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ABSTRACT

Intensity mapping (IM) has emerged as a promising technique to probe the large-
scale structures and galaxy formation and evolution across cosmic history. As IM
measures the aggregate emission from all sources, it can overcome the limitation of
conventional detection-based observations, where the emission from diffuse popu-
lations and high-redshift faint galaxies cannot be resolved individually. As several
IM experiments will come online in the next decade, demand for IM modeling and
data analysis strategies has increased. In this thesis, we present a range of analysis
techniques, theoretical modeling, and data analysis results related to IM.

In Chapter 2, we aim to answer the question: When should we use IM? We present
a formalism to describe both IM and galaxy detection (GD) approaches, and use it
to quantify their individual performance when measuring the large-scale structure
(LSS). With this formalism, we can identify the scenarios where each approach is
advantageous. We also develop a simple metric for determining the optimal strategy
to map the LSS with future experiments.

In Chapters 3 and 4, we interrogatemethods for improving the line intensitymapping
(LIM) analysis. LIM traces the three-dimensional structure of the universe by
probing the emission field from a spectral line. One particular challenge for LIM
is to separate the target line signals from interloper lines along the line of sight in
order to extract the desired cosmological and astrophysical information. Previously
proposedmethods of line de-blending, such asmasking and cross-correlation, rely on
the external galaxy tracers, but sometimes a galaxy catalog with sufficient depth and
sky coverage does not exist. Therefore, we develop two newmethods for performing
line de-confusion that do not require any external information. The first method
(Chapter 3) uses the distinct shape of large-scale two-dimensional power spectra of
signals and interlopers to distinguish the line emission from different redshifts. The
second method (Chapter 4) reconstructs the intensity maps of individual lines from
LIM data in the phase space, using multiple lines from the same source to identify
the source redshift. We show that both of our methods are able to effectively extract
desired line signals from the upcoming LIM experiments.

In Chapter 5, we discuss the application of IM for studying the extragalactic back-
ground light (EBL), the integrated light from all sources of emission in the universe.
Previous studies on the fluctuations of the EBL indicate that the intra-halo light
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(IHL) has a significant contribution to the near-infrared EBL. Chapter 5 presents
the results on probing the IHL using a stacking analysis of images from the Cosmic
Infrared Background Experiment (CIBER). CIBER is a rocket-borne experiment
designed to image and perform photometry of the near-infrared EBL. Our results
suggest that at I ∼ 0.3 the IHL comprises a large fraction of light associated with
∼ !∗ galaxies, implying that the IHL accounts for a non-negligible fraction of the
near-infrared cosmic radiation budget.

In Chapter 6, we present a forecast on the EBL constraints with the upcoming
SPHEREx mission. We consider cross correlating SPHEREx intensity maps with
galaxy catalogs from several current and future surveys. Our model predicts that
the EBL spectrum as a function of redshift can be detected from the local universe
to the epoch of reionization.

The analysis techniques developed in this thesis can help better extract the infor-
mation from the IM data; the future IM experiments will extend our current works
on investigating the EBL. Therefore, the research in this thesis provides important
toolkits and foundations for upcoming IM experiments.
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C h a p t e r 1

INTRODUCTION

How did the universe begin? How did we get here? These are the key questions
in cosmology, and the answers require a thorough study of the cosmological model
that governs the formation and evolution of the cosmic large-scale structure (LSS).
Observations of the cosmic microwave background (CMB), the relic radiation from
∼ 400, 000 years after the Big Bang, have laid a major cornerstone for our standard
cosmological model, known as the ΛCDM framework [3, 4, 16, 22, 26, 27]. On
the other hand, decades of observations across the whole electromagnetic spectrum
[e.g., 7, 33, 34] enable us to study the properties of stars, galaxies, and gas across
cosmic time, as well as the underlying LSS they trace. More advances in the near
future are expected from next-generation telescopes (JWST [14], Rubin Observatory
[23], Euclid [1], Roman Space Telescope [31], etc.). However, some key questions
in cosmology and astrophysics still remain unresolved. For example, where are the
missing baryons in our universe? What type of sources were driving the cosmic
reionization at approximately one billion years after the Big Bang? The reason
that these questions are unresolved is in part limited by the fact that most of the
current instruments are designed for detecting individual sources, and hence makes
the faint populations largely unexplored. However, the faint sources in our universe
are essential for building a comprehensive picture of the LSS and galaxy evolution,
especially for studying the high-redshift universe and the epoch of reionization.

Intensity mapping (IM) is a novel technique to overcome this limitation from con-
ventional detection-based measurements. Rather than resolving individual galaxies,
IM probes the aggregate light from all sources to statistically characterize both the
source properties and the underlying LSS. Therefore, IM promises to open up a
new window on studying the high-redshift universe and the diffuse radiation, where
individual sources are difficult to resolve. IM has attracted great interest in the
cosmology and astrophysics communities in recent years as a number of IM exper-
iments covering a wide range of spectrum and redshifts have been funded, and will
start their observing campaign within the next few years (e.g., SPHEREx [11, 12],
HERA[8], TIME [6], COMAP [5]).

IM uses the aggregate emission as a proxy for the underlying density field, whereas



2

the conventional galaxy detection (GD) resolves individual galaxies as tracers of
the matter distribution. Understanding which approach to use in a given situation
is important for optimizing the LSS measurements. In Chapter 2, we develop a
formalism to quantify the performance of both approaches when measuring the
density field. Formally, GD and IM can be described by different weighting of the
observed data, and we extend this representation beyond the GD and IM dichotomy
by introducing the quantity, “optimal observable,” which can describe the best
weighting function to extract the underlying density field. With this formalism, we
identify regimes where the IM or GD approach is advantageous and discuss optimal
strategies for different survey setup.

Line intensity mapping [LIM; 19] is an emerging type of IM. LIM maps the LSS
in three dimensions by measuring the emission field from individual spectral lines
(e.g., 21 cm, LyU, HU, [C ii], CO), and infers the line of sight distance of the emitting
sources from the frequency-redshift relation. However, as IM aims to measure the
aggregate light, the observed data is a mixture of emission from all redshifts and
foreground contaminations. Another pressing issue for LIM is line-blending, where
spectral lines from sources at different redshifts can end up mixed in the same
observed frequencies. Previously proposed methods for line de-blending, such as
masking and cross-correlation, rely on the external galaxy tracers, but sometimes a
galaxy catalog with sufficient depth and sky coverage does not exist for LIM surveys.
Therefore, we develop two novel line de-blending techniques for LIM, which do not
require any external dataset. In Chapter 3, we use the distinct shape of large-scale
two-dimensional power spectra of each line to distinguish the line emission from
different redshifts. By fitting power spectrum templates of each line to simulate LIM
data cubes that contain multiple emission lines, we show that the large-scale power
spectrum of each line can be successfully extracted without the help of external
information. In Chapter 4, we present another method to reconstruct the intensity
field of individual lines in map space from LIM data, using the fact that if multiple
spectral lines of a source are observable in multiple frequencies, we can fit the LIM
data to a set of spectral templates to identify the redshift of sources. We show that
this method can reconstruct the intensity maps of individual line emission for the
upcoming LIM experiments TIME [6] and SPHEREx [11, 12].

Another useful application of IM is to study the extragalactic background light
(EBL), the integrated emission from all sources throughout cosmic history. In the
near-infrared wavelengths, the EBL is mostly produced by redshifted ultraviolet
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and optical stellar emissions, and thus it probes the history of stellar synthesis
processes in our universe. Previous EBL studies report potential excess emission
[2, 20, 21, 24, 25, 29, 30, 32, 35] in the near-infrared EBL over the integrated galaxy
light derived from deep galaxy counts [10, 13, 15, 17, 18, 28]. These studies indicate
the existence of faint, diffuse populations in the EBL that have not yet been resolved
by current galaxy surveys. Zemcov et al. [36] performed a fluctuation analysis using
imaging data from the Cosmic infrared background experiment (CIBER), and their
results suggest that the excess signal arises from the intra-halo light (IHL). The IHL
is the emission from stars tidally stripped from their host galaxies and becomes
redistributed to the dark matter halo during the galaxy merger. In Chapter 5, we
further investigate the IHL using a stacking analysis with CIBER images. Stacking
directly probes the relationship between individual galaxies and their stellar halos,
which complements fluctuation measurements that only characterize the IHL in a
statistical manner. By stacking ∼ 30, 000 galaxies with stellar masses spanning
"∗ ∼ 1010.5 to 1012"� at I ∼ 0.3, we find ∼ 30%/15% of the total galaxy light
budget from galaxies is at radius A > 10/20 kpc, respectively. These results imply
that the IHL has a significant contribution to the EBL intensity and its fluctuations.

In the near future, NASA’s next Medium-Class Explorer mission, SPHEREx [11,
12], will be launched in 2024 and will carry out an all-sky spectro-imaging survey
at near infrared. One of the three main science goals for SPHEREx is to explore the
origin and evolution of galaxies through IM.With its unparalleled spectral resolution
and sensitivity, SPHEREx data will be exceptional for studying the EBL. In Chapter
6, we build a model for the expected EBL signal from SPHEREx, and forecast the
constraints on the EBL emission across cosmic time by cross-correlating with the
galaxy samples from several current and future galaxy surveys (SDSS [7], DESI [9],
RubinObservatory [23], Roman Space Telescope [31], Euclid [1]). According to our
model, we predict that the EBL spectrum can be detected to a few f levels from the
present day to the epoch of reionization. This measurement will greatly enhance our
understanding on those currently unresolved populations in our universe, including
the diffuse IHL and the faint galaxies from the epoch of reionization.
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C h a p t e r 2

OPTIMALLY MAPPING LARGE-SCALE STRUCTURES WITH
LUMINOUS SOURCES

Cheng, Y.-T., de Putter, R., Chang, T.-C., & Doré, O. 2019, ApJ, 877, 86, doi: 10.
3847/1538-4357/ab1b2b

Intensity mapping has emerged as a promising tool to probe the three-dimensional
structure of the universe. The traditional approach of galaxy redshift surveys is based
on individual galaxy detection, typically performed by thresholding and digitizing
large-scale intensity maps. By contrast, intensity mapping uses the integrated
emission from all sources in a 3D pixel (or voxel) as an analog tracer of large-scale
structure. In this work, we develop a formalism to quantify the performance of
both approaches when measuring large-scale structures. We compute the Fisher
information of an arbitrary observable, derive the optimal estimator, and study
its performance as a function of source luminosity function, survey resolution,
instrument sensitivity, and other survey parameters. We identify regimes where
each approach is advantageous and discuss optimal strategies for different scenarios.
To determine the best strategy for any given survey, we develop a metric that is easy
to compute from the source luminosity function and the survey sensitivity, and we
demonstrate the application with several planned intensity mapping surveys.

2.1 Introduction
Studying the large-scale structure (LSS) of the universe is a major focus in cos-
mology. The initial conditions of the LSS have been well characterized from the
cosmic microwave background (CMB) measurements [e.g., 60, 61], and powerful
constraints on the cosmological parameters have been inferred from its measure-
ment. Nevertheless, to map LSS at late time is an essential cosmological probe, in
particular regarding the properties of dark matter and dark energy. By detecting a
large number of individual galaxies as tracers of the underlying density field, one
can map out the large-scale matter distribution and infer powerful cosmological con-
straints from its power spectrum, for example. This galaxy detection (GD) approach
has been successfully demonstrated by several major observational programs such
as 2dF [19], 6dF [38], WiggleZ [58], VIMOS [35], SDSS [84], and BOSS [25].

http://doi.org/10.3847/1538-4357/ab1b2b
http://doi.org/10.3847/1538-4357/ab1b2b


8

Upcoming galaxy surveys are expected to provide further unparalleled cosmological
insights, e.g., eBOSS [26], DESI [27], PFS [76], Euclid [43], LSST [51], WFIRST
[73], and SPHEREx [28].

At higher redshift, GD becomes difficult, as galaxies at earlier times are on average
fainter, and the increased distance reduces the observed flux. As a result, to detect
a given number of galaxies at high redshift requires a longer integration time. This
has in part motivated the development of intensity mapping (IM) as an alternative
technique to probe LSS. Without thresholding to identify individual sources, IM
traces the underlying density field using the integrated light emission from all the
sources, including unresolved faint galaxies (see Kovetz et al. [42] for a recent
review). In addition, line intensity mapping probes the three-dimensional structure
by mapping the emission of a particular spectral line and uses the frequency-redshift
relation to infer the matter distribution along the line of sight. The 21cm hyperfine
emission from neutral hydrogen [14, 52, 68, 83], the CO rotational lines [6–8, 10,
17, 30, 33, 39, 40, 46, 47, 54, 63, 66, 81], the [C ii] 157.7 `m fine-structure line
[30, 32, 70, 79, 85], and the Lyman-U emission line [20, 23, 24, 30, 34, 64, 71] are
amongst the most studied lines in the IM regime.

Although the measurement can be challenged by the presence of continuum fore-
grounds [e.g., 4, 15, 31, 50, 56, 59, 74] and line interlopers [16, 48], it is still
anticipated that line intensity mapping can provide an efficient path to access the
faint, high-redshift Universe owing to its relatively low requirement on spatial res-
olution and sensitivity, which enables the use of small apertures to efficiently scan
a large comoving volume.

The first measurement of IM signals from LSS used the 21 cm line. The detection
was made in cross-correlation with spectroscopic galaxy catalog [1, 13, 55], and
auto-power spectrum constraints have been reported in Switzer et al. [75]. Pullen
et al. [63] made the first attempt at measuring CO IM signal in cross-correlation
but detected no signal. The COPSS II experiment measured the CO auto-power
spectrum at z∼3 [39]. A tentative [C ii] measurement has been made by Pullen et al.
[65] in cross-correlation. While Croft et al. [24] reported a first detection of LyU
emission in the IM regime by cross-correlating SDSS spectra with a quasar sample,
a new analysis in Croft et al. [23] using cross-correlation with both quasars and LyU
forest showed no detection of diffuse LyU emission.

Formally, the main difference between GD and IM resides in the “weighting” of the
observed data. In GD, the universe is digitized into a binary map where detected
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galaxies have a weight of one, and zero elsewhere. This is essentially giving a
uniform weight to all the detected sources, regardless of their flux. On the contrary,
IM is a linear mapping between the universe and the data, weighted by the observed
intensity. These two different options are suitable for gleaning more information
from the data in two extreme regimes: GD is ideal in the high spatial/spectral
resolution and deep integration limit, where detected sources are less susceptible to
the effects of noise and confusion; IM is ideal if the individual voxel intensity is
composed of highly confused sources with a non-negligible noise component.

In this work, we formally explore this dichotomy by introducing an “observable,”
Ô, and quantify the information that can be extracted using this observable for a
given survey using the Fisher information formalism. The GD and IM approaches
represent two special cases of Ô. We define an “optimal observable” that optimizes
the information extraction, not necessarily limited to the usual GD or IM approaches.
We further develop a simple diagnostic to evaluate the two strategies (e.g. GD
or IM) for a survey. We then apply this method to optimize survey design for
future experiments and, as an example, optimize the pixelization of intensity maps
considering two different noise levels.

This paper is organized as follows. We first introduce our mathematical formalism
in Sec. 2.2 before discussing two toy models within this formalism in Sec. 2.3.
Scenarios with a more realistic model based on the Schechter luminosity function
model are presented in Sec. 2.4. We then follow with two applications of our
framework: we determine the optimal observable for several future planned surveys
in Sec. 2.5, and we optimize the survey pixel size in Sec. 2.6. The conclusions are
given in Sec. 2.7.

2.2 Formalism
A major goal of large-scale galaxy or intensity mapping surveys is to use emission
from luminous sources to trace the underlying density field. In particular, we are
interested in thematter overdensity field X(G) ≡ (d(G)− d̄)/d̄, where d(G) is the local
matter density and d̄ its mean on large scales, from which cosmological information
can be extracted (e.g., using the power spectrum statistics). We can use luminous
sources to learn about X because, on large scales, the overdensity of a sample of
galaxies is a linearly biased tracer of the underlying matter density. In other words,
neglecting stochastic noise, on large scales we have

X6 (G) ≡ (=6 (G) − =̄6)/=̄6 = 1 X(G), (2.1)
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where =6 (G) is the number density of a sample of galaxies at position G, =̄6 its global
mean, and 1 the galaxy bias.

However, we do not observe =6 directly, but the light emitted by galaxies. For a
wide range of survey scenarios, we simply have access to the observed fluxes ! in
many pixels or voxels, typically small in comparison to the large-scale overdensity
modes of interest. These fluxes may include contributions from multiple luminous
sources. The question we will tackle is how to optimally extract X from this “data
cube” composed of these small pixels/voxels.

The terms “pixel” and “voxel” above respectively refer to a spatial 2D resolution
element or a spatial-spectral 3D resolution volume element. Voxels are the data
element in 3D line intensity mapping. A voxel volume can be written as +vox ∝
Ωpix Δa, where Ωpix is the solid angle of the angular size of a voxel and Δa is the
wavelength or frequency width. Ωpix and Δa are usually chosen to be of the order
of the survey point spread function (PSF; or beam size) and spectral resolution,
respectively. However, the analysis in this work is not necessarily limited to the
original voxel configuration of a given survey, as voxel size can always be increased
by rebinning.

For simplicity, we assume that every source in the surveys fills in at most a single
voxel, i.e., all the flux from a given source is measured in only one voxel, so that
the correlation between voxels only arises from the underlying cosmological signal,
i.e., source clustering. This assumption requires that the voxel size be at least a
few times larger than the PSF (beam) size and the size of the sources themselves.
Likewise, in the spectral dimension, we require the voxel size to be larger than a few
times of the spectral resolution and the target line width. Alternatively, the analysis
in this work also applies to 2D imaging of a single frequency band. In this case, a
3D voxel reduces to a 2D pixel, and we also require the pixel size to be a few times
larger than the beam size.

Observables
To extract information about the underlying cosmological matter overdensity, we
consider a general “observable function,” O(!), serving as a weight function turning
the observed map of voxel fluxes1 !̂ into a transformed “observable map” with

1The unit of flux ! in each voxel is power per area, in [W m−2] (or [photons s−1 m−2]). ! is an
“extensive” quantity under this definition, i.e. its value is scaled with the voxel size. Furthermore,
later in the paper we will directly compare ! with the intrinsic luminosity (in units of , or !�) of
the sources ℓ. In this case, we implicitly assume that ℓ has been converted to the flux ℓ/4c�2

!
such
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values Ô ≡ O( !̂) in each voxel2. The power spectrum of this new O( !̂) map is
then computed as a proxy for the underlying overdensity field matter density power
spectrum.

As an alternative way of thinking about how the voxel map can be used to constrain
the large-scale matter overdensity, we consider a region that is small compared to
the matter overdensity long-wavelength modes of interest so that, in this region, the
X of the long-wavelength modes is nearly uniform (i.e., it can be treated as a “DC
mode”). We can further assume the voxel scale to be much smaller than the scale
of the long-wavelegth cosmological modes of interest, so we may choose our local
region such that it still contains a large number of voxels. In this picture, the way
the local overdensity X is constrained is using the sum (or average) of the values of
Ô in the voxels in the local region.

In our context, the quantity of interest is the “large-scale” rather than “total” density
field. In principle, each voxel traces the “total” underlying density field, Xtot, which
is composed of both large- and small-scale fluctuations: Xtot = X! + X(. Here we
only constrain X! through the average value of the observable Ô over a large number
of voxels living in approximately the same local X! , i.e. we use an ensemble average
of 〈Ô〉, not individual voxel measurement Ô, to trace the large-scale fluctuation X! .
Since X! does not refer to a specific scale of fluctuation, this argument applies to
any modes that have a fluctuation scale much greater than the voxel size. We will
thus write X instead of X! from now on, but the readers should keep in mind that the
X we discuss in this work does not include small-scale fluctuations X(.

GD and IM represent two special cases of such a mapping O(!). For GD, a voxel
is labeled as a “detection” if it is brighter than a threshold luminosity !th (say, five
times the noise rms for a 5f detection). A power spectrum can then be calculated
with this “digital map” that consists of ones (detection) and zeros (nondetection)
with a proper normalization. Therefore, O(!) in this case is a step function at !th,

OGD(!) =


1 if ! > !th

0 if ! ≤ !th.
(2.2)

On the contrary, IM directly calculates a power spectrum of the measured intensity
(or luminosity) map, so the observable is a linear function of ! (the trivial, identity
that the two quantities are in the same units.

2Throughout the paper, we use the hat notation as a specific realization of the quantity. Thus, !
is a variable, while !̂ refers to a specific realization of !. Likewise, O(!) refers to function O with
variable !, and Ô is the function value at ! = !̂.
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map),
OIM(!) = !. (2.3)

While the observed fluxes contain a wealth of additional information (for instance,
on galaxy evolution and small-scale clustering), we focus our study on how to
optimally extract the underlying cosmological matter overdensity X. Let’s consider
a fixed realization of the overdensity X in some region containing many voxels. A
given choice of observable O(!) leads to a noisy estimate of the local value of X,
where the noise is due to the shot noise in the source population used as density
tracers and to the instrumental noise. In practice, we will aim at minimizing the
combined noise. Our final goal is to measure the large-scale power spectrum of the
observable map Ô. Uncertainties in the power spectrum contain a cosmic variance
component (signal), due to the variance in the underlying matter overdensity X,
and a stochastic/shot-noise component, which is given by how well the observed
fluxes from luminous tracers measure the underlying cosmological clustering. By
minimizing the noise in the local determination of X, we minimize the stochastic
noise power spectrum relative to the cosmic variance part of the power spectrum,
which is the signal of interest.

We will quantify the maximum information content of X by its Fisher information.
We will show that there exists an “optimal observable” Oopt such that this observed
map contains the same amount of information as the Fisher information. The func-
tional form of this optimal observable depends on the voxel luminosity probability
density function (pdf), and we detail its derivation in Sec. 2.2 before describing in
Sec. 2.2 the Fisher information and optimal observable.

Voxel Luminosity pdf
The voxel luminosity pdf %(!, X) is defined as the probability of a voxel residing in
an overdensity field X with a luminosity between [!, ! + 3!]. This can be computed
by the %(�) analysis presented in Lee et al. [45]. First, we define %: (!, X) to be the
probability of the voxel with luminosity between [!, ! + 3!] given that there are :
sources in that voxel. The %(!, X) is the summation of all the %: (!, X) weighted by
the probability of occurrence of each : . If the sources are uncorrelated, the weight
function is a Poisson distribution, and thus

%(!, X) =
∞∑
:=0

4−# (X) # : (X)
:!

%: (!, X), (2.4)
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where # (X) is the expectation value of the number of sources in a voxel with
overdensity X. The clustering effects can be accounted for by modifying the Poisson
term in Eq. 2.4, for example, the approaches presented in Breysse et al. [5]. For
simplicity in this work, we only adopt the Poisson distribution in the %(!) function,
and we leave the consideration of clustering to future work.

# (X) and %: (!, X) can be derived for any given luminosity function3 Φ(ℓ, X) and
voxel volume +vox,

# (X) = +vox

∫
Φ(ℓ, X) 3ℓ, (2.5)

%0(!, X) = X� (!), (2.6)

%1(!, X) = Φ(!, X)/
∫
Φ(ℓ, X) 3ℓ, (2.7)

%: (!, X) =
∫

%1(!′, X) %:−1(! − !′, X) 3!′. (2.8)

The effect of instrumental noise can be easily included by convolving %(!, X) with
the noise pdf. In this work, we only consider Gaussian noise with a constant rms f!
that does not depend on the intrinsic luminosity, so the noisy %(!, X, f!) is given
by4,

%(!, X, f!) = %(!, X) ∗ � (f!)

≡
∫

3!′ %(!′, X) 1
√

2c f!
4−(!−!

′)2/2f2
! .

(2.9)

Throughout this paper we consider multiple values of # ≡ # (X = 0), the mean
number of sources per voxel, given in Eq. 2.5. We note that variations in # can
be interpreted in two useful ways. First, a change in # can represent a change
in the number of objects for a fixed voxel size, i.e., a change in the amplitude of
the luminosity function Φ(ℓ) describing the source population. Alternatively, it is
often instructive to consider a change in # as a change in the voxel volume, +vox,
for a fixed physical source population. This allows us to study information content
vs. voxel size. In the latter case, the noise per voxel, f! , may of course also vary as
voxel size or # is varied.

3Throughout this paper, ! refers to the total luminosity in a voxel, and ℓ denotes the luminosity
of a single source.

4To simplify the notation, we will drop the f! notation in %(!, X, f!) in the following chapter
unless it is helpful to clarify in certain situations.
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Fisher Information
Assuming that voxels are independent tracers of the large-scale density field X, the
likelihood of the whole measurement is the product of the likelihood over all voxels
8, %( !̂8, X), (Eq. 2.4),

L({!̂8}; X) =
∏
8

%( !̂8, X). (2.10)

The full Fisher information content on X of this whole measurement is defined as
[77]

�full
XX = −〈m2

X lnL({!̂8}; X)2〉 = 〈(mX lnL({!̂8}; X))2〉, (2.11)

where 〈 5 〉 =
∫
3! %(!, X) 5 (!) is the expectation value of function 5 . The Cramér-

Rao inequality states that f2
X
≥ 1/�full

XX
, thus placing a lower bound on the variance

of parameter X that one can attain with the data [78]. Using Eq. 2.10, we get

�full
XX = 〈(mX ln[

∏
8

%( !̂8, X)])2〉 =
∑
8

〈(mX ln %( !̂8, X))2〉, (2.12)

and thus �XX ≡ 〈(mX ln %( !̂8, X))2〉 is the total Fisher information content per voxel.
Below we will quantify the Fisher information of this per-voxel basis.

In the context of this work, the parameter X is estimated from the mean value of
observable map Ô over a large amount of voxel data. In this case, the Fisher
information per voxel for this observable is [11]

�OXX =

(
mX

〈
Ô

〉)2〈
Ô2

〉
−

〈
Ô

〉2 =

(
mX

〈
Ô

〉)2

f2(Ô)
, (2.13)

where the denominator f2($̂) is the variance in map Ô per voxel and 〈·〉 is the
expectation value defined above. The condition �O

XX
≤ �

XX
holds, as the Fisher

information extracted with any given observable cannot exceed the total Fisher
information content. The lower bound constraint on estimating X from the observable
is f2

X
≥ 1/�O

XX
; the equals sign occurs if the error on O is Gaussian.5

Observing LSSs with an Observable
To quantify howwell an observablemeasures LSSs, we consider a two-point statistic,
the power spectrum of observable map Ô. Since we only consider the power
spectrum on large scales, this is equivalent to smoothing fluctuation on the large

5Note that �O
XX

is unchanged under rescaling of O(!), i.e. for any arbitrary constant (�,�),
O(!) and �O(!) + �, are equivalent in this context. All the plots of O(!) shown in the following
sections are rescaled arbitrarily for better presentation.
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scale of interest, or the map of 〈Ô〉, where 〈·〉 is the average over many voxels living
in the same large-scale X value. Since on large scales X � 1, we can linearize 〈Ô〉
in X, and get

〈Ô〉(X, x) = 〈Ô〉(X) + ΔÔ(X, x)
= 〈Ô〉(X = 0) + X mX〈Ô〉 + ΔÔ(X, x). (2.14)

Here x refers to the position of the large patch of volume over which the average 〈·〉 is
taken. In this second line, the first term is the fiducial value of Ô, which is a constant
across the whole observing volume, so it only contributes to the : = 0 mode. The
second term linearly traces the large-scale overdensity field X, so it encodes the
cosmological clustering information. The last term accounts for the fluctuations due
to the Poisson and instrument noise, has no spatial correlation, and thus contributes
to the shot noise in the power spectrum. Therefore, the power spectrum consists of
the cosmological clustering and shot-noise terms:

%O (:) =
(
mX〈Ô〉

)2
%(:) + %O,shot, (2.15)

where %(:) is the underlying matter power spectrum and

%O,shot = +vox f
2(Ô) (2.16)

is the shot noise, wheref2(Ô) is the variance on Ô due to the Poisson and instrument
noise. The ratio of the cosmic signal and stochastic noise contributions to the power
spectrum can be expressed in terms of the Fisher information �O

XX
,(

mX〈Ô〉
)2
%(:)

%O,shot
=

(
mX〈Ô〉

)2
%(:)

f2(Ô)+vox
=
�O
XX

+vox
%(:). (2.17)

This equation illustrates that it is sufficient to optimize the function O(!), i.e. to
maximize �O

XX
/+vox, to minimize the statistical errors in the power spectrum.

In this thesis, our goal is to maximize �O
XX

in order to maximize the extracted in-
formation from the large-scale density field X from a given image (voxel intensity
map). This gives the maximum signal-to-noise ratio on the power spectrum of a
given image by minimizing the shot noise, and one can use this derived power spec-
trum to extract the cosmological information. In practice, the optimal observable to
constrain X might not be the optimal choice for a given specific type of cosmolog-
ical information. For example, to measure the redshift space distortion, one might
prefer an observable that can pick out low-biased tracers to boost the redshift space
distortion signals. This practical consideration is beyond the scope of this thesis, so
we will leave it to the future works.
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Optimal Observable
According to Carron & Szapudi [11], there exists an optimal observable for X such
that the equality in �O

XX
≤ �XX holds; this observable can extract all the information

and give the minimum variance of parameter X. The optimal observable Oopt(!) is
given by the “score function” of parameter X evaluated at its fiducial value (X = 0):

Oopt(!) = mX ln %(!, X) |X=0. (2.18)

This is optimal because its Fisher information is equal to the total Fisher information
content per voxel, �XX,

�
opt
XX
= �XX = mX〈Ôopt〉 = 〈(Ôopt)2〉. (2.19)

See Appendix .1 for the proof. We further define the cumulative optimal Fisher
information:

�
opt
XX
(!) =

∫ ! ′

−∞
3! %(!′) (Oopt)2(!′). (2.20)

The limit of !′ → ∞ gives the optimal Fisher information �opt
XX

. The gradient of
�

opt
XX
(!) is the amount of information gained from each ! scale.

In this work, we are purely concerned with quantifying the (formal) information
content. In order to demonstrate the essence of the formalism in the simple and
clear context, we will assume some fixed source luminosity function and its response
to density field X, as well as the instrument noise, and quantify the information
content under the particular scenario. Therefore, we do not take into account the
uncertainties in the modeling of the luminosity function and the relation of the
galaxy emission and the underlying density field.

2.3 Toy Model
We first start with a toy model to illustrate the concepts introduced above. In this
toy model, we assume all the targeted sources have the same luminosity ℓ, and the
luminosity function linearly traces the density field:

Φ(ℓ′, X) = (1 + 1 X) #

+vox
X� (ℓ′ − ℓ), (2.21)

where X� is the Dirac delta function, # = # (X = 0) is the mean number of sources
per voxels, and 1 is the bias of the source. Here we set ℓ = 1 for convenience.
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We further consider a Gaussian noise in the measurement with rms f! , and thus the
voxel luminosity pdf reads

%(!, X, f!) =
∞∑
:=0

4−# (X) # : (X)
:!

� (!, :ℓ, f!), (2.22)

where # (X) = (1 + 1 X) # is the expectation value of the number of sources for a
voxel residing in density field X, and

� (G, Ḡ, f) = 1
√

2c f
4−(G−Ḡ)

2/2f2
(2.23)

is the Gaussian function of G with rms f centered at Ḡ.

The GD observable, described by OGD(!), is a natural choice if # � 1, so that if
a detection is made it is likely coming from a single source, and if f! � ℓ, so that
false detections are unlikely. In this limit, the signal is

mX〈ÔGD〉 = 1 #, (2.24)

the (Poisson) variance in ÔGD reads

f2(ÔGD) = #, (2.25)

and the Fisher information on the overdensity X is

�GD
XX = 12#. (2.26)

This is the information on X that one obtains froma directmeasurement of the number
of sources in each voxel, which is only limited by the Poisson noise owing to the
finite number of sources, and is thus the maximum attainable information content
for a given value of # and 1. The limit � = 12# is referred to as the “Poisson limit”
hereafter. For this reason, below we will compare the ratio, �/(12#), of the Fisher
information obtained in a given scenario, �, to the maximum Fisher information
� = 12# .

For IM, the signal is

mX〈ÔIM〉 = mX〈!̂〉 = mX! = 1 # ℓ, (2.27)

with variance
f2(ÔIM) = f2( !̂) = f2

SN + f
2
! , (2.28)
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where f2
SN ≡ # ℓ

2 is the shot noise due to the finite number of sources contributing
to the intensity signal. This gives the Fisher information,

�IM
XX =

12 #2 ℓ2

# ℓ2 + f2
!

= 12#
f2

SN

f2
SN + f

2
!

. (2.29)

In the limit where the noise in the intensity is dominated by the Poisson noise,
f! � fSN, this gives the optimal result, � = 12# (Poisson limit). However,
in general, the Fisher information may be suppressed by the instrument noise. If
we model variations in voxel volume by changing # , Eq. 2.29 shows that the
performance of IM as quantified by �/(12#) is independent of voxel size as long
as either (1) we are in the Poisson-noise-dominated regime f! � fSN or (2) the
instrument noise scales with voxel size as f2

!
∝ # ∝ +vox. The noise scaling in case

(2) is what one would expect if the instrument noise is photon noise dominated.

Below we discuss the optimal observable Oopt(!), and compare its Fisher infor-
mation with OGD(!) and OIM(!) in three different regimes: # � 1, # ∼ 1, and
# � 1.

# � 1
In the # � 1 limit, the voxel luminosity probability distribution can be simplified
by Taylor-expanding Eq. 2.22 and keeping terms only up to first order in # (X):

%(!, X) ' (1 − # (X))� (!, 0, f!) + # (X)� (!, ℓ, f!). (2.30)

The optimal observable can then be calculated from Eq. 2.18,

Oopt(!) ' 1 # (� (!, ℓ, f!) − � (!, 0, f!))
(1 − #)� (!, 0, f!) + # � (!, ℓ, f!)

. (2.31)

In Fig. 2.1, the top panels show %(!) and Oopt(!), for # = 0.01 (fSN = 0.1)
with various instrument noise f! levels6 , and the bottom panels show the Fisher
information (See Eq. 2.13) of the optimal observable (cumulated Fisher information;
see Eq. 2.20), the IM observable, and the GD observable for a range of threshold
!th.

6The true optimal observable of this case is indeed a stair-like function like the one shown in
Fig. 2.2, rather than a single step we get from approximation with only : = 0, 1 terms. However,
this approximation gives almost the same Fisher information as the optimal observable derived from
including more : terms. This is due to the fact that the probability of higher : terms is too small
to have a significant contribution to Fisher information. Therefore, for the purpose of demonstrating
the idea, we ignore the higher-order terms for the optimal observable.
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Considering first the low-noise regime, f! � ℓ (left panels), we find as expected
that thresholded GD is optimal. This is clearly seen from the fact that the optimal
observable Oopt(!) (red curve) is close to a step function. In addition, the Fisher
information of OGD(!) as a function of !th attains approximately the same total
information as the optimal observable, for a wide range of values of !th. Any
threshold from a few times f! to ℓ minus a few times f! perfectly “counts” sources.
As a result, the information content is optimal, in the sense that �/(12#) = 1.

In the very low noise regime, f! � fSN (where fSN is the Poisson noise in
luminosity !), IM is also optimal, as can be seen by the horizontal blue line in the
bottom panel. This is because in the # � 1 and low-noise (f2

!
� #ℓ2) limit, most

voxels have either ! ≈ 0 or ! ≈ ℓ, as shown by the %(!) function, and thus the
information content must be concentrated at these two ! scales as well. As long as
an observable is able to discriminate these two classes of voxels, i.e. having distinct
values at ! = 0 and ! = ℓ, it is able to capture the signals (quantified by mX〈Ô〉)
in the map, regardless of the O(L) function values at other ! values, as almost no
voxel falls in this regime. However, in the intermediate regime (f! = 0.2 case),
fSN < f! � ℓ, IM suffers from instrument noise suppression (see Equation 2.29),
while source detection is still optimal.

Moving on from the low-noise regime toward cases where f! � ℓ no longer holds
(f! = 1, 3), the Gaussian noise profiles of the %(!) function centered at 0 and ℓ start
to overlap, so a GD threshold function is no longer optimal, as it cannot effectively
count the sources. Indeed, the optimal observable Oopt(!) is now a more gradually
increasing function of !. As for the Fisher information, we can see from Fig. 2.1 that
even for the optimal choice of !th, the information contained in the GD observable
is lower than the information in the optimal observable. At the same time, the IM
information content becomes larger relative to the optimal information content. In
the largest noise regime (f! = 3), IM is very close to optimal.

We note, however, that as the noise increases, the absolute information content
strongly decreases, i.e., �/(12#) � 1. This is of course to be expected: instrument
noise makes it difficult to measure cosmological signals.

# ∼ 1
Next, we consider the # ∼ 1 regime. In this scenario, the : ≥ 2 terms in Eq. 2.22
must be taken into account. We take # = 1 in this example and consider different f!
values as before. The results are shown in Fig. 2.2. The %(!) function is the linear
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Figure 2.1: Top: %(!) (black) and Oopt(L) (red) of the toy model with a single type
of source with luminosity ℓ = 1 and mean number of sources per voxel # = 0.01, for
different Gaussian noise f! . Bottom: �O

XX
of IM observable (linear function; blue),

GD observables (step function) as a function of step ! (green), and the cumulative
optimal Fisher information (red). The black dashed lines mark ! = ℓ for reference.

combination of the Gaussian profile with variance f2
!
centered at ! = 0, ℓ, 2ℓ, ...,

with their amplitude following a Poisson distribution. We can see that the optimal
observable is a stair-like function, which gradually smoothed out with increasing
noise.

The linear observable is better than the step function in all cases in terms of their
Fisher information. The reason is the same as in the # � 1 situation: in the low-
noise regime, where most voxel luminosity ! has values around ! = 0, ℓ, 2ℓ, ...,
the only observable value that matters is where ! is near these values. The linear
observable gives exactly the same value at these points as the optimal one. On the
other hand, the step function is not a good observable in this case. The step function
gives the same weights for all the voxels above the step, so it ignores the fact that
higher-luminosity voxels likely have more sources and are more likely to reside in
high-X regions. Note that this is not an issue for the # � 1 case, as there are very few
voxels containing multiple sources; the total information content in these voxels is
also negligible. Whereas here we have # ∼ 1, the multiple-source voxels contribute
to a significant portion of the total information content, and a proper weighting for
them in the observable is essential for capturing the information from the map.

In the high instrument noise regime, the linear observable is also superior to the step
function, which follows the same argument as in the # � 1 case.
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Figure 2.2: Top: %(!) (black) and Oopt(L) (red) of toy model with a single type
of source with luminosity ℓ = 1 and mean number of sources per voxel # = 1,
for different Gaussian noise f! . Bottom: �O

XX
of IM observable (linear function;

blue), GD observables (step function) as a function of threshold ! (green), and
the cumulative optimal Fisher information (red). The black dotted lines mark the
integer of ℓ, the possible intrinsic voxel luminosity.

# � 1
In the # � 1 limit, the Poisson function converges to a Gaussian,

4−# (X) # : (X)
:!

' 1√
2c # (X)

4
− (# (X)−:)

2
2 C# (X) (2.32)

and the summation over : in the %(�) formalism can be approximated by an integral,
so Eq. 2.22 becomes the convolution of two Gaussian functions, which gives another
Gaussian,

%(!, X) =
∞∑
:=0

4−# (X) # : (X)
:!

� (!, :ℓ, f!)

'
∫ ∞

0
3:

[
1√

2c # (X)
4
− (:−# (X))

2
2 # (X)

] [
1

√
2c f!

4
− (!−:ℓ)

2

2 f2
!

]
=

1
√

2c f̄
4
− !′2

2 f̄2 ,

(2.33)

where !′(X) ≡ ! − # (X) ℓ, and f̄2(X) ≡ f2
!
+ # (X) ℓ2. Note that f̄2 is the total

variance from both instrument noise and Poisson noise. In the absence of instrument
noise, we still have a nonzero voxel pdf P(L) owing to the Poisson variance of the
sources themselves. We then derive the optimal observable from Eq. 2.18, with
some rescaling to get rid of all irrelevant constants,7

Oopt(!) = !′ + ℓ

2 f̄2 !
′2. (2.34)

7! ′ ≡ ! ′(X = 0) = ! − # ℓ; f̄2 ≡ f̄2 (X = 0) = f2
!
+ # ℓ2.



22

Hence, the optimal observable is a linear combination of a linear and a quadratic
term, and the contribution from the latter gets smaller as the noise increases.

The top row of Fig. 2.3 shows the %(!) and Oopt(!) for different f! levels, while
fixing # = 100. We can see that as f! increases, the %(!) profile is broadened, and
Oopt(!) becomes closer to the linear function. The bottom row shows the Fisher
information for the different observables. In all cases the step function is not the
preferable observable. The linear function performs as well as the optimal observ-
able, even in the f! = 0 limit, where the optimal observable deviates from the linear
function significantly. This is because the quadratic term in the optimal observable
has negligible contribution to the optimal Fisher information (see Appendix. .2 for
explanation).
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Figure 2.3: Top: %(!) (black) and Oopt(L) (red) of the toy model with a single type
of source with luminosity ℓ = 1 and mean number of sources per voxel # = 100, for
different Gaussian noise f! . Bottom: �O

XX
of IM observable (linear function; blue),

GD observables (step function) as a function of step ! (green), and the cumulative
optimal Fisher information (red). The black dashed and dotted lines mark the mean
and ±f̄ of the %(!) profile, i.e. #ℓ and #ℓ ± f̄, respectively.

Toy Model Summary
In conclusion, for our toy model with a luminosity function describing sources with
a single luminosity ℓ, we find the following limiting behaviors:

• For a low number of sources per voxel, # � 1, and low noise compared
to the source luminosity, f! � ℓ, it is optimal to detect individual sources
by applying the threshold observable OGD(!). In this scenario, the voxels
below the detection threshold contain only noise and make up the majority
of voxels. The GD observable assigns them zero weight, and therefore they
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do not contribute to the noise in the map. On the other hand, voxels with
luminosity above the threshold all contain a (single) source (as the probability
of a noise fluctuation exceeding the threshold is infinitesimally small in the
limit f! � ℓ). This leads to a measurement of the source number density
only limited by the shot noise owing to the finite number of sources # .

• In the same low-# but high-noise regime where f! > ℓ, the signal from
sources cannot be unambiguously distinguished from noise fluctuations, so
that the GD approach is suboptimal and instead the IM observable is close
to optimal. The measurement is limited by instrument noise (as opposed to
by shot noise owing to the finite number of sources), so that our ability to
constrain X (as quantified by the Fisher information) is unsurprisingly much
weaker than the one in the f! � ℓ regime.

• In the opposite regime of a large number of sources per voxel, # � 1, we find
that IM is (nearly) optimal independently of the instrument noise.

The above results are intuitive and serve as useful benchmarks to refer to in the
following sections. Intermediate cases can be understood as interpolations between
the above limiting scenarios.

2.4 Schechter Luminosity Function Model
For a more realistic description, we consider that the galaxy populations follow a
Schechter luminosity functional form: Φ(ℓ) = q∗ (ℓ/ℓ∗)U 4−ℓ/ℓ∗[67]8. To simplify
the notation, below all the ℓ represent ℓ/ℓ∗; in other words, we use ℓ∗ as the unit for
luminosity. This can be easily scaled to any desired unit in real experiments.

One requirement for applying the %(�) formalism is to have a finite # , the mean
number of sources per voxel. To ensure that the integration in Eq. 2.5 converges,
we use a modified Schechter function introduced by Breysse et al. [5]:

Φ(ℓ) = q∗ ℓU 4−ℓ 4−ℓmin/ℓ . (2.35)

We assume that the luminosity function linearly traces the density field,

Φ(ℓ, X) = (1 + 1 X)Φ(ℓ). (2.36)
8To simplify the notations, Φ(ℓ) refers to Φ(ℓ, X = 0), the average luminosity function across

the universe.
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The optimal observable, %(!), and �O
XX

can be derived from equations in Sec. 2.2.
Note that Eq. 2.36 assumes a luminosity-independent clustering bias. In a more
realistic description, we would describe the response to the underlying matter over-
density X in terms of a luminosity-dependent bias 1(ℓ). This is a straightforward
modification to our formalism, but for simplicity we will not pursue it here.

Applying the low-ℓ suppression for ℓ . ℓmin has a physical motivation: galaxies
cannot be infinitely faint. The value of ℓmin is not easily constrained observationally;
however, it is not an issue for our calculation. In Appendix .4, we show that the
choice of ℓmin does not affect our results as long as ℓmin is much smaller than
f! , the instrumental noise in the observation. In this work, we adopt the fiducial
ℓmin = 10−3.

The faint-end slope U usually has the value −2 < U < −1 from observations. We
take U = −1.5 as our fiducial value in this work, and we discuss the effects of
choosing different U values in Appendix .5.

Quantifying the Confusion
Fig. 2.4 shows the normal Schechter function (without ℓmin cutoff) with fiducial U.
We also plot the first three moments of the Schechter function that give the quantity
of particular interest:

# = +vox

∫
3ℓΦ(ℓ); (2.37)

〈!̂〉 = +vox

∫
3ℓΦ(ℓ) ℓ; (2.38)

f2
SN = +vox

∫
3ℓΦ(ℓ) ℓ2. (2.39)

As shown in the plot, the total number of sources # diverges as we take ℓmin to
zero, corresponding to an infinite number of (mostly faint) sources per voxel in the
absence of a cutoff. As a result, the value of # in the modified Schechter function
depends on the choice of ℓmin, while for 〈!̂〉 and f2

SN, the integration is converged
at the faint end, so its value is not susceptible to the artificial ℓmin cutoff (these
convergence properties are true for all −2 < U < −1).

For the above reasons, # is not a well-defined quantity in the Schechter function
case and is ill-suited to quantify the level of confusion as used in the toy model. We
therefore introduce an effective number of sources per voxel, #eff , defined with the
cutoff-independent quantities 〈!̂〉 and f2

SN.
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Figure 2.4: Normal Schechter luminosity function (without ℓmin cutoff) using
fiducial U = −1.5 (black), and its cumulative # (blue), 〈!̂〉 (red), and f2

SN (green).

#eff

The IM signal in the Schechter model is given by

mX〈ÔIM〉 = mX〈!̂〉 = 1+vox

∫
3ℓΦ(ℓ) ℓ, (2.40)

with variance
f2(ÔIM) = f2( !̂) = f2

SN + f
2
! . (2.41)

The Fisher information is therefore

�IM
XX =

12
(
+vox

∫
3ℓΦ(ℓ) ℓ

)2

+vox
∫
3ℓΦ(ℓ) ℓ2 + f2

!

