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ABSTRACT

In this thesis, we consider a few problems connected to the exponential sums which
is one of the most important topics in analytic number theory.

In the first part, we study the distribution of prime numbers in special subsets of
integers and, in particular, the distribution of these primes in arithmetic progressions,
small gaps between them, the behavior of the corresponding exponential sums over
primes, and related questions. Big progress was made on these questions in recent
years. The famous works of Zhang and Maynard gave the proof of existence of
bounded gaps between consecutive primes. Applying the sieve of Selberg-Maynard-
Tao and an analogue of the Bombieri-Vinogradov theorem, we obtain similar results
for a large class of subsets of primes and improve some of the previous results. The
proof of the analogue of the Bombieri-Vinogradov theorem is also connected to a
breakthrough work of Bourgain, Demeter, and Guth on the proof of Vinogradov
Mean Value Conjecture via ;2-decoupling. Their result, in particular, has led to a
significant improvement of the classical van der Corput estimates for a large class
of exponential sums.

In the second part, we study the behavior of higher moments of Gauss sum twisted
by a Mobius function. The moments of exponential sums are very important in
number theory and harmonic analysis as they appear in many other problems. The
sum with the Mobius function is of independent interest because of the famous
Sarnak Conjecture which is on the edge of number theory, analysis, and dynamical
systems. The bound we obtain for !?-norm of the sum confirms that the Mobius
function is uncorrelated with the quadratic phase U=2 for most U ∈ [0; 1].

In the third part, we study the distribution of lattice points on the surface of 3-
dimensional sphere, which is known as Linnik problem. It turns out that the
variance for such points is closely related to the behavior of certain �! (2) !-
functions estimated at the central point 1/2. To evaluate the moments of these
!-functions, we apply similar techniques used to evaluate the moments of Riemann
zeta function on the critical line in the breakthrough works of Soundararajan and
Harper. Their results have led to the sharp upper bounds for all positive moments of
zeta function conditionally on Riemann Hypothesis and similar bounds for a broad
class of !-functions in families conditionally on the corresponding Grand Riemann
Hypothesis. We apply similar methods to get sharp upper bound for the variance of
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lattice points on the sphere. The connection of Weyl sums on the sphere to the sums
of special values of �! (2) !-functions is a big output of the Langlands program,
which has also gotten a lot of attention in recent years.
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C h a p t e r 1

INTRODUCTION

The notion of exponential sums is the central subject in analytic number theory.
The estimating of such sums is a key point in many famous problems related
to equidistribution of various elements within natural domains, counting problems,
distribution of prime numbers in different subsets of integers, calculating the number
of solutions of Diophantine equations, distribution of lattice points, andmany others.

A typical example of an exponential sum is

#∑
==1

42c80= ,

where 0= is a sequence of real numbers.

A well-known result providing a link between equidistribution of the elements
of a sequence and the corresponding exponential is Weyl’s criterion. It states
that a sequence of real numbers (01, . . . , 0=, . . .) from the unit interval [0; 1] is
equidistributed on this interval if for any subinterval [0; 1] ⊂ [0; 1], one has

lim
=→+∞

��{01, . . . , 0=} ∩ [0; 1]
��

=
= 1 − 0.

More generally, we say that the sequence 01, . . . , 0=, . . . of real numbers is equidis-
tributed modulo 1 if the sequence of its fractional parts

{0=} := 0= − b0=c

is equidistributed on [0; 1]. Weyl’s criterion states that the sequence 0= is equidis-
tributed modulo 1 if and only if

lim
-→+∞

1
-

∑
=6-

42c8<0= = 0 for any < > 0. (1.1)

In other words ∑
=6-

42c8<0= = >(-),

so the sum is asymptotically small compared to its length. However many problems
require a better upper bound than >(-). In modern analytic number theory, there
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are various methods of getting such upper bounds. Studying them was initiated in
the classical works of Weyl [105], van der Corput [93], and I. Vinogradov [98, 99]
about a century ago. In this work, we apply some of these approaches together with
the modern techniques to particular exponential sums and show the applications of
the obtained bounds.

In the first part of the thesis (Chapters 3–5), we study the distribution of prime
numbers from a special subset E(U) ⊂ N of integers in arithmetic progressions. We
deal with the exponential sums over primes of the form∑

?6-
?≡0 (mod @)

42c8?U ,

where ? denotes a prime number in the arithmetic progression @= + 0 such that 0
and @ are coprime, U > 0 is a fixed non-integer number.

As an application of the results about equidistribution of primes in arithmetic pro-
gressions in Chapter 6, we show the existence of bounded gaps between consecutive
primes from E(U).

Another well-known example of the exponential sum arising in many problems is∑
=6-

0=4
2c8U%(=) ,

where U ∈ [0; 1] is fixed, {0=} is a sequence of real numbers, and %(=) is a
polynomial with real coefficients. In this case, it is clearly not possible to get the
cancellation for all possible values of U. For example, if U is close to zero and all
0= ≈ 1, the value of sum would be ≈ - . However, in many cases it is enough to
have a good upper bound for the value of this sum “on average” over U ∈ [0; 1].
Many problems require an estimate for !?-norm∫ 1

0

����∑
=6-

0=4
2c8U%(=)

����?3U.
In Chapter 7, we obtain an upper bound for ? > 4 in the particular case 0= =
`(=), %(=) = =2, where `(=) is the Mobius function (which is one if = = 1, zero if =
is divisible by a square of a prime, and (−1): if = is a product of : different primes).
This is in turn related to the Fourier restriction theory for parabola and Sarnak’s
Conjecture, one of the most active areas of modern analysis, number theory, and
dynamical systems.
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Another example of exponential sum is related to the famous Riemann zeta function
which is defined as

Z (B) =
+∞∑
==1

1
=B
,

for Re B > 1, and can be analytically continued to the rest of the complex plane
with a simple pole at B = 1. Riemann Hypothesis states that all non-trivial zeros of
this function lie on the critical line B = 1/2 + 8C. Many problems in number theory
require some knowledge about the behavior of zeta function on the critical line. This
is in turn related to the behavior of the exponential sum∑

=6G

1
=1/2+8C .

There is another bulk of methods to study the distribution of such sums as C varies
within some interval, say [), 2)] for large fixed ) > 0 or over a shorter one. The
zeta function is also closely related to the distribution of prime numbers. Many of
these techniques can also be applied to more general !-functions which are related
to more general exponential sums∑

=6G

0=

=1/2+8C , !(0, B) =
+∞∑
==1

0=

=B
.

In Chapters 8–9, we study the distribution of lattice points inside small balls on the
surface of a 3-dimensional sphere when its radius grows to infinity. Counting the
points inside such natural domains are related to another type of exponential sums
called Weyl sums on the sphere. They in turn could be reduced to the oscillating
sums over primes with the Fourier coefficients of holomorphic Hecke cusp forms∑

?6G

_ 5 (?)√
=
.

Applying some of the recent moment techniques, we get sharp upper bounds on the
first moment of corresponding �! (2) !-functions conditional on Grand Riemann
Hypothesis (in Chapter 8), and as an application, get a nearly sharp upper bound on
the variance for lattice points on the sphere (in Chapter 9).

1.1 Distribution of primes in subsets
The questions about the distribution of prime numbers in subsets are among the
most important and actively studied questions in analytic number theory. The first
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classical problem asks about the behavior of the prime counting function c(-),

c(-) :=
∑
?6-

1,

as - → +∞. The answer is given by the Prime Number Theorem:

c(-) =
∫ -

2

3D

log D
+ '(-), (1.2)

where the error term '(-) is bounded from above by the function -4−2
√

log - with
an absolute constant 2 > 0. This was proved independently by Hadamard and
Poussin in 1896. A more precise bound of the error term

'(-) � -4−2(log -)3/5 (log log -)−1/5

was obtained by I. Vinogradov [100] and Korobov [53] in 1958. This result so far
is essentially the best possible. The Riemann Hypothesis implies

'(-) �
√
- (log -).

Here and later in the work, we use the Vinogradov notation � � � to denote
� = $ (�).

We study the distribution of primes inside the special subset of integers, which can
be defined in terms of fractional parts in the following way:

E(1/2) :=
{
= ∈ N : {

√
=} < f

}
for some fixed 0 < f < 1. For a more general case, we define the subset

E(U) :=
{
= ∈ N : {=U} < f

}
,

where U > 0 is any fixed non-integer. The asymptotic formula for the proportion
of primes from E(U) in the case 0 < U < 1 was the first time obtained by Vino-
gradov [104] in 1940. Using his method of trigonometric sums, he proved the
formula

cE(-) :=
∑

?6-,?∈E
1 = fc(-) +$

(
-o(U)+Y

)
, (1.3)

where Y > 0 is arbitrarily small,

o(U) = max
(
4 + U

5
, 1 − 2

15
U

)
=


1 − 2

15U, if 0 < U 6 3
5 ;

4 + U
5

, if 3
5 < U < 1.
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The asymptotic formula (1.3) meets the probabilistic expectations since the fraction
of the coverage of the positive half of real line by E is f. Later, Vinogradov proved
a similar formula for arbitrarily fixed U > 6 such that ‖U‖ > 3−U, where ‖.‖ denotes
the distance to the nearest integer number. The exponent o(U) in the error term
'(-) is much weaker in this case:

o(U) = 1 −
(
34 · 106U2)−1

(see [101]). This result was later strengthened by Baker and Kolesnik [1] who
obtained a similar formula for all U > 1 with

o(U) = 1 −
(
15 · 103U2)−1

.

The result was further improved for small values of U > 1 by a number of authors
(see, for example, [15]). The uniform bound on '(-) for U > 1 was obtained by
Changa in 2003 [18].

I. Vinogradov gave an interesting interpretation of the subset of primes ? satisfying
the restriction {?U} < f: all such primes lie in the intervals of the form[

:1/U; (: + f)1/U
)
, : = 1, 2, 3, . . . .

So, for example, U = f = 1/2 corresponds to the intervals of the form
[
:2; (: +

1/2)2
)
. If 0 < U < 1, the length of such an interval clearly grows to infinity with : ,

whereas for U > 1, it goes to zero. Thus, in the second case the intervals are short
and most of them do not contain even a single integer. In some sense, one can think
of them as of “random” primes chosen with probability 1/2. This is the reason why
the case U > 1 seems to be more difficult.

In 1945, Linnik [56] suggested another approach to this problem based on the zero
density theorems for the Riemann zeta function. Using this approach, Kaufman [50]
in 1979 proved the existence of the infinite number of primes ? from a very thin
subset, precisely {√?} < ?−2+Y for any fixed 2,

0 < 2 <
√

15
2(8 +

√
15)

=
1
6
− 0.00356 . . .

and arbitrarily small Y > 0 (in particular, thiswas an improvement of the earlier result
of Vinogradov [100] corresponding to 2 6 1/10). Kaufman also showed that on RH,
this result is valid for all 2 6 1/4. Later, Balog [2] and Harman [36] independently
proved this result unconditionally. Finally, Harman and Lewis established the result
for all 2 6 0.262 in [37].
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In 1986, Gritsenko [34] had sharpened the bound for the error term in (1.3) for all
1/2 6 U < 1 via Linnik’s approach:

o(U) =


1 − U

2
+ (
√

3U − 1)2, if 1
2 6 U <

3
4 ;

1 + U
2

, if 3
4 6 U < 1.

He also showed that for U = 1/2, one can take o(U) = 4/5. In the case of
0 < U < 1/2, the best known result is due to Ren [77]:

o(U) = max
(
2 + U

3
, 1 − U

2

)
=


1 − U

2
, if 0 < U < 2

5 ;

2 + U
3

, if 2
5 6 U <

1
2 .

1.2 Distribution of primes from subsets in arithmetic progressions
The next question, which arises naturally, is about the behavior of the function
c(-; @, 0) counting the primes in arithmetic progression @= + 0, (0, @) = 1:

c(-; @, 0) :=
∑
?6-

?≡0 (mod @)

1.

Since for fixed @ the number of progressions is i(@) (where i(=) is the Euler totient
function, which is the amount of numbers coprime with = not exceeding =), one can
naturally expect the asymptotics of the form

c(-; @, 0) ∼ c(-)
i(@) , (1.4)

or, in other words, that the difference

'(-; @, 0) = c(-; @, 0) − c(-)
i(@)

is small compared to the right hand side of (1.4). The last statement holds true not
only for fixed @ but also for slowly growing @ so that @ 6 (log -)� with any fixed
� > 0. This is known as Siegel-Walfisz theorem:

c(-; @, 0) = c(-)
i(@) +$ (-4

−20 (�)
√

log -).

The Grand Riemann Hypothesis implies a similar asymptotic formula for all @ 6√
- (log -)−2. Unconditionally, this is only known for “almost all” @ 6

√
- (log -)−2.

This statement is known as the theorem of Bombieri and A. Vinogradov [10, 96].
Precisely, it states that the following inequality holds true:∑
@6&

max
(0,@)=1

��'(-; @, 0)
�� = ∑

@6&

max
(0,@)=1

���� ∑
?6-

?≡0 (mod @)

1− 1
i(@)

∑
?6-

1
���� 6 21-

(log -)�
(1.5)
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for any � > 0, 0 < Y < 1/2. Here 21 = 21(�; Y), & = -\−Y, and the number
\ = 1/2 is usually called the “level of distribution” of a given sequence. The
famous conjecture of Elliott and Halberstam states that for primes one can take any
\ 6 1. The estimate (1.5) allows one to get the results comparable to the corollaries
from GRH. One well-known application of the Bombieri-Vinogradov theorem is the
Titchmarsh divisor problem. Another famous one concerns the existence of small
gaps between consecutive primes. In the latter problem, a lot of progress has been
achieved in recent years.

The next natural question is about the distribution of primes from aforementioned
sets E(U) in arithmetic progressions. In 1997 Tolev [92] obtained the analogue of
the Bombieri-Vinogradov theorem for the primes from E(1/2) and all @ 6 -1/4−Y.
In 2013, this result was improved by Gritsenko and Zinchenko [35]: they extended
the theorem for the primes from E(U) for all 1/2 6 U < 1 and @ 6 -1/3−Y:∑

@6&

max
(0,@)=1

���� ∑
?6-,?∈E

?≡0 (mod @)

1 − 1
i(@)

∑
?6-,?∈E

1
���� ��,Y

-

(log -)�
, (1.6)

where & = -1/3−Y.

In this work, we show that a similar formula holds true for all non-integer U > 0.
This follows from the non-trivial estimate of the corresponding exponential sum
over primes ? ≡ 0 (mod @):

Theorem 1.1. Suppose that U > 0 is a fixed non-integer, \, Y, � are fixed constants
satisfying the conditions 0 < Y < \ < 1/3, Y < U/20, � > 1, and suppose that
1 6 ℎ 6 (log -)� , 2 < @ 6 -\−Y, 1 6 0 6 @ − 1, (0, @) = 1. Then the sum

) =
∑

-6?<2-
?≡0 (mod @)

42c8ℎ?U

satisfies the estimate

) � -1−X−Y3/(3U2)

@
,

where 0 < X 6 Y3/(50U2), and the implied constant depends on U, Y, and �.

As a corollary, we obtain the asymptotic formula for the proportion of primes in
arithmetic progressions from E(U):
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Corollary 1.1. Let U > 0 be a fixed non-integer Y > 0 an arbitrarily small number.
Then for any @ 6 -1/3−Y, 0, (0, @) = 1, and any given subinterval � ⊂ [0; 1), the
following asymptotic formula holds true:

c� (-; @, 0) :=
∑
?6-
{?U}∈�

?≡0 (mod @)

1 = |� | · c(-; @, 0) +$
(
c(-; @, 0)
(log -)�

)

for any fixed � > 0.

Another corollary of Theorem 1.1 is the analogue of the Bombieri-Vinogradov
theorem with a level of distribution 1/3:

Theorem 1.2. Suppose that U > 0 is fixed non-integer and let E be the set of integers
= satisfying the condition {=U} ∈ � = [2; 3) ⊂ [0; 1) for given 2 and 3. Further, let
\, Y and � > 0 be some fixed numbers such that 0 < Y < \ < 1/3, Y < U/20, and
let 2 < & 6 -\−Y. Then the inequality∑

@6&

max
(0,@)=1

���� ∑
-6?<2-

?≡0 (mod @)
?∈E

1 − 1
i(@)

∑
-6?<2-
?∈E

1
����6 ^-

(log -)�

holds for any - > -0(U, \, Y) with some constant ^ > 0 depending on U, \, Y, and
�.

The proof of Theorem 1.2 is contained in Section 3. The estimate given by Theo-
rem 1.1 is proved in Section 4.

In the case of small values of U, we are able to improve these results. Precisely, we
can get similar upper bounds for all & = -2/5−(3/5)U:

Theorem 1.3. Suppose that 0 < U < 1/9 is fixed non-integer, \, Y, � are fixed
constants satisfying the conditions 0 < Y < U/100, Y < \ < 2/5 − (3/5)U, � > 1,
and suppose that 1 6 ℎ 6 (log -)� , 2 < @ 6 -\−Y, 1 6 0 6 @ − 1, (0, @) = 1.
Then, the sum

) =
∑

-6?<2-
?≡0 (mod @)

42c8ℎ?U

satisfies the estimate
) � -

@
(log -)−� (1.7)

with an arbitrarily large � > 0.
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Corollary 1.2. Let 0 < U < 1/9 be a fixed non-integer Y > 0 and arbitrarily small
number. Then for any @ 6 -2/5−(3/5)U−Y, 0, (0, @) = 1, and any given subinterval
� ⊂ [0; 1), the following asymptotic formula holds true:

c� (-; @, 0) :=
∑
?6-
{?U}∈�

?≡0 (mod @)

1 = |� | · c(-; @, 0) +$
(
c(-; @, 0)
(log -)�

)

with any fixed � > 0.

Theorem 1.4. Let 0 < U < 1/9 be fixed, � = [2; 3) ⊂ [0; 1), E =
{
= ∈ N :

{=U} ∈ �
}
, and let \, Y, � be fixed constants such that 0 < Y < \ < 2/5 − (3/5)U,

Y < U/100, � > 0. Next, let 2 < & 6 -\−Y. Then the following inequality holds
true: ∑

@6&

max
(0,@)=1

���� ∑
?6-
?∈E

?≡0 (mod @)

1 − 1
i(@)

∑
?6-
?∈E

1
���� � -

(log -)�
.

The proof of Theorem 1.3 is contained in Chapter 4. Theorem 1.4 can be deduced
from Theorem 1.3 in a similar way as Theorem 1.2 follows from Theorem 1.1 (see
Chapter 3).

1.3 Van der Corput method
Proof of the estimates for the exponential sum over primes from both Theorem 1.1
and Theorem 1.3 is based on the same approach which goes back to the classical
works of van der Corput [93]. The main idea is to transform the original sum, which
is of the form ∑

-6?<2-
?≡0 (mod @)

42c8ℎ?U (1.8)

to a smoothed sum over all integers, which is of the form∑
.<=62.

42c8C=U , (1.9)

where usually . 6 - . The latter sum is less complicated and can be handled by van
der Corput method. The main reason why the second sum is better is the absence of
non-smooth weights 1==?, 1=≡0 (mod @) . The main difficulty is to attain a sufficiently
large length . in the new sum. In general, the larger length of the sum corresponds
to the better saving in the final bound.
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Van der Corput method is usually applied to smoothed sums of a more general form∑
-6=<2-

42c8 5 (=) ,

where 5 (G) is a real valued function having a certain number of derivatives on a
given domain. If the length of the sum is - , one usually seeks for the upper bound
of the form -1−V for any fixed V > 0 or at least a slowly decreasing function V(-).

The main idea of the van der Corput approach reduces to the following two steps:
the first is to replace the original phase 5 (G) by its derivative 5 ′(G) by means of the
following inequality:���� ∑

-6=<2-
42c8 5 (=)

���� � -
√
@
+

(
-

@
+
@−1∑
A=1

���� ∑
-6=<2-−A

42c8( 5 (=+A)− 5 (=))
����)1/2

, (1.10)

where @ 6 - . This can be easily proved by Cauchy inequality. The main idea is
to increase the order of the derivative using mean value theorem 5 (= + A) − 5 (=) =
A 5 ′(b) for some b ∈ (=; = + A). This differencing process was first introduced by
Weyl who applied it to polynomials.

The second step is based on the Poisson summation formula together with stationery
phase estimate. Applying the Poisson summation, one replaces the original sum of
length - by a new sum of length ≈ 5 ′(-):∑

=∼-
42c8 5 (=) ≈

∑
<∼ 5 ′(-)

∫
D∼-

42c8( 5 (D)−<D)3D.

It is often the case that the new sum is shorter so one can get a saving from just a
trivial estimate of the new sum. Here and later, by “= ∼ -” wemean “- 6 = < 2- .”
The oscillatory integral is estimated by the method of stationery phase: the idea
is that the most contribution to the integral is coming from the neighborhood of
the stationery point D0 which is the zero of the first derivative of 5 (D) − <D. This
follows from the fact that the integrand does not oscillate much in the neighborhood
of the zero. This way, one gets the identity of the form∑

=∼-
42c8 5 (=) ≈ 48c/4

∑
<∼ 5 ′(-)

1√
5 ′′(G<)

42c8( 5 (G<)−<G<) , 5 ′(G<) = <.

Here, one can gain from the shorter length of the new sum or from the large size of
5 ′′(-).



11

The classical van der Corput :-derivative test consists of one application of Poisson
summation and (: − 1) applications of van der Corput’s differencing (1.10). For
example, the second derivative test gives the estimate of the form∑

=∼-
42c8 5 (=) � -_

1/2
2 + _

−1/2
2 ,

where _2 = 5 ′(-) and the optimal choice of the parameter is @ = _
−1/2
2 (see

also Lemma 2.3). The :-derivative test is given by the inequality∑
=∼-

42c8 5 (=) � -_
1/(2 −2)
:

+ -1−2/ _−1/(2 −2)
:

,  = 2:−1. (1.11)

In general, one can apply both of these steps multiple times. This is the main idea
of more advanced methods of exponent pairs.

The inequality (1.11) is closely connected to another important problem in ana-
lytic number theory called Vinogradov Mean Value Theorem. It was initiated by
Vinogradov in 1935 (see [97]). The foundational conjecture in this area is stated as
follows:

�B,: (-) :=
∫
[0;1]:

����∑
=6-

42c8(U1=+...+U:=: )
����2B3U1 . . . 3U: �B,:,Y -

Y (- B + -2B− 1
2 : (:+1))

for all - > 1, Y > 0. Vinogradov’s motivation was to obtain the bounds for
individual sums from the bound for the mean value. Here, � (B, :) can be interpreted
as the number of integral solutions of the system of : equations

G
9

1 + . . . + G
9
B = G

9

B+1 + . . . + G
9

2B, 1 6 9 6 :,

with 1 6 G8 6 - for 8 = 1, . . . , 2B. The cases : = 1, 2 are trivial, for the proof see,
for example, [69]. The case : = 3 was fully resolved byWooley in a series of papers
using his method of efficient congruencing (see [107]). In 2015 in a breakthrough
work, Bourgain, Demeter, and Guth [12], using ;2-decoupling approach, resolved
all the final cases of this conjecture for : > 4. This result impacts many famous
problems in analytic number theory such asWaring’s problem, Gauss circle problem,
Dirichlet divisor problem, and many others. In particular, using these results Heath-
Brown [52] got significantly more precise estimates for the Corput :-derivative
test: ∑

=∼-
42c8 5 (=) � -1+Y (_1/: (:−1)

:
+ -−1/: (:−1) + -−2/: (:−1)_−2/:2 (:−1)

:

)
.

These estimates allowed us to get better upper bound in Theorem 1.1 for the ex-
ponential sum ) than the one which follows from the method of Gritsenko and
Zinchenko [35].
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1.4 Vinogradov-Vaughan decomposition
There are a few ways one can deal with non-smoothed sums of the form (1.8) to
transform it to the smoothed form (1.9). The idea of the approach we apply in this
work mostly goes back to I. Vinogradov, but later it was refined by Vaughan [94]
and Heath-Brown [41]. In the Theorems 1.1 and 1.3, the original sum over primes
by partial summation can be transformed to the form∑

-6=<2-
=≡0 (mod @)

Λ(=)42c8ℎ=U , (1.12)

where Λ(=) is the Mangoldt function which equals log ? if = = ?: is a power of
prime and zero otherwise. Roughly speaking, one can think of Λ(=) as of the
indicator function of primes. Due to some technical reasons, it is easier to work
with the function defined in this way rather than with the actual indicator function
of primes. Vaughan identity is the decomposition of the Mangoldt function of the
form

Λ(=) =
∑
1 |=
16H

`(1) log
=

1
−

∑
16H

∑
26I
12 |=

`(1)Λ(2) +
∑
1>H

∑
2>I
12 |=

`(1)Λ(2).

Then the sum (1.12) can be replaced by a double sum of the form∑
"6<<2"

U<

∑
#6=<2#

<=≡0 (mod @)

V=4
2c8ℎ(<=)U ,

where "# ≈ - , U<, V= are real-valued coefficients (non-smooth in general).
Depending on the relative sizes of " and # , there are two types of such sums.
Type I sum corresponds to one “very long” variable (normally, of length > -2/3)
and one “short” variable (of length 6 -1/3). Usually it is not hard to deal with
such a sum because the corresponding weights are smooth, and one can directly
apply Weyl’s or van der Corput’s methods. Type II sum is usually harder to estimate
because both variables < and = are of similar sizes between -1/3 and -2/3 and, in
particular, there is one critical range in the proof of Theorem 1.1 corresponding to
" = -1/3, # = -2/3 (or vice versa), because in the inner sum over the progressions
@A + 0, there are only ≈ -1/3/@ terms. That means if @ is large enough, the sum
can only contain very few terms, and one cannot get any cancellation using the
aforementioned approaches. This is the main reason why we cannot achieve a level
of distribution better than 1/3 using just Vaughan identity.
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One can overcome these limitations by a more delicate combinatorial argument.
This is the content of the so-called Heath-Brown identity which is essentially an
iterated version of Vaughan identity. It allows us to get a better level of distribution
in the case of small U (see Theorem 1.3). This time, the sum (1.12) can be written as
the sum over : variablies 31, . . . , 3: where 31 · . . . · 3: ≈ - . The parameters H and
I can be adjusted so that the ranges of summation for the Type II sum get shorter:
-2/5+Y 6 ", # 6 -3/5−Y, so that we avoid the critical range. The critical range now
corresponds to the Type III sum which is basically a triple sum of the form∑

"6<<2"
51(<)

∑
#6=<2#

52(=)
∑

 6:<2 
<=:≡0 (mod @)

53(:)42c8ℎ(<=:)U ,

where " ≈ # ≈  ≈ -1/3, and the coefficients 51, 52, 53 are smooth. Then the
idea is to apply Poisson summation to replace each of the three sums of length
-1/3 by shorter sums and get a sufficient amount of saving estimating these new
sums. More details on the combinatorics of Heath-Brown decomposition are given
in Lemma 5.1 and Lemma 5.2.

1.5 Bounded gaps between primes
The problems about the behavior of the difference ?=+1 − ?= between consecutive
primes ?=, ?=+1 or, more generally, ?=+< − ?= for fixed < > 1 are usually very
hard. From prime number theorem, it follows that the difference ?=+1 − ?= is equal
to log ?= “on average.” However, there are many exceptional pairs with a much
smaller or larger difference. The famous Twin Prime Conjecture states that there
are infinitely many pairs ?=, ?=+1 such that ?=+1 − ?= = 2 (for example, 3 and 5, 5
and 7, 11 and 13, and so on).

In 1940, it was shown by Erdos that there exists 0 < 2 < 1 such that the inequality

?=+1 − ?= 6 2 log ?= (1.13)

holds true infinitely often. The result was sharpened by a number of authors. In 1988
Maier [60] showed that one can take 2 = 0.2485 . . . In 2005 in a breakthrough work,
Goldston, Pintz, and Yildirim [25] proved that the inequality (1.13) has infinitely
many solutions for any arbitrarily small 2 > 0. In other words, they proved that

lim inf
=→+∞

?=+1 − ?=
log ?=

= 0.

Later they were able to prove an even stronger result [28], namely,

lim inf
=→+∞

?=+1 − ?=√
log ?= (log log ?=)2

< +∞.
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In 2011 on the conference “Journees Arithmetiques — 27”, Pintz [70] announced
the bound

lim inf
=→+∞

?=+1 − ?=
(log ?=)3/7+Y

< +∞.

In 2013 in another breakthrough work. Zhang [108] showed the existence of in-
finitely many pairs ?=+1, ?= satisfying

?=+1 − ?= 6 �

for some absolute constant �. In particular, this result implies that there is some
: 6 �/2 so that there are infinitely many solutions for the equation ?=+1 − ?= = 2: .
The first result stated � = 7 · 107.

