
Inference, Computation, and Games

Thesis by
Florian Tobias Schäfer

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2021
Defended May 19, 2021

ii

© 2021

Florian Tobias Schäfer
ORCID: 0000-0002-4891-0172

All rights reserved except where otherwise noted

iii

ACKNOWLEDGEMENTS

I first and foremost want to thank Houman Owhadi for being the best advisor I
could have hoped for. Houman gave me complete freedom to pursue my academic
interests, whether I was collaborating with him or with others. Yet, whenever I
needed his advice, he would make time to meet almost immediately. Over the
course of my graduate studies, I came to greatly appreciate his openness to asking
unconventional questions, his endless optimism, and the integrity and unconditional
generosity with which he treats the people around him.

I want to thank my committee members: Anima Anandkumar, Mathieu Desbrun,
Peter Schröder, and Joel Tropp, not primarily for serving on my committee, but for
teaching, mentorship, and scientific collaborations that enriched my time at Caltech.

The work in this thesis would not have been possible without my great collaborators,
especially Jiong Chen, Matthias Katzfuss, Tim Sullivan, and Hongkai Zheng. It
would also not have been possible without the amazing Caltech staff, in particular
Diana Bohler and Carmen Nemer-Sirois, to whom I owe the privilege of being
able to fully concentrate on my studies. I also want to thank Laura Flower Kim
and Daniel Yoder from ISP for their tremendous effort to support us international
students, in particular during the most recent, tumultuous years.

Through all the high highs and low lows of grad school, the one thing that remained
unchanged is how immensely grateful I am for the wonderful friends I have, at
Caltech and elsewhere. More than anything else, you make my life worth living!

Finally, I want to thank my family, especially my parents Birgit and Christian, and
my sister Valerie. For as long as I can remember, they have encouraged me to
develop my own interests and pursue my own path. Without their love and support,
I would not be who I am today.

iv

ABSTRACT

In this thesis, we use statistical inference and competitive games to design algorithms
for computational mathematics.

In the first part, comprising chapters two through six, we use ideas from Gaussian
process statistics to obtain fast solvers for differential and integral equations. We
begin by observing the equivalence of conditional (near-)independence of Gaus-
sian processes and the (near-)sparsity of the Cholesky factors of its precision and
covariance matrices. This implies the existence of a large class of dense matrices
with almost sparse Cholesky factors, thereby greatly increasing the scope of appli-
cation of sparse Cholesky factorization. Using an elimination ordering and sparsity
patternmotivated by the screening effect in spatial statistics, we can compute approx-
imate Cholesky factors of the covariance matrices of Gaussian processes admitting
a screening effect in near-linear computational complexity. These include many
popular smoothness priors such as the Matérn class of covariance functions. In the
special case of Green’s matrices of elliptic boundary value problems (with possibly
unknown elliptic operators of arbitrarily high order, with possibly rough coeffi-
cients), we can use tools from numerical homogenization to prove the exponential
accuracy of our method. This result improves the state-of-the-art for solving general
elliptic integral equations and provides the first proof of an exponential screening
effect. We also derive a fast solver for elliptic partial differential equations, with
accuracy-vs-complexity guarantees that improve upon the state-of-the-art. Further-
more, the resulting solver is performant in practice, frequently beating established
algebraic multigrid libraries such as AMGCL and Trilinos on a series of challenging
problems in two and three dimensions. Finally, for any given covariance matrix, we
obtain a closed-form expression for its optimal (in terms of Kullback-Leibler diver-
gence) approximate inverse-Cholesky factorization subject to a sparsity constraint,
recovering Vecchia approximation and factorized sparse approximate inverses. Our
method is highly robust, embarrassingly parallel, and further improves our asymp-
totic results on the solution of elliptic integral equations. We also provide a way to
apply our techniques to sums of independent Gaussian processes, resolving a major
limitation of existing methods based on the screening effect. As a result, we obtain
fast algorithms for large-scale Gaussian process regression problems with possibly
noisy measurements.

v

In the second part of this thesis, comprising chapters seven through nine, we study
continuous optimization through the lens of competitive games. In particular, we
consider competitive optimization, where multiple agents attempt to minimize con-
flicting objectives. In the single-agent case, the updates of gradient descent are
minimizers of quadratically regularized linearizations of the loss function. We pro-
pose to generalize this idea by using the Nash equilibria of quadratically regularized
linearizations of the competitive game as updates (linearize the game). We provide
fundamental reasons why the natural notion of linearization for competitive opti-
mization problems is given by the multilinear (as opposed to linear) approximation
of the agents’ loss functions. The resulting algorithm, which we call competitive
gradient descent, thus provides a natural generalization of gradient descent to com-
petitive optimization. By using ideas from information geometry, we extend CGD to
competitive mirror descent (CMD) that can be applied to a vast range of constrained
competitive optimization problems. CGD and CMD resolve the cycling problem of
simultaneous gradient descent and show promising results on problems arising in
constrained optimization, robust control theory, and generative adversarial networks.
Finally, we point out the GAN-dilemma that refutes the common interpretation of
GANs as approximate minimizers of a divergence obtained in the limit of a fully
trained discriminator. Instead, we argue that GAN performance relies on the implicit
competitive regularization (ICR) due to the simultaneous optimization of genera-
tor and discriminator and support this hypothesis with results on low-dimensional
model problems and GANs on CIFAR10.

vi

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] Pierre-Luc Bacon, Florian Schäfer, Clement Gehring, Animashree Anandku-
mar, and Emma Brunskill. A Lagrangian method for inverse problems in
reinforcement learning. F.S. contributed to the development of the method.

[2] Jiong Chen, Florian Schäfer, Jin Huang, and Mathieu Desbrun. Multiscale
Cholesky preconditioning for ill-conditioned problems. 2021. F.S. contributed
to the writing and the development of the method.

[3] Houman Owhadi, Clint Scovel, and Florian Schäfer. Statistical numerical ap-
proximation. Notices of the AMS, 2019. F.S. contributed to the writing, mostly
in the section on the sparse factorization of dense kernel matrices.

[4] Florian Schaefer and Anima Anandkumar. Competitive Gradient Descent. In
Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/
file/56c51a39a7c77d8084838cc920585bd0-Paper.pdf. F.S. is the first
author and main contributor of this work.

[5] Florian Schaefer, Hongkai Zheng, and Animashree Anandkumar. Implicit com-
petitive regularization in GANs. In Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 8533–8544. PMLR, 13–18 Jul 2020. URL http:
//proceedings.mlr.press/v119/schaefer20a.html. F.S. and H.Z. are
joint first authors of this work. F.S. primarily contributed to the writing and
conceptual/theoretical part of the project.

[6] Florian Schäfer, Anima Anandkumar, and Houman Owhadi. Competitive Mir-
ror Descent. arXiv preprint arXiv:2006.10179, 2020. F.S. is the first author and
main contributor of this work.

[7] Florian Schäfer, Matthias Katzfuss, and Houman Owhadi. Sparse Cholesky fac-
torization by Kullback-Leibler minimization. arXiv preprint arXiv:2004.14455,
2020. F.S. is the first author and main contributor of this work.

[8] Florian Schäfer, T. J. Sullivan, and Houman Owhadi. Compression, Inversion,
and Approximate PCA of Dense Kernel Matrices at Near-Linear Computa-
tional Complexity. Multiscale Model. Simul., 19(2):688–730, 2021. ISSN
1540-3459. doi: 10.1137/19M129526X. URL https://doi.org/10.1137/
19M129526X. F.S. is the first author and main contributor of this work.

[9] Jing Yu, Clement Gehring, Florian Schäfer, and Anima Anandkumar. Robust
reinforcement learning: A constrained game-theoretic approach. To be pre-
sented at Learning for Decision and Control (L4DC) 2021., 2021. F.S. advised
first author J.Y. on the use of CMD and contributed to the writing.

https://proceedings.neurips.cc/paper/2019/file/56c51a39a7c77d8084838cc920585bd0-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/56c51a39a7c77d8084838cc920585bd0-Paper.pdf
http://proceedings.mlr.press/v119/schaefer20a.html
http://proceedings.mlr.press/v119/schaefer20a.html
https://doi.org/10.1137/19M129526X
https://doi.org/10.1137/19M129526X

vii

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . iv
Published Content and Contributions . vi
Bibliography . vi
Table of Contents . vi
List of Illustrations . ix
List of Tables . xxiii
Chapter I: Introduction . 1

1.1 Numerical algorithms as games and estimators 1
1.2 Numerical approximation, fast algorithms, and statistical inference . 2
1.3 Game theory as a paradigm for algorithm design 6

Chapter II: Elliptic partial differential equations and smooth Gaussian processes 13
2.1 Linear Elliptic Partial Differential Equations 13
2.2 Smooth Gaussian processes . 18
2.3 The cubic bottleneck . 21

Chapter III: Sparse Cholesky factors by screening 25
3.1 Gaussian elimination and Cholesky factorization 25
3.2 Sparse Cholesky factorization . 26
3.3 Gaussian elimination and Gaussian conditioning 29
3.4 The screening effect . 31
3.5 The maximin ordering and sparsity pattern 32
3.6 Cholesky factorization, numerical homogenization, and gamblets . . 36

Chapter IV: Proving exponential decay of Cholesky factors 43
4.1 Overview . 43
4.2 Setting and notation . 44
4.3 Algebraic identities and roadmap 49
4.4 Exponential decay of �(:) . 50
4.5 Bounded condition numbers . 52
4.6 Summary of results . 62
4.7 Extensions and comparisons . 66

Chapter V: Incomplete Cholesky factorization 69
5.1 Zero fill-in incomplete Cholesky factorization 69
5.2 Implementation of ICHOL(0) for dense kernel matrices 74
5.3 Implementation of ICHOL(0) for sparse stiffness matrices 80
5.4 Proof of stability of ICHOL(0) . 81
5.5 Numerical example: Compression of dense kernel matrices 88
5.6 Numerical example: Preconditioning finite element matrices 99

Chapter VI: Cholesky factorization by Kullback-Leibler minimization 106
6.1 Overview . 106

viii

6.2 Cholesky factorization by KL-minimization 108
6.3 Ordering and sparsity pattern motivated by the screening effect . . . 111
6.4 Extensions . 117
6.5 Applications and numerical results 122
6.6 Conclusions . 131

Chapter VII: Competitive Gradient Descent 132
7.1 Introduction . 132
7.2 Competitive gradient descent . 135
7.3 Consensus, optimism, or competition? 141
7.4 Implementation and numerical results 144

Chapter VIII: Competitive Mirror Descent 149
8.1 Simplifying constraints by duality 152
8.2 Projected CGD suffers from empty threats 153
8.3 Mirror descent and Bregman potentials 155
8.4 The information geometry of Bregman divergences 157
8.5 Competitive mirror descent . 160
8.6 Numerical comparison . 161

Chapter IX: Implicit competitive regularization 169
9.1 Introduction . 169
9.2 The GAN-dilemma . 171
9.3 Implicit competitive regularization (ICR) 175
9.4 How ICR lets GANs generate . 178
9.5 Competitive gradient descent amplifies ICR 182
9.6 Empirical study on CIFAR10 . 184

Bibliography . 187
.1 Appendix to Chapter 4 . 209
.2 Appendix to Chapter 5 . 216
.3 Appendix to Chapter 6 . 219
.4 Appendix to Chapter 7 . 233
.5 Appendix to Chapter 8 . 242
.6 Appendix to Chapter 9 . 247

ix

LIST OF ILLUSTRATIONS

Number Page
1.1 The screening effect. The length of the conditional correlation of

the point in red decreases with the density of the conditioning set. . . 5
1.2 Themaximin ordering and sparsity pattern.We successively select

the point G8 that has maximal distance ℓ8 from the points that were
selected so far (left). We add entries corresponding to interactions
of G8 with points within radius dℓ8 to the sparsity set ((middle).
When computing Cholesky factors of Θ, we skip updates Θ: 9 ←
Θ: 9 − Θ:8Θ 98/Θ88 that use entries outside of ((right). 5

1.3 Comparison against AMG.Wecompare the solver described in Sec-
tion 5.6 against state of the art implementations of algebraic multigrid
methods on a problem arising in linear elasticity. The shaded region
illustrates the performance of our method over different parameter
choices. 7

1.4 The cycling problem. The cycling problem of SimGD arises, be-
cause each chooses the optimal action according the last action of the
other agent. 9

1.5 What I think that they think that I think... The partial sums of a
Neumann-series representation of Equation (1.7) represent different
orders of opponent-awareness, recovering the Nash-equilibrium in
the limit. 10

1.6 Dual geometry. (left:) The dual notion of straight line induced by the
Shannon entropy guarantees feasible iterates on R<+ . (right:) A man-
ifoldM, tangent space T?M, tangent vector G ∈ T?M, and the path
described by the exponential map

{
@ : @ = Exp? (CG), for C ∈ [0, 1]

}
. . 11

1.7 The discriminator can always improve. We want the discriminator
confidence to reflect the relative abundance of true and fake data
(left). But by picking out individual data points, the discriminator
can almost always achieve arbitrarily low loss on any finite data set
(right). Even in the limit of infinite data, the slightest misalignment
of the supports of generated and real data can be exploited in a similar
way. 11

x

2.1 An elliptic Green’s function. We plot the graph of the Green’s
function H ↦→ [G0,GH] of an elliptic PDE on the domain Ω. Most of
its values are significantly larger than zero, leading to a dense matrix
Θ. 22

3.1 Fill-in. For a given matrix with nonzero entries denoted in blue, the
amount of fill-in (in red) depends strongly of the ordering of the rows
and columns of the matrix (note that we do not plot self-edges of the
sparsity graph). 27

3.1 Fill-reducing ordering. We show common reordering heuristics
and their effects on the sparsity of the Cholesky factor of a finite
difference Laplacian. 28

3.2 Sparsification by elimination. As we eliminate more columns (left
to right), the Cholesky factor and Schur complement become in-
creasingly sparse (top row, magnitude on log10-scale). The bottom
row shows the geometric locations corresponding to the eliminated
columns, and how they dissect the graph. 30

3.3 The screening effect. We condition a Gaussian process with Matérn
covariance on increasing conditioning sets and plot the conditional
correlation of the point in red as a heat map. 33

3.4 Maximin ordering. The first nine elements of the maximin ordering
on a pointset in R2, with the asocciated length scale ℓ8 visualized as
a shaded radius. 34

3.5 Maximin sparsity pattern. Each column of the maximin sparsity
pattern includes interactions with points that are within a factor d of
the corresponding length scale ℓ: . 35

3.6 Reverse maximin sparsity pattern. Each column of the reverse
maximin sparsity pattern includes interactions within a factor d of
the corresponding length scale ℓ: . The number of nonzeros per
column is approximately constant. 37

3.7 A Haar-type multiresolution basis. We begin the construction by
forming averages on different scales. On all but the coarsest scale, we
obtain the basis function functions as linear combination of nearby
averages on a given scale that are chosen to be orthogonal to all
averages on the coarser scale. In the Figure, we show basis functions
on the three coarsest scales. 38

xi

3.8 The hidden multiscale structure of the maximin ordering. The
index sets � (:) B

{
8 : ℎ: ≤ ℓ8/ℓ1

}
of the maximin ordering can be

interpreted as the scale spaces + (:) of a multiresolution basis. The
index sets � (:) B � (:) \ � (:−1) can then be viewed as the resulting
orthogonal multiresolution decomposition. In this figure, from left
to right, we display � (1) , � (2) , and � (3) , plotting � (1) in red, � (2) in
orange, and � (3) in blue. 39

4.1 A regularity criterion. We measure the regularity of the distri-
butions of measurement points as the ration of Xmin, the smallest
distance between neighboring points or points and the boundary, and
Xmax, the radius of the largest ball that does not contain any points. . . 45

4.2 Hierarchical averaging. We illustrate the construction described in
Example 2 in the case @ = 2. On the left we see the nested partition
of the domain, and on the right we see (the signs of) a possible choice
for q1, q5, and q6. 48

5.1 ICHOL(0). Incomplete Cholesky factorization, with the differences
to ordinary Cholesky factorization (Algorithm 1), highlighted in red.
Here, for a matrix �, nz(�) B {(8, 9) | �8 9 ≠ 0} denotes the index
set of its non-zero entries. 70

5.2 Up-looking ICHOL(0)in CSR format. We present an algorithm that
computes a Cholesky factorization of a lower triangular matrix in
CSR format, in-place. The up-looking factorization greatly improves
the spatial locality. 76

5.3 Up-looking supernodal ICHOL(0)in CSR format. We only need to
replace the square root with Cholesky factorization in Algorithm 4
and add a transpose in Algorithm 5 to obtain a supernodal factoriza-
tion. 78

xii

5.4 Weaker screening between boundary points. Left and center: 8th

(left) and 9 th (center) column of the Cholesky factor ! (normalized to
unit diagonal) ofΘ in maximin ordering, where G8 is an interior point
and G 9 is near the boundary. Although ; [8] is of the order of ; [9], the
exponential decay of !:, 9 near the boundary is significantly weakened
by the absence of Dirichlet boundary conditions. Right: approximate
correlations

{
(!d!d,>): 9

}
:∈� (with d = 3.0) and true covariance

function exp(−2A) with A = |G: − G 9 |. Correlations between G 9
and remaining points are captured accurately, despite the weakened
exponential decay near the boundary. 91

5.5 (Lack of) robustness to varying size of the nugget. We plot the
log10 of themagnitude of the Cholesky factors ofΘ+f2Id inmaximin
ordering (first column) and of � + f2 in reverse maximin ordering
(second column). As we increase f2 ∈ [0.0, 0.1, 1.0, 10.0] from left
to right the decay of the Cholesky factors of Θ + f2Id deteriorates,
and that of the factors of � + f2Id is preserved. 93

5.6 Accuracy and computational cost. First panel: the increase in com-
putational time taken by the Cholesky factorization, as # increases
(for d = 3.0). Second panel: the exponential decay of the relative
error in Frobenius norm, as d is increased. In the third (3 = 2) and
fourth panel (3 = 3), we see the comparison of the approximate and
true covariance for d = 2.0 and d = 3.0. 94

5.7 The Matérn class of covariance functions. Matérn kernels for
different values of a (left), and the spectrum of Θ, for 2000 points
G8 ∈ [0, 1]2 (right). Smaller values of a correspond to stronger
singularities at zero and hence lower degrees of smoothness of the
associated Gaussian process. 95

5.8 Manifold data. A two-dimensional point cloud deformed into a
two-dimensional submanifold of R3, with XI ∈ {0.1, 0.3, 0.5}. 98

5.9 A high-dimensional example. We construct a high-dimensional
dataset with low-dimensional structure by rotating the above struc-
tures at random into a 20-dimensional ambient space. 98

xiii

5.10 Sparsity pattern, error and factor density. When computing the
factorization of a Laplacian on a 16:×16: grid in the reverse max-
imin ordering of Definition 6, the Cholesky factors are approximately
sparse according to the reverse maximin sparsity pattern of Defini-
tion 7, despite the condition B > 3/2 of Example 1 not being satisfied. 101

5.11 Scalability. In 2D and 3D, our IC factorization time matches the
expected O(#d23) time complexity for a matrix size # ×# and a
sparsity parameter d; the dashed line indicates a slope of 1 in this
log-log plot. 102

5.12 Direct vs. iterative solvers. For a 3D Poisson solve, CHOLMOD
scales non-linearly in the linear system size # for factorization time,
total solve time (which include factorization and back-substitution),
and memory use, and fails for # >1M; instead, a PCG-based iterative
solve using our preconditioner exhibits consistent linear behaviors on
all three measurements. 102

5.12 Comparisons with AMG libraries.. Figures indicate time costs
(including factorization and PCG iteration times) as a function of
material contrast. Our method is much less sensitive to contrast and
problem size, and is particularly efficient when the size # becomes
large and/or for bad condition numbers. For our method, timings
are within the orange region depending on the actual value of d, for
which we used the range [6.5, 8.5] in 2D and [2.5, 4.0] in 3D. All
meshes are generated by Delaunay triangulation. 104

5.13 Nonlinear quasi-statics. An armadillo is stretched via lateral gravity
with a few nodes (marked in black) fixed at their initial position. We
use a trust region nonlinear optimization algorithm involving the
solution of a linear system using our IC preconditioner or AMGCL
at each step; timing of the first 20 iterations are plotted. 105

6.1 The nonzero-vector of a sparse column. The set B: is the vector of
row-indices contained in the :-th column of the sparsity pattern. The
vector !B: ,B denotes the vector of nonzero entries of ! with these row
indices. 109

xiv

6.2 The reverse maximin ordering. To obtain the reverse maximin
ordering, for : = # − 1, # − 2, . . . , 1, we successively select the
point G8: that has the largest distance ℓ8: to those points G8:+1 , . . . , G8#
selected previously (shown as enlarged). All previously selected
points within distance dℓ8 of G8: (here, d = 2) form the :-th column
of the sparsity pattern. 111

6.3 KL-minimizing Cholesky factorization. KL-minimization with
and without using aggregation. For notational convenience, all ma-
trices are assumed to have row and column ordering according to
≺. %l denotes the order-reversing permutation matrix, and e: is the
vector with 1 in the :-th component and zero elsewhere. 112

6.4 Geometric aggregation. The left figure illustrates the original pat-
tern (≺,ℓ,d. For each orange point, we need to keep track of its
interactions with all points within a circle of radius ≈ d. In the right
figure, the points have been collected into a supernode, which can
be represented by a list of parents (the orange points within an inner
sphere of radius ≈ d) and children (all points within a radius ≈ 2d). . 113

6.5 Reusing Cholesky factors. (Left:) By adding a few nonzero entries
to the sparsity pattern, the sparsity patterns of columns in B :̃ become
subsets of one another. (Right:) Therefore, the matrices {ΘB: ,B: }:{ :̃ ,
which need to be inverted to compute the columns !:,: for : {

:̃ , become submatrices of one another. Thus, submatrices of the
Cholesky factors of ΘB:̃ ,B:̃ can be used as factors of ΘB: ,B: for any
: { :̃ . 114

6.6 Limitations of screening. To illustrate the screening effect exploited
by our methods, we plot the conditional correlation with the point in
red conditional on the blue points. In the first panel, the points are
evenly distributed, leading to a rapidly decreasing conditional corre-
lation. In the second panel, the same number of points is irregularly
distributed, slowing the decay. In the last panel, we are at the fringe
of the set of observations, weakening the screening effect. 117

6.7 Sums of independent processes. Algorithms for approximating co-
variancematrices with added independent noiseΘ+' (left), using the
zero fill-in incomplete Cholesky factorization (right). Alternatively,
the variants discussed in Section 5.3 could be used. See Section 6.4.1. 119

xv

6.8 Prediction and uncertainty quantification with Matérn covari-
ance. We show the accuracy of our approximation with and without
aggregation for a Gaussian process withMatérn covariance (a = 3/2)
on a grid of size 106 on the unit square. (Left) Randomly sampled 2
percent of the training and prediction points. (Middle) RMSE, aver-
aged over prediction points and 1,000 realizations. (Right) Empirical
coverage of 90% prediction intervals computed from the posterior
covariance. 123

6.9 Computational cost of factorization. Time for computing the factor
!d with or without aggregation (# = 106), as a function of d and of
the number of nonzero entries. For the first two panels, the Matérn
covariance function was computed using a representation in terms of
exponentials, while for the second two panels they were computed
using (slower) Bessel function evaluations. Computations performed
on an Intel®Core™i7-6400 CPU with 4.00GHz and 64GB of RAM.
The second and fourth panels show that aggregation leads to faster
computation despite producing much denser Cholesky factors (and
hence higher accuracy). 123

6.10 Factorization with additive noise. Comparison of the methods pro-
posed in Section 6.4.1 for approximating Σ = Θ + ', where Θ is
based on a Matérn covariance with range parameter 0.5 and smooth-
ness a = 3/2 at # = 104 uniformly sampled locations on the unit
square, and ' = f2� is additive noise. For each approximation,
we compute the symmetrized KL divergence (the sum of the KL-
divergences with either ordering of the two measures) to the true
covariance. “Naive”: Directly apply Algorithm 13 to Σ. “Exact”:
Apply Algorithm 13 to Θ, then compute !̃ as the exact Cholesky
factorization of � B '−1 + Θ̂−1. “IC”: Apply Algorithm 13 to Θ,
then compute !̃ using incomplete Cholesky factorization of � on the
sparsity pattern of either ! or !!>. (Left) Varying f, fixed d = 3.0.
(Middle) Varying d, fixed f = 1.0. (Right) Maximal relative error
(over the above f, d, a ∈ {1/2, 3/2, 5/2} and 10 random draws) of
inverting � using up to 10 conjugate-gradient iterations (G-axis), with
IC, nonzeros(L) as preconditioner. 124

xvi

6.11 Including prediction points. To analyze the effects of including the
prediction points into the approximation, we consider three datasets.
Each consists of 5 × 104 training points and 102 test points, av-
eraged over ten independent realizations of the Gaussian process.
We use Matérn kernels with range parameter 0.5 and smoothness
a ∈ {1/2, 3/2, 5/2}, with d ranging from 1.0 to 10.0. We do not use
aggregation since it might lead to slightly different sparsity patterns
for the three variants, possibly polluting the results. On the H-axis we
plot the RMSE of the posterior mean and standard deviation, scaled in
each point by the reciprocal of the true posterior standard deviation.
In almost all cases, including the prediction points into the approxi-
mation improves the accuracy. The comparison between ordering the
predictions first or last is complicated, but “predictions-last” seems to
perform better for lower smoothness and “predictions-first” for higher
smoothness. 126

6.12 Comparison to HSS matrices. We compare the accuracy and com-
putational time of our method described in Section 6.4.2 with the
HSS implementation of H2Pack [123]. Each point corresponds to
a different run with different parameters (d, tolerance, and diagonal
shift). Throughout this experiment, we use the aggregation scheme
described in Section 6.3.2 with _ = 1.25. The left plot shows the
RMSE of the posterior mean and the right plot that of the posterior
standard deviation. Ourmethod is significantly faster for a wide range
of target accuracies. 127

6.13 Orthogonal basis from subdivision. We recursively divide each
panel of mΩ. The basis functions on finer levels are constructed
as linear combinations of indicator functions that are orthogonal to
functions on coarser levels. 129

xvii

6.14 Solving boundary value problems by KL-minimization. Accu-
racy and computational complexity in boundary value problem. We
compare the root mean square error, number of nonzeros of sparsity
pattern, and the computational time for the exact boundary element
method and using our approximation for d ∈ {1, 2, 3}. The dense
solution is prohibitively expensive for @ > 6, which is why accuracy
and computational time for these cases are missing. The reason that
the computational time is hardly affected by different choices of d
is due to the fact that entries

(
ΘTr,Tr

)
8 9
for nearby q8, q 9 are signifi-

cantly more expensive to compute than for distant ones when using
an off-the-shelf adaptive quadrature rule. The computations were
performed on 32 threads of an Intel® Skylake ™CPU with 2.10GHz
and 192GB of RAM. In the first figure, we plot the RMSE compared
to the true solution of the PDE as a function of @ ≈ log(#). In the
last figure, we compute the RMSE between dense computation and
our method, as well as its computational time, as a function of d. . . . 130

7.1 The cycling problem. The cycling problem of GDA arises, because
each chooses the optimal action according to the last action of the
other agent. 133

7.2 What I think that they think that I think... The partial sums of a
Neumann-series representation of Equation (7.8) represent different
orders of opponent-awareness, recovering the Nash-equilibrium in
the limit. 138

7.3 Comparison. The update rules of the first player for (from top to
bottom) GDA, LCGD, ConOpt, OGDA, and CGD, in a zero-sum
game (5 = −6). 142

7.4 The bilinear problem. The first 50 iterations of GDA, LCGD,
ConOpt, OGDA, and CGD with parameters [= 0.2 and W = 1.0.
The objective function is 5 (G, H) = UG>H for, from left to right,
U ∈ {1.0, 3.0, 6.0}. (Note that ConOpt and SGA coincide on a
bilinear problem) . 144

xviii

7.5 A separable problem. We measure the (non-)convergence to equi-
librium in the separable convex-concave (5 (G, H) = U(G2 − H2), left
three plots) and concave-convex problem (5 (G, H) = U(−G2 + H2),
right three plots), for U ∈ {1.0, 3.0, 6.0}. (Color coding given by
GDA, SGA, LCGD, CGD, ConOpt, OGDA, the y-axis measures
log10(‖(G: , H:)‖) and the x-axis the number of iterations : . Note
that convergence is desired for the first problem, while divergence is
desired for the second problem. 144

7.6 Fitting a bimodal distribution. For all methods, initially the players
cycle between the two modes (first column). For all methods but
CGD, the dynamics eventually become unstable (middle column).
Under CGD, the mass eventually distributes evenly among the two
modes (right column). (The arrows show the update of the generator
and the colormap encodes the logit output by the discriminator.) . . . 146

7.7 Comparison of convergence speed. Weplot the decay of the residual
after a given number of model evaluations, for increasing problem
sizes and [∈ {0.005, 0.025, 0.1, 0.4}. Experiments that are not
plotted diverged. 147

7.8 A training run (1 seed). 148
7.9 Generalization (40 seeds). 148

7.10 Imitation learning experiment in the cartpole domain. On the
left, we show a single training run, and on the right, we plot the
averaged loss over 40 random seeds. 148

8.1 Dual geometry. The dual notion of straight line induced by the
Shannon entropy guarantees feasible iterates on R<+ 151

8.2 Empty threats. Since G ≥ 0, the bilinear term should only lead to H
picking a larger value. But CGD is oblivious to the constraint and H
decreases in anticipation of G turning negative. 155

8.3 Basic objects of differential geometry. A manifold M, tangent
space T?M, tangent vector G ∈ T?M, and the path described by the
exponential map

{
@ : @ = Exp? (CG), for C ∈ [0, 1]

}
. 159

8.4 Pennymatching. When applyingCMDandXMD to pennymatching
((8.13)), both methods converge. But as we increase the step sizes
U−1, V−1, CMD converges faster and XMD diverges. 162

xix

8.5 Prisoner’s dilemma. Applied to prisoner’s dilemma (8.14), CMD
converges for step sizes U−1, V−1 for which XMD and PXGD diverge.
PCGD converges to the wrong solution, due to empty threats. 162

8.6 Convergence against outer iterations. We plot the objective value
in Equation 8.15 (after normalization of G) compared to outer itera-
tions. In the first panel, PXM diverges and produces NAN values,
which is why the plot is incomplete. 164

8.7 Convergence against backprops. We plot the objective value in
Equation 8.15 (after normalization of G) compared to the number of
gradient computations and Hessian-vector products, accounting for
the inner loop of CMW. 165

8.8 Comparison of CMD to PNGD and PGDA. We tested step sizes
varying from 10−3 to 10−5 for the proposed algorithm (CMD), PNGD
with inner loop iteration number set to 10, and PGDA. For each
method, we plot the fastest converging trajectory against the number
of outer iterations. The two step sizes are specified for minimizing
player and maximizing player, respectively. Optimal closed-form
solution is ∗ = [−0.4913,−1.3599]) 168

8.9 Robustness of CMD to choice of step size. The two panels show
the iteration trajectory for the coordinates of parameter . The
two step sizes are specified for minimizing player and maximiz-
ing player, respectively. Optimal closed-form solution is ∗ =
[−0.4913,−1.3599]) . 168

9.1 The discriminator can always improve. We want the discriminator
confidence to reflect the relative abundance of true and fake data
(left). But by picking out individual data points, the discriminator
can almost always achieve arbitrarily low loss on any finite data set
(right). Even in the limit of infinite data, the slightest misalignment
of the supports of generated and real data can be exploited in a similar
way. 170

9.3 ICR in the quadratic case. When optimizing only H in Equa-
tion (9.3), it diverges rapidly to infinity, for any fixed H. If, how-
ever, we simultaneously optimize G and H with respective step sizes
[G = 0.09 and [H = 0.01, we converge to (0, 0). 176

xx

9.4 ICR on MNIST.We train a GAN on MNIST until we reach a check-
point where it produces good images. (First image) We fix the gen-
erator and only train the discriminator, observing that it can reach
near-zero loss. When instead training generator and discriminator
jointly, the loss stays stable. (Second image) When trained indi-
vidually, the discriminator moves significantly slower slower when
trained jointly with the generator, as measured by its output on a set
of thousand reference images. 177

9.5 Discriminator learning and image quality. By prematurely stop-
ping the training process, we obtain generators of different image
quality on CIFAR10 (higher inception score (IS) reflects better im-
age quality). We then train a new discriminator against this fixed
generator and measure how quickly it increases its classification per-
formance. We use a model trained on the 10-class classification task
as a starting point for the discriminator to prevent the initial phase of
training from polluting the measurements. While all discriminators
achieve near-perfect accuracy eventually, the rate of improvement is
inversely correlated to the inception score of the generator. 179

9.6 ICR depends on speed of learning. When changing the learn-
ing rates to

(
[G , [H

)
= (0.03, 0.03) (top) or

(
[G , [H

)
= (0.01, 0.09)

(bottom), SimGD diverges. 180
9.7 Approximate projection via adversarial training. On the left col-

umn, the discriminator picks up on errors in the G- and H-direction
equally quickly. Therefore, the generator tries to satisfy the criteria
alternatingly, leading to a cyclic pattern. In the right column, the dis-
criminator picks up on errors in the G-direction much more quickly.
This causes the generator to try to stay accurate in the G-direction. . . 181

9.8 ICR and opponent-awareness. When training the generator for just
a few iterations against the over-trained discriminator of Figure 9.4,
the discriminator loss increases rapidly. When attempting to over-
train with CGD instead of Adam, the resulting discriminator is even
more robust. Similarly, CGD is able to significantly increase the
duration forwhich the generator stays accurate in the (more important)
G-direction in Figure 9.7. 184

xxi

9.9 Experiments on CIFAR10. We plot the inception score (IS) against
the number of iterations (first panel) and gradient or Hessian-vector
product computation (second panel). In the third panel we show final
samples of WGAN trained with ACGD and without explicit regular-
ization. In panel four, we compare measure image quality using the
Frechet-inception-distance (FID, smaller is better). The results are
consistent with those obtained using IS. In panel five, we plot the dif-
ference between inception scores betweenACGD andAdam (positive
values correspond to a larger score for ACGD) over different itera-
tions andmodels. The only cases where we observe non-convergence
of ACGD are OGAN without regularization or with weight decay of
weight 0.0001, as shown in the last panel. The inception score is,
however, still higher than for the same model trained with Adam.
When using Adam on the original saturating GAN loss (which we
used with ACGD), training breaks down completely. 186

.10 Linear memory complexity. Prediction and uncertainty quantifica-
tion using KL-minimization with and without aggregation in O(# +
d23̃) memory complexity. 221

.11 Algorithms for including prediction points. 226

.12 Aggregation. Algorithm for constructing the aggregated sparsity
pattern from the reverse maximin ordering ≺ and length-scales ; . . . 231

.13 Comparison of convergence speed. The decay of the residual as a
function of the number of forward iterations (3 = 20, 40, 60, from
top to bottom). Note that missing combinations of algorithms and
stepsizes correspond to divergent experiments. While the exact
behavior of the different methods is subject to some stochasticity,
results as above were typical during our experiments. 239

.14 Convergence speed in the stochastic case. The decay of the residual
as a function of the number of forward iterations in the stochastic case
with 3 = 20 and batch sizes of 100, 1000, 10000, from top to bottom). 241

.15 CMW and PX applied to 5 (G, H) = U(G − 0.1) (H − 0.1) = −6(G, H)
(U ∈ {0.1, 0.3, 0.9, 2.7}). For small U, PX converges faster, but for
large U, it diverges. 249

.16 Convergence of CMD on the prisoner’s dilemma. 251

.17 Convergence of extramirror on the prisoner’s dilemma. 252

.18 Convergence of PCGD on the prisoner’s dilemma. 253

xxii

.19 Convergence of projected extragradient on the prisoner’s dilemma.254

.20 A larger reproduction of Figure 2 of the main paper. The first pair
is based on an image by Matt Artz, the second pair on an image by
Yanny Mishchuk, and the third pair on an image by Tim Mossholder.
All images were obtained from https://unsplash.com/. 255

.21 Test set for Figure 4 of the main paper. We show a set of fake images
on the left, and real images on the right. 255

.22 Tensorflow inception scores for important runs, plotted against the
number of gradient calls (left) and the number of generator updates
(right). 257

https://unsplash.com/

xxiii

LIST OF TABLES

Number Page
5.1 �Matérn

a,;
, with a = 0.5, ; = 0.2, d = 3.0, and 3 = 2. 95

5.2 �Matérn
a,;

, with a = 0.5, ; = 0.2, d = 3.0, and 3 = 3. 96
5.3 �Matérn

a,;
, with a = 1.0, ; = 0.2, # = 106, and 3 = 2. 96

5.4 �Matérn
a,;

, with a = 0.5, ; = 0.2, # = 106, and 3 = 3. 96
5.5 We tabulate the approximation rank and error for d = 5.0 and # = 106

points uniformly distributed in [0, 1]3. The covariance function is
�Matérn
a,0.2 for a ranging around a = 0.5 and a = 1.5. Even though

the intermediate values of a correspond to a fractional order elliptic
PDE, the behavior of the approximation stays the same. 96

5.6 �
Cauchy
;,U,V

for (;, U, V) = (0.4, 0.5, 0.025) (first table) and (;, U, V) =
(0.2, 1.0, 0.20) (second table), for # = 106 and 3 = 2. 97

5.7 �Matérn
a,;

for a = 0.5, ; = 0.2, and d = 3.0 with # = 106 points chosen
as in Figure 5.8. 97

5.8 �Matérn
a,;

for a = 0.5, ; = 0.5, and # = 106 points as in Figure 5.9. . . . 98
5.9 Averaging vs Subsampling. For homogeneous Poisson problems

and small values of d, averaging can improve the preconditioning
effect compared to subsampling. 100

.1 Generator architecture for MNIST experiments. 248

.2 Discriminator architecture for MNIST experiments. 249

.3 Settings for all the experiments that occurred in Figure 7 of the main
paper. 256

.4 Generator architecture for CIFAR10 experiments 257

.5 Discriminator architecture for CIFAR10 experiments 257

1

C h a p t e r 1

INTRODUCTION

1.1 Numerical algorithms as games and estimators
This thesis studies the following question:

Can we design better numerical algorithms by interpreting computation in terms of
statistical inference and game theory?

At face value, this question is somewhat ambiguous: If we apply an algorithm for
solving linear systems to a linear system arising from a partial differential equation,
what significance does it have that this algorithmwas designed “by interpreting com-
putation in terms of statistical inference”? Is it then nothing more than a decoration
for results that, while useful, are “just linear algebra”? This justification would be
easier if our method returns random results, such as in randomized linear algebra
[165], or if it returns a Bayesian posterior of possible solutions, as in probabilistic
numerics [116] thus solving a different problem than classical methods. But for the
work presented in this thesis, this is not the case, and the resulting algorithms could
just as well be characterized in terms of linear algebra and optimization.

But just like game theory and statistical inference, linear algebra and optimization
can be seen as mere decoration of operations on a long array of real numbers or,
even more reductionist, on a high-dimensional Boolean hypercube. Indeed, the
fascination of computational mathematics is that it expresses the vast landscape of
mathematics in terms of a small common set of seemingly innocuous operations.
Some mathematical concepts in computation, such as asymptotics, oracle models,
and real arithmetic, replace the empirical phenomenon of computation with an
idealized, more structured one. However, most of them merely re-express the
original problem and thus help us to navigate the vast space of possible algorithms
in search of solutions to practical problems.

This thesis develops powerful newalgorithms based on statistical and game-theoretical
perspectives of classical methods in computational mathematics. It thus makes the
case to include them in the repertoire of viewpoints that we use to design and reason
about algorithms, alongside more traditional ones such as those originating from
physics, optimization, and linear algebra.

2

1.2 Numerical approximation, fast algorithms, and statistical inference
The first part of this thesis, comprising Chapters 3 through 6, is concerned with
the interplay of statistical inference, numerical approximation, and fast solvers for
partial differential equations.

1.2.1 Learners and Solvers
A fundamental difficulty in computational mathematics is that many if not most
mathematical objects are infinite, whereas computation is necessarily finite. A great
deal of work is therefore devoted to studying the relationship of the finite operations
performed by a computer to the continuous objects they are meant to represent. This
problem often occurs in different layers as we are relating arrays of binary states
to real numbers, arrays of real-valued coefficients to continuous functions, and
evaluations of these functions to their integrals. The fields of numerical stability,
approximation theory, and numerical quadrature study the accuracy of these finite-
dimensional approximations of continuous objects. Their mostly deterministic
nature is surprising since probabilistic modeling and statistical inference are the
methods of choice for dealing with uncertain quantities in virtually every other
scientific domain.

Indeed, despite being less well-known, the idea of casting computational math-
ematics as statistical inference predates the development of semiconductor-based
computers. As early as 1896, in his course on probability, Henri Poincaré proposes
to view the numerical integration of a function as a statistical estimation prob-
lem where we try to estimate the integral based on data gathered from function
evaluations (see [197] for a reprint and [69, Section 2] for a summary in English).
Around fifty years later, in the early days of automated computation, [244] suggested
the probabilistic modeling of the accumulation of round-off errors during matrix
inversion. Following Poincaré’s lead, the link between numerical approximation
and statistical inference was further explored by Palasti and Renyi [193], Sul’din
[231, 232], Sard [213], Kimeldorf and Wahba [138], and Larkin [146].

More recently, these ideas were revisited in the context of information-based com-
plexity [235], Bayesian numerical approximation [69], and Bayesian numerical
homogenization [187]. The emerging field of probabilistic numerics [116] advo-
cates for the development of probabilistic analogs of existing numerical methods in
order to better quantify the uncertainty of results of numerical computation. Mean-
while, Bayesian optimization [216] has been successfully applied to a wide range

3

of applications. Even when dealing with finite-dimensional problems, such as in
the case of numerical linear algebra, the perspective of statistical inference can im-
prove the computational complexity of a task by computing with partial information.
[188–190] adopt a decision-theoretic perspective on multigrid methods to develop
new classes of fast solvers and operator adapted wavelets, named gamblets.

A related but different line of work replaces finite-dimensional function spaces
commonly used in the numerical analysis of partial differential with model classes
hailing from statistical inference and machine learning, generalizing classical mesh-
free discretizations such as radial basis function [80, 246, 247] and boundary element
methods [214]. The authors of [52] interpret meshless collocation methods as per-
forming Bayesian inference with a prior induced by the interpolation method of
choice. Using MCMC sampling techniques, they obtain a general procedure for
computing the posterior distributions of nonlinear forward and inverse problems
involving partial differential equations. By using a Gauss-Newton method, [47] cast
the solution of nonlinear partial differential equations as a series of Gaussian process
regression problems, solving the nonlinear interpolation problem to high accuracy
without requiring the use of sampling techniques. Motivated by the successes of
deep learning in other domains, physics-informed neural networks proposed by
[200] include the residual of a PDE at a set of points into the loss function of a neu-
ral network. The resulting neural network-based collocation method can be used to
learn input-output maps of parametric or inverse problems involving PDEs without
having access to a dedicated forward operator. It thus forms the bridge to another
class of methods that use neural networks to directly learn the solution operators of
various PDE-related problems based on training data provided by classical solvers
[137, 153]. In order to improve the computational efficiency and generalization
performance, a large number of architectures inspired by existing fast solvers or
physical intuition have been proposed [77–79, 152].

1.2.2 Contribution in the first part of this thesis
The first part of this thesis is based on probabilistic interpretations of the well-known
Cholesky factorization that uses Gaussian elimination to express a positive definite
matrix Θ as the square !!> of a lower triangular matrix !.

4

Cholesky factorization can be formulated as recursive application of the identity(
Θ1,1 Θ1,2

Θ2,1 Θ2,2

)
=

(
Id 0

Θ2,1 (Θ1,1)−1 Id

) (
Θ1,1 0

0 Θ2,2 − Θ2,1 (Θ1,1)−1Θ1,2

) (
Id (Θ1,1)−1Θ1,2

0 Id

)
(1.1)

to the Schur complement Θ2,2 −Θ2,1
(
Θ1,1

)−1
Θ1,2 obtained at the previous step. In

particular, the :-th column of the final Cholesky factor ! is a multiple of the first
column of the Schur complement when setting Θ1,1 = Θ1:(:−1),1:(:−1) . If Θ is the
covariance matrix of the Gaussian vector - = (-1, -2) ∼ N (0,Θ), the well-known
identities

E[-2 | -1 = 0] = Θ2,1(Θ1,1)−10, (1.2)

Cov[-2 | -1] = Θ2,2 − Θ2,1(Θ1,1)−1Θ1,2 , (1.3)

imply that Cholesky factorization of Θ is equivalent to the iterative conditioning of
the Gaussian vector - . In particular, conditional (near-)independence of - implies
(near-)sparsity of the Cholesky factors of Θ!

In many Gaussian process models, Θ8 9 = G
(
G8, G 9

)
is obtained from evaluations of

a covariance function in pairs of points {G8}1≤8≤# ⊂ R3 . The screening effect [228]
predicts that the conditional correlation length of a smooth Gaussian process after
conditioning on its value in a few locations is inversely proportional to their density.

We canmaximize the conditional independence by choosing conditioning points that
are spread out as far as possible and use the screening effect to predict the sparsity
set, leading to the following near-linear complexity algorithm for the approximate
Cholesky factorization of Θ (See Figure 1.2).

1. Reorder the rows and columns of Θ such that the associated points G1 . . . G:

are well spread out for all : ≤ # .

2. Select a sparsity set according to the predictions of the screening effect.

3. Apply Gaussian elimination restricted to entries of the sparsity set.

Aswe discuss in Chapter 2, Green’s functions of elliptic partial differential equations
are a natural choice of covariance functions for smooth Gaussian processes. The
screening effect exhibited by these processes is dual to the localization of coarse-
grained partial differential operators. In Chapter 4, we use and extend results from
[163, 190], to obtain the first rigorous proof of an exponential screening effect for
finitely smooth Gaussian processes.

5

Figure 1.1: The screening effect. The length of the conditional correlation of the
point in red decreases with the density of the conditioning set.

Figure 1.2: The maximin ordering and sparsity pattern.We successively select
the point G8 that has maximal distance ℓ8 from the points that were selected so far
(left). We add entries corresponding to interactions of G8 with points within radius
dℓ8 to the sparsity set ((middle). When computing Cholesky factors of Θ, we skip
updates Θ: 9 ← Θ: 9 − Θ:8Θ 98/Θ88 that use entries outside of ((right).

We use these results to prove rigorous accuracy-vs-complexity estimates of algo-
rithms as presented in Figure 1.2, as well as a sparse Cholesky factorization of
the precision matrix Θ−1. Thus we obtain algorithms that provably compute n
accurate Cholesky factors of Green’s matrices of elliptic PDEs and their inverses
in complexity O

(
log2 (#) log23 (#/n)

)
and O

(
log23 (#/n)

)
, improving the

state-of-the-art for fast solvers for general elliptic PDE.

6

We next show that for a given sparsity pattern (, we can compute the optimal
(in Kullback-Leibler divergence) (-sparse approximate Cholesky factor of Θ−1 in
closed form, from entries of Θ.

! = argmin
!̂ that are (-sparse

DKL

(
N

(
0,Θ

) N (
0, (!̂ !̂>)−1)) ⇔ !B8 ,8 =

Θ−1
B8 ,B8

e1√
e>1Θ

−1
B8 ,B8e1

.

(1.4)

Recovering “Vecchia approximation” [241] and factorized sparse approximate in-
verses [141], this algorithm is highly stable, almost embarassingly parallel, and
further improves the complexity of invertingΘ to O

(
log23 (#/n)

)
, matching that

of inverting Θ−1. It furthermore provides us with a way to extend screening-based
methods to independent sums of Gaussian processes, thus resolving a longstanding
and pressing computational problem in spatial statistics.

Finally, we provide efficient implementation to show that our methods are also fast in
practice to the point of being competitive with established libraries based on existing
methods. For instance, we show that a preconditioner for the solution of elliptic
PDEs based on the above work outperforms the established algebraic multigrid
implementations of Trilinos and AMGCL on challenging problems arising in two-
and three-dimensional linearized elasticity (see Figure 1.3).

1.3 Game theory as a paradigm for algorithm design
The second part of this thesis, comprising Chapters 7 through 9, is concerned with
the use of game theory as a guiding principle for the design of new algorithms

1.3.1 From optimization to competitive optimization
Optimization is a powerful paradigm for the design of algorithms. In order to solve
a novel problem, we cast it as the minimization of an appropriate cost function
and use one of the many existing optimization algorithms. In many branches
of continuous optimization, the workhorses of this approach are local iterative
methods such as gradient or Newton descent that minimize a series of regularized
local approximations. This can be interpreted as an agent that, based on local
information, tries to greedily decrease a loss that encodes the original problem.

Instead of a single agent, Competitive optimization features a multitude of agents
trying to minimize their respective loss, each of which may depend on the actions of
all agents.1 The expressiveness of competitive optimization begs the question, how

1Some of the agents may also collaborate, but this thesis focuses on competitive games.

7

regular mesh irregular mesh

x-axis shows contrast (# =2 × 105, g=1)

100 102 104

101

102

103
time (s)

100 102 104

102

103

time (s)

100 102 104

101

102

103

time (s)

100 102 104

102

103

time (s)

x-axis shows size (contrast=104, g=1)

105 106

101

102

103

104 time (s)

105 106

102

103

104

time (s)

105 106

101

102

103

104 time (s)

105 106

102

103

time (s)

——Ours —— AMGCL —— Trilinos

Figure 1.3: Comparison against AMG. We compare the solver described in Sec-
tion 5.6 against state of the art implementations of algebraic multigrid methods on
a problem arising in linear elasticity. The shaded region illustrates the performance
of our method over different parameter choices.

to cast a given computational problem into a competitive game and for which types
of problems competitive optimization offers benefits over classical optimization. A
general answer to these questions is presently out of reach. Instead we present four
important applications of competitive optimization.

1. Convex duality enables us to write a given convex lower-semicontinuous
function 5 (G) as 5 (G) = maxH 〈G, H〉 − 5 ∗(H), where 5 ∗ is the so-called convex
dual of 5 . If 5 ∗ is better behaved than 5 it can be beneficial to cast the
minimization of 5 as the competitive game minG maxH 〈G, H〉 − 5 ∗(H). For
instance, the convex function 50 with 50(0) = 0 and 50(G) = ∞ for G ≠ 0,
has the convex dual 5 ∗0 ≡ 0 leading to primal-dual methods for equality
constrained optimization.

8

2. In optimization and statistics, we might aim to be robust to a perturbation
F applied to the solution, leading to problem formulations of the form
minG maxF 5 (G + F) [37, 124]. Similar formulations are employed by ad-
versarial training approaches that aim to harden neural network classifiers
agains adversarial examples [161].

3. A number of applications of reinforcement learning are competitive games
[219, 243], making it paradigm for training policies for these tasks, as well.

4. Recently, multiple self-supervision learning techniques have been imple-
mented as games [157, 194, 196, 242, 245]. In particular, generative ad-
versarial networks (GANs) [96] have revolutionized the field of generative
modeling in many domains by introducing a competitive game between a
generator network that produces new data, and a discriminator network that
tries to tell apart real and artificial data.

1.3.2 Contribution in the second part of this thesis
In the second part of this thesis, which comprises Chapters 7 through 9, we propose
a natural generalization of gradient descent to constrained and competitive opti-
mization involving two agents. We furthermore provide a novel perspective on the
mechanisms that allow GANs to drastically outperform conventional methods for
automatic image generation.

Variants of gradient descent (GD) serve as workhorses for numerous applications,
including virtually all of deep learning. A seemingly natural generalization of
GD to competitive optimization is simultaneous gradient descent (SimGD), where
each agent performs a step according to the present gradient of its loss function.
However, even on a simple bilinear minimax game minG maxH GH, this algorithm
features oscillatory and divergent behavior as opposed to converging to the Nash
equilibrium in (0, 0). This phenomenon, illustrated in Figure 1.4, is the analogue
of “Rock! Paper! Scissors! Rock! Paper! Scissors! Rock! Paper!...” in the
eponymous hand game.

This leads us to question whether SimGD is really the natural generalization of
GD to multiple agents and to search for alternatives. Our point of departure is the
observation that gradient descent with stepsize [applied to the function 5 : R< −→
R can be written as

G:+1 = argmin
G∈R<

(G> − G>:)∇G 5 (G:) +
1

2[
‖G − G: ‖2. (1.5)

9

Figure 1.4: The cycling problem. The cycling problem of SimGD arises, because
each chooses the optimal action according the last action of the other agent.

This can be seen as a (single) player solving a local linear approximation of the
(minimization) game, subject to a quadratic penalty that expresses her limited con-
fidence in the global accuracy of the model. The natural generalization of this idea
to the competitive optimization problem involving two agents G and H minimizing
5 and 6 is to have both players solve a local approximation of the true game, each
subject to a quadratic penalty that expresses their limited confidence in the accuracy
of the local approximation.

If we choose a linear approximation of the loss function, we recover SimGD. Indeed,
the cycling behavior of SimGD can be understood as arising from the fact that the
resulting local game does not incorporate any interaction between the two agents.

An equally valid generalization of the linear approximation to the setting of two
agents is to use a bilinear approximation. The bilinear approximation captures some
interaction between the two players, hence we argue that the natural generalization
of gradient descent to competitive optimization is not SimGD, but rather the update
rule (G:+1, H:+1) = (G: , H:) + (G, H), where (G, H) is a Nash equilibrium of the game

min
G∈R<

G>∇G 5 + G>�2
GH 5 H + H>∇H 5 +

1
2[
G>G

min
H∈R=

H>∇H6 + H>�2
HG6G + G>∇G6 +

1
2[
H>H,

(1.6)

10

Figure 1.5: What I think that they think that I think... The partial sums of
a Neumann-series representation of Equation (1.7) represent different orders of
opponent-awareness, recovering the Nash-equilibrium in the limit.

that has the closed form solution(
ΔG

ΔH

)
= −

(
Id [�2

GH 5

[�2
HG6 Id

)−1 (
∇G 5
∇H6

)
. (1.7)

By using ΔG and ΔH as update rule, we obtain CGD. We can approximate the matrix
inverse in this update rule with a Neumann series to reveal another game-theoretic
interpretation. Each partial sum of the Neumann series represents another level of
opponent awareness, letting agents choose the optimal action if their opponent stays
still, the optimal action if their opponent thinks that they stay still, the optimal ...
until the Nash equilibrium is recovered in the limit.

In Chapter 8, we extend CGD to a large class of constrained optimization problems
by using the geometric information provided by a Bregman divergence, obtaining
competitive mirror descent. Where a naive implementation would lose the com-
putational efficiency of CGD, we propose to play the local game in Equation (1.6)
on the tangent space of the manifold structure induced by the Bregman divergence.
We then perform the update according to its dual exponential map that describes
an alternative notion of a straight path that incorporates the global geometry of the
constraint set. The resulting competitive mirror descent (CMD) separates the local
linear computation of the Nash equilibrium from the global nonlinear update, thus
preserving the computational efficiency of CGD.

In Chapter 9, we study themechanisms behind the impressive performance ofGANs.
We begin by casting doubt on the interpretation of GANs as trying to minimize a
divergence measure arising in the limit of a “perfect” discriminator. To this end, we
point out the GAN-dilemma that divides GAN formulations into two classes: those
that rely on a notion of a predefined distance between data points and those that do
not. In the former case, the discriminator can always become arbitrarily accurate,

11

Figure 1.6: Dual geometry. (left:) The dual notion of straight line induced by the
Shannon entropy guarantees feasible iterates onR<+ . (right:) AmanifoldM, tangent
space T?M, tangent vector G ∈ T?M, and the path described by the exponential
map

{
@ : @ = Exp? (CG), for C ∈ [0, 1]

}
.

Figure 1.7: The discriminator can always improve. We want the discriminator
confidence to reflect the relative abundance of true and fake data (left). But by
picking out individual data points, the discriminator can almost always achieve
arbitrarily low loss on any finite data set (right). Even in the limit of infinite data,
the slightest misalignment of the supports of generated and real data can be exploited
in a similar way.

rendering the divergence minimization point of view meaningless (See Figure 1.7).
In the second case, the results are strongly determined by the choice of distance
function. Most present methods implicitly use the pixel-wise mean-square distance
on images, which is a terrible notion of image similarity (see Figure 1.8).

We attempt to resolve the GAN-dilemma by arguing that GAN performance arises
from the implicit competitive regularization (ICR) due to the dynamics of simulta-
neous training. We support our claims with a range of experiments on toy problems

12

Figure 1.8: The Euclidean distance is not perceptual. We would like to challenge
the reader to order the above three pairs of images according to the Euclidean
distance of their representation as vectors of pixel-intensities.2

and real GANs. In particular, we observe that a CGD-trained GAN achieves higher
image quality on CIFAR10 (measure by inception score and Frechet inception dis-
tance) than explicitly regularized GANs trained with Adam. Since CGD improves
the convergence properties around points that are stabilized by ICR, we interpret
this as additional evidence that ICR is instrumental for GAN performance.

2The pairs of images are ordered from left to right and in increasing order of distance. The first
pair is identical, while the third pair differs by a tiny warping.

13

C h a p t e r 2

ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS AND
SMOOTH GAUSSIAN PROCESSES

2.1 Linear Elliptic Partial Differential Equations
2.1.1 Local laws for global phenomena
Our quantitative understanding of the physical world leans heavily on the observation
that even the most complicated macroscopic phenomena can be characterized by
simplemicroscopic laws. Themacroscopic evolution of the temperature distribution
jet engine might be complicated, yet the change of temperature is proportional to
the difference between its present temperature and the mean temperature in its
neighborhood. Similarly, the colonization of a petri dish by bacteria might seem
hard to describe globally, but microscopically the growth rate at each point can be
related to the concentration of nutrients.

The expression of complicated global phenomena in terms of simpler local laws
is not restricted to physical sciences, either. While finding the dist (%,&) between
two points % and & involves a global optimization problem, it is easy to derive a
relation between dist(%,&) and dist(%̃, &) for any point %̃ neighboring %. Similarly,
properties of a randomwalk starting in % can be expressed in terms of randomwalks
starting in points neighboring %.

The discovery of simple local laws governing complicated global phenomena is
a key component in most quantitative fields of science. The theory of partial
differential equations provides a general framework to formalize these laws and
study the properties of the objects they describe.

2.1.2 Partial differential equations (PDEs)
Instead of looking for laws defined in terms of small “neighborhoods” of finite size,
one can pass to “infinitely small neighborhoods” and obtain laws given in terms of
derivatives. For instance, the difference between the value D(G) of a function in G
and its mean in a small ball of radius ℎ around G is proportional to the sum of its
second derivatives:∫

�ℎ (G)
D(H) dH∫

�ℎ (G)
1 dH

− D(G) ≈
∑
8

m8m8D(G) = ΔD(G). (2.1)

14

The observation that the rate of change in the temperature in a point is proportional
to the difference of its present temperature, and the mean temperature in nearby
points then leads us to the heat or diffusion equation

mCD(G, C) = ΔD(G, C). (2.2)

More generally, a functional equation given by point-wise equalities involving any
combination of partial derivatives of a function is called a partial differential equation
(PDE). In light of the vast range of phenomena described by PDEs, it is not surprising
that a “general theory of PDEs” is not available. Instead, a variety of classifications
exist that identify families of PDEs for which systematic theories can be developed.

2.1.3 The Poisson problem
This thesis is concerned with the class of linear elliptic partial differential equations
that has the Poisson equation as its most well-known representative

− ΔD(G) = 5 (G). (2.3)

Following Equation 2.1, this means that we are looking for a function that, at each
point G, differs from its local average by 5 (G). This can be viewed as an equilibration
phenomenon where a physical quantity tends to be distributed homogeneously in
space, bar the effect of external perturbations or forces acting on the system. Thus,
the right-hand side of Equation 2.3 is often called the forcing term.

For instance, Equation 2.3 governs the electrostatic potential D in a medium in a
charge density given by 5 . In the absence of electric charges, the electric potential
at each point is equal to its local average in a small neighborhood. In the presence
of a positive (negative) charge, it is be larger (smaller) than its local average.

In the case of the incompressible Navier-Stokes equations, if an outside force 5 acts
on the fluid with velocity function D, the pressure ? is given by the Poisson equation

− Δ?(G) = − div(5 (G)) + [�D(G)] : [�D(G)]>, (2.4)

where “ : ” denotes the scalar product between the Jacobian of the velocity field
�D(G) and its transpose. Thus, the difference between the pressure at a given point
in the fluid and the average in its local neighborhood is equal to the net inbound
forces exerted by 5 and the movement of the surrounding fluid. In the absence of
net inbound or outbound forces, the pressure equilibrates to equal its local average.

15

The Poisson problem is also intimately related to the heat equation

mD

mC
= ΔD (2.5)

and the wave equation
m2D

mC2
= ΔD. (2.6)

Thus, the updates of implicit time-stepping schemes for these equations and their
steady-state solutions can be obtained as the solution of a Poisson problem.

2.1.4 The Dirichlet energy
For a domain Ω, we define the Dirichlet energy associated to the forcing term 5 as

D(D, 5) B
∫
Ω

1
2
‖�D(G)‖2 − 5 (G)D(G) dG. (2.7)

By formally computing the derivative with respect to D in the direction given by E
that is equal to zero on mΩ and using the divergence theorem, we obtain

mD(D + E, 5)
mE

D(D, 5) (2.8)

=

∫
Ω

〈�D(G), �E(G)〉 − 5 (G)E(G) dG (2.9)

=

∫
(−ΔD(G) − 5 (G)) E(G) dG. (2.10)

Thus, for a function 6 specifying values on the boundary mΩ of Ω, critical points of
the minimization problem

min
D:D=6 on mΩ

D(D, 5) (2.11)

are characterized as solutions of the Poisson problem in Equation 2.3, with boundary
values given by 6. This provides another perspective on the Poisson problem: In the
absence of forcing (5 = 0), it amounts to finding functions with prescribed boundary
values that are varying as slowly as possible in space. Otherwise, the Poisson
problem characterizes an optimal trade-off between the contradictory objectives of
spatial regularity, a large !2 inner product with 5 , and boundary values equal to 6.

16

2.1.5 General linear elliptic PDEs
In many ways, the Poisson problem introduced above is the archetypical elliptic
partial differential equation. However, the results in this thesis hold for a much
larger class of elliptic partial differential equations, which we will now introduce.
We consider a connected open subsetΩ ∈ R3 with Lipschitz boundary and denote by
�∞2 (Ω) the space of infinitely smooth functions with support compactly contained
in Ω. For an integer B, and D ∈ �∞2 (Ω), we define the Sobolev norm

‖ · ‖2
�B (Ω) B

∑
0≤A≤B

‖�B‖2
!2 (Ω) , (2.12)

where �AD(G) is the order A tensor containing the derivatives of order A of D in
G. We denote as �B

0 the closure of �∞2 (Ω). For D ∈ �∞2 (Ω), we define the dual
Sobolev norm ‖ · ‖�−B (Ω) as

‖D‖�−B (Ω) B sup
0≠E∈�B0 (Ω)

∫
Ω
D(G)E(G) dG
‖E‖�B0 (Ω)

(2.13)

and the dual Sobolev space �−B (Ω) as closure of�∞G (Ω) with respect to ‖ · ‖�−B (Ω) .
For D ∈ �−B (Ω) and E ∈ �B

0 (Ω) that are obtained as limits of D: , E: ⊂ �∞0 (Ω), we
define

[D, E] B lim
:→∞
[D: , E:] B lim

:→∞

∫
Ω

D: (G)E: (G) dG. (2.14)

For the purposes of this thesis, we define an elliptic partial differential operator as
follows.

Definition 1 (Linear elliptic partial differential operator (elliptic operator)). For
a domain Ω ⊂ R3 with Liptschitz and a positive integer B, we call an operator
L : �B

0 (Ω) −→ �−B (Ω) a linear elliptic partial differential operator if it is linear,
bounded, invertible, local in the sense that for D, E ∈ �∞2 (Ω)

∀D, E ∈ �∞2 (Ω) : supp D ∩ supp E = ∅ ⇒ [LD, E] = 0, (2.15)

symmetric in the sense that

∀D, E ∈ �∞2 (Ω) : [LD, E] = [LE, D], (2.16)

and positive in the sense that

∀D ∈ �B
0 (Ω) :⇒ [LD, D] ≥ 0. (2.17)

17

The linear elliptic PDE associated to the elliptic operator L with forcing term or
right hand side 5 ∈ �−B (Ω) is then given by

LD = 5 , (2.18)

with the Poisson problem being the special case of L = −Δ. We frequently refer to
the inverse of an elliptic operator L as the Green’s operator denoted by G B L−1.

For a given elliptic operator, we write ‖D‖2L B [LD, D] for its associated operator
norm on �B

0 (Ω) and ‖D‖
2
L−1 B [D,L−1D] for its associated dual operator norm on

�−B (Ω). Where this does not lead to ambiguities, we instead write ‖ · ‖ and ‖ · ‖∗
for the operator norm and its dual.

Generalizing the Dirichlet energy introduced in the last section, we obtain a general
variational principle for elliptic PDEs, given by

LD = 5 ⇔ D = argmin
E∈�B0 (Ω)

1
2
‖E‖2L − [5 , D] . (2.19)

2.1.6 Discretization and solution of elliptic PDEs
Elliptic operators, acting on infinite-dimensional function spaces, are infinite-
dimensional objects. In order to solve the associated equations numerically, we
have to find finite-dimensional representations that we can manipulate using numer-
ical linear algebra.

The popular Galerkin approach to discretization is based on the observation that

LD = 5 ⇔ ∀E ∈ �B (Ω) : [LD, E] = [5 , E] . (2.20)

This problem can be approximated by choosing a finite-dimensional subspaceV# =
span {E1, . . . E# } ⊂ �B

0 (Ω) and searching for D# ⊂ V# such that

[LD# , E] = [5 , E],∀E ∈ V# . (2.21)

This problem can be reexpressed as

D# =
∑

1≤:≤#
(�−11):E: , (2.22)

where 18 B [5 , E8] and �8 9 B [LE8, E 9] is called the stiffness matrix of L. One
can show that if lim#→∞+# = �B

0 (Ω), D
converges to the true solution of the

elliptic PDE. If instead of the differential operator L we have access to the Green’s
operator G = L−1, we similarly obtain a Galerkin discretization of G by using
a finite dimensional subspace W# = span {F1, . . . F# } ⊂ �−B (Ω) to form the
Green’s matrix Θ8 9 B [F8,GF 9].

18

2.2 Smooth Gaussian processes
2.2.1 Gaussian vectors
A Gaussian random vector - ∼ N(`,Θ) with mean ` ∈ R# and Θ ∈ R#×#

symmetric positive definite is a random element of R# that is distributed according
to the probability density (with respect to the Lebesgue measure)

?N(`,Θ) (-) B
1√

(2c)# det (Θ)
exp

(
−1

2
(- − `)>Θ−1 (- − `)

)
. (2.23)

Gaussian vectors are an immensely popular modeling tool for multivariate data.
They can be motivated by a variety of ways including rotational invariance (with
respect to the inner product induced by Θ−1) [132, Chapter 13], the central limit
theorem [132, Chapter 5], and even game theory [103, 190]. Beyond these theo-
retical considerations, they have the computational benefit that most probabilistic
operations on Gaussian vectors can be characterized in terms of linear algebraic
operations on Θ and `.

1. The mean and covariance of - ∼ N (`,Θ) are given by ` and Θ. We thus
refer to Θ as the covariance matrix of N (`,Θ).

2. The marginal log-likelihood of the Gaussian process model given data H is
given as

− 1
2
(H − `)>Θ−1 (H − `) − 1

2
logdet(Θ) − #

2
log(2c). (2.24)

3. Writing - =
(
-1
-2

)
∈ R#1+#2 , and blocking ` and Θ accordingly, the distribu-

tion of -2 conditioned on -1 is given as

-2 | -1 ∼ N
(
`2 + Θ2,1

(
Θ1,1

)−1 (-1 − `1) ,Θ2,2 − Θ2,1
(
Θ1,1

)−1
Θ2,1

)
.

(2.25)

4. The conditional correllations of - are encoded in the precision � B Θ−1, in
that

�8 9√
�88� 9 9

= (−1)8≠ 9
Cov

[
-8, - 9 | -∉{8, 9}

]√
Var

[
-8 | -∉{8, 9}

]
Var

[
- 9 | -∉{8, 9}

] , (2.26)

where ∉ {8, 9} denotes the set {1, . . . #} \ {8, 9}.

19

2.2.2 Gaussian processes
A common setting in Gaussian process statistics is such that we observe data HTr ∈
R#Tr at #Tr training locations in R3 and choose a covariance matrix ΘTr,Tr that
explains HTr, for instance by maximizing the marginal likelihood 2 of N

(
0,ΘTr,Tr

)
given HTr. If wewant to use this data to predict data at a different set of #Pr prediction
locations, we need not only ΘTr,Tr but also the training-prediction covariance ΘTr,Pr,
(and ΘPr,Pr if we want to perform uncertainty quantification). Without observing
data from the prediction locations, there seems to be no way for us to decide which
ΘTr,Pr,ΘPr,Pr to choose.

In order to define covariances between arbitrary locations, we can model our data
HTr as measurements of an infinite-dimensional Gaussian vector assigning a value
to each point in R3 . This idea is formalized by the notion of a Gaussian field.

