the boundary to the displacements at
the boundary. Eg serves as the boundary force contribution to the
finite-element equations of the interior.

Although suitable for transmitting periodic, surface waves, this
method is highly restrictive. First, the boundary terms are frequency
dependent, meaning that one cannot generally perform a transient analysis
in the time domain. If the governing equations of the interior region
are linear, one can perform a transient analysis in the frequency domain.
This approach, however, raises several questions. What are the costs of
doing frequency-domain analysis, compared to doing an analysis in the
time domain? Secondly, how effective can this approach be, if the
interior equations are nonlinear? This technique is also restrictive
in that only shear waves or Rayleigh waves can be transmitted. Other
boundary methods are broader in scope. Finally, this transmitting
boundary is more difficult to implement than are most other boundary
schemes.

Smith{ss) proposed the adding together of wave solutions having

different boundary conditions, in order to eliminate reflections. In a
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one-dimensional exampie, the reflection of a wave striking a free boun-
dary cancels that of a wave striking a fixed boundary, when they are
added to each other.

Two Tubricated-rigid boundary conditions are imposed for two

dimensions:
u = 0
1 } : (8)
T = 0

and
u a
2 } : (9)
g = 0

Uy and u, are the respective normal and tangential displacements at the
boundary, and ¢ and 1 are the respective normal and tangential stresses
there. For the three-dimensional case, the plane of the boundary is
either lubricated or fixed, and the normal displacement is conversely
fixed or left free,

Smith demonstrates that this boundary method eliminates all reflec-
tions, regardless of frequency or angle of incidence. It als¢ handles
all types of waves, including body, Rayleigh or Love waves. The only
drawback to this method, and it is an inescapable one, is that two solu-
tions are required for each possible wave reflection. For example, if
we have a two-dimensional corner, then two solutions for each boundary
side are needed. The problem must be solved four times to cancel the
wave reflections. Likewise, if there is encugh time for a wave to
reflect from one boundary, strike another, and then return, then the

number of calculations must be doubled. Therefore, 2" s equal to the
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number of complete solutions, where n is the number of possible refiec-
tions. If one performs the calculations over a long period of time, the
number of required solutions increases very rapidly. This method does
not appear as attractive as other approaches, except for one-dimensional
problems and problems with very short, characteristic times.

Cundall, et a?.,(40) have recently introduced a cost-saving scheme
that attempts to retain the advantages of the Smith boundary. Their
idea is to set up a small boundary region, in which equations are formed
and solved for each of the above-mentioned boundary conditions. Smith's
idea of adding the two solutions is implemented at every fourth time
step. Thus, the boundary area, which is four elements deep, requires
two solutions at each step, while the interior region needs only one
spiution.

The authors encountered some practical difficulties with this
incremental approach. They solved them by using two pairs of constant
stress and constant velocity conditions at the boundary, instead of the
fixed and free conditions that Smith presented. Wave-reflection theory
clearly shows how the reflections are eliminated in the Smith model by
adding the "fixed" and "“free" solutions. With constant velecity, and
stress boundary conditions, it is not obvious as to how the reflections
are controlled. The authors, however, have observed that these condi-
tions perform well and reduce the "“numerical shocks" that are caused by
the adding of the fixed and free boundary solutions.

The main question about this incremental (“"superposition") approach
is its practicability. It effectively adds a layer of eight elements,

which have to be formed and calculated at each step. In addition, the



13

constant veiocity, and constant stress conditions, at the boundary must
be stored for all times. [t would be cheaper, and less cumbersome, to
simply add a layer of eight elastic elements and to employ either the
viscous, or paraxial, boundary conditions. However, the comparative
accuracy of the superposition method and the Tatter schemes is unknown.

Tseng and Robinson‘®#) and Robinson(3!)

investigated wave propaga-
tion using another transmitting boundary proposal. This method relies
on the separation of 5 and P waves by the potentials, ¢ and y. First,
the transmitting condition for two-dimensional, plane waves is obtained.

For example,

¢ + €40, = o . (10)

Then a correction is added for cylindrical waves. Although equations

(10) are written in terms of potentials, they appear to be similar to

(42,83)

the equations of the first paraxial approximation shown below.

u, + ¢ = 0 . (11}

t d Yx
Equations {10) and (11) are derived for waves oriented in the positive-x
direction.

The authors demonstrate the method's superior transmission of cylin-
drical waves but, so far, the benefit does not appear to be significant
enough to clearly justify this boundary's use over other techniques.

Still another idea was proposed byrIsenberg(]7) and later by

h

Zhen-peng, Pai-puo, and Yi-fan.tss) At the nt time step, they use the

known displacements of all points on or near the boundary to predict
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the boundary's motion at the (n+1) step. The rest of the displacements
in the interior are then solved.

In order to develop a predictor for the boundary, one needs the
frequency and wave number of the impinging wave. In this way, this
method could be effective for steady-state problems., One would probably
have to resort to Fourier analysis to model the transient waves.

(45) suggested an alternative, frequency-independent, pre-

Isenberg
dictor method. In this proposal, the preliminary step would be to apply
unit forces at the nodes adjacent to the boundary, and to calculate the
boﬁndary's reaction to each of these loads. This information would be
stored for use during the main calculation. The effects of the various
nodal lcadings are scaled and then superimposed on each other, in order
to predict the boundary's response for the next time step.

No one has, as yet, implemented this idea, so its feasibility and
accuracy are unknown. It has only recently come to attention and would
seem to deserve an investigation. Apparently, a significant effort to
set up such a boundary is required, but the concept may have the poten-
tial to soive infinite-domain problems.

(41,56) have also investigated the boundary integrat

Researchers
method, where the interior displacements of a region are found by
evaluating integrals along the region's boundary. The boundary is dis-
craetized into segments, and the integrations are performed numerically.
As yet, the technique has not been completely satisfactory. HNot only
does taking integrals along the boundary depend upon the linearity of
the interior equations, it also leads to nonsymmetric matrices. For

large probiems, it could be computationally expensive.
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In still another attempt to simuiate the effects of wave radiation,

(25)

anaiysts have incorporated material damping into their models.

(70) to account for the

Alternately, one could empioy numerical damping
transmitted energy. While these damping procedures are conceivable,

how one could practically.implement them is not clear. Just how much
damping should be put into the system, and where should it be applied?
Can this damping discriminate the effects of wave radiation from the
actual physical dissipation taking place within the model?

A systematic approach to the_usage of damping in various systems is
not available. 'Luco, et al.,(zs) demonstrated some of the pitfalls of
this method. They compared analytical solutions of wave propagation to
the calculations of a finite element model which used some plausible
damping estimates. In general, the material damping did a pocor job of
duplicating the radiation effect. At this stage, the proper application

of damping to account for radiation effects seems to be more of an art

than a scienca.

US) ca

Another relatively simple idea, which was proposed by Haupt, n

be applied for repetitive analyses of certain systems which can be split
into intérior and exterior parts. The interior is altered for each
analysis (e.g., each interior geometry or load history could be differ-
ent), but the.exterior region remains constant. One initially sets up
an extensive mesh of the entire system, but then he condenses those

. degrees-of-freedom that are in the outlying region. Each successive
problem céUld'be solved by utilizing just the small interior mesh and

the force contribution from the condensed equations. This substruc-

turing method reduces the computational expense for these special cases.
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Finally, investigators(g’}z’lg) have experimented with extensive
meshes, and have determined where the boundary should be placed in order
to produce acceptably small reflections. Day(lz) found that by succes-
sively increasing the size of oqt]ying elements by a factor of 1.1, he
could prevent undesirable reflections. This growth factor of 1.1 pro-
vides some help in reducing the number of required elements, but the
computational costs remain prohibitive, especially for three-dimensional
calculations.

In review, each of the proposed transmitting boundary schemes has
been shown to be effective for selected wave problems. The basic criti-
cism of all of these methods is that, to one degree or another, none hés
been extensively verified. For example, there are available few compari-
sons between the results of using a truncated mesh having a transmitting
boundary and of calculations with an extended mesh. Some of these ideas,
such as the viscous damping mechanism, have been incorporated into pro-
grams for other purposes.g1]’27'30’34) This has generated a degree of
qualitative confidence in their use, but their accuracy is not well

known,

II1. ORGANIZATION

The object of this study is to develop a transmitting boundary which
can be applied to transient analysis in the time domain. It is also
desirable that this boundary be applicable to as many situations where
nonlinear behavior is important, as possible,

Ih Chapter 2, theories of some absorbing boundaries are outlined.
Since the boundaries are supposed to remove energy from the system, we

discuss several of the forms which these mechanisms might take. Next,
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assorted, transmitting boundary ideas are analyzed. The basic paraxial

(83) is studied in a different light, and is developed and modified

idea
to improve its energy-absorbing character. The viscous-boundary pro-
posals are also presented. Through the equilibrium equations, their
underlying precepts are shown to be equivalent to those of the paraxial
boundary. The unified- ("optimized-") version of the viscous boundary
is also set forth. The various boundary methods are then compared,
using standard, wave-reflection analysis. We also discuss the boun-
daries' ability to transmit Rayleigh waves and suggest some special,
frequency-independent, Rayléigh-wave boundéries. Lastly, the extension
of silent boundaries to spherical and cylindrical coordinates is con-
sidered.

Chapter 3 primarily deals with the numerical implementation of the
boundary schemes discussed in Chapter 2. In Sections I and II, we point
out some of the practical considerations of implementing a silent boun-
dary. The boundary methods should be designed so that the practical
limitations, such as the fime-step size, are no greater than aré those
which other considerations impose.

We then propose some procedures which facilitate the paraxial
method's practicality for finite elements. These include the "upwinding"
of certain paraxial terms and a nodal aésembling procedure to eliminate
a finite-element "interfacing" effect. In the next section, numerical
stability limits are determined for the various boundaries. Lastly,

the numerical procedurss are verified with a singular-loading problem,

Lamb's problem. '
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Chapter 4 contains most of the extensive results and comparisons
of the boundary methods. These examples include a radial-dilatational
pulse, horizontal- and vertical-pulse loadings, and a Rayleigh-wave
excitation. The working of these problems illustrates the primary
strengths and drawbacks of the various methods and leads to some improve-
ments, such as the application of numerical damping.

In the final chapter, we present our conclusions and proffer

recommendations in the use of the silent boundaries.
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CHAPTER 2

I. INTRODUCTION

In these next Chapters, 2, 3, and 4, we investigate, implement, and
compare several silent-boundary methods. As noted in Chapter 1, we are
seeking a suitable boundary for nonlinear, transient, finite-element
analysis. This rules out most of the transmitting boundary ideas pre-
viously discussed. The exceptions are the paraxial, superposition, and
' viscous boundary proposals.

The parameters of tﬁe transmitting boundary should be not only
independent of frequency, they also should employ only information from
nearby regions of the mesh. These requirements allow the interior mesh
equations to be nonlinear; only the outer-region equations (those near
the silent boundary) need remain linear. In addition, it is desirable
to have the method be easily implemented and understood. We would also
hope to establish a stability criterion and a.measure of the boundary's
accuracy. Lastly, the boundary should be capable of handling all types
of incoming waves, and of proving its reliability over a wide range of
different conditions. For example, it should place no significant
restriction on the material properties which are being modeled. All of
these issues are explored in this chapter.

In Section II, we consider basic énergy requirements and some
general forms which transmitting boundaries might take. We then move
on to a few specific proposed boundaries. In Sections III, IV, and V,

their fundamental precepts are s$tated and analyzed. Some tentative
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comparisons are established among the different boundaries, and in the

next chapters, we investigate their performance numerically.

II. ENERGY FORMS

In conStructing an absorbing boundary, the absorbing mechanism must
be made dissipative. In other words, the change of total energy in the
system with respect to time (excluding the effect of work done on the

system) must be negative.
4 (energy) < 0 (1)
dt ay :

One can meet this energy condition in many different ways. Here, we
present some general energy forms for the wave equation and the equa-
tions of elasticity.

In the simplest example, one adds a boundary contribution term,

n(x,t), to the one-dimensional wave equation; thus

2 ‘ h
PUp = PCU + hix,t) = 0 ,
h(x,t) = 0 when X S X <X, > (2)
h{x,t) # 0 when Xp S XS Xy}

v
¢ = the wavespeed, p = density, x = the spatial variable, and £t = time.
This one-dimensional system is depicted in Figure 1, usihg the elastic
bar as an example. If we multiply equation (2) by Ugs integrate over

the interval Xy to X5 and integrate the second term by parts, then
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Figure 1. Simple absorbing boundary for one-dimensional wave

propagation.
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*2 *2
.33?12. j ouy, dx+% I pcz(ux)zdx =
X-[ X-I
) Xz Xz
octuud| "o [t (3a)
X
1 Xy
or
%2

X
2
%-[KE*'PEJ = (czoutux). - J h(x,t)u, dx .  (3b)

b

X

KE = kinetic energy, PE = potential energy.

In equation (3), either the displacements, u, or the stresses, Uy
are prescribed at the boundaries. If no external forces do work at the
boundaries (x = X4 or x = xz), then either u or u, must equal zero.
Having u be equa] to zero for all time implies that the velocities, Uyps
also equal zero for all time. With no work being.done on the system,
u, = 0, or u, = 0 at all times. Thus, the first term on the right equals
zero, The second term on the right determines whether the total energy

is decreasing with time. The energy requirement dictates that

*2
J h(x,t)ut dx > 0 . (4)

Xy

Letting h be proportional to u, in the boundary region is an obvious
choice for satisfying equation (4), but some alternatives exist. For

example, if h is proportional to -u then having

txx?
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X

X
2 Xo b

J “Upyx¥pdx = -lup,uy) x * J Uty 9 > 0 (5a)

1

X X2

also satisfies equation (4). The integrated term involving Upy Uy
vanishes for reasons noted above. Similarly, by letting h be propor-

tional to utx’

X
if '

lu () > lulx)]

In this case, h becomes a convective term, which passes energy in the
positive-x direction and eventually out of the system. These choices
have physical interpretation. The taking of h as proportional to Uyps
or Uy .o corresponds to absolute damping and strain rate damping,
respectively.

Analyzing the boundary problem from this energy standpoint exposes
many possible avenues of attack. It does not indicate, however, whether
these boundary terms are removing all of the energy as it impinges on
the boundary. For this, we make a detailed examination of the paraxial

and viscous models.

II1. THEORY OF PARAXIAL BQUNDARIES

In this section, we present the paraxial boundary from a different

(39)

viewpoint than did Clayton and Engquist, who originally applied the
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paraxial equations to a silent boundary. We believe that our alternate
approach gives better insight as to how and why the paraxial method may
work. Also, a stability analysis which was performed indicates that the
paraxial equations must be modified from their original form.

In the derivation herein, the paraxial boundary idea is best intro-

duced by means of the one-dimensional wave equation,

2 .-cn < X < oo
U, - Cu = 0 |, . {(6)
tt XX Oct<w

It has the solution
u = p{x-ct)+gl{x+ct) , (7)

in which u = u(x,t}, and x, t, and ¢ are the same as they are in equa-
tion (2); p(x - ct) represents an arbitrarily-shaped wave moving in the
positive-x direction, q is another arbitrarily-shaped wave moving in the
negative-x direction. To change the equation into that of a paraxial
boundary, we seek a similér, partial differential equation whose solu-
tion only allows waves to travel in the positive-x direction, This
equation will then govern a boundary region which only transmits waves
in the positive-x direction.

