
Proton-Implanted Optical Waveguides and 

Integrated Optical Detectors 

in Gallium Arsenide 

Thesis by 

Harold M. Stoll 

In Partial Fulfillment of the Requirements 

For the Degree of 

Doctor of Philosophy 

California Institute of Technology 

Pasadena, California 

1974 

(Submitted May 6, 1974) 



-ii-

To Ke.JLe.n 



-iii

ACKNOWLEDGMENTS 

First, I would like to thank my thesis advisor, Dr. Amnon 

Yariv, for providing the direction, encouragement, and support I en

joyed while pursuing this study. The solutions to many difficult 

problems encountered during the course of writing this thesis owe 

their existence to his keen physical insight. I would also like to 

offer a special thanks to Dr. Elsa Garmire whose original idea in

spired the present investigation. Her enthusiasm in and encourage

ment of my work will always be deeply appreciated. The professiona l 

assistance of Dr. Robert Hunsperger of Hughes Research Laboratories 

is also gratefully acknowledged; numerous important contributions to 

this thesis resulted from our many stimulating discussions. 

It is also a pleasure to acknowledge the skillful technical 

assistance of Desmond Armstrong and the secretarial proficiencies of 

Dian Rapchak and Ruth Stratton, who did such a marvelous job of 

typing the manuscript. Additionally, I would like to acknowledge 

the fine technical support provided by the Hughes Research Laboratories 

and the generous financial support received from the National Science 

Foundation, the Northrop Corporation, General Telephone and Electronics 

Laboratories, the Baker Foundation, the ARCS Foundation and the 

California Institute of Technology. 

Finally, for buoying my spirits when the going got tough and 

for cheering me on when I had succeeded, I would like to thank my wife, 

Keren. Her love and understanding combined with the encouragement and 



-iv-

support received from our parents contributed inmeasurably to the 

success of my graduate education. 



-v
ABSTRACT 

Defect-associated energy levels which appear within the forbidden 

energy gap of proton-irradiated gallium arsenide give rise both to free 

carrier compensation and to additional near band-edge optical attenuation. 

These damage-induced changes in the electrical and optical properties of 

gallium arsenide have been exploited in the fabrication of passive optical 

waveguides and waveguide-compatible detectors suitable for use in integrated 

optical circuits. In order to understand the physical processes which 

underliethe operation of these structures and devices and, thereby, to 

suggest ways in which the irradiation and post-irradiation fabrication 

parameters may be optimized, a model has been constructed which explains 

the experimentally observed electrical and optical properties of proton

irradiated gallium arsenide. Using this model and data obtained by other 

investigators, a self consistent analysis of the optical confinement and 

attenuation properties of waveguides formed by irradiating n-type gallium . 
arsenide with 300 keV protons has been made: Optical confinement is 

found to result from the so-called plasma depression effect; optical 

attenuation is found to be due to a combination of dissipative scattering 

and absorption by thermal spikes and dipole-assisted transitions between 

defect levels and the band continua. The model is also used to make a 

preliminary analysis of an integrated optical detector fabricated using 

the same protqn-irradiation technique. 



-vi-

TABLE OF CONTENTS 

INTRODUCTION 

CHAPTER l - RADIATION DAMAGE 

I. Introduction 
II. Disorder Production 

A. Absolute Defect Concentrations 
B. Defect Distributions 
C. Channeling Effects 

CHAPTER 2 - OPTICAL WAVEGUIDING AND ATTENUATION 

I. Introduction 
II. One-Dimensional (Planar) Waveguiding 

A. The Wave Equation 
B. Four Media Waveguide 

l 

5 

5 

6 

6 

14 
17 

20 

20 

22 

22 

24 

III. Loss Calculations-The Perturbation Technique 34 
IV. The Kramers-Kronig Relations 39 

V. Absorption Mechanisms 41 
A. Free Carrier Intraband Transitions 41 
B. Transitions Involving Discrete States and Bands 43 

CHAPTER 2 - APPENDIX 50 
I. Metallic Overlayer Losses of A Three Media Guide 50 

A. Perturbation Technique Solution 50 
B. Solution of the Complex Wave Equation 55 

II. Substrate Losses of a Three Media Guide 
A. Perturbation Technique Solution 
B. Solution of the Complex Wave Equation 

CHAPTER 3 - THE OPTICAL AND ELECTRICAL PROPERTIES OF PROTON-

58 

58 

60 

IMPLANTED GALLIUM ARSENIDE 63 
I. Introduction 

II. Ion-Implanted Gallium Arsenide 
III. Proton-Implanted Gallium Arsenide 

63 
63 
64 



-vii-

A. Optical Properties of Proton-Implanted Gallium 
Arsenide 68 
1. Absorption and Scattering by Thennal Spikes 68 
2. Absorption by Impurity-Defect Complexes 69 
3. Absorption Involving Bandtails 82 

B. Absorption-Induced Refractive Index Changes 95 
C. Electrical Properties of Proton-Implanted Gallium 

Arsenide 

CHAPTER 4 - OPTICAL WAVEGUIDING AND ATTENUATION IN PROTON-
IMPLANTED GALLIUM ARSENIDE 
I. Introduction 

I I. The Depth Distribution of Damage 
I I I. Optical Waveguiding 

IV. Optical Attenuation 
V. Data Analysis 

VI. Discussion 
VI I. Conclusion 

98 

108 

108 

108 

117 

120 
126 
158 

160 

CHAPTER 5 - A PROTON-IMPLANTED INTEGRATED OPTICAL DETECTOR 165 
I. Introduction 

II. Device Construction and Geometry 
III. Device Operation 
IV. Device Performance 

CHAPTER 6 - EXPERIMENTAL TECHNIQUES 
I. Proton Implantation 

II. Post Implantation Annealing 
III. Mode Profile and Attenuation Measurements 

IV. Free Carrier Concentration Measurements 
V. Step Etching 

REFERENCES 

165 

166 
168 
168 

176 

176 

176 

178 
181 

181 

184 ' 



_,_ 
INTRODUCTION 

The advantages offered by communications systems operating in the 

visible and near-infrared regions of the electromagnetic spectrum are 

essentially two-fold: (1) a considerable reduction in system size and 

weight and (2) a tremendous increase in bandwidth and, therefore, in 

system capacity. Currently available optical communications systems (i.e., 

those operating over relatively short distances and using incoherent 

energy sources) appear adequate to satisfy present needs wherein only 

reductions in system size and weight are desired. As human and machine 

populations increase in size and sophistication, however, the bandwidth 

advantages of optical communication systems will eventually have to be 

exploited in order to accommodate attendant increases in the flow of 

infonnation. The required large-bandwidth optical communications systems 

are envisioned as being composed of compact optical processing stations 

interconnected by fibre-optical transmission links. 

In the interests of compactness and reliability the optical proces

sing stations referred to above will be composed of integrated optical 

circuits whose elements (coherent energy sources, modulators, detectors, 

etc.) will have dimensions on the order of a wavelength (~lµ) and will be 

fabricated on a common substrate. With regard to the integration of indi

vidual device components two approaches are presently being considered. 

The first, or heterogeneous approach, would combine the best available 

components from different materials systems while the second, or homogeneous 

approach, would require all components to be fabricated within the same 

material system. Although the second approach might, under certain circum

stances, be disadvantageous from the standpoint of device performance, the 
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potential advantages it offers in the way of production simplicity and 

overall system reliability would appear to make it the more attractive 

alternative. 

Because its properties are well understood and highly controllable 

as a result of efforts in the electronics industry and because it has been 

used to construct many of the necessary device elements, the gallium arsenide 

material system appears particularly well-suited for the construction of 

homogeneous integrated optical circuits of the type described above. 

Having at one's disposal a suitable material system, however, only solves 

one-half of the problem; i n order to realize fully the inherent advantages 

of the homogeneous approach, compatible processes must be developed for 

fabricating both the individual device elements and the waveguides which 

interconnect them. It is toward the goal of fabricating homogeneous gallium 

arsenide integrated optical circuitry that the present effort has been 

directed. 

The investigations to be described here were motivated, as mentioned 

above, by the need to develop a process by which planar integrated optical 

devices could be simply and accurately fabricated in gallium arsenide. 

In particular, the goal was undertaken to fabricate waveguiding structures 

inn-type gallium arsenide by making use of the free carrier compensation 

effects caused by proton irradiation. The technique of ion implantation 

or elementary particle irradiation lends itself naturally to the fabrication 

of mass produced integrated optical circuits. One can, for example, imagine 

a sequential implantation process wherein different projectile ions, ion 

masks, and annealing procedures are used to fabricate entire optical circuits 

in gallium arsenide. In this regard, the present study has demonstrated 

that both active (integrated optical detectors) as well as passive {wave-
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guides) devices may be constructed by selectively varying the dose and heat 

treatment history of proton-irradiated gallium arsenide. 

The planar (one dimensional) waveguides and integrated optical 

detectors referred to above were fabricated by irradiating n-type gallium 

arsenide with 300 keV protons. Defects generated by the impinging protons 

gave-- rise to defect levels within the forbidden energy gap which served both 

to compensate free carriers and to generate loss at the wavelengths investi

gated (l.06µ and 1.15µ). Following suitable post-irradiation heat treatment 

in order to reduce the defect-associated losses to an acceptable level 

(~4 db cm-1) the former effect was used to produce waveguiding structures 

via the free carrier plasma depression effect. Conversely, by not 

annealing the irradiated material, the latter effect, involving dipole 

transitions between defect levels and the band continua, was exploited in 

order to fabricate integrated optical detectors. 

The six chapters of this -thesis may be conceptually divided into 

two parts. The first part, consisting of Chapters l and 2, deals with 

certain general principles and techniques which will be found useful in 

analyzing the optical confinement and attenuation properties of radiation

generated, multilayer waveguides. Chapter l is begun with derivations of 

the proportionality constants which relate absolute defect concentrations 

to proton ;fluence for both high and low energy interactions; it is 

concluded with a brief discussion of defect concentration distributions and 

channeling effects. Chapter 2 is concerned with the optical confinement 

and attenuation properties of the three and four media planar waveguiding 

structures which are found to exist as a result of irradiating gallium 

arsenide with high energy protons. 
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The second part of the t~esis, consisting of Chapters 3, 4, and 5,' 

is concerned with both an analysis of the physical changes ,.rwhich occur in 

gallium arsenide after irradiation ~y high energy protons and an' inter

pretation, within this analytical framework, of the devices which were 

fabricated. The model of proton-irradiated gallium arsenide is developed 

in Chapter 3. Using this model as a foundation, the optical mode profiles 

and attenuation coefficients of gallium arsenide waveguides formed by 

proton-irradiation are analyzed in Chapter 4. A preliminary investigation 

of the properties of integrated optical detectors formed by irradiati ng 

epitaxial gallium arsenide waveguides with protons is presented in Chapter 5. 

Chapter 6 concludes the thesis with a description of the experimental 

techniques used. 
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CHAPTER 1 

RADIATION DAMAGE 

Atomic projectiles, in coming to rest within a target material, 

create disorder which, in turn,modifies to some extent the electrical, 

thermal, and optical properties of the resulting projectile-target 

amalgam. Depending on the size and charge state of the projectile, 

the physical changes induced in the target arise either from the 

equilibrium disorder created, from the chemical properties of the 

projectile-dopant or from a combination of both. If the size of the 

implanted species is such as to allow substitutional occupation of 

lattice sites, the resulting physical properties of the implanted 

m~terial will largely be determined by the charge state of the implanted 

ion and any residual disorder which remains after heat treatment. On 

the other hand, if the projectile is very small, as is the case with 

protons, neutrons and electrons, no substitutional occupation will 

occur and any physical changes which obtain will be a function of how 

much disorder the projectile generated in the course of spending its 

energy. Since proton projectiles were used in the present study, only 

disorder-associated modifications of the target, gallium arsenide, 

will be considered. 

We begin our treatment by deriving proportionality constants 

which relate defect concentration to incident particle flux. Two such 

proportionality constants, one representing the effects of high energy 

interactions and the other the effects of low energy interactions, will 



-6-

be obtained. Their regimes of validity will be investigated by consid

ering, from a qualitative point of view, the dynamic behavior of pro- , 

jectiles coming to rest within a target. Some recently developed tech

niques used to obtain a quantitative representation of radiation

generated disorder distributions will then be discussed. We conclude 

the chapter with a brief description of channeling effects. 

II. Disorder Production 

An implanted ion (proton in our case) may lose energy through 

two types of interactions [l ]: those involving inelastic collisions 

with target electrons and those involving inelastic collisions with the 

target nuclei; only the second mechanism results in atomic disorder. 

The dynamic evo 1 ution of a -proton of given kinetic energy may there

fore be characterized by two parameters both of which are energy 

dependent: the cross section for electronic scattering and the cross 

section for nuclear scattering. Knowledge of a third parameter, the 

number of secondary displacements per primary nuclear event, allows, 

in principle, a complete characterization of disorder production to 

be made. 

A. Absolute defect concentrations 

The number of primary displacements (i.e., displacements 

caused by projectile-target collisions) per unit volume and unit time 

generated by incident radiation of energy E is given by 
n =~Na (E) (1-1) 

p o n 

where N
0 

is the number of target atoms per unit volume, on(E) is 
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the nuclear scattering cross section and ~ is the number of incident 

particles crossing a unit area per unit time. If the bombardment is 

tenninated after a time t, the number of primary displacements is 

given (for N << N ) by: 
p 0 

(l-2) 

where ~(= ~t) is termed the total integrated flux or dose. 

Primary displacements (termed primary knock-ans), if suf

ficiently energetic, produce additional secondary displacements, the 

whole process resulting in a disorder cascade. The average number of 

displaced atoms in a cascade, ~(E) , is a function of the energy 

spectrum of the primary knock-ans which, in turn, is dependent on the 

original energy, E , of the incident radiation. The total number of 

displaced atoms including primary and secondary displacements there

fore becomes: 

(l-3) 

Kinchin and Pease [2] calculate v(T) , the number of dis-

placements generated by a primary knock-on of energy, T , to be: 

where Ed 

0 T < Ed 

l Eds T ~ 2Ed 
v(T) = 

T/2Ed 2Ed s T ~ E. 
1 

E;f2Ed T ~ E. 
1 

is the threshold for nuclear displacements and E. 
l 

(l-4) 

is the 

electronic ionization energy of the target atoms. Equation (l-4) was 
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derived by assuming hard sphere collisions and neglecting replacement 

processes which involve the re-introduction of displaced atoms into 

vacated lattice sites. That the rather gross assumption of simple 

hard sphere scattering has little effect on the value of v(T) is 

demonstrated by the results of Snyder and Neufeld [ -3 J. Assuming 

Rutherford type scattering and counting replacements as displacements, 

they obtained for v(T): 

l 

v(T) = 

Finally, Harrison and Seitz [ 4 ], assuming a sharp threshold for 

displacements but otherwise approaching the problem in the manner of 

Snyder and Neufe 1 d, obtained for v ( 1): 

( 1-6) 

v(T) 

The average number of displacements in a cascade v(E) may now 

be found by evaluating the foll owing integral [ 5] : 

T 
m 

V(E) = I v(T}P(T)dT 

0 

( l-7) 

where P(T) , the probability that a primary knock-on received energy 

T, . i s g i ven by [ 5 ] : 
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on (T) p(T) 
P(T) =---

Tm I crn(T)p(T)d:r 

0 

( 1-8) 

and Tm, the maximum energy that may be imparted to a primary knock-on 

in an elastic collision, i s given by:: 

(1-9) 

on(T)dT = don(T) is the differentia l nuclear scattering cross section, 

E is the energy of the incident protons, mp is the ·projectile (proton 

in our case) mass, M is the averaged mass of the target atoms (taken 

to be 72.3 a.m.u. for GaAs) and p(T), the probab i lity that an atom 

becomes displaced after receiving energy T is 

p(T) = I: (l-10) 

As mentioned above, the value of v(T) is relatively 

insensitive to the form of the scattering law assumed. To determine 

v(E) , howeve r , one must decide whether to use a hard sphere scattering 

cross sec t ion or a Rutherford scattering cross section in Eq. (l-8). 

One may obtain a rule-of-thumb solution to this dilemma by first 

assuming that the interaction potential between moving and stationary 

particles is of the Thomas-Fermi, screened coulomb type [ 6 ] 
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= (Z ze2/r)e-r/a 
p (1-11) 

for which the impact parameter, or point of closest approach, is given 

by [ 6 ] 

(1-12) 

Here, Zp is the proton charge (=l) , Z is the averaged target 

charge (=32 for GaAs), r is the instantaneous separation of target 

and projectile, E is the incident projectile energy, and a is the 

screening di stance given by [6J 

(l-13) 

( -9 where a
0 

= the hydrogen Bohr radius =5.3 x 10 cm) . The rule for 

deciding which type of interaction to choose is the following: For 

impact parameters smaller than a , the projectiles (protons) will be 

strongly affected by the interaction potential and Rutherford scat

tering will be assumed. For impact parameters larger than a , the 

projectiles will not be able to penetrate the screened target and 

hard sphere scattering will be assumed. The incident proton energy, 

EA, below which hard sphere scattering predominates and above which 

Rutherford scattering prevails may be found by first setting E = E A 

in Eq. (l-12) and then setting a. equal to b. The result is [5] 

(l-14) 
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For protons incident on GaAs, EA= 3.3 x 103ev. Unfortunately, 

_ therefore, neither the hard sphere scattering approximation nor 

Rutherford scattering is entirely appropriate for dealing with 300 keV 

protons. Lindhard, Scharff, and Schiott (LSS) have, however, obtained 

an exact expression for the nuclear scattering cross section, based on 

the Thomas-Fermi interaction potential, which is applicable for all 

energies [7]: 

(l-15) 

f(T) in Eq. · (l-l5) is a numerically computed function (See reference 

[ 7].). Therefore, in order to use Eq. (l-15) in Eq. (1-8) one must 

perform a numerical integration. Because of this complication 

Eq. (1-15) will not be used to derive v(E) . Instead v(E) will be 

computed using both hard sphere and Rutherford cross sections. The 

regimes of validity of both of these approaches will then be investi

gated as a prelude to the discussion of defect distributions which 

follows in Section II-B. 

Proceeding with the analysis, the necessary cross sections are 

given by [ 5] 

Rutherford: 

Hard Sphere: doh.s. (T) 
2 

= 2@_ dT 
Tm 

Using Eq. (l-16a) and Eq. (l-16b) to evaluate Eq. (1-8) yields: 

(l-l6a) 

( l - l 6b) 
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(l-17a) 

1 
Ph s (T) = T - E • 

• • m d 
(1-17b) 

TaRing, for simplicity, the value of v(T) obtained by Kinchin and 

Pease, Eqs. (l-17a) and (l-17b) together with Eq. (l-7) yield for the 

average number of displacements for both Rutherford and hard sphere 

scattering: 

Vr(E) = 1 ~mT~ Ed) [l + ln(Ti2Ed)J 

2 
Tm /(4Ed) 

~\.s. (E) = 
Tm - Ed 

( 1-1 Ba) 

( 1-1 Bb) 

Finally, Eqs. (l-18a), (l-18b) and (l-3) give for the total number of 

displacements: 

• N <1' 
0 

(l-19a) 

(l-19b) 

Taking), for the case of gallium arsenide, N
0 

= 4.42 x 1022 ;cm3 

and Ed= 17.5 eV [8], yields, for E = 300 keV, (Nd)r = 277xl04~ and 

(Nd)h~s. = 6.37 x 107~. Fig. 1-1, which shows some theoretical 

danage distributions [12], provides a general means by which these values 

may be interpreted. As the projectiles come to rest they pass through 
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two energy regimes: Near the beginning of their travel they are very 

energetic and most encounters are of the Rutherford type. Once their 

energy has descended below a certain threshold, 3.3 x 103ev for the 

case of protons incident on gallium arsenide, hard sphere scattering 

predominates and a damage peak results. Finally, it will be noted 

that the values of (Nd)r and (Nd)h.s. which we have obtained 

almost certainly overestimate the actual amount of damage [9 ]. 

Reasons cited for this discrepancy include: (1) channeling effects 

not included because of the assumption of target atom randomness 

(2) partial self annealing and (3) electronic collisions which were 

not considered in the analysis. The following section outlines 

several, more sophisticated techniques used to characterize implanta

tion damage wherein electronic collisions are explicitly considered. 

B. Defect distributions 

Three techniques have been developed to calculate ion and 

disorder depth distributions. The first [10], which utilizes a Monte 

Carlo approach, traces the history of a specified number of incident · 

ions and the secondaries they generate in coming to rest. Histograms, 

with statistical scatter corresponding to the number of events 

considered, are obtained and then smoothed using a computer program. to 

yield final ion and disorder distributions. The second method [11] 

begins with integral equations for the distributions desired and 

approximates the final solution by calculating certain disorder 

distribution moments. The third technique [12], similar in most 
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respects to the second, seeks to find the depth distribution of 

energy deposited into atomic processes; the resulting distribution is 

then correlated with the amount of disorder as a function of depth. 

The first procedure requires a great amount of numerical calculation 

in order to reduce the amount of statistical scatter in the resulting 

histograms,and a solution using the second technique is overly 

complicated owing to the inherent complexity of the integral equations 

and their-attendant boundary conditions. Reliance is therefore placed 

on the third,or so-called two-step method,developed by Brice. 

Brice's technique involves first determining the spatial 

distribution of the inci~ent ions after they have come to rest. 

Then, knowing the nuclear scattering cross section and the relative 

partition of energy deposition between atomic and electronic processes, 

the final depth distribution of energy expended in producing atomic 

disorder is calculated. The procedure, in some detail, is as follows: 

letting Q(r) be the amount of energy deposited in atomic processes 

as a function of position, P3(E,E
1 ,r) be the probability that an 

ion incident with energy E finds itself at position r with energy 

E
1 

(<E) , f be the fraction of E
1 

available for nuclear interactions, 

and do be the differential nuclear scattering cross section, the 

spatial differential ct3Q(r) is given by 

d
3
Q(r) = j !P3(E,E

1 

,1)dr N(dR/dE
1

) /fdcr'l dE
1 

E a 

(1-20) 
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where dR is the distance traveled by an ion in losing the amount of 
I 

energy dE and N is the number of (randomly-situated) target 

atoms per unit volume. 

