
Optimizing Cloud AI Platforms:
Resource Allocation and Market Design

Thesis by
Yu Su

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2021
Defended May 25th, 2021

ii

© 2021

Yu Su
ORCID: 0000-0002-7159-4542

All rights reserved except where otherwise noted

iii

ACKNOWLEDGEMENTS

I am fortunate to have had the opportunity to pursue my Ph.D. at Caltech. Duringmy
time in Pasadena, I was so happy to interact and engage with many lovely scholars.
My journey would not have been so enjoyable without them.

First and foremost, I would like to thank my advisor - Adam Wierman. I still
remember our very first meeting: I felt instantaneously excited to talk with him
about various topics - research projects and even beyond. This short conversation
was representative of my entire Ph.D. study under Adam’s guidance. Not only have
I learned a lot about tackling various challenging research problems, but I have also
learned so much beyond research skills. I truly admire his integrity and appreciate
the inspiration that I have received from him. I hope that I can pass on the inspiration
to others who aim to aspire as well during my future career. I could not ask for
a better advisor. Adam, thank you for the freedom, trust, and all the interesting
conversations.

Next, I would like to thank my committee members: Yisong Yue, Steven Low, and
Pietro Perona, for the time they dedicated to provide valuable feedback on this thesis.

I want to express my sincere gratitude to my wonderful collaborators and friends:
Anatoly Khina, Xiaoqi Ren, Shai Vardi, Navid Azizan, and Juba Ziani. Besides, I
would like to thank my fellow friends within and beyond Caltech. I will not dive
into the friends list so that no one is left out. However, if you happen to be aware of
a better solution, please do not let me know because I might not expect to write this
acknowledgement again any time soon.

My special thanks go to Toli, Xiaoqi, Shai, and Brennan. Toli, thank you for your
guidance and support during my first two years when I arrived at Caltech. Xiaoqi,
thank you for everything! Shai, thank you for keeping telling all the jokes even
though I do not laugh every time. Moreover, I truly admire your integrity and
honesty. I wish I had more opportunities to work with you than I did. Brennan,
thank you for all the time that we spent together on those long problems sets as well
as those adventures in LA.

Finally, I would like to thank my parents and Jinglin. This thesis would not have
been possible without their love and support.

Thank you for taking your time to read this entire acknowledgement. I am a bit
surprised that you actually reached this far. As a token of my gratitude, please let

iv

me buy you a cup of coffee. To redeem the offer, please send me an email with the
coupon code "TEA" before we meet next time.

v

ABSTRACT

The numerous applications of data-driven algorithms and tools across diverse in-
dustries have led to tremendous successes in recent years. As the volume of massive
data that is created, collected, and consumed continues to grow, there are many new
imposed challenges faced by today’s cloud AI platforms that support the deploy-
ment of machine learning algorithms on a large scale. In this thesis, we tackle the
emerging challenges within cloud AI systems and beyond by adopting approaches
from the fields of resource allocation and market design.

First, we propose a new scheduler, Generalized Earliest Time First (GETF), and pro-
vide the provable, worst-case approximation guarantees for the goals of minimizing
both makespan and total weighted completion time of tasks with precedence con-
straints on related machines with machine-dependent communication times. These
two results address long-standing open problems. Further, we adopt the classic
speed scaling function to model power consumption and use mean response time
to measure the performance. We propose the concept of pseudo-size to quantify
importance of tasks and design a family of two-stage scheduling frameworks based
on the approximation of pseudo-size. Assuming a good approximation of pseudo-
size, we are able to provide the first provable bound of a linear combination of
performance and energy goals under this setting.

Second, we study the design of mechanisms for data acquisition in settings with
information leakage and verifiable data. We provide the first characterization of an
optimal mechanism for data acquisition if agents are concerned about privacy and
their data is correlated with each other. Additionally, the mechanism allows, for the
first time, a trade-off between the bias and variance of the estimator. Transitioning
from the data market into the energy market, we propose a new pricing scheme,
which is applicable to general non-convex costs, and allows using general parametric
pricing functions. Optimizing for the quantities and the price parameters simultane-
ously, and the ability to use general parametric pricing functions allows our scheme
to find prices that are typically economically more efficient and less discriminatory
than those of the existing schemes while still supporting a competitive equilibrium.
In addition, we supplement the proposed method with a computationally efficient
polynomial-time approximation algorithm, which can be used to approximate the
optimal quantities and prices for general non-convex cost functions.

vi

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] Y. Su, X. Ren, S. Vardi, A. Wierman, and Y. He, “Communication-aware
scheduling of precedence-constrained tasks,” ACM SIGMETRICS Perfor-
mance Evaluation Review, vol. 47, no. 2, pp. 21–23, 2019. doi: 10.1145/
3374888.3374897,
Adapted into Chapter 2 of this thesis. Y. Su contributed to the conception of
the project, proposing the model and analyzing its performance, and writing
the manuscript.