Several partial differential equations produce this solution,

u=p(x - ct). One of these was presented by Clayton and Engquist:(ag)
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o < X < ®
u, +cu. = 0 s R
t X O<t<w

u(x,0) = uo(x) ’

(8)

solution: u = uo(x -ct) .
However, we choose to analyze another, related equation with this same

solution:

3

. -3 < X <
u,, + cu = 0 . .
t tx gt

u(x,0)

u (x} s

u (x,0) = vo(x) )

)
t

solution: u = f vix - c&) d& + uo(x) .
0

Waves, p(x - ct), which impinge on a medium governed by equations (8) or
(9), continue to propagate through the medium. This is established by
setting uo(x) = p(x) and vc(x) = -cp'(x). Unlike equation (8), equation
(9) is dimensionally consistent with the original wave equation. It
also more closely resembles the paraxial equations that we intend to

use for two- and three-dimensional problems. In these more complicated
cases, we study equation {9) for the purpose of developing the numerical

technique.
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For the one-dimensional exampie, we have ali of the solutions to
the differential equation, so we can select the correct paraxial equa-
tion. Multi-dimensional equations, however, often do not have known
solutions. This necessitates a different approach, whereby the equations

of the boundary regions are constructed to accommodate one-directional,

piane, harmonic waves. For the purposes of simplicity, this different

method is illustrated with the one-dimensional example.
For most practical problems, the boundary conditions to equation (6)

- are such that solutions are of the form:
u = Aexp [i(kxx -wt)] , (10)

in which kx = the wave number (2n/wavelength) and w = the frequency of
the wave., (ne example of such a boundary condition is the requirement
that u be finite, as x goes to infinity. This precludes either hyper-
bolic or linearly increasing solutions (u = Ax + B) for equation (6).

If we substitute equation (10) into equation (6), then

222
(~w™ + kx ¢’} = 0 ,
or
k ]

x . .1 |
?-ic . (.”)

In equation (10), if k,/w is positive, then u represents only positive-x-
traveling waves. We now seek a differential equation which, upon sub-
stitution of the desired solution represented by equation (10), produces

kX
—— - +
w

O j—
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It happens that both equations (8) and (9) meet this condition. They
each possess the harmonic solution (9) and have the positive kx/w
requirement. For applications to higher dimensions, we now utilize this
procedure in the development of other differential equations which have

only positive-x-traveling wave solutions.

IV. TWO-DIMENSIONAL SCALAR WAVE EQUATICN

In this section, as an introduction to the development of a silent
boundary for the equations of elasticity, we present an analysis of the

two-dimensional, scalar-wave equation. Having just one unknown, it is:

2 =0 X < @
‘u,, = c{u _+twu_) =0 ,
tt C Vxx 2z <z cw

f(x,z) at t=20

(12)

u
(0$t<“) ’

uy g{x,z) at t=20

Once again, the goal is to find a differential equation which allows

only positively moving waves. To this end, Claerbcut(83) developed a

"paraxial” method. If the solution of equation (12) has the form,
u = A exp [i(kxx *k,z - wt)} (13)

then (12) becomes

. (14)

Factoring equation (14),

Z P4
k k
AR CA N | A N i
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Equation (15) furnishes the two "roots” of ck Juw in equation (14);
(Ckx/w)1 is positive, (ckx/w)2 is negative (with ck,/w < 1). If we sub-
stitute the positive ck,/w root into equation (13), then this equation
represents waves traveling in the positive-x direction. Conversely, a
negative °kx/“ signifies negatively traveling waves.

We consider the positive-ckx/m relation,

ck ck
—x - ] - ( z‘) = 0 s (] 6)
w . w

Expanding the square root term, equation (16) becomes

ck, 1/{ K, 2 (ckz)4 -

< - -z\%) tuF =0 . (17)
We can determine the differential equation which corresponds to the first
three terms of equation (17) by inspection of equation (13) and its
derivatives: |

2
c _
Upg * CUpy = T4, = 0 (18)

Equation (18) has a solution in the form of equation (13), but with
ckx/w defined by the first three terms of equation (17). Further expan-
sions of equation (17) to higher orders in (ckz/w) have been carried out
by Clayton and Engquist.(3g)

Equation (fS) represents an approximation of an equation which
would only transmit positive-x-directed waves. The nature of this

approximation is shown with the help of Figure 2. The plane harmonic
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WAVE
FRONT

BOUNDARY

Figure 2. Orientation of wave used in the scalar-wave, and
elasticity analysis.

wave illustrated in this figure has the form:
I L w W s _
u = Aexp [1( c Cosx x + = sina z mt)] .

In this case, ckz/w = sin ¢, where o is the angle of incidence. The
first three terms of equation (17) best approximate equation (16) when
ck,/w is small. Hence, we expect the differential equation (18) to
perform best with small values of a, that is, with waves which are nearly
normal to the boundary. As o« grows larger, the paraxial approximation

is less effective in transmitting positively traveling waves.
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V. BOUNDARY APPROXIMATIONS FOR TWO-DIMENSIONAL, LINEAR ELASTICITY

The analysis using the elasticity equations follows along Tines
similar to the previous cases. We are determining here the appropriate,
paraxial-boundary equations for the following equation of elasticity for

plane strain, which is illustrated in Figure 3.

2 2 2 _
Yet EHC Yyx ~ E]ZC Yz T -E.ZZC U2 ~ 9. * (19)
where
u ! °d2 0
w = E =
~ ’ - =11 2 2 ’
w c ) c
: a 5
2
g2 = 'li (Cdz - Csz) o , E,p = 1—2 s 02 :
c 1T 04 - ¢ 0 ¢4

u and w are the two-dimensional displacements which act in the respec-
tive x and z coordinate directions shown in Figure 3; Cq = the dilata-

tional velocity and ¢, = the shear velocity; c, which has the dimensions

s
of a wave speed, is included in equation (19) in order to render several
quantities as dimensionless. The equations and their solutions are
independent of ¢, as is seen in the way equation (19) is formed; t
represents the time derivative.

Solutions to (19) are assumed to be of the form:

=
1]

Uexp filkx +kz-wt)] |,
(20)

3
n

W exp [i(kxx tkz - wt)J'
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Plane Strain

Region
Wavespeeds

cd and L

u, X

1'_.

wZ

Figure 3. Displacements and coordinate axes utilized in the
plane-strain, elastiz problems.

After substituting equation (20) into {19}, we find that

U

2 22 2 2.2 .
[Iu® - E41k, %" = Eppk K€ = Ejok “c] { } =0 . (21)

W
Equations (20) and (21) describe plane waves propagating in the elastic
medium under consideration. In the first of three analogies with the

scalar-wave example, we examine the "“roots" of ckx/w, which are obtained

by the approximate factoring of equation (21).
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2
L L A
-~ w ~1 -2 w =3\ w

2
k.c k_c k,c u
]2 .8, -B. 2=-8 (2 = ¢
~ W ~4 <5 w B\ w W ~

We are solving for the matrices Bj‘ In equation (22), either of the two

roots, ck /u, satisfies equation (21). If we substitute the first root,

(22)

k,C k,c k,C 2
W) = BrBhu B o) (23)

into equation (21), we obtain:

2} (ckz)o ck, |
[ me?] (T2) et - gmg, - o) (22

2
ck
2 A
* [‘522 YEnB - EnnBiBy - Endsdy - Bk ] (T) (24)
ck, |’ o7 (ek )\
* BBy - BBy - BBl o) ¢ [‘51153 ] =) =0
Setting the coefficients of (ckz/m)0 equal to zero,
L 0
By = ¢ d c . (25)
0 =

A second analogy to the scalar-wave case is that the positive root of §1
leads to a positive-x~direction, paraxial boundary. Now setting the

(ckZ/m)] and (ckz/w)2 coefficients equal to zero,



0 1
Cd
§2 = "(Cd - CS) . ’ (26)
_— 0
- -
c
d
CS -5 0 :
By = - c i (27)
S
0 Cd -7

The substitution [from equation (22)] of the second root of (ckz/w) into

equation (21) produces

Es = §2 ] aﬂd -‘B-G = '§3 » (28)

[f one puts these B matrices into equation (22) and muitiplies the terms,
equation (21) and some third and fourth order terms of (ckZ/w) result.
The approximate factoring given by equation (22) is most accurate for
small values of ckz/u. (Recall that ckz/m = sin a, where a = the angle
of wave incidence.) From this analysis, it can also be seen that 8, is
the zeroth order term and; thérefore, is the most important part of the
paraxial approximation. The inclusion of §2 and §3 renders closer
agreement between the elasticity equations (21) and the factored paraxial
equations (22).

If we use equation (23) with the calculated 8 matrices, then

rearrange all of the terms, we find that:



=0 . (29
W

The third analogy to the scalar-wave case is that the paraxial differen-
tial equations can now be derived. If the harmonic solution {(20) is
substituted into the desired differential equation, then equation (29)

is the product. By this inverse logic, the desired equation is:

1 0 4 0 ( ) g 1
u + u +{c,~-¢C u
0 1 "tt 0 c "tx d s -l 0 ~t2

- ' u = 0 (30)

Equation (30) produces approximately the same harmonic wave solution in
the positive-x direction as the elasticity equations (19) do. If one
employs equation (28), the paraxial equations for the negative-x direc-

tion are;:
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(38)

Clayton and Engquist derived equations which were the same as those
above, except for a change of sign in ;heir-gz and §4 matrices; They did
this through a method based on Fourier analysis. It was not clear how
Fourier analysis would lead to one-directional equations. It seems
more logical to derive the paraxial boundary equations on the basis of
transmitting harmoni¢ waves. The two analyses, however, are parallel
and lead to nearly the same results. |

We can immediately identify some characteristics of equations (20)
and (31). These equations have the same mass term as the original elas-
ticity equations. The other paraxial terms, however, bear little resem-
blance to those of their parent equations. u

~£x b4
damping-1ike terms, but an energy analysis reveals that these terms are

and u,, are ostensibly

not necessarily dissipative, The u,, term constitutes a transverse

stiffness which can be negative if
c. < 7% . ' (32)

Because this derivation is based on the kinematics of the desired
solution, it is difficult to understand what makes the paraxial equa-
tions represent a boundary that absorbs energy. This is with the excep-

tions of the u,__ and u,, terms, which were also found in the paraxial

~-tx ~tt
equations for the one- and two-dimensional scalar-wave cases and were
shown to be dissipative (under certain conditions} in Section II. In
fact, the negative-stiffness term raises the question of whether the

paraxial equations are stable.

In three dimensicng, the paraxial sgquations ares derived by the same

method. The three-dimensional elasticity equations are:



C exp [i(kxx + kyy *+ k2
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i

2 2 2
- By ugx m Expt Yyy = E33¢ ¥y - Er2C Yy
2 2 ‘
- B3ty - sty 9 (33)
where
- -2 “
0 Q € 0 0
1 2 1 2
En = =2 & 0 s Ep = 70 g 0 ;
o 0 2 “lo o 2
¢ | I Cg |
0 0 (cz_cz) (0 1 0]
Ery = A c2 0 £, = =345 0
=33 2 s ’ =12 2
. 2 ¢ 000
0 c - -
d J
¢ 2 0 0 1 (cz_cz) 000
B, = 2 00 0 . = =357 [g
=13 2 ! <23 c2
100 0 1 0,
When, as before, we assume an harmonic solution:
= A exp [i(kxx + kyy + kzz -wt)] ,
= B exp [i(kxx + kyy + kzz - wt)] |, (34)

wt) ]

Then, by substituting it into equation (33} and sclving for the roots

of ckx/w, we find
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1 0 0 Cq 0 0 0 ¢ 1
0 1 0 Uit + |0 < 0 Upy * (cd - cs) 0 0 ¢ Uy,
0 0 1 0 0 cg T 0 0
0 1 0 g0 0 0
tleg-cdl1 0 0fu, - (eg-cdfo 0 Tlu,
0 0 o 0 1 O
¢
- d -
Cd (cs - —2-) 0 0
c
s
- 0 Cs (cd -3 ) 0 4oy
c
=
i 0 0 7
c
- d -1
cd(cs - —-2-) 1] 0
s
- 0 5 0 4, = 0 . (35)
' c
s
B 0 Cs (cd - T).

Equations (35) govern a medium which transmits waves only in the

positive-x direction.

A rotational transformation on the finite-element

boundary terms is all that is required for orienting the boundary in

other directions.

The overall behavior of equations (35) would appear to be the same.

as that of the two-dimensional paraxial equations.

If
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then Eyy and u,, have terms indicating negative stiffnesses. The other
paraxial terms in the three-dimensional version are also similar to
their two-dimensional counterparts: Upy represents the zeroth-order
term; u,. and y,, are the first-order terms; and Ups Yyyo and Uzz are
the higher-order contributions. The order of the terms refers to the
powers of ky/w or kZ/m that result, when equation (34) is substituted
into equation {(33).

The above technique for deriving one-directional equations also
seems to be applicable to anisotropic materials. Equations (33) would
be somewhat altered due to the anisotropy, but one would assume that
the harmonic-wave forms (34) are still valid. Equations {34) would then

be substituted into the governing, anisotropic equations, and the fac-

toring, and solving, for ckx/m would be performed as before.

VI. STABILITY ANALYSIS

The stability characteristics of the paraxial equations can be
identified through an energy analysis. A paraxial region, which is

designed to transmit rightward-traveling waves, is illustrated in

Figure 4.
If we put equation (30) into matrix form, premultiply it by QI, and
integrate it over the boundary region Qb’ then:
13 [T 13 [T
J[z 3t [Et ’i*bi't] Y7 [ Y% ExEt]
&
b
L13 T )
75z [utw'r.ut‘.I oo Ky, ] de =0, (36)
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Figure 4. Schematic representation of a paraxial boundary
for plane strain.




where
1 0
- 0 1
¢z =
[ ¢
d
cd(cs - _2')
Kb = 7

The paraxial domain, Qb' and its boundaries, Fx’

depicted in Figure 4.
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(37)

, and rz, are

We modify equation (36) and set either u=20,or g, = 0, at the

b

. t
boundaries, rz and rz.

f

(38a)
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or

7 J 3t Ly g K0yl o
2, (38b)

Energy Flux (x-direction) + Energy Flux (z-direction) .

For most problems, the orientation of the boundaries is such that
the flux is mainly perpendicular to the Tong axis of the boundary
region. Therefore, the accumulated energy within the system is repre-
sented primarily by the energy flux in the x-direction. If no energy is
flowing into the boundary region via Pl, then the F;'integral dominates

1

the right-hand side. c* is diagonal, with positive elements, so

= J!tgxgtgrx s 0 .

-
Tx

Therefore, we conclude from equation (38) that if ﬂb and Eb are positive-

b is always positive-definite,

definite matrices, then lu| is bounded. M
but Eb is only positive-definite for the range of shear velocities,
¢ > cd/Z. For Cg < cd/Z (i.e., Poisson's ratio greater than 1/3),
instabilities may result in the use of the paraxial equations.

Another, more specific way to evaluate the paraxial instability is

to assume that an harmonic wave is impinging on the paraxial boundary.

1If the energy flux in the z-direction is 1ntegrated by parts, it
becomes (cq - ¢)fugwedl,. This energy term is neither positive- nor
negative def1n1%e bu it is assumed to be small because Iz is small
and because the primary direction of the flux is in the x-direction.
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(Refer to Figure 2.) The wave is represented by equations (39):

u = Uexp [1x (cosa x + sina z-ct)]

39
Wexp [ix (cosa x + sina z-ct)] , (39)

£
1]

where a = the angle of incidence and x = the wave number, which is
assumed to be real. We wish to determine the value of ¢ in equation
(39). If it has a negative, imaginary component, then u and w are
growing exponentially in time, and therefore are unstable. The substi-

tution of equations (39) into the paraxial egquations (30) gives:

- -y

2 - C(Cd cos a) +

c ~c(cd - cs) sin o
e (S e sind
d 7 SS'lnG

U
= 0 , (40a)
P W
¢ - c(cs cos a) +
'c(cd - CS) S'in a c )
i _ cs(-zi-cd)sin e |
or
ou =0 . | (40b)

For a nontrivial solution of equations (40), the determinant of the

matrix, U, must vanish,

-

o] = 0 . (41)

The taking of the determinant of D results in a quartic equation for c.
The computed soutions of this quartic, for various angles of incidence

and Poisson's ratios, are plotted in Figure 5.
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Figure 5. Stability regions for the paraxial equations, for

different material properties and angles of incidence.
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One can see that for Poisson's ratios of less than 1/3 (cs/cd < .5},
the paraxfal equations are always stable. They are also stable for
waves which impinge almost normally on the boundary. There exists, how-
ever, a large unstable zone for Poisson's ratios of greater than 1/3.

