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Chapter 1

Introduction

While the astrophysics community is on the brink of detecting the first gravitational-wave

signal [1, 2, 3], efforts continue to improve the existing detectors and develop new technolo-

gies for future-generation detectors. In parallel, the need is rapidly growing for improved

analyzes and interpretations of the science data that comes from the detectors. This thesis

contributes to these issues with research results related to (i) the design of possible upgrades

for the Advanced detectors for the ground-based Laser Interferometer Gravitational-wave

Observatory (AdvLIGO) [4, 5, 6, 7] (i.e. for improved versions of the initial LIGO detectors

[9, 10]), and (ii) future data analysis techniques for the Laser Interferometer Space Antenna

(LISA) [11, 12] (a planned space-based gravitational-wave mission). More specifically:

Currently, an international array of first-generation ground-based, laser-interferometer

gravitational-wave detectors (consisting of LIGO, VIRGO [13, 14], GEO600 [15, 16] and

TAMA300 [17]) is actively searching for gravitational waves in the frequency band (10 Hz

– 10 kHz), with peak sensitivity at a few hundred Hertz. On September the 30th, 2007,

the initial LIGO interferometers finished their Science Run 5 (S5) [18], which collected one-

year of triple coincidence data at the interferometers’ design sensitivity. The next version

of LIGO’s interferometers, called Enhanced LIGO [19], with amplitude sensitivity improved

by a factor about 2 (event rate increased by a factor 23 ' 10), is being implemented and will

collect data in science mode in 2009-10. Advanced LIGO is expected to begin operations

around 2013. At the end of commissioning, it will have a factor ten better amplitude

sensitivity than initial LIGO, which translates to a thousand-fold increase in event rate.

Therefore, just a few hours of observations by AdvLIGO will be worth the entire lifetime

of initial LIGO. Another significant advantage of the Advanced LIGO design is that it will
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allow tuning of the sensitivity as a function of frequency, so as to optimize searches for

specific astrophysical sources with specific expected spectra.

LISA, the first system of space-based gravitational-wave interferometers, is planned for

launch and science operation in 2018 or perhaps somewhat later, depending on political

developments. It will operate with peak sensitivity around a few milliHertz and should

detect galore of signals simultaneously. The lifetime of the mission is expected to be around

five years.

his thesis consists of four chapters: this introductory chapter, two chapters (2 and 3)

dealing with research relevant to the technology for a possible upgrade of Advanced LIGO,

and one chapter (4) relevant to data analysis for LISA. Specifically: Chapter 2 elucidates

the influence of the shape (power profile) of an interferometer’s arm-cavity light beams on a

tilt instability, in which the tilt of an arm cavity mirror is driven by light pressure. Chapter 3

proves a duality relation between arm cavities with almost flat mirrors (as originally planned

for AdvLIGO) and cavities with almost concentric spherical mirrors (a design change that

has been made, to control the tilt instability). I discovered and used this duality relation

numerically in the research reported in Chapter 2, but only later, in collaboration with

others, did I prove the duality relation analytically (Chapter 3). Chapter 4 reports details

of and results from a Mock LISA Data Challenge in which gravitational wave signals from

(mock) supermassive black-hole binaries were sought and found in simulated LISA data.

1.1 Tilt instability in Advanced LIGO: Chapter 2

Chapter 2, on the tilt instability, is a paper written by me and Prof. Sergey Vy-

atchanin from the Moscow State University, and published in Physical Review

D [20]. Prof. Vyatchanin proposed the theoretical model that we use for evalu-

ating the strength of the instability for nearly flat mirrors with a specific shape:

the “Mexican hat”. After correcting some minor errors, I extended Vyatchanin’s

model to non-spherical mirrors with arbitrary shapes, and I developed a numer-

ical solver to evaluate the instability’s strength as a function of mirror shape

(or, equivalently, of the shape of the cavity’s light beam), focusing primarily

on Mexican-hat shapes. I then used my numerical solver to derive the results

reported in this chapter. I wrote the prose in the paper and I am responsible
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for any typos and inaccuracies.

Advanced LIGO is designed to operate near the standard quantum limit for displacement

measurements. In order to achieve this level of sensitivity, the circulating power inside the

optical cavity must be increased from about 10 kW in initial LIGO to almost 1MW in Ad-

vanced LIGO. Unfortunately, such high power will also lead to several types of instabilities,

among which an instability due to tilts of the mirrors [21, 22, 23]: We study and calculate

the strength of optical-pressure torques in LIGO’s Fabry-Perot arm cavity, as a function

of the mirror and light-beam shapes. Specifically, we compare analytical and numerical

results between cavity configurations with spherical and Mexican-hat mirror shapes that

are either nearly flat or nearly concentric. (Advanced LIGO uses nearly flat or nearly con-

centric mirrors, so as to make the beam spots on the mirrors significantly larger than the

diffraction-dictated minimum size; large beams are key to reducing thermal noises — see

below. Mexican-hat mirrors have been proposed as a possible upgrade of Advanced LIGO,

to reduce thermal noises.)

1.1.1 Tilt instability in optical cavities with spherical mirrors

Braginsky and Manukin [21] were the first to identify the tilt instability and point out that

it might be a serious issue in the high-powered arm cavities of AdvLIGO. Sidles and Sigg

[22, 23] used a geometric approach to calculate the instability’s optical torques for cavities

with spherical mirrors. They showed that, when the mirrors are tilted in an antisymmetric

way, the resulting torques are stabilizing, but a symmetric tilt destabilizes the mirrors.

They also showed that nearly concentric mirror configurations are less unstable than nearly

flat configurations with the same diffraction losses, and therefore, are favored for the design

of AdvLIGO. Using a geometric approach, Sidles and Sigg calculated the optical-pressure

torque on the mirrors, to first-order in tilt angle θ, to be:

T =
2PL

c

θ

(1 − g)
, (1.1)

where P is the total circulating power, L is the length of the cavity, and g - is the g-factor

of the cavity (g = 1 − L/R, with R the mirrors radius of curvature).
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In Section 2.4 we generalize this result using modal analysis and first-order perturbation

theory in θ for mirrors with arbitrary shapes. In particular we study cavities with Mexican-

hat mirrors and the mesa beams which they support.

1.1.2 Mexican-hat mirrors and Mesa beams

Mexican-hat mirrors, which support mesa-shaped beams in optical cavities, were proposed

by O’Shaughnessy and Thorne [24, 25] as a way to reduce thermoelastic noise in Advanced

LIGO. This was in an era when the AdvLIGO baseline design included sapphire substrates

for the mirrors, in which thermoelastic noise was severe at the AdvLIGO sweet spot (f ≈
40 − 200 Hz). Thermoelastic noise is due to random heat flows in the test masses where

cold regions contract and hot regions expand, producing imperfections on the surface of the

mirrors. As these imperfections do not cancel completely when averaged over the intensity

profile of a Gaussian beam, there is a residual that mimics a signal. This residual could be

lowered significantly if the intensity profile of the laser beam is uniformly distributed over

the mirror surface. At the same time, the light must be confined towards the center of the

mirrors in order to decrease power leakage, so when the uniform distribution ends, the light

intensity must decay rapidly toward the edges of the mirrors. O’Shaughnessy and Thorne

developed a method to mathematically generate beams that have these properties, called

“mesa beams”. Because of their shape, the mirrors that support mesa beams are called

Mexican-hat mirrors.

More recently, the baseline design for Advanced LIGO has been changed from sapphire to

fused-silica substrates, in which thermoelastic noise is less severe, and a number of different

thermal noises are of roughly equal importance. Studies by Lovelace and others (see details

and references in Lovelace’s paper [26]) show that all the thermal noises can be reduced

significantly by switching from spherical mirrors with their Gaussian beams to Mexican-hat

mirrors with their Mesa beams, so the study in Chap 2 of the tilt instability for spherical

and Mexican-hat mirrors remains important for the new baseline, as it was for the old.

Also more recently, Bondarescu and Chen [27] and others [28, 29] have conceived new

mirror shapes that reduce thermal noises even more than Mexican-hat mirrors. Studies of

the tilt instability are currently being performed for these new shapes [30].
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1.1.3 Tilt Instability in optical cavities with Mexican-hat mirrors

Because cavities with nearly concentric mirrors are much less unstable under tilt than cav-

ities with nearly flat mirrors, and Mexican-hat mirrors reduce thermal noise, it looks like

the optimal combination would be a cavity with nearly concentric Mexican-hat mirrors.

Thorne [31] suggested a method to mathematically design this kind of mirror by propagat-

ing concentric Gaussian beams and matching their wave-fronts. In Chapter 2 we develop

a numerical scheme to implement this (and many other) mirrors shapes, and solve for the

eigenmodes of the cavities. The properties of the mirrors and the supported beams are

described in Section 2.5. We also resolve analytically the eigenmodes of the perturbed

(tilted-mirror) cavities and calculate the optical torques induced by tilt. We compare our

results to well-known theoretical results and those of Sidles and Sigg for cavities with spheri-

cal mirrors and we show that nearly flat Mexican-hat mirrors are significantly more unstable

to tilt than nearly concentric Mexican-hat mirrors, and spherical mirrors, both nearly flat

and nearly concentric. We conclude that optical cavities with nearly concentric Mexican-

hat mirrors not only have thermoelastic noise lower by a factor of 3 than the corresponding

spherical mirrors; they are also less unstable to tilt. In other words: of all the mirrors

we consider, the nearly concentric Mexican-hat ones have the best thermal noise and tilt

instability performance.

1.2 A duality relation between non-spherical optical cavities:

Chapter 3

Chapter 3 is a paper by Juri Agresti, Yanbei Chen, Erika D’Ambrosio, and

me, which has been submitted to Physical Review D. A pre-print of the paper is

available in the arXiv database [32]. I discovered the duality relation numerically

in my studies of higher order modes of cavities with Mexican-hat mirrors. In

further numerical explorations, I saw the duality and discovered its details for the

eigenspectra of cavities with arbitrarily shaped mirrors. Based on this numerical

work, in the paper that constitutes Chap. 2 of this thesis, I formulated this

duality relation as a conjecture. Chapter 3 gives two analytic proofs of my

duality relation. Yanbei Chen proposed the idea behind one of the proofs, based

on the cavity’s center-to-center propagator. I worked out the full details of the
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proof and Chen and I together wrote the prose in Sections 3.1, 3.3, and 3.5.

Independently, Juri Agresti and Erika D’Ambrosio from the LIGO Laboratory

at Caltech carried out the other proof based on properties of the mirror-to-mirror

propagator. They wrote the text in Sections 3.2 and 3.4.

As part of my study of the tilt instability in optical cavities, my analysis of resonating,

higher-order optical modes showed a unique one-to-one mapping between the eigenstates

and the eigenvalues of cavities with nearly flat and those with nearly spherical, concentric

mirrors — when the deviations from flatness in the one case, and concentric sphericity in

the other are identical but of opposite sign. I first saw the mapping when the deviations

from flatness or concentric sphericity had the O’Shaugnessy-Thorne Mexican-hat shape.

At first, it appeared that the mapping was a property of these specific types of mirrors,

as their shapes were constructed mathematically in a very special way: by propagating

parallel or concentric Gaussian beams. However, a deeper investigation showed me that the

mapping holds for any dual cavities — i.e., pairs of cavities whose mirrors have arbitrary

(not necessary small), identical but sign-reversed deviations from flatness and concentric

spheres. In Chap. 2, I expressed the mapping I discovered as the following conjecture:

1.2.1 Conjecture

If a symmetric, optical cavity has mirrors that deviate from flatness by the axisymmetric

height function height h(|~r |), its dual cavity has mirrors that deviate from concentric spheres

by −h(|~r |). Or equivalently,

hF (|~r |) + hC(|~r |) = r2/2R = r2/L, (1.2)

where L is the length of the cavity, and R = L/2 is the radius of curvature of the concentric,

spherical mirrors. The subscripts F and C stand for the deviating-from-flat and deviating-

from-concentric cavity configurations respectively. I conjectured that dual cavities support

eigenmodes which have the same intensity profiles evaluated at the mirrors

|uF
nm|2 = |uC

nm|2, (1.3)
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and that their eigenvalues are related by the following formula:

λF
nm = (−1)m+1(λC

nm)∗, (1.4)

for any mode labeled by a pair of integers n,m = 0, 1, 2, . . ., and parity (−1)m.

This duality relation is important for Advanced LIGO because of the recent baseline

change from nearly flat to nearly spherical mirrors. Any proposed mirror configuration

(e.g. Mexican-hat [24, 25] or Bessel-Gaussian [27]) in the nearly flat regime has a dual

configuration in the nearly concentric-spherical regime, whose eigenmodes are the same

(aside from the above minor changes), and whose thermal noises will be the same (because

of identical intensity profiles), but whose tilt instability will be very different.

1.2.2 Analytical proof, generalization and applications

In Chapter 3 (with colleagues) I prove my conjecture analytically, and we also derive for-

mulas for the mapping between the complex optical fields of the dual cavities, both on the

surfaces of the mirrors and at the centers of the cavities.

In Chapter 3, we present two proofs of my duality relation. The first proof was motivated

by the method used to construct, mathematically, the Mexican-hat mirrors. Specifically, the

generation of an arbitrary, nearly flat cavity configuration involves a spatial translation of

superposed Gaussian beams, whereas the nearly concentric-spherical configuration involves

a rotation of the superposed Gaussian beams, or equivalently, translation in momentum

~k -space. The fact that the position and momentum space in quantum mechanics are re-

lated by a Fourier transform helped us show that the eigenequations which describe the

propagation of light inside the two dual cavities are connected by a similar two-dimensional

Fourier transform, and this led to the duality relations (1.3) and (1.4). The second proof

in Chapter 3 is based on simple geometric considerations and the properties of the operator

that propagates the light from mirror to mirror. In Chap. 3 we also present a detailed

derivation of the optical fields in the case of Mexican-hat mirrors and some applications of

my duality relation to possible upgrades for Advanced-LIGO design.
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1.3 Grid-based search for supermassive black-hole binaries

in simulated LISA data: Chapter 4

The text in Chapter 4 was written by me, as input for a joint paper by a

JPL/Caltech group working on Mock LISA Data Challenges (MLDC). The other

authors of the joint paper will be Jeff Crowder, Curt Cutler, Ilya Mandel, and

Michele Vallisneri. My responsibility in our joint project was to improve and

build on the second stage of our group’s three-stage wave-search pipeline. I wrote

the code for parallel supercomputer structures for our grid-based search in the

MLDC data. I implemented into the second stage of the pipeline the F-statistics

tools (written by C. Cutler and M. Vallisneri) and the sky-map discretization

grid (written by me). This second stage of the pipeline was originally designed to

use initial data from the first stage (the time-frequency analysis) and to pass the

results to a final, third stage (a Markov-Chain-Monte-Carlo search). The code

I wrote achieves its goals as the second stage of this three-stage pipeline, and

it can also be used as a standalone search method for supermassive black-hole

(SMBH) binaries in the LISA data — as I show in Chapter 4.

The Laser Interferometer Space Antenna (LISA), a proposed joint NASA / ESA space

mission, is designed to study the universe using gravitational waves in the (10−5 − 10−1)

Hz range [33]. LISA’s raw science output will be time series consisting of a large number

(≈ 104) of resolvable overlapping sources, ranging from galactic stellar- mass binary systems

to high-redshift supermassive black holes.

LISA has the potential of discovering new classes of sources, such as GW primordial

stochastic backgrounds, cosmic strings and exotic compact objects [34]. Most sources de-

tectable by LISA are long lived compared to the mission lifetime (> 3 yr), and the data

will contain strong GW foregrounds generated by abundant populations of galactic and

extra-galactic white-dwarf binary systems and possibly stellar-mass compact objects (white

dwarfs, neutron stars, and black holes) slowly spiraling into massive black holes in galactic

nuclei. Some of the gravitational wave signals (such as waves from these “extreme mass-

ratio inspirals”) are very complex functions of their sources’ physical parameters; others

(such as those from Galactic white-dwarf binaries) are simpler, but their resolution will be
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confused by the presence of many other similar signals overlapping in frequency space.

