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ABSTRACT 

Research in the brain-machine interface has the potential to transform the lives of individuals 

with limited motor capabilities to allow for greater independence. By directly accessing signals 

in the brain, it is possible to train a decoder to identify intended motion and allow the user to 

control a prosthetic limb or computer cursor by simply thinking about the motion. However, 

neural data recorded from implanted electrodes is highly unstable over time and across 

multiple sessions, leading to a severe drop in decoding performance as the test data becomes 

more distant from the data on which the decoder was trained. Here, we investigate a method 

to stabilize neural spike data from human trials of a center-out cursor control task before it is 

passed to a linear decoder, using the techniques of factor analysis and Procrustes alignment. 

We find that for highly variable human neural data from experiment dates that are far apart, 

the method does not help the decoder better predict cursor kinematics. However, when factor 

analysis weights are averaged over multiple baseline days, the performance of the decoder 

significantly increases with Procrustes alignment, which gives a promising method to limit 

recalibration and retraining of neural decoders by prolonging their higher accuracy 

performance over time. 
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C h a p t e r  1  

INTRODUCTION 

Each year, around 17,900 new spinal cord injuries (SCI) occur. Overall, it is estimated that 

300,000 people in the United States are living with such injuries, with only 0.6% maintaining 

normal motor function. Most patients with SCI struggle with complete or partial paralysis of 

the limbs (National Spinal Cord Injury Statistical Center, 2021). One proposed mechanism to 

help patients struggling with paralysis gain more independence is the brain-machine interface 

(BMI). A BMI refers to a system that is capable of harnessing information from the brain to 

control an external software or hardware device, such as a computer cursor or prosthetic limb. 

By tapping into the signals produced by the brain, a whole world of possibilities opens with the 

potential to allow paralyzed individuals to control assistive technology by simply thinking 

about it.  

 

Recent discoveries in BMI have pointed to the idea that neural activity lies in a low-dimensional 

space, termed the neural manifold (Coallier et al., 2015; Degenhart et al., 2020). This surface, or 

neural manifold, has axes representing the activity of individual neurons within the population, 

and it is typically obtained using techniques of dimensionality reduction. Dimensionality 

reduction in the context of BMI refers to a group of techniques that isolate the dominant 

patterns of covariance between neurons to summarize a majority of the neuronal population 

activity within fewer variables (Coallier et al., 2015). For example, we can use the technique of 

factor analysis to reduce the dimensionality of our neural data from 192 dimensions (one 

dimension for each electrode channel) down to just 25 dimensions that capture the majority of 

the variability on a lower-dimensional surface contained within the full neural space. This 

projection of the neural data onto the low-dimensional manifold helps to stabilize decoder 

performance over time. 

 

Even with dimensionality reduction, a major challenge in the BMI field is the great variation in 

the recorded neural data from day to day, which makes it difficult to train a decoder on an earlier 
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day and to maintain accurate performance far into the future. While certain neural network 

architectures such as recurrent neural networks have been shown to be promising as BMI 

decoders, there remains the challenge of instability over time due to neuronal death, shifting of 

electrode positions within the brain, noisy channels, and whether the participant is feeling tired 

or distracted on a given day. Because of these various factors, we find that one day, a single 

electrode may be highly correlated with the intended motion. The next day, it may read noise. 

Naturally, the instability of neural data poses a great challenge for being able to accurately decode 

cursor kinematics over time. Here, we seek to recover a more stable version of the neural data 

which, when used to train the decoder, will allow for higher performance over time in decoding 

kinematics.  

 

In this work, we address the problem of instability using real neural data from two tetraplegic 

human participants performing a center-out cursor control task (Figure 2). During the 

experiments, the participants control a cursor’s movement from a central circular target on a 

computer screen to one of eight peripheral targets selected semi-randomly and located 

equidistantly around a unit circle. The kinematics data for the cursor is recorded over time as 

positions and velocities in two dimensions (𝑥, 𝑦, 𝑣௫ , 𝑣௬), and this data is paired with the 

implanted electrode readings of neuron firings (neural spike data). We perform our analysis using 

a linear decoder as a simple model of a BMI decoder, which is trained on the neural spike data 

using the kinematics data as ground truth labels. We investigate methods to stabilize the 

decoder’s performance over time by preprocessing the neural data before passing it to the 

decoder. Using factor analysis to reduce the dimensionality of the neural data, we then align the 

future dataset to a baseline dataset on which the linear decoder is trained. We examine the effect 

of alignment to a baseline on the ability of the decoder to predict intended cursor movement 

over time. 
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C h a p t e r  2  

BACKGROUND 

2.1 Key Concepts 

Brain-machine interface (BMI). Also called a brain-computer interface, this refers to a system 

that is capable of translating neural data to a software or hardware output (Figure 1). It is often 

used with assistive technology, allowing individuals with paralysis to control prosthetic limbs or 

computers using brain signals. Here, we study the use of brain-machine interfaces to decode 

cursor kinematics from a center-out cursor control task. 

 

 
Figure 1. Basic building blocks of a brain-machine interface. First, raw neural data is acquired, and features such as 
spike counts are extracted from it. The features are then stabilized or transformed in some way and passed to the 
decoder to predict the intended motion based on the neural signal. 
 

The first step of a brain-machine interface system is the acquisition of raw neural data. Implanted 

electrodes are commonly used to read in signals from neuron firings. Promising new research 

instead uses ultrasound data from blood flow in the brain as input to a BMI (Norman et al., 

2020), though this field of research is quite new. In this study, we stick to electrode data from 

two 96-channel electrode arrays implanted in the brains of human participants, giving a total of 

192 channels of raw broadband data from the brain. The optimal location for placement of the 

electrode arrays has been the subject of study, but recent work has shown that the posterior 

parietal cortex (PPC), a brain region responsible for movement planning, contains valuable 

information to help produce control signals for neural prosthetics (Aflalo et al., 2015) and 

computer cursor movement (Shah et al., 2019).   
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The next building block is the extraction of features from raw neural data. Features can be as 

simple as threshold-crossings or spike counts within each time count (e.g., 50-millisecond bin), 

or more complex representations of the neural data such as wavelet transforms. In this study, 

we use neural spike data, which is obtained from thresholding the raw data to count the number 

of spikes within each bin. The spike count has corresponding velocity data that is used to train 

the decoder to ultimately predict the kinematics based only on the neural spike data. 

 

The intermediate building block before passing data to the decoder is feature selection. This step 

is the main focus of our study. We investigate methods of transforming and aligning the neural 

features before they are decoded in an effort to stabilize the performance of the decoder over 

time. At this step, we apply factor analysis and the Procrustes algorithm (see below) to reduce 

the dimensionality of the neural data and align it to a baseline day. 

 

Finally, the data is passed to a decoder that is trained to predict kinematics of the cursor based 

on the transformed and aligned neural spike data. Choice of decoder is another area with a lot 

of ongoing research. A standard model for a decoder is the Kalman filter, which linearly models 

the relationship between the kinematics and neural data (Shah et al., 2019). The most promising 

decoders have come from machine learning architectures such as deep neural networks (DNNs) 

and recurrent neural networks (RNNs), including those with Long Short-Term Memory 

(LSTM), which have proven most effective of all in predicting kinematics over time (Shah et al., 

2019). Deep recurrent neural networks also perform well with BMI systems (Haghi et al., 2019; 

Sussillo et al., 2016). In this study, we use a simple linear decoder to examine the dynamics over 

time. The end goal of a BMI is to have a trained decoder that is then able to predict intended 

motion for days after it has been trained based solely on neural data. 

