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ABSTRACT

In this thesis, we use statistical inference and competitive games to design algorithms

for computational mathematics.

In the first part, comprising chapters two through six, we use ideas from Gaussian
process statistics to obtain fast solvers for differential and integral equations. We
begin by observing the equivalence of conditional (near-)independence of Gaus-
sian processes and the (near-)sparsity of the Cholesky factors of its precision and
covariance matrices. This implies the existence of a large class of dense matrices
with almost sparse Cholesky factors, thereby greatly increasing the scope of appli-
cation of sparse Cholesky factorization. Using an elimination ordering and sparsity
pattern motivated by the screening effect in spatial statistics, we can compute approx-
imate Cholesky factors of the covariance matrices of Gaussian processes admitting
a screening effect in near-linear computational complexity. These include many
popular smoothness priors such as the Matérn class of covariance functions. In the
special case of Green’s matrices of elliptic boundary value problems (with possibly
unknown elliptic operators of arbitrarily high order, with possibly rough coeffi-
cients), we can use tools from numerical homogenization to prove the exponential
accuracy of our method. This result improves the state-of-the-art for solving general
elliptic integral equations and provides the first proof of an exponential screening
effect. We also derive a fast solver for elliptic partial differential equations, with
accuracy-vs-complexity guarantees that improve upon the state-of-the-art. Further-
more, the resulting solver is performant in practice, frequently beating established
algebraic multigrid libraries such as AMGCL and Trilinos on a series of challenging
problems in two and three dimensions. Finally, for any given covariance matrix, we
obtain a closed-form expression for its optimal (in terms of Kullback-Leibler diver-
gence) approximate inverse-Cholesky factorization subject to a sparsity constraint,
recovering Vecchia approximation and factorized sparse approximate inverses. Our
method is highly robust, embarrassingly parallel, and further improves our asymp-
totic results on the solution of elliptic integral equations. We also provide a way to
apply our techniques to sums of independent Gaussian processes, resolving a major
limitation of existing methods based on the screening effect. As a result, we obtain
fast algorithms for large-scale Gaussian process regression problems with possibly

noisy measurements.
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In the second part of this thesis, comprising chapters seven through nine, we study
continuous optimization through the lens of competitive games. In particular, we
consider competitive optimization, where multiple agents attempt to minimize con-
flicting objectives. In the single-agent case, the updates of gradient descent are
minimizers of quadratically regularized linearizations of the loss function. We pro-
pose to generalize this idea by using the Nash equilibria of quadratically regularized
linearizations of the competitive game as updates (linearize the game). We provide
fundamental reasons why the natural notion of linearization for competitive opti-
mization problems is given by the multilinear (as opposed to linear) approximation
of the agents’ loss functions. The resulting algorithm, which we call competitive
gradient descent, thus provides a natural generalization of gradient descent to com-
petitive optimization. By using ideas from information geometry, we extend CGD to
competitive mirror descent (CMD) that can be applied to a vast range of constrained
competitive optimization problems. CGD and CMD resolve the cycling problem of
simultaneous gradient descent and show promising results on problems arising in
constrained optimization, robust control theory, and generative adversarial networks.
Finally, we point out the GAN-dilemma that refutes the common interpretation of
GANSs as approximate minimizers of a divergence obtained in the limit of a fully
trained discriminator. Instead, we argue that GAN performance relies on the implicit
competitive regularization (ICR) due to the simultaneous optimization of genera-
tor and discriminator and support this hypothesis with results on low-dimensional
model problems and GANs on CIFARI10.
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selected previously (shown as enlarged). All previously selected
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of the sparsity pattern. . . . . . . . .. ... .. .. .