=
12〈!̂〉2

f2
SN + f

2
!

. (2.42)

We nowdefine the effective number of sources per voxel as the IMFisher information
in the Poisson-limited case, f! � fSN ,

#eff ≡

(
+vox

∫
3ℓΦ(ℓ) ℓ

)2

+vox
∫
3ℓΦ(ℓ) ℓ2

=
〈!̂〉2

f2
SN
. (2.43)

This can be interpreted as the reciprocal of the effective shot noise in the IM regime,
which is an analogy to the 1/# shot noise in GD.
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The total Fisher information from IM (Eq. (2.42)) can be rewritten as

�IM
XX = 1

2#eff
f2

SN

f2
SN + f

2
!

. (2.44)

The effective number of sources per voxel thus tells us how well the IM observable
can possibly perform given a source population, while the performance is weakened
whenf! & fSN. As is the case for the toymodel, the IM performance is independent
of +vox if the instrument noise scales like f2

!
∝ +vox or if the instrument noise is

negligible, f! � fSN.

!SN

Aside from #eff , we further introduce the luminosity scale where the voxels are
highly susceptible to shot noise, !SN, to be another quantity related to confusion.

We first define the cumulative intensity shot noise,

f2
SN(ℓ) ≡ +vox

∫ ℓ

0
3ℓ′Φ(ℓ′) ℓ′2. (2.45)

This includes the shot-noise variance from all the sources fainter than ℓ. A useful
quantity is then the “crossover luminosity,” !SN, where the intensity shot noise
equals the source luminosity, fSN(!SN) = !SN.

When ℓ < !SN, fSN(ℓ) > ℓ, which means that the confusion noise from the fainter
source is comparable to ℓ; when ℓ > !SN, fSN(ℓ) < ℓ, which means that the
confusion noise from faint sources becomes negligible. Fig. 2.5 shows the fSN(ℓ)
with four different source densities and their !SN marked by the dotted vertical lines.

Relation between #eff and !SN

The modified Schechter luminosity function we adopted in this work is composed of
a power lawwith slope U and exponential cutoffs at both low- and high-ℓ ends, which
guarantee convergence of integration for all moments. Of particular interest are the
first three moments that give # (zeroth), 〈!̂〉 (first), f2

SN (second) respectively.

If the luminosity function is only a power law (i.e. Φ ∝ ℓU) with −2 < U < −1 ,
the zeroth moment converges at the high-ℓ end and diverges at the low−ℓ end, while
the convergence of higher moments is reversed. Applying the exponential cutoff
suppresses contribution from scales beyond the cutoff scale, and thus the integration
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Figure 2.5: fSN(ℓ) with different source densities (solid lines). The black dashed
line is fSN = ℓ, and its intersection with fSN(ℓ) is !SN.

is dominated by the sources with luminosity around the cutoff. Therefore,

# = +vox

∫
Φ(ℓ) 3ℓ ∼ +voxΦ(ℓmin) ℓmin; (2.46)

〈!̂〉 = +vox

∫
Φ(ℓ) ℓ 3ℓ ∼ +voxΦ(ℓ∗) ℓ2

∗ ; (2.47)

f2
SN = +vox

∫
Φ(ℓ) ℓ2 3ℓ ∼ +voxΦ(ℓ∗) ℓ3

∗ . (2.48)

Note that the quantity ℓΦ(ℓ) is the count per log ℓ, so the above approximations
imply that # is dominated by sources with luminosity around ℓmin, whereas 〈!̂〉 and
f2

SN are dominated by ℓ ∼ ℓ∗ sources.

From these relations we can also derive

#eff =
〈!̂〉2

f2
SN
∼ +voxΦ(ℓ∗) ℓ∗, (2.49)

so #eff is approximately the number of sources per log(ℓ) at ℓ∗.

Based on the above, we can roughly infer the relation between !SN and #eff . Since

f2
SN(!SN) ≡ !2

SN ∼ +voxΦ(!SN) !3
SN, (2.50)
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if !SN < ℓ∗, we get

+voxΦ(!SN) !SN ∼ 1 > +voxΦ(ℓ∗) ℓ∗ = #eff . (2.51)

On the contrary, if !SN > ℓ∗, then

+voxΦ(!SN) !SN ∼ 1 < +voxΦ(ℓ∗) ℓ∗ = #eff . (2.52)

Hence, we conclude that

!SN < ℓ∗ ⇔ #eff < 1;

!SN > ℓ∗ ⇔ #eff > 1. (2.53)

The argument above is only an order-of-magnitude estimation. The !SN − #eff

relation with our fiducial Schechter parameters is shown in Fig. 2.6. The actual
scales where #eff = 1 and !SN = ℓ∗(= 1) happen are off by around an order of
magnitude. Later we will focus on the limiting scenarios where !SN � ℓ∗ and
!SN � ℓ∗ respectively. In the situation where !SN ∼ ℓ∗ within roughly an order
of magnitude, one should keep in mind the caveat that the cases of interest might
be closer to either of the limiting regimes, or some intermediate situation, so the
arguments for the limiting cases cannot be applied naively.

Noiseless Scenario
We first consider an idealized scenario without instrument noise f! . This example
will allow us to derive some useful insights before we move on to the more realistic
scenario including instrument noise f! .

The major difference between the toy model and the Schechter function case is that
in the toy model with zero instrumental noise, even in the highly confused scenario
(# � 1), the Fisher information of the optimal observable (and of OIM(!)) still
reaches the Poisson limit, since we can unambiguously count the number of sources
for any given voxel luminosity ! in the toy model. In the Schechter function case,
on the other hand, we are not able to distinguish the exact composition of sources
in the voxels, and thus the information content will be suppressed by the confusion.

Fig. 2.7 shows the %(!), Oopt(!), and the Fisher information relative to the total
information from directly counting sources, �/(12#), for three different # levels.
Below we describe the important observations from these results.
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Figure 2.6: !SN − #eff relation with fiducial Schechter function faint-end slope
U = −1.5. Note that the actual scales where #eff = 1 and !SN = ℓ∗(= 1) happen are
off by around an order of magnitude.

• The probability distribution of the total voxel luminosity, %(!), shifts to higher
! as # increases.

• The optimal observable has a smoothed step-function-like shape. The transi-
tion ! scale is around !SN, except for the # = 0.1 case, where !SN � ℓmin,
and the transition is strongly affected by the cutoff ℓmin. The interpretation is
as follows: when ! . !SN, fSN & ! (and the effective number of sources
below ! is not small), and thus the possibility that a given ! voxel is composed
of multiple faint sources is non-negligible. In this regime, the optimal observ-
able prefers giving brighter voxels more weight since they are more likely to
hold more sources, and this explains the rising part of the Oopt function. On
the bright end, where ! > !SN, most of the voxels with these ! values are
dominated by the single ℓ ∼ ! source, and thus this is in the GD regime, and
the optimal observable is a uniform weighting.

• The # = 0.1 case reaches the Poisson limit. This is because a threshold !th

below ℓmin has the property that whenever a voxel luminosity exceeds !th,
that voxel is likely to contain only a single source. Thus, (only) this scenario
allows us to directly count galaxies and thus to optimally trace the overdensity
X. For larger # , only sources with ℓ > !SN > ℓmin can be “counted.”



30

10 4

10 3

10 2

10 1

100

101

LP
(L

)

{N, Neff}
{0.1, 6.6 × 10 3}
{10, 6.6 × 10 1}
{500, 32}

0.0

0.2

0.4

0.6

0.8

1.0

op
t (L

)

10 4 10 3 10 2 10 1 100 101

L

10 2

10 1

100

F
/(b

2 N
)

Figure 2.7: Fiducial Schechter function without instrument noise. Top: !%(!)
with different # levels. Note that the area underneath the !%(!) curve gives the
probability per log !. Middle: The optimal observables for each case. The dotted
lines mark the !SN (in # = 0.1 case, !SN � 10−4, so the blue dot line is outside
the x-axis range). Bottom: �O

XX
of IM observable (dotted; note that the three dotted

lines overlap), GD observable as a function of step ! (dashed), and the cumulative
optimal Fisher information (solid).



31

• In the # = 0.1 case, the step function with threshold !th < ℓmin is approxi-
mately optimal as discussed above.

• In the two larger-# scenarios, the confusion has a significant impact on fainter
voxels (! . !SN) that degrades the information content, and thus the optimal
Fisher information is less than the Poisson limit.

• In the two larger-# scenarios, the optimal Fisher information is built up at
two stages that correspond to the IM part at ! . !SN, where the observable
is weighted by luminosity, and the GD part at ! & !SN, where the bright
sources can be counted individually.

• In the absence of instrument noise, �IM
XX
/(12#) is independent of # (and

thus the voxel size). This can be understood in the following way: the IM
observable measures a luminosity-weighted “count” of the number of sources.
Because of the properties of the Schechter function discussed in Sec.2.4, this
weighted count is dominated by sources with luminosity near ℓ∗ (= 1), and the
information content is given by #eff � # . See also Appendix. .3 for further
discussion of this point.

In summary, when # is not small, confusion, in combination with a range of source
luminosities, implies that we cannot reach the Poisson limit even without instrument
noise. The IM observable never reaches the Poisson limit, regardless of # , while
GD reaches �/(12#) = 1 only if # � 1.

General Case with Instrumental Noise f!
In reality, the instrumental noise f! has to be taken into account. Just as !SN

sets the approximate luminosity where a source rises above the confusion noise
due to fainter objects, f! determines the luminosity where objects rise above the
instrument noise. Another characteristic scale is the ℓ∗ of the Schechter function,
which is set to unity in this chapter as we scale luminosities in units of ℓ∗. The shape
of the optimal observable and the Fisher information are determined by the relative
value of these three luminosity scales {!SN, f! , ℓ∗}. In this section, we will classify
different scenarios by the relative ordering of these scales and discuss each case in
detail.

We split the scenarios into two categories depending on the !SN and ℓ∗ relation. Case
I is the low-confusion regime where !SN < ℓ∗, corresponding to the #eff < 1, and
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we further discuss three subcases in this category depending on values of f! . Case
II is the highly confused regime defined by !SN > ℓ∗, corresponding to #eff > 1.

Fig. 2.8 summarizes the schematic ordering of these categories, and the shaded
regions mark the optimal observing strategy for each case discussed below.

()

LSN L

Ia

()

LSNL

Ib

()

LSN L

Ic

()

LSN

II

Figure 2.8: Ordering of {!SN, f! , ℓ∗} in each case discussed in Sec. 2.4. Case I
is defined by !SN < ℓ∗, corresponding to the #eff < 1 low-confusion regime, and
its three subcases in this category as determined by the position of f! . Whereas
the Case II is the highly confused regime defined by !SN > ℓ∗, corresponding to
#eff > 1. The blue shaded regions are where IM is the optimal strategy, and the
green shaded regions mark the scales above the optimal threshold when the GD
observable is the optimal strategy.

Case I: !SN < ℓ∗

Here we have a relatively low number density, with !SN < ℓ∗, approximately
corresponding to the #eff < 1 regime. We will thus apply the %(�) calculation to
derive the %(!) and the optimal observable.

Case Ia: LSN < fL < ℓ∗ We first consider the case of intermediate instrument
noise, i.e., between !SN and ℓ∗. Fig. 2.9 shows two examples in this case with
different f! . This is the regime where GDworks well: the instrument noise is much
smaller than ℓ∗, and the voxels with ! & f! do not suffer from confusion noise.
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Therefore, as expected, the optimal observable here is close to a step function with a
transition at a few times f! (Fig. 2.9, two middle panels). The optimal step function
has a threshold at ∼ 3f! (dashed vertical lines in the two middle panels), and this
optimal step function observable indeed captures nearly the optimal information, as
shown in the right panel of Fig. 2.9. This indicates that GD using a threshold at a
few f is the optimal strategy.

We also note from the solid curves in the right panel of Figure 2.9 that the information
content is dominated by voxels with total luminosity within an order of magnitude
of the optimal threshold value at ∼ 3f! .

The total optimal Fisher information �opt
XX
/12 in this case should be of the order

# (ℓ > f!), the number of sources per voxel above f! , since we can count sources
brighter than the noise level without confusion. This is consistent with the results in
the right panel of Fig. 2.9, though �opt

XX
/12 is slightly lower than # (ℓ > f!) owing

to instrumental noise f! .
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Figure 2.9: Two examples of case Ia. Left: %(!) after convolving with f! = 0.01
(blue) and 0.1 (red). Middle left: optimal observables (solid lines). The dashed
lines are the optimal threshold for the step function observable, i.e. the peak of the
dashed curve in the right panel. Middle right: same as themiddle left panel, butwith
!/f! on the x-axis on a linear scale. Right: the integrated Fisher information for
the optimal observable (solid), Fisher information of the step function observable
as a function of step position (dashed), and the Fisher information of the linear
observable (dotted).

Case Ib: fL < LSN < ℓ∗ We now consider the low-noise regime, f! < !SN. Here
the optimal observable is an intermediate between the IM and GD observables.
Fig. 2.10 shows one scenario in this regime. As in case Ia, one might naively apply
a GD threshold at a few times f! . In the case Ia scenario, the voxel fluxes above
the threshold are indeed “detected” since they rise above the instrumental noise
and confusion. However, in case Ib, voxels above this threshold typically contain
multiple sources with ℓ above the threshold, and the confusion noise from sources
below the threshold is larger than the the sources at or just above the threshold. The
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regime of voxel fluxes f! < ! < !SN is thus more amenable to the IM technique.
Individual sources can be detected with a threshold !th & !SN because only those
sources rise above the confusion noise.

The resulting optimal observable can thus be understood as a hybrid between the
two methods, detecting individual sources in the brightest voxels (! > !SN), and
benefiting from IM in the fainter voxels that still rise above the instrumental noise
(f! < ! < !SN).

Fig. 2.10 indeed shows that neither the pure IM (linear) nor the pure GD (step
function) observables capture the optimal information. The Fisher information for
the optimal observable gains information in two stages, corresponding to the IM
and GD parts, respectively. The total optimal Fisher information falls between
# (ℓ > f!) and # (ℓ > !SN), captured by GD and IM observables, respectively.

The detailed shape of the optimal observable depends on the luminosity function.
In practice, we usually do not have sufficient knowledge of the source luminosity
function, and it might be difficult to derive the optimal observable within our
formalism. From our analysis, we know that the optimal observable in case Ib is GD
above a threshold around !SN and IM between that and another threshold around
f! . Therefore, in practice, the optimal observable in the case Ib regime could
be designed by choosing these two threshold scales, and by considering a linear
function in between and a constant plateau about the upper threshold. By trying a
range of values for both thresholds, the optimal threshold can be determined as the
one giving the minimum shot-noise level in the power spectrum.
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!/f! in the x-axis. Right: integrated Fisher information for the optimal observable
(solid), Fisher information of the step function observable as a function of step
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Case Ic: LSN < ℓ∗ < fL The final scenario in the !SN < ℓ∗ (#eff < 1) regime is
that of a very large instrument noise, f! > ℓ∗. This is the case of noisy surveys,
where only sources in the bright exponential tail of the Schecter function rise above
the instrument noise.

Fig. 2.11 shows an example of case Ic. At first sight, the middle left panel appears to
suggest that the optimal observable is close to a GD step function with a threshold
at ∼ 6f! . However, when we consider the actual step function, we see first that
the optimal threshold lies at ∼ 1f! , and second (from the right panel) that its
information content is far from optimal. Inspecting the optimal observable in more
detail, we see from the right panel that its information content is dominated by voxel
luminosities up to ! . 3f! . In this regime, as shown by the middle right panel, the
optimal observable is close to linear (and voxel luminosities are noisy). Thus, the
optimal observable is closer to the IM observable. This interpretation is confirmed
by considering in the right panel the information contained in the IM observable,
which is indeed close to optimal.

Since sources brighter than the noise are not confused (!SN < f!), one might a pri-
ori expect GD to be the optimal strategy, just like in case Ia. The reason the present
case is different is that sources brighter than the instrument noise are in the expo-
nential tail of the Schechter function. A detection threshold at a few times f! that
unambiguously distinguishes sources above the threshold from noise fluctuations
would detect only a very small number of sources and throw away information in
almost all voxels. A slightly better approach is GD with a low threshold at ! ∼ f! .
In this case, there are many false detections owing to the high instrumental noise,
but a larger number of sources are probed. As discussed above, the approximately
optimal approach is the IM observable, which gives an information content deter-
mined by the effective number of sources and the instrument noise suppression,
�IM
XX
/12 = #eff f

2
SN/(f

2
SN + f

2
!
), larger than the information content given by the

number of objects that can be detected, (�GD
XX
/12) ∼ # (ℓ > f!) � #eff .

Case II: ℓ∗ < !SN

The defining criterion of case II, ℓ∗ < !SN, approximately corresponds to a large
effective number of sources per voxel, #eff > 1. The %(!) function here (at least in
the #eff � 1 limit) can be approximated by a Gaussian with mean ` and variance
f̄2 given by

` =

∫
3ℓ+voxΦ(ℓ) ℓ = 〈!̂〉, (2.54)
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Figure 2.11: Case Ic example. Left: %(!) after convolving with f! = 3. Middle
Left: optimal observables (solid line). The dashed line is the optimal threshold for
the step function observable, i.e. the peak of the dashed curve in the right panel.
Middle right: optimal observable zoomed in to around f! = 1.5. Right: the
integrated Fisher information for the optimal observable (solid), Fisher information
of the step function observable as a function of step position (dashed), and the Fisher
information of the linear observable (dotted).

and
f̄2 =

∫
3ℓ+voxΦ(ℓ) ℓ2 + f2

! = f
2
SN + f

2
! . (2.55)

Fig. 2.12 shows results for three different noise levels, corresponding to the three
subclasses of case II: f! < ℓ∗ < !SN (blue), ℓ∗ < f! < !SN (red), and ℓ∗ < !SN <

f! (green).

As in the # � 1 case in the toy model (Sec. 2.3), we derive the optimal observable
to be the sum of a linear and a quadratic term,

Oopt(!) = !′ + 〈!̂
2〉

2 ` f̄2 !
′2, (2.56)

where !′ = ! − `. The quadratic term has a negligible contribution to the optimal
Fisher information, similarly to the toymodel, so IM (the linear function observable)
is the optimal strategy, and the optimal Fisher information �opt

XX
∼ �IM

XX
/12 has the

upper bound #eff (see Eq. 2.44) and drops as the noise goes up.

Schechter Luminosity Function Model Summary
In this section, we explore four different scenarios defined by different ordering of
ℓ∗, !SN, and f! . Our formalism is not restricted to the IM or GD observable, but
we found that in most cases either IM or GD is indeed the optimal strategy for
mapping LSSs. Only in case Ib will an alternative strategy defined as the hybrid of
the two will outperform a pure IM or pure GD observable, but case Ib is a very rare
situation. None of the future surveys discussed in Sec. 2.5 are in the case Ib regime.
Therefore, we conclude that the GD / IM dichotomy captures most of the optimal
strategy in reality.
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2.5 Optimal Strategy for IM Experiments
We now apply the formalism we have developed to proposed and ongoing IM
experiments. By simply calculating !SN, ℓ∗, and f! from experimental parameters
and empirical line luminosity functions, we can categorize a survey into one of the
cases in Sec. 2.4, and identify its optimal observable.

As discussed in Sec. 2.4, there exist ambiguous regimes where the cases will be
classified as case I (!SN < ℓ∗), but the confusion is significant (#eff > 1). Therefore,
we also calculate #eff for each experiment, and we label these cases I/II as they are
intermediate, instead of classifying them into either one of the cases.

Below we consider several experiments targeting different spectral lines across
redshift. The results for all the surveys and lines we discuss below are summarized
in Table 2.1. We present the relevant parameters of each survey and leave the details
in Appendix .6.

An important potential caveat to the discussion here is that we only include the
instrumental noise as the noise term f! . In reality, astrophysical foreground con-
taminations, for example, are another source of noise, and their fluctuations could be
much higher than the instrumental noise without any foreground mitigation proce-
dure. These foregrounds may include both local contributions from the Milky Way
galaxy and emissions from extragalactic sources. Fortunately, these foregrounds
are in principle distinguishable from the line signal of interest because of their dis-
tinct spectral and spatial signatures, often being much smoother spectrally than the
signal that enables us to remove them with the strategies advocated for foreground
cleaning in 21 cm IM measurements [49, 59, 74]. Quantifying the effect of residual
foregrounds requires a more sophisticated model, which is outside the scope of this
work.

SPHEREx
SPHEREx is a planned space mission for an all-sky near-infrared spectro-imaging
survey [28]9. SPHEREx would carry out the first all-sky spectral survey at wave-
lengths between 0.75 and 2.42 `m (with spectral resolution ' = 41), between 2.42
and 3.82 `m (with ' = 35), between 3.82 and 4.42 `m (with ' = 110), and be-
tween 4.42 and 5.00 `m (with ' = 130), with a pixel size of 6.2′′. We take the 5f
sensitivity to be <�� = 19.5 and 22 per spectral channel, which is approximately
the expected sensitivity in the all-sky and the deep regions (2 × ∼ 100 deg2), re-

9http://spherex.caltech.edu.

http://spherex.caltech.edu


39

spectively. SPHEREx is able to detect multiple lines, including HU, HV, [O iii], and
LyU, at different redshifts. Here we discuss the cases of HU and LyU.

HU SPHEREx can detect the HU line at 0.1 < I < 5. We adopt the HU luminosity
function at I = 2.23 from Sobral et al. [72]: a Schechter function with log10 q

∗ =

−2.78 Mpc−3, log10 ℓ∗ = 42.87 erg/s, and U = −1.59. We then derive from the
luminosity function and instrument parameters that !SN/ℓ∗ = 5.8 × 10−5, #eff =

2.2 × 10−2, and f!/ℓ∗ = 0.19 (deep regions) and f!/ℓ∗ = 1.9 (all-sky). The all-sky
survey is clearly in the case Ic regime, where IM is optimal. As for the deep regions,
at first sight, it is in the case Ia regime (!SN < f! < !∗), where GD is the optimal
strategy. However, since f! is close to ℓ∗, we are really at the boundary between
the case Ia and the case Ic scenario, the latter suggesting that IM is preferred. Since
we are in this gray area between the two regimes, an explicit calculation is required
to check which approach is optimal. We thus computed the Fisher information for
the linear and step function observables and found that the two approaches have the
similar performance. Therefore, we label it with IM/GD as there is no preferred
approach in this case.

LyU The LyU line from high redshifts (5.2 < I < 8) also falls within the SPHEREx
bands. Here we use the LyU luminosity function at I = 5.56 from Cassata et al.
[12]: a Schechter function with q∗ = 9.2×10−4 Mpc−3, log10 ℓ∗ = 42.72 erg/s, U =
−1.69, and from this we get !SN/ℓ∗ = 2.1×10−4, #eff = 3.2×10−2, and f!/ℓ∗ = 6.4
(deep regions) and f!/ℓ∗ = 64 (all-sky). Both are in the case Ic regime, so IM is
again the optimal strategy.

CDIM
The Cosmic Dawn Intensity Mapper [CDIM, 21] is a NASA Probe Study designed
for Cosmic Dawn and Epoch of Reionization studies, probing LyU, HU, and other
spectral lines through cosmic history as part of its science goals. It plans to cover
the wavelength range of 0.75 − 7.5 `m, with a spectral resolution of ' = 300 and
1 arcsec2 pixel size. The planned ∼ 30 deg2 deep surveys would reach a 5f point-
source sensitivity of mAB = 22.5. We calculate the HU and LyU line signals using
the same luminosity functions described in the SPHEREx analysis above.

HU For HU at I = 2.23, we found !SN/ℓ∗ = 1.8 × 10−9, #eff = 4.9 × 10−5, and
f!/ℓ∗ = 9.8 × 10−3. This is clearly inside the case Ia regime (!SN < f! < ℓ∗),
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where the sources above the instrumental noise can be detected without confusion,
so GD is the optimal strategy and the Fisher information is ∼ # (> f!).

LyU For LyU at I = 5.56, we have !SN/ℓ∗ = 8.0 × 10−8, #eff = 1.4 × 10−4, and
f!/ℓ∗ = 0.68. This is at the boundary between the Ia and Ic scenarios, as with the
SPHEREx HU (deep regions) case, where IM and GD observables have the similar
performance, so we label it with IM/GD.

We remind the reader that, to reach the conclusion that thresholded detection of
individual lines is optimal for this survey, we have assumed that residual fore-
grounds can be ignored so that only the instrumental noise (and the shot noise in the
line-emitting galaxies) enters the problem. Incorporating foregrounds (including
continuum emission from extragalactic sources) in a realistic way may alter the
conclusion on the optimal observable.

HETDEX
The Hobby-Eberly Telescope Dark Energy Experiment [HETDEX, 36]10 is a wide-
field survey covering 300 deg2 at the north Galactic cap. Its main science goal is to
detect 0.8 million LyU-emitting (LAE) galaxies within 1.9 < I < 3.5 to provide a
direct probe of dark energy at I ∼ 3. The survey will have a 3′′ × 3′′ pixel size, and
the spectral resolution is ' = 800. The quoted sensitivity for 1200 s exposures per
field is approximately 6×10−17erg/s/cm2 (5f), so we set fL = 1×10−17erg/s/cm2

in our calculation.

LyU Here we consider the LyU measurement at I = 2.5 using the luminosity
function from Cassata et al. [12] in their 1.95 < I < 3 redshift bin (a Schechter
function with q∗ = 7.1× 10−4 Mpc−3, log10 ℓ∗ = 42.70 erg/s, U = −1.6). Then, we
derive !SN/ℓ∗ = 1.2 × 10−8, #eff = 1.3 × 10−4, and f!/ℓ∗ = 9.3 × 10−2, which is
also the in the Ia regime, so that line detection is the optimal strategy.

Although our calculations for CDIM and HETDEX for detecting LyU indicate
that galaxy/line detection is a better option than IM, we have assumed that the
LyU emission comes from point sources. However, LyU photons are very often
rescattered with nearby neutral hydrogen before they escape from galaxies, and
thus the LyU emission is extended. According to radiative transfer simulations, the
extended LyU halos have a size of tens or even hundreds of kpc [9, 41, 44, 86], which

10www.hetdex.org.

 www.hetdex.org
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is comparable to the pixel size we consider here (the comoving voxel dimension in
our LyU calculation is 8.4× 0.027× 0.027"?2/ℎ and 3.5× 0.059× 0.059"?2/ℎ
for CDIM and HEDEX, respectively). As a result, it is possible that IM is a better
way to capture the extended LyU emission; a more detailed investigation is needed
to quantify the best observable for the LyU line.

Another potential caveat is that the “GD”we discuss in this work is only based on the
targeting line emission, while no external information is used for source detection.
In reality, however, sources might be detected based on their full spectrum, and
the line is then used to get its redshift. This is closer to the observing strategy for
HETDEX. Since our model is not applicable for this type of survey strategy, a more
sophisticated formalism is needed in order to quantify its ability to extract the LSS
information.

TIME
TIME is a grating spectrometer dedicated to probe the [C ii] line at 5.3 < I < 8.5
[22]. The instrument has a spectral resolution of ' = 150 and a pixel size of
0′.45. The noise-equivalent intensity (NEI) is around 106 − 107Jy

√
sec/sr, and we

adopt NEI = 4 × 106Jy
√

sec/sr for the calculation. The proposed 1000-hr survey
gives an integration time per pixel of tpix = 100 hr, leading to fL = NEI/

√
2 tpix =

4.71 × 103 Jy/sr.

[C ii] We now calculate the performance of TIME probing [C ii] at I = 6. For the
luminosity function, we adopt the semianalytic model from Popping et al. [62] (a
Schechter functionwith q∗ = (ln10)10−2.95 Mpc−3, log10 ℓ∗ = 7.80 L�, U = −1.77).
From these we get !SN/ℓ∗ = 1.9 × 10−2, #eff = 0.75, and f!/ℓ∗ = 2.17. This is in
the case Ic regime, where IM is the optimal strategy.

COMAP
The CO Mapping Array Pathfinder [COMAP, 18] aims at tracing star formation
through cosmic time with the CO rotational transition lines. COMAP will observe
in the 30-34 GHz window with a 40 MHz spectral resolution, corresponding to
CO(1-0) at 2.4 < I < 2.8 and CO(2-1) at 5.8 < I < 6.7. Following the formalism
and the instrument parameters of the Pathfinder in Li et al. [46], we obtain a pixel
size of 2′.55 and a system noise of 23 ` .
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CO(1-0) We now consider the CO(1-0) line at I = 3. For the luminosity function at
I = 3 , we take the averaged value of each of the three Schechter function parameters
for I = 2 and I = 4 in Popping et al. [62]: q∗ = (ln10)10−2.79 Mpc−3, log10 ℓ∗ =

7.28 Jy km s−1 Mpc2, U = −1.62. From these we get !SN/ℓ∗ = 1.4 × 10−1,
#eff = 2.5, and f!/ℓ∗ = 13, so this is near the borderline of the Ic (!SN < ℓ∗ < f!)
and II regimes (#eff > 1), where IM is the optimal strategy in both cases.

CHIME
The Canadian Hydrogen Intensity Mapping Experiment [CHIME, 2] is a cylindrical
interferometer designed to measure the neutral hydrogen HI power spectrum at
0.8 < I < 2.5. We consider the HI signal at I = 1. The instrument has a 15 − 25
arcmin angular resolution, and we adopt 15 arcmin as the pixel size. The frequency
resolution is 390 kHz [2], and the noise level at I = 1 is f) = 2.9 × 10−4K for 1.4
yr of integration, calculated from the survey parameters given in Bandura et al. [2]
(see Appendix. .6 for the derivation).

For the HI luminosity function, we use the local (I < 0.06) HI observations from
Martin et al. [53], in which the HI mass function is fitted with a Schechter function
with q∗ = 4.8 h3

70 Mpc−3 dex−1, log(M∗/M�) + 2log h70 = 9.96, and U = −1.33,
and we ignore redshift evolution from I = 1 to the present day. See Appendix .6 for
converting the HI mass function to the luminosity function.

With this information in hand, we get !SN/ℓ∗ = 0.63, #eff = 4.2, and f!/ℓ∗ = 3.4,
which is again near the borderline of Ic and II regimes, where IM is optimal for both
cases. We stress again that this is a calculation for an idealized situation that ignores
foreground effects.

The above analysis focuses on the 3D line IM experiments. Two-dimensional
continuum surveys such as the cosmic infrared background (CIB) experiments are
also worth discussing in this context, given that they usually suffer from confusion
[3, 80, 82], which induces errors in measuring the properties of bright sources (e.g.
the position and flux error from confusion noise described in Hogg [37]). Another
common issue in the CIB experiments is the correlated confusion noise, which
refers to the fact that the fluctuations from the faint, unresolved sources are spatially
correlated with the bright sources. Our %(�) formalism intrinsically captures the
dependency of the density of all the sources and their underlying overdensity field X,
regardless of the detection limit, and thus it is a suitableway to quantify the confusion
in CIB. However, according to the observations, the CIB source luminosity function
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is close to a simple power law without an exponential cutoff at the bright end [80].
Therefore unlike the Schechter function, there is no characteristic ℓ∗ we can use
to compare with f! and !SN to classify the regimes. A detailed %(�) analysis is
needed to study this different kind of luminosity function, and we leave it to the
future works.

2.6 Example Application: Pixel Size Optimization
In this section, we use our framework to calculate the information content as a
function of pixel (or beam) size. The choice of pixel size in a survey is a trade-off
between confusion and instrumental noise, which are quantified by !SN (or #eff)
and f! , respectively. A smaller pixel size gives less confusion, but the instrumental
noise f!/ℓ∗ also changes according to the properties of the dominant noise source
and how the integration time and collecting area scaled with the pixel size. The two
effects cannot be treated independently if our observable is not a linear function,
and thus it requires a full %(�) analysis to construct the %(!) distribution and then
to derive the Fisher information.

We consider changing the pixel size from Ωpix to 0Ωpix, while fixing the spectral
bandwidth per voxel. Here 0 is a rescaling parameter that quantifies the change
in pixel size relative to a fiducial survey configuration, and we would thus like
to compute #eff , f! , and ultimately the Fisher information in the new pixel, as a
function of 0. The voxel volume and #eff trivially scale linearly with 0. The exact
effect on the instrumental noise per voxel depends on the details of the experiment
and on how its specifications are varied as the pixel size is changed, as we will
discuss in more detail below. With the variation in voxel size and f! , we can
calculate the Fisher information in the new 0Ωpix voxel. However, it is not sufficient
to simply consider the variation (with 0) in the Fisher information per voxel. A
smaller pixel size gives a larger number of pixels to constrain the underlying X for
a fixed survey region. Therefore, the meaningful quantity for the performance of
different voxel sizes is � (0)/0, where � (0) is the Fisher information of a single
voxel with size 0Ωpix. The quantity � (0)/0 gives the information content on X for
a fixed survey region.

The scaling of f!/ℓ∗ is derived from comparing the number of photons from a ℓ∗
source and the rms of the number of photons from noise for a given integration time.

The number of photons #src from a ℓ∗ source per voxel per integration Cint is given
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by
#src =

ℓ∗
4c�! (I)2

�collCint. (2.57)

We assume that the instrument’s collecting area �coll, is fixed by the aperture size,
and we assume a fixed total integration time/survey duration and a fixed total sky
coverage for the survey. If we change the angular size of pixel from Ωpix to 0Ωpix

by moving the focal length of the telescope, while fixing the physical configuration
of the detector (the physical pixel size and number of pixels on the detector stay the
same), the instantaneous field of view also scaled with 0, and thus the integration
time per pixel Cint becomes 0 Cint in order to preserve the total integration time of the
survey. Therefore, we get #src ∝ 0.

As for the noise, below we will focus on two simple scenarios for the instrumental
noise scaling with pixel size: a read-noise-dominated case and a photon-noise-
dominated case. We will apply these two scalings relative to a fiducial experiment
given by the SPHEREx �U case, presented in Sec. 2.5.

Photon-noise-dominated scenario For the photon noise, we assume that the dom-
inant photon source from the sky is a uniform bright foreground, e.g. the zodiacal
light in the optical/near infrared. Say this foreground has surface brightness �, which
has units Jy sr−1. The number of photons #� from � per voxel per integration is thus

#� = � �collΩpix Xa Cint ∝ 02, (2.58)

where Xa is the bandwidth, and we take it unchanged while varying the pixel size.
The photon noise is the Poisson noise of #� , and thus the rms of photon noise fph is

fph =
√
#� ∝ 0. (2.59)

Therefore, the scaling off!/ℓ∗with 0 is proportional tofph/#src, which is a constant
independent of voxel size.

Read-noise-dominated scenario For the read noise, assuming we only read at the
beginning and the end of the integration, and each read has rms fread electrons, the
expected rms number of photon of read noise fRN thus does not scale with 0. As a
result, f!/ℓ∗ = fRN/#src scales with 1/0.

Fig. 2.13 shows the Fisher information (� (0)/0) for varying pixel/voxel size in the
SPHEREx HU case, normalized by the Fisher information for the fiducial 6.2 arcsec
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pixel size. As shown in the plot, if the noise is dominated by read noise, increasing
the voxel size will have a dramatic improvement on information gain, since this
crosses the transition from Ic (IM) to Ia (GD) (see the bottom panel), and we expect
a lot more information gain from individual detection.

Here we only demonstrate a simple and idealized example of using this framework
to quantify the information with different pixel sizes. We remind the reader that
the scaling relation with pixel size we adopted here is not a unique behavior in
the photon-noise- and read-noise-dominated cases. In reality, the pixel size can be
changed in different ways (e.g. change the physical configuration of the pixels on
the detector itself) and results in different scaling relation.

In addition, the discussion above assumes the fixed total survey volume. In reality,
we can optimize the experiments by varying the survey volume as well. There is
another trade-off between the survey volume and the depth (f! in our context) for
the given observing time. Increasing the total survey volume reduces the cosmic
variance in the power spectrum. In this work, our formalism only accounts for the
variance on the voxel-by-voxel basis, which corresponds to the shot noise in the
power spectrum. In reality, cosmic variance is another noise source in the power
spectrum that plays a significant role in the large-scale (low-k) mode uncertainty. To
optimize the survey for probing the large-scale power spectrum, an analysis taking
into account both the shot noise and cosmic variance is needed. We leave the
consideration to future works.

2.7 Conclusion
We use a general “observable” as a weight function to turn the observed voxel flux
map into the observable map that traces the LSS. The two well-studied approaches,
GD and IM, are two special observable cases. The performance of observables is
quantified by the Fisher information, and from it we derive the optimal observable,
which is able to extract the full information content in the data.

We first work on a toy model assuming that all the targeting sources have the same
flux ℓ. By considering a range of source density # (number of sources per voxel)
and instrument noise level f! , we derive the optimal observable and its Fisher
information for each case and compare it with the Fisher information of the GD and
IM observables. In the toy model, we found that IM is preferred when the sources
are either confused (# > 1) or suppressed by the noise (f! > ℓ).

Next we move on to a more general model with the source population follows
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Figure 2.13: Top: The Fisher information of SPHEREx HU case with different
pixel size. The Fisher information is normalized by the Fiducial 6.2 arcsec pixel
size case. Bottom: f!/ℓ∗ ratio in each scenarios.

Schechter function form. Then, we identify four limiting regimes depending on
the relative value of the three scales: {!SN, f! , ℓ∗}. Again, we found that in the
high-noise (f! > ℓ∗, case Ic) or high-confusion (#eff > 1 or !SN > ℓ∗, case II)
regime, the IM observable is preferred, as it reaches the performance of the optimal
observable. Whereas on the opposite situation (#eff < 1 and f! < ℓ∗), we can
further identify two distinct scenarios. The first one is where !SN < f! < ℓ∗

(case Ia), such that all the voxels above the noise are not confused, so the detection
with a threshold around f! is the preferred strategy. The other scenario is where
f! < !SN < ℓ∗ (case Ib). In this case, the optimal strategy is the hybrid of the IM
and GD observables. The IM observable is suitable for the voxels above noise but
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highly confused (f! < ! < !SN), whereas for voxels above !SN, the voxel flux is
dominated by a single bright source, and thus the GD is the favored choice for them.

Finally, we demonstrate the usage of this formalism with two applications. The
first application is to identify the optimal strategy for the proposed (and ongoing)
IM experiments (e.g. SPHEREx, TIME, COMAP). The second application is to
calculate the information content for different pixel sizes in a survey. Although we
have made some simplified assumptions in these two demonstrations, the formalism
we developed here can be easily applied to optimizing the experiment parameters
of interest with their own specification of noise and confusion level.

.1 Proving �opt
XX
= �XX

Here we prove that the Fisher information per voxel of optimal observable �opt
XX

is
equal to �XX, the maximum Fisher information per voxel that any observable can
possibly attain. Writing out each element in Eq. 2.13 explicitly, we get

〈Ôopt〉 =
∫

3! %(!, X) Oopt(!)

=

∫
3! %(!, X) mX ln %(!, X)

= mX

∫
3! %(!, X) = 0

(60)

〈(Ôopt)2〉 =
∫

3! %(!, X) (Oopt)2(!)

=

∫
3! %(!, X) (mX ln %(!, X))2

= 〈(mX ln %(!, X))2〉 = �XX

(61)

mX〈Ôopt〉 =
∫

3! mX%(!, X) Oopt(!)

=

∫
3! %(!, X) (mX ln %(!, X)) Oopt(!)

= 〈(Ôopt)2〉 = �XX,

(62)

and thus

�
opt
XX
=

(
mX〈Ôopt〉

)2

〈(Ôopt)2〉 − 〈Ôopt〉2
= �XX . (63)
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.2 Comparing Linear and Quadratic Terms in the ToyModel # � 1 Optimal
Observable

To explain why the quadratic term has a negligible contribution to the optimal Fisher
information in the toy model # � 1 case (Sec. 2.3), below we explicitly calculate
the components of Fisher information in Eq. 2.13 for the linear (Olin(!) = !′) and
quadratic (Oquad(!) ≡ ℓ

2f̄2 !
′2) terms in Eq. 2.34 respectively (note that !′ ≡ !−#ℓ,

which is also the peak of the Gaussian %(!) profile). The signals on these two
components are

mX〈Ôlin〉 = 1#ℓ

mX〈Ôquad〉 = 1#ℓ
2

(
ℓ2

f2
!
+ #ℓ2

)
.

(64)

Since this is in the # � 1 regime, the signal from the quadratic term is always
much smaller than from the linear term, regardless of the instrument noise f! . The
variance terms of the two observables are

〈(Ôlin)2〉 − 〈Ôlin〉2 = f̄2 − 0 = f2
! + #ℓ2

〈(Ôquad)2〉 − 〈Ôquad〉2 =
(
ℓ

2 f̄2

)2 [
3 f̄4 −

(
f̄2

)2
]
= ℓ2/2.

(65)

Again, with the # � 1 condition, the contribution from the quadratic term is also
negligible11. Hence, the contribution of the quadratic term to the Fisher information
is negligible, which implies a purely linear (IM) observable can reach the optimal
performance.

.3 Explaining �IM
XX
∝ #

The Fisher information of the IM observable is given by

�IM
XX =

(
mX〈!̂〉

)2

〈!̂2〉 − 〈!̂〉2
, (66)

where

〈!̂〉 = +vox
∫
3ℓΦ(ℓ) ℓ ∝ # (67)

〈!̂2〉 = +vox
∫
3ℓΦ(ℓ) ℓ2 ∝ #. (68)

11To compare the Fisher information of purely linear observable with the full optimal observable
(linear + quadratic), one also has to take into account the covariance term of these two observables
〈ÔlinÔquad〉. Fortunately, this term vanished since it is an odd function with respect to the Gaussian
%(!) profile.
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Below we will prove that the the numerator of �IM
XX

is proportional to #2, and the
denominator is proportional to # , and thus �IM

XX
is proportional to # .

The “signal” term is proportional to # since mX〈!̂〉 ∝ mX# = 1# . As for the
variance f2( !̂) = 〈!̂2〉 − 〈!̂〉2, we note the fact that we can divide each voxel into
#sub subvoxels, where the subvoxel fluxes !̂sub

8
are independent of each other, so the

total !̂ is simply the sum of the subvoxel flux !̂sub
8

, and the variance f2( !̂) is also
the sum of the subvoxel variance f2( !̂sub

8
), f2( !̂) = #subf

2( !̂sub
8
), as the subvoxels

are independent. The subvoxel variance is given by

f2( !̂sub
8 ) =

+vox
#sub

∫
3ℓΦ(ℓ) ℓ2 −

(
+vox
#sub

∫
3ℓΦ(ℓ) ℓ

)2
. (69)

We have the freedom to choose #sub large enough such that the second term is much
smaller than the first term, so f2( !̂sub

8
) ∝ +vox (and #), and the total voxel variance

f2( !̂) = #subf
2( !̂sub

8
) is also proportional to +vox(and #).

.4 Different Choice of ℓmin

Here we will justify that the choice of ℓmin does not affect the optimal observable and
its information content. We compare the difference between fiducial ℓmin = 10−3

and ℓmin = 5 × 10−4 cases, while keeping other parameters the same. The results
are shown in Fig. .14. The optimal observable is different in the absence of noise.
However, if the instrumental noise is much higher than ℓmin (e.g. f! = 10−2 in this
example), the effect of the artificial cutoff ℓmin is totally obscured by the noise, and
thus both Oopt and �opt

XX
are nearly identical in the two cases here. Therefore, we

justify that the arbitrary choice of the ℓmin does not affect the optimal observable
and Fisher information as long as the cutoff ℓmin is much lower than the instrument
noise f! .

.5 Different Choice of U
Here we show how the different faint-end slope U affects the optimal observable
and the Fisher information. Fig. .15 compares the cases of fiducial U = −1.5 with
steeper faint-end slope U = −2, while keeping other parameters the fiducial values.
In the noiseless scenario, the optimal observable of the U = −2 case has the step at
lower ! compared to U = −1.5 case. This naturally reflects the fact that there are
more faint sources in the U = −2 case. When a f! = 10−2 instrumental noise is
applied, the difference is washed out by the noise. Another interesting feature is the
peak in the Oopt(!) function for the U = −2 case, which can be explained by the
fact that the voxels with luminosity around the peak are more likely to have multiple
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Figure .14: Fiducial Schechter function faint-end slope U = −1.5 with and without
instrumental noise f! = 0.01 and using two different ℓmin . Top: %(!) with (dashed
lines) and without (solid lines) instrumental noise. Middle: optimal observables for
each case. Bottom: the integrated Fisher information for the optimal observable.



52

sources, whereas higher-! voxels are mostly contributed by a single bright source.
Because we assume a luminosity-independent bias, the source number density traces
the underlying X linearly, and thus the voxels around the peak are likely tracing the
higher density field than the even brighter voxels. This does not happen in the
U = −1.5 case because of its lack of faint sources to reach this special regime.
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Figure .15: Fiducial case with two different U. Top: %(!) of two different U
with (solid lines) and without (dashed lines) instrumental noise noise f! = 0.01.
Middle: the optimal observables for each case. Bottom: the integrated Fisher
information for the optimal observable.

.6 Unit Conversion of the Survey Parameters
In Sec. 2.5, we derive the ℓ∗, !SN, and f! from the targeting source Schechter
function parameters and the survey parameters (angular/spectral resolution and
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sensitivity). Here we provide the implementation details of the conversion from the
observed quantities, which come with different units in the literature, to the final
source luminosity, in !� or erg s−1.

• Comoving voxel size +vox

Consider that the targeting spectral line has the rest frequency arest at redshift
I. The survey has the angular pixel size Ωpix (we use the beam size instead
if the survey does not specify their pixelization) and the spectral resolution
' = aobs/Xaobs, where aobs = (1 + I)arest is the observed frequency. Then, the
comoving voxel size is

+vox = Ωpix
[
��"� (I)

]2 2 (1 + I)
� (I) ' (70)

where 2 is the speed of light, � (I) is the Hubble parameter, and ��"
�
(I) is the

comoving angular diameter distance, which equals to the comoving distance
in the flat (Ω: = 0) universe.

• Deriving !SN from the Schechter parameters
With the comoving voxel size and the luminosity function, we can calculate
the fSN(ℓ) following Eq. 2.45,

f2
SN(ℓ) = +vox q∗

∫ ℓ

0
3ℓ′ ℓ′U+2 4−ℓ

′
, (71)

and we find out !SN numerically with the definition fSN(!SN) = !SN.