[2] Y. Su, X. Ren, S. Vardi, and A. Wierman, “Communication-aware schedul-
ing of precedence-constrained tasks on related machines,” Under Review,
2020,
Adapted into Chapter 2 of this thesis. Y. Su contributed to the conception of
the project, proposing the model and analyzing its performance, and writing
the manuscript.

[3] Y. Su, J. Yu, V. Anand, and A. Wierman, “Learning-augmented energy-
aware scheduling of precedence-constrained tasks,” Under Review, 2021,
Adapted into Chapter 3 of this thesis. Y. Su contributed to the conception of
the project, proposing the model and analyzing its performance, and writing
the manuscript.

[4] G. Liao*, Y. Su*, J. Ziani, A. Wierman, and J. Huang, “The privacy paradox
and optimal bias-variance trade-offs in data acquisition,” in Proceedings of
the 2021 ACM Conference on Economics and Computation, 2021,
Adapted into Chapter 4 of this thesis. Y. Su contributed to the conception of
the project, proposing the model and analyzing its performance, and writing
the manuscript.

[5] N. Azizan, Y. Su, K. Dvĳotham, and A. Wierman, “Optimal pricing in
marketswith nonconvex costs,”Operations Research, vol. 68, no. 2, pp. 480–
496, 2020. doi: 10.1287/opre.2019.1900,
Adapted into Chapter 5 of this thesis. Y. Su contributed to the conception of
the project, proposing the model and analyzing its performance, and writing
the manuscript.

vii

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . v
Published Content and Contributions . vi
Table of Contents . vi
List of Illustrations . ix
List of Tables . x
Chapter I: Introduction . 1

1.1 Trends and Challenges . 1
1.2 An Overview of the Thesis . 5

I Resource Allocation 9
Chapter II: Communication-Aware Scheduling in Cloud AI Systems 10

2.1 Introduction . 10
2.2 Problem Formulation . 14
2.3 Generalized Earliest Time First (GETF) Scheduling 16
2.4 Results . 23
2.5 Proofs . 26
2.6 Concluding Remarks . 37

Chapter III: Energy-Aware Scheduling in Cloud AI Systems 38
3.1 Introduction . 38
3.2 Model . 41
3.3 The Optimization Problem . 42
3.4 Algorithm Design . 44
3.5 Results . 48
3.6 Concluding Remarks . 50
3.A Appendix . 50

II Market Design 54
Chapter IV: The Privacy Paradox in Data Acquisition 55

4.1 Introduction . 55
4.2 System Model . 60
4.3 Mechanism Design . 66
4.4 Optimization of the Worst-Case Bias-Variance Trade-off 73
4.5 Concluding Remarks . 82
4.A Appendix . 83

Chapter V: Optimal Pricing in Markets with Non-Convex Costs 119
5.1 Introduction . 119

viii

5.2 Market Description and Pricing Objectives 121
5.3 Proposed Scheme: Equilibrium-Constrained Pricing 125
5.4 Equilibrium-Constrained Pricing for Networked Markets 136
5.5 Existing Pricing Schemes . 142
5.6 Experimental Results . 147
5.7 Concluding Remarks . 151
5.A Appendix . 152

