
Stabilization of Brain-

Machine Interface Systems

via Alignment to Baseline

Thesis by

Tara S. Porter

In Partial Fulfillment of the Requirements for

the degree of

Bachelor of Science in Electrical Engineering

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2021

June 11, 2021

 ii

 2021

Tara S. Porter
ORCID: 0000-0002-2145-9019

 iii
ACKNOWLEDGEMENTS

I would like to thank Benyamin Haghi for his dedicated mentorship over the past school year,
meeting with me weekly and helping me to find the next direction to explore. This project would
not have been possible without his guidance and kindness.

In addition, I give my sincere thanks to Professor Azita Emami for the opportunity to work in
her lab with her students, and for trusting me with this excellent opportunity to learn and grow.

Finally, I would like to thank the whole BMI subgroup of the Emami and Andersen labs for
their guidance and support each week and throughout the year – Dr. Spencer Kellis, Dr. Tyson
Aflalo, Dr. Sahil Shah, Steven Bulfer, and Kelly Kadlec.

 iv
ABSTRACT

Research in the brain-machine interface has the potential to transform the lives of individuals

with limited motor capabilities to allow for greater independence. By directly accessing signals

in the brain, it is possible to train a decoder to identify intended motion and allow the user to

control a prosthetic limb or computer cursor by simply thinking about the motion. However,

neural data recorded from implanted electrodes is highly unstable over time and across

multiple sessions, leading to a severe drop in decoding performance as the test data becomes

more distant from the data on which the decoder was trained. Here, we investigate a method

to stabilize neural spike data from human trials of a center-out cursor control task before it is

passed to a linear decoder, using the techniques of factor analysis and Procrustes alignment.

We find that for highly variable human neural data from experiment dates that are far apart,

the method does not help the decoder better predict cursor kinematics. However, when factor

analysis weights are averaged over multiple baseline days, the performance of the decoder

significantly increases with Procrustes alignment, which gives a promising method to limit

recalibration and retraining of neural decoders by prolonging their higher accuracy

performance over time.

v
TABLE OF CONTENTS

Acknowledgements…………………………………………………………... . iii
Abstract ………………………………………………………………………iv
Table of Contents……………………………………………………………. .. v
Chapter 1: Introduction .. 1
Chapter 2: Background ... 3

2.1 Key Concepts ... 3
2.2 Description of Data ... 7
2.3 Foundational Work: Degenhart et. al 2020 ... 9

Chapter 3: Decoding Kinematics with Baseline Alignment 12
3.1 Preliminary Analysis .. 12
3.2 Replication of Foundational Work ... 16
3.3 Investigating the Effect of Alignment ... 18
3.4 Further Exploration: Average Baseline ... 32

Chapter 4: Conclusion .. 40
Bibliography .. 42

1
C h a p t e r 1

INTRODUCTION

Each year, around 17,900 new spinal cord injuries (SCI) occur. Overall, it is estimated that

300,000 people in the United States are living with such injuries, with only 0.6% maintaining

normal motor function. Most patients with SCI struggle with complete or partial paralysis of

the limbs (National Spinal Cord Injury Statistical Center, 2021). One proposed mechanism to

help patients struggling with paralysis gain more independence is the brain-machine interface

(BMI). A BMI refers to a system that is capable of harnessing information from the brain to

control an external software or hardware device, such as a computer cursor or prosthetic limb.

By tapping into the signals produced by the brain, a whole world of possibilities opens with the

potential to allow paralyzed individuals to control assistive technology by simply thinking

about it.

Recent discoveries in BMI have pointed to the idea that neural activity lies in a low-dimensional

space, termed the neural manifold (Coallier et al., 2015; Degenhart et al., 2020). This surface, or

neural manifold, has axes representing the activity of individual neurons within the population,

and it is typically obtained using techniques of dimensionality reduction. Dimensionality

reduction in the context of BMI refers to a group of techniques that isolate the dominant

patterns of covariance between neurons to summarize a majority of the neuronal population

activity within fewer variables (Coallier et al., 2015). For example, we can use the technique of

factor analysis to reduce the dimensionality of our neural data from 192 dimensions (one

dimension for each electrode channel) down to just 25 dimensions that capture the majority of

the variability on a lower-dimensional surface contained within the full neural space. This

projection of the neural data onto the low-dimensional manifold helps to stabilize decoder

performance over time.

Even with dimensionality reduction, a major challenge in the BMI field is the great variation in

the recorded neural data from day to day, which makes it difficult to train a decoder on an earlier

2
day and to maintain accurate performance far into the future. While certain neural network

architectures such as recurrent neural networks have been shown to be promising as BMI

decoders, there remains the challenge of instability over time due to neuronal death, shifting of

electrode positions within the brain, noisy channels, and whether the participant is feeling tired

or distracted on a given day. Because of these various factors, we find that one day, a single

electrode may be highly correlated with the intended motion. The next day, it may read noise.

Naturally, the instability of neural data poses a great challenge for being able to accurately decode

cursor kinematics over time. Here, we seek to recover a more stable version of the neural data

which, when used to train the decoder, will allow for higher performance over time in decoding

kinematics.

In this work, we address the problem of instability using real neural data from two tetraplegic

human participants performing a center-out cursor control task (Figure 2). During the

experiments, the participants control a cursor’s movement from a central circular target on a

computer screen to one of eight peripheral targets selected semi-randomly and located

equidistantly around a unit circle. The kinematics data for the cursor is recorded over time as

positions and velocities in two dimensions (𝑥, 𝑦, 𝑣௫ , 𝑣௬), and this data is paired with the

implanted electrode readings of neuron firings (neural spike data). We perform our analysis using

a linear decoder as a simple model of a BMI decoder, which is trained on the neural spike data

using the kinematics data as ground truth labels. We investigate methods to stabilize the

decoder’s performance over time by preprocessing the neural data before passing it to the

decoder. Using factor analysis to reduce the dimensionality of the neural data, we then align the

future dataset to a baseline dataset on which the linear decoder is trained. We examine the effect

of alignment to a baseline on the ability of the decoder to predict intended cursor movement

over time.

3
C h a p t e r 2

BACKGROUND

2.1 Key Concepts

Brain-machine interface (BMI). Also called a brain-computer interface, this refers to a system

that is capable of translating neural data to a software or hardware output (Figure 1). It is often

used with assistive technology, allowing individuals with paralysis to control prosthetic limbs or

computers using brain signals. Here, we study the use of brain-machine interfaces to decode

cursor kinematics from a center-out cursor control task.

Figure 1. Basic building blocks of a brain-machine interface. First, raw neural data is acquired, and features such as
spike counts are extracted from it. The features are then stabilized or transformed in some way and passed to the
decoder to predict the intended motion based on the neural signal.

The first step of a brain-machine interface system is the acquisition of raw neural data. Implanted

electrodes are commonly used to read in signals from neuron firings. Promising new research

instead uses ultrasound data from blood flow in the brain as input to a BMI (Norman et al.,

2020), though this field of research is quite new. In this study, we stick to electrode data from

two 96-channel electrode arrays implanted in the brains of human participants, giving a total of

192 channels of raw broadband data from the brain. The optimal location for placement of the

electrode arrays has been the subject of study, but recent work has shown that the posterior

parietal cortex (PPC), a brain region responsible for movement planning, contains valuable

information to help produce control signals for neural prosthetics (Aflalo et al., 2015) and

computer cursor movement (Shah et al., 2019).

4
The next building block is the extraction of features from raw neural data. Features can be as

simple as threshold-crossings or spike counts within each time count (e.g., 50-millisecond bin),

or more complex representations of the neural data such as wavelet transforms. In this study,

we use neural spike data, which is obtained from thresholding the raw data to count the number

of spikes within each bin. The spike count has corresponding velocity data that is used to train

the decoder to ultimately predict the kinematics based only on the neural spike data.

