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ABSTRACT

Large deviation theory has emerged as a powerful mathematical scaffolding for
studying nonequilibrium statistical mechanics, particularly for characterizing the
macroscopic effects of microscopic fluctuations. While the large deviation ap-
proach is firmly established, it relates the effects of fluctuations to the likelihood
of exponentially rare events, which naively requires exponentially large simulation
costs. This, in turn, necessitates the development of appropriate numerical simula-
tion techniques. While the standardMonte Carlo toolkit has expanded to incorporate
methods towards making rare events typical, in this thesis I propose and evaluate
a powerful unorthodox approach adopted from quantum simulation, namely tensor
network algorithms, which can work in concert with standard methods to deepen
our understanding of nonequilibrium phenomena.

As a testbed for this novel approach, I consider the dynamical phase behavior of
several versions of the simple exclusion process, a paradigmatic model of classical
driven diffusion. Using a matrix product state, a one-dimensional tensor network
ansatz, and the density matrix renormalization group algorithm, a corresponding op-
timization routine, I characterize the dynamical phase transition between a jammed
and maximal current phase in both the one-dimensional and multi-lane simple ex-
clusion processes. The matrix product state is found to be an efficient representation
of the nonequilibrium steady-state biased to arbitrarily rare currents via large devia-
tion theory. Because the one-dimensional ansatz is limited to finite-width systems,
I extend this success to study the fully two-dimensional simple exclusion process.
There, the projected entangled pair state, a two-dimensional tensor network ansatz,
is used with the time evolution via block decimation algorithm to demonstrate that
the phase transition observed in one-dimension persists in the fully two-dimensional
system.

Towards the goal of making tensor network methods adaptable for a broad range of
physically important systems, both classical and quantum, I also present progress
towards studying systems in the continuum limit with interacting particles in two
dimensions. This builds upon previous work proposing tensor network represen-
tations of quantum operators with long-range interactions in two dimensions by
evaluating three operator representations in practice and finding two competitive
and viable approaches.
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C h a p t e r 1

INTRODUCTION

This chapter provides relevant background to properly contextualize the
work reported in the following chapters. We provide a brief, broad
overview of modern nonequilibrium statistical mechanics before dis-
cussing how it intersects with the mathematical framework provided by
large deviation theory. An introduction to tensor networks in one and
two dimensions is then provided, along with a description of standard
tensor network ground state algorithms. This chapter is concluded with
a discussion on the intersection between these three topics, motivating
the use of tensor networks for studying large deviations in nonequilib-
rium statistical mechanics.
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1.1 Introduction
Statistical mechanics provides a framework for computing the macroscopic proper-
ties of a system from an understanding of themicroscopic behaviors of its constituent
particles. With the scaffolding for studying statisticalmechanics having been erected
over a century ago and its use having evolved into a modern pillar of physical sci-
ence, many of the key results have remained limited to systems in equilibrium.
Because many physically important systems lie within regimes characterized as far
from equilibrium and due to the dearth of robust, flexible, and appropriate for-
malisms, entities such as the National Academy of Sciences and the United States
Department of Energy have labeled the characterization and control of matter far
from equilibrium as a current grand challenge in basic science [1, 2]. In recent
years, large deviation theory (LDT), a mathematical approach originally created to
understand the occurrence and probability of rare events in stochastic systems, has
been identified as a natural language and appropriate framework for nonequilib-
rium statistical mechanics (NESM) [3–6]. Recent work applying LDT to classical
physical systems has led to significant discoveries such as insights into the structure
and dynamics of glassy systems [7], design principles for both simple models [8]
and molecular system [9], and deepened understanding of myriad nonequilibrium
phenomena [10–16]

With the utility of LDTestablished, a present bottleneck towards itswidespread use is
the development of efficient and accurate computational methods for the numerical
determination of relevant quantities [17–25]. While Monte Carlo algorithms of
various flavors are commonly employed, this thesis centers on a fundamentally
different approach, namely tensor networks (TNs), which are borrowed and adapted
from the field of quantum simulation.

In this introductory chapter, we seek to provide all of the background information
necessary to understand the details of the following chapters where TNs are used
to characterize the behavior of paradigmatic model systems. To contextualize LDT
within the larger field of NESM, the next section provides a high-level overview of
this field. In Section 1.3 we give a primer on large deviation theory, focusing on its
application to equilibrium and nonequilibrium statistical mechanics and providing
a small number of example calculations to illustrate and highlight key facets. Last,
Section 1.4 starts with an overview of tensor networks and their origin beforemoving
into a technical description of the standard algorithms used in Chapters 2 and 3 of
this thesis. We close there with a motivation for the use of TNs in the context of
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LDT for NESM.

1.2 Overview of Nonequilibrium Statistical Mechanics
We begin now by reviewing some introductory NESM, starting in the next sub-
section with a review of the equilibrium approach, where we provide an outline of
the standard approach for equilibrium systems and define the differences between
equilibrium and nonequilibrium systems.

In the subsequent subsection, we discuss the current landscape of theoretical ap-
proaches for studying the statistical mechanics of systems out of equilibrium. We
begin by describing the diversity of nonequilibrium systems and providing some
broad and practical criteria for the establishment of a robust and generalizable
framework for use in NESM. Last, we give a high-level overview of current theoret-
ical approaches in specific physical regimes.

Introductory Equilibrium Statistical Mechanics
As is typical in other fields of physical science, we must begin by specifying the
system that we will study and the degrees of freedom it is allowed to explore. In
statistical mechanics, this specification refers to the full microscopic state space of
the system. A full specification of the state of the microscopic system is referred
to as a microscopic configuration, or microstate, which we will denote here as C.
For a system of N interacting particles, a microstate consists of a specification in
d dimensions of the position xi and momentum pi for each particle, making C a
single point in a 2dN-dimensional space. Alternatively, for a spin-1/2 lattice model,
a microstate is the specification of a spin for each site in the lattice, meaning the
number of possible configurations grows exponentially with the number of lattice
sites, Nmicrostates = 2Nsites .

To provide an introduction to the fundamentals of statistical mechanics, we can
consider the system of interacting particles. For an isolated system in equilib-
rium, Ludwig Boltzmann hypothesized that, in the long time limit, every possible
microstate has an equally likely chance of occurring, i.e.

P(C) = 1/Ω(N,V, E), (1.1)

where Ω(N,V, E) is called the microcanonical partition function and is the number
of possible configurations with a fixed number of particles N , volumeV , and energy
E , which is given by the system’s Hamiltonian, i.e. E = H(C). There are many
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possible configurations with a given N , V , and E and we call the set of all such
configurations the microcanonical ensemble.

By simply counting the number of configurations in this ensemble, we get the
microcanonical partition function, and can immediately determine the entropy, a
thermodynamic state variable of the macroscopic system, as

S = kB ln (Ω(N,V, E)) . (1.2)

With the entropy and energy of the macroscopic system now specified, the principles
of thermodynamics can be employed to obtain all other state variables and thus a
full macroscopic description of the system. As a simple example, the temperature
can be obtained by taking the derivative of the entropy with respect to the energy

T =
(
∂S
∂E

)−1
=

1
kB

(
∂ lnΩ
∂E

)−1
, (1.3)

thus tying its definition directly to the microcanonical partition function.

While working with an isolated system provides a simple conceptual introduction to
statistical mechanics, the counting problem becomes dauntingly large for interesting
chemical or physical systems and experience from thermodynamics indicates that
working with other variables can often prove convenient. As an alternative, we can
consider a system that is no longer isolated, but instead in contact with a thermal
bath at temperature T , or inverse temperature β = 1/kBT , and again attempt to
determine the configurational probabilities. With the details beyond the scope of
this brief review, it can be shown that the probability of having a given configuration
occur in this system takes the form

P(C) ∝ e−βH(C), (1.4)

where EC = H(C) is the energy of the given configuration and the term on the right-
hand side is frequently called a Boltzmann weight. To determine this probability
exactly, we specify that

∑
C P(C) = 1 and thus

P(C) =
e−βH(C)

Z(N,V,T)
, (1.5)

where
Z(N,V,T) =

∑
C

e−βH(C)
(1.6)

is a normalization factor called the canonical partition function. Once again, by
determining this partition function, we gain access to all thermodynamic state
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variables. As with the microcanonical partition function, the canonical partition
function gives us directly a thermodynamic state variable, the Helmholtz free energy
F(N,V,T) = − 1

β ln(Z(N,V,T)). Additionally, the free energy serves as a cumulant
generating function for the cumulants of the energy, meaning, for example, that the
average system energy can be determined by a derivative of the free energy

〈E〉 =
∂βF
∂β

. (1.7)

While other ensembles are also commonly utilized when convenient, the micro-
canonical and canonical ensembles will be sufficient to explain the connection be-
tween large deviation theory and equilibrium statistical mechanics and the extension
to NESM.

We intuitively expect that some macroscopic properties are simply averages over the
microscopic degrees of freedom, for example, the density ρ is the average number
of particles per unit volume in the system. Equilibrium statistical mechanics also
emphasizes the macroscopic importance of microscopic fluctuations. An example
of this occurs when we consider the fluctuations in the energy, defined as 〈(δE)2〉 =

〈(E − 〈E〉)2〉, for a system in contact with a thermal reservoir. We can show that
this value can be determined via the second derivative of the free energy

〈(δE)2〉 = −
∂2βF
∂β2 . (1.8)

Given that the first derivative of the free energy was equal to the average energy,
via Equation 1.7, this expression becomes 〈(δE)2〉 = − ∂〈E〉∂β , which is remarkably
similar to the definition of the heat capacity, Cv =

∂E
∂T . Combining these, we see

that the heat capacity is directly related to fluctuations in the energy as provided by
derivatives of the free energy

Cv =
〈(δE)2〉

kBT2 . (1.9)

This emphasizes that while average behavior is obviously of fundamental impor-
tance, fluctuations in microscopic behaviors strongly influence the behavior of the
macroscopic system.

With the fundamentals of equilibrium statistical mechanics established, we can tran-
sition into a discussion of the differences between equilibrium and nonequilibrium
systems. To do this, we shift slightly and consider the time evolution of the lattice-
based spin model mentioned earlier, though this can be generalized. For simplicity,
we consider the behavior of aMarkovian spin-1/2 system evolving discretely in time.
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Given that the system begins in an initial configuration C0, there exists some proba-
bility Pt(C) that the system will inhabit a given microstate at time t. This probability
is specified entirely by the system’s evolutionary rules, which dictate how it transi-
tions from one configuration to the next, i.e.

Pt+∆t(C
′) = wC→C′Pt(C), (1.10)

where wC→C′ is the probability of the system transitioning from configuration C
to configuration C′ and is assumed here to be stationary in time. The probability
current gives the flow of probability between configurations C and C′ at time t and
is defined as

Jt(C → C
′) = wC→C′Pt(C) − wC′→CPt(C

′). (1.11)

It can be understood as the difference between the rate at which the system makes
the transition C → C′ and the reversed transition, C′→ C.

While initial dynamics are highly dependent on the beginning configuration, most
systems eventually relax to a steady-state, where the configurational probability
becomes constant in time, i.e. Pt→∞(C) = P∗(C). Accordingly, we can also specify
the steady-state probability current as

J∗(C → C′) = wC→C′P∗(C) − wC′→CP∗(C′). (1.12)

A system with a vanishing probability current, i.e. Jt(C → C
′) = J∗(C → C′) = 0,

for all combinations of configurations is an equilibrium system. A system that
obeys this condition is colloquially referred to as one that obeys detailed balance
and must be in equilibrium, though there are also equilibrium states that break
detailed balance.

It is also informative at this point to relate these results to the canonical partition
function and Boltzmann weights introduced earlier. For a system that obeys detailed
balance, we require that wC→C′P∗(C) = wC′→CP∗(C′). For the canonical partition
function, we nowknow the formof these configurational probabilities, which dictates
that the ratio of the transition rates be

wC→C′

wC′→C
= e−β(H(C)−H(C′)), (1.13)

providing a simple constraint on the transition rates of a system in contact with a
thermal bath to satisfy the conditions of detailed balance.

Failure to obey detailed balance can often be attributed to one of two conditions, both
of which classify the system as being out of equilibrium. First, as briefly alluded
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to earlier, starting from a given initial configuration, the system will experience
transient dynamics, meaning that it has not yet reached a steady-state and cannot be
in equilibrium regardless of the nature of the system at long times. Second, when
a system has reached a steady-state, its evolutionary rules can cause that state to
exhibit finite probability currents and the system is said to be in a nonequilibrium
steady-state (NESS). From a more phenomenological lens, both of these deviations
from equilibrium require the system to be experiencing finite gradients in quantities
such as particle density, chemical or electric potential, or thermal energy. For a
transient state, gradients are artifacts of the initial configuration, for example, if
dye is put into a cup of standing water, the dye will remain more concentrated at
the point of insertion until it has diffused. Alternatively, for a NESS, gradients are
caused by external perturbations to the system, with a common example being a
thermally conducting rod connected to large hot and cold reservoirs at each end,
giving a constant flow of heat through the rod.

With these highlighted foundational concepts, much of statistical mechanics can be
simplified significantly, requiring only the computation of averages using Boltzmann
weights.

Introductory Nonequilibrium Statistical Mechanics
Unfortunately, when a system is not in equilibrium, the approach developed by
Boltzmann, Gibbs, and others is invalidated. Not only are there no known universal
rules for defining configurational probabilities a priori, but additional complications
are introduced by inequivalence of the time and ensemble averages, implying the
failure of the ergodic theorem and meaning we must take into account the spatial
and dynamical behavior of a system. Despite these challenges and because myriad
phenomena in physics, chemistry, biology, finance, and social science operate far
from equilibrium, there has been significant effort towards extending the concepts
of statistical mechanics to nonequilibrium systems.

These efforts often focus on developing an approach tailored towards a specific class
of physical system or behavior. A handful of the choices that one must consider
when attempting to develop a tailored approach include:

• Distance from Equilibrium: While the rules for what constitutes an equi-
librium system are clearly defined, there are many ways a state can be out
of equilibrium. Systems experiencing small perturbations from equilibrium,
called near-equilibrium systems, are normally defined as perturbed systems
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whose responses to the perturbation are linear with respect to the perturbation
strength. These are well-characterized and frequently discussed in standard
texts on statistical mechanics [26–29]. On the other end of this spectrum
are systems that are far from equilibrium, which can be thought of as sys-
tems where the phenomena of interest occur over a period that is orders of
magnitude shorter than the time required for the equilibration of the system
and environment. Between these two limits, are systems exhibiting slow
relaxation, sometimes called aging kinetics [30, 31].

• Dynamic vs. Steady-State: For systems far from equilibrium, we must
determine whether the physics of interest involve the dynamical behavior of
a system or the time-independent steady-state. Frequently, studying steady-
state behavior is seen as a stepping stone towards studying the full dynamic
behavior, though there are physical phenomena where the transient nature is
central to the problem.

• Quantum vs. Classical: As in equilibrium statistical mechanics, it must be
determined to what extent quantum effects are expected to affect the behavior
of the system. Often, treating the system classically is sufficient, though there
are many cases where quantum effects play an important role in the system’s
behavior.

• Deterministic vs. Stochastic Dynamics: For nonequilibrium systems, the
interplay between the environment and system complicates standard deter-
ministic modeling. To perform a deterministic computation, we must specify
the initial configuration of both the system and environment then use Hamil-
tonian mechanics to perform the time evolution of all particles in both the
system and environment. The probabilistic part of the system’s dynamics
is then reintroduced by running trajectories with many different initial envi-
ronment configurations. To overcome the extreme cost of tracking both the
system and environment, this approach can be simplified to what is often
called thermostatted dynamics [32]. Here, the system is initially in contact
with a thermal bath. At the start of the evolution, the system is isolated from
the environment and a field is applied. Because of the applied field, the deter-
ministic system begins to heat up. To avoid this complication, friction terms
are introduced in such a way as to maintain the correct energy. Alternatively,
the system can be treated stochastically, where noise is introduced to match
phenomenological observations and correctly model the effect of the envi-
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ronment on the system [33, 34] Within the context of stochastic systems, the
master equation is the most flexible equation for time evolution. With some
simplifications, one can arrive at the Langevin and Fokker-Planck equations,
which are also frequently employed for modeling the dynamics of stochastic
systems [33].

• Microscopic vs. Mesoscopic: Especially when dealing with master equation
dynamics, it is prudent to carefully determine what is considered the system
and environment. Frequently, this can result in an intermediate level of
dynamics where many microscopic degrees of freedom are grouped into a
single mesoscopic degree of freedom. By doing this, we can lose the effects
of some of the microscopic behaviors but are often able to simulate larger
systems by focusing on only the most important degrees of freedom. Using a
microscopic model not only provides more accurate results, but is convenient
when it is unclear how to define the relevant mesoscopic degrees of freedom.

• Typical vs. Rare Behavior: For many phenomena, we only need to study
and understand the typical, or most probable, dynamics of a system. This
greatly simplifies the analysis because, in simulations, we are most likely to
generate typical behavior. As mentioned before, though, fluctuations often
have significant effects on the macroscopic behavior of the system and for
those systems, we must statistically characterize fluctuations more precisely.

With the complexity of the landscape of possible nonequilibrium systems, a universal
framework for approaching NESM has remained elusive. Ideally, a universal theory
would be entirely applicable to systems far from equilibrium, near-equilibrium, and
in equilibrium. Additionally, the approachwould be agnostic towhether the system’s
dynamics are microscopic or mesoscopic, quantum or classical, or deterministic or
stochastic. While a steady-state approach would serve as a natural intermediate
step, a fully unifying scaffolding would need to be extensible to dynamical behavior.
Finally, any such approach must properly accommodate the effects of fluctuations
on the macroscopic system behavior.

Given the vastness of possible nonequilibrium problems, preliminary work has
focused on developing an array of theoretical treatments for specific problem classi-
fications. The most successful regime by far has been for near-equilibrium systems.
A central theoretical result in this regime is Onsager’s regression hypothesis [28],
which qualitatively proposed that a system prepared in a nonequilibrium state re-
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gresses, or relaxes, to equilibrium in the same way that an equilibrium system
regresses from a random fluctuation into the same state. This hypothesis was later
proven as a result of the fluctuation-dissipation theorem [35], another important
result for systems in the linear response region. Of practical importance is the
ability to determine transport coefficients, which dictate the strength of perturbation
responses. The Green-Kubo relations build upon Onsager’s regression hypothesis
to relate transport coefficients of near-equilibrium systems to time correlations in
the equilibrium system [26, 27].

For systems far from equilibrium, much work centers on understanding typical
behavior of either simplified models, such as the simple exclusion process discussed
in later chapters of this thesis, which are paradigmatic systems analagous to the
Ising model in equilibrium statistical mechanics, or phenomenologically interesting
systems [34]. Away from typicality, there are a handful of theoretical results that
extend some of the key concepts from near-equilibrium systems; these include
fluctuation theorems [36–39], thermodynamic uncertainty relations [40–42], and
generalized fluctuation-dissipation theorems [43–45].

1.3 Large Deviation Theory and Statistical Mechanics
While the previous section emphasized the difficulty of developing a generalizable
framework for studying NESM, recently, large deviation theory (LDT) has emerged
as a strong candidate. Initially developed as a mathematical theory for quantifying
the rarity of events in stochastic systems [46–51], it later became clear that it was a
natural and rigorous framework for studying equilibrium statistical mechanics [52–
56], providing, for example, a statistical justification for the use of the Legendre
transform. In recent years, because of the generality of the mathematics, it has been
extended to provide a novel approach for the theoretical treatment of NESM [3–5,
57] and its use over the past decade has led to improved understanding of various
nonequilibrium phenomena [6–16].

In this section, we will highlight some of the major results of LDT, particularly with
regards to its application to NESM. We begin by providing a simple introductory
example that helps establish some of the fundamental concepts used later. After-
wards, we demonstrate how the central results from LDT underpin key aspects of
equilibrium statistical mechanics. This leads naturally into a discussion of how these
principles can be extended to nonequilibrium systems. Before finishing this section
and because this thesis is centered on the development and use of novel numerical
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Figure 1.1: The large deviation behavior of the sample mean 〈X〉N of N samples
taken from the exponential distribution. (left) Lines show a handful of example
trajectories, showing the resulting sample mean as a function of N . The shaded
background shows the sample mean probability distribution as computed from
Equation 1.17. (right) The black line shows the exponential distribution and the
red dashed line shows the rate function. Blue lines show the resulting probability
distribution as a function of N , with the lightest line corresponding to N = 10 up to
the darkest line at N = 100.

approaches for calculations within LDT, we provide an overview of standard modern
numerical techniques. Finally, to illustrate the importance of LDT, we highlight a
few recent successful applications in NESM.

Before continuing, we should note that the contents of this section are intended
only to provide an introduction to this field at the depth necessary for understanding
subsequent chapters of this thesis. For those interested in further coverage, we point
to a handful of reviews on introductory LDT [58], LDT and equilibrium statistical
mechanics [3], and LDT and NESM [4, 5].

Fundamentals of LDT
As a means of introducing the fundamental principles of LDT, we can follow [3]
and consider the statistics of the sample mean

〈X〉N =
1
N

N∑
i=1

Xi, (1.14)
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where we take N samples of a random variable Xi distributed according to an
exponential distribution function

P(Xi = x) =
1
µ

e−x/µ, (1.15)

where µ is the sample mean, which we set to µ = 1, and the resulting distribution
is shown as the black line in the right plot of Figure 1.1. In the left plot of that
figure, the black lines show example trajectories of the sample mean as a function
of the number of samples that have been taken. The law of large numbers dictates
that as N → ∞, the probability that the sample mean is within a small interval
around the random variable’s distribution’s mean approaches unity. Thus, as would
be expected, as the number of samples taken increases, the sample mean for these
trajectories converges towards µ = 1. As a slight extension of this, it is also clear that
the probability of getting a sample mean far from µ becomes increasingly unlikely
as more samples are taken. Accordingly, it can be shown that in the limit of a large
number of samples, the probability distribution of sample means has the form

P(〈X〉) ∝ e−Nφ(〈X〉), (1.16)

where
φ(〈X〉) =

〈X〉
µ
− ln

(
〈X〉
µ

)
− 1, (1.17)

which is shown by the red line in the right plot of Figure 1.1 and is called the rate
function as it specifies the exponential rate at which we expect to see arbitrarily large
fluctuations in the sample mean.

The properties of this rate function are of central importance. Because φ(µ) = 0
is the only zero, the probability of observing a sample mean away from µ becomes
exponentially unlikely as more samples are taken. This is illustrated in both the left
and right plots of Figure 1.1. In the left figure, the blue shading in the background
shows the probability distribution of the sample means as a function of N , becoming
increasingly concentrated near 〈X〉N = µ. Slices of this function at increasing
values of N ∈ [10, 100] are shown in the blue lines in the right plot where we see
the probability density function sharpening around µ.

A second important property of the rate function is that its first derivative with
respect to 〈X〉 is 0 at µ. Because of this and the previously mentioned property of
φ, when we do a second-order Taylor series approximation of φ around µ

φ(〈X〉) ≈ φ(µ) +
∂φ

∂〈X〉

����
〈X〉=µ

(〈X〉 − µ) +
1
2
∂2φ

∂〈X〉2

����
〈X〉=µ

(〈X〉 − µ)2, (1.18)
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the first two terms vanish, giving

φ(〈X〉) ≈
1
2
∂2φ

∂〈X〉2

����
〈X〉=µ

(〈X〉 − µ)2. (1.19)

With this result, we have now recovered the central limit theorem, meaning that
approximating the rate function via a second-order Taylor series expansion results
in Gaussian fluctuations of the sample mean around µ. This approximation is then
only valid for estimating sample mean probabilities near µ, meaning it represents
only small deviations from expected behavior accurately. With this, we can now
realize that themoniker of large deviation refers to the incorporation of non-Gaussian
fluctuations arbitrarily far from typical behavior.

