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ABSTRACT

A method is developed for obtaining the transient response
of an automatic control system containing a nonlinearity in
which one dependent variable may be expressed as a unique function
of another variable. Thils method involves obtaining a mathematical
expression for the nonlinear characterlstic by an expansilon in
Legendre polynomials, introducing this expression into the
eguations describing the control system behavior thus obtaining
a nonlinear equation in a power serles of a dependent varlable
and solving this nonlinear equation by means of an assumed infinite
serles solution technique. The rules governing the application of
the method are discussed.

A saturation type nonllnearity 1s used to 1llustrate the ap-
plication of the method. A second order system ls employed to
1llustrate the accuracy of the method and to present a numerical
technique for solving the series of equations arising from the
infinite series method of solving the nonlinear system equation.
The stabllity of a fourth order missile control equation with a
saturation 1limit on the control surface is investigated by the

method.
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I. INTRODUCTION

Although an extensive development of the theory of llnear servo-
mechanism analysls and synthesls has been made, no general method ap-
plicable to nonlinear systems has been devised. HMuch work has been
done 1n the fleld of topology as applied to second order differentisl
equations, and this phase plane approach has been successfully employed
in the analysis of nonlinear second order servomechanism systems., Un-
fortunately, this technique involves three-dimensional space for
systems described by third order differential equations and so on for
higher order systems. Since the second order servomechanism 1s almost
a trivial case, 2 method applicable to higher order systems 1s extremely
important.

One method for accomplishing analyses for higher order systems
has been the frequency response or equivalent linearization technlque
developed by Kochenburger (Ref. 1). This involves an open-loop steady-
state transfer functlon of the system lncluding the nonlinearity. It
appears to the author that this 1s at best a qualltative approach since
nonlinear functions of a variable are dependent on the magnitude of
this variable, which necessitates a translent analysis invelving the
actual closed-loop environment to obtain quantitative results.

The only other method which is known to the author 1s that of
step-by-step analysis 1n which several sets of equations, that des-
crive the nonlinear servomechanism for several ranges of the magnlitude

of the dependent variable of which the nonlinearity is a funection,



are successively solved. This 1s effected by using the final con-
ditions (position, velocity, acceleration, etc., of the dependent
variable) from the equation describing the system to the magnitude
1imit Just reached as the corresponding initial conditions for the
equation of the next range. Oldenbourg and Sartorius (Ref. 2) in-
clude a good exposlition of this method for two types of nonlinear-
ities in a second order system. Thls method glves an exact trans-
ient solution for those types of discontinuous nonlinearities in
vhich the nonlinear function may be accurately described by several
linear ranges, but i1s very lengthy in application especlally if the
number of range changes during the translent solutlon exceeds three
or four. The method 1s not applicable for continuous nonlinear
functions of a dependent variable.

Since neilther of these two methods 1s satlsfactory for the
general solution of a nonlinear system, a more general method was
sought. The remainder of this thesls describes a technique which
it 1s felt provides thils more general method for a certain class

of nonlinearities which wlll be termed dependent variable nonlinear-

ities. This class of functions, which is defined in the next section,
includes the majority of the nonlinearities encountered in servo-

mechanisms or automatic control systems.



II. EXPLICIT MATHEMATICAL EXPRESSION FOR DEPENDENT
VARIABLE NONLINEARITY

A dependent variable nonlinearity will be defined as any non-
linear function in which one dependent variable may be expressed
as a unique function of another dependent variable for the entire
range of the independent varilable considered. By this definition
the dependent variable nonlinearity class includes every type cof
nonlinear function encountered in control systems analysls except
non-unique multivalued functions such as hysteresls together with
nonlinearities composed of products of two or more differential

2
functions ol dependent variables, €.g. 3—%—) or -3—% . -ﬁ-_ié-) .

Thus this thesls will be concerned with the development of a
technique for analyzing control systems including a dependent
variable nonlinearity. This involves first findlng an expliclt
mathematlical expression for the dependent variable nonlinearity.
While some of the nonlinearlties encountered will have an explicit
functional relationship, this will not be true in the general case.
Hence consider the general functional relationship

B, = f(a,)
which may represent a numerical or graphical expression obtalned
by theoretieal or experimental consideration. The usual treatment
to obtain an explicit mathematical expression of such a function
1s to express the relationship as a Fourler serles. The orthogonal
functions involved in the Fourler serles are commonly trigonometric

functions. Unfortunately, these result in transcendental equations



which must be solved to obtain the solution of the system with
which we are here concerned. However, other orthogonal functions
which are not transcendental can be used such as Legendre poly-
nomials.

The use of orthogonal polynomials requires only that the first
derivative of the functlonal relationship exists and that the
function be continuous in the interval considered. Thus, an ex-
panslon in Legendre polynomials 1s not as restrictive as a Taylor
or power series expansion which 1s valid only where all derivatives
of the function exist. Moreover, Legendre polynomlals afford the
advantage of superposition of additional terms in the expansion, to
Increase the accuracy of the expression, without affecting the co-
efficlents of previous terms.

Since the expansion interval for Legendre polynomilals is +1 to
-1, a sultable change of variable must be made such that the entire

range of interest of the dependent variable is included.

Let
op = 2 (1)

e
%= ?Tg (@)

where NF = normalizing factor which must be greater than the maximum

o

magnitude of @, or ©y. Then the functional relationship may be ex-

pressed to g terms as

%
=) G .
% =g = F(5R)= Z APl -

where the coefflclents A, are gilven by the expression
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and where the Legendre polynomials are

LA

Pl =a

B (o) = L (3671) 3)
B ()=4 (557 -30;)

L d 1)
= S %~/
Fale)= v do®

— 271—1)(27-3) [a__’n nin=1) o2, nln-ilm=2)n-3) G-;“"i . _]
n! Z(zn—i) ©  2-4{zn-iX2n-3)
where power of 0, 1s > 0.

This expansion in Legendre polynomials may next be expressed as
a finite serles of powers of the dependent variable ¢, by combining
coefflclents of like powers of O, when (5) is substituted in (3).
Thus

5= 2 Cpol (6)
Whereas the A, coefflclents are independent of the number of terms of
the expanslion, q, the C, constants are not. However, as g changes
the new C,'s are merely the original C.'s with superimposed terms
ardsing from the incluslon of addltional Legendre polynomlsals.

As an example of thils expansion consider the saturation nonlinear-

ity that is commonly encountered In control systems analysis which has

a limited cutput deslignated here as QNL'
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Filgure 1

Figure 1 shows this type of nonlinear functlon expressed in

S
normalized form where as in egs. (1) and (2) oL =.~;ﬁ§L-
From eq. (L)
-0y +a; i
A,= Zprl [ /*cz.?n (o) deg, ﬁ;‘r;\(o;gclo;-» ﬁt_ﬁ(c‘;jdo&] (7
= oL oL

for thls saturation nonlinearity. The A, constants may be readily
caleculated by substitution of (5) and evaluation of the integrals
indicated. A summary of the results is glven in Appendix A. The
power serles coefficlents C,, which result from the expanslon of
eqs. (3) and (5) with the AL, values included, are plotted in Figures
2, 3and 4, 5 and 6 for q = 5, 13 and 17 respectively.

The accuracy of thls representation for various o] limits 1s
shown for lLegendre polynomial expansions including 5 and 17 terms
in Figures 7 and 8. As would be expected the accuracy increases
with the number of terms included, especlally as Q decreases. At

the low q:limits the main eryror occurs in the representation of
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the linear reglon from O to gp. From the Cn curves and the resulting
descriptions of the nonlincerity, 1t can be noted that the repre-
sentation of the linear reglon has a falrly constant accuracy from
0 =1 to the value of oy, for which C1 1s last equal to one as
@1, decreases. Thils minimum value of G‘L for which Cq is equal %o
one decreases as the number of Inecluded polynomial terms increases,
which accounts for the lmproved accuracy at lower d&lfor higher qg.
For g = 17, €1 equals one at a minimunm O‘L = ,102 and the maxlmum
error of the llnear portion of the presentation for 6}}: .1 1is 19%
with a mean error of 10.3%. The saturation part of the nonlinear
function is described within a maximum error of .0l which gives an
increasing percentage as CﬁL decreases reaching 10% at °1.= o1l

For most engineering work q = 17 should give adequate accuracy.
When the €, 1s of necesslty less than 0.1, the linear region is of
relatively little lmportance except near the steady-state of the
transient response since O, will be almost entirely in the satu-

rated reglon. Hence the effect of the linear region inaccuracy will

be minimized.
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III. GENERAL EQUATIONS FOR A NONLINEAR SERVOMECHANISM

With an explicit mathematical expression for the dependent
variable nonlinearity one can now obtain a general equation des-
cribing the transient behavior of a closed loop control system
containing such 3 nonlinearity. Since the nonlinearity may exist
in either the main control loop or a subsldiary feedback loop
within the c¢losed loop,these two cases are considered separately.
In both cases the equations are expressed in terms of the dependent
variable describing the input %o the nonlinearity. This 1s chesen
since from 1t one may easily obtain the output of the nonlinearity
from the nonlinear characteristic, and any other variable by solv-
ing a simple linear differential eguatlion. It is obvlous that the
equation of the system may just as well be expressed in terms of
any variable in the loop which 1s of partlcular lnlerest.