Further progress in this problem was achieved by Maynard [62] and Tao [72]. They
significantly modified the Selberg sieve used in the previous works and were able
to attain the value � = 246, which is the current record in this problem. They also
showed that for any < > 1, one has the estimate

?=+< − ?= 6 �0<
344<

for infinitely many pairs ?=+<, ?=. Here, �0 is another absolute constant.

This result depends directly on the level of distribution of primes in arithmetic
progressions. If one is able to get the level of distribution \ in the theorem of
Bombieri-Vinogradov, then from the work of Maynard, it follows that one can prove
an estimate of the form

?=+< − ?= 6 �1<
342</\ . (1.14)

For example, on Elliott–Halberstam conjecture, one can obtain the bound ?=+< −
?= 6 �1<

342<. In particular, Maynard showed that one can obtain ?=+1 − ?= 6 12.

The next questionwhich arises naturally is what can be said about the small distances
between consecutive primes from a given subset. A list of necessary conditions for
this is given in [63]. The case of subset of primes related to the fractional parts of
the polynomials {%(=)} with the coefficients close to rational numbers with small
denominatorswas considered in [7]. We explore the question about the bounded gaps
for the set E(U) with any 0 < U < 1 in Chapter 6 of this work. We use Theorem 1.2
as a corresponding analogue of the Bombieri-Vinogradov theorem.

Theorem 1.5. Let E =
{
= ∈ N : {=U} ∈ [2; 3) ⊂ [0; 1)

}
for given 2 and 3,

0 < U < 1, @1, @2, . . . , @=, . . . be all primes from E indexed in ascending order, and
suppose that < > 1 is a fixed integer. Then

lim inf
=→+∞

(@=+< − @=) 6 9 700<346< .
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This result is based on the fact that the sequence of primes from E(U) has a level
of distribution 1/3. The result can be improved for U < 1/9 if one replaces The-
orem 1.2 by a stronger version of the analogue of Bombieri-Vinogradov theorem
given by Theorem 1.4. A similar result can be proven for all non-integer U > 1, but
due to technicalities in this work, we restrict ourselves to the case 0 < U < 1.

1.6 Moments of exponential sums
Another class of important problems in analytic number theory and harmonic anal-
ysis relates to the behavior of the exponential sums on average. The most famous
is probably the aforementioned Vinogradov Mean Value Theorem which deals with
!2B-norm over :-dimensional cube

�B,: (-) =
∫
(0;1]:

����∑
=6-

42c8(U1=+...+U:=: )
����2B3U1 . . . 3U: �B,:,Y -

Y
(
- B + -2B− 1

2 : (:+1)
)
.

There are more general expressions of that sort related to the !?-norms of various
extension operators � (U, V) for various curves (x, y(x)) applied to an arithmetic
sequence 0=

‖�0‖?
!? (T: ) =

∫
T:

����∑
=6-

0=4
2c8(Ux+Vy(x))

����?3U3V.
Here, one usually seeks for the bound of the form

‖�0‖!? (T: ) 6 �?
(
1 + - 1

2− 5 (?)
)
‖0‖;2 (Z) .

In analytic number theory, one often deals with the one-dimensional !?-norms∫ 1

0

����∑
=6-

0=4
2c8U 5 (=)

����?3U,
where 0= is a given arithmetic sequence and 5 (=) is a given phase. These moments
appear in many other problems. The most studied examples in the literature are
0= = 1,Λ(=), `(=), 3 (=) and 5 (=) = =: for : > 1. In terms of getting the asymptotic
or the sharp upper and lower bounds, these problems are mostly very hard. Usually
it is easier to deal with the even moments since in that case, the corresponding
expression can be opened as a polynomial of 01, . . . , 0=. Thus, one natural approach
is to apply Cauchy or Holder inequalities to bound the expression by the even
moments.

Here we list a few known results of this type for the linear phase 5 (=) = =. For
!1-norm of 0= = Λ(=), the works of Vaughan [95] and Goldston [24] give the
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bounds of the form,
√
- 6

∫ 1

0

����∑
=6-

Λ(=)42c8U=
����3U 6 (√

2
2
+ >(1)

)√
- log -.

For the divisor function 0= = g(=), the bounds
√
- �

∫ 1

0

����∑
=6-

g(=)42c8U=
����3U � √- log -

are known from the work of Goldston and Pandey [26]. For higher moments and
higher-order divisor function, see [67, 68]. For 0=, the indicator function of A-free
numbers (the numbers which are not divisible by 3A for any 3) and sharp upper and
lower bounds were established in [5, 51]. For 0= = `(=), the bounds

-
1
6 �

∫ 1

0

����∑
=6-

`(=)42c8U=
����3U � √-

are known from [3–5].

In this part of the work, we will focus on the case of higher moments of the Gauss
sums ( 5 (=) = =2) with the Mobius function 0= = `(=). In the case of the trivial
sequence 0= = 1, the asymptotic formulas of the form∫ 1

0

����∑
=6-

42c8U=2
����?3U ∼ 2?- ?−2

for all real ? > 4 and of the form∫ 1

0

����∑
=6-

42c8U=2
����?3U ∼ 2?- ?/2

for all real 0 < ? 6 4 are known (see [46]). However, in the second case the
constants 2? were not computed (except the case ? = 2). For the explicit upper and
lower bounds on 21, see the recent work of Kalmynin [47].

In Chapter 7, we consider the !?-norm of the Gauss sum with 0= = `(=). The ques-
tions about Mobius correlations are of independent interest because of the famous
Sarnak Conjecture which states that any sequence 1= observed by a deterministic
dynamical system is uncorrelated to `(=) or, in other words, one has∑

=6-

1=`(=) = >(-), - → +∞.

This is still far from being resolved in its full generality.

We show that the Mobius function is uncorrelated with the quadratic phase 4(=2U)
on average:
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Theorem 1.6. For ? > 4 and arbitrary � > 0, one has∫ 1

0

����∑
=6-

`(=)42c8=2U

����?3U ��

- ?−2

(log -)�
.

This result partially resolves one of the questions posted at the AIM Workshop
“Arithmetic statistics, discrete restriction, and Fourier analysis” in February 2021.

The standard approach for estimating the moments of exponential sums is the circle
method. The main idea is that the sum∑

=6-

0=4
2c8U=2

cannot be small for all real values of U, at least, if the sequence 0= does not oscillate.
On the other hand, this sum cannot be always too large either. The circle method
is based on the split of the integral to two roughly disjoint subsets called “major”
and “minor” arcs. By the Dirichlet approximation theorem, each U ∈ [0; 1] can be
approximated by a rational number 0/@. If the denominator @ is small, we say that
U belongs to the major arcs. In that case, there is not much oscillation coming from
the harmonic part 4(=2U), so we would essentially use the bound coming from the
arithmetic side which follows from the prime number theorem∑

=6-

`(=) � - exp
(
−2

√
log -

)
with some absolute constant 2 > 0. If U is far from any rational with a small
denominator, we say that it belongs to minor arcs, and in that case, we get the
cancellation from the sums ∑

=6.

42c8U=2

which can be obtained by Vinogradov-Vaughan decomposition similarly to the sums
with Λ(=)4(=U) from the previous sections. The key difference is that for the
polynomial phase one cannot use van der Corput differencing any more since the
derivatives of polynomials are either too large or vanish. We will apply Weyl
differencing instead.

Apparently, the result of Theorem 1.6 cannot be significantly improved without
assuming some strong conjectures about the zeros of Dirichlet !-functions.
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1.7 Moments of !-functions
The Riemann zeta function is the central subject in analytic number theory. In the
complex plane for ReB > 1, it is defined as

Z (B) :=
+∞∑
==1

1
=B
.

In this region, this series converges absolutely. It has an analytic continuation to the
rest of the complex plane with a simple pole at B = 1. Many problems in number
theory require knowledge about the moments of zeta function on the critical line:

": ()) :=
∫ 2)

)

��Z (1
2
+ 8C

) ��2:3C, (1.15)

where : is a positive real number. Roughly speaking, the more moments are
computed asymptotically, the more progress can be made towards proving the
Riemann Hypothesis. But even on the assumption of the Riemann Hypothesis,
getting the asymptotics for (1.15) is a very hard problem. Currently, the asymptotic
formula is only known in the cases : = 1 due to Hardy and Littlewood and : = 2
due to Ingham (see [91]). These formulas meet the predictions from random matrix
theory, which gives the formula

": ()) = 2:) (log)):2 (
1 + >(1)

)
with 2: being the absolute constants.

Evaluating the moments of zeta function has a long history going back to classical
works of Hardy, Littlewood, and Ingham. The sharp lower bounds of the form
": ()) �: ) (log)):2 were established for all real : > 1 unconditionally by
Radziwill and Soundararajan [73] and for all : > 0 by Ramachandra [74, 75] and
Heath-Brown [40] on RH. Getting the upper bounds is a much harder problem.
The Lindelof Hypothesis is equivalent to the estimate ": ()) �:,Y )

1+Y for all
natural numbers : , so it seems hard to get the upper bounds of the right order
unconditionally. Currently, the bounds of the form ": ()) � ) (log)):2 are only
known for 0 6 : 6 2 due to the works of Soundararajan, Radziwill, Heap, Bettin
and Chandee ([8, 39, 40]). On the assumption of RH, the sharp upper bounds of
the form ) (log)):2+Y for arbitrarily small Y > 0 were established in a breakthrough
work of Soundararajan [88]. This bound was sharpened to�:) (log)):2 in the work
of Harper [38]. Their methods extend to a wide class of !-functions.

In this work, we apply some of the techniques of Soundararjan andHarper to estimate
the first moment of the product of standard �! (2) !-functions corresponding to



19

holomorphic Hecke cusp forms and show the application of these results to the
distribution of lattice points on 2-sphere (also known as Linnik’s Problem).

The idea of Soundararajan’s on work conditional upper bounds goes back to Selberg
who studied the distribution of values of log Z (1/2 + 8C). His method works very
well for the imaginary part of the logarithm, but leads to complications in the case
of the real part because of zeros lying very close to the critical line. One of the
ideas in Soundararajan’s work is that, to get an upper bound for log |Z (1/2+ 8C) |, one
actually does not need to explore the contribution from zeros since it is essentially
negative. The following upper bound (see main Proposition in [88]) holds true on
RH:

log
��Z (1

2
+ 8C)

�� 6 Re
∑
=6G

Λ(=)
=1/2+8C log(=)

+ 3
4

log)
log G

+ '(G) (1.16)

for any C ∈ [), 2)], 2 6 G 6 )2, and '(G) corresponds to the lower-order terms.
Thus, the problem essentially reduces to the understanding of the behavior of the
exponential sum over primes ∑

?6G

1
?1/2+8C (1.17)

as C varies between ) and 2) . The key idea in both Soundararajan’s and Harper’s
works is to split the latter Dirichlet polynomial to a sum of a few shorter polynomials
and study its joint behavior. As soon as C gets relatively large, these polynomials
behave roughly speaking as independent random variables due to the fact that one
can think of ?−8C as a random point on the unit circle, and for large C, these points
behave almost independently for the different primes ?. The idea of this approach is
to show that the exponential sum (1.17) cannot be too large for too many C ∈ [), 2)].
So this is another example of an exponential sum which cannot have a very good
pointwise upper bound, but rather can be estimated well on average.

In Soundararajan’s approach, the expression for ": ()) was rewritten as∫ 2)

)

��Z (1
2
+ 8C)

��2:3C = 2:
∫ +∞

−∞
42:+meas

{
C ∈ [), 2)] : log

��Z (1
2
+ 8C)

�� > +}
3+.

In order to get an upper bound for ": ()), one needs to obtain an appropriate upper
bound for the measure inside the integral. This measure depends on the size of + .
This was achieved in Soundararajan’s work by exploring the joint behavior of the
real parts of two (short and long) Dirichlet polynomials∑

?6I

1
?1/2+8C ,

∑
I<?6G

1
?1/2+8C .
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The additional saving comes from the right choice of the parameter I.

A slightly different approach leading to a sharper bound was elaborated in Harper’s
work. The long Dirichlet polynomial splits into the sum of many shorter ones of the
form ∑

)V8−1<?6)V8

1
?1/2+8C , 0 = V0 < V1 < . . . < V�−1 < V� ,

and the better bound was obtained by exploring the joint distribution of the real parts
of these polynomials.

Both approaches work well in the case of more general class of !-functions.
Some variations of these methods were applied to the products of automorphic
!-functions [64] and averages over fundamental discriminants of central values of
quadratic twists [87].

In Chapter 8, we will follow the Harper’s approach to prove the bound for the first
moment of the product of �! (2) !-functions:

Theorem 1.7. Assuming the Grand Riemann Hypothesis, we have∑
5 ∈(2<+2 (Γ0 (2))

!
( 1

2 , 5
)
!
( 1

2 , 5 ⊗ j−=
)

!
(
1, Sym2 5

) 6 (2< + 2)! (1, j−=) exp
{
* (=, <)

}
, (1.18)

where < > =Y for some Y > 0 and

* (=, <) = max
(
1,

1
4

log =
log<

)
exp

{
600 max

(
1,

1
4

log =
log<

)}
.

In this case, the expression analogous to the right hand side of (1.16) can also be
obtained:

log
��! (1

2
, 5

)
!
(1
2
, 5 ⊗ j−=

) �� 6∑
?6G

_ 5 (?)√
?
+ 2

log
(
32<4)

log G
+ '(G),

where_ 5 (.) are the normalized Fourier coefficients of the corresponding cusp forms.
So we can further split that expression to a sum of many Dirichlet polynomials∑

G1/3<?6G

_ 5 (?)√
?
+

∑
G1/9<?6G1/3

_ 5 (?)√
?
+ . . . +

∑
G3−� <?6G31−�

_ 5 (?)√
?
+

∑
1<?6G3−�

_ 5 (?)√
?

and study the joint behavior of all of them as the function 5 varies in a Hecke basis
of holomorphic cusp forms.
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The upper bound for the measure of the “exceptional sets” of C ∈ [) ; 2)] or 5 ∈
(: (Γ0(2)), where a given Dirichlet polynomial is large, is obtained by Markov-
type inequalities. This gives the upper bounds containing high moments of the
corresponding Dirichlet polynomials∫ 2)

)

���� ∑
I<?6G

1
?1/2+8C

����2#3C, ∑ℎ

5 ∈(: (Γ0 (2))

���� ∑
I<?6G

_ 5 (?)√
?

����2# .
To treat such moments, one needs an analogue of the mean-value theorem. In
Harper’s work, he gets the necessary upper bounds from the asymptotic formulas
for the integrals of the form∫ 2)

)

A∏
8=1

(
cos(C log ?8)

)U83C.
Such integrals appear after the expanding of the moments from the application of
Markov inequality. The analogous mean-value theorem in our case is based on the
Petersson trace formula∑ℎ

5 ∈(: (Γ0 (2))
_ 5 (=)_ 5 (<) = 21:1==< + �: , �: 6 22:4

−: ,

where 21, 22 are absolute constants. To treat the high moments of corresponding
sums over 5 ∈ (: (Γ0(2)), we prove the multidimensional analogue of Petersson’s
formula. This way, we would be able to compute the asymptotics of the sums of the
form ∑ℎ

5 ∈(: (Γ0 (2))

A∏
9=1
_ 5 (? 9 )V 9 .

In particularly, we will show that the contribution from most tuples of primes
(?1, . . . , ?A) is small (for more details, see Lemma 8.3).

1.8 Variance estimates in Linnik’s problem
We apply the moment result to the well-known problem about the distribution of
lattice points on the surface of the 3-dimensional sphere. One can imagine each
integer solution of the equation G2 + H2 + I2 = = as a point (G, H, I) on the surface
of the sphere with a center at the origin and radius

√
=. What is known about the

number of such solutions as = tends to infinity? Asymptotically, we have around
√
= solutions if = is squarefree and is not 0, 4, or 7 modulo 8. The conjecture of

Linnik states that these points become equidistributed on the surface of the sphere
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with growing =. First time it was proved by Linnik on Grand Riemann Hypothe-
sis [56]. Unconditionally, the problem was solved by Duke [19] and independently
by Golubeva and Fomenko [32] (both after a breakthrough work of Iwaniec [43]).

We are interested in evaluating the variance of this distribution in small caps that
are randomly rotated along the sphere. The variance is given by the expression of
the form

+
(
=;Ω= (x)

)
:=

∫
($ (3)

��/ (=, 6Ω=) − f(Ω=)#=��236,
where #= is the total number of lattice points on the sphere of radius

√
= for given

=, / is the number of points inside a given spherical cap Ω= (x) with the center at x,
and the area f(Ω=) is normalized so that f((2) = 4c. The integration goes over all
random rotations of the sphere, and 36 is the Haar probability measure.

Conjecture (Bourgain, Rudnick, Sarnak, [13]). Let Ω= be a sequence of spherical
caps, or annuli. If #−1+Y

= � f(Ω=) � #−Y= as =→ +∞, = ≠ 0, 4, 7 (mod 8), then∫
($ (3)

��/ (=; 6Ω=) − #=f(Ω=)��236 ∼ #=f(Ω=).
In their paper, Bourgain, Rudnick, and Sarnak obtained the upper bound for the
left hand side of (1.18) assuming the Generalized Lindelof Hypothesis for the
corresponding class of �! (2) !-functions.

Theorem (Bourgain, Rudnick, Sarnak, [13]). Let Ω= be a sequence of spherical
caps, or annuli. Assume the Lindelof Hypothesis for standard�! (2)/Q !-functions.
Then for squarefree = ≠ 7 (mod 8), we have∫

($ (3)

��/ (=; 6Ω=) − #=f(Ω=)��236 �Y =
Y#=f(Ω=), ∀Y > 0.

Assuming GRH for these !-functions, we obtain the upper bound of the right order
of magnitude:

Theorem 1.8. Assume the Grand Riemann Hypothesis for �! (2)/Q !-functions.
Then for squarefree = ≠ 7 (mod 8), we have∫

($ (3)

��/ (=; 6Ω=) − #=f(Ω=)��236 6 2f(#=)#=,
where #−1+Y

= � f(Ω=) � #−Y= and 2 is an absolute constant.
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The proof of this theorem is contained in Chapter 9. Counting the points inside
the natural domains (such as ball or annuli) on the sphere is directly related to
the Weyl sums on the sphere. One can choose an orthonormal basis of spherical
harmonics with respect to the standard Haar measure so that these harmonics are
the eigenfunctions of the Laplacian and a Hecke operator for the group of rotations
of the sphere ($ (3) corresponding to given #= lattice points (for more details, see
the paper of Lubotzky, Phillips, and Sarnak [59]). This basis can be constructed
from the Legendre polynomials %= (G),

%= (G) =
1

2==!
3=

3G=
(G2 − 1)=.

The space of !2((2) functions decomposes under the Laplacian as
+∞⊕
<=0

�<,

where �< is the space of spherical harmonics of degree <. We denote them by
q 9 ,< (x). Then, the indicator function of a ball with a center at point y has a Fourier
expansion of the form

1x∈Ω= (y) =
+∞∑
<=0

ℎ(<)
2<+1∑
9=1

q 9 ,< (x)q 9 ,< (y),

where ℎ(<) is Selberg-Harish-Chandra transform for the sphere (for more details,
see Section 9.2 and [42]). Then, one can express the variance in terms of spherical
Weyl sums as follows:

+
(
=;Ω= (x)

)
=

+∞∑
<=1

ℎ2(<)
2<+1∑
9=1

���� #=∑
8=1

q 9 ,< (x8)
����2,

where x1, . . . , x#= are all the lattice points.

Instead of dealing with a rather complicated exponential sum on the sphere, we
move directly to the sum of the central values of �! (2) !-functions. By Jacquet-
Langlands correspondence, there is a bĳection between Hecke eigenfunctions q 9 ,<
and holomorphic newforms 5 9 ,< of weight 2< + 2 and level 2. This way, one can
apply the bound
+∞∑
<=1

ℎ2(<)
2<+1∑
9=1

���� #=∑
8=1

q 9 ,< (x8)
����2 6 +∞∑

<=1
ℎ2(<)

2<+1∑
9=1

2
√
=! ( 12 , 5 9 ,<)! (

1
2 , 5 9 ,< ⊗ j−=)

! (1, Sym2 5 9 ,<)

and further deal with the first moment of the central values of !-functions. This
transition is one of the outreaches of the Langlands program which is a very active
research area in modern number theory, algebra, and geometry.
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C h a p t e r 2

NOTATION AND AUXILIARY LEMMAS

In this work, we will use the following standard notation:

? — prime numbers; ?1 < ?2 < . . . < ?= < . . . — prime numbers enumerated in
the ascending order;

c(G)— number of primes less than G;

{G} = G − bGc — fractional part of G;

‖G‖ — distance to the nearest integer;

4(G) = 42c8G;

Λ(=) —Mangoldt function, which is log ? if = = ?: and zero otherwise;

`(=)—Mobius function, which is one if = = 1, zero if = is divisible by a square of
some prime, and (−1): if = is a product of : different primes;

g(=) — divisor function =;

g: (=) — number of solutions of the equation G1 . . . G: = = in positive integers
G1, . . . , G: ;

i(=) — Euler totient function, which is the amount of numbers coprime with = do
not exceeding =;(=
:

)
= =!

:!(=−:)! — binomial coefficient;( =
=1,...,=:

)
= =!
=1!...=: ! —multinomial coefficient;

(U): =
∏:
8=1(U − 8 + 1)— Pochhammer symbol;

(=1, . . . , =: )— greatest common divisor;

Z>0 — non-negative integers;

�∞(R)— smooth real values functions;

� � � — Vinogradov sign, which means � = $ (�) or, in other words, there is
2 > 0 such that |�| 6 2�;

� � �—Hardy symbol, which means that both � � � and � � � hold true;
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g(j; =)—Gauss sum,

g(j; =) =
@−1∑
;=1

j(;)4
(
;=

@

)
;

(@ (=, <) —Kloostermann sum,

(@ (=, <) =
@∑
;=1
(;,@)=1

4

(
<; + =;∗

@

)
,

where ;;∗ ≡ 1 (mod @);

E(U) — the subset of natural numbers satisfying the condition {=U} < 1/2 or
{=U} < f;

(: (Γ0(2)) — orthonormal basis of holomorphic Hecke cusp forms corresponding
to the congruence subgroup Γ0(2);∑ℎ — the normalized sum over the cusp forms:∑ℎ

5 ∈(: (Γ0 (2))
:=

∑
5 ∈(: (Γ0 (2))

1
! (1, Sym2 5 )

.

Lemma 2.1 (Partial summation). Let 2= ∈ C and � (G) = ∑
0<=6G 2=. Let 5 (G) be a

complex valued smooth on [0; 1] function. Then∑
0<=61

2= 5 (=) = � (1) 5 (1) −
∫ 1

0

� (G) 5 ′(G)3G.

The proof can be found in [17, Ch. 1].

Lemma 2.2 (“Vinogradov cups”). Let A > 1 be integer, 0 < Δ < 1/4, U, V are real
numbers such that 0 6 U < V < 1, Δ 6 V − U 6 1 − Δ. Then there is the 1-periodic
function k(G), satisfying the conditions

• k(G) = 1 if U + Δ2 6 G 6 V −
Δ
2 ;

• 0 < k(G) < 1 if U − Δ
2 < G < U +

Δ
2 and V − Δ

2 < G < V +
Δ
2 ;

• k(G) = 0 in V + Δ2 6 G 6 1 + U − Δ
2 ;

• k(G) has a Fourier expansion of the form

k(G) = V − U +
+∞∑

<=−∞
<≠0

6(<)42c8<G ,
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where
|6(<) | 6 min

(
V − U, 1

c |< | ,
1

c |< |

(
A

c |< |Δ

)A )
.

For the proof, see [48, Ch. 1].

Lemma 2.3 (Van der Corput :-derivative test). Let : > 2,  = 2:−1, 1 − 0 > 1,
5 (G) is a real valued function satisfying on [0; 1] the inequalities

0 < _: 6 5 (:) (G) 6 ℎ_: .

Then the following estimate holds true:∑
0<=61

4
(
5 (=)

)
� ℎ2/ (1 − 0)_1/(2 −2)

:
+ (1 − 0)1−2/ _−1/(2 −2)

:
,

where the constant in� is absolute.

The proof can be found in [48, Ch. 1].

Lemma 2.4 (Heath-Brown :-derivative test). With the assumptions of Lemma 2.3
when : > 3 and arbitrarily small Y > 0 we have a more precise estimate∑

0<G61

4
(
5 (=)

)
�ℎ,:,Y (1 − 0)1+Y

(
_

1/(: (:−1))
:

+ (1 − 0)−1/(: (:−1))+

(1 − 0)−2/(: (:−1))_−2/(:2 (:−1))
:

)
.

For the proof, see [52].

Lemma 2.5 (Mardzhanishvili inequalities). For the numbers

)
(;)
:
=

#∑
<=1

g;: (<)

for any :, ; > 1, the following inequalities hold true:

)
(;)
:
< �:,;# (log # + : ; − 1): ;−1,

where
�:,; = :

; (:!)−(: ;−1)/(:−1) .

The proof is in [61].
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C h a p t e r 3

AN ANALOGUE OF THE BOMBIERI-VINOGRADOV
THEOREM

In this chapter, we prove Theorem 1.2 and Theorem 1.4 assuming Theorem 1.1 and
Theorem 1.3 correspondingly. We need the following pointwise estimate for the
standard exponential sum over primes:

Lemma 3.1. Let U > 0, U ∉ N is a fixed number, 0 < ℎ < min
(
-U/3, -10−7 ) . Then,

for the sum
((-) =

∑
-6?<2-

4
(
ℎ?U

)
,

the following inequalities hold true:

• (I. Vinogradov) for 0 < U < 1

((-) �U min
(
-,
√
ℎ-U/2 + -

1−U/2
√
ℎ

)
;

• (Changa) for U > 1,

((-) �U -
1−W/U2 (log -)2,

where W = 6 · 10−11.

The proof of the first estimate can be found in [104]. For the second one, see [18].

Denote by j(G) the indicator function of the interval � =
[
2; 3

)
. Fixing some

constant � > 0, we set Δ = (log -)−�, A = b�Δc, and � = Δ−1dlog2 -e. Then by
Lemma 2.2, there exists a 1-periodic function k(G) such that k(G) = 1 if 2 + Δ 6
G 6 3−Δ, k(G) = 0 if G ∈ [0; 2] ∪ [3; 1], 0 < k(G) < 1 if G ∈

(
2; 2+Δ

)
∪

(
3−Δ; 3

)
;

moreover, k(G) has the Fourier expansion of the form

k(G) = 3 − 2 − Δ +
+∞∑
ℎ=−∞
ℎ≠0

6(ℎ)4(ℎG),

|6(ℎ) | 6 min
(
3 − 2 − Δ, 1

c |ℎ | ,
1
c |ℎ |

(
A

c |ℎ |Δ

)A )
. (3.1)
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Therefore, setting

EΔ =

{
= ∈ N : {=U} ∈

(
2; 2 + Δ

)
∪

(
3 − Δ; 3

)}
,

we obviously get∑
@6&

max
(0,@)=1

���� ∑
-6?<2-

=≡0 (mod @)

j
(
{?U}

)
− 1
i(@)

∑
-6?<2-

j
(
{?U}

) ���� 6 ((1) + ((2) + ((3) ,
where

((1) =
∑
@6&

max
(0,@)=1

���� ∑
-6?<2-

?≡0 (mod @)

k(?U) − 1
i(@)

∑
-6?<2-

k(?U)
����,

((2) =
∑
@6&

max
(0,@)=1

∑
-6?<2-

?≡0 (mod @)
?∈EΔ

1, ((3) =
∑
@6&

1
i(@)

∑
-6?<2-
?∈EΔ

1.

Using (3), we find

((1) 6
(
3 − 2 − Δ

) ∑
@6&

max
(0,@)=1

���� ∑
-6?<2-

?≡0 (mod @)

1 − 1
i(@)

∑
-6?<2-

1
����+

( ∑
0< |ℎ |6�

+
∑
|ℎ|>�

)
|6(ℎ) |

∑
@6&

max
(0,@)=1

���� ∑
-6?<2-

?≡0 (mod @)

4
(
ℎ?U

)
−

1
i(@)

∑
-6?<2-

4
(
ℎ?U

) ����. (3.2)

By Bombieri-Vinogradov theorem, the first term in the right-hand side in (3.2) is
estimated as - (log -)−� for any fixed � > 0. Trivial estimate of the inner sums
over ? for |ℎ | > � together with (3) yields:∑

@6&

max
(0,@)=1

∑
|ℎ |>�

|6(ℎ) | ·
���� ∑

-6?<2-
?≡0 (mod @)

4
(
ℎ?U

)
− 1
i(@)

∑
-6?<2-

4
(
ℎ?U

) ���� 6
2-

∑
@6&

∑
|ℎ|>�

1
c |ℎ |

(
A

cΔ|ℎ |

)A
6 4-

∑
@6&

1
cA

(
A

cΔ(� − 1)

)A
6

-
∑
@6&

1
c

(
1
2

)A
6 &. (3.3)
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Next, the contribution coming from 0 < |ℎ | 6 � does not exceed∑
@6&

max
(0,@)=1

∑
0< |ℎ |6�

|6(ℎ) |
(���� ∑

-6?<2-
?≡0 (mod @)

4
(
ℎ?U

) ����+ 1
i(@)

���� ∑
-6?<2-

4
(
ℎ?U

) ����) = ((4)+((5) .
Using the estimates of the sum over primes ?, - 6 ? < 2- , given in [104] (for
0 < U < 1) and [18] (for U > 1), we get

((5) 6
∑
@6&

1
i(@)

∑
0< |ℎ |6�

1
c |ℎ |

���� ∑
-6?<2-

4
(
ℎ?U

) ���� �U,Y1

-1−h(U)+Y1 (log&) (log�) �U,Y1 -
1−h(U)+2Y1

for arbitrarily small Y1 > 0 and

h(U) =


U/2, if 0 < U < 1;

6 · 10−11

U2 , if U > 1, U ∉ N.