The intermediate building block before passing data to the decoder is feature selection. This step

is the main focus of our study. We investigate methods of transforming and aligning the neural

features before they are decoded in an effort to stabilize the performance of the decoder over

time. At this step, we apply factor analysis and the Procrustes algorithm (see below) to reduce

the dimensionality of the neural data and align it to a baseline day.

Finally, the data is passed to a decoder that is trained to predict kinematics of the cursor based

on the transformed and aligned neural spike data. Choice of decoder is another area with a lot

of ongoing research. A standard model for a decoder is the Kalman filter, which linearly models

the relationship between the kinematics and neural data (Shah et al., 2019). The most promising

decoders have come from machine learning architectures such as deep neural networks (DNNs)

and recurrent neural networks (RNNs), including those with Long Short-Term Memory

(LSTM), which have proven most effective of all in predicting kinematics over time (Shah et al.,

2019). Deep recurrent neural networks also perform well with BMI systems (Haghi et al., 2019;

Sussillo et al., 2016). In this study, we use a simple linear decoder to examine the dynamics over

time. The end goal of a BMI is to have a trained decoder that is then able to predict intended

motion for days after it has been trained based solely on neural data.

Linear decoder. A linear decoder translates neural signals to predicted kinematics using linear

regression. In linear regression, data is assumed to have a linear relationship with the label or

ground truth. In the case of these experiments, neural spike data 𝑢௜ from each of the 𝑑 electrode

channels are mapped to the corresponding velocity labels 𝑓 with learned weights 𝛽. The weights

are trained using the Python linear regression function, which solves the following equation:

5

𝑓 = 𝑢ଵ ⋅ 𝛽ଵ + 𝑢ଶ ⋅ 𝛽ଶ + ⋯ + 𝑢ௗ ⋅ 𝛽ௗ + 𝜖

For 𝑚 timepoints and 𝑑 = 192 electrodes, the dimensions for the kinematics data are 𝑓ଶ×௠

(containing velocities for both 𝑥 and 𝑦 directions at each timepoint) and for the neural data they

are 𝑢ଵଽଶ×௠ (containing the voltage reading at each timepoint from all 192 electrode channels

implanted in the brain).

It is important to note that for the purposes of this study, we have used a very simplified decoder

relying only on linear regression rather than a more sophisticated neural network model. While

the simpler model has overall lower levels of decoding accuracy, we are still able to gain insight

into the effect of alignment on decoding accuracy by comparing the relative 𝑅ଶ values over time.

Factor analysis (FA). Factor analysis is a technique of dimensionality reduction. Broadly,

dimensionality reduction techniques in the context of BMI are used to find a low-dimensional

representation of high-dimensional neural data that condenses the information based on how

neuron firing rates covary. Factor analysis more specifically is a linear technique that assumes

that latent variables exist to account for correlations among observed variables. With FA, we try

to capture the maximum variability of the data with the fewest latent variables, where each

variable has as little overlap as possible (Majumdar, 2018). Mathematically, we can define FA

with the following equation:

𝑢 − 𝜇 = Λ ⋅ 𝑧 + 𝜖

where 𝑢 is the neural spike data from all electrode channels, 𝜇 is the vector of its means, Λ is

the matrix of factor analysis weights, or loadings, that define the relationship between the raw

data and its latent factors, 𝑧 is the matrix of latent factors, and 𝜖 is an error term.

FA takes 𝑑-dimensional data and reduces the number of dimensions to a smaller number of

dimensions 𝑛. For example, our neural data has 𝑑 = 192 dimensions when it is taken directly

6
from the 192 electrodes, with 𝑚 timepoints. If we apply factor analysis with 𝑛 = 25 factors,

we obtain a new transformed dataset 𝑧ௗ×௡ from the following:

𝑢ௗ×௠ − 𝜇ௗ = Λௗ×௡ ⋅ 𝑧௡×௠ + 𝜖

where the neural data 𝑢 is 192 × 𝑚, the FA loadings Λ are 192 × 25, and the latent variables

𝑧 are 25 × 𝑚. So, by using the new 𝑧 rather than 𝑢, we have effectively reduced the dimension

of the data from 192 to 25 while maintaining most of its variability.

In practice, we use the factor_analyzer package in Python, which learns the weights Λ from 𝑢.

We can then use the weights to transform 𝑢 into the latent variables 𝑧, and train the decoder on

𝑧 as the neural data input.

Procrustes problem. The Procrustes problem is an optimization problem that solves for a

rotation matrix to align a second matrix Λଶ to a baseline matrix Λଵ by minimizing the square of

the 𝑙ଶ norm. Formally, it is defined by the following equation:

𝑂෠ = 𝑎𝑟𝑔𝑚𝑖𝑛ை:ைை೅ୀூห|Λଵ − Λଶ𝑂்|ห
ଶ

Here, 𝑂෠ ∈ ℝ௡×௡ is an orthogonal matrix with the same dimensions as the number of latent

variables 𝑛 in factor analysis. We test this algorithm using data from the human participants on

different days. For example, if we want to align data from day 5 to day 1, we apply factor analysis

to data from day 1 and train the linear decoder on the 𝑧ଵ obtained from FA. Then we want to

test the decoder on the future day, so we apply FA to day 5 to obtain the loading matrix Λହ, and

then we rotate the factor analyzer’s weights to better align to the baseline using Λହ
ᇱ = Λହ ⋅ 𝑂෠்,

where 𝑂෠ is found using Procrustes with Λଵ as the baseline. We then use FA with aligned weights

to transform the neural data 𝑢ହ to the lower dimensional 𝑧ହ
ᇱ and input this 𝑧ହ

ᇱ to the linear

decoder to test its performance in predicting cursor kinematics.

7
𝑹𝟐 Accuracy Metric. 𝑅ଶ accuracy is defined as the square of the correlation coefficient, which

corresponds to how well the linear decoder’s velocity predictions change with the ground truth.

𝑅ଶ values range from 0 to 1, with 1 indicating that the prediction perfectly matches the ground

truth (or is the exact negative of the ground truth), while a value of 0 indicates that there is

absolutely no correlation. For this study, we use a combined 𝑅ଶ metric to measure the accuracy

of the linear decoder; to account for both 𝑥 and 𝑦 dimensions, we define the combined accuracy

as

𝑅௖௢௠௕௜௡௘ௗ
ଶ = ඨ

(𝑅௫
ଶ)ଶ + (𝑅௬

ଶ)ଶ

2

which relates to the average 𝑅ଶ accuracy from both directions of motion.

2.2 Description of Data

Dataset 1: 2019, Patient 1

Throughout this study, we use neural spike data from 12 days in 2019 (Table 1) taken from

two 96-channel electrode arrays implanted in the brain of a tetraplegic patient from Rancho

Los Amigos National Rehabilitation Center.

Day Name Actual Experiment Day (YYYYMMDD)
Day 1 20190125
Day 2 20190215
Day 3 20190314
Day 4 20190402
Day 5 20190507
Day 6 20190625
Day 7 20190723
Day 8 20190806
Day 9 20190820
Day 10 20191008
Day 11 20191115
Day 12 20191217

Table 1. Conversion table showing the day name and the actual date of the experiment during which that day’s
data was collected from the patient. Throughout the study, we refer to the dates with the designated day name.

8
Patient 1 is a 54-year-old tetraplegic human research participant. The patient had Utah

electrode arrays implanted into the hand-knob of the motor cortex and the superior parietal

lobule of the posterior parietal cortex (Neuro-Port, Blackrock Microsystems). Both arrays had

96-channels each, giving a total of 192 channels from which broadband data was sampled at a

frequency of 30,000 samples per second.