Bibliography . 160

ix

LIST OF ILLUSTRATIONS

Number Page
2.1 An illustration of GETF running on Example 2.3.1. 22
2.2 An illustration of SLS running on Example 2.3.1. 22
4.1 An illustration of the model from the perspective of a participating

agent in group 8. 61
4.2 An illustration of the optimal allocation rule with two possible struc-

tures. 79
5.1 An illustration of the set Λ for an example with 3 non-convex cost

functions. 131
5.2 An example of the binary tree defined by Algorithm 5.4 for = = 8. . . 134
5.3 An illustration of shadow pricing for the case of 3 convex cost functions.143
5.4 An example with cost functions of the form of linear plus startup cost 149
5.5 An example with cost functions of the form of quadratic plus startup

cost. 150
5.6 A schematic drawing for two connected markets with a constraint on

flow capacity. 150
5.7 An example of two connected markets with a constraint on the flow

capacity. 151
5.8 The transformation of an arbitrary-degree tree to a binary tree. 159

x

LIST OF TABLES

Number Page
5.1 A summary of common pricing schemes and their properties. 144
5.2 A summary of the production characteristics in the modified Scarf’s

example. 148
5.3 A summary of the new cost functions in the modified Scarf’s example.149

1

C h a p t e r 1

INTRODUCTION

In the last decade, rapid technology trends have driven researchers and engineers to
reevaluate the large scale computing systemand infrastructure in use today, i.e., cloud
platforms and colocation data centers behind the cloud. One important trend is the
ongoing digital transformation in almost every industry, spanning from autonomous
self-driving, customized recommendations to individual consumers, monitoring
individual health conditions via smart personal wearable, to improving crops yields
and sustainability in farming. These amazing applications across diverse industries
dramatically improve efficiency and help practitioners quickly adapt to new business
models.

A key component of digital transformation is the successful deployment of data-
driven research and applications, in particularMachine Learning (ML) and broadly
Artificial Intelligence (AI) tools, in both academia and industry. While almost every
industry is embracing theAI cloud era, enormous data has been created and collected
in the pipeline. The tremendous amount of data has introduced new characteristics
to the system internally, and thus has imposed many new challenges to the design of
the large scale cloud AI system. Beyond, to assimilate to the internal growth of the
cloud AI systems, the external stakeholders that interact with the cloud AI system
are undergoing a swift transformation to keep up with these new changes as well.
Regardless of the internal or external challenges, these new issues have motivated
researchers and engineers to redesign the cloud AI system and infrastructure to adapt
to the new trends.

In the following, we first introduce the new rising trends of the evolving technology
and highlight the challenges faced by today’s cloudAI systems as well as the external
stakeholders. Finally, we give an overview of the works presented in this thesis in
order to tackle some of these new rising challenges on the cloud and even beyond.

1.1 Trends and Challenges
More and more data has been created, captured, copied, and consumed every day.
According to an International Data Corporation (IDC) report, the amount of world’s

2

collective data has been growing almost 50x from 1.2 zettabytes 1 (ZB) in 2010 to
59 ZB in 2020, at a ten-year compound annual growth rate (CAGR) of 48%. The
staggering number is predicted to continue to grow to reach 175 ZB by 2025 [1].
The massive data serves as the catalyst to the successful development of various
data-drivenmethods and tools, such asDeep Learning (DL),Computer Vision (CV),
Natural Language Processing (NLP), etc. These powerful tools have the capability
to learn from data without being explicitly programmed, and they are generally
referred to as AI technology. However, as the complexity of AI tools increases,
the development of AI technology and harnessing the power of these tools have
become more and more challenging for small and individual players. Thus the
cloud AI platforms, such as Amazon Web Services (AWS), Microsoft Azure, and
Google Cloud, act as an important medium to promote the use of AI technology. To
democratize AI, i.e., make AI accessible and affordable to the general enterprises,
small business as well as individuals, there are many challenges to the design of the
general system as the massive amount of data continues to evolve and grow.

Though these challenges come in many different forms, they can be roughly divided
into two categories from the standpoint of the cloud AI system: internal and external
challenges. The internal challenges fall into the domain of resource allocationwhile
we approach the external challenges from the perspective of market design. In the
following, we introduce the new trends and challenges from these two angles,
respectively.

Resource Allocation. Within the cloud AI system, diverse AI tools have been
applied to practical settings, and they are often computationally expensive. For
instance, the widespread use and astonishing achievements of deep learning in
image recognition, machine translation, etc. (refer to [2] for a recent survey of deep
learning applications), is significantly reliant on the advance of computing power
of hardware in the past years. A recent study indicates that progress along the
current lines is rapidly becoming economically, technically, and environmentally
unsustainable [3]. Thus, the overall performance highly relies on how we can
efficiently allocate the computing resources to accelerate the computation. Unlike
traditional independent jobs, machine learning jobs come with their own unique
characteristics, such as precedence constraints, non-uniform communication delays,
intensive power consumption, etc. The development of new algorithms and tools
are indispensable for the system to suit and incorporate these new characteristics.