The first step of Brice's two step method requires the 

•➔ detennination of P3(E,E ,r) , the spatial distribution of spent 

projectiles. This distribution is provided by the solution of certain 

integro-differential equations similar to those originally derived by 

Lindhard, Scharff, and Schiott [7 ]. The distribution which emerges 

is: 

where 

- -2 The parameters RP , bRP 

(1-21) 

(1-22) 

-2 and bR..L. represent the average projec-

tile range, the projectile range scatter, and the latteral projectile 

scatter, all of which are derived from the solution of the afore

mentioned integro-differential equations. 

The second step involves the solution of Eq. (l-20) which may 

be obtained once f, dcr, and dR/dE are known. Using a Thomas-

Fermi screened coulomb interaction potential to calculate do and 

tabulated values of f and dR/dE , Brice has calculated the disnrder 

profiles for a number of projectile-target combinations.The theoretical 

disorder profiles generated by B11 implanted into Si are shown in Fig. 

1-1, this projectile-target combination being the one which most closely 

parallels the proton-gallium arsenide combination under consideration. 

While the present study does not require a rigorous know-
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ledge of the disorder profile (an empirically derived distribution 

will be found to be adequate), further investigations involving 

sequential and/or masked implantations will necessitate a more exact 

knowledge of the disorder distribution and a method such as Brice's 

will have to be implemented. Furukawa et al. []3], for example, have 

shown that the lateral spread of protons implanted through a mask is 

a considerable fraction of their total range. Such uncertainty in 

edge definition would have an appreciable effect on the behavior of 

coupled, channel optical waveguides [14] fabricated in a similar manner. 

C. Channeling effects 

All the treatments of disorder production described thus far 

assume that the atoms of the target are randomly distributed. When 

the effects of target crystallinity are taken into consideration, 

however, the important phenomenon of channeling emerges [l ]. 

When an ion is incident along a direction parallel to or 

nearly para 11 el to a set of crystal planes, it becomes 11 channe led II or 

trapped between rows of the target lattice. Atomic collisions become 

less likely under these circumstances and most of the ion's original 

energy is lost through glancing electronic encounters (See Fig. 1-2). 

The consequences of such behavior are twofold: residual atomic 

disorder is found at penetration depths exceeding those predicted by 

the theories LSS and Brice, and the absolute disorder concentrations 

found in Section II-A are reduced because fewer primary knock-ons are 

generated. Oen and Robinson [15] modified the displacement cascade 
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(a) OBLIQUE INCIDENCE 

PERFECTLY ALIGNED 

Figure 1-2. Schematic representation of ion trajectories for axial 

channeling. · (From-·Mayer and -Marsh [16]) · The crystal 
lattice is depicted as a set of atomic chains: 

(a) Trajectories for various angles of incidence 

relative to the lattice row: B and .C represent 
trajectories for angles less than the critical angle, 

and A for values greater than the critical angle. 

(b) Trajectories for parallel incidence as a function 

of impact position. (After Mayer, et al [l]) 
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model used by Kinchin and Pease to include the effects of channeling. 

In place of Eq. (1-4), they obtained 

(1-23) 

where P is the probability that an ion becomes channeled. Instead 

of varying with the first power of T , as in Eq. (l-4), v(T) is 

now seen to vary as T(l - 2P) . At least part of the discrepancy 

between measured values of disorder production and those theoretically 

predicted may now presumably be eliminated if one knows P. Unfor

tunately, the degree of channeling is a very sensitive function of 

ion beam alignment and target surface preparation and, hence, P 

remains an elusive parameter. However, even though P may not be 

reliably determined theoretically, one supposes that it will be large 

for the case of small, light projectiles such as protons implanted 

into relatively ppen lattices such as possessed by gallium arsenide. 

As will be seen in Chapter 4, channeling appears to play a significant 

role in the creation of proton-implanted GaAs waveguides. 
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CHAPTER 2 

OPTICAL WAVEGUIDING AND ATTENUATION 

Electromagnetic radiation is said to be waveguided when its 

natural tendency to diffract is overcome by the presence of refracting 

media arranged in a specific geometry. Accordingly, a waveguiding 

structure consists of a guiding medium surrounded, in either or both 

dimensions transverse to the direction of wave propagation, by cladding/ 

substrate media whose refractive indices are such as to .effect tota l 

intern~l _reflection at the cladding/substrate guide interfaces. The 

interfacial index discontinuities and waveguide dimensions are chosen 

according to the mode of propagation desired and the wavelength to be 

confined. 

This study has been concerned with the waveguiding of near-infrared 

radiation (A
0

~ lµ) in planar (one-dimensional) structures formed by 

proton-implanting gallium arsenide. Typical guide widths were on the 

order of 3 - 5µ as determined by the maximum penetration depth of 

300 keV protons. The guide-substrate index discontinuity required for 

mode confinement resulted from material changes in the proton-damaged 

gallium arsenide, the origins of which will be examined at length in the 

following chapter. Either air or metal (See Chapter 5) formed the 

overlaying medium. Since the refractive index discontinuity of the 

overlayer-guide interface was considerably larger than that of the guide

substrate interface, waveguiding characteristics were predominantly de

termined by the latter. Figure 2-1 shows a typical guide configuration. 



-21-
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Figure 2-1 .. Typical dielectric waveguide configuration. 
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Figure 2-2. Four media waveguiding structure. 
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A review of the equations which govern waveguiding and 

attenuation in general followed by a mode analysis of the four media 

waveguiding structure to be encountered in Chapter 4 constitute 

Section II of this chapter. In Section III, a perturbative technique is 

developed for calculating the attenuation coefficients of specified 

waveguide geometries. The chapter is concluded with a discussion of 

the interrelationship which exists, via the Kramers-Kronig equations, 

between the real and imaginary parts of the complex dielectric constant; 

free carrier and dipole-associated absorption mechanisms, which may be 

treated within this formalism, are then dealt with extensively. 

II. One-Dimensional (Planar) Waveguiding 

A. The Wave Equation 

Maxwell's equations for radiation propagating in a homogeneous, 

charge-free, non-magnetic, isotropic medium of dielectric constant s 

and conductivity a are given by: 

(2-la) 

vxH = oE + s aE/at (2-lb) 

-+ 
v·H = 0 (2-lc) 

V·E = 0 (2-ld) 

By combining Eqs. (2-la) and (2-lb) and using Eq. (2-ld), 

the familiar wave equation emerges: 
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(2-2) 

-± A similar equation is obtained for the magnetization vector, H . 

Guided radiation is assumeq ~o be confined in the x-direction 

only and to be propagated in the z direction; all quantities involving 
2 

the differential ½ , therefore, equal . zero. Furthermore, modes of 
ay 

propagation are distinguished as being either T.E. (transverse 
\ 

electric --no R component in the y-direction},or T.M. (transverse 

magnetic --no E component in they-direction). When solving for T.E. 

modes, the E field component in they-direction will be sought 

first. Similarly, when solving .for T.M. modes, they-component of the 

H-field will be solved for first. The other field componentsare then 

readily obtained using Eqs. (2-1). Following this convention,a 

trial solution of Eq. (2-2) is chosen as: 

(2-3) 

/\ where y is a unit vector in they-direction. 

Substitution of Eq. (2-3) into Eq. (2-2) yields: 

ct2 E 
----==--y + ( s 2 - n 2 

.k 
2 ) E = 0 ;· i = l , 2 , 3 ( 2 - 4 ) 

dx2 1·0 y 

with an identical equation resulting for Hy. The complex refractive 

index, ~ (= n-ik), of Eq. (2-4) is related to the complex dielectric 

c6nstant, K(~ Kr - iK;~ . in the following way: 
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~2 = (n-ik) 2 = K = K - iK.= _l (c - i 0
) r , £ . ; • 

0 
(2-5) 

When o 1 0, the propagation constant, s, becomes imaginary, 

giving rise to optical attenuation. For a medium of infinite exten

sion, d2EY/dx2 
= 0 and the resulting T.E.M. (transverse electro

magnetic) wave attenuates as: 

e2 · Im[s]z = 

where: 

-az e (2-6) 

k0(=2TI/A0) in Eq. (2-7) is the free-space propagation constant. a, the 

attenuation coefficient,will be found to be an important parameter 

when calculating guided mode attenuation using the perturbative tech

nique to be developed in Section III. 

B. Four Media Waveguide 

It will be found in Chapter 4 that a combination of channeling 

(See Section 1-IIC) and defect migration effects leads to an additional 

waveguiding layer located adjacent to the main damage layer. In 

addition, it will be found that the number of free carriers originally 

present in these layers is reduced according to the amount of proton

induced damage generated (or remaining after heat treatment). Conse

quently, because of free carrier polarizability (to be discussed in 

Section IV), the partially compensated, damaged layers have indices 

of refraction which are, by differinq amounts, greater than that of 
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the undamaged substrate ·material. Figure 2-2 depicts the four-media wave

guide which results from this combination of circumstances. 

Optical modes of the structure shown in Fig. 2-2 will now be 

solved for, assuming all media are lossless. A perturbation technique, 

which may be used to find mode attenuation when some or all of the guide 

media have complex refractive indices, will be developed in Section 1II. 

T. E. Modes: 

The wave equation, (2-2}, becomes for o = 0: 

(2-8) 

Solutions of Eq. (2-8) are assumed to be of the fonn: 

(2-9) 

where m is the mode order. 

variation in the x-direction, 

Referring to Fig. 2-2, the electric field 

E(m\x) , is taken to be: 
y 

< 
X - 0 

B sin(hx)+ E cos(hx) 0 < < 
X - a 

(2-10) 

D sin(ix)+ E cos(ix) 

F e-px < 
b - x 
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Substitution of Eqs. (2-9) and (2-10) into Eq. (2-8) yields the 

following relations: 

2 2 S 2 2 n1 k
0 

= - q m 

n/ko 2 = t3 2 + h2 
m 

n/ko2 = t3 2 + i 
m 

n 2k 2 _ t3 2 2 4 - - p o m 

(2-lla) 

(2-llb) 

(2-llc) 

(2-lld) 

The boundary conditions are that the tangential field components, 

E;m)(x) and H~m)(x), (or, from Eqs. (2-la) and (2-lb), E;m)(x) and 

aE(m)(x)/ax) be continuous. Applying these boundary conditions to 
y 

Eq. (2-10) yields the following homogenous set of equations for A, 

B, C, D, and E: 

A = C 

qA = hB 

B·sin(ha)+C~cos(ha)=D·sin(1a)+E•cos(1a) 

hB·cos(ha)-hC·sin(ha)=1D-cos(1a)-1E·sin{1a) 

D-sin(tb)+ E·cos(tb)=F·e-pb 
. -pb 

10· cos(tb}-1E· sin(tb)=-pFe 

(2-12a) 

(2-12b) 

(2-12c) 

(2-12d) 

(2-12e) 

(2-12f) 

Nontrivial values for A, B, C, D, E, and F obtain when the determinant 

of their coefficients vanishes: 
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1 0 -1 0 0 0 

q -h 0 0 0 0 

0 sin(ha) cos(ha) -sin (ta) -cos.(ia) 0 
= 

0 hcos.(ha) . -hcos (ha) -iCOS ( £a) isin (ia) 0 

0 0 0 sinU,b) cos(.ib) -e -pb 

0 0 0 icos ( .tb) - is in . (-ib) pe-pb 

This determinant may be reduced to the following characteristic 

equation: 

0 

(2-13) 

(2-14) 

Eqs. (2-11) and (2-14) form a set of five equations, the solution of 

which uniquely determines · the five unknowns q, h, .t, p, and am. 

Before continuing, it should be noted that in deriving Eq. (2-14) 

it was assumed that the E-field variation in the x-direction of both 

medium II and medium III was sinusoidal, i.e., from Eq. (2-11) that 

(2-15) 

When either of the conditions stated by Eq. (2-15) is violated, the 

appropriate waveguide parameter (either h or i from Eqs. (2-llb) 

and (2-llc))must be multiplied by i(= /7f) in Eq. (2-14) thereby 

causing the corresponding E-field variation to become exponential. 
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T.M. Modes: 

The solution for the T.M. modes is formally identical to that 

for the T.E. modes. Boundary conditions require that H(m)(x) and 
y 

E(m)(x) , or la H(m)(x)/ax , be continuous. Accordingly, the z .,, £ y 

characteristic equation for the T.M. modes is: 

h (q/n~) - (h/n~)tan(ha) ] i r(p/n~) - (Mn~)tan[(b-a) £]] 
~~ (h/n~) - (q/nf)tan(ha) - = - n~[(i/n~) + (p/n~)tan[(b-a) d 

(2-16) 

The simultaneous solution of Eqs. (2-11) and (2-16) 

uniquely determines the T.M. field distribution; those comments made 

above regarding (2-15) hold for the T.M. case also. 

Equations (2-14) and (2-16) may be checked for accuracy by con

sidering the limiting situations described in Table 2-1. 

Table 2-1 

Limit T.M. T.E. 
2 2 2 2 q/h + p/h (qn2/hn1)+(pn2/hn4) 

tan(bh)= tan( bh) 
1 - (qn~/hn~)(pn~hni) 1 - (q/h)(p/h) 

b-+a 

2 2, 2 2 

tan(ah) 
(qn2/hn1J+(pn2/hn4) 

tan(ah) 
q/h + p/h 

2 2 2 2 l - (qn2/hn1)(pn2/hn4) l - (q/h)(p/h) 

tan(bt)= g/~ + p/t 
l - ( q/ t )( p/ £) 
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In all instances, the characteristic equations which result are those 

of the familiar three-media structure (See Appendix 2A.). Unfor

tunately, unlike the three-media equations given in Table 2-1, Eqs. 

(2-14) and '2-16) do not yield to a simple graphical analysis [17]; 

the field distributions of the four media structure must be solved 

numerically by computer. An approximate analysis may, however, be 

made of the four media structure near second order mode cutoff, a 

propagation regime wherein Eqs. (2-11) and (2-14) (only T.E. modes 

will be considered) may be used in conjunction with experimentally 

observed mode profiles to demonstrate the internal consistency of 

the waveguide model which has been chosen. 

Figure 2-3 shows the development of the T.E. second order 

mode profile of sample 2B (See Table 4-1) as a function of isochronal 

annealing. As the mode approaches cutoff, two features of its 

behavior are to be noted: (1) the height of the interior lobe begins 

to exceed that of the surface lobe and (2) the interior lobe becomes 

broader than the surface lobe. As will be shown, this behavior may 

be reconciled with that of a four media waveguide whose interior 

waveguiding layer (medium III of Fig. 2-2) is of lower refractive 

index than that of its surface waveguiding layer (medium II of Fig. 

2-2). As mentioned in Chapter 1 a structure such as this may be 

expected to result, at least in part, from the effects of channeled 

protons. 

We begin an analysis of the shape and extrema of the second 

order mode profile by using Eqs. (2-12) to cast Eq. (2-10) into 

a different form: 
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MODE INTENSITY 

2s:200°c 

2s:250°c 

X(µ.) 

2s:300°c 

X(µ.) 

2s:35o~c 

X(µ.) 

2s:400°c 

~~-+--+-~~-+-~---4---+----+-~X(µ) 
0 2 34 5 6 7 8 

Figure 2-3. Mode profiles of sample 2B as a function of isochronal 
annealing (0.5 hour anneal at each temperature). The 
values which have been essigneo the parameters a and 

bas well as symbol definitions will be explained in 

Chapter 4. 
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X $ 0 

Bm[sin(hx)+(h/q)cos(hx)J 

Eim)(x) = Bm{[sin(ha)+(h/q)cos(ha)Jcos(x-a)£ 

+ (h/i)[cos(ha)-(h/q)sin(ha)]sin(x-a)t} a$ x $ b 

Bm{[sin{ha)+(h/q)cos(ha)Jcos(b-a)£ 

+ (h/t)[cos(ha)-(h/q)sin(ha)]sin(b-a)tle-p(x-b) b ~ x 
r J 

( 2-17) 

The points XII and XIII at which extrema of 

occur may be found by differentiating the appropriate field 

distributions given in Eq. (2-17) and setting the results equal to 

zero. Accordingly, the extremal points are solutions of: 

h cos ha - h/ sin(ha 
i sin ha + h/q cos ha 

(2-18a) 

(2-18b) 

Simplified representations of the quantities of interest, 

(2) (2)( ) Ey (xII) and Ey XIII , may be obtained by first deriving two 

inequalities involving the ratios h/q and t/q . We begin with 

the derivation involving h/q. A manipulation of Eqs. (2-11) yields: 
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h2 + q2 
= (n~ - n~)k~ 

h
2 

+ p
2 

= (n~ - n!)k~ 

(2-19a) 

(2-19b) 

Near cutoff, p ~ 0, corresponding to infinite or near-infinite mode 

penetration into medium IV, the substrate. - Taking p = 0, 

Eq. (2-19b) gives for the maximum possible value of h2 , (n~ - n~)k~. 

Simultaneously, Eq. (2-l9a) gives for the minimum possible value 
2 2 2 2 of q , ( n 4 - n 1 ) k 

O 
• As will be seen in Section IV, the plasma 

depression effect causes (n~ - n~) to be on the order of 10-2 (for A0 ~lµ) 

Assuming, for the present, that the plasma effect is the operative 

waveguiding mechanism and taking air to be the waveguide overlayer 

(medium I), the following inequality therefore emerges: 

2 2 2 2 2 2 2 -2 2 (n 4 - n1)k
0 

= 10.5 k
0 

>> (n2 - n4)k
0 

:t 10 k
0 

(2-20) 

where n2 , the refractive index of gallium arsenide, has been taken 

equal to 3.4 for wavelengths of ~ lµ. Therefore, from Eqs. (2-19) 

and (2-20) it may be concluded that: 

h2/q2 « l . (2-2la) 

And by identical reasoning that: 

i;q2 << l {2-2lb) 

Referring to Fig. 2-3, it is to be observed that the second 

order mode approaches zero near X = a . This fact suggests that 
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ha % TI • (2-22) 

Using Eq. (2-22), Eq. (2-18b) may be approximated by: 

tan i(XIII - a)~ q/t (2-23) 

Equations (2-2la) and (2-2lb) may now be used in conjunction with 

Eqs. (2-18a) and (2-23) to deduce that 

(2-24a) 

and that 

(2-24b) 

Finally, Eqs. (2-22), (2-24a), and (2-24b) may be used together with 

Eq. (2-17) to obtain the mode extrema: 

(2-25a) 

E;2)(x111 ): s2{[sin(ha) + (h/q)cos(ha)]cost(x 111 -a) 

+ (h/t)[cos(ha) - (h/q)sin(ha)]sint(x111-a)} 

~ B2•(h/t) (2-25b) 

As indicated by Fig. 2-3, the interior maximum, E;2l(x 111 ) , 

of the second order mode exceeds the surface maximum, E;2)(x11 ) , 

by an amount which increases as the mode approaches cutoff. From 

Eqs. (2-25a) and (2-25b), this observation leads to the conclusion 

that h > i . Moreover, subtraction of Eq. (2-llc) from Eq. (2-llb) 
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yields 

(2-26) 

From Eq. (2-26) and the fact that h > £ near cutoff, the deduction 

is made that n2 > n3 near cutoff. This result will be seen in 

Chapter 4 to be consistent with the gener.al features of the ancillary 

layer (region III) as they relate to those of the primary damage 

layer (region II) of proton-implanted gallium arsenide. Finally, the 

internal consistency of the semi-empirical approach which has been 

used is demonstrated by the agreement between predicted and observed 

interior lobe broadening: based on the fact that h > i near cutoff, 

Eq. (2-17) predicts that the field distribution in region III will 

be broader than the field distribution in region II. (Further compari

sons of experimental and theoretical mode profiles will be made in 

Chapter 4.) 

III. Loss Calculations - The Perturbation Technique 

The wave equation, for the case of structural variation 

in the x-direction only, is given by: 

(2-27) 

where f. is either the T.E. (transverse electric) field amplitude, 
J 

E , or the T.M. (transverse magnetic) field amplitude, R , and 
y y 

the dielectric constant, E(x) , has been taken to be imaginary. 

Treating -iµ
0
E;(x) as a perturbation, the solution of the unperturbed 
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£.(x) = 0, is given by the eigenmode set: 
1 

(2-28) 

where Fjm)(x,z;t) represents the mth mode of polarization j . 

The eigenmode set (2-28) includes both radiation .modes (unconfined) 

and guided -modes (confined) [18] which.together form a complete 

orthogonal set. Perturbations to be considered here .will be of the 

"de" type, viz. without variation in the z-direction. As will be 

seen shortly, under these circumstances ~ the confined and unconfined 

eigenmodes of a wav~gujde remain uncoupled. Since only guided-mode 

losses will be of interest, field expansions involving the set (2-28) 

will therefore contain guided mode terms only. 

Members of tbe set (2-28) may be normalized according to 

the power they carry in the positive z-direction. Taking the power to 

be l watt per unit width in they-direction, the normalization 

conditions become: 

00 00 

o = l Re [f ( -E ( m) • ( H ( n) )*) dJ = _i j I E ( m) ( x) 1
2 d x ( 2- 29 a) 

m,n 2 y x J 2wµ
0 

Y 
-oo -oo 

for the T.E. modes and 

(2-29b) 
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for the T.M. modes. om,n is the Kronecker delta, 

{
1 

0 -m,n - O 
m = n 
m :; O , 

(2-30) 

and * denotes the complex conjugate. 
Under the assumption that the perturbative term - iµ

0
£(x) 

has a small effect on the mode structure, the general solution of 

Eq. (2-27) may be written as a sum over the set (2-28): 

(2-31) 

Here, 1Cm(z)l 2 represents the power carried by ~he mth . mode in 

the positive z-direction per unit length in they-direction. 

