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Come, you lost Atoms, to your Centre draw,

And be the Eternal Mirror that you saw:

Rays that have wander’d into Darkness wide,

Return, and back into your Sun subside.

From Farid ud-Din Attar’s twelfth-century masterpiece

The Conference of the Birds
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Abstract

We examine various topics involved in the creation of accurate theoretical gravi-

tational waveforms from binary black-hole systems.

In Chapter 2 a pseudospectral numerical code is applied to a set of analytic

or near-analytic solutions to Einstein’s equations which comprise a testbed for

numerical-relativity codes. We then discuss methods for extracting gravitational-

wave data from numerical simulations of black-hole binary systems, and intro-

duce a practical technique for obtaining the asymptotic form of that data from

finite simulation domains in Chapter 3. A formula is also developed to estimate

the size of near-field effects from a compact binary. In Chapter 4 the extrapolated

data is then compared to post-Newtonian (PN) approximations. We compare the

phase and amplitude of the numerical waveform to a collection of Taylor approx-

imants, cross-validating the numerical and PN waveforms, and investigating the

regime of validity of the PN waveforms. Chapter 5 extends that comparison to

include Padé and effective-one-body models, and investigates components of the

PN models. In each case, a careful accounting is made of errors. Finally, we

construct a long post-Newtonian–numerical hybrid waveform and evaluate the

performance of LIGO’s current data-analysis methods with it. We suggest certain

optimizations of those methods, including extending the range of template mass

ratios to unphysical ranges for certain values of the total mass, and a simple an-

alytic cutoff frequency for the templates which results in nearly optimal matches

for both Initial and Advanced LIGO.
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1
Introduction

Down a quiet road in the woods of Louisiana, the darkness is warm and

comforting. The sky is spread wide, bejeweled above a rippling wind sculp-

ture, restless in the solitude. Nearby, on a few delicate fibers, hangs an almost

flawless set of mirrors—virtually motionless. An intense beam of light shines

across them. With sublime sensitivity, the light echoes out sounds of the dis-

tant cosmos.

Almost a century ago, Einstein introduced an elegant theory to explain the

nature of gravity. While the fundamentals are fairly simple and well understood,

physicists have spent most of the past hundred years teasing out its implications.

Gravitational waves, the Big Bang, and black holes—the broad strokes are all

there; now we need to fill in the details. In recent years, we have begun to develop

the tools that will allow us to investigate the most extreme environments in the

universe. They will bring us deeper understanding of the theory’s consequences,

and will be vital to the future of astronomy and physics.

Astronomy has always relied almost entirely on observations of light, pushing

down to long-wavelength radio waves and up to high-energy gamma rays. A few

1



2 Introduction

very interesting observations have also been made outside the electromagnetic

spectrum, with neutrino telescopes and cosmic-ray detectors. As each new win-

dow has opened, more unexpected phenomena have been discovered. Now, with

gravitational waves, Einstein’s theory of general relativity is giving us a new way

to extend our senses to the far reaches of the universe.

The signals, however, are extraordinarily subtle, squeezing and stretching the

distance between objects near Earth by no more than a few parts in a billion bil-

lion, and typically far less.1 Detecting them requires experiments of unsurpassed

precision, and an accurate knowledge of just what the waves should look like.

This thesis is an attempt to accurately model some of those waveforms. First,

it will be helpful to review some of the most promising sources of gravitational

radiation and the methods used to detect them.

1.1 Generating gravitational waves

Gravitational waves are ripples in the fabric of spacetime generated by acceler-

ating masses. The greater the mass and the greater the acceleration, the larger

the strain of the gravitational waves. Of course, like all radiation, the waves’

amplitudes fall off inversely with the distance r from the source. But simple

acceleration is not sufficient. The source needs to have a changing quadrupole

moment,2 the archetype of which is a simple binary—two bodies in orbit about

each other. Indeed, the strongest astrophysical gravitational waves are expected

1The quantity used to measure the size of a gravitational wave is the strain, usually denoted
h. It is precisely the fractional change in lengths induced by the wave in free masses.



1.1. Generating gravitational waves 3

to be produced by simple binaries.

If we denote the total mass of the system by M , the reduced mass by µ, and

the orbital angular velocity by Ω, the typical strain produced by the wave is, in

order of magnitude,

h ≈ Gµ

c2 r

(
G MΩ

c3

)2/3

, (1.1)

In terms of familiar scales, this is

h ≈ 10−21 µ

1 M¯
1Mpc

r

(
M

1 M¯
Ω

1Hz

)2/3

. (1.2)

The tiny coefficient gives us concern for the feasibility of detection. We need large

masses, orbiting at high frequencies, as near to Earth as possible.

The closest contact binaries—pairs of more or less ordinary stars that are

nearly touching—are found at roughly 100 pc from Earth, and orbit with periods

as low as several hours [145]. If we assume typical masses of a few times the

mass of the sun, this corresponds to a strain of about 10−20. In addition to

concern for the minuscule magnitude of the strain, we need to worry about the

frequency band in which it is found. On Earth, many things happen on timescales

of several hours. Observing such tiny fluctuations without coupling to tides, or

thermal cycling, or any number of vibrations is well beyond the capabilities of

current earthbound technology, and even at the limit of expected capabilities of

planned space-based detectors.

Ordinary stars undergoing fusion are simply too large and loosely bound to

accelerate very quickly without breaking apart, which would tend to “smear out”

the waves, reducing their strength. More compact objects are needed to produce

2It is possible to have a purely octupole mode, however, the strongest sources expected in
nature will be predominantly quadrupolar.
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intense gravitational waves suitable for observations in the near future. White

dwarfs, neutron stars, and black holes are the densest known concentrations of

mass, and are known to be dynamic on timescales as brief as milliseconds [188].

This means that their frequencies can extend up to the kHz range,3 increasing the

strain of the gravitational waves they emit, and placing those waves at frequencies

that can be detected with high sensitivity.

Slightly elliptic spinning neutron stars would give off gravitational waves due

to their changing nonsphericity. The waveforms emitted by such a star would be

well modeled—basically a wave of constant frequency, modulated by the chang-

ing orientation and velocity of the detector. Similar signals are likely given off by

the neutron star of a low-mass X-ray binary [30]. The waves could be detected by

demodulating the signal, taking its Fourier transform, and essentially looking for

excess power [64].4 The longer the observation time, the more sensitivity there

is to be gained. On the other hand, the fraction of the star’s mass involved in the

type of nonsymmetric motion that gives off gravitational waves would be quite

small, meaning that the waves themselves would be correspondingly small.

Alternatively, a close encounter between a pair of compact objects involves

essentially all of the mass in nonsymmetric motion. We will see in Chapter 6 that,

for merging nonspinning, equal-mass black-hole binaries,
(

M
1 M¯

Ω
1Hz

)
reaches up

to about 105. Thus, at its peak amplitude, the signal from such a binary will be

h ≈ 10−18 µ

1 M¯
1Mpc

r
. (1.3)

While this signal is indeed tiny for realistic masses and distances, it is nonetheless
3White-dwarf binaries would merge or break up at somewhat lower frequencies; this scale is

only valid for neutron stars and black holes.
4In fact, “Einstein@Home” is a distributed-computing project which allows users with home

computers to donate idle time to searches doing just this type of analysis.

http://einstein.phys.uwm.edu/
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of a size that may be detected in the near future. The number of stellar-mass black

holes in our galaxy is estimated to be in the hundreds of millions [193]. Though

we have only a rough idea of how often these will meet and merge, it has been

estimated that next-generation gravitational-wave detectors could detect merging

black-hole binaries anywhere from dozens of times per year to a dozen times per

day [102]. Even the lower number provides ample incentive to pursue detection

of gravitational waves.

1.2 Detecting gravitational waves

Gravitational waves have been indirectly detected. Thirty years of observation

of the binary pulsar B1913+16 have given us an accurate measurement of the

system’s tightening [247]. The rate at which the binary inspirals agrees with the

prediction for energy loss in the form of gravitational waves to within 0.2%. In

1993, the Nobel Prize was awarded to Hulse and Taylor for this observation. To

date, however, no direct observation has been made.

The main tool we have for direct measurement is a set of three instruments—

two (LIGO [245]) located in Louisiana and Washington state in the U.S., and

another (VIRGO [3]) in Italy.5 Their miles-long arms have mirrors at each end,

reflecting high-power laser light back and forth. Using Michelson interferometry,

the position of the mirrors is measured to within a small fraction of the width of

a proton. As a gravitational wave passes the detectors, it stretches and shrinks

the space between the mirrors. But the amplitude of that change is expected to be

of roughly the same size as random fluctuations in the instrument, complicating
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the detection.

In interferometric detectors, there are three fundamental limiting sources of

noise [155]:

• Seismic noise. This is filtered heavily through a system of coupled oscillators

and active controls. It is dominant at low frequencies, dropping off very

quickly at higher frequencies.

• Thermal noise. Produced by the suspension and within the mirror itself,

the power in this noise source typically falls off roughly as f −4.5 and is

dominant just after the seismic noise drops off.

• Shot noise. This is noise due to photon counting statistics. Increasing with

frequency, it takes over from thermal noise, and climbs as f 2.

Currently the most sensitive interferometers are the LIGO instruments.

With a low signal-to-noise ratio (SNR) it is simply not possible to just look

at the data and see the signal. However, if we know what a possible signal

would look like, we can test for its presence in the data. Though we can never

be absolutely sure that a signal is or is not present, given a data stream s(t )

and a template waveform h(t ), we can derive some likelihood statistic describing

whether or not h is contained in s. This depends on the level of noise in the

detector, Sn( f ).6 We form the inner product

(s h)B 4ℜ
∫ ∞

0

s̃( f ) h̃∗( f )

Sn( f )
d f . (1.4)

5Other detectors exist and are taking data. GEO [250] and TAMA [9] are other laser inter-
ferometers. Explorer [13], Allegro [192], AURIGA [91], NAUTILUS [14], and NIOBE [35] are
cryogenic bar detectors sensitive to vibrations induced in the bars by gravitational waves. Each
of these instruments has a lower optimal sensitivity than the LIGO–VIRGO instruments.



1.3. Modeling gravitational waveforms 7

The larger this inner product is, the greater the likelihood that h is contained

in s [65, 173], assuming the templates h are normalized to a constant. But this

test assumes that we have a reasonably accurate template waveform h. If the

template is inaccurate, it could match with noise just as well as it matches with

the real data. Producing accurate waveforms and comparing them to models will

be the main topic of this thesis.

1.3 Modeling gravitational waveforms

Science progresses by comparing its predictions to observations. General relativ-

ity’s most intriguing results have only been encountered indirectly. Gravitational

waves have been inferred to carry off energy from an inspiraling pair of stars.

The existence of black holes has similarly been inferred from observations of the

matter around them—evidence that so much mass is packed into such a small

volume that we have no idea what might be in there other than a black hole. It

would be comforting to have more direct observations, testing Einstein’s theory

in the most severe environments in the universe today. Of course, to do that, we

need to understand exactly what those predictions are.

To describe the motion of the Moon around the Earth to high accuracy, we

only need Newtonian gravity. To describe the motion of Mercury around the Sun,

we need a first-order approximation from Einstein’s theory [132]. The closer and

more massive two orbiting objects are, the more we need general relativity. For a

pair of black holes moving slowly, we can expand the terms in Einstein’s equations

in series, and solve approximately. Techniques for doing these “post-Newtonian

6We discuss these techniques in greater detail in Sec. 6.2.
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approximations” have evolved over the past two decades, and have reached an

impressive stage [42]. For some physical situations, they can accurately predict

the waveform to within an orbit or two of the point of merger [59].7

However, as the black holes near each other, moving faster and faster, the ap-

proximations must eventually break down. We have basically no hope of solving

the full, nonlinear Einstein’s equations analytically. Instead, we need to use com-

puters to simulate the physical scenario. While post-Newtonian approximations

break down at some point before merger, numerical simulations are costly, and

cannot extend for long before merger. We need to extend the simulations to a

domain in which we trust the post-Newtonian approximations, and check that

the predicted waveforms agree on the overlap. Then, the final waveform will be

a marriage of post-Newtonian and numerical methods. In the following chapters

we have done just this, demonstrating how to produce an accurate gravitational

waveform for binary black holes.

Of course, it is entirely possible that exotic sources other than black-hole bi-

naries exist, and will only be discovered through gravitational-wave astronomy—

much as pulsars, active galactic nuclei, and the cosmic microwave background

were only discovered with the advent of radio and microwave astronomy. One

enticement to gravitational-wave astronomy is exploration of the unknown, as

well as observation of the known. But the only way we will be able to discover

new phenomena in the data will be to understand the more mundane signals—

like binary black holes.

7Post-Newtonian approximations are described in some detail in Secs. 4.3 and 5.3.
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1.4 This thesis

This thesis examines various topics involved in the creation of accurate theoretical

gravitational waveforms from binary black-hole systems. The data presented

is from a simulation of an equal-mass, nonspinning system, evolved through

15 orbits, merger, and ringdown. It is used to compare with post-Newtonian

approximations, and to evaluate data-analysis techniques for gravitational-wave

detectors.

In Chapter 2 we present tests of the numerical code used to evolve black-hole

binary systems. The code is applied to a set of exact and approximate solutions

to Einstein’s equations, which comprise a testbed for numerical-relativity codes—

the so-called “Mexico City Tests”. While the formulation of Einstein’s equations is

different from the one used to evolve binaries, the underlying code infrastructure

and basic numerical methods are the same. This chapter is extracted with minor

revisions from Ref. [62], and was written in collaboration with Lee Lindblom,

Harald P. Pfeiffer, Mark A. Scheel, and Lawrence E. Kidder, and published in

2007.

We then introduce a practical technique for obtaining the asymptotic form of

gravitational-wave data from numerical simulations with finite-sized domains in

Chapter 3. We discuss methods of extracting the data, and some of the errors that

would be made in treating this data as the asymptotic waveform. A formula is

developed to estimate the size of near-field effects encountered when extracting

at finite radius. We show that these effects account for nearly all of the error

in Regge–Wheeler–Zerilli data. This chapter (referred to as Ref. [63]) will be

incorporated into a paper to be published with Abdul H. Mroué. The data comes
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courtesy of Mark A. Scheel, Harald P. Pfeiffer, and Luisa Buchman.

In Chapter 4 data extrapolated from a highly accurate 15-orbit simulation is

then compared to post-Newtonian (PN) approximations. We compare the phase

and amplitude of the numerical waveform to a collection of Taylor approximants,

cross-validating the numerical and PN waveforms, and investigating the regime

of validity of the PN waveforms. We find one particular approximant which

agrees with our numerical waveform to within the uncertainty throughout most

of the inspiral. This chapter is extracted with minor revisions from Ref. [59],

which was written in collaboration with Duncan A. Brown, Lawrence E. Kidder,

Abdul H. Mroué, Harald P. Pfeiffer, Mark A. Scheel, Gregory B. Cook, and Saul

A. Teukolsky, and published in 2007.

Chapter 5 extends that comparison to include Padé and effective-one-body

models, and investigates components of the PN models. In each case, a care-

ful accounting is made of errors. The waveforms themselves are also compared,

showing that Padé and EOB waveforms do have high accuracy, though only

slightly better than the best Taylor approximant. This chapter is extracted with

minor revisions from Ref. [61], which was written in collaboration with Alessan-

dra Buonanno, Lawrence E. Kidder, Abdul H. Mroué, Yi Pan, Harald P. Pfeiffer,

and Mark A. Scheel. It has been submitted to Physical Review D, and is under

review.

Finally, in Chapter 6, we use our numerical waveform—attached to a very

long PN waveform—to study the detection efficiency of stationary-phase ap-

proximated post-Newtonian template waveforms currently used by ground-based

gravitational-wave detectors to search for the coalescence of binary black holes.
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We perform this study for the Initial and Advanced LIGO detectors. We make

various recommendations to improve the application of the templates. We intro-

duce a simple analytic formula which can be used to determine the frequency at

which to end the template waveform, and show that using this cutoff achieves

nearly optimal matches for all mass ranges in either detector. We suggest that

this formula could also find use in searches for other physical situations (e.g.,

spinning and unequal-mass systems). This chapter (referred to as Ref. [60]) was

written in collaboration with Duncan A. Brown and Larne Pekowsky. It has not

yet been submitted for publication.
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Testing the numerical-evolution code1

The accuracy and stability of the Caltech-Cornell pseudospectral code is eval-

uated using the Kidder, Scheel, and Teukolsky (KST) representation of the

Einstein evolution equations. The basic “Mexico City Tests” widely adopted

by the numerical-relativity community are adapted here for codes based on

spectral methods. Exponential convergence of the spectral code is established,

apparently limited only by numerical roundoff error or by truncation error

in the time integration. A general expression for the growth of errors due to

finite machine precision is derived, and it is shown that this limit is achieved

here for the linear plane-wave test.

1This chapter is extracted with minor revisions from Ref. [62], which was written in collabora-
tion with Lee Lindblom, Harald Pfeiffer, Mark Scheel, and Larry Kidder. Note that the evolution
system used in this chapter (KST) is not the same system used for the successful binary evolu-
tions presented in other chapters (generalized harmonic). The code infrastructure, however, is
the same. The code was written by Harald Pfeiffer, Mark Scheel, and Larry Kidder. I wrote the
analytic solutions in the code (except for the linear wave), ran the simulations, and analyzed the
data. Crucial suggestions to improve the parameters of the tests and refine the analysis came
from all of my co-authors. I led the writing of most of the text, with some exceptions, though all
authors contributed significantly. In particular, the introduction is due mostly to Lee Lindblom,
Sec. 2.2 is due largely to Mark Scheel, and Sec. 2.7 was in large part written by Harald Pfeiffer.

13
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2.1 Introduction

A number of groups have now developed numerical-relativity codes sophisticated

enough to evolve binary black-hole spacetimes [219, 21, 81, 126, 158, 230]. The

gravitational waveforms predicted by these evolutions will play an important role

in detecting and interpreting the physical properties of the sources of these waves,

soon to be detected (we anticipate) by the community of gravitational-wave ob-

servers (e.g., LIGO, etc.). Therefore, such codes must be capable of performing

stable and accurate simulations of very nonlinear and dynamical spacetimes.

Several years ago a large subset of the numerical-relativity community—the

“Apples with Apples” collaboration [7]—proposed a series of basic code tests

designed to verify the accuracy, stability, robustness, and efficiency of any code

designed to find fully three-dimensional solutions to the Einstein evolution equa-

tions. These tests—often referred to as the “Mexico City Tests” because they

were first formulated during a conference in Mexico City in May 2002—were

designed to be analogous to the standard suite of tests used by the numerical-

hydrodynamics community (e.g., tests to reproduce Sedov explosions, Sod shock

tubes, blast waves, etc.) to commission new hydrodynamics codes. The Mexico

City tests were designed to be applicable to any formulation of Einstein’s equa-

tions solved with any numerical method. All tests proposed so far concern bulk

properties of the formulation and numerical method, and so all of the evolu-

tions are carried out on a numerical grid with three-torus topology; no boundary

conditions are needed (or tested). There are four basic tests, some of them in

a number of variations: (a) the evolution of initial data with small, random de-

partures from Minkowski spacetime; (b) the evolution of small-amplitude linear
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plane-wave initial data; (c) the evolution of a nonlinear gauge-wave representa-

tion of flat spacetime; and (d) the evolution of initial data for a very dynamic

and nonlinear Gowdy cosmological model.

The Mexico City tests have now been applied to a number of different numerical-

relativity codes that use different formulations of the Einstein equations [7, 17].

But all of the codes tested so far use finite-difference numerical methods. In

this paper we report the results of applying these tests to the code developed in

collaboration between the Caltech and Cornell numerical-relativity groups. We

use a first-order symmetric-hyperbolic formulation of the equations developed by

Kidder, Scheel, and Teukolsky [181] (sometimes referred to as the KST formula-

tion) and we solve the equations using pseudospectral numerical methods. The

results reported here differ therefore from all previously tested cases both in the

formulation of the Einstein equations and the numerical methods used to solve

them.

In Sec. 2.2 we review the KST formulation of the equations, and the pseu-

dospectral numerical methods we use to solve them. The remaining sections

present the results of the various Mexico City tests, adapted somewhat to pro-

vide more challenging tests of a code based on spectral methods. In Sec. 2.3 we

show that our code is stable when evolving small random perturbations of flat

spacetime. In Sec. 2.4 we report the results of the small-amplitude plane-wave

test. We demonstrate the convergence rates for different spatial resolutions and

different time-step algorithms. We also derive an equation for the error intro-

duced by finite machine precision, and show that it limits the convergence of our

evolutions for small spatial and temporal resolutions. In Sec. 2.5 we investigate
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the stability of our evolution code for nonlinear gauge waves. In this case, nonlin-

ear terms give rise to an instability that is drastically reduced by suitably filtering

the components of the spectral expansion. Section 2.6 shows the performance of

our code for evolutions of the highly dynamical Gowdy spacetime, in which the

exact analytical expressions for the components of the fields grow exponentially

in time. Finally, we discuss and summarize our various results in Sec. 2.7.

2.2 Solution method

In this section we describe the formulation of the Einstein equations and the

pseudospectral numerical solution method that we test. The Mexico City tests

were designed with finite-difference methods in mind and were originally ap-

plied to formulations of the Einstein equations that are second-order in space

and first-order in time. Both our numerical methods and our representation of

the Einstein equations differ significantly from those in Ref. [7], so appropriate

modifications to the Mexico City test suite (for example, the number of grid points

used or the constraint quantities observed) are needed. These modifications are

also described in this section.

2.2.1 KST formulation

The KST system [181] is a first-order symmetric hyperbolic generalization of

York’s representation of the ADM equations [252]. The dynamical variables of this

system are the three-metric gi j , the extrinsic curvature Ki j , and a new variable

Dki j that is initially set equal to ∂k gi j /2. This last variable allows the system to
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be put into first-order form. Its introduction results in two additional constraints:

Cki j BDki j − 1

2
∂k gi j , (2.1)

Cl ki j B ∂[l Dk]i j . (2.2)

The KST evolution equations are obtained from the ADM equations [252] by

adding constant multiples of the various constraints to the evolution equations

and by replacing the lapse with a lapse-density function. These changes do not

affect the physical solutions of the system, but they do modify the unphysical

constraint-violating solutions. The added constraint terms are proportional to

constant parameters
{
γ1,γ2,γ3,γ4

}
, which are chosen to make the system sym-

metric hyperbolic [180]. The principal parts of the KST evolution equations, then,

are given by:

∂t gi j ' N n∂n gi j ; (2.3)

∂t Ki j ' N n∂nKi j −N
[

(1+2γ0)g cdδn
(iδ

b
j )

− (1+γ2)g ndδb
(iδ

c
j ) − (1−γ2)g bcδn

(iδ
d

j )

+ g nbδc
iδ

d
j +2γ1g n[b g d ]c g i j

]
∂nDbcd ; (2.4)

∂t Dki j ' N n∂nDki j −N
[
δn

kδ
b

iδ
c

j −
1

2
γ3g nb gk(iδ

c
j )

− 1

2
γ4g nb g i jδ

c
k + 1

2
γ3g bc g k(iδ

n
j )

+ 1

2
γ4g bc g i jδ

n
k

]
∂nKbc . (2.5)

Here, the symbol ' indicates that terms algebraic in the fields (that is, nonprin-

cipal terms) are not shown explicitly. The lapse function N is taken to be

N B gγ0eQ , (2.6)
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and both the lapse density function Q and the shift N i are assumed to be speci-

fied functions of the coordinates, rather than independent dynamical fields. Since

each of the Mexico City tests involves reproducing either a known analytic solu-

tion of the Einstein equations or a small perturbation about a known solution, for

all tests reported here we set the lapse density Q and the shift N i from the appro-

priate analytic solution. We choose one set of the KST parameters for all the tests

here: γ0 = 0.5; γ1 = −0.21232; γ2 = −0.00787402; γ3 = −1.61994; γ4 = −0.69885.

These values were chosen because they make the KST system symmetric hyper-

bolic and coincide with a set preferred by Owen [204] in his extension of the KST

system.

To evaluate errors it is useful to look at constraint quantities. As mentioned

above, the KST system has additional constraints, Eqs. (2.1) and (2.2), besides the

usual Hamiltonian constraint C and momentum constraint Ci . To ensure that we

are satisfying all the constraints, we monitor a single quantity C that is zero if

and only if all of the constraints vanish:

C B
√

C 2 + (Ci )2 + (
Cki j

)2 + (
Cl ki j

)2 , (2.7)

where an object is squared using the evolved spatial metric. For example, (Ci )2 =
g i j CiC j .

Likewise, when evaluating differences from analytically known solutions, we

define an overall error quantity that includes the errors in all evolved variables

gi j , Ki j , and Dki j . Taking δgi j B g
analytic
i j − g evolved

i j , and similarly for other

fundamental fields, this overall error quantity is given by

δU B
√(

δgi j
)2 + (

δKi j
)2 + (

δDki j
)2

. (2.8)
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Note that δU vanishes if and only if all evolved variables match the known

solution.

For all error quantities Q we display L2 norms:

‖Q‖2B

√
1

Vol

∫
Q2

√|g |d3x , (2.9)

where Vol= ∫ √|g |d 3x is the volume of the domain. These norms are computed

after each time step over the current t = const. hypersurface. We refer to ‖C ‖2 as

the constraint energy, and ‖δU ‖2 as the error energy.

The error quantities ‖δU ‖2 and ‖C ‖2 scale with the absolute magnitude of

the fundamental fields and their derivatives, so it can be difficult to judge the

significance of these error measures without knowing the overall scale of the

variables in the problem. For this reason, we sometimes plot the normalized error

energy ‖δU ‖2/‖U ‖2 and the normalized constraint energy ‖C ‖2/‖∂U ‖2, where

the normalization factors are defined by

U B
√(

gi j
)2 + (

Ki j
)2 + (

Dki j
)2 , (2.10)

∂U B
√(

∂i g j k
)2 + (

∂i K j k
)2 + (

∂i D j kl
)2

. (2.11)

Note that ‖δU ‖2/‖U ‖2 and ‖C ‖2/‖∂U ‖2 become of order unity when errors

and constraint violations completely dominate the numerical solution. We dis-

play normalized error quantities only for tests involving the Gowdy spacetimes

(Sec. 2.6), in which the fundamental variables vary exponentially in time. All

other tests presented here involve perturbations of Minkowski spacetime, in

which case the quantity ‖∂U ‖2 is of order the size of the perturbation and is

therefore inappropriate to use as a normalization factor. However, for perturba-
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tions of Minkowski spacetime, the overall scale is of order unity so it suffices to

display the unnormalized quantities ‖δU ‖2 and ‖C ‖2.

2.2.2 Pseudospectral methods

All of our numerical computations are carried out using pseudospectral methods;

this is the first time the Mexico City tests have been applied to a pseudospectral

code. A brief outline of our method is as follows. Given a system of partial

differential equations

∂t u(x, t ) =F [u(x, t ),∂i u(x, t )] , (2.12)

where u is a collection of dynamical fields, the solution u(x, t ) is expressed as a

time-dependent linear combination of N spatial basis functions φk(x):

u(x, t ) =
N−1∑
k=0

ũk(t )φk(x) . (2.13)

Associated with the basis functions is a set of Nc collocation points xi . Given

spectral coefficients ũk(t ), the function values at the collocation points u(xi , t ) are

computed using Eq. (2.13). Conversely, the spectral coefficients are obtained by

the inverse transform

ũk(t ) =
Nc−1∑
i=0

wi u(xi , t )φk(xi ) , (2.14)

where wi are weights specific to the choice of basis functions and collocation

points. Thus it is straightforward to transform between the spectral coefficients

ũk(t ) and the function values at the collocation points u(xi , t ).
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To solve the differential equations, we evaluate spatial derivatives analytically

using the known derivatives of the basis functions,

∂i u(x, t ) =
N−1∑
k=0

ũk(t )∂iφk(x) , (2.15)

and we evaluate nonlinear terms using the values of u(xi , t ) at the collocation

points. Thus we can write the partial differential equation, Eq. (2.12), as a set of

ordinary differential equations for the function values at the collocation points,

∂t u(xi , t ) =Gi [u(x j , t )] , (2.16)

where Gi depends on u(x j , t ) for all j . We then integrate this system of ordinary

differential equations in time, using (for example) a fourth-order Runge-Kutta

algorithm.

Because the tests discussed here are periodic in all spatial dimensions, we

use Fourier basis functions. If we choose a computational domain extending

from −1/2 to 1/2 in each of the x, y , and z directions, then each variable u is

decomposed as

u(x, y ,z) =
Nx−1∑
k=0

Ny−1∑
l=0

Nz−1∑
m=0

aklmφk(x)φl (y)φm(z), (2.17)

where

φk(x) =


1 k = 0 ;

sin[πx(k +1)] k > 0 (k odd) ;

cos(πxk) k > 0 (k even) .

(2.18)

For smooth solutions, the spectral approximation Eq. (2.13) converges expo-

nentially (error ∼ e−λN for some λ > 0 which depends on the solution). This

is much faster than the polynomial convergence (error ∼ 1/N p) obtained using
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pth-order finite differencing. As a result, we run our tests at coarser resolutions

than those recommended in Ref. [7] for finite-difference codes—typically we use

Ni = 9, 15, 21, 27, and 33 collocation points in the relevant directions. From

Eqs. (2.17) and (2.18) we see that if we choose Nx , Ny , or Nz to be an even in-

teger, the highest-frequency component in our expansion will have a sine term

but no matching cosine term. Consequently, the spatial derivative of this highest-

frequency component will not be represented by our basis functions, causing a

numerical instability. Therefore we choose Nx , Ny , and Nz to be odd.

Because spectral methods so greatly reduce spatial-discretization errors, time-

stepping error is often dominant. In order to make the time stepping and the

spatial-discretization errors comparable in these tests, we use fourth-order Runge-

Kutta ODE integration. The time-step sizes are chosen in an effort to use step

sizes comparable to those used to test finite-difference methods in Ref. [7], while

also ensuring that time-step errors do not dominate over our spatial-truncation

errors. We use ∆t =∆x/20 in the first test, and ∆t =∆x/40 in all others, except

where explicitly noted. Here, ∆x is the minimum distance between collocation

points.

2.3 Random initial data on flat space

Perhaps the simplest test of a numerical-relativity code is evolving standard

Minkowski spacetime on a three-torus, T 3. However, this test is too simple be-

cause all fundamental fields are spatially constant and most are identically zero,

and hence most numerical methods will reproduce the correct solution exactly.

This test can be made more discriminating by adding a small amount of random
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noise to the initial data; the noise is intended to simulate the effect of finite numer-

ical precision. A different random number is added to each component of each

evolved variable, at each point in the domain. These random numbers are chosen

to lie between −10−10 and 10−10 so that the system remains in the linear regime.

If these small perturbations to a simple spacetime grow unstably, it is likely that

the inevitable errors (e.g., discretization error or even numerical-roundoff error)

that arise in any more complicated simulation will also grow unstably. For this

test we vary the resolution in the x dimension, and we fix the resolution to three

collocation points in each of the y and z dimensions.

If the perturbations in the fields are chosen to be of size ε, independent of

resolution, then the perturbation in the nth spatial derivatives of these fields will

be ∼ ε(∆x)−n , where ∆x is some measure of the distance between neighboring

points. This means that error quantities involving derivatives (such as constraints)

will be larger for finer resolutions.2 This behavior is seen in the plot of the

constraint energy in Fig. 2.1.

The purpose of this test is to establish that small constraint violations around

flat space do not grow, and the KST system clearly passes this test. Whether

or not constraint violations decay will depend on the evolution system and the

numerical method. For example, artificial dissipation in the numerical method

might cause all variations to decay, including constraint violations. Furthermore,
2The Mexico City collaboration [7] intended their Hamiltonian-constraint errors to be inde-

pendent of resolution, so they chose the size of the perturbation ε to be dependent on resolution,
ε∼ (∆x)2, which is the appropriate scaling for the second-order-in-space formulations of Einstein’s
equations they use. However, for the first-order-in-space formulation we use, the Hamiltonian
constraint is computed using first derivatives of Dki j rather than second derivatives of gi j , so the
constraint will vary as (∆x)−1. Note also that the ε∼ (∆x)2 scaling does not make the momentum
constraint independent of resolution, as it depends on first derivatives of the fields. We simply
choose ε to be independent of resolution.
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Figure 2.1: Constraints for Minkowski space with random noise

Higher resolutions are expected to have larger constraints because more closely
spaced points result in larger derivatives. The constraints do not grow in time.
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if the evolution system contains constraint damping in some form, then the con-

straints should decay. Indeed, Owen has extended the KST system to include

constraint damping [204]; running the same test, he observes exponential decay

in the constraint quantities. The flat constraint violations observed in Fig. 2.1 in-

dicate that the KST system with our parameter choice does not damp constraints

and that the spectral method has insignificant artificial dissipation.

In Fig. 2.2 we see a linear growth of the error energy ‖δU ‖ for this test. We

find that the growth is caused solely by contributions from the metric gi j ; the

average values of Ki j and Dki j remain constant in time. We can understand this

as follows. The average value of Ki j is determined by the random initial data

and will in general be nonzero. The time derivative of Ki j , to first order in the

amplitude of perturbations around flat space, involves only spatial derivatives of

Dki j . (See Eq. (2.4).) These derivatives have zero average (up to roundoff errors

∼ 10−16), because the constant term in the Fourier expansion Eq. (2.18) is removed

by differentiation, and therefore the average of Ki j will be constant in time. The

time derivative of gi j involves a term proportional to Ki j . Because the average of

Ki j is constant in time and nonzero, the value of gi j will therefore drift linearly

in time. The average of Ki j is smaller for higher resolutions—because the average

is taken over more random numbers—which means that the growth rate of gi j

should decrease with increasing resolution. Indeed, this is what we observe in

Fig. 2.2.

We can verify that the nonzero average of Ki j is the only source of growth

in gi j by manually removing the average value of Ki j . We expect this will leave

the norms of the components of gi j approximately constant in time. This is
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Figure 2.2: Error energy for Minkowski space with random noise

The linear increase in time is due to a nonzero average in the random noise added
to Ki j . This average approaches zero as resolution is increased, since there are
more points over which to average. The flat line shows the evolution when the
average value of Ki j is set to zero in the initial data.
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accomplished by setting the k = 0 spectral coefficients of all components of Ki j to

zero in the initial data, after all the random numbers have been added. The flat

line in Fig. 2.2 shows the result, indicating that the average offset in Ki j is the

only source of growth in the evolved variables of the KST system for this test.

2.4 Linear plane wave

If the ultimate goal of simulating binary black hole mergers is to predict the

gravitational-radiation waveforms for observations, an evolution system must at

least be capable of propagating a simple linear plane wave through flat spacetime.

The form suggested for the Mexico City tests in Ref. [7] is

ds2 =−dt 2 +dx2 + (1+b)dy2 + (1−b)dz2 , (2.19)

where

b = b(x, t ) = A sin[2π(x − t )] . (2.20)

This metric satisfies Einstein’s equations only to linear order in the wave’s ampli-

tude A, so if the fully nonlinear numerical solution is compared to this approx-

imate solution, there will be deviations of order A2 that arise from our choice

of “analytic solution” rather than from numerical errors. The amplitude A for

the Mexico City tests is chosen to be 10−8 so that such deviations in the metric

components gi j are below machine precision. However, we still observe O (A2)

deviations in the variables Ki j and Dki j (which have values of order A), even

with an amplitude of A = 10−8, because the relative error is well above machine

precision.
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2.4.1 One-dimensional sinusoid

The sinusoidal waveform chosen in Eq. (2.20) is only a weak test for pseudospec-

tral methods, because the Fourier basis functions defined in Eqs. (2.17) and (2.18)

exactly resolve Eq. (2.20) at all times using only three basis functions; the only

truncation errors are those associated with time discretization. Therefore, as a

more challenging test, in Sec. 2.4.2 we repeat the plane wave evolution using a

Gaussian-shaped wave. It is nevertheless instructive to evolve the sinusoid and

study the resulting time-discretization errors. Since the dynamics involve no

change in amplitude, but a change in phase, we expect the errors to be primarily

phase errors, for reasonably small time steps.

This loss of temporal accuracy is particularly relevant in efforts to simulate

sources for gravitational-wave observations, as the search for signals involves

matching expected waveforms against observations. If there is significant error

in the phase of the expected waveform, the overlap will be poor and detection will

be more difficult. Although a constant overall scaling error in frequency—like the

one found in this linear problem—could still result in detection, more complex

situations would likely give rise to more complicated errors. The straightforward

way to handle this problem is to minimize all time-stepping error.

In Fig. 2.3 we show the convergence of the phase error in the evolution of the

sinusoidal linear wave. The solution is fully resolved on a 3×1×1 grid. We keep

this grid fixed, and decrease the size of the time step. Assuming that the only

error is some phase error δφ, the evolved gzz will be given by

gzz = 1−10−8 sin
[
2π(x − t )+δφ]

. (2.21)
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Figure 2.3: Phase error for 1-D sinusoidal linear wave

Phase error at t = 25 crossing times for various time-step sizes, and several time-
stepping algorithms. These tests were all run with three points in the x direction.
The dashed line indicates the expected accuracy limit due to roundoff error. See
Eq. (2.26).
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At integer multiples of the light-crossing time for our computational domain, this

can be written as

gzz = 1− A
[
cosδφsin(2πx)+ sinδφcos(2πx)

]
. (2.22)

That is, we can find the phase error easily from the k = 1 sine and cosine com-

ponents of gzz (which happen to be easily accessible quantities in our code).

For intermediate time-step sizes, we can see convergence toward zero phase

error with decreasing time step. As expected, we observe second-order conver-

gence for Iterated Crank-Nicholson stepping, and fourth- and sixth-order for the

appropriate higher-order Runge-Kutta algorithms. At very small time-step sizes,

a new effect is seen, causing the phase error to increase with decreasing time

step. This effect can be understood as machine-roundoff error accumulating via

a random walk process.

Suppose we have a variable V (t ) that is evolved by adding the small changes

needed to update its value at each time step. Each such operation will introduce

a fractional error χ(t ) caused by the finite machine precision. We assume that

the standard time-step size is ∆t , and that there are n intermediate operations in

each time step. After an evolution through time T , the total error added in this

way will be

δV =
n T /∆t∑

j=0
V (t j )χ(t j ) . (2.23)

To avoid tracking each individual error contribution, we treat χ as a random

variable taking values in some range, with some probability distribution.

We estimate the accumulated error due to finite machine precision by taking

suitable averages over an ensemble of random χ(t ) and over a time interval T .

Assuming there is no asymmetry between positive and negative values of χ(t ),
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this accumulated error would be zero. Of course, we expect almost never to see

this case: the most likely outcome is an accumulated error comparable to the

dispersion:

|δV | ∼
√

(δV )2 ∼
√∑

j ,k
V (t j )V (tk)χ(t j )χ(tk) , (2.24)

where the overbar indicates the average over the ensemble of random errors

χ(t ). We can simplify this expression by assuming that χ(t ) has no correlations

between time steps, and further assuming that the probability distribution is

constant in time and uniform, taking values in the range [−ε,ε], where ε is the

machine precision. This means that χ(t j )χ(tk) = δ j kε
2/3. Finally, we approximate

the discrete time sum as an integral, and obtain

|δV | ∼ ε
√

n

3∆t

∫ t2

t1

V (t )2 d t . (2.25)

We can test this formula by observing its effects in the case of phase error for

the linear wave. Here, the only nontrivial evolved variable is V = gzz , which is

very nearly 1; so the integral in Eq. (2.25) becomes simply the evolution time T ,

which has the value 25 for the results plotted in Fig. 2.3. If phase errors dominate,

δgxx ∼ A sinδφ, so we have

|δφ| ∼ ε

A

√
25n

3∆t
∼ 10−7

p
∆t

( ε

10−16

)(
10−8

A

)
, (2.26)

where n is assumed to be of order 10. This expression is plotted as the dashed

line in Fig. 2.3, demonstrating that the addition of machine-precision errors causes

the departure from the standard second-, fourth-, and sixth-order convergence

we observed. From Eq. (2.26) we see that |δφ| is proportional to the ratio ε/A;

thus |δφ| is so large in this case because the wave amplitude is so small, A = 10−8.
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The phase error is only so clearly visible in these evolutions because the full

solution is described precisely at each moment by the first three basis functions.

This means that discretization error due to spatial differentiation is essentially

at the level of machine precision. Indeed, using more than three points actually

degrades the quality of these one-dimensional sinusoid evolutions. Power in

higher-order basis functions can only be error, and hence will necessarily do worse

than the low-resolution case. We omit plots of the error energy and constraints

in the higher-resolution cases, as they are very nearly the same as those of the

more complicated two-dimensional evolutions discussed in Sec. 2.4.3.

2.4.2 One-dimensional Gaussian

As a more challenging test of pseudospectral methods, we repeat the one-dimensional

linear wave test using a periodic Gaussian-shaped wave:

b = A
∞∑

j=−∞
exp

[
−

(
x − t + j

)2

2 w 2

]
, (2.27)

with A = 10−8. The summation over j ensures that the function is truly periodic

at all times. In practice, j need only range over a few, depending on the width of

the Gaussian. The width chosen here is w = 0.05 to ensure that features are not

too sharp, while still presenting a nontrivial challenge to spectral differentiation.

We find behavior comparable to the sinusoidal case, although as expected,

more collocation points in the x direction are needed to resolve the solution

spatially (but we still use only a single point in each of the y and z directions).

Note the exponential convergence of the constraints with increasing resolution
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Figure 2.4: Constraints for 1-D Gaussian linear wave

Here we see the exponential convergence of the constraints with higher spatial
resolution. At late times, the higher resolutions grow sublinearly in time, proba-
bly because of accumulated machine-roundoff error.
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Figure 2.5: Error energy for 1-D Gaussian linear wave

The solid lines show the error energy at 1/2 crossing times, with clearly visible
exponential convergence at early times. The dashed lines show the error energy
at integer crossing times for the same resolutions. The smallness of the error
energy at early times demonstrates the low dispersion of the numerical method;
at later times, the error is dominated by the quadratic growth. Both effects are
discussed in the text.
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in Fig. 2.4. The constraint growth in the highest-resolution runs is slower than

linear in time, and is probably caused by the accumulation of errors due to finite

machine precision as discussed in Sec. 2.4.1.

Figure 2.5 presents the error energy for this run as the solid lines. At early

times ‖δU ‖ decreases exponentially to zero with increasing resolution, as one

would expect. At late times, however, ‖δU ‖ converges toward a parabola. The

amplitude of this parabola scales in proportion to A2. In the rest of this section,

we will first explain a subtlety arising when computing ‖δU ‖, followed by a

detailed explanation of why the terms O (A2) manifest themselves in parabolic

behavior of ‖δU ‖.
The comparison of the computed solution with the analytic solution is per-

formed at the collocation points. By virtue of the transformation Eqs. (2.13) and

(2.14), the errors are initially exactly zero at the collocation points. The spatial-

truncation error is nonzero of course, even at the initial time; it manifests itself as

a deviation of the truncated series expansion from the analytic solution between

collocation points. During the evolution, a linear wave will simply travel through

the computational domain, returning to the original position after each light-

crossing time. Since the spectral method has very small dispersion, the evolved

shape remains the same. After each light-crossing time, therefore, the evolved

solution again agrees to very high accuracy with the initial analytic solution at

the collocation points. So, comparing the evolution with the analytic solution at

integer multiples of the light-crossing time and at the collocation points will yield

differences much smaller than spatial truncation error.3 Therefore, a fair compar-

3This is also true when comparing at intervals of 1/N of a crossing time if the number of
collocation points in the direction of the wave’s travel is divisible by N .
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ison that includes the effects of spatial-truncation error must not be performed at

integer light-crossing times. These considerations are evident from Fig. 2.5, where

the solid lines show the “true” ‖δU ‖ observed with 1/2 light-crossing interval

offset, which suffices because the number of collocation points is always odd. The

artificially small error energy observed at every complete light-crossing interval

is shown as dashed lines, confirming the excellent low-dispersion property of our

method.

At late times the differences between observation at full and 1/2 crossing times

are swamped by the parabolic growth in ‖δU ‖. Similar parabolic deviations of

the evolution from the solution of the linearized equations are observed for the

other two linear-wave evolutions, the 1-D and 2-D sinusoids (see Fig. 2.7). The

growth in ‖δU ‖ appears almost entirely due to growth in the k = 0 mode of

diagonal terms in δgi j . Using evolutions of waves with different amplitudes and

wavelengths, we have verified that this growth is proportional to A2t 2/λ2, where

A is the amplitude and λ the wavelength of the disturbance. The constant of

proportionality depends directly on the KST parameter γ1 appearing in Eq. (2.4).

This parameter controls the addition of a term γ1N gi j C to the ADM evolution

equation for Ki j . The Hamiltonian constraint C is roughly constant in time, and

varies as A2/λ2. Since the k = 0 mode of γ1N gi j C is roughly γ1δi j C , the k = 0

mode of Ki i will grow linearly with time in proportion to γ1 A2/λ2 for each i .

That, in turn, will cause small quadratic growth in the k = 0 mode of gi i . For the

more well-behaved cases (highest resolutions for the Gaussians; all cases for the

sinusoids) this model is an excellent fit for the observed error energy.
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2.4.3 Two-dimensional linear waves

The linear wave tests above may be modified by rotating the coordinates by π/4

about the z axis, which gives a plane wave propagating along the x-y diagonal.

By increasing the size of the domain by a factor of
p

2 in each direction, the

rotated solution can be made periodic while maintaining the same wavelength.

This converts the spacetime from essentially one-dimensional to essentially two-

dimensional. The purpose of this test is to ensure that the symmetry of the

one-dimensional version does not hide sources of error (although propagation

along a diagonal obviously retains some symmetries). For these tests we use a

single collocation point in the z dimension, and we vary the (equal) number of

collocation points in the x and y directions. We run these tests to t = 1000—ten

times longer than is recommended by the Apples with Apples collaboration—to

better observe the stability properties. As shown in Fig. 2.6, the constraints for

the sinusoidal wave increase with increasing x and y resolution (still using only

a single point in the z direction). The constraints for the Gaussian are very nearly

the same as in the one-dimensional case. Again, the A2t 2/λ2 growth of ‖δU ‖ is

visible, as shown in Fig. 2.7.

2.5 Gauge wave

The next series of tests involves a simple but time-dependent gauge transforma-

tion of Minkowski space, in the form of a plane wave. The metric used for this
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Figure 2.6: Constraints for 2-D linear waves

The solid lines represent the Gaussian wave, while the dashed lines represent the
sinusoidal wave. The sinusoid is fully resolved spatially with 3 points. Going
to higher resolutions merely introduces spatial errors in the unnecessary basis
functions, which leads to an increase in the constraints with resolution.
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Figure 2.7: Error energy for 2-D linear waves

The solid lines represent the Gaussian wave, while dashed lines represent the
sinusoidal wave, both observed at 1/2 crossing times. As in the 1-D case (Fig. 2.5),
both sets of evolutions converge to quadratic growth of the error caused by the
Hamiltonian constraint, explained in the text.
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Mexico City test has the form

ds2 =−(1+a)dt 2 + (1+a)dx2 +dy2 +dz2 , (2.28)

a = A sin[2π(x − t )] . (2.29)

Two cases are considered: a low-amplitude case with A = 0.01, and a high am-

plitude case with A = 0.1. This is the first test for which the nonlinear terms in

the equations play an important role.

For the linear plane wave test in Sec. 2.4, we found that because we use a

Fourier basis, we were able to fully resolve the sinusoidal waveform using only

three collocation points. This is not true for the gauge-wave test, because in this

case the extrinsic curvature (one of our evolved variables) is not a simple sinusoid.

Instead, its only nonzero component is

Kxx =−π A cos[2π(x − t )]p
1+ A sin[2π(x − t )]

. (2.30)

2.5.1 One-dimensional gauge wave

We ran the one-dimensional test described above using a single collocation point

in each of the y and z directions, and varying the resolution in the x direction.

We find that for both A = 0.01 and A = 0.1 our evolution is stable and convergent.

Our error energy and constraint violations show no signs of instability and are

strictly better than the filtered two-dimensional evolutions discussed below. We

omit plots for this test because the two-dimensional test is more challenging and

more discriminating.
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Figure 2.8: Constraints for high-amplitude 2-D gauge wave

Dashed lines indicate the unfiltered behavior; solid lines indicate the filtered be-
havior. Note that, despite an effective loss of resolution, filtering greatly improves
the stability of the evolution.
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Figure 2.9: Error energy for high-amplitude 2-D gauge wave

As in Fig. 2.8, dashed lines are unfiltered, and solid lines are filtered. The growth
of the filtered error energy is exponential in time. For the highest resolution the
time step was cut in half (∆t = ∆x/80) to reduce time-discretization error to
the same level as spatial-discretization error. The dotted line shows the same
evolution with time step ∆t =∆x/40, which is dominated by time-discretization
error.
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2.5.2 Two-dimensional gauge wave

A simple rotation of coordinates about the z axis makes the wave described by

Eqs. (2.28) and (2.29) propagate along the x-y diagonal, as in the case of the linear

wave. We use an equal number of collocation points in the x and y directions,

and a single collocation point in z.

As for the one-dimensional gauge-wave test, we run at two different ampli-

tudes: A = 0.01 and A = 0.1. For low amplitude, A = 0.01, our evolution of the

2-D gauge wave is stable and convergent. Again, we omit plots, as our results

are strictly better than for the more interesting high-amplitude case.

For high amplitude, A = 0.1, we find an exponentially growing nonconvergent

numerical instability, as seen in the curves labeled “unfiltered” in Figs. 2.8 and 2.9.

This instability does not appear for the low-amplitude case, nor does it appear

for either amplitude in the one-dimensional gauge-wave test.

The instability appears to be associated with aliasing caused by quadratic

nonlinearities in the evolution equations; this is a well-known phenomenon that

often occurs when applying spectral methods to nonlinear equations [58]. The

basic mechanism for the instability can be understood by considering a truncated

spectral expansion for some variable u(x) in terms of N basis functions φk(x):

u(x) =
N−1∑
k=0

ukφk(x) . (2.31)

The correct spectral expansion of the expression u(x)2 can be obtained by squar-

ing Eq. (2.31); for most basis functions—including the Fourier series of Eq. (2.18)—

this yields a sum over a total of 2N basis functions, rather than just N . Of course,

we keep only N basis functions (not 2N ) in our expansion, so the k ≥ N coeffi-

cients of the product must be eliminated. Ideally, these k ≥ N coefficients should
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be simply discarded and the k < N coefficients should remain untouched. But

it turns out that for the pseudospectral method of evaluating nonlinear terms

(i.e., Fourier transform to obtain values at spatial collocation points, square these

values, then Fourier transform back to spectral space), the power in the extra

k ≥ N coefficients of the product does not disappear, but instead appears as ex-

cess power in some of the k < N coefficients (“aliasing”). Repeating this process

on each time step builds up this excess power and produces the instability.