11 ZB is equal to 1021 bytes, that is a trillion gigabytes (GB).

3

Market Design. As the integration of cloud AI platforms into infrastructure ad-
vances, its close interactions with the external stakeholders have brought new chal-
lenges beyond the cloud AI system. We approach these external challenges from
the perspective of market design, and aim to understand the interactions of market
participants. First, in order for the cloud AI platforms to prosper, a key driving force
is to gather and collect data of high quality to feed and empower the algorithms to
learn and evolve. The data market, as a channel for platforms and data providers
to interact with each other, plays a significant role to facilitate the collection of
high quality data sets. However, growing privacy concerns have imposed many
new challenges. Thus, the study of impacts of privacy concerns on the mechanism
design for data acquisition becomes a key enabler to the entire pipeline. Second,
while the integration of the cloud AI systems into the broad system and infrastruc-
ture has been a roadblock, it also presents some new opportunities. The flexible
loads in data centers not only provide freedom to optimize over energy efficiency,
but also add flexibility to the entire electricity grid. Further, on an individual level,
electricity bills for a data center has been on the order of millions of dollars. Thus
understanding the market design of the energy market has become an important
piece for the entire system and infrastructure as well as individual players.

Next, we take a further dive and frame the concrete goals to tackle the new challenges
from the perspectives of resource allocation and market design.

1.1.1 From the Perspective of Resource Allocation
One challenge towards democratizing AI is to improve computational efficiency
of the large scale general purpose machine learning platforms, such as Google’s
TensorFlow [4], Facebook’s PyTorch [5], and Microsoft’s Azure Machine Learning
(AzureML) [6]. These emerging machine learning jobs are often expressed as
computational graphs with precedence constraints and they come with gigantic
sizes, which requires a large cluster of geo-distributed heterogeneous machines to
collaborate and compute in a distributed way. Thus, how to schedule these machine
learning jobs in an efficient manner is critical to the performance of ML platforms.
Without a good scheduler, it is impossible to take advantage of large clusters of
computational resources to adapt to the exponential growth of big data.

The heterogeneity of the cloud AI system makes scheduling ML jobs extremely
hard. The AI cloud system is heterogeneous in two key ways. First, a modern
computing system always consists of a mixture of heterogeneous machines, such

4

as CPUs, GPUs, TPUs, etc, to build up its capability in dealing with various tasks
under different scenarios. These computing machines are characterized by different
processing speeds to represent differences in types or machine models. Second, for
various deep learning tasks, the communication overhead required for data transfer
from one machine to another is significant, and highly limits the scalability of the
system [7, 8]. Meanwhile, the communication speeds are nonuniform in the sense
that they are machine-dependent to capture the differences in geographic locations
and network bandwidth. These newly introduced characteristics of the cloud AI
system call for new algorithms for such a resource allocation problem. However, the
prior works have been focused on extensions to settings when communication delays
are ignored [9, 10] or assumed to be uniform (fixed) [11, 12], and fail to incorporate
nonuniform machine dependent communication delays. This naturally leads to the
question: can we design an efficient scheduler for precedence-constrained ML jobs
with nonuniform communication delays?

Another rising challenge is that these machine learning jobs are often energy-
intensive. For example, the emissions of training an AI model can be as high as five
times the lifetime emission of a car [13]. In fact, the computations required for deep
learning have been doubling every 3.4 months, resulting a 300,000x increase from
2012 to 2018 [14, 15]. Thus it is urgent to study how we can design good schedulers
for these machine learning jobs with both performance and energy metrics in mind.
Moreover, due to the aggressive development of power management technology,
power usage effectiveness (PUE), a metric representing the ratio of total amount of
energy used by a computer data center facility to the energy delivered to computing
equipment, has been dramatically decreasing since the early 2000s. This means
that efforts should be focusing on directly optimizing over IT energy consumption
to further improve the overall power consumption for data centers. Even a small
improvement on the level of individual computing machines aggregates into a big
step towards the idea of sustainable computing. However, even scheduling ML jobs
without energy considerations has been extremely hard. Can we design an efficient
scheduler for precedence-constrained ML jobs with both performance and energy
goals in mind?