Although much experience has been gained in the analysis of GW data collected by

ground-based detectors, that effort has not taught us anything about how to deal with many

overlapping sources. This is because, in the ∼ 100 Hz band of ground-based observations,

signals are expected to be rare and weak, whereas in LISA’s ∼ 0.001 Hz band we expect

numerous overlapping sources, some with high signal-to-noise ratios (SNR). This difference

makes it important, as a preparation for the LISA mission, to tackle the new data analysis

problems that arise from overlapping sources.

1.3.1 The Mock LISA Data Challenge

The Mock LISA Data Challenge [35, 36] is a program to encourage the development of

new methods of data analysis for LISA. It was organized under the auspices of the LISA

International Science Team’s Working Group on Data Analysis. Each round of challenges

consists of several data sets containing simulated instrument noise and gravitational-wave

signals from sources with undisclosed parameters. Participants are asked to analyze the

data sets, report their best parameter estimates and describe their search methods. The

results are then compiled and compared to the true parameters. The challenges are being

released from JPL in rounds of increasing complexity and realism. They are organized by

gravitational-wave source type, including the following source classes: Binaries of neutron

stars, white dwarfs, ordinary stars, or black holes in our Galaxy; massive black hole (MBH)

mergers occurring where distant galaxies have interacted; and extreme mass ratio inspirals

(EMRIs), in which a stellar-mass compact object spirals into a massive black hole at the

center of a distant galaxy.

1.3.2 A Three-stage search for supermassive black hole binaries in MLDC

The JPL/Caltech group has developed a pipeline to search for inspiriling supermassive

black-hole (SMBH) binaries in the MLDC. I am member of the group and have worked on

Challenge 2, issued in January 2007 with results due at the end of June 2007, and Challenge

1B, issued in August 2007 and due in December 2007. Our pipeline consists of three stages.

The first stage uses a time-frequency track-search method to search for inspiral signals and

provide a coarse estimate of the black-hole masses m1,m2 and of the coalescence time of the

binary tc. The second stage uses a simultaneous matched-filtering search in the parameter
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space of the masses (m1,m2), the sky-position (θ, φ), and the coalescence time tc. By using

the F-statistic, discussed in Section 4.3, we automatically extremize the log likelihood over

the five extrinsic parameters of the binary. Finally, the third stage is a Markov-Chain-

Monte-Carlo (MCMC) search used to estimate all nine physical parameters of the binary

with higher accuracy. To reduce convergence times, the pipeline is designed so that in the

last two stages, the search in the multi-parameter space starts from a point determined

from the previous stage.

The results discussed in Chapter 4 are from the grid-based search alone. In all seven data

sets, the search converges to the key parameters. As the results show, the grid-based search

is capable, without any initial data for the parameters, to resolve the signal. However, in

the future, it will probably be used to pass the parameter estimates as initial data to the

MCMC search which is a superior method when searching in a neighborhood of the true

parameters.

Detailed overview and results from the individual challenges can be found in the arXiv

database [37, 38] and the MLDC official web site [39].
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Chapter 2

Tilt Instability of Mesa-Beam and Gaussian-Beam

Modes for Advanced LIGO

Sidles and Sigg have shown that advanced LIGO interferometers will encounter

a serious tilt instability, in which symmetric tilts of the mirrors of an arm cavity

cause the cavity’s light beam to slide sideways, so its radiation pressure exerts

a torque that increases the tilt. Sidles and Sigg showed that the strength T of

this torque is 26.2 times greater for advanced LIGO’s baseline cavities — nearly

flat spherical mirrors which support Gaussian beams (“FG” cavities), than for

nearly concentric spherical mirrors which support Gaussian beams (“CG” cav-

ities) with the same diffraction losses as the baseline case: T FG/TCG = 26.2.

This has motivated a proposal to change the baseline design to nearly concen-

tric, spherical mirrors. In order to reduce thermal noises in advanced LIGO,

O’Shaughnessy and Thorne have proposed replacing the spherical mirrors and

their Gaussian beams by “Mexican-Hat” (MH) shaped mirrors which support

flat-topped, “mesa” shaped beams. In this paper, we compute the tilt-instability

torque for advanced-LIGO cavities with nearly flat MH mirrors and mesa beams

(“FM” cavities) and nearly concentric MH mirrors and mesa beams (“CM” cav-

ities), with the same diffraction losses as in the baseline FG case. We find that

the relative sizes of the restoring torques are T CM/TCG = 0.91, T FM/TCG = 96,

TFM/TFG = 3.67. Thus, the nearly concentric MH mirrors have a weaker tilt

instability than any other configuration. Their thermoelastic noise is the same

as for nearly flat MH mirrors, and is much lower than for spherical mirrors.



16 2 Tilt Instability of Mesa-Beam and Gaussian-Beam Modes for Advanced LIGO

2.1 Introduction

Thermal noises in mirror substrates and mirror coatings are the dominant noise sources

for advanced LIGO at and somewhat below the frequency of optimal sensitivity. When

sapphire mirrors were planned for advanced LIGO, the dominant thermal noise was ther-

moelastic substrate noise, and O’Shaughessy and Thorne [1, 2] proposed lowering that noise

by flattening the cross-sectional profile of the arm cavities’ light beams — i.e., by replacing

the standard Gaussian-shaped beams by “mesa”-shaped beams (thick curves in Fig. 2.2

below). This can be achieved by replacing LIGO’s nearly flat, spherically shaped mirrors

by mirrors that have a nearly flat ”Mexican-hat” (MH) shape. More recently, fused sil-

ica has been selected as baseline mirror material, and thermoelastic substrate noise is no

longer dominant. However, the other three forms of thermal noise (Brownian substrate,

Brownian coating, and thermoelastic coating) are also substantially reduced by switching

from Gaussian beams and spherical mirrors to mesa beams and Mexican-hat mirrors, so

mesa beams remain an attractive possibility for advanced LIGO and/or for other future

interferometers. For detailed computations of the noise reductions achieved by using mesa

beams, see O’Shaughessy, Strigin and Vyatchanin [1, 2, 3], Agresti [4, 5, 6] and Lovelace

[7].

Sidles and Sigg[8, 9] have recently rediscovered a tilt instability in Fabry-Perot (FP)

cavities, first pointed out by Braginsky and Manukin [10], and they have shown that this

instability is a serious issue for advanced LIGO’s arm cavities, because of their high cir-

culating light power (about 800 kW) and resulting high light pressure. In this instability,

random forces cause the cavity’s mirrors to tilt in a symmetric way1 (Fig. 2.1b), and this

tilt causes the light beam to slide sideways in the cavity by the distance δxsym shown in

the figure, so its light pressure exerts a torque T on the mirrors that tries to increase their

tilt. [Sidles and Sigg also showed that, when the mirrors are tilted in an antisymmetric

way as in Fig. 2.1c, the resulting torque is stabilizing rather than destabilizing.] Sidles

and Sigg analyzed the tilt instability, using geometric arguments, for cavities with nearly

flat, spherical mirrors and their Gaussian light beams (“FG” cavities), and also for nearly

1Sidles and Sigg [8, 9] use the opposite convention from us for “symmetric and “antisymmetric” tilt.
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Figure 2.1: Horizontal section of FP resonator with (a) perfectly positioned spherical mir-

rors, (b) symmetrically tilted spherical mirrors and (c) antisymmetrically tilted spherical

mirrors
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concentric, spherical mirrors and their Gaussian beams (“CG” cavities). [The mirrors must

be nearly flat or nearly concentric in order to make the light beams significantly larger than

the Fresnel diffraction size, b =
√

λL/2π with λ the light’s wavelength and L the cavity

length; large beams are required to keep the thermoelastic noise small.] Sidles and Sigg

found that the instability is much more severe for the baseline FG cavities than for CG

cavities with the same beam radii at the mirrors and thence the same diffraction losses. On

this basis, the baseline design for advanced LIGO [11] has been changed from FG cavities

with nearly flat mirrors to CG cavities with nearly concentric mirrors.

Motivated by this Sidles-Sigg work, Thorne has proposed a mathematical way to design

nearly concentric MH mirrors that support mesa beams with precisely the same mesa-

shaped light-power distributions on the mirrors as for the original nearly flat MH mirrors.

Thorne’s mathematical construction is presented, along with some generalizations of it, in

a companion paper by Bondarescu [12].

In the present paper, we analyze the tilt instability for advanced-LIGO arm cavities with

(i) nearly flat MH mirrors and their mesa beams (“FM” cavities), and (ii) with Thorne’s

new nearly concentric MH mirrors and their mesa beams (“CM” cavities). We employ

first-order perturbation theory in our analysis, by contrast with the Sidles-Sigg geometric

techniques. We compare the strength of the tilt’s destabilizing torque T for FG, FM, CG,

and CM cavities that have beam sizes chosen so they all have the same diffraction losses,

about 20 ppm; and we explore two choices for the radius of the mirror coating on the

substrates: the baseline radius (14.7 cm), and a larger coated radius (16 cm) used in the

analysis of d’Ambrosio et. al. [1, 2] [their fiducial configuration].

In our numerical solutions to the eigenequation for the light’s eigenmodes inside FM

and CM cavities, we discovered remarkable duality relations between cavities with axisym-

metric mirrors that deviate by an amount H(r) from flatness, and cavities with mirrors

that deviate by −H(r) from concentric spheres. We verified these numerically discovered

duality relations for several different forms of H(r), in addition to those of MH mirrors.

This motivated Chen and Savov, and independently Agresti and d’Ambrosio [13] to devise

analytic proofs of our duality relations. The duality relations provide a unique one-to-one

mapping between the eigenstates and eigenvalues of the dual cavities — a mapping that

may be useful not only for advanced LIGO but in a variety of other applications of Fabry

Perot cavities.
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This paper is organized as follows. In Sec. II, we use a first-order modal analysis of a

Fabry-Perot cavity to derive a general formula for the torque exerted on the mirrors when

the cavity is perturbed, in terms of as-yet unknown mode coupling coefficients αk and mode-

overlap integrals Ik. In Sec. III, we use first-order perturbation theory of Gaussian-beam

(FG and CG) cavities to derive analytical formulas for αk and Ik, and thence for the tilt-

induced torque T in the FG and CG cases, and we show that our formula for the torque

is equivalent to that of Sidles and Sigg [8, 9]. In Sec. IV we use first-order perturbation

theory to derive formulas for the coupling coefficients αk, and thence for the torque T , in

terms of a cavity’s eigenvalues and mode-overlap integrals Ik. In Sec. V we present our

numerical results for the modes and their eigenvalues for FM, CM, FG, and CG cavities,

and we discuss the duality relations between the nearly flat and nearly concentric cases.

Finally, in Sec. VI, we combine the numerical results of Sec. V with the formulas of Secs.

III and IV, to deduce the tilt-induced torque for our four cavity designs — using two sets

of parameters: those for cavities with advanced-LIGO baseline mirror radii, and those for

d’Ambrosio et. al.’s slightly larger mirrors (“fiducial” configurations). We present a brief

conclusion in Sec. VII. For the readers interested in our numerical implementation of the

eigenvalue problem, we include an Appendix where we sketch details of our computational

work.

The results presented in this paper are based on previous work on nearly flat configu-

rations by S. Vyatchanin [14] (some errors in this paper are corrected here) combined with

recent analyses of nearly concentric cavities by P. Savov. An analytical proof of the duality

relation between nearly flat and nearly confocal resonators by P. Savov and Y. Chen, and

independently by E. D’Ambrosio and J. Agresti, will be provided in a companion paper

[13].

2.2 Main formulas

The light inside LIGO arm cavities is well-described by the laws of diffraction optics in

the paraxial approximation. The eigenvalue problem in this approximation for a half trip

through a cavity with two identical axisymmetric mirrors can be written as

∫

G(~r1, ~r2)u(~r2) d
2~r2 = λu(~r1). (2.1)
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In the above equation u(~r) is an eigenmode of the cavity and λ is the corresponding eigen-

value. The eigenmode represents the state of the light (the electric field) on the surface of

a mirror.

For advanced LIGO diffraction losses will be very small (about 10 ppm for each half

trip), so it is an excellent idealization to ignore the losses and idealize the mirrors as infinite

in radius. Then, |λ| = 1, G is a unitary operator, and its eigenvectors form a complete set.

Each eigenmode unm and the corresponding eigenvalue λnm are labeled by two (quantum)

numbers — radial (or principle) number n = 0, 1, . . . and angular (or azimuthal) num-

ber m = 0, 1, . . .. All modes with angular number m = 0 are axisymmetric (no angular

dependence), m = 1 are dipolar, m = 2 are quadrupole, etc.:

unm ∝ e−imϕ. (2.2)

The eigenmodes are normalized and orthogonal to each other according to the following

definition:
∫

un1m1(~r)u
∗
n2m2

(~r) d2~r = δn1n2 δm1m2 . (2.3)

We will use this set of eigenvectors as a basis for expanding the eigenmodes of cavities with

tilted mirrors. The radial coordinate r is dimensionless and measured in units of the Fresnel

diffraction size

b =
√

Lλ/2π. (2.4)

When the mirrors of a FP cavity are tilted in a symmetric way (as in Fig. 2.1b), the

cavity’s fundamental mode u00(~r) is transformed into the fundamental mode ũ00(~r) of the

perturbed cavity. The torque acting on the mirrors when the light is in this mode and has

power P is

T =
2Pb

c

∫
∣
∣ũ00(~r)

∣
∣2r cosϕd2 ~r . (2.5)

The new fundamental mode can be expanded over the set of orthonormal modes {unm(~r)}
of the unperturbed cavity

ũ00(~r) = u00(~r) +
∑

n,m

αnmunm(~r). (2.6)
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In this paper, we study effects only to first order in the perturbation. That is why the

coefficient in front of u00(~r), in Eq. (2.6), is unity.

By substituting Eq. (2.6) into Eq. (2.5) and using the angular dependence of the eigen-

modes Eq. (2.2), we conclude that only the dipolar eigenmodes (m = 1) contribute to the

net torque and more specifically their part proportional to cos(ϕ). Thus, for our purposes of

calculating the torque, we will assume un1 ∝ cos(ϕ). Since the only modes we use from now

on are the fundamental mode u00 and all dipolar modes un1, in order to simplify notation,

we collapse the indices into one labeling index

k = n+m. (2.7)

Thus the fundamental mode becomes u0, the first dipolar mode becomes u1 (corresponding

to the old notation u01) and so on. When necessary, we will use the conventional notation

with two labeling indices.

We will study the effects of tilt only to first order in the tilt angle θ, so for our purposes

we use the following expansion of the perturbed eigenmode:

ũ0(~r) = u0(~r) +
∑

k=1

αkuk(~r), (2.8)

u0(~r) =
u0(r)√

2π
, (2.9)

uk(~r) =
uk(r) cosϕ√

π
, (2.10)

∫ ∞

0

[
u0(r)

]2
r dr = 1, (2.11)

∫ ∞

0

[
uk(r)

]2
r dr = 1, k = 1, 2, . . . . (2.12)

In the above equations, uk(~r) are the dipolar modes on the surface of a mirror; uk(r) are their

parts depending only on the radial coordinate r; all uk(r) are dimensionless and normalized

as shown above [cf. Eq. (2.3) with m = 0, 1, k = n+m]; and αk are dimensionless coupling

constants, proportional to the mirrors’ tilt angle θ, which we will evaluate in Sec. III for

Gaussian (FG and CG) beams and in Sec. IV for mesa (FM and CM) beams. In general,

uk(~r) are complex fields, but since the mirror surfaces coincide with the beam’s wave front,

up to an overall complex phase which we chose to be zero, they are real fields.
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Now we can calculate the torque that the cavity’s light exerts on each mirror:

T =
2Pb

c

∫

[ũ0(~r)
]2
r cosϕ r dr dϕ =

=
2Pb

c
2
∑

k=1

αk

∫

u0(~r)uk(~r) r cosϕ r dr dϕ ,

where we have used Eq. (2.8). By inserting Eqs. (2.9) and (2.10), we obtain the following

formulas for the tilt-induced torque to first order in αk (first order in θ):

T =
2
√

2Pb,

c
×

∑

k=1

αk Ik, (2.13)

Ik =

∫

u0(r)uk(r) r
2 dr . (2.14)

These formulas are valid for any FP cavity and in particular for FG, FM, CG, and CM

cavities that interest us (of course, the modes uk(r) are different for different cavities).