KL-minimizing Cholesky factorization. KL-minimization with
and without using aggregation. For notational convenience, all ma-
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Limitations of screening. To illustrate the screening effect exploited
by our methods, we plot the conditional correlation with the point in
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lation. In the second panel, the same number of points is irregularly

distributed, slowing the decay. In the last panel, we are at the fringe
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Sums of independent processes. Algorithms for approximating co-
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Prediction and uncertainty quantification with Matérn covari-
ance. We show the accuracy of our approximation with and without
aggregation for a Gaussian process with Matérn covariance (v = 3/2)
on a grid of size 10 on the unit square. (Left) Randomly sampled 2
percent of the training and prediction points. (Middle) RMSE, aver-
aged over prediction points and 1,000 realizations. (Right) Empirical
coverage of 90% prediction intervals computed from the posterior
COVArIANCE. . . . .« v v v vt e i e e e e e e e
Computational cost of factorization. Time for computing the factor
L* with or without aggregation (N = 10°), as a function of p and of
the number of nonzero entries. For the first two panels, the Matérn
covariance function was computed using a representation in terms of
exponentials, while for the second two panels they were computed
using (slower) Bessel function evaluations. Computations performed
on an Intel®Core™i7-6400 CPU with 4.00GHz and 64 GB of RAM.
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computation despite producing much denser Cholesky factors (and
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posed in Section 6.4.1 for approximating £ = © + R, where O is
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Including prediction points. To analyze the effects of including the
prediction points into the approximation, we consider three datasets.
Each consists of 5 x 10* training points and 107 test points, av-
eraged over ten independent realizations of the Gaussian process.
We use Matérn kernels with range parameter 0.5 and smoothness
v e {1/2,3/2,5/2}, with p ranging from 1.0 to 10.0. We do not use
aggregation since it might lead to slightly different sparsity patterns
for the three variants, possibly polluting the results. On the y-axis we
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each point by the reciprocal of the true posterior standard deviation.
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predictions first or last is complicated, but “predictions-last” seems to
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Chapter 1

INTRODUCTION

1.1 Numerical algorithms as games and estimators

This thesis studies the following question:

Can we design better numerical algorithms by interpreting computation in terms of

statistical inference and game theory?

At face value, this question is somewhat ambiguous: If we apply an algorithm for
solving linear systems to a linear system arising from a partial differential equation,
what significance does it have that this algorithm was designed “by interpreting com-
putation in terms of statistical inference”? Is it then nothing more than a decoration
for results that, while useful, are “just linear algebra”? This justification would be
easier if our method returns random results, such as in randomized linear algebra
[165], or if it returns a Bayesian posterior of possible solutions, as in probabilistic
numerics [ | 16] thus solving a different problem than classical methods. But for the
work presented in this thesis, this is not the case, and the resulting algorithms could

just as well be characterized in terms of linear algebra and optimization.

But just like game theory and statistical inference, linear algebra and optimization
can be seen as mere decoration of operations on a long array of real numbers or,
even more reductionist, on a high-dimensional Boolean hypercube. Indeed, the
fascination of computational mathematics is that it expresses the vast landscape of
mathematics in terms of a small common set of seemingly innocuous operations.
Some mathematical concepts in computation, such as asymptotics, oracle models,
and real arithmetic, replace the empirical phenomenon of computation with an
idealized, more structured one. However, most of them merely re-express the
original problem and thus help us to navigate the vast space of possible algorithms

in search of solutions to practical problems.

This thesis develops powerful new algorithms based on statistical and game-theoretical
perspectives of classical methods in computational mathematics. It thus makes the
case to include them in the repertoire of viewpoints that we use to design and reason
about algorithms, alongside more traditional ones such as those originating from

physics, optimization, and linear algebra.



1.2 Numerical approximation, fast algorithms, and statistical inference
The first part of this thesis, comprising Chapters 3 through 6, is concerned with
the interplay of statistical inference, numerical approximation, and fast solvers for

partial differential equations.

1.2.1 Learners and Solvers

A fundamental difficulty in computational mathematics is that many if not most
mathematical objects are infinite, whereas computation is necessarily finite. A great
deal of work is therefore devoted to studying the relationship of the finite operations
performed by a computer to the continuous objects they are meant to represent. This
problem often occurs in different layers as we are relating arrays of binary states
to real numbers, arrays of real-valued coefficients to continuous functions, and
evaluations of these functions to their integrals. The fields of numerical stability,
approximation theory, and numerical quadrature study the accuracy of these finite-
dimensional approximations of continuous objects. Their mostly deterministic
nature is surprising since probabilistic modeling and statistical inference are the
methods of choice for dealing with uncertain quantities in virtually every other

scientific domain.