Substituting Eq. (2-31) into Eq. (2-27) and making use of 

the normal .ization conditions, Eqs.(2-29),yields the following system 

of coupled equations for the expansion coefficients, Cm(z): 

le c m a m 
- 2is - = ~(z) 7 m az 

(2-32) 

where, depending on whether T.E. or T.M. modes are being considered, 

T. E. 

(2-33) 

OJ s. (x) ( ) (n) * ] 

J 
1 H m • ( H , ) dx T. M. 

sr(x) y y · 
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The dri~ing term, ~(z) , contains many non-synchronous 

members which vary as exp[i(sm-sn)z] , (m 1 n) . Keeping the single 

synchronous T.E. and T.M. driving terms (m = n) and assuming that 

the expansion coefficients vary slowly with z (i.e., that 

la2c /az
21 << l2is ac /azl) , Eqs. (2-32) and (2-33) together yield: nr , m m 

(2-34) 

T.M. 

Substituting the expressions for Cm(z) into Eq. (2-31), the 

(power) attenuation coefficients are recognized as being: 

00 

(2-35a) 
-oo 

(2-35b) 

Eqs. (2-35) may be checked by considering the attenuation 

coefficient of an infinite plane wave propagating in a homogeneous 

medium. In this case Ei = constant and can be moved outside the 

integrals of Eqs. (2-35). Using the same normalization conditions, 
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that were derived for the case of confined modes, the result for both 

T.E. and T.M. polarization states is 

K.k 
a. = T.E.M. 

l 0 

n 
(2-36) 

where £ = £r - i£i = £
0

(Kr - iKi) = £
0

(n - ik) 2 . Equation (2-36) 

is identical to Eq. (2-7) which was derived for the case of a 

T.E.M. wave propagating in a homogeneous medium of infinite extent. 

As was mentioned earlier the perturbation technique is valid 

only when the introduction of loss does not substantially modify the 

eigenmodes calculated in the absence of loss. The exponential coef

ficients in Eqs. (2-34) represent imaginary, first-order corrections 

to the unperturbed eigenvalues, Sm, of the unperturbed wave equation. 

As long as these corrections are much less than Sm, the original 

criterion for validity is satisfied. Therefore, the integrals of 

Eq. (2-35) should remain small, requiring either that £i(x) be 

small when mode penetration into the lossy region is large or that 

roode penetration be small into the region where £i (x) is large. 

Another approach which may be used to calculate waveguide 

losses involves solving the imaginary wave equation, (2-27), directly. 

The introduction of a single lossy medium forces all guide parameters 

to become imaginary in this case and the exact solution for the modes 

becomes extremely complicated, even for simple geometries. In 

Appendix 2A, results obtained using this direct method are compared 

with those obtained using the perturbation technique for two geo-
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metries which satisfy the conditions enumerated in the preceding 

paragraph: a metallic cladding for which £. is large but mode 
1 

penetration is small and a lossy substrate for which si is small 

but mode penetration is large. 

IV. The Kramers-Kronig Relations 

Losses encountered in thin film optical systems can arise 

from several mechanisms depending on the geometry and materials of 

the configuration under consideration. Transitions by free carriers 

within a conduction band can occur either in the guiding region or 

in the cladding regions which surround it (e.g., metallic overlayer 

or semiconducting substrate). Band tailing and defect-associated 

energy levels generated, for example, by ion implantation may cause 

material which was previously transparent at a given wavelength to 

become absorptive. Finally, scattering, either intentional (coherent 

coupling from periodic structures [19]) or unintentional (incoherent 

volume or surface scattering) may contribute to the optical attenua

tion. 

The presence of loss (or gain) in a material causes its 

dielectric constant to become complex. If the loss is generated 

by absorption (as opposed to scattering), the real and imaginary 

parts of the dielectric constant may be related to each other through 

the Kramers-Kronig relationship. In Chapter 3, two types of absorp-
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tion, free-electron and defect-associated, will be encountered which 

may be dealt with using this relationship. In anticipation of their 

need we therefore proceed with a derivation of the Kramers-Kronig 

relations. 

As Eq. (2-5) indicates, the dielectric constant is a complex 

quantity. Ncting, in addition, that Er and a are dispersive as 

well, the dielectric constant may be written as 

K(u'.l) = K (w) - i K. (w) • (2-37) r , 

Cauchy's integral formula states that the values of an 

analytic function, (in our case K(w) ~O ]) along a closed contour in 

a region in which the function remains regular uniquely detennine the 

values of the function at any point within the contour [21]. In 

particular: 

K ( w) = _l - J K ( w ' ) dw , 
2n1 I 

w - w 
C 

(2-38) 

Substituting Eq. (2-37) into Eq. (2-38), assuming that w 

is real, and performing the required integration yields: 

= 1 +f.p 
'IT 

00 I I 

J 
w Ki (w ) 1 

---c::--=- dw 
( 

I )2 _ 2 w -w 
(2-39a) 

0 

(2-39b) 
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where it has been recognized that the free space value of Kr= 1 

and the Cauchy principal value, P , has been taken prior to integrating. 

Equations (2-39) are known as the Kramers-Kronig relations. 

Using Eqs. (2-5) and (2-36), a relation equivalent to that 

given by (2-39a) may be obtained which relates the real part of the 

refractive index to the absorption coefficient [22]: 

n(E) - 1 = .fll_ P 
2n2 

0 

(2-40) 

where h = Plank's constant, c = the speed of light in vacuo, and 

E = hv , the photon energy. Using Eq. (2-40), one can, in principle, 

determine the refractive index at a given photon energy if the 

absorption is known for all photon energies. 

V. Absorption Mechanisms 

A. Free Carrier Intraband Transitions 

Quantum mechanics predicts that free carriers moving in a 

perfectly periodic crystal lattice cannot absorb energy. Thermal 

effects, defects, and impurities, however, disrupt the lattice 

periodicity enough to allow the scattering of electrons from one 

energy state in the conduction band to another [23]. Accordingly 

the motion of an electron in the presence of an applied field, 

E
0
eiwt, may be described as follows: 
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* d
2
x * dx it m - + m g - = -e E e w 

dt2 dt o (2-41) 

* where g is the damping coefficient, m is the effective mass and 

e is the electronic charge. 

The steady-state solution of Eq. (2-41) is 

* e E/m eiwt 
X - ~--- 2 

w - iwg 
(2-42) 

Taking the resulting ac polarization to be P = - Nex, the complex 

dielectric constant becomes: 

or: 

2 * 
K = K - i K. r l 

2 Ne /(m e:
0

) 

= n - 2 . 

K. = 
l 

w - lwg 

2 . * Ne g/(m we: ) 
0 

2 2 
w - g 

(2-43) 

(2-44a) 

(2-44b) 

where N is the number of free carriers cm-3 and n is the refractive 

index in the absence of free carriers. Equations (2-44) can be shown to 

obey the Kramers-Kronig relationship [24]. 

* In the presence of a steady electric field, m g(dx/dt) = eE. 

Also, by definition of the mobility, µ, dx/dt = µE. Therefore, 

one has for the damping factor, 

* g = e/µm. 

Using Eq. (2-45), Eqs. (2-44a) and (2-44b) therefore become: 

(2-45) 
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2 Ne2 
K ~ n - --- (2-46a) r ~ * 2 

m £OW 

Ne3 
Ki~ * 2 3 (2-46b) 

(m) e:
0

w lJ 

where it has been assumed that, for those cases of interest, w >> g. 

The free carrier-associated attenuation coefficient is, therefore: 

a = koKi = Ne3 
f.c. n ( *)2 2 m n£

0
w µ 

(2-46c) 

It is to be noted from Eq. (2-46a} that the presence of 

free carriers lowers the dielectric constant (the so-called plasma 

depression effect). This mechanism will be seen in Chapter 4 to be 

responsible for optical waveguiding in proton-implanted GaAs. 

B. Transitions Involving Discrete States and Bands 

The quantum electrodynamical Hamiltonian for an electron in 

the presence of an electromagnetic field is given by 

H = H + H + HI e r (2-47) 

where He, Hr, and HI, the electronic, radiation, and interaction 

energy terms, respectively, are 

. H = f1 2•v2 /2m* + V (r) 
e 

Hr= I tlwA(a:a~ + 1) 
A 

H = eE•r I 

(2-48a) 

(2-48b) 

(2-48c) 

Here E is the optical electric field vector and r is the position 
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+ vector of an electron; aA and a~ are creation and annihilation 

operators, respectively, which possess the following commutation 

and operational properties 

{2-49) 

{2-50a) 

{2-50b) 

(2-50c) 

lnA> in Eqs. (2-50) is a radiation state vector whose occupation 

number is nA. 

The electric field, E, may be expressed as·a sum over radiation 
A. 

modes, A, and polarization directions, j , in the following way [20]: 

(2-51) 

where the direction of propagation has been chosen to be parallel to 

the z=axis; Vis the volume occupied by the modes and sr is the 

real part of the (in general) complex dielectric constant. Substi

tuting Eq. (2-51) into Eq. (2-48c), the interaction Hamiltonian becomes: 
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The total absorption and emission rates per unit volume may now be 

obtained by applying Fermi's golden rule to the transitions induced 

by H1. Using the relations given by Eqs. (2-50a) through _(2-50c) 

in order to evaluate the appropriate matrix elements, they are: 

8 2 2 /w ,f;" ) ,. 2 wab = ev: .l L wAnAl<ulsin \ Ac r z j·rlt>I o(EU-El-nwA) (2-53a) 
r J,A U,1 . 

where summations now extend over all upper, lu>, and lower, It>, 

electronic states differing in energy by ~wA. o(x-x
0

) in 

Eqs. (2-53) is the dirac delta function 

a ~ x ~ b 
0 

otherwise (2-54) 

Equations (2-53) may be made more compact by · performing the 

following manipulation [25]: taking Du to be the number of states 

per unit volume at energy Eu and D
1 

to be the number of states 

per unit volume at energy E
1

, the summations over u and r in 

Eqs. (2-53) are converted into sums over energies by making the 

following definition: 

(2-55) 
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2 where <IHu,tl >av represents the strength of the dipole transition 

averaged over transitions between degenerate upper and lower 

energy levels. Letting Pi(i = u,i) be the probability that a 

state is occupied and Pi be the probability that it is vacant, 

Eq. (2-55) may now be used to recast Eqs. (2-53) into the form: 

(2-56a) 

(2-56b) 

where: 
n = R, 

0,li (2-57a) 

I I 

(2-57b) n = D/.e, R, 

n = u D/u (2-57c) 

I D p' (2-57d) n = u u u 

Furthennore, specializing to the case of singly-polarized, monochromatic 

radiation of angular frequency w, Eqs. (2-56a) and (2-56b) become: 

(2-58a) 

8 2 2 
= e 7T w(n +l) l n

1

n <IH 1
2

> 8(E - E + nw) (2-58b) V£r w E E tu u,t av i u · 
u, 9, 
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<IH 0 1
2

> in Eqs. (2.58) when evaluated using Bloch wave-
U,.,11;, av 

functions for the initial and final states, imposes the familiar con-

servation of momentum conditions: 

ku 
w k = k + - ~ 

£ C 'R, 
( for absorption) (2-59a) 

kt = k w 
ku - - ~ u C 

(for emission) (2-59b) 

Equations (2-58a) and (2-58b) are then evaluated using a so-called 

reduced density of states function [25]. When the periodicity of the 

crystal lattice has been significantly perturbed, however, either by 

degenerate impurity or degenerate defect populations, the resulting 

electronic states become admixtures of those of the previously perfect 

structure and the k-selection rules of Eqs. (2-59) no longer apply. 

Under these circumstances, <IHu 0 1
2

> becomes independent of the pho-,N av 
ton energy, 1lw , and may be moved outside the summations of Eqs. (2-58). 

Two types of transitions allow the use of this procedure: (1) interband 

transitions wherein band-tailing caused by lattice perturbations be

comes important [26] and (2) transitions between discrete levels wherein 

one or both of the levels lies too far from a band edge to be described 

adequately by a single Bloch function. 

Two examples of non-momentum conserving transitions, one involving 

transitions between the ground and excited states of vacancy complexes 

and the other involving transitions between disorder-induced bandtails 

and the band continua, will be encountered in Chapter 3. The products 

of density of states functions needed to calculate these transitions are 

conveniently enumerated within the present context. Accordingly! we 
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have for transitions between two discrete levels which are assumed to 

have arisen from monovalent charge centers (e.g., transitions between 

singly-ionized donor and acceptor levels): 

(2-60a) 

(2-60b) 

And for transitions between continuous energy level distributions: 

(2-6la) 

(2-6lb) 

Here, Pi has been replaced by the Fermi-Dirac distribution function. 

Fp is the quasi-Fermi level for holes; Fn is the quasi-Fermi level 

for electrons; EA and ED are acceptor and donor ionization energies, 

respectively; 9i and gu are degeneracy factors; and Ni and 

Nu are the number of charge centers per unit volume. In 

addition, it has been recognized, in deriving Eqs. (2-60), that when 

ionized, the number of participating states is given by g1Nt (or 

guNu) and, when neutral, the number is given by Ni ( or Nu) . 

The total emission and absorption transition rates to be asso

ciated with the products of density of states functions given by_ Eqs. 
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(2-60a) through (2.-6lb) may be found by converting sums to integrals 

in Eqs. (2-56a) and (2-56b): 

Wab(~w) = 
8~:;

2 
wnw<IHu,1 1

2
>av J J n1 (E1 )n~(Eu)O(Eu-E1-~w)dEudE1 

E E u R, 
(2"'.'62a) 

Wem(-flw) = 
8
~:;

2 
w(nw+l)<IHu,ti

2
>av J J ni(E1 )nu(Eu)O(E1-Eu+flw)dEudE1 

E E 
U 1 (2-62b) 

The absorption coefficient, a(nw) , is given py the power 

absorbed per unit volume divided by the power crossing a unit area. 

The power per unit area (energy flux) is 

Therefore, using Eqs. (2-62a) and (2-62b): 

a(nw) = 

where: 

"tlw[Wab (nw) - W
5
t (llw)] 

I 
w 

J [nt(E-nw)h~(E)-n~(E-1\w)nu(E)]dE} 

E . 

= W t (11w) + W (nw) = ( n + l) W (nw) s sp w sp 

Wst(nw) is the stimulated emission rate and W
5

P(Tiw) is the 

spontaneous emission rate. 

(2-63) 

(2-64) 

(2-65) 
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Appendix 2A 

I. Meta 11 i c Overl ayer Losses of a Three-Medi a Gui de 

A. Perturbation Technique Solution 

The unperturbed eigenmodes of the three media structure 

shown in Fig. 2A-la may be obtained by substituting Eq. (2-28) into 

Eq. (2-27) with Ei(x) = 0 . Us i ng the normalization conditions 

(2-29) and the appropriate boundary conditions, they are given by 

T. E.: 

where: 

T .M.: 

. h 
A • - exp(-qx} 
m q 

A • [ !:!_ cos ( h x ) - s i n ( h x ) ] 
m q 

A • [!:!. cos(ht) + sin(ht)Jexp[p(x+t)] 
m q 

{ 

wµ }l/2 0 A = 2 2 
m s ( t + l +l)( 1 + ~) 

m q p qc 

h B •=-- exp(-qx) 
m q 

H(m\x) = B • [~ cos (hx) - sin (hx)] 
Y m q 

B • [~ cos(ht) + sin(ht)Jexp[p(x+t)] 
m q 

where [27]: 

t ~ x ~ 0 (2A- l) 

(2A-2) 

0 > X >-oo 

t > x > 0 (2A-3) 

00 > X > t 
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METALLIC OVERLAYER n1 = n - i k 

DIRECTION OF 
GUIDE • PROPAGATION 

t 

SUBSTRATE 

X 

(a) 

OVERLAY ER n, 
z 

Y(IN) 

DIRECTION OF 

GUIDE n2 • PROPAGATION 

LOSSY SUBSTRATE 

X 
(b) 

Figure 2A-1. (a) Three media guide with lossy metallic overlayer; 
(b) Three media guide with lossy substrate. 
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B =2~ 
m J~ (2A-4) 

teff' p, and q in Eqs. (2A-3) and (2A-4) are defined as follows: 

-2 2 2 2 2 2 
t _ g + h [t + ~+ h l + _!S+ h l ] 
eff = -2 2 2 2 2 ~ q n2 q + h n1q p + h n3p 

(2A-5a) 

2 2 p = (n/n3)p (2A-5b) 

q = [n~/(n
2
- k

2
)Jq (2A-5c) 

Using only the real part of n~ ·( = n-ikf to solve for the unper

turbed waveguide modes, Eqs. (2A-1) and (2A-3), when substituted into 

the wave equation, yield the following relations for both the T.E. and 

the T. M. modes: 

(2A-6a) 

(2A-6b) 

( 2A-6c) 

Equations (2A-6) together with the following eigenvalue equations (see 

Table 2-1) uniquely determine the T.E. and T.M. field distributions: 

T. E. : 

T. M.: 

tan(ht) = h~p+g) 
h - pq 

tan (ht) 

(2A-7a) 

(2A-7b) 

The attenuation coefficients of the three-media structure may 

now be evaluated by using Eqs. (2A-l) through (2A-5) in Eqs. (2-35a) 

and (2-35b): 
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00 nkk2 
h2 

(m) w Je.(x)IE(m)(x)l 2dx = 
0 (2A-8a) 

°iE = - 2 2 j 1 y 
13 ( t + l+ !.) ( 1 + h ) q 0 m q p 2 q 

(m) wµ 0 j e;(x) I H ( m) ( x) I 2 dx = 
nk k2 

h2 
(2A-8b) 0 

aTM = - 2 e:r(x) - 2 2 ~ y Smtef/n - k ) q•q 
0 

where 
. - 2 ._ ( 2 k2 ) 2 . k e:

1 
(x) = e:/x) - 1e:; (x) = e:

0
n1 = e:0 n - - 1e:0n • 

For well-confined modes, the following limiting conditions 

apply: 

l -+O p (2A-9a) 

l+o 
q (2A-9b) 

h + (m+l) TI (2A-9c) t 

8m-+ n2ko . (2A-9d) 

As discussed in Section 2-II, for A~ lµ, q >> h . Moreover, when 

ln~I >> n~ and k2 
>> n2 (see Table 2A-l), q ~ k·k

0
• Under these cir

cumstances, the attenuation coefficient for well-confined T.E. modes 

becomes: 

(2A- l0a) 

If, in addition to those conditions just mentioned, lql >> 1h21 (a 

condition which is not always met for wavelengths approaching 10µ and 

certain metallic overlayers (see Table 2A-1)), teff may be approximated 
2 by t/n2 , yielding for the attenuation coefficient of well-confined 

T .M. modes: 



A(microns) 

0.5 

1.0 

10.0 
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TABLE 2A-1 

n 

0.5 

1.8 

25.0 

k 

6.0 

10.0 

67.0 

The real and imaginary parts of the complex dielectric constant 

(n = n - ik) for gold [28]. 
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B. Solution of the Complex Wave Equation [29] 

Equations (2A-7) may be rewritten in the form 

(m=0,1,2,···) 

(2A-10b) 

(2A- ll) 

2 2 where n23 = n21 = l for T.E. modes and nij = ni/nj for T.M. modes. 

Furthermore., retaining both the real and the imaginary parts of nf , 

equations (2A-6) may be recast as: 

n2 k2 = 
1 o 

82 2 - q m (2A-12a) 

2 k2 82 + h2 (2A-12b) n2 o = m 

2 2 
n3 ko = 

82 2 - p m (2A-12c) 

where, since 2 n1 is a complex quantity, all guide parameters become 

complex and, as a matter of notation, will be written in the form 

h = h + ih .• r l 

In order to make Eq. (2A-ll) tractable, it is necessary to 

assume that: 

I (q/h)n21 I >> l 

2 2 n2;n
3 

~ l 

(2A-13a) 

(2A-13b) 

Using Eqs. (2A-13), Eq. (2A-ll) may be simplified and separated into 

real and imaginary parts, yielding: 



-56-

Hr 
C --- (-l)m 23 = sin Hr 

H. = 
l 

(2A-14a) 

(2A-14b) 

Since it is known that, for the mth order mode, (m+ 1hr ,t Hr~ 

(m+l)n, Eqs. (2A-14) may be solved by using the following algorithm: 

an arbitrary value lying between the limits mentioned is assigned to 

Hr; c23 is solved for using Eq. (2A-14a); knowing Hr and c23 , Hi 

is solved for using Eq. (2A-14b). The imaginary part of S is then 
m 

obtained from Eq. (2A-12b): 

h h. r l 

(2A-15) 

2 2 where n21 = 1 (TE); n21 = n2;n1 (TM). Finally, from Eq. (2-6), the 

attenuation coefficients are given by 

(2A-16) 

If it is assumed once again that ln 1 1
2 

>> n~ and that k2 
>> n~ 

we have for the case of well confined modes (Recalling conditions (2A-9)): 



(2A-l7a) 

(2A-l7b) 

We note that Eqs. (2A-17)are identical to Eqs. (2A-l0) which 

were derived using an entirely different approach. More revealing, 

however, is a comparison of Eqs. (2A-8) and Eq. (2A-15). In order to 

solve Eq. (2A-ll)and hence to obtain Eq. (2A-15), it was necessary to 

assume that n~/n~ ~ l , an approximation not needed to derive Eqs. 

(2A-8). That the perturbation technique did not require that 

2/ 2 1 . t . . h . th t. 2; 2 b n2 n3 ~ 1s no surpr1s1ng, owever, since era 10 n2 n3 , y 

itself, does not determine the degree of mode confinement or penetra

tion into the lossy overlayer--the thickness t being an equally im

portant, independent parameter. From this observation :we conclude, 

therefore that the perturbation technique solution is of a more 

general nature in situations where the other approximations common to 

both approaches are valid. 