In the sections below, we calculate the values for the coupling constants αk and the

overlap integrals Ik for our four types of cavities. Our analysis for conventional spherical

mirrors (FG and CG; Sec. III) is entirely analytical, whereas for any generic mirror shape,

and MH mirrors in particular (FM and CM; Sec IV), numerical treatment is required. We

will test our numerical methods by applying them to FG and CG cavities and comparing

with the analytical results.

2.3 Gaussian-Beam (FG and CG) Cavities

We consider a cavity with identical spherical mirrors. We are interested in a symmetric tilt

of the two mirrors by a small angle θ as shown on Fig. 2.1b. In this case, the axis of the

new mode ũ0(~r) is displaced by a small distance δxsym, but is still parallel to the old axis.

The field distribution on each mirror will be unchanged, but shifted by δxsym.

Spherical cavities have been studied thoroughly (see e.g [15]); their fundamental modes

are the well-known Gauss-Laguerre modes (called in this paper FG and CG modes). We

will use these modes derive analytical formulas for αk and Ik. The main axisymmetric and

dipolar modes [u0(r) and u1(r)] are given by (see e.g. [16]):
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uG
0 (r) =

√
2

r0
e−r2/2r2

0 , (2.15)

uG
1 (r) =

√
2 r

r20
e−r2/2r2

0 , (2.16)

r0 =
1

(1 − g2)1/4
. (2.17)

Here r is the dimensionless radial coordinate (measured in units of b), r0 is the dimen-

sionless radius of the beam at the mirrors’ surface (also in units of b), g = 1 − L/R is the

so-called g-parameter of the cavity, L is the distance between the mirrors, and R is the

mirrors’ radius of curvature (Fig. 2.1a). (The intensity on the mirror is proportional to

e−r2/r2
0 .)

For spherical mirrors the displacement of the optic axis δxsym is (see Fig. 2.1b):

δxsym ' Rθ

b
=

Lθ

b(1 − g)
. (2.18)

Next, we write down the main mode ũG
0 of the FP resonator with tilted mirrors and

expand it to first order in δxsym:

ũG
0 (~r) =

e−r2
δx/2r2

0

√
π

, (2.19)

r2δx =
(

r cosϕ− δxsym

)2
+ r2 sin2 ϕ, (2.20)

ũG
0 (~r) = uG

0 (~r)

(

1 +
r δxsym cosϕ

r20

)

= uG
0 (~r) +

δxsym cosϕ√
2πr0

uG
1 (r)

= uG
0 (~r) +

δxsym√
2r0

︸ ︷︷ ︸

αG
1

uG
1 (r) cosϕ√

π
︸ ︷︷ ︸

uG
1 (~r).

(2.21)

As we can see, the only nonzero coupling constant is αG
1

αG
1 =

Lθ (1 + g)1/4

√
2 b (1 − g)3/4

. (2.22)

From Eqs. (2.14), (2.15), (2.16), and (2.17), we can easily calculate the only overlap

integral we need for Gaussian beams:
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IG
1 =

∫ ∞

0
uG

0 (r)uG
1 (r) r2 dr =

= r0 =
1

(1 − g2)1/4
. (2.23)

Substituting into Eq. (2.13) along with Eq. (2.22) we derive a final expression for the torque:

TG =
2PL

c

θ

(1 − g)
. (2.24)

This result, derived by a modal analysis, is in complete agreement with the result of the

Sidles-Sigg geometrical analysis in its long-cavity limit (Section 5 of [9]). In their notation,

the torque for the unstable configuration is

TG = −k− θ =
2PL

c

θ

(1 − g)
, (2.25)

where −k− is the negative eigenvalue of a torsional stiffness matrix (Eq. (23) of Section 5 in

[9]). (Note that negative eigenvalues in the Sidles-Sigg analysis are associated with unstable

configurations — the subject of interest in this paper.) Our perturbation method gives the

exact result (to first order in θ) for spherical mirrors, because the only contribution to the

torque is from the lowest dipolar mode u1. This is a property only for spherical mirrors and

their Gaussian beams. As we’ll see in the following sections, for any generic mirror shapes,

we have to calculate the contribution from all higher dipolar modes.

2.4 Mesa-Beam (FM and CM) Cavities: Analytical Formulas

Perfectly positioned mirrors (Fig. 2.1a). For any cavity with axisymmetric mirrors,

and in particular MH mirrors, the main axisymmetric mode u0(~r) and all dipolar modes

uk(~r) satisfy the integral eigenequations

∫

G(~r1, ~r2)u0(~r2) d
2~r2 = λ0 u0(~r1), (2.26)

∫

G(~r1, ~r2)uk(~r1) d
2~r1 = λk uk(~r2), (2.27)
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where G, u0, uk, ~r1, ~r2 are all dimensionless and the eigenvalue of the kth dipolar mode uk is

λk.

In the paraxial approximation, the kernel of the operator G is the following (up to a

trivial factor of eikL due to phase accumulation along the arm length L, which we omit,

thereby fixing a common overall phase factor in all the λk):

G(~r1, ~r2) =
−i
2π

exp

[

i

(
(~r1 − ~r2)

2

2
− h1(~r1) − h2(~r2)

)]

,

h1,2(~r) = kH1,2(~r), k =
2π

λ
. (2.28)

Here H1(~r1) and H2(~r2) are the physical deviations of the mirrors’ surfaces from a plane

surface, which we assume to be the same, H1(~r1) = H2(~r2) (identical mirrors).

Symmetrically tilted mirrors (Fig. 2.1b). The tilt is equivalent to small deviations

of each mirror’s position from the unperturbed one:

δh1 = kb r1 cosϕ1 θ (left mirror) (2.29a)

δh2 = kb r2 cosϕ2 θ (right mirror). (2.29b)

These tilts induce a coupling of all the dipolar modes u1, u2, . . . into the cavity’s fundamental

mode ũ0, as shown in Eq. (2.8), though (as our numerical work will show) the coupling for

the first dipolar mode is far greater than the others α1I1 � αkIk for k = 2, 3, . . ..

For simplicity, we will show the analysis only for the first dipolar mode u1 (u01 in the

conventional notation). The generalization for the higher dipolar modes is trivially obtained

by replacing the subscript 1 by the desired dipolar mode’s subscript k

The eigenvalue of the fundamental mode of the perturbed cavity λ̃0 will slightly differ

from λ0: λ̃0 = λ0 + ∆. Thus, we have the following integral eigenequation for ũ0(~r)

(λ0 + ∆)[u0(~r1) + α1u1(~r1)] =

=

∫

G(~r1, ~r2)[1 − i δh1(~r1) − iδh2(~r2)]

×[u0(~r2) + α1u1(~r2)] d
2~r2. (2.30)

This equation can be simplified by use of the eigenequation of the original unperturbed
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system (2.26):

∆u0(~r1) + (λ0 + ∆ − λ1)α1u1(~r1) =

= −i
∫

G(~r1, ~r2)[ δh1(~r1)+δh2(~r2)]u0(~r2) d
2~r2. (2.31)

Here, we have dropped a term proportional to δhα1u1 in the integrand, since it is of second

order in θ.

Multiplying Eq. (2.31) by u0(~r1) and integrating over d2~r1, one can find that, to first

order in θ, the correction ∆ to the eigenvalue λ0 is zero. Therefore, the correction of the

eigenvalue has second order of smallness, so below we set ∆ = 0.

Multiplying Eq. (2.31) by u1(~r1) and integrating over d2~r1, one can find α1:

(
λ0 − λ1

)
α1 = −i

(
λ0 + λ1

)

×
∫

u0(~r1)u1(~r1) δh1(~r1) d
2~r1,

so

α1 = − ikb θ
(
λ0 + λ1

)

√
2
(
λ0 − λ1

)

∫ ∞

0
u0(r)u1(r) r

2 dr

︸ ︷︷ ︸

I1

= − iL I1θ(λ0 + λ1)√
2b(λ0 − λ1)

. (2.32)

Similarly for the higher dipolar modes

αk = − iL Ikθ(λ0 + λk)√
2b(λ0 − λk)

. (2.33)

In order to calculate the numerical value of αk, we must solve the eigenequations (2.26)

and (2.27) numerically for the eigenvalues λ0, λk and the corresponding eigenfunctions

u0(r), uk(r) (see Appendix 2.8 for details). The value of the integral Ik can be calculated

numerically from Eq. (2.14).

Note that the formulas in this section are valid for any resonators with symmetric mirrors

H1(r1) = H2(r2) and very low diffraction losses, not just for mesa-beam resonators.

The coupling constant αk is a measure of how much power is leaking out from the main

resonant mode u0 into a higher mode uk. The torque exerted on the mirror is proportional
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to αk [Eq. (2.13)] which depends on the relative location of the eigenvalues of the modes

[Eq. (2.33)].

The best scenario would be if the cavity is designed so that λ0 = −λk for some dominant

mode uk so the contribution of this mode to the tilt instability is reduced to second order

in the tilt angle θ. However, there wil still be a first-order contribution from the other

modes that don’t satisfy this property. As we shall see in Section VII, (luckily) the first

dipolar mode of one of the configurations studied (nearly concentric mexican-hat mirrors)

has this property λ0 = −λk almost satisfied and therefore this configuration is more stable

compared than the others.

2.5 Numerical Solutions of Eigenequations

We have solved the eigenequations (2.26) and (2.27) numerically using the scheme described

in Appendix 2.8, for our four cavity configurations: FG, CG, FM, and CM. Recall that our

nearly flat and nearly concentric cavities were chosen such that the intensity u0(r)
2 and

therefore u0(r) at the mirrors’ surfaces are identical (FG and CG are the same and FM and

CM are the same). We have found numerically for FM and CM (mesa beams) and for FG

and CG (Gaussian beams, Sec. III) that uk(r) is also the same for the nearly concentric

and nearly flat cases. The eigenfunctions u0 and u1 are shown in Fig. 2.2. The eigenvalues,

by contrast, are different for nearly flat and nearly concentric cavities, so we have four sets

of eigenvalues (FG, CG, FM, CM), depicted in Fig. 2.3.

In our numerical solutions to the eigenequations (2.26) and (2.27), one of us (PS) found

an interesting duality relation between nearly flat and nearly concentric configurations.

This duality relation is satisfied for any generic mirror shape that satisfies the paraxial

approximation. To within numerical error of less than 0.05 per cent, we found that a nearly

concentric cavity, which has the same intensity profile as a nearly flat configuration, also

has the same mirror-shape correction as the nearly flat cavity, but with opposite sign:2

δhC(r) = −δhF (r) . (2.34)

Here δhC(r) is the deviation from concentric spherical shape, and δhF (r) is the deviation

2M.Bondarescu [12] was the first to discover this fact numerically, though for a specific set of light beams:

his “hyperboloidal beams”.
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Figure 2.2: Fundamental modes u0(r) (thick curves) and first dipolar modes u1(r) (thin

curves) at mirrors’ surfaces for (a) FG and CG cavities, and (b) FM and CM cavities. The

modes are dimensionless and normalized according to Eqs. (2.11), and(2.12). We have used

the fiducial cavity parameters of d’Ambrosio et. al.: Eqs. (2) of Sec. IVA of [1] and Sec. IIIA

of [2]

.
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Figure 2.3: Eigenvalue spectrum in the complex plane. Note that all eigenvalues satisfy the

duality relation, Eq. (2.35) (n = 0, m = 0 for λ0, and n = 0, m = 1 for λ1); see also [13].
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from flat shape. We also found, numerically, a unique mapping between the eigenvalues of

these dual configurations:

λC
nm = (−1)m+1(λF

nm)∗ , (2.35)

for any pair of integers n,m = 0, 1, 2, . . .. In addition, all higher modes have the same

intensity profiles at the mirrors’ surfaces as their counterparts

|uC
nm|2 = |uF

nm|2 (2.36)

for any integer n,m = 0, 1, . . ..

Remarkably, our numerical calculations showed that these relations hold not just for

mesa-beam cavities, but for all stable cavities that we explored (all mirror shapes δhC,F,

including cavities in which the deviations δhC,F from concentric spherical and flat shapes

are large — as long as the paraxial approximation is valid).

This has led us to conjecture a duality relation between symmetric cavities with axisym-

metric mirrors: for any two such cavities, A and B, with

hA(r) + hB(r) =
r2

L
(2.37)

there exists a one-to-one correspondence between their eigenstates: they all have the same

intensity profiles at the mirrors, while

λA
nm = (−1)m+1(λB

nm)∗ . (2.38)

Chen and Savov, and independently Agresti and d’Ambrosio [13] have verified and

generalized this conjecture analytically.

2.6 Strength of the Tilt Instability for FG, CG, FM, and CM

cavities

We now have all the tools we need to compute the tilt-induced torque T on the cavity’s

mirrors, for FG, CG, FM, and CM configurations. We shall evaluate T for two sets of

cavity parameters: the fiducial parameters used by d’Ambrosio et. al. [1, 2, 3] and the

advanced-LIGO baseline parameters (Table 1 in [11]).
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Analytical Numerical

FG CG FG CG

I1 1.8075 1.8075 1.8073 1.8073

α1 0.012526 0.00030802 0.012525 0.00030799

T 0.064038 0.0015747 0.064023 0.0015743

Table 2.1: Comparison Between Analytical and Numerical Results for FG and CG Cavities;

α1 is measured in units of (θ/10−8) and T is in units of (Pb/c)(θ/10−8)

The set of parameters for the fiducial cavity (see Sec. IVA(2) of [1] and Sec. IIIA of

[2]) is:

L = 4 km — the length of the cavity.

λ = 1064 nm — the wavelength of the laser beam.

k = 2π/λ — the wave number associated with λ.

b =
√

Lλ/2π = 2.603 cm — the natural diffraction length scale (Fresnel length).

rmax = 16 cm — the radius of the mirrors’ coated surfaces.

gFG = 0.952 — the g-factor for the fiducial FG resonator (corresponding mirror radius

of curvature R = 83.33 km).

gCG = −0.952 — the g-factor for the fiducial CG resonator (corresponding mirror radius

of curvature R = 2.05 km).

r0 = b/(1 − g2)1/4 = 4.7 cm — the radius of the FG and CG beams at the mirrors.

D = 4b = 10.4 cm — the radius parameter of the FM and CM beams at the mirrors

(see Sec. IIA and Sec. IVA(2) of [1]).

The above beam radii were chosen so as to make the diffraction losses be about 20 parts

per million (ppm). More specifically, they are 23 ppm for the FG and CG beams and 19

ppm for the FM and CM beams.3

From Eqs. (2.22), (2.23), and (2.13) we can calculate the integral IG
1 , the coupling

constant αG
1 , and the torque TG for the FG and CG cavities. Our results are shown in the

second and third column of Table 2.1.

We have already established an agreement between our analytically derived results using

the modal analysis described in Section III and the Sidles-Sigg results derived from geometric

considerations [9]. We can also test the numerical first-order perturbation methods that we

3We have deduced these diffraction losses from our numerical solutions of the cavity’s eigenequation.
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developed for arbitrary mirror shapes by applying them to our FG and CG cavities. By

substituting our numerical results for uFG
0 = uCG

0 , uFG
1 = uCG

1 , λFG
0 , λCG

0 , λFG
1 , and λCG

1

into Eqs. (2.23), (2.32), and (2.13), we calculate the results shown in the last two columns

of Table 2.1. These numerical results all agree with our analytical results to within 0.05 per

cent, thus validating our numerical methods.

As was found by Sidles and Sigg, the CG configuration is significantly less unstable

than its nearly flat counterpart FG. The analytical analysis (first two columns in Table 2.1

predicts
TFG

TCG
=

1 + gFG

1 − gFG
=
RFG

RCG
= 40.667, (2.39)

which is in agreement with the numerical result 40.667 (last two columns).