 

Linear decoder. A linear decoder translates neural signals to predicted kinematics using linear 

regression. In linear regression, data is assumed to have a linear relationship with the label or 

ground truth. In the case of these experiments, neural spike data 𝑢௜  from each of the 𝑑 electrode 

channels are mapped to the corresponding velocity labels 𝑓 with learned weights 𝛽. The weights 

are trained using the Python linear regression function, which solves the following equation: 
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𝑓 = 𝑢ଵ ⋅ 𝛽ଵ + 𝑢ଶ ⋅ 𝛽ଶ + ⋯ + 𝑢ௗ ⋅ 𝛽ௗ + 𝜖 

 

For 𝑚 timepoints and 𝑑 = 192 electrodes, the dimensions for the kinematics data are 𝑓ଶ×௠ 

(containing velocities for both 𝑥 and 𝑦 directions at each timepoint) and for the neural data they 

are 𝑢ଵଽଶ×௠ (containing the voltage reading at each timepoint from all 192 electrode channels 

implanted in the brain).  

 

It is important to note that for the purposes of this study, we have used a very simplified decoder 

relying only on linear regression rather than a more sophisticated neural network model. While 

the simpler model has overall lower levels of decoding accuracy, we are still able to gain insight 

into the effect of alignment on decoding accuracy by comparing the relative 𝑅ଶ values over time. 

 

Factor analysis (FA). Factor analysis is a technique of dimensionality reduction. Broadly, 

dimensionality reduction techniques in the context of BMI are used to find a low-dimensional 

representation of high-dimensional neural data that condenses the information based on how 

neuron firing rates covary. Factor analysis more specifically is a linear technique that assumes 

that latent variables exist to account for correlations among observed variables. With FA, we try 

to capture the maximum variability of the data with the fewest latent variables, where each 

variable has as little overlap as possible (Majumdar, 2018). Mathematically, we can define FA 

with the following equation: 

 

𝑢 − 𝜇 = Λ ⋅ 𝑧 + 𝜖 

 

where  𝑢 is the neural spike data from all electrode channels, 𝜇 is the vector of its means, Λ is 

the matrix of factor analysis weights, or loadings, that define the relationship between the raw 

data and its latent factors, 𝑧 is the matrix of latent factors, and 𝜖 is an error term.  

 

FA takes 𝑑-dimensional data and reduces the number of dimensions to a smaller number of 

dimensions 𝑛. For example, our neural data has 𝑑 = 192 dimensions when it is taken directly 
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from the 192 electrodes, with 𝑚 timepoints. If we apply factor analysis with 𝑛 = 25 factors, 

we obtain a new transformed dataset 𝑧ௗ×௡ from the following: 

 

𝑢ௗ×௠ − 𝜇ௗ = Λௗ×௡ ⋅ 𝑧௡×௠ + 𝜖 

 

where the neural data 𝑢 is 192 × 𝑚, the FA loadings Λ are 192 × 25, and the latent variables 

𝑧 are 25 × 𝑚. So, by using the new 𝑧 rather than 𝑢, we have effectively reduced the dimension 

of the data from 192 to 25 while maintaining most of its variability. 

 

In practice, we use the factor_analyzer package in Python, which learns the weights Λ from 𝑢. 

We can then use the weights to transform 𝑢 into the latent variables 𝑧, and train the decoder on 

𝑧 as the neural data input. 

 

Procrustes problem. The Procrustes problem is an optimization problem that solves for a 

rotation matrix to align a second matrix Λଶ to a baseline matrix Λଵ by minimizing the square of 

the 𝑙ଶ norm. Formally, it is defined by the following equation: 

 

𝑂෠ = 𝑎𝑟𝑔𝑚𝑖𝑛ை:ைை೅ୀூห|Λଵ − Λଶ𝑂்|ห
ଶ
 

 

Here, 𝑂෠ ∈ ℝ௡×௡ is an orthogonal matrix with the same dimensions as the number of latent 

variables 𝑛 in factor analysis. We test this algorithm using data from the human participants on 

different days. For example, if we want to align data from day 5 to day 1, we apply factor analysis 

to data from day 1 and train the linear decoder on the 𝑧ଵ obtained from FA. Then we want to 

test the decoder on the future day, so we apply FA to day 5 to obtain the loading matrix Λହ, and 

then we rotate the factor analyzer’s weights to better align to the baseline using Λହ
ᇱ = Λହ ⋅ 𝑂෠், 

where 𝑂෠  is found using Procrustes with Λଵ as the baseline. We then use FA with aligned weights 

to transform the neural data 𝑢ହ to the lower dimensional 𝑧ହ
ᇱ  and input this 𝑧ହ

ᇱ  to the linear 

decoder to test its performance in predicting cursor kinematics. 
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𝑹𝟐 Accuracy Metric. 𝑅ଶ accuracy is defined as the square of the correlation coefficient, which 

corresponds to how well the linear decoder’s velocity predictions change with the ground truth. 

𝑅ଶ values range from 0 to 1, with 1 indicating that the prediction perfectly matches the ground 

truth (or is the exact negative of the ground truth), while a value of 0 indicates that there is 

absolutely no correlation. For this study, we use a combined 𝑅ଶ metric to measure the accuracy 

of the linear decoder; to account for both 𝑥 and 𝑦 dimensions, we define the combined accuracy 

as 

 

𝑅௖௢௠௕௜௡௘ௗ
ଶ = ඨ

(𝑅௫
ଶ)ଶ + (𝑅௬

ଶ)ଶ  

2
 

 

which relates to the average 𝑅ଶ accuracy from both directions of motion. 

 

2.2 Description of Data 

Dataset 1: 2019, Patient 1 

Throughout this study, we use neural spike data from 12 days in 2019 (Table 1) taken from 

two 96-channel electrode arrays implanted in the brain of a tetraplegic patient from Rancho 

Los Amigos National Rehabilitation Center. 

Day Name Actual Experiment Day (YYYYMMDD) 
Day 1 20190125 
Day 2 20190215 
Day 3 20190314 
Day 4 20190402 
Day 5 20190507 
Day 6 20190625 
Day 7 20190723 
Day 8 20190806 
Day 9 20190820 
Day 10 20191008 
Day 11 20191115 
Day 12 20191217 

Table 1. Conversion table showing the day name and the actual date of the experiment during which that day’s 
data was collected from the patient. Throughout the study, we refer to the dates with the designated day name. 
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Patient 1 is a 54-year-old tetraplegic human research participant. The patient had Utah 

electrode arrays implanted into the hand-knob of the motor cortex and the superior parietal 

lobule of the posterior parietal cortex (Neuro-Port, Blackrock Microsystems). Both arrays had 

96-channels each, giving a total of 192 channels from which broadband data was sampled at a 

frequency of 30,000 samples per second. 

 

During the experiment, the participant performed the center-out task where they moved a 

cursor in the x-y directions on a computer screen outward from a central target to one of 8 

outer targets situated around a circle and back to the center (Figure 2). Each trial is defined to 

be one trajectory outward to a target or inward back to the central target. The cursor’s 

movement across the screen is updated every 30 milliseconds, and the patient typically 

imagines moving the cursor for blocks of around three minutes. Trajectories were extracted 

from the trials at the point 200 milliseconds after the target had been presented up until 100 

milliseconds before the cursor overlapped with the target in an attempt to isolate when the 

participant’s intent was most well-defined. Neural features were then regressed against cursor 

velocity, which was modeled as a constant for simplicity. Data for this research participant was 

collected over 22 sessions containing 44 blocks of trials. 12 of these sessions (scattered across 

2019) were used in the following analysis. 

 

 
Figure 2. Center-out cursor experiment setup. Semi-randomly selected outer targets light up in red, and the 
participant thinks about moving the cursor from the central target to the outer target roughly along the blue 
trajectory, for example. 
 

After an initial period of calibration during which the computer controls the cursor to move 

to different targets while the participant imagines controlling it, the research participant then 
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switches to controlling the cursor themself with signals from the brain as they imagine 

moving a joystick in the direction of the target, for example. From the calibration, it is possible 

to decode the movement intention from brain signals in the short timescale of the experiment 

so that the participant is able to control the cursor in the open loop. It is signals from these 

open-loop trials when the participant was controlling the cursor that we use in our analysis to 

explore methods of maintaining decoder performance over longer timescales. 