When conditions (2A-13) are not met, an approximate solution 

for Im[S~E • ™J may s ti 11 be ~btai ned if c~3 - H; >> H~ [29]. 

Assuming that this condition has been met, one obtains, after 

separating the real and imaginary parts of Eq. (2A-ll), the following 

coupled, transcendental equations: 

-1 ~ l Hr= tan n23 / ~ - l + Re[tan- (c21 n21 /Hr)J + nm 
Hr 

(m=O,l,2,• 11
) (2A-18a) 
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(2A-18b) 

where f = n23+ (l/n23 - n23 )H~/C~3 • After solving Eqs. (2A-18) for 

Hi, Im[s:E,TM] and c4~!TM are obtained from Eqs. (2A-12b) and (2A-16). 

We conclude by noting that, since condition. (2A-13a) was not 

required in order to derive Eqs. (2A-18), Eqs. (2A-18) may be used to 

calculate the optical loss when penetration into the metallic over

layer is large--a situation wherein the perturbation technique is not 

applicable. 

II. Substrate Losses of a Three Media Guide 

A. Perturbation Technique Solution 

Figure 2A-lb depicts the geometry. The unperturbed field dis

tri buti ans and mode norma 1 i zati ans for e:i (x) = 0 are i den ti ca 1 · to 

those of Section 2A-I. Consequently, setting e:i (x) = 0 for x 2:_+- t , 

Eqs. (2-35) immediately yield for the attenuation coefficients: 

(m) 
°"TM 

(2A-19b) 

where it has been assumed that n2 >> k2 . This restriction is neces

sary since mode penetration into the substrate may be large for those 

guide-substrate index discontinuities of interest. 
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As the substrate-guide index discontinuity is decreased (or 

held constant while the guide is made thinner), the optical mode be

comes progressively less well confined, i.e., closer to cutoff. In 

the nmit of optical cutoff, substantially all of the energy propagates 

in the lossy substrate and optical attenuation must approach the bulk, 

substrate value. Making the assumptions that lql and lcil >> h , 

and that, near cutoff, 

p -+ 0 

S -+ nk m o 

(£=0,1,2, ••• ) 

(2A-20a) 

(2A-20b) 

( 2A-20c) 

we have for the limiting T.E. and T.M. attenuation coefficients: 

(2A-21) 

The attenuation coefficients (2A-21) are, as required, seen to approach 

the bulk attenuation coefficient given by Eq. (2-7). 

In the limit of very good confinement, substrate penetration 

becomes negligible and the optical attenuation should go to zero. Now: 

p -+ 00 

ht+ (£+1)1r ( £=0, l , 2, , • • ) . 

Trivially, from Eqs. (2A-19a) and (2A-19b) we find that: 

a (m) ➔ J_ m) -+ 0 
TE 1M 

(2A-22a) 

(2A-22b) 

(2A-22c) 

(2A-23) 
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B. Solution of the Complex Wave Equation 

The notation used will be that of Section 2A-IB. In addition, 

the following definitions are made: 

2 n1 = K1 

2 
n2 = K2 

n2 = K "K 3 r - 1 i 

(2A-24a) 

(2A-24b) 

(2A-24c) 

(2A-24d) 

Once again, in order to make progress, the assumption must be 

made that l(q/h)n21 1 >> 1 • (It will be noted that this condition 

is violated as guided, free-space wavelengths approach 10µ.) Doing so 

yields: 

(2A-25) 

Using Eq. (2A-25), Eq. (2A-11) becomes: 

'\, 
-cot(ht) = n23 (p/h) (2A-26) 

The loss constant, Im[am], is understood (in the case of free 

carrier absorption, for example) to be much smaller than Re[sm]. 

Hence, from Eq. (2A-12b), it is safe to assume that h >> h .. r 1 

Allowing these approximations, the right hand side of Eq. (2A-26) 

becomes 

(2A-27a) 



for n23 = l (T.E.} and: 

t.Kk2 - h2 [ 
~3(p/h) ~ . oh~ r ( 
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for n23 = ½/(Kr - iK1) (T.M.) . Assuming, as we did above, that 

hi <<hr, the left hand side of Eq. (2A-26) may be approximated by: 

- cot(h t + ih.t) r 1 

sin(2hrt) - i sinh(2hit) 
= . . 

cosh(2h;t) - cos(2hrt) 

h.t 
~ - cot(hrt)+ i --1-

sin (hrt) 
(2.L\-28) 

Equating the real and imaginary parts of Eqs. (2A-27) and (2A-28) 

yields: 

(2A-29) 

and: 

(2A-30a) 

(2A-30b) 

where use has been made of the following relations: 

2 11Kk2 h2 Pr ~ o - r (assuming that pi<< Pr) (2A-3la) 
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and 

(2A-3lb) 

Finally, we examine the usual limiting conditions. Near 

cutoff: 

(m) 
Cl = T.E.M. 

TM 
k K. 

2-'Im[oTE, ] ➔ ~ µm . n (2A-32) 

where K = K - i K. = (n - i k)2. r l 
For the case of well-

confined modes, conditions (2A-22) together with Eqs. (2A-29) and 

(2A-30) yield: 

(2A-33) 

These results are seen to be in agreement with those obtained earlier. 

We conclude by noting that, in order to derive Eqs. (2A-30), 

the tacit assumption was made that ~K >> Ki . As Eq. (2-46b) 

indicates, this assumption may not be true for the case of free 

carrier absorption at long wavelengths. It is, of course, also 

violated when ~K is small (for example, thin waveguides near cutoff). 

For these reasons and the obvious one of simplicity, the pertur-

bation technique will henceforth be used to calculate free-carrier

associated waveguide attenuation. 
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CHAPTER 3 

THE OPTICAL AND ELECTRICAL PROPERTIES OF 

PROTON-IMPLANTED GALLIUM ARSENIDE 

The physical mechanisms responsible for the nature and perform

ance of proton-implanted optical waveguides in gallium arsenide are 

governed by the damage-induced defect levels which appear within the 

forbidden energy gap of the irradiated material. In order to develop 

a model capable of predicting the behavior of such structures it is 

therefore necessary to gain a thorough understanding of the electronic 

defect level spectrum of proton-irradiated gallium arsenide. The most 

convenient way of obtaining the defect level spectrum or defect density

of-states function, and the one which will be used here, is to infer it 

from various absorption data; as will be shown in a later section, the 

validity of the spectrum so obtained may be checked by comparing 

theoretical and experirrental curves of free carrier concentration ver

sus defect concentration. Since only those defects which are electric

ally active (viz., those in which free carriers are trapped), as 

opposed to those which are strictly dissipative in nature, yield absorp

tion data useful within this context, our analysis will be begun by 

considering the different types of absorption to be expected under 

varying implantation conditions. 

I I. Ion-Implanted GaAs 

Radiation-generated disorder in semiconductors may modify the 

energy level spectrum of the implanted material in either or both of the 
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following ways, depending on the energy, fluence, and species of pro

jectile ion used: the fundamental absorption edge may suffer an 

apparent shift to lower energies and/or discrete levels may be intro

duced into the forbidden gap. When implanted into GaAs, heavy . .ions 

such as Xe and Se [30], as well as reactor neutrons of sufficient flu-

ency [31] (~ 1018cm-2), cause band edge tailing which may be approxi

mated over a certain energy range by an E2 dependence. In addition, 

implants of this type are known to give rise to at least two discrete 

energy levels with ionization energies of about 0.2 eV and 0.5 eV [32]. 

Energetic electrons (~ 1 MeV), on the other hand, have a less drastic 

effect on GaAs, producing a smaller edge shift with a nearly exponen

tial energy variation and a single, barely jiscernible level located 

1.3 eV from one of the band edges [32].Intermediate between these two 

extrerres, the damage caused by 150-400 keV protons, in doses between 

1014 and 1016cm~2, has been shown to introduce a continuous bandtailing 

which begins deep within the band gap , [33] and ends with a slight shift 

of the fundamental edge toward lower energies. The existence of two 

discrete defect levels in proton-implanted gallium arsenide has been 

inferred by electrical measurements [34] but has not been substantiated 

by optical excitation techniques. 

III. Proton-Implanted GaAs 

Wohlleben and Beck, from measurements made on the carrier 

removal rates of both n- and p-type GaAs as a function of proton fluence, 

concluded that quasi-continua of levels exist both just below the con

duction band edge and just above the valence band edge [35]. Their 
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hypothesis is in general agreement with the results of Stein who 

measured the optical absorption coefficient of proton-implanted GaAs 

from 0.2 eV to the band edge [33]; he found the absorption spectrum 

to resemble a structureless, exponential function of energy. Contrary 

to these findings and to those to be presented below, Pruniaux, North, 

and Miller inferred the presence of two discrete levels located 0.4 eV 

and 0.8 eV above the valence band edge based on resistivity versus 

temperature measurements of n-type GaAs [34]. (It should be men

tioned that, with the exception of the data of Wohlleben and Beck 

who used 3 MeV protons, all of the results quoted are based on the 

effects of 150-400 keV proton implants.) 

The photoresponse of a proton-implanted GaAs detector (to be 

described in detail in Chapter 5) is shown in Fig. 3-la together with 

the response of an unimplanted control sample; Stein's data are shown 

in Fig. 3-lb for comparison. Different theories, to be discussed 

below, predict that the bandtailing of ion-damaged material will have 

either an E2, A exp(BE2) or C exp(DE) energy dependence. As can be 

seen in Fig. 3-1, however, no single functional form adequately des

cribes the experimental data throughout the range of energy variation. 

It is supposed, therefore, that some superposition of the three energy 

dependencies mentioned, the individual contributions of which being 

dependent on the dynamics of the implanted ion, will best describe the 

experimental data. 
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A. Optical Properties of Proton-Irradiated GaAs 

1. Absorption and Scattering by Thenna 1 Spikes 

As was mentioned above, large projectile ions such as Xe or Se 

or energetic ones such as reactor neutrons are known to induce a band 

edge tail which varies over a certain energy range as the energy, 

squared. Aukerman, et al [36] suggested that fast neutrons incident 

on GaAs create so-called thermal spikes, or superheated regions in 

which metalli,c precipitates are fonned. Subsequently, McNichol_s and 

Ginell [3:l]developed a theory based on these observations in which the 

optical attenuation was attributed to scattering and absqrption by 

small, metallic inhomogeneities. Their expression for the attenuation 

coefficient (measured in cm-1) for the case of neutron-irradiated GaAs 

is : 

a(E) = 2.2 x 10\f)E2 (3-1) 

where E is measured in electron volts and f is the volume fraction 

occupied by metallic zones. As Se and Xe produce bandtail ing in GaAs 

which has the form given by (3-1), it is presumed that implants of 

these species (as well as of other heavy ions) also give rise to ther

mal spiking. One may logically conclude, therefore, that in order to 

generate an absorption spectrum which bears an E2 energy dependence, 

the dynamics of the implant projectile must be such that localized 

regions of the target material become highly disordered or converted to 

a different phase. This situation apparently occurs when the kinetic 

energy of the incident ion is above a certain threshold. As shown by 

curve A in Fig. 3-lb, that portion of the absorption spectrum lying 
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between 0.2 eV and 0.65 eV may be fitted by the functional fonn of 

Eq. (3-1), indicating that a fraction of the 400 keV protons used by 
, 

Stein fulfilled this requirement. 

It will be further noted that the photoresponse curve of Fig. 

3-la cuts off sharply near the center of the (unirradiated) band gap 

at approximately 0.7 eV while the absorption curve obtained by Stein 

tails to energies less than 0.2 eV. According to the bandtailing model 

to be presented in a later section, disorder-induced, electrically 

active trapping centers give rise to absorption only for photon 

energies greater than about 0.6 eV. Bearing this fact in mind, it may 

be concluded that the absorption curve of Fig. 3-lb represents a super

position of both strictly dissipative (as discussed here) and elec

trically active absorption mechanisms over the energy interval between 

0.2 eV and 1.3 eV while only electrically active centers leading to 

photoconductivity are manifested in Fig. 3-la. The dissipative con

tribution at 1.08 eV (1.15µ), the energy at which optical attenuation 

measurements were made here, represents approximately 60% of the total 

loss and, as will be seen in Chapter 5, imposes a limit on the 

maximum quantum efficiency to be expected from a detector based on the 

induced long-wavelength photoconductivity of proton-implanted gallium 

arsenide. 

2. Absorption by Impurity-Defect Complexes 

Much experimental evidence exists in support of the contention 

that n-type gallium arsenide, either grown under conditions which 

favor the creation of vacancies or subjected to treatment, such as 
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irradiation, which forcibly introduces vacancies, contains so-called 

vacancy-donor complexes. As will be shown below, the shoulder, or 

shift toward lower energies, of the fundamental edge of proton

irradiated gallium arsenide closely matches the excitation spectrum 

of gallium vacancy-donor complexes, thereby lending additional credence 

to this supposition. Moreover, in the presence of an externally 

applied electric field ["37], the phot~luminescence of 

such centers may be quenched, leading to induced photoconductivity. As 

indicated in Fig. 3-la, this effect appears to be manifested by a 

shift toward lower energies of the photoresponse curve of irradiated 

GaAs. 

Photoluminescence measurements of structurally imperfect GaAs 

reveal emission spectra which can, in principle, be attributed to 

defect levels within the bandgap. Such measurements made on n-type 

GaAs show a broad emission centered at about 1.2 eV whenever the like

lihood of gallium vacancies has been enhanced during sample prepara

tion [38 ]. Conversely, this band is substantially reduced in intensity 

or completely absent if measures are taken to discourage the formation 

of gallium vacancies. It has been observed that the 1.2 eV emission 

peak is almost always present if then-type dopant is one of the group 

VI elements ~9 ]; heavy doping with a group VI element, which is sub

stitutional on arsenic sites, should reduce the arsenic vacancy 

population and, hence, increase the gallium vacancy concentration since 

the product of the two vacancy concentrations must remain constant in 

thermal equilibrium. Group IV dopants, on the other hand, which pri

marily occupy gallium sites (for n-type GaAs), are known to lead to a 
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reduction in the intensity of the 1.2 eV emission band [39], all other 

conditions being the same (for example, the respective impurity concen

trations). Finally, the 1.2 eV band is not present whenever the GaAs 

has been doped heavily by either cadmium or zinc [40] (both substitu

tional on gallium sites) or whenever it has been grown from a gallium

rich melt [41]. 

Owing to the wide range of projectile parameters and target his

tories (largely unspecified) chosen by independent investigators, 

attempts to form a causal relationship between photoluminescence spectra 

and defects generated by elementary particle irradiation have been less 

successful than those aimed at linking growth conditions to the 1.2 eV 

emission line. Mitchell and Norris [42], using reactor neutrons, and 

Jeong et al [43], using electrons, found that both the 1.2 eV (Mitchell 

and Norris measured it to be 1 . 28 e V) and the band edge emission· of n

type GaAs were partially quenched by the irradiations. Tkachev 

et al [44-l, using 50 eV electrons, and Harris and Eisen [45], using 

450 keV protons, observed an increase in an emission centered at 1.35 

eV and an accompanying decrease in the band edge luminescence of n-type 

GaAs after bombardment; both of these investigations attributed the 

emission to arsenic vacancies or arsenic vacancy-impurity complexes. 

Harris and Eisen based their conclusion on the fact that this emission 

(which could also be induced by annealing an unirradiated GaAs specimen) 

could be inhibited by depositing a layer of Si02 on the sample prior to 

heat treatment -the Si02 overlayer presumably preventing an out-diffusion 

of arsenic atoms. In opposition to these findings, Tuck noted [46] that 

by increasing the arsenic overpressure during heat treatment and, 
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therefore decreasing the number of arsenic vacancies (or increasing the 

number of gallium vacancies in thermal equilibrium), the intensity of 

the 1.2 eV line of n-type GaAs was made two to three times greater 

(temperature= l000°C, As pressure= 0.1 atm). 

If gallium vacancies, which are presumed to act as acceptors 

in the complexing and compensation processes, are responsible for 

the 1.2 eV emission of n-type material, then one would expect arsenic 

vacancies to play a similar role for the case of p-type GaAs. This 

has been observed to be the case: the group II impurities, Zn and Cd, 

which are substitutional on gallium sites have been shown to produce 

a complex line near 1.37 eV [47]. Based on these observations, which 

appear to confirm the supposition that gallium vacancies are respon

sible for the defect spectra of n-type GaAs, and those of Williams [39] 

who measured spectra of n-type material doped by six different impurity 

species (S, Si, Ge, Se, Sn, and Te) (see Fig. 3-2) it may be concluded 

that gallium vacancies are positively charged and give rise to an 

emission centered near l .2 eV. 

Self-activated luminescent centers in ZnS [48], formed by the 

association of a zinc vacancy with a negatively· charged impurity ion, 

are exactly analogous to the gallium vacancy-impurity comples presently 

under consideration. The latter center is depicted in Fig. 3-3. 

Since the configurational-coordinate (CC) model was so successful in 

predicting the behavior of ZnS luminescent centers, it will also be 

applied here. The one electron CC diagram is shown in relation to 

the bandgap of GaAs in Fig. 3-4. 

The gallium vacancy-impurity complex may be regarded as a 

molecular-like entity bound together by the coulombic attraction between a 
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Figure 3-3. The gallium vacancy-donor (in this case tellurium) 

complex. (After Williams [39]) 

CONDUCTION BAND 
/////////////////////1 

D------------

A-----

/T/T//T//T//T/T//T/77??7 
VALENCE BAND 

GROUND 
STATE 

Figure 3-4. The one electron configurational coordinate model for 
vacancy complexes in GaAs. Also shown is the band gap 
and donor-like (D) and acceptor-like (A) levels of the 
zero-point energies of the ground and ~xcited states, 
respectively, which lie within the band gap. Eabs, the 
absorption energy is greater than Eems' the emission 
energy, and the difference is the Stokes shift. The 
electron transitions are vertical because of the 
Franck-Condon principle. (After Williams [39]). 
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positively charged vacancy and a negatively-charged donor atom. 

Accordingly, it may be treated as an harmonic oscillator whose ground 

and excited electronic state, vibrational potential energies are 

given by : 
E = l K x2 

g 2 g (3-2a) 

(3-2b) 

where K are the effective spring constants and, x, the configura-g,e 

tional coordinate, represents the instantaneous separation of charge · 

centers. The minima of the ground and excited states are taken t o be 

the gallium vacancy level and the donor level, respectively. It will 

be noted, however, that because of the coulombic attraction which 

exists between donor and "acceptor", these levels will lie somewhat 

further from the band edges than would be the case for isolated charge 

centers. Moreover, when the center is in its excited state, it is 

expected that the degree of molecular binding will be modified slightly; 

as reflected in Eqs. (3-2a) and (3-2b), the modifications thereby 

induced are a small change, x
0

, in the equilibrium separation and a 

different spring constant, Ke. In addition, because the equilibrium 

separation between charge centers is different for the excited and 

ground states, the absorption energy, Eabs' is greater than the emis

sion energy, Eems' by an amount termed the Stokes shift [49]. This 

situation is most easily visualized at 0°K in the classical approxi

mation as shown in Fig. 3-4. Since the bonding between atoms in GaAs 

is covalent, however, the displacement between minima, x
0

, and, 

therefore, the Stokes shift, should be small. Finally, since 

electron i c transitions between the ground end excited states are . 
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assumed to occur much faster than the complex can assume a different 

configuration (Franck-Condon principle [49]), they are taken to be 

vertical as depicted in Fig. 3-4. 

Ignoring the effects of stimulated emission, a valid assump

tion considering the weak e~citation fields used here, a modified fonn 

of Eq. (2-64) may be used to describe absorption by complex centers: 

t-i; )- 8e
2

TTW 
a, \IIW - --

C ~C 
f P(x) 
X 

{ 3-3) 

where the range of integration is now taken over all values of the 

configuration coordinate. P{x) in Eq. (3-3) is the probability that 

a particular configuration is assumed and is·given classically by [49]: 

(3-4) 

Equation (3-4) is correct in the quantum-mechanical case if T is 

replaced by an effective temperature [50]: 

where: 

Here h 

Teff = e coth(e/T) (3-5) 

e = h\> /2k • g 

is Planck's constant and 

( 3-6) 

\) is the natural frequency of the 
g 

ground state using the simple harmonic oscillator model. The matrix 

element <IHu,il~ av in Eq. (3-3) must be evaluated for initial and final 

states which are products of molecular and electronic state functions; it 

will be assumed to vary slowly with x compared with P(x) (which is 
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strongly peaked even at room temperature) and therefore will be moved 

outside the integral of Eq. (3-3). 

Following the method of Klick and Schulman [49], Williams and 

White [51] have determined the CC parameters at 80°K for the case of 

Ge-doped GaAs to be: 

hv = e 0.022 eV 

hv = 0.040 eV g 
E = 1. 429 eV 

0 ( 3- 7) -10 
X = 5. 33 x 10 cm 

0 

K = 8 x 105 dyne/cm e 
K = 27 x 105dyne/cm g 

The configuration coordinate diagram for the germanium-gallium vacancy 

center plotted using these parameters is shown in Fig. 3-5a. Judging 

from the data presented in Fig. 3-2 the CC curves for the case of 

tellurium complexes (most samples used here were tellurium-doped) 

should not differ substantially from those shown in Fig. 3-5a and 

therefore Te-complexes will be treated using the values given in (3-7). 

Because the 1.2 eV emission peak for Te-doped GaAs shifts by only 

0.028 eV (toward shorter wavelengths) (See Fig. 3-5b) in going from 

0°K to 300°K, the additional assumption will be made that the CC param-

eters remain approximately constant over this temperature range. 

For transitions between the ground and excited states, Eq. 

(2-60a) becomes: 

n n 1 ~ 4N 2 
£ U C 

(3-8) 
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-> 
Q) -

l.429eV 

0.5 r------+--~-----+-------l--4---~--l------1 

-0.1 0 0.1 

CO-ORDINATE DISPLACEMENT (ANGSTROMS) 

0.03 

(b) 
0.02 -> 

Q) 0.01 -
t--
LL 0 -I 
en 
~ 

-0.01 
<[ 
w -0.02 a.. 