Definition 2. Given a separable Banach space B and its dual B∗, let L : B −→
B∗ and G B L−1 : B∗ −→ B be symmetric and bounded linear operators.
Let furthermore H be a Hilbert space of univariate Gaussian random variables,
equipped with the !2 inner product. We call a linear map b : B∗ −→ H a Gaussian
field with covariance operator G, precision operators L, and mean ` ∈ B, if it is
an affine isometry, meaning that for all q ∈ B∗ we have

b (q) ∼ N ([q, `], [q,Gq]). (2.27)

Following the notation for Gaussian vectors, we then write b ∼ # (`,G). Here, [·, ·]
is the duality product of B∗ and B. Abusing notation, we write [q, b] B b (q).

For finite-dimensional B, b can be obtained from a Gaussian vector - ∼ N (`,G)
as b (q) B [q, -]. For infinite-dimensional B, a random element - ∈ B that
realizes the mapping b : B∗ −→ H usually does not exist. Instead, b can be realized
by a probability measure on a space larger than B, or by a cylinder measure on
B itself (see [190][Chapter 17] for additional details). Either way, b provides us
with a way to assign to any finite collection of measurements {q8}1≤8≤# ∈ B∗ a
joint distribution given by N(([q8, `])1≤8≤# ,Θ), where Θ8 9 B [q8,Gq 9]. If B
is a subset of the continuous functions on R3 , by choosing the {q8}1≤8≤# ∈ B∗ as
pointwise evaluations in a set of points {G8}1≤8≤# , we can obtain covariance matrices
of the joint distributions of arbitrary combinations of data points. Given training
data HTr in a set of training locations, we can use the maximum likelihood criterion
in order to choose a Gaussian field b ∼ N(0,G). Once found, the Gaussian field b
allows us to perform inference at arbitrary sets of prediction points.

20

2.2.3 Smooth Gaussian processes and elliptic PDE
Even in the setting of Gaussian vectors, we have somewhat brushed over the question
of how to choose a covariance model. For Gaussian fields, the space of possible
choices is vastly bigger, making it even less obvious how to single out a particular
covariance operator for a given task.

The choice of covariance operator G is a modeling choice whereby we assume
structure in our data that we can later use to perform inference. One of the most
fundamental assumptions on data is smoothness, meaning that the spatial derivatives
of the unknown function D are not too large and therefore D does not vary too rapidly
as a function fromR3 toR. Restricting our attention to centered Gaussian processes,
we can formally extend the formula Equation 2.23 to the Gaussian field setting by
writing

?N(0,G) (D) ∝ exp
(
−1

2
[LD, D]

)
. (2.28)

The log-likelihood of a realization D decreases, as the quadratic form [LD, D]
increases. This suggests defining Gaussian fields by choosing an L for which
[LD, D] is a measure of the roughness of the function. The elliptic operators of
Section 2.1.5 where chosen as bounded invertible linear operators from �B

0 (Ω) to
�−B (Ω). Therefore, their associated quadratic norm is equivalent to the squared
Sobolev norm (see for instance [190, Lemma 2.4])

‖L−1‖−1‖D‖2
�B0 (Ω)

≤ [LD, D] ≤ ‖L‖‖D‖2
�B0 (Ω)

. (2.29)

The Sobolev norms, being the sum of the !2 norms of the first B derivatives, provide
a natural measure of the roughness of a realization L. This makes elliptic operators
a natural choice for the precision operators of finitely smooth Gaussian fields. They
can either be constructed by discretizing the precision operator using a finite element
basis (see [155, 207] for examples), based on a closed-form of theGreen’s operatorG
(the most well-known example being the Matérn family of kernels [167, 248, 249]).
We point out that the popularGaussian kernel is not a Green’s function of an elliptic
PDE, but of a parabolic PDE corresponding to infinite order smoothness or B→∞.
We also note that many finitely smooth Gaussian process models from the literature,
such as fractional order Matérn covariances or the “Cauchy class” of covariance
functions, do not strictly fit into the framework of Section 2.1.5, yet show the same
behavior in practice.

21

2.3 The cubic bottleneck
In Sections 2.1 and 2.2, we have introduced the closely related problems computing
with linear elliptic operators and smooth Gaussian processes. Here and in the
following, we denote as L : �B

0 (Ω) −→ �−B (Ω) the differential precision operator,
and as G : �−B (Ω) −→ �B

0 (Ω) its inverse, the Green’s or covariance operator.
We cannot compute with the infinite operators L and G on a finite machine and
therefore approximate L and G by the stiffness or precision matrix � ∈ R#×# and
the Green’s or covariance matrix Θ ∈ R#×# that describe the actions of L and G on
#-dimensional subspaces of �B

0 (Ω) and �
−B (Ω).

In most applications, we are interested in performing some of the following opera-
tions

1. Compute 5 → �−1 5 to solve an elliptic PDE with right hand side 5 using a
Galerkin discretization.

2. Compute 1 → ΘΩ,mΩ
(
ΘmΩ,mΩ

)−1
1 to solve an elliptic boundary value prob-

lem with boundary data 1.

3. Compute HTr → ΘPr,Tr
(
ΘTr,Tr

)−1
HTr or HTr → −

(
�Pr,Pr

)−1
�Pr,TrHTr to com-

pute the conditional mean given training data HTr.

4. Compute ΘPr,Pr − ΘPr,Tr
(
ΘTr,Tr

)−1
ΘTr,Pr or

(
�Pr,Pr

)−1 to compute the condi-
tional covariance matrix.

5. Compute the marginal log-likelihood

− 1
2
(H − `)>Θ−1 (H − `) − 1

2
logdet(Θ) − #

2
log(2c), (2.30)

or
− 1

2
(H − `)> � (H − `) + 1

2
logdet(�) − #

2
log(2c), (2.31)

and its derivatives with respect to Θ or �, in order to perform model selection
using the likelihood criterion.

6. Sample from the Gaussian process N (`,Θ) or N
(
`, �−1) .

The problem in all these applications is that while � and Θ−1 are (almost) sparse
when using localized basis functions or measurements to discretize L and Θ, their
inverses �−1 and Θ are invariably dense. This can be illustrated by plotting the

22

Figure 2.1: An elliptic Green’s function. We plot the graph of the Green’s function
H ↦→ [G0,GH] of an elliptic PDEon the domainΩ. Most of its values are significantly
larger than zero, leading to a dense matrix Θ.

Green’s function (G, H) ↦→ [%G ,G%H] for % denoting the Dirac delta function, as
shown in Figure 2.1.

Performing the above operations using dense linear algebra leads to computational
complexityO

(
#2) in space andO (

#3) in space, making themexcessively expensive
for # ' 105 and presenting a major computational bottleneck for the computation
with large amounts of data or high-resolution physical models.

Existing approaches

Given the immense importance of elliptic operators throughout computational math-
ematics, it is not surprising that a vast range of methods has been developed to
facilitate their computational treatment. Each of these methods is based on finding
simple representations of the seemingly complicated solution operators �−1 and Θ.

Efficient representation of dense covariance matrices

Most approximations of Θ present in the literature rely on sparsity, low-rank struc-
ture, their combinations, and multiscale variants. Low-rank techniques such as
the Nyström approximation [87, 221, 250] or rank-revealing Cholesky factoriza-
tion [21, 85] seek to approximate Θ by low-rank matrices whereas sparsity-based
methods like covariance tapering [88] seek to approximate Θ with a sparse ma-
trix by setting entries corresponding to long-range interactions to zero. These two
approximations can also be combined to obtain sparse low-rank approximations
[25, 199, 212, 215, 223], which can be interpreted as imposing a particular graph-
ical structure on the Gaussian process. When Θ is neither sufficiently sparse nor
of sufficiently low rank, these approaches can be implemented in a hierarchical
manner. For low-rank methods, this leads to hierarchical (H - and H2-) matrices

23

[112, 114, 115], hierarchical off-diagonal low rank (HODLR) matrices [10, 11],
and hierarchically semiseparable (HSS) matrices [150, 251] that rely on computing
low-rank approximations of sub-blocks of Θ corresponding to far-field interactions
on different scales. The interpolative factorization developed by [118] combines
hierarchical low-rank structure with the sparsity obtained from an elimination or-
dering of nested-dissection type. Hierarchical low-rank structures were originally
developed as an algebraic abstraction of the fast multipole method of [100]. In order
to construct hierarchical low-rank approximations from entries of the kernel ma-
trix efficiently, both deterministic and randomized algorithms have been proposed
[28, 164]. For many popular covariance functions, including Green’s functions
of elliptic PDEs [29], hierarchical matrices allow for (near-)linear-in-# complex-
ity algorithms for the inversion and approximation of Θ, at exponential accuracy.
Wavelet-based methods [38, 94], using the separation and truncation of interactions
on different scales, can be seen as a hierarchical application of sparse approximation
approaches. The resulting algorithms have near-linear computational complexity
and rigorous error bounds for asymptotically smooth covariance functions. [82] use
operator-adapted wavelets to compress the expected solution operators of random
elliptic PDEs. In [134], although no rigorous accuracy estimates are provided,
the authors establish the near-linear computational complexity of algorithms re-
sulting from the multiscale generalization of probabilistically motivated sparse and
low-rank approximations [25, 199, 212, 215, 223]. Finally, we note that Veccha
approximations [136, 241] and factorized sparse approximate inverses [33, 141]
are able to utilize sparsity of the Cholesky factors of � or Θ−1 to compute effi-
cient approximations of Θ and �−1. We will encounter these algorithms again in
Chapter 6.

Obtaining approximations of �−1 from �

In applications where we are given access to the sparse stiffness or precision matrix
�, we can use slightly different techniques.

Firstly, we can use iterative methods such as conjugate gradient [218] to approxi-
mate the matrix-vector products E ↦→ �−1 in terms of matrix-vector products with
�. These matrix-vector products can usually be computed in complexity O (#)
providing us with a candidate for a much more efficient algorithm. However, the
sparsity pattern of � will usually be geometric in the sense that it captures inter-
actions of basis functions within a certain distance ℎ. Therefore, in order for the

24

approximation to �−1 to account for any interaction between two degrees of freedom
of distance X, we need to perform at least X/ℎ iterations of the conjugate gradient
method. This means that the required number of iterations grows at least with
#1/3 , where 3 is the spatial dimension. In practice, in particular for higher-order
PDEs, it can be much higher than that. This problem can be mitigated by the use
of multigrid solvers [41, 81, 111, 113] that work on grids of different length scales
simultaneously. In classical multigrid methods, these grids are constructed based
on only geometric information, without accounting for the values of the entries of
�. This approach achieves high performance on spatially homogeneous problems,
but it can perform arbitrarily badly on general PDEs with rough coefficients [20]. In
order to overcome this problem, algebraic multigrid methods [7, 41, 42, 253, 255]
or the operator adapted methods of [121, 189, 190] construct the multiresolution
hierarchy using the entries of �.

The sparsity of � further enables us to apply techniques from sparse linear algebra
such as sparse Cholesky factorization in nested dissection ordering [90–92, 156].
The computational complexity of these methods is superlinear, but they can be
highly efficient for moderate size. Therefore, some authors [155, 205–207] in
the spatial statistics literature suggest replacing the kernel matrices obtained from
Matérn covariance functions with the inverses of sparse stiffness matrices obtained
from finite element discretization of the associated PDE.

25

C h a p t e r 3

SPARSE CHOLESKY FACTORS BY SCREENING

3.1 Gaussian elimination and Cholesky factorization
Gaussian elimination might be the oldest method of numerical linear algebra, being
known to Chinese mathematicians for more than two millennia [99]. For a more
modern treatment, we refer the reader to [236]. When applied to symmetric and
positive definite matrices, it is also known as Cholesky factorization and amounts to
representing the input matrix � = !!> as the product of a lower triangular matrix
with its transpose, using Algorithm 1.

Algorithm 1 Cholesky factorization.
Input: Positive definite matrix � ∈ R#×#
Output: Lower triangular matrix ! ∈ R#×#

1: for 8 = 1 : # do
2: !:8 ← �:8/

√
�88

3: for 9 = 8 + 1 : # do
4: for : = 8 + 1 : # do
5: �: 9 ← �: 9 −

�:8� 98
�88

6: end for
7: end for
8: end for

Once the lower triangular factor ! is computed, the determinant of � can be obtained
as the squared product of the diagonal entries of ! and linear systems in � can be
solved by substitution (Algorithm 2)

Algorithm 2 Solving a linear system by forward and back substitution.
Input: Nonsingular lower triangular matrix ! ∈ R#×# and vector 1 ∈ R# .
Output: Vector G = (!!>)−1 ∈ R# in place of 1
1: {Forward substitution computing !−11 in place:}
2: for 8 = 1 : # do
3: 18 ←

(
18 − !8,1:(8−1) · 11:(8−1)

)
/!88

4: end for
5: {Backward substitution computing !−>1 in place:}
6: for 8 = # : −1 : 1 do
7: 18 ←

(
18 − ! (8+1):#,8 · 1 (8+1):#

)
/!88

8: end for

26

Furthermore, by multiplying a standard Gaussian vector with either !> (or !−1),
we can obtain samples of a Gaussian vector with covariance (or precision matrix)
given by �. Finally, by using only the first : columns of !, we can obtain a rank-:
approximation or �.

3.2 Sparse Cholesky factorization
A serious limitation of Cholesky factorization is that its computational cost scales
cubically with the dimension # of the matrix. If � is sparse, as is the case in
many applications, this cost seems excessive. A vast body of work is concerned
with using sparsity properties of � to reduce the computational cost of its Cholesky
factorization. The main difficulty that these methods need to overcome is the
phenomenon of fill-in by which the Cholesky factor ! of � can contain considerably
more nonzero entries than the original matrix �.

Fill-in is usually analyzed using graph theory, by defining the undirected sparsity
graph of a symmetric matrix � ∈ R#×# as the undirected graph with # vertices that
has an edge between nodes 8 and 9 if and only if �8 9 ≠ 0. After each iteration of the
outer loop in Line 1, the sparsity graph of � is modified by adding an edge between
each pair of neighbors of 8 that are still to be eliminated.

As illustrated in Figure 3.1, the fill-in produced by the factorization strongly depends
on the elimination ordering: the ordering of the rows and columns of the matrix.
This observation initiated a substantial body of research that uses graph-theoretical
approaches to find fill-in reducing elimination orderings. Popular approaches are ap-
proximateminimal degree [12], (reverse) Cuthill–McKee [56], and nested dissection
[90, 156] orderings. In Figure 3.1, we show how these approaches affect the amount
of fill-in when factorizing a finite-difference Laplacian in two dimensions. For a
general sparsity pattern, the cost of the resulting algorithms is hard to characterize,
but in the important special case of lattice graphs in two and three dimensions, it
is well understood. In two dimensions, the factors have O (# log(#)) nonzero en-
tries and can be computed in O

(
#3/2

)
time with relatively small constants, making

sparse Cholesky factorization an attractive choice for two-dimensional problems of
moderate size. In three dimensions, the factors have O

(
#4/3

)
nonzeros and can

be computed in O
(
#2) time [63]. The quadratic scaling of the computational cost,

and in particular the superlinear memory requirements, greatly limit the utility of
sparse Cholesky factorization for three-dimensional problems.

27

5

3 4

1 2

1

2 3

4 5

Figure 3.1: Fill-in. For a given matrix with nonzero entries denoted in blue, the
amount of fill-in (in red) depends strongly of the ordering of the rows and columns
of the matrix (note that we do not plot self-edges of the sparsity graph).

28

Figure 3.1: Fill-reducing ordering. We show common reordering heuristics and
their effects on the sparsity of the Cholesky factor of a finite difference Laplacian.

29

3.3 Gaussian elimination and Gaussian conditioning
As described in the last section, the amount of fill-in incurred when computing
the Cholesky factorization of sparse matrices can be studied by analyzing the spar-
sity graph of the matrix. This line of work leads to the development software
libraries such as CHOLMOD [46] that are now widely applied for solving sparse
linear systems in practice. But the graph-theoretic way of thinking about Cholesky
factorization has two important limitations. It is not helpful when computing the
Cholesky factorization of dense matrices, and the resulting algorithms usually have
superlinear running time.

In this section, we present an alternative, probabilistic heuristic for reasoning about
the sparsity of Cholesky factors.

The dense (block-)Cholesky factorization of a matrix Θ can be seen as the recursive
application of the matrix identity(

Θ1,1 Θ1,2

Θ2,1 Θ2,2

)
=

(
Id 0

Θ2,1 (Θ1,1)−1 Id

) (
Θ1,1 0

0 Θ2,2 − Θ2,1 (Θ1,1)−1Θ1,2

) (
Id (Θ1,1)−1Θ1,2

0 Id

)
,

(3.1)

where, at each step of the outermost loop, the above identity is applied to the Schur
complement Θ2,2 −Θ2,1

(
Θ1,1

)−1
Θ1,2 obtained at the previous step. As a result, the

:-th column of the final Cholesky factor ! is a multiple of the first column of the
Schur complement when setting Θ1,1 = Θ1:(:−1),1:(:−1) .

Interpreting the positive definite matrix Θ as the covariance matrix of the Gaussian
vector - = (-1, -2) ∼ N (0,Θ), the well-known identities

E[-2 | -1 = 0] = Θ2,1(Θ1,1)−10, (3.2)

Cov[-2 | -1] = Θ2,2 − Θ2,1(Θ1,1)−1Θ1,2 (3.3)

allow us to relate Equation 3.1 to the conditional expectation and variance of - .

Observation 1. ForΘ positive definite with lower triangular Cholesky factor ! and
- ∼ N(0,Θ), we have

!8 9 =
Cov

[
-8, - 9

��-1:(9−1)
]√

Var
[
- 9

��-1:(9−1)
] (3.4)

In particular, the (8, 9)-th entry of ! is (almost) zero if and only if the -8 and - 9 are
(almost) independent, conditional on -1:(9−1) .

This observation follows directly from well-known results, yet we are not aware that
it has made before. Since conditional independence is a core concept of probability

30

Figure 3.2: Sparsification by elimination. As we eliminate more columns (left
to right), the Cholesky factor and Schur complement become increasingly sparse
(top row, magnitude on log10-scale). The bottom row shows the geometric locations
corresponding to the eliminated columns, and how they dissect the graph.

theory, there should be interesting dense matrices with sparse Cholesky factors,
contrary to what the classical view described in Section 3.2 suggests.

A first example of this phenomenon are Gaussian processes with aMarkov property.

Definition 3. A random vector - ∈ R# has the Markov property according to
the graph � with vertices given by + = {1, . . . #} if for all �, � ⊂ + that are not
connected by an edge of�, -� and -� are independent, conditional on {-: }:∈+\(�∪�) .

For - ∼ N(0,Θ), this is equivalent to assuming that the precision matrix � = Θ−1

has � as its sparsity graph. When computing the Cholesky factorization of the
dense inverse of a sparse matrix, this suggests using an elimination ordering that
recursively divides the sparsity graph into conditionally independent components,
as illustrated in Figure 3.2. As we progress through the factorization, the initially
dense matrix becomes more and more sparse. Instead of fill-in, we observe a novel
fade-out phenomenon!

The elimination ordering in Figure 3.2 is the reverse of a nested dissection-type
ordering (see Figure 3.1 and [90]). This is no coincidence since, as mentioned in
Section 2.2.1, the inverse covariance or precision matrix � B Θ−1 of a Gaussian

31

vector - is related to its conditional correlation by

�8 9√
�88� 9 9

= (−1)8≠ 9
Cov

[
-8, - 9 | -∉{8, 9}

]√
Var

[
-8 | -∉{8, 9}

]
Var

[
- 9 | -∉{8, 9}

] , (3.5)

where ∉ {8, 9} denotes the set {1, . . . #} \ {8, 9}.

Observation 2. For � ∈ R#×# positive definite with lower triangular Cholesky
factor ! and - ∼ N(0, �−1), we have

!8 9

! 9 9
= (−1)8≠ 9

Cov
[
-8, - 9

��-(9+1):#\{8}]
Var

[
- 9

��-(9+1):#\{8}] (3.6)

In particular, the (8, 9)-th entry of ! is (almost) zero if and only if the -8 and - 9 are
(almost) independent, conditional on -(9+1):#\{8}.

Observation 2 on Cholesky factorization of precision matrices is more well-known
in the statistics community than Observation 1 and has been used, for instance, in
the context of Vecchia approximation [135]. While sparsity of the 9-th column of
the Cholesky factor of Θ is determined by conditional independence conditional on
the variables appearing before 9 in the ordering, the sparsity of � is determined by
the conditional independence, conditional on the variables appearing after 9 in the
ordering. In elimination orderings for Θ, we want the earlier variables to induce as
much conditional independence as possible, while in elimination orderings for �,
we want the later variables to induce as much conditional independence as possible.
Therefore, reversed sparsity inducing elimination orderings forΘ tend to be sparsity
inducing elimination orderings for �, and vice versa.

3.4 The screening effect
Observation 1 togetherwith theMarkov property inDefinition 3 allows us to compute
exact sparse Cholesky factors of dense matrices with sparse inverses. Unfortunately,
as mentioned in Section 3.2, the sparsity pattern of � = Θ−1 only allows for
superlinear time algorithms in most cases. This raises the question whether there
are other mechanisms for conditional (near-)independence that lead to near-linear
complexity algorithms.

Spatial statisticians have long observed that many smooth Gaussian processes are
subject to the “screening effect” [49, 131], described by [228] as: “The screening
effect is the geostatistical term for the phenomenon of nearby observations tending to
reduce the influence of more distant observations when using kriging (optimal linear

32

prediction) for spatial interpolation.” The intuitive explanation behind the screening
effect is that the values at any given site are most strongly dependent on those at
nearby sites. Thus, after conditioning on values at nearby sites, the information gain
from knowing the values at distant sites is marginal. They are conditionally near-
independent from the value at the point in question. In Figure 3.3, we illustrated the
screening effect in a Gaussian process with Matérn covariance.

As described in Section 2.2.3, many smooth Gaussian processes arise naturally from
(local) elliptic PDEs and therefore naturally satisfy a form of Markov property. In
this case, the maximin ordering can be seen as a relaxation of the nested dissection
approach of Figure 3.2 that achieves approximate independence with much fewer
conditioning points. However, the Markov property is only based on the nonzero
pattern of the entries of the precision matrix. In contrast, the screening effect
crucially depends on what its nonzero values are. One can construct matrices
that satisfy a Markov property without exhibiting a screening effect. For instance,
precisionmatrices of the form (�−_�)2 often do not admit a screening effect for large
_, even if the precision matrix � does.1 Conversely, important covariance models
such as fractional orderMatérn kernels seem to admit a screening effect, even though
they are not associated to a known local precision operator (see Section 5.5.4, in
particular Tables 5.5 and 5.6).

3.5 The maximin ordering and sparsity pattern
When computing the Cholesky factorization of a covariancematrixΘ, Observation 1
suggests beginning the elimination with degrees of freedom that induce as much
conditional independence as possible.

If Θ is subject to a screening effect as illustrated in Figure 3.3, this can be done by
ensuring that for any : , the leading : columns correspond to points that are spread
out as far and evenly as possible. This motivates the maximin ordering [8, 105] that
successively picks points that are furthest from those points picked before.

Definition 4 (Maximin ordering). A maximin ordering of a point set {G8}8∈� ⊂ R3

with starting set C is obtained by picking as :-th point G8: a point that has the
furthest possible distance to

{
G8;

}
;<:
∪ C. We call ℓ: B dist

(
G8: ,

{
G8;

}
;<:
∪ C

)
the

length-scale of the point G8: in the maximin ordering.

1This is closely related to the difficulty of solving high-frequency Helmholtz equations.

33

Figure 3.3: The screening effect. We condition a Gaussian process with Matérn
covariance on increasing conditioning sets and plot the conditional correlation of
the point in red as a heat map.

34

Figure 3.4: Maximin ordering. The first nine elements of the maximin ordering
on a pointset in R2, with the asocciated length scale ℓ8 visualized as a shaded radius.

Based on our observation in Figure 3.3, we expect the conditional correlations to
decay on a scale ℓ: after conditioning on the first : points in the maximin ordering.
This suggests to use the maximin sparsity pattern illustrated in Figure 3.5 where we
include only interactions of G8: with points within a distance ≈ ℓ: .

Definition 5 (Maximin sparsity pattern). Given a maximin ordering of the point set
{G8}8∈� ⊂ R3 with length scales {ℓ: }1≤:≤# and a sparsity parameter d ∈ R+, we
define its sparsity set (⊂ � × � as (B

{
(8: , 8;) s. t. : > ; and dist

(
G8: , G8;

)
≤ dℓ:

}
.

The entries outside of the maximin sparsity pattern will be of small magnitude but
not zero. Therefore a trade-off between accuracy and computational cost needs to
be chosen by varying d. As we increasing d, under mild assumptions, the size of the

35

Figure 3.5: Maximin sparsity pattern. Each column of the maximin sparsity pat-
tern includes interactions with points that are within a factor d of the corresponding
length scale ℓ: .

36

sparsity pattern will grow as O
(
log(#)d3

)
, allowing us to compute the factors in

time O
(
log2(#)d23

)
, as detailed in Chapter 5. As we will discuss in Chapter 4,

the approximation error n will usually decay exponentially as log(n) / log(#) − d,
allowing us to compute an n approximation in complexity O

(
log2(#) log(#/n)

)
.

We have seen in Section 3.3 that when factorizing the precision matrix � = Θ−1,
sparsity of a given column is equivalent to independence of the Gaussian process
conditional on degrees of freedom after : in the elimination ordering. Thus we
factorize the precision matrices of smooth Gaussian processes by using the reverse
maximin ordering as elimination ordering.

Definition 6 (Reverse maximin ordering). A reverse maximin ordering of a point
set {G8}8∈� ⊂ R3 with starting set C is obtained by reverting a maximin ordering
of {G8}8∈� ⊂ R3 with starting set C. The associated ℓ: is then obtained as the
(#� + 1 − :)-th length scale of the maximin ordering.

As before, the associated sparsity pattern only contains interactions between points
within distance d times the associated length scale.

Definition 7 (Reverse maximin sparsity pattern). Given a reverse maximin ordering
of the point set {G8}8∈� ⊂ R3 with length scales {ℓ: }1≤:≤# and a sparsity parameter
d ∈ R+, its sparsity set (⊂ �×� is (B

{
(8: , 8;) s. t. : > ; and dist

(
G8: , G8;

)
≤ dℓ:

}
.

However, as shown in Figure 3.6, there is an important difference. Since each
degree of freedom only interacts with others later in the ordering and the largest
length scales now appear last in the ordering, the reverse maximin sparsity pattern
has only O

(
#d3

)
entries. As we will see in Chapters 5 and 6, this allows to compute

the Cholesky factors of � in only O
(
#d23) time.

3.6 Cholesky factorization, numerical homogenization, and gamblets
3.6.1 The maximin ordering as a multiresolution method
In Section 3.5, we have introduced the maximin ordering in terms of a sequential
maximum distance selection. Instead, we now interprete it as a multiresolution
basis transform. To this end, we choose a scale factor ℎ ∈ (0, 1) and define the
index sets � (:) B

{
8 : ℎ: ≤ ℓ8/ℓ1

}
. As illustrated in Figure 3.8, the subspaces

+ (:) B span {18}8∈� (:) , with 18 being the 8-th standard basis vector, then form a
multiresolution sequence of subspaces of R� (@) � R# in the sense of [162]:

0 = + (0) ⊂ + (1) ⊂ . . . ⊂ + (@−1) ⊂ + (@) = R� . (3.7)

37

Figure 3.6: Reverse maximin sparsity pattern. Each column of the reverse
maximin sparsity pattern includes interactions within a factor d of the corresponding
length scale ℓ: . The number of nonzeros per column is approximately constant.

38

Figure 3.7: A Haar-type multiresolution basis. We begin the construction by
forming averages on different scales. On all but the coarsest scale, we obtain the
basis function functions as linear combination of nearby averages on a given scale
that are chosen to be orthogonal to all averages on the coarser scale. In the Figure,
we show basis functions on the three coarsest scales.

By computing the orthogonal complement of+ (:−1) in+ (:) for 1 ≤ : ≤ @, we obtain
the orthogonal subspaces, (:) that form an orthogonal multiresolution splitting of
+ (@) = R# in the sense that for all 1 ≤ : ≤ @ we have � (:) =

⊕
1≤;≤:

� (:) .

Based on the above, the maximin ordering can be thought of as a rudimentary mul-
tiresolution basis, a generalization of the so-called “lazy wavelets” to multivariate,
irregularly sampled data. Instead of using subsampling with density ≈ ℎ−3: , we
could have obtained + (:) by forming averages over regions of size ≈ ℎ: and ob-
tained , (:) as orthogonal complement of + (:−1) in + (:) , resulting in a Haar-type
multiresolution basis as illustrated in Figure 3.7.

Analogs of the screening effect illustrated in Figure 3.3 hold true for a wide range of
multiresolution systems in the sense that after measuring a smooth Gaussian process
against the elements of + (:) , its conditional correlations decay rapidly on the scale
ℎ: of the measurements. In particular, the Cholesky factors of Green’s and stiffness
matrices of elliptic PDEs have almost sparse Cholesky factors, when represented in
a multiresolution basis and using a coarse to fine (Green’s matrix) or fine to coarse
(stiffness matrix) elimination ordering. The connection to multiresolution analysis
will also allow us to use tools from numerical homogenization to provide rigorous
proofs of the screening effect.

3.6.2 Cholesky, Nystrom, and numerical homogenization
Let us now represent the Green’s matrix Θ and its inverse � in a two-scale basis
with the first block Θ1,1, �1,1 representing the coarse scale and the second block
Θ2,2, �2,2 representing the fine scale, and Θ12,Θ21, �12, �21 representing the inter-
actions between the two scales.

39

Figure 3.8: The hiddenmultiscale structure of the maximin ordering. The index
sets � (:) B

{
8 : ℎ: ≤ ℓ8/ℓ1

}
of the maximin ordering can be interpreted as the scale

spaces + (:) of a multiresolution basis. The index sets � (:) B � (:) \ � (:−1) can then
be viewed as the resulting orthogonal multiresolution decomposition. In this figure,
from left to right, we display � (1) , � (2) , and � (3) , plotting � (1) in red, � (2) in orange,
and � (3) in blue.

An important problem in numerical analysis is to compute a low-rank approximation
of Θ that correctly captures the coarse-scale behavior. Given access to Θ, this
problem can be solved by using the “Nystrom” approximation(

Θ1,1 Θ1,2

Θ2,1 Θ2,2

)
≈

(
Id

Θ2,1
(
Θ1,1

)−1

)
Θ1,1

(
Id,

(
Θ1,1

)−1
Θ12

)
. (3.8)

A classicalmethod in numerical analysis [23, Chapter 3], theNystromapproximation
has recently been used to compress kernel matrices arising in machine learning
[87, 222, 250]. Following the discussion in Section 3.3, this approximation amounts
to assuming that the fine-scale behavior is deterministic, conditional on the coarse-
scale behavior. As described in [199], many popular sparseGaussian processmodels
arise from refinements of this assumption.

In physical problems described by elliptic PDEs, we typically do not have access
to Θ, but rather to its inverse �, the stiffness matrix arising from a discretization
of the differential operator. The field of numerical homogenization is concerned
with computing low-rank approximations ofΘ that capture its coarse-scale behavior,
from access only to �. At the same time, it tries to preserve (some of) the sparsity of
the stiffness matrix � that arises from the locality of the partial differential operator.

The seminal work of [163] solves this problem by constructing an operator-adapted
set of basis functions that achieve (up to a constant factor) the optimal discretization
error while being (up to an exponentially small error) localized in space.

40

To understand the relationship of numerical homogenization to sparse Cholesky
factorization, we remind ourselves of the linear algebraic identity (see Lemma 4.15,
we give indexing [·]8, 9 precedence over inversion [·]−1)

(
Θ1,1 Θ1,2

Θ2,1 Θ2,2

)
=

((
Id �1,2�

−1
2,2

0 Id

) ((
�1,1 − �1,2�

−1
2,2�2,1

)
0

0 �2,2

) (
Id 0

�−1
2,2�2,1 Id

))−1

(3.9)

=

(
Id 0

�−1
2,2�2,1 Id

)−1 ©«
(
�1,1 − �1,2�

−1
2,2�2,1

)−1
0

0 �−1
2,2

ª®¬
(
Id �1,2�

−1
2,2

0 Id

)−1

(3.10)

=

(
Id 0

−�−1
2,2�2,1 Id

) ©«
(
�1,1 − �1,2�

−1
2,2�2,1

)−1
0

0 �−1
2,2

ª®¬
(
Id −�1,2�

−1
2,2

0 Id

)
. (3.11)

We can now recover the Nystrom approximation as(
Θ1,1 Θ1,2

Θ2,1 Θ2,2

)
≈

(
Id

Θ2,1
(
Θ1,1

)−1

)
Θ1,1

(
Id,

(
Θ1,1

)−1
Θ12

)
(3.12)

=

(
Id

−�−1
2,2�2,1

) (
�1,1 − �1,2�

−1
2,2�2,1

)−1 (
Id, −�1,2�

−1
22

)
(3.13)

=Ψ
(
Ψ>�Ψ

)−1
Ψ>, for Ψ B

(
Id

−�−1
2,2�2,1

)
. (3.14)

If we interpret the columns of Ψ as a new set of operator adapted finite element
functions, obtain the Nystrom approximation by projecting the problem onto the
space of these adaptive finite element functions, inverting the resulting stiffness
matrix, and expressing the resulting solution again in terms the original set of finite
element functions. The authors of [163] show that for a two-scale splitting similar
to the one in Figure 3.7 and for � being the stiffness matrix of a second-order elliptic
PDE with !∞-coefficients, the following holds:

1. The matrices Ψ and Ψ>�Ψ are sparse up to exponentially small terms (local-
ization).

2. As we decrease the scale of the small-scale, and hence increase the dimension
of Ψ, the resulting Nystrom approximation of Θ improves with the optimal
rate (homogenization).

41

3.6.3 Gamblets as Block-Cholesky factorization
The work of [163] provides an efficient, near-optimal coarse-graining of �, but it
does not provide us with a fast solver. In fact, computing Ψ requires inverting the
matrix �2,2, which could be almost as difficult as inverting �.

Motivated by ideas from game and decision theory, as well as Gaussian process re-
gression, [188] extend the construction ofΨ in the last section tomultiple scales. The
resulting family of operator-adapted wavelets, called gamblets, can be constructed
in near-linear time. Once constructed, it can be used to invert � in near-linear time.

In order to relate gamblets to Cholesky factorization, we assume that we are given an
orthogonal multiresolution decomposition

{
, (:)

}
1≤:≤@ and that for 1 ≤ :, ; ≤ @,

the matrix blocks Θ:,; , �:,; represent the restriction of Θ, � onto , (:) ×, (;) . A
multiscale extension of Equation 3.9 can then be obtained (see Lemma 1) by writing

Θ = Ψ�−1Ψ> = Ψ
(
Ψ>�Ψ

) (−1)
Ψ> (3.15)

with

� B

©«

� (1) 0 . . . 0

0 � (2)
. . .

...

...
. . .

. . .
...

0 0 . . . � (@)

ª®®®®®®¬
,Ψ B

©«

Id 0

� (2) ,−1�
(2)
2,1

. . . 0
...

...
. . .

. . .
...

� (@) ,−1�
(@)
@,1 . . . � (@) ,−1�

(@)
@,@−1 Id

ª®®®®®®¬

−1

, (3.16)

where �(:) B
(
Θ1::,1::

)
and �(:) B �

(:)
:,:

.

The columns of Ψ represent the gamblet basis functions, and � is the (block-
diagonal) stiffness matrix obtained when representing � in the gamblet basis. In the
same setting as [163], [188] prove that

1. The matrices Ψ and Ψ>�Ψ are sparse up to exponentially small terms (local-
ization).

2. The approximation of � obtained by using only the leading : block-columns
of Ψ improves at the optimal rate when increasing : (homogenization).

3. The matrices �(:) have uniformly bounded condition numbers.

Using and extending proof techniques of [142], [189, 190] extend these results
to higher order operators and more general classes of multiresolution splittings{
, (:)

}
1≤:≤@. We build upon these results in order to prove the sparsity of the

42

Cholesky factors of Θ. To this end, the main analytic contribution of our work is an
extension of the homogenization estimates of gamblets to simplistic multiresolution
splittings such as the one implied by the maximin ordering.

43

C h a p t e r 4

PROVING EXPONENTIAL DECAY OF CHOLESKY FACTORS

4.1 Overview
In Chapter 3, we have used the intuition provided by the screening effect to ob-
tain elimination orderings and sparsity patterns that lead to near-linear complexity
solvers based on sparse Cholesky factorization. But the resulting sparse Cholesky
factor merely approximates the original Θ or �, with the approximation accuracy
depending on d.

This raises the question at what rate the error decays when increasing d? How
strong is the screening effect, and when does it hold? Despite numerous attempts
[26, 227, 228], a rigorous understanding has proven largely elusive. Existing results
(see [228] for an overview) are asymptotic and do not provide explicit rates.

A central contribution of this thesis is to provide proof of an exponential screening
effect for Gaussian processes with covariance functions given as Green’s function of
elliptic partial differential equations. This allows us to prove that up to exponentially
small errors, the Cholesky factors of Θ and its inverse � can be approximated by
sparse matrices with only O

(
log(#)d3

)
and O

(
#d3

)
nonzero entries for an

approximation error n satisfying log(n) / log(#) − d. These results, which are
summarized in Section 4.6, can be specialized to:

Theorem 1. Let Ω ∈ R3 be a Lipschitz-bounded domain and let L be a linear
elliptic partial differential operator of order 2B > 3. Let {G8}1≤8≤# be roughly
uniformly distributed in Ω and ordered in the maximin [reverse maximin] ordering.
For G = L−1 the Dirichlet Green’s function define, Θ8 9 B G

(
G8, G 9

)
and let ! be

the Cholesky factor of Θ [� B Θ−1]. Let (⊂ {1, . . . , #}2 be the maximin [reverse
maximin] sparsity pattern with starting set mΩ and sparsity parameter d. Defining(
!(

)
8 9
B 1(8, 9)∈(!8 9 , we then have

log
(!(!(,> − !!>Fro

)
/ log(#) − d. (4.1)

A key step for proving this result is the derivation of a novel low-rank approximation
result that is interesting in its own right.

44

Theorem 2. In the setting of Theorem 1, let !:,1:: be the rank : matrix defined by
the first : columns of the Cholesky factor ! of Θ in the maximin ordering. Denoting
as ‖ · ‖ the operator norm and as ℓ: the length scales of the ordering, we haveΘ − ! (:,1::)

(
!:,1::

)> / ‖Θ‖:−2B/3 . (4.2)

Following the discussion in Section 3.6.2, this low-rank approximation also results
in a numerical homogenization results for L.

Theorem 3. In the setting of Theorem 1, let !:,1:: be the rank : matrix defined by the
first : columns of the Cholesky factor ! of � B Θ in the reverse maximin ordering.
We then haveΘ −Ψ(!1::,1::!

>
1::,1::)

−1Ψ>
 / ‖Θ‖:−2B/3 , for Ψ =

(
Id

−! (:+1):#,1::!
−1
1::,1::

)
.

(4.3)

Here, it is important to note that the resulting approximation of Θ can be efficiently
applied to a vector using matrix-vector multiplication of ! and substitution (see
Algorithm 2) in !1::,1:: , without forming another matrix.

Rigorous forms of the above theorems are stated and proved as Theorems 11, 12
and 13 in Section 4.6.

For B ≤ 3/2, Theorems 2 and 3 are false, and while Theorem 1 seems to hold
empirically, a proof of it remains elusive. However, following the discussion in
Section 3.6.1, we will prove analogues of Theorems 1, 2, and 3 where the maximin
ordering is replaced by a simple averaging-based multiresolution scheme.

While we present our results in terms of the exact Green’s matrix, analog results
for the approximate Green’s matrix Θdiscrete obtained as the inverse of a Galerkin
discretization �discrete ofL using locally supported basis functions could be obtained
by repeating the proof in this setting.

4.2 Setting and notation
4.2.1 The class of elliptic operators
For our rigorous, a priori, complexity-vs.-accuracy estimates, we assume that G
is the Green’s function of an elliptic operator L of order 2B (B, 3 ∈ N), defined
on a bounded Lipschitz domain Ω ⊂ R3 , and acting on �B

0(Ω), the Sobolev space
of (zero boundary value) functions having derivatives of order B in !2(Ω). More

45

Figure 4.1: Aregularity criterion. Wemeasure the regularity of the distributions of
measurement points as the ration of Xmin, the smallest distance between neighboring
points or points and the boundary, and Xmax, the radius of the largest ball that does
not contain any points.

precisely, writing �−B (Ω) for the dual space of �B
0(Ω) with respect to the !2(Ω)

scalar product, our rigorous estimates will be stated for an arbitrary linear bijection

L : �B
0(Ω) → �−B (Ω) (4.4)

that is symmetric (i.e.
∫
Ω
DLE dG =

∫
Ω
ELD dG), positive (i.e.

∫
Ω
DLD dG ≥ 0), and

local in the sense that∫
Ω

DLE dG = 0 for all D, E ∈ �B
0(Ω) such that supp D ∩ supp E = ∅. (4.5)

Let ‖L‖ B supD∈�B0 ‖LD‖�−B/‖D‖�B0 and ‖L−1‖ B sup 5 ∈�−B ‖L−1 5 ‖�B0/‖ 5 ‖�−B
denote the operator norms ofL andL−1. The complexity and accuracy estimates for
our algorithm will depend on (and only on) 3, B,Ω, ‖L‖, ‖L−1‖, and the parameter

X B
Xmin
Xmax

B
min8≠ 9∈� dist

(
G8, {G 9 } ∪ mΩ

)
maxG∈Ω dist (G, {G8}8∈� ∪ mΩ)

, (4.6)

the geometric meaning of which is illustrated in Figure 4.1.

46

4.2.2 Discretization in the abstract
Before talking about computation, we need to discretize the infinite-dimensional
spaces �B

0(Ω) and �
−B (Ω) by approximating them with finite vector spaces. We

first introduce this procedure in the abstract.

For B a separable Banach space with dual space B∗ (such as �B
0(Ω) and �

−B (Ω)),
we write [· , ·] for the duality product between B∗ and B. Let L : B → B∗ be a
linear bijection and let G B L−1. Assume L to be symmetric and positive (i.e.
[LD, E] = [LE, D] and [LD, D] ≥ 0 for D, E ∈ B). Let ‖ · ‖ be the quadratic (energy)
norm defined by ‖D‖2 B [LD, D] for D ∈ B and let ‖ · ‖∗ be its dual norm defined by

‖q‖∗ B sup
0≠D∈B

[q, D]
‖D‖ = [q,Gq] for q ∈ B∗. (4.7)

Let {q8}8∈� be linearly independent elements of B∗ (known as measurement func-
tions) and let Θ ∈ R�×� be the symmetric positive-definite matrix defined by

Θ8 9 B [q8,Gq 9] for 8, 9 ∈ �. (4.8)

We assume that we are given @ ∈ N and a partition � =
⋃

1≤:≤@ �
(:) of �. We

represent � × � matrices as @ × @ block matrices according to this partition. Given
an � × � matrix " , we write ":,; for the (:, ;)th block of " , and ":1::2,;1:;2 for
the sub-matrix of " defined by blocks ranging from :1 to :2 and ;1 to ;2. Unless
specified otherwise, we write ! for the lower-triangular Cholesky factor of Θ and
define

Θ(:) B Θ1::,1:: , �(:) B Θ(:),−1, �(:) B �
(:)
:,:

for 1 ≤ : ≤ @. (4.9)

We interpret the {� (:)}1≤:≤@ as labelling a hierarchy of scales with � (1) representing
the coarsest and � (@) the finest. We write � (:) for

⋃
1≤: ′≤: �

(: ′) .

Throughout this section, we assume that the ordering of the set � of indices is
compatible with the partition � =

⋃
:=1@ �

(:) , i.e. : < ;, 8 ∈ � (:) and 9 ∈ � (;)

together imply 8 ≺ 9 . We will write ! or chol(Θ) for the Cholesky factor of Θ in
that ordering.

4.2.3 Discretization of �B
0(Ω) and �

−B (Ω)
While similar results are true for a wide range of measurements {q8} ∈ B = �−B (Ω)
we will restrict our attention to two archetypical examples given by pointwise
evaluation and nested averages.

47

We will assume (without loss of generality after rescaling) that diam(Ω) ≤ 1. As
described in Figure 3.8, successive points of the maximin ordering can be gathered
into levels so that after appropriate rescaling of the measurements, the Cholesky
factorization in the maximin ordering falls in the setting of Example 1.

Example 1. Let B > 3/2. For ℎ, X ∈ (0, 1) let {G8}8∈� (1) ⊂ {G8}8∈� (2) ⊂ · · · ⊂
{G8}8∈� (@) be a nested hierarchy of points in Ω that are homogeneously distributed at
each scale in the sense of the following three inequalities:

(1) supG∈Ω min8∈� (:) |G − G8 | ≤ ℎ: ,

(2) min8∈� (:) infG∈mΩ |G − G8 | ≥ Xℎ: , and

(3) min8, 9∈� (:) :8≠ 9 |G8 − G 9 | ≥ Xℎ: .

Let � (1) B � (1) and � (:) B � (:) \ � (:−1) for : ∈ {2, . . . , @}. Let % denote the unit
Dirac delta function and choose

q8 B ℎ
:3
2 %(G − G8) for 8 ∈ � (:) and : ∈ {1, . . . , @}. (4.10)

The discretization chosen in Example 1 is not applicable for B < 3/2 since in
this case, functions in �B

0 (Ω) are not defined point-wise and thus % ∉ B∗. A
possible alternative is to replace q8 B ℎ

:3
2 %(G − G8) with q8 B ℎ−

:3
2 1�ℎ (0) (G −

G8). However, while the exponential decay result in Theorem 4 seems to be true
empirically for this choice of measurements, we are unable to prove it for B < 3/2.
Furthermore, the numerical homogenization result of Theorem 7 is false for this
choice of measurements and B < 3/2. However, our results can still be recovered
by choosing measurements obtained as a hierarchy of local averages.

Given subsets �̃ , �̃ ⊂ �, we extend a matrix " ∈ R�̃×�̃ to an element of R�×� by
padding it with zeros.

Example 2. (See Figure 4.2.) For ℎ, X ∈ (0, 1), let (g(:)
8
)8∈� (:) be uniformly Lipschitz

convex sets forming a regular nested partition of Ω in the following sense. For
: ∈ {1, . . . , @}, Ω =

⋃
8∈� (:) g

(:)
8

is a disjoint union except for the boundaries.
� (:) is a nested set of indices, i.e. � (:) ⊂ � (:+1) for : ∈ {1, . . . , @ − 1}. For
: ∈ {2, . . . , @} and 8 ∈ � (:−1) , there exists a subset 28 ⊂ � (:) such that 8 ∈ 28 and
g
(:−1)
8

=
⋃
9∈28 g

(:)
9

. Assume that each g(:)
8

contains a ball �Xℎ: (G
(:)
8
) of center G (:)

8

and radius Xℎ: , and is contained in the ball �ℎ: (G
(:)
8
). For : ∈ {2, . . . , @} and 8 ∈

48

Figure 4.2: Hierarchical averaging. We illustrate the construction described in
Example 2 in the case @ = 2. On the left we see the nested partition of the domain,
and on the right we see (the signs of) a possible choice for q1, q5, and q6.

� (:−1) , let the submatrices w(:),8 ∈ R(28\{8})×28 satisfy ∑
9∈28 w

(:),8
<, 9

w
(:),8
=, 9
|g(:)
9
| = X<=

and
∑
9∈28 w

(:),8
;, 9
|g(:)
9
| = 0 for each ; ∈ 28 \ {8}, where |g(:)8

| denotes the volume of
g
(:)
8

. Let � (1) B � (1) and � (:) B � (:) \ � (:−1) for : ∈ {2, . . . , @}. Let , (1) be the
� (1) × � (1) matrix defined by, (1)

8 9
B X8 9 . Let, (:) be the � (:) × � (:) matrix defined

by, (:) B
∑
8∈� (:−1) w(:),8 for : > 2, where we set

q8 B ℎ−:3/2
∑
9∈� (:)

,
(:)
8, 9

1
g
(:)
9

for each 8 ∈ � (:) (4.11)

and define [q8, D] B
∫
Ω
q8D dG. In order to keep track of the distance between the

different q8 of Example 2, we choose an arbitrary set of points {G8}8∈� ⊂ Ω with the
property that G8 ∈ supp(q8) for each 8 ∈ �.

In the above, we have discretized the Green’s functions of the elliptic operators
resulting in theGreen’smatrixΘ as the fundamental discrete object. The inverse � of
Θ can be interpreted as the stiffness matrix obtained from the Galerkin discretization
of L using the basis given by

k8 B
∑
9

�8 9G
(
q 9

)
∈ B. (4.12)

These types of basis functions are referred to as gamblets in the prior works of
[188–190] that form the basis for the proofs in this chapter. While exponentially

49

decaying, these basis functions are nonlocal and unknown apriori, hence they cannot
be used to discretize a partial differential operator with unknown Green’s function.
For Θ the inverse of a Galerkin discretization of L in a local basis, analog results
can be obtained by repeating the proofs of Theorems 4 and 7 in the discrete setting.

In the setting of Examples 1 and 2, denoting as ! the lower triangular Cholesky
factor of Θ or Θ−1, we will show that

|!8 9 | ≤ poly(#) exp(−W3 (8, 9)), (4.13)

for a constant W > 0 and a suitable distance measure 3 (· , ·) : � × � → R.

4.3 Algebraic identities and roadmap
We will use the following block-Cholesky decomposition of Θ to obtain (4.13).

Lemma 1. We have Θ = !̄�!̄) , with !̄ and � defined by

� B

©«

� (1) ,−1 0 . . . 0

0 � (2) ,−1 . . .
...

...
. . .

. . .
...

0 0 . . . � (@) ,−1

ª®®®®®®¬
, !̄ B

©«

Id 0

� (2) ,−1�
(2)
2,1

. . . 0
...

...
. . .

. . .
...

� (@) ,−1�
(@)
@,1 . . . � (@) ,−1�

(@)
@,@−1 Id

ª®®®®®®¬

−1

. (4.14)

In particular, if !̃ is the lower-triangular Cholesky factor of �, then the lower-
triangular Cholesky factor ! of Θ is given by ! = !̄ !̃.

Proof. To obtain Lemma 1, we successively apply Lemma 2 toΘ (see Section .1 for
details). Lemma 2 summarizes classical identities satisfied by Schur complements.

�

Lemma 2 ([258, Chapter 1.1]). Let Θ =

(
Θ1,1 Θ1,2
Θ2,1 Θ2,2

)
be symmetric positive definite

and � =
(
�1,1 �1,2
�2,1 �2,2

)
its inverse. Then

Θ =

(
Id 0
!2,1 Id

) (
�1,1 0

0 �2,2

) (
Id !>2,1
0 Id

)
(4.15)

� =

(
Id −!>2,1
0 Id

) (
�−1

1,1 0
0 �−1

2,2

) (
Id 0
−!2,1 Id

)
(4.16)

where

!2,1 = Θ2,1Θ
−1
1,1 = −�

−1
2,2�2,1 (4.17)

�1,1 = Θ1,1 =
(
�1,1 − �1,2�

−1
2,2�2,1

)−1
(4.18)

�2,2 = Θ2,2 − Θ2,1Θ
−1
1,1Θ1,2 = �

−1
2,2. (4.19)

50

Based on Lemma 1, (4.13) can be established by ensuring that:

(1) the matrices �(:) (and hence also �(:)) decay exponentially according to
3 (· , ·);

(2) the matrices �(:) have uniformly bounded condition numbers;

(3) the products of exponentially decaying matrices decay exponentially;

(4) the inverses of well-conditioned exponentially decaying matrices decay expo-
nentially;

(5) the Cholesky factors of the inverses of well-conditioned exponentially decay-
ing matrices decay exponentially; and

(6) if a @ × @ block lower-triangular matrix !̄ with unit block-diagonal decays
exponentially, then so does its inverse.

We will carry out this program in the setting of Examples 1 and 2 and prove that
(4.13) holds with

3 (8, 9) B ℎ−min(:,;) dist(G8, G 9), for each 8 ∈ � (:) , 9 ∈ � (;) . (4.20)

To prove (1), the matrices Θ(:) , �(:) (interpreted as coarse-grained versions of G
and L), and �(:) will be identified as stiffness matrices of the L-adapted wavelets
described in Section 3.6.3. This identification is established on the general identities
Θ
(:)
8, 9
= [q8,Gq 9] for 8, 9 ∈ � (:) , �(:) = (Θ(:))−1, �(:)

8, 9
= [Lk (:)

8
, k
(:)
9
] and �(:)

8, 9
=

[Lj(:)
8
, j
(:)
9
] where k (:)

8
and j(:)

8
are the gamblets introduced in [190].

4.4 Exponential decay of �(:)

Our proof of the exponential decay of ! will be based on that of �(:) as expressed
in the following condition:

Condition 1. Let W, �W ∈ R+ be constants such that for 1 ≤ : ≤ @ and 8, 9 ∈ � (:) ,���(:)
8 9

�� ≤ �W√�(:)88 �(:)9 9 exp(−W3 (8, 9)). (4.21)

Thematrices �(:) are coarse-grained versions of the local operatorL and thus inherit
some of its locality in the form of exponential decay. Such exponential localization
results were first obtained by [163] for the coarse-grained operators obtained from

51

local orthogonal decomposition (LOD) applied to second-order elliptic PDEs with
rough coefficients. [188] gives similar results for measurement functions chosen as
inExample 2. [120] extend the results on exponential decay to higher-order operators
satisfying a strong ellipticity condition. These results were obtained using similar
mass chasing techniques that are difficult to extend to general higher-order operators.
[142] present a simpler proof of the exponential decay of the LOD basis functions
of [163] based on the exponential convergence of subspace iteration methods. [189]
extend this technique (by presenting necessary and sufficient conditions expressed
as frame inequalities in dual spaces) to elliptic PDEs of arbitrary (integer) order
and new classes of (possibly non-conforming) measurements, including those of
Examples1 and 2. More recently, [43] show localization results for the fractional
partial differential operators by using the Caffarelli–Silvestre extension. The results
of [189] are sufficient to show that Condition 1 holds true in the setting of Examples 1
and 2.

Theorem 4 ([189]). In the setting of Examples 1 and 2, the matrices �(:) satisfy����(:)8 9 ��� ≤ �W√�(:)88 �(:)9 9 exp
(
− W
ℎ:

dist
(
supp (q8) , supp

(
q 9

)))
. (4.22)

This implies that in Example 1, they satisfy����(:)8 9 ��� ≤ �W√�(:)88 �(:)9 9 exp(−W3 (8, 9)) (4.23)

and in Example 2, they satisfy���(:)
8 9

�� ≤ �W exp
(W
ℎ

) √
�
(:)
88
�
(:)
9 9

exp(−W3 (8, 9)), (4.24)

with the constants �W and W depending only on ‖L‖, ‖L−1‖, B, 3, Ω, and X. In
particular, they satisfy Condition 1 with the constants described above.

Proof. Our Example 1 is equivalent to Example 2.29 of [189]. In [189, Theo-
rem 2.25 and Theorem 2.26], it is shown that in the gamblets {k (:)

8
}8∈� (:) computed

in this setting decay exponentially on the length-scale ℎ: , with respect to the energy
norm. By [189, Theorem 3.8], we have �(:)

8 9
= [k (:)

8
,Lk (:)

9
] and, therefore, the

exponential decay of gamblets implies the exponential decay of the �(:) .

We further note that Example 2 is equivalent to Example 2.27 in [189]. Therefore,
by the same theorems, as above, the results of [189] imply exponential decay of the
�(:) in this setting1.

1The block �(:)
<,;

in our notation is, (<)c (<,:) �(:)c (:,;), (;) ,> in the notation of [189].

52

See also [190, Theorem 15.45] for a detailed proof and [190, Theorem 15.43] for
required sufficient lower bounds on �(:)

88
. �

4.5 Bounded condition numbers
In this section, we will bound the condition numbers of �(:) based on the following
condition, which we will show to be satisfied for Examples 1 and 2.

Condition 2. Let � ∈ (0, 1), �Φ ≥ 1 be constants such that for 1 ≤ : < ; ≤ @,

_min
(
Θ(:)

)
≥ 1
�Φ

�2: , (4.25)

_max
(
Θ
(@)
;,;
− Θ(@)

;,1::Θ
(@),−1
1::,1::Θ

(@)
1::,;

)
≤ �Φ�2: . (4.26)

Theorem 5. Condition 2 implies that, for all 1 ≤ : ≤ @,

�−1
Φ �−2(:−1)Id ≺ �(:) ≺ �Φ�−2: Id, (4.27)

and, for ^ B �−2�2
Φ
,

cond
(
�(:)

)
≤ ^ . (4.28)

Proof. The lower bound in (4.27) follows from (4.26) and

�(:) =
(
Θ
(@)
:,:
− Θ(@)

:,1:(:−1)Θ
(@),−1
1::,1::Θ

(@)
1:(:−1),:

)−1
. (4.29)

The upper bound in (4.27) follows from (4.25) and �(:) =
((
Θ(:)

)−1)
:,:

. �

The following theorem shows that (4.26) is a Poincaré inequality closely related
to the accuracy of numerical homogenization basis functions [120, 163, 191] and
(4.25) is an inverse Sobolev inequality related to the regularity of the discretization
of L:

Theorem 6. Condition 2 holds true if the constants �Φ ≥ 1 and � ∈ (0, 1) satisfy

(1) 1
�Φ
�2: ≤ ‖q‖

2
∗

|U |2 , for U ∈ R
� (:) and q =

∑
8∈� (:) U8q8; and

(2) mini∈span(q8)8∈� (:−1)
‖q−i‖2∗
|U |2 ≤ �Φ�

2(:−1) , for U ∈ R� (;) , : < ; ≤ @, and
q =

∑
8∈� (;) U8q8.

Proof. Inequality (4.25) is a direct consequence of the first assumption of the the-
orem, whereas (4.26) follows from the variational property [258, Theorem 5.1] of

53

the Schur complement:

U>
(
Θ;,; − Θ(@);,1::Θ

(@),−1
1::,1::Θ

(@)
1::,;

)
U = inf

V∈R� (:)
(U − V)>Θ(@) (U − V) (4.30)

= min
i∈span{q8 |8∈� (:) }

‖q − i‖2∗ ≤ �Φ�2: |U |2. (4.31)

�

We will now show that Examples 1 and 2 satisfy the conditions of Theorem 6. For
simplicity, for Ω̃ ⊂ Ω and q ∈ �−B (Ω), we still write q for the unique element
q̃ ∈ �−B (Ω̃) such that [q̃, D] = [q, D] for D ∈ �B

0(Ω̃). The following Fenchel
conjugate identity [40, Ex. 3.27, p. 93] will be useful throughout this section.

‖q‖2
�−B (Ω) = sup

E∈�B0 (Ω)
2[q, E] − ‖E‖2

E∈�B0 (Ω)
. (4.32)

The first condition can be verified in a similar way as is done in [189].

Lemma 3. Let Θ be given as in Examples 1 and 2. Then there exists a constant �
depending only on X, B, and 3, such that

1
�Φ

ℎ2B: ≤ ‖q‖
2
∗

|U |2
, (4.33)

for �Φ = ‖L‖�, U ∈ R�
(:) , and q =

∑
8 U8q8.

Proof. The proof can be found in Section .1. �

In order to verify the second condition in Theorem 6, we will construct a i such
that q − i integrates to zero against polynomials of order at most B − 1 on domains
of size ℎ: . Then an application of the Bramble–Hilbert lemma [65] will yield the
desired factor ℎ:B. To avoid scaling issues, we define, for 1 ≤ : ≤ @ and 8 ∈ � (:) ,

q
(:)
8

B

%G8 , in Example 1,

1
g
(:)
8

/|g(:)
8
|, in Example 2,

(4.34)

noting that span{q(:)
8
| 8 ∈ � (:)} = span{q8 | 8 ∈ � (:)}. To obtain estimates

independent of the regularity of Ω, for the simplicity of the proof and without loss
of generality, we will partially work in the extended space R3 (rather than on Ω).
We write E for the zero extension of E ∈ �B

0(Ω) to �
B (R3) and q(:)

8
for the extension

of q(:)
8
∈ �−B (Ω) to an element of the dual space of �B

loc(R
3). We introduce new

54

measurement functions in the complement of Ω as follows. For 1 ≤ : ≤ @, we
consider countably infinite index sets �̃ (:) ⊃ � (:) . We choose points (G8)8∈ �̃ (@)\� (@)
satisfying

sup
G∈R3\Ω

min
8∈ �̃ (:)

dist (G8, G) ≤ X−1ℎ: , min
8≠ 9∈ �̃ (:)\� (:)

dist(G8, G 9 ∪ mΩ) ≥ Xℎ: . (4.35)

We then define, for 1 ≤ : ≤ @ and 8 ∈ �̃ (:) , q(:)
8

B XG8 for Example 1, and

q
(:)
8

B
1�

Xℎ:
(G8)

|�
Xℎ:
(G8) | for Example 2. Let PB−1 denote the linear space of polynomials of

degree at most B − 1 (on R3).

Lemma 4. Let Θ be as in Example 1 or Example 2. Given d ∈ (2,∞) and
1 ≤ : < ; ≤ @, let F ∈ R� (;)×�̃ (:) be such that∫

�
dℎ:
(G8)

©«q8 −
∑
9∈ �̃ (:)

F8 9q
(:)
9

ª®¬ (G)?(G) dG = 0, for all ? ∈ PB−1 and 8 ∈ � (;)

(4.36)
and F8 9 ≠ 0 ⇒ supp

(
q
(:)
9

)
⊂ �dℎ: (G8). Then, for U ∈ R�

(;) , q B
∑
8∈� (;) U8q8 and

i B
∑
8∈� (;) , 9∈� (:) U8F8 9q

(:)
9

satisfy

‖q − i‖2∗ ≤ ‖L−1‖� (3, B) d
3+2B

X3

(
1 + ℎ−;3l2

;,:

)
ℎ2B: |U |2, (4.37)

with l;,: B sup8∈� (;)
∑
9∈ �̃ (:) |F8 9 | and ‖q‖∗ B supD∈�B0 (Ω) [q, D]/[LD, D]

1
2 as in

(4.7).

We proceed by proving Lemma 4 in the setting of Example 1. The proof in the
setting of Example 2 can be found in Section .1. For D ∈ �B (Ω), write D0D B D

and for 1 ≤ : ≤ B, write D:D for the vector of partial derivatives of D of order : , i.e.
D:D B

(
m:D

m81 ···m8:

)
81,...,8:=1,...,3

. The proof of Lemma 4 will use the following version
of the Bramble–Hilbert lemma:

Lemma 5 ([65]). Let Ω ⊂ R3 be convex and let q be a sublinear functional on
�B (Ω) for B ∈ N such that

(1) there exists a constant �̃ such that, for all D ∈ �B (Ω),

|q(D) | ≤ �̃
B∑
:=0

diam(Ω): ‖D:D‖!2 (Ω); (4.38)

(2) and q(?) = 0 for all ? ∈ PB−1.

55

Then, for all D ∈ �B (Ω),

|q(D) | ≤ �̃� (3, B) diam(Ω)B‖DBD‖!2 (Ω) . (4.39)

The following lemma is obtained from Lemma 5:

Lemma 6. For 1 ≤ : < ; ≤ @ and 8 ∈ � (;) , let q8, F8 9 be as in Lemma 4 and
Example 2 and define i8 B

∑
9∈� (:) F8 9q

(:)
9
. Then there exists a constant � (3, B)

such that, for all E ∈ �B
0(Ω),�����∫�

dℎ:
(G8)
(q8 − i8) (G)E(G) dG

����� ≤ � (3, B)dB−3/2ℎ (B−3/2): ©«ℎ;3/2 +
∑
9∈ �̃ (:)

|F8 9 |
ª®¬ ‖DBE‖!2

(
�
dℎ:
(G8)

) .
(4.40)

Proof. We apply Lemma 5 to the linear functional D ↦→
∫
�
dℎ:
(q8 − i8)D. Since the

second requirement of Lemma 5 is fulfilled by definition, it remains to bound �̃.
We only execute the proof for Example 1; the proof for Example 2 is analogous. We
first note that while the sum in the definition of i8 only ranges over 9 ∈ � (:) , we can
increase it to run over all of 9 ∈ �̃ (:) , since for 9 ∈ �̃ (:) \ � (:) , the support of q(:)

9
is

disjoint from that of E ∈ �B
0(Ω). Let D ∈ �

B (Ω). Writing � (3, B) for the continuity
constant of the embedding of �B (�1(0)) into �1 (�1(0)), the inequalities

max
�
dℎ:
(G8)
|D(·) | = max

G∈�1 (0)

���D (
dℎ: (G − G8)

)��� ≤ � (3, B) B∑
<=0
(dℎ:)<

[D<D] (dℎ: (· − G8))
!2 (�1 (0))

and [D<D]
(
dℎ: (· − G8)

)
!2 (�1 (0)) = (dℎ

:)−3/2‖D<D‖!2 (�
dℎ:
(G8))

imply that

|q8 (D) − i8 (D) | ≤
©«ℎ;3/2 +

∑
9∈ �̃ (:)

|F8 9 |
ª®¬ max
G∈�

dℎ:
(G8)
|D(G) | (4.41)

≤ � (3, B)d−3/2ℎ−:3/2 ©«ℎ;3/2 +
∑
9∈ �̃ (:)

|F8 9 |
ª®¬

B∑
<=0
(dℎ:)<‖D<D‖!2 (�

dℎ:
(G8)) .

(4.42)

Therefore the first condition of Lemma 5 holds with

�̃ = � (3, B)d−3/2ℎ−:3/2 ©«ℎ;3/2 +
∑
9∈ �̃ (:)

|F8 9 |
ª®¬ , (4.43)

and we conclude the proof by writing � (3, B) for any constant depending only on 3
and B. �

56

We can now conclude the proof of Lemma 4.

Proof of Lemma 4. Write i B
∑
8∈� (;) U8i8 and i8 B

∑
9∈� (:) F8 9q

(:)
9
. Equa-

tion (4.32) implies that

‖q − i‖2
�−B (Ω) = sup

E∈�B0 (Ω)

(∑
8∈� (;)

2U8
∫
�
dℎ:
(G8)
(q8 − i8) (G)E(G) dG

)
− ‖E‖2

�B0 (Ω)
.

(4.44)
The packing inequality

∑
8∈� (;) ‖DBE‖2

!2
(
�
dℎ:
(G8)

) ≤ � (3)
(
ℎ:−;d/X

)3 ‖E‖2
�B0 (Ω)

to-

gether with Lemma 6 yields

‖q − i‖2
�−B (Ω) ≤ sup

E∈� B0 (Ω)

∑
8∈� (;)

[
2|U8 |� (3, B)dB−

3
2 ℎ (B−

3
2): ©«ℎ

;3
2 +

∑
9∈� (:)

|F8 9 |
ª®¬ ‖DBE‖!2 (�

dℎ:
(G8))

(4.45)

− (� (3))−1
(
ℎ:−;d/X

)−3
‖DBE‖2

!2
(
�
dℎ:
(G8)

)] . (4.46)

Applying the inequality 20G − 1G2 ≤ 02/1 to each summand yields

‖q − i‖2
�−B (Ω) ≤ � (3)

(
ℎ:−;d/X

)3 ∑
8∈� (;)

©«U 9� (3, B)dB−
3
2 ℎ (B−

3
2): ©«ℎ

;3
2 +

∑
9∈� (:)

|F8 9 |
ª®¬ª®¬

2

(4.47)

≤ � (3, B) d
2B

X3

(
1 + ℎ−;3l2

;,:

)
ℎ2B: |U |2 . (4.48)

Since, for all 5 ∈ �−B (Ω),

‖ 5 ‖2∗ = [5 ,L−1 5] ≤ ‖ 5 ‖�−B (Ω) ‖L−1 5 ‖�B0 (Ω) ≤ ‖L
−1‖‖ 5 ‖2

�−B (Ω) , (4.49)

we have ‖q − i‖∗ ≤
√
‖L−1‖‖q − i‖�−B (Ω) , and this completes the proof. �

The following geometric lemma shows that the assumption (4.36) of Lemma 4 can
be satisfied with a uniform bound on the value of d and the norm of weights F8, 9 .

Lemma 7. There exist constants d(3, B) and � (3, B, X) such that for all 1 ≤ : <
; ≤ @, there exist weights F ∈ R� (;)×�̃ (:) satisfying (4.36) and (with l;,: defined as
in Lemma 4)

l2
;,: ≤ ℎ

;3� (3, B, X) . (4.50)

Proof. For Example 1, (4.36) is equivalent to

ℎ;3/2?(G8) =
∑
9∈ �̃ (:)d

F8 9 ?(G 9),∀? ∈ PB−1, (4.51)

57

where �̃ (:)d B { 9 ∈ �̃ (:) | G 9 ∈ �(G8, dℎ:)}.

