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ABSTRACT

X-ray diffraction experiments were carried out on
fluid argon at a temperature of -100°C and densities
of .0824 g/cm>, .1331 g/cm>, .2087 g/cm>, and .3111 g/cm°.
The measurements of the state at .2087 g/cm3 were repeated
to establish reproducibility. The methods used to obtain
the experimental quantities and to subsequently analyze the
data included significant improvements over previous
investigations.

The data from each experiment at the three higher
densities were analyzed to obtain a set of structure factors
which were Fourier transformed to obtain sets of direct
correlation functions and radial distribution functions.
The Percus-Yevick equation was applied to these distribution
functions to obtain the effective intermolecular potential
from each experiment. These potentials were corrected
for three-body effects to give four estimates of the argon
pair potential, and a final estimate which is the precision
weighted average of the four seperate estimates.

The characteristics of these potentials, with error
limits determined by a perturbation analysis of the uncer-
tainties in the experimental quantities, are:

state 1- n=.2087 g/cm>, € =3.4014.038 A°, €= 143.2%

] - o
10.2 K’ rmin— 3.89i 009 A .
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state 1R- n=.2087 g/cm>, 6 = 3.402+.035 A°, € = 149.9%

10.2 °K, r_. = 3.87#4.07 A°.
min
state 2-  n=.3111 g/cm>, 6= 3.375%.023 A°, €= 146.6%
6.8 °K, r . = 3.87 £.05 A°.
min
state 3-  n=.1331 g/cm>, 6 = 3.379+.050 A°, €= 145.1%
o = °
16.0 °K, r_, = 3.83 £.13 a°.
average u(r)- 6 =3.389%.015 A°, = 146.3 4.9 °K
r

min = 3.86%.05 A°.

Physical quantities were calculated from the average
potential and agreed with the experimental values for the
second virial coefficient of argon and the vibrational
transition energies of the argon dimer, as well as the
theoretical long range dispersion potential.

The range of densities studied was not large enough
to allow direct determination of three-body forces.
Methods are suggested whereby information about non-
additive forces could be derived from the combination of
the results of these experiments with the results of
previous x-ray experiments or with third virial coefficient

data.
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NOMENCLATURE

A* dimensionless factor to correct scattered x-ray
intensity for absorption of the incident and
diffracted beams by the cell and argon

subscript notation: ¢ and a denote scattering which
originates in the cell or argon respectively, thus
Aé is the factor which corrects scattering from the
cell for absorption by the cell and argon.
A* corrects scattering from the argon for absorption
a
by the cell and sample.

subscripts (c) and (i) denote coherent and incoherent
scatter. (e) denotes scatter from the empty cryostat,

thus

A;(c) corrects coherent argon scatter
A;(i) corrects incoherent argon scatter
Aé(c) corrects coherent cell scatter
Aé(i) corrects incoherent cell scatter
Aé(e) corrects empty cryostat scatter

A* (2) corrects the twice-scattered x-ray intensity
for absorption by the cell and argon.

A is the integral of A* over the irradiated path }eng?h.
A has dimensions of length. The subscript notation 1s
the same as that for A¥

A' Integrated absorption factor to correct the scatter?d
x-ray intensity for absorption by the cell aloge. A
has dimensions of length. Subscript notation is the
same as that for A*.

A° Angstrom unit

b arbitrary error which is a constant factor of Pa(2e)
over the range s=0 to s= 3.5 A°.

B(T) second virial coefficient

c  speed of light in vacuum

c(r) direct correlation function

- -8 -10 .. :
C6,C8,ClO coefficients of the r 6, r , r dispersion

terms in the pair potential
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NOMENCLATURE

{F.k(ZG)} number of counts during a 30 second interval,
J i j indicates the filter in position ( j is
alpha or beta ). k indicates the counter
( k=1 or 2) . 1 indicates the number of
the scan ( 1 =1 to 12).

d(28) an arbitrary error which is a reproducible

factor of pa(c)(ze)

charge on the electron

| ®

[+

atomic scattering factor

fexptl experimentally measured f

fH—F f calculated from Hartree-Foch wavefunctions

f* the complex conjugate of £
Af' real relativistic correction to £
O f"  imaginary relativistic correction to £
f° non-relativistic atomic scattering factor

F a generalized function to be evaluated by Monte
Carlo methods

g(r) radial distribution function
g. additive coefficient of n~ in the cluster
NA integral expansion of g (r)
91 non-additive density coefficient in the cluster
integral expansion of g(r)

h(20) an arbitrary error function modifying Pa(29)

H height of a beryllium crystal peak measured in the
— scattering from the empty cell and corrected for
absorption by the cell
Hca height of a beryllium crystal peak measured in
the scattering from the cell+argon and corrected
for absorption by the cell and by argon

|

intensity of radiation- units can be energy/area
for energy flux counting or counts per second/area
for gquantum flux counting.

I° intensity incident on the sample
I(2) intensity of twice scattered radiation

i . , . .
inc incoherent argon scatter in electron units for
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NOMENCLATURE

energy flux counting

jinc incoherent argon scatter in electron units
for gquantum flux counting

In double volume integral of the Monte Carlo calibration
function l/r2
12

i(s) structure factor in reciprocal space

J scattering in electron units per atom. Subscript
notation is the same as that for A*. For example,

Ja(c) is the coherent argon scattering.

Ji(ze.) ( i= 1 or 2 ) refers to the first or second
scattering event in double scattering.

k Boltzmann's constant

|

a unit of energy- 1 °K = k ergs.

~

isothermal compressibility

K+ weighted average of the characteristic Koty and Kq&
—— X radiation

1 path length of x-ray through irradiated material
m mass of the electron
n density

n, argon density

Ne helium density

Ny beryllium density

n. ( i= 1 or 2) refers to the density of the first
or second scattering medium in double scattering.

Na conversion factor from electron units per atom to
— counts per second/ cm for argon scatter

NBe conversion factor for beryllium scatter.

N number of iMonte Carlo estimates



XV i

NOMENCLATURE

|

count rate of diffracted radiation, = intensity
times cross sectional area

subscript notation:

Pca count rate from cell and argon

PcHe count rate from cell and helium

PC count rate from cell

Pa count rate from argon

PJ‘e count rate from helium
additional subscripts (c¢) and (i) are the same
notation as for A*- thus Pc(i) indicates the count

rate of incoherent scatter from the cell.