We say that any system whose probability distribution has the form of Equation 1.16
obeys a large deviation principle, which can be expressed more precisely as

lim
N→∞

(
−

1
N

ln (P(O))
)
= φ(O), (1.20)

where we are using O to represent an arbitrary function or observable. By com-
puting φ(O), we can access, in the large N limit, the probability of arbitrarily large
fluctuations, though, as can be imagined, this computation becomes difficult for
even moderately complex random processes.

A complementary approach is frequently employed, to provide a second route to
accessing large fluctuations, wherein a Laplace transform of Equation 1.20 is taken
to give

ψ(λ) = lim
N→∞

(
1
N

ln
〈
eNλO

〉)
, (1.21)

with λ being the variable introduced in the Laplace transform. The resulting func-
tion, ψ(λ) is the scaled cumulant generating function of the observable O , meaning
that fluctuations of O are encoded in ψ(λ), i.e.

∂ψ(λ)

∂λ

����
λ=0
= 〈O〉

∂2ψ(λ)

∂λ2

����
λ=0
= 〈O 〉 − 〈O〉2

...

(1.22)

A remarkable result known as the Gärtner-Ellis Theorem relates the scaled cumulant
generating function ψ and the rate function φ via a Legendre-Fenchel transform

φ(O) = max
λ
(λO − ψ(λ)) , (1.23)
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a result of a saddle point approximation and valid so long as ψ(λ) and φ(O) are
differentiable. If ψ(λ) is convex, then this relation further simplifies to the standard
Legendre transform

φ(O) = λ∗O − ψ(λ∗), (1.24)

where λ∗ is the point where ∂λψ(λ∗) = O .

With the large deviation functions, meaning the scaled cumulant generating function
and the rate function, and their relation defined, we now are equipped with two
important approaches to quantify fluctuations of random variables near and far from
typical and can consider how they arise in statistical mechanics.

LDT and Equilibrium Statistical Mechanics
To illustrate the connection between LDT and equilibrium statistical mechanics,
we can recall the microcanonical ensemble introduced in Section 1.1 and consider
the probability of observing the isolated system exhibiting a given energy per site
EN = E/N . This can be expressed in a simple sum

P(EN ) =
∑
{C}

δ(H(C)/N − EN )P(C), (1.25)

where {C} is the set of all possible configurations, δ is the Kronecker delta function,
and, from Equation 1.1, P(C) = Ω−1(N,V, E). Rearranging Equation 1.2, we see
that

P(EN ) = e−S, (1.26)

and working with the intensive entropy, s = S/N , we recognize a large deviation
principle

s(E) = lim
N→∞

−
1
N

ln ((P(EN )) . (1.27)

similar to Equation 1.20 and we recognize the entropy to be a rate function of the
energy. Because of this relation, the rate function is also frequently referred to as a
generalized entropy.

Now, we can explore the meaning of the scaled cumulant generating function in
this context. First, by analyzing the definition of the canonical partition function
in Equation 1.6,

〈
e−βH(C)

〉
we can recognize this term has the same form as the

generating function of O in Equation 1.32,
〈
eNλO

〉
, with λ = β and O = 1

NH(C).
By putting this into the definition of the scaled cumulant generating function

ψ(λ) = lim
N→∞

1
N

ln Z (N,V,T) , (1.28)
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we immediately see a similarity to the definition of the free energy in Equation 1.7,
and recognize that the intensive free energy is the scaled cumulant generating
function of the intensive energy. Similar to the colloquial nomenclature of the rate
function, the scaled cumulant generating function is frequently called the generalized
free energy.

The recognition of the entropy and free energy of equilibrium statistical mechanics
as large deviation functions allows tools from LDT to be employed in that setting. In
particular, we see the origin of the Legendre transform as being purely statistical and
understand better the limits of its applicability. Furthermore, this understanding can
be used to rigorously support the use of variational principles, such as the maximum
entropy principle, which help identify equilibrium states [3].

LDT and Nonequilibrium Statistical Mechanics
Since the central findings of LDT were tied to equilibrium statistical mechanics,
significant work has been put into extending these principles to nonequilibrium
systems [4, 5]. In this section, wewill show that LDTprovides a flexible and rigorous
framework for applications in nonequilibrium statistical mechanics, though it does
not directly overcome many of the inherent complications. For example, because
nonequilibrium thermodynamics is unsettled, we do not have sufficient prescience
to select a handful of macroscopic functions of the microscopic degrees of freedom
that fully specify the state of the macroscopic system, though we can use intuition
to select variables that provide important insight. Furthermore, there remains the
diverse landscape of nonequilibrium systems outlined in Section 1.1, so a current
effort is to extend the LDT approach to many of these classes. For this reason, in
the remainder of this thesis, we will limit our discussion to the steady-state behavior
of classical stochastic systems arbitrarily far from equilibrium, with the theory
agnostic to whether the dynamics generated are for a microscopic or mesoscopic
system, which is the setting where the principles of LDT have beenmost established.

In equilibrium systems, defining the system’s Hamiltonian also defines the Boltz-
mann weights that directly provide microstate probabilities. Unfortunately, two
difficulties arise when extending this approach to NESM. First, because of the
dynamical nature of nonequilibrium systems, single configurations representing a
snapshot of the system at a single time do not provide enough information to under-
stand dynamical properties such as current, activity, or entropy generation. Thus it
is requisite that we consider the statistics of entire trajectories instead of individual
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configurations. This greatly increases the complexity of the problem, however, be-
cause while the number of potential configurations grows exponentially with system
size and the number of particles, the number of trajectories grows exponentially with
both the system size and the simulation time. This makes performing computations
at long times and large system sizes quickly become prohibitively expensive.

Second, once a trajectory has been defined, there are no a priori rules for the
probability of that trajectory. Instead, the equation that generates the stochastic
dynamics of the system of interest can be used to compute the probability of a
trajectory. While the stochastic dynamics of the systems we are interested in can
frequently be modeled by Langevin or Fokker-Planck equations, the master equation
approach is the most general of these and we will use it here. The discrete time
form of the master equation was introduced in Equation 1.10. We will work with
the continuous time version now, writing it more compactly as

∂

∂t
|Pt〉 =W |Pt〉, (1.29)

where |Pt〉 is a vector representing all configurational probabilities at time t and
W is the transition matrix, whose off-diagonal elements are the transition rates
between configurations WC,C′ = wC′→C and diagonal entries are the so-called
escape rates WC,C = rC =

∑
C′,C wC→C′. We define a trajectory in continuous

time as C (tN ) = {C0(0), C1(t1), C2(t2), . . . , CN (tN )}, meaning the trajectory starts in
configuration C0 at time t = 0, then transitions to C1 at time t = t1, and so forth,
with time step size ti+1 − ti obeying a Poisson distribution. The probability of an
arbitrary trajectory can now be determined using the transition matrix W and the
initial configurational probability distribution |P0〉.

At this point, we can introduce the idea of a dynamical microcanonical ensemble
of trajectories. If we are interested in measuring the probability of a trajectory ex-
hibiting a dynamical observable ODyn., which can generally be an arbitrary function
of the full trajectory, we define the dynamical microcanonical ensemble as the set
of all trajectories of length tN with ODyn.(CtN ) = ODyn., where ODyn.(CtN ) is the
measurement of the observable’s value for a given trajectory. Having now defined
both the probability of a trajectory and the dynamical microcanonical ensemble, we
can determine the microcanonical partition function as the probability of observing
a given value of the observable ODyn., namely

ΩDyn. =
∑
{C }

P (C ) δ
(
ODyn.(CtN ) − ODyn.

)
, (1.30)
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Figure 1.2: Results showing the large deviation behavior of a biased Brownian
walker on a lattice. (a) Many example trajectories colored according to the prob-
ability of the resulting final displacement of the particle with yellow (blue) lines
being the most (least) probable. (b) The microcanonical partition function, or prob-
ability distribution of time averaged displacements ∆̄x, with line color indicating
the number of time steps from N = 5 (blue) to N = 250 (yellow). (c) A com-
parison between trajectories carried out with no bias (λ = 0) and a bias towards
negative displacements (λ < 0), with the trajectory color again corresponding to
the final displacement probability. (d) The rate function versus the time-averaged
displacements, with line color again indicating the number of time steps.

where the sum represents a summation over all possible trajectories and δ is the
Kronecker delta function. By selecting an observable that scales appropriately with
time, for many systems, ΩDyn. obeys a large deviation principle

φ(ODyn.) = lim
t→∞

1
t

lnΩDyn.
(
ODyn.

)
, (1.31)

where φ is the dynamical rate function and gives the logarithmic probability of
fluctuations in the observable.

To illustrate this, we can consider the behavior of a biased Brownian particle on a
lattice evolving discretely in time. At each time step, the particle hops upwards with
probability 0.3, downwards with probability 0.2, and remains at the same site with
probability 0.5. In Figure 1.2 (a), we show a number of these trajectories, traced
as the particle position as a function of time step. We select the time-averaged
displacement ∆̄x as the variable of interest and color the trajectories according to
the probability of their final displacement, which corresponds to the microcanonical
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partition function in the long time limit. The adherence to a large deviation principle
is emphasized if we analytically compute ΩDyn.(∆̄x) as a function of the number of
time steps, which is shown in Figure 1.2 (b) with each line showing the distribution
for a different time, increasing from blue to yellow. The corresponding rate function
φ(∆̄x) can be computed from this as well and is shown in Figure 1.2 (d). Here,
we see that large fluctuations in the intensive displacement become increasingly
unlikely with time. For example, at short times, it is somewhat likely for particles to
be below the starting point, but as time proceeds, this becomes exponentially more
unlikely.

Mimicking what is done for the equilibrium system, we can introduce the scaled
cumulant generating function for our dynamical observable ODyn.

ψ(λ) = lim
t→∞

(
1
t

ln
〈
eλODyn.

〉)
, (1.32)

whose derivatives encode the observable’s fluctuations and, under the conditions
listed previously, is related to the dynamical rate function via a Legendre-Fenchel
transform. While in the equilibrium case the variable introduced during the Laplace
transform is physically understood to be the inverse temperature, in the nonequilib-
rium case there is no such known physical interpretation of this parameter λ. We
can also apply the Laplace transform used to define the scaled cumulant generating
function to the master equation, which generates typical trajectories associated with
arbitrarily large fluctuations

∂

∂t
|Pλ

t 〉 =Wλ |Pλ
t 〉, (1.33)

with the new generator Wλ being tilted, meaning it is statistically biased to create
trajectories with atypical average values of O , causing it to no longer preserve
probability. To illustrate this, in Figure 1.2 (c), we show for the biased Brownian
walker the type of trajectories generated for the typical dynamics of the master
equation, labeled λ = 0, and the rare fluctuations associated with a specific value
of λ, at λ < 0. The tilted generator enables affordable generation of arbitrarily
rare fluctuations, whereas the cost of generating these trajectories using the bare
generator would grow exponentially with the distance from typicality.

With these fundamental large deviation functions and their relation defined, we have
the most essential aspects of LDT. In summary, this approach allows us to select,
with a few conditions, a macroscopic dynamical observable and characterize its
behavior entirely, including arbitrarily large fluctuations from typicality. To briefly
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illustrate the importance of this approach, in the next subsection we will highlight a
few successful applications to interesting physical systems and in the next, we will
discuss how these large deviation functions can be computed in practice. First, it is
useful to point out a couple of interesting complexities when using LDT for NESM.

First, in the previous section on equilibrium statistical mechanics, the large deviation
principles were all taken in the limit of large N . Here, they have all been in the limit
of large t, though it is common to take the limit of large N afterward. It is worth
noting that here these limits are not commutable, so different results will arise from
taking the large N limit first.

Second, in equilibrium systems, we frequently see singularities arising in the free
energy as a function of β, indicative of a phase transition. This behavior is also
seen in the generalized entropy and is commonly referred to as a dynamical phase
transition. Special consideration must be taken here because λ is not a controllable
physical parameter like β in equilibrium systems. Instead, a phase transition as a
function of λ indicates that there are multiple classes of trajectories that are possible.
If the dynamical phase transition is near typicality, i.e. near λ = 0, then it is likely
that the system will seemingly stochastically transition between the behavior typical
of one phase to the other. This phenomenon is known as dynamical heterogeneity
and is commonly reported in many physical systems [7, 59, 60].

Recent successes in LDT and NESM
To demonstrate the ubiquitous applicability of LDT in NESM, wewill briefly review
three domains where its use has led to important physical insights or numerical
improvements. These highlighted application areas are

• Improved numerical techniques for near-equilibrium systems.

• Providing novel insight into physical phenomena.

• Nonequilibrium system design.

As mentioned at the end of Section 1.1, for systems near-equilibrium, responses are
linear with respect to small perturbations, i.e. J = LX , where J is the current, X is
the applied force that can be in the form of a temperature or particle gradient, and
L is called the transport coefficient, which specifies how the system responds to the
perturbation. To quantify these responses, Green-Kubo relationships [26, 27] tie the
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transport coefficients to time correlation functions

L ∝
∫ ∞

0
〈O(0)O(t)〉dt, (1.34)

where O is a flux-like observable. While this relation provides a simple method for
computing transport coefficients, the calculation costs are related to the correlation
time, thus this approach becomes difficult for systems where time correlations fade
slowly. While in the past, there have been attempts to overcome this by inducing
small currents via boundary conditions or changing the equations of motion, these
are usually highly tailored towards a specific system [61–63].

LDT has recently been shown to provide an efficient alternative route [64, 65]. In
this approach, we bias the statistical ensemble of possible trajectories towards those
that generate fluctuations in the time-average of the flux-like observable, i.e.

Ō =
1
t

∫ t

0
Odt, (1.35)

where the parameter λ is the statistical biasing parameter introduced earlier in this
section. For small values of λ, the scaled cumulant generating function ψ takes on
a parabolic form

ψ(λ) = Lλ2 + O(λ4), (1.36)

that provides a simple relationship between the transport coefficient and large devi-
ation functions.

When this method was introduced [64], it was used to compute the shear viscosity,
interfacial friction coefficient, and thermal conductivity for molecular systems and,
importantly, was shown to be more statistically efficient than direct use of the
Green-Kubo relation, in the sense that fewer Monte Carlo walkers were required
for the large deviation approach to provide results of the same accuracy. A second
development [65] extended this concept to systems whose response to a perturbation
is nonlinear and takes the form

J = L1X + L2X2 + L3X3 + · · · , (1.37)

where L1 is the linear response coefficient discussed previously and higher-order
coefficients are nonlinear response coefficients. The central finding there shows that
the nonlinear response coefficients are given by derivatives of the scaled cumulant
generating function at λ = 0. These nonlinear factors become important for either
systems that inherently exhibit nonlinear response, such as nanoscale systems, or
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Figure 1.3: Illustration of dynamical heterogeneity exhibited by glassy systems with
(a-c) showing example trajectories where each tick within the lattice corresponds to
a hopping particle and the red lines trace the trajectory of a single particle. In (a) and
(c) the activities K are respectively large and near zero. In (b) the system exhibits
dynamical heterogeneity with pockets of inactivity. (d) and (e) show, respectively,
sketches of the scaled cumulant generating function and total activity for glassy
system as a function of the statistical biasing parameter λ.

those driven out of the range of linear response and this approach has been used for
calculation of these coefficients for models such as a driven Brownian ratchet and a
thermal rectifier.

Having shown an example of LDT providing numerical advantage in the study of
near-equilibrium systems, we now shift to highlighting how it can provide insight
into fundamental phenomena of interest in various physical systems. In recent
history, this is where the bulk of work in this field lies, thus providing a large array
of possible examples. Some of these applications include crystal growth [13], active
matter [10–12], carbon nanotubes [14], weather [66], and basic transport models [4].
Perhaps the most fundamentally important and interesting work, however, has been
in the use of LDT in elucidating the behavior of glassy systems [7], which has been
an extremely active area of interest for the past decade.

The key controversy within this field concerns whether the glass transition is purely
configurational in nature or if there is also a required dynamical component. A
central piece of evidence towards believing that the transition is dynamical in nature
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arises from a physical phenomenon known as dynamical heterogeneity, which we
illustrate in Figure 1.3, which has become one of the hallmark characteristics of
glassy behavior. This phenomenon occurs when dynamical activity, K , a measure
that tracks the number of changes in the local state space of a system, becomes
localized, meaning that there are some spatial regions where particles are moving,
or active, and others where they are unable to move, often due to confinement,
and are inactive. As exemplary trajectories, Figures 1.3 (a), (b), and (c) show
constructed trajectories for a one-dimensional lattice of particles that hop between
nearest-neighbor sites. Eachmark in the plot represents a local configuration change,
i.e. a particle hopping to a neighboring site, and the red lines track the trajectories
of a single particle. While plots (a) and (c) exhibit globally active and inactive
trajectories, plot (b) shows the regionally localized activity and inactivity that appear
as bubbles in space-time [67], indicative of dynamical heterogeneity. From the
perspective of a single particle, this behavior translates into fluctuations into and
out of dynamical behavior, meaning that the particle experiences a random walk
between confinement by other particles, leading to time-local inactive trajectories,
and freedom to diffuse in time-local active trajectories.

LDT provides an important role in detecting and understanding dynamical hetero-
geneity in a wide array of glassy systems from simplified lattice models [68] to
molecular models [69]. If the statistical biasing introduced via λ is done against
the total activity of the system, as sketched in Figures 1.3 (d) and (e), the scaled
cumulant generating function exhibits a kink at λ = 0, which is indicative of a
first-order dynamical phase transition, here from an active (K � 0) to an inactive
(K ≈ 0) phase. Because the typical dynamics of the system occur at λ = 0, this type
of dynamical phase transition indicates dynamical heterogeneity will occur as the
system’s typical behavior does a random walk between the two types of behaviors.

As a final and particularly exciting example of success using LDT in NESM, we can
consider recent work in the design of far from equilibriummolecular systems. Here,
system design refers to our desire to determine microscopic system parameters, with
broad examples including applied fields and intermolecular interactions, that will
cause a macroscopic nonequilibrium system to behave as desired. While this has
become a standard use of equilibrium statistical mechanics in various contexts, the
extension to the nonequilibrium regime has been hampered by the lack of appropriate
tools.

Because LDT deals with the occurrence of rare events, there are examples of rare
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Figure 1.4: Sketches of common Monte Carlo simulation methods used for com-
puting large deviation functions. (a) illustrates transition path sampling with the
dark line showing the proposed trajectory and the gray dashed line representing
proposed alterations. (b) illustrates diffusion Monte Carlo with the shade of the path
determined by the weight factors accumulated for each trajectory.

events that we would like to cause and others that should be avoided. A recent
paper took this approach to determine system parameters and design principles to
cause the typical state of a set of interacting particles to self assemble into various
configurations [9], which are unlikely in equilibrium. The statistical biasing was
done using an indicator function, unique for each target cluster, and though we will
not present the details here, a variational principle was used to determine the optimal
system parameters for 21 distinct clusters. This is one of a couple of recent results
where LDT has begun to be used to design far from equilibrium systems [8], which
is likely to be a fruitful area of research over the next decade.

Computing Large Deviation Functions
Having established the fundamentals of LDT and its importance in understanding
the complex physics of nonequilibrium systems, we move into a brief discussion
of computational approaches for computing large deviation functions. Current
computational methods fall into two general classes, Monte Carlo algorithms or
eigenproblems, both of which we discuss now. It should also be noted that some
macroscopic approaches exist that attempt to incorporate the effects of fluctuations
into macroscopic system behaviors using coarse-grained equations [70]. We will
not include these in our discussion.

From a practitioner’s perspective, Monte Carlo methods for studying rare events
provide a natural framework. Here, trajectories are generated alongside a tracked
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reweighting factor of e−λO , where O is the dynamical observable of interest [17].
While this allows for the use of standard molecular dynamics techniques, evaluating
the probability of exponentially rare events, unfortunately, requires an exponentially
large number of sampled trajectories. Applicable Monte Carlo approaches gen-
erally fall into two algorithm classes, namely transition path sampling (TPS) [71]
and diffusion Monte Carlo (DMC) [72]; the general idea of each is illustrated in
Figure 1.4. In TPS, the algorithm is initialized by proposing a full initial trajectory
(black line in Figure 1.4(a)), which then stochastically explores space-time, with
proposed trajectory updates (gray dashed lines in Figure 1.4(a)), being accepted or
denied using a Metropolis rule that incorporates the exponential reweighting factor
mentioned above.

DMC is a comparable method, in the sense that it is expected to require approx-
imately the same computational effort as TPS, but with a different approach. In
DMC, walkers are initialized at the initial time t0 in a given configuration. The
walkers then stochastically evolve in time while we track the reweighting factor.
After a short time ∆t, the walkers pause; they are then redistributed onto the tra-
jectories that have acquired the largest weighting factor, meaning, alternatively, that
trajectories with low weights are deleted and those with high weights are cloned.
This process of evolution and redistribution at intervals of ∆t continues until the
final simulation time is reached.

For completeness, we now describe in detail the DMC algorithm for a system
evolving according to Equation 1.29, where we are interested in computing the
statistics of an additive, time-local observable O (C (tN )) =

∑N
k=1 o

(
Ctk−1, Ctk

)
.

These types of observables are quite flexible including system activities, where
o
(
Ctk−1, Ctk

)
= 1, which measure the frequency of configuration changes, and cur-

rents, where o
(
Ctk−1, Ctk

)
= ±1 depending on whether a particle moves forward or

backward. We first consider the joint probability distribution P (C,O, t), defined
as the probability of a trajectory at time t being in configuration C with its trajec-
tory observable being O . This joint probability evolves according to a constrained
version of the master equation, which we write explicitly as

∂t P (C,O, t) =
∑
C′

wC′→CP (C′,O − o (C′, C) , t) − rCP (C,O, t) , (1.38)

where on the right-hand side the first term represents a transition into the given
configuration and the second is the probability of remaining in the current configu-
ration. The statistics ofO can be directly accessed by summing this joint probability
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distribution over all configurations to get the dynamical microcanonical partition
function.

Alternatively, the canonical partition function can be accessed by first taking the
Laplace transform of the joint probability distribution

P (C, λ, t) =
∑
O

e−λO P (C,O, t) , (1.39)

giving the tilted master equation

∂t P (C, λ, t) =
∑
C′

e−λo(C′,C)wC′→CP (C′, λ, t) − rCP (C, λ, t) , (1.40)

shown compactly in Equation 1.33. Because of the exponential term, these tilted
dynamics no longer conserve probability. We can instead define an analogous
continuous-time Markovian process with generator

W̃C,C′ = e−λo(C′,C)wC′→C − rC,λδC′,C (1.41)

with rC,λ =
∑
C′ wC→C′. Using these tilted, probability conserving stochastic dy-

namics, we can rewrite Equation 1.40 as

∂t P (C, λ, t) =
∑
C′

W̃C,C′P (C′, λ, t) +
(
rC,λ − rC

)
P (C, λ, t) . (1.42)

The computation of P (C, λ, t) can then be thought of as an evolution according to
the tilted, probability conserving generator W̃C,C′, where after each evolutionary
step trajectories are cloned or destroyed according rules defined by the second term.

Unfortunately, the cost for calculating the scaled cumulant generating function
grows exponentially as a function of λ, meaning as the sampled trajectories become
exponentially rarer, the cost grows exponentially. To overcome this cost, two main
techniques have been employed. First, when DMC is used, importance sampling
schemes apply additional weights to walkers that are behaving in the desired way,
causing them to be more likely to be cloned and exhibit the behavior of interest [17,
72]. Second, control forces can be introduced, which can be thought of as additional
auxiliary forces that push the trajectories into desired behaviors [18, 23]. The
influence of these control forces can be tracked and removed later, which allows users
to figuratively meddle in the dynamics of the system while tracking and erasing the
associated effects of the meddling. Together, these methods have supported much
of the recent progress in this field.
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An alternative approach to determining the large deviation functions for a given
observable in a system of interest relies on the properties of the tilted generator
to convert this into an eigenproblem. To illustrate these properties, we integrate
Equation 1.33 to get

|Pλ
t 〉 = eW

λt |Pλ
0 〉. (1.43)

By definition, a sum over these probabilities gives the ensemble average of e−λO ,
meaning

〈e−λO〉 = 〈C|Pλ
t 〉

= 〈C|eW
λt |Pλ

0 〉,
(1.44)

where 〈C| is a vector of ones here that allows us to sum over the contributions from
all configurations. By doing a spectral decomposition of the exponential term and
taking the long time limit, this simplifies to

〈e−λO〉 = Ceψ0(λ)t, (1.45)

where ψ0 is the largest eigenvalue of Wλ and C is a constant that arises from the
summation over configurations. By comparing this equation with the large deviation
principle obeyed by the scaled cumulant generating function, we see immediately
that the largest eigenvalue of the tilted generator is equal to the scaled cumulant
generating function, i.e. ψ0(λ) = ψ(λ).

