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ABSTRACT

Several spscial toples relating to the transient flexural
vibrations of a uniform beam predicted by the usual elemsntary or
Bernoulli-Euler equation are discussed. The effect on the beanm
response of the concentration of an applied transient force in space
end in time is studied. In the case of an applied step force, it is
ghown that the dynamic beam response can be larger than twice the
response 10 an egual force statlically applied. 1t is demonstrated
that the beam response in the higher modes is independent of the
boundary conditions,

A new, general series solution of the mode superposition
type 1s given for the flexural vibrations of a uniform beam according
to the more refined Timoshenko equations including the secondary
sffectes of shear deflections and rotatory inertia, As a specilal
case, the golution 1s presented for a pin-ended beam. These solutions
are characterized by two series, each of the form of the series solution
of the Bernoulli-Euler equation.

For the special case of a concentrated transisnt force
applied at the midpoint of a pin-ended beam, the bending moment and
shear force solubions for the Timoshenko and Bernoulli~-Eulsr eguations

are compared,



INTRODUCTICH

In recent years, the subject of the transient vibrations of
elastic structures has become lmportant in engineering. This is
particularly true of the problem of the transient flexural wvibrations
of elastic beams. The study of beam response is important because
the beam is one of the most common structural elements and because it
is one of the simplest continvous elastic structures. 4 study of its
behavior will yield insight into the transient behavior of more come
rlex structures.

The analytical determination of the transient flexural
vibrations of beamsusually employs the Bernoulli-Euler or elementary
equation of motion. This eguation considers only the lateral inertia
and the elastic forces due to bending deflections, However, it is
known that secondary effecis such as shear deflections and rotatory
inertia which are not included in the Bernoulli-Euler eguation may
profoundly affect the flewxural vibrational response under ceriain
conditions,

The first and best known equation inecluding the secondary
effects of shear deflectlons and robatory inertia is that of Timoshenko,
The only correct solution of the Timoshenko equation that has been
presented to date is that of Dengler and Goland who obtained, with
the aid of Laplace and Fourier transforms, a flexural wave solution
for a uniform, infinite beam subjected to a transverse impulse., No
correct analytical solutions have been presented for finite beams,

No analytical solutions in the series or mode superposition form



have been given, The bulk of the papers considering the Timoshenko
theory have concentrated on the effect of shear deflections and
rotatory inertia on the natural frequencies or on the velocities of
propagation of elastic waves,

It is evident that solutions for the flexural response of
a beam according to the Timoshenko equation are difficult to obtain
and evaluate, Thus it is advantageous to apply the Bernoulli=Euler
equation whenever possible., It is important then to determine the
veracity of the Bernoulli-Euler equation under various conditions as
compared with the Timoshenko equation and to define its region of
usefulness, It is desirable to have a general solution of the
Timoshenko equation to be applied outside the range of utility of the
Bernoulli=Euler equation,

The geries or mode superposition form of the solution of the
Bernoulli=-Euler equation has been universally found to be convenient
for routine engineering calculations., It is believed that the same
benefits will acerue to the mode superposition solution of the
Timoshenko equation, For this reason, and since a comparison is to
be made with the mode superposition solution of the Bernoulli=Euler
equation, it was decided to attempt to derive a general mode super=
position solution of the Timoshenko equation. The absence in this
Lhesis of the flexursl wave type solution is not meant to deny the
importance of this type of solutlon,.

This thesis presents the generd solution in series or mode

superposition for the flexural response of a uniform beam described
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by the Timoshenko equations. Instead of the usual single Timoshenko
equation in one variable, two simultaneous equations in two variables
are treated, This results in a simpler statement of end conditions
and simpler expressions for the elastic bending moment and shear
force. An orthogonality condition is found which permits a solution,
In addition to the general solution, the solution for the flexural
vibrations in a uniform, pin-ended beam is presented, For the special
case of a uniform, pin-ended beam subjected to a transient concentrated
force at the midpoint, the elastic bending moments and shear forces
are calculated and a comparison is made of the Bernoulli-Euler and
Timoshenko solutions,

Although well known, the general solution of the Bernoulli-
Euler equation is presented for convenience and for comparison with
the solution of the Timoshenko equations. Several special topics of
importance in the application of the Bernoulli-Euler equation are

discussed,



I. EERNCULLI-EULER THECRY,

-

1e Sclutiocn by Supverposition of Normal Modes,.

This form of the solution can also be referred

to as the solutlon in terms of standing waves or as the

Aecording to the well known Bernouili-Euler theory,
the vibrations of an undamped elastic beam are described by

the equation (Ref. 1):

8~ 3%y 8%
- EI “*% * f)ﬁ -—%n =y (x, t), (1)
B% Ox %

By way of review, this eguation assumes thet plane sections
remain plane in bending end that the bending slopss ars aslways
smalle The equation also requires that the line of centroids
be a sbreight line, thal the principal axes of the cross
gsctions form twe principal planes, and that the loading be
applied in one of these principal planes. The equation
neglects shear deflections and rotatory inertia forees., If
the beam is wniform or prismatic, the equation of motion
becomes:

@4

Tl S 4 fa =y (x, t). (2)
K @t



¢n(%} iz the nth modal shape or characteristic function and

q?{t} the nth generalized coordinate,

Define the generalized masses and forces as:

i

1
= 7 L% < )
M f@ prlgEI"ax (4)

1
o (+) = f@ B () v (x, t) ax. (5)

Thern, by virtue of an orthogonality condition, the generelized
coordinates are the sclutions of the ordinary differentiel

equations:
ve 2 N
4%; . t = @
Mg (t) + M W7 q (t) =0 () (6)

Define the dynemic amplification factors as:

%
ﬁﬁ(t} = W “ »fg aﬁ('t} sin u)n {(t = C)ax
(7)
oo ()
a (t) = ==



The sclubion of the equation of motion, eq. (2), in terms

of the defined quentitles, is:

o Q0 max
I3 - L £ S
y (%, t) = ‘ZE:Q ﬁmfﬂ} > umiﬁ)»
noF o W

D

(8)

The guantities of eq. (8) have a simple physical significance.

O max
2wy () is the response of a single degree of freedom

M ‘A)2
noon
; . , . . 2
oscillator such as iz shown in Fig, 1. Since %% “)m iz the
Qnmax
spring constant of the oscillator, — is the staille
Mow
n n
response to the maximum force, ﬁn(t) is the usual dynemic
amplification factor which is the ratio of the dynamic
regponse bo Tthe maximum stabtic response.
From a strueturel viewpoint, the elastic forces
are usually of more interest than the displacements.

From olementary beam theory, the bending moment and shesr

fores are:

N
0 a“f (x) Qomex
M (x, t) =BT S. 2 R u(£)
n =1 dx M ow -
o 0
«  &f (x)  Qmex
7 (x, t) =EI >, = — u_(t)

n = i ax ¥Mow
1) Il

(10)
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stress distribubion,

An alternative formulation of the sclution has
the advantage of more rapid mode convergence (Ref. 394)
This formulation separates the sclubtion into two parts, one
of which ig the asbtatlc sclubtion to the applied force at each
instant. The other part of the solution mey be called the
dynemic pert since it is a function of the rapidity of

loading relative to the nsturel periods of the beam, The

slternative formulation of the solution is:

vy (xy t) = ’ﬁﬁynixa t) + ymat{x, t)

w Q_max
Vaynts ) = nZM Fox) =g [ (1) = 2 (1))

(11)

M (x, t) = f@éyﬁ(:fc, t) + Mgmt(x, t)

= @zﬁﬁ(X) Q, max

M, (x, t) = EI — & [u () - a_(t)]
dyn nzm:@ M ow? P a
n n
(12)
V(xy, t) = deﬂ{x, t) + vgt%(x, t)

) 34
w4 Qﬁ{x} Qﬁmax
den(x, t) = BI n;g;? 3 gxg)g [uﬂ(t) - an(%)]

onon (13)

dx



e

The quantity ap(t) is defined by eq. (7). The subscripts
stat and dyn refer to the static and dynesmic parts of the
aclution, The ststie sclution to the applied foree can be

obtained by elementary besm theory.
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2. Discussion of Pagic Tebulstions.

An important advantage of the form of the solution
ig that the gquantities in the solution can be tabulated for
a number of situations in & conciss form.