Indeed, despite being less well-known, the idea of casting computational math-
ematics as statistical inference predates the development of semiconductor-based
computers. As early as 1896, in his course on probability, Henri Poincaré proposes
to view the numerical integration of a function as a statistical estimation prob-
lem where we try to estimate the integral based on data gathered from function
evaluations (see [197] for a reprint and [69, Section 2] for a summary in English).
Around fifty years later, in the early days of automated computation, [244] suggested
the probabilistic modeling of the accumulation of round-off errors during matrix
inversion. Following Poincaré’s lead, the link between numerical approximation
and statistical inference was further explored by Palasti and Renyi [193], Sul’din
[231, ], Sard [213], Kimeldorf and Wahba [138], and Larkin [146].

More recently, these ideas were revisited in the context of information-based com-
plexity [235], Bayesian numerical approximation [69], and Bayesian numerical
homogenization [187]. The emerging field of probabilistic numerics [! 16] advo-
cates for the development of probabilistic analogs of existing numerical methods in
order to better quantify the uncertainty of results of numerical computation. Mean-

while, Bayesian optimization [216] has been successfully applied to a wide range
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of applications. Even when dealing with finite-dimensional problems, such as in
the case of numerical linear algebra, the perspective of statistical inference can im-
prove the computational complexity of a task by computing with partial information.
[188—190] adopt a decision-theoretic perspective on multigrid methods to develop

new classes of fast solvers and operator adapted wavelets, named gamblets.

A related but different line of work replaces finite-dimensional function spaces
commonly used in the numerical analysis of partial differential with model classes
hailing from statistical inference and machine learning, generalizing classical mesh-
free discretizations such as radial basis function [80, , ] and boundary element
methods [214]. The authors of [52] interpret meshless collocation methods as per-
forming Bayesian inference with a prior induced by the interpolation method of
choice. Using MCMC sampling techniques, they obtain a general procedure for
computing the posterior distributions of nonlinear forward and inverse problems
involving partial differential equations. By using a Gauss-Newton method, [47] cast
the solution of nonlinear partial differential equations as a series of Gaussian process
regression problems, solving the nonlinear interpolation problem to high accuracy
without requiring the use of sampling techniques. Motivated by the successes of
deep learning in other domains, physics-informed neural networks proposed by
[200] include the residual of a PDE at a set of points into the loss function of a neu-
ral network. The resulting neural network-based collocation method can be used to
learn input-output maps of parametric or inverse problems involving PDEs without
having access to a dedicated forward operator. It thus forms the bridge to another
class of methods that use neural networks to directly learn the solution operators of
various PDE-related problems based on training data provided by classical solvers
[137, ]. In order to improve the computational efficiency and generalization
performance, a large number of architectures inspired by existing fast solvers or

physical intuition have been proposed [77-79, 152].

1.2.2 Contribution in the first part of this thesis
The first part of this thesis is based on probabilistic interpretations of the well-known
Cholesky factorization that uses Gaussian elimination to express a positive definite

matrix © as the square LLT of a lower triangular matrix L.



Cholesky factorization can be formulated as recursive application of the identity

Id 0
010! 1d

01,1 O
021 Oyp

O 0
0 ©7-0,1(01))'0,

Id (01,70,
0 Id

(1.1)

to the Schur complement ©,, — 07 ; (@1,1)_1 ©; 1 obtained at the previous step. In
particular, the k-th column of the final Cholesky factor L is a multiple of the first

column of the Schur complement when setting ©11 = Oy.(k—1),1:(k-1). If O is the

covariance matrix of the Gaussian vector X = (X1, X2) ~ N(0, ©®), the well-known
identities

E[X: | X1 =a] =02,(01,) 'a, (1.2)

Cov[Xy | Xi] =057 — 0,,1(011) 'O, (1.3)

imply that Cholesky factorization of ® is equivalent to the iterative conditioning of
the Gaussian vector X. In particular, conditional (near-)independence of X implies

(near-)sparsity of the Cholesky factors of ®!