With the eigenproblem defined, common algorithms for solving such problems can
be adapted here, with the caveat that the tilted generator is non-Hermitian. The
most obvious approach is exact diagonalization, which provides exact results for
small systems but becomes overly expensive for even moderate sizes. In a similar
vein, there are analytical solutions, often employing basis set techniques, that have
been used frequently [73–75]. Unfortunately, these exact methods cannot be easily
extended to study arbitrary states or complexmolecular systems. The tensor network
algorithms discussed in this thesis also belong to this eigenproblem category and
provide systematically improvablemethods that frequently scale linearlywith system
size. Finally, there are a handful of variational methods that compute the scaled
cumulant generating function directly using properties of the tilted generator, but
without an eigenproblem. Some algorithms used there include variational Monte
Carlo [18] and machine learning techniques such as reinforcement learning [19, 22].

1.4 Introduction to Tensor Networks
With the basics of LDT introduced in the previous section, our focus now shifts
to the introduction of the numerical ansätz and methods that are adapted in this
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Figure 1.5: An introduction to tensor networks and tensor network diagrams with
(a) showing how tensors, here a vector, matrix, and rank-3 tensor, are represented
in tensor network diagrams. (b) shows how tensor contractions are represented in
the diagrams. (c) illustrates how a large rank tensor can be transformed into several
connected lower-rank tensors.

thesis to compute large deviation functions. We will begin in the next subsection
with a basic introduction to tensor networks (TNs) by defining them, providing
an overview of their historical development and use, and providing justification
for their observed success. Because the algorithms are not introduced in detail in
the following chapters, the following subsection here provides details of standard
tensor network algorithms in both one and two dimensions. Finally, because Monte
Carlo methods are standard in statistical mechanics, we close this introduction by
discussing reasons why we suggest that TNs become a common tool in numerical
studies of nonequilibrium statistical mechanics.

Basics of Tensor Networks
To provide an intuitive representation of tensor networks, we begin by introducing
tensor network diagrams in Figures 1.5(a) and (b). In (a), we show how a tensor is
represented as an object, here circles, with legs that each represent an index of that
tensor. Using these diagrams, Figure 1.5(a) shows a rank-1 tensor vi, i.e. a vector,
as an object with a single leg, a rank-2 tensor Mi j , i.e. a matrix, as an object with
two legs, and a rank-3 tensor Ti j k as an object with three legs. In Figure 1.5(b),
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(a) (b)

(c) (d)

Figure 1.6: Diagrams of common tensor network classes, showing the (a) matrix
product state, (b) projected entangled pair state, (c) tree tensor network, and (d)
multiscale entanglement renormalization ansatz.

we show how tensor contractions are represented by objects with shared legs, often
called auxiliary bonds. As examples, the top diagram shows a vector-matrix product
whose result gives another vector, i.e (vM) j =

∑
i vi Mi j , while the bottom figure

shows amore complex contraction between three tensors resulting in a rank-4 tensor.

The central idea of a tensor network is illustrated in Figure 1.5(c). Here, a large,
rank-10 tensor is represented, either exactly or approximately, as a network of smaller
tensors. This decomposition of the tensor into a TN is only one possibility and a
single tensor can be represented by infinitely many different TNs.

Over the past two decades as TNs have become a commonly employed numerical
tool, several standard tensor networks have emerged as particularly useful in repre-
senting physical systems. A few of the most popular TNs are shown in Figure 1.6.

The matrix product state (MPS), shown in Figure 1.6(a) and also called the tensor
train ansatz, is a one-dimensional tensor network with origins in the calculation of
the ground state of quantum lattice models. Its popularity emerged subtly as the
underpinning ansatz for the extremely successful density matrix renormalization
group (DMRG) algorithm [76], where the eigenvalues of the density matrix of a
quantum state are used as the metric for renormalization. Since the connection be-
tween DMRG and the MPS was established [77, 78], the MPS has become widely
studied and used. The MPS has become a common ansatz for diverse applications
including quantum lattice models [79], quantum chemistry [80], classical statistical
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mechanics [81, 82], and machine learning [83–85]. Additionally, algorithm devel-
opment has furthered its use, allowing extensions to time evolution [86, 87], thermal
states [88, 89], infinite systems [90], and continuum systems [91, 92].

In quantum physical applications, the remarkable success of the MPS has led to
significant interest in exploring its range of applicability [93], which we will discuss
briefly here since it motivates the continued use of TNs in various settings. We
begin by considering the ground state of a quantum lattice system with N sites,
which is expressed as

|ψ〉 =
∑

σ1,...,σN

tσ1,...,σN |σ1, . . . , σN〉, (1.46)

where σi specifies the local state space for site i (for example, in a spin-1/2 system,
σi ∈ {↑, ↓}) of dimension d, and tσ1,...,σN is a rank-N tensor, shown in Figure 1.7(a),
that grows exponentially with N . To begin to convert this state into the form of
an MPS, a singular value decomposition (SVD) is employed to bipartition the state
tensor into a left and a right tensor (U and V) with a diagonal matrix S of singular
values connecting the two

tσ1,...,σN = Uσ1,...,σi,aiSai,aiVai,σi+1,...,σN , (1.47)

shown in Figure 1.7(b). Mathematically, discarding the smallest singular values
provides the most optimal approximation to t in the Frobenius norm. Because the
singular values are also equal to the square of the eigenvalues of the density matrix,
this matrix provides easy access to the bipartite von Neumann entanglement entropy

SL |R(ψ) =

D∑
ai

S2
ai,ai log2 S2

ai,ai (1.48)

which is a measure of the amount of entanglement between the left and right blocks,
where D is the size of the auxiliary bond introduced via the SVD. Consequently,
for an approximation to the state of fixed accuracy, the required D is directly re-
lated to the entanglement entropy. By applying successive SVDs, we can continue
to decompose, either exactly or approximately, the state tensor into an MPS (Fig-
ure 1.7(c)). The usefulness of the MPS algorithm is now directly related to the
amount of entanglement between sites within the lattice.

The central goal in introducing the MPS ansatz is to avoid the exponential scaling
of the representation of the state with lattice size. If a quantum state exhibits
arbitrarily large entanglement between bipartitions of the lattice, then D must scale
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Figure 1.7: An introduction to the MPS ansatz with (a) showing the tensor that
represents an arbitrary quantum state. (b) illustrates that an SVD of the original
state tensor can bipartition the system into left and right halves connected by singular
values. (c) shows the MPS ansatz itself. (d) provides an intuitive illustration of area
law behavior where the full possible Hilbert space of the system is the largest circle
and reducing D, the tensor’s auxiliary bond dimension, can limit the effectiveHilbert
space appropriately.

exponentially with N , failing to circumvent the exponential cost. Fortunately, it
can be shown that for gapped Hamiltonians acting on a one-dimensional lattice
the entanglement entropy obeys an area law [93]. Adherence to this law means
that the entanglement between two bipartitions of a system scales with the area of
the boundary between the two systems, as opposed to volume law behavior, where
entanglement grows with the size, or volume of the two parts. For one-dimensional
systems, this means that the required D for approximating a state that adheres to area
law entanglement is constant with N . As illustrated in Figure1.7(d), by changing the
auxiliary bond dimension, we can modify the effective Hilbert space of solutions.
While the full Hilbert space grows exponentially with N , adherence to an area law
limits the effective space of the state and D can be adjusted to correctly tailor the size
of the Hilbert space. The effective Hilbert space can also be modified to be smaller
than the Hilbert space needed for the considered state. While it is now known that
an MPS provides an optimal approximation to systems that adhere to an area law,
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there is also significant evidence that it is a powerful ansatz for other systems [94].
In the second chapter of this thesis, we will use an MPS to compute scaled cumulant
generating functions for NESM.

Because of the wide success of the MPS ansatz in one dimension, a similarly
structured ansatz was proposed for lattice systems in two dimensions, which is
called the projected entangled pair state (PEPS) [95] and shown for a square lattice
in Figure1.6(b). Extensions to three and higher dimensions are also included within
the umbrella of PEPS ansätz as are other lattice configurations, such as hexagonal
lattices. While a number of challenges exist in extending the algorithms associated
with the MPS ansatz to PEPS, such as a lack of an obvious canonical form [96, 97],
inability to exactly contract norms or expectation values [98, 99], and difficulty in
representing long-range interaction [100–102], significant algorithmic progress has
standardized a handful of algorithms, making PEPS calculations possible for difficult
problems [98, 99]. In the third chapter of this thesis, we demonstrate how these
standard PEPS algorithms can be applied to compute large deviation functions.
Additionally, in the fourth chapter, we introduce and use algorithms seeking to
overcome difficulties associatedwith long-range interactions and continuous degrees
of freedom in two-dimensional PEPS calculations.

The other TNs included in Figures 1.6 (c) and (d) are the tree tensor network
(TTN) [103] and multiscale entanglement renormalization ansatz (MERA) [104].
Many of the extensions that exist for the MPS and PEPS have also been formulated
for the TTN and MERA, including extensions to two dimensions [105]. The TTN is
a slight extension of the MPS that, by design, avoids any loops within the network
while seeking to allow a more flexible representation of entangled quantum systems.
If one looks closely, it becomes clear that the MERA has a structure similar to the
TTN, with the addition of rank-4 disentangling tensors, introduced to allow greater
entanglement. Because it allows greater entanglement, the MERA is generally used
to study critical systems. While we expect that these TNs could be extended to study
NESM, we only use the MPS and PEPS here, and thus the rest of our discussion
will focus there.

Standard Algorithms for TNs
As mentioned, because the TN algorithms used in later chapters of this thesis are
only introduced superficially, this section provides a brief introduction into standard
ground state methods that we adapt for computing large deviation functions in
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Figure 1.8: Various aspects of the DMRG algorithm from the MPS perspective. (a)
and (b) show respectively the energy and norms as a TN, with red tensors being in
theMPS and blue tensors being in theMPO. (c) The resulting equation from extrem-
ization with respect to a single MPS tensor, showing in gray the local Hamiltonian
and norm tensors. (d) Conversion of the equation in (c) to an eigenproblem.

Chapters 2 and 3. We will first introduce the DMRG algorithm for determining
the ground state of the MPS, which has been canonicalized and summarized in
its entirety elsewhere [79]. We then discuss the time-evolving block decimation
(TEBD) algorithm frequently used for PEPS calculations, drawing from various
works where different algorithmic details are introduced [98, 99, 106].

To determine the ground state of a quantum system, the variational principle can be
employed, which requires us to minimize the system’s energy

E =
〈ψ |H |ψ〉

〈ψ |ψ〉
(1.49)

with respect to the parameters in |ψ〉. To perform a DMRG calculation, the Hamil-
tonian can be converted into a matrix product operator (MPO), which is analogous
to an MPO but with incoming and outgoing bonds. Thus Figures 1.8(a) and (b)
represent the numerator and denominator in Equation 1.49, with the MPO and MPS
represented respectively by blue and red tensors. To solve the variational problem,
we iteratively traverse the lattice, solving variational problems at each lattice site for
individual tensors in the MPS until convergence. The local variational problem for
an MPS tensor can be converted into an eigenproblem by introducing a Lagrange
multiplier to extremize the right-hand side of Equation 1.49 and take the derivative
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with respect to one of the MPS tensors

〈ψ |H |δψ〉 = E 〈ψ |δψ〉. (1.50)

This is easily understood via the TN diagram equation shown in Figure 1.8(c), where
we see the site of interest in the ket has been removed by the derivative. To entirely
localize the problem, we can exactly contract a local version of the Hamiltonian, the
tensor network for this is highlighted in gray in Figure 1.8(c). In practice, since we
are doing optimization sweeps through the lattice sites, we normally build left and
right environments iteratively then contract with the local MPO tensor to construct
the local Hamiltonian. On the right-hand side, the contraction of the environment
tensors can be done exactly, but we exploit properties of the MPS, namely the mixed
canonical gauge that will not be described in detail here, to force these environments
to be identities. By pulling the MPS tensor from the local site, it becomes clear that
the local variational problem is an eigenproblem

Hlocψloc = Eψloc, (1.51)

where Hloc is the local Hamiltonian (defined by the TN diagram in Figure 1.8(c))
and ψloc is the local MPS tensor.

As a rough sketch of the DMRG algorithm, it proceeds by iteratively sweeping
through the lattice sites from the left to the right then back again. Before beginning
the sweep to the right, the right environments are built iteratively from site N to site
2. During the right sweep, we iterate over all sites, using an implicit diagonalization
routine to find the optimizedMPS tensor (the local eigenstate) and the system energy
(the local eigenvalue) at each site. The left environment must then be updated by
contracting the previous left environment with the newly determined MPS tensors
and the MPO tensor. When the right boundary is reached, the procedure reverses,
with all of the left boundaries having been computing in the sweep to the right, and
the sweeps continue back and forth until the energy converges. While this covers
the fundamental algorithm, we note that various techniques have been proposed to
help calculations converge well. For the work in Chapter 2, for example, we use
state-averaging to compute the ground state and first excited state when the gap
becomes very small [107].

With the theoretically sound footing of the DMRG algorithm, the prospects of
extending this success to optimizing a two-dimensional PEPS seem promising. We
can first discuss a few central problems that prevent the simple extension of the
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Figure 1.9: Illustration of steps towards contracting a PEPS norm with (a) showing
the TN for a PEPS norm and (b) shows a version of this where the physical bond
dimensions have been contracted out (requiring the bond dimension to grow). (c)
is the first step of the boundary contraction approach where the left-most column
is contracted with its neighbor. (d) an illustration of the increased bond dimension
that eventually prohibits exact calculation.

DMRG algorithm, which motivates the standard TEBD algorithm which will then
be introduced. While this has been the most used PEPS algorithm in recent years,
there are many alternatives, including DMRG style optimizations [97, 108] and
adaptation of automatic differentiation (AD) methods [109].

The first difficulty can be seen when we compute the norm of a PEPS

N = 〈ψ |ψ〉, (1.52)

the TN for which is shown in Figure 3.1(a), where we assume that bulk tensors
within the PEPS are rank-5 of size dD4, where D is the size of the auxiliary bonds
connecting PEPS tensors and d is the local state space dimension. To compute the
norm, we can first contract over the physical bond that connects the bra and ket PEPS
tensors. This results in a rank-4 tensor of size D8, where each left, right, up, and
down bond’s dimension is D2, as shown in Figure 3.1(b). With this flattened version
of the PEPS, a boundary method prescribes starting with the left-most column and
sequentially contracting PEPS tensors from left to right. The first step in this process
is shown in Figure 3.1(c), where the operation is identical to contract an MPO into
an MPS. Unfortunately, the exact contraction of this results in the MPS shown in
Figure 3.1(d), where the MPS auxiliary bond dimension has doubled. With the
contraction of each additional column, the auxiliary bond dimension continues to
grow, making the exact contraction impossible for all but the smallest PEPS.
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Figure 1.10: The TN for the energy 〈ψ |H |ψ〉 with the PEPS tensor in the bra and
ket lightened to emphasize the structure of the PEPO.

While this example demonstrates that the norm cannot in practice be contracted
exactly, this issue extends to energy expectation values, local Hamiltonians (the
two-dimensional version of the left-hand side of Figure 1.7(d)), and local norms (the
analogy to a local Hamiltonian, but without operator tensors). Fortunately, we can
borrow the standard approach for approximately applying an MPO to an MPS to use
here. In this approach, the tensors are first contracted together to form the boundary
MPSwith increased auxiliary bond dimensions. To optimally approximate thisMPS
with another MPS with maximum auxiliary bond dimension χ the boundaryMPS is
then canonicalized via a successive application of QR decompositions on the MPS
tensors and finally truncated by a successive application of SVD decompositions
to the canonicalized MPS tensors, with only the χ largest singular values retained
between each set of tensors [98]. While this algorithm is nearly universally used
for PEPS contractions, there are some slight variations on this which can make the
contraction more accurate for similar numerical cost. These include an approach
where the bra and ket are contracted into the boundary MPS separately, lowering the
size of theMPS tensors that are being canonicalized and truncated [98], and a related
single layer method, where the PEPS norm is flattened into a single layer lattice with
rerouting identities introduced to keep the tensors appropriately connected [110],
which is used in Chapter 3 of this thesis.

A second difficulty in dealing with PEPS calculations is related to the first and dis-
cussed further in Chapter 4. One of the strengths of the MPS ansatz in combination
with DMRG that we did not mention previously is the ease of converting many
Hamiltonians into MPOs. Many can be represented exactly, some constructed using
finite automata [111] while others, such as exponentially decaying interactions, hav-
ing naturally compact forms. Additionally, for long-range interactions that do not
admit an obvious compact form, there has been significant progress in developing
general MPO truncation schemes that are nowwidely available and used [112]. The
extension of these approaches to create projected entangled pair operators (PEPOs),
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the TN of which is shown as the highlighted tensors in Figure 1.10, has been mildly
successful, with the introduction of loops making a determination of a compact
representation more cumbersome, but frequently possible.

Unfortunately, an additional difficulty arises when we consider how to compute the
energy of a state using a PEPO, the TN representation of which is shown as the
full TN in Figure 1.10 with the PEPO emphasized. When a boundary contraction
approach is attempted with the three-layered TN both the PEPS and PEPO bonds are
truncated. As was observed with the approximate norm contraction, this truncation
also then affects the accuracy of the local Hamiltonian, which, if used for the local
eigenproblem, may cause numerical issues. Indeed, this truncation has previously
been shown to significantly affect the accuracy of the energy contractions [102, 113],
making it seemingly impractical to use PEPOs for energy optimizations. While some
previous work has proposedmethods of including long-range operators with varying
representations [100, 102, 114] and Chapter 4 of this thesis discusses the further
improvement and use of one of these, this has limited standard PEPS algorithms
to including only nearest-neighbor (NN) and occasionally next-nearest-neighbor
(NNN) interactions.

The final complication that prevents a direct extension of the DMRG algorithm for
a PEPS ground state optimization arises from the contraction of a local norm. As
illustrated in Figures 1.7(c) and (d), the properties of the MPS, namely the canon-
icalization previously mentioned, allows for the left and right norm environments
around the optimization site to contract away to an identity. This allows us to arrive
at the local eigenproblem in Equation 1.51. Unfortunately, while some work has
attempted to convert a PEPS into a canonical form [96, 97, 115] and proposals have
been made for using local canonicalization [99], to make the environment close to
an identity, this remains an open question. Until that is solved, the local site update
becomes a generalized eigenproblem

Hlocψloc = ENlocψloc, (1.53)

whereNloc is the local environment (which is the norm TN in Figure 3.1(a) with the
PEPS tensor for the site of interest removed from both the bra and ket).

With the limitations introduced by the mentioned complications associated with
optimizing a PEPS, the TEBD algorithm has arisen as the most robust optimization
approach. TEBDwas initially introduced to perform imaginary time evolution (ITE)
on an MPS to arrive at the ground state and, while not necessary for our discussion
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Figure 1.11: TNdiagrams related to the TEBDalgorithm. (a) shows the fundamental
idea using suzuki-trotter decomposed local gates to do an approximate ITE. (b) shows
how this idea can be extended to two-dimensional systems where we are required to
do left, right, down, and up gate applications. (c) Illustrates that for a MPS or PEPS,
the application of a gate increases the bond between those tensors. This bond can
then be approximated using various methods.

here, it can also be extended tomodel time-dependent behavior and compute thermal
states [116, 117]. The fundamental idea behind ITE is that the ground state of a
system can be expressed as the long-time limit of imaginary time evolution via the
Schrödinger equation

|ψGS〉 = e−H t |ψ0〉, (1.54)

where |ψGS〉 is the ground state of the system and ψ0〉 is an initial guess with some
overlap with the ground state. Within the context of this paper, it is also helpful to
note that this ITE for the quantumSchrödinger equation ismathematically equivalent
to doing time evolution of the master equation to arrive at the steady-state. TEBD
further simplifies this approach and can be easiest understood when considering
the one-dimensional version, which we will do here. Locally acting Hamiltonians
can be broken into separate terms, for example, a nearest-neighbor Hamiltonian
can be broken into commuting termsHeven andHodd, which contain the terms that
respectively act on the even and odd bonds in the MPS. We can do a Suzuki-Trotter
decomposition of the evolution operator for such a Hamiltonian

e−(Heven+Hodd)t = lim
δt→0

t/δt∏
0

e−Hevenδte−Hoddδt + O(δt2), (1.55)

where we have now divided the evolution into two separate steps, illustrated for
an MPS in Figure 1.11(a), where each step involves applying the exponentiated
local Hamiltonian term to the two relevant sites. This can be extended to 2D
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systems where, for nearest-neighbor interactions, we get four steps as shown in
Figure 1.11(b). After each gate application, the bond dimension of the MPS grows,
severely limiting the number of time steps that can be taken exactly. Accordingly,
after each gate application, the bond is truncated back to amaximumbond dimension
to make the problem tractable, shown in Figure 1.11(c), where the central problem
now becomes the best way to make this approximation. In an MPS, because of
our ability to specify an MPS representation where the norm environment tensors
contract to identities, a truncated SVD provides an optimal truncation.

For the application of a gate within a PEPS, because there is no canonical form, we
are no longer able to guarantee that a naive SVDprovides the optimal approximation.
Two approaches are thus commonly employed. The simple update algorithm acts
under the assumption that the PEPS is at least near a canonical form and chooses to
use only an SVD to approximate the state with a smaller bond dimension. While this
is often a rough approximation, it circumvents the need to contract the environment
around each bond before applying the gate resulting in significantly smaller com-
putational costs. The full update algorithm, in contrast, takes the full (approximate)
environment into account when doing the truncation by using an alternating least
squares approach to arrive at the closest overlap between the full PEPS before and
after truncation. Because the simple update is significantly cheaper, it is often used
to obtain a good initial guess before refining is done through the full update.

In summary, the PEPS TEBD ground state search proceeds by first doing a Trotter
decomposition of the Hamiltonian, breaking it into groups of commuting exponenti-
ated local gates. We then iterate over all gates, applying it to the local PEPS tensors
then using the simple update or full update approach to truncate the increased bond
dimension. After having applied all Hamiltonian gates, a single time step has been
completed and this step is repeated until the energy converges. While this makes
up the fundamentals of the PEPS TEBD algorithm, there are a handful of numerical
tricks that can improve convergence, such as the use of so-called reduced PEPS ten-
sors [106] and local conditioning on the norm environment that are used in practice
but too technical for coverage here.

Combining TNs and LDT
Before finishing this section on TNs, it seems appropriate to discuss briefly some
motivations for using TNs for computing large deviation functions in nonequilibrium
systems. We would like to address two questions in this section:
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1. While the use of TNs for quantum lattice systems is well-justified, why would
we expect them to work in this setting?