A generzl schematic for a servomechanism containing a nonlinear-

1ty in the main control loop 1s shown in Flgure 9.

C (D) 8,

9‘-' 9€ A(D) 93 NON-
CD B(D)|  [uneariTy £(D)

A

Y

F (D)
G(D)

Figure 9
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The equations desceribing the system are as lollows where D = a%
and the functions A(D), B(D), etc., are polynomials in D.
B(D)©,= A(D) &¢ (8)
=g — £ €)
eE eL G(D) GO
E) 8, = C(D) Oy (10)

The nonlinearity may be expressed in the Legendre polynomial

expanslion which has been shown to yleld
-
Op = é C,% (6)
n=o

in terms of the normalized quantities. Substituting equations (1)
and {2) into (6) permits writing the relationship describing the

nonlinearity as

s
O = 2 =Xy Oy (11)
n=o
= C
where Xn = Jajfi-, (12)

Now multiplying the linear equation (8) by G(D)E(D) and sub-
stituting (9) and (10) gives
B(D)G®) E(D) ©,= AD) G(D)E(D) 8; — A(D)F(D)CD) By, (13)

Substitution of eq. (11) and rearranging yields

b n
A(D)F(D)C(D) = %,,6, + B(D)GM E(D) 8,=AP)G(D)E(D) &; (14)
n=o

which 1s a nonlinear equatlon governing the transient response of
the control loop. It should be noted here that this result is per-
fectly general, an equation of 1dentical form being obtained if the

nonlinearity occurs in the feedback portion of the loop or if the
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designated input and output functions, 9i and GO, are shifted with
respect to the nonlinearlity. Of course, the input function 6; may
be an external disturbance as well as the command to the control
systen.

For the case of a nonlinearity in a subsidiary feedback loop
of the system, the general schematlc will be as in Flgure 10. Whille
the configuration considered has the nonlinearity in the direct
portion of the subsidlary loop, similar equations may be readily

developed when the feedback portion contains the nonlinear element.

8 8 8 | AD) 8o nov- | &
| B(D) LINEARITY|

|
7 C(D) B
A E(D)|
F (D) B
G(D) h
Flgure 10
The equations of the system are
_ A _ Eo
- A - Fo
S =6~ Gi» Oo (x6)
n
S 27‘%«“ A (17)

Multipliecation of eq. (15) by B(D)E(D)G(D) and substitution of (16)

gives
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BD)E(D)&(0)©,= A(D) E(D)E(DIE; - fA(D)E(D)F(D)-t-C(D)B(D)G(D)]eo (18)
Introducing (17) results in the final equation

3
[AEEFO+CRBDIEO] g«el+ BOEMGD)e,= ADE@GD)S;, (19
=0

The introductlon of a second nonlinear function into the con-~
trol system leads to an equation involving a power series in a
function of differential operators acting upon a dependent vari-
able. This type of equation 1s not solvable by either the tech-
nique to be used in the remainder of the discussion or any other
practical technique known. Hence our considerations will he limited

e systems involving a single nonlinearity.
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IV. SOLUTION OF NONLINEAR EQUATIONS BY TNRINITE SERIES

In the soluticon of linear differential equations many equations
do not fall into one of the standard types and may not, 1n fact,
yield solutlons In terms of a finite number of the elsmentary
functions. One then resorts to a solution In the form of an in-
finlte serles or an approximate solutlon involving a finite number
of serles terms when numerical computations are the maln concern.
Thus a method of solutlion by infinite series simlilar to that of
Probenius for linear differential equatlons has been employed here
for the solution of the type of nonllinear equation glven in equations
(14) and (19). The method 1s parallel to that described by A. C.

Sim (Ref. 3), the slightly different approach being made to facilitate
the establishment of the convergence criterion which Sim leaves un-
discussed.

Given an eguatlion
@, (0)6+a,_(ME 4 .. 0 0)16% a0 =FH) +T (20)

where the coefflclents a,(D) contain no negatlve powers of D and

d
D = the differentlal operator it

I

L

the initial conditions

a solution may be found by assuming

e
o= 9,+ez+93+-~e.,‘=§‘en (21)

where
6,= e,

e, = K (0o
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3
6, = F,(D) O,
- n
6,,= (D)6,
Substitution of (21) into (20) and equating functional terms

having like powers of ©, to zero, yields the following set of

differential equations.

a, (D), = Fi)+ L (22)
a,(D)O,= ~ a, (D) 6,2
a,(085= ~[a,(0)8 + 2a,(0) 6,6,]
2, (038, = - [4,(6, % a,(0) 3870, + 4, o) (6+26,85)]
a, (06 = ~[ 258+ a4 (0)46,6] + a,(0)(365 6, + 36, ;)
+a, ()(2 6,03 +26, 94_)]
2,090, = [2,(0)6 +a (o) 560, + 4, (0) (66765 +46,65)
+ay(oX(36°6, +66,6,85+ & )+ oy (0654 26,6,126,6,) ]
a,()8, = - [a,(0) 0]+ a () 6676, + a D) (1067 S +56]'6;)
+a,m@e’e, +12676,0; +46,6; )
+a, (0)(36,62+ 367 6,+ 66,6,6,+36,6,)
+0,0)(26,0,+ 26,65 +2658,)
2,(0) O = - [Ag(D)6, + 2, (01768, + 4, (0) (156]65 +66,6;)
+agp)se’g,+ 20876,0,+ 10 6] )
+a, (046705 +6670% 12 670,6,+126,6,6;+ 65 )
+a,(D)(66,6,05+3676,+66,6,8,+36,6,+36,6,)
+a,(0N 6 +26,6,+26,6,+26;65)]
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2,(0)6,=~ [, ()6, + a5(0) 86]6, +a, (D)(21 6707+ 76/6;)
+a, (D)(66 g, + 30 ee,0,+ 20 676, )
+a,(0)(i0 656, + 5605 +20 60,6, +30 662 6,+56,67)
+@, (D)(4670,+126, 6,6, +126]0,6, +126,6,6F
+120656,+46,6,)
+a,(0)(36,6; +36°6,+66,6,0,+666,0,
+66,6,6,+3656 + 6F)

+a.z(o)(262_67 126,80, +20;0,+ 2 64_95)]

Addltional terms are found by substitution in the same manner.

The restriction that the coeffilcients an(D) contaln no
negative powers of D is necessary in order that a valid solution
of eguation (20) results from the commutation of operators implied
in the substitution of eq. (21) in (20). It is to be remembered
that a fundamental law of operators states that while

Dﬁ‘t1=‘1
1s always correct,

5'Dy = 4
is correct only when y and its first m«l derivatives vanish at some
fixed value of the independent varlable, m belng the order of the
equation defining y. Hence, while the terms of the assumed series
solution involve, in general, both operators and Iinverse operators,
the substitution of the series into equation (20) does not violate
the above law providing the a, coefflicients contain no inverse oper-

ators.
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Thus the original nonlinear equatlon is transformed Into an
infinite set of equations, which fthough nonlinear in nature, may
be reduced to linear differentlzl equatlons when solved In succes-
sive oprder. That is, the sclutlon of the equations preceding the
one whose solution 1s sought, when multiplled and grouped accord-
ing to eq. (22) form the forcing function for that equation. This
forcing function may, in genersal, be linearized so that the solutlon
of the equation may be effected by linear differential equation tech-

niques.
1. Introduction of Initial Conditlions into the Solution

From the set of differential equations (eq. 22) determining the
dependent variables of the serles solution of the nonlinear differ-
ential equation, it 1is obvious that only one complementary solution
is required. This 1s true since the complementary or homogeneous
solution of each equation in the set ls identlical and will give rise
to the same number of arbitrary constants. Thus, to avold re-evaluatilon
of the constants to satisfy the initial conditlons upon the inclusion
of one more term in the series solution, as would be necessary 1f
each equation of the set generated a complementary solution, the
only complementary solutlon wlll be determined by the solution of
the prime (first) equation of the set. Hence, all other solutions
are particular solutlons.