For exemple, the mode shapss %m(x} and their
derivatives are functions of the beam boundary conditions
only. There are siy common types of heawms elassified with
respect to boundary conditions - clamped-clamped, clamped-
free, clemped-pinned, free-free, free-pinned, and pinned-
pimned. Tabulastion of the wmode shepes and thelr devivatlves
for these six types will supply thet part of the sclution
for most dynasmic besm problems,

Similarly the other quantities in egs. (8) through

fdo

(13) are dependent on only a part of the total condition

b

placed on the besm, A number of basic tabulations cen be
assembled which will yield the solution in the mejority of
dynamic beam problems.

irst three derivatives
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are tabulated in Ref. (5) for the first five modes for five
of the six common types of beams. The mode shapes for the

sixth type, the ploned-pinved beam, are ordinary trigonometbrlic

£

sine

wt B



~11=

The mode shapes tabulated in Ref. (5) satiszfy the

normelizing condition:

1 Ly
f fo(x) ax = 1. (14)
0O

The general Fform for the nth mode shaps is:

(

2) _
n o8 P o5

ﬁﬁ(x} = Qij} sin P n* G

~(3) , (4) 457
+ Qﬁ sinh @ nﬁ + g;ﬁ CO8n Pﬁ A (?ﬁ}

The dimensionless guantitiss F;ﬂl, celled characteristic
numbers in Ref. (5), are the number of spetisl radiens
in the hermonic portien of the nth mode shepes. The nabural

frequencies W n BT functions of P,nla

w, = (D (g% (e)

The values of @ ml for five of the six common types ol besnms
are tabulated in Ref. (5) for the first five modes, P nl
for the sixth type, the pinped-pinned besm, 1s simply mw.

In view of the normalizing condition, eg. (14),
the generalized masses defined by eq. (4) are identical with
the bean mass,.

The generalized forces Qﬁ(ﬁ} are functions of the

mode shapes and the spatial distribution of the applied forcs.
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They can be obtained by an analytical or graphical integratio
of the defining =g . {8). For the gpecial case of a transverss
concentrated force F(t) applied at the polnt z = X?Q the

=nerallized forces ars:
L 4 4]\' Y
Q () =4 (x) Ft). (17)

For the case of an applied bending moment M, (t) at the point

L the gensralized forces ares

|
o (t) = —% 3  (t), (12)
X

The evaluation of the generalized forces %ﬁ(%} in these special

can be determined dirscbly from the dabulated mode shapes

2]
4
o
o
jo)
¢

end first derivatives found in Ref. (5).

The dynamic amplification factors uﬁ{%} are functions
of the bime characteristics of the generalized forces relabive
to the natural frequencies W o They can be debtermined by an
analytical or graphical integration of eq, (7). The solution
for the zpecial case of 2 hall sine weve pulse will be cone
sidered in this paper. A graph of this speeisl pulse is shown
in Fig, 2, 4 single pulse force such as this was chosen
becauss the simpliciby of the solution affords a clsar Insight

into themture of the transient response, A step pulse was
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not chosen because a variation of pulse duration does not

change the rate of loading and unloading. Variation of the
halfl sloe wave pulse duration changes the rate of loading

and unloading and resulis in variation of response from
impulsive to static, The integration of eq. (7) for the special

case of & half sine wave pulse yields:

i wnt‘ﬁ v
ﬁm(’t} = ST [sin Wt-—/—— sinwg ]
_ n 1 1
wﬁt‘? T
for 0<% <1 (19)
- %
1
- 1 e s
‘uﬂ{t) = — o E [(1 + cos ‘*’n%) sin w b
—
Wn™ v
. %
- sinw t. cos wﬁ%} for t?f’; 1. (20)
The coefficlents
W “t.%
1 T 1 + cos Wiy
W wt * w wt * T w
_ 1 _ 1 _ 1
&
wtm s W t,} w wt, w
gin wit
and 1
T wt
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are tabulated as functions of w ti on Pigs. 3 and e
It will be noted that the first two coefficients become
discontinuous a2t W t? =7, 1t was therefore necessary to
plot the amplification factors u{t) in the neighborhood of

w t, %?rfarﬁﬁi‘ <1on Fig, 5,
1
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3, Discussion of Belative Begsvonse in the Higher Hodes,

Effect of Concentration the Transient Forge

sy

=

in Space and in Tine,.

The modal techniqus of dynamic beam analysis is a
useful, efficient method if the convergence of mode response
is sufficiently rapid thalt only a reasonable pumber of modes
need be considered, It iz important, then, to consider the
convergence of mode response for various circumstances in
order that the region of usefulness of the method may be
defined.,

The effect of the variation in spatial distribution
and time characteristies of the transient force on the con-
vergence of mode response will be consldersed., Specifically,
the effect of the concentration of the transient force in
space and in time will be determined,

In sbtudying the sffect of concenbrabion of ihe

®

transient force in time, Fig, 6 will be useful, This is a plot

of the maximum dynamic amplification factors for a half sine
wave pulse as a functlon of the significant parameter (J ﬁ@.
The maxima are shown for two periods of time - during the

loading and subsequent to the loading. Large W %% corresponds

to essentially static response, For W tg < 7y the responss
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is essentially impulsive,

Case of a Spatiallv Concentrated, Transverse, Half Sine HWave Pulse,

Consider the offect of 2 varistion in the time duration
of the force on the relative response in the higher modes, I
the force is slowly spplisd and the response is essentlially
static in 211 the modes, it can be shown from egs,. (@} and

{10} that the contribution of the nth mode to the shear force

and bending moment responses is of the order:

Fom 0 < L (o -
For U = r <1 (4 (x, «23)}& =
1 ‘ n
(V(x, 1)), ~ +
? n n
t y 1
- M U
For T 2 (M(x, ti)ﬂ 3
! n
(V(x, ), ~ . (21)
n

The mode convergence indicated by egs. (21) is an envelope,
None of the modes will contribute more than this, The solution
convergence 1s actually better than indicated by egs. (21)
because, at any point on the beam, some of the modes will be
positive and some negative, In order to establish the validity

of egs. (21), 1t is only necessary to study the quantities in



D

oy, % . g I 3 b 2
eqs. (9) and (10). If the mode shapes ﬁf{xi are normalized
&

)

- pr o -
and n”. The meximum generslized forces Qrmﬁx are of the order
of F max. The generalized masses are identically equal, The

. . 2 .
natural Trequencies n vary as n°, I the response 1s
A
essentially static, the maximum dynamic amplification factors

%
approach unity for the period 0 < g < 1 and diminish within
i

1oa s ‘ , ;
an envelope T for the period > 1. The mode convergence

given by egs, (21) occucrs when all the natural frequenciles
yield values of the parameter W t? well to the right of the
hump in Fig. 6.

If the forcs is raplidly aoplied,; some of the modes

mey be sssentially dmpulsively excited. These modes are

those for which W %E < Ty FoOr W ﬁﬁ << 1, the contribution

£y

of the nth mode to the shesr foree and bending moment responses

of the ordsr:

e ]

L

For O = L < 1 (M{x, t))_ ~ %2
= tﬁ - n
(Vix, )~
L rit. \
For ¥ 21 (M{x, t)i_ ~1
1 n
{V{Xy §>)ﬁ = T % {22}

For ubt? < 7 but not small, the mode divergence is more nearly:



+
For ¥ 20 Mz, £))_ ~1
1
(v, tﬂm ~ D, (23)

It is evident from egs. (22} and (23} that, when
some of the modes ave essentially impulsively excited, the
response in these modes must all be calculsied. Even in
the most rapld loading problem, however, only s finile pumber
of modes will be impulsively excliited, All the higher modes
will approach static excitation, The convergence of the mode
response in these higher modes is given by eqs. (21), The
convergence is good snough that only 2 few of the essentially
statically exzclited higher modes need be considered,.

A more graphiec presentation of the effect of the
concentration in time of & spatlally concentrated force is
given in ¥Fig, 7. The comparative responss in 2 number of
the modes was calculated for the special case of a pin-ended
peam wilth 2 concentrated hslf sine wave pulse applisd at the
midspan for the static case, the case where W 1%? =1 /10,
and the impulsive case, The static and impulsive cases behave
{(22), The case where W

as predicted by egs. (21) and tﬁa = 7/10

1

(
roughly follows eqs. (22) and (23) for the first few modes

snd eqs. (21) for the higher modes.
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Caze of a Spatially Concentrsted, Half Sine Wave, Bending

Pt i

Moment Pulse,

The contribution of the nth mode to the shear force
s 5 P’ & 3 g
and bending moment responses is given in this case by egs. (21)
through (23) if they =sre all multiplied by n, The only

fferent from the
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he generallzed forces.

In this czse, the generalized forces are given by eq. (18)

]

sud are propovtiosasl te the Cirst derivallves of bhe wmods
shapes, Since the first derivatives vary as n, the maximum
ized forces are of the order nf max,

it is evident thot an applied bending moment sxcibes
the higher modes more than do spatially concentraied forces,
A more graphic presentation of the response to an applied
bending moment relative to the response to a spatlally cone
centrated force is given in Fip, 8, A modewise comparison of
only the static response is shown since cases of responss to
more rapld losding show the same relationship.