2. Why are TN methods needed in this field when Monte Carlo methods are
established and widely successful?

For the former, we provide separately intuitive, mathematical, and historical answers.
From intuition, a TN is designed to mimic the physical layout of the system of
interest, with the general idea being that sites are most entangled with nearby sites
and any entanglement to sites at further distances can be passed through intermediate
sites. While the mathematical definition of the entanglement entropy does not have
a known physical interpretation for nonequilibrium steady-states, intuition roughly
relates it to correlations within the system, which we expect to behave similarly.
We know that the steady-state of a nonequilibrium probability distribution can be
expressed as a large rank tensor. If we bipartition the system, a truncated SVD is
guaranteed to provide the optimal approximation to the exact steady-state, in essence
providing the same motivation that supported TN approaches before area laws were
proven. Historically, it turns out that the MPS has been used as a standard analytical
tool in studying driven nonequilibrium lattice systems in the form of the matrix
product ansatz [118]. Given its successful analytical use, it is natural that numerical
algorithms are adapted for use when an analytical solution is not apparent.

To answer the second question, it should first be noted that throughout the physical
sciences, it is common to develop multiple methods to solve the same problem. In
doing this, it frequently becomes clear that there are regimes where each method
performs best and thus a toolkit is created that allows for the study of myriad systems
and phenomena. From a naive comparison, TN approaches have an advantage
because they are entirely noiseless, circumventing some difficulties associated with
observing and quantifying rare events using Monte Carlo methods. Additionally,
while Monte Carlo algorithms require simulation times that scale with the system’s
characteristic time scales, TN approaches can find the steady-state behavior formally
in the infinite-time limit, avoiding finite time errors.

In this discussion we have thus far assumed that Monte Carlo and TN will work
entirely independently; it can be helpful to consider additionally how they can be
used in concert. One possible combination would be to use TNs to compute the
eigenstate of the tilted generator, then use this resulting state to determine near-ideal
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control forces for Monte Carlo simulations. Indeed, work complementary to ours
has recently demonstrated success in this area for glassy models [119, 120].

Finally, we can imagine some areas of future work that will prove TNs worthwhile
in this field. In simulating quantum systems, an active area of work has centered
on developing TN algorithms that give results formally in the infinite system size
limit [90, 106, 108]. Extending these algorithms to study, for example, driven lattice
models is nontrivial because one must account for boundary effects not present in
equilibrium quantum systems. If possible, though, the ability to simulate classical
nonequilibrium systems formally in the infinite size limit would undoubtedly be an
important development. A second possible area of future research could be to utilize
the framework of TNs to gain fundamental theoretical insight into the physics of
nonequilibrium systems. In quantum systems, the paradigm of TNs has enabled a
deeper understanding of area law behavior and topological phase transitions [93,
121]; it is certainly conceivable that such insight could be provided in this field,
where we possibly don’t have the correct toolkit developed as yet.

Thus while we fully expect Monte Carlo to remain widely used, there is ample
evidence for us to expect that TNs will play a complementary role in both numerical
and theoretical progress.

1.5 Overview of Thesis
In the first chapter of this thesis, we have sought to provide sufficient theoretical and
technical background for the reader to feel familiar and comfortable with NESM,
large deviation theory, and tensor networks. The following three chapters are each
entirely self-contained, but compose a continuous trajectory, evolving from one-
dimensional to multi-lane lattice models in Chapter 2, to fully two-dimensional
models in Chapter 3, before demonstrating progress towards calculations for con-
tinuum models with long-range interactions in Chapter 4. In Chapters 2 and 3,
we use standard TN methods to study a canonical driven lattice model, namely the
asymmetric simple exclusion process (ASEP). Both of these serve as a proof of
principle that TN methods can be adapted and successfully used to compute large
deviation functions. We then use these to study the physics of the ASEP, analyzing
the behavior of a dynamical phase transition between a jammed and flowing phase,
similar to what has been observed in glassy systems that exhibit dynamical hetero-
geneity. Because many of the most interesting nonequilibrium systems occur with
continuous spatial degrees of freedom and involve particles that interact with one
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another over long ranges, Chapter 4 presents work towards developing numerical
methods appropriate for that setting. A particularly difficult challenge for these
calculations is the development of compact representations of long-range operators
that can be used in practical calculations. In Chapter 4, we present three long-range
operator representations, designed for use in a DMRG-style optimization algorithm,
and characterize their utility and efficiency in practice using a coulombic Heisenberg
model. While the test case here is quantum, our approach is agnostic to whether we
are studying quantum or classical nonequilibrium systems.
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C h a p t e r 2

DYNAMICAL PHASE BEHAVIOR OF THE SINGLE- AND
MULTI-LANE ASYMMETRIC SIMPLE EXCLUSION PROCESS

VIA MATRIX PRODUCT STATES

The open asymmetric simple exclusion process (ASEP) has emerged
as a paradigmatic model of nonequilibrium behavior, in part due to its
complex dynamical behavior and wide physical applicability as a model
of driven diffusion. We compare the dynamical phase behavior of the 1D
ASEP and the multi-lane ASEP, a previously unstudied extension of the
1D model that may be thought of as a finite-width strip of the fully 2D
system. Our characterization employs large deviation theory (LDT),
matrix product states (MPS), and the density matrix renormalization
group (DMRG) algorithm, to compute the current cumulant generating
function and its derivatives, which serve as dynamical order parameters.
We use this measure to show that when particles cannot exit or enter
the lattice vertically, the phase behavior of the multi-lane ASEP mimics
that of its 1D counterpart, exhibiting the macroscopic and microscopic
signatures of the maximal current, shock, and high-density/low-density
coexistence phases. Conversely, when particles are allowed to freely
enter and exit the lattice, no such transition is observed. This contrast
emphasizes the complex interplay between latitudinal and longitudinal
hopping rates and the effect of current biasing. Our results support
the potential of tensor networks as a framework to understand classical
nonequilibrium statistical mechanics.

This chapter is adapted from our previously published article:

[1] P. Helms et al., Physical Review E 2019, 100, 022101,
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2.1 Introduction
In recent years, the asymmetric simple exclusion process (ASEP) has emerged
as a paradigmatic model of nonequilibrium behavior in statistical mechanics [2].
The basis for this popularity resembles that of the Ising model: a simply defined
model with contrastingly complex behavior and wide applicability. The ASEP is
defined by bulk and boundary hopping rates that govern the stochastic movement
of particles between sites on a 1D lattice, limiting each site to an occupancy of
one particle at most [3]. This simplistic model, originally used to study protein
synthesis [4], has since been applied to understand diverse physical problems such
as the transport properties of molecular motors [5], polymer reptation [6], transport
through membranes [7], and surface growth [8].

Because of its simplicity and applicability, the open ASEP has been studied exten-
sively, revealing a complex dynamical phase diagram, with both boundary and bulk
driven phase transitions existing between many possible phases [9]. Additionally,
many exact and semi-analytic results have been derived, making the ASEP a good
candidate for benchmarking computational methods [10–13].

Much recent attention on ASEP has centered on more complex realizations of the
model, such asmulti-species and quantumanalogs [14, 15] or studies of the effects of
spatial inhomogeneities [16]. In this work, we characterize the behavior of themulti-
lane ASEP, which can be thought of as a finite-width strip of the fully 2D model.
Previously, analysis of the behavior of the multi-lane ASEP has been limited to
specific derivatives of the two-lane model and has focused on the mean behaviors of
the relevant observables, potentially missing critical details encoded by fluctuations
[17–20]. Alternatively, current fluctuations in the fully 2DASEP have been explored
withinmacroscopic fluctuation theory, although numerical validation of the resulting
expressions has been limited due to the cost of the required computations [21–23].

In this work, we provide a first step towards numerically interpolating between
the behaviors of the 1D and fully 2D systems by studying the multi-lane ASEP
with up to four lanes. Specifically, we work within the framework established by
large deviation theory (LDT) [24–26] and compute the current cumulant generating
function (CGF), whose derivatives encode fluctuations of the current and serve as
dynamical order parameters.

Because of the difficulties associated with measuring rare events in large or complex
systems, significant effort has been devoted to the development of appropriate and
robust numerical and analytic approaches for computing large deviation functions
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such as the CGF. Monte Carlo sampling methods (such as the cloning algorithm
and transition path sampling [27–29] augmented with importance sampling [22,
30, 31] and direct rate function evaluation techniques [32]) have been applied to
both lattice and continuum nonequilibrium systems [10, 12, 27, 29, 33–42]. Here,
we compute these functions using matrix product states (MPS) and the density
matrix renormalization group (DMRG) algorithm. This approach is an example of
a tensor network (TN) method, where the high-dimensional probability distribution
is represented as a contraction of many tensors. The TN approach has been used
to study nonequilibrium lattice problems both analytically, via the matrix product
ansatz [11, 43], and computationally [10, 36, 44–46]. Recently, it has been used to
understand kinetically constrained models of glasses [47].

The remainder of this report proceeds by first providing a brief introduction to large
deviation theory, matrix product states, and the densitymatrix renormalization group
algorithm. We then calibrate our implementation on the dynamical phase behavior
of the 1D (single-lane) ASEP, where we find excellent agreement between our results
and the semi-analytic expressions for the current cumulant generating function in
the region of applicability of the functional Bethe ansatz [13, 48, 49]. We note that
DMRG has previously been successfully used to validate expressions for high-order
current cumulants of the 1D ASEP [10] and to compute critical exponents in the
totally asymmetric case [36]. We also report on microscopic observables, such as
the local density and activity. While the behavior of these observables has been un-
derstood from approximate theories or near various analytically tractable limits [49],
the exact numerically computed quantities have typically not been reported.

We use the 1D results as a framework to extend our study to the multi-lane ASEP
with up to four lanes. Here, we describe the effect of vertical hopping rates on the
longitudinal dynamical phase behavior by comparing the behaviors of the closed
multi-lane ASEP, where particle insertion and removal is only permitted at the
horizontal boundaries, and the open multi-lane ASEP, where particles freely enter
and exit the lattice vertically. The comparison of the behaviors of these models
reveals the complexity of the effects of vertical hopping rates on longitudinally
biased systems, and serves as a step towards understanding the fully 2D ASEP.

2.2 Large Deviation Theory and Matrix Product States
We first briefly summarize some relevant concepts in large deviation theory, the
theory of matrix product states and the density matrix renormalization group. A



51

more complete description can be found in recent reviews [26, 29, 50, 51].

In a nonequilibrium system, the state vector |Pt〉 evolves from an initial state |P0〉

according to amaster equation with dynamics generated by a non-HermitianMarkov
operatorW,

∂t |Pt〉 =W|Pt〉, (2.1)

with the probability of a system configurationC at time t given by Prob(Ct) ≡ 〈C|Pt〉.
The long-time limit yields the final (steady) state |P∞〉. The probability of observing
a given trajectory of configurations C (tN ) = {C0, C1, . . . , CtN } at times {t0, · · · , tN }

(dt = tN/N) is

Prob(C (tN )) = Prob(C0)

tN−1∏
i=0
〈Ci+1 |edtW |Ci〉. (2.2)

We can define dynamical observables along such a trajectory, such as a time-local
observableO =

∑tN−1
i=0 o(Ci+1, Ci), with o being an arbitrary function of time-adjacent

configurations (Ci+1 and Ci). To characterize the steady-state expectation value and
fluctuations of this observable, we define a cumulant generating function

ψ(λ) = lim
tN→∞

t−1
N ln

〈
e−λO

〉
= lim

tN→∞
t−1
N ln

∑
C (tN )

Prob(C (tN ))e−λO, (2.3)

where λ is a field conjugate to the observable. At λ = 0, the first derivative of
ψ is the observable’s steady-state expectation value 〈o〉; characterizations of the
fluctuations of o, via its cumulants, are obtained from higher-order derivatives of
ψ. A fundamental result in LDT is that ψ(λ) is the largest eigenvalue E0, of a tilted
operatorWλ, i.e.

Wλ |Pλ〉 = ψ(λ)|Pλ〉, (2.4)

where, for discrete configurations, the tilted operator is

Wλ(C, C
′) =W(C, C′)e−λo(C,C′)(1 − δC,C′) − R(C)δC,C′ (2.5)

with R(C) =
∑
C,C′W(C, C

′) and with right and left eigenvectors |Pλ〉 and 〈P̄λ |.
The eigenvectors give the configurational probabilities at initial, intermediate, and
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final times, respectively being

|Pλ
t0〉 =

diag
(
|P̄λ〉 ⊗ |Pλ=0〉

)
〈P̄λ |Pλ=0〉

,

|Pλ
tInt.〉 =

diag
(
|P̄λ〉 ⊗ |Pλ〉

)
〈P̄λ |Pλ〉

,

|Pλ
t f 〉 =

|Pλ〉∑
C 〈C |Pλ〉

,

(2.6)

where the full trajectory satisfies 〈O〉 = dψ(λ)/dλ [52–54].

The computation of ψ(λ) and each of the eigenvectors in Eq. (2.4) is achievable via
exact diagonalization for only the smallest systems. Alternatively, the equation can
be recast as a generalized variational problem

〈δPλ |Wλ |Pλ〉 − ψ(λ)〈δPλ |Pλ〉 = 0, (2.7)

where we seek tomakeψ(λ) = 〈Pλ |Wλ |Pλ〉 stationarywith respect to a perturbation
from |Pλ〉 to |δPλ〉. BecauseWλ is non-Hermitian, 〈Pλ |Wλ |Pλ〉 may be above or
below the exact ψ(λ) for an approximate |Pλ〉 or 〈P̄λ |.

In this work, we use an MPS as an ansatz for |Pλ〉 and perform the optimization
in Eq. (2.7) using the DMRG algorithm for non-Hermitian operators [44, 55]. To
introduce the MPS ansatz, consider a 1D lattice of length L with sites i = 1 . . . L.
Each site has a local state space {σi} of dimension d, with a system configuration
C being an ordered list of the local states, |C〉 = |σ1, · · · , σL〉. The state vector is
specified by a tensor of weights

|Pλ〉 =
∑

{σ1···σL}

cσ1,··· ,σL |σ1, · · · , σL〉 , (2.8)

withcσ1,··· ,σL specifying the probability of the systembeing in configuration |σ1, · · · , σL〉.

In this exact representation, arbitrary strong correlations can exist between all sites.
However, if theMarkov operatorWλ only produces transitions between nearby sites,
we can expect correlations to decay with distance. An efficient way to represent
states with this property is to rewrite cσ1,··· ,σL as a product of matrices, i.e. a matrix
product state

|Pλ〉 =
∑

{σ1···σL}

Mσ1Mσ2 · · ·MσL−1MσL |σ1, · · · , σL〉 . (2.9)

where the dimension of the matrices, also called the bond dimension D, specifies
the amount of correlation that can be transmitted between sites. If we assume that
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D saturates with system size, then the representation is asymptotically linear in
complexity with respect to system size, i.e. it contains only O(dD2L) parameters.

Matrix product states with a size-independent D are said to satisfy the 1D area law.
In the quantummechanical setting, the area law states that the entanglement entropy
between two partitions of the system is proportional to the length of the boundary
between them: in 1D, this is independent of system size. It is known that gapped
Hamiltonians in 1D produce ground-states which satisfy this law and thus can be
ideally represented by matrix product states [56]. However, note that even when
the area law is not satisfied, one can still exactly represent an arbitrary state with
an MPS by using a sufficiently large D. For example, to satisfy the area law for a
multi-lane ASEP, we can use an MPS with a D that grows exponentially with the
number of lanes. In the multi-lane case, the representation also depends on the 1D
traversal pattern of the sites. Here, we use a zig-zag ordering of sites, shown in
Fig. 2.1.

With |Pλ〉 written as an MPS, the DMRG algorithm solves the variational problem
posed in Eq. (2.7) optimizing one Mσi at a time by solving an eigenproblem at
each site of the formWeff

i ·M
σi = ψ(λ)Ni ·M

σi , whereWeff
i describes the action

ofWλ in the vector space containing Mσi . The metric Ni can be eliminated (i.e.
converted to the identity) by using the gauge freedom in the MPS, i.e. a matrix and
its inverse may be inserted between any two sites without changing |Pλ〉,

Prob(C) =Mσ1Mσ2 · · ·MσL−1MσL,

=Mσ1X−1XMσ2 · · ·MσL−1MσL,

=M ′σ1M ′σ2 · · ·MσL−1MσL .

(2.10)

Choosing the gauge to eliminate the metric yields the canonical form at the site,

|Pλ〉 =
∑

{σ1···σL}

Lσ1Lσ2 · · ·F σi · · ·RσL−1RσL |σ1, · · · , σL〉 , (2.11)

where
∑
σ L

σ†Lσ = I and
∑
σR

σRσ† = I and F σi now denotes the tensor
optimized in the local eigenvalue problem. A series of sweeps of optimizations is
then performed over the sites, until convergence to the targeted eigenstate of the
tilted generator.

The canonical form of Eq. (2.11) is also used to define the bipartite entanglement
entropy S(i) at site i. Though entanglement is strictly a physical property of quantum
systems, here the numerical value of S(i) can still be used to quantify the non-
factorizable correlations between the states of sites to the left and right of site i,
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Figure 2.1: A diagrammatic representation of the mapping of a 2D lattice with
nearest neighbor interactions onto a 1D lattice with long-range interactions. The
arrows indicate how our DMRG optimization traverses the 2D lattice and the dashed
line shows the bond over which the numerical entanglement entropy is measured.

!

"

# $

%

&

Figure 2.2: The ASEP model where particles on a 1D lattice stochastically hop to a
vacant neighboring right (left) site at a rate of p (q) and enter (exit) at the left and
right boundaries at rates α (γ) and β (δ).

and to bound the maximum bond dimension required to accurately represent the
state as an MPS. It can also be used as a generalized order parameter in quantum
applications and may thus provide similar insights here [57, 58]. By computing the
singular values {sm} of the central F σi

pq reshaped into the matrix Gσip,q = F σi
pq , the

numerical entanglement entropy is defined as

S(i) = −
∑

m

s2
m log2 s2

m. (2.12)

2.3 Model
The 1D ASEP (Fig. 2.2) takes place on a lattice of L sites. Particles hop stochasti-
cally to vacant nearest-neighbor sites at the following rates. In the lattice interior,
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particles hop right (left) with rate p (q) with asymmetry enforced via p , q (ASEP).
At the edges, particles enter (exit) at the left with rate α (γ) and at the right with rate
β (δ). In this work, we designate the time-integrated current J for all bonds as the
observable O mentioned previously and study phases induced by the current bias λ
in the parameter regime α = β = γ = δ = 1/2 and p + q = 1. The tilted operator
for the current cumulant generating function is

W1D
λ =α

(
eλa†1 − v1

)
+ γ

(
e−λa1 − n1

)
+

L−1∑
i=1

p
(
eλaia

†

i+1 − nivi+1

)
+

L−1∑
i=1

q
(
e−λa†i ai+1 − vini+1

)
+ β

(
e−λa†L − vL

)
+ δ

(
eλaL − nL

)
,

(2.13)

where ai, a†i , ni, and vi are annihilation, creation, particle number, and vacancy
number operators. Note that the tilted operator is invariant with respect to the
combined operation of particle-hole transformation/inversion (a† ↔ a and {..., i, i+
1, ...} ↔ {..., i + 1, i, ...}). The eigenvalues ofW1D

λ also exhibit a Gallavotti-Cohen
(GC) symmetry [52, 59] of the form ψ(λ) = ψ(λ∗) where, for the specified ASEP
parameters, λ∗ = − L−1

L+1 ln(p/q) − λ.

The multi-lane ASEP is defined on a 2D lattice of Ly × Lx sites. It augments the 1D
ASEP with bulk hopping in the vertical (transverse) direction (at rates py, qy) and
particles inserted and removed at the vertical boundaries (at rates αy, βy, γy, δy). We
apply the current bias in the (longitudinal) x-direction, with a tilted operator that
takes the form,

W2D
λ =W

1Dx
λ +W

1Dy
0 , (2.14)

and retains the above GC and particle-hole/inversion symmetries. To understand the
effects of the transverse parameters on the longitudinal system’s phase behavior, we
focus on twomulti-lane parameter sets, namely open and closed vertical boundaries.
Both require px + qx = 1, py = qy = 1/2, and αx = βx = γx = δx = 1/2, while the
open (closed) case specifies αy = βy = γy = δy = 1/2 (αy = βy = γy = δy = 0).

To characterize the system, the DMRG algorithm is used to determine the largest
eigenvalue of each tilted operator, through which the steady-state total current and
current susceptibility are computed as J = ∂ψ(λ)/dλ and χ = ∂2ψ(λ)/dλ2. Local
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densities, currents, and activities may also be computed by contracting the resulting
left and right eigenvector with the appropriate operator, i.e.,

ρi =
〈
Pλ

��ni
��Pλ

〉
,

Ji =
〈
Pλ

�� peλaia
†

i+1 − qe−λa†i ai+1
��Pλ

〉
,

Ki =
〈
Pλ

�� peλaia
†

i+1 + qe−λa†i ai+1
��Pλ

〉
,

(2.15)

assuming
〈
Pλ

��Pλ
〉
= 1.

2.4 Results
Benchmark MPS calculations of the 1D ASEP
We begin by using MPS and DMRG to characterize the phase behavior in the afore-
mentioned parameter space and benchmark this approach against earlier results from
the semi-analytical functional Bethe ansatz and approximate results from macro-
scopic fluctuation theory [9]. In this space, there are three expected phases, which
are described in Fig. 2.3(a) via rudimentary sketches of both the steady-state density
profile and the most probable particle configurations. These are the Maximal Cur-
rent (MC) phase, where, in the most probable microscopic configurations, particles
are evenly spaced throughout the lattice, allowing a maximal amount of biased hop-
ping, the Shock (S) phase, where particles conglomerate on one side of the lattice
to form a shock that, in path-space simulations, performs a Brownian walk on the
lattice, and the High-Density/Low-Density Coexistence (HD+LD) phase, where the
entirely filled and empty states (with some boundary effects) are degenerate in the
thermodynamic limit and correspond to a steady-state density profile of ρ = 1/2.

The predicted phase diagram is mapped in Fig. 2.3(b) where the lines indicate the
line of GC symmetry (solid), the boundary between the MC and S phases (dotted,
via macroscopic fluctuation theory), and the boundary between the S and HD+LD
phases (dashed, via functional Bethe ansatz). The steady-state current is also shown,
computed via DMRG for an L = 20 ASEP, showing that current functions as a
dynamical order parameter for the transition from S to HD+LD, going effectively
to zero in the HD+LD phase. While the boundary between the MC and S phases
is commonly defined as the point where the per site current is J = (p − q)/4, we
are not aware of an order parameter for this transition, which instead appears as a
smooth crossover in the current rather than a true phase boundary. Also note that
because of the symmetries of the system, the remaining analysis can be limited to
the lower left region of the parameter space (p < 1/2 to the left of the line of GC
symmetry), with the rest of the diagram mapped out by symmetry.
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Figure 2.3: (a) Rudimentary sketches of the density profiles in the three possible
phases. Blue curves represent approximate steady-state density profiles while green
curves depict typical particle configurations. (b) A map of the dynamical phase
behavior of the ASEP showing the steady-state current J as a function of p and λ for
a length L = 20 lattice as determined via DMRG. Additionally shown in black are
lines indicating the center of the GC symmetry (solid) and the predicted boundaries
between the MC and shock phases (dotted, via macroscopic fluctuation theory [9,
60, 61]) and the shock and HD+LD phases (dashed, via functional Bethe ansatz [9,
62]).
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Figure 2.4: The behavior of the 1D ASEP with lattice lengths of L = [10, 100]. The
DMRG results for the normalized (a) CGF. ψ = E0/L, (b), current J = ∂λψ/L, and
(e) scaled current susceptibility χ = ∂2

λψ/L
2 compared with the analytic functional

Bethe ansatz expressions (red), valid for λ → 0− and λ > 0; additionally (f) shows
the gap between the first and and second largest eigenvalues E0 and E1. Plots (c)
and (d) show the density ρ and recurrent hopping K − |J | as a function of position
in a L = 10 lattice, x, and λ. (g) shows the numerical entanglement entropy S of a
bipartition at the center bond as a function of λ with the upper (lower) subfigures
in (h) showing the corresponding ordered numerical entanglement spectrum, with
Ŝm = −s2

m log2 s2
m, at λ = −0.3 (λ = 0.3).
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Finite size errors can be converged rapidly by increasing the lattice size. In Fig. 2.4,
we characterize this behavior using system properties such as the cumulant gen-
erating function, current, current susceptibility, and excited state gap for a range
of λ near λ = 0 with p = 0.1 and for lattice sizes up to L = 100 via DMRG
with bond dimension D between 50 and 300. The relative errors in the energy,
current, and numerical entanglement entropy in the MC phase for a bond dimension
of D = 10 are approximately, ErrE = 0.01%, ErrJ = 0.02%, and ErrS = 10%,
respectively. Increasing to a bond dimension of D = 150 improves these relative
errors to ErrE = 0.0001%, ErrJ = 0.001%, and ErrS = 0.1%. As a benchmark, the
solid red line in Fig. 2.4 (a), (b), and (e) corresponds to the functional Bethe ansatz
result, which is valid only in the HD+LD phase and near λ = 0 in the S phase.