Thus, to obtain a general solution of fhe nonlinear equation,
the prime equation must have the same order as the nonlinear equation

s0 that sufficlent arbitrary constants are introduced. Moreover, the



23

particular solubtions of the successive equations and thelr deriva-
tives to the order of the linear prime equation minus one must
vanish when the independent variable equals zero. The arbitrary
initlal conditions may then be lntroduced by whatever technique

1s employed in sclving the prime equation. In this manner one

may study the transient behavior of a control system f{rom any

initial state.
2o Convergence of the Assumed Series Solution

This sclution of the nonlinear eguation is valld providing the
assumed seriles of equation (21) converges. Thus, in applying this
method a general convergence criterion ls necessary. Since the
series 1s one of terms which are continuous functions of the inde-
pendent variable, time, 1t is necessary to define the convergence
in a given Interval of time. Moreover, the sum of this convergent
series must be a contlnuous function of time, for which a sufficient
condltion is uniform convergence of the serles. The Welerstrauss
M-test for uniform convergence satisfles these requirements as fol-
lows:

e —

et 2 O,(0)F B,(6)+ Q60+ O, (t)+ - (21)
be a series each of whose terms 1s a continuous function of t in an
intervael O - T. If the series of positive constants

M+ My Mgt Mgt - Mo (23)
1s convergent, and 1f

le, ol £ M, (24)

for every n and for all values of ¢ in the interval O - T, then the
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original series is uniformly convergent in the interval. Moreover,
the series of 8%'s ls absolutely convergent in the interval 0 - T.

Hence, the criterion of validity for this infinite series
solution of the nonlinear equation becomes the criterion of minl-
mal convergence of the assumed series. This may be defined by

the well known p-series

»0
[+.£‘.F+....’__+..._./...+...:Z (25)

3P nP n=

which 1s convergent for p > 1 and divergent

-

<

-t
n?
for p = 1. Thus, setting

P = 1+ € gives the dominant M-series for minimal convergence as

I I ! 26
| 4 +31+a+""—ﬁ-—a+"' (26)

ZH’ € ~”

which must be term by term equal to or greater than the correspond-

ing term of the series

lel ey ool
I+J-e—lcgl+lg‘izf—)}+-~m‘+--- (27)

where the magnitude of each Gn 1s 1ts peak magnitude, either positive
or negative, over the time interval considered.

Unfortunately, the question of convergence of the serles of time
dependent functions defined by the set of nonlinear equations (eq. 22)
is not amenable to general mathematical treatment. Only when the
system is numerically characterized can the peak magnlitude of the
solution of each equation of the set, and consequently the conver-
gence, be determined. Even this appears prohibitive since the trans-
lent solutlion found by a series subject to thils convergence criterion

must be used to determine the eriterion. However, in applying this
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technique to nonlinear control systems one develops from the con-
vergence criterlon, the varlation in the behavior of the system

as a function of the magnitude of system disturbance wilth respect
to the nonlinearity critical magnitude. Thus, the difficulty
arising from the interdependence of translent solution and con-
vergence 1is avolded for the general anzlysis of a nonlinear system.
Moreover, in determinlng 2 specific translent response from a glven
set of conditions a 1lttle insight enables one to obtain a surflei-

ently rapidly converging solution for practical calculations.
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V. GENERAL RULES GOVERNING USE OF THE METHOD TOGETHER WITH THE
SPECIFIC RULES FOR SATURATION TYPE KON-LINEARITY

We may now summarlze the procedure developed for analyzing con-
trol systems contalning a dependent variable nonlinearity as follouws:

1. The nonlinear characteristlce is normalized by means of an
arbitrary constant termed NF (normalizing factor). A mathematical
expression of the characteristic may then be found by an expansion
In a seriles of Legendre polynomials, a sufflcient number of poly-
nomials being included to obtain the desired accuracy of the expression.
The number of polynomials required to give a certain accuracy will vary
with NF, either directly or indirectly depending upon the type of non-
linear characteristic.

2. The complete equatlon for the system including the non-
linearity is developed in terms of the dependent varilsble of interest,

3. A solution for the resulting nonlinear equation is obtained
by an infinlte seriles technique, The validity of this solution is de-
pendent upon the convergence of the assumed series.

In the above procedure certain conditions are explicit or implied.
These condltions appear as restrictions on the arbitrary normalizing
factor, Thus, NF 1s subject to the following general rules:

A NF must be greater than the peak transient magnitude of
the Input %o the nonlinearity. This arises because of the Legendre
polynomial expansion interval -1 to +1.

b. NF must be of a magnltude such as to permit a suffi-
ciently accurate description of the nonlinear function by the number

of Legendre polynomials chosen,
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¢. NF must be chosen to assure at least minimal con-
vergence ¢f the agsumed series solution comprising the transient
response when the system is subjected to a defined disturbance
or command.

It is necessary that all three rules be satisfied slmultan-
eously, 1f possible. However, under cerfain conditions b may have
to be violated 1n order to assure the irrevocable restrictions a
and ¢, This leads to the development of speciflic rules for indi-
vidual nonlinear characteristics. Since for the remainder of this
thesls we wlll concern ourselves with application of this technilque
to the saturaticn nonlinearity of Flgure 1, the speclalizations of
the general rules will be developed for this nonlinear function.

at, This will be the same as the general rule for all
dependent varlable nonlinearities.

bi. As developed in Section II, NF must be less than that
for which ¢y is last equal to one as G&ldecreases (NF increases).
This restrictlon arises from the lnaccuracy of the linear region

description when Cl<< 1 which occurs as NP = 2§£ increases beyond
L

the above value. This accuracy limifed maximum value of the nor-

malizing factor, hce NF X2 will increase as the number of Legzendre

Me.
polynomlials, q, increases.

¢t. In order to quantitatively determine the convergence
of the assumed series solution it 1s necessary to conslider a specific

system. However, certaln general qualitative conditions may be formu-

lated. Referring to equations (1k) and (19) it is seen that for a
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control locop containing a dependent varilable nonlinearity at any
point in the system, equation (20) may be written as

2 (28
’1‘2_;2 A(D)“mén-f' EA(D)«,+ B(D)]e =FE)+ T )

l.e., the differential operator dependent coefflclent ls constant
for each power of the dependent variable greater than one.
Thus, the subsequent set of differential equations defining

the solution to (28) becomes

[A) e+ BD) ©,= F(4)+ T

A« +BMD)]6,=~AD)x, O

- - - ] — (29}
[A(D)x,+ B(D)|©; = ~A(D)|%36,+ 226,68, | ‘

4
[AD) =, + B(o)] 6, = ~ A(D)[ex, 8, + Sexy ef92+«z(e;+ze,93)]

For a symmetrical dependent variable nonlinearity the Legendre ex-
pansion produces a,=0 for n odd only. Hence, a further reduction

can be made for the symmetrical saturation nonlinearity.
[Ao) <+ B(D)]B, = F(£)+T
[A) + Bm] 8= — A(D)x5 6]
[A (D), + B(D)] @5=—A(D)[;<59,5+ 303 O, 9‘2] (30)
[Alo), + BC o] e, =—Alp) [d7 9,74_5&5. 9,4 O5+4(36, e:+39,295)]

-

From equation 30 1t 1s evident that for any gliven system all of

the factors operating on the dependent variables are fixed with the
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exception of the an!s which are functions of the normalizing factor,
The a constants directly determine the magnitude of the solution

of each successive equation and hence the convergence of the assumed
series solution to the nonlinear equation. We may compute these

convergence determlning constants «, from the expression

n-l
C. C,0;
K= —2 = DL (12)
n n-l E]
NF e
/2

and the curves of C, given in Section II. Filgure 11 presents «j,
a3 and ag as a funetion of 07y for q = 17. The a, factors for n>5
have the same characteristics as n = 3 and 5, namely that the oy
increase in magnltude as oy, increases above the minlmum value for
which ay = €y = 1. Hence, for a given time functlon €7 in equation
30, the degree of convergence of the series :ﬁgn decreases as oy,
increases (NF decreases)., It should be noted that the expected
unlimited convergence at a&.’ ]l or linear condition ls achieved
since here all of the an = O for n>1 and a1 = 1. Although the ay's
oscillate with O7 in the reglon where aq varies about unity, valid
solutions for the nonlinear equation can be found for 2 normallzing
Tactor which causes oi,to lle anywhere in this region. However,
maximum solution accuracy with the fewest number of successive
equations results when the a,'s are at or near the peaks of theilr
oscillations.

Since we have shown that the convergence for a glven system

decreases as NF decreases, it becomes possible to define a maximum

magnitude of F(%)+I which will just permit convergence at the naxi-
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mum NF for which aq = 1. This, then constitutes an upper limit
of F(t)+I for which the prime equation of (30) can remain the same
as that for the linear system and hence restrictlon b! be satis-
fied. If the magnitude of F(t)+I increases beyond this limlt,
the convergence crlterion requlres that o, decrease so that the
accompanying reduction in the a,'s permits a convergent series.
Although bthe restrietion b! must be viclated in this reglon in
order that the necessary convergence be assured, 1t is of rela-
tively less importance since the transient solution 1s wilthin the
saturated reglon almost entirely except near the steady state,

Hence, 1t 1s seen that the convergence criterion provides
a quantitative measure of the system conditions under which the
closed loop will experlence the gain reduction that is obviously
the effect of a saturation type nonlinearity. In fact, the con-
vergence criterlon can be used to determine the effective gain
reduction as a functlon of the magnlitude of the input functlon
or obther parameter and the nonlinear saturation limit. 1In thls
manner, the study of the instability or stability brought about
by the nonlinearity to an otherwise stable or unstable linear
system should be possible. This type of study is performed with
satisfactory success in Section VIII.