We conducted several numerical tests using points inside the unstable
region, and our results confirmed the existence of the instability. In
transient and nonlinear problems, we cannot guarantee that the waves
-striking the boundary will always be normal to it. Guided by the
approximate nature of the paraxial equations, our practical solution to
this problem is to set the negative stiffness term, cd(cS - cd/Z), equal
to zero, if Poisson's ratio is greater than 1/3. The justification for
this simple solution %s that the stiffness terms are the least important
element of the paraxial approximation, as was noted in the derivation of
the paraxial equations. A similar stability analysis of the revised
paraxial equations revealed no instabilities.

The set of equations, then, which we shall use for all future work

with paraxial boundaries is:
i c i :
PilUet * Cqlpy * (cq = cgwy, - ¢4 (Cs B 'éi) Uyz = O for

B c ve 1/3
P et * S * (6q - Cglug, - < (Cd ) —25_)“'22 =0
(42)

()
el
£
H
o

P |Upy ¥ gy, + ey = c oWy,
L . for

O

. s - v > 1/3
P Wey ¥ ey, + ey - eduy, - el ey - 7?1)"22 =0

The second set of equations (42) could serve for all Poisson‘s ratios,

but when v < 1/3, the first set of (42) would be slightly more accurate.
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VII. THEORETICAL COMPARISONS OF PARAXIAL TO VISCOUS BOUNDARIES

VII.A, The Viscous Boundary

The basic idea of a viscous boundary was proposed by Lysmer and

Kuh]emeyer,(47)

and is illustrated in Figure 6 for plane strain. One
applies boundary stresses, ¢ and t, to an otherwise free boundary. These
stresses cancel the stresses which are produced at the boundary by

incoming waves, or

in

ucldecoud

boun dd'zqf

Figure 6., Schematic representation of a viscous boundary.



46

in which Oin and Tin are the incident stresses, and de and Thd are the

applied boundary stresses. Thus, the zero-traction condition at this
free boundary,
(O4n * Opg) * 0 = 0

(43b)
+1

I
o

(t._+ 1

in * Tpa) * Trs

causes 0 ¢ and Tef to be zero, where g and T.f are stresses caused by
refiected waves.

One set of applied boundary stresses is defined by equations (44):

Q
1

XX "ACy Uy
(44)

T

XZ ~pCo W

s 't *

as was proposed by Lysmer and Kuhiemeyer.(47) These applied stresses
are c¢learly dissipative. Their taking of energy from the system is

iilustrated in Section II.of this chapter.

White, Valliappan, and Lee(57) proposed a "unified" viscous boundary,
where
Ogx = "3PCgU
(45)
Tz = "Pecgw,

The parameters, & and b, vary according to the material properties of the
medium. The authors performed two minimization processes in order to

obtain the optimum values of a and b. We compare, in Chapter 4, the
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wave-absorbing characteristics of this boundary to those of the original

viscous boundary.

VII.B. Relationship Between Paraxial and Viscous Boundaries

Although the concepts of the paraxial and viscous boundaries seem
to be completely different, they can be related through the equilibrium
equations using the following, heuristic analysis. In Figure 7, an
alement is shown, which contains mass density, p, and stresses, o and .
I[f the element in Figure 7 were elastic, then the stresses would be pro-
portional to the strains, and we wou&d arrive at the usual eTasticity

equations. However, if the element is such that

Uxx = "P gy g

(46)

T

XZ TP L W o

and Tox and ¢, are constant through the element in the z-direction,

then the equilibrium equations in the x and z directions, respectively,

2
are:

PUpe = 3x PUpe * PC4Yey
and (47)

+ pC W = 0
ee

PWer = T3x T Wit tx

Equations (47) happen to be the zeroth-order, paraxial equations for a

medium which transmits waves in the positive-x direction. [See equations

(42).]

2The equations of rotational equilibrium are not considered in this
approximate comparison.
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The similarity between the paraxial and viscous approaches can be
seen with the help of these equations and of Figure 7. The stresses,
which are developed in the paraxial element, are proportional to the
product of the element thickness, Ax, and the x-direction gradients of
the velocities, u, and w,. The viscous boundary directly applies the

t t
u, and w, vajues to the left side of the element. In other words, the

t t
paraxial method applies dashpots across the width of an element, while
the viscous technique attaches dashpots from the boundary nodes to a
rigid base. Since both of the boundaries utilize thé nocdal velocities
in a similar manner, it appears that they are performing essentially
the same function. It is not a coincidence that the viscous coeffi-
cients, pCy and pc,, are also found in the paraxial equations (47).
Thus, the paraxial technique is seen to be one way to extend the
viscous-boundary idea. This generalization, with the help of Figure 7,
helps link the physical idea of using viscous dashpots for absorbing
energy to the paraxial method of fitting solution forms. The paraxial
technique, with its introduction of the higher-order terms, u 2 and U, s
potentially could Tead to a more efficient, energy-absorbing boundary.

VII.C. Theoretical Comparison of the Paraxjal and the Viscous Boundaries

In this section we perform a standard analysis of wave-reflection
coefficients. For more details on this procedure, see Mik]owitz.(as)

We assume that plane-harmonic, elastic waves are impinging upon a
boundary strip, as-is shown in Figure 8. The problem is again that of

plane strain.



Figure 8.
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Schematic illustration of dilatational and shear

waves reflecting from a boundary.

The wave potentials, which satisfy the governing

are:

$
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where Cq * the dilatational wave speed, Cg = the shear wave speed,
Ip = 1 for an incident P-wave, Is = 1 for an incident S-wave, Ap = the
amplitude of the reflected P-wave, and AS = the amplitude of the
reflected S-wave.

We can now calculate the refiection coefficients for the paraxial

boundary. For an incident P-wave, Is is set equal to zero. The

elastic wave is described by Lame's solution,

o = 23 |
ax 9z _
(49)
W = -Si-ﬁ.fi
oZ aXx

The substitution of the potentials in equations (48) into equations (49)
produces the elastic displacements which propagate in the elastic region.
This wave strikes the paraxial-boundary region, which is governed by
equations (42). After substituting the elastic-displacement solution
into equations (42), we have two equations for the solution of the

reflected-wave amplitudes, A and As. These reflected waves also exist

P
in the elastic medium,

The viscous-boundary scheme applies a stress condition to the
boundary. Instead of setting the stresses equal to zero, as would be
done at a free boundary, they are set equal to the viscous stresses.

Again, we assume that we have potential solutions which lead to:

Q
1

, o :
2z :_7 Py * Zu(¢zz * li’xz) T CapC M.
d (50)

A
i

2 -
zx u[wtt/cs * 29y, - l?zz)] = cbecguy s
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in which A and u are Lame's elastic parameters. The velocities, uy and

w,, are determined by using Lamé's solution, (equation (49)). The

t
constants, a and b, are positive in equations (50). 1In the standard

viscous boundary,

a = b =1 . (51)

For the unified viscous boundary, however, a and b are set equal to the
"optimized" values, which were set forth by White, Valliappan, and
Lee.(57) The wave-refliection amplitudes, Ap and As’ which may be
complex, are computed for the various anglies of incidence. The absolute
values of the amplitudes, for different values of Poisson's ratio, are
plotted in figures 9 through 16. The three different silent boundaries
are labeled as follows:
Standard-Viscous Boundary

Unified-("Optimized”) Viscous Boundary
Modified-Paraxial Boundary

[ I |
O =

There are four sets of curves:

1) P-reflections from an incident P-wave

2) S-reflections from an incident P-wave

3) P-reflections from an incident S-wave

4} S-reflections from an incident S-wave.

We should note a few points before interpreting the wave-reflection
figures. First, the reflection amplitudes for low angles of incidence
are more important than are those for high angles of incidence. Waves
which strike a silent boundary at high angles will usually hit one or

more boundaries before returning to the interior. In addition, one

usually knows in advance the source of wave radiations, and consequently
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can orient the silent boundaries toward that source. ' Therefore, the
fact that most of the incoming energy is reflected, when incident angles
are nearly egual to 909, does not necessarily reduce the boundary's
efficiency by a significant amount.

Secondly, the assumptions which govern the wave-reflection calcula-
tions are not strictly the same as are those that , by necessity, govern
our finite-element representation of the boundary. The finite-element
method spatially discretizes the boundary equations, and the boundary
contributions are calculated for the outermost set of nodes. In
‘contrast, the above theoretical analysis employs an infinitesimal
boundary strip, from which the boundary effects are calculated.

When we consider the first set of curves, the reflected P-wave
amplitudes caused by incident P-waves, (figures 9 and 10}, we can see
that all of the boundaries are nearly equal in their reflection
amplitudes. Near-to-perfect absorption is attained for those incident
waves which are almost normal to the boundary. Conversely, total re-
flection occurs for the waves which impinge at 90° angles. As
Poisson's ratio decreases, the absorption characteristics of all three
silent boundaries improve. The one exception to this trend is the
optimized-viscous boundary where Poisson’s ratio is nearly equal to zero.
It performs less effectively for this condition.

The vis&ous-boundary curves dip near 60° for cs/cd > .55. These
abrupt interruptions in slope are due to changes in the reflected
amplitudes' signs. The reflected, paraxial amplitudes retain the same

sign for all angles of incidence, and therefore display no dips.
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Figure 9. Absolute amplitudes of reflected waves for various
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The refiected S-wave amplitudes, caused by incident P-waves, are
shown in Figures 11 and 12. A1l three boundary methods show negiigible
reflections when Poisson's ratio is near to one half. The modified-
paraxial magnitudes are so small that they all are nearly zero. In adQ_
dition, the quiet‘boundaries are almost as effective for materials with
lower Poisson's ratios, as they are for higher ones.

The iilustrations of those reflected, S-wave magnitudes arising
from incident S-waves, Figures 13 and 14, depict larger differences
among the three boundary schemes than do the previous figures. In this
test, the modified-paraxial boundary clearly outperforms its competitors.
For all Poisson's ratios, the optimized-viscous boundary produces 10-15 |
perceﬁt reflections of normally-incident waves. It should also be
noted, however, that with high Poisson's ratios, the incident S-wave
curves are somewhat misleading. In this case, the shear-wave propaga-
tion speed is only a small fraction of the dilatational speed. The
S-wave reflections will be traveling slowly, and therefore, may not
significantly influence the response in the interior region. Again,
the dips or kinks, which are evident particularly for the optimized
viscous boundary, are caused by changes in the amplitudes' signs.

The last set of comparisons, (figures 15 and 16}, describes P-wave
reflections due to incident S-waves. These curves are influenced by
the c¢ritical-angle phenomenon. If the incident, shear-wave angle is
larger than 2 certain angle called the critical angle, then the re-
flected, dilatational wave becomes a surface wave which travels along
the boundary. In each of the plots in Figures 15 and 16, one can

detect the critical angles by the abrupt changes in the slopes of the
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reflection curves. This occurs in the region of from 0° to 45° ,
depending on Poisson's ratio. As the shear-wave speed decreases, (thus
Poisson's ratio increases), so does the critical angle decrease.

In this analysis, we are dealing with an incident, plane, harmonic
wave which extends infinitely in the x-z plane. (See Figure 2.)
Hence, it contains infinite energy. Likewise, the reflected body waves
extend infinitely in x-z space. The reflected surfave wave, however,
which is created when the shear-wave angle is greater than the critical
.angle, is confined to a region near the boundary. Theoretically, this
‘surface wave contains only a finite amount of energy. Therefore, in
Figures 15 and 16, the fact that P-wave amplitudes are large for those
incidence angles which are greater than the critical angle, is probably

(47.57) o1iminated

not seriously detrimental. In fact, previous authors
these amplitudes from comparison when they multiplied them by the wave
speed times cos a {a = angle of incidence.) This new-qugntity measured
the energy flux at the boundary; energy propagating along the boundary
was assumed to be confined there,

In general, by considering all of the wave-reflection curves, we
conclude that each of the boundary schemes produces acceptable results.
All of them generally perform well when the incident angles are less
than 40 degrees. With high Poisson's ratios, however, shear waves may
cause some difficulties, particularly for the viscous boundaries.

The modified-paraxial boundary appears to be generally superior to
the viscous schemes. [t outperforms the others on évery curve shown, and

it demonstrates significant improvement for those reflected, shear-wave

amplitudes which are produced by incident shear waves.
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As it was first formulated,(ag) the paraxial boundary (the one that
includes the potentially negative stiffness terms) causes reflection
~amplitudes to be greater than one, when Poisson's ratios are greater
than 1/3. These are illustrated in Figure 17. For an incident shear
wave, the reflected-shear and reflected-dilatational ampiitudes become
increasingly large as Poisson's ratio approaches 1/2. These curves
highlight the instability caused by the negative, paraxial stiffness

term.

VIII. RAYLEIGH WAVES

In the soil-structure interaction problem, all types of waves may
be generated. In a typical case, the energy radiating toward the
boundaries could be simultaneously composed of Rayleigh, Love, and body
waves. In many instances, such as for the Rayleigh-wave case, the waves
have not compietely formed. The energy would then be in a transition
state, and it could be propagating at different speeds. Therefore, it
is desirable to install a transmitting boundary which can handle all of
the different wave motions,

The previous, wave-reflection analysis, howeyer, is not valid in
the case of Rayleigh waves.2 Therefore, it is difficult to assess the

various boundaries' effectiveness in transmitting these waves.

2Viktorov(as)presents some experimental data for Rayleigh waves striking

a free boundary (in effect, a corner). These results show that about
40% of the incoming energy is transmitted around the corner as Rayleigh
waves, 35% is reflected as Rayleigh waves to the interior and the
remainder is converted to body waves, which propagate radially from

the corner,
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In the paraxial approach, special equations are constructed in
order to satisfy a particular harmonic solution. For positively-

directed Rayleigh waves, shown in Figure 18, these solutions are:

¢ = Aexp («xrz) exp Iix(x—th)J R
(52)

B exp (-xs52) exp {iz(x-th)] .

&
1]

ayleigh Boundary

Wave

Figure 18. Schematic diagram of a Rayleigh wave approaching
a boundary.
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Cp the Rayleigh wave speed, Cq = the dilatational wave speed,

s

number = w/Cp, I = /i-(cR/cd)z, and s = /4-(cR/cS)2. The displacements

are given by egquations (49):

H

the shear wave speed, w = the frequency of the wave, x = the wave

u - iai-l‘*i
ax 23z ’
= 2%, 3¢
w oS 57 tx
or,
u = Aic exp [-xrz] exp [ixLx-th)J h
+ Bks exp [-xsz] exp [iz(x-th)] ,
> (53)
W = =AKr exp [-xrz] exp [1K(x-th)]

+ Bik exp [-xsz] exp [ix(x-th)] Ny

A and B are related to each other through one of ;he free boundary con-
ditions at z = 0. Ca is calculated by using the other free boundary
condition. Miklowitz(as) discusses these solutions in more depth.

One set of paraxial equations which has equations (53) as a solu-

tion can be determined:

u +c, U -

W W =

tt * CR Wex

A boundary region governed by equations (54) is theoretically
capable of transmitting these Rayleigh waves. However, it cannot

absorb body waves as effectively as does the paraxial region using
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equations (42). Therefore, we wish to assess the ability of the "body
wave" paraxijal equations to absorb Rayleigh-wave motion.

One way to do this is to determine the degree of modificatidn
required to change the paraxial equations into absorbers of Rayleigh

waves. Beginning with equations (42), the paraxial equation for Rayleigh

waves can be written as:

+Cu ex T Cu +L{u) = 0 . (55)

MpUes Lolgp + Kpup, + LU

Mp» Cys €, and K are the constant-coefficient matrices as defined by
equations (37). L is an added linear operator which allows equations
(55) to be satisfied in the case of Rayleigh waves. |

If one substitutes the solution (53) into equations (55), he can

determine the magnitudes of the respective terms in (55).