From the modal analysis applied to FG and CG cavities [Eqs. (2.32) and (2.13)], we

deduce that, aside from factors that are the same for FG and CG,

TG ∝ i
λG

0 + λG
1

λG
0 − λG

1

= cotan

(
φG

01

2

)

. (2.40)

Here, the equality holds because |λ| = 1 for all modes (negligible diffraction losses) and φG
01

is the phase separation between λG
0 and λG

1 , i.e. the argument of λG
0 /λ

G
1 (in Fig. 2.3 we

show φFM
01 for the FM cavity). Thus, Eq. (2.40) is governed by the phase separation of the

eigenvalues λG
0 and λG

1 . As Fig. 2.3 shows the two eigenvalues for the FG configuration

are very close to each other so cotan(φFG
01 /2) � 1, whereas the phase separation of the

eigenvalues for the CG configuration is close to π so cotan(φCG
01 /2) � 1. This explains why

TFG � TCG.

Similarly to the above Gaussian analysis, we use our numerical results to compute the

torques T FM and TCM for FM and CM cavities respectively. In this case, we must include

the contributions from higher order dipolar modes (u1, u2, and u3). From Eqs. (2.13), (2.14),

and (2.33), we have calculated the integrals IFM
k , ICM

k , the coupling constants αFM
k , αCM

k ,

and the torques T FM , TCM for the FM and CM cavities. Our results are shown in Table 2.2.

Note that the dominant contribution to the torque comes from the first dipolar mode, k = 1;

the higher modes give contributions of only a few per cent, at most.

For mesa-beam resonators, as in the case of Gaussian-beam resonators, the nearly flat
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k IFM
k αFM

k TFM
k ICM

k αCM
k TCM

k

1 2.6464 0.04525 0.33867 2.6464 0.00018 0.00137

2 0.1136 0.00009 0.00003 0.1136 0.00016 0.00005

3 -0.015 -0.00000 0.00000 -0.015 -0.0002 0.00001

Total 0.33870 0.00143

Table 2.2: Numerical Results for FM and CM cavities; αk is measured in units of (θ/10−8)

and Tk is in units of (Pb/c)(θ/10−8)

configuration (FM) is far more unstable than its nearly concentric counterpart (CM)

TFM

TCM
= 237. (2.41)

In this case, the difference is even bigger than in the Gaussian case since the eigenvalues for

the FM configuration are closer to each other on the unit circle (Fig. 2.3) than for the FG

configuration and the phase separation of the eigenvalues for the CM configuration is even

closer to π than the phase separation of the eigenvalues for the CG configuration (Fig. 2.3).

In Table 2.3, we compare all four configurations FG, CG, FM, and CM, normalized by

TCG. For nearly flat resonators, going from a Gaussian-beam to a mesa-beam configura-

tion increases the strength of the instability by about a factor 5. There are two effects

contributing to this increase as we can see from the following relation (in which we focus

on the dominant, k = 1 contribution):

TM

TG
=
αM

1 IM

αM
1 IM

=

(
λM

0 + λM
1

λG
0 + λG

1

)(
λG

0 − λG
1

λM
0 − λM

1

)(
IM

IG

)2

=

=
cotan

(
φM

01/2
)

cotan
(
φG

01/2
)

(
IM

IG

)2

. (2.42)

In the case of the nearly flat configurations both phase differences are small and since

φFM
01 < φFG

01 (see Fig. 2.3),
cotan

(
φFM

01 /2
)

cotan
(
φFG

01 /2
) > 1.

This effect is amplified by the second ratio because of the higher overlap between the two

eigenstates in the case of mesa beams than for Gaussian beams. This is manifested in the

higher value of IFM = 2.65 compared to IFG = 1.87 (compare the overlaps between each
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Table 2.3: Comparison between different configurations of a fiducial optical cavity. The

torques due to light pressure (when tilt angle θ and circulating power P are the same) are

normalized such that TCG = 1.

Nearly Flat Cavity Nearly Concentric Cavity

G-Beam T FG = 40.7 TCG = 1.0

M-Beam T FM = 215 TCM = 0.91

pair of modes in Fig. 2.2a and Fig. 2.2b).

For nearly concentric resonators, going from Gaussian-beam resonators to mesa-beam

resonators weakens the net instability: T CM/TCG = 0.91. In this case, the difference in

the overlaps of the eigenstates is unchanged, but the phase differences are close to, but less

than π. Since φCM
01 > φCG

01 (again look at the separation of each set of eigenvalues on the

unit circle for the CG and CM configurations in Fig. 2.3),

cotan
(
φCM

01 /2
)

cotan
(
φCG

01 /2
) < 1.

The two effects counteract each other and for this choice of parameters the net result is in

favor of the CM-Beam resonator. The comparison between the torques for nearly flat and

nearly concentric cavities is straightforward using Eq. (2.42) and the duality relation (see

Eq. (2.35) and Ref. [13]).

In our formulation of the perturbation theory, we account for effects scaled to first order

in the tilt angle θ. We assume small mode mixing αk � 1 in order for the perturbation

method to work. From our numerical results (Table 2.2), we see that αk � 1 requires the

angular orientation of the cavity mirrors be controlled to θ < 10−8.4

The contributions Tk of the higher order dipolar modes k = 2, 3, . . . to the torque can

be understood by studying the analog of Eq. (2.42). From the relative locations of the

eigenvalues along the unit circle and the overlapping of the eigenmodes, it is easy to show

that Tk’s are monotonically decreasing, T1 > T2 > T3 . . .. Thus, we accept the contribution

from the highest dipolar mode u3 in our calculation, including the numerical error, as the

maximum error of the method due to neglecting the higher order dipolar modes. In this

4Currently, the control system of the initial LIGO interferometers operates with accuracy θ ' 10−7; an

accuracy θ ' 10−8 is planned for advanced LIGO interferometers [17].
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Nearly Flat Cavity Nearly Concentric Cavity

G-Beam T FG = 26.2 TCG = 1.0

M-Beam T FM = 96 TCM = 0.91

Table 2.4: Comparison between different configurations of a cavity with parameters of the

current baseline design for advanced LIGO. The torques due to light pressure (when tilt

angle θ and circulating power P are the same) are normalized such that T CG = 1.

way, we conclude that the error in our total torque in the case of the CM cavity is less than

1 per cent. In the case of the FM cavity the error of the method is practically of order of

the numerical error, so it is less than 0.1 per cent.

For another comparison, we perform the same calculations for the baseline design of

advanced LIGO (Table 1 in [11]). The baseline parameters were chosen such that the

beam radius at the mirrors5 in the case of spherical mirrors is 4.24 cm, corresponding to

diffraction losses of 10 ppm. The MH-mirror configurations are designed to have about the

same diffraction losses. The resulting baseline parameters are:

rmax = (15.7 − 0.8) cm = 14.9 cm — the radius of the coated mirrors’ surfaces.

gFG = 0.9265 — the g-factor for FG resonator (corresponding mirror radius of curvature

R = 54.44 km).

gCG = −0.9265 — the g-factor for CG resonator (corresponding mirror radius of curva-

ture R = 2.076 km).

r0 = b/(1 − g2)1/4 = 4.24 cm — the radius of the Gaussian beam at the mirrors.

D = 3.3b = 8.58 cm — the radius parameter of the mesa beam at the mirrors.

Table 2.4 contains the final results for these baseline parameters (including the sum

of the contributions to the torques from the first three dipolar modes). Again, the least

unstable configuration, and thus the easiest to control against tilt, is the nearly concentric

mesa-beam (CM) resonator.

2.7 Conclusions

In this paper, we have investigated the problem of the tilt instability for several possible

configurations of advanced LIGO. By using semi-analytical and numerical techniques, we

5Note that our definition for the beam radius at the mirrors differs from [11] by factor of
√

2.
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came to the conclusion that concentric Mexican-hat mirrors supporting mesa beams suffer

the least instability and, therefore, pose the least problem to control the tilt instability.

As Table 2.4 shows, by switching from conventional Gaussian-beam cavities to concentric

mesa-beam cavities, the instability to symmetric tilt will be reduced (dramatically compared

to a flat Gaussian-beam cavity and moderately compared to a concentric Gaussian-beam

cavity). Furthermore the sensitivity of the interferometer will improve significantly due to

the reduced thermal noise (see e.g. Table I in [3] and also [4, 5, 6, 18, 19]).

We have also reported on a unique duality relation between the eigenspectra of optical

cavities with mirror shapes corrected from plane-parallel and from concentric spherical

surfaces. The one-to-one mapping of the eigenvalues and the eigenmodes can be a very

powerful tool in solving other problems involving modal analysis of optical cavities. In a

companion paper [13], we provide an analytical proof and generalization of this conjecture.

2.8 Appendix A: Numerical Solutions of Cavity Eigenequa-

tions

In order to generate the set of basis solutions needed to construct perturbation theory for

a cavity with arbitrary mirror shapes, we must numerically solve an integral eigenequation.

We have done so using the following method, based on earlier work by O’Shaughnessy

(Sec. VB of [3]).

Since the mirrors are axisymmetric [h(~r) = h(r)], we can decouple the angular and radial

dependences in the eigenequations. In the numerical implementation of the eigensolver we

used the following definition:

unm(~r) = unm(r) e−imϕ, m = 0, 1, 2, . . . . (2.43)

Note that, for m = 0, 1, this definition of the fundamental radial mode u0(r) and the dipolar

radial mode u1(r) differ from the definitions in Eqs. (2.9) and (2.10). However, after solving

the eigenequations, all modes are renormalized by numerically computing the integrals in

Eqs. (2.11) and (2.12), so at the end we have radial modes defined as in Eqs. (2.9) and

(2.10). The resulting uk are the radial modes we need for computing Ik in Eq. (2.14). By

plugging Eq. (2.43) into Eqs. (2.26) and (2.27) and integrating over the azimuthal angle,
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we can reduce the eigenproblem to a one-dimensional integral equation

λnm unm(r1) =

∫

Gm(r1, r2)unm(r2) r2 dr2, (2.44)

Gm(r1, r2) = (−i)m+1Jm(r1r2)

× exp

[

i

(
(r21 + r22)

2
− 2h(r)

)]

,

where Jm is the Bessel function of the first kind and order m.

We discretize space along the mirrors’ radial direction in a uniform grid

rj = j rmax/(N − 1), j = 0, 1, . . . , N − 1. (2.45)

We define the matrix G(m)ij = Gm(xi, xj), the eigenvectors u(n)j = un(xj) (m, n label

the mode and i, j are indices to access the matrices’ and vectors’ components), and we

approximate the integration by a simple quadrature rule. Then the integral eigenproblem

reduces to a matrix eigenvalue problem:

λnm ~un = M̂m ~un, with M̂(m)ij =
r2max j

N − 1
G(m)ij . (2.46)

This equation can be solved for λnm and ~un by any standard matrix eigensolution software

package.
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Chapter 3

Duality Relation Between Non-Spherical Optical

Cavities

In his recent work on a tilt instability for advanced LIGO interferometers,

P. Savov discovered numerically a unique duality relation between the eigen-

spectra of paraxial optical cavities with non-spherical mirrors: he found a one-

to-one mapping between eigenstates and eigenvalues of cavities deviating from

flat mirrors by h(~r ) and cavities deviating from concentric mirrors by −h(~r ),

where h need not be a small perturbation. In this paper, we analytically prove

and generalize this remarkable result. We then illustrate its application to inter-

ferometric gravitational-wave detectors; in particular, we employ it to confirm

the numerical results of Savov and Vyatchanin for the impact of optical-pressure

torques on LIGO’s Fabry-Perot arm cavities (i.e. the tilt instability), when the

mirrors are designed to support beams with rather flat intensity profiles over the

mirror surfaces. This unique mapping might be very useful in future studies of

alternative optical designs for LIGO interferometers, when an important feature

is the intensity distribution on the cavity optics.

3.1 Introduction

Laser Interferometer Gravitational-wave Observatory (LIGO) [1] and other long baseline

detectors, are formed by high-Finesse Fabry-Perot arms in order to increase the circulating

optical power and to enhance sensitivities [2] by suppressing shot noise. LIGO interferome-
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ters, as well as the baseline design for advanced-LIGO detectors (whose funding is scheduled

to begin in FY 2008) [3], all use spherical mirrors. Non-spherical mirrors have been alter-

natively studied and are considered for use in gravitational-wave interferometers, for the

suppression of thermal noise they offer.

In particular, as shown by O’Shaughnessy, Thorne and Agresti [4, 5, 6, 7, 8], the thermal

fluctuations of mirror surfaces are better averaged over by a flat beam, such a mesa-like [9]

mode. The corresponding optical design has shown a strong tilt instability [10] and Thorne

has proposed a different version of the mesa beam, that is supported by nearly concentric

and opportunely shaped mirrors; this new version provides the same intensity profile at

the cavity mirrors (and thus the same thermal noise), but imply a weaker tilt instability

(even weaker than cavities with nearly concentric spherical mirrors analyzed by Sigg and

Sidles [11, 12]) — as calculated by Savov and Vyatchanin [10] . A general method to design

a family of optical cavities has been devised by Bondarescu and Thorne [13], from nearly

flat resonators to nearly concentric ones.

Mesa beams are constructed by coherently overlapping Gaussian beams, with either(i)

translated parallel axes, or (ii) axes in different directions but sharing a common mid-

point [13]. Mirror shapes which support such beams as fundamental modes are derived

from the phase fronts at the mirror locations, with case (i) corresponding to Mexican-hat

mirrors, and case (ii) corresponding to the nearly-concentric version. Using the resulting

optics profile, higher-order optical modes and eigenfrequencies of the designed cavities must

be calculated by solving an eigenvalue problem, which has been done for nearly-flat cavi-

ties by O’Shaughnessy and Thorne [4, 3, 1, 2], and for nearly-concentric cavities by Savov

and Vyatchanin [10]. During his numerical work, Savov discovered that the deviation of

nearly-concentric Mexican-hat mirrors from concentric surfaces is exactly the opposite of

the deviation of nearly-flat Mexican-hat mirrors from flat surfaces; he also found that the

corresponding higher modes of these cavities all have the same intensity profiles, and that

there is a one-to-one mapping between their eigenvalues. He went on and conjectured a gen-

eral duality relation between axisymmetric cavities with two identical mirrors facing each

other: cavities with mirrors deviating by −h(|~r |) from concentric surfaces (nearly concen-

tric mirrors) will support modes with the same intensity profiles and related eigenvalues as

cavities with mirrors deviating by h(|~r |) from flat surfaces (nearly flat mirrors). It should

be noted that the deviation h(~r ) is not required to be infinitesimal, it can change the mir-
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ror shape arbitrarily as long as the paraxial approximation is still satisfied1. While such

a duality relation is well-known between cavities with spherical mirrors, i.e., those with

h(~r) ∼ α~r 2 (for example see [14, 15, 16, 17]), to our best knowledge no such relations had

been established between generic cavities.

In this paper, we prove this remarkable correspondence analytically, for a even broader

category of cavities: those whose mirror shapes remain invariant under the parity operation,

identified as spatial reflection in the two dimensional ~r -space (which is also equivalent to

a 180◦ rotation around the cavity axis). Eigenmodes of such cavities can be put into

eigenstates of parity, and we show that all corresponding eigenmodes of dual cavities have

the same intensity profiles at the mirrors, with their eigenvalues satisfying

γk
c = (−1)pk+1e−2ikL(γk

f )∗ , (3.1)

where (−1)pk is the parity of the kth eigenmode; subscripts c and f denote nearly concentric

and nearly flat mirrors, respectively.

We will give two alternative proofs of this duality relation. The first one relies on

the geometrical properties of the propagator from mirror to mirror. In this description

the eigenfunctions are field amplitudes at mirror surfaces, and we see right away that the

corresponding eigenstates have the same intensity profiles there. The second proof is based

on the “center-to-center” propagator. The center-of-the-cavity fields are the eigenstates

and the correspondence relation is manifested by a two-dimensional Fourier transform, that

univocally relates the dual cavities.