In order that this convergence erilterion be unique, it mast
result in a conslstent determination of the value of «y for con-
vergence in this region of O<Mml§§].which 1s independent of q,

the number of ILegendre polynomials included in the expansion.

The conditlons for this to be ftrue may be stated as follows:
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AS n 1ncreases

(&9_"‘_) = (i%‘_. (Ql)
e e .
q "2 %«,za. q N2 %.«, =a

where 1
F<9,
o<ac=|

Now Qo(n) = —r»‘é,oc“) « =a since the additive contribution
t—~Qa '}
% i)

to the high n a,'s as q Increases 1s considerably greater than that
to the low n constants, Hence, an identilcal set of eguations is

impossible. However, a consistent convergence determination can

exlst within fhe factor X 1if
- KE (
(%“M)‘bqlzq = K (chn)%,x,:—a.
This can be seen by substitution of (32) in (30), giving

& = A O]

1’93 {rx-n A (D) 9,3 a

32)

. (33)
357 _A0LE 6130 £,67] . Ao[i(reiag KGOl - K*

%'6}- A 67+ 3;,«3 , 6] AW %,&5 o’ 3’39% 593 6]

which results in

le.n
(ﬂ) = K("ﬁ*— (34)
3

Q '
Nn-2 ) K = Qq n-2) oc =aqa.
% i % %‘ {
where K—»1 35 q' increases. Though considerable effort was made ;
no formal manner of proving or disproving this was found. Hence y We

must assume for the present the validity of equation 34 from the fol-

Jowing demonstration.
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From the curves of C, the ratios of QEE_, as a functlion of the
q~20n

number of Legendre polynomials included in the expansion may be
plotted as in Flgure 12 for 2 value of Gilin the linear portion
of the Cy curve between O and 1. Since all of the C, curves are
linear in this region, this point is typleal. It may be noted that
a stralight line can be drawn through appropriate points on the
family of curves for n. From these lines one can easily extrapolate

to define succeeding curves of the family as g inereases and from

which one may formulate

An . 5.+ A (n-i) (35)
C
Fe ™
where as q—o0, & > landA = 0
Now
n—| “« = C -1
OuL A ob"Z (12)
and hence
e, oo\
n = a4 (36)
FEn 3 ok

Since from the Cn curves

then
3Sn _ 3Kn (36)
F= 7 17;E:h

and
(-02) X, = ii%? ]K:, I
Wiime = K gl = L (39)
k“l) Q K S,
32 §o=a = 3!
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Therefore

2
(1 °(‘n)$x,=.q - QCH (_L)n-.’:[ %Cn )‘n-f’ l ] 2
C

G—z““)x,za 2 n 8:
$2

where K —= | As cB—a»oc

(40)
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VI. TECHNIQUES FOR SOLVING THE SET OF NONLINEAR EQUATIONS

In effecting the solutlion of the set of nonlinear equations
glven in equation (29), several methods were investigated. Of
these, two were found best suited, the Laplace Transformation
and the P-Transformation. The first method gives, of course,
an exact solutlion to each equation of the set and 1s accordingly
very difficult to use, the complexlty of the method increasing
with each successive equation of the set. The P-Transformation,
on the other hand, 1s an approximate numerical method which 1s
much quicker than the Laplace Transformation. This 1s especilally
true for the successive equations since the complexity of the P-
Transformation is essentially constant for each equation of the
set. A general dlscusslion of each method wlll be made here prior
to the application of both to a specific example in the next
section.

The Laplace Transformation method of solving linear differ-
entlal equations 1s In sufficlent general use that the principles
of the method will be omitted. Thus transforming the prime equation

of (29) we have

Lla,me)] =L Fee)]+ I (41)
hence

a,(s)6,()=F(s)+ I (42)
from which

_vwirres | I
ot =X [£5 + 5] (13)
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The second approximatlion equation may then be transformed giving

2, 6,() = = A {< X [0,6)] ] ()
and -] 2 (Q5}
6,8) =~ L {f% L[] }

where Eél(tilg must be linearized in order that the Laplace Trans-
formation may be made.

The process continues in like manner, the forcing function for
each successive approximation equation belng generated by a linear-
ized combination of powers of the preceding solutions In the time
domain. In general, the characteristic of fhe prime egquation may
be factored as

T

a,(s) =:E (s—s) (46)

which gives a prime equation solution which may be written as

g +
g1 =KF@ + Z K e +K T (+7)

where S5, will be complex 1n the general case.

In this form ralsing the solutlon to a glven power may be facilitated

by means of the multinomlial expansion theorem. Glven:

2 3 N 48
(I+b,x+bzx+63x+--~)=(/+B,x+82x2+53x3+...) (55)
where the bs's are constants
then
B, =, b,
2
B=n(by+b )
B.=nb b b, +n. b (19)
3 = 7 By + 271, B Dy +715 5 (49

‘ 4
By=m, by + 27, (.é. b: + b, b))+ 3713}3sz+ 7, b,
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B, = mby +2n, (b b, +b,b,) +3n, (b b, +bb,)
3 5
+ 4Tz4 b, b;. + ns-b,
ete.

where n., = ni = binomlal coefficient

Sinee the accuracy required in most englneering problems does
net exceed that attalnable by practical fechniques, an approximate
numerical method may be used in solving the set of equations des-
eribing the nonlinear system. In a paper titled "A New Linear
Operational Calculus", Frank W. Bubb {Ref., 4) presents an oper-
ational method applicable to the approximate analysils of linear
physical systems. In contrast to the methods based upon the trans-
form theories of Fourler and Laplace, this calculus does not depart
from the time domain. Since it 1s not our purpose to develop this
method but only to present a usable account of it, the following
brief resume! will be made without proof. For proofs of the theorems
and additional details the reader 1is referred to Reference k4,

Due to the fact that the superposition, convolution or faltung
integral embraces all of linear system analysis and synthesis, it
provides a basis for any form of operational caleculus. Hence, the
following definitlons are made such that a simple relation exlsts
between the P-transforms of the three funetions involved in the

convolution integral

¢ (50)
H) ::/F(fr) ME-T)dT
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Given a time function F(t) and a set of its equally spaced ordinates

F(nv) = F,, we define a polynomial
L

~ n
Fixy = = F.x (51)
n=-—K
called the Polynomial or P-Transform of F(t). One can think here of
the n as an index for the time ordinate nv. The inverse transform

is defined as the interpolation

= F'Ew = £ R L (52)
f(t) =P Fx) = = o L (£ -nw)
where L(t - nv) is an interpolating function of the cardinal type

such as (but not limited to):

l—('&"‘ﬂ\/) = SIN %('E"'NV)
T (t—nv)

The time function f(t) is an approximation to F(t) which for con-

(53)

tinuous F(t) becomes exact in the 1limit as the time interval v —=0.
The meaning of this Interpolation is fully explained in the reference
mentioned and wlll be omitted here.

The principal theorem concerns the transformation of the super-
position integral of equation (50). The P-transform of this integral
being given by _

Ho =v Foo - M) (54)
It is noted that when v = 1, the relation between (50) and (54) is
of preclsely the same form as in Laplace transform theory. Equation

(54) may be written in more explicit form as
M n I . L R
= Hx =vZ FxdZ M. X (55)
n=-N &=—J d R=-k
where M =1 + Land N=J + K.



Lo

By ordinary polynomial multiplication of the two polynomials on the
right-hand side of {55), one finds when the coefficients of equal
indices x on each side of equation (55) are equated the recurrence

relationshlp

= 6
H . =v = FSMW“;\ (56)

4=
This expresses then that the ordinates of H(t) at the respective

time points nv are Hp which can be found by the combination of ordi-
nates of F(t) and M{t) at the time points jv and (n - J)v respectively
as stated in equation (56). From this one fairs in a time curve h(t)
through these points and accepts thls curve as an adequate interpol-
ation of the required response H(t).

In connection with the application of thls method certain

theorems are very useful and will be stated here without proof.