During the experiment, the participant performed the center-out task where they moved a

cursor in the x-y directions on a computer screen outward from a central target to one of 8

outer targets situated around a circle and back to the center (Figure 2). Each trial is defined to

be one trajectory outward to a target or inward back to the central target. The cursor’s

movement across the screen is updated every 30 milliseconds, and the patient typically

imagines moving the cursor for blocks of around three minutes. Trajectories were extracted

from the trials at the point 200 milliseconds after the target had been presented up until 100

milliseconds before the cursor overlapped with the target in an attempt to isolate when the

participant’s intent was most well-defined. Neural features were then regressed against cursor

velocity, which was modeled as a constant for simplicity. Data for this research participant was

collected over 22 sessions containing 44 blocks of trials. 12 of these sessions (scattered across

2019) were used in the following analysis.

Figure 2. Center-out cursor experiment setup. Semi-randomly selected outer targets light up in red, and the
participant thinks about moving the cursor from the central target to the outer target roughly along the blue
trajectory, for example.

After an initial period of calibration during which the computer controls the cursor to move

to different targets while the participant imagines controlling it, the research participant then

9
switches to controlling the cursor themself with signals from the brain as they imagine

moving a joystick in the direction of the target, for example. From the calibration, it is possible

to decode the movement intention from brain signals in the short timescale of the experiment

so that the participant is able to control the cursor in the open loop. It is signals from these

open-loop trials when the participant was controlling the cursor that we use in our analysis to

explore methods of maintaining decoder performance over longer timescales.

Data Preprocessing

Very little is done to the raw data in terms of preprocessing. The raw neural data (.NEV) from

the electrodes is simply processed to have zero mean and a standard deviation of 1, and then

the NEV file is converted to a MATLAB file containing all the trials for a particular day, along

with the kinematics of motion (velocities in the x and y direction corresponding to each

timepoint of neural signal recordings). The MATLAB file is then read into Python and the

neural spike data (𝑢) and kinematics data (𝑓) are used in the following analysis as the decoder

input and ground truth, respectively.

2.3 Foundational Work: Degenhart et al., 2020

The research presented in this thesis is based on the methods of a previous study to stabilize a

BMI decoder over time (Degenhart et al., 2020). The authors of the study proposed a method

of stabilizing neural threshold crossing data using factor analysis and alignment of neural

manifolds via the Procrustes algorithm. An overview of the methods is presented below.

The authors recorded neural data from a 96-electrode array (Blackrock Microsystems) implanted

in the primary motor cortex of two male Rhesus macaques. The monkeys performed a center-

out cursor task during which they were given 7.5 seconds to reach a target selected from 8 screen

locations with the cursor.

A manifold-based stabilization method was then proposed for improving the stability of neural

signals over time. The researchers leveraged the tendency of neural signals to lie in a lower-

10
dimensional manifold. By applying techniques of dimensionality reduction, it is possible to

map the raw neural threshold crossings data to a lower-dimensional latent space. In this study,

the technique of factor analysis was used.

For factor analysis, the latent space variable 𝑧 is assumed to be normally distributed, with a

matrix of weights Λ that map the latent variable back to the original neural data 𝑢 such that

𝑢 − 𝜇 = Λ ⋅ 𝑧 + 𝜖 . This study uses 𝑛 = 10 factors, meaning that the latent variables 𝑧 ∈ ℝଵ଴.

Furthermore, for 𝑞 electrodes recording the neural data contained in 𝑢, we have that 𝑢 ∈ ℝ௤

and thus Λ ∈ ℝ௤×ଵ଴.

This work used 𝑞 = 75 electrodes in non-overlapping 45 ms bins. The neural data 𝑢 was

formed from threshold crossings over these electrodes. Then, given the weights matrices

Λଵ and Λଶ obtained from performing factor analysis on two different blocks of trials, the

researchers used the Procrustes algorithm to align the coordinate systems of the two

manifolds. The Procrustes method solves the following optimization problem for 𝑂෠ ∈

ℝଵ଴×ଵ଴:

𝑂෠ = 𝑎𝑟𝑔𝑚𝑖𝑛ை:ைை೅ห|Λଵ(𝑠, :) − Λଶ(𝑠, :)𝑂்|ห
ி

ଶ

where 𝑠 represents the indices of stable electrodes used in the study. After calling the Procrustes

function, the second day’s weights are aligned to Λଵ by multiplying by the rotation matrix. So

the newly aligned weights are Λଶ
ᇱ = Λଶ ⋅ 𝑂෠்.

To identify the stable electrodes making up 𝑠, the authors describe two main steps. First, they

manually removed channels with 𝑙ଶ norms in either day that were less than a predefined

threshold 𝑇. To do so, they took the 𝑙ଶ norm of Λଵ and Λଶ (where each row corresponds to an

individual channel) and removed the channels from consideration if that row of the norm from

either day was below 0.01 counts per bin. 𝑇 = 0.01 was set to be larger than the smallest

observed norm for low-noise electrodes.

11
Next, the researchers iteratively removed channels from consideration in order of how poorly

they aligned with the baseline day 1’s weights matrix, Λଵ. First, they chose the number of

channels 𝐵 that they wanted to keep as the largest possible value that excluded electrodes with

severe instabilities (𝐵 = 60 for this study). Next, they iteratively performed Procrustes

alignment of day 2 with day 1, each time removing the channel from 𝑠 based on the row that

had the largest 𝑙ଶ norm entry in Λଵ(𝑠, :) − Λଶ(𝑠, :)𝑂෠். In other words, they removed the

channel that was furthest from Λଵ after alignment had been performed.

In this study, the authors manually added instabilities to their data in the form of unit dropouts,

baseline shifts, and tuning changes. Due to the simpler nature of having used predictable

simulated instability data, we chose to investigate the efficacy of the above-described stabilization

method on real human data, with real instabilities arising from physical phenomena such as

electrodes shifting in the brain, neurons dying, and thoughts and neural signal strength changing

from day to day. These signals can be much less stable and more difficult to decode, especially

over long distances in time. In our study, we test whether the methods of Degenhart et al. (2020)

work with our unstable human data.

12
C h a p t e r 3

DECODING KINEMATICS WITH BASELINE ALIGNMENT

3.1 Preliminary Analysis

Given that the stabilization methods of Degenhart et. al (2020) namely rely on single channels

considered individually and removed iteratively, we performed some preliminary investigations

on our real human data to understand how channels compared to one another.

Single-Channel 𝑹𝟐 Analysis

To begin, we performed an analysis of the accuracy of each individual electrode channel. To do

so, we trained a linear decoder in Python on data from each of the 192 channels separately for

a given day. We used 88% of the data to train and 12% to test. We then calculated the testing

data 𝑅ଶ value with five-fold cross validation. The errors for 𝑥 and 𝑦 directions were calculated

separately for each channel.

We found that the 𝑅ଶ values across all channels for a given day do not typically reach a value

higher than 0.2, while most channels’ 𝑅ଶ values are clumped closer to zero (Figure 3). These

results indicate that a single channel does not contain very much predictive power, but

certain channels have more ability to predict cursor kinematics than others on a single day.

Figure 3. An example distribution of 𝑅ଶ values from single channels on a single day in the x-direction (left)
and y-direction (right).

13
At this point, it is worth investigating that some channels are stronger than others at

predicting kinematics, which could potentially support the method of iteratively removing

weaker channels from the data before training the decoder as described in the foundational

work.

Factor Analysis with Channel Selection

Next, we investigated the effect of factor analysis with different numbers of factors 𝑛 (with 𝑛

ranging from 5 to 185) on the accuracy of the linear decoder. As a comparison, we first directly

trained a linear decoder on individual days with raw neural spike data (𝑢) paired with 𝑣௫ , 𝑣௬

labels of velocity kinematics data (𝑓). We then applied factor analysis with varying numbers of

latent factors to transform the spike data from the 192 channels to latent variables 𝑧 (where

𝑢 − 𝜇 = Λ ⋅ 𝑧 + 𝜖), and trained the linear decoder with 𝑧 instead of 𝑢, labeled with velocities

𝑓.