Fortunately, there is a well-known remedy for instabilities caused by aliasing

in nonlinear terms: suppose that the upper half (i.e., those with k ≥ N /2) of the

coefficients uk in Eq. (2.31) were all zero. Then the spectral expansion of u(x)2

will have zeroes in all its k ≥ N coefficients, so there is no aliasing, and hence

no instability. Therefore, we ensure that all coefficients with k ≥ kcut are zero by

removing those coefficients from the initial data and from the right-hand side of

the evolution equations. It turns out (see, for example, Chapter 11.5 of Ref. [58])

that for a quadratic nonlinearity, it is sufficient to filter with kcut = 2N /3 (and

not kcut = N /2) to eliminate aliasing. As mentioned in Sec. 2.2, the remaining

number of nonzero coefficients must be odd, which is ensured by reducing kcut

by one if necessary.

The price we pay for stability via this filtering is that we must use a factor

of 1.5 more spectral coefficients (and collocation points) than without filtering

in order to achieve the same level of spatial-discretization error. Hence, we use

more points for this test than for the previous ones: Ni = 15, 21, 27, and 33

points. This leaves the effective resolutions at Ñi = 9, 13, 17, and 21 points,

which are comparable to the resolutions we use in the unfiltered case. We see
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from Figs. 2.8 and 2.9 that filtering dramatically reduces the instability. The

initial constraint violations in these runs, ‖C ‖ ≈ 10−12, are at the level of the finite

machine precision, so increasing the resolution causes increased—not decreased—

constraint violations.

2.5.3 Shifted gauge wave

We also show the results of a new “shifted gauge wave” test suggested for addi-

tion to the “Apples with Apples” suite [17]. For this test we evolve flat space with

the usual Minkowski coordinates (t̂ , x̂, ŷ , ẑ) transformed to coordinates (t ,x, y ,z)

via

t̂ = t − A

4π
cos[2π(x − t )] , (2.32)

x̂ = x − A

4π
cos[2π(x − t )] , (2.33)

ŷ = y , (2.34)

ẑ = z . (2.35)

This test includes the effects of a nonvanishing shift vector. We use the same

computational domain and KST parameters as in the standard gauge wave tests

above. The amplitude suggested in Ref. [17] is A = 0.5. We also run simulations

with A = 0.1.

At high amplitude, A = 0.5, we see exponentially growing nonconvergent in-

stabilities. Without filtering, the code crashes after just a few crossing times. By

filtering out the top 1/3 spectral coefficients as described above, the evolution can

be extended as far as t = 60. No other choice of filtering seems to improve this
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Figure 2.10: Constraints for shifted gauge wave

Solid lines indicate A = 0.5, and dashed lines indicate A = 0.1. For both ampli-
tudes we filter out the top 1/3 spectral coefficients.
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Figure 2.11: Error energy for shifted gauge wave

Solid lines indicate A = 0.5, while dashed lines indicate A = 0.1. The growth in the
A = 0.1 runs is roughly linear in time, accelerating to quadratic at later times. The
dotted line indicates the standard time step (∆t =∆x/40) with 33 points, which
is dominated by temporal discretization error, while the blue dashed curve uses
∆t =∆x/80.
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further. We also run the test with an amplitude of A = 0.1. For this amplitude, the

evolutions are stable with filtering but unstable without. Figs. 2.10 and 2.11 show

the constraints and error energy for these evolutions. The initial constraint viola-

tions in these runs, ‖C ‖ ≈ 10−13, are at the level of the finite machine precision,

so increasing the resolution causes increased, rather than decreased, constraint

violations. The growth in ‖δU ‖ seen in Fig. 2.11 is linear in time for t < 100,

becoming quadratic at late times. The quadratic in time growth is dominated by

time-stepping error, which tests show is convergent. (Reducing this error to the

level of spatial-truncation error would require a prohibitive amount of computing

time at the higher resolutions.)

2.6 Gowdy spacetime

The Gowdy spacetimes are dynamic cosmological solutions that present a serious

challenge to any numerical relativity code. The Gowdy spacetimes are vacuum

cosmological models having two spatial Killing fields (planar symmetry) that

expand from (or, when time-reversed, contract toward) a curvature singularity.

Two particular examples of these spacetimes with relatively simple analytical

forms were chosen for the Mexico City tests: one in which the spacetime expands

away from the singularity; another in which it collapses toward the singularity.

2.6.1 Expanding form

The metric chosen for the expanding case is

ds2 = t−1/2e
λ−λ0

2 (−dt 2 +dz2)+ t (eP dx2 +e−P dy2) , (2.36)
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where

P (t ,z) = J0(2πt )cos(2πz) , (2.37)

λ(t ,z) =−2πt J0(2πt )J1(2πt )cos2(2πz)

+2π2t 2 [
J 2

0(2πt )+ J 2
1(2πt )

]
, (2.38)

λ0 =λ(1,1/8), and Jn is a Bessel function. Asymptotically, P approaches zero as

time increases, and λ increases linearly with time. Because the metric components

are singular at t = 0, the Mexico City test begins the evolution at t = 1 and

proceeds forward in time.

The time step ∆t required for numerical stability is roughly given by the

Courant condition ∆t ß∆x/v , where ∆x is the spacing between collocation points

and v is the coordinate speed of wave propagation, which in this case is the

coordinate speed of light. For the Gowdy metric the coordinate speed of light in

the z-direction is constant in time, but in the x- and y-directions it varies roughly

like t 3/4et/2. Therefore, the maximum allowed time step decreases in time like

t−3/4e−t/2, so for any fixed time step, the evolution will soon become numerically

unstable if there is any perturbation in the x- or y-directions. This problem can

be circumvented by running the simulation with just one point in the transverse

directions, effectively eliminating any perturbation that could seed the instability.

Another difficulty with evolving the expanding Gowdy metric is that the met-

ric components and derivatives become enormous very quickly. By t ∼ 725 the

numbers become larger than 10310, so the evolution cannot be easily handled

using standard 64-bit floating-point arithmetic. Our evolutions do not actually

crash until t = 700; unfortunately errors dominate our evolutions long before this
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Figure 2.12: Constraints for expanding Gowdy spacetime

At early times, the exponential convergence of spectral methods is clearly visible.
Soon, however, the evolutions are dominated by constraints growing roughly as
et/5.
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Figure 2.13: Error energy for expanding Gowdy spacetime

The error energy converges with increased spatial resolution, but ‖δU ‖2/‖U ‖2

grows like et/5.
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time, as seen in Fig. 2.13. The normalized error energy—along with the con-

straints shown in Fig. 12—grows roughly as et/5, and accuracy is completely lost

in these evolutions by t ∼ 150.

2.6.2 Collapsing form

The time coordinate in the Gowdy metric given above can be transformed so that

the initial singularity is approached only asymptotically in the past. The new time

coordinate, τ, is defined by τB 1
c ln(t/k), where c = 0.0021195119214607454, and

k = 9.6707698127640558. The spacetime can be evolved backwards indefinitely

without reaching the singularity; that is, the time step is chosen to be negative.

For purposes of convenience, the evolution is begun at an initial time of τ= τ(t0),

where t0 = 9.8753205829098263, which is a zero of J0(2πt ).

This evolution is far less challenging than the expanding case. This is be-

cause the lapse function is essentially an exponential in τ, so that the spacetime

is becoming less dynamical as the simulation progresses and τ becomes more

negative. The main challenge in this test is resolving the spatial features of the

solution. For spectral methods, the convergence should be exponential with in-

creasing resolution, which is indeed the behavior shown in Figs. 2.14 and 2.15.

2.7 Discussion

We have applied the full suite of Mexico City tests [7]—modified suitably—to a

pseudospectral implementation of the KST formulation of Einstein’s equations.
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Figure 2.14: Constraints for collapsing Gowdy spacetime

Note that the simulation starts at τ∼ 9.875, and proceeds backwards.
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Figure 2.15: Error energy for collapsing Gowdy spacetime

The simulation starts at τ∼ 9.875, and proceeds backwards.
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We have also implemented the shifted gauge-wave test suggested by Babiuc,

et al. [17], and suggested a number of minor changes to the tests that make

them better challenges for pseudospectral methods. These tests reveal that the

KST equations with pseudospectral methods demonstrate excellent convergence

and accuracy, along with very good stability in all but a few cases. We have

derived a fundamental limit Eq. (2.25) for the time-step accuracy possible in a

method-of-lines numerical simulation, and have shown that our implementation

is capable of quickly achieving that limit in the simple case of a sinusoidal linear

wave. We have also shown that the use of filtering is very effective in reducing

nonlinear aliasing instabilities.

The Mexico City tests provide a basic set of benchmarks for evaluating any

numerical relativity code: allowing direct comparisons between different codes

that use different numerical techniques and different formulations of the Ein-

stein equations. However, the tests in their present form make too many implicit

assumptions about the evolution system and the numerical methods. Since the

creation of the tests, numerical relativity codes have become more diverse: using

a variety of improved numerical techniques (fixed and adaptive mesh refinement,

higher-order finite-differencing, multi-block methods, spectral methods) and at

least two evolution systems (generalized harmonic and BSSN) capable of success-

fully evolving binary black hole spacetimes.

To accommodate the wide range of numerical methods and evolution systems

now being used, future tests need to be formulated in more abstract terms. We

recommend the following specific changes to the statement of the tests:

1. A code should demonstrate convergence, both spatial and temporal, appro-



56 Testing the numerical code

10−16

10−13

10−10

10−7

C
on

st
ra

in
ts

0 2500 5000 7500
Crossing times

33 points
27 points

21 points

15 points

9 points

‖C ‖2

‖H ‖2

Figure 2.16: Comparing constraints for 1-D Gaussian linear waves

Hamiltonian constraint norms ‖H ‖2 are much smaller than the constraint ener-
gies ‖C ‖2 for this test, so by themselves are not good diagnostics of constraint
violations. In Fig. 2.4, we showed the constraint energies.
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priate for the numerical method used, for each of the tests (gauge wave,

linear wave, Gowdy spacetime, etc.).

The number of grid points or the time step needed to achieve a given accuracy

is highly dependent on the numerical implementation. Therefore, the test speci-

fications should not dictate a certain number of grid points or a certain time-step

size as the original formulation of the tests did.

2. The combined error of all evolution variables, and the combined constraint

violation (including all constraints of an evolution system, see Eqs. (2.7)

and (2.8)), should be reported for each of the tests.

Prescriptions for examining errors of particular variables or constraints, such as

those given in the original Mexico City tests, are not applicable to evolution

systems that do not evolve those particular variables or constraints (e.g., tetrad or

generalized harmonic evolution systems). In addition such prescriptions may not

encompass all variables or constraints (as in the KST system), and may therefore

fail to detect errors that accumulate only in a subset of the evolved variables.

To illustrate this point, Fig. 2.16 shows both the total constraint energy ‖C ‖,
and the Hamiltonian constraint for the Gaussian linear wave (see Fig. 2.4). The

Hamiltonian constraint turns out to be anomalously small for the KST system in

this case, and so is not a good overall error indicator.

3. Use periodic Gaussian wave spatial profiles in the linear and gauge wave

tests.

The sinusoidal spatial profiles specified in the original Mexico City tests with pe-

riodic boundary conditions provide an artificial advantage for spectral techniques.
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Periodic Gaussian profiles are no more difficult for finite difference codes, and

provide a significantly greater challenge for spectral methods. Finally,

4. Output data at generic times, not at integer multiples of the light-crossing

time.

Outputting data at exact integer multiples of the light-crossing time significantly

underestimates the errors in codes with very small dissipation (such as spectral

codes).

We believe these recommendations will make it easier to apply the Mexico

City tests fairly to a far wider class of numerical relativity codes, and so facilitate

apples-with-apples comparisons between these codes. We have learned a great

deal about the subtle properties of our code by carefully running and analyzing

these simple tests. We encourage other groups to make their results from these

tests public so that meaningful and objective comparisons between codes can be

made.
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Extrapolating gravitational-wave data from

numerical simulations1

Techniques are developed for obtaining the asymptotic form of gravitational-

wave data from numerical simulations. The extrapolation techniques are dis-

cussed in the context of Newman–Penrose and Regge–Wheeler–Zerilli data,

and applied to extrapolation of waveforms from an equal-mass, non-spinning

black-hole binary simulation. The sources of discrepancies between wave-

forms extracted at finite radius and those extrapolated to infinite radius are

discussed. A formula is developed to estimate the size of near-field effects.

It is shown that these near-field effects are indeed the largest source of the

discrepancies during inspiral for Regge–Wheeler–Zerilli data, and that effects

of similar magnitude and scaling dominate for Newman–Penrose data. Thus

it is demonstrated that during the inspiral, techniques to improve the ex-

traction method, while probably quite useful, are not entirely sufficient and
1This chapter will be incorporated into a paper to be published with Abdul H. Mroué. The

data from the binary simulations come courtesy of Mark Scheel, Harald Pfeiffer, and Luisa Buch-
man. The work contained in this chapter is my own, with the exception of the general argument
for the retarded time in Sec. 3.2.2, which is due to Lee Lindblom. Lee and Mark also gave the
text thorough readings and suggested revisions, which have improved it substantially.

59
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must be supplemented with extrapolation.

3.1 Introduction

As numerical simulations of black-hole binaries improve, the criterion for suc-

cess moves past the ability of a code to merely persist through many orbits of

inspiral, merger, and ringdown. Accuracy becomes the goal, as related work in

astrophysics and analysis of data from gravitational-wave detectors begin to rely

more heavily on results from numerical relativity. The greatest challenge in the

field today is to find and eliminate systematic errors that could pollute results

built on numerics. Though there are many possible sources of such error, one

stands out as being particularly easy to manage and—as we show—a particularly

large effect: the error made by extracting gravitational waveforms from a sim-

ulation at finite radius, and treating these waveforms as though they were the

asymptotic form of the radiation.

The desired waveform is the one to which post-Newtonian approximations

aspire, and the one sought by gravitational-wave observatories: the asymptotic

waveform. In typical numerical simulations, data extraction takes place at a

distance of order 100 M from the black holes. At this radius, the waves are

still rapidly changing due to real physical effects. Near-field effects are plainly

evident, scaling with powers of the ratio of the reduced wavelength to the radius,

(o/r )k .2 Extraction methods aiming to eliminate the influence of gauge alone (e.g.,

improved Regge–Wheeler–Zerilli or quasi-Kinnersley techniques) will not be able

to account for these physical changes.

2We use the standard notation oBλ/2π.
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Even using a rather naive, gauge-dependent extraction method, we find that

the near-field effects dominate the error in extracted waves throughout the inspi-

ral. For extraction at r = 50 M , in the early stages of a 16-orbit equal-mass binary

inspiral, these effects can account for an error of more than 50% in amplitude, or

a phase difference of more than one radian. Crucially, the amplitude and phase

differences change most rapidly during the merger, meaning that coherence is

lost between the inspiral and merger/ringdown segments of the waveform. For

the matched-filtering technique used to analyze data from gravitational-wave de-

tectors, this can lead to serious error.

Matched filtering compares two signals, s1(t ) and s2(t ). It does this by Fourier

transforming each into the frequency domain, taking the product of the signals,

weighting each inversely by the noise—which is a function of frequency—and

integrating over all frequencies. This match is optimized over the time and phase

offsets of the input waveforms. For appropriately normalized waveforms, the

result is a number between 0 and 1, denoted 〈s1 s2〉.3 If we imagine that s1 is the

extrapolated waveform and that s2 is the waveform extracted at finite radius, we

can evaluate the match between them. If the extrapolated waveform accurately

represents the “true” physical waveform, the mismatch (defined as 1−〈s1 s2〉)
shows us the loss of signal in data analysis if we were to use the finite-radius

waveforms to search for physical waveforms in detector data.

The waveforms have a simple scaling with the total mass of the system, which

sets the frequency scale relative to the noise present in the detector. In Figs. 3.1

and 3.2, we show mismatches for a range of masses of interest to LIGO data anal-

ysis, using the Initial- and Advanced-LIGO noise curves, respectively, to weight
3For a more precise discussion of matched filtering, see Refs. [136, 137], or Chapter 6.
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the matches. The value of r denotes the radius of extraction for the finite-radius

waveform.

These figures demonstrate that the mismatch can be several percent when

extracting at a radius of r = 50 M . For extraction at r = 225 M , the mismatch is

never more than about 0.1%. Lindblom et al. [186] cite a target mismatch of less

than 0.5% between the physical waveform and a class of model templates to be

used for detection of events in detector data. Thus, for example, if these numer-

ical waveforms were to be used in construction of template banks, the waveform

extracted at r = 50 M would be entirely insufficient, though the r = 225 M wave-

form may be acceptable. Estimating the parameters of the waveform—masses

and spins of the black holes, for instance—requires still greater accuracy. For the

loudest signals expected to be seen by Advanced LIGO, the required mismatch

may be roughly 10−4 [186]. In this case, even extraction at r = 225 M would be

insufficient; some method must be used to obtain the asymptotic waveform.

To remove the finite-radius effects—as we show below—we cannot simply rely

on improved extraction methods, like quasi-Kinnersley techniques [29]. While

those methods will no doubt improve the data quality, they cannot obtain the

asymptotic waveform by extracting data at just one radius. An interesting method

has been suggested [1, 2] for using the waveform and—essentially—its radial

derivatives at a single radius, and matching to an analytic near-field expansion

of the waveform. This method merits attention and may be very useful, though

it imposes many assumptions about the behavior of the solution. In particular,

it essentially assumes the correctness of the near-field formulas discussed below.
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Figure 3.1: Data-analysis mismatch between finite-radius waveforms and the
extrapolated waveform for Initial LIGO

This plot shows the mismatch between extrapolated waveforms and waveforms
extracted at several finite radii, scaled to various values of the total mass of the
binary system, using the Initial-LIGO noise curve. The waveforms are shifted in
time and phase to find the maximum match.
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Figure 3.2: Data-analysis mismatch between finite-radius waveforms and the
extrapolated waveform for Advanced LIGO

This plot shows the mismatch between extrapolated waveforms and waveforms
extracted at several finite radii, scaled to various values of the total mass of the
binary system, using the Advanced-LIGO noise curve. The waveforms are shifted
in time and phase to find the maximum match.
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While we show this assumption to be basically correct for Regge–Wheeler–Zerilli

waveforms, we prefer not to impose the assumption from the beginning.

Instead, we propose extraction of waveform data using more naive methods,

at a series of radii—whether on a series of concentric spheres, or at various radii

along an outgoing null ray. These data can then be expressed as functions of

extraction radius and retarded time using a simple method we describe. For

each value of retarded time, the waveforms can then be fit to a polynomial in

inverse powers of the extraction radius. The asymptotic waveform is simply

the first nonzero term in the polynomial. Though this method also imposes

certain assumptions, they amount to assuming that the data behave as radially

propagating waves, and that the metric itself is asymptotically Minkowski.

Extrapolation is, by its very nature, a dangerous procedure. The final result

may be numerically unstable, in the sense that it will fail to converge as the

order of the extrapolating polynomial is increased. This is to be expected, as the

size of the effects to be removed falls below the size of noise in the waveform

data. There are likely better methods of determining the asymptotic form of

gravitational waves produced by numerical simulations. Characteristic evolution

is an example of a promising technique that may become common in the near

future [33, 165, 15, 16]. Nonetheless, extrapolation does provide a rough and

ready technique which can easily be implemented by numerical-relativity groups

using existing frameworks.

This chapter presents a simple method for implementing the extrapolation

of gravitational-wave data from numerical simulations, and the motivation for

doing so. We begin, in Sec. 3.2, by briefly outlining the basic method for ex-
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trapolating generic data, and suggesting a simple method for treating the crucial

problem of associating data from different space and time locations. In Sec. 3.3

we review two standard methods for extracting waveforms from general simu-

lations: Regge–Wheeler–Zerilli and Newman–Penrose methods. We outline the

extrapolation process in greater detail in Sec. 3.4, applying the general method

to a particular binary black-hole simulation, along with details of the algorithm.

We then present the results of extrapolation using data from a long simulation of

the inspiral and merger of equal-mass black holes for both Regge–Wheeler–Zerilli

data and Newman–Penrose data. In Sec. 3.5, we calculate expected near-field ef-

fects, and compare the extrapolated waveform to data extracted at finite radius.

We then shown that—for Regge–Wheeler–Zerilli data, at least—most of the effect

of extrapolation involves removing the influence of near-field effects. Finally we

conclude, in Sec. 3.6, with a discussion of remaining issues in extrapolation.

3.2 Extrapolation in brief

There are many types of data that can be extracted from a numerical simulation

of an isolated source of gravitational waves. Below, we discuss two common

methods of extracting gravitational waveforms—using the Newman–Penrose Ψ4

quantity, or the metric perturbation h extracted using Regge–Wheeler–Zerilli tech-

niques. Even if we focus on a particular type of waveform, the data can be ex-

tracted at a series of points along the z axis, for example, or decomposed into

multipole components and extracted on a series of spheres around the source. To

simplify this introductory discussion of extrapolation, we ignore the variety of

particular types of waveform data. Instead, we generalize to some abstract quan-
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tity f , which encapsulates the quantity to be extrapolated and behaves roughly

as a radially outgoing wave. We assume that f travels along outgoing null cones,

which we parametrize by a retarded time tret. Along each of these null cones,

we further assume that f can be expressed as a convergent series in 1/r—where

r is some radial coordinate—for all radii of interest. That is, we assume

f (tret,r ) =
∞∑

k=0

f(k)(tret)

r k
, (3.1)

for some functions f(k). The asymptotic behavior of f is given by the lowest

nonzero f(k).4

Given data for such an f at a set of retarded times, and a set of radii {ri }, it is

a simple matter to fit the data for each value of tret to a polynomial in 1/r . That

is, for each value of tret, we take the set of data
{

f (tret,ri )
}
and fit it to a finite

polynomial so that

f (tret,ri ) '
N∑

k=0

f(k)(tret)

r k
i

. (3.2)

Standard algorithms [218] can be used to accomplish this fitting. Of course,

because we are truncating the series of Eq. (3.1) at k = N , some of the effects from

k > N terms will appear at lower orders. We will need to choose N appropriately,

checking that the extrapolated quantity has converged sufficiently with respect

to this order.

3.2.1 Choice of r parameter

One subtlety to be considered is the choice of r parameter to be used in the ex-

traction and fitting. For numerical simulation of an isolated system, one simple
4For example, if f = rΨ4, then f(0) gives the asymptotic behavior; if f =Ψ4, then f(1) gives the

asymptotic behavior.
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and obvious choice is the coordinate radius rcoord used in the simulation. Al-

ternatively, if the data is measured on some spheroidal surface, it is possible to

define an areal radius rareal by measuring the area of the sphere A along with f ,

and setting rarealB
p

A/4π. Still other choices are certainly possible.

One objective in choosing a particular r parameter is to ensure the physical

relevance of the final extrapolated quantity. If we try to detect the wave, for

example, we may want to think of the detector as being located at some constant

value of r . Or, we may want r to asymptotically represent the luminosity dis-

tance. These conditions may be checked by inspecting the asymptotic behavior

of the metric components in the given coordinates. For example, if the metric

components in a coordinate system including r asymptotically approach those

of the standard Minkowski metric, it is not hard to see that an inertial detector

could follow a path of constant r parameter.

Suppose we have two different parameters r and r̃ which can be related by a

series expansion

r = r̃ [1+a/r̃ + . . .] . (3.3)

In the data presented in this paper, we can show that rcoord and rareal are related

in this way. Introducing the expansion coefficients f̃(k), we can write

f (tret,r ) =
∞∑

k=0

f(k)(tret)

r k
=

∞∑
k=0

f̃(k)(tret)

r̃ k
. (3.4)

Inserting Eq. (3.3) into this formula, Taylor expanding, and equating terms of

equal k , this shows that f(0) = f̃(0) and f(1) = f̃(1). Thus, if the asymptotic behavior

of f is given by f(0) or f(1), the final extrapolated data should not depend on

whether r or r̃ is used. On the other hand, in practice we truncate the series in

Eq. (3.1) at finite order. This means that higher-order terms could “pollute” f(0)
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or f(1). The second objective in choosing an r parameter, then, is to ensure fast

convergence of the series in Eq. (3.1) or Eq. (3.2). If the extrapolated quantity does

not converge quickly as the order of the extrapolating polynomial N is increased,

it may be due to a poor choice of r parameter.

The coordinate radius used in a simulation may be subject to large gauge

variations which are physically irrelevant, and hence are not reflected in the

wave’s behavior. That is, the wave may not fall off nicely in inverse powers of

that coordinate radius. For the data discussed later in this paper, we find that

using the coordinate radius of extraction spheres is indeed a poor choice, while

using the areal radius of those extraction spheres improves the convergence of

the extrapolation.

3.2.2 Choice of retarded time parameter

Similar considerations must be made for the choice of retarded time tret to be

used in extrapolation. It may be possible to evolve null geodesics in numerical

simulations, and use these to define the null curves on which data is to be ex-

tracted. While this is an interesting possibility that deserves investigation, we use

a simpler method here based on an approximate retarded time constructed using

the coordinates of the numerical simulation.

Again, we have two motivations for choosing a retarded time parameter. First

is the physical suitability in the asymptotic limit. For example, we might want

the asymptotic tret to be (up to an additive term constant in time) the proper time

along the path of a detector located at constant r . Again, checking the asymptotic

behavior of the metric components with respect to tret and r should be a sufficient
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test of the physical relevance of the parameters. Second, we wish to have rapid

convergence of the extrapolation series using the chosen parameter, which also

needs to be checked.

As before, we can also show the equivalence of different choices for the tret

parameter. Suppose we have two different approximations tret and
^
tret which can

be related by a series expansion

tret =^
tret [1+b/r + . . .] . (3.5)

Using the new expansion coefficients
^

f(k), we can write

f (tret,r ) =
∞∑

k=0

f(k)(tret)

r k
=

∞∑
k=0

^

f(k)(
^
tret)

r k
. (3.6)

Now, however, we need to assume that the functions f(k) can be well-approximated

by Taylor series. If this is true, we can again show that f(0) =
^

f(0) or, if we have

f(0) =
^

f(0) = 0, that f(1) =
^

f(1). The condition that f be well-approximated by a

Taylor series is nontrivial, and can help to inform the choice of f . Similarly,

the speed of convergence of the extrapolation can help to inform the choice of a

particular tret parameter.

Since we will be considering radiation from an isolated compact source, our

basic model for tret comes from the Schwarzschild spacetime; we assume that

the system in question approaches this spacetime at increasing distance. In anal-

ogy with the time-retardation effect on outgoing null rays in a Schwarzschild

spacetime [92], we define a “tortoise coordinate” r∗ by:

r∗B r +2MADM ln

(
r

2MADM
−1

)
, (3.7)
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where MADM is the ADM mass of the initial data.5 In standard Schwarzschild

coordinates, the appropriate retarded time would be given by tret = t − r∗. It

is not hard to see that the exterior derivative dtret is null with respect to the

Schwarzschild metric.

Taking inspiration from this, we can attempt to account for certain differences

from a Schwarzschild background. Let T and R denote the simulation’s coor-

dinates, and suppose that we extract the metric components g T T , g T R , and g RR

from the simulation. We seek a tret(T ,R) such that

dtret = ∂tret
∂T

dT + ∂tret
∂R

dR (3.8)

is null with respect to these metric components. That is, we seek a tret such that

g T T
(
∂tret
∂T

)2

+2g T R
(
∂tret
∂T

) (
∂tret
∂R

)
+ g RR

(
∂tret
∂R

)2

= 0 . (3.9)

We introduce the ansatz tret = t − r∗, where t is assumed to be a slowly varying

function of R ,6 and r∗ is given by Eq. (3.7) with R in place of r on the right side.

If we ignore ∂t/∂R and insert our ansatz into the last equation, we have

g T T
(
∂t

∂T

)2

−2g T R
(
∂t

∂T

) (
1

1−2MADM/R

)
+ g RR

(
1

1−2MADM/R

)2

= 0 . (3.10)

We can solve this for ∂t/∂T :

∂t

∂T
= 1

1−2MADM/R

g T R ±
√

(g T R )2 − g T T g RR

g T T
. (3.11)

5 Kocsis and Loeb [182] pointed out that the propagation of a roughly spherical gravitational
wave should be affected primarily by the amount of mass interior to the wave. Because the waves
from a merging binary can carry off a significant fraction (typically a few percent) of the binary’s
mass, this suggests that we should allow the mass in this formula to vary in time, falling by
perhaps a few percent over the duration of the waveform. However, this is a small correction
of a small correction; we have not found it necessary. Perhaps with more refined methods, this
additional correction would be relevant.
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Substituting the Schwarzschild metric components shows that we should choose

the negative sign in the numerator of the second term. Finally, we can integrate

(numerically) to find

t =
∫ T

0

1

g T T

g T R −
√

(g T R )2 − g T T g RR

1−2MADM/R
dT ′ . (3.12)

Now, in the case where g T R is small compared to 1, we may wish to ignore it, in

which case we have

t =
∫ T

0

√
−g RR /g T T

1−2MADM/R
dT ′ . (3.13)

It is not hard to see that this correctly reduces to t = T in the Schwarzschild case.

For the data discussed later in this paper, we make further assumptions that

g RR = 1−2MADM/R , and that R = rareal. That is, we define the corrected time

tcorrB
∫ T

0

√
−1/g T T

1−2MADM/rareal
dT ′ (3.14a)

and the retarded time

tretB tcorr− r∗ . (3.14b)

We will show that this corrected time leads to a significant improvement over the

naive choice of t (T ) = T .

3.3 Waveform extraction

The first task in analyzing data from a numerical simulation is simply extract-

ing the relevant waveform. There are two common methods used to achieve this
6More specifically, we need |∂t/∂R|¿ |∂r∗/∂R|. This condition needs to be checked for all radii

used, at all times in the simulation. For the data presented below, we have checked this, and
shown it to be a valid assumption, at the radii used for extrapolation.
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aim. One uses Regge–Wheeler–Zerilli functions to extract the metric perturbation

directly. This method explicitly decomposes the full spacetime into a spherically

symmetric background and a perturbation. Particular combinations of the pertur-

bations are then taken, making the final result invariant to first-order under gauge

perturbations. The second method uses Newman–Penrose scalars to decompose

the Weyl tensor, directly reading off the curvature. We now examine these two

techniques in more detail.

3.3.1 Regge–Wheeler–Zerilli functions

Both methods of extracting gravitational-wave information have their origins in

treatments of perturbations of Schwarzschild and Kerr black holes. While these

analyses are valid right down to—or even within—the black hole’s horizon, we

only need them at some distance from the center of our domain. The physical

situation of interest to simulations of binary black holes is an asymptotically flat

spacetime. In this case, the spacetime in the outer parts of a simulation can be

thought of as a perturbation of Schwarzschild.

Regge and Wheeler [222] first introduced a formalism for studying odd-parity

perturbations of a Schwarzschild black hole in Schwarzschild coordinates, while

investigating the stability of black holes. Zerilli [255] extended their formalism

to allow for even-parity perturbations. The Regge–Wheeler–Zerilli (RWZ) meth-

ods are gauge dependent, however, requiring the gauge to be fixed before any

interpretation can be made of the physical content of their results. Moncrief [196]

suggested an improvement to the combined formalism, making it linearly invari-

ant to gauge perturbations. Sarbach and Tiglio [228] have extended this further,
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with a geometric treatment that can be used to study perturbations on an ar-

bitrary slicing of a spherically symmetric spacetime.7 These generalized RWZ

functions obey wave equations, and can be used to extract the (linearly) gauge-

invariant metric perturbation. Second-order methods have also been developed

[146, 83, 203, 147].

We begin by assuming the existence of a spherically symmetric background

metric
_
gµν that can be decomposed into a time–radius sector and a spherical

sector:

_
gµνdxµdxν = ǧab dxa dxb + r 2 Ω̊AB dx A dxB . (3.15)

Here, lowercase Latin indices refer to the t–r sector, as does the check (suggesting

the null-cone) over the metric. Similarly, uppercase Latin indices refer to the ϑ–ϕ

sector, as does the ring (suggesting the sphere) over the metric. The metric Ω̊AB is

assumed to be the standard unit-sphere metric. We will also need the derivative

operator ∇̊ and antisymmetric tensor ε̊ appropriate to the spheroidal submanifold

spanned by ϑ,ϕ.

Next, we define the metric perturbation δgµν as the full metric minus the

background:

δgµνB gµν−
_
gµν . (3.16)

We then expand the perturbation in (tensor, vector, and scalar) spherical harmon-

7Useful reviews of RWZ methods can be found in Refs. [198, 71, 226].
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ics:

δgab = ∑
l ,m

P̃ l ,m
ab Yl ,m , (3.17a)

δg Ab = ∑
l ,m

[
Q̃ l ,m

b ∇̊AYl ,m + R̃ l ,m
b ε̊C

A∇̊C Yl ,m
]

, (3.17b)

δg AB = ∑
l ,m

[
S̃l ,m r 2Ω̊AB Yl ,m + T̃ l ,m ∇̊(A∇̊B)Yl ,m +Ũ l ,m ε̊C

(A∇̊B)∇̊C Yl ,m
]

. (3.17c)

The components P̃ l ,m
ab , . . . ,Ũ l ,m will be gauge dependent. Even in flat spacetime,

we could introduce a gauge perturbation which mimics a gravitational wave in

terms of its effect on some of the components. For example, if we only look

at T̃ l ,m and ignore other components, we may easily be deceived by a gauge

perturbation. Moncrief, however, pointed out that it is possible to take certain

combinations of the components to obtain components that are gauge invariant

to first order.

For example, take the magnetic-parity part of the metric perturbation:

δg Ab = R̃ l ,m
b ε̊C

A∇̊C Yl ,m , δg AB = Ũ l ,m ε̊C
(A∇̊B)∇̊C Yl ,m . (3.18)

A general magnetic-parity gauge transformation looks like

ξa = 0 ξA = ς(t ,r ) ε̊C
A∇̊C Yl ,m , (3.19)

for some function ς(t ,r ). If this is an infinitesimal gauge transformation, the

components of the metric perturbation transform as

R̃ l ,m
b → R̃ l ,m

b +∇bς , Ũ l ,m → Ũ l ,m +ς . (3.20)

Looking at these expressions for a moment suggests a way to cancel the gauge

dependence:

R l ,m
b B R̃ l ,m

b −∇bŨ l ,m . (3.21)
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The new component R l ,m
b is invariant to linear order under gauge transforma-

tions. Analogous—though more complicated—expressions may be obtained for

the other components of the metric perturbation [228, 224].

These invariant components are then used to reconstruct the metric, which

can be decomposed in the standard way [42] by defining the polarization tensors

ε
αβ
+ Bϑαϑβ−ϕαϕβ and ε

αβ
× Bϑαϕβ+ϕαϑβ , (3.22)

and using these to define

h+B
1

2
ε
αβ
+ δgαβ and h×B

1

2
ε
αβ
× δgαβ . (3.23)

Here, ϑα and ϕα are the standard coordinate vectors, which do not necessarily

have unit length. These two quantities are commonly combined into a single

complex field:

hB h+− ih× . (3.24)

Details of the procedure used for the data presented here are given in [224]. In

the notation of that paper, the metric perturbation is given by [231]

h = 1

r

∞∑
l=2

l∑
m=−l

√
(l +2)(l +1)l (l −1)

(
Φ(+)

l ,m + iΦ(−)
l ,m

)
−2Yl ,m , (3.25)

where −2Yl ,m are the spin-weight −2 spherical harmonics discussed in Sec. 3.3.3.

3.3.2 Newman–Penrose scalars

Newman and Penrose introduced a useful decomposition of the Weyl tensor,

among other geometric quantities [201]. At each point in space, they define a

complex null tetrad (lα,nα,mα,m̄α), where m̄α is simply the complex conjugate
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of mα. The tetrad is assumed to obey the orthonormality conditions lαnα =−1,

mαm̄α = 1, with all other products being zero, and the vector mα assumed to be

a complex combination of spacelike vectors. This tetrad is then used to define

five complex functions of space and time:8

Ψ0BCαβγδlαmβlγmδ ; (3.26a)

Ψ1BCαβγδlαmβlγnδ ; (3.26b)

Ψ2BCαβγδlαmβm̄γnδ ; (3.26c)

Ψ3BCαβγδlαnβm̄γnδ ; (3.26d)

Ψ4BCαβγδnαm̄βnγm̄δ . (3.26e)

These ten real degrees of freedom correspond to the ten degrees of freedom in

the Weyl tensor itself, effectively encoding the curvature of a vacuum spacetime.

Indeed, it is not difficult to re-express the Weyl tensor in terms of these five

functions and the tetrad—essentially inverting the equations above. (See, e.g.,

Chandrasehkar’s Eq. (1.298) [92].) Because we will always be working in vacuum,

we note that Cαβγδ = Rαβγδ.

A general spacetime, naturally, has nonzero values for each of these quanti-

ties. Moreover, because the choice of tetrad is not unique, we can generally mix

components by rotating the tetrad. However, it can be shown [227] that—in vac-

uum, asymptotically flat spacetimes—there exists a tetrad for which Ψ4 is O (r−1)

along an outgoing null ray, and all other Newman–Penrose scalars fall off more

quickly. This is essentially the so-called peeling theorem [235]. It shows that, if
8Note that Newman and Penrose use the opposite metric-signature convention and convention

for the Riemann tensor, as compared to the one used here (see Sec. A.2). The equations they use
to define Ψn also have opposite signs, so overall, the signs of the Ψn used here should agree with
those of Newman and Penrose.
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we hope to find radiation from an isolated source using the Newman–Penrose

formalism, Ψ4 is—at least—a crucial element.

In fact, there exist many tetrads such thatΨ4 is O (r−1), and all other Newman–

Penrose scalars fall off more quickly. This variety—and the ambiguity it brings

about—makes the issue of choosing a particular such tetrad in a general spacetime

a delicate one. Here, we simply define the tetrad components by the coordinate

basis used in an evolution. Explicitly, we define the tetrad components by

lαB
1p
2

(
tα+ rα

)
, (3.27a)

nαB
1p
2

(
tα− rα

)
, (3.27b)

mαB
1p
2

(
ϑα+ iϕα

)
. (3.27c)

(When evaluation on the z axis is necessary, we always take the limit with ϕ= 0.)

The vector tα is a unit-magnitude vector, normal to the spacelike hypersurface

of constant time in the simulation. The vector rα is a unit vector within that

spacelike hypersurface which is normal to the extraction sphere at that time.

Both of the latter are normalized by the full spacetime metric. Again, the vectors

ϑα and ϕα are the standard coordinate vectors. This choice actually leaves the

orthonormality conditions for mα and m̄α unsatisfied in general; they do not

have unit magnitude, and are not orthogonal. Nonetheless, when the metric in

these coordinates asymptotically approaches the standard Minkowski metric, we

can expect that the orthonormality conditions will be satisfied asymptotically. In

turn, we can also expect that this will suffice because the physically relevant part

of the resulting Ψ4 will be selected by extrapolation.
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Relation of Ψ4 to h

In the linear theory, we can construct a Minkowskian background, and small

perturbations on top of it. In this case, we define the tetrad above with respect

to the background, orthonormalizing the tetrad with respect to the background

metric. Then, for plane waves propagating along the nα vector, it is not difficult

to show that9

Ψ4 =−ḧ =−(
ḧ+− i ḧ×

)
in the linear approximation, (3.28)

where double dots denote double time derivatives. Note that h, h+, and h× were

defined in Eqs. (3.23) and (3.24). This gives us further confidence that Ψ4 is a

physically relevant quantity to extract. Unfortunately, it also shows us that we

need to integrate Ψ4 twice, if we wish compute h from Ψ4. Various integration

techniques have been developed, the most successful of which will be discussed

in later chapters.

It is worth emphasizing that this relation is true only in the linear approxima-

tion, and only with a particular choice of tetrad. In highly nonlinear spacetimes,

there is no reason to expect this relation to hold. Indeed, even in the linear

approximation, this need not hold for general tetrads satisfying the conditions

set out by Newman and Penrose; this simple expression is only obtained when

the wave is propagating along the nα vector and when (ε+− iε×)αβ = 2m̄α m̄β.

(Recall the definitions of ε+ and ε× from Eq. (3.22).) For example, if we were to

rotate the mα vector by an angle θ, we would have Ψ4 =−e−2iθ ḧ.

9There are many sign choices that need to be made before deriving this relation: the sign of
Riemann; the sign ofΨ4; the metric signature; the sign of metric perturbations; etc. Equation (3.28)
is correct for the signs chosen here. For a review of those signs, see Appendix A.
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3.3.3 Spin-weighted spherical harmonics

Newman and Penrose [202] introduced a useful set of functions similar to the

standard spherical harmonics, designed to decompose functions like Ψ4—the

spin-weighted spherical harmonics (SWSHs), sYl ,m .10 In particular, Ψ4 and h can

be decomposed in terms of SWSHs of spin weight s =−2:

Ψ
l ,m
4 (t ,r )B

∫ 2π

0

∫ π

0
Ψ4(t ,r ,ϑ,ϕ) −2Ȳl ,m(ϑ,ϕ) sinϑdϑdϕ , (3.29)

hl ,m(t ,r )B
∫ 2π

0

∫ π

0
h(t ,r ,ϑ,ϕ) −2Ȳl ,m(ϑ,ϕ) sinϑdϑdϕ . (3.30)

The waveform data used throughout the rest of this chapter will consist solely of

the (l ,m) = (2,2) mode. When we present that data, we will generally drop the

l ,m indices.

3.4 Extrapolation technique applied to binary

inspiral waveforms

In this section, we briefly discuss the data to be extracted from the simulation and

the form in which they will be used. We show the results of the extrapolation.

Then, we discuss the order of the extrapolating polynomial, and the trade-offs

involved in moving to higher or lower orders. Finally, we discuss how this impacts

and is impacted by the choice of radii at which to extract data.

10For further discussion of the spin-weighted spherical harmonics, see Appendix B and refer-
ences therein.
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3.4.1 Data to be extracted from the simulation

To begin the extrapolation procedure, we extract Ψ4 and h data on a set of

spheres at constant coordinate radius in the simulation. In the black-hole binary

simulations used here (the same as those discussed in Refs. [59, 61, 60, 229]), these

spheres are located every ∆rcoord = 10Mirr from an inner radius of rcoord = 50Mirr

to an outer radius of rcoord = 240Mirr, where Mirr denotes the total apparent-

horizon mass of the two holes at the beginning of the simulation. This extraction

occurs at time steps of ∆tcoord ≈ 0.5Mirr throughout the simulation. We also

measure the areal radius, rareal, of those spheres by integrating the induced area

element over the sphere to find the area A, and defining rareal B
p

A/4π. This

differs from the coordinate radius rcoord by roughly Mirr/rcoord. Because of gauge

effects, the areal radius of a coordinate sphere changes as a function of time, so

we measure this as a function of time. Finally, we measure the average lapse

N B 1/
√
−g T T as a function of coordinate time on the extraction spheres to

correct for dynamic lapse. The areal radius and lapse are used to compute the

retarded time tret defined in Eq. (3.14).

The gravitational-wave data Ψ4 and h, the areal radius rareal, and the lapse N

are all measured as functions of the code coordinates tcoord and rcoord. We can

use these to construct the retarded time defined in Eq. (3.14), using rareal in place

of r . This, then, will also be a function of the code coordinates. The mapping

between (tret,rareal) and (tcoord,rcoord) is invertible, so we can rewrite Ψ4 and h

as functions of tret and rareal.

As noted in Sec. 3.2.2, we need to assume that the extrapolated functions are

well approximated by Taylor series. Because the real and imaginary parts of Ψ4
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and h are rapidly oscillating in the data presented here, we prefer to use the

same data in smoother form. We define the complex amplitude A and phase φ

of the wave:

rareal MirrΨ4B A eiφ (3.31a)

or

rarealh/Mirr B A eiφ , (3.31b)

where A and φ are functions of tret and rareal. Note that this definition factors

out the dominant 1/r behavior of the amplitude. Because of the ambiguity in

this definition of the phase, we remove discontinuities of 2π at successive times.

The continuous phase is easier to work with for practical reasons, and is certainly

much better approximated by a Taylor series.

A slight complication arises in the relative phase offset between successive

radii. Noise in the early parts of the waveform make the overall phase offset go

through multiples of 2π essentially randomly. We choose some fairly noise-free

time and ensure that phases corresponding to successive extraction spheres are

matched at that (retarded) time, by simply adding multiples of 2π to the phase

of the entire waveform—that is, we add multiples of 2π to the phase at all times.

Extrapolation of the waveform, then, basically consists of finding the asymp-

totic forms of these functions, A and φ as functions of time. We apply the general

technique discussed in Sec. 3.2 to A and φ. That is, we fit the data to polynomials
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in 1/r for each value of retarded time:

A(tret,rareal) '
N∑

k=0

A(k)(tret)

r k
areal

, (3.32a)

φ(tret,rareal) '
N∑

k=0

φ(k)(tret)

r k
areal

. (3.32b)

The asymptotic waveform is fully described by A(0) and φ(0).

3.4.2 Results

We show the results of extrapolating Newman–Penrose data in Figs. 3.3 and 3.4.

The first plot shows the relative amplitude difference between waveforms extrap-

olated with different orders of extrapolating polynomial; the second plot shows

the phase difference for the same data. We see fair convergence for the orders

shown here, though there are clearly problems with noise, and other features

near merger. Ignoring high-frequency features, we estimate that the N = 4 wave-

form is correct to within roughly 1% in amplitude, or 0.01 radians throughout all

times shown here.

For comparison, we also show the result of extrapolation without the correc-

tion for dynamical lapse of Eq. (3.14), in Fig. 3.5. As noted earlier, a sharp gauge

pulse (roughly a 1% change in lapse over a time span of 20Mirr) occurs near

merger, which is denoted by the dotted vertical line. Without the correction, we

see non-convergence of the extrapolated waveform after the merger; the differ-

ence between successive orders becomes larger with higher order. We are led to

the conclusion that the correction is crucial to convergent extrapolation for the

gauge used in these simulations.
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Figure 3.3: Convergence of the amplitude of the extrapolated Ψ4, with increas-
ing order of the extrapolating polynomial, N

This figure shows the convergence of the relative amplitude of the extrapolated
Newman–Penrose waveform, as the order N of the extrapolating polynomial is
increased. (See Eq. (3.32).) That is, we subtract the amplitudes of the two wave-
forms, and normalize at each time by the amplitude of the second waveform.
We see that increasing the order tends to amplify the apparent noise during the
early and late parts of the waveform. Nonetheless, the broad (low-frequency)
trend is towards convergence. The dotted vertical line denotes merger, defined as
the time of peak amplitude of the wave. Also note that the differences decrease
as the system nears merger; this is a first indication that the extrapolated effects
are due to near-field influences. Compare the convergence of h extrapolation in
Fig. 3.6.
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Figure 3.4: Convergence of the phase of the extrapolated Ψ4, with increasing
order of the extrapolating polynomial, N

This figure is much the same as Fig. 3.3, except that it shows the convergence of
phase. Again, increasing the extrapolation order tends to amplify the apparent
noise during the early and late parts of the waveform, though the broad (low-
frequency) trend is towards convergence. The dotted vertical line denotes merger,
defined as the time of peak amplitude of the wave. Compare the convergence of
h extrapolation in Fig. 3.7.
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Figure 3.5: Convergence of the phase of Ψ4, extrapolated with no correction
for the dynamic lapse

This figure is just the same as Fig. 3.4, except that no correction is done to account
for the dynamic lapse. (See Eq. (3.14) and surrounding discussion.) Observe
that the convergence is very poor after merger (indicated by the dotted vertical
line). This corresponds to the time after which a sharp pulse in the lapse is
observed. We conclude from this graph and comparison with the previous graph
that the correction is crucial to convergence of Ψ4 extrapolation through merger
and ringdown.
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Finally, we also show the results of extrapolation of Regge–Wheeler–Zerilli

data, in Figs. 3.6 and 3.7. Convergence here is worse than in the Newman–Penrose

case, and is completely absent after merger. This suggests that the wave does not

propagate nicely as a function of tret, or does not fall off in powers of 1/r . It is

entirely possible that gauge effects are responsible—we currently have no estimate

for the size of gauge effects in our RWZ data.11 Alternatively, it is possible that

near-field effects are all removed by N = 1 or N = 2 extrapolation, and going to

higher orders simply allows the polynomials to fit to numerical noise. More work

needs to be done improving extraction of these data, or—perhaps—improving the

extrapolation. Nevertheless, for the rest of this paper we will treat the (N = 4)

RWZ data as being trustworthy before the merger, at the level of roughly 4% in

amplitude, and 0.04 radians in phase, as judged from the convergence plots. These

are smaller errors than the actual difference between the extrapolated waveform

and the waveforms extracted at finite radius. This suggests that even in this case,

there are real benefits to be gained by extrapolating.

Another way to check the accuracy of the extrapolated waveforms is to differ-

entiate the h data twice in time, and compare to the Ψ4 data. When we do this

we find agreement to within the 4% and 0.04 radians suggested above. Because

extraction occurs in two very different ways, this gives us confidence that details

of the extraction method are not polluting our final results—before merger, at

least.