B(t) + K(t) (57)

i

Th. 1 If H(t)

7

Then H{x) =’1\?’(x) +?{/(x)
Th. 2 If H{t) = cF(t)
~ ~ (58)
Then H(x) = cF(x)
Th. 3 If H() = F(t-mv)
~ ~ (59)
Then H(x) = x® F(x)
Th. b  If H(t) = F{-t)
(60)

~s
Then H(x)

]

%F(nv) x 1

Th. 5 If H{t) = AR(t) = F(t+v) - B(%)

Then H(x) =( .31; - 1)'%7(::) (61)



L3

Th. 6 If H(t) = ¢t F(t)
~ dF(x (62)
Then H(x) = xv ~E£~l
Th. 7 If H(t) = F(E)
t+v x (63)
~ey -4 [y 5
Then H(x) = W ) F(x) dx
Where F(x) = 2 F(av) x"
n=0
nv
Th., 8 If H(nv) = / F(t)dt
o
~ o '14,)
~ v+ x) F(x) _v = 5k (6
Then H{x) Q(E—t”;b 5 Fo = X
Where F(x) 12 Fy %"
And ’E(x) = zﬂnxn
n=0
Th. 9 If H(t) = Eg%ﬁl
~ 2 - 9~
Then H(x) = o x)H(X) (65)
Where ﬁ(x) = = H(xv) x¥

The detalled applicatlon of thls method is best lllustrated by
an example which will be postponed until the next sectlon. However,
ma general description of the procedure may be made in the following
steps:

1. Apply to the differential equation the definite integration

//?t )dat untll it 1s an integral equation. This introduces the
[]

initial condlitions and pubts the equation into the proper form for

the P-transformaticn.
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2. Apply to the result of Step 1 the P-transformatlion making
use of Theorems 1 to 8.

%. By ordinary polynomlal multlpllcatlon manlpulate the egua-
tion until only zero or posltive powers of X appear on each side
of the equation. Equate the coefficlents of like powers of x thus
forming a recurrence formula for the tlme ordlnates of the dependent
variable, e.g., H(x) = Hy + Hy x + Hy x + . . . ete.

4. Pick off the time ordinates Hgy, Hy, Hy, H5, etc.; plot at
the successive polnts 0, v, 2v, 3v, ete.; falr a curve through these

points to obtain an approximation to the required solution H{t).
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VII. SOLUTION OF A SECOND ORDER SYSTEM WITH A
SATURATION TYPE NONLINEARITY

Although, as has been previously mentioned, the second order
system is almost a trivial case, its simplicity does enhance ite
use in illustrating the technlque for analyzing nonlinear control
loops. The technique 1s applicable to systems of any order and its
extension to the general case will be obvious from this simple study.
In addition, this second order system will be used to demonstrate
and compare the Laplace Transform and P-Transform solution methods
descrlbed 1n the previous sectlon.

Consider the followlng system contalning a saturation

% % | K % AL 5% | K, %
TD+I ~ R
Y
glgure 13
nonlinearity. The loop equations are
(To+ne, = K,(e;~8,) (66)
n
S, = é«n SN (67)
_ K
6, == 6, (68)

Solving for the input to the nonlinearlty 6, from (66) and (68)

gives D(Tp+1G, = K DO, -k D§, =K Dg, - K K, 6, (69)



L

Substituting (67) in (69) and rearranging

n
(ro%0)g +K K, ‘%o( 6, =KD&; {70)

Since from Section II the expanslon of the saturation nonlinearity
ylelds only odd n ay,'s, the following set of equatlons are obtalned
from equation (70) when the infinite series solution technique of
Section IV 1s applied. Thus

a.= x% S, (71)
where the 6, are defined by the equations

(T0 +0+KK=,)6, = K,DO, ()

2 3
(TO +D+K,Kyx, )65 =~ K K03 ©
@D-+D+K;zx)63 KK[%SG + 356, Gj] (72)

(T D+ K K, )6, =K K, [“7914'50(5'9: S, +3e (9»9:+ 9.295)]

The equation set (72) may be generalized in terms of a ratio of the
magnitude of the input functlon &4 and the saturation limit QNL by

substituting for an and 64(t) as

, = _7.5_*%«5 (12)
and 6;(t) = [o,)-Fy (%) {(73)

Hence

(10 D+K X,C, ig‘—l) = K,DF; (¥)

<

2 2 2 3
(fro + D+K K, C)(é?g,e?”;) = -k K,Cs 016%) "
+ K K, |G-O, (=] .3C'O'_§i_ ‘aséiu)
3 g )

[%
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In this way a single calculation of each equation in terms of the
generallized parameters enables one to obtain a btransient response

of the system for any value Ofleil up to the convergence l1limit.
ONL

This applies, of course, for a glven value of C,;. Now we have al-

ready demonstrated that the convergence limit for jei, increases as
N

C1 decreases. Thus, the starting point of an analysis logically be-

gins by defining the ratio of [¢4] for which the system departs from
on,

a prime equation equal to the linear system equatlon, l.e., Cy = 1.
This occurs at the minimum 07 for which Cy = 1 and affords the maximum
amount of information from a single solution of the set of equations.
The study of the system behavior under larger input to saturation 1imlt
ratios may then be accomplished by reducing C1 untll a convergent
serles results for that ratio.

In order to demonstrate the detalled application of this method,
let us study the quadratic system of Figure 13 when subject to a step

command, the system parameters being as follows:

Ky = 1.99
T = 0.199
K2 = 5.9&4

Then choosing q = 17 in the Legendre polynomial expansion of the non-
linearity, Cl = 1 at a minimum Ui of .102. The higher Cn‘s at this

Ui are



= —(:‘7
C7 550
Cq = 1890
Let us caliculate the solutions of 57 and 6592NL for the step
191] >
EAg
input command, ei, by the Laplace Transform and P-Transform methods
in order to compare the accuracy and time involved for each.

a. Laplace transformation method.

The Laplace transformed equation for 91 and BBQQNL are,

I°1] o

(Ts*+ S+K,/(2C,)_..1__...~?9(l5l) = K|, (75)

2 9(5)9‘_ 6,(t)
(T‘S +5+KI/QCJ)—§T§J£" = KK.’«’. 3 L.‘I( ‘e‘)

assuming zero 1initlal condltions

(76)

The solution of the prime equation (75) i1s evidently

0 _ K &an ot (77)

el T
-
2T

ﬂxzc T—

<" 6.6))°
Then linearizing (——I’—Q—T) so that it may be transformed

(_6_7,5(;{;2)3:&% ) e’_gﬂsmae (_q% < sw e’t—-smsg't) (78)

Hence equation (76) becomes

where g =

2
(rs™+ 5+ KK C ) 6505 O - _KiKaCa0 1K Cacs L 3¢ 5@ (79)
( 2. 9 ’3 Ta%a 5+3§)+§ (5.,.325)_{..67%

the solution of which may be written
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2 2 -M y
&40y _ kK Csor A [3< {mmw—_/\.a.swc t+,)
IQLP —27;4%3 ! ! R A, R 3}

~-348L

(80)
+e {sm(s@u P - _3/_<\_3 SIN (Qt‘f' t&)ﬂ

where
A = !
ALy ]E
/= -
3 #[¥*t+ vy ]z
— -y
— ! —3¥
-1
f=-f =~ taw S

Further terms may be found in a similar manner. For the case at

hand substitution of the numerical values into equations (77) and

(80) gives
~25sI1_t
&) . 1757 e siv 5,756 € (81)
el
2 -2.52t
2182 ?m. = -2 oso4-(3e [sm(s756t-11.27°) (82)
e,

o ~7536C
— 46 s (57566643 }] te [an(ina6Térias £)-14, o7$m$756t+ema®

b. P«Transform Method.

Applying the procedure set down in Sectlon VI to the prime
equation of (74)

»

[

(ro+ D+K kG, )(EI?L‘_*.Z.) =K, D Fift) (T4a)
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we twlce integrate both sides of the eguation from 0 to t.

fl’D—fHKKCfd’(:] gﬁ;)-K,F;(t)M-Te_é_(_o_)_'e‘éo‘) (83)
(84)
[ﬁﬁwrx C / ﬁt]_@@ K jF(—(z)dtJr(I_@Lf.?!.y _',ég»T) Ft +'re‘9éd)

For the present case both the position and velocity initial condi-

tions will be assumed zero and thus applying Theorem 8 we have

ff-r"(.ﬁ‘)wxcv(iﬁ &) _K v(l+x) i) — XX Fo
2 (1-x) 27 G (1-%)* Ie' ¥ p X (85)

__*:_’S)z’i
ta (1-%) 16;!
For Fi(t) equal to a unit step Si(t) 1 for £t 0 and Si(t =

for t<0 then by equatlon (51)

Sw=3= "= (86)
¢ n=a X

Now introducing (86) into (85) and noting that 91(0) = 0 by initial
I
condition the equation may be manipulated to give

E’r'(l~x)+2v(/-x J+Kk,C v1(1+x)] le,fr) sz,+2v(l<,-l)x+zvxz (87)

Substituting for gl(x) according to the P-transform definition and

161]
rearranging yields

E+zrx,/rzc.v “47)x @T‘ZV”‘“KIKzCaV)XjZ x =

@T+2v +K KLV (@Tr2v+ KK Cv3)  [n=o 16;] (88)

oy K, +2VIK—)X +2V x*
or (4T+2v+ K K G v?)