(Rttl + thl + th] + Rzzl + RLl) exp (~krz) ~
+ (Sttl + Sxt1 + Szt] zzl + RL]) exp (-xsz) = 0 ,
(RUZ 4 gXE2 4 g2 4 0222, fd2) o oy ro (88
+ (Sttz - sxtz + szt2 + szzZ " SLZ) exp (-ksz) = 0 "J
where RTE, RXY, RZY, RZZ. and s't, s*t, st $2Z sre the normalized co-
efficients of Upps Upys Ypzs and U,y raspectively. RL and SL are the

coefficients necessary to make equation {56) valid. These terms are
produced by the operator, L. The numerical values of the resulting co-

efficients for v = 0 and v = .45 are listed in Tables 1 and 2.
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Yt Stx Ytz Y22 t
R, -.619 1 -.181 -.206 .006
S, -.380 .614 -.180 -.048 -.006
R, .486 -.555 -.230 .357 -.058
Sz -.789 ' .901 .087 -.219 .020
Table 1 = v =0
et Y Itz f2z s
R, -.287 1 -.642 - -.071
S, -.156 .545 -. 381 - -.008 |
R .275 ~.289 -.669 .785 -.102
S, -.501 .526 .119 -.152 +.008

Table 2 - v = .45

The values of the coefficients for other Poisson's ratios are in the
same range as those presented in Tables 1 and 2.

In order to render the modified-paraxial equations (53) into
perfect Rayleigh-wave absorbers, we would need to determine the
operator, L. However, it is clear from Tables 1 and 2 that L makes only
a small contribution to equations (55). The other terms in these equa-
tions account for almost ail of the Rayleigh-wave behavior suggesting
that it is permissible to neglect the second-order effects of E. This

is not a proof that the modified-paraxial boundary can transmit
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positively-directed Rayleigh waves. It does indicate, howevef, that the
boundary can absorb these waves just as it largely absorbs body waves.
An example of Rayleigh-wave transmission is presented in Chapter 4,

The efficacy of the standard viscous boundary in the transmission

(47) pointed

of Rayleigh waves is largely untested. Lysmer and Kuhlmeyer
out that because of the waves' exponential decay in the z direction, the
formerly constant parameters, a and b, should also be functions of z.
The authors' plots of the required coefficients, as a function of the

normalized depth, kz, are reproduced in Figure 19.

o-l 0 ! 2
{ .
[*s 0 \ stxa!
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Figure 19. The functions alxz) and b(xz) used for gﬁyleigh waves,
as proposed by Lysmer and Kuhlemeyer.(4
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As can be seen from Figure 19, these viscous coefficients vary with
x, and therefore, they are frequency dependent. One must know in
advance the frequency of the incaming waves and implement the correct
values for a(xz) and b{xz) accordingly. Thus, the boundary may be
applied for steady-state problems, but it is not suitable for transient
analysis. The frequency-dependent coefficients are aiso more cumbersome
to apply than are the constant coefficients designed for body waves.

In a practical sense, it is not clear that the use of the variable
coefficients would improve the absorption of Rayleigh waves. It would
be extremely difficult, by empioying a finite element mesh, to approxi-
mate the variation in a(kz) from -= to += (which is illustrated in
Figure 19). Further, as will be pointed out in Chapter 4, the behavior
of the viscous boundaries is relatively insensitive to changes in a and

b.
| Another set of boundary stresses, which cancel exactly the strasses

induced by Rayleigh waves are:

g = :Eféi U, + A w
XX g t z
(57)
DCSZ
Tyq =uuz-—E-é-—wt . J

in which p and A are Lamé's elastic parameters. Equations (57) were
derived by first substituting the wave potentials, equations (52) into
the stress egquations (50), and then cancelling these terms with the ad-

dition of ut, W 29 and wz terms.

g Y
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The advantage of using the boundary equations (57) is that their
effectiveness, in theory, is independent of frequency just as the
standard-viscous boundary is independent of frequency. Upon
implementing them, we found, however that certain numerical procedures
have to be modified in order to render fhe scheme workable. The boundary
causes a significant reduction in the critical time step for the explicit
part of the solution algorithm (which is described in Chapter 3). For

the impiicit part, the u, and w, terms lead to nonsymmefrical matrices,

z
hence, a nonsymmetrical equation solver is required. These particu1ar
restrictions violate the silent-boundary criteria that we shall set forth
in Section II.A of Chapter 3. For this reason, the Rayleigh-wave
boundary (57) was not pursued. However, if the above considerations are
relatively less important, then the boundary stresses (57) may be useful

for Rayleigh-wave applications.

IX. OTHER SILENT-BOUNDARY APPLICATIONS

IX.A, Spherically Symmetric Case

The paraxial, and viscous boundaries, can be easily derived for
this one-dimensional system. The spherically symmetric equation of
elasticity is:

2u 2u u
urr+'—r"7 = _%' ’ (58)
r

r

wherein'u is the radial displacement, and r is the radial coordinate.

The solution to equation (58), expressed in terms of a potential ¢,

is:(es)
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6 = Te(r-ct)rlalrrce) (59)
3
u = 2 (60)

If we consider only outwardly radiating waves,

b = -% f(r - cdt) .
(67)

u = -'jz fir - cdt) + %-f'(r - cdt) .
re '
One, partial differential equation which has equations (61) as its
approximate solution is:

c
d -
Upp * Cqup. + — u, = 0 . (62)

The substitution of equations (61) into (62) produces a residual term,

-f'(r-cd) cd2 , which grows smaller as r increases (assuming that

r3

f'(r-cdt) is bounded for large r). Equation (62) appears to be a
suitable paraxial approximation for outwardly {positive-r} radiating
waves, and it may be useful for spherically symmetric problems.

The corresponding viscous boundary employs the boundary stress,

T = PCLU. . (63)

Caste]]ani(aa) discusses this version of the viscous boundary. He offers
a method for evaluating its effectiveness, which we believe can

be adapted to the paraxial equation (62). It compares stresses not
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canceled by the viscous boundary to those stresses created by the

incident wave. The author begins with the assumption that
u = Lf(r-cgt) (64)
r d '

but a broader spectrum of problems is covered by equations (61), after
which we may apply his analysis. It turns out that both the paraxial,
and viscous boundaries are frequency dependent. Using a given r, they

behave more capably for high frequency motion.

IX.8. Axially Symmetric Waves

We present a preliminary investigation of the viscous boundary's
effectiveness for the axially symmetric case. The derivation and imple-
mentation of the paraxial boundary, though not pursued here; follows
from this analysis and the procedures outlined earlier in this chapter.

The displacements, which are axially symmetric about the z-axis,

are representad by:

u = u(r,z,t) , w o= wir,z,t) |,
(65)
- 3 .
v = 0 ’ and 36 0 ’

in which u = the radial displacement, w = the displacement in the z
direction, and v = the displacement in the 8 direction.
Using equation (65), the elastic, displacement-potential relations

are [see Miklowitz,(as) pg. 220]:

(66)
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and

$ = A*Jo(ndr) exp [iK(Z‘Ct)] *
' (67}

n o= Biglngr) exp [ix(z-ct)]

where J0 is the zeroth-order Bessel function, Ny = fL cos a,
d
ng = fL cos B, o and B are the angles of incidence, k = the wave number =
s o
2n/L, L = the wavelength, and Ld = ?g L.

If ngr and ngr are "large”, then the potentials (67) become:

A . [ cos a sin a ]
p = “Y/7 exp 1w(: r + z-t)
r / C4 Cd B
. - (68)
B . ( cos 8 sin 8 )
n = 177 exp jw \ * r+ zZ -t
r / s Cs 4
with -
* L]
R T 7T
2(nym) /
(69)
-
8 = - 7z -
2(ngm) )
The Bessel function, Jo(x), along with the function,
(70)

f(x) = z;;%77§-[cos X + sin x] ,

is plotted in Figure 20. The two functions are nearly equivalent for

x = 1, but they part company near the origin. In the range, 1 < x s 5,

the approximation (70) is equal to Jo(x) up to 1 or 2 decimal places;

for-5 s x s 20, equation (70} gradually approaches 3 place accuracy.

X -ix

When ¢os x and sin x in equation (70) are replaced with e and 7%,
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Figure 20. Comparison of the Bessel function, JO(x), to the

function, %7-2- (cos x +# sin x).
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the outwardly (+x}, and inwardly moving waves can be distinguished.
Thus, the potentials (68) result from the approximation of the
potentials (67).

If we assume that the approximation (68) holds, then the potentials

for incident and reflected waves, shown in Figure 21, are:

. -1/2 . (cos @ sin & )]
¢ = r axp | lw r+ z2 -1 ,
I p Cq C4
. -1/2 cos a ., sina ., _
$r pr exp ( —_E;_ 2z t)] .
(71)
_ -1/2 cos 8 s1n 8
o= _Isr exp uu( e t)} .
S
- -1/2 cos cos 8 . ,.sin8
Mg Asr exp 1u:( < z t)] s
and
$ = _¢I + ¢R ’
(72}
n = HI + nR

Ip and Ap are labeled as "P" wave coefficients: Is and As are called
"S" wave amplitudes. This is analogous to the wave-reflection analysis
in Section 7.

The elastic stresses at the boundary shown in Figure 21 are:

- LA ,
Ter ° c 7 Ppp * Zu(d’rr * nrrz) ’
) ' d
(73)

n n

r !'l"
= + -
cr‘Z zwrz un (rz nf‘ﬂ‘)
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4?"“":é‘? ¢ boundary

Figure 21. Illustration of waves reflecting from an axially
symmetric boundary.
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1f one would employ a free boundary, these stresses would be set equal to
zerg. For the standard-viscous boundary, however, the boundary stresses
are defined as:

o = -pC4u,

rr (74)

UFZ = ‘DCSWt .

The substitution of the displacement-potential relations (66) into the

viscous stresses (74) produces:

Opg = =P dy4 * CeNpg * PG5 Nppt
The stresses (73) are set equal to those in equations (75). If one now
substitutes the potentials (69) and (72) into equations (73) and (75),

he obtains two equations for the solutions of the two unknowns, Ap and AS.
For purposes of comparison to the plane-strain case, we can deter-

mine the amplitudes of the potential, ¥, used in the analysis in Section

VII. The vector potential, ¥, is related to n by equation (76),

' $ = Y x nz , (76)

-

in which 7 x is the symbol for the curl of a vector, and z i$ the unit

vector in the z direction. In our case,

o= -n. . (77)

When

¥ c c

l‘b = Ap1/2 exp [im(- cos By, 508, . wt)] , (78)
s 5

then
A

- (3 ws|(3) (79)

S

The results for an incident "P" wave (Il =1, IS = Q) are illustrated
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in Figures 22 and 23; the "S" wave reflections are shown in Figures 24
and 25. The numerals '.5' and '2.5' in the figures denote the reflection
coefficients calculated with R/Ld = .5, and R/Ld = 2.5, respectively.
R is the distance from the axis of symmetry to the viscous boundary,

Several preliminary conclusions can be gathered from the results in
the figures. Unlike the plane-strain case, the axially symmetric,
viscous boundary depends on R/Ld, and is therefore frequency dependent.
Although the boundary's accuracy is greater for higher frequency waves,
it does not significantly downgrade:in the range of R/Ld shown. This
result would seem to be corroborated in [57].

One may also notice that the axially symmetric amplitudes, with
R/Ld = 2.5, are nearly identical to the corresponding, plane-strain
" results in Section VII.3 As R/Ld is decreased, the differences become
perceptible. The curves with R/Ld = .5 intimate a trend of increased
reflections for smaller ratios of R/Ld. One must be aware, however,
that at certain values of R/Ld and a, the argument in the Bessel func-
tion (67), 27 cosa R/Ly> Becomes too small for the approximation (68) to
adeguately represent the elastic-wave solutions. This error is mani-
fested in Figure 25. Here, the fact that some reflection amplitudes
exceed one, when a is close to 90°, is a consequence of using the sim-
plification (68).

Some authors have implemented the viscous boundary for axially
symmetric waves and have attained mixed results. Lysmer and

Kuh]emeyer,(47) having discovered the energy-absorbing potential of

BWe review the characteristics of the plane-strain curves in Section VII.
That discussion explains the large reflections observed in Figure 23,
and the kinks in the curves of Figures 21, 22, and 24.
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the standard-viscous boundary for plane waves, proceeded to apply the
boundary to axially symmetric problems. The boundary was situated at
R/LR = .75 and R/LR = 1.50, which correspond to R/Ld = ,35 and R/Ld =
.69, raspectively. (LR = the Rayleigh wavelength, Poisson's ratio =
1/3.) The authors' results indicate good agreement with analytical
solutions when R/Ld = ,69, but the boundary with R/Ld = 35 acquits
itself only fairly. These test results appear to be consistent with
the reflection curves in Figures 22-25.

(37) also scrutinized the standard-viscous boundary in an

Baladi
éxia]]y symmetric sefting. His boundary was aligned parallel to the
r axis, so that it absorbedlwaves travelling in the z-direction. (The
transmission of waves in the r direction was analyzed above.) The
author found generally satisfactory agreement between the silent-boundary
results and those producad with an extended mesh.

In summary, it appears that the standard-viscous boundary is

suitable for axially symmetric waves. What limited data are availabie

in the literature tend to confirm this suposition.
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CHAPTER 3

I. INTRODUCTION

The analyses of Chapter 2 suggest that the previously-discussed
boundary schemes could reproduce most of the effects of an infinite
domain. There are, however, a number of practical Timitationé to their
usage which one must consider. For example, we need to appraise the
boundary's numerical stability. If a silent boundary demands a smaller
critical time step than does the interior region, it may engender larger
computer costs. Also, problems in accuracy may arise in the numerical
treatment of the boundary terms.

Our chosen numerical algorithm is described in this chapter. We
discuss the problems of employing a paraxial boundary, and then the
implementation of the two viscous boundaries. After this, the numerical
stability of the boundaries is evaluated. Finally, in the last section,
we compare some numerical solutions to analytical ones. This is done in

order to validate our numerical procedures and their implementation.

I1. FINITE-ELEMENT PROCEDURES -

II1.A. Implicit-Explicit Algqorithm

Qur time-domain solution method, which was developed by Hughes and

(76) is called the Implicit-Explicit method. The basic procedure is

Liu,
outlined in Appendix B and more of its properties are discussed in
references [77] and [78].

The algorithm enjoys considerable versatility in coping with
transient problems. One can effectively divide the domain of analysis

into "implicit" and "explicit" regions, thus capitalizing on the
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advantages of each scheme. For example, a nonlinear region could be
treated explicitly in order to save factorization costs. On the other
hand, implicit elements have superior, numerical-stability properties,

and would function well for relatively stiff elements.

II1.8. Finjte-Element Implementation of the Paraxial Boundary

I1.B.1 General Considerations

We recall the one-dimensional, paraxial equation -- equation (9)
of Chapter 2.

+ CU = 0 . (1)

v tx

tt

Appendix (A) briefly shows how the application of finite-element

procedures to the u__ term leads to a nonsymmetrical matrix. The equa-

tx
tion of motion, including both interior and boundary contributions, is:

Mdyp *+ Cd, + Kd + N(d)

—

F . (2a)

€ is the matrix which is derived from the boundary term, Upys N is a
nonlinear operator in the interior. Equation (2a) may be solved with a
variety of numerical algorithms, 2ll of which lead to
*(3)y  G+) o e*(3)
K" = F , (2b)
in one form or another. 'n' denotes the time step number, and 'j' is an
*
iteration counter. K may include components derived from @, g, E, or N.
If the contributions from M, K, and @ are symmetrical matrices,
then the use of a nonsymmetrical boundary matrix, g; would require a

doubling of the storage on the left-hand side. [t would also demand a
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nonsymmetrical equation solver, which needs twice the time to reduce a
given matrix than does a symmetrical solver. An explicit, paraxial-
boundary scheme does not suffer from the above difficulties and is
therefore chosen. The explicit algorithm, however, does limit the
allowable time step (see Section IV of this chapter for a discussion of

numerical stability).

II.B.2 Upwinding
As was noted above, the finite-elementrtreatment of the Ugy term

leads to a nonsymmetrical matrix, C. In other problems which generate
nonsymmetrical matrices, it has been observed that spurious oscillations
can occur in, for example, a large range of fluid-dynamics problems.
In many respects, the paraxial equations are similar to the equations of
fluid mechanics. In our case, u,, serves as a convective mechanism for
transporting energy across a domain,

We canlevaluate the behavior of the extended-paraxial equations,

for a one-dimensional mesh which is drawn in figure 1.

d 1

‘ L]

1y~ I

"” ‘ ‘.'[ o
Z
”

I U

yd / e

Figure 1. Schematic diagram of an elastic bar which is
discretized into a one-dimensional mesh.
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1 0
h
. h 3
- 2[o 1] ' 3

Cp = © NN _dx = ZCNa(Ez)Nb,g(gz) .