Similarly, the estimates of Theorems 1.1 and 1.3 yield:

((4) 6
∑

0< |ℎ|6�

1
c |ℎ |

∑
@6&

max
(0,@)=1

���� ∑
-6?<2-

?≡0 (mod @)

4
(
ℎ?U

) ���� � -1−Y3/(3U2) log�.

Let Δ1 = Δ/10, A1 =
⌊
�1Δ1

⌋
, �1 = Δ

−1
1 dlog2 -e and denote by k1(G) and k2(G)

Vinogradov’s cups such that k1(G) = 1 if G ∈ (2; 2 + Δ), 0 < k1(G) < 1 if
G ∈ (2 − Δ1; 2) ∪ (2 + Δ; 2 + Δ + Δ1), and k1(G) = 0 otherwise; k2(G) = 1 if
G ∈ (3−Δ; 3), 0 < k2(G) < 1 if G ∈ (3−Δ−Δ1; 3−Δ) ∪ (3; 3 +Δ1), and k2(G) = 0
otherwise. Let us denote by 61(ℎ) and 62(ℎ) its Fourier coefficients. Then,

((2) 6
∑
@6&

max
(0,@)=1

���� ∑
-6?<2-

?≡0 (mod @)

(
k1(?U) + k2(?U)

) ���� 6
2(Δ + Δ1)

∑
@6&

max
(0,@)=1

∑
-6?<2-

?≡0 (mod @)

1 +
∑
ℎ≠0

(
|61(ℎ) | + |62(ℎ) |

)
·

∑
@6&

max
(0,@)=1

���� ∑
-6?<2-

?≡0 (mod @)

4
(
ℎ?U

) ���� (3.4)
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and, similarly,

((3) 6 2(Δ + Δ1)
∑
@6&

1
i(@)

∑
-6?<2-

1+∑
ℎ≠0

(
|61(ℎ) | + |62(ℎ) |

) ∑
@6&

1
i(@)

���� ∑
-6?<2-

4
(
ℎ?U

) ����. (3.5)

Trivially, the first terms in the right hand side of (3.4) and (3.5) do not exceed
2Δ- log - , and the second terms can be estimated similarly to ((4) , ((5) , and the
sum in the left hand side of (3.3). To finish the proof, we choose � = �, � = � + 1.

Remark. In a similar way, one deduces corollaries 1.1 and 1.2 from Theorems 1.1
and 1.3.
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C h a p t e r 4

THE EXPONENTIAL SUM ESTIMATE FOR NON-INTEGER U
WITH THE LEVEL OF DISTRIBUTION 1/3

In this chapter, we prove Theorem 1.1. The proof is based on the estimation of the
sum over primes ∑

-6?<2-
?≡0 (mod @)

4
(
ℎ?U

)
,

which can be transformed into the sum over integers∑
-6=<.

=≡0 (mod @)

Λ(=)4
(
ℎ=U

)
by partial summation. This sum can be decomposed to the sum of several double
sums using the standard tool called Vaughan identity. These double sums are of the
form

,� =
∑

"6<<2"
U<

∑
#6=<2#

<=≡0(mod @)

5 (=)4
(
ℎ(<=)U

)
, (4.1)

,� � =
∑

"6<<2"
U<

∑
#6=<2#

<=≡0(mod @)

V=4
(
ℎ(<=)U

)
. (4.2)

Here "# ≈ - , U<, V= are real, and 5 (G) is a smooth function. The estimation of
|,� | is easier compared to |,� � |: in the first case, the inner sum is of size > # , which
is� -2/3, and the smooth weight 5 (=) can be removed by partial summation. For
,� � , the weights U< and V= are not smooth in general, so one should apply Cauchy
inequality, but this time both inner and outer sums have lengths � -2/3. The
restriction <= ≡ 0 (mod @) is removed by substitution = = @A + ; (or < = @A + ;).
The new “smooth” sums are of size #/@ (or "/@) and they can be evaluated by
Corput :-derivative test, where : depends on U. To handle type II sums (and type
I if U > 1), the classical estimates are not powerful enough. In this case, we would
apply Lemma 2.4.

4.1 Vaughan identity
We use the following form of Vaughan identity:
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Lemma 4.1. Let 1 6 + 6 - . Then for any complex valued 5 (G), one has the
identity∑
+<=6-

Λ(=) 5 (=) =
∑
36+

`(3)
∑

;6-3−1

(log ;) 5 (;3)−∑
36+

`(3)
∑
=6+

Λ(=)
∑

A6- (3=)−1

5 (=3A)−

∑
+<<6-+−1

( ∑
3 |<,36+

`(3)
) ∑
+<=6-<−1

Λ(=) 5 (=<).

The proof can be found in [45, Ch. 13].

Suppose that 1 6 0 < @ 6 &, (0, @) = 1, and consider the sum

, = , (. ) =
∑

-6=<.
=≡0 (mod @)

Λ(=)4
(
ℎ=U

)
.

The application of Lemma 4.1 with + = -1/3 yields:

, = −,0 +,1 −,2 +,3.

Here

,0 =
∑
<6+2

0<

∑
-/<6=<./<
<=≡0 (mod @)

4
(
ℎ(<=)U

)
, 0< =

∑
DE=<
D,E6+

`(D)Λ(E),

,1 =
∑
=6+

=≡0 (mod @)

Λ(=)4
(
ℎ=U

)
,

,2 =
∑

+<<6.+−1

1<

∑
-/<6=<./<, =>+
<=≡0 (mod @)

Λ(=)4
(
ℎ(<=)U

)
, 1< =

∑
D |<
D6+

`(D),

,3 =
∑
<6+

`(<)
∑

-/<6=<./<
<=≡0 (mod @)

(log =)4
(
ℎ(<=)U

)
.

Trivially, we have

|0< | 6
∑
E |<

Λ(E) = log<, |1< | 6 g(<), |,1 | 6
∑
=6+

Λ(=) � +.

Next, we have

,0 =
∑
<6+

0<

∑
-/<6=<./<
<=≡0 (mod @)

4
(
ℎ(<=)U

)
+

∑
+<<6+2

0<

∑
-/<6=<./<
<=≡0 (mod @)

4
(
ℎ(<=)U

)
=: ,4 +,5.
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Thus, we get type I sums ,3, ,4 and type II sums ,2, ,5. Type I sums have the
form ∑

<6+

W<

∑
-/<6=<./<
<=≡0 (mod @)

V=4
(
ℎ(<=)U

)
,

where W< = `(<), V= = log = for,3 and W< = 0<, V= = 1 for,4; type II sums have
the form ∑

+<<6*

W<

∑
//<6=<./<

<=≡0 (mod @)

V=4
(
ℎ(<=)U

)
,

where W< = 1<, V= = Λ(=), * = .+−1, / = max(+<, -) for ,2 and W< = 0<,
V= = 1,* = +2, / = - for,5.

4.2 Type I estimate
We split the range of summation 1 6 < 6 + to the dyadic intervals " < < 6 "1,
"1 = min(2",+). Then the initial sum splits into� log - sums of the form

, (") =
∑

"<<6"1

W<

∑
-/<6=<./<
<=≡0 (mod @)

V=4
(
ℎ(<=)U

)
.

By Lemma 2.1, we get��, (")�� 6 2‖V‖∞
∑

"<<6"1
(<,@)=1

��W< �� · ���� ∑
-/<6=<.1/<
<=≡0 (mod @)

4
(
ℎ(<=)U

) ���� 6
2‖W‖∞‖V‖∞

∑
"<<6"1
(<,@)=1

���� ∑
-/<6=<.1/<
<=≡0 (mod @)

4
(
ℎ(<=)U

) ����, (4.3)

where .1 ∈ (-;. ] and ‖l‖∞ = max=62- |l= |. Next, we fix < ∈ (";"1] with
(<, @) = 1 and define ; ≡ 0<∗ (mod @), 1 6 ; 6 @ − 1. Setting = = @A + ;, we
obtain

-

<@
6 A + b < .1

<@
, b =

;

@
.

The inner sum over = in (4.3) takes the form∑
'1−b6A<'2−b

4
(
ℎ(<@)U (A + b)U

)
, (4.4)

where '1 = -/<@, '2 = .1/<@ 6 2'1.

To estimate aforementioned sum, we apply Theorem 2.4. Consider the function
5� (G) = ℎ(<@)U (G + b)U. Then, for '1 − b 6 G < '2 − b,

5
(:)
�
(G) = (U):ℎ(<@)U (G + b)U−: �

ℎ(<@):
- :−U

= _: ,
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where (U): =
∏:
8=1(U − 8 + 1) is the Pochhammer symbol. Applying Lemma 2.4

to (4.4), we get���� ∑
'1−b6A<'2−b

4
(
5� (A)

) ���� �:,X

(
-

<@

)1+X
·
[(
ℎ(<@):
- :−U

)1/(: (:−1))
+

(
<@

-

)1/(: (:−1))
+(

<@

-

)2/(: (:−1)) (
- :−U

ℎ(<@):

)2/(:2 (:−1))]
� ℎ1/(: (:−1))

(
-

<@

)X (
)1 + )2 + )3

)
,

where

)1 =
-1−(:−U)/(: (:−1))

(<@)1−1/(:−1) , )2 =

(
-

<@

)1−1/(: (:−1))
, )3 =

-1−2U/(:2 (:−1))

<@
.

Since ‖W‖∞‖V‖∞ 6 log 2- , we get��, (")�� � ℎ1/(: (:−1)) (log -)
(
-

@

)X ∑
"<<6"1

<−X ()1 + )2 + )3).

Now, we estimate the contribution from )1, )2, )3 to the sum over all values of " .
The contribution from )1 does not exceed

ℎ1/(: (:−1)) (log -)
(
-

@

)X
-1−(:−U)/(: (:−1))

@1−1/(:−1)

∑
"<+

′ ∑
"<<6"1

<−1+1/(:−1) �(
-

@

)2X
-1−(:−U)/(: (:−1))

@1−1/(:−1) +1/(:−1) . (4.5)

The contribution from )2 is less than

ℎ1/: (:−1) (log -)
(
-

@

)1−1/(: (:−1))+X ∑
"<+

′ ∑
"<<6"1

<−1+1/(: (:−1)) �(
-

@

)1−1/(: (:−1))+2X
+1/(: (:−1)) . (4.6)

Finally, the contribution from )3 is bounded by

ℎ1/(: (:−1)) (log -)
(
-

@

)X
-1−2U/(:2 (:−1))

@

∑
"<+

′ ∑
"<<6"1

1
<
�(

-

@

)2X
-1−2U/(:2 (:−1))

@
log+. (4.7)



35

4.3 Type II estimate
By definition of*,+2 6 * 6 .+−1 6 2-+−1 6 2+2. We split,2,,5 into� log -
sums of the type, ("). Cauchy inequality yields:��, (")��2 6 ( ∑

"<<6"1

|W< |2
) ( ∑
"<<6"1

���� ∑
//<6=<./<

<=≡0 (mod @)

V=4
(
ℎ(<=)U

) ����2) .
Next, by Mardzhanishvili’s inequality (Lemma 2.5), we get��, (")��2 � " (log -)2+^

( ∑
"<<6"1

���� ∑
//<6=<./<

<=≡0 (mod @)

V=4
(
ℎ(<=)U

) ����2) , (4.8)

where ^ = 1 for,2 and ^ = 0 for,5. Now, we rewrite the sum over < as follows:∑
"<<6"1

∑
//<6=1,=2<./<

<=8≡0 (mod @),8=1,2

V=1V=24
(
ℎ<U (=U1 − =

U
2 )

)
=

∑
"<<6"1

∑
//<6=<./<

<=≡0 (mod @)

V2
= + 2Re(((")),

where
((") =

∑
"<<6"1

∑
//<6=1<=2<./<

<=8≡0 (mod @),8=1,2

V=1V=24
(
ℎ<U (=U1 − =

U
2 )

)
.

The diagonal term does not exceed∑
"<<6"1

∑
//<6=<./<

<=≡0 (mod @)

V2
= �

∑
"<<6"1

(log -)2^
(
-

<@
+ 1

)
�

(log -)2^
(
-

@
+ "

)
. (4.9)

Setting < = @A + ;, we get

"

@
− [ < A 6 "1

@
− [, [ =

;

@

for given ;, (;, @) = 1. Hence,

((") =
@∑
;=1
(;,@)=1

∑
"
@
−[<A6"1

@
−[

∑
/
@A+; 6=2<=1<

.
@A+;

=1,=2≡4 (mod @)

V=1V=24
(
ℎ(=U1 − =

U
2 )@

U (A + [)U
)
,
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where 4 = 0;∗ (mod @). Next, we change the order of summation. If / = - , then

-

@A + ; 6 =2 < =1 <
.

@A + ; ,

so -/"1 6 =2 < =1 < ./" , and for fixed =1, =2, we get

-

@=2
− [ 6 A < .

@=1
− [.

By definition, / = max(+<, -) = max
(
+ (@A + ;), -

)
, hence

max
(
+,

-

@A + ;

)
6 =2 < =1 <

.

@A + ; .

Since

max
(
+,

-

@A + ;

)
=


-

@A + ; , if A 6
-+−1

@
− [;

+, if A >
-+−1

@
− [,

we estimate ((") as follows:

((") =
{ ∑
"
@
−[<A6"1

@
−[

A6-+−1/@−[

∑
-
@A+; 6=2<=1<

.
@A+;

=1,=2≡4 (mod @)

+
∑

"
@
−[<A6"1

@
−[

A>-+−1/@−[

∑
+6=2<=1<

.
@A+;

=1,=2≡4 (mod @)

}
. . . =

{ ∑
-/"16=2<=1<./"
=1,=2≡4 (mod @)

∑
' (1)−[<A6' (2)−[

+
∑

+6=2<=1<./"
=1,=2≡4 (mod @)

∑
' (3)−[<A6' (4)−[

}
. . . ,

where

'(1) = max
(
"

@
,
-

@=2

)
, '(2) = min

(
"1
@
,
.

@=1
,
-+−1

@

)
,

'(3) = max
(
"

@
,
-+−1

@

)
, '(4) = min

(
"1
@
,
.

@=1

)
.

Therefore,��((")�� 6 @∑
;=1
(;,@)=1

∑
-/"16=2<=1<./"
=1,=2≡4 (mod @)

|V=1 | |V=2 |
���� ∑
'1−[<A6'2−[

4
(
5� � (A)

) ����,
where ('1, '2) denotes the pair ('(1) , '(2)), ('(3) , '(4)) that corresponds to the
maximum absolute value of the sum over A, 5� � (G) = ℎ(=U1 − =

U
2 )@

U (G + [)U. Using
the conditions =2 < =1, =1 ≡ =2 ≡ 4 (mod @), we write =1 = =2 + @B with B > 1.
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On the other hand, =1 < ./" implies =2 + @B < ./" . Hence, B < ./("@) = C,
and therefore��((")�� � @∑

;=1
(;,@)=1

∑
16B<C

∑
-/"16=<./"
=≡4 (mod @)

|V= | |V=+@B |
���� ∑
'16A<'2

4
(
5� � (A)

) ����.
Obviously,

5
(:)
� �
(G) =

(U):ℎ(=U1 − =
U
2 )@

U

(G + [):−U
=
(U):�1

(G + [):−U
,

where

�1 = ℎ(=U1 − =
U
2 )@

U, so we have
�� 5 (:)
� �
(G)

�� � �1

':−U1
� �1

(
@

"

) :−U
.

Next, by Lagrange mean value theorem,

�1 = ℎ@
U
(
(=+@B)U−=U

)
= ℎ@U ·U(=+@B\′)U−1·@B � ℎB@U+1

(
-

"

)U−1
, |\′| 6 1,

and hence �� 5 (:)
� �
(G)

�� � ℎB@2

-1−U

(
@

"

) :−1
= _: .

Put 1 − U = a. By Lemma 2.4, we get

∑
'1<A6'2

4
(
5� � (A)

)
�:,X

(
"

@

)1+X{(
ℎB@2

-a

)1/(: (:−1)) (
@

"

)1/:
+

(
"

@

)−1/(: (:−1))
+(

"

@

)−2/(: (:−1)) (
ℎB@2

-a

)−2/(:2 (:−1)) (
@

"

)−2/:2}
.

The factor |V= | · |V=+@B | is bounded from above by (-/@)X. The summation over
= ≡ 4 (mod @) for -/"1 < = 6 ./" contributes the factor of at most -/"@.
Thus,

((") �
(
-

@

)X @∑
;=1
(;,@)=1

-

"@

(
"

@

)1+X{(
ℎ@2

-a

)1/(: (:−1)) (
@

"

)1/: ∑
16B<C

B1/(: (:−1))+

(
"

@

)−1/(: (:−1)) ∑
16B<C

1 +
(
ℎ@2

-a

)−2/(:2 (:−1)) (
"

@

)−2/(:2 (:−1)) ∑
16B<C

B−2/(:2 (:−1))
}
.
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The inequalities " < - and C 6 2-/"@ imply:

((") �
(
-

@

)2X
· -
@

{(
ℎ@2

-a

)1/(: (:−1)) (
@

"

)1/: ( 2-
"@

)1+1/(: (:−1))
+(

"

@

)−1/(: (:−1)) 2-
"@
+

(
ℎ@2

-a

)−2/(:2 (:−1)) (
"

@

)−2/(:2 (:−1)) ( 2-
"@

)1−2/(:2 (:−1))}
�(

-

@

)2X
-2

"@2 ()4 + )5 + )6), (4.10)

where

)4 = (2ℎ)1/(: (:−1))- (1−a)/(: (:−1))
(
@

"

)1/(:−1)
=

(
2ℎ@:-U

" :

)1/(: (:−1))
,

)5 =

(
@

"

)1/(: (:−1))
,

)6 = (2ℎ)−2/(:2 (:−1))- (2a−2)/(:2 (:−1)) = (2ℎ-U)−2/(:2 (:−1)) .

Thus, the contribution from (4.10) to |, (") |2 does not exceed

(log -)2+^
(
-

@

)2+2X{(2ℎ@:-U

" :

)1/(: (:−1))
+

(
@

"

)1/(: (:−1))
+

(
1

2ℎ-U

)2/(:2 (:−1))}
,

hence, combining with (4.8) and (4.9), we get��, (")�� �: (log -)1+3^/2
(
-

@

)X{
" +

(
"-

@

)1/2
+

-

@

((
ℎ@:-U

" :

)1/(2: (:−1))
+

(
@

"

)1/(2: (:−1))
+

(
1
ℎ-U

)1/(:2 (:−1)))}
.

The summation over all " in the range + 6 " < 2+2 leads to the estimate

, � (log -)1+3^/2
(
-

@

)X{
+2 + +

√
-
√
@
+

-

@

((
ℎ@:-U

+ :

)1/(2: (:−1))
+

(
@

+

)1/(2: (:−1))
+

(
1
ℎ-U

)1/(:2 (:−1)))}
. (4.11)

4.4 Final bound
From (4.5), (4.6), (4.7), (4.11), we conclude that

, �
(
-

@

)1+2X{(
+@

-

)1/(:−1)
-U/(: (:−1)) +

(
+@

-

)1/(: (:−1))
+ -−2U/(:2 (:−1)) log++

+2@

-
+
+
√
@

√
-
+

(
ℎ@:-U

+ :

)1/(2: (:−1))
+

(
@

+

)1/(2: (:−1))
+

(
1
ℎ-U

)1/(:2 (:−1))}
.
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We estimate the factors (-/@)X and ℎ1/(2: (:−1)) by -X. Thus,

, � -1+3X
{(

+@

-1−U/:

)1/(:−1)
+

(
+@

-

)1/(: (:−1))
+ -−2U/(:2 (:−1)) + +

2@

-
+
+
√
@

√
-
+(

@:-U

+ :

)1/(2: (:−1))
+

(
@

+

)1/(2: (:−1))
+

(
1
-U

)1/(:2 (:−1))}
� -1+3X

8∑
8=1
Δ8,

where

Δ1 6 -
(3U−2:)/(3: (:−1))@1/(:−1) � - (3U−:−3Y:)/(3: (:−1)) ,

Δ2 =

(
@

-2/3

)1/(: (:−1))
� -−1/(3: (:−1)) , Δ3 = -

−2U/(:2 (:−1)) ,

Δ4 =
+2@

-
6 -−Y, Δ5 =

+
√
@

√
-
6 -−Y/2,

Δ6 6
(
-U/:−Y

)1/(2(:−1))
, Δ7 6 -

−Y/(2: (:−1)) , Δ8 6 -
−U/(:2 (:−1)) ,

max
16868

Δ8 6 -
−2Y3/(5U2)

if : = b1.1 · U/Yc + 1. Finally, choosing X 6 Y3/(50U2) and applying partial
summation, we get the desired bound.
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C h a p t e r 5

THE EXPONENTIAL SUM ESTIMATE FOR SMALL UWITH
THE LEVEL OF DISTRIBUTION 2/5 − (3/5)U

In this chapter, we prove Theorem 1.3. The first big difference from the proof
of Theorem 1.1 is a different decomposition of the exponential sum∑

-6=<.
=≡0 (mod @)

Λ(=)4
(
ℎ=U

)
.

This time, we consider the sums of three different types. Type I and type II are
similar to the ones in the previous chapter, the key difference for type II are the
better ranges of " and # (in this case, they are separated from the critical ranges
" ≈ -1/3, # ≈ -2/3, and vice versa). Due to the small size of U, the sums,� and
,� � are easier to treat compared to Chapter 4. Type III sum is of the form

,� � � =
∑

"Θ−16<<"Θ

51(<)
∑

#Θ−16=<#Θ

52(=)
∑

 Θ−16:< Θ
<=:≡0 (mod @)

53(:)4
(
ℎ(<=:)U

)
,

where 51, 52, 53 are smooth real functions, 1 < Θ = Θ(-) 6 2, and ", #,  are
close to each other in size (" ≈ # ≈  ≈ -1/3). The desired upper bound is
obtained in three steps: we apply Poisson summation twice to replace two of the
sums over <, =, : by shorter sums which can be estimated trivially. The additional
saving of √@ can be obtained by Weil’s bound for Kloosterman sum [21].

5.1 Auxiliary lemmas

Lemma 5.1 (Heath-Brown identity). For any fixed integer : > 1, + = -1/: , and
any complex valued function 5 (G), the following identity holds true:∑

-6=<.

Λ(=) 5 (=) =
:∑
9=1
(−1) 9−1

(
:

9

)
( 9 ,

where
( 9 =

∑
-631...32 9<.
3 9+1,...,32 96+

(log 31)`(3 9+1) . . . `(32 9 ) 5 (31 . . . 32 9 ).

The proof is in [41].
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Lemma 5.2 (Combinatorial decomposition). Let 1/10 < f < 1/2, and let C1, . . . , C=
be non-negative real numbers such that C1 + . . . + C= = 1. Then at least one of the
following three statements holds:

Type I: There is a C8 with C8 > 1/2 + f;

Type II: There is a partition {1, . . . , =} = S ∩ T such that

1
2
− f <

∑
8∈S

C8 6
∑
8∈T

C8 <
1
2
+ f;

Type III: There exist distinct 8, 9 , : with 2f 6 C8 6 C 9 6 C: 6 1/2 − f and

C8 + C 9 , C8 + C: , C 9 + C: >
1
2
+ f.

If f > 1/6, then the type III situation is impossible.

See [71, Lemma 3.1]

Lemma 5.3 (Smoothing function). Let 0, 1 be fixed real numbers, 0 < 1; Δ =

(log -)−�0 with some fixed �0 > 0. Then there exists smooth functionΨ(G) : R→ R
supported on [0 − Δ; 1 + Δ], which is one on [0; 1], and satisfying the inequalities
0 6 Ψ(G) 6 1 if G ∈ [0 − Δ; 0) ∪ (1; 1 + Δ] and the following upper bounds

|Ψ(<) (G) | �< log<�0 G

for any fixed < > 0.

The proof is in [23].

Lemma 5.4 (Poisson summation). Let 5 (G) be a smooth finitely supported function.
Then the following formula holds true

+∞∑
==−∞

5 (=) =
+∞∑

<=−∞

∫ +∞

−∞
5 (D)4(−<D)3D.

See, for example, [45, Theorem 4.4].

Lemma 5.5 (Lemma 8.1, [9]). Let .� > 1, -� , & � , +� , '� > 0, F(C) is a smooth
function supported on some finite interval J ⊂ R such that

F ( 9) (C) � 9 -�+
− 9
�
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for all 9 > 0. Suppose that 6(C) is a smooth function such that |6′(C) | > '� ,
6( 9) (C) � 9 .�&

− 9
�

for 9 > 2, C ∈ J. Then, the integral � defined by

� =

∫ +∞

−∞
F(C)4

(
6(C)

)
3C

satisfies
� ��� |J|-�

(
(& �'�/

√
.�)−�� + ('�+�)−��

)
with any fixed real �� > 0.

This result gives a non-trivial upper bound for the integral � in the case if '�+� and
& �'�.

−1/2
�

are much bigger than 1.

Lemma 5.6 (Proposition 8.2, [9]). Let 0 < X� < 1/10, -� , .� , +� , +̃� , & � > 0,
/� = & � + -� + .� + +̃� + 1, and assume that .� > /3X�

�
,

+̃� > +� >
& �/

X� /2
�

.
1/2
�

.

Suppose that F(C) is a smooth function supported on an interval J of length +̃�
satisfying

F ( 9) (C) � 9 -�+
− 9
�

for all 9 > 0. Suppose that 6(C) is a smooth function such that there is a unique
point C0 ∈ J such that 6′(C0) = 0. Further, 6(C) satisfies the estimates 6′′(C) < 0,
6′′(C) � .�&

−2
�
, 6( 9) (C) � 9 .�&

− 9
�
, for all 9 > 1, C ∈ J. Then, the integral

� =

∫ +∞

−∞
F(C)4

(
6(C)

)
3C

has an asymptotic expansion of the form

� =
4
(
6(C0)

)
|6′′(C0) |1/2

∑
06=63X−1

�
��

?= (C0) +$�� ,X� (/
−��
�
),

?= (C0) =
√

2c4−c8/4

=!
(28)−=
|6′′(C0) |=

� (2=) (C0),

where �� > 0 is arbitrary, and

� (C) = F(C)4
(
� (C)

)
, � (C) = 6(C) − 6(C0) −

1
2
6′′(C0) (C − C0)2.

Lemma 5.7 (Weil’s bound). The Kloosterman sum (@ (<, =) satisfies the upper
bound

|(@ (<, =) | 6 g(@)
√
@(<, =, @)1/2.
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For proof, see [45, Corollary 11.12].

Lemma 5.8 (Faa di Bruno formula). Let i(G), 5 (G) be A-times differentiable func-
tions on R. Then, one has the formula

3Ai( 5 (G))
3GA

=
∑

<1+2<2+...+A<A=A
<1,...,<A>0

A!
<1! . . . <A!

i(<1+...+<A ) ( 5 (G))
A∏
9=1

(
5 ( 9) (G)
9!

)< 9

.

See, for example, [54].

5.2 Heath-Brown identity
In this section, we adjust the initial sum, to simplify the estimation of type III sum.
This technique is also described in [71, Section 3]. Suppose that 1 6 0 < @ 6 &,
(0, @) = 1. We consider the sum

, = , (. ) =
∑
-6=<.

=≡0 (mod @)

Λ(=)4(ℎ=U), - < . 6 2-.