(881)

2
[+bx+cx = A,+a,X+A,X

/9/

Now equating like powers ol x and introducing the numerical vaiues

of the system parameters we have for V= .05



S,

—, =, 73

el %o <
O —a,-580 = i082+1676 C0

el = =y

O ca, -6 _c Oy =.1092 +1.696 B 7816 Gs

el el il el I6:]

O . b6, _c O =169 Oz _.786 &1 (89)
EX 1e;[ IGJ /e:l le.]

.
L]

-

Bin = -bVOryy Vg = 16966, _ 786 6.

A 16: | 1e: 16:] 16,1
from which we may compute the 81 Gl(nv) and hence obtain the time
n =
191] 163]
response of the system. It will be noted that 610 =2, wnich 1s not
[31]
zero as 6,(0) . The value of 910 is due to the interpolation
191 i

function and 1s for this singular point not equal to the value of
Ql(nv) at the corresponding point in time.
fea]

Applying the above procedure to the second equation of the set

we find since the initial conditions for all eguations succeeding the

first are always zero

ooe
o ¥ (0. kG Y ) f?;..__...-.-x Vi _.1952 (90)
(: Za-x"t 4 07| |e|? 3 = Cix

where since in the time domain the product of two time functlons 1is
equal to the product of the values of the functlons at ldentical

points in time and because the P-transform remains in the time domain

then
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3
50 _Z g
3 T 3 (91)
[e.1> == &
Hence equation {90) may be put in the form of (88!) as
P 2 ., 2 & 2y e 3 M
=Y (4T+2v+KKC,v9) w0 |,
where b and ¢ are the same in (92) and (88%). Iletting
22
a3 = KK L3OV and equating like powers of x" we obtain
(4 T+2V+K, K C, V)
the recurrence relationship
2 3 3 3 2 2
,?_‘?33._?_’_"3_‘_-_ - as[?_'ﬂs +2 9_’_7__1_-_-_% + 9:,‘.1]_5 63)1-4 egm. -C 631\—2, eﬂL (93)
16;) el el [g) 1e;l e 13

With the system values and v = .1 second this becomes
2 3 3 3 2 2
_ef_n_@ie_; .01168[_9_5; +2 _%31_ + ?b.;z__]+ 1337 63"_‘ O ~.62718 egn-zeﬂl- (9%)
le; I* er  1ef je,? |e:® le;l?
where all quantlties equal zero for zero or negative subscripts.

The succeeding equations of the set are solved in the same
manner, each resulting in an equation ldentical to eq. (93) except
in the bracketed forcing function expression.

From the application of the Laplace and P-Transformation methods
to this quadratic example we may draw certain conclusions. First,
in the solutlon of the linear prime equation the Laplace method re-
qulres finding the roots of the characteristic equation which for
higher order systems can be extremely lengthy. The P-Transformation

method avoids this and if the time increment v is chosen small enough,
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the straight line approximations to the actual response of time
length v glve sufficient accuracy. Consequently, the P-transform
takes less time to gilve a solution even when small time increments
are used. Secondly, for the solutions of the successive equations
the lLaplace method requires linearization of the product forcing
functions before they may be transformed. Thls takes a prohlbitive
amount of time above the third successive equation. On the other
hand, each equation after the first can be solved by the P-transform
numerical method in the same order of time as the first. In general,
one may increase the time increment v for the equations of the set
after the first and obtain sufficient accuracy because of the more
slowly rising forcing function for these equatlons as compared with
that of the first equation due to the time filtering action of most
physical control systems. Thus as would be expected, the numerical
P-transform method is very much faster than the Laplace Transform
method which gives an exact solution, and there remalns only to
compare the accuracy of the numerical method.

In Figures 14 and 15 are shown the solutions of the general-

2
ized equations of the set given by (74). For the Ql and Q3ONL
3

eyl lo,]

solutions the solid curves are calculated by the Laplace transform
method and the clrcled poluts by the P-transform method, The ac-
curacy of the approximate numerical method is seen to be very good.
The time interval used was v = .05 sec. for calculation of 91 and

o
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2
v = .1 sec. for 9§GN . It 1s felt that the relatlve accuracy

fo; |
2
demonstrated in e39NL is typlcal of the solution accuracy of each
leil
successive equation since each 1s found by an ldentlcal recurrence
equation involving product forcing functions. Hence the further
approximations were calculated by the P~Transform only.
We may now determine the convergence for this case where C; = 1

at a minimum 07, which will define the maximum ratio of Ei_ that
NL

will permit a linear prime equation. Since our assumed series
solution consists of only odd terms due to the symmetrical satu-
ration nonlinearity, the convergence criterion of Section IV-2
establishing the limit of minimum convergence becomes a comparison

of the solutlon series

el | leseol | ool L lesel]
(et 16 (6, 16,66/

(95)

which must be term by term less than or equal to the corresponding

term of the minimal convergent p-series

l ! / o / e
/+ 2/"’5 + 3/"'5_ + 4/+E + m/+5+ (26)

where the magnitude of each en(t) 1s 1ts peak magnitude, either
positive or negative, over the time interval t from O to e©. Hence
from the generalized solutlons of Figures 1k and 15 we have, letting
€ be negliglbly small so that for the first m terms the comparison

term becomes effectively % .
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LI ’eg(ﬂl |(E3Om
27 |6, ()| IQL[B/PEAK'

4 -
ds /eswl_____rfesei . (g (6; = ‘?.éax/o3 =5 +
37 g, |\ 1&f) © \leil 6, 76 &,
- PEAK

and in a simllar manner

2 2
~(©) 8L\ .los5 (e,

PEAK,

TGN 19766)/ — g.Ox/O—4- (=4 °
T el 76 \&.
EEN (048] _ 22*/0"5( 6 )8
57 6w .76 =

(96)

(97)

(98)

(99)

From these equations the upper limit of €4 which just permlts

each inequality to exist may be comput;ed.

oNL

These limits are plotted

in Flgure 16 vs. the index of the term of the series from which the

1limit was calculated.

The higher terms

2.8

(9é ) 2.6
BNL LIMIT

24 'B/

2.2
o

TERM INDEX

Figure 16
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of the series are seen to define a trend toward an absolube con-

vergence limit of §£~ ~r 2.62 for the entire series solution.
°NL
Since for the present there i1s no known way to determine the nth

term convergence limit except by calculation of the nth transient
solution, 1t must be assumed that the limit defined by the first
few terms of the series 1s equal to that defined by the nth term
as n increases. From the iterative form of the equations of the
set whose solutions comprise the assumed serles solutlon of the
original nonlinear equation, the validity of this assumption seems
qualltatively indicated. |

Thus we may now obtain the transient solution for the non-

linear system of Figure 13 for any ratio of 91 up to the con-

NL

vergence limlt of 2.62 from the generalized curves of Figure 1k
and Figure 15. This 1s done by merely multiplying the scale of

n
each 6, curve by the constant LA and adding the respective
n- I
°NL

curves polnt by point in time. A typlecal transient solution for

85 = 10 and &y, = 4 is shown in Figure 17 together with the transi-
ent solution for thls case found by studying the nonlinear system
on an analogue computer. The detalls of the analogue of the system
are given in Appendix B. In this example the system 1s in the
saturated reglon for the major portion of the first oscillation,
the nonlinearity output being limited at a value of 4. The main

deviation of the calculated from the experimental curve occurs in
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the tr;ansi‘cic:n from saturated to unsaturated reglon of the non-
linearity. Thls 1s to be expected since the Legendre expansion
of the nonlinear characteristic also deviates in this reglon
(Figure 8). If additional accuracy is required, it could be
obtalned by increasing the number of Legendre polynomials, q,
included 1n the expansion plus including the solutions of ad-
ditional successive equations. However, the maln interest in
control system analysis 1s the magnitude of the peak osclllation
and settling-down time both of which are defined by this example
within the required engineering accuracy. Moreover, on the
limited number of systems studled, engineering accuracy has

9
always been obtained for q = 17 and 9@(-(:): 2, 6,0t .
na=

The transient solution for any other ratlioc of 2;_ within

eyL

the convergence limit may be quickly found in the same way. For

©3 greater than thls convergence limit it is necessary to choose
oNL

C, less than one in order that a convergent series solution results.
It has been found that the necessary reductlon can be approximately
determined by assuming that the ©; peak varies inversely with C,,
from which the second term of the convergence determining serles

for C; <1 becomes in terms of the same term for Cy =1

z 2
_:__>Le_§_g9|_ ~ (—C—%%) +(C5¢f) 'es(f)l (91) (100)
%" \lewl " st <=i\fe ]| \Ou

PEAKS FoR <) Peaks FoR C=|
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From thils expresslon the C; for convergence for any gi_ can be
O,

approximately calculated by the curves for Cpn. This avolds the
difficulty of having to find the complete transient solution be-
fore one can determlne 1f that solutlon converges for the input

of interest.