1.1.2 From the Perspective of Market Design
As the integration of cloud AI systems continues, we have to investigate and under-
stand its close interactions with the external factors in order to support the long-term
success of the overall system. In particular, we approach these issues surrounding

5

cloud AI systems, i.e., data centers in the physical world, from the angle of market
design, with an emphasis on two distinct parts: data markets and energy markets.

A key element to the prosperity of these online platforms is the success of large
scale data-driven technology and tools. A prerequisite for this success to continue
is to guarantee that online platforms have the capability to gather and acquire
data as desired while satisfying data providers – individuals. Online platforms
gather and collect the massive amount of data on billions of individuals to improve
advertisements and their systems. While more and more data is being created every
day, individuals havemore andmore privacy concerns about the use of their personal
data. These privacy concerns brings another challenge to the design of data markets.
To facilitate the interactions between online platforms and individuals, it is crucial to
study the data market when privacy concerns are considered. This leads to a natural
question: how do information leakage and privacy concerns impact the design of
data markets?

The data centers that accommodate the cloud AI system consume a massive amount
of energy. This not only brings a challenging resource allocation problem, but
also plays an important role and presents new opportunities in the process as these
huge data centers start to integrate into the electricity grid [16]. The connections
between the data centers and the energy market are two-fold: first, energy cost has
been a primary portion as part of operating costs for a modern data center, thus
understanding the energy market has become a crucial decision question during the
construction of a physical data center; second, the flexibility of workloads in data
centers also present as a potential opportunity in the dispatch process of the energy
market. The energy market has received considerable attention, but proposals often
rely on the assumption of convexity or special forms of cost functions [17–19].
Though convexity often dramatically simplifies the problem, real costs in the energy
market are generally non-convex in practice. Thus a natural question arises: can we
design an efficient pricing scheme in the presence of non-convexity?

1.2 An Overview of the Thesis
This thesis consists of four chapters divided into two parts. In Part I, we aim to tackle
the new challenges by framing them as resource allocation problems. In Chapter 2,
we first investigate how to schedule machine learning jobs composed of precedence-
constrained tasks given a heterogeneous cluster of machines with nonuniform com-
munication delays. Then in Chapter 3, we further study the scheduling problem

6

while having both performance and energy goals in mind. Transitioning into Part II,
we address the challenges from the angle of market design. In Chapter 4, we focus
on the design of data markets in the presence of privacy concerns and information
leakage. In Chapter 5, we study the pricing schemes with non-convex costs, with
the energy market as a motivating example.

Chapter 2: Communication-Aware Scheduling in Cloud AI Systems
In this chapter, we study the scheduling of precedence-constrained tasks. Scheduling
precedence-constrained tasks is a classical problem that has been studied for more
than fifty years in the domain of parallel processing, and it recently has attracted
extensive attention due to its applications in large scaleMLplatforms. However, little
progress has been made in the setting where there are non-uniform communication
delays between tasks. Results for the case of identical machines with non-uniform
communication delays were derived nearly thirty years ago, and there has been some
recent progress when communication delays are fixed. Yet no results for related
machines with non-uniform communication delays have followed even though non-
uniform communication delays are crucial for capturing the characteristics in cloud
AI systems.

We propose a new scheduler, Generalized Earliest Time First (GETF), and prove that
it computes a makespan that is at most of length $ (log</log log<)OPT(8) + � in
the case of related machines and machine-dependent communication times, where
� is the amount of communication time in a chain (path) in the precedence graph.
Additionally, we generalize our result to the objective of total weighted completion
time and show that GETF produces a schedule S whose total weighted completion
time is at most $ (log</log log<) wOPT(8) + ∑

9 l 9� (S, 9), where wOPT(8) is
the optimal total weighted completion time, l 9 is the weight in the objective, and
� (S, 9) is the communication requirement in a chain in the precedence graph.
These two results address long-standing open problems. This chapter summarizes
the results in [20–22].