11It has been suggested that second-order corrections to RWZ functions could provide error
estimates, while also improving extraction. See Refs. [146, 83, 203], and especially [147] for
discussion.
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Figure 3.6: Convergence of the amplitude of the extrapolated h, with increasing
order of the extrapolating polynomial, N

This figure shows the convergence of the relative amplitude of the extrapolated
Regge–Wheeler–Zerilli waveform, as the order N of the extrapolating polyno-
mial is increased. Note the poor convergence at higher orders, and the lack of
convergence after merger (denoted by the dotted vertical line).
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Figure 3.7: Convergence of the phase of the extrapolated h, with increasing
order of the extrapolating polynomial, N

This figure shows the convergence of the phase of the extrapolated Regge–
Wheeler–Zerilli waveform, as the order N of the extrapolating polynomial is
increased. As in Fig. 3.6, we see poor convergence—or even a lack of convergence
beyond N = 3—before merger and complete lack of convergence after merger for
any order. Presumably, these indicate the presence of effects in the data which
we have not suggested, and which do not fall off in powers of 1/r or do not
propagate as functions of tret.
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3.4.3 Choosing the order of extrapolation

Deciding on an appropriate order of extrapolation to be used for a given purpose

requires balancing competing effects. As we see in Fig. 3.3, for example, there is

evidently some benefit to be gained from using higher-order extrapolation; there

is clearly some convergence for each of the orders shown. On the other hand,

higher-order methods amplify the apparent noise in the waveform.12

The optimal order depends on the accuracy needed. For some applications,

little accuracy is needed, so a low-order extrapolation (or even no extrapolation)

is preferable. If high-frequency noise is not considered an issue, then simple

high-order extrapolation should suffice. Of course, if both high accuracy and low

noise are required, data may easily be filtered, mitigating the problem of noise

amplification.13 There is some concern that this may introduce subtle inaccuracy;

filtering is more art than science, and it is difficult to establish precise error bars

for filtered data.

Blending

Another consideration is the part of the physical waveform from which the data

are collected. Because near-field effects scale inversely with powers of the fre-

12So-called “junk radiation” is a ubiquitous feature of initial data for current numerical sim-
ulations of binary black-hole systems. It is clearly evident in simulations as large-amplitude,
high-frequency waves which die out as the simulation progresses. While it is astrophysically
extraneous, it is nevertheless a real and fully resolved artifact of the initial data. Better initial
data would, presumably, decrease its magnitude. This is the source of what looks like noise in
the waveforms at early times. It is less apparent in h data than in Ψ4 data because Ψ4 effectively
amplifies high-frequency components, due to the relation Ψ4 ≈−ḧ.

13For example, the Matlab function filtfilt, with a low-pass sixth-order Butterworth filter
with cutoff frequency just above the noise frequency applied to the early parts of both the input
and output data is satisfactory, reducing the apparent noise by more than an order of magnitude.
This filtering may be applied to either the complex data, or to its amplitude and phase, which
allows for a lower cutoff frequency.
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quency, the accuracy of a given order of extrapolation will improve as the system

nears merger, while noise during and after merger will be a greater problem for

higher-order methods. These factors combine to dictate different optimal extrap-

olation orders for different portions of the waveform. For example, fourth-order

extrapolation may be necessary during inspiral, whereas second-order extrapola-

tion is sufficient and less noisy during merger and ringdown. It is desirable to

combine the different portions—fourth-order data for inspiral, and second-order

for merger and ringdown—into a single waveform.

This blending can be achieved by a simple linear transition function, for ex-

ample. We may define the amplitude and phase of the blended waveform by

Ablend(t ) = τ(t ) AN=2 + [1−τ(t )] AN=4 , (3.33a)

φblend(t ) = τ(t )φN=2 + [1−τ(t )] φN=4 , (3.33b)

where the blending function τ is given by

τ(t ) =


0 if t < t1,

t−t1
t2−t1

if t1 ≤ t < t2,

1 if t2 ≤ t .

(3.34)

Here t1 and t2 are chosen for the desired accuracy and noise level. We separate

the two times so that the transition between the two waveforms is more gradual,

and the result is smoother.
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3.4.4 Choosing extraction radii

Another decision needs to be made regarding the number and location of extrac-

tion surfaces. Choosing the number is fairly easy, because there is typically little

cost in increasing the number of extraction radii (especially relative to the cost

of—say—running a simulation). The only restriction is that the number of data

points needs to be larger than the order of the extrapolating polynomial; more

can hardly hurt. More careful consideration needs to be given to the location of

the extraction surfaces.

For the extrapolations shown in Figs. 3.3 and 3.4, data was extracted on spheres

spaced by roughly 10Mirr, from r = 75Mirr to r = 225Mirr. The outer radius of

225Mirr was chosen simply because this is the largest radius at which data exists

throughout the simulation. In choosing the inner radius, there are two competing

motives.

On one hand, we want the largest spread possible between the inner and

outer extraction radii to stabilize the extrapolation. A rough rule of thumb [218]

says that the distance to be extrapolated should be no greater than the distance

covered by the data. Because the extrapolating polynomial is a function of 1/r ,

the distance to be extrapolated is 1/router−1/∞= 1/router. The distance covered

by the data is 1/rinner−1/router, so if the rule of thumb is to be satisfied, the inner

extraction radius should be no more than half of the outer extraction radius.

On the other hand, we would like the inner extraction radius to be as far out

as possible. Extracting data near the violent center of the simulation is a bad

idea for many reasons. Coordinate ambiguity, tetrad errors or nonlinear gauge

effects, near-field effects—all are more severe near the center of the simulation.



3.4. Extrapolation technique applied to binary inspiral waveforms 93

r /Mirr = {50,60,75,85,100}

r /Mirr = {100,110,120,130,140}

r /Mirr = {150,170,190,210,225}

r /Mirr = {100,130,160,190,225}

0 1000 2000 3000 4000
tret/Mirr

−0.2

−0.1

0

0.1

0.2

δ
φ

(r
ad

ia
ns

)

Figure 3.8: Comparison of extrapolation of Ψ4 using different sets of extraction
radii

This figure compares the phase of waveforms extrapolated with various sets of
radii. All comparisons are with respect to the data set used elsewhere in this chap-
ter, which uses extraction radii r /Mirr = {75,85,100,110,120, . . . ,200,210,225}.
The order of the extrapolating polynomial is N = 3 in all cases. Roughly the
same behavior is seen for h.



94 Extrapolation

The larger these errors are, the more work the extrapolation needs to do. This

effectively means that higher-order extrapolation is needed if data are extracted

at low radii. The exact inner radius needed for extrapolation depends on the

desired accuracy and, again, the part of the simulation from which the waveform

is needed.

We can compare data extrapolated using different sets of radii. Fig. 3.8 shows

a variety, compared to the data used elsewhere in this chapter. The extrapolation

order is N = 3 in all cases. Note that the waveforms labeled r /Mirr = {50, . . . ,100}

and r /Mirr = {100, . . . ,225} both satisfy the rule of thumb that the inner radius

should be at most half of the outer radius, while the other two waveforms do

not; it appears that violation of the rule of thumb leads to greater sensitiv-

ity to noise. One waveform is extrapolated using only data from small radii,

r /Mirr = {50, . . . ,100}. It is clearly not converged, and would require higher-order

extrapolation if greater accuracy is demanded. The source of the difference is

presumably the near-field effect discussed in the next section, which is propor-

tionally larger at small radii.

3.5 Near-field effects in the data

We can calculate the approximate near-field effects expected from a binary, in

terms of the asymptotic field. This allows us to use the extrapolated waveforms

to estimate the near-field effects. Comparing these estimates to the observed

difference between extrapolated waveforms and waveforms extracted at finite

radius will allow us to test our calculations. This will show that the field at a finite

radius really is essentially different from the asymptotic field, even if we ignore
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coordinate effects and various other “delicate issues” in wave extraction [185].

While our near-field calculation only gives an order-of-magnitude estimate of the

error in Ψ4, it gives a much more accurate accounting for the error in h.

3.5.1 Calculating near-field effects

The familiar electrodynamics problem of finding the field of an idealized oscil-

lating electric dipole provides a simple prototype for near-field effects. If the

frequency of oscillation is ω, the exact solution is easily found, and expressed as

a quadratic polynomial in 1/rω, where r is the distance to the dipole [246, 172].

The solution is generally divided into two regions, where each of a pair of op-

posing approximations is valid: the near zone with rω¿ 1, and the far zone (or

radiation zone) with rωÀ 1. In the near zone, the field includes contributions

that will not be found at larger radii. The rough boundary between the two

zones depends, of course, on the frequency of the source. At lower frequencies,

the near zone extends farther out. Though the analogy is clearly imperfect, radi-

ation from a black-hole binary shows similar signs of dependence on the source’s

frequency [242]. In the remainder of this section, we will explicitly calculate those

near-field effects, and estimate their size in simulations.

Calculating near-field effects in h

We define the symbol hαβ B ηαβ−p−g gαβ, where g B det(gαβ). In harmonic

coordinates, in the linear approximation, this quantity obeys a wave equation.

Explicitly, in vacuum, we have

�hαβ = 0 , (3.35)
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where � is just the flat-space wave operator [242]. Assuming that solutions to

this equation can be expressed in the form of a multipolar expansion, we can

write down the general outgoing solution as14

hαβ(t ,r ,ϑ,ϕ) =
L∑

l=0

∂Il

[
1

r
QαβIl (t − r )

]
, (3.36)

where each QαβIl is just some multipole tensor, Il is a spatial multi-index with l

Cartesian components (that is, Il B i1· · · il ), and summation over the multi-index

is implied. Also note the obvious notation ∂Il B ∂i1 · · ·∂il . Though it is not made

explicit here, the right side implicitly depends on ϑ and ϕ, in that the differential

operators depend on those coordinates, making the dependence on ϑ and ϕ from

the left side nontrivial. For technical reasons, we must assume the existence of

some L, representing the maximum moment of interest. Its value, of course, is

arbitrary, so this should be of no practical importance.

Obviously, the uncontracted indices of the multipole components must have

the same symmetries as the tensors they represent. For instance, the QαβIl must

be symmetric in α and β. As for the multi-index, we may as well suppose

that the Il are symmetric, because the partial derivatives commute, so only the

symmetric part will be used. Also, we can impose the condition that the multipole

be trace-free on each pair of indices in Il . This makes the QαβIl unique, and

allows us to interpret each l as corresponding—as usual—to the weight of an

irreducible representation of the rotation group. That is, each term in the sum in

14Sachs [227] and Pirani [213] introduced expressions of this form for various solutions to the
flat-space wave equation. Thorne [242] gives the same expression in a different form; his is the
decomposition of the free indices into time–time, time–space, and space–space components, each
written as a pure-trace, a pure-divergence, etc., coupled to symmetric, trace-free tensors. Finally,
Blanchet and Damour [44] proved that this solution encompasses all possible solutions, subject
to a few basic conditions.
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Eq. (3.36) corresponds to the usual 2l -pole moment. (This interpretation of the

rank-l symmetric, trace-free tensors is discussed, for example, by Pirani [213] and

Thorne [242].)

The (nonrestrictive) assumption that the multipole tensor is trace-free is crucial

to simplifying the differentiation in Eq. (3.36). In this case, we can show15 that

the correct formula is

hαβ =
L∑

l=0

hαβ

(l ) where hαβ

(l ) =
l∑

k=0

(−1)l (l +k)!

2kk !(l −k)!

1

r k+1
(l−k)QαβIl (t − r ) NIl . (3.37a)

Here, NIl B ni1 · · ·nil is a collection of unit normal vectors, and (m) f (τ)B dm

dτm f (τ).

(This expression is far more complicated if we do not assume that the multipole

moment is symmetric and trace-free on the multi-index.) In particular, for the

l = 2 component, we have

hαβ

(l=2) =
1

r

[
d2

dt 2
+ 3

r

d

dt
+ 3

r 2

]
Qαβi j (t − r )ni n j . (3.37b)

The first term in braces corresponds to the quantity obtained by extrapolation,

and is the vastly dominant component of any gravitational waves from any equal-

mass binary inspiral that will likely be detected in Earth’s neighborhood.

We can use the last formula to estimate the size of the near-field terms in the

l = 2 component. Because we do not know (nor do we particularly care about)

all the components of the multipole Qαβi j , let us focus on the asymptotic part of

h:

h
asy
(l=2) =

1

r
(ε+− iε×)αβ ni n j

d2

dt 2
Qαβi j (t − r ) , (3.38)

15The formula is verified by double induction on l and k, dropping terms involving the Kro-
necker delta because of the trace-free property of the multipole with which they are contracted.
The components are assumed to be Cartesian, meaning that there is no complication from covari-
ant differentiation to be concerned about.



98 Extrapolation

where the ε+ and ε× tensors were defined in Eq. (3.23). In terms of this, we can

rewrite Eq. (3.37b) as

h(l=2) =
[

1+ 3

r

∫
dt + 3

r 2

Ï
dt dt ′

]
h
asy
(l=2) , (3.39)

interpreting the integrals as operators acting on h
asy
(l=2). Performing these inte-

grations requires setting one or two complex integration constants. Doing this

reliably is difficult. Instead of attempting to actually do that integration, then, we

will make a simple approximation. If h
asy
(l=2) can be approximated as h

asy
(l=2) ≈ A eiωt ,

for real constants A and ω, we can re-express the above as

h(l=2) ≈
[

1− 3i

rω
− 3

r 2ω2

]
h
asy
(l=2) . (3.40)

Here we directly see the near-field terms behaving as powers of 1/rω= o/r .

As we will see in subsequent chapters, comparisons of gravitational waves

generally decompose the wave into (time-varying) amplitude and phase. Be-

cause the second term in this formula is purely imaginary, it contributes—for

small values of 1/rω—almost solely to the phase of the waveform, rather than

its amplitude. Specifically, the l = 2 component of h measured at a finite radius

will differ from the asymptotic waveform in phase by roughly −3/rω radians.

The fractional difference in amplitude will be roughly 3/2r 2ω2 according to this

formula. However, that is a second-order effect, and we will see the amplitude

difference is poorly predicted by this formula.

Nonetheless, there is some insight to be gained from this approximate formula.

Note the different behavior with radius, indicating that amplitude errors can be

mitigated rapidly by moving to a larger extraction radius (or are particularly

problematic when extracting at small radii), while phase errors diminish more
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slowly. This can inform our choice of radii at which to extract data for a desired

amount of precision.

Dominant gravitational-wave frequencies in numerical simulations are typi-

cally no more than about 1/2M , and some times as small as 1/30M in the early

inspiral segment of current numerical simulations. Extraction radii in current

simulations are of order 100 M , meaning that phase errors induced by near-field

effects may be a full cycle in the early inspiral, falling to a fraction of that near

merger. Because precise phasing is crucial to successful detection via matched

filtering, this effect can potentially spoil the accuracy of numerical waveforms,

and needs to be accounted for.

Note that the assumptions that have gone into the derivation above include

the assumption of linearity in the metric perturbation, and the assumption that

the coordinates are harmonic. Nonlinearities and non-harmonic features of the

coordinates will act as sources in Eq. (3.35). Assuming that our h data is reason-

ably gauge invariant, of course, the assumption of harmonic coordinates may be

less important [2].

Calculating near-field effects in Ψ4

A very similar analysis directly shows just the same near-zone behavior for Ψ4,

without using the approximation Ψ4 ≈−ḧ everywhere. The crucial assumption

in this argument is that the background curvature and the length scales on which

it changes are much larger than the reduced wavelength. In that case, it is not

hard to show that the Riemann tensor obeys a homogeneous wave equation in
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vacuum [57]:

�Rαβγδ = 0 . (3.41)

The extra indices simply carry through into the expression for the general out-

going solution:

Rαβγδ(t ,r ,ϑ,ϕ) =
L∑

l=0

∂Il

[
1

r
Q Il
αβγδ

(t − r )

]
, (3.42)

where the multi-index is, again, fully symmetric and trace-free. The differentia-

tion follows in the same way as for Eq. (3.37a):

Rαβγδ =
L∑

l=0

l∑
k=0

(−1)l (l +k)!

2kk !(l −k)!

1

r k+1
(l−k)Q Il

αβγδ
(t − r ) NIl . (3.43a)

The expression for the l = 2 component looks exactly the same as before:

R (l=2)
αβγδ

= 1

r

[
d2

dt 2
+ 3

r

d

dt
+ 3

r 2

]
Q i j
αβγδ

(t − r )ni n j . (3.43b)

Again, we contract this equation and extract the asymptotic field

Ψ
asy
4 = 1

r
lα m̄β lγ m̄δni n j

d2

dt 2
Q i j
αβγδ

(t − r ) , (3.44)

rewrite the above as

Ψ4 =
[

1+ 3

r

∫
dt + 3

r 2

Ï
dt dt ′

]
Ψ

asy
4 , (3.45)

and approximate as before:

Ψ4 ≈
[

1− 3i

rω
− 3

r 2ω2

]
Ψ

asy
4 . (3.46)

Now, we did not directly integrate in Eq. (3.39) (the equivalent of Eq. (3.45))

because of difficulties in setting the integration constants that would be needed.
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In this case, however, if we have also extracted h, then we can use the linear rela-

tion Ψ4 ≈−ḧ. Because these are asymptotic quantities, the linear approximation

should hold precisely. So, we can also rewrite the above as

Ψ4 =Ψasy
4 − 3

r
ḣasy− 3

r 2
hasy . (3.47)

A useful check of the validity of the approximation made in going from Eq. (3.45)

to Eq. (3.46) is to compare that result with the result of Eq. (3.47). We have done

this, and find that there is very little difference—roughly within the uncertainty

estimated above—until just before merger.

Note that the only approximation we have made to arrive at Eq. (3.47) is that

Riemann obeys a homogeneous wave equation, which relies on the assumption

that the reduced wavelength o is much less than the radius of curvature of the

background spacetime R and less than the length scale on which it changes L .

At a distance r from a Schwarzschild black hole, R ≈
p

r 3/M and L ß r , so we

are assuming roughly o¿ r .

3.5.2 Measuring near-field effects

We can now compare the extrapolated waveforms with data extracted at finite

radius. The difference will show us how sensitive the extraction method is to the

near-field effects just discussed, and to the effects of gauge discussed in Sec. 3.2.

It will also give us an idea of the error we would make by using data extracted

at finite radius rather than extrapolating. Figures 3.9 and 3.10 show as solid lines

the relative amplitude and phase differences of h extracted from the simulation

directly, compared to the data extrapolated with a fourth-order polynomial. The
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Figure 3.9: Relative amplitude difference between h data extracted at finite
radius and data extrapolated to infinity, and calculated near-field effects

For each extraction radius, we show the relative amplitude difference between the
extracted and extrapolated data as solid lines. The dashed lines show the near-
field effects, calculated using the extrapolated waveforms along with Eq. (3.40).
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Figure 3.10: Phase difference between h data extracted at finite radius and data
extrapolated to infinity, and calculated near-field effects

For each extraction radius, we show the phase difference between the extracted
and extrapolated data as solid lines. The dashed lines show the near-field effects,
calculated using the extrapolated waveforms along with Eq. (3.40).
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dashed lines show the calculated near-field effects, which are given in terms of

the asymptotic fields by Eq. (3.40).

The first feature we note is the size of the errors we would make if we were to

treat waves extracted at finite radius as the asymptotic waveform. With extraction

at 50 Mirr, the measured amplitude difference begins at over 80%, falling to zero

as the binary nears merger. These differences fall off roughly as 1/r 2; the values

at a given time decrease by a factor of roughly 4 between successive lines. For

extraction at r =200 Mirr, the differences from the extrapolated waveform are

never more than a few percent. The phase error scales inversely with the radius,

and can be as much as 1.6 radians for the simulation shown here, with extraction

at 50 Mirr. Most importantly, the phase errors are changing during the simulation.

A constant offset would be largely irrelevant for many purposes; a changing error

means that, for example, coherence with a matched-filtering template would be

lost.

We also observe that the near-field effect gives a very good estimate of the size

of the difference between data extracted at finite radius and data extrapolated to

infinity. Recalling from Sec. 4.6 that the RWZ extrapolation can only be trusted to

roughly 4% in amplitude, or about 0.04 radians, the calculated near-field effect is,

in fact, within the error bounds. From this, we can conclude that the dominant

effect on waveforms extracted with the RWZ methods used here is the near-field

effect. Note that the near-field effects are fairly low order in o/r , implying that

extrapolation with N > 2 is unnecessary—at least for the data presented here.

The same comparison is made for Ψ4 data, in Figs. 3.11 and 3.12. Again, solid

lines show the relative amplitude and phase differences of Ψ4 extracted from
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the simulation directly, compared to the data extrapolated with a fourth-order

polynomial. The dashed lines show the calculated near-field effects, which are

given in terms of the asymptotic fields by Eq. (3.47).

Curiously, we see that there is a much smaller relative amplitude error, as

compared to RWZ data. With extraction at 50 Mirr, the measured amplitude

difference begins below −30%, goes to zero, and even switches sign, leveling off

at over 10% near merger and during ringdown. These differences also seem to

fall off roughly as 1/r 2, and—for extraction at r =200 Mirr—are never more than

a few percent. Again, the phase error scales roughly inversely with the radius,

and can be as much as 1.4 radians for the data shown here, with extraction at

50 Mirr.

Unfortunately, the successes of our near-field estimates for RWZ are not matched

by our estimates for Ψ4 data. We see that the estimated near-field effects reflect

the general form of the errors, though they poorly describe the size. In fact, the

amplitude estimate seems to be wrong by very nearly a factor of −2. An improved

choice of tetrad would not likely remove these effects, unless there is some subtle

dependence of the tetrad on the waves’ frequency; the time dependence of the

errors suggests that we have the right functional form for the near-field effects

with the wrong coefficients.

We do expect some error in our near-zone calculation. The crucial approxima-

tion was that the reduced wavelength is much less than the radius of curvature

of the background spacetime, and the scale on which the background curvature

changes. This approximation, of course, is not well satisfied early in the simula-
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Figure 3.11: Relative amplitude difference between Ψ4 data extracted at finite
radius and data extrapolated to infinity, and calculated near-field effects

For each extraction radius, we show the relative amplitude difference between the
extracted and extrapolated data as solid lines. The dashed lines show the near-
field effects, calculated using the extrapolated waveforms along with Eq. (3.47),
though Eq. (3.46) gives essentially the same result.
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Figure 3.12: Phase difference between Ψ4 data extracted at finite radius and
data extrapolated to infinity, and calculated near-field effects

For each extraction radius, we show the phase difference between the extracted
and extrapolated data as solid lines. The dashed lines show the near-field ef-
fects, calculated using the extrapolated waveforms along with Eq. (3.47), though
Eq. (3.46) gives essentially the same result.
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tion, close to the binary; the initial reduced wavelength of the gravitational waves

is o≈30 Mirr. On the other hand, it is not clear why this approximation would be

so poor for the near-field effects in Riemann, while the linearity approximation

for the near-field effects in h would be so good, by comparison.

3.6 Conclusions

We have developed a simple method for extrapolating gravitational-wave data

from numerical simulations. We have discussed two methods commonly used

to extract waveforms from simulations, and applied the extrapolation technique

to those methods. Convergence tests indicate that the extrapolated waveforms

are probably accurate to within 4% in amplitude and 0.04 radians in phase up to

the merger for Regge–Wheeler–Zerilli data, and about 1/4 of that for Newman–

Penrose data, including merger and ringdown. For reasons that remain un-

clear, extrapolation of the Regge–Wheeler–Zerilli waveform fails just after merger,

though extrapolation of the Newman–Penrose waveform seems trustworthy well

into the ringdown. We also compared our calculated near-field effects to the

observed effects by comparing waveforms extracted at finite radius to the extrap-

olated waveforms. The calculated near-field effects seem to be very accurate for

Regge–Wheeler–Zerilli data, but very poor for Newman–Penrose data. The lack

of agreement in the latter case is an interesting problem for future work.

As with any type of extrapolation, a note of caution is naturally in order. It is

entirely possible that the “true” function being extrapolated bears no resemblance

to the approximating function we choose, outside of the domain on which we

have data. We may, however, have reason to believe that the true function takes
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a certain form. If the data in question are generated by a homogeneous wave

equation, for instance, we know that well-behaved solutions fall off in powers of

1/r . In any case, there is a certain element of faith that extrapolation is a reason-

able thing to do. While that faith may indeed be misplaced, there are methods

of checking whether or not it is: goodness-of-fit statistics, error estimates, and

convergence tests. To be of greatest use, goodness-of-fit statistics and error esti-

mates for the output waveform require error estimates for the input waveforms.

We leave this for future work.

We still do not know the correct answers to the questions numerical relativ-

ity considers. Thus, large systematic errors could be hidden in plain view. To

eliminate them, we need to use multiple, independent methods for our calcu-

lations. For example, we might extract Ψ4 directly by calculating the Riemann

tensor and contracting appropriately with our naive coordinate tetrad, and ex-

tract the metric perturbation using the formalism of Regge–Wheeler–Zerilli and

Moncrief. By differentiating the latter result twice and comparing toΨ4, we could

verify that details of the extraction methods are not producing systematic errors.

Nonetheless, it is possible that infrastructure used to find both could be leading

to errors.

In the same way, simulations need to be performed using different gauge

conditions, numerical techniques, code infrastructures, boundary conditions, and

even different extrapolation methods. Only when multiple schemes arrive at the

same result can we be truly confident in any of them. But to arrive at the same

result, the waveforms from each scheme need to be processed as carefully as

possible. We have shown that extrapolation—or more advanced techniques—is
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crucial for highly accurate gravitational waveforms.
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4
Comparing numerical-relativity waveforms to

post-Newtonian approximations1

Numerical simulations of 15 orbits of an equal-mass binary black-hole sys-

tem are presented. Gravitational waveforms from these simulations, covering

more than 30 cycles and ending about 1.5 cycles before merger, are compared

with those from quasi-circular zero-spin post-Newtonian (PN) approxima-

tions. The cumulative phase uncertainty of these comparisons is about 0.05

radians, dominated by effects arising from the small residual spins of the black

holes and the small residual orbital eccentricity in the simulations. Matching

numerical results to PN waveforms early in the run yields excellent agree-

ment (within 0.05 radians) over the first ∼15 cycles, thus validating the

numerical simulation and establishing a regime where PN theory is accurate.

In the last 15 cycles before merger, however, generic time-domain Taylor ap-

1 This chapter is extracted with minor revisions from Ref. [59], which was written in collabo-
ration with Duncan A. Brown, Lawrence E. Kidder, Abdul H. Mroué, Harald P. Pfeiffer, Mark A.
Scheel, Gregory B. Cook, and Saul A. Teukolsky. I was responsible for extrapolating the data from
the simulations, generating the post-Newtonian waveforms used in this paper, and establishing
the matches between the waveforms, while Abdul checked my work with different methods. I
also double-checked the error estimates, and shared in writing the text.
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proximants build up phase differences of several radians. But—apparently by

coincidence—one specific post-Newtonian approximant (TaylorT4 at 3.5PN

order) agrees much better with the numerical simulations, having accumu-

lated phase differences of less than 0.05 radians over the 30-cycle waveform.

Gravitational-wave amplitude comparisons are also done between numerical

simulations and post-Newtonian, and the agreement depends on the post-

Newtonian order of the amplitude expansion: the amplitude difference is

about 6–7% for 0.0PN order and becomes smaller for increasing order. A

newly derived 3.0PN amplitude correction improves agreement significantly

(<1% amplitude difference throughout most of the run, increasing to 4%

near merger) over the previously known 2.5PN-amplitude terms.

4.1 Introduction

The last two years have brought tremendous progress in simulations of black-hole

binaries, starting with the first stable simulation of orbiting and merging black

holes [219, 221], development of the moving-puncture method [84, 21] and rapid

progress by other groups [86, 158, 126, 230, 234, 69, 191, 134, 238]. Since then,

an enormous amount of work has been done on the late inspiral and merger

of black-hole binaries, among them studies of the universality of the merger

waveforms [20, 19], investigations into black-hole kicks [22, 150, 183, 89, 149, 160,

233, 93, 82, 68, 18, 159, 158, 232] and spin dynamics [88, 87, 85], comparisons to

post-Newtonian models [75, 6, 32], and applications to gravitational-wave data

analysis [206, 78, 27].

Compared to the intense activity focusing on simulations close to merger,
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there have been relatively few simulations covering the inspiral phase. To date,

only three simulations [24, 23, 209, 157, 166] cover more than five orbits. Long

inspiral simulations are challenging for a variety of reasons. First, the orbital

period increases rapidly with separation, so that simulations must cover a sig-

nificantly longer evolution time. In addition, the gravitational waveform must

be extracted at larger radius (and the simulation must therefore cover a larger

spatial volume) because the gravitational wavelength is longer. Furthermore,

gravitational-wave data analysis requires small absolute accumulated phase un-

certainties in the waveform, so the relative phase uncertainty of the simulation

must be smaller.

Gravitational-wave detectors provide a major driving force for numerical rela-

tivity (NR). The first-generation interferometric gravitational-wave detectors, such

as LIGO [26, 245], GEO600 [162], and VIRGO [4, 3], are now operating at or near

their design sensitivities. Furthermore, the advanced generation of detectors are

entering their construction phases. This new generation of interferometers will

improve detector sensitivity by a factor of ∼ 10 and hence increase expected event

rates by a factor of ∼ 1000 [143]. One of the most promising sources for these

detectors is the inspiral and merger of binary black holes (BBHs) with masses

m1 ∼ m2 ∼ 10–20 M¯ [139]. These systems are expected to have circularized long

before their gravitational waves enter the sensitive frequency band of ground-

based detectors [208].

A detailed and accurate understanding of the gravitational waves radiated as

the black holes spiral towards each other will be crucial not only to the initial

detection of such sources, but also to maximize the information that can be ob-
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tained from signals once they are observed. When the black holes are far apart,

the gravitational waveform can be accurately computed using a post-Newtonian

(PN) expansion. As the holes approach each other and their velocities increase,

the post-Newtonian expansion is expected to diverge from the true waveform. It

is important to quantify any differences between theoretical waveforms and the

true signals, as discrepancies will cause a reduction of search sensitivity. Several

techniques have been proposed to address the problem of the breakdown of the

post-Newtonian approximation [106, 76, 73], but ultimately, the accuracy of the

post-Newtonian waveforms used in binary-black-hole gravitational-wave searches

can only be established through comparisons with full numerical simulations.

Unfortunately, comparing post-Newtonian approximations to numerical sim-

ulations is not straightforward, the most obvious problem being the difficulty

of producing long and sufficiently accurate numerical simulations, as explained

above. In addition, post-Newtonian waveforms typically assume circular orbits,

and most astrophysical binaries are expected to be on circular orbits late in their

inspiral, so the orbital eccentricity within the numerical simulation must be suf-

ficiently small.2 Another factor that complicates comparisons is the variety of

post-Newtonian approximants available, from several straightforward Taylor ex-

pansions to more sophisticated Padé resummation techniques and the effective

one-body approach (see, e.g. [108, 110, 106, 76, 77, 114, 103, 105, 72], as well

as Sec. 4.3.5 below). While all post-Newtonian approximants of the same order

should agree sufficiently early in the inspiral (when neglected higher-order terms

are small), they begin to disagree with each other during the late inspiral when
2Unfortunately, this circularization occurs on extremely long timescales [208]—thousands of

orbits—making it impossible to run the numerical simulation long enough to radiate the eccen-
tricity away.
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the post-Newtonian approximation starts to break down—exactly the regime in

which NR waveforms are becoming available.

Finally, agreement (or disagreement) between NR and PN waveforms will also

depend very sensitively on the precise protocol used to compare the waveforms.

Are PN and NR waveforms matched early or late in the inspiral? Is the matching

done at a particular time, or is a least-squares fit performed over some region

of the waveform? Does one compare frequencies ω(t ) or phases φ(t )? Are com-

parisons presented as functions of time, or of frequency? Up to which cutoff

frequency does one compare PN with NR?

Despite these difficulties, several comparisons between NR and PN have been

done for the last few orbits of an equal-mass, nonspinning black-hole binary. The

first such study was done by Buonanno et al. [75] based on simulations performed

by Pretorius [219] lasting somewhat more than 4 orbits (∼ 8 gravitational-wave

cycles). This comparison performs a least-squares fit over the full waveform, finds

agreement between the numerical evolution and a particular post-Newtonian ap-

proximant (in our language TaylorT3 3.0/0.03) and notes that another approx-

imant (TaylorT4 3.5/0.0) will give similarly good agreement. However, as the

authors note, this study is severely limited by numerical resolution, sizable initial

eccentricity (∼ 0.015), close initial separation of the black holes, and coordinate

artifacts; for these reasons, the authors do not quantify the level of agreement.

More recently, Baker et al. [24, 23] performed simulations covering the last ∼ 14

cycles before merger. These simulations have an orbital eccentricity ∼ 0.008 [24],

3We identify post-Newtonian approximants with three pieces of information: the label intro-
duced by [108] for how the orbital phase is evolved; the PN order to which the orbital phase is
computed; and the PN order that the amplitude of the waveform is computed. See Sec. 4.3.5 for
more details.
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forcing the authors to use a fitted smooth (“de-eccentrized”) gravitational-wave

phase to obtain a monotonically increasing gravitational-wave frequency. Com-

paring to TaylorT4 3.5/2.5, they find agreement between numerical and post-

Newtonian gravitational-wave phase to within their numerical errors, which are

about 2 radians. The authors also indicate that other post-Newtonian approxi-

mants do not match their simulation as well as TaylorT4, but unfortunately, they

do not mention whether any disagreement is significant (i.e., exceeding their nu-

merical errors). Pan et al. [206] performed a more comprehensive analysis of the

numerical waveforms computed by Pretorius [75] and the Goddard group [24, 23],

confirming that TaylorT4 3.5/0.0 matches the numerical results best.

The most accurate inspiral simulation to date was performed by the Jena group

and presented in Husa et al. [166] and Hannam et al. [157]. This simulation

covers 18 cycles before merger and has an orbital eccentricity of ∼ 0.0018 [167].

Discarding the first two cycles, which are contaminated by numerical noise, and

terminating the comparison at a gravitational-wave frequency Mω = −0.1 (see

Eq. (4.15) for the precise definition), their comparison extends over 13 cycles. We

discuss the results of Ref. [157] in more detail in Sec. 4.6.1.

This paper presents a new inspiral simulation of a nonspinning equal-mass

black-hole binary. This new simulation more than doubles the evolution time

of the simulations in Refs. [24, 23, 157, 166], resulting in a waveform with 30

gravitational-wave cycles, ending ∼ 1.5 cycles before merger, and improves numerical-

truncation errors by one to two orders of magnitude over those in Refs. [24, 23,

157, 166]. The orbital eccentricity of our simulations is ∼ 6×10−5; this low ec-

centricity is achieved using refinements of techniques described in Ref. [209]. We
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present a detailed analysis of various effects which might influence our com-

parisons to post-Newtonian waveforms for nonspinning black-hole binaries on

circular orbits. These effects result in an uncertainty of ∼ 0.05 radians out of the

accumulated ∼ 200 radians. Perhaps surprisingly, the largest uncertainty arises

from the residual orbital eccentricity, despite its tiny value. The second largest

effect arises due to a potential residual spin on the black holes, which we bound

by |S|/M 2
irr < 5×10−4.

We compare the numerical waveforms with four different time-domain post-

Newtonian Taylor-approximants [108, 110, 73] and we match PN and NR wave-

forms at a specific time during the inspiral. We explore the effects of varying

this matching time. When matching ∼ 9 cycles after the start of our evolution, all

post-Newtonian approximants of 3.0PN and 3.5PN order in orbital phase agree

with our simulation to within ∼ 0.03 radians over the first 15 cycles. This agree-

ment is better than the combined uncertainties of the comparison, thus vali-

dating our simulations in a regime where the 3.5PN truncation error of post-

Newtonian theory is comparable to the accuracy of our simulations. Lower-order

post-Newtonian approximants (2.0PN and 2.5PN order), however, accumulate a

significant phase difference of ∼ 0.2 radians over this region.

Extending the comparison toward merger (as well as when matching closer

to merger), we find, not surprisingly, that the agreement between PN and NR

at late times depends strongly on exactly what post-Newtonian approximant we

use [108, 110]. Typical accumulated phase differences are on the order of radians

at frequency Mω=−0.1. One particular post-Newtonian approximant, TaylorT4

at 3.5PN order in phase, agrees with our NR waveforms far better than the other
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approximants, the agreement being within the phase uncertainty of the compari-

son (0.05 radians) until after the gravitational-wave frequency passes Mω=−0.1

(about 3.5 cycles before merger). It remains to be seen whether this agreement is

fundamental or accidental, and whether it applies to more complicated situations

(e.g., unequal masses, nontrivial spins).

We also compare the post-Newtonian gravitational-wave amplitude to the nu-

merical amplitude, where we estimate the uncertainty of this comparison to be

about 0.5%. Restricted waveforms (i.e., 0PN order in the amplitude expansion)

are found to disagree with the numerical amplitudes by 6–7%. An amplitude ex-

pansion of order 2PN shows significantly better agreement than the expansion at

order 2.5PN. A newly derived 3PN amplitude [178] is found to give much better

agreement than the 2.0PN amplitude.

This paper is organized as follows: Section 4.2 discusses our numerical tech-

niques. In particular, we describe how we construct binary-black-hole initial data,

evolve these data for 15 orbits, extract gravitational-wave information from the

evolution, and produce a gravitational waveform as seen by an observer at infin-

ity. Section 4.3 details the generation of post-Newtonian waveforms, including

details of how we produce the four approximants that we compare against NR.

We describe our procedure for comparing NR and PN waveforms in Sec. 4.4,

and present a detailed study of various sources of uncertainty in Sec. 4.5. The

comparisons between NR and PN are presented in Sec. 4.6. This section is split

into two parts. First, we compare each PN approximant separately with the nu-

merical simulation. Second, we show some additional figures which facilitate

comparisons between the different PN approximants. Finally, we present some
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concluding remarks in Sec. 4.7. The impatient reader primarily interested in PN–

NR comparisons may wish to proceed directly to Table 4.3, summarizing the

uncertainties of our comparisons, and then continue to Sec. 4.6, starting with

Fig. 4.19.

4.2 Generation of numerical waveforms

In order to perform a quantitative comparison between numerical and post-

Newtonian waveforms, it is important to have a code capable of starting the black

holes far enough apart to be in a regime where we believe the post-Newtonian

approximation is valid, track the orbital phase extremely accurately, and do so

efficiently, so that the simulation can be completed in a reasonable amount of

time. Furthermore, the gravitational waves from such a simulation must be ex-

tracted in a manner that preserves the accuracy of the simulation and predicts

the waveform as seen by a distant observer, so that a comparison with the post-

Newtonian waveform can be made. In this section we describe the techniques we

use to do this, as well as the results of a simulation starting more than 15 orbits

prior to merger.

When discussing numerical solutions of Einstein’s equations, we write all

dimensionful quantities in terms of some mass scale M , which we choose to be

the sum of the irreducible masses of the two black holes in the initial data:

M = Mirr,1 +Mirr,2 . (4.1)

The irreducible mass of a single hole is defined as

MirrB
p

A/16π , (4.2)
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where A is the surface area of the event horizon; in practice we take A to be the

surface area of the apparent horizon. More generally, it is more appropriate to

use the Christodoulou mass of each black hole,

M 2
Chr = M 2

irr+
S2

4M 2
irr

, (4.3)

instead of the irreducible mass. Here S is the spin of the hole. However, for the

case considered in this paper, the spins are sufficiently small that there is little

difference between MChr and Mirr.

4.2.1 Initial data

Initial data are constructed within the conformal thin sandwich formalism [253,

212] using a pseudo-spectral elliptic solver [210]. We employ quasi-equilibrium

boundary conditions [96, 97] on spherical excision boundaries, choose conformal

flatness and maximal slicing, and use Eq. (33a) of Ref. [90] as the lapse boundary

condition. The spins of the black holes are made very small via an appropriate

choice of the tangential shift at the excision surfaces, as described in [90].

As the most accurate post-Newtonian waveforms available assume adiabatic

inspiral of quasi-circular orbits, it is desirable to reduce the eccentricity of the

numerical data as much as possible. Using techniques developed in [209], each

black hole is allowed to have a nonzero initial velocity component towards the

other hole. This small velocity component vr and the initial orbital angular

velocityΩ0 are then fine-tuned in order to produce an orbit with very small orbital

eccentricity.4 We have improved our eccentricity-reduction procedure since the
4An alternative method of producing low-eccentricity initial data, based on post-Newtonian



4.2. Generation of numerical waveforms 121

Ta
bl
e
4.
1:

Su
m
m
ar
y
of

th
e
in
iti
al

da
ta

se
ts

N
am

e
d

Ω
0

f r
v r

×1
04

M
ω

0
M

A
D
M

/M
J A

D
M

/M
2

s 0
/m

e d
s/

d
t

30
a

30
0.
00

80
10

8
0.
93

95
61

0.
00

-0
.0
16

64
79

3
0.
99

23
33

1.
08

57
17

.3
7

1.
0
×1

0−
2

30
b

30
0.
00

80
38

9
0.
93

95
61

-4
.9
0

-0
.0
16

70
54

0.
99

24
00

1.
08

97
17

.3
7

6.
5
×1

0−
4

30
c

30
0.
00

80
40

1
0.
93

95
61

-4
.2
6

-0
.0
16

70
81

0.
99

24
02

1.
08

98
17

.3
7

5.
0
×1

0−
5

24
a

24
0.
01

10
49

6
0.
92

37
3

-8
.2
9

-0
.0
23

19
47

0.
99

07
59

1.
00

45
14

.1
5

1.
1
×1

0−
3

24
b

24
0.
01

10
50

6
0.
92

37
39

-8
.4
4

-0
.0
23

19
67

0.
99

07
67

1.
00

49
14

.1
5

1.
5
×1

0−
4

Th
e
fir

st
bl
oc
k
of

nu
m
be

rs
(d

,Ω
0
,f

r
,a

nd
v r

)r
ep

re
se
nt

ra
w

pa
ra
m
et
er
s
en

te
rin

g
th
e
co
ns
tr
uc

tio
n
of

th
e
in
iti
al

da
ta
.
Th

e
se
co
nd

bl
oc
k
gi
ve

s
so
m
e
pr
op

er
tie

s
of

ea
ch

in
iti
al

da
ta

se
t:

M
de

no
te
s
th
e
su

m
of

th
e
irr

ed
uc

ib
le

m
as
se
s,

M
A
D
M

an
d

J A
D
M

th
e
A
D
M

en
er
gy

an
d

an
gu

la
r
m
om

en
tu
m
,
an

d
s 0

th
e
in
iti
al

pr
op

er
se
pa

ra
tio

n
be

tw
ee
n
th
e
ho

riz
on

s.
Th

e
la
st

co
lu
m
n
lis
ts

th
e
ec
ce
nt
ric

ity
co
m
pu

te
d
fr
om

Eq
.(
4.
7)
.
Th

e
in
iti
al

da
ta

se
t3

0c
is

us
ed

fo
r
al
le

vo
lu
tio

ns
(e
xc
ep

tf
or

co
ns

is
te
nc

y
ch

ec
ks
)d

es
cr
ib
ed

in
th
is

pa
pe

r.



122 Comparing NR to PN

−0.004

−0.003

−0.002

−0.001

0

0.001

0.002

ds

dt

0 500 1000 1500
t/M

30a
30b
30c

Figure 4.1: Eccentricity removal

The quantity shown is the time derivative of the proper separation between the
black holes in each of three simulations. This is shown for short evolutions of
the d = 30 initial data sets 30a, 30b, and 30c (see Table 4.1). These three data sets
represent zero through two iterations of our eccentricity-reduction procedure.
The orbital eccentricity is reduced significantly by each iteration. The final curve
(30c) corresponds to the simulation used in the rest of this paper.
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version described in [209], so we summarize our new iterative procedure here:

We start with a quasi-circular (i.e., vr = 0) initial data set at coordinate sepa-

ration d = 30, where Ω0 is determined by equating Komar mass with Arnowitt–

Deser–Misner (ADM) mass [90]. We then evolve these data for about 1.5 orbits,

corresponding to a time t/M ≈ 600. From this short evolution, we measure the

proper separation s between the horizons by integration along the coordinate axis

connecting the centers of the black holes. We fit the time derivative ds/dt in the

interval 100ß t/M ß 600 to the function

ds

dt
= A0 + A1t +B cos(ωt +δ) , (4.4)

where we vary all five parameters A0, A1,B ,ω, and δ to achieve the best fit. The

desired smooth inspiral is represented by the part A0+A1t ; the term B cos(ωt+δ)

corresponds to oscillations caused by orbital eccentricity.

For a Newtonian orbit with radial velocity B cos(ωt +δ) at initial separation s0,

it is straightforward to determine the changes to the orbital frequency and the

radial velocity which make the orbit perfectly circular, namely

Ω0 →Ω0 + B sinδ

2s0
, (4.5)

vr → vr − B cosδ

2
. (4.6)

For Newtonian gravity, Eq. (4.6) will of course result in a circular orbit with

vr = 0. In general relativity, Ω0 and vr will be different from their Newtonian

values, for instance vr < 0 to account for the inspiral of the two black holes.

Nevertheless, we assume that small perturbations around the zero-eccentricity

ideas, is developed in [167]. While that technique is computationally more efficient than ours, it
merely reduces orbital eccentricity by a factor of ∼ 5 relative to quasi-circular initial data, which
is insufficient for the comparisons presented here. (see Sec. 4.5.5).
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inspiral trajectory behave similarly to small perturbations around a Newtonian

circular orbit. Therefore, we apply the same formulas, Eqs. (4.5) and (4.6), to

obtain improved values for Ω0 and vr for the black hole binary, where s0 is the

initial proper separation between the horizons. We then use the new values of

Ω0 and vr to construct a new initial-data set, again evolve for two orbits, fit to

Eq. (4.4), and update Ω0 and vr . We continue iterating this procedure until the

eccentricity is sufficiently small.

We estimate the eccentricity for each iteration from the fit to Eq. (4.4) using

the formula

eds/dt = B

s0ω
, (4.7)

which is valid in Newtonian gravity for small eccentricities. Successive iterations

of this procedure are illustrated in Fig. 4.1 and yield the initial-data sets 30a, 30b,

and 30c summarized in Table 4.1. Eccentricity decreases by roughly a factor of 10

in each iteration, with 30c having eds/dt ≈ 5×10−5. The evolutions used during

eccentricity reduction need not be very accurate and need to run only for a short

time, t ∼ 600M . One iteration of this procedure at our second lowest resolution

requires about 250 CPU-hours. For completeness, Table 4.1 also lists parameters

for initial data at smaller separation; these data will be used for consistency

checks below. Apart from these consistency checks, the remainder of this paper

will focus exclusively on evolutions of the low-eccentricity initial data set 30c.

4.2.2 Evolution of the inspiral phase

The Einstein evolution equations are solved with the pseudo-spectral evolution

code described in Ref. [230]. This code evolves a first-order representation [187]
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of the generalized-harmonic system [141, 144, 220]. We handle the singularities

by excising the black-hole interiors from our grid. Our outer boundary condi-

tions [187, 223, 225] are designed to prevent the influx of unphysical constraint

violations [237, 142, 25, 239, 80, 240, 180] and undesired incoming gravitational

radiation [70], while allowing the outgoing gravitational radiation to pass freely

through the boundary.

The code uses a fairly complicated domain decomposition to achieve maxi-

mum efficiency. Each black hole is surrounded by several (typically six) concen-

tric spherical shells, with the inner boundary of the innermost shell (the excision

boundary) just inside the horizon. A structure of touching cylinders (typically

34 of them) surrounds these shells, with axes along the line between the two

black holes. The outermost shell around each black hole overlaps the cylinders.

The outermost cylinders overlap a set of outer spherical shells, centered at the

origin, which extend to a large outer radius. External boundary conditions are

imposed only on the outer surface of the largest outer spherical shell. We vary

the location of the outer boundary by adding more shells at the outer edge. Since

all outer shells have the same angular resolution, the cost of placing the outer

boundary farther away (at full resolution) increases only linearly with the radius

of the boundary. External boundary conditions are enforced using the method of

Bjorhus [34], while inter-domain boundary conditions are enforced with a penalty

method [153, 161].

We employ the dual-frame method described in Ref. [230]: we solve the equa-

tions in an inertial frame that is asymptotically Minkowski, but our domain decom-

position is fixed in a comoving frame that rotates with respect to the inertial frame



126 Comparing NR to PN

and also shrinks with respect to the inertial frame as the holes approach each

other. The positions of the holes are fixed in the comoving frame; we account

for the motion of the holes by dynamically adjusting the coordinate mapping

between the two frames. Note that the comoving frame is referenced only in-

ternally in the code as a means of treating moving holes with a fixed domain.

Therefore all coordinate quantities (e.g., black-hole trajectories, wave-extraction

radii) mentioned in this paper are inertial-frame values unless explicitly stated

otherwise.

One side effect of our dual-frame system is that the outer boundary of our

domain (which is fixed in the comoving frame) moves inward with time as ob-

served in the inertial frame. This is because the comoving frame shrinks with

respect to the inertial frame to follow the motion of the holes. In Refs. [230, 209]

the inertial-frame coordinate radius r (with respect to the center of mass) and

the comoving coordinate radius r ′ are related by a simple scaling

r = a(t )r ′ . (4.8)

The expansion parameter a(t ) is initially set to unity and decreases dynami-

cally as the holes approach each other, so that the comoving-frame coordinate

distance between the holes remains constant. The outer boundary of the com-

putational grid is at a fixed comoving radius R ′
bdry, which is mapped to the

inertial-coordinate radius Rbdry(t ) = a(t )R ′
bdry. Because we wish to accurately

compute the gravitational radiation as measured far from the holes, it is desir-

able to have a moderately large outer boundary (Rbdry(t ) à 200M ) throughout

the run. For the linear mapping, Eq. (4.8), this requires a very distant outer

boundary early in the run, Rbdry(0) ' 1000M . Computationally this is not very
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expensive. However, the initial junk radiation contaminates the evolutions for a

time interval proportional to the light-crossing time to the outer boundary, and

for Rbdry(0) ' 1000M it would be necessary to discard a significant portion of the

evolution.

We therefore use the mapping

r =
[

a(t )+ (1−a(t ))
r ′2

R ′2
0

]
r ′ , (4.9)

for some constant R ′
0 which is chosen to be roughly the radius of the outer

boundary in comoving coordinates. This mapping has the following properties:

(1) At the initial time t = 0, the map reduces to the identity map because a(0) = 1.

Thus we do not need to re-map our initial data before evolving. (2) For small

radii (e.g., at the locations of the black holes), the map reduces to the linear map,

r = a(t )r ′+O (r ′3). This allows use of the control system without modifications.

(3) The moving radius r ′ = R ′
0 is mapped to a constant inertial radius: r (R ′

0) = R ′
0.

This allows us to keep the inertial radius of the outer boundary constant (or

nearly constant5) in time rather than shrinking rapidly.