{?jk(Ze)}i raw data point equal to{cjk(Ze)}i divided
by 30 seconds
P(2) count rate for twice scattered x-rays
P° total incident x-ray count rate in argon experiments
P°' total incident x-ray count rate for empty cell

P°(A) normalized wavelength distribution of
incident count rate

P] Kx component of P°(X)

P2 (A) continuous wavelength component of P°(A)

p width of argon cavity in cell

p, range of i(s) perturbed by the error analysis function

Pol polarization factor for single scattering

P012 polarization factor for double scattering

r intermolecular separation

roin value of r at pair potential minimum
T (i= 1 or 2) position vector to the location of the
i ; .
— 1 th event in double scattering
=
r = ,rl—r

12 2l

R distance from sample to detector

RBD electron recoil factor (7'/)\')3
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NOMENCLATURE

magnitude of the scattered wave vector

n

S normalizing constant to match the solid angle subtended
— by counter 1 to the solid angle subtended by counter 2

t thickness of one beryllium window
T temperature ( absolute unless otherwise specified )

u(r) intermolecular pair potential

ueff(r) effective potential including non-additive
forces
u(r) [I] experimental estimate of the pair potential

u(r) [II] experimental estimate of the pair potential

up to r= 4.625 A°, theoretical - -8
10 Cgk + Cgf
Cip¥ potential for r > 4.625A°.
w distance from center line of sample ( horizontally )
to point of diffraction
W width of irradiated volume of sample
y horizontal distance from the center of the vertical
receiving slit to the point at which the diffracted
X-ray enters the receiving slit
Y width of receiving slit

z (20) error function modifying P_(26) resulting from an
error in the determination of P°'/P°



xviii

NOMENCLATURE

maximum vertical divergence angle of the incident

('
—_max 4 diffracted beam

€ well depth of the pair potential

€r error in the determination of pe'/p°

€ magnitude of the perturbation applied to the features
—= of i(s)

ei actual uncertainty in the feature of i(s)

A wavelength of x radiation
A' wavelength of diffracted incoherent radiation
‘AKz-wavelength of characteristic Ag K radiation

f effective solid angle subtended by a receiving slit
systen

value of r at which the pair potential is zero

S
20 diffraction angle
290 angle at which a Kg beryllium peak appears

20. (i= 1 or 2) angle for the i th diffraction event
s Iy . v
in double scattering

28' actual diffraction angle of a divergent ray at
goniometer position 2
M linear coefficient for absorption of x rays
subscript notation: a and ¢ denote absorption in the

argon or in the cell. (i) denotes that the scattering
absorbed is incoherent. Thus:
M absorption, by the cell, of coherent scatter

c
e absorption, by the argon, of coherent scatter
Mc (i) absorption, by the cell, of incoherent scatter
Ma (i) absorption, by the argon, of incoherent scatter

Q)(rlZ T13 r23) non—-additive three body potential

! !
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NOMENCLATURE

Mayer Cluster Integrals

o indicates a coordinate which is fixed

.. indicates a coordinate ovVer whicin tne cluster function

1 is 1ntegrated.
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CHAPTER 1 INTRODUCTION

This thesis describes an x-ray diffraction experiment

designed to measure the intermolecular potential function,

also called the pair potential, of argon.

Chapter Outline

Part A of this chapter describes the present state
of knowledge of the pair potential as well as its
significance in liquid state theory. Recent reviews of
this subject have been publishedl’2’3.

Part B describes the basic theory involved in obtain-
ing u(r), the argon pair potential, from x-ray scattering
data. r 1s the internuclear separation.

Part C places this experiment in the context of other

x-ray diffraction studies of argon.

Part A Present Knowledge of the Pair Potential

Knowledge of intermolecular forces is clearly
essential to the understanding of material properties. In
particular, an accurately known pair potential is necessary

to determine the magnitude of many-body forces, to
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extrapolate data beyond presently available experimental
results, and to test the various simplified theories
which are approximations to the exact but insoluble

statistical mechanical equations that describe liquids.

The present state of knowledge of the pair potential of
argon is illustrated by three of the more recent potentials
derived from fitting experimental data. ( The best
guantum mechanical calculations to date for the argon
potential are still to be considered as estimates of the
well depth and repulsive region4 but are quite accurate

S,Q )

( 5% ) for the limiting behavior of u(r) at large r
These potentials, obtained by simultaneous fit to diverse
types of experimental data, are the Dymond-Alder potential7,
the Klein-Hanley potentialg, and the Barker-Fisher-Watts
potentialg. T he Dymond-Alder is a numerically tabulated
potential, the Klein-llanley is a four parameter m-6-8
potential, and the Barker-Fisher-Watts is a multi-parameter
analytic curve which represents the latest estimate in a
series of potential functions based on the original Barker-
PompelO potential. Previous forms include the Barker-
Pompe and Barker—Bobeticll potentials.

Upon examination, these potentials exhibit several
difficulties. The Dymond-Alder potential has an unrealis-

tic behavior at large sepgrations. The Klein-Hanley and

Barker-Fisher-wWatts are constrained to a predetermined
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analytic form. The major point here is that there is a
question of uniqueness in determining a pair potential from
macroscopic data. As pointed out by Kestin et allz’l3 ,
the inversion of the second virial coefficient integral and

the collision integral for viscosity and thermal conduc-

tivity lead to mathematically indeterminate problems.

In contrast, the various scattering experiments
( x-ray, neutron, molecular beam ) uniquely determine, at
least in theory, the potential function or the distribution
functions from which the potential function may be derived.

Previous x-ray studies have not been able to accurately
determine the pair potential for reasons discussed in
part C of this chapter.

Neutron diffraction may also be used to determine
i(s), the structure factor in reciprocal space, and hence
the distribution functions, but no one has yet taken
sufficiently accurate data in the experimental region
which would be useful for obtaining the pair potential.
Most of the work has been done in the dense liquid or
three-phase region, where the structure depends mostly on
the hard-sphere properties of the potential. A neutron
scattering experiment14 in the appropriate region of P-V-T
space ( see part C, this chapter ) produced an unrealistic
pair potential due to difficulties in correcting for multi-

ple scattering.
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In principle, the intermolecular potential can be
uniquely determined by inversion of differential cross
section molecular beam datals, but in practice this has
proved impossible for inert gas scattering. Because of the
finite experimental resolution of beam energy and
scattering angle, molecular beam data, including the most

16,17

recent work by Lee and co-workers , must be interpreted

by using an assumed potential form.