From Appendix A:

(a)
-(1-g,)  (1-g,)

' o
1
e

-(14g) (14,

gl is the lecation of the integration point in £-space, as is shown in
figure 2.

If we rewrite the Implicit-Explicit algorithm (Appendix 8) in
terms of an explicit calculation for the velocity, Vet We find that

Loy, = &

Aty Yar1 T Aty ! Yot1 = 2 Yt - (5)

At a given time step, with the help of equations (3}, (4), and (5),

the equations for the paraxial nodes, i and i+1, are assembled.
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Figure 2. A one-dimensional, finite element shown in

global and local coordinates.
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1 i
= 0 v
L e { =
At o 1t
h (a-g)e r
(At‘YZ * csz) -T2 v
- 0 (6)
c (]+52) h ) (1+€2)C -vi+]
| ¢z Y ST 7

The above algorithm performs optimally for the parameter vy = 1/2,

and for the critical time step,

At=% . (7)

For these particular values, we have

i [ 1'51 | i
] Q v (1-&;2) | -(T) Y
o 21V T s e =0 - (8
52) 3 52 v
;“'2_ (2“7‘)

E represents the predicted velocities at this time step, and they are
calculated from the velocities and accelerations of the previous step.

In our case, for a velocity pulse traveling in an elastic material.

i i
v = ] a = 2
’ th
1 : (n-1)"" step , (9)
\I'H-'I = 0 , a1+1 = .
in which a' and a1+1 are accelerations for nodes i and i+1. One finds
the nth step predictors using the algorithm equations in Appendix B:



~ i i
V. = v o+ At(l-y)a = 2

41 ’ nth step . . (10)
it o= 0

Equations (9} and (10) result when the critical parameters of equation
(7) are employed. Here, we assume that this wave has somehow entered
the paraxial region at node i. For the chosen values of h, ¢, and At,
the wave (9) should arrive at the next node, i+l. Hence, if the material

th

were elastic, the correct solution for the n~ step is:

vi 0 | :
i+l ) y ' (am

v

The solution of the paraxial equations (8) is:

. . (18N .
v (1-g)0 - (Tl) g1t

. 1+ ) . £ .
it _ 1 2 i 3 _ 22y i+

For this optimal case, the choosing of g, = 1, in equation (12), pro-

(12)

duces the desired solution, (11). As'gl is moved to the left, less and
less of the wave is transmitted to the right. The location of Eps
therefore, determines the character of the solution.

(73)

Hughes demonstrates how this same quadrature idea applies to

the steady, advection-diffusion equation in one-dimension.

au
. gI:k(x) —;,\x—t] (13)

The paraxial equation is a transient version of equation (13) [that is,
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is added to equation (13), but k, the diffusivity coefficient in
(73)

Ut

(13), equals zero.] Hughes established that the integration point's
iocation, Ez‘ goes to gne as k approaches zero.

The above examples jilustrate the effect of quadrature upwinding.
This technique is one way of "weighting” the finite element integration
in the direction of the flow. Other "upwind" methods include the
Petrov-Galerkin approach(57'68) and streamline upwinding.(74)
The Petrov-Galerkin method employs specially weighted functions,

v, in the finite-element discretization. For example, in [66],

. j utt v dx + ¢ J Upy ¥ dx = J f ¥V dx .
Q Q Q

where v is the weighting function of Appendix A, and k is the numerical

(66) used it for an equation

diffusivity coefficient. Brooks and Hughes
which is similar to the péraxia1 equation and obtained very good
results. One reason we did not attempt to implement the boundary in
this form is because it leads to a nonsymmetrical mass matrix. This not
only leads to a more complicated elasticity/paraxial interface, it also
rules out our preferred explicit boundary form.

(74) adds a numerical, diffusion term to the

Streamline upwinding
paraxial equations. It turns out that for this case, streamline and
quadrature upwinding are identical. The latter technique is a little

easier to implement.
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In two- and three-dimensional cases, the paraxial equations are
designed to be one-directional in the following sense. The Usy term was
¢reated in order to transmit energy in the general flow direction, as
is shown in Figure 3, whereas Uy, and u,, are the lower-order correc-
tions for the angle of incidence. Hence, the quadrature points for Uy,
are located where shown in Figure 3.

There exist, for other two- and three-dimensional problems, upwind

procedures which more accurately account for flows at different angles

of incidence. The Petrpv-Galerkin approach and streamline upwinding,

I .
[
o 9,

Direction

—————
e ———

Figure 3. Location of the integration points, ET and EZ; with
respect to the general flow direction.
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both described above, are two such proposed methods. Which of all is the

66) is continuing in this

best technique is not clear, and research (
area. In the above silent-boundary problem, however, this angle-of-
incidence error is already "built-in" to the paraxial theory. Energy
propagating at angles inciined to the boundary will be partially
reflected regardless of the upwinding scheme. Therefore, an attempt to
correct the flow errors that are caused by the discretization and inte-
grating procedures may not render the boundary more efficient. We did
experiment with adding artificial diffusion terms, but they did not have
a significant effect on our results.

The Uy, term is also integrated at the points shaown in Figure 3.
Because this quadrature scheme is symmetrical in the z direction, it

does not upwind u This term could be integrated with the standard

tz®
2x2, or 1x1, Gaussian quadrature. The two-point integraticn method,

however, seems to provide slightly better accuracy. The paraxial stiff-

ness term, U,,» Was integrated using standard 2x2 quadrature. The

~

quadrature method used for and u s however, does not significantly

Stz
affect the boundary's efficacy because they are the lower-order, paraxial

terms.

II.B.3 Assembling Procedure

The algorithm we employed in our transient calculations (see
Appendix B for details) performs well for waves in either the elastic
medium or the paraxial medium. We found, however, that an interfacing
effect inhibits elastic waves from smoothly proceeding into the paraxial
area. The method developed to circumvent this problem, an element-

assembly procedure, is portrayed in Figure 4.
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Interior Elaments
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1 2 3
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Boundary Element

O

~N

?igure 4. Schematic diaaram of the interface elements. The top
row of nodes are elastic while the bottom row are in
the paraxial region.

+

The finite-element equations for node 2 are written as if there are
interior elements present on each side of it, while the equations for
node 3 are formulated as if it were bracketed by boundary elements. In

th

other words, the i~ element, shown in the picture, contributes regular-

wave terms to node 2 and boundary terms to node 3. The mass matrix is
unaffected because it remains uniform for all of the elements.
The reason for adopting this procedure is due to the apparent

success of the finite difference solutioh, used by Clayton and

(39)

Engquist. The finite-element method of assembling contributions on

an element basis simply did not work at the interface. Therefore, we
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attempted to "finite difference" these interface nodes. The latter pro-
cedure allows the respective elastic and paraxial nodal equations to be
assembled independently of each other. In the former approach, elastic
and paraxial contributions were being added together in the same set of
nodal equations. This led to the difficulty.

In two and three dimensions, the interface nodes are assembled in
the same manner as is described above and shown in Figure 4.

We experimented with other ideas, such as empioying a different
algorithm for each of the two regions, or multiplying the paraxial
equations by a factor which minimized the wave impedance. Although these
methods were also successful, the above-described assembly procedure

seemed to erase the interface effect most completely.

II.C. Numerical Implementation of the Viscous Boundary

The viscous stresses are applied continuou§1y along the boundary,
as is depicted in Chapter 2, Figure 6. Their contributions are assembled
at the nodes through the use of one-dimensional, finite-element, shape

functions (as shown in Figure 5, wherein linear shape functions are

empioyed).
NI = N4 = 0 y (15)
|
NZ '2"' “"’C) ’
(16)
= 4
N3 - 2 (1+C) ’

where ¢ is the natural coordinate (-1 =z s 1), and 62 and G3 are the

nodal velocities.
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L
b b= 0

ann:dlil2 "2

Figure 5. Distribution of the viscous stresses applied to
a boundary element.

The boundary force, Fa’ acting at node a is defined as:

F, = I Nao(y)dy'

- Y + y dy =
J Napcd(Nzu2 + N3u3) i dg where a = 2,3. (17)
-1

e
If we substitute into equation (17} both %% = %r~and the above defined

shape-function equations, Na’ we find that:

Lt
1.

F och®f2 17140
2 = d [ ] 2 = . (]8)
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Though we chose not to, it appears that one could "Tump" the C matrix

in the same way that mass matrices are lumped. That is,

p'cdhe 1 0
¢, = —3 y (19)

¢ 1

The boundary shear stresses are applied in the same manner as are
the normal stresses. When the boundary parameters, a and b, are opti-
mized, they multiply the appropriate terms in equation (18).

One advantage of the viscous boundary is that equations (18) and
(19) are symmetric. Thus, one can convert this boundary to fit either
an impligit, or an explicit algorithm without any difficulty. For an
implicit algorithm, the symmetrical C matrix enables us to easily
determine the boundary's numerical stability. The boundary's simplicity
is another major advantage. The E matrix is expli¢itly defined by
equations (18) and {(19), so there is Tlittle additional cost in making

these contributions to the boundary elements.

ITI. NUMERICAL STABILITY OF THE EXTENDED-PARAXIAL AND VISCOUS BOUNDARIES

III.A. One-Dimensional Analysis (Paraxial Boundary) -

We first consider the one-dimensional equation,

+Cu = 0 . {20)

Uet tx

The element mass and stiffness matricas, both derived from equation (20),

are:



(21)

(See Appendix A.) Next, the global matrices are assembled for the dis-
cretized, paraxial region shown in Figure 6. Energy, propagating from
the elastic region into the paraxial region, is considered to be
external to the system, for the purpose of analyzing the stability.

The assembled matrices are:

Ty
1
0
1 -
M = h . ,
0 )
LT ]1
2
(1 0 ]
0 > (22)
-1 1 0 =
0 -1 1 0
t = c ,
0 1 0
=1 |
and
K = 0
J



101

Energy from the

Elastic Region 1| ? | 3 -1 ! n
o (o |0 o (@
F |
J S Sy S s R S T
-~ - -~ -~
s fy ]

paraxial region

Figure 6. One-dimensional, discretized paraxial recion being
analyzed for numerical stability.

Hughes and Liu(76) write the algorithm equations, and the equations of

motion, in terms of energy:

T T
31 B an * Yo K Vg

= ap K+ vl Ky, - (2r-1)[2, 18l2, ] - 2at¢aTccay » (23)

(24)

! x|
[}

t o
+
>
oF

P
<
]
Ny —
S
[N ]
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[En] = "3
, (25)
<§.n> = 7 (En-l-'l + En)

According to the stability theorem presented in [76], if v = 1/2, E’is

positive definite, and C is positive semi-definite, then a, and-vn are
uniformly bounded,

Clearly, E is diagonally dominant, and so by Gershgorin's Theorem

(Noble, p. 446), it is positive semi-definite. B takes the form:

CAtL
(h -2 0
SR 0
5 - (26)
cAt cAt
0 7 -7 0
cAt h cAt
0 - G-
If we expand the quadratic form of E, then,
X
Tey _ =1
KBX = (%000 f'.‘ : ] =
xﬂ
cAt 2 . cAt cAt 2
(“‘T)"I M b (““'2‘“‘)"2 et
cAt ) 2 cAt h cAt 2
(b= )y o Sy (B 5, (@)



1 t) .2
R(n- )2, v e (5-98)2] (28)

where x is an arbitrary vector composed of real components. Each set of

terms (excluding the last set) is greater than, or equal to, zero if

| cAt cAt
S R B
ar
at s B (29)
c
For the last group, however,
1 cat) .2, cat 1 L2
2B e P F -t =0
if
h - cAt = E%E ’
or
2h
At = 3c . (30)

Therefore, the algorithm is stable if y =z 1/2, and if

At = %- (last node fixed) ,

(31)
2h

e (1ast node free)

At =
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A'stability analysis for the one-dimensional wave equation produces
the stability condition, At < h/¢. Therefore, if the last (or nth)
paraxial node is fixed, as it is in the calculations of this study, the

explicit-paraxial boundary imposes no added time-step restrictions.

I111.8. Two-Dimensional Analysis and Its Extension to Three Dimensions

The two-dimensional, modified-paraxial equation is:

1 0 Cy 0 ( ) 0 1 (32)
u,., + u,. + (c,-c¢ u,_ +Ku = 0 . (3
0 1 ~Ft 0 c ~tx d ~s 1 0 -tz < <22 o~

s

The element matrices are found analogously to those in Appendix A.

T 10
= | [ e (33)
-1 -1
11
X =
b E J J NaNb.x J dg dg (34)
-1 -1
T 1
¢z = ey -c.) NN, J dE dz (35)
ab d s ab,z :
-1 -1
X, Xop
J=det | & » and D is a matrix composed of the constants, c, and
Y Y
3 4

Cs- £ and ¢ are the local coordinates, Ex is the matrix formed from the

z .
Upy term, and E is formed from g,

(34), for the typical element depicted in Figure 7, we find that:

If we evaluate equations (33) and
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X ]
1
1
0
1 -
hxhz 1
m = B , (36)
- 1
1
0
- 1
1
o o o6 o0 o o0 o o]
g .0 0 0 0 0 0
g 0 oy 0 0 0 0
z |l o0 - 0 ¢ 0 0 0 0
CX___gh_ S 5 (37)
c 2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 -4 0 ¢ O
Lo 0 0 0 0 -, 0 c

At this point, if we use only the zeroth-order paraxial approxima-
tion [that is, if we ignore the second two terms in equation (32)], then
the stability 1imits can be explicitly obtained as follows. In this
case, nodes 1 and 2 are related in the same way as they would be in
one dimension. Thus, if we consider just the x degree-of-freedom for

a2 string of nodes in the x direction, as in Figure 8,



Figure 7.

106

Two-dimensional, four-noded element used for deriving
the mass, and paraxial damping matrices.

ph*n?

C = ph’cy

O

1o

[N =]

o

Moj—
—_

(38)

(39)
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Figure 8. Row of paraxial nodes in a two-dimensional mesh
used for the purposes of numerical stability.

These are the same matrices that arise jn the one-dimensiona] case,

Hence,
At = (last row fixed) ,
(40}

At =

i

Cd
x

%g— (last row free)
d

Likewise, by considering the z degree-gf-freedom, for a string of nodes

in the x direction,
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x
At < %}- (last row fixed)
s
(41)
M .
At < 20 (1ast row free) .
3cs i

This is a less stringent condition than is equation (40). Thus, for two
dimensions, the matrix derived from the ey term has the same stability
properties as does its counterpart in one dimension. The analysis
clearly extends to three dimensions.

Now, if we consider the higher-order, paraxial approximations, that
is, if we include the last two terms in equations (32), then the stability
becomes somewhat more involved. Due to the assembly procedure which is
used in the interface region, the u,, and u , terms lead to nonsymmetri-
cal matrices, which are not accounted for in the theorem [76] used in
the previous analysis. In the numerical calculations that we have per-
formed, these terms have not caused any difficulties. (The Ez matrix
is, in fact, almost entirely antisymmetrical.)} If problems of numerical
stability were encountere& in other applications, one could use only the
zeroth-order, paraxial approximation, wherein the stability limits are

clearly defined.

IIT.C. Numerical Stability of the Viscous Boundary

The stability characteristics of the viscous boundary also proceed
from the stability theorem in [76]. An implicit, viscous boundary is

unconditionally stable, if vy 2 1/2 and B = y/2. The numerical stability

1imits for the explicit, viscous boundary stem from equations (23) and
(24). 1If g} in equation (24), is positive definite, and if vy = 1/2,

then a, and v are uniformly bounded. B is a symmetric matrix, and its
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eigenvalues can be easily determined after y, At and K have been selected.
Thus, the stability properties of the explicit, viscous boundary can be
defined for each specific case. The implicit, viscous boundary is more
convenient for our purposes, because of its unconditional stability
properties. However, this may not be true in other applications, and it

is useful to have the explicit option.