 

Data Preprocessing 

Very little is done to the raw data in terms of preprocessing. The raw neural data (.NEV) from 

the electrodes is simply processed to have zero mean and a standard deviation of 1, and then 

the NEV file is converted to a MATLAB file containing all the trials for a particular day, along 

with the kinematics of motion (velocities in the x and y direction corresponding to each 

timepoint of neural signal recordings). The MATLAB file is then read into Python and the 

neural spike data (𝑢) and kinematics data (𝑓) are used in the following analysis as the decoder 

input and ground truth, respectively. 

 

 

2.3 Foundational Work: Degenhart et al., 2020 

The research presented in this thesis is based on the methods of a previous study to stabilize a 

BMI decoder over time (Degenhart et al., 2020). The authors of the study proposed a method 

of stabilizing neural threshold crossing data using factor analysis and alignment of neural 

manifolds via the Procrustes algorithm. An overview of the methods is presented below. 

 

The authors recorded neural data from a 96-electrode array (Blackrock Microsystems) implanted 

in the primary motor cortex of two male Rhesus macaques. The monkeys performed a center-

out cursor task during which they were given 7.5 seconds to reach a target selected from 8 screen 

locations with the cursor.  

 

A manifold-based stabilization method was then proposed for improving the stability of neural 

signals over time. The researchers leveraged the tendency of neural signals to lie in a lower-
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dimensional manifold. By applying techniques of dimensionality reduction, it is possible to 

map the raw neural threshold crossings data to a lower-dimensional latent space. In this study, 

the technique of factor analysis was used.  

 

For factor analysis, the latent space variable 𝑧 is assumed to be normally distributed, with a 

matrix of weights Λ that map the latent variable back to the original neural data 𝑢 such that  

𝑢 − 𝜇 = Λ ⋅ 𝑧 + 𝜖 . This study uses 𝑛 = 10 factors, meaning that the latent variables 𝑧 ∈  ℝଵ଴. 

Furthermore, for 𝑞 electrodes recording the neural data contained in 𝑢, we have that 𝑢 ∈ ℝ௤ 

and thus Λ ∈  ℝ௤×ଵ଴.  

 

This work used 𝑞 = 75 electrodes in non-overlapping 45 ms bins. The neural data 𝑢 was 

formed from threshold crossings over these electrodes. Then, given the weights matrices 

Λଵ and Λଶ obtained from performing factor analysis on two different blocks of trials, the 

researchers used the Procrustes algorithm to align the coordinate systems of the two 

manifolds. The Procrustes method solves the following optimization problem for 𝑂෠ ∈

ℝଵ଴×ଵ଴: 

𝑂෠ = 𝑎𝑟𝑔𝑚𝑖𝑛ை:ைை೅ห|Λଵ(𝑠, : ) − Λଶ(𝑠, : )𝑂்|ห
ி

ଶ
 

 

where 𝑠 represents the indices of stable electrodes used in the study. After calling the Procrustes 

function, the second day’s weights are aligned to Λଵ by multiplying by the rotation matrix. So 

the newly aligned weights are Λଶ
ᇱ = Λଶ ⋅ 𝑂෠். 

 

To identify the stable electrodes making up 𝑠, the authors describe two main steps. First, they 

manually removed channels with 𝑙ଶ norms in either day that were less than a predefined 

threshold 𝑇. To do so, they took the 𝑙ଶ norm of Λଵ and Λଶ (where each row corresponds to an 

individual channel) and removed the channels from consideration if that row of the norm from 

either day was below 0.01 counts per bin. 𝑇 = 0.01 was set to be larger than the smallest 

observed norm for low-noise electrodes. 
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Next, the researchers iteratively removed channels from consideration in order of how poorly 

they aligned with the baseline day 1’s weights matrix, Λଵ. First, they chose the number of 

channels 𝐵 that they wanted to keep as the largest possible value that excluded electrodes with 

severe instabilities (𝐵 = 60 for this study). Next, they iteratively performed Procrustes 

alignment of day 2 with day 1, each time removing the channel from 𝑠 based on the row that 

had the largest 𝑙ଶ norm entry in Λଵ(𝑠, : ) − Λଶ(𝑠, : )𝑂෠்.  In other words, they removed the 

channel that was furthest from Λଵ after alignment had been performed. 

 

In this study, the authors manually added instabilities to their data in the form of unit dropouts, 

baseline shifts, and tuning changes. Due to the simpler nature of having used predictable 

simulated instability data, we chose to investigate the efficacy of the above-described stabilization 

method on real human data, with real instabilities arising from physical phenomena such as 

electrodes shifting in the brain, neurons dying, and thoughts and neural signal strength changing 

from day to day. These signals can be much less stable and more difficult to decode, especially 

over long distances in time. In our study, we test whether the methods of Degenhart et al. (2020) 

work with our unstable human data. 
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C h a p t e r  3  

DECODING KINEMATICS WITH BASELINE ALIGNMENT 

3.1 Preliminary Analysis 

Given that the stabilization methods of Degenhart et. al (2020) namely rely on single channels 

considered individually and removed iteratively, we performed some preliminary investigations 

on our real human data to understand how channels compared to one another. 

Single-Channel 𝑹𝟐 Analysis 

To begin, we performed an analysis of the accuracy of each individual electrode channel. To do 

so, we trained a linear decoder in Python on data from each of the 192 channels separately for 

a given day. We used 88% of the data to train and 12% to test. We then calculated the testing 

data 𝑅ଶ value with five-fold cross validation. The errors for 𝑥 and 𝑦 directions were calculated 

separately for each channel. 

 

We found that the 𝑅ଶ values across all channels for a given day do not typically reach a value 

higher than 0.2, while most channels’ 𝑅ଶ values are clumped closer to zero (Figure 3). These 

results indicate that a single channel does not contain very much predictive power, but 

certain channels have more ability to predict cursor kinematics than others on a single day. 

 

 
Figure 3. An example distribution of 𝑅ଶ values from single channels on a single day in the x-direction (left) 
and y-direction (right). 
 



 

 

13
At this point, it is worth investigating that some channels are stronger than others at 

predicting kinematics, which could potentially support the method of iteratively removing 

weaker channels from the data before training the decoder as described in the foundational 

work. 

 
Factor Analysis with Channel Selection 

Next, we investigated the effect of factor analysis with different numbers of factors 𝑛 (with 𝑛 

ranging from 5 to 185) on the accuracy of the linear decoder. As a comparison, we first directly 

trained a linear decoder on individual days with raw neural spike data (𝑢) paired with 𝑣௫ , 𝑣௬ 

labels of velocity kinematics data (𝑓). We then applied factor analysis with varying numbers of 

latent factors to transform the spike data from the 192 channels to latent variables 𝑧 (where  

𝑢 − 𝜇 = Λ ⋅ 𝑧 + 𝜖), and trained the linear decoder with 𝑧 instead of 𝑢, labeled with velocities 

𝑓.  

 

The above process was repeated in three different scenarios: first, passing all 192 channels to the 

factor analyzer. Second, passing only the top 100 channels. And finally, passing only the top 50 

channels (Figure 4). Channels were ranked based on their single-channel 𝑅ଶ values obtained 

from training the linear decoder on each channel individually. The channels were all sorted by 

their 𝑅ଶ values, and those with the highest accuracies were selected as the top 𝑀 channels (for 

𝑀 = 100 and 𝑀 = 50). Accuracy was measured as the combined 𝑅ଶ value from both 

coordinate directions based on the linear decoder’s predictions on a subset of 12% of the data 

for each day. 
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15

  

  

 

Figure 4. Graphs of each of the 12 days in 2019 used in this study. The graphs show the accuracy of the linear 
decoder trained on the latent variables 𝑧 obtained from factor analysis on the top 𝑀 channels with varied number 
of factors 𝑛 from 5 to 185. The horizontal lines show the basic threshold that factor analysis must cross in order 
for the linear decoder trained from latent variables to perform as well as the one trained on raw spike data 𝑢. 
 