Let us denote H = ./- > 1. Fix �0 > 0 and choose Δ = (log -)−�0 . There exists
function k(G) ∈ �∞, such that k(G) = 1 if 1 6 G 6 H, 0 6 k(G) 6 1 if 1−Δ 6 G 6 1
or H 6 G 6 H + Δ and k(G) = 0 otherwise, and its derivatives satisfy the estimates
k ( 9) (G) � 9 (log -) 9�0 . See, for example, [23]. Then,, can be rewritten as

, =

+∞∑
==1

=≡0 (mod @)

k

(
=

-

)
Λ(=)4

(
ℎ=U

)
+$

(
- (log -)−�0+1

@

)
. (5.1)

By partial summation to prove Theorem 1.3, it is enough to show that the sum
in (5.1) is bounded by - (log -)−�. Thus, one can take �0 = � + 1.

Applying Heath-Brown identity with : = 5, + = -1/5 (Lemma 5.1), we get

, =

5∑
9=1
(−1) 9−1

(
5
9

)
, 9 ,

where

, 9 =
∑

31,...,32 9=1
3 9+1,...,32 96+

31...32 9≡0 (mod @)

(log 31)`(3 9+1) . . . `(32 9 )k
(
31 . . . 32 9

-

)
4
(
ℎ(31 . . . 32 9 )U

)
.
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-Θ -1  0  1 Θ

x

Ψ (x)

1

Figure 5.1: Smoothed indicator function of [−1, 1].

The statement of the theorem clearly follows from the estimates, 9 � - (log -)−�

for each 1 6 9 6 5. We only provide the details for,5. The sums,1, . . . ,,4 can
be treated similarly.

We first split the summation over 31, . . . , 310 to the “refined” dyadic intervals
following the technique from [71]. Fix �0 > 0 and Θ = 1 + (log -)−�0 . Let
Ψ(G) be �∞ function supported on [−Θ;Θ] such that Ψ(G) = 1 on [−1; 1] and
|Ψ( 9) (G) | � log 9 �0 G for all 9 > 0 (see Figure 5.1). For all G > 1, we have

1 =
∑
�∈G

Ψ� (G),

where
G =

{
Θ; , ; ∈ N ∪ {0}

}
, Ψ� (G) = Ψ

(
G

�

)
−Ψ

(
ΘG

�

)
.

Indeed, if G > 1, then∑
�∈G

Ψ� (G) = lim
<→+∞

(
Ψ(G) −Ψ(ΘG) +Ψ

( G
Θ

)
−Ψ(G) +Ψ

( G
Θ2

)
−Ψ

( G
Θ

)
+ . . .

. . . +Ψ
( G
Θ<

)
−Ψ

( G

Θ<−1
) )
= lim
<→+∞

(
−Ψ(ΘG) +Ψ

( G
Θ<

) )
= −0 + 1 = 1.

The function Ψ� is supported on [Θ−1�;Θ�]. Thus,

,5 =
∑

�1,...,�10∈G

+∞∑
31,...,310=1
36,...,3106+

31...310≡0 (mod @)

log(31)`(36) . . .

. . . `(310)Ψ�1 (31) . . .Ψ�10 (310)k
(
31 . . . 310

-

)
4
(
ℎ(31 . . . 310)U

)
. (5.2)
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-Θm+1 -Θm -1  0 1 Θm Θm+1

x

Ψ (x / Θm)

1

-1 -Θ-1  0 Θ-1 1

x

Ψ (Θx)

1

 0 Θ-1 1 Θm Θm+1

x

Ψ (x / Θm) - Ψ (Θx)

1

Figure 5.2: Smooth partition of unity. Ψ(G/Θ<) − Ψ(ΘG) → 1 when < → +∞ for
all G > 1.

The non-zero contribution to,5 is only coming from the terms satisfying

(1 − Δ)- 6 31 . . . 310 6 (H + Δ)-,
�8

Θ
6 38 6 �8Θ (5.3)
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for 8 = 1, . . . , 10. From (5.3), we conclude that the non-zero contribution corre-
sponds to the tuples D = {�1, . . . , �10} satisfying the inequality

-1 6 �1 . . . �10 6 .1, where -1 = (1 − Δ)Θ−10-, .1 = (H + Δ)Θ10-,

and also satisfying
�8 6 +Θ for 8 = 6, . . . , 10.

To split each, 9 to the sums of three types, we apply combinatorial decomposition
given by Lemma 5.2 with f = 1/10 + Y1, Y1 < 3U/5. Without loss of generality,
consider the sum,5. We have

,5 � |,� | + |,� � | + |,� � � |,

where the sums correspond to the following cases:

Type I sum: there is one index 1 6 8 6 5 such that �8 > -1
3/5+Y1 .

Type II sum: there is a partition S ∪ T = {1, . . . , 10} such that

-1
2/5−Y1 <

∏
8∈S

�8 < -1
3/5+Y1 .

Type III sum: there are three distinct indices 8, 9 , : ∈ {1, . . . , 5} such that

-1
1/5+2Y1 6 �8 6 � 9 6 �: 6 -1

2/5−Y1 ,

�8� 9 , �8�: , � 9�: > -1
3/5+Y1 .

Remark. Note that in the expression analogous to (5.2) for,1 and,2, the type III
sum is empty.

5.3 Type I estimate
For simplicity, we only consider the case �1 > -1

3/5+Y1 . The corresponding sum
has the form

,� =
∑

*6.1-
−3/5−Y1
1

*∈G

∑
· · ·

∑
�2...�10=*
�2,...,�10∈G

∑
-

3/5+Y1
1 6�16.1*

−1

�1∈G

, (D), D =
{
�1, . . . , �10

}
,

, (D) =
∑

*Θ−96D6*Θ9

1(D)
+∞∑
31=1

D31≡0 (mod @)

5 (31)4
(
ℎ(D31)U

)
,
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where

1(D) =
∑

32...310=D
36,...,3106+

`(36) . . . `(310)Ψ�2 (32) . . .Ψ�10 (310), |1(D) | 6 g9(D),

5 (31) = (log 31)Ψ�1 (31)k
(
D31
-

)
.

Note that the sum over* ∈ G contains only $
(
(log -)�0+1) terms. We have��, (D)�� 6 ‖1‖∞ ∑

*Θ−96D6*Θ9

���� ∑
'1<316'2

D31≡0 (mod @)

5 (31)4
(
ℎ(D31)U

) ����,
where

‖1‖∞ = max
=6.1
|1(=) |, '1 = max

(
(1 − Δ) -

D
, �1Θ

−1
)
,

'2 = min
(
(H + Δ) -

D
, �1Θ

)
.

By partial summation,��, (D)�� 6 ‖1‖∞ ∑
*Θ−96D6*Θ9

���� 5 ('2)
∑

'1<316'2
D31≡0 (mod @)

4
(
ℎ(D31)U

)
−

∫ '2

'1

( ∑
'1<316E

D31≡0 (mod @)

4
(
ℎ(D31)U

) ) 35 (E)
3E

3E

����.
Next,

3

3E

(
log(E)Ψ�1 (E)k

(DE
-

) )
� 1
E
+ log E
�1
(log -)�0 + log(E) D

-
(log -)�0 �

1
�1
(log -)max(�0,�0)+1,

and therefore∫ '2

'1

( ∑
'1<316E

D31≡0 (mod @)

4
(
ℎ(D31)U

) ) 35 (E)
3E

3E �

(log -)max(�0,�0)+1
���� ∑

'1<316'3
D31≡0 (mod @)

4
(
ℎ(D31)U

) ����,
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where '1 < '3 6 '2. Thus, by the triangle inequality,��, (D)�� � ‖1‖∞(log -)max(�0,�0)+1
∑

*Θ−96D6*Θ9

���� ∑
'1<316'3

D31≡0 (mod @)

4
(
ℎ(D31)U

) ����. (5.4)

Due to the congruence restriction D31 ≡ 0 (mod @), we can assume (D, @) = 1 and
define ;1 ≡ 0D∗ (mod @), 1 6 ;1 6 @ − 1. Setting 31 = @A1 + ;1, we obtain

'1
@
6 A1 + b <

'3
@
, b =

;1
@
.

The inner sum over 31 in (5.4) takes the form∑
'1/@−b6A1<'3/@−b

4
(
5� (A1)

)
,

where 5� (G) = ℎ(D@)U (G + b)U. Then, for '1/@ − b 6 G < '3/@ − b,�� 5 ′′� (G)�� � ℎDU@2

'1
2−U =: _2.

By van der Corput second derivative test (Lemma 2.3), we obtain���� ∑
'1/@−b6A1<'3/@−b

4
(
5� (A1)

) ���� � '3 − '1
@

_
1/2
2 + _

−1/2
2 =

'1
@
·
√
ℎ
DU/2@

'
1−U/2
1

+
'

1−U/2
1√
ℎDU/2@

.

Since (log -)max(�0,�0)+1‖1‖∞ �X1 -
X1 for arbitrarily small X1 > 0, we get

��, (D)�� �X1 -
X1

∑
*Θ−96D6*Θ9

(
'1
@

√
ℎ
DU/2@

'
1−U/2
1

+
'

1−U/2
1√
ℎDU/2@

)
�

-X1
√
ℎ'

U/2
1

∑
*Θ96D6*Θ−9

DU/2 +
-X1'

1−U/2
1√
ℎ@

∑
*Θ−96D6Θ*9

1
DU/2

�

-X1
√
ℎ�

U/2
1 *U/2+1 +

-X1�
1−U/2
1 *1−U/2
√
ℎ@

.
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Thus,

,� �
∑

*6.1-
−3/5−Y1
1

*∈G

∑
· · ·

∑
�2...�10=*
�2,...,�10∈G

∑
-

3/5+Y1
1 6�16.1*

−1

�1∈G

(
-X1
√
ℎ�

U/2
1 *U/2+1+

-X1�
1−U/2
1 *1−U/2
√
ℎ@

)
�

∑
*6.1-

−3/5−Y1
1

*∈G

∑
· · ·

∑
�2...�10=*
�2,...,�10∈G

(√
ℎ-X1+U/2* log(.1/*)�0+1+

-X1+1−U/2
√
ℎ@

log(.1/*)�0+1
)
.

Finally, for fixed* = Θ: , : 6 log
(
.1-

−3/5
1

)
/logΘ, using the trivial bound∑

· · ·
∑

�2...�10=*
�2,...,�10∈G

1 =
∑
· · ·

∑
:2+...+:10=:

1 6 :9 � (log -)9(�0+1) ,

we get

,� �
∑

*6.1-
−3/5−Y1
1

*∈G

-X1 (log -)10(�0+1)
(√
ℎ*-U/2 + 1

√
ℎ

-1−U/2

@

)
�

-2X1

(
-2/5+U/2−Y1 + -

1−U/2

@

)
. (5.5)

5.4 Type II estimate
For a fixed partition S ∪ T = {1, . . . , 10}, we use the notations

< =
∏
8∈S

38, = =
∏
8∈T

38, " =
∏
8∈S

�8, # =
∏
8∈T

�8 .

Note that "# � - . Then, the type II sum can be written as

,� � =
∑

-
2/5−Y1
1 6"6-

3/5+Y1
1

"∈G

∑
-1/"6#6.1/#

#∈G

∑
∃S,T:∏
8∈S �8="∏
8∈T �8=#

, (D),
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where

, (D) =
∑

"Θ−|S |6<6"Θ |S |

W(<)
+∞∑
==1

<=≡0 (mod @)

V(=)k
(
<=

-

)
4
(
ℎ(<=)U

)
,

W(<) =
∑

∏
8∈S 38=<

386+ for 8>6,8∈S

(∏
8∈S

08 (38)Ψ�8 (38)
)
,

��W(<)�� 6 (log -)
∑

∏
8∈S 38=<

386+ for 8>6,8∈S

1 6 (log -)g|S| (<),

V(=) =
∑

∏
8∈T 38==

386+ for 8>6,8∈T

(∏
8∈T

08 (38)Ψ�8 (38)
)
, |V(=) | 6 (log -)g|T| (=),

01(3) = log 3, 02(3) = . . . = 05(3) = 1, 06(3) = . . . = 010(3) = `(3).

By definition of V(=), we have

, (D) =
∑

"16<6"2

W(<)
∑

#16=6#2
<=≡0 (mod @)

V(=)k
(
<=

-

)
4
(
ℎ(<=)U

)
,

"1 = "Θ
−|S|, "2 = "Θ

|S|, #1 = #Θ
−|T|, #2 = #Θ

|T| .

Cauchy inequality yields:��, (D)��2 6 ( ∑
"16<6"2

|W(<) |2
) ( ∑
"16<6"2

���� ∑
#16=6#2

<=≡0 (mod @)

V(=)k
(
<=

-

)
4
(
ℎ(<=)U

) ����2) .
Next, by Mardzhanishvili’s inequality (Lemma 2.5), we get��, (D)��2 �

"1(log -)2+^
( ∑
"16<6"2

���� ∑
#16=6#2

<=≡0 (mod @)

V(=)k
(
<=

-

)
4
(
ℎ(<=)U

) ����2) , (5.6)

where ^ = |S|2 − 1. Rewrite the second factor as follows:∑
"16<6"2

∑
#16=1,=26#2

<=8≡0 (mod @),8=1,2

V(=1)V(=2)k
(
<=1
-

)
k

(
<=2
-

)
4
(
ℎ<U (=U1 − =

U
2 )

)
=

∑
"16<6"2

∑
#16=6#2

<=≡0 (mod @)

V2(=)k2
(
<=

-

)
+ 2Re

(
((", #)

)
,
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where

((", #) =
∑

"16<6"2

∑
#16=1<=26#2

<=8≡0 (mod @),8=1,2

V(=1)V(=2)k
(
<=1
-

)
k

(
<=2
-

)
4
(
ℎ<U (=U1−=

U
2 )

)
.

The diagonal term does not exceed∑
"16<6"2

∑
#16=6#2

<=≡0 (mod @)

V2(=) �

(log -)2"#
@
(log -) |T|2−1 � -

@
(log -) |T|2+1. (5.7)

Setting < = @A + ;, we get

'1 − [ 6 A 6 '2 − [, [ =
;

@
,

for given ;, (;, @) = 1, '1 = "1/@, '2 = "2/@. Hence,

((", #) =
@∑
;=1
(;,@)=1

∑
'1−[6A6'2−[

∑
#16=1<=26#2

=1,=2≡4 (mod @)

V(=1)V(=2)·

k

(
(@A + ;)=1

-

)
k

(
(@A + ;)=2

-

)
4
(
ℎ(=U1 − =

U
2 )@

U (A + [)U
)
,

where 4 = 0;∗ (mod @). Changing the order of summation, we estimate ((", #)
as follows:��((", #)�� 6 @∑

;=1
(;,@)=1

∑
#16=1<=26#2

=1,=2≡4 (mod @)

|V(=1) | |V(=2) |·

���� ∑
'1−[6A6'2−[

k

(
(@A + ;)=1

-

)
k

(
(@A + ;)=2

-

)
4
(
5� � (A)

) ����,
where 5� � (G) = ℎ(=U1 − =

U
2 )@

U (G + [)U. Using the conditions =1 < =2, =1 ≡ =2 ≡ 4
(mod @), we set =2 = =1 + @B with B > 1. On the other hand, =2 6 #2 implies
=1 + @B 6 #2. Hence, B < (#2 − #1)/@ = C, and therefore��((", #)�� � @∑

;=1
(;,@)=1

∑
16B<C

∑
#16=6#2

=≡4 (mod @)

|V(=) | |V(= + @B) |·

���� ∑
'1−[6A6'2−[

k

(
(@A + ;)=1

-

)
k

(
(@A + ;)=2

-

)
4
(
5� � (A)

) ����.
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By partial summation,��((", #)�� �
(log -)�0

@∑
;=1
(;,@)=1

∑
16B<C

∑
#16=6#2

=≡4 (mod @)

|V(=) | |V(= + @B) |
���� ∑
'1−[6A6'3−[

4
(
5� � (A)

) ����,
where '1 < '3 6 '2. Next,

5
′′
� � (G) =

U(U − 1)ℎ(=U2 − =
U
1 )@

U

(G + [)2−U
, hence

�� 5 ′′� � (G)�� � ℎ(=U2 − =U1 )@U ( @" )2−U
.

By Lagrange mean value theorem,

ℎ@U
(
(= + @B)U − =U

)
= UℎB@U+1(= + @B\′)U−1 � ℎB@U+1#U−1 � ℎB@U+1

(
-

"

)U−1
,

where |\′| 6 1. Hence, �� 5 ′′� � (G)�� � ℎB@2

-1−U
@

"
.

Applying van der Corput second derivative test (Lemma 2.3), we get∑
'1−[6A6'3−[

4
(
5� � (A)

)
�

(
'3 − '1

) ( ℎB@2

-1−U
@

"

)1/2
+

(
-1−U

ℎB@2
"

@

)1/2
.

We have '3 − '1 � "/@. The factor |V(=) | · |V(= + @B) | is bounded from above
by (-/@)X2 for arbitrarily small X2 > 0. The summation over = ≡ 4 (mod @) for
#1 6 = 6 #2 contributes the factor of at most -/("@) > 1 (since " � -3/5+3U/5,
@ 6 -2/5−3U/5). Thus,��((", #)�� �(

-

@

)X2 @−1∑
;=1
(;,@)=1

∑
16B<C

-

"@

((
ℎB@"

-1−U

)1/2
+

(
"-1−U

ℎB@3

)1/2)
�

(
-

@

)X2 (√ℎ-2+U/2

@"2 + -2−U/2
√
ℎ@2"

)
. (5.8)

Combining (5.6), (5.7), and (5.8), we get��, (D)�� �
√
" (log -)1+^/2

(
-

@
(log -) |T|2+1 +

(
-

@

)X2 (√ℎ-2+U/2

@"1
+ -2−U/2
√
ℎ@2"

))1/2
�

-X3

((
-"

@

)1/2
+ -1+U/4

(@")1/2
+ -

1−U/4

@

)
,
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where we have used the inequality

max
(
(log -)^/2+|T|2+2, (-/@)X2

√
ℎ
)
6 -X3

for some X3 > X2. For fixed " = Θ: and # = Θ; with : + ; = 10, the number of
corresponding tuples S and T does not exceed∑

8+ 9=10
8+ 9>1

: 8; 9 �
(
log -
logΘ

)10
� (log -)10(�0+1) .

Thus,

,� � �
∑

-
2/5−Y1
1 6"6-

3/5+Y1
1

"∈G

∑
-1/"6#6.1/#

#∈G

∑
∃S,T:∏
8∈S �8="∏
8∈T �8=#

��, (D)�� �
(log -)10(�0+1)

∑
-

2/5−Y1
1 6"6-

3/5+Y1
1

"∈G

∑
-1/"6#6.1/#

#∈G

-X3

((
-"

@

)1/2
+ -

1+U/4

(@")1/2
+-

1−U/4

@

)
�

-2X3

(
-4/5+Y1/2
√
@

+ -
4/5+U/4+Y1/2
√
@

+ -
1−U/4

@

)
� -4/5+U/4+Y1/2+2X3

√
@

+ -
1−U/4+2X3

@
.

(5.9)

5.5 Type III estimate
We apply the method of stationery phase to treat the type III sum. To deal with
the oscillatory integrals arising after the Poisson summation, we use Lemmas 5.5
and 5.6.

Later in this section, we will use the following notation:

V =
2 − U
1 − U, W =

U

1 − U, X =
1

1 − U,

b =
1

1 − W =
1 − U
1 − 2U

, [ =
U

1 − 2U
, l = b (2 − W) = 2 − 3U

1 − 2U
.

Let us denote as ", #,  the three indices from {�1, . . . , �5} satisfying type III
conditions, as <, =, : the corresponding indices from {31, . . . , 35}, as 81, 82, 83 the
corresponding indices from {1, . . . , 5}, and let I be the set of all remaining indices
{1, . . . , 10}\{81, 82, 83}. Also let

* =
∏
8∈I

�8, D =
∏
8∈I

38 .
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We get the sum of the form

,� � � =
∑′

",#, ∈G

∑′

*∈G

∑
*Θ−76D6*Θ7

� (*, D)
+∞∑

<,=,:=1
D<=:≡0 (mod @)

51(<) 52(=) 53(:)·

Ψ" (<)Ψ# (=)Ψ (:)k
(
D<=:

-

)
4
(
ℎ(D<=:)U

)
, (5.10)

where

� (*, D) =
(∑
· · ·

∑
∏
8∈I �8=*

) (∑
· · ·

∑
∏
8∈I 38=D

) (∏
8∈I

08 (38)Ψ�8 (38)
)
,

01(3) = log 3, 02(3) = . . . = 05(3) = 1, 06(3) = . . . = 010(3) = `(3),

58 (G) are smooth functions such that 58 (G) ≡ 0 if G 6 0 and 58 (G) = 1 or 58 (G) = log G
for G > 1,

∑′ denotes the summation over ", #,  ,* ∈ G satisfying the type III
conditions. Without loss of generality, we can assume " 6 # 6  . Then
rewrite (5.10) in the following way:

,� � � =∑
*6-1/10−3Y1/2

*∈G

∑
*Θ−76D6*Θ7

� (*, D)
∑

"16"6"2
"∈G

∑
#16#6#2
#∈G

∑
 16 6 2
 ∈G

, (", #,  ), (5.11)

where

"1 = -
1/5+2Y1
1 , "2 = (.1*

−1)1/3,

#1 = max
(
", -3/5+Y1"−1) , #2 = min

(
-2/5−Y1 ,

(
.

"*

)1/2)
,

 1 = #,  2 = min
(
-2/5−Y1 ,

.

*"#

)
,

and

, (", #,  ) =
+∞∑

<,=,:=1
<=:D≡0 (mod @)

51(<) 52(=) 53(:)Ψ" (<)Ψ# (=)Ψ (:)k
(
D<=:

-

)
4
(
ℎ(D<=:)U

)
.

Note that 58 (.)Ψ� (.)k(.) is smooth on (0;+∞), so one can apply Poisson summation
(Lemma 5.4) to any of the sums over =, <, : . We also note that the number of terms
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in each sum over *, ", #,  ∈ G in (5.11) is $
(
(log -)�0+1) and |� (*, D) | can be

bounded as follows:��� (*, D)�� � (log -)g7(D) · #
{
(41, . . . , 47) ∈ Z7

>0 : 41 + . . . + 47 =
log*
logΘ

}
�

(log -)g7(D)
(
log*
logΘ

)6
� g7(D) (log -)6(�0+1)+1.

First iteration of Poisson summation
We first apply Poisson summation to the longest sum over : . By orthogonality of
characters,

, (", #,  ) =

1
i(@)

∑
j mod @

j(D0∗)
+∞∑
<=1

j(<) 51(<)Ψ" (<)
+∞∑
==1

j(=) 52(=)Ψ# (=),<,=,j,

where

,<,=,j =

+∞∑
:=1

j(:) 53(:)Ψ (:)k
(
D<=:

-

)
4
(
ℎ(D<=:)U

)
.

To remove the factor j(:) in the last sum, we substitute : = @A + ;:

,<,=,j =

@−1∑
;=1

j(;)
+∞∑
A=−∞

53(@A + ;)Ψ (@A + ;)k
(
D<=(@A + ;)

-

)
4
(
ℎ(D<=(@A + ;))U

)
.

The function (@A + ;)U is extended by zero for A < −;/@. By Poisson summation,

,<,=,j =

@−1∑
;=1

j(;)
+∞∑
B=−∞

∫ +∞

−∞
53(@E + ;)Ψ (@E + ;)k

(
D<=(@E + ;)

-

)
·

4
(
ℎ(D<=(@E + ;))U

)
4
(
−EB

)
3E.

We can reduce the range of integration to (−;/@;+∞) due to the fact that 53(G) = 0
for G 6 0. Then substituting

C =
D<=(@E + ;)

-
,

we get

,=,<,j =
-

@D<=

+∞∑
B=−∞

g(j; B)�<,= (B),
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where

�<,= (B) =
∫ +∞

0
53

(
-C

D<=

)
Ψ 

(
-C

D<=

)
k(C)4

(
ℎ(-C)U − -BC

@D<=

)
3C,

g(j; B) =
@−1∑
;=1

j(;)4
(
B;

@

)
is a Gauss sum.

Next, we verify the conditions of Lemma 5.5 and Lemma 5.6. Let

F(C) = 53

(
-C

D<=

)
Ψ 

(
-C

D<=

)
k(C),

6= (C) =


ℎ(-C)U − -BC

@D<=
, if 1 − Δ 6 C 6 H + Δ;

0 if C 6 1 − 2Δ or C > H + 2Δ,

and extend 6= (C) to a smooth function on [1 − 2Δ, 1 − Δ] and [H + Δ, H + 2Δ]. We
now evaluate the derivatives. First, if 1 − Δ 6 C 6 H + Δ and 9 > 2, then we have

6
( 9)
= (C) =

(U) 9ℎ-U

C 9−U
, (U) 9 =

9∏
8=1
(U − 8 + 1),

��6( 9)= (C)�� �U, 9 ℎ-U .
Thus, one can take .� = ℎ-U, & � = 1. Now let us estimate F ( 9) (C) on J. We have

3 9F(C)
3C 9

=
∑

91+ 92+ 93= 9

(
9

91, 92, 93

)
3 91 53

3C 91

(
-C

D<=

)
3 92Ψ 

3C 92

(
-C

D<=

)
3 93k(C)
3C 93

.

Next,
3 91 53

3C 91

(
-C

D<=

)
� log -,

3 92

3C 92
Ψ 

(
-C

D<=

)
�

(
-

 D<=

) 92
(log -) 92�0 � (log -) 92�0 ,

3 93k(C)
3C 93

� (log -) 93�0 .

Thus, we find

F ( 9) (C) � (log -)
∑

91+ 92+ 93= 9

(
9

91, 92, 93

)
(log -) 92�0 (log -) 93�0 �

(log -)
(
1 + (log -)�0 + (log -)�0

) 9 � (log -)�0 9+1, (5.12)

where �0 = max(�0, �0). So one can take -� = log - , +� = (log -)−�0 . From
/� = & � + -� + .� + +̃� + 1, we get /� � .� � ℎ-U, hence for any fixed X� ,
0 < X� < 1/10, we have

+� = (log -)−�0 >
& �/

X� /2
�√
.�

� (ℎ-U)−1/2+X� /2.
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Now set
)1 =

1
4
UℎD<#@

-1−U , )2 = 4
UℎD<#@

-1−U

and split the sum,<,=,j in the following way:

,<,=,j =
-

@D<=

{ ∑
)16B6)2

+
∑
|B |>)2

+
∑

−)26B<)1

}
g(j; B)�<,= (B) =:

-

@D<=
((1 + (2 + (3).

For (2 and (3, we apply Lemma 5.5 to estimate �<,= (B); for (1, we compute �<,= (B)
asymptotically using Lemma 5.6. We have

6′= (C) = Uℎ-UCU−1 − -B

@D<=
.

If |B | > )2, then

|6′= (C) | >
- |B |
@D<=

(
1 − UℎC

U−1@D<=

-1−U)2

)
>

- |B |
2@D<=

.

If −)2 6 B 6 0, then

6′= (C) = Uℎ-UCU−1 + - |B |
@D<=

> Uℎ-UCU−1 >
U

3
ℎ-U .

Finally, if 1 6 B < )1, then

6′= (C) > Uℎ-UCU−1
(
1 − -)1

@D<=

C1−U

Uℎ-U

)
Uℎ-UCU−1

(
1 − 5

8

)
>
U

6
ℎ-U .

Thus, one can choose

'� =


- |B |

2@D<=
if |B | > )2;

U

6
ℎ-U if − )2 6 B < )1.

In the case |B | > )2, we set

Δ1 =
& �'�√
.�
, Δ2 = '�+� ,

and get

Δ1 =
- |B |

2@D<=
1
√
ℎ-U
>
-1−U/2)2

2
√
ℎ@D<=

> -U/2 · 2U
√
ℎ
#

=
> U-U/2,

Δ2 =
- |B |

2@D<=
(log -)−�0 >

-)2(log -)−�0

2@D<=
> -U · 2U#

=
(log -)−�0 > -U/2.



58

If −)2 6 B < )1, then

Δ1 =
Uℎ

6
-U
√
ℎ-U
>
U

6
-U/2, Δ2 =

Uℎ

6
-U (log -)−�0 > -U/2.

Thus, by Lemma 5.5,

�<,= (B) �U (log -)
{(

- |B |
2@D<=

1
√
ℎ-U

)−��
+

(
- |B |

2@D<=
1

(log -)�0

)−�� }
�U

(log -)
(
- |B |

2@D<=
1
√
ℎ-U

)−��
�U (log -)

(
2@D<=

√
ℎ

-1−U/2 |B |

) ��
for |B | > )2, and

�<,= (B) �U (log -)
{(
U

6
√
ℎ-U/2

)−��
+

(
Uℎ

6
-U (log -)−�0

)−�� }
�U

(log -)-−U�� /2

if −)2 6 B 6 )1. Choose �� = 2�0 + 1, where �0 = �0(U) > 1 is large enough.
Going back to (2 and (3, we get

(2 �
∑
|B |>)2

(log -)
(
2@D<=

√
ℎ

-1−U/2

) �� 1
|B |��

� D<#@

-1−U -
−U�0 ,

(3 � ()1 + )2 + 1)-−U�0−U/2(log -) �
(
D<#@

-1−U + 1
)
-−U�0 .