In total, we have run three evolutions of the 30c initial data set; these use

different combinations of outer-boundary radius and radial mapping between

inertial and moving coordinates. Some properties of these evolutions are sum-

marized in Table 4.2. We also performed extensive convergence testing, running

the same evolution on up to six distinct resolutions, N1 to N6. The coarsest res-

olution 30c-1/N1 uses approximately 413 grid points (summing all grid points
5In practice, we choose R ′

0 somewhat larger than the outer boundary, so that the outer bound-
ary of the computational domain slowly contracts in inertial coordinates. This makes the zero-
speed characteristic fields outgoing there, avoiding the need to impose boundary conditions on
those fields.
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Table 4.2: Overview of low-eccentricity simulations

Name ID Norbits Rbdry Radial map Resolutions

30c-1 30c 15.6 462M Eq. (4.9) N1, N2, . . . , N6

30c-2 30c 15.6 722M Eq. (4.8) N2, N4, N6
30c-3 30c 15.6 202M Eq. (4.8) N2, N3, . . . , N6

24b-1 24b 8.3 160M Eq. (4.8) N2, N3, N4

Rbdry is the initial coordinate radius of the outer boundary; this radius changes
during the evolution according to the choice of radial map between inertial and
comoving coordinates. The last column lists the different resolutions run for
each evolution, N6 being the highest resolution. Evolution 30c-1/N6 forms the
basis of our post-Newtonian comparisons, and is used in all figures unless noted
otherwise.

in all the subdomains), while the most accurate evolution, 30c-1/N6, uses about

673 grid points. The run 30c-1/N2 required about 2,500 CPU-hours and run

30c-1/N6 about 19,000, where our simulations do not take advantage of sym-

metries. The distance to the outer boundary is adjusted by adding or removing

outer spherical shells to an otherwise unmodified domain-decomposition. Run

30c-1 has 20 such outer spherical shells, while 30c-2 utilizes 32 and 30c-3 only 8.

Thus, the total number of grid points varies slightly between runs, e.g., about 713

for 30c-2/N6. Figure 4.2 indicates the different behavior of the outer-boundary

location for these three evolutions.

For all of the evolutions 30c-1/2/3, the coordinate trajectories of the centers of

the apparent horizons appear as in Fig. 4.3. The regular inspiral pattern without

noticeable oscillations once again indicates that our evolutions indeed have very

low eccentricity.
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Figure 4.2: Spacetime diagram showing the region simulated by the numerical
evolutions

The positions of the boundaries of various simulations are shown, as functions
of time, with labels corresponding to names used in Table 4.2. The various 30c
runs correspond to the identical initial data, but different outer boundaries. Note
that the simulation crashes at t ∼ 3930M . However, the source of the problem is
near the center of the simulation. Useful gravitational-wave data is still available
at larger radii. Thus, the inner boundary of the simulation is moved outwards at
roughly the speed of light. This allows us to “escort” the useful data to useful
extraction radii, as seen in simulations 30c-1 and 30c-2. (See Sec. 4.2.3.)
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Figure 4.3: Coordinate trajectories of the centers of the black holes

The small circles and ellipses show the apparent horizons at the initial time and
at the time when the simulation ends and wave escorting begins. The inset shows
an enlargement of the dashed box.
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Figure 4.4 demonstrates the convergence of the black hole mass M(t ) with

spatial resolution for run 30c-1. The mass M(t ) is computed as the sum of the

irreducible masses of both black holes, as defined in Eq. (4.2). At the highest

resolution, M(t ) deviates by only a few parts in 106 from its initial value of M .

Our apparent-horizon finder works by expanding the radius of the appar-

ent horizon as a series in spherical harmonics up to some order L. We utilize

the fast flow methods developed by Gundlach [154] to determine the expan-

sion coefficients; these are significantly faster than our earlier minimization algo-

rithms [28, 211]. The apparent horizon is almost spherical during the inspiral,

so that the expansion in L converges exceedingly fast: L = 8 results in a relative

error of the irreducible mass of better than 10−8. The distortion of the hori-

zons becomes more pronounced toward the end of the evolution when the black

holes approach each other rapidly. This results in an error of 10−6 in the L = 8

apparent-horizon expansion for the last 10M of the evolution.

We also measure the quasi-local spin using coordinate rotation vectors pro-

jected into the apparent-horizon surfaces [67, 11, 12]. Only the z component of

the spin is nonzero (i.e., the spins are aligned with the orbital angular momen-

tum). The spin starts at Sz/M 2
irr ≈ −6×10−5 and increases slowly to −5×10−4

during the evolution, where the negative sign indicates that the black-hole spin is

anti-aligned with the orbital angular momentum. Thus it appears the black holes’

spins move further from a corotational state. We believe this effect is caused by

the use of coordinate rotation vectors when calculating the quasi-local spin, rather

than more sophisticated approximate Killing vectors [128, 98, 205]. Preliminary

results with approximate Killing vectors find the initial spin to be less than 10−6,
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Figure 4.4: Deviation of total irreducible mass from its initial value

Plotted are the six different resolutions of run 30a-1.

and slowly increasing during the evolution to a final value of 2×10−5 at the end of

the comparison interval to post-Newtonian theory. Given the preliminary char-

acter of these results, we will take here the conservative bound |~S|/M 2
irr ≤ 5×10−4

obtained from coordinate rotation vectors.
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4.2.3 Escorting gravitational waves

The simulation presented in Fig. 4.3 ends when the horizons of the black holes

become too distorted just before merger. At this time, most of the domain (all

regions except for the immediate vicinity of the two holes) is still well resolved,

and the spacetime contains gravitational radiation that has not yet propagated

out to the large radii where we perform wave extraction. So instead of losing this

information, which consists of several gravitational-wave cycles, we evolve only

the outer portions of our grid beyond the time at which the code crashes in the

center, effectively “escorting” the radiation out to the extraction radii.

To do this, we first stop the evolution shortly before it crashes, and we in-

troduce a new spherical excision boundary that surrounds both black holes and

has a radius of roughly three times the black hole separation. This new excision

boundary moves radially outward at slightly faster than the speed of light so that

it is causally disconnected from the interior region where the code is crashing,

and so that no boundary conditions are required on this boundary. We then con-

tinue the evolution on the truncated spherical-shell domain that extends from

the new excision boundary to the outer boundary. To move both boundaries

appropriately, we employ a new radial coordinate mapping

r = A(t )r (r ′)+B(t ) , (4.10)

where r (r ′) is given by Eq. (4.9). The functions A(t ) and B(t ) are chosen to satisfy

three criteria. First, the inner boundary of the spherical shell moves outward

with coordinate speed of unity, which turns out to be slightly superluminal.

Second, the outer boundary location Rbdry(t ) has continuous first and second

time derivatives at the time we transition to the truncated domain. And finally,
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the outer boundary location Rbdry(t ) approaches some fixed value at late times.

Fig. 4.2 shows the motion of the inner and outer radii for evolutions 30c-1 and

30c-2 (we did not perform wave escorting for 30c-3). For 30c-1, wave escorting

extends the evolution for an additional time 220M beyond the point at which the

simulation stops in the center.

Figure 4.5 shows the gravitational waveform extracted at inertial-coordinate

radius R = 240M for the run 30c-1. The brown vertical line indicates the time

when wave escorting starts. Wave escorting allows us to extract another 4 cycles of

gravitational waves. When computing the gravitational-wave strain h(t ) from the

Newman–Penrose scalar Ψ4 (see Eq. (4.11) below), one must choose integration

constants during the time integration. These integration constants were chosen

such that h(t ) has zero average and first moment [209], which is is sufficiently

accurate for the illustrative Fig. 4.5. To avoid errors caused by the choice of

integration constants, the comparison to post-Newtonian waveforms below is

based entirely on Ψ4.

In the lower two panels of Fig. 4.5 there is a significant amount of noise near

the beginning of the run, at t < 250M . This noise is (barely) evident in the top

panel of Fig. 4.5 as well. The noise is a manifestation of “junk radiation”—a

pulse of radiation often seen at the beginning of numerical-relativity simulations,

caused by the initial data not being precisely a snapshot of an evolution that has

been running for a long time. Among the effects that produce junk radiation are

incorrect initial distortions of the individual holes, so that each hole radiates as

it relaxes to its correct quasi-equilibrium shape.
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Figure 4.5: Gravitational waveform extracted at r = 240M

From top panel to bottom: the real part of the (2,2) component of r MΨ4; the
gravitational-wave strain, obtained by two time integrals of ℜ[r MΨ4]; the fre-
quency of the gravitational wave, Eq. (4.15); the wavelength, λ = |2π/ω|. The
vertical brown line at t ≈ 3930M indicates the time when wave escorting starts.
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Figure 4.6: Normalized constraint violations of run 30c-1

This plot shows the L2 norm of all constraints, normalized by the L2 norm of
the spatial gradients of all dynamical fields. Norms are taken only in the regions
outside apparent horizons. The discontinuous jumps before t/M = 4000 represent
the time at which the innermost regions (which contain the largest constraint
violations) are excised. The resolutions N2 through N6 are convergent.
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Figure 4.7: Unnormalized constraint violations of run 30c-1

This plot shows the L2 norm of all constraints, with no normalization (compare
Fig. 4.6). Norms are taken only in the regions outside apparent horizons. The
discontinuous jumps before t/M = 4000 represent the time at which the inner-
most regions (which contain the largest constraint violations) are excised. The
resolutions N2 through N6 are convergent.
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Our evolution code does not explicitly enforce either the Einstein constraints

or the secondary constraints that arise from writing the system in first-order form.

Therefore, examining how well these constraints are satisfied provides a useful

consistency check. Figures 4.6 and 4.7 show the constraint violations for run 30c-

1. The first plot shows the L2 norm of all the constraint fields of our first-order

generalized-harmonic system, normalized by the L2 norm of the spatial gradients

of the dynamical fields (see Eq. (71) of Ref. [187]). The second plot shows the

same quantity, but without the normalization factor (i.e., just the numerator of

Eq. (71) of Ref. [187]). The L2 norms are taken over the entire computational

volume that lies outside of apparent horizons. At early times, t < 500M , the con-

straints converge rather slowly with resolution because the junk radiation contains

high frequencies. Convergence is more rapid during the smooth inspiral phase,

after the junk radiation has exited through the outer boundary. The constraints

increase around t ∼ 3900M as the code begins to fail near the two merging holes,

but then the constraints decrease again after the failing region is excised for wave

escorting. The normalized constraint violations are less than 10−4 until just be-

fore the peak (which occurs at t = 3930M for all but the lowest resolutions). The

size of the peak causes some concern that the waveforms at late times may be

contaminated by constraint violations to a non-negligible degree. However, near

the peak, the constraint violations are large only in the inner regions of the do-

main near the black holes. (Note that the curves in Figs. 4.6 and 4.7 decrease

by two orders of magnitude immediately after these inner regions are excised

at t = 3930M .) Because all constraint quantities propagate at the speed of light

or slower for the formulation of Einstein’s equations that we use, any influence
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that the constraint peak has on the extracted waveform occurs after the constraint

violations have had time to propagate out to the wave-extraction zone. This is

very late in the waveform, well after the gravitational-wave frequency reaches

Mω = −0.1, as can be seen from the right panel of the spacetime diagram in

Fig. 4.2.

4.2.4 Waveform extraction

Gravitational waves are extracted using the Newman–Penrose scalar Ψ4, using

the same procedure as in [209]. To summarize, given a spatial hypersurface with

timelike unit normal nµ, and given a spatial unit vector r µ in the direction of

wave propagation, the standard definition of Ψ4 is the following component of

the Weyl curvature tensor,

Ψ4 =−Cαµβν`
µ`νm̄αm̄β , (4.11)

where `µB 1p
2

(nµ− r µ), and mµ is a complex null vector (satisfying mµm̄µ = 1)

that is orthogonal to r µ and nµ. Here an overbar denotes complex conjugation.

For (perturbations of) flat spacetime, Ψ4 is typically evaluated on coordinate

spheres, and in this case the usual choices for nµ, r µ, and mµ are

nµ =
(
∂

∂t

)µ
, (4.12a)

r µ =
(
∂

∂r

)µ
, (4.12b)

mµ = 1p
2r

(
∂

∂ϑ
+ i

1

sinϑ

∂

∂ϕ

)µ
, (4.12c)

where (r ,ϑ,ϕ) denote the standard spherical coordinates. With this choice, Ψ4
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can be expanded in terms of spin-weighted spherical harmonics of weight −2:

Ψ4(t ,r ,ϑ,ϕ) = ∑
l ,m

Ψ
l ,m
4 (t ,r )−2Yl ,m(ϑ,ϕ) , (4.13)

where the Ψl ,m
4 are expansion coefficients defined by this equation.

For curved spacetime, there is considerable freedom in the choice of the vec-

tors r µ and mµ, and different researchers have made different choices [75, 138,

29, 199, 79, 81, 69] that are all equivalent in the r →∞ limit. We choose these

vectors by first picking an extraction two-surface E that is a coordinate sphere

(r 2 = x2+ y2+z2 using the global asymptotically Cartesian coordinates employed

in our code) centered on the center of mass of the binary system, i.e., the point

of symmetry. We choose r µ to be the outward-pointing spatial unit normal to

E (that is, we choose ri proportional to ∇i r and raise the index with the spatial

metric). Then we choose mµ according to Eq. (4.12c), using the standard spher-

ical coordinates ϑ and ϕ defined on these coordinate spheres. Finally we use

Eqs. (4.11) and (4.13) to define the Ψl ,m
4 coefficients.

Note that the mµ vector used here is not exactly null nor exactly of unit mag-

nitude at finite r . The resulting Ψl ,m
4 at finite r will disagree with the asymptotic

waveforms. Our definition does, however, agree with the standard definition

given in Eqs. (4.11)–(4.13) as r →∞. Because we extrapolate the extracted waves

to find the asymptotic radiation field (see Section 4.2.6), these effects should not

play a role in our PN comparisons; relative errors in Ψ
l ,m
4 introduced by using

the simple coordinate tetrad fall off like 1/r , and thus should vanish after ex-

trapolating to obtain the asymptotic behavior. While more careful treatment of

the extraction method—such as those discussed in [200, 207, 185]—may improve

the quality of extrapolation and would be interesting to explore in the future, the
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naive choice made here should be sufficient to ensure that the waveform after

extrapolation is correct to the accuracy needed for these simulations.

In this paper, we focus on the (l ,m) = (2,2) mode. Following common practice

(see, e.g. [20, 69]), we split the extracted waveform into a real phase φ and a real

amplitude A, defined by

Ψ
2,2
4 (r , t ) = A(r , t )eiφ(r ,t ) . (4.14)

The gravitational-wave frequency is defined as

ωB
dφ

dt
. (4.15)

Note that these definitions (along with the definition of Ψ4) result in decreasing

phase and negative frequencies when the binary rotates in the usual sense, with

orbital angular momentum in the positive z direction. Equation (4.14) defines

φ only up to additive multiples of 2π. These multiples of 2π are chosen to

make φ continuous through each evolution, still leaving an overall multiple of

2π undetermined. We will consider only phase differences in this paper, so the

choice of this overall phase offset is irrelevant.

4.2.5 Convergence of extracted waveforms

In this section we examine the convergence of the gravitational waveforms ex-

tracted at fixed radius, without extrapolation to infinity. This allows us to study

the behavior of our code without the complications of extrapolation. The ex-

trapolation process and the resulting extrapolated waveforms are discussed in

Sec. 4.2.6.
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Figure 4.8 shows the convergence of the gravitational-wave phase φ with nu-

merical resolution for the run 30c-1. For this plot, the waveform is extracted at

a fixed radius R = 77M . Each line shows the difference between φ computed

at some particular resolution and φ computed from our highest-resolution run

30c-1/N6. When subtracting results at different resolutions, no time or phase

adjustment has been performed. The difference in φ between the two highest-

resolution runs is smaller than 0.03 radians throughout the run, and it is smaller

than 0.02 radians between t = 1000M and the point at which Mω=−0.1.

At times before 1000M , the phase convergence of our simulation is limited to

about 0.05 radians because of effects of junk radiation (described at the end of Sec-

tion 4.2.3). The sharp pulse of junk radiation has comparatively large numerical-

truncation error, and excites all characteristic modes at the level of truncation

error, including waves that propagate back toward the origin. Generation of

these secondary waves stops when the pulse of junk radiation leaves through the

outer boundary (i.e., after one light-crossing time). Because we use the improved

outer boundary conditions of Rinne et al. [225], there are no significant reflections

when the junk radiation passes through the outer boundary. However, the waves

produced before the junk radiation leaves remain in the computational domain

for two additional light-crossing times, until they eventually leave through the

outer boundary.

Figure 4.9 shows phase comparisons between different waveforms after we

perform a time shift and phase shift so that the waveforms agree at Mω=−0.1.

Our procedure for time shifting and phase shifting is the same as the shifting
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Figure 4.8: Convergence of the gravitational-wave phase without time shifting

Data is extracted (not extrapolated) at the radius R = 77M . All lines show dif-
ferences with respect to our highest resolution run, 30c-1/N6. No time or phase
shifts have been performed.
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Figure 4.9: Convergence of the gravitational-wave phase with time shifting

Data is extracted (not extrapolated) at the radius R = 77M . All lines show differ-
ences with respect to our highest-resolution run, 30c-1/N6. The various simula-
tions have been aligned at Mω=−0.1 by a time and phase shift. The thin vertical
line indicates the time at which Mω=−0.1 for 30c-1/N6. (Compare Fig. 4.8, for
which no shifts have been applied.)
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procedure we use to compare NR with PN waveforms (see Sec. 5.6.1), so that the

error estimates we extract from Fig. 4.9 are relevant for our PN–NR comparison.

There are three different types of comparisons shown in Fig. 4.9: phase differ-

ences between runs with the same initial data but with different outer boundary

locations, phase differences between runs with different initial data, and phase

differences between different numerical resolutions of the same run (this last

comparison is the same as that shown in the previous figure, except in the latter

figure, the waveforms are shifted in time and phase). We will discuss all three

of these in turn.

First, we compare the phase difference of 30c-1/N6 with runs that have dif-

ferent outer boundary locations. Run 30c-2 (with more distant outer boundary)

agrees to within 0.002 radians with run 30c-1, but run 30c-3 (with closer outer

boundary), has a much larger phase difference compared to 30c-1. We believe

that this is because run 30c-3 has a very small ratio of outer-boundary location

to gravitational wavelength; R/λ is about 1.1 for the first two-thirds of the run,

and remains less than 2 for the entire run.

We can explain the order of magnitude of these phase differences using the

analysis of Buchman and Sarbach [70]. Our outer-boundary conditions are not

perfectly absorbing, but instead they reflect some fraction of the outgoing radi-

ation.6 The ratio of the amplitude of curvature perturbations (i.e., Ψ4) of the

reflected wave to that of the outgoing wave is

q ≈ 3

2(2π)4

(
λ

R

)4

. (4.16)

6Note that, in a comparison of various boundary conditions [225], the boundary conditions
used for this data produced smaller reflections than other boundary conditions commonly used
in numerical relativity.
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The incoming reflected waves grow like 1/r as they travel inward just like the

outgoing waves decrease by 1/r as they propagate outward. Therefore, the ratio

of amplitudes of incoming and outgoing waves will have approximately the same

value, q , at smaller radii, and we assume for the sake of this rough argument

that this ratio remains equal to q even in the vicinity of the black holes (where it

is no longer technically meaningful to talk about “radiation”). Now consider the

second time derivative of the gravitational-wave phase, φ̈. This is nonzero only

because of gravitational-wave emission, so φ̈ is proportional to some power of

the outgoing wave amplitude. To get the correct power, we can use Eq. (4.48) to

find ẋ ∼ x5, so Eq. (4.39) yields −φ̈∼ x11/2 (we assume gravitational-wave phase

is twice the orbital phase). The amplitude of Ψ4 scales like x4, so −φ̈ ∼ A11/8.

Let us assume for the sake of this rough error estimate that the change in φ̈

due to the ingoing reflected wave scales similarly with amplitude, −φ̈ ∼ Ā11/8,

where Ā = q A is the amplitude of the reflected ingoing wave. Therefore the

unphysical gravitational-wave force acting back on the system due to boundary

reflections will cause fractional errors in the second derivative of the phase of

about q11/8. That is, the magnitude of the error δφ caused by the improper

boundary condition will be given by

d2δφ

dt 2
= q11/8 d2φ

dt 2
. (4.17)

Integrating this yields δφ= q11/8φ, where φ is the total gravitational-wave phase

accumulated during the evolution. For 30c-3, λ/R ∼ 0.9, so q ∼ 6×10−4, which

yields δφ ∼ 0.08 radians for an accumulated gravitational-wave phase of about

200 radians. This rough estimate agrees in order of magnitude with the phase

difference between 30c-3 and 30c-1 as shown in Fig. 4.9. The run 30c-1 has an
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outer boundary about 2.5 farther away, reducing the reflection coefficient by a

factor 2.54 ≈ 40, so for 30c-1 this estimate of the phase error gives δφ = 5 ×
10−4 radians. Therefore, we expect reflection of the outgoing radiation at the

outer boundary to be insignificant for 30c-1. This is confirmed by the excellent

agreement between runs 30c-1 and 30c-2 (the latter having even larger outer

boundary).

The second comparison shown in Fig. 4.9 is the phase difference between 30c-

1/N6 and 24b-1/N4, a shorter 8-orbit evolution started from a separate initial-

data set (set 24b in Table 4.1) with a separate eccentricity-reduction procedure.

The phase agreement between these two runs (including an overall time shift and

phase shift) is better than 0.01 radians for a total accumulated phase of ∼ 100

radians of the 8-orbit run, i.e., better than one part in 104. Run 24b-1 has a similar

outer-boundary location as run 30c-3, and indeed both of these runs show similar

phase differences from 30c-1.

Finally, the third comparison shown in Fig. 4.9 is the phase difference between

the two highest resolutions of the run 30c-1 when a time shift is applied. For

t à 1000M the agreement is much better than without the time shift (see upper

panel), indicating that the dominant error is a small difference in the overall evo-

lution time. For the post-Newtonian comparisons we perform in the second part

of this paper, waveforms are always aligned at specific frequencies by applying

time and phase shifts. Therefore, the time-shifted phase difference as displayed

in the lower panel is the most appropriate measure of numerical-truncation er-

ror for these PN comparisons. This difference is less than 0.003 radians after

t = 1000M but is larger, about 0.02 radians, at early times where the waveforms
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Figure 4.10: Convergence of the gravitational-wave amplitude

Data is extracted (not extrapolated) at the radius R = 77M . All lines show differ-
ences with respect to our highest-resolution run, 30c-1/N6. This plot corresponds
to Fig. 4.8, except that relative amplitude differences are shown.

are noisy because of junk radiation.

We also compare the gravitational-wave amplitudes of different runs in the

same manner as we compared the gravitational-wave phases. Figures 4.10 and 4.11

present convergence data for the amplitude of the gravitational waves for the same
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Figure 4.11: Convergence of the gravitational-wave amplitude

All lines show differences with respect to our highest-resolution run, 30c-1/N6.
Data is extracted (not extrapolated) at the radius R = 77M . This plot corresponds
to Fig. 4.9, except that relative amplitude differences are shown. The thin vertical
line indicates the time at which Mω=−0.1 for 30c-1/N6.
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runs as shown in Figs. 4.8 and 4.9. Spatial-truncation error for the amplitude is

less than 0.1 percent for t/M > 1000, and earlier than this it is limited by residual

noise from the junk radiation. Differences (including time shifts) between runs

of different lengths are shown in Fig. 4.10. These differences are even smaller,

but because of their small size, they are dominated by noise for about the first

half of the run. The oscillations apparent in the comparison to 24b-1 are caused

by the larger orbital eccentricity of 24b-1 (see Table 4.1).

4.2.6 Extrapolation to infinity

The quantity of interest to gravitational-wave detectors is the gravitational wave-

form as seen by an observer effectively infinitely far from the source. Our nu-

merical simulations, in contrast, cover only a region of finite volume around the

source, and our numerical waveforms are extracted at a finite radius. Waveforms

extracted at a finite radius can differ from those extracted at infinity because of

effects discussed in Sec. 4.2.4; these effects can lead to phase errors of several

tenths of a radian and relative amplitude errors of several percent. To avoid such

errors we extrapolate to infinite extraction radius as follows:

We extract data for Ψ4 on coordinate spheres of coordinate radii r /M =
75,80,85, . . . ,240, as described in Sec. 4.2.4. These extracted waveforms are shifted

in time relative to one another because of the finite light-travel time between these

extraction surfaces. We correct for this by shifting each waveform by the tortoise-

coordinate radius at that extraction point [138]

r ∗ = rareal+2MADM ln

(
rareal

2MADM
−1

)
. (4.18)
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Figure 4.12: Difference between areal radius rareal and coordinate radius r of
selected extraction surfaces

The areal radius rareal remains constant to within 0.01M during the evolution.
The horizontal dashed line indicates MADM/M of the initial data. (Note that data
for r = 400M ends early because of infall of the outer boundary, as explained
below.)
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Here MADM is the ADM mass of the initial data, and rareal =
p

A/4π, where A

is the area of the extraction sphere. This is not the only possible choice for the

retarded time. For example, the waveforms could be shifted so that the maxima

of the amplitude align [157]. It has also been suggested [182] that the time shift

should change with the amount of radiated energy—essentially, that the factor

of MADM should be replaced by the amount of mass interior to the extraction

radius at each time. We leave investigation of other choices of retarded time for

future work.

Figure 4.12 presents the areal radius during the evolution at several typical

extraction radii. The areal radius of these extraction surfaces is constant to within

about 0.01M , and to the same precision, rareal = r +MADM. This relationship is

not surprising, because the initial data is conformally flat, so that for coordinate

spheres rareal = r +MADM+O (MADM/r ). For convenience, we simply set rareal =
r +MADM in Eq. (4.18), rather than explicitly integrating to find the area of each

extraction sphere.

After the time shift, each waveform is a function of retarded time, t −r ∗. At a

given value of retarded time, we have a series of data points—one for each extrac-

tion radius. We fit phase and amplitude of these data separately to a polynomial

in 1/r :

φ(t − r ∗,r ) =φ(0)(t − r ∗)+
N∑

k=1

φ(k)(t − r ∗)

r k
, (4.19)

r A(t − r ∗,r ) = A(0)(t − r ∗)+
N∑

k=1

A(k)(t − r ∗)

r k
. (4.20)

The leading-order term of each polynomial, as a function of retarded time, is then
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Figure 4.13: Convergence of phase extrapolation with extrapolating-polynomial
order

Plotted are absolute differences between extrapolation with order N and N +1.
Increasing the order of the polynomial increases accuracy, but also amplifies noise.
See Eq. (4.19) and surrounding text for discussion.
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the desired asymptotic waveform:

φ(t − r ∗) =φ(0)(t − r ∗) , (4.21)

r A(t − r ∗) = A(0)(t − r ∗) . (4.22)

We find good convergence of this method as we increase the order N of the

extrapolating polynomial. Figure 4.13 shows the difference in phase between

waveforms extrapolated using successively higher-order polynomials. We see a

broad improvement in the accuracy of the phase with increasing order, but un-

fortunately, higher-order extrapolations tend to amplify the noise. Our preferred

choice is N = 3 extrapolation, resulting in extrapolation errors of ß 0.003 radians

for t − r ∗ à 1000M .

Figure 4.14 is analogous to Fig. 4.13, except that it shows relative differences in

the extrapolated amplitudes. The basic picture agrees with the phase extrapola-

tion: Higher order extrapolation reduces the errors, but amplifies noise. Our pre-

ferred choice N = 3 gives a relative amplitude error of ß 0.002 for t−r ∗ à 1000M ,

dropping to less than 0.001 for t − r ∗ à 2000M .

Phase and amplitude extrapolation become increasingly accurate at late times.

The main obstacle to accuracy seems to be near-zone effects scaling with powers

of (λ/r ), where λ is the wavelength of the gravitational wave. The wavelength

is quite large at the beginning of the simulation (λ ≈ 180M , see Fig. 4.5), but

becomes shorter during the evolution, so that even low-order extrapolation is

quite accurate at late times. Alternatively, near-zone effects can be mitigated by

using data extracted at large values of r . It is precisely because of these near-

zone effects that we have chosen to ignore data extracted at r < 75M when we
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Figure 4.15: Effect of choice of wave-extraction radii on extrapolated phase

Each curve represents the difference from our preferred wave extrapolation using
r ∈ [75M ,240M ]. The three solid curves represent extrapolation from different
intervals of extraction radii. The curves labeled 240M and 90M represent differ-
ences from waves extracted at these two radii, without any extrapolation, for two
cases: time and phase shifted so that φ and φ̇ match at Mω=−0.1 (dashed), and
without these shifts (dotted).

extrapolate to infinity.

In Figs. 4.15 and 4.16, we show the effects of extrapolation using differ-

ent ranges of extracted data. Using data extracted every 5M in the range r =



4.2. Generation of numerical waveforms 157

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

δ
A

/A

0 1000 2000 3000 4000
(t − r∗)/M

[50M ,90M ]

[75M ,150M ]

[150M ,240M ]

90M

240M

Figure 4.16: Effect of choice of wave-extraction radii on extrapolated amplitude

Each curve represents the (relative) amplitude difference to our preferred wave
extrapolation using r ∈ [75M ,240M ]. The three solid curves represent extrapo-
lation from different intervals of extraction radii. The curves labeled 240M and
90M represent differences from waves extracted at these two radii, without any
extrapolation, for two cases: time and phase shifted so that φ and φ̇ match at
Mω=−0.1 (dashed), and without these shifts (dotted).
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50M–90M results in noticeable differences early in the run—though it is adequate

later in the run. For ranges at higher radii (e.g., [75M ,150M ] or [150M ,240M ]),

the accuracy is not highly variable, though we find that noise is increased when

using data from such a smaller range of extraction radii.

To estimate the errors generated by not extrapolating waveforms to infinity at

all, Fig. 4.15 contains also the phase difference between wave extraction at two

finite radii (90M and 240M ) and our preferred extrapolated phase at infinity. The

dotted lines show such phase differences when only a time shift by the tortoise-

coordinate radius of the extraction sphere is applied. The errors are dramatic,

tenths of radians or more, even very late in the run. When matching to post-

Newtonian waveforms, we are free to add an overall time and phase shift (see

Sec. 5.6.1). Therefore, the dashed lines in Fig. 4.15 show phase differences with

the same unextrapolated waveforms as shown by the dotted lines, except that a

phase and time shift has been applied so that the φ and φ̇ agree with those of the

extrapolated waveform late in the run (where Mω=−0.1), where the wavelengths

are shortest and wave extraction is expected to work best. Even with such an

adjustment, the gravitational-wave phase extracted at r = 90M differs by about

0.1 radian at t ∼ 1000M before coalescence, with this difference growing to 0.3

radians at the start of our simulation.

Figure 4.16 makes the same comparison for the gravitational-wave amplitude.

Wave extraction at r = 90M results in relative amplitude errors of up to 8 percent,

and of about 2 percent even in the last 1000M of our simulation. We also point

out that the errors due to finite extraction radius decay approximately as the

inverse of the extraction radius: For waves extracted at r = 240M the errors are
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smaller than for waves extracted at r = 90M by about a factor of three, as can

be seen in Figs. 4.15 and 4.16; for wave extraction at r = 45M , the errors would

be approximately twice as large as the r = 90M case. The errors introduced by

using a finite extraction radius are significantly larger than our truncation error

(even at extraction radius 240M ). Therefore extrapolation to infinity is essential

to realize the full accuracy of our simulations.

4.2.7 Estimated time of merger

Since we have not yet been successful with simulating the merger, we do not

precisely know when merger occurs. However, by comparing the orbital and

gravitational-wave frequencies to already published results, we can nevertheless

estimate the time of merger.

The simulation presented in Fig. 4.3 stops at time t = 3929M when the hori-

zons of the black holes become too distorted just before merger. At that point, the

proper separation between the horizons is ∼ 4.0M , and the orbital frequency has

reached Mωorbit = 0.125; comparison with [75] suggests this is about 15M before

formation of a common apparent horizon, i.e., the common horizon should form

in our simulations at tCAH ≈ 3945M .

The waveform extrapolated to infinity ends at t−r ∗ = 3897M at a gravitational-

wave frequency of Mω ≈ −0.16. This places the end of the waveform at about

50M (or ∼ 1.5 cycles) before formation of a common apparent horizon7 (judged

by comparison with [75]). Thus, we estimate the formation of a common horizon

7The waveform ends somewhat further from merger than the orbital trajectory, because the
artificial boundary is placed initially at a radius ∼ 15M , and then moves outward somewhat faster
than the speed of light, thus overtaking the very last part of the waveform as it travels to the
wave-extraction radii.
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to correspond to a retarded time of approximately (t − r ∗)CAH ≈ 3950M .

4.3 Generation of post-Newtonian waveforms

It is not our intention to review all of post-Newtonian (PN) theory, but to sum-

marize the important points that go into the construction of the post-Newtonian

waveforms that we will compare to our numerical simulation. For a complete

review of post-Newtonian methods applied to inspiralling compact binaries, see

the review article by Blanchet [42].

The post-Newtonian approximation is a slow-motion, weak-field approxima-

tion to general relativity with an expansion parameter ε ∼ (v/c)2 ∼ (GM/dc2).

For a binary system of two point masses M1 and M2, v is the magnitude of the

relative velocity, M is the total mass, and r is the separation. In order to produce

a post-Newtonian waveform, it is necessary to solve both the post-Newtonian

equations of motion describing the binary, and the post-Newtonian equations

describing the generation of gravitational waves.

Solving the equations of motion yields explicit expressions for the acceler-

ations of each body in terms of the positions and velocities of the two bod-

ies [174, 175, 117, 119, 48, 49, 118, 46, 171, 170, 169]. The two-body equations of

motion can then be reduced to relative equations of motion in the center-of-mass

frame in terms of the relative position and velocity [52]. The relative acceleration

is currently known through 3.5PN order, where 0PN order for the equations of

motion corresponds to Newtonian gravity. The effects of radiation reaction (due

to the emission of gravitational waves) enters the relative acceleration starting at

2.5PN order. The relativistic corrections to the relative acceleration at 1PN, 2PN,
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and 3PN order (ignoring the radiation reaction terms at 2.5PN and 3.5PN order)

admit a conserved center of mass binding energy through 3PN order [125]. There

is no 2.5PN or 3.5PN order contribution to the energy.

Solving the post-Newtonian wave generation problem yields expressions for

the gravitational waveform hi j and gravitational-wave flux L in terms of radia-

tive multipole moments [242]. These radiative multipole moments are in turn

related to the source multipole moments, which can be given in terms of the rel-

ative position and relative velocity of the binary [39]. For the gravitational-wave

generation problem, PN orders are named with respect to the leading order wave-

form and flux, which are given by the quadrupole formalism. Thus, for example,

1.5PN order in the wave-generation problem represents terms of order (v/c)3

beyond quadrupole. Higher order effects enter both through post-Newtonian

corrections to the mass quadrupole, as well as effects due to higher multipole

moments. Starting at 1.5PN order the radiative multipole moments include non-

linear and noninstantaneous (i.e., they depend upon the past history of the bi-

nary) interactions among the source multipole moments (e.g., gravitational-wave

tails) [39, 45, 40, 38].

It was recognized early that simply plugging in the orbital evolution predicted

by the equations of motion into the expressions for the waveform would not gen-

erate templates accurate enough for matched filtering in detecting gravitational

waves [99]. This is because radiation reaction enters the equations of motion

only at the 2.5PN order; hence computing a waveform to kPN order beyond the

quadrupole formalism would require (2.5+k)PN orders in the equations of mo-

tion. In order to obtain as accurate a post-Newtonian waveform as possible it is
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thus necessary to introduce the assumption of an adiabatic inspiral of a quasi-

circular orbit, as well as the assumption of energy balance between the orbital

binding energy and the energy emitted by the gravitational waves.

4.3.1 Adiabatic inspiral of quasi-circular orbits

The emission of gravitational radiation causes the orbits of an isolated binary

system to circularize [208]. Thus it is a reasonable assumption to model the

orbital evolution of the binary as a slow adiabatic inspiral of a quasi-circular

orbit. With this assumption, post-Newtonian expressions for the orbital energy

E and gravitational energy flux L are currently known through 3.5PN order [54,

50, 47, 53, 51]. These expressions can be given in terms of a parameter related to

either the harmonic coordinate separation r , or to the orbital frequency Ω. We

choose to use the expressions given in terms of a frequency-related parameter

xB

(
G MΩ

c3

)2/3

, (4.23)

rather than a coordinate-related parameter, because the coordinate relationship

between the numerical simulation and the harmonic coordinates used in post-

Newtonian approximations is unknown. The orbital energy for an equal-mass

system is given by [42]

E =−M c2

8
x

[
1− 37

48
x − 1069

384
x2 +

(
1427365

331776
− 205

384
π2

)
x3

]
, (4.24)
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and the gravitational-wave flux for an equal-mass system is given by [42]

L = 2c5

5G
x5

{
1− 373

84
x +4πx3/2 − 59

567
x2 − 767

42
πx5/2

+
[

18608019757

209563200
+ 355

64
π2 − 1712

105
γ− 856

105
ln(16x)

]
x3 + 16655

6048
πx7/2

}
,

(4.25)

where γ= 0.577216. . . is Euler’s constant.

4.3.2 Polarization Waveforms

The gravitational polarization waveforms for a quasi-circular orbit in the x–y

plane, as measured by an observer at spherical coordinates (R,ϑ,ϕ), are given by

h+ = 2Gµ

c2R
x

{−(1+cosϑ)cos2(Φ−ϕ)+·· ·} (4.26)

h× = 2Gµ

c2R
x

{−2cosϑsin2(Φ−ϕ)+·· ·} , (4.27)

where Φ is the orbital phase (measured from the x axis) and µ= M1M2/M is the

reduced mass. The polarization waveforms are currently known through 2.5PN

order [10, 179].

Optimally oriented observer

For an equal-mass binary the polarization waveforms along the z axis (i.e., the

optimally oriented observer along the normal to the orbital plane) are given
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by [10, 179]

h(z)
+ = G M

2c2R
x

(
cos2Φ

{
−2+ 17

4
x −4πx3/2 + 15917

2880
x2 +9πx5/2

}
+sin2Φ

{
−12ln

(
x

x0

)
x3/2 +

[
59

5
+27ln

(
x

x0

)]
x5/2

})
, (4.28)

h(z)
× = G M

2c2R
x

(
sin2Φ

{
−2+ 17

4
x −4πx3/2 + 15917

2880
x2 +9πx5/2

}
+cos2Φ

{
12ln

(
x

x0

)
x3/2 −

[
59

5
+27ln

(
x

x0

)]
x5/2

})
, (4.29)

where

ln x0B
11

18
− 2

3
γ+ 2

3
ln

(
G M

4bc3

)
(4.30)

is a constant frequency scale that depends upon the constant time scale b entering

the gravitational-wave tail contribution to the polarization waveforms [251, 56].

The freely-specifiable constant b corresponds to a choice of the origin of radiative

time T with respect to harmonic time t , and enters the relation between the

retarded time TR = T −R/c in radiative coordinates (the coordinates in which the

waveform is given) and the retarded time t − r /c in harmonic coordinates (the

coordinates in which the equations of motion are given) [251, 56]:

TR = t − r

c
− 2GMADM

c3
ln

( r

bc

)
. (4.31)

Here MADM is the ADM mass (mass monopole) of the binary system.

The (2,2) mode

When comparing a post-Newtonian waveformwith data from a physical gravitational-

wave detector, it is necessary to compare waves emitted in a certain direction

(ϑ,ϕ) with respect to the source. However, comparing waveforms between PN
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and numerical simulations can be done in all directions simultaneously by de-

composing the waveforms in terms of spherical harmonics and then comparing

different spherical harmonic modes. Since the power in each spherical harmonic

mode decreases rapidly with spherical harmonic index, with the (2,2) mode dom-

inating (for an equal-mass nonspinning binary), it is possible to do a very accurate

comparison that is valid for all angles by using only a few modes. In addition, as

pointed out by Kidder [178], the dominant (2,2) mode can be computed to 3PN

order. For an equal-mass binary, the (2,2) mode is

h(2,2) =−2

√
π

5

G M

c2R
e−2iΦx

6∑
k=0

Hk xk/2 , (4.32a)

where the coefficients are given by

H0 =1 , (4.32b)

H1 =0 , (4.32c)

H2 =− 373

168
, (4.32d)

H3 =
[

2π+6i ln

(
x

x0

)]
, (4.32e)

H4 =− 62653

24192
, (4.32f)

H5 =−
[

197

42
π+ 197i

14
ln

(
x

x0

)
+6i

]
, (4.32g)

H6 =
{

43876092677

1117670400
+ 99

128
π2 − 428

105
ln x − 856

105
γ

− 1712

105
ln2−18

[
ln

(
x

x0

)]2

+ 428

105
iπ+12iπ ln

(
x

x0

)}
. (4.32h)

Since the (2,2) mode of the numerical waveforms is less noisy than the wave-

form measured along the z axis, and since we have access to the 3PN amplitude

correction of the (2,2) mode, we will use the (2,2) waveforms rather than the
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z-axis waveforms for our comparisons between NR and PN in Sec. 4.6. We have

verified (for all comparisons using post-Newtonian waveforms of ≤ 2.5PN order

in amplitude) that our results do not change significantly when we use z-axis

waveforms instead of (2,2) waveforms.

4.3.3 Absorbing amplitude terms into a redefinition of the

phase

The logarithms of the orbital frequency parameter x (as well as the constant fre-

quency scale x0) that appear in the amplitude expressions (4.28), (4.29), and (4.32)

can be absorbed into a redefinition of the phase by introducing an auxiliary phase

variable Ψ = Φ+δ. Noting that the ln x terms first enter at 1.5 PN order, it is

straightforward to show that choosing [36, 10, 178]

δ=−3
MADM

M
x3/2 ln

(
x

x0

)
, (4.33)

where MADM/M = 1− x/8+O (x2) for an equal-mass system, will eliminate the

ln x terms from both the (2,2) mode as well as for the polarization waveforms.

This follows from

h(2,2) = Ae−2iΨ (4.34)

= Ae−2iΦe−2iδ (4.35)

= Ae−2iΦ(1−2iδ−2δ2 +O (x9/2)) , (4.36)

and similarly for the polarization waveforms. Furthermore, since the orbital phase

as a function of frequency goes as x−5/2 at leading order (see Eq. (4.43a) below),

the ln x terms, which were 1.5PN, 2.5PN, and 3PN order in the original amplitude
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expressions, now appear as phase corrections at relative order 4PN, 5PN, and

5.5PN. As these terms are beyond the order to which the orbital phase evolution

is known (3.5PN order), it can be argued that these terms can be ignored. Note

that the choices of x0 in Eq. (4.30) and δ in Eq. (4.33) are not unique; they were

made to gather all logarithmic terms into one term, as well as to simplify the

waveform [36].

4.3.4 Energy balance

The second assumption that goes into making a post-Newtonian waveform as

accurate as possible is that of energy balance. It is assumed that the energy

carried away by the emission of gravitational waves is balanced by the change in

the orbital binding energy of the binary,

dE

dt
=−L . (4.37)

While this is extremely plausible, it has only been confirmed through 1.5 PN

order [37].

Given the above expressions for the energy, flux, and waveform amplitude,

there is still a set of choices that must be made in order to produce a post-

Newtonian waveform that can be compared to our numerical waveform. These

include

1. The PN order through which terms in the orbital energy and luminosity

are retained.

2. The procedure by which the energy balance equation is used to obtain x(t )

and Φ(t ).
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3. The PN order through which terms in the waveform amplitude are kept.

4. The treatment of the ln x terms. These terms can be included in the ampli-

tude or included in the orbital phase via the auxiliary phase ΨBΦ+δ. If
the latter is chosen, these terms can be retained or ignored; ignoring them

can be justified because they occur at higher order than all known terms in

the orbital phase.

We always expand energy and luminosity to the same order, which may be

different from the order of the amplitude expansion; both of these expansion

orders are indicated explicitly in each of our comparisons. We ignore the ln(x/x0)

terms in the amplitude by absorbing them into the phase and dropping them

because of their high PN order. In the next section we describe several choices

for obtaining x(t ) and Φ(t ) from the energy balance equation.

4.3.5 Taylor approximants: Computing Φ(t )

In this section we describe how to obtain the orbital phase as a function of time,

Φ(t ), using the energy balance equation (4.37). Different methods of doing this

exist; here we follow the naming convention of [108]. These methods, and varia-

tions of them, are called Taylor approximants, and all formally agree to a given

PN order but differ in how higher-order terms are truncated. We discuss four

time-domain approximants here, but more can be defined.
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TaylorT1

The TaylorT1 approximant is obtained by numerically integrating the ODEs

dx

dt
=− L

(dE/dx)
, (4.38)

dΦ

dt
= c3

G M
x3/2 , (4.39)

to produce Φ(t ). The fraction on the right side of Eq (4.38) is retained as a ratio

of post-Newtonian expansions, and is not expanded further before numerical

integration. This is the approximant used in the NR–PN comparisons in [157,

206].

TaylorT2

The TaylorT2 approximant is obtained by starting with the parametric solution

of the energy balance equation:

t (x) = t0 +
∫ x0

x
dx

(dE/dx)

L
(4.40)

Φ(x) =Φ0 +
∫ x0

x
dx

x3/2c3

G M

(dE/dx)

L
. (4.41)

The integrand of each expression is re-expanded as a single post-Newtonian ex-

pansion in x and truncated at the appropriate PN-order; these integrals are then

evaluated analytically to obtain for an equal-mass binary [108, 110]. The time is

given by

t = t0 − 5GM

64c3
x−4

7∑
k=0

Tk xk/2 , (4.42a)
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where the coefficients Tk are

T0 =1 , (4.42b)

T1 =0 , (4.42c)

T2 =487

126
, (4.42d)

T3 =− 32

5
π , (4.42e)

T4 =2349439

254016
, (4.42f)

T5 =− 1864

63
π , (4.42g)

T6 =
[
−999777207379

5867769600
+ 1597

48
π2 + 6848

105
γ+ 3424

105
ln(16x)

]
, (4.42h)

T7 =− 571496

3969
π . (4.42i)

The orbital phase may be expressed as

Φ=Φ0 − 1

8
x−5/2

7∑
k=0

Fk xk/2 , (4.43a)

with coefficients Fk given by

F0 =1 , (4.43b)

F1 =0 , (4.43c)

F2 =2435

504
, (4.43d)

F3 =−10π , (4.43e)

F4 =11747195

508032
, (4.43f)

F5 =1165

42
π ln x , (4.43g)

F6 =
[

1573812724819

4694215680
− 7985

192
π2 − 1712

21
γ− 856

21
ln(16x)

]
, (4.43h)

F7 =357185

7938
π . (4.43i)
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TaylorT3

The TaylorT3 approximant is closely related to TaylorT2. It is obtained by intro-

ducing the dimensionless time variable

τB
νc3

5G M
(t0 − t ) , (4.44)

where ν= M1M2/M 2 and τ−1/4 =O (ε). The TaylorT2 expression t (x) is inverted

to obtain x(τ), and truncated at the desired PN order. Then x(τ) is integrated to

obtain

Φ(τ) =Φ0 −
∫ τ

τ0

dτ
5x3/2

ν
. (4.45)

This procedure yields for an equal-mass binary [42]:

x = 1

4
τ−1/4

{
1+ 487

2016
τ−1/4 − 1

5
πτ−3/8

+ 1875101

16257024
τ−1/2 − 1391

6720
πτ−5/8

+
[
− 999777207379

1502149017600
+ 1597

12288
π2 + 107

420
γ

− 107

3360
ln

( τ

256

)]
τ−3/4 − 88451

282240
πτ−7/8

}
(4.46)

Φ=Φ0 −4τ5/8
{

1+ 2435

4032
τ−1/4 − 3

4
πτ−3/8

+ 1760225

1806336
τ−1/2 − 1165

5376
πτ−5/8 lnτ

+
[

24523613019127

3605157642240
− 42997

40960
π2 − 107

56
γ

+ 107

448
ln

( τ

256

)]
τ−3/4 + 28325105

21676032
πτ−7/8

}
. (4.47)

This is the post-Newtonian approximant used in visual comparisons by [75]

and in the PN–NR comparisons in [157] at 3PN order in phase.
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TaylorT4

In addition to simply numerically integrating the flux-energy equation (4.38), as

is done for TaylorT1, one may instead re-expand the right side of (4.38) as a single

series and truncate at the appropriate PN order before doing the integration. The

phase evolution Φ(t ) can thus be obtained by numerically integrating the ODEs

dx

dt
= 16c3

5G M
x5

{
1− 487

168
x +4πx3/2 + 274229

72576
x2 − 254

21
πx5/2

+
[

178384023737

3353011200
+ 1475

192
π2 − 1712

105
γ− 856

105
ln(16x)

]
x3

+3310

189
πx7/2

}
, (4.48)

dΦ

dt
= x3/2c3

G M
. (4.49)

This approximant was not considered in [108], however for consistency with their

notation, we call it TaylorT4. TaylorT4 is the primary approximant used in the

PN–NR comparisons in [24, 23], and one of the several approximants considered

in the PN–NR comparisons in [206]. Reference [75] pointed out that TaylorT4 at

3.5PN order in phase is close to TaylorT3 at 3PN order in phase, and therefore

should give similar agreement with numerical results.

4.4 PN–NR Comparison Procedure

4.4.1 What to compare?

There are many ways to compare numerical relativity and post-Newtonian results.

For example, the post-Newtonian orbital phase Φ(t ) could be compared with the

coordinate phase of the black hole trajectories. However, this and many other
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comparisons are difficult to make in a coordinate-independent manner without

expending significant effort to understand the relationship between the gauge

choices used in post-Newtonian theory and in the NR simulations. Therefore, in

order to obtain the most meaningful comparison possible, we attempt to minimize

gauge effects by comparing gravitational waveforms as seen by an observer at in-

finity. The waveform quantity most easily obtained from the numerical relativity

code is the Newman–Penrose quantity Ψ4, and we will compare its (2,2) compo-

nent (see Eq. (4.13)), split into phase φ and amplitude A according to Eq. (4.14)

and extrapolated to infinite extraction radius.

The post-Newtonian formulas in Sec. 4.3 yield the metric perturbation com-

ponents h+ and h×, which—for a gravitational wave at infinity—are related to

Ψ4 by

Ψ4(t ) = ∂2

∂t 2
(h+(t )− ih×(t )) . (4.50)

We numerically differentiate the post-Newtonian expressions for h+(t ) and h×(t )

twice before computing amplitude and phase using Eq. (4.14). Note that φ(t ) will

differ slightly from the phase computed from the metric perturbation directly, as

tan−1(h×/h+), because both the amplitude and phase of the metric perturbation

are time dependent. For the same reason, φ(t ) is not precisely equal to twice the

orbital phase.