The results indicate that much of the information that is important for decoding the kinematics 

is contained in a lower number of channels than all 192. In particular, most days show that the 
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top 100 channels perform equivalently or even better than all 192 channels after factor 

analysis. This would suggest that some of the channels negatively impact the accuracy of the 

decoder, and it may then be beneficial to remove channels such as in the approach of Degenhart 

et al. (2020). Furthermore, when all channels are used, this analysis suggests that 25 factors are 

sufficient in almost all cases to achieve or exceed the limit of accuracy when no factor analysis 

is performed to reduce the dimensionality of the data. Finally, we conclude that 50 channels 

would not be sufficient to capture enough information to decode the motion at the highest 

possible level. 

 

In summary, in this section we found that some channels are more important for decoding the 

kinematics than others, and that 𝑛 = 25 factors is sufficient for most of our 12 days in 2019 to 

maintain or exceed the performance of the linear decoder with no factor analysis. Furthermore, 

the most important information is contained in a smaller subset of the channels than all 192, 

making channel removal a potentially feasible method of stabilization. Using the optimal 

parameters that we determined above, we can now test the methods of Degenhart et. al (2020) 

directly on our data. 

 

 

3.2 Replication of Foundational Work  

We tested the methods of Degenhart et al. (2020) to stabilize the decoder with factor analysis 

and Procrustes alignment on our human data. If the alignment works, we expect that after 

channel removal by the iterative Procrustes alignment algorithm presented in the foundational 

work, the decoder will perform better over time than without alignment. 

 

Channel Removal by Thresholding 

The first method described by Degenhart et al. (2020) for identifying the most stable channels 

in the data involves manually removing channels for which the 𝑙ଶ norm within the FA weights 

matrix is below the threshold 𝑇 = 0.01. We took the norm of each individual row in Λଵ and Λ௜ 

for 𝑖 ∈ [2,12]. In the foundational procedure, any row for which this norm was below 𝑇 in 
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either weights matrix would be removed from consideration (where each row corresponds to 

a channel, i.e. an electrode). Across all 12 days in our dataset, we found that the minimum norm 

was 0.06345, while the maximum norm was 0.8859. While a smaller 𝑙ଶ norm value could indicate 

that the channel simply contains noise or does not read any real signals across days, we chose 

not to remove any channels at this point since their norms were not as small as the threshold 

𝑇 = 0.01 used in the foundational work. We also decided to take data on all channels rather 

than trying to remove them at first in order to better understand the dynamics. 

 

We plotted the distribution of single-channel 𝑙ଶ norms to find a suitable threshold for our 

specific dataset (Figure 5). Rather than the original paper’s threshold of 𝑇 = 0.01, perhaps a 

more suitable threshold would be 0.2 or 0.25 for manual channel removal by thresholding. 

 

 
Figure 5. Histogram of 𝑙ଶ norms of individual rows in all 12 weights matrices Λ obtained from factor analysis with 
𝑛 = 25 factors. The distribution suggests that a better threshold for manual channel removal may be closer to 𝑇 =
0.25  rather than 𝑇 = 0.01.  
 

Procrustes Alignment of Channels to a Baseline 

The second step in stable channel selection outlined by Degenhart et al. (2020) involves 

alignment of the second day’s manifold to the baseline day using the Procrustes algorithm. To 

do this, we fit a factor analyzer to the first day to obtain the weights Λଵ. We then fit a factor 

analyzer to a second day 𝑖 to obtain Λ௜. Next, we called the SciPy Procrustes function to obtain 

the newly aligned weights Λ௜
ᇱ = Λ௜𝑂෠

் that are aligned to the coordinate system of Λଵ. We first 

tried using 𝐵 = 60 channels as the number of top channels to keep that are best aligned to the 

baseline day. We also tried 𝐵 = 100 (Figure 6).  
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Figure 6. Combined 𝑅ଶ accuracy after  iterative channel removal to the top B channels via Procrustes alignment 
for 𝐵 = 60 channels (left) and 𝐵 = 100 channels (right). 
 

Neither method performed as well as when all 192 channels were used. We decided to further 

investigate the individual channels to better understand why this was the case, since based on 

the foundational work, we would expect that after iterative channel removal the performance 

would improve. 

 

 

3.3 Investigating the Effect of Alignment 

We investigated the tradeoff between channel stability over time and accuracy of decoding. To 

do so, we looked at the 𝑙ଶ norm of individual channels within the weights matrix Λ′ after it had 

been aligned to a baseline via Procrustes alignment and subtracted from the baseline weights.  

 

Comparison of Stability from Different Baseline Alignments 

First, we looked into which baseline day had the best results in stabilizing and aligning a future 

date. We used a baseline selected from Day 1, Day 2, Day 3, Day 4, or the average of the first 4 

days, and aligned each of Days 5 to 12 to this baseline via the Procrustes algorithm. To do so, 

we fit a factor analyzer in Python to the neural data from the baseline day, and another factor 

analyzer to the test day. We then called the Procrustes algorithm to retrieve a set of modified 

weights for the test day that had been aligned to the baseline day. Next, we calculated the 

difference between the aligned test weights and the baseline weights, Λ௜
ᇱ − Λ௕௔௦௘ and took the 
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𝑙ଶ norm to measure the degree of alignment between the two days. For the average baseline, 

we took the average of all 4 baseline days as: 

∑ Λ௕
ସ
௕ୀଵ

4
 

where each Λ௕ was obtained by fitting a factor analyzer to neural spike data from each baseline 

day 𝑏. 

 

We then plotted the 𝑙ଶ norm of the difference between the aligned weights matrix and the 

baseline weights for each of the 192 channels (channels correspond to individual rows in the 

weights matrices) for each day in 5 to 12 (Figure 7). We found that the baseline that minimized 

the channel norm of the weights difference was the average baseline, followed by the baseline 

closest in time to the dates that were aligned to it (Day 4). 
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Figure 7. Example of channel norms over Days 5 to 12 when aligned to single-day baselines (Days 1-4) and the 
average baseline. These graphs were generated for all 192 channels.  
 
We found that the norms of the difference between the baseline weights and the aligned test day 

weights were consistently lower when we used the average baseline. Among single-day baselines, 

we found that those days closest to the test day (Day 3 and Day 4) were most frequently the 

lowest norm among the channels (Figure 8). 

 

 
Figure 8. Summary of Figure 7 data, showing the average 𝑙ଶ norm of the rows of  Λ୧

ᇱ − Λ௕ . This is the average 
norm across the 192 neural channels across all 8 test days 5 to 12. A low 𝑙ଶ norm could indicate a higher degree of 
alignment between the Procrustes-aligned test weights and the baseline. 
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A low 𝑙ଶ norm could indicate a higher degree of alignment between the Procrustes-aligned Λ௜ 

(where 𝑖 ∈ [5,12]) and the baseline day Λ௕ (for 𝑏 ∈ [1,2,3,4, 𝐴𝑣𝑔. 1: 4]). Excluding Day 1, we 

see a downward trend in average norm across channels and test dates as the baseline day 

becomes closer in time to the test dates. This indicates that it may be easier to align and stabilize 

weights across days when the days are closer together in time. 

 

Comparison Between Stability with Aligned vs. Unaligned 

Next, we investigated whether the Procrustes alignment stabilized the channel difference 𝑙ଶ 

norm across the test days (Days 5 to 12) compared to the norm of the difference without any 

Procrustes alignment. For this part of the analysis, we chose to use the average baseline data 

since it had performed best compared to all the baselines tested in the previous section. Applying 

a similar process to the previous analysis, we obtained the average baseline weights Λଵ:ସ from 

factor analyzers fit to the neural data from Days 1 to 4 individually. We fit another factor analyzer 

to each test day in 5 to 12 to obtain the weights matrices Λ௜ for 𝑖 ∈ [5,12].  