-0.03 

-0.04 
0 40 80 120 160 200 

T (°K) 

Fig. 3-5. (a) The configurational coordinate diagram for the 
gall-ium vacancy-germanium complex plotted using (3-7) 
(After Williams and White {51]); (b) peak shift from 
0°K as a function of temperature for the 1.2 eV line 
in GaAs:Te. The curve E9 shows the change in band gap. 
(After Williams [39]). 
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where it has been assumed that the quasi-Fermi levels for holes and 

electrons are far from either band edge (valid when the GaAs has been 

compensated as a result of implantation). The degeneracies of the 

upper and lower states have been set equal to two and N
1 

= Nu = Nc , 

the number of complexes per cubic centimeter. 

That the absorption should appear to vary as the square of the 

number of complexes is at first surprising until recollection is made 

of the original meaning of (1Hu,i1 2>av. Equation (2-55), in a more 

general form, states that: 

(3-9) 

or that: 

D D I H 1
2 

u£< u,£ >av (3-10) 

when it is remembered that the summation over all upper and lower 

states may be broken up into individual summations over energy states 

and their respective degeneracies. Now~it will be recognized that 

1Hu,i1 2, contains selection rules which reduce 

the total number of transitions from Du•D£ to D since only transi
u 

tions between ground and excited states of the same complex are 

allowed. Taking account of this, Eq. (3-10) becomes: 

where D =Ng and 
U C U 

Finally, 

( 3- 11 ) 
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1 1
2 1 2 < Hu t > av = N I Hu t I 

, C ' 
(3-12) 

Using Eqs. (3-2), (3-4), (3-5), (3-8) and (3-12), the ab

sorption coefficient may now be written as: 

where: 

and: 

ac(nw) = Dw Jexp(-K9x2/2kTeff)o(E
0

-hw)dx 
X 

E = E - E = (Ke - Kg) 2 K xx+ Kex~ + E 
0 U i 2 X - e O 2 0 

(3-13) 

(3-14) 

(3-15) 

Equation (3-13) may be evaluated by making use of the following rela

tionship: 
b 

I g(x)o[f(x)]dx = I g(x
0

)/ldf(x)/dxl 
X XO 

a o 
(3-16) 

where the sum over x
0 

includes all of the roots of f(x) between a 

and b. a(hw) was computed using this procedure and the constants 

given in (3-7). The result is shown as curve Bin Fig. 3-la; the con

stant D in Eq. (3-13) was adjusted to match the maximum absorption 

observed near the band edge . Curve B (calculated at 300°C) may be 

compared with Fig. 3-6 which shows the absorption and emission spectra 

attributed to the gallium vacancy complex as measured by Williams and 

White at 80°K [51]. Finally, we note that, because all other terms 

vary slowly in comparison, P(x), which has a Gaussian shape, deter-
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mines the principal spectral variation of a(fiw). 

3. Absorption Involving Bandtails 

Vacancies and interstitials created by proton implantation give 

rise to regions of local compressio~ and dilation as illustrated in 

Figs. 3-7a and 3-7b. Interstitial atoms cause the local lattice con

stant to become smaller and, hence, in GaAs, the direct energy gap to 

become larger; vacancies have the opposite effect. For a small 

change, Lia, in the lattice constant, the energy gap, Eg, therefore 

changes by: 

LiEg = -(E1 + E1 )Lia 
C V 

( 3-17) 

where El and El are the pressure coefficients for the edges of 
C V 

conduction and valence bands, respectively. Assuming El and E2 
C C 

be approximately equal [521, the resulting defonnati on potentials gen-

erated by compression and dilation are shown in Figs. 3-7c and 3-7d. 

The assumption of a symmetrical or nearly symmetrical deformation of 

the band edges with respect to the center of the band gap will be 

justified in a later section which examines the similarity of carrier 

removal rates for both p- and n-type GaAs as a function of integrated 

proton flux. 

Figure 3-7e shows how the band edge deformations introduced by 

a vacancy defect give rise to an acceptor level of ionization energy, 

Ea, and a donor level of ionization energy, Ed(~ Ea) . Here we may 

note that absorption measurements made on electron-irradiated GaAs 

indicate the existence of a single defect-associated energy level 

located approximately 1 eV from one of the band edges [36]. This 

the 

to 
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---- ------ -,.~- -
- -- -- - ------ --:-- • ---- -----(0} (b) 

T 
Eg + 6Eg Eg Eg+6Eg 

~l~_l_ 
( C} (d) 

TRAPPED ELECTRON 
_ _j_ 

------.= 
Ea 

_LEd 

T 
TRAPPED HOLE 

(e) (f) 

Figure 3-7. (a) and (b) illustrate the effects of interstitials 
and vacancies, respectively, on the-- local lattice 
structure; (c) and (d) show the effects of interstitials 

and vacancies, respectively, on the local band gap of 
GaAs; (e) donor and·acceptor levels created within the 

band gap of GaAs by a vacancy; (f) band edge 
deformations caused by vacancy clusters of different 

size. 
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observation is consistent with the hypothesis that energetic electrons, 

possessing a relatively small amount of kinetic energy, are able to 

produce only isolated Frenkel (interstitial-vacancy) defect pairs [53]. 

The defect energy levels which result, therefore, might correspond 

to those shown in Fig. 3-7e. Protons in the 300-400 keV range, on 

the other hand, are likely to introduce much more extensive damage in 

the form of vacancy or interstitial clusters in addition to single 

Frenkel defects. In this case, a spectrum of defect levels is 

created, with each pair of acceptor-donor levels corresponding to a 

different configuration and local concentration of defect species. 

This situation is depicted in Fig. 3-7f. Since both the entropy and 

the electrostatic energy (each type of isolated defect or defect 

cluster gives rise to a local space charge) of a defect cluster 

increase with its size, large defect clusters thermodynamically are 

less favored than smaller clusters. In this regard~ we note that 

the absorption and photoresponse spectra shown in Fig. 3.1 seem to 

vary in an exponential-like manner over an appreciable energy inter

val, suggesting that the number of defect clusters decreases 

exponentially with cluster size. Finally, based on these observations 

and the fact that the lowest acceptor-like defect level (or the highest 

donor-like defect level) appears to reside 0.58 eV from the valence 

band edge [35J, the defect density of states functions are taken to be 

those shown schematically in Fig. 3-8. 

Setting the energy of the pre-irradiated conduction band edge 

equal to zero and taking the room temperature energy gap to be 1.43 eV, 

the density of states functions referred to above together with the 
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Figure 3-8. Conduction band, valence band and defect density of 
states functions of proton-implanted .gallium arsenide 
as inferred from pbotoresponse,_absorption -(33];· 
and free carrier removal (35] data. 

VALENCE BAND 

Figure 3-9. Schematic representations of the three types of 
dipole transitions made.possib]e of proton-induced 
defect levels in gallium arsenide. 
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valence and conduction band density of states functions are given bj:; 

where 

2m 
pc(E) = -

1- (~) 312 (E) 112 conduction band 
27T2 112 

Pa(E) = AaN exp[B(E + 0.85)] acceptor defects 

Pd(E) = AdN exp[-B(E + 0.85)] donor defects 

2m 
pv(E) = -

1- (-v) 312 (-E - 1.43)112 : valence band 
27T2 112 

m = the electron effective mass 
C . 

mv = the hole effective mass 

N = the number of defects per unit volume 

and the normalization constants, 

Aa = B/[exp(0.85B - l)] 

Ad= B/[exp(0.58B ~ l)], 

0 

have been chosen such that j 
-0.85 

-0.85 

pa(E)dE = J pd(E)dE = N. 

-1.43 

(3-18a) 

(3- l8b) 

(3-l8c) 

( 3. 18d) 

Before proceeding with calculations of the various defect 

associated contributions to the absorption coefficient, we draw on 

several experimental observations to infer the probable location of 

the fermi level. First we note that the photoresponse curve of Fig. 

3-la was obtained from n-type (n = 1016cm-3) material which had been 
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given a total dose of 2 x 1015 protons cm-2 and then annealed for 

0.5 hours at 500°C. The results of Chapter 4 indicate that, under 

these circumstances, N ~ 1.2 x 1019 defects cm-3• 

Given this defect concentration and the original free carrier 

concentration, the Fermi level is found, using Eqs. (3-18) and (3-38) 

(See Section III-C) to lie very near its asymptotic value of 

Ev+ 0.58 eV. In addition,with regard to the absorption spectrum 

obtained by Stein, we note that although no mention was made of the 

original free carrier concentrations of the irradiated specimens, 

( 15 16 -2) because of the doses used between 10 and 10 protons cm and 

because of the lack of post-implantation annealing, the Fermi level 

is once again expected to lie near its limiting value of Ev+ 0.58 eV. 

As a further prelude to the absorption calculations it may be 

recognized that, although both Stein's absorption data and the photo

response measurements were taken at room temperature, very little 

error will be introduced by using 0°K occupation statistics. While 

this approximation becomes invalid, for transitions which begin or 

terminate within a few kT of the Fermi level (it being seriously 

violated in the case of low energy transitions between defect levels 

close to and on either side of the Fermi level), it will be recalled 

that the lowest energy investigated (by Stein), was 0.2 eV (>> kT = 

0.025 eV at room temperature). 

We now calculate the defect-associated absorption spectrum. 

To do so three types of transitions (shown schematically in Fig. 3-9) 

involving energies less than E = 1.43 eV, must be considered. 
g 

Referring to Fig. 3-9, it is seen that with the exception of those 
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levels which lie within a few meV of the valence and conduction bands, 

the defect levels may be considered "deep". Accordingly, their 

associated electronic wave functions become ~s discussed in Chapter 

2) admixtures of free-electron wave functions and, as a result, the 

k-selection rule for transitions involving them is relaxed [26]. 

Recalling the above assumption regarding occupation statistics, Eq. 

{2-64) for the absorption coefficient therefore becomes: 

where: 

a (11W) = f;( w) h, ( E - 1'iw ) n ~ ( E ) d E 

E 

2 2 
dw) = Be 7T w (I H I 2) 

re u,i av ,,sr 

{3-19) 

{3-20) 

Transitions between the valence band and defect levels above 

the Fermi level and transitions between filled defect levels and the 

conduction band may be treated in a straightforward manner. The 

resulting absorption coefficients, using Eqs. (3-18), are given by: 

-1.43+-riw 

= dw) AN (2mv)3/2 j [-{E - i'iw) - 1.43] 1/2 
2,,.2 112 

-0.85 

x exp[B(E + 0.85)]dE 

1iw-O. 58 

AN 2mv 3/2 \ j 1 /2 ! = :-7 (-2) exp[-0.588] 
1

~{w) y exp(-By)dy exp(Bnw) (3-21) 
2n ~ f 0 

and: 
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2m 3/2 l ~w-0.85 
(-:½) exp[-0.85B] ~(w)J y112 

n o 

x exp ( -By )dy l exp( Bl'!w) • (3-22) 

Equations (3-21) and (3-22) are seen to account for a portion of the 

absorption spectrum lying between 0.58 and 1.43 eV. 

Finally, we calculate the absorption due to transitions 

between filled and empty defect levels. These transitions involve 

initial and final elec~ronic states which are both (for levels more 

than a few meV from either band edge) highly localized. In order to 

characterize these deep levels we use the quantum defect method [54]. 

Accordingly, the radial part of the ground (S) state solution 

(F (r) = P {r)Y
0
°(e,~)) of the semi-phenomenological Schrodinger's 

V V 1 

equation, 

(3-23) 

is given by: 

(3-24) 

where: * 1/2 N = (va) /[2vr(v)J . 
V 

(3-25) 

r in Eq. (3.25) is the gamma function and K is the relative 

dielectric constant. The quantity v (referred to as the effective 

principal quantum number) is related to the observed binding energy 

through the following relation [25]: 

* 2 E:(OBS) = -R /v 

* 2 * where R is the hydrogenic Rydberg e /2Ka. 

(3-26) 
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Making the ad hoc assumption, to be justified shortly, that 

transitions between pairs of defect levels located symmetrically with 

respect to the Fermi level (see Fig. 3-10) are the most likely to 

occur and noting from Fig. 3-la that the exponential-like spectral 

behavior terminates (or becomes masked) at approximately 1.3 eV, 

the smallest binding energy with which we must concern ourselves is 

* * 0.065 eV (=(1.43 - 1.3)/2). Given that a = K(m/m )a
0 

(a
0 

= the 

0 * * 2 Bohr radius= 0.53A) and that R = (m /mK )R (R = the ground state 

ionization energy of hydrogen in vaccuo = 13.65 eV), we have,therefore, 

for the level nearest the conduction band: 

a*= (12/0.072)(.53~) = 88.SA 
C 

* Re= (0.072/144)(13.65 eV) = 6.82 meV . 

and for the level nearest the valence band: 

a*= (12/.5)(.53A) = 12.1A 
V 

* RV= (0.5/144)(13.65 eV) = 47.4 meV . 

(3-27a) 

(3-27b) 

(3-28a) 

(3-28b) 

K in Eqs. (3-27a) - (3-28b) has been taken equal to 12 for GaAs at 

A~ lµ. Using Eqs. (3-27b) and (3-28b) and taking £(OBS)= 0.065 eV, 

Eq. (3-26) yields for the two shallowest defect levels of interest: 

V = Q.324 
C 

V = Q.854 . 
V 

(3-29a) 

(3-29b) 

The approximate extension (e-1 points) of the corresponding radial 

wave functions may now be calculated using Eq. (3-24): 
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CONDUCTION BAND 
E = O.OOeV 

- 0.85eV 

. 7777777777777777777777777 E = - I. 4 3 e V 

VALENCE BAND 

Figure 3-10, Allowed transition between--defect ... -levels - located 
symmetrically-with respect: to the -Fermi , 1 eve l of 
proton-implanted gallium arsenide. 

CONDUCTION BAND 

VALENCE BAND 
, Figure 3-11. Transitions between · defect · states·of proton-implanted 

gallium arsenide. Transitions between donor- and 
acceptor-like levels originating from the same defect 
(labeled~) are favored over those between states 
originating from dif~erent defects (labeled 1?_). 
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* 0 r = v a = 28.7A 

C C C 
(3-30a) 

* 0 

rv = vvav = 40.5A (3-30b) 

Recalling that the number of defects remaining in the sample used to 

obtain the photoresponse curve was taken to be~ 1019cm-3 and assum-

ing for them a random, homogeneous distribution, the average distance 

between defects is found to be: 

rd = (3/4nN) l/ 3 = 34.7A .. (3-31) 

Bearing in mind the values given by Eqs. (3-30a) and (3-30b), Eq. 

(3-31) indicates that for the smallest ionization energies of 

interest, defect wave functions just begin to overlap. Moreover, as 

one moves farther into the band gap, v, decreases rapidly and defect 

wave functions become progressively more localized. As a result of 

this localization, the matrix element which connects states associated 

with spatially separated defects will be much smaller than the matrix 

element which connects states associated with the same defect. The 

situation is illustrated in Fig. 3-11: transitions labeled A are 

favored over those labeled B. According to this "selection" rule, 

(!Hu,
1

1
2 > av,' as in the case of vacancy-complex excitation, 

will be equal to ~Hu,
1

1
2> divided by the total number 

of defects per unit volume N. 

Following the above discussion, the absorption coefficient 

for transitions between pairs of defect levels is given by: 
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a (l) (nw) 
2 2 2 

= Be 1r wJHu,R-1 

/2'c r 
(3-32) 

. ,020 -3 Taking N = cm as the greatest number of defects to be expected 

under the implantation conditions to be considered here (See Chapter 

4), a(l) is seen to be orders of magnitude smaller than either 

a(
2) or a( 3) which contain the valence and conduction band effective 

density-of-states, respectively. Moreover, since mv >> me, 

a( 2) >> a( 3) giving,to good approximation: 

(3-33) 

The expression for a( 2)(~w), 

trw-0.58 

a(
2)(hw) = C·~w·exp[B(nw - 0.58)] x ff y112exp(-B~)dy! (3-34) 

0 

where: 
2 2m 

C = ANe (-v)3/2 <I H I 2> 
4~cn 'fl2 u ,£ av 

(3-35) 

was fitted to the absorption and photoresponse data of Fig. 3-1 in 

the following way: Semilogarithmic plots of the photoresponse curve 

(between 0.8 eV and 1.35 eV) and of the electrically active contri

bution to the absorption spectrum (between 0.7 eV and l .2 eV) were 

used to obtain an initial estimate of the exponential coefficient B 

of Eq. (3-34). These plots are shown in Fig. 3-12; the electrically 
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SLOPE= 5.6ev- 1 

SLOPE= 5.33ev- 1 

0.01 ..__ __ _,_ __ ___,IL----~---L.----'------'------ 102 
0.7 0.8 0.9 1.0 I.I 1.2 1.3 1.4 

PHOTON ENERGY {eV) 

l og10[photoresponse data].: .A 

log10[(Total abs. )-(curve A)]:• (from Stein) 
l o g lO [y ·a ( 

2 ) ( E ) ] : - - - - - - ( y = l 0- 2 , B = 5 • 4 e V - l ) 

log 1O[y~ (2) (E)]: -- - (y = 10-l, H = 3 eV~ l) 

Figure 3-12. Semi-logarithmic plots used to find the exponential 
constant B. C in Eq. (3-34) has been set equal to one. 
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active portion of the absorption spectrum was obtained by subtracting 

curve A (the strictly dissipative contribution due to absorption and 

scattering by thermal spikes) of Fig. 3-lb from the total absorption 

spectrum of Fig. 3-lb. The slopes of the photoresponse and absorption 

plots yield for B values of 5.33 ev-l and 5.6 ev-1, respectively. 

Letting B = 5.4 ev-l in Eq. (3-34) (and taking the constant C = 1 for 

convenience), however, led to an absorption spectrum which increased 

too rapidly with energy (See Fig. 3-12); a best fit was eventually 

found, by trial and error, to result when B = 3 ev-1. 

Finally, as a means of summarizing the results of this section, 

Fig. (3-13) compares the theoretical and experimental photoresponse 

and absorption spectra of proton-implanted GaAs. The theoretical 

photoresponse spectrum was obtained by summing Eqs. (3-13) and (3-34); 

the theoretical absorption spectrum was obtained by summing Eqs. (3-1), 

(3-13), and (3-34). In both cases, multiplicative constants were 

chosen to obtain the best agreement between theory and experiment. 

B. Absorption-Induced Refractive Index Changes 

According to the Kramers-Kronig relationship given in Chapter 

2, the additional absorption introduced by proton implantation will 

give rise to a refractive index change. An upper bound for the largest 

contribution, that due to the shift toward lower energies of the band 

edge, may be easily calculated by assuming that the edge shift is 

constant between 1.35 and 1.45 eV. Taking the absorption coefficient 

in this region to be 600 cm-l, the (positive) change in the refractive 

index at 1. 15µ (1.08 eV) is given by: 
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Figure 3-13. (a) Theoretical absorption spectrum fitted to Stein's 
data; (b) theoretical and experimental .photoresponse 
curves. (See Eqs. (3-1), (3-13), and (3-34)). 
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Theoretical Photoresponse Curve: 

a(E) = 2.31 x 103 f exp{-Kg x2/2k Teff)o(E
0

-E)dx 
x E-0.58 

+ 0.0345 x Ex exp[3(E-0.58)]x{ f y112exp{-3y)dy} 
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1.45 

600 dE' 
( E 1 

) 
2 - ( l. 08 )2 

= 1. 43 X 10-S (3-36) 

As is obvious from an inspection of Fig. 3-la, inclusion of the expon

ential and quadratic portions of the absorption spectrum will change 

the above result very little, particularly since, at 1.08 eV, integra

tion over these quantities (as in (3-36)) produces both positive and 

negative contributions which tend to cancel. 

~nd may be compared with the refractive index change, ~nfc' 

caused by free carrier absorption. Equation (2-46a) yields, for a 

representative free carrier concentration of 1018cm-3 and at a wave

length of 1. 15µ: 

Ne2 

= 2.34 X 10-3 ( 3-37) 

where the relation, 

has been used. Since 6nd is nearly two orders of magnitude smaller 

than ~nfc' refraction index changes will henceforth be assumed to 

arise only from free carrier effects. 

C. Electrical Properties of Proton-Irradiated GaAs 

All implantations into GaAs involving sub-atomic projectiles 

are known to cause some modification of the targets' electrical properties, 
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the extent by which these properties are modified being dependent on 

the projectile species, energy, and fluence. The conductivity and 

Hall mobility of electron [55] and neutron-irradiated GaAs [36] have 

been extensively investigated; in comparison very little information 

regarding changes in these parameters as a result of proton-implantation 

may be found in the literature. On the other hand, measurements of 

free carrier concentration as a function of incident particle flux, 

data highly relevant to the present study have, to the best of the 

author's knowledge, been reported Q.!!J.y for the case of proton

implantation [35]. 

Several conclusions regarding the nature of proton-induced 

damage in GaAs may be reached by examining the carrier removal curves 

referred to above [35]. The:ie data, obtained for both n- and p-type 

GaAs by Wohlleben and Beck (W-B) using 3 MeV protons, are shown in 

Fig. 3-14. By calculating the integral carrier removal rates, 

(n
0
-n)/Np and {p

0
-p)/Np, (n

0 
and p

0 
are initial electron and hole 

concentrations; n and pare final electron and hole concentrations 

after irradiation by Np protons) and extrapolating to the case of 

infinite N (see Fig. 3-15), W-8 obtained as limiting electron and 
p 

· 6 4 - 3 l o9 - 3 . l d hole concentrations, 3. x 10 cm and cm , respective y, regar -

less of whether the material was originally n- or p-type. This means, 

for example, that n-GaAs is converted to p-GaAs under continued 

proton irradiation while the Fermi level adjusts to a final value of 

* EF =Ev+ 0.58 eV. In addition to the integral carrier removal 

rates, W-B computed the differential carrier removal rates for both 
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and Beck [35]) 
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n- and p-type specimens by differentiating the curves of Fig. 3-14. 