2 .7

Ceze of s Uniformly Distributed, Transverse, Half Sine Uave Pulse,

The contribublion of the nth mode to the shear fores
and bending moment responses is given in this case by egs. {(21)

through (23) if they are all multiplied %Jy ~ provided thet the
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Concentrated Force Bending Momont

Bending Shear Bending Shear

n Moment Force Moment Force
1 100 10C 100 100
3 1.1 33.33 33.33 100
5 4,000 20 20 100
7 2,041 1429 14429 100
9 1.235 11,11 11,11 100
1 « 826, 9.091 9.091 100
21 02268 4762 4.'762 100
31 21041 3.226 3,226 100
51 .03845 1.961 1961 100

(Expressed as percent of Cirst mode respouse),

FIGURE 8

MAXTMUM MODEWISE RESPONSES, PIN-ENDED BEAM, CONCENTRATED HALF
SINE WAVE SLOJLY APFLIED FORCE AT THE MIDPOINT OR BENDING MOMENT

AT THE END,
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Concentrated Force Distributed Force
A =1/20 A=1/4
RBending  Shear Rending Shear  Bending Shear

n  Moment Force Moment Force Moment  Force

1 100 100 100 100 100 100

3 11.11 33.33 11.02 33.06 8.942 26,83

5 4,000 20 3902 19,51 1.931 9.657
7 2,041 14629 1.941 13,59 2915 2,041
9 14235 11,11 1,136 10,23 1372 1,235
11 +8264, 9.091 » 7281 8,010 LA814 1,995
21 22268 44762 <1372 2,881 . 0261 o 5474
3 « 1041 34226 . 0278 8620 L0034 <1041
51 .0385 1.961 . 0062 3182 ,0018 .0828

(Expressed as percent of first mode response) .

A = length of distribution of force,

FIGURE 9

MAXIMUM MODEWISE RESPONSES, PIN-ENDED BEAM, CONCENTRATED OR

DISTRIBUTED SLOWLY APPLIED HALF SINE WAVE TRANSIENT FORCE

AT THE MIDPOINT,
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L. Discussion of the Total Response.

In the preceding section the relative response in
the individual modes was discussed. This leads logically to
the consideration of the total response, The study of the
total response will involve the summation of the significant
individual mode responses.

It is particularly important to consider the total
response since it appears that a popular conception concerning
it is not true. This is the idea that the dynamic response
of an elastic structure to a rapidly or suddenly applied
force is always less than twice the response to an equivalent
force statically applied (Ref. 6). It is apparent from
Frankland's work that this is not true (Ref. 7).

The quantity that will be discussed here will be
called the "dynamic load factor®, It is defined as the ratio
of the maximum dynamic response at a point alternatively to
either (1) the maximum static response at the point or (2)
the overall maximum static response., It is believed that
the overall maximum dynamic load factor defined by (2)
will be the more valuable as a design criterion since it is
the best measure of the most severe condition in the structure,

In this section, the dynamic load factor will be referred to



-3

as DLF(x) with appropriate subscripts -- M or V to indicate
bending moment or shear force, D to indicate small damping,
and 1 or 2 to indicate which definition applies.

4 general discussion of dynamic load factors in
as simple an elastic structure as a uniform beam is difficult,
llere, only a few espocially severe cases can be discussed,
A step force was chosen since it produces relatively simple
results, is severe, and since it is an addition to Frankland's

disecussion where step excitation was also used,

The Case of a Spatially Concentrated, Step Force Apovlied at

the Midspan of a Pin-Ended Bean,

The dynamic load factors for the bending moment

are, from eq. (12):

. (20 = 1)ux
& sin cos W 4
[DLF(0)], = 1 + 4 [ (-1)" il (20-1) ]
. * nz=1 (2n - 1) 7°
time
HaXe
(24)
(2n - Dmx W
2% o n sin 1 cos (21:1--1 )t
[DLF(x}],, ==+ 8 [ (=1) &1
we 1 n =1 (2n - 1)% 7°
time
NgXe
(25)

It should be noted that the maxima indicated in egs. (2&)



and (25) are time maxima, It does not appear to be feasible

or possible to evaluate series of the type in egs. (24) and (25)
enalytically. The series will evidently have to be summed
graphically. Things to be considered in such a summation will
be discussed next.

First, a series in which the absclute values of the
terms form a divergent series cannot be treated since there
would be no limit to the number of terms which must be summed,
Second, it is necessary to determine whether the series is
periodic in time or not, If the series is periodic, it is
only necessary to plot the terms of the series through one
period, If the series is non-periodic in time, this is not
possible. In either case, an upper bound can be obtained by
taking the sum of the absolute, time-maximum values of the
terms in the series.

In the special case of a pin-ended beam, the natural
frequencies all bear an integer relationship to the fundamental
frequency., In this case, it is evident that the series of
eqs. (24) and (25) are pericdic in time with the period of the

fundamental., The terms of eqs. (24) and (25) vary as 15 and
n

the series is always convergent, The series can be evaliuated
by plotting the significant terms during a fundamental

period and summing.,



However, this is laboriocus and it is easier 1o
consider first the bounding values of egs. (24) and (25).
The bonnding value of the series is the sum of the ahsolute,
time-maximum, values of the terms, The bounding values of

egs. (24) and (25) are:

(2n - 1 21!}(]

o« ]sin
[DLF(x)],, <1 + AN 1
M1 x QZ;;1 (2n - 1)2 ﬂz
for 0 < x<1/2 (26)
oo lsin§2n oo 12’!73(’
[DLF(X)]MZ < %; + 8 1

n=1 (2n - 1)2 W2
for 0 < x <1/2 (27)

Egs. (26) and (27) were evaluated for a number of points on

&

the beam and were plotted on Fig, 10, labeled = 0, The

o

¢

dynamic load factors, defined by egs. (24) and (25), were

also plotted on Fig., 10 for x = 1/8 for the undamped case % = U,
c

An examination of the curves labeled % = 0 on Fig., 10
reveals that the bounding value of the dynamic lgad factor,
[DLF(;;;):Lﬂ is always greater than two except at the loading point
where it 1s identically two, The bounding value of the
dynamic load factor, [DLF(X)]MZ’ is always less than two except
at the loading point where it is identically two, At the

time t = 7/ W 1> €US. (24) and (25) are equal to 2 and 4x/1,
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These values are lower bounds on the dynamic load factors
and are shown on Fig, 10

It was desired to obtain some measure of the effect
of small damping on the dynamic load factors. One of the
conclusions of Mindlin and others (Ref. 8) was that the
initial mode responses were insensitive to the law of damping
for small damping, Another conclusion was that the damping
expressed as a percent of critical damping appeared to be
the same in all the modes, With this in mind, the effect of
small damping was taken into account by applying to each
term of the series of egs. (24) and (25) the decay function

e
£ ow
e, (2n-1) K
e

&
e w(2n-—1 )t

S e e

[DLF(x)]Mm =1 + % [
1

. §2n - 12wx
b} co

w
. S 1 8 (21’1 - 11"5
2 2
(2n - 1) 7 time
MaX,e
for 0 < x <1/2 (28)
c
2w t
o c (2n~-1)
= 2% n c
[DLF(:&)]MD2 T re [ 1?31 (-1)" e
2n = 1)mx
. sin T cOS 00(2n _ 1)t
(2n - 1)2 w2
time
max

for O é x <1/2 (29)
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Eqs. (28) and (29) can be evaluated graphically. However,
it is easier to consider bounding values,

Since the fundamental mode predominates in the
solution, the series in eqs. (28) and (29) will, for small
damping, be maximum in the neighborhood of the time when
the fundamental mode reaches its first maximum, t = 7/ 7°
A close approximation to the bounding values of egs. (28)

and (29) can be achieved by evaluating the series of the absolute,

time-moximum, values of the terms at the time t = 7/ w 1°

W

a oo - % 5?:1 ™ ]sin(gg—i*llggl
C
erG)hypy <1+ 5 Z © e 2 R
n =1 (.<.n - 1) ™
for 0 <x < 1/2 (30)
c h)$2n~12
- - < " W-lsin(zn -1 WXI
2x 1) 1 1
[DLF(x) ], < 2% + 8 e .
MD2 = 1 n§;:1 (2n - 1)2 ™
for 0 < x <1/2 (31)

Eqs. (30) and (31) were evaluated for s number of points on

the beam and for wvalues of % of 0,01 and 0.05. The results
c

were plotted on Fig. 10,
The dynamic load factors for the shear force

are, by eq. (13), the identical expressions:



= cos(gg‘ifllﬂz cos W

t
N +4[Z (-1)° e

n =1
time
maXe

(32)

It is not possible to treat the dynamic load factors for the
shear force in the same manner as for the bending moment
since the absolute, time-maximum, values of the terms in

the series vary as 1/n, causing the series to be divergent.
A bound on the dynamic load factor apparently cannot be pro=-
duced, However, the lower bound is everywhere equal to

two since eq. (32) is everywhere equal to two when t = 7/ 1

Case of Uniformly Distrilbuted, Step Force Applied to a Pin~

Ended Beam.