 

We then calculated the 𝑙ଶ norm of the difference Λଵ:ସ − Λ௜ for the unaligned version and  

Λଵ:ସ − Λ௜
ᇱ  for the aligned version, where Λ௜

ᇱ  is the weights matrix from the factor analyzer fit to 

day 𝑖’s neural spike data after the weights have been aligned via the Procrustes algorithm to the 

average baseline weights. We compared the results of aligned vs. unaligned 𝑙ଶ norms in the 

graphs below (Figure 9). 
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Figure 9. Comparison between the 𝑙ଶ norm (y-axis) of the unaligned difference of weights matrices versus aligned 
difference of weights across test days 5 to 12 (x-axis). The Procrustes alignment tends to stabilize the 𝑙ଶ norm across 
days and minimize its value compared to the unaligned norms, which suggests a higher degree of alignment to the 
baseline. 
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We found that the Procrustes alignment visibly reduces the variability across days of the 𝑙ଶ 

norm for each channel, compared to the variation that we see in with the unaligned norms. In 

addition, in many cases the stabilized, aligned norm has a lower average value than the unaligned 

norm. This suggests that the Procrustes alignment not only serves to stabilize the weights across 

days, it also minimizes the difference between the baseline and corresponding aligned weights 

compared to the unaligned difference, which could lead to greater stability in performance after 

alignment. 

 

𝑹𝟐 Performance of Channels Across Test Days 

We investigated the effect of individual channels on decoding accuracy across all 8 test days 

(Days 5-12). The linear decoder was trained on data from the single channel on each day 

individually. We then plotted the 𝑅ଶ accuracy for each channel, on each day (Figure 10). We 

observed that while many channels remained consistently poor at predicting the kinematics 

behavior across the test days, certain other channels seemed to have spikes in accuracy on a few 

specific days, but did not remain consistently significant for predicting kinematics behavior 

across all days. This suggests that at this timescale of days, where in reality there is an average of 

30 days between each “Day,” any given channel will not necessarily be a good channel across 

multiple consecutive “Days.” Those channels which are not noise channels only have certain 

high-𝑅ଶ days interspersed across all the days. This suggests that the approach of Degenhart et 

al. (2020) of removing channels that are not well aligned to the baseline is likely to fail at large 

timescales, since channels do not have stability across days in terms of decoding accuracy but 

rather have sporadic spikes in 𝑅ଶ. 
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Figure 10. Example graphs showing the 𝑅ଶ accuracy of the linear decoder when trained on a single channel across 
Days 5 to 12 (the test days). Each graph represents the performance from a single channel and its significance in 
helping the linear decoder to decode kinematics on each day. 
 

We can see that a lot of channels have almost no impact on the decoding across all days, while 

others seem to spike only for certain days. Very few remain consistently significant. Based on 

the above results, we find that a bad channel on one day can easily be one of the more important 
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channels on the next day, so it could be detrimental to remove this channel from the dataset 

used to train or test the decoder.  

 

Accuracy-Stability Tradeoff 

Next, we examined the tradeoff between stability and accuracy by comparing the top channel in 

accuracy and the top channel in stability. The channel with the maximum single-day 𝑅ଶ accuracy 

was Channel 22 (accuracy around 0.29 on Day 5). This channel also has a comparatively high 

level of linear decoding accuracy on other days, including Day 7 and Day 12. However, the 𝑙ଶ 

norm between test days and baseline weights from the average baseline (Figure 11 in purple) is 

at a higher value than it is for other channels (Figure 7), indicating that the channel is not as well 

aligned to the average baseline as other channels are. 

 

 
Figure 11. 𝑅ଶ accuracy (left) vs. 𝑙ଶ norm aligned to different baselines (right) across all 8 test days (Days 5-12). 
Channel 22 has the highest 𝑅ଶ single-channel decoding accuracy, but the 𝑙ଶ norm indicates a relatively low degree 
of alignment to the baseline across all test days with a norm around 0.3. 
 

On the other hand, the channel with the lowest average 𝑙ଶ norm across test days aligned to the 

average baseline was Channel 142 (Figure 12). Although the channel seems to have a high degree 

of alignment to the baseline and stability across the test days, it is clear from the 𝑅ଶ graph that 

this channel is merely noise and contains almost no real information to help the linear decoder 

accurately decode kinematics across the test days. 
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Figure 12. 𝑅ଶ accuracy (left) vs. 𝑙ଶ norm aligned to different baselines (right) across all 8 test days (Days 5-12). 
Channel 142 has the lowest average baseline 𝑙ଶ norm across all test days, indicating the highest degree of alignment 
between the baseline and each test day, or in other words, the highest level of stability. However, the 𝑅ଶ accuracy 
indicates very low significance of the channel in kinematics decoding. The channel may simply contain noise. 
 

Based on the two example channels considered in this section, there seems to be a tradeoff 

between stability and accuracy of channels over time. Although the channel with the highest 𝑅ଶ 

accuracy contains useful information for the decoder to predict kinematics based on neural spike 

data, it has poor stability and alignment to the average baseline. Similarly, although the channel 

with the lowest 𝑙ଶ norm in Λ′௧௘௦௧ ௗ௔௬ − Λ௕௔௦௘ has a high level of stability and alignment to the 

baseline, it has very poor accuracy performance and appears to only contain noise that is 

irrelevant to the decoding of kinematics. 

 

Effect of Alignment to Baseline on Training 

To verify whether the Procrustes alignment helps the decoder to perform better over time, we 

compared the performance of the linear decoder in four distinct scenarios, all with factor analysis 

using 𝑛 = 25 factors: 

 

1. Trained and tested on same test day, no alignment to baseline day: The linear 

decoder was trained on 88% of the factor-analysis-transformed 𝑧 for a given day  

(𝑢ଵଽଶ − 𝜇 = Λ ⋅ 𝑧ଶହ + 𝜖), and the linear decoder predictions were tested on a different 

segment of 12% of the remaining data from that day that was not used for training. 

 

2. Trained and tested on same test day, with alignment to baseline day: The linear 

decoder was trained on the Procrustes-aligned version of the transformed 𝑧 for a given 



 

 

27
day, which had been aligned to the weights of the baseline day. The decoder was again 

tested on the remaining data for the same day. 

 

3. Trained and tested on different days, no alignment to baseline day: The linear 

decoder was trained on the factor-analysis-transformed data from the baseline day and 

tested on the test days (Day 5 to 12) data that had been transformed with its own factor 

analyzer (no alignment to the baseline day). 

 

4. Trained and tested on different days, with alignment to baseline day: The linear 

decoder was trained on the transformed 𝑧௧௥௔௜௡ of the baseline day and tested on the test 

day after alignment to the baseline. To align to the baseline, a factor analyzer was first fit 

to test day spike data, and the weights were extracted. The Procrustes algorithm was 

then called in Python to align the test weights to the baseline day weights. The new, 

aligned test weights were then set as the weights of the factor analyzer before 

transforming the test data to 𝑧௧௘௦௧
ᇱ  and testing the performance of the linear decoder that 

had been trained on the baseline. 

 

Using Day 1 as the baseline, we trained and tested the linear decoder according to the four 

scenarios described above (Figure 13). 