As in Ref. [157], we compare Ψ4 rather than h+,× to avoid difficulties arising

with fixing the integration constants when integrating the numerically obtained

Ψ4 (see [209] for more details). Both Ψ4 and h+,× contain the same information,

so differences between both procedures should be minimal.
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4.4.2 Matching procedure

Each of the post-Newtonian waveforms has an arbitrary time offset t0 and an

arbitrary phase offset φ0. These constants can be thought of as representing the

absolute time of merger and the orientation of the binary at merger, and we are

free to adjust them in order to match NR and PN waveforms. Following [24, 157],

we choose these constants by demanding that the PN and NR gravitational-wave

phase and gravitational-wave frequency agree at some fiducial frequency ωm .

Specifically, we proceed as follows: We start with a NR waveform ΨNR
4 (t ) and

an unshifted PN waveform ΨPN’
4 (t ) that has an arbitrary time and phase shift.

After selecting the matching frequency ωm , we can find (to essentially unlimited

accuracy) the time tc such that the derivative of the PN phase satisfies φ̇PN’(tc ) =
ωm , where φPN’(t ) is the phase associated with ΨPN’

4 (t ). Similarly, we find the

time tm such that φ̇NR(tm) = ωm . The time tm cannot be found to unlimited

accuracy, and the uncertainty in tm is due mainly to residual eccentricity of the

NR waveform, as discussed in Sec. 4.5.5. Once we have tm and tc , we leave the

NR waveform untouched, but we construct a new, shifted, PN waveform

ΨPN
4 (t ) =ΨPN’

4 (t + tc − tm)ei(φNR(tc )−φPN’(tm)) . (4.51)

The phase of this new PN waveform is therefore

φPN(t ) =φPN’(t + tc − tm)−φPN’(tc )+φNR(tm) , (4.52)

which satisfies φPN(tm) = φNR(tm) and φ̇PN(tm) =ωm , as desired. All our com-

parisons are then made using the new shifted waveform ΨPN
4 (t ) rather than the

unshifted waveform ΨPN’
4 (t ).
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4.4.3 Choice of Masses

The post-Newtonian expressions as written in Sec. 4.3 involve the total mass M ,

which corresponds to the the sum of the bare masses of the point particles in

post-Newtonian theory. When comparing PN to NR, the question then arises as

to which of the many definitions of the mass of a numerically generated binary

black hole solution should correspond to the post-Newtonian parameter M . For

nonspinning black holes at very large separation, M reduces to the sum of the

irreducible masses of the two holes. Neglecting tidal heating, the irreducible

masses should be conserved during the inspiral, so that we identify M with the

sum of the irreducible masses of the initial data 30c. As discussed in Sec. 4.5 the

black hole spins are sufficiently small so that there is no discernible difference

between irreducible mass of the black holes and the Christodoulou mass, Eq. (4.3).

Of course, the latter would be more appropriate for spinning black holes.

4.5 Estimation of uncertainties

To make precise statements about agreement or disagreement between numerical

and post-Newtonian waveforms, it is essential to know the size of the uncertain-

ties in this comparison. When discussing these uncertainties, we must strive to

include all effects that may cause our numerical waveform to differ from the post-

Newtonian waveforms we compare to. For instance, in addition to considering

effects such as numerical truncation error, we also account for the fact that NR

and PN waveforms correspond to slightly different physical scenarios: The PN

waveforms have identically zero spin and eccentricity, whereas the numerical sim-
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ulations have some small residual spin and eccentricity. Table 4.3 lists all effects

we have considered; we discuss these in detail below starting in Sec. 4.5.1. All

uncertainties are quoted in terms of phase and amplitude differences, and apply

to waveform comparisons via matching at a fixed ωm according to the procedure

in Sec. 5.6.1.

Most of the effects responsible for our uncertainties are time dependent, so

that it is difficult to arrive at a single number describing each effect. For simplicity,

the error bounds in Table 4.3 ignore the junk-radiation noise that occurs in the

numerical waveform for t−r ∗ ß 1000M . The extent to which this noise affects the

PN–NR comparisons presented below in Secs. 4.6.1 and 4.6.2 will be evident from

the noise in the graphs in these sections. Note that all four matching frequencies

ωm occur after the noise disappears at t − r ∗ ∼ 1000M . Furthermore, the post-

Newtonian waveforms end at different times depending on the PN order and

on which particular post-Newtonian approximant is used. Therefore, in order to

produce a single number for each effect listed in Table 4.3, we consider only the

part of the waveform prior to some cutoff time, which we choose to be the time at

which the numerical waveform reaches gravitational-wave frequency Mω=−0.1.

4.5.1 Errors in numerical approximations

The first three error sources listed in Table 4.3 have already been discussed in

detail in Sec. 4.2. We estimate numerical truncation error using the difference

between the two highest resolution runs after the waveforms have been shifted to

agree at some matching frequency ωm . For Mωm =−0.1 this difference is shown

as the curves labeled ‘30c-1/N5’ in Figs. 4.9 and 4.11, and corresponds to a phase
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Table 4.3: Summary of uncertainties in the comparison between numerical
relativity and post-Newtonian expansions

Effect δφ (radians) δA/A

Numerical truncation error 0.003 0.001
Finite outer boundary 0.005 0.002
Extrapolation r →∞ 0.005 0.002
Wave extraction at rareal=const? 0.002 10−4

Drift of mass M 0.002 10−4

Coordinate time = proper time? 0.002 10−4

Lapse spherically symmetric? 0.01 4×10−4

Residual eccentricity 0.02 0.004
Residual spins 0.03 0.001

root-mean-square sum 0.04 0.005

Quoted error estimates ignore the junk-radiation noise at t ß 1000M and apply
to times before the numerical waveform reaches gravitational-wave frequency
Mω=−0.1. Uncertainties apply to waveform comparisons via matching at a fixed
ωm according to the procedure in Sec. 5.6.1, and represent the maximum values
for all four different matching frequencies ωm that we consider, unless noted
otherwise. For the case of matching at Mωm =−0.04, the phase uncertainty due
to residual eccentricity increases to 0.05 radians, thus increasing the root-mean-
square sum to 0.06 radians.

difference of 0.003 radians and a relative amplitude difference of 0.001. For other

values of ωm the differences are similar. The effect of the outer boundary is

estimated by the difference between the runs 30c-1/N6 and 30c-2/N6, which for

Mωm =−0.1 is shown as the curves labeled ‘30c-2/N6’ in Figs. 4.9 and 4.11, and

amount to phase differences of 0.005 radians and relative amplitude differences

of 0.002. Errors associated with extrapolation to infinity have been discussed

in detail in Figs. 4.13 and 4.15. Specifically, Fig. 4.13 shows that increasing the
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extrapolation order between 3 and 4 changes the extrapolated phase by less than

0.005 radians, and Fig. 4.15 confirms that the extrapolated result is robust under

changes of extraction radii.

4.5.2 Constancy of extraction radii

If the physical locations of the coordinate-stationary extraction radii happen to

change during the evolution, then the extracted gravitational waves will accrue

a timing error equal to the light-travel time between the original location and

the final location. From Fig. 4.12, we see that the drift in areal radius is less

than 0.02M , resulting in a time uncertainty of δt = 0.02M . This time uncertainty

translates into a phase uncertainty via

δφ= Mω× (δt/M) , (4.53)

which yields δφ≈ 0.002, when Mω=−0.1 (the value at the end of the PN com-

parison) was used.

To estimate the effect of this time uncertainty on the amplitude, we first note

that to lowest order in the post-Newtonian parameter x (defined in Eq. (4.23)),

the wave amplitude of Ψ4 scales like x4. Also, from Eq. (4.48), we have dx/dt =
16/(5M)x5. Therefore,

δA

A
∼ dln A

dx

dx

dt
δt ∼ 64

5
(−Mω/2)8/3δt

M
, (4.54)

where we have used the fact that the gravitational-wave frequency ω is approxi-

mately twice the orbital frequency. For a time uncertainty δt = 0.02M , Eq. (4.54)

gives δA/A ≈ 10−4 for Mω=−0.1.
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4.5.3 Constancy of mass

Our comparisons with post-Newtonian formulas assume a constant post-Newtonian

mass parameter M , which we set equal to the total irreducible mass of the black

holes in the numerical simulation. If the total mass of the numerical simulation

is not constant, this will lead to errors in the comparison. For example, changes

in t/M caused by a changing mass will lead to phase differences. Figure 4.4

demonstrates that the irreducible mass is conserved to a fractional accuracy of

about δM/M ≈ 5×10−6.

This change in irreducible mass could be caused by numerical errors, or by

a physical increase of the mass of each black hole through tidal heating. For

our simulations, M(t ) decreases during the run (this is not apparent from Fig. 4.4

which plots absolute values), thus contradicting the second law of black hole

thermodynamics. Moreover, the increase in M(t ) through tidal heating is much

smaller than the observed variations in M(t ) (see, e.g. [216]). Therefore, the

variations in M(t ) are numerical errors, and we need to bound the influence of

these errors on the comparison to post-Newtonian expansions.

Over an evolution time of t/M = 4000, the observed mass uncertainty of

δM/M ≈ 5×10−6 results in an uncertainty in the overall time interval of δ(t/M) =
(t/M)×(δM/M) ≈ 0.02. This time uncertainty translates into a phase uncertainty

of δφ≈ 0.002, using Eq. (4.53) for Mω=−0.1. Note that the effect of the black-

hole spins on the mass is negligible relative to the numerical drift of 5×10−6.

This is because the spins of the holes are bounded by S/Mirr < 2×10−4 and the

spin enters quadratically into the Christodoulou formula (4.3). The error in the

gravitational-wave amplitude caused by time uncertainties due to varying mass
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is δA/A ≈ 10−4 using Eq. (4.54) for Mω=−0.1. An error in the mass will affect

the amplitude not only via a time offset, but also because the amplitude is pro-

portional to (−Mω/2)8/3 (to lowest PN order). However, this additional error is

very small, δA/A ≈ (8/3)δM/M ≈ 10−5.

4.5.4 Time-coordinate ambiguity

We now turn to two possible sources of error that have not yet been discussed,

both of which are related to ambiguity in the time coordinate. The basic issue

is that the time variable t in post-Newtonian expansions corresponds to proper

time in the asymptotically flat region, but the time t in numerical simulations

is coordinate time. These two quantities agree only if the lapse function N ap-

proaches unity at large distances. To verify this, we decompose N in spherical

harmonics centered on the center of mass of the system,

N (r ,ϑ,ϕ) =
∞∑

l=0

l∑
m=−l

Nl ,m(r )Yl ,m(ϑ,ϕ) . (4.55)

The angular average of the lapse function, 〈N〉 (r ) B
p

4πN0,0(r ) should then

approach unity for r → ∞, and all other modes Nl ,m(r ) should decay to zero.

Fig. 4.17 plots 〈N〉 (r )−1 versus M/r for three different evolution times. Fitting

〈N〉 (r )−1 for r > 100M to a polynomial in M/r gives a y intercept of magnitude

less than 5×10−6 for all three times, and for polynomial orders of two through

five. Therefore, the coordinate time of the evolution agrees with proper time at

infinity to better than δt/M = t/M ×5×10−6 ≈ 0.02, which induces a phase error

of at most δφ ≈ 0.002 and an amplitude error of δA/A ≈ 10−4 (see Eqs. (4.53)

and (4.54)).
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t = 0M
t = 1900M
t = 3800M

Figure 4.17: Asymptotic behavior of the average lapse at large radii

This figure displays the angular average of the lapse as a function of (inverse)
radius at t/M = 0,1900, and 3800. The lines all lie on top of each other, but end
at different radii, because of the infall of the outer boundary. Note that—at all
three times— the lapse is approaching 1 roughly as 1/r . The horizontal axis is
evenly spaced in 1/r .
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ℜN2,0 t = 0M
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ℑN2,2 t = 0M
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ℜN2,2 t = 1900M
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ℜN2,2 t = 3800M
ℑN2,2 t = 3800M

Figure 4.18: Asymptotic behavior of higher angular moments of the lapse at
large radii

This figure shows the dominant higher multipole moments of the lapse at
t = 0,1900M , and 3800M , as a function of (inverse) radius. Despite the obvi-
ous oscillations, most components do seem to decay to 0 with increasing radius
roughly as fast as 1/r , at all times. The horizontal axis is evenly spaced in 1/r .
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The second source of error related to the lapse is shown in Fig. 4.18, which

presents the three largest higher-order moments Nl ,m(r ). All modes decay to zero

as r →∞ except, perhaps, the real part of the N2,2 mode at t/M = 3800. This

mode seems to approach a value of about 5×10−5. At t = 1900M , this mode still

decays nicely to zero, hence the maximum time uncertainty introduced by this

effect at late times is δt = 1900M ×5×10−5 ≈ 0.1M , resulting in a potential phase

uncertainty of δφ≈ 0.01 and a potential amplitude uncertainty of δA/A ≈ 4×10−4.

4.5.5 Eccentricity

We estimated the eccentricity during the numerical simulation with several of

the methods described in [75, 209, 167], and have consistently found e ß 6×10−5.

This eccentricity can affect our comparison to a post-Newtonian waveform of a

quasi-circular (i.e., zero eccentricity) inspiral in three ways.

Change in rate of inspiral

The first effect arises because an eccentric binary has a different inspiral rate

than a noneccentric binary; physically, this can be understood by noting that the

gravitational flux and orbital energy depend upon the eccentricity, and therefore

modify the rate at which the orbital frequency evolves assuming energy balance.

Reference [184] has derived the first-order correction in the phase of the grav-

itational wave due to this effect. Converting their result to our notation and

restricting to the equal-mass case yields

1

(dx/dt )
= 5G M

16c3x5

(
1− 157

24
e2

i

(xi

x

)19/6
)

, (4.56)
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where ei is the initial eccentricity and xi is the initial value of the orbital-

frequency parameter. Substituting this into Eq. (4.41) yields

Φ=Φ0 − 1

8
x−5/2 + 785

2176
e2

i x19/6
i x−17/3 . (4.57)

Using ei = 6× 10−5 and integrating over the frequency range from the start of

our simulation to the matching frequency of Mω = −0.1 yields a phase shift of

∼ 2×10−6, which is dwarfed by many other error sources, such as the uncertainty

in the numerical mass M . (See Sec. 4.5.3.)

Uncertainty in matching time

The second way in which eccentricity affects our comparison is by introducing

errors in our procedure for matching the PN and NR waveforms. Recall that our

matching procedure involves determining the time tm at which the gravitational-

wave frequency ω takes a certain value Mωm ; eccentricity modulates the instan-

taneous gravitational-wave frequency ω(t ) via

ω(t ) = 〈ω(t )〉 [1+2e cos(Ωr t )] , (4.58)

where 〈ω(t )〉 represents the averaged “non-eccentric” evolution of the gravitational-

wave frequency, and Ωr is the frequency of radial oscillations, which is approx-

imately equal to the orbital frequency. We see that ω can differ from 〈ω〉 by as

much as 2e 〈ω〉 ≈ 2eω. This could induce an error in the determination of tm by

as much as

|δtm| = |δω|
ω̇

≈ 2eω

ω̇
. (4.59)

We can simplify this expression by using Eq. (4.48) to lowest order, and by not-

ing that the gravitational-wave frequency is approximately twice the orbital fre-
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quency. We find

|δtm| ≤ e
5M

12

(
−Mω

2

)−8/3

. (4.60)

This uncertainty is largest at small frequencies, because the frequency changes

much more slowly. For Mω=−0.04, we find |δtm|ß 0.9M , and for Mω=−0.1,

we find |δtm|ß 0.1M .

To determine how uncertainties in tm translate into phase differences, recall

that in the matching procedure described in Sec. 5.6.1, tm enters into the phase of

the shifted PN waveform according to Eq. (4.52). Therefore the phase difference

that we compute between the PN and NR waveforms is

∆φ(t ) =φPN(t )−φNR(t )

=φPN’(t + tc − tm)−φNR(t )+φNR(tm)−φPN’(tc ) . (4.61)

Then the error in ∆φ is found by Taylor-expanding Eq. (4.61):

δφB δ(∆φ(t )) = (
φ̇PN’(t + tc − tm)− φ̇NR(tm)

)
δtm

= (
φ̇PN(t )−ωm

)
δtm . (4.62)

Our simulations (and therefore the comparisons to post-Newtonian theory)

start at Mω≈−0.033, so that the maximum error δφ within our comparison at

times before the matching frequency will be∣∣δφbefore
∣∣≤ |−0.033−ωm| |δtm| . (4.63)

Combining Eqs. (4.63) and (4.59), and using e ≈ 6×10−5, we find that δφbefore <
−0.01 radians for all four of our matching frequencies −Mωm = 0.04,0.05,0.063,

and 0.1. The maximum error δφ within our comparison at times after the match-

ing frequency is

|δφafter| ≤ |0.1−ωm| |δtm| , (4.64)
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because we end our comparisons to post-Newtonian theory at Mω=−0.1. Eq. (4.64)

evaluates to 0.05 radians for Mωm = −0.04, and is less than about 0.02 radians

for the three higher matching frequencies.

The error in the gravitational-wave amplitude caused by an error in tm can

be estimated by Eq. (4.54). A conservative estimate using δt = 0.9M still gives a

small error, δA/A ≈ 0.004.

Note that the bounds on δφbefore and δφafter are proportional to the eccen-

tricity of the numerical simulation. Even with eccentricity as low as 6× 10−5,

this effect is one of our largest sources of error for the PN–NR comparison. (See

Table 4.3). This is the reason why the simpler eccentricity removal procedure of

Husa et al. [167] (resulting in e = 0.0016) is not adequate for our purposes.

Periodic modulation of phase and amplitude

The third effect of orbital eccentricity is a periodic modulation of the gravitational-

wave phase and amplitude. If we assume that 〈ω(t )〉 varies on much longer time

scales than 1/Ωr (which is true at large separation) then integration of Eq. (4.58)

in time yields

φ(t ) = 〈
φ(t )

〉+2e
〈ω〉
Ωr

sin(Ωr t ) . (4.65)

Because Ωr ≈ Ω ≈ −〈ω〉/2, we therefore find that the gravitational-wave phase

consists of the sum of the desired “circular” phase,
〈
φ(t )

〉
, plus an oscillatory

component with amplitude 4e ≈ 2×10−4. This oscillatory component, however,

is much smaller than other uncertainties of the comparison, for instance the un-

certainty in determination of tm .

Residual eccentricity will also cause a modulation of the gravitational-wave
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amplitude in a manner similar to that of the phase. This is because eccentricity

explicitly enters the post-Newtonian amplitude formula at 0PN order [243]. This

term is proportional to e, and since e ß 6×10−5 its contribution to the amplitude

error is small compared to the effect due to uncertainty in tm .

While oscillations in phase and amplitude due to eccentricity are tiny and

dwarfed by other uncertainties in the PN–NR comparison, their characteristic

oscillatory behavior makes them nevertheless visible on some of the graphs we

present below—for instance, Figs. 4.26 and 4.27.

4.5.6 Spin

We now turn our attention to effects of the small residual spins of the black holes.

References [135] and [43] compute spin–orbit coupling up to 2.5 post-Newtonian

order, and find that the orbital phase, Eq. (4.43a), acquires the following spin

contributions

ΦS(x) =− 1

32ν

∑
i=1,2

χi

{(
565

24

M 2
i

M 2
+ 125ν

8

)
x−1

−
[(

681145

4032
+ 965ν

28

)
M 2

i

M 2
+ 37265ν

448
+ 1735ν2

56

]
ln x

}
,

(4.66)

where χi =~Si · L̂/M 2
i is the projection of the dimensionless spin of the i -th hole

onto the orbital angular momentum. For equal-mass binaries with spins χ1 =
χ2Bχ, this reduces to

ΦS(x) =−χ
(

235

96
x−1 − 270625

16128
ln x

)
. (4.67)

Our comparisons to post-Newtonian theory are performed over the orbital-frequency

range of 0.0167 ≤ MΩ≤ 0.05, corresponding to 0.065 ≤ x ≤ 0.136. The gravitational-
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wave phase is approximately twice the orbital phase, so that the spin–orbit cou-

pling contributes

δφS = 2[ΦS(0.065)−ΦS(0.136)] ≈−64χ (4.68)

to the gravitational-wave phase. In Sec. 4.2.2 we estimated
∣∣~S∣∣/M 2

irr < 5×10−4,

where Mirr is the irreducible mass of either black hole. Because χ ≤ ∣∣~S∣∣/M 2
irr ≈

5× 10−4, the residual black-hole spins contribute less than 0.03 radians to the

overall gravitational-wave phase.

We now turn to errors in the amplitude comparison caused by residual spin.

We can compute the error in orbital frequency as δΩ= Φ̇s using Eq. (4.67):

δΩ=χ ẋ

x

(
235

96
x−1 + 270625

16128

)
=χx4 16

5M

(
235

96
x−1 + 270625

16128

)
, (4.69)

where we have used Eq. (4.48). Because the amplitude of Ψ4 scales like Ω8/3, we

arrive at

δA

A
= 8

3

δΩ

Ω
=χx5/2 128

15

(
235

96
x−1 + 270625

16128

)
, (4.70)

which for Mωm =−0.1 (i.e., x = 0.136) gives δA/A = 2.0χ∼ 1.0×10−3.

Spin–orbit terms also contribute directly to the amplitude [177, 249]. The

leading-order contribution (for an equal-mass binary with equal spins) contributes

a term δA/A ∼ (4/3)χx3/2, which is the same order of magnitude as the previous

error, 10−3.
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Figure 4.19: Comparison of numerical simulation with TaylorT1 3.5/2.5
waveforms—phase difference

Plotted are comparisons for four values of ωm . The filled dot on each curve
shows the point at which φ̇ = ωm . Also shown is the difference between the
numerical and restricted (i.e., 3.5PN phase, 0PN amplitude) TaylorT1 matched at
Mωm =−0.1, shown as the dashed curve.
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Figure 4.20: Comparison of numerical simulation with TaylorT1 3.5/2.5
waveforms—relative amplitude difference

Plotted are comparisons for four values of ωm . The filled dot on each curve
shows the point at which φ̇ = ωm . Also shown is the difference between the
numerical and restricted (i.e., 3.5PN phase, 0PN amplitude) TaylorT1 matched at
Mωm =−0.1, shown as the dashed curve.
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4.6 Results

4.6.1 Comparison with individual post-Newtonian

approximants

We compare our simulations with four different post-Newtonian approximants:

the TaylorT1, TaylorT2, TaylorT3, and TaylorT4 waveforms. These four waveforms

agree with each other up to their respective post-Newtonian expansion orders,

but they differ in the way that the uncontrolled higher-order terms enter. We

start with the comparison to TaylorT1.

TaylorT1 (3.5PN phase, 2.5PN amplitude)

Figures 4.19 and 4.20 compare the numerical simulation to TaylorT1 3.5/2.5 wave-

forms (i.e., expansion order 3.5PN in phase and 2.5PN in amplitude, the highest

expansion orders currently available for generic direction; see Sec. 4.3.2). The first

of these shows the phase difference, where we find differences of more than a

radian for all four matching frequencies we consider: −Mωm = 0.04, 0.05, 0.063,

and 0.1.

For our largest matching frequency, Mωm = −0.1, the phase differences are

small toward the end of the run by construction. Nevertheless, a phase differ-

ence of more than 0.5 radians builds up in the ∼ 1.5 cycles after the matching

point, before the TaylorT1 template generation fails. Recall that Mωm = −0.1

occurs about 2.2 gravitational-wave cycles before our simulations fail, which is

still about 1.5 cycles before merger. However, the largest phase disagreement for

Mωm = −0.1 builds up at early times, reaching 1.5 radians at the beginning of
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Figure 4.21: Numerical and TaylorT1 3.5/2.5 waveforms

This figure shows a detailed view of the dephasing between the numerical and
post-Newtonian waveforms during the last 10 gravitational-wave cycles. The
waveforms are matched at Mωm =−0.04.

our simulation, about 28 cycles before the matching (∼ 30 cycles before the end

of the simulation), and still showing no sign of flattening even at the start of our

simulation.

To achieve phase coherence with the early inspiral waveform, it is therefore
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Figure 4.22: Comparison of numerical simulation with TaylorT2 3.5/2.5
waveforms—phase difference

Plotted are comparisons for four values of Mωm . The filled dot on each curve
shows the point at which φ̇=ωm .
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Figure 4.23: Comparison of numerical simulation with TaylorT2 3.5/2.5
waveforms—relative amplitude difference

Plotted are comparisons for four values of Mωm . The filled dot on each curve
shows the point at which φ̇=ωm .
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necessary to match earlier than Mωm = −0.1. Obviously, phase differences at

early times become smaller when the matching point itself is moved to earlier

time. For instance, Mωm =−0.063 (about eight gravitational-wave cycles before

the end of our simulation), results in phase differences less than 0.5 radians during

the 22 earlier cycles of our evolution. However, the phase difference φPN−φNR

does not level off at early times within the length of our simulation, so it seems

quite possible that the phase difference may grow to a full radian or more if

the numerical simulations could cover many more cycles. We thus estimate that

for TaylorT1, to achieve 1-radian phase coherence with the early inspiral may

require matching more than 10 cycles before merger. To achieve more stringent

error bounds in phase coherence will require matching even earlier: for instance

it appears one needs to use Mωm =−0.04 (about 20 cycles before the end of our

simulation) for a phase error of less than ß 0.1 radians.

While matching at small ωm yields good phase coherence early in the run, it

produces much larger phase differences late in the run. For example, matching

at Mωm = −0.04 results in a phase difference of almost 2 radians at frequency

Mω = −0.1. This rather dramatic disagreement is illustrated in Fig. 4.21, which

plots both the numerical and the TaylorT1 waveform, matched at Mωm =−0.04.

Figure 4.19 also includes a comparison to the so-called restricted TaylorT1

template, where only the leading order amplitude terms are used (i.e., 0PN in

amplitude). The reason that higher-order amplitude terms affect the phase dif-

ferences at all is because we are plotting gravitational-wave phase, not orbital

phase. However, we see that the effect of these higher-order amplitude terms on

the phase difference is small.
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We now turn our attention to comparing the amplitudes of the post-Newtonian

and numerical waveforms. Figure 4.20 shows relative amplitude differences be-

tween TaylorT1 3.5/2.5 and the numerical waveforms. At early times, the am-

plitudes agree to within 2 or 3 percent, the agreement being somewhat better

when the matching is performed at early times. At late times, the amplitudes

disagree dramatically; a large fraction of this disagreement lies probably in the

fact the post-Newtonian point of merger (i.e., the point at which the amplitude

diverges) occurs at a different time than the numerical point of merger. We also

plot the amplitude of the restricted TaylorT1 template. The disagreement between

restricted TaylorT1 and the numerical result is much larger, about 5 percent.

Hannam et al. [157] performed a similar comparison, matching their wave-

forms with a restricted TaylorT1 waveform (i.e., 3.5/0.0) generated using the LIGO

Algorithm Library (LAL) [94]. The phase difference they observe for waveforms

matched at Mωm = −0.1 is consistent with our results within numerical errors.

When matching TaylorT1 3.5/0.0 early in their simulation (at Mωm = −0.0455),

however, Hannam et al. find a cumulative phase difference of 0.6 radians at

Mω=−0.1. From Fig. 4.19 we find a quite different value of 1.5 radians for our

simulation. This disagreement might be caused by the use of the finite extraction

radius R = 90M for the gravitational-wave phase in Hannam et al.: Figure 4.13

shows that extracting at a finite radius leads to a systematic phase error, which

will induce a systematic error in determination of the matching time of Han-

nam et al. This error is amplified by the increasing gravitational-wave frequency

toward merger.
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Figure 4.24: Comparison of numerical simulation with TaylorT3 3.5/2.5
waveforms—phase difference

Plotted are comparisons for three values Mωm . The filled dot on each curve
shows the point at which φ̇ = ωm . The lines end when the frequency of the
TaylorT3 waveform reaches its maximum, which happens before Mω=−0.1, so
that matching frequency is absent. However, TaylorT3 3.0/3.0 does achieve that
frequency, so we show this curve, matched at Mωm =−0.1.
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Figure 4.25: Comparison of numerical simulation with TaylorT3 3.5/2.5
waveforms—relative amplitude difference

Plotted are comparisons for three values Mωm . The filled dot on each curve
shows the point at which φ̇ = ωm . The lines end when the frequency of the
TaylorT3 waveform reaches its maximum, which happens before Mω=−0.1, so
that matching frequency is absent.
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TaylorT2 (3.5PN phase, 2.5PN amplitude)

Figures 4.22 and 4.23 present the comparison between the numerical waveform

and the TaylorT2 approximant. The overall trends are very similar to the TaylorT1

comparison of Figs. 4.19 and 4.20, though the phase differences are smaller by

about a factor of 2 when matching at Mωm =−0.1, and smaller by a factor of 3 to

4 when matching earlier. To our knowledge TaylorT2 has never been compared

to a numerical simulation; we include it here mainly for completeness.

TaylorT3 (3.5PN and 3.0PN phase, 2.5PN amplitude)

Figures 4.24 and 4.25 are the same as Figs. 4.19 and 4.20 except that they com-

pare numerical simulations to the TaylorT3 family of waveforms. Two differ-

ences between TaylorT1 and TaylorT3 are readily apparent from comparing these

two figures. The first is that we do not match TaylorT3 3.5/2.5 waveforms at

Mωm = −0.1. This is because the frequency of TaylorT3 3.5/2.5 waveforms

reaches a maximum shortly before the formal coalescence time of the post-

Newtonian template, and then decreases. The maximal frequency is less than

0.1, so that matching at Mωm = −0.1 is not possible. For this reason, we have

also shown in Figs. 4.24 and 4.25 a comparison with a TaylorT3 3.0/3.0 waveform

matched at Mωm =−0.1. The other major difference between the TaylorT3 3.5/2.5

and TaylorT1 3.5/2.5 comparison is that the phase difference, φPN−φNR, has a

different sign. While TaylorT1 3.5/2.5 spirals in more rapidly than the numerical

simulation, TaylorT3 3.5/2.5 lags behind. Interestingly, the phase differences from

the numerical simulation for both TaylorT1 3.5/2.5 and TaylorT3 3.5/2.5 are of

about equal magnitude (but opposite sign). The TaylorT3 3.0/3.0 comparison
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matched at Mωm = −0.1 has smaller phase differences than does the TaylorT3

3.5/2.5 comparison, but the slope of the 3.0/3.0 curve in Fig. 4.24 is nonzero at

early times, so it appears that TaylorT3 3.0/3.0 will accumulate significant phase

differences at even earlier times, prior to the start of our simulation. In Fig. 4.30

it can be seen that matching TaylorT3 3.0/3.0 at Mωm = −0.04 leads to a good

match early, but leads to a phase difference of 0.6 radians by Mω=−0.1.

Hannam et al. [157] match a TaylorT3 3.0/0.0 waveform at Mωm =−0.1 and

Mωm = −0.0455. Matching at Mωm = −0.1 again gives phase differences con-

sistent with our results within numerical errors. Matching at Mωm = −0.0455,

Hannam et al. find a phase difference of 0.9 radians, while we find a smaller

value of 0.5 radians. Again, this difference could be due to the finite extraction

radius used by Hannam et al.

TaylorT4 (3.5PN phase, 2.5PN amplitude)

Figures 4.26 and 4.27 are the same as Figs. 4.19 and 4.20 except that they com-

pare numerical simulations to the TaylorT4 PN waveforms. The agreement be-

tween TaylorT4 waveforms and the numerical results is astonishingly good, far

better than the agreement between NR and either TaylorT1 or TaylorT3. The

gravitational-wave phase difference lies within our error bounds for the entire

comparison region Mω ≥ −0.1, agreeing to 0.05 radians or better over 29 of

30 gravitational-wave cycles. Ref. [24] found agreement between TaylorT4 and

their numerical simulation to the level of their numerical accuracy (∼ 2 radi-

ans), agreeing to roughly 0.5 radians in the gravitational frequency range of
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Figure 4.26: Comparison of numerical simulation with TaylorT4 3.5/2.5
waveforms—phase difference

Plotted are comparisons for four values of Mωm . The filled dot on each curve
shows the point at which φ̇=ωm . This plot also includes two phase comparisons
with expansions of different PN order in amplitude, as labeled, for Mωm =−0.1.
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Figure 4.27: Comparison of numerical simulation with TaylorT4 3.5/2.5
waveforms—relative amplitude difference
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−0.054 ≥ Mω≥−0.1. Ref. [206] found that NR agrees better with TaylorT4 than

with TaylorT1, but the larger systematic and numerical errors of the numerical

waveforms used in these studies did not allow them to see the surprising degree

to which NR and TaylorT4 agree. The gravitational-wave amplitude of TaylorT4

agrees with the NR waveform to about 1–2 percent at early times, and 8 per-

cent at late times. In Fig. 4.28 we plot the NR and TaylorT4 waveforms; the two

waveforms are visually indistinguishable on the plot, except for small amplitude

differences in the final cycles.

In Fig. 4.26 we also show phase comparisons using PN waveforms computed

to 3.5PN order in phase but to 0PN and 3.0PN orders in amplitude, for the case

Mωm = −0.1. The PN order of the amplitude expansion affects the phase com-

parison because we are plotting differences in gravitational-wave phase and not

orbital phase. The differences between using 0PN, 2.5PN, and 3.0PN amplitude

expansions are evident on the scale of the graph, but because these differences

are smaller than our estimated uncertainties (see Table 4.3), we cannot reliably

conclude which of these most closely agrees with the true waveform.

Figure 4.29 presents amplitude differences between NR and TaylorT4 as the

post-Newtonian order of the amplitude expansion is varied, but the phase ex-

pansion remains at 3.5PN. The 2.5PN amplitude curve was already included in

Fig. 4.27. We see clearly that higher order amplitude corrections generally result

in smaller differences. The 3PN amplitude correction to the (2,2) mode recently

derived by Kidder [178] improves agreement dramatically over the widely known

2.5PN amplitude formulas. Unfortunately, the 3PN amplitude correction to the
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Figure 4.28: Numerical and TaylorT4 3.5/3.0 waveforms

The PN waveform is matched to the numerical one at Mωm = −0.04, indicated
by the small circle. The lower panel shows a detailed view of the end of the
waveform.
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Figure 4.29: TaylorT4 amplitude comparison for different PN orders

Shown is the relative difference in gravitational-wave amplitude between TaylorT4
and numerical Ψ2,2

4 waveforms as a function of time. Matching is performed at
Mωm =−0.04. All curves use 3.5PN order in phase but different PN orders (as
labeled) in the amplitude expansion.
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entire waveform, including all (l ,m) modes, is not known.8

4.6.2 Comparing different post-Newtonian approximants

The previous section presented detailed comparisons of our numerical waveforms

with four different post-Newtonian approximants. We now turn our attention to

some comparisons between these approximants. In this section we also explore

further how the post-Newtonian order influences agreement between numerical

and post-Newtonian waveforms.

Figure 4.30 presents phase differences as a function of time for all four PN

approximants we consider here and for different PN orders. The post-Newtonian

and numerical waveforms are matched at Mωm =−0.04, about 9 cycles after the

beginning of the numerical waveform, and about 21 cycles before its end. We

find that some PN approximants at some particular orders agree exceedingly well

with the numerical results. The best match is easily TaylorT4 at 3.5PN order, and

the next best match is TaylorT4 at 2.0PN order. Some approximants behave signif-

icantly worse, such as the TaylorT1 and TaylorT4 waveforms at 2.5PN order. The

2.5PN and 3PN TaylorT3 waveforms agree very well with the numerical wave-

form at early times, but at late times they accumulate a large phase difference;

the 2.5PN TaylorT3 waveform ends even before the numerical waveform reaches

Mω=−0.1 (the rightmost vertical brown line in Fig. 4.30).

We also find that all four PN approximants, when computed to 3PN order

8To get the complete waveform to 3PN order, only the (2,2) mode must be known to 3PN
order; other modes must be known to smaller PN orders. For an equal-mass, nonspinning binary,
all modes except the (3,2) mode are currently known to sufficient order to get a complete 3PN
waveform [178].
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Figure 4.30: Phase comparison for various PN approximants

Shown is the difference in gravitational-wave phase between each post-Newtonian
approximant and the numerical Ψ2,2

4 waveforms as a function of time. The two
vertical brown lines indicate when the numerical simulation reaches Mω=−0.063
and −0.1, respectively; the labels along the top horizontal axes give the number
of gravitational-wave cycles before Mω=−0.1.
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Figure 4.31: Late-time phase comparison for various PN approximants

Same as Fig. 4.30, but showing only the last stage of the inspiral. The horizontal
axis ends at the estimated time of merger, (t −r ∗)CAH = 3950M . See Sec 4.2.7 for
details. Note that the top and bottom panels use different vertical scales.
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or higher, match the numerical waveform (and each other) quite closely at early

times, when all PN approximants are expected to be accurate. However, at late

times, t−r ∗ > 2500M , the four PN approximants begin to diverge, indicating that

PN is beginning to break down.

Figure 4.31 is an enlargement of Fig. 4.30 for the last 10 gravitational wave

cycles before merger. This figure shows in more detail how the different PN

approximants behave near merger.

Figures 4.32 and 4.33 present similar results in a different format. We compute

the phase differences between the numerical waveform and the various post-

Newtonian approximants at the times when the numerical waveform reaches

gravitational-wave frequencies Mω = −0.063 and Mω = −0.1 (the times corre-

sponding to these frequencies are also indicated by brown lines in Fig. 4.30). We

then plot these phase differences as a function of the post-Newtonian order (using

equal order in phase and amplitude, except for 3.5PN order, where we use 3.0PN

in amplitude). Three PN approximants end before the time at which Mω=−0.1:

TaylorT1 2.0/2.0, TaylorT3 2.5/2.5, TaylorT3 3.5/3.0. These data points therefore

cannot be included in Fig. 4.33.

The general trend seen in Figs. 4.32 and 4.33 is that the phase difference de-

creases with increasing PN order. However, this convergence is not monotonic,

and the scatter in the figures can be larger than the phase differences themselves.

For example, the 0PN waveforms are about as good as the 2.5PN waveforms for

TaylorT1 and TaylorT4, and the 2PN TaylorT4 waveform agrees with the numer-

ical results much better than do either the 2.5PN or 3PN TaylorT4 waveforms.
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Figure 4.32: Phase differences between numerical and post-Newtonian wave-
forms at t = t(Mω=−0.063)

Waveforms are matched at Mωm = −0.04, and phase differences are computed
at the time when the numerical simulation reaches Mω = −0.063. Differences
are plotted versus PN order (equal order in phase and amplitude, except the
‘3.5 PN’ points are 3.5/3.0). The thin gray bands indicate upper bounds on the
uncertainty of the comparison as discussed in Sec. 4.5.1.
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Figure 4.33: Phase differences between numerical and post-Newtonian wave-
forms at t = t(Mω=−0.1)

Waveforms are matched at Mωm = −0.04, and phase differences are computed
at the time when the numerical simulation reaches Mω = −0.1. Differences are
plotted versus PN order (equal order in phase and amplitude, except the ‘3.5 PN’
points are 3.5/3.0). The 1PN data points are off scale, clustering at −15 radians.
The thin gray bands indicate upper bounds on the uncertainty of the comparison
as discussed in Sec. 4.5.1.
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Considering these figures, it seems difficult to make statements about the con-

vergence with PN order for any particular PN approximant, or statements about

which PN orders are generally “good”, in some sense. Given that at fixed PN

order the different approximants differ merely by the treatment of uncontrolled

higher-order terms, the scatter in these results represents—in some sense—the

truncation error at each PN order. While some PN approximants at certain or-

ders may show better agreement with the numerical simulation, we are not aware

of any means to predict this besides direct comparisons to numerical simulations

(as is done here). In particular, these figures suggest that the remarkable agree-

ment between our numerical results and the 3.5PN TaylorT4 approximant may be

simply due to luck; clearly, more PN–NR comparisons are needed, with different

mass ratios and spins, to see if this is the case.

4.7 Conclusions

We have described numerical simulations of an equal-mass, nonspinning binary

black hole spacetime covering 15 orbits of inspiral just prior to the merger of the

two black holes. Using a multi-domain pseudospectral method we are able to ex-

tract the gravitational-wave content measured by a distant observer with a phase

accuracy of better than 0.02 radians over the roughly 30 cycles of gravitational

radiation observed. We demonstrate that in order to achieve this accuracy it is

necessary to accurately extrapolate the waveform from data obtained at extraction

surfaces sufficiently far from the center of mass of the system. When comparing

to zero-spin, zero-eccentricity PN formulas, our phase uncertainty increases to

0.05 radians because the numerical simulation has a small but nonzero orbital
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eccentricity and small but nonzero spins on the holes.

Judging from the case in which we match at Mωm = −0.04, our numerical

simulations are consistent (within our estimated phase uncertainty) with all PN

approximants (at the highest PN order) from the beginning of our inspiral un-

til about 15 gravitational-wave cycles prior to the merger of the binary. This

agreement provides an important validation of our numerical simulation. It also

establishes a regime in which the 3.5-th order post-Newtonian waveforms are

accurate to this level, at least for an equal-mass, nonspinning black hole binary.

After this point, the various PN approximants begin to diverge, suggesting that

the approximation is beginning to break down. Since there are many different

PN approximants (including Padé [108] and effective-one-body [76, 103, 105, 78],

which were not discussed in this paper) it may be possible to find a clever way

to push the PN expansion beyond its breaking point.

Indeed, we find that one approximant, TaylorT4 at 3.5PN in phase, works

astonishingly well, agreeing with our numerical waveforms for almost the entire

30-cycle length of our runs. Given the wide scatter plot of predictions by various

PN approximants, it is likely that TaylorT4 3.5/3.0 simply got lucky for the equal-

mass nonspinning black hole binary. In fact, the assumption of adiabaticity (i.e.,

circular orbits) is known to lead to much larger phase differences relative to a non-

adiabatic inspiral (see Fig. 4 of [77] and [194]) than the phase differences between

NR and TaylorT4 we find in Fig. 4.26. Thus it seems that the uncontrolled higher

order terms of TaylorT4 3.5/3.0 balance the error introduced by the adiabaticity

assumption to a remarkable degree. It remains to be determined whether similar

cancellations occur when the black hole masses are unequal or when the holes
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have nonzero spin.

Regardless of the robustness of TaylorT4, it seems evident that numerical

simulations are needed in order to know which, if any, PN approximant yields

the correct waveform after the various approximants begin to diverge. For there

is no a priori reason why TaylorT4 should be a better choice than TaylorT1 as

they differ only in whether the ratio of gravitational-wave flux to the derivative

of the orbital energy with respect to frequency is left as a ratio of post-Newtonian

expansions or re-expanded as a single post-Newtonian expansion.

The surprising accuracy of TaylorT4 3.5/3.0 in the gravitational frequency

range from Mω=−0.035 through Mω=−0.15, for the equal-mass, nonspinning

inspiral of two black holes, in principle could form a basis for evaluating the

errors of numerical simulations. Instead of worrying about errors due to different

formulations, initial data, boundary conditions, extraction methods, etc., perhaps

a long inspiral simulation could be compared with TaylorT4 3.5/3.0 in order to

get a direct estimate of the phase error. Similarly, because of its good agreement,

TaylorT4 3.5/3.0 could also be used to address questions that require much longer

waveforms than currently available, for instance the question of when lower order

post-Newtonian waveforms become unreliable.

We find that the 3PN contributions to the amplitude of the (2,2) modes im-

prove their accuracy with respect to the numerical waveforms. This suggests that

for accurate parameter estimation, it may be desirable to compute the full 3PN

amplitude for the polarization waveforms. Despite the formidable nature of the

calculation required, it would also be interesting to see how the inclusion of 4PN

order corrections to the phasing would affect our comparisons.
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Much work still needs to be done to improve the comparison between NR and

PN. Our primary goal is to push our simulations through merger and ringdown

so that we may compare various resummed PN approximants and the effective-

one-body approximants during the last cycle of inspiral and merger, as well as

test TaylorT4 3.5/3.0 closer to merger. We also intend to do long inspirals with

arbitrary masses and spins in order to test the robustness of PN over a range of

these parameters.

Furthermore we wish to improve our initial data. There is a large amount of

“junk radiation” present in the initial data that limits how early we can match

PN and NR waveforms. Reduction of this junk radiation [189] would improve

the accuracy of our simulations as well.

Finally, we have done just a simple comparison between NR and PN, without

including any treatment of effects that are important for real gravitational-wave

detectors such as limited bandwidth and detector noise. In order to more directly

address the suitability of PN formulas for analyzing data from gravitational-wave

detectors, it will be necessary to fold in the properties of the detector, to consider

specific values for the total mass of the binary, and to fit for the mass from the

waveforms rather than assuming that the PN and NR waveforms correspond to

the same mass. We leave this for future work.
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High-accuracy numerical simulation of black-hole

binaries: Computation of the gravitational-wave

energy flux and comparisons with post-Newtonian

approximants1

Expressions for the gravitational wave (GW) energy flux and center-of-mass

energy of a compact binary are integral building blocks of post-Newtonian

(PN) waveforms. In this paper, we compute the GW energy flux and GW

frequency derivative from a highly accurate numerical simulation of an equal-

mass, nonspinning black hole binary. We also estimate (the derivative of) the

center-of-mass energy from the simulation by assuming energy balance. We

compare these quantities with the predictions of various PN approximants

1This chapter is extracted with minor revisions from Ref. [61], which was written in collab-
oration with Alessandra Buonanno, Lawrence E. Kidder, Abdul H. Mroué, Yi Pan, Harald P.
Pfeiffer, and Mark A. Scheel. I extrapolated the waveforms used in this paper, and shared with
Harald the determination of uncertainty estimates. I worked to clarify the distinction between
the various types of frequencies used, ensuring that we never compared apples with oranges. I
also suggested the technique used to match the PN and NR waveforms, and wrote the code to
produce the matches, and shared in writing the text.
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(adiabatic Taylor and Padé models; non-adiabatic effective-one-body (EOB)

models). We find that Padé summation of the energy flux does not accelerate

the convergence of the flux series; nevertheless, the Padé flux is markedly

closer to the numerical result for the whole range of the simulation (about

30 GW cycles). Taylor and Padé models overestimate the increase in flux

and frequency derivative close to merger, whereas EOB models reproduce

more faithfully the shape of and are closer to the numerical flux, frequency

derivative, and derivative of energy. We also compare the GW phase of the

numerical simulation with Padé and EOB models. Matching numerical and

untuned 3.5 PN order waveforms, we find that the phase difference accumu-

lated until Mω=0.1 is -0.12 radians for Padé approximants, and 0.50 (0.45)

radians for an EOB approximant with Keplerian (non-Keplerian) flux. We

fit free parameters within the EOB models to minimize the phase difference,

and confirm the presence of degeneracies among these parameters. By tuning

the pseudo-4PN–order coefficients in the radial potential or in the flux, or,

if present, the location of the pole in the flux, we find that the accumulated

phase difference at Mω=0.1 can be reduced—if desired—to much less than

the estimated numerical phase error (0.02 radians).

5.1 Introduction

The first-generation interferometric gravitational wave (GW) detectors, such as

LIGO [26, 245], GEO600 [162], and Virgo [4, 3], are now operating at or near their

design sensitivities. One of the most promising sources for these detectors is the

inspiral and merger of binary black holes (BBHs) with masses m1 ∼ m2 ∼ 10–
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20 M¯ [140, 107]. A detailed and accurate understanding of the gravitational

waves radiated as the black holes spiral towards each other will be crucial not

only for the initial detection of such sources, but also for maximizing the in-

formation that can be obtained from signals once they are observed. Both the

detection and subsequent analysis of gravitational waves from compact binaries

depends crucially on our ability to build an accurate bank of templates, where

each template is a theoretical model that accurately represents the gravitational

waveform from a binary that has a certain set of parameters (e.g., masses and

spins). For detection, the technique of matched filtering is applied to noisy data

to extract any signals that match members of the template bank. For analysis,

the best-fit parameters are determined, most likely by an iterative process that

involves constructing further templates to zero in on the best fit.

When the black holes are far apart and moving slowly, the gravitational wave-

form (i.e., the template) can be accurately computed using a post-Newtonian (PN)

expansion. As the holes approach each other and their velocities increase, the

post-Newtonian expansion is expected to become less and less reliable. How-

ever, until recently there has been no independent way to determine how close

comparable-mass holes must be before PN methods become inaccurate. This has

changed with recent advances in numerical relativity (NR), which make it pos-

sible for the first time to quantify the disagreement between PN predictions [42]

and the true waveform [75, 24, 157, 59, 151, 156]. In a previous paper [59], some

of us described numerical simulations of 15 orbits of an equal-mass, nonspinning

binary black hole system. Gravitational waveforms from these simulations cov-

ering more than 30 GW cycles and ending about 1.5 GW cycles before merger,
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were compared with those from quasi-circular PN formulas for several time-

domain Taylor approximants computed in the so-called adiabatic approximation.

We found that there was excellent agreement (within 0.05 radians) in the GW

phase between the numerical results and the PN waveforms over the first ∼ 15

cycles, thus validating the numerical simulation and establishing a regime where

PN theory is accurate. In the last 15 cycles to merger, however, generic time-

domain Taylor approximants build up phase differences of several radians. But,

apparently by coincidence, one specific PN approximant—Taylor T4 at 3.5PN

order—agreed much better with the numerical simulations, with accumulated

phase differences of less than 0.05 radians over the 30-cycle waveform. Simu-

lations by Hannam et al. [156] for equal-mass, nonprecessing spinning binaries

confirm that this agreement in the nonspinning case is a coincidence: they find

the phase disagreement between Taylor T4 and the numerical waveform can be

a radian or more as the spins of the black holes are increased.

To build a template bank to be used by ground-based GW detectors, one

possibility would be to run a separate numerical simulation for each template.

This is not currently possible, however, due to the large computational cost per

numerical waveform (on the order of a week for a single waveform) and the

large number of templates needed to cover the parameter space, especially when

spins are present. A more realistic possibility is to perform a small number

of simulations and develop an analytic template family (i.e., a fitting formula)

which interpolates the parameter space between the simulations [206, 78, 5, 122,

123, 124].