IV. VALIDATION OF NUMERICAL PROCEDURES

We verified our implementation by comparing our program results to
several static, and dynamic, analytical solutions. In all qf these
problems, and in the test examples of Chapter IV, the silent boundaries
were implemented as they are shown in Figure 9. As the symbol for a.
silent boundary, we employed a thick black strip, which is illustrated
on the left side of Figure 9. In the case of the viscous boundary, the
black strip denotes a set of applied stresses, T and Teg? which are
applied to the boundary. For a paraxial boundary, it indicates a row
of paraxial nodes which are adjacent to the interior region.

The solution for one simple problem, a one-dimensional bar, is
shown in Figures 10 and 11. A load is applied in the interior of the
bar during the first time step and is then removed. The wave pulses are
denoted by circlies, whose diaﬁeters represent the magnitude and direction

(77} is attained by

of the particle velocities. “Superconvergence
utilizing the explicit aigorithm and the following parameters: Cq =
wave speed = ] element/seccnd, vy=.5, 8= .25, At = 1 second, and
Poisson's ratio = 0.

The circles, which remain at the paraxial boundary after step

number 9, do so because of the fixing of the boundary nodes on the
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Figure 10. Top: Mesh used for a one-dimensional wave;
Middla: Energy and velocity plots at t = 5 seconds;
Bottom: Energy and velocitv nlots at t = 9 seconds.



112
STEP NO, = S

STEP NB. = 13

STEP NO. = 17

Figure 11,

Energy and velocity plots at £t = 9, 13, and 17
seconds, respectively,



113

right. All of the free nodes experience a certain displacement as the
wave passes by them, but the right-sided nodes remain stationary.
Therefore, these circles on the right indicate the displacement of the
free nodes. In a global sense, the paraxial region acts as a dashpot --
it brakes the motion of the elastic bar, but in doing so, the bar under-
goes some permanent displacement to the right.

Having checked the code with several simple, smooth analytical
solutions, we test its ability to model discontinuous waves, generated
by a delta-function load in both time and space. Our aim with
this calculation is to help validate our implementation, and to test the
Jimits of the finite-element discretization. A by-product from this
example is that the results indicate the effectiveness of the silent-
boundary methods.

The example, called Lamb's problem in plane strain, is illustrated
in Figure 12. It represents a particularly difficult case for finite-

(86) presents a derivation, based on the

element analysis. Miklowitz
Cagniard-Detoop method, of Lamb's analytical solutions and plots them
along the x and z axes. We compare these results to those produced by
a mesh which is coarse in relation to the wave front. This mesh is
depicted in Figure 13. Symmetrical boundary conditions are imposed on
the left face of the region under consideration.

In the following diagrams, the length of 4 elements = 1 "unit",

€4 = 1 unit/second, ¢, = .57735 units/second, p = density = 1 (Poisson's

s
ratio = .25), DT = .25 seconds, y = .51, and B = .255. Two different
Toadings, labeled Case 1 and Case 2, are sketched in Figure 74. C(Case 2

more closely resembles the delta-function loading in the analytical
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Figure 12. Schematic diagram of the oroblem posed bv
Lamb [85] in 1904,
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LAMB'S FPROBLEM
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g
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Figure 13. Two-dimensional mesh and boundary conditions empioyed
for Lamb's problem.
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load |
.r
L. szcs.

CASE |
load }
dr

.25 . ’ze.
CASE ?

Figure 14. Discretized approximations to the delta-function load.
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solution. We used both the extended-paraxial and the standard-viscous
boundaries in this problem. They each produced nearly the same results,
but for the final calculations, we employed the viscous boundary. The
comparisons between the analytical solutions,and finite-element solutions
using the implicit algorithm, are presented in Figures 15 and 16.

Figure 15 illustrates, for Cases 1 and 2, the vertical displace-
ments at the surface, x = 1.25 and z = 0.0. The analytical resuit
depicts a Rayleigh singularity, where a negative infinite displacement
changes instantaneously into a positive infinite displacement. The
finite element method, with its bilinear basis functions, cannot possiﬁ]y
duplicate such behavior, so it "smooths" the singularity. It does manage
to capture the long-term displacement. The Case 2 Toading introduces
slight numerical noise into the system.

When we compare the analytical and finite element solutions in the
interior {(x = 0.0, z = 2.75), we obtain better agreement between the
methods. The solution is less singular there, as is i11ustrated in
Figure 16. The width of fhe initial wave pulse is still narrower than
one element, but its magnitude is finite, unlike the displacement along
the surface. Here, the loading of Case 2 leads to a more accurate peak
amplitude than that which is produced by the smooth loading. On the
other hand, the sharp loading causes significant numerical noise.

The explicit algorithm was also used to solve Lamb's problem. It
leads to slightly improved accuracy in the interior, but it adds spurious
noise at the surface.

In summary, Lamb's highly-singular solution tests the limits of

the spatialy and temporal discretizations which are employed. The
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Figure 15. Vertical displacements at the surface as a

function of time.
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method does reproduce the smooth part of the solution, and it duplicates,
to varying degrees, the sharp wave fronts, depending on the idealization
of the loading pulse and the coarseness of the mesh. The smooth loading
of Case 1 eliminates most of the numerical noise which arises from the

delta-like, Case 2 loading.
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CHAPTER 4

I. INTRODUCTION

[.A. General Aim

In order to assess the relative merits of the extended-paraxial,
the standard-viscous, and the unified- (optimized-) viscous boundaries,
we present in this chapter summaries of our numerical investigations.

The main thrust of the work was aimed along the foliowing Tines:

1. to evaluate and compare the boundaries' effectiveness in
handling high-frequency waves ("high-frequency" refers to
wavelengths which consist of only a few element lengths);

2. to determine if the boundaries' efficiency is affected by
material properties, particularly as Poisson's ratio
approaches 1/2;

3. to evaluate the boundaries' ability to transmit certain
tyhes of nonlinear waves;

4. to test the boundaries' effectiveness in transmitting

Rayleigh waves.

While conducting these numerical investigations, a voluminous
amount of information was generated for examination and comparison.
We cannot reproduce all of it here, so representative graphs are
selected. These illustrate what we consider to be the major charac-

teristics of the various methods.
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[.B. Description of the Numerical Procedure

A1l of the examples in this chapter were solved by using the silent
boundaries described in Chapter 3. Both the elastic and the boundary
regions were discretized with four-noded elements which employ bilinear,
jsoparametric shape functions. The elastic stiffness is decomposed into
a shear (u) part, and a lambda () component, where u and A are Lamé's
constants. This separation is useful because each set of terms can be
integrated with different, numerical-quadrature rules. The elastic-
shearing stiffness is integrated with the standard 2x2 Géussian quadra~-
ture, while the lambda terms are evaluated by a 1-point quadrature at
the element's center. This selective integration procedure is valid
because the pu and X stiffness terms are each invariant with respect to

(75)

coordinate transformations. (See Hughes, Cohen and Haroun, Section

3.3.) We selectad this integration rule because it avoids the "lockup"

difficulties(72)

which are experienced when Poisson's ratio goes to 1/2
(that is, when lambda goes to infinity.)'

The captions to the figures in this chapter specify whether the
"interior” region is solved implicitly, or explicitly. The algorithm
parameters, y and 8, and the time step, DT, are also defined in the
figure captions. The viscous-boundary areas are always analyzed as

implicit regions, in order to utilize the implicit algorithm's uncondi-

tional stability. The explicit method, however, is employed in the
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extended-paraxial domain, for the reasons mentioned in Chapter 3. The

mass matrices are lumped, regardless of the chasen aTgorithm.T

I.C. Selection of Wave Problems

The meshes used in this chapter are significantly coarser than those
which one would normally use for practical engineering problems. 1In
fact, most of the loadings of the following systems are applied over one
or two elements and for only one time step. This input, similar to a
delta function, generates much high-freguency motion in the solutions.
We selected this approach because it subjects the silent boundaries to
relatively severe test conditions. Since the boundaries are designed to
absorb smooth, wave-like pulses, this transient, high«frequency excita-
tion should challenge the limits of their capabilities.

The purpose of these tests, then, is to evaluate and compare the
silent boundaries using the above-described input. Because of the
deliberate selection of coarse meshes, the resulting motion may not
duplicate the correct solution in all of its details, but that is not
really the concern here. The accuracy of the finite-element method,
and its dependence upon the fineness of the mesh, is well understood.
For our purposes, the "correct" response is that which is produced by a
mesh extensive enough to prevent the boundary reflections from reaching

the "interior" zone.

1This lumping of the mass matrix was done in order to facilitate the
calculations of energy. Krieg and Key [79] and Mullen and Belytchsko
[81] discuss some of the beneficial and deleterious effects of using
lumped mass matrices in conjuncticon with either implicit or explicit
algorithms.
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II. DIRECT INCIDENCE OF DILATATICNAL WAVES

Figure 1 illustrates the case of direct incidence, where the wave
strikes the boundary at an incidence angle of zero degrees. The basic
problem is that of an axially symmetric, pulse loading of an infinite
material in plane strain. It is, for example, a two-dimensional,
idealized version of a bomb exploding underground. The symmetry of the
loading allows one to reduce the problem to that of a conveniently
solved, quarter-plane. Symmetrical boundary conditions.were installed
at the sides, and a dilatational pressure was applied for one time step
and then removed. Cyq = 1 unit/second, cg = .5345 units/second, one
"unit" = the distance that one element extends in the radial direction,
DT = the time step = .9 seconds, and p = density = 1. The silent bound-
aries are denoted by a thick black strip on the outer radial edge of
the mesh, This symbol, and its meaning, are expressed in Figure 9 of
Chapter 3.

The circies oﬁ the graphs symbolize the total energy at a given
node, and the arrows within the circles express the magnitude, and the
direction, of the particle velocities.

Figure 2 delineates the progress of the dilatational pulse through
an elastic region and an extended-paraxial boundary. The pulse first
strikes the boundary at the 12th time step; it is reflected and then it
returns to its origin at the 23rd step. As is seen in Figure 2, these
reflections appear to be negligible.

The same problem is depicted in Figure 3 but for a standard-viscous
boundary. This boundary absorbs almost all of the radiated energy,

except for a small reflection that appears on the inner boundary, at
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RADIAL ., OILATATIGNAL PULSE

1 unit

T silent
boundary

Figure 1. Finite-element mesh used for radially propagating,
dilatational waves.
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EXTENDED-PARRXIAL BOUNDARY, PBISSON’S RRTIO=.33

STEP M. = 10

STEP 8, = N

Figure 2. Illustration of energy and velocity at various
times in the mesh.
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STANDARD-VISCOUS BOUNDARY. POISSAN'S RATIO=.33

STEF M. » ¥

Figure 3. Illustration of energy and velocity at various
times in the mesh.
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EXTENDED-PRRAXIAL BOUNDRRY, POISSON'S RATIO=.48

STEP 3. » § STEF N3, = 1)

STEP MO, = 18 STEP M. = 22

Figure 4. Illustration of energy and velocity at various
times in the mesh.
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STANDARD-VISCOUS BOUNDARY, POISSON'S RATIO=.48

STEP 8. « STer M. = 10

Figure 5. Illustration of energy and velocity at various
times in the mesh.
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the 28th time step. We aiso tested the unified-viscous boundary and
obtained results identical to those in Figure 3,

Figures 4 and 5 depict the same wave in a material having ¢ = .2
units/second. The pictures of waves striking a unified-viscous boundary
again duplicated those of the standard-viscous boundary. Our conclusion
for this particular test is the differences in material properties do
not seem to alter the efficiency of the respective boundaries. All
three perform well and are nearly equal in effectiveness.

Each of the above examples examines dilatational waves striking at

a normal angle of incidence. In the next section, we will present

other examples which indicate the absorption of shear waves,

IIT. PULSE LOADINGS - GENERAL DISCUSSION

With the following examples of pulse loadings, we compare the
results produced by a small mesh having absorbing boundaries to those
generated by an extended mesh. The respective.rtwo-dimensiona1 meshes
are drawn in Figure 6. Time histories of the response are recorded at
three points, labeled A, B, or C, in each of the meshes in Figure 6.

The two excitations which are considered are a vertical pulse that
mainly ‘generates dilatational waves, and a traction pulse that primarily
generates shear waves. These are applied to the top surface near point
A (see F%gure 7). These loadings were selected because of their sim-
plicity and their relevance to the vertical and horizontal loadings that
pccur in soil-structure interaction problems. In the vertical-pulse
loading, the x degree-of-freedom is fixed along the left face of the
mesh. These are the "symmetrical" boundary conditjons which allow us

to analyze a half space with a quarter mesh. Nodal forces at two nodes
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boundary
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\ .
Figure 6. Finite-element meshes used for pulse loadings: (top)
mesh with absorbing boundary; (bottom) extended mesh

with free boundary.
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Figure 7. Schematic drawing of the horizontal- and
vertical-pulse loadinags.
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are applied vertically over the first time step, and then they are
abrogated,

Another group of numerical experiments falls under the heading of
horizontal-pulse loading. Figure 7 illustrates their loading and boun-
dary conditions. With this applied-traction problem, we are not
analyzing a half spéce because it does not meet the requirements of
symmetry. The conditions of Figure 7, however, ensure that shearing

waves impinge upon the horizontal, silent boundary.

IV. HORIZONTAL-PULSE LOADING

IV.A. Comparisons Among the_Boundary Methads

The first test problem shown is the horizontal-pulse loading in
Figure 7. cg = .5345 units/second, Cy = 1 unit/second, p = density = 1
(Poisson's ratio = 1/3), DT = .85 seconds, and 1 unit = the width of
one of the square elements. With these values, the dilatational waves
reach the boundary of the smaller mesh in 9 seconds; the shear waves
arrive at the same point in 16 seconds. y = .5, B = .25, and no material
damping is present in the system. The interior region was solved using
the expiicit algorithm.

The horizontal displacements, the main components of the motion,
are plotted in Figures 8 through 11. Figures 8 and 9 report those dis-
placements recorded near the side boundary (point B in Figure 6); the
arrival of the main pulse is evident in all of the figures. Wave reflec-
tions caused by a free boundary are clearly seen in Figure 8, while the
paraxial and viscous boundaries largely succeed in eliminating this

reflection. The extended-paraxial boundary is slightly more accurate
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Figure 8. Horizontal disp]acement at point B as a function of
time. (Horizontal-pulse loading, undamped case:)
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Figure 9. Horizontal displacements at point B as a function of
time. (Horizontal-pulse loading, undamped case.)
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than are the other transmitting boundaries. On the other hand, both the
standard-, and the unified-viscous boundaries produce nearly the same
response {see Figure 9).

Figures 10 and 11 demonstrate how well the silent boundaries simu-
late the infinite domain at point A in Figure 6. Figure 10 shows the
results for the extended-paraxial boundary, and Figure 11 illustrates
the behaviaor of the viscous boundaries. These figures corroborate the
slight edge in the paraxial boundary's performance as seen earlier,

Oscillations of the horizontal displacement in Figures 10 and 11
‘arise in all of the calculations, including the extended mesh. Each of
the transmitting boundaries preserves the period of these high frequency
motions, which arise from the coarseness of the mesh and the character
of the loading.

In the calculations of the displacements, as illustrated in Figures
9 and 11, the unified- (optimized-)} viscous boundary almost duplicates
those results produced by the standard-viscous boundary. The largest
quantitative differences between the two methods appear in Figure 12.
The vertical displacements that are recorded next to the side boundary
(point B) indicate that the standard-viscous approach may be, to a small
extent, the better alternative. The result for the paraxial boundary,
corresponding to Figure 12, indicates a slightly better agreement with
the extended mesh than does the viscous boundaries.

In Figure 12, it may also be noted that the vertical wave arrives
later than does the horizonfa] pulse shown in Figure 8. This later
arrival seems to be composed mainly of a shear wave, which travels more

slowly than does the horizontal, dilatational pulse.
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IV.B. High-Frequency Waves

One weakness of the silent boundaries is highlighted in Figures 13
and 14. The numerical noise following the arrival of the main stress
pulses (between 9 and 14 seconds) is the predominant feature seen in
these figures. Both the extended and the small meshes, which provide
reasonable solutions to the high-frequency displacements, are too coarse
to accurately determine the stresses; these Tatter quantities are
evaluated from the derivatives of the displacements. It is, therefore,
understandable that none of the boundary'schemes produce the same high-.
frequency oscillations of the stress, Toos that the extended mesh does.
The paraxial boundary actually magnifies this numerical noise, These
errors propagate to the interior, where they arrive after t = 30
seconds. (See Figure 14.)