 

 
Figure 13. Left: Scenario 1 is shown in blue, while scenario 2 is shown in orange. When the linear decoder is tested 
and trained on the same day, it tends to perform much better than when it is trained on an earlier day than when it 
was tested. The process of aligning the weights to the baseline day has little to no effect. Right: Scenario 3 is shown 
in blue, while scenario 4 is shown in orange. When the linear decoder is trained on Day 1 and tested on the later 
days, the unaligned test days tend to perform at higher accuracy than those aligned to the baseline day, though both 
scenarios give extremely low accuracy on most days. 
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Based on these 12 days from the year 2019, it is evident that it infeasible to train the linear 

decoder on any day besides the day it is being tested on for this particular dataset. Even with the 

alignment of the test day’s weights to the baseline weights before the factor analysis transform 

is applied, there is almost never an improvement in the decoding accuracy if the linear decoder 

has only been trained on the baseline day. In fact, on most days, the transformed data that has 

not been aligned to the baseline weights performs better than the aligned data (Figure 13, Right). 

The only day in which the aligned data performs significantly better than unaligned data is on 

Day 2, which is the closest day to the baseline. This suggests that the Procrustes alignment 

method could help the decoder to more accurately decode kinematics based on neural signals 

over time provided that the time difference between the days is relatively small. When the 

decoder was trained on Day 1 and tested on Day 2 data that had been aligned to Day 1 via 

Procrustes, we do see a notably higher performance than the test on Day 2 without alignment. 

Still, the accuracies in all cases when the decoder was trained and tested on a different day are 

very low, and it is difficult to come to a conclusion about the effect of the Procrustes alignment 

based only on this dataset, where days are distributed so far from each other. 

 

Effect of Distance Between Days 

We compared the 12 days with each other pairwise to visualize the distribution of distances 

between all the “Days.” The distribution of the distances between each combination of days is 

plotted below (Figure 14). The average distance between consecutive “Days” is in reality 29.63 

days. 

 
Figure 14. Histogram distribution of distances (in days) between each pair of dates in the 12 2019 data days. The 
mean distance between consecutive days is 29.63. 
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Based on the distribution, we split up the dates into the following groupings for further analysis 

(Table 2). 

 

14-19 days 21-28 days 32-42 days 46-56 days 77-87 days 101-105 days 

14 Day 7 to 8 21 Day 1 to 2 32 Day 11 to 12 46 Day 2 to 4 77 Day 5 to 7 101 Day 8 to 11 

14 Day 8 to 9 27 Day 2 to 3 35 Day 4 to 5 48 Day 1 to 3 77 Day 7 to 10 102 Day 1 to 5 

19 Day 3 to 4 28 Day 6 to 7 38 Day 10 to 11 49 Day 5 to 6 81 Day 2 to 5 103 Day 3 to 6 

  28 Day 7 to 9 42 Day 6 to 8 49 Day 9  to 10 84 Day 4 to 6 105 Day 5 to 9 

      54 Day 3 to 5 87 Day 9 to 11 105 Day 6 to 10 

      56 Day 6 to 9     

Table 2. Groupings of “Days” in 2019 with the corresponding distances (in actual days) between them. 

 

For each pair of dates (Table 2), we trained the linear decoder on the first date and tested it on 

the second date, both in the unaligned case (scenario 3 above) and the aligned case (scenario 4 

above). For the unaligned case, we trained the linear decoder on the transformed neural data (𝑧) 

from the baseline day and tested it on transformed neural data from the test day that had been 

transformed by a separate, independent factor analyzer that had not been aligned to the baseline 

in any way. For the aligned case, we again trained the linear decoder on the baseline transformed 

data but then tested it on the test data that had been transformed using new factor analyzer 

weights that had been aligned to the baseline weights via the Procrustes function. Within each 

grouping of day ranges, we averaged the performance of the linear decoder and plotted the 𝑅ଶ 

accuracy with error bars showing the standard deviation within each range (Figure 15). The size 

of each point is proportional to the number of days within that range, which respectively is [3, 

4, 4, 6, 5, 5].  
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Figure 15. The 𝑅ଶ accuracy performance of the linear decoder, trained on a base day and tested a number of days 
later, where the range of days on the x-axis shows the distance between train and test days. The points show the 
average accuracy within each range of dates, where the point size represents the number of dates included in each 
range. The blue points show the performance when the test day was transformed using factor analyzer weights that 
had not been aligned to the training day, while the orange dots show the performance in testing accuracy when the 
Procrustes alignment was applied to the weights to align them to the baseline training day. 
 

Again, we found that the Procrustes alignment to a train day does not tend to help the linear 

decoder predict on future test dates. In most cases, the aligned version performs worse on 

average than the unaligned version, except within the smallest range of distances (14-19 days 

between train and test date). This suggests that either the Procrustes alignment process does not 

work to stabilize real neural data, or our dataset is not conducive to the method of Degenhart et 

al. (2020) since the data acquisition dates are distributed so far apart, and the physical changes 

to the brain and electrode positioning could lead to a huge lack of stability and reliability between 

most dates. 

 

Final Attempt: Replication of Foundational Methods with Channel Removal 

As a final test, we replicated the methods of the foundational paper using the optimal parameters 

we found during our previous analysis: for the 12 dates, we found that 𝑛 = 25 factors is 

sufficient to meet or exceed the 𝑅ଶ performance of using all 192 channels’ data (Figure 4), 

compared to the 10 factors used in the paper for 70 channels. Furthermore, using factor analysis 

with 𝑛 = 25 factors, we found that a basic threshold of 𝑇 = 0.25 should be sufficient to 

manually remove channels with little activity (compared to 𝑇 = 0.01 in the foundational work).  
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We chose to use this much larger threshold for manual channel removal since our real data 

has many more instabilities and noise than the simulated data used in the original paper. We used 

Day 1 as the baseline day and Days 2 through 12 as the test days. For each of the 12 days, we 

calculated the 𝑙ଶ norm of their loading matrices Λ and removed any corresponding channels 

whose 𝑙ଶ norm rows were lower than the manual threshold 𝑇 = 0.25. Next, we iteratively 

removed channels down to 𝐵 = 140 total channels, at each step removing the channel whose 

𝑙ଶ norm (corresponding to a row in the matrix Λ௧௘௦௧
ᇱ − Λ௕௔௦௘) was highest, which indicates the 

lowest degree of alignment to the baseline.  (We first aligned the weights matrix from factor 

analysis to the weights of the baseline day’s factor analyzer to obtain Λ௧௘௦௧
ᇱ ,where Λ௕௔௦௘ is the 

baseline weights and Λ௧௘௦௧ is the original weights for the test day before Procrustes alignment.)  

 

After obtaining the top 𝐵 = 140 best-aligned channels to the baseline Day 1, we compared the 

performance of the linear decoder when it was trained on factor-analyzer transformed 𝑧 fit to 

all channel data versus factor-analyzer transformed 𝑧 fit to the truncated data of the best 140 

channels based on the iterative Procrustes alignment metric. In both scenarios, we compared 

the case of training and testing on data from the same day, versus training on the baseline Day 

1 and testing on the future test day (Figure 16).   

  

 
Figure 16. Accuracy of the linear decoder when the factor analyzer transformed data from all channels vs. data 
from the top 140 channels based on the iterative Procrustes alignment process. The red line shows the result of 
fitting and transforming with the factor analyzer on all 192 channels trained and tested on the same day, while the 
green line shows the same scenario but trained on Day 1 for all test days and tested on the test day. Similarly, the 
blue line shows the performance of the linear decoder when it was trained and tested on the same day using factor 
analyzed data of the top 140 channels, while the orange line shows the same case but when the linear decoder was 
trained on Day 1 and tested on each of the proceeding days. 
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Again, it is clear that this particular dataset does not lend itself well to the methods of the paper 

with factor analysis and the Procrustes algorithm for alignment to a single-day baseline. In the 

two cases when the linear decoder was trained on the baseline day and tested on later dates, the 

performance is drastically reduced, regardless of whether the Procrustes alignment had been 

applied, compared to training and testing the decoder on the same day. Even so, the Procrustes 

alignment not only does not help the decoder but actually hinders it in most cases. We now 

chose to move forward with a new method that incorporates multiple days into the baseline, 

since we found that single-day baselines perform poorly with our data. 