Part B Obtaining the Pair Potential from X-ray Data

The x-ray diffraction pattern from fluid argon may be
used to derive u(r) in the following manner:

The experimental intensity of diffracted x-rays is
converted to the structure factor i(s) by the equation:

2
Pa(c)(s) - Na £f(s) Pol(s) A )(s)

al(c (1)

i(s) = 5
N, f°(s) Pol(s) Aa(c)(s)

In equation (1) s is the magnitude of the scattered
wave vector and is defined by

s = 4ﬂsié€> (2)

where 2© 1is the scattering angle and ) is the wavelength
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of the incident radiation. Because of the relationship
expressed in equation (2),any quantity expressed as a

function of s, such as fz(s), may be expressed as a function

of 2¢ 1if A is known. In equation (1) Pa(c) is the
count rate for coherent scatter from the argon. f2 is
the atomic scattering factor for argon. Pol is the polar-

ization factor for an unpolarized incident beam given by

1+ cosz(2€>)
2

Pol (2€© )

A is the absorption correction for the absorption of

a(c)
~ coherently scattered argon radiation by the cell and sample.
Na is a normalization factor which converts the atomic
scattering in electron units to the laboratory units of
counts per second.

i(s) thus represents the difference between diffrac-
tion from the structured assemblage of atoms in the actual
fluid and the scattering from an unstructured collection
of argon atoms, and accordingly is a measure of this
structure.

The quantity si(s) can be Fourier transformed to give

the radial distribution function g(r) according to the

. 18
equation

[= 2]

r(g(xr)-1) = 5 si(s)sinrsds (4)
2T"n Jo



where n is the density of argon. In this laboratory,

a set of 13 argon states studied by Mikolajlg'20 using

21, and 5

x-ray diffraction, 6 states studied by Smelser
states studied by Kirstein22 were all transformed to give
radial distribution functions. The quantity si(s)/(l+i(s))
may be Fourier transformed ﬁo give the direct correlation

function c(r)?3 according to the equation

o0
1 si(s) _.
rc(r) = ; sinrs ds (5)
zﬂzn 1 + 1(s)
°
The data of Mikolaj19’24, SmelseIZl, and Kirstein22 were

transformed to obtain the corresponding c(r) functions.

The radial distribution function may be expanded as a

power series in the density25

(==
5() = exp(-km) > g, (r)n’ (6)
i=0

where k is Boltzmann's constant and T is the absolute
temperature. With the assumption of pairwise additivity
the first few coefficients, shown in terms of the Mayer

cluster integra1826, are
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go(r) =1 (7)

g, (r) = /\ (8)
g, (r) = _%__N +! !+2Vl +_%—m (9)

Mikolaj and Pings27 solved equation(6) iteratively

including terms to the first order in the density and
obtained estimates of u(r) from experimental g(r) values for
two low density states. Ping528 has further developed

this expansion by showing that u(r) may be expressed,

except for a very small cluster integral which must be
calculated theoretically, as a function of various

experimental integrals:

g(r) = Il(r) + 1 = exp(~kTu(xr))[ 1 + 13(r) (10)
+ %[I3(r)]2 + %n2£521 + ngl(na)(r) + O(n3)]
where
o)
I,(x) = % si(s)sinrs ds = g(r) - 1 (11)
27 rn
0
€«
1 si(s) .
I.(r) = : sinrs ds = c(r) (12)
2 zﬂzrn 1+1i(s)
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1 1 ;

I (r) = ———sinrs ds = g(r)-c(r)-1 (13)
3 2H2rn J; 1+1i(s)

gl(na)(r) is the non-additive first order term in the
expansion of g(r) and O(n3) indicates that some additive
terms in n3 and higher powers of the density are neglected.
The data of Mikolaj19 had too few points in the low density
region to provide a strong test of equation (10), but
there were enough to verify a fundamental step in the
development of equation (10) by reproducing a theoretical

value of the gl(r) term.

An alternative to the direct density expansion of g(r)
is the use of approximate integral equations in terms of the
distribution functions. Two of the most prominent of

these equations are the Percus—Yevick29 (PY) equation

eff
u

(r) = kTln( 1 - ;Ei; ) (14)

and the convoluted hypernetted chain (CHNC) equation30
eff
u (r) = KT( g(r)-1l-c(r)-1In(g(xr))) (15)
with the PY equation more widely used of the two. The

potential function calculated from equation (14) or

equation (15) is not the pair potential because the PY
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and CHNC eguations are inexact with respect to many-body

eff(r) will be a function of density

forces. In general, u
and, less strongly, of temperature. Mikolaj and Pings3
calculated effective potentials for 13 sets of distribution
functions from the PY and CHNC equations. Smelser21 and
Kirstein22 calculated effective potentials for their data
using the PY equation.

Effective potentials calculated by the PY equation
may be corrected for three-body effects to the second
order in density according to a method developed by

32;33

Rowlinson to give the pair potential

eff

A o
kT (@ (r)-u(r)) = -n JAy- n®( 2 ;%1\|+ (16)

IaN L} ¢
] - K

Part C Other X-ray Studies of Argon

Two aspects of this study differentiate it from
previous x-ray studies of argon:

l) As was demonstrated by Pingsza, there iS a very
specific region of P-V-T space in which the diffraction
data can be successfully inverted to yield the pair
potential. This region is shown in Figure 1 using the

P-V-T data of Michels et al34. The lower limit of
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density which can be studied is about .1 g/cm3. Below
this density there is an insufficient number of scattering
units of argon and hence too low a signal-to-noise ratio.
An upper bound of about .4 g/cm3 is set by the need to
study states in which three-body effects are small and in
which the largest additive terms omitted by equation (10)
are negligible. A lower limit of temperature is set a
few degrees above the critical temperature to assure that
the cluster integral expansions converge and that the
compressibility remains moderate. All aspects of this
experiment were designed with the intent of taking data in

this narrowly defined region.