The dynamic load factors for the bending moment are,

by eq. (12):

. . (2n - ‘ll'n}g
[DLF(x)]... =1 + & [ :E: i 1 cos “%Zn-1)f
i x(1 - ":}f) n =1 (2n - 1)3 773

time
MBXKe

for 0 < x<1/2 (33)

e -sin(-—'——‘"l“nl_ LT 05 W
n =1 (20-1)%

(2n-1) "%

[oLF(x) ], = 2 (1 - %) + 32 [
time
max.

for 0 < x < 1/2 (34)



The absolute values of the terms in the series in egs. (33)
and (34) form a rapidly convergent series, Since the series
is periodic in the pericd of the fundamentsl mode, the dynamic
load factors can be determined by a graphical summation over
one fundamental period,

However, it is easier to consider the bounding
velues of egs. (33) and (34). The bounding value of the
gseries is the sum of the absolute, time-maximum values of

the terms, The bounding values of eqs. (33) and (34) are:

< |sin
[DLF(x)],, <1 + —— E
M1 3 3
for 0 < x <1/2 (35)

- lsin(.’Zn - TETI'XI

[oLr(x)], < 2 (1 - %) + 32 1
e =1 1 nE;'; (2n - 1)3 "

for 0 < x <1/2 (36)

Egs. (35) and (36) were evaluated at a number of points on

the beam and were plotted on Fig, 11, labeled % = 0, The
c

dynemic load factors are identical at x = 1/2. This value
was determined graphically from eqs. (33) and (34) and was

plotted on Fig. 11,
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An examination of the curves labeled % = 0 on
c

Fig. 11 reveals that the bounding value of the dynamic load
facotor, [DLF(x) ]}Vﬂ s 1g greater than two except at the ends
of the beam where it is identically two, The bounding value

of the dynamic load factor, [DLF(X)]M2 is less than two

F)

except near the center of the beam where it is larper. At

time t = /g, 19 €as. (33) and (34) are equal to 2 and

a

fﬁ (1 - %). These values are a lower bound on the dynamic

load factors and are shown on Fig. 11,

The slightly damped counterparts of egs. (33)
and (34), treated a8 in the case of a concentrated force,
ares

c
-—-w
c, (2n—1)t

3 81 =
(DLF() ]y =1 *';"*""”§7 [ §::1 -e

=
it

) sin (EBI:lIEK cos u)(Zn _ 1)t }
3 .3
(2n -1)° 7 t4me
maXe
for 0 < x < 1/2 (37)

c
-—w
c, (211—-1)t

[DLF (x) 1y, zlﬁ (1-%) + 3 [ > -e
n =1

1
(2n --1)3 -

for 0 < x<1/2

time
o (38)

Smwcosw(&—qf]
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Since the fundamental mode predominates, the dynamic load
factors, egs. (37) and (38), will be maximum in the neighborhood
of the time when the fundamental mode reaches its first

meximum, t=1/ W 1+ A close approximation to the bounding
values of egs. (37) and (38) can be obtained by evaluating the
series of the absolute, time-maximum, values of the terms

at the time t = 7/ Wqe

oo C w
2] c 1
{DLF(X)]MD,‘ S Z__ e
x(1 - ‘i) n =

(2n - 1277):’

{s:‘m 3

. : 33 for 0 < x < 1/2 (39)
2n = 1

W
£ §2n-12 T
[+ (e} w
: < A% 4 _ X ., c 1
[DLr(x) g, = 55 (1 1) + 32 n§1 e
lSiIl ‘2}1 ot T)WXI
1 for 0 < x < 1/2 (40)

(2n - 1)3 1r3

Egs. (39) and (40) were evaluated for a number of points on

the beam and for values of'z' of 0,01 and 0,05, The results
c

vere plotted on Fig, 11,
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The dynamic load factors for the shear force are,

by eq. (13):

§2n - ‘llv‘x
cos w(2n _ l)t

©  ~COoS T
[DLF(x)],, =1 + >
vi 1-27% P71 (m-1)7
time
max,
for 0 < x < 1/2 (41)
x ©  —cos (20 -11 TX cos ‘*)(211 b
= - s B
[DLF(x)]y, = (1 -29) + 8 Z =
n =1 (on - 1)~ 7 time
max.
for U< x < 1/2 (42)
The bounding value of the series is the sum of the absolule,
time-maximum, values of the terms., The bounding values of
eqs. (41) and (42) are:
o . ]cos(gll_.i;m'
[DLF(x) ]y, 1+ ——— 3, 3
1—2% n=1 (2n - 1) w
for 0 < x < 1/2 (43)
o lCOS(zn -11 lwxl

[DLF(x)],, < (1 - 2%) + 8
iy = 1 n =1 (211-—1)21*(2
for 0 < x<1/2 (44.)



Egs. (43) and (44) were evaluated for a number of points on

the beam and were plotted on Fig., 12, labeled % = 0, The

C

values of eqs. (41) and (42) when t = 7/ W 1» the lower

bounds are also shown on Fig, 12,

The slightly damped counterparts of egs. (41) and

(42), treated as in the case of a concentrated force, are:

c
g o T, “on-1t
] = + -
{DLF(X)]Vm 1 X Z e
1 =2 T e =
(21’1 - 11173{ w
cos 7 cos (2n - l)t
2 2
(20 - 1)" w time
max.

for 0 < x <1/2

C

oo e w(2n-—1)t
= 0 & - c
[DLF(x)]yp, = (1-2%) + 8 [ n§;] e
2n - Vmx
cos 1 cos w(Zn _ 1)“t
® 2 2
(2n - 1) time
MaX,

for 0 < x <1/2

Since the fundamentsl mode predominates,the dynamic load

(45)

(46)

factors, egs. (45) and (46), will be meximum in the neighborhood

of the time when the fundamental reaches its first maximum,

t =7/ w1+ A close approximation to the bounding values of

eqs. (45) and (46) can be obtained by e valuating the series of
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the absclute, time-maximum, values of the terms at the time

(o8]
8 c 1
(oLFe) Jypy 51+ —— EZ: e
1 -2 1 n =1
‘COS §2n i 1 )TTX’

(2n - 1)2 7~

for 0 < x<1/2 (47)

ks c w
X ¢ 1
[DLF(X)]VD2 < (1 -2 1) + 8 nzz' e

|cos Lg%*:~llﬂzl

55 for C £ x < 1/2 {48)
(2n - 1) 7

Egs. (47) and (48) were evaluated for a number of points on

the beam and for values of %— of 0,01 and 0,05, The results
c

were plotted on Fig., 12.
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SUMMARY
Spatially Soncentrated Step Force Applied at the Midpoint of

s, Pin-BEnded Beam,

(1) The dynamic load factor for the bending moment
referred to the maximum static bending moment at the
point is larger than two except at the midpoint where it
is identically two.

(2) The dynamic load factor for the bending moment
referred to the overall maximum static bending moment
is less than two except at the midpoint where it
is identically two.

(3) The dynamic load factor for the shear force is
identical when referred to either the maximum static shear
force at the point or the overall maximum static shear
force,
The lower bound is everywhere two, It appears to

be impossible to supply an upper bound in this case,

Uniformly Applied Step Force Applied to a Pin-Ended Beam.

(1) The dynamic load factor for the bending moment
referred to the maximum static bending moment at
the point is larger than two except at the ends where
it is identically two.

(2) The dynamic load factor for the bending moment



referred to the overall maximm static bending
moment is less than two except near the midpoint
where it is larger than two,

(3) The dynamic load factor for the shear force
referred to the maximum static shear force at the
point is larger than two except at the ends where
it is identically two,.

(4) The dynamic load factor for the shear force
referred to the overall maximum static shear force
is always less than two except at the ends where it

is identically two,

The proof in (Ref. 6) that the dynamic load factors
of elastic structures cannot be greater than two for rapidly
or suddenly applied forces is incomplete. While it is true
that none of the modes will be excited to more than twice the
static response, 1t 1s not necessarily true that the total
response at each point will not be greater than twice the
total static response at that point. In the static response
at a point some of the modes make a positive contribution
and some a negative contribution, In the dynamic response,
1t is possible thal a Lime may exlist for each point such lhal
the modes combine more favorably than in the static response,

It is apparent that the behavior of the dynamic load

foctor depends on the rclative mode vesponsc. If there is a



-

rapid convergence of mode response, the system approaches a
single degree of freedom in behavior. The "factor of twol
criterion is approached in this cese, The case of the most
rapid mode convergence covered in this section is that

of the bending moment response in the case of a distributed
force in which the mode responses vary as 1/n3. It can

be seen on Fig. 11 that the dynamic load factors are nsar those
predicted for a single degree of freedom system.

The mode responses vary as 1/n2 in the bending
moment response in the case of a concentrated force and the
shear force response in the case of a distributed force.
Figs. 10 and 12 reveal that the dynamic load factors in these
cases are not close to those predicted for a single degree of

freedom system.
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5« Discussion of the Independence of the Boundary

Conditions of the Higher Mode Responses.

In the study of transient behavior of beams, it is
generally most convenient to study the response in the
particularly simple case of a pin-ended beam, If it can be
shown that the higher mode responses approach independence to
the boundary conditions, the mode responses determined for the
pin-ended beam can be extended to other beams, O(mantities
such as the dynamic load factor, which appears to be s funection
of the convergence of the higher mode responses, could be extended
from the case of a pin-ended beam to obther beams. The concept of
higher mode independence of end conditions has been used by
Williams in determining higher mode shapes and frequencies (Ref. 8a).