 

 

3.4 Further Exploration: Average Baseline 

During our previous analysis, we noted that the average baseline tended to have high 

performance compared to single-day baselines. Because we had observed this unique effect with 

the average baseline, we investigated whether the Procrustes alignment would have a different 

effect on decoding accuracy, or if it would have a similarly small or detrimental effect like single-

day baselines in helping the decoder stay accurate over time.  

 

Single-Day Baseline Results 

As a check that the foundational methods indeed were not working when the decoder was 

trained on any single day and tested on all future days, we tried using every possible baseline day 

and examined the performance of unaligned factor analysis with the linear decoder versus factor 

analysis with alignment to the train day before inputting to the linear decoder. For each of the 

12 days, we chose one day to be the baseline on which to train the linear decoder and align the 

FA weights via Procrustes for the aligned case. We evaluated the performance in combined 𝑅ଶ 

for both the aligned and unaligned cases for each combination of train day paired with future 

test day (Table 3). The results from the first six baseline days are also plotted below (Figure 17). 
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Figure 17. Single-day baseline effect of alignment on test accuracy. We find that if a single day is used to train the 
linear decoder and subsequent test days are aligned to the single-day baseline, there is no improvement in 
performance. In fact, weights not aligned via Procrustes generally lead to more successful decoding, though testing 
on a day that is different from the train day leads to very low accuracy in most cases. 
 

It is clear from these results that when the linear decoder is trained on a single baseline day, the 

Procrustes alignment does not help it to perform better over time. We see that the aligned case 
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actually tends to have a lower accuracy for decoding than the unaligned case, so the 

foundational methods do fail in the scenario of using a single-day baseline with days that are 

spaced far apart such as those in our dataset. 

 
 

Train Day (unaligned)/Test Day (aligned to train day) 

 

 

 

 

 

Test 

Day/ 

Train 

Day 

Day 1 2 3 4 5 6 7 8 9 10 11 12 

1 0.58 0.14 0.014 0.025 0.0020 0.018 0.0019 0.019 0.011 0.027 0.084 0.024 

2 0.034 0.53 0.0048 0.0015 0.020 0.016 0.028 0.060 0.012 0.021 0.012 0.010 

3 0.091 0.18 0.56 0.044 0.13 0.019 0.016 0.042 0.024 0.041 0.015 0.021 

4 0.0075 0.076 0.054 0.37 0.052 0.013 0.014 0.033 0.048 0.077 0.069 0.045 

5 0.030 0.054 0.098 0.052 0.60 0.0096 0.0081 0.057 0.0077 0.0012 0.041 0.0056 

6 0.048 0.0042 0.048 0.040 0.087 0.43 0.0013 0.00047 0.0029 0.000025 0.015 0.034 

7 0.12 0.14 0.021 0.0047 0.041 0.17 0.50 0.041 0.035 0.0071 0.0073 0.048 

8 0.034 0.056 0.023 0.070 0.17 0.23 0.090 0.56 0.18 0.092 0.13 0.13 

9 0.27 0.25 0.083 0.040 0.064 0.10 0.24 0.070 0.64 0.091 0.095 0.14 

10 0.10 0.030 0.061 0.11 0.026 0.037 0.055 0.031 0.030 0.48 0.099 0.11 

11 0.066 0.023 0.035 0.097 0.053 0.075 0.018 0.074 0.00067 0.32 0.49 0.011 

12 0.0022 0.011 0.060 0.065 0.17 0.034 0.0080 0.12 0.048 0.0016 0.0099 0.55 

Table 3. 𝑅ଶ values for training on a single day and testing on each of the following days. In blue, we have the results 
without any alignment to the baseline, while in orange, we have the results with Procrustes alignment to the train 
day. The green diagonal shows the accuracy from training and testing on the same data from the same day 
(effectively, the training accuracy). 
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Table 3 illustrates that for the single-day baseline, it is not very reliable to test the decoder on 

a different day from the one on which it was trained. Most 𝑅ଶ values remain below 0.1 for both 

the unaligned and aligned cases, though on average the aligned accuracies are worse than the 

unaligned ones, further supporting the finding that Procrustes alignment does not help the 

decoder remain accurate over time for our data. It is interesting to note that certain days do beat 

the trend, however; for example, when the decoder was trained on Day 1 and tested on the 

unaligned Day 9, we see a significantly higher 𝑅ଶ value of 0.27. Similarly, when we trained on 

Day 10, the unaligned performance when testing on Day 11 was quite high at 0.32. Along with 

the finding that 𝑅ଶ values for single channels peak sporadically across days (Figure 10), this 

suggests that there may be some repeatable information between certain days that helps the 

decoder to more accurately predict on those days that are more closely related to the training 

day. If this is the case, using an average baseline that factors in data from multiple days for 

training the decoder may help to capture information that is helpful in decoding multiple 

different days in a way similar to how training on Day 1 helped the decoder to better predict on 

Day 9. 

 

Two-Day Average Baseline 

We moved on to test how the decoder performed when instead of a single-day baseline, we took 

the average of the FA weights for two different days. For 𝑚 ∈ [1,5], we defined the average 

baseline as the average of two consecutive days’ FA weights, or 

 

Λ௔௩௚ =
∑ Λ௜

௠ାଵ
௜ୀ௠

2
 

We obtained each Λ௜ by applying factor analysis to Day 𝑖’s neural spike data 𝑢௜ . We then created 

a factor analyzer with weights set to Λ௔௩௚ and transformed the data for both days to obtain 𝑧௠ 

and 𝑧௠ାଵ. With this, we created a concatenated matrix of latent variables 𝑧∗ = ቂ ௭೘
௭೘శభ 

ቃ with the 

corresponding kinematics data 𝑓∗ = ቂ ௙೘
௙೘శభ

ቃ. We then trained the linear decoder on 𝑧∗, 𝑓∗. We 

tested on all the future days for both aligned and unaligned cases. In the aligned case, we fit a 

factor analyzer to data from the test day to obtain Λ௧௘௦௧ and modified the test weights to be 
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aligned to the average baseline weights with Λ௧௘௦௧

ᇱ = Λ௧௘௦௧ ⋅ 𝑂෠் via the Procrustes function. 

We then used these new weights to transform 𝑢௧௘௦௧ to 𝑧௧௘௦௧
ᇱ  and predict kinematics. In the 

unaligned case, we simply predicted on 𝑧௧௘௦௧ obtained from the FA weights Λ௧௘௦௧ that had no 

alignment to the baseline. Figure 18 demonstrates the performance using the average weights 

from each pair of days from 1 to 6. 

 

 

Figure 18. Different subsets of the first six days as two-
day average baselines. Apart from when Day 1 to 2 was 
used as the average baseline, the performance of the 
linear decoder with Procrustes alignment (orange) vs. 
without any alignment (blue) drastically improves and 
remains high for many days after the average baseline 
days that were used. 

 

 

Except for the case where the average baseline was taken from Day 1 to 2, we see a clear 

improvement in performance of the decoder over time when the test weights have been aligned 
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to the average baseline compared to when there has been no alignment of the factor analysis 

weights. The graphs show that alignment to a two-day average baseline helps the decoder 

perform better than the unaligned version for five to six days after the days included in the 

averaged weights (where the first two points on each graph are the days included in the average). 

 

Multi-day Average Baseline 

Finally, we investigated the performance of the decoder when trained on the average baseline of 

increasing size, for each of the cases starting from using just Day 1 as a baseline, the average of 

the first two days as a baseline, the average of the first three days as a baseline, all the way up to 

the average of the first six days as a baseline (Figure 19). To test this effect of including a different 

number of days in the baseline, we calculated the average baseline as 

 

Λ௔௩௚ =
∑ Λ௜

௡
௜ୀଵ

𝑛
 

for 𝑛 ∈ [2,6] and created a factor analyzer with loadings set to Λ௔௩௚. Using this factor analyzer, 

we transformed the neural data for each of the days from 𝑢௜ to the lower dimensional 𝑧௜ and 

concatenated the data as 𝑧∗ = ቈ
௭భ
௭మ…
௭೙

቉, also concatenating the velocity data to obtain 𝑓∗ = ൥
௙భ
௙మ…
௙೙

൩.  