Fix 8 ∈ � (;) , let _ > 0, and write G_
9
B

G 9−G8
_

. Write 0 B (0, . . . , 0) ∈ R3 . Since the
function ?(·) ↦→ ?(·−G8

_
) is surjective on PB−1, (4.51) is satisfied if

ℎ;3/2?(0) =
∑
9∈ �̃ (:)d

F8 9 ?(G_9),∀? ∈ PB−1. (4.52)

For a multiindex = = (=1, . . . , =3) ∈ N3 and a point I = (I1, . . . , I3) ∈ R3 , write
I= B

∏3
<=1 I

=<
< . Use the convention 0= = 0 if = ≠ 0 and 00 = 1. To satisfy (4.52),

it is sufficient to identify a subset f of �̃ (:)d and F8, · ∈ R�̃
(:) such that #f = B3 ,

F8, 9 = 0 for 9 ∉ f, and

ℎ;3/20= =
∑
9∈f

F8 9 (G_9)=,∀= ∈ {0, . . . , B − 1}3 . (4.53)

Let V_ ∈ R{0,1,...,B−1}3×f be the B3 × B3 matrix defined by

V_=, 9 B
(
G_9

)=
. (4.54)

For a multiindex = ∈ N3 and a point G ∈ R3 , G= B ∏3
<=1 G

=< . Let w ∈ Rf be
defined by w 9 B F8, 9 for 9 ∈ f. Equation (4.53) is then equivalent to

ℎ;3/2e = V_w, (4.55)

where e ∈ R{0,1,...,B−1}3 is defined by e= B 0= for = ∈ {0, 1, . . . , B − 1}3 . We will
now identify w by inverting (4.55). To achieve this while keeping the norm of w
under control, we will seek to identify the subset f and _ > 0 such that fmin(V_)
(the minimal singular value of V_) is bounded from below by a constant depending
only on B and 3.

For U ≥ 0, let (n 9) 9∈{0,1,...,B−1}3 be elements of R3 satisfying |n 9 | ≤ U for all
9 ∈ {0, 1, . . . , B − 1}3 . Let 1 B (1, . . . , 1) ∈ R3 and, for 9 ∈ {0, 1, . . . , B − 1}3 , let
I 9 B 1 + 9 + n 9 . Observe that for U = 0, the points I 9 are on a regular grid. Let
V̄U ∈ R{0,1,...,B−1}3×{0,1,...,B−1}3 be the B3 × B3 matrix defined by V̄U

=, 9
B

(
I 9

)=. Let
+ be the B × B Vandermonde matrix defined by +8, 9 = 8 9 . Writing fmin(+) for the
minimal singular value of + , we have for U = 0, by [119, Theorem 4.2.12],

fmin

(
V̄0

)
= (fmin(+))3 . (4.56)

Since univariate polynomial interpolation on B points with polynomials of degree
B − 1 is uniquely solvable, we have fmin (+) > 0 and fmin(V̄0) > � (3, B) > 0.

58

Therefore, the continuity of the minimal singular value with respect to the entries
of V̄U implies that there exists U∗, f∗ > 0 depending only on B, 3 such that U ≤ U∗

implies fmin(V̄U) > f∗. Since (by construction) the (G8)8∈ �̃ (:) form a covering of
R3 of radius ℎ: , the (G_

8
)8∈ �̃ (:) form a covering of R3 of radius ℎ:/_ and for each

= ∈ {0, 1, . . . , B−1}3 , there exists an G_
9=
that is at distance at most ℎ:/_ from =. Let

f B { 9= | = ∈ {0, 1, . . . , B − 1}3} ⊂ �̃ (:) be the collection of corresponding labels.
It follows from |G_

9=
| ≤
√
3B + ℎ:/_ that |G 9= − G8 | ≤ _

√
3B + ℎ: , and f ⊂ �̃ (:)d for

d > 1 + _
√
3B/ℎ: . Selecting _ = ℎ:/U∗ implies that fmin(V_) > f∗ and f ⊂ �̃ (:)d

for d > 1 +
√
3B/U∗. Defining

F8 9 B

(
(V_)−1ℎ;3/2e

)
=
, if 9 = 9= ∈ f,

0, otherwise,
(4.57)

the weights F8 9 satisfy l:; ≤ � (B, 3)ℎ;3/2 and (4.36) with a d depending only on B
and 3. This concludes the proof for Example 1. The proof is similar for Example 2
with minor changes (the bound on l also depends on X). �

The following lemma concerns the satisfaction of the second condition of Theorem6:

Lemma8. In the setting of Examples 1 and 2, there exists some constant� (3, B, X) >
0 such that, for 2 ≤ : < ; ≤ @, U ∈ R� (;) and q = ∑

8 U8q8,

min
i∈span(q8)8∈� (:−1)

‖q − i‖2∗
|U |2

≤ � (3, B, X)‖L−1‖ℎ2B(:−1) . (4.58)

Proof. Apply Lemma 4 with the bounds on d and l obtained in Lemma 7. �

The following theorem is a direct consequence of Theorems 6, Lemma 3 and
Lemma 8.

Theorem7. In the setting of Examples 1 and 2, there exists a constant� (3, B, X) such
that Condition 2 is fulfilled with �Φ B max(‖L‖, ‖L−1‖)� (3, B, X) and � B ℎB.

Propagation of exponential decay

We will now derive the exponential decay of the Cholesky factors ! by combining
the algebraic identities of Lemma 1 with the bounds on the condition numbers of
the �(:) (implied by Condition 2) and the exponential decay of the �(:) (specified
in Condition 1). The core of our proof is based on a combination/extension of the

59

results of [31, 32, 34, 68, 128, 144] on decay algebras. The pseudodistance 3 (· , ·)
appearing in (4.13) is not a pseudometric because it does not satisfy the triangle
inequality. However, to prove (4.13), we will only need the following weaker version
of the triangle inequality:

Definition 8. A function 3 : � × � −→ R+ is called a hierarchical pseudometric if

(1) 3 (8, 8) = 0, for all 8 ∈ �;

(2) 3 (8, 9) = 3 (9 , 8), for all 8, 9 ∈ �;

(3) for all 1 ≤ : ≤ @, 3 (· , ·) restricted to � (:) × � (:) is a pseudometric;

(4) for all 1 ≤ : ≤ ; ≤ < ≤ @ and 8 ∈ � (:) , B ∈ � (;) , 9 ∈ � (<) , we have
3 (8, 9) ≤ 3 (8, B) + 3 (B, 9).

Note that the 3 (· , ·) specified in (4.20) for Examples 1 and 2 is a hierarchical
pseudometric. For a hierarchical pseudometric 3 (· , ·) and W ∈ R+, let

23 (W) B sup
1≤:≤;≤@

sup
9∈� (;)

∑
8∈� (:)

exp(−W3 (8, 9)). (4.59)

The following theorem states the main result of this section:

Theorem 8 (Exponential decay of the Cholesky factors). Assume thatΘ fulfills Con-
ditions 1 and 2 with the constants W, �W, �, �Φ and the hierarchical pseudometric
3 (· , ·). Then��(chol(Θ))8 9

�� ≤ 2�Φ23 (W̃/8)2

(1 − A)2

(
423 (W̃/4)

�Φ�W (23 (W̃/2))2

(1 − A)2

)@
exp

(
− W̃

8
3 (8, 9)

)
,

(4.60)
where �' B max

{
1, 2�W�Φ

1+^

}
, A B 1−^−1

1+^−1 , W̃ B
− log(A)

1+log(23 (W/2))+log(�')−log(A)
W

2 , and
^ = �−2�2

Φ
is defined as in Theorem 5.

The remaining part of this section will present the proof of Theorem 8. We will use
the following lemma on the stability of exponential decay under matrix multiplica-
tion, the proof of which is a minor modification of that of [128].

Lemma 9. Let � be an index set that is partitioned as � = � (1) ∪ · · · � (@) and let
3 : � × � → R≥0 satisfy

3 (81, 8=+1) ≤
=∑
:=1

3 (8: , 8:+1) for all 1 ≤ = ≤ @ − 1 and 8: ∈ � (:) .

60

Let " (:) ∈ R� (:)×� (:+1) be such that |" (:)
8, 9
| ≤ � exp(−W3 (8, 9)) for 1 ≤ : ≤ @ − 1

and let

23 (W/2) B sup
1≤:≤@−1

sup
9∈� (:+1)

∑
8∈� (:)

exp
(
−W

2
3 (8, 9)

)
for W ∈ R+. (4.61)

Then, for 1 ≤ = ≤ @ − 1,������
(
=∏
:=1

" (:)
)
8, 9

������ ≤ (23 (W/2) �)= exp
(
−W

2
3 (8, 9)

)
.

Proof. Set 81 B 8, 8=+1 B 9 . Then������
(
=∏
:=1

" (:)
)
8, 9

������ ≤ �= ∑
82,...,8=∈� (2) ,...,� (=)

exp

(
−W

=∑
:=1

3 (8: , 8:+1)
)

≤ �= exp
(
−W

2
3 (81, 8=+1)

) ∑
82,...8=∈�

exp

(
−W

2

=∑
:=1

3 (8: , 8:+1)
)

≤ (23 (W/2) �)= exp
(
−W

2
3 (8, 9)

)
.

�

The proof of the following lemma (on the stability of exponential decay under matrix
inversion for well-conditioned matrices) is nearly identical to that of [128] (we only
keep track of constants; see also [68] for a related result on the inverse of sparse
matrices).

Lemma 10. Let � ∈ R�×� be symmetric and positive definite such that for �, W > 0
and a metric 3 (· , ·) on � we have |�8, 9 | ≤ � exp(−W3 (8, 9)). It holds true that

���(�−1)8, 9
��� ≤ 4(

‖�‖ + ‖�−1‖−1) (1 − A)2 exp

(
−

log(1
A)

(1 + log (23 (W/2)) + log(�')) + log(1
A)
W

2
3 (8, 9)

)
(4.62)

where 23 (W/2) B sup 9∈�
∑
8∈� exp

(
−W2 3 (8, 9)

)
, �' B max

{
1, 2�
‖�‖+‖�−1‖−1

}
=

max
{
1, 2�‖�−1‖

1+^

}
, A B

1− 1
‖�‖ ‖�−1 ‖

1+ 1
‖�‖ ‖�−1 ‖

= 1−^−1

1+^−1 , and ^ B ‖�‖‖�−1‖ is the condition

number of �.

Proof. On a compact set not containing 0, the function G ↦→ G−1 can be accurately
approximated by low-order polynomials in G. Then, the spread of the exponential
decay can be controlled by Lemma 9. See Section .1 for details. �

61

By representing Schur complements as matrix inverses, Lemma 10 can also be
used to show that the Cholesky factors of well-conditioned exponentially-decaying
matrices are exponentially decaying. The following lemma appears in a similar form
in [34] for banded matrices and in [144] without explicit constants.

Lemma 11. Let � ∈ R�×� ' R#×# be symmetric and positive definite with condition
number ^ and such that

���8, 9 �� ≤ � exp(−W3 (8, 9)) for some constant � > 0 and
some metric 3 on �. Let ! be the Cholesky factor (in an arbitrary order) of �−1

(�−1 = !!)). Then��!8, 9 �� ≤ 4
√
‖�‖(

‖�‖ + ‖�−1‖−1) (1 − A)2 exp
(

log(A)
1 + log (23 (W/2)) + log(�') − log(A)

W

2
3 (8, 9)

)
(4.63)

where 23 (W/2) B sup 9∈�
∑
8∈� exp

(
−W2 3 (8, 9)

)
, �' B max

{
1, 2�‖�−1‖

1+^

}
, and A B

1−^−1

1+^−1 .

Proof. Lemma 2 implies that the Schur complements of �−1 can be expressed as
inverses of sub-matrices of �. The result then follows from Lemma 10 (see Proof.1
for details). �

The last ingredient needed to prove the exponential decay of the Cholesky factors of
Θ is the following lemma showing the stability of exponential decay under inversion
for block-lower-triangular matrices (this operation appears in the definition of !̄ in
(4.14)):

Lemma 12. Let � be an index set that is partitioned as � = � (1)∪· · · � (@) and assume
that the matrix ! ∈ R�×� is block-lower triangular with respect to this partition, with
identity matrices as diagonal blocks. If 3 (· , ·) is a hierarchical pseudometric such
that |!8 9 | ≤ � exp (−W3 (8, 9)) (for some � ≥ 1 and W > 0), then it holds true that��(!−1)8 9

�� ≤ 2@ (23 (W/2) �)@ exp
(
−W

2
3 (8, 9)

)
(4.64)

with 23 (W) B sup1≤:≤;≤@ sup 9∈� (;)
∑
8∈� (:) exp (−W3 (8, 9)).

Proof. The Neumann series of a @ × @ block-lower-triangular matrix with identity
matrices on the (block) diagonal can be written as

!−1 =

@∑
:=0
(Id − !): . (4.65)

62

Since the sum terminates in @ steps, the thickening of the exponential decay can be
bounded using Lemma 9. See Proof .1 for details. �

By applying the above results to the decomposition obtained in Lemma 1, we
conclude the proof of Theorem 8. See Proof .1 for details.

4.6 Summary of results
The results of the previous sections allow us to prove the following theorem on the
exponential decay of the Cholesky factors and the accuracy of their truncation:

Theorem 9. In the setting of Examples 1 and 2, there exist constants �, W, U > 0
depending only on 3, Ω, B, ‖L‖, ‖L−1‖, ℎ, and X, such that the entries of the
Cholesky factor ! of Θ satisfy

|!8 9 | ≤ �#U exp(−W3 (8, 9)) , (4.66)

where dist : � × � → R is defined by

dist(8, 9) B ℎ−min(:,;) dist
(
supp (q8) , supp

(
q 9

))
for all 8 ∈ � (:) , 9 ∈ � (;) .

(4.67)
As a consequence, writing

!(8 9 B

!8 9 , for (8, 9) ∈ (

0, else,
(4.68)

with (⊃ (dist,d B {(8, 9) | dist(8, 9) ≤ d}, we have
Θ − !(!(,>Fro ≤ n for

d ≥ �̃ (�, W) log(#/n).

Proof. Theorems 4 and 7 imply that Conditions 1 and 2 are fulfilled with con-
stants depending only on 3, B, ‖L‖, ‖L−1‖, ℎ, and X. Theorem 8 concludes the
exponential decay of !. The accuracy of the truncated factors follows directly
from the exponential decay. We note that dist is not a hierarchical pseudometric,
but there exists a constant 2min, 2 > 0 only depending on ℎ and X such that for
dist (8, 9) ≥ 2min, we have 2−13 (8, 9) ≤ dist (8, 9) ≤ 23 (8, 9) where 3 (· , ·) is the
hierarchical pseudometric specified in (4.20). �

We next show the exponential decay of the Cholesky factor of � B �−1. We first
observe the following consequence of Lemma 1:

63

Lemma 13. When ordering the multiresolution basis from fine to coarse (@ to 1),
the Cholesky factors of � are given by the Block matrix

! =

©«
! (@),−1 0

�
(@)
@−1,@!

(@),> . . . 0
...

...
. . .

. . .
...

�
(@)

1,@!
(@),> . . . �

(2)
1,2!

(2),> ! (1),−1

ª®®®®®®¬
, (4.69)

where ! (:) is the lower triangular Cholesky factor of �(:),−1.

Proof. Lemma 1 implies Θ−1 = !̄>,−1�−1 !̄−1. By computing the Cholesky factor-
ization of � and multiplying the resulting factors with !̄>,−1 and !̄−1, we obtain
a factorization Θ−1 = **> with * block upper triangular with lower-triangular
diagonal blocks. Letting % denote the permutation matrix that inverts the order of
the blocks while keeping the order within each block the same, we obtain

%Θ−1%> = %**>%> = %*%>%*>%> =
(
%*%>

) (
%*%>

)>
. (4.70)

We can now verify that %*%> is lower triangular and equal to !, which concludes
the proof due to the uniqueness of the Cholesky factors. �

Theorem 10. In the setting of Examples 1 and 2, there exist constants �, W, U > 0
depending only on 3, Ω, B, ‖L‖, ‖L−1‖, ℎ, and X, such that the entries of the
Cholesky factor ! of Θ satisfy

|!8 9 | ≤ �#U exp(−W dist(8, 9)) , (4.71)

where dist : � × � → R is defined by

dist(8, 9) B ℎ−max(:,;) dist
(
supp (q8) , supp

(
q 9

))
for all 8 ∈ � (:) , 9 ∈ � (;) .

(4.72)
As a consequence, writing

!(8 9 B

!8 9 , for (8, 9) ∈ (

0, else,
(4.73)

with (⊃ (3,d B {(8, 9) | 3 (8, 9) ≤ d}, we have
� − !(!(,>Fro ≤ n for d ≥

�̃ (�, W) log(#/n).

64

Proof. The proof is similar to that of Theorem 9, but we will treat each block of ! in
isolation. There exist 2min, 2 depending only on ℎ and X such that for each 1 ≤ : ≤ @
and 8, 9 ∈ � (:) with dist(8, 9) ≥ 2min, we have 2−13 (8, 9) ≤ dist(8, 9) ≤ 23 (8, 9) for
3 defined as in (4.20). 2 Therefore, we can use Lemmas 10 and 11 to prove the
exponential decay of ! (:) according to dist. According to Theorem 4, this means
that for any :, ; and 8 ∈ � (:) , 9 , 9̃ ∈ � (;) , we have

log
(����(�(;))

8 9̃

(
! (;),>

)
9̃ 9

����) (4.74)

/2 + 22 log(#) −

(
dist

(
supp (q8) , supp

(
q 9̃

))
− dist

(
supp

(
q 9̃

)
, supp

(
q 9

)))
ℎ;

(4.75)

/2̃1 + 2̃2 log(#) −
(
dist

(
supp (q8) , supp

(
q 9

)))
ℎ;

. (4.76)

Here, the second inequality follows the fact that the size of supp
(
q 9̃

)
is approxi-

mately ℎ; and thus for dist(8, 9) larger than a constant, it can lead to a violation of
the triangle inequality by at most a constant factor. �

Theorems 9 and 10 now allow us to prove a rigorous version of Theorem 1:

Theorem 11 (Rigorous version of Theorem 1). Let Ω ∈ R3 be a Lipschitz-bounded
domain and let L : �B

0 (Ω) −→ �−B (Ω) be a linear, symmetric, bounded, and local
operator of order 2B > 3. Let {G8}1≤8≤# ⊂ Ω and ordered in the maximin [reverse
maximin] ordering such that X as in (4.6) is positive. For G = L−1] the Dirichlet
Green’s function define Θ8 9 B G

(
G8, G 9

)
and let ! be the Cholesky factor of Θ

[� B Θ−1]. Let (⊂ {1, . . . , #}2 be themaximin [reverse maximin] sparsity pattern
with starting set mΩ and sparsity parameter d. Defining

(
!(

)
8 9
B 1(8, 9)∈(!8 9 , we

then have
log

(!(!(,> − !!>Fro

)
/ log(#) − d (4.77)

where the constants depend only on 3, Ω, B, ‖L‖, ‖L−1‖, and X.

Proof. We perform the proof for the Cholesky factorization of Θ in the maximin
ordering. The Cholesky factor of � can be treated in an analog manner. As de-
scribed in 3.6.1, the maximin ordering can be represented as a hierarchical ordering

2We note that this is not true for 8 and 9 on different scales!

65

satisfying the conditions of Example 1. The result follows from Theorem 9 by
observing that the maximin sparsity pattern (d satisfies

(3,(Xℎ)−1d ⊃ (d ⊃ (3,Xℎd . (4.78)

Scaling the weights of the measurement functions q8 to 1 increases the error by a
factor that is at most polynomial in # , which can be subsumed into the log(#)-
dependence of d by increasing the constants in the decay estimates. �

Similarly, Theorem 7 also implies a rigorous version of Theorem 2:

Theorem 12 (Rigorous version of Theorem 2). In the setting of Theorem 1, let !:,1::

be the rank : matrix defined by the first : columns of the Cholesky factor ! of Θ in
the maximin ordering. Denoting as ‖ · ‖ the operator norm, we haveΘ − ! (:,1::)

(
!:,1::

)> ≤ �‖Θ‖:−2B/3 (4.79)

with constant � depending only on ‖L‖, ‖L−1‖, 3, X, and B.

Proof. We begin by proving, in the setting of Example 1,Θ − ! (:)! (:),> ≤ �;2B−38:+1
. (4.80)

Write � = �1 ∪ �2 with �1 B {81, . . . , 8: } and �2 B � \ �1 and ℓ: , ℓ:+1 for the
lenght-scales of the :, : + 1-th points in the ordering, respectively. By Lemma 2,
the approximation error made by keeping only the first : columns of the Cholesky
factorization is equal to the Schur complement Θ2,2 − Θ2,1Θ

−1
1,1Θ1,2. Consider

the implicit hierarchy of the maximin ordering as described in Section 3.6.1 with
ℎ = 1/2, and let ? ∈ {1, . . . , @} be such that 2−? ≤ ; [:]/; [1] ≤ 2−?+1. Write
� = �0 ∪ �1 with �0 B � (?) and �1 B � \ � (?) . The variational property (4.30) implies
that Θ2,2 −Θ2,1Θ

−1
1,1Θ1,2 ≤ Θ1,1 −Θ1,0Θ−1

0,0Θ0,1. Theorem 7 (with ℎ = 1/2 obtained
from the implicit hierarchy) implies that Θ1,1 − Θ1,0Θ−1

0,0Θ0,1 ≤ � (12)
2B(?−1)−3 ,

where the extra multiplicative (12)
−3 term arises because the measurement functions

are scaled by ℎ:3/2 in Example 1 with ℎ = 1
2 . We conclude the proof of (4.80) using

2−?−1 ≤ ℓ[: + 1]/ℓ[1] ≤ 2−?+1. We can now prove the result by rescaling the basis
function and using a ball-packing argument to show that ℓ: ≈ :−1/3 . �

Finally, Theorem 3 follows the discussion in Section 3.6.2 that implies that the
resulting low-rank approximation of Θ is identical to that in Theorem 2.

66

Theorem 13 (Rigorous version of Theorem 3). In the setting of Theorem 11, let
!:,1:: be the rank : matrix defined by the first : columns of the Cholesky factor ! of
� B Θ in the reverse maximin ordering. We then haveΘ −Ψ(!1::,1::!

>
1::,1::)

−1Ψ>
 ≤ �‖Θ‖:−2B/3 , for Ψ =

(
Id

−! (:+1):#,1::!
−1
1::,1::

)
(4.81)

with constant � depending only on ‖L‖, ‖L−1‖, 3, X, and B.

4.7 Extensions and comparisons
We conclude this chapter by comparing our results in more detail to closely related
approaches and by mentioning some empirical observations that are not covered by
the theory presented in this chapter.

4.7.1 H -matrix approximations from sparse Cholesky factorization
The H -matrix data structure [112] uses low-rank approximations for blocks Θ�̄ �̄
(�̄ , �̄ ⊂ �) fulfilling the admissibility condition

min
(
diam{G8}8∈ �̄ , diam{G8}8∈�̄

)
≤ [dist

(
{G8}8∈ �̄ , {G8}8∈�̄

)
. (4.82)

The approximation property of the incomplete Cholesky factorization in maximin
ordering (Theorem 1) directly implies bounds on the spectral decay of admissible
blocks in theH -matrix framework, as can be seen from the representation

Θ = !!> ⇐⇒ Θ =

#∑
8=1

!:8 ⊗ !:8 (4.83)

of the Cholesky factorization of Θ. If ! is sparse according to the maximin sparsity
pattern, then !:8 ⊗ !:8 can contribute to the rank of the sub-matrix Θ�̄ �̄ only if

2d; [8] ≥ dist
(
{G 9} 9∈ �̄ , {G 9} 9∈ �̄

)
and max

(
dist

(
G8 , {G 9} 9∈ �̄

)
, dist

(
G8 , {G 9} 9∈ �̄

))
≤ dℓ[8] .

(4.84)
The number of 8 ∈ � satisfying (4.84) is at most � ([, 3)d3 log # , which recovers
(up to constants) the same rank bounds as obtained in [29] for second-order elliptic
PDEswith rough coefficients. However the converse is not true andmost hierarchical
matrix representations can not be written in terms of a sparse Cholesky factorization
of Θ. For example, adding a diagonal matrix to Θ does not affect the ranks of
admissible blocks, but it diminishes the screening effect and thus the approximation
property of the incomplete Cholesky, as shown in Section 5.5.3.

67

4.7.2 Comparison to Cholesky factorization in wavelet bases
[94] compute sparse Cholesky factorizations of (discretized) differential/integral
operators represented in a wavelet basis. Using a fine-to-coarse elimination order-
ing, they establish that the resulting Cholesky factors decay polynomially with an
exponent matching the number of vanishing moments of the underlying wavelet
basis.

For differential operators, this coincides algorithmically with the Cholesky factor-
ization described by Theorem 10 and the gamblet transform of [188] and [189],
whose estimates guarantee exponential decay. In particular [94] numerically ob-
serve a uniform bound on cond(�(:)) which they relate to the approximate sparsity
of their proposed Cholesky factorization.

For integral operators, [94] use a fine-to-coarse ordering and we use a coarse-to-
fine ordering. While their results rely on the approximate sparsity of the integral
operator represented in the wavelet basis, our approximation remains accurate for
multiresolution bases (e.g. the maximin ordering), in whichΘ is dense, which avoids
the O(#2) complexity of a basis transform (or the implementation of adaptive
quadrature rules to mitigate this cost).

4.7.3 Vanishing moments
LetPB−1(g) denote the set of polynomials of order at most B−1 that are supported on
g ⊂ Ω. [188] and [189] show that (4.26) and (4.25) hold whenL is an elliptic partial
differential operator of order B (as described in Section 4.2.1) and the measurements
are local polynomials of order up to B − 1 (i.e. q8,U = 1g8 ?U with ?U ∈ PB−1(g8)).
Using these q8,U as measurements is equivalent to using wavelets q8 satisfying the
vanishing moment condition

[q8, ?] = 0 for all 8 ∈ �, ? ∈ PB−1. (4.85)

The requirement for vanishing moments has three important consequences. First, it
requires that the order of the operator be known a priori, so that a suitable number
of vanishing moments can be ensured. Second, ensuring a suitable number of
vanishing moments greatly increases the complexity of the implementation. Third,
in order to provide vanishing moments, the measurements q8, 8 ∈ � (:) , have to
be obtained from weighted averages over domains of size of order ℎ: . Therefore,
even computing the first entry of the matrix Θ in the multiresolution basis will have
complexity O(#2), since it requires taking an average over almost all of � × �. One
of the main analytical result of this paper is to show that these vanishing moment

68

conditions and local averages are not necessary for higher order operators (which,
in particular, enables the generalization of the gamblet transform to hierarchies of
measurements defined as in Examples 1 and 2).

4.7.4 The cases B ≤ 3/2 or B ∉ N
Theorems 1 requires that B > 3/2 to ensure that the elements of �B (Ω) are con-
tinuous (by the Sobolev embedding theorem) and that pointwise evaluations of the
Green’s function are well defined. The accuracy estimate of Theorem 1 can be
extended to B ≤ 3/2 by replacing pointwise evaluations of the Green’s function
by local averages and using variants of the Haar pre-wavelets of as in Example 2
instead of the subsampled Diracs of Example 1 to form Θ. Numerical experiments
suggest that the exponential decay of Cholesky factors still holds for B ≤ 3/2 if the
local averages of Example 2 are sub-sampled as in Example 1, whereas the low-rank
approximation becomes sub-optimal. Our theory further requires B to be an integer,
excluding fractional order elliptic PDEs. However, our experiments suggest that this
is not strictly necessary, either. As illustrated in Table 5.5, for Matérn kernels we
observe no difference (in accuracy vs. complexity) between integer and non-integer
values of B. It is an open question how to reconcile this observation with the fact
that fractional order partial differential operators are in general nonlocal.

69

C h a p t e r 5

INCOMPLETE CHOLESKY FACTORIZATION

5.1 Zero fill-in incomplete Cholesky factorization
5.1.1 ICHOL(0)

In Chapter 4, we have shown that discretized Green’s matrices of elliptic PDEs, as
well as their inverses, have exponentially decaying Cholesky factors. By setting
small entries to zero, we can approximate these Cholesky factors with exponential
accuracy by sparse matrices with near-linearly many nonzero entries. However,
computing the exact Cholesky factor in the first place requires access to all O

(
#2)

nonzero entries and has computational cost O
(
#3) , and is therefore not practical.

A simple approach to decreasing the computational complexity of Cholesky fac-
torization is the zero fill-in incomplete Cholesky factorization [170] (ICHOL(0)).
When performing Gaussian elimination using ICHOL(0), we treat all entries of both
the input matrix and the output factors outside a prescribed sparsity pattern (⊂ �× �
as zero and correspondingly ignore all operations in which they are involved.

5.1.2 Complexity vs accuracy
It is well known that the computational complexity of ICHOL(0)can be bounded in
terms of the maximal number elements of (either per row or per column:

Theorem 14. If < upper bounds the number of elements of (the lower triangular
part of) (in either each row or each column, then Algorithm 3 has time complexity
O(#<2).

Proof. If < upper bounds the number of elements per column, we see that the
number of updates performed for a given 8 is upper bounded by the number of pairs
(:, 9) for which (:, 8) and (9 , 8) are contained in (. This number is upper bounded
by<2, leading to a complexity O

(
#<2) . If< upper bounds the number of elements

per row, then the number of updates is upper bounded by the number of pairs (8, 9)
for which both (:, 8) and (:, 9) are part of the sparsity pattern. This number is
bounded by <2, leading to a complexity O

(
#<2) . �

We begin by providing a bound on the computational complexity of ICHOL(0)in
coarse-to-fine ordering.

70

Algorithm 3 Incomplete Cholesky factorization with sparsity pattern (.
Input: � ∈ R#×# symmetric, nz(�) ⊂ (
Output: ! ∈ R#×# lower triang. nz(!) ⊂ (

1: for (8, 9) ∉ (do
2: �8 9 ← 0
3: end for
4: for 8 ∈ {1, . . . , #} do
5: !:8 ← �:8/

√
�88

6: for 9 ∈ {8 + 1, . . . , #} : (8, 9) ∈ (do
7: for : ∈ { 9 , . . . , #} : (:, 8), (:, 9) ∈ (do
8: �: 9 ← �: 9 −

�:8� 98
�88

9: end for
10: end for
11: end for
12: return !

Figure 5.1: ICHOL(0). Incomplete Cholesky factorization, with the differences
to ordinary Cholesky factorization (Algorithm 1), highlighted in red. Here, for a
matrix �, nz(�) B {(8, 9) | �8 9 ≠ 0} denotes the index set of its non-zero entries.

Theorem 15. In the setting of Examples 1 and 2, there exists a constant � (3, X),
such that, for

(⊂ {(8, 9) | 8 ∈ � (:) , 9 ∈ � (;)ℎ−min(:,;) dist
(
supp (q8) , supp

(
q 9

))
≤ d}, (5.1)

the application of Algorithm 3 in a coarse-to-fine ordering has computational
complexity � (3, X)#@d3 in space and � (3, X)#@2d23 in time. In particular,
@ ∝ log #/ln 1

ℎ3
implies the upper bounds of � (3, X, ℎ)d3# log # on the space

complexity, and of � (3, X, ℎ)d23# log2 # on the time complexity. In particular, the
above complexities apply to ICHOL(0)in the maximin ordering and sparsity pattern.

Proof. For 8 ∈ � (:) , 9 ∈ � (;) , write 3 (8, 9) = ℎ−min(:,;) dist
(
supp (q8) , supp

(
q 9

))
.

We write 8 ≺ 9 if 8 precedes 9 in the coarse-to-fine ordering.

Defining< B max 9∈�,1≤:≤@ #{8 ∈ � (:) | 8 ≺ 9 and 3 (8, 9) ≤ d}, |G8−G 9 | ≥ X−1ℎ; for
8, 9 ∈ � (;) implies that< ≤ � (3, X)d3 . Therefore #{8 ∈ � | 8 ≺ 9 and 3 (8, 9) ≤ d} ≤
@<# implies the bound on space complexity. The bound on the time complexity
follows from Theorem 14. �

71

When using the reverse ordering and sparsity pattern, the computational complexity
is even lower.

Theorem 16. In the setting of Example 1, there exists a constant � (3, X), such that,
for

(⊂ {(8, 9) | 8 ∈ � (:) , 9 ∈ � (;)ℎ−max(:,;) dist
(
supp (q8) , supp

(
q 9

))
≤ d}, (5.2)

the application of Algorithm 3 in a fine-to-coarse ordering has computational com-
plexity � (3, X)#d3 in space and � (3, X)#d23 in time. In particular, the above
complexities apply to ICHOL(0) in the reverse maximin ordering and sparsity pat-
tern. In the setting of Example 2, the complexities are � (3, X)# max

(
log(#), d3

)
in space and � (3, X)# max

(
log2(#), d23

)
in time.

Proof. For 8 ∈ � (:) , 9 ∈ � (;) , write 3 (8, 9) = ℎ−max(:,;) dist
(
supp (q8) , supp

(
q 9

))
.

We write 8 ≺ 9 if 8 precedes 9 in the fine-to-coarse ordering.

In the setting of Example 1, for 8 ∈ � (:) , the 8-th column has / d3 nonzero entries,
since it contains only points within radius dℎ: , while all points succeeding 8 in
the reverse maximin ordering have a distance of at least Xℎ: from each other. In
the setting of Example 2, the 8-th column also has at least a constant number of
elements in each of the subsequent levels, which is why even for constant d, the
number of elements per column and thus the complexity of ICHOL(0)will still scale
logarithmically with # . �

We can now make a first attempt at combining the estimates on computational
complexity and accuracy.

Theorem 17. In the setting of Theorems 9 and 10, there exists constants �, 2
depending only on 3, Ω, B, ‖L‖, ‖L−1‖, ℎ, and X such that for every d > 2 log(#),
there exists a perturbation � ∈ R�×� with log(‖� ‖Fro) ≤ −�d such that the result
applying Algorithm 3 in the coarse-to-fine [fine-to-coarse] ordering with sparsity
set (satisfying

{(8, 9) | dist(8, 9) ≤ d/2} ⊂ (⊂ {(8, 9) | dist(8, 9) ≤ 2d} (5.3)

returns a Cholesky factor !(satisfying

log
(!!> − !(!(,>) ≤ −�d. (5.4)

72

Here, ! is the exact Cholesky factor. Analogue results hold in the setting of
Theorem 11, when using the maximin [reverse maximin] ordering and sparsity
pattern.

Proof. Writing � B !!> − !(!(,> the results of Theorems 9 and 10 show that
log(‖� ‖Fro) ≤ −�d. The Cholesky factor of !!> − � is equal to !(and thus
recovered exactly by Algorithm 3, when applied to the �-perturbed input matrix.
The results on the computational complexity follow from Theorems 15 and 16. �

If we were able to show that the incomplete Cholesky factorization is stable in the
sense that an exponentially small perturbation of the input matrix to ICHOL(0) leads
to a perturbation of its output that is amplified by a factor at most polynomial in
the size of the matrix, we could use Theorem 17 to obtain a rigorous result on the
complexity vs accuracy tradeoff. Unfortunately, despite overwhelming evidence that
this is true for the problems considered in this paper, we are not able to prove this
result in general. We also did not such a result in the literature, even though works
such as [94] would require it to provide rigorous complexity vs accuracy bounds.

We will however show that it holds true for a slightly modified ordering and sparsity
pattern that is obtained when introducing “supernodes” and multicolor orderings.
Since these techniques are also useful from a computational standpoint, we will
first introduce them as part of a description detailing the efficient implementation
of our methods, together with numerical results. We will then address and resolve
the question of stability again in Section 5.4.3.

5.1.3 Efficient implementation of ICHOL(0)
Theorems 15 and 16 show that in the limit of # going to infinity, using Algorithm 3
and a sparsity pattern satisfying (5.3) is vastly cheaper that computing a dense
Cholesky factorization. However, if we were to naïvely implement Algorithm 3
using a standard compressed sparse row representation of (, we would see that
the number of floating-point operations per second that our algorithm can perform
much lower compared to good implementations of dense Cholesky factorization.
This has three main reasons: irregular memory access, lack of memory re-use,
and parallelism.

Irregular memory access. While the random access memory (RAM) of present-
day computers allows to access memory in arbitrary order, the latency of random

73

memory access is often substantial. In order to mitigate this effect, present-day
computers have a hierarchy of caches, smaller units of memory that can be accessed
much more rapidly. As it is loading data from RAM, the computer constantly tries
to predict what data could be requested next and preemptively loads it into the
cache. So-called cache misses, instances where data requested from the CPU is not
preloaded in the cache but instead has to be loaded fromRAM can lead to dramatical
regression in performance. Arguably the most fundamental heuristic used to predict
which data will be required next is known as spatial locality, meaning that whenever
we request data fromRAM, the data immediately before and after will be pre-fetched
into the cache, as well. Thus, accessing data in linear order is one of themost reliable
ways to avoid cache misses. Without further thought, Algorithm 3 has poor spatial
locality. For instance, if we implement using a compressed sparse row (CSR) format
to store (the lower triangular part of) �, each iteration of the inner loop over : will
access a different row of the matrix that could be located in a part of memory far
away from where the previous row was stored. Therefore, every single update could
access memory in a different location that therefore is unlikely to be pre-fetched,
resulting in a large number of cache misses.

Our main remedy to this problem will be to change the order of the three for loops
in Algorithm 3 resulting in the left-looking and up-looking variants of Cholesky
factorization, as opposed to the right-looking variant presented in Algorithm 3.
Choosing the appropriate combination of direction (up, left, or right) and storage
format (compressed sparse rows or compressed sparse columns) can greatly decrease
the running time of our algorithms.

Lack ofmemory re-use. Even if we ignore questions of cache-misses andmemory
latency, there is still the issue of memory bandwidth. In Algorithm 3, for each
loading of �: 9 , �:8, and �: 9 only a minuscule amount of computation is performed.
�: 9 particular will only be used for a single computation, and it can take arbitrarily
long until its next appearance in the computation. This poor temporal locality of
Algorithm 3means that evenwith perfect prefetching into the cache, the computation
might be limited by the bandwidth with which memory can be loaded into the cache,
rather than the clock speed of the CPU. In contrast, the canonical example for good
memory reused are blocked algorithms for matrix-matrix multiplication, the product
between two blocks of size : × : that are small enough to fit into cache only needs to
load only ≈ :2 floating-point numbers into the cache to perform ≈ :3 floating-point
operations.

74

We will mitigate this problem by introducing supernodes [158, 209], consisting
of successive rows and columns that share the same sparsity pattern. Due to the
flexibility for reordering rows and columns within each level of the multiresolution
scheme and the geometry of the associated measurements, we can identify supern-
odes of size ≈ d3 by only marginally increasing the size of the sparsity pattern.
Once the supernodes have been identified, Algorithm 3 can be reexpressed as a
smaller number of dense linear algebra operations that feature substantially more
data re-use.

Parallelism. Modern CPUs havemultiple cores that have access to the samemem-
ory, but can perform tasks independently. Optimized implementations of dense
Cholesky factorization are able to exploit this so-called shared memory parallelism
by identifying subproblems that can be solved in parallel and assigning them to
the different cores of the CPU. For large computations, distributed parallelism is
necessary, where subproblems are solved by different computers that are connected
to form a so-called cluster. The amount of parallelism available on modern com-
putational platforms is increasing steadily. Thus, for an algorithm to be practically
viable, it is crucial that it allows for the efficient use of parallel computation.

Wewill exploit parallelism by observing that rows and columnswith nonoverlapping
sparsity patterns can be eliminated in parallel. Using once again the fact that we have
complete freedom to choose the ordering within each level, we can use a multi-color
ordering [3, 4, 74, 192] inspired by the classical red-black ordering [127] in order
to maximize the number of operations that can be performed in parallel.

5.2 Implementation of ICHOL(0) for dense kernel matrices
5.2.1 Direction and storage
We propose to compute the factorization in-place, using a compressed sparse row
format to store the factor. This means that the matrix ! ∈ R#×# with sparsity pattern
(is stored as a tuple (rowptr((), colval((), nzval((, !)) where rowptr(() ∈
N#+1, colval(() ∈ N#(() , and nzval((, !) ∈ R#(() such that for each 1 ≤ : ≤ # ,
the nonzero entries of the :-th row of ! lie in the columns with indices

(colval[9] | rowptr[:] ≤ 9 < rowptr[: + 1]) (5.5)

and are given as

(nzval[9] | rowptr[:] ≤ 9 < rowptr[: + 1]) . (5.6)

75

In Figure 5.2, we describe the algorithm for computing the up-looking Cholesky
factorization in the CSR format. We observe that this variant shows significantly
improved performance in practice. A possible approach to further improve its
performance would be to reorder the degrees of freedom on each level in a way that
increases locality, for instance ordered along a /-curve.

5.2.2 Supernodes
We will now discuss a supernodal implementation appropriate for Cholesky factor-
ization of Θ in a coarse-to-fine ordering. In order to improve readability, we do not
provide rigorous proofs in this section and refer to the more technical discussion in
Section 5.4.3.

The main idea of our implementation of supernodes is to aggregate degrees of free-
domwith length-scale≈ ℓ that arewithin a ball of radius dℓ and appear consecutively
in the elimination ordering into a so-called supernode.

Definition 9. Let {G8}1≤8≤# ∈ R3 . A supernodal aggregation of scale ℓ is given by
a set

{
G̃8̃
}

1≤8̃≤#̃ ⊂ R
3 and assignment of each point G8 to exactly one supernode G̃8̃.

We denote this assignment 8 { 8̃ and require that for 8 { 8̃, we have dist(G8, G̃8̃) ≤ ℓ.

Given {G8}1≤8≤# ∈ R3 , such an ordering can be constructed efficiently using a greedy
algorithm.

Construction 1 (Supernodal aggregation). We successively select the first G8 that is
not yet within range of one of the existing supernodes and make it a new supernode
until all G8 are within a distance of ℓ of at least one supernode. Then, we assign
each G8 to the closest supernode, using an arbitrary mechanism to break ties.

Construction 1 can be implemented efficiently using, for instance, KD-tree based
range search. Under mild regularity conditions such as the one given in Equa-
tion (4.6), the number of resulting supernodes is bounded as #/ℓ3 .

In a multi-scale setting, we will use separate aggregation scales for each level:

Definition 10. For 1 ≤ : ≤ @, let
{
G
(:)
8

}
1≤8≤# (:)

∈ R3 . A multiscale supernodal

aggregation with scales
{
ℓ(:)

}
1≤:≤@. Is given by the union of the supernodal

aggregation for each
{
G
(:)
8

}
1≤8≤# (:)

with the respective length scale ℓ(:) .

Once a multiscale supernodal aggregation is available, we can use it to derive
associated orderings and sparsity patterns.

76

Algorithm 4 In-place, up-looking ICHOL(0)in CSR format
Input: ! ∈ R#×# lower triangular, as CSR with rowptr, colval, nzval

1: for 8 = 1 : # do
2: for 9̃ = rowptr[8] : (rowptr[8 + 1] − 1) do
3: 9 ← colval[9̃]
4: nzval[9̃] ← nzval[9̃] − dot(8, 9 , rowptr, colval, nzval)
5: if 9 < 8 then
6: nzval[9̃] ← nzval[9̃] / nzval[rowptr[9 + 1] − 1]
7: else
8: nzval[9̃] ←

√
nzval[9̃]

9: end if
10: end for
11: end for

Algorithm 5 Alg. dot computes update as inner product of 8-th and 9-th row of !.
Input: ! ∈ R#×# lower triangular, as CSR with rowptr, colval, nzval

1: 8̃ ← rowptr[8]; 9̃ ← rowptr[9]
2: 8̂ ← colval[8̃]; 9̂ ← colval[9̃]
3: out← 0
4: while 8̂, 9̂ < min (8, 9) do
5: if 8̂ == 9̂ then
6: out← out + nzval[8̃] ∗ nzval[9̃]
7: 8̃ ← 8̃ + 1; 9̃ ← 9̃ + 1
8: 8̂ ← colval[8̃]; 9̂ ← colval[9̃]
9: else if 8̂ > 9̂ then
10: 9̃ ← 9̃ + 1
11: 9̂ ← colval[9̃]
12: else
13: 8̃ ← 8̃ + 1
14: 8̂ ← colval[8̃]
15: end if
16: end while
17: return out

Figure 5.2: Up-looking ICHOL(0)in CSR format. We present an algorithm that
computes a Cholesky factorization of a lower triangular matrix in CSR format,
in-place. The up-looking factorization greatly improves the spatial locality.

77

Definition 11. Given amultiscale supernodal aggregation, a coarse-to-fine [fine-to-
coarse] multiscale supernodal ordering is any ordering of the underlying points in
which points assigned to the same supernode appear consecutively the supernodes
are ordered by scale, coarse-to-fine [fine-to-coarse]. We define the row-supernodal
sparsity pattern (–, column-supernodal sparsity pattern (|, and two-way-supernodal
sparsity pattern (|– as

(– B
{
(8̃, 9) | ∃8 { 8̃ : (8, 9) ∈ (

}
⊂

{
1, . . . , #̃

}
× {1, . . . , #} (5.7)

(| B
{
(8, 9̃) | ∃ 9 { 9̃ : (8, 9) ∈ (

}
⊂ {1, . . . , #} ×

{
1, . . . , #̃

}
(5.8)

(|– B
{
(8̃, 9̃) | ∃8 { 8̃, 9 { 9̃ : (8, 9) ∈ (

}
⊂

{
1, . . . , #̃

}
×

{
1, . . . , #̃

}
. (5.9)

An entry (8̃, 9) or (9 , 8̃) existing in (– or (| is to be interpreted adding all interactions
between elements of 8̃ and 9 to the original sparsity pattern. Similarly, an entry (8̃, 9̃)
existing in (|– signifies that all interactions between elements of 8̃ and 9̃ have been
added to the sparsity pattern. This means that we increase the sparsity pattern (in
order to ensure that in each supernode all rows, all columns, or both share the same
sparsity pattern.

For a coarse-to-fine sparsity pattern (as described in Theorem 17 and using a
multiscale supernodal aggregation with ℓ(:) = dℎ: , the triangle inequality implies
that the associated (|– (interpreted, by abuse of notation, as subset of �2) satisfies

(⊂ (|– ⊂ {(8, 9) | dist(8, 9) ≤ 4(d + 1)} . (5.10)

Thus, passing to (|– preserves the asymptotic results on accuracy and complexity.

The benefit of using the supernodal ordering and sparsity pattern is that instead
of performing O

(
log2(#)d23

)
element-wise operations on a sparse matrix with

O
(
log(#)d3

)
nonzero entries, we can perform O

(
log2(#)d−3

)
block-wise

operations on a block-sparse matrix with O
(
log2(#)d−3

)
nonzero blocks. Since

the size of the blocks is approximately d3 × d3 , the resulting asymptotic complexity
is the same. However, the block-wise operations can be performed using optimized
libraries for dense linear algebra. In particular, they require only ≈ d23 memory
accesses for every ≈ d33 floating point operations.

We can readily adapt Algorithm 4 to this setting by letting nzval have matrices
as entries. To maximize spatial locality, we store these matrices consecutively in
column-major format, in a buffer of length

∑
<∈nzval # rows(<) · # cols(<). Using

cholesky to denote the dense Cholesky factorization returning a lower triangular
matrix, the resulting algorithm is presented in Figure 5.3.

78

Algorithm 6 In-place, up-looking, supernodal ICHOL(0)in CSR format
Input: #̃×#̃ block-l. triang. Matrix !, as block-CSRwithrowptr, colval, nzval

1: for 8 = 1 : #̃ do
2: for 9̃ = rowptr[8] : (rowptr[8 + 1] − 1) do
3: 9 ← colval[9̃]
4: nzval[9̃] ← nzval[9̃] − dot(8, 9 , rowptr, colval, nzval)
5: if 9 < 8 then
6: nzval[9̃] ← nzval[9̃] / nzval[rowptr[9 + 1] − 1]
7: else
8: nzval[9̃] ← cholesky(nzval[9̃])
9: end if
10: end for
11: end for

Algorithm 7 Alg. dot computes update as inner product of 8-th and 9-th row of !.
Input: Supernodal indices 8 and 9 and block-CSR with rowptr, colval, nzval

1: 8̃ ← rowptr[8]
2: 9̃ ← rowptr[9]
3: 8̂ ← colval[8̃]
4: 9̂ ← colval[9̃]
5: out← 0
6: while 8̂, 9̂ < min (8, 9) do
7: if 8̂ == 9̂ then
8: out← out + nzval[8̃]> ∗ nzval[9̃]
9: 8̃ ← 8̃ + 1
10: 8̂ ← colval[8̃]
11: 9̃ ← 9̃ + 1
12: 9̂ ← colval[9̃]
13: else if 8̂ > 9̂ then
14: 9̃ ← 9̃ + 1
15: 9̂ ← colval[9̃]
16: else
17: 8̃ ← 8̃ + 1
18: 8̂ ← colval[8̃]
19: end if
20: end while
21: return out

Figure 5.3: Up-looking supernodal ICHOL(0)in CSR format. We only need
to replace the square root with Cholesky factorization in Algorithm 4 and add a
transpose in Algorithm 5 to obtain a supernodal factorization.

79

5.2.3 Multicolor ordering
Wewill now address the parallel implementation of Algorithms 4 and 6, focusing on
shared memory parallelism. The key observation is that depending on the sparsity
pattern, many iterations of the outermost for-loop of Algorithms 4 and 6 can be
performed in arbitrary order, and in particular in parallel, without changing the
result.

Definition 12. A set of indices � ⊂ {1, . . . , #} is pairwise independent under the
sparsity pattern (, if {(8, 9) | 8, 9 ∈ �} ∩ (= ∅.

If a consecutive set of indices is mutually independent, the corresponding iterations
of the outermost for-loops of Algorithms 4 and 6 can be performed in parallel.

The amount of parallelism afforded by this mechanism depends strongly on the
order of the degrees of freedom. This has motivated the development of multicolor
orderings [3, 4, 74, 192] that attempt to maximize the size of consecutive mutually
independent sets of indices. A downside of these techniques, which were designed
for the preconditioning of linear system, is the orderings that lead to the largest
amount of parallelism often do not achieve a good preconditioning effect. This
limitation has led [50] to develop altogether different, asynchronous, and iterative
approaches.

A key advantage of the method presented is this chapter is that its exponential
accuracy holds for an arbitrary ordering of the degrees of freedom on each scale.
This allows us to greatly increase the amount of parallelism by adopting amultiscale,
multicolor ordering of the supernodes.

Construction 2 (Multiscale multicolor ordering). Within each level, we initialize
each (supernodal) index uncolored. We then greedily select a maximal set of
uncolored and pairwise independent, with respect to (((|–) indices and assign a
new color to them. We proceed until every index is colored and order the indices
within each level by color.

In the setting of Theorem 17, the number of required colors is O
(
log(#)d3

)
when

coloring individual entries and O (log(#)) when coloring supernodes, leading to
practically unlimited amounts of parallelism for large problems.

80

5.3 Implementation of ICHOL(0) for sparse stiffness matrices
5.3.1 Limitations of two-way supernodes
We now shift our attention to the case of Theorem 17 where we want to compute
the sparse Cholesky factorization of the exponentially decaying inverse � B Θ−1

using a fine-to-coarse ordering. These matrices appear in the rigorous approach for
computing with sums of Gaussian processes outlined in Section ssec:noise and serve
as a model for the behavior of stiffness matrices arising from Galerkin discretization
of the differential operator L. Since we typically have explicit access to the sparse
input matrix � in these applications, we will almost always use the incomplete
Cholesky factorization as a preconditioner in conjunction with conjugate gradient
(CG) [218]. By increasing the value d, we can improve the convergence speed at
the cost of an increasing cost of factorization and of applying the preconditioner.

For smaller values of d, we can get decent results with a fairly simple implemen-
tation using Algorithm 4 combined with the multicolor ordering as described in
Construction 2. On an Nvidia GPU with sufficient amounts of RAM, we can even
use the parallelized implementation of Algorithm 4, as well as sparse variants of
Algorithm 2 provided as part of the cuSPARSE library [179, Algorithm 2].

For larger d, supernodal approaches necessary to obtain state-of-the-art perfor-
mance. Unfortunately, applying two-way supernodes to the fine-to-coarse sparsity
pattern of Theorem 17 degrades the asymptotic complexity of the algorithm. In this
setting and in the limit of large # , the nonzero entries introduced by (|– cannot be
accounted for by any finite increase of d. Thus, two-way supernodes increase the
computational complexity by a factor log2(#), making them a suboptimal choice
for large problems.

5.3.2 Column supernodes
In order to avoid the degradation of asymptotic complexity while still reaping the
benefits from dense matrix operations, we are going to use “one-way” column
supernodes with sparsity pattern (|. This is, in fact, what is usually understood by
the term supernodal Cholesky factorization [64].

We will store our matrix ! as a tuple
(
colptr((|), rowval((|), nzval((|, !)

)
where colptr is a vector of #̃ + 1 integers, rowval is a vector of #(| integers, and
nzval is a vector of #̃ matrices. If the 9-th supernode has = degrees of freedom
associated to it and the 9-th column of (| has < nonzero rows where we have
nzval[:] ∈ R<×=. rowval[colptr[9] : (colptr[9 + 1] − 1)] returns the list of

81

nonzero rows of the 9-th supernodal column and nzval[9] stores all of its nonzero
values, in a row-major ordering. Note that if each supernodal column only contains
a single column, this reduces to the compressed sparse column format. We will now
present the popular left-looking column-supernodal Cholesky factorization. Here,
for any supernodal index 9 , members(9) returns the vector of degrees of freedom
that are assigned to 9 . For a vector � of degrees of freedom and a supernode 9 ,
rows(�) returns the indices of the rows in nzval[9] that correspond tomembers of �.
Finally, for a supernodal index 9 , parents(9) returns the list of supernodes ordered
before 9 (excluding 9) that have at least one nonzero row 8, for which 8 { 9 . The
left-looking column-supernodal factorization is presented in Algorithm 8. While
this algorithm requires some indexing into the supernodes, the majority of the work
is done by calling dense linear algebra routines in Lines 5 and 9.

Algorithm 8 Left-looking, column-supernodal ICHOL(0)
Input: Column-supernodal block-lower triangular Matrix ! with #̃ supernodes

1: for 9 = 1 : #̃ do
2: for 9̃ ∈ parents[j] do
3: � ← rowval[colptr[9] : (colptr[9 + 1] − 1)]
4: �̃ ← rowval[colptr[9̃] : (colptr[9̃ + 1] − 1)]
5: in← nzval[9̃] [rows(9̃ , � ∩ �̃), :]
6: out← in ∗ (nzval[9̃] [rows(9̃ , members(9) ∩ �̃)])>
7: nzval[9] [rows(9 , � ∩ �̃), rows(9̃ , members(9) ∩ �̃)] ← nzval[9] − out
8: end for
9: nzval[9] ← nzval[9]/cholesky(nzval[9] [members(9), :])>
10: end for

5.3.3 Parallelism with column-supernodes
Just like in the case of the up-looking Cholesky factorization, any set of consecutive
supernodes that is pairwise independent under the sparsity set (|– can be treated in
parallel in the outermost for-loop in Algorithm 8. Just as before, the number of
required colors is O

(
log(#)d3

)
when coloring individual entries and O (log(#))

when coloring supernodes, leading to practically unlimited amounts of parallelism
for large problems.

5.4 Proof of stability of ICHOL(0)
5.4.1 Overview
Theorem17 implies that the application ofAlgorithm3 to a suitableO(n)-perturbation
Θ− � returns an O(n)-accurate Cholesky factorization of Θ in computational com-

82

plexity O(# log2(#) log23 (#/n)). In practice, we do not have access to � , so we
need to rely on the stability of Algorithm 3 to deduce that Θ and Θ − � (used as
inputs) would yield similar outputs for sufficiently small � . Even though such a
stability property of ICHOL(0)would also be required by prior works on incomplete
LU-factorization such as [94], we did not find this type of result in the literature. We
also found it surprisingly difficult to prove (and were unable to do so) when using
the maximin ordering and sparsity pattern, although we always observed stability of
Algorithm 3 in practice, for reasonable values of d.

The key problem is that the standard perturbation bounds for Schur complements
are multiplicative. Therefore, applying them # times (after each elimination) results
in a possible growth of the approximation error that is exponential in # and cannot
be compensated for by a logarithmic increase in d.

However, we have already seen in Section 5.2 that when using a supernodal multi-
color ordering, the incomplete Cholesky factorization can be expressed in a smaller
number of groups of independent dense linear algebra operations. In this section,
we are going to prove rigorously that the number of colors used by the multicolor
ordering is upper bounded as O (log(#)) and that this allows us to control the
approximation of the supernodal factorization by only invoking O (log(#)) Schur
complement perturbation bounds. Therefore, the error amplification is polynomial
in # and can be controlled by choosing d ' log(#). By relating ordinary and
supernodal Cholesky factorization, we are able to deduce the same error bounds for
the ordinary Cholesky factorization when using a supernodal multicolor ordering
and sparsity pattern.

5.4.2 Revisiting the supernodal multicolor ordering
We begin by reintroducing the supernodal multicolor ordering of Section 5.2 in
slightly different notation.

For A > 0, 1 ≤ : ≤ @ and 8 ∈ � (:) , write

�
(:)
A (8) B { 9 ∈ � (:) | 3 (8, 9) ≤ A}. (5.11)

Construction 3 (Supernodalmulticolor ordering and sparsity pattern). LetΘ ∈ R�×�

with � B
⋃

1≤:≤@ �
(:) and let 3 (· , ·) be a hierarchical pseudometric. For d ≥ 1,

define the supernodal multicolor ordering ≺d and sparsity pattern (d as follows. For

83

each : ∈ {1, . . . , @}, select a subset �̃ (:) ⊂ � (:) of indices such that

∀8̃, 9̃ ∈ �̃ (:) , 8̃ ≠ 9̃ =⇒ �
(:)
d/2

(
8̃
)
∩ �(:)

d/2
(
9̃
)
= ∅, (5.12)

∀8 ∈ � (:) , ∃8̃ ∈ �̃ (:) : 8 ∈ �(:)d
(
8̃
)
. (5.13)

Assign every index in � (:) to the element of �̃ (:) closest to it, using an arbitrary
method to break ties. That is, writing 9 { 9̃ for the assignment of 9 to 9̃ ,

9̃ ∈ argmin
9̃ ′∈�̃ (:)

3
(
9 , 9̃ ′

)
, (5.14)

for all 9 ∈ � (:) and 9̃ ∈ �̃ (:) such that 9 { 9̃ . Define �̃ B
⋃

1≤:≤@ �̃
(:) and define

the auxiliary sparsity pattern (̃d ⊂ �̃ × �̃ by

(̃d B
{(
8̃, 9̃

)
∈ �̃ × �̃

��∃8 { 8̃, 9 { 9̃ : 3 (8, 9) ≤ d
}
. (5.15)

Define the sparsity pattern (d ⊂ � × � as

(d B
{
(8, 9) ∈ � × �

��∃8̃, 9̃ ∈ �̃ : 8 { 8̃, 9 { 9̃ ,
(
8̃, 9̃

)
∈ (̃d

}
(5.16)

and call the elements of �̃ (:) supernodes. Color each 9̃ ∈ �̃ (:) in one of ? (:) colors
such that no 8̃, 9̃ ∈ �̃ (:) with

(
8̃, 9̃

)
∈ (̃d have the same color. For 8 ∈ � (:) write

node(8) for the 8̃ ∈ �̃ (:) such that 8 { 8̃ and write color(8̃) for the color of 8̃. Define
the supernodal multicolor ordering ≺d by reordering the elements of � such that

(1) 8 ≺d 9 for 8 ∈ � (:) , 9 ∈ � (;) and : < ;;

(2) within each level � (:) , we order the elements of supernodes colored in the
same color consecutively, i.e. given 8, 9 ∈ � (:) such that color(node(8)) ≠
color(node(9)), 8 ≺d 9 =⇒ 8′ ≺d 9 ′ for color(node(8′)) = color(node(8)),
and color(node(9 ′)) = color(node(9)); and

(3) the elements of each supernode appear consecutively, i.e. given 8, 9 ∈ � (:)

such that node(8) ≠ node(9), 8 ≺d 9 =⇒ 8′ ≺d 9 ′ for node(8′) = node(8),
and node(9 ′) = node(9).

Starting from a hierarchical ordering and sparsity pattern, the modified ordering and
sparsity pattern can be obtained efficiently:

Lemma 14. In the setting of Examples 1 and 2, given {(8, 9) | 3 (8, 9) ≤ d},
there exist constants � and ?max depending only on the dimension 3 and the cost of
computing 3 (· , ·) such that the ordering and sparsity pattern presented in Construc-
tion 3 can be constructed with ? (:) ≤ ?max, for each 1 ≤ : ≤ @, in computational
complexity �@d3# .

84

Proof. The aggregation into supernodes can be done via a greedy algorithm by
keeping track of all nodes that are not already within distance d/2 of a supernode
and removing them one at a time. We can then go through d-neighbourhoods and
remove points within distance d/2 from our list of candidates for future supernodes.
To create the coloring, we use the greedy graph coloring of [125] on the undirected
graph � with vertices �̃ (:) and edges

{
(8̃, 9̃) ∈ (̃d

�� 8̃, 9̃ ∈ �̃ (:)}. Defining deg(�)
as the maximum number of edges connected to any vertex of �, the computational
complexity of greedy graph coloring is bounded above by deg(�)#

(
� (:)

)
and the

number of colors used by deg(�) + 1. A sphere-packing argument shows that
deg(�) is at most a constant depending only on the dimension 3, which yields the
result. �

5.4.3 Proof of stability of incomplete Cholesky factorization in the supernodal
multicolor ordering

We will now bound the approximation error of the Cholesky factors obtained from
Algorithm3, using the supernodalmulticolor ordering and sparsity pattern described
in Construction 3. For 8̃, 9̃ ∈ �̃, let Θ8̃, 9̃ be the submatrix (Θ8 9)8∈8̃, 9∈ 9̃ and let

√
" be

the (dense and lower-triangular) Cholesky factor of a matrix " .

Algorithm 3 with supernodal multicolor ordering ≺d and sparsity pattern (d is
equivalent to the block-incomplete Cholesky factorization described in Algorithm 9
where the function Restrict!(Θ, (d) sets all entries of Θ outside of (d to zero.

Algorithm 9 Supernodal incomplete Cholesky factorization
Input: Θ ∈ R�×� symmetric
Output: ! ∈ R�×� lower triangular

Restrict!(Θ, (d)
for 8̃ ∈ �̃ do
!:,8̃ ← Θ:,8̃/

√
Θ8̃,8̃
>

for 9̃ �̃ 8̃ : (8̃, 9̃) ∈ (̃ do
for : �̃ 9̃ : (:̃ , 8̃), (:̃ , 9̃) ∈ (̃ do
Θ:̃ , 9̃ ← Θ:̃ , 9̃ − Θ:̃ ,8̃ (Θ8̃,8̃)−1Θ 9̃ ,8̃

end for
end for

end for
return !

85

We will now reformulate the above algorithm using the fact that the elimination of
nodes of the same color, on the same level of the hierarchy, happens consecutively.
Let ? be the maximal number of colors used on any level of the hierarchy. We
can then write � =

⋃
1≤:≤@,1≤;≤? �

(:,;) , where � (:,;) is the set of indices on level :
colored in the color ;. Let Θ(:,;),(<,=) be the restriction of Θ to � (:,;) × � (<,=) and
write (<, =) ≺ (:, ;) ⇐⇒ < < : or (< = : and = < ;). We can then rewrite
Algorithm 9 as:

Algorithm 10 Supernodal incomplete Cholesky factorization
Input: Θ ∈ R�×� symmetric
Output: ! ∈ R�×� lower triangular

for 1 ≤ : ≤ @ do
for 1 ≤ ; ≤ ? do
Restrict!(Θ, (d)
! (:,:),(:,;) ← Θ(:,:),(:,;)/

√
Θ(:,;),(:,;)

>

Θ← Θ − Θ(:,:),(:,;)
(
Θ(:,;),(:,;)

)−1
Θ(:,;),(:,:)

end for
end for
return !

For 1 ≤ : ≤ @, 1 ≤ ; ≤ ? and a matrix " ∈ R�×� with "(:,:),(<,=) , "(<,=),(:,:) = 0 for
all (<, =) ≺ (:, ;), let S ["] be the matrix obtained by applying Restrict!(", (d)
followedby theSchur complementation" ← "−"(:,:),(:,;)

(
"(:,;),(:,;)

)−1
"(:,;),(:,:) .

We now prove a stability estimate for the operator S. Let ":,(<,=) be the restriction
of a matrix " ∈ R�×� to � (:) × � (<,=) .

Lemma 15. For 1 ≤ :◦ ≤ @ and 1 ≤ ;◦ ≤ ? let Θ, � ∈ R�×� be such that

Θ(:,:),(<,=) ,Θ(<,=),(:,:) = 0 for all (<, =) ≺ (:◦, ;◦), (5.17)

and (writing Θ:,; for the � (:) × � (;) submatrix of Θ and _max for maximal singular
values) define

_min B _min(Θ:◦,:◦), _max B max
:◦≤:≤@

_max(Θ:◦,:). (5.18)

If
max

:◦≤:,;≤@
‖�:,; ‖Fro ≤ n ≤

_min
2
, (5.19)

86

then the following perturbation estimate holds:

max
:◦≤:,;≤@

(S[Θ] − S[Θ + �])
:,;

Fro
≤

(
3
2
+ 2

_max
_min

+ 8
_2

max

_2
min

)
n . (5.20)

Proof. Write Θ̃, �̃ for the versions ofΘ, � set to zero outside of (d. For :◦ ≤ :, ; ≤
@,

(S[Θ + �] − S[Θ]):,; (5.21)

= Θ̃:,; + �̃:,; −
(
Θ̃ + �̃

)
:, (:◦,;◦)

(
Θ̃ + �̃

)−1
(:◦,;◦) , (:◦,;◦)

(
Θ̃ + �̃

)
(:◦,;◦) ,; (5.22)

− Θ̃:,; + Θ̃:, (:◦,;◦)Θ̃−1
(:◦,;◦) , (:◦,;◦)Θ̃(:◦,;◦) ,; (5.23)

= �̃:,; +
(
Θ̃ + �̃

)
:, (:◦,;◦)

(
Θ̃ + �̃

)−1
(:◦,;◦) , (:◦,;◦) �̃ (:◦,;◦) , (:◦,;◦)Θ̃

−1
(:◦,;◦) , (:◦,;◦)

(
Θ̃ + �̃

)
(:◦,;◦) ,;

(5.24)

−
(
Θ̃ + �̃

)
:, (:◦,;◦)Θ̃

−1
(:◦,;◦) , (:◦,;◦)

(
Θ̃ + �̃

)
(:◦,;◦) ,; + Θ̃:, (:◦,;◦)Θ̃

−1
(:◦,;◦) , (:◦,;◦)Θ̃(:◦,;◦) ,;

(5.25)

= �̃:,; +
(
Θ̃ + �̃

)
:, (:◦,;◦)

(
Θ̃ + �̃

)−1
(:◦,;◦) , (:◦,;◦) �̃ (:◦,;◦) , (:◦,;◦)Θ̃

−1
(:◦,;◦) , (:◦,;◦)

(
Θ̃ + �̃

)
(:◦,;◦) ,;

(5.26)

− �̃:, (:◦,;◦)Θ̃−1
(:◦,;◦) , (:◦,;◦)Θ̃(:◦,;◦) ,; − Θ̃:, (:◦,;◦)Θ̃

−1
(:◦,;◦) , (:◦,;◦) �̃ (:◦,;◦) ,; (5.27)

− �̃:, (:◦,;◦)Θ̃−1
(:◦,;◦) , (:◦,;◦) �̃ (:◦,;◦) ,;, (5.28)

where the second equality follows from the matrix identity

(� + �)−1 = �−1 − (� + �)−1 ��−1. (5.29)

Now recall that, for all � ∈ R=×<, � ∈ R<×B, ‖" ‖ ≤ ‖" ‖Fro and ‖��‖Fro ≤
‖�‖‖�‖Fro. Therefore, ‖(� + �)−1‖ ≤ 2/_min and ‖� + � ‖ ≤ 2_max. Combining
these estimates and using the triangle inequality yields(S[� + �] − S[�]):,;Fro (5.30)

≤ ‖�:,; ‖Fro + 8
_2

max

_2
min
‖�:◦,:◦ ‖Fro +

_max
_min
(‖�:,; ‖Fro + ‖�;,: ‖Fro) (5.31)

+ _−1
min‖�:,:◦ ‖Fro‖�:◦,; ‖Fro (5.32)

≤
(
1 + 8

_2
max

_2
min
+ 2

_max
_min

+ n

_min

)
n (5.33)

≤
(

3
2
+ 2

_max
_min

+ 8
_2

max

_2
min

)
n . (5.34)

�

87

Recursive application of the above lemma gives a stability result for the incomplete
Cholesky factorization.

Lemma 16. For d > 0, let ≺d and (d be a supernodal ordering and sparsity
pattern such that the maximal number of colors used on each level is at most ?.
Let !(d be an invertible lower-triangular matrix with nonzero pattern (d and define
" B !(d!(d,>. Assume that " satisfies Condition 2 with constant ^. Then there
exists a universal constant � such that, for all 0 < n < _min (")

2@2 (�^)2@? and all � ∈ R�×�

with ‖� ‖Fro ≤ n , " − !̃(d !̃(d,>Fro ≤ @
2(�^)2@?n, (5.35)

where !̃ ((d) is the Cholesky factor obtained by applying Algorithm 10 to " + � .

Proof. The result follows from applying Lemma 15 at each step ofAlgorithm10. �

5.4.4 Conclusion
Using the stability result in Lemma 16, we can finally prove that when using the
supernodal multicolor ordering and sparsity pattern incomplete Cholesky factor-
ization applied to Θ attains an n-accurate Cholesky factorization in computational
complexity O

(
log2(#) log23 (#/n)

)
.