• Deriving f! from the experiment sensitivity
The conversion of the instrumental noise to f! is derived by matching the
rms of noise flux �= to the source emission line flux �B. Below we will work
with flux defined by power per area (in the units of W m2). The flux �B from
a line luminosity ℓ source is given by

�B =
ℓ

4c�2
!
(I)
, (72)

where �! (I) is the luminosity distance. As for the noise, if it is quoted as the
“flux density” �=a [4A6/B/2<2/�I], the noise flux �= is given by

�= = �=a Xaobs = �a (aobs/'). (73)

The f! is then defined by the ℓ scale where �B = �=, and thus

f! = 4c �2
! (I) �=a aobs/'. (74)
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If the sensitivity is quoted in <�� instead, then the flux density �=a is given by
�=a = 3631 × 10−<��/2.5 [�H]. If this is the 5f sensitivity, then we use �=a /5
in the f! calculation in Eq. 74.

If the noise level is quoted in intensity �=a [�H/BA], then the conversion to
the noise flux density per voxel is �=a = �=aΩpix. Finally, when noise is in
the units of brightness temperature ) , the intensity �=a can be derived using
�=a = 2aobs:�)/22, and then we can get f! with the equations listed above.

• Velocity-integrated luminosity
Popping et al. [62] quote their CO luminosity function in the “velocity-
integrated luminosity” !+ (Jy km s−1 Mpc2), which is the “luminosity density”
(in units proportional to W Hz−1) per observed velocity. To convert it to the
intrinsic luminosity unit [!�], we use the formalism in Obreschkow et al. [57]
Appendix A:

!

!�
= 1.040 × 10−3

( aobs
GHz

) (
1 + I
4c

)
!+

Jy km s−1 Mpc2 . (75)

• HI mass-to-light ratio
To convert the HI mass function to the luminosity function, we follow the
equation in Draine [29] in the optically thin limit,

"HI = 4.945 × 107"�

(
�!

"?2

)2 (
�B

Jy MHz

)
. (76)

Combining with Eq. 72, we obtain the mass-to-light ratio

"HI
"�

= 1.56 × 108 !HI
!�

. (77)

• CHIME instrument noise
We calculate the CHIME instrument noise using the parameters in Seo et al.
[69]. The noise rms per voxel is (in the temperature unit)

f) =
6)sky + )0√
Cint Δ 5

(78)

where 6 is the gain and )sky and )a are the sky and antenna temperature,
respectively. Δ 5 is the bandwidth, and Cint is the integration time per pixel:

Cint = #year � 5

1
2c
_obs
,cyl

(79)
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where #year is the total integration time, � 5 is the duty factor, _obs is the
observed wavelength (42 cm at I = 1), and ,cyl is the width of the cylinder.
We use the parameter values listed in Seo et al. [69]: #year = 1.4 yr, � 5 = 0.5,
,cyl = 14.3 m, which gives Cint = 3.3 × 10−3 yr. Then, we take )sky = 50 K,
)a = 10 K, 6 = 0.8, Δ 5 = 390 kHz, and we get f) = 2.9 × 10−4 K.
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C h a p t e r 3

SPECTRAL LINE DE-CONFUSION IN AN INTENSITY
MAPPING SURVEY

Cheng, Y.-T., Chang, T.-C., Bock, J., Bradford, C. M., & Cooray, A. 2016, ApJ,
832, 165, doi: 10.3847/0004-637X/832/2/165

Spectral line intensity mapping (LIM) has been proposed as a promising tool to
efficiently probe the cosmic reionization and the large-scale structure. Without de-
tecting individual sources, LIMmakes use of all available photons and measures the
integrated light in the source confusion limit to efficientlymap the three-dimensional
matter distribution on large scales as traced by a given emission line. One particular
challenge is the separation of desired signals from astrophysical continuum fore-
grounds and line interlopers. Here we present a technique to extract large-scale
structure information traced by emission lines from different redshifts, embedded
in a three-dimensional intensity mapping data cube. The line redshifts are dis-
tinguished by the anisotropic shape of the power spectra when projected onto a
common coordinate frame. We consider the case where high-redshift [C ii] lines are
confused with multiple low-redshift CO rotational lines. We present a semi-analytic
model for [C ii] and CO line estimates based on the cosmic infrared background
measurements, and show that with a modest instrumental noise level and survey
geometry, the large-scale [C ii] and CO power spectrum amplitudes can be success-
fully extracted from a confusion-limited data set, without external information. We
discuss the implications and limits of this technique for possible LIM experiments.

3.1 Introduction
Line intensity mapping (LIM) has emerged as a promising tool to probe the three-
dimensional structure of the Universe. Several emission lines have been proposed to
uniquely trace the cosmic reionization process, revealing properties of the ionizing
sources and the intergalactic medium at high redshifts, and to efficiently map the
large-scale matter distribution in a large cosmic volume, suitable for cosmological
studies at lower redshifts.

In contrast to traditional large-scale structure surveys, intensity mapping (IM) op-

http://doi.org/10.3847/0004-637X/832/2/165


62

erates in the confusion-limited regime without thresholding to identify individual
sources; rather, IMmakes use of integrated light emission from all sources, including
unresolved faint galaxies, to statistically measure properties of the light tracers and
the underlying matter distribution. In addition, with LIM, where the tracer is a par-
ticular spectral line emission, the three-dimensional matter distribution can be faith-
fully represented on large cosmic scales. The 21-cm hyperfine emission from neutral
hydrogen [9, 34, 50, 60], the CO rotational lines [4, 6, 20, 24, 27, 28, 35, 45, 47, 57],
the [C ii] 157.7-`m fine structure line [19, 52, 56, 61], and the Lyman-U emission
line [11, 21, 46, 53] are amongst the most studied such tracers in the LIM regime.

One of the main challenges in an LIM experiment is the separation of signals
from the astrophysical foreground continuum emissions and line interlopers. The
continuum foreground issue has been studied mostly in the context of 21cm IM,
where the Galactic and extragalactic synchrotron and free-free radiations overwhelm
the expected signals by several orders of magnitude [e.g., 3, 10, 18, 32, 37, 41, 54];
line interlopers, on the other hand, are a pressing issue for other line probes in the
electromagnetic spectrum that is crowded with other line features.

Several studies have proposed strategies for deblending lines in an IM survey, by
means of masking and cross-correlation. The masking technique makes use of an
external galaxy catalog from galaxy surveys to identify and remove bright sources
in order to reduce potential foreground contaminations [5, 52, 61]. On the other
hand, cross-correlation of an LIM survey with an external data set tracing the same
cosmic volume can help extract signals of interest; the method has been proposed,
in particular, in the studies of reionization[7, 19, 21, 30, 52, 57], and has been
successfully applied to extract LIM signals at lower redshifts against continuum
foregrounds [8, 14, 36]. Aside from these two methods, Kogut et al. [26] makes
use of the companion lines to directly identify [C ii] line intensity in each voxel. de
Putter et al. [16] propose to use angular fluctuations of the light to reconstruct the
3D source luminosity density.

In an IM experiment, the intrinsic observing coordinates are angular and spectral
coordinates defined by the instrument and survey geometry, which, given a known
redshift, are mapped into comoving coordinates in the redshift space, before a power
spectrum is computed. In the linear regime, any line tracers supposedly follow the
matter distribution, which is isotropic in their respective real-space coordinates.
If, however, without a priori knowledge of redshifts, lines at different redshifts
embedded in an observing volume are blindly projected into the same comoving
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coordinates, they will exhibit different anisotropic 3D shapes in that frame, due to
the incorrect redshift projection. This is key to the line separation technique we
employ in this paper. The idea has been previously suggested by Visbal & Loeb
[57] and Gong et al. [21], and recently investigated by Lidz & Taylor [29].

To demonstrate this technique, we consider a 3D LIM observing volume with high-
redshift [C ii] emissions blended with multiple lower-redshift CO rotational lines.
We present a halo-model-based formalism to estimate [C ii] and CO line strengths
and power spectra across redshifts. After projecting the observed volume onto a
common comoving frame, the resulting total power spectrum is a superposition of
[C ii] andCOpower spectra at different redshifts, eachwith a different but predictable
3D shape due to the projection which we use as templates. We generate simulated
data and use the Markov Chain Monte Carlo (MCMC) formalism to extract power
spectrum parameters based on the templates.

The paper is organized as follows. In Sec. 3.2, we describe a model to estimate the
[C ii] and CO power spectra across redshifts, and the formalism for expressing the
3D power spectra of both lines in the comoving frame of [C ii]. In Sec. 3.3, we
discuss the details of the template fitting and MCMC implementation. The results
are presented in Sec. 3.4. In Sec. 3.5, we discuss the implication and limitation of
our method, and conclude in Sec. 3.6. Throughout this paper, we consider a flat
ΛCDM cosmology with =B = 0.97, f8 = 0.82, Ω< = 0.26, Ω1 = 0.049, ΩΛ = 0.69,
and ℎ = 0.68, consistent with the latest measurement from Planck [44].

3.2 Power Spectrum Modeling
Here we provide an estimate of the [C ii] and CO power spectra as a function of
redshift. Our modeling is based on the halo-model formalism [12]. With the [C ii]
and CO luminosity (!CII, !CO) and halo mass (") relations, the power spectrum of
a spectral line intensity field can be calculated with the halo model.

We build our model (referred to as the CIB model hereafter) based on Planck
Collaboration et al. [43]; the authors fitted the !IR and and halo mass relation with
cosmic infrared background (CIB) emission as measured by Planck. Details of the
CIB model are provided in Appendix .1.

Then we connect the !IR to !CII and !CO. We adopt these relations based on
observations and simulations in the literature. See Appendix .1 for more details.
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Power Spectrum with Halo Model
With the luminosity-halo mass relation at hand, we derive the power spectrum in
the halo-model framework. The comoving power spectrum consists of the one-halo
and two-halo terms, which account for the correlation within the halos and between
halos, respectively. The one-halo term of the [C ii] or CO line is given by

%line
1h (:, I) =

∫ "max

"min

3"
3#

3"
|D(: |") |2

×
(
!line(", I)
4c�2

!
(I)

Hline(I)�2
� (I)

)2

, (3.1)

where !line(", I) is the luminosity of [C ii] or CO for a given halo mass " at
redshift I,�! is the proper luminosity distance,�� is the comoving angular diameter
distance, D(: |") is the Fourier transform of the normalized halo density profile, and
we adopt the NFW profile in this work [38]. H;8=4 (I) ≡ 3j/3a = _;8=4 (1+ I)2/� (I),
where j is the comoving distance, � is the Hubble parameter, a is the observed
frequency, and _;8=4 is the rest-frame wavelength of the line.

The two-halo term can be written as

%line
2h (:, I) = [

∫ "max

"min

3"
3#

3"
|D(: |") | 1(", I)

×
(
!line(", I)
4c�2

!
(I)

Hline(I)�2
� (I)

)
]2%lin(:), (3.2)

where 1(", I) is the halo bias [51], and %lin(:) is the linear matter power spectrum.

We also consider the shot noise power spectrum due to the discretization of sources:

%;8=4sh (I) =
∫ "max

"min

3"
3#

3"

(
!line(", I)
4c�2

!
(I)

H;8=4 (I)�2
� (I)

)2

. (3.3)

The total comoving power spectrum is thus

%line
tot (:, I) = %;8=41h (:, I) + %

line
2ℎ (:, I) + %

line
sh (I). (3.4)

Fig. 3.1 shows the comoving isotropic power spectrum of [C ii] at I = 6 based on
the CIB model, and the lower-redshift CO power spectra, which overlap in the same
observing frequency range.
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Figure 3.1: Comoving isotropic power spectra of [C ii] at I = 6 and CO interlopers
at lower redshfits in the same observing frequency range.

3D Power Spectrum
The [C ii] and CO power spectra %(k) is isotropic in real-space on large scales, so
the power spectra only depend on |k| but not the direction of the k vector. However,
an anisotropic feature comes in due to observational effects, which introduce the
dependence on `, the cosine of the angle between the k vector, and the line-of-sight
direction. Below we discuss the projection effect and the redshift space distortions
(RSDs) that give rise to the anisotropy in the 3D power spectrum.

Projection Effect

In a redshifted [C ii] IM experiment, a CO line signal from redshift ICO will blend
with the [C ii] signal from ICII if they have the same observing frequency. The
redshifts of these two lines follow

aobs =
aCII

(1 + ICII)
=

aCO
(1 + ICO)

, (3.5)

where aobs is the observed frequency, and aCII and aCO are the rest-frame frequencies
of the [C ii] and CO lines, which are 1902 GHz and 115� GHz for the � to � − 1
transition, respectively.

Both [C ii] and CO power spectra are isotropic in their respective comoving frames.
However, in the confusion limit, we may incorrectly project the observed [C ii] and
CO signals onto the comoving frame of [C ii] for the power spectrum calculation.



66

In this case, the CO power spectrum is no longer isotropic. This is caused by the
different redshift projection factors parallel and perpendicular to the line of sight,
which makes the CO 3D data cube stretched more in one direction than the other.
Below we provide the formalism for calculating the 3D power spectrum of a low-I
CO signal projected onto the high-I [C ii] comoving frame.

The projection in the direction parallel to the line of sight can be derived by con-
sidering an observed frequency range 3aobs, which corresponds to either the [C ii]
from a comoving size '‖CII at I��� , or the CO signal with comoving size '‖CO at ICO.
The relation between '‖CII and '

‖
CO is

'
‖
�$

'
‖
���

=
3j(I�$)/3aobs
3j(I���)/3aobs

=
H�$ (I�$)
H��� (I���)

=
_�$ (1 + I�$)2/� (I�$)
_��� (1 + I���)2/� (I���)

=
(1 + I�$)/� (I�$)
(1 + I���)/� (I���)

. (3.6)

Since Fourier wavenumber : ‖ ∝ 1/'‖ , we obtain

:
‖
�$

= :
‖
���

� (I�$) (1 + I���)
� (I���) (1 + I�$)

≡ : ‖
���
A ‖ (I��� , �), (3.7)

where � labels the CO transition from � to � − 1, and A ‖ (I��� , �) is the conversion
factor for projecting the scale at ICO to ICII in the parallel direction.

The transverse scale of CO will be projected to the scale of [C ii] corresponding to
the same observed angle \. Hence, the scale conversion relation in the perpendicular
direction is

\ =
'⊥
�$

�� (I�$)
=

'⊥
���

�� (I���)
, (3.8)

where �� is the comoving angular diameter distance. Thus

:⊥�$ = :
⊥
���

�� (I���)
�� (I�$)

≡ :⊥���A
⊥(I��� , �), (3.9)

where A⊥(I��� , �) is the conversion factor for projecting the scale at ICO to ICII in
the perpendicular direction. Besides the shift in : value, the projection changes
the comoving voxel volume +vox and induces an amplitude change in the power
spectrum. Since the power spectrum is proportional to 1/+vox at fixed intensity
fluctuation, the projected CO power spectrum needs to be multiplied by the change
in voxel volume A ‖ (A⊥)2.
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The CO projected power spectrum %
prj
CO can thus be written as

%
?A 9

�$
(:⊥��� , :

‖
���
, I��� , �) = A ‖ (A⊥)2%�$ (:�$ , I�$), (3.10)

where :CO =

√
(:⊥CO)2 + (:

‖
CO)2, and %CO is the comoving CO power spectrum.

For completeness, we also write down the [C ii] power spectrum in the same coor-
dinate,

%
?A 9

�� �
(:⊥��� , :

‖
���
, I���) = %��� (:��� , I���), (3.11)

where :��� =
√
(:⊥
���
)2 + (: ‖

���
)2.

Redshift Space Distortions

Here we incorporate the RSD effects. We consider the linear Kaiser effect [23]
describing the coherent motion of structure growth on large scales, which enhances
the power spectrum, and the suppression on small scales due to the nonlinear virial
motion, which we write as an exponential damping term [42]. The comoving
one-halo and two-halo power spectrum can be written as [59]

%line
1h (:, `, I) = (1 + V`

2)2

×
∫ "max

"min

3"
3#

3"
[
(
!line(", I)
4c�2

!
(I)

Hline(I)�2
� (I)

)2

× |D(: |") |2 4−(:fE `)2/2], (3.12)

%line
2h (:, `, I) = %lin(:) (1 + V`2)2

× {
∫ "max

"min

3"
3#

3"
[
(
!line(", I)
4c�2

!
(I)

Hline(I)�2
� (I)

)
× |D(: |") | 1(", I)4−(:fE `)2/2]}2, (3.13)

where (1 + V`2)2 is the Kaiser effect and 4−(:fE `)2/2 is the exponential damping
term. V ≡ 5 /1̄line, where 5 = 3;=�/3;=0 is the logarithm derivative of the linear
growth rate � (I) with respect to the scale factor 0 = 1/(1 + I), and 1̄line is the
luminosity-weighted bias of the tracer, which we consider to be a constant on large
scales. fE is the 1D velocity dispersion within halo mass " . Assuming the halos
are isothermal, the velocity dispersion can be estimated as

f2
E =

�"

2Avir
, (3.14)
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where Avir is the virial radius of the halo.

Combining the projection and RSD effects, the projected CO power spectrum can
be written as

%
prj
CO(1h) (:��� , `���) = A

‖ (A⊥)2(1 + 5 (I�$)
1̄�$

`2
�$)

2

×
∫ "max

"min

3"
3#

3"
[
(
!line(", I�$)
4c�2

!
(I�$)

HCO(I)�2
� (I�$)

)2

× |D(:�$ |") |2 4−(:�$fE `�$)
2/2], (3.15)

%
prj
CO(2h) (:��� , `���) = A

‖ (A⊥)2%lin(:�$) (1 +
5 (I�$)
1̄�$

`2
�$)

2

× {[
∫ "max

"min

3"
3#

3"
[
(
!line(", I�$)
4c�2

!
(I�$)

H�$ (I�$)�2
� (I�$)

)
× |D(:�$ |") | 1(", I�$)4−(:�$fE `�$)

2/2]}2. (3.16)

We define `CII and `CO to be the cosine angle of the kCII and kCO vectors with
respect to the line-of-sight direction, respectively. For the [C ii] power spectrum in
its own comoving frame, only the RSD effect needs to be considered, so the [C ii]
2D power spectrum has the form given by Eq. (3.12) and Eq. (3.13).

To demonstrate the deblending technique, we consider a simple case where the
ICII = 6 [C ii] line is blended with the brightest CO line, CO(3-2) from I = 0.27,
in an IM observing volume. This is our fiducial model. Fig. 3.2 shows the fiducial
[C ii] and projected CO power spectra in different `CII values. We also show
power spectra obtained by averaging over `CII, which we called the “ave-prj” power
spectrum hereafter. For comparison, we plot the ave-prj power spectra using the
SFR-M relation in Silva et al. [52, hereafter S15 model]. The ave-prj CO power
spectra for other J transitions are shown in Fig. 3.3.

3.3 MCMC-Based Parameter Inference
Weconstruct the [C ii] and projectedCOpower spectrawith theCIBmodel described
above, and use them as templates to extract [C ii] and CO components in a simulated
intensity mapping data cube. Specifically, we use the MCMC formalism to extract
power spectrum parameters.
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Figure 3.2: Top: projected [C ii] power spectra with different `CII values in the
fiducial model. The dotted lines are one-halo terms, the dash lines are two-halo
terms, and the solid lines are the projected total power spectrum (%prj

1h +%
prj
2h ). Middle:

projected CO power spectra for different `CII and the corresponding `CO. Bottom:
the “ave-prj” power spectrum of [C ii] (blue) and CO (green) in the fiducial model
(solid lines). The dotted lines are the projected shot noise level of the CIB model
for [C ii] (blue) and CO (green), respectively. The ave-prj power spectra from S15
model are shown in dash lines.
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[C ii] and CO Templates
In summary, the [C ii] andCOpower spectra are derived based onEqns. (3.12), (3.13), (3.15),
and (3.16) ablove. We write the 3D power spectrum in the following form.

%;8=4 (:��� , `���) = (1 +
5 (Iline)
1̄line

`2
;8=4)

2

×�line)line(:��� , `���), (3.17)

where �line is a constant amplitude of the power spectrum, and 1̄line the luminosity-
weighted bias of the emission line. ) (:⊥, : ‖) is the power spectrum template,
given by the sum of the one-halo and two-halo terms in Eq. (3.12), (3.13), (3.15),
and (3.16) (without the Kaiser RSD term). Fig. 3.4 shows the [C ii] and CO power
spectrum templates ) for the fiducial model.

We have assumed that the shape of the power spectrum templates) is independent of
the luminosity–halo mass relation, so that only an amplitude parameter � is required
to describe variations in the model. This assumption is valid on large scales, where
the bias parameter is assumed to be scale-independent and only the linear Kaiser
RSD effect is important. The large-scale power spectrum is proportional to 1̄2 �̄2,
where 1̄ and �̄ are the luminosity-weighted bias and mean intensity, respectively,
and reduces to the linear form: %(:, `) = (1+ 5 (I)

1̄
`2)21̄2 �̄2%;8= (:). Thus the power

spectrum can be easily described by 1̄ in the Kaiser term (where we assume 5 is
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Figure 3.4: [C ii] (top) and CO (bottom) power spectrum templates with fiducial
model in the : range specified in Sec. 3.3.
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fixed by our chosen cosmology) and an overall amplitude � that is proportional
to 1̄2 �̄2. These are the two parameters we fit with MCMC. For this purpose, we
restrict ourselves to large scales only. The exact :-space range we use is described
in Sec. 3.3. Below we work interchangeably in the (: , `) and (:⊥, : ‖) space, where
: ‖ is the Fourier wavenumber parallel to the light of sight and :⊥ perpendicular to
it, and : =

√
(:⊥)2 + (: ‖)2 and ` = : ‖/: .

k-space Range
We consider a cubic survey size with a spatial dimension of 10 × 10 deg2. At
I = 6, this corresponds to a linear comoving scale of 952 Mpc/h; assuming the same
comoving scale in the light-of-sight direction, we have an intensity mapping survey
volume of (952)3("?2/ℎ)3. We restrict our analysis to large scales only, with
:��� < 0.1 h Mpc−1. For [C ii] at I = 6, the smallest accessible :⊥ mode is :min

���
=

6.3 × 10−3 ℎ/"?2, and we choose the maximum to be :max
���

= 9.5 × 10−2 ℎ/"?2.
We consider the same limit for : ‖ . Thus we have 15× 15 : space pixels in the mock
data and the templates.

Mock Observed Power Spectrum Construction
We generate a mock data power spectrum %data, which consists of the redshifted
[C ii] and CO power spectra, and a noise contribution X%:

%30C0 (:��� , `���) = %��� (:��� , `���)
+ %�$ (:��� , `���) + X%(:��� , `���), (3.18)

where %CII and %CO are described in Eq. (3.17).

X% are random values that account for power spectrum noise. For each :-space
pixel, X% is drawn from a Gaussian distribution with zero mean and variance
f2
%
(:��� , `���):

f% (:��� , `���) =
1√

# (:��� , `���)
× (%data(:��� , : ‖) + %���sh + %

CO
sh + %=), (3.19)

where the %data term accounts for cosmic variance, %���sh and %�$sh are the shot noise
contributions (see Eq. 3.3), and %= is the instrument noise power spectrum. In this
work, we assume %= = 1.77 × 109 (Jy/sr)2(Mpc/h)3, which is consistent with the
thermal noise level of current generation of planned [C ii] IM experiments, such
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as the TIME-pilot [13]; though, TIME-pilot plans a smaller survey volume than
considered here. # (:��� , `���) is the number of pixels in each : bin.

We do not include the shot noise and instrument white noise contributions in the
template and in the mock data, since we assume they can bemeasured and subtracted
before the template fitting process. In a real experiment, these constant noises are
the dominant “signals” at high-: , so we are able to infer the noise level from the
high k modes and subtract them from the data.

MCMC Implementation
For a given set of parameters {���� , ��$ , 1��� , 1�$}, the model power spectrum
%model is given by

%model(:��� , `���)

=(1 + 5 (I���)
1̄���

`2
���)

2����)��� (:��� , `���)

+(1 + 5 (I�$)
1̄�$

`2
�$)

2��$)�$ (:��� , `���). (3.20)

The log-likelihood expression is

;= L = −1
2

∑
:

{ (%data(:��� , `���) − %model(:��� , `���))2
(f% (:��� , `���))2

+ ;=
[
2c(f% (:��� , `���))2

]
}. (3.21)

We set flat priors for �CII and �CO in the range of
[
10−6, 106] (fiducial value =1),

and flat priors for 1̄��� and 1̄�$ between [0.1, 20], and zero otherwise.

We use Python package emcee v2.1.0 [17] to perform the MCMC analysis. We use
an ensemble of 1000 walkers taking 1000 steps after 1000 burn-in steps.

3.4 Results
Fiducial Model
Fig. 3.5 shows the posterior distribution of the four parameters in the fiducial
case, where

{
���� , ��$ , 1̄��� , 1̄�$

}
= {1, 1, 7.20, 1.48}. For each point in

the four-dimensional parameter space, we construct an ave-prj power spectrum by
averaging over `��� of a 3D power spectrum specified by these parameters. Instead
of examining the amplitude parameters ���� and ��$ , we use the ave-prj power
spectra to compare the input and output amplitudes.
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Next, we consider more general cases by changing the input amplitudes ���� and
��$ in the mock data. The [C ii] and CO shot noise levels also vary accordingly
with the clustering amplitudes. We first fix ���� = 1 and run MCMC with ��$ =
[0.01, 0.1, 1, 10, 100]. Fig. 3.6 (left) shows the 68% confidence interval of ave-
prj [C ii] power spectrum amplitude relative to the input, %true

���
. For comparison,

we also calculate the amplitude of the noise power spectrum f% (see Eq. 3.19)
relative to the best-fit value of the ave-prj [C ii] power spectrum %best

���
. We define a

quantity �f to be the median value of the ratio f%/%best
���

over the 15 × 15 :-space
pixels. �f serves as an indicator of the available information content level, which
we discuss further in Sec. 3.5. The (/# ≡ %���/Δ%��� of [C ii] ave-prj power
spectrum is shown in Fig. 3.6 (right), where Δ%��� is the standard deviation of the
ave-prj power spectrum amplitudes given by MCMC. We then fix ��$ = 1 and
set ���� = [0.01, 0.1, 1, 10, 100] to repeat the exercise. The results are shown in
Fig. 3.7.

In the three cases with high [C ii] to CO ratios, where �f < 1, the mean of the
ave-prj [C ii] power spectrum can be reproduced within 10% deviation from the
true value, with (/# > 10 in both tests. Not all of the true ave-prj [C ii] power
spectrum amplitudes, however, fall in the 68% interval of the MCMC distributions.
To understand this inconsistency, we run 100 realizations of mock data with the
fiducial case (���� = ��$ = 1). We find that in 63 of the 100 runs, the ave-prj
%true
���

does fall in the 68% interval of the MCMC distribution. This suggests that
parameter degeneracy may exist in the fitting, so that some of the fitted amplitudes
deviate slightly from the true values. This issue might be resolved by adopting
tighter constraints on the input 1̄��� and 1̄�$ . We will investigate this degeneracy
in future work.

For the rest, where �f > 1, the (/# given by MCMC degrade to less than 10 and
one of the mean values is biased by a factor of four; we find �f to be a good indicator
in determining the reliability of the fitting.

Fig. 3.8 shows the ave-prj power spectrum for all nine combinations of input ���� and
��$ we discuss above. Reproducing the best-fit mock data with the four parameters{
���� , ��$ , 1̄��� , 1̄�$

}
and comparing with the input mock data, we calculate the

j2 in each cases, and the probability to exceed (PTE) the observed value if MCMC
gives correct parameters. The PTE values are also shown in Fig. 3.8.
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Figure 3.5: MCMC posterior distribution of the fiducial case. The contours marked
the 68% and 95% confidence interval in the parameter space. Crosshairs indicate
the input value of the data:

{
���� = 1, ��$ = 1, 1̄��� = 7.20, 1̄�$ = 1.48

}
.
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Figure 3.6: Left: the ave-prj power spectrum amplitude from MCMC rela-
tive to the input value in the mock data. The inputs are ���� = 1, and
��$ = [0.01, 0.1, 1, 10, 100] from left to right. The x-axis is expressed in the
CO ave-prj power spectrum at :��� = 0.1 ℎ Mpc−1 for better comparison. The
blue dashed line indicates the input [C ii] prj-ave power spectrum at :��� = 0.1 ℎ
Mpc−1. The error bars are the 68% confident interval given by MCMC. The dark
red line indicates the �f values (see the text). Right: (/# of the ave-prj [C ii] power
spectrum amplitude given by MCMC.
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Figure 3.7: Left: the ave-prj power spectrum amplitude from MCMC rela-
tive to the input value in the mock data. The inputs are ��$ = 1, and
���� = [0.01, 0.1, 1, 10, 100] from left to right. The x-axis is expressed in the
[C ii] ave-prj power spectrum at :��� = 0.1 ℎ Mpc−1 for better comparison. The
green dashed line indicates the input CO prj-ave power spectrum at :��� = 0.1 ℎ
Mpc−1. The error bars are the 68% confident interval given by MCMC. The dark
red line indicates the �f values (see text). Right: (/# of the ave-prj [C ii] power
spectrum amplitude given by MCMC.

(/# Dependence on Noise Level
We assume the instrument noise can be subtracted from the data power spectrum
before template fitting, but it still contributes a :-space noise in Eq. (3.19). Here
we investigate the effect of instrument noise level %= on the fitted results. We
again fix input ���� = 1 and ��$ = [0.01, 0.1, 1, 10, 100], and run a series of
cases by changing %= to be [0.1, 1, 10, 100, 1000] times the initial %= value (%=,8 =
1.77×109 (�H/BA)2("?2/ℎ)3). The results are shown in Fig. 3.9. For comparison,
We also calculate the theoretical (/# on the [C ii] power spectrum, which can be
expressed as

(/# =

√√∑
:

(
%��� (:��� , `���)
f% (:��� , `���)

)2
, (3.22)

where f% is given by Eq. (3.19), and summing over all :-space pixels.

Note that all of the highest %= cases show biased results, and some of the large
%= cases also give amplitudes that deviate significantly from the input values.
This may be indicative that given the survey size we consider in this work, %= ≈
1010(�H/BA)2("?2/ℎ)3 is the maximum allowed instrument noise for detecting the
CIB-based [C ii] signals. We will conduct a more detailed investigation in future
work.
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Figure 3.8: The ave-prj power spectrum with different combinations of input ����
and ��$ . The blue and green regions are the 68% confidence interval of [C ii] and
CO ave-prj power spectrum respectively. The dashed lines are the input [C ii](blue)
and CO(green) ave-prj power spectrum of the mock data. The red dotted line
indicates %���

Bℎ
+ %�$

Bℎ
+ %=, which is the constant power spectrum in the data that

contribute to the noise in k space (see Eq. 3.19). The two vertical black lines are
:<8=
���

and :<0G
���

marking the : space region we use in template fitting. The j2 PTE
for each MCMC fit is also provided.

Multiple Foreground Lines
So far, we have only considered the brightest foreground CO (3-2) line at I = 0.27
to the I = 6 [C ii] signal. Here we extend the technique to incorporate two more
foreground lines: CO(4-3) from I = 0.69 and CO(5-4) from I = 1.12. The power
spectra of � > 5 transition lines are more than two orders of magnitude lower than
the expected [C ii] signal, and we do not consider them in this paper.

The extra CO lines can be incorporated by extending Eq. (3.18) and Eq. (3.20) with
two more CO terms, which introduce two more amplitudes and bias factors in the
MCMC procedure. Thus we now fit the mock data with eight parameters in the
same :-space defined before. We set all the input amplitude to be unity, so the mock
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Figure 3.9: The (/# of the ave-prj [C ii] power spectrum amplitude as a function of
%= and %�$ . The %�$ written on the top right corner is the ave-prj power spectrum
at : = 0.1 ℎMpc−1. The blue dashed line marks the [C ii] ave-prj power spectrum at
: = 0.1 ℎMpc−1. The dark red dashed line is the (/# derived from mode counting
(see the text).

data is consistent with the CIB model prediction.

The result is shown in Fig. 3.10. The [C ii] ave-prj amplitude given by MCMC
has an (/# = 4.12, and the input [C ii] ave-prj amplitude slightly falls outside the
68% confidence interval. The technique appears to be valid even in the presence
of multiple foreground lines that overwhelm the [C ii] signals in the : range we
consider, though at the cost of (/# for the extracted [C ii] signal.

3.5 Discussion
Model Dependence
In reality, if the templates do not perfectly describe the true signal intensity field,
there will be amplitude and shape discrepancies between the template and true
signal power spectra. The overall amplitude discrepancy can be fully absorbed by
the amplitude parameters ���� and ��$ in our fitting process. Power spectrum shape
difference may arise from different assumed !–" relations, but since we restrict
our fitting to the large-scale clustering terms, the procedure is not susceptible to
incorrect model assumptions. As a sanity check, we use templates generated from
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Figure 3.10: MCMC posterior distribution on the parameter space with three CO
foreground lines. The contours marked the 68% and 95% confidence interval in the
parameter space. Crosshairs indicate the input value of the data:
{ ���� = 1, ��$ (3−2) = 1, ��$ (4−3) = 1, ��$ (5−4) = 1,
1̄��� = 7.20, 1̄�$ (3−2) = 1.48, 1̄�$ (4−3) = 1.70, 1̄�$ (5−4) = 1.94 }.
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Figure 3.11: The ave-prj power spectrum of fiducial CIB model fitted with S15
template. The blue and green regions are the 68% confidence interval of [C ii] and
CO ave-prj power spectrum respectively. The dashed lines are the input [C ii](blue)
and CO(green) ave-prj power spectrum of the mock data. The red dotted line
indicates %���sh + %

�$
sh + %=, which is the constant power spectrum in the data that

contributes to the noise in : space (see Eq. 3.19). The two vertical black lines are
:min
���

and :max
���

marking the : space region we use in template fitting. The j2 PTE
for each MCMC fit is also provided.

the S15 model to fit the same set of mock data discussed in Sec. 3.4, which are
constructed with the CIB model. Fig. 3.11 shows the ave-prj power spectrum from
fitting the S15 template to the CIB model mock data. The results for all the nine
scenarios considered before are also consistent with the results presented in Sec. 3.4.
The template fitting technique is robust against model uncertainties as long as only
large-scale information is considered.

Conversely, this model-independent property implies that the technique constrains
only the overall amplitude of the power spectrum and is not sensitive to different
!–" relation scenarios.

Model Uncertainties
While [C ii] and CO modeling uncertainties do not bias the template fitting results,
they affect the quality of the fit. In Sec. 3.2, we show that the CIB model considered
in this work gives rise to a high [C ii] power and a large bias factor. Our modeling
of the different CO J rotational lines also determines the relative amplitudes of
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Figure 3.12: MCMC posterior distribution of the S15 case. The contours marked
the 68% and 95% confidence interval in the parameter space. Crosshairs indicate
the input value of the data:

{
���� = 1, ��$ = 1, 1̄��� = 5.38, 1̄�$ = 1.29

}
.

interlopers and the severity of contamination.

We have therefore conducted a series of tests with different input [C ii] and CO
amplitudes and varying noise levels to account for the uncertainties. We find that if
the true [C ii] power is 10 times smaller than the fiducial CIB amplitude (second-left
point in Fig 3.7), for instance, �f goes above unity, which implies a non-detection,
contrary to the more optimistic fiducial case.

To get a sense of how much the results vary with the assumed models, we run
simulations withmock data and templates generated from the S15model. Compared
to the CIBmodel, the S15model has slightly lower bias values for both [C ii] and CO
lines and a similar CO power spectrum amplitude, while the [C ii] power spectrum
amplitdue is lower by about one order ofmagnitude (see the bottompanel of Fig. 3.2).
Fig. 3.12 shows theMCMC result of the S15model. The (/# on ave-prj [C ii] power
spectrum in this case is 4.5. For comparison, the fiducial CIB model has an (/# of
≈ 14. We find that the fitted [C ii] power spectrum (/# depends sensitively on its
amplitude, when overwhelmed by the CO foregrounds.
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In a similar work by Lidz & Taylor (2016, in prep), the authors modeled the power
spectrum with an SFR that follows the Schechter functional form [49], and the [C ii]
power spectrum they derived at I = 7 was about one order of magnitude smaller
than our fiducial I = 6 prediction. Their assumed survey volume was about 5.6
times smaller than considered here. As a result, the [C ii] amplitude constraints in
their study using the Fisher matrix formalism appeared less optimistic than ours,
but the two results are broadly in agreement. In reality, the feasibility of this
deblending method will be highly dependent on the assumed survey geometry and
(/# strengths. Wewill leave amore realistic [C ii] andCOpower spectrummodeling
to future work, while cautioning that built-in detection margins are important for
planned experiments.

Continuum Foreground
In this paper, we focus on the de-confusion technique that handles spectral line
foregrounds. For completeness, we note that at the frequency range of interest,
∼ 200−300 GHz, continuum foregrounds are non-negligible and generally stronger
than line foregrounds. For our purpose, the main continuum foregrounds include the
cosmic microwave background and CIB radiations; the two contribute comparably.
Silva et al. [52] estimates that the dust continuum emission is of the order of 105 Jy
sr−1, which is two or three orders of magnitude (depending on model) higher than
the [C ii] intensity considered in this work. However, since the continuum signals
are expected to be spectrally smooth, they dominate the low : ‖ modes in power
spectrum space. We therefore expect to be able to mitigate the effect by removing
or avoiding the one or two lowest : ‖ modes before template fitting. This is the same
technique envoked in the well-studied field of 21-cm LIM (e.g., Liu & Tegmark
[31], Parsons et al. [41], Switzer et al. [54]) and implemented on LIM data (e.g.,
Ali et al. [1], Keating et al. [24], Paciga et al. [40], Switzer et al. [55]). To test the
impact of continuum foreground mode removal, we run a fiducial MCMC fit, same
as the case in Sec. 3.4 but removing the lowest : ‖ modes. The results are shown
in Fig. 3.13. The (/# on the [C ii] power spectrum remains nearly the same as the
fiducial one (Fig. 3.5). This simple test demonstrates that continuum foregrounds
are unlikely to be a major concern, but we note that subtler issues, such as the exact
number of : ‖ modes to be removed and the amount of residual continuum in the
data, need to be quantified and further tested in the future.
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Figure 3.13: MCMC posterior distribution of the fiducial model with the lowest : ‖
mode removed.

Detection Limit
In Sec. 3.4, we define �f to be the median value of f%/%14BC�� �

and use it as an
indicator of the available information content level; when �f < 1, or f% < %best

���
, we

recover an unbiased estimate of %true
���

. Indeed, in Sec. 3.4, the scenarios with high
CO to [C ii] amplitudes result in biased extracted [C ii] power spectrum amplitudes,
however, the extracted amplitudes are all below the noise level (i.e. �f < 1). This
suggests that the :-space noise level is a good indicator of the information content
and sets the limit for extracting [C ii] signals from the data, below which the MCMC
likely returns biased results. In reality, f% and %best

���
are quantities that can be directly

inferred from real data, and serve to evaluate the reliability of the extracted results.

Constraint on Bias
In our template fitting procedure, the bias factors are loosely constrained by MCMC
(see Fig. 3.5 and 3.10). This can be understood by looking at the Kaiser RSD
term: ( 5 (I))

1̄;8=4
`2)2, where 5 ≈ 1, the bias is usually between 1 and 10, and `2 is a

value between 0 and 1. Thus 5 (I))
1̄;8=4

`2 is usually smaller than unity, sub-dominant
to the overall amplitude change of the power spectrum, which is absorbed in the �
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parameter. In addition, the MCMC constraint on 1̄�$ is weaker than on 1̄�$ . This
is due to the projection effect that makes the projected `�$ very small for most of
the :-space pixels (see Fig. 3.2), which are then not sensitive to the Kaiser effect.

The CIB model gives a high 1̄��� value that makes the Kaiser effect too small to
be detected. This can be seen from the histogram of 1̄��� given by MCMC, which
extends to large values that correspond to a non-detection of the Kaiser RSD effect.
To test the ability to extract bias in our procedure, we run the fiducial case and set
1̄��� to be the same as the fiducial value of 1̄�$ = 1.48. In this case, the 1̄��� can
be constrained by MCMC with an (/# >5; while the 1̄�$ is still unconstrained due
to the projection effect described above. Therefore, if 1̄��� in reality is smaller than
the value we considered in this work, we might be able to better constrain 1̄��� . We
will investigate strategies to better extract the bias information in future work.

3.6 Conclusion
We demonstrate the feasibility of deblending spectral line information in the IM
regime. We consider a 3D LIM survey, where multiple spectral lines at differ-
ent redshifts are embedded in the same observing volume, and make use of the
anisotropic shape of their respective power spectra when projected into a common
comoving coordinate to disentangle the information. We consider deblending high-
redshift [C ii] signals from the brighter, lower-redshift CO interlopers. We use the
halo-model and CIB measurement to construct expected CO and [C ii] templates
across redshifts, and use the MCMC formalism to constrain power spectrum param-
eters. We show that this technique can reproduce the linear [C ii] and CO power
spectrum amplitudes, though with reduced signal-to-noise, given a range of CO
signal strengths and noise levels. We establish an indicator to evaluate whether the
fitted parameters are unbiased. Finally, we demonstrate the ability of extracting
[C ii] in the presence of multiple, stronger CO foreground lines. The technique can
be extended to other line blending problems to extract information of both signal
and interlopers in an intensity mapping experiment.

.1 Power Spectrum Modeling
! �' − " Relation: CIB Model
In Planck Collaboration et al. [43], the authors modeled the CIB emission as mea-
sured byPlanck, and parametrized the CIB specific luminosity !a with the following
three components.
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1. A normalized spectral energy distribution, Θ(a, I), for all the galaxies:

Θ(a, I) ∝ aV�a ()3 (I)) ; a < a0

Θ(a, I) ∝ a−W ; a ≥ a0, (23)

where �a is the Planck function, and )3 the redshift-dependent dust tempera-
ture:

)3 = )0(1 + I)U . (24)

2. !–−" relation: they assumed the CIB luminosity is a log-normal function Σ
of halo mass " with peak mass "4 5 5 and variance f2

!/" ,

Σ(") = " 1
(2cf2

!/")1/2
4
−(;>610 (")−;>610 ("4 5 5 ))2/2f2

!/" . (25)

3. Redshift evolution of the !–−" relation: the global normalization is parametrized
by

Φ(I) = (1 + I)X . (26)

The !–−" ratio is assumed to increase with redshift (i.e. X > 0).

Combining these three components, the !a − " relation can be written as

!a (", I) = !0Φ(I)Σ(")Θ(a, I), (27)

with an overall normalization factor !0.

With the Planck data, the authors constrained the model parameters as listed in
Table 9 of Planck Collaboration et al. [43]. Here we adopt their best-fit values:
{U = 0.36, V = 1.75, W = 1.7, X = 3.6, )0 = 24.4  , "eff = 1012.6"�, f2

!/" =

0.5, !0 = 0.02!�}. We integrate Eq. (27) over the wavelength range of 8−1000 `<
to obtain the total infrared luminosity !IR.

We can convert !IR to SFR following Kennicutt [25]:

(�'/! �' = 1.7 × 10−10"�HA
−1!−1

� . (28)

As a sanity check, we calculate the resulting star-formation rate density (SFRD) by
integrating the SFR over halo mass,

(�'� (I) =
∫ "<0G

"<8=

3"
3#

3"
(�'(", I), (29)
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where 3#/3" is the halo mass function [51], and we take "min = 108 "�/ℎ,
"max = 1015 "�/ℎ. We use this integration range for all halo mass integration
throughout this work.

For comparison, we calculate the SFRD from the (�'–" relation given by Lidz
et al. [28], Pullen et al. [45], and Silva et al. [52]. We also consider the SFRD given
by Madau & Dickinson [33] and Robertson et al. [48], where the SFRD is modeled
by the following four-parameter functional form

(�'� (I) = 0 (1 + I)1
1 + [(1 + I)/2]3

(
"�HA

−1"?2−3
)
. (30)

Madau & Dickinson [33] used the UV and IR galaxy counts and obtained the pa-
rameters {0, 1, 2, 3} = {0.015, 2.7, 2.9, 5.6}; while Robertson et al. [48] used the
joint constraint of galaxy counts and the CMBoptical depth of g = 0.066±0.12 from
PlanckCollaboration et al. [44] and obtained {0, 1, 2, 3} = {0.01376, 3.26, 2.59, 5.68}.

The SFRD(I) of the aforementioned models are plotted in Fig. .14. Lidz et al. [28]
and Pullen et al. [45] use a simple scaling relation to model the (�'–" relation,
and do not reproduce the SFRD peak at I ∼ 2 − 3. In Silva et al. [52], the (�'–"
relation is fitted in several redshift bins with mock galaxy catalogs from De Lucia &
Blaizot [15] and Guo et al. [22]. The discontinuous features in the SFRD curve are
the boundaries of the redshift bins. They predict an SFRD peak at a higher redshift
and the model does not agree well with galaxy counts at I ∼ 0− 2. The SFRD from
the CIB model is broadly consistent in shape with that of galaxy counts, but the CIB
model predicts a systematically higher amplitude, especially at high redshifts. This
results in a higher [C ii] power spectrum amplitude. Furthermore, the steep (�'–"
relation in the CIB model also results in a high bias factor for [C ii]. We discuss the
implications in Sec. 3.5.

!��� − (�' and !�$ − (�' Relation
To connect !��� to SFR, we adopt the following relation based on observations of
nearby late-type galaxies [2]:

!��� (", I) = 1.59 × 10−3! �', (31)

and use Eq. (28) to convert !IR to SFR.

For CO luminosity, we use the empirical relation from Wang et al. [58]:

!�$ (1−0) = 3.2 × 104!� (
(�'

"�HA−1 )
3/5. (32)
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Figure .14: The SFRD of the Planck CIB model (this work) comparing with the
literature [28, 33, 45, 48, 52].