The boundary conditions affect the transient behavior
of a beam through their effect on the mode shapes, Directly
or indirectly, the quantities in the solution are functions of
the mode shapes, Consider then the effect of the boundary
conditions on the mode shapes.

It can be shown that the higher mode shapes for the
comnon boundary conditions =~ pimned-end, free-end, bullt-in-
end = are harmonic except for a short exponential transition
near the boundaries. Consider s specisl case = that of a
cantilever beam, Take the origin of coordinates at the bullt-in-

end with the x axis along the equilibrium axis of the beam,
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end trensitions and are negligitle except neasr the ends.
It is convenient to find =nother form of eg. (51)
Be

incorporating the mode stending wave lengths. The mode standing

wave lengths aret
21 ¢

An aliernative form of eq. (51) for the higher mode shapes ls:

@ (x) = & [sin 2w e cos 2w —=
i ~{(n - Shr - QW‘;T; ] 27 3:; w
- (1) e + e 1. (53)

A was arbitrarily chosen to be unity which, in the higher
modes, approaches the normelizing condition, eg. (14).

Values of ﬁﬁ(x} given by eq. (53) are plotted near the ends
of the beam on Fig, 13 for the odd modes. For the even modes,
it is only necesssry to imvert the curves at one of the ends,

The exponentisl transitions give 2 significant conbtribution for

1
5 wave lengthy, N\ _s 2t the ends. The exact mode shapes approach

o

Y

e values glven by eq. (53) very repidly as n becomes larger.

The exact third mode shape for a cantilever beam is everywhere
R Q e 2 - 2 e

within 1 /oof the approximate shape give by eq. (53).

The derivatives of the mode shapes, in the case

2

of a cantilever beam, have expressions similar to eg. (53).
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In the nigher les e Tirst three
In the higher modes, the Tirst three

are, approximately:
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3,
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on Figs,.

derivatives given by egs. (54) through (56),
are plotited near the ends of the cantilever

14 through 16 for the odd modes., For the even

modes, it is only necessary to invert the curves st ono of

the ends,

(54)

55)

(56)

The exect derivatives of the third mode shaps of a
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cantilever beam agree everywhere within ?ﬁ/@ of the approximate
derivatives given on Figs. 14 through 16,

Consideration of other speclsl casss esgtablishes Lhal
the mods ghaves resulting from any boundary conditions are
harmonic except near the ends of the beam. In the neighborhood
of built-in or free-ends, the mode shapes and derivatives
given in Figs. 13 through 16 are general for the higher modes.
For example, the exact mode shapes and éefiv&ﬁive@ for the
third mode of a free-free beam agree within ?O/@ of the
approximate values for 2 cantilever beam exceplt near the bullt-in
end., For pimned-ends, the higher mode shapes and derivatives
are harmonic to the end of the beam.

Since the higher mode shapes and derivatives are
harmonic except near free or built-in ends, independent of
the boundary conditions, it can be egtablished that the higher
mode responses a half standing wave length or more from a
boundary are independent of the boundary conditions, Assume
that the harmonic part of the mode shapes is normalized to
unit amplitude. The generalized forces, defined Ly eq. (5},
depend on the foree distribubtion relative to the mode shapes

end amplitude. The generalized masses, defined by eq. {47,

o]

converge on the mass of the beaw in the higher modes, The
natural freguenciles are, from eq. (1632
., LT
AR

= ) 1 -
wﬁ ( g} XE ® {JB?}
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They are functions of the speed of sound in the material and
the radius of gyration of the cross section relative to the
standing wave length of the modes, The dyneamic amplification
factors sre functions of the relationship between the natural
frequencies and the time characteristics of the applied force,
1t i= evident that the response in the higher nodes
a half standing wave length or more from a boundsry is
independent of the boundary conditions. The response is a
function of the gpatiel distribution and time cherscteristics
of the force, the total mass of the beam, the properties of
the material, the cross section, and the standing wave length.
If 2 mode in each of two beams with different boundary con-
ditlong compare in these gquantities, the response in these
moedes will be comparable. Even the response nsar a boundary
iz of the same order of magnitude since the mode shapes and
derivetives are never more then Jpg‘ﬁimﬁﬁ their vealues else-

where on the beanm,
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The equations of motlon considered here are those of
Timoshenko (Bef. 1}. Egs, (c) end (d) of this reference wers
used instead of the usual eq. (139). As will be seen, this
results In simplification of the boundary conditions and details
of the solutlon, These squations, modified to include an

arbitrarily distributed transverse foree, are, in Timoshenkols

terms:
8%y B o 0%y N
Bl —= + k'4G (== - ¥) - I — =0 (58)
@XZ Bx f ate
2’;? 321 O
j:i& % - kKVAG {i”-“‘g- el Vo= wlx, t),. {59}
% &3 3%

ussd

]

Y ig the slope due to bending. The other symbols are a
in this paper, The derivetion of these equations involves the
statement of the equilibrium of the linear and angular,
elastic and inertisl forces, The eguations require that the
slopes and deflections be small., It is assumed that cross

secbions remain plane in bending. The behevior of cross
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respect to shear deflections is nol so clear.

e assumed to vary over the cross

[
s
&
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b

section which reguires that they warp., Ho

sechtions lead to axial motion of the meterial which is not

thet cross sections in shear are free to warp but thal the
resulting axial inertia forces are neglected in the derivation,

£y

The equations require that the beam be prismatic and that
the force be applied in one of the principal planes,
An alternstive form of egs. (58) and (59) which
will be used in this paper can be oblained by a transformation

of variables to Ty, and Yo the deflection due to bending

and to shear,

Y ET, YT (61)

> 2 %
The transformetion of varisbles, egs. (60) and (61), yields

the equatlions of motiont

2,
4] = % -
> o (62)
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boundary conditions,

LY - .
Eqs. (62) and (63) can also be derived from energy

L}m

considerations utilizing Hemilton's Principle. In the process
of this derivation, the boundary conditions are generated.

here has been in the literature some questlon as
¢ the boundary conditions for the Timoshenko theory

£ 2

particularly for built-in ends. Some of the confusion resulted
from the use of the single Timoshenko equation in one variable
for which the boundary conditions are not simple,

-

Consider an element of 2 beam, The kinetic znd

potential energies of the beam element in vibration are

jos ) m2
0y, 8y . R 1 87y, 2
dRE) =5 pAGEtap ) @y PGy o
(6
1 3y = P @gy% 2
d(P.E,) = = K'AG (—=} dx + = EI ( > )} ax. (&
“ Ox “ Ox

Included in the kinstic energy are the energies of the trans-

verse mobion and the rotational motion, the latiter involving

L
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only berding. Energy in the axiel motlon caused by distortion
of the cross sectlons due to shear is neglechted, Included in
the potentlial energy are the elastic energles resulling from
the shear forces and bending moments,

According to Hamilion's extended Frinciple for non=-
conservallve systems, the mobtlon of the bLeam must be such

ag Lo result in a stationary value of the integral

-

’tm
“
f (K.E., = PLE, + W) gt
Y

where

1

W= \[\ wix, t) {yb + ys> dx, (66)
O

It is assumed that positive w(x, t) is in the direction of
positive Iy, and Ve The beam system ie non-conservative

A
only when an external force, w(x, %), 18 applied to the beam,

neglecting dawping. Hemilton's extended principle requires:

ty
S (K.E, -~ P.E. + W) dt = 0 (67)
2

Application of the calculus of variations to egs. (64) through

(67) yields:
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third integrsl wvanish
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eparately vanish,
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7 4
3% 3%
°b + BT "y - wix,t0 $ dwdt
3 I == = ulxt Yy f Gxd
Gx ot B
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% 4
(53, + &7)
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I
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%y, 1|
EL 3 | ey 7y 3
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7, 3y,
> S| — it = 0
rd Bx
ﬁ@ [y
(68)
(68) vanishes since varistions are

proper
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This

nishes, the arguments of

is true for the Th
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4, 2 v
7y, 87y, Ty,
EI + k'AG —= - 1 —— = 0 (69)
ax™ B3x° ax~ Bt=
2 2 2
oy ° T 180 ° 7s ( ) G Ts)
A ==t @ f e o RIAG === = (%, L), {70
f At~ S 3t~ 3~ ’ o

Eqs, (69) and (70) are the same as egs. (62) and (63) except
thet ogq. (69) is the first spatial derivative of eq. (62).
It is not obvious from the energy derivation that eq. (69)
will integrate to eg. (62).

The following end condibions will be considered ias

causing the third integral of eq. (68) to wvanish.

1) Pinned-and.
2) Built-in end.
3} Frag-snd.