2) This experiment represents the currently most
advanced state of refinement in the measurement of Xx-ray
diffraction from fluid argon at high‘pressures and cryogenic
temperatures. Specifically, this study makes use of the
vest available methodology developed by previous investiga-

519’21’22’35 with additional improvements in the

tor
accumulation and analysis of the data. These improvements
are pointed out in the chapters on experimental aspects of

this work( Chapter II ) and data analysis ( Chapter III ).
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CHAPTER II APPARATUS

The data analyzed to obtain the pair potential were taken in
the eight experiments listed in Table I. The helium experiments
and the empty cell experiment were used to measure the cell scatter
as a function of pressure, The data used to correct the argon studies
for the presence of cell scatter were derived by a linear interpolation
between the two helium experiments. The evacuated cell data were
used to verify that the (very small) amount of scatter due to helium
was being subtracted correctly. Argon state 4, the lowest density
state, was used to obtain a set of experimental atomic scattering
factors for argon. Argon states 1, 2, 3, and 1R were analyzed to
determine the effective argon potential as a function of density.
State 1R is a repeat of the state 1 conditions and was used to establish
the reproducibility of the experiments. In addition to the experiments
listed in Table 1, experiments were performed to study the alignment
of the system, the matching of dual counters, Soller slit uniformity,
stability of the x-ray source, and balancing of dual filters. The con-
ditions of alignment, collimation, and data collecting format which
were followed in the eight experiments listed in Table 1 were selected

as optimal based on these preliminary studies.

Sample
The argon used was obtained from Cryogenic Service Corpora-
‘cion36 and was claimed to be 99.9999% pure, but samples analyzed
on the Caltech mass spectrometer and by West Coast Technical

Service Inc. 31 were found to be 99.86% pure (by mole) with principal
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contaminants being . 13% N2 and . 01% 02.

The helium used was supplied by the Linde Corporation and
was analyzed at Caltech to be 99.53 mole % He with . 28%N2, .12%

H,O, and .07% A.

Sample Containment

The cell and cryostat used in these experiments are of a
new design and are shown in Figures 2 and 3. The most important
differences in the cell's design from that used by Mikolaj, 19
Smels er,21 and Kirst:ein22 are the flat windows and the 7 mm path
length through the sample. The cell used by the previous investi-
gators was cylindrical with a path length of ~. 77 mm. Because of
the flat windows it is possible to remove the term representing the
intensity distribution of the incident beam from the basic scattering
integral (see Chapter III) and to calculate the absorption factors
analytically. In addition, the flat cell is less sensitive to small
misalignments than the cylindrical cell, The 7 mm path length is
designed to optimize the signal-to-noise ratio for the low den-
sities being studied.

The cell consists of a split Monel block held together with
machine screws and a gold gasket. Each half has one of the sintered
beryllium windows held in a Bridgmann-type unsupported area seal
by Epoxylite type 8839 low temperature epoxy. The cell was designed
to withstand 2500 psi internal pressure and was tested to 1600 psi

for 24 hours at -100°C without detcctable helium leakage.
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The cell is mounted in a cylindrical evacuated (10_4 Torr)
cryostat by Lucite support pieces and is surrounded by a copper
and aluminized Mylar radiation shield. As in Kirstein'522 work,
the argon is fed into the cell through 3 feet of stainless steel capil-
lary tubing. Slots in the cryostat for the entrance and exit of x-rays
are covered with . 002" Saran Wrap. The entire cryostat is attached
by a micrometer driven compound lathe rest to a shaft which fits into
the center of rotation of the Norelco wide angle goniometer. Thus
it is possible to move the cell (that is, to move the cryostat) up and
down or ’1eft and right relative to the goniometer axis.

The pressure measur ement and control uses a Hart dead
weight balance and Pace diaphragm pressure transducer as described
in previous experiments. 45

The use of cold N2 gas to cool the cell was adopted from pre-

AL, A2 In this work primary temperature control was

vious work.
attained by adjusting the flow rate through a pair of baffled cavities
on each side of the cell. A major change here is the use of two
Cambion model 800-3953-03 thermoelectric annular rings between
the cell and the baffled heat sinks to achieve the final temperature
adjustment. These devices were powered by a proportional-integral

39

controller,. The sensing device is a platinum resistance thermom-
eter imbedded in the Monel cell. A second platinum thermometer
was used to measure and record the absolute temperature, and a
network of fouf copper - constantan thermocouples was used to

measure the temperature differences within the cell, It was not

possible to measure these temperature differences more precisely
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than a few tenths of a degree because of temperature differences
between the electrically insulated thermocouples and the Monel
block. However, the temperature differences within the Monel
block could be estimated from the thermocouple potentials and
thermal flux calculations, and have a maximum value of . e,
Table II lists the maximum and minimum values of the pressure
and the temperature as measured by the platinum thermometer

during the duration of each experiment.

X-Ray Source

The x-ray source was a Rigaku-Denki Rota unit model Ru-3V
rotating anode x-ray machine with a silver target run at 60 kV and
100 mA electron current.

The spot focus at 5. 7° takeoff angle was used to irradiate
the sample. This effective focal spot was photographically measured
to be 1.1 mm wide and . 7 mm long. The spot focus rather than line
focus was used in order to be able to design the cell with minimum
diameter (hence minimum thickness) of the beryllium windows and
in order to minimize the horizontal divergence of the diffracted beam.

Silver radiation (Ke = .5608 AO) was used in order to mini-
mize the absorption and to obtain a maximum range of the scattering
parameter, g, for a given range of 26.

21, 22 monochromatization of the

As in previous experiments,
incident beam was achieved by using a pair of balanced filters and
pulse height discrimination using a Canberra model 6031 Single

Channel analyzer. For silver K& radiation the alpha filter is molyb-

denum and the beta filter is rhodium. These filters were
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experimentally matched for identical f absorption and the transmitted
spectrum was measured using a lithium fluoride analyzer crystal in

the Bragg-Bretanno geometry. This spectrum is shown in Figure 4.

Collimation and Alignment

The optical geometry is shown in Figure 5. The incident
beam is collimated by vertical Soller slits (1.174'" long, spaced
. 0078" apart) and horizontal Soller slits (1.174'" long and . 0052"
apart) with corresponding maximum angular dispersions of +,38°
in the horizontal plane and *. 25° in the vertical plane.

This beam passes through the cell at an angle of 45°,

The diffracted beam is collimated by horizontal Soller slits
(1.32" long spaced .0051" apart) and a 3/16" wide vertical slit.
These Soller slits are stacked high enough (9/16') to view the entire
irradiated volum e of cell and sample at all values of 26. The maxi-
mum dispersions of the diffracted beam are %1, 58° in the horizontal
plane and % . 22° in the vertical plane,

The distance from the focal spot to the center of the cell is
81" and from the center of the cell to the vertical receiving slit is
61,

Whenever possible, the alignment of a coordinate was made
optically, using the actual x-ray beam to determine the positioning.
Three coordinates --the takeoff angle of 5. 70, the cell rotation
position of 45° and the distance from the center of the cell to the
goniometer face--were aligned mechanically using a variable level
indicator and vernier calipers. The exact value of the takeoff angle

is not critical. The latter two coordinates were checked optically
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after the alignment.