From @D<= � - −1, we find

,<,=,j =
-

@D<=
(1 +$

(
-

@D<=

(
D<#@

-1−U + 1
)
-−U�0

)
=

-

@D<=
(1 +$

(
-−U(�0+1) +  -−U�0

)
=

-

@D<=
(1 +$

(
 -−U�0

)
.

Now we compute (1. Choosing X� = 1/20, �� = �0, we apply Lemma 5.6 to � (B)
when )1 < B 6 )2. Let 6′= (C0) = 0. Then

C0 =
1
-

(
Uℎ@D<=

B

)1/(1−U)
.

Notice that for any )1 6 B 6 )2, the point C0 lies in J =
[
10−1; 10

]
. Thus,

�<,= (B) = 4
(
6= (C0) −

1
8

) ∑
06a6a1

√
2c
a!

(28)−a

|6′′= (C0) |a+1/2
32a�= (C)
3C2a

����
C=C0

+$
(
-−U�0

)
,
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where

�= (C) = F(C)4
(
�= (C)

)
, a1 = 60�0, �= (C) = 6= (C)−6= (C0)−

1
2
6′′= (C0) (C−C0)2.

One can easily verify the identities

6= (C0) = (1 − U) (UUℎ)X
(
@D<=

B

)W
,

��6′′= (C0)�� = U(1 − U)ℎ-2
(

B

Uℎ@D<=

) V
,

where W = U/(1−U), X = 1/(1−U), V = (2−U)/(1−U). Then, if 1−Δ 6 C0 6 H+Δ,
we get

�<,= (B) = 4
(
(1 − U) (UUℎ)X

(
@D<=

B

)X) ∑
06a6a1

2a (U)
(ℎ-2)a+1/2

(
ℎ@D<=

B

) V(a+1/2)
·

32a�= (C)
3C2a

����
C=C0

+$
(
-−U�0

)
, (5.13)

with

2a (U) =
√

2c
a!

(28)−a4−c8/4(
U(1 − U)a+1/2

) UV(a+1/2) .
Notice that (5.13) remains valid if C0 ∉

[
1 − Δ; H + Δ

]
since F(C) ≡ 0, �= (C) ≡ 0 for

C close to C0.

Going back to the sum,<,=,j, we have

,<,=,j =
-

@D<=
(1 +$

(
 -−U�0

)
=

-

@D<=

∑
)1<B6)2

g(j; B)
{
4

(
(1 − U) (UUℎ)X

(
@D<=

B

)W)
·

∑
06a6a1

2a (U)
(ℎ-2)a+1/2

(
ℎ@D<=

B

) V(a+1/2)
32a�= (C)
3C2a

����
C=C0

+$
(
-−U�0

)}
+$

(
 -−U�0

)
.

The contribution from the error terms can be made arbitrarily small with the appro-
priate choice of �0. The main term takes the form

1
i(@)

∑
j mod @

j(D0∗)
+∞∑
<=1

j(<) 51(<)Ψ" (<)
+∞∑
==1

j(=) 52(=)Ψ# (=)·

-

@D<=

∑
06a6a1

2a (U)
(ℎ-2)a+1/2

∑
)16B6)2

g(j; B)
(
ℎ@D<=

B

) V(a+1/2)
32a�= (C)
3C2a

����
C=C0

·

4

{
(1 − U) (UUℎ)X

(
@D<=

B

)W}
.

We also note that for the small values of @, it is possible to get )2 < 1. This case
is not a problem since the sum (1 is empty and the only contribution to the upper
bound is coming from Lemma 5.5.
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Second iteration of Poisson summation
We have:

, (", #,  ) =

(@D)−1

i(@)
∑

j mod @
j(D0∗)

+∞∑
<=1

j(<) 51(<)
<

Ψ" (<)·∑
)1<B<)2

g(j; B)+j,<,B +$
(
-−U�0/2) , (5.14)

where

+j,<,B =

+∞∑
==1

j(=) 52(=)
=

Ψ# (=)
∑

06a6a1

2a (U)
-2a ℎ

X(a+1/2)
(
@D<=

B

) V(a+1/2)
·

32a�= (C)
3C2a

����
C=C0

4

{
(1 − U) (UUℎ)X

(
@D<=

B

)W}
.

Setting = = @d + _, we get

+j,<,B =
∑

06a6a1

2a (U)
-2a ℎ

X(a+1/2)
(
@D<

B

) V(a+1/2) @−1∑
_=1

j(_)·

+∞∑
d=−∞

52(@d + _)Ψ# (@d + _) (@d + _)V(a+1/2)−1 3
2a�@d+_ (C)
3C2a

����
C=C0

·

4

{
(1 − U) (UUℎ)X

(
@D<(@d + _)

B

)W}
.

Applying Poisson summation again, we obtain

+j,<,B =
∑

06a6a1

2a (U)
-2a ℎ

X(a+1/2)
(
@D<

B

) V(a+1/2)
·

@−1∑
_=1

j(_)
+∞∑

f=−∞

∫ +∞

−∞
52(@E + _)Ψ# (@E + _) (@E + _)V(a+1/2)−1·

32a�@d+_ (C)
3C2a

����
C=C0

4

{
(1 − U) (UUℎ)X

(
@D<(@E + _)

B

)W
− fE

}
3E. (5.15)

Next, we substitute
g =

Uℎ@D<(@E + _)
B-1−U .

This implies

C0 =
1
-

(
Uℎ@D<(@E + _)

B

)X
= gX,

(
@D<(@E + _)

B

)W
=

(
-1−Ug

Uℎ

)W
,

(UUℎ)X
(
@D<(@E + _)

B

)W
= ℎ-UgW .
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For conveniencewewill further use a slightly different notation for functions�=, �=,
and 6=: �= (C) = � (C, g), �= (C) = � (C, g), 6= (C) = 6(C, g). The integral in (5.15)
takes the form

1
@

(
-1−UB

Uℎ@D<

) V(a+1/2)
4

(
_f

@

) ∫ +∞

0
52

(
-1−UBg

Uℎ@D<

)
Ψ#

(
-1−UBg

Uℎ@D<

)
gV(a+1/2)−1·

32a� (C, g)
3C2a

����
C=gX

4

{
(1 − U)ℎ-UgW − -

1−UBfg

Uℎ@2D<

}
3g.

Hence,

+j,<,B =
∑

06a6a1

2a (U)
-2a ℎ

X(a+1/2) 1
@

(
-1−U

Uℎ

) V(a+1/2) +∞∑
f=−∞

g(j;f)� (f),

where the meaning of � (f) is clear. We further simplify the last expression by
setting

1a (U) =
2a (U)
UV(a+1/2)

,

which gives

+j,<,B =
-

@

∑
06a6a1

1a (U)
(
ℎ

-U

)a+1/2 +∞∑
f=−∞

g(j;f)� (f).

Let us denote

)3 =
(Uℎ@)2D<
4B-1−2U , )4 = 16)3 =

4(Uℎ@)2D<
B-1−2U ,

and split the sum +j,<,B as follows:

+j,<,B =

-

@

∑
06a6a1

1a (U)
(
ℎ

-U

)a+1/2 ( ∑
)3<f<)4

+
∑
|f |>)4

+
∑

−)4<f6)3

)
g(j;f)� (f) =:

-

@

∑
06a6a1

1a (U)
(
ℎ

-U

)a+1/2 (
�1 + �2 + �3

)
.

Similarly to above, we apply Lemma 5.5 to the integrals � (f) in �2 and �3 to
estimate them from above and use Lemma 5.6 to compute � (f) in �1. If @ is small
enough and )4 < 1, the whole sum +j,<,B is estimated by Lemma 5.5.

Next, we verify the conditions of Lemma 5.5 and Lemma 5.6. Put

F̃(g) = 52

(
-1−UBg

Uℎ@D<

)
Ψ#

(
-1−UBg

Uℎ@D<

)
gV(a+1/2)−1 3

2a� (C, g)
3C2a

����
C=gX

,

6̃(g) =


(1 − U)ℎ-UgW − -

1−UBfg

Uℎ@2D<
, if g ∈

[
(1 − Δ)1/X; (H + Δ)1/X

]
;

0 if g 6 (1 − 2Δ)1/X or g > (H + 2Δ)1/X
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and define 6̃(g) on (1−2Δ)1−U 6 g 6 (1−Δ)1−U and (H +Δ)1−U 6 g 6 (H +2Δ)1−U

appropriately.

Now we estimate F̃ ( 9) (g) on (1 − Δ)1−U 6 g 6 (H + Δ)1−U. We have

F̃ ( 9) (g) =
∑

91+ 92+ 93+ 94= 9

(
9

91, 92, 93, 94

)
3 91

3g 91
52

(
-1−UBg

Uℎ@D<

)
3 92

3g 92
Ψ#

(
-1−UBg

Uℎ@D<

)
·

3 93

3g 93
gV(a+1/2)−1 3

94

3g 94

(
32a� (C, g)
3C2a

����
C=gX

)
.

Next,

3 91

3g 91
52

(
-1−UBg

Uℎ@D<

)
� log -,

3 92

3g 92
Ψ#

(
-1−UBg

Uℎ@D<

)
�

(
-1−UB

#Uℎ@D<

) 92
(log -)�0 92 � 92 (log -)�0 92 ,

3 93

3g 93

(
gV(a+1/2)−1) = (

V
(
a + 1

2
)
− 1

)
93

gV(a+1/2)−1− 93 � 93 1.

To estimate the last factor

3 94

3g 94

(
32a� (C, g)
3C2a

����
C=gX

)
weapply the formula of Faa diBruno (Lemma5.8). First, let us compute (32a/3C2a)� (C, g).
By the binomial theorem

32a

3C2a
� (C, g) =

2a∑
;=0

(
2a
;

)
F (;) (C) 3

2a−;

3C2a−;
4(� (C, g)).

Put 5 = � (C), q = 4(�). Then we get

32a−;

3C2a−;
4(� (C, g)) =

∑
<1+2<2+...+(2a−;)<2a−;=2a−;

<1,...,<2a−;>0

(2a − ;)!
<1! . . . <2a−;!

·

(2c8)<1+...+<2a−;4(� (C, g)) ·
2a−;∏̂
=1

(
� (^) (C, g)

^!

)<^
. (5.16)

Note that the last expression is evaluated at C = C0 = gX. By definition,

� (C, g) = 6(C, g) − 6(C0, g) −
1
2
6′′(C0, g) (C − C0)2, (5.17)

and so � (C0, g) = �′(C0, g) = �′′(C0, g) = 0, 4(� (gX, g)) = 1. It means that the
non-zero contribution to the right hand side of (5.16) when C = C0 would only come
from the tuples of the form (0, 0, <3, <4, . . .).
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Thus, we need to apply the binomial theorem and Faa di Bruno formula again to
compute

3 94

3g 94

(
F (;) (C)

����
C=gX
·

2a−;∏̂
=3

(
1
^!
3^� (C, g)
3C^

����
C=gX

)<^ )
.

By the binomial theorem, the last derivative is a linear combination of the expressions

3 95

3g 95

(
F (;) (C)

����
C=gX

)
· 3

96

3g 96

(2a−;∏̂
=3

(
1
^!
3^� (C, g)
3C^

����
C=gX

)<^ )
, (5.18)

where 95 + 96 = 94. First, we evaluate the factor

3 95

3g 95

(
F (;) (C)

����
C=gX

)
.

Note that since C0 = C, we have

3A

3CA0
F (;) (C)

����
C=C0

=
3;+A

3C;+A0
F(C0) = F (;+A) (C0).

Then by Faa di Bruno formula and (5.12)

3 95

3g 95

(
F (;) (C)

����
C=gX

)
=∑

;1+2;2+...+ 95; 95= 95
;1,...,; 95>0

95!
;1! . . . ; 95!

F (;+;1+...+; 95 ) (gX)
95∏̂
=1

(
3^

3g^
C0(g)

) ^
� 95

∑
;1+2;2+...+ 95; 95= 95

;1,...,; 95>0

F (;+;1+...+; 95 ) (gX) � F (;+ 95) (gX) � (log -)�0 (;+ 95)+1.

Next, we evaluate the second factor in (5.18). For ^ > 3, we have

3A

3gA

(
1
^!
3^� (C, g)
3C^

����
C=gX

)
=

1
^!
3A

3gA
6(^) (gX, g) = (U)^ℎ-

U

^!
3A

3gA
gX(U−^) =

(U)^ℎ-U
^!

(X(U − ^))AgX(U−^)−A �^ ℎ-
U (5.19)

and thus,

3 96

3g 96

(2a−;∏̂
=3

(
1
^!
3^� (C, g)
3C^

����
C=gX

)<^ )
�^ (ℎ-U)<3+...+<^ � (ℎ-U) (2a−;)/3,

since <1 + 2<2 + 3<3 + . . . + ^<^ > <3 + . . . +<^, so the expression (5.18) can be
bounded from above by

(log -)�0 (;+ 95)+1(ℎ-U) (2a−;)/3.
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The last expression reaches its maximum at ; = 0, 95 = 94, 96 = 0. We conclude

3 94

3g 94

(
32a� (C, g)
3C2a

����
C=gX

)
� (log -)�0 94+1(ℎ-U)2a/3.

Finally, we find

F̃ ( 9) (g) � (log -)2(ℎ-U)2a/3
∑

91+...+ 94= 9

(
9

91, . . . , 94

)
(log -)�0 92+�0 94 �

(log -)2+�0 9 (ℎ-U)2a/3, (5.20)

where �0 = max{�0, �0}. So the inequality F̃ ( 9) (g) � -�.
− 9
�

holds with -� =
(log -)2(ℎ-U)2a/3, +� = (log -)−�0 . Next, we have

6̃′(g) = W(1 − U)ℎ-UgW−1 − -1−UBf

Uℎ@2D<
, 6̃′′(g) = W(W − 1) (1 − U)ℎ-UgW−2,

6̃( 9) (g) = (W) 9 (1 − U)ℎ-UgW− 9 � ℎ-U,

so one can take .� = ℎ-U, & � = 1. Put J =
[
10−1; 10

]
, +̃� = |J|, and /� =

& � + -� + .� + +̃� + 1 � (log -)2(ℎ-U)2a/3 + ℎ-U, which implies

/� �


ℎ-U, if a = 0, 1;

(log -)2(ℎ-U)2a/3, if a > 2.

We choose the constant X� > 0 such that .� > /
3X�
�

. If a = 0, 1, we get ℎ-U >
(ℎ-U)3X� , which holds true for all X� < 1/3. If a > 2, then

ℎ-U > (log -)6X� (ℎ-U)2aX� ,

so one can take X� = 1/(121�0). It is easy to check that

& �/
X� /2
�√
.�
6 +�

holds true for all a 6 a1 = 60�0.

Next, if |f | > )4, then

|6̃′(g) | =
���� -1−UBf

Uℎ@2D<
− W(1 − U)ℎ-UgW−1

���� > -1−UB |f |
Uℎ@2D<

(
1 − U

2ℎ2@2D<gW−1

-1−2UB)4

)
>

2
3
-1−UB |f |
Uℎ@2D<

.
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If −)4 < f 6 0, then

6̃′(g) = W(1 − U)ℎ-UgW−1 − -1−UBf

Uℎ@2D<
=

Uℎ-UgW−1 + -
1−UB |f |
Uℎ@2D<

> Uℎ-UgW−1 >
1
2
Uℎ-U .

Finally, if 1 6 f 6 )3, then

6̃′(g) = Uℎ-UgW−1
(
1 − -

1−2UBfg1−W

(Uℎ@)2D<

)
> Uℎ-UgW−1

(
1 − 3

5

)
>

1
6
Uℎ-U .

So one can choose

'� =


2
3
-1−UB |f |
Uℎ@2D<

if |f | > )4;

1
6
Uℎ-U if − )4 < f 6 )3.

Again, setting
Δ1 =

& �'�√
.�
, Δ2 = '�+� ,

we show that Δ1,Δ2 > 1. Indeed, in the case |f | > )4, we have

Δ1 =
2
3
-1−UB |f |
Uℎ@2D<

1
√
ℎ-U
>

2
3
√
ℎ

-1−3U/2B

Uℎ@2D<
)4 =

8
3
U
√
ℎ-U/2 > 1,

and

Δ2 =
2
3
-1−UB |f |
Uℎ@2D<

(log -)−�0 >
2
3
-1−UB

Uℎ@2D<
)4(log -)−�0 =

8
3
U
(
ℎ-U

)2/3(log -)−�0 > 1.

If −)4 < f 6 )3, then

Δ1 =
1
6
Uℎ-U

1
√
ℎ-U

=
U

6
√
ℎ-U/2 > 1,

Δ2 =
1
6
Uℎ-U (log -)−�0 > 1.

Thus, applying Lemma 5.5with a large enough �0 = �0(U) > 1, J =
[
(1−Δ)1/X; (H+

Δ)1/X
]
, for |f | > )4, we find

� (f) � |J|-� (Δ−�0
1 + Δ−�0

2 ) �

(log -)2(ℎ-U)2a/3
{(
Uℎ@2D<

√
ℎ-U

2-1−UB |f |

)�0

+
(
3Uℎ@2D<(log -)�0

2-1−UB |f |

)�0}
�

(log -)2(ℎ-U)2a/3
(
3U
2
ℎ3/2@2D<

1
-1−3U/2B |f |

)�0

,
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and for −)4 < f 6 )3, we get

� (f) � (log -)2(ℎ-U)2a/3
{(

6
U
√
ℎ-U/2

)�0

+
(
6(log -)�0

Uℎ-U

)�0}
� (log -)2(ℎ-U)2a/3

(
6

U
√
ℎ
-−U/2

)�0

.

Thus, the contribution from �2, �3 to +j,<,B can be made small enough with the
appropriate choice of �0. We get the formula

+j,<,B =
-

@

∑
06a6a1

1a (U)
(
ℎ

-U

)a+1/2
�1 +$

(
-−U�0/10) , (5.21)

�1 =
∑

)3<f<)4

g(j;f)� (f).

We are now ready to compute �1 using Lemma 5.6. Let )3 < f < )4, 6̃′(g0) = 0.
Then g0 ∈ J =

[
10−1; 10

]
. We find

g0 =
1

-1−U

{
(Uℎ@)2D<

Bf

}b
,

where b = 1/(1 − W) = (1 − U)/(1 − 2U);

6̃(g0) = (1 − U)ℎ-UgW0 −
-1−UBfg0
Uℎ@2D<

= (1 − 2U)ℎ
{
(Uℎ@)2D<

Bf

}[
,

where [ = U/(1 − 2U);

6̃′′(g0) = −
U(1 − 2U)

1 − U ℎ-2(1−U)
(

Bf

(Uℎ@)2D<

)l
,

where l = b (2 − W) = (2 − 3U)/(1 − 2U). Finally, take

�̃ (g) = F̃(g)42c8�̃ (g) , �̃ (g) = 6̃(g) − 6̃(g0) −
6̃′′(g0)

2
(g − g0)2.

Then Lemma 5.6 implies

� (f) = 4
(
6̃(g0) −

1
8

) ∑
06`6`1

√
2c
`!

(28)−`

|6̃′′(g0) |`+1/2
32`�̃ (g)
3g2`

����
g=g0

+$
(
-−U�0

)
=

4

(
(1 − 2U)ℎ

{
(Uℎ@)2D<

Bf

}[
− 1

8

) ∑
06`6`1

√
2c
`!

(28)−`(
U(1 − 2U)/(1 − U)

)`+1/2 ·
1

(ℎ-2(1−U))`+1/2

(
(Uℎ@)2D<

Bf

)l(`+1/2)
32`�̃ (g)
3g2`

����
g=g0

+$
(
-−U�0

)
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with `1 = 3�0/X� = 363�0�0. Setting

2` (U) = 4
(
1
8

)√
2c
`!
(28)−`

(
1 − U

U(1 − 2U)

)`+1/2
U2l(`+1/2) ,

we get

� (f) = 4
(
(1 − 2U)ℎ

{
(Uℎ@)2D<

Bf

}[)
·∑

06`6`1

2` (U)(
ℎ-2(1−U) )`+1/2 (

(ℎ@)2D<
Bf

)l(`+1/2)
32`�̃ (g)
3g2`

����
g=g0

+$
(
-−U�0

)
.

Again, it is not hard to see that the $-term contributes at most $
(
-−U�0/10) to the

sum +j,<,B. This contribution can be made arbitrarily small. Hence, from (5.21) we
have

+j,<,B =

-

@

∑
)3<f6)4

g(j;f)
∑

06a6a1

∑
06`6`1

1a (U)
(
ℎ

-U

)a+1/2 2` (U)(
ℎ-2(1−U) )`+1/2 ·(

(ℎ@)2D<
Bf

)l(`+1/2)
32`�̃ (g)
3g2`

����
g=g0

4

(
(1 − 2U)ℎ

{
(Uℎ@)2D<

Bf

}[)
+$

(
-−U�0/10) .

Substituting this expression into (5.14) and changing the order of summation, we
get

, (", #,  ) =

-

@2

+∞∑
<=1

51(<)
<

Ψ" (<)
∑

)1<B<)2
)3<f<)4

∑
06a6a1
06`6`1

1a (U)2` (U)
(
ℎ

-U

)a+1/2 1(
ℎ-2(1−U) )`+1/2 ·(

(ℎ@)2D<
Bf

)l(`+1/2)
32`�̃ (g)
3g2`

����
g=g0

4

(
(1 − 2U)ℎ

{
(Uℎ@)2D<

Bf

}[)
·

1
i(@)

∑
j mod @

j(<D0∗)g(j; B)g(j;f) +$
(
-−U�0/20) +$ (

-−U�0/2) . (5.22)

5.6 Final bound
Nowwe are ready to deduce the final bound. We only need to bound theKloosterman
sum which appears from the product of two Gauss sums.
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Bound for the Kloosterman sum
We rewrite the inner sum in (5.22) as follows:

1
i(@)

∑
j mod @

j(<D0∗)g(j; B)g(j;f) =

@∑
;,A=1

4

(
;B + Af
@

)
1

i(@)
∑

j mod @
j(;A<D0∗). (5.23)

By orthogonality of characters, the sum in the right hand side of (5.23) transforms
into Kloosterman sum

@∑
;=1
(;,@)=1

4

(
B; + f0(<D)∗;∗

@

)
= (@

(
B, f0(<D)∗

)
.

Thus,

, (", #,  ) = -

D@2

∞∑
<=1
(<,@)=1

51(<)
<

Ψ" (<)
∑

)1<B<)2
)3<f<)4

∑
06a6a1
06`6`1

1a (U)2` (U)
(
ℎ

-U

)a+1/2
·

1(
ℎ-2(1−U) )`+1/2 (

(ℎ@)2D<
Bf

)l(`+1/2)
32`�̃ (g)
3g2`

����
g=g0

·

4

(
(1 − 2U)ℎ

{
(Uℎ@)2D<

Bf

}[)
(@

(
B, f0(<D)∗

)
+$

(
-−U�0/20) +$ (

-−U�0/2) .
We can now estimate the multiple sum over <, B, f, E, and `. Since �̃ (g0) =
�̃′(g0) = �̃′′(g0) = 0, similarly to (5.19), we get the upper bound

3A

3gA

(
4
(
�̃ (g)

) ) ����
g=g0

� (ℎ-U)A/3.

Together with (5.20), this implies

�̃ (2`) (g0) � (ℎ-U) (2/3) (a+`) (log -)2.

Next, we apply Weil’s bound (Lemma 5.7):��(@ (B, f0(<D)∗)�� 6 g(@)√@(B, f, @)1/2.
Changing the order of summation, we get the inequality

, (", #,  ) � -g(@)
D@
√
@

(log -)3
"

∑
06a6a1
06`6`1

(
ℎ

-U

)a+1/2 (ℎ-U) (2/3) (a+`)(
ℎ-2(1−U) )`+1/2 (ℎ@)l(2`+1) ·

∑
"/Θ6<6"Θ

(<D)l(`+1/2)
∑

)1<B<)2
)3<f<)4

(B, f, @)1/2

(Bf)l(`+1/2)
+$

(
-−U�0/20 + -−U�0/2) .
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The sums over B and f could be bounded as∑
)1<B<)2

∑
)3<f<)4

(B, f, @)1/2

(Bf)l(`+1/2)
�U

(
-1−2U

(ℎ@)2D<

)l(`+1/2) ∑
)1<B<)2

∑
)3<f<)4

(B, f)1/2.

The last expression does not exceed(
-1−2U

(ℎ@)2D<

)l(`+1/2) ∑
1636min()2,16)4)

∑
)1<B<)2

B≡0 (mod 3)

∑
)3/16<f<16)4
f≡0 (mod 3)

√
3 �

(
-1−2U

(ℎ@)2D<

)l(`+1/2) ∑
1636min()2,16)4)

√
3
)2
3

)4
3
�

)2)6

(
-1−2U

(ℎ@)2D<

)l(`+1/2)
�

(
-1−2U

(ℎ@)2D<

)l(`+1/2)−1
.

Next, the summation over < gives

∑
"/Θ6<6"Θ

(<D)l(`+1/2) ·
(
-1−2U

(ℎ@)2<D

)l(`+1/2)−1
�

"2*

(
-1−2U

(ℎ@)2

)l(`+1/2)−1 1
(log -)�0

,

hence, if �0 and �0 are sufficiently large,

, (", #,  ) � -g(@)
*@
√
@

(log -)3
"

"2*

(log -)�0

∑
06a6a1
06`6`1

(
ℎ

-U

)a+1/2 (ℎ-U) (2/3) (a+`)(
ℎ-2(1−U) )`+1/2 ·

(ℎ@)l(2`+1)
(
-1−2U

(ℎ@)2

)l(`+1/2)−1
� -g(@)

@
√
@
(log -)3−�0"

∑
06a6a1
06`6`1

- ^1ℎ^2@2,

where
^1 = −

Ua

3
− U`

3
+ U − 1, ^2 = 2 + 5a

3
− `

3
.

Clearly the main contribution comes from the term a = ` = 0. We get

, (", #,  ) � -U
√
@g(@) (log -)3−�0"ℎ2.

Summing, (", #,  ) over all admissible*, D, ", #,  , and using Lemma 2.5∑
D62*

g7(D) � * (log*)6,
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finally, we find

,� � � � -U
√
@g(@) (log -)2�+3−�0

∑′

*∈G

∑
*Θ−76D6*Θ7

��� (D,*)��·∑′

"16"6"2
"∈G

"
∑′

#16#6#2
#∈G

∑′

 16 6 2
 ∈G

1 �

-U
√
@g(@) (log -)2�+3−�0

∑′

*∈G

∑
D62*

g7(D) (log -)6(�0+1)+1
(
-

*

)1/3
(log -)3(�0+1) �

-1/3+U√@g(@) (log -)2�+3−�0+9(�0+1)+1
∑′

*∈G
*2/3(log*)6 �

-1/3+U√@g(@)- (2/3) (1/10−3Y1/2) (log -)8�0+2�+19 �
-2/5+U−Y1

√
@g(@) (log -)!0 , (5.24)

where !0 = 8�0 + 2� + 19.

Final bound
Combining together type I (5.5), type II (5.9), and type III (5.24) estimates, we get

, � -2/5+U/2−Y1+2X1 + -
1−U/2+2X1

@
+ 1
√
@
-4/5+U/4+Y1/2+3X2+

1
@
-1−U/4+3X2 + -2/5+U−Y1

√
@g(@) (log -)!0 .

Further, the right hand side of the last inequality does not exceed

-

@

(
@-−3/5+U/2−Y1+2X1 + -−U/2+2X1 + √@-−1/5+U/4+Y1/2+3X2+

-−U/4+3X2 + @3/2-−3/5+U−Y1+X4

)
with an arbitrarily small X4 > 0. Clearly

max
(
-−U/2+2X1 , -−U/4+3X2

)
� (log -)−�

if X1 and X2 are small enough. Next,

@-−3/5+U/2−Y1+2X1 � -−1/5−U/10+2X1 � (log -)−�.

Then

, � -

@

(
(log -)−� +max

(√
@-−1/5+U/4+Y1/2+3X2 , @3/2-−3/5+U−Y1+X4

) )
.



71

Thus,, � (-/@) (log -)−� if

@ 6 min
(
(log -)−2�-2/5−U/2−Y1−6X2 , (log -)−(2/3)�-2/5−(2/3)U+(2/3)Y1−(2/3)X4

)
.

The maximum of this bound is reached at Y1 = U/10. Thus, @ 6 -2/5−(3/5)U−Y with
any Y < min(6X2, (2/3)X4). Finally, the desired bound (1.7) follows from partial
summation.