As L → ∞, a number of interesting behaviors are observed, particularly at the
interface between the S and HD+LD phases. In this region, the cumulant generat-
ing function transitions from having a finite negative slope to become nearly flat,
signifying a transition into a low-current regime. This transition is marked by a
continuous change in the current and an abrupt change in the current susceptibility,
as shown in Fig. 2.4 (e). Note that here the current susceptibility has been scaled
by L2, instead of L, to show that this scaled measure does not diverge at λ = 0.
We also see that the system becomes gapless due to the degeneracy of the high-
density and low-density configurations. This degeneracy does not cause a spike in
the susceptibility because the high-density and low-density states are of the same
particle-hole/inversion symmetry while ∂λWλ is odd under this symmetry. Instead,
the growing susceptibility is controlled by the second gap (between E2 and (E0, E1))
which also closes at this point.

The MPS representation also provides the state’s full configurational information,
enabling us to study the microscopic structure of the phases and quantities that are
not derivatives of the cumulant generating function. Fig. 2.4 (c) and (d) show the
steady-state density, ρ, and recurrent hopping, K − |J |, computed as specified in
Eq. (2.15), as a function of the position in the lattice x and the current bias λ. These
density profiles correspond to those shown in Fig. 2.3(a), with the linear profile near
λ = 0 corresponding to the shock phase. The HD+LD and MC phases can here
be distinguished via the rate of recurrent hopping; particles and holes are spatially
dispersed in the MC phase, allowing frequent opportunities to hop back and forth,
as indicated by the finite observed recurrent hopping at λ < 0. When the transition
is made into the HD+LD phase, the recurrent hopping drops to nearly zero in the
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lattice bulk, attributable to the lattice being nearly entirely filled or empty in this
phase and thus providing few opportunities for recurrent hops.

An additional way to summarize the microscopic information (and the associated
correlations in the system) is via the numerical entanglement entropy and spectrum
(S(i) and {sm} in Eq. (2.12)) which we measure at the middle of the lattice. These
are plotted for the right eigenvector |Pλ〉 in Fig. 2.4 (g). There are two clear regions
present in the numerical entanglement entropy, one corresponding to the MC phase,
the other to the HD+LD phase. For the MC phase, the spectrum decays slowly,
indicating that a relatively large bond dimension is required to accurately represent
the given state. In the HD+LD phase, the numerical entanglement entropy is larger
and appears to be exactly 1 (log2 2). The numerical entanglement spectrum shows
that only two modes contribute, arising from the filled and empty configurations,
indicating the state can be represented exactly by an MPS of bond dimension 2.

Multi-lane ASEP model
We now consider a system comprised of multiple ASEP lanes, with particles that
may hop vertically (y-direction) or horizontally (x-direction), wherewewill examine
the unexplored interplay between vertical and horizontal currents that can generate
new phase behaviour.

Closed Multi-lane ASEP

A simple, but nontrivial, extension of the 1D ASEP into multiple lanes, as specified
in Sec. 2.3, is to augment horizontal hopping and entry/exit parameters with equal
vertical hopping rates py = qy = 1/2 and no entry/exit at the vertical bounds, i.e.
closed boundary conditions. To understand the phase behavior here, we again carried
out DMRG calculations mapping out the behavior as a function of the longitudinal
current bias λx for fixed px = 0.1, with bond dimensions D between 50 and 300 and
with system widths and lengths of up to Ly = 4 and Lx = 50.

The resulting cumulant generating function, current, current susceptibility, and first
excited state gap are displayed respectively in Fig. 2.5 (a), (b), (d) and (e) for the
Ly = 4 ASEP (with the Ly = [2, 3] results being essentially indistinguishable from
these). A comparison between this figure and Fig. 2.4 shows no qualitative difference
between the single lane and closedmulti-laneASEP.We can analyze the ground state
MPS to confirm whether the microscopic configurations in the multi-lane system
correspond to those seen in 1D.
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Figure 2.5: The behavior of the closed multi-lane ASEP showing the DMRG results
for the normalized (a) CGF ψ = E0/(Lx Ly), (b) current J = ∂λψ/(Lx Ly), and
(e) scaled current susceptibility χ = ∂2

λψ/(L
2
x Ly) as well as (f) the gap between

the first and second largest eigenvalues E0 and E1 for the four lane systems with
lengths up to Lx = 50. Plots (c) and (d) show the density ρ and vertical hopping
activity Ky between lanes for a two-lane ASEP with Lx = 20. (g) Shows the
numerical entanglement entropy S of a bipartition of the system at the center bond
as a function of λ.
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Fig. 2.5 (c) and (d) show the behaviors of key observables as a function of λ. Using
results from a two lane calculation, Fig. 2.5 (c) shows the density profile in one of
the lanes as a function of λ, with the most notable point being the linear profile
near λ = 0, indicative of a shock phase. The MC and HD+LD phases are again
indistinguishable by their density profiles. As a means of distinguishing the two
phases, we can use either the horizontal recurrent hopping rate profile (as done in 1D
and not shown here) or the vertical activities between the two lanes as demonstrated
in Fig. 2.5 (d). Here, the bulk vertical activity is near Ky = 1/4 per site when in
the MC phase, supporting a microscopic structure where particles neighbor holes
with probability 1/2 and the probability of a vertical hop when such a configuration
occurs is py = qy = 1/2. After crossing the 1D ASEP phase boundary at λ = 0,
the bulk vertical activity approaches zero, indicating that hops are prevented by an
entirely full or empty lattice.

This picture is further supported by the profile of the numerical entanglement entropy
for the two-lane ASEP shown in Fig. 2.5 (g), which again mimics the behavior seen
for the 1D ASEP. We would usually expect the numerical entanglement entropy
across the central cut to grow with the width of the system, which it appears to do
in the MC phase. In the HD+LD, however, the numerical entanglement entropy is
independent of the lattice width because the phase results from entirely empty and
full configurations (where particle occupancy is perfectly correlated between the
lanes in both configurations).

Open Multi-lane ASEP

To quantify the effects of vertical boundaries on the horizontally biased dynamical
phase behavior of this multi-lane ASEP, we further consider a vertically open multi-
lane ASEP, where vertical entry/exit rates are 1/2, as specified in Sec. 2.3. In these
calculations, we employed DMRG to study the ASEP behavior as a function of the
horizontal bias, λx , near λx = 0, with px = 0.1 for systems of up to length Lx = 50
with up to three lanes (Ly = 3) using a maximum bond dimension of D = 50.

The results are displayed in Fig. 2.6, with the cumulant generating function, current,
current susceptibility, and first excited state gap being shown in subfigures (a), (b),
(e), and (f). The per site macroscopic observables are nearly indistinguishable for
the various system sizes, with the only noticeable difference caused by the requisite
shifting of the point of GC symmetry as a function of system length. While in the
closed multi-lane model the current detected a transition into the HD+LD phase, no
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Figure 2.6: The behavior of the open multi-lane ASEP showing the DMRG results
for the normalized (a) CGF ψ = E0/(Lx Ly), (b) current J = ∂λψ/(Lx Ly), and
(e) current susceptibility χ = ∂2

λψ/(Lx Ly) as well as (f) the gap between the first
and second largest eigenvalues E0 and E1 for the two- and three-lane systems with
lengths up to Lx = 30. Plots (c) and (d) show the density ρ and vertical hopping
activity Ky between lanes for a two-lane ASEP with Lx = 20. (g) shows the
numerical entanglement entropy S of a bipartition of the system at the center bond
as a function of λ.
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such transition is apparent here.

This is further supported by a microscopic analysis for a lattice of size 2 × 20. The
density and activity profiles are shown in Fig. 2.6 (c) and (d) as a function of λ.
The λ sweep show no changes in the behavior of the density and vertical activity.
This is also true at λ = 0, where the phase transition would be expected to occur.
While the steady-state number of hops between lattice sites does not seem to indicate
any phase transition, we note that the desired low current behavior is created in a
MC-like density profile by causing a small current to flow to the left in the bulk to
counter the large current flowing to the right at the boundaries. This also illustrates
a significant difference between the single-lane and multi-lane systems, namely that
the steady-state current need not be spatially homogenous.

The lack of the phase transition in the open multi-lane system contrasts with the
behavior of the closed multi-lane system. The behavior of the open model likely
arises due to the availability of a vertical particle bath that enables rapid relaxation
when jammed phases begin to form.

2.5 Conclusions
In conclusion, we have used MPS and DMRG to conduct a systematic study of the
1D and multi-lane ASEP with open horizontal boundary conditions under a current
bias. With regards to the physics of the ASEP, we characterized the phase tran-
sition between the MC and HD+LD phases in the 1D system, showing agreement
for the current cumulant generating function with known semi-analytic expressions
and demonstrating changes in underlying microscopic structure via the steady-state
density and activity profiles. We additionally found that the numerical entanglement
entropy and spectrum, though different in physical meaning to their quantum coun-
terparts, provide a global summary of the correlations in the system, identifying the
sharp structure of the transition into the HD+LD phase. In the case of the multi-lane
ASEP, we demonstrated that when biasing the current longitudinally with a simple
choice of vertical hopping rates the development of the HD+LD phase occurs when
vertical particle entry/exit is prohibited, but the phase boundary disappears entirely
when this is reintroduced. This emphasizes the complex interplay between vertical
and horizontal hopping parameters in this class of boundary driven processes and
calls for the development of a more complete understanding of the multi-lane and
fully 2D ASEP.

The TN methods used in this work are numerical realizations of the matrix product
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ansatz, which has long been used to produce semi-analytical solutions in driven
lattice models. As we have shown, the flexibility of the numerical approach allows
this framework to be applied to problems where analytical techniques are difficult
to use, as demonstrated here with the multi-lane ASEP. In addition to providing
a simple numerical route to compute large deviation functions, this approach also
provide access to details of the underlying microscopic configurations, all without
encountering the limitations of analytic methods or the sampling difficulties that
plague Monte Carlo techniques. In addition, the success seen here and in other
recent work [47] indicates the potential of more general tensor network approaches,
which allow for a natural treatment of two-dimensional, three-dimensional, and
thermodynamic lattice systems [63–65]. Currently, the TN methods remain chal-
lenging to apply to continuum systems. Continuing to further the application of
tensor networks to nonequilibrium statistical models thus remains an exciting area
of ongoing research.
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C h a p t e r 3

DYNAMICAL PHASE TRANSITIONS IN A 2D CLASSICAL
NONEQUILIBRIUM MODEL VIA 2D TENSOR NETWORKS

We demonstrate the power of two-dimensional tensor networks for ob-
taining large deviation functions of dynamical observables in a classical
nonequilibrium setting. Using these methods, we analyze the previ-
ously unstudied dynamical phase behavior of the fully two-dimensional
asymmetric simple exclusion process with biases in both the x and y

directions. We identify a dynamical phase transition, from a jammed
to a flowing phase, and characterize the phases and the transition, with
an estimate of the critical point and exponents.

This chapter is adapted from our previously published article:

[1] P. Helms, G. K.-L. Chan, Physical Review Letters 2020, 125,
140601,
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3.1 Introduction
Large deviation theory (LDT) has emerged as a powerful framework for studying
the fluctuations of macroscopic dynamical observables in classical nonequilibrium
systems [2–6]. Reminiscent of equilibrium statistical mechanics, where ensembles
of configurations are organized by their macroscopic properties, such as temperature
or energy, LDT prescribes the grouping of trajectories into ensembles based on their
dynamical or staticmacroscopic properties, such as current or density. This approach
allows for the definition of dynamical partition functions, derivatives of which
are the mathematical analogs to entropy and free energy, named large deviation
functions (LDFs), which encode the statistics of dynamical observable fluctuations.
As in equilibrium systems, these are critical for identifying and characterizing
phase transitions, particularly those which occur in the space of trajectories, called
dynamical phase transitions (DPTs) [6].

The success of LDT has been accompanied by the development of numerical meth-
ods for computing LDFs, with significant emphasis and progress centered in sophis-
ticated sampling techniques [5, 7–13]. Alternatively, the matrix product ansatz, a
powerful analytical representation of nonequilibrium steady states [14–16], fore-
shadowed the recent success of numerical tensor network (TN) algorithms. In
particular, calculations using matrix product states (MPS), the one-dimensional TN
that underpins the density matrix renormalization group (DMRG) algorithm [17],
provide a noiseless alternative to sampling methods. As demonstrated in the recent
applications to DPTs in kinetically constrained and driven diffusivemodels [18–22],
the MPS provides a remarkably compact representation of nonequilibrium steady
states.

While the TN approach is promising, the use of the MPS, which only efficiently
encodes correlations in one dimension, limits the study of higher-dimensional prob-
lems [23], Consequently, LDF computations beyond one dimension have relied on
Monte Carlo methods [24–27]. In this letter, we demonstrate how an inherently
two-dimensional TN, the projected entangled pair state (PEPS) [28–31], serves as
an efficient ansatz to determine LDFs in two-dimensional nonequilibrium lattice
problems.

We use this approach to obtain new insights into the fully two-dimensional asymmet-
ric simple exclusion process (ASEP). In one-dimensional, the ASEP has become
a paradigmatic model of nonequilibrium behavior frequently employed to under-
stand important physical systems and phenomena including surface growth [32, 33],



72

Figure 3.1: A stack of possible configurations of the two-dimensional ASEP (left),
representing all possible configuration probabilities, is stored as a two-dimensional
PEPS, whose TN diagram is shown on the right. Contracting all auxiliary bonds
gives the probability of all possible lattice configurations.

molecular motors [34–36], and traffic flow [37]. The two-dimensional ASEP is of
similarly wide interest, but it has remained poorly characterized [38–43], espe-
cially with regards to its dynamical phase behavior, which is unknown except in the
periodic, weakly asymmetric limit [24]. We show that two-dimensional TN now
allow us to shed light on the general two-dimensional ASEP, by computing detailed
observables along a line in the dynamical phase diagram. In so doing, we find and
characterize a hitherto unobserved DPT between jammed and flowing phases.

3.2 Large Deviation Theory and Projected Entangled Pair States
Webeginwith a short overview of relevant theory andmethods associated with LDT,
TNs, and PEPS. More comprehensive treatments of all three topics are provided in
recent reviews and methodological papers [6, 29, 31].

A Markovian nonequilibrium system’s time evolution is governed by a master equa-
tion, ∂t |Pt〉 = W |Pt〉, where vector |Pt〉 represents the configurational probabil-
ities at time t and the generator, W, dictates the transition rates between con-
figurations. At steady-state, the time-averaged current vector, J̄ = J/t obeys a
large deviation principle, P(J̄) ≈ e−tφ(J̄), as does its moment generating function,
Z(λ) = 〈e−λJ̄〉 ≈ e−tψ(λ), indicating that the probability of observing all but the most
likely current decays exponentially with averaging time. The rate function (RF),
φ(J̄), defines the probability of a given current, and ψ(λ) is the scaled cumulant
generating function (SCGF), whose derivatives at λ = 0 give the cumulants of the
current.

Performing a tilting of the generator, W →W(λ), effectively weights trajectories
according to their currents, by scaling all forward (backward) hopping terms by
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Figure 3.2: A mapping of the mean field dynamical phase diagram of the two-
dimensional ASEP with (a) showing the SCGF (top), current (middle), and current
susceptibility (bottom) as a function of bias at one point in the physical phase space,
while (b) and (c) respectively show plots of the current susceptibility as a function of
bias for a bulk biased and a boundary biased two-dimensional ASEP. For (a), px,y =

1 − qx,y = 1 with boundary terms at 1/2 and current biases, λx, λy ∈ [−2.5, 2.5];
we can see the transition between the jammed (dark) and flowing (bright) phases.
In (b), bulk rates are fixed at px,y = 1 − qx,y = 0.9 while sweeping over a subset of
boundary rates (αx,y = βx,y = 1 − γx,y = 1 − δx,y). In (c), all boundary terms are set
to 1/2 and we sweep over bulk hopping rates (px,y,qx,y). Each subplot in (b) and (c)
sweeps over current biases λx, λy ∈ [−2.5, 2.5].
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e−λ (eλ), making W(λ) non-Markovian and non-Hermitian. A central finding
in LDT dictates that the largest eigenvalue of the tilted generator is the SCGF,
i.e. W(λ) |P(λ)〉 = ψ(λ)|P(λ)〉. Furthermore, the corresponding left and right
eigenvectors detail trajectory characteristics associated with particular fluctuations.
For example, the time averaged local density associated with a fluctuation is ρi =

〈P(λ) |ni |P(λ)〉/〈P(λ) |P(λ)〉, where ni is the particle number operator acting on site i

and 〈P(λ) | and |P(λ)〉 are the left and right eigenvectors.

The PEPS TN ansatz is a intuitive representation of the approximate eigenstates
of the tilted generator and a diagrammatic representation of this ansatz is shown
on the right side of Figure 3.1, where a tensor is allocated for each lattice site.
Diagrammatically, each tensor is represented as a ball with tensor indices corre-
sponding to lines connected to the ball. The vertical indices, called the physical
bonds, correspond to the local state space of the system and are of size d, which is
the local state dimension (for hard core particles d = 2, corresponding to an empty
or occupied site). Additionally, nearest neighbor tensors are connected by indices,
called auxiliary bonds, of size D, enabling information transfer between sites. This
results in a lattice of rank five bulk tensors T [x,y]i j klm of size (d,D,D,D,D). The size of
the auxiliary bonds, called the bond dimension, controls the accuracy of the ansatz
by truncating the considered Hilbert space and for sufficiently large D the ansatz is
exact. While D must grow exponentially with the size of the lattice to accurately
represent arbitrary states, in practice, many states are accurately captured by a PEPS
with finite D even as the lattice grows. By contracting over all auxiliary bonds, the
eigenstate of the tilted generator is recovered, thus the mapping in Figure 3.1 roughly
illustrates how the set of all configurational probabilities are stored as a PEPS.

The development of appropriate PEPS optimization methods for quantum many
body problems is an active area of research [44–47]. For this work, we simply
adapt many of the most successful standard techniques to the non-equilibrium mas-
ter equation setting. Using the time-evolving block decimation approach [29, 48],
we integrate the tiltedmaster equation forwards in time, giving |P(λ)t 〉 = etW(λ)

|P(λ)0 〉.
We apply the time evolution operator to the initial PEPS via its Suzuki-Trotter de-

composition into local gates, etW(λ)
≈

(
eδtW(λ)

i,i+1

) t/δt
, and iterate this application

until convergence to the steady-state. The bond dimension between two sites grows
after the application of the gate, thus an alternating least squares approach is used
to compress the tensors back to dimension D [31]. The alternating least squares
algorithm uses information from all the other tensors which are contracted into an
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Figure 3.3: PEPS calculation results analyzing the phase transition along a line in
the dynamical phase space of the two-dimensional ASEP. From left to right, we show
the per site SCGF ψ(λx, λy)/N2, horizontal current Jx/N2, and horizontal current
susceptibility χx/N2 at λy = −1/2 with λx ∈ [−1/2, 1]. Each line corresponds to a
system size N ∈ [6, 10, 20, 30, 50].

approximate environment using the single-layer boundary method [49] and tensor
reduction [50, 51]. The accuracy of the environment is then determined by an
additional parameter, χ, which corresponds to the bond dimension of a boundary
MPS. Like D, χ must also be increased to converge to the exact stationary state.
In practice, because the environment computation is expensive, we can first deter-
mine an approximate stationary state via the “simple update” algorithm where no
environment is used [52]; then D and χ are increased in subsequent time evolution
steps using the full environment information (“full update” algorithm [48]) while δt

is also decreased to reduce the Suzuki-Trotter error.

3.3 Model: Two-Dimensional Asymmetric Simple Exclusion Process
The two-dimensional ASEP, Figure 3.1 (left), takes place on a square N × N lattice,
where each site may be occupied by a particle or empty. Particles stochastically hop
into vacant nearest-neighbor lattice sites in the right (up) and left (down) directions
at rates px (py) and qx (qy) respectively. At the {left, bottom, right, top} boundaries,
particles are inserted at rates {αx, αy, δx, δy}, and removed at rates {γx, γy, βx, βy}.
Additionally, as detailed in the previous section, we utilize a current bias in both
directions, λ = (λx, λy), to probe the trajectory phase space. The tilted generator
is built from hopping operators ohopi, j = ri, j(eλi, jaia†j − niv j) and similarly defined
insertion and removal operators, where ri, j is the hopping rate from site i to j and ai,
a†i , ni, and vi are respectively annihilation, creation, particle number and vacancy
operators. Because hopping occurs only between nearest neighbor sites, the full
tilted generator, W(λ), then decomposes naturally into nearest neighbor gates. At
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λi, j = 0, ∀(i, j), the system undergoes its typical dynamics, otherwise the biasing
allows for probing of rare trajectories.

3.4 Results
We first probed for the existence of a DPT in the two-dimensional ASEP by perform-
ing mean field (MF) computations of the SCGF on an 8 × 8 lattice in two subsets
of the phase space, with results shown in Figure 3.2. In Figure 3.2(a) we show,
from top to bottom, the per site SCGF, total current, and current susceptibility at
px,y = 1 − qx,y = 1 with αx,y = βx,y = γx,y = δx,y = 1/2. and current biases sweep-
ing over λx, λy ∈ [−2.5, 2.5]. In the bottom left of these plots, we see a low-current
regime materialize, where the SCGF and current flattens, bounded by a small peak
in the susceptibility (the thin bright line between the purple and orange regions).

To further explore where this low-current phase materializes, Figure 3.2 (b) and
(c) contain subplots at various points in the rate parameter space, each showing
the per site current susceptibility as a function of λx,y ∈ [−2.5, 2.5]. (b) explores
boundary effects, sweeping boundary terms with αx,y = βx,y = 1 − γx,y = 1 − δx,y

and maintaining asymmetric interior rates px,y = 1− qx,y = 0.9 while (c) probes the
effect of bulk hopping rates, sweeping interior hopping rates while holding boundary
terms at αx,y = βx,y = γx,y = δx,y = 1/2.

Phase transitions can be marked by a peak in the current susceptibility, as seen in
Figure 3.2 (a). In Figure 3.2 (c) this becomes visible at sufficiently high biases
(≈ px > 0.8), again accompanied by a region of distinctly low current. This aligns
with the known behavior of the one-dimensional ASEP, where a DPT is observed
except when px = qx = 1/2, which corresponds to the Symmetric Simple Exclusion
Process (SSEP). Furthermore, intuition from the one-dimensional ASEP would
further predict a DPT to appear for low biases in the thermodynamic limit. For the
boundary biased results, Figure 3.2 (b), we observe the boundary rates to have little
effect, except at extreme values, where the location of the DPT becomes distorted
due to no insertion or removal at a boundary.

Selecting a line within the phase space covered in Figure 3.2 (c) at px,y = 1− qx,y =

0.9 λy = −1/2 with λx ∈ [−1/2, 1/2], we carried out PEPS calculations on N × N

lattices with N ∈ {6, 10, 20, 30, 50} to probe the DPT’s finite size behavior. Here,
we used D ∈ [2, 8] and χ = 80 while systematically reducing δt ∈ [10−1, 10−4].
Figure 3.3 displays key results from these calculations in support of the existence of
a DPT.
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There, the left plot shows the SCGF for the λx sweep, with the flattening of the curve
for large systems on the left side of the plot indicating a low-current region. The
horizontal current Jx and current susceptibility χx , shown in the center and right
plots, are computed via central difference numerical differentiation with respect to
λx; while they can also be computed via contractions with the left and right PEPS
eigenstates ofW(λ), for the largest systems this can be numerically challenging and
requires well-converged left and right states.