Their results are shown in Fig. 3-16. The similarity between the 

differential carrier removal rates for both electrons and holes 

suggests the existence of nearly identical defect-generated acceptor

and donor-like energy level distributions. 

The results of W-B described above may now be used to justify 

further the defect density-of-states functions which were proposed to 

explain the absorption and photoresponse data. The functional forms 

chosen to characterize both the donor-.and acceptor-like defect 

density of states functions were taken to have identical exponential 

coefficients in order to reflect W-8 1 s findings that the carrier 

removal rates for both holes and electrons were nearly identical. 

(The relationship between the exponential coefficient, B, of Eqs. 

(3-18) and the carrier removal rates will be made expltcit 

shortly.) Moreove~, the constant energy, -0.85 eV, which appeared 

in Eqs. (3-18b) and (3-l8c) may now be understood as representing the 

limiting Fermi leve.l as deduced by W-K, viz. the lowest-lying acceptor

like level or the highest-lying donor-like defect level. 

As mentioned above, the exponential coefficient B of the 

defect density of states functions is intimately related to the 

carrier removal rate curves of Fig. 3-14. In order to demonstrate 

this fact, the exponential coefficient B, obtained previously by 

fitting Eq. (3-34) to the absorption and photoresponse data, will now 

be determined by analyzing the carrier removal curves of Fig. 3-14. 

Using Eqs. (3-18a)-(3-l8d), the charge-balance equation for proton

implanted n-type GaAs is given by: 
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-0.85 

Pv(E) J 
+ e(µ-E)/kT dE + (3-38) 

-1.43 

where µ is the Fenni level and N0 is the number of donor atoms. 

(Owing to the effects of impurity banding encountered at the concen

trations considered(~ 1018 cm-3) combined with small donor ionization 

energies, all donors are assumed to be ionized.) The total negative 

charge (left-hand side of Eq. (3-38)) is made up of free electrons 

and negatively ionized acceptor-like centers while ionized donors, 

free holes, and ionized donor-like centers (right-hand side of Eq. 

(3-38)) constitute the total positive charge. At this point it will 

be noted that we have tacitly assumed the defect concentration to be 

proportional to the proton fluence. Using the results of Chapter 1, 

this assumption will · soon be justified. 

Continuing with our analysis, the carrier removal curves of 

Fig. 3-14, below the region of degeneracy, are seen to become linear 

over a wide range of free carrier concentration. Within this regime, 

Boltzmann statistics may be used to yield for the number of free 

electrons: 

n = n eµ/kT 
f C 

where the effective density of conduction band states, 

(3-39) 

n = 2(2nm kT/h2)3/ 2 . In addition, within the linear regime, the 
.. C C 
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number of free electrons, free holes, and ionized donor-like defects 

may be neglected in comparison with the number of ionized donors. 

Under these conditions, Eq. (3-38) becomes: 

(3-40) 

The integral which appears in Eq. (3-40) may be evaluated approxi

mately by using the absolute zero, step function fonn of the Fermi

Dirac distribution. Doing so and using Eq. (3-18b) yields 

(3-41) 

Finally, using Eq. (3-39) and restricting our attention to values of 

N for which 

(3-42) 

(3-41) becomes: 

or: 

log10nf =-(l/BkT)log10N + C (3-43) 

where -0.858 kT c = log10 (BN 0e (nc) /0.26). 

Taking kT = 38.7 meV (T = 300°K) and measuring the slopes of 

the carrier removal curves for both n- and p-type material, Eq. (3-43) 

yields, in both cases, B = 2.97 ev-1. The agreement between this 

value and the one obtained as a result of fitting Eq. (3-34) to the 
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absorption and photoresponse data (3 ev-1) is remarkable and lends 

substantial credence to the proposed defect density of states functions. 

Returning now to the question of how the number of defects 

is related to proton fluence, we again draw on the results of Wohllenben 

and Beck [35]. (The carrier removal curves given here were obtained 

by Wohllenben and Beck who, it will be recalled, used 3 MeV protons.) 

Using Eq. (l-19a) and accounting for the fact that the 3 MeV protons 

emerged from their specimens at 1.1 MeV, W-B found the (averaged) 

proportionality constant relating defect concentration to proton fluence 
3 to be (Nd)r = 5.8 x 10 ~-

With regard to the number of residual defects it is reasonable 

to assume, and has been suggested experimentally that, because 

of the high degree of spatial correlation between vacancies and inter

stitials, many of the isolated Frenkel defects recombine spontaneously 

[53]. According to the model of Kinchin and Pease [2] (Eq. (1-4)) 

single defect pairs appear for primary displacement energies between 

Ed and 2Ed. The number of such defects may be estimated by deter

mining what fraction of the primary knock-ans, for a given incident 

proton energy, possess energies within this range. Using Eq. (1-8), 

the probability that a primary displacement has energy between Ed 

and 2Ed is given by 2Ed 

f crn(T)p(T)dT 

Ed 
P(Ed ~ T ~ 2Ed) = Tm 

J an(T)p(T)dT 
0 

---

(3-44) 
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Using Eq. (l-17a), we find that P(Ed ~ T < 2Ed) = 0.5, i.e., for 

every primary collision, the probability is 0.5 that a single inter

stitial-vacancy pair will result. Assuming that all single Frenkel 

defects recombine, we have,finally,for the total number of displace

ments or defetts (belonging to clusters of size greater than one), 

2.9 X 103~ (=5.~. X 103~/2). 

Taking 2.9 x 103 as the proportionality ·constant relating 

defect density to proton dose, both experimentally and theoretically 

determined curves of free carrier concentration as a function of 

defect concentration (for 1018cm-3 n-type gallium arsenide) are shown 

in Fig. 3-17. The theoretical curve was obtained by solving Eq. 

(3-38) exactly on a computer; the experimental curve was obtained by 

using the proportionality constant just derived in conj~nction with 

curve 6 of Fig. 3-14. Generally speaking, the agreement between theory 

and experiment is excellent; at least part of the discrepancy is 

probably due to not taking into consideration the additional compen

sating effects of the vacancy-donor complexes which were hypothesized 

earlier in order to explain the small, rigid shift of the fundamental 

absorption edge toward lower energies. 
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CHAPTER 4 

OPTICAL WAVEGUIDING AND ATTENUATION 

IN PROTON-IMPLANTED GALLIUM ARSENIDE 

This chapter will examine the optical confinement and 

attenuation properties of planar waveguides formed by proton-implanting 

gallium arsenide. The physical mechanisms responsible for these 

properties were analyzed extensively in Chapter 3; the experimental 

results to be given below have been interpreted within this analytical 

framework. As a necessary point of departure, we begin this chapter 

with a description of the proton-induced damage distribution and the 

possible effects its nonuniformity imposes on the structure and 

attenuation of guided modes; a comparison between the theoretical and 

experimental results then follows. 

II. The Depth Distribution of Damage 

The mode profile and attenuation analysis to be presented 

in Section V presupposes a knowledge of the relationship which exi~ts 

between the electrical compensation center and absorption center depth 

distributions generated by 300 keV protons incident on gallium 

arsenide. Described below is the procedure which was used to infer 

the electrical compensation center distribution; the relationship 

between this distribution and the absorption center distribution will 

be explored in Section IV. For the time being, we anticipate the 
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conclusions to be reached in Section IV and assume that one distri

bution may be related to the other through a simple proportionality 

constant. Consequently, the distribution obtained below will be 

understood to represent the damage distribution in general; the terms 

"electrical compensation center distribution, 11 "defect center 

distribution, 11 and "damage distribution" will, accordingly, be used 

interchangeably. 

A curve such as the one shown in Fig. 3-17 together 

with a plot of the residual free carrier concentration versus depth 

of proton-implanted gallium arsenide may be used to determine the 

depth distribution of proton-generated, electrical compensation 

centers. Using reverse-biased Schottky barriers, Pruneaux, et al 

obtained plots of the free carrier concentration versus depth of 

proton-implanted gallium arsenide [34]. Their specimens were mounted 

in the sample chamber of the accelerator and a series of profiles 

made for each specimen, succeeding profiles corresponding to 

successively greater proton doses. Fig. 4-1 is an example of some of 

their data: The incident proton energy used was 150 keV and doses 
l O 2 11 -2 ranged from 10 protons cm- to 1.2 x 10 protons cm in 

increments of 1010cm-2 ; the initial gallium arsenide free carrier 

concentration was 1.3 x 1016cm-3 . 

A partially successful attempt was made to obtain similar 

profiles for some of the substrate-dose-anneal combinations used in the 

present study. Figure 4-2 shows free carrier concentration versus 

depth curves for an 8.5 x 1017 cm-3 n-type sample which was given a 
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Figure 4-1. Reciprocal carrier concentration versus depth of 
proton-implanted GaAs. Incident proton energy was 
150 keV. Then-type epitaxial GaAs had an initial 
carrier concentration of 1.3 x 1016cm-3. Each 
incremental proton dos-€ -was "" --1010cm-2. (After 

Pruniaux, North, and Miller [34]) 
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1018 

' 300°C ' ' ' 250°C. \ • \ 
\ 
\ 
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1017 

,016 
0 1.0 2.0 3.0 

DEPTH INTO SPECIMEM (µ) 

Figure 4-2. Free carrier concentration vs. depth curves of 
proton-implanted and annealed GaAs. Initial free 

carrier concentration was 8.5 x 1017cm-3. The proton 

dose was 1.5 x 1014cm- 2. The annealing time at each 

temperature was 0.5 hour. 
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dose of 1.5 x 1014 protons cm-2; the parameter is the annealing 

temperature. Two difficulties were encountered in making these 

rreasurements: after low temperature annealing{~ 350°C for 0.5 hours) 

excessive leakage current caused by damage-induced electrical genera

tion centers prevented reliable capacitance versus voltage data to 

be taken over a meaningful reverse bias range. On the other hand, 

after high enough annealing to remove the generation centers, while 

acceptable Schottky barriers resulted, the free carrier concentration, 

by this time, had risen to such an extent that the depletion layers 

generated were too shallow to allow the carrier concentration to be 

determined over roore than a few hundred angstroms. No solution was 

found for the first difficulty. However, by step-etching the specimen 

(see Chapter 6) following a high enough anneal, it was possible to 

determine the free-carrier concentration at discrete points correspond

ing roughly to the step depths; the data of Fig. 4-2 were obtained in 

this manner. 

Wh1 le, for the most part, these profile measurements did 

not yield data reliab le enough for waveguide mode structure analysis 

(see Section V), they did reveal two important facts. The first was 

that damage annealed in situ; macroscopic diffusion effects were not 

apparent from the profiles. This fact greatly simplified the optical 

mode analys i s: Since no geometrical changes occurred in the wave

guides, only the pertinent refractive indices needed to be considered 

when calculating the optical mode profiles after annealing. The 

second fact to emerge was that the width of the damage peak generated 

by 300 keV protons appeared to be approximately equal to the width 



-113-

of the damage peak produced by 150 keV protons (as used by Pruniaux, 

et al}. This observation is in agreement with the theoretical 

calculations of Brice [ ,12]: Fig. 1-1, for example, illustrates how 

the damage peak, according to Brice's theory, maintains approximately 

the same width for increasingly energetic implantations of s11 into 

Si . 

The fact that the width of the damage peak remains almost 

the same for both 150 and 300 keV proton implants in accordance 

with the theoretical predictions of Brice (his example of boron

implanted silicon most closely parallels our case) . suggests that 

certain other features of the proton-induced damage profile may be 

inferred from the results of his analysis. In particular, the damage 

distribution generated by 300 keV protons over the last 1.5µ of 

their travel will be assumed to have the same shape as the damage 

distribution caused by 150 keV protons over their entire penetration 

range; the damage caused by 300 keV protons between O and 1.5µ 

will then be found by extrapolation. The reasoning upon which this 

approach is based is the following: since protons are known to 

penetrate gallium arsenide approximately lµ for every 100 keV 

of incident energy [ 56], ·it is reasonable to assume that after l .5µ 

of travel, the residual proton energy is 150 keV, viz. that the 

protons lose energy linearly with depth. If it is further assumed 

that nearly all of the protons originally incident survive and maintain 

their direction of travel tpthis depth, then the damage distribution 

of 300 keV protons between 1.5µ and 3µ becomes the same as that 
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generated by 150 keV protons . . To find the disorder distribution of 

300 keV protons between O and 1.5µ , the distribution between 

1.5µ and 3.0µ is smoothly extrapolated back to the target surface; 

the ratio of disorder at the surface to disorder at 1.5µ is taken 

to be one-half since Rutherford (nuclear) scattering varies inversely 

with projectile energy. 

Following the above discussion, the damage profile for 

300 keV protons is shown as curve A of Fig. 4-4; the damage or defect 

concentration is given in arbitrary units. The profile was obtained 

using the following procedure: The scaled (see Section V) free 

carrier concentration versus proton dose curve shown in Fig. 4-3 

(derived from curves 1, 2, and 3 of Fig. 3-14) was used in conjunction 

with one of Pruniaux's free carrier concentration versus depth curves 

to generate an "effective" proton dose (a defect concentration) depth 

distribution; the resulting curve was then extrapolated, in the manner 

described in the preceding paragraph, 1.5µ back to the sample 

surface. As mentioned, arbitrary damage units were retained fo r 

convenience; had the abscissa of the scaled free carrier concentration 

versus proton dose curve first been multiplied by t .he proportionality 

constant obtained in Section 3-II C, absolute damage units would have 

resulted. 
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1014 
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DEFECT CONCENTRATION (ARB. UNITS) 

Figure 4-3. Scaled curve of free carrier concentration vs. defect 
concentration for initial free carrier concentration 
of 1.3 x 1016 (cm-3). 
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III. Optical Waveguiding 

In order to assess the effect that the non-uniform damage 

profile has an optical waveguiding . and in particular the cutoff 

condition, the damage profile will be approximated by curve B of 

Fig. 4-4. 

The equations which were derived in Chapter 2 for the case 

of a four media waveguide will be used to evaluate the waveguiding 

properties of the approximated damage profile. For convenience, they 

are repeated here. Referring to Fig. 4-4, the T.E. electric field 

distribution is given by: 

Aeqx 

E(m)(x) = B sin(hx) + C cos(hx) 
y 

D sin(tx) + E cos(tx) 

-px F e 

X::: Oµ 

< < 
0-µ - X - 2.2µ 

< < 2.2ii - X - 3µ 

< 3-µ - X 

(2-10) 

where mis the mode order. Substitution of Eq. (2-10) into 

Maxwell's equations and use of the appropriate boundary conditions 

yields: 

n2k2 = s2 - q 
2 (2- lla) 

l o m 

2 2 s2 + n2ko = m 
h2 (2-llb) 

n2k2 = 2 + 2 (2-llc) 
3 o Sm .£ 

. 2k2 _ 2 2 (2-lld) n4 o - 8 - p m 
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and: 

h [ - h tan(ha 7 = l- p - t tanf b-ajt] 
h + q tan ha j -i i + p tan b-a i 

where em is the phase vector of the mth mode. 

Eliminating em from Eqs. (2-11) gives: 

q = tin~ - n~)k~ - h
2 

-~ = l~n2 - n2;k2 + h2 
. 3 2 o 

(2-14) 

(4-la) 

(4-lb) 

(4-lc) 

(4-ld) 

Equation (2-46a) may now be used to relate those relative dielectric constan1 
2 2 discontinuities, K. - K. ~ n. - n. , which arise solely from the 

1 J 1 J 

plasma depression effect to the appropriate free carrier concentrations. 

(The present assertion that the plasma depression effect gives rise to 

optical confinement is substantiated in Section V.) Doing so, Eqs. 

(4-lc) and (4-ld) become: 

p = ~lo-20 (N4 - N2)k~ h
2 

= /1.24 x_lo-20 (N4 - N3)k~ t
2 

(4-2a) 

(4-2b) 

where Ni is the free carrier concentration of medium i and an 

optical wavelength of 1.15µ has been assumed. 

rt· is apparent from Eqs. (4-2) that for N2,N 3 ~ N4/l0, _ 
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-20 2 1.24 x 10 N4 - h (4-3a) 

-20 2 1.24 x 10 N4 - i (4-3b) 

and that, under these conditions, h % £. Therefore, when N2, 

N3 ~ N4/10, the optical mode profile is governed almost exclusively 

by N4 (realizing that the refractive index discontinuity between 

rredium 1--usually air-- and medium 2 is orders of magnitude larger 

than those index discontinuities caused by the plasma depression 

effect) and, hence, is virtually independent of the detailed shape 

of the damage distribution. However, as the damage profile is reduced 

in magnitude by, for example, annealing, and the waveguide approaches 

cutoff, N2 will become comparable to N4 while N3 may remain much 

smaller than N4. As a result, the cutoff condition may be modified 

slightly. 

The cutoff conditions of the four media guide under consi

deration and those of a three media guide, such as would result from 

the uniform damage distribution shown as curve C of Fig. 4-4, are 

now compared assuming that N4 = 1018 free electrons cm-3--

a representative substrate free carrier concentration. 

Cutoff occurs when total internal reflection is no longer 

possible at one of the guide boundaries, in our case at the guide

substrate interface. The conditions for cutoff of the four media 

guide may be found by solving Eqs. (2-11) and (2-14) when p = 0; 

they may be for the three media guide by first setting N2 = N3 
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and b = a and then taking p = 0. The resulting cutoff value of 

N2 for the three media waveguide is found to be 4.4 x 1017cm-3. In 

order to detennine the cutoff values of N2 and N3 for the four media 

structure, curve B of Fig. 4-4 and Fig. (3-17) must be used in conjunc

tion with Eqs. (2-11) and (2-14). The procedure is as ' follows: surface 

and peak defect densities are chosen in the ratio of one to four in 

accordance with curve B of Fig. 4-4; Fig. 3-17 is then used to find 

corresponding surface and peak free carrier concentrations; using a 

computer program, Eqs. (2-11) and (2-14) are solved for p; the routine 

is repeated until p ~ 0. Doing so yields N2 = 6.5 x 1017cm-5 and 
17 -3 · N3 = 10 cm . Hence, at cutoff, N2 for a four media guide is nearly 

17 -3 equal to the cutoff value of N2, 4.4 x 10 cm , for a three media 

guide. Experimentally, it is found that differences in free carrier 

concentrations this small cannot be inferred from mode profile measure

ments; a guided mode near cutoff becomes masked by so-called substrate 

radiation modes [18]. From a waveguiding standpoint, therefore, the 

damage distribution may be taken to be uniform (ref: curve C of Fig. 

4-4) and equal in magnitude to an appropriate average over the leading 

(nearly level) portion of the nonunfform damage distribution. 

IV. Optical Attenuation 

In Section V the attenuation coefficient of a proton

implanted waveguide, measured under isochronal annealing conditions, 

will be used to determine the absorption center concentration in the 

leading, nearly uniformly damaged portion of the waveguiding layer. 

From this knowledge, the free carrier concentration in this region will 
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be obtained and, following the results of Section III, a theoretical 

optical mode profile calculated. Theoretical and experimental 

100de profiles will then be compared. In order for this procedure to 

be valid, the attenuation coefficient must be related through a 

proportionality constant to the magnitude of the electrically -active 

defect center distribution. For this to be the case two require

ments must be met: First, the absorption center distribution and the 

optical mode intensity profile (within the damaged layer) must main-

tain their shapes subsequent to heat treatment. Second, the electrically 

active defect distribution must be proportional to the absorption 

center distribution. The extent to which these requirements are 

satisfied will now be considered. 

Only the attenuation coefficients of first order (single 

lobe) modes were measured. An examination of Fig. 4-11 reveals that 

within the guiding (damaged) layer the shape of the first order modes 

varied only slightly throughout the entire annealing range (3OO°C-

5OO0C) with mode intensity peaks generally appearing 2.5-3µ from the 

waveguide surface. On -the other hand, because of those experimental 

difficulties discussed in Section II, a similarly detailed knowledge 

of the compensation center profile as a function of annealing parameters 

is not available. Nevertheless, based on the data shown in Fig. 4-2, 

which indicate that the damage peak remains approximately stationary 

after annealing, the assumption will be made that the damage distri

bution also retains its shape subsequent to heat treatment, simply 

being scaled down further and further following succeeding annealing 

cycles. Adequate justification of this point of view is offered by 
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Figs. 4"'."lla to .4-llf which compare experimentally observed mode profiles 

with those obtained using the procedure (which is dependent on the 

present assumption for its validity) outlined at the beginning of 

this section . For example, it is to be noted that second order mode 

cutoff, a sensitive indicator of the number of residual free carriers 

in the waveguiding region, occurs at exactly those temperatures 

predicted by the theoretical approach based on the present assumption. 

The question of whether the compensation center distribution 

is proportional to the overall absorption center distribution remai ns 

rooot. It will be recalled that in Chapter 3 two contri butions to the 

absorption at l. 15µ (the wavelength used here to measure guide 

parameters) were proposed; dipole-induced transitions between electri

cally active (compensating) defect levels and the band continua and 

strictly dissipative absorption and scattering by regions of local 

preci pi ta ti on. The cross section for producing these two types of 

defects are no doubt different functions of projectile energy: 

precipitate fonnation seems to increase with the kinetic energy of the 

projectile (see Section 3- lllAl)whereas the cross section for 

Rutherford scattering varies inversely with projectile energy (ref: Eq. 

l-l6a). Consequently, it seems likely that a larger fraction of the 

t ot al absorption near the surface of the damaged layer is due to 

precipitate- induced attenuation than is the case near the damage 

peak where the kinetic energy of the incident protons has probably 

fallen below the threshold required for precipitate formation. A 

convenient way of characterizing the resulting mix of absorption 

rrechanisms is to define an average contribution for each over the 
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entire damage layer. Since gallium arsenide specimens approximately 

twice as thick (~10µ) as the maximum proton penetration depth (~4µ) 

were used to obtain the absorption spectrum shown in Fig. 3-lb, the 

absorption data presented therein represent just such an average. Fig. 