Theorem 18. In the setting of Examples 1 and 2, there exists a constant� depending
only on 3, B, ‖L‖, ‖L−1‖, ℎ, and X such that, given the ordering ≺d and sparsity
pattern (d defined as in Construction 3 with d ≥ � log(#/n), the incomplete
Cholesky factor ! obtained from Algorithm 3 has accuracy

‖!!) − Θ‖Fro ≤ n . (5.36)

Furthermore, Algorithm 3 has complexity of at most �#d23 log2(#) in time and at
most �#d3 log(#) in space.

Proof of Theorem 18. Theorem 9 implies that by choosing d ≥ �̃ log(#/n), there
exists a lower-triangular matrix !̃(d with

Θ− !̃(d !̃(d,>Fro ≤ n and sparsity pattern
(d. Theorem 7 implies that the Examples 1 and 2 satisfy _min ≥ 1/poly(#).
Therefore, choosing d ≥ �̃ log # ensures that n <

_min (Θ)
2 and thus that Θ̃ B

!̃(d !̃(d,> satisfies Condition 2 with constant 2�Φ, where �Φ is the corresponding
constant for Θ. By possibly changing �̃ again, d ≥ �̃ log # ensures that

n ≤ _min(Θ)
2@2 (�^ (Θ̃))2@? ,

88

where � is the constant of Lemma 16, since @ ≈ log # and, by Lemma 14, ? is
bounded independently of # . Thus, by Lemma 16, the Cholesky factor !(d obtained
from applying Algorithm 10 to Θ = Θ̃ +

(
Θ − Θ̃

)
satisfiesΘ̃ − !(d!(d,>Fro ≤ @

2 (4�^)2@? n ≤ poly(#)n, (5.37)

where ^ is the constant with which Θ satisfies Condition 2 and the polynomial
depends only on �, ^, and ?. Since, for the ordering ≺d and sparsity pattern (d,
the Cholesky factors obtained via Algorithms 3 and 10 coincide, we obtain the
result. �

This result holds for both element-wise and supernodal factorization, in either its
left, up, or right-looking forms. As remarked in Section 5.3.1, using the two-way
supernodal sparsity pattern for factorization of Θ−1 in the fine-to-coarse ordering
degrades the asymptotic complexity. Therefore, the above result does not immedi-
ately prove the accuracy of the Cholesky factorization in this setting, with optimal
complexity. However, the column-supernodal factorization described in Section 5.3
can similarly be described in terms of O (log(#)) Schur-complementations. Thus,
the above proof can be modified to show that when using the column-supernodal
multicolor ordering and sparsity pattern, ICHOL(0)applied to Θ−1 computes an
n-approximation in computational complexity O (# log(#/n)).

5.5 Numerical example: Compression of dense kernel matrices

5.5.1 Selection of the sparsity pattern and ordering
This section introduces an O(d3# log2 #)-complexity algorithm (Algorithm 11)
for computing the maximin ordering and sparsity pattern introduced in Section 3.5.
This algorithm does not explicitly query the position of the {G8}8∈� and only uses
pairwise distances by processing points one by one by updating a mutable binary
heap, keeping track of the point to be processed at each step. With this approach,
our proposed algorithm is oblivious to the dimension 3 of the ambient space and,
in particular, can automatically exploit low-dimensional structure in the point cloud
{G8}8∈� . In order to avoid computing all O(#2) pairwise distances, Algorithm 11
uses the sparsity pattern obtained on the coarser scales to restrict computation at the
finer scales to local neighborhoods.

Theorem 19. The output of Algorithm 11 are the maximin ordering and sparsity
pattern described in Section 3.5, with starting set given by mΩ. Furthermore, in the

89

Algorithm 11 Ordering and sparsity pattern algorithm.
Input: Real d ≥ 2 and Oracles dist(· , ·), distmΩ (·) such that dist(8, 9) = dist

(
G8 , G 9

)
and

distmΩ (8) = dist (G8 , mΩ)
Output: An array ; [:] of distances, an array % encoding the multiresolution ordering, and an array
of index pairs (containing the sparsity pattern.

1: % = ∅
2: for 8 ∈ {1, . . . , #} do
3: ; [8] ← distmΩ (8)
4: ? [8] ← ∅
5: 2[8] ← ∅
6: end for
7: {Creates a mutable binary heap, containing pairs of indices and distances as elements:}
8: � ← MutableMaximalBinaryHeap

(
{(8, ; [8])}8∈{1,...,# }

)
9: {Instates the Heap property, with a pair with maximal distance occupying the root of the heap:}
10: heapSort!(�)
11: {Processing the first index:}
12: {Get the root of the heap, remove it, and restore the heap property:}
13: (8, ;) = pop(�)
14: {Add the index as the next element of the ordering} push (%, 8)
15: for 9 ∈ {1, . . . , #} do
16: push(2[8], 9)
17: push(? [9], 8)
18: sort! (2[8], dist(· , 8))
19: decrease! (�, 9, dist(8, 9))
20: end for
21: {Processing remaining indices:}
22: while � ≠ ∅ do
23: {Get the root of the heap, remove it, and restore the heap property:} (8, ;) = pop(�) ℓ[8] ← ;

24: {Select the parent node that has all possible children of 8 amongst its children, and is closest
to 8:}

25: : = argmin 9∈? [8]:dist(8, 9)+dℓ [8] ≤dℓ [9] dist (8, 9)
26: {Loop through those children of : that are close enough to : to possibly be children of 8:}
27: for 9 ∈ 2[:] : dist(9 , :) ≤ dist(8, :) + dℓ[8] do
28: decrease! (�, 9, dist(8, 9))
29: if dist(8, 9) ≤ d; [8] then
30: push(2[8], 9)
31: push(? [9], 8)
32: end if
33: end for
34: {Add the index as the next element of the ordering}
35: push (%, 8)
36: {Sort the children according to distance to the parent node, so that the closest children can

be found more easily} sort! (2[8], dist(· , 8))
37: end while
38: {Aggregating the lists of children into the sparsity pattern:}
39: for 8 ∈ {1, . . . , #} do
40: for 9 ∈ 2[8] do
41: push! ((, (8, 9))
42: push! ((, (9 , 9))
43: end for
44: end for

90

setting of Theorem 11, if the oracles dist(· , ·) and distmΩ(·) can be queried in
complexity O(1), then the complexity of Algorithm 11 is bounded by �d3# log2 # ,
where � is a constant depending only on 3, Ω and X.

Theorem 19 is proved in Section .2.1. As discussed therein, in the case Ω = R3 ,
Algorithm 11 has the advantage that its computational complexity depends only on
the intrinsic dimension of the dataset, which can be much smaller than 3 itself.

5.5.2 The case of the whole space (Ω = R3)
Many applications in Gaussian process statistics and machine learning are in the
Ω = R3 setting. In that setting, the Matérn family of kernels (5.42) is a popular
choice that is equivalent to using the whole-space Green’s function of an elliptic
PDE as covariance function [248, 249]. Let Ω̄ be a bounded domain containing
the {G8}8∈� . The case Ω = R3 is not covered in Theorem 9 and the resulting
theorems because in this case, the screening effect is weakened near the boundary
of Ω̄ by the absence of measurements points outside of Ω̄. Therefore, distant
points close to the boundary of Ω̄ will have stronger conditional correlations than
similarly distant points in the interior of Ω̄ (see Figure 5.4). As observed by [207]
and [60], Markov random field (MRF) approaches that use a discretization of the
underlying PDE face similar challenges at the boundary. While the weakening
of the exponential decay at the boundary worsens the accuracy of our method, the
numerical results in Section 5.5.4 (which are all obtainedwithout imposing boundary
conditions) suggest that its overall impact is limited. In particular, as shown in
Figure 5.4, it does not cause significant artifacts in the quality of the approximation
near the boundary. This differs from the significant boundary artifacts of MRF
methods, which have to be mitigated against by careful calibration of the boundary
conditions [60, 207]. Although the numerical results presented in this section
are mostly obtained with G8 ∼ UNIF([0, 1]3), in many practical applications, the
density of measurement points will slowly (rather than abruptly) decrease towards
zero near the boundary of the sampled domain, which drastically decreases the
boundary errors shown above. Accuracy can also be enhanced by adding artificial
points {G8}8∈ �̃ at the boundary. By applying the Cholesky factorization to {G8}8∈�∪�̃ ,
and then restricting the resulting matrix to � × �, we can obtain a very accurate
approximate matrix-vector multiplication. This approximation can be efficiently
inverted using iterative methods such as conjugate gradient [218], preconditioned
with the Cholesky factorization obtained from the original set of points.

91

Figure 5.4: Weaker screening between boundary points. Left and center: 8th
(left) and 9 th (center) column of the Cholesky factor ! (normalized to unit diagonal)
of Θ in maximin ordering, where G8 is an interior point and G 9 is near the boundary.
Although ; [8] is of the order of ; [9], the exponential decay of !:, 9 near the boundary
is significantly weakened by the absence of Dirichlet boundary conditions. Right:
approximate correlations

{
(!d!d,>): 9

}
:∈� (with d = 3.0) and true covariance func-

tion exp(−2A) with A = |G: − G 9 |. Correlations between G 9 and remaining points are
captured accurately, despite the weakened exponential decay near the boundary.

92

5.5.3 Nuggets and measurement errors
In the Gaussian process regression setting it is common to model measurement error
by adding a nugget f2Id to the covariance matrix:

Θ̃ = Θ + f2Id. (5.38)

The addition of a diagonal matrix diminishes the screening effect and thus the
accuracy of Algorithm 3. This problem can be avoided by rewriting the modified
covariance matrix Θ̃ as

Θ̃ = Θ(f2� + Id), (5.39)

where � B Θ−1. As noted in Section 2.2.3, � can be interpreted as a discretized
partial differential operator and has therefore near-sparse Cholesky factors in the
reverse elimination ordering. Adding a multiple of the identity to � amounts to
adding a zeroth-order term to the underlying PDE and thus preserves the sparsity of
the Cholesky factors. This leads to the sparse decomposition

Θ̃ = !!>%l!̃ !̃>%l, (5.40)

where %l is the order-reversing permutation and !̃ is theCholesky factor of %l(f2�+
Id)%l. Figure 5.5 shows that the exponential decay of these Cholesky factors is
robust with respect to f.

5.5.4 Numerical results
We will now present numerical evidence in support of our results. All experiments
reported below were run on a workstation using an Intel®Core™i7-6400 CPU with
4.00GHz and 64GB of RAM, without using parallelism. In the following, nnz(!)
denotes the number of nonzero entries of the lower-triangular factor !; CSortSparse
denotes the time taken to compute the maximin ordering ≺ and sparsity pattern (d
using Algorithm 11; CEntries denotes the time taken to compute the entries of Θ on
(d; and CICHOL(0) denotes the time taken to perform 4 (ICHOL(0)), all measured in
seconds. The relative error in Frobenius norm is approximated by

� B
‖!!> − Θ‖Fro
‖Θ‖Fro

≈

√∑<
:=1

(!!> − Θ)
8: 9:

2√∑<
:=1 ‖Θ8: 9: ‖2

, (5.41)

where the < = 500000 pairs of indices 8: , 9: ∼ UNIF(�) are independently and
uniformly distributed in �. This experiment is repeated 50 times and the resulting
mean and standard deviation (in brackets) are reported. Formeasurements in [0, 1]3 ,

93

Figure 5.5: (Lack of) robustness to varying size of the nugget. We plot the
log10 of the magnitude of the Cholesky factors of Θ + f2Id in maximin ordering
(first column) and of � + f2 in reverse maximin ordering (second column). As
we increase f2 ∈ [0.0, 0.1, 1.0, 10.0] from left to right the decay of the Cholesky
factors of Θ + f2Id deteriorates, and that of the factors of � + f2Id is preserved.

94

Figure 5.6: Accuracy and computational cost. First panel: the increase in com-
putational time taken by the Cholesky factorization, as # increases (for d = 3.0).
Second panel: the exponential decay of the relative error in Frobenius norm, as d is
increased. In the third (3 = 2) and fourth panel (3 = 3), we see the comparison of
the approximate and true covariance for d = 2.0 and d = 3.0.

in order to isolate the boundary effects, we also consider the quantity �̄ which is
defined as � , but with only those sample 8: , 9: for which G8: , G 9: ∈ [0.05, 0.95]3 .
Most of our experiments will use the Matérn class of covariance functions [167],
defined by

�Matérn
;,a (G, H) B 21−a

Γ(a)

(√
2a |G − H |
;

)a
 a

(√
2a |G − H |
;

)
, (5.42)

where a is the modified Bessel function of second kind [1, Section 9.6] and
a, ; are parameters describing the degree of smoothness, and the length-scale of
interactions, respectively [203]. In Figure 5.7, the Matérn kernel is plotted for
different degrees of smoothness. The Matérn covariance function is used in many
branches of statistics and machine learning to model random fields with finite order
of smoothness [109, 203].

As observed by [248, 249], the Matérn kernel is the Green’s function of an elliptic
PDE of possibly fractional order 2(a + 3/2) in the whole space. Therefore, for
2(a + 3/2) ∈ N, the Matérn kernel falls into the framework of our theoretical

95

Figure 5.7: TheMatérn class of covariance functions. Matérn kernels for different
values of a (left), and the spectrum ofΘ, for 2000 points G8 ∈ [0, 1]2 (right). Smaller
values of a correspond to stronger singularities at zero and hence lower degrees of
smoothness of the associated Gaussian process.

Table 5.1: �Matérn
a,;

, with a = 0.5, ; = 0.2, d = 3.0, and 3 = 2.

nnz(!)/# 2 rank(!) CSortSparse CEntries CICHOL(0) � �̄

20000 5.26e-03 20000 0.71 0.81 0.42 1.25e-03 (3.68e-06) 1.11e-03 (3.01e-06)
20000 5.26e-03 20000 0.71 0.81 0.42 1.25e-03 (3.68e-06) 1.11e-03 (3.01e-06)
40000 2.94e-03 40000 1.21 1.19 1.00 1.27e-03 (3.32e-06) 1.12e-03 (3.56e-06)
80000 1.62e-03 80000 2.72 2.82 2.55 1.30e-03 (3.20e-06) 1.21e-03 (3.29e-06)

160000 8.91e-04 160000 6.86 6.03 6.11 1.28e-03 (3.57e-06) 1.16e-03 (3.32e-06)
320000 4.84e-04 320000 17.22 13.79 15.66 1.23e-03 (3.19e-06) 1.11e-03 (2.40e-06)
640000 2.63e-04 640000 41.40 31.02 36.02 1.24e-03 (2.58e-06) 1.09e-03 (3.02e-06)

1280000 1.41e-04 1280000 98.34 65.96 85.99 1.23e-03 (3.72e-06) 1.10e-03 (3.74e-06)
2560000 7.55e-05 2560000 233.92 148.43 197.52 1.16e-03 (2.82e-06) 1.04e-03 (3.36e-06)

results, up to the behavior at the boundary discussed in Section 5.5.2. Since the
locations of our points will be chosen at random, some of the points will be very close
to each other, resulting in an almost singular matrix Θ that can become nonpositive
under the approximation introduced by ICHOL(0). If Algorithm 3 encounters a
nonpositive pivot �88, then we set the corresponding column of ! to zero, resulting
in a low-rank approximation of the original covariance matrix. We report the rank of
! in our experiments and note that we obtain a full-rank approximation for moderate
values of d.

We begin by investigating the scaling of our algorithm as # increases. To this
end, we consider a = 0.5 (the exponential kernel), ; = 0.2 and choose # randomly
distributed points in [0, 1]3 for 3 ∈ {2, 3}. The results are summarized in Tables 5.1
and 5.4, and in Figure 5.6, and confirm the near-linear computational complexity of
our algorithm.

Next, we investigate the trade-off between the computational efficiency and accuracy
of the approximation. To this end, we choose 3 = 2, a = 1.0 and 3 = 3, a = 0.5,

96

Table 5.2: �Matérn
a,;

, with a = 0.5, ; = 0.2, d = 3.0, and 3 = 3.

nnz(!)/# 2 rank(!) CSortSparse CEntries CICHOL(0) � �̄

20000 1.30e-02 20000 1.61 1.44 2.94 1.49e-03 (5.00e-06) 1.20e-03 (5.09e-06)
40000 7.60e-03 40000 3.26 3.32 8.33 1.21e-03 (4.29e-06) 9.91e-04 (3.72e-06)
80000 4.35e-03 80000 7.46 7.64 22.46 1.06e-03 (3.74e-06) 8.51e-04 (2.93e-06)

160000 2.45e-03 160000 20.95 18.42 57.64 9.81e-04 (2.33e-06) 7.88e-04 (3.23e-06)
320000 1.37e-03 320000 53.58 40.72 141.46 9.27e-04 (2.26e-06) 7.53e-04 (2.72e-06)
640000 7.61e-04 640000 133.55 96.67 350.10 8.98e-04 (3.25e-06) 7.25e-04 (3.02e-06)

1280000 4.19e-04 1280000 312.43 212.57 820.07 8.59e-04 (2.79e-06) 7.00e-04 (2.87e-06)
2560000 2.29e-04 2560000 795.68 480.17 1981.92 8.96e-04 (2.76e-06) 7.73e-04 (4.28e-06)

Table 5.3: �Matérn
a,;

, with a = 1.0, ; = 0.2, # = 106, and 3 = 2.

nnz(!)/# 2 rank(!) CSortSparse CEntries CICHOL(0) � �̄

d = 2.0 8.78e-05 254666 38.06 33.72 17.54 2.04e-02 (1.73e-02) 2.34e-02 (2.75e-02)
d = 3.0 1.76e-04 964858 71.07 67.85 61.35 2.32e-03 (6.02e-06) 2.09e-03 (7.50e-06)
d = 4.0 2.90e-04 999810 115.07 112.56 152.93 3.92e-04 (1.44e-06) 3.72e-04 (2.32e-06)
d = 5.0 4.26e-04 999999 165.91 166.60 312.19 6.70e-05 (2.98e-07) 5.68e-05 (2.55e-07)
d = 6.0 5.83e-04 1000000 227.62 229.76 566.94 1.45e-05 (6.69e-08) 1.08e-05 (5.01e-08)
d = 7.0 7.59e-04 1000000 292.52 300.65 944.33 4.05e-06 (4.96e-08) 2.10e-06 (1.69e-08)
d = 8.0 9.53e-04 1000000 363.90 380.07 1476.71 1.62e-06 (2.30e-08) 4.08e-07 (9.47e-09)
d = 9.0 1.16e-03 1000000 447.47 467.07 2200.32 8.98e-07 (1.44e-08) 1.42e-07 (5.14e-09)

Table 5.4: �Matérn
a,;

, with a = 0.5, ; = 0.2, # = 106, and 3 = 3.

nnz(!)/# 2 rank(!) CSortSparse CEntries CICHOL(0) � �̄

d = 2.0 1.87e-04 998046 87.83 56.44 85.20 1.69e-02 (6.89e-04) 1.60e-02 (3.36e-04)
d = 3.0 5.17e-04 1000000 226.84 158.42 599.86 8.81e-04 (3.21e-06) 7.15e-04 (2.99e-06)
d = 4.0 1.05e-03 1000000 446.52 326.27 2434.52 1.85e-04 (5.37e-07) 1.59e-04 (5.30e-07)
d = 5.0 1.82e-03 1000000 747.65 567.06 7227.45 2.89e-05 (1.94e-07) 1.84e-05 (1.15e-07)
d = 6.0 2.82e-03 1000000 1344.59 928.27 17640.58 1.15e-05 (1.06e-07) 5.34e-06 (5.34e-08)

Table 5.5: We tabulate the approximation rank and error for d = 5.0 and # = 106

points uniformly distributed in [0, 1]3. The covariance function is �Matérn
a,0.2 for a

ranging around a = 0.5 and a = 1.5. Even though the intermediate values of a
correspond to a fractional order elliptic PDE, the behavior of the approximation
stays the same.

a = 0.3 a = 0.5 a = 0.7 a = 0.9 a = 1.1 a = 1.3 a = 1.5 a = 1.7
rank(!) 1000000 1000000 1000000 1000000 1000000 1000000 1000000 999893

� 7.04e-05 2.89e-05 2.49e-05 3.58e-05 6.03e-05 8.77e-05 1.18e-04 1.46e-04
(3.98e-07) (1.79e-07) (1.11e-07) (1.19e-07) (2.37e-07) (3.06e-07) (4.52e-07) (5.39e-07)

�̄ 5.19e-05 1.85e-05 1.77e-05 2.82e-05 4.88e-05 6.87e-05 9.06e-05 1.13e-04
(2.26e-07) (1.18e-07) (8.11e-08) (1.30e-07) (2.37e-07) (3.50e-07) (5.14e-07) (5.45e-07)

97

Table 5.6: �
Cauchy
;,U,V

for (;, U, V) = (0.4, 0.5, 0.025) (first table) and (;, U, V) =
(0.2, 1.0, 0.20) (second table), for # = 106 and 3 = 2.

d = 2.0 d = 3.0 d = 4.0 d = 5.0 d = 6.0 d = 7.0 d = 8.0 d = 9.0
rank(!) 999923 1000000 1000000 1000000 1000000 1000000 1000000 1000000

� 4.65e-04 5.98e-05 2.36e-05 1.19e-05 4.84e-06 4.17e-06 2.25e-06 1.42e-06
(4.23e-07) (1.56e-07) (9.53e-08) (6.32e-08) (4.14e-08) (4.99e-08) (1.86e-08) (1.64e-08)

�̄ 3.81e-04 3.49e-05 9.83e-06 4.65e-06 1.47e-06 8.49e-07 4.25e-07 2.12e-07
(4.98e-07) (1.59e-07) (5.56e-08) (2.63e-08) (7.73e-09) (1.04e-08) (4.81e-09) (3.24e-09)

d = 2.0 d = 3.0 d = 4.0 d = 5.0 d = 6.0 d = 7.0 d = 8.0 d = 9.0
rank(!) 999547 1000000 1000000 1000000 1000000 1000000 1000000 1000000

� 1.08e-03 1.36e-04 2.89e-05 2.35e-05 5.33e-06 3.25e-06 2.53e-06 1.68e-06
(5.02e-06) (6.27e-07) (2.63e-07) (3.01e-07) (6.15e-08) (5.74e-08) (4.84e-08) (4.25e-08)

�̄ 7.23e-04 8.96e-05 1.17e-05 5.65e-06 1.09e-06 5.84e-07 4.03e-07 2.40e-07
(4.07e-06) (2.63e-07) (7.10e-08) (1.47e-07) (7.71e-09) (5.48e-09) (3.44e-09) (2.23e-09)

Table 5.7: �Matérn
a,;

for a = 0.5, ; = 0.2, and d = 3.0 with # = 106 points chosen as
in Figure 5.8.

XI = 0.0 XI = 0.1 XI = 0.2 XI = 0.3 XI = 0.4 XI = 0.5 XI = 0.6
nnz(!)
2 1.76e-04 1.77e-04 1.78e-04 1.80e-04 1.82e-04 1.84e-04 1.85e-04

CICHOL(0) 61.92 62.15 62.81 64.27 64.87 65.50 66.12
rank(!) 1000000 1000000 1000000 1000000 1000000 1000000 1000000

� 1.17e-03 1.11e-03 1.28e-03 1.60e-03 1.72e-03 1.89e-03 2.11e-03
(2.74e-06) (3.00e-06) (2.73e-06) (4.28e-06) (3.95e-06) (5.11e-06) (5.07e-06)

corresponding to fourth-order equations in two and three dimensions. We choose
= 106 data points G8 ∼ UNIF([0, 1]3) and apply our method with different values
of d. The results of these experiments are tabulated in Tables 5.3 and 5.4 and the
impact of d on the approximation error is visualized in Figure 5.6.

While our theoretical results only cover integer-order elliptic PDEs, we observe no
practical difference between the numerical results for Matérn kernels corresponding
to integer- and fractional-order smoothness. As an illustration, for the case 3 = 3,
we provide approximation results for a ranging around a = 0.5 (corresponding to a
fourth-order elliptic PDE) and a = 1.5 (corresponding to a sixth-order elliptic PDE).
As seen in Table 5.5, the results vary continuously as a changes, with no qualitative
differences between the behavior for integer- and fractional-order PDEs. To further
illustrate the robustness of our method, we consider the Cauchy class of covariance
functions introduced in [95]

�
Cauchy
;,U,V

(G, H) B
(
1 +

(
|G − H |
;

)U)− VU
. (5.43)

As far as we are aware, the Cauchy class has not been associated to any elliptic PDE.
Furthermore, it does not have exponential decay in the limit |G − H | → ∞, which
allows us to emphasize the point that the exponential decay of the error is not due to

98

Figure 5.8: Manifold data. A two-dimensional point cloud deformed into a two-
dimensional submanifold of R3, with XI ∈ {0.1, 0.3, 0.5}.

Figure 5.9: Ahigh-dimensional example. We construct a high-dimensional dataset
with low-dimensional structure by rotating the above structures at random into a 20-
dimensional ambient space.

Table 5.8: �Matérn
a,;

for a = 0.5, ; = 0.5, and # = 106 points as in Figure 5.9.

nnz(!)/#2 rank(!) CSortSparse CEntries CICHOL(0) �

d = 2.0 1.62e-04 997635 80.60 57.11 52.49 1.57e-02 (1.13e-03)
d = 3.0 3.76e-04 1000000 173.86 135.61 248.78 2.88e-03 (1.14e-05)
d = 4.0 6.76e-04 1000000 302.98 247.74 748.62 8.80e-04 (4.97e-06)
d = 5.0 1.05e-03 1000000 462.98 397.42 1802.44 3.44e-04 (2.54e-06)
d = 6.0 1.49e-03 1000000 645.56 556.72 3696.31 1.44e-04 (8.76e-07)
d = 7.0 2.02e-03 1000000 891.08 758.88 6855.23 7.61e-05 (5.66e-07)
d = 8.0 2.62e-03 1000000 1248.90 990.86 11598.66 4.57e-05 (4.36e-07)

the exponential decay of the covariance function itself. Chapter 5.6 gives the results
for (;, U, V) = (0.4, 0.5, 0.025) and (;, U, V) = (0.2, 1.0, 0.2).

In Gaussian process regression, the ambient dimension 3 is typically too large to
ensure the computational efficiency of our algorithm. However, since our algorithm
only requires access to pairwise distances between points, it can take advantage of
the possibly lower intrinsic dimension of the dataset. We might be concerned that
in this case, interaction through the higher dimensional ambient space will disable
the screening effect. As a first demonstration that this is not the case, we will
draw # = 106 points in [0, 1]2 and equip them with a third component according
to G (3)

8
B −XI sin(6G (1)

8
) cos(2(1 − G (2)

8
)) + b810−3, for b8 i.i.d. standard Gaussian.

Figure 5.8 shows the resulting point sets for different values of XI, and Table 5.7
shows that the approximation is robust to increasing values of XI.

An appealing feature of our method is that it can be formulated in terms of the

99

pairwise distances alone. This means that the algorithm will automatically exploit
any low-dimensional structure in the dataset. In order to illustrate this feature,
we artificially construct a dataset with low-dimensional structure by randomly ro-
tating four low-dimensional structures into a 20-dimensional ambient space (see
Figure 5.9). Chapter 5.8 shows that the resulting approximation is even better than
the one obtained in dimension 3, illustrating that our algorithm did indeed exploit
the low intrinsic dimension of the dataset.

5.6 Numerical example: Preconditioning finite element matrices
5.6.1 Overview
In this section, we describe applications of the methods in Section 5.3 to the stiffness
matrices arising from finite element discretizations of elliptic partial differential
equations. We interpret the stiffness matrix as � = Θ−1, reorder the degrees
of freedom from fine to coarse analog to Example 1, and apply ICHOL(0). We
consider both a classical Poisson problem{

− ∇ · (0(G)∇D(G)) = 6(G),
D(G) = 0 ∀G ∈ mΩ

(5.44)

and a linear elasticity problem
`(G)ΔD(G) + `(G)

1 − 2a
∇(∇ · D(G)) = 6(G),

D(G) = 0 ∀G ∈ B.
(5.45)

putting particular emphasis on settings where the ill-conditioning of the differential
operator arises not only from the unboundedness of the differential operators ∇
and Δ, but also from the large variability in magnitudes of the conductivity 0 and
Young’s modulus `. On top of this high contrast, the coefficient fields are also
rough, meaning that they are not expected to have any degree of smoothness or even
continuity.

This violates the setting of our theoretical results in three ways:

1. Rather than with the inverse of a Galerkin discretization of L−1, we are
working with a discretization of L itself.

2. While our theoretical results fully cover rough coefficients, the constants in
our estimates depend on L and �, and are therefore expected to deteriorate in
the presence of high contrast.

100

d 2.0 2.5 3.0 3.5 4.0
#iter averaging 184 135 85 80 67

#iter subsampling 433 278 134 117 72

Table 5.9: Averaging vs Subsampling. For homogeneous Poisson problems and
small values of d, averaging can improve the preconditioning effect compared to
subsampling.

3. We use a reordering akin to Example 1 as opposed to an averaging averaging
scheme as in Example 2 even though the Laplace operator (B = 1) with spatial
dimension 3 ∈ {2, 3} violates the condition B > 3/2 of Example 1.

Regarding the first point, analog results could be derived by repeating the proofs of
Chapter 4 in the fully discrete setting. Regarding the second point, in agreement with
earlier numerical results by [188], we observe that the impact of unstructured high-
contrast coefficients on our method is far less severe than could be expected based
on the theoretical results in Chapter 4. We suspect that the impact of the contrast
on the accuracy of our method is highly dependent on the geometric structure of the
coefficients. While there should be adversarial choices of geometry with devastating
effects, unstructured coefficient fields seem to be surprisingly benign. Regarding
the third point, while the numerical homogenization results of Theorem 12 break
down if the condition B > 3/2 is violated, the exponential decay result does seem to
hold. For Poisson problems with slowly varying, low-contrast coefficients and small
values of d, we obseve that using an averaging scheme improves the preconditioning
effect, as shown in Table 5.9.

On the other hand, in the presence of high contrast coefficients reordering according
to Example 1 tends to perform better than averaging according to Example 2 since
the resulting incomplete Cholesky factorization is less prone to encountering non-
positive pivots. We have no theoretical explanation for this empirical observation.

5.6.2 Accuracy and computational complexity
We begin by investigating empirically the sparsity of the Cholesky factors and the
scaling of the computational complexity of our factorization. In Figure 5.10, we
show the sparsity pattern for different d together with the approximation error. We
next investigate the computational time of computing the Cholesky factorization
and how it scales with # . As shown in the log-log plot in Figure 5.11, for fixed d,
our factorization achieves the linear scaling predicted by the theory.

101
d = 2 d = 3 d = 4 d = 5

5 10 15 20

0

2

4

6

d

pe
rc
en
ta
ge

of
fil
l-i
ns

density percentage

5 10 15 20

10−10

10−7

10−4

10−1

d

er
ro
r

‖!!> − �‖Fro/‖�‖Fro

5 10 15 20
10−9

10−6

10−3

100

d

er
ro
r

‖ (!!>)−1−�−1 ‖Fro/‖�−1 ‖Fro

5 10 15 20

10−6

10−4

10−2

100

d

er
ro
r

‖�D−6 ‖2/‖6 ‖2

Figure 5.10: Sparsity pattern, error and factor density. When computing the
factorization of a Laplacian on a 16:×16: grid in the reverse maximin ordering
of Definition 6, the Cholesky factors are approximately sparse according to the
reverse maximin sparsity pattern of Definition 7, despite the condition B > 3/2 of
Example 1 not being satisfied.

Exact sparse Cholesky factorization, as discussed in Section 3.2, is a strong competi-
tor for many practical two-dimensional problems. However, its superlinear scaling
of both time and space complexity limits its applicability to three-dimensional
problems. In Figure 5.12, we compare our method against the highly optimized
CHOLMOD library on series of three-dimensional problems of increasing size.
While CHOLMOD is superior for small problems, our method shows superior per-
formance on problems with # > 106. We note that CHOLMOD has the advantage
that it is not impacted by the geometric structure and magnitude of the coefficients
and would therefore preserve its computational cost if we were to choose a more
challenging problem of the same size. Nevertheless, it becomes infeasible for truly
large-scale problems, while our method preserves its near-linear scaling.

5.6.3 Comparison with algebraic multigrid methods
A popular choice for solving elliptic partial differential equations are algebraic
multigrid method [41, 42, 253]. Where geometric multigrid methods [81, 111,
113] use predetermined multiresolution schemes that are vulnerable to rough and
high contrast coefficients [20], algebraic multigrid methods use an operator-adapted

102

105 106

100

101

#

tim
e
(s
)

2D factorization
d=7.0
d=8.0

105 106

100

101

102

#

tim
e
(s
)

3D factorization
d=2.5
d=3.5

Figure 5.11: Scalability. In 2D and 3D, our IC factorization time matches the
expected O(#d23) time complexity for a matrix size #×# and a sparsity parameter
d; the dashed line indicates a slope of 1 in this log-log plot.

multiresolution analysis. While this improves their performance on many problems,
rough coefficients with high contrast still pose challenges [7, 255].

We compare our method to the popular AMG implementations AMGCL [67] and
Trilinos [237]. For AMGCL, we chose the Ruge-Stüben method [230] to construct
the hierarchy and sparse inverse approximation [102] for relaxation. For Trilinos,
we use smoothed aggregation [240] for coarsening and symmetric Gauss-Seidel for
relaxation.

105 106
100

101

102

#

factorization time (s)

105 106
100

101

102

#

total time (s)

105 106

100

101

#

memory cost (Gb)

CHOLMOD vs. Our method
Figure 5.12: Direct vs. iterative solvers. For a 3D Poisson solve, CHOLMOD
scales non-linearly in the linear system size # for factorization time, total solve
time (which include factorization and back-substitution), and memory use, and fails
for # > 1M; instead, a PCG-based iterative solve using our preconditioner exhibits
consistent linear behaviors on all three measurements.

103

We begin our comparison on the Poisson problem (5.44) and the elasticity problem
(5.45) in two and three dimensions on a bimaterial generated by randomly assigned
stiff regions. The stiff regions form about 1/8 of the problem in two dimensions
and 1/64 of the problem in three dimensions. We refer to the ratio of coefficient
magnitudes in stiff and normal regions as the contrast. We furthermore investigate
examples on both regular and (uniformly) randomly generated grids.

Poisson
regular mesh irregular mesh

x-axis shows contrast (# =2 × 105, g=1)

100 102 104

100

101

time (s)

100 102 104

100

101

time (s)

100 102 104

101

102
time (s)

100 102 104

102

time (s)

x-axis shows size (contrast=104, g=1)

105 106

100

101

time (s)

105 106
100

101

102
time (s)

105 106

101

102

time (s)

105 106
101

102

103

104
time (s)

——Ours —— AMGCL —— Trilinos

As we can see in Figure 5.12 our method beats both of these methods in all problems
with the exception of Poisson problems on regular grids, where it is outperformed
by AMGCL.

In many applications, our method will be used repeatedly during the solution of a
nonlinear problem via implicit time-stepping orNewton’smethod. In Fiture 5.13, we
use our method to accelerate computations in quasi-statics: We stretch an armadillo
model with about 340: nodes (thus over 1" degrees of freedom), for which each
tetrahedron is randomly assigned one of two neo-Hookean materials whose contrast
between Young’s moduli is 104. In each step of our Newton descent to find the final
shape, we project the neo-Hookean elastic stiffness matrix to enforce semi-positive

104

Elasticity
regular mesh irregular mesh

x-axis shows contrast (# =2 × 105, g=1)

100 102 104

101

102

103
time (s)

100 102 104

102

103

time (s)

100 102 104

101

102

103

time (s)

100 102 104

102

103

time (s)

x-axis shows size (contrast=104, g=1)

105 106

101

102

103

104 time (s)

105 106

102

103

104

time (s)

105 106

101

102

103

104 time (s)

105 106

102

103

time (s)

——Ours —— AMGCL —— Trilinos

Figure 5.12: Comparisons with AMG libraries.. Figures indicate time costs
(including factorization and PCG iteration times) as a function of material contrast.
Our method is much less sensitive to contrast and problem size, and is particularly
efficient when the size # becomes large and/or for bad condition numbers. For our
method, timings are within the orange region depending on the actual value of d,
for which we used the range [6.5, 8.5] in 2D and [2.5, 4.0] in 3D. All meshes are
generated by Delaunay triangulation.

definiteness [234]. The linear solves of the Newton descent exhibit a 2.5× speedup
on average compared to AMGCL, with larger speed-ups for smaller error tolerances.

105

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

−6

−5

−4

−3

−2

−1

·105

time (104 s)

po
te
nt
ia
le
ne
rg
y
va
lu
e

Our method AMGCL

Figure 5.13: Nonlinear quasi-statics. An armadillo is stretched via lateral gravity
with a few nodes (marked in black) fixed at their initial position. We use a trust
region nonlinear optimization algorithm involving the solution of a linear system
using our IC preconditioner or AMGCL at each step; timing of the first 20 iterations
are plotted.

106

C h a p t e r 6

CHOLESKY FACTORIZATION BY KULLBACK-LEIBLER
MINIMIZATION

6.1 Overview
6.1.1 Factorizing Θ−1 from entries of Θ
In this chapter, we propose to compute a sparse approximate inverse Cholesky factor
! of Θ, by minimizing with respect to ! and subject to a sparsity constraint, the
Kullback-Leibler (KL) divergence between two centered multivariate normal distri-
butions with covariance matrices Θ and (!!>)−1. Surprisingly, this minimization
problem has a closed-form solution, enabling the efficient computation of optimally
accurate Cholesky factors for any specified sparsity pattern.

The resulting approximation can be shown to be equivalent to the Vecchia approxi-
mation of Gaussian processes [241], which has become very popular for the analysis
of geospatial data (e.g., [62, 104, 135, 136, 226, 233]); to the best of our knowledge,
rigorous convergence rates and error boundswere previously unavailable for Vecchia
approximations, and this work is the first one presenting such results. An equiva-
lent approximation has also been proposed by [133] and [141] in the literature on
factorized sparse approximate inverse (FSAI) preconditioners of (typically) sparse
matrices (see e.g., [33] for a review and comparison, [51] for an application to dense
kernel matrices); however, its KL-divergence optimality has not been observed be-
fore. KL-minimization has also been used to obtain sparse lower-triangular transport
maps by [166]; while this literature is mostly concerned with the efficient sampling
of non-Gaussian probability measures, the present work shows that an analogous
approach can be used to obtain fast algorithms for numerical linear algebra if the
sparsity pattern is chosen appropriately.

6.1.2 State-of-the-art computational complexity
The computational complexity and approximation accuracy of our approach depend
on the choice of elimination ordering and sparsity pattern. WhenΘ is the covariance
function of a Gaussian process that is subject to the screening effect, we propose
to use the reverse maximin ordering and sparsity pattern proposed in Definitions 6
and 7. By using a grouping algorithm similar to the supernodes of Chapter 5 and
the heuristics proposed by [83, 104, 226], we can show that the approximate inverse

107

Cholesky factor can be computed in computational complexity O(#d23) in time
and O(#d3) in space, using only O(#d3) entries of the original kernel matrix Θ,
where d is a tuning parameter trading accuracy for computational efficiency.

In settings where Theorem 10 on the exponential decay of Θ−1 holds, it allows us
to prove that the approximation error decays exponentially in d. In this setting, we
can thus compute an n-approximation of Θ in complexity O

(
log23 (#/n)

)
by

choosing d ≈ log(#/n). This is the best known trade-off between computational
complexity and accuracy for inverses ofGreen’smatrices of general elliptic boundary
value problems.

6.1.3 Practical advantages
Our method has important practical advantages complementing its theoretical and
asymptotic properties. In many GP regression applications, large values of d are
computationally intractable with present-day resources. By incorporating prediction
points in the computation of KL-optimal inverse-Cholesky factors, we obtain a GP
regression algorithm that is accurate even for small (≈ 3) values of d, including in
settings where truncation of the true Cholesky factor of Θ−1 to the same sparsity
pattern fails completely.

For other hierarchy-based methods, the computational complexity depends expo-
nentially on the dimension 3 of the dataset. In contrast, because the construction of
the ordering and sparsity pattern only uses pairwise distances between points, our
algorithms automatically adapt to low-dimensional structure in the data and operate
in complexities identified by replacing 3 with the intrinsic dimension 3̃ ≤ 3 of the
dataset.

We have seen in section 5.5.3 that the screening deteriorates for independent sums
of two GPs, such as when combining a GP with additive Gaussian white noise.
As noted there, this problem could be overcome if we had access to the inverse
of the covariance matrices. Analogs of the Cholesky factorization that compute
this inverse by recursive Schur complementation exist, but they are too unstable to
be useful in practice. The inherent stability of the KL minimization allows us to
realize this approach and thus compute both cheaply and accurately with sums of
independent Gaussian processes arising, for instance, from modeling measurement
noise. To the best of our knowledge, this is the first time this has been achieved by
a method based on the screening effect.

Finally, our algorithm is intrinsically parallel because it allows each column of

108

the sparse factor to be computed independently (as in the setting of the Vec-
chia approximation, factorized sparse approximate inverses, and lower-triangular
transport maps). Furthermore, we show that in the context of GP regression, the
log-likelihood, the posterior mean, and the posterior variance can be computed in
O(# +d3) space complexity. In a parallel setting, we require O(d3) communication
between the different workers for every O(d33) floating-point operations, resulting
in a total communication complexity of O(#). Here, most of the floating-point
operations arise from calls to highly optimized BLAS and LAPACK routines.

6.2 Cholesky factorization by KL-minimization
The Kullback-Leibler divergence between two probability measures % and & is de-
fined as DKL(% ‖ &) =

∫
log(d%/ d&) d%. If & is an approximation of %, then

the KL divergence is the expected difference between the associated true and ap-
proximate log-densities, and so its minimization is directly relevant for accurate
approximations of GP inference, including GP prediction and likelihood-based in-
ference on hyperparameters. By virtue of its connection to the likelihood ratio test
[71], the KL divergence can also be interpreted as the strength of the evidence that
samples from % were not instead obtained from &. If % and & are both #-variate
centered normal distributions, the KL divergence is equivalent to a popular loss
function for covariance-matrix estimation [129], and it can be written as

2DKL(N (0,Θ1) ‖ N (0,Θ2)) = trace(Θ−1
2 Θ1) + logdet(Θ2) − logdet(Θ1) − #.

(6.1)

Let Θ be a positive-definite matrix of size # × # . Given a lower-triangular sparsity
set (⊂ � × �, where � = {1, . . . , #}, we want to use

! B argmin
!̂∈S

DKL

(
N

(
0,Θ

) N (
0, (!̂ !̂>)−1)) (6.2)

as approximateCholesky factor forΘ−1, forS B
{
� ∈ R#×# : �8 9 ≠ 0⇒ (8, 9) ∈ (

}
.

While solving the non-quadratic program (6.2) might seem challenging, it turns out
that it has a closed-form solution that can be computed efficiently:

Theorem20. The nonzero entries of the 8-th column of ! as defined in Equation (6.2)
are given by

!B8 ,8 =
Θ−1
B8 ,B8

e1√
e>1Θ

−1
B8 ,B8e1

, (6.3)

where B8 B { 9 : (8, 9) ∈ (}, Θ−1
B8 ,B8

:= (ΘB8 ,B8)−1, ΘB8 ,B8 is the restriction of Θ to the
set of indices B8, as illustrated in Figure 6.1 and e1 ∈ R#B8×1 is the vector with the

109

Figure 6.1: The nonzero-vector of a sparse column. The set B: is the vector of
row-indices contained in the :-th column of the sparsity pattern. The vector !B: ,B
denotes the vector of nonzero entries of ! with these row indices.

first entry equal to one and all other entries equal to zero. Using this formula, !
can be computed in computational complexity O

(
#(+ (max1≤8≤# #B8)2

)
in space

and O
(∑#

8=1 (#B8)
3)

in time.

Proof. By using the formula for the KL-divergence of two Gaussian random vari-
ables in (6.1), we obtain

! = argmin
!̂∈S

(
trace(!̂ !̂>Θ) − logdet(!̂ !̂>) − logdet(Θ) − #

)
(6.4)

= argmin
!̂∈S

(
trace(!̂>Θ!̂) − logdet(!̂ !̂>)

)
(6.5)

= argmin
!̂∈S

#∑
:=1

(
!̂>B: ,:ΘB: ,B: !̂B: ,: − 2 log(!̂:,:)

)
. (6.6)

The :-th summand depends only on the :-th column of !̂. Thus, taking the derivative
with respect to the :-the column of ! and setting it to zero, we obtain ΘB: ,B: !̂B: ,: =

e1
!̂:,:
⇔ !̂B: ,: =

Θ−1
B: ,B:

e1

!̂:,:
. Therefore, !̂B: ,: can be written as _Θ−1

B: ,B:
e1 for a _ ∈ R. By

plugging this ansatz into the equation, we obtain _ =
√(
Θ−1
B: ,B:e1

)
1 =

√
e>1Θ

−1
B: ,B:e1

and hence Equation (6.3). By using dense Cholesky factorization to invert theΘB: ,B: ,
the right-hand side of Equation (6.3) can be computed in computational complexity
O

(
(B:)2

)
in space and O

(
(B:)3

)
in time, from which follows the result. �

110

Compared to ordinary sparse Cholesky factorization (see Algorithm 3), the algo-
rithm implied by Theorem 20 has the advantage of giving the best possible Cholesky
factor (asmeasured byKL) for a given sparsity pattern. Furthermore, it is embarrass-
ingly parallel — all evaluations of Equation (6.3) can be performed independently
for different 8. While the computational complexity is slightly worse than the one
of in-place incomplete Cholesky factorization, we will show in Theorem 21 that for
important choices of (, the time complexity can be reduced to O

(∑#
:=1 (#B:)

2)
,

matching the computational complexity of incomplete Cholesky factorization.

The formula in Equation (6.3) can be shown to be equivalent to the formula
that has been used to compute the Vecchia approximation [241] in spatial statis-
tics, without explicit awareness of the KL-optimality of the resulting !. In the
literature on factorized sparse approximate inverses, the above formula was de-
rived for minimizers of ‖Id − ! chol(Θ)‖Fro subject to the constraints ! ∈ S
and diag(!Θ!>) = 1 [141], and for minimizers of the Kaporin condition num-
ber (trace(Θ!!>)/#)#/det(Θ(!!>)) subject to the constraint ! ∈ S [133]. The
KL-divergence, as opposed to ‖Id − ! chol(Θ)‖Fro, strongly penalizes zero eigen-
values of Θ!!>, which explains the observation of [75] that adding the constraint
diag(!Θ!>) = 1 tends to improve the spectral condition number of the resulting
preconditioner, despite increasing the size of the fidelity term ‖Id − ! chol(Θ)‖Fro.
[166] showed that the embarrassingly parallel nature of KL-minimization is even
preserved when replacing the Cholesky factors with nonlinear transport maps with
Knothe-Rosenblatt structure. As part of work on the sample complexity of the
estimation of transport maps, [27] discovered representations very similar to Equa-
tion (6.3), independently of the present work.

We propose the following procedure to approximate a positive-definite matrix Θ:

1. Order the degrees of freedom (i.e., rows and columns ofΘ) according to some
ordering ≺.

2. Pick a sparsity set (⊂ � × �.

3. Use Formula (6.3) to compute the lower-triangular matrix ! with nonzero
entries contained in (that minimizes DKL

(
N

(
0,Θ

) N (
0, (!!>)−1)) .

In the next section, we will describe how to implement all three steps of this
procedure in the more concrete setting of positive-definite matrices obtained from
the evaluation of a finitely smooth covariance function at pairs of points in R3 .

111

Figure 6.2: The reverse maximin ordering. To obtain the reverse maximin or-
dering, for : = # − 1, # − 2, . . . , 1, we successively select the point G8: that has
the largest distance ℓ8: to those points G8:+1 , . . . , G8# selected previously (shown as
enlarged). All previously selected points within distance dℓ8 of G8: (here, d = 2)
form the :-th column of the sparsity pattern.

6.3 Ordering and sparsity pattern motivated by the screening effect
The quality of the approximation given by Equation (6.2) depends on the ordering of
the variables and the sparsity pattern (. For kernel matrices satisfying the screening
effect, we propose to use reverse maximin ordering and sparsity pattern introduced
in Chapter 3. For the convenience of the reader, we briefly recapitulate its definition
and provide some notation that will be useful later on.

6.3.1 The reverse maximin ordering and sparsity pattern
Assume that G is the covariance function of a Gaussian process that is conditioned
to be zero on (the possibly empty set) mΩ, and the kernel matrixΘ ∈ R�×� is obtained
as Θ8 9 B G(G8, G 9) for a set of locations {G8}8∈� ⊂ Ω.

The reverse maximum-minimum distance (reverse maximin) ordering of {G8}8∈� is
achieved by selecting the last index as

8# B argmax
8∈�

dist (G8, mΩ) (6.7)

(or arbitrarily for mΩ = ∅), and then choosing sequentially for : = #−1, #−2, . . . , 1
the index that is furthest away from mΩ and those indices that were already picked:

8: B argmax
8∈�\{8:+1,...,8# }

dist
(
G8,

{
G8:+1 , . . . , G8#

}
∪ mΩ

)
. (6.8)

112

Algorithm 12 Without aggregation
Input: G, {G8}8∈� , ≺, (≺,;,d
Output: ! ∈ R#×# l. triang. in ≺

1: for : ∈ � do
2: for 8, 9 ∈ B: do
3:

(
ΘB: ,B:

)
8 9
← G(G8, G 9)

4: end for
5: !B: ,: ← Θ−1

B: ,B:
e:

6: !B: ,: ← !B: ,:/
√
!:,:

7: end for
8: return !

Algorithm 13 With aggregation
Input: G, {G8}8∈� , ≺, (≺,;,d,_
output: ! ∈ R#×# l. triang. in ≺

1: for :̃ ∈ �̃ do
2: for 8, 9 ∈ B :̃ do
3:

(
ΘB:̃ ,B:̃

)
8 9
← G(G8, G 9)

4: end for
5: * ←

%l chol(%lΘB:̃ ,B:̃%
l)%l

6: for : { :̃ do
7: !B: ,: ← *−>e:
8: end for
9: end for

10: return !

Figure 6.3: KL-minimizing Cholesky factorization. KL-minimization with and
without using aggregation. For notational convenience, all matrices are assumed
to have row and column ordering according to ≺. %l denotes the order-reversing
permutation matrix, and e: is the vector with 1 in the :-th component and zero
elsewhere.

Write ℓ8: = dist
(
G8: ,

{
G8:+1 , . . . , G8#

}
∪ mΩ

)
, and write 8 ≺ 9 if 8 precedes 9 in the

reverse maximin ordering. We collect the {ℓ8}8∈� into a vector denoted by ℓ.

For a tuning parameter d ∈ R+, we select the sparsity set (≺,ℓ,d ⊂ � × � as

(≺,ℓ,d B
{
(8, 9) : 8 � 9 , dist(G8, G 9) ≤ dℓ 9

}
. (6.9)

The reverse maximin ordering and sparsity pattern is illustrated in Figure 6.2.

We can use a minor modification of Algorithm 11 to construct the reverse maximin
ordering and sparsity pattern in computational complexity O(# log2(#)d3̃) in time
and O(#d3̃) in space, where 3̃ ≤ 3 is the intrinsic dimension of the dataset, as will
be defined in Condition 5. The inverse Cholesky factors ! can then be computed
using Equation (6.3), as in Algorithm 12.

6.3.2 Aggregated sparsity pattern
It was already observed by [83] in the context of sparse approximate inverses, and
by [104, 226] in the context of the Vecchia approximation that a suitable grouping
of the degrees of freedom makes it possible to reuse Cholesky factorizations of the

113

Figure 6.4: Geometric aggregation. The left figure illustrates the original pattern
(≺,ℓ,d. For each orange point, we need to keep track of its interactions with all points
within a circle of radius ≈ d. In the right figure, the points have been collected into
a supernode, which can be represented by a list of parents (the orange points within
an inner sphere of radius ≈ d) and children (all points within a radius ≈ 2d).

matrices ΘB8 ,B8 in Equation (6.3) to update multiple columns at once. The authors
of [83, 104] propose grouping heuristics based on the sparsity graph of ! and show
empirically that they lead to improved performance. In contrast, we propose a
grouping procedure based on geometric information and prove that it allows us to
reach the best asymptotic complexity in the literature in a more concrete setting.

Assume that we have already computed the reverse maximin ordering ≺ and sparsity
pattern (≺,ℓ,d, and that we have access to the ℓ8 as defined above. We will now
aggregate the points into groups called supernodes, consisting of points that are
close in both location and ordering. To do so, we pick at each step the first (w.r.t. ≺)
index 8 ∈ � that has not been aggregated into a supernode yet and then we aggregate
into a common supernode the indices in { 9 : (8, 9) ∈ (≺,ℓ,d, ℓ 9 ≤ _ℓ8} for some _ > 1
(_ ≈ 1.5 is typically a good choice) that have not been aggregated yet. We proceed
with this procedure until every node has been aggregated into a supernode. Wewrite
�̃ for the set of all supernodes; for 8 ∈ �, 8̃ ∈ �̃, we write 8 { 8̃ if 8̃ is the supernode to
which 8 has been aggregated. We furthermore define B8̃ B

{
9 : ∃8 { 8̃, 9 ∈ B8

}
and

introduce the aggregated sparsity pattern (̃≺,ℓ,d,_ B
⋃
:{ :̃

{
(8, :) : : � 8 ∈ B :̃

}
.

This sparsity pattern, while larger than (≺,ℓ,d, can be represented efficiently by
keeping track of the set of parents (the : ∈ � such that : { B :̃) and children
(the 8 ∈ B :̃) of each supernode, rather than the individual entries (see Figure 6.4
for an illustration). For well-behaved (cf. Theorem 21) sets of points, we obtain
O(#d−3) supernodes, each with O(d3) parents and children, thus improving the
cost of storing the sparsity pattern from O(#d3) to O(#).

114

· =

Figure 6.5: Reusing Cholesky factors. (Left:) By adding a few nonzero entries to
the sparsity pattern, the sparsity patterns of columns in B :̃ become subsets of one
another. (Right:) Therefore, the matrices {ΘB: ,B: }:{ :̃ , which need to be inverted
to compute the columns !:,: for : { :̃ , become submatrices of one another. Thus,
submatrices of the Cholesky factors ofΘB:̃ ,B:̃ can be used as factors ofΘB: ,B: for any
: { :̃ .

While the above aggregation procedure can be performed efficiently once ≺ and
(≺,ℓ,d are computed, it is possible to directly compute ≺ and an outer approximation
(̄≺,ℓ,d,_ ⊃ (̃≺,ℓ,d,_ in computational complexity O(#) in space and O(# log(#))
in time. (̄≺,ℓ,d,_ can either be used directly, or it can be used to compute (̃≺,ℓ,d,_
in O(#) in space and O(# log(#)d3) in time, using a simple and embarrassingly
parallel algorithm. Details are given in Section .3.4.

In addition to reducing thememory cost, the aggregated ordering and sparsity pattern
allows us to compute the Cholesky factors (in reverse ordering) ΘB:̃ ,B:̃ = **

> once
for each supernode and then use it to compute the !B: ,: for all : { :̃ as in
Algoritm 13 (see Figure 6.5 for an illustration).

Aswe show in the next section, this allows us to reduce the computational complexity
from O(#d33) to O(#d23) for sufficiently well-behaved sets of points.

6.3.3 Theoretical guarantees
We now present our rigorous theoretical result bounding the computational com-
plexity and approximation error of our method. Proofs and additional details are
deferred to Section .3.2.

Remark 1. As detailed in Section .3.2, the results below apply to more general
reverse A-maximin orderings, which can be computed in complexity O(# log(#)),
improving over reverse maximin orderings by a factor of log(#).

Computational complexity

We can derive the following bounds on the computational complexity depending on
d and # .

115

Theorem21 (Informal). Undermild assumptions on {G8}8∈� ⊂ R3 , theKL-minimizer
! is computed in complexity �#d3 in space and �#d33 in time when using Algo-
rithm 12 with (≺,ℓ,d and in complexity �#d3 in space and �_,ℓ�#d23 in time when
using Algorithm 13 with (̃≺,ℓ,d,_. Here, the constant � depends only on 3, _, and
the cost of evaluating entries of Θ.

A more formal statement and a proof of Theorem 21 can be found in Section .3.2.

As can be seen from Theorem 21, using the aggregation scheme decreases the
computational cost by a factor d3 . This is because each supernode has ≈ d3

members that can all be updated by reusing the same Cholesky factorization.

Remark 2. As described in Section .3.2, the computational complexity only depends
on the intrinsic dimension of the dataset (as opposed to the potentially much larger
ambient dimension 3). This means that the algorithm automatically exploits low-
dimensional structure in the data to decrease the computational complexity.

Approximation error

The rigorous bounds on the approximation error are derived from Theorem 10 and
therefore hold under the same assumptions. We assume for the purpose of this
section that Ω is a bounded domain of R3 with Lipschitz boundary, and for an
integer B > 3/2, we write �B

0 (Ω) for usual Sobolev the space of functions with zero
Dirichlet boundary values and order B derivatives in !2, and �−B0 (Ω) for its dual.
Let the operator

L : �B
0 (Ω) ↦→ �−B (Ω) , (6.10)

be linear, symmetric (
∫
DLE =

∫
ELD), positive (

∫
DLD ≥ 0), bijective, bounded

(write ‖L‖ := supD ‖LD‖�−B (Ω)/‖D‖�B0 (Ω) for its operator norm), and local in the
sense that

∫
DLE dG = 0, for all D, E ∈ �B

0 (Ω) with disjoint support. By the Sobolev
embedding theorem, we have �B

0 (Ω) ⊂ �0 (Ω), and hence {δG}G∈Ω ⊂ �−B (Ω). We
then define G as the Green’s function of L,

G (G1, G2) B
∫
δG1L−1δG2 dG. (6.11)

A simple example when 3 = 1 and Ω = (0, 1), is L = −Δ, and G(G, H) = 1G<H 1−H
1−G +

1H≤G
H

G
. Let us define the following measure of homogeneity of the distribution of

{G8}8∈� ,

X B
minG8 ,G 9∈� dist(G8, {G 9 } ∪ mΩ)
maxG∈Ω dist(G, {G8}8∈� ∪ mΩ)

. (6.12)

116

Using the above definitions, we can rigorously quantify the increase in approximation
accuracy as d increases.

Theorem 22. There exists a constant � depending only on 3, Ω, _, B, ‖L‖, ‖L−1‖,
and X, such that for d ≥ � log(#/n), we have

DKL
(
N (0,Θ)

 N(0, (!d!d,>)−1)) + Θ − (!d!d,>)−1

Fro ≤ n . (6.13)

Thus, Algorithm 12 computes an n-accurate approximation of Θ in computational
complexity�# log3 (#/n) in space and�# log33 (#/n) in time, from�# log3 (#/n)
entries of Θ. Similarly, Algorithm 13 computes an n-accurate approximation of Θ
in computational complexity �# log3 (#/n) in space and �# log23 (#/n) in time,
from �# log3 (#/n) entries of Θ.

To the best of our knowledge, the above result is the best known complexity/accuracy
trade-off for kernel matrices based on Green’s functions of elliptic boundary value
problems. In particular, we improve upon the methods in Chapter 5, where we
showed that the Cholesky factors of Θ (as opposed to those of Θ−1) can be ap-
proximated in computational complexity O(# log2(#) log23 (#/n)) in time and
O(# log(#) log3 (#/n)) in space using zero-fill-in incomplete Cholesky factoriza-
tion (Algorithm 15) applied to Θ.

Screening in theory and practice

The theory described in the last section covers any self-adjoined operator L with an
associated quadratic form

L[D] B
∫
Ω

DLD dG =
B∑
:=0

∫
f (:) (G)‖� (:)D(G)‖2 dG

andf (B) ∈ !2(Ω) positive almost everywhere. That is,L[D] is aweighted average of
the squared norms of derivatives of D and thus measures the roughness of D. We can
formally think of a Gaussian process with covariance function given by G as having
density ∼ exp(−L[D]/2) and therefore assigning an exponentially low probability
to “rough” functions, making it a prototypical smoothness prior. Theorems 10 and 9
imply that these Gaussian processes are subject to an exponentially strong screening
effect in the sense that, after conditioning a set of ℓ-dense points, the conditional
covariance of a given point decays exponentially with rate ∼ ℓ−1, as shown in the
first panel of Figure 6.6. The most closely related model in common use is the

117

Figure 6.6: Limitations of screening. To illustrate the screening effect exploited
by our methods, we plot the conditional correlation with the point in red conditional
on the blue points. In the first panel, the points are evenly distributed, leading to a
rapidly decreasing conditional correlation. In the second panel, the same number
of points is irregularly distributed, slowing the decay. In the last panel, we are at the
fringe of the set of observations, weakening the screening effect.

Matérn covariance function [167] that is the Green’s function of an elliptic PDE
of order B, when choosing the “smoothness parameter” a as a = B − 3/2. While
our theory only covers B ∈ N, we observed in Section 6.5 that Matérn kernels with
non-integer values of B and even the “Cauchy class” [95] seem to be subject to
similar behavior. In the second panel of Figure 6.6, we show that as the distribution
of conditioning points becomes more irregular, the screening effect weakens. In
our theoretical results, this is controlled by the upper bound on X in (6.12). The
screening effect is significantly weakened close to the boundary of the domain, as
illustrated in the third panel of Figure 6.6 (cf. Figure 5.4). This is the reason
why our theoretical results, different from the Matérn covariance, are restricted to
Green’s functions with zero Dirichlet boundary condition, which corresponds to
conditioning the process to be zero on mΩ. A final limitation is that the screening
effect weakens as we take the order of smoothness to infinity, obtaining, for instance
the Gaussian kernel. However, according to Theorem 2, this results in matrices that
have efficient low-rank approximations, instead.

6.4 Extensions
We now present extensions of our method that improve its performance in practice.
In Section 6.4.1, we show how to improve the approximation when Θ is replaced
by Θ + ', for ' diagonal, as is frequently the case in statistical inference where '
is the covariance matrix of additive, independent noise. In Section 6.4.2, we show
how including the prediction points can improve the computational complexity
(Section 6.4.2) or accuracy (Section 6.4.2) of the posterior mean and covariance. In

118

Section 6.4.3, we discuss memory savings and parallel computation for GP inference
when we are only interested in computing the likelihood and the posterior mean and
covariance (as opposed to, for example, sampling from N(0,Θ) or computing
products E ↦→ ΘE).

We note that it is not possible to combine the variant in Section 6.4.1 with that in
Section 6.4.3, and that the combination of the variants in Sections 6.4.1 and 6.4.2
might diminish accuracy gains from the latter. Furthermore, while Section 6.4.3 can
be combined with Section 6.4.2 to compute the posterior mean, this combination
cannot be used to compute the full posterior covariance matrix.

6.4.1 Additive noise
Assume that a diagonal noise term is added to Θ, so that Σ = Θ + ', where ' is
diagonal. Extending the Vecchia approximation to this setting has been amajor open
problem in spatial statistics [62, 135, 136]. Applying our approximation directly
to Σ would not work well because the noise term attenuates the exponential decay.
Instead, given the approximation Θ̂−1 = !!> obtained using our method, we can
write, following Section 5.5.3:

Σ ≈ Θ̂ + ' = Θ̂('−1 + Θ̂−1)'.

Applying an incomplete Cholesky factorization with zero fill-in (Algorithm 15) to
'−1 + Θ̂−1 ≈ !̃ !̃>, we have

Σ ≈ (!!>)−1 !̃ !̃>'.

The resulting procedure, given inAlgorithm14, has asymptotic complexityO(#d23),
because every column of the triangular factors has at most O(d3) entries.

Following the intuition thatΘ−1 is essentially an elliptic partial differential operator,
Θ−1 + '−1 is essentially a partial differential operator with an added zero-order
term, and its Cholesky factors can thus be expected to satisfy an exponential decay
property just as those of Θ−1. Indeed, as shown in Figure 5.5, the exponential decay
of the Cholesky factors of '−1 + Θ−1 is as strong as for Θ−1, even for large '. We
suspect that this could be proved rigorously by adapting the proof of exponential
decay in [190] to the discrete setting. We note that while independent noise is most
commonly used, the above argument leads to an efficient algorithm whenever '−1

is approximately given by an elliptic PDE (possibly of order zero).

For small d, the additional error introduced by the incomplete Cholesky factorization
can harm accuracy, which is why we recommend using the conjugate gradient

119

Algorithm 14 Including independent
noise with covariance matrix '
Input: G, {G8}8∈� , d, (_,) and '
Output: !, !̃ ∈ R#×# l. triang. in ≺

1: Comp. ≺ and (← (≺,ℓ,d((≺,ℓ,d,_)
2: Comp. ! using Alg. 12(13)
3: for (8, 9) ∈ (do
4: �8 9 ← 〈!8,:, ! 9 ,:〉
5: end for
6: �← � + '
7: !̃ ← ichol(�, ()
8: return !, !̃

Algorithm 15 Zero fill-in incomplete
Cholesky factorization (ichol(A,S))
Input: � ∈ R#×# , (
Output: ! ∈ R#×# l. triang. in ≺

1: ! ← (0, . . . , 0) (0, . . . , 0)>
2: for 9 ∈ {1, . . . , #} do
3: for 8 ∈ { 9 , . . . , #} : (8, 9) ∈ (do
4: !8 9 ← �8 9 − 〈!8,1:(9−1) , ! 9 ,1:(9−1)〉
5: end for
6: !:8 ← �:8/

√
�88

7: end for
8: return !

Figure 6.7: Sums of independent processes. Algorithms for approximating co-
variance matrices with added independent noise Θ + ' (left), using the zero fill-in
incomplete Cholesky factorization (right). Alternatively, the variants discussed in
Section 5.3 could be used. See Section 6.4.1.

algorithm (CG) to invert ('−1+Θ̂−1) using !̃ as a preconditioner. In our experience,
CG converges to single precision in a small number of iterations (∼ 10).

Alternatively, higher accuracy can be achieved by using the sparsity pattern of !!>

(as opposed to that of !) to compute the incomplete Cholesky factorization of � in
Algorithm 14; in fact, in our numerical experiments in Section 6.5.2, this approach
was as accurate as using the exact Cholesky factorization of � over a wide range
of d values and noise levels. The resulting algorithm still requires O(#d23) time,
albeit with a larger constant. This is because for an entry (8, 9) to be part of the
sparsity pattern of !!>, there needs to exist a : such that both (8, :) and (9 , :) are
part of the sparsity pattern of !. By the triangle inequality, this implies that (8, 9)
is contained in the sparsity pattern of ! obtained by doubling d. In conclusion, we
believe that the above modifications allow us to compute an n–accurate factorization
in O(# log23 (#/n)) time and O(# log3 (#/n)) space, just as in the noiseless case.

6.4.2 Including the prediction points
In GP regression, we are given #Tr points of training data and want to compute
predictions at #Pr points of test data. We denote as ΘTr,Tr, ΘPr,Pr, ΘTr,Pr,ΘPr,Tr the
covariance matrix of the training data, the covariance matrix of the test data, and
the covariance matrices of training and test data. Together, they form the joint

120

covariance matrix
(
ΘTr,Tr ΘTr,Pr
ΘPr,Tr ΘPr,Pr

)
of training and test data. In GP regression with

training data H ∈ R#Tr , we are interested in:

• Computation of the log-likelihood ∼ H>Θ−1
Tr,TrH + logdetΘTr,Tr + # log(2c).

• Computation of the posterior mean H>Θ−1
Tr,TrΘTr,Pr.

• Computation of the posterior covariance ΘPr,Pr − ΘPr,TrΘ
−1
Tr,TrΘTr,Pr.

In the setting of Theorem 22, our method can be applied to accurately approximate
the matrix ΘTr,Tr in near-linear cost. The training covariance matrix can then be
replaced by the resulting approximation for all downstream applications.

However, approximating instead the joint covariance matrix of training and pre-
diction variables improves (1) stability and accuracy compared to computing the
KL-optimal approximation of the training covariance alone, (2) computational com-
plexity by circumventing the computation of most of the #Tr#Pr entries of the
off-diagonal part ΘTr,Pr of the covariance matrix.

We can add the prediction points before or after the training points in the elimination
ordering.

Ordering the prediction points first, for rapid interpolation

The computation of the mixed covariance matrix ΘPr,Tr can be prohibitively expen-
sive when interpolating with a large number of prediction points. This situation is
common in spatial statistics when estimating a stochastic field throughout a large
domain. In this regime, we propose to order the {G8}8∈� by first computing the re-
verse maximin ordering ≺Tr of only the training points as described in Section 6.3.1
using the original Ω, writing ℓTr for the corresponding length scales. We then
compute the reverse maximin ordering ≺Pr of the prediction points using the mod-
ified Ω̃ B Ω ∪ {G8}8∈�Tr , obtaining the length scales ℓPr. Since Ω̃ contains {G8}8∈�Tr ,
when computing the ordering of the prediction points, prediction points close to
the training set will tend to have a smaller length-scale ℓ than in the naive ap-
plication of the algorithm, and thus, the resulting sparsity pattern will have fewer
nonzero entries. We then order the prediction points before the training points and
compute ((≺Pr,≺Tr),(ℓPr,ℓTr),d or ((≺Pr,≺Tr),(ℓPr,ℓTr),d,_ following the same procedure as in
Sections 6.3.1 and 6.3.2, respectively. The distance of each point in the predic-
tion set to the training set can be computed in near-linear complexity using, for

121

example, a minor variation of Algorithm 11. Writing ! for the resulting Cholesky
factor of the joint precision matrix, we can approximate ΘPr,Pr ≈ !−>Pr,Pr!