For s pinnsd-end, the end conditicns are:

v, 8y, =0 (71)
5‘32‘:%
= = g, (72)
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vibration solution -- harmonic funchions in time and harmond

A more formal approach to the problem, the sclution
3

- p R
by Laplace transforms,has been made by Ufiyand (Ref. 9} for the

special case of a transverse step load applied at the center

of 2 uniform pin~ended beam, Ufliyand treated the usual sin
Timoshenko equation, However, this solubion has been shown

b

2 7%
to be incorrect by Goland and Dengler (Ref, 10) because o

¥y

incorrect boundary conditions which grossly simpilflied the
solution, In turn, Goland and Dengler supplied a Laplace
transform solution of the Timoshenko equation for the case
a transverge lmpulse in an infinite beam This sgolution is

%

difficult to evaluate except in the hypoth

’;

s and shear modull are equal. The solution of the

problem in a finite beam would be consliderably more Involved

and, as far as is knows, no solutions for a finite beam have

been obbained,
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for the frequencies and p . At this polnt, it will be assumed
that there are two real sets of frequenciss., This is necessary
for & physically plausible solution since egs, (62) and (63)

are fourth order im time. In the next Section, where the

he

j]

pecial cass of beam wilth

ot

general solution 1s applied to

pinned~ends, there are found to be two sets of real frequencies,

2 2
In general, two values of @ correspond to every value of W,

Tone sssumpblion of btwormsl sets of freguencles points
toward a solution of the forms:

&0 &0
, 1 & (2), « (2),.v o
ro 8 = 0 A0 o v 5 P Pl (a2
~ n = i - 7o g
= (1) (1) 5 (2) (2)
e {X *%;% E kil £ +"a EN ¥ /? % N i f’ y
T 5\ ¥s J n;‘% *fﬁ \x%) % {w r::;% ifﬁ (MJ qﬂ (“i;}. \@3}

£ oy F o o
I, () \ii)ﬁ
;ém}(%a _ Q{Z) api‘z * . E{f{ @Z; * . (11) e?n *
1 d “hn tn oo
(11) _
(11) ~ Po = (8)
- Bm\ e \%Z&j
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and (63) shows that
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ed by egs. (62

(1) 4
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The constants of egs. (84)
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It will be convenlent to normalize the mode shapes:

1
J BV + ¥ 0)? ax = 1 (98)
0
1 -~
B )+ ¥ x))? ax = 1, (99)
O

The normelizing condition plus the four boundary conditions
specify all the constants in the mode shapes and supply an
equation in W 2 and fB 2 which, with eq. (81}, permits

their evaluation, The determination of the four constants in
the generalized coordinates from the initial conditions requires

an orthogonality relation,

Derivation of an Orthogonality Condition.

In the solution of the initisl value problem, it
is necessary to have a relstion analogous to the orthogonality
condition which is useful in solutions having a single set
of generalized coordinates., The form of this relation is
not that of the usuasl classical orthogonality condition, This
condition is given by eq. (3.1) of Ref, (11) in terms of the
total deflection y and the bending slope q’ .« With a simple

transformation of coordinates, the orthogonality condition is:
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G 1 o
1
ﬁyh dy .
- — dx {(108)
0 ax | m ax
0

Maltiplying eq. (105) by EI and egs. (106) through (108) vy

k'AG, sum them as follows:

n n m
32
47y, dyy dyg
+ kTAG ::2 Vg = k'AG — _—
dx , dx o
m n n
2
dy,. a7y d7y
-F1 [—2 21 _xuey -
du axg .- éfz
n n "' n (109)
%y, dy dyy
- k4G ¥y, > + kYAG — e dx =
i ax ) ax dx
n m n
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‘ [ dyB dyb 1
dx n tm ax
m n 0]

The right side of this equation vanishes with the common

boundary condilions == pinned, tuilt=-in, and free~endsg ==

given by eqs. (71) through (76)., Substituting values of
3 2

d v a4y

3 and —gwg from eqs. (103) and (104) into eq. (109)
X

dax
and simplifying, the orthogonality condition results:
1

dyy dyy,
O [fa (v, * v4), (yb*ys)m+1}°(a’x“)n (-—d-;)m]dx=0
m # n, (100)

Solution of the Initiasl Value Problem.

Because of the form of the orthogonality condition, it
will be convenient to use for the initial values the total
deflection, the total velocity, the bending slope, and the
bending slope velocity, The initial conditions on egs. (82)

and (83) are:
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e \ 0 13 N
W o {4{ i WY % W{{:? ; oy )
at ! - U{jﬁ (“&’} %m \xZJj) at
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£=0
f’z} i
: A\ 7
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rgl2) AZ)e 3 1
' ,:E: B G = ) — g |
o L=0 (111)

oyl 1) | = agl g L apB (@),
f}{} ¥ l _ Z “‘"‘*ﬁ A q{%)({}} & z‘ L £ (\,;
Bx +3G o= dx s a =l dx
{(112)
5 g | = et el
yb{xﬂ o _ Z n x ﬁqn
ax ot 3 = dx at |
t=0 7 £=0
R £ H
= P P .
+ = e (113)
S £=0

\ (?}

(1)
Multiply eqs. (110) and (111) by (g M) + (%)) and sqs

(112) and (113) by

and integrate over the beam:
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afl (x)

dx

dx =

1 2
a yb(x, t)
Bx At
0 £=0

o zs“)u M aglM )
f 3 UL NALE
0 +=0

1 00 dﬁz)() d}ég)(x) dql(f)(t)
dx at

dx (117)
t=0

The orthogonality condition, eg. (100), apolied to the solutions,

eqs. (82) and (83), requires that:

1
f [ PRGOS SO )

0

o a") (x) a;éﬁj%x)]
Fo T e ax

dx = O m#Fn (118)

1
f [ pact®e0 « o0 160 + o)
0

P () af® ()
I g - ] ax =0

n#n (119)
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j Lpr Ve « e o 6o + o)
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| ax e
811 wvelues of m and n.

jasl

Multiply egs. (114) and (115} by § 4 and egs. (116) and

drst and third and the second

H3

{117} by ‘f I, Then add the

and fourth equations:

1 ( Y %
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0
{ Y
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LS “n m
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ﬁﬁii)(X} ﬁﬁé () (1),
¥ e )
f : dx dx 9y (0) ax
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g:::} A

# o . ,g§
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P T& dx 3t

dx {(122)
=0

Utilizing the orthogonality condition, egs. (118) through
(120), solve for the initial conditions of the first set of

generalized coordinates from egs. (121) and (122):

! oy (o) | gl )(x>
f | 06,0 p ) e )+ =2 g IE
Uy 1 ﬁ (
f [yﬁ(ﬁg)(X)Wg)(an*f (de > ]dx

0]

(123)
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J [M!O?A(ﬁ“)(x)w(”&))* ox 0L

I
dqg)(t) ] cf

o

dt 1 1 d¢(1)( )
=0 J [?A(ﬂm)(x)*@’“)(x))z ?I ( ) } dx
(124)

Similarly the initial conditions of the second set of generalized

coordinates may be obtained:

. , oy, (%) ¢(2)<x>
J [y(st) fﬁ(ﬁéz)(X)+W;2)(X))* s SD I ]dx
2),.n . "0
(0) =
qm J‘l[ A(ﬁ(?')( ) ‘}’(2)( ))2 T ( ¢(2)(x)) i\dx
x)+Y¥ X +
0 s § o
(125)
1 8%y, d¢(2>(x)
8y (x,t) A<¢<2>(x>w<2>(x>>+ =B | o1 ax
(2) ot |f 9x0t | §
dg,~(8)) Jy £=0 ( % =0
T dt | 1 o 2) (x)
+=0 J [?A(ﬁ(z)(x)ﬂ’(z)(x)) +f1( ) } dx
(126)

Define the generalized masses as:

1 d¢(1)( ) 2
1 Lt o g1 (2 e
0
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- [ g0+ P o1 (B2 ) | o
0

(128)
The initial conditions for the two sets of coordinates are:
(1) - (1), 4(1)
1 _ 4 « 1), L0
q, (0) = @ JO\ [ v(x, 0) £ AR v (x)
By, (x, +) a1 ()
+ yb@x S)I mdx ] dx (129)
t=0
(1) 1
dq '’ (%) oy (x, t
0] [ 7 gk -
t=0 ‘m 0 t=0
62yb(‘x, t) dﬂg)(x)
Yt | § T ] dx (130)
t=0
(2) ' (2) (2)
2)(0) = — b 2(x) + 2 x
0y’ (0) oy O[y(,mfmm() 72 (x))
5 (2)
VX, ®) U (131)
¥ dx S’I dx ]

=0



.y

o s + P )

] 1 By (x, t)
[ 5
+=0

2,
3 yb(xs 't)

Ax 5% (132)

dférgz) (x) ]

I e dx
dx

=0 ?

Egs. (129) through (132) are sufficient to specify the four

(1) ) (1) (2)
n n

’ in the generalized
n n

sets of constants C , and &

coordinates, egs. (88) and (89),

Solution for the Resnonse 1o an Arbiltrary Transverse Force.