The above process was repeated in three different scenarios: first, passing all 192 channels to the

factor analyzer. Second, passing only the top 100 channels. And finally, passing only the top 50

channels (Figure 4). Channels were ranked based on their single-channel 𝑅ଶ values obtained

from training the linear decoder on each channel individually. The channels were all sorted by

their 𝑅ଶ values, and those with the highest accuracies were selected as the top 𝑀 channels (for

𝑀 = 100 and 𝑀 = 50). Accuracy was measured as the combined 𝑅ଶ value from both

coordinate directions based on the linear decoder’s predictions on a subset of 12% of the data

for each day.

14

15

Figure 4. Graphs of each of the 12 days in 2019 used in this study. The graphs show the accuracy of the linear
decoder trained on the latent variables 𝑧 obtained from factor analysis on the top 𝑀 channels with varied number
of factors 𝑛 from 5 to 185. The horizontal lines show the basic threshold that factor analysis must cross in order
for the linear decoder trained from latent variables to perform as well as the one trained on raw spike data 𝑢.

The results indicate that much of the information that is important for decoding the kinematics

is contained in a lower number of channels than all 192. In particular, most days show that the

16
top 100 channels perform equivalently or even better than all 192 channels after factor

analysis. This would suggest that some of the channels negatively impact the accuracy of the

decoder, and it may then be beneficial to remove channels such as in the approach of Degenhart

et al. (2020). Furthermore, when all channels are used, this analysis suggests that 25 factors are

sufficient in almost all cases to achieve or exceed the limit of accuracy when no factor analysis

is performed to reduce the dimensionality of the data. Finally, we conclude that 50 channels

would not be sufficient to capture enough information to decode the motion at the highest

possible level.

In summary, in this section we found that some channels are more important for decoding the

kinematics than others, and that 𝑛 = 25 factors is sufficient for most of our 12 days in 2019 to

maintain or exceed the performance of the linear decoder with no factor analysis. Furthermore,

the most important information is contained in a smaller subset of the channels than all 192,

making channel removal a potentially feasible method of stabilization. Using the optimal

parameters that we determined above, we can now test the methods of Degenhart et. al (2020)

directly on our data.

3.2 Replication of Foundational Work

We tested the methods of Degenhart et al. (2020) to stabilize the decoder with factor analysis

and Procrustes alignment on our human data. If the alignment works, we expect that after

channel removal by the iterative Procrustes alignment algorithm presented in the foundational

work, the decoder will perform better over time than without alignment.

Channel Removal by Thresholding

The first method described by Degenhart et al. (2020) for identifying the most stable channels

in the data involves manually removing channels for which the 𝑙ଶ norm within the FA weights

matrix is below the threshold 𝑇 = 0.01. We took the norm of each individual row in Λଵ and Λ௜

for 𝑖 ∈ [2,12]. In the foundational procedure, any row for which this norm was below 𝑇 in

17
either weights matrix would be removed from consideration (where each row corresponds to

a channel, i.e. an electrode). Across all 12 days in our dataset, we found that the minimum norm

was 0.06345, while the maximum norm was 0.8859. While a smaller 𝑙ଶ norm value could indicate

that the channel simply contains noise or does not read any real signals across days, we chose

not to remove any channels at this point since their norms were not as small as the threshold

𝑇 = 0.01 used in the foundational work. We also decided to take data on all channels rather

than trying to remove them at first in order to better understand the dynamics.

We plotted the distribution of single-channel 𝑙ଶ norms to find a suitable threshold for our

specific dataset (Figure 5). Rather than the original paper’s threshold of 𝑇 = 0.01, perhaps a

more suitable threshold would be 0.2 or 0.25 for manual channel removal by thresholding.

Figure 5. Histogram of 𝑙ଶ norms of individual rows in all 12 weights matrices Λ obtained from factor analysis with
𝑛 = 25 factors. The distribution suggests that a better threshold for manual channel removal may be closer to 𝑇 =
0.25 rather than 𝑇 = 0.01.

Procrustes Alignment of Channels to a Baseline

The second step in stable channel selection outlined by Degenhart et al. (2020) involves

alignment of the second day’s manifold to the baseline day using the Procrustes algorithm. To

do this, we fit a factor analyzer to the first day to obtain the weights Λଵ. We then fit a factor

analyzer to a second day 𝑖 to obtain Λ௜. Next, we called the SciPy Procrustes function to obtain

the newly aligned weights Λ௜
ᇱ = Λ௜𝑂෠

் that are aligned to the coordinate system of Λଵ. We first

tried using 𝐵 = 60 channels as the number of top channels to keep that are best aligned to the

baseline day. We also tried 𝐵 = 100 (Figure 6).

18

Figure 6. Combined 𝑅ଶ accuracy after iterative channel removal to the top B channels via Procrustes alignment
for 𝐵 = 60 channels (left) and 𝐵 = 100 channels (right).

Neither method performed as well as when all 192 channels were used. We decided to further

investigate the individual channels to better understand why this was the case, since based on

the foundational work, we would expect that after iterative channel removal the performance

would improve.

3.3 Investigating the Effect of Alignment

We investigated the tradeoff between channel stability over time and accuracy of decoding. To

do so, we looked at the 𝑙ଶ norm of individual channels within the weights matrix Λ′ after it had

been aligned to a baseline via Procrustes alignment and subtracted from the baseline weights.

Comparison of Stability from Different Baseline Alignments

First, we looked into which baseline day had the best results in stabilizing and aligning a future

date. We used a baseline selected from Day 1, Day 2, Day 3, Day 4, or the average of the first 4

days, and aligned each of Days 5 to 12 to this baseline via the Procrustes algorithm. To do so,

we fit a factor analyzer in Python to the neural data from the baseline day, and another factor

analyzer to the test day. We then called the Procrustes algorithm to retrieve a set of modified

weights for the test day that had been aligned to the baseline day. Next, we calculated the

difference between the aligned test weights and the baseline weights, Λ௜
ᇱ − Λ௕௔௦௘ and took the

19
𝑙ଶ norm to measure the degree of alignment between the two days. For the average baseline,

we took the average of all 4 baseline days as:

∑ Λ௕
ସ
௕ୀଵ

4

where each Λ௕ was obtained by fitting a factor analyzer to neural spike data from each baseline

day 𝑏.

We then plotted the 𝑙ଶ norm of the difference between the aligned weights matrix and the

baseline weights for each of the 192 channels (channels correspond to individual rows in the

weights matrices) for each day in 5 to 12 (Figure 7). We found that the baseline that minimized

the channel norm of the weights difference was the average baseline, followed by the baseline

closest in time to the dates that were aligned to it (Day 4).

20

Figure 7. Example of channel norms over Days 5 to 12 when aligned to single-day baselines (Days 1-4) and the
average baseline. These graphs were generated for all 192 channels.

We found that the norms of the difference between the baseline weights and the aligned test day

weights were consistently lower when we used the average baseline. Among single-day baselines,

we found that those days closest to the test day (Day 3 and Day 4) were most frequently the

lowest norm among the channels (Figure 8).

Figure 8. Summary of Figure 7 data, showing the average 𝑙ଶ norm of the rows of Λ୧

ᇱ − Λ௕ . This is the average
norm across the 192 neural channels across all 8 test days 5 to 12. A low 𝑙ଶ norm could indicate a higher degree of
alignment between the Procrustes-aligned test weights and the baseline.