−1
Pr,Pr and

ΘPr,Tr ≈ !−>Pr,Pr!
>
Tr,Pr based on submatrices of !. See Sections .3.3 and 21 for ad-

ditional details. We note that the idea of ordering the prediction points first (last,
in their notation) has already been proposed by [136] in the context of the Vecchia
approximation, although without providing an explicit algorithm.

If one does not use the method in Section 6.4.1 to treat additive noise, then the
method described in this section amounts to making each prediction using only
O(d3) nearby points. In the extreme case where we only have a single prediction
point, this means that we are only using O(d3) training values for prediction. On
the one hand, this can lead to improved robustness of the resulting estimator, but on
the other hand, it can lead to some training data being missed entirely.

Ordering the prediction points last, for improved robustness

If we want to use the improved stability of including the prediction points, maintain
near-linear complexity, and use all #Tr training values for the prediction of even a
single point, we have to include the prediction points after the training points in
the elimination ordering. Naively, this would lead to a computational complexity
of O(#Tr(d3 + #Pr)2), which might be prohibitive for large values of #Pr. If
it is enough to compute the posterior covariance only among <Pr small batches
of up to =Pr predictions each (often, it makes sense to choose =Pr = 1), we can
avoid this increase of complexity by performing prediction on groups of only =Pr at
once, with the computation for each batch only having computational complexity
O(#Tr(d3 + =Pr)2). A naive implementation would still require us to perform this
procedure <Pr times, eliminating any gains due to the batched procedure. However,
careful use of the Sherman-Morrison-Woodbury matrix identity allows to to reuse
the biggest part of the computation for each of the batches, thus reducing the
computational cost for prediction and computation of the covariance matrix to only
O(#Tr((d3 + =Pr)2 + (d3 + =Pr)<Pr)). This procedure is detailed in Section .3.3 and
summarized in Section 23.

6.4.3 GP regression in O(# + d23) space complexity
When deploying direct methods for approximate inversion of kernel matrices, a
major difficulty is the superlinear memory cost that they incur. This, in particular,
poses difficulties in a distributed setting or on graphics processing units. In the

122

following, � = �Tr denotes the indices of the training data, and we write Θ B ΘTr,Tr,
while �Pr denotes those of the test data. In order to compute the log-likelihood, we
need to compute the matrix-vector product !d,>H, as well as the diagonal entries
of !d. This can be done by computing the columns !d:,: of !

d individually using
(6.3) and setting (!d,>H): = (!d:,:)

>H, !d
::
= (!d:,:): , without ever forming the

matrix !d. Similarly, in order to compute the posterior mean, we only need to
compute Θ−1H = !d,>!dH, which only requires us to compute each column of !d

twice, without ever forming the entire matrix. In order to compute the posterior
covariance, we need to compute the matrix-matrix product !d,>ΘTr,Pr, which again
can be performed by computing each column of !d once without ever forming
the entire matrix !d. However, it does require us to know beforehand at which
points we want to make predictions. The submatrices ΘB8 ,B8 for all 8 belonging to
the supernode :̃ (i.e., 8 { :̃) can be formed from a list of the elements of B̃: .
Thus, the overall memory complexity of the resulting algorithm is O(∑:∈ �̃ #B̃:) =
$ (#Tr+#Pr+d23). The above described procedure is implemented in Algorithms 19
and 20 in Section .3.1. In a distributed setting with workers ,1,,2, . . ., this
requires communicating only O(#B̃:) floating-point numbers to worker ,: , which
then performs O((#B̃:)3) floating-point operations; a naive implementation would
require the communication of O((#B̃)2) floating-point numbers to perform the same
number of floating-point operations.

6.5 Applications and numerical results
We conclude with numerical experiments studying the practical performance of
our method. The Julia code can be found under https://github.com/f-t-
s/cholesky_by_KL_minimization.

6.5.1 Gaussian process regression and aggregation
We begin our numerical experiments with two-dimensional (3 = 2) synthetic data.
Weuse circulant embeddings [98, 225], [https://github.com/PieterjanRobbe/
GaussianRandomFields.jl] to create 103 samples of a Gaussian process with
Matérn covariance function at 106 locations on a regular grid in Ω = [0, 1]2. From
these 106 locations, we select 2×104 prediction points and use the remaining points
as training data. As illustrated in Figure 6.8 (left panel), half of the prediction points
form two elliptic regions devoid of any training points (called “region”), while the
remaining prediction points are interspersed among the training points (called “scat-
tered”). We then use the “prediction points first” approach of Section 6.4.2 and the

https://github.com/f-t-s/cholesky_by_KL_minimization
https://github.com/f-t-s/cholesky_by_KL_minimization
https://github.com/PieterjanRobbe/GaussianRandomFields.jl
https://github.com/PieterjanRobbe/GaussianRandomFields.jl

123

Figure 6.8: Prediction and uncertainty quantification with Matérn covariance.
We show the accuracy of our approximation with and without aggregation for a
Gaussian process with Matérn covariance (a = 3/2) on a grid of size 106 on the
unit square. (Left) Randomly sampled 2 percent of the training and prediction
points. (Middle) RMSE, averaged over prediction points and 1,000 realizations.
(Right) Empirical coverage of 90% prediction intervals computed from the posterior
covariance.

Figure 6.9: Computational cost of factorization. Time for computing the factor
!d with or without aggregation (# = 106), as a function of d and of the number of
nonzero entries. For the first two panels, the Matérn covariance function was com-
puted using a representation in terms of exponentials, while for the second two panels
they were computed using (slower) Bessel function evaluations. Computations per-
formed on an Intel®Core™i7-6400 CPU with 4.00GHz and 64GB of RAM. The
second and fourth panels show that aggregation leads to faster computation despite
producing much denser Cholesky factors (and hence higher accuracy).

aggregated sparsity pattern (̃≺,ℓ,d,_ of Section 6.3.2 with _ ∈ {1.0, 1.3}, to compute
the posterior distributions at the prediction points from the values at the training
points. In Figure 6.8, we report the RMSE of the posterior means, as well as the
empirical coverage of the 90% posterior intervals, averaged over all 103 realiza-
tions, for a range of different d. Note that while the RMSE between the aggregated
(_ = 1.3) and non-aggregated (_ = 1.0) is almost the same, the coverage converges
significantly faster to the correct value with _ = 1.3.

We further provide timing results for 106 training points uniformly distributed in
[0, 1]2 comparing the aggregated and non-aggregated version of the algorithm in
Figure 6.9. As predicted by the theory, the aggregated variant scales better as
we are increasing d. This holds true both when using Intel® oneMKL Vector

Mathematics functions library to evaluate the exponential function, or when us-

124

Figure 6.10: Factorization with additive noise. Comparison of the methods
proposed in Section 6.4.1 for approximating Σ = Θ + ', where Θ is based on a
Matérn covariance with range parameter 0.5 and smoothness a = 3/2 at # = 104

uniformly sampled locations on the unit square, and ' = f2� is additive noise. For
each approximation, we compute the symmetrized KL divergence (the sum of the
KL-divergences with either ordering of the two measures) to the true covariance.
“Naive”: Directly apply Algorithm 13 to Σ. “Exact”: Apply Algorithm 13 to Θ,
then compute !̃ as the exact Cholesky factorization of � B '−1 + Θ̂−1. “IC”: Apply
Algorithm 13 to Θ, then compute !̃ using incomplete Cholesky factorization of
� on the sparsity pattern of either ! or !!>. (Left) Varying f, fixed d = 3.0.
(Middle) Varying d, fixed f = 1.0. (Right) Maximal relative error (over the above
f, d, a ∈ {1/2, 3/2, 5/2} and 10 random draws) of inverting � using up to 10
conjugate-gradient iterations (G-axis), with IC, nonzeros(L) as preconditioner.

ing amos to instead evaluate the modified Bessel function of the second kind. While
the former is faster and emphasizes the improvement from O(#d33) to O(#d23)
for the complexity of computing the factorization, the latter can be used to evaluate
Matérn kernels with arbitrary smoothness. Due to being slower, using Bessel func-
tions highlights the improvement from needingO(#d23)matrix evaluations without
the aggregation to just O(#d3). By plotting the number of nonzeros used for the
two approaches, we see that the aggregated version is faster to compute despite using
many more entries of Θ than the non-aggregated version. Thus, aggregation is both
faster and more accurate for the same value of d, which is why we recommend using
it over the non-aggregated variant.

6.5.2 Adding noise
We now experimentally verify the claim that the methods described in Section 6.4.1
enable accurate approximation in the presence of independent noisewhile preserving
the sparsity, and thus computational complexity, of our method. To this end, pick a
set of # = 104 points uniformly at random in Ω = [0, 1]2, use a Matérn kernel with
smoothness a = 3/2, and add I.I.D. noise with variance f2. We use an aggregation
parameter _ = 1.5. As shown in Figure 6.10, our approximation stays accurate over a
wide range of values of both d andf, even for the most frugal version of our method.

125

The asymptotic complexity for both incomplete-Cholesky variants isO(#d23), with
the variant using the sparsity pattern of !!> being roughly equivalent to doubling
d. Hence, to avoid additional memory overhead, we recommend using the sparsity
pattern of ! as a default choice; the accuracy of the resulting log-determinant of
Σ should be sufficient for most settings, and the accuracy for solving systems of
equations in Σ can easily be increased by adding a few iterations of the conjugate
gradient algorithm.

6.5.3 Including prediction points
We continue by studying the effects of including the prediction points in the approx-
imation, as described in Sections 6.4.2 and 6.4.2. We compare not including the
predictions points in the approximation with including them either before or after
training points in the approximation. We compare the accuracy of the approxima-
tion of the posterior mean and standard deviation over three different geometries
and a range of different values for d. The results, displayed in Figure 6.11, show
that including the prediction points can increase the accuracy by multiple orders
of magnitude. The performance difference between the two schemes for including
prediction points varies over different geometries, degrees of regularity, and values
of d. If the number of prediction points is comparable to the number of training
points, the only way to avoid quadratic scaling in the number of points is to order the
prediction points first, making this approach the method of choice. If we only have
few prediction points, ordering the prediction variables last can improve the accu-
racy for low orders of smoothness, especially in settings in which only a small part
of the training data is used in the prediction-variables-first approach (e.g., second
row in Figure 6.11).

6.5.4 Comparison to HSS matrices
As described in the introduction, there are many existing methods for the approx-
imation and inversion of dense covariance matrices. Hierarchically semiseparable
(HSS) matrices [251] are natural candidates for comparison with our method be-
cause they are amenable to a Cholesky factorization [150], implementations of
which are available in existing software packages. They are also closely related
to hierarchically off-diagonal low-rank (HODLR) matrices, which have been pro-
moted as tools for Gaussian process regression [11]. We consider a regression
problem with 503 training points on a randomly perturbed regular grid and 50 test
points distributed uniformly at random in the unit cube. Using the Matérn covari-

126

Figure 6.11: Including prediction points. To analyze the effects of including
the prediction points into the approximation, we consider three datasets. Each
consists of 5×104 training points and 102 test points, averaged over ten independent
realizations of the Gaussian process. We use Matérn kernels with range parameter
0.5 and smoothness a ∈ {1/2, 3/2, 5/2}, with d ranging from 1.0 to 10.0. We do
not use aggregation since it might lead to slightly different sparsity patterns for the
three variants, possibly polluting the results. On the H-axis we plot the RMSE of the
posterior mean and standard deviation, scaled in each point by the reciprocal of the
true posterior standard deviation. In almost all cases, including the prediction points
into the approximation improves the accuracy. The comparison between ordering
the predictions first or last is complicated, but “predictions-last” seems to perform
better for lower smoothness and “predictions-first” for higher smoothness.

127

Figure 6.12: Comparison to HSSmatrices. We compare the accuracy and compu-
tational time of our method described in Section 6.4.2 with the HSS implementation
of H2Pack [123]. Each point corresponds to a different run with different param-
eters (d, tolerance, and diagonal shift). Throughout this experiment, we use the
aggregation scheme described in Section 6.3.2 with _ = 1.25. The left plot shows
the RMSE of the posterior mean and the right plot that of the posterior standard
deviation. Our method is significantly faster for a wide range of target accuracies.

ance with a = 3/2 and length scale ; = 0.2, we compute the posterior mean and
standard deviation for 50 samples using the method described in Section 6.4.2 and
the HSS implementation of H2Pack [123], both using eight threads on an Intel®

Skylake ™CPU with 2.10GHz and 192GB of RAM. In Figure 6.12, we report the
computational time and accuracy for a wide range of tuning parameters (d for our
method, error tolerance and diagonal shift for HSS). We ignore the setup cost for
both methods, which includes the selection of the “numerical proxy points” for the
HSS approach. Our experiments show that for a given target accuracy, our method
is an order of magnitude faster than HSS, despite the highly optimized implementa-
tion of the latter. For very high accuracies, the gap between the methods closes, but
the memory cost of HSS approaches that of the dense problem, preventing us from
further increasing the target accuracy. We note that for three-dimensional problems,
H2-matrices have better asymptotic complexity than HSS matrices, making them a
possibly stronger competitor; however, the Cholesky factorization ofH2-matrices is
considerably more complicated and not implemented in H2Pack. Another possible
approach is the inversion of anH2 approximation using conjugate gradient methods,
using our method or HSS matrices ([252]) as a preconditioner. We defer a more
comprehensive comparison to the various kinds of hierarchical matrices to future
work.

128

6.5.5 Single-layer boundary element methods
We now provide an application to boundary element methods. For a domainΩ ∈ R3

with boundary mΩ, let us assume that we want to solve the Dirichlet boundary value
problem

−ΔD(G) = 0, ∀G ∈ Ω
D(G) = 6(G), ∀G ∈ mΩ.

For 3 = 3, the Green’s function of the Laplace operator is given by the gravitational
/ electrostatic potential

GR3 (G, H) = 1
4c |G − H | .

Under mild regularity assumptions, one can verify that

D =

∫
G∈mΩ

GR3 (G, ·)ℎ(G) dG, for ℎ the solution of 6 =

∫
G∈mΩ

GR3 (G, ·)ℎ(G) dG.

Let us choose finite dimensional basis functions {q8}8∈�Pr in the interior of Ω and
{q8}8∈�Tr on the boundary of Ω. We form the matrix Θ ∈ R(�Tr∪�Pr)×(�Tr∪�Pr) as

Θ8 9 B

∫
G∈D8

∫
H∈D 9

q8 (G)GR3 (G, H) q 9 (H) dH dG, where D? =

mΩ, for ? ∈ �Tr

Ω, for ? ∈ �Pr
(6.14)

and denote as ΘTr,Tr,ΘTr,Pr,ΘPr,Tr,ΘPr,Pr its restrictions to the rows and columns
indexed by �Tr or �Pr. Defining

®68 B
∫

G∈mΩ

q8 (G)6(G) dG, ∀8 ∈ �Tr and ®D8 B
∫

G∈mΩ

q8 (G)D(G) dG, ∀8 ∈ �Pr,

we approximate ®D as

®D ≈ Θ�Pr,�TrΘ
−1
�Tr,�Tr
®6. (6.15)

This is a classical technique for the solution of partial differential equations, known
as single layer boundary element methods [214]. However, it can also be seen
as Gaussian process regression with D being the conditional mean of a Gaussian
process with covariance function G, conditional on the values of the process on mΩ.
Similarly, it can be shown that the zero boundary value Green’s function is given by
the posterior covariance of the same process.

129

Figure 6.13: Orthogonal basis from subdivision. We recursively divide each panel
of mΩ. The basis functions on finer levels are constructed as linear combinations of
indicator functions that are orthogonal to functions on coarser levels.

The Laplace operator in three dimensions does not satisfy B > 3/2 (cf. Sec-
tion 6.3.3). Therefore, the variance of pointwise evaluations at G ∈ R3 given by
GR3 (G, G) is infinite and we cannot let {q8}8∈�Pr be Dirac-functions as in other parts
of this work.

Instead, we recursively subdivide the boundary mΩ and use Haar-type wavelets
as in Example 2 for {q8}8∈�Tr . For our numerical experiments, we will consider
Ω B [0, 1]3 to be the three-dimensional unit cube. On each face of mΩ, we then
obtain a multiresolution basis by hierarchical subdivision, as shown in Figure 6.13.
In this case, the equivalent of a maximin ordering is an ordering from coarser to
finer levels, with an arbitrary ordering within each level. We construct our sparsity
pattern as

S≺,ℓ 9 ,d B { (8, 9) : 8 � 9 , dist(G8, G 9) ≤ dℓ 9 +
√

2(ℓ8 + ℓ 9) }, (6.16)

where for 8 ∈ �Tr, G8 is defined as the center of the support of q8 and ℓ8 as half of
the side-length of the (quadratic) support of q8. The addition of

√
2(ℓ8 + ℓ 9) to the

right-hand side ensures that the entries corresponding to neighboring basis functions
are always added to the sparsity pattern.

We construct a solution D of the Laplace equation in Ω as the sum over #2 = 2000
charges with random signs {B8}1≤8≤#2 located at points {28}1≤8≤#2 We then pick
a set of #Pr points {G8}8∈�Pr inside of Ω and try to predict the values {D(G8)}8∈�Pr

using Equation (6.15) and the method described in Section 6.4.2. We compare the
computational time, the number of entries in the sparsity pattern, and the mean
accuracy of the approximate method for d ∈ {1.0, 2.0, 3.0}, as well as the exact
solution of the linear system. We use different levels of discretization @ ∈ {3, . . . , 8},
leading to a spatial resolution of up to 2−8. As shown in Figure 6.14, even using
d = 1.0 leads to near-optimal accuracy, at a greatly reduced computational cost.

There exists a rich literature on the numerical solution of boundary element equations
[214], and we are not yet claiming improvement over the state-of-the-art. Presently,

130

Figure 6.14: Solving boundary value problems by KL-minimization. Accuracy
and computational complexity in boundary value problem. We compare the root
mean square error, number of nonzeros of sparsity pattern, and the computational
time for the exact boundary element method and using our approximation for d ∈
{1, 2, 3}. The dense solution is prohibitively expensive for @ > 6, which is why
accuracy and computational time for these cases are missing. The reason that the
computational time is hardly affected by different choices of d is due to the fact
that entries

(
ΘTr,Tr

)
8 9
for nearby q8, q 9 are significantly more expensive to compute

than for distant ones when using an off-the-shelf adaptive quadrature rule. The
computations were performed on 32 threads of an Intel® Skylake ™CPU with
2.10GHz and 192GB of RAM. In the first figure, we plot the RMSE compared
to the true solution of the PDE as a function of @ ≈ log(#). In the last figure,
we compute the RMSE between dense computation and our method, as well as its
computational time, as a function of d.

131

the majority of the computational time is spent computing the matrix entries of
ΘTr,Tr. In order to compete with the state-of-the-art in terms of wall-clock times, we
would need to implement more efficient quadrature rules, which is beyond the scope
of this paper. Due to the embarrassing parallelism of our method, together with the
high accuracy obtained even for small values of d, we hope that it will become a
useful tool for solving boundary integral equations, but we defer a detailed study to
future work.

6.6 Conclusions
In this work, we have shown that, surprisingly, the optimal (in KL-divergence)
inverse Cholesky factor of a positive definite matrix, subject to a sparsity pattern,
can be computed in closed form. In the special case of Green’s matrices of el-
liptic boundary value problems in 3 dimensions, we show that by applying this
method to the elimination orderings and sparsity patterns described in Chapters 3
and 4, one can compute the sparse inverse Cholesky factor with accuracy n in
computational complexity O(# log23 (#/n)) using only O(# log3 (#/n)) entries of
the dense Green’s matrix. This improves upon the state-of-the-art in this classical
problem. We also propose a variety of improvements, capitalizing on the improved
stability, parallelism, and memory footprint of our method. Finally, we show how to
extend our approximation to the setting with additive noise, resolving a major open
problem in spatial statistics.

132

C h a p t e r 7

COMPETITIVE GRADIENT DESCENT

7.1 Introduction
Competitive optimization. Whereas traditional optimization is concerned with a
single agent trying to optimize a cost function, competitive optimization extends
this problem to the setting of multiple agents, each trying to minimize their own
cost function, which in general depends on the actions of all agents. For this thesis,
we will concentrate on the case of two such agents:

min
G∈R<

5 (G, H), min
H∈R=

6(G, H) (7.1)

for two functions 5 , 6 : R< × R= −→ R.
In single agent optimization, the solution of the problem consists of the minimizer of
the cost function. In competitive optimization, the right definition of solution is less
obvious, but often one is interested in computing Nash– or strategic equilibria: Pairs
of strategies, such that no player can decrease their costs by unilaterally changing
their strategies. If 5 and 6 are not convex, finding a global Nash equilibrium
is typically impossible and the appropriate solution concept may depend on the
application.

The benefits of competition. While competitive optimization problems arise nat-
urally in mathematical economics and game/decision theory [184], they also provide
a highly expressive and transparent language to formulate algorithms in a wide range
of domains. In optimization [37] and statistics [124], it has long been observed that
competitive optimization is a natural way to encode robustness requirements of
algorithms. More recently, researchers in machine learning have been using multi-
agent optimization to design highly flexible objective functions for reinforcement
learning [157, 194, 196, 242, 245] and generative models [96]. We believe that this
approach has a lot of untapped potential, the realization of which depends crucially
on the development of efficient and reliable algorithms for the numerical solution
of competitive optimization problems.

Gradient descent/ascent and the cycling problem. For differentiable objective
functions, themost naive approach to solving (7.1) is gradient descent ascent (GDA),

133

Figure 7.1: The cycling problem. The cycling problem of GDA arises, because
each chooses the optimal action according to the last action of the other agent.

whereby both players independently change their strategy in the direction of steepest
descent of their cost function. Unfortunately, this procedure features oscillatory or
divergent behavior even in the simple case of a bilinear game (5 (G, H) = G>H =

−6(G, H)) (see Figure 7.4). In game-theoretic terms, GDA lets both players choose
their new strategy optimally with respect to the last move of the other player (see
Figure 7.1). Thus, the cycling behavior of GDA is not surprising: It is the analog of
"Rock! Paper! Scissors! Rock! Paper! Scissors! Rock! Paper!..." in the eponymous
hand game. While gradient descent is a reliable basic workhorse for single-agent
optimization, GDA can not play the same role for competitive optimization. The
lack of such a workhorse greatly hinders the broader adoption of methods based on
competition.

Existing works. Most existing approaches to stabilizing GDA follow one of three
lines of attack.
In the special case 5 = −6, the problem can be written as a minimization problem
minG � (G), where � (G) B maxH 5 (G, H). For certain structured problems, [93] use
techniques from convex optimization [181] to minimize the implicitly defined �.
For general problems, the two-scale update rules proposed in [96, 117, 174] can be
seen as an attempt to approximate � and its gradients.
In GDA, players pick their next strategy based on the last strategy picked by the
other players. Methods based on follow the regularized leader [101, 217], fictitious
play [44], predictive updates [254], opponent learning awareness [86], and opti-

134

mism [61, 172, 201] propose more sophisticated heuristics that the players could
use to predict each other’s next move. Algorithmically, many of these methods
can be considered variations of the extragradient method [143](see also [76, Chap-
ter 12]). Finally, some methods directly modify the gradient dynamics, either by
promoting convergence through gradient penalties [173], or by attempting to dis-
entangle convergent potential parts from rotational Hamiltonian parts of the vector
field [24, 89, 147].

Contribution of this chapter. Our main conceptual objection to most existing
methods is that they lack a clear game-theoretic motivation, but instead rely on the
ad-hoc introduction of additional assumptions, modifications, and model parame-
ters.
Their main practical shortcoming is that to avoid divergence, the stepsize has to be
chosen inversely proportional to the magnitude of the interaction of the two players
(as measured by �2

GH 5 , �2
GH6).

On the one hand, the small stepsize results in slow convergence. On the other hand,
a stepsize small enough to prevent divergence will not be known in advance in most
problems. Instead, it has to be discovered through tedious trial and error, which is
further aggravated by the lack of a good diagnostic for improvement in multi-agent
optimization (which is given by the objective function in single-agent optimization).
We alleviate the above-mentioned problems by introducing a novel algorithm, com-
petitive gradient descent (CGD) that is obtained as a natural extension of gradient
descent to the competitive setting. Recall that in the single player setting, the
gradient descent update is obtained as the optimal solution to a regularized linear
approximation of the cost function. In the same spirit, the update of CGD is given
by the Nash equilibrium of a regularized bilinear approximation of the underlying
game. The use of a bilinear as opposed to linear approximation lets the local ap-
proximation preserve the competitive nature of the problem, significantly improving
stability. We prove (local) convergence results of this algorithm in the case of (lo-
cally) convex-concave zero-sum games. We also show that stronger interactions
between the two players only improve convergence without requiring an adaptation
of the stepsize. In comparison, the existing methods need to reduce the stepsize to
match the increase of the interactions to avoid divergence, which we illustrate on a
series of polynomial test cases considered in previous works.
We begin our numerical experiments by trying to use a GAN on a bimodal Gaus-

135

sian mixture model. Even in this simple example, trying five different (constant)
stepsizes under RMSProp, the existing methods diverge. The typical solution would
be to decay the learning rate. However, even with a constant learning rate, CGD
succeeds with all these stepsize choices to approximate the main features of the
target distribution. In fact, throughout our experiments we never saw CGD diverge.
In order to measure the convergence speed more quantitatively, we next consider
a nonconvex matrix estimation problem, measuring computational complexity in
terms of the number of gradient computations performed. We observe that all meth-
ods show improved speed of convergence for larger stepsizes, with CGD roughly
matching the convergence speed of optimistic gradient descent [61], at the same
stepsize. However, as we increase the stepsize, other methods quickly start diverg-
ing, whereas CGD continues to improve, thus being able to attain significantly better
convergence rates (more than two times as fast as the other methods in the noiseless
case, with the ratio increasing for larger and more difficult problems). For small
stepsize or games with weak interactions, on the other hand, CGD automatically
invests less computational time per update, thus gracefully transitioning to a cheap
correction of GDA at minimal computational overhead. We furthermore present
an application to constrained optimization problems arising in model-based rein-
forcement learning and refer to [198] for recent applications of CGD to multi-agent
reinforcement learning.

7.2 Competitive gradient descent
We propose a novel algorithm, which we call competitive gradient descent (CGD),
for the solution of competitive optimization problemsminG∈R< 5 (G, H), minH∈R= 6(G, H),
where we have access to function evaluations, gradients, and Hessian-vector prod-
ucts of the objective functions.1

Algorithm 16 Competitive Gradient Descent (CGD)
for 0 ≤ : ≤ # − 1 do
G:+1 = G: − [

(
Id − [2�2

GH 5 �
2
HG6

)−1 (
∇G 5 − [�2

GH 5∇H6
)

H:+1 = H: − [
(
Id − [2�2

HG6�
2
GH 5

)−1 (
∇H6 − [�2

HG6∇G 5
)

end for
return (G# , H#)

1Here and in the following, unless otherwise mentioned, all derivatives are evaluated in the point
(G: , H:)

136

How to linearize a game. To motivate this algorithm, we remind ourselves that
gradient descent with stepsize [applied to the function 5 : R< −→ R can be written
as

G:+1 = argmin
G∈R<

(G> − G>:)∇G 5 (G:) +
1

2[
‖G − G: ‖2. (7.2)

This can be interpreted as a (single) player solving a local linear approximation of
the (minimization) game, subject to a quadratic penalty that expresses her limited
confidence in the global accuracy of the model. The natural generalization of this
idea to the competitive case should then be given by the two players solving a local
approximation of the true game, both subject to a quadratic penalty that expresses
their limited confidence in the accuracy of the local approximation.
To implement this idea, we need to generalize the linear approximation in the
single-agent setting to the competitive setting: How to linearize a game?

Linear or Multilinear. GDA answers the above question by choosing a linear
approximation of 5 , 6 : R< × R= −→ R. This seemingly natural choice has the
flaw that linear functions cannot express any interaction between the two players
and are thus unable to capture the competitive nature of the underlying problem.
From this point of view, it is not surprising that the convergent modifications of
GDA are, implicitly or explicitly, based on higher-order approximations (see also
[149]). An equally valid generalization of the linear approximation in the single-
player setting is to use a bilinear approximation in the two-player setting. Since
the bilinear approximation is the lowest order approximation that can capture some
interaction between the two players, we argue that the natural generalization of
gradient descent to competitive optimization is not GDA, but rather the update rule
(G:+1, H:+1) = (G: , H:) + (G, H), where (G, H) is a Nash equilibrium of the game

min
G∈R<

G>∇G 5 + G>�2
GH 5 H + H>∇H 5 +

1
2[
G>G

min
H∈R=

H>∇H6 + H>�2
HG6G + G>∇G6 +

1
2[
H>H.

(7.3)

Indeed, the (unique) Nash equilibrium of (7.3) can be computed in closed form.

Theorem 23. Among all (possibly randomized) strategies with finite first moment,
the only Nash equilibrium of the Game (7.3) is given by

G = −[
(
Id − [2�2

GH 5 �
2
HG6

)−1 (
∇G 5 − [�2

GH 5∇H6
)

(7.4)

H = −[
(
Id − [2�2

HG6�
2
GH 5

)−1 (
∇H6 − [�2

HG6∇G 5
)
, (7.5)

137

given that the matrix inverses in the above expression exist.2

Proof. Let -,. be the randomized strategies of the two agents. By subtracting and
adding E[-]2/(2[),E[.]2/(2[), and taking expectations, we rewrite the game as

min
E[-]∈R<

E[-]>∇G 5 + E[-]>�2
GH 5 E[.] + E[.]>∇H 5 +

1
2[
E[-]> E[-] + 1

2[
Var[-]

(7.6)

min
E[.]∈R=

E[.]>∇H6 + E[.]>�2
HG6 E[-] + E[-]>∇G6 +

1
2[
E[.]> E[.] + 1

2[
Var[.] .

(7.7)

Thus, the objective value for both players can always be improved by decreasing the
variance while keeping the expectation the same, meaning that the optimal value
will always (and only) be achieved by a deterministic strategy. We can then replace
the E[-],E[.] with G, H, set the derivative of the first expression with respect to G
and of the second expression with respect to H to zero, and solve the resulting system
of two equations for the Nash equilibrium (G, H). �

According to Theorem 23, the Game (7.3) has exactly one optimal pair of strategies,
which is deterministic. Thus, we can use these strategies as an update rule, gener-
alizing the idea of local optimality from the single– to the multi-agent setting and
obtaining Algorithm 16.

What I think that they think that I think ... that they do. Another game-
theoretic interpretation of CGD follows from the observation that its update rule can
be written as (

ΔG

ΔH

)
= −

(
Id [�2

GH 5

[�2
HG6 Id

)−1 (
∇G 5
∇H6

)
. (7.8)

Applying the expansion _max(�) < 1 ⇒ (Id − �)−1 = lim#→∞
∑#
:=0 �

: to the
above equation, we observe that the first partial sum (# = 0) corresponds to the
optimal strategy if the other player’s strategy stays constant (GDA). The second
partial sum (# = 1) corresponds to the optimal strategy if the other player thinks
that the other player’s strategy stays constant (LCGD, see Figure 7.3). The third
partial sum (# = 2) corresponds to the optimal strategy if the other player thinks
that the other player thinks that the other player’s strategy stays constant, and so
forth, until the Nash equilibrium is recovered in the limit (see Figure 7.2). For small

2We note that the matrix inverses exist for almost all values of [, and for all [in the case of a
zero-sum game.

138

Figure 7.2: What I think that they think that I think... The partial sums of
a Neumann-series representation of Equation (7.8) represent different orders of
opponent-awareness, recovering the Nash-equilibrium in the limit.

enough [, we could use the above series expansion to solve for (ΔG,ΔH), which
is known as Richardson iteration and would recover high order lookahead [86].
However, expressing it as a matrix inverse will allow us to use optimal Krylov sub-
space methods to obtain far more accurate solutions with fewer gradient evaluations.

Rigorous results on convergence and local stability. We now present some basic
convergence results for CGD, the proofs of which can be found in the appendix.
Our results are restricted to the case of a zero-sum game (5 = −6), but we expect
that they can be extended to games that are dominated by competition. To simplify
notation, we define

�̄ B (Id+[2�2
GH 5 �

2
HG 5)−1[2�2

GH 5 �
2
HG 5 , �̃ B (Id+[2�2

HG 5 �
2
GH 5)−1[2�2

HG 5 �
2
GH 5 .

(7.9)
We furthermore define the spectral function q(_) B 2_ − |_ | .

Theorem 24. If 5 is two times differentiable with !-Lipschitz continuous Hessian
and the diagonal blocks of its Hessian are bounded as [‖�2

GG 5 ‖, [‖�2
HH 5 ‖ ≤ 1/18,

we have

‖∇G 5 (G + G: , H + H:)‖2 +
∇H 5 (G + G: , H + H:)2 − ‖∇G 5 ‖2 − ‖∇H 5 ‖2

≤ − ∇G 5 >
(
2[ℎ±

(
�2
GG 5

)
+ 1

3
�̄ − 32[2!

(
‖∇G 5 ‖ + ‖∇H 5 ‖

)
− 768[4!2

)
∇G 5

− ∇H 5 >
(
2[ℎ±

(
−�2

HH 5

)
+ 1

3
�̃ − 32[2!

(
‖∇G 5 ‖ + ‖∇H 5 ‖

)
− 768[4!2

)
∇H 5 .

Under suitable assumptions on the curvature of 5 , Theorem 24 implies results on
the convergence of CGD.

139

Corollary 1. Under the assumptions of Theorem 24, if for U > 0(
2[ℎ±

(
�2
GG 5

)
+ 1

3
�̄ − 32[2!

(
‖∇G 5 (G0, H0)‖ + ‖∇H 5 (G0, H0)‖

)
− 768[4!2

)
� UId(

2[ℎ±
(
−�2

HH 5

)
+ 1

3
�̃ − 32[2!

(
‖∇G 5 (G0, H0)‖ + ‖∇H 5 (G0, H0)‖

)
− 768[4!2

)
� UId

for all (G, H) ∈ R<+=, then CGD started in (G0, H0) converges at exponential rate
with exponent U to a critical point.

Furthermore, we can deduce the following local stability result.

Theorem 25. Let (G∗, H∗) be a critical point ((∇G 5 ,∇H 5) = (0, 0)) and assume
furthermore that

_min B min
(
_min

(
2[ℎ±

(
�2
GG 5

)
+ 1

3
�̄ − 768[4!2

)
, _min

(
2[ℎ±

(
−�2

HH 5

)
+ 1

3
�̃ − 768[4!2

))
> 0

and 5 ∈ �2(R<+=) with Lipschitz continuous Hessian. Then there exists a neigh-
borhoodU of (G∗, H∗), such that CGD started in (G1, H1) ∈ U converges to a point
inU at an exponential rate that depends only on _min.

The results on local stability for existing modifications of GDA, including those of
[61, 172, 173] (see also [154]) all require the stepsize to be chosen inversely propor-
tional to an upper bound on fmax(�2

GH 5), and indeed we will see in our experiments
that the existing methods are prone to divergence under strong interactions between
the two players (large fmax(�2

GH 5)). In contrast to these results, our convergence
results only improve as the interaction between the players becomes stronger.

Why not use �2
GG 5 and �2

HH6? The use of a bilinear approximation that contains
some, but not all second order terms is unusual and begs the question why we do not
include the diagonal blocks of the Hessian in Equation (7.8) resulting in the damped
and regularized Newton’s method(

ΔG

ΔH

)
= −

(
Id + [�2

GG 5 [�2
GH 5

[�2
HG6 Id + [�2

HH6

)−1 (
∇G 5
∇H6

)
. (7.10)

For the following reasons, we believe that the bilinear approximation is preferable
both from a practical and conceptual point of view.

• Conditioning of matrix inverse: One advantage of competitive gradient descent
is that in many cases, including all zero-sum games, the condition number of the

140

matrix inverse in Algorithm 16 is bounded above by [2‖�GH‖2. If we include the
diagonal blocks of the Hessian in a non-convex-concave problem, the matrix can
even be singular as soon as [‖�2

GG 5 ‖ ≥ 1 or [‖�2
HH6‖ ≥ 1.

• Irrational updates: We can only expect the update rule (7.10) to correspond to a
local Nash equilibrium if the problem is convex-concave or [‖�2

GG 5 ‖, [‖�2
HH6‖ < 1.

If these conditions are violated, it can instead correspond to the players playing their
worst as opposed to best strategy based on the quadratic approximation, leading to
behavior that contradicts the game-interpretation of the problem.

• Lack of regularity: For the inclusion of the diagonal blocks of the Hessian to be
helpful at all, we need to make additional assumptions on the regularity of 5 , for
example by bounding the Lipschitz constants of �2

GG 5 and �2
HH6. Otherwise, their

value at a given point can be totally uninformative about the global structure of the
loss functions (consider as an example the minimization of G ↦→ G2 + n3/2 sin(G/n)
for n � 1). Many problems in competitive optimization, including GANs, have the
form 5 (G, H) = Φ(G(G),D(H)), 6(G, H) = Θ(G(G),D(H)), where Φ,Θ are smooth
and simple, but G and D might only have first order regularity. In this setting,
the bilinear approximation has the advantage of fully exploiting the first order
information of G and D, without assuming them to have higher order regularity.
This is because the bilinear approximations of 5 and 6 then contains only the first
derivatives of G and D, while the quadratic approximation contains the second
derivatives �2

GGG and �2
HHD and therefore needs stronger regularity assumptions

on G and D to be effective.

• No spurious symmetry: One reason to favor full Taylor approximations of a
certain order in single-player optimization is that they are invariant under changes
of the coordinate system. For competitive optimization, a change of coordinates
of (G, H) ∈ R<+= can correspond, for instance, to taking a decision variable of
one player and giving it to the other player. This changes the underlying game
significantly and thus we do not want our approximation to be invariant under this
transformation. Instead, we want our local approximation to only be invariant to
coordinate changes of G ∈ R< and H ∈ R= in separation, that is to block-diagonal
coordinate changes on R<+=. Mixed order approximations (bilinear, biquadratic,
etc.) have exactly this invariance property and thus are the natural approximation
for two-player games.

141

Whilewe are convinced that the right notion of first order competitive optimization is
given by quadratically regularized bilinear approximations, we believe that the right
notion of second order competitive optimization is given by cubically regularized
biquadratic approximations, in the spirit of [182].

7.3 Consensus, optimism, or competition?
We will now show that many of the convergent modifications of GDA correspond
to different subsets of four common ingredients. Consensus optimization (ConOpt)
[173], penalises the players for non-convergence by adding the squared norm of the
gradient at the next location, W‖∇G 5 (G:+1, H:+1),∇G 5 (G:+1, H:+1)‖2 to both player’s
loss function (here W ≥ 0 is a hyperparameter). As we see in Figure 7.3, the resulting
gradient field has two additional Hessian corrections. [24, 147] observe that any
game can be written as the sum of a potential game (that is easily solved by GDA),
and aHamiltonian game (that is easily solved byConOpt). Based on this insight, they
propose symplectic gradient adjustment that applies (in its simplest form) ConOpt
only using the skew-symmetric part of the Hessian, thus alleviating the problematic
tendency of ConOpt to converge to spurious solutions. The same algorithm was
independently discovered by [89], who also provide a detailed analysis in the case
of linear-quadratic GANs.
[61] proposed to modify GDA as

ΔG = − (∇G 5 (G: , H:) + (∇G 5 (G: , H:) − ∇G 5 (G:−1, H:−1))) (7.11)

ΔH = −
(
∇H6(G: , H:) +

(
∇H6(G: , H:) − ∇H6(G:−1, H:−1)

))
, (7.12)

which wewill refer to as optimistic gradient descent ascent (OGDA). By interpreting
the differences appearing in the update rule as finite difference approximations to
Hessian vector products, we see that (to leading order) OGDA corresponds to yet
another second order correction ofGDA (see Figure 7.3). It will also be instructive to
compare the algorithms to linearized competitive gradient descent (LCGD), which
is obtained by skipping the matrix inverse in CGD (which corresponds to taking
only the leading order term in the limit [�2

GH 5 → 0) and also coincides with first
order lookahead [86]. As illustrated in Figure 7.3, these six algorithms amount to
different subsets of the following four terms.

1. The gradient term −∇G 5 , ∇H 5 which corresponds to the most immediate way in
which the players can improve their cost.

142

GDA: ΔG = − ∇G 5
LCGD: ΔG = − ∇G 5 − [�2

GH 5∇H 5
SGA: ΔG = − ∇G 5 − W�2

GH 5∇H 5
ConOpt: ΔG = − ∇G 5 − W�2

GH 5∇H 5 − W�2
GG 5∇G 5

OGDA: ΔG ≈ − ∇G 5 − [�2
GH 5∇H 5 + [�2

GG 5∇G 5

CGD: ΔG =

(
Id + [2�2

GH 5 �
2
HG 5

)−1 (
− ∇G 5 − [�2

GH 5∇H 5
)

Figure 7.3: Comparison. The update rules of the first player for (from top to
bottom) GDA, LCGD, ConOpt, OGDA, and CGD, in a zero-sum game (5 = −6).

2. The competitive term −�GH 5∇H 5 , �HG 5∇G 5 which can be interpreted either as
anticipating the other player to use the naive (GDA) strategy, or as decreasing the
other players influence (by decreasing their gradient).

3. The consensus term ±�2
GG∇G 5 , ∓�2

HH∇H 5 that determines whether the players
prefer to decrease their gradient (± = +) or to increase it (± = −). The former
corresponds the players seeking consensus, whereas the latter can be seen as the
opposite of consensus. It also corresponds to an approximate Newton’s method.3

4. The equilibrium term (Id + [2�2
GH�

2
HG 5)−1, (Id + [2�2

HG�
2
GH 5)−1, which arises

from the players solving for the Nash equilibrium. This term lets each player prefer
strategies that are less vulnerable to the actions of the other player.

Each of these is responsible for a different feature of the corresponding algorithm,
which we can illustrate by applying the algorithms to three prototypical test cases
considered in previous works.

• We first consider the bilinear problem 5 (G, H) = UGH (see Figure 7.4). It is well
known that GDA will fail on this problem, for any value of [. For U = 1.0, all the
other methods converge exponentially towards the equilibrium, with ConOpt and
SGA converging at a faster rate due to the stronger gradient correction (W > [). If
we choose U = 3.0, OGDA, ConOpt, and SGA fail. The former diverges, while the
latter two oscillate widely. If we choose U = 6.0, all methods but CGD diverge.

3Applying a damped and regularized Newton’s method to the problem of Player 1 would amount
to choosing G:+1 = G: − [(Id + [�2

GG)−1 5∇G 5 ≈ G: − [(∇G 5 − [�2
GG 5∇G 5), for ‖[�2

GG 5 ‖ � 1.

143

• In order to explore the effect of the consensus Term 3, we now consider the convex-
concave problem 5 (G, H) = U(G2 − H2) (see Figure 7.5). For U = 1.0, all algorithms
converge at an exponential rate, with ConOpt converging the fastest, and OGDA
the slowest. The consensus promoting term of ConOpt accelerates convergence,
while the competition promoting term of OGDA slows down the convergence. As
we increase U to U = 3.0, the OGDA and ConOpt start failing (diverge), while
the remaining algorithms still converge at an exponential rate. Upon increasing U
further to U = 6.0, all algorithms diverge.

• We further investigate the effect of the consensus Term 3 by considering the
concave-convex problem 5 (G, H) = U(−G2 + H2) (see Figure 7.5). The critical point
(0, 0) does not correspond to a Nash-equilibrium, since both players are playing their
worst possible strategy. Thus it is highly undesirable for an algorithm to converge
to this critical point. However for U = 1.0, ConOpt does converge to (0, 0) which
provides an example of the consensus regularization introducing spurious solutions.
The other algorithms, instead, diverge away towards infinity, as would be expected.
In particular, we see that SGA is correcting the problematic behavior of ConOpt,
while maintaining its better convergence rate in the first example. As we increase
U to U ∈ {3.0, 6.0}, the radius of attraction of (0, 0) under ConOpt decreases and
thus ConOpt diverges from the starting point (0.5, 0.5), as well.

The first experiment shows that the inclusion of the competitive Term 2 is enough
to solve the cycling problem in the bilinear case. However, as discussed after
Theorem 24, the convergence results of existing methods in the literature are not
break down as the interactions between the players becomes too strong (for the
given [). The first experiment illustrates that this is not just a lack of theory, but
corresponds to an actual failure mode of the existing algorithms. The experimental
results in Figure 7.7 further show that for input dimensions<, = > 1, the advantages
of CGD can not be recovered by simply changing the stepsize [used by the other
methods.
While introducing the competitive term is enough to fix the cycling behaviour of
GDA, OGDA and ConOpt (for small enough [) add the additional consensus term
to the update rule, with opposite signs.
In the second experiment (where convergence is desired), OGDA converges in a
smaller parameter range than GDA and SGA, while only diverging slightly faster in
the third experiment (where divergence is desired).
ConOpt, on the other hand, converges faster than GDA in the second experiment, for

144

Figure 7.4: The bilinear problem. The first 50 iterations of GDA, LCGD, ConOpt,
OGDA, and CGD with parameters [= 0.2 and W = 1.0. The objective function is
5 (G, H) = UG>H for, from left to right, U ∈ {1.0, 3.0, 6.0}. (Note that ConOpt and
SGA coincide on a bilinear problem)

Figure 7.5: A separable problem. We measure the (non-)convergence to equi-
librium in the separable convex-concave (5 (G, H) = U(G2 − H2), left three plots)
and concave-convex problem (5 (G, H) = U(−G2 + H2), right three plots), for
U ∈ {1.0, 3.0, 6.0}. (Color coding given by GDA, SGA, LCGD, CGD, ConOpt,
OGDA, the y-axis measures log10(‖(G: , H:)‖) and the x-axis the number of itera-
tions : . Note that convergence is desired for the first problem, while divergence is
desired for the second problem.

U = 1.0 however, it diverges faster for the remaining values of U and, what is more
problematic, it converges to a spurious solution in the third experiment for U = 1.0.
Based on these findings, the consensus term with either sign does not seem to
systematically improve the performance of the algorithm, which is why we suggest
to only use the competitive term (that is, use lookahead/LCGD, or CGD, or SGA).

7.4 Implementation and numerical results
We briefly discuss the implementation of CGD.

Computing Hessian vector products. First, our algorithm requires products of
the mixed Hessian E ↦→ �GH 5 E, E ↦→ �HG6E, which we want to compute us-
ing automatic differentiation. As was already observed by [195], Hessian vector
products can be computed at minimal overhead over the cost of computing gra-
dients, by combining forward– and reverse mode automatic differentiation. To
this end, a function G ↦→ ∇H 5 (G, H) is defined using reverse mode automatic
differentiation. The Hessian vector product can then be evaluated as �2

GH 5 E =

m
mℎ
∇H 5 (G + ℎE, H)

��
ℎ=0, using forward mode automatic differentiation. Many AD

145

frameworks, like Autograd (https://github.com/HIPS/autograd) and For-
wardDiff(https://github.com/JuliaDiff/ForwardDiff.jl, [204]) together
with ReverseDiff(https://github.com/JuliaDiff/ReverseDiff.jl) support
this procedure. In settings where we are only given access to gradient evaluations
but cannot use automatic differentiation to compute Hessian vector products, we
can instead approximate them using finite differences.

Matrix inversion for the equilibrium term. Similar to a truncated Newton’s
method [185], we propose to use iterative methods to approximate the inverse-
matrix vector products arising in the equilibrium term 4. We will focus on zero-
sum games, where the matrix is always symmetric positive definite, making the
conjugate gradient (CG) algorithm the method of choice. For nonzero sum games
we recommend using the GMRES or BCGSTAB (see for example [210] for details).
We suggest terminating the iterative solver after a given relative decrease of the
residual is achieved (‖"G − H‖ ≤ n ‖G‖ for a small parameter n , when solving the
system "G = H). In our experiments we choose n = 10−6. Given the strategy ΔG of
one player, ΔH is the optimal counter strategy which can be found without solving
another system of equations. Thus, we recommend in each update to only solve for
the strategy of one of the two players using Equation (7.4), and then use the optimal
counter strategy for the other player. The computational cost can be further improved
by using the last round’s optimal strategy as a a warm start of the inner CG solve.
An appealing feature of the above algorithm is that the number of iterations of CG
adapts to the difficulty of solving the equilibrium term 4. If it is easy, we converge
rapidly and CGD thus gracefully reduces to LCGD, at only a small overhead. If it
is difficult, we might need many iterations, but correspondingly the problem would
be very hard without the preconditioning provided by the equilibrium term.

Experiment: Fitting a bimodal distribution. We use a simple GAN to fit a
Gaussian mixture model with two modes, in two dimensions (see supplement for
details). We apply SGA, ConOpt (W = 1.0), OGDA, and CGD for stepsize [∈
{0.4, 0.1, 0.025, 0.005} together with RMSProp (d = 0.9). In each case, CGD
produces an reasonable approximation of the input distribution without any mode
collapse. In contrast, all other methods diverge after some initial cycling behavior!
Reducing the steplength to [= 0.001, did not seem to help, either. While we
believe that the other methods can be made work with more hyperparameter tuning
or a change of the GAN loss function (we use the original, zero-sum GAN loss

https://github.com/HIPS/autograd
https://github.com/JuliaDiff/ForwardDiff.jl
https://github.com/JuliaDiff/ReverseDiff.jl

146

Figure 7.6: Fitting a bimodal distribution. For all methods, initially the players
cycle between the twomodes (first column). For all methods but CGD, the dynamics
eventually become unstable (middle column). Under CGD, the mass eventually
distributes evenly among the twomodes (right column). (The arrows show the update
of the generator and the colormap encodes the logit output by the discriminator.)

proposed by [96]), this result substantiates our claim that CGD is significantly more
robust than existing methods for competitive optimization. For more details and
visualizations of the whole trajectories, consult the supplementary material.

Experiment: Estimating a covariance matrix. To show that CGD is also com-
petitive in terms of computational complexity we consider the noiseless case of the
covariance estimation example used by [61][Appendix C], We study the tradeoff
between the number of evaluations of the forward model (thus accounting for the
inner loop of CGD) and the residual and observe that for comparable stepsize, the
convergence rate of CGD is similar to the other methods. However, due to CGD
being convergent for larger stepsize it can beat the other methods by more than a
factor two (see supplement for details).

Experiment: Model-Based reinforcement learning. Finally, we apply CGD to
a constrained optimization problem arising in imitation learning under the linear
quadratic assumption [14]. Weminimize the Euclidean distance between the actions
of an optimal LQR controller derived from the discrete time algebraic Riccati
equation and the demonstrated actions. Our constrained optimization problem is
therefore:

minimize E [‖08 − c- (B8)‖2]
subject to �>-� −

(
�>-�

) (
' + �>-�

)−1 (�-�) +& = 0

147

Figure 7.7: Comparison of convergence speed. We plot the decay of the residual
after a given number of model evaluations, for increasing problem sizes and [∈
{0.005, 0.025, 0.1, 0.4}. Experiments that are not plotted diverged.

148

0 500 1,000 1,500 2,000

−5

0

5

10

Number of iterations

L2 loss
Constraint

Figure 7.8: A training run (1 seed).

0 500 1,000 1,500 2,000
10−4

10−3

10−2

10−1

100

101

Number of iterations

M
SE

Test loss

Figure 7.9: Generalization (40 seeds).

Figure 7.10: Imitation learning experiment in the cartpole domain. On the left,
we show a single training run, and on the right, we plot the averaged loss over 40
random seeds.
where c- (B8) B −(' + �>-�)−1(�-�)B8 and the expectation is taken with respect
to a distribution over demonstrations. We estimate the expectation by querying
an optimal LQR policy at 1000 random states sampled around the equilibrium.
By introducing Lagrange multipliers, we turn this problem into an unconstrained
competitive optimization problem and solve it using CGD. For more details, we
refer to [22], where this experiment is taken from. Figure 7.8 shows the joint
evolution of the player behind the imitation loss and its opponent trying to satisfy
the constraint. We attribute the initial plateauing of the “imitation loss player” to the
need of first roughly satisfying the constraint before the loss can be systematically
improved. Once the feasible set has been approached, the loss drops quickly as
the direction of improvement becomes easier to identify. Figure 7.9 measures the
generalization loss over an independent dataset of 500 states sampled at random
around the equilibrium. We report the test performance across 40 random seeds
and compute 99% confidence intervals. By viewing the generalization plot on a log
scale, we see that our competitive differentiation converges linearly to a solution
once it overcomes the initial plateau.

149

C h a p t e r 8

COMPETITIVE MIRROR DESCENT

Constrained competitive optimization. In Chapter 7, we have introduced com-
petitive gradient descent (CGD) as a general purpose algorithm for unconstrained
competitive optimization. However, many appplications in machine learning and
beyond require the use of constraints, for instance to encode physical laws [13, 53,
200, 229], safety requirements or optimality conditions in reinforcement learning
[2, 22, 175], or fairness requirements [54, 55, 178], leading to constrained compet-
itive optimization problems of the general form

min
G∈C̄,

5̃ (G,H)∈C̃

5̄ (G, H), min
H∈K̄,

6̃(G,H)∈K̃

6̄(G, H), (8.1)

where C̄, K̄ are convex sets and K̃, C̃ are convex cones while 5̃ , C6, 5̄ , 6̄ are possibly
nonconvex functions. The goal of this work is to extend CGD to a general-purpose
algorithm for solving constrained competitive problems as a counterpart of gradient
descent in unconstrained single-agent optimization.

Constraints and competition. At a closer look, constraints and competition are
closely related. For (in)equality constrained problems, we can use Lagrange multi-
plier _, ` to turn a constrained minimization problem into an unconstrained minmax
problem

min
G: 6(G)=0,ℎ(G)≥0

5 (G) ⇔ min
G

max
_,`

5 (G) + _6(G) + `ℎ(G).

By simultaneously optimizing over G and _, we obtain an unconstrained competitive
optimization problem that approximates the original constrained problem and, under
certain conditions, recovers it. We can use an analogue procedure to turn Problem8.1
by the simplified problem

min
G∈C

5 (G, H), min
H∈G

6(G, H) (8.2)

for suitably chosen convex sets C and G, and (in general) nonconvex functions 5
and 6.

150

Competitive gradient descent (CGD). The simplest approach to solving a min-
max problem is simultaneous gradient descent (SimGD),where both players perform
a step of gradient descent (ascent for the dual player) at each iteration. However, this
algorithm has poor performance in practice and diverges even on simple problems.
We argued in Chapter 7 that the poor performance of SimGD comes from the fact
that the updates of the two players are computed without taking the interactive nature
of the game into account. They propose to instead compute both players’ updates as
the Nash equilibrium of a local bilinear approximation of the original game, regular-
ized with a quadratic penalty that models the limited confidence of both players in
the approximation’s accuracy. The resulting algorithm, competitive gradient descent
(CGD), is a promising candidate for solving constrained competitive optimization
problems. The simplest approach for extending CGD constrained problems is to
interleave its updates with projections onto the constraint set, obtaining projected
gradient descent (PCGD). However, this algorithm converges to suboptimal points
even in simple convex examples due to a phenomenon that we call empty threats.

Mirror descent. The fundamental reason for the empty threats-phenomenon ob-
served in projected CGD is that the local update rule of CGD does not include any
information about the global structure of the constraint set. The mirror descent
framework [180] uses a Bregman potential k to obtain a local update rule that takes
the global geometry of the constraint set into account. It computes the next iterate
G:+1 as the minimizer of a linear approximation of the objective, regularized with the
Bregman divergence Dk (G:+1 ‖ G:) associated to k. For problems on the positive
orthant R<+ , we can ensure feasible iterates by choosing k as the Shannon entropy,
obtaining an algorithm known as entropic mirror descent, exponentiated gradient
descent, or multiplicative weights algorithm. A naive extension of mirror descent
to the competitive setting simply replaces the quadratic regularization in SimGD or
CGDwith a Bregman divergence. However, the former inherits the cycling problem
of SimGD and the latter requires solving a nonlinear problem at each iteration.

Our contributions. In this chapter, we propose competitivemirror descent (CMD),
a novel algorithm that combines the ideas of CGD and mirror descent in a com-
putationally efficient way. In the special case where the Bregman potential is the
Shannon entropy, our algorithm computes the Nash-equilibrium of a regularized
bilinear approximation and uses it for a multiplicative update. The resulting com-
petitive multiplicative weights (CMW, Algorithm 17) is a competitive extension of

151

Algorithm 17 Competitive multiplicative weights (CMW)1
1: for 0 ≤ : < # do
2: ΔG = −

(
diagG: −

[
�2
GH 5

]
diag−1

H:

[
�2
HG6

])−1 (
[∇G 5] −

[
�2
GH 5

]
diag−1

H:

[
∇H6

])
3: ΔH = −

(
diagH: −

[
�2
HG6

]
diag−1

G:

[
�2
GH 5

])−1 (
[∇G6] −

[
�2
HG6

]
diag−1

G:
[∇G 5]

)
4: G:+1 = G: exp (ΔG)
5: H:+1 = H: exp (ΔH)
6: end for
7: return G# , H#

Algorithm 18 Competitive mirror descent (CMD) for general Bregman potentials
k and q.
1: for 0 ≤ : < # do
2: ΔG = −

([
�2k

]
−

[
�2
GH 5

] [
�2q

]−1 [
�2
HG6

])−1 (
[∇G 5] −

[
�2
GH 5

] [
�2q

]−1 [
∇H6

])
3: ΔH = −

([
�2q

]
−

[
�2
HG6

] [
�2k

]−1 [
�2
GH 5

])−1 (
[∇G6] −

[
�2
HG6

] [
�2k

]−1 [∇G 5]
)

4: G:+1 = (∇k)−1 ([∇k(G)] + ΔG)
5: H:+1 = (∇q)−1 ([∇q(H)] + ΔH)
6: end for
7: return G# , H#

Figure 8.1: Dual geometry. The dual notion of straight line induced by the Shannon
entropy guarantees feasible iterates on R<+ .

152

the multiplicative weights update rule that accounts for the interaction between the
two players.

More generally, our method is based on the geometric interpretation of mirror de-
scent proposed by [202]. From this point of view, mirror descent solves a quadratic
local problem in order to obtain a direction of movement. The next iterate is then
obtained by moving into this direction for a unit time interval. Crucially, this no-
tion of moving into a direction is not derived from the Euclidean structure of the
constraint set, but from the dual geometry defined by the Bregman potential. In the
case of the Shannon entropy, this amounts to moving on straight lines in logarithmic
coordinates, resulting in multiplicative updates (see Figure 8.1). This formulation is
extended to CGD by letting both agents choose a direction of movement according
to a local bilinear approximation of the original problem and then using the dual
geometry of the Bregman potential to derive the next iterate. The resulting competi-
tive mirror descent (CMD, Algorithm 18) combines the computational efficiency of
CGD with the ability to use general Bregman potentials to account for the nonlinear
structure of the constraints.

By presenting a series of examples from game theory, statistical estimation, and
robust reinforcement learning, we establish the practical performance of CGM and
show that it inherits the benefits of both mirror descent and competitive gradient
descent.

8.1 Simplifying constraints by duality
Constrained competitive optimization. The most general class of problems that
we are concernedwith is of the form of (8.1) where C̄ ⊂ R<, K̄ ∈ R= are convex sets,
C̃ ⊂ R=̃, K̃ ⊂ R<̃ are closed convex cones, and 5̄ : C̄ −→ R, 6̄ : K̄ −→ R, 5̃ : C̃ −→
R=̃, and 6̃ : G −→ R<̃ are continuous and piecewise differentiable multivariate
functions of the two agents’ decision variables G and H. This framework is highly
general given suitable functions 5̃ , 6̃, and convex cones C̃, K̃, it can implement
a variety of nonlinear equality, inequality, and positive-definiteness constraints.
While there are many ways in which a problem can be cast into the above form,
we are interested in the case where the 5 , 5̃ , 6, 6̃ are allowed to be complicated,
for instance, given in terms of neural networks, while the C̄, K̄, C̃, K̃ are simple
and well-understood. For convex constraints and objectives the canonical solution

1Here, exp is applied element-wise and diagI denotes the diagonal matrix with entries given
by the vector I. ∇G 5 , [�2

GH 5],∇H6, [�2
HG6] denote the gradients and mixed Hessians of 5 and 6,

evaluated in (G: , H:).

153

concept is a Nash equilibrium, a pair of feasible strategies (Ḡ, H̄) such that Ḡ (H̄) is
the optimal strategy for G (H) given H = H̄ (G = Ḡ). In the non-convex case, it is less
clear what should constitute a solution. In Chapter 9, we will argue that meaningful
solutions need not even be local Nash equilibria.

Lagrange multipliers lead to linear constraints. Using the classical technique
of Lagrangian duality, the complicated parameterization 5 , 5̃ , 6, 6̃ and the simple
constraints given by the C̃, K̃ can be further decoupled. The polar of a convex cone
G is defined as G◦ B

{
H : supG∈G G>H ≤ 0

}
. Using this definition, we can rewrite

Problem 8.1 as

min
G∈C̄,
`∈K̃◦

5̄ (G, H) +max
a∈C̃◦

a> 5̃ (G), min
H∈K̄,
a∈C̃◦

6(G, H) + max
`∈K̃◦

`>6̄(H). (8.3)

Here we used the fact that the maxima are infinity if any constraint is violated and
zero, otherwise.

Watchmen watching watchmen. We can now attempt to simplify the problem by
making ` 9 (a8) decision variables of the H (G) player and adding a zero sum objective
to the game that incentivizes both players to enforce each other’s compliance with
the constraints, resulting in

min
G∈C,
`∈K̃◦

5 (G, H) + a> 5̃ (G) − `>6̃(H), min
H∈G,
a∈C◦

6(G, H) + `>6̃(H) − a> 5̃ (G). (8.4)

If Problem 8.1 is convex and strictly feasible (Slater’s condition), its Nash equilibria
are equal to those of Problem 8.4 (see Section .5.1 in the Appendix for details).

A simplified problem. While this is not true in general, we propose to use Prob-
lem 8.4 as a more tractable approximation of Problem 8.1. In the following, we
assume that the nonlinear constraints of the problem have already been eliminated,
leaving us (for possible different C and G) with

min
G∈C

5 (G, H), min
H∈G

6(G, H). (8.5)

8.2 Projected CGD suffers from empty threats
Competitive gradient descent (CGD). In Chapter 7, we proposed to solve un-
constrained competitive optimization problems by choosing iterates (G:+1, H:+1) as

154

Nash equilibria of a quadratically regularized bilinear approximation

G:+1 = G:+ argmin
G∈R<

[�G 5] G + H>
[
�HG 5

]
G +

[
�H 5

]
H + G

>G

2[

H:+1 = H:+ argmin
H∈R=

[�G6] G + G>
[
�GH6

]
H +

[
�H6

]
H + H

>H

2[
,

(8.6)

where 5 , 6 : R< × R= −→ R are the loss functions of the two agents and [�G 5],
[�G6],

[
�H 5

]
,
[
�H6

]
,
[
�HG 5

]
, and

[
�GH6

]
their (mixed) derivatives evaluated in

the last iterate (G: , H:).

A simple minmax game. We will use the following simple example to illustrate
the difficulties when dealing with inequality constraints.

min
G∈R+

2GH − (1 − H)2 min
H∈R+
−2GH + (1 − H)2. (8.7)

How do we incorporate the positivity constraints into CGD? The simplest approach
is to combine CGD with projections onto the constraint set, which we call projected
competitive gradient descent (PCGD). Here, we compute the updates of CGD as
per usual, but after each update we project back onto the constraint set through
(G, H) ↦→ (max(0, G),max(0, H)). This generalizes projected gradient descent, a
popular method in constrained optimization with proven convergence properties
[126].

PCGD and empty threats. Applying PCGD (with [= 0.25) to our example,
we see that it converges instead to (G, H) = (0, 2/3), which is suboptimal for the H-
player! Since Problem 8.7 is a convex game, any sensible algorithm should converge
to the unique Nash-equilibrium (G, H) = (0, 1), making this a failure case for PCGD.
The explanation of this behavior lies in the conflicting rules of the unconstrained
local game 8.6 and the constrained global game 8.7. Under the local game of
Equation (8.6), G can decrease its loss by turning negative. This is an empty threat
in that it violates the constraints and will therefore be undone by the projection step,
but this information is not included in the local game. Therefore, the outlook of G
becoming negative deters H from moving towards the optimal strategy of H = 1 (c.f.
Figure 8.2). This problem affects the projected versions ofmost algorithms featuring
competitive terms involving the mixed Hessian. Since in Chapter 7 we identified
these terms as crucial for convergence, this is a major obstacle for constrained
competitive optimization.

155

G

H

(0, 0)

(0, 2
3)

min
H
−2GH + (H − 1)2

Figure 8.2: Empty threats. Since G ≥ 0, the bilinear term should only lead to H
picking a larger value. But CGD is oblivious to the constraint and H decreases in
anticipation of G turning negative.

8.3 Mirror descent and Bregman potentials
Bregman potentials. The underlying reason for the empty threats-phenomenon
described in the last section is that a local method such as CGD has no way of
knowing how close it is to the boundary of the constraint set. In single-agent
optimization, this problem has been addressed by the use of Bregman potentials or
Barrier functions.

Definition 13. We call a strictly convex and two-times differentiable function k :
C −→ R a Bregman potential on the convex domain C.

Possibly the most widely used Bregman potentials are the squared distance G>G
on R= and the negative Shannon entropy

∑
8 G8 log(G8) on the positive orthant R=+.

For the purposes of this work, a Bregman potential k on C is best understood as

156

quantifying how close a point H ∈ C is from argmink, which we think of as the
center of C. Importantly, the notion of distance induced by k is anisotropic and
usually increases rapidly as H approaches the boundary of the domain. In particular,
derivative information of k at a point ? allows us to infer its position relative to the
boundary of C, allowing a local algorithm to take into account the global structure
of the constraint set.

Bregman divergences. Associated with a Bregman potential k(·) on a domain C
is the Bregman divergence Dk (· ‖ ·) that allows us to extend the notion of distance
between H and argmink given by k to a notion of distance between arbitrary
elements of C.

Definition 14. The Bregman divergence associated to the potential k is defined as

Dk (? ‖ @) B k(?) − k(@) − [∇k(@)] (? − @). (8.8)

Just like a squared distance,Dk (? ‖ @) is convex, positive, and achieves itsminimum
of zero if and only if ? = @. However, it is not symmetric in the sense that
Dk (? ‖ @) ≠ Dk (@ ‖ ?), in general. Crucially, a Bregman divergence will in
general not be translation invariant and can therefore take the position relative to the
boundary of C into account.

Mirror Descent. Mirror descent [180] uses a Bregman to improve gradient de-
scent by the following update rule.

G:+1 = argmin
G

[� 5 (G:)] (G − G:) + Dk (G ‖ G:). (8.9)

By solving for the first order optimality conditions, the update can be computed in
closed form as

G:+1 = (�k)−1 ([�k (G:)] − [� 5 (G:)]) , (8.10)

where (�k)−1 (H) is defined as the point G ∈ C such that [�k(G)] = H. By
strict convexity of k, if (�k)−1 (H) exists, it is unique. In this case, (�k)−1 (H) is
contained in C which ensures that mirror descent satisfies the constraints without
an additional projection step.

Definition 15. ABregman potentialk is complete on C if the map�k : C −→ R1×<

is surjective.

157

Ifk is complete, themirror descent update iswell-defined for all gradients. From this
point of view, the necessity for a projection step in inequality constrained gradient
descent arises from the potential k(G) = G>G/2 not being complete on the constraint
set C. A popular choice of potential that is complete on the positive orthant R<+ is
the Shannon entropy k(G)∑8 G8 log (G8) − G8 resulting in entropic mirror descent

G:+1 = exp
(
log (G:) − [� 5 (G:)]>

)
= G: exp

(
[� 5 (G:)]>

)
. (8.11)

Here, multiplication, exponentiation, and logarithms are defined component-wise.

Naive competitive mirror descent. A possible generalization of mirror descent
to Problem 8.5 is to obtain G:+1 and H:+1 as solutions to the game

argmin
G∈R<

[�G 5] (G − G:) + (H − H:)>
[
�HG 5

]
(G − G:) +

[
�H 5

]
(H − H:) + Dk (G ‖ G:)

argmin
H∈R=

[�G6] (G − G:) + (G − G:)>
[
�GH6

]
(H − H:) +

[
�H6

]
(H − H:) + Dq (H ‖ H:),

where k and q are complete Bregman potentials on C and G, respectively. However,
the local game in this update rule does not have a closed form solution as in mirror
descent or competitive gradient descent. Instead, it requires us to solve a nonlinear
competitive optimization problem at each step. While it is possible to alternatingly
solve for the two players’ strategies until convergence, thiswill be significantly slower
than the Krylov subspace methods employed to solve system of linear equations in
the CGD. In order to avoid this overhead, we will now develop an alternative
competitive generalization of mirror descent rooted in its information-geometric
interpretation.

8.4 The information geometry of Bregman divergences
Reminder on differential geometry. To present the material in this chapter, we
briefly review the following basic notions of differential geometry.

Definition 16 (Submanifold of R<). M ⊂ R< is a :-dimensional smooth subman-
ifold of R< if for every point ? ∈ M there exists an open ball �(?) centered at ?
and a smooth function � ? : �(?) −→ R<−: , such that the rank of the Jacobian of
� ? is : everywhere andM ∩ �? = �−1(0).

We can think of a smooth submanifold as a (possible curved) surface in R<.

Definition 17 (Tangent space). The tangent space T?M of a :-dimensional sub-
manifoldM of R< in ? is given by the null space of the Jacobian of � ? in ?. Here,
� ? is chosen as in Definition 16.