For higher-� rotational transitions, we assume a constant ratio between !�$ (1−0) and
!�$ (�−(�−1)) , using Eq. (16) of Obreschkow et al. [39] and assuming an excitation
temperature of )4 = 17 K for all the galaxies.
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C h a p t e r 4

PHASE-SPACE SPECTRAL LINE DE-CONFUSION IN
INTENSITY MAPPING

Cheng, Y.-T., Chang, T.-C., & Bock, J. J. 2020, ApJ, 901, 142, doi: 10.3847/
1538-4357/abb023

Line intensity mapping (LIM) is a promising tool to efficiently probe the three-
dimensional large-scale structure by mapping the aggregate emission of a spectral
line from all sources that trace the matter density field. Spectral lines from different
redshifts can fall in the same observed frequency and be confused, however, which
is a major challenge in LIM. In this work, we develop a line de-confusion technique
in map space capable of reconstructing the three-dimensional spatial distribution of
line-emitting sources. If multiple spectral lines of a source population are observable
in multiple frequencies, using the sparse approximation, our technique iteratively
extracts sources along a given line of sight by fitting the LIM data to a set of spec-
tral templates. We demonstrate that the technique successfully extracts sources with
emission lines present at a fewf above the noise level, taking into account uncertain-
ties in the sourcemodeling and presence of continuum foreground contamination and
noise fluctuations. As an example, we consider a TIME/CONCERTO-like survey
targeting [C ii] at the epoch of reionization, and reliably reconstruct the 3D spatial
distribution of the CO interlopers and their luminosity functions at 0.5 . I . 1.5.
We also demonstrate a successful de-confusion for the SPHEREx mission in the
near-infrared wavelengths.We discuss a formalism in which the reconstructed maps
can be further cross-correlated with a (galaxy) tracer population to estimate the total
interloper power. This technique is a general framework to extract the phase-space
distribution of low-redshift interlopers, without the need of external information, for
any line de-confusion problem.

4.1 Introduction
Line intensity mapping (LIM) has emerged as a promising tool to study the three-
dimensional large-scale structures by mapping a particular spectral line emission,
and infers the line-of-sight distance of the emission sources from the frequency-
redshift relation. LIM measures the aggregate emission of all sources to constrain

http://doi.org/10.3847/1538-4357/abb023
http://doi.org/10.3847/1538-4357/abb023
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the bulk properties of the galaxies; whereas in traditional galaxy surveys, only the
brighter sources can be individually detected. This relatively low spatial resolution
and point-source sensitivity requirement in LIM enables the use of small apertures
to efficiently scan a large survey volume out to high redshifts.

Several spectral lines have been proposed for LIM survey. The 21 cm hyperfine
emission from neutral hydrogen [12, 45, 61, 71], the CO rotational lines [4, 6, 7,
9, 16, 26, 30, 34, 35, 39, 40, 47, 57, 60, 69], the [C ii] 157.7 `m fine-structure line
[26, 29, 63, 68, 72], and the Lyman-U emission line [17, 19, 20, 26, 31, 58, 64] are
amongst the most studied lines in the LIM regime.

One of the main challenges in LIM is the astrophysical foreground contaminations,
including the continuum emission and line interlopers. Although the continuum
foregrounds are usually a few orders of magnitude brighter than the lines (a situation
more severe for 21cm than for other lines), their smooth spectral feature can be
used to distinguish from the line signals. This has been extensively studied in the
context of 21 cm LIM [e.g., 2, 13, 27, 43, 49, 54, 67]. The line interlopers, which
originate from sources residing in different redshifts emitting spectral lines in the
same observed frequency channel, is another pressing issue for LIM experiments.
The two most studied line de-confusion techniques, source masking and cross-
correlation, typically rely on external data sets that trace the same cosmic volume:
the masking technique makes use of a galaxy survey catalog to identify and remove
bright interloper sources [5, 63, 66, 72], whereas cross-correlation of an LIM survey
with an external (or internal) data set can help extract signals of interest [10, 11, 16,
20, 29, 31, 42, 48, 63, 69]. In addition to these two methods, Lidz & Taylor [41] and
Cheng et al. [14] use the anisotropy of the interloper power spectrum arising from
projection to the target line redshift to separate the lines. Gong et al. [28] distinguish
the lines from the same projection effect but using the multipole power spectrum.
de Putter et al. [22] propose to use angular fluctuations of the light to reconstruct
the 3D source luminosity density.

Most of the existing line de-confusion methods (e.g. cross-correlation and power
spectrum anisotropy) only extract the two-point statistics (power spectrum or corre-
lation function) but lose the phase information of individual line maps, which are
valuable for cosmological parameter constraints and systematics control in the data.
With individual line maps, one can extract information beyond two-point statistics
in the non-Gaussian intensity maps, especially ones from the epoch of reionization
(EoR). For example, Breysse et al. [3] and Ihle et al. [33] show that the one-point
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statistics of the intensity field can help constrain the luminosity function model. In
addition, individual line maps can be used directly as density tracers for various
cross-correlation, multi-tracer analysis, de-lensing of the cosmic microwave back-
ground (CMB), and for performing consistency tests on different spatial regions
with different foreground properties.

In this work, we develop a technique to extract individual line intensity maps from
an LIM data set with blended interlopers. Using the fact that when multiple spectral
lines emitted by a source are observable in an LIM survey, the redshift of the source
can be pinned down by fitting to a set of spectral templates that are unique at
each redshift. Without any external tracers or spectroscopic follow-up observations,
individual line maps can be directly derived. For demonstration, we apply our
technique to simulated data of an LIM survey targeting the EoR [C ii] line with
multiple low-redshift CO interlopers. In this case, the intensity field of the low-I
CO lines (0.5 . I . 1.5) can be reconstructed since they can be detected in multiple
spectral channels.

Kogut et al. [37] first explored the map-space line de-confusion using the multi-line
wavelength information in the context of a pencil-beam spectroscopic survey. In this
work, we explore the technique in the LIM regime that has a much lower sensitivity
and the spectral resolution. In this regime, our template-fitting-based technique can
obtain the signal-to-noise ratio (S/N) of the desired signals by using the data from
multiple frequency channels.

The recent work by Moriwaki et al. [50] demonstrated the feasibility of LIM phase-
space de-confusion with deep learning. They show that, in the absence of noise or
foreground components, their algorithm can reconstruct the individual line maps
that are mixed in the LIM data set. Their training data generation relies on the
assumption of the signal clustering and the line luminosity model, whereas in this
work, we develop a line de-confusion technique that only makes use of the spectral
feature of the lines, which is more robust against the model uncertainty and the
noise.

This chapter is organized as follows. First we introduce the model and the survey
parameters we used to generate themock LIM survey data in Sec. 4.2. Then, Sec. 4.3
describes our line de-blending technique. Sec. 4.4 presents the results on the fiducial
setup. In Sec. 4.5, we present the performance of the technique with more practical
considerations, and discuss its applications and extensions. The conclusions are
given in Sec. 4.6. Throughout this paper, we consider a flat ΛCDM cosmology with
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=B = 0.97, f8 = 0.82, Ω< = 0.26, Ω1 = 0.049, ΩΛ = 0.69, and ℎ = 0.68, consistent
with the measurement from Planck [55].

4.2 Mock Light Cone Construction
For each spatial pixel in an LIM survey, there are a set of spectral channel mea-
surements. Hereafter, the term “light cone” refers to the collection of the spectral
measurements in a single pixel. The line de-confusion method introduced in this
work is performed on a pixel-by-pixel basis, which only utilizes the spectral infor-
mation in an individual line of sight (light cone), without taking into account the
spatial clustering information, which we leave for future work.

We test our de-confusion technique on simulated light cones. Since the clustering
information is not relevant to our technique, we generate light cones that are based
solely on the spectral line luminosity function models and not on the clustering
properties. Thus, all light cones are independent from one another, and we also
ignore the line-of-sight clustering in this work. This allows for both the light cone
construction and de-confusion by parallelization to speed up without affecting the
quantification of performance.

As a demonstration of the technique, we assume an LIM experiment targeting the
redshifted [C ii] fine-structure emission from the EoR: the LIM data set contains
multiple low-I CO rotational transitions from low redshifts as interlopers. We note
that the technique can be readily applied to any line-confusion problem at other
wavelengths.

Line Signal Models
We model the line emissions of the redshifted [C ii] emission and five low-redshift
CO �-transitions: {CO(2–1), CO(3–2), CO(4–3), CO(5–4), CO(6-5)}. In reality, in
the sub-mm spectral range of interest (generally in the ∼ 200-300 GHz range), there
are higher CO � lines (that are fainter), Galactic and extragalactic dust continuum
emissions (the cosmic infrared background), CMB radiation, and atmospheric emis-
sions that can all contribute to the measurements. Since none of them will produce
strong spectral features that impact the performance of our technique, we will not
include them in the light cones. Instead, in Sec. 4.5, we will demonstrate that the
continuum foregroundmitigation in the data analysis process has a negligible impact
on our technique performance.

We use the [C ii] and CO luminosity function models provided by Popping et al.
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[56], in which a semi-analytic model including the effect of radiative transfer was
used to estimate the CO and [C ii] luminosity functions as constrained by current
observations. Here we adopt their fitted Schechter luminosity functions to construct
our light cones.

Survey Parameters
We consider a mock experiment that has similar survey parameters as the two
ongoing EoR [C ii] LIM experiments, TIME [18] and CONCERTO [38].

The mock survey covers 200–305 GHz with 70 evenly spaced spectral channels
(Xa = 1.5 GHz), and theΩpix = 0.432 arcmin2 pixel size. We assume the instrument
noise is white and has a Gaussian distribution, with four different per-pixel noise
levels of standard deviation f= = {103, 5 × 103, 104, 5 × 104} Jy sr−1. These values
are comparable to the range of expected instrument noise in TIME andCONCERTO.

Light Cone Generation
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Figure 4.1: The steps of constructing a light cone. Left: # (I), the effective number
of ℓ∗ sources in each redshift bin in this light cone. Middle: the signals from all
six spectral lines and the sources in the 70 spectral channels. Right: the mock
observed light cone (blue) consists of the signals (middle panel) and the f= = 10
kJy Gaussian noise. The black line is the signal component (same as the middle
panel) for reference.

Based on the assumed luminosity function models and survey parameters, we pop-
ulate the light cones with sources drawn from random realizations of the Schechter
function model. We first define a fiducial Schechter function 1 for all of the lines as
a function of redshift,

Φ(ℓ) = q∗ (L/L∗)U 4−(L/L∗) . (4.1)

We discretize the luminosity and redshift into bins of Δ(L/L∗) in 100 luminosity
bins in log-space from L/L∗ = 10−3 to 10, and 2000 redshift bins of ΔI = 5× 10−4

1For the fiducial Schechter function, we choose the q∗ and U values of CO(1–0) for I ≤ 5 and
[C ii] for I > 5 in [56]. We interpolate or extrapolate the Schechter function parameters to the desired
redshift from the values of I = [0, 1, 2, 3, 4, 6] given by [56].
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in linear space from I = 0 to I = 10. The expectation value of the source counts #
within each ΔL and ΔI bin is given by

〈#〉 = Φ(ℓ) [Δ(L/L∗)] [Ωpix�
2
� (I)

3j

3I
ΔI], (4.2)

where the last square bracket is the co-moving volume of the voxel defined by spatial
pixel Ωpix and redshift bin ΔI, �� is the co-moving angular diameter distance, and
j is the co-moving distance.

For each (L, I) bin, we assign its source counts to a Poisson random number with
expectation value 〈#〉, and then integrate along L to get the total luminosity in each
redshift bin Ltot(I). We define # (I) ≡ Ltot/L∗ as the “effective number counts”
per redshift bin. The left panel of Fig. 4.1 shows the # (I) of one example light
cone.

Next, we assign the line luminosity signals in each redshift bin to # (I) ℓline
∗ , where

ℓline
∗ is the ℓ∗ value of the line in the Popping et al. [56] model. We then project
the line signals to their corresponding spectral channels to make the light cones.
The middle panel of Fig. 4.1 shows an example light cone spectrum from the # (I)
shown in the left panel.

Finally, we add a Gaussian random fluctuation with a an rms f= value to each
channel to account for the instrumental noise. The right panel of Fig. 4.1 shows the
same light cone with a f= = 10 kJy Gaussian noise.

This light cone construction procedure assumes that all of the spectral lines have
the same Schechter function parameters (q∗ and U) and thus the same luminosity
function shape, and the CO spectral line energy distribution (SLED) is also fixed.
That is, by construction, all of the sources have the same line luminosity ratio sets
by the relative value of ℓline

∗ . In the main parts of this work, we use this fixed SLED
model, and we test the impact of adding the SLED variation on the performance of
our technique in Sec. 4.5.

We further point out that, even though the luminosity function has been sampled
to the faint end (10−3ℓ∗), the light cone signals are still dominated by a few bright
peaks. This indicates that the emission field can be well described by the few bright
sources in the data. In other words, to extract the line emission field from a single
line, one only needs to determine the redshift and luminosity of those bright sources.
This is the main concept of our de-confusion technique, detailed in Sec. 4.3.
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4.3 Methods
Formalism
The intensity of a light cone in frequency channel a8 can be expressed as the linear
combination of signals from all #I redshift bins and the noise =8,

� (a8) =
#I∑
9=1

�̃8 9 # (I 9 ) + =8, (4.3)

where # (I 9 ) is the effective number of ℓ∗ sources in redshift I 9 (Sec. 4.2), and �̃8 9
converts # (I 9 ) to the observed intensity in channel a8.

�̃ is an #ch × #z matrix, where we have #ch = 70 spectral channels, and we use
#z = 2000 (ΔI = 5×10−4) redshift bins. In principle, we can setΔI to infinitesimally
small values; however, in practice the redshift resolution is limited by the instrument
spectral resolution, as the SLEDs of nearby galaxies can be highly degenerate when
their respective spectral lines fall in the same set of observed channels. Setting
#z = 2000 in fact gives a much finer redshift resolution compared to the spectral
channelwidth. Wewill use this fine redshift resolution as a starting point, and discuss
the strategy to reduce redshift bins and therefore remove redundant information at
the end of Sec. 4.3.

Most of the elements in �̃8 9 are zeros except for which the sources at I 9 emit a
spectral line at the observed frequency a8. In this case,

�̃8 9 ≡ � line
∗ (I 9 ) = ℓline

∗ (I 9 )
1

4c�2
!
(I 9 )Xa8Ωpix

, (4.4)

where ℓline
∗ is the line luminosity of an ℓ∗ source in the model, �! is the luminosity

distance, and � line
∗ is defined as the observed line intensity of an ℓline

∗ (I 9 ) source at
I 9 . Fig. 4.2 shows the � line

∗ in our assumed model2. Note that Eq. 4.3 assumes that
all of the sources at the same redshift have the same SLED, and we will first build
our technique based on this assumption. In reality, the SLED varies across galaxy
type. In Sec. 4.5, we will show that our method also works in the realistic level of
SLED variation.

Eq. 4.3 can be written in the matrix form,

I = ÃN + n, (4.5)
2The glitch in CO(5–4) at I ∼ 1 is due to a feature in the Schechter luminosity function model

in [56]. In their CO(5–4) luminosity function fit at I = 1, a slightly higher !∗ and and a lower U
value are derived that cause the slight apparent discontinuity in redshift, even though the luminosity
function does not show an abrupt change at I = 1.
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Figure 4.2: Intensity of the CO lines �∗ from the sources of characteristic luminosity
ℓ∗.

Table 4.1: Frequencies and Redshifts of the Six Defined Broad Bands

Name Line a bin index a (GHz) 〈I〉(Imin − Imax)
J3 high CO(3–2) 51–69 (19 bins) 200.75–227.75 0.61 (0.51–0.72)
J4 low CO(4–3) 0–24 (25 bins) 268.25–304.25 0.61 (0.51–0.72)
J4 high CO(4–3) 41–69 (29 bins) 200.75–242.75 1.09 (0.89–1.30)
J5 low CO(5–4) 0–36 (37 bins) 250.25–304.25 1.09 (0.89–1.30)
J5 high CO(5–4) 37–69 (33 bins) 200.75–248.75 1.59 (1.30–1.87)
J6 low CO(6–5) 0–42 (43 bins) 241.25–304.25 1.56 (1.26–1.87)

NOTE: The CO(2–1) and CO(3–2) overlapping redshifts of 0.13 < I < 0.5
can also be reconstructed, but they are only covered by four frequency channels,
which makes it difficult to quantify the reconstruction performance with sufficient
statistical power. Therefore, we ignore these redshifts in our analysis.

where I and n are #ch-element column vectors, N is an #I-element column vector,
and Ã is an #ch × #z matrix. The top panel of Fig. 4.3 shows the Ã matrix in our
model. The Ã matrix is mostly zeros, and the six curves from left to right are the
six spectral lines, CO(2–1), CO(3–2), CO(4–3), CO(5–4), CO(6–5), and [C ii].

The goal of our line de-confusion technique is to solve for the source count vector N
in a given observed light cone data I and a model Ã matrix. With the N solution, the
intensity map of individual spectral lines Iline can be reconstructed by Iline = ÃlineN,
where Ãline is Ã when only the target spectral line signals are turned on.

We further rewrite Eq. 4.3 by normalization and reducing the nuisance information.
First, we normalize the columns in Ã and move the normalization factor Inorm

9
to
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Figure 4.3: Top: Ã matrix with our model on 70 frequency channels and 2000
redshift bins. Ã are zeros (white) for the majority of the elements, and the six
curves from left to right correspond to the six spectral lines, CO(2–1), CO(3–2),
CO(4–3), CO(5–4), CO(6–5), and [C ii]. The color scale indicates line intensities
in the fiducial model. The gray shaded regions are the redshifts at which sources
can be observed in multiple lines, and thus can be reconstructed in our technique.
Bottom left: A matrix with #ch × #z = 70 × 265 size, which is the reduced and
normalized Ã. The color scale represents the intensities with the fiducial model
SLED normalized within each column, i.e. for all column 9 ,

∑#ch
8=1 A2

8 9
= 1. Bottom

right: the redshift of the 195 multi-line redshift bins in A, which are the redshift
bins that have multiple CO lines observable in our mock survey. The colors label the
pairs of detectable CO lines. The redshifts not covered by multiple CO lines cannot
be reconstructed with our technique (0.15 ≤ I ≤ 0.51; 0.72 ≤ I ≤ 0.89; I ≥ 1.87).

their N element:
I = AÑ + n, (4.6)

where

A8 9 = Ã8 9 / Inorm
9 ,

Ñ 9 = N 9 Inorm
9 ,

#ch∑
8=1

A2
8 9 = 1.

(4.7)

Next, we will reduce the nuisance or redundant elements in Eq. 4.6. The columns
of A are the basis spanning the observed data space. In constructing Ã, we simply
design the columns to be equally spaced redshift bins as shown in the top panel of
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Fig. 4.3. However, this natural basis is highly degenerate. To remove the nuisance
information, we first discard the redshift bins that are zero vectors in Ã. The sources
in these redshifts do not emit lines in observable frequencies, and thus no information
can be used to constrain their # (I). Second, for the redshift bins containing only
one CO line, their normalized columns in A are identical to other columns having
a [C ii] signal in the same frequency channel. In other words, given an observed
data I, we cannot distinguish the origin of the source with a single line emission.
Therefore, we combine these identical columns into a single column. In conclusion,
we keep the columns in A with redshift bins that can be observed with multiple
spectral lines, plus an identity matrix for the redshift bins that only have a single
detectable line.

For all of the redshifts that can be observed inmultiple lines, we design the size of the
redshift bins based on the following two competing considerations. On the one hand,
the redshift bins have to be small enough to faithfully represent the emitting source
distribution. On the other hand, finer redshift bins give larger Ñ size, and therefore
more unknown parameters to be solved. The information can be compressed by
combining some neighboring redshift bins, which are highly degenerate, since they
have signals in the same channels with similar amplitudes. Therefore, we design the
redshift bins using the following procedures: we (1) generate A with fine redshift
bins (ΔI = 5×10−4 from I = 0 to 10)3, (2) keep the columns with multiple lines, (3)
then identify the group of neighboring columns that have signals in the same sets of
channels, and (4) keep the medium bin and discard the others. With this process,
we get 195 non-degenerate columns. Hereafter, “multi-line redshift bins” refers
to these 195 redshift bins that can be detected in multiple channels. Finally, we
append the #ch-sized identity matrix (that accounts for the single-line redshift bins)
to these 195 columns to generate A. The bottom left panel in Fig. 4.3 shows matrix
A which has size #ch × #I = 70 × 265 (195 multi-line redshifts plus 70 columns
of identity matrix). The bottom right panel shows the redshift of the 195 multi-line
bins, and their color labels are the pairs of detectable CO lines. We also define six
broad bands from these pairs of lines by binning groups of channels. Table 4.1 lists
the definition of the broad bands. Note that the CO(2–1) and CO(3–2) overlapping
redshifts of 0.13 < I < 0.5 can also be reconstructed, but they are only covered
by four frequency channels, which makes it difficult to quantify the reconstruction
performance with sufficient statistical power. Therefore, we ignore these redshifts

3Note that with these fine bins, the same frequency bin can map to multiple redshift bins instead
of an one-to-one mapping.
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in our analysis.

Our line de-confusion technique can only solve Ñ in the 195 multi-line redshift
bins. The last 70 elements in Ñ that correspond to the identity matrix in A are
nuisance parameters, since they represent degenerate “single-line” signals from
different redshifts — that is to say, we cannot reconstruct the signals in the single-
line redshifts, which are the regions not covered by the lines in the bottom left panel
of Fig. 4.3 (0.15 ≤ I ≤ 0.51; 0.72 ≤ I ≤ 0.89; I ≥ 1.87). In the following analysis,
we will only focus on the reconstruction of Ñ in the 195 multi-line redshift bins.

Sparse Approximation
The key step in our de-confusion technique is to solve for Ñ in Eq. 4.6, given the
observed spectrum I and model A. This type of linear system has been extensively
studied in the context of CMB map making, in which I, n, and Ñ in Eq. 4.6 can
be analogized to the time-ordered data, time-stream noise, and the pointing matrix,
respectively. However, contrary to the map-making problem, our system is an ill-
posed problem as there are more unknown variables (#I = 265) than the input data
points (#ch = 70). Thus the standard map-making algorithm [e.g., 65] cannot be
applied.

In Eq. 4.6, the columns of A form a basis for I, and the solution Ñ is the linear
combination coefficient. The columns of A form an over-complete basis, since the
A matrix is only of rank #ch, and thus the solution Ñ is not unique. Indeed, for any
given observed data I, there are infinite Ñ that can perfectly fit the input.

Nevertheless, Eq. 4.6 can be solved with the “sparse” condition, which means the
preferred solution of Ñ is the one with a small number of nonzero elements. With
this constraint, we can solve Eq. 4.6 with the following well-defined optimization
problem:

argminÑ
0

1
#ch

I − AÑ
2

2
< n2, (4.8)

where the ℓ0-norm ‖·‖0 is the number of nonzero elements, and n sets the threshold
of error tolerance of the fit.

This type of problem is known as “sparse approximation,” which has been exten-
sively studied in the context of signal processing and compressive sensing [8, 24].
The sparse approximation algorithms solve the sparse representation of the signal in
a “dictionary” that is composed of a set of “atoms,” and represent the signal in the
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data in terms of the linear combination of a few atoms in the dictionary. In Eq. 4.8,
the dictionary is the matrix A, and the atoms are the column vectors of A.

The sparse approximation can only be applied if : ≡
Ñ

0
� #ch. Note that the

sparsity of the problem is quantify by :/#ch but not :/#I, since :/#I can always
be designed to be arbitrarily small by choosing a large basis (fine redshift bins).
However, the degree of freedom in the solution is restricted by the input size #ch,
and thus the : � #ch condition prohibits the algorithm from using more parameters
than the input degree of freedom to over-fit the data.

In general, LIM light cones are not sparse, since there is always a large number of
faint sources in the typical luminosity function (e.g. Schechter function), so all of
the elements in Ñ are nonzero. However, as mentioned in Sec. 4.2, the light cone
signals are dominated by only a few bright sources, and the intensity field can be well
described by them. Consequently, the parameter : in our problem can be quantified
by the “effective” number of these bright sources per voxel that contribute most of
the emission. Following [15], we define the effective number #eff as:

#eff (I) ≡

(
+vox

∫
3ℓΦ(ℓ, I) ℓ

)2

+vox
∫
3ℓΦ(ℓ, I) ℓ2

, (4.9)

where+vox is the voxel size of the redshift bin. Note thatΦ is the number of sources
per luminosity per voxel, and therefore #eff is dimensionless and is proportional to
the voxel size. #eff can be interpreted as the reciprocal of the effective shot noise
in LIM, which is analogous to the 1/# shot noise in a galaxy power spectrum. If
the luminosity functionΦ follows the Schechter function form, then #eff is (approx-
imately) the number of sources brighter than ℓ∗, which contributes the majority of
the emission.

We can estimate : by the cumulative #eff (I) along the line of sight per light cone.
Fig. 4.4 shows the cumulative #eff in our model. While #eff ∼ 100 from I = 0 to
10, the only relevant range is I . 2.5, where CO lines fall in the observed frequency
range (see Fig. 4.3, top panel). Above I ∼ 2.5, only the high-I [C ii] lines can be
observed, but they are much fainter then the CO signals and the assumed noise level,
so they can be treated as background fluctuations. Therefore, for I . 2.5, we find
#eff ∼ 10 � #ch = 70, so the sparse condition is qualified in our problem.
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Figure 4.4: The redshift cumulated #eff in our model (black dashed line). The
red segments mark the multi-line redshift ranges that have multiple observable CO
lines. Thus the de-confusion technique can be applied.

The Matching Pursuit Algorithm
We use the matching pursuit (MP) algorithm first introduced by Mallat & Zhang
[46] to solve for Eq. 4.8. The MP algorithm iteratively selects an “atom” in the
“dictionary” to project out part of the signals in the data, and keep track of the
current solution of the signal and residual for the next step until the stopping criteria
is met. In our case, the column vectors in A are the atoms that form the dictionary
space. A detailed description of the MP algorithm is in Appendix .1.

In each step of the MP algorithm, the selected atom is the one that has the maximum
inner product with the residual. The S/N of the signals in each step is the ratio
of that maximum inner product to the instrument noise level f= (see Appendix .2
for the proof). Therefore, if we set the stopping criteria to be the maximum inner
product smaller than < times of f=, then this is an <-f detection threshold on the
signals (e.g., < = 5 for a 5f detection). Note that the detection threshold here is
based on the combined information in multiple spectral channels projected onto the
dictionary space.

The choice of detection threshold “<” is a trade-off between the purity and complete-
ness of the source extraction. Higher “<” values give a higher purity map, whereas
lower “<” values pick out fainter sources at the cost of increased false detections
from noise. The optimal value of “<” depends on the instrument sensitivity and the
purpose of the reconstruction map. For example, to reconstruct the line luminosity
function, one might use a higher threshold to reduce the false detections at the faint
end; whereas to constrain the large-scale structure, a lower threshold is preferred to



105

reduce the shot noise in the power spectrum. An analytical formalism to determine
the optimal threshold is to make use of the Fisher information framework [15],
where one calculates the expectation value of the desired observable (e.g. power
spectrum) as a function of threshold for a given signal model and noise level, and
estimates the threshold that optimizes the Fisher information. Alternatively, one can
simply perform test simulations with different thresholds to determine the optimal
value. Both approaches can provide guidance on choosing the optimal threshold for
the problem at hand, and a detailed investigation is beyond the scope of this paper.

4.4 Results
We present line de-confusion results in the simple case where mock light cones and
the template (A) are both generated from the same signal model (Sec. 4.2). We
demonstrate that in this scenario, our technique is capable of extracting low-I CO
signals in the presence of realistic instrumental noise. We discuss the robustness of
the performance against uncertainties in the signal model and contamination from
astrophysical foregrounds, and extend the application to spectral lines in different
wavelengths in Sec. 4.5.

We quantify the reconstruction performance by computing two statistics on the true
and reconstructed data: (1) the Pearson correlation coefficient (Sec. 4.4) and (2) the
voxel intensity distribution (VID; Sec. 4.4). The former quantifies the phase-space
information, whereas the latter captures the one-point statistics that describes the
distribution of voxel intensities.

Finally, we present results with a variety of instrument noise levels f= and the
reconstruction threshold<. For each test, we use 2500 mock light cones to calculate
the correlation coefficient and VID, and estimate errors with 100 noise realizations.

Visualization of Example Results
Fig. 4.5 visualizes the reconstruction results on one of the spectrum bins (274
GHz) that contains five lines (CO(3–2), CO(4–3), CO(5–4), CO(6–5), [C ii]) in
the observable band. We place the 400 light cones into a 20 × 20 pixel map, and
show the true and the reconstructed intensity fields. Note that the input signals do
not exhibit the spatial clustering because each light cone is generated independently.
The top left panel shows the total signal intensity from all five lines, and the top right
panel shows the observed intensity including the total line signals and a Gaussian
instrument noise with f= = 104 Jy sr−1. In this channel, three of the lines (CO(4–3),
CO(5–4), CO(6–5)) are in the multi-line regime, so they can be reconstructed with
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Figure 4.5: Visualization of the phase-space reconstruction with f= = 104 Jy
sr−1. We place the 400 toy model light cones into a 20 × 20 pixel map, and show
the reconstruction results on one of the spectrum bins (274 GHz). The top left
panel is the true signal intensity map from all of the spectral lines (CO(3–2), CO(4–
3), CO(5–4), CO(6–5), [C ii]). The top right panel is the observed intensity map
including line signals (top left panel) and noise. The bottom three panels show the
true input and the 10f, 5f, and 1f reconstructed (right) emission field of the three
spectral lines in the multi-line regime where the signal can be reconstructed.

our algorithm. The three bottom panels compare the true input to the reconstructed
intensity maps for these lines with 10f, 5f, and 1f reconstruction threshold as the
MP algorithm stopping criteria.

The choice of threshold is a trade-off between the completeness and the purity in the
reconstructed map. As shown in Fig. 4.5, in the high threshold case (10f), the MP
algorithm only extracts a few bright sources that are above the reconstruction thresh-
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old. As the threshold decreases, more sources are being reconstructed, at the cost
of increased false positive detection from the noise fluctuations or the interlopers.
This example provides a visual depiction of the reconstruction algorithm. To further
quantify the reconstruction performance, we consider two summary statistics in the
following sections.

Pearson Correlation Coefficient
We quantify the reconstruction performance by the Pearson correlation coefficient
between the true and the reconstructed maps in each channel. The Pearson correla-
tion coefficient is defined by

A =

#lc∑
8=1

(
�8true − 〈�true〉

) (
�8rec − 〈�rec〉

)
√
#lc∑
8=1

(
�8true − 〈�true〉

)2

√
#lc∑
8=1

(
�8rec − 〈�rec〉

)2

, (4.10)

where #lc = 2500 is the number of light cones, �8true and �8rec are the true and the
reconstructed line intensity maps, respectively, at the 8th light cone. Fig. 4.6 shows
the results of the correlation coefficient with a f= = 104 Jy sr−1 noise level and a 5f
reconstruction threshold. Our reconstructed map achieves ∼ 80% correlation with
the true input map at I . 1.5.
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Figure 4.6: Pearson correlation coefficient A between the true and the reconstructed
maps on 2500 light cones with f= = 104 Jy sr−1 5f reconstruction. The bands are
the 1f scatter of 100 noise realizations with the sample line signal. The gray bands
are the A value with the white noise map for reference.

Fig. 4.7 shows the correlation coefficient A within a range of noise level f= and the
reconstruction threshold <. For simplicity, we show the average A value of each
broad band defined in Table 4.1. The key findings are summarized below.
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Figure 4.7: Average correlation coefficient A in each broad band (Table 4.1) within
a range of noise level f= and the reconstruction threshold <. The error bars are the
rms of 100 noise realizations.

• At a fixed < value, A decreases as f= increases. This is because under the
same purity (same <), the detection threshold <f= is higher for higher f=,
and thus fewer sources have been reconstructed.

• The six defined bands correspond to three pairs of lines from different redshift
bands (Table 4.1). The lines within each pair are strongly correlated because
they are the signals from the same sources, and thus they are reconstructed in
the sameMP iteration. The pairs of lines in the same redshift are reconstructed
in the same MP iteration, and as a result, they are highly correlated.

• Because of the purity and completeness trade-off, the maximum correlation A
happens at the intermediate threshold < (except for the lowest-noise f= = 103

Jy sr−1 case, discussed in the next enumerated point).

• Correlation coefficient A has very low dependency on fth in the f= = 103

Jy sr−1 case. This can be understood by comparing the noise level f= to the
quantity �∗, the intensity of the ℓ∗ source in the Schechter function (Fig. 4.2).
At the redshift range in which we perform the reconstruction (0.5 . I . 1.9),
104 . �∗ . 105 Jy sr−1, which indicates that <f= < �∗ for all of the < values
considered in Fig. 4.7 (< = 1 ∼ 10). In the Schechter luminosity function,
the sources & ℓ∗ contribute the majority of the information in the intensity
field [15], and thus the correlation coefficient A is not sensitive to the change
in reconstruction threshold if <f= � ℓ∗.

VID
The Pearson correlation coefficient traces the phase-space variations between the
true and reconstructed maps, but it cannot distinguish a systematic constant offset,
i.e., if the reconstructed line signals are systematically lower or higher than the true
input. Therefore, we check the consistency of the reconstructed and true input maps
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using the one-point statistics, VID. Note that we do not directly compare the mean
intensity of each map since we only reconstruct the bright sources that are above
the threshold and neglect all faint sources in the reconstructed map, so the mean
intensity is not expected be faithfully recovered.

The VID of an LIM map contains information beyond the power spectrum, and
is valuable for LIM targeting a late-time universe where the large-scale structure
is highly non-Gaussian and cannot be fully described by two-point statistics. For
example, Breysse et al. [3] showed that theVID can constrain the luminosity function
model parameters, and Ihle et al. [33] demonstrated that a joint analysis of the
power spectrum and VID improved the constraining power on the source luminosity
function.

Fig. 4.8 compares the VID of the true and reconstructed maps in the six broad bands
with noise level f= = 104 Jy sr−1 and reconstruction threshold < = 4. The gray
lines compose the VID of the total observed map, which includes signals from all
of the lines and noise. The black lines are the VID of the target line maps, and the
red data points are the VID of the reconstructed target line map.While the VID of
the total observed map is one to two orders of magnitude above that of the target
line signal, our reconstruction technique can faithfully recover the VID of the signal
to slightly below the �∗-scale, the characteristic source luminosity in the Schechter
function.

In this realistic survey setupwith the assumed signalmodel, we show that ourmethod
can successfully reconstruct the VID of the CO signal down to ∼ ℓ∗ scales. This
provides a strong constraint on the CO luminosity function, as both are 1D statistics
of the intensity field and are closely related. The CO luminosity function at various
redshifts provides valuable insight on the formation and evolution of galaxies across
cosmic time. Specifically, CO is a tracer of H2 gas in the interstellar medium, and
can therefore be used to study the evolution of the molecular gas content and its
distribution as a function of time [23, 59, 70]. We note though that the expected
S/N on the luminosity function depends on the assumed model.

4.5 Discussion
Model Uncertainty
For the results presented in Sec. 4.4, the light cone signals and the dictionary tem-
plateA are both generated from the same assumed signal model (Sec.4.2). However,
in reality, the variation in SLED across galaxies will affect the reconstruction per-
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Figure 4.8: VID of the true input (black) and the reconstructed (red) maps in
the six broad bands with noise level f= = 104 Jy sr−1 and reconstruction threshold
< = 4. The error bars are the rms of 100 noise realizations. The gray curves are
the VID of the total observed map, which includes signals from all of the lines and
noise. For reference, the blue and green dashed lines mark the noise level f= and
�∗, respectively.

formance. To test how the SLED uncertainties affect the reconstruction, we apply
three different SLED model variations and bias levels (at 20%, 50%, and 100%) to
the mock data, and run the reconstruction with the same dictionary template A. We
detail the definition of variation and bias below. Daddi et al. [21] measured multiple
CO lines of ULIRGs at I ∼ 1.5, and estimated a ∼ 20% variation on the CO SLED
ratio for their sample. Therefore, an assumed 50% or 100% variation can be more
extreme than realistic variations.

SLED model variation

First, we test the case with SLED model variations. For each line of each source in
the mock light cone, we assign a line luminosity !line:

!line = !line
fid (1 + X!), (4.11)

where !line
5 83

is the fiducial luminosity fromourmodel, and X! is a zero-meanGaussian
random variable with the standard deviations of 0.2, 0.5, and 1.0 for the 20%, 50%,
and 100% variation cases, respectively.

Fig. 4.9 shows the reconstructed correlation coefficients A with a 4f reconstruction
threshold (< = 4) with different SLED variations. We see that introducing 20%
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SLED variations in the model has a very mild impact on the reconstructed correla-
tion; whereas with 50% (100%) variation, the correlation coefficient drops by about
10% (∼ 50%). Fig. 4.10 compares the VID. We see that the SLED fluctuation has a
negligible impact on the VID reconstruction in the 20%, 50%, and 100% variation
cases. Hence, we conclude that our technique is robust against realistic level of CO
SLED fluctuations.
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Figure 4.9: Comparing A of the no SLED variation (red), 20% variation (cyan),
50% variation (yellow), and 100% variation (purple) with the 4f reconstruction
threshold. The values are the average of A within the channels of the band, and the
error bars are the rms of 100 noise realizations of all of the spectral bins in each
band.
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Figure 4.10: VID of the no SLED variation (red), 20% variation (cyan), 50%
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broad bands with noise level f= = 104 Jy sr−1 and reconstruction threshold < = 4.
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reference, the blue and green dashed lines mark the noise level f= and �∗.
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Model offset

In addition to SLED variation, we also test whether our model gives biased estimates
of the average SLED by assigning line luminosity !line as

!line = !line
fid (1 + 1!), (4.12)

where 1! is a constant offset that we assign to the model lines, and it is applied
to all of the sources in the mock light cones. For the 20% bias level, we apply
1! = (+0.1,−0.1, +0.1,−0.1) for the four CO lines CO(3–2), CO(4–3), CO(5–4),
and CO(6–5) to ensure the SLED ratio between neighboring lines is 20%, since our
algorithm is only sensitive to the line ratio between two neighboring CO lines.

Fig. 4.11 and Fig. 4.12 show the reconstructed correlation coefficients A and VID
with a 4f with three SLED bias levels. Similar to Fig. 4.9, the correlation only
drops significantly when the bias is tuned to 100%. Therefore, our technique is also
robust against a realistic level of potential CO SLED bias.

Application to LIM in Other Wavelengths
The technique developed in this work is not restricted to the [C ii] and CO lines’
blending problem. It can in principle be applied to a range of LIM experimental
setups. As a demonstration, we apply our method to reconstruct near-infrared lines
in an SPHEREx-like survey.

SPHEREx is an ongoing NASAMIDEXmission to conduct an all-sky near-infrared
spectro-imaging survey [25].4 SPHEREx will carry out the first all-sky spectral
survey at wavelengths between 0.75 and 5 `m with 96 spectral channels and a 6′′.2
pixel size. LyU (121.6 nm), HU (656.3 nm), HV (486.1 nm), [O ii] (372.7 nm),
and [O iii] (500.7 nm) are the five prominent lines detectable by SPHEREx across a
range of redshifts especially in the LIM regime.

The line signal model is described in Appendix .3. We generate a near-infrared
LIM mock data with a 6′′.2 × 6′′.2 pixel size and a 5f point-source sensitivity of
<AB = 22 (similar depth as the SPHEREx deep fields), and run our de-confusion
algorithm on the mock light cones. Fig. 4.13 shows the results of the correlation
coefficients between the true and a 3f-threshold reconstructed intensity maps. The
reconstructed map achieves ∼ 80% correlation with the true input map at I . 3,
and decreases toward higher redshifts, as the �∗ of the lines approaches the noise

4http://spherex.caltech.edu.

http://spherex.caltech.edu
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Figure 4.11: Comparison A of the no SLED bias (red), 20% bias (cyan), 50% bias
(yellow), and 100% bias (purple) with a 4f reconstruction threshold. The values
are the average of A within the channels of the band, and the error bars are the rms
of 100 noise realizations of all of the spectral bins in each band.
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Figure 4.12: VID of no SLED bias (red), 20% bias (cyan), 50% bias (yellow),
100% bias (purple), and the true maps (solid lines) in the six broad band with noise
level f= = 104 Jy /sr and reconstruction threshold < = 4. The error bars are the
rms. of 100 noise realizations. The grey curves are the VID of the total observed
map that includes signals from all the lines and noise. For reference, the blue and
green dashed lines mark the noise level f= and �∗.

level f=. At I ∼ 5, the brightest line, HU, is redshifted into SPHEREx bands with
a high spectral resolution of ' ∼ 130 and suffers less signal dilation, resulting in
an increase of S/N on a single source detection, and thus A slightly rebounds at this
redshift.

To account for uncertainties in modeling the SLED, we apply a realistic level of
line luminosity variations from Moustakas et al. [51]. We apply 10%, 50%, and
100% SLED variations (Eq. 4.11) to the line luminosity ratio of HU/HV, [O ii]/HU,
and [O iii]/[O ii], respectively. Fig. 4.14 shows the correlation coefficients between
the true and a 3f-threshold reconstructed intensity maps. Comparing with the
fixed SLED case (Fig. 4.13), only the �V line shows a significant decrease in the
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Figure 4.13: Pearson correlation coefficient A between the true and the reconstructed
maps on 2500 light cones for SPHEREx-like mock data. The bands are the rms. of
the value in 100 noise realizations with the sample line signal. The gray bands are
the correlation coefficient with the uncorrelated white noise map for reference.

performance. The intensity map of the three brighter lines (HU, [O ii], and [O iii])
can still be extracted with & 70% correlation compared to the true input.

We conclude that our algorithm can reasonablywell reconstruct the phase-spaceLIM
signal in a SPHEREx-like experiment, given the expected variation of (redshifted)
optical line ratios. The technique can be generalized to different LIM experimental
applications, and the reconstructions are fairly robust against uncertainties in the
SLED modeling.
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Figure 4.14: Pearson correlation coefficient A between the true and the reconstructed
maps on 2500 light cones for SPHEREx-like mock data with a realistic level of
SLED variation. The bands are the rms of the value in 100 noise realizations with
the sample line signal. The gray bands are the correlation coefficient with the
uncorrelated white noise map for reference.
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Foreground Subtraction
In addition to line interlopers, LIM data are subjected to strong continuum fore-
ground from various sources. For the frequency range considered in this work (∼
200-300 GHz), the dominant foregrounds are the atmospheric emission, dust con-
tinuum and the CMB; whereas for LIM in the near infrared, e.g. SPHEREx [25],
the zodiacal light and the galaxy stellar continuum are the dominant continuum
foregrounds. Even though these foregrounds are brighter than the sought-after line
signals, their spectral responses are expected to be smooth and are distinct from
the spectral line features, so that the continuum foregrounds can be separated and
mitigated, for example by a smooth function fit such as a low-order polynomial5.
Here we test how the foreground mitigation process affects our line reconstruction
results.

We consider two cases of foreground mitigation. First we emulate the foreground
removal process in the presence of an approximately constant foreground in both
the spatial and spectral dimensions, for example the zodiacal light. In this case,
before running the reconstruction, we subtract the mean value of the whole data
cube, i.e. the mean intensity in #lc × #a voxels. The second case is to emulate
the continuum subtraction process of the galaxy stellar or dust continuum, which
are expected to have smooth spectra but different in each light cone, since each
light cone contains different galaxies with different continuum spectrum. We fit and
subtract a first-order polynomial function to the spectrum of each light cone before
running the reconstruction.

The results of a 4-f-threshold reconstruction with different noise f= level are shown
in Fig. 4.15 and Fig. 4.16. We can see compared to the no background subtraction
case, the A value is even higher in these two tests. This is because our reconstruction
only extracts the bright lines, and the fainter lines act as a background for the MP
algorithm. The signals from the fainter lines introduce not only fluctuations but also
a bias in the data, since the line signals are always positive unlike the zero-mean
noise. The reconstruction performance is improved after background subtraction
because this bias level is also removed during this process. For the VID results, we
see that there is no significant difference compared to the no background subtraction
case. This is again due to the fact that the background level is much fainter than
the brightness of the sources being extracted with our algorithm, so the background

5Some foreground components are also spatially smooth (e.g. zodiacal light) that can be filtered
in the spatial domain as well.
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subtraction has no impact on the reconstruction. In conclusion, the background
subtraction in the LIM data reduction pipeline will not affect our line reconstruction
technique.
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Figure 4.15: Comparing A of the reconstructed map with the no background sub-
traction (red), subtracting the mean of the whole data cube (cyan), and subtracting
a first-order polynomial in the spectral direction for each light cone (yellow), using
a 4f reconstruction threshold. The values are the average of A within the channels
of the band, and the error bars are the rms of 100 noise realizations of all of the
spectral bins in each band.
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Figure 4.16: VID of no background subtraction (red), subtracting the mean of the
whole data cube (cyan), subtracting a first-order polynomial in spectral direction for
each light cone (yellow), and the true (black) maps in the six broad band with noise
level f= = 104 Jy /sr and reconstruction threshold < = 4. The error bars are the rms
of 100 noise realizations. The grey curves are the VID of the total observed map
that includes signals from all the lines and noise. For reference, the blue and green
dashed lines mark the noise level f= and �∗.

Prior with External Catalogs
Our analysis uses the LIM data itself without invoking any external information.
In practice, initial LIM survey fields are designed to in part overlap with existing
photometric or spectroscopic galaxy surveys, and thus there will be information
provided by external galaxy catalogs to aid the line de-confusion problem. Ignoring
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redshift uncertainties of the external catalogs, one simple approach to incorporate
the external information is to force the MP algorithm to first select the redshift bins
that contain galaxies from the catalog. After iterating through the catalog sources,
we then continue the normal MP procedure until hitting the stopping criteria.

To test the effect of including prior knowledge from external catalogs, we generate
a mock catalog by selecting sources with CO(5–4) flux greater than 150 !� Mpc−2

(6 × 10−17 W m−2) in each light cone. The source density in the catalog is ∼ 1.2
per light cone (integrated along line of sight) for a 0.432 arcmin2 pixel solid angle.
The flux cut corresponds to an !∗ galaxy at I ∼ 2. According to Helgason et al.
[32], such an !∗ galaxy has an absolute magnitude "AB ∼ −23 in the optical,
which gives an apparent magnitude of <AB ∼ 21.8, approximately the depth of the
assumed optical catalog.