The result of the alignment was to have the x-ray beam come .
off at an angle of 5. 7° below the horizontal and parallel to the goni-
ometer and through the center of the receiving slits when the counter
is positioned at 26 = 0. 00°,

The cell was then aligned to be centered on the axis of rotation .
of the goniometer and tilted at 450 relative to the incident beam.

The reproducibility of the measured zero of the goniometer
after realignment was found to be ~, 02°,

A basic change from previous experiments was the use of two
counters offset by a fixed angle and counting simultaneously. While

.50° to 20 = 26.50° in steps of . 25°,

counter 1 scans from 260
counter 2 scans from 26 = 19.00° to 45.00°. The data from counter

1 are used in the range . 50° to 26.50°. The data from counter 2 are
used in the range 26. 75° to 45.00°. The overlap region from 19. 00°
to 26.50° is used to normalize the output of the second counter system
to the first.

By using two counters in this manner, the statistical precision
obtained by counting for a time t was as good as that obtained by
counting for 1,69t with a single counter.

Each counter system, except for the receiving slits, is essen-
tially the same as that used by Kirsteinzz—-an Amperex XP1010
photomultiplier with a Horiba 4HG2 thallium activated sodium iodide
crystal. The dynode chain is 1500 K ohms and is powered by an
Alfred 218B high voltage power supply at 1200 volts. The signal

from the phototube is amplified by a Canberra model 805 pre-
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amplifier and Canberra model 6018 amplifier. Resolution for both

counters was 23%. This increase in resolution over that found by

. ; s 19,21, 22
previous investigators

is due to the fact that the energy of

the Ka radiation from silver is higher than that from molybdenum.
The same Canberra Industries DATANIM system and CIPHER

tape recorder used by Kirstein were used to automate the goniometer

positioning, data accumulation, and alternation of filters placed in

the incident beam.

Data Collection Sequence

For each experiment the data were accumulated in a series of
12 scans. Each scan consisted of stepping the goniometer from
26 = .50° to 26.50° in steps of .25° (counting for 30 seconds at each
position) with the alpha filter in place, repositioning to . 50° and re-
peating the stepping pattern with the B filter in place. The empty
cell experiment of 10/24/72 was an exception to this sequence in
that the entire range from .50 to 45. 00° was scanned by both counters
(goniometer stepped from -18. 00° to 45.00°) to verify that there was
no error caused by the two counter normalization procedure.

Thus, the intensity at each angle is counted for a total of 360
seconds with each filter in place. The repetitive scanning technique
(which was used by Kirstein) serves to minimize variation due to
long term drift and acts as a multi-channel analyzer in averaging

out short term noise.
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CHAPTER III DATA ANALYSIS

In this chapter the complete set of data for all the experiments
is presented at the stages of development which appear to be most
significant and/or useful. At intermediate stages of development
the data from only one state, state 1R, will be presented for pur-
poses of illustration. State 1R was chosen because its density is in
the middle of the range studied. Unless otherwise specified, the
characteristics of the data for state 1R are typical of the entire set

of states. Where exceptions occur they are pointed out,

Determining P(26)

The raw data for each experiment listed in Table I consist
of the count rates {Pal(ze)}i, tpﬁl(ze)}i, tpaz(ze)}i,and {pﬁz(ze}i,
where i denotes the number of the scan (i =1 to 12), the subscripts
1 and 2 denote counters 1 and 2, and the subscripts « and B denote
the count rate with the alpha filter in place and the count rate with
the B filter in place. Each of the quantities {ij(ze)}i is determined
by dividing the counts accumulated during a thirty-second interval,
{cjk(ze}i, by 30 seconds:

- {ij(ZQl} i (17)

{Pyx 200} 30 sec

The individual scans must be averaged to obtain Pal(ZO),

PaZ(ZB), P l(29), and P, (260) the alpha and beta count rates for

p p2
each counter. The procedure adopted here was to normalize the

individual scans by the total alpha and beta intensity during each

scan before averaging:
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12

P, (20) = Z (Ns)ik{ij(”)}i (18)
3

i=1 12

where

(s) ;, = Z_Lp“k(ze)} i*{Pax 20} 5 (19)
1 > Zze {Pdk(ze>}i+{r>pk(ze)}i

12 i
These normalization factors for the 1R state are listed in Table III.
They indicate a drift of about 2% in the x-ray tube output of the char-
acteristic Ko radiation over the 24 hours during which x-rays were
counted, after a warmup time of 3 hours. The difference between

the normalized mean from equation (18) and the simple mean given

by '
P. (29)}. (20)
P4y (26) =Z{ AR

12

is completely negligible, being on the order of . 0005 counts per
4
second. This averaging produces a set of numbers Pal(ZO), P

51(20),
PaZ(ZG), and P[SZ(ZS) for each experiment, where, for example,
Pal (28) is the count rate for counter 1 with the alpha filter in place.

The diffracted intensity for each counter corresponding to

the incident intensity distribution in Figure 4 is then given by

- - 21
P (20) = Pgy (20) - P, (26) (21)

At this point there is a pattern from 26 = .50° to 26 = 26.50°
for counter 1, and from 26 = 19. 00° to 26 = 45. 00° for counter 2.

Counter 2 is normalized to counter 1 by measuring a scale factor
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using the counts in the overlap region from 19.00° to 26.50°

26=26.50°

. _ z P2(29) (22)
c Pllze)
260=19.00°

The complete diffraction pattern for an experiment is then found by:

P(20)

Pl(29) .50°< 28 26.50° (23)

and

P(26)

1’2(29)/5c 26.75°< 26< 45.00° (24)

SC for the eight experiments is listed in Table IV, SC is significantly
different from 1 because the foils in receiving Soller set 2 are . 004"
thick, while those in Soller set 1 are . 002' thick. The thicker foils
in Soller set 2 do not change the collimating properties but they
decrease (), the effective solid angle of diffracted radiation accepted
by the receiving slit system. P(20) for the eight experiments is
presented in Table V. P(20) for state 1R is illustrated by the filled
circles in Figure 6. In the following discussion P(20) from the empty
cell will be denoted by PC(ZG), P(20) from the helium experiments

by PCHe(ZG), and P(260) from the argon experiments by Pca(Ze).