158

To a creature living onM, the elements of the tangent space in ? ∈ M correspond
to the velocities with which it could depart from ?.

Definition 18 (Riemannian metric). A Riemannian metric is a map ? ↦→ 6? (·, ·)
that assigns to each ? ∈ M an inner product on T?M.

If the elements G ∈ T?M of the tangent space are velocities, 6? (G, G) is their
(squared) speed. It allows us to compare the magnitude or significance of moving
in different velocities.

Definition 19 (Exponential map). We call a collection
{
Exp? : T?M −→M

}
?∈M

an exponential map if it satisfies

Exp? ((C + B) G) = Exp@ (BH) , for @ = Exp? (CG), H =
d
dA

Exp? (AG))
��
A=C
.

The exponential map Exp? (G) returns the destination reached whenwalking straight
in the velocity G for a unit time interval, starting in ?.

The geometry of Bregman potentials. We will now explain how a Bregman
potential equips its domain C with a geometric structure (see [8, 9] for details). Our
manifoldM will simply be the interior of C ⊂ R< with T?M given by R< for all
? ∈ M (without loss of generality, we assume that intC has full dimension). The
Riemannian metric 6k associated with the potential k is given by

6
k
? (G, G) =

G>
[
�2
GGk (?)

]
G

2
=

d2

2 dA2Dk (? + AG ‖ ?).

Following the interpretation of the Bregman divergence as a notion of squared
distance, the metric 6k? measures how quickly a given velocity G ∈ T?M will take
us away from ?, according to this notion of distance.

The dual exponential map. A key feature of Bregman potentials is that they
induce a new exponential map on the manifold C. M is an open subset of R< and
thus a restriction of the Euclidean exponential map Exp? (G) B ? + G to ? ∈ M is
an exponential map onM, which we call the primal exponential map. However, a
Bregman potential k also induces a dual exponential map onM, given by

Expk? (G) = (�k)
(
(�k)−1 +

[
�2k (?)

]
G

)
.

159

Figure 8.3: Basic objects of differential geometry. A manifoldM, tangent space
T?M, tangent vector G ∈ T?M, and the path described by the exponential map{
@ : @ = Exp? (CG), for C ∈ [0, 1]

}
.

In the special case of C = R<+ and k(G) = ∑
8 G8 log(G8) − G8 given by the Shannon

entropy, the dual exponential map is given by(
Expk? (G)

)
8
= exp

(
log(?8) +

G8

?8

)
= ?8 exp

(
G8

?8

)
.

Thus, while the primal straight lines C ↦→ ExpG (CG) have a constant additive rate of
change, dual straight lines C ↦→ ExpkG (CG) have constant relative rate of change.

An important property of the dual exponentialmap is that it inherits the completeness
property of k.

Lemma 17. If the potential k is complete with respect toM, the dual exponential
map Expk is complete in the sense that

∀? ∈ M,∀G ∈ R< : Expk? (G) ∈ M . (8.12)

160

Thus, a complete potential k allows us to follow a direction G ∈ T?M inM = intC
in such a way that we never accidentally leave the feasible set. We will now recast
mirror descent in terms of the dual geometry induced by k.

8.5 Competitive mirror descent
In [202], it is observed that mirror descent has a natural formulation in terms of the
dual geometry induced by k. Namely, its updates can be expressed as:

1. Choose a direction of movement that minimizes a linear local approximation,
regularized with the metric induced by k.

ΔG = argmin
G∈TG:M

[�G 5]G +
1
2
G)

[
�2k(G:)

]
G

2. Compute G:+1 by moving into this direction, according to the dual geometry of
k.

G:+1 = ExpkG: (ΔG)

For k and q complete Bregman divergences on C and G, this form of mirror descent
can be readily extended to Problem (8.5), resulting in competitive mirror descent
(CMD):

1. Solve for a local Nash equilibrium where both players try to minimize the
bilinear local approximation of their objective, regularized with the metrics induced
by k and q.

ΔG = argmin
G∈TG:C

[�G 5] G + G>
[
�2
GH 5

]
H +

[
�H 5

]
H + 1

2
G>

[
�2k

]
G

ΔH = argmin
H∈TH:G

[�G6] G + G>
[
�2
GH6

]
H +

[
�H6

]
H + 1

2
H>

[
�2q

]
H

2. Compute G:+1 (H:+1) by moving into this direction according to the dual geome-
tries of k (q).

G:+1 = ExpkCG: (ΔG) , H:+1 = ExpqH: (ΔH)

Since k and q are complete, each iterate is guaranteed to be feasible, while the local
game (8.6) is quadratic and can be solved in closed form, resulting in Algorithm 18.

161

8.6 Numerical comparison
As discussed in Section 7.3, the competitive term involving the mixed Hessian
�2
GH 5 , �

2
HG6 is crucial to ensure convergence for bilinear problems. Most methods

that include a competitive term such as [24, 89, 147, 173] encounter the empty
threats-phenomenon described in Section 8.2 when combined with a projection. A
notable exception is the projected extragradient method (PXGD) [143] (see also
[76, Chapter 12]), and the extra mirror descent (XMD) proposed by [171], which
we therefore see as the main alternatives to CMD. We also compare to an imple-
mentation of naive CMD (with update rule given by (8.3)) using XMD to solve the
nonlinear local problem.

We begin with competitive optimization problems derived by applying Section 8.1
applying from classical matrix games. Matching pennies results in formulated as

min
?∈R2

+,`∈R
max

@∈R2
+,a∈R

(?head − ?tail) (@head − @tail) + `@total − a@total, (8.13)

where ?total, @total denote the total mass of the probability vectors ? and @. While
all methods considered here are able to find the equilibrium (?, `) = (@, a) =
(2−1, 2−1, 0), just as in the case of CGD in Chapter 7, we observe that by increasing
the step size, we can speed up the convergence of CMD, while XMD or PXGD
diverge eventually.

The Nash equilibrium for matching pennies lies in the interior of the constraint set.
Therefore even PCGD converges to the correct equilibrium. When using Lagrange
multipliers to normalization, the nonzero sum game prisoner’s dilemma has the
form.

min
?∈R2

+,`∈R
?silent@silent + 2?betrays@betrays + 3?silent@betrays + `@total − a@total

min
@∈R2

+,a∈R
?silent@silent + 2?betrays@betrays + 3?betrays@silent − `@total + a@total.

(8.14)

When applying CMD, XMD, PCGD, and PXGD over a wide range of step sizes we
observe that for all methods ?silent, @silent converge to the correct solution: one. (c.f.
Section .5.3). However, under PCGD, ?betray, @betray converge to values larger than
one, due to empty threats. Under CMD, ?silent, @silent converge to one as soon as the
step size of the Lagrange multipliers is large enough, while XMD and PXGD need
much smaller step sizes on the ? and @, or else they oscillate or diverge.

We now seek answers to the following questions: (1:) Theoretical analysis of MD
such as [30] suggests that the advantage of mirror descent over projected gradient

162

Figure 8.4: Penny matching. When applying CMD and XMD to penny matching
((8.13)), both methods converge. But as we increase the step sizes U−1, V−1, CMD
converges faster and XMD diverges.

Figure 8.5: Prisoner’s dilemma. Applied to prisoner’s dilemma (8.14), CMD
converges for step sizes U−1, V−1 for which XMD and PXGD diverge. PCGD
converges to the wrong solution, due to empty threats.

163

descent is most significant in high dimensions. Is CMD able to translate this
advantage to competitive optimization in high dimensions? (2:) For large problems,
the quadratic local problem of CMD needs to be solved by iterative methods. Can it
beat XMD and PXGD even when accounting fairly for the complexity of the inner
loop? (3:) Does CMD beat naive CMD (NCGD, (8.3)) in terms of computational
complexity when accounting for the inner loop?

To this end, we move to a high-dimensional robust regression problem on the
probability simplex given by

min
G: G≥0, 1>G=1

‖�G − 1‖2 (8.15)

for � ∈ R50×5000, �8 9 ∼ N (0, Id) i. i. d., n ∼ N (0, Id), and 1 = (�:,1 + �:,2)/2 + n .
In order to enforce the normalization constraint 1>G = 1, we introduce a Lagrange
multiplier H ∈ R and solve the competitive optimization problem given as

min
G∈R5000

+

‖�G − 1‖2 + H(1>G − 1), min
H∈R
−H(1>G − 1). (8.16)

We use different inverse step sizes U ∈ {100, 1000} for G and V ∈ {1, 10, 100, 1000}
for H and solve the competitive optimization problem using CMW and PX. We then
plot the loss incurred when using G/1>G as a function of the number of iterations.
The extragradient method stalled for all step sizes that we tried, which is why we
introduce extramirror (PXM), a mirror descent version of extragradient that at each
step uses the gradient computed in the next iteration of mirror descent to perform
a mirror descent update in the present iteration. As shown in Figure 8.6 CMW is
the only algorithm that converges over the entire range of U and V. The projected
extragradient method always stalls, while the extramirror algorithm diverges and
produces NAN values for the largest step size. Generally speaking, CMW converges
faster for larger step sizes, while PXM converges faster for smaller step sizes, as
shown in Figure 8.6. Of course, to compare apples to apples, we need to account
for the complexity of solving the matrix inverse in CMW. To this end, we show in
Figure 8.7 the objective value compared to the number of gradient computations
and Hessian-vector products. Therefore, each outer iteration of the extragradient
and extramirror methods amounts to an G-axis value of 4, while an outer iteration of
CMW, where the conjugate gradient solver requires : steps, amounts to an G-axis
value of 4 + 2: .

Similar to Chapter 7, we observe that even when fairly accounting for the complexity
of the matrix inverse, CMW is competitive with PXM, beating it for larger stepsizes

164

Figure 8.6: Convergence against outer iterations. We plot the objective value in
Equation 8.15 (after normalization of G) compared to outer iterations. In the first
panel, PXMdiverges and produces NANvalues, which is why the plot is incomplete.

165

Figure 8.7: Convergence against backprops. We plot the objective value in Equa-
tion 8.15 (after normalization of G) compared to the number of gradient computations
and Hessian-vector products, accounting for the inner loop of CMW.

166

while being a bit slower for smaller step sizes. Importantly, it is significantly more
robust and converges even in settings where the competing methods diverge.

We conclude with an application of CMD to robust reinforcement learning, taken
from [256]. We consider an algorithm with minimax linear quadratic (LQ) game
where a protagonist player choses an action DC ∈ R<, while an antagonist environ-
mental agent chooses a disturbance FC ∈ R?:

GC+1 = �GC + �DC + �FC , (8.17)

with GC ∈ R= as the state vector. In LQR, a linear RL agent minimizes an infinite-
horizon quadratic cost: EG0∼P

[∑∞
C=0(G)C &GC + D)C 'DDC)

]
where & ∈ R=×= and 'D ∈

R<×< are positive definite. The two-player dynamics in (8.17) adds an environmental
agent to the LQR formulation where the environmental agent adversarially chooses
disturbanceFC that affect the states GC+1 through�. LQ games consider the following
minimax objective:

inf
DC ,C≥0

sup
FC ,C≥0

EG0∼P

[∞∑
C=0
(G)C &GC + D)C 'DDC − F)C 'FFC)

]
. (8.18)

Zhang et al. [259] shows that the solution to the zero-sum LQ game (8.18) subject to
(8.17) corresponds to the solution to a mixedH2/ H∞ problem [59]. Therefore, the
LQ game can be interpreted both as finding a robust LQR policy against dynamic
disturbances and as an optimal controller for a mixedH2/ H∞ problem.

Let the policy for the RL agent (who seeks to minimize the cost) and the envi-
ronmental agent (who seeks to maximize the cost) take the form of DC = GC and
FC = !GC with ∈ R<×= and ! ∈ R?×=. We denote the objective in (8.18) to be
� (, !) to emphasize its dependence on the policy parameters. Under the condition
! ∈ Ω := {! |& − !)'F! � 0} and other technical assumptions [259], a globally
unique and obtainable Nash equilibrium of the LQ game exists. We can pose an
equivalent constrained minimax game for (8.18) as:

min

max
!∈Ω

� (, !). (8.19)

In this game, the RL agent finds the best linear policy that is robust against the
worst dynamic environmental disturbances. The solution to the LQ game can be
obtained via linear matrix inequality [59]. However, when the system matrices and
the objective function are unknown, our proposed framework for robust policy via
CMD can be applied.

167

The Lagrangian of (8.19) with Lagrangian multiplier Λ ∈ S=++ is given by:

L(Λ, , !) = � (, !) −
〈
Λ, !)'F! −&

〉
, (8.20)

where 〈-,.〉 := tr(-).) denotes the matrix inner product. We augment the RL
agent () with the Lagrangian multiplierΛ that penalizes the adversary (!) if it does
not satisfy the constraint ! ∈ Ω. Using the Lagrangian as the augmented objective
function, we arrive at the following constrained minimax game:

min
 ,Λ∈S=++

max
!
L(Λ, , !). (8.21)

Note that the Lagrangian multiplier that enforces the constraint on the maximizing
player is assigned to theminimizing player. It is straightforward to verify that the so-
lution to (8.19) is the solution to (8.21) and vice versa because of the complementary
slackness at KKT points. Intuitively, (8.21) means that whenever the constraints
on the maximizing player are not satisfied, the minimizing player can improve its
objective by increasing the Lagrange multiplier.

We choose the log-determinant function as the Bregman divergence associated to
the Lagrange multiplier Λ ∈ S=++. For the unconstrained variables in (8.21), we use
the squared Frobenius norm. Following the notation of Section 8.3, the Bregman
divergences for both players are

k(,Λ) = −logdet(Λ) + 1
2
‖ ‖2� , q(!) = 1

2
‖!‖2� .

Consider a double integrator LQ game with � =

[
1 1
0 1

]
, � =

[
0
1

]
, and � =

[
0.5
1

]
with & = �, 'D = 1, 'F = 20. We randomly generate a stabilizing 0 and
initialize the environmental agent’s parameter !0 in the interior of the constraint
set. We sample trajectories of length) = 15 as the finite-horizon approximation to
the infinite-horizon LQ cost and compute the corresponding gradient and Hessian
estimations.

In Figure 8.8, we compare CMD to projected nested gradient descent (PNGD)
proposed in [259] and projected gradient descent ascent (PGDA) as a baseline. For
each of the methods, we test a variety of stepsizes for both minimizing player and
maximizing player varying from 10−3 to 10−5. We observe that for stepsizes larger
than 10−5, both PNGD with 50 inner loop iteration and PGDA diverges. On the
other hand, Figure 8.9 shows that CMD is stable for larger stepsizes than the other
methods.

168

Figure 8.8: Comparison of CMD to PNGD and PGDA. We tested step sizes
varying from 10−3 to 10−5 for the proposed algorithm (CMD), PNGD with inner
loop iteration number set to 10, and PGDA. For each method, we plot the fastest
converging trajectory against the number of outer iterations. The two step sizes
are specified for minimizing player and maximizing player, respectively. Optimal
closed-form solution is ∗ = [−0.4913,−1.3599]) .

Figure 8.9: Robustness of CMD to choice of step size. The two panels show
the iteration trajectory for the coordinates of parameter . The two step sizes
are specified for minimizing player and maximizing player, respectively. Optimal
closed-form solution is ∗ = [−0.4913,−1.3599]) .

169

C h a p t e r 9

IMPLICIT COMPETITIVE REGULARIZATION

9.1 Introduction
Generative adversarial networks (GANs) [96] are a class of generative models
based on a competitive game between a generator that tries to generate realistic new
data and a discriminator that tries to distinguish generated from real data. In practice,
both players are parameterized by neural networks that are trained simultaneously
by a variant of stochastic gradient descent.

Theminimax interpretation. Presently, the success of GANs is mostly attributed
to properties of the divergence or metric obtained under an optimal discriminator.
For instance, an optimal discriminator in the original GAN leads to a generator loss
equal to the Jensen-Shannon divergence between real and generated distribution.
Optimization over the generator is then seen as approximately minimizing this
divergence. We refer to this point of view as the minimax interpretation. The
minimax interpretation has led to the development of numerous GAN variants that
aim to use divergences or metrics with better theoretical properties.

The GAN-dilemma. However, every attempt to explain GAN performance with
the minimax interpretation faces one of the two following problems:

1. Without regularity constraints, the discriminator can always be perfect.
This is because it can selectively assign a high score to the finite amount of real
data points while assigning a low score on the remaining support of the generator
distribution, as illustrated in Figure 9.1. Therefore, the Jensen-Shannon divergence
between a continuous and a discrete distribution always achieves its maximal value,
a property that is shared by all divergences that do not impose regularity constraints
on the discriminator. Thus, these divergences cannot meaningfully compare the
quality of different generators.

2. Imposing regularity constraints needs a measure of similarity of images.
Imposing regularity on the discriminator amounts to forcing it to map similar images
to similar results. To do so, we would require a notion of similarity between images
that is congruent with human perception. This is a longstanding unsolved problem

170

Figure 9.1: The discriminator can always improve. We want the discriminator
confidence to reflect the relative abundance of true and fake data (left). But by
picking out individual data points, the discriminator can almost always achieve
arbitrarily low loss on any finite data set (right). Even in the limit of infinite data,
the slightest misalignment of the supports of generated and real data can be exploited
in a similar way.

in computer vision. Commonly used gradient penalties use the Euclidean norm,
which is known to poorly capture visual similarity, as illustrated in Figure 9.2.

We believe that the different divergences underlying the various GAN formulations
have little to do with their ability to produce realistic images. This is supported by
the large-scale studies of [159] that did not find systematic differences in the per-
formance of GANs associated with different divergence measures. Understanding
GAN performance is crucial in order to improve training stability and reduce the
required amount of hyperparameter tuning.

A way out? Due to the GAN-dilemma, attempts at explaining the performance of
GANs need to go beyond the minimax interpretation and consider the dynamics of
the training process. In this chapter, we argue that an implicit regularization due to
the simultaneous1 training of generator and discriminator allows GANs to use the
inductive biases of neural networks for the generation of realistic images.

Implicit competitive regularization. We define implicit competitive regulariza-
tion (ICR) as the introduction of stable points or regions due to the simultaneous
training of generator and discriminator that do not exist when only training gen-
erator (or discriminator) with gradient descent while keeping the discriminator (or
generator) fixed.

1Here and in the following, when talking about simultaneous training, we include variants such
as alternating gradient descent.

171

It has been previously observed that performing simultaneous gradient descent
(SimGD) on both players leads to stable points that are not present when performing
gradient descent with respect to either player while keeping the other player fixed
[168]. These stable points are not local Nash equilibria, meaning that they are not
locally optimal for both players. This phenomenon is commonly seen as a short-
coming of SimGD and modifications that promote convergence only to local Nash
equilibria were proposed by [24, 169]. In contrast to this view, we believe that ICR
is crucial to overcoming the GAN-dilemma and hence to explaining GAN perfor-
mance in practice by allowing the inductive biases of the discriminator network to
inform the generative model.

Summary of contributions. In this chapter, we point out that a fundamental
dilemma prevents the common minimax interpretation of GANs from explaining
their successes. We then show that implicit competitive regularization (ICR), which
so far was believed to be a flaw of SimGD, is key to overcoming this dilemma.
Based on simple examples and numerical experiments on real GANs, we illustrate
how it allows using the inductive biases of neural networks for generative modeling,
resulting in the spectacular performance of GANs.
We then use this understanding to improve GAN performance in practice. Inter-
preting ICR from a game-theoretic perspective, we reason that strategic behavior
and opponent-awareness of generator and discriminator during the training pro-
cedure can strengthen ICR. These elements are present in competitive gradient
descent introduced in Chapter 7, which is based on the two players solving for a
local Nash equilibrium at each step of training. Accordingly, we observe that CGD
greatly strengthens the effects of ICR. In comprehensive experiments on CIFAR
10, competitive gradient descent stabilizes previously unstable GAN formulations
and achieves higher inception score than a wide range of explicit regularizers, using
both WGAN loss and the original saturating GAN loss of [96]. In particular, taking
an existing WGAN-GP implementation, dropping the gradient penalty, and training
with CGD leads to the highest inception score in our experiments. We interpret
this as additional evidence that ICR, as opposed to explicit regularization, is the key
mechanism behind GAN performance.

9.2 The GAN-dilemma
In this section, we study in more detail the fundamental dilemma that prevents
the common minimax interpretation from explaining the successes of GANs. In

172

Figure 9.2: The Euclidean distance is not perceptual. We would like to challenge
the reader to rank the above three pairs of images according to the Euclidean distance
of their representation as vectors of pixel-intensities.2

particular, we show how the existing GAN variants fall into one or the other side of
the GAN-dilemma.

Metric-agnostic GANs. In the original formulation due to [96], the two players
are playing a zero-sum game with the loss function of the generator given by the
binary cross-entropy

min
G

max
D

1
2
EG∼%data [logD(G)] + 1

2
EG∼%G [log (1 − D(G))] . (9.1)

Here, G is the probability distribution generated by the generator,D is the classifier
provided by the discriminator, and %data is the target measure, for example the
empirical distribution of the training data. A key feature of the original GAN is that
it depends on the discriminator only through its output when evaluated on samples.
This property is shared, for instance, by the more general class of 5 -divergence
GANs [186]. We call GAN formulations with this property metric-agnostic.

Metric-informed GANs. To address instabilities observed in the original GAN,
[16] introduced WGAN, with loss function given by

min
G

max
D
EG∼%data [D(G)] − EG∼%G [D(G)] + F (∇D) , (9.2)

2The pairs of images are ordered from left to right, in increasing order of distance. The first pair
is identical, while the third pair differs by a tiny warping.

173

where F (∇D) is infinity if supG ‖∇D(G)‖ > 1, and zero, otherwise. [106] pro-
pose WGAN-GP, where this inequality constraint is relaxed by replacing F with a
penalty, for instance F (∇D) = E

[
(‖∇GD‖ − 1)2

]
. These GAN formulations are

fundamentally different from metric-agnostic GANs in that they depend explicitly
on the gradient of the discriminator. In particular, they depend on the choice of
metric used to measure the size of ∇D. Subsequent to WGAN(-GP), which uses the
Euclidean norm, other variants such as Sobolev-GAN [177], Banach-GAN [6], or
Besov-GAN [239] have been proposed that use different metrics to measure gradient
size. We refer to these types of GAN formulations as metric-informed GANs.

The problem with metric-agnostic GANs. GANs are able to generate highly
realistic images, but they suffer from unstable training and mode collapse that often
necessitates extensive hyperparameter tuning. Beginning with [15], these problems
of the original GAN have been explained with the fact that the supports of the
generator distribution and the training data are almost never perfectly aligned. For
any fixed generator, the discriminator can take advantage of this fact to achieve
arbitrarily low loss, as illustrated in Figure 9.1. In the case of the Formulation 9.1,
this corresponds to the well-known fact that the Jensen-Shannon divergence between
mutually singular measures is always maximal. This result extends to all metric-
agnostic divergences simply because they have no way of accessing the degree of
similarity between data points on disjoint supports.

[17, 122] emphasize that the discriminator is restricted to a function class param-
eterized by a neural network. However, the experiments of [15], as well as our
own in Figure 9.4 clearly show the tendency of the discriminator to diverge as it
achieves near-perfect accuracy. This is not surprising since [257] observed that
modern neural networks are able to fit even random data perfectly. [15] also show
that as the discriminator improves its classification loss, the generator achieves less
and less useful gradient information. This is again not surprising since confidence
scores of deep neural networks are known to be poorly calibrated [108]. Therefore,
the outputs of a near-perfect discriminator can not be expected to provide a useful
assessment of the quality of the generated samples.

Since GAN optimization is highly non-convex it is natural to ask if GANs find
locally optimal points in the form of local Nash or Stackelberg equilibria. This local
minmax interpretation has been emphasized by [84, 130], but the experiments of [35]
as well as our own in Figure 9.4 suggest that good GAN solutions for metric-agnostic

174

GANs are typically not locally optimal for both players. It seems plausible that the
discriminator, being highly overparameterized, can find a direction of improvement
against most generators.

The problemwithmetric-informedGANs. The above observation hasmotivated
the introduction of metric-informed GANs that restrict the size of the gradient of
the discriminator (as a function mapping images to real numbers). This limits the
discriminator’s ability to capitalize on small misalignments betweenD and %data and
thus makes for a meaningful minimax interpretation even if the two measures have
fully disjoint support. However, the Achilles heel of this approach is that it needs to
choose a metric to quantify the magnitude of the discriminator’s gradients. Most of
the early work on metric-informed GANs chose to measure the size of ∇D using the
Euclidean norm [15, 16, 106, 139, 176, 208]. However, since the discriminator maps
images to real numbers, this corresponds to quantifying the similarity of images at
least locally by the Euclidean distance of vectors containing the intensity values of
each pixel. As illustrated in Figure 9.2, this notion of similarity is poorly aligned
with visual similarity even locally. From this point of view, it is not surprising
that the generative model of [48], based on a differentiable optimal transport solver,
produced samples of lower visual quality than WGAN-GP, despite achieving better
approximation in Wasserstein metric. As noted by [48], these observations suggest
that the performance of WGAN can not be explained by its relationship to the
Wasserstein distance. When comparing a variety of GAN formulations with a fixed
budget for hyperparameter tuning, [159] did not find systematic differences in their
performance. This provides additional evidence that the key to GAN performance
does not lie in the choice of a particular divergence between probability measures.

The metric-informed divergences considered so far were all based on the Euclidean
distance between images. Other researchers have tried using different metrics on
image space such as Sobolev or Besov norms [6, 177, 239], or kernelmaximummean
discrepancy distances [39, 148, 151]. However, none of these metrics do a good
job at capturing perceptual similarity either, which explains why these variants have
not been observed to outperform WGAN(-GP) in general. Researchers in computer
vision have proposed more sophisticated domain-specific distance measures [220],
kernel functions [110, 224], and features maps [58]. Alternatively, methods from
differential geometry have been used for image inter– and extrapolation [36, 70, 238].
But none of these approaches achieves performance comparable to that of neural
networks, making them unlikely solutions for the GAN-dilemma.

175

A way out. Generative modeling means producing new samples that are similar
to the training samples, but not too similar to each other. Thus, every generative
method needs to choose how to measure similarity between samples, implicitly or
explicitly.
When analyzing GANs from the minimax perspective, this assessment of image
similarity seems to rely exclusively on the classical metrics and divergences used for
their formulation. But modeling perceptual similarity is hard, and most commonly
used GAN formulations are based on measures of similarity that are known to
be terrible at this task. Thus, the minimax point of view can not explain why
GANs produce images of higher visual quality than any other method. The key to
image classification is to map similar images to similar labels. The fact that deep
neural networks drastically outperform classical methods in these tasks leads us to
believe that they capture the perceptual similarity between images far better than
any classical model. We believe that the success of GANs is due to their ability
to implicitly use the inductive biases of the discriminator network as a notion of
similarity. They create images that look real to a neural network, which acts as a
proxy for looking real to the human eye. In the next section, we propose a new
mechanism, implicit competitive regularization, to explain this behavior.

9.3 Implicit competitive regularization (ICR)
Implicit regularization. Based on the discussion in the last section, any attempt
at understanding GANs needs to involve the inductive biases of the discriminator.
However, there is ample evidence that the inductive biases of neural networks do
not arise from a limited ability to represent certain functions. Indeed, it is known
that modern neural networks can fit almost arbitrary functions [57, 140, 257].
Rather, they seem to arise from the dynamics of gradient-based training that tends
to converge to classifiers that generalize well, a phenomenon commonly referred to
as implicit regularization [18, 19, 107, 145, 160, 183].

Implicit regularization is not enough for GANs. The implicit regularization
induced by gradient descent lets neural networks prefer sets of weights with good
generalization performance. However, the outputs of even a well-trained neural
network are typically not informative about the confidence of the predicted class
[108]. Thus, a discriminator trained on finite amounts of real data and data generated
by a given generator can be expected to distinguish new real data from new data
generated by a similar generator with high accuracy. However, its outputs do

176

Figure 9.3: ICR in the quadratic case. When optimizing only H in Equation (9.3), it
diverges rapidly to infinity, for any fixed H. If, however, we simultaneously optimize
G and H with respective step sizes [G = 0.09 and [H = 0.01, we converge to (0, 0).

not quantify the confidence of its prediction and thus of the visual quality of the
generated samples. Therefore, even considering implicit regularization, a fully
trained discriminator does not provide useful gradients for training the generator.

Implicit competitive regularization. We think that GAN training relies on implicit
competitive regularization (ICR), an additional implicit regularization due to the
simultaneous training of generator and discriminator. When training generator and
discriminator simultaneously, ICR selectively stabilizes good generators that would
not be stable when training one player while keeping the other player fixed.

Consider the game given by

min
G

max
H
G2 + 10GH + H2. (9.3)

In this problem, for any fixed G, any choice of H will be sub-optimal, and gradient
ascent on H (with G fixed) will diverge to infinity for almost all initial values.

What about simultaneous gradient descent? As has been observed before [168],
simultaneous gradient descent with step sizes [G = 0.09 for G and [H = 0.01 for H
will converge to (0, 0), despite it being a locally worst strategy for the maximizing
player. (See Figure 9.3 for an illustration.) This is a first example of ICR, whereby
the simultaneous optimization of the two agents introduces additional attractive
points to the dynamics that are not attractive when optimizing one of the players
using gradient descent while keeping the other player fixed.

177

Figure 9.4: ICR on MNIST. We train a GAN on MNIST until we reach a check-
point where it produces good images. (First image) We fix the generator and only
train the discriminator, observing that it can reach near-zero loss. When instead
training generator and discriminator jointly, the loss stays stable. (Second image)
When trained individually, the discriminatormoves significantly slower slower when
trained jointly with the generator, as measured by its output on a set of thousand
reference images.

As outlined in Section 9.2, the key to the performance of GANs has to lie in
the simultaneous optimization process. We now provide evidence that the solutions
found byGANs are indeed stabilized by ICR. To this end, we train a GAN onMNIST
until it creates good images. We refer to the resulting generator and discriminator
as the checkpoint generator and discriminator. We observe that the loss of both
generator and discriminator, as well as the image quality, is somewhat stable even
though it would diverge after a long time of training. If instead, starting at the
checkpoint, we optimize only the discriminator while keeping the generator fixed, we
observe that the discriminator loss drops rapidly. For the same number of iterations
and using the same learning rate, the discriminator moves away from the checkpoint
significantly faster as measured both by the Euclidean norm of the weights and the
output on real and fake images. The observation that the discriminator diverges from
the checkpoint faster when trained individually than when trained simultaneously
with the generator suggests that the checkpoint, which produced good images, was
stabilized by ICR.

178

9.4 How ICR lets GANs generate
A (hypo)thesis. In the example in the last section, the checkpoint producing good
images was stabilized by ICR. However, we have not yet given a reason why points
stabilized by ICR should have better generators, in general. For GANs to produce
visually plausible images, there has to be some correspondence between the training
of neural networks and human visual perception. Since learning and generalization
are poorly understood even for ordinary neural network classifiers, we cannot avoid
making an assumption on the nature of this relationship. This section relies on the
following hypothesis.

Hypothesis How quickly the discriminator can pick up on an imperfection of the
generator is correlated with the visual prominence of said imperfection.

It is common intuition in training neural network classifiers that more visually
obvious patterns are learned in fewer iterations and from less data. It is also in
line with the coherent gradient hypothesis of [45] that explains the generalization
of neural networks with the fact that systematic patterns in the data generate more
coherent gradients and are therefore learned faster. While a thorough verification of
the hypothesis is beyond the scope of this work, we provide some empirical evidence
in Figure 9.5.

This section argues for the following thesis.

Thesis ICR selectively stabilizes generators for which the discriminator can only
improve its loss slowly. By the hypothesis, these generators will produce high-
quality samples.

An argument in the quadratic case. We begin with the quadratic problem in
Equation 9.3 andmodel the different speeds of learning of the two agents by changing
their step sizes [G and [H. In Figure 9.6, we see that for

(
[G , [H

)
= (0.03, 0.03),

the two agents slowly diverge to infinity and for
(
[G , [H

)
= (0.01, 0.09), divergence

occurs rapidly. In general, stable points Ḡ of an iteration (G:+1 = G: + � (G:) are
characterized by (1): � (Ḡ) = 0 and (2) �G� (Ḡ) having a spectral radius smaller
than one [173, Proposition 3]. For SimGD applied to a zero sum game with the loss
of G given by 5 , these are points with vanishing gradients such that

Id − " B Id −
(
[G�

2
GG 5 [G�

2
GH 5

−[H�2
HG 5 −[H�2

HH 5

)

179

Figure 9.5: Discriminator learning and image quality. By prematurely stopping
the training process, we obtain generators of different image quality on CIFAR10
(higher inception score (IS) reflects better image quality). We then train a new
discriminator against this fixed generator and measure how quickly it increases its
classification performance. We use a model trained on the 10-class classification
task as a starting point for the discriminator to prevent the initial phase of training
from polluting the measurements. While all discriminators achieve near-perfect
accuracy eventually, the rate of improvement is inversely correlated to the inception
score of the generator.

has a spectral radius smaller than one. For univariate G and H, we can set 0 B �2
GG 5 ,

1 B �2
GH 5 , and 2 B �2

HH 5 , and compute the characteristic polynomial of " as

?(_) = _2 − ([G0 − [H2)_ + (−[G[H02 + [G[H12).

For [G0 > [H2 and [G[H12 > [G[H02, the solutions of this equation have positive
real part and therefore the eigenvalues of " have positive real part. By multiplying
[G and [H by a small enough factor, we can obtain a spectral radius smaller than one
(c. f. [168]). Thus, a small enough [H and large enough mixed derivative 1 can
ensure convergence even for positive 2.

If we think of the maximizing player as the discriminator, slow learning (modeled
by small [H) is correlated to good images produced by the generator. Thus, in
this interpretation, a good generator leads to ICR stabilizing the point (0, 0) more
strongly.

180

Figure 9.6: ICR depends on speed of learning. When changing the learning
rates to

(
[G , [H

)
= (0.03, 0.03) (top) or

(
[G , [H

)
= (0.01, 0.09) (bottom), SimGD

diverges.

Adversarial training as projection. Surprisingly, ICR allows us to compute a
projection with respect to the perceptual distance of a neural network without quan-
tifying this distance explicitly. Let us consider the following example. We construct
a generator G that maps its 28 weights to a bivariate output. This nonlinear map
is modelled as a tiny neural network with two hidden layers, with the final layer
restricting the output to the set S B

{
(4B+C , 4B−C)

��B ∈ [
−1

2 ,
1
2
]
, C ∈ R

}
⊂ R2. We

think of this as mapping a set of weights to a generative model that is characterized
by only two parameters. In this parameterization, we assume that the target distribu-
tion is represented by the point %data = (2, 2). Importantly, as shown in Figure 9.7,
there is no set of weights that allow the generator to output exactly %data. This is to
model the fact that in general, the generator will not be able to exactly reproduce the
target distribution. We construct a discriminator D that maps a generative model
(a pair of real numbers) and a set of 28 weights to a real number by a small, densely

181

Figure 9.7: Approximate projection via adversarial training. On the left column,
the discriminator picks up on errors in the G- and H-direction equally quickly.
Therefore, the generator tries to satisfy the criteria alternatingly, leading to a cyclic
pattern. In the right column, the discriminator picks up on errors in the G-direction
much more quickly. This causes the generator to try to stay accurate in the G-
direction.

connected neural network.

We want to model the difference in visual prominence of the two components of
%data. To this end, we assume that before being passed to the discriminator, G and
%data are rescaled by a diagonal matrix [∈ R2×2. Thus, [determines the relative
size of the gradients of D with respect to the first and second components of the
input data. This models the hypothesis that a real discriminator will pick up more
quickly on visually prominent features. Importantly, we assume [to be unknown
since we do not have access to a metric measuring “visual similarity to a neural
network”.

182

We will now show how adversarial training can be used to approximate a projection
with respect to [, without knowing [. We use the loss

min
FG∈R28

max
FD∈R28

D ([%data, FD) − D
(
[G

(
FG

)
, FD

)
(9.4)

and train the two networks using simultaneous gradient descent. For [equal to the
identity, we see oscillatory training behavior as G tries to be accurate first in one,
then the other direction. If we instead use [=

(
1 0
0 10−2

)
, we are modelling the first

component as being more visually prominent. Instead of the oscillatory patterns
from before, we observe long periods where the value of the first component of
G

(
FG

)
is equal to the first component of %data (see Figure 9.7). Without knowing

[, we have approximated the projection of %data onto S with respect to the metric
given by (G, H) ↦→ ‖[(G, H)‖. To do so, we used the fact that this point is subject to
the slowest learning discriminator, and thus the strongest ICR.

We believe that GANs use the same mechanism to compute generators that are close
to the true data in the perceptual distance of the discriminator, which in turn acts as
a proxy for the perceptual distance of humans.

9.5 Competitive gradient descent amplifies ICR
How to strengthen ICR. We have provided evidence that GANs’ ability to gen-
erate visually plausible images can be explained by ICR selectively stabilizing good
generators. It is well known that GANs often exhibit unstable training behavior,
which is mirrored by the observations in Figures 9.3, 9.4 and 9.7 that ICR often only
leads to weak, temporary stability. Thus, it would be desirable to find algorithms
that induce stronger ICR than SimGD. To this end, we will find a game-theoretic
point of view useful.

Cooperation in a zero-sum game? As discussed in the last section, ICR can
stabilize solutions that are locally suboptimal for at least one of the players. Since
we did not model either of the two players as altruistic, this behavior may seem
puzzling. It is likely for this reason that ICR has mostly been seen as a flaw, rather
than a feature of SimGD.

Convergence by competition. The quadratic example in Equation (9.3) shows
that the bilinear term GH is crucial for the presence of ICR. Otherwise, SimGD
reduces to each player moving independently according to gradient descent. In fact,
the strength of ICR decreases rapidly as |U | and |V | diverge to infinity.

183

The mixed term GH models the ability of each player to retaliate against actions of
the other player. In the case of V < 0, as the maximizing player H moves to plus
infinity in order to maximize its reward, it becomes a locally optimal strategy for
the minimizing player G to move towards negative infinity in order to minimize the
dominant term GH. If |V | � 1, it is favorable for the maximizing player to move
back towards zero in order to maximize the dominant term GH. The reason for the
maximizing player to stay in the sub-optimal point H = 0 (the maximizer of its loss,
for G = 0) is that the minimizing player can use the mixed term GH to punish every
move of H with a counterattack. Thus, the need to avoid counterattacks justifies the
seemingly sub-optimal decision of the maximizing player to stay in H = 0.

The generator strikes back! This phenomenon is also present in the example of
Figure 9.4. Consider the checkpoint generator from Figure 9.4 and the over-trained
discriminator that achieves near-perfect score against the discriminator. As we can
see in Figure 9.8, training the generator while keeping the over-trained discriminator
fixed leads to a rapidly increasing discriminator loss. The over-trained discriminator
has become vulnerable to counterattack by the generator! If instead the generator is
trained against the checkpoint discriminator, the loss increases only slowly. Thus,
ICR can be interpreted as the discriminator trying to avoid counterattack by the
generator.

Agent modelling for stronger ICR. The update (G, H) of SimGD applied to the
loss function 5 can be interpreted as the two players solving, at each step, the local
optimization problem

min
G
G>∇G 5 (G: , H:) +

‖G‖2
2[

, max
H
H>∇H 5 (G: , H:) −

‖H‖2
2[

.

The terms G>∇G 5 (G: , H:), H>∇H 5 (G: , H:) express the belief about the loss associated
to different actions, based on local information. The quadratic regularization terms
express their uncertainty about these beliefs, letting them avoid extreme actions
(large steps). However, H (G) does not appear in the local optimization problem
of G (H). Thus, the two players are not taking the presence of their opponent into
account when choosing their actions. Accordingly, ICR arises only because of the
players’ reaction to, rather than anticipation of, each others’ actions. We propose
to strengthen ICR by using local optimization problems that model the players’
anticipation of each other’s action.

184

Figure 9.8: ICR and opponent-awareness. When training the generator for just a
few iterations against the over-trained discriminator of Figure 9.4, the discriminator
loss increases rapidly. When attempting to over-trainwith CGD instead of Adam, the
resulting discriminator is even more robust. Similarly, CGD is able to significantly
increase the duration for which the generator stays accurate in the (more important)
G-direction in Figure 9.7.

Competitive gradient descent. The updates of competitive gradient descent (CGD)
described in Chapter 7 are obtained as Nash equilibria of the local game

min
G
G>∇G 5 (G: , H:) + G> [�GH 5 (G: , H:))]H +

‖G‖2
2[

,

max
H
H>∇H 5 (G: , H:) + H> [�HG 5 (G: , H:))]G −

‖H‖2
2[

.

Under CGD, the players are aware of each other’s presence at every step, since
the mixed Hessian G> [�GH 5 (G: , H:)]H informs each player how the simultaneous
actions of the other player could affect the loss incurred due to their own action. This
element of anticipation strengthens ICR, as indicated by the convergence results
provided in Chapter 7. Providing additional evidence, we see in Figure 9.8 that
attempting to over-train the discriminator using CGD leads to a discriminator that is
even more robust than the checkpoint discriminator. Applying CGD to the example
of Figure 9.7 also increases the stability of the approximate projection of %data onto
S according to the metric implicit in the discriminator. These results suggest the use
of CGD to strengthen ICR in GAN training, which we will investigate in the next
section. We also expect methods such as LOLA [86] or SGA [24, 89] to strengthen
ICR, but a detailed comparison is beyond the scope of this work.

9.6 Empirical study on CIFAR10
Experimental setup. Based on the last section, CGD strengthens the effects of
ICR and should therefore improve GAN performance. We will now investigate
this question empirically. In order to make for a fair comparison with Adam,

185

we combine CGD with a simple RMSprop-type heuristic to adjust learning rates,
obtaining adaptive CGD (ACGD, see Appendix for details). As loss functions, we
use the original GAN loss (OGAN) of (9.1) and the Wasserstein GAN loss function
(WGAN) given by

min
G

max
D
EG∼%data [D(G)] − EG∼%G [D(G)] .

When using Adam on OGAN, we stick to the common practice of replacing the
generator loss by EG∼%G [− log (D(G))], as this has been found to improve training
stability [96, 97]. In order to be generous towards existing methods, we use an
existing architecture intended for the use with WGAN gradient penalty [106]. As
regularizers, we consider no regularization (NOREG), ℓ2 penalty on the discrimi-
nator with different weights (L2), spectral normalization [176] on the discriminator
(SN), or 1-centered gradient penalty on the discriminator, following [106] (GP).
Following the advice in [97], we train generator and discriminator simultaneously,
with the exception of WGAN-GP and Adam, for which we follow [106] in making
five discriminator updates per generator update. We use the Pytorch implementation
of inception score (IS) [211] to compare generator quality.3

Experimental results. We will now summarize our main experimental findings,
(see Figure 9.9). (1) When restricting our attention to the top-performing mod-
els, we observe that the combination of ACGD with the WGAN loss and without
any regularization achieves a higher inception score than all other combinations
tested. (2) The improvement obtained from training with ACGD persists when mea-
suring image quality according to the Frechét-inception-distance (FID) [117]. (3)
When comparing the number of gradient computations andHessian-vector products,
ACGD is significantly slower than WGAN loss with spectral normalization trained
with Adam, because of the iterative solution of the matrix inverse in ACGD’s update
rule. (4) The only instance where we observe erratic behavior with ACGD is when
using OGAN without regularization or with a small ℓ2 penalty. However, ACGD
still outperforms Adam in those cases. In particular, training with Adam breaks
down completely when using the original saturating loss (as we do for ACGD). (5)
When plotting the difference between the inception scores obtained by ACGD and
Adam for the same model over the number of iterations, for all models, we observe
that ACGD often performs significantly better and hardly ever significantly worse.

3The Pytorch implementation gives slightly different scores than Tensorflow. We report Tensor-
flow IS in the Appendix; the relative performance is largely the same.

186

Figure 9.9: Experiments on CIFAR10. We plot the inception score (IS) against the
number of iterations (first panel) and gradient orHessian-vector product computation
(second panel). In the third panel we show final samples of WGAN trained with
ACGDandwithout explicit regularization. In panel four, we comparemeasure image
quality using the Frechet-inception-distance (FID, smaller is better). The results are
consistent with those obtained using IS. In panel five, we plot the difference between
inception scores between ACGD and Adam (positive values correspond to a larger
score for ACGD) over different iterations and models. The only cases where we
observe non-convergence ofACGDareOGANwithout regularization orwithweight
decay of weight 0.0001, as shown in the last panel. The inception score is, however,
still higher than for the same model trained with Adam. When using Adam on the
original saturating GAN loss (which we used with ACGD), training breaks down
completely.

Since CGD strengthens the effects of ICR, the performance improvements obtained
with CGD provide further evidence that ICR is a key factor to GAN performance.

187

BIBLIOGRAPHY

[1] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Func-
tions with Formulas, Graphs, and Mathematical Tables, volume 55 of Na-
tional Bureau of Standards Applied Mathematics Series. U.S. Government
Printing Office, Washington, D.C., 1964.

[2] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained
policy optimization. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 22–31. JMLR. org, 2017.

[3] Loyce M. Adams and Harry F. Jordan. Is SOR color-blind? SIAM Journal
on Scientific and Statistical Computing, 7(2):490–506, 1986.

[4] LoyceMAdams and JamesMOrtega. Amulti-color SORmethod for parallel
computation. In ICPP, pages 53–56. Citeseer, 1982.

[5] Robert A. Adams and John J. F. Fournier. Sobolev Spaces, volume 140
of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press,
Amsterdam, second edition, 2003.

[6] Jonas Adler and Sebastian Lunz. Banach Wasserstein gan. In Advances in
Neural Information Processing Systems, pages 6754–6763, 2018.

[7] Raymond Alcouffe, Achi Brandt, Joel Dendy, Jr., and James W. Painter.
The multi-grid method for the diffusion equation with strongly discontinuous
coefficients. SIAM J. Sci. Stat. Comput., 2(4):430–454, 1981.

[8] Shun-ichi Amari. Information geometry and its applications, volume 194.
Springer, 2016.

[9] Shun-ichi Amari and Hiroshi Nagaoka. Methods of information geometry,
volume 191. American Mathematical Soc., 2007.

[10] Sivaram Ambikasaran and Eric Darve. An O(= log =) fast direct solver for
partial hierarchically semi-separable matrices. Journal of Scientific Comput-
ing, 57(3):477–501, 2013.

[11] SivaramAmbikasaran, Daniel Foreman-Mackey, Leslie Greengard, DavidW.
Hogg, and Michael O’Neil. Fast direct methods for Gaussian processes.
IEEE Trans. Pattern Anal. Mach. Intell., 38(2):252–265, 2016. doi: 10.1109/
TPAMI.2015.2448083.

[12] Patrick R. Amestoy, Timothy A. Davis, and Iain S. Duff. An approximate
minimum degree ordering algorithm. SIAM Journal on Matrix Analysis and
Applications, 17(4):886–905, 1996.

188

[13] Brandon Anderson, Truong Son Hy, and Risi Kondor. Cormorant: Covariant
molecular neural networks. In Advances in Neural Information Processing
Systems, pages 14510–14519, 2019.

[14] Brian D. O. Anderson and John B. Moore. Optimal Control: Linear
Quadratic Methods. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1990.
ISBN 0-13-638560-5.

[15] Martín Arjovsky and Léon Bottou. Towards principled methods for training
generative adversarial networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=Hk4_qw5xe.

[16] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative
adversarial networks. In International Conference on Machine Learning,
pages 214–223, 2017.

[17] Sanjeev Arora, Rong Ge, Yingyu Liang, TengyuMa, and Yi Zhang. General-
ization and equilibrium in generative adversarial nets (gans). In Proceedings
of the 34th International Conference on Machine Learning-Volume 70, pages
224–232. JMLR. org, 2017.

[18] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regulariza-
tion in deep matrix factorization. arXiv preprint arXiv:1905.13655, 2019.

[19] Navid Azizan, Sahin Lale, and Babak Hassibi. Stochastic mirror descent on
overparameterized nonlinear models: Convergence, implicit regularization,
and generalization. arXiv preprint arXiv:1906.03830, 2019.

[20] Ivo Babuška and John E. Osborn. Can a finite element method perform
arbitrarily badly? Math. Comp., 69(230):443–462, 2000. doi: 10.1090/
S0025-5718-99-01085-6.

[21] Francis R. Bach and Michael I. Jordan. Kernel independent compo-
nent analysis. J. Mach. Learn. Res., 3(1):1–48, 2003. doi: 10.1162/
153244303768966085.

[22] Pierre-Luc Bacon, Florian Schäfer, Clement Gehring, Animashree Anand-
kumar, and Emma Brunskill. A Lagrangian method for inverse problems in
reinforcement learning, 2019.

[23] Christopher T. H Baker. The numerical treatment of integral equations.
Clarendon Press ;, Oxford [Oxfordshire] :, 1978. URL http://caltech.
tind.io/record/383605. Reprinted with corrections.

[24] David Balduzzi, Sebastien Racaniere, James Martens, Jakob Foerster, Karl
Tuyls, and Thore Graepel. The mechanics of n-player differentiable games.
arXiv preprint arXiv:1802.05642, 2018.

https://openreview.net/forum?id=Hk4_qw5xe
https://openreview.net/forum?id=Hk4_qw5xe
http://caltech.tind.io/record/383605
http://caltech.tind.io/record/383605

189

[25] Sudipto Banerjee, Alan E. Gelfand, Andrew O. Finley, and Huiyan Sang.
Gaussian predictive process models for large spatial data sets. J. R. Stat.
Soc. Ser. B Stat. Methodol., 70(4):825–848, 2008. doi: 10.1111/j.1467-
9868.2008.00663.x.

[26] Jing Yu Bao, Fei Ye, and Ying Yang. Screening effect in isotropic Gaussian
processes. Acta Mathematica Sinica, English Series, 36(5):512–534, 2020.

[27] Ricardo Baptista, Olivier Zahm, and Youssef Marzouk. An adaptive trans-
port framework for joint and conditional density estimation. arXiv preprint
arXiv:2009.10303, 2020.

[28] M. Bebendorf and S. Rjasanow. Adaptive low-rank approximation of collo-
cation matrices. Computing, 70(1):1–24, 2003. doi: 10.1007/s00607-002-
1469-6.

[29] Mario Bebendorf and Wolfgang Hackbusch. Existence ofH -matrix approx-
imants to the inverse FE-matrix of elliptic operators with !∞-coefficients.
Numer. Math., 95(1):1–28, 2003. doi: 10.1007/s00211-002-0445-6.

[30] Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected
subgradient methods for convex optimization. Operations Research Letters,
31(3):167–175, 2003.

[31] Michele Benzi. Localization in matrix computations: Theory and applica-
tions. In Michele Benzi and Valeria Simoncini, editors, Exploiting Hidden
Structure in Matrix Computations: Algorithms and Applications : Cetraro,
Italy 2015, pages 211–317. Springer International Publishing, Cham, 2016.
doi: 10.1007/978-3-319-49887-4_4.

[32] Michele Benzi and Valeria Simoncini. Decay bounds for functions of Her-
mitian matrices with banded or Kronecker structure. SIAM J. Matrix Anal.
Appl., 36(3):1263–1282, 2015. doi: 10.1137/151006159.

[33] Michele Benzi and Miroslav Tůma. A comparative study of sparse ap-
proximate inverse preconditioners. Appl. Numer. Math., 30(2-3):305–340,
1999. ISSN 0168-9274. doi: 10.1016/S0168-9274(98)00118-4. URL
https://doi.org/10.1016/S0168-9274(98)00118-4. Iterative Meth-
ods and Preconditioners (Berlin, 1997).

[34] Michele Benzi and Miroslav Tůma. Orderings for factorized sparse approxi-
mate inverse preconditioners. SIAM J. Sci. Comput., 21(5):1851–1868, 2000.
doi: 10.1137/S1064827598339372.

[35] Hugo Berard, Gauthier Gidel, Amjad Almahairi, Pascal Vincent, and Simon
Lacoste-Julien. A closer look at the optimization landscapes of generative
adversarial networks. arXiv preprint arXiv:1906.04848, 2019.

https://doi.org/10.1016/S0168-9274(98)00118-4

190

[36] Benjamin Berkels, Alexander Effland, and Martin Rumpf. Time discrete
geodesic paths in the space of images. SIAM Journal on Imaging Sciences, 8
(3):1457–1488, 2015.

[37] Dimitris Bertsimas, David B. Brown, and Constantine Caramanis. Theory
and applications of robust optimization. SIAM Rev., 53(3):464–501, 2011.
ISSN 0036-1445. doi: 10.1137/080734510. URL https://doi.org/10.
1137/080734510.

[38] Gregory Beylkin, Ronald Coifman, and Vladimir Rokhlin. Fast wavelet
transforms and numerical algorithms. I. Comm. Pure Appl. Math., 44(2):
141–183, 1991. doi: 10.1002/cpa.3160440202.

[39] Mikołaj Bińkowski, Dougal J Sutherland, Michael Arbel, and Arthur Gretton.
Demystifying MMD GANs. arXiv preprint arXiv:1801.01401, 2018.

[40] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, Cambridge, 2004. doi: 10.1017/CBO9780511804441.

[41] Achi Brandt. Multi-level adaptive techniques (MLAT) for partial differential
equations: ideas and software. InMathematical software, III (Proc. Sympos.,
Math. Res. Center, Univ. Wisconsin, Madison, Wis.,1977), pages 277–318.
Publ. Math. Res. Center, No. 39. Academic Press, New York, 1977.

[42] Achi Brandt, James Brannick, Karsten Kahl, and Irene Livshits. Bootstrap
AMG. SIAM J. Sci. Comput., 33(2):612–632, 2011.

[43] Donald L. Brown, Joscha Gedicke, and Daniel Peterseim. Numerical homog-
enization of heterogeneous fractional Laplacians. Multiscale Model. Simul.,
16(3):1305–1332, 2018. doi: 10.1137/17M1147305.

[44] George W. Brown. Iterative solution of games by fictitious play. Activity
analysis of production and allocation, 13(1):374–376, 1951.

[45] Sat Chatterjee. Coherent gradients: An approach to understanding generaliza-
tion in gradient descent-based optimization. In International Conference on
LearningRepresentations, 2020. URLhttps://openreview.net/forum?
id=ryeFY0EFwS.

[46] Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran
Rajamanickam. Algorithm 887: Cholmod, supernodal sparse cholesky
factorization and update/downdate. ACM Trans. Math. Softw., 35(3), Oc-
tober 2008. ISSN 0098-3500. doi: 10.1145/1391989.1391995. URL
https://doi.org/10.1145/1391989.1391995.

[47] Yifan Chen, Bamdad Hosseini, Houman Owhadi, and Andrew M Stuart.
Solving and learning nonlinear pdes with gaussian processes. arXiv preprint
arXiv:2103.12959, 2021.

https://doi.org/10.1137/080734510
https://doi.org/10.1137/080734510
https://openreview.net/forum?id=ryeFY0EFwS
https://openreview.net/forum?id=ryeFY0EFwS
https://doi.org/10.1145/1391989.1391995

191

[48] Yucheng Chen, Matus Telgarsky, Chao Zhang, Bolton Bailey, Daniel Hsu,
and Jian Peng. A gradual, semi-discrete approach to generative network train-
ing via explicit wasserstein minimization. arXiv preprint arXiv:1906.03471,
2019.

[49] Jean-Paul Chilès and Pierre Delfiner. Geostatistics: Modeling Spatial Uncer-
tainty. Wiley Series in Probability and Statistics. John Wiley & Sons, Inc.,
Hoboken, NJ, second edition, 2012. doi: 10.1002/9781118136188.

[50] Edmond Chow and Aftab Patel. Fine-grained parallel incomplete LU factor-
ization. SIAM journal on Scientific Computing, 37(2):C169–C193, 2015.

[51] Edmond Chow and Yousef Saad. Preconditioned Krylov subspace methods
for sampling multivariate Gaussian distributions. SIAM Journal on Scientific
Computing, 36(2):A588–A608, 2014.

[52] Jon Cockayne, Chris Oates, Tim Sullivan, and Mark Girolami. Probabilistic
numerical methods for pde-constrained bayesian inverse problems. AIP Con-
ference Proceedings, 1853(1):060001, 2017. doi: 10.1063/1.4985359. URL
https://aip.scitation.org/doi/abs/10.1063/1.4985359.

[53] Taco Cohen and MaxWelling. Group equivariant convolutional networks. In
International Conference on Machine Learning, pages 2990–2999, 2016.

[54] Andrew Cotter, Maya Gupta, Heinrich Jiang, Nathan Srebro, Karthik Srid-
haran, Serena Wang, Blake Woodworth, and Seungil You. Training well-
generalizing classifiers for fairness metrics and other data-dependent con-
straints. arXiv preprint arXiv:1807.00028, 2018.

[55] Andrew Cotter, Heinrich Jiang, and Karthik Sridharan. Two-player
games for efficient non-convex constrained optimization. arXiv preprint
arXiv:1804.06500, 2018.

[56] Elizabeth Cuthill and James McKee. Reducing the bandwidth of sparse
symmetric matrices. In Proceedings of the 1969 24th National Conference,
pages 157–172, 1969.

[57] George Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, 2(4):303–314, 1989.

[58] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), volume 1, pages 886–893. IEEE, 2005.

[59] Raffaello D’Andrea. Lmi approach to mixed h-2 and h-infinity performance
objective controller design. IFAC Proceedings Volumes, 29(1):3198–3203,
1996.

https://aip.scitation.org/doi/abs/10.1063/1.4985359

192

[60] Yair Daon and Georg Stadler. Mitigating the influence of the boundary on
PDE-based covariance operators. Inverse Probl. Imaging, 12(5):1083–1102,
2018. doi: 10.3934/ipi.2018045.

[61] Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang
Zeng. Training gans with optimism. arXiv preprint arXiv:1711.00141, 2017.

[62] Abhirup Datta, Sudipto Banerjee, AndrewO Finley, and Alan E. Gelfand. Hi-
erarchical nearest-neighbor Gaussian process models for large geostatistical
datasets. Journal of the American Statistical Association, 111(514):800–812,
2016.

[63] Timothy A. Davis. Direct methods for sparse linear systems. SIAM, 2006.

[64] TimothyADavis, SivasankaranRajamanickam, andWissamM.Sid-Lakhdar.
A survey of direct methods for sparse linear systems. Acta Numer., 25:383–
566, 2016.

[65] S. Dekel and D. Leviatan. The Bramble–Hilbert lemma for convex do-
mains. SIAM J. Math. Anal., 35(5):1203–1212, 2004. doi: 10.1137/
S0036141002417589.

[66] S. Dekel and D. Leviatan. The Bramble–Hilbert lemma for convex do-
mains. SIAM J. Math. Anal., 35(5):1203–1212, 2004. doi: 10.1137/
S0036141002417589.

[67] Denis Demidov. AMGCL: An efficient, flexible, and extensible algebraic
multigrid implementation. Lobachevskii Journal of Mathematics, 40(5):535–
546, 2019.

[68] Stephen Demko, William F. Moss, and Philip W. Smith. Decay rates for
inverses of band matrices. Math. Comp., 43(168):491–499, 1984. doi:
10.2307/2008290.

[69] Persi Diaconis. Bayesian numerical analysis. In Statistical decision theory
and related topics, IV, Vol. 1 (West Lafayette, Ind., 1986), pages 163–175.
Springer, New York, 1988.

[70] Alexander Effland, Martin Rumpf, and Florian Schäfer. Image extrapolation
for the time discretemetamorphosismodel: Existence and applications. SIAM
Journal on Imaging Sciences, 11(1):834–862, 2018.

[71] Shinto Eguchi and John Copas. Interpreting Kullback-Leibler divergence
with the Neyman-Pearson lemma. J. Multivariate Anal., 97(9):2034–2040,
2006. ISSN 0047-259X. doi: 10.1016/j.jmva.2006.03.007. URL https:
//doi.org/10.1016/j.jmva.2006.03.007.

[72] Stanley C. Eisenstat. Efficient implementation of a class of preconditioned
conjugate gradient methods. SIAM Journal on Scientific and Statistical Com-
puting, 2(1):1–4, 1981.

https://doi.org/10.1016/j.jmva.2006.03.007
https://doi.org/10.1016/j.jmva.2006.03.007

193

[73] Ivar Ekeland and Roger Temam. Convex analysis and variational problems,
volume 28. Siam, 1999.

[74] Howard C. Elman and Elvira Agrón. Ordering techniques for the precondi-
tioned conjugate gradient method on parallel computers. Computer Physics
Communications, 53(1-3):253–269, 1989.

[75] A. Yu. Eremin, L. Yu. Kolotilina, and A. A. Nikishin. Factorized sparse
approximate inverse preconditionings. III. Iterative construction of precondi-
tionings. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI),
248(Chisl. Metody i Vopr. Organ. Vychisl. 13):17–48, 247, 1998. ISSN 0373-
2703. doi: 10.1007/BF02672769. URL https://doi.org/10.1007/
BF02672769.

[76] Francisco Facchinei and Jong-Shi Pang. Finite-dimensional variational in-
equalities and complementarity problems. Vol. II. Springer Series in Opera-
tions Research. Springer-Verlag, New York, 2003. ISBN 0-387-95581-X.

[77] Yuwei Fan, Cindy Orozco Bohorquez, and Lexing Ying. BCR-Net: A neural
network based on the nonstandard wavelet form. Journal of Computational
Physics, 384:1–15, 2019.

[78] Yuwei Fan, Jordi Feliu-Faba, Lin Lin, Lexing Ying, and Leonardo Zepeda-
Núnez. A multiscale neural network based on hierarchical nested bases.
Research in the Mathematical Sciences, 6(2):1–28, 2019.

[79] Yuwei Fan, Lin Lin, Lexing Ying, and Leonardo Zepeda-Núnez. A multi-
scale neural network based on hierarchical matrices. Multiscale Modeling &
Simulation, 17(4):1189–1213, 2019.

[80] G. E. Fasshauer. Meshfree methods. Handbook of theoretical and computa-
tional nanotechnology, American Scientific Publishers, 27:33–97, 2006.

[81] R. P. Fedorenko. A relaxation method of solution of elliptic difference equa-
tions. Ž. Vyčisl. Mat. i Mat. Fiz., 1:922–927, 1961.

[82] Michael Feischl and Daniel Peterseim. Sparse compression of expected
solution operators, 2018. arXiv:1807.01741.

[83] Massimiliano Ferronato, Carlo Janna, and Giuseppe Gambolati. A novel fac-
torized sparse approximate inverse preconditioner with supernodes. Procedia
Computer Science, 51:266–275, 2015.

[84] Tanner Fiez, BenjaminChasnov, andLillian JRatliff. Convergence of learning
dynamics in Stackelberg games. arXiv preprint arXiv:1906.01217, 2019.

[85] Shai Fine and Katya Scheinberg. Efficient SVM training using low-rank
kernel representations. J. Mach. Learn. Res., 2:243–264, 2001.

https://doi.org/10.1007/BF02672769
https://doi.org/10.1007/BF02672769
https://arxiv.org/abs/1807.01741

194

[86] Jakob Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson,
Pieter Abbeel, and Igor Mordatch. Learning with opponent-learning aware-
ness. In Proceedings of the 17th International Conference on Autonomous
Agents and MultiAgent Systems, pages 122–130. International Foundation for
Autonomous Agents and Multiagent Systems, 2018.

[87] Charless Fowlkes, Serge Belongie, Fan Chung, and Jitendra Malik. Spectral
grouping using the Nyströmmethod. IEEE Trans. Pattern Anal. Mach. Intell.,
26(2):214–225, 2004. doi: 10.1109/TPAMI.2004.1262185.

[88] Reinhard Furrer, Marc G. Genton, and Douglas Nychka. Covariance tapering
for interpolation of large spatial datasets. J. Comput. Graph. Statist., 15(3):
502–523, 2006. doi: 10.1198/106186006X132178.

[89] Ian Gemp and Sridhar Mahadevan. Global convergence to the equilibrium of
gans using variational inequalities. arXiv preprint arXiv:1808.01531, 2018.

[90] Alan George. Nested dissection of a regular finite element mesh. SIAM
Journal on Numerical Analysis, 10(2):345–363, 1973.

[91] Alan George and Joseph W. H. Liu. The evolution of the minimum degree
ordering algorithm. SIAM Rev., 31(1):1–19, 1989. doi: 10.1137/1031001.

[92] John R. Gilbert and Robert Endre Tarjan. The analysis of a nested dissection
algorithm. Numer. Math., 50(4):377–404, 1987. doi: 10.1007/BF01396660.

[93] Andrew Gilpin, Samid Hoda, Javier Pena, and Tuomas Sandholm. Gradient-
based algorithms for finding nash equilibria in extensive form games. In Inter-
national Workshop on Web and Internet Economics, pages 57–69. Springer,
2007.

[94] D. Gines, G. Beylkin, and J. Dunn. !* factorization of non-standard forms
and direct multiresolution solvers. Appl. Comput. Harmon. Anal., 5(2):156–
201, 1998. doi: 10.1006/acha.1997.0227.

[95] Tilmann Gneiting and Martin Schlather. Stochastic models that separate
fractal dimension and the Hurst effect. SIAM Rev., 46(2):269–282, 2004. doi:
10.1137/S0036144501394387.

[96] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-
versarial nets. In Advances in Neural Information Processing Systems, pages
2672–2680, 2014.

[97] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep
learning, volume 1. MIT Press, 2016.

195

[98] Ivan G Graham, Frances Y Kuo, Dirk Nuyens, Robert Scheichl, and Ian H
Sloan. Analysis of circulant embedding methods for sampling stationary
random fields. SIAM Journal on Numerical Analysis, 56(3):1871–1895,
2018.

[99] Joseph F Grcar. Mathematicians of gaussian elimination. Notices of the AMS,
58(6):782–792, 2011.

[100] Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle sim-
ulations. J. Comput. Phys., 73(2):325–348, 1987. doi: 10.1016/0021-
9991(87)90140-9.

[101] Paulina Grnarova, Kfir Y Levy, Aurelien Lucchi, Thomas Hofmann, and An-
dreasKrause. An online learning approach to generative adversarial networks.
arXiv preprint arXiv:1706.03269, 2017.

[102] Marcus J. Grote and Thomas Huckle. Parallel preconditioning with sparse
approximate inverses. SIAM J. Sci. Comput., 18(3):838–853, 1997.

[103] Peter D. Grünwald, A. Philip Dawid, et al. Game theory, maximum en-
tropy, minimum discrepancy and robust bayesian decision theory. Annals of
Statistics, 32(4):1367–1433, 2004.

[104] Joseph Guinness. Permutation methods for sharpening Gaussian process ap-
proximations. Technometrics, 60(4):415–429, 2018. doi: 10.1080/00401706.
2018.1437476.

[105] Joseph Guinness. Permutation and grouping methods for sharpening Gaus-
sian process approximations. Technometrics, 60(4):415–429, 2018.

[106] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron C Courville. Improved training of Wasserstein GANs. In Advances in
Neural Information Processing Systems, pages 5767–5777, 2017.

[107] Suriya Gunasekar, Blake E. Woodworth, Srinadh Bhojanapalli, Behnam
Neyshabur, and Nati Srebro. Implicit regularization in matrix factorization.
In Advances in Neural Information Processing Systems, pages 6151–6159,
2017.

[108] ChuanGuo, GeoffPleiss, Yu Sun, andKilianQ.Weinberger. On calibration of
modern neural networks. InProceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 1321–1330. JMLR. org, 2017.

[109] Peter Guttorp and Tilmann Gneiting. Studies in the history of probability
and statistics. XLIX. On the Matérn correlation family. Biometrika, 93(4):
989–995, 2006. doi: 10.1093/biomet/93.4.989.

[110] Bernard Haasdonk andHans Burkhardt. Invariant kernel functions for pattern
analysis and machine learning. Machine Learning, 68(1):35–61, 2007.

196

[111] W. Hackbusch. A fast iterative method for solving Poisson’s equation in a
general region. In Numerical treatment of differential equations (Proc. Conf.,
Math. Forschungsinst., Oberwolfach, 1976), pages 51–62. Lecture Notes in
Math., Vol. 631. Springer, Berlin, 1978.

[112] Wolfgang Hackbusch. A sparse matrix arithmetic based on H -matrices. I.
Introduction toH -matrices. Computing, 62(2):89–108, 1999. doi: 10.1007/
s006070050015.

[113] Wolfgang Hackbusch. Multi-Grid Methods and Applications, volume 4 of
Springer Series in Computational Mathematics. Springer-Verlag, Berlin Hei-
delberg, 2013. doi: 10.1007/978-3-662-02427-0.

[114] Wolfgang Hackbusch and Steffen Börm. Data-sparse approximation by adap-
tiveH2-matrices. Computing, 69(1):1–35, 2002. doi: 10.1007/s00607-002-
1450-4.

[115] Wolfgang Hackbusch and Boris N. Khoromskij. A sparse H -matrix arith-
metic. II. Application to multi-dimensional problems. Computing, 64(1):
21–47, 2000.

[116] Philipp Hennig, Michael A. Osborne, and Mark Girolami. Probabilistic
numerics and uncertainty in computations. Proc. A., 471(2179):20150142,
17, 2015. ISSN 1364-5021. doi: 10.1098/rspa.2015.0142. URL https:
//doi.org/10.1098/rspa.2015.0142.

[117] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler,
and Sepp Hochreiter. GANs trained by a two time-scale update rule converge
to a local Nash equilibrium. In Advances in Neural Information Processing
Systems, pages 6626–6637, 2017.