Before the NR breakthrough several analytic prescriptions were proposed to
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address the loss of accuracy of the adiabatic Taylor approximants. Damour, Iyer,

and Sathyaprakash [106] introduced the Padé summation of the PN center-of-

mass energy and gravitational energy flux in order to produce a series of Padé

approximants for the waveforms in the adiabatic. Buonanno and Damour [76, 77,

114, 103] introduced the effective-one-body (EOB) approach which gives an ana-

lytic description of the motion and radiation beyond the adiabatic approximation

of the binary system through inspiral, merger, and ringdown. The EOB approach

also employs the Padé summation of the energy flux and of some crucial ingre-

dients, such as the radial potential entering the conservative dynamics. So far,

the EOB waveforms have been compared with several numerical waveforms of

nonspinning binary black holes [75, 206, 78, 122, 123, 124]. Buonanno et al. [78]

showed that by using three quasi-normal modes [75] and by tuning the pseudo

4PN order coefficient [105] in the EOB radial potential to a specific value, the

phase difference accumulated by the end of the ringdown phase can be reduced

to ∼ 3–8× 10−2 of a GW cycle, depending on the mass ratio and the number

of multipole moments included in the waveform. Those results were obtained

using waveforms with 5–16 GW cycles and mass ratios 1:4, 1:2, 2:3, and 1:1. In

Refs. [122, 123, 124] the authors introduced other improvements in the EOB ap-

proach, in part obtained by tuning the test-mass limit results [121]—for example

Padé summation of the PN amplitude corrections in the inspiral waveform; ring-

down matching over an interval instead of a point; inclusion of noncircular terms

in the tangential damping force; use of five quasi-normal modes. They found that

the phase differences accumulated by the end of the inspiral (ringdown) can be

reduced to ±2×10−4 (±5×10−3) of a GW cycle for equal-mass binaries [122, 123]
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and to ±8×10−3 of a GW cycle for binaries with mass ratio 1:2 [124]. Note that

these phase differences are smaller than the numerical errors in the simulations.

The energy flux and the center-of-mass energy are two fundamental quanti-

ties of the binary dynamics and crucial ingredients in building GW templates.

In this paper we extract these quantities, and compare the results from our nu-

merical inspiral simulation [59] with PN results in both their Taylor-expanded

and summed (Padé and EOB) forms. The agreement between the numerical and

analytical results for the energy flux and the center-of-mass energy is a further

validation of the numerical simulation. It also allows us to study whether or

not the agreement of the phase evolution of PN and numerical waveforms is

accidental. In addition, we compute waveforms based on adiabatic Padé and

non-adiabatic EOB approximants in their untuned form (i.e., without introducing

fitting coefficients) and study their agreement with our numerical simulations.

We try to understand whether these approximants can reproduce features of

the numerical simulations that can be exploited to develop a faithful analytic

template family. By introducing unknown higher-order PN coefficients into the

dynamics and tuning them to the numerical data, we investigate how to improve

the agreement with the numerical results. Although our study only examines

nonspinning, equal-mass binary black holes, by combining it with other stud-

ies [206, 78, 5, 122, 123, 124] one can already pinpoint which parameters are de-

generate and which have the largest effect on the waveforms. This is particularly

relevant during the last stages of inspiral and plunge. The overall methodology

can be extended to a larger region of the parameter space. We will defer to a

future paper a complete study of the flexibility of the EOB approach with the
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extension of our numerical waveform through merger and ringdown.

This paper is organized as follows: Section 5.2 gives a quick review of the

numerical simulations presented in [59], and then presents the computation of

the GW energy flux from the simulation. In Sec. 5.3 we summarize the PN ap-

proximants that will be compared to the numerical simulation. In Sec. 5.4, we

compare the GW energy flux for the various PN approximants with numerical re-

sults and explore the possibility of improving the agreement with the numerical

flux by adding phenomenological parameters [206, 78, 122, 123, 124]. In Sec. 5.5,

we examine the evolution of the center-of-mass energy for the various PN ap-

proximants and compare to the numerical results assuming balance between the

change in the center-of-mass energy and the energy carried from the system by

the gravitational waves. In Sec. 5.6 we compare waveforms constructed from the

Padé and EOB approximants with our numerical results, and study how to im-

prove the agreement by exploiting the flexibility of the EOB model (i.e., by fitting

free parameters of the EOB model). Finally, we present some concluding remarks

in Sec. 5.7. We also include an appendix (Sec. 5.8) reviewing the performance

of the Padé summation of the Taylor series of the energy flux in the test particle

limit.
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Figure 5.1: Some aspects of the numerical simulation

From top panel to bottom: the leading mode ḣ22; the two next largest modes, ḣ44

and ḣ32 (smallest); the frequency of ḣ22 (see Eq. (5.5)).
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5.2 Computation of the numerical gravitational-wave

energy flux

5.2.1 Overview and Definitions

The data used in this paper is the same as that described in Sec. II of Boyle

et al. [59]. The simulation is a 16-orbit inspiral, with very low spin and eccen-

tricity. Figure 5.1 presents a view of some relevant quantities of that simulation.

The Newman-Penrose scalar Ψ4, defined using a coordinate-based tetrad, is

extracted from the simulation at several extraction radii and expanded in spin-

weighted spherical harmonics,

Ψ4(t ,r ,ϑ,ϕ) = ∑
l ,m

Ψ
l ,m
4 (t ,r )−2Yl ,m(ϑ,ϕ) . (5.1)

Then Ψ
l ,m
4 (t ,r ) is extrapolated to infinite extraction radius using an n-th order

polynomial in 1/r , where typically n = 3. This results in the asymptotic field

rΨl ,m
4 (t − r∗) as function of retarded time2 t − r∗.

Gravitational radiation may also be expressed via the standard metric-perturbation

quantities h+ and h×, which we similarly write in terms of spin-weighted spher-

ical harmonic components,

hB h+− ih× = ∑
l ,m

hl ,m −2Yl ,m . (5.2)

For linear perturbations around Minkowski space, Ψl ,m
4 (t −r∗) =−ḧl ,m(t −r∗). In

particular, this relation should be true for the waveforms we have extrapolated

to infinity.
2See Sec. II F of Ref. [59] for a precise definition of r∗ and a description of the extrapolation.
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However, to compute the energy flux we do not need to determine h; we

need only its time derivative ḣ. The energy flux depends on the spin-weighted

spherical harmonic coefficients of the time derivative ḣ via

F = 1

16π

∞∑
l=2

l∑
m=−l

|r ḣl ,m|2 . (5.3)

We obtain ḣl ,m by time-integration of Ψl ,m
4 , as discussed in detail below.

Finally, we define gravitational wave phase and frequency in two ways—one

based on Ψ22
4 , and one based on ḣ22:

φ= arg(Ψ22
4 ) , ω= d

dt
φ , (5.4)

ϕ= arg
(
ḣ22

)
, $= d

dt
ϕ . (5.5)

In both cases, we define the arg function to be the usual function, with discon-

tinuities of 2π removed. Many PN formulas (see Sec. 5.3) involve yet another

frequency and phase: the orbital phase Φ and orbital frequency Ω. Although the

three frequencies satisfy ω≈$≈ 2Ω, the slight differences between different fre-

quencies are significant at the level of precision of our comparison (see Fig. 5.6

below), so it is important to distinguish carefully between them.

When discussing our numerical solution, we write all dimensionful quantities

in terms of the mass scale M , which we choose to be the sum of the irreducible

masses of the two black holes.3

3This quantity was denoted by m in Ref. [59].
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5.2.2 Calculation of ḣ

The energy flux depends on the spin-weighted spherical harmonic coefficients of

ḣ via Eq. (5.3). We therefore need to perform one time integration on Ψl ,m
4 :

ḣl ,m(t ) =−
∫ t

t0

Ψ
l ,m
4 (t ′)dt ′+Hl ,m . (5.6)

This integration is performed for each mode (l ,m) separately and requires the

choice of two integration constants, which are contained in the complex number

Hl ,m . Ideally, Hl ,m should be chosen such that ḣl ,m → 0 for t →−∞. Because

our numerical simulations do not extend into the distant past, this prescription

cannot be implemented. Rather, we make use of the approximation that the real

and imaginary parts of ḣl ,m should oscillate symmetrically around zero.

Let us consider a pure sine/cosine wave, with constant amplitude and phase:

Ψex
4 =−A[cos(ωt )+ isin(ωt )], (5.7)

ḣex = A

ω
[sin(ωt )− icos(ωt )]+Hex, (5.8)

where the superscript ‘ex’ stands for example. The amplitude is given by

|ḣex|2 = A2

ω2
+2

A

ω
[ℜHex sin(ωt )−ℑHexcos(ωt )]+|H ex|2. (5.9)

Only for the correct choice of integration constants, Hex = 0, is the amplitude

|ḣex| constant.
Therefore, we propose to determine the integration constants Hl ,m in Eq. (5.6)

by minimizing the time derivative of the amplitude over the entire waveform. In

particular we minimize

Il ,mB

∫ t2

t1

(
d

dt
|ḣl ,m|2

)2

dt . (5.10)
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From this minimization principle it follows that Hl ,m is determined by the linear

system

ℜH
∫

(ℜΨ4)2dt +ℑH
∫

ℜΨ4ℑΨ4dt =−
∫ [

(ℜΨ4)2ℜḣ0 +ℜΨ4ℑΨ4ℑḣ0
]

dt ,

(5.11a)

ℜH
∫

ℜΨ4ℑΨ4dt +ℑH
∫

(ℑΨ4)2dt =−
∫ [

(ℑΨ4)2ℑḣ0 +ℜΨ4ℑΨ4ℜḣ0
]

dt .

(5.11b)

Here, we have suppressed the indices l ,m for clarity, all integrals are definite

integrals from t1 to t2, and ḣ0(t )B−∫ t
t0
Ψ4(t ′)dt ′. For a given integration interval

[t1, t2], Eqs. (5.11) provide a deterministic procedure to determine the integration

constants Hl ,m . We note that there have been several earlier proposals to fix

integration constants [209, 32, 217, 124, 232]. While we have not tested those

proposals, we point out that Eqs. (5.11) allow for very accurate determination

of the integration constants and one can easily obtain an error estimate, as we

discuss in the next subsection.

5.2.3 Uncertainties in numerical quantities

Because the amplitude and frequency of the waveform are not constant, this

procedure is imperfect, and the result depends somewhat on the chosen values

of t1 and t2. To estimate the residual uncertainty in H due to this choice, we select

nine different values for t1 and eleven values for t2: t1 = 200M ,220M , . . . ,360M ;

t2 = 2000M ,2100M , . . . ,3000M . The values of t1 vary over roughly one GW cycle

and test the sensitivity to the GW phase at the start of the integration interval; the

values of t2 are designed to test the dependence on the amplitude at the end of

the integration interval. For t2 > 3000M we find that the errors in our procedure
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rapidly increase for several reasons: (a) the minimization principle is based on

the approximation that the amplitude is constant; this approximation becomes

worse toward merger; (b) Il ,m in Eq. (5.10) weights absolute changes in |ḣ|, not
relative ones; close to merger, the amplitude becomes so large that it dominates

Il ,m ; and (c) the integration constants shift the waveform ḣl ,m vertically, and

we are trying to determine the particular vertical shift such that ḣl ,m is centered

around zero. Determination of such an offset is most accurate in a regime where

the oscillations are small, i.e., at early times.

For each of these 99 integration intervals, we compute integration constants

using Eqs. (5.11) for the three dominant modes, ḣ22, ḣ44, and ḣ32, and we com-

pute F (t ) from Eq. (5.3) using only these modes and we compute $(t ). (We

will show below that the contributions of other modes are far below our nu-

merical errors on the flux.) We average the 99 functions F (t ) and $(t ) and then

use a parametric plot of F (t ) versus $(t ) in our comparisons presented below.

The variation in these 99 values yields an uncertainty in F due to the choice of

integration constants.

The lower panel of Fig. 5.2 shows the variation in flux from the 99 different

integration intervals. We find that the maximum deviation can be well approxi-

mated by max |δF |/F = 1.5×10−5(−M$)−3/2 (see the solid line in lower panel of

Fig. 5.2). The average F computed from all 99 intervals [t1, t2] will have a smaller

error. Inspection of the lower panel of Fig. 5.2 reveals that the δF /F curves fall

into 11 groups, corresponding to the 11 values of t2. Assuming that δF between

these groups is randomly distributed, the error of the average will be reduced by

a factor
p

11, i.e., δF /F = 5×10−6(−M$)−3/2. This error is indicated as the gray
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Figure 5.2: Accuracy of the numerical flux

Lower panel: Relative difference between flux F ($) computed with 99 different
intervals [t1, t2] and the average of these. Upper panel: Relative change in the
flux F ($) under various changes to the numerical simulation. The gray area in the
upper panel indicates the uncertainty due to the choice of integration constants,
which is always dominated by numerical error. The dashed line in the upper
panel is our final error estimate, which we plot in later figures.
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shaded area in the upper panel of Fig. 5.2.

The upper panel of Fig. 5.2 plots the relative change in F ($) for several changes

in our numerical simulation: (a) Computing the flux from a run with lower res-

olution (0030c/N5 in the language of Boyle et al. [59]); (b) using a different set

of extraction radii for the extraction of the gravitational wave; (c) increasing the

polynomial order of extrapolation of Ψ4 to infinite extraction radius from n = 3

to n = 4; and (d) computing the flux from a separate evolution with a different

outer boundary radius (0030c-2/N6). At low frequencies, the error is dominated

by extrapolation to infinite radius and is a few tenths of a percent; at intermediate

frequencies, 0.055ß−M$< 0.083, all errors are smaller than 0.1 percent. At fre-

quency −M$≈ 0.084 we change the gauge conditions in the evolutions to allow

wave-escorting; this introduces high-frequency features, which are small when

extrapolation order n = 3 is used, but which dominate for n = 4 extrapolation.

The numerical data we use in the PN comparisons below is extrapolated with

n = 3, for which the features due to change of gauge are small, but nevertheless

we will use conservative error bars encompassing the n = 4 extrapolation as indi-

cated in Fig. 5.2, i.e., a relative error of 0.2 percent for −M$> 0.083. We find that

the uncertainty in the flux due to numerical error in determining Ψ4 is always

larger than the uncertainty due to the choice of integration constants.

The contributions of the various (l ,m) modes to the total flux [see Eq. (5.3)]

are plotted in Fig. 5.3. The top panel plots the flux as a function of time; the

lower panel as a function of frequency M$. The dashed line in the lower panel

corresponds to the error estimate of Fig. 5.2. Because the modes (5,4), (6,6), and
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Figure 5.3: Contributions of various (l ,m) modes to the total numerical gravi-
tational wave flux

Upper panel: plotted as a function of time. Lower panel: Plotted as a function
of frequency M$. The lower panel also contains the error estimate derived in
Fig. 5.2.
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Figure 5.4: Accuracy of numerical $̇

Lower panel: Difference between frequency derivative $̇ computed with 99 dif-
ferent intervals [t1, t2] and the average of these. Upper panel: Change in the
frequency derivative $̇ under various changes to the numerical simulation. The
gray area in the upper panel indicates the uncertainty due to choice of integra-
tion constants, which dominates the overall uncertainty for low frequencies. The
dashed line in the upper panel is our final error estimate, which we plot in later
figures.
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(8,8) are significantly smaller than our error estimate, we do not include them in

the present analysis.

To estimate the uncertainty in $̇, we proceed in a similar fashion. Each one

of the 99 different integration intervals yields an ḣ22 from which we determine

$̇. We average these to obtain the final $̇ to be used in the post-Newtonian

comparisons. The lower panel of Fig. 5.4 shows the variation in $̇ between the 99

different integration intervals. We find that the maximum deviation can be well

approximated by max |M 2δ$̇| = 5× 10−6(−M$)−0.3 (see the solid line in lower

panel of Fig. 5.4). The average $̇ computed from all 99 intervals [t1, t2] will have

a smaller error. Inspection of the lower panel of Fig. 5.4 reveals that the δ$̇ curves

fall into 11 groups, corresponding to the 11 values of t2. As for the case of δF , if

we assume that δ$̇ between these groups is randomly distributed, then the error

of the average will be reduced by a factor
p

11, i.e., M 2δ$̇= 1.5×10−6(−M$)−0.3.

This error is indicated as the gray shaded area in the upper panel of Fig. 5.4.

The upper panel of Fig. 5.4 plots also the change in $̇($) for the same changes

in our numerical simulation already discussed above. We find that at −M$ <
0.083, the uncertainty in $̇ is dominated by the choice of integration constants,

whereas at higher frequencies the uncertainty is dominated by the numerical

errors in the calculation of Ψ4. As discussed above, at frequency −M$ ≈ 0.084

we change the gauge conditions in the evolutions to allow wave-escorting; this

introduces high-frequency features leading to more conservative error estimates.

Note that $̇ is a very steep function of $. While the absolute errors in $̇ are

roughly constant for our simulation, the relative errors change significantly: δ$̇/$̇

drops from about 10 percent early in the run to about 0.2 percent at late times.
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We also point out that the first 1000M of our simulation are contaminated

by noise due to a pulse of “junk-radiation” at the start of the simulation. While

this contamination is not apparent on a plot of the waveform as in Fig. 5.1, it

nevertheless limits accurate PN-NR comparisons to the region, t − r∗ à 1000M ,

i.e., −M$à 0.037.

5.3 Post-Newtonian approximants

In this paper we will compare the numerical simulation to various approximants

based on the PN expansion. The PN expansion is a slow-motion, weak-field

approximation to general relativity with an expansion parameter ε ∼ (v/c)2 ∼
(GM/r c2). For a binary system of two point masses m1 and m2, v is the magni-

tude of the relative velocity, M is the total mass, and r is the separation. For a

review of the PN expansion applied to gravitational radiation from inspiralling

compact binaries, see Ref. [42].

In Table 5.1 we summarize the PN approximants that we use and our notation.

We shall use the PN approximants in the so-called adiabatic approximation, both

in the standard Taylor-expanded form (reviewed in Sec. 5.3.1) and in a form based

on Padé summation (reviewed in Sec. 5.3.2). In addition we shall use the non-

adiabatic EOB model (reviewed in Sec. 5.3.3) in its original form [76, 77, 114], as

well as several variations that differ in the form of the radiation-reaction force [73,

72, 104]. After summarizing the various PN approximants in Secs. 5.3.1, 5.3.2,

and 5.3.3, we describe how we construct the waveform for these approximants in

Sec. 5.3.4.
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Table 5.1: Summary of PN approximants

Approximant Notation See Eqs. Adiabatic Keplerian

Taylor (T-) Fn/Ep (5.19), (5.14) yes yes
Padé (P-) F m

n /E q
p (5.39), (5.33) yes yes

EOB (E-) F m
n /Hp (5.64), (5.44) no yes

EOB (E-) nKF m
n /Hp (5.65), (5.44) no no

EOB (E-) Fn/Hp (5.69), (5.44) no yes
EOB (E-) nKFn/Hp (5.70), (5.44) no no

The T-approximants are always Taylor T4 [59] except in Fig. 5.16. The P-
approximant in the second row was introduced in Refs. [106, 114, 73] and the
original E-approximant in third row was introduced in Refs. [76, 77, 114]. The
last three rows refer to three possible variations of E-approximants introduced in
Refs. [73, 72]. In a few tests aimed at improving the closeness between numerical
data and E-approximants, we vary vpole and treat the logarithms as constants
when Padé summation to the flux is applied [122]. We shall denote this flux by
F

m
n . Finally, when using tuned PN approximants with pseudo 4PN order terms

in the flux, energy, or Hamiltonian, we denote the latter as pF , pE , and pH .
Note that if known test-mass limit coefficients in the flux are used, the latter is
still denoted as F even at PN orders larger than 3.5PN. Finally, the values of
vpole and vlso used in the P-approximants F m

n and nKF m
n are v2PN

pole = 0.6907 and
v2PN
lso = 0.4456.

In the adiabatic approximation the inspiral is modeled as a quasi-stationary

sequence of circular orbits. The evolution of the inspiral (and in particular of the

orbital phase Φ) is completely determined by the energy-balance equation [42]

dE(vΩ)

dt
=−F (vΩ) . (5.12)

This equation relates the time derivative of the center-of-mass energy E(vΩ)

(which is conserved in absence of radiation reaction) to the gravitational wave

energy flux F (vΩ). Both functions are known for quasi-circular orbits as a PN
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expansion in the invariantly defined velocity

vΩ = (MΩ)1/3 , (5.13)

where Ω = Φ̇ is the orbital frequency (in units such that G = c = 1).4 We will

denote the Taylor-expanded flux (energy) by Fk (Ek) where k denotes the maxi-

mum power of vΩ retained in the series. (Recall that k = 2N for an N th order PN

expansion.) We will denote the Padé-expanded flux (energy) by F m
n (E m

n ) where

m+n = k , with m and n denoting the order of the polynomial in the numerator

and denominator, respectively.

5.3.1 Adiabatic Taylor approximants

For generic values of the symmetric mass ratio ν= m1m2/M 2, the center-of-mass

energy is known through 3PN order [174, 125, 115, 49, 119]. For circular orbits

the Taylor PN approximants (henceforth, T-approximants) to the energy are given

by

E2k(vΩ) =−Mν

2
v2
Ω

k∑
i=0

E2i (ν) v2i
Ω , (5.14)

where the known coefficients are

E0(ν) =1 , (5.15)

E2(ν) =− 3

4
− ν

12
, (5.16)

E4(ν) =− 27

8
+ 19

8
ν− 1

24
ν2 , (5.17)

E6(ν) =− 675

64
+

(
34445

576
− 205

96
π2

)
ν− 155

96
ν2

− 35

5184
ν3 . (5.18)

4In Ref. [59] we used x = v2
Ω as the expansion parameter.
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The GW energy flux for arbitrary masses has been computed through 3.5PN

order [50, 46]:

Fk(vΩ) = 32

5
ν2 v10

Ω

k∑
i=0

Fi (ν) v i
Ω , (5.19)

where

F0(ν) =1 , (5.20)

F1(ν) =0 , (5.21)

F2(ν) =− 1247

336
− 35

12
ν , (5.22)

F3(ν) =4π , (5.23)

F4(ν) =− 44711

9072
+ 9271

504
ν+ 65

18
ν2 , (5.24)

F5(ν) =−
(

8191

672
+ 583

24
ν

)
π , (5.25)

F6(ν) =6643739519

69854400
+ 16

3
π2 − 1712

105
γE

− 856

105
log(16v2

Ω)+
(
−134543

7776
+ 41

48
π2

)
ν

− 94403

3024
ν2 − 775

324
ν3 , (5.26)

F7(ν) =
(
−16285

504
+ 214745

1728
ν+ 193385

3024
ν2

)
π , (5.27)

where γE is Euler’s constant. Notice that starting at 3PN order (k = 6) logarithms

enter the flux.

5.3.2 Adiabatic Padé approximants

Center-of-mass energy

Damour, Iyer, and Sathyaprakash [106] (henceforth DIS) proposed a new class of

approximate waveforms constructed by introducing new energy and flux func-



5.3. Post-Newtonian approximants 239

tions and by applying Padé summation [31] to build successive approximants to

these two functions (henceforth P-approximants). Their motivation for introduc-

ing these new functions and using their P-approximants came from an examina-

tion of the behavior of the standard PN-expansion and the new P-approximants

in the test-mass limit in which the exact gravitational energy flux is known nu-

merically [215], the PN expansion of the flux is known through 5.5PN order [241],

and the center-of-mass energy is known analytically as

E(vΩ;ν= 0)

µ
= 1−2v2

Ω√
1−3v2

Ω

−1 , (5.28)

where µ= Mν is the reduced mass.

DIS first observed that in the quantum two-body problem the symmetric quan-

tity

εB
E 2
tot−m2

1 −m2
2

2m1 m2
, (5.29)

(where the total relativistic energy Etot = E+M ), is the best energy function when

treating the two-body problem as an effective one-body problem in an external

field. Because in the test-mass limit

ε(vΩ;ν= 0) = 1−2v2
Ω√

1−3v2
Ω

, (5.30)

DIS defined the new energy function as

e(vΩ)B ε2 −1 , (5.31)

as this function has a simple pole singularity on the real axis in the test-mass limit,

and DIS conjectured that such a pole would continue to exist in the comparable

mass case.5 The energy function E(vΩ) entering the balance equation (5.12) can
5A motivation for having used Eq. (5.31) instead of Eq. (5.29) as a basic quantity is that the

former (unlike the latter) is amenable to Padé summation in the test mass limit.
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be expressed in terms of e(vΩ) as

E(vΩ) =
{

M 2 +2νM 2
[√

1+e(vΩ)−1
]}1/2 −M . (5.32)

by combining Eqs. (5.29) and (5.31). [Note that the map between the adiabatic

functions e and E given by Eq. (5.32) is the same map found in the EOB model

between the effective Hamiltonian Heff and the real Hamiltonian H real, as given

by Eq. (5.44).]

Finally, DIS proposed as approximants to the energy function e(vΩ) the diago-

nal or subdiagonal P-approximants, depending on whether the PN order is even

or odd.6 Investigating the behavior of the P-approximants under variations of

an (at the time) unknown coefficient in the 3PN center-of-mass energy, Damour,

Jaranowski, and Schäfer [114] found it more robust to use the superdiagonal

P-approximant instead of the subdiagonal P-approximant at 3PN order.7 This

suggestion was also adopted in Ref. [73] and will be used here; that is, we use

subdiagonal P-approximants for 1PN, diagonal for 2PN, and superdiagonal for

3PN.

The P-approximants for the center-of-mass energy are defined as

E q
p (vΩ) =

{
M 2 +2νM 2

[√
1+eq

p (vΩ)−1

]}1/2

−M , (5.33)

where at 2PN order [106]

e2
2(vΩ) =−v2

Ω

1+ 1
3ν−

(
4− 9

4ν+ 1
9ν

2
)

v2
Ω

1+ 1
3ν−

(
3− 35

12ν
)

v2
Ω

, (5.34)

6As the energy is only a function of even powers of vΩ, the choice of using diagonal or sub-
diagonal (superdiagonal) is based on the order of v2

Ω that is retained. For notational consistency,
the indices on all approximants will refer to the power of vΩ. Other references define the indices
on the energy approximants with respect to v2

Ω.
7Subdiagonal P-approximants were extended to 3PN order in Ref. [110], and LAL [94] software

uses those P-approximants for the energy function.
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and at 3PN order [114]

e4
2(vΩ) =− v2

Ω

1

1−w3(ν) v2
Ω

[
1−

(
1+ 1

3
ν+w3(ν)

)
v2
Ω

−
(
3− 35

12
ν−

(
1+ 1

3
ν

)
w3(ν)

)
v4
Ω

]
, (5.35)

where

w3(ν) = 40

36−35ν

[
27

10
+ 1

16

(
41

4
π2 − 4309

15

)
ν

+103

120
ν2 − 1

270
ν3

]
. (5.36)

Gravitational-wave energy flux

As originally pointed out in Refs. [214, 101], the flux function in the test-mass

limit has a simple pole at the light-ring position (i.e., the last unstable circular

orbit of a photon). Motivated by this, DIS introduced a new flux-type function

fk(vΩ) =
(

1− vΩ
v pole(ν)

)
Fk(vΩ;ν) , (5.37)

with the suggestion that vpole be chosen to be at the light ring (pole singularity)

of the new energy function.

In order to construct well-behaved approximants, DIS proposed to normalize

the velocity vΩ entering the logarithms in Eq. (5.26) to some relevant scale which

they chose to be v lso(ν), where the last stable orbit (LSO) is defined as the

minimum of the energy. Also, they factored out the logarithms yielding

fk(vΩ) =32

5
ν2 v10

Ω

[
1+ log

vΩ
vlso(ν)

(
k∑

i≥6
`i v i

Ω

)]

×
(

1− vΩ
vpole(ν)

)
k∑

i=0
F

log-fac
i v i

Ω , (5.38)
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where `i and F
log-fac
i are functions of Fi . Through 3.5PN order, `6 =−1712/105,

`7 = 0, and F
log-fac
i =Fi with the replacement of vΩ→ vlso in F6 [see Eq. (5.26)].

Finally, DIS proposed to define the P-approximant of the GW energy flux as

F m
n (vΩ) = 1

1− vΩ/v pole(ν)
f m

n (vΩ) . (5.39)

where

f m
n (vΩ) =32

5
ν2 v10

Ω

[
1+ log

vΩ
vlso(ν)

(
k∑

i≥6
`i v i

Ω

)]

×Pm
n

[(
1− vΩ

vpole(ν)

)
k∑

i=0
F

log-fac
i v i

Ω

]
, (5.40)

where Pm
n [x] denotes Padé summation of the series x. DIS proposed to use

the diagonal or subdiagonal P-approximants, depending on whether k = n +m

is even or odd. Furthermore, DIS proposed to use vlso(ν) and vpole(ν) as the

minimum and pole of the center-of-mass energy P-approximant of the same PN

order. At 2PN (the order to which the PN expansion was known by DIS) vpole is

determined from the pole of the Padé energy function e2
2, yielding

v2PN
pole(ν) =

√√√√1

3

1+ 1
3ν

1− 35
36ν

. (5.41)

When the PN expansion was extended to 3PN order, it was found that none of

the 3PN P-approximants have a physical pole. Therefore, somewhat arbitrarily,

we will follow previous analyses and use the value (5.41) also at 3PN order. We

denote the P-approximants defined by Eqs. (5.39) and (5.33) as F m
n /E q

p .

The denominator in the Padé summation of the GW energy flux can have ze-

ros. They are called extraneous poles of the P-approximant [31]. It is desirable that

these poles be located at high frequency (i.e., beyond the transition from inspiral
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to plunge). We shall see that depending on the PN order and also the mass ratio,

extraneous poles can be present at low frequencies. This could indicate poor

convergence of the Padé summation.

In Secs. 5.4.2, 5.6.2, and 5.6.3 we shall investigate how to improve the close-

ness of the PN approximants to the numerical data by varying a5 [105, 78, 122],

v pole [105, 122] and also by introducing higher-order PN coefficients in the flux

function. When varying vpole in the P-approximant at 3.5PN order, extraneous

poles appear at low values of vΩ. Therefore, in order to push these poles to very

high frequency, we follow the suggestion of Ref. [122], and use P-approximants

at 4PN order, where the 4PN coefficient is set to its known value in the test-mass

limit. This cure may fail for different mass ratios if new extraneous poles appear

at low frequency. Furthermore the logarithm in the flux is not factored out as in

Eq. (5.38), but treated as a constant when Padé summation is done. In this case

the flux function is denoted F
m
n .

We notice that DIS motivated the introduction of the P-approximants first in

the test-mass limit case by observing much faster and monotonic convergence of

the Padé energy, flux, and waveforms with respect to Taylor energy, flux, and

waveforms. Quantitative tests of the convergence were done only for the Padé

waveforms (see e.g., Tables III and IV in Ref. [106]), while for the flux and the

energy conclusions were drawn qualitatively from Figs. 3 and 4 of Ref. [106]. DIS

then conjectured that the comparable mass case is a smooth deformation of the

test-mass limit case, and proposed to use close-to-diagonal P-approximants for the

flux and the energy when ν 6= 0. In the appendix we perform a few convergence

tests of the P-approximants of the flux function in the test-mass limit case, and
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conclude that whereas the P-approximants provide a better fit to the numerical

flux at 5.5PN order, they do not accelerate the convergence of the Taylor series

expansion of the energy flux.

5.3.3 Non-adiabatic effective-one-body approximants

The EOB model goes beyond the adiabatic approximation and can incorporate

deviations from the Keplerian law when the radial separation becomes smaller

than the last stable circular orbit.

Here we briefly review the main equations defining the EOB dynamics and

refer the reader to previous papers for more details [77, 76, 114, 72, 206, 78, 122,

123]. The nonspinning EOB effective Hamiltonian is [76, 114]:

Heff(~r ,~p) =µ Ĥeff(~r ,~p)

=µ
{

A(r )

[
1+~p2 +

(
A(r )

D(r )
−1

)
(~n ·~p)2

+ 1

r 2
2(4−3ν)ν (~n ·~p)4

]}1/2

, (5.42)

with ~r and ~p being the reduced dimensionless variables; ~n =~r /r where we set

r = |~r |. In absence of spins the motion is constrained to a plane. Introducing

polar coordinates (r ,Φ,pr ,pΦ), the EOB effective metric reads

ds2
effBg eff

µν dxµdxν

=− A(r )c2dt 2 + D(r )

A(r )
dr 2 + r 2 (dϑ2 + sin2ϑdϕ2) . (5.43)

The EOB real Hamiltonian is

H real = M

√
1+2ν

(
Heff−µ

µ

)
−M , (5.44)
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and we define Ĥ real = H real/µ. The T-approximants to the coefficients A(r ) and

D(r ) in Eqs. (5.42) and (5.43) read [76, 114]

Ak(r ) =
k+1∑
i=0

ai

r i
, (5.45)

Dk(r ) =
k∑

i=0

di

r i
, (5.46)

where

a0 = 1 , a1 = 2 , a2 = 0 , a3(ν) = 2ν , a4(ν) =
(

94

3
− 41

32
π2

)
ν , (5.47)

d0 = 1 , d1 = 0 , d2(ν) = 6ν , d3(ν) = 2(3ν−26)ν . (5.48)

In Sec. 5.6.3, we will explore the flexibility of the EOB model by tuning the

pseudo-4PN–order coefficients a5(ν) which we will take to have the following

functional form8

a5(ν) = a5ν . (5.49)

In order to assure the presence of a horizon in the effective metric, we need

to factor out a zero of A(r ). This is obtained by applying the Padé summa-

tion [114]. Thus, the coefficients Ak(r ) and Dk(r ) are replaced by the Padé ap-

proximants [114]

A1
2(r ) = r (−4+2r +ν)

2r 2 +2ν+ r ν
, (5.50)

at 2PN order, and

A1
3(r ) = Num(A1

3)

Den(A1
3)

, (5.51)

with

Num(A1
3) = r 2 [(a4(ν)+8ν−16)+ r (8−2ν)] , (5.52)

8Note that what we denote a5 in this paper was denoted λ in Ref. [78].
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and

Den(A1
3) = r 3 (8−2ν)+ r 2 [a4(ν)+4ν]+ r [2a4(ν)+8ν]+4[ν2 +a4(ν)] , (5.53)

at 3PN order. When exploring the flexibility of the EOB model, we use the

following Padé approximant at 4 PN order [105, 78]:

A1
4(r ) = Num(A1

4)

Den(A1
4)

, (5.54)

with

Num(A1
4) = r 3 [32−24ν−4a4(ν)−a5(ν)]+ r 4[a4(ν)−16+8ν] , (5.55)

and

Den(A1
4) =−a2

4(ν)−8a5(ν)−8a4(ν)ν+2a5(ν)ν−16ν2

+ r [−8a4(ν)−4a5(ν)−2a4(ν)ν−16ν2]

+ r 2 [−4a4(ν)−2a5(ν)−16ν]

+ r 3 [−2a4(ν)−a5(ν)−8ν]

+ r 4 [−16+a4(ν)+8ν] . (5.56)

For the coefficient D(r ), the P-approximant used at 2PN, 3PN, and 4PN order

respectively are [114, 105, 78]:

D0
2(r ) =1− 6ν

r 2
, (5.57)

D0
3(r ) = r 3

r 3 +6νr +2ν(26−3ν)
, (5.58)

D0
4(r ) = r 4

r 4 +6νr 2 +2ν(26−3ν)r −d4(ν)+36ν2
, (5.59)

and we choose somewhat arbitrarily d4(ν) = 36ν2, so that D0
4 = D0

3. (We note

that the value of d4 does not affect much the EOB evolution [78].) The EOB
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Hamilton equations written in terms of the reduced quantities Ĥ real and t̂ = t/M ,

Ω̂=ΩM [77], are

dr

dt̂
=∂Ĥ real

∂pr
(r ,pr ,pΦ) , (5.60)

dΦ

dt̂
BΩ̂= ∂Ĥ real

∂pΦ
(r ,pr ,pΦ) , (5.61)

dpr

dt̂
=− ∂Ĥ real

∂r
(r ,pr ,pΦ) , (5.62)

dpΦ
dt̂

=F̂ [Ω̂(r ,pr ,pΦ)] , (5.63)

where for the Φ component of the radiation-reaction force a few approximants are

available. Originally, Ref. [77] suggested the following Keplerian P-approximants

to the flux

KF̂ m
n B− 1

νv3
Ω

F m
n (vΩ;ν,v pole) , (5.64)

where F m
n is given by the Padé flux in Eqs. (5.39) and (5.40). Here by Keplerian

we mean that in the flux the tangential velocity VΦ = Φ̇r is set to VΦB vΩ = Φ̇1/3,

having assumed the Keplerian relation Φ̇2 r 3 = 1. It was then pointed out in

Ref. [104] that the Keplerian relation becomes less and less accurate once the

binary passes through the last stable orbit. A more appropriate approximant to

the flux would be

nKF̂ m
n B− v3

Ω

νV 6
Φ

F m
n (VΦ;ν,v pole) , (5.65)

where VΦ B Φ̇rΩ. Notice that because the EOB Hamiltonian is a deformation

of the Schwarzschild Hamiltonian, the exact Keplerian relation is Φ̇2 r 3
Ω = 1 with

rΩB r [ψ(r ,pΦ)]1/3 and ψ is defined following the argument presented around
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Eq. (19) to (22) in Ref. [104]:

1

ψr 3
Bω2

circ =
(
∂H (r ,pr = 0,pφ)

∂pφ

)2

= 1

r 3

p2
φA(r )(

1+ p2
φ

r 2

)
r
(
1+2η

(√
w(r ,pφ)−1

))
(5.66)

where w(r ,pφ) = A(r )

(
1+ p2

φ

r 2

)
. The value of pφ of circular orbits are obtained by

minimizing with respect to r the circular orbit Hamiltonian H (r ,pr = 0,pφ) and

it yields the following relation between r and pφ

2p2
φA(r )

r 3
=

(
1+

p2
φ

r 2

)
d A(r )

dr
. (5.67)

By inserting Eq. (5.67) in the definition of ψ, and replacing all pφ except the one

which implicitly appears in w(r ,pφ) we obtain

ψ= 1+2η(
√

w(r ,pφ)−1)

r 2 d A(r )/dr /2
. (5.68)

Finally, Refs. [73, 72] introduced another possible variation of the EOB flux

approximants which use T-approximants for the flux given by Eq. (5.19), in either

the Keplerian or non-Keplerian form, i.e.,

KF̂n =− 1

νv3
Ω

Fn(vΩ) , (5.69)

and

nKF̂n =− v3
Ω

νV 6
Φ

Fn(VΦ) . (5.70)
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Note that the flux for the non-Keplerian EOB models are not simply functions

of the orbital frequency Ω. We denote the original E-approximants [76, 77, 114]

which use the Padé flux (5.40) as F m
n /Hp where Hp is H real computed from A1

p

and D0
p . Other E-approximants used in this paper are summarized in Table 5.1.

The initial conditions for Eqs. (5.60)–(5.63) are obtained following Ref. [77] and

starting the evolution far apart to reduce the eccentricity to negligible values.

5.3.4 Waveforms

The PN waveforms are obtained by substituting the orbital phase and frequency

into the spherical harmonic mode (2,2) with amplitude corrections through 3PN

order [178, 10]

h22 =−8

√
π

5

νM

R
e−2iΦv2

Ω

{
1− v2

Ω

(
107

42
− 55

42
ν

)
+ 2πv3

Ω− v4
Ω

(
2173

1512
+ 1069

216
ν− 2047

1512
ν2

)
− v5

Ω

[(
107

21
− 34

21
ν

)
π+24iν

]
+ v6

Ω

[
27027409

646800
− 856

105
γE + 2

3
π2 − 1712

105
ln2

− 856

105
ln vΩ−

(
278185

33264
− 41

96
π2

)
ν− 20261

2772
ν2

+ 114635

99792
ν3 + 428i

105
π

]
+O (ε7/2)

}
. (5.71)

For the adiabatic models, the orbital phase is obtained by rewriting the energy

balance equation (5.12) as
dΩ

dt
=− F

dE/dΩ
. (5.72)

and integrating this equation along with dΦ/dt =Ω. The Taylor approximants are

formed first by substituting F = Fn and E = En into Eq. (5.72). The P-approximant
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waveform is formed similarly by substituting F = F m
n and E = E m

n into Eq. (5.72).

The Taylor T1 and Padé approximants then numerically integrate Eq. (5.72). The

Taylor T4 approximant is formed by first re-expanding the right side of Eq. (5.72)

as a single Taylor expansion truncated at the appropriate order, and then numer-

ically integrating the resulting equation. The Taylor T2 and Taylor T3 approxi-

mants perform the integration analytically. The various Taylor approximants are

reviewed in Sec. IIIE of Ref. [59].

For the non-adiabatic EOB models, the orbital phase is determined by solving

Hamilton’s equations (5.60)–(5.63). After computing h22, the appropriate time

derivatives are taken to form ḣ22 and Ψ22
4 .

5.4 Comparison with post-Newtonian approximants:

Energy flux

We now compare the numerical GW energy flux with predictions from PN theory.

In Sec. 5.4.1 we present comparisons with T-, P-, and E-approximants, and in

Sec. 5.4.2 we explore ways of fitting the numerical flux by introducing higher-

order PN coefficients and varying the value of vpole away from v2PN
pole [Eq. (5.41)].

The PN flux is derived as a function of frequency, so it is natural to perform

this comparison as a function of frequency. One alternative, comparison as a

function of time, would require computation of the PN phase as a function of

time. This depends on the PN energy, so that a comparison with respect to time

would mix effects due to flux and energy. Furthermore, comparisons with respect

to time are sensitive to (and likely dominated by) secularly accumulating phase
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differences [23].

The PN flux is given in terms of the orbital frequency Ω—see Eqs. (5.19)

and (5.13)—so at first glance, it might seem natural to compare PN and NR

energy fluxes at particular values of Ω. However, the orbital frequency is gauge-

dependent, and there is no simple relation between the NR orbital frequency

and the PN orbital frequency. Nor is there a simple relation between the NR

orbital frequency and any quantity measured at infinity (where the energy flux is

defined). In particular, it is very difficult to determine the NR orbital frequency

as a function of retarded time. In contrast, the frequency $ (see Eq. (5.5)) of

the GWs at infinity is an observable quantity, and is easily obtained from both

PN formulas and from the NR simulation. Therefore, to achieve a meaningful

comparison, we compare the PN and NR energy flux at particular values of $.

In order to compute the PN flux as a function of $, we need to find the map-

ping $PN:Ω→$. In order to find this mapping, we must build a PN waveform

as a function of Ω and compute $ as defined by Eq. (5.5). We construct the wave-

forms as described in Sec. 5.3.4. For the T-approximant of the flux, we will use the

Taylor T4 waveform. In Fig. 5.5 we plot both GW frequencies (defined in Eqs. (5.4)

and (5.5)). We then invert the mapping to obtain ΩPN =$−1
PN:$→Ω. So, given

the PN flux F (Ω) from Sec. 5.3, the flux as a function of the GW frequency is

given by F ($) = F (Ω PN($)). The relation ΩPN($) depends on the instantaneous

evolution of the PN model around frequency Ω, and is therefore (unfortunately)

dependent on the PN model, in particular the choice of PN energy. This depen-

dence, however, is local and will not lead to secularly accumulating differences.
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Figure 5.5: Ratio of GW frequencies ω and $ to orbital frequency Ω

The data are shown as functions of (twice) the orbital frequency, for different
PN models. The GW frequencies ω and $ are defined in Eqs. (5.4) and (5.5).
Solid lines correspond to 3.5PN, dashed and dotted lines to 3PN and 2.5PN,
respectively.
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Figure 5.6: Effect of choice of frequency type

Shown are the PN fluxes for two representative PN approximants, plotted (cor-
rectly) as function of $ and (incorrectly) as function of 2Ω. Plotting as a function
of 2Ω changes the PN fluxes significantly relative to the numerical flux FNR.

Notice from Fig. 5.5 that the orbital frequency and the GW frequency differ

by ∼ 1%–3% at large frequencies, depending on the PN model and the PN order,

and the difference in $ between different PN models is about 5%. Because the

energy flux is roughly proportional to |$|10/3 (more precisely, d logF /d log(M$)

increases to ∼ 3.6 at −M$= 0.15), the difference in the flux caused by using GW

frequency from different PN models is about three to four times the difference

in GW frequencies. Fig. 5.6 illustrates this effect by intentionally plotting the PN

flux versus the incorrect frequency Ω. Because changing the PN model has a

significant effect on the flux, we consider flux comparisons for several different
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PN models below.

Note that for the flux comparison (and the comparisons of the derivative of

the energy in Sec. 5.5), the PN waveforms are used only to define the mapping

between Ω and $. The PN flux is taken directly from the PN flux expressions—

e.g., Eq. (5.19)—and not computed by applying Eq. (5.3) to PN waveforms h(t ).

Equation (5.3) is used only to compute the numerical flux.

5.4.1 Flux comparison

Figure 5.7 plots the NR flux and the fluxes for the T-, P-, and E-approximants

at 3.5PN order as a function of the GW frequency $ computed from ḣ22. The

T-approximant is Taylor T4 [59]. Along the top of this figure (as in several figures

below) we indicate the number of gravitational wave cycles up to merger, where

we define “merger” as the maximum of |Ψ22
4 |. Figure 5.8 zooms over the first

15 GW cycles. We notice that during the first 15 GW cycles the numerical data

are fit best by the P- and E-approximants at 3PN and 3.5PN order. At these low

frequencies the NR flux is best matched by the Keplerian and non-Keplerian EOB

models and the Padé model.

To more clearly show the behavior of the PN approximants, we plot in Fig. 5.9

the energy flux normalized by the Newtonian flux. The normalized flux is com-

puted as
F ($)

FNewt($)
B

F ($)

32
5 ν

2
(

M |$|
2

)10/3
, (5.73)

where for the same reason mentioned above, the Newtonian flux is expressed in
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Figure 5.7: Comparison of NR and PN energy flux

Here we compare the numerical energy flux and several PN approximants at
3.5PN order versus GW frequency $ extracted from ḣ22 in the equal-mass case.
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Here we compare PN approximants versus GW frequency $ extracted from ḣ22

in the equal-mass case at early times. We show the relative difference between
numerical flux and PN flux, as well as the estimated error of the numerical flux
(blue bars, see Fig. 5.2). Solid lines represent 3.5PN models and NR; dashed and
dotted lines correspond to 3PN and 2.5PN models, respectively. For notation see
Table 5.1 and its caption.
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terms of the GW frequency. Notice that the P-approximants and some of the E-

approximants use the same Padé flux, but they start differing at −M$∼ 0.12 due

to their different GW frequencies (obtained from an adiabatic and nonadiabatic

evolution, respectively). The E-approximants with Keplerian and non-Keplerian

flux increase less abruptly at high frequency than the P- and T-approximants.

This is a consequence of nonadiabatic effects captured by the EOB model. Quite

remarkably, the E-approximants with non-Keplerian fluxes are rather close to the

NR result for the entire range of frequency spanned by the simulation.9 We

observe that somewhat accidentally the PN approximants at 2.5PN order are also

close to the numerical flux.

The normalized NR flux starts to decrease at −M$ ∼ 0.13. We notice that

this behavior is rather different from the behavior of the normalized flux in the

test-mass limit (see Figs. 5.19 and 5.20 in Sec. 5.8). The E-approximants with

non-Keplerian Padé or Taylor flux show a similar decreasing behavior at high

frequency.

Both Figs. 5.8 and 5.9 show that in the equal-mass case P-approximants fit the

numerical results better than T-approximants. In numerical analysis, however,

Padé summation is often used as a technique to accelerate the convergence of a

slowly converging Taylor series (e.g., see Tables 8.9 and 8.12 in Ref. [31]); hence

it is natural to ask in the PN case whether Padé summation indeed accelerates

the convergence of the series. In Table 5.2 we list the T- and P-approximants

of F /FNewt computed at subsequent PN orders and for several values of vΩ
9We notice that whereas the Keplerian Padé-based (or Taylor-based) approximants to the flux

differ from each other only when expressed in terms of the GW frequency, the non-Keplerian Padé-
based (or Taylor-based) approximants to the flux differs from the others because their functional
dependence on the frequency is different (e.g., compare Eq. (5.65) with Eq. (5.64)).
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Figure 5.10: Cauchy convergence test of F /FNewt for T- and P-approximants

We plot ∆Fn+m B Fn+m+1 −Fn+m , and ∆F m
n B F m

n+1 −F m
n for different values of

vΩ. The T- and P-approximants are given by Eqs. (5.19) and (5.39), respectively.
Note that the P-approximant has an extraneous pole at 1PN order at vΩ = 0.326.
We use vlso = v2PN

lso , and vpole = v 2PN
pole .
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[from left to right vΩ = 0.1,0.25 (i.e., beginning of the numerical simulation),

0.3,0.35, and 0.4]. In Fig. 5.10 we perform a Cauchy convergence test and compute

the difference between T- and P-approximants at subsequent PN orders. The

figures do not suggest an acceleration of the convergence. We notice that in

the equal-mass case P-approximants are converging more systematically than T-

approximants. However, this fact seems to depend on the mass ratio, as can be

seen by comparing Fig. 5.10 with Table 5.4 and Fig. 5.22 in the appendix which

are obtained in the test-mass limit.

5.4.2 On the fitting of the numerical relativity energy flux

In view of building accurate analytical templates that can interpolate the NR

waveforms during inspiral, merger, and ringdown, we explore here the possi-

bility of improving the PN approximants to the energy flux by introducing phe-

nomenological higher-order PN coefficients and/or by varying the value of vpole.

This study should be considered a first exploration of the problem, demonstrating

only the flexibility of the PN models. None of the quantities derived here should

be used as the basis for further work.

We will minimize the difference between the PN flux and the numerical flux

by varying particular coefficients in the PN model. Ideally, the PN and numer-

ical fluxes should be expressed as functions of $ before taking this difference,

so that the fluxes are compared in a physically meaningful way. Unfortunately,

the calculation of $ for the PN models is time-consuming, because for each trial

value of the phenomenological coefficient it is necessary to compute a full wave-

form to determine the mapping between $ and Ω. So instead, in this section we
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The x axis denotes the orbital frequency Ω. Because the numerical flux is com-
puted as function of the GW frequency, we use for the numerical flux ΩB−$/2.
The blue bars indicate estimated errors on the numerical flux, see Fig. 5.2. For
notation see Table 5.1 and its caption.
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simply compare PN and numerical fluxes as functions of Ω, where we define the

numerical orbital frequency as ΩB−$/2. In Fig. 5.6, we can see that the error

introduced by the discrepancy between Ω and $/2 will be significant. As we

will show in Sec. 5.6.2, the waveforms produced using these “tuned” flux func-

tions will improve agreement with the numerical waveform at a significant level.