Determining the Argon Scatter

It is now necessary to interpret the Pca(Ze) scattering
pattern in terms of the scatter from the argon, Pa(Ze), and the

scatter from the cell, PC(ZG), and remove the latter.
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The intensity of radiation scattered from a volume element
dx dy dz of material located at x, y, and z and irradiated with a

18

monochromatic source of x-rays is

! (25)

ar(2e) = 1%(y,2z) —S;—Pol (26)nJ (26) A* (x,26) dxdydz

m c R

The coordinate system is established with x being the axis along

the line of the incident beam, y is the vertical axis in the goniometer
counting plane (see Figure 5) and z is the third Cartesian coordinate.
Io(y, z) is the intensity incident on the face of the material irradiated.
R is the distance from the sample to the detector. —'324—4 is a con-
stant which combines the charge and mass of the elzt:on and the
speed of light in vacuum and has the value 7.939 x 10—26 cmz. J is
the scattering per atom in electron units. A*(x, 20) is the factor
which corrects for absorption of the incident beam to the scattering

center and absorption of the diffracted beam after scattering. For

coherent scattering

A* (x,28) = e PL1(¥,28) (26)

where 1 is the total path length of the incident and diffracted beam
through the sample and cell and y is the linear absorption coefficient
for the material through which the beam travels. In general, 1 and
hence A*, are functions of x, y, and z. For the cylindrical cell
used by previous workers in this lab they are functions of x and vy,

%*
but not z, For a flat plate cell as used here, 1 and A are only
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functions of x. Because of this very important fact it is possible to
separate the x variables from the y, z variables and write the inte-

grated form of equation (25) as

4
_ e 0
Ica(29) = mPol(Ze)[zI (y,z)dydz {nch(Zo)
fAé(x,Z )dx + n_J_(2 )[A;(X,Z )dx} 27)
= x

Ica(Ze) is the intensity from the cell and sample. The subscripts

c and a on A* indicate absorption of radiation scattered by the cell
and by the argon respectively, The integration of A: is performed
over the cell path irradiated by the incident beam, the integral of

A: is evaluated over the sample path irradiated by the incident beam.,
The expression / Io(y, z)dydz is just Po, the total power (counts

¥ &
per second) incident on the cell, Define

= 2
A, (20) J[A;(x,Ze)dx (28)

for absorption of the argon scatter by the cell and sample, and

A, (20) = ij;<x,za)dx (29)

X

for absorption of the cell scatter by the cell and sample. Note that
*

while the (A )'s are true absorption coefficients, the (A)'s have

dimensions of length and are a combination of the absorption coef-

ficient and irradiated path length. The effective integrated true
A

absorption coefficients are given by
A M2 p

for the cell scatter, where pis the width of the cell
N2t

for the sample scatter

and
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cavity and t is the thickness of one beryllium window. The quantity
actually measured in the laboratory is a power (or count rate) rather

than an intensity

P(20) = I(26)-XA (30)

where XA is the effective cross-sectional area of the receiving slit
system on counter 1. The effective solid angle subtended by the slit

system is

Q B % (31)

Combining equations (27) to (31) gives the count rate of

scattered radiation from the cell and sample as

-4
e 0
P_,(20) = I.n.z_gnp Pol(26) {nch(Ze)Ac(Zs)

+ naJa(Ze)Aa(Ze)} (32)

In a similar manner, the equation for the count rate of scattered

radiation from the empty cell is seen to be

4
P_(26) = m§c4Q P°'Pol (26) { nCJC(ZO)Aé(ZG)} (33)

The use of P°' indicates that there may be a change of incident
intensity between the empty cell experiment which determined PC
and the cell + sample experiment which determined Pca because of
variation of the x-ray tube output. The prime on the absorption

factor in equation (33) indicates that the scatter is to be corrected
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for absorption by the cell alone.
The argon scatter from a cell + sample experiment can be

written in a form analogous to equations (32) and (33) as

2 4

4
—_ c ot
P_(20) = ;7;—§1p Pol(2e) {naJa(29)Aa(29& (34)

Equations (32), (33), and (34) may be combined to give the count

rate for the argon scatter.

PO 1 AC (26)
Pa(26) = i)-s——Pca(ZQ) = PC(ZQ) m (35)
The determination of P°' as well as the fairly involved calculation
Po
A (2
of C( 6) are described in Appendix A. The values of P°'
AL (26) B

for the various experiments are listed in Table VI using the cell
scatter from the helium 2 state as the reference state for P°',
These numbers indicate a maximum variation of about 6% in the
Ka x-ray output from one run to the next.

In equation (35), PC(ZG) is the scatter from the cell at the
pressure of the argon state at which Pca(Ze) is measured. It was
considered possible that the PC(ZG) values might not be independent
of pressure because of pressure-induced stresses in the cell,
Accordingly, the helium scatter was subtracted from the total
scatter for each of the two helium states to obtain the cell scatter
as a function of pressure. To do this equation (35) was written in

the form
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al(26)
= o1 C
Po(26) = ((B2) Py (20) - pHe(ze))Ac 557 (36)

PHe(ZS) was calculated from theory and is small because of the low

density and low intrinsic scattering power of helium. Because u

A'(20)
. : c 2
for helium is very small, A—C(—Zé—)—- is very close to one, Thus PC(Z 0)
is close to PcHe (26). This is seen in Table VII which compares
PC(ZB) and PC e (28) for the helium 1 state. The corrections

for the helium 2 state (for which PC(ZO) is also shown in Table VII)
are about one-half as large as those for helium 1, Linear inter-
polation is used to find PC(ZB) at some pressure other than the 900 psi
or 376.6 psi of the helium 1 and helium 2 states., The open circles

in Figure (6) illustrate the value of PC (26) at 778, 81 psi, the pressure
of state 1R. The peaks in PC(ZG) agree with the values expected from
the tabulated40 2d spacings for beryllium. The rise in intensity below
26 = 5% is due to scattering from the air and from the Saran wrap
windows of the empty cryostat., This empty cryostat scattering is
shown in Figure 7. Pa(ZG)for state 1R from equation (35) is pre-

sented in Table VIII.