In all plots, we see two distinct regions, indicative of a DPT. Moving from right to
left, we see the emergence of a low-current phase at ≈ λx = 1/4, where both Jx

and Jy (not shown) are small. The transition becomes sharper as the size of the
lattice increases, as seen by the increasingly large peaks in current susceptibility,
substantiating the existence of a second-order DPT between the jammed and flowing
phases. Furthermore, the most likely configurations in the flowing phase are those
where particles are evenly distributed throughout the lattice, while in the low-current
phase, those most likely are entirely filled, jamming flow in the bulk.

To gauge the accuracy of these results, Figure 3.4 displays the convergence of the
SCGF for calculations with N = 20. Here, the SCGF is computed from the right
and left eigenstates, ψR and ψL , in the jammed (top) and flowing (bottom) phases
with λ = −0.5 and λ = 0.5 respectively. Shaded regions correspond to D, starting
with mean field results on the left and increasing to the right, where within each
shaded region, the accuracy is improved by increasing χ. Each computation was
performed independently, doing the “full update” procedure from a random initial
state, decreasing the time step sizes from δt = 0.5 to δt = 0.01. In addition to
the convergence with bond dimension, the difference between the estimate of the
eigenvalue from the left and right eigenvectors serves as an additional check on
accuracy.

We find that with very modest computational resources (D = 3, χ = 100), the SCGF
easily converges to approximately three significant digits, significantly greater than
MF results. It is also clear that unlike in quantum systems, where the variational
principle prevents the ground state energy from going below the exact ground state
energy, our computed SCGF can go above and below the exact value. Also notable
is that calculations in the jammed regime converge to more accurate results at a
low bond dimension than those in the flowing region. Without an initial set of
sufficiently large time steps, we found that calculations in the jammed phase tend to
converge to local minima.
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Figure 3.4: The convergence of PEPS calculations, showing the SCGF, computed
as the left and right eigenvalue of the tilted generator, ψL and ψR, for a 20 lattice
as a function of the bond dimension D (shaded) and the boundary bond dimension
χ (labeled as (D, χ). The top (bottom) plot corresponds to results in the jammed
(flowing) phase at λ = −0.5 (λ = 0.5). The insets provide magnified results to
illustrate the extent of convergence.
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Figure 3.5: Scaling plot of the transition between the flowing and jammed phases,
showing the collapse of the per site horizontal current as a function of the reduced
horizontal bias, λ∗x . The inset plot shows a finite size extrapolation to estimate of
the critical point limN→∞ λc = 0.30, with λc(N) by fitting a quadratic function to
the three largest points in the susceptibility peaks for each N in Figure 3.3

Last, we can perform a finite size scaling analysis of the observed transition to extract
the critical exponents in the thermodynamic limit. Because the system sizes studied
are limited to a linear dimension of N ≤ 50, the results retain some finite-size
error, though we expect that future work performing PEPS calculations on larger
lattices, possible because PEPS calculation costs grow linearly with system size, or
adapting infinite PEPS algorithms [31] could further refine these estimates. The
scaling relation for the per site horizontal current is jx(λ

∗
x, N) = Nd f (λ∗x Nc), where

d and c are critical exponents, f is the scaling function, and λ∗x is analogous to a
reduced temperature, i.e. λ∗x = (λ − λc)/λc. The inset of Figure 3.5 shows a linear
extrapolation of the location of the susceptibility peaks in Figure 3.3 to determine the
critical point to be limN→∞ λc = 0.30. The critical parameters are then computed
via numerical data collapse [53], giving d = −1.9 ± 0.1 and c = 0.84 ± 0.1 with
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Figure 3.5 showing the resulting scaling plot, which displays good data collapse.

3.5 Conclusion
We have provided the first insights into the dynamical phase behavior of the fully
two-dimensional ASEP, finding evidence for a dynamical phase transition between
a flowing and a jammed phase, as detected by a sharp change in the current in the
horizontal and vertical directions. We have also demonstrated how two-dimensional
tensor networks, in particular the PEPS ansatz, can be used to compute large de-
viation functions in classical nonequilibrium systems, characterize nonequilibrium
phases, and obtain critical exponents. This is a natural extension of the success
of one-dimensional tensor network methods in this field and provides significant
promise for the future use of TNs in coordination with LDT. Because numerical
methods based on PEPS are relatively young, continued progress is likely, and
we expect such higher-dimensional TNs to become standard tools in the study of
nonequilibrium classical statistical mechanics.
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C h a p t e r 4

DMRG-STYLE OPTIMIZATION OF TWO-DIMENSIONAL
TENSOR NETWORKS WITH LONG-RANGE INTERACTIONS

The success of the density matrix renormalization group (DMRG), un-
derpinned by the matrix product state (MPS) ansatz, triggered rapid
growth in the development and application of tensor networks for the
simulation of both quantum and classical systems. In two dimen-
sions, the projected entangled pair state (PEPS), a generalization of
the MPS, has proven widely effective in various contexts. A signif-
icant impediment to continued progress, however, is the difficulty of
creating compact representations of operators with long-range interac-
tions. While a handful of proposals have emerged, it remains unclear
how well these operator representations work in a practical computa-
tion. Here, we present three representations of long-range operators for
two-dimensional tensor networks, namely comb operators, comb-like
projected entangled pair operators (PEPOs), and sums ofmatrix product
operators (MPOs). These operator representations are tailored for use
in DMRG-style optimizations. We evaluate their efficiency and stability
in practice by computing the ground state of a coulombic Heisenberg
model. We find that while the comb operators and sums of MPOs are
competitive with one another and provide viable operator representa-
tions, the comb-like PEPO, though most efficient in representation, is
the least stable and efficient in practice.
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4.1 Introduction
During the past two decades, tensors networks (TNs) have been proven to be power-
ful representations of complex states in both quantum [1–3] and classical systems [4–
7], with recent work extending their utility into machine learning algorithms [8–
12] and quantum computer simulation [13, 14] [15]. In one dimension, TN al-
gorithm development has converged upon several widely successful routines such
as the density matrix renormalization group (DMRG) algorithm for determining
quantum ground states [1] and extensions to time evolution [16, 17] and thermal
states [18][19], which rely heavily upon the one-dimensional tensor network state
and operator forms, the matrix product state (MPS) and matrix product operator
(MPO). Properties of these one-dimensional TNs such as canonical forms, compact
long-range operator representations, and the ability to contract the norm and energy
exactly underpin the success of these methods.

The utility of one-dimensional TNs is limited by the amount of entanglement be-
tween the two halves of a bipartitioned state. To rigorously address the need for
a TN class for two-dimensional systems, the projected entangled pair state (PEPS)
was introduced and significant progress has resulted in algorithms that have enabled
accurate simulation of complex quantum behaviors [2, 20]. For PEPS methods to
become as robust and widely used as their one-dimensional counterparts, several
algorithmic challenges are being addressed. For example, while the cost of con-
tracting the energy or norm of a PEPS scales exponentially with the lattice size, the
boundary contraction method has proved widely accurate for performing efficient
approximate contractions. Unfortunately, other issues, such as the canonicalization
of PEPS and compact long-range operator representations, have been more chal-
lenging and remain open. A significant amount of effort has been put into the former
of these, with several proposals for creating canonical PEPS representations approx-
imately having been introduced and used in the past few years [21–23], representing
meaningful progress in this area.

In this work, we focus on improving ground state optimization approaches for Hamil-
tonians with long-range interactions in two dimensions. Since their introduction,
nearly all PEPS calculations have been for Hamiltonians with local terms, primarily
limited to nearest-neighbor interactions. Simulation of many physically important
systems, however, requires the inclusion of long-range interactions, particularly po-
tentials that decay uniformly as a function of the linear distance between sites. Of
particular importance in quantum chemistry is the coloumbic interaction between
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electrons. For classical systems, as TN methods are extended to the continuum
limit [24–27], many relevant models require particles to interact via long-range
terms such as the Lennard-Jones or Weeks-Chandler-Anderson (WCA) potentials.

In one-dimensional systems, a variety of approaches are used depending on the
type of interaction considered. These include using a sum of operators [28], linear
combinations of exponential interactions [1], and algorithms to accurately compress
MPOs for arbitrary interactions [29]. When moving to two dimensions, two com-
plications arise. First, creating compact representations of long-range operators in
two dimensions is significantly more complicated than doing so in one dimension.
Second, assuming we construct an accurate representation for a given long-range
Hamiltonian, it is not clear that it will be useful for performing a DMRG-style
ground state search.

In recent years, two preliminary proposals have arisen for overcoming these is-
sues [30, 31]. In the first approach, the long-range Hamiltonian is approximated
by a Hamiltonian with nearest-neighbor terms that act on an expanded system with
auxiliary sites inserted between all physical sites and traced out in the end [31].
While this is the only work up until now that has been used for ground state opti-
mizations, the size of possible systems is limited because of the additional sites. The
second technique utilizes a series of long-range comb-shaped operator TNs that are
constructed using both the sum of exponential and MPO compression approxima-
tions mentioned previously [30]. These operators are designed such that no operator
bonds are compressed to improve accuracy and stability during optimizations. With
the preliminary nature of both of these methods, there is significant need for an
analysis of the accuracy and efficiency of numerical optimizations using various
operator representations.

In this work, we build upon the latter of these approaches and introduce three long-
range operator representations, each tailored for a DMRG-style PEPS algorithm [22,
32], and evaluate their effectiveness in ground state calculations. These include
two operator representations inspired by previously used comb operators [30], a
rerouted comb and a comb-like PEPO, and a naive representation as a sum of
MPOs. To contextualize each of these representations, the following section gives an
overview ofDMRG-inspired PEPS optimization algorithms [22, 32]. Afterward, we
introduce each operator representation in Section 4.3 and present the computational
scaling of each in Section 4.4. We then evaluate each of these representations by
computing the ground state energy of a long-range Heisenberg model with all-to-
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all coulombic interactions. In this application, we find that the PEPO performs
significantly worse than the other approaches, which provide comparable cost and
accuracy. It becomes clear that the optimal operator representation is a non-trivial
function of the system size, bond dimension, and Hamiltonian. We conclude in
5.1, discussing possible improvements and the outlook for the use of these operator
representations for more complex quantum and classical TN calculations.

4.2 Two-Dimensional DMRG Optimization
Because of the indisputable success of the DMRG algorithm, initially introduced
without the TN formalism as a renormalization group method for one-dimensional
lattice systems [33], it is natural to use a similar approach for higher-dimensional
TNs. The fundamental element of the DMRG algorithm is to iteratively optimize
one or two MPS tensors at a time using a local eigenproblem where all system
degrees of freedom are projected into a renormalized local basis. The algorithm
then proceeds by sweeping through all sites, updating one or two at a time, until the
system’s energy converges [1]

While this is conceptually simple to extend to higher dimensions, important prop-
erties of the underlying MPS ansatz are not obvious in higher dimensions, which
prevents DMRG’s immediate success there. Thus most calculations have been
limited to nearest-neighbor Hamiltonian terms optimized by the imaginary time
evolution via block decimation (TEBD) algorithm [34, 35]. Recent work, however,
has shown that not only have two-dimensional PEPS algorithms evolved such that
DMRG-style calculations are possible for some finite and infinite systems, but that
they also provide improved accuracy over TEBD optimizations [22, 32].

To match the rigor and stability of the DMRG framework in one dimension, a two-
dimensional implementation would first need accurate representations of long-range
Hamiltonians in a local basis for the iterative eigenproblems. Ideally, these should be
built iteratively such that the full algorithmic cost is linear with the number of lattice
sites. Figure 4.1(b) illustrates how a long-range Hamiltonian (blue) sandwiched
between a bra and a ket PEPS (pink) can be approximately contracted around the
optimization site (red). While we represent the Hamiltonian here abstractly to
emphasize the generality of this local construction, the Hamiltonian is normally
decomposed into tensors that act on a single site with auxiliary bonds that mimic
the structure of the PEPS. Second, ideally, an orthonormal basis representation
would be provided by a canonical form of the TN [21–23]. This is illustrated
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= #
Figure 4.1: A diagrammatic representation of the fundamentals for a DMRG-style
optimization for a two-dimensional PEPS. The red site indicates the current opti-
mization site. In (a) the norm environment is approximately contracted into a rank 8
tensor around the optimization site and, if the PEPS is in a canonical form, the norm
environment is shown to trace to an identity. (b) illustrates how a local Hamiltonian
can be contracted using an abstract representation of the Hamiltonian as a dense
tensor instead of the specific representations discussed later. In (c) and (d) we show
how the local optimization can be cast as an eigenproblem. Without canonicalization
this is a generalized eigenproblem (c) versus the standard eigenproblem in (d).
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in Figure 4.1(a), where we show the contraction of a PEPS norm (pink) around
the optimization sites (red). While with no conditioning of the PEPS, this norm
environment is some tensor, shown in the middle of the figure, if the PEPS has
been canonicalized, the environment tensor becomes an identity, as shown on the
right. Without canonicalization, the tensor of interest can be optimized using a
generalized eigenproblem, expressed as a TN diagram in Figure 4.1(c), while a
tensor in a canonicalized PEPS is optimized via a standard local eigenproblem.
While one can get around the latter requirement by using a generalized eigensolver
with increased instability and cost, the former requirement is unavoidable, explaining
current limitations to nearest-neighbor Hamiltonians.

Regardless of the Hamiltonian representation or use of a canonical form, computing
the local Hamiltonian or norm is usually themost expensive part of a PEPS optimiza-
tion, involving contracting all operator tensors with all PEPS tensors except those
being optimized. While the structure of anMPS allows this to be determined exactly
with a cost that scales linearly with the number of lattice sites, the corresponding
contraction for a PEPS scales exponentially with system size and is prohibitive for
all but the smallest lattices. For this reason, the approximate boundary contraction
method has become nearly universally used for computing PEPS norms, expectation
values, and local Hamiltonians for short and long-ranged operators [35, 36].

This approach, sketched using a bird’s eye view of the TN in Figure 4.2, exploits the
similarities between contracting a boundary PEPS column with its neighboring col-
umn and a contraction between an MPS and MPO. In both cases, as more columns
orMPOs are contracted, the number and size of uncontracted bonds remain constant
while the auxiliary bond of the MPS grows quickly, shown in the left two diagrams
in Figure 4.2(b). For this reason, after each column or MPO is contracted into
the boundary, the MPS is canonicalized and the auxiliary bonds are subsequently
truncated, shown from the second to the third diagram of Figure 4.2(b), to a constant
χ, called the boundary bond dimension. The approximate Hamiltonian is created
by repeatedly doing boundary MPS contractions and truncations from both sides
(including operator terms where necessary) until a left and right environment can be
contracted exactly with the PEPS tensors in the column that is being optimized, the
TN for which is shown in Figure 4.2(c). While the nearest-neighbor TEBD algo-
rithm avoids needing operator tensors in the boundary contraction, calculations with
long-range operators inevitably must include these and the operator representation
significantly affects the accuracy of the boundary contraction and consequently both
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Figure 4.2: A diagrammatic description of the boundary contraction method. (a)
shows how we seek to combine the left two columns to create a left environment.
In (b) this is done by first contracting the two columns to create an MPS with an
enlarged auxiliary bond. This bond is then truncated using canonicalization via QR
decompositions and truncation via singular value decompositions. By doing this
for the left and right boundaries (iteratively for systems with more columns) we get
what looks like an MPO sandwiched between two MPSs, which can be contracted
exactly to get the local Hamiltonian or norm.
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the local eigenproblems and the overall DMRG optimization.

A generic DMRG-style algorithm for a ground state PEPS calculation can then
proceed by repeating the following until the energy converges:

1. Compute and store the right boundary MPSs for the norm and Hamiltonian
environments, starting from column Ny and iteratively building the right
boundary MPSs to column 2.

2. Loop through all of the columns in the lattice from left to right, doing the
following for each column:

a) Compute and store the top environments for the Hamiltonian and norm
environments, starting from the top row Nx and iteratively building
towards the bottom.

b) Loop through each row in the column doing the following:

i. Construct the local norm and Hamiltonian using the left, right, top,
and bottom environment tensors.

ii. Solve the local eigenproblem and update the optimization site as the
eigenstate that corresponds to the largest eigenvalue.

iii. Update the bottom environment tensors

c) Update and store the left boundary MPSs for the current column for the
norm and Hamiltonian.

3. All of the left boundary MPSs have now been constructed and we can perform
a backward sweep by repeating an analog of step 2, moving from right to left
through the columns of the PEPS.

4.3 Long-Range Operator Representations
Knowing that the computational cost and stability of a DMRG-style PEPS optimiza-
tion is highly dependent on the accuracy of the local Hamiltonian, the challenge is
to now design a representation of long-range Hamiltonians that provides a balance
between contraction cost and accuracy. In this section, we will introduce three
representations for long-range HamiltoniansH of the form

H =
∑
i< j

Vi j
(
AiB j + CiD j + EiFj + · · ·

)
(4.1)
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Figure 4.3: The sum of MPOs long-range operator representation, showing how
the energy is given by a sum over PEPS contractions with two-site MPOs acting
between all pairs of lattice sites.

where i and j loop over the sites in the PEPS, {Ai,Bi, Ci, etc.} are operators acting
on a given site, and Vi j is the interaction between sites that decays uniformly as a
function of Euclidean distance between the sites, i.e.

Vi j = f
(√(

xi − x j
)2
+

(
yi − y j

)2
)
. (4.2)

Our guiding principle here is to tailor the operator representations towards use
with a DMRG-style optimization using a boundary contraction method. Because
boundary contractions require truncation of PEPO bonds we choose not to include
standard PEPO representations, which can be used to exactly represent long-range
interactions [37] or constructed as compressed PEPOs using recently proposed
approximate methods [38].

Sum of MPOs
We begin with the simplest representation, which we call a sum of MPOs and is an
extension of one-dimensional long-range operator representations that involve sums
of operators [28]. Each term in the Hamiltonian can be represented as an MPO
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acting on two sites,

Vi j
(
AiB j + CiD j + EiFj + · · ·

)
= Vi j

(
Ai Ci Ei · · ·

) ©«
B j

D j

Fj
...

ª®®®®®¬
(4.3)

whereW[i]
a = Vi j

(
Ai Ci Ei · · ·

)
andW[ j]

a =
(
B j D j Fj · · ·

)†
are rank-3

MPO tensors, each containing operators that act only on the physical indices of
their respective sites and contain all interacting terms between two sites. Using this
approach, theHamiltonian is representedwith 1

2
(
N2 − N

)
MPOpairs and the energy

of the state can be computed by contracting the bra and ket PEPS independently with
each MPO pair, as illustrated in Figure 4.3, where the MPO tensors are highlighted
to distinguish them from the PEPS tensors.

A peculiar aspect of the diagrams in Figure 4.3 is the way that we have rerouted
the auxiliary bond of the MPO through the center column. This is done because
experience with approximate boundary contraction with operators indicates that
truncation of operator bonds can severely impact the local Hamiltonian’s accuracy
and the optimization’s stability and should thus be avoided when possible [37].
Instead of inserting identity tensors to connect MPO pairs within a column, we
choose to always have theMPO bonds rerouted through the column being optimized,
avoiding MPO bond truncation.

Using this representation of the long-range operators in practice involves contracting
representations of each Hamiltonian term in the local basis, i.e. contracting O

(
N2)

separate environments, one for each pairing of interacting sites and one for the
norm. To minimize computational cost, we seek to reuse as many intermediates
as possible, allowing us to lower the prefactor for the cost of the DMRG algorithm
while not changing the formal scaling with system size. Additionally, while not
done here, the contraction of these can be easily parallelized such that, with enough
resources, the time for contracting all local environments can be equivalent to the
time required to contract a single environment. It should also be noted that unlike
in infinite PEPS (iPEPS) algorithms, where completed operator environments can
be summed, doing likewise here would require summing MPSs and result in further
auxiliary bond increases and requisite truncations.
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Rerouted Comb Operator
While the sum of MPOs approach provides a conceptually simple representation
that is easily parallelized, the quadratic growth of the number of local Hamiltonian
contractions with N is not ideal. We can build upon the recently introduced idea of
comb operators [30] to create a similar approach tailored for a DMRG-style opti-
mization. We will first introduce the comb representation of long-range operators,
then discuss how they can be modified for a DMRG ground state calculation.

As a precursor to comb operators, an important result from one-dimensional MPO
construction is that an exponentially decaying long-range interaction between all
sites can have a compact representation as an MPO:

Hexp =
∑
i< j

e−α( j−i)AiB j

=
∑
{ai}

W
[1]
a1 W

[2]
a1,a2 · · ·W

[N−1]
aN−2,aN−1W

[N]
aN−1,

(4.4)

whereW[i] are the MPO tensors:

W
[1]
a1 =

(
0 A1 I1

)
W
[i]
a1 =

©«
I1 0 0

e−αB1 e−αI1 0
0 A1 I1

ª®®®¬
W
[N]
a1 =

©«
I1

e−αB1

0

ª®®®¬ .
(4.5)

While this compact representation is not generic for an arbitrary uniform decaying
long-range f ( j − i), this can be approximated as a sum of exponentials

f ( j − 1) =
K∑

k=1
γk e−αk ( j−i) (4.6)

and the Hamiltonian can then be represented by an MPO with auxiliary bond
dimension DMPO = K + 2.

Ideally, an analogous representation could be used for long-range interactions in a
two-dimensional lattice. While most physical potentials are dependent on Euclidean
distance, extending the exponential MPO representation for use in a PEPO gives
potentials as functions of Manhattan distance f

(��xi − x j
�� + ��yi − y j

��) . Instead of a
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sum, a product of Gaussian interactions in the horizontal and vertical directions can
give a potential dependent on radial distance, i.e.

f
(��xi − x j

�� , ��yi − y j
��) = fx

(��xi − x j
��) fy

(��yi − y j
��)

= e−α(xi−xj)
2
e−α(yi−yj)

2

= e−α
(
(xi−xj)

2
+(yi−yj)

2
)

= f
(
r2

)
,

(4.7)

where r is the Euclidean distance.

The Gaussian potential, however, does not have a compact exact MPO form like
the decaying exponential. Instead, it can be represented approximately using an
MPO compression algorithm that can often find compact representations of smooth
decaying interactions [29]. Here, the Hamiltonian MPO tensorsW[i] take the form

W[i] =
©«
I 0 0

v
[i]
a A X [i]a,a′I 0
0 w

[i]
a′B 0

ª®®®¬ (4.8)

where v[i]a , X [i]a,a′, and w
[i]
a′ are respectively a column vector, a matrix, and a row vector

of coefficients, for each site i, that are generated via singular value decompositions
as detailed in [29]. To illustrate the strength of this compressed representation
for the Gaussian potential, Figure 4.4 (a) shows the bond dimension profile of the
compressed MPO representation for a sweep of values of α, demonstrating that
the maximum bond dimension saturates with system size providing a maximum
required DMPO of O (10).