21
A low 𝑙ଶ norm could indicate a higher degree of alignment between the Procrustes-aligned Λ௜

(where 𝑖 ∈ [5,12]) and the baseline day Λ௕ (for 𝑏 ∈ [1,2,3,4, 𝐴𝑣𝑔. 1: 4]). Excluding Day 1, we

see a downward trend in average norm across channels and test dates as the baseline day

becomes closer in time to the test dates. This indicates that it may be easier to align and stabilize

weights across days when the days are closer together in time.

Comparison Between Stability with Aligned vs. Unaligned

Next, we investigated whether the Procrustes alignment stabilized the channel difference 𝑙ଶ

norm across the test days (Days 5 to 12) compared to the norm of the difference without any

Procrustes alignment. For this part of the analysis, we chose to use the average baseline data

since it had performed best compared to all the baselines tested in the previous section. Applying

a similar process to the previous analysis, we obtained the average baseline weights Λଵ:ସ from

factor analyzers fit to the neural data from Days 1 to 4 individually. We fit another factor analyzer

to each test day in 5 to 12 to obtain the weights matrices Λ௜ for 𝑖 ∈ [5,12].

We then calculated the 𝑙ଶ norm of the difference Λଵ:ସ − Λ௜ for the unaligned version and

Λଵ:ସ − Λ௜
ᇱ for the aligned version, where Λ௜

ᇱ is the weights matrix from the factor analyzer fit to

day 𝑖’s neural spike data after the weights have been aligned via the Procrustes algorithm to the

average baseline weights. We compared the results of aligned vs. unaligned 𝑙ଶ norms in the

graphs below (Figure 9).

22

Figure 9. Comparison between the 𝑙ଶ norm (y-axis) of the unaligned difference of weights matrices versus aligned
difference of weights across test days 5 to 12 (x-axis). The Procrustes alignment tends to stabilize the 𝑙ଶ norm across
days and minimize its value compared to the unaligned norms, which suggests a higher degree of alignment to the
baseline.

23
We found that the Procrustes alignment visibly reduces the variability across days of the 𝑙ଶ

norm for each channel, compared to the variation that we see in with the unaligned norms. In

addition, in many cases the stabilized, aligned norm has a lower average value than the unaligned

norm. This suggests that the Procrustes alignment not only serves to stabilize the weights across

days, it also minimizes the difference between the baseline and corresponding aligned weights

compared to the unaligned difference, which could lead to greater stability in performance after

alignment.

𝑹𝟐 Performance of Channels Across Test Days

We investigated the effect of individual channels on decoding accuracy across all 8 test days

(Days 5-12). The linear decoder was trained on data from the single channel on each day

individually. We then plotted the 𝑅ଶ accuracy for each channel, on each day (Figure 10). We

observed that while many channels remained consistently poor at predicting the kinematics

behavior across the test days, certain other channels seemed to have spikes in accuracy on a few

specific days, but did not remain consistently significant for predicting kinematics behavior

across all days. This suggests that at this timescale of days, where in reality there is an average of

30 days between each “Day,” any given channel will not necessarily be a good channel across

multiple consecutive “Days.” Those channels which are not noise channels only have certain

high-𝑅ଶ days interspersed across all the days. This suggests that the approach of Degenhart et

al. (2020) of removing channels that are not well aligned to the baseline is likely to fail at large

timescales, since channels do not have stability across days in terms of decoding accuracy but

rather have sporadic spikes in 𝑅ଶ.

24

Figure 10. Example graphs showing the 𝑅ଶ accuracy of the linear decoder when trained on a single channel across
Days 5 to 12 (the test days). Each graph represents the performance from a single channel and its significance in
helping the linear decoder to decode kinematics on each day.

We can see that a lot of channels have almost no impact on the decoding across all days, while

others seem to spike only for certain days. Very few remain consistently significant. Based on

the above results, we find that a bad channel on one day can easily be one of the more important

25
channels on the next day, so it could be detrimental to remove this channel from the dataset

used to train or test the decoder.

Accuracy-Stability Tradeoff

Next, we examined the tradeoff between stability and accuracy by comparing the top channel in

accuracy and the top channel in stability. The channel with the maximum single-day 𝑅ଶ accuracy

was Channel 22 (accuracy around 0.29 on Day 5). This channel also has a comparatively high

level of linear decoding accuracy on other days, including Day 7 and Day 12. However, the 𝑙ଶ

norm between test days and baseline weights from the average baseline (Figure 11 in purple) is

at a higher value than it is for other channels (Figure 7), indicating that the channel is not as well

aligned to the average baseline as other channels are.

Figure 11. 𝑅ଶ accuracy (left) vs. 𝑙ଶ norm aligned to different baselines (right) across all 8 test days (Days 5-12).
Channel 22 has the highest 𝑅ଶ single-channel decoding accuracy, but the 𝑙ଶ norm indicates a relatively low degree
of alignment to the baseline across all test days with a norm around 0.3.

On the other hand, the channel with the lowest average 𝑙ଶ norm across test days aligned to the

average baseline was Channel 142 (Figure 12). Although the channel seems to have a high degree

of alignment to the baseline and stability across the test days, it is clear from the 𝑅ଶ graph that

this channel is merely noise and contains almost no real information to help the linear decoder

accurately decode kinematics across the test days.

26

Figure 12. 𝑅ଶ accuracy (left) vs. 𝑙ଶ norm aligned to different baselines (right) across all 8 test days (Days 5-12).
Channel 142 has the lowest average baseline 𝑙ଶ norm across all test days, indicating the highest degree of alignment
between the baseline and each test day, or in other words, the highest level of stability. However, the 𝑅ଶ accuracy
indicates very low significance of the channel in kinematics decoding. The channel may simply contain noise.

Based on the two example channels considered in this section, there seems to be a tradeoff

between stability and accuracy of channels over time. Although the channel with the highest 𝑅ଶ

accuracy contains useful information for the decoder to predict kinematics based on neural spike

data, it has poor stability and alignment to the average baseline. Similarly, although the channel

with the lowest 𝑙ଶ norm in Λ′௧௘௦௧ ௗ௔௬ − Λ௕௔௦௘ has a high level of stability and alignment to the

baseline, it has very poor accuracy performance and appears to only contain noise that is

irrelevant to the decoding of kinematics.

Effect of Alignment to Baseline on Training

To verify whether the Procrustes alignment helps the decoder to perform better over time, we

compared the performance of the linear decoder in four distinct scenarios, all with factor analysis

using 𝑛 = 25 factors:

1. Trained and tested on same test day, no alignment to baseline day: The linear

decoder was trained on 88% of the factor-analysis-transformed 𝑧 for a given day

(𝑢ଵଽଶ − 𝜇 = Λ ⋅ 𝑧ଶହ + 𝜖), and the linear decoder predictions were tested on a different

segment of 12% of the remaining data from that day that was not used for training.

2. Trained and tested on same test day, with alignment to baseline day: The linear

decoder was trained on the Procrustes-aligned version of the transformed 𝑧 for a given

27
day, which had been aligned to the weights of the baseline day. The decoder was again

tested on the remaining data for the same day.

3. Trained and tested on different days, no alignment to baseline day: The linear

decoder was trained on the factor-analysis-transformed data from the baseline day and

tested on the test days (Day 5 to 12) data that had been transformed with its own factor

analyzer (no alignment to the baseline day).

4. Trained and tested on different days, with alignment to baseline day: The linear

decoder was trained on the transformed 𝑧௧௥௔௜௡ of the baseline day and tested on the test

day after alignment to the baseline. To align to the baseline, a factor analyzer was first fit

to test day spike data, and the weights were extracted. The Procrustes algorithm was

then called in Python to align the test weights to the baseline day weights. The new,

aligned test weights were then set as the weights of the factor analyzer before

transforming the test data to 𝑧௧௘௦௧
ᇱ and testing the performance of the linear decoder that

had been trained on the baseline.