With this mock external catalog, we identify the redshift bins containing the catalog
sources, regardless of the noise level and threshold value. After projecting out these
components, we run the MP algorithm on the residual data as per usual until we hit
the stopping criteria. The results of a 4-f-threshold reconstruction with different
noise levels are shown in Fig. 4.17. The reconstruction shows improved results for
all noise levels. However, the huge improvement in the highest-noise case cannot be
interpreted as a successful reconstruction of source intensities. At this high noise
level, the signals are well buried under the noise, and when we fit the data with the
catalog source redshift templates, the extracted components are dominated by noise
rather than signal amplitude. Thus the improved correlation is merely due to the
position information imposed by the external catalogs.
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Figure 4.17: Comparing A of the reconstructed map with no external catalog prior
(red), and utilizing the external catalog prior to fit the catalog sources before running
the MP reconstruction (cyan), using 4-f reconstruction threshold. The values are
the average of A within the channels of the band, and the error bars are the rms of
100 noise realizations of all the spectral bins in each band.
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Comparing with the Limit of No Interlopers
In the case of no interloper lines (i.e. only single-line emission in the data), the
best estimator of the single-line intensity map is the observed map (regardless of
foregrounds). To compare our reconstruction performance with this limiting case,
we calculate the correlation coefficient between the input single-line map with the
same single-line map plus the instrument noise.

Fig. 4.18 shows the results using f= = 104 Jy sr−1. Comparing to Fig. 4.6, which has
the same noise level, the single-line-plus-noise case has a lower correlation than the
reconstruction in Fig. 4.6. Especially for the fainter lines (e.g., CO(3–2) at I ∼ 0.6
and CO(4–3) at I ∼ 1.1), our reconstruction map has a much better correlation.
This can be explained by the fact that in our algorithm, the sources are detected in
the template space rather than in a single voxel. That is, if a source can be observed
in two frequency channels, we extract the source by projecting the signals in these
two channels to the template space, which is effectively combining the information
from both channels. Consequently, we are able to achieve a better S/N on the fainter
lines because of the greater sensitivity of their brighter counterpart.
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Figure 4.18: Pearson correlation coefficient A between the true line maps and the
same maps adding the f= = 10−4 Jy sr−1 noise on 2500 light cones. The bands are
the rms of the value in 100 noise realizations with the sample line signal. The gray
bands are the A value shown with the uncorrelated white noise map for reference.

Improving Cross-correlation Uncertainty
Another useful application of the reconstruction technique is for a more precise
measurement of cross-correlation between LIM and other tracers. Cross-correlation
analysis not only serves as a validation of a cosmological signal in LIM, since the
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cross-correlation is less susceptible to foreground contamination and other system-
atic effects, but also provides valuable astrophysical and cosmological information.

While cross-correlating the total observed LIM map with an external tracer gives
an unbiased estimator of cross spectrum between the target line and the external
tracer, the presence of continuum foregrounds and interlopers increases the error
of this measurement. Here we present a simple argument that for cross-correlation
analysis, using a reconstructed map instead of the total observed map can effectively
reduce the error bars on the cross-power spectrum.

The cross-power spectrum errors between two fields X%12 in a single mode are given
by

X%2
1,2 =

1
2

(
%2

1,2 + X%1X%2

)
, (4.13)

where %1,2 is the cross-power spectrum, and X%1 and X%2 are the errors on the auto
power spectrum in the two fields. For a single : mode, X%1 = %1, X%2 = %2, where
%1 and %2 are the total power spectra (including signals and noise) measured in
two fields. Eq. 4.13 can be expressed in terms of the cross-correlation coefficient:
A1,2 = %1,2/

√
%1%2,

X%2
1,2 =

1
2
%2

1,2

(
1 + 1

A2
1,2

)
. (4.14)

Say we have an external galaxy sample that traces one of the target CO lines, then
we can write the total observed LIM data as the combination of target CO line (�CO),
other interloper lines (�interlopers), and the noise (�=),

�tot = �CO + �interlopers + �=. (4.15)

The expectation value of the cross spectrum between the observed total map and
galaxy is the same as the cross spectrum with only the target CO, since the other
components are not correlated with the large-scale structure at the same redshift, so〈
%g,tot

〉
=

〈
%g,co

〉
.

For simplicity, we assume the galaxies are perfectly correlated with the target CO
line field on the scale of interest, so Ag,co = 1. This implies the galaxy field and CO
field always have the same correlation A with any given field G, Ag,x = Aco,x.

From Eq. 4.14, the error on the galaxy-CO cross spectrum measured by cross-
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correlating the galaxy field with the total observed LIM data is

X%tot
g,co = %g,tot

√√√
1
2

(
1 + 1

A2
g,tot

)

= %g,co

√√√
1
2

(
1 + 1

A2
co,tot

)
.

(4.16)

On the other hand, if we cross-correlate the galaxies with the reconstructed CO map
(COr), the error is

X%g,cor = %g,cor

√√√
1
2

(
1 + 1

A2
g,cor

)
. (4.17)

However, %g,cor is a biased estimator of %g,co because of the error in the reconstruc-
tion. If we assume that the reconstructed map roughly preserves the same power as
the truemap, %cor ≈ %co, thenwe canwrite6 %g,cor = Ag,cor%g,co = Aco,cor%g,co. There-
fore, we have to de-bias cross spectrum %g,cor by factor 1/Aco,cor , %g,co = %g,cor/Aco,cor .
The value of Aco,cor cannot be directly inferred from the data, so we have to estimate
it by simulating the possible range of signals; this introduces an extra error term to
the XAco,cor due to the uncertainty in Aco,cor ,

X%r
g,co = %g,co

√(
X%g,cor

%g,cor

)2
+

(
XAco,cor

Aco,cor

)2

= %g,co

√√√
1
2

(
1 + 1

A2
co,cor

)
+

(
XAco,cor

Aco,cor

)2
.

(4.18)

In summary, the S/N on the galaxy-CO cross spectrum %g,co using the total observed
map and the reconstructed map is

(#'tot =
%g,co

X%tot
g,co

=
1√

1
2

(
1 + 1

A2
co,tot

) ,
(#'r =

%g,co

X%r
g,co

=
1√

1
2

(
1 + 1

A2
co,cor

)
+

(
XAco,cor

Aco,cor

)2
.

(4.19)

6%g,cor = Ag,cor
√
%6%cor ≈ Ag,cor

√
%6%co = Ag,cor%g−co, where the last equality uses the assump-

tion Ag,co = 1.
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Note that the S/N in both cases converges to unity when A is unity and the de-bias
error is zero, which is the limit of sample variance7.

Fig. 4.19 shows the (/# tot and (/# r with two different values of XAco,cor and Aco,tot

as a function of Aco,cor . According to the calculations in Sec. 4.5, the value of Aco,cor

ranges from ∼ 0.7 to ∼ 0.9 (except for the most noisy case, f= = 5 × 104 Jy sr−1).
To estimate the realistic Aco,tot value, we calculate the correlation of the input CO
line maps and the observed map with f= = 104 Jy sr−1, the same noise level as in
Fig. 4.6. The results are shown in Fig. 4.20. We find that Aco,tot are around 0.2-0.5
in this case. With this range of parameters, Fig. 4.19 indicates that (/# r is better
than (/# tot, which means that in our model, using the reconstructed map instead of
the observed map in cross-correlation can reduce the uncertainty.
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Figure 4.19: Comparing the S/N on the cross-power spectrum of one CO line and
the external tracer, using the total observed map ((/# tot) and the reconstructed CO
map ((/# r). We consider two different values of XAco,cor and Aco,tot that cover the
range of realistic parameter values in our model. The value of Aco,cor ∼ 0.7 − 0.9
according to the results in Sec 4.4, and therefore using the reconstructed map
instead of the total observed map in cross-correlation can reduce the uncertainty
(i.e. (#'r > (#'tot).

7The power spectrum cross-correlation coefficient can be derived from the Pearson correlation
(Eq. 4.10) with a weighting on pixels. Since our pixels are generated and reconstructed independently
of each other, the Pearson correlation coefficient here is an unbiased estimator of the power spectrum
correlation coefficient. Thus here we will use the value of Pearson correlation we derived for the
power spectrum correlation coefficient.
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Figure 4.20: Pearson correlation coefficient A between the true input and the total
observed maps on 2500 light cones with f= = 104 Jy sr−1. The bands are the rms
of the value in 100 noise realizations with the sample line signal. The gray bands
are the A value shown with the uncorrelated white noise map for reference.

Estimating the complete interloper population
Herewe discuss a potential extension of the technique, which is capable of estimating
the total power of an interloper population. The method uses an incompletely
reconstructed interloper sample and an incomplete, external tracer of the interloper
density field. Once the interloper contribution is fully quantified, the high-redshift
signal of interest in an LIM dataset can be estimated without bias. As an example,
we write the observed intensity of a [C ii] LIM dataset as

�obs = �CO + �C II + Xobs
= , (4.20)

where �CO is the total CO interloper intensity, �C II is the C ii signal, and Xobs
= is the

instrumental noise. For simplicity, here we only consider the contribution of one
CO rotational line as the foreground.

Given a reconstruction threshold, we reconstruct the bright CO emissions using our
technique as:

�rec
CO = U�COb + Xrec

= , (4.21)

where �rec
CO is the reconstructed CO intensity and �COb is the intensity of bright CO

sources in the reconstruction, which is a subset of the total CO population. There
are two sources of error in the reconstruction: a multiplicative term U proportional
to the bright CO intensity, where U can be greater or smaller than unity, and an
additive term Xrec

= describing random (or misidentified) fluctuations about the true
CO intensity, which is uncorrelated with the CO field.
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The auto power spectrum of the reconstructed CO map is〈
�rec
CO�

rec
CO

〉
=Ū2 〈

�COb �COb

〉
+

〈
Xrec
= X

rec
=

〉
=Ū2 〈

�COb

〉2
12

COb
%(:) + # rec,

(4.22)

where, in the linear regime that we consider here, 1COb is the cosmological clustering
bias of the bright CO sources, %(:) is the matter density field, and # rec is the auto
power spectrum of the Xrec

= term as a noise bias.

Using an external galaxy sample 6 in the same redshift range as the CO interlopers,
we cross-correlate 6 with the observed and reconstructed maps, respectively, and
consider only linear clustering scales:

〈6�obs〉 = A 〈�CO〉 1CO1g%(:), (4.23)〈
6�rec

CO
〉
=

〈
6U�COb

〉
= ŪA1

〈
�COb

〉
1COb1g%(:), (4.24)

where 〈U〉 = Ū, 16 is the bias of the galaxy tracer, 1COb is the bias of the bright
CO population, and A (A1) is the astrophysical stochastic cross-correlation parameter
between the galaxy and CO (CO1) populations.

Finally, we construct an estimator of the full CO power spectrum as〈 ��CO�CO

〉
=

〈
�rec
CO�

rec
CO

〉 ( 〈
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CO
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(4.25)

If we can pick a reconstruction threshold such that the reconstruction of a subset of
the CO population (bright CO sources) includes the majority of CO emitters, then
A ≈ A1. Furthermore, if the reconstruction noise is negligible, # rec/Ū2 → 0, then
this estimator becomes an unbiased estimator of the full CO power spectrum on
large scales: 〈 ��CO�CO

〉
=

〈
�rec
CO�

rec
CO

〉 ( 〈
6�obs

CO
〉〈

6�rec
CO

〉 )2

= 〈�CO〉2 12
CO%(:). (4.26)

In principle, this argument holds regardless of the luminosity limit of the CO
population used for the reconstruction and regardless of the magnitude limit of the
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galaxy sample used for the cross-correlation estimate, as long as the galaxy and CO
samples overlap spatially. This is potentially a powerful approach to access the entire
interloper CO population without the need to identify the faint, undetected source
contributions. Subtracting this CO estimate then provides an unbiased estimate
of the high-redshift C ii power spectrum in the same LIM dataset, which is highly
desirable.

With an external galaxy catalog along, one can also estimate the total CO power
on large scales where A ≈ 1, with the estimator:

〈
6�obs

CO
〉2 /〈66〉. However, the

advantage of the Eq. 4.25 estimator is that it only requires A ≈ A1, which can be valid
on smaller scales where A < 1, as long as the reconstruction has sufficient quality in
terms of the noise level purity and completeness. Therefore, with the reconstructed
map, one can potentially extract the total CO power to smaller scales.

We note that a high reconstruction threshold < is required in order to achieve
a (nearly) noiseless reconstruction (# rec/Ū2 → 0). On the other hand, A ≈ A1

becomes invalid if the threshold is too high such that majority of the fainter sources
is missed in the reconstruction. In addition, a high threshold tends to boost the shot
noise in the reconstructed power spectrum, as well as uncertainties in the CO power
spectrum estimator (Eq. 4.25). There is clearly a trade-off between the fidelity of the
reconstructed signals and the uncertainty to estimate the desired signals. A detailed
simulation is necessary to determine the optimal threshold to minimize the effect
of bias from #rec and the variance from the reconstruction shot noise, and evaluate
the performance of the CO power spectrum estimator. We leave this investigation
to future work.

Comparing Foreground Cleaning Capability with Masking
Our algorithm can serve as a foreground mitigation method for C ii LIM measure-
ment by identifying the bright CO foreground signals. In this section, we quantify
this "foreground cleaning" performance using our algorithm and compare it with
the masking method, where a “cleaned map” is obtained by masking out voxels that
contain bright CO sources identified with an external source catalog.

In the following, we compare two cases: (1) in the masking case, the “cleaned map”
is the observed map (including all of the lines and instrument noise) masked using
external CO catalogs; and (2) the “cleaned map” derived from our algorithm is the
observed map subtracting the CO reconstructed map.

The external catalog considered here is the same as the one described in Sec. 4.5: a



125

flux cut on CO(5–4) at the level of 150 !� Mpc−2 (6 × 10−17 W m−2), which gives
∼ 1.2 galaxies per light cone (0.432 arcmin2 pixel solid angle) and corresponds to
a <AB ∼ 21.8 threshold in the optical band. Note that this masking threshold is
comparable to the “case A” masking in Sun et al. [66], although here we consider a
simpler model that ignores the scatter in the line luminosity model. For this masking
scenario, the “cleaned map” is the observed map minus any voxels that contain the
sources in the external catalog.

In our algorithm, the CO sources and their spectra are reconstructed and removed
from the data iteratively, and the residual can be regarded as a “cleaned map” that is
free of bright CO sources. However, we are only capable of cleaning the multi-line
redshift bins in our algorithm. The signal identified in the single-line redshift bins in
our algorithm is the combination of the remaining CO and C ii signals. If we remove
all of the reconstructed single-line signals, we will over-subtract C ii in the cleaned
map. Therefore, for the single-line redshift bins (0.15 ≤ I ≤ 0.51; 0.72 ≤ I ≤ 0.89;
I ≥ 1.87), we clean the data bymasking voxels that contain external catalog sources.

As a figure of merit, we calculate the S/N of the respective C ii shot-noise power
spectra (since there is no clustering signal in our mock light cones) while including
the residual CO as part of the noise contribution.

The error on the shot-noise power spectrum X%sh in a map is

X%sh =
%tot√
#mode

=
+voxf

2
tot√

#mode
, (4.27)

where %tot is the total power spectrum of the cleaned map on the shot-noise scales,
which is proportional to the total voxel variance in the map, f2

tot. #mode is the
number of k-space modes used to measure the shot noise. #mode is usually of the
order of the total number of voxels, so we choose #mode = 6000, similar to the
number of voxels in TIME. The shot-noise power of the C ii signal is given by

%CII = +voxf
2
CII, (4.28)

wheref2
CII is the voxel variance of the C ii signal map. The S/N of the C ii shot-noise

power spectrum is then:
%CII
X%sh

=
f2

CII

f2
tot

√
#mode. (4.29)

We test the foreground cleaning performance with the same set of 2500 mock light
cones described in Sec. 4.4, and calculate the C ii shot-noise S/N using Eq. 4.29. The
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f2
CII is the variance of the input C ii map, and f2

tot is the variance of the cleaned map.
For simplicity, f2

CII and f
2
tot are the variance from all of the frequency channels.

In Fig. 4.21, the black dotted lines and the red lines show the C ii shot-noise S/N
with the cleaned map obtained from masking and from our algorithm, respectively.
For reference, the black dashed lines are the C ii shot-noise S/N of the observed map
before cleaning, and thus the map includes the contribution from all of the lines and
the instrument noise.

According to Fig. 4.7, the optimal threshold that gives the maximum A value is
< ∼ 4. In Fig. 4.21, < = 4 is marked with an orange dashed line, and we see
that in the highest-noise case for this threshold, masking (black dotted line) using
an external (deep) catalog performs slightly better than reconstruction (red line)
because it is difficult for the MP algorithm to extract the signals from noisy data
directly. For realistic noise levels (between f= = 5 × 103 and 104 Jy sr−1), the
reconstruction outperforms masking.

We also compare this result with the limiting case where there are only C ii and
instrumental noise in the data (green line), i.e. f2

tot = f2
CII + f

2
= . For a small

reconstruction threshold <, the reconstructed S/N is better than this limit, which
indicates that the reconstruction over-fits and misidentifies noise fluctuation as a
signal and removes them from the cleaned data. We see that for the two realistic
noise levels at < ∼ 4, the reconstructed S/N is lower than this limit, and thus
indicates that overfitting is not an issue at this threshold. Also note that in the
highest-noise case, the masking SNR is close to the noise-plus-C ii limit (green
line), for the following reason: since the external catalog goes much deeper than the
noise level, noise fluctuation dominates over the line signals after masking, and thus
variance in the masked map is close to the noise variance.

Finally, we point out that the reconstructed C ii shot-noise S/N (red line) converges
to a constant instead of increasing with smaller threshold < values. This is because
of the fact that in the low threshold limit, the reconstruction residual in the cleaned
map is subdominant compared to the (masked) single-line redshift bin signals being
added back to the residual, and thus the cleaned map S/N does not depend on the
threshold value.

To sumup, for a realistic noise level, our reconstruction performs better thanmasking
in terms of foreground cleaning capability, given our signal model and the external
catalog considered in this work. We note that this conclusion depends on the line
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luminosity function model and the depth of the external catalog for masking, and
we leave a more detailed analysis to future work.
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Figure 4.21: S/N on [C ii] shot-noise power spectrum after CO line foreground
removal with masking (black dotted) and sparse reconstruction (red) with different
instrument noise level f= and reconstruction threshold <. The orange dashed line
marks the < = 4 threshold for reference. We also show the S/N before cleaning
(black dashed), and the limiting case of the no CO signals (green) for comparison.

Technique Extensions
In this section, we outline some directions for extending the current framework to
further improve upon the line reconstruction in future work.

Template Generalization

Currently we use a single SLED template for all redshift bins in the reconstruction;
this can be easily generalized to incorporate multiple spectral templates to account
for the redshift evolution and SLED variation of the signals. In addition, the
extension can help differentiate the emission from different types of galaxies that
have different SLEDs. For instance, if we have two different SLED models for
early- and late-type galaxies, respectively, we can incorporate them by having two
columns in A for every redshift bin such that the reconstruction can infer not only
the redshift and luminosity of the sources, but also their galaxy type from the SLED
templates.

Alternative Sparse Approximation Algorithm

The MP algorithm adopted in this work optimizes the ℓ0 norm in Eq. 4.8, which
is the direct sum of the nonzero elements in Ñ. We can improve the algorithm
by including prior information on the expected value of each element in Ñ, which
depends on the voxel size and source luminosity function. For instance, instead of
using the MP algorithm, one can obtain the sparse solution by solving the following



128

ℓ1-norm regularization equation:

argmin
Ñ

I − AÑ
2

2
+ _

w · Ñ
1
, (4.30)

where the parameter _ determines the regularization strength for preventing over-
fitting, which has a similar effect as the stopping criteria in the MP algorithm; the
prior information on the number density of the sources in each redshift bin can be
encoded in the weight vector w in this expression.

Clustering Information

In this work, we only perform the pixel-by-pixel line de-confusion using the infor-
mation in the spectral correlation due to the multiple lines emitted from the same
source to reconstruct the signals. The clustering information of the galaxies, which
is neglected in this work, could provide additional information on the emission field.
We can generalize this framework by incorporating the clustering information from
the known galaxy two-point correlation, and perform the reconstruction on an en-
semble of pixels to simultaneously fit for the spectral correlation and clustering. For
example, if we have a theoretical model for the line-of-sight two-point correlation
function of N(I), bth(N(I)), we can add another ℓ2-norm regularization term to
Eq. 4.30,

_clus

b (Ñ(I)) − bth(N(I))
2

2
. (4.31)

This will enforce the algorithm to give higher priority to solutions close to the
theoretical correlation function. Similarly, with an external catalog that traces
the same large-scale structure, one can also constrain the algorithm with cross-
correlation:

_Gclus

bG (Ñ(I), Xext) − bGth(N(I), Xext)
2

2
, (4.32)

where Xext is the density field of the external tracer, e.g. galaxy samples, and bG

is the cross-correlation between N(I) and Xext. We leave further investigation that
makes use of clustering information to future work.

4.6 Conclusion
We develop a spectral line de-confusion technique for LIM experiments, where
different spectral lines emitted by sources at different redshifts can be observed
in the same frequency channel and then confused. Unlike most of the previously
proposed methods that decompose the line signals in the power spectrum space, we
perform a phase-space de-confusion that reconstructs the individual line intensity
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maps, if multiple spectral lines of a redshifted source population are observable.
The reconstructed line intensity maps are direct data products of an LIM experiment,
and can be used to trace the underlying density field for various science applications.

Our method is based on the information that multiple spectral lines emitted by
redshifted sources are mapped onto distinct observed frequencies, which give deter-
ministic features in the observed spectrum that can be fitted by a template. With a
set of spectral template models and assuming the sparse approximation, we fit the
LIM data iteratively with the MP algorithm.

As an example, we consider an LIM survey with similar survey parameters as the
ongoing EoR [C ii] experiments, TIME, and CONCERTO. The intervening CO line
intensity maps at 0.5 . I . 1.5 can be extracted with our technique, since multiple
CO rotational transitions are observable. We demonstrate that with the assumed
signal model and realistic noise level, our reconstructed CO maps reach ∼ 80%
spatial correlation with the true maps. In addition, in our assumed signal model and
realistic survey setup, the VID of individual lines can be correctly extracted with a
high S/N ratio down to the ℓ∗-scale. The CO luminosity function derived from the
VID measurement can provide information on galaxy formation and evolution as
traced by the CO distribution across cosmic time. The reconstruction performance
is robust against a realistic level of line ratio uncertainties and continuum foreground
mitigation process.

In addition to probing the large-scale luminosity and density fields, the recon-
structed line intensity maps can also be used for a variety of applications. As a
demonstration, we show that using the reconstructed map instead of the original
LIM dataset can effectively reduce uncertainties in cross-correlation measurements,
and improve the performance of interloper masking to reveal the high-redshift line
emissions. Furthermore, given that the reconstructed intensity map, even if incom-
plete, traces the matter density on large scales, we construct an estimator capable of
estimating the total interloper power. The estimator invokes the cross-correlation of
the reconstructed map with an external density tracer such as galaxies in the linear
clustering regime. This approach has the potential to fully specify the interloper and
high-redshift source populations and warrants future investigation.

While we mainly discuss the application for an EoR [C ii] LIM experiment in
this paper, this technique is not restricted to this setup. We demonstrate that our
technique can successfully extract redshifted optical line signals from a SPHEREx-
like experiment in the near-infrared. The technique is a general framework that can
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be readily applied to mitigate line de-confusion problems in LIM experiments and
enhance the science returns.

In this section, we describe the detailed steps in thematching pursuit (MP) algorithm.
The MP algorithm iteratively selects an atom in the dictionary to project out part
of the signals in the data, and keep track of the current solution of the signal f and
residual R for the next step until the solution meets the stopping criteria. In Eq. 4.8,
for a given signal I and matrix A, we define a set of vectors {k8} to be the column
vectors in A (i.e. the atoms in the dictionary). The MP algorithm works as follows:

1. Initialize at step C = 0: f0 = 0, R0 = I, Ñ0 = 0.

2. Compute the inner product of R0 and k8’s:

{D08} = {〈R0, k8〉} . (33)

3. Select the element W to be updated by

W = argmax
8

{D08} . (34)

4. IfD0Wmeets the stopping criteria, end the process and returnN = 0. Otherwise,
proceed to step 5.

5. Update the current fC , RC , and record the amplitude of the new solution in W-th
element of vector ÑC :

fC+1 = fC + DCW kW, (35)

RC+1 = RC − DCW kW, (36)

ÑC+1(W) = ÑC (W) + DCW . (37)

6. Compute the inner product of RC+1 and k8’s:{
D(C+1)8

}
= {〈RC+1, k8〉} . (38)

7. Select the element W to be updated by

W = argmax
8

{
D(C+1)8

}
. (39)

8. If D(C+1)W meets the stopping criteria, go back to step 5 for the next iteration.
Else, proceed to step 9.
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9. Return the final solution N = ÑC+1 / Inorm.

As described in Sec. 4.3, the stopping criteria is set by comparing DCW with the noise
f=. This follows the fact that var(DCW) = f2

= (see Appendix .2 for the proof), so if we
set D(C+1)W < < f= in step 8, this is effectively setting an “m-f” detection threshold
(e.g., < = 5 for a 5f detection).

Fig. .22 illustrates the steps of the MP algorithm solving N of an example light cone.
In this example, we set f= = 10 kJy, and the detection threshold < = 5. In this light
cone, there are six ℓ∗ sources in the multi-line redshift bins at I = [0.54, 1.06, 1.20,
1.24, 1.79, 1.82], shown in the top left panel. Since N is the effective number of ℓ∗
sources per redshift bin, the amplitudes in the six corresponding redshift bins are
equal to unity. The top middle panel is the total line signal in this light cone Itrue,
including the emission from those six sources as well as that from other sources in
the single-line redshifts. The top right panel shows the observed data after adding
noise to the signal Itrue, which is also the R0 vector in the first step of the MP
algorithm. The blue dashed lines mark the noise level ±f= = 10 kJy for reference.

.1 The Matching Pursuit (MP) Algorithm
In the first iteration, the MP algorithm selects the 14th z-bin index (I = 0.54) with
amplitude D1W ∼ 1, so the I = 0.54 source is successfully extracted in this iteration.
The gray dashed spectrum in the left panel of the second row is the template signal
extracted in this step (D1WkW). The updated values of N1, f1, and R1 from step 5 are
shown in the second row of Fig. .22.

Then we proceed to the second iteration. The MP algorithm selects the 37th column
(I = 0.65). The gray dashed spectrum in the left panel of the third row is the
template signal fitted in this step (D2WkW). However, there is no I = 0.65 source in
the input, which means the MP algorithm misidentifies the emission from noise or
other lines as the signal. The third row of Fig. .22 shows the updated values of N2,
f2, and R2 from the second iteration.

In the third iteration, the 109th (I = 1.24) column in the dictionary is selected.
The fourth row of Fig. .22 shows the updated values of N3, f3, and R3 from this
iteration. Note that this time the MP algorithm picks up a correct redshift, while it
overestimates the amplitude by ∼ 40%.

In the fourth iteration, the algorithm selects the 224th column from the dictionary.
The 224th column is not in the multi-line redshift bins (first 195 columns), and thus
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Figure .22: Illustration of how the MP algorithm solves for the source vector N.
See the text for a detailed description.

the N4 in the bottom row of Fig. .22 remains unchanged, whereas f4 and R4 are
updated with a single-peak signal.

In the fifth iteration, the stopping criteria in step 8 is met (D5W < 5f=), so the
reconstruction terminates and returns the last row of Fig. .22 as the reconstruction
results for this light cone.

In summary, in this example, two of the six multi-line redshift sources have been
reconstructed, in addition to one misidentified source. Comparing the final recon-
structed light cone signal (bottom middle panel of Fig. .22) to the true input light
cone (top middle panel of Fig. .22), we can see that the MP reconstruction captures
the strong peaks in the data, and the remaining signals are close to the noise level.
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.2 Proving var(DCW) = f2
=

In Sec. .1, the residual of step C Rt can be expressed in the linear combination of the
dictionary atoms and noise:

RC =
∑
8

28 k8 + n, (40)

where 28’s represents the constant coefficient. Then we derive

DCW ≡ 〈 RC , kW〉
=

∑
8

28 〈 k8, kW〉 + 〈 n, kW〉

= const +
∑
9

= 9 kW 9 .

(41)

The first term does not depend on the noise, so it is a constant term that is not
contributing to the variance. Also note that 〈 k8, kW〉 ≠ X8W since the dictionary
{k8} is normalized but not orthogonal. With this expression, we can calculate the
variance: 〈

DCW
〉
= const +

∑
9

〈
= 9

〉
kW 9 = const〈

D2
CW

〉
= const2 +

∑
9

〈
=2
9

〉
k2
W 9

= const2 + f2
=

∑
9

k2
W 9

= const2 + f2
= .

(42)

Therefore, we get
var(DCW) =

〈
D2
CW

〉
−

〈
DCW

〉2
= f2

= . (43)

.3 SPHEREx Line Signal Model
In this section, we describe the line signal model in the SPHEREx wavelengths. We
model five lines from I = 0 to 10 in SPHEREx band: LyU (121.6 nm), HU (656.3
nm), HV (486.1 nm), [O ii] (372.7 nm), and [O iii] (500.7 nm).

Since the optical lines are associated with the star formation activities, we model the
signal with the following steps: we start with the halo mass function, and use the
star formation rate (SFR)—halo mass (") relation, and the SFR—line luminosity
relation to paint the spectral line signals to each halo.

We use the publicly available halo mass function calculatorHMFcalc [52]8 to obtain
the halo mass function based on the Sheth et al. [62] model. For the SFR–M relation,

8http://hmf.icrar.org/.

http://hmf.icrar.org/
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we use the model from Behroozi et al. [1], in which the SFR–M relation is derived
based on several observational constraints. 9

For the SFR–line luminosity relation, we assume a linear relation for all of the lines.
For LyU, we use the prescription provided by Fonseca et al. [26] with their fiducial
values: WLyU = 1, 5*+esc = 0.2, 5 LyU

esc = 0.2, �UV = 1.0 in their equation 8 and 15, and
derive the conversion factor:

(�'

"�/yr
= 2.29 × 10−41 !LyU

erg/s . (44)

For other spectral lines, we adopt the relation from Kennicutt [36] and Ly et al. [44]:

(�'

"�/yr
= (7.9 ± 2.4) × 10−42 !�U

erg/s , (45)

(�'

"�/yr
= (1.4 ± 0.4) × 10−41 ! [$��]

erg/s , (46)

(�'

"�/yr
= (7.6 ± 3.7) × 10−42 ! [$���]

erg/s , (47)

and for the HV line, we use the fixed line ratio �V/�U = 0.35 [53].
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C h a p t e r 5

PROBING INTRA-HALO LIGHT WITH GALAXY STACKING
IN CIBER IMAGES

Cheng, Y.-T., Arai, T., Bangale, P., et al. 2021, arXiv e-prints, arXiv:2103.03882.
https://arxiv.org/abs/2103.03882

We study the stellar halos of 0.2 . I . 0.5 galaxies with stellar masses spanning
"∗ ∼ 1010.5 to 1012"� (approximately !∗ galaxies at this redshift) using imaging
data from theCosmic InfraredBackgroundExperiment (CIBER).ApreviousCIBER
fluctuation analysis suggested that intra-halo light (IHL) contributes a significant
portion of the near-infrared extragalactic background light (EBL), the integrated
emission from all sources throughout cosmic history. In this work, we carry out
a stacking analysis with a sample of ∼30,000 Sloan Digital Sky Survey (SDSS)
photometric galaxies from CIBER images in two near-infrared bands (1.1 and 1.8
`m) to directly probe the IHL associated with these galaxies. We stack galaxies in
five sub-samples split by brightness, and detect an extended galaxy profile, beyond
the instrument point spread function (PSF), derived by stacking stars. We jointly
fit a model for the inherent galaxy light profile, plus large-scale one- and two-
halo clustering to measure the extended galaxy IHL. We detect non-linear one-halo
clustering in the 1.8 `m band, at a level consistent with numerical simulations. By
extrapolating the fraction of extended galaxy light we measure to all galaxy masses
scales, we find ∼ 30%/15% of the total galaxy light budget from galaxies is at radius
A > 10/20 kpc, respectively. These results are new at near-infrared wavelengths at
the !∗ mass scale, and suggest that the IHL emission and one-halo clustering could
have appreciable contributions to the amplitude of large-scale EBL background
fluctuations.

5.1 Introduction
In the standard cosmological paradigm, galaxies grow hierarchically throughmerger
and accretion. Galaxies accreting ontomoremassive systems become disrupted, and
stars stripped away from their parent galaxies become redistributed in the merged
dark matter halo. This results in extended stellar halos that are known to span tens
or hundreds of kilo-parsecs. The stellar emission from this material is sometimes

https://arxiv.org/abs/2103.03882
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referred to as “intra-halo light” (IHL), or in massive galaxy clusters as “intra-cluster
light” (ICL).

The properties of stellar halos across a wide range of mass scales have been ex-
tensively studied using analytical models [e.g., 77] and N-body simulations [e.g.,
17, 23–26, 35, 80, 83]. Several observations have constrained the ICL content in
galaxy clusters [e.g., 18, 43, 43, 44, 63], as well as stellar halos in lower mass
systems by deeply imaging individual galaxies [e.g., 5, 51, 66, 92, 96] or through
stacking [e.g., 34, 97, 102, 103].

An independent way to study the aggregate emission from diffuse sources like IHL is
through measurements of the extragalactic background light (EBL), which encodes
the integrated emission from all sources across cosmic history [27]. Absolute optical
and near-infrared EBL photometry has proven challenging as measurements must
tightly control systematic errors and carefully model and subtract local foregrounds
[e.g., 55, 61, 69, 71, 99]. Several authors [13, 61, 62, 67, 71, 86, 87, 94, 99]
have reported potential detections above the integrated galaxy light (IGL) derived
from galaxy counts [32, 33, 48, 56, 59, 85], which may indicate the existence of
extragalactic emission missed in source counting surveys.

Additionally, EBL fluctuation analyses have also consistently reported excess fluc-
tuations over those expected from the IGL [29, 53, 54, 57, 68, 70, 73, 88, 93, 101].
One explanation is emission from the epoch of reionization [53, 54, 70, 73], while
other studies suggest IHL contributes most of the excess fluctuations [29]. In partic-
ular, [101] interpret imaging data from the Cosmic Infrared Background Experiment
(CIBER) as arising from an IHL intensity comparable to the IGL at near-infrared
wavelengths. This result would imply that stars diffusely scattered in dark matter
halos may account for a non-negligible fraction of the near-IR cosmic radiation
budget. The absorption spectra from blazars constrain the EBL column density
along the line of sight [e.g., 1, 2, 4, 6–10, 46, 65]. While IHL is generally produced
at low redshifts, improving the uncertainties in its redshift history helps place IHL
in the context of these constraints.

In this work, we further constrain the IHL using CIBER broad band imaging. Rather
than studying EBL intensity fluctuations as in Zemcov et al. [101], we perform a
stacking analysis to directly probe the stellar halos around galaxies. We stack a
sample of ∼ 30, 000 Sloan Digital Sky Survey (SDSS) photometric galaxies at
I ∼ 0.2 – 0.5 across five 2 × 2 deg2 fields. Our samples span a range of stellar
masses at approximately !∗ scales at this redshift [74]. Although we only study
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stellar halos around a subset of galaxies, rather than the aggregate population as
probed by fluctuations, stacking provides a direct path to probe the IHL associated
with this sample. Stacking complements fluctuation measurements by probing the
relationship between individual galaxies and their stellar halos. Stacking also allows
us to investigate how stellar halos depend on host galaxy properties, e.g, stellar mass,
redshift, etc. A complementary fluctuation analysis of these same data is currently
in progress.

This paper is organized as follows. First, we introduce CIBER in Sec. 5.2 and the
data processing in Sec. 5.3. Sec. 5.4 and 5.5 describe the external data sets used in
this work, including observed and simulated source catalogs. Sec. 5.6 details the
stacking procedure, and Sec. 5.7 describes the point spread function (PSF) model.
The stacking results are presented in Sec. 5.8. Sec. 5.9 introduces the theoretical
model we use to fit the data, and the parameter fitting procedure. The results
on model parameter constraints are given in Sec. 5.10, and further discussion is
presented in Sec. 5.11. Sec. 5.12 summarizes the paper. Throughout this work, we
assume a flatΛCDMcosmologywith =B = 0.97,f8 = 0.82,Ω< = 0.26,Ω1 = 0.049,
ΩΛ = 0.69, and ℎ = 0.68, consistent with the measurement from Planck [76]. All
fluxes are quoted in the AB magnitude system.

5.2 CIBER Experiment
CIBER1 [100] is a rocket-borne instrument designed to characterize the near-infrared
EBL. CIBER consists of four instruments: two wide-field imagers [15], a narrow-
band spectrometer [58], and a low-resolution spectrometer [95]. CIBER has flown
four times in February 2009, July 2010, March 2012, and June 2013. The first
three CIBER flights were launched at White Sands Missile Range, New Mexico on
a Terrier-Black Brant IX rocket. These flights reached ∼ 330 km apogee with ∼ 240
sec of exposure time, and the payload was recovered for future flights. The fourth
flight was a non-recovery flight launched 3:05 UTC 2013 June 6 fromWallops Flight
Facility, Virginia on a four-stage Black Brant XII rocket. The payload reached 550
km altitude, much higher than the two-stage rocket used in the previous three flights.
This gives more exposure time (335 sec) for observing more science fields with long
integrations to achieve better sensitivity and systematics control.

This work presents the first science results from the CIBER fourth flight imager
data. The data from previous flights have been studied with a fluctuation analysis,

1https://ciberrocket.github.io/

https://ciberrocket.github.io/
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published in [101]. With a large field of view and low sky background above
the atmosphere, CIBER imaging provides fidelity on angular scales from 7′′ to
2◦. For stacking, CIBER imaging can trace low surface brightness emission on
degree angular scales providing a unique dataset compared with ground-based or
small field-of-view space-borne studies. Each CIBER imager uses a 1024 × 1024
pixel HAWAII-1 HgCdTe detector. The two imagers are identical except for their
_/Δ_ ∼ 2 filters, which are centered at 1.05 and 1.79 `m2.

During its fourth flight, CIBER observed eight science fields with ∼ 50 sec integra-
tions sampled at 1.78 sec intervals. We discard the first three fields in this analysis
due to contamination from airglow that produces a strong non-uniform emission
across the images that requires aggressive filtering which also significantly reduces
our signal [101]. Table 5.1 summarizes the sky coordinates and the integration
time of the five science fields used in this work. In the beginning of the Elat30
integration, the rocket’s pointing was not stable which has the effect of smearing the
PSF on the sky. As a result, we only use the last 16 sec of this integration in our
analysis.

5.3 Data Processing
In this section, we describe the data reduction from the raw flight data to the final
images used for stacking.

Raw Time Stream to Images
The raw imager data provides a time series for each pixel. We fit a slope to the time
stream to obtain the photocurrent in each pixel, and convert the values from the raw
analog-to-digital units (ADU) to e− s−1 using known array gain factors.

The HAWAII-1 detector is linearly responsive to incoming flux over a certain dy-
namic range. For pixels pointing at bright sources, the detectors saturate and have
a non-linear flux dependence, even for short integrations [15]. In any pixel that
collects more than 5,000 ADU over the full integration only the first four frames
are used in the photocurrent estimate. Hereafter, the term “raw image” refers to the
photocurrent map after this linearity correction. Panel A of Fig. 5.1 and Fig. 5.2
show the raw images of the SWIRE field in the CIBER 1.1 and 1.8 `m bands,
respectively.

2In the first and second CIBER flights, the longer wavelength band is centered at 1.56 `m, and
thus it is named 1.6 `m band in previous CIBER publications [15, 101].
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Figure 5.1: Images from the SWIRE field in the 1.1 `m band. A: the raw image
of the photoccurent map. B: dark current template constructed from dark images
before the flight. C: instrument mask encoding the pixels with fabrication defects,
unusual photocurrents, and cosmic ray contamination. D: source mask for bright
stars and galaxies in the 2MASS and Pan-STARRS catalogs. E: flat-field estimator
from averaging the other four sky fields. F: raw image after dark current subtraction,
flat field correction, and calibration. G: Image in Panel F after (constant) background
removal and masking. This image is smoothed with a f = 35′′ Gaussian kernel
to highlight large-scale fluctuations. H: Image in Panel G after subtracting a fitted
2-D polynomial, also shown smoothed with a f = 35′′ Gaussian kernel. Compared
to Panel G, we see that the large-scale background fluctuations have been reduced
after filtering. This is the final product of the data reduction pipeline.
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Figure 5.2: Same as Fig. 5.1 in the CIBER 1.8 `m band.

Dark Current
In the absence of incoming photons, the detectors have a nonzero response, com-
monly referred to as “dark current”, due to thermally produced charge carriers and
multiplexer glow. The detector dark current is measured before each flight with
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the telescopes’ cold shutters closed. We obtain a dark current template for each
detector by averaging 11 dark images and then subtracting each template from the
corresponding raw images. The dark current level in CIBER imagers is ∼ 0.1 e−

s−1, less than 10 % of the sky brightness. Panel B of Fig. 5.1 and Fig. 5.2 show the
dark current maps of CIBER 1.1 and 1.8 `m bands, respectively.

Pixel Masks
We mask pixels that meet at least one of the following conditions: (1) a fabrication
defect; (2) poor time-stream behavior; (3) abnormal photocurrents compared with
other pixels; (4) a cosmic ray strike; or (5) being on or close to bright point sources
on the sky. The pixels satisfying criteria (1)–(4) comprise the “instrument mask”,
and a “source mask” is composed of pixels with condition (5).

Instrument Mask

Pixels with fabrication defects and significant multiplexer glow are mostly dis-
tributed near the edges or corners of each quadrant on the detector arrays. They
exhibit pathologies in their photocurrent response, and can be found by comparison
to the population of normal pixels. We perform a 3-f clipping on stacked dark
images (the same dataset used for a dark current template in Sec. 5.3) to identify
these pixels.

During integration, some cosmic ray events or electronic transients leave a step
feature in the time stream. We use a 100-f clip on each time stream to pick out
pixels that show these abrupt changes during an integration. Sometimes cosmic
ray events also leave a comet-like structure on the array, and these regions are also
masked. The union of the pathological pixel, time-stream masks, and cosmic ray
masks form the instrument mask. In total, ∼ 10% of pixels are removed by the
instrument mask. Panel C of Fig. 5.1 and Fig. 5.2 show the instrument masks in the
SWIRE field of 1.1 and 1.8 `m band, respectively.

Source Mask

To remove bright foreground stars and galaxies in our fields, we use position and
brightness information from the Pan-STARRS and 2MASS catalogs (see Sec. 5.4
for details). We further derive source magnitudes in the two CIBER bands, <1.1 and
<1.8, from these catalogs, as detailed in Sec. 5.4. We mask all point sources brighter
than <1.1 = 20, choosing a masking radius for each source derived as follows. With



146

the modeled instrument PSF (Sec. 5.7), the masking radius is chosen such that for
each source, pixels with intensity brighter than a� th

a = 1 nW m−2 sr−1 in the 1.1
`m band are masked. This choice of threshold value removes ∼ 50% of pixels in
each field. We apply the same masking radius to 1.8 `m band sources. The same
masking function is also applied to simulations to account for residual emission
from bright sources outside the masks and the unmasked faint populations. Panel
D of Fig. 5.1 and Fig. 5.2 show the SWIRE field source mask in the CIBER 1.1 and
1.8 `m bands, respectively.

The final mask we apply to the data is the union of the instrument mask and source
mask. After applying these masks, we apply a final 3-f pixel clipping mask to
identify additional outliers not flagged through the other methods (e.g., from low-
energy cosmic ray events or electronic tranisents).

Flat Fielding
CIBER images have a nonuniform response to a constant sky brightness across the
detector array, known as the flat field response. For each CIBER field, the flat-field
is estimated by averaging the dark-current-subtracted flight images of the other four
sky fields.

A laboratory flat-field measurement was also taken before the flight using a field-
filling integrating sphere, a uniform radiance sourcewith a solar spectrum [described
in 15]. Ideally, this is a better approach to measure the flat field since the one derived
from stacking flight images contains fluctuations from the other fields that will not
average down completely due to the small number of images. However, we found
the flat field from the integrating sphere is not consistent with the flight data on large
spatial scales [see 101], and therefore we do not use it in our analysis. The flat field
estimator for the SWIRE field in CIBER 1.1 and 1.8 `m bands are shown in the
Panel E of Fig. 5.1 and Fig. 5.2, respectively.

Surface Brightness Calibration
Throughout this work, we use nW m−2 sr−1 for the units of surface brightness (a�a).
The calibration factor, �, that converts photocurrent (e− s−1) to intensity (nW m−2

sr−1) is derived in the following steps:

1. Take the raw images, subtract the dark current template, correct for the flat
field, and apply the instrument and source masks;
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2. Subtract the mean photocurrent in the unmasked region.

3. For each star in the Pan-STARRS catalog, calculate the flux a�a in CIBER
bands from <1.1 and <1.8.

4. Sum the photocurrent in a 5×5 stamp centered on the source position3.

5. Repeat step (3) and (4) for all the selected stars (see below) and take the
average value of the flux ratio from (3) and (4) as the calibration factor �.

We select stars in the magnitude range 12.5 < <1.1 < 16 for the 1.1 `m band, and
13.5 < <1.1 < 17 for the 1.8 `mband. These magnitude ranges are chosen such that
the brightest sources that saturate the detectors (even after non-linear correction)
are excluded. Faint sources are not used because of their low signal-to-noise ratio.
We use a different magnitude range for each band as they have different point
source sensitivities. Panel F of Fig. 5.1 and Fig. 5.2 show the SWIRE field images
masked by instrument masks at 1.1 and 1.8 `m, respectively, after flat fielding and
calibration.

Background Removal
The total sky emission is composed of the EBL and various foreground components,
including zodiacal light (ZL), diffuse galactic light (DGL), and integrated star light
(ISL) from the MilkyWay [71, 101]. ZL is the dominant foreground, approximately
an order of magnitude brighter than the EBL [71]. Nevertheless, with its smooth
spatial distribution on degree scales, the ZL can be mostly removed by subtracting
the mean sky brightness in each field. Panel G of Fig. 5.1 and Fig. 5.2 show
the mean-subtracted and masked SWIRE images at 1.1 and 1.8 `m, respectively.
To highlight the large-scale fluctuations, we smooth the images with a f = 35′′

Gaussian kernel.