With this, the Gaussian potential can be represented as a product of vertical and
horizontal TN operators

Hvert. =

Ny∑
i=1

Ny∑
j=i+1

e−α( j−i)2 (
IiB j + BiIj +AiB j

)
Hhorz. =

Nx∑
i=1

Nx∑
j=i+1

(
AiIj +AiB j

)
,

(4.9)

where the vertical TN operator is an MPO and the horizontal is a generalized
MPO (gMPO), which combine to form a comb operator, explicitly derived in [30]
The Gaussian potential is represented by Nx combs and other uniformly decaying
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Figure 4.4: (a) The maximum bond dimension, shown as a function of bond position
in the MPO, required to represent a long-range Gaussian potential. Each line
corresponds to a different α, denoted by the line color. The accuracy of the MPO
compressionwas determined by retaining singular values greater than 10−10. (b) The
absolute error in the coulombic interactions

〈���Vi j − r−1
i j

���〉 as a function of the number
of summed Gaussians K , where the average is taken over all possible 1

2 (N − 1) N
interactions. The line color indicates the size of the system with Nx, Ny ∈ [2, 64].
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Figure 4.5: The original formulation of the comb operator representation for long-
range two-dimensional Hamiltonians, showing how the energy is given by a sumover
K Gaussian potentials, each given by a sum of Nx comb operators. The thickness
of the operator bonds is proportional to the required bond dimension.
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Figure 4.6: The rerouted comb operator representation for long-range two-
dimensional Hamiltonians where the K Gaussian potentials are represented by
combs whose backbones from Figure 4.5 have been rerouted to the optimization
column. The thickness of the operator bonds is proportional to the required bond
dimension.
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potentials can then be approximated by sums of these

Vi j ≈

K∑
k=1

γk e−αk
(
(xi−xj)

2
+(yi−yj)

2
)
, (4.10)

where γk and αk may be determined via robust algorithms that allow arbitrary
accuracy by varying K [39–41]. In Figure 4.4(b) we show how the accuracy of
this approximation for a coulombic potential changes as K increases. For a 64 × 64
lattice, the smallest coulombic interaction coefficient is O

(
10−2) , meaning that

K = 10 gives, on average, two digits of accuracy for these smallest terms, and
increasing to K = 20 gives 3-4 digits of accuracy. Thus the energy of a long-ranged
Hamiltonian can be computed via the summation of combs shown in Figure 4.5.

While a linearly scaling algorithm for computing the energy of a PEPS with comb
operators was introduced alongside the operators themselves, the extension of this
to a ground state calculation is not trivial. Though this is theoretically possible via
myriad optimization algorithms, such as automatic differentiation [42] or conjugate
gradient methods [43], their use in TN algorithms is not as well understood as the
DMRG approach. Unfortunately, because of the structure of the comb operators,
their direct use in a DMRG-style optimization requires the undesirable truncation
of operator bonds and non-ideal computational scaling with system size, O

(
N2

x Ny

)
.

Focusing on the former difficulty, here we choose to create rerouted comb operators,
where the backbone of the comb can be moved from column to column as the
optimization proceeds. The structure of this type of operator is shown in Figure 4.6,
where the comb backbones are rerouted so the optimization can take place on the
center column with no operator bond truncation. In this figure, the thickness of the
operator bonds corresponds to the bond dimension; all operator bonds are of size
O (DMPO), where DMPO is the size of the approximate MPO representation of the
Gaussian potential. Following the representation of TN operators as signals and
rules introduced in [37], Appendix 4.A explicitly gives all of the tensors. With this
structure, a DMRG-style calculation can be performed, optionally parallelized over
Nx separate combs and K Gaussians and written to reuse boundary environments
when possible, without truncating the operator bonds.

Comb-Like PEPO
While the previous section proposed a representation that overcomes the trunca-
tion of operator bonds, it neglected to circumvent the need for multiple combs.
Alternatively, we can create a single operator that contains all interactions for the
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Figure 4.7: A TN diagram giving the comb PEPO representation of the Gaussian
potentials used to approximate long-range Hamiltonian terms. The line thickness
corresponds to the bond dimension of the PEPO bonds and the backbone (thickest
bonds) can be transferred to any column in the lattice to allow for minimal truncation
of operator bonds.

Gaussian potential, avoiding the associated incorrect scaling required when using
multiple combs, but requiring that operator bonds are truncated. Because boundary
contractions scale poorly with the bond dimension of the PEPO, O

(
D7

PEPO

)
and

truncating operator bonds leads to inaccuracy and instability, using PEPOs with
mostly uniform bonds, constructed via compression algorithms for arbitrary long-
range interactions, is currently challenging [38]. As an alternative, we propose
using a comb-like PEPO, shown in Figure 4.7, where PEPO tensors are connected
to nearest-neighbors like in a standard PEPO, but the vertical bonds are of dimension
DPEPO = 2 in all columns except where the optimization is occurring. The horizon-
tal bonds have sizes O(DMPO) and the vertical bonds have sizes O(D2

MPO), where
DMPO is again the size of the approximate MPO representation of the Gaussian
potential. Appendix 4.B explicitly gives the tensor structure for these operators.

This long-range operator representation allows us to now implement a DMRG-style
ground state calculation with the correct linear scaling with system size. It also
minimizes the amount of truncation done to operator tensors, so we would expect
that comb-like PEPOs provide better accuracy and stability than a standard PEPO
with uniformly distributed bond dimensions.

4.4 Theoretical Comparison of Long-Range Operator Representations
Having now introduced three TN representations of operators with uniformly decay-
ing long-range terms, our attention turns toward determining which of these works
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Table 4.1: A summary of the theoretical computational cost for a DMRG calcula-
tion with each long-range operator representation, including the cost of boundary
contractions and compressions, top and bottom environment contractions, and the
local eigenproblem update (including the local environment contraction). We also
indicate which representation requires truncation of operator bonds.

Sum of MPOs Rerouted Combs Comb-Like PEPO
Boundary

Contractions N3
x , N

3
y , χ

3,D5 N2
x , Ny, χ

3,D5,D2
op,K Nx, Ny, χ

3,D5,D2
op,K

Top/Bottom
Environment
Contractions

N3
x , N

3
y , χ

3,D6 N2
x , Ny, χ

3,D6,D4
op,K Nx, Ny, χ

3,D6,D6
op,K

Local
Update N3

x , N
3
y , χ

3,D6 N2
x , Ny, χ

3,D6,D4
op,K Nx, Ny, χ

3,D6,D6
op,K

Requires
Operator
Truncation

No No Yes

best in practice. While Section 4.5 provides results from numerical experiments
probing this, we first provide an overview of the theoretical computational cost
of a DMRG calculation with each of these representations and discuss some key
differences between the three.

The computational costs are summarized in Table 4.1, where we show how the three
main parts of the DMRG-style ground state algorithm scale with the system size
(Nx , Ny), auxiliary PEPS bond dimension (D), boundary MPS bond dimension (χ),
operator bond dimension (Dop), and the number of Gaussians used (K). We separate
the scaling of each of these with commas to emphasize that while each constituent
step within these three processes scales differently we only show the most expensive
cost with respect to each parameter (i.e. if the local update is done via an implicit
iterative eigensolver using a sum ofMPOs representation, some contractions require
O

(
N3

x N3
y χ

3D5
)
operations and others requires O

(
N3

x N3
y χ

2D6
)
, giving the scaling

costs shown in Table 4.1).

In comparing the costs of the three methods, we first note that for all steps, the three
representations have the same cost scaling with χ and D. While we have asserted
up to this point that, in practice, the boundary contraction is the most expensive step
of a PEPS optimization, Table 4.1 naively would indicate that the other two steps
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are more expensive. This is not accurate because while the boundary contraction
has constituent steps that scale with O

(
χ3D5) , both the top/bottom environment

contractions and local update have one step that scales as O
(
χ2D6) and another

that scales as O
(
χ3D5) . Because the general rule of thumb states that χ scales

with O
(
D2) , the O (

χ3D5) step dominates, putting the scaling of all three steps on
equal footing. In practice, we continue to find that, for practically sized systems, the
boundary contraction is the most expensive step.

The comparison between the three representations then hinges on two things. First,
because we expect Dop and K to saturate with system size, we would expect the
comb-like PEPO to become more efficient than either other methods for sufficiently
large systems. Since PEPS calculations are currently limited to Nx, Ny = O(10),
it is unclear whether the additional costs incurred by including operator bonds and
summing over Gaussians provide a practical advantage over summing over MPOs.
Second, a further complication is incurred when we consider the scaling of χ. As
mentioned, a commonly used guide indicates that χ scales quadratically with the
PEPS auxiliary bond dimension and is constant with N . This rule of thumb, however,
comes from experience contracting environments without operator terms. Wewould
expect that χ scales best for the sum of MPOs, because terms are treated separately,
and worst for the comb-like PEPO, because of the operator bond truncation, but a
critical question is then how χ must scale with D and N for an accurate and stable
calculation.

4.5 Results
Because we are unaware of previous results for DMRG-style ground state calcula-
tions on a finite PEPS without canonicalization (some calculations have been done
for infinite systems without canonicalization [32] and for finite systems with canon-
icalization [22]) we begin by benchmarking this algorithm, using the sum of MPOs
operator representation, for a nearest-neighbor Heisenberg model

H =
∑
〈i, j〉

®Si · ®Sj (4.11)
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Figure 4.8: Convergence of the energy for a DMRG-style ground state calculation
for the nearest-neighbor Heisenberg model on a 10 × 10 lattice with D ∈ [2, 3],
where D is indicated by the line color. Solid lines show how the energy converges
during the DMRG-style optimizations while dashed lines show converged reference
energies computed using the standard full update procedure. The error is computed
using the D = 6 full update results as a reference.

on a square lattice, where the sum is over all nearest-neighbor lattice sites and where
®Si =

(
σx σy σz

)
, with the spin operators defined as

σx =
1
2

(
0 1
1 0

)
,

σy =
1
2i

(
0 1
−1 0

)
,

σz =
1
2

(
1 0
0 −1

)
.

(4.12)

Figure 4.8 shows the convergence of the energy for a system of size Nx = Ny = 10
with χ = 128 for D ∈ [2, 3] (solid lines) compared against converged energies from
the standard full update procedure (dashed lines), taken from [34]. The reference
values are converged with respect to the imaginary time step size and χ, and the
relative error is computed using the D = 6 full update energy as a reference. While
we observe that the energy converges smoothly from a random initial guess, we
surprisingly find that the DMRG-style optimization provides a lower energy than
fully converged TEBD results. This has also been previously observed in infinite
PEPS calculations and it is postulated that this might be attributable to the way local
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tensors can affect Hamiltonian terms at distant sites [32].

We can now move to a Hamiltonian with long-range interactions. We choose to
study the coulombic Heisenberg model, whose Hamiltonian is given by

H =

N∑
i=1

N∑
j=i+1

1
ri j

®Si · ®Sj (4.13)

where ri j =

√
(xi − x j)

2 + (yi − y j)
2. This model has been previously used as a

test-bed for long-range PEPS algorithms [44], with the long-range hopping terms
making it a particularly challenging system.

In Figure 4.9(a) we show the convergence of the energy using a DMRG-style opti-
mization for each of the proposed Hamiltonian representations. These calculations
are done on a 6 × 6 lattice with D ∈ [2, 3] and χ = 181; for the rerouted combs and
comb PEPO calculations, we use K = 20 Gaussians. As would be expected, for a
given bond dimension, the energies converge mostly smoothly and at roughly the
same convergence rate for all three Hamiltonian representations.

To begin a comparison of the computational efficiencies, Figure 4.9(b) shows the
same curves as a function of the computational time, with each optimization run on
eight processors with parallelization done only at the level of tensor operations. We
emphasize that this means these are not parallelized over sums of MPOs, individual
combs, or Gaussians, which would provide decreased computational times for all
methods. We find that, when the same χ is used for all approaches, the calculation
using the sum of MPOs representation is fastest. This indicates that, for small
systems, the cost of summing over Gaussians and including many operator tensors
overwhelms the cost associated with summing over all site pairs. This ordering
would be expected to change as we study larger systems. Surprisingly, by comparing
the ordering of the D = 2 and D = 3 curves we also find that for modest bond
dimensions the increased size of the comb PEPO tensors makes it the least efficient
representation in practice.

From these initial results alone, it is clear that the most computationally efficient
Hamiltonian representation is a complex function of the system size and bond
dimension. An additional layer of complexity, however, emerges when we continue
to perform additional optimization sweeps for the D = 3 calculations, as shown in
Figure 4.9(c). After approximately five sweeps, the combPEPOcalculation becomes
unstable. This instability is attributable to the approximate nature of the local
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Figure 4.9: An analysis of the convergence of the DMRG-style optimization using
each of the three operator representations for a 6 × 6 lattice with χ = 181 and
K = 20. The color corresponds to the operator representation and the line style
denotes the bond dimension D ∈ [2, 3]. (a) shows the convergence in energy for
each of the operator representations over the first five lattice sweeps while (b) shows
this same result as a function of wall time. (c) shows instability in the convergence
induced by inaccurate local environments for insufficiently large χ.
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Hamiltonian and norm. While this can be circumvented by increasing the boundary
bond dimension further, the curves from the three optimizations indicate that the
threshold χ for a stable optimization is dependent on operator representation. Here,
for example, with fixed χ, the comb PEPO calculation fails after about five sweeps,
but the convergence of the sum of MPOs calculation is monotonically converging
while the rerouted combs calculation exhibits small fluctuations. This introduces
deeper complexity into predicting the most efficient Hamiltonian representation,
requiring us to consider system size, bond dimension, and the required boundary
bond dimension for stability.

Because minimizing this instability would enable more efficient calculations, in
Figure 4.10 we focus for a moment on understanding its nature and attempting to
avoid it, studying how various properties of the local optimization problem behave as
the boundary bond dimension increases. To set up these calculations, we performed
100 sweeps of a DMRG-style calculation on a 6 × 6 PEPS with D = 2, K = 20,
χ = 181, using rerouted combs to converge to E = −14.76 (shown for reference
by the grey dashed line in all three plots). We then repeatedly performed boundary
contractions to compute the local Hamiltonian and norm at increasing values of
χ ∈ [1, 100], and, to provide a reference for computing relative errors, performed
an exact contraction (i.e. χ = ∞).

In Figure 4.10(a) we show how the locally optimized energy (solid lines), diagonal
local Hamiltonian terms (dashed lines), and off-diagonal local Hamiltonian terms
(dotted lines) converge as a function of χ. As a rule of thumb, when the energy dips
below the gray line, the optimization is considered to be continuing to converge and
the corresponding χ indicates what is needed for a stable calculation. Immediately
obvious is the stark difference between the three representations; the sum of MPOs,
rerouted combs, and comb PEPOs respectively require χ ≈ 30, χ ≈ 100, and
χ � 100. Because the long-range Heisenberg model includes long-range particle
hopping (as opposed to long-range potentials that affect nearest-neighbor hopping
rates) it is considered especially challenging. To quantify the effects of this, we
compare the convergence of the diagonal and off-diagonal elements in the local
Hamiltonian, noting that long-range hopping terms involving other sites are included
in the diagonal of the local Hamiltonian. This comparison is provided in the
difference between the dashed and dotted lines of Figure 4.10(a), where we find
that off-diagonal elements converge more slowly. While it remains unclear to
what degree, this suggests that the long-range hopping in the Heisenberg model
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Figure 4.10: A characterization of the root causes of unstable optimizations and the
efficacy of proposed solutions. All plots show how the boundary bond dimension
χ affects the accuracy of the local optimization for an already converged 6 × 6
calculation with D = 2. The gray line on each plot shows the previously converged
energy and all relative errors are computed by comparing to an exact contraction
(χ = ∞). In (a), we compare the accuracy of the three operator representations
with the solid, dashed, and dotted lines respectively corresponding to the relative
error in the locally optimized energy, diagonal Hamiltonian terms, and off-diagonal
Hamiltonian terms. (b) shows how the accuracy of the local energy depends on the
number of Gaussian interactions for the rerouted comb operator representation. (c)
shows the effect of doing a local stabilization of the localized norm andHamiltonian.
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exacerbates truncation errors for representations.

As highlighted in Figure 4.4, the accuracy of either of the comb operator repre-
sentations is severely limited by the number of Gaussians (K) used to estimate the
coulombic potential. To determine the combined effects of this and finite χ on the
local optimization, we studied the convergence of the local energy with χ for four
different values of K in Figure 4.10(b). From this, while it is clear that having too
few Gaussians can severely limit the optimization’s accuracy, for sufficiently large
K , the accuracy will be remain limited by χ.

As a last consideration towards providing increased stability, in standard PEPS op-
timization algorithms, local tricks are often employed to help stabilize calculations.
For example, because the local norm environment is the density matrix, it is phys-
ically required to be positive and Hermitian, which can be enforced locally. For
a Hermitian Hamiltonian, we may also enforce Hermiticity by locally averaging
the Hamiltonian and its transpose. Figure 4.10(c) explores the effects of these lo-
cal stabilizations on the energy convergence. Surprisingly, unless χ is very small
(i.e. χ < 10), these tricks have no noticeable effect on the accuracy of the local
eigenproblem, regardless of the representation used.

With no obvious means towards further stabilizing calculations, we took a practical
approach and sought to determine how the required χ and corresponding com-
putational time scale with system size and bond dimension. To do this, we ran
DMRG-style optimizations for the coulombic Heisenberg model with system sizes
Nx = Ny ∈ [3, 4, 6, 8, 10] and D ∈ [2, 3], systematically increasing χ until the energy
optimizations remained stable for 5 sweeps (with the stability criteria requiring that
energy fluctuations are < 5%). To match the stability of standard TEBD optimiza-
tion methods, χ should be constant as a function of N and scale quadratically with
D.

Figure 4.11(a) shows how the required boundary bond dimension scales as a function
of system size for optimizations with the three operator representations. The solid
lines are for PEPS with D = 2 while the dashed lines are for D = 3. When
using a sum of MPOs, the required χ remains constant and small with system
size. This contrasts sharply against the comb PEPO calculations where we find
that χ must scale exponentially with system size! While the comb PEPOs were
constructed to minimize operator bond compression, the difficulty to conduct stable
optimizations with these PEPOs emphasizes that when using a boundary contraction
method, operator bond truncation should be avoided. The rerouted combs require
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Figure 4.11: A comparison of the computational cost and difficulty for performing
a DMRG-style optimization with each of the proposed long-range Hamiltonian
representations. In (a) we display the required boundary bond dimension for a
stable calculation as a function of the system size Nx = Nx ∈ [3, 10] for D ∈ [2, 3].
(b) provides compares the computational efficiency of each operator representation
by showing the ratio of the time required for a DMRG sweep through all sites against
the time required when using the sum of MPOs representation. The legend in (b) is
shared for plots (a) and (b). (c) compares the required χ for a stable calculation as
a function of the system size and bond dimension when using a sum of MPOs for
Heisenberg Hamiltonians with nearest-neighbor (NN) and long-range (LR) terms.
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intermediate boundary bond dimensions that grow, but relatively slowly, with lattice
size. Looking at the D = 3 results, these observations persist, except that for even
the sum of MPOs approach, the required χ must grow with system size.

Because constructing the local representation of a nearest-neighbor Hamiltonian
using a sum of MPOs is nearly identical to doing this for a long-range Hamiltonian,
we guessed that the required bond dimension for a stable calculation should scale
similarly for both of these calculations. Figure 4.11(c) shows results exploring
this and indeed finds that the long-range and nearest-neighbor calculations require
the same boundary bond dimension for stable calculations. Because we know
that accurate ground states can be computed with limited χ for nearest-neighbor
models, this indicates that the instability is due to the local optimization using the
approximate Hamiltonian. It is thus likely that in future work, by slowing down the
convergence of the DMRG procedure, we can better stabilize the optimization.

Finally, we conclude which of the operator representations is most efficient for long-
range DMRG-style optimizations using Figure 4.11(d). Here, we show the required
time to do a stable sweep through the lattice for each operator representation, as a
ratio against the same for the sum of MPOs representation. While for the D = 2
results the comb PEPO and rerouted combs provide an advantage, it is clear from
the D = 3 results that the sum of MPOs is more efficient for small systems. We also
immediately see again that using a comb PEPO is the least efficient approach because
of the operator truncation. For larger systems, the rerouted combs representation
becomes slightly faster than the sum of MPOs, meaning that either is appropriate
for use in practical calculations.

4.6 Conclusions
In this paper, we have introduced three approaches to representing long-rangeHamil-
tonians for two-dimensional DMRG-style calculations, with each of these tailored
towards use with a DMRG-style optimization. We found that while all three rep-
resentations could provide accurate ground state energies, if the local Hamiltonian
was not sufficiently accurate, as controlled by the boundary bond dimension, then
the DMRG optimization was unstable. While none of the naive approaches to-
wards stabilizing the optimization provided substantive change, we hypothesized
that slowing down the convergence rate will dampen instabilities and allow for
accurate calculations with moderate boundary bond dimensions.

Regarding which of the operator representations is most efficient for use with a
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DMRG-style optimization, we find this to be a complex function of system size,
PEPS bond dimension, and the Hamiltonian. In general, we find that using a PEPO,
even one where operator bond truncation is minimized, is inadvisable, requiring
extremely large boundary bond dimensions and becoming prohibitively expensive
quickly. For small systems with moderate bond dimensions, we find that the sum of
MPOs approach is most efficient. As the system becomes larger, the rerouted combs
approach becomes competitive with the sum of MPOs approach and it appears that
both are viable candidates for practical calculations. We expect that this work will
serve as a starting point towards carrying out calculations for more complex physical
systems where interacting particles are of central importance, including those in the
continuum limit.
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4.A Rerouted Comb Operator Construction
This appendix provides explicitly the structure of the rerouted comb operators
introduced in Section 4.3. We follow the style of [37] and introduce the operators
as rules that govern signals between tensors. Note that when considering rerouted
comb operators, there are two backbones associated with each comb operator, one
for the backbone of the natural comb, as seen in Figure4.5, and another for the
backbone of the rerouted comb, as seen in Figure4.6. In the rules given here,
we refer to the former as the backbone column and the latter as the optimization
column. Rules correspond to blocks of a tensor instead of single entries as would
be conventional. The coefficients for the blocks (v[i], X [i], w[i]) come from MPO
tensors of the form shown in Equation 4.8 and determined for Gaussian long-range
interactions via the compression algorithm detailed in [29]. The same coefficients
may be used for both the vertical and horizontal interaction terms; for clarity, we
use index i and j to respectively refer to the coefficients associated with the x and y

coordinate.

Tables 4.2 through 4.10 give the rules for the MPO tensors to the left of the opti-
mization column, with Tables 4.2 to 4.4, Tables 4.5 to 4.7, and Tables 4.8 to 4.10
respectively giving the rules for the bottom, top, and center row MPOs. In each of
these series, the first (Tables 4.2, 4.5, and 4.8) are for when the backbone column
is in the same column as the operator tensor, while the second (Tables 4.3, 4.6, and
4.9) and third (Tables 4.4, 4.7, and 4.10) are respectively for when the backbone
column is to the right and left of the operator tensor.

The MPOs on the right side of the optimization columns are given in Tables 4.11
and 4.12.

The backbone PEPO tensors are given in Tables 4.13 and 4.21. Tables 4.13 to 4.15,
Tables 4.16 to 4.18 and Tables 4.19 to 4.21 respectively giving the rules for the
bottom, top, and center row combs. In each of these series, the first (Tables 4.13,
4.16, and 4.19) are for when the backbone column is in the same column as the
operator tensor, while the second (Tables 4.14, 4.17, and 4.20) and third (Tables
4.15, 4.18, and 4.21) are respectively for when the backbone column is to the left
and right of the operator tensor.
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Table 4.2: Rules for the teeth tensors in the bottom row of the rerouted comb
operatorswhen the optimization column is to the right of this tensor and the backbone
column is in the same column as this tensor. If at the left boundary, then only rules
where the left signal is 0 are kept.

Rule Number Signals Output
(left, right)

1 (0,0) I

2 (1,e) v[i]B

3 (1,1) v[i]I

4 (0,1) A

5 (0,2) B

Table 4.3: Rules for the teeth tensors in the bottom row of the rerouted comb
operatorswhen the optimization column is to the right of this tensor and the backbone
column is to the right of this tensor. If at the left boundary, then only rules where
the left signal is 0 are kept.

Rule Number Signals Output
(left, right)

1 (0,0) I

2 (0,1) w[i]A

3 (1,1) X [i]I

Table 4.4: Rules for the teeth tensors in the bottom row of the rerouted comb
operatorswhen the optimization column is to the right of this tensor and the backbone
column is to the left of this tensor. If at the left boundary, then only rules where the
left signal is 0 are kept.