They are also evident in the energy plots of Figure 15. The total
energy is the sum of the kinetic and strain energies, which are contained
in the "interior" region of Figure 7. For each time step, we computed
this value by integrating the energy terms over the region (using one-
point Gaussian quadrature).2 The effects of this reflected, high-
frequency energy, for the case of the extended-paraxial boundary,
become apparent after t = 30 seconds. The paraxial boundary is respon-

sible for a slightly larger error than is the viscous mechanism.

ZWe should clarify why the energy level, even with the use of free boun-
dary, declines in Figure 15. Some of the energy resides in a narrow
band of elements, which is present outside of the "“interior" zone.
(This is the "exterior" zone shown in Figure 7.) Also, if numerical
damping is present, then the high-frequency energy is reduced. In
Figure 15, where no damping is used, the total energy in the free-
boundary system is conserved after t = 20 seconds.



147

HORIZONTAL-PULSE LGBARD, EXPLICIT ,GAMMR=.5C ., (PT.B)

0.10

SIGMA 22
0.0

-0.10

0.0 10.0 20.0 3040 ' Yuo 0 50.0
TIMECSECS) -

HORIZONTAL-PULSE LOAD, EXPLICIT .GAMMA=.50 , (PT.B>

0.10

[ - RESULTS USING 3TD,-VISCOUS BD, ———
' RESULTS USING EXTENDED MESH =~ ———

A
A

10.0 20.0 30.0 4g.0 50.0
TIMECSECS)

SIGMA 22
0.0

-0.10

O
o

Figure 13. Stresses, opp, at point B as a function of time.
(Horizontal-pulse loading, undamped case.)



142

HORIZONTAL-PULSE LOAD, EXPLICIT ,GAMMR=.50 , (PT.A)

0.20

SIGMA 22
0.0

-0.20

— RESULTS USING EXT,-PARRXIAL BOD——
RESULTS USING EXTENDED MESH

0.0 10.0 20.0 _I30.0 40.0 50.0
TIMECSECS)

HORIZONTRL-PULSE LOAD, EXPLICIT .GAMMR=.50 , (PT.A)

20

SIGMA 22
0.0 0.

~0.20

B RESULTS USING STD.-VISCOUS BO, — ——
RESULTS USING EXTENDED MESH
ANy AN
| V VAVAVA LA AA
| l | ]
g.0 10.0 20.0 30.0 40.0 50.0
TIMECSECS)

Figure 14. Stresses, opp, at point A as a function of time.
(Horizontal-pulse loading, undamped case.)



143

HORIZONTAL-PULSE LGAD. EXPLICIT, GAMMA=.50, (ENERGY)

TATAL ENERGY

0.0

TATAL ENERGY

TOTAL ENERGY

0.0

5.00

2.50

00

5.

2.50

0.0

5.00

2.50

i RESWLTS USING FREE BOUNDRRY ————
RESULTS USING EXTENDED MESH

‘ |
0.0 10.0 20.0 30.0 40.0 50.0
| TIMECSECS) -
[ ~ RESULTS USING EXT.-PRRAXIAL B0 ———
RESULTS USING EXTENDED MESH
| 1 | | |
0.0 0.0 . 20.0 30.0 40.0 50.0
TIMECSECS)
B RESULTS USING STD.-Y{SCUS B0, ———
RESIRTS USING EXTENDED MESH
| | | |
0.0 10.0 20.0 30.0 40.0 50.0

TIME(SECS?

Figure 15. Total energy in the interior region as a function of

time. (Horizontal-pulse loading, undamped case.)



144

One technigue for filtering high-frequency noise is to apply some
numerical damping, which selectively attenuates the high-frequency motion
of the mesh. We implemented this idea in order to eliminate the noise
introduced by the silent boun&aries. In the next group of illustration,
Figures 16 to 18, vy is set equal to .55, with B = .276. These parame-
ters introduce some algorithm damping, which mainly affects the higher
modes. Except for this change, Figure 16 depicts the same energy graphs
as are in Figure 15. The damping's beneficial effect is clearly evident.
It not only reduces the total energy for long times, it also annihilates
the high-frequency errors in the total energy, including those associated
with reflections from the silent boundaries. .

On a Tocal level, the effect of numerical damping is demonstrated
in Figure 17, The spurious, high-frequency osci]lgtions are signifi-
cantly reduced compared to those of Figure 13. The numerical damping is
especiaily effective in reducing the high-frequency reflections from
the paraxial boundary.

For the lower modes, that is, the larger, wavelength components of
the response, the algorithmic damping we applied has little effect, and
the conclusions for the undamped case are also valid here. For example,
in Figure 18, we plot the horizontal displacements near the side boun-
dary (point B). As a function of time, the displacement curve appears
to be a Tittle smoother than does that for the undamped case in Figures
8 and 9, but the amplitudes are almost identical. The extended-paraxial

boundary, again, enjoys a slight advantage over the viscous boundary.



145
HORIZBNTAL-PULSE LOROD, EXPLICIT. GRMMA=.55, (ENERGY)

o
E [ RESULTS USING FREE BOUNORRY ——
G RESULTS USING EXTENCED MESH 2~ —mm
o
Ll
=8
o~
|
(o
f—
]
—o
a |
0.0 10.0 20.0 30.0 40.0 80.0
g TIMECSECS) |
u.; o ) RESULTS USING EXT.-PRARAXIAL B0 ———
p o AESULTS USING EXTENDED MESH @ ———
£
(B8]
Z3
o
—
(o
F—
[\m]
=
0.0 10.0 - 20.0 30.0 - 4o.o0 50.0
o TIMEC SECS)
3 — RESULTS USING STD.-VI[SCUS 80, ————
)(5 RESULTS USING EXTENDED MESH
[a o
I
Z3
o~
P
(&
-
0
—o
o ! l
0.0 10.0 20.0 30.0 40.0 50.0
TIME(SECS)

Figure 16. Total energy in the interior region as a function of
time, (Horizontal-pulse loading, damped case.)



146

HORIZONTAL-PULSE LORD, EXPLICIT. GAMMA=.55. (PT. B)

o
g B RESULTS USING EXT.-PRAAXIAL BO——
RESULTS USING EXTENDED MESH
g A
<2 A /\c\g%?as?%
NN AAVA'
=
0.0  10.0 20.0 30.0 40.0 50.0

TIMECSECS)

HORIZBNTAL-PULSE LOAD, EXPLICIT, GAMMR=.55, (PT. B)

o

o _ RESULTS USING STD.-VISCOUS 80, ——
. RESULTS USING EXTENDED MESH
~
el
c ’A P\\ AA aN

c T
§ N \4\/ v VAR
"

S

0.0 10.0 20.0 30.0 uo.o 50.0

TIMECSECS)

Figure 17. Stre§ses, Cop, @t point B as a function of time.
(Horizontal-pulse loading, damped case.)



HOR. DISP. HOR. DISP.

HOR. DISP.

147

HORIZONTAL-PULSE LOAD. EXPLICIT .}Hb_j_l‘j_ﬂi.ss. (PT.B>

[
f’; — nﬁmusﬁs FREE BOUNDRRY ———
SULTS USING EXTENDED MESH
SN
[ ] ﬂ’\'\
S
o
|
Q
<
- | | 1 | ]
0.0 10.0 20.0 30.0 4o.0 50.0
o TIMECSECS)
_c_; — RESULTS USING EXT.-PARAXIAL B0 ——
RESULTS USING EXTENDED MESH
N
o. ————
Q
3
S
<
T ] | { L ]
ag.0 10.0 - 20.0 30.0 - 40.0 50.0
- TIMECSECS)
2 —~ RESULTS USING STD.-VISCOUS 80, ——
RESULTS USING EXTENDED MESH
o /\"6.\“‘-—--._————_\/
<
o
1
Q
<
" | i ] | |
g.0 10.0 20.0 30.0 40.0 50.0
TIMECSECS)

Figure 18. Horizontal displacements at point B as a function of
time. ({Horizontal-pulse loading, damped case.)



148

IV,C. Shear Waves

Shearing motion dominates the solution at point C, near the bottom
of the mesh. Figures 19 and 20, respectively, present the undamped
shearing stresses and horizontal displacements at the lower measuring
point. Both figures indicate that the viscous boundary causes a greater
reduction in the shearing amplitudes than is shown by the extended mesh.
This could be due to some destructive interference by the reflected
waves. These illustrations, however, do provide some evidence of the
boundariés' ability to transmit shear waves, as well as dilatational

waves.

V. VERTICAL-PULSE LOADING

The computations of the response to the vertical loading were con-
ducted without using numerical or material damping. The interior equa-
tions were solved impliicitiy, and DT = .9 second. The material constants
are the same as those above, and the load is appiied for one time step.
The loading and boundary conditions, as well as the locations of the
points A, B, and C, are depicted in Figures 6 and 7.

In Figure 21, we illustrate the total energy (kinetic and strain)
for the interior region. The reflections from the free boundary are
evident, while both of the silent-boundary schemes remove the outgoing
waves. The absorbing mechanisms perform better for the high-frequency
stresses here than they do in the horizontal-loading case. This is
illustrated in Figure 22 for Gyq near the side boundary (point B).

Vertical displacements constitute the largest part of the response,
and they are recorded at point B in Figure 23. Although both of the

dissipative mechanisms are effective, the paraxial boundary is slightly
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more accurate than its counterpart. The same conclusion holds true for
vertical displacements at the bottom of the mesh, point C, as is shown
in Figure 24. The long-term displacement, which is observed in these
figures, is similar to that which is found in Lamb's analytical solution.
Overall, for the undamped, vertical-locading problem, the absorbing
boundaries remove the major part of the outgoing energy. The viscous
and extended-paraxial boundaries perform almost egually well for the
stresses, but the paraxial boundary has superior accuracy for the verti-

cal displacements.

VI. VERTICAL HALF-SINE PULSE

Figures 25, 26, and 27 iliustrate the progress of a half-sine pulse,
applied over 5 elements, in the ﬁuarter mesh. The load is applied for
one step, and is then removed. ¢ = .5345 units/second, Cq = 1 unit/-
second, 0T = .9 second, v = .55, and 8 = .276. The quarter mesh is
drawn in Figure 6, and the boundary conditions are shown in Figure 7.
‘This problem is identical to the previous, vertical-pulse éxampTes,
except for the half-sine loading. The purpose of this calculation is
to show, qualitatively, the benefits of using the silent boundaries.
These are used under conditions of relative mesh size which are more
representative of practical applications. However, the pulse is
"rapidly" applied, generating significant high frequency motion.

In Figures 25 and 26, the velocity amplitudes, v_, are plotted as

2
ordinates on the planar, two-dimensional mesh,

v o= SV : . (1)

a la + V2a
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where v, and v,, are the two velocity components of node a. For the

la
free boundary, theré is added an outer ring of undeformed elements, in
order to provide a clearer picture of the velocity amplitudes.

The three-dimensional plots, in Figures 25 and 26, illuminate the
qualitative behavior of the free and the extended-paraxial boundaries.
The waves, generated by the loading, effectively propagate out of the
system with the silent boundary, but energy is trapped within the mesh
when it has only a free boundary. Figure 27 shows how much of the total

.energy remains in the interior region.

VII. DISCUSSION OF NONLINEAR WAVES

The analyses of Chapter 2, and the above results, are strictly valid
only for waves in linear, elastic media. The interior of the mesh may
be governed by nonlinear equations, but the region adjacent to the silent
boundary must be linear. This assumption, that the governing equations
are linear on the outer fringes of the computational mesh, is appropriate
for many different problems, For example, in the soil-structure inter-
action analyses that were described in Chapter 1, the soil's strongly
nonlinear behavior is mainly confined to an area near the structure.
The wave motion which emanates from the interaction zone, and propagates
to the outer boundaries, often can be represented adequately by 1inear
models of the soil.

In some problems, however, the nonlinearity of the wave motion at
locations "far" from the wave source, cannot be igngred. In these
cases, a linear wave may be followed by slower-traveling, nonlinear
waves. The silent boundaries, which are designed for only one set of

wave speeds, may not effectively transmit the slower-moving waves.
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The silent boundaries' ability to absorb waves depends on the
parameters, ac, and bcs, in equation (45) of Chapter 2. The standard-
viscous- and extended-paraxial boundaries set both a and b equal to one.
(a and b were not explicitly defined for the paraxial equations, but the
paraxial-viscous boundary comparison in Section VII, Chapter 2, ;hows
that these parameters are equal to one.) The wave-reflection theory in
Chapter 2, and the numerical exampies in this chapter, both indicate
that a = b = 1 is the foremost choice for linearly elastic waves.

. For waves traveling at a slower speed, a or b should be somewhat
less than 1. These parameters should be "tuned" to the wave speed.

Qur experience with the unified- (“optimized-") viscous boundary
indicates, however, that the viscous boundaries are relatively insensi-
tive to the parameters, a and b. For the unified boundary, a ranges
from .959 to 1.011, and b lies between .740 and .773. The numerical
results, using either the standard- or the unified-viscous boundary,
are nearly identical. (See Section IV.) This finding implies that the
standard-viscous boundary might absorb waves trave]iqg at different
speeds.

In order to test this hypothesis more thoroughly, we repeated some
of the above, horizontal-loading examples, with 'a’' varying from .6 to
1.3. They were then compared to standard-viscous boundary results.

We found that the use of the modified-viscous boundaries, instead of
the standard-viscous boundary, produces virtually no djfferences in the
stresses and vertical displacements. In the case of the horizontal dfs-

placements, the differences are approximately 5-10% of the errors
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created by the use of a free boundary. Thus, letting 'a' range from .6
to 1.3 has a generally minimal effect on the response.

The overall conclusion is that the linear boundaries may be useful
for absorbing the slower-moving, nonlinear waves.3 The parameters, a

and b, would be chosen as shown in equation (2),

ot
-é‘—}<a<'!,
d
- (2)
c
--E'?-z—'<b<1,J
s

where Ch and C,p are the speeds of waves which may be generated, for

example, by plastic yielding.

VIII. RAYLEIGH-WAVE EXAMPLE

The previous calculations in this chapter shed light upon the boun-
dary schemes' ability to transmit high-frequency, body-wave pulses. In
this section, a Rayleigh wave is used to excite the system. The purpose
of this test is twofold. We wish, first, to subject the boundary to a
steady-state motion. A certain amount of reflection was observed for

the pulse loadings, and this raises the question of whether the errors

3The efficiency of the extended-paraxial boundary is dependent on ah®

and bh€, where h® is the width of the paraxial element. It was pointed
out in Chapter 1 that maintaining a uniform mesh size reduces reflec-
tions. Conversely, if large elements are placed adjacent to small
elements, significant wave reflections will occur. After extensive
testing, Day [12] found that when element sizes are kept within 90-
110% of each other, minimal reflections will occur. Since the paraxial
elements transmit waves in the same manner as elastic elements do,
presumably this guideline would also hold for them.
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SMALL MESH WITH SILENT BOUNDRRY

\Y
-
A X
B
C
Rayleigh Wave Silent
Input Boundary
|
|
]
(R 3 1

Figure 28. Finite-element mesh with absorbine boundary used
for the Rayleigh-wave loading.
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EXTENDED MESH
VY

Extended, finite-element mesh with free boundary used
for the Rayleigh-wave loading.
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accumulate as the loading continues. Secondly, the ability of the silent
boundaries to transmit.Rayieigh waves needs to be evaluated. The
analyses of Section VII, Chapter 2, indicate that the extended-paraxial,
and a few other boundaries mentioned there, may be effective in this
case. The efficiency of the standard-viscous boundary is uncartain.