In many Gaussian process models, ©;; = G (xi,x j) is obtained from evaluations of
a covariance function in pairs of points {x;};<;<y C R?. The screening effect [228]
predicts that the conditional correlation length of a smooth Gaussian process after

conditioning on its value in a few locations is inversely proportional to their density.

We can maximize the conditional independence by choosing conditioning points that
are spread out as far as possible and use the screening effect to predict the sparsity
set, leading to the following near-linear complexity algorithm for the approximate

Cholesky factorization of ® (See Figure 1.2).

1. Reorder the rows and columns of ® such that the associated points x; ... xg
are well spread out for all £k < N.

2. Select a sparsity set according to the predictions of the screening effect.

3. Apply Gaussian elimination restricted to entries of the sparsity set.

As we discuss in Chapter 2, Green’s functions of elliptic partial differential equations
are a natural choice of covariance functions for smooth Gaussian processes. The
screening effect exhibited by these processes is dual to the localization of coarse-
grained partial differential operators. In Chapter 4, we use and extend results from
[163, ], to obtain the first rigorous proof of an exponential screening effect for

finitely smooth Gaussian processes.



Figure 1.1: The screening effect. The length of the of the

point in red decreases with the density of

O,

Figure 1.2: The maximin ordering and sparsity pattern.We successively select
the point x; that has maximal distance £; from the

(left). We add entries corresponding to interactions of x; with points within radius
plito (middle). When computing Cholesky factors of ®, we skip
updates — — 0,,0,;/0;; that use entries outside of 5 (right).

We use these results to prove rigorous accuracy-vs-complexity estimates of algo-
rithms as presented in Figure 1.2, as well as a sparse Cholesky factorization of
the precision matrix ®~'. Thus we obtain algorithms that provably compute e
accurate Cholesky factors of Green’s matrices of elliptic PDEs and their inverses
in complexity O (N log? (N)log*? (N/ e)) and O (N log?¢ (N/ e)), improving the

state-of-the-art for fast solvers for general elliptic PDE.
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We next show that for a given sparsity pattern S, we can compute the optimal
(in Kullback-Leibler divergence) S-sparse approximate Cholesky factor of ®! in
closed form, from entries of ®.

PN 0! €]
L= argmin DKL(N(O, ®) || N (o, (LLT)-I)) & Ly;=—i
L that are S-sparse ,eI—@;ils[el

(1.4)

Recovering “Vecchia approximation” [24 1] and factorized sparse approximate in-
verses [141], this algorithm is highly stable, almost embarassingly parallel, and
further improves the complexity of inverting ® to O (N log?® (N/ e)), matching that
of inverting ®~!. It furthermore provides us with a way to extend screening-based
methods to independent sums of Gaussian processes, thus resolving a longstanding

and pressing computational problem in spatial statistics.

Finally, we provide efficient implementation to show that our methods are also fast in
practice to the point of being competitive with established libraries based on existing
methods. For instance, we show that a preconditioner for the solution of elliptic
PDEs based on the above work outperforms the established algebraic multigrid
implementations of Trilinos and AMGCL on challenging problems arising in two-

and three-dimensional linearized elasticity (see Figure 1.3).

1.3 Game theory as a paradigm for algorithm design
The second part of this thesis, comprising Chapters 7 through 9, is concerned with

the use of game theory as a guiding principle for the design of new algorithms

1.3.1 From optimization to competitive optimization

Optimization is a powerful paradigm for the design of algorithms. In order to solve
a novel problem, we cast it as the minimization of an appropriate cost function
and use one of the many existing optimization algorithms. In many branches
of continuous optimization, the workhorses of this approach are local iterative
methods such as gradient or Newton descent that minimize a series of regularized
local approximations. This can be interpreted as an agent that, based on local

information, tries to greedily decrease a loss that encodes the original problem.

Instead of a single agent, Competitive optimization features a multitude of agents
trying to minimize their respective loss, each of which may depend on the actions of

all agents.! The expressiveness of competitive optimization begs the question, how

'Some of the agents may also collaborate, but this thesis focuses on competitive games.
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