Nevertheless, the values derived in this section may not be optimal. Thus, we

emphasize that the results of this section constitute merely an exercise demon-

strating the feasibility of adjusting the PN parameters to optimize the agreement

of the PN flux function with numerical data.

The least-squares fits are done on F ($)/F Newt($) [see Eq. (5.73)]. In the case

of T-approximants, we fit for the unknown 4PN-order coefficient in Eq. (5.19) for

the equal-mass case. We perform a least-squares fit of the 4PN-order function

F8(ν = 1/4) = A8 +B8 log vΩ over the orbital-frequency range MΩ = 0.02–0.08

which starts after the first 9 GW cycles. We obtain A8 = −141,B8 = 102. We

notice that when we perform the fit over the first 15 (or 20) GW cycles, spanning

the frequency region MΩ= 0.0168–0.0235 (MΩ= 0.0168–0.0283), the agreement

becomes worse. The resulting flux is shown in Fig. 5.11. The relative difference

with the numerical flux is at most ∼ 0.8%.

We repeat this analysis in the case of P-approximants. Because the latter also

depend upon vpole, we perform two least-squares fits. In the first fit, we fix vpole

to the value given by Eq. (5.41) and apply the least-squares fit to F8(ν = 1/4)

obtaining A8 =−1382,B8 = 197.

In the second fit, we vary vpole. When varying v pole in the P-approximant at

3.5PN order, extraneous poles appear at low values of vΩ. Therefore, in order to
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push these poles to very high frequency, we follow the suggestion of Ref. [122],

and use P-approximants at 4PN order, where the 4PN coefficient is set to its

known value in the test-mass limit. Furthermore the logarithm in the flux is not

factored out, but treated as a constant when Padé summation is done. This cure

may fail for different mass ratios if new extraneous poles appear at low frequency.

The least-squares fit gives vpole = 0.74. All the results for the P-approximants are

displayed in Fig. 5.11, where we also show the T- and P-approximants at 3.5PN

order without any fit.

Figure 5.11 might suggest that by introducing higher-order PN coefficients

in the flux, the numerical flux can be fit better by T-approximants than by P-

approximants. However, this result can depend on the use of orbital frequency

instead of GW frequency. In Sec. 5.6.3 (see Fig. 5.18) we employ the fit values

obtained in this study and show phase differences between NR and tuned EOB

models.

Finally, we attempted to extract PN coefficients higher than 3.5PN order from

the numerical flux, as was done at 2PN, 2.5PN, and 3PN order in Ref. [101]

in the test-mass limit. Unfortunately, the differences between numerical flux and

T-approximants are so large—even at the beginning of the numerical waveform—

that we were not able to extract even known PN coefficients, like the ones at 3PN

and 3.5PN order. Thus, to fit unknown PN coefficients would require a numerical

simulation with more cycles starting at lower frequency.
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5.5 Estimation of (the derivative of) the

center-of-mass energy

In the previous section, we analyzed and compared PN and numerical energy

fluxes. The energy of the binary is the second fundamental ingredient in the

construction of adiabatic PN approximants. Unfortunately, there is no way to

extract the energy for the numerical simulation as a function of a gauge-invariant

quantity such as the GW frequency, so that it is impossible to compare PN and

NR energies directly. The frequency derivative, $̇, however, is easily accessible

in the numerical data, and, in the adiabatic approximation is intimately related

to the energy, as can be seen by rewriting the energy balance, Eq. (5.12), in the

form
d$

dt
=− F

dE/d$
. (5.74)

Therefore, we begin this section with a comparison between numerical $̇

and the predictions of various PN approximants. For the PN approximants, we

compute h22 as usual (i.e., using energy balance to compute the orbital frequency

derivative Ω̇), and take a time derivative to obtain ḣ22 and extract $̇ from it. The

waveform h22 for the E-approximants is computed using Eqs. (5.42), (5.44), (5.45),

and (5.46) in Sec. 5.3.3. Figure 5.12 plots the numerical $̇ and its value for T-, P-,

and E-approximants at 3.5PN order.

In order to emphasize differences between the different $̇, we normalize the

data in Fig. 5.12 by the Newtonian value of $̇,

$̇

$̇Newt
B− $̇

192
5

ν
M2

(
M |$|

2

)11/3
. (5.75)
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The normalization is used only to eliminate the leading-order behavior of the

various curves in Fig. 5.12; therefore, to compute the denominator of Eq. (5.75)

we have simply substituted −$/2 rather than Ω into the Newtonian formula for

the frequency derivative.

The normalized frequency derivatives are shown in Fig. 5.13. At low frequen-

cies, $̇ is very challenging to compute in numerical simulations, resulting in com-

paratively large numerical uncertainties. Therefore, for frequencies −M$ß 0.045

we can merely conclude that PN and NR are consistent with each other (i.e., are

within the numerical error bars of about 10 percent).

The 3.5PN Taylor T4 model (labeled F7/E6T4) agrees very well with the numer-

ical simulation up to −M$≈ 0.1; this observation is consistent with the excellent

agreement between Taylor T4 (3.5PN) and the numerical simulation observed in

Boyle et al. [59], who compared up to this frequency. Beyond −M$= 0.1, how-

ever, $̇/$̇ Newt for Taylor T4 continues to increase (as for all other Taylor and

Padé models considered here), whereas for the numerical simulation, $̇/$̇Newt

flattens (this behavior was also observed in Ref. [122].) Only the E-approximants

at 3.5PN order reproduce the flattening of $̇/$̇Newt at high frequencies, with the

closest being the one which uses the non-Keplerian Padé flux ( nKF 3
4 ). Because the

frequency derivative is the relevant quantity that determines the phase evolution,

the turning over of $̇/$̇Newt for the nonadiabatic models in Fig. 5.13 suggests that,

at high frequency, nonadiabatic analytical models might be superior to adiabatic

models.

If sufficient smoothing is applied to the numerical $̇ it becomes a smooth

curve even at low frequencies. Figure 5.14 presents a comparison between such a
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heavily smoothed numerical curve and the PN approximants. As already pointed

out, all PN approximants are consistent to within our estimated numerical errors

at low frequencies. However, the NR result in Fig. 5.14 is notably closer to the

3.5PN approximants than to lower order PN approximants. This good agreement

provides a further validation of the numerical code used in Boyle et al. [59]. It

also indicates that our error analysis in Sec. 5.2 may be overly conservative.

Our comparisons of $̇ reveal a lot of information about the PN approximants.

However, $̇ depends on both flux and energy (see Eq. (5.74)), and so these com-

parisons do not yield information about flux or energy separately. To isolate

effects due to the PN energy, we rearrange Eq. (5.74) further, such that it yields

in the adiabatic approximation the derivative of the center-of-mass energy for the

numerical simulation: [
dE

d$

]
NR

=− F NR
[d$/dt ]NR

. (5.76)

The relative error in [dE/d$]NR is obtained as the root-square-sum of the rela-

tive errors of flux and frequency derivative (see Figs. 5.2 and 5.4). In Fig. 5.15

we compare the latter with T-, P-, and E-approximants. For adiabatic T4 and

Padé models, we compute dE/d$ by taking derivatives of E(Ω) in Eq. (5.14) with

respect to Ω and then expressing the derivative in terms of $(Ω). For nonadi-

abatic EOB models, we compute dE/d$ from the ratio of FPN and [d$/dt ]PN

as obtained from Figs. 5.7 and 5.12. The closeness between the numerical re-

sult and adiabatic PN approximants is expected only in the range of frequencies

over which the balance equation and the adiabatic approximation are valid. The

upper panel of Fig. 5.15 shows the Taylor and Padé adiabatic models. The plot

suggests that around −M$∼ 0.08 non-adiabatic effects are no longer negligible.



5.6. Comparing waveforms 271

At lower frequencies, both 3.5PN-order adiabatic approximants (Padé and Taylor

T4) match the numerical result very well. Taylor T4 at 2.5PN matches well, too,

although its frequency derivative $̇ and flux differ significantly from NR (see

Figs. 5.13 and 5.9). The T-approximant at 3.5PN order is closest to the numeri-

cal result. The lower panel of Fig. 5.15 shows the nonadiabatic E-approximants.

We notice that the nonadiabatic models, especially at 3.5PN order, follow quite

nicely the behavior of the numerical derivative of the center of mass energy. The

E-approximant with non-Keplerian flux is closest to the numerical result. This

analysis emphasizes again the relevance of including nonadiabatic effects in the

analytical model [77].

5.6 Comparing waveforms

Here we compare the numerical waveform to various PN waveforms, basically

extending the analysis of Boyle et al. [59] to include Padé and EOB waveforms.

Because the (2,2) mode dominates the waveform for an equal-mass, nonspinning

binary, we restrict the comparison to only this mode. As in [59], we use Ψ22
4 and

the GW phase and frequency ω defined by Eq. (5.4) when comparing waveforms.

For the comparisons presented in this section, the uncertainty in the phase of

the numerical waveform is roughly 0.02 radians. This number includes numerical

errors (e.g., due to convergence and extrapolation of the waveform to infinite

extraction radius), as well as modeling errors due to slightly nonzero eccentricity

and spin of the numerical simulation; see Ref. [59] Sec. V for details. We note

that the modeling errors have decreased since the analysis in Ref. [59] because
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the new matching procedure reduces the impact of eccentricity, and because the

more sophisticated spin-diagnostics presented in Ref. [190]) resulted in a smaller

bound on the residual spin.

5.6.1 Matching procedure

Each PN waveform has an arbitrary time offset, t0, and phase offset, φ0 with

respect to the NR waveform. The procedure used by Boyle et al. [59]—as well

as in various other papers before it, such as [24, 157]—sets these constants by

ensuring that the GW phase and frequency match at a fiducial time. Unfortu-

nately, when matching at low frequency this method is sensitive to noise and to

residual eccentricity in the numerical waveform, and does not easily translate into

a robust and automatic algorithm. Since we want to match as early as possible

(where we expect the PN approximants to be valid), we propose to use, instead,

a matching procedure which achieves the same goal, but extends over a range

of data. This procedure is similar to the one proposed by Ajith et al. [5], but

whereas we match only the GW phase, Ajith et al. match the entire gravitational

waveform—including the amplitude—and include an overall amplitude scaling.

This method can be easily implemented as a fairly automatic algorithm, robust

against noise and residual eccentricity.

Using the phase of the numerical and PN waveforms, we define the quantity

Ξ(∆t ,∆φ) =
∫ t2

t1

[
φNR(t )−φPN(t −∆t )−∆φ]2

dt . (5.77)

Here, t1 and t2 represent the chosen range over which to compare. Minimizing

this quantity by varying the time and phase offsets ∆t and ∆φ produces the

optimal values for these quantities in a least-squares sense. Then to compare PN
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and NR waveforms, we compare the (unchanged) NR waveform with an offset

PN waveform defined by

Ψ4,PN(t ) = APN(t +∆t )e−i[φPN(t+∆t )+∆φ] . (5.78)

With reasonable first guesses for ∆t and ∆φ, the function Ξ is quite nicely

paraboloidal. Thus, even simple minimization routines work well. However, in

cases where speed is an issue, the problem can be reduced to one dimension.

For a given value of ∆t , the optimization over ∆φ may be done analytically by

setting

∆φ(∆t ) =
∫ t2

t1

[
φNR(t )−φPN(t −∆t )

]
dt

t2 − t1
. (5.79)

Using this value of ∆φ for a given value of ∆t decreases the number of function

evaluations needed to find the minimum. This can be very useful for large data

sets, or situations where many such matches need to be done.

The choice of t1 and t2 involves some degree of judgment. Preferably, t1

should be as early as possible, while not being contaminated by junk radiation.

We choose t1 = 1100M , corresponding to −Mω = 0.037. Similarly, t2 should be

as early as possible, but far enough from t1 so that the integration averages over

the noise. In addition, the effects of the small but nonzero orbital eccentricity

show up as oscillations in the phase, as can be seen, for example, in the range

t ∈ [1100,1900]M in Fig. 5.17. We would like t2 to be large enough so that the

integration averages over several cycles of this oscillation, thus resulting in less

bias due to eccentricity. Here we use t2 = 1900M , corresponding to −Mω= 0.042.

We have checked that changing the values of t1 and t2 by ±100M changes the

resulting phases by less than a few thousandths of a radian through the end of

the numerical waveform.
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This method is quite similar to the one suggested in Ref. [5]. However, here

we consider only the phase and not the amplitude of the waveform. Because we

restrict the analysis only to the (2,2) waveform mode of an equal-mass binary

and compare only the phase and not the amplitude, we think it is reasonable to

have neglected the amplitude in the matching procedure.

5.6.2 Padé waveforms

In Fig. 5.16 we plot the phase difference between the numerical, T- and P-approximants

[106, 114, 73] at the times when the numerical waveform reaches GW frequen-

cies −Mω= 0.063 and −Mω= 0.1. The phase differences are plotted versus the

PN order. The phase difference at −Mω = 0.1 of the P-approximant at 3.5PN

order is −0.12 radians. When comparing with generic Taylor approximants, we

notice that the phase differences of the P-approximants are less scattered as the

PN order is increased. This might be due to the fact that P-approximants of the

energy flux are closer to the NR flux, especially for lower vΩ where the phase

accumulates the most. Figure 5.16 could be contrasted with Tables III and IV

of Ref. [106] which show the overlaps between the numerical waveform and P-

approximants at subsequent PN orders, in the test-mass limit case. The behavior

of the P-approximants in Fig. 5.16 are consistent with the behavior of $̇ seen in

Fig. 5.13: At 1.5PN, Padé has larger $̇ than the numerical simulation, at 2.5PN,

Padé has smaller $̇. Consequently, ΦPN−ΦNR is negative at 1.5PN order and

positive at 2.5PN order. For 3.5PN order, the P-approximant in Fig. 5.13 agrees

very well with the numerical simulation (at least for −M$ß 0.1), which translates

into excellent agreement in Fig. 5.16.
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The E-approximants are F m
n /Hp , while the P-approximants are F m

n /E q
p (see Ta-

ble 5.1 and its caption). Waveforms are matched with the procedure described
in Sec. 5.6.1 and phase differences are computed at the time when the numerical
simulation reaches −Mω = 0.063 (left panel) and −Mω = 0.1 (right panel). Dif-
ferences are plotted versus PN order. Note that at 1PN order the Padé flux has
an extraneous pole at v = 0.326 causing a very large phase difference. The thick
black line indicates the uncertainty of the comparison as discussed in Sec. 5.6,
|ΦPN−ΦNR| ≤ 0.02 radians.
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In Fig. 5.17 we explore the possibility of reducing the phase differences be-

tween the numerical waveform and P-approximants: By (i) varying vpole or (ii)

introducing the pseudo-4PN–order coefficient F8(ν= 1/4) = A8 +B8 log vΩ in the

energy flux. We tune the coefficients by minimizing the sum of the squares

of the phase difference at t0.063 and t0.1. We find that if vpole = 0.633, the P-

approximant F 4
4 /E 4

2 has a maximum phase difference before −Mω= 0.1 smaller

than the numerical error in the simulation. A similar result is obtained for the

the P-approximant pF 4
4 /E 4

2 if we use vpole = v2PN
pole = 0.6907, and tune A8 =−493,

B8 = 330.

5.6.3 Effective-one-body waveforms

In Fig. 5.16 we also plot the phase differences between the numerical and the

untuned, original E-approximants [76, 77, 114] F m
n /Hp . At 3.5PN order the phase

difference at −Mω = 0.1 is 0.50 radians. We also computed the phase differ-

ences at −Mω = 0.1 of the E-approximants nKF 3
4 /H7, nKF7/H7, and F7/H7 and

found 0.45, 2.56, and 2.7 radians, respectively. Thus, for untuned EOB mod-

els it is crucial to have introduced the Padé flux. When contrasting the original

E-approximants with generic Taylor approximants, we find that the phase differ-

ences are less scattered as the PN order is increased. However, despite the fact

that the Padé-based EOB flux is closer to the numerical flux (see Figs. 5.8 and

5.9), untuned, original E-approximants accumulate more phase difference than

P-approximants. This could be a consequence of the fact that independently of

the flux and the energy functions, what seems to matter is the way the equations

of motions are solved to get the phasing.
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The untuned P-approximant is F 3
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pole) with tunable A8 and B8. In all cases, waveforms are matched over

t − r∗ ∈ [1100,1900]M .
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Because of the reduction of the dynamics to a few crucial functions determining

the inspiral evolution [76, 77, 103], notably A, D and F , and because of the

rather simple procedure to match the inspiral(-plunge) waveform to the ringdown

waveform, the EOB model turned out to be particularly suitable for matching

the full numerical waveforms [75, 78, 121, 122, 124]. In view of a future study

which will include merger and ringdown, we start here exploring the possibility

of improving the agreement with numerical waveforms by tuning the pseudo-

4PN–order coefficients a5, A8, and B8 and/or, if present, the pole location vpole.

In the lower panel of Fig. 5.18, using different v pole values, we show the phase

differences computed at t0.063 and t0.1 as functions of the unknown PN-expansion

coefficient a5 [see Eq. (5.49)]. As first pointed out and discussed in Ref. [122] (see,

e.g., Fig. 3 in that paper), we find that there is a strong degeneracy between a5

and vpole. In fact, for different vpole values, the curves in Fig. 5.18 are almost

identical except for a shift in a5. Although in this test we use the E-approximant

F 4
4 /pH8(vlso = v2PN

lso ), we find that this degeneracy appears in all E-approximants

considered.

To obtain the optimal a5 and vpole that minimize phase differences during

the entire numerical simulation, we first choose an arbitrary vpole in the range

of degeneracy. Then, we determine the a5 value by minimizing the sum of the

squares of the phase difference at t0.063 and t0.1. In the upper panel of Fig. 5.18,

we show phase differences in time and GW frequency for several E-approximants

using those optimal a5 and vpole values, which are given in Table 5.3. In Fig. 5.18,

we also show phase differences for E-approximants with pseudo 4PN order co-

efficients determined by the flux fit of Sec. 5.4.2 (see Fig. 5.11) and tunable a5.
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Table 5.3: Optimal a5 and vpole that minimize phase differences between tuned
EOB models and the numerical simulation

EOB model and fixed parameters a5 vpole

nKF̄ 4
4 /pH8 — 29.78 0.52

F 4
4 /pH8 vlso = v2PN

lso 39.35 0.55

pF8/pH8 A8 =−141,B8 = 102 5.32 N/A

pF 4
4 /pH8

A8 =−1382,B8 = 197,
-3.10 N/Avlso = v2PN

lso ,vpole = v2PN
pole

The optimal a5 values are shown in Table 5.3. The smaller phase differences

along the entire inspiral are obtained with the E-approximants with Padé flux

F 4
4 /pH8 (vlso = v2PN

lso ) and tunable vpole,a5 and Taylor flux pF8/pH8 with tun-

able A8,B8,a5. We notice that for t > t0.1 the phase difference increases more

abruptly for the latter model. In the best case, the absolute phase difference dur-

ing the entire numerical simulation is within the numerical error, i.e., within 0.02

radians. The choice of the best tuned E-approximant [206, 78, 122, 123, 124] will

be determined once merger and ringdown are included, and when long and ac-

curate comparisons with numerical simulations are extended to BBH with mass

ratio different from one.

Finally, in Ref. [122], Damour and Nagar extracted the data of the numerical

simulation used in the present paper from one of the figures of Ref. [59] and

compared those data with the EOB approach. They found for their “non-tuned”

EOB model phase differences of ±0.05 radians. This phase difference is smaller



5.6. Comparing waveforms 281

0 1000 2000 3000 4000
(t-r*)/M

-0.02

0.00

0.02

0.04

φ
PN

-φ
N

R
(r

ad
ia

ns
)

0.04 0.05 0.06 0.08
-M$

nK
_
F4

4/pH8

F4
4/pH8 (vlso = vlso

3PN )
pF8/pH8 (A8 = -141 B8 = 102)
pF4

4/pH8 (A8 = -1382 B8 = 197)
F7/E6 Taylor T4
F4

3/H6

36 38 40 42 44
a5

-0.04

-0.02

0.00

0.02

0.04

φ
PN

-φ
N

R
(r

ad
ia

ns
)

vpole = 0.545
vpole = 0.550
vpole = 0.555

F4
4/pH8 (vlso = vlso

3PN )

Figure 5.18: Phase accuracy of various PN approximants

The upper panel shows phase differences versus time (lower x axis) and versus
GW frequency (upper x axis) for several tuned and untuned E-approximants.
For the tuned models, the optimal a5 and vpole values are displayed in Ta-
ble 5.3. In the lower panel we show phase differences between numerical and
E-approximants computed at t0.063, t0.1, and the end of the numerical simulation
t0.16, as functions of a5. For the same color and style, the curve with the steepest
slope corresponds to t0.16 and the curve with the smallest slope corresponds to
t0.063. For notation see Table 5.1 and its caption.
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than the phase differences we discuss in this paper for untuned EOB models

(see Fig. 5.16 and discussion around it). However, we notice that ±0.05 radians

in Ref. [122] refers to half the maximum phase difference accumulated over the

entire evolution when matching the numerical and EOB phases at −Mω = 0.1.

By contrast, in this paper, and in particular in Fig. 5.16, we match numerical and

EOB phases in a time interval and compute the phase differences at −Mω= 0.1.

Moreover, we observe that their “non-tuned” EOBmodel is not really untuned,

because it uses the Padé summation of the radial potential at 4PN order and then

sets a5 = 0. This is not equivalent to using the radial potential at 3.5PN order with

a5 = 0. In fact, to recover the 3.5PN-order Padé radial potential from the 4PN-

order Padé potential one should use a5 =−17.16. They also use the non-Keplerian

flux at 4PN order nKF
4
4 which is different from the 3.5PN order nKF 3

4 . For our

untuned EOB model at 3.5PN order which uses nKF 3
4 and the EOB dynamics

at 3PN order, if we apply Ref. [122] procedure and compute half the maximum

phase difference when matching the numerical and EOB phases at −Mω = 0.1,

we find a phase difference of ±0.18 radians

5.7 Conclusions

In this paper, using a highly accurate and long numerical simulation [59] of a non-

spinning equal-mass black hole binary, we compute the gravitational waveform,

GW energy flux, and GW frequency derivative. Imposing the balance equation,

we also estimate the (derivative of) center-of-mass energy. We compare these

quantities to those computed using adiabatic Taylor T4 and Padé [106, 114, 73],

and nonadiabatic EOB PN approximants [76, 77, 114].
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We find that for the first 15 GW cycles, the 3.5PN-order T-approximant and

the 3.5PN-order untuned P- and E-approximants (see Table 5.1) reproduce the

numerical results for energy flux, GW frequency derivative and (derivative of)

center-of-mass energy quite well (see Figs. 5.8, 5.9, 5.13, 5.14, and 5.15), but with

interesting differences.

We attempted to study the convergence of the PN expansion for the energy

flux.10 We find that Padé approximants to the flux introduced in Ref. [106] do not

accelerate the convergence of the Taylor series, but are closer to the numerical flux

than are the T-approximants. In particular, the Taylor flux at all orders through 3.5

PN is outside the numerical flux error bars even ∼ 25 GW cycles before merger

(see Fig. 5.8). We find that the nonadiabatic non-Keplerian E-approximants to

the flux at 3.5PN order are within ∼ 2% of the numerical flux over the entire

frequency range we consider (see Fig. 5.9).

Quite interestingly, in the equal-mass case the numerical normalized energy

flux F /FNewt starts decreasing at high frequency during the late part of the inspi-

ral and blurred plunge (see Fig. 5.9). This differs from the behavior of F /FNewt

in the test-mass limit (see Figs. 5.19 and 5.20). Both the Taylor and Padé-based

E-approximants with non-Keplerian flux [104] show a similar decreasing behav-

ior at high frequency. This fact suggests that if a pole is present in the energy

flux of equal-mass binaries, it is located at a larger frequency than that at which

the common apparent horizon forms. As seen in Sec. 5.4.2, when fitting for vpole

we obtain vpole(ν= 1/4) = 0.74, which is to be contrasted with the test-mass case

10We also tried to apply the criterion suggested in Ref. [254] to assess the region of validity of
the PN series for the flux in the equal-mass case. Unfortunately, the numerical simulation starts
at too high a frequency, when the Taylor series at 3.5PN order seems to already be outside the
region of validity.
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vpole(ν= 0) = 1/
p

3 ≈ 0.58. These values of vpole correspond to orbital frequencies

MΩ= 0.405 and MΩ= 0.192, respectively.

For the GW frequency derivative $̇, we find that at low frequency the Tay-

lor, Padé, and EOB models at 3.5PN order are within the numerical error (see

Fig. 5.13). At high frequency, as already observed in Ref. [122], only the non-

adiabatic E-approximant has a GW frequency derivative that flattens out, as does

the numerical result. The non-Keplerian E-approximant at 3.5PN order is closest

to the numerical data (see Fig. 5.14).

When estimating the derivative of center-of-mass energy dE/d$, we expect

the numerical result and adiabatic PN approximants to be close only in the range

of frequencies over which the balance equation and the adiabatic approximation

are valid. We find that this range of frequencies is −M$à 0.08 (see Fig. 5.15) for

the 2.5PN T-approximant and all the 3.5PN approximants.11 At higher frequency,

the 3.5PN-order nonadiabatic E-approximants are closer to the numerical dE/d$

than are the adiabatic approximants, and the non-Keplerian E-approximant is the

closest.

Applying a new matching procedure, we compared the numerical waveforms

with Taylor T4, Padé, and EOB waveforms. We find that the accumulated phase

difference from the numerical solution at −Mω= 0.1 is 0.12 radians for the un-

tuned 3.5PN P-approximant [106, 114, 73], −0.50 radians for the untuned, orig-

inal 3.5PN E-approximant [76, 77, 114], and 0.45 radians for the untuned non-

Keplerian [104] 3.5PN E-approximant (see Fig. 5.16). Although those phase dif-

ferences are larger than for 3.5PN Taylor T4 (0.04 radians), the phase differences
11It is not clear whether the failure of the adiabatic models is a result of the assumption of

adiabaticity, or if the accuracy of those models would continue to improve if terms at order higher
than 3.5PN were known.
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for the P-approximants are less scattered as a function of PN order than are the

phase differences for generic Taylor approximants.

The analyses of the flux, GW frequency derivative, and (derivative of the)

center-of-mass energy emphasize again the importance of including nonadia-

batic effects during the last stages of inspiral [77]. Roughly, we can say that

non-adiabatic effects are no longer negligible starting from a frequency −M$∼
0.08–0.12, as can be seen in Figs. 5.9, 5.13, and 5.15. As seen in these figures, nona-

diabatic E-approximants can capture some of the relevant features of the late time

evolution. We expect that by further improving these models by fitting higher-

order PN coefficients to the numerical data, they will become excellent candidates

for developing an analytic template bank of coalescing BBHs [75, 78, 121, 122, 124].

In this paper we started to explore the possibility of reducing the phase dif-

ferences between numerical and E-approximant waveforms by fitting the un-

known parameters a5, F8, and vpole (see Fig. 5.18). As a first step, for several

E-approximants we searched for a local minimal phase difference by varying a5,

F8, and vpole. We found that we were able to reduce phase differences to below

the numerical uncertainty. In a future work which will include merger and ring-

down, we plan to determine the region of the parameter space (a5, F8, vpole) in

which the phase difference is within the numerical uncertainty of the simulation.
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5.8 Appendix: Padé approximants to the energy flux

in the test particle limit

In the test-mass-limit case the GW energy flux is known through 5.5PN or-

der [241]. The explicit coefficients entering Eq. (5.19) for i ≥ 8 and ν = 0 can

be read from Eqs. (4.1) and (4.2) of Ref. [106].

In Figs. 5.19 and 5.20 we compare the normalized energy flux function [215]

F /FNewt to the T- and P-approximants. To easily compare these figures with the

other figures in the paper, we plot quantities as functions of the approximate

GW frequency defined by 2MΩ. As noticed in Ref. [106], the P-approximants

approach the numerical data more systematically. The differences between dif-

ferent PN orders are difficult to see in these figures. To obtain a clearer view,
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Figure 5.19: Low-order normalized energy flux F /FNewt versus GW frequency
2Ω in the test-mass limit

For notation see Table 5.1 and its caption. For comparison, both panels also
include the result of the numerical calculation of Poisson [215], labeled with
‘NR’.
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include the result of the numerical calculation of Poisson [215], labeled with
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Figure 5.22: Cauchy convergence test of F /F Newt in the test-mass limit for the
T- and P-approximants

We plot ∆Fn+mB Fn+m+1−Fn+m , and ∆F m
n B F m

n+1−F m
n at three different frequen-

cies. At high frequencies, the 4.5 and 5 PN Padé approximants are contaminated
by the extraneous pole of the 5PN Padé series; for low frequencies (vΩ = 0.1), the
pole is apparently irrelevant.
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Fig. 5.21 plots the differences between PN flux and numerical flux at four fixed

frequencies. Fig. 5.21 shows this somewhat better behavior of Padé; however,

the Padé-approximants show little improvement between PN orders 3.5 and 4.5,

and at order 5 there occurs an extraneous pole. At frequency 2MΩ = 0.04, P-

approximants with order ≥ 2.5 are within 0.5 percent of the numerical data, as

are T-approximants with order ≥ 3.5. Good agreement at low frequency is rather

important because that is where the majority of the waveform phasing accumu-

lates.

Table 5.4 and Fig. 5.22 test the internal convergence of T- and P-approximants

without referring to a numerical result. Table 5.4 displays the flux at all known

PN-orders at select frequencies, with boldface highlighting the digits that have

already converged. Although the Padé summation does not accelerate the con-

vergence, the P-approximant at 5.5PN order is closest to the numerical data (see

Fig. 5.21).

Comparing Table 5.4 with Table 5.2, and Fig. 5.22 with Fig. 5.10 we observe

that the P-approximants converge more systematically in the equal-mass case than

in the test-mass limit. This is also evident by comparing Fig. 5.21 with Fig. 5.8:

We see that P-approximants at 3PN and 3.5PN orders are inside the numerical

flux error whereas T-approximants at all orders through 3.5 PN are outside the

numerical flux error bars even ∼ 25 GW cycles before merger. However, as the

Padé approximant does not converge faster, it is not immediately clear whether

similar superior behavior of Padé can be expected for more generic binary black

holes.
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Hybrid waveforms in gravitational-wave–detector

data analysis1

We study the detection efficiency of stationary-phase approximated post-Newtonian

waveforms currently used by ground-based gravitational-wave detectors to

search for the coalescence of binary black holes by comparing them to an ac-

curate waveform obtained from numerical simulation of an equal-mass non-

spinning binary black hole inspiral, merger and ringdown. We perform this

study for the Initial- and Advanced-LIGO detectors. We find that detection

efficiency can be improved by integrating the match filter to higher frequen-

cies than used currently. We propose simple analytic frequency cutoffs for

both Initial and Advanced LIGO, which achieve nearly optimal match, and

can easily be extended to unequal-mass, spinning systems. We also find that

templates that include terms in the phase evolution up to 3.5 pN order are

nearly always better, and rarely significantly worse, than 2.0 pN templates
1This chapter is extracted from a paper to be published in collaboration with Duncan Brown,

Larne Pekowsky, Harald Pfeiffer, and Mark Scheel [60]. I extrapolated the numerical waveforms,
produced the long post-Newtonian waveform, joined the two, and produced the error estimates.
I verified the matches produced by the searches of parameter space, which were run by Larne. I
also introduced the weighted-average frequency cutoff, and shared in writing the text.

293
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currently in use. For Initial LIGO we recommend a strategy using tem-

plates that include a recently introduced pseudo-4.0 pN term in the low-mass

(M ≤ 30 M¯) region, and 3.5 pN templates allowing unphysical values of the

symmetric reduced mass η above this. This strategy always achieves overlaps

within 0.3% of the optimum, for the data used here. For Advanced LIGO

we recommend a strategy using 3.5 pN templates up to M = 12 M¯, 2.0 pN

templates up to M = 21 M¯, pseudo-4.0 pN templates for masses in the range

21–65 M¯, and 3.5 pN templates with unphysical η for higher masses. This

strategy always achieves overlaps within 0.7% of the optimum for Advanced

LIGO.

6.1 Introduction

The coalescence of binary black holes is one the most promising sources of grav-

itational waves for interferometric gravitational-wave detectors, such as LIGO,

Virgo, and GEO600. The first-generation LIGO detectors have achieved their

design sensitivity and recorded over one year of coincident data. These data,

together with data from the Virgo detector, are currently being searched for

gravitational waves from compact binary coalescence. Upgrades to improve the

sensitivity of these detectors by a factor of two, and ultimately ten, are under-

way. Optimal searches using the enhanced detectors in 2009 will be sensitive to

black-hole coalescence out to hundreds of megaparsecs. The advanced detectors,

operational next decade, could detect black-hole binaries at distances of over one

gigaparsec.

Optimal searches for gravitational waves use matched filtering, which requires
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accurate knowledge of the waveform. Previous searches in LIGO data have used

post-Newtonian and phenomenological templates to search for the coalescence

of black-hole binaries. Over the last several years numerical relativity has made

remarkable breakthroughs in simulating the late inspiral, merger, and ringdown

of black-hole binaries. The computational cost of these simulations is high, how-

ever, making it impractical to use them directly as template waveforms for use

in a matched-filter search. It has been shown [75, 24, 206, 78, 157, 59, 152, 156,

61, 197, 163] that there is good agreement between the waveforms generated by

numerical relativity with analytic post-Newtonian waveforms to within just a few

orbits of merger.

This paper uses the high-accuracy Caltech–Cornell numerical-relativity wave-

forms to suggest improvements to the analytic waveforms currently used in

gravitational-wave searches by LIGO and Virgo. A similar study has been per-

formed by Pan et al. using numerical data from Pretorius and the Goddard

groups [206]. Our main results are in agreement with their conclusion that a

simple extension of the existing stationary phase approximation to the adiabatic

post-Newtonian waveforms (called TaylorF2 in Ref. [109]) yields high overlaps

with numerical waveforms.

In Sec. 6.2, we review the current techniques used for searching for gravita-

tional waves in gravitational-wave detector data. We discuss the construction of

the waveform—a pN–NR hybrid—in Sec. 6.3. In Sec. 6.4 we employ the hybrid

waveform in a comparison of the detection efficiency of gravitational-wave tem-

plates that may be used in upcoming searches of LIGO and Virgo data. Finally, in

Sec. 6.5, we discuss improvements that may be made to the current data-analysis
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techniques to optimize overlaps.

Throughout this paper, we use only the (l ,m) = (2,2) component of the wave-

form Ψ
2,2
4 (as defined, e.g., in [61]). For convenience, we drop the superscript.

Whenever possible, we use dimensionless quantities, like r M |Ψ4|, where r is the

areal radius of the observation sphere, and M is the total apparent-horizon mass

of the holes in the initial data. However, for any calculation involving the LIGO

noise curve, we have a physical scale, and thus use standard mks units, where

G = 6.67259×10−11 m3 kg−1 s−2 , (6.1)

c = 299792458m s−1 , (6.2)

M¯ = 1.98892×1030 kg , (6.3)

1Mpc = 3.08568025×1022 m . (6.4)

6.2 Searches for gravitational waves from black-hole

binaries

6.2.1 Matched filtering

Current searches for gravitational waves from binary black hole coalescence use

matched filtering to search for a waveform buried in noise. The matched filter is

the optimal filter for detecting a signal in stationary Gaussian noise. Suppose that

n(t ) is a stationary Gaussian noise process with one-sided power spectral density

Sn( f ) given by 〈ñ( f )ñ∗( f ′)〉 = 1
2 Sn(| f |)δ( f − f ′). For long integration times, the

data stream s(t ) output by the detector will always be dominated by the noise.

Thus, we can simply approximate n ≈ s to calculate Sn( f ).
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Using this power spectral density (PSD), we can define the inner product

between two real-valued signals—the data stream s and the filter template h—by

(s h)B 2ℜ
∫ ∞

−∞
s̃( f ) h̃∗( f )

Sn(| f |) d f (6.5a)

= 4ℜ
∫ ∞

0

s̃( f ) h̃∗( f )

Sn( f )
d f . (6.5b)

For simplicity of presentation, we will assume that the signals are normalized,

so that (s s) = 1 and (h h) = 1. Obviously, this condition can always be imposed,

if necessary, by taking

s → sp
(s s)

and h → hp
(h h)

. (6.6)

The filter template includes arbitrary time and phase offsets, encoded by the

arrival time and phase, ta and φa. Under a change of these quantities, the Fourier

transform behaves as

h̃( f ) → h̃( f )e−2πi f ta−iφa . (6.7)

The matched-filter output—the overlap between the two waveforms—is then de-

fined as the (normalized) inner product of the signals, maximized over these two

variables:

〈s h〉Bmax
ta,φa

(s h) (6.8)

= max
ta,φa

4ℜ
∫ ∞

0

s̃( f ) h̃∗( f )

Sn( f )
e2πi f ta+iφa d f (6.9)

= 4max
ta

∣∣∣∣∫ ∞

0

s̃( f ) h̃∗( f )

Sn( f )
e2πi f ta d f

∣∣∣∣ . (6.10)

Note that this integral is just the (inverse) Fourier transform of the quantity

s̃( f ) h̃∗( f )/Sn( f ) evaluated at ta. Thus finding the maximum over ta involves
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taking the Fourier transform and selecting the largest element of the finite set

that results from discretization.

6.2.2 Post-Newtonian template

Searches for gravitational waves in LIGO and Virgo use a post-Newtonian wave-

form known as TaylorF2. This is a frequency-domain waveform obtained via the

stationary-phase approximation [100], which assumes that the frequency-domain

amplitude is simply proportional to f −7/6 (the lowest-order behavior), while its

phasing is given by the phase of the time-domain waveform, as a function of

frequency. For a binary consisting of masses m1 and m2, located at an “effective”

distance Deff, we have

h̃( f ;M ,η, fc ) =Θ( fc − f )

(
1Mpc

Deff

)
A1Mpc(M ,η) f −7/6 eiΨ( f ;M ,η) , (6.11a)

where

A1Mpc(M ,η)B

(
5π

24

)1/2 (
GM¯/c2

1Mpc

)(
πGM¯

c3

)−1/6 (
η

M¯

)1/2 (
M

M¯

)1/3

, (6.11b)

M Bm1 +m2 , (6.11c)

ηB
m1m2

(m1 +m2)2
, (6.11d)

v B

(
GM

c3
π f

)1/3

, (6.11e)
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and the phasing Ψ of the frequency-domain waveform is given to 3.5pN accuracy

by the formula

Ψ( f ;M ,η) =2π f t0 −2φ0 −π/4

+ 3

128η

[
v−5 +

(
3715

756
+ 55

9
η

)
v−3 −16πv−2

+
(

15293365

508032
+ 27145

504
η+ 3085

72
η2

)
v−1

+π
[

38645

756
− 65

9
η

][
1+3ln

(
v

v0

)]
+

[
11583231236531

4694215680
− 640

3
π2 − 6848

21
γ

]
v

+
[(
−15335597827

3048192
+ 2255

12
π2 − 47324.0

63.0
− 7948

9

)
η

+76055

1728
η2 − 127825

1296
η3

]
v

+π
[

77096675

254016
+ 378515

1512
η− 74045

756
η2

]
v2

]
. (6.11f)

The overall frequency scale is set by the total mass M , as can be seen by

observing that each occurrence of f is accompanied by a factor of M .2 Thus,

going to a higher-mass system shifts the waveform to lower frequencies. On the

other hand, to first order, the timescale for the rate of change of the frequency is

given by the chirp mass:

M B

(
m3

1 m3
2

m1 +m2

)1/5

= M η3/5 . (6.12)

Clearly, the total mass and chirp mass give us two very different handles on the

behavior of the waveform. These two handles will be important when we try to

match the template to our waveform in regions where the post-Newtonian and
2The term 2π f t0 might be rewritten as 2πM f × t0/M . This term accounts for a time offset

altering the phase of the Fourier transform.
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stationary-phase approximations are poor. This is typically the case for high-mass

systems, which only enter the detector band late in the inspiral. In this case, we

can still obtain a high match, at the cost of using templates with the wrong values

of M and η.

We also note that physical binary systems are restricted to 0 < η≤ 1/4. How-

ever, for higher values of η, the formulas shown above still give plausible wave-

forms; in fact, in some cases these templates match the true waveform better than

any physical template. We will explore the implications of allowing unphysical

values for η in searches over the templates in Sec. 6.4.2.

Note the Heaviside function in Eq. (6.11a). This contains a cutoff frequency fc

which is used to ensure that the template does not extend to frequencies much

greater than the frequencies contained in the expected signal. This is essentially

a third parameter for the template waveform, and will be searched over. See

Sec. 6.4.1 for a discussion of strategies for optimizing detection by changing this

cutoff.

It has previously been shown that second-order post-Newtonian stationary-

phase waveforms will provide acceptable detection templates for binary neutron

stars and sub-solar mass black holes [129], but not necessarily for higher-mass

black holes. This is an issue we will investigate below by testing 2pN and 3.5pN

templates.

We also use the TaylorT4 waveform [59] to create a hybrid waveform used for

evaluation of the templates. This hybrid is described in Sec. 6.3.3.
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6.2.3 Discretization

The direct and inverse Fourier transforms are defined (using the standard LIGO

conventions [8]) as

s̃( f )B
∫ ∞

−∞
s(t )e−2πi f t dt , (6.13)

s(t ) =
∫ ∞

−∞
s̃( f )e2πi f t d f . (6.14)

In transferring these and the continuum expressions of preceding sections to

computer, we need to introduce two changes.

First, the ranges of integration must be restricted to finite intervals. We need to

assume that the physical signal contains nothing of interest at frequencies higher

than fNy or, considering negative frequencies, lower than − fNy. For notational

simplicity, we define the discretized Fourier transform to be periodic, with period

2 fNy. Similarly, we will assume that the signal s is periodic, with period T . Thus,

we can restrict each of the integrals given above to one period of the relevant

quantity.

Second, the quantities must be given on a discrete grid. We will assume that

the signal s is sampled at N uniform intervals of ∆t = T /N . This will give rise

to a frequency discretization of ∆ f = 1/T = 1/N∆t . We define the quantities

t j = j∆t and fk = k∆ f , (6.15)

for all integers j and k . It is not hard to see that the highest frequency that can be

represented on this discrete set is bounded by the Nyquist frequency fNy = 1/2∆t .

The combined operation of discretizing and restricting to finite range will be
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denoted by  , so

s̃( fk) 
N∆t/2∑

t j>−N∆t/2
s(t j )e−2πi fk t j ∆t (6.16)

 ∆t
N−1∑
j=0

s(t j )e−2πi j k/N , (6.17)

s(tk) 
fNy∑

f j>− fNy

s̃( f j )e2πi fk t j ∆ f (6.18)

 ∆ f
N−1∑
j=0

s̃( fk)e2πi j k/N . (6.19)

Note that in the second step of each of these expressions, we have used the

periodic character of s to re-express negative times as positive, and the periodic

character of s̃ to re-express negative frequencies as positive. We have also used

the relation fk t j = j k/N .

A notational subtlety arises when using the frequency-domain quantity. The

symbol s̃k is defined as the sum in Eq. (6.17), without the factor of ∆t [65]. In

particular, we have s̃( fk) ∆t s̃k . The expressions given above for s̃( fk) and s(t j )

should not depend strongly on the fineness of the discretization (for sufficiently

fine discretizations). Clearly, then, s̃k will depend strongly on the discretiza-

tion. Though the factor of ∆t should drop out for calculations using normalized

quantities, for calculations of the signal-to-noise ratio, or demonstrations of s̃( fk),

it is an important distinction that needs to be kept in mind. For example, the

FFTW and Matlab software packages use s̃k as their standard frequency-domain

quantity. Throughout the remainder of this paper, we will use s̃( fk) exclusively.
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For completeness, we include the expressions

(s h) 2ℜ
N−1∑
k=0

s̃( fk) h̃∗( fk)

Sn(| fk |)
∆ f (6.20)

 4ℜ
bN /2c∑
k=0

s̃( fk) h̃∗( fk)

Sn( fk)
∆ f , (6.21)

〈s h〉 2max
ta

∣∣∣∣∣N−1∑
k=0

s̃( fk) h̃∗( fk)

Sn(| fk |)
e2πi fk ta∆ f

∣∣∣∣∣ (6.22)

 4max
ta

∣∣∣∣∣bN /2c∑
k=0

s̃( fk) h̃∗( fk)

Sn( fk)
e2πi fk ta∆ f

∣∣∣∣∣ . (6.23)

The notation bN /2c denotes the greatest integer less than or equal to N /2.

6.3 PN–NR hybrid waveform

We need to construct a “true” black-hole binary waveform, which we might ex-

pect to observe with detectors. A numerical simulation will provide the data for

the crucial nonlinear merger phase. We carefully extract the data and extrapolate

it to large radius, and investigate the effects of numerical error on the final result.

Because this waveform is very computationally expensive to produce, it covers

only about 32 cycles, which is not sufficient for a thorough investigation of the

possibility of detecting it in searches of data from gravitational-wave detectors.

Thus, we match the numerical waveform to a post-Newtonian waveform, pro-

ducing a hybrid which extends for many thousands of cycles, covering the entire

band of interest.
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6.3.1 Numerical simulation, extraction, and extrapolation

The numerical simulation is the same as that described in Refs. [59, 229]: an equal-

mass, nonspinning, black-hole binary with reduced eccentricity [209], beginning

roughly 16 orbits before merger, continuing through merger and ringdown [229].

It is performed with the Caltech–Cornell pseudospectral code, using boundary

conditions designed to prevent constraint violations and gravitational radiation

from entering the domain [164, 187].

Data is extracted from the simulation in the form of the Newman–Penrose

scalar

Ψ4 =−Cαβγδlαm̄βlγm̄δ , (6.24)

where lα and the complex vector m̄β are constructed with reference to the coor-

dinate basis. Along the positive z axis, we have

lα = 1p
2

(
∂

∂t
− ∂

∂z

)α
, (6.25)

m̄β = 1p
2

(
∂

∂x
− i

∂

∂y

)β
. (6.26)

This quantity is extracted as a function of time, at various radii along the positive

z axis. This is then extrapolated to large radii, as described in Ref. [59], and in

greater detail in Ref. [63].

The measured (instantaneous) frequency at the beginning of the simulation is

finitial = (1.08±0.01)×103 Hz
M¯
M

. (6.27)

The measured ringdown frequency is

fringdown = (1.78±0.02)×104 Hz
M¯
M

. (6.28)
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The measured Christodoulou mass and spin of the final black hole are

Mχ, final = (0.95162±0.00002) Mχ, initial , (6.29)

Sfinal = (0.68646±0.00004) M 2
χ, final . (6.30)

Using this value for the spin, a quasi-analytic formula due to Echeverria [130] pre-

dicts a value of 1.77×104 Hz
M
M̄ , for the ringdown frequency, in close agreement

with the measured frequency.

6.3.2 Accuracy of the numerical simulation

The numerical waveform will be the standard against which we will judge the SPA

waveforms used in LIGO data analysis. To understand how precisely we should

trust our final results, we need to understand the accuracy of the waveform

itself. The most obvious measure of the error in this fiducial waveform is its

convergence with increasing numerical resolution. Fig. 6.1 shows the normalized

inner product (Eq. (6.5)) and overlap (Eq. (6.8)) between waveforms computed at

different resolutions.

Because of the short extent of the numerical waveforms, we need to be careful

when using their Fourier transforms. The signal can be corrupted easily by the

nonperiodicity of the waveforms, and the discontinuous jumps that result. We can

mitigate this problem by increasing the sampling frequency of the input data, and

restricting the Fourier transform to frequencies corresponding to instantaneous

frequencies contained in the data. The input data can easily be upsampled in the

time domain by interpolating the phase and amplitude of the complex data to a

finer time grid. We then perform the transform, and explicitly set the data to zero
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Figure 6.1: Convergence testing for numerical waveforms from a data-analysis
perspective

We plot the match between waveforms computed at different numerical resolu-
tions. The waveforms are scaled to various masses, and the Initial-LIGO noise
curve is used in the calculation of the match. The upper panel shows the simple
inner product (that is, there is no maximization over arrival time and phase); the
lower panel shows the overlap (after maximization). In each panel, the lower
(dashed red) line compares the lowest- and highest-resolution simulations, while
the upper (solid green) line compares the medium- and highest-resolution sim-
ulations. Note that this plot uses only numerical data, with no post-Newtonian
contribution.



6.3. PN–NR hybrid waveform 307

at frequencies below finitial and above fringdown, as given in Eqs. 6.27 and 6.28.

While the results do depend on whether or not we impose these cutoffs, they do

not depend sensitively on the actual cutoff frequencies.

The inner product between the lowest- and highest-resolution simulations

(dashed red lines) actually passes through zero, as shown in the upper panel.

Presumably, this is because of loss of phase accuracy over the course of the sim-

ulation. All three simulations begin with the same initial data, so the waveforms

are most similar at the beginning. Masses for which this is the most important

segment (the lowest masses) will naturally have the highest inner product be-

tween resolutions. As the simulation progresses, numerical error accumulates—

notably in the phase—so the inner product decreases with masses for which later

segments dominate the inner product (higher masses). When the inner product

is optimized over arrival time and phase, we can see that the overlap becomes

much better, as shown in the lower panel, indicating sufficient accuracy within

any frequency band for which phase coherence is required.

In either case, the medium- and highest-resolutions are much more nearly

the same. Without optimization, their inner product is within a few tenths of a

percent of 1; after optimization, the overlap is within 10−6 of 1.

In the rest of our analysis, we use the highest-resolution waveform. Because

we always optimize over arrival time and phase, the lower panel of Fig. 6.1 is the

most relevant, and shows that the waveform has converged to very high accuracy.

The overlaps we quote below will only be given to three decimal places at most,

because this is roughly the accuracy of the single-precision numerical methods

used in the rest of the paper. This accuracy is also sufficient for searches of
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gravitational-wave data. Thus, the truncation error of the simulated waveform is

irrelevant for those purposes.

Other sources of error include residual eccentricity and spin, the influence of

the outer boundary of the simulation, extrapolation errors, and coordinate effects,

as discussed in Ref. [59]. The eccentricity had a disproportionately large effect

on the error quoted in that paper because of the matching technique, which is

not used here. Restricting attention to the other effects of eccentricity, the un-

certainty falls below that due to numerical error. Similarly, using the techniques

of Ref. [190], the initial spins of the black holes have been measured more reli-

ably, and found to be more than an order of magnitude smaller than previously

determined, allowing us to reduce the estimate for that error to less than the

numerical truncation error. The various coordinate effects were all estimated to

be of roughly the same magnitude as the numerical error.