Correction for Double Scatter

Pa(ZG) as defined in equation (34) is the count rate of singly
scattered radiation. However, the quantity obtained from the exper-
imental data by equation (35) contains significant amounts of twice
scattered x—rays.4l In the experimental data from the empty cell

there is cell-cell double scatter, while in the cell | sample data
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there is cell-cell, sample-sample, sample-cell, and cell-sample
double scattering. The cell-cell double scatter is removed from

the cell+sample data by the cell subtraction so that Pa(Z 0) as deter -
mined by equation (35) contains sample-sample, sample-cell, and
cell-sample double scatter. The amount of this double scatter was
calculated by Monte Carlo methods (Appendix B) and subtracted from
the Pa(Ze) obtained from equation (35). This corrected Pa(Ze) is now

the count rate of singly scattered radiation from argon. P_(20)

A

corrected for double scatter is presented for state 1R in Table VIII.

Divergence Correction

Pa(ZG) can now be corrected for divergence of the incident
and diffracted beams by a method based on that used by Kirstein22
to correct for his horizontal divergence., The method has been
further developed to include vertical divergence of the incident and
diffracted beams. The correction is accomplished by the inversion
of the matrix equation relating the experimental quantity Pz (26)

{heretofore called Pa(ZG)} to the ideal (non-divergent) Pa(Ze).
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28 is the nominal angle of the goniometer positioning.
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26" is the

actual diffraction angle of the divergent ray. w is the horizontal

distance across the sample from the center to the actual point of

diffraction.

to the point where the diffracted beam enters the slit.

width of the irradiated volume of sample,

receiving slit,

fracted beams is £«

Kirstein's

28 by Kirste:'m's22

2
‘= gi -1 {[ stin?ie+ (W';Y)Z ] }
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Table VIII lists Pa(ZB) for state 1R before and after the

max

If o

2 equation (9) Appendix G.

max

equation (3) Appendix G:

divergence correction,

W is the
Y is the width of the
The vertical divergence of the incident and dif-
= 0 equation (37) reduces to

20'is given in terms of

Table IX lists the divergence corrected

y is the distance from the center of the receiving slit
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single scatter count rates Pa(ZO) for the five argon experiments,

P_(26) for state 1R is also shown by the filled circles in Figure 8,

"

Determining the Coherent Scatter

Pa(Ze) consists of coherent and incoherent scatter. The argon

scatter in electron units per atom (see equation (34)) can be written

J_(s) = (1+i (s)) £2 (s) +5inc (39)

where the first term on the right represents the coherent scattering
and the second term is the incoherent scattering. The terms in

equation (34) which are independent of angle may be grouped

4
= e X 40
Na I_RZ_CTQP na (40)

and equation (34) can be rewritten

o . 2
Pa(s)—NaPol(s){(1+1(s))f (S)Aa(c) (s)+jinc(s)Aa(i) (s)} (41)

where the subscripts (c) and (i) refer to coherent and incoherent
scatter. Because the wavelength of the coherent and incoherent

scattered radiation are different, Aa(c) A At high angles

a(i)’
(large s) the coherent argon scatter is just the atomic scatter

fz. (i(s) = 0). Thus N, is determined by fitting the experimental
quantity Pa(s) (where s and 26 are related by equation (2)) to the
calculated quantity on the right side of equation (41) with i(s) set

equal to zero. Then, with Na known, i(s) is determined from a

simple rearrangement of equation (41).
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. P (s) - NaPol(s)jinc(S)Aa(i)(s) o (42)
NaPol(s)fz(s)A (s)

a(c)

Correction for Incident Wavelength Distribution

Equation (42) as it is written implies that the experimental
Pa(ZG) may be expressed as Pa(s) by converting 26 to s via equation
(2). This is completely true only if the incident radiation is mono-

19,20, 22 have made this assump-

chromatic. Previous investigators
tion and treated Pa(ZG) as if it was diffraction from an incident beam
of pure Ko radiation, With a finite spread of incident wavelengths

equation (42) is correctly written

P,(20)-N Pol(26) [P* (), (20,008, ;) (26,1142

i(20)= >
N_Pol(26) LP W £2(26,008, ) (260,2)d A

(43)

where Po()\) is the wavelength distribution of the incident radiation

and is normalized s uch that
/P° (A)dA = 1 ' (44)
A

This distribution in non-normalized form is shown in Figure 4. Na,

is determined by fitting Pa(ZG) at high angles to

= 2 0
Pa(29) = NaPol(ZO) {Lf (ZO,X)Aa(c)(ZO,)\)P (AdA

+ /.ﬁnc(ze"ma(i) (29,A)p°(x)da} (45)
A
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which is the correct form of equation (41) for non-monochromatic
radiation,
The f2 used to reduce Pa(Ze) was determined experimentally.
The determination is discussed in Appendix C. The values for
42

,fi c(s) were taken from the calculations of Cromer and Mann.

These are tabulated in the form I. /R where I, is in energy units
inc inc

BD s )3
R ={——
( N (46)

where A and A' are the wavelengths of the incident and incoherently

and

scattered x-rays. For quantum flux counting ’finc is given by

R

I.

47
9inc=_1_rzs(_a_)__.1, 2l (47)
( . . 43
A'is determined from the equation

A=A = .02426 A (1-cos28) (48)

fz(s) and ‘ginc(s) are listed in Tables X and XI. The 26 values are
those which correspond to s according to equation (2) for Ag Ka
radiation,

Finally, it is necessary to convert i(20) from equation (43)
to i(s) while allowing for the finite wavelength spread of incident

radiation., From the definition of i(20) (equation (43)) one can write

i(20) = IP° (A)i(A,20)dA (49)
A

The incident intensity distribution is decomposed into the mono-
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chromatic Ka and the continuous contribution as follows:

. . (50
P°(X) = PS(A) + PI(A) :

where the monochromatic part can be written as a delta function

PS(N) = PI§(A- Axg) (51)

where P; is a constant,

Substituting equations (50) and (51) into (49) gives

1(20) = P3i(A .20 + {f;(h)i()«,ze)dk (52)

The experimental values of i(20) were smoothed using a cubic spline
least squares regression routine and equation (52) was solved iter-
atively to obtain i(AKa, 20). i(AK&, 20) gives i(s) directly by equa-
tion (2) with A = A\Ka, Table XII lists the smoothed values of i(26)
and i(s) for the 1R state.
Note:

In one case experimental points were rejected in the process
of smoothing i(260). In the i(26) data from state 1’ 7 points from 28 =
18, 00° to 26 = 19.50° were discarded as being inaccurate due to faulty

subtraction of the very large beryllium peak at 18, 75°,

Obtaining the Distribution Functions

In order to obtain the distribution functions from equations
(4) and (5), i(s) must be known from s = 0 to s = 0.
Below 26 = 1,00° the main beam impinges on the detector

system and i(s) must be extrapolated theoretically from s = . 1955



32

to 8 = 0, The value of i(s) at s = 0 is given by the isothermal com-

pressibility KT

i(s) = anaKT -1 (53)
s=0

Because i(s) is an even function of s, the additional specifica-

tion is made

di (s)
a 5 = 0 (54:)
s=0
Table XIII lists KT and i(0) for the densities used to calculate u(r).
K., is determined from the data of Michels.34

T

The maximum value of s realizable in a scattering experiment

is found from equation (2) to be

s = 4MWsin90° = 47
max S ==

which for AgKa radiation (A = .5608 A°) is s = 22.41 A° .