This paper is organized as follows. In Sec. 3.2 we report the first proof; in Sec. 3.2.1, the

Cartesian coordinates are used and some general features of the eigenproblem are described;

in Sec. 3.2.2, the cylindrical coordinates are used, and the case of axisymmetric resonators

is studied. Section 3.3 contains the second proof and the 2-D Fourier transform relation

between the center-of-the-cavity eigenmodes of dual cavities. Section 3.4 specializes to

the case of Mexican-hat cavities. When the nearly-flat and the nearly-concentric mirrors

are implemented in the system, the corresponding mesa beams are connected by Fourier

transform, as we report in Sec. 3.4.1. In Sec. 3.4.2, plots and analytical forms are provided,

1Here and henceforth in the paper a 2-D vector ~r has been used to indicate each point on planes orthogonal

to the the cavity axis.
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for the amplitude distributions at the center of the cavity and at the mirror surfaces; in

Sec. 3.4.3, we address the tilt instability of the nearly concentric Mexican-hat resonator and

show how easily it can be analyzed, applying the duality relation to the results obtained for

the nearly flat Mexican-hat cavities [4, 3, 1]. We comment and review the implications of

the general duality in Sec. 3.5.

3.2 Analytical proof for mirror-to-mirror propagation

3.2.1 In the Cartesian coordinate system

In this section we focus on field distributions on mirror surfaces, and restrict ourselves

to cavities with two identical mirrors facing each other. The extension to the non non

symmetric cavity is presented in Appendix A. We adopt the Fresnel-Kirchoff diffraction

formula to propagate fields from mirror surface to mirror surface (see e.g. [16]). In this

formalism, the field amplitude v1(~r
′) on the surface of mirror 1 propagates into

v2(~r) =

∫

d2~r ′ K(~r, ~r ′) v1(~r
′) (3.2)

on mirror 2, via the propagator

K(~r, ~r ′) =
ik

4πρ
(1 + cos θ)e−ikρ k =

2π

λ
, (3.3)

from ~r ′ (on mirror 1) to ~r (on mirror 2), where ρ denotes the (3-D) spatial distance between

these two points and θ stands for the angle between the cavity axis and the reference straight

line, as is illustrated in Fig. 3.1. We know that the Fresnel-Kirchoff integral eigenequation

γ v(~r) =

∫

d2~r ′ K(~r, ~r ′) v(~r ′) (3.4)

univocally determines the eigenmodes v and eigenvalues γ of the cavity.

Applying the paraxial approximation

θ ≈ 0 , ρ ≈ L+
|~r − ~r ′|2

2L
− h(~r ) − h(~r ′) , (3.5)
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Figure 3.1: Symmetric Nearly Flat Mirrors.

and we can use

Kh
f (~r, ~r ′) =

ik

2πL
e−ikLeikh(~r)e−

ik
2L

|~r−~r ′|2eikh(~r ′) . (3.6)

in the integral eigenequation.

Here the mirror surfaces deviate by h(~r ) from a flat reference, and the subscript f is

used to reflect this convention. From here on, we will also refer to Kh
f as the nearly flat

propagator. We now consider two slightly deformed concentric mirrors (see Fig. 3.2) so that

the mirrors height with respect to the flat reference surface is

h(~r ) = ~r 2/L + b(~r ) , (3.7)

where the height b(~r ) is the deviation from the concentric spherical surface (note that

concentric spherical mirrors have their radii of curvature equal to L/2, and thus surface

height r2/L). Inserting Eq. (3.7) into Eq. (3.5), we obtain the propagator for a nearly-

concentric cavity,

Kb
c(~r, ~r

′) =
ik

2πL
e−ikL

eikb(~r)e+
ik
2L

|~r+~r ′|2eikb(~r ′) . (3.8)

We use the term nearly concentric propagator for Kb
c(~r, ~r

′). Although we use the terms

nearly-flat and nearly-concentric, h and b are not required to be small; in fact, they can

represent any deviation from perfectly flat and concentric spherical mirrors.

Now let us consider mirrors that are then invariant under parity, i.e., those in which we
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Figure 3.2: Symmetric Nearly Concentric Mirrors.

also have

h(~r) = h(−~r) , b(~r) = b(−~r) . (3.9)

so that Kf, c are both invariant under a spatial reflection

{
~r, ~r ′

}
↔

{
−~r,−~r ′

}
(3.10)

and therefore, we have

PK = KP , (3.11)

where we have defined

Pv(~r) = v(−~r) . (3.12)

for two dimensional reflection. Equation (3.11) implies that all eigenmodes can be put into

forms with definite parity. We derive the following relation between nearly flat and nearly

concentric propagators, as constructed:

[

Kh
f (−~r, ~r ′)

]∗
= −e2ikLK−h

c (~r, ~r ′) , (3.13)

that is equivalent to:

P
[

Kh
f

]∗
= −e2ikLK−h

c . (3.14)

Suppose we have an eigenstate vf of Kh
f , i.e., an eigenstate of a cavity with mirror deviating

by (+h) from flat surface, and we compute its eigenvalue γf and know the parity eigenvalue
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Nearly Flat Nearly Concentric

Kernel Kh
f K−h

c

Eigenstate vf v∗f

Parity (−1)p (−1)p

Half-trip eigenvalue γf e−2ikL(−1)p+1γ∗f

Round-trip eigenvalue ηf e−4ikLη∗f

Table 3.1: Correspondence of propagation kernels, eigenstates, parities, and eigenvalues

between dual configurations.

(−1)p:

Kh
f vf = γf vf , (3.15)

Pvf = (−1)pvf . (3.16)

By applying Eqs. (3.14)–(3.16), we derive the correspondence

K−h
c v∗f = e−2ikL(−1)p+1γ∗f v

∗
f . (3.17)

which identifies vc ≡ v∗f as the corresponding eigenstate of K−h
c , that is eigenstate of the

corresponding resonator we denote the dual. The eigenvalue is γc ≡ e−2ikL(−1)p+1γ∗f . We

also induce that the parity is still (−1)p. The reverse is straightforward and the result is an

established one-to-one correspondence between dual cavities. We summarize this mapping

in Table 3.1. It is obvious to note that that the corresponding eigenstates, vf and v∗f , have

the same intensity profiles on the mirror surfaces; for infinite mirrors, we know vf(~r) is

real-valued (see Appendix 3.7), so it is an eigenstate of the dual configuration itself.

For cavities with identical mirrors facing each other, the full, round-trip propagator is

just the square of the half-trip one. From Eqs. (3.13) and (3.11), we have

[[

Kh
f

]2
]∗

= e4ikL
[

K−h
c

]2
(3.18)

which means that the same duality correspondence exists between eigenstates of the full
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propagator, with their eigenvalues related by

ηc = e−4ikLη∗f . (3.19)

Note that when h(~r) = r2/(2L) the two dual cavities are identical to each other. Using

the relation that links the eigenvalues of two dual resonators, we can determine the spectrum

γc = ±e−2ikLγ∗f = γf = e−ikL+inπ/2

where n ∈ N . The resulting separation between the eigenvalues is the Gouy phase

eiθG = ei arccos(1−L/R) R = L

computed for confocal resonators [15, 16, 17].

3.2.2 Specializing to cylindrical mirrors

In most LIGO applications, cavity mirrors still have cylindrical shapes: h(~r ) = h(|~r |). This

allows us to decouple radial and azimuthal degrees of freedom, and simplify the eigenvalue

problem. We shall follow roughly the notation of [17].

We adopt the cylindrical coordinate system:

~r = r(cosϕ, sinϕ) . (3.20)

Since K is now invariant under rotation along the z-axis, all eigenmodes can be put into

eigenstates of rotation:

v(r, ϕ) = R(r)e−imϕ , m = integer . (3.21)

Inserting this into the eigenequation (3.4) and performing analytically the angular integra-

tion we obtain the radial eigenequation

γnmRnm(r) =

∫ a

0
Kh

f(m)(r, r
′)Rnm(r′)r′dr′ , (3.22)
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where for each angular mode number m we have indexed the radial eigenstates by n, and

Kh
f(m)(r, r

′) =
im+1k

L
Jm

(
krr′

L

)

e
ik

�
−L+h(r)+h(r′)− r2+r′2

2L � (3.23)

is a symmetric radial propagator, in the nearly-flat description.2 Since Kh
f(m)(r, r

′) is sym-

metric, we obtain orthogonality relations between radial eigenfunctions:

∫ a

0
Rn1m(r)Rn2m(r)rdr = δn1n2 . (3.24)

Using Eq. (3.7) again, for a configuration with b(r) correction from concentric spherical

mirrors, we obtain the radial kernel of the nearly-concentric description:

Kb
c(m)(r, r

′) =
im+1k

L
Jm

(
krr′

L

)

e
ik

�
−L+b(r)+b(r′)+ r2+r′2

2L � . (3.25)

Comparing Eqs. (3.25) and (3.23), we obtain:

(−1)m+1
[

Kh
f(m)

]∗
= e2ikLK−h

c(m) . (3.26)

This is a radial version of Eq. (3.14); here we know explicitly that all m-eigenstates have

parity (−1)m.

Following a similar reasoning as done in the previous section, for each angular mode

number m, we can establish a one-to-one correspondence between radial eigenstates of a

nearly-flat configuration to those of the dual configuration:

[Rnm]c = [Rnm]∗f . (3.27)

The mapping of the eigenvalues are given by

[γnm]c = (−1)m+1e−2ikL [γnm]∗f . (3.28)

Similarly, the round-trip eigenstates have the same correspondence, their eigenvalues related

2Here we have used Jn(z) =
1

2πin � 2π

0

e
iz cos ϕ

e
inϕ

dϕ, where Jn(z) is the nth order Bessel function of the

first kind.
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by

[ηnm]c = e−4ikL [ηnm]∗f . (3.29)

3.3 Analytical proof based on center-to-center propagation

3.3.1 Propagators for vacuum and mirror surfaces

In this section, we focus on complex amplitudes of the optical field on planes perpendicular

to the optical axis (the z axis). An optical mode propagating along one direction of the

optical axis can be specified completely by the distribution of the field on the z = const

plane. For example, we denote the optical field on the plane z = z1 by v(~r , z1), where ~r

is the 2-D coordinate of the point on this plane. The effect of any linear paraxial optical

system (including open space, thin lenses and mirrors) with input plane z1 and output plane

z2 can be characterized by its transfer operator, U , which takes the form of an integration

kernel:

v(~r , z2) =

∫

d2~r ′ U(~r , z2;~r
′, z1)v(~r

′, z1) . (3.30)

In particular, the operator that describes the paraxial propagation down a length L in

vacuum is

GL(~r , ~r ′) = i
k

2πL
e−ikL exp

[

−ik (~r − ~r ′)2

2L

]

. (3.31)

For a mode propagating in the ±z direction with field (complex) amplitude distribution

v(~r ′, z1) at z = z1, the amplitude distribution on a surface described by height z(~r ) =

z1 ∓ h(~r ) is given by

v[~r , z(~r )] = e±ikh(~r )v[~r , z1] . (3.32)

Here we emphasize that the spatial point of interest is located outside the z = z1 plane,

and that the 2-D vector ~r describes the projection of that point onto the z = z1 plane.

From Eq. (3.32), one deduces that the operator for reflection off a perfect infinite mirror

with shape h(~r) is3

R[h(~r )](~r , ~r
′) ≡ −δ(~r − ~r ′)e2ikh(~r ). (3.33)

It is easy to verify that both GL and R[h(~r )] are unitary operators.

3The minus sign in Eq. (3.33) is used because we use a convention in which a phase shift by π is gained

upon reflection.
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3.3.2 Analytical proof based on center-to-center propagation

In this section we present an alternative proof motivated from the construction of the flat-

topped beams [3, 10]: (i) the nearly flat configuration has its fundamental mode generated

by spatial translation of minimal Gaussian beams, while (ii) the nearly concentric configu-

ration is generated by rotation (of propagation direction at the center of cavity) of minimal

Gaussian beams, or a translation in the momentum ~k -space. This had led us to speculate

that the two sets of eigenstates correspond to each other via Fourier transform (similar to

the relation between position and momentum space in quantum mechanics).

We will use the operator GL/2 [see Eq. (3.31)] which propagates the field forward by half

the cavity length. For simplicity we denote it by G:

G(~r , ~r ′) ≡ i
k

πL
e−ikL/2e−ik (~r −~r ′)2

L . (3.34)

Using G and Rh(~r ) [defined in Eq. (3.33), with h(~r ) the mirror surface height], we can

re-express the eigenvalue problem as:

L[h(~r )]u ≡ GR[h(~r )]Gu = γu , (3.35)

with L[h(~r )] the center-to-center propagator when the mirror deviates from flat surfaces

by h(~r ), in which the optical mode propagates from the cavity center to the mirror, gets

reflected, and propagates back to the center. In fact, L is related to the surface-to-surface

propagator K by a unitary transformation,

L = G−1R−1
[h(~r )/2]KR[h(~r )/2]G . (3.36)

This means the two proofs are mathematically equivalent. Similar to K, the operator L
also commutes with parity, or [Cf. Eq. (3.11)]

PL = LP ; (3.37)

With the propagator on hand, we proceed with our intuition that the modes must be

related by Fourier transforms. In order to do so, we first define the 2-D Fourier-transform
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operator F as

F(~r , ~r ′) =
k

πL
e−

2ik
L

~r ·~r ′

, (3.38)

which satisfies

F2 = (F−1)2 = P . (3.39)

It is easy to show that,

[
G∗F−1

]
(~r , ~r ′)

= − ik2

π2L2
e
ik � L

2
+~r 2

L
+

(~r −~r ′)2

L � ∫

d2~r ′′e
ik
L

[~r ′′−(~r −~r ′)]2

=
[

ieikLR[~r 2/(2L)]G
]

(~r , ~r ′) . (3.40)

[The integral on the second line can be done by inserting a factor e−ε(~r ′′)2 into the integrand,

and then letting ε→ 0+.] Similarly, [or by taking the transpose of Eq. (3.40)], we have

F−1G∗ieikLGR[~r 2/(2L)] . (3.41)

Using Eqs. (3.40) and (3.41), we have

PL∗
[hA]

= F−1(F−1G∗)R[−hA](G∗F−1)F

= −e2ikLF−1GR[~r 2/(2L)]R[−hA]R[~r 2/(2L)]GF

= −e2ikLF−1L[hB]F . (3.42)

Here hA and hB are mirror heights related by the duality relation,

hA(~r ) + hB(~r ) = r2/L , (3.43)

and we have used the fact that

R[~r 2/(2L)]R[−hA]R[~r 2/(2L)] = R[~r 2/L−hA] = R[hB] . (3.44)

According to Eq. (3.42), given any eigenstate uA of L[hA] with eigenvalue γA and a
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definite parity of p, we have

(−1)pγ∗Au
∗
A = PL∗

[hA]u
∗
A

= −e2ikLF−1L[hB](Fu∗A) , (3.45)

⇒ L[hB](Fu∗A) = (−1)p+1e−2ikLγ∗A(Fu∗A) . (3.46)

In other words, the mapping

uA → uB = Fu∗A (3.47)

transforms each eigenstate of L[hA] into its dual one of L[hB]; the corresponding eigenvalue

relation is

γB = (−1)p+1e−2ikLγ∗A . (3.48)

For similar reasons, given any eigenstate uB of U[hB] (with definite parity), Fu∗B must

also be an eigenstate of U[hA]. Moreover, since

F(Fu∗B)∗ = FF−1uB = uB , (3.49)

the state Fu∗B is in fact the inverse image of uB [under the mapping (3.47)]. This means

we have established a one-to-one correspondence between eigenstates of L[hA] and those of

L[hB].

Now let us look at intensity profiles on the end mirrors surface. For the eigenstate

uA, the field amplitude at the constant-z plane of the end mirror is GuA. For its image

eigenstate uB ≡ Fu∗A, we have

GuB = G(Fu∗A) =
[
G∗F−1uA

]∗

=
[

ieikLR[~r 2/(2L)]GuA

]∗
(3.50)

which does have the same intensity profile [see Eq. (3.33)].