Image Filtering
Although the ZL signal is smooth, a flat-field estimation error may induce a nonuni-
form ZL residual that cannot be removed by mean subtraction. This residual may
dominate over cosmological fluctuations on large scales. Therefore, after removing
the mean value in the image, we filter the images by fitting and subtracting a 3rd/5th

3We have tested that using 3×3, 5×5, or 7×7 stamp size gives consistent results. Our beam size
is approximately twice of the pixel size, so a 3×3 stamp already has enclosed most of the flux from
a point source.
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order 2-D polynomial function for the 1.1/1.8 `m images to filter out any residual
large-scale variations (Panel H of Fig. 5.1 and Fig. 5.2). The filtering will also
suppress large-scale cosmological signals, and therefore the choice of polynomial
order used for filtering is determined by optimizing the trade-off between the re-
duction of background fluctuations and the large-scale two-halo signal. The effect
of filtering on the detected one-halo and galaxy extension terms is small, as our
filtering removes fluctuations at a much larger scales than these signals, and the
signal filtering is accounted for in simulations (see Sec. 5.9).

5.4 External Catalogs
Throughout this work, we used several external source catalogs for (1) masking
bright foreground sources (Sec. 5.3); (2) calibration (Sec. 5.3); (3) modeling the
PSF by stacking bright stars in the fields (Sec. 5.7); and (4) selecting galaxies for
stacking (Sec. 5.8).

To match the catalog sources to our data, we fit the astrometry coordinates of our
images with the online software nova.astrometry.net [60]. For each image,
we solve for the astrometry in four quadrants separately to mitigate the effect of
image distortion. Since there is a fixed ∼ 50′′ misalignment between the 1.1 and 1.8
`m images as they are produced by different telescopes, their astrometry is solved
separately.

Pan-STARRS
We use the Pan-STARRS catalog [22] for masking. Pan-STARRS covers all of
the CIBER fields with a depth of < ∼ 20 in the g, r, i, z, y bands. We query
the source positions and magnitudes in all five Pan-STARRS bands from their
DR1 MeanObject table, and derive <1.1 and <1.8 with the LePhare SED fitting
software [12, 52]. We use sources that have a y band measurement and a quality
flag (qualityFlag in ObjectThin table) that equals to 8 or 16 for masking.

2MASS
Some bright stars are not included in the Pan-STARRS catalog, and thus we use
the 2MASS [89] Point Source Catalog (PSC) to get the complete point source
list. For 2MASS sources, <1.1 (<1.8) is derived by linear extrapolation with the
2MASS photometric fluxes in J and H (H and KB) bands, respectively. We also use
bright stars in 2MASS for modeling the PSF (see Sec. 5.7).

nova.astrometry.net
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SDSS
We use the Sloan Digital Sky Survey (SDSS) DR13 [14] PhotoObj catalog to get
the star/galaxy classification (“type” attribute 6–stars, 3–galaxies) and the galaxy
photometric redshift (“Photoz” attribute) for sources in our fields. This information
is essential for selecting target galaxies for stacking and inferring their redshift
distribution (Sec. 5.8), as well as selecting stars for stacking to model the PSF
(Sec. 5.7).

SWIRE Photometric Redshift Catalog
Rowan-Robinson et al. [81, 82] performed SED fitting on ∼ 106 sources in the
SWIRE field, based on optical and infrared photometric data from multiple surveys.
This provides information on the stellar masses of our stacked galaxies for our
analysis (see Sec. 5.8).

Gaia
Gaia DR2 [40, 41] provides high-precision astrometry for stars in the Milky Way,
which gives high-purity star samples used for both validating the PSF model
(Sec. 5.7) and cleaning residual stars in the galaxy sample selected by SDSS
(Sec. 5.8).

Nearby Cluster Catalog
Nearby galaxy clusters along the line of sight introduce extended emission in stack-
ing, so we exclude galaxies that are close to nearby clusters (Sec. 5.8). We use the
cluster catalog fromWen et al. [98], which compiles 0.05 6 I < 0.8 galaxy clusters
detected in SDSS-III [11]. We also use the Abell cluster samples [3] for local galaxy
clusters. There are 7 Abell clusters and ∼ 200 clusters from Wen et al. [98] over the
five CIBER fields.

5.5 Simulation Catalog—MICECAT
In addition to the observed source catalogs, wemake use of theMICECAT simulated
galaxy catalog [38, 39, 50] to estimate the signal from galaxy clustering. MICECAT
is a product of the N-body cosmological simulation MICE Grand Challenge run
(MICE-GC), which has 70 billion dark matter particles in a 30723 Mpc3h−3 cubic
co-moving box. The dark matter halos are resolved down to ∼ 3 × 1010"�ℎ−1.

MICECAT is a mock catalog that simulates ideal observations of a 5000 deg2 light
cone covering 0 < I < 1.4. MICECAT builds on MICE-GC by combining a
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halo occupation distribution (HOD) with subhalo abundance matching (SHAM) to
calibrate to observed luminosity functions and clustering [20]. MICECAT simulates
a mass-limited sample complete to <8 ∼ 22 and <8 ∼ 24 at I ' 0.5 and I ' 0.9,
respectively [31]. The MICECAT mocks are large enough to permit us to generate
up to ∼ 103 independent CIBER field-sized (2 × 2 deg2) mock catalogs. We use
modeled magnitudes from MICECAT in Euclid NISP Y and H bands for CIBER
<1.1 and <1.8, respectively, since the NISP filters are similar to the CIBER imager
bands.

MICECATsimulates both central and satellite galaxies generatedwith itsHOD+SHAM
model, which allows us to model the linear (two-halo) and non-linear (one-halo)
clustering in the stacking signal separately. We use the radial shapes derived from
MICECAT stacking to fit the one-halo and two-halo amplitudes in our stacking data.
Details on modeling galaxy clustering in the stacking signals are further described
in Sec. 5.9.

5.6 Stacking
Sub-pixel Stacking
CIBER imager pixels under-sample the PSF, and therefore the surface brightness
profile of individual sources is poorly resolved. However, given external source
catalogs with high astrometric accuracy, we can stack on a sub-pixel basis and
reconstruct the average source profile at scales finer than the native pixel size. This
“sub-pixel stacking” technique has been used in previous CIBER imager analyses
[15, 101], and further investigated recently in the context of optimal photometry
[90]. We summarize the sub-pixel stacking procedure as follows:

1. Select a list of stacking target sources from external catalogs.

2. Re-grid each pixel into #sub×#sub sub-pixels (we use #sub = 10 in this work).
The intensities of all sub-pixels are assigned to the same value as the native
pixel without interpolation.

3. For each source, unmask pixels associatedwith its sourcemask. Pixelsmasked
due to nearby sources or from the instrument mask remain masked.

4. Crop an #size × #size (at sub-pixel resolution) stamp centered on the target
source. We choose #size = 2401 in this work, which corresponds to a 28′×28′

stamp.
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5. Repeat steps 3 and 4 for all target sources, average the stamps, and return the
final stacked 2-D image Σstack(r).

The stacked profile Σstack is a convolution of the intrinsic source profile, Σsrc, the
instrument PSF (%(�instr)4, and the pixel function %(�pix:

Σstack(r) = [Σsrc(r) ~ %(�instr(r)] ~ %(�pix(r)
=Σsrc(r) ~ %(�stack(r),

(5.1)

where r = (G, H) is a two-dimensional sub-pixel coordinate system with its origin
at the stack center. We define the effective PSF as %(�stack(r) ≡ %(�instr(r) ~
%(�pix(r). The pixel function accounts for the fact that sub-pixels retain the value
of the original pixels, which is a convolution effect. The pixel function is a matrix
with each element proportional to the counts where the sub-pixel and the center
sub-pixel that contains the source are within the same native pixel. The position of
the center sub-pixel within the native pixel is a uniform probability distribution, and
therefore when stacking on a large number of sources, the pixel function converges
to the analytic form [90]:

%(�pix(r) =


(#sub − G) (#sub − H)

if |G |, |H | < #sub

0 otherwise
(5.2)

As a practical matter, %(�pix can be determined through simulations. %(�stack(r)
can be measured by stacking stars in the field, where Σsrc(r) is a delta function,
so Σstack(r) = %(�stack(r). Note that the expression in the second line of Eq. 5.1
implies that the intrinsic profile Σsrc(r) can be obtained from the stacked profile
Σstack(r) with the knowledge of %(�stack(r), instead of determining %(�instr(r).

We perform stacking and PSF modeling separately for each field, since %(�instr is
slightly different across the fields due to the varying pointing performance of the
altitude control system during each integration (c.f. top panel of Fig. 5.5). After
obtaining the 2-D stacked images, we bin them into 25 logarithmically-spaced 1-D
radial bins. Within each bin, the number of stacked images on each sub-pixel is
used for weighting when calculating the average profile in each radial bin. Note that
the weight is not the same across sub-pixels since the masks are different for each
stacked image.

4Instrument PSF includes all effects from the optics, detector array, and pointing jitter during
the integration.
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Covariance Matrix of Stacking Profile
The covariance matrix of the binned 1-D radial stacked profile is calculated with
a jackknife resampling technique. For each stack, we split sources into #J = 64
sub-groups based on their spatial coordinates in the image. The CIBER imager
arrays have 1024×1024 pixels, and thus each sub-group corresponds to sources in
a 128 × 128 pixel sub-region on the array. The radial profile of the k-th jackknife
sample, Σ:stack, is obtained from stacking on sources in all the other sub-regions, and
then the covariance matrix between radial bin (A8, A 9 ) is given by

�stack(A8, A 9 ) =
#J − 1
#J

#J∑
:=1

[
ΔΣ:stack(A8) · ΔΣ

:
stack(A 9 )

]
ΔΣ:stack(A8) ≡ Σ

:
stack(A8) − Σstack(A8)

ΔΣ:stack(A 9 ) ≡ Σ
:
stack(A 9 ) − Σstack(A 9 ),

(5.3)

where Σstack is the average stacked profile of all of the sub-regions.

One of our galaxy stacking samples (mag bin # 1 in Sec. 5.8) has a small number
of sources (� 64 for each field), which makes the covariance estimation from
the jackknife method unstable. Therefore we perform bootstrap resampling with
#� = 1000 realizations to calculate the covariance for this case. In this bootstrap,
we obtain the radial profile of the k-th bootstrap sample, Σ:stack, by stacking the same
number of sources as the original sample, but the sources are randomly selected
from the original sample with replacement. The covariance matrix is then given by

�stack(A8, A 9 ) =
1

#B − 1

#B∑
:=1

[
ΔΣ:stack(A8) · ΔΣ

:
stack(A 9 )

]
. (5.4)

In all the other cases, the covariance is derived from jackknife instead of bootstrap
resampling since it is numerically expensive to perform a sufficient number of
bootstrap realizations given that we have hundreds or thousands of galaxies per field
in each stack. We assign galaxies to sub-groups by their spatial positions instead of
randomly grouping them to account for large-scale spatial fluctuations.

The first few radial bins within the CIBER 7′′ native pixel are highly correlated since
all the sub-pixels are assigned to the same value as the native pixel. We also find
a high correlation on large angular scales, as the stacking signal is dominated by
large-scale spatial variations.
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5.7 PSF Modeling
An accurate model for the PSF is essential for quantifying the galaxy extension from
stacking images. As stars are point sources on the sky, we measure the PSF of each
field by stacking stars in the same CIBER field. The radial profile of star stacks gives
%(�stack (Eq. 5.1), which accounts for all effects that distribute the light from a point
source to the stacked profile, including spreading by the instrument optical system
and detectors, pointing instability during integration, astrometry uncertainties, and
the pixel function %(�pix. Since we use bright stars in the CIBER fields to model
the PSF, the uncertainty on the PSF is subdominant to our galaxy stacked profiles.

Modeling %(�stack

Infrared detectors have a brightness-dependent PSF, the so-called “brighter-fatter
effect” [49]. This nonlinearity makes brighter point sources appear broader on the
detector array than fainter ones. To model %(�stack robustly on both small and large
scales, we construct an overall star profile from three brightness bins. For the core
region (A < 22′′), we stack 13 < <1.1 < 14 sources in the field; for intermediate
scales, 22′′ < A < 40′′, we fit a slope to the stacking profile of 9 < <2MASS

�
< 10

sources; for outer radii, we fit another slope to the stacking profile of the brightest
4 < <2MASS

�
< 9 sources, and connect the two slopes at A = 40′′ (<2MASS

�
is the

2MASS J-band Vega magnitude). The choice of magnitude bins and transition radii
minimizes the error on all scales. At small radii, using faint stars avoids detector
nonlinearity, and at large radii, bright stars provide better sensitivity to the extended
PSF. For the intermediate scales, we check that the fitted slope from the three star
stacking profiles (4 < <2MASS

�
< 9, 9 < <2MASS

�
< 10, 13 < <1.1 < 14) are

statistically consistent. The top panel of Fig. 5.3 shows %(�stack from the SWIRE
field in the 1.1 `m band. The top panel of Fig. 5.5 shows %(�stack in all five fields in
both bands. The slight variation across fields is due to the difference in the pointing
stability during each integration, but such motion is common to all sources within
an integration.

Validating %(�stack

To validate that our PSF model is applicable to the fainter sources of interest, we
perform a consistency test by stacking on stars in the Gaia catalog within the same
magnitude range as our stacked galaxy samples (16 < <1.1 < 20), and compare
these star stacking profiles with our %(�stack model.

To get a clean star sample free of galaxies, we apply the following criteria for
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selecting stars from Gaia:

1. The source has a parallax measurement > 2 × 10−4 mas (i.e., distance < 5
kpc).

2. No astrometric excess noise is reported in theGaia catalog (astrometric_excess_noise
= 0). Large astrometric excess noise implies the source might be extended
rather than a point source.

3. No SDSS galaxies within 0.7′′ (sub-pixel grid size) radius around the source.

4. We classify SDSS stars and galaxies using 10 pairs of magnitude differences
between the five Pan-STARRSphotometricmagnitudes (g, r, i, z, and y bands),
rejecting sources if they are classified as galaxies by our trained model.

After selecting stars with the above conditions from the the Gaia catalog, we stack
them in four equally-spaced magnitude bins between 16 < <1.1 < 20, and compare
their stacking profile with the %(�stack model. These stars span the same brightness
range used for galaxy stacking. We down-sample original 25 radial bins to 15
bins (7 bins for 16 < <1.1 < 17 case), following the same binning used for the
galaxy stacking profile (Sec. 5.8). The results in the 1.1 `m band SWIRE field are
shown on the bottom panel of Fig. 5.3. In Fig. 5.4 we show the difference of Gaia
star stacks and the %(�stack model. The errors are propagated from the covariance
of the %(�stack model and Gaia star stacks. We also show the j2 values and the
corresponding probability to exceed (PTE) on all five CIBER fields in both bands.
The PSF model shows excellent agreement with the star stacks.

Modeling %(�instr

Although knowledge of the instrument PSF is not required for reconstructing the
source profile Σsrc from the stacking profile Σstack, %(�instr is still needed when we
model the clustering signal from a simulated catalog (Sec. 5.9), where we make
mock galaxy images using the CIBER PSF and pixel gridding. %(�instr is also
useful for determining the masking radius for bright sources (Sec. 5.3).

%(�instr is modeled as follows: first, we deconvolve %(�pix(r) (Eq. 5.2) from the
%(�stack(r) model with 10 iterations of the Richardson-Lucy deconvolution algo-
rithm [64, 79]. The deconvolution is unstable at large radii due to noise fluctuations.
To get a smooth model for %(�instr, we fit a V model [21] to the 1-D profile of the
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Figure 5.3: We illustrate the process of constructing and validating the %(�stack(A)
model, in the 1.1 `m band SWIRE field. Top: star stacking profile in three different
brightness bins (blue, orange, and green), and the combined %(�stack(A) model
(black dashed curve) derived from splicing these three stacking profiles together at
the radii marked by the black vertical dashed lines. The black data points show
the binned %(�stack(A) and the error bars propagated from their original star stacks.
The filled data points and the three colored solid curves are the data used in the
%(�stack(A) model. Bottom: comparison of the %(�stack(A) model with the stacking
profiles from fainter stars selected fromGaia. The four chosen brightness bins match
the ones used in galaxy stacking. The %(�stack(A) model agree closely with the star
stacking profiles, as shown in Fig. 5.4.
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Figure 5.4: The difference of the %(�stack(A) model and the star stacking profiles in
all five CIBER fields in the 1.1 `m (left) and 1.8 (right) `m bands (16 < <1.1 < 17
(blue), 17 < <1.1 < 18 (orange), 18 < <1.1 < 19 (green), and 19 < <1.1 < 20
(red)). The j2 values and their corresponding PTE given in the legend are consistent
with the model. The degrees of freedom for each case is simply the number of radial
bins. Open circles in the top and middle panels represent negative data points.

deconvolved image:

%(�instr(A) =
(
1 +

(
A

A2

)2
)−3V/2

. (5.5)

Though not physically motivated, we find V model is a good empirical description
of the extended PSF, and requires only two free parameters to achieve acceptable
goodness of fit for every %(�stack.

The bottom panel of Fig. 5.5 illustrates this procedure in the 1.1 `m band of the
SWIRE field. The %(�stack model, obtained from star stacks in three different
brightness bins, matches the V model of %(�instr convolved with the pixel function
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%(�pix (Eq. 5.2). Our instrument PSF has comparable size to a pixel (FWHM∼ 7′′).
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Figure 5.5: Top: %(�stack model for each of the five fields in the 1.1 `m (solid) and
1.8 `m(dashed) bands. The variation across fields is due to the difference in pointing
stability. Bottom: demonstration of the %(�instr reconstruction process. Black data
points show the %(�stack model in the 1.1 `m band SWIRE field, derived from
splicing the star stacking profile in three different brightness bins (c.f. Fig. 5.3 top
panel). The blue line is the %(�instr model derived from fitting a Vmodel to %(�stack
after deconvolving %(�pix with the Richardson-Lucy deconvolution algorithm. The
orange line shows the convolution of %(�instr with %(�pix matching the %(�stack
model, as a consistency check. Our model for %(�instr is in agreement with data
for A . 30′′. Our analysis is not susceptible to the moderate error at larger radii, as
%(�instr is only used for characterizing the clustering signal from nearby galaxies.

5.8 Galaxy Stacking
We stack galaxies within magnitude ranges 16 < <1.1 < 20, divided into several
sub-samples spanning Δ<1.1 = 1. Our choice of magnitude bins optimizes the SNR
on the stacks, giving sufficient sample sizes for each source brightness.
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Source Selection Criteria
The stacking galaxy samples are selected from the SDSS catalog in the CIBERfields.
To mitigate systematic effects from confusion, nearby clusters, or misclassified stars
in the sample, we reject sources if they meet any of the following criteria:

• Sources are not labeled as galaxies in the SDSS catalog, i.e., the “type”
attribute in the SDSS PhotoObj table is not equal to 3.

• Sources are located in the instrument mask.

• Other Pan-STARRS sources exist in the same CIBER pixel.

• The SDSS photometric redshift is less than 0.15. This criteria prevents nearby
galaxies from introducing substantial power on large angular scales that would
otherwise mimic the clustering signal.

• Sources have nearby Gaia counterparts within 0.7′′, i.e., the size of the sub-
pixel used in our stacking. These sources are likely to be stars that are
misclassified as galaxies in the SDSS catalog.

• Sources arewithin (1) a 500” radius of any galaxy cluster inAbell [3] (Sec 5.4);
or (2) '200 of any galaxy cluster with halo mass "ℎ > 1014"� or redshift
I < 0.15 in the SDSS cluster catalog (Wen et al. [98], Sec 5.4). Approximately
10% of the sky area in each field is excluded by this condition.

The last condition mitigates contamination from nearby clusters along the line of
sight, since they have structures spanning large angular scales, which will produce
spurious large-scale extended signals in the stack. Furthermore, as we do not have
information on whether a galaxy in SDSS is a member of a large galaxy cluster,
the criteria also excludes cluster members from our stacking sample. Stacking on
cluster members introduces extra non-linear one-halo clustering that can overwhelm
the linear two-halo clustering signal on large scales.

To quantify the effect of applying this condition, we generate a mock CIBER map
from the MICECAT catalog, implementing the same strategies described above to
select sources, and stacking on the mock maps to measure the one- and two-halo
clustering signals (see Sec. 5.9 for a detailed description of stackingwithMICECAT-
generated maps). We tested over a range of halo mass and redshift for selecting
clusters, and found that excluding sources around clusters with "ℎ > 1014"�
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(or redshift I < 0.15) can effectively reduce the one-halo clustering signal on
large scales without losing a significant number of sources. For example, for the
magnitude range of interest in this work (see Sec. 5.8), we can reduce the one-halo
power by ∼ 3 − 5× at 100 arcsec radius just by excluding galaxies near clusters
following our criteria.

Stacking Sub-samples
For the SDSS galaxies within 16 < <1.1 < 20 that survive all the selection criteria
above, we split the sources into two sets. The first set is based on 1.1 `m flux in
four bins: 16 < <1.1 < 17, 17 < <1.1 < 18, 18 < <1.1 < 19, and 19 < <1.1 < 20.
Hereafter, these four bins are named “mag bin # 1”, “mag bin # 2”, “mag bin # 3”,
and “mag bin # 4”, respectively. In addition, we also define a “total stack” with all
17 < <1.1 < 20 sources to achieve better large-scale sensitivity.

The second set is defined by both the 1.1 `m apparent magnitude <1.1 and the
absolute magnitude "1.1: "1.1 = <1.1 − �" (I) + 2.5log10(1 + I), where �" is
the distance modulus, using SDSS photometric redshifts. The absolute flux serves
as a proxy for galaxy size. Galaxies with comparable absolute flux have similar
bolometric luminosity, which is correlated with stellar mass, star formation rate, etc.
We use these samples to explore the dependence of our results on different galaxy
properties. Since the sets approximately correspond to three higher and two lower
stellar mass populations, with different redshift distributions, we call them “high-
M/low-z”, “high-M/med-z”, “high-M/high-z”, “low-M/low-z”, and “low-M/med-z”.

In the SWIRE field, we have additional information from a photometric redshift
catalog [81] based on an SED fit to each galaxy. As the stacked samples from
each field are selected with the same criteria, we can assume the galaxy property
distributions in the SWIRE field are the same as other fields, and thus infer the
stellar mass distribution over all five fields. The log "∗ column in Table 5.2 lists
the median and 68% interval stellar mass in the SWIRE field samples from the
Rowan-Robinson et al. [81] catalog. The stellar masses of our samples span from
∼ 1010.5 to 1012"�, i.e., ∼ !∗ galaxies at this redshift [74]. In addition, with the
stellar mass distribution, we infer the host halo mass of our samples using the mean
stellar-to-halo mass relation given by Zu & Mandelbaum [104], which connects the
halo mass to stellar mass with galaxy clustering and lensing measurements. We
also derive the corresponding virial radius, '200 (in physical and angular units), in
Table 5.2. The virial radius is calculated from '200 = [3"ℎ/(4c ·200d2)]1/3, where



160

d2 is the critical density.

We note that by selecting galaxies based on absolute or apparent fluxes, our samples
will include both central and satellite galaxies. We infer the fraction of central
galaxies, 5cen, in each sub-sample from MICECAT by applying the same selection
criteria from aMICECAT simulation (i.e., observed magnitude, absolute magnitude
and redshift cuts, and excluding sources close to nearby clusters). The distribution
of redshift, stellar mass, halo mass, virial radius, and 5cen of our sub-samples are
summarized in Fig. 5.6 and Table 5.2.
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Figure 5.6: Left: redshift distributions of the 10 galaxy sub-samples used for
stacking. The redshifts are derived fromSDSSphotometry. Middle-top: stellarmass
distributions for the 5 apparent and absolute magnitude selected bins. The stellar
masses are inferred from Rowan-Robinson et al. [81] for the SWIRE field. Middle-
bottom: halo mass distributions in 5 apparent and absolute magnitude selected bins,
modeled by applying stellar-to-halo mass relation from Zu & Mandelbaum [104].
Right: distributions of virial radius in physical (top) and observed angular (bottom)
units. For visualization purposes, all curves are normalized by the total number of
sources in each sub-sample (#tot).

Galaxy Stacking Profile
We calculate 1-D radial profiles from galaxy stacks by averaging pixels in concentric
annuli, as shown in Fig. 5.7 and Fig. 5.8. For comparison, we also plot the expected
profile of stacked point sources, %(�stack, scaled to match the first radial bin of the
stacked galaxy profile. In all cases, the galaxy profiles are clearly broader than the
%(�stack profile.
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Figure 5.7: The stacked galaxy radial profile from the SWIRE field mag bin #2 in
the 1.1 (left) and 1.8 `m (right) bands. Top: galaxy stacked profile Σstack (black)
and %(�stack model (orange dashed), scaled to match the innermost radial bin of
Σstack. The error bars give the diagonal element of the covariance matrix derived
by the Jackknife method (described in Sec. 5.3). Middle: the excess profile (Σex,
Eq. 5.6) for the case shown in the top row. The excess is defined as the difference
between the galaxy stacked profile and the %(�stack model, i.e., the difference of the
black data from the orange curve in the top row. Bottom: the field-averaged excess
profile Σex for mag bin #2, derived from the weighted average of the excess profile
in the five individual fields. The improved sensitivity from combining fields can
be seen compared to the middle row. The purple and brown dashed lines mark the
pixel size and the median '200 values inferred from MICECAT, respectively. Open
circles in all the plots represent negative values.
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Excess Profile
We define an “excess profile” Σex(A) as follows:

Σex(A) = Σstack(A) − � · %(�stack(A), (5.6)

where the normalization factor � is chosen such that %(�stack matches Σstack at
the innermost radial bin A1, and thus by construction, Σex(A1) = 0, and � ≡
Σstack(A1)/%(�stack(A1).

Since the excess profile is fixed at A1, the uncertainties on the galaxy profile and
the PSF profile at A1 have to be accounted for by propagating this error to the other
radial bins, and thus the excess profile covariance is given by

�ex = Σstack(A1)2 [�norm (�stack) + �norm (�PSF)] , (5.7)

where �PSF and �stack are the covariance of %(�stack and Σstack, respectively, and

�norm

(
�,
Σstack(A8)
Σstack(A1)

,
Σstack(A 9 )
Σstack(A1)

)
=
Σstack(A8)Σstack(A 9 )

Σstack(A1)2
·[

� (A8, A 9 )
Σstack(A8)Σstack(A 9 )

− � (A8, A1)
Σstack(A8)Σstack(A1)

−
� (A 9 , A1)

Σstack(A 9 )Σstack(A1)
+ � (A1, A1)
Σstack(A1)2

]
(5.8)

is the covariance for the normalized profile that follows from the product rule for
derivatives.

To fit a model to the measured Σex, we also need the inverse of �ex. However,
�ex is close to singular since our radial bins are highly correlated. Therefore, we
reduce the original 25 radial bins to 15 bins by combining highly correlated bins
in the inner and outer regions5. After this down-sampling, we derive the inverse
covariance estimator by

�−1
ex =

#J − #bin − 2
#J − 1

�∗−1
ex , (5.9)

where #J = 64, the number of sub-groups used for estimating covariance, and the
number of bins #bin = 15. �∗−1

ex is the direct inverse of the �ex matrix, and the
5Mag bin # 1 is down-sampled to 7 radial bins as its degree of freedom is limited by the small

number of stacked sources.
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pre-factor in Eq. 5.9 de-biases the inverse covariance estimator, as our covariance
matrix is derived from our data [47]6.

While we have high sensitivity on the small radial bins of both the galaxy stacked
profiles and the PSF model, the � value has minimal dependency on the radius
chosen for normalization, and the uncertainty of normalization has been accounted
by the covariance (Eq. 5.7), and thhus our model parameter inference (Sec. 5.9) does
not depend on the definition of the excess profile.

We present field-averaged excess profiles in Fig. 5.9. Note that the field-averaged
excess profile is only plotted for visualization purposes, since the field-to-field PSF
variation must be explicitly accounted in parameter fitting.

5.9 Modeling the Galaxy Profiles
We model the galaxy profile with three components as follows. We start by decom-
posing the stacked profile in image space (Sec. 5.9), define fitted profiles (Sec. 5.9),
and introduce our model for each component of the stack (Sec. 5.9). Finally, we
describe the model fitting procedure in Sec. 5.9.

Components in Image Space
The raw CIBER image, �raw, can be expressed as7

�raw(x) =
[
�sig(x) + �LoS(x)

]
~ %(�instr(r) · �� (x)

+ �DC(x) + �n(x),
(5.10)

where x is the 2-D pixel coordinate, �� is the flat-field gain, �DC is the dark current
map, and �n is the read noise plus photon noise. The sky emission is decomposed
into �sig and �LoS terms, where the first term accounts for the signal associated with
stacked galaxies, and �LoS represents uncorrelated emission from all other sources
along the line of sight, including Galactic foregrounds.

After dark current subtraction and flat-field correction, we retrive �′raw:

�′raw(x) =
[
�sig(x) + �LoS(x)

]
~ %(�instr(r) + �′n(x), (5.11)

where �′n(x) = �n(x)/�� (x), the instrument noise divided by the flat-field response.
For simplicity, we ignore the error in the flat-field estimator in Eq. 5.11. In practice,

6For mag bin # 1, #bin = 7, and #J = 64 is replaced by #B = 1000 since we use bootstrap
resampling method in this case.

7For clarification, x denotes 2-D coordinate on CIBER images, and r represents the coordinate
that has origin at the source center, which is used in %(�instr and stacked maps. Since we only
consider 1-D radially averaged profile, r is replaced by 1-D variable “A”.



165

10 2

10 1

100

101

102

103

1.
1 

m
I

 [n
W

 m
2  s

r
1 ]

high-M/low-z high-M/med-z high-M/high-z low-M/low-z low-M/med-z

101 102 103

r [arcsec]
10 2

10 1

100

101

102

103

1.
8 

m
I

 [n
W

 m
2  s

r
1 ]

101 102 103

r [arcsec]
101 102 103

r [arcsec]
101 102 103

r [arcsec]
101 102 103

r [arcsec]

gal
stack
1h
stack
2h
stack

 F
stack

PSFstack
gal

sig
stack

  (total)

Figure 5.8: The stacked profile (black data) of each sub-sample stack averaged
over five CIBER fields in the 1.1 `m (top) and 1.8 `m (bottom) bands. Red lines
and shaded regions indicate the median and 68% confidence interval of the joint
fit constrained through MCMC, respectively. The blue, green, and orange solid
lines show the best-fit model of the stacked one-halo, two-halo, and galaxy profile
term from MCMC. The orange dashed and dotted lines show the best-fit intrinsic
galaxy profile Σgal and the %(�stack model. The purple and brown dashed lines mark
the pixel size (7′′) and '200 value inferred from MICECAT. Open circles represent
negative data points.
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Figure 5.9: The measured (black data) and modeled (red) excess profile Σex (black
data) of each case shown in Fig. 5.8. Note the excess profile is defined by the
difference of the stacked profile and %(�stacked model (orange dotted line). other
lines are same as the ones shown in Fig. 5.8.

the flat-field estimation uncertainties will not bias the stacking results as they are
not correlated with individual stacked sources, and the effect on the covariance is
accounted by the Jackknife method (see Sec. 5.6). We define the mask " (x) as a
binary function set to zero at masked pixels, and one otherwise. The filtered map is
expressed with F

[
�′raw(x), " (x)

]
, which is a function of the input map �′raw(x) and

mask " (x). As described in Sec. 5.3, we choose F to be a 3rd (1.1 `m)/5th (1.8
`m) order 2-D polynomial function fitted to the masked �′raw map8. The image used

8Note that the filter map F can be decomposed into the sum of three filter maps because the
polynomial fitting is a linear operation, i.e., given two maps �(x) and �(x), and a mask " (x),
F [�(x) + �(x), " (x)] = F [�(x), " (x)] + F [�(x), " (x)].
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for stacking �map can thus be written as

�map(x) = �′raw(x)" (x) − F
[
�′raw(x), " (x)

]
" (x)

= �
sig
map(x) + �LoS

map (x) + �n′
map(x),

(5.12)

where

�
sig
map(x) =

[
�sig(x) ~ %(�instr(r)

]
" (x)

− F
[
�sig(x) ~ %(�instr(r), " (x)

]
" (x),

(5.13)

�LoS
map (x) = [�LoS(x) ~ %(�instr(r)] " (x)
− F [�LoS(x) ~ %(�instr(r), " (x)] " (x),

(5.14)

and

�n′
map(x) = �′n(x)" (x)
− F

[
�′n(x), " (x)

]
" (x).

(5.15)

Components in the Stack
The stacked profile Σstack can be expressed as the sum of stacks on the three maps
in Eq. 5.12:

Σstack(A) = Σsig
stack(A) + Σ

LoS
stack(A) + Σ

n
stack(A). (5.16)

The last two terms can be ignored in modeling since they are uncorrelated with the
stacked sources, so

〈
ΣLoS

stack(A)
〉
=

〈
Σn

stack(A)
〉
= 0.

We model the stacked galaxy profile as

Σ
sig
stack(A) = [ Σ

gal
stack(A) + Σ

1h
stack(A) + Σ

2h
stack(A) ]

− ΣFstack(A),
(5.17)

where the first three terms are the signal terms, and the last term is the filtered
signal map in Eq. 5.13. The galaxy profile term, Σgal

stack, represents the intrinsic
galaxy profile, which includes the galaxy shape and the extended stellar halo. We
decompose the galaxy profile term, Σgal

stack, into “core” and “extended” parts:

Σ
gal
stack(A) = Σ

gal
core(A) + Σ

gal
ext (A), (5.18)

where the core component is the integrated emission of the %(�stack fitted to the
stacking profile, i.e., the � · %(�stack term in Eq. 5.6, and the extended component
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is the rest of the galaxy emission:

Σ
gal
core(A) =Σstack(A) − Σex(A),
Σ

gal
ext (A) =Σex(A)

−
[
Σ1h

stack(A) + Σ
2h
stack(A) − Σ

F
stack(A)

]
.

(5.19)

In addition, galaxy clustering will also contribute to the stacked profile, primarily
on large scales. We model clustering with the halo model framework [28], where
large-scale clustering is described by the correlation within (one-halo) and between
(two-halo) dark matter halos. Σ1h

stack and Σ2h
stack represent the profile for one- and

two-halo clustering, respectively.

In practice, there is no well-defined boundary between the stellar halo of a galaxy
and unbound stars in the dark matter halo, and the definition of IHL (or ICL) varies
in the literature. To some degree, the galaxy extension term and the one-halo term
each partially comprise stars not bound to individual galaxies in the halo. Since
there are different definitions of IHL (or ICL) and the one-halo term in the literature,
here we describe how our modelled components are defined.

In our definition, the galaxy extension describes emission associated with each
galaxy, whereas the one-halo term accounts for other galaxies, their extensions, and
diffuse stars in the same halo, as illustrated in Fig. 5.10. When we stack on a central
galaxy, the galaxy extension term accounts for the extended emission around the
stacked galaxy, and the one-halo term describes diffuse stars, undetected galaxies,
and extension around all the satellite galaxies beyond masking limit in the same
halo. Whereas, when we stack on a satellite galaxy, the galaxy extension term only
includes the extended halo around that satellite galaxy, and all the other components
are described by the one-halo term. In our sample, we estimate that∼ 60%of stacked
galaxies are central galaxies, and ∼ 40% are satellite galaxies (See Table 5.2).

Modeling the Stacked Galaxy Profile
The stacked galaxy profile Σgal

stack(A) = Σ
gal(A) ~ %(�stack(A), is the intrinsic galaxy

profile Σgal, including the galaxy shape and the extended stellar halo, convolved with
%(�stack. Following [97], we model Σgal with a double Sersic function:

Σgal(A) = �gal
(
10�4,1exp

{
−1=1

[ (
A/'4,1

)1/=1 − 1
]}

+ 10�4,2exp
{
−1=2

[ (
A/

(
'4,1 + '4,2

) )1/=2 − 1
]})

.
(5.20)
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Figure 5.10: Illustration of the components in our model when stacking on a central
(top) or a satellite (bottom) galaxy. The dark regions show the galaxy extensions
associated with each galaxy, and the light blue and green regions show diffuse stars
in the halos that are not tightly bound to any galaxy. The white parts with black
dashed boundaries show the masked regions. The smaller galaxies without masks
are fainter than the masking cutoff. The magenta stars and the orange regions show
the stacked galaxy and its extension. The blue regions represent the one-halo term,
and the green regions show the two-halo term contributed by emission from other
halos. When stacking on a central galaxy, the one-halo term includes the satellite
galaxy extensions beyond the masking radius, as well as faint satellite galaxies and
their stellar halos. When stacking on a satellite galaxy, the one-halo term includes
the extensions of both the central and the satellite galaxies beyond their masks, as
well as the fainter satellite galaxies.
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[97] performed a stacking analysis on isolated galaxies from Hyper Suprime-Cam
(HSC) images, and fitted the stacked profile of their high-concentration samples
with this model. The first term captures the galaxy shape, and the second term
models the extended emission. Due to the lack of angular resolution in CIBER data,
we are sensitive to the extended profile, and therefore we only vary '4,2 to fit our
stacked profile. We fix all of the other parameters to the best fit values given by
Table 3 of [97], although when convolved, the total closely follows the PSF9.

Our one- and two-halo clustering models, Σ1h
stack and Σ2h

stack, and the filtered signal
ΣFstack, are constructed from the MICECAT simulation. MICECAT includes central
and satellite galaxies of each halo, and each galaxy has a halo ID, enabling us to
decouple the one-halo and two-halo contribution in the stacked signal, and thus to
take into account the complication that we have both central and satellite galaxies
in our samples. We model the one-halo term Σ1h

stack from MICECAT using the
following steps:

1. Select the stacked target in the catalog using the same selection criteria.

2. For each target galaxy, generate a source map (using %(�instr) for all galaxies
residing in the same halo except for the target galaxy.

3. Generate a source mask using the same prescription as our data.

4. Stack on the target source position.

5. Iterate steps (2)-(4) for all target sources.

The derived stacked profile provides our template for the one-halo term, )1h
stack. The

filtered signal term ΣFstack accounts for the loss of clustering signal from filtering.
ΣFstack is the stacked profile on the 2-D polynomial filtered map (the second term of
Eq. 5.13), which can be modeled by filtering the simulated map from MICECAT.
We model the two-halo term Σ2h

stack −Σ
F
stack after filtering with the following process:

1. Make a CIBER-sized mock image from all the catalog sources with the model
%(�instr, and mask it with a source mask generated using the same masking
process applied to the data.

9In [97], the values of '4,1 and '4,2 are reported in terms of G4,1 = '4,1/'200 and G4,2 =
'4,2/'200. '200 is the projected virial radius of the host dark matter halo in angular units, and its
value for each sub-samples is given in Table 5.2.
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2. Fit and subtract a 2-D polynomial map to the image.

3. Select the stacked target in the catalog using the same selection criteria as the
real sources.

4. Perform stacking with the target source, subtracting all galaxies within the
same halo to remove the target galaxy and the one-halo contribution.

5. Iterate on step (4) to derive a stacked profile of the filtered two-halo signal.

The resulting stacked profile, )2h−F
stack , is a model for Σ2h

stack − Σ
F
stack, which provides

our template for the two-halo term. This process was performed on 400 realizations
with CIBER-sized mock images from MICECAT, and we take the average stacked
profile as the one-halo and filtered two-halo templates. As diffuse stars and faint
galaxies below the resolution limit of MICECAT will not be accounted for, we
assign free amplitudes to the one-halo and two-halo templates, which are then fit
to the observed stacked data. Therefore, our three-parameter ('e,2, �1h, �2h) model
can be written as

Σstack(A,
{
'e,2, �1h, �2h

}
)

= Σgal(A,
{
'e,2

}
) ~ %(�stack(A)

+ �1h)
1h
stack(A) + �2h)

2h−F
stack (A).

(5.21)

We note that the one- and two-halo profiles already include the PSF convolution in
our model.

Model Fitting
For each CIBER field and band, we fit the excess profile Eq. 5.6, to a three-
parameter model Σm

ex(A, {'e,2, �1h, �2h}) (Eq. 5.21) using a Markov Chain Monte
Carlo (MCMC). We assume a Gaussian likelihood, which is given by

j2 =
(
Σd

ex − Σm
ex

))
�−1

ex

(
Σd

ex − Σm
ex

)
lnL = −1

2
j2 − 1

2
ln |�ex | + constant,

(5.22)

where the inverse covariance �−1
ex is given by Eq. 5.9.

We use the fit from individual fields for a consistency check. To provide a best
estimate using the combination of all the fields that were observed at once, we also
fit to the five CIBER fields using the joint likelihood:

lnL =
#field∑
8=1

lnL8 (5.23)
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where #field = 5. Note that the PSF model is different for each field, so the
information from different fields is combined in the likelihood.

We use the affine-invariant MCMC sampler emcee [37] to sample from the posterior
distribution. We set flat priors for 'e,2, �1h, and �2h in the range of [10−4'200, '200],
[0, 50], and [0, 200], respectively. We use an ensemble of 100 walkers taking 1000
steps with 150 burn-in steps. We checked that the chains show good convergence by
computing the Gelman-Rubin statistic R [42]. For all three parameters in all cases,
we find ' < 1.1.

5.10 Results
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Figure 5.11: Marginalized parameter constraints from MCMC for each case listed
in Table 5.2. The data points and error bars are the median and 68% confidence
intervals from MCMC. Black data points show the joint fit from all five fields, with
colored points for the individual fields. The gray horizontal lines in the middle and
bottom panels mark �1h = 1 and �2h = 1, which are the clustering amplitudes given
by MICECAT. The shaded regions show the total stack over all 17 < <1.1 < 20
galaxies.

We show theMCMCresults in Fig. 5.11 andTable 5.3, for all cases listed in Table 5.2.
As a sanity check, we calculate the j2 value between the results from individual fields
and the joint fit using 100 data points for each of the three parameters (5 fields × 10



172

Ta
bl
e5

.3
:S

um
m
ar
y
of

pa
ra
m
et
er
co
ns
tra

in
ts
fro

m
th
ej
oi
nt
fit

in
ea
ch

ca
se

lis
te
d
in
Ta
bl
e5

.2
.F

or
th
ec

as
es

w
ith

le
ss
th
an

a2
f
de
te
ct
io
n

(9
5%

co
nfi

de
nc
e
in
te
rv
al
),
w
e
qu
ot
e
th
e
2f

up
pe
rb

ou
nd

.F
or

de
te
ct
io
ns
,t
he
+/
−
va
lu
es

en
cl
os
e
th
e
68

%
co
nfi

de
nc
e
in
te
rv
al
.

1.
1
`
m

1.
1
`
m

1.
1
`
m

1.
8
`
m

1.
8
`
m

1.
8
`
m

a

N
am

e
'
4
,2
[a
rc
se
c]

�
1h

�
2h

'
4
,2
[a
rc
se
c]

�
1h

�
2h

m
ag

bi
n
#1

<
2.

76
<

6.
06

<
48
.9

1
<

2.
53

<
5.

72
<

58
.0

5
m
ag

bi
n
#2

2.
25
+0
.1

4
−0
.2

3
<

4.
70

<
24
.2

2
1.
94
+0
.1

2
−0
.1

6
<

3.
44

<
24
.7

6
m
ag

bi
n
#3

1.
85
+0
.1

7
−0
.2

8
<

4.
18

<
18
.9

4
1.
94
+0
.1

6
−0
.1

6
<

2.
96

<
18
.3

0
m
ag

bi
n
#4

1.
85
+0
.2

5
−0
.2

1
<

1.
16

<
6.

87
1.
63
+0
.2

1
−0
.1

4
0.
77
+0
.2

3
−0
.2

3
<

6.
59

to
ta
l

1.
98
+0
.1

7
−0
.1

7
<

1.
41

*
<

7.
30

1.
85
+0
.0

8
−0
.1

5
1.
01
+0
.2

4
−0
.2

4
<

6.
86

hi
gh

-M
/lo

w
-z

2.
30
+0
.1

6
−0
.2

9
<

4.
76

<
25
.5

8
2.
17
+0
.1

8
−0
.1

8
<

4.
2

<
33
.1

0
hi
gh

-M
/m

ed
-z

2.
27
+0
.3

7
−0
.3

2
<

6.
42

<
19
.5

3
2.
22
+0
.1

9
−0
.2

8
3.
37
+1
.9

9
−1
.1

7
<

22
.7

6
hi
gh

-M
/h
ig
h-
z

1.
98
+0
.3

0
−0
.4

4
<

1.
88

<
9.

08
1.
85
+0
.2

6
−0
.2

2
1.
39
+0
.4

3
−0
.3

5
<

6.
19

lo
w
-M

/lo
w
-z

1.
98
+0
.1

8
−0
.3

0
<

3.
18

<
16
.3

8
1.
89
+0
.2

1
−0
.1

7
<

2.
77

<
17
.6

5
lo
w
-M

/m
ed
-z

1.
67
+0
.2

9
−0
.3

6
<

1.
30

<
11
.3

0
1.
50
+0
.2

1
−0
.2

4
<

1.
01

<
7.

58

a I
n
1.
1
`
m

“t
ot
al
”
bi
n,
th
e
68
%

co
nfi

de
nc
e
in
te
rv
al
of

on
e-
ha
lo

am
pl
itu

de
�

1h
is
0.
54
+0
.4

2
−0
.3

8,
ap
pr
ox
im

at
el
y
an

1f
de
te
ct
io
n.



173

mag bins × 2 bands). The resulting j2 values indicate our fit is internally consistent
across the 5 CIBER fields. In Fig. 5.8 and Fig. 5.9, we show the stacked and excess
profile data averaged over five fields, respectively, along with the marginalized one-
halo, two-halo, and galaxy profile model from the joint fit. Fig. 5.12 shows the
fitted intrinsic galaxy profile Σgal (Eq. 5.20) and the one- and two- halo terms in
the “total” magnitude bin, also averaged over five fields. The field-averaged profiles
are only shown for visualization purposes; when we fit the data with MCMC, the
information is combined in the likelihood function rather than in data space.

5.11 Discussion
Missing Light in Galaxy Photometry
Given the best-fitting extended galaxy profile, we can calculate the fraction of
flux missed in photometric galaxy surveys using a limited aperture. From our
model, the fraction of flux within a photometric aperture can be approximated by
5core ≡ !core/(!core + !ext), where !core and !ext are the total flux in the core and
extension profile (Eq. 5.19), respectively. In practice, there are various ways to
perform photometry. The Petrosian flux [75] is derived from aperture photometry
and thus it is the most straightforward method to compare to our results. The
Petrosian flux is defined by the total fluxwithin amultiplicative factor of the Perosian
radius of sources. We obtain the Petrosian radius and Petrosian flux from the SDSS
catalog of each stacked galaxy in our sample. In SDSS, the Petrosian flux is
calculated by integrating the emission within twice the Petrosian radius10. With our
galaxy profile, we can calculate the fraction of flux within the same radius ( 5petro).
The results are summarized in Table 5.4.