Using Day 1 as the baseline, we trained and tested the linear decoder according to the four

scenarios described above (Figure 13).

Figure 13. Left: Scenario 1 is shown in blue, while scenario 2 is shown in orange. When the linear decoder is tested
and trained on the same day, it tends to perform much better than when it is trained on an earlier day than when it
was tested. The process of aligning the weights to the baseline day has little to no effect. Right: Scenario 3 is shown
in blue, while scenario 4 is shown in orange. When the linear decoder is trained on Day 1 and tested on the later
days, the unaligned test days tend to perform at higher accuracy than those aligned to the baseline day, though both
scenarios give extremely low accuracy on most days.

28
Based on these 12 days from the year 2019, it is evident that it infeasible to train the linear

decoder on any day besides the day it is being tested on for this particular dataset. Even with the

alignment of the test day’s weights to the baseline weights before the factor analysis transform

is applied, there is almost never an improvement in the decoding accuracy if the linear decoder

has only been trained on the baseline day. In fact, on most days, the transformed data that has

not been aligned to the baseline weights performs better than the aligned data (Figure 13, Right).

The only day in which the aligned data performs significantly better than unaligned data is on

Day 2, which is the closest day to the baseline. This suggests that the Procrustes alignment

method could help the decoder to more accurately decode kinematics based on neural signals

over time provided that the time difference between the days is relatively small. When the

decoder was trained on Day 1 and tested on Day 2 data that had been aligned to Day 1 via

Procrustes, we do see a notably higher performance than the test on Day 2 without alignment.

Still, the accuracies in all cases when the decoder was trained and tested on a different day are

very low, and it is difficult to come to a conclusion about the effect of the Procrustes alignment

based only on this dataset, where days are distributed so far from each other.

Effect of Distance Between Days

We compared the 12 days with each other pairwise to visualize the distribution of distances

between all the “Days.” The distribution of the distances between each combination of days is

plotted below (Figure 14). The average distance between consecutive “Days” is in reality 29.63

days.

Figure 14. Histogram distribution of distances (in days) between each pair of dates in the 12 2019 data days. The
mean distance between consecutive days is 29.63.

29

Based on the distribution, we split up the dates into the following groupings for further analysis

(Table 2).

14-19 days 21-28 days 32-42 days 46-56 days 77-87 days 101-105 days

14 Day 7 to 8 21 Day 1 to 2 32 Day 11 to 12 46 Day 2 to 4 77 Day 5 to 7 101 Day 8 to 11

14 Day 8 to 9 27 Day 2 to 3 35 Day 4 to 5 48 Day 1 to 3 77 Day 7 to 10 102 Day 1 to 5

19 Day 3 to 4 28 Day 6 to 7 38 Day 10 to 11 49 Day 5 to 6 81 Day 2 to 5 103 Day 3 to 6

 28 Day 7 to 9 42 Day 6 to 8 49 Day 9 to 10 84 Day 4 to 6 105 Day 5 to 9

 54 Day 3 to 5 87 Day 9 to 11 105 Day 6 to 10

 56 Day 6 to 9

Table 2. Groupings of “Days” in 2019 with the corresponding distances (in actual days) between them.

For each pair of dates (Table 2), we trained the linear decoder on the first date and tested it on

the second date, both in the unaligned case (scenario 3 above) and the aligned case (scenario 4

above). For the unaligned case, we trained the linear decoder on the transformed neural data (𝑧)

from the baseline day and tested it on transformed neural data from the test day that had been

transformed by a separate, independent factor analyzer that had not been aligned to the baseline

in any way. For the aligned case, we again trained the linear decoder on the baseline transformed

data but then tested it on the test data that had been transformed using new factor analyzer

weights that had been aligned to the baseline weights via the Procrustes function. Within each

grouping of day ranges, we averaged the performance of the linear decoder and plotted the 𝑅ଶ

accuracy with error bars showing the standard deviation within each range (Figure 15). The size

of each point is proportional to the number of days within that range, which respectively is [3,

4, 4, 6, 5, 5].

30

Figure 15. The 𝑅ଶ accuracy performance of the linear decoder, trained on a base day and tested a number of days
later, where the range of days on the x-axis shows the distance between train and test days. The points show the
average accuracy within each range of dates, where the point size represents the number of dates included in each
range. The blue points show the performance when the test day was transformed using factor analyzer weights that
had not been aligned to the training day, while the orange dots show the performance in testing accuracy when the
Procrustes alignment was applied to the weights to align them to the baseline training day.

Again, we found that the Procrustes alignment to a train day does not tend to help the linear

decoder predict on future test dates. In most cases, the aligned version performs worse on

average than the unaligned version, except within the smallest range of distances (14-19 days

between train and test date). This suggests that either the Procrustes alignment process does not

work to stabilize real neural data, or our dataset is not conducive to the method of Degenhart et

al. (2020) since the data acquisition dates are distributed so far apart, and the physical changes

to the brain and electrode positioning could lead to a huge lack of stability and reliability between

most dates.

Final Attempt: Replication of Foundational Methods with Channel Removal

As a final test, we replicated the methods of the foundational paper using the optimal parameters

we found during our previous analysis: for the 12 dates, we found that 𝑛 = 25 factors is

sufficient to meet or exceed the 𝑅ଶ performance of using all 192 channels’ data (Figure 4),

compared to the 10 factors used in the paper for 70 channels. Furthermore, using factor analysis

with 𝑛 = 25 factors, we found that a basic threshold of 𝑇 = 0.25 should be sufficient to

manually remove channels with little activity (compared to 𝑇 = 0.01 in the foundational work).

31
We chose to use this much larger threshold for manual channel removal since our real data

has many more instabilities and noise than the simulated data used in the original paper. We used

Day 1 as the baseline day and Days 2 through 12 as the test days. For each of the 12 days, we

calculated the 𝑙ଶ norm of their loading matrices Λ and removed any corresponding channels

whose 𝑙ଶ norm rows were lower than the manual threshold 𝑇 = 0.25. Next, we iteratively

removed channels down to 𝐵 = 140 total channels, at each step removing the channel whose

𝑙ଶ norm (corresponding to a row in the matrix Λ௧௘௦௧
ᇱ − Λ௕௔௦௘) was highest, which indicates the

lowest degree of alignment to the baseline. (We first aligned the weights matrix from factor

analysis to the weights of the baseline day’s factor analyzer to obtain Λ௧௘௦௧
ᇱ ,where Λ௕௔௦௘ is the

baseline weights and Λ௧௘௦௧ is the original weights for the test day before Procrustes alignment.)

After obtaining the top 𝐵 = 140 best-aligned channels to the baseline Day 1, we compared the

performance of the linear decoder when it was trained on factor-analyzer transformed 𝑧 fit to

all channel data versus factor-analyzer transformed 𝑧 fit to the truncated data of the best 140

channels based on the iterative Procrustes alignment metric. In both scenarios, we compared

the case of training and testing on data from the same day, versus training on the baseline Day

1 and testing on the future test day (Figure 16).

Figure 16. Accuracy of the linear decoder when the factor analyzer transformed data from all channels vs. data
from the top 140 channels based on the iterative Procrustes alignment process. The red line shows the result of
fitting and transforming with the factor analyzer on all 192 channels trained and tested on the same day, while the
green line shows the same scenario but trained on Day 1 for all test days and tested on the test day. Similarly, the
blue line shows the performance of the linear decoder when it was trained and tested on the same day using factor
analyzed data of the top 140 channels, while the orange line shows the same case but when the linear decoder was
trained on Day 1 and tested on each of the proceeding days.