For the round-trip propagator L2, using Eqs. (3.42) and (3.37), we have

[

L2
[hA]

]∗
= e4ikLF−1L2

[hB]F , (3.51)
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so we have the same duality correspondence (3.47) between eigenstates of the full propaga-

tor, with the mapping between eigenvalues given by

ηB = e−4ikLη∗A . (3.52)

3.4 Application of the duality relation using Mesa Beams

and Mexican-Hat cavities

The mesa beams were constructed to have flat-topped intensity profiles at the cavity mirrors

with rapid fall-off near mirror rims, in order to achieve lower thermal noises [4, 3, 1, 2].

There are two versions of mesa beams with the same intensity profile, the nearly flat and

the nearly concentric. Cavities that support them (Mexican-Hat cavities) are related by the

duality relation, as realized by Savov [10], during his study of radiation-pressure-induced

tilt instabilities. In this section, we shall explicitly construct these two fundamental modes,

study their relations at the center of the cavity, and at the cavity mirrors. We will also

discuss analytical features of the two modes that have not been obtained before. We will

also give an example of how the calculation of the tilt instability can be dramatically

simplified for nearly concentric Mexican-hat cavities, using the duality relation, based on

results already obtained for the nearly flat configuration.

3.4.1 Construction of Mesa beams in Cartesian coordinate system

Nearly-flat Mesa beams are constructed by coherently superimposing minimal Gaussians,

namely Gaussian modes with the smallest possible spot size at the cavity mirrors, σmin =
√

L/(2k), whose axes are parallel to the cavity axis and lie within a cylinder centered at

the cavity axis. At the middle of the cavity, the axes intercept with the constant-z plane

in a disk D, with radius p. It is evident that such a construction will give a rather flat

intensity profile in the central region of the end mirror with radius ∼ p; beyond this radius,

the intensity profile falls off as a Gaussian with decay length σmin, which is conceivably the

fastest possible [3, 1, 2].

The complex amplitude of the nearly-flat mesa beam (fundamental mode of the corre-
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sponding cavity) at the center of the cavity is of the form

vf(~r ) =

∫

~r 0∈D
d2~r 0

(
1√
2πσ

)2

e−
(~r −~r 0)2

2σ2 , (3.53)

Here σ is the waist size, which we leave general (rather than setting σ = σmin) for the

moment. The duality image of vf is

vc(~r ) = [Fv∗f ] (~r )

=

∫

~r 0∈D
d2~r 0 e

2ik~r ·~r 0
L F

[(
1√
2πσ

)2

e−
~r 2

2σ2

]

=

∫

~r 0∈D
d2~r 0 e

2ik~r ·~r 0
L

[(
1√

2πσ∗

)2

e
− ~r 2

2σ2
∗

]

, (3.54)

with

σσ∗ =
L

2k
= σ2

min , (3.55)

When going from Eq. (3.53) to Eq. (3.54), the Fourier transform has been completed by two

steps. First, the spatial translation by ~r 0 is replaced by the phase factor of e
2ik~r ·~r 0

L , which

represents a tilt of the propagation axis by an angle of 2~r 0/L. Second, the σ-Gaussians

turn into σ∗-Gaussians. [This correspondence between Gaussians in fact reflects the duality

between pairs of spherical cavities.] As a consequence, vc represents the superposition

of Gaussians with symmetry axes going through the cavity center, but with tilt angles

distributed uniformly in a disk with radius 2p/L — exactly the construction of a nearly-

concentric mesa beam. In particular, Eq. (3.55) tells us that minimal Gaussian would

have turned into itself in this process. Hence we have shown explicitly the correspondence

between the nearly-flat and nearly-concentric mesa beams (the fundamental modes of the

corresponding cavities).

3.4.2 Profiles of mesa beams and mirror shapes

In order to study mesa beams in more details, we adopt the cylindrical polar coordinate

system (r, φ); the cylindrical symmetry of these beams will make the complex amplitude

only depend on r. Equations (3.53) and (3.54), written in the polar coordinate system,
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become

vwaist
f (r, φ) =

1

πw2
0

∫ p

0
r0dr0

∫ 2π

0
dφ0 e

−
r2−2r0r cos(φ−φ0)+r2

0

w2
0 , (3.56)

vwaist
c (r, φ) =

1

πw2
0

∫ p

0
r0dr0

∫ 2π

0
dφ0 e

−
r2+2ir0r cos(φ−φ0)

w2
0 . (3.57)

Here w0 =
√

L/k =
√

2σmin and L is the total length of the cavity. Carrying out the

angular integrations analytically, we get

vwaist
f (r) =

∫ p/w0

0
2x0e

−(x2+x2
0)I0(2xx0)dx0 , (3.58)

vwaist
c (r) =

1

x
e−x2

J1(2xp/w0) , (3.59)

where x ≡ r/w0, and I0 is the modified Bessel function of the first kind. Examples of

normalized power distributions of nearly flat and nearly concentric mesa beams are plotted

in the upper panels of Fig. 3.3. In these plots, we take p = 4w0, which corresponds to the

configuration proposed for Advanced LIGO (for reasons that will be explained in Sec. 3.4.3).

Let us analyze these amplitude distributions in more details, in the case of p � w0,

i.e., when we translate the minimal Gaussians by a distance substantially greater than their

waist size. For the nearly-flat configuration, we can easily see from Eq. (3.53) that, when

(p− r)/w0 � 1, the field distribution can be approximated as

vf(r � p) ≈
∫

~r 0∈R2

d2~r 0

(
1√
2πσ

)2

e−
(~r −~r 0)2

2σ2 = 1 . (3.60)

On the other hand, if r is much larger than w0 [since p� w0, this region overlaps with the

previous one], we can apply the asymptotic expansion of I0

I0(z) =
1√
2πz

ez (3.61)
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Figure 3.3: Comparison between nearly flat (left panels) and nearly concentric (right panels)

Mesa beams. Upper panels: normalized intensity profiles at the center of the cavity. Middle

panels: normalized intensity profiles at mirror surfaces Lower panels: phase fronts at the

position of the mirrors.

on Eq. (3.58), and obtain

vwaist
f (r � w0)

≈ 1√
π

∫ p/w0

0

√
x0

x
e−(x0−x)2dx0

≈ 1√
π

∫ p/w0−x

−x

(

1 +
y

2x

)

e−y2
dy

≈
[

1√
π

∫ p/w0−x

−∞
e−y2

dy

]

− 1

4
√
πx
e−(p/w0−x)2 , (3.62)

where we have defined x ≡ r/w0. From Eq. (3.62), we note that when w0 � r � p, we

recover the result of vwaist
f ≈ 1; when r gets close to p, the amplitude will drop, similar to

the tail of an error function. Qualitatively, we could write wf-Mesa(p) ∼ p. In the ultimate
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limit of p/w0 → +∞, we have

vwaist
f (r) = 1 , p/w0 → +∞ . (3.63)

The concentric configuration, on the other hand, has a completely different field dis-

tribution. According to the analytic expression (3.59), the amplitude must be distributed

within a radius of x ∼ w0/p � 1, or r ∼ w2
0/p, which is much smaller than the waist size

of the minimal Gaussian. In this case, we could also qualitatively write wc-Mesa(p) ∼ w2
0/p.

In the limit of p→ ∞, we use

J1(ax)

x
→ δ(x) , a→ +∞ (3.64)

and have

vwaist
c (r) = δ(x) , p/w0 → +∞ . (3.65)

The fact that

wf-Mesa(p) · wc-Mesa(p) ∼ w2
0 , (3.66)

clearly reflects the Fourier-transform relation between two Mesa beams with the same p.

Now, let us turn to field distributions at the cavity mirrors. Applying the propagator

between parallel planes in the polar coordinate systems (eq. (3.34)),

G(r′, φ′; r, φ)

=
ik

πL
e−ikL/2e−ik[r2+r′2−2rr′ cos(φ′−φ)]/L, (3.67)

we obtain the fields

vend
f (r′, φ′) =

∫ p

0
r0dr0

∫ 2π

0
dφ0

e
−

�
1+i
2 � � r′2−2r0r′ cos(φ′−φ0)+r2

0

w2
0

�
, (3.68)

vend
c (r′, φ′) =

∫ p

0
r0dr0

∫ 2π

0
dφ0

e
−

�
1+i
2 � � r′2+2ir0r′ cos(φ′−φ0)−ir2

0

w2
0

�
, (3.69)
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at distance L/2 from the waist. Comparing Eqs. (3.68) and (3.69), we have

[

vend
f (~r )

]∗
= eik~r 2/Lvend

c (~r ) . (3.70)

It is then obvious that the two beams have the same intensity profiles on the cavity mirrors:

|vend
f (~r )| = |vend

c (~r )| . (3.71)

(An approximate formula for the end-mirror intensity profile was given in the Appendix

of [3].) We plot these intensity profiles at the mirror surfaces in the middle panels of

Fig. 3.3.

Let us now determine mirror shapes by imposing that the optical phase is constant

(which we take as 0 for simplicity) on each mirror surface. We have

vend
f (~r )eikhf(~r ) = |vend

f (~r )| , (3.72)

vend
c (~r )eikhc(~r ) = |vend

c (~r )| . (3.73)

Taking the complex conjugate of Eq. (3.72), and combine with Eq. (3.73), using Eqs. (3.70)

and (3.71), we have

hf(~r ) =
~r 2

L
− hc(~r ) , (3.74)

which is the duality relation between mirror surfaces. In the lower panels of Fig. 3.4, we

plot the shapes of mirror surfaces, again, we assume p = 4w0.
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Figure 3.4: Flat mesa beam wave front (left panel) with respect to a flat surface and

concentric mesa beam wave front (right panel) with respect to a concentric surface, as

analytically computed.
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3.4.3 Applications of Mesa beams to Advanced LIGO

In order to achieve lower thermal noise in the test masses, the intensity profiles at the mirrors

must be as flat as possible. In the case of infinite mirrors, the choice is to use cavities with

flat or concentric spherical mirrors, whose eigenmodes have uniform (absolutely flat) profile

distribution. However, the mirrors must have finite sizes (e.g., as limited by the size of

the beam tube), and the intensity profiles must be confined to a very large extent within

the rims of the mirrors, in order to decrease the diffraction loss upon each reflection. In

Advanced LIGO, a power loss below 10 ppm is required [3]. For this reason, we are forced

to deviate from flat or concentric configurations — to such an extent that the diffraction

loss is within the requirement. When only spherical mirrors are used, if on the one hand we

decrease the radius of curvature from +∞ (flat), and on the other hand increase the radius

of curvature from L/2 (concentric), the dual configurations, with

1/(2R1) + 1/(2R2) = 1/L , (3.75)

will have the same intensity profiles at the end mirrors, thus the same diffraction loss and

thermal noise. For example, R1 = 54 km and R2 = 2.077 km both give exactly the loss

specification, while R1 is the current baseline design. However, spherical cavities are not

optimal in terms of their thermal noise: (the two types of) mesa beams, whose intensity

profiles are flatter given the same loss specification, turn out to provide much lower thermal

noises [3, 8]. For these beams, the larger the parameter p, the lower the thermal noises,

but the higher the diffraction loss. The loss specification of Advanced LIGO corresponds

to p = 4w0 [3] which is the case we study in Fig. 3.3.

While having the same diffraction losses and thermal noises, dual configurations do

differ significantly in a very important aspect — their eigenspectra are different. Thus, any

problem using modal analysis of optical cavities will reveal these differences and probably

the duality relation if nearly flat and nearly concentric configurations are compared.

One such problem is the radiation-pressure-induced tilt instability: as the mirrors tilt,

the beam inside the cavity walks away from the center of the mirrors, producing a torque,

which in some cases can drive more tilt in the same direction, and become destabilizing

(see Fig. 3.5). As shown by Sigg [11], while for all cavities there is always one tilt mode in

which the radiation-pressure-induced torque is destabilizing, the instability is much weaker
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Figure 3.5: Comparison of tilt instability of nearly flat and nearly concentric symmetric

optical cavities. For more details see Ref. [10, 11].

in nearly concentric configurations than in nearly flat ones. The reason is that while in

the two cases the intensity profiles are identical, the optical axis of the beam walks away

by a much smaller distance in the concentric case, given the same amount of tilt in the

unstable mode (see Fig. 3.5). According to Sigg’s calculation for spherical mirrors, the tilt

instability for a nearly flat configuration with Advanced-LIGO power (∼ 1MW circulating

in the cavity) can be too strong to handle for the angular control system. For this reason,

we would prefer nearly concentric cavities.

For general, non-spherical cavities, a perturbative prescription for calculating the tilt

instability has been formulated by Savov and Vyatchanin [10], in which the tilt instabil-

ity growth time is expressed in terms of eigenvalues and intensity profiles of the cavities’

spatial eigenmodes (Eqs. 2.13, 2.14, and 4.8 of [10]). Savov and Vyatchanin applied their

prescription to both nearly flat and nearly concentric Mexican-Hat cavities; in particular,

they had to solve the eigenvalue problem for the nearly concentric cavities in order to obtain

the eigenvalues and intensity profiles. Savov discovered the duality relation in this process.

Had the duality relation been known, one could have taken the eigenvalues and intensity

profiles of nearly flat Mexican-hat cavities, available from previous works, applied the du-

ality transformation, and obtained the tilt instability for nearly concentric Mexican-Hat

cavities without having to solve the eigenvalue problem again (see Section VI of [10]).
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Finally, let us make a qualitative comment on the numerical magnitudes of tilt in-

stabilities in the various configurations considered. Numerically, according to Savov and

Vyatchanin [10], we have

nearly flat MH (p = 4w0)

↓
nearly flat spherical (R = 54 km)

↓
nearly concentric spherical (R = 2.077 km)

↓
nearly concentric MH (p = 4w0)

with configurations less and less unstable from top to bottom. Interestingly, this sequence

of decreasing instability is consistent qualitatively with the corresponding mirror shapes:

with the same amount of diffraction loss, the flat MH does appear more flat than the nearly

flat spherical mirrors, while the nearly concentric Mexican-Hat mirror does appear closer

to concentric than the nearly concentric spherical mirror.

3.5 Conclusion

In this paper, we provided two different analytic proofs for Savov’s duality relation between

symmetric cavities with mirror height h(~r ) measured with respect to a flat surface and

those with mirror height −h(~r ) measured with respect to a concentric spherical surface

(valid within the paraxial approximation): the corresponding eigenmodes have the same

intensity profile at the mirrors, their amplitude distribution at the center of the cavity is

related via Fourier transform, while their eigenvalues are related by complex conjugation

(see Table 3.1). These two proofs are based on the mirror-to-mirror propagator, and the

center-to-center propagator, respectively.

We illustrated this duality relation with the two types of Mesa beams proposed for

Advanced LIGO. In particular, we showed explicitly that these beams are related to each

other by a Fourier transform at the center of the cavities, and that they have the same

intensity profiles at the end of the cavities. We also related the mirror shapes of the

Mexican-Hat cavities that support these two modes by the duality relation. In addition,
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the duality relation could have allowed us to avoid solving the eigenequations once more for

the nearly concentric Mexican-Hat cavities, and used instead results already available for

nearly flat Mexican-Hat cavities.

The duality relation can also be applied to the more general Mesa beams by Bondarescu

and Thorne, which interpolate between nearly flat and nearly concentric cavities: in these

beams, minimal Gaussians are both translated and have their propagation axes rotated, to

different extents [13].