Rule Number Signals Output
(left, right)

1 (0,0) I

2 (1,1) I

3 (2,2) I

4 (e,e) I
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Table 4.5: Rules for the teeth tensors in the top row of the rerouted comb operators
when the optimization column is to the right of this tensor and the backbone column
is in the same column as this tensor. If at the left boundary, then only rules where
the left signal is 0 are kept.

Rule Number Signals Output
(left, right)

1 (0,0) I

2 (1,e) v[i]B

3 (1,1) v[i]I

4 (0,2) B

5 (1,3) v[i]I

Table 4.6: Rules for the teeth tensors in the top row of the rerouted comb operators
when the optimization column is to the right of this tensor and the backbone column
is to the right of this tensor. If at the left boundary, then only rules where the left
signal is 0 are kept.

Rule Number Signals Output
(left, right)

1 (0,0) I

2 (0,1) w[i]A

3 (1,1) X [i]I

Table 4.7: Rules for the teeth tensors in the top row of the rerouted comb operators
when the optimization column is to the right of this tensor and the backbone column
is to the left of this tensor. If at the left boundary, then only rules where the left
signal is 0 are kept.

Rule Number Signals Output
(left, right)

1 (0,0) I

2 (1,1) I

3 (2,2) I

4 (3,3) I

5 (e,e) I
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Table 4.8: Rules for the teeth tensors in the center rows of the rerouted comb
operatorswhen the optimization column is to the right of this tensor and the backbone
column is in the same column as this tensor. If at the left boundary, then only rules
where the left signal is 0 are kept.

Rule Number Signals Output
(left, right)

1 (0,0) I

2 (1,e) v[i]B

3 (1,1) v[i]I

4 (0,1) A

5 (0,2) B

6 (1,3) v[i]I

Table 4.9: Rules for the teeth tensors in the center rows of the rerouted comb
operatorswhen the optimization column is to the right of this tensor and the backbone
column is to the right of this tensor. If at the left boundary, then only rules where
the left signal is 0 are kept.

Rule Number Signals Output
(left, right)

1 (0,0) I

2 (0,1) w[i]A

3 (1,1) X [i]I

Table 4.10: Rules for the teeth tensors in the center rows of the rerouted comb
operatorswhen the optimization column is to the right of this tensor and the backbone
column is to the left of this tensor. If at the left boundary, then only rules where the
left signal is 0 are kept.

Rule Number Signals Output
(left, right)

1 (0,0) I

2 (1,1) I

3 (2,2) I

4 (3,3) I

5 (e,e) I
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Table 4.11: Rules for the teeth tensors in the rows of the rerouted comb operators
when the optimization column is to the left of this tensor and the backbone column
is to the right of this tensor. Only rules 1-8 are included for operators in the top and
bottom rows.

Rule Number Signals Output
(left, right)

1 (0,0) I

2 (1,1) X [i]I
3 (e,1) w[i]A

4 (2,2) X [i]I
5 (3,2) w[i]A

6 (3,3) I

7 (4,4) I

8 (e,e) I

9 (5,2) w[i]A

10 (5,5) I

Table 4.12: Rules for the teeth tensors in the top and bottom row of the rerouted
comb operators when the optimization column is to the left of this tensor and the
backbone column is in the same column as this tensor. Rule 4 is excluded for tensors
in the top row and rule 6 is not included in the top or bottom rows.

Rule Number Signals Output
(left)

1 (0) I

2 (1) v[i]B

3 (2) v[i]I

4 (3) A

5 (4) B

6 (5) A
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Table 4.13: Rules for the backbone tensors in the bottom row of the rerouted comb
operators when the optimization column is the same as the backbone column. If at
the left boundary, then only rules where the left signal is 0 are kept.

Rule Number Signals (left, up) Output
(left, up)

1 (0,0) I

2 (1,e) v[i]B

3 (1,1) v[i]w[ j]I

4 (0,1) w[ j]A

5 (0,2) w[ j]B

Table 4.14: Rules for the backbone tensors in the bottom row of the rerouted comb
operators when the optimization column is to the right of the backbone column.

Rule Number Signals (left, up) Output
(left, up)

1 (0,0) I

1 (1,1) w[ j]I

2 (2,2) w[ j]I

3 (e,e) I

Table 4.15: Rules for the backbone tensors in the bottom row of the rerouted comb
operators when the optimization column is to the left of the backbone column.

Rule Number Signals Output
(left, right, up)

1 (0,0,0) I

2 (1,1,e) X [i]I
3 (0,e,e) I

4 (0,1,e) w[i]A

5 (1,2,1) X [i]w[ j]I
6 (0,2,1) w[i]w[ j]A

7 (0,3,1) w[ j]I

8 (0,4,2) w[ j]I
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Table 4.16: Rules for the backbone tensors in the top row of the rerouted comb
operators when the optimization column is the same as the backbone column. If at
the left boundary, then only rules where the left signal is 0 are kept.

Rule Number Signals (left, down) Output
(left, down)

1 (1,0) v[i]B

2 (0,e) I

3 (0,1) v[ j]B

4 (1,2) v[i]v[ j]I

Table 4.17: Rules for the backbone tensors in the top row of the rerouted comb
operators when the optimization column is to the right of the backbone column.

Rule Number Signals Output
(left, down)

1 (0,e) I

2 (e,0) I

3 (2,1) v[ j]I

4 (3,2) v[ j]I

Table 4.18: Rules for the backbone tensors in the top row of the rerouted comb
operators when the optimization column is to the left of the backbone column. If at
the left boundary, then only rules where the left signal is 0 are kept.

Rule Number Signals Output
(left, right, down)

1 (0,0,e) I

2 (1,1,0) X [i]I
3 (0,1,0) w[i]A

4 (0,e,0) I

5 (0,4,1) v[ j]I

6 (1,2,2) X [i]v[ j]I
7 (0,3,2) v[ j]I

8 (0,2,2) v[ j]w[i]A
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Table 4.19: Rules for the backbone tensors in the center rows of the rerouted comb
operators when the optimization column is the same as the backbone column. If at
the left boundary, then only rules where the left signal is 0 are kept.

Rule Number Signals Output
(left, down, up)

1 (0,0,0) I

2 (1,0,e) v[i]B

3 (0,1,e) v[ j]B

4 (0,1,1) X [ j]I
5 (1,0,1) v[i]w[ j]I

6 (0,0,1) w[ j]A

7 (1,2,e) v[i]v[ j]I

8 (0,2,2) X [ j]I
9 (0,0,2) w[ j]B

10 (0,e,e) I

Table 4.20: Rules for the backbone tensors in the center rows of the rerouted comb
operators when the optimization column is to the right of the backbone column.

Rule Number Signals Output
(left, down, up)

1 (0,0,0) I

2 (0,e,e) I

3 (e,0,e) I

4 (0,1,1) X [ j]I
5 (2,1,e) v[ j]I

6 (1,0,1) w[ j]I

7 (3,2,e) v[ j]B

8 (0,2,2) X [ j]I
9 (2,0,2) w[ j]I



119

Table 4.21: Rules for the backbone tensors in the center rows of the rerouted comb
operators when the optimization column is to the left of the backbone column. If at
the left boundary, then only rules where the left signal is 0 are kept.

Rule Number Signals Output
(left, right, down, up)

1 (0,0,0,0) I

2 (0,0,e,e) I

3 (1,1,0,e) X [i]I
4 (0,1,0,e) w[i]A

5 (0,4,1,e) v[ j]I

6 (0,0,1,1) X [ j]I
7 (0,e,0,e) I

8 (1,2,0,1) X [i]w[ j]I
9 (0,2,0,1) w[i]w[ j]A

10 (0,5,0,1) w[ j]I

11 (1,2,2,e) X [i]v[ j]I
12 (0,2,2,e) w[i]v[ j]A

13 (0,3,2,e) v[ j]I

14 (0,4,0,2) w[ j]I

15 (0,0,2,2) X [ j]I

4.B Comb-Like PEPO Construction
In this appendix, we present explicitly the structure of the comb-like PEPO operators
introduced in Section 4.3 again following the representation of TN operators as
signals as done in [37]. The notes regarding the construction of the TN operators in
the previous appendix are also valid here. Additionally, rerouting all entries through
a single backbone requires reshaped outer products, denoted ⊗.

All operators forms are given in Tables 4.22 through ??. Tensors left to the op-
timization column, where the thick backbone of the PEPO is located, are given
in Tables 4.22-4.23, while Tables 4.24-4.25 give the tensors to the right of the
optimization column. Last, Tables 4.26-?? give the backbone tensors.
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Table 4.22: Rules for PEPO tensors to the left of the optimization column in the
top and bottom rows of the comb-like PEPO. If at the left boundary, then only rules
where the left signal is 0 are kept. Rule 4 is not included in the top row.

Rule Number Signals Output
(left, right, up/down)

1 (0,0,n) I

2 (0,1,n) w[i]A

3 (1,1,n) X [i]I
4 (0,2,y) A

5 (1,2,y) v[i]I

6 (1,e,n) v[i]B

7 (0,3,y) B

8 (2,2,n) I

9 (3,3,n) I

10 (e,e,n) I

Table 4.23: Rules for PEPO tensors to the left of the optimization column in the
center rows of the comb-like PEPO. If at the left boundary, then only rules where
the left signal is 0 are kept.

Rule Number Signals Output
(left, right, down, up)

1 (0,0,n,n) I

2 (0,1,n,n) w[i]A

3 (1,1,n,n) X [i]I
4 (0,2,n,y) A

5 (1,2,n,y) v[i]I

6 (1,2,y,n) v[i]I

7 (1,e,n,n) v[i]B

8 (0,3,y,n) B

9 (0,3,n,y) B

10 (2,2,n,n) I

11 (3,3,n,n) I

12 (e,e,n,n) I

13 (0,0,y,y) I
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Table 4.24: Rules for PEPO tensors to the right of the optimization column in the
top and bottom rows of the comb-like PEPO. If at the right boundary, then only
rules where the right signal is 0 are kept. Rule 10 is only included in the top row.

Rule Number Signals Output
(left, right, up/down)

1 (0,0,n) I

2 (1,0,n) v[i]B

3 (1,1,n) X [i]I
4 (2,1,y) w[i]I

5 (e,1,n) w[i]A

6 (3,0,y) A

7 (2,2,n) I

8 (3,3,n) I

9 (e,e,n) I

10 (2,0,y) B

Table 4.25: Rules for PEPO tensors to the right of the optimization column in the
center rows of the comb-like PEPO. If at the right boundary, then only rules where
the right signal is 0 are kept.

Rule Number Signals Output
(left, right, down, up)

1 (0,0,n,n) I

2 (1,0,n,n) v[i]B

3 (1,1,n,n) X [i]I
4 (2,0,y,n) B

5 (2,1,y,n) w[i]I

6 (2,1,n,y) w[i]I

7 (e,1,n,n) w[i]A

8 (3,0,y,n) A

9 (3,0,n,y) A

10 (2,2,n,n) I

11 (3,3,n,n) I

12 (e,e,n,n) I

13 (0,0,y,y) I
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Table 4.26: Rules for PEPO tensors in the bottom row of the optimization column,
if the optimization column is the left-most column.

Rule Number Signals Output
(right, up)

1 (0,e) I

2 (3,1) w[ j]I

3 (e,0) I

4 (2,2) w[ j]I

5 (1,0) w[i]A

6 (0,1) w[ j]A

7 (1,2) w[i]w[ j]I

Table 4.27: Rules for PEPO tensors in the top row of the optimization column, if
the optimization column is the left-most column.

Rule Number Signals (right, down) Output
(right, down)

1 (2,1) v[ j]I

2 (0,0) I

3 (e,e) I

4 (3,2) v[ j]I

5 (1,e) w[i]A

6 (0,1) v[ j]B

7 (1,1) w[i]v[ j]I

8 (0,2) v[ j]A
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Table 4.28: Rules for PEPO tensors in the center row of the optimization column, if
the optimization column is the left-most column.

Rule Number Signals Output
(right, down, up)

1 (3,e,1) w[ j]I

2 (0,1,1) X [ j]I
3 (2,1,0) v[ j]I

4 (0,e,e) I

5 (e,e,0) I

6 (0,0,0) I

7 (2,e,2) w[ j]I

8 (3,2,0) v[ j]I

9 (0,2,2) X [ j]I
10 (1,e,0) w[i]A

11 (0,e,1) w[ j]A

12 (0,1,1) X [ j]I
14 (0,1,0) v[ j]B

15 (1,1,0) w[i]v[ j]I

16 (0,2,0) v[ j]A

17 (0,2,2) X [ j]I
18 (1,e,2) w[i]w[ j]I

Table 4.29: Rules for PEPO tensors in the bottom row of the optimization column,
if the optimization column is the right-most column.

Rule Number Signals Output
(left, up)

1 (0,0) I

2 (e,e) I

3 (1,e) v[i]B

4 (2,1) w[ j]I

5 (3,2) w[ j]I

6 (0,1) w[ j]A

7 (1,1) v[ j]w[i]I

8 (0,2) w[ j]B
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Table 4.30: Rules for PEPO tensors in the top row of the optimization column, if
the optimization column is the right-most column.

Rule Number Signals Output
(left, down)

1 (0,e) I

2 (e,1) v[ j]I

3 (e,0) I

4 (2,2) v[ j]I

5 (1,0) v[i]B

6 (0,1) v[ j]B

7 (1,2) v[i]v[ j]I

Table 4.31: Rules for PEPO tensors in the center rows of the optimization column,
if the optimization column is the right-most column.

Rule Number Signals Output
(left, down, up)

1 (3,1,e) v[ j]I

2 (0,1,1) X [ j]I
3 (2,0,1) w[ j]I

4 (0,e,e) I

5 (e,0,e) I

6 (0,0,0) I

7 (2,2,e) v[ j]I

8 (3,0,2) w[ j]I

9 (0,2,2) X [ j]I
10 (1,0,e) v[ j]B

11 (0,1,e) v[ j]B

12 (0,0,1) w[ j]A

13 (1,0,1) v[ j]w[i]I

14 (0,0,2) w[ j]B

15 (1,2,e) v[i]v[ j]I
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Table 4.32: Rules for PEPO tensors in the bottom row of the optimization column,
if the optimization column is any of the center columns.

Rule Number Signals Output
(left, right, up)

1 (2,0,1) w[ j]I

2 (0,0,0) I

3 (3,0,2) w[ j]I

4 (e,0,e) I

5 (0,0,2) w[ j]B

6 (1,0,e) v[i]B

7 (1,0,1) v[i]w[ j]I

8 (0,0,1) w[ j]A

9 (0,2,2) w[ j]I

10 (0,3,3) w[ j]I

11 (0,e,e) I

12 (0,0,3) w[ j]A

13 (0,1,e) w[ j]A

14 (0,1,4) w[ j]w[i]I

15 (1,1,e) X [i]I
16 (1,1,5) w[ j] ⊗ X [i]I
17 (1,1,6) X [i] ⊗ w[ j]I
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Table 4.33: Rules for PEPO tensors in the top row of the optimization column, if
the optimization column is any of the center columns.

Rule Number Signals Output
(left, right, down)

1 (0,0,e) I

2 (3,0,1) v[ j]I

3 (2,0,2) v[ j]I

4 (e,0,0) I

5 (0,0,1) v[ j]B

6 (1,0,0) v[i]B

7 (1,0,2) v[i]v[ j]I

8 (0,3,2) v[ j]I

9 (0,2,3) v[ j]I

10 (0,1,3) v[ j]I

11 (0,e,0) I

12 (0,1,0) w[i]A

13 (0,1,4) v[ j]A

14 (1,0,5) v[ j] ⊗ 1I

15 (0,1,6) 1 ⊗ v[ j]I
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Table 4.34: Rules for PEPO tensors in the center rows of the optimization column,
if the optimization column is any of the center columns.

Rule Number Signals Output
(left, right, down, up)

1 (3,0,1,e) v[ j]I

2 (2,0,0,1) w[ j]I

3 (0,0,1,1) X [ j]I
4 (2,0,2,e) v[ j]I

5 (0,0,2,2) X [ j]I
6 (3,0,0,2) w[ j]I

7 (0,0,e,e) I

8 (e,0,0,e) I

9 (0,0,0,0) I

10 (0,0,0,2) w[ j]B

11 (1,0,0,e) v[i]B

12 (0,0,1,e) v[ j]B

13 (1,0,0,1) v[i]w[ j]I

14 (0,0,0,1) w[ j]A

15 (1,0,2,e) v[i]v[ j]I

16 (0,3,2,e) v[ j]I

17 (0,2,0,2) w[ j]I

18 (0,0,2,2) X [ j]I
19 (0,2,3,e) v[ j]I

20 (0,0,3,3) X [ j]I
21 (0,3,0,3) w[ j]I

22 (0,0,e,e) I

23 (0,e,0,e) I

24 (0,0,0,3) w[ j]A

25 (0,1,0,e) w[i]A

26 (0,1,0,4) w[i]w[ j]I

27 (0,0,4,4) X [ j]I
28 (0,0,4,e) v[ j]A

29 (0,1,3,e) v[ j]w[i]I

30 (0,0,e,e) I

31 (1,1,0,e) X [i]I
32 (0,0,5,5) X [ j] ⊗ II
33 (0,1,0,5) w[ j] ⊗ X [i]I
34 (1,0,5,e) I ⊗ v[i]I

35 (0,1,6,e) v[ j] ⊗ II

36 (0,0,6,6) I ⊗ X [ j]I
37 (1,0,0,6) X [i] ⊗ w[ j]I
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C h a p t e r 5

CONCLUSIONS AND PROSPECTS

In this final chapter we provide an overview of the work presented in this
thesis and discuss promising future directions of work at the intersection
of tensor networks and classical nonequilibrium statistical mechanics.
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5.1 Conclusions
The work presented in this thesis represents a continuous evolution in the applica-
tion of tensor networks to studying classical nonequilibrium statistical mechanics
(NESM) from simple one-dimensional models towards fully two-dimensional sys-
tems with long-range interactions. In this section, we will begin by summarizing
the phenomenological insight we uncovered regarding the simple exclusion process
then summarize our findings on the utility of tensor networks (TNs) in studying
these systems. In the following section, we close by discussing potential areas of
future theoretical and algorithmic work at the intersection of TNs and NESM.

Regarding the physical behavior of the asymmetric simple exclusion process (ASEP),
the work presented in Chapters 2 and 3 used large deviation theory (LDT) to provide
the first studies of both the fluctuations of the current and the dynamical phase
behavior of the multi-lane and two-dimensional ASEP models. In one dimension,
dynamical phase transitions have proven to be of particular physical importance as
they are linked to dynamical heterogeneity. From the perspective of a single particle
in the lattice, dynamical heterogeneity is manifest by stochastic transitions between
multiple types of dynamical behaviors and the probability of these transitions is
dictated by the distance between the dynamical phase transition and typicality. In
the phase space we explored, the dynamical phase transition observed is between
jammed and flowing phases, also called the high-density, low-density coexistence
phase and the hyperuniform or maximal current phase respectively. In the one-
dimensional system, the existence of this dynamical phase transition at typicality
results in the shock phase where a jam forms in the lattice as particles wait to be
removed and the starting point of this jam moves stochastically through the lattice.

In the multi-lane system, we discovered that the existence of the phase transition
depends strongly on the latitudinal hopping parameters and particularly the insertion
and removal rates at the top and bottom boundaries. When these boundaries allow
particles to exit the lattice relatively quickly, i.e. open boundary conditions, the
particles will exit the lattice before becoming jammed, circumventing the dynamical
phase transition. When these boundaries are instead closed, the multi-lane behavior
mimics what is seen in one dimension. Moving to the fully two-dimensional system,
we discovered that the jammed phase persists given appropriate physical parameters.
In this case, the dynamical phase transition does not occur at typicality, but we expect
that parameters can be tuned to cause the two-dimensional shock phase.

In this thesis, the utility of the TN algorithms, introduced for computing large de-
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viation functions in the classical nonequilibrium setting, was of central importance.
In Chapter 2, we demonstrated that, like in the quantum setting, a one-dimensional
TN, the matrix product state (MPS), and an associated optimization algorithm, the
density matrix renormalization group (DMRG) algorithm, provide accurate and
compact state representations. Specifically, we found that we were able to compute
large deviation functions with 3-4 digits of accuracy using an MPS with a bond di-
mension of O (100), while state-of-the-art calculations allow bond dimensions that
are two orders of magnitude larger. The primary algorithmic difference between the
classical and quantum setting is the non-hermiticity of the Hamiltonian, here the
tilted generator, which can be overcome by using a non-hermitian local eigensolver.
We were also able to use the MPS to study multi-lane systems, though the width of
the lattice was limited, as is common for quantum systems.

Moving to two dimensions, we employed time evolution via block decimation
(TEBD) algorithms to compute formally two-dimensional TN states, called pro-
jected entangled pair states (PEPS), and associated large deviation functions. There
were no algorithmic differences between these classical nonequilibrium calculations
and the standard quantum implementations and we found that we were again able to
compute large deviation functions and characterize system behavior with relatively
low computational effort. Here, we required a bond dimension of 2 to 3 while
state-of-the-art calculations use bond dimensions of < 20.

While the results presented in Chapters 2 and 3 strongly emphasize the utility of
TNs in this context, TN algorithms are young and there remain many opportunities
for algorithmic improvements to extend their sucess to more complex settings.
Importantly, many novel numerical routines should be extensible to both quantum
and classical systems. As an example of this, Chapter 4 presented work towards
studying two-dimensional systems with long-range interactions. The complexity of
this problem was highlighted by introducing three seemingly equivalent approaches
and demonstrating the counterintuitive comparative computational cost scaling with
system size. While we hope to soon use these methods for realistic systems, the
progress reported there showed two viable approaches and is promising for future
work in this area.

5.2 Prospective Work
The work presented in this thesis has provided strong evidence for the effectiveness
of using TNs to study fluctuations in nonequilibrium classical systems andwe expect
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that these results will make this a commonly used tool in this field. To extend the
applicability of TNs to the complex chemical or physical systems practitioners study
provides many opportunities for algorithmic developments. For example, while we
have introduced algorithms to study particles with long-range interactions, such as
the Lennard-Jones potential commonly used in statistical mechanics, these particles
are normally not confined to a lattice, thus requiring algorithms that allow continuous
spatial degrees of freedom. Additionally, our results have been limited to one- and
two-dimensional TNs and systems; to continue this trajectory we would require
the development of TN algorithms for fully three-dimensional systems. These
results have also all assumed relatively regular system geometries, here square
lattices; to extend the success of TNs to study complex stochastic systems, such
as gene expression networks, we would also require methods to treat non-standard
geometries. Finally, a common theme in quantum TN algorithm development
has been the creation and optimization of formally infinite TNs. While infinite
algorithms would allow us to circumvent finite-size scaling used with Monte Carlo
results, one must consider how to incorporate boundary effects that are commonly
present in the nonequilibrium setting.

In addition to these numerical developments that would make TNs a powerful tool
in classical NESM, the use of TNs may also provide theoretical insights that would
be difficult to recognize using other methods. For example, in the quantum setting,
the size of the tensors is directly related to the entanglement between parts of the
lattice and TNs give direct access to the system’s entanglement entropy. While
this quantity is still computed when using TNs for classical systems, the physical
interpretation is unclear and could provide deeper insight into the physical behavior.
In quantum systems, this easy access to the entanglement entropy provided a route
towards finding area laws and detecting topological phase transitions. While we are
unaware of classical analogs for either of these, the formalism of TNs will allow for
their straightforward discovery if they do indeed exist.

In summary, TNs are powerful numerical tools for studying fluctuations in the
nonequilibrium setting, capable of providing meaningful physical insight and nu-
merical accuracy. Promising areas for future developments in TN algorithms, appli-
cations, and theoretical interpretations make them well-poised to play an important
role in furthering our understanding of nonequilibrium systems and behaviors.
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