Whereas the generallzed curves here presented are the solutions

for a step functlon lnput, generallzed curves for any time varying
forcing function may be found by introducing this forecing function

instead of the step into the prime equation of the set.
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VIIT. CALCULATION OF INSTABILITY OF A SERVOMECHANISM
CONTAINING A SATURATICN NONLINEARITY

While this analysls technique provides a means of calculation of
the transient response of a nonlinear control system it has the com-
plexity and consequent time expenditure which is Inherent in any
method of analyzing nonlinear systems. Tor thils reason, i1t is much
more efficient to study a nonlinear system on some electronic computer
if a wilde range of transient behavior as a function of system para-
meters 1s required. However, many times the problem is simply to
determine the possibility of instabllity of a system containing a
nonlinearity. Often 1t is not practical to perform a computer study
to obtain this answer alone and thus a means of manual determination
of Instability is worth-while.

In this connection, the Infinite series analysis method willl be
applied to the case of an automatically controlled missile containing
a saturation nonlinearity on the control surface. Consider the system

given by the block diagram of Figure 18.

Y

b | 8 st] 8 [P (s | v v
X v, —e 5,

Pigure 18
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The dynamlc motion 1s described by the equation

Y _ _ Ku(mo+n) (101)
8, T D(D*+aD+b)
and the control equation as
! (102)
(7 0+1)8, = =K, Yo+ (Ky+kg D) ¢
where
B 817‘
&= = S (103)

Multiplying (102) by D{D2 + aD + b) and substituting (101) gives

0(p“ a D+ bX T 0+1)8, == K, D(D*+ a D+b) ¥
(104)
= (K, +Kg D)Ky (T, 0+)

Transposing the last expression and substituting (103) yields

n

I
[D4+ bt ]Ds-#' Tib+a) OF bD 8,; +Kn [K\‘;ED2+(K*’];{+K§;)D+K‘P]§°§18/’L
W/ T/ T )

(105)
= — Ky (0% aD+b) Y.(4)
Te

The system parameters will be defined as

Ky = 33

Ty = .22
a = 10.22
b=-7.5
URIRE

In Filgures 19 and 20 are shown the Nyquist diagrams for the above

y = 6 Rad/Rad, Ky =2 rad/rad/sec. and

i,= 1. In both cases it 1s seen that either decreasing or

¥

system with control gains of X

K, =6, K
4
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Increasing the direct loop gain can result in instabllity. It
remains now to investigate what magnitude of forcing function Y%
can produce sufficient saturation of the control surface that the
effective loop gain decreases to the point of system instability.
Whlle the study may be made for any time varying forcing function we
willl concern ourselves with a step function of magnitude ?;.

The set of generalized equations comprising the solution of the
nonlinear equation (105) are, referring to {22) and including the
values of the system parameters

4 3 !
[} +7.95 D+(741+55.85K; C,) Di(S‘SSEK,,CHZS‘S.S KiCi=57.65)D+253.8 k,C, | On,
¥

= —%(Di/o.zzo-—zs)ﬁ €)
o
3 2
[Bﬁzz?so H71.1+55.854;.C, ) D+ (55:65K, C, +253.8 K€~ 57.65)D+253.8 K,,C] _a;_/fﬂ_
- z =2 51
=—Go; [ss.aflqi, D+ (55.85'K¢253. 8/(,;,) D+253.8 ] (106}

[174+/7?5‘D +(01.1+55.85K,6) O +(55'as/(,,,c, +2538K;,C- 5745)D+2538 K,)C] . ”NL

__-[5585/( D+(5555Ky/+2533/<,.)0+253 aky ][C g 8,{,)»;»3(.‘30' T2y
H’bs

.

Employing the P-Transform in solving these equations, we obtain in the
same manner as in the previous sectlon the recurrence relationships

for the respective equations as

!

/ / '
) -5 5 10
S, = @, +a, +atagra-b, %, b 8,,7%2__53 S'ﬂ,“_s_“é} 8"%—4 (107)

¥ ‘f’s Y A ¥




/ )

.‘_.g__"ang"ﬂa f £ +fR_++
m -:“E:F.a + cgﬁ_,"'":z 371_:'{:3 3,,_3+ 4':3—,1,4_

n
s
§2 ’ ! ! 8 (108)
- -.‘F’%-_(b’ &BH—T bz 8ﬂ3~n~: ba 8”— +b " 7\"4)
wnere

&: +
Tsw - f R R +RR +R R +-{1
<5 h ez n-4
_.._an(bﬁ +h 8 +b38,c +b4_8n ) (109)
7‘“2.
where

= ——[CS'O“‘E’WM’ + 3Cz0; (8"'32: g"’ ’( ﬂ)

and where the constants are defined as

:-—-L-—K‘}’ Vz z
a, B["““" (H)O'ZZM'—%_@V—)

a,=._L_[ Ky v (/azz 75‘v)]
Bl 3 4

::._’___ Ky v 3\/ 7

3 [j /;’,z (/4- X 5?]

ag.—:__é_[ A (/a 22.+75“V)]
/

- Ky v
@, =t ¥y /-—~/,?,2V A5V
* B[JB‘?( 7 4)]

[ +
-Fo =5 [5‘5 85Ky Y_ )}/ +(55 85 Ky 1253, 8@) V3+253.8 Kw,}é_]

:h
m{—
/=

(5585@+2538K,,) +2532.8 Ky ¥ ]
4..
L= (228K, 3V _ ssesky v
2 B ' 4 5 ‘f’z
I [zsa.8 kv _(sse5K, +2535.8K,)v>
a[ Y% ( ¥ ):r‘

2 2
£, =1 |es3.8K __,___._...(55‘85’/( +253,8 K3 )v_ 5'5.35/\"_\:._]
4" B 'I‘/b ¥ ‘I’)B + ¥
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b= »—{253 BK.CY +(55‘85‘KYC‘,+.2§38 KyC, - 55, es)l/__ —17.95V 4]

2
52 :-'B__[é - C7/,I+55785'K¢C, )__Z\L_ + 253,89 K‘,,C, 3(;/4]

by=

m}-

3
[/775v 4-(5585 KyC +253.8 K;, €, 5. 65).4___.+25'3 8 KyC, ; ]
z
b= %[:-17.75%4- (7/./+5‘5’.85‘K,;C,)_£ ~(55.85K,C,+253.8 K, C, -55. 65)%_
4
+253.8 ﬁqyc;;zi]
/6

with 2 3
B= [/ +17, %‘_g_ +(71.1+ 575, 85‘/(,,-,(2,)2\1_4. (55.85/(/,,6, +253.8K% C}-s"s,‘és‘)__c\é__

4
+253.8 K,.C, _y__]

/6
In the two cases K =6, Kg = 2 and Ky = 6, Ky, = 1 these re-
¥ kg Vv '
cuyrence relatlonshlips were used to find the solutions of ~¢H—3
s

8/! Sﬂ. T
20N and ——s g for ¢. ranging from 1 down to the value
w2 2 1 TEReme

at which the prime equation became unstable, the C,'s belng those for

q = 17 terms in the Legendre expansion of the nonlinearily. From the

peaks of these transient solutions the upper limit of ;j;. which
Just permits convergence of the assumed series solution may be calcu-
lated by , B

&, 8;2”‘_)
1%_;> PEAK /qks

LA ,
(i;) (&, (110)
PEAK

2

AL (111)
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L 7
The variation in the é&f upper bound with C1 is shown in Filgure
NL
2l for Ky, = 6, Kl.;, = 2 and Figure 22 for K, = 6, Ky = 1. The dashed
curve in each case has the limits defined by equation {110), and the
so0lid curve by equation (111).

Both cases of control gains demonstrate an lncrease in the upper

limit of

;ﬁu for convergence up to a maximum as C1 decreases from
unity, and then a sharp decrease to zero at the value of €, for which
a marginally stable prime equation occurs. The reason the convergence
limit of E%%- is zero at the point of a marginally stable prime equa-
tion may be‘:een by the following. The characterlstic equation for
each successive equation of the set defining the solution of the non-
linear system is ldentical to that of the prime equation. In general,
the roots of this characteristic equation are in Laplace Transform
notation i?i(éf—!%)%+ Q: . The forcing function or right-hand

side of the successive equations 1s formed by time domain multiplica-
tions of the inverse transforms of the above roots. Since these roots
give time characteristics as Aé:gkim Q;‘:-!-‘P) 5 the forcing functions

generated by raising these terms to the nth

power include terms as
—ndct

Be SIN ( th'*' LP) plus others with higher harmonics of

G%Et+-t9) . In the case of marginal stability of the prime equation

one set of roots has zero real part, l.e., E§k== 0 and thus the char-

acteristic equation and forcing function of successive equations of

the set result in repeated roots. These repeated roots glve terms in

the time domain of Ctsin (§ch+«? ) which, increasing with time, force

:ﬂ&. for convergence to equal zero. Thus 1t is seen that for this

e
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saturation nonlinearity and a system which becomes unstable as the

effective control gain 1s decreased it 1s impossible to have a non-
linear 1imit cycle, 1l.e., the nonlinear system either converges or

diverges in time.