[118] Kenneth L. Ho and Lexing Ying. Hierarchical interpolative factorization
for elliptic operators: Integral equations. Comm. Pure Appl. Math., 69(7):
1314–1353, 2016. doi: 10.1002/cpa.21577.

[119] RogerA. Horn andCharles R. Johnson. Topics inMatrix Analysis. Cambridge
University Press, Cambridge, 1994. doi: 10.1017/CBO9780511840371. Cor-
rected reprint of the 1991 original.

[120] Thomas Y. Hou and Pengchuan Zhang. Sparse operator compression of
higher-order elliptic operators with rough coefficients. Res. Math. Sci., 4:
Paper No. 24, 49, 2017. doi: 10.1186/s40687-017-0113-1.

[121] Thomas Y. Hou, De Huang, Ka Chun Lam, and Pengchuan Zhang. An
adaptive fast solver for a general class of positive definite matrices via energy
decomposition. Multiscale Modeling & Simulation, 16(2):615–678, 2018.

https://doi.org/10.1098/rspa.2015.0142
https://doi.org/10.1098/rspa.2015.0142

197

[122] Gabriel Huang, Hugo Berard, Ahmed Touati, Gauthier Gidel, Pascal Vincent,
and Simon Lacoste-Julien. Parametric adversarial divergences are good task
losses for generative modeling. arXiv preprint arXiv:1708.02511, 2017.

[123] Hua Huang, Xin Xing, and Edmond Chow. H2pack: High-performance h
2 matrix package for kernel matrices using the proxy point method. ACM
Transactions on Mathematical Software (TOMS), 47(1):1–29, 2020.

[124] Peter J. Huber and Elvezio M. Ronchetti. Robust statistics. Wiley Series in
Probability and Statistics. John Wiley & Sons, Inc., Hoboken, NJ, second
edition, 2009. ISBN 978-0-470-12990-6. doi: 10.1002/9780470434697.
URL https://doi.org/10.1002/9780470434697.

[125] Thore Husfeldt. Graph colouring algorithms. In Topics in Chromatic Graph
Theory, volume 156 ofEncyclopediaMath. Appl., pages 277–303. Cambridge
Univ. Press, Cambridge, 2015. doi: 10.1017/CBO9781139519793.016.

[126] Alfredo N. Iusem. On the convergence properties of the projected gradient
method for convex optimization. Computational & Applied Mathematics, 22
(1):37–52, 2003.

[127] Takeshi Iwashita and Masaaki Shimasaki. Block red-black ordering: A
new ordering strategy for parallelization of ICCG method. Int. J. Parallel
Program., 31(1):55–75, 2003. doi: 10.1023/A:1021738303840.

[128] Stephane Jaffard. Propriétés des matrices “bien localisées” près de leur
diagonale et quelques applications. Ann. Inst. H. Poincaré Anal. Non Linéaire,
7(5):461–476, 1990.

[129] W. James and C. Stein. Estimation with quadratic loss. Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics and Probability, 1:
361–379, 1961. doi: 10.1177/0278364907080252.

[130] Chi Jin, Praneeth Netrapalli, and Michael I Jordan. Minmax optimization:
Stable limit points of gradient descent ascent are locally optimal. arXiv
preprint arXiv:1902.00618, 2019.

[131] Andre G. Journel and Ch. J. Huijbregts. Mining Geostatistics. Academic
Press, 1978.

[132] Olav Kallenberg and Olav Kallenberg. Foundations of modern probability,
volume 2. Springer, 1997.

[133] I. E. Kaporin. An alternative approach to the estimation of the number
of iterations in the conjugate gradient method. In Numerical Methods and
Software (Russian), pages 55–72. Akad. Nauk SSSR, Otdel Vychisl. Mat.,
Moscow, 1990.

https://doi.org/10.1002/9780470434697

198

[134] Matthias Katzfuss. A multi-resolution approximation for massive spatial
datasets. J. Amer. Stat. Assoc., 2016. doi: 10.1080/01621459.2015.1123632.

[135] Matthias Katzfuss and JosephGuinness. A general framework for Vecchia ap-
proximations of Gaussian processes. Statistical Science, forthcoming, 2019.
URL http://arxiv.org/abs/1708.06302.

[136] Matthias Katzfuss, Joseph Guinness, Wenlong Gong, and Daniel Zilber.
Vecchia approximations of Gaussian-process predictions. arXiv:1805.03309,
2018.

[137] Yuehaw Khoo and Lexing Ying. Switchnet: A neural network model for for-
ward and inverse scattering problems. SIAM Journal on Scientific Computing,
41(5):A3182–A3201, 2019.

[138] George S. Kimeldorf and GraceWahba. A correspondence between Bayesian
estimation on stochastic processes and smoothing by splines. The Annals of
Mathematical Statistics, 41(2):495–502, 1970.

[139] Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira. On conver-
gence and stability of gans. arXiv preprint arXiv:1705.07215, 2017.

[140] AndreyNikolaevich Kolmogorov. The representation of continuous functions
of several variables by superpositions of continuous functions of a smaller
number of variables. Doklady Akademii Nauk SSSR, 108(2):179–182, 1956.

[141] L. Yu. Kolotilina and A. Yu. Yeremin. Factorized sparse approximate inverse
preconditionings. I. Theory. SIAM J. Matrix Anal. Appl., 14(1):45–58, 1993.
ISSN 0895-4798. doi: 10.1137/0614004. URL https://doi.org/10.
1137/0614004.

[142] Ralf Kornhuber, Daniel Peterseim, and Harry Yserentant. An analysis of a
class of variational multiscale methods based on subspace decomposition.
Math. Comp., 87(314):2765–2774, 2018. doi: 10.1090/mcom/3302. URL
https://doi.org/10.1090/mcom/3302.

[143] G. M. Korpelevich. Extragradient method for finding saddle points and other
problems. Matekon, 13(4):35–49, 1977.

[144] Ilya Krishtal, Thomas Strohmer, and Tim Wertz. Localization of matrix
factorizations. Found. Comput. Math., 15(4):931–951, 2015. doi: 10.1007/
s10208-014-9196-x.

[145] Masayoshi Kubo, Ryotaro Banno, Hidetaka Manabe, and Masataka Minoji.
Implicit regularization in over-parameterized neural networks. arXiv preprint
arXiv:1903.01997, 2019.

http://arxiv.org/abs/1708.06302
https://doi.org/10.1137/0614004
https://doi.org/10.1137/0614004
https://doi.org/10.1090/mcom/3302

199

[146] F. M. Larkin. Gaussian measure in Hilbert space and applications in nu-
merical analysis. Rocky Mountain J. Math., 2(3):379–421, 1972. ISSN
0035-7596. doi: 10.1216/RMJ-1972-2-3-379. URL https://doi.org/
10.1216/RMJ-1972-2-3-379.

[147] Alistair Letcher, David Balduzzi, Sébastien Racanière, James Martens, Jakob
Foerster, Karl Tuyls, and Thore Graepel. Differentiable game mechanics.
Journal of Machine Learning Research, 20(84):1–40, 2019. URL http:
//jmlr.org/papers/v20/19-008.html.

[148] Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás
Póczos. Mmd gan: Towards deeper understanding of moment matching
network. In Advances in Neural Information Processing Systems, pages
2203–2213, 2017.

[149] Jerry Li, Aleksander Madry, John Peebles, and Ludwig Schmidt. On the
limitations of first-order approximation in GAN dynamics. arXiv preprint
arXiv:1706.09884, 2017.

[150] Shengguo Li, Ming Gu, Cinna Julie Wu, and Jianlin Xia. New efficient and
robust HSSCholesky factorization of SPDmatrices. SIAM Journal onMatrix
Analysis and Applications, 33(3):886–904, 2012.

[151] Yujia Li, Kevin Swersky, and Rich Zemel. Generative moment matching
networks. In International Conference on Machine Learning, pages 1718–
1727, 2015.

[152] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu,
Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Fourier
neural operator for parametric partial differential equations. arXiv preprint
arXiv:2010.08895, 2020.

[153] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu,
Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Neural op-
erator: Graph kernel network for partial differential equations. arXiv preprint
arXiv:2003.03485, 2020.

[154] Tengyuan Liang and James Stokes. Interaction matters: A note on non-
asymptotic local convergence of generative adversarial networks. arXiv
preprint arXiv:1802.06132, 2018.

[155] Finn Lindgren, Håvard Rue, and Johan Lindström. An explicit link between
Gaussian fields and Gaussian Markov random fields: The stochastic partial
differential equation approach. J. R. Stat. Soc. Ser. B Stat. Methodol., 73(4):
423–498, 2011. doi: 10.1111/j.1467-9868.2011.00777.x.

[156] Richard J. Lipton, Donald J. Rose, and Robert Endre Tarjan. Generalized
nested dissection. SIAM journal on numerical analysis, 16(2):346–358, 1979.

https://doi.org/10.1216/RMJ-1972-2-3-379
https://doi.org/10.1216/RMJ-1972-2-3-379
http://jmlr.org/papers/v20/19-008.html
http://jmlr.org/papers/v20/19-008.html

200

[157] Bo Liu, Ji Liu, Mohammad Ghavamzadeh, Sridhar Mahadevan, and Marek
Petrik. Proximal gradient temporal difference learning algorithms. In IJCAI,
pages 4195–4199, 2016.

[158] Joseph W. H. Liu, Esmond G. Ng, and Barry W. Peyton. On finding supern-
odes for sparse matrix computations. SIAM J. Matrix Anal. Appl., 14(1):
242–252, 1993. doi: 10.1137/0614019.

[159] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier
Bousquet. Are GANs created equal? a large-scale study. arXiv preprint
arXiv:1711.10337, 2017.

[160] Cong Ma, Kaizheng Wang, Yuejie Chi, and Yuxin Chen. Implicit regulariza-
tion in nonconvex statistical estimation: Gradient descent converges linearly
for phase retrieval, matrix completion and blind deconvolution. arXiv preprint
arXiv:1711.10467, 2017.

[161] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. Towards deep learning models resistant to adversarial
attacks. arXiv preprint arXiv:1706.06083, 2017.

[162] Stephane G Mallat. A theory for multiresolution signal decomposition: the
wavelet representation. In Fundamental Papers in Wavelet Theory, pages
494–513. Princeton University Press, 2009.

[163] Axel Målqvist and Daniel Peterseim. Localization of elliptic multiscale
problems. Math. Comp., 83(290):2583–2603, 2014. doi: 10.1090/S0025-
5718-2014-02868-8.

[164] Per-Gunnar Martinsson. Compressing rank-structured matrices via random-
ized sampling. SIAM J. Sci. Comput., 38(4):A1959–A1986, 2016. doi:
10.1137/15M1016679.

[165] Per-Gunnar Martinsson and Joel Tropp. Randomized numerical linear alge-
bra: Foundations & algorithms. arXiv preprint arXiv:2002.01387, 2020.

[166] Youssef Marzouk, Tarek Moselhy, Matthew Parno, and Alessio Spantini.
Sampling via measure transport: An introduction. In Handbook of uncer-
tainty quantification. Vol. 1, 2, 3, pages 785–825. Springer, Cham, 2017.

[167] Bertil Matérn. Spatial Variation: Stochastic Models and Their Application to
Some Problems in Forest Surveys and Other Sampling Investigations. Med-
delanden Fran Statens Skogsforskningsinstitut, Band 49, Nr.5, Stockholm,
1960.

[168] Eric Mazumdar and Lillian J. Ratliff. On the convergence of gradient-based
learning in continuous games. arXiv preprint arXiv:1804.05464, 2018.

201

[169] Eric V. Mazumdar, Michael I. Jordan, and S. Shankar Sastry. On finding
local nash equilibria (and only local nash equilibria) in zero-sum games.
arXiv preprint arXiv:1901.00838, 2019.

[170] J. A. Meijerink and H. A. van der Vorst. An iterative solution method for
linear systems ofwhich the coefficientmatrix is a symmetric"-matrix.Math.
Comp., 31(137):148–162, 1977. doi: 10.2307/2005786.

[171] Panayotis Mertikopoulos, Bruno Lecouat, Houssam Zenati, Chuan-Sheng
Foo, Vijay Chandrasekhar, and Georgios Piliouras. Optimistic mirror descent
in saddle-point problems: Going the extra (gradient) mile. arXiv preprint
arXiv:1807.02629, 2018.

[172] Panayotis Mertikopoulos, Houssam Zenati, Bruno Lecouat, Chuan-Sheng
Foo, Vijay Chandrasekhar, and Georgios Piliouras. Optimistic mirror de-
scent in saddle-point problems: Going the extra (gradient) mile. In ICLR’19:
Proceedings of the 2019 International Conference on Learning Representa-
tions, 2019.

[173] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. The numerics of
gans. In Advances in Neural Information Processing Systems, pages 1825–
1835, 2017.

[174] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled
generative adversarial networks. arXiv preprint arXiv:1611.02163, 2016.

[175] Sobhan Miryoosefi, Kianté Brantley, Hal Daume III, Miro Dudik, and
Robert E. Schapire. Reinforcement learning with convex constraints. In
Advances in Neural Information Processing Systems, pages 14070–14079,
2019.

[176] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida.
Spectral normalization for generative adversarial networks. arXiv preprint
arXiv:1802.05957, 2018.

[177] Youssef Mroueh, Chun-Liang Li, Tom Sercu, Anant Raj, and Yu Cheng.
Sobolev gan. arXiv preprint arXiv:1711.04894, 2017.

[178] Harikrishna Narasimhan, Andrew Cotter, and Maya Gupta. Optimizing gen-
eralized rate metrics with three players. In Advances in Neural Information
Processing Systems, pages 10746–10757, 2019.

[179] Maxim Naumov. Parallel incomplete-LU and Cholesky factorization in the
preconditioned iterative methods on the GPU. Nvidia Technical Report NVR-
2012-003, 2012.

[180] A. S. Nemirovsky and D. B. and Yudin. Problem complexity and method
efficiency in optimization. A Wiley-Interscience Publication. John Wiley &
Sons, Inc., New York, 1983. ISBN 0-471-10345-4. Translated from the

202

Russian and with a preface by E. R. Dawson, Wiley-Interscience Series in
Discrete Mathematics.

[181] Yu Nesterov. Excessive gap technique in nonsmooth convex minimization.
SIAM Journal on Optimization, 16(1):235–249, 2005.

[182] Yurii Nesterov and B. T. Polyak. Cubic regularization of Newton method
and its global performance. Math. Program., 108(1, Ser. A):177–205, 2006.
ISSN 0025-5610. doi: 10.1007/s10107-006-0706-8. URL https://doi.
org/10.1007/s10107-006-0706-8.

[183] Behnam Neyshabur. Implicit regularization in deep learning. arXiv preprint
arXiv:1709.01953, 2017.

[184] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani. Algo-
rithmic Game Theory. Cambridge university press, 2007.

[185] Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer
Series in Operations Research and Financial Engineering. Springer, New
York, second edition, 2006. ISBN 978-0387-30303-1; 0-387-30303-0.

[186] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-GAN: Training
generative neural samplers using variational divergence minimization. In
Advances in Neural Information Processing Systems, pages 271–279, 2016.

[187] Houman Owhadi. Bayesian numerical homogenization. Multiscale Model.
Simul., 13(3):812–828, 2015. ISSN 1540-3459. doi: 10.1137/140974596.
URL https://doi.org/10.1137/140974596.

[188] Houman Owhadi. Multigrid with rough coefficients and multiresolution
operator decomposition from hierarchical information games. SIAM Rev., 59
(1):99–149, 2017. doi: 10.1137/15M1013894.

[189] Houman Owhadi and Clint Scovel. Universal scalable robust solvers from
computational information games and fast eigenspace adaptedmultiresolution
analysis, 2017. arXiv:1703.10761.

[190] Houman Owhadi and Clint Scovel. Operator-Adapted Wavelets, Fast Solvers,
and Numerical Homogenization: From a Game Theoretic Approach to Nu-
merical Approximation and Algorithm Design, volume 35 of Cambridge
Monographs on Applied and Computational Mathematics. Cambridge Uni-
versity Press, Cambridge, 2019. doi: 10.1017/9781108594967.

[191] Houman Owhadi, Lei Zhang, and Leonid Berlyand. Polyharmonic homoge-
nization, rough polyharmonic splines and sparse super-localization. ESAIM
Math. Model. Numer. Anal., 48(2):517–552, 2014. doi: 10.1051/m2an/
2013118.

https://doi.org/10.1007/s10107-006-0706-8
https://doi.org/10.1007/s10107-006-0706-8
https://doi.org/10.1137/140974596
https://arxiv.org/abs/1703.10761

203

[192] Dianne P O’Leary. Ordering schemes for parallel processing of certain mesh
problems. SIAM Journal on Scientific and Statistical Computing, 5(3):620–
632, 1984.

[193] I. Palasti and A. Renyi. On interpolation theory and the theory of games.
MTA Mat. Kat. Int. Kozl, 1:529–540, 1956.

[194] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell.
Curiosity-driven exploration by self-supervised prediction. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Work-
shops, pages 16–17, 2017.

[195] Barak A. Pearlmutter. Fast exact multiplication by the Hessian. Neural
Computation, 6(1):147–160, 1994.

[196] David Pfau and Oriol Vinyals. Connecting generative adversarial networks
and actor-critic methods. arXiv preprint arXiv:1610.01945, 2016.

[197] Henri Poincaré. Calcul des probabilités. Les Grands Classiques Gauthier-
Villars. [Gauthier-Villars Great Classics]. Éditions Jacques Gabay, Sceaux,
1987. ISBN 2-87647-001-2. Reprint of the second (1912) edition.

[198] Manish Prajapat, Kamyar Azizzadenesheli, Alexander Liniger, Yisong Yue,
and Anima Anandkumar. Competitive policy optimization. arXiv preprint
arXiv:2006.10611, 2020.

[199] Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view
of sparse approximate Gaussian process regression. J. Mach. Learn. Res., 6
(Dec):1939–1959, 2005.

[200] Maziar Raissi, Paris Perdikaris, andGeorgeE.Karniadakis. Physics-informed
neural networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations. Journal of Com-
putational Physics, 378:686–707, 2019.

[201] Alexander Rakhlin and Karthik Sridharan. Online learning with predictable
sequences. In Conference on Learning Theory, pages 993–1019. PMLR,
2013.

[202] Garvesh Raskutti and Sayan Mukherjee. The information geometry of mirror
descent. IEEE Transactions on Information Theory, 61(3):1451–1457, 2015.

[203] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes
for Machine Learning. Adaptive Computation and Machine Learning. MIT
Press, Cambridge, MA, 2006. doi: 10.7551/mitpress/3206.001.0001.

[204] J. Revels, M. Lubin, and T. Papamarkou. Forward-mode automatic dif-
ferentiation in julia. arXiv:1607.07892 [cs.MS], 2016. URL https:
//arxiv.org/abs/1607.07892.

https://arxiv.org/abs/1607.07892
https://arxiv.org/abs/1607.07892

204

[205] Lassi Roininen, Markku S. Lehtinen, Sari Lasanen, Mikko Orispää, and
Markku Markkanen. Correlation priors. Inverse Probl. Imaging, 5(1):167–
184, 2011. doi: 10.3934/ipi.2011.5.167.

[206] Lassi Roininen, Petteri Piiroinen, and Markku Lehtinen. Constructing
continuous stationary covariances as limits of the second-order stochastic
difference equations. Inverse Probl. Imaging, 7(2):611–647, 2013. doi:
10.3934/ipi.2013.7.611.

[207] Lassi Roininen, Janne M. J. Huttunen, and Sari Lasanen. Whittle–
Matérn priors for Bayesian statistical inversion with applications in electrical
impedance tomography. Inverse Probl. Imaging, 8(2):561–586, 2014. doi:
10.3934/ipi.2014.8.561.

[208] Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and Thomas Hofmann.
Stabilizing training of generative adversarial networks through regularization.
In Advances in Neural Information Processing Systems, pages 2018–2028,
2017.

[209] Edward Rothberg and Anoop Gupta. An efficient block-oriented approach to
parallel sparse Cholesky factorization. SIAM J. Sci. Comput., 15(6):1413–
1439, 1994. doi: 10.1137/0915085.

[210] Yousef Saad. Iterative methods for sparse linear systems. Society for
Industrial and Applied Mathematics, Philadelphia, PA, second edition,
2003. ISBN 0-89871-534-2. doi: 10.1137/1.9780898718003. URL
https://doi.org/10.1137/1.9780898718003.

[211] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec
Radford, and Xi Chen. Improved techniques for training gans. In Advances
in Neural Information Processing Systems, pages 2234–2242, 2016.

[212] Huiyan Sang and Jianhua Z. Huang. A full scale approximation of covariance
functions for large spatial data sets. J. R. Stat. Soc. Ser. B. Stat. Methodol.,
74(1):111–132, 2012. doi: 10.1111/j.1467-9868.2011.01007.x.

[213] Arthur Sard. Linear approximation. American Mathematical Society, Provi-
dence, R.I., 1963.

[214] Stefan A. Sauter and Christoph Schwab. Boundary Element Methods, vol-
ume 39 of Springer Series in Computational Mathematics. Springer-Verlag,
Berlin Heidelberg, 2011. doi: 10.1007/978-3-540-68093-2.

[215] Anton Schwaighofer and Volker Tresp. Transductive and inductive methods
for approximate Gaussian process regression. In S. Becker, S. Thrun, and
K. Obermayer, editors, Advances in Neural Information Processing Systems
15 (NIPS 2002), pages 977–984, 2003.

https://doi.org/10.1137/1.9780898718003

205

[216] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando
De Freitas. Taking the human out of the loop: A review of bayesian opti-
mization. Proceedings of the IEEE, 104(1):148–175, 2015.

[217] Shai Shalev-Shwartz and Yoram Singer. Convex repeated games and Fenchel
duality. In Advances in Neural Information Processing Systems, pages 1265–
1272, 2007.

[218] Jonathan Richard Shewchuk. An introduction to the conjugate gradient
method without the agonizing pain. Technical report, Carnegie-Mellon Uni-
versity. Department of Computer Science, 1994. URL https://www.cs.
cmu.edu/~quake-papers/painless-conjugate-gradient.pdf.

[219] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep
neural networks and tree search. Nature, 529(7587):484–489, 2016.

[220] Patrice Y. Simard, Yann A. LeCun, John S. Denker, and Bernard Victorri.
Transformation invariance in pattern recognition—tangent distance and tan-
gent propagation. In Neural Networks: Tricks of the Trade, pages 239–274.
Springer, 1998.

[221] Alex J. Smola and Peter L. Bartlett. Sparse greedy Gaussian process regres-
sion. In Advances in Neural Information Processing Systems 13 (NIPS 2000),
pages 619–625, 2001. URL https://papers.nips.cc/paper/1880-
sparse-greedy-gaussian-process-regression.

[222] Alex J. Smola and Bernhard Schölkopf. Sparse greedy matrix approxima-
tion for machine learning. In Proceedings of the Seventeenth International
Conference on Machine Learning, pages 911–918, 2000.

[223] Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using
pseudo-inputs. In Y.Weiss, P. B. Schölkopf, and J. C. Platt, editors, Advances
in Neural Information Processing Systems 18, pages 1257–1264. MIT Press,
2006. URL http://papers.nips.cc/paper/2857-sparse-gaussian-
processes-using-pseudo-inputs.

[224] Yan Song, Ian Vince McLoughlin, and Li-Rong Dai. Local coding based
matching kernel method for image classification. PloS one, 9(8), 2014.

[225] Michael L Stein. Fast and exact simulation of fractional brownian surfaces.
Journal of Computational and Graphical Statistics, 11(3):587–599, 2002.

[226] Michael L. Stein, Zhiyi Chi, and Leah J. Welty. Approximating likelihoods
for large spatial data sets. J. R. Stat. Soc. Ser. B Stat. Methodol., 66(2):
275–296, 2004. doi: 10.1046/j.1369-7412.2003.05512.x.

https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
https://papers.nips.cc/paper/1880-sparse-greedy-gaussian-process-regression
https://papers.nips.cc/paper/1880-sparse-greedy-gaussian-process-regression
http://papers.nips.cc/paper/2857-sparse-gaussian-processes-using-pseudo-inputs
http://papers.nips.cc/paper/2857-sparse-gaussian-processes-using-pseudo-inputs

206

[227] Michael L. Stein et al. The screening effect in kriging. Annals of Statistics,
30(1):298–323, 2002.

[228] Michael L. Stein et al. 2010 Rietz lecture: When does the screening effect
hold? The Annals of Statistics, 39(6):2795–2819, 2011.

[229] Russell Stewart and Stefano Ermon. Label-free supervision of neural net-
works with physics and domain knowledge. In Thirty-First AAAI Conference
on Artificial Intelligence, 2017.

[230] Klaus Stüben. Algebraic multigrid (amg): An introduction with applications.
Multigrid, 2000.

[231] A.V. Sul’ din. Wienermeasure and its applications to approximationmethods.
I. Izv. Vysš. Učebn. Zaved. Matematika, 1959(6 (13)):145–158, 1959. ISSN
0021-3446.

[232] A.V. Sul’ din. Wienermeasure and its applications to approximationmethods.
II. Izv. Vysš. Učebn. Zaved. Matematika, 1960(5 (18)):165–179, 1960. ISSN
0021-3446.

[233] Ying Sun and Michael L. Stein. Statistically and computationally efficient
estimating equations for large spatial datasets. Journal of Computational and
Graphical Statistics, 25(1):187–208, 2016. ISSN 1061-8600. doi: 10.1080/
10618600.2014.975230.

[234] Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. Robust
quasistatic finite elements and flesh simulation. Symp. on Comp. Anim., pages
181–190, 2005.

[235] J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski. Information-based
complexity. Computer Science and Scientific Computing. Academic Press,
Inc., Boston, MA, 1988. ISBN 0-12-697545-0. With contributions by A. G.
Werschulz and T. Boult.

[236] Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra, volume 50.
Siam, 1997.

[237] Trilinos. The Trilinos Project Website, 2020. URL https://trilinos.
github.io.

[238] Alain Trouvé and Laurent Younes. Metamorphoses through Lie group action.
Foundations of Computational Mathematics, 5(2):173–198, 2005.

[239] Ananya Uppal, Shashank Singh, and Barnabas Poczos. Nonparametric
density estimation & convergence rates for gans under besov ipm
losses. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 9086–9097. Curran Associates, Inc., 2019. URL

https://trilinos.github.io
https://trilinos.github.io

207

http://papers.nips.cc/paper/9109-nonparametric-density-
estimation-convergence-rates-for-gans-under-besov-ipm-
losses.pdf.

[240] Petr Vaněk, Jan Mandel, and Marian Brezina. Algebraic multigrid by
smoothed aggregation for second and fourth order elliptic problems. Com-
puting, 56(3):179–196, 1996.

[241] AV Vecchia. Estimation and model identification for continuous spatial pro-
cesses. Journal of the Royal Statistical Society, Series B, 50(2):297–312,
1988.

[242] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess,
Max Jaderberg, David Silver, and Koray Kavukcuoglu. Feudal networks for
hierarchical reinforcement learning. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 3540–3549. JMLR. org,
2017.

[243] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu,
Andrew Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo
Ewalds, Petko Georgiev, et al. Grandmaster level in Starcraft II using multi-
agent reinforcement learning. Nature, 575(7782):350–354, 2019.

[244] John vonNeumann andHermanHGoldstine. Numerical inverting ofmatrices
of high order. Bulletin of the American Mathematical Society, 53(11):1021–
1099, 1947.

[245] Greg Wayne and L. F. Abbott. Hierarchical control using networks trained
with higher-level forward models. Neural computation, 26(10):2163–2193,
2014.

[246] Holger Wendland. Meshless Galerkin methods using radial basis functions.
Mathematics of Computation, 68(228):1521–1531, 1999.

[247] Holger Wendland. Scattered data approximation, volume 17 of Cambridge
Monographs on Applied and Computational Mathematics. Cambridge Uni-
versity Press, Cambridge, 2005. ISBN 978-0521-84335-5; 0-521-84335-9.

[248] Peter Whittle. On stationary processes in the plane. Biometrika, 41:434–449,
1954. doi: 10.1093/biomet/41.3-4.434.

[249] PeterWhittle. Stochastic processes in several dimensions. Bull. Inst. Internat.
Statist., 40(2):974–994, 1963.

[250] Christopher K. I. Williams and Matthias Seeger. Using the Nyström method
to speed up kernel machines. In T. K. Leen, T. G. Dietterich, andV. Tresp, edi-
tors, Advances in Neural Information Processing Systems 13, pages 682–688.
MIT Press, 2001. URL http://papers.nips.cc/paper/1866-using-
the-nystrom-method-to-speed-up-kernel-machines.

http://papers.nips.cc/paper/9109-nonparametric-density-estimation-convergence-rates-for-gans-under-besov-ipm-losses.pdf
http://papers.nips.cc/paper/9109-nonparametric-density-estimation-convergence-rates-for-gans-under-besov-ipm-losses.pdf
http://papers.nips.cc/paper/9109-nonparametric-density-estimation-convergence-rates-for-gans-under-besov-ipm-losses.pdf
http://papers.nips.cc/paper/1866-using-the-nystrom-method-to-speed-up-kernel-machines
http://papers.nips.cc/paper/1866-using-the-nystrom-method-to-speed-up-kernel-machines

208

[251] Jianlin Xia, Shivkumar Chandrasekaran, Ming Gu, and Xiaoye S. Li. Fast
algorithms for hierarchically semiseparable matrices. Numerical Linear Al-
gebra with Applications, 17(6):953–976, 2010.

[252] Xin Xing, Hua Huang, and Edmond Chow. Efficient construction of an HSS
preconditioner for symmetric positive definite H2 matrices. arXiv preprint
arXiv:2011.07632, 2020.

[253] Jinchao Xu and Ludmil Zikatanov. Algebraic multigrid methods. Acta Nu-
merica, 26:591–721, 2017.

[254] Abhay Yadav, Sohil Shah, Zheng Xu, David Jacobs, and Tom Gold-
stein. Stabilizing adversarial nets with prediction methods. arXiv preprint
arXiv:1705.07364, 2017.

[255] Irad Yavneh. Why multigrid methods are so efficient. Computing in Science
Engineering, 8(6):12–22, 2006.

[256] Jing Yu, Clement Gehring, Florian Schäfer, and Anima Anandkumar. Ro-
bust reinforcement learning: A constrained game-theoretic approach. To be
presented at Learning for Decision and Control (L4DC) 2021., 2021.

[257] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. Understanding deep learning requires rethinking generalization.
arXiv preprint arXiv:1611.03530, 2016.

[258] Fuzhen Zhang, editor. The Schur Complement and its Applications, volume 4
of Numerical Methods and Algorithms. Springer-Verlag, New York, 2005.
doi: 10.1007/b105056.

[259] Kaiqing Zhang, Zhuoran Yang, and Tamer Basar. Policy optimization prov-
ably converges to nash equilibria in zero-sum linear quadratic games. In
Advances in Neural Information Processing Systems, pages 11598–11610,
2019.

209

.1 Appendix to Chapter 4
Proof of Lemma 1. Applying Lemma 2 with first block Θ1:@−1,1:@−1 and second
block Θ@,@ yields

Θ(@) =

©«

0

Id
.
.
.

0
−� (@) ,−1�(@)

@,1 · · · −� (@) ,−1�(@)
@,@−1 Id

ª®®®®®®¬
(5)

©«

0

Θ(@−1)
.
.
.

0
0 · · · 0 � (@) ,−1

ª®®®®®®¬
©«

−�(@)1,@�
(@) ,−>

Id
.
.
.

−�(@)
@−1,@�

(@) ,−>

0 · · · 0 Id

ª®®®®®®¬
. (6)

We now repeat this operation recursively. After the : th step, the central matrix has an
upper-left block consisting of Θ(@−:) . We then apply Lemma lem:blockChol2Scale
to this upper-left block, with the splitting given by Θ1:@−:−1,1:@−:−1 and Θ@−:,@−: .
This reduces the central matrix more and more towards the block-diagonal matrix
�, while splitting off a triangular factor to either side.

©«

Θ
(@)
1,1 · · · Θ

(@)
1,@−1 Θ

(@)
1,@

.

.

.
. . .

.

.

.
.
.
.

Θ
(@)
@−1,1 · · · Θ

(@)
@−1,@−1 Θ

(@)
2,@

Θ
(@)
@,1 · · · Θ

(@)
@,@−1 Θ

(@)
@,@

ª®®®®®®®¬
(7)

=

©«

0

Id
.
.
.

0
−� (@) ,−1�(@)

@,1 · · · −� (@) ,−1�(@)
@,@−1 Id

ª®®®®®®¬
(8)

©«

0 0

Id
.
.
.

.

.

.

0
.
.
.

−� (@−1) ,−1�(@−1)
@−1,1 · · · −� (@−1) ,−1�(@−1)

@−1,@−2 Id 0
0 · · · · · · 0 Id

ª®®®®®®®®®®¬
· · · (9)

· · ·
©«

Id 0 0

−� (2) ,−1�(2)2,1 Id
.
.
.

0 · · · Id

ª®®®®¬
(10)

©«

� (1) ,−1 0 · · · · · · 0

0 � (2) ,−1 . . . 0
.
.
.

.

.

.
. . .

. . .
. . .

.

.

.

.

.

. 0
. . . � (@−1) ,−1 0

0 0 · · · 0 � (@) ,−1

ª®®®®®®®®®®®¬

©«
Id −� (2)1,2�

(2) ,−)
2,2 0

0 Id
.
.
.

0 · · · Id

ª®®®®¬
· · · (11)

· · ·

©«

−�(@−1)
1,@−1�

(@−1) ,−> 0

Id
.
.
.

.

.

.

−�(@−1)
@−2,@−1�

(@−1) ,−>
.
.
.

0 · · · 0 Id 0
0 · · · · · · 0 Id

ª®®®®®®®®®®¬

©«

−�(@)1,@�
(@) ,−>

Id
.
.
.

−�(@)
@−1,@�

(@) ,−>

0 · · · 0 Id

ª®®®®®®¬
. (12)

210

We now combine the lower-triangular factors, obtaining

©«
Id −�(2)1,2�

(2) ,−> 0

0 Id
.
.
.

0 · · · Id

ª®®®®¬
· · ·

©«

−�(@)1,@�
(@) ,−>

Id
.
.
.

−�(@)1,@�
(@) ,−>

0 · · · 0 Id

ª®®®®®®¬
= (13)

©«
©«

�
(@)
1,@�

(@) ,−>

Id
.
.
.

�
(@)
@−1,@�

(@) ,−>

0 · · · 0 Id

ª®®®®®®¬
· · ·

©«
Id �

(2)
1,2�

(2) ,−> 0

0 Id
.
.
.

0 · · · Id

ª®®®®¬
ª®®®®®®¬

−1

(14)

=

©«

Id 0 · · · · · · 0

� (2) ,−1�(2)2,1 Id
. . . 0

.

.

.

.

.

. � (3) ,−1�(3)3,2
. . .

. . .
.
.
.

.

.

.
.
.
.

. . . Id 0
� (@) ,−1�(@)

@,1 � (@) ,−1�(@)
@,2 · · · � (@) ,−1�(@)

@,@−1 Id

ª®®®®®®®®®®®¬

−>

. (15)

Here, we have used the formulae for the inverses and products of elementary lower-
triangular matrices [236, pp.150–151],(

Id + (0, . . . , 0, 0:+1, . . . , 0#)> ⊗ e:
)−1

= Id − (0, . . . , 0, 0:+1, . . . , 0#)> ⊗ e: ,

(16)(
Id + (0, . . . , 0, 0:+1, . . . , 0#)> ⊗ e:

) (
Id + (0, . . . , 0, 1;+1, . . . , 1#)> ⊗ e;

)
(17)

= Id + (0, . . . , 0, 0:+1, . . . , 0#)> ⊗ e: + (0, . . . , 0, 1;+1, . . . , 1#)> ⊗ e; , (18)

where e: is the : th standard Euclidean basis row vector, with : < ;. �

Proof of Lemma 3. We prove the result in the setting of Examples 1, since the proof
for Example 2 is similar. The inequality ‖q‖2∗ ≥ 1

‖L‖ ‖q‖
2
�−B (Ω) and (4.32) imply

that

‖q‖2∗ ≥
1
‖L‖ sup

E∈�B0 (Ω)

∑
8∈� (:)

2[U8q8, E] − ‖E‖2�B0 (Ω) (19)

≥ 1
‖L‖

∑
8∈� (:)

sup
E∈�B0

(
� (X/2)ℎ: (G8)

) 2[U8q8, E] − ‖E‖2
�B0

(
� (X/2)ℎ: (G8)

) (20)

=
1
‖L‖

∑
8∈� (:)

|U8 |2 ‖q8‖2
�−B

(
� (X/2)ℎ: (G8)

) (21)

≥ 1
‖L‖ |U |

2 inf
8
‖q8‖2

�−B
(
� (X/2)ℎ: (G8)

) . (22)

The identity ‖q8‖2
�−B

(
�2
(X/2)ℎ:

(G8)
) = ℎ2B: (X/2)2B−3 ‖%(· − 0)‖2

�−B (�1 (0)) concludes the

proof with �Φ B ‖L‖(X/2)3−2B ‖%(· − 0)‖−1
�−B (�1 (0)) and � B ℎB. �

211

Proof of Lemma 4 in the case of Example 2. Let Z be a set of points such that the
family

{
�dℎ: (I)

}
I∈Z covers Ω, and such that supG∈Ω #

{
I ∈ Z : G ∈ �2dℎ: (I)

}
≤

� (3). For 8 ∈ � (;) and I ∈ Z , we write 8 { I if I is the element of Z closest to
8 (using an arbitrary way to break ties). For 1 ≤ : < ; ≤ @, q B

∑
8∈� (;) U8q8,

i B
∑
8∈� (;) U8i8, and i8 B

∑
9∈� (:) F8 9q

(:)
9
, we have

‖q − i‖2
�−B (Ω) = sup

E∈�B0 (Ω)

(∑
I∈Z

∑
8{I

∫
�2dℎ: (I)

2U8 (q8 − i8)E(G) dG
)
− ‖E‖2

�B0 (Ω)
. (23)

The Bramble–Hilbert lemma [66] and the vanishing moment property (4.36) of
q8 − i8 yield that∑

8{I

∫
�2dℎ: (I)

2U8 (q8 − i8)E(G) dG (24)

≤ 2
(
2dℎ:

) B ∑
8{I

U8 (q8 − i8)

!2 (�2dℎ: (I))

‖�BE‖!2 (�2dℎ: (I)) (25)

≤ 2�
(
2dℎ:

)2B
∑
8{I

U8 (q8 − i8)
2

!2 (�2dℎ: (I))

+
‖�BE‖2

!2 (�2dℎ: (I))

2�
. (26)

Summing over all I ∈ Z and choosing the constant � appropriately yields

‖q − i‖2
�−B (Ω) ≤ �d

2Bℎ2:B
∑
I∈Z

∑
8{I

U8 (q8 − i8)
2

!2 (�2dℎ: (I))

. (27)

Since the q8 are !2-orthogonal to each other and ‖q8‖2!2 ≤ �,

∑
I∈Z

∑
8{I

U8 (q8 − i8)
2

!2 (�2dℎ: (I))

≤ 2
∑
I∈Z

©«
[∑
8{I

U2
8 ‖q8 ‖2!2

]
+

∑
8{I

U8i8

2

!2 (�2dℎ: (I))

ª®®¬
(28)

≤ � ©«|U |2 +
∑
I∈Z

∑
8{I

U8i8

2

!2

ª®¬ . (29)

212

Inserting the definition of the i8 yields

∑
I∈Z

∑
8{I

U8i8

2

!2

=
∑
I∈Z

 ∑
9∈ �̃ (:)

∑
8{I

U8F8 9q
(:)
9

2

!2

≤
∑
I∈Z

∑
9∈ �̃ (:)

(∑
8{I

U8F8 9

)2 q(:)9 2

!2

(30)

≤ �ℎ−:3
∑
I∈Z

∑
9∈ �̃ (:)

(∑
8{I

|U8 | |F8 9 |
)2

.

(31)

Wewill now use the fact that onR=, we have the norm inequalities =−1/2 | · |1 ≤ | · |2 ≤
| · |1. By a sphere-packing argument, for any I ∈ Z , we have

{
8 ∈ � (;)

�� 8 { I
}
≤

� (3) (d/X)3ℎ3 (:−;) Thus, the number of summands in the innermost sum is at most
� (3) (d/X)3ℎ(:−;)3 and using the above norm inequalites, we obtain

ℎ−:3
∑
I∈Z

∑
9∈ �̃ (:)

(∑
8{I

|U8 | |F8 9 |
)2

(32)

≤� (d/X)3ℎ−;3
∑
I∈Z

∑
8{I

∑
9∈ �̃ (:)

(
|U8 | |F8 9 |

)2 ≤ � (d/X)3ℎ−;3l2
;,: |U |

2. (33)

Putting the above together yields the result. �

Proof of Lemma 10. Define

' B Id − 2
‖�‖ + ‖�−1‖−1 �, A B

1 − 1
‖�−1‖‖�‖

1 + 1
‖�−1‖‖�‖

,

and observe that ‖'‖ = A. Since � =
‖�‖+‖�−1‖−1

2 (Id − '), it follows from a
Neumann series argument that �−1 = 2

‖�‖+‖�−1‖−1
∑∞
:=0 '

: . The positive definiteness
of � implies that

|'8, 9 | ≤ max
{
1,

2�
‖�‖ + ‖�−1‖−1

}
exp(−W3 (8, 9)).

Let �' B max
{
1, 2�
‖�‖+‖�−1‖−1

}
. Lemma 9 implies that

|':8, 9 | ≤ (23 (W/2))
:−1�:' exp

(
−W

2
3 (8, 9)

)
.

213

Combining the above estimates yields

‖�‖ + ‖�−1‖−1

2

����(�−1
)
8, 9

���� ≤ (= + 1) (23 (W/2))=−1�=' exp
(
−W

2
3 (8, 9)

)
+ A

=+1

1 − A
(34)

≤ exp
(
(1 + log (23 (W/2)) + log(�')) = −

W

2
3 (8, 9)

)
(35)

+ exp (− log(1 − A) + log(A) (= + 1)) . (36)

By choosing

a B

W

2 3 (8, 9) − log(1 − A)
(1 + log (23 (W/2)) + log(�')) − log(A) , (37)

and = + 1 B dae, we obtain

exp
(
(1 + log (23 (W/2)) + log(�')) = −

W

2
3 (8, 9)

)
+ exp (− log(1 − A) + log(A) (= + 1))

(38)

≤ exp
(
(1 + log (23 (W/2)) + log(�')) a −

W

2
3 (8, 9)

)
+ exp (− log(1 − A) + log(A)a)

(39)

= 2 exp

(
− log(1 − A) (1 + log (23 (W/2)) + log(�')) + log(A) W2 3 (8, 9)

(1 + log (23 (W/2)) + log(�')) − log(A)

)
. (40)

This yields the upper bound����(�−1
)
8, 9

���� ≤ 4 · exp
(−2 log(1−A) (1+log(23 (W/2))+log(�'))+log(A) W2 3 (8, 9)

(1+log(23 (W/2))+log(�'))−log(A)

)
‖�‖ + ‖�−1‖−1 (41)

=
4

‖�‖ + ‖�−1‖−1 · exp
(

log(A)
(1 + log (23 (W/2)) + log(�')) − log(A)

W

2
3 (8, 9)

)
(42)

· exp
(
−2 log(1 − A) (1 + log (23 (W/2)) + log(�'))
(1 + log (23 (W/2)) + log(�')) − log(A)

)
. (43)

Optimising the term on line (43) over (1 + log (23 (W/2)) + log(�')) yields��(�−1)8, 9
�� ≤ 4(
‖�‖ + ‖�−1‖−1) (1 − A)2 exp

(
W

2 3 (8, 9) log(A)
(1 + log (23 (W/2)) + log(�')) − log(A)

)
.

(44)

�

Proof of Lemma 11. In this proof, we will use the notation ::; to denote the individ-
ual indices from : to ;, as opposed to matrix blocks. We will establish the result by

214

showing that, for all 1 ≤ : ≤ # , the : th column of ! (when considered as an element
of R�×� by zero padding) satisfies the exponential decay stated in the lemma. Let
((:) B �::#,::# − �::#,1::−1(�1::−1,1::−1)−1�1::−1,::# . Then !::#,: = (

(:)
:,1 /

√
(
(:)
:,:

.
Lemma 2 implies that ((:) = (�::#,::#)−1, and hence Lemma 10 yields that��� (((:)) 8, 9 ��� ≤ 4(

‖�‖ + ‖�−1‖−1) (1 − A)2 exp

(
log(A) W2 3 (8, 9)

1 + log (23 (W/2)) + log(�') − log(A)

)
.

(45)

Hereweused the facts that the spectrumof �::=,::= is contained in [_min(�), _max(�)]
and that the right-hand side of the above estimate is increasing in A and �'. The
estimate ((:)

:,:
≥ 1
‖((:) ,−1‖ ≥

1
‖�‖ completes the proof. �

Proof of Lemma 12. For any matrix) for which the Neumann series
∑∞
:=0)

: con-
verges in the operator norm, we have (Id −))−1 =

∑∞
:=0)

: . Therefore, !−1 =∑∞
:=0(Id − !): if the right-hand side series is convergent. Since Id − ! has the

block-lower-triangular structure

(Id − !) =

©«
0 0 0 0

−!2,1
. . . 0 0

...
. . .

. . .
...

−!@,1 . . . −!@,@−1 0

ª®®®®®®¬
, (46)

it follows that Id−! is @-nilpotent, i.e. (Id−!)@ = 0 and theNeuman series terminates
after the first @ summands. Using this, we will now show that the exponential decay
of ! is preserved under inversion. To this end, consider the (:, ;)th block of (Id−!)?

and observe that��� (((Id − !)?):,;) 8 9 ��� =
������(−1)?

∑
:=B1>B2>···>B?>B?+1=;

(
?∏

<=1
!B<,B<+1

)
8 9

������ (47)

≤
∑

:=B1>B2>···>B?>B?+1=;
(23 (W/2) �)? exp

(
−W

2
3 (8, 9)

)
(48)

=

(
: − ; − 1
? − 1

)
(23 (W/2) �)? exp

(
−W

2
3 (8, 9)

)
, (49)

where the inequality follows from Lemma 9.

215

Summing (47) over ?, we obtain, for 8 ≠ 9 ,����(!−1
:,;

)
8 9

���� ≤ :−;−1∑
?=1

(
: − ; − 1
? − 1

)
(23 (W/2) �)? exp

(
−W

2
3 (8, 9)

)
(50)

≤ (1 + 23 (W/2) �):−; exp
(
−W

2
3 (8, 9)

)
(51)

≤ 2@ (23 (W/2) �)@ exp
(
−W

2
3 (8, 9)

)
, (52)

which concludes the proof of the lemma. �

With the above results on the propagation of exponential decay, we can now conclude
the proof of Theorem 8.

Proof of Theorem 8. Applying Lemma 10, Condition1, and the condition number
bound in Condition 2 yields the following estimate for �(:),−1:

��� (�(:),−1)
8 9

��� ≤ 4 exp
(

log(A)
(1+log(23 (W/2))+log(�')−log(A))

W

2 3 (8, 9)
)(�(:) + �(:),−1

−1
)
(1 − A)2

, (53)

with �' = max
{
1,

2�W
� (:) ,−1

1+^

}
and A = 1−^−1

1+^−1 . Lemma 2 and Condition 2 yield

_max
(
�(:)

)
≤ _max

(
�(:)

)
≤ �Φ�−2: , (54)

_min
(
�(:)

)
≥ 1
�Φ

�−2(:−1) . (55)

Using these estimates, we obtain��� (�(:),−1)
8 9

��� ≤ 2�Φ�2(:−1)

(1 − A)2
exp (−W̃3 (8, 9)) , (56)

where �̃' = max
{
1, 2�W�Φ

1+^

}
, A = 1−^−1

1+^−1 and W̃ B
− log(A)

(1+log(23 (W/2))+log(�̃')−log(A))
W

2 .

Applying Lemma 9 to the products �(8),−1�
(8)
8 9

appearing in the definition of !̄−1 in
Lemma 1, we obtain��� (!̄−1)

8 9

��� ≤ 2�Φ�W (23 (W̃/2))2

(1 − A)2
exp

(
− W̃

2
3 (8, 9)

)
. (57)

Lemma 12 now yields the following decay bound for !̄:

| !̄8 9 | ≤
(
423 (W̃/4)

�Φ�W (23 (W̃/2))2

(1 − A)2

)@
exp

(
− W̃

4
3 (8, 9)

)
. (58)

216

For a positive-definite matrix " , let chol (") denote its lower-triangular Cholesky
factor and set ! (:) B chol

(
�(:),−1

)
. Following the same procedure as in the bound

of the decay of �(:) yields the decay bound���! (:)8 9 ��� ≤ 2�Φ� (:−1)

(1 − A)2
exp (−W̃3 (8, 9)) . (59)

Applying Lemma 9 to the product !̄ chol(�) = chol(Θ) yields the decay bound

��(chol(Θ))8 9
�� ≤ 2�Φ23 (W̃/8)2

(1 − A)2

(
423 (W̃/4)

�Φ�W (23 (W̃/2))2

(1 − A)2

)@
exp

(
− W̃

8
3 (8, 9)

)
.

(60)

�

.2 Appendix to Chapter 5

.2.1 Correctness and computational complexity of the maximum-minimum
distance ordering

Recall the variables used in Algorithm 11: the integer array % contains the minimax
ordering; the real array ; [8] contains the distances of each point to the points that
are already included in the minimax ordering; and the arrays of integer arrays 2 and
? will contain the entries of the sparsity pattern in the sense that

(9 ∈ 2[8] and 8 ∈ ? [8]) ⇐⇒ dist(8, 9) ≤ d; [8] . (61)

We begin by showing correctness of the algorithm.

Theorem 26. The ordering and sparsity pattern produced by Algorithm 11 coincide
with those described in Section 6.3.1. Furthermore, whenever the while-loop in
Line 22 is entered,

(1) for all 8 ∈ %, ℓ[8] is as defined in Section 6.3.1;

(2) the array 2[%[1]] contains all 1 ≤ 9 ≤ # and for all other 8 in %, 2[8]
contains exactly those 1 ≤ 9 ≤ # that satisfy dist(8, 9) ≤ dℓ[8]; and

(3) for all 1 ≤ 9 ≤ # , ? [9] consists of %[1] and all those 8 ∈ % that satisfy
dist(8, 9) ≤ dℓ[8].

Proof. It is easy to see that if the for-loop in Line 27were running over all 1 ≤ 9 ≤ # ,
then the algorithm would yield the correct result. We claim that the restriction of

217

the running variable to { 9 ∈ 2[:] | dist(9 , :) ≤ dist(8, :) + d; [8]} does not
change the result of the algorithm. The proof will proceed by induction. Let
us assume that Algorithm 11 has been correct up to a given time that Line 27 is
visited. Then, by choice of : and the triangle inequality, any 9 that is omitted by
the for-loop must satisfy dist(8, 9) > d; [8]. Since 8 was chosen to have maximal
minimal distance among the points remaining in �, and d > 1, this means that
adding 8 to the maximin ordering can not decrease the maximal minimal distance of
9 . Thus, skipping the decrease! operation does not change the choice of % and ;.
Similarly, dist(8, 9) > d; [8] implies that the if-statement inside of the for-loop is
false, meaning that skipping 9 does not change the update of 2 or ?, from which the
result follows. �

Having established Theorem 26, we will now use ≺, ℓ[8], and 8: to refer to the
maximin ordering, the length-scale of the point with index 8, and the : th index in
the maximin ordering. We will now bound the complexity of Algorithm 11 in the
setting of Theorem 11.

Theorem 27. In the setting of Theorem 11, there exists a constant depending �
depending only on 3, Ω, and X, such that, for d > �, Algorithm 11 has computa-
tional complexity�d3# log # in space and�#

(
d3 log2 # +�distmΩ

)
in time, where

�distmΩ is the computational complexity of invoking the function distmΩ.

Proof. As a first step, we will upper-bound the number of iterations of the for-loop
in Line 27 throughout the algorithm. To simplify the notation, � will denote a
positive constant that depends on 3, Ω and X that may change throughout the proof.
We claim that there exists 1 ≤ :min ≤ # depending only on 3, Ω, and X, such that,
for all 8 � 8:min , by the time it appears in the while-loop at Line 22, there exists an
index : ≺ 8 such that ; [:] ≥ 2; [9] and dist(8, :) ≤ �ℓ = �ℓ[8]. Indeed, since Ω
has Lipschitz boundary, it satisfies an interior cone condition [5] in the sense that
there exist \ ∈ (0, 2c] and A > 0 such that every point G ∈ Ω is the tip of a spherical
cone within Ω with opening angle \ and radius A. This spherical cone contains a
ball with radius AW, which depends only on \ and A. Let W8 be such a cone with tip G8.
By a scaling argument, the spherical cone W8 ∩ �Ã (G8) then contains a ball of radius
AW (Ã/A), for all Ã < A. For any 8 ∈ � and any ball � ⊂ Ω with radius at least 4ℓ[8]/X,
there exists a : ≺ 8 such that ; [:] ≥ 2ℓ[8] and G: ∈ �. Thus, for ℓ[8] ≤ XAW/4, there
exists a : ≺ 8 with G: ⊂ W8 ∩ �2ℓ[8] (G8). By a sphere-packing argument, we can find
a :min such that, for all 8 � 8:min , ℓ[8] ≤ XAW/4, which yields the claim. Because of

218

the above, for d > �, there exists a point satisfying the constraint in Line 25 with
dist(:, 8) ≤ 2�ℓ[8]. Thus, the number of times the for-loop in Line 27 is visited for
a given index 8 is bounded above by�8 B #{ 9 ∈ � | dist(8, 9) ≤ 2(�+d)ℓ[8]}. By a
sphere-packing argument, �8< ≤ � (#/<)d3 , for a constant� depending only on 3,
Ω, and X. Summing the above over 1 ≤ < ≤ # yields the upper bound�d3# log # .
The most costly step in the for-loop in Line 27 is the decrease! operation requiring
the restoration of the heap property, which has computational complexity O(log #).
Thus, the overall computational complexity is at most �#

(
d3 log2 # + �distmΩ

)
.

The bound on the space complexity follows, since each iteration of the for-loop
consumes O(1) memory. �

Proof of Theorem19. Theorem 19 follows from Theorems 26 and 27. �

Algorithm 11 uses only pairwise distances between points, and thus automatically
adapts to low-dimensional structure in the {G8}8∈� . Indeed, for Ω = R3 , the compu-
tational complexity of Algorithm 11 depends only on the intrinsic dimension of the
dataset.

Condition 3 (Intrinsic dimension). There exist constants �3̃ , 3̃ > 0, independent of
, such that, for all A, ' > 0 and G ∈ R3 ,

max
{
|�|

�� � ⊂ �, 8, 9 ∈ � =⇒ dist(G8 , G), dist(G 9 , G) ≤ ', dist(G8 , G 9) ≥ A
}
≤ �3̃

(
'

A

) 3̃
.

We say that the point set {G8}8∈� has intrinsic dimension 3̃.

Condition 4 (Polynomial Scaling). There exists a polynomial p for which

max8≠ 9∈� dist(G8, G 9)
min8≠ 9∈� dist(G8, G 9)

≤ p(#).

Theorem 28. Let Ω = R3 and d ≥ 2. Then the computational complexity of
Algorithm 11 is at most �d3̃# log # in space and �#

(
log(#)d3̃ (log # + �dist) +

�distmΩ
)
in time, for a constant � = �

(
�3̃ , 3̃, p

)
depending only on the constants in

Conditions 3 and 4.

Proof. The proof is analogous to that of Theorem 27. The main difference is that
the claim on the existence of :min is replaced by the fact — which follows directly
from the definition of the maximin ordering — that, for all 8, there exists a : ≺ 8
such that ; [:] ≥ 2ℓ[8] and dist(:, 8) ≤ 2ℓ[8]. In particular, any d ≥ 2 leads to
near-linear computational complexity. �

219

.3 Appendix to Chapter 6

.3.1 Computation of the KL-minimizer
Computation for the aggregated sparsity pattern

We first introduce some additional notation, defined in terms of an A-maximin
ordering ≺ (see Section .3.2) and aggregated sparsity set (= (̃≺,ℓ,d,_, which we
assume to be fixed. As before, � is the index set keeping track over the degrees of
freedom, and �̃ is the index set indexing the supernodes. For a matrix � and sets
of indices 8̃ and 9̃ , we denote as the �8̃, 9̃ the submatrix obtained by restricting the
indices of � to 8̃ and 9̃ , and as �8̃,: (�:, 9̃) the matrix obtained by only restricting
the row (column) indices. We adopt the convention of indexing having precedence
over inversion, i.e. �−1

8̃, 9̃
= (�8̃, 9̃)−1. For a supernode :̃ ∈ �̃ and a degree of freedom

9 ∈ �, we write 9 ∈ :̃ if there exists a : { :̃ such that : � 9 and (:, 9) ∈ (, and
we accordingly form submatrices �8̃, 9̃ B (�8 9)8∈8̃, 9∈ 9̃ . Note that by definition of the
supernodes, we have B: ⊂ :̃ for all : { :̃ . Since we assume the sparsity pattern (
to contain the diagonal, we furthermore have : { :̃ ⇒ : ∈ :̃ .

We first show how to efficiently compute the inverse Cholesky factor for the aggre-
gated sparsity pattern (as has been observed before by [83], and [104]). For :̃ ∈ �̃, we
define* :̃ as the unique upper triangular matrix such thatΘ:̃ ,:̃ = * :̃* :̃ ,>. * :̃ can be
computed in complexity O((#:̃)3) in time and O((#:̃)2) in space by computing the
Cholesky factorization of Θ:̃ ,:̃ after reverting the ordering of its rows and columns,
and then reverting the order of the rows and columns of the resulting Cholesky
factor. The upper triangular structure of* :̃ implies the following properties

ΘB: ,B: = *
:̃
B: ,B:

* :̃ ,>
B: ,B:

, * :̃ ,−1
B: ,B:

1 =
1
* :̃
: :

e1, (62)

* :̃ ,−>
B: ,B:

1 =
(
* :̃ ,−>e:

)
B: ,B:

, * :̃ ,−1
B: ,B:

EB: =

(
* :̃ ,−1E

)
B:
, (63)

where E ∈ R:̃ is chosen arbitrarily. For any : { :̃ , the first three properties above
imply

!
d

:,: =
Θ−1
B:

e1√
e>1Θ

−1
B: e1

= * :̃ ,−>
B: ,B:

e1 = *
:̃ ,−>e: . (64)

Thus, computing the columns !:,: for all : { :̃ has computational complexity
O((#:̃)3) in time and O((#:̃)2) in space. Algorithm 13 implements the formulae
derived above.

220

GP regression in O(# + d23) space complexity

As mentioned in Section 6.4.3, for many important operations arising in GP regres-
sion, the inverse-Cholesky factors ! of the training covariance matrix need never be
formed in full. Instead, matrix-vector multiplies with ! or !>, as well as the com-
putation of the log-determinant of ! can be performed by computing the columns
of ! in an arbitrary order, using them to update the result, and deleting them again.
For the example of computing the posterior mean ` and covariance �, this is done
in Algorithm 19 (without aggregation) and 20 (with aggregation). In Section .3.4,
we show how to compute the reverse maximin ordering and aggregated sparsity
pattern in space complexity O(# + d3), thus allowing the entire algorithm to be run
in space complexity O(# + d3) when using the aggregated sparsity pattern.

.3.2 Postponed proofs
Our theoretical results apply to more general orderings, called reverse A-maximin
orderings, which for A ∈ (0, 1] have the following property.

Definition 20. An elimination ordering ≺ is called reverse A-maximin with length
scales {ℓ8}8∈� if for every 9 ∈ � we have

ℓ 9 B min
8� 9

dist(G 9 , {G8} ∪ mΩ) ≥ A max
9�:

min
8� 9

dist(G: , {G8} ∪ mΩ). (65)

We note that the reversemaximin ordering from Section 6.3.1 is a reverse 1-maximin
ordering; reverse A-maximin orderings with A < 1 can be computed in computational
complexity O(# log(#)) (see Section .3.4). We define the sparsity patterns (≺,ℓ,d
and (̃≺,ℓ,d,_ analogously to the case of the reverse maximin ordering, and we will
write !d for the incomplete Cholesky factors of Θ−1 computed using (6.3) based on
the sparsity pattern (≺,ℓ,d or (̃≺,ℓ,d,_.

Computational complexity

Our estimates only depend on the intrinsic dimension of the dataset which is defined
by counting the number of balls of radius A that can be fit into balls of radius ', for
different A, ' > 0.

221

Algorithm 19 Without aggregation
Input: G, {G8}8∈� , ≺, (≺,ℓ,d
Output: Cond. mean ` and cov. �

1: for : ∈ �Pr do
2: `: ← 0
3: end for
4: for 8 ∈ �Tr, 9 ∈ �Pr do
5: (ΘTr,Pr)8 9 ← G(G8, G 9)
6: end for
7: for 8 ∈ �Pr, 9 ∈ �Pr do
8: (ΘPr,Pr)8 9 ← G(G8, G 9)
9: end for
10: for : ∈ �Tr do
11: for 8, 9 ∈ B: do
12:

(
ΘB: ,B:

)
8 9
← G(G8, G 9)

13: end for
14: E ← Θ−1

B: ,B:
e:

15: E ← E/E:
16: `:,: ← `:,: + E:Θ:,Pr
17: �:,: ← E>ΘTr,Pr
18: end for
19: � ← ΘPr,Pr − �>�
20: return `, �

Algorithm 20 With aggregation
Input:G, {G8}8∈� , ≺, (≺,ℓ,d,_
Output: Cond. mean ` and cov. �

1: for : ∈ �Pr do
2: `: ← 0
3: end for
4: for 8 ∈ �Tr, 9 ∈ �Pr do
5: (ΘTr,Pr)8 9 ← G(G8, G 9)
6: end for
7: for 8 ∈ �Pr, 9 ∈ �Pr do
8: (ΘPr,Pr)8 9 ← G(G8, G 9)
9: end for

10: for :̃ ∈ �̃ do
11: for 8, 9 ∈ B :̃ do
12:

(
ΘB:̃ ,B:̃

)
8 9
← G(G8, G 9)

13: end for
14: * ← %l chol(%l B:̃ ,B:̃%

l)%l
15: for : { :̃ do
16: E ← *−>e:
17: `:,: ← `:,: + E:Θ:,Pr
18: �:,: ← E>ΘTr,Pr
19: end for
20: end for� ← ΘPr,Pr − �>�
21: return `, �

Figure .10: Linear memory complexity. Prediction and uncertainty quantifica-
tion using KL-minimization with and without aggregation in O(# + d23̃) memory
complexity.

Condition 5 (Intrinsic dimension). We say that {G8}8∈� ⊂ R3 has intrinsic dimension
3̃ if there exists a constant �3̃ , independent of # , such that for all A, ' > 0, G ∈ R3 ,
we have

max
{
|�| : 8, 9 ∈ �⇒ dist(G8, G), dist(G 9 , G) ≤ ', dist(G8, G 9) ≥ A

}
≤ �3̃ ('/A)

3̃ .

(66)

Remark 3. Note that we always have 3̃ ≤ 3.

We also make a mild technical assumption requiring that most of the points belong
to the finer scales of the ordering:

222

Condition 6 (Regular refinement). We say that {G8}8∈� ⊂ R3 fulfills the regular
refinement condition for _ and ℓ with constant �_,ℓ, if

∞∑
:=blog(ℓ1)/log(_)c

#{8 : _: ≤ ℓ8} ≤ �_,ℓ#.

This condition excludes pathological cases like G8 = 2−8 forwhich each scale contains
the same number of points.

We obtain the following computational complexity:

Theorem 29. Under Condition 5 with �3̃ and 3̃, using an A-reverse maximin or-
dering ≺ and (≺,ℓ,d, Algorithm 12 computes !d in complexity �#d3̃ in space and
�#d33̃ in time. If we assume in addition that {G8}8∈� fulfills Condition 6 for _ and
; with constant �_,ℓ, then, using (̃≺,ℓ,d,_ or (̄≺,ℓ,d,_, Algorithm 13 computes !d in
complexity �#d3̃ in space and �_,ℓ�#d23̃ in time. Here, the constant � depends
only on �3̃ , 3̃, A , _, and the maximal cost of evaluating a single entry of Θ, but not
on # or 3.

Proof. We begin by showing that the number of nonzero entries of an arbitrary
column of (≺,ℓ,d is bounded above as�d3̃ . Considering the 8-th column, the reverse
A-maximin ordering ensures that for all 9 , : � 8, we have dist(G 9 , G8) ≥ Aℓ8. Since
for all (8, 9) ∈ (≺,ℓ,d we have 8 ≺ 9 and dist(G8, G 9) ≤ dℓ8, Condition 5 implies

that #
{
9 : (8, 9) ∈ (≺,ℓ,d

}
≤ �3̃

(
dℓ8
Aℓ8

) 3̃
. Computing the 8-th column of !d requires

the inversion of the Matrix ΘB8 ,B8 which can be done in computational complexity
�d3̃3 , leaving us with a total time complexity of �#d3̃ . We now want to bound
the computational complexity when using the aggregated sparsity patterns (̃≺,ℓ,d,_
or (̄≺,ℓ,d,_. As before, we write 9 ∈ B if 9 is a child of the supernode B, that is if
there exists a 8 { B such that (8, 9) is contained in (̃≺,ℓ,d,_ or (̄≺,ℓ,d,_. We write #B to
denote the number of children of B. By the same argument as above, the number of
children in each supernode B is bounded by�d3̃ . We now want to show that the sum
of the numbers of children of all supernodes is bounded as �# . For a supernode
B, we write

√
B ∈ � to denote the index that was first added to the supernode (see

the construction described in Section 6.3.2). We now observe that for two distinct
supernodes B and C with 2 ≤ ℓ√B, ℓ

√
C ≤ 2_, we have dist(G√B, G√C) ≥ 2d, since

otherwise we would have either
√
B { C or

√
C { B. Thus, for every index 8 ∈ � and

: ∈ Z, there exist at most � supernodes B with 8 ∈ B, _: ≤ ℓ√B < _:+1. By using

223

Condition 6, we thus obtain∑
B∈ �̃

#B =
∑
8∈�

#
{
B ∈ �̃ : 8 ∈ B

}
=

∑
:∈Z

∑
8∈�

#
{
B ∈ B̃ : 8 ∈ B, _: ≤ ℓ√B < _:+1

}
≤

∑
:∈Z

∑
8∈�:ℓ8≥_:

� ≤ #�.

We now know that there are at most �# child-parent relationships between indices
and supernodes and that each supernode can have at most �d3̃ children. The worst
case is thus that we have �#/d3̃ supernodes, each having �d3̃ children. This leads
to the bounds on time and space complexity of the algorithm. �

Approximation accuracy

Our goal is to prove the following theorem:

Theorem30. Using an A-maximin ordering≺ and sparsity patterns (≺,ℓ,d or (̃≺,ℓ,d,_,
there exists a constant � depending only on 3, Ω, A, _, B, ‖L‖, ‖L−1‖, and X, such
that for d ≥ � log(#/n), we have

DKL
(
N (0,Θ)

 N(0, (!d!d,>)−1)) + Θ − (!d!d,>)−1

Fro ≤ n . (67)

Thus, Algorithm 12 computes an n-accurate approximation of Θ in computational
complexity�# log3 (#/n) in space and�# log33 (#/n) in time, from�# log3 (#/n)
entries of Θ. Similarly, Algorithm 13 computes an n-accurate approximation of Θ
in computational complexity �# log3 (#/n) in space and �# log23 (#/n) in time,
from �# log3 (#/n) entries of Θ.

Theorem 10 implies that, under the assumptions of Theorem 22, the Cholesky factor
of � = Θ−1 decays exponentially away from the diagonal.

Theorem 31. In the setting of Theorem 22, there exists a constant� depending only
on X, A, 3,Ω, B, ‖L‖, and ‖L−1‖, such that for d ≥ � log(#/n),

(⊃ {(8, 9) ∈ � × � : dist(G8, G 9) ≤ dmin(ℓ8, ℓ 9)} (68)

and

!(8 9 B

(
chol(�)

)
8 9
, (8, 9) ∈ (,

0, otherwise,
(69)

we have
� − !(!(,>Fro ≤ n .

224

In order to prove the approximation accuracy of the KL-minimizer, we have to
compare the approximation accuracy in Frobenius norm and in KL-divergence. For
brevity, we write DKL(� ‖ �) B DKL(N (0, �) ‖ N (0, �)).

Lemma 18. Let _min, _max be the minimal and maximal eigenvalues of Θ, respec-
tively. Then there exists a universal constant � such that for any matrix " ∈ R�×� ,
we have

_max
� − "">Fro ≤ � ⇒ DKL

(
Θ

 (
"">

)−1
)
≤ _max

� − "">Fro ,

DKL

(
Θ

 (
"">

)−1
)
≤ � ⇒

� − "">Fro ≤ _
−1
minDKL

(
Θ

 (
"">

)−1
)
.