From the solution for the initial value problem,
it is possible to find the solution for the case of a general
transverse force. Consider homogeneous initial conditions.
Determine first the result of an infinitesimal period of
loading, Instantaneously all the material of the beam begins
in transverse motion in shear, There can be no bending
deflections from a transverse force until shear strains build
up resulting in internal elastic forces and moments,

The initial conditions after an infinitesimal period

of loading dt are:

y{(x, 0) =0 (133)
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3 =0 (134)
X
£=0

a.V(Xo 'tv) = W(Xq tl dt

8t f Jy (135)

£=0
2

0 Y (Xa t)

b o

9% ot =0 (136)

t=0

From eqs. (129) through (132), the initial conditions for the

two sets of generalized coordinates are:

C11511)(0) = ql.gz)(O) =0 (137)
(1) 1
dqmat(t) _ 11) ‘J‘ (e ) (Qig)(x) . @£1)(X)) e
t=0 Mm 0 (138)
a0{? () 1 1 2) 2
mdt | = Fz—y J‘ wix, t) (¢m (x) + v (x)) dx dt
t=0 m o

(139)
From eqs. (137) through (139), the response in the two sets
of generalized coordinates, after loading for an infinitesimal

time dt, is:



1

. (1)
: sin W tsdt
) = =2 m f w6 @60 + 1 () ax
Mm wm 0
(140)
(2) 1
(2) ‘ sin W tedt ’ (2) ’ R (2)
q, " (t) = lef) mw(é) . w(x, ) (8" (x) ¥ " (x)) dx

(141)

The solutions for the generalized coordinates after a finite
loading period can be obtained by superposition in the manner

of the Green's function method:

t
(g = 1 f in M- v)an
a, ( MIS) w(:n) sin W (

0
1
J u(e ) B+ v () ax (142)
o
(2) ’ (2)
R}y . 1 2
A (t)—w J'O sin W (t -¥)ax

1
f e, 1) (BP0 + 1@ () ax (143)
0



Define the generalized forces and dynamic amplification factors

ass

RO f " o B+ 1 () ax (14)
O
2P w) = fl a(es 1) (B2 ) + B () ax (145)
0
w{D ) - w (1) ft -Q%;;STJ comw M —w) at (146)
o O mex
éa%)“@f)\ﬁt %;gg mmxugNtJth (147)

The solutions for the generalized coordinates in the general

case of transverse transient loading are:

(1)

(1) L g 18X (1),
(t) = : (t) (148)
Uy MIS) wéﬂ 2 Yy
(2)
(2) 4 - By e (2) 4 149

Combining egs. (82), (83), (148) and (149), the solutions for

the bending and shear deflections in the general case of



wf B

transverse transient loading are:

- (M) s
Tl ) = ;22:1¢;1)(X) ' M(?? NOE ) (150)
n n
(2)
S (2) . e (2
+ né—;1¢n (X) M(2I)1w (2) 2 un (t)
n n
- (1)
y (x5 t) = Z Wm)(x) - Qn — u )(t)
s n=q ® M(1) uJ(1) 2 n
n n
(2
[~ ) Q x
n n

This solution shows marked similarity with the general solution
for the total deflections in the Bernoulli-Euler theory, egs.
(8). The definitions of the generalized masses and forees

and the dynamic amplification factors given by egs. (127), (128)
and (144) through (147) are also similar in form to those for
the Bernoulli-Euler theory given by eas. (4)s (5), and (7).

The solutions for the bending moment and shear force in the

beam are:



G

= @ Ve
M(Xa t) = Bl [ Z L 3 ° M(‘ll; w(1) 5 'ué1)(t)

n =1 dx

24(2) (2)
a~g =’ (x) 2 “/max
n n

n =1 dx

W dW§1)(x) Q;1)max

. - . (1) t)
n = dx Mﬁ”wf}”z R

(2}, (2)

d@h (x) Qn max (2)

@ *1 3
Mgz) Lo(ij > o (t)] (153)

The solution given by eqs. (150) through (153) is
evidently sufficient., There are precisely the number of con-
stants in the solution to satisfy all the initial and boundary
conditions., It has been recognized (Ref. 11) that the solution
of the Timoshenko equation by a single series can not be
sufficient since the equations of motion are fourth order in
time and there are only two sets of arbitrary constants in
the single set of generalized coordinates., That criticism
does not apply to the given solution.

The solution is predicated on the existence of
two sets of real frequencies. The next Section reveals that

there are two sets for the case of a beam with pinned-ends,
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Y " > 2 1P .
An spplication of the defining equations, egs. (127) and

(128), ylelds the generalized masses:

(161)
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The dynamic amplification factors can be obtained by egs,
(146) and (i47).
The quantities in the solution, egs. (155) through

(163}, are easy to evaluate and tabulate ag was the case with
the golution Tor the Dernoulli-Duler theory, The two gets of
frequencies, eqs. (155) and (156), were calculated for solid
rectangular and solid circular cross gections and were plotied
in dimensionless form on Figs. 17 amd 18 , The mode

shapes and generalized messes, eqs. (157) through (162),
were calculated over the same range of n {%} for solid
rectangular and sclid clreular cress sectionsz and are
tabulated in dimensionless form on Figs. 19 threugh 21.
The genersliszed foreces and dynamic smplificstion factors can
be determined easily by eqs. (146), (147) and (163) from the
spatial and time chargecteristics of the applied force,

The nature of the soclution can be discerned by a
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(1)
Mn M(z)
n
m
m
n(ga Recbangular Circular Rectangular Circular
1 Cross Section Cross Section Cross Section COross Section
o U1 1001 1.001 1025 1022
.05 1.021 1.021 £9.73 48,78
o] 1,053 1,056 19,97 18,83
02 1.071 1,082 15,01 13.14
3 1,059 1.072 18,06 14..97
A 16044 1,056 23,80 19,00
0D 1033 1. 042 31.58 24459
1 1.010 1,014 97,93 72,66
1.5 1.005 1.007 208,9 153.2
Re5 1.002 1002 564, 64 411 .0

FIGURE 19

GENERALIZED MASSES, PIN-ENDED BEAM,

TIMOSHENKO THEORY,



(1) (2) (1), (2)
p o A A A
n == sin == sin—= sin BN
.01 1409 . 006 1£2) 1442
.05 1.290 .125 62.85 64,26
o1 1,034 381 19.61 21.02
o2 601 .813 84426 9.840
o3 . 363 1,051 6,198 7,612
ol +236 1,179 5.374 6,788
.5 2163 1.251 44979 6.393
1 « 046 1,369 Lol 32 5.846
1.5 »021 1.393 46327 5¢742
2e5 .008 1,407 4Le274 5.688
FIGURE 20

NORMALIZED MODE SHAPES, PIN-ENDED BEAM,

SOLID RECTANGULAR CROSS SECTION, TIMOSHENKO THEORY,
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(1) (2) (1) (2)
o B B Rz b
sin == sin == sin EN sin 9=
()
.01 1409 005 1439 1440
.05 1,303 o114 62,23 63,65
o1 1.066 « 348 19.01 20,42
o2 .H46 768 7.842 9.257
o3 =402 1.013 5,608 7,022
ol +265 1149 LTT75 6,189
o5 .185 16229 4e373 5,787
1 053 1.361 3.811 54225
15 .02/, 1.390 3,702 5.116
2e5 .09 1.405 3.646 5,060
FIGURE 21 .

NCORMALIZED MODE SHAPES, PIN-ENDED BEAM,

SOLID CIRCULAR CROSS SECTION, TIMOSHENKO THEORY,
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scrutiny of the tabulated elements of the solution., It is

deflections predicted by the Bernoulli-Euler theory in ihe
lover modes in slender beams. In the higher modes, it is

uspected that the shear deflections y_ will approach those

predicted by pure shear vibration theory. It can be shown ths

these suppositions ars correct,

An examination of Fig. 17 reveals that the frequen
(1)
W '’ are asymptotic to the Bernou 1li=-Buler freguencles for
FARY .
small values of n (E} corresponding to the lower modes in

- 7 .
slender beams, For larger values of n {I}@ porresponding to

4

the higher modesg, the freguencies W 5?3 are asympbobic to

the frequencies of pure shear vibrations. The frequencies
(2)

u)? on Fig, 18 have no such physical interpretation,

A
However, the additlon of the shear mechaniom of deformatlion
may explain the existence of two fregquencles since this

3

mechanism essentially results in each mode having two degres

i)
b

of freedom. Wnile more comprehensive than the common theory,

the Timoshenko theory is an inexact mathematical model and
the solubtion may not be factual,

Tn order to determine the nature of the solution,
the megnitude of the modewise deflection responses less the
dynamic amplifiecation factors were calculated and tabulated

Fig, 22 as functions of n {~) for the special case of a

on
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The bending moment and shear force responses, eqs. (168)
through (171), were determined for & number of modes and were
tabulated on Figs. 25 and 26 as the percent of the firsht mode
bending moment and shear force responses in the Bernoulli-Euler
theory, An examination of Figs. 25 and 26 shows that the
modewise bending moment and shear force responses in the two
theories become progressively divergent in the higher modes.
This is due to the divergence of the frequencies in the two
theories in the higher modes. When modes are impulsively
excited, the dynamic amplification factors vary linearly as
the natural freguenciss. A4 divergence of freguencies would
thus result in a divergence of dynamic smplification factors
and of mode respoOnses.