With the numerical error being many times more accurate than needed for

this analysis, and the other sources of uncertainty being of roughly the same

size, these considerations indicate that the overall error in our fiducial waveform

is substantially less than the precision needed for this analysis.

6.3.3 Hybrid waveform

Numerical simulations cannot simulate a very large portion of the inspiral of

a black-hole binary system. Indeed, the longest such simulation currently in

the literature is the one used here—which extends over just 32 GW cycles before

merger. Fortunately, this is the only stage in which simulations are needed. It has

been shown previously [59] that the TaylorT4 waveform with 3.5-pN phase and
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3.0-pN amplitude matches the early part of this simulation to very high accuracy.

We generate a TaylorT4 waveform of over 8000 GW cycles (t ∼ 1.2×106M , starting

at M f = 0.004), and transition between the two to create a hybrid. This long

waveform is sufficient to ensure that—even for the lowest-mass systems we will

consider—the waveform begins well before it enters the frequency band of interest

to LIGO.

Following Ref. [61], we match the numerical waveform to the pN waveform

by adjusting the time and phase offsets of the pN waveform to minimize the

quantity

Ξ(∆t ,∆φ) =
∫ t2

t1

[
φNR(t )−φPN(t −∆t )−∆φ]2

dt . (6.31)

Here, we choose t1 = 900 M and t2 = 1730 M , which is closer to the beginning of

the waveform than in the previous paper. This particular interval is chosen to

begin and end at troughs of the small oscillations due to the residual eccentricity

e ∼ 5×10−5 in our numerical waveform. Taking a range from trough to trough or

peak to peak—rather than node to node, for example—of the eccentricity effects

minimizes their influence on the matching. The eccentricity oscillations can be

seen more easily after low-pass filtering the waveform, though we find filtering

to be unnecessary for this paper. The junk radiation apparent in the waveform

as shown here has no effect on the resulting match—as we have verified by

filtering, and redoing the match. Because the final waveform will incorporate

no numerical data before t1 and very little immediately thereafter (as explained

below), the junk radiation will have no effect on any of our results—as we have

also explicitly verified. In particular, by integrating Ψ4 to obtain h, we effectively

smooth the junk radiation.
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Figure 6.2: Amplitude and phase differences between the numerical and post-
Newtonian waveforms blended to create the hybrid waveform

The (red) vertical lines at 900M and 1730M denote the region over which match-
ing and hybridization occur. Note that the agreement is well within the numerical
accuracy of the simulation, represented by the horizontal bands, throughout the
matching region. Also note that the phase difference is fairly flat for a significant
period of time after the matching range, which indicates that the match is not
sensitive to the particular range chosen for matching.
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In Fig. 6.2 we compare the phase of the numerical and pN waveforms. The

quantities plotted are

δφBφPN−φNR , (6.32)
δA

A
B

APN− ANR
ANR

, (6.33)

shown over the interval on which both data sets exist. The vertical bars denote

the matching region. Note that the phase difference is well within the accuracy

of the simulation (about 0.01 radians, represented by the horizontal band) over

a range extending later than the matching region. Also, the difference between

the two is fairly flat, which implies that the match is not very sensitive to the

region chosen for matching. Because of this, we expect that the phase coherence

between the early pN data and the late NR data will be physically accurate to

high precision.

The hybrid waveform is then constructed by blending the two matched wave-

forms together according to

Ahyb(t ) = τ(t ) ANR+ [1−τ(t )] APN(t ) , (6.34)

φhyb(t ) = τ(t )φNR+ [1−τ(t )] φPN(t ) . (6.35)

The blending function τ is defined by

τ(t ) =


0 if t < t1 ,

t−t1
t2−t1

if t1 ≤ t < t2 ,

1 if t2 ≤ t .

(6.36)

The values of t1 and t2 are the same as those used for the matching. The am-

plitude discrepancy between the pN waveform and the NR waveform over this
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Figure 6.3: The last t = 5000M¯ of the hybrid waveform used in this analysis

This is the h+ waveform seen by an observer on the positive z axis. The vertical
lines denote the matching and hybridization region. The 0 on the time axis
corresponds to the beginning of the numerical simulation.

interval is within numerical uncertainty—roughly 0.4%. As with the matching

technique (Eq. (6.31)), this method is similar to that of Ref. [5], but distinct, in

that we blend the phase and amplitude, rather than the real and imaginary parts.

This leads to a smoothly blended waveform, shown in Fig 6.3.

Up to this point, the waveform has been Ψ4 data. With the long waveform
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in hand, we numerically integrate twice to obtain h, and set the four integration

constants so that the final waveform has zero average and first moment [209].

Because of the very long duration of the waveforms, this gives a reasonable

result, which is only incorrect at very low frequencies—lower than any frequency

of interest to us. We have also checked that our results do not change when we

effectively integrate in the frequency domain by taking

h̃ = Ψ̃4

4π f 2
, (6.37)

which is the frequency-domain analog of the equation Ψ4 =−ḧ.

6.4 Detection efficiency of gravitational-wave

templates

In this section we study the efficiency of restricted, stationary phase TaylorF2 post-

Newtonian templates with terms up to order 2.0, order 3.5, and a “pseudo-4.0

pN order” term recommended in Ref. [206]. Overlaps are calculated using the

techniques of Sec. 6.2.1, with the signal s being the hybrid waveform described in

Sec. 6.3 scaled to a range of masses. We consider both the Initial- and Advanced-

LIGO noise curves.

Plots of the hybrid waveforms in comparison to the Initial-LIGO noise curve

are shown in Fig. 6.4. The masses are chosen so that various frequencies of

interest (the final stitching frequency, the ISCO, and the ringdown) occur at the

seismic wall for Initial LIGO, 40Hz. The waveforms s̃ are scaled to depict the
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Figure 6.4: Hybrid Caltech–Cornell waveform scaled to various total masses
shown against the Initial- and Advanced-LIGO noise curves

Sources are optimally oriented and placed at 100Mpc. Markers are placed along
the lines at frequencies corresponding to various instantaneous frequencies of
the waveforms. The triangles represent the beginning and end of the blending
region; the circle represents the ISCO frequency; the square the light-ring; and
the diamond the measured ringdown frequency. See the text for discussion of
the normalization. The values given for ρ use the Initial-LIGO noise curve, with
sources at a distance of 100Mpc.
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detectability of the signal, typically quantified by the signal-to-noise ratio (SNR)

ρ2B

∫ ∞

0

4 s̃( f ) s̃∗( f )

Sn( f )
d f (6.38)

=
∫ ∞

0

∣∣2 s̃( f )
√

f
∣∣2

Sn( f )
dln f . (6.39)

Note that the SNR is just the un-normalized inner product of s with itself. In the

final expression, the numerator and denominator have the same units, and are

directly comparable. Because the square root of the denominator is familiar, we

plot that along with the square root of the numerator. Plotting these two quan-

tities together gives a graphical impression of the detectability of the waveform,

and the relative importance of each part of the waveform, by its height above the

noise curve. In Ref. [64], Brady and Creighton define a slightly different quantity,

the characteristic strain:

hcharB f |s̃( f )| . (6.40)

The relative factor of
√

f they use is present so that they can plot hchar against√
f Sn( f ). Cutler and Thorne [102] define still another quantity, the signal strength

h̃s( f ), which is related to the Fourier transform by

h̃( f ) =p
5

T

N
h̃(s) . (6.41)

The factor of
p

5 comes from averaging over the sky which we do not do, and T /N

is the ratio of the threshold to the rms noise at the endpoint of signal processing.

For each template family we initially optimize over signal mass M , symmetric

mass ratio η= m1m2/(m1+m2)2, and upper cutoff frequency fc . The optimization

is performed using a Nelder–Mead (“amoeba”) algorithm [218]. The amoeba

starts with a simplex in the parameter space, and procedes through a series of
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Figure 6.5: Histogram of overlaps found by 300 instances of the Amoeba algo-
rithm

The amoeba optimizes the overlap against a given waveform over M ,η, fc , with
randomized initial conditions. Note the logarithmic scale on the vertical axis. The
majority of instances produced a lower overlap than the optimum. We interpret
this as pointing to the existence of a broad local maximum which did not coincide
with the global maximum.
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steps, each of which will improve the value of the function at at least one vertex.

The algorithm terminates when all verticies have converged to the same point

to within a specified tolerance. This process is deterministic, and amounts to

an enhanced steepest-ascent algorithm. It is therefore only guaranteed to find a

local maximum. We supplement the basic amoeba by running 300 instances with

random starting values, and taking the best match obtained over all instances.

In all cases the point representing the optimal set of parameters is not the

one that is found by the most amoebas. We interpret this as being due to a

large region in parameter space containing a local maximum and a relatively

smaller region containing the global maximum. However, in repeated runs the

same optimal parameters were found by at least some of the amoebas. A sample

histogram displaying this behavior is shown in Fig. 6.5. The horizontal axis shows

the overlap found, while the vertical axis shows the number of instances which

found that overlap.

The results of optimizing over all parameters for selected masses for Initial

LIGO are given in Table 6.1 and summarized in Fig. 6.6. The same plot for Ad-

vanced LIGO is shown in Fig. 6.7. We see that 3.5 pN TaylorF2 outperforms

2.0 pN templates in most cases. For masses between 10 and 50 M¯, with the

Advanced-LIGO noise curve, 2.0 pN does actually achieve slightly higher over-

laps. However, in most of that region, pseudo-4.0 pN templates outperform both.

We see from Tables 6.1 and 6.2 that the parameters of the optimal templates

are often far from the parameters of the physical waveform, especially for high-

mass systems, which emphasize portions of the waveform for which the pN and

SPA assumptions are poor. For Initial LIGO, pseudo-4.0 pN templates generally
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Table 6.1: Maximum overlaps between Caltech–Cornell hybrid waveforms and
restricted SPA pN templates using the Initial-LIGO noise curve

(10+10)M¯ (20+20)M¯ (30+30)M¯ (50+50)M¯〈
sNR-CC hSPAext

c (2.0)
〉

0.99 0.98 0.97 0.96

M/M¯ 23.27+0.13
−0.12 25.99+0.61

−0.56 35.2+1.8
−1.9 47.5+6.9

−4.7

η 0.199+0.003
−0.003 0.771+0.049

−0.042 1.000−0.139 1.000−0.249

fcut (Hz) 500+520
−150 430+360

−80 296+53
−31 191+20

−14〈
sNR-CC hSPAext

c (3.5)
〉

0.98 0.99 0.99 0.99

M/M¯ 18.75+0.1
−0.1 31.88+0.77

−0.71 47.2+4.4
−3.3 260−190

η 0.290+0.004
−0.004 0.493+0.053

−0.041 0.76+0.24
−0.23 0.95+0.05

−0.21

fcut (Hz) 507+520
−160 450+580

−80 330+150
−40 197+24

−16〈
sNR-CC hSPAY

c (4)
〉

0.99 0.96 0.95 0.96

M/M¯ 23.64+0.13
−0.12 47.9+1.3

−1.1 61.8+8.7
−6.2 90+20

−17

η 0.182+0.003
−0.003 0.181+0.016

−0.014 0.52+0.43
−0.18 0.53+0.47

−0.31

fcut (Hz) 510+650
−150 352+73

−61 310+72
−47 196+21

−15

The first number in each block is the overlap; subsequent numbers are the tem-
plate parameters that achieve this overlap. Parameter values within the specified
ranges keep the overlap within 1% of the maximum by varying that parameter,
while leaving others fixed. We restrict the search to 0 ≤ η≤ 1.000, so the upper
error bounds when η∼ 1.000 may be artificially small.

achieve higher accuracy in the optimal parameters than the other two, despite

the lower overlaps. Conversely, for Advanced LIGO, 3.5 pN templates achieve

higher accuracy.
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Table 6.2: Maximum overlaps between Caltech–Cornell hybrid waveforms and
restricted SPA pN templates using the Advanced-LIGO noise curve

(10+10)M¯ (20+20)M¯ (30+30)M¯ (50+50)M¯〈
sNR-CC hSPAext

c (2.0)
〉

0.98 0.92 0.91 0.94

M/M¯ 25.15+0.02
−0.02 47.73+0.12

−0.11 54.39+0.51
−0.43 60.2+1.6

−1.3

η 0.170+0.001
−0.001 0.188+0.001

−0.001 0.335+0.008
−0.007 0.891+0.066

−0.049

fcut (Hz) 440+130
−120 267+48

−50 262+34
−36 182+24

−18〈
sNR-CC hSPAext

c (3.5)
〉

0.97 0.92 0.92 0.96

M/M¯ 20.27+0.02
−0.02 38.11+0.11

−0.09 50.09+0.49
−0.42 78.1+1.9

−1.5

η 0.245+0.001
−0.001 0.277+0.002

−0.002 0.386+0.013
−0.010 0.494+0.076

−0.033

fcut (Hz) 356+97
−88 263+47

−48 281+41
−37 186+30

−19〈
sNR-CC hSPAY

c (4)
〉

0.97 0.96 0.94 0.90

M/M¯ 22.24+0.02
−0.02 46.57+0.11

−0.11 72.06+0.35
−0.35 118.5+2.0

−1.6

η 0.208+0.001
−0.001 0.190+0.001

−0.001 0.177+0.002
−0.003 0.186+0.010

−0.007

fcut (Hz) 470+550
−140 353+73

−69 242+37
−36 152+19

−19

The first number in each block is the overlap; subsequent numbers are the tem-
plate parameters that achieve this overlap. Parameter values within the specified
ranges keep the overlap within 1% of the maximum by varying that parameter,
while leaving others fixed. We restrict the search to 0 ≤ η≤ 1.000, so the upper
error bounds when η∼ 1.000 may be artificially small.
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Figure 6.6: Overlaps between Caltech–Cornell hybrid waveforms and restricted
stationary-phase pN waveforms for the Initial-LIGO PSD

We scale the numerical waveforms to various masses and optimize the pN wave-
form over M and η, allowing η to range over 0 < η≤ 1. The cutoff frequency fc

is prescribed by the weighted average described below.

This leads us to consider the range of possible template parameters which may

give high overlaps. We next consider the reduction in overlap as the parameters

fc and η are independently varied from the optimal value.



6.4. Detection efficiency of gravitational-wave templates 321

0.88

0.90

0.92

0.94

0.96

0.98

1.00

M
ax

im
um

ov
er

la
p

0 20 40 60 80 100
Total mass (M¯)

2.0 pN
TaylorF2

3.5 pN TaylorF2

Pseudo-4.0 pN
TaylorF2

Figure 6.7: Overlaps between Caltech–Cornell hybrid waveforms and restricted
stationary-phase pN waveforms for the Advanced-LIGO PSD

We scale the numerical waveforms to various masses and optimize the pN wave-
form over M and η, allowing η to range over 0 < η≤ 1. The cutoff frequency fc

is prescribed by the weighted average described below.
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6.4.1 Effect of upper frequency cutoff

The optimal cutoff frequency for a template used in a search depends crucially

on the total mass of the binary. This dependence comes from the need to cut

off the integral in the overlap, Eq. (6.5). We can get a feeling for the relative

contributions to the overlap from different parts of a waveform by considering

the overlap of a template with itself. This quantity is shown in Fig. 6.8 for the

Initial-LIGO noise curve. The template used here is the SPA waveform for an

equal-mass 10 M¯ binary, but only the overall amplitude changes as we change

the masses of the binary, not the shape or position of the curve.

If we ignore the relative phasing of a waveform and a well-matched template,

the integrand of the overlap will look approximately like this. The only difference

is that a physical binary waveform would end at some frequency—roughly the

ringdown frequency of the final black hole. At higher frequencies, the curve

would drop steeply. Thus, there is no improvement to the overlap to be gained

from extending the template to higher frequencies.

On the contrary, there may be something to be lost by pushing the template

to higher frequencies. Note the normalization condition of Eq. (6.6). If the tem-

plate extends to higher frequencies than the physical waveform can match, the

normalization factor will simply tend to decrease the overall match.

For systems with ringdown frequencies well above the peak of the integrand in

Fig. 6.8, this is not important; there is so little contribution to the integral at a high

frequencies that the change in normalization will be small. For example, binaries

of total mass roughly 40 M¯ have ringdown frequencies at roughly 450Hz. We

can see from the plot that very little of the overlap is found at higher frequencies.
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Figure 6.8: Integrand of the inner product for a TaylorF2 3.5 pN waveform

This equal-mass waveform is scaled to M = 10 and placed at a distance of 100Mpc.
Note, however, that the shape of this curve does not change as we change M and
η; only the vertical scale changes.
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Thus, we expect that systems with lower masses should not suffer great loss in

overlap if the cutoff frequency is extended higher. This is indeed what we find,

as shown by a representative example in Fig. 6.9. For this 40 M¯ system, using

the Initial-LIGO noise curve, the optimal cutoff frequency is around 450Hz—

roughly the ringdown frequency. Decreasing the cutoff quickly decreases the

overlap. The cutoff may be increased almost indefinitely, however, with only

0.5% loss in overlap. This, of course, changes when using the Advanced-LIGO

noise curve. We revisit this issue in Sec. 6.5.

6.4.2 Unrestricted η

The physical symmetric mass ratio is restricted to the range 0 < η≤ 0.25, values

above this imply complex-valued masses. However the pN waveforms are well-

behaved for 0 < η< 1.0, and as seen from Tables 6.1 and 6.2, the highest overlaps

are often obtained at unphysical values of η. In Fig. 6.10 we show the effect of

limiting the optimization to physical η. At high masses, the limitation reduces

the optimal overlap by up to 12%. This is a result of the fact that the integral

of the overlap, Eq. (6.5) is effectively cut off by merger for high-mass systems.

That is, the part of the physical waveform where we expect the pN and SPA

approximations to be valid is buried in detector noise. Thus, if the SPA wave-

form is to match the physical waveform, the match will be effectively spurious.

Nonetheless, this spurious match can be quite high, as seen in the figure.
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Figure 6.9: Overlap between Caltech–Cornell waveform and restricted TaylorF2,
3.5 pN waveform as a function of cutoff frequency fc

The numerical waveform is scaled to M = 40 M¯, and the overlap is calculated
using the Initial-LIGO noise curve. The vertical bars delineate 1% loss. Note that
the upper bound extends to higher frequencies indefinitely. That is, the cutoff
frequency may, in this case, be extended to high frequency with little cost.
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Figure 6.10: Maximum overlaps obtained by allowing η to range over unphys-
ical values, compared to those obtained by restricting the range of η

These overlaps are generated using 3.5 pN TaylorF2 templates, searching over
values of the total mass and mass ratio. We see that extending to unphysical
values of η improves the match by up to 11% for masses near 60 M¯.
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6.5 Recommendations for improvements

Based on the analysis of the previous sections we propose a series of adjustments

to searches using SPA template waveforms to enhance the efficiency of those

searches.

First, as seen in Fig. 6.6 for Initial LIGO, adding terms up to 3.5 pN order

does as well as or better than the current 2.0 pN templates over most of the mass

range, and does significantly better (> 3%) above 50 M¯. While the pseudo-4.0

pN templates recommended in Ref. [206] do slightly better at masses near 20 M¯,
the difference is less than about 1%. Thus, we recommend 3.5 pN templates for

all masses, when using an Initial-LIGO noise curve, resulting in overlaps of more

than 0.98 for all masses.

The improvement due to 3.5 pN templates over 2.0 pN generally holds for

Advanced LIGO as well, as shown in Fig. 6.7. The 3.5 pN templates do better

than 2.0 pN templates above 50 M¯ without a significant loss (within 1%) at lower

masses. However, there is a large region for which the pseudo-4.0 pN term does

significantly better. When using an Advanced-LIGO noise curve, we recommend

3.5 pN templates generally, being replaced by pseudo-4.0 pN templates for masses

in the range 20–60 M¯.
As a second improvement, we note from Fig. 6.10 that allowing η to range over

unphysical values significantly improves matches above 30 M¯. In preliminary

studies we have found that extending to η ≤ 1 roughly doubles the size of the

template bank, and the advantages must therefore be weighed against the increase

in false alarm rate.

Our third recommendation involves the cutoff frequency used for the tem-
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plate waveform. Optimization over the cutoff frequency is too computationally

intensive to be done in searches. Currently, the cutoff frequency is typically taken

to be the Schwarzschild ISCO frequency. To examine the effect of this choice we

repeat the variation done in Fig. 6.9 for all masses in our range, and plot the re-

gions within which the overlap drops by less than 1% (dark gray) and 3% (light

gray) of the optimal value. The results are shown in Figs. 6.11 and 6.12, along

with several other physically motivated cutoff frequencies. We find that none of

these cutoffs stays within 1%. In particular, the ISCO is a poor choice for both

Initial and Advanced LIGO except at very low masses, where the precise value

of the cutoff is not critical.

The ISCO is often pointed to—somewhat arbitrarily—as a good estimate of

the breakdown of post-Newtonian approximations [42]. So, for instance, if we

were to match a pN template to a physical waveform, beginning at some point

in the distant past, we might expect them to separate quite badly near the ISCO.

Of course, for realistic black-hole binaries, the gravitational waves will only enter

the LIGO band late in the inspiral—just before the ISCO for low-mass systems, or

after the ISCO for high-mass systems. We can see from Fig. 6.4 that, for masses

below about 30 M¯, the ISCO is high enough that lower-frequency parts of the

waveform contribute the most to the SNR.

For very high masses, however, this basically cuts the waveform down to

nothing. In Initial LIGO, the ISCO is completely buried in seismic noise for

masses above about 100 M¯. Thus, we must move the cutoff frequency up. We

cannot push the cutoff far above ringdown, because the physical waveform simply
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Figure 6.11: Candidate fc values for 3.5 pN templates with Initial LIGO

The dark gray band contains cutoff frequencies with matches within 1% of the
value at which the best overlap was obtained. The light gray band contains
frequencies with matches within 3%.
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Figure 6.12: Candidate fc values for 3.5 pN templates with Advanced LIGO

The dark gray band contains cutoff frequencies with matches within 1% of the
value at which the best overlap was obtained. The light gray band contains fre-
quencies with matches within 3%. Note that the weighted-average cutoff extends
past the 1% error bars for 12 < M/M¯ < 40. However, in that same region, the 3.5
pN templates do poorly overall, and we recommend pseudo 4.0 pN templates.
The optimal cutoff frequency for pseudo 4.0 pN templates is much closer to the
weighted-average cutoff in this mass range.
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ceases to exist (see Fig. 6.4). It has been suggested that an “effective ringdown”

(ERD) frequency

fERDB 1.07 fRingdown (6.42)

is a useful upper limit [206].

For intermediate masses, we would like to interpolate somehow between these

two extremes of ISCO and ERD. We suggest setting the cutoff frequency to a

weighted average of the two, where the weights are the contributions to the SNR

below the given frequency. If we assume coherent phasing between the tem-

plate and the physical waveform, we can simply take the amplitudes of the two

waveforms. Also, note that the restricted SPA approximation for the amplitude

is reasonable. Thus, define

ρ2
ISCOB

∫ fISCO

0

f −7/3

Sn( f )
d f , (6.43)

ρ2
ERDB

∫ fERD

fISCO

f −7/3

Sn( f )
d f , (6.44)

ρ2
totB

∫ fERD

0

f −7/3

Sn( f )
d f , (6.45)

fcutB
fISCO ρISCO+ fERD ρERD

ρtot
. (6.46)

We have already dropped constant factors in the expressions for ρ that will cancel

out.

Note that these expressions only depend on the total mass by way of the limits

of integrations, which are very simple known functions of the mass. Thus, these

integrals could be done just once for a given noise curve, storing the intermediate

values. When the cutoff needs to be calculated, the integral could be evaluated

at the given ISCO and ringdown frequencies. Thus, it would be a fast way of
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calculating the cutoff, with no need to do the integrals each time the cutoff is

needed.

We can test this recommended frequency by comparing it to the optimal cutoff

frequency found by the amoeba search described in Sec. 6.4. For 3.5 pN templates

in Initial LIGO, we find that it is an excellent match to the optimal frequency.

Fig. 6.11 shows these two values, along with dark and light bands showing the

regions in which changing fc results in a loss of overlap of 1% and 3%, respec-

tively. Of course, the same figure shows that using the ERD recommendation

would stay within the 1% error bounds. Nonetheless, the close match between

this recommendation and the true optimum suggests that it is sound. While our

analysis has been restricted to equal-mass systems, the cutoff frequency we’ve de-

fined here could be applied to unequal-mass systems as well. It will be interesting

to see how this cutoff fares in those situations. Thus, our final recommendation is

to use the weighted-average frequency cutoff throughout the entire mass range.

Similar results hold for Advanced LIGO, when using our recommended tem-

plate for each mass. That is, in regions where 3.5 pN templates do poorly (see

Fig. 6.7), the weighted average is a poor predictor of the optimal cutoff frequency

using those templates, as shown in Fig. 6.12. However, in those same regions—

where pseudo-4.0 pN templates do well—the weighted average is a good pre-

dictor of the optimal cutoff frequency for 4.0 pN templates. Thus, again, we

recommend using the weighted-average frequency cutoff throughout the entire

mass range with Advanced LIGO.

We make these recommendations to reduce the burden of searching. By pre-

scribing a cutoff frequency, the search no longer needs to extend over that pa-
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rameter. Similarly, by prescribing a post-Newtonian order, we need use only one

template for a given total mass. On the other hand, if these recommendations

decrease the overlap found when using them compared to the overlap found by

an unconstrained search, it may be better to search the larger parameter space.

We can evaluate the loss in overlap by comparing the results found using our

recommendations to the results found when searching over the set of all three

template families, and all masses, mass ratios, and cutoff frequencies. The dif-

ference is shown in Fig. 6.13. We see that the loss in overlap when using our

recommendations is always less than 0.0025, and less than 0.007 for Advanced

LIGO.
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Figure 6.13: Loss in overlap when using our recommendations, compared to
results searching over all template families, masses, mass ratios, and cutoff
frequencies

Our recommendations prescribe the template family for a given total mass and
the cutoff frequency to be used. In that case, the search is performed for the
optimal mass and mass ratio of the template. For Initial LIGO, the loss in overlap
when using our recommendations is always less than 0.0025; for Advanced LIGO
the loss is always less than 0.007.



A
pp

en
di

x

A
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A.1 Conventions in this thesis

B imposed absolute equality (definition),

≡ derived absolute equality,

z̄ complex conjugate of z,

ℜz real part of z,

ℑz imaginary part of z,

dxe least integer greater than x,

bxc greatest integer less than x,

T, v; T µν, vα 4-tensor or 4-vector,

~v ; v j 3-vector.
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A.1.1 Units

Throughout most of this paper, geometric units with G = 1 and c = 1 are used.

Where the link to physical measurements is more immediately relevant, mks

units are used. In those cases, masses will often be quoted in units of the solar

mass, and distances in megaparsecs.

G = 6.67259×10−11 m3

kg sec2
(A.1)

c = 2.99792458×108 m

sec
(A.2)

1M¯ = 1.98892×1022 kg (A.3)

1Mpc = 3.08568025×1022 m (A.4)

A.1.2 Metric

We use a metric signature (− + + +). This choice is compared with the one

made in several other references in Table A.1. The symbol gµν denotes the full

spacetime metric, whereas
_
gµν denotes a background metric. Greek indices run

over the values 0–3. Latin indices typically run over the values 1–3. However,

when discussing Regge–Wheeler–Zerilli methods, lowercase Latin indices (e.g.,

gab) refer to the t–r sector, whereas uppercase Latin indices (e.g., g AB ) refer to

the ϑ–ϕ sector. These can also combined, as in g Ab .

A.1.3 Metric perturbation

Let us define the symbol

hαβB ηαβ−p−g gαβ , (A.5)
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where

g B det(gαβ) , (A.6)

and ηαβ represents an auxiliary Minkowski metric. We will distinguish this quan-

tity from the metric perturbation

δgαβB gαβ−ηαβ . (A.7)

For linear perturbations of Minkowski space, hαβ is the trace-reversed metric

perturbation:

hαβ→ δgαβ− 1

2
ηαβδgγγ . (A.8)

Note that various references (e.g. [195, 242, 57]) use the symbol h̄αβ for (the lin-

earized version of) our quantity hαβ, and hαβ for our symbol δgαβ. In transverse,

traceless gauge, of course, the distinction is irrelevant. The choice here is made

for agreement (up to a sign) with Blanchet [42], among others. Also, the overbar

notation will be reserved for complex conjugation in this work.

In the linear regime, the metric perturbation is encoded in the transverse,

traceless components h+ and h×. To construct these quantities, we will define

the polarization tensors

ε+Bϑ⊗ϑ−ϕ⊗ϕ , (A.9a)

ε×Bϑ⊗ϕ+ϕ⊗ϑ . (A.9b)

(Along the z axis, we will simply use the limit of these expressions as ϑ goes to

0 or π, along the line ϕ= 0.) Thus, we define

h+B
1

2
ε+ i j

[
hi j ]TT , (A.10a)

h×B
1

2
ε× i j

[
hi j ]TT , (A.10b)
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where TT denotes the transverse, traceless part. Note that each polarization tensor

defined in Eq. (A.9) differs by a sign from the one used by Blanchet. On the other

hand, so does our definition of hαβ, so h× and h+ should agree in sign. Finally,

we define the complex combination of these components:

hB h+− ih× . (A.11)

The choice of relative sign in this definition is motivated by the linear relation

Ψ4 →−ḧ, as discussed in Sec. 3.3.2, so that no complex conjugation is necessary.

A.1.4 Curvature

We define the Riemann tensor by its action on a dual-vector field ωα as

∇α∇βωγ−∇β∇αωγ = R δ

αβγ
ωδ . (A.12)

The Ricci tensor is then defined as the contraction

RαγBR β

αβγ
. (A.13)

This choice of sign is compared with those of other references in Table A.1.

A.1.5 Weyl scalars

We define the tetrad

lαB
1p
2

(
tα+ rα

)
, (A.14a)

nαB
1p
2

(
tα− rα

)
, (A.14b)

mαB eiξ 1p
2

(
ϑα+ iϕα

)
, (A.14c)

m̄αB e−iξ 1p
2

(
ϑα− iϕα

)
, (A.14d)
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where the vectors t ,r ,ϑ,ϕ are simply the usual coordinate vectors. Note that,

in general, this tetrad does not satisfy any orthonormality conditions. Also note

the bookkeeping parameter ξ, taking inspiration from Dray [127]. We would like

to set this to zero, but keep it throughout to ease comparison with results using

other conventions. Using this tetrad, we define the Weyl scalars:

Ψ0BCαβγδlαmβlγmδei(ζ−2ξ) ; (A.15a)

Ψ1BCαβγδlαmβlγnδei(ζ−ξ) ; (A.15b)

Ψ2BCαβγδlαmβm̄γnδeiζ ; (A.15c)

Ψ3BCαβγδlαnβm̄γnδei(ζ+ξ) ; (A.15d)

Ψ4BCαβγδnαm̄βnγm̄δei(ζ+2ξ) . (A.15e)

Again, we define the parameter ζ to ease comparisons with results using other

conventions. The phases of ξ are included here to cancel those introduced in the

tetrad. With ξ = ζ = 0, these choices coincide with those of Brown et al. [66].

Comparisons for the choices of ξ and ζ with other references are shown in Ta-

ble A.1.
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A.1.6 Angles and frequencies

There are several distinct—though sometimes related—angles we need to dis-

criminate between:

Φ ∈ (−∞,∞) orbital phase; (A.16)

φ ∈ (−∞,∞) gravitational-wave phase; (A.17)

ϕ ∈ [0,2π) azimuthal angular coordinate; (A.18)

ϑ ∈ [0,π] zenith angular coordinate (colatitude); (A.19)

α ∈ [0,2π) right ascension; (A.20)

γ ∈ [0,π] codeclination; (A.21)

Ψ ∈ [0,π) polarization angle. (A.22)

Note that these angles fall naturally into three groups: the first two being continu-

ous phases taking arbitrary values; the next two being coordinates on the sphere;

and the last three describing the orientation of an observer, or the position of a

source relative to the observer.

The first two angles above are assumed to be continuous, and can be made

so by adding appropriate multiples of 2π at each discontinuity. The associated

frequencies are then defined by

ΩB
d

dt
Φ , (A.23)

ωB
d

dt
φ , (A.24)

where t will generally be the local coordinate time. Note that φ may refer to

various components of a gravitational wave—e.g., the (2,2) mode or the z-axis
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signal. This will be made clear in the context, by a subscript if necessary. We

may also define the frequency f Bω/2π.

The third and fourth angles—ϑ and ϕ—refer to coordinates on the sphere.

Typically, we will think of the sphere as being centered on a binary system. We

will associate to these coordinates the vector fields ϑ and ϕ in the usual way.

The last three angles—α, γ, and Ψ—denote the relative orientation of the

observer and the binary system. For example, the angles α and γ may be con-

sidered the (nearly) standard coordinates for the binary on the celestial sphere.

We, however, denote by γ the “codeclination,” which is defined with respect to

the more usual declination δ by

γBπ/2−δ . (A.25)

Thus, we have γ ∈ [0,π]. The polarization angle Ψ is needed to represent the

rotation of the observer in a plane transverse to the gravitational waves. Because

plane-propagating gravitational waves have spin-weight (±)2, the range of this

angle only needs to run from 0 to π.

A.1.7 Condon–Shortley phase

There is an ambiguity in the definition of the standard spherical harmonic func-

tions, amounting to a disagreement in sign of (−1)m . This quantity is called

the “Condon–Shortley phase”—after the authors who introduced it in [95] to

simplify the ladder operators of quantum mechanics, when the factor is not in-

cluded in the definition of the Legendre polynomials. The factor carries through

directly into the definition of the spin-weighted spherical harmonics. We choose
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the Condon–Shortley convention, so that

Y1,1(ϑ,ϕ) =−
√

3

8π
sin(ϑ)eiϕ , (A.26)

for example. This choice agrees with the conventions of Brown et al. [66] and

Mathematica, among others.

A.1.8 Fourier transforms

We relate a continuous time signal s(t ) to its continuous Fourier transform s̃( f )

by the formulas

s̃( f )B
∫ ∞

−∞
s(t )e−2πi f t dt , (A.27)

s(t ) ≡
∫ ∞

−∞
s̃( f )e2πi f t d f . (A.28)

This normalization is chosen so that the transform of a pure signal s(t ) = e2πi f t

will simply be a Dirac δ function, with no additional factor. Note that the en-

tire range of f (including negative frequencies) is necessary for general complex

functions. In particular, if s(t ) is purely real, we need

s̃(− f ) = [
s̃( f )

]∗
. (A.29)

The notation for discretized signals involves subtleties. Suppose the continu-

ous time signal s(t ) is sampled at N uniform intervals, beginning at t0 = 0 and

separated by ∆t . This will give rise to a frequency discretization interval of

∆ f = 1/N∆t . Then, we define the quantities

f j B j∆ f , (A.30)

tk B k∆t , (A.31)
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for integers j and k . We will need to assume that the time signal is periodic,

over a time N∆t . Under restriction of the range of integration to one period and

discretization (represented by ), the formulas for the Fourier transform become

s̃( f j ) 
bN /2c∑

k=−b(N−1)/2c
s(tk)e−2πi f j tk ∆t ≡ ∆t

N−1∑
k=0

s(tk)e−2πi j k/N , (A.32)

s(tk) 
bN /2c∑

j=−b(N−1)/2c
s̃( f j )e−2πi f j tk ∆ f ≡ ∆ f

N−1∑
j=0

s̃( f j )e−2πi j k/N . (A.33)

Note that we have used the assumption that s(t +N∆t ) = s(t ), as well as the fact

that s̃( f j )! s̃( f j+N ), which results from our restriction to a finite range.

Perhaps because s̃( f j ) as given by the expression in (A.32) does not equal

s̃( f ) as given by Eq. (A.27) when f = f j , there is a subtle notational distinction

commonly employed [65]. We define sk B s(tk), quite naturally. Using this, we

write

s̃ j B
N−1∑
k=0

sk e−2πi j k/N , (A.34)

sk ≡ 1

N

N−1∑
j=0

s̃ j e2πi j k/N . (A.35)

Note that s̃( f j ) ∆t s̃ j ; in particular, s̃( f j ) 6= s̃ j . This normalization results in

the circumstance that the transform of a pure signal will be N for the relevant

frequency and zero for other values of j in 0 ≤ j ≤ N −1—which is roughly the

discrete version of the δ function. Of course, this means that s̃ j depends on the

sampling frequency; for a given signal, s̃ j will typically scale as N . This notation

and choice of normalization agree with the standard conventions of LIGO [8] and

the FFTW and Matlab software packages.

The assumption that the time-domain signal is periodic, and the restriction of

the Fourier transform—Eq. (A.27)—to a finite range make the frequency-domain
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signal periodic on the scale of the sampling frequency

fsB
1

∆t
. (A.36)

Any frequency f ≥ fs will be aliased to a lower frequency, meaning that power

will appear at a frequency f − fs. In fact, any continuous signal at frequency f

will be represented in the discretized case by a Fourier transform with power at

f +n fs, for all integers n. That is, what was a δ function in the continuous case

has been made into a frequency “comb” (with infinitely many finitely large teeth)

in the discrete case.

More stringent than the cutoff of the sampling frequency, there is an upper

limit to the frequencies that can be unambiguously represented on a given discrete

grid: the Nyquist frequency

fNyB
1

2∆t
= fs

2
. (A.37)

The “comb” effect combines with the negative-frequency effect to produce this

limit. For example, if we take

s(t ) = sin(2π fNyt ) =− i

2

(
e2πi fNyt −e−2πi fNyt

)
, (A.38)

it is easy to see that its discrete Fourier transform will be identically zero.

A.2 Comparison with other references

We present a comparison of the conventions used in this paper with those of

other references. (See also the insert before the half-title page of MTW [195].)

Each row presents the equivalent symbol in each reference. Thus, for example,

g (MTW)
αβ

=−g (Newman–Penrose)
αβ

. (A.39)
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A blank space indicates that the quantity does not appear in that reference, so

no choice is made. A question mark indicates ambiguity: the quantity is used,

but not defined clearly enough.
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B
Spin-weighted spherical harmonics

B.1 Spin-weighted functions

We defined the complex vector m in Eq. (A.14c) with respect to the coordinate

vectors ϑ,ϕ. If we change the coordinates, the vector as defined will also change as

a result. In particular, choose a point p on the sphere. If we rotate the coordinates

on the sphere about this point by an angle η, we will alter the vector m at p as

m→meiη . (B.1)

In this sense, we may think of m defined in this way not as a vector, but as a

spin-weighted vector [148].

Any scalar formed by contraction of this vector with any other tensor would

347
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also change. In particular, for the Weyl scalars, we have

Ψ0 →Ψ0 e2iη , (B.2)

Ψ1 →Ψ1 eiη , (B.3)

Ψ2 →Ψ2 , (B.4)

Ψ3 →Ψ3 e−iη , (B.5)

Ψ4 →Ψ4 e−2iη . (B.6)

In analogy with the vector, we call these spin-weighted scalars. The coefficient of

iη in the above is the spin weight of the object.

For a given choice of the coordinates (ϑ,ϕ), each of the Weyl scalars is a

continuous, complex-valued function on the sphere. Thus, we may hope to de-

compose them into spherical harmonics. Unfortunately, if we use the standard

spherical harmonics, we obtain undesirable features. For a simple, equal-mass,

noninspiraling Keplerian binary, we might expect a pure quadrupolar radiation

pattern. However, when Ψ4 (or h) is decomposed in standard spherical harmon-

ics, we find a nonzero m = 2 component for all values of l . In particular, there is

a great deal of power in the higher l values. For example, the magnitude of the

(l ,m) = (8,2) mode is over 20% of the magnitude of the (2,2) mode. For large l ,

the components go roughly as l−3/2. To obtain high accuracy, we would clearly

need to use many l modes, in addition to losing any familiar physical intuition.

This failure can be traced to the spin weight of the functions, and the fact

that the standard coordinates (ϑ,ϕ) are singular at the poles of the sphere. We

might hope to decompose the field in terms of harmonics with the same spin

weight. It turns out that we can obtain the desired behavior by using spin-

weighted spherical harmonics (SWSHs) to decompose the field. These objects may
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be constructed from the standard spherical harmonics through the use of spin-

ladder operators. For a function f of spin weight s, Newman and Penrose [202]

define the spin-raising operator1,2

ð f =−(sinϑ)s
(
∂

∂ϑ
+ i

sinϑ

∂

∂ϕ

)[
(sinϑ)−s f

]
. (B.7)

It is straightforward, if tedious, to show that ð f has spin weight s +1. That is,

ð raises the value of the spin weight by one. Similarly, the complex conjugate ð̄

lowers the spin weight by one. We can use this operator to define the SWSH by

sYl ,m =



√
(l−s)!
(l+s)! ðsYl ,m 0 ≤ s ≤ l ,√
(l+s)!
(l−s)! (−1)s ð̄−sYl ,m −l ≤ s ≤ 0 ,

0 l < |s| .

(B.8)

This function has the property of transforming as a spin-weighted function of

weight s. Given the closed-form expressions for the spherical harmonics, we can

explicitly evaluate this formula, and find3

sYl ,m(ϕ,ϑ) =(−1)m

√
2l +1

4π

(l +m)!(l −m)!

(l + s)!(l − s)!
eimϕ

×∑
ρ

(
l − s

ρ

)(
l + s

ρ−m + s

) (
sin

ϑ

2

)2l−2ρ+m−s (
cos

ϑ

2

)2ρ−m+s

.

(B.9)

1The symbol ð is (the serifed version of) a standard character in the Icelandic alphabet, pro-
nounced th with the help of the vocal chords—as the th sound in then. It also represents this
sound—the voiced dental fricative—in the International Phonetic Alphabet (IPA) [168]. There, it
is contrasted with the voiceless dental fricative T, pronounced without the vocal chords—as the th
sound in thin. Appearing on its own, as it does here, it is pronounced eth—or ED, in the notation
of the IPA.

2Note that Dray [127] defines this operator with a relative minus sign. As a result, his SWSHs
differ from those of Newman–Penrose, those of Goldberg et al., and these by a factor of (−1)s .
This, of course, is irrelevant if we restrict ourselves to fields of spin ±2.

3This equation differs from that of Goldberg et al. by a factor of (−1)m . This is precisely the
Condon–Shortley phase.
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Here, the sum over ρ ranges over all integers for which the binomial coefficients

are nonzero. Explicitly,

max(0,m − s) ≤ ρ ≤ min(l − s, l +m) . (B.10)

B.2 Behavior under rotation

Following Goldberg et al. [148], we can also express the spin-weighted spheri-

cal harmonics in terms of the Wigner D matrices, which describe the behavior

of angular-momentum eigenfunctions under rotation. This allows us to easily

determine the behavior of SWSHs under rotation.

We will think of the rotation operator R(α,β,γ) as corresponding to a rotation

of the physical system, leaving the coordinates fixed. We then define R to be

composed of a rotation about the z axis by an angle γ, followed by a rotation by

β about the y axis, followed by another rotation about the z axis by α, leaving the

coordinate axes fixed at all times, with all rotations being in the positive sense.

This is equivalent to the more usual method of defining the Euler angles [131].

Given the usual eigenvectors |l ,m〉 of the angular-momentum operators, Wigner [248]

defines (with different conventions4)

D(l )
m′,m(α,β,γ)B

〈
l ,m′ R(α,β,γ)−1 l ,m

〉
. (B.11)

Note that there is no mixing of different l modes under rotation. In language

familiar from quantum mechanics, we say that the |l ,m〉 vectors transform among

themselves under an irreducible representation of the rotation group. (Of course,
4Wigner [248], Edmonds [131], and most other texts define the matrix D with respect to R,

rather than R−1. In choosing this convention, we follow Goldberg et al. We can convert to the
usual convention by taking D(l )

m′,m(α,β,γ) →D(l )
m′,m(−γ,−β,−α), which is just the inverse rotation.
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more complicated transformations than rigid rotations would lead to mixing of l

values.) The components of this matrix are5

D(l )
m′,m(α,β,γ) =(−1)m+m′

√
(l +m)!(l −m)!

(l +m′)!(l −m′)!
eimα+im′γ

×∑
ρ

(
l +m′

ρ

)(
l −m′

ρ−m −m′

) (
sin

β

2

)2l−2ρ+m+m′ (
cos

β

2

)2ρ−m−m′

.

(B.12)

For γ= 0, this formula reduces—up to a coefficient—to the formula for the spin-

weighted spherical harmonics. Specifically,

sYl ,m(ϑ,ϕ) = (−1)s

√
2l +1

4π
D(l )

−s,m(ϕ,ϑ,0) . (B.13)

We can use this relationship to find the behavior of spin-weighted spherical har-

monics under rotation.

The standard spherical harmonics are simply the projection of an angular-

momentum eigenstate into a position eigenstate:

Yl ,m(ϑ,ϕ)B
〈
ϑ,ϕ l ,m

〉
. (B.14)

Suppose the rotation operator R(α,β,γ) takes the (physical) position eigenstate

characterized by coordinates (ϑ,ϕ) into the eigenstate characterized by coordi-

nates (ϑ′,ϕ′). That is, ∣∣ϑ′,ϕ′〉=R(α,β,γ)
∣∣ϑ,ϕ

〉
. (B.15)

5Again, the pre-factor of (−1)m+m′ is a result of our choice of the Condon–Shortley phase.
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Then, we can write

Yl ,m(ϑ′,ϕ′) = 〈
ϑ′,ϕ′ l ,m

〉
(B.16a)

= 〈
ϑ,ϕ R† l ,m

〉
(B.16b)

= ∑
l ′,m′

〈
ϑ,ϕ l ′,m′〉〈

l ′,m′ R† l ,m
〉

(B.16c)

=∑
m′

〈
ϑ,ϕ l ,m′〉〈

l ,m′ R−1 l ,m
〉

(B.16d)

=∑
m′

Yl ,m′(ϑ,ϕ)D(l )
m′,m

(
α,β,γ

)
. (B.16e)

Obviously, we can compose rotations:

Yl ,m(ϑ′′,ϕ′′) =∑
m′

∑
m′′

Yl ,m′′(ϑ,ϕ)D(l )
m′′,m′

(
α′,β′,γ′

)
D(l )

m′,m
(
α,β,γ

)
. (B.17)

On the other hand, there must exist some rotation R(α′′,β′′,γ′′) for which

Yl ,m(ϑ′′,ϕ′′) =∑
m′′

Yl ,m′′(ϑ,ϕ)D(l )
m′′,m

(
α′′,β′′,γ′′

)
. (B.18)

Now, orthonormality of the Yl ,m functions allows us to write

D(l )
m′′,m

(
α′′,β′′,γ′′

)=∑
m′

D(l )
m′′,m′

(
α′,β′,γ′

)
D(l )

m′,m
(
α,β,γ

)
, (B.19)

with

R(α′′,β′′,γ′′) =R(α,β,γ)R(α′,β′,γ′) . (B.20)

Using this result and Eq. (B.13), we can express the behavior of SWSHs under

rotation:

sYl ,m
(
ϑ′,ϕ′)=∑

m′
sYl ,m′

(
ϑ,ϕ

)
D(l )

m′,m
(
α,β,γ

)
, (B.21)

where the angles are related by

R(ϕ′,ϑ′,0) =R(α,β,γ)R(ϕ,ϑ,0) . (B.22)

This is the same formula as in the spin-0 case, with spin indices included.
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B.3 Multipole decompositions

From Eq. (B.6), we see that Ψ4 has spin weight −2. It is not hard to show from

the definition of h in Eq. (A.11) that h also has spin weight −2. (We also have,

in the linear approximation, Ψ4 →−ḧ.) Thus, we can expect that the asymptotic

forms of these fields can both be written uniquely as expansions in spin-weight

−2 spherical harmonics:

Ψ4(t ,r ,ϑ,ϕ) =
∞∑

l=−2

l∑
m=−l

Ψ
l ,m
4 (t ,r ) −2Yl ,m(ϑ,ϕ) , (B.23)

h(t ,r ,ϑ,ϕ) =
∞∑

l=−2

l∑
m=−l

hl ,m(t ,r ) −2Yl ,m(ϑ,ϕ) . (B.24)

Given the functions Ψ4(t ,r ,ϑ,ϕ) and h(t ,r ,ϑ,ϕ), we would like to be able to find

the components Ψl ,m
4 and hl ,m . This can be done, as usual, using orthogonality

properties of the SWSHs.

Using the explicit formula of Eq. (B.9), we can perform the integration∫ 2π

0

∫ π

0
sYl ,m(ϑ,ϕ) s′Ȳl ′,m′(ϑ,ϕ) sinϑdϑdϕ

= (−1)l+l ′+m+m′+s+s′
√

2l +1

4π

(l +m)!(l −m)!

(l + s)!(l − s)!

√
2l ′+1

4π

(l ′+m′)!(l ′−m′)!

(l ′+ s′)!(l ′− s′)!

× 2

(l + l ′+1)!

∫ 2π

0
ei(m−m′)ϕdϕ

× ∑
ρ,ρ′

(−1)ρ+ρ
′
(

l − s

ρ

)(
l + s

ρ−m + s

)(
l ′− s′

ρ′

)(
l ′+ s′

ρ′−m′+ s′

)
Γ [α] Γ

[
l + l ′−α]

,

(B.25)

where Γ is the usual Gamma function, and

α= 2ρ−m + s +2ρ′−m′+ s′

2
. (B.26)
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While this relation is true for general s and s′, it simplifies greatly for s = s′. In

that case, we find that the SWSHs form an orthonormal set:∫ 2π

0

∫ π

0
sYl ,m(ϑ,ϕ) sȲl ′,m′(ϑ,ϕ) sinϑdϑdϕ= δl ,l ′ δm,m′ . (B.27)

Using this orthonormality property, we can find the components of the decom-

positions:

Ψ
l ,m
4 (t ,r ) =

∫ 2π

0

∫ π

0
Ψ4(t ,r ,ϑ,ϕ) −2Ȳl ,m(ϑ,ϕ) sinϑdϑdϕ , (B.28)

hl ,m(t ,r ) =
∫ 2π

0

∫ π

0
h(t ,r ,ϑ,ϕ) −2Ȳl ,m(ϑ,ϕ) sinϑdϑdϕ . (B.29)
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