It often furns out that, in soil-structure interaction analysis,
some of the energy propagating from the interaction zone is in transi-
tion from body waves to Rayleigh waves. Several wave motions, including
shear and dilatational components, are superimposed, but they gradually
assume a Rayleigh-wave form along the surface. In practical instances,

a computational mesh will not extend far encugh for Rayleigh waves to
form completely. Therefore, the measuring of the reflections of this
transitory motion is of interest.4

Figures 28 and 29 illustrate the test problem, in which plane-strain
elasticity is used. The mesh is initially at rest, at time t equal
zero. The horizontal and.vertical displacements along the left side of
the mesh are -prescribed, for all subsequent time, according to a known,
Rayleigh-wave solution. The mesh is two wavelengths deep, and the bottom
nodes are fixed. Due to reflections from the bottom boundary, it has
been recommended(ss) that the mesh depth extend to three or four wave-
lengths. In our case, these reflections will propagate to the outer
areas of the extended mesh, s¢ that the region adjacent to the input

will not be significantly affected. For the small mesh in Figure 28,

451m11ar comments apply to Love waves, where layered media are con-
sidered.
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energy from the bottom can propagate to the surface, however, if it
reflects from the mesh's right side.

The excitation on the left generates transient waves at first, and
then the motion settles down and approaches steady state. There exists
a period when waves, having not taken on their final, Rayleigh-wave
form, will impinge on the various boundaries.

The displacements’ on the left are prescribed as:

u = Dfexp (.8475 Y} = 5773 exp (.3933 ny)] sin (KRth)
) (3)
w = D[-.8475 exp (.8475 nRy) + 1.4678 exp (.3933 zRy)] cos (KRth)

Equations (3) represent the Rayleigh-wave solution for v = .25.(84)

w = .2781 radians/second, LR = the Rayleigh wavelength = 12 units, Kp =
.5236, Cp = the Rayleigh-wave speed = ,5312 units/second, Cg = 5774
units/second, Cq = 1 unit/second, and 1 unit = the length of one
element. vy = .51, and B = .255, so there is a negligible amount of
numerical damping present in the system. The equations were solved
explicitly, with DT = .9 second. Energy first strikes the right

boundary at t = 6 seconds; Rayleigh-wave components follow shortly

after,

We represent, in Figures 30 and 31, several comparisons among the
various boundaries. Initial transient motion is evident in the first 10
seconds, and then the response becomes more nearly periodic. It has not
quite settied to steady-state.

The silent boundaries generally prevent the reflection of energy.
The vertical displacements in these figures exhibit a fairly close

agreement between the extended-mesh results and those from using a silent
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RAYLEIGH WAVE, EXPLICIT. GAMMA=.51, (PT. A)
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Figure 30. Vertical displacements at point A as a function of
time. (Rayleigh-wave loadina, slight damping.)
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RAYLEIGH WAVE, EXPLICIT. GAMMA=.51. (PT. B)
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boundary. Other measurements of stresses and displacements, which were
taken at points A, B, and C, but are not displayed here, suggest that
the same, or better, agreement exists then that found in Figures 30 and
31. The distortions caused by a free boundary are most visible at point
A, near the surface.

Figures 30 and 31 illustrate most of the poorest agreement between
the extended-paraxial boundary and the extended mesh. The largest dis-
crepancies caused by the standard-viscous boundary are shown in Figure
32, where the phase of the response appears to have been shifted.

Since virtually no numerical damping is utilized in this problem,
we might expect numerical noise to bé present in the stresses. (This
was observed in Section 4.) In this case, the only component exhibiting
significant noise is'czz, which is pictured in Figure 33. The results
of the extended-paraxial boundary contain spurious noise superimposed on
the general wave form, while the viscous boundary alters the period of
the motions. Again, one can eliminate the noise through slight
numerical damping.

Figure 34 charts the total energy in the system. [t is apparent
that, when using the silent boundaries, the energy within the system
remains at a fairly constant level. The boundary mechanisms eradicate
energy at nearly the same rate as energy is generated on the mesh's
left side. The small errors associated with the paraxial boundary are
attributed to the numerical noise mentioned above.

The Rayleigh mode shapes can also be used to estimate the accuracy
of the transmitting boundaries. In these graphs, presented in Figures

35 and 36, the solid-line curves represent the Rayleigh mode shape that
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RAYLEIGH WRVE, EXPLICIT, GAMMAR=.51, (PT. B)
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Figure 32. Horizontal displacements at point 2 as a function of

time. (Rayleigh-wave loading, slight damping.)
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RAYLEIGH WAVE, EXPLICIT. GRAMMA=.5l. (7T ‘B\)
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RAYLEIGH WAVE PROFILES
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excites the system. The dashed-line curves are the resulting displace-
ments at x = 3 when t = 27 seconds. (The displacements at x = 3, t = 36
seconds yielded similar results.) These profiles were ca{cu1ated with
the various conditions at the right side of the mesh: a) extended mesh,
b) free boundary, ¢} extendedéparaxia1 boundary, and d) standard-viscous
boundary.

In the ideal case, the profile of the displacements at x = 3 will
duplicate the input motion at x = 0. However, due to the presence of
transient waves and discretization errors, the displacement profiles
differ somewhat. As can be perceived in Figures 35 and 36, the extended
mesh and the silent boundaries each generate displacement configurations
that are similar to the input.

Overall, the boundary methods do not induce large distortions in
the response, such as those that are observed in the free boundary case.
The silent-boundary errors are of the same magnitude as are those intro-
duced by the discretization and the transient motion. The two methods,
extended-paraxial and standard-viscous, are again comparable in accuracy.
If we consider all of the data accumulated in this problem, including
deformed mesh plots not illustrated here, the paraxial results are
slightly closer to those of the extended mesh.

As we mentioned in Chapter 1, several authors have pointed out that
the viscous boundary may be ineffective in the case of Rayleigh waves.
We determined that, at Teast in this one example, the viscous boundary

appears to function in about the same manner as it does for body waves.
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CHAPTER 5

In this thesis, the general topic of silent boundaries, as they
are appiied to tﬁe soil-structure interaction problem, was explored.
First, we surveyed a wide range of ideas that had been suggested in the
past. Most of these proposals were discussed only briefiy, mainly
because they are not applicable to the class of problems we wish to
sqlve, or because they appear to be relatively cumbersome, or
costly, to implement. Many of these transmitting boundary schemes,
though not considered in detail, may be useful in other app?icatioﬁs.
We restricted this study to the more easily implemented, silent bound-
aries which can be directly employed in transient, time-domain analysis,
and would be serviceable for many problems involving nonlinear materials.
Two of the boundary methods, paraxial and viscous, which tender these
gqualities, were analyzed in detail in Chapters 2 and 3.

The major innovations in this thesis center upon the adaptation,
development, and testing of the paraxial-boundary approach as it applies
to finite element calculations. First, the paraxial equations were

derived for the purpose of transmitting plane, harmonic waves. These

considerations, in turn, led to questions of stability and to a modifi-

cation of the equations' original form.

The revised paraxial equations were then compared to two viscous-
boundary propesals. It was shown that the standard-viscous boundary
apparently embodies the first-order terms of the paraxial equations.

A wave-reflection analysis illustrates the distinct superiority of the

paraxial approach, and indicates its potential as an energy absorber,

This analysis also implies that the use of the "optimized"
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parameters as suggested in [57] does not improve the efficiency of the
boundary. From this theoretical standpoint, the modified-paraxial bound-
ary reflects waves of the smallest amplitudes, but the standard- and

uni fied-viscous boundaries are also fairly effective.

In Chapter 3, it was pointed out that a straightforward, finite-
element implementation of the paraxial equations does not Tead to a
practicable transmitting boundary. Certain alterations in the numerical
procedures are needed to upgrade the boundary's accuracy.

The test examplies presented in Chapter 4 furnish most of-the data
for an evaluation and comparison of the various boundaries. In the
problems we studied,.a11 of the silent boundaries produced from adequate
to exceptional results.

There are a number of features which should be emphasized. First,
the viscous boundaries cause a permanent, "residual” displacement at
almost all points in the mesh. This motion is, perhaps, 10% of that
which results from the use of a free boundary. The extended-paraxial
boundary largely eliminates this residual. On the other hand, the
viscous boundaries do effectively absorb the correct amount of energy
from the system. In most cases, the energy curves, which result from
extended-mesh calculations, coincide exactly with those resulting from
a viscous boundary. The extended-paraxial boundary is also competent
in removing energy from the system, with the exception of eradicating
noise from the solution.

A second feature of all the silent boundaries is their relative
inability to remove high-frequency, node-to-node oscillations. The

extended-paraxial boundary is worse in this capacity because it aggravates
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this noise and sends it to the interior. One solution to this problem
is to apply slight numerical damping to the algorithm. In the problems
studied, it was found that the setting of vy = .55 eliminates most of the
numerical oscillations, without distorting the solution of lower fre-
quencies, and allows the silent boundaries to operate more effectively.
Qur experience indicates that the letting of vy = .51 does not induce
enough damping into the system. (y = .50 is the undamped case.)

A third conclusion is that the standard- and unified-viscous bound-
afies perform almost identically in all ways. Therefore, it would seem
to be unnecessary to modify the parameters, a and b, in order to improve
the boundary's behavior (the two boundaries differ only in the selected
values of a and b). In fdct, in one example we tested, the doubling of
the parameter 'a' causes little change in the absorption character of
the viscous boundary. This insensitivity of the viscous boundary
suggests that it may be suitable for special cases of naonlinear waves.
This was discussed in Section VII of Chapter 4.

Fourthly, the performance of the silent boundaries varies with the
parameters being measured. B8y and large, the extended-paraxial boundary
proffers a slight advantage in accuracy over the viscous schemes,
although it does not achieve the superiority indicated by the wave-

reflection theory of Chapter 2. The boundary adopted herein appears to

be the best finite-element implementation of the paraxial idea, and we
give some reasons for this, but it is possible that a different imple-
mentation may yield more accuracy.

Finally, the implementation of two silent boundaries, as con-

sidered, is inexpensive. Both the viscous and paraxial damping matrices
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can be easily calcu]atéd by hand, in terms of the element dimensions,
h* and hZ. Hence, the generation of these expressions entails virtually
no costs on the computer. A slight expense is incurred in the formation
and assembly of the paraxial stiffness, and in the solution of the
paraxial degrees of freedom. The cost of this latter computation,
always being done expiicitly, is not significant. OQOverall, the extended-
paraxial scheme is slightly more expensive to use than is the viscous
boundary.

In summary, the exfended-paraxia1 boundary, as develdped herein,

possesses the following characteristics:

- It is founded upon a mathematical theory which indicates

the method's capability to transmit wave energy.

It is easily implemented and exacts a minimal computational

expense.

« [t sometimes projects numerical noise into the system, but
this tendency is controlled by a slight amount of numerical

damping.

. It enjoys some advantage in accuracy over other proposeh
silent boundaries (the standard-viscous and unified-

viscous boundaries).

« It offers a broad scope in that it can be applied to

Rayleigh waves and, presumably, to anisotropic materials.
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» It can be applied to many problems in which nonlinear,

material effects are important.

+ It does not adversely affect the numerical stability

properties of one family of algorithms that we tested.

In the course of our investigation, we also ascertained that the
viscous boundary performed better than we had expected, and would be
a suitable transmitting boundary in many applications. It is widely
believed that this boundary acquits itself poorly when confronted by
Rayleigh waves, but in the one example that we studied, the boundary
seemed to absorb the waves to an acceptable degree, although it was
somewhat less accurate than the extended-paraxial approach.

We believe that, when taking into account all of the factors men-
tioned above, such as cost, accuyracy, ease of implementation, etc., the
proposed extended-paraxial boundary technique is at least competitive
with other transmitting boundary methods now available. More practical
tests are needed to confirm this conclusion, and the next logical step
would be to apply this boundary to the solution of soil-structure

interaction problems.
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APPENDIX A

DERIVATION OF A ONE-DIMENSIONAL, PARAXIAL ELEMENT

The basic¢ finite element procedure, for a one-dimensional wave
problem with a paraxial boundary, is sketched here., Two- and three-
dimensional analyses ensue in an analogous fashion, except that all of
the integrals are evaluated over an area, or a volume, instead of a line.

[f we commence with the strong form of the initial-, and boundary-

value probiem,

Upy = czuxx = f(x,t) , x € Q , (A1)
Uy * CU, = O . x €0, (A2)
where
U = the one-dimensional Qisplacement,
2, = the domain of the interior,
Qby = the domain of the boundary,
R TR - (A3)
u = g(t) on aq" = the boundary where displacements
are specified,
u, = p(t) on aQt = the boundary where tractions are

specified,
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u(x,0) = h{x) forall x€qa ,
. (A4}
ut(x,O) = g{x) for all x € Q
In order to derive the weak form of the problem, the following
spaces are required:
Hé(Q) = {vfv:@+R , v(x) = 0 v x € 3"}
(A5)
H;(ﬂ) = {uju:@-+R , u(x) = g *x €’y

where R represents the set of continuous and uniformly bounded func-

1 possess first derivatives

1

tions. The functions belonging in the space H

which are square integrable. In other words, ifu€H , then

j uxzdx < @ (A6)
Q

If we multiply equations (A1) and (AZ) by v, where v € Hé, let u € H;,

and integrate over €,

2 _
J uttde -c J uxxvdx + f uttvdx +c J utxvdx = [ fvdx . (A7)
Q Q_i

o 92 Py by

After the second term of equation (A6) is integrated by parts, the weak

form can be distinguished. Given that g, p, h, and g are all suffi-

ciently regular, one finds u € HL such that for all v € Hé,

' 2
' J u. . vdx + c2 I uxvxdx + ¢ j utxvdx = f fvdx + [c pv]3 (A8)

tt t

Q2
Qi Qby Qi
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The matrix version of equation (A8) is formed by approximating u and v

h h

with u’ and v, respectively, where

h

uo= Z Nbub , (A9)
NN

wos I N vah : (A10)
a=1]

a,b = the node numbers; Na’Nb the shape - functions associated with node

a or node b; ubh,vah = the nodal values of u” and yh; and NN = the
number of nodes. Next, one substitutes equations (A9) and (A10) into

equation {A8}:

NEN [ NEN ; n 2 .
Lk [NaNbdx “pet * C J“a"b ity ¢ ¥ f“a,x”b,xdx Uy
Q o o
] 2 h
- [ e e IR TR (A1)
Q, :

j
where NEN = the number of element nodes. Equation (A11) is rewritten:

h h

h _
mabub,tt + + k. u = f (A12)

Cab¥b,t T “abYh a

The sum of the element contributions is described as:

N h
*Lu +Ku = F

(A13)
NE NE NE

t =
]
1
13
-
|
0
-
[~
]
1
t <
-

1O
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in which NE = the total number of elements. M and K are evaluated in
the standard fashion; the stiffness term is integrated amalytically for
this one-dimensional case. The matrices M and C can be determined for
a paraxial element of length h. After transforming the integrals [in

equation (A11}] into £-space, which is defined in Figure 2 of Chapter 3,

1 0
h [ ] , (A14)
0 1 |

-(1-g)  (1-,)
-(1+g))  (14g,)

we arrive at:

'3
]
~of

(A15)

0
1]
e

-

where 52 is the integration point for the second term in equation (A11).
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APPENDIX B

SUMMARY OF THE IMPLICIT-EXPLICIT ALGORITHM

Below is an outline of the Implicit-Explicit transient algorithm,

as developed by Hughes and Liu.(77)
I E I E _
ﬂ a4+ * E Yo+ E Vo1 * K 9n+1 +K 9n+1 - fn+1 (81)
. 2
4, = do+aty + 85 (1-28)a (82)
Vel = Yot tO-v)a, (B3)
d = 3, +atga (B4)
~n+1 ~n+] n+1
Ya+1 T En+1 * AtYan+] (BS)
R (36)
Yo =Y (87)
|
ag = M (Fg-C v~ Kdg) (88)
no= wle o (89)
c = EI + EE (B10)
K = K ek (811)
F o= Flagt (812)
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Their notation is as follows: "At is the time step; gn’ v, and a, are

n

the approximations to g(tn), é(tn), and §(tn), respectively; F, = E(tn);
vy and 8 are free parameters which govern the accuracy and stability of
the algorithm; and ﬂl, EI,_§I, and EI (respectively, gg, EE, EE and EE)
are the assembled arrays for the implicit (respectively, explicit)

groups. ME is assumed to be diagonal and M is assumed positive definite."
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