We also estimate the missing light fraction with the ‘model magnitude’ given in
SDSS ( 5model). Rather than integrating within a certain aperture size, the model
magnitude is derived by fitting the galaxy profile with an exponential or de Vau-
couleurs functional form, choosing the one with the higher likelihood in the fitting11.
While it is difficult to apply the same fitting procedure to the sources in CIBER im-
ages, we can calculate the ratio between the model flux and the Petrosian flux of
each source in the SDSS catalog, and thus infer the fraction of missing light in the
model flux. We find that both the Petrosian flux, which measures source emission
within a limited aperture size, and the model flux derived from fitting a light profile

10https://www.sdss.org/dr12/algorithms/magnitudes/#mag_petro
11See https://www.sdss.org/dr12/algorithms/magnitudes/ for the detailed descrip-

tions on model magnitude.

https://www.sdss.org/dr12/algorithms/magnitudes/#mag_petro
https://www.sdss.org/dr12/algorithms/magnitudes/
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Figure 5.12: The fitted intrinsic galaxy profile Σgal (Eq. 5.20) (orange), stacked
one-halo (blue) and two-halo (green) profiles in the “total” magnitude bin averaged
over five CIBER fields in the 1.1 `m (top) and 1.8 `m (bottom) bands. We convert
the angular scale to physical units (kpc) using the median conversion factor inferred
fromMICECAT (Table 5.2). Solid lines and shaded regions indicate the median and
68% confidence interval of the joint fit constrained through MCMC, respectively.

to the small-radii regions of the galaxy, miss ∼ 20% of the total galaxy light, a deficit
detected at ∼ 7f (∼ 4f) level for Petrosian (model) flux when combing constraints
from all five sub-samples. This value is slightly larger than the light fraction in our
galaxy extension term (∼ 10 to 20 %). Our results on the missing light fraction in
the Petrosian flux is in agreement with previous analytical calculation [45]. Inter-
estingly, Tal & van Dokkum [91] probed the radial profile of I ∼ 0.34 luminous red
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Table 5.4: Fraction of flux in core component compared to flux captured in Petrosian
and SDSS model flux, assuming the galaxy light profile follows the stacking results
in this work. The total row shows theweighted average of the five listed sub-samples.

1.1 `m 1.1 `m 1.1 `m 1.8 `m 1.8 `m 1.8 `m
Name 5core 5petro 5model 5core 5petro 5model

high-M/low-z 0.79+0.04
−0.02 0.78+0.08

−0.10 0.84+0.11
−0.12 0.81+0.02

−0.02 0.80+0.07
−0.10 0.85+0.10

−0.12
high-M/med-z 0.81+0.04

−0.05 0.74+0.07
−0.13 0.78+0.08

−0.15 0.83+0.04
−0.03 0.75+0.08

−0.11 0.78+0.10
−0.13

high-M/high-z 0.86+0.06
−0.04 0.73+0.07

−0.16 0.77+0.15
−0.19 0.89+0.03

−0.04 0.75+0.07
−0.16 0.79+0.16

−0.18
low-M/low-z 0.84+0.04

−0.02 0.78+0.05
−0.11 0.80+0.10

−0.12 0.85+0.02
−0.03 0.79+0.05

−0.11 0.81+0.10
−0.12

low-M/med-z 0.89+0.04
−0.04 0.78+0.06

−0.16 0.80+0.09
−0.16 0.92+0.03

−0.03 0.80+0.06
−0.15 0.83+0.10

−0.14
total 0.83+0.02

−0.01 0.77+0.03
−0.06 0.80+0.05

−0.06 0.86+0.01
−0.01 0.78+0.03

−0.05 0.81+0.05
−0.06

galaxies (LRGs) in SDSS with a stacking analysis, and they also found ∼20% of the
total light missing at large radii when fitting a Sersic model to individual galaxies.
Although their galaxy samples are at somewhat higher mass ("∗ ∼ 1011−1012"�),
and model magnitudes are fitted with a different functional form, we arrive at a
similar fraction of missing flux.

Extended Stellar Halo
The Illustris simulation [80] traces the dynamics and merger history of stellar
particles and estimates the “ex-situ” population of stars that formed in other galaxies,
and were later stripped and accreted into a new galaxy. The shaded region in the
left panel of Fig. 5.13 shows the ex-situ stellar mass fraction at I = 0 from the
Illustris simulation [80]. Although it is difficult to measure the ex-situ component
in observations, Huang et al. [51] has studied individual stellar halos out to 100 kpc
in more massive galaxies (1011"� . "∗ . 1012"�) at higher redshifts (I ∼ 0.4) in
HSC images, finding that the fraction of stellar mass between 10 and 100 kpc is in
good agreement with the ex-situ fraction constraints from Illustris [80]. In addition,
Wang et al. [97] probe the stellar halo around local (0 . I . 0.25) low-mass galaxies
(9.2"� < log"∗ < 11.4"�) with a stacking analysis on HSC images in r-band.
They stacked galaxies out to ∼ 120 kpc within several stellar mass bins. For each
bin, they split the sources into low and high concentration populations, defined by
� < 2.6 and � > 2.6, where � = '90/'50 is the ratio of the radii that contain 90%
and 50% of the r-band Petrosian flux.

CIBER extends the HSC measurements to higher redshifts and longer wavelength
bands. Armed with light profile fits, we can quantify the luminosity fraction in the
extended stellar halo around the stacked sources. The left panel of Fig. 5.13 shows
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the fraction of stellar flux between radii of 10 and 100 kpc, using the fitted galaxy
profile from CIBER and HSC [97]. We observe that ∼ 50% of the flux originates
at galactocentric distances between 10 and 100 kpc. [97] re-scaled their images to
physical units before stacking, whereas in our analysis we stack sources in observed
angular units. Therefore, the variations in our measurements are mostly due to the
variation of the conversion factor from angular to physical units for each galaxy in
our stack. Our constraints are consistent with the HSC results in the highest mass
bin.

Both CIBER and HSC are consistent with the ex-situ fraction from Illustris at I = 0,
but are systematically higher than the median value from Illustris (the grey line in
Fig. 5.13). One possible explanation is that the flux between 10 and 100 kpc is
not a perfect proxy of the ex-situ population for lower mass galaxies. For example,
D’Souza et al. [34] has shown that the transition scale between in-situ and ex-situ
components varies across a wide range from ∼ 10 to ∼ 50 kpc, depending on
the stellar mass and concentration of the galaxies. Nevertheless, given the limited
information in stacking, we use this definition to associate the luminosity from
beyond 10 kpc with IHL.

We also show the fraction of flux with 20 kpc radius cut in the right panel of
Fig. 5.13. A radius cut at 20 kpc is a more suitable choice to describe the stripped
stellar populations. For example, Milky Way-sized simulations suggest that the
infalling stellar debris is recaptured by the galaxy and results in disk thickening
at A . 10 kpc [72]. We note that each galaxy has a different stellar halo profile,
interpreting our stacking results requires knowing the stellar halo profile on average
over a large sample of galaxies. Given the uncertainty in choosing an average IHL
radius, we report our results in both 10 kpc and 20 kpc scales, while show the full
radial range in Fig. 5.14. We find that ∼ 25% of galaxy fluxes are from outside 20
kpc. The CIBER constraints shown in Fig. 5.13 are summarized in Table .6.

EBL from Extended Stellar Halos
With the galaxy profile fromCIBER andHSC, we can estimate the EBL contribution
from the extended regions at the redshift of our stacked sources. We model this
quantity in the following steps:

1. For any given radius cut Acut, we model the fraction of light beyond Acut as a
function of stellar mass by fitting a line to all CIBER and HSC data points in
logarithmic space;
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2. We estimate total stellar mass density by integrating the stellar mass function
from Muzzin et al. [74] (we take their single Schechter function fit with all
samples in 0.2 6 I < 0.5 bin, approximately the redshift of our sources);

3. For each Acut, we apply the fraction derived in step 1 to the stellar mass
function, and integrate to get the stellar mass density from sources outside
Acut;

4. Assuming the mass-to-light ratio is the same for all galaxies, the ratio between
step 3 and step 2 is our estimate of the EBL fraction from extended sources
as a function of Acut.

The results are shown in Fig. 5.14. We get approximately 30/15 % of extended
emission in the EBL with Acut = 10/20 kpc, respectively. Note that these values are
close to the fraction in the five individual stellar mass bins from our stacking results.
This is expected as our samples are at ∼ !∗ scale, which are the representative
population that contains the majority of the total stellar emission of their redshift.
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Figure 5.13: Fraction of flux between 10 (left)/20 (right) and 100 kpc from the
galaxy profile derived from CIBER stacking (this work) in the 1.1 (blue) and 1.8
(red) `mbands and fromHSC stacking [97]. The HSC stacking is performed on low
and high concentration populations (� < 2.6 and � > 2.6) at optical wavelengths
(r band). The horizontal error bars define the lower and upper bounds of the stellar
mass of each stacking sample. The grey line and the shaded regions in the left
panel are the median, 16th, and 84th percentile of ex-situ stellar mass fraction at
I = 0 from Illustris simulations [80]. The shaded region shows the variance between
individual galaxies in Illustris, whereas for CIBER andHSC, the error bars represent
the standard error on the mean value.

Intra-halo Light Fraction
The fraction of the total emission from a dark matter halo associated with IHL,
5IHL, has been investigated with both observation and theoretical modeling [e.g.,
18, 34, 35, 43, 63, 77]. With our stacking results, we can estimate the total halo
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Figure 5.14: The fraction EBL intensity from galaxy extension as a function of
Acut. This is estimated with the light profile fits from CIBER (this work) and HSC
Wang et al. [97], and the stellar mass function from Muzzin et al. [74].

emission from the sum of the galaxy light and one-halo terms. For the IHL, we
consider the extended galaxy emission beyond Acut = 10/20 kpc of all the bright
(<1.1 < 20) galaxies in the halo, noting that <1.1 = 20 is also our choice of flux
threshold for masking. Therefore, the IHL fraction 5IHL can be expressed as

5IHL =

∑
<1.1<20 ! (> Acut)∑
<1.1<20 ! +

∑
faint !

, (5.24)

where
∑
<1.1<20 ! is the total light associate with bright galaxies, and

∑
<1.1<20 ! (>

Acut) is the part of bright galaxy emission beyond Acut.
∑

faint ! represents the light
from faint galaxies as well as the unbound stars in the halo, captured in the one-
halo luminosity. Note that we conservatively assume the one-halo luminosity arises
entirely from faint, gravitationally bound galaxies. However it is certainly true that
some one-halo light arises from unbound stars, as is readily observed in images of
massive clusters at low redshift.

From our stacking profile, the faint source emission
∑

faint ! can be described by the
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total emission in the one-halo term, !1h12. For the bright sources, we define∑
<1.1<20

! = !gal · #eff , (5.25)

where !gal is the total light in the galaxy profile term from our stacking results,
which describes the averaged light of the galaxies within each stacking sample. #eff

accounts for the fact that there are multiple bright galaxies in the halo, and we infer
the average #eff value from MICECAT. For our five stacking sub-samples, we get
#eff ∼ 2 to 5. From our fitted galaxy profile, we can also calculate !gal(> Acut), and
we apply the same #eff to model the extension from other bright galaxies:

∑
<1.1<20

! (> Acut) = !gal(> Acut) · #eff . (5.26)

This results in
5IHL =

!gal(> Acut)/!gal

1 + !1h/
(
#eff · !gal

) . (5.27)

We show our constraints on 5IHL, as a function of halo mass and redshift in Fig. 5.15
and 5.16, respectively. The halo masses associated with our galaxies are inferred
from the MICECAT simulation, and using the SDSS photometric redshifts. The
CIBER data points shown in Fig. 5.15 and 5.16 are summarized in Table .7.

Note that the fraction of light beyond Acut (the numerator in Eq. 5.27) is shown in
Fig. 5.13, where the higher redshift bins have slightly higher values. However, in
Fig. 5.16, they have lower 5IHL. This is due to the increase of the one-halo term
with redshift. We show the ratio of one-halo term and the stacked galaxy light
in Fig. 5.17. Note that this observable quantity tracks the evolution of the one-
halo luminosity, but lacks the #eff term in Eq. 5.27 derived from simulations. We
compare with the same quantity from theMICECAT simulation, where the one-halo
term includes all the unmasked faint galaxies and residual bright source emission
outside the mask due to the PSF. We detect a strong redshift evolution of one-halo
contribution compared with the MICECAT simulation, which could be attributed to
the unbound stars that are not included in MICECAT.

We compare our results with 5IHL from previous work, including the Milky Way
[19], the Andromeda Galaxy [M31; 30], the ICL fraction in individual galaxy

12Our one-halo model also includes the outskirts of bright sources beyond the mask, but we
checked that this component is negligible compared to the faint sources using the MICECAT simu-
lation.
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groups and clusters [18, 43, 44], and an analytical model [77, 78]. Our results
follow a more gradual redshift evolution trend than reported in massive clusters [18]
(see Fig. 5.16).
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Figure 5.15: The IHL fraction 5IHL as a function of halo mass. The IHL is defined
by the light beyond a radius Acut around the galaxy. Here we consider three different
Acut values: 10 kpc (left) and 20 kpc (right). Blue and red data points show the
constraints from this work in the 1.1 `m and 1.8 `m bands, respectively. Dark and
light green shaded regions denote the 68% and 95% variations among galaxies from
an analytical model at I = 0 [77, 78]. The ICL fraction in individual galaxy groups
and clusters from Gonzalez et al. [43, 44] and Burke et al. [18] are shown in black
and grey data points. The two downward arrows give upper limits for the Milky
Way [19] and Andromeda (M31) [30].
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Figure 5.16: 5IHL constraints as in Fig. 5.15, but plotted as a function of redshift.
Themasses of theBurke et al. [18] clusters are 100-1000× the halomasses associated
with our galaxies.

Color of the Galaxy Inner and Outer Regions
We calculate the <1.1 − <1.8 color of the inner and outer region of the galaxy,
defined by the total light inside and outside 20 kpc physical scale in the fitted galaxy
profile. The results are summarized in Table 5.5. Note the definition of inner and
outer component here is based on the intrinsic profile, which is different from the
core/extension separation using the stacked PSF defined in Eq. 5.19. We have no
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Figure 5.17: The ratio of the total one-halo term and stacked galaxy profile term
from our stacking results (blue: 1.1 `m, red: 1.8 `m) compared with theMICECAT
simulation (light blue: 1.1 `m, orange: 1.8 `m). We observe a somewhat stronger
evolution, causing the fall-off of 5IHL with redshift seen in Fig. 5.16.

detection of a color difference between the inner and outer regions in the two CIBER
bands. We also find similar inner and outer region color with 10 kpc radius cut.
Previous measurements in optical bands found that the galaxy outskirts are bluer
than their core [e.g., 34, 51]. For comparison, we calculate the <1.1 − <1.8 color
of galaxy cores in MICECAT sources selected from the same criteria, as well as
from the empirical galaxy model of Helgason et al. [48] at I = 0.3, approximately
the redshift of our samples. Our inner region color is consistent with these models.
To model the extension, we use a collection of elliptical galaxy spectra from the
population synthesis package GISSEL [16] redshifted to I = 0.3. We also estimate
the extension color using an imaging study on the local spiral galaxyNGC 5907 [84].
We use their ratio of I band and J band flux in >1 arcmin regions to approximate
the <1.1 − <1.8 extension color. The rest-frame I and J band redshifted to I ∼ 0.3
(approximately the redshift of our samples) are close to the two CIBER bands. NGC
5907 shows a redder spectrum than our galaxy extension, whereas the elliptical
galaxy spectrum template is slightly bluer than our samples. In addition, the IHL
constraints from Zemcov et al. [101] are also given in Table 5.5, but we note that
Zemcov et al. [101] reflects the integrated IHL from all redshifts.



182

Table 5.5: Constraints on the color (<1.1 − <1.8) of the galaxy inner and outer
components. The +/− values indicate 68% interval ranges. The total row shows
the weighted average of five sub-samples. For comparison, we also show models
of core color from MICECAT and an analytical prescription from Helgason et al.
[48] at I = 0.3. For the extension, we compare our results with spectra from a
population synthesis code, GISSEL [16], and the outskirts of NGC 5907 redshifted
to I = 0.3 [84]. The color of EBL fluctuations attributed to redshift-integrated IHL
from Zemcov et al. [101] is also shown.

Name Inner Outer
high-M/low-z 0.42+0.20

−0.17 0.36+0.34
−0.31

high-M/med-z 0.54+0.25
−0.27 0.46+0.24

−0.25
high-M/high-z 0.65+0.31

−0.28 0.61+0.31
−0.25

low-M/low-z 0.39+0.20
−0.18 0.37+0.41

−0.37
low-M/med-z 0.56+0.23

−0.24 0.44+0.50
−0.44

total 0.49+0.10
−0.10 0.47+0.14

−0.15
MICECAT 0.44±0.07

Helgason et al. (2012) 0.41
GISSEL 0.32± 0.08
NGC 5907 1.41± 0.61

Zemcov et al. (2014) 0.89+1.17
−1.08

One-halo and Two-halo Clustering
The one-halo amplitude is detected in the 1.8 `m band at the ∼ 4f level in the
“total” and “high-M/high-z” cases, and at the ∼ 3f level in “mag bin #4” and “high-
M/med-z” cases. One-halo clustering is not clearly detected at the 1.1 `mband since
the photocurrent from sources is lower in this band. The one-halo amplitude �1h

is consistent with unity to within ∼ 2f, which implies that our one-halo templates
built from MICECAT are sufficient to describe the clustering within halos of our
stacked samples. However, from our stacking results, it is unclear if this emission
actually consists of discrete galaxies as given in the MICECAT simulation. Two-
halo clustering is not detected in all cases since the large-scale clustering signal is
comparable to the current uncertainties in the measurement.

5.12 Conclusions
By stacking galaxies from CIBER imaging data in two near-infrared bands (1.1
and 1.8 `m), we detect extended emission in galaxies. The galaxies being stacked
(∼ 30, 000 galaxies in total) are split into five sub-samples from SDSS spanning
redshifts 0.2 . I . 0.5 and stellar masses 1010.5"� . "∗ . 1012"�, comparable
to !∗ galaxies at this redshift. We jointly fit a model for the inherent galaxy light
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profile and large-scale one- and two-halo clustering.

With the galaxy profile, we estimate that ∼ 20% of total light is missing in galaxy
photometry due to the use of limited apertures, in agreement with previous estimates
from the literature. We do not detect a 1.1-1.8 `m color difference in the inner and
outer region of our galaxy samples.

While we do not detect two-halo clustering, we detect one-halo clustering in the 1.8
`m band at 4-f significance over the full sample of galaxies. These results suggest
non-linear clustering could have a significant impact on modeling the IHL, but is
not accounted for in previous fluctuation analysis by Zemcov et al. [101]. An IHL
fluctuation model with one-halo clustering [e.g., 36] is needed to fully account for
the non-linear clustering in IHL modeling.

The intrinsic galaxy profile fitted from our stacking analysis suggests ∼ 50%/25%
of the total galaxy light resides at A > 10/20 kpc, respectively. This result is in
agreement with previous HSC measurements at lower redshifts (0 . I . 0.25) and
lower stellar masses (109.2"� < "∗ < 1011.4"�). The galaxy extension accounts
for significant fraction of luminosity in !∗ galaxies, but falls off below"∗ ∼ 1011"�.
We extrapolate the fraction of extended galaxy light wemeasure to all galaxy masses
scales and assuming a Schechter luminosity function, we find∼ 30%/15%of the total
galaxy light are from A > 10/20 kpc, respectively. We measure a moderate increase
in 5IHL with cosmic time, which we attribute to the decrease in one-halo contribution
within the dark matter halo of our stacked samples. The previous fluctuation study
using CIBER data [101] found that the IHL has comparable intensity to the IGL in
the near-infrared EBL.While our study cannot constrain the whole IHL contribution
to the EBL since we only study galaxies from a certain range of redshift and masses,
our results suggest that ∼ !∗ galaxy at 0.2 . I . 0.5 have an extended light profile
which contributes appreciable IHL to their host halos. As ∼ !∗ galaxies are the
representative population, which contain most of the IGL emission, the flux from
the extension, and the one-halo term present in our galaxy samples, both need to be
properly accounted for in future EBL photometry and fluctuation measurements.

.1 Extension and IHL Fraction
Table .6 summarize the fraction of light beyond 10 and 20 kpc, assuming our fitted
light profile. These are the data presented in Fig. 5.13.

Table .7 summarize the 5IHL values with Acut= 10 and 20 kpc, assuming our fitted
light profile and the one-halo contribution from the MICECAT. These are the data
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Table .6: Fraction of galaxy flux between 10/20 kpc and 100 kpc, assuming the
galaxy light profile follows the stacking results in this work. These are the values
shown in Fig. 5.13. The total row shows the weighted average of the five listed
sub-samples.

1.1 `m 1.1 `m 1.8 `m 1.8 `m
Name 10 kpc 20 kpc 10 kpc 20 kpc

high-M/low-z 0.44+0.05
−0.05 0.23+0.04

−0.04 0.43+0.05
−0.04 0.22+0.04

−0.04
high-M/med-z 0.53+0.05

−0.04 0.31+0.05
−0.04 0.52+0.05

−0.04 0.30+0.04
−0.04

high-M/high-z 0.55+0.07
−0.05 0.33+0.06

−0.05 0.55+0.05
−0.04 0.33+0.05

−0.04
low-M/low-z 0.41+0.06

−0.05 0.21+0.04
−0.04 0.41+0.05

−0.05 0.20+0.04
−0.04

low-M/med-z 0.45+0.08
−0.06 0.23+0.06

−0.05 0.42+0.06
−0.05 0.21+0.05

−0.04
total 0.48+0.02

−0.03 0.25+0.02
−0.02 0.47+0.02

−0.02 0.25+0.02
−0.02

Table .7: IHL fraction (Eq. 5.27) with Acut= 10/20 kpc, assuming the galaxy light
profile and the one-halo terms follow our stacking results and the MICECAT sim-
ulation, respectively. These are the values shown in Fig. 5.15 and 5.16. The total
row shows the weighted average of the five listed sub-samples.

1.1 `m 1.1 `m 1.8 `m 1.8 `m
Name 10 kpc 20 kpc 10 kpc 20 kpc

high-M/low-z 0.44+0.09
−0.06 0.23+0.06

−0.05 0.40+0.06
−0.08 0.21+0.04

−0.06
high-M/med-z 0.51+0.12

−0.09 0.30+0.09
−0.08 0.44+0.08

−0.07 0.26+0.06
−0.06

high-M/high-z 0.31+0.10
−0.19 0.19+0.07

−0.14 0.24+0.06
−0.07 0.15+0.04

−0.05
low-M/low-z 0.41+0.10

−0.06 0.21+0.07
−0.05 0.41+0.09

−0.05 0.21+0.06
−0.04

low-M/med-z 0.44+0.23
−0.07 0.23+0.14

−0.06 0.29+0.09
−0.12 0.15+0.05

−0.07
total 0.43+0.03

−0.05 0.23+0.03
−0.03 0.36+0.03

−0.05 0.19+0.02
−0.02

presented in Fig. 5.15 and 5.16.
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C h a p t e r 6

COSMIC NEAR-INFRARED BACKGROUND TOMOGRAPHY
WITH SPHEREX USING GALAXY CROSS-CORRELATIONS

Cheng, Y.-T., & Chang, T.-C. 2021, in prep.

The extragalactic background light (EBL) consists of integrated light fromall sources
of emission throughout the history of the Universe. At near-infrared wavelengths,
the EBL is dominated by stellar emission across cosmic time; however, spectral and
redshift information of emitting sources cannot be probed in absolute photometry
or fluctuation measurements. Cross-correlating near-infrared maps with tracers of
known redshift enables EBL redshift tomography, as EBL emission will only cor-
relate with external tracers from the same redshift. Here we forecast the sensitivity
of probing the EBL spectral energy distribution as a function of redshift by cross-
correlating the upcoming near-infrared spectro-imaging survey, SPHEREx, with
several current and future galaxy redshift surveys. Using a model galaxy luminosity
function, and the cross-power spectrum clustering amplitude on large scales, we
forecast that the redshift-dependent near-infrared EBL spectrum can be detected
out to I ∼ 6. We also predict a high significance measurement (∼ 102 − 104f) of
the small-scale cross-power spectrum out to I ∼ 10. The large-scale cross power
spectrum amplitudes is proportional to the redshift-dependent EBL, which can con-
strain the cosmic evolution of the stellar synthesis process through both continuum
and the line emission. On the non-linear and the Poisson-noise scales, the high
sensitivity measurements can used to probe the non-linear clustering and the mean
spectra associate with the tracer population across redshift.

6.1 Introduction
The extragalactic background light (EBL) is the aggregate light from all sources of
emission across cosmic time. EBL measurements have been made from gamma-
rays to radio [see e.g., 22, 70, for recent reviews]. At near-infrared wavelengths,
the EBL is mostly produced by redshifted ultraviolet and optical stellar emission,
and thus carries essential information on the history of stellar synthesis processes in
our universe. However, observations also suggest other sources of the near-infrared
EBL, including diffuse light in the dark matter halos from stripped stars, sometimes
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referred to as intra-halo light [IHL, 23, 109], and primordial stars and galaxies
from the epoch of reionization [47, 48, 68, 75]. Theories also proposed possible
near-infrared EBL emission from direct collapse black holes from the dark ages
[105, 106] and the decay of axion-like particles as dark matter candidate [e.g.,
14, 40].

Extensive studies have attempted to probe the near-infrared EBL through different
methods. Galaxy counts measure the emission from resolved galaxies and extrapo-
late their observations to estimate the contributions from faint galaxies below the de-
tection limit [31, 36, 44, 49, 53, 86]. This sets a lower bound on the EBL by the inte-
grated galaxy light (IGL) component, while EBL from the diffuse light or sources not
associated with galaxies are not included. Direct measurements using absolute pho-
tometry captures all emission in the EBL [11, 56, 58, 66, 69, 87, 88, 100, 108]. How-
ever, absolute photometry is challenging since the systematic errors and foreground
emission have to be tightly controlled. Fluctuation analysis is an alternative approach
that is less susceptible to these systematics, since different sources of emission have
distinct spatial and spectral correlations [23, 47, 48, 52, 67, 68, 75, 93, 98, 109], but
deriving the absolute intensity of the EBL from fluctuation measurements depends
on model assumptions. Another limitation of absolute photometry and fluctuations
is the redshift resolution, as the measured intensity is a projection of all emission
along the line of sight. One way to infer the redshift dependency of the EBL is to
measure the opacity of gamma-ray photons from individual blazars. Near-infrared
photons along the line of sight will interact with gamma-ray photons by pair produc-
tion, and thus the EBL can be constrained by absorption features in blazar spectra
[e.g., 1–8, 43, 63]. This method enables a redshift tomography of the EBL by ob-
serving blazars from different distances. However, these estimates have low spectral
resolution and depend on the assumption of intrinsic blazar spectra.

As the EBL intensity is amixture of emission from all redshifts, and different sources
have distinct spectral features, it will be insightful to decompose the EBL signal by
its redshift and spectral dependencies. Cross correlation provides a path to perform
EBL tomography while retaining spectral information. By cross-correlating exter-
nal sources (e.g., a galaxy catalog) that trace underlying large-scale structures from a
certain redshift, one can extract the EBL from the IGL and other components associ-
ated with the large-scale structures, such as the IHL, from the same cosmic volume.
The cross-correlation technique has previously been applied to derive the redshift
distribution of photometric catalogs [71, 72, 77], perform redshift tomography of
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broadband imaging surveys [18, 19, 91], probe the cosmic infrared background [94]
and the thermal or kinematic Sunyaev-Zel’dovich signal from the cosmic microwave
background [e.g., 17, 45]. Cross correlation has also been proposed to probe the
direct collapse blackholes [13, 74] and the axion decay [25] in the optical to near-
infrared EBL. In line intensity mapping [see 54, for a review], where the emission
from a certain spectral line is used to trace the three-dimensional large-scale struc-
ture, cross correlation can also probe line emission from 21 cm [e.g., 15, 65], CO
[e.g., 81], [C ii] [e.g., 83, 104], and LyU [e.g., 26, 27].

SPHEREx [33, 34] is an approved NASAMIDEXmission that will carry out an all-
sky spectro-imaging survey at near-infrared wavelengths (see Sec. 6.5 for details).
SPHERExwill achieve unparalleled spectral resolution, sensitivity, and sky coverage
for spectrally mapping the near-infrared sky, which provides an exceptional dataset
for studying EBL through fluctuation analysis.

Next generation spectroscopic and photometric galaxy surveys will come online
in the next few years, including DESI [30], the Rubin Observatory LSST [59],
Euclid [9], and the Roman Space Telescope [97]. These surveys will provide galaxy
catalogs in unprecedented depth and synergy with the SPHEREx spectro-imaging
dataset. In this work, we forecast constraints on EBL enabled by cross-correlations
of SPHEREx and upcoming galaxy surveys. SPHEREx spectro-images encode
the spatial and spectral information of the EBL, whereas galaxies trace the three-
dimensional cosmic structures with redshift information. With cross-correlation,
we perform redshift tomography of the EBL spectrum, which constrains the redshift
composition and spectral response of the integrated background emission, as well
as its scale dependence. These measurements primarily consist of the IGL, and
will provide valuable insights on the cosmic star formation and stellar mass history.
Furthermore, the information on the IHL or other possible EBL emitting sources
that trace the large-scale structure (e.g. the decaying dark matter candidates) is also
encoded in the cross correlation measurements.

A recent study by Scott et al. [92] investigated the ultraviolet to optical EBL con-
straints from cross correlation, using images from the future ultraviolet survey
Cosmological Advanced Survey Telescope for Optical-ultraviolet Research [CAS-
TOR; 24] for lower redshift, and SPHEREx for the epoch of reionization. Their
study focuses on the UV broadband emission and the LyU line. In this work, we
conduct a comprehensive forecast of constraining the EBL spectra from SPHEREx
with all accessible wavelength and redshift ranges.
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This paper is organized as follows. We first introduce the redshift tomography
formalism of cross-power spectrum estimation in Sec. 6.2. We model components
of the EBL signal in Sec. 6.3. Sec. 6.4 details the evaluation metrics and the fiducial
cases we choose to present the results. Sec. 6.5 introduces SPHEREx, and Sec. 6.6
describes the galaxy surveys considered in this work. The results are presented in
Sec. 6.7. Discussion and further science interpretations are given in Sec. 6.8 and
Sec. 6.9, respectively. Sec. 6.10 concludes the paper. Throughout this work, we
assume a flatΛCDMcosmologywith =B = 0.97,f8 = 0.82,Ω< = 0.26,Ω1 = 0.049,
ΩΛ = 0.69, and ℎ = 0.68, consistent with the measurement from Planck [80]. All
fluxes are quoted in the AB magnitude system.

6.2 Formalism
We detail the analytical expression for a cross power spectrum, and its error esti-
mation, between a continuous density field (such as a diffuse intensity map) and a
discrete density tracer sample (such as a galaxy catalog). An intensity field � and a
galaxy tracer field 6 can each be expanded in terms of spherical harmonics .ℓ< as

X� (=̂) =
∑
ℓ,<

0�ℓ<.ℓ< (=̂) , (6.1)

and
X6 (=̂) =

∑
ℓ,<

0
6

ℓ<
.ℓ< (=̂) . (6.2)

The angular cross power spectrum of these two fields, �x
ℓ
, binned in a width of Δℓ,

is given by

�x
ℓ =

〈
1

(2ℓ + 1) 5sky

ℓ∑
<=−ℓ

(
0�ℓ<

)∗
0
6

ℓ<

〉
ℓ∈Δℓ

, (6.3)

with a variance of (
X�x

ℓ

)2
=

1
#ℓ

[
(�x

ℓ )
2 + � �ℓ�

6

ℓ

]
, (6.4)

where #ℓ = Δℓ (2ℓ + 1) 5sky is the number of ℓ modes in the band power spectrum
at ℓ with a width of Δℓ, and 5sky is the fraction of sky area used in the cross
correlation. �6

ℓ
, � �

ℓ
, and �x

ℓ
are the galaxy auto power spectrum, intensity field

auto power spectrum, and their cross power spectrum, respectively. Eq. 6.4 is the
Gaussian variance that assumes all the multipole modes are independent. This is
a good approximation for large-scales, but on the small scales, the non-Gaussian
terms that correlate the modes become non-negligible. Therefore, we also consider
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the trispectrum term, and the cross power spectrum covariance is

Cov
(
�x
ℓ , �

x
ℓ′
)
= X ℓℓ′

(
X�x

ℓ

)2 +
T xx
ℓ,−ℓ,ℓ′,−ℓ′

Ωsur
, (6.5)

where X is the Kronecker delta, Ωsur = 4c 5sky is the the survey area, and T xx
ℓ,−ℓ,ℓ′,−ℓ′

is the trispectrum of the field [89].

Galaxy Sample Auto Power Spectrum �
6

ℓ

We describe a galaxy auto power spectrum as comprised of clustering and (shot)
Poisson-noise terms:

�
6

ℓ
= �

6

ℓ,clus + �
6

ℓ,shot. (6.6)

Using the Limber approximation, the clustering term can be expressed as

�
6

ℓ,clus =

∫
3I
� (I)
2

5 6 (I) 5 6 (I)
j2(I)

12
6 (I)%m

(
: =

ℓ + 1
2

j(I) , I
)
, (6.7)

where �, j, 2, 5 6 (I) are the Hubble parameter, co-moving distance, speed of light,
and the galaxy selection function, respectively. %< is the matter power spectrum.
In this work, we focus on the linear clustering regime and restrict our analysis
to large scales at : < 0.2 h/Mpc. We assume 16 is a scale-independent linear
bias. In practice, with an assumed cosmological model, 16 can be measured from
the amplitude of the galaxy auto spectrum. We consider the limit where galaxies
are from a narrow redshift bin (ΔI6 � 1) centered at I6, and use the following
approximation:

5 6 (I) =


1
ΔI6

if I6 − ΔI6

2 < I < I6 + ΔI
6

2

0 Otherwise,
(6.8)

and

�
6

ℓ,clus =
1
ΔI6

� (I6)
2j2(I)

12
6 (I)%m(: =

ℓ + 1
2

j(I6) , I
6). (6.9)

The galaxy (shot) Poisson noise power is the reciprocal of the surface number density
3#6/3Ω,

�
6

ℓ,shot =

(
3#6

3Ω

)−1
=

(
ΔI6

3#6

3I3Ω

)−1
, (6.10)

where the second equality uses the same assumption of a narrow redshift bin.
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Intensity Field Auto Power Spectrum � �
ℓ

The angular auto power spectrum of an intensity field includes contributions from
clustering, Poisson noise, and instrument noise,

� �ℓ = �
�
ℓ,clus + �

�
ℓ,shot + �

�
ℓ,=. (6.11)

Using the Limber approximation, the clustering power spectrum of the intensity
map at frequency a is

� �ℓ,clus =

∫
3I
� (I)
2

5 � (I) 5 � (I)
j2(I)

12
� (I, a)

·
[
3 (a�a) (I, '(a))

3I

]2
%m

(
: =

ℓ + 1
2

j(I) , I
)
,

(6.12)

where 1� is the large-scale bias, and 5 � the redshift selection function. We take
5 � (I) = 1 for simplicity as the intensity field is comprised from emission over a
large redshift range. a�a (I, '(a)) is the intensity of emitting sources at redshift I
observed by a filter with frequency response function '(a), i.e.,

3 (a�a)
3I
(I, '(a)) = 1∫

3a'(a)

∫
3a'(a) 3 (a�a)

3I
(I, a), (6.13)

where a�a (I, a) is the intrinsic spectral energy distribution of the EBL from sources
at redshift I observed at frequency a. In this work, we consider filters with a narrow
spectral width (Δa/a � 1), and use the approximation:

3 (a�a)
3I
(I, '(a)) = 3 (a�a)

3I
(I, a). (6.14)

The EBL is the aggregate intensity from all sources across cosmic time, defined as

a�a (a) =
∫

3I
3 (a�a)
3I
(I, a). (6.15)

In the optical to near-infrared wavelengths, the emitting sources contributing to the
measured intensity include galaxies, quasars, stars, from all luminosity ranges and
from all redshifts [e.g., 22, 70].

We model the integrated galaxy light (IGL) as the main emitting source of the EBL,
which can be considered as a lower bound to a�a (I, a). We model the continuum
and spectral line emission of the IGL spectrum separately,

3 (a�a)
3I

����
IGL
(I, a) = 3 (a�a)

3I

����
cont
(I, a)

+
∑
line

3 (a�a)
3I

����
line
(I, a).

(6.16)
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The continuum can be expressed in terms of a volume averaged galaxy emissivity,
consisting of the galaxy luminosity function Φ(<, I, arf) = 3#/3+/3<, where #
is the galaxy number count, + is the co-moving volume, < is the AB magnitude,
and arf is the rest-frame frequency. The spectrum of the continuum intensity can be
written as

3 (a�a)
3I

����
cont
(I, a) =

∫ ∞

<th (I,a)
3<Φ(<, I, a(1 + I))

· a�a (<)
3j

3I
(I)�2

� (I),
(6.17)

where �a (<) = 3631 · 10</2.5 Jy is the specific flux density at magnitude <,
3j/3I = 2/� (I), and �� is the co-moving angular diameter distance, which equals
the co-moving distance in a flat universe. The lower bound of the magnitude
integration, <th(I, a), is the masking magnitude threshold, below which sources are
masked in the diffuse intensity map. Masking reduces the foreground contributions
to the cross power spectrum Poisson noise, as discussed in Sec. 6.8. The models for
Φ, 1� , and the choice of <th used in this work are detailed in Sec. 6.3.

For spectral lines, we build the emission model based on the halo model formalism
and the mass " and line luminosity !line relation:

3 (a�a)
3I

����
line
(I, a) =

∫ "th (I)

"min

3"
3=

3"
(", I) a!line(", I)

4c�2
!
(I)

· 3j
3I
(I)�2

� (I)X
� (a − aline

rf /(1 + I)),
(6.18)

where 3=/3" is the halo mass function [95], �! is the luminosity distance, X� is
the Dirac delta function, and aline

rf is the rest frame frequency of the spectral line.
Here we treat the intrinsic spectral line width as a delta function, as the intrinsic line
width in a galaxy is unresolved in SPHEREx’s low-resolution spectral bands. The
lower limit of the integration, "min, is the minimum halo mass hosting sources with
line emission, and we set "min = 108"�/h. The upper limit, "th(I), is determined
by the line masking threshold and detailed in Sec. 6.8.

The line intensity measured at frequency band a with width Δa is

3 (a�a)
3I

����
line
(I, a,Δa) = 1

ΔIline a�a |line (Iline), (6.19)
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where

a�a |line (I) =
∫ "th (I)

"min

3"
3=

3"
(", I)

· a!line(", I)
4c�2

!
(I)

3j
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� (I),
(6.20)

Iline = aline
rf /a−1, ΔIline = Δa

(
aline

rf /a
2
)
, and 3j/3a = 2(1+ I)2/(aline

rf � (I)). Thus,

3 (a�a)
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line
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4c(1 + I)2� (I)
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·
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(6.21)

Note the line intensity is inversely proportional to the observed spectral width Δa.

The intensity Poisson noise comprises galaxy continuum and line emission, and
foreground emission. Here we consider Galactic stars as foreground sources that
contribute to the fluctuation power spectrum, and thus

� �ℓ,shot = �
�
ℓ,shot

���
cont
+

∑
line

� �ℓ,shot

���
line
+ � �ℓ,shot

���
star
. (6.22)

In the limit of narrow spectral channel width, the Poisson-noise components are
given by

� �ℓ,shot

���
cont

=

∫
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(6.24)

and
� �ℓ,shot

���
star
=

∫ ∞

<th (I,a)
3<

3#star
3<3Ω

(<, a) [a�a (<)]2 , (6.25)

where 3#star/3</3Ω is the star count per magnitude per solid angle.

Here we ignore the correlation between continuum and and line emissions, and
model them as independent source populations that contribute to the Poisson noise.
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This correlation is negligible in narrow band measurements (Δa/a � 1) considered
in this work, as the line emission in a given frequency channel only comes from a
narrow redshift range (ΔIline � 1).

We assume instrument noise to be Gaussian with a variance f2
= (a), so the noise

power spectrum is given by
�I
ℓ,= = f

2
= (a)Ωpix, (6.26)

where Ωpix is the pixel size. Note that f2
= (a) has the same units as a�a.

Galaxy-Intensity Cross Power Spectrum �G
ℓ

The cross power spectrum also contains clustering and Poisson noise components:

�x
ℓ = �

x
ℓ,clus + �

x
ℓ,shot. (6.27)

The clustering term in the Limber approximation has the expression:
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2
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where Ax is the cross correlation coefficient between galaxy sample and intensity
field. We set Ax = 1 throughout this work as we consider linear scales only.

We separate the clustering term into continuum and line emission,

�x
ℓ,clus = �

x
ℓ,clus

���
cont
+

∑
line

�x
ℓ,clus

���
line
. (6.29)

In the limit of a narrow observed spectral channel (Δa/a � 1) and redshift width
(ΔI6 � 1), we get
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���
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� (I6)
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)
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(6.31)
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where ΔIg,line is the redshift range where the galaxy tracer redshift I6 overlaps with
the line redshift Iline.

The Poisson noise cross power spectrum is proportional to the total intensity of the
tracer galaxies, which is equivalent to stacking on tracer galaxies in the real space.
The Poisson noise cross power spectrum can similarly be written as the sum of
continuum and line contributions:

�x
ℓ,shot =

(
3#6

3Ω

)−1
ΔI6

3 (a�a)
3I

����
6

(I6, a)

= �x
ℓ,shot

���
cont
+ �x

ℓ,shot

���
line
.

(6.32)

We use “g” to represent the intensity of the tracer (galaxy) sample. The continuum
and line Poisson noise components are given by

�x
ℓ,shot

���
cont

=

(
3#6

3Ω

)−1
ΔI6

3 (a�a)
3I

����
cont,6

(I6, a), (6.33)

and

�x
ℓ,shot

���
line

=

(
3#6

3Ω

)−1
ΔI6,line

ΔIline a�a |line,6 (I6, a), (6.34)

where the last term in both equations is the integration of Eq. 6.17 and 6.20 over
the galaxy sample, respectively. Here we assume the galaxy tracers are the brightest
continuum and line emitting sources, and thus there exist a limiting magnitude
<6 (I, a) (halo mass "6 (I)) for continuum (lines) where the tracers are all the
galaxies below (above) that limit. For a given masking threshold <th(I, a) ("th(I)),
if the tracer catalog is deeper than the mask, i.e., <6 > <th ("6 < "th), we get

3 (a�a)
3I

����
cont,6

(I, a) =
∫ <6 (I,a)

<th (I,a)
3<Φ(<, I, a(1 + I))

·a�a (<)
3j

3I
(I)�2

� (I),
(6.35)

and

a�a |line,6 (I, a) =
∫ "th (I)

"6 (I)
3"

3=

3"
(", I)

·a!line(", I)
4c�2

!
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3j
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(I)�2
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On the other hand, if <6 > <th ("6 6 "th), all the tracer galaxies are masked, and
thus

3 (a�a)
3I

����
cont,6

(I, a) = a�a |line,6 (I, a) = 0, (6.37)

and the cross Poisson noise vanishes.



201

Galaxy-Intensity Cross Trispectrum T xx
ℓ,−ℓ,ℓ′,−ℓ′

Since the non-Gaussian effects are negligible on the large scales, we only model the
Poisson term of the trispectrum, which is given by [89]

T xx
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� �ℓ,shot

���
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where �6
ℓ,shot is given by Eq. 6.10, and � �
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and
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Otherwise, if <6 > <th ("6 6 "th), we get

� �ℓ,shot

���
cont,6

= � �ℓ,shot

���
line,6

= T xx
ℓ,shot = 0. (6.41)

6.3 Emission Model
We assume the integrated galaxy light (IGL) constitutes the majority of the near-
IR emission, and decompose it into continuum and spectral line components. In
addition, we also consider another model for quasars, which is used for studying the
constraints on quasar spectrum with cross correlation. Note that we do not add the
quasar model to the IGL model, since IGL already includes the quasar populations.
We also consider Galactic stars as foreground emissions.

Galaxy Spectral Energy Distribution
Continuum Emission

Our model for the IGL continuum emission is based on a luminosity function pre-
scription from [44], where the luminosity function, Φ(<, I, arf), has a Schechter
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functional form [90] that depends on magnitude <, redshift I, and rest-frame fre-
quency arf . The parameters are calibrated to observations in several ultraviolet to
mid-infrared wavelength bands, and we interpolate the Schechter parameters to all
wavelengths from their model values.

Our model for the continuum intensity bias, 1�,cont(I, a), is also from [44], who uses
a halo occupation distribution (HOD) framework [111] and assumes no frequency
dependence:

1�,cont(I) =
∫
3" 3=

3"
(", I)1(", I)

〈
#gal

〉∫
3" 3=

3"
(", I)

〈
#gal

〉 , (6.42)

where
〈
#gal

〉
is the total halo occupation number. Following [44], we use the HOD

parameters given by the SDSS measurement in [107].

Line Emission

In this work, we consider five prominent optical spectral lines: HU (656.3 nm),
[O iii] (500.7 nm), HV (486.1 nm), [O ii] (372.7 nm), and LyU (121.6 nm). These
lines are of particular interest as they are visible in SPHEREx bands across a range
of redshifts.