32

Again, it is clear that this particular dataset does not lend itself well to the methods of the paper

with factor analysis and the Procrustes algorithm for alignment to a single-day baseline. In the

two cases when the linear decoder was trained on the baseline day and tested on later dates, the

performance is drastically reduced, regardless of whether the Procrustes alignment had been

applied, compared to training and testing the decoder on the same day. Even so, the Procrustes

alignment not only does not help the decoder but actually hinders it in most cases. We now

chose to move forward with a new method that incorporates multiple days into the baseline,

since we found that single-day baselines perform poorly with our data.

3.4 Further Exploration: Average Baseline

During our previous analysis, we noted that the average baseline tended to have high

performance compared to single-day baselines. Because we had observed this unique effect with

the average baseline, we investigated whether the Procrustes alignment would have a different

effect on decoding accuracy, or if it would have a similarly small or detrimental effect like single-

day baselines in helping the decoder stay accurate over time.

Single-Day Baseline Results

As a check that the foundational methods indeed were not working when the decoder was

trained on any single day and tested on all future days, we tried using every possible baseline day

and examined the performance of unaligned factor analysis with the linear decoder versus factor

analysis with alignment to the train day before inputting to the linear decoder. For each of the

12 days, we chose one day to be the baseline on which to train the linear decoder and align the

FA weights via Procrustes for the aligned case. We evaluated the performance in combined 𝑅ଶ

for both the aligned and unaligned cases for each combination of train day paired with future

test day (Table 3). The results from the first six baseline days are also plotted below (Figure 17).

33

Figure 17. Single-day baseline effect of alignment on test accuracy. We find that if a single day is used to train the
linear decoder and subsequent test days are aligned to the single-day baseline, there is no improvement in
performance. In fact, weights not aligned via Procrustes generally lead to more successful decoding, though testing
on a day that is different from the train day leads to very low accuracy in most cases.

It is clear from these results that when the linear decoder is trained on a single baseline day, the

Procrustes alignment does not help it to perform better over time. We see that the aligned case

34
actually tends to have a lower accuracy for decoding than the unaligned case, so the

foundational methods do fail in the scenario of using a single-day baseline with days that are

spaced far apart such as those in our dataset.

Train Day (unaligned)/Test Day (aligned to train day)

Test

Day/

Train

Day

Day 1 2 3 4 5 6 7 8 9 10 11 12

1 0.58 0.14 0.014 0.025 0.0020 0.018 0.0019 0.019 0.011 0.027 0.084 0.024

2 0.034 0.53 0.0048 0.0015 0.020 0.016 0.028 0.060 0.012 0.021 0.012 0.010

3 0.091 0.18 0.56 0.044 0.13 0.019 0.016 0.042 0.024 0.041 0.015 0.021

4 0.0075 0.076 0.054 0.37 0.052 0.013 0.014 0.033 0.048 0.077 0.069 0.045

5 0.030 0.054 0.098 0.052 0.60 0.0096 0.0081 0.057 0.0077 0.0012 0.041 0.0056

6 0.048 0.0042 0.048 0.040 0.087 0.43 0.0013 0.00047 0.0029 0.000025 0.015 0.034

7 0.12 0.14 0.021 0.0047 0.041 0.17 0.50 0.041 0.035 0.0071 0.0073 0.048

8 0.034 0.056 0.023 0.070 0.17 0.23 0.090 0.56 0.18 0.092 0.13 0.13

9 0.27 0.25 0.083 0.040 0.064 0.10 0.24 0.070 0.64 0.091 0.095 0.14

10 0.10 0.030 0.061 0.11 0.026 0.037 0.055 0.031 0.030 0.48 0.099 0.11

11 0.066 0.023 0.035 0.097 0.053 0.075 0.018 0.074 0.00067 0.32 0.49 0.011

12 0.0022 0.011 0.060 0.065 0.17 0.034 0.0080 0.12 0.048 0.0016 0.0099 0.55

Table 3. 𝑅ଶ values for training on a single day and testing on each of the following days. In blue, we have the results
without any alignment to the baseline, while in orange, we have the results with Procrustes alignment to the train
day. The green diagonal shows the accuracy from training and testing on the same data from the same day
(effectively, the training accuracy).

35
Table 3 illustrates that for the single-day baseline, it is not very reliable to test the decoder on

a different day from the one on which it was trained. Most 𝑅ଶ values remain below 0.1 for both

the unaligned and aligned cases, though on average the aligned accuracies are worse than the

unaligned ones, further supporting the finding that Procrustes alignment does not help the

decoder remain accurate over time for our data. It is interesting to note that certain days do beat

the trend, however; for example, when the decoder was trained on Day 1 and tested on the

unaligned Day 9, we see a significantly higher 𝑅ଶ value of 0.27. Similarly, when we trained on

Day 10, the unaligned performance when testing on Day 11 was quite high at 0.32. Along with

the finding that 𝑅ଶ values for single channels peak sporadically across days (Figure 10), this

suggests that there may be some repeatable information between certain days that helps the

decoder to more accurately predict on those days that are more closely related to the training

day. If this is the case, using an average baseline that factors in data from multiple days for

training the decoder may help to capture information that is helpful in decoding multiple

different days in a way similar to how training on Day 1 helped the decoder to better predict on

Day 9.

Two-Day Average Baseline

We moved on to test how the decoder performed when instead of a single-day baseline, we took

the average of the FA weights for two different days. For 𝑚 ∈ [1,5], we defined the average

baseline as the average of two consecutive days’ FA weights, or

Λ௔௩௚ =
∑ Λ௜

௠ାଵ
௜ୀ௠

2

We obtained each Λ௜ by applying factor analysis to Day 𝑖’s neural spike data 𝑢௜ . We then created

a factor analyzer with weights set to Λ௔௩௚ and transformed the data for both days to obtain 𝑧௠

and 𝑧௠ାଵ. With this, we created a concatenated matrix of latent variables 𝑧∗ = ቂ ௭೘
௭೘శభ

ቃ with the

corresponding kinematics data 𝑓∗ = ቂ ௙೘
௙೘శభ

ቃ. We then trained the linear decoder on 𝑧∗, 𝑓∗. We

tested on all the future days for both aligned and unaligned cases. In the aligned case, we fit a

factor analyzer to data from the test day to obtain Λ௧௘௦௧ and modified the test weights to be

36
aligned to the average baseline weights with Λ௧௘௦௧

ᇱ = Λ௧௘௦௧ ⋅ 𝑂෠் via the Procrustes function.

We then used these new weights to transform 𝑢௧௘௦௧ to 𝑧௧௘௦௧
ᇱ and predict kinematics. In the

unaligned case, we simply predicted on 𝑧௧௘௦௧ obtained from the FA weights Λ௧௘௦௧ that had no

alignment to the baseline. Figure 18 demonstrates the performance using the average weights

from each pair of days from 1 to 6.

Figure 18. Different subsets of the first six days as two-
day average baselines. Apart from when Day 1 to 2 was
used as the average baseline, the performance of the
linear decoder with Procrustes alignment (orange) vs.
without any alignment (blue) drastically improves and
remains high for many days after the average baseline
days that were used.

Except for the case where the average baseline was taken from Day 1 to 2, we see a clear

improvement in performance of the decoder over time when the test weights have been aligned

37
to the average baseline compared to when there has been no alignment of the factor analysis

weights. The graphs show that alignment to a two-day average baseline helps the decoder

perform better than the unaligned version for five to six days after the days included in the

averaged weights (where the first two points on each graph are the days included in the average).