3-lb indicates that at 1.15µ (1.08 eV) about 40% of the absorption 

may be attributed to electrically active centers. We therefore assume 

that the electrical and absorption center distributions are proportional 

to one another with the proportionality constant taken to be 0.4. 

Having discussed the two requirements mentioned at the beginning 

of this section, we now examine the effect which the non-uniform damage 

profile has on the optical attenuation coefficient. As was seen in 

Section III its effect on the optical waveguiding properties was 

minimal. Figure 4-5 shows a representative first order mode profile 

(curve A) together with the actual damage profile (curve B) and the 

approximate damage profile (curve C) which may be used, in accordance 

with the conclusions reached in Section III, to calculate optical 

confinement. Multiplying the ordinate of curve A by, in turn, the 

ordinates of curves Band C yields the product curves shown in Fig. 

4-6, the areas of which are approximately in the ratio of one to one 

and one-half. It is seen, therefore, that while both the uniform 

(curve C) and the non-uniform (curve B) damage profiles give use to 

nearly the same degree of optical confinement, the peak of the non

uniform distribution increases the attenuation coefficient by roughly 

a factor of 1.5 over that value which would obtain in its absence. 

The significance of this fact with regard to the possible use of 

proton-implanted waveguides as active devices will be discussed at the 

end of this chapter. 
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V. Data Analysis 

One of the main objectives of this study has been the 

identification of the mechanism responsible for the refractive index 

discontinuity which gives rise to optical waveguiding in proton

implanted gallium arsenide. It has already been established 

theoretically (see Section 3-III~ that the guide substrate refractive 

index discontinuity arising from the plasma depression effect is one to 

two orders of magnitude greater than the contribution arising, through 

the Krarrers-Kronig relationship, from damage-induced modifications of 

the absorption spectrum. Discounting any changes in the refractive 

index caused by disorder-associated density fluctuations [57], it 

would appear, therefore, that the plasma depression-effect is the 

operative mechanism. The most direct way of substantiating this 

hypothesis would be first to measure the free carrier concentration of 

an implanted layer and then to calculate a theoretical mode profile; 

a comparison between theoretically and experimentally obtained mode 

profiles could then be made. Unfortunately, because of the experi

mental difficulties mentioned in Section II, this method could not be 

used. An alternative approach, however, would be to infer the free 

carrier concentration in the guiding layer from the attenuation 

coefficient in the manner described at the beginning of Section IV; 

this is the procedure which will be adopted. 

We preface the data analysis by describing how a universal 

free carrier concentration versus defect concentration curve was 

obtained from the data of Wohlleben ard Beck (Fig. 3-14). Curves 4 

through 8 of Fig. 3-14, representing n-type material which spanned the 
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substrate free carrier concentrations encountered here, were scaled to 

b · · l ( 18 -3 o ta,n a un,versa curve in the following way: Curve 6 l x 10 cm 

material) was chosen as a representative reference. Curves 4, 5, 7, 

and 8 were then overlayed over curve 6 and the factor by which their 

abscissas had to be multiplied to achieve coincidence noted. The 

logarithms of these factors were then plotted as functions of the 

logarithms of the original free carrier concentrations as shown in 

Fig. 4-7. A best fit straight line having the form: 

was then drawn through the resulting points. Here C represented a 

given substrate free carrier concentration, Fa was the desired 

abscissa scaling factor, and Ma was the corresponding slope. 

Measuring the slope of this straight line yielded: 

(4-5) 

The universal carrier removal curve is shown in Fig. 4-8. 

It was obtained from curve 6 of Fig. 3-14 by using the proportionality 

constant, derived in Section 3-IIIC which relates proton dose to 

defect concentration. An an example of how this curve is used, in 

order to obtain the carrier removal curve for 3 x 10
18 

material, 

its abscissa must be multiplied by 2.66(= (C/1018)0·
9

). As a check 

on the universal curve, when it was used to re-obtain curves 4, 5, 7, 

and 8 of Fig. 3-14, curve 4 (1.5 x 1017cm -3) deviated most from the 

original, the deviation being about 20% near the knee 
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of the scaled curve. Accuracy to within experimental error is assured 

for our purposes, however, since the lowest free carrier concentration 

under consideration (see Table 4-1) was 6.3 x 1017cm-3. 

In addition to the universal carrier removal curve derived 

above, the analysis which follows depends on the validity of three 

important assertions. They are the following:· (1) that the disorder

induced energy level spectrum anneals uniformly, viz. that the defect 

density of states function maintains the same functional form subsequent 

to heat treatment; (2) that the defect density of states is proportional 

to the incident proton flux; and (3) that the rate at which the defect 

levels anneal is independent of donor concentration. The first 

assertion has been partially verified by the experimental results of 

Stein. Figure 4-9, after Stein, shows the isochronal annealing behavior 

of both the integrated absorption spectrum (from 0.2 eV to 1.3 eV) 

and the absorption at 1.06µ of proton-irradiated gallium arsenide. 

The fact that these curves are indistinguishable from one another 

indicates that the annealing characteristics are not dependent upon 

the particular photon energy selected for observation, at least between 

0.2 eV and 1.3 eV. Hence, recalling the functional intimacy which 

exists between the absorption spectrum in this energy range and the 

exponential defect density of states function, it is concluded that 

the density of states function also maintains its shape following heat 

treatment. We may infer the validity of the second assertion from 

investigations performed on electron [ 58J and neutron [.59 ] irradiated 

GaAs. Both of these studies (See Fig. 4-10) found the absorption 
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at 1.06µ and integrated .between 0.25 and 1.25 eV. 

(After Stein [33]) 
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coefficient of irradiated GaAs to be proportional to incident particle 

flux. Since the absorption caused by protons has been found to be the 

sum of both exponential (electron-like) and squared (neutron-like) 

energy dependencies, the conclusion may be drawn that proton-induced 

damage is also proportional to proton fluence. Unfortunately, the 

validity of the third assertion may not be ascertained from Stein's 

data; the behavior under annealing conditions of the fundamental edge 

shift toward lower energies, which was attributed to donor-vacancy 

complexes in Chapter 3, was not investigated. (In this regard it will 

be noted that no mention was made of the initial free carrier (donor) 

concentrations used to obtain Figs. 4-9 and 3-lb--rnuchless whether they 

were varied during the experiments.) For the time being, however, 

the assumption will be made that assertion (3) is true; this assumption 

will be re-examined following the data analysis wherein certain 

discrepancies between experiment and theory seem attributable to its 

partial falsehood. 

We begin the data analysis by choosing waveguiding specimens 

whose guiding characteristics may be used to find the proportionality 

constant which relates the defect density to the waveguide attenuation 

coefficient; the fact that such a proportionality constant may be defined 

was established in Section IV. Table 4-1 shows the substrate-dose 

combinations which were investigated. All implanted waveguides were 

analyzed under isochronal annealing conditions: one-half hour 

temperature pulsing in 50°C increments, beginning at 50°C and ending 

at 500°C--the temperature at which gallium arsenide begins to 

decompose. Figures 4-11 and 4-12 show the results of the mode profile 
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TABLE 4-1 

3. 25 X 1018 2xl018 9.5 xlo17 8.5 xl017 

( 1) (2) (3) (4) 

2.0xlo15 
X X X X (A) 

8.0 x1014 
X X X X (B) 

3.0 x1014 
X X X X (C) 

1.5 x1014 
X (D) 

(cm-3) NOTE: N
5 

= substrate free carrier concentration 

D = proton dose (cm-2) 

6.3 xl017 

(5) 

X 

X 

X 

Numbers and letters in parentheses indicate substrate concentrations 
and proton doses, respectively. All combinations shown as "X's" were 
examined under isochronal annealing (one-half hour temperature pulsing 
in so0c increments beginning at so0 c and ending at 500°C). 
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and mode attenuation measurements which were made following each anneal 

cycle; details of the experimental procedures used will be described 

in Chapter 6. Specirrens lC and SC (see table 4-1 for symbol definitions), 

annealed to 450°C, were chosen for the purpose of finding the propor

tionality constant. Under the initial assumption that the plasma 

depression effect gave use to the entire dielectric constant dis

continuity between guide and substrate, the mode profiles of these 

specimens were used to find the residual defect concentration of a 

11 C11 dose after a 450°G anneal in the following way: Fig. 4-8, the 

universal free carrier concentration versus defect concentration 

curve was first scaled to obtain curves appropriate to substrates 1 

and 5. A defect concentration was then chosen, by trial and error, 

which gave, according· to the scaled curves, residual free carrier 

concentrations in the guiding regions of specimens lC and 5C adequate 

to produce, as closely as possible, tre :observed mode profiles. The trial 

and error theoretical mode profiles for samples 1C:450°C and 5C:450°C 

were obtained by numerically solving the following equations (see 

Appendix 2A for a complete description of the parameters) appropriate 

to the three media waveguiding structure shown in Fig. 4-13: 

T. E. modes (only T.E. modes were evaluated): 

Am 
h t< < 0 - exp(-qx) -oo X -q 

E(m)(x) = A • [~ cos(hx) sin(hx)J t > X ~ 0 (2A-1) y m 

A • [~ cos(ht) + sin(ht)Jexp[p(x + t)J c:o.?; X ~ t 
m 
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2 2 s2 _ q2 n1 k0 
= m 

2 2 s2 + h2 n2ko = m (2A-6) 

2 2 e2 - p2 n3ko = m 

tan(t) = h{~ + g} 
2 . 

h - p·q 
(2A-7) 

The defect concentration which produced the best agreement between 
· · 18 -3 experiment and theory was found to be 2 x 10 defects cm . 

( Reca 11 that, according to the dis cuss ion of Section II , thi.s value 

represents an averaged defect concentration over the nearly uniform 

region which precedes the .damage peak.) 

The next step was to find the attenuation coefficient to 

be associated with a d~fect population of 2 x 1018cm-3• Two 

rrechanisms contribute to the attenuation: free carrier absorption 

and defect-generated absorption. The bulk free carrier absorption coef

ficient is given by: 

(2-46c) 

or 

( -1) -18 ( -3) af.c. cm = 1. 07 x 10 N cm (4-6) 

* where the following values were used: Ao= 1. 15µ, n = 3.4, m = 0.08m, 
. 3 2 -1 -1 

andµ= 2.3 x 10 cm ·volt ·sec . The values of the effective mass and 

the mobility correspond to 1018cm-3 Te-doped material. Figure 
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4-14 shows experimentally obtained attenuation coefficients of 

the substrates used in the present study. Taking· the slope of a 

straight line fitted to the data yields: 

(4-7) 

The discre?ancy between (4-6) and (4-7) can probably be attributed 

to uncertainties in the values of the effective mass and mobility used 

to obtain (4- .6). Because of these uncertainties, {4-7) was considered 

to be the most reliable relationship and was, therefore, the one used. 

Since, as indicated by Eq. {4-7), the magnitude of the wave 

vector, Isl (corresponding to a free space wavelength of ~lµ), of 

a wave propagating in gallium arsenide is modified only slightly by 

the presence of dispersive free carriers, it was possible to use the 

perturbative technique developed in Section 2-Ill to find the free 

carrier absorption coefficient for wa vegu,-ded modes. Accardi ngly_, 

having already obtained the mode profiles of waveguides 1C:450°C and 

5C:450°C, the free carrier contributions to their attenuation 

coefficients were calculated by using the following formula: 

2.2 X 10-lB 

-oo 

where N
9 

= guide free carrier concentration, Ns = substrate free 

carrier concentration, and the geometry of Fig. 4-13 was assumed. Using 

those values of N obtained previously for samples 1C:450°C and 
g 

5C:450°C, 1.6 x 1018cm- 3 and 2.2 x l015cm-2, respectively, the 



-148-

AIR: n 1 
0 --te+--------------------1~2 
Y(IN) 

3µ 

X 

GUIDE : n2 

SUBSTRATE: n 3 

DIRECTION OF 

PROPAGATION 
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free carrjer absorption contributions for these waveguides were 

calculated to be: 

(1C:450°C) (4-9a) 

af.c. = 1.7 cm-l (5C:450°C) (4-9b) 

The average, total attenuation coefficients of samples 1C:450°C 

· ·and 5C: 450° C, from Fi gs. 4-12c and 4- l 2d, were taken to be: 

atot = 11.7 cm-l (1C:450°C) 

atot = 4.9 cm-l (5C:450°C). 

(4-l0a) 

(4-l0b) 

The defect-associated contribution to the attenuation coefficient of 

a 11 C" dose waveguide annealed to 450°C was therefore deduced to be 

~ 3.2 cm-l. Finally, the relationship between defect concentration 

and defect-associated attenuation was found to be: 

( -1) -18 ( -3) ad cm = 1.6 x 10 Nd cm . ( 4-11) 

Assuming the validity of the three assertions discussed 

earlier, Eq. (4-11) together with the attenuation coefficients of 

sample 5C, (see Fig. 4-12d) were used to infer the defect concentra

tions remaining after each anneal cycle. Sample SC was chosen for this 

purpose for the following reasons: (1) Free carrier contributions to 

the total attenuation coefficients were the smallest of those samples 

investigated; any uncertainty in knowing the fonner lead, therefore, 

to the smallest possib,le uncertainty in ascertaining the latter. 
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(2) The free carrier contribution for this sample could be assumed 

to remain relatively constant over the temperature range of interest 

(200°C - 500°C}: In the complete absence of free carriers in the 

guiding layer (assumed to be the case after the lowest temperature 

anneal), for example, Eq. (4-8) yields for the free carrier 

attenuation coefficient, 1.6 cm-l. This value is to be compared 

with an estimated af of 1.8 cm-1 at 500°C (based on the fact that .c. 
sample 5C approached cutoff after the 500°C anneal). (3) Attenuation 

coefficients were measured for the 5C sample over the entire 

temperature range investigated (200°C - 500°C). 

Following the reasoning given above, Eq. (4-11) together 

with Fig. 4-12d were used to obtain the defect concentration versus 

anneal temperature plot (of a C dose waveguide) shown in Fig. 4-15. 

(In deriving this plot, the free carrier contribution to the attenua~ 

tion coefficient was estimated to be 1.6 cm-1 between the 200°C and the 

400°C anneals, inclusive, and 1.7 cm-l and 1.8 cm-l after the 450°C 

and 500°C anneals, respectively.) In addition, taking the defect 

density to be proportional to the proton flux, in accordance with the 

second assertion mentioned earlier, Fig. 4-15 was scaled to obtain 

defect concentration versus anneal temperature plots for doses A, B, 

and D. These plots together with scaled free carrier concentration 

versus defect concentration curves, derived from Fig. 4-8, were then 

used to find the residual free carrier concentrations in the wave

guiding regions of all substrate-dose combinations after every anneal 

cycle. When Eqs. (2A-l) were used to obtain optical mode profiles 
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from this information, however, a major discrepancy arose: the roodel 

did not predict the second order mode confinement which was demonstrated 

by samples lA, 18, lC, 2A, and 2B. 

An examination of the .experimental data revealed that the 

second peak of the second order modes fell outside the 3µ depth 

which had been assumed to represent the maximum proton penetration. 

In order to explain this behavior, an ancillary guiding layer lying 

adjacent to the region of primary damage was proposed. (The origin of 

this layer is thought to be a combination of channeling (See Section 

1-IIC) and defect migration effects [6Qj.) Characterization of th i s 

new waveguiding model required the determination of two additional 

parameters: the defect concentration in and the spatial extent of the 

ancillary layer. It was found that parameters such as these were most 

easily inferred by analyzing the mode profile of a specimen undergoing 

second order mode cutoff. Sample 2B:300°C met this requirement and 

was, therefore,chosen for analysis. 

The four media waveguiding structure proposed above has 

already been discussed in Section 2-II. Consequently, Eq. (2-46b) 

which relates the dielectric constant to the free carrier concentration 

together with EQs. (2-11) through (2-14) which describe T.E. mode 

propagation in the four media waveguide (See Fig. 4-16) were solved by 

trial and error using a computer program until a mode profile was 

obtained which matched, as closely as possible, the second order mode 

profile of sample 2B:300°C. An initial reduction in the number of 

unknown parameters (the defect concentration in the primary damage 

layer, the defect concentration in the ancillary layer, and the 
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width of the ancillary layer) was accomplished by assuming that the 

amount of damage generated in the ancillary layer was small in 

comparison with the damage which resided in the primary {3µ wide) 

guiding region. The contribution by the ancillary region to the over

all attenuation coefficient was accordingly assumed to be inconse

quential and, moreover, was assumed to have disappeared completely 

after 450°C or 500°C annealing. Using these assu~ptions, it was 

therefore possible to retain, temporarily, the defect concentration 

versus anneal temperature plots obtained earlier for the case of three 

rredia waveguiding. Accordingly, Figs. 4-8 and 4-15 {properly scaled) 

yielded for the defect concentration in the primary guiding layer of 

sample 2B:300°C a value of 7 x 1018 defects cm-3. Finally, the best

fit, theoretical second order oode profile for sample 2B:300°C ~hown 

together with the experimentally observed profile in Fig. 4-17) 

was obtained by taking for the ancillary layer a defect concentration 
18 -3 of 2.8 x 10 defects cm and a width of 2µ. The best fit between 

experiment and theory was determined by the satisfaction of the 

following criteria: positional coincidence of mode extrema, 

equality of the ratios of lobe maxima, and similarity of substrate 

penetration tails. 

The apparent falsehood of the assumption regarding the 

relative inconsequentiality of the ancillary layer with respect to the 

primary damage layer (The ratio of defect concentration in the 

ancillary layer to defect concentration in the primary damage layer 

was found, above, to be 0.41 = 2.8 x 1018;7 x 1018 for sample 

2b:300°C.) will be discussed below. We temporarily circumvent the 
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issue and proceed with a description of the final theoretical mode 

profiles. To obtain them, the assumption was made that the ratio of 

defect concentration in the ancillary layer to defect concentration in 

the primary damage layer remained 0.4 throughout the annealing tem

perature range. Figure 4-8, scaled as before for each of the five 

substrates, was then used to find the free carrier concentrations in 

the ancillary waveguiding regions of each waveguiding specimen after each 

anneal cycle. These free carrier concentrations together with the free 

carrier concentrations detennined earlier for the case of three media 

waveguiding were used in Eqs. (2-11) - (2-14) to obtain the theoretical 

mode profiles shown in Fig. 4-11. A discussion of these mode profiles 

will follow in Section VI. 

With the above results in hand, a re-examination of our 

earlier premise regarding the magnitude of the ancillary layer is in 

order. The assumption that the defect concentration in this layer 

was relatively small was made so that the defect and free carrier 

concentrations obtained for the case of three media waveguiding could 

be retained. In particular, it was hoped that the first order mode 

profile shapes and cutoff conditions would not be perturbed suffi

ciently by the added layer to affect the determination of the 

proportionality constant which related the attenuation coefficient to 

the defect concentration. An inspection of Fig. 4-11 reveals that 

the first order mode profiles did approximately retain their shapes 

within the 5~ waveguiding region over the temperature range 

investigated. Furthermore, after the 450°C anneal cycle, the free 
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carrier concentrations in the ancillary layers of all the substrates 

examined had very nearly returned to their original, pre-irradiation 

values. Hence, the proportionality constant relating the attenuation 

coefficient to the defect concentration, which was obtained by assum

ing only a 3µ wide guide for samples lC and 5C, remained meaningful. 

It was to be concluded, therefore, that the procedure used to obtain 

the theoretical mode profiles shown in Fig. 4-11 (which involved using 

the defect concentration versus anneal temperature curve of Fig. 4-15) 

was st i 11 val id. 

To complete the analysis, semi-theoretically derived attenua

tion coefficients were compared with those observed experimentally. 

Using Fig. 4-15 together with Eq. (4-11), the defect-associated attenu

ation coefficient was determined for a 11 C11 dose guide between 200°c and 

50o0 c. Recalling that the defect concentration was proportional to 

the proton dose, the defect-associated attenuation coefficients for 

doses A, B, and D throughout this temperature range were computed by 

multiplying the C dose coefficients by the appropriate scaling factors. 

The free carrier absorption contribution for each guide was then ob-

tained by using the four-media analog of Eq. ( 4-8): 

-18 [ 
3 

af. c. ( cm- l) 2. 2 x 10 Ngl J IE} 1) (x) I 2dx = CX) 

J IE(l)(x)2 1dx -o 
y 

CX) 

_5 -

"'I E}1 ) (x) I 2dx] + N I I Jl \ x) I 2 dx + NS I (4-12) 
g2 y 

-3 -5 
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where E;l)(x) _ is given by Eqs. (2-10) with m = l (first order) and 

N91 and Ng2 are the free carrier concentrations of the primary and 

ancillary layers, respectively. Adding together the defect and free 

carrier-associated contributions yielded the attenuation coefficients 

shown as open circle~ in Fig. 4-12. Experimentally observed attenua

tion coefficients have been represented in Fig. 4-12 by heavy dots 

with bars joining the lowest and highest coefficients measured for each 

temperature. 

VI. Discussion 

The agreement between theoretically and experimentally obtained 

mode profiles, as demonstrated by Fig. 4-11, is good and lends substan

tial credence to the supposition that the plasma depression effect 

gives rise to optical waveguiding in proton-implanted gallium arsenide. 