In this experiment, however, the oscillations in i(s) become smaller
-1
than the uncertainty in the data after about s = 4 A° . A larger

error can be incurred in the integrals in equation (4) and (5) by using

these uncertaindatathanis incurred by setting i(s) = 0 after s = 4A° .

This latter procedure was used by previous investigatorslg’ By 2

) . . 2
and is known to cause errors in the transformed functions. chs

The procedure used here was to truncate the experimental i(s)
-1
after two complete oscillations (at s ~ 3.5 A° ) and to extrapolate

from this point by calculating the high s oscillations which are con-
sistent with the experimental data in the region from s = 0 to

-1
s =3.5 A° . The details of this procedure are as follows:
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Equation (6) was evaluated for a Lennard-Jones potential including

terms up to n2 to obtain g(r). (The cluster integrals had been pre-

45, 46

viously evaluated by Henderson and Oden. ) This g(r) was

transformed to give i(s) by

[ -]
41nfr(g(r)-l)sinsr dr (56)

o

si(s)

which is the inverse transformation of equation (4). The experimental
data for i(s) were truncated after the second complete oscillation and
the high s oscillations from equation (56) were added to the experi-
mental data by matching the crossover points (points at which i(s)=0)

of the two curves,

Normalization - At this point the experimental i(s) was renormalized

according to the criterion, derived by taking the limit of equation (4)

asr—0,
00
szi(s)ds = -Zn'zn
(57)
°
This complete renormalized curve (experimental i(s) +
extrapolated tail) was then transformed to give g(r), c(r), and ueff(r)

(PY) from equations (4), (5), and (14). This ueff(r) (PY ) was then used

as the leading term in equation (6) along with the Lennard-Jones
cluster integrals to recalculate g(r). This new g(r) was transformed
again to a new estimate of i(s) and the procedure was repeated until
the value of ueff(r) converged to within . 1°K in the well depth. This

occurred after 1 transformation of the Lennard-Jones i(s) and 2
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subsequent transformations.

The final normalizing constants obtained from this procedure
are listed in Table XV along with the normalization constants pre-
viously obtained by fitting to the atomic scatter at high s (equation
45), The complete normalized i(s) for each state is presented in
Table XV and i(s) for state 1R is illustrated in Figure 9. (The
intercept i(s) = 1, 075 at s = O, —a—aiéS-)— =0 at s = 0, is off the scale
of Figure 9.) Note that state 4 was used to determine the atomic
scattering factors fz(s) used in equation (45) (see Appendix C), and
accordingly has not been subsequently analyzed to produce a potential

function. Table XVI presents c(r), g(r), and ueff(PY) for the four

ff

states analyzed. c(r), g(r), and u® (PY) for state 1R are illustrated

in Figures 10, 11, and 12.

Correction for Non-Additivity

Equation (16) is now used to correct ueff(PY) for many-body

effects. It was found that the n2 term in equation (16) could be

neglected, its effect on the pair potential being of the order of . 1°K

in the well depth. Therefore equation (16) was rewritten as

N
\

ulr) = 9—%?—9—— + ueff(r) (P Y)

and the ueff(r) (PY) for each state was corrected to give the pair

potentials, u(r). u(r) for the four states is given in Table XVII.

The prominent features of these potentials are listed in Table XVIII.
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Comparison of Equation (10) and the PY Equation

Pings28 suggested that equation (10) be rearranged into the

form l+I3(r,n,T)+%‘-[I3(r,n,T)]2+%'nzm B
l+Il(r,n,T)
N
ngl( - (r)

expi{kTu(r) -

One would then use equation (59) by obtaining the experimental
integrals for a range of densities and plotting the quantity on the left

as a function of density. The slope of the function would give the

(NA)

g, ) term and the intercept at zero density would give the pair

potential., However, no systematic trend of ueff

(r) with density was
found for the present experiments, and the aforementioned procedure
could not be used. This indicates that the variation of the three-body
effects at these densities is smaller than the imprecision of the data,
which is consistent with the calculated three-body corrections of

34, 33

Rowlinson, However, equation (59) can be rewritten in terms

of an effective two-body potential

l+I3(r,n,T)+%-[IB(r,n,T)]2+%'-nzm ot
’exp{kTu (r) (eq. 10)}

l+Il(r,n,T) (60)

Using the definitions in equations (11), (12), and (13), equation (60)

can be rewritten
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E[g(r)-l-C(r)] +5n

1 2.1 2
g(r) ]

wett () - len[l—c(r)+
(61)

By comparing this with the Percus-Yevick equation (equation 14), it

can be seen that equation (61) may be regarded as a corrected P Y

equation which now becomes exact to the second order of density.

(A cluster integral expansion of the P Y equation shows that the PY

equation begins to be inexact in the n2 and subsequent terms, as

evidenced by the absence of some 4wbody cluster integrals of the type

shown in equation (9).) The term in equation (61) which corrects the

PY equation for the missing nZ integrals, (-;;(g(r)-l-c(r) )2

+ % n2 m /g(r)), has a maximum value for the densities studied

of -.0014 at L S the separation at the potential minimum. This

ff

term produces a difference between the u® (PY) a,ndueff (equation 10)

of €(PY) - €(10) = . 22°K for states 1 and IR, .43°K for state 2, and

eff(

.20°K for state 3. u r) (equation 10) was evaluated for state 2,

the most dense state, and is compared with ueff(r) (PY) in Table

XVIX.

Averaging the Four States

The final estimate of u(r) is obtained by averaging the u(r)'s
for the four states studied. An error analysis (see Chapter IV)
showed that the final precision of u(r) for a given state was approxi-
mately proportional to the density of the state., Accordingly, the
averag<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>