Multi-day Average Baseline

Finally, we investigated the performance of the decoder when trained on the average baseline of

increasing size, for each of the cases starting from using just Day 1 as a baseline, the average of

the first two days as a baseline, the average of the first three days as a baseline, all the way up to

the average of the first six days as a baseline (Figure 19). To test this effect of including a different

number of days in the baseline, we calculated the average baseline as

Λ௔௩௚ =
∑ Λ௜

௡
௜ୀଵ

𝑛

for 𝑛 ∈ [2,6] and created a factor analyzer with loadings set to Λ௔௩௚. Using this factor analyzer,

we transformed the neural data for each of the days from 𝑢௜ to the lower dimensional 𝑧௜ and

concatenated the data as 𝑧∗ = ቈ
௭భ
௭మ…
௭೙

቉, also concatenating the velocity data to obtain 𝑓∗ = ൥
௙భ
௙మ…
௙೙

൩.

We then trained the linear decoder on 𝑧∗, 𝑓∗ and tested it on each of the days. In the unaligned

case, we input 𝑧௧௘௦௧ to the decoder transformed from an independent, unaligned factor analyzer.

For the aligned case, we used 𝑧௧௘௦௧
ᇱ obtained from FA transformation with weights from the test

day that had been aligned to the average baseline Λ௔௩௚ via Procrustes.

38

Figure 19. Left to right, top to bottom, we compare the performance of the average baseline from using the first
day as baseline, the average of the first two days, first three days, first four days, first five days, and first six days.
The Procrustes alignment visibly improves the performance and prolongs the decoder’s retention of higher accuracy
predictions.

As the number of days included in the average increases, so does the accuracy for the aligned

test data. The point at which the accuracy with alignment drops below the accuracy without

alignment consistently becomes a later and later date as more dates are added to the average

baseline, until at 5 to 6 days average, the aligned data outperforms the unaligned data for every

single test day. This is an exciting result, since it shows that in the case of the average baseline,

the linear decoder actually does learn enough from being trained on the average baseline-

transformed data that it can better predict the kinematics for days to come when those test days

39
are also aligned to the average baseline. This strongly supports the use of the Procrustes

alignment over factor analysis alone, as it greatly boosts the performance of the decoder when

the FA for the test day is aligned to the data on which the decoder was trained.

There are multiple possibilities for why the average baseline shows such a striking difference in

performance compared to the single-day baseline. For one, using an average baseline means the

training dataset is larger since it incorporates concatenated data from multiple days. This would

help the decoder better predict kinematics especially in the case where it had been underfitting

on the single-day data. There could also be an element of the apparent repeating patterns in the

data that make certain dates more similar to others. If multiple dates are included in the training

data via the average baseline method, it is likely that the linear decoder will learn how to predict

on a greater number of days because of the test days that are somehow related to one of the

baseline days. Another possibility is that taking the average of the weights across multiple days

better represents the major neuronal population activity such that if for one day the activity is in

a different direction than usual, the average baseline will still capture the dominant activity

patterns for most days to allow the decoder to maintain a better accuracy for many days into the

future.

40
C h a p t e r 4

CONCLUSION

In this study, we investigated the methods of Degenhart et al. (2020) to stabilize neural decoding

performance over time. The foundational work proposed a stabilization approach on data with

simulated noise using factor analysis and Procrustes alignment to a baseline day to help remove

noisy channels before decoding. However, we found that with real human data that has high

instabilities and a sparse distribution of experiment dates, the methods of the foundational work

are ineffective at improving the decoding accuracy. In fact, when we train and test the decoder

using data from different dates, the decoding performance drastically drops regardless of

alignment, indicating that the foundational methods have failed on our dataset. Additionally, we

found that single channel performance varies greatly between days, with no one electrode

channel remaining consistently significant across days. Thus, the foundational methods of

channel removal would not be effective for multi-day testing when the days are far apart.

As such, we propose a new method that builds on the foundational work. Instead of using a

single day baseline, we define an average baseline by taking the average of factor analysis weights

across multiple baseline days and aligning test data to this average baseline. When the linear

decoder is trained on the average concatenated data, we find that decoding with Procrustes

alignment of the test data greatly outperforms predictions from unaligned test data. In addition,

incorporating multiple days into the baseline prolongs the decoder’s higher performance for

many days after the training dates. In our case of sparse human data, we find that the methods

of the foundational work are effective at improving decoder performance over time provided

that the average baseline is used.

It is likely that the single-day baseline experiments presented here failed largely because of the

nature of our dataset. Because of the limitations in the current pandemic situation that make it

difficult to take new data with our specific research question in mind, we find ourselves with

data that is spaced too far apart to model typical use of a BMI. In addition, human data may be

41
more unpredictable than the simulated data used in the foundational work. However, even

though our data was not collected with the goal of our stability analysis in mind, it has led us to

an interesting conclusion about the use of an average baseline.

In all, factor analysis and Procrustes alignment provide a promising method to allow a BMI

decoder to maintain accuracy in predicting future cursor kinematics that are far away in time

based solely on neural spike data. By transforming the data and using weights aligned to an

average baseline, we find much higher decoding performance than in use of a single-day baseline

or transformation without alignment. Since this method shows such a notable improvement in

accuracy over time with a simple linear decoder, there is great potential that the method could

help even better stabilize the decoder performance and increase its accuracy when more

sophisticated deep learning models are used.

42
BIBLIOGRAPHY

Aflalo, T., Kellis, S., Klaes, C., Lee, B., Shi, Y., Pejsa, K., Shanfield, K., Hayes-Jackson, S.,
Aisen, M., Heck, C., Liu, C., & Andersen, R. A. (2015). Decoding motor imagery from
the posterior parietal cortex of a tetraplegic human. Science (New York, N.Y.), 348(6237),
906–910. https://doi.org/10.1126/science.aaa5417

Coallier, É., Michelet, T., & Kalaska, J. F. (2015). Dorsal premotor cortex: Neural correlates of
reach target decisions based on a color-location matching rule and conflicting sensory
evidence. Journal of Neurophysiology, 113(10), 3543–3573.
https://doi.org/10.1152/jn.00166.2014

Degenhart, A. D., Bishop, W. E., Oby, E. R., Tyler-Kabara, E. C., Chase, S. M., Batista, A. P.,
& Yu, B. M. (2020). Stabilization of a brain–computer interface via the alignment of
low-dimensional spaces of neural activity. Nature Biomedical Engineering, 4(7), 672–685.
https://doi.org/10.1038/s41551-020-0542-9

Haghi, B., Kellis, S., Shah, S., Ashok, M., Bashford, L., Kramer, D., Lee, B., Liu, C., Andersen,
R. A., & Emami, A. (2019). Deep Multi-State Dynamic Recurrent Neural Networks Operating
on Wavelet Based Neural Features for Robust Brain Machine Interfaces [Preprint].
Neuroscience. https://doi.org/10.1101/710327

Majumdar, C. (2018, May 29). Dimensionality Reduction Using Factor Analysis. Medium.
https://medium.com/@chiranjit7/dimensionality-reduction-using-factor-analysis-
8aa754465afc

National Spinal Cord Injury Statistical Center. (2021). Facts and Figures at a Glance. University of
Alabama at Birmingham.

Norman, S. L., Maresca, D., Christopoulos, V. N., Griggs, W. S., Demene, C., Tanter, M.,
Shapiro, M. G., & Andersen, R. A. (2020). Single Trial Decoding of Movement Intentions
Using Functional Ultrasound Neuroimaging [Preprint]. Neuroscience.
https://doi.org/10.1101/2020.05.12.086132

Shah, S., Haghi, B., Kellis, S., Bashford, L., Kramer, D., Lee, B., Liu, C., Andersen, R., &
Emami, A. (2019). Decoding Kinematics from Human Parietal Cortex using Neural
Networks. 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER),
1138–1141. https://doi.org/10.1109/NER.2019.8717137

43
Sussillo, D., Stavisky, S. D., Kao, J. C., Ryu, S. I., & Shenoy, K. V. (2016). Making brain–

machine interfaces robust to future neural variability. Nature Communications, 7(1),
13749. https://doi.org/10.1038/ncomms13749