3.6 Appendix A: Duality relation for non-identical mirrors

In this section we will study the duality relation when the mirrors shapes are not identical,

but each still symmetric under a 180◦ rotation around the cavity axis. Since now the field

distributions of eigenstates over the two mirror surfaces are not the same, we have to study

the eigenvalue problem associated with the round-trip propagator, instead of the individual

surface-to-surface ones. Nevertheless, we can still use the propagators (3.6) and (3.8) to

build a system of integral equations relating field distributions v1(~r1) and v2(~r2) over the two

mirror surfaces. [All through this section, we use the subscripts 1 and 2 to refer to quantities

associated with mirrors 1 and 2, respectively.] If the mirrors deviate from parallel planes

by h1,2(~r), we have:

γ1v1(~r1) =

∫

S2

d2~r2 K12(~r1, ~r2) v2(~r2) , (3.76)

γ2v2(~r2) =

∫

S1

d2~r1 K21(~r2, ~r1) v1(~r1) , (3.77)

where γ1,2 are the “eigenvalues” and

K12(~r1, ~r2) =
ike−ikL

2πL
eikh1(~r1)− ik

2L
|~r1−~r2|2+ikh2(~r2), (3.78)

K21(~r2, ~r1) =
ike−ikL

2πL
eikh2(~r2)− ik

2L
|~r2−~r1|2+ikh1(~r1), (3.79)

are the propagators from mirror 2 to mirror 1, and from mirror 1 to mirror 2, respectively.

The equations (3.76) and (3.77) give the field at each mirror in terms of the reflected field

at the other but they can be combined to form the round-trip equation which states that

the field at each mirror must reproduce itself after one round-trip. In the following, we will
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add a subscript f or c to make a distinction between quantities related to the nearly-flat or

nearly-concentric case.

ηf v1f (~r1) =

∫

S′

1

d2~r ′
1 Kh1h2

1f (~r1, ~r
′
1) v1f (~r ′

1), (3.80)

ηf v2f (~r2) =

∫

S′

2

d2~r ′
2 Kh2h1

2f (~r2, ~r
′
2) v2f (~r ′

2), (3.81)

where the common eigenvalue ηf is given by γ1fγ2f and the round-trip propagators

Kh1h2
1f (~r1, ~r

′
1) =

∫

S2

d2~r2 K12f (~r1, ~r2)K21f (~r2, ~r1)

Kh2h1
2f (~r2, ~r

′
2) = (1 ↔ 2) · Kh1h2

1f (~r1, ~r
′
1) (3.82)

In the nearly-concentric configuration, using kernels of the form (3.8) for the propaga-

tion from one mirror to the other and combining them as done for the nearly-flat configura-

tion, we obtain the following nearly-concentric round-trip equation for the field distribution

over the mirror 1 (similar formula for the mirror 2 with the substitution 1 ↔ 2).

ηc v1c(~r1) =

∫

S′

1

d2~r ′
1 Kb1b2

1c (~r1, ~r
′
1) v1c(~r

′
1) (3.83)

Kb1b2
1c (~r1, ~r

′
1) = −

∫

S2

d2~r2 e
−2ikL

( k

2πL

)2
· (3.84)

· e ik
2L

|~r1+~r2|2+
ik
2L

|~r2+~r ′

1|
2+ikb1(~r1)+ikb1(~r ′

1)+2ikb2(~r2)

where b1,2 are the mirrors deviations from concentric surfaces. Using the assumed symmetry

properties of the mirrors, the propagators for the nearly-flat and nearly-concentric cavity

fulfills this relation (the same is true for the mirror 2 with the substitution 1 ↔ 2)

K−h1−h2
1c (~r1, ~r

′
1) = e−4ikL[Kh1h2

1f (−~r1,−~r ′
1)]

∗

= e−4ikL[Kh1h2
1f (~r1, ~r

′
1)]

∗ (3.85)

Equation (3.85), together with Eqs. (3.82) and (3.83), provides us with a more general

duality relation, for cavities with non-identical mirrors: as long as the corresponding mirrors

of two cavities A and B satisfy

hαA(~r) =
~r 2

L
− hαB(~r) , α = 1, 2 , (3.86)
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the eigenstates and eigenvalues of the two cavities will be related by:

vαA = v∗αB , ηA = e−4ikLη∗B , α = 1, 2 . (3.87)

3.7 Appendix B: Eigenstates and eigenvalues for cavities with

infinite mirrors

When the mirrors are infinite, it is straightforward to check that two fundamental properties,

∫

d2~r ′K(~r, ~r ′)K∗(~r ′, ~r ′′) = δ(~r − ~r ′′) , (3.88)

K(~r, ~r ′) = K(~r ′, ~r) , (3.89)

are satisfied by both propagators Kh
f and Kb

c; they can be re-written into

KK† = I, K = KT , (3.90)

where I is identity operator, KT the conjugate of K, and K† its Hermitian conjugate. In

simple terms, K is unitary and symmetric. It is well known that for unitary operators, all

eigenvalues have modulus 1, and that eigenvectors with different eigenvalues are orthogonal

to each other.

Now suppose we have an eigenvector v, with eigenvalue γ, γγ∗ = 1. By complex conju-

gating the eigenequation Kv = γv, we obtain

K∗v∗ = γ∗v∗ = γ−1v∗ ; (3.91)

using Eqs. (3.90), we have K∗ = K† = K−1, and hence

K−1v∗ = γ∗v∗ ⇒ γv∗ = Kv∗ . (3.92)

This means v∗ and v are both eigenvectors with eigenvalue γ. We can then replace v and v∗

by two real eigenvectors of the eigenvalue problem, v+v∗ and (v−v∗)/i. This corresponds to

the physical fact that the optical phase of eigenstates must be constant on mirror surfaces.
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Chapter 4

Grid-based search for supermassive black-hole

binaries in simulated LISA data

4.1 Introduction

The Laser Interferometer Space Antenna (LISA) is being designed to detect gravitational

waves of frequency between 10−5 and 10−1 Hz, with maximum sensitivity around 10−2 Hz.

Astrophysical sources in this frequency band are generally split into three broad classes:

1. A rich background of galactic binaries with periods ranging from hours to tens of

seconds. This population is mostly dominated by white dwarf binaries.

2. Extreme mass ratio inspirals (EMRIs) consisting of a white dwarf, neutron star or

stellar-mass black holes spiraling into a supermassive black hole (mass ∼ 105 – 107M�).

3. Coalescence of SMBH binaries and the capture of intermediate-mass black holes (IMBHs,

∼ 102 – 104M�) by supermassive black holes (SMBHs).

The sources in the third class are the strongest and most promising for LISA. SMBH

mergers will be observed with large signal-to-noise ratio (SNR), allowing precise measure-

ments of the source parameters and tests of strong-field effects of general relativity. For

that reason, the observation of SMBH mergers is one of the top LISA science requirements.

In view of the wide range of event-rate predictions made by various SMBH binary

formation models [2], we could face either of the following two scenarios: (i) Roughly 10
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SMBH binary events/year at redshifts (say) 2 < z < 6; or (ii) hundreds or thousands of

SMBH binaries that produce a large (and perhaps stochastic) background in the LISA data.

Clearly, the optimal detection strategy to use depends strongly on which of the two scenarios

actually occurs in nature; but at this early stage, our best bet is to devise techniques of

detection and parameter estimation that encompass both possibilities.

Searches for SMBH binaries in LISA data will be using existing post-Newtonian wave-

forms [3, 4] to generate the template banks used by the matched-filtering algorithms [5].

Therefore, they will resemble the existing searches for binary-neutron-star(BNS) inspirals

in ground-based GW detectors, such as LIGO. However, there are several key differences

which are important in choosing the optimal strategy for analyzing the data streams. First,

all search methods in LIGO are designed for signals with SNRs ∼< 10, whereas the SNR’s of

LISA SMBH binaries at distances z ∼< 2 are expected to be hundreds or thousands. Second,

the BNS signals sweep through the LIGO frequency band on timescales of order of a few

minutes, during which the detector can be considered as unmoving to high accuracy. By

contrast, inspirals will dwell in the LISA frequency band for months; and during that time,

LISA’s velocity and orientation change significantly. That orbital motion will introduce

amplitude, frequency and phase modulations of the signal that can be used to determine

the SMBH binary’s sky location and orientation. Third, as we have already discussed, in

the case of LISA, the data will probably contain simultaneous signals from large numbers

of SMBH binaries. The challenge is to resolve the individual sources and determine their

parameters with high accuracy. Fourth, BNSs observed by ground-based detectors will have

become essentially circular by the time they enter the observation band, whereas SMBH

binaries may enter the LISA band with considerable eccentricity. Finally, in LIGO the dom-

inant noise originates entirely from the instrument and its surrounding enviroment, while

through much of LISA’s sensitivity band the dominant noise originates from unresolved

Galactic white-dwarf binaries.

As described in Section 1.3, based on the above considerations, our JPL/Caltech group

has developed a three-stage search method for SMBH binaries in the Mock LISA Data

Challenge (MLDC) data. The goal of our data-analysis pipeline is not only to detect the

SMBH signals, but also to provide accurate measurements of the binary parameters. My

contribution to this project was to implement the second stage of the pipeline and test it

with data from the MLDC. In the rest of this chapter, I will discuss the methodology behind
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our grid-based search algorithm1.

The three-stage pipeline, and the grid-based search in particular, are designed to anlyze

the MLDC data sets. As such, they are subject to some limitations and approximations.

Here is a brief list of these pseudo-LISA conventions. Although, one of the goals for the

LISA design is to have stationary and Gaussian instrumental noise [1], it will not be clear

if this is the case until the instrument is functioning. All data analysis in our work is based

on the asumption that the noise is stationary and Gaussian. The LISA orbits are obtained

by truncating exact Keplerian orbits for a small mass orbiting the Sun to first order in

the eccentricity. LISA noise curves and LISA response are mgenerated with Syntetci LISA

[6, 7]. All the massive–black-hole binaries are considered to be circular; black-hole spins

are ignored, as are the final plunge and merger phases. An ad hoc taper is aplppied at

the end of the signal. The injected waveforms are approximated to second post-Newtonian

order. The binary is characterized by the folowing parameters: BHs masses m1, and m2,

time of coalescence tc, initial angular orbital phase ϕ0, ecliptic latitude θ, ecliptic longitude

φ, polarization angle ψ, orbital inclination ι, and luminosity distance D

The rest of the chapter is organized as follows: In Section 4.2, we introduce the notions

of data analysis, optimal filtering, and parameter estimation; In Section 4.3, we derive the

F-statistic method which we use to determine the extrinsic parameters of binaries and the

coalescence time. Section 4.4 describes details about the numerical implementation of the

grid-based search. Lastly, in Section 4.5, we walk the reader through the stages of the

the grid-based search. We apply our method to seven different experimental data sets and

discuss the results we obtained.

4.2 Parameter estimation

This section briefly reviews the basic formulas behind signal analysis and parameter es-

timation in the LISA context. For a more complete discussion of this topic see [5] and

[8].

The output of each LISA data stream can be written as

sα(t) = hα(t, ~λ) + nα(t), (4.1)

1We use (perhaps inappropriately) the term “grid-based” to indicate that the search is peformed in the

two discretized computational domains (grids) (m1, m2) and (θ, φ).
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where hα(t, ~λ) describes the response registered in detector channel α to a source with

parameters ~λ and nα(t) denotes the instrument noise in channel α. In the low frequency

limit, where the wavelengths are large compared to the armlengths of the detector, the

interferometer outputs sα(t) can be combined to simulate the response of two independent

90 degree interferometers, sI(t) and sII(t), rotated by 45 degrees with respect to each

other [9, 10]. This allows LISA to measure both polarizations of the gravitational wave

simultaneously. The third combination of signals in the low frequency limit is insensitive

to gravitational waves.

It is often convenient to work with the Fourier transform of the signal.

s̃α(f) ≡
∫ ∞

−∞
e2πiftsα(t) dt. (4.2)

Under the assumption that the noise is stationary and Gaussian, Wiener-Khintchine

Theorem [11] implies

〈ñα(f) ñβ(f ′)∗〉 =
1

2
δ(f − f ′)Sh

αβ(f), (4.3)

where 〈 〉 denotes averaging over realizations of the noise, ∗ means complex conjugations,

and Sh
αβ(f) is the one-sided spectral density of the noise.

The statistical properties of the noise determine a natural noise-weighted inner product

on the vector space of signals. Given two signals h1(t) and h2(t), we define (h1 |h2) by

(h1 |h2) = 4Re

∫ ∞

0

h̃1(f)∗h̃2(f)

Sn(f)
df. (4.4)

Based on this definition, the inner product of of pure noise with any signal is a standard

random random variable (i.e. with normal distribution, zero mean, and unit variance). In

particular, the probability for the noise to have some realization n0 is

p(n = n0) ∝ e−(n0 |n0)/2. (4.5)

Therefore, if the actual incident waveform is h(t), then from Eq. (4.1) the probability of

measuring a signal s in the detector output is proportional to e−(s−h | s−h)/2. Correspond-

ingly, given a measured signal s, the gravitational waveform h that best fits the data is the

one that minimizes the quantity (s− h | s− h). Eq (4.5) is also reffered to as likelihood.

Thus, the optimal paramteres that best fits the data is the one that maximizes the like-
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lihood or, the easier to analyze, logarithm of the likelihood. Thus, the alternative names

“maximum likelihood”(ML), or “maximum log-likelihood” methods. Another terms we use

interchangebly are “optimal filtering” and “matched filtering”.

There is a simple geometric interpretation of the opitmal mathcing scenario described

above. Let the gravitational signals from coalescing binaries are specified completely by a

finite number of parameters λi, i = 1, 2, .., N . Then the parametrized space of waveforms

{h(λi)} is an N -dimensional manifold embedded in the vector space of all possible measured

detector outputs s. Given the measured signal s = n + h(λ̃i), where λ̃i are the true

parameters, the best-fit waveform h(λ̂i) with optimal (or most probable) parameters λ̂i

is the point on the waveform manifold that lies closest to s according to the distance

(s − h(λ̂i) | s − h(λ̂i)). Thus, the vector from h(λ̂i) to s is then normal to the waveform

manifold at λ̂i.

It also follows from Eq. (4.4) that for any functions g and k, the expectation value of

(g|n)(k|n), for an ensemble of realizations of the detector noise n, is just (g|k). Hence, the

signal-to-noise of the detection will be given by

SNR[h] =
(h |h)

rms(h |n)
= (h |h)1/2, (4.6)

where rms(h |n) is the rms value for a n ensemble of realizations of the detector noise, n.

For a given incident GW, different realizations of the noise will give rise to somewhat

different best-fit parameters. For large SNR, however, the best-fit parameters will assume a

normal distribution centered on the correct values. Specifically, let ∆λi(n) = λ̂i(n)−λ̃i to be

the deviation of the best-fit parameters form the true parameters for different realizations

of the noise. Then for large SNR the parameter-estimation errors ∆λi have the normal

distribution

p(∆λi) = N e−
1
2
Γij∆λi∆λj , (4.7)

where Γij is the so-called Fisher information matrix defined by

Γij ≡
(
∂h

∂λi

∣
∣
∣
∣

∂h

∂λj

)

, (4.8)

and N =
√

det(Γ/2π) is a normalization factor. For large SNR, the variance–covariance
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matrix of the errors ∆θi is given by

〈∆λi∆λj〉 = (Γ−1)ij +O(SNR−1), (4.9)

which can be used to determine how accurately one can determine the parameters [12].

Therefore, for large SNRs, the rms errors of the estimated parameters of the signal are

given by the square root of the diagonal elements of the inverse of the Fisher information

matrix.

4.3 F-Statistic

The F-statistic was originally introduced by Jaranowski, Krolak, and Schutz [13] in the

context of ground-based searches by one detector for gravitational wave signals from a

known rotating neutron star. Cutler and Schutz [14] generalized the F-statistic to the case

of a network of detectors with time-varying noise curves and multiple sources. By using

multiple linear filters, the F-statistic allows us to automatically extremize the log likelihood

over extrinsic parameters, thus reducing significantly the dimension of the search space.