Proof. Writing ! B chol(�) and qFro(G) B G2 and qKL(G) B (G − log(1 + G))/2,
we have

_min
� − "">Fro = _min

!!−1 (
� − "">

)
!−>!>

Fro

≤
Id − !−1"">!−>

Fro =

#∑
:=1

qFro

(
_:

(
!−1"">!−>

)
− 1

)
=

!−1 (
� − "">

)
!−>

Fro ≤ _max

� − "">Fro

and

DKL

(
Θ

 (
"">

)−1
)
=

#∑
:=1

qKL

(
_:

(
!−1"">!−>

))
, (70)

where (_: (·))1≤:≤# returns the eigenvalues ordered from largest to smallest, while _min(·)
(_max(·)) returns the smallest (largest) eigenvalue. The leading-order Taylor expansion
of qKL around 0 is given by G ↦→ G2/4. Thus, there exists a constant � such that for
min(|G |, qFro(G), qKL(G)) ≤ � we have qKL(G) ≤ qFro(G) ≤ 8qKL(G). Therefore, for
_max ‖� − "">‖Fro ≤ �, we have DKL

(
Θ

 ("">)−1
)
≤ _max ‖� − "">‖Fro. For

DKL

(
Θ

 ("">)−1
)
≤ �, this implies ‖� − "">‖Fro ≤ _−1

minDKL

(
Θ

 ("">)−1
)
. �

Using Lemma 18, we can conclude Theorem 22.

Proof of Theorem 30. Theorem 7 implies that there exists a polynomial p depending
only on (3, B, X,L) such that _max, _

−1
min ≤ p(#). Thus, by choosing d ≥ � log(#)

we can deduce by Theorem 31 that _max
� − !(!(,> ≤ � where � is the constant

in Lemma 18. Thus, we have DKL

(
Θ

 (
!(!(,>

)−1
)
≤ _max

� − !(!(,>. The

KL-optimality of !d implies DKL

(
Θ

 (!d!d,>)−1
)
≤ _max

� − !(!(,> ≤ �.
Using one more time Lemma 18, we also obtain� − !d!d,> ≤ _−1

minDKL

(
Θ

 (
!d!d,>

)−1
)
≤ _max/_min

� − !(!(,> . (71)

�

225

.3.3 Including the prediction points
Ordering the prediction points first

Algorithm 21 describes how to compute the inverse Cholesky factor when forcing
the prediction points to be ordered before the training points. In order to compute
the ordering of the prediction points after the ordering of the training points has been
fixed, we need to compute the distance of each prediction point to the closest training
point. When using Algorithm 24, this can be done efficiently while computing the
maximin ordering of the training points by including the prediction points into
the initial list of children of 8, as is done in Line 11 of the algorithm. Once
the joint inverse Cholesky factor ! =

(
!Pr,Pr 0
!Tr,Pr !Tr,Tr

)
has been computed, we have

E [-Pr |-Tr = H] = !−>Pr,Pr!
>
Tr,PrH and Cov [-Pr |-Tr] = !−>Pr,Pr!

−1
Pr,Pr. We note that the

conditional expectation can be computed by forming the columns of ! one by one,
without ever having to hold the entire matrix in memory, thus leading to linear
space complexity similar to Section 6.4.3, while the same is not possible for the
conditional covariance matrix.

Ordering the prediction points last, for accurate extrapolation

Splitting the prediction set �Pr =
⋃

1≤1≤<Pr �1 into <Pr batches of =Pr predictions,
we want to compute the conditional mean vector and covariance matrix of the vari-
ables in each batch separately, by using the inverse Cholesky factor !̄d of the joint
covariance matrix obtained from KL-minimization subject to the sparsity constraint
given by (̄ = (≺,;,d,_ ∪ {(8, 9) : 9 ∈ �1}. Naively, this requires us to recompute the
inverse Cholesky factor ! for every batch, leading to a computational complexity of
O

(
<Pr(# + =Pr) (d3̃ + =Pr)2

)
. However, by reusing a part of the computational com-

plexity across different batches, Algorithm 23 is to instead achieve computational
complexity of O

(
(# + =Pr) (d23̃ + <Pr

(
d3̃ + =2

Pr

))
. In the following, we derive the

formulae used by this algorithm to compute the conditional mean and covariance.
For a fixed batch �1, define Θ̄ as the approximate joint covariance matrix implied
by the inverse Cholesky factor !̄d. It has the block-structure(

Θ̄Tr,Tr Θ̄Tr,1
Θ̄1,Tr Θ̄1,1

)
C

(
�̄Tr,Tr �̄Tr,1
�̄1,Tr �̄1,1

)−1

=

(
!̄>Tr,Tr !̄>

1,Tr
0 !̄>

1,1

)−1 (
!̄Tr,Tr 0
!̄1,Tr !̄1,1

)−1

C !̄d,−> !̄d,−1, (72)

where !̄d is the inverse-Cholesky factor obtained by applying KL-minimization to
the joint covariance matrix subject to the sparsity constraint given by (̄. We can
then write the posterior mean and covariance of a GP - ∼ N(0, Θ̄) as

E [-1 |-Tr = H] = Θ̄1,TrΘ̄
−1
Tr,TrH = −�̄

−1
1,1 �̄1,TrH = −

(
!̄1,Tr !̄

>
1,Tr + !̄1,1 !̄

>
1,1

)−1
!̄1,Tr !̄

>
Tr,TrH (73)

Cov [-1 |-Tr] = Θ̄1,1 − Θ̄1,TrΘ̄
−1
Tr,TrΘ̄Tr,1 = �̄

−1
1,1 =

(
!̄1,Tr !̄

>
1,Tr + !̄1,1 !̄

>
1,1

)−1
. (74)

226

Algorithm 21 Prediction variables first
Input: G, {G8}8∈�Tr , Ω, {G8}8∈�Tr , d, (_)
Output: ! ∈ R#×# l. triang. in ≺

1: Comp. ≺Pr, ;Pr from {G8}8∈�Pr , Ω̃
2: Comp. ≺Tr, ;Tr from {G8}8∈�Tr , Ω
3: ≺← (≺Pr, ≺Tr)
4: ; ← (;Pr, ;Tr)
5: (← (≺,;,d ((← (≺,;,d,_)
6: Comp. ! using Algorithm 12(13)
7: return !

Algorithm 22 Predictions last, =Pr = 1
Input: G, {G8}8∈�Tr , Ω, {G8}8∈�Tr , d, _
Output: Cond. mean and var. `, f ∈ R�Pr

1: Comp. ≺, (≺,;,d,_ from {G8}8∈�Tr , Ω
2: for : ∈ �Pr do
3: X: , f: ← G(G: , G:),G(G: , G:)−1

4: `: ← 0
5: end for
6: for :̃ ∈ �̃ do
7: *←%l chol(%lΘB:̃ ,B:̃%

l)%l
8: for : ∈ B:̃ , ; ∈ �Pr do
9: �:; ← G(G: , G;)
10: end for
11: �← *−1�

12: H̃ ← *−1HB:̃
13: for : { :̃ do
14: U← H̃>B:�B: ,Pr
15: V← �>

B: ,Pr�B: ,Pr

16: W ←
√

1 + (X − V)−1�2
:,Pr

17: ℓ ← −X−1W−1�>
:,Pr

(
1 + V

X−V

)
18: `← ` + ℓ/W

(
H̃: + �:,PrU

X−V

)
19: f ← f + ℓ2

20: end for
21: end for
22: f ← f−1

23: `← −f`
24: return `, f

Algorithm 23 Prediction variables last
Input: G, {G8}8∈�Tr , Ω, {G8}8∈�Tr , d, _, batched
predictions �Pr =

⋃<Pr
1=1 �1

Output: Per batch cond. mean {`1}1≤1≤<Pr and
cov. {�1}1≤1≤<Pr

1: Comp. ≺, (≺,;,d,_ from {G8}8∈�Tr , Ω
2: for :̃ ∈ �̃ do
3: * :̃ ← %l chol(%lΘB:̃ ,B:̃%

l)%l
4: end for
5: for 1 ∈ {1, . . . , <Pr} do
6: for :̃ ∈ �̃ do
7: for : ∈ B:̃ , ; ∈ �1 do
8: (ΘB:̃ ,1):; ← G(G: , G;)
9: end for
10: for :, ; ∈ �1 do
11: (Θ1,1):; ← G(G: , G;)
12: end for
13: �1 ← Θ−1

1,1

14: �:̃ ← * :̃ ,−1Θ:̃ ,1
15: H :̃ ← * :̃ ,−1HB:̃
16: for : { :̃ do
17: E ←

�:̃
B: ,1

(
Θ1,1 − �:̃ ,>B: ,1�B: ,1

)−1
�
:̃ ,>
:,1

18: 2 ←
√

1 + E:
19: !1,: ← − 1

2:
Θ−1
1,1
�
:̃ ,>
B: ,1
(e1 + E)

20: �1 ← �1 + !1,:!>1,:
21: `1 ← `1 + !1,: (1

2:
H
:̃ ,>
B: (e1 + E))

22: end for
23: end for
24: `1 ← −�1`1
25: end for
26: �1 ← �−1

1

27: return (`1, �1)1≤1≤<Pr

Figure .11: Algorithms for including prediction points.

227

Expanding the matrix multiplications into sums, this can be rewritten as

E [-1 |-Tr] = −
(
!̄1,1 !̄

>
1,1 +

∑
:∈�Tr

!̄1,: ⊗ !̄1,:

)−1 ∑
:∈�Tr

!̄1,:
(
H> !̄Tr,:

)
(75)

Cov [-1 |-Tr] =
(
!̄1,1 !̄

>
1,1 +

∑
:∈�Tr

!̄1,: ⊗ !̄1,:

)−1

. (76)

!̄1,1 is simply theCholesky factor ofΘ−1
1,1

. Thus, given
(
H> !̄Tr,: , !1,:

)
:{ :̃

, the above
expressions can be evaluated in computational complexity O(=3

Pr + #Tr=
2
Pr + =Pr#()

in time and O(=2
Pr+max;̃∈ �̃: #;̃) in space. Naively, computing the

(
H>!Tr,: , !1,:

)
:{ :̃

for each batch has computational complexity O(<Pr(#:̃ + =Pr)3) which becomes the
bottleneck for large numbers of batches. However, as we will see, 〈!Tr,: , H〉 and
!1,: can be computed in computational complexity O((#:̃ + =Pr)3 +<Pr(#:̃ + =Pr)2)
by reusing parts of the computation. Fix a supernodal index :̃ ∈ �̃ and define the
corresponding exact joint covariance matrix as

Θ:̃ B
(
Θ8 9

)
{8, 9∈:̃∪�1} =

(
Θ:̃ ,:̃ Θ:̃ ,1

Θ1,:̃ Θ1,1

)
. (77)

For any : { :̃ , the column !d:,: is, according to (6.3), equal to(
Θ:̃
::,::

)−1
e1√

e>1
(
Θ:̃
::,::

)−1
e1

. (78)

Let as before * :̃* :̃ ,> = Θ:̃ ,:̃ . Using the Sherman-Morrison-Woodbury matrix
identity, we can then rewrite Θ:̃ ,−1

::,::e1 as

Θ
:̃ ,−1
::,::e1 =

(
Id 0

−Θ−1
1,1
Θ1,B: Id

) ©«
(
ΘB: ,B: − ΘB: ,1Θ−1

1,1
Θ1,B:

)−1
0

0 Θ−1
1,1

ª®¬
(
Id −ΘB: ,1Θ−1

1,1

0 Id

)
e1

=
©«

(
ΘB: ,B: − ΘB: ,1Θ−1

1,1
Θ1,B:

)−1
e1

−Θ−1
1,1
Θ1,B:

(
ΘB: ,B: − ΘB: ,1Θ−1

1,1
Θ1,B:

)−1
e1

ª®®¬
=
©«

(
Θ−1
B: ,B:
− Θ−1

B: ,B:
ΘB: ,1

(
−Θ1,1 + Θ1,B:Θ−1

B: ,B:
ΘB: ,1

)−1
Θ1,B:Θ

−1
B: ,B:

)
e1

−Θ−1
1,1
Θ1,B:

(
Θ−1
B: ,B:
− Θ−1

B: ,B:
ΘB: ,1

(
−Θ1,1 + Θ1,B:Θ−1

B: ,B:
ΘB: ,1

)−1
Θ1,B:Θ

−1
B: ,B:

)
e1

ª®¬
Using Equation (62) and setting � :̃ B * :̃ ,−1Θ:̃ ,1, we obtain

Θ̄
:̃ ,−1
::,::e1 =

1
* :̃
:,:

©«
*
:̃ ,−>
B: ,B:

(
e1 + � :̃B: ,1

(
Θ1,1 − � :̃ ,>B: ,1�

:̃
B: ,1

)−1
�
:̃ ,>
:,1

)
−Θ−1

1,1
�
:̃ ,>
B: ,1

(
e1 + � :̃B: ,1

(
Θ1,1 − � :̃ ,>B: ,1�

:̃
B: ,1

)−1
�
:̃ ,>
:,1

)ª®®®¬ . (79)

228

Setting H :̃ = * :̃ ,−1HB:̃ , this yields the formulae

H> !̄Tr,: =
H
:̃ ,>
:
+ H :̃ ,>B: � :̃B: ,1

(
Θ1,1 − � :̃ ,>B: ,1�

:̃
B: ,1

)−1
�
:̃ ,>
:,1

2:
(80)

!̄1,: =

−Θ−1
1,1
�
:̃ ,>
B: ,1

(
e1 + � :̃B: ,1

(
Θ1,1 − � :̃ ,>B: ,1�

:̃
B: ,1

)−1
�
:̃ ,>
:,1

)
2:

, (81)

where

2: B

√
1 + � :̃

:,1

(
Θ1,1 − � :̃ ,>B: ,1�

:̃
B: ,1

)−1
�
:̃ ,>
:,1
. (82)

Algorithm 23 implements the formulae above. Since * :̃ does not depend on 1, it
only has to be computed once and can be used to compute the � :̃ and H H̃ for all
1 ≤ 1 ≤ <Pr.

.3.4 Computation of the reverse maximin ordering and sparsity pattern
We will now explain how to compute the ordering and sparsity pattern described in
Section 6.3, using only near-linearly many evaluations of an oracle dist(8, 9) that
returns the distance between the points G8 and G 9 . To do so efficiently in general, we
need to impose a mild additional assumption on the dataset (c.f. Section .2.1).

Condition 7 (Polynomial Scaling). There exists a polynomial p for which

max8≠ 9∈� dist(G8, G 9)
min8≠ 9∈� dist(G8, G 9)

≤ p(#).

Under Conditions 5 and 7, Algorithm 11 allows us to compute the maximin ordering
≺ and sparsity pattern

{
(8, 9) : dist(G8, G 9) ≤ dmax(ℓ8, ℓ 9)

}
in computational com-

plexity O(# log(#)d3̃) in space and time. The resulting pattern is larger than the
reverse maximin sparsity pattern (≺,;d of Section 6.3.1, which can thus be obtained
by truncating the pattern obtained by Algorithm 11. By performing the truncation
of the sets of children and parents 2, ? as used by Algorithm 11 during execution
of the algorithm, as opposed to truncating the sparsity pattern after execution of
the algorithm, the space complexity for obtaining ≺ and (≺,;,d can be reduced to
O(#d3̃). Algorithm 24 is a minor modification of Algorithm 11 that performs such
a truncation.

Theorem 32 (Variant of Algorithm 11). Let Ω = R3 and d ≥ 2. Algorithm 24
computes the reverse maximin ordering ≺ and sparsity pattern (≺,;,d in computa-
tional complexity �d3̃# in space and �# log(#)d3̃ (log # + �dist) in time. Here,

229

� = � (3̃, �3̃ , p) depends only on the constants appearing in Conditions 5 and
refcond:polynomialScaling, and �dist is the cost of evaluating dist.

Proof. The proof is essentially the same as the proof of Theorem 19. �

Similarly, the proof of Theorem 27 can be adapted to show that in the setting of
Theorem 22, there exists a constant � depending only on 3, Ω, and X, such that for
d > �, Algorithm 24 computes the maximin ordering in computational complexity
�# (log(#)d3 + �distΩ) in time and �#d3 in space, where �distΩ is an upper
bound on the complexity of computing the distance of an arbitrary point G ∈ Ω to
mΩ.

We furthermore note that a reverse A-maximin ordering with A < 1 (see Defini-
tion 20) can be computed in computational complexity O(# log(#)) by quantizing
the values of (log(ℓ8))8∈� inmultiples of log(A), which avoids the complexity incurred
by the restoration of the heap property in Line 23 of Algorithm 11.

As described in Section 6.3.2, the aggregated sparsity pattern (≺,;,d,_ can be com-
puted efficiently from (≺,;,d. However, forming the pattern (≺,;,d using a variant of
Algorithm 11 has complexity O(# log(#)d3̃) in time and O(#d3̃) in space, while
the aggregated pattern (≺,;,d,_ only has space complexity O(#), begging the ques-
tion if this computational complexity can be improved. Let {B8̃}8̃∈ �̃ be the supernodes
as constructed in Section 6.3.2 and identify each supernodal index 8̃ with the first
(w.r.t. ≺) index 8 ∈ � such that 8 { 8̃. We then define

(̄≺,;,d,_ B
⋃̃
8∈ �̃

{
(8, 9) : 8 � 9 , 8 { 8̃, dist(G8̃, G 9) ≤ d(1 + _)8̃

}
. (83)

Algorithm 25 allows us to construct the sparsity pattern (̄≺,;,d,_ ⊃ (̃≺,;,d,_ in com-
plexity O(# log(#)) in time and O(#) in space, given ≺ and ;. In this algorithm,
we will implement supernodes as pairs of arrays of indices f = (f<, f=). This
encodes the relationship between all indices in f< (the parents) and all indices in
f= (the children). Naively, this would require O(#f<#f=) space complexity, but by
storing the entries of f< and f=, the complexity is reduced to O(#f< + #f=) space
complexity, which improves the asymptotic computational complexity.

230

Algorithm 24 Ordering and sparsity pattern algorithm (cf. Algorithm 11).
Input: A real parameter d ≥ 2 and Oracles dist(· , ·) , distmΩ (·) such that dist(8, 9) = dist

(
G8 , G 9

)
and

distmΩ (8) = dist (G8 , mΩ)
Output: An array ; [:] of distances, an array % encoding the multiresolution ordering, and an array of index pairs (
containing the sparsity pattern.

1: % = ∅
2: for 8 ∈ {1, . . . , # } do
3: ; [8] ← distmΩ (8)
4: ? [8] ← ∅
5: 2 [8] ← ∅
6: end for
7: {Creates a mutable binary heap, containing pairs of indices and distances as elements:}
8: � ← MutableMaximalBinaryHeap (

{(8, ; [8]) }8∈{1,...,# }
)

9: {Instates the Heap property, with a pair with maximal distance occupying the root of the heap:}
10: heapSort!(�)
11: {Processing the first index:}
12: {Get the root of the heap, remove it, and restore the heap property:}
13: (8, ;) = pop(�)
14: {Add the index as the next element of the ordering}
15: push (%, 8)
16: for 9 ∈ {1, . . . , # } do
17: push(2 [8], 9)
18: push(? [9], 8)
19: sort! (2 [8], dist(· , 8))
20: decrease! (�, 9, dist(8, 9))
21: end for
22: {Processing remaining indices:}
23: ;Trunc ← ;

24: while � ≠ ∅ do
25: {Get the root of the heap, remove it, and restore the heap property:}
26: (8, ;) = pop(�)
27: ; [8] ← ;

28: {Select the parent that has possible children of 8 amongst its children, and is closest to 8:}
29: : = argmin 9∈? [8]:dist(8, 9)+d; [8]≤dmin(;Trunc ,; [9]) dist (8, 9)
30: {Loop through those children of : that are close enough to : to possibly be children of 8:}
31: for 9 ∈ 2 [:] : dist(9 , :) ≤ dist(8, :) + d; [8] do
32: decrease! (�, 9, dist(8, 9))
33: if dist(8, 9) ≤ d; [8] then
34: push(2 [8], 9)
35: push(? [9], 8)
36: end if
37: end for
38: {Add the index as the next element of the ordering}
39: push (%, 8)
40: {Sort the children according to distance to the parent node, so that the closest children can be found more easily}
41: sort! (2 [8], dist(· , 8))
42: {Truncate the sparsity pattern to achieve linear space complexity}
43: if ∀ 9 ∉ %, ∃8 ∈ % : dist(8, 9) < ;Trunc/2 then
44: ;Trunc ← ;Trunc/2
45: for 9 ∈ 2 [8] \ %, dist(8, 9) > d;Trunc do
46: 2 [8] ← 2 [8] \ { 9 }
47: ? [9] ← ? [9] \ {8 }
48: end for
49: end if
50: end while
51: {Aggregating the lists of children into the sparsity pattern:}
52: for 8 ∈ {1, . . . , # } do
53: for 9 ∈ 2 [8] do
54: push! ((, (8, 9))
55: push! ((, (9 , 9))
56: end for
57: end for

231

Algorithm 25 Computation of (̃ and (̄
Input: �, ≺, ;, dist(·, ·), d, _
Output: Sets of supernodes (̄, (̃

1: 8# , 8#−1 ← last two ind. w.r.t. ≺
2: N ,N ≥ ← {({8# }, �)}, {({8# }, {8# })}
3: A, ;8# ← ;8#−1/_,∞
4: while A > min8∈� ;8 do
5: N , Ñ ≥ ← Refine(N , ;, A, d, _)
6: N ≥ ← N ≥ ∪ Ñ ≥
7: A ← A/_
8: end while
9: �, (̄ ← ∅, ∅
10: for 8 ∈ � (in increasing order by ≺) do
11: if 8 ∉ � then
12: B̃← (∅, ∅), Pick f ∈ N ≥ : 8 ∈ f<
13: for 9 ∈ f< do
14: if 8 � 9 , ; 9 ≤ _;8 , 9 ∉ � then
15: �, B̃= ← � ∪ { 9}, B̃= ∪ { 9}
16: end if
17: end for
18: for f̃ ∈ N ≥ : ∃ 9 ∈ f̃< : 9 ∈ f< do
19: for : ∈ f̃= : dist(8, :) ≤ d(1+_) do
20: B̃< ← B̃< ∪ {:}
21: end for
22: end for
23: (̄ ← (̄ ∪ {B̃}
24: end if
25: end for
26: (̃ ← Reduce(d, ≺, ;, (̄)
27: return (̄, (̃

Algorithm 26 Reduce(d, ≺, ;, (̄)
Input: ≺, ;, dist(·, ·), d, (̄
Output(̃ = (̃≺,;,d

1: (̃ ← ∅
2: for f ∈ (̄ do
3: B̃← (f<, ∅)
4: for 8 ∈ f<, 9 ∈ f= do
5: if dist(8, 9) ≤ d;8 and 8 ≺ 9 then
6: B̃= ← B̃= ∪ { 9}
7: end if
8: end for
9: (̃ ← (̃ ∪ {B̃}
10: end for
11: return (̃

Algorithm 27
Refine(N , ;, A, d, _)
Input: Supernodal set N ,
dist(·, ·), ;, A , d, _
Output: A new set M of supernodes,
set N ≥ of truncated supernodes

1: �,N ≥,M ← ∅, ∅, ∅
2: while � ≠ � do
3: Pick 8 ∈ � \ �
4: � ← � ∪ {8}
5: Pick f ∈ N satisfying 8 ∈ f<
6: f̃<, f̃= ← ∅, ∅
7: for 9 ∈ f= do
8: if dist(8, 9) ≤ d_A then
9: f̃< ← f̃< ∪ { 9}
10: � ← � ∪ { 9}
11: end if
12: if dist(8, 9) ≤ 2d_A then
13: f̃= ← f̃= ∪ { 9}
14: end if
15: end for
16: M ←M ∪ {(f̃<, f̃=)}
17: end while
18: for f ∈ N do
19: f≥< , f

≥
= ← ∅, ∅

20: for 8 ∈ f< do
21: if A ≤ ;8 then
22: f≥< ← f≥< ∪ {8}
23: end if
24: end for
25: for 8 ∈ f= do
26: if A ≤ ;8 then
27: f≥= ← f≥= ∪ {8}
28: end if
29: end for
30: N ≥ ← N ≥ ∪ {(f≥< , f≥=)}
31: end for
32: return M, N ≥

Figure .12: Aggregation. Algorithm for constructing the aggregated sparsity pattern
from the reverse maximin ordering ≺ and length-scales ;

232

Theorem 33. Let the {G8}8∈� satisfy Condition 5 with 3̃ and �3̃ , Condition 6 with
constant �regref , and Condition 7 with p and let _ > 1. Then there exists a constant
� = �3̃,�3̃ ,�regref ,p,_ such that Algorithm 25 can compute (̄≺,;,d,_ in computational
complexity ��dist# log(#) in time and �# in space and (̃≺,;,d,_ in computational
complexity ��dist# (log(#) + d3̃) in time and �# in space.

Proof. To establish correctness, the main observation is that after every application
of Algorithm 27, each degree of freedom 8 can be found in exactly one of the
supernodes f ∈ N . Furthermore, each f ∈ N has a root

√
f ∈ � such that

1.
√
f ∈ f=, f<,

2. 9 ∈ f< ⇒ dist(
√
f, 9) ≤ d_A ,

3. 9 ∈ f= ⇔ dist(
√
f, 9) ≤ 2d_A ,

4. f ≠ f̄ ⇒ dist(
√
f,
√
f̄) > d_A .

The main reason why the above could fail to hold true is that the inner for loop does
not range over all 9 ∈ �, but only over those in f=. However, at the first occurrence
of Algorithm 27 we have f= = � leading to the observations to hold true. For
subsequent calls, we can show the invariance of these properties by induction. The
set N≥ is obtained from the set N by only selecting the points in a certain range
of length scales. Therefore, after completion of the while-loop of Algorithm 25,
every 8 ∈ � is contained in at least one of the {f<}f∈N ≥ , and for 8 { f ∈ N≥, we
have

{
9 : (8, 9) ∈ (̄

}
⊂ f=. Thus, the for-loop of Algorithm 25 indeed computes (̄.

Since (̃≺,;,d,_ ⊂ (̄≺,;,d,_, Algorithm 26 correctly recovers (̃≺,;,d,_.

We begin by analyzing the computational complexity of the while-loop of Algo-
rithm 25. We first note that at every execution of the loop, A is divided by _. Thus,
Condition 7 implies that the loop is entered at most � log(#) times. We now claim
that that the time complexity of Algrithm 27 is bounded above by ��dist# . To this
end it is enough to upper-bound the number of points 8 for which a given index can
be picked as index 9 in the while-loop of Algorithm 27. By Property 2, for this to
happen we need dist(8,

√
f) ≤ d_A and dist(9 ,

√
f) ≤ 2d_A and hence, by the

triangle inequality, dist(8, 9) ≤ 3d_A. On the other hand, 8 can not be in � already,
which means that any two distinct 81, 82 have to satisfy dist(81, 82) > d_A . By Con-
dition 5, we conclude that the maximum number of indices 8 for which a given index
9 gets picked is bounded above by a constant� that depends of�3̃ and 3. This upper

233

bounds the computational complexity of thewhile-loop inAlgorithm 27 by�# . The
computational complexity of the outermost for-loop of Algorithm 27 can be bounded
by �# , by a similar argument. Summarizing the above, we have upper-bounded the
time complexity of the while-loop in Algorithm 25 by�# log(#). In order to bound
the space complexity of the while-loop, we need to ensure that the size of N≥ is
bounded above as�# . To this end, we notice that by arguments similar to the above,
one can show that at all times, the number max8∈� #{f ∈ N : 8 ∈ f< or 8 ∈ f# }
is bounded from above by a constant �. By using Condition 6, we can show that
the space complexity of N≥ is bounded by �# . By ways of similar ball packing
arguments, the complexity of the outer for-loop of Algorithm 25 can be bounded by
�# , as well. The complexity of Algorithm26 is bounded by �#d3̃ , the number of
entries of the sparsity pattern (̄, since it iterates over all entries of (̄. �

.4 Appendix to Chapter 7

.4.1 Proofs of convergence

Proof of Theorem 2.3. To shorten the expressions below, we set 0 B ∇G 5 (G:),
1 B ∇H 5 (G: , H:), �GG B �2

GG 5 (G: , H:), �HH B �2
HH 5 (G: , H:), # B �2

GH 5 (G: , H:),
#̃ B [# , "̃ B #̃>#̃ , and "̄ B #̃ #̃>.

Letting (G, H) be the update step of CGD and using the Taylor expansion, we obtain

∇G 5 (G + G: , H + H:) = 0 + �GGG + #H + RG (G, H)
∇H 5 (G + G: , H + H:) = 1 + �HHH + #>G + RH (G, H)

where the remainder terms RG and RH are defined as

RG (G, H) B
1∫

0

(
�2
GG 5 (CG + G: , CH + H:) − �GG

)
G +

(
�2
GH 5 (CG + G: , CH + H:) − #

)
H dC

RH (G, H) B
1∫

0

(
�2
HH 5 (CG + G: , CH + H:) − �HH

)
H +

(
�2
HG 5 (CG + G: , CH + H:) − #>

)
G dC.

234

Using this formula, we obtain

‖∇G 5 (G + G: , H + H:)‖2 +
∇H 5 (G + G: , H + H:)2 − ‖0‖2 − ‖1‖2

= 2G>�GG0 + 20>#H + G>�GG�GGG + 2G>�GG#H + H>#>#H
+ 2H>�HH1 + 21>#>G + H>�HH�HHH + 2H>�HH#>G + G>##>G
+ 20>RG (G, H) + 2G>�GGRG (G, H) + 2H>#>RG (G, H) + ‖RG (G, H)‖2

+ 21>RH (G, H) + 2H>�HHRH (G, H) + 2G>#RH (G, H) + ‖RH (G, H)‖2.

We now observe that

H>#>#H = H>#> (−G/[− 0)
G>##>G = G># (H/[− 1) .

Thus, by adding up the two terms we obtain

G>##>G + H>#>#H = −H>#>0 − G>#1.

Plugging this into our computation yields

‖∇G 5 (G + G: , H + H:)‖2 +
∇H 5 (G + G: , H + H:)2 − ‖0‖2 − ‖1‖2

= 2G>�GG0 + 0>#H + G>�GG�GGG + 2G>�GG#H

+ 2H>�HH1 + 1>#>G + H>�HH�HHH + 2H>�HH#>G

+ 20>RG (G, H) + 2G>�GGRG (G, H) + 2H>#>RG (G, H) + ‖RG (G, H)‖2

+ 21>RH (G, H) + 2H>�HHRH (G, H) + 2G>#RH (G, H) + ‖RH (G, H)‖2.

We now plug the update rule of CGD into G and H, and observe that #̃>(Id+ "̄)−1 =

(Id + "̃)−1#̃> to obtain

G>#1 + 0>#H = −0>
(
Id + "̄

)−1
"̄0 − 1>

(
Id + "̃

)−1
"̃1,

yielding

‖∇G 5 (G + G: , H + H:)‖2 +
∇H 5 (G + G: , H + H:)2 − ‖0‖2 − ‖1‖2

= 2G>�GG0 − 0>
(
Id + "̄

)−1
"̄0 + G>�GG�GGG + 2G>�GG#H

+ 2H>�HH1 − 1>
(
Id + "̃

)−1
"̃1 + H>�HH�HHH + 2H>�HH#>G

+ 20>RG (G, H) + 2G>�GGRG (G, H) + 2H>#>RG (G, H) + ‖RG (G, H)‖2

+ 21>RH (G, H) + 2H>�HHRH (G, H) + 2G>#RH (G, H) + ‖RH (G, H)‖2.

235

In the above, we have used cancellation across the two players in order to turn the
purely interactive terms into terms that induce convergence. We now observe that
[#H + [0 = −G and [#>G + [1 = H by Equation (7.8), yielding

‖∇G 5 (G + G: , H + H:)‖2 +
∇H 5 (G + G: , H + H:)2 − ‖0‖2 − ‖1‖2

= −2[0>�GG0 − 0>
(
Id + "̄

)−1
"̄0 + G>�GG�GGG + 2 (2G + [#H)> �GG#H

+ 2[1>�HH1 − 1>
(
Id + "̃

)−1
"̃1 + H>�HH�HHH + 2

(
2H − [#>G

)>
�HH#

>G

+ 20>RG (G, H) + 2G>�GGRG (G, H) + 2H>#>RG (G, H) + ‖RG (G, H)‖2

+ 21>RH (G, H) + 2H>�HHRH (G, H) + 2G>#RH (G, H) + ‖RH (G, H)‖2.

The terms −2[0>�GG0 − 0>
(
Id + "̄

)−1
"̄0 and 2[1>�HH1 − 1>

(
Id + "̃

)−1
"̃1

allow us to use curvature and interaction to show convergence. We now want to
estimate the remaining terms.

To do so, we first use the Peter-Paul inequality to collect occurrences of �GG and
�HH.

‖∇G 5 (G + G: , H + H:)‖2 +
∇H 5 (G + G: , H + H:)2 − ‖0‖2 − ‖1‖2

≤ −2[0>�GG0 − 0>
(
Id + "̄

)−1
"̄0 + 18G>�GG�GGG + H>#>

(
1
4
Id + [�GG

)
#H

+ 2[1>�HH1 − 1>
(
Id + "̃

)−1
"̃1 + 18H>�HH�HHH + G>#

(
1
4
Id + [�HH

)
#>G

+ 20>RG (G, H) + 2H>#>RG (G, H) + 2‖RG (G, H)‖2

+ 21>RH (G, H) + 2G>#RH (G, H) + 2‖RH (G, H)‖2.

Assuming now that ‖[�GG ‖, ‖[�HH‖ ≤ 2, we can estimate

‖∇G 5 (G + G: , H + H:)‖2 +
∇H 5 (G + G: , H + H:)2 − ‖0‖2 − ‖1‖2

≤ −2[0>�GG0 − 0>
(
Id + "̄

)−1
"̄0 + 18G>�GG�GGG +

(
1
4
+ 2

)
‖#H‖2

+ 2[1>�HH1 − 1>
(
Id + "̃

)−1
"̃1 + 18H>�HH�HHH +

(
1
4
+ 2

) #>G2

+ 20>RG (G, H) + 2H>#>RG (G, H) + 2‖RG (G, H)‖2

+ 21>RH (G, H) + 2G>#RH (G, H) + 2‖RH (G, H)‖2.

236

Using Peter-Paul again, we collect the #H, #>G terms

‖∇G 5 (G + G: , H + H:)‖2 +
∇H 5 (G + G: , H + H:)2 − ‖0‖2 − ‖1‖2

≤ −2[0>�GG0 − 0>
(
Id + "̄

)−1
"̄0 + 18G>�GG�GGG +

(
1
2
+ 2

)
‖#H‖2

+ 2[1>�HH1 − 1>
(
Id + "̃

)−1
"̃1 + 18H>�HH�HHH +

(
1
2
+ 2

) #>G2

+ 20>RG (G, H) + 6‖RG (G, H)‖2

+ 21>RH (G, H) + 6‖RH (G, H)‖2.

We now compute#>G2
=

(
0 + #̃1

)> (
Id + "̄

)−2
"̄

(
0 + #̃1

)
‖#H‖2 =

(
−1 + #̃>0

)> (
Id + "̃

)−2
"̃

(
−1 + #̃>0

)
.

By adding up the two, we obtain#>G2 + ‖#H‖2 = 0>
(
Id + "̄

)−2
(
"̄ + "̄2

)
0 + 1>

(
Id + "̃

)−2
(
"̃ + "̃2

)
1

= 0>
(
Id + "̄

)−1
"̄0 + 1>

(
Id + "̃

)−1
"̃1.

Plugging this into our main computation, we obtain

‖∇G 5 (G + G: , H + H:)‖2 +
∇H 5 (G + G: , H + H:)2 − ‖0‖2 − ‖1‖2

≤ −2[0>�GG0 −
(
1
2
+ 2

)
0>

(
Id + "̄

)−1
"̄0 + 18G>�GG�GGG

+ 2[1>�HH1 −
(
1
2
− 2

)
1>

(
Id + "̃

)−1
"̃1 + 18H>�HH�HHH

+ 20>RG (G, H) + 6‖RG (G, H)‖2

+ 21>RH (G, H) + 6‖RH (G, H)‖2.

We now set 2 = 1/18 and define the spectral function q(_) B 2_ − |_ | to obtain

237

‖∇G 5 (G + G: , H + H:)‖2 +
∇H 5 (G + G: , H + H:)2 − ‖0‖2 − ‖1‖2

≤ −2[0>ℎ± (�GG) 0 −
1
3
0>

(
Id + "̄

)−1
"̄0

− 2[1>ℎ±
(
−�HH

)
1 − 1

3
1>

(
Id + "̃

)−1
"̃1

+ 20>RG (G, H) + 6‖RG (G, H)‖2

+ 21>RH (G, H) + 6‖RH (G, H)‖2.

To conclude, we need to estimate the R-terms. Using the Lipschitz-continuity of
the Hessian, we can estimate

‖RG (G, H)‖, ‖RG (G, H)‖ ≤ (‖G‖ + ‖H‖)2 ≤ 4[2! (‖0‖ + ‖1‖)2 ≤ 8[2! (‖0‖2+ ‖1‖2).
(84)

Using this estimate, we obtain

‖∇G 5 (G + G: , H + H:)‖2 +
∇H 5 (G + G: , H + H:)2 − ‖0‖2 − ‖1‖2

≤ −2[0>ℎ± (�GG) 0 −
1
3
0>

(
Id + "̄

)−1
"̄0

− 2[1>ℎ±
(
−�HH

)
1 − 1

3
1>

(
Id + "̃

)−1
"̃1

+ 32[2! (‖0‖ + ‖1‖)
(
‖0‖2 + ‖1‖2

)
+ 768[4!2(‖0‖2 + ‖1‖2).

Rearranging terms, we finally obtain

‖∇G 5 (G + G: , H + H:)‖2 +
∇H 5 (G + G: , H + H:)2 − ‖0‖2 − ‖1‖2

≤ − 0>
(
2[ℎ± (�GG) +

1
3

(
Id + "̄

)−1
"̄ − 32[2! (‖0‖ + ‖1‖) − 768[4!2

)
0

− 1>
(
2[ℎ±

(
−�HH

)
+ 1

3
(
Id + "̃

)−1
"̃ − 32[2! (‖0‖ + ‖1‖) − 768[4!2

)
1.

�

Theorem 2.4 follows from Theorem 2.3 by relatively standard arguments:

Proof of Theorem 2.4. Since ∇G 5 (G∗, H∗),∇G 5 (G∗, H∗) = 0 and the gradient and
Hessian of 5 are continuous, there exists a neighborhoodV of (G∗, H∗) such that for

238

all possible starting points (G1, H1) ∈ V, we have ‖(∇G 5 (G2, H2),∇H 5 (G2, H2)‖ ≤
(1 − _min/4)‖(∇G 5 (G1, H1),∇H 5 (G1, H1)‖. Then, by convergence of the geometric
series, there exists a closed neighborhoodU ⊂ V of (G∗, H∗), such that for (G0, H0) ∈
U, we have (G: , H:) ∈ V,∀: ∈ N and thus (G: , H:) converges at an exponential rate
to a point inU. �

.4.2 Details regarding the experiments
Experiment: Estimating a covariance matrix

We consider the problem −6(+,,) = 5 (,,+) = ∑
8 9 :,8 9

(
Σ̂8 9 − (+Σ̂+>)8, 9

)
,

where the Σ̂ are empirical covariance matrices obtained from samples distributed
according to N(0,Σ). For our experiments, the matrix Σ is created as Σ = **) ,
where the entries of * ∈ R3×3 are distributed i.i.d. standard Gaussian. We con-
sider the algorithms OGDA, SGA, ConOpt, and CGD, with W = 1.0, n = 10−6

and let the stepsizes range over [∈ {0.005, 0.025, 0.1, 0.4}. We begin with the
deterministic case Σ̂ = Σ, corresponding to the limit of large sample size. We let
3 ∈ {20, 40, 60} and evaluate the algorithms according to the trade-off between
the number of forward evaluations and the corresponding reduction of the residual
‖, +,>‖FRO/2+ ‖**>−++>‖FRO, starting with a random initial guess (the same
for all algorithms) obtained as,1 = X, , +1 = * + X+ , where the entries of X,, X+
are i.i.d uniformly distributed in [−0.5, 0.5]. We count the number of "forward
passes" per outer iteration as follows.

• OGDA: 2

• SGA: 4

• ConOpt: 6

• CGD: 4 + 2 ∗ number of CG iterations

The results are summarized in Figure .13. We see consistently that for the same
stepsize, CGD has convergence rate comparable to that of OGDA. However, as
we increase the stepsize, the other methods start diverging, thus allowing CGD
to achieve significantly better convergence rates by using larger stepsizes. For
larger dimensions (3 ∈ {40, 60}), OGDA, SGA, and ConOpt become even more
unstable such that OGDA with the smallest stepsize is the only other method that
still converges, although at a much slower rate than CGD with larger stepsizes. We

239

Figure .13: Comparison of convergence speed. The decay of the residual as a
function of the number of forward iterations (3 = 20, 40, 60, from top to bottom).
Note that missing combinations of algorithms and stepsizes correspond to di-
vergent experiments. While the exact behavior of the different methods is subject
to some stochasticity, results as above were typical during our experiments.

240

now consider the stochastic setting, where at each iteration a new Σ̂ is obtained as the
empirical covariance matrix of # samples ofN(0,Σ), for # ∈ {100, 1000, 10000}.
In this setting, the stochastic noise very quickly dominates the error, preventing CGD
from achieving significantly better approximations than the other algorithms, while
other algorihtms decrease the error more rapidly, initially. It might be possible to
improve the performance of our algorithm by lowering the accuracy of the inner linea
system solve, following the intuition that in a noisy environment, a very accurate
solve is not worth the cost. However, even without tweaking n , it is noticeable that
the trajectories of CGD are less noisy than those of the other algorithms, and it is
furthermore the only algorithm that does not diverge for any of the stepsizes. It is
interesting to note that the trajectories of CGD are consistently more regular than
those of the other algorithms, for comparable stepsizes.

Experiment: Fitting a bimodal distribution

We use a GAN to fit a Gaussian mixture of two Gaussian random variables with
means `1 = (0, 1)> and `2 = (2−1/2, 2−1/2)>, and standard deviation f = 0.1.
Generator and discriminator are represented by dense neural nets with four hidden
layers of 128 units each that are initialized as orthonormal matrices, and ReLU
as nonlinearities after each hidden layer. The generator uses 512-variate standard
Gaussian noise as input, and both networks use a linear projection as their final
layer. At each step, the discriminator is shown 256 real and 256 fake examples. We
interpret the output of the discriminator as a logit and use sigmoidal crossentropy
as a loss function. We tried stepsizes [∈ {0.4, 0.1, 0.025, 0.005} together with
RMSProp (d = 0.9) and applied SGA, ConOpt (W = 1.0), OGDA, and CGD. Note
that the RMSProp version of CGD with diagonal scaling given by the matrices
(G , (H is obtained by replacing the quadratic penalties G>G/(2[) and H>H/(2[) in
the local game by G>(−1

G G/(2[) and H>(−1
G H/(2[), and carrying out the remaining

derivation as before. This also allows to apply other adaptive methods like Adam.
On all methods, the generator and discriminator are initially chasing each other
across the strategy space, producing the typical cycling pattern. When using SGA,
ConOpt, or OGDA, however, eventually the algorithm diverges with the generator
either mapping all the mass far away from the mode, or collapsing the generating
map to become zero. Therefore, we also tried decreasing the stepsize to 0.001,
which however did not prevent the divergence. For CGD, after some initial cycles,
the generator starts splitting the mass and distributes is roughly evenly among the
two modes. During our experiments, this configuration appeared to be robust.

241

Figure .14: Convergence speed in the stochastic case. The decay of the residual
as a function of the number of forward iterations in the stochastic case with 3 = 20
and batch sizes of 100, 1000, 10000, from top to bottom).

242

.5 Appendix to Chapter 8

.5.1 Simplifying constraints by duality
Constrained competitive optimization. The most general class of problems that
we are concerned with is of the form

min
G∈C,
5̃ (G)∈C̃

5 (G, H), min
H∈G,
6̃(H)∈K̃

6(G, H), (85)

where C ⊂ R<,G ∈ R= are convex sets, 5̃ : C −→ R=̃ and 6̃ : G −→ R<̃ are
continuous and piecewise differentiable multivariate functions of the two agents’
decision variables G and H, and C̃, K̃ are closed convex cones. This framework is
extremely general and by choosing suitable functions 5̃ , 6̃ and convex cones C̃, K̃, it
can implement a variety of nonlinear equality, inequality, and positive-definiteness
constraints. While there are many ways in which a problem can be cast into the
above form, we are interested in the case where the 5 , 5̃ , 6, 6̃ are allowed to be
complicated, for instance given in terms of neural networks, while the C̃, K̃ are
simple and well-understood. For convex constraints and objectives 5 and 6, the
canonical solution concept is a Nash equilibrium.

Definition 21. A Nash equilibrium of Problem 85 is a pair of feasible strategies
(Ḡ, H̄) such that Ḡ (H̄) is the optimal strategy for G (H) given H = H̄ (G = Ḡ).

In the non-convex case, it is less clear what should constitute a solution and in
Chapter 9 we will argue that meaningful solutions need not even be local Nash
equilibria.

Lagrange multipliers for linear constraints. Using the classical technique of
Lagrangian duality, the complicated parameterization 5 , 5̃ , 6, 6̃ and the simple con-
straints given by the C̃, K̃ can be further decoupled. The polar of a convex cone
G is defined as G◦ B

{
H : supG∈G G>H ≤ 0

}
. Using this definition, we can rewrite

Problem (85) as

min
G∈C,
`∈K̃◦

5 (G, H) +max
a∈C̃◦

a> 5̃ (G), min
H∈G,
a∈C̃◦

6(G, H) + max
`∈K̃◦

`>6(H). (86)

Here we used the fact that the maxima are infinity if any constraint is violated, and
zero otherwise.

243

Watchmen watching watchmen. We can now attempt to simplify the problem by
making ` 9 (a8) decision variables of the H (G) player and adding a zero sum objective
to the game that incentivizes both players to enforce each other’s compliance with
the constraints, resulting in

min
G∈C,
`∈K̃◦

5 (G, H) + a> 5̃ (G) − `>6̃(H), min
H∈G,
a∈C◦

6(G, H) + `>6̃(H) − a> 5̃ (G). (87)

Is there a relationship between the Nash equilibria of Problems (85) and (87)? It
turns out that this question can be studied in terms of two decoupled zero-sum
games.

Lemma 19. A pair of points Ḡ, H̄ is a Nash equilibrium of Problem 85 if and only if
Ḡ and H̄ are minimizers of

min
G∈C,
5̃ (G)∈C̃

� (G), min
H∈G,
6̃(H)∈K̃

� (H), (88)

for � (G) B 5 (G, H̄) and � (H) B 6(Ḡ, H). Similarly, a pair of strategies (Ḡ, ¯̀),
(H̄, ā) is a Nash equilibrium of Problem 87 if and only if (Ḡ, ā), (H̄, ¯̀) are Nash
equilibria of the decoupled zero sum games

min
G∈C

max
a∈C̃◦

� (G) + a> 5̃ (G), min
H∈G

max
`∈K̃◦

� (H) + `>6̃(H). (89)

Proof. The first part of the Lemma follows directly from the Definition 21 of a
Nash equilibrium. For the second part, we observe that (Ḡ, ¯̀) ((H̄, ā)) is an optimal
strategy against (H̄, ā) ((Ḡ, ¯̀)) if and only if Ḡ (H̄) minimizes � (�) over C (G) and
¯̀ (ā) maximizes ` ↦→ `>6(H̄) (a ↦→ a> 5 (Ḡ)). But this is exactly the definition of
(Ḡ, ā) ((H̄, ¯̀)) being a Nash equilibrium of Problem 89. �

While this result follows directly from the definition, it reduces the question to
that of constrained single-agent optimization, which has been studied extensively,
allowing us to deduce the following theorem. For convex, strictly feasible problems
(“Slater’s condition”), we can show the equivalence of Problems (85) and (87). In
order to formulate these results in full generality, we need the following definition.

Definition 22. We call a function 5 : G −→ R= convex with respect to the cone
C ⊂ R= if

g 5 (G) + (1 − g) 5 (H) − 5 (gG + (1 − g) H) ∈ C, ∀g ∈ [0, 1], G, H ∈ G.

244

With this definition, we can formulate the following theorem:

Theorem 34. Assume that the following holds:

(i): 5 , 5̃ , 6, and 6̃ are continuous.

(ii): 5̃ (6̃) is convex with respect to −C̃ (−K̃).

(iii): For all H̄ ∈ G (Ḡ ∈ C), � (�) as defined in Lemma 19 is convex.

(iv): For all Ḡ ∈ C and H̄ ∈ G, the minimal values of Problem 88 are finite (not
−∞).

(v): There exist (G, H) such that G ∈ intC, 5̃ (G) ∈ int C̃, H ∈ intG, 6̃(H) ∈ int K̃.

Then, Ḡ and H̄ are a Nash equilibrium of Problem (85) if and only if there exist ā
and ¯̀ such that (Ḡ, ¯̀) and (H̄, ā) are a Nash equilibrium of Problem (87).

Proof. ByLemma 19, it is enough to show that Ḡ and H̄ areminimizers of Problem 88
if and only if they can be complemented with Lagrange multipliers ā and ¯̀ to obtain
Nash equilibria of Problem 89. This result is shown, for instance, in [73, Chapter 3,
Theorem 5.1]. �

A simplified problem. In the general non-convex setting, the relationship between
Problems (85) and (87) is difficult to characterize. In this case, Problem (87) serves
as an approximation to Problem 85 that might be easier to solve. Techniques
for closing the duality gap in single agent optimization, such as the addition of
redundant constraints, can also serve to improve the approximation of Problem (85)
by Problem 87.

.5.2 Numerical implementation and experiments
Dual coordinate system for improved stability. In principle, either the primal, or
the dual coordinate system can be used to keep track of the running iterate. However,
we observe that storing the iterates in CGD in the dual coordinate system improves
the numerical stability of the algorithm.

When expressing the update direction in the dual coordinate system, the local
problem reads

245

min
G∗∈R<

[�G 5]
[
�2k

]−1
G∗ + G∗,>

[
�2k

]−1 [
�2
GH 5

] [
�2q

]−1
H∗ + 1

2
G∗,>

[
�2k

]−1
G∗

min
H∗∈R=

[
�H6

] [
�2q

]−1
H∗ + G∗,>

[
�2k

]−1 [
�2
GH6

] [
�2q

]−1
H∗ + 1

2
H∗,>

[
�2q

]−1
H∗,

where all derivatives are computed in the last iterate (G: , H:) Setting the derivatives
with respect to G∗ (H∗) to zero, we obtain

[�G 5]
[
�2k

]−1 +
([
�2k

]−1 [
�2
GH 5

] [
�2q

]−1
H∗

)>
+ G∗,>

[
�2k

]−1
= 0 (90)[

�H6
] [
�2q

]−1 + G∗,>
[
�2k

]−1 [
�2
GH6

] [
�2q

]−1 + H∗,>
[
�2q

]−1
= 0. (91)

We plug these equations into each other to obtain

[�G 5]
[
�2k

]−1
−

([
�H6

]
+ G∗,>

[
�2k

]−1 [
�2
GH6

]) [
�2q

]−1 [
�2
HG 5

] [
�2k

]−1
+ G∗,>

[
�2k

]−1
= 0[

�H6
] [
�2q

]−1
−

(
[�G 5] + H∗,>

[
�2q

]−1 [
�2
HG 5

]) [
�2k

]−1 [
�2
GH6

] [
�2q

]−1
+ H∗,>

[
�2q

]−1
= 0.

Solving the above for G∗ and H∗, we obtain

G∗ = −
([
�2k

]−1
−

[
�2k

]−1 [
�2
GH 5

] [
�2q

]−1 [
�2
HG6

] [
�2k

]−1
)−1 ([

�2k
]−1
[�G 5]> −

[
�2k

]−1 [
�2
GH 5

] [
�2q

]−1 [
�H6

]>)
H∗ = −

([
�2q

]−1
−

[
�2q

]−1 [
�2
HG6

] [
�2k

]−1 [
�2
GH 5

] [
�2q

]−1
)−1 ([

�2q
]−1
[�G6]> −

[
�2q

]−1 [
�2
HG6

] [
�2k

]−1
[�G 5]>

)
.

Once G∗ and H∗ have been computed, we can update the dual variables as G:+1 =
G: + G∗ and H:+1 = H: + H∗.

Computing the updates in practice. Just like CGD, CMD requires the solution
of a system of linear equations at each step. While this may seem prohibitively
expensive at first, we will show in Chapter 9 that CGD can be scaled to problems
with millions of degrees of freedom. This is achieved by using Krylov subspace
methods such as the conjugate gradient or GMRES algorithms [210] combined
with mixed-mode automatic differentiation that allows to compute Hessian-vector
products almost as cheaply as gradients [195]. By using

[
�2k

]
and

[
�2q

]
as a

preconditioner, the matrices that have to be inverted at each step are perturbations
of the identity (

Id −
[
�2k

]− 1
2
[
�2
GH 5

] [
�2q

]−1 [
�2
HG6

] [
�2k

]− 1
2

)
(92)(

Id −
[
�2q

]− 1
2
[
�2
HG6

] [
�2k

]−1 [
�2
GH 5

] [
�2q

]− 1
2

)
. (93)

246

As discusssed in Chapter 7, competing methods become unstable if the perturbation
is large. If the perturbation is small, conjugate gradient or GMRES algorithms
converge quickly, resulting in minimal overhead. In Chapter 7, we showed that
this adaptivity, together with the fact that CGD can use larger step sizes, allows
it to outperform competing methods even when fairly accounting for the cost of
the matrix inversion. The computational cost can be reduced further by using the
solution of the linear system in the last iteration as a warm start for the solution in
the present iteration. Finally, we can see from Equations 90 and 91 that once G∗

(H∗) has been computed, H∗ (G∗) can be computed by only inverting
[
�2q

]
(
[
�2k

]
),

which can often be done in closed form. Therefore we can alternatingly invert the
matrices in Equations 92 and 93, one at each iteration.

Numerical experiments. We will now provide numerical evidence for the practi-
cal performance of CMD. The Julia-code for the numerical experiments presented
here can be found under https://github.com/f-t-s/CMD. As discussed in
Section 3 of the paper, naively combining cgd with a projection step can result in
convergence to spurious stable points even in convex problems, due to the empty
threats phenomenon. The same argument applies to all other methods described
in Section 7.3 as including a “competitive term,” with the exception of OGDA and
the closely related extragradient method. We believe that the empty threats phe-
nomenon rules out projected versions of algorithms affected by it and therefore focus
our numerical comparison on the projected extragradient method (PX) of [143]. We
also focus on the special case of CMW in this section, leaving a more thorough
exploration of other constraint sets and Bregman potentials to future work.

A first benefit of CMD is that it allows us to extend the robustness properties of
CGD to conically constrained problems. As discussed in Chapter 7, CGD is robust
to strong interactions, without adjusting its step size.

To showcase this property, we consider the simple bilinear zero-sum game 5 (G, H) =
U(G − 0.1) (H − 0.1) = −6(G, H) with G and H constrained to lie in R+. While
the projected extragradient method converges faster for small U than CMD, we
observe that the latter converges over the entire range of values for U, whereas the
extragradient method diverges as U gets too large (see Figure .15).

.5.3 Additional experimental results on the prisoner’s dilemma
In Figures .16, .17, .18, .19 we display the convergence behavior of CMD, extramir-
ror, PCGD, and projected extragradient on the prisoner’s dilemma.

https://github.com/f-t-s/CMD

247

.6 Appendix to Chapter 9

.6.1 Euclidean distance on images
In Figure .20, we provide a larger reproduction of Figure 2 from the main chapter.
We see that also on the larger resolution, the third pair of images is visually indis-
tinguishable, despite having the largest Euclidean distance of all pairs. The textures
of this image are very rough, with a rapid alternation of bright and dark pixels.
Therefore, a slight warping of the image will lead to dark pixels taking the place of
bright ones and vice versa, leading to a large Euclidean distance. A similar effect
could be achieved by the wind slightly moving the foliage between, for instance,
successive frames of a video. Thus, this phenomenon could be observed in real
images.

.6.2 ICR as projection
For the experiments in Figure 5 of the main paper, we used two tiny neural networks
with 28 parameters and three layers each as generator and discriminator.

The generator G is composed as follows:

1. Use first four parameters as input, apply arctan nonlinearity.

2. Apply four times four dense layer, followed by arctan.

3. Apply two times four dense layer, followed by the nonlinearity(
G

H

)
↦→

(
exp (arctan (H) /c + G)
exp (arctan (H) /c − G)

)
.

The form of the last nonlinearity ensures that the output is restricted to the set

S B
{
(4B+C , 4B−C)

����B ∈ [
−1

2
,

1
2

]
, C ∈ R

}
⊂ R2

that does not include the target %data B (2, 2). Note that in this simple example, the
generator does not take any input, but directly maps the weights FG ∈ R28 to a pair
of real numbers.

The discriminator D[is composed as follows:

1. Rescale input by the diagonal matrix [, apply four times two dense layer, followed
by arctan.

2. Apply four times four dense layer, followed by arctan.

248

3. Apply one times four dense layer, followed by arctan.

Whilewe did not observe themetastable projection behavior on all runs, we observed
it in 13 out of 20 independent runs when using SimGD. When using CGD, we
observed the projection behavior in 17 out of 20 independent runs (with the same
initialization as in the SimGD cases). Furthermore, the number of iterations spent
in the projection states was larger when using CGD.

.6.3 ICR on MNIST
In our experiments on MNIST, we use the network architectures detailed in Table .1
and Table .2. We train using stochastic SimGD with a learning rate of 0.01. First,
we train the GAN for 9,000 iterations with a batch size of 128. We refer to the
resulting generator and discriminator as the checkpoint generator and discriminator.

Details about Figure 4 of the main paper

We then create a test set that has a real set -real that has 500 images sampled from
MNIST training set, and a fake set -fake that has 500 images generated by the
checkpoint generator, as illustrated in Figure .21.

Let �C , �2 denote, respectively, the discriminator at time step C and the checkpoint
discriminator. The Euclidean distance between predictions of �C and �2 over set
-real and -fake in Figure 4 of the main paper is given by

dset(�C , �2) =
√ ∑
G∈-set

(�C (G) − �2 (G))2 (94)

where set ∈ {real, fake}.

Module Kernel Stride Output shape
Gaussian distribution N/A N/A 96
Linear, BN, ReLU N/A N/A 1024
Linear, BN, ReLU N/A N/A 128 × 7 × 7

ConvT2d, BN, ReLU 4 × 4 2 64 × 14 × 14
ConvT2d, Tanh 4 × 4 2 1 × 28 × 28

Table .1: Generator architecture for MNIST experiments.

249

Figure .15: CMW and PX applied to 5 (G, H) = U(G − 0.1) (H − 0.1) = −6(G, H)
(U ∈ {0.1, 0.3, 0.9, 2.7}). For small U, PX converges faster, but for large U, it
diverges.

Module Kernel Stride Output shape
Input N/A N/A 1 × 28 × 28

Conv2d, LeakyReLU 5 × 5 1 32 × 24 × 24
MaxPool 2 × 2 N/A 32 × 12 × 12

Conv2d, LeakyReLu 5 × 5 1 64 × 8 × 8
MaxPool 2 × 2 N/A 64 × 4 × 4

Linear, LeakyReLU N/A N/A 1024
Linear N/A N/A 1

Table .2: Discriminator architecture for MNIST experiments.

250

.6.4 CIFAR10 experiments
Architecture

For our experiments on CIFAR10, we use the same DCGAN network architecture
as in Wasserstein GAN with gradient penalty [106], which is reported in Table .4
and Table .5.

Hyperparameters

We compare the stability and performance of Adam and ACGD by varying the loss
functions and regularization methods.

Loss:

1. Original GAN loss [96]

L> = EG∼%data [logD(G)] + EG∼%G [log (1 − D(G))] .

2. Wasserstein GAN loss [16]

LF = EG∼%data [D(G)] − EG∼%G [D(G)] .

Regularization:

1. !2 weight penalty on the discriminator parameters _ ∈ {10−2, 10−3, 10−4}.

2. Gradient penalty on the discriminator proposed by WGAN-GP paper [106].

3. Spectral normalization on the discriminator proposed by SNGAN paper [176].

Each experiment is trainedwith a batch size of 64. When usingAdamand the original
GAN loss, we adopt the log-trick as recommended in GAN paper [96]. When using
ACGD, the generator and discriminator share the same loss function. For the
training of WGAN-GP, we use the same training strategy and hyperparameters as
WGAN-GP [106]. Hyperparameter setting for each experiment is reported in Table
.3.

251

Figure .16: Convergence of CMD on the prisoner’s dilemma.

252

Figure .17: Convergence of extramirror on the prisoner’s dilemma.

253

Figure .18: Convergence of PCGD on the prisoner’s dilemma.

254

Figure .19: Convergence of projected extragradient on the prisoner’s dilemma.

255

Figure .20: A larger reproduction of Figure 2 of the main paper. The first pair is
based on an image by Matt Artz, the second pair on an image by Yanny Mishchuk,
and the third pair on an image by Tim Mossholder. All images were obtained from
https://unsplash.com/.

Figure .21: Test set for Figure 4 of the main paper. We show a set of fake images on
the left, and real images on the right.

https://unsplash.com/

256

Ex
pe
rim

en
t

Lo
ss

O
pt
im

iz
er

Le
ar
ni
ng

ra
te

Sp
ec
tra

lN
or
m
al
iz
at
io
n

!
2
pe
na
lty

G
P
w
ei
gh

t
C
rit
ic
ite

ra
tio

ns
O
G
A
N
-0
.0
00

1L
2+

A
da
m

!
>

A
da
m

10
−4

N
/A

10
−4

N
/A

1
O
G
A
N
-0
.0
00

1L
2+

A
C
G
D

!
>

A
C
G
D

10
−4

N
/A

10
−4

N
/A

1
O
G
A
N
-N

O
R
EG

+A
da
m

!
>

A
da
m

10
−4

N
/A

N
/A

N
/A

1
O
G
A
N
-N

O
R
EG

+A
C
G
D

!
>

A
C
G
D

10
−4

N
/A

N
/A

N
/A

1
W
G
A
N
-G

P+
A
da
m

!
F

A
da
m

10
−4

N
/A

N
/A

10
5

W
G
A
N
-S
N
+A

da
m

!
F

A
da
m

10
−4

Ye
s

N
/A

N
/A

1
W
G
A
N
-N

O
R
EG

+A
C
G
D

!
F

A
C
G
D

10
−4

N
/A

N
/A

N
/A

1
W
G
A
N
-G

P+
A
C
G
D

!
F

A
C
G
D

10
−4

N
/A

N
/A

10
5

W
G
A
N
-0
.0
1L

2+
A
da
m

!
F

A
da
m

10
−4

N
/A

10
−2

N
/A

1
W
G
A
N
-0
.0
01

L2
+A

da
m

!
F

A
da
m

10
−4

N
/A

10
−3

N
/A

1
W
G
A
N
-0
.0
01

L2
+A

C
G
D

!
F

A
C
G
D

10
−4

N
/A

10
−3

N
/A

1

Ta
bl
e
.3
:S

et
tin

gs
fo
ra

ll
th
e
ex
pe
rim

en
ts
th
at
oc
cu
rr
ed

in
Fi
gu

re
7
of

th
e
m
ai
n
pa
pe
r.

257

Figure .22: Tensorflow inception scores for important runs, plotted against the
number of gradient calls (left) and the number of generator updates (right).

Tensorflow inception score

We compute the Tensorflow version of the inception scores for important runs of
our experiments to show that the relative performance of the different models is
largely the same. As reported in Figure .22, our results match the ones reported in
the literature (Figure 3 in [106]) with ACGD still outperformingWGAN-GP trained
with Adam by around 10%.

Module Kernel Stride Output shape
Gaussian distribution N/A N/A 128
Linear, BN, ReLU N/A N/A 256 × 4 × 4

ConvT2d, BN, ReLU 4 × 4 2 128 × 8 × 8
ConvT2d, BN, ReLU 4 × 4 2 64 × 16 × 16

ConvT2d, Tanh 4 × 4 2 3 × 32 × 32

Table .4: Generator architecture for CIFAR10 experiments

Module Kernel Stride Output shape
Input N/A N/A 3 × 32 × 32

Conv2d, LeakyReLU 4 × 4 2 64 × 16 × 16
Conv2d, LeakyReLU 4 × 4 2 128 × 8 × 8
Conv2d, LeakyReLu 4 × 4 2 256 × 4 × 4

Linear N/A N/A 1

Table .5: Discriminator architecture for CIFAR10 experiments

.6.5 Details on ACGD
In order to make a fair comparison with Adam, we run our experiments with ACGD,
a variant of CGD that adaptively adjusts CGD’s step size. The algorithm is described

258

in Algorithm 28. ACGD computes individual step sizes for the different parameters.
Let �G,C and �H,C denote the diagonal matrices containing the step sizes of G and H at
time step C as elements. If �G,C and �H,C are multiples of the identity, the algorithm
reduces to CGDwith the corresponding step size. The reason we rearrange the terms
as shown in Algorithm 28 is that we want the matrix inverse to contain an additive
identity (to decrease the condition number) and be symmetric positive definite (so
that we can use conjugate gradient [72] for its computation). ACGD adjusts CGD’s
step size adaptively during training with second moment estimate of the gradients.
The update rules are derived from the local game in the same way as for CGD.

min
G
G>∇G 5 (GC , HC) + G> [�GH 5 (GC , HC))]H +

1
2
G) �−1

G,:G,

max
H
H>∇H 5 (GC , HC) + H> [�HG 5 (GC , HC))]G −

1
2
H) �−1

H,: H.

259

Algorithm 28 ACGD, a variant of CGD with RMSProp-type heuristic to adjust
learning rates. All operations on vectors are element wise. �2

GH 5 , �2
HG 5 denote the

mixed Hessian matrix m2 5
mGmH

and m2 5
mHmG

. VC2 denotes V2 to the power C. q([) denotes
a diagonal matrix with [on the diagonal. Hyperparameter settings for the tested
GANs training problems are U = 10−4, V2 = 0.99, and n = 10−5.
Require: U: Step size
Require: V2: Exponential decay rates for the second moment estimates
Require: maxH minG 5 (G, H): zero-sum game objective function with parameters
G, H

Require: G0, H0 Initial parameter vectors
C ← 0 Initialize timestep
EG,0, EH,0 ← 0 (Initialize the 2=3 moment estimate)
repeat
C ← C + 1
EG,C ← V2 · EG,C−1 + (1 − V2) · 62

G,C

EH,C ← V2 · EH,C−1 + (1 − V2) · 62
H,C

EG,C ← EG,C/(1 − VC2)
EH,C ← EH,C/(1 − VC2) (Initialization bias correction)
[G,C ← U/(√EG,C + n)
[H,C ← U/(√EH,C + n)
�G,C = q([G,C)
�H,C = q([H,C)
ΔGC ← −�

1
2
G,C (� + �

1
2
G,C�

2
GH 5 �H,C�

2
HG 5 �

1
2
G,C)−1�

1
2
G,C

(∇G 5 + �2
GH 5 �H,C∇H 5)

ΔHC ← �
1
2
H,C (� + �

1
2
H,C�

2
HG 5 �G,C�

2
GH 5 �

1
2
H,C)−1�

1
2
H,C

(∇H 5 − �2
HG 5 �G,C∇G 5)

GC ← GC−1 + ΔGC
HC ← HC−1 + ΔHC

until GC , HC converged

	Acknowledgements
	Abstract
	Published Content and Contributions
	Bibliography
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction
	Numerical algorithms as games and estimators
	Numerical approximation, fast algorithms, and statistical inference
	Game theory as a paradigm for algorithm design

	Elliptic partial differential equations and smooth Gaussian processes
	Linear Elliptic Partial Differential Equations
	Smooth Gaussian processes
	The cubic bottleneck

	Sparse Cholesky factors by screening
	Gaussian elimination and Cholesky factorization
	Sparse Cholesky factorization
	Gaussian elimination and Gaussian conditioning
	The screening effect
	The maximin ordering and sparsity pattern
	Cholesky factorization, numerical homogenization, and gamblets

	Proving exponential decay of Cholesky factors
	Overview
	Setting and notation
	Algebraic identities and roadmap
	Exponential decay of .
	Bounded condition numbers
	Summary of results
	Extensions and comparisons

	Incomplete Cholesky factorization
	Zero fill-in incomplete Cholesky factorization
	Implementation of ICHOL(0) for dense kernel matrices
	Implementation of ICHOL(0) for sparse stiffness matrices
	Proof of stability of ICHOL(0)
	Numerical example: Compression of dense kernel matrices
	Numerical example: Preconditioning finite element matrices

	Cholesky factorization by Kullback-Leibler minimization
	Overview
	Cholesky factorization by KL-minimization
	Ordering and sparsity pattern motivated by the screening effect
	Extensions
	Applications and numerical results
	Conclusions

	Competitive Gradient Descent
	Introduction
	Competitive gradient descent
	Consensus, optimism, or competition?
	Implementation and numerical results

	Competitive Mirror Descent
	Simplifying constraints by duality
	Projected CGD suffers from empty threats
	Mirror descent and Bregman potentials
	The information geometry of Bregman divergences
	Competitive mirror descent
	Numerical comparison

	Implicit competitive regularization
	Introduction
	The GAN-dilemma
	Implicit competitive regularization (ICR)
	How ICR lets GANs generate
	Competitive gradient descent amplifies ICR
	Empirical study on CIFAR10

	Bibliography
	Appendix to Chapter 4
	Appendix to Chapter 5
	Appendix to Chapter 6
	Appendix to Chapter 7
	Appendix to Chapter 8
	Appendix to Chapter 9