Remark. One can obtain a slightly better level of distribution, @ 6 -2/5−U/2−Y,
in Theorem 1.3 by iterating the Poisson summation for the third time (on the sum
over <) and applying the bound for 2-dimensional Kloosterman sum [86].
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C h a p t e r 6

BOUNDED GAPS BETWEEN PRIMES IN SUBSETS

In this section, we prove Theorem 1.5. We follow the well-known technique of
Maynard [62] and Tao with a modified Selberg sieve and apply Theorem 1.2 in
place of the Bombieri-Vinogradov theorem. We only consider the case 0 < U < 1,
which is easier. With a little more effort, one can deduce a similar result for any
non-integer U > 1.

The set {ℎ1, . . . , ℎ: } of integers is called an admissible set if for any prime ? there
is an 0 with ℎ 9 . 0 (mod ?) for any 1 6 9 6 : . Consider the sum

(U =
∑

-6=<2-
=∈E

=+ℎ 9∈E ∀ 9

( :∑
9=1

jP(= + ℎ 9 ) − d
)
l= = (2,U − d(1,U,

where l=, d > 0, jP is the characteristic function of primes. Then Theorem 1.5
clearly follows from the inequality (2,U − d(1,U > 0 with d = <. Indeed, in this case
the inner sum over 1 6 9 6 : has at least < + 1 positive terms for some =. Hence,
there are at least < + 1 primes from E between = and = + ℎ: and

lim inf
=→+∞

(@=+< − @=) 6 max
168< 96:

|ℎ 9 − ℎ8 |. (6.1)

Thus, the problem reduces to choosing the appropriate weights l= maximizing the
ratio (2,U/(1,U. We follow the choice made in [62]:

l= =

( ∑
3 9 | (=+ℎ 9 )

_31,...,3:

)2
,

where the sum is taken over all tuples of divisors (31, . . . , 3: ) and

_31,...,3: =

( :∏
9=1

`(3 9 )3 9
) ∑

A1,...,A:
3 9 |A 9 ∀ 9
(A 9 ,,)=1 ∀ 9

`2(A1 . . . A: )
i(A1) . . . i(A: )

�

(
log A1
log '

, . . . ,
log A:
log '

)
.

Here , is the product of all primes 6 log log log - (and so , 6 (log log -)2 for
large -), ' = -1/6−X1 for some small fixed X1 > 0, and � (G1, . . . , G: ) is a fixed
piecewise continuous function supported on the set{

(G1, . . . , G: ) ∈ [0; 1]: :
:∑
9=1
G 9 6 1

}
.
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We put l= = 0 for all = except = ≡ a0 (mod ,) for some fixed a0 such that
(a0 + ℎ 9 ,,) = 1 for all 9 . We also put _31,...,3: = 0 if

( ∏:
9=1 3 9 ,,

)
> 1 for at least

one 9 .

6.1 Proof of general case
We obtain the desired result using the following assertion (see [62]):

1) Under the above assumptions on l=, the following relations hold:

(1 =
∑

-6=<2-
=≡a0 (mod ,)

l= =

(
1 + >(1)

)
i: (,)- (log '):

, :+1 �: (�),

(2 =
∑

-6=<2-
=≡a0 (mod ,)

( :∑
9=1

jP(= + ℎ 9 )
)
l= =

(
1 + >(1)

)
i: (,)- (log '):+1

, :+1 log -

:∑
8=1

�
( 9)
:
(�),

provided �: (�) ≠ 0 and � ( 9)
:
(�) ≠ 0 for each 9 , where

�: (�) =
∫ 1

0
. . .

∫ 1

0
� (C1, . . . , C: )23C1 . . . 3C: ,

�
( 9)
:
(�) =

∫ 1

0
. . .

∫ 1

0

(∫ 1

0
� (C1, . . . , C: )3C 9

)2
3C1 . . . 3C 9−13C 9+1 . . . 3C: .

2) Define

": = sup
�

∑:
9=1 �

( 9)
:
(�)

�: (�)
.

Then for all : > 600, the following inequality holds true:

": > log : − 2 log log : − 1. (6.2)

To apply Maynard’s argument, we need an analogue of part 1) for (1,U and (2,U. It
would follow from the relations

(1,U =

(
3 − 2 + >(1)

)
(1, (2,U =

(
3 − 2 + >(1)

)
(2. (6.3)

Here the coefficient 3 − 2 < 1 corresponds to the density of E among the integers.
Note that since U < 1, the numbers {=U}, {(= + ℎ1)U}, . . . , {(= + ℎ: )U} are close
to each other. So, in order to verify that all : + 1 conditions = ∈ E, = + ℎ 9 ∈ E,
1 6 9 6 : hold true, it is sufficient to check only two of them: = ∈ E, = + ℎ: ∈ E.
Thus, we define the new subset as

E′ =
{
= ∈ N : {= ∈ E} ∩ {= + ℎ: ∈ E}

}
.
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Then

(2,U =

:∑
9=1

(
( 9)
2,U =

:∑
9=1

∑
-6=<2-
=∈E′

jP(= + ℎ 9 )l=.

Following [62], we change the order of summation in (
( 9)
2,U and apply Chinese

Remainder theorem. Thus we get

(
( 9)
2,U =

∑
31,...,3:
41,...,4:

( [38 ,48],[3 9 ,4 9 ])=1 ∀8≠ 9

_31,...,3:_41,...,4:

∑
-6=<2-

=≡0 (mod @)
=∈E′

jP(= + ℎ 9 ),

where @ = ,
∏:
8=1 [38, 48]. Further,

(
( 9)
2,U =

cE(2-) − cE(-) +$ (1)
i(,)

∑
31,...,3:
41,...,4:
4 9=3 9=1

( [38 ,48],[3 9 ,4 9 ])=1 ∀8≠ 9

_31,...,3:_41,...,4:∏:
8=1 i

(
[38, 48]

) +
$

( ∑
31,...,3:
41,...,4:

|_31,...,3:_41,...,4: |� ( 9) (-, @)
)
, (6.4)

where cE is the counting function of primes from E,

� ( 9) (-, @) = 1 + max
(0,@)=1

���� ∑
-6=<2-

=≡0 (mod @)
=∈E′

jP(= + ℎ 9 ) −
1

i(@)
∑

-6=<2-
=∈E′

jP(= + ℎ 9 )
���� 6

1 + � ( 9)1 (-, @) + �
( 9)
2 (-, @) + �

( 9)
3 (-, @),

where

�
( 9)
1 (-, @) = max

(0,@)=1

∑
-6=<2-

=≡0 (mod @)
=∈E\E′

jP(= + ℎ 9 ),

�
( 9)
2 (-, @) =

1
i(@)

∑
-6=<2-
=∈E\E′

jP(= + ℎ 9 ),

�
( 9)
3 (-, @) = max

(0,@)=1

���� ∑
-6=<2-

=≡0 (mod @)
=∈E

jP(= + ℎ 9 ) −
1

i(@)
∑

-6=<2-
=∈E

jP(= + ℎ 9 )
����.

The trivial upper bound for � ( 9)1 , � ( 9)2 , and � ( 9)3 is -/i(@). Similarly to (5.20)
from [62], we apply Cauchy inequality to the error term in (6.4) to bound it from
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above by

_2
max

( ∑
@<'2,

`2(@)g2
3: (@)

-

i(@)

)1/2
·( ∑

@<'2,

(
1 + � ( 9)1 (-, @) + �

( 9)
2 (-, @) + �

( 9)
3 (-, @)

) )1/2
,

where _max = max31,...,3: |_31,...,3: |. The sum in the second factor does not exceed
- (log -)−� for any fixed � > 0. Indeed, Theorem 1.2 implies that the contribution
coming from the term �

( 9)
3 (-, @) is estimated by - (log -)−� for any fixed � > 0.

We estimate � ( 9)1 (-, @) and �
( 9)
2 (-, @) similarly to ((2) and ((3) in Chapter 3 (note

that all the primes = + ℎ 9 which belong to E but do not belong to E′ lie in the subset
EΔ defined earlier). The sum in the first factor does not exceed - (log -)2: for some
2: > 0. So choosing � large enough, we get the bound of _2

max- (log -)−� for the
error term in (6.4). Finally, we apply Vinogradov’s result [104] to cE(-) to get the
second relation in (6.3).

We treat the sum (1,U in a similar way. Thus we get

(1,U =
∑

31,...,3:
41,...,4:

( [38 ,48],[3 9 ,4 9 ])=1 ∀8≠ 9

_31,...,3:_41,...,4:

∑
-6=<2-

=≡0 (mod @)
=∈E′

1 =

-

2,

∑
31,...,3:
41,...,4:

( [38 ,48],[3 9 ,4 9 ])=1 ∀8≠ 9

_31,...,3:_41,...,4:∏:
8=1 [38, 48]

+$
( ∑
31,...,3:
41,...,4:

_2
max� (-, @)

)
, (6.5)

where

� (-, @) = 1 + max
(0,@)=1

���� ∑
-6=<2-

=≡0 (mod @)
=∈E′

1 − 1
@

∑
-6=<2-
=∈E′

1
���� 6

1 + �1(-, @) + �2(-, @) + �3(-, @),

where

�1(-, @) = max
(0,@)=1

∑
-6=<2-

=≡0 (mod @)
=∈E\E′

1, �2(-, @) =
1
@

∑
-6=<2-
=∈E\E′

1,

�3(-, @) = max
(0,@)=1

���� ∑
-6=<2-

=≡0 (mod @)
=∈E

−1
@

∑
-6=<2-
=∈E

1
����.
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We estimate the error term in (6.5) similarly to the error term in (6.4). For �3, we
apply the arguments used in the proof of Theorem 1.2. This case is simpler since
the summation goes over integers, so one deals with∑

-6=<2-
=≡0 (mod @)

4
(
ℎ=U

)
.

The congruence condition is removed by substitution = = @A + ;. The sum over A is
then estimated by Lemma 2.4 with : = 3. This concludes the proof of (6.3). We
note that the estimates for � ( 9)3 and �3 correspond to the conditions (2) and (1) in
the Hypothesis 1 from [63].

We show that there are infinitely many = such that at least d":/6e numbers = + ℎ8
are primes from E. By definition of ": , there is a function �0 such that

:∑
9=1

�
( 9)
:
(�0) > (": − X1)�: (�0).

Then

(U > (3 − 2)
i: (,)- (log '): �: (�0)

, :+1

((
1
6
− X1

)
(": − X1) − d + >(1)

)
.

If d = ":/6−X2 for some X2 > 0 such that d":/6e = bd+1c and X1 is small enough
(depending on X2), then there are infinitely many = such that at least bd + 1c = < + 1
numbers among = + ℎ 9 are primes.

To finish the computation, we estimate the right hand side of (6.1). In ac-
cordance with (6.2), we choose : = b390<246<c and take the tuple of primes
{?c(:)+1, . . . , ?c(:)+: } which is obviously admissible (indeed, there is no element
of this set which is congruent to zero modulo any prime ? 6 :; on the other hand,
this set does not cover a complete residue system modulo any ? > : due to its size).
Next,

max
168< 96:

|ℎ 9 − ℎ8 | 6 ?c(:)+: 6 ? d1.1:e

for : > 105. Using the inequality ?= < =(log =+log log =+8) (see, for example, [78])
with = = d1.1 · 390<246<e, we find that

lim inf
=→+∞

(?=+< − ?=) 6 9 700<346< . (6.6)
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6.2 Bound calculation for cases < = 1, 2
The bound (6.6) can certainly be sharpened for small <. For example, if < = 1,
then we take : = 157 337. Thus we get ": > 6, and the precise computation of the
right hand side of (6.1) gives

?c(:)+: − ?c(:)+1 = ?171 807 − ?14 471 = 2 176 652 < 2.18 · 106.

For < = 2, we need ": > 12, so we take : = 157 629 323 and

?c(:)+: − ?c(:)+1 = ?166 478 324 − ?8 849 002 = 3 130 607 572 < 3.14 · 109.
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C h a p t e r 7

MOBIUS RANDOMNESS MEETS DISCRETE RESTRICTION

In this chapter, we give a proof of Theorem 1.6 using Vaughan identity, Weyl’s
differencing for polynomials, and the circle method. We would need the following
auxiliary lemmas:

Lemma 7.1 (Vaughan identity for Mobius function). For any+ , one has the follow-
ing decomposition for Mobius function:

`(=) = 2`(=)1=6+ −
∑
<:3==
:,36+

`(:)`(3) +
∑
<:==
<>+

`(<)0: , 0: =
∑
3 |:
36+

`(3).

The proof is similar to the standard Vaughan identity with Mangoldt function which
can be found in [45].

Lemma 7.2 (Weyl’s bound for linear phase). For fixed G, # such that # 6 G and
any real U, one has the inequality���� #∑

==1
4(U=)

���� 6 min
(
#,

1
2‖U‖

)
.

See [45, Chapter 8].

Lemma 7.3 (Weyl’s bound for polynomial phase). Let 6(G) = 2G: + 21G
:−1 + . . .

with 2 and : positive integers. Suppose��U − 0
@

�� 6 1
@2 , with (0, @) = 1.

Then ∑
0<=6-

4
(
U6(=)

)
� -1+Y

(
2

@
+ 2
-
+ @

- :

)21−:

for any Y > 0 and - > 1, the implied constant depending only on Y. In particular
for : = 2, one has the inequality

#
√

log @
(√

2

@
+

√
2

#
+
√
@

#

)
.
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See [45, Chapter 8].

Lemma 7.4 (Discrete restriction estimate for parabola). For ? > 4, one has∫ 1

0

����∑
=6-

4
(
=2U

) ����?3U 6 �?- ?−2

with an absolute constant �? > 0.

For the proof, see [46] or [11].

Circle method
We fix the parameter & = -2(log -)−� for some � > 0 which will be adjusted
later. By Dirichlet approximation theorem, for any U ∈ [0; 1], there is 0, @ such that
(0, @) = 1, @ 6 & and ��U − 0

@

�� 6 1
@&

.

For fixed 0, @, we denote the corresponding set of U’s by E0,@:

E0,@ :=
{
U ∈ [0; 1] :

��U − 0
@

�� 6 1
@&

}
.

The goal is to get the pointwise bound for the sum∑
=6-

`(=)4
(
=2U

)
� -

(log -)�1
(7.1)

for large enough �1 = �1(�). The method would depend on the size of the
denominator @. The following inequality holds true∫ 1

0

����∑
=6-

`(=)4
(
=2U

) ����?3U 6∑
@6&

@−1∑
0=1
(0,@)=1

(
max
U∈E0,@

����∑
=6-

`(=)4
(
=2U

) ����) ∫
U∈E0,@

����∑
=6-

`(=)4
(
=2U

) ����?−1
3U.

We split the interval [0; 1] the major and minor arcs as follows:

M0,@ :=
{
U ∈ [0; 1] :

��U − 0
@

�� 6 1
@&

for @ 6 (log -)�
}

m0,@ := [0; 1] \M0,@,

where � > 0 is fixed. We treat the sum in the left hand side of (7.1) in different
ways for U ∈ M0,@ and U ∈ m0,@.
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Minor arcs
In this case, all such U can be approximated as U ≈ 0/@ with @ > (log -)� . By
Vaughan identity (Lemma 7.1), the sum in (7.1) splits as follows:∑

=6-

`(=)4
(
=2U

)
= 2,0 −,1 +,2,

where

,0 =
∑
=6+

`(=)4
(
=2U

)
, + := (log -)� ,

,1 =
∑
=6+2

0=

∑
<6-/=

4
(
U=2<2) , 0= =

∑
3 |=
36+

`(3),

,2 =
∑

+<=6-/+
`(=)

∑
<6-/=

0<4
(
U=2<2) ,

and � > 0 is fixed.

The contribution from the sum,0 is estimated trivially:

)0 :=
∑

(log -)�<@6&

@−1∑
0=1
(0,@)=1

|,0 |
∫
0∈m0,@

����∑
=6-

`(=)4
(
=2U

) ����?−1
3U �

+

∫ 1

0

����∑
=6-

`(=)4
(
=2U

) ����?−1
3U 6 �0+-

?−3 � - ?−3(log -)� , (7.2)

where the bound for !?−1 norm of the sum comes from Lemma 7.4.

To estimate the contribution from,1, as usual we split the outer sum to the dyadic
intervals:

|,1 | 6
∑′

#6+2

∑
=∼#
|0= |

���� ∑
<6-/=

4
(
U=2<2) ����.

Then we apply Lemma 7.3 with : = 2:

|,1 | �
∑′

#6+2

∑
=∼#
|0= | ·

√
log @

-

=

(
=
√
@
+ =
√
#
√
-
+
√
@#

-

)
.

Then, by Mardzhanishvili inequality,

|,1 | �
∑′

#6+2

# (log #)^1
√

log @
(
-
√
@
+
√
-# + √@

)
�

(log -)^1+1+1/2
(
+2-
√
@
+
√
-+3 ++2√@

)
�

- (log -)^1−3/2−�/2+2� +
√
- (log -)^1+3/2+3� + - (log -)^1+3/2−�/2+2� .
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Then the contribution from,1 is

)1 :=
∑

(log -)�<@6&

@−1∑
0=1
(0,@)=1

|,1 |
∫
0∈m0,@

����∑
=6-

`(=)4
(
=2U

) ����?−1
3U �

- ?−2(log -)^1+2�
(
(log -)−3/2−�/2 + 1

√
-
(log -)3/2+� + (log -)3/2−�/2

)
. (7.3)

The type II estimate is a little more delicate. Since @ can be very large compared to
the length # of the sum over = the Weyl’s bound for polynomial phase is not directly
applicable to that sum. We use Lemma 7.2 instead and split to two cases: when
0<2=2 ≡ A (mod @) with A � @, we estimate the short sum trivially; otherwise we
use the second bound from Lemma 7.2.

By Cauchy inequality, we have

|,2 | 6
∑′

+<#6-/+

(∑
=∼#

`2(=)
)1/2 (∑

=∼#

∑
<1,<26-/=

0<10<24
(
U(<2

1 − <
2
2)=

2) )1/2
=:

�1 + �2. (7.4)

We first evaluate the diagonal term:

�1 6
∑′

+<#6-/+

√
#- � - log -

√
+

= - (log -)1−�/2

and the contribution from it

)2,1 :=
∑

(log -)�<@6&

@−1∑
0=1
(0,@)=1

|�1 |
∫
0∈m0,@

����∑
=6-

`(=)4
(
=2U

) ����?−1
3U �

- ?−2(log -)1−�/2. (7.5)

To evaluate the non-diagonal term, we swap the order of summation in the second
factor of (7.4)

|�2 | 6 2
∑′

+<#6-/+

√
#

( ∑
<1,<26-/#
<1><2

0<10<2

∑
#6=<'

4
(
U(<2

1 − <
2
2)=

2) )1/2
,

' := min
(
2#; -/<2

)
,
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and apply Cauchy and Mardzhanishvili inequalities one more time:

|�2 | �
∑′

+<#6-/+

√
#

(( ∑
<1,<26-/#
<1><2

|0<1 |2 |0<2 |2
)1/2
·

( ∑
<1,<26-/#
<1><2

∑
#6=1,=2<'

4
(
U(<2

1 − <
2
2) (=

2
1 − =

2
2)

) )1/2)1/2
�

∑′

+<#6-/+

√
#

(
-2

#2 (log -)2^1

)1/4 ( ∑
<1,<26-/#
<1><2

∑
#6=1,=2<'

4
(
U(<2

1−<
2
2) (=

2
1−=

2
2)

) )1/4

which can be further bounded as

√
- (log -)^1/2

∑′

+<#6-/+

( ∑
<1,<26-/#
<1><2

∑
#6=1,=2<'

4
(
U(<2

1 − <
2
2) (=

2
1 − =

2
2)

) )1/4
=:

�3 + �4.

The diagonal term corresponds to =1 = =2 and

|�3 | �
√
- (log -)^1/2

∑′

+<#6-/+

(
-2

#2#

)1/4
� - (log -)^1/2+1−�/4. (7.6)

Next, we evaluate the non-diagonal term. Denote the quadruple sum inside the
second factor by ((#):

((#) :=
∑

<1,<26-/#
<1><2

∑
#6=1,=2<'
=1>=2

4
(
U(<2

1 − <
2
2) (=

2
1 − =

2
2)

)
.

For convenience, wemake the following substitutions: =1 =: =, =2 =: =+B,<1 =: <,
<2 =: < + C. Then

((#) =
∑
B,C,<,=

4
(
UBC (2= + B) (2< + C)

)
=∑

B,C,<

4
(
UB2C (2< + C)

) ∑
=

4
(
2UBC=(2< + C)

)
�

∑
B,C,<

����∑
=

4
(
2UBC=(2< + C)

) ����.
By Lemma 7.2,

|((#) | �
∑
B,C,<

min
(
',

1
‖2UBC (2< + C)‖

)
.

Due to the restrictions on U, the last sum can be bounded from above by

2
∑
B,C,<

min
(
',

1
‖2(0/@)BC (2< + C)‖

)
. (7.7)
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Next, we mimic the proof of the classical Weyl’s bound for polynomial phase. We
split the last sum into two parts according to the size of A 6 @ in the congruence
restriction 20BC (2< + C) ≡ A (mod @) which is equivalent to 2BC (2< + C) ≡ A0∗

(mod @). First, assume A0∗ 6 (@/#) (log -)� =: ! or A0∗ > @ − !, where � > 0
will be chosen later. Then, the triple sum over B, C, < is asymptotically at most∑

;6!

∑
B,C,<

2BC (2<+C)=;

'

if 2BC (2< + C) < @, and∑
;6!

∑
B,C,<

∑
D62BC (2<+C)/@

' · 12BC (2<+C)=D@+;

otherwise. By Mardzhanishvili inequality, both sums are bounded from above by

'

(
' · (-/#)2

@
+ 1

)
! (log -)^2 . (7.8)

In all the remaining cases, we use the second bound in (7.7). We get

1
‖2(0/@)BC (2< + C)‖ 6

@

!
.

Combining (7.8) and the last bound, we obtain

((#) � '

(
' · (-/#)2

@
+ 1

)
! (log -)^2 +

∑
B,C,<

@

!
�(

-2

@
+ '

)
! (log -)^2 + @

!
'

(
-

#

)2
� (log -)^2+�

(
-2

#
+ @

)
+ -2

(log -)�
.

This leads to the estimate

|�4 | �
√
- (log -)^1/2

∑′

+<#6-/+

[ √
-

#1/4 (log -)^2/4+�/4 + @1/4(log -)^2/4+�/4+

√
-

(log -)�/4

]
,

hence

|�4 | �

- (log -)^1/2+1
(
(log -)−�/4+^2/4+�/4 + (log -)−�/4+^2/4+�/4 + (log -)−�/4

)
.
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Together with (7.6), it gives

)2,2 :=
∑

(log -)�<@6&

@−1∑
0=1
(0,@)=1

|�2 |
∫
0∈m0,@

����∑
=6-

`(=)4
(
=2U

) ����?−1
3U �

- ?−2(log -)^1/2+1
(
(log -)−�/4 + (log -)−�/4+^2/4+�/4+

(log -)−�/4+^2/4+�/4 + (log -)−�/4
)
. (7.9)

Major arcs
Let us introduce the notation

((U) :=
∑
=6-

`(=)4
(
=2U

)
.

We will first evaluate the sum ∑
@6(log -)�

@−1∑
0=1
(0,@)=1

����( (0@ )����
and then obtain the upper bound for a more general case∑

@6(log -)�

@−1∑
0=1
(0,@)=1

max
U∈M0,@

|((U) |.

Next, we have ∑
=6-

`(=)4
(
0

@
=2

)
=

@−1∑
A=0

4

(
A

@

) ∑
=6-

0=2≡A (mod @)

`(=).

Next, the relation 0=2 ≡ 4 (mod @) is equivalent to 0=2 ≡ B (mod @′), where
@′ = @/(@, A), so that (@′, B) = 1. Then, by the orthogonality of Dirichlet characters,
the last sum is equivalent to

@−1∑
A=0

4

(
A

@

)
· 1
i(@′)

∑
j (mod @′)

j(B∗0)
∑
=6-

`(=)j2(=).

Note that @′ 6 @ 6 (log -)� , so using the standard techniques (see, for example, [65,
Exercise 11.3.7]), we get the bound∑

=6-

`(=)j2(=) �� - exp
(
−21

√
log -

)
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with an absolute constant 21 > 0. That implies����( (0@ )���� ��

@−1∑
A=0

1
i(@′)

∑
j (mod @′)

- exp
(
−21

√
log -

)
� @- exp

(
−21

√
log -

)
.

Hence,∑
@6(log -)�

@−1∑
0=1
(0,@)=1

����( (0@ )���� ��

∑
@6(log -)�

@i(@)- exp
(
−21

√
log -

)
�

- exp
(
−21

2
√

log -
)
.

Next, by partial summation, we obtain∑
@6(log -)�

@−1∑
0=1
(0,@)=1

max
U∈M0,@

|((U) | 6

∑
@6(log -)�

@−1∑
0=1
(0,@)=1

����( (0@ )���� + ∑
@6(log -)�

@−1∑
0=1
(0,@)=1

∫ -

1

����∑
=6E

`(=)4
(
=2U

) ����|\0,@ |E3E,
where |\0,@ | 6 1/(@&). Next, choose . = - (log -)−� for � > 0 and split the
integral as∫ -

1

����∑
=6E

`(=)4
(
=2U

) ����|\0,@ |E3E = (∫ .

1
+
∫ -

.

)����∑
=6E

`(=)4
(
=2U

) ����|\0,@ |E3E =: �1 + �2.

The contribution from �1 can be estimated trivially by∑
@6(log -)�

@−1∑
0=1
(0,@)=1

∫ .

1

E2

@&
3E �

∑
@6(log -)�

.3

&
� - (log -)−3�+�. (7.10)

To estimate the contribution from �2, we use a similar bound∑
=6/

`(=)4
(
=2U

)
�@ / exp

(
−21

√
log /

)
for all . 6 / 6 - , which can be obtained in a similar way as for ((0/@). Then∑

@6(log -)�

@−1∑
0=1
(0,@)=1

∫ -

.

����∑
=6E

`(=)4
(
=2U

) ����|\0,@ |E3E �
∑

@6(log -)�

-3

&
exp

(
−21

√
log -

)
� - exp

(
−21

2
√

log -
)
.
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Finally, together with (7.10), this bound gives

∑
@6(log -)�

@−1∑
0=1
(0,@)=1

(
max
U∈M0,@

����∑
=6-

`(=)4
(
=2U

) ����) ∫
U∈M0,@

����∑
=6-

`(=)4
(
=2U

) ����?−1
3U �

- ?−2(log -)−3�+� + - ?−2 exp
(
−21

2
√

log -
)
. (7.11)

Final bound
Combining together the bounds (7.2), (7.3), (7.5), (7.9), and (7.11), we get∫ 1

0

����∑
=6-

`(=)42c8=2U

����?3U � - ?−3(log -)� + - ?−2 exp
(
−21

2
√

log -
)
�

- ?−2(log -)1−�/2 + - ?−2(log -)^1+2�
(
(log -)−3/2−�/2 + (log -)3/2−�/2

)
+

- ?−2(log -)^1/2+1
(
(log -)−�/4 + (log -)−�/4+^2/4+�/4+

(log -)−�/4+^2/4+�/4 + (log -)−�/4
)
+ - ?−2(log -)−3�+�. (7.12)

Choosing � > 4� + 2^1 + 4, � > � + 4� + 2^1 + ^2 + 4, �,� > 10� and � > 10�,
we get the desired result.
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C h a p t e r 8

MOMENTS OF �! (2) !-FUNCTIONS

In this chapter, we prove Theorem 1.7 using the technique from the work of Adam
Harper [38].

8.1 Auxiliary lemmas
For the sake of convenience, we change the notation for the weight of holomorphic
Hecke cusp form 5 9 ,< to

: := 2< + 2.

To get the bound of Theorem 1.7, we need two key ingredients: the inequality
analogous to (1.16) for�! (2) !-functions and the analogue of mean-value estimate
for the Fourier coefficients of the corresponding holomorphic cusp forms. The first
ingredient is given by

Lemma 8.1. Assume the Grand Riemann Hypothesis and suppose 5 ∈ (: (Γ0(2))
is a holomorphic Hecke cusp form. Then, for any G > 2, we have

log
��!1( 5 )!2( 5 )

�� 6∑
?6G

_ 5 (?)
[
1 + j−3 (?)

]
√
?

,? (G)+∑
?6
√
G

_ 5 (?2) − 1
?

,?2 (G) + 20 +
3
4

log
(
32:4)

log G
,

where 20 6 2 is an absolute constant,

,= (G) = =−_0/log G log(G/=)
log G

,

4−_0 = _0 +
_2

0
2
=⇒ _0 = 0.4912 . . .

For the proof, see [16, Theorem 2.1].