We then trained the linear decoder on 𝑧∗, 𝑓∗ and tested it on each of the days. In the unaligned 

case, we input 𝑧௧௘௦௧ to the decoder transformed from an independent, unaligned factor analyzer. 

For the aligned case, we used 𝑧௧௘௦௧
ᇱ  obtained from FA transformation with weights from the test 

day that had been aligned to the average baseline Λ௔௩௚ via Procrustes. 
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Figure 19. Left to right, top to bottom, we compare the performance of the average baseline from using the first 
day as baseline, the average of the first two days, first three days, first four days, first five days, and first six days. 
The Procrustes alignment visibly improves the performance and prolongs the decoder’s retention of higher accuracy 
predictions. 
 
As the number of days included in the average increases, so does the accuracy for the aligned 

test data. The point at which the accuracy with alignment drops below the accuracy without 

alignment consistently becomes a later and later date as more dates are added to the average 

baseline, until at 5 to 6 days average, the aligned data outperforms the unaligned data for every 

single test day. This is an exciting result, since it shows that in the case of the average baseline, 

the linear decoder actually does learn enough from being trained on the average baseline-

transformed data that it can better predict the kinematics for days to come when those test days 
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are also aligned to the average baseline. This strongly supports the use of the Procrustes 

alignment over factor analysis alone, as it greatly boosts the performance of the decoder when 

the FA for the test day is aligned to the data on which the decoder was trained. 

 

There are multiple possibilities for why the average baseline shows such a striking difference in 

performance compared to the single-day baseline. For one, using an average baseline means the 

training dataset is larger since it incorporates concatenated data from multiple days. This would 

help the decoder better predict kinematics especially in the case where it had been underfitting 

on the single-day data. There could also be an element of the apparent repeating patterns in the 

data that make certain dates more similar to others. If multiple dates are included in the training 

data via the average baseline method, it is likely that the linear decoder will learn how to predict 

on a greater number of days because of the test days that are somehow related to one of the 

baseline days. Another possibility is that taking the average of the weights across multiple days 

better represents the major neuronal population activity such that if for one day the activity is in 

a different direction than usual, the average baseline will still capture the dominant activity 

patterns for most days to allow the decoder to maintain a better accuracy for many days into the 

future. 
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C h a p t e r  4  

CONCLUSION 

In this study, we investigated the methods of Degenhart et al. (2020) to stabilize neural decoding 

performance over time. The foundational work proposed a stabilization approach on data with 

simulated noise using factor analysis and Procrustes alignment to a baseline day to help remove 

noisy channels before decoding. However, we found that with real human data that has high 

instabilities and a sparse distribution of experiment dates, the methods of the foundational work 

are ineffective at improving the decoding accuracy. In fact, when we train and test the decoder 

using data from different dates, the decoding performance drastically drops regardless of 

alignment, indicating that the foundational methods have failed on our dataset. Additionally, we 

found that single channel performance varies greatly between days, with no one electrode 

channel remaining consistently significant across days. Thus, the foundational methods of 

channel removal would not be effective for multi-day testing when the days are far apart. 

 

As such, we propose a new method that builds on the foundational work. Instead of using a 

single day baseline, we define an average baseline by taking the average of factor analysis weights 

across multiple baseline days and aligning test data to this average baseline. When the linear 

decoder is trained on the average concatenated data, we find that decoding with Procrustes 

alignment of the test data greatly outperforms predictions from unaligned test data. In addition, 

incorporating multiple days into the baseline prolongs the decoder’s higher performance for 

many days after the training dates. In our case of sparse human data, we find that the methods 

of the foundational work are effective at improving decoder performance over time provided 

that the average baseline is used. 

 

It is likely that the single-day baseline experiments presented here failed largely because of the 

nature of our dataset. Because of the limitations in the current pandemic situation that make it 

difficult to take new data with our specific research question in mind, we find ourselves with 

data that is spaced too far apart to model typical use of a BMI. In addition, human data may be 
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more unpredictable than the simulated data used in the foundational work. However, even 

though our data was not collected with the goal of our stability analysis in mind, it has led us to 

an interesting conclusion about the use of an average baseline. 

 

In all, factor analysis and Procrustes alignment provide a promising method to allow a BMI 

decoder to maintain accuracy in predicting future cursor kinematics that are far away in time 

based solely on neural spike data. By transforming the data and using weights aligned to an 

average baseline, we find much higher decoding performance than in use of a single-day baseline 

or transformation without alignment. Since this method shows such a notable improvement in 

accuracy over time with a simple linear decoder, there is great potential that the method could 

help even better stabilize the decoder performance and increase its accuracy when more 

sophisticated deep learning models are used. 

 

  



 

 

42
BIBLIOGRAPHY 

Aflalo, T., Kellis, S., Klaes, C., Lee, B., Shi, Y., Pejsa, K., Shanfield, K., Hayes-Jackson, S., 
Aisen, M., Heck, C., Liu, C., & Andersen, R. A. (2015). Decoding motor imagery from 
the posterior parietal cortex of a tetraplegic human. Science (New York, N.Y.), 348(6237), 
906–910. https://doi.org/10.1126/science.aaa5417 

Coallier, É., Michelet, T., & Kalaska, J. F. (2015). Dorsal premotor cortex: Neural correlates of 
reach target decisions based on a color-location matching rule and conflicting sensory 
evidence. Journal of Neurophysiology, 113(10), 3543–3573. 
https://doi.org/10.1152/jn.00166.2014 

Degenhart, A. D., Bishop, W. E., Oby, E. R., Tyler-Kabara, E. C., Chase, S. M., Batista, A. P., 
& Yu, B. M. (2020). Stabilization of a brain–computer interface via the alignment of 
low-dimensional spaces of neural activity. Nature Biomedical Engineering, 4(7), 672–685. 
https://doi.org/10.1038/s41551-020-0542-9 

Haghi, B., Kellis, S., Shah, S., Ashok, M., Bashford, L., Kramer, D., Lee, B., Liu, C., Andersen, 
R. A., & Emami, A. (2019). Deep Multi-State Dynamic Recurrent Neural Networks Operating 
on Wavelet Based Neural Features for Robust Brain Machine Interfaces [Preprint]. 
Neuroscience. https://doi.org/10.1101/710327 

Majumdar, C. (2018, May 29). Dimensionality Reduction Using Factor Analysis. Medium. 
https://medium.com/@chiranjit7/dimensionality-reduction-using-factor-analysis-
8aa754465afc 

National Spinal Cord Injury Statistical Center. (2021). Facts and Figures at a Glance. University of 
Alabama at Birmingham. 

Norman, S. L., Maresca, D., Christopoulos, V. N., Griggs, W. S., Demene, C., Tanter, M., 
Shapiro, M. G., & Andersen, R. A. (2020). Single Trial Decoding of Movement Intentions 
Using Functional Ultrasound Neuroimaging [Preprint]. Neuroscience. 
https://doi.org/10.1101/2020.05.12.086132 

Shah, S., Haghi, B., Kellis, S., Bashford, L., Kramer, D., Lee, B., Liu, C., Andersen, R., & 
Emami, A. (2019). Decoding Kinematics from Human Parietal Cortex using Neural 
Networks. 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), 
1138–1141. https://doi.org/10.1109/NER.2019.8717137 



 

 

43
Sussillo, D., Stavisky, S. D., Kao, J. C., Ryu, S. I., & Shenoy, K. V. (2016). Making brain–

machine interfaces robust to future neural variability. Nature Communications, 7(1), 
13749. https://doi.org/10.1038/ncomms13749 

 