In the usual case of transient excitabion, the lower
modes are dynamically excited while the higher modes are
esgentially statically excited. Consider the special case
when W gq)t1 = 7/10, For this case, the maximum bending moment
and shear force responses given by eqgs. (164) through (167)

were determined for a number of modes for the perieds 0 < %- <1
1

« The responses are tabulated on Figs. 27 through

et |+

and 1 £
1

30 as the percent of the maximm first mode bending moment

and shear force responses from the Bernoulli~Buler theory for
29...

t, *
Euler theory to those of the first set of frequencies in

the pericd 1 < In comparing the responses in the Bernoulli-
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Timoshenko Bernoulli-Euler
first set second set

n of modes of modes

1 92.96 9.46 100

3 178,2 5.2 2417
5 152,31 3,00 439
7 7799 897 7+90
9 11.67 40 7.67
11 18,90 »30 1.96
21 028 02 olidy
A 2.46 - .28
51 o2, - oA

(Expressed as percent of maximum first mode Bernoulli-Euler

response, % = 1)
1

FIGURE 30

ct

MAXIMUM MCDEWISE SHEAR FORCE RESPONSES, T2 1, PIN-ENDED BEAM,
1

ok

TRANSVERSE HALF SINE WAVE FORCE AT MIppoint, W 1“ )t1 =

Kl



s

¥

"
.

rng

H

18 TWO

3

ted by 4

-

R

i

'&

[
28

jusncl
. .
A&

¥}
faclelvic)stenRstel

re
2

75

Eal
o
e
i e it

2

%

7

ne

1R

o

f

f

ih

ce of &

5
4

i
@

the Bern

FLCIN

Wi

is

£

o

i

EN

Py

»?m

-

3

e

,M
<
&
]
-
B
&

b 76
X

g R

1%

i

EN
S4B

Al

-

roe a8t the

o

£
4

2

(@ﬁ'ﬁ

t

7
o

[ oY
Ak

syvestine

a

St

e

VY

e

-

efors

5,
b

]

g
st
Q2
. eof
4
G
e
=]
i
)




~116-

-2
Ao D=

%

ude a8 those of the Bernoul

2
et
ko]
@
!
o
2
by
-
oy
S
#
o
g
oot
]
t
©
WMM

20Ty OV

It

1 bh

i~Bule

"3
N

he Bernoul

e comparable, T

.
2%

Ty

2

factors

plification

P
©
15
a4

e
=~
A

g
&
[l
5
&

o
[+
H

5

oution

1.

o

stri

ee=d



- 117 -

CONCLUSIONS

I, Bernoulli=-FEuler Theory

An advantage of the mode superposition solution given in
Section 1 is the ease with which the guantities in the solution can
be tabulated for a number of situations in a concise form, Available
in the literature sre tabulations of the mode shapes or characteristic
functions, their first three derivatives, and the characteristic num-
bers for the six common beams for the first five modes. For use in
considering the beam response to a pariticular, simple transient force,
a graph of dynamic amplification factors for the case of a half
sine wave transient force is presented in Section 2 in a more com~
prehensive form than given in the literature,

The convergence of the terms or modes in the solution is
of importance since it is convenient to calculate only a few of the
modes in any case, The subject of mode convergence is considered in
a general way in Section 3, It is concluded that the convergence
becomes poorer as the impressed transient force is concentrated
spatially and in time., The manner in which the modal bending moment
and shear force resovonses converge or diverge with the mode mumber as
the transient force is concentrated spatially and in time is indicated
in Section 3, It is demonstrated that the mode convergence is poorer

for an avplied bending moment than for an applied force.
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It is believed in some quarters that the dynamic response
in an elastic structure to a rapidly or suddenly applied force is
never larger than twice the expected stetic response. It is concluded
in Section 4 that the dynamic response at each point in a beam to
such a force can be greater than twice the expected static response
at the same point., The conclusion is true whether the forece is
distributed or concentrated. Dynamic responses larger than twice
the static responses were commented on by Frankland (Ref., 7).

It is demonstrated in Section 5 that the mode responses
in the higher modes are essentially independent of the boundary
conditions except within one-half wave length of free or clamped
boundaries., This fact permits the extension of conclusions based on
e beam with particular end conditions to beams with other end conditions.
It is shown that the mode shapes and their derivatives are harmonic
with an exponential transition which is significant only within one-
half wave length of free or clamped boundaries. With the aid of
the figures of Section 5, the higher mode shapes and derivatives can

be sketched accurately for the common end conditions,

II., Timoshenko Theory

In considering the effects of shear deflections and
rotatory inertis on the flexural vibrations of beams, the Timoshenko
equations of motion are used., Instead of the usual single equation

in one varlable, two equations of motion in two variables are treated,
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As a result, the boundary conditions are simplified and the solutions
for the elastic bending moment and shear force are simplified. 1In
Section 1, the equations of motion are derived from Hamilton's
principle. In the process of the derivation, the end conditions for
free, clamped, and pinned ends are generated,

Presented in Section 2 is a new, general, mode superposition
solution of the Timoshenko equations of motion, The solution is in
the form of two infinite series involving two sets of generalized
coordinates and two sets of mode shapes., The existence of this
solution requires the existence of two sets of frequencies, The
solubtion appears to bo sufficient and completely specified by the
boundary and initial conditions., The guantilties in the solution
are analogous to those for the solution of the Bernoulli=Euler
equation except that there are two sets instead of one.

In Section 3, it is shown that there are two sets of
frequencies in the case of a pin-ended beam. The quantities in the
solution for a pin-ended beam are tabulated as functions of the
parameter n(%) for solid rectangular and solid circular cross
sections, The deflection solution approaches that of the Bernoulli-
Euler equation in magnitude and frequency for the lower modes of
long, slender beams., In the higher modes, the deflection solution
approaches that for pure shear vibrations in magnitude and freguency.
The response in the first set of frequencies predominates.

In Section 4, a comparison between the bending moment and
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shear force solutions of the Timoshenko and Bernoulli-Euler equations
is made for a pin-ended beam subjected to a concentrated transicnt
forece at the midpoint. A slenderness ration 1/r = 20 and a solid
rectangular cross section are selected. It is concluded that the
bending mowent and shear force regponses in the predominent set of
freguencies are of the same order of magnitude modewise as those in
the Bernoulli-Euler solution provided that the dynamic smplification
factors are comparable., The Bernoulli-Fuler golution overestimates
the dynamic amplification factors for the impulsively excited modes
and underestimates them for the non-impulsively excited modeg. It
appears that the Bernoulli-Fuler solution will give good results for
the bending moment and shear force solutions if the predominant set
of freguencies of the Timoshenkce sclution is used to calculate the

dynamic amplification factors.
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NOMENCLATURE

v(x, t) = total transverse deflection,

yb(x, t) = +iransverse bending deflections.

ys(x, t) = transverse shear deflections,

X = index of position along the beam axis,

t =  time,

M(x, t) = elastic bending moment in the beam,

V(x, t) = elastic shear force in the beam,

wix, t) = arbitrary distributed transverse force,

F(t) = arbitrary concentrated transverse force,

Mﬁ(t) = arbitrary concentrated applied bending moment,

Imp = concentrated transverse impulse.

t1 = _hall period of half sine wave transient force,

E =  Young's modulus,

G =  shear modulus,

k! = ratio of average shear stress Lo maximum shear
stress over a cross section,

1 =  length of beam,

T = radius of gyration of cross section around the
principal axis normal to the plane of motion,

A =  ptanding wave length of o mode of vibration,.

c =  speed of a dilatational elastic wave in the

material.
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T = moment of inertia of cross seetion around the

principal axis normal to the plane of motion,

A = ¢ross section area,

_f =  mass density of the material,.
m = mass of beam.

c = coefficient of viscous damping.,
c, =  critical viscous damping.
DLF(x) = dynamic load factor.

=
L]
i
o
n

kinetlc energy.

P.E. = potential energy.

Bernoulli=-Fuler Theory:

ﬁn(x) = nth mode shape or charscteristiec funchtion.
qn(t) = nth generalized coordinate,

Mn = nth generalized mass,

Qn(t) = nth generalized force.

w n = nth natural frequency.

@ nl =  nth characteristic number,

un(t) = nth dynamic amplification factor,

Timoshenko Theory:

2 (x)

#

nth mode shape in the bending deflection.
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@%(x) = nth mode shape in the shear deflection.

Othervwise, the same gquantities as used in Bernoulli-
Euler Theory, except with superscripts 1 and 2 to indicate
two sets,

A, B, C, and £ with subscripts and superscripts
are used as constants, In each instance, they are defined

in the text.
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