The second key ingredient is the multidimensional analogue of Petersson trace
formula. We first state the classical version:
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Lemma 8.2 (Petersson trace formula). Let : be a fixed positive integer, and < and
= are natural numbers with <= 6 :2/104. Then∑ℎ

5 ∈(: (Γ0 (2))
_ 5 (=)_ 5 (<) =

: − 1
2c2 1==< + �: , �: 6 21:4

−: ,

where 21 is an absolute constant and∑ℎ

5 ∈(: (Γ0 (2))
_ 5 (=)_ 5 (<) :=

∑
5 ∈(: (Γ0 (2))

1
! (1, Sym2 5 )

_ 5 (=)_ 5 (<).

For the proof, see [80, Lemma 2.1].

Lemma 8.3 (multidimensional Petersson’s formula). Suppose # = ?
V1
1 . . . ?

VA
A 6√

: , where ?1, . . ., ?A are distinct primes. Then

1)
∑ℎ

5 ∈(: (Γ0 (2))

A∏
9=1
_ 5 (? 9 )V 9

[
1 + j−3 (? 9 )

] V 9
= � (#) + � (#),

where

� (#) =


0, if j−3 (? 9 ) = −1 or V 9 is odd for at least one j;

2V1+...+VA : − 1
2c2

A∏
9=1

2
V 9 + 2

(
V 9

V 9/2

)
, otherwise,

and

|� (#) | 6 214V1+...+VA ( A∏
9=1

V 9
)
:4−: .

2)
∑ℎ

5 ∈(: (Γ0 (2))

A∏
9=1
_ 5 (?2

9 )V 9 = �2(#) + �2(#),

where

�2(#) =
: − 1
2c2

A∏
9=1

V 9∑
: 9=0
(−1): 9

(
V 9

: 9

) (
: 9

b: 9/2c

)
,

|�2(#) | 6 21
( A∏
9=1

V2
9

)
4V1+...+VA+A :4−: .

Proof. First, we obtain Hecke relations

_ 5 (?)= = _ 5 (?=) +
=/2∑
8=1

[(
=

8

)
−

(
=

8 − 1

)]
_ 5 (?=−28)
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if = is even, and

_ 5 (?)= = _ 5 (?=) +
(=−1)/2∑
8=1

[(
=

8

)
−

(
=

8 − 1

)]
_ 5 (?=−28)

if = is odd. From the Euler product∏
?

(
1 +

_ 5 (?)
?B
+
_ 5 (?2)
?2B + . . .

)
=

∏
?

(
1 +

U?

?B
+
U2
?

?2B + . . .
) (

1 +
U−1
?

?B
+
U−2
?

?2B + . . .
)
,

we get the identity

_ 5 (?=−1) =
U=? − U−=?
U? − U−1

?

, (8.1)

and, in particular, _ 5 (?) = U? + U−1
? . Next, we have

_ 5 (?)= = (U? + U?−1)= =
(U? + U?−1)= (U? − U?−1)

U? − U?−1 =(
U=? + =U=−2

? +
(=
2
)
U=−4
? + . . . +

(=
8

)
U=−28
? + . . . + =U2−=

? + U−=?
)
(U? − U−1

? )
U? − U?−1 .

Opening the brackets in the numerator and applying (8.1) to each of the expressions(=
8

)
U=−28+1
? −

(=
8

)
U
−(=−28+1)
?

U? − U−1
?

,

we get the identity

_ 5 (?)= = _ 5 (?=) + [= − 1]_ 5 (?=−2) +
[(
=

2

)
− =

]
_ 5 (?=−4)+

. . . +
[(
=

8

)
−

(
=

8 − 1

)]
_ 5 (?=−28) + . . . (8.2)

First, assume that = is even and j−3 (?) = 1. Then using (8.2), we obtain∑ℎ

5 ∈(: (Γ0 (2))
_ 5 (?)= [1 + j−3 (?)]= = 2=

∑ℎ

5 ∈(: (Γ0 (2))
_ 5 (?=)+

2=
∑ℎ

5 ∈(: (Γ0 (2))

=/2∑
8=1

[(
=

8

)
−

(
=

8 − 1

)]
_ 5 (?=−28) = � (?=) + � (?=), (8.3)

where � (?=) is the term corresponding to 8 = =/2. By Lemma 8.2,

� (?=) = 2=
: − 1
2c2 ·

2
= + 2

(
=

=/2

)
. (8.4)
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The error term can be bounded from above in the following way:

� (?=) 6 2=
(
1 +

=/2−1∑
8=1

[(
=

8

)
−

(
=

8 − 1

)] )
21:4

−: 6

2=
=

2

(
=

=/2

)
21:4

−: 6 21=4=:4−: . (8.5)

Now assume that = is odd and j−3 (?) = 1. The main term in the Petersson’s formula
vanishes, and for the error term by a similar argument, we get

� (?=) 6 2=
= − 1

2

(
=

(= − 1)/2

)
21:4

−: 6 21=4=:4−: . (8.6)

Combining (8.3), (8.4), (8.5), (8.6), Lemma 8.2 and using the multiplicativity of _ 5 ,
we get the statement of part 1).

The proof of the second part is similar. We have

_ 5 (?2)= =
(U3

? − U−3
? )=

(U? − U−1
? )=

=
(U2

? + 1 + U−2
? )= (U? − U−1

? )
U? − U−1

?

=(∑=
;=0

(=
;

)
(U2

? + U−2
? );

)
(U? − U−1

? )
U? − U−1

?

=

∑=
;=0

(=
;

) ∑;
8=0

(;
8

)
U48−2;
? (U? − U−1

? )
U? − U−1

?

=∑=
;=0

(=
;

) ∑;
8=0

(;
8

)
[U48−2;+1

? − U48−2;−1
? ]

U? − U−1
?

.

The last expression can be written as

=∑
;=1
; odd

(
=

;

) [(;−3)/2∑
8=0

(
;

8

)
[_ 5 (?2;−48) − _ 5 (?2;−48−2)]+

(
;

(; − 1)/2

)
[_ 5 (?2) − _ 5 (1)]

]
+

=∑
;=0
; even

(
=

;

) [(;−2)/2∑
8=0

(
;

8

)
[_ 5 (?2;−48) − _ 5 (?2;−48−2)] +

(
;

;/2

)
_ 5 (1)

]
. (8.7)

Themain contribution to the sumover 5 ∈ (: (Γ0(2)) after the application ofLemma8.2
would come from the terms corresponding to _ 5 (1):∑ℎ

5 ∈(: (Γ0 (2))

=∑
;=0

(
=

;

)
(−1);

(
;

b;/2c

)
_ 5 (1) =

: − 1
2c2

=∑
;=0
(−1);

(
=

;

) (
;

b;/2c

)
+ �:,=,
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where

|�:,= | 6 21:4
−:

=∑
;=0

(
=

;

) (
;

b;/2c

)
6

21:4
−: (= + 1)

(
=

b=/2c

) (
=

b=/2c

)
6 21(= + 1)4=:4−: .

The contribution to the sum over 5 ∈ (: (Γ0(2)) after the application of Lemma 8.2
from the remaining terms in (8.7) would not exceed

=∑
;=0

(
=

;

) ;∑
8=0

2
(
;

8

)
21:4

−: 6 21:4
−: · 2=2

(
=

b=/2c

) (
=

b=/2c

)
6 2=24=21:4

−: .

Finally, combining together these bounds and the identity (8.7), we get

�2(?=) =
: − 1
2c2

=∑
;=0
(−1);

(
=

;

) (
;

b;/2c

)
,

|�2(?=) | 6 21=
24=+1:4−: .

The statement of part 2) follows from the multiplicativity of _ 5 .

�

Remark. In fact, we will only need a weaker form of the second part of Lemma 8.3,
precisely, the bound

|�2(#) | 6
: − 1
2c2

A∏
9=1

V 9 !, (8.8)

which follows trivially from the inequality
V∑
:=0

(−1):
:!(V − :)!(b:/2c!)2

6 1.

Lemma 8.4. 1) Assume �, �, G are large real numbers such that �2 < � 6 �3,
� 6 G, and " is a positive integer such that log � > " log" , �" 6

√
: . Then, if

" is even, the following inequality holds true:∑ℎ

5 ∈(: (Γ0 (2))

∑
?1,...,?"
�<?86�

_̃ 5 (?1) . . . _̃ 5 (?")√
?1 . . . ?"

,?1 (G) . . .,?" (G) 6

2
: − 1
2c2

"!
("/2)!

( ∑
�<?6�
j−3 (?)=1

2
?

)"/2
, (8.9)
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where _̃ 5 (?) := _ 5 (?) [1 + j−3 (?)], ?1, . . . , ?" are primes,

,? (G) = ?−_0/log G log(G/?)
log G

, _0 = 0.4912 . . .

If " is odd, then���� ∑ℎ

5 ∈(: (Γ0 (2))

∑
?1,...,?"
�<?86�

_̃ 5 (?1) . . . _̃ 5 (?")√
?1 . . . ?"

,?1 (G) . . .,?" (G)
���� 6

(� − �)"

�"/2
· 4" max

?1,...,?"
�<?86�

6(?1 . . . ?") · 21:4
−: , (8.10)

where for distinct primes @1, . . . , @A , the function 6(.) is defined as

6(@V1
1 . . . @

VA
A ) =

A∏
8=1

V8 .

2) Let <, # > 1 be integers such that # 6 2<, (2<+1)2# 6
√
: . Then∑ℎ

5 ∈(: (Γ0 (2))

∑
?1,...,?2#

2<<?862<+1

_ 5 (?2
1) . . . _ 5 (?

2
2# )

?1 . . . ?2#
,?2

1
(G) . . .,?2

2#
(G) 6

√
2c#4#

: − 1
2c2

(2#)!
#!

(
1

2<

)#
.

Proof. The inequality (8.10) follows immediately from part 1) of Lemma 8.3 and
the trivial upper bound∑

�<?1,...,?"6�

|,?1 (G) . . .,?" (G) |√
?1 . . . ?"

6
(� − �)"

�"/2
.

We now prove the inequality (8.9). Let " := 2# . We rewrite the product ?1 . . . ?2#

in the canonical form @
V1
1 . . . @

VA
A , where all @8 are distinct primes, all V8 > 0 and

V1+ . . .+VA = 2# . We split the sums over ?1, . . . , ?2# corresponding to the different
patterns (V1, . . . , VA). Then we apply Lemma 8.3 to each of them. We have∑ℎ

5 ∈(: (Γ0 (2))

∑
�<?1,...,?2# 6�

_̃ 5 (?1) . . . _̃ 5 (?2# )√
?1 . . . ?2#

,?1 (G) . . .,?2# (G) 6∑ℎ

5 ∈(: (Γ0 (2))

∑
16A6#

∑
V1+...+VA=2#

all even

(
2#
V1

) (
2# − V1
V2

)
. . .

(
2# − V1 − . . . − VA−1

VA

)
·

(
1
A!

∑
�<@1,...,@A6�
all distinct

_̃
V1
5
(@1) . . . _̃VA5 (@A)√
@
V1
1 . . . @

VA
A

)
+ '(�, �, :), (8.11)
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where we have removed the weights,?8 (G) since for each 8 one has the inequalities
0 < ,?8 (G) 6 1, _̃V1

5
(@1) . . . _̃VA5 (@A) > 0 when all V8 are even. The error term

'(�, �, :) can be bounded similarly to (8.10):

|'(�, �, :) | 6 42# max
?1,...,?2#
�<?86�

6(?1 . . . ?2# )
(� − �)2#

�#
· 21:4

−:

by part 1) of Lemma 8.3. The main contribution to the main term on the right hand
side of (8.11) comes from the pattern V1 = . . . = VA = 2, A = # . By Lemma 8.3 this
contribution is equal to

(2#)!
2#

1
#!

∑
�<@1,...,@# 6�
j−3 (@8)=1
all distinct

1
@1 . . . @#

(
22# : − 1

2c2 + � (@
2
1 . . . @

2
# )

)
6

: − 1
2c2

(2#)!
#!

( ∑
�<@6�
j−3 (@)=1

2
@

)#
+ ': ,

where ': 6 |'(�, �, :) |.

Next, we apply Lemma 8.3 to the sum over the rest of the squares. Without loss of
generality, assume that V1, . . . , VB > 2, VB+1 = . . . = VA = 2. The contribution from
this pattern is

(2#)!
V1! . . . VA!A!

( ∑
�<@1,...,@A6�
j−3 (@8)=1
all distinct

1
@
V1/2
1 . . . @

VB/2
B @B+1 . . . @A

)
·

22# : − 1
2c2

A∏
8=1

2
V8 + 2

(
V8

V8/2

) (
1 + >(1)

)
. (8.12)

Using the crude estimates∑
�<@86�
j−3 (@8)=1

1
@
V8/2
8

6
1

(V8/2) − 1
1

�V8/2−1 , 8 = 1, . . . , B,

∑
�<@86�
j−3 (@8)=1

1
@8
6

log �
log �

+ 1 6 4, 8 = B + 1, . . . , A,

we bound the expression (8.12) by

22# : − 1
2c2

(2#)!
V1! . . . VA!A!

( B∏
8=1

1
(V8/2 − 1)

1
�V8/2−1

)
4A−B·( A∏

8=1

2
V8 + 2

(
V8

V8/2

)) (
1 + >(1)

)
,
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which does not exceed

22# : − 1
2c2

(2#)!
#!A!

#!
(V1/2)!2 . . . (VA/2)!2

( B∏
8=1

1
(V8/2 − 1)

1
�V8/2−1

)
4A−B 6

24# : − 1
2c2

(2#)!
#!

#!
�

∏A
8=1(V8/2)!2 .

Next, applying the inequalities∑
16A6#−1

∑
V1+...+VA=2#

all even

1 6 2#−1,
1∏A

8=1(V8/2)!2 6 1,

we get an upper bound for the contribution to the main term on the right hand side
of (8.11) from all the remaining patterns with even V8’s. That bound is

: − 1
2c2

(2#)!
#!

25##!
�

.

The desired bound follows from the inequality

25##!
�
�

( ∑
�<@6�
j−3 (@)=1

2
@

)#
since � � ##+>(#) .

Remark. One can obtain a slightly worse bound in the right hand side of (8.9) in
the case � = $ (1):

: − 1
2c2

(2#)!
#!

exp
{
# log # − 1

2
# log log #

}
(8.13)

using trivial inequality (V8/2)!−2 6 (V8/2)!−1, multinomial theorem, and Stirling
formula:∑

16A6#−1

1
A!

∑
V1+...+VA=2#

all even

#!
(V1/2)! . . . (VA/2)!

6
∑
A6#

A#

A!
6

# max
16A6#

A#

A!
6 exp

{
# log # − 1

2
# log log #

}
for large enough # .
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The proof of part 2) is similar. The main contribution comes from the squarefull
products ?1 . . . ?2# . We have

∑
2<<?1,...,?2# 62<+1

,?2
1
(G) . . .,?2

2#
(G)

?1 . . . ?2#

∑ℎ

5 ∈(: (Γ0 (2))
_ 5 (?2

1) . . . _ 5 (?
2
2# ) =

∑
2<<?1,...,?2# 62<+1∏

?8 squarefull

,?2
1
(G) . . .,?2

2#
(G)

?1 . . . ?2#

∑ℎ

5 ∈(: (Γ0 (2))
_ 5 (?2

1) . . . _ 5 (?
2
2# ) + ((<, #),

where ((<, #) can be bounded by Lemma 8.3 part 2) from above as follows:

|((<, #) | 6 42#+2# max
?1,...,?2#

ℎ(?1 . . . ?2# )
(
2<+1 − 2<

2<

)2#
· 21:4

−: =

44# max
?1,...,?2#

ℎ(?1 . . . ?2# ) · 21:4
−: =: '(<, #),

where

ℎ(?U1
1 . . . ?UAA ) =

A∏
8=1

U2
8 .

Note that �2(?V1
1 . . . ?

VA
A ) = 0 if V8 = 1 for at least one 8. We rewrite the main term

in a way similar to the proof of part 1):∑
16A6#

∑
V1+...+VA=2#

V8>2

(
2#
V1

) (
2# − V1
V2

)
. . .

(
2# − V1 − . . . − VA−1

VA

)
·

(
1
A!

∑
2<<@1,...,@A62<+1

all distinct

,@2
1
(G)V1 . . .,@2

A
(G)VA

@
V1
1 . . . @

VA
A

∑ℎ

5 ∈(: (Γ0 (2))
_
V1
5
(@2

1) . . . _
VA
5
(@2
A )

)
. (8.14)

We bound this expression using the weaker form of Lemma 8.3 part 2) (see (8.8)).
Thus, (8.14) does not exceed

: − 1
2c2

∑
16A6#

∑
V1+...+VA=2#

V8>2

(2#)!
V1! . . . VA!A!

A∏
8=1

V8!
∑

2<<@862<+1

1
@
V8
8

+ '(<, #) 6

2
: − 1
2c2

∑
16A6#

∑
V1+...+VA=2#

V8>2

(2#)!
#!

#!
A!

A∏
8=1

1
V8 − 1

((
1

2<

) V8−1
−

(
1

2<+1

) V8−1)
6

2
: − 1
2c2

(2#)!
#!

(
1

2<

)# ∑
16A6#

∑
V1+...+VA=2#

V8>2

#!
A!

(
1

2<

)#−A
.
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By Stirling formula,

#!
A!

(
1

2<

)#−A
6 exp

{
# log # − # + log # + 1

2
log 2c − A log A + A − (# − A) log 2<

}
.

The maximum of the last expression is achieved at A = # . In this case, the only
possible pattern is (V1, . . . , V# ) = (2, . . . , 2). Thus, it does not exceed

√
2c# .

Using the crude bound ∑
16A6#

∑
V1+...+VA=2#

V8>2

1 6 22#−1,

we get the desired result.

�

Using the multiplicativity of _ 5 , we can now combine both parts of Lemma 8.4
together:

Lemma 8.5. Suppose (�1, �1], . . . , (�� , ��], (2<, 2<+1] are disjoint intervals, �2
8
<

�8 6 �
3
8
. Let "0, "1, . . . , "� be non-negative integers such that �8 > "8 log"8,

"0 6 2<,

(2<+1)"0

�∏
8=1

�
"8
8
6
√
:,

and 20, 21, . . . be positive real numbers. Then∑ℎ

5 ∈(: (Γ0 (2))

( �∏
8=1

∑
<86"8

2<8

∑
?1,...,?<8
�8<? 96�8

_̃ 5 (?1) . . . _̃ 5 (?<8 )√
?1 . . . ?<8

,?1 (G) . . .,?<8
(G)

)
·

( ∑
2<<?62<+1

_ 5 (?2)
?

,?2 (G)
)2"0

6

3
: − 1
2c2

( �∏
8=1

∑
=86"8/2

22=8
(2=8)!
=8!

( ∑
�8<?6�8
j−3 (?)=1

2
?8

)=8 )√
2c"04"0

(2"0)!
"0!

(
1

2<

)"0

.

8.2 Notation and sketch of the proof
We basically follow the Harper’s approach to prove Theorem 1.7. The expression
analogous to the right hand side of (1.16) can be obtained for the general !-function
(see [16] and Lemma 8.1). We get an expression∑ℎ

5 ∈(: (Γ0 (2))
exp

{
log

��!1( 5 )!2( 5 )
��} = ∑ℎ

5 ∈(: (Γ0 (2))

�∏
8=1

exp
{ ∑
G3−8<?6G31−8

_ 5 (?)√
?

}
,
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where we use the notation

!1( 5 ) := !
(1
2
, 5

)
, !2( 5 ) := !

(1
2
, 5 ⊗ j−3

)
.

We will show that, for most of 5 ∈ (: (Γ0(2)), we can retrieve a good upper bound
expanding the exponent in a Taylor series because the corresponding error term is
small. Thus, we will get the product of such Taylor series and then use the variations
of mean-value theorems for zeta function to get the desired bound. For the analogue
of mean-value theorem, we use the multidimensional analogue of Petersson trace
formula.

The remaining functions 5 for which the error in the Taylor expansion is large form
an exceptional set. We will essentially show that the number of that function is
small combining Cauchy and Markov inequalities.

Let : be a weight and 3 be a modulus. We choose G = :1/� , where � is a fixed
large real number depending only on the size of log 3/log : , which would be chosen
later. Let us introduce the notation for Dirichlet polynomials:

�1( 5 ) :=
∑

2<?6-0

_̃ 5 (?)√
?
, �8 ( 5 ) :=

∑
-8−1<?6-8

_̃ 5 (?)√
?
, (?),

8 ∈ 1, �, -8 := G38−� ,

where � = blog log log Gc. We split the set (:
(
Γ0(2)

)
into the union F ∪ ((0) ∪

((1) ∪ . . . ∪ ((� − 1), where

F =
{
5 ∈ (: (Γ0(2)) :

���8 ( 5 )�� 6 �8, 1 6 8 6 �
}
,

(( 9) =
{
5 ∈ (:

(
Γ0(2)

)
:
���8 ( 5 )�� 6 �8, 1 6 8 6 9 ,

��� 9+1( 5 )
�� > � 9+1}.

The numbers �8 will be chosen later. We also introduce the notation for the second
polynomial from Lemma 8.1 for all < > 0 and 2<+1 6

√
G:

%< ( 5 ) :=
∑

2<<?62<+1

_ 5 (?2)
?

, (?2),

P(<) =
{
5 ∈ (: (Γ0(2)) : %< ( 5 ) >

1
<2 , %= ( 5 ) 6

1
=2 , if < < = 6

log G
2 log 2

}
.

We first split the main sum as follows:∑ℎ

5 ∈(: (Γ0 (2))
exp

{
log

��!1( 5 )!2( 5 )
��} 6

∑ℎ

5 ∈F
exp

{
log

��!1( 5 )!2( 5 )
��} + �−1∑

9=0

∑ℎ

5 ∈(( 9)
exp

{
log

��!1( 5 )!2( 5 )
��},
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and then additionally split them using subsets P(<):∑ℎ

5 ∈F
exp

{
log

��!1( 5 )!2( 5 )
��} 6 ∑

06<6 log G
2 log 2

∑ℎ

5 ∈F∩P(<)
exp

{
log

��!1( 5 )!2( 5 )
��},

∑ℎ

5 ∈(( 9)
exp

{
log

��!1( 5 )!2( 5 )
��} 6 ∑

06<6 log G
2 log 2

∑ℎ

5 ∈(( 9)∩P(<)
exp

{
log

��!1( 5 )!2( 5 )
��}

for all 9 ∈ 0, � − 1. Thus, we need an upper bound for

( ∑
06<6 log G

2 log 2

( ∑ℎ

5 ∈F∩P(<)
+
�−1∑
9=1

∑ℎ

5 ∈(( 9)∩P(<)

)
+

∑ℎ

5 ∈((0)

)
exp

{
log

��!1( 5 )!2( 5 )
��}.

Applying Lemma 8.1 to this sum, we essentially get a product of two Dirichlet
polynomials

exp
{∑
?6G

_̃ 5 (?)√
?

}
exp

{ ∑
?6
√
G

_ 5 (?2)
?

}
which we further split into the product of polynomials over the intervals (-8−1, -8]
and (2<, 2<+1] correspondingly. On the first step, we ignore the second polynomial
and show that the main contribution comes from the set 5 ∈ F. Using Taylor
expansion, we get

�∏
8=1

exp
{
�8 ( 5 )

}
=

�∏
8=1

(∑
;6�8

1
;!
(�8 ( 5 )); + A (�; , 5 )

)
,

where the error A (�; , 5 ) is small due to the fact that 5 ∈ F. To treat the main term,
we expand the ;-powers of �8 ( 5 ) and the product over 1 6 8 6 �, and then apply
Lemma 8.4 to the sums over primes we obtain. To treat the sum over the exceptional
sets (( 9), we use a variation of Rankin’s trick:∑ℎ

5 ∈(( 9)
exp

{
|!1( 5 )!2( 5 ) |

}
6

∑ℎ

5 ∈(: (Γ0 (2))
exp

{
!1( 5 )!2( 5 )

} (� 9+1( 5 )
� 9+1

)2#
,

where we gain from the fact that the last factor is much less than 1. The choice of #
should follow the restrictions of Lemmas 8.2, 8.3 and 8.4. Smaller 9’s correspond
to shorter Dirichlet polynomials, thus produce larger error terms in the Taylor
expansion, so we need larger choices of � 9+1 and � 9+1. As we will see, it is not
enough in the case ((0), so we combine Cauchy and Markov inequalities to gain
from the fact that the measure of this set is small.
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The same strategy works in the case of polynomials %< ( 5 ). If < 6 2 log log G, we
use a crude bound∑

?62<

_̃ 5 (?)√
?
, (?) +

∑
?62<

_ 5 (?2)
?

, (?2) 6 20
2</2

<

and compensate this using Rankin’s trick:

exp
{∑
?6G

_̃ 5 (?)√
?
, (?) +

∑
?6
√
G

_ 5 (?2)
?

, (?2)
}
6

exp
{
20

2</2

<

}
·
∑ℎ

5 ∈F
exp

{ ∑
2<<?6G

_̃ 5 (?)√
?
, (?)

}
·
(
%< ( 5 )
1/<2

)2"
.

In the case of large<, this is no longer enough, so we again apply Cauchy inequality
to gain from the small size of the sets P(<).

8.3 First moment estimation
Now we are ready to give the details of the proof.

Computation for 5 ∈ F
In this section, we will get the bound∑ℎ

5 ∈F
exp

{∑
?6G

_̃ 5 (?)√
?
, (?)

}
6 0.11:! (1, j−3) exp

{
log log G

}
.

In accordance with the notation, we may rewrite the first Dirichlet polynomial as
follows:∑ℎ

5 ∈F
exp

{∑
?6G

_̃ 5 (?)√
?
, (?)

}
=

∑ℎ

5 ∈F

�∏
8=1

exp
{

1
2

∑
-8−1<?6-8

_̃ 5 (?)√
?
, (?)

}2
6

∑ℎ

5 ∈(: (Γ0 (2))

�∏
8=1

[∑
;6�8

1
;!

(
1
2
�8 ( 5 )

) ;
+

exp
{
1/2|�8 ( 5 ) |

}
(�8 + 1)!

(
1
2
|�8 ( 5 ) |

) �8+1]2
,

where the error term in the Taylor expansion is written in the form of Lagrange. We
choose �8 = 10�8 to make this error small. We rewrite the last expression as∑ℎ

5 ∈(: (Γ0 (2))

�∏
8=1
(1 + Y8)2

(∑
;6�8

1
;!

(
1
2
�8 ( 5 )

) ;)2
=

(1 + Y0)
∑ℎ

5 ∈(:
(
Γ0 (2)

) �∏
8=1

(∑
;6�8

1
;!

(
1
2
�8 ( 5 )

) ;)2
, (8.15)
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where

Y8 =

(∑
;6�8

1
;!

(
1
2
|�8 ( 5 ) |

) ;)−1 exp
{
1/2|�8 ( 5 ) |

}
(�8 + 1)!

(
1
2
|�8 ( 5 ) |

) �8+1
6

exp{�8/2}
(�8 + 1)!

(
�8

2

) �8+1
,

and

1 + Y0 =

�∏
8=1
(1 + Y8)2 6 exp

{
2

�∑
8=1

Y8
}
=

exp
{
2

�∑
8=1

exp
{
�8

2
− log(�8 + 1)! + (�8 + 1) log

�8

2

}}
,

which does not exceed

exp
{
2

�∑
8=1

exp
{�8

2
+ (�8 + 1) log

�8

2
− (�8 + 1) log(�8 + 1) + �8 + 1

}}
6

exp
{
2

�∑
8=1

exp{−�8}
}

by Stirling formula and our choice �8 = 10�8.

Next, we expand the square and ;-powers in the right hand side of (8.15) to get∑ℎ

5 ∈(: (Γ0 (2))
(1 + Y0)

∑̃
;,C̃

�∏
8=1

(
1

;8!C8!2;8+C8

) ∑̃
?,@̃

∏
86�
A6;8
B6C8

_̃ 5 (?8,A)_̃ 5 (@8,B)√
?8,A@8,B

, (?8,A), (@8,B),

where the first sum runs over all vectors of the form ;̃ = (;1, . . . , ;�), C̃ = (C1, . . . , C�)
with ;8, C8 6 �8 and the second sum runs over all the vectors of primes

?̃( ;̃) = (?1,1, . . . , ?1,;1 , ?2,1, . . . , ?2,;2 , . . . , ?�,1, . . . , ?�,;� ),

@̃(C̃) = (@1,1, . . . , @1,C1 , @2,1, . . . , @2,C2 , . . . , @�,1, . . . , @�,C� ),



101

where ?8,A , @8,B ∈ (-8−1, -8]. The contribution from these sums does not exceed∑ℎ

5 ∈(: (Γ0 (2))
(1 + Y0)

�∏
8=1

∑
;,C6�8

1
;!C!2;+C

·

∑
?1,...,?;
@1,...,@C
∈(-8−1,-8]

_̃ 5 (?1) . . . _̃ 5 (?;)_̃ 5 (@1) . . . _̃ 5 (@C)√
?1 . . . ?;@1 . . . @C

, (?1) . . ., (@C) 6

∑ℎ

5 ∈(: (Γ0 (2))
(1 + Y0)

�∏
8=1

∑
<62�8

1
2<

( ∑
;+C=<

1
;!C!