In the low-frequency limit the LISA response to a gravitational wave with polarization

content h+(t), h×(t) can be written as

h(t) = h+(t)F+(t) + h×(t)F×(t) , (4.10)

where

F+(t) =
1

2

(
cos 2ψD+(t) − sin 2ψD×(t)

)
,

F×(t) =
1

2

(
sin 2ψD+(t) + cos 2ψD×(t)

)
. (4.11)

The detector pattern functions D+(t) and D×(t) are given in equations (36) and (37) of

Ref. [15]. To leading post-Newtonian order a slowly evolving, circular binary has polariza-

tion components

h+(t) = A(1 + cos2 ι) cos(Φ(t) + ϕ0) ,

h×(t) = −2A cos ι sin(Φ(t) + ϕ0). (4.12)
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The gravitational wave phase

Φ(t; f, θ, φ) = 2πft+ 2πfR sin θ cos(2πfmt− φ), (4.13)

couples the sky location and the frequency through the term that depends on the radius of

LISA’s orbit, R = 1AU, and the orbital modulation frequency, fm = 1/year.

h(t) =
4∑

i=1

ai(A,ψ, ι, ϕ0)Ai(t; f, θ, φ) , (4.14)

where the time-independent coefficients ai are given by

a1 =
A

2

(
(1 + cos2 ι) cosϕ0 cos 2ψ − 2 cos ι sinϕ0 sin 2ψ

)
,

a2 = −A
2

(
2 cos ι sinϕ0 cos 2ψ + (1 + cos2 ι) cosϕ0 sin 2ψ

)
,

a3 = −A
2

(
2 cos ι cosϕ0 sin 2ψ + (1 + cos2 ι) sinϕ0 cos 2ψ

)
,

a4 =
A

2

(
(1 + cos2 ι) sinϕ0 sin 2ψ − 2 cos ι cosϕ0 cos 2ψ

)
,

(4.15)

and the time-dependent functions Ai(t) are given by

A1(t) = D+(t; θ, φ) cos Φ(t; f, θ, φ),

A2(t) = D×(t; θ, φ) cos Φ(t; f, θ, φ),

A3(t) = D+(t; θ, φ) sin Φ(t; f, θ, φ),

A4(t) = D×(t; θ, φ) sin Φ(t; f, θ, φ) . (4.16)

Let also define the 4 × 4 matrix Γij by

Γij =

(
∂h

∂ai

∣
∣
∣
∂h

∂aj

)

= (Ai |Aj). (4.17)

Some times Γij is reffered to reduced or projected Fisher information matrix. Given data

strem

s(t) = h(t) + n(t) =

4∑

i=1

aiAi(t) + n(t), (4.18)
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we want to find the best-fit which mimimizes the deviation from the true signal

δ =



s−
∑

i

aiAi

∣
∣
∣ s−

∑

j

ajAj



 . (4.19)

By solving ∂δ/∂ai = 0 for the best estimates of the four unknown coefficients âi, we

obtain the solutions for the unknown coefficients.

âi =
∑

k

(Γ−1)ik(Ak | s);

âi = ai +
∑

k

(Γ−1)ik(Ak |n). (4.20)

Substituting (4.14) and (4.20) into Eq. (4.19) we obtain an expression for our optimal

statistics

2F = (s|s) − (s−
∑

i

âiAi

∣
∣ s−

∑

j

âjAj)

=
∑

ij

(Γ−1)ij (s |Ai )(s |Aj). (4.21)

But this is equivallent to maximizing the log lilekihood discussed in the previous section [see

Eq. (4.5) and the discussion afterwards.] Therefore, the F-statistic automatically maximizes

the log likelihood over the extrinsic parameters A, ι, ψ and ϕ0, and reduces the search to

the sub-space spanned by f, θ and φ.

Note that for SNR >> 1, 2F ≈ (SNR)2. Whereas, for SNR ≈ 0, (pure noise), 2F ≈ 4.

The extrinsic parameters can be recovered from the coefficients ai’s via

A =
A+ +

√

A2
+ −A2

×

2
,

ψ =
1

2
arctan

(
A+a4 −A×a1

−(A×a2 +A+a3)

)

,

ι = arccos




−A×

A+ +
√

A2
+ −A2

×



 ,

ϕ0 = arctan

(
c(A+a4 −A×a1)

−c(A×a2 +A+a3)

)

, (4.22)
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where

A+ =
√

(a1 + a4)2 + (a2 − a3)2 +
√

(a1 − a4)2 + (a2 + a3)2 ,

A× =
√

(a1 + a4)2 + (a2 − a3)2 −
√

(a1 − a4)2 + (a2 + a3)2 ,

c = sign(sin(2ψ)) . (4.23)

4.4 Numerical implementation

To model the waveforms of the coalescence SMBH binaries, we used SyntheticLISA [6, 7],

which was originally developed by Michele Vallisneri in collaboration with John Armstrong.

SyntheticLISA generates synthetic time series of the LISA fundamental noises, as filtered

through all the Time-Delay Interferometry (TDI) observables. It also computes the data-

train output responses to gravitational waves according to a full model of TDI, including

the motion of the LISA array and the temporal and directional dependence of the arm-

lengths. For detailes of the model underlying SyntheticLISA and the approximations made

in generating its data streams, see [first] and the references therein.

To discretize the sky map we used an open-source software package named HEALPix [16]

(short for Hierarchical Equal Area isoLatitude Pixelization of a sphere), which was originally

devised in 1997 by Krzysztof M. Grski [K.M. Gorski et al., 2005, Ap.J., 622, p.759]. As the

name suggests, HEALPix was designed for pixelization, hierarchical indexation, synthesis,

analysis, and visualization of data on the sphere. This method of discretization produces a

subdivision of spherical surfaces in which each pixel covers the same surface area as every

other pixel. The HEALPix grid is characterized by two parameters: Nθ – the number of

the base-resolution pixel layers between the north and south poles, and Nφ - the number of

equatorial, base-resolutions pixels. The total number of pixels is equal to Npix = Nθ ×Nφ,

and the area of each one of them is equal to 4π/Npix. At each level of discretization l = 2n

there are 12 × 4n pixels. During our simulations the highest level of discretization we used

was l = 210 or more than 12 million pixels.

Our generation of templates is based on a template placement algorithm of Babak et. al. [17]

and the findchirp matched filtering algorithm of Allen et. al. [18], both of which were devel-

oped for the LIGO binary neutron star searches. Our template-generation algorithm con-

structs a grid of templates in the (m1,m2) computational grid using the metric-based square-
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grid placement algorithm [19, 17] implemented in the LIGO Algorithm Library (LAL) [20].

The resolution of the grid is specified by its minimum-match parameter MM, which is the

minimum overlap between the templates at any point in the parameter space and its nearest

grid-point.

The original description of the data sets from the MLDC is: one year of Gaussian

stationary instrument noise plus one Schwarzschild SMBH binary with time to coalescence

(6±1) months and massesm1 =(1–5) million solar masses andm2 = m1/x, where 1 < x < 4.

The signals have SNR for one IFO in the range 450 < SNR < 500 . The waveform model

for the inspiral is restricted to the 2PN approximation with no spin-orbit nor spin-spin

modultations.

For each point in the (m1,m2, θ, φ), we used the F-statistic method to maximize the

log likelihood over the extrinsic parameters A, ι, ψ and ϕ0. What is more, we maximize

over the coalescence time tc almost for free. Note, that the expression for the F-statistic

Eq. (4.21) contains inner products between the signal and the basis functions Ai Eq. (4.16).

However, by definiton Eq. (4.4) the inner products involves Fourier transforms. By numer-

ically performing an inverse Fourier transform we calculate F(t) in the time domain and

automatically choose F (tc) = Fmax(t).

We ran our simulatons on the JPL Xeon Cluster [21]. This supercomputer cluster has

1052 3.2GHz Intel Pentium 4 processors. It supports parallel programming with the message

passing interface (MPI). Each individual run was limited to 12 hours, but most of the time

this was enough to execute the search using between 100 and 128 nodes. On average, it

took between 50 and 70 seconds to compute one F-statistic.

Most of the code is written in Python. We used mpi4py [22, 23], a software package which

provides bindings of the Message Passing Interface (MPI) standard for Python scripting in

parallel environments.

4.5 Grid-based search for supermassive black-hole binaries

in MLDC data

As described in the previous section, the power of the F-statistic is that it automatically

extremizes the log likelihood over the extrinsic parameters of the SMBH binary. In ad-

dition it gives us free maximization with respect to the coalescence time tc. We further
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try to decouple the dependence of F = (SNR)2 on the remaining four intrinsic parame-

ters (m1,m2, θ, φ) by observing how strongly F depends on each of the parameters or any

combination of them.

First, during our preliminary tests on simultanious searches in the mass grid (m1,m2)

and the sky-position grid (θ, φ)), we realized that the dependence on the sky-position is very

weak compared with the dependence on the masses. So in the first step of the search, we

fix the sky position to a random point and try to maximize F in the (m1,m2) grid. Second,

we studied the behavior of F (η,mc), where the symmetric mass ratio η and the chirp mass

mc are defined as follows:

η =
m1m2

(m1 +m2)2
, (4.24)

mc = (m1 +m2)η
3/5. (4.25)

We noticed that F is strongly dependent on the chirp mass and weakly dependent on the

symmetric mass ratio. A fact well-known in any post-Newtonian expansions. This allowed

us to reduce the first step of the search to an effective one-dimensional optimization of

F (mc) for fixed η. For this purpose, we chose to use a bracketing search method called the

golden ratio search [24], which effectively narrows the range of the argument inside which

the extremum of a function is known to exist.

Since we alreay had access to the JPL supercomputer cluster, instead of maximizing

F (mc) for one value of η we distributed the optimization job to about hundred nodes each

with a different value of η. Thus, in one step, we were able to significantly narrow down in

the mass grid. This step is very efficient in terms of CPU time. The golden ratio algorithm

required between 10 and 15 iterations to reach our desired accuracy. Our targeted accuracy

was not very high, because our purpose at this stage was not to detemine the masses of

the BHs, but to rapidly converge to a neighbourhood in the (η,mc) or (m1,m2) mass grid,

where the sky position becomes important.

In Fig. 4.1 we present the results of our golden-ratio maximization. For each value

of η in the range (0.10, 0.25) we plot the maximum value of F (mc). The plot confirms

both our observations: First, the dot near the maximum represents the real values for η

and mc. Although we evaluate F at a random sky position, the values we converge to are

very close to the true parameters of the binary. Second, all maxima are concentrated in a
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Figure 4.1: Trace of Fmax(mc, η) for a random sky position. The slightly separated dot near

the maximum represents the true values for the masses.

narrow range of η – the trace is almost parallel to the η axis. Figure 4.2 shows the trace

of Fmax(m1,m2). Again, the true values of m1 and m2 (small dot near the maximum) are

close to our convergence point.

After this first step, which required between 10 and 15 minutes of CPU time per node,

we were able to converge our guesses for the masses m1 and m2 to within less than a

percent of the real values. As optimistic as this sounds, it is actually bad news when we

turn next to determine the binary’s sky position. What this means is that tiny deviations

in the masses will produce significant shifts in the optimal sky position, therefore we will

need very high accuracy of the two masses in order to have any chance to extract the sky

position. The next series of plots demonstrates how weak is the dependence of F on the

sky position. Fig. 4.3 was generated at HEALPix level = 27, with Npix ≈ 2 × 105 pixels,

and area of single pixel ≈ 6× 10−5rad2. It took about two days to generate the plot on 100

processors. Although it looks like F (θ, φ) is a well-behaved function, the coloring scheme

is deceiving. It is extremely non-linear as shown at the bottom of the plot. The three

color bars represent: full range of F i.e (Fmin, Fmax); 1% range i.e. (0.99Fmax , Fmax); 0.1%

range i.e. (0.999Fmax, Fmax). In Fig. 4.4 we show all points on the sky that have F above



4.5 Grid-based search for supermassive black-hole binaries in MLDC data 81

4�1068�106

m1

1.5�106

3.0�106

m2

1�105

3�105

F

Figure 4.2: Trace of Fmax(m1,m2) for a random sky position. The dot near the maximum

represents the true parameters.

0.999Fmax. An error of just 0.1% in F translates to uceartanty of tens of degrees in the

ecliptic latitude and longitude. Another representation of the data from Fig. 4.3 is shown in

Fig. 4.4, where we used linear coloring scheme to emphisize the almost-constant beahviour

of F on the sky map.

From the discussion above it is obvious that the resolution of the mass grid (m1,m2)

must be several orders of magnitude higher that the resolution of the sky grid θ, φ. Therefore

we start with comperatively coarse sky grid, while keeping the mass grid densly populated.

Another related complication comes from the fact that there is a well-known near degen-

eracy in the LISA antenna pattern at low frequencies. It is difficult to distinguish between

a signal arriving from a certain point in the sky (θ, φ) and a signal arriving from the point’s

antipodal position (−θ, π±φ). As it happened on numerous occasions during the tests, our

search almost unpredictably converged to either one of the two dual points. We realized that

the reason behind this confusion, is in the low mass-grid resolution. The uncertainty in the

values of the masses caused an uncertainty in the value of F , which was enough occasionaly

to diverge our code to the antipodal point. In Fig. (4.6), we compare F values near the

true sky position and its antipodal point. The maximum values near the two points differ
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Figure 4.3: F (θ, φ) evaluated with best estimates for m1 and m2 at each sky point. Upper

panel – Mollweide Projection; Lower panel - Lambert Culyndrical Projection. Green dot

represents the true sky position and blck dot is sky position determined by grid search.

Non-linear coloring schemes for 100%, 1%, and 0.1% intervals.
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Figure 4.4: Same as Fig. 4.3, but with values of F (θ, φ) within 0.1% of Fmax.

Figure 4.5: Same as Fig. 4.3, but with linear coloring schemes for 100% and 1% intervals.
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Figure 4.6: F (θ, φ) evaluated with true masses m1 and m2

near the true sky-position (upper panel) and near the antipodal point (lower panel). Green

dot represents the true sky position and black dot is sky position determined by grid search.

The sky patch is approximately 30 by 10 degrees.

by 10−5–10−4, depending on the realization of the noise and the sthrength of the signal.

Once we improved our mass grid, the code consistently started to converge to the true sky

position.

In Fig. (4.6), we also show the best sky position based on our search (black dot) and

the true sky position (green dot) for one of the data sets (Blind).

[FINSIH DISCUSSION and ADD TABLE w/ Extrinsic Parameters]
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Data Set Parameters m1 m2 θ φ tc Fmax

Training key 1204622 401334 0.157 5.998 13636993 379587.1

No Noise search 1204753 401291 0.170 6.001 13636995 379586.6

key∗ 1204622 401334 -0.157 9.140 13637969 379537.5

search∗ 1204753 401291 -0.170 9.143 13637970 379552.0

Training key 1204622 401334 0.157 5.998 13636993 380718.7

search 1204400 401400 0.110 6.062 13636995 380721.8

key∗ 1204622 401334 -0.157 9.140 13637969 380660.0

search∗ 1204400 401400 -0.110 9.204 13637970 380654.1

Blind key 4609366 2122425 1.139 3.931 15045889 277384.7

search 4611146 2121580 1.124 3.900 15045900 277388.4

key∗ 4609366 2122425 -1.139 7.073 15045648 277357.8

search∗ 4611146 2121580 -1.124 7.042 15045630 277365.9

Exp1 key 4491973 1235993 -1.340 0.546 16302016 251852.8

search 4491516 1236333 -1.303 0.531 16301985 251839.4

key∗ 4491973 1235993 1.340 3.688 16302211 251849.8

search∗ 4491516 1236333 1.303 3.673 16302225 251847.3

Exp2 key 2996337 1353192 -0.511 0.479 15461667 314489.0

search 2995151 1353770 -0.507 0.436 15461655 314492.8

key∗ 2996337 1353192 0.511 3.621 15462417 314433.0

search∗ 2995151 1353770 0.507 3.578 15462420 314435.3

Exp3 key 3174644 840088 -0.060 5.350 17648966 288204.4

search 3175067 839993 -0.058 5.338 17648970 288204.0

key∗ 3174644 840088 0.060 8.491 17649221 288074.4

search∗ 3175067 839993 0.058 8.480 17649210 288071.3

Exp4 key 2503041 1639502 -0.981 3.185 17485946 449980.7

search 2502663 1639689 -0.974 3.182 17485950 449980.4

key∗ 2503041 1639502 0.981 6.326 17485421 449956.6

search∗ 2502663 1639689 0.974 6.324 17485410 449944.8

Table 4.1: Results from grid-based search for seven different data sets. The asterics denote

the antipodal position in the sky.
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