Our line emission model is built on an empirical halo mass and line luminosity
relation !line(", I). We adopt and summarize the prescription from [41] below.
First, we assume a simple linear relation between star formation rate (SFR) and halo
mass, and calibrate the scaling factor using the star formation rate density constraints
from [46]. We then further assume a linear relation between the line luminosity and
SFR, using SFR–!line relations from Kennicutt [50] and Ly et al. [61] for HU, [O ii]
and [O iii] emission:

SFR
"�/yr

= 7.9 × 10−42 !�U
erg/s , (6.43)

SFR
"�/yr

= 1.4 × 10−41 ! [$ ��]
erg/s , (6.44)

SFR
"�/yr

= 7.6 × 10−42 ! [$ ���]
erg/s . (6.45)

For HV, we assume a fixed line ratio of �V/�U = 0.35 [79]. As LyU emission is not
discussed in [41], we use a model with a constant halo mass to luminosity M–!LyU

ratio at halo masses of " = 108–1015 Mpc/h, and calibrate the scaling factor to
match the mean LyU intensity of the analytical model from Pullen et al. [82, Eq.
51].
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The line emission bias factor, 1�,line, is given by the the halo bias, 1(", I), weighted
by line luminosity:

1�,line(I) =

∫ "th (I)
"min

3" 3=
3"
(", I)1(", I)!line(", I)∫ "th (I)

"min
3" 3=

3"
(", I)!line(", I)

. (6.46)

We use the same lower and upper integration limits ("min and "th(I)) as Eq. 6.18.

Quasar Spectrum
Our quasar emission model assumes a quasar luminosity function and an averaged
quasar spectrum. We adopt the fiducial model of the quasar luminosity function in
[21], and use the quasar spectrum template compiled in [64] that splices together a
composite spectra from [102], [85], and [60].

Foreground Stars
Galactic stars contribute to the Poisson noise (Eq. 6.25) in the auto spectrum of
the intensity field. We model star counts, 3#star/3</3Ω in Eq. 6.25, using the
stellar population synthesis code, Trilegal1 [38, 39]. We use their model in the
UBVRĲHKLMN photometric system at the north galactic pole (ℓ = 0◦, 1 = 90◦).

6.4 Cross-Correlation Forecast
Evaluation Metrics
We focus on constraining the redshift-dependent IGL spectrum, 3 (a�a)/3I(a, I),
from cross-correlating galaxies and the intensity field. The clustering and Poisson-
noise amplitudes in the cross power spectrumare proportional to 1� (I)3 (a�a)/3I(I, a)
and 3 (a�a)/3I |g (I, a), respectively (Eq. 6.28, 6.32). Therefore we forecast the
signal-to-noise ratio (SNR) on these two quantities obtained from the cross power
spectrum. Note 3 (a�a)/3I |g (I, a) represents the IGL spectrum from the specific
galaxies (tracers) used in the cross-correlation measurements, and does not equal
the cosmic mean IGL spectrum, 3 (a�a)/3I(I, a).

As the matter power spectrum is linear on large scales, here defined as : . 0.2
h/Mpc, we evaluate constraints on 1� (I)3 (a�a)/3I(I, a) from the amplitude of all
ℓmin

clus < ℓ < ℓmax
clus modes, where ℓmax

clus = 0.2[h/Mpc]j(I) − 1/2, and the minimum
accessible mode ℓmin

clus = 51, which corresponds to SPHEREx’s field of view, as
the modes larger than the field size will be susceptible to the foreground filtering

1http://stev.oapd.inaf.it/cgi-bin/trilegal

http://stev.oapd.inaf.it/cgi-bin/trilegal
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process. Therefore, the SNR on the clustering amplitude is

SNRclus(1� (I)
3 (a�a)
3I
(I, a)) =

√√√√√ ∑
ℓ∈[ℓmin

clus,ℓ
max
clus ]

[
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X�x
ℓ

]2

. (6.47)

In the Poisson-noise regime, defined as : & 1 h/Mpc, we use themodes in ℓmin
shot < ℓ <

ℓmax
shot to constrain

3 (a�a)
3I

���
g
(I, a), where ℓshot

min = 1[h/Mpc]j(I) −1/2, and ℓmax
shot = 105,

which is the highest multipole mode available given SPHEREx pixel size (6.2′′).
Incorporating the effects from both Gaussian and non-Guassian terms, the SNR on
the Poisson noise amplitude is given by
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,
(6.48)

where Ωsur is the survey size used for cross correlation.

Since 1� (I)3 (a�a)/3I(I, a) and 3 (a�a)/3I |6 (I, a) are the main quantities of inter-
est, we forecast below their constraints as a function of redshift and wavelength from
upcoming surveys.

Masking
In practice, pixels that contain bright stars and bright galaxies will have to be
masked in data processing to reduce sample variance noise in the cross power
spectrum, and the resulting power spectrum amplitude will depend on the depth
of the masking limit. To model the effect of masking on the power spectrum, we
assume a photometric source catalog with sufficient depth provides the location and
fluxes of bright stars and galaxies to be masked. The masking magnitude threshold,
<

ph
th , is set by the limiting magnitude of a photometric band at frequency aph (or the

corresponding wavelength _ph).

For simplicity, we mask all stars and galaxies brighter than our masking threshold
(see Sec. 6.8 for discussion). Since only the flux density information is needed,
we can use a photometric source catalog for this purpose, which is usually deeper
than a spectroscopic catalog. Given <ph

th and aph, we adopt the abundance matching
concept [10, 20, 55, 76, 101] to infer the masking magnitude threshold <th(a, I)
for continuum emission at a given frequency a; this assumes that the brightest N
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sources in a given frequency bin are also the brightest ones in another frequency
bin. We therefore first calculate the number density of galaxies being masked at aph:

# =

∫ <
ph
th

−∞
3<Φ(<, I, aph(1 + I)), (6.49)

and then at each frequency solve for the <th(a, I) value which gives

# =

∫ <th (a,I)

−∞
3<Φ(<, I, a(1 + I)). (6.50)

Analogously, for line emission modeled with a line luminosity and halo mass rela-
tion, given the halo mass function we can derive its maximum halo mass "th(I) by
solving for

# =

∫ ∞

"th (I)
3"

3=

3"
(", I). (6.51)

Throughout thiswork, we set the fiducialmasking threshold to<ph
th = 20 at frequency

aph = 1`m. Our model suggests that ∼ 3% of the SPHEREx pixel (6.2′′) contain
stars or galaxies above this limit, and the intensity Poisson noise from unmasked
stars is approximately an order of magnitude below the galaxy Poisson noise. Here
we ignore the sensitivity loss from mode mixing due to masking (see Sec. 6.8 for
more discussions).

Fiducial Case
We consider cross power spectra between SPHEREx intensity map and several
current and future galaxy redshift surveys. For simplicity, we present results with a
few chosen parameters as our fiducial case.

Fig. 6.1 shows the redshift-dependent IGL spectra, 3 (a�a)/3I, from our model
(Sec. 6.3) at fiducial redshifts. The spectra include continuum and spectral line
emission, and are presented with SPHEREx spectral binning (Sec. 6.5) of 96 chan-
nels over 0.75 − 5`m2. The IGL spectral amplitude builds up with cosmic time.
Since SPHEREx has higher spectral resolution at _ > 3.8 `m, the line intensity
at longer wavelength is stronger compared to the continuum as the line signal is
inversely proportional to the spectral width (Eq. 6.19). The model we used for
IGL continuum [44] is only calibrated to observations at I . 5 and rest frame

2SPHEREx recently modified its design to have 102 frequency channels covering the same
wavelength range. As this has negligible impact on our results, we use their 96 channel configuration
with published sensitivity forecasts for this work.
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wavelengths _ > 0.15 `m. The higher redshifts and shorter wavelengths model are
derived from extrapolation.

At low redshifts (I < 3), cross correlations between SPHEREx and spectro-
scopic redshift surveys with high redshift accuracy (fI/(1 + I) ∼ 10−4 − 10−3)
allow selecting galaxies in thin redshift slices. We choose a redshift bin width of
ΔI6/(1 + I6) = 0.03, and calculate the cross-correlation at five fiducial redshifts,
I6 = [0.25, 0.5, 1, 2, 3]. Between a redshift of 0 and 3 there are ∼ 46 such mea-
surements. We choose a fiducial masking threshold <ph

th = 20 at _ph = 1 `m for
all these cases, except for at I = 0.25 where we use <ph

th = 18. This threshold
is chosen to optimize the trade off between losing signal and reducing foreground
emission (see Sec. 6.8 for more discussion). SPHEREx will achieve point source
sensitivity<AB ∼ 20 at _/Δ_ ∼ 4, and therefore our masking depths is feasible with
the SPHEREx source catalog.

At higher redshifts (I > 3), spectroscopic catalogs are either unavailable or lacking
sufficient number density and/or sky coverage, and therefore we consider cross-
correlating SPHEREx with photometric redshift catalogs, which have a redshift
accuracy of fI/(1 + I) ∼ 0.02 − 0.05. We choose eight fiducial redshifts: I6 =
[3, 4, 5, 6, 7, 8, 9, 10]. For 3 6 I 6 6, we use a redshift bin width of ΔI6/(1 + I6) =
0.1, which gives ∼ 6 such measurements. At I > 6, the redshift bins are given by
the resolution from the Lyman break technique (see Sec. 6.6 for details). We also
set the masking threshold to <ph

th = 20 at _ph = 1 `m.

6.5 SPHEREx Intensity Mapping
SPHEREx is a NASA MIDEX mission scheduled to launch in 2024 [33, 34]3.
SPHEREx will carry out the first all-sky near-infrared spectro-imaging survey from
0.75 to 5 `m. It has a pixel size of 6.2′′, and a wavelength-dependent spectral
resolution: a spectral resolving power of ' = 41 at wavelengths between 0.75 and
2.42 `m, (48 spectral channels), ' = 35 between 2.42 and 3.82 `m (16 spectral
channels), ' = 110 between 3.82 and 4.42 `m (16 spectral channels), and ' = 130
between 4.42 and 5.00 `m (16 spectral channels), The top panel of Fig. 6.2 shows the
SPHEREx spectral resolution at each channel, and the bottom panel is the expected
noise rms per spectral channel per pixel of SPHEREx of the all-sky and the two
∼ 100 deg2 deep surveys4, which we use to calculate the noise contribution to

3http://spherex.caltech.edu
4Data downloaded from: https://github.com/SPHEREx/Public-products/blob/

master/Surface_Brightness_v28_base_cbe.txt

http://spherex.caltech.edu
https://github.com/SPHEREx/Public-products/blob/master/Surface_Brightness_v28_base_cbe.txt
https://github.com/SPHEREx/Public-products/blob/master/Surface_Brightness_v28_base_cbe.txt
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Figure 6.1: Redshift-dependent IGL spectra from our model (Sec. 6.3) at fiducial
redshifts, using SPHEREx spectral binning. The spectra contain continuum and
line emission. The spectral lines from left to right are LyU, [O ii], HV, [O iii], and
HU, respectively, as labeled in I = 6 case. For some cases, HV and [O iii] lines are
mixed in the same spectral channel since their frequencies are close to each other.

cross-power spectrum (Eq. 6.26). Here we adopt SPHEREx’s optimistic sensitivity
model, noting that the pessimistic forecast is ∼ 0.5 mag lower. For SPHEREx
all-sky survey, we only use 75% of the the full sky coverage to avoid the Galactic
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Table 6.1: Summary of the sky area and redshift coverage of the surveys used in
this work.

survey name �sur [deg2] 5sky redshift range
Intensity Maps
SPHEREx 30,940 0.75 N/A

SPHEREx deep 2×100 4.85 × 10−3 N/A
Spectroscopic Surveys

BOSS CMASS 10,000 0.242 0 < I < 1
eBOSS LRG 7,500 0.182 0 < I < 1.2
eBOSS ELG 620 0.0150 0 < I < 1.5
eBOSS QSO 7,500 0.182 0 < I < 3.5
DESI BGS 14,000 0.339 0 < I < 0.5
DESI LRG 14,000 0.339 0.6 < I < 1.2
DESI ELG 14,000 0.339 0.6 < I < 1.7
DESI QSO 14,000 0.339 0.6 < I < 4.2
Euclid ELG 15,000 0.364 0.65 < I < 2.05

Euclid deep ELG 10 2.42 × 10−4 0.65 < I < 2.05
Roman ELG 2,200 0.053 0.5 < I < 3

SPHEREx spec. 30,940 0.75 0 < I < 4.6
Photometric Surveys

Rubin phot. 18,000 0.436 0 < I < 4
Rubin phot.
(gold sample) 18,000 0.436 0 < I < 3

Rubin Lyman break 18,000 0.436 2.4 < I < 3.7
18,000 0.436 3.7 < I < 4.8
18,000 0.436 4.8 < I < 5.9
18,000 0.436 5.9 < I < 6.7

Roman phot. 2,200 0.053 0 < I < 6
Roman Lyman Break 2,200 0.053 5.5 < I < 6.5

2,200 0.053 6.5 < I < 7.5
2,200 0.053 7.5 < I < 8.5
2,200 0.053 8.5 < I < 9.5
2,200 0.053 9.5 < I < 10.5

contamination.

6.6 Redshift Surveys
We consider cross-correlating intensity maps from SPHEREx and several current
and future galaxy surveys. Table 6.1 summarizes the survey parameters of all galaxy
surveys. The model for source number density as a function of redshift is shown in
Fig. 6.3.
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Figure 6.2: Top: SPHEREx spectral resolution in each channel. The vertical
dashed lines mark their six frequency bands, each contains 16 channels. Bottom:
SPHEREx noise rms per spectral channel on all sky (blue) and the deep fields
(orange) in a 6.2′′ sky pixel.
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Figure 6.3: Model of number density of the spectroscopic and photometric galaxy
catalogs from each survey considered in this work. The values are compiled from
the literature or predicted with our model, detailed in Sec. 6.6. We show the number
density per co-moving volume on the top panel, and the number density per redshift
and solid angle on the bottom panel. The vertical dashed lines mark the fiducial
redshifts used in this work.

Spectroscopic Galaxy Surveys
We consider the following current and planned future spectroscopic redshift surveys:
SDSS BOSS/eBOSS, DESI, Euclid, the High Latitude Survey with the Roman
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Space Telescope. Each survey has one or multiple types of density tracers. Below
we describe the parameters we use for each tracer catalog, including the number
density, sky coverage, and the galaxy bias factors.

SDSS BOSS/eBOSS

SDSS BOSS [28] and eBOSS [29] are spectroscopic surveys targeting several types
of galaxy tracers. In this work, we use four spectroscopic samples from the SDSS:
the BOSS CMASS survey, eBOSS LRG (luminous red galaxies), eBOSS ELG
(emission line galaxies), and eBOSS QSO (quasars) surveys.

For BOSS CMASS, eBOSS LRG, and eBOSS QSO, we use the predicted number
density from Dawson et al. [29] Table 1 (Iconf > 1 for LRG, and QSO_CORE New
+ Known for QSO); for eBOSS ELG, the number density is given in Table 4 of
Raichoor et al. [84]. We assume a tophat functional form of 3#/3+ (I), the number
density per co-moving volume, between the redshift bins quoted in their tables. Our
model for galaxy bias, 16, also follows the prescription of Dawson et al. [29] and
Raichoor et al. [84]: 16 (LRG) = 1.7/f8(0)/f8(I), 16 (ELG) = 1.0/f8(0)/f8(I),
16 (QSO) = 0.53 + 0.29(1 + I)2, and we set 16 (CMASS) = 2 according to Nuza
et al. [78].

DESI

The Dark Energy Spectroscopic Instrument (DESI) [30] is an ongoing spectroscopic
survey that observes four types of tracers across 14,000 deg2: bright galaxy samples
(BGS), luminous red galaxies (LRG), star-forming emission line galaxies (ELG),
and quasars (QSO). The predicted number density for each tracer catalog is given in
Table 2.3, 2.5, and 2.7 of [30], and we assume a tophat functional form of 3#/3+ (I)
between the redshift bins quoted in their tables. For LRG, ELG, and QSO, we use
the same bias model as the eBOSS: 16 (LRG) = 1.7/f8(0)/f8(I), 16 (ELG) =
1.0/f8(0)/f8(I), 16 (QSO) = 0.53 + 0.29(1 + I)2, and we set 16 (BGS) = 2, same
as the BOSS CMASS case.

Euclid

The Euclid spectroscopic survey [57] will map ELGs (HU emitters) over 15,000
deg2 between redshifts 0.9 . I . 2. The expected number density as a function of
redshift is given by Table 3 of Amendola et al. [9] (we use the =2 reference case),
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and we assume a tophat 3#/3+ (I) between the redshift bins quoted in their table.
For galaxy bias, we use the model from Merson et al. [73]: 16 (I) = 0.7I + 0.7.

In addition, Euclid will also have deep fields that overlap with the SPHEREx deep
field at the north ecliptic pole. We therefore consider a case of cross-correlating
the Euclid deep field catalog with SPHEREx deep field images. For Euclid deep
field sources, we adopt the same bias and redshift coverage as the wide-field ELGs,
and assume a constant number density of =6 = 4 × 10−3 (h/Mpc)3 over this redshift
range.

Roman Space Telescope

The Roman Space Telescope [97] plans a spectroscopic survey of ELGs using the
HU and [O iii] lines as part of the High Latitude Survey [HLS; 35]. Compared
to Euclid, the Roman Space Telescope-HLS covers a smaller sky area (2200 deg2)
but with better point source sensitivity. We adopt the ELG galaxy number density
predictions from Zhai et al. [110]. We use the HU number density (Table 1) for
I < 2, the [O iii] number density (Table 2) for 2 < I < 3, and assume a tophat
3#/3+ (I) between the redshift bins quoted in their tables. For both spectral lines
we use their “dust model fit at high redshifts” and 1 × 10−16 erg s−1 cm−2 flux limit
case.

SPHEREx Spectroscopic Catalog

In addition to diffuse imaging, SPHEREx will also produce a spectroscopic galaxy
catalog [33, 34]. We therefore also consider the case of cross-correlating the
SPHEREx galaxy catalog with its intensity maps. For the SPHEREx all-sky survey,
we use the predicted number density and galaxy bias of the SPHEREx source catalog
at I < 4.6 from their public products 5. Specifically, we use the forecast with galaxy
photometric redshift error of 0.01 < fI/(1 + I) < 0.03, and consider a tophat
functional form of 3#/3+ (I) between the quoted redshift bins. The SPHEREx
deep field with higher sensitivity will produce a deeper catalog, which we leave it
to future works.

5https://github.com/SPHEREx/Public-products/blob/master/galaxy_density_
v28_base_cbe.txt

https://github.com/SPHEREx/Public-products/blob/master/galaxy_density_v28_base_cbe.txt
https://github.com/SPHEREx/Public-products/blob/master/galaxy_density_v28_base_cbe.txt
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Photometric Galaxy Surveys
We consider cross-correlating SPHEREx and two upcoming photometric surveys:
the Rubin Observatory Legacy Survey of Space and Time (LSST) and the Roman
Space Telescope High Latitude Survey (HLS). Despite the larger redshift uncertain-
ties in photometric samples, they have the advantage of reaching higher redshifts
and fainter sources.

Rubin Observatory LSST

The Rubin Observatory LSST will carry out an 18,000 deg2 photometric galaxy
survey at 0 < I < 4 in optical bands [59]. The expected 5-f point source depth
after a ten-year observation is a magnitude of 27.5 at r band6 . A subset of galaxies
from 0 < I < 3 with higher redshift accuracy (fI/(1 + I) < 0.05) constitute the
“gold sample,” which has a depth of 25.3 in i band [59]. We predict the number
density of these two samples by applying these magnitude thresholds to our galaxy
luminosity function model from Helgason et al. [44].

Photometric redshift estimates are not available for I > 4 sources from the Rubin
Observatory LSST; nevertheless, redshift information of high-z sources can be
determined by the Lyman-break drop-out technique. We thus estimate Lyman-
break galaxy samples in a few broad redshift bands (listed in Table 6.1) defined
by the LSST filter boundaries and the redshifted LyU wavelength (rest-frame 121.6
nm). For these Lyman-break selected galaxies, we estimate their number density by
applying the same magnitude threshold (27.5 in r band) to our luminosity function
model. We use Eq. 6.42 to estimate galaxy bias in both the photometric and Lyman-
break samples.

The Roman Space Telescope

The planned photometric galaxy survey as part of the Roman Space Telescope HLS
[35] covers 2200 deg2 with a 5-f depth of ∼ 26.5 in Y, J, and H band [97]. We
apply these magnitude thresholds to our IGL luminosity function model to predict
the number density of the HLS photometric galaxies from I = 0 to I = 6. For
I > 6, we use the expected Lyman-break selected galaxy number density from
the Roman Space Telescope collaboration (S. Finkelstein, private communication)7.

6https://www.lsst.org/scientists/keynumbers
7See slides from the presentation given by S. Finkelstein in the conference Astronomy in the

2020s: Synergies with WFIRST, available at the time of writing at https://www.stsci.edu/
~dlaw/WFIRST2020s/slides/finkelstein.pdf

https://www.lsst.org/scientists/keynumbers
https://www.stsci.edu/~dlaw/WFIRST2020s/slides/finkelstein.pdf
https://www.stsci.edu/~dlaw/WFIRST2020s/slides/finkelstein.pdf
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We also use Eq. 6.42 to estimate galaxy biases in both photometric and high-redshift
samples.

6.7 Results
An Example Cross Power Spectrum
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Figure 6.4: Examples of cross power spectra (black) of SPHEREx 3 `m image
and SPHEREx spectroscopic galaxy catalog at I = 0.25, 1, and 3. Green and red
lines are the clustering and Poisson-noise components, respectively. We constrain
1� (I)3 (a�a)/3I(I, a) and 3a�a/3I |6 (I, a) from the amplitudes of clustering and
Poisson-noise modes in green and red bands (see Sec. 6.4), respectively, and their
SNR values are given in the legend.

In Fig. 6.4, we show a set of example cross power spectra of a all-sky SPHEREx
intensity map at 3 `m and SPHEREx spectroscopic catalog at I = 0.25, 1, and 3,
respectively. The cross power spectra are given by Eq. 6.27 with error bars estimated
by Eq. 6.4. In the Poisson-noise regime, we expect high significance measurements
of the cross power spectra at all three redshifts due to the large number of modes on
small scales, while in the clustering regime, we expect significant detection at the
lower two redshifts only. For the I = 3 case, the low tracer number density gives a
high galaxy Poisson noise level that reduces sensitivity on the cross power spectrum
(see Sec. 6.8 for discussions).

We aim to extract two quantities related to the redshift-dependent IGL spectra,
1� (I)3 (a�a)/3I(I, a) and 3 (a�a)/3I |6 (I, a) from the large (clustering) and small
(Poisson-noise) scale amplitudes of the cross power spectrum. Their respective
SNRs are denoted as SNRclus and SNRsh, respectively. Note that for SNRsh, we also
include the non-Gaussian effect from the trispectrum term (Eq. 6.48).

Sensitivity to the Clustering Term
The top row of Fig. 6.5 shows our model for 1� (I)3 (a�a)/3I(I, a) as a function of
the 96 SPHEREx spectral bins and at the five fiducial I 6 3 redshifts and masking
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Figure 6.5: Constraints on the amplitude of cross power spectra of SPHEREx
and galaxy surveys on large scales at I 6 3. Top: 1� (I)3 (a�a)/3I(I, a) from
our model using spectroscopic (black) and photometric (grey, shifted down by
×0.5 for presentation purposes) galaxy samples. The photometric surveys have
wider redshift bins and thus lower spectral resolution. Middle: SNR forecast on
1� (I)3 (a�a)/3I(I, a) (SNRclus in Eq. 6.47) per SPHEREx spectral channel from
cross-correlating SPHEREx images with different spectroscopic surveys. For the
surveys that have multiple tracer catalogs, we plot the one that gives the highest SNR
values (BOSS CMASS and DESI BGS for I = 0.25; BOSS CMASS for I = 0.5;
eBOSS QSO and DESI ELG for I = 1; eBOSS QSO and DESI QSO for I = 2
and 3). Solid lines are the cases using SPHEREx all-sky survey, and dashed lines
are the cases with two SPHEREx deep fields, which have lower instrument noise
but smaller sky coverage. Bottom: same as the middle rows but with photometric
surveys.
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thresholds. This quantity can be derived from the amplitude of the cross power
spectra on large scales. We consider both spectroscopic and photometric galaxy
surveys, where we use different redshift bin widths (ΔI6/(1 + I6) = 0.03 and 0.1 for
spectroscopic and photometric, respectively) to account for the respective redshift
accuracies. For cross-correlation with photometric galaxies, the SPHEREx spectral
line features are smoothed out due to the wide redshift bins.

Themiddle and bottom rows of Fig. 6.5 show theSNR forecasts on 1� (I)3 (a�a)/3I(I, a),
i.e., SNRclus in Eq. 6.47, per SPHEREx spectral channel by cross-correlating
SPHEREx maps with different spectroscopic (middle) and photometric (bottom)
galaxy catalogs. For surveys that have multiple tracer catalogs, we plot the ones that
give the highest SNR values. With spectroscopic galaxies, we expect to achieve a
SNRclus > 5 out to I ∼ 2. However, at I = 3, due to the low number density of
tracers, SNRclus ∼ 1 to 3. Photometric galaxies, on the other hand, have a much
higher source density, and can reach a SNRclus of ∼ 10(5) with Rubin observatory
LSST (Roman Space Telescope HLS) at I = 3. Dashed lines indicate results from
SPHEREx deep fields, which have lower instrument noise but smaller sky coverage.
According to our model, the SNR in the deep fields are much lower than the all-sky
cases, due to their small 5sky that results in a large sample variance noise contribu-
tion. Note that with our chosen redshift binning there are ∼ 37 measurements at
I < 2 and ∼ 9 measurements at 2 < I < 3.

Fig. 6.6 shows the same forecast as Fig. 6.5 at high redshifts (4 < I < 10) with pho-
tometric surveys. Note with our chosen redshift binning there are ∼ 6 measurements
available for 3 < I < 6. For I > 6 where the universe has not yet fully ionized, we
cut off the spectrum below the Lyman-U wavelength (121.6 nm rest frame) since
those high-energy photons will be absorbed by the neutral gas in the intergalactic
medium.

The Lyman break selected galaxy bins from Rubin Observatory LSST and Roman
Space Telescope are also shown in the panels close to their central redshift. Note that
the Lyman break galaxy samples have a much wider redshift bin, and therefore they
have higher sensitivity but lower spectral resolution on the inferred IGL spectrum.

Our estimate suggests that the IGL spectrum can be robustly measured over the full
0.75 − 5`m wavelength range across redshift, to a significance level of a few f per
SPHEREx spectral channel out to I = 6 by cross-correlating SPHEREx all-sky and
upcoming photometric galaxy surveys.
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Figure 6.6: Constraints on the amplitude of cross power spectra of SPHEREx
and galaxy surveys on large scales at 4 < I < 10. Top: 1� (I)3 (a�a)/3I(I, a)
from our model using photometric surveys. We cut off the spectrum below the
Lyman-U (121.6 nm) for I > 6 since those high-energy photons will be ab-
sorbed by neutral gas in the intergalactic medium. Bottom: SNR forecast on
1� (I)3 (a�a)/3I(I, a) (SNRclus in Eq. 6.47) per SPHEREx spectral channel from
cross-correlating SPHEREx images with different photometric surveys. The Lyman
break selected galaxy bins from Rubin Observatory LSST and the Roman Space
Telescope are also shown in the panels close to their central redshifts. Solid lines
are the cases using SPHEREx all-sky survey, and dashed lines are the cases with
two SPHEREx deep fields.

Sensitivity to the Poisson-noise Term
Fig. 6.7 shows our forecast on the cross power spectrum Poisson noise amplitude of
SPHEREx and galaxy surveys at I 6 3. The top row compares the IGL spectrum
from all sources, 3 (a�a)/3I, and from the subset of sources in the galaxy samples
used for cross-correlation, 3 (a�a)/3I |6, which is proportional to the Poisson noise
amplitude. Naturally, deeper catalogs capture a larger fraction of the total IGL in
the cross Poisson noise amplitude. The bottom row shows our SNR forecast on
3 (a�a)/3I |6, i.e. SNRsh, in Eq. 6.48. In most cases, the cross-correlation results
in a highly significant SNRsh (∼ 102 − 104) because of the large number of modes
available on small scales. Dashed lines indicate the cross-correlation of the two
SPHEREx deep field images with a Euclid deep field. Compared to all-sky, the
deep fields capture a higher fraction of the IGL, as shown in the top row, but the
SNR is lower due to the small sky coverage.
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Figure 6.7: Constraints on the cross power spectrum Poisson noise amplitude at
I 6 3. Top: the IGL spectrum from all galaxies, 3 (a�a)/3I (black), and from the
subset of the galaxies used for cross-correlations, 3a�a/3I |6 (colored), which is
proportional to the Poisson noise amplitude. Solid lines give the cases using the
SPHEREx all-sky survey, and dashed lines are the cases with the two SPHEREx
deep fields, which have lower instrument noise but smaller sky coverage. Bottom:
SNR forecast on 3 (a�a)/3I |6 (SNRsh in Eq. 6.48) per SPHEREx spectral channel
from cross-correlating SPHEREx images with different spectroscopic surveys. For
the surveys that have multiple tracer catalogs, we use the same tracer as in Fig. 6.5,
which gives the highest SNRvalues. We use the fiducialmasking depths as described
in Sec. 6.4, and in the CMASS case at I = 0.25 and I = 0.5, the mask is deeper
than the galaxy catalog, and therefore we only have clustering but not Poisson-noise
measurement for these two cases.

Fig. 6.8 shows the same forecast as Fig. 6.7 at high redshifts (4 < I < 10) with
photometric surveys and the Lyman-break selected samples. We observe a slight
kink in SNR at _ ∼ 3.8 `m due to the change in SPHEREx spectral resolution and
thus instrument noise level (see Fig. 6.2). In practice, one can bin the measurements
at _ > 3.8 `m to increase the sensitivity. The same effect is not evident at the
low redshift cases as shown in Fig. 6.5, because instrument noise only becomes the
dominant source of uncertainties in X�G

ℓ
(Eq. 6.4) at higher redshifts. Our forecast

suggests that high significance measurements with SNR ∼ 100, can be achieved out
to I = 6 with upcoming photometric galaxy surveys.
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Figure 6.8: Constraints on the cross power spectrum Poisson noise amplitude for
4 < I < 10. Top: the IGL spectrum from all galaxies, 3 (a�a)/3I (black), and
from the subset of the galaxies used for cross-correlations, 3a�a/3I |6 (colored),
which is proportional to the Poisson noise amplitude. Solid lines give the cases
using the SPHEREx all-sky survey, and dashed lines are the cases with the two
SPHEREx deep fields, which have lower instrument noise but smaller sky coverage.
The Lyman break selected galaxy bins from Rubin Observatory LSST and Roman
Space Telescope are also shown in the panels close to their central redshifts. We cut
off the spectrum below the Lyman-U wavelength (121.6 nm) for I > 6 since those
high energy photons will be absorbed by neutral gas in the intergalactic medium.
Bottom: SNR forecast on 3 (a�a)/3I |6 (SNRsh in Eq. 6.48) per SPHEREx spectral
channel from cross-correlations. The kink in SNR above _ ∼ 3.8 `m is due to the
change in SPHEREx resolving power and instrument noise (see Fig. 6.2).

Note that 3 (a�a)/3I |6 is themean spectrumof sources in the galaxy catalog, which is
not the same as the mean IGL spectrum from the averaged emission from all sources.
Nevertheless, for simplicity, we assume any subset of galaxies has the same mean
spectrum as the IGL model used in this calculation. We also highlight potentially
differentmeasurements from the cross Poisson noise termwith an example of quasars
in Sec. 6.9.

6.8 Discussion
Error Estimation
The variance of a cross power spectrum is the sum of several contributing factors
in Eq. 6.4, including instrument noise, galaxy Poisson (shot) noise, and sample
variance. Fig. 6.9 compares three cross power spectra and their different error
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Figure 6.9: Cross power spectra (black solid lines) and their error components
(colored lines) from cross-correlating SPHEREx all-sky maps at 3-`m channel with
SPHEREx spectroscopic catalogs at I = 0.25 (left), 1 (middle), and 3 (right), using
a masking threshold of <ph

th = 18. The thick black dashed lines show the total
Gaussian noise power spectrum variance, i.e., the sum of all colored lines (except
for the trispectrum term T xx

ℓ,shot/Ωsur). Grey solid and dashed lines are the clustering
and Poisson noise terms in the cross power spectrum, respectively. The green and
red bands mark the multipole modes used for constraining the clustering and Poisson
noise amplitudes, respectively. The two lower redshift cases are background-limited
where the cross spectrum errors are dominated by� �

ℓ,clus�
6

ℓ,clus/#ℓ, whereas at I = 3,
the sensitivity is also limited by the galaxy Poisson noise due to its low tracer number
density.

components from cross correlating SPHEREx all-sky maps at 3-`m channel with
SPHEREx spectroscopic catalogs at I = 0.25, 1, and 3 using a masking threshold
of <ph

th = 18. The Gaussian error on the cross power spectrum (Eq. 6.4) comprises
a quadratic sum of individual power spectrum terms:(
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(6.52)

First, we see that the cross- spectrum amplitude decreases with redshift following
the redshift dependence of the IGL spectrum (Fig. 6.1) and the underlying matter
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density fluctuations. For the two lower redshift cases, the dominant noise term
is � �

ℓ,clus�
6

ℓ,clus/#ℓ. While �6
ℓ,clus is determined by the underlying cosmology, the

only way to further bring down the cross power spectrum error is to reduce � �
ℓ,clus,

which is dominated by aggregate emission along line of sight. Therefore, these
measurements are in the background-limited regime, where the background refers
to all emission not from the redshift of interest. We can apply a deeper mask to
suppress the background. However,this will also reduce the signal, and therefore
there exists a masking threshold that optimizes the trade-off between foreground
and signal removal. We detail this comparison in Sec. 6.8.

At I = 3, the dominant noise term becomes � �
ℓ,clus�

6

ℓ,shot/#ℓ due to the increased
galaxy Poisson noise power spectrum amplitude, �6

ℓ,shot, in available surveys. This
means that a deeper catalog with a higher tracer number density can effectively
improve the sensitivity.
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Figure 6.10: Cross power spectra (black solid lines) and their error components
(colored lines) from cross-correlating SPHEREx all-sky maps at 3-`m channel with
Euclid ELG (left) and DESI QSO (middle), and SPHEREx deep-field maps with the
Euclid deep field ELG catalog (right). All three cases are at I = 1 with a masking
threshold of <ph

th = 18. The curves are the same as in Fig. 6.9. The Euclid ELG
(left) and the DESI QSO (middle) have similar survey area, but the former has lower
tracer number density and thus the higher Poisson noise suppresses the sensitivity.
The Euclid deep field case (right) has even higher ELG number density than the
wide field case (left), however it has lower SNR due to the larger sample variance
from its smaller sky coverage.

Fig. 6.10 compares three different galaxy surveys at I = 1 with the same masking
threshold of <ph

th = 18 for the SPHEREx 3-`m channel. The first two, Euclid ELG
and DESI QSO surveys, have a similar survey area, 5sky, and thus similar #ℓ’s, but
Euclid ELG has a higher source number density. As a result, the two cases have
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similar cross spectrum amplitudes in the clustering regime, but DESI QSO has a
higher Poisson noise amplitude, and the noise terms that contain �6

ℓ,shot (all dashed
lines) are therefore higher in the DESI QSO case.

We can also compare the Euclid wide and deep field cross-correlations with the
SPHEREx all-sky and deep fields, respectively. As shown on the left and right
panels of Fig. 6.10, we see that the terms associated with galaxy Poisson noise
(all dashed lines) are lower in the deep fields because of the higher galaxy number
density. However, the deep fields cannot access the lower ℓ modes, and the overall
noise is higher in the deep field due to the larger sample variance (small #ℓ) from
its smaller sky coverage.
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Figure 6.11: Cross power spectra (black solid lines) and their error components
(colored lines) from cross-correlating SPHEREx all-sky maps at 3-`m channel with
DESI BGS at I = 0.25 using a masking threshold of <ph

th = 14 (left), 18 (middle),
and 22 (right), respectively. The curves are the same as in Fig. 6.9. The SNR
is improved by raising the masking threshold from <

ph
th = 14 to <ph

th = 18, since
the line-of-sight contamination decreases (�I

ℓ,clus and �I
ℓ,shot terms), while signal

reduction is negligible (black solid lines). However, if we further increase the
masking threshold to <ph

th = 22, the SNR becomes lower due to the significant loss
in the signal.

Fig. 6.11 demonstrates the impact of masking depth, using the cross-correlation of
SPHEREx all-sky maps at 3 `m and DESI BGS galaxies at I = 0.25 with three
different masking depths, <ph

th = 14, 18, 22. Comparing <ph
th = 14 and <ph

th = 18,
the signals are almost the same (black solid line) but the total Gaussian error (black
dashed line) is lower with a deeper mask; this suggests that by masking sources to
14 < <ph

th < 18, a significant portion of the foreground can be removed, while the
signal reduction is negligible which leads to an improvement of SNR. However, if
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we further increase the masking depth to <ph
th = 22, the signal is drastically reduced,

which means a significant fraction of IGL at this redshift is from galaxies with
18 < <ph

th < 22, and we cannot get a higher SNR by this deeper masking depth.
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Figure 6.12: Top: the IGL spectrum 3 (a�a)/3I as a function of masking depth in
the SPHEREx 3 `m channel. Bottom: SNRclus as a function of <ph

th with different
galaxy surveys shown in Fig. 6.5.

We consider masking all sources from an external catalog that are brighter than
a flux threshold, and therefore the choice of masking depth is a trade-off between
signal loss and foreground reduction. A deeper masking depth tends to remove
more foreground sources contributing to the intensity maps, but at the same time,
bright galaxies in the target redshift range of interest can also be masked. Fig. 6.12
demonstrates how the IGL amplitude and the error depends on masking depth. At
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lower redshift, the IGL amplitude strongly depends on the masking depths <ph
th . At

higher redshift, the signals are almost unchanged with varying masking depth, as the
sources that dominate the IGL at these redshifts are below the masking thresholds.
In other words, at low redshift, there is a masking depth that optimizes the tradeoff
between signal loss and foreground reduction. At higher redshift, deeper masks
perform better since they reduce more foreground emission while having negligible
impact on the signal.

Here we only consider masking all stars and galaxies brighter than a magnitude
threshold. In practice, if the external catalog provides redshift information of
individual sources, a redshift-dependent magnitude threshold might also help to
minimize foreground contamination from lower-redshift clustering signals. We
leave this investigation to future work.

We ignore the effect of pixel loss due to masking in our forecast. In reality,
masking results in highly non-uniform images, which not only reduces the number
of multipole modes in the data, but also introduces mode mixing, the coupling of
signal on different scales that needs to be corrected for in analysis. The reduction in
power spectral sensitivity due to masking as a function of multipole depends on the
source luminosity function and clustering amplitude, the masking size around each
source, and the mode-coupling correction method. A more detailed study requires
realistic simulated images, which is beyond the scope of this work.

Caveats of the Abundance Matching Model
In ourmodel, we use abundancematching to relate the underlyingmatter distribution
to galaxy tracers, continuum emitters, and spectral lines. In other words, if we have
N galaxy tracers, we assume they are in the most massive N dark matter halos,
and are also the strongest emitters of continuum in all frequencies and spectral
lines. In reality, these relations have large scatters. It has been shown that red and
blue galaxies have different spatial clustering and thus they trace the matter density
field differently [107]. Each galaxy has distinct color and spectral line strength
depending on its stellar composition, metallicity, dust attenuation, and other ISM
and IGM properties. Moreover, the tracer galaxies are selected with certain spectral
features, which makes them unrepresentative for the average EBL emitters. For
example, the ELG samples will bias toward the star-forming galaxies which have
strong emission lines. The decorrelations between matter, continuum, and lines will
not only introduce uncertainties to our model, but also reduce the cross correlation
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signal. As discussed in Chiang et al. [19], the stochasticity in the relation between
mass, tracers, and EBL light could be a possible explanation to their low EBL
intensity bias values. Quantifying these decorrelations requires a coherent model
for matters, continuum and lines, which we leave to future work.

Intensity-bias Degeneracy
We derive constraints on 1� (I)3 (a�a)/3I(I, a) from the cross power spectrum am-
plitude in the clustering regime, but we do not further consider decoupling these
two terms. In practice, we can apply the methods used in [19] to jointly fit the
redshift an frequency dependence of bias and intensity, using all the cross spectrum
measurements. In [19], they use the intensity from resolved sources to calibrate
intensity at local universe, as the source catalog has sufficiently depth that contains
most of the intensity emitters. For our case, we can cross-correlate SPHEREx
maps with a deep catalog at low redshifts, and assume 3 (a�a)/3I |6 ≈ 3 (a�a)/3I to
break the degeneracy. According to our model, SPHEREx spectroscopic catalog at
I = 0.1 contains ∼ 95% of the total EBL intensity, and thus this is feasible for our
measurements.

6.9 Science Interpretation
Poisson Noise Constraints on the Tracer Spectrum
In the Poisson-noise sensitivity forecast presented in Sec. 6.7, we assume the tracer
population has the same averaged spectrum as our IGL model spectrum. This is
not necessarily true if we select a certain type of source for cross correlation (e.g.,
ELG, QSO), where the Poisson noise signal will be the averaged spectrum of the
tracer sources. Therefore we can extract potentially distinct information from the
Poisson-noise spectrum. As a demonstration, we consider a case of cross-correlating
SPHERExwith quasars fromDESI at I = 2, using a quasar spectrum and luminosity
function model described in Sec. 6.3. The constraints on the averaged quasar
spectrum, 3 (a�a)/3I |& , from the cross Poisson spectrum is shown in Fig. 6.13.
Using the small-scale cross-correlation information of SPHEREx with the quasar
sample, we can obtain a high- SNR measurement on the average quasar spectrum at
near-infrared wavelengths across redshift.

Given the high SNR value from the Poisson-noise measurements in all cases consid-
ered in this work, it is also feasible to gain more information from Poisson-noise by
splitting the tracers into sub-samples by different properties. For example, we can
select galaxies by their stellar mass, star formation rate, morphology, and constrain



226

their average spectrum individually.
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Figure 6.13: Average quasar’s spectrum constraints (per SPHEREx spectral bin)
from cross-correlating SPHEREx with DESI quasar samples at I = 2. The blue line
is the modeled quasar spectrum template from Mas-Ribas & Hennawi [64].

Science from Non-Linear Clustering
In this work, we only consider information from the linear and Poisson noise scales
of the cross power spectrum. Non-linear clustering scales also contain crucial
information on galaxy evolution as well as the underlying cosmology. For example,
emission from satellite galaxies and the contribution of IHL can be constrained
by the amplitude and shape of the non-linear power spectrum [e.g., 16, 23, 109].
As we have demonstrated that a high-SNR measurement can be achieved by cross-
correlating SPHEREx with current or upcoming galaxy surveys, it is promising to
extract more constraints from non-linear scales.

Science from Near-Infrared EBL Tomography
The rest-frame near-infrared light from galaxies are dominated by the low mass
stars, and thus the near-infrared photometry has been used for measuring the stellar
mass function across redshifts. Most of the current stellar mass function constraints
are based on deep photometric samples [65, 99, 103]. While individual galaxies can
be resolve down to ∼ 10−3"∗ at lower redshift, for I & 3, the photometric surveys
only complete to ∼ "∗ scales, and the faint end estimation are extrapolated from the
bright end with a functional fit [99]. SPHEREx EBL measurement, 3a�a/3I(a, I),
provides complimentary information to the current detection-based measurement.
Although SPHEREx cannot extract the individual galaxy spectra, SPHEREx EBL
measurements contain emission from all sources with high spectral and redshift
resolution, and a large sky coverage, which can be used to calibrate the stellar
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mass function model build from the resolved galaxies, and also probe the emission
from diffuse origins such as the IHL. At higher redshift, SPHEREx bands cover the
rest-frame optical and ultraviolet spectra, which can also help constraining the star
formation history measurements [62].

Science from Spectral Lines
Here we do not separate spectral lines and continuum in our results. Our forecast
suggest that the lines can be detected with high significance at lower redshift (I . 3)
in both clustering and Poisson-noise regime. The line emission contains valuable
information on the galaxy properties. For example, the HU, LyU, and [O ii] line
flux can be used for probing the star formation rate [12, 42, 51, 96]; the Balmer
decrement, the ratio of HU and HV line flux, is an crucial indicator to the dust
extinctions [32]. The SPHEREx cross-correlation measurements of the average
line emission have the potential to address these galaxy properties across redshifts.
Moreover, with the high spectral resolution and sensitivity, SPEHREx can also probe
the three-dimensional large scale structures with line intensity mapping [54], which
measures the emission field from purely the spectral lines.

Cosmological Constraints
So far we have focused on, EBL spectrum constraints derived from cross-correlation,
which only depend on the large-scale and Poisson noise amplitude of the cross power
spectrum. In general, abundant cosmological information can be inferred from the
power spectrum; for example, baryon acoustic oscillation signals can be extracted
from the cross power spectrum, which can then be used to constrain the growth and
geometry of the universe [37].

6.10 Conclusion
We forecast the sensitivity of near-infrared EBL tomography using spectro-imaging
from the upcomingSPHERExmission through cross-correlationwith several current
and future galaxy surveys, spanning redshifts of 0.25 < I < 10. We consider IGL
as the only emitting source that constitutes the near-infrared EBL, and build a
model for IGL continuum and spectral line emissions. We then model the cross
power spectrum of SPHEREx images and galaxy surveys as a function of SPHEREx
spectral channel and galaxy redshift.

From the amplitudes of the cross power spectrum on linear scales, we infer the
redshift-dependent EBL spectrum, multiplied by a bias factor, 1� (I)3 (a�a)/3I(I, a).
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Our forecast suggests that this quantity can be constrained to a significance of at least
a few f out to I = 6, using the SPHEREx all-sky survey in cross-correlation with a
combination of spectroscopic (at I . 3) and photometric galaxy surveys (at 0.25 <
I < 10). At 3 . I . 10, photometric galaxy catalogs from the upcoming Rubin
Observatory and the Roman Space Telescope can constrain 1� (I)3 (a�a)/3I(I, a),
albeit at a lower redshift and spectral resolution.

The Poisson noise level of the cross power spectrum represents the average intensity
of sources used in cross correlation. Our forecast shows that the Poisson noise
level can be extracted at high significance (& 102) out to I ∼ 10, suggesting the
SPHEREx all-sky and deep-field data can provide high sensitivity measurements of
the average near-infrared spectrum of any selected population of tracer sources.

In summary, a high-sensitivity tomographic measurement of the EBL spectrum
can be achieved by cross-correlating SPHEREx with current and future galaxy
spectroscopic and photometric surveys. Making use of the clustering and Poisson
noise of the cross power spectra, we expect further cosmological and astrophysical
information can be extracted from this rich dataset.
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