Several important observations regarding this agreement may be made: 

Of particular significance is the fact that cutoff of the second order 

mode of specimen 1B, noted above to be a sensitive indicator of guide 

parameters, occurred at exactly that temperature, 40o0c, predicted by 

the model; it will be recalled that cutoff of the second order mode of 

specimen 28, the only other specimen which demonstrated second order 

mode cutoff, was used to fix the ancillary layer parameters. In addition 

to this cutoff behavior, the mode profiles of samples lC and 5C offer 

persuasive evidence that the plasma depression effect is the sole mech

anism responsible for refractive index change since, for these samples, 

the only parameter which was varied was the substrate free carier con

centration. Of further note is the good coincidence of mode extrema 
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obtained for the second order modes of samples lA and 1B. Here it 

should be realized that, owing to the method by which radiation was 

coupled to the waveguides (see Chapter 6), both first and second order 

modes were, in general, excited simultaneously, the degree of admix

ture _being a function of the exact position and size of the "edge

coupled" input beam. (The hybrid character of the "second order" 

modes excited in this fashion is betrayed by the : lack of nodal be

havior.) The fact that the extrema of the theoretical and experimental 

second order mode profiles agreed as well as they did was due, in part, 

to the fact that the first order modes were greatly attenuated by the 

damage peak which occurred near their maxima. These points are illus

trated by Fig. 4-llb which shows the first and second order mode 

profiles of specimen 1B:300°c. 

The agreement between the semi-phenomenologically obtained at

tenuation coefficients and those measured experimentally was good in 

general but broke down for several important cases. The disagreement 

arose for specimens given large proton doses and annealed past 400°C. 

As Fig. 4-12 indicates, samples lA, 2A, 3A, 4A, and 5A, when annealed 

past 400°c, showed the most disagreement, with some disagreement 

being shown by samples 4B and 5B above 450°c and soo0c. respectively. 

The importance of understanding these discrepancies is emphasized by 

the fact that two of the samples mentioned, 3A:5-00°c and 4A:500°C, 

appeared to suffer only minimal, free carrier-associated losses and, 

hence, offered promise as good passive waveguiding structures. 
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A possible explanation for the disagreement mentioned above 

has already been alluded to in Section V. It will be recalled that in 

that section the validity of one of the fundamental assertions upon 

which the entire analysis has been based was left unresolved. This 

assertion, assumed until now to be true, stated that the absorption 

spectrum annealed uniformly. It is the present contention that for 

certain dose-anneal combinations, those defects responsible for the 

shift of the fundamental absorption edge toward lower energies (iden

tified in Section 3-IIIA2as gallium vacancy-donor complexes) remain 

after high temperature annealing while those defects responsible for 

the long wavelength absorption tail disappear. 
The anomaly of well-confined, low-loss modes (such as demon-

strated by samples 3A:600°C and 4A:soo) may therefore be explained by 

the presence of relatively stable gallium vacancy-donor complexes 

which, because of their large ionization energy, serve to compensate 

free carriers without contributing appreciably to the attenuation at 

the wavelength used (1.15µ). 
VII. Conclusion 

A model has been developed in the last two chapters which des

cribes the mechanisms that give rise to and affect the waveguiding of 

near infrared radiation in proton-implanted gallium arsenide. Optical 

attenuation and mode structure measurements have been made on both one

dimensional (planar) and two-dimensional (channel) waveguides D4] 

fabricated in this manner. Optical waveguides such as these, envisioned 

as eventually forming the basis of monolithic integrated circuits, may 

be categorized according to their eventual use as follows: passive 
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guides to be used for the simple transmission of information between 

integrated optical devices and active guides to be used as information 

processing elements. To be classed as an acceptable passive waveguide 

only one criterion, that of low loss, must be satisfied. The present 

effort has demonstrated that such waveguides may be readily and repro

ducibly made using the technique of proton implantation: losses measured, 
-1 as low as 4.3 db cm , are comparable to those encountered in the best 

available GaAs epitaxial waveguides of similar configuration [61]. A 

GaAs waveguiding structure which is to double as an active device, on 

the other hand, must be capable of supporting an electric field over as 

large a fraction of its optical mode as possible in order to take effi

cient advantage of the operating speeds which result from electrooptic 

interactions; optical attenuation may or may not be a factor, depending 

on the type of active element under consideration. While no proton

implanted waveguides suitable for active applications have so far been 

obtained, as will be pointed out below>the experimental data and 

theoretical conclusions which have resulted from the present effort 

strongly suggest their possibility. 

Having demonstrated the feasibility of producing acceptable 

passive waveguides, future efforts should therefore be directed toward 

the fabrication of proton-implanted gallium arsenide waveguides suit

able for active applications. As mentioned above, in order to 

optimize their efficiency, electrooptic devices such as phase modu

lators [17] and mode selectors [62] require the maximum possible 

spatial overlap of the applied electric field and the guided mode 

intensity profile [17]. A typical electrooptic device configuration 

is shown in Fig. 4-18 wherein the electric field is generated by -a 
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Figure 4-18. Typical electrooptic device configuration. 
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reverse-biased Schottky barrier. The maximum penetration depth of the 

field of the reverse-biased Schottky barrier is given, in terms of the 

material 1 s breakdown field and free carrier concentration, by 

2K£ EB D 0 • • 
Ne (4-13) 

where K = relative dielectric constant, £
0 

= permittivity of free 

space, e = electron charge, N = free carrier concentration and 

E = the material 1 s breakdown field. Taking K = 11.5 and B.D. 
E = 4 x 105v•cm-l for gallium arsenide, Eq. (4-13) becomes: B.D. 

16 
d ( µ) = 8. 15 x l 0 

max N(cm-3) 
(4-14) 

In order to cause an electric field to appear across the entire width 

of a 3µ wide implanted gallium arsenide waveguide, therefore, requires 

the residual free carrier concentration in the waveguiding layer to be 

less than or equal to 2.7 x 1016cm-3. By comparison, the residual 

surface free carrier concentration of sample 5A:500°c, which was the 

least lossy waveguide measured(~ 1 cm-1) and, hence, one of the most 

promising for active applications, was determined by capacitance-voltage 

measurements to be 2.04x 1017cm-3. From Eq. (4-13), the maximum at

tainable field penetration in this case was only 0.4µ - far from the 

optimal value of 3µ. 

In order to produce an implanted waveguide which has both low 

loss and a low residual free carrier concentration in the waveguiding 

layer, a sequential implantation, outlined schematically in Fig. 4-19, 
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is proposed. Recalling Fig. 4-6, the damage peak of the proton

generated damage profile was seen to increase the attenuation coeffi

cient by approximately a factor of 1.5 over that value which would 

have obtained in its absence. By using the technique of sequential 

implantation and selective annealing, however, in order to produce a 

uniform damage profile equal in magnitude to one and one-half times 

that of the residual surface layer of a single implant profile, one 

should obtain, in principle, a waveguide with the same low attenuation 

coefficient as that of the annealed, single implant guide but with 

roughly 1.5 times the residual compensating defect center concentra

tion. The resulting higher defect concentration would, in turn, lead 

to a lower residual free carrier concentration in the waveguiding 

layer and deeper penetration by extern~lly aoolied electric fields. 

The behavior, attributed above to stable, gallium vacancy-donor \ 

complexes, might also, if properly exploited, lead to low loss, well

compensated waveguides. The question of whether the shift of the 

fundamental edge toward lower energies behaves as suggested could be 

answered by monitoring the behavior of the entire damage-induced 

absorption spectrum under isochronal annealing conditions. 
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CHAPTER 5 

A PROTON-IMPLANTED INTEGRATED 

OPTICAL DETECTOR 

Integrated optical circuits may be thought of as the optical 

analogs of integrated electronic circuits. As such, the components of 

an integrated optical circuit are envisioned as being fabricated on a 

common substrate, the whole constituting a completely self-contained 

information processing unit. With regard to the integration of indi

vidual device elements, two approaches are presently under considera

tion: The first is the hybrid approach which would combined the best 

available components fabricated from different material systems. The 

second approach advocates the use of a single material system from 

which all device elements are fabricated. The latter, or monolithic, 

approach offers the obvious advantages of greater compactness and ease 

of fabrication, as all elements may be constructed using compatible 

processes. As many of the necessary optical components (e.g., injec

tion lasers and modulators) have been fabricated using gallium arsenide, 

this mateiral currently represents the most promising candidate for 

monolithic integration. Accordingly, described below is an integrated 

optical detector which was made by proton-implanting an epitaxial 

gallium arsenide waveguide. 
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11. Device Construction and Geometry 

Figure 5-1 depicts the device geometry. The optical wave

guiding structure consisted of a 3.5µ thick n-type (S-doped, 

n = 2.8 x 1016cm-3} epitaxial film grown on a degenerate n-type 

( . 18 -3) substrate n = 1.25 x 10 cm . Good optical confinement for the 

guide thickness used resulted from the guide-substrate refractive 

index discontinuity generated by the plasma depression effect~ Prior 

to implantation, optical attenuation at 1.15µ was measured to be (see 

Section 6-III) 1.3 cm-l and could be accounted for by consideration 

of free carrier substrate penetration losses. 

The waveguide was implanted with 300 keV protons, the 

total integrated flux of which was 2 x 1015cm-2 . The sample was 

then annealed at 500°C for 30 minutes in order to allow some optical 

transmission through the damaged waveguide; residual, defect-associated 
. -1 

losses were measured to be ~ 15 cm based on a comparison of the 

optical attenuation before and after implantation and annealing. The 

anomalously high defect-associated loss remains unexplained; losses 

measured in proton-implanted waveguides whose substrate free carrier 

concentrations and heat treatment histories were similar (ref: samples 

) 
. -1 

3A:500°C and 4A:500°C were only 1 .3 - 1.8 cm . 

Subsequent to the heat treatment, an ohmic contact was formed 

on the substrate side of the sample by vacuum depositing a thin layer 

of Au-Ge and then alloying in a flowing hydrogen atmosphere for five 

minutes at 250°C (see Section 6-11). 11 mil square Al Schottky 

barriers were then evaporated in a waffle pattern over the implanted 

waveguide as shown in Fig. 5-2. 
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Figure 5-1. Proton-Implanted integrated optical ~etector-device 
geometry. 
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Figure 5-2. Aluminum Schottky barrier pattern. 
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III. Device Op~ration 

Th~ principle of operation of the detector is similar to 

that of conventional p-n or p-i-n junction photodetectors Upon the 

application of a reverse bias to the Schottky barrier, a depletion 

layer is produced which, given sufficient reverse bias, extends across 

the high resistivity waveguiding layer to the lower resistivity sub

strate. Any dipole transitions made possible by radiation-produced 

defect levels then generate free carriers which are swept out of the 

depletion layer, thereby causing current to flow through an external 

circuit. The situation is depicted schematically in Fig. 5-3. By 

insuring that the radiation-induced damage extends over most of the 

waveguiding layer and by choosing epitaxial material of high purity 

(in order to allow the widest possible depletion region), maximum 

detector efficiency can be obtained over a given interaction length. 

IV. Device Performance 

The experimental arrangement used to measure device perfor

mance is shown in Fig. 5-4. Radiation was end-coupled to one end of 

a cleaved specimen and examined for waveguiding at the opposing, 

cleaved output face. The technique used to monitor the presence of 

waveguiding is described in Section 6-III. After waveguiding had 

been established, a 3 mil diameter gold whisker was mechanically 

contacted to one of the 11 mil square Al Schottky barriers. A 

transistor curve tracer was then used to determine the detector's I-V 

characteristics under varying illumination conditions. Figure 5-5 

shows a series of the reverse bias characteristics obtained; a 
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Figure 5-4. Experimental setup . used to measure .device .performance. 
Schottk,>· barrier I-V characteristics were -monitored .. 
under both dark and· in umi nation condi-tions using a 
transistor curve tracer~ . -Waveguiding _in· the :ep4taxial 
layer was simultaneous]y . monitored using . an 
OS Ci 11 0 s CO p e . ( see Fi g . 6-3 ) . 
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Spectra-Physics model 120 He ... Ne laser emittt_ng at 1.15µ served as 

the illumination source. 

The particular Schottky barrier used to obtain the traces 

given in Fig. 5-5 is shown with respect to the entire sample in Fig. 

5-6. Taking the output power of the laser to be 0.75 mw and the 

overall waveguide insertion loss to be 50% (including both reflec

tion at the input face, 30%, and waveguide mode coupling loss, 20%) 

and assuming that the entire guided beam passed under the Schottky 

barrier in question, the number of photons per second that were lost 

while traversing the detector is given by: 

p = (0.75 x ,o-3)(0.5)exp(-15 x 0.0025 x 8)[1 - exp(-15 x 0.0025 x 11)] 

( 1. 08 )( 1. 60 2 x i..0-19 ) 

= 5.42 x 1014 photons/sec ( 5-1) 

where it has been reca 11 e,d that the de.feet-associated attenuation 

coefficient was 15 cm-l and noted that the Schottky barrier examined 

was 8 mils from the waveguide input face. The detector current 

generated under full illumination (Fig. 5-Sa) was approximately 

1.5 x 10-5 amps just before reverse breakdown. Hence, the number of 

electrons swept out of the depletion layer per second was: 

-5 1.5 X 10 14 e = 
1

_
602 

x 
10

_19 = 0.935 x 10 electrons/sec (5-2) 
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Figure 5-5. Reverse bias characteristics of detector under dark 
and i 11 umi nation conditions: ( a) ( b) 
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Figure 5-6. Position with respect to input beam of detector used 

to obtain data shown in Figs. 5-5 and 5-8. 
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The internal quantum efficiency of the detector was, therefore: 

(e/p) X 100 = 17%. (5-3) 

Two factors probably contributed to the relatively low 

quantum efficiency. First, Fig. (3-la) indicates that only about 40% 

of the total defect-associated attenuation at 1.15µ (1.08 eV) 

results in the promotion of trapped electrons to the conduction band

the remaining 60% of the attenuation being attributed to dissipative 

scattering and absorption by thermal spikes. Second, the residua l 

free carrier concentration in the implanted waveguided, as determined 

by the capacitance-voltage technique (see Section 6-IV), was found to 
16 -3 be ~~.J x 10 cm , or roughly the original pre-implantation value. As a 

result, the width of the depletion layer (for a reverse bias of 30V) 

was, according to Eq. (4-14), only 2.9µ. Figure 4-6 indicates that, 

under these circumstances, approximately 90% of the electrons liberated 

from trapping levels are exposed to the influence of the electric field 

generated within the depletion region. Combining the two effects just 

discussed, we find that the limiting quantum efficiency at 1.15µ is 

given by 
( 0. 4 X Q. 9) X 1 00 = 36% , (5-4) 

Finally, an attempt was made to measure the response time of 

the implanted detector by using a Q-switched Nd:YAG laser; the 

1.06µ laser pulses were end-coupled to the detector assembly in the 

manner described above. A schematic of the electronic circuitry used 
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is shown in Fig. 5-7; a series of the pulses observed ustng different 

load resistors is given in Fig. 5-8. As may be seen · in Fig. 5-8, 

pulse rise times reached a minimum for load resistors less than or 

equal to 800n, indicating that the external electronics were no 

longer limiting the detector response. In ·order to determine whether 

the minimum 200ns rise time represented a limit of the implant 

detector or was, in fact, the rise time of the Nd:YAG pulses, the 

pulses were measured using a commercial Ge p-n ·detector. Figure 5-9 

shows a representative pulse response obtained using the Ge detector. 

Since the Ge detector response was in the GHz range, it was concluded 

that the rise times measured for both the implant and the Ge detectors, 

200 ns, were a function of the Q-switched laser and did not represent 

limits of the implant detector. 
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Figure 5-8. Pulse response of integrated optical detector as a 

function of load resistance. 
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Figure 5-7. Circuit used to measure pulse response of integrated 

optical detector. 
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Response of commercial Ge avalanche diode to Nd:YAG 

laser pulse. 
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CHAPTER 6 

EXPERIMENTAL TECHNIQUES 

All implantations were performed using a modified Accelerators, 

Inc. implantation machine [63]. The proton source used was H2s. 
Implantations were done at room temperature by scanning the focused 

H+ beam in a raster pattern over the gallium arsenide targets. 

II. Post Implantation Annealing 

The apparatus shown in Fig. 6-1 was used to do all annealing~ 

The samples were placed on a molybdenum strip and annealed in a flow

ing hydrogen atmosphere. Temperatures were monitored by a thermocouple 

which was brazed to t~e underside of the molybdenum strip. Since 

several specimens were usually annealed simultaneously, it was neces

sary to determine the temperature uniformity over the 1 x 2 cm area 

of the strip which was used. Three pieces of sample 2B, placed as 

shown in Fig. 6-2a, were used for this purpose. Temperature uniformity _ 

was demonstrated by annealing the three pieces for one-half hour at 

300°c and then comparing their waveguide mode profiles. As may be seen 

in Fig. 6-2b,following this heat treatment all three specimens 

approached second order mode cutoff. Subsequent annealing at 350°c 

caused them all to undergo second order mode cutoff, thereby demonstrat

ing the hoped for temperature uniformity. 
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GLASS BELL JAR 
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Figure 6-2. (a) Placement of samples A, B, and C of specimen 2B 
for temperature uniformity test. (b) Mode profiles 
bf samples A, B, and C measured after 0.5 hour anneal 

at 300°C. 
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III. Mode Profile and Attenuation Measurements 

The experimental setup shown in Fig. 6-3 was used to perform the 

mode profile and attenuation measurements. The lasing source, a 

Spectra Physics model 120 He-Ne laser emitting at 1.15µ, was end

coupled to the cleaved facet of a waveguide by means of a 43:l micro

scope objective (Ll); extraneous emission from the laser was blocked 

by a filter (Fl) placed close to its output mirror. The effective 

focal length and lens diameter of the microscope objective were 5 ITT1l 

and 4.7 mm, respectively. The near-field radiation pattern at the 

output of the cleaved waveguide was imaged, by means of an identical 

43:1 microscope objective (L2), on a 30µ wide slit placed over a 

BNC-mounted, germanium avalanche photodiode (Pl) located 0.38 meters 

from the imaging objective; the magnification factor was, accordingly, 

76x. The resolution of the microscope objectives, as determined by 

the Rayleigh criterion [64], was: 

d 9!- 1.22 0, = 1.22(5 X 103)1.15 
D 4. 7 X 103 

= 1.5µ ( 6 .1) 

Therefore, since the diameter of the Rayleigh disc (Eq. 6-1), imaged 

onto the detector, was 114µ (= 76 x 1 .5µ), the system resolution was 

determined by Eq. (6-1) as opposed to the width of the detector slit 

which was 30µ. 

Real-time optical mode profiles were obtained by scanning, 

via galvanometer mirror (Ml), the imaged, near fi~ld radiation 

patterns of the waveguided modes over the detector slit. The 
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galvanometer mirror was driven by a 38 Hz sine wave generated by a 

conventional test oscillator; the total scanning angle was 6° peak to 

peak. CRT displays of the waveguide mode profiles were obtained by 

coupling the detector output to the vertical drive of a Tektronix model 

540 oscilloscope; triggering was accomplished by use of the same sine 

wave which drove the scanning galvanometer mirror. The linearity 

of the horizonal display scale was checked by comparing mode profiles 

obtained in the manner described here with those obtained using the 

sine wave galvanometer mirror signal as the horizontal oscilloscope 

drive. No differences between profile shapes were noted for mode 

patterns less than approximately 10µ in width. For reasons of 

convenience, the technique herein described was therefore .retained. 

Finally, in order to determine the scaling factor which related dis

tance to horizontal sweep speeds, a 1.5µ periodicity wire grid 

grating was focused via the two 43:l microscope objectives onto the detector. 

The attenuation coefficients of first order guided modes were 

measured by monitoring the outputs of waveguides of different lengths. 

With the exception of a cylindrical lens (CL3), the experimental 

arrangement used was identical to that described above. The 

cylindrical lens, whose focal length was 30mm, served to focus 

the near field radiation pattern down to a horizontal line approxi

mately 10 mils wide, thereby allowing the detector, which was 40 

mils in diameter, to collect all of the power emergent from a given 

waveguide. As a result, the total power coupled out of a waveguide 

could be determined by integrating the CRT-generated mode profiles. 

The power incident on the input face of each waveguide was measured 
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before and after the waveguide measurements by using the same 

procedure. 

IV. Free-Carrier Concentration Measurements 

The conventional capacitance-voltage technique was used to 

measure free carrier concentrations. Ohmic contacts were formed by 

evaporating a germanium-gold film over one side of a specimen and then 

alloying for five minutes at 250°C in the apparatus shown in Fig. 

6-1. Schottky barriers were then made by evaporating gold over the 

opposing, polished specimen surface. Finally, a gallium arsenide 

sample prepared in this manner was cleaved into smaller pieces to 

insure the electrical isolation of the Schottky barriers. 

V. Step Etching 

The step etching technique mentioned in Chapter 4 is outlined 

in Fig. 6-4 [65]. A·sample to be step-etched was first coated with a 

thin layer of black Apiezon wrx. A narrow strip of the wax was then 

removed by treatment with trichloroethylene. Subsequent immersion of 

the entire smaple in a 1% bromine methanol etch resulted in the 

generation of a shallow channel where the specimen had been unprotected 

by the wax. By repeating this procedure, six such channels, or steps, 

were etched into each sample to be examined, the last step being one

sixth as deep as the first (assuming that successive emmersion times 

were equal). The step depths chosen for the present 

study were, as determined by interferometric measurements: 0.5, 
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1.0, 1.5, 2.0, 2.5, and 3.0µ ±(0.15µ ). 

Followi_ng the step-etching, specimens were prepared for 

Schottky barrier capacitance-voltage measurements as described in 

Section IV. Instead of a uniform Schottky barrier, however, gold 

dots 16 mils in diameter were deposited onto the step-etched specimen 

in order to isolate Schottky barriers which resided on different 

steps. 
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SIDE VIEW 

BLACK APIEZON WAX 

(a) 

NARROW STRIP REMOVED 
BY TRICHLOROETHYLENE l 

I 
(b) 

SPECIMEN EMERSED IN I% 
BROMINE - METHANOL ETCZ 

~ 
(c) 

S I DE VIEW 

(d) 

Figure 6-4. Step etching technique. (a) Specimen to .be step
etched is first coated with black apjezon w.ax; 
(b) Narrow strip of apjezon wax is removed by 
trichloroethylene-; {c) Specimen -is irrrnersed -in -1% 
bromine-methanol etch; (d) Result of six consecutive 
step-etches. , 
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