The indicatlon of the convergence limit curves 1s that a maximum

*%
S

analysis technique cannot result in a convergent assumed series solu-

exists, given by the curve peak, above which this nonlinear

tion, and hence, cannot give a valid solution. If we assume that
this technique must be capable of glving a valld solution for any

condition under which the system is time convergent then this maximun
¥s

Sn
Ni
the limit curves defined by (110) and (111) exhibit a uniform relative

limit defines the stability limit for this system. Since

trend 1t 1s reasonable to expect the convergence limlts defined by
further successive generalized equation solutions to maintaln a unl-

form trend. Thus we need only concern ourselves with the peak point.

8., Sn 5., Su.
Computing «fﬁﬁéﬂﬂa and -—Q%quﬁb and applying the conver-
s S

gence criterion to their respective peaks we find the convergence

limit trend of Fig. 23 for K, = 6, K¢ = 2 and Figure 24 for KY: 6,

Y Y v,

K4,= 1. Now if our above assumption 1s true, the maximum 5
e,

step command to which this misslle system may be exposed and have the

resulting transient converge in time is 1.803 for Kﬁ,x 6, Ki’: 2 and

% =1,

In order to prove the valldity of the results obtained by this

.776 for Ky = 6, ¥

assumptlon, the nonllnear system was studied on an znalogue computer,
The analogue detzalls are given in Appendix C. The analogue study

demonstrated that for conbtrol surface limits éh‘NL of 20 degrees
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the maximum step commands Vg for which the system response did not
build up with time were 32.5 degrees for K'P = 6, Ki’ = 2, and 15.25
degrees with control gains of K, = 6, Ky = 1. These results are
\;i“ 1imits of 1.625 and .7625 respectively, which

check our caleculated results within 10% and 1.8%. Since the ac-

equivalent to

curacy of the analogue computer 1is of the order of 1 to 2 per cent,
the agreement of the results 1s notably good.

Although two 1solated examples do not absolutely prove our
assumption, the above two cases are sufficlently different in their
characteristics to suggest that further studies of other systems will
bear out the results found here. This willl require, of course, many
examples which can be supplied by practicing control analysls englneers.

In the application of this method fto stabllity determlnatlion 1¢
is not necessary to perform the many calculatlons made here to demon-
strate the technlque. Since the solutions of the successive general-
ized equations result in the same trend of the convergence limlt, one
need only calculate the solution of the second equation of the set to
determine the peak of the convergence 1limit curve. Then at this point
only, the further equations may be solved to establish the convergence
limit as in Flgures 23 and 24. Moreover, a pessimistic and hence safer
design limit can be obtained by using the convergence limit defined by
the second equation of the set which can be determined in approximately

four hours for a fourth order system.
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IX. CONCLUSIONS

A method of obtaining the transient response of an automatic
control system containing a dependent variable nonlinearity has been
developed together with the rules governing its use. The method con-
sists of the following steps:

a. obtaining a mathematical expression for the nonlinear char-
acteristic where necessary by an expansion In Legendre polynomials.

b. introducing this expression into the equations describing
the control system behavior thus obtaining a nonlinear equation
involving a power series of a dependent variable.

c. solving this nonlinear equation by means of an assumed in-
finite serlies solution requiring that the assumed series, cach term
of which is defined by a differentlal equation, be uniformly con-
vergent by the Welerstrauss M criterion.

A saturatlion type nonlinearity was chosen to illustrate the
technique and the method was applied to a second order system
containing this nonlinearity in order to 1llustrate the accuracy of
the method and present a numerical technigue for solving the serles
of equatlons arising from the infinife series method of solving the
nonlinear equation. A fqurth order mlssile control equation with a
saturation limit on the control surface was investlgated dy the
method and by means of the convergence criterlon the maximum step
function command which could be imposed on the control system with
resultant time convergent response was defined. The results calcu-

lated for both the second and fourth order systems were checked by
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solutlons obtalned on an analogue computer.

The discussion has been presented in such a manner that the
application of thls analysis method can be applled to any physilcal
control system contalning any type of dependent variable nonlinearity.
It is hoped that the method wlll prove useful in the furtherance of
nonlinear systems analysis and consequent understanding. Unfortu-
nately, nonlinear systems calculations are quite laborious and for
this reason 1t 1s much more efficlent to find transient solutions by
electronic computer methods. However, too often one obtalns little
insight into the problem when it is studled by a computer alone.

For this reason and since a computer is not always accessible, some
manual analysis of nonlinear systems 1s needed.

The use of the method developed in this thesis should prove most
valuable in stability determination. Whereas only instability brought
about by the nonlinearity in an otherwlse stable linear system was
investigated here, similar determination of nonlinearity produced
stabllity; 1.e., limlt cycle, to an unstable linear system should be
posslble. It is the study of this together with the many other
dependent variable nonlinearlties found in physical systems which
future work with thls method should include. However, the principal
need of the method now is a means of determining the convergence of
the assumed series solution by mathematical technigue rather than by
calculating the transient solutions of each term in the series. In
fact any method of solving nonlinear equations will involve a similar
convergence determination. Some mathematical work ls being carried

on in this fleld presently by variocus people. If an analytic method



i

for predicting convergence 1s found the utillty of the technique
presented in this thesls for analyzing nonlinear systems will be

greatly enhanced.
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APPENDIX B

The quadratic system equations are

(T Dr1)6, = Ky(8;-6,) (1)

6, = 6, x [Saturation Nonlinearity Characteristic] (82)
K .

B, = _2 by, (83)
D

An analogue of the system 1is

€

¢ Zk A €q NON- €p I» - Pa_
Bzl > LINEARITY >

which 1s described by the eguations

-Ay A€, A, ok
e, = _1.2%1 _71.1 2°1 , R1.3% (Bk)
p p p
ea = “‘A8e1 (BS)
o = eyl (86)
p

Combining (B4) and (B5) gives

. - - 3
&g = hghy o83 - Ay 1Ko, - Aghy og, (B7)
P P p
Let ae, = Ga and hence a8, = Gb

ase, = 6, (B8)



np =50 or t nt

computer © “Yactual
Substitubting these definitions into the system equations glves
when (Bl) is divided by TD

Ki2aey 218, Kjape,

818y = ) (B9)
= T T'np Thp
Knaqen
21"
ape, = (310}
np

Equating the constants of (BS) and (B7) with (B9) and (B10) results in

K.g,
l = = A8Aj 2
q'nal =
1
Tn = M.k
Kq2
12
- e AA BRll
alq'n 8"1.3 ( )
Kgal -
na = fa¥y

nom= 1 al = ae = 33 = 1
ﬁ8==Al.1 = 10

)

,82 =

A = A 3

‘"2 = 0;021{
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The saturation nonlinearity was generated by

e

Nt

where Alg = Alé = Ai? = Alﬂ = 1 and all are without automatic D¢

amplifler drift balancing. The e, for both positive and negative

limits were set at ayeyp = QNL = b,



APPENDIX C

The system equations for the mlssile dynamlcal motion are

(0%+aDeb)DY = Ky TyD+1) 8 & (c1)
]

8r’” &p X [Saturation Nonlinearity Characteristlé} (c2)

4n 3 ! = ~3 1 - -~

(Tg D+1) &, = Ky ‘PS + (’{‘Y +E{YD)Y (¢3)

An analogue of the system 1s

7
4]
x
"]
(N ey
S

7V

0 //Z;J //K?; NON-
e3‘\\\J ‘\\\\ LINEARITY

The analogue equaticns are

ey = “A3.1k75§ + A3.2A8k3fg - A3.3k651 (ch)
P P 1Y
92 e A’f:r.lAlz?khfi - Ah.?_kBeg - Ak.3k582 (05)

D p b
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) . s -
R T L BT YO ua B!

1+ " pen = -
biakg 770 Ay,1Kg

[}A9Oleh+A9OQABRQiEfAQ.BAIhkleljl(06)
e
Solving (Ch4) and (C5) for ey ylelds
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The analogue quantities are given by

n[A303k6+A}+.3k5] =2 = 10.22
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and

fiehirtiefe fufen

34A1.1k9

Vo = a8, = Ajghyghy ohp oKyjAg 3

KY’Al.lk9

The values used are

Al.l = Al.a = 10 A, 3= AS =4 A1l other amplifier gains = 1

S ky = Rl e = = 726 kg = 41539
HpV Ky g = 0369 kg o= W398 kg = .120

The nenlinesr characteristic was generated as descrilbed in

Appendix B.