)
·

∑
-8−1<?1,...,?<6-8

_̃ 5 (?1) . . . _̃ 5 (?<)√
?1 . . . ?<

, (?1) . . ., (?<) 6

∑ℎ

5 ∈(: (Γ0 (2))
(1 + Y0)

�∏
8=1

∑
<62�8

1
<!
·

∑
-8−1<?1,...,?<6-8

_̃ 5 (?1) . . . _̃ 5 (?<)√
?1 . . . ?<

, (?1) . . ., (?<).

Since the sets of primes for each 8 6 � are distinct, we can apply Lemma 8.5 with
"0 = 0, 2< = 1/<!. This gives the bound

(1 + Y0) · 2
: − 1
2c2

�∏
8=1

∑
=6�8

1
(2=)!

(2=)!
=!

( ∑
-8−1<?6-8
j−3 (?)=1

2
?

)=
,

which does not exceed

(1 + Y0)
: − 1
c2 exp

{∑
?6G

1 + j−3 (?)
?

}
6 0.11:! (1, j−3) exp

{
log log G

}
.

Note that we have restrictions from Lemma 8.5 on the size of �8’s:
�∏
8=1

-
2�8
8
6
√
:. (8.16)

Computation for 5 ∈ (( 9)
The goal of this section is to show that the contribution from each exceptional set
(( 9) is small. Precisely, we will obtain the bound∑ℎ

5 ∈(( 9)
exp

{ ∑
?6- 9

_̃ 5 (?)√
?
, (?) −

∑
?6
√
- 9

1
?
, (?2) + 1.2 + 3

4
log 32:4

log - 9

}
6

:! (1, j−3) exp
{
−3�− 9−1�

32
log

�

8

}



102

for 1 6 9 6 � − 1. Note that here we ignore the contribution from the second
Dirichlet polynomial with coefficients _ 5 (?2). Applying Lemma 8.1 with G = - 9 ,
we get∑ℎ

5 ∈(( 9)
exp

{ ∑
?6- 9

_̃ 5 (?)√
?
, (?)

}
=

∑ℎ

5 ∈(( 9)

9∏
8=1

exp
{

1
2

∑
-8−1<?6-8

_̃ 5 (?)√
?
, (?)

}2
6

∑ℎ

5 ∈(( 9)

9∏
8=1

exp
{

1
2
�8 ( 5 )

}2 (� 9+1( 5 )
� 9+1

)2# 9+1
.

Performing the same computation as in the previous case, we bound the last expres-
sion by

(1 + Y( 9)0 )� 9+1
−2# 9+1

∑ℎ

5 ∈(:
(
Γ0 (2)

) (� 9+1( 5 )
)2# 9+1

9∏
8=1

(∑
;6�8

1
;!

(
1
2
�8 ( 5 )

) ;)2
6

(1 + Y( 9)0 )
(
� 9+1

−2# 9+1 ) ∑ℎ

5 ∈(:
(
Γ0 (2)

) [ 9∏
8=1

∑
<62�8

1
<!
·

∑
-8−1<?1,...,?<6-8

_̃ 5 (?1) . . . _̃ 5 (?<)√
?1 . . . ?<

, (?1) . . ., (?<)
]
·[ ∑

- 9<?1,...,?2#9+16- 9+1

_̃ 5 (?1) . . . _̃ 5 (?2# 9+1)
√
?1 . . . ?2# 9+1

, (?1) . . ., (?2# 9+1)
]
.

Since both the sums are over disjoint subsets of primes, we can again apply
Lemma 8.5. Then the last expression does not exceed

(1 + Y( 9)0 )�
−2# 9+1
9+1 · 2 : − 1

2c2

( 9∏
8=1

∑
=6�8

1
(2=)!

(2=)!
=!

( ∑
-8−1<?6-8
j−3 (?)=1

2
?

)=)
·

(2# 9+1)!
# 9+1!

( ∑
- 9<?6- 9+1
j−3 (?)=1

2
?

)# 9+1
.

Combining this inequality and Stirling formula, we get∑ℎ

5 ∈(( 9)
exp

{ ∑
?6- 9

_̃ 5 (?)√
?
, (?)

}
6 (1 + Y( 9)0 ) · 2

: − 1
2c2 ·

exp
{
−2# 9+1 log � 9+1 + 2# 9+1 log 2# 9+1 − 2# 9+1+

log
(
2# 9+1

)
+ 1

2
log 2c − # 9+1 log # 9+1 + # 9+1 +

∑
?6- 9

1 + j−3 (?)
?

} (
log 3 + 1

)# 9+1 ,
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which can be bounded by

:! (1, j−3) exp
{
−2# 9+1 log � 9+1 + # 9+1 log # 9+1+
# 9+1

[
2 log 2 − 1 + log(log 3 + 1)

]
+ log # 9+1 + log log - 9

}
.

Here we get new restrictions similar to (8.16):( 9∏
8=1

-
2�8
8

)
-

2# 9+1
9+1 6

√
:. (8.17)

We choose

log(-1)2�1 =
1

3
√

3
log
√
:,

log(-�)2�� =
1
9

log
√
:, log(-�−1)2��−1 =

1
9
√

3
log
√
:, . . . ,

log
(
- 9

)2� 9 =
1

(
√

3) �− 9+4
log
√
:, . . . , log(-2)2�2 =

1
(
√

3) �+2
log
√
:.

Then we get

�1 =
1

12
√

3
log :
log -1

=
� · 3�−1

12
√

3
,

�2 =
�

36
(√

3
) �−2

, . . . , � 9 =
�

36
(√

3
) �− 9

, . . . , �� =
�

36
,

#8 = b�8c =
⌊
�8

10

⌋
=

⌊
�

360
(√

3
) �−8⌋ for all 8 ∈ 2, �, 8 ≠ 9 + 1,

# 9+1 =

⌊
�

8
3�− 9−1

⌋
.

This gives the bound

:! (1, j−3) exp
{
−2

⌊
3�− 9−1�

8

⌋
log

(√
3
) �− 9−1

�

360
+

⌊
3�− 9−1�

8

⌋
log

⌊
3�− 9−1�

8

⌋
+

1.5
⌊
3�− 9−1�

8

⌋
+ log log - 9

}
6 :! (1, j−3) exp

{
−3�− 9−1�

16
log

�

8
+ log log - 9

}
if �/8 > exp{2 log 45 + 3}. Finally, we get∑ℎ

5 ∈(( 9)
exp

{ ∑
?6- 9

_̃ 5 (?)√
?
, (?) −

∑
?6
√
- 9

1
?
, (?2) + 1.2 + 3

4
log 32:4

log - 9

}
6

: · ! (1, j−3) exp
{
−3�− 9−1�

16
log

�

8
+ 6� · 3�− 9 max

{
1,

1
4

log 3
log :

}}
6

:! (1, j−3) exp
{
−3�− 9−1�

32
log

�

8

}
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as soon as
� > 8 exp

{
576 max

{
1,

1
4

log 3
log :

}}
.

Computation for 5 ∈ F ∩ P(<), 5 ∈ (( 9) ∩ P(<)
In this section, we take into account the contribution from the second Dirichlet
polynomial ∑

?6
√
G

_ 5 (?2)
?

, (?2)

and using the same trick, we will show that it is negligible for most 5 ∈ (: (Γ0(2)).
First, note that the main contribution comes from subsets 5 ∈ F ∩ P(<) for small
<. If 0 6 < < 250, we bound the second polynomial trivially:∑

?6
√
G

_ 5 (?2)
?

, (?2) 6
∑

?6
√

2<+1

3
?
+
+∞∑

==<+1

1
=2 6 17. (8.18)

Now suppose < > 250. Consider two cases:

1) < 6 2 log log G

Using partial summation and Ramanujan bounds |_̃ 5 (?) | 6 4, |_ 5 (?2) | 6 3, we get∑
?62<+1

_̃ 5 (?)√
?
, (?) +

∑
?62<+1

_ 5 (?2)
?

, (?2) 6 4 · 15
√

2<+1

log
(
2<+1

) 6 124 · 2
</2

<
.

We denote by - (<)
8

the largest -8 such that -8 6 2<+1 and by 8 = 8(<) the corre-
sponding index. We have∑ℎ

5 ∈F∩P(<)
exp

{∑
?6G

_̃ 5 (?)√
?
, (?) +

∑
?6
√
G

_ 5 (?2)
?

, (?2)
}
6

exp
{
124 · 2

</2

<

}
·

∑ℎ

5 ∈F∩P(<)
exp

{ ∑
2<+1<?6G

_̃ 5 (?)√
?
, (?) +

∑
=><

1
=2

}
6

exp
{
125 · 2

</2

<

}
·

∑ℎ

5 ∈F∩P(<)

( �∏
8=8(<)

exp
{ ∑
-8<?6-8+1
?>2<+1

_̃ 5 (?)√
?
, (?)

})
.

The last expression does not exceed

exp
{
125 · 2

</2

<

}
·
∑ℎ

5 ∈F

( �∏
8=8(<)

exp
{ ∑
-8<?6-8+1
?>2<+1

_̃ 5 (?)√
?
, (?)

})
·
(
%< ( 5 )
1/<2

)2"
.
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Repeating the same steps as in the previous section, we get

exp
{
125 · 2

</2

<

}
(1 + Y0)<4" ·∑ℎ

5 ∈(: (Γ0 (2))

[ �∏
8=8<

∑
=62�8

1
=!

∑
-8<?1,...,?=6-8+1

?>2<+1

_̃ 5 (?1) . . . _̃ 5 (?=)√
?1 . . . ?=

, (?1) . . ., (?=)
]
·

[ ∑
2<<?1,...,?2"62<+1

_ 5 (?2
1) . . . _ 5 (?

2
2")

?1 . . . ?2"
, (?2

1) . . ., (?
2
2")

]
. (8.19)

The corresponding subsets of primes in all sums in the last expression are disjoint
which means we can apply Lemma 8.5 with "0 = " . The bound we get is

exp
{
125 · 20</2

<

}
(1 + Y0)<4" · 2 : − 1

2c2 ·

exp
{ ∑

2<+1<?6G

1 + j−3 (?)
?

}
·
√

2c"4"
(2")!
"!

(
1

2<

)"
,

which does not exceed

(1 + Y0)2
: − 1
2c2 · ! (1, j−3) exp

{
125 · 2

</2

<
+ 4" log< + log log G−

log log 2<+1+0.5+" log 4+" log"+(log 16−1)"+log(4c)+2 log"−<" log 2
}
.

With the choice " = b2</2c, this can be further bounded by

:! (1, j−3) exp
{
−< + log log G

}
(8.20)

if < > 250. Note that the restriction from Lemma 8.5 is

log
(
2<+1

)2"
6

1
100

log
√
:

equivalent to

<
log 2

2
6

(
1 − >(1)

)
log log : =

(
1 − >(1)

)
log log(G)

which implies
< 6

2
log(2) log log G

which is satisfied by the choice of <.

2) < > 2 log log G
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Combining Cauchy inequality and Ramanujan bound |_ 5 (?2) | 6 3, we get∑ℎ

5 ∈F∩P(<)
exp

{∑
?6G

_̃ 5 (?)√
?
, (?) +

∑
?6
√
G

_ 5 (?2)
?

, (?2)
}
6

exp
{
3 log< + 0.5

}√
measP(<) ·

(∑ℎ

5 ∈F
exp

{
2
∑
?6G

_̃ 5 (?)√
?
, (?)

})1/2
. (8.21)

To estimate the measure of P(<), we use Markov inequality and Lemma 8.4, part
2):

meas(P(<)) 6
(

1
<2

)−4 ∑ℎ

5 ∈(: (Γ0 (2))

( ∑
2<6?<2<+1

_ 5 (?2)
?

, (?2)
)4
6

<8
∑ℎ

5 ∈(: (Γ0 (2))

∑
2<<?1,?2,?3,?462<+1

_ 5 (?2
1)_ 5 (?

2
2)_ 5 (?

2
3)_ 5 (?

2
4)

?1?2?3?4
, (?2

1) . . ., (?
2
4) 6

<8 · 2
√

2c · 16
: − 1
2c2 · 12

(
1

2<

)2
6 50: exp

{
8 log(<) − 2< log 2

}
.

To treat the second factor on the right hand side of (8.21), we apply Lemma 8.5 with
2< = 2</<! and end up with the expression

exp
{
3 log< + 0.5

}√
50: exp

{
4 log< − < log 2

}
·

√
0.11: · ! (1, j−3)2 exp

{
2 log log G

}
6

5.5: · ! (1, j−3)2 exp
{
−0.01< + log log G

}
. (8.22)

Note that the error from the Taylor expansion is

1 + Y0 = exp
{
2

�∑
8=1

exp
{
�8 − log(�8 + 1)! + (�8 + 1) log �8

}}
since we have exp{�8 ( 5 )} instead of exp{1/2�8 ( 5 )}, but the same upper bound

exp
{
2
∑�
8=1 4

−�8
}
is valid. Combining (8.18), (8.20), and (8.22), we get

∑
06<6 log G

2 log 2

∑ℎ

5 ∈F∩P(<)
exp

{∑
?6G

_̃ 5 (?)√
?
, (?) +

∑
?6
√
G

_ 5 (?2)
?

, (?2)
}
6

250 · 0.11:! (1, j−3) exp
{
17 + log log G

}
+

∑
<>250

:! (1, j−3) exp
{
−< + log log G

}
+∑

<>log log G
5.5:! (1, j−3) exp

{
−0.01< + log log G + log log log 3

}
6

:! (1, j−3) exp
{
21 + log log G

}
.
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The computation of the upper bound for the sum over 5 ∈ (( 9) ∩ P(<) is similar.
Here we apply Lemma 8.5 to the product of the form∑ℎ

5 ∈(:
(
Γ0 (2)

) ( 9∏
8=8(<)

exp
{1
2
�8 ( 5 )

}2
) (
� 9+1( 5 )
� 9+1

)2# 9+1 (%< ( 5 )
1/<2

)2"

and get an upper bound of the form∑
0<<6

log-9
2 log 2

∑ℎ

5 ∈(( 9)∩P(<)
exp

{ ∑
?6- 9

_̃ 5 (?)√
?
, (?)+

∑
?6
√
- 9

_ 5 (?2) − 1
?

, (?2) + 1.2 + 3
4

log 32:4

log - 9

}
6

:! (1, j−3) exp
{
21 − 3�− 9−1�

32
log

�

8

}
.

Computation for 5 ∈ ((0)
By Cauchy inequality, we get∑ℎ

5 ∈((0)
exp

{
log

��!1( 5 )!2( 5 )
��} 6

(
meas(((0))

)1/2
( ∑ℎ

5 ∈((0)
exp

{
2 log

��!1( 5 )!2( 5 )
��})1/2

.

For the second factor, we use the crude upper bound : (log :)7! (1, j−3) which can
be easily obtained using Soundararajan’s method. The details are given in the end
of this section. Thus, the whole sum does not exceed(

meas(((0))
)1/2 (

: (log :)7! (1, j−3)4
)1/2

. (8.23)

The upper bound for the first factor could be obtained by Markov inequality and
weak version of Lemma 8.4 part 1) (see (8.13)):

meas
(
((0)

)
6 �−2#1

1

∑ℎ

5 ∈(: (Γ0 (2))

( ∑
?6-1

_̃ 5 (?)√
?
, (?)

)2#1

6

:
(2#1)!
#1!

exp
{
#1

(
log #1 −

1
2

log log #1
)
− 2#1 log �1

}
. (8.24)

Then (8.23) does not exceed

: (log :) 7
2 ! (1, j−3)2 exp

{
−#1 log �1 + #1 log #1

}
. (8.25)
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Choose
#1 =

⌊
�1
2

⌋
=

⌊
�

240
√

3
3�−1

⌋
,

then (8.25) does not exceed

:! (1, j−3) · exp
{

7
2

log log : + 2 log log log 3 − �

5500
(log log G)log 3

}
6

:! (1, j−3) exp
{
− log log :

}
as soon as log log G = (1 + >(1)) log log : .

Finally, we get∑ℎ

5 ∈(: (Γ0 (2))
exp

{
log

��!1( 5 )!2( 5 )
��}6[ ∑

06<6 log G
2 log 2

( ∑ℎ

5 ∈F∩P(<)
+
�−1∑
9=1

∑ℎ

5 ∈(( 9)∩P(<)

)
+

∑ℎ

5 ∈((0)

]
exp

{
log

��!1( 5 )!2( 5 )
��}6

:! (1, j−3)
[
exp

{
21 + 1.2 + 3

4
log 32:4

log G

}
+

∑
16 96�−1

exp
{
21 − 3�− 9−1�

32
log

�

8

}]
+

: · ! (1, j−3) exp
{
− log log :

}
6

4.4 · 109:! (1, j−3) exp
{
6�max

{
1,

1
4

log 3
log :

}}
6

:! (1, j−3) exp
{
max

{
1,

1
4

log 3
log :

}
exp

{
600 max

{
1,

1
4

log 3
log :

}}}
.

To finish the section, we prove the bound∑ℎ

5 ∈(: (Γ0 (2))
exp

{
2 log

��!1( 5 )!2( 5 )
��}6 : (log :)7! (1, j−3)2

by Soundararajan’s technique. We rewrite the second moment as follows:∫ +∞

−∞
42+meas

{
5 ∈ (: (Γ0(2)) : log

��!1( 5 )!2( 5 )
�� > +}

3+

and split it into the sum of two integrals

�1 + �2 =
∫ 3 log log :

−∞
42+meas

{
. . .

}
3+ +

∫ +∞

3 log log :
42+meas

{
. . .

}
3+.

The first integral can be estimated directly:

�1 6
: − 1
2c2

∫ 3 log log :

−∞
42+3+ 6 : (log :)6 6 :

2
(log :)7! (1, j−3)2.
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The measure in the second integral is evaluated in the usual way. By Lemma 8.1

log
��!1( 5 )!2( 5 )

�� 6∑
?6G

_̃ 5 (?)√
?
, (?) +

∑
?6
√
G

_ 5 (?2) − 1
?

, (?2) + 1.2 + 3�max
{
1,

log 3
log :

}
with G = :2�/+ . Then

meas
{
5 ∈ (: (Γ0(2)) : log

��!1( 5 )!2( 5 )
�� > +}

6

meas
{
5 ∈ (: (Γ0(2)) :

∑
?6G

_̃ 5 (?)√
?
, (?) > +

4

}
,

as soon as+ > 3 log log G, but
∑
?6G _ 5 (?2)/? < (1+>(1)) ·3 log log G. Combining

Markov inequality and (8.13), we get

∑ℎ

5 ∈(: (Γ0 (2))

(
+

4

)−2# (∑
?6G

_̃ 5 (?)√
?

)2#
6

: − 1
2c2

(2#)!
#!

exp
{
−2# log(+/4) + # log # − 1

2
# log log #

}
.

With the choice # = b+/8�c the right hand side of the last inequality does not
exceed

:! (1, j−3) exp
{
− +

20
log log+

}
6 :! (1, j−3) exp

{
−10+

}
,

hence

�2 6 :! (1, j−3)
∫ +∞

3 log log :
42+−10+3+ 6 :! (1, j−3) 6

:

2
(log :)7! (1, j−3)

which completes the proof.
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C h a p t e r 9

VARIANCE ESTIMATES IN LINNIK’S PROBLEM

This chapter is devoted to the proof of Theorem 1.8 on the assumption of Theo-
rem 1.7. We start from considering the random model for points on the sphere. In
the second section of this chapter, we do a necessary spherical analysis to reduce
the problem to the estimation of the first of �! (2) !-functions.

9.1 Heuristics from random model
In this section, we compute the expected value and the variance of random uniformly
distributed points x1, . . ., x#= on the sphere inside a cap Ω= (x) centered at some
fixed point x. Denote by / (=;Ω= (x)) the number of points inside the cap. Then /
can be written as

∑#
8=1 b8 (x), where

b8 (x) =


1, if x ∈ Ω= (xi);

0, otherwise.

Note that one can think of random point x8 as of random rotation of the sphere
moving x to x8. Then the expected value of the number of points inside the cap can
be computed as follows:

� [/] =
∫
($ (3)

/ (=; 6Ω= (x))36 =
#=∑
8=1

� [b8] =
#=∑
8=1

∫
($ (3)

1x∈6Ω(x8)36 = f(Ω=)#=.

The variance is

+ (=,Ω= (x)) =
∫
($ (3)

(
/ (=, 6Ω=) − f(6Ω=)#=

)2
36 =

� [/2] − 2f(Ω=)#=� [/] + (f(Ω=)#=)2 = � [/2] − (f(Ω=)#=)2.

Next,

� [/2] =
#=∑
8=1

� [b2
8 ] +

∑
168, 96#=

8≠ 9

� [b8b 9 ] = f(Ω=)#= + f2(Ω=)#= (#= − 1)

since b8 and b 9 are independent. Thus,

+ (=;Ω=) = f(Ω=)#= − f2(Ω=)#= ∼ f(Ω=)#=

as soon as f(Ω=) � 1.
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9.2 Variance estimation
For fixed =, we choose a spherical cap Ω= of spherical radius d on the sphere
of radius

√
=, and denote the area of the cap by f(Ω=). Consider the point-pair

invariant

 (x, y) =


1, if y ∈ Ω= (x);

0, otherwise.

It has a Fourier series expansion of the form

 (x, y) =
+∞∑
<=0

ℎ(<)
2<+1∑
9=1

q 9 ,< (x)q 9 ,< (y).

The functions q 9 ,< form an orthonormal basis with respect to an inner product

〈 5 , 6〉 =
∫
(2
5 (x)6(x)3`(x),

and the coefficients ℎ(<) are given by Selberg-Harish-Chandra transform (see, [59]
or [42]):

ℎ(<) = 2c
∫ c

0
%< (cos \): (cos \) sin \3\.

Here
%< (G) =

1
2<<!

3<

3G<
(G2 − 1)<

are the Legendre polynomials and

: (cos \) =


1, if |\ | 6 d;

0, otherwise

is the point pair invariant written in the spherical coordinates.

Again, let us denote the lattice points as x1, . . . , x#= . We next compute the variance
as follows:

+
(
=,Ω= (x)

)
=

∫
(2

( #=∑
8=1

 (x, x8) − #=f(Ω=)
)2
3`(x) =∫

(2

( #=∑
8=1

+∞∑
<=0

ℎ(<)
2<+1∑
9=1

q 9 ,< (x)q 9 ,< (x8) − #=f(Ω=)
)2
3`(x).

Note that
#=∑
8=1

ℎ(0)q0,0(x)q0,0(x8) = #=f(Ω=).
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Indeed, one can easily verify that

ℎ(0) = 2c
∫ c

0
: (cos \) sin \3\ = 2c

∫ d

0
sin \3\ = 2c(1 − cos d) = 4cf(Ω=),

q0,0(x) =
1

2
√
c
.

Then we get

+
(
=,Ω= (x)

)
=

+∞∑
<1=1

+∞∑
<2=1

ℎ(<1)ℎ(<2)
2<1+1∑
91=1

2<2+1∑
92=1

,q 91 ,<1
(=),q 92 ,<2

(=)·∫
(2
q 91,<1 (z)q 92,<2 (z)3`(z),

where

,q 9 ,< (=) =
#=∑
8=1

q 9 ,< (x8)

is the Weyl sum. By the orthogonality of spherical harmonics, we deduce

+
(
=,Ω= (x)

)
=

+∞∑
<=1

ℎ2(<)
2<+1∑
9=1

��,q 9 ,< (=)
��2. (9.1)

Then by Jacquet-Langlands lift, we have��,q 9 ,< (=)
��2 6 2√=! ( 1

2 , 5 9 ,<
)
!
( 1

2 , 5 9 ,< ⊗ j−=
)

!
(
1, Sym2 5 9 ,<

)
for squarefree = with an absolute constant 2 > 0 independent of <, =, and q 9 ,<.

Next, we evaluate the expression
+∞∑
<=1

ℎ2(<)
2<+1∑
9=1

2
√
=!

( 1
2 , 5 9 ,<

)
!
( 1

2 , 5 9 ,< ⊗ j−=
)

!
(
1, Sym2 5 9 ,<

)
from above separately for small and large values of <. Let

" :=
1√

f(Ω=)
exp

{
− log =

log log =
+ 1

2
logf(Ω=)
log log =

}
. (9.2)

First, consider the case < 6 " . By Hilb’s formula (see [42] or [90, Theorem
8.21.6]),

%< (cos \) =
√

\

sin \
�0

((
< + 1

2

)
\

)
+


$ (\2) for < 6 1

\
,

$Y

( √
\

<3/2

)
for < > 1

\
> 1

c−Y

(9.3)
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for fixed Y > 0, 0 < \ < c − Y, and

�0(G) =


1 +$ (G2) for |G | 6 1,√

2
c |G | cos

(
|G | − c

4
)
+$

( 1
|G |3/2

)
for |G | > 1.

(9.4)

For < 6 " with the chosen value of " , we get < � (f(Ω=))1/2 ∼ 1/d, and hence
by (9.3)

ℎ(<) = 2c
∫ d

0
%< (cos \) sin \3\ =∫ d

0

√
\

sin \
�0

((
< + 1

2

)
\

)
sin \3\ +$

(∫ d

0
\2 sin \3\

)
,

and since (< + 1/2)\ 6 (" + 1/2)d � 1 by (9.4), we get

ℎ(<) �
∫ d

0

√
\ sin \3\ +$

(∫ d

0
<2\2√\ sin \3\

)
+$

(∫ d

0
\2 sin \3\

)
�

d2 +$ (<2d4) +$ (d4) � f(Ω=).

Together with the conditional pointwise bound,

!
( 1

2 , 5 9 ,<
)
!
( 1

2 , 5 9 ,< ⊗ j−=
)

!
(
1, Sym2 5 9 ,<

) � exp
{

log<=
log log =

}
that finally gives

∑
<6"

ℎ2(<)
2<+1∑
9=1

2
√
=!

( 1
2 , 5 9 ,<

)
!
( 1

2 , 5 9 ,< ⊗ j−=
)

!
(
1, Sym2 5 9 ,<

) �

√
= exp

{
log"=
log log =

} ∑
<6"

<ℎ2(<) �
√
= exp

{
log"=
log log =

}
f(Ω=)2"2. (9.5)

Now consider the case < > " . Applying Theorem 1.7, we get

∑
<>"

ℎ2(<)
2<+1∑
9=1

2
√
=!

( 1
2 , 5 9 ,<

)
!
( 1

2 , 5 9 ,< ⊗ j−=
)

!
(
1, Sym2 5 9 ,<

) �

√
=

∑
<>"

ℎ2(<) (2< + 2)! (1, j−=) exp
{
* (=, ")

}
which can be further bounded from above by

2
√
=! (1, j−=) exp

{
* (=, ")

} +∞∑
<=1

ℎ2(<) (2< + 1).
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Next, apply the formula

+∞∑
<=1

ℎ2(<) (2< + 1) = f(Ω=)

which follows from the following computation:

f(Ω= (x)) =
∫
(2

(
1z∈Ω(x) (z)

)2
3`(z) =∫

(2

( +∞∑
<=0

ℎ(<)
2<+1∑
9=1

q 9 ,< (z)q 9 ,< (x)
)2
3`(z) =∑

<1,<2
91, 92

ℎ(<1)ℎ(<2)q 91,<1 (x)q 92,<2 (x)
∫
(2
q 91,<1 (z)q 92,<2 (z)3`(z) =

+∞∑
<=0

ℎ2(<)
2<+1∑
9=1

1 =
+∞∑
<=0
(2< + 1)ℎ2(<).

Thus, together with (9.5), it gives

+∞∑
<=1

ℎ2(<)
2<+1∑
9=1

2
√
=!

( 1
2 , 5 9 ,<

)
!
( 1

2 , 5 9 ,< ⊗ j−=
)

!
(
1, Sym2 5 9 ,<

) �

√
= exp

{
log"=
log log =

}
f(Ω=)2"2 + 2

√
=! (1, j−=) exp

{
* (=, ")

}
f(Ω=).

Hence

+ (=,Ω=) �
√
=f(Ω=)

(
f(Ω=)"2 exp

{
log"=
log log =

}
+ ! (1, j−=) exp

{
* (=, ")}

)
.

With the choice of " given by (9.2), we have

f(Ω=)"2 exp
{

log"=
log log =

}
� 1.

Next, if f(Ω=) = =−� for some fixed real number � > 0, the bound of Theorem 1.7
gives

* (=, ") �� 1.

Then, finally
+ (=,Ω=) �

√
=f(Ω=)! (1, j−=) = f(Ω=)#=

as desired.
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