Chapter 3: Energy-Aware Scheduling in Cloud AI Systems
In this chapter, we study the scheduling problem of precedence-constrained tasks to
balance between performance and energy consumption. To this point, scheduling to
balance performance and energy has been limited to settings without dependencies
between jobs. Whilemany heuristics have been proposed for scheduling precedence-
constrained ML tasks to optimize both performance and energy consumption, little

7

progress has been made towards the goal of designing a scheduler to optimize both
measures with a worst-case theoretic guarantee. We consider a system with multiple
servers capable of speed scaling and seek to schedule precedence constrained jobs
to minimize a linear combination of performance and energy consumption. Inspired
by the single server setting, we propose the concept of pseudo-size for individual
tasks, which is a measure of the importance of a task in the precedence graph that
is learned from workload data. A task of a large pseudo-size is prioritized to run
at a fast speed while those of a small pseudo-size are set to run slowly to conserve
energy. We then propose a two-stage scheduling framework which uses the learned
pseudo-size approximation and achieves a provable approximation bound on the
linear combination of performance and energy consumption, where the quality of
the bound depends on that of the approximation of task pseudo-sizes, for both
makespan and total weighted completion time. This chapter summarizes the results
in [22].

Chapter 4: The Privacy Paradox in Data Acquisition
While users claim to be concerned about privacy, often they do little to protect
their privacy in their online actions. One prominent explanation for this “privacy
paradox” is that when an individual shares her data, it is not just her privacy that is
compromised; the privacy of other individuals with correlated data is also compro-
mised. This information leakage encourages oversharing of data and significantly
impacts the incentives of individuals in online platforms. In this chapter, we study
the design of mechanisms for data acquisition in settings with information leakage
and verifiable data. Concretely, we provide the first characterization of an optimal
mechanism for data acquisition when agents are concerned about privacy and their
data is correlated with each other. As a result, information leakage due to data corre-
lation not only contributes to an agent’s privacy cost, but also to the privacy costs of
others with correlated data. Additionally, the mechanism allows, for the first time,
a trade-off between the bias and variance of the estimator, where the worst-case is
over the unknown correlation between costs and data, when privacy cost is consid-
ered. This offers the analyst freedom to tailor towards an emphasis on either bias
or variance of the estimator depending on the contextual goals. Finally, we further
study the mechanism via a characterization of monotonicity and non-monotonicity
properties of the marketplace. This chapter summarizes the results of [23].

8

Chapter 5: Optimal Pricing in Markets with Non-Convex Costs
In this chapter, we consider a market run by an operator, who seeks to satisfy a given
consumer demand for a commodity by purchasing the needed amount from a group
of competing suppliers with non-convex cost functions. The operator knows the
suppliers’ cost functions and announces a price/payment function for each supplier,
which determines the payment to that supplier for producing different quantities.
Each supplier then makes an individual decision about how much to produce, in
order to maximize its own profit. The key question is how to design the price
functions.

To that end, we propose a new pricing scheme, which is applicable to general non-
convex costs, and allows using general parametric pricing functions. Optimizing for
the quantities and the price parameters simultaneously, and the ability to use general
parametric pricing functions allows our scheme to find prices that are typically eco-
nomically more efficient and less discriminatory than those of the existing schemes,
while still supporting a competitive equilibrium. In addition, we supplement the
proposed method with a computationally efficient polynomial-time approximation
algorithm, which can be used to approximate the optimal quantities and prices for
general non-convex cost functions. Our framework extends to the case of networked
markets, which, to the best of our knowledge, has not been considered in previous
works. Lastly, we evaluate the proposed method through extensive numerical exam-
ples, and show how it compares with the existing methods. This chapter summarizes
the results in [24].

Part I

Resource Allocation

9

10

C h a p t e r 2

COMMUNICATION-AWARE SCHEDULING IN CLOUD AI
SYSTEMS

2.1 Introduction
In this chapter, we study scheduling precedence-constrained tasks onto a set of het-
erogeneous machines with non-uniform (machine-dependent) communication de-
lays between the machines in order to minimize the makespan or the total weighted
completion time. Initially, work on this topicwasmotivated by the goal of scheduling
jobs onmulti-processor systems [25]. Today this problem is timely due to the promi-
nence of large-scale, general-purpose machine learning platforms. For example, in
systems such as Google’s TensorFlow [4], Facebook’s PyTorch [5], and Microsoft’s
AzureMachine Learning (AzureML) [6], machine learning workflows are expressed
via a computational graph, where jobs are made up of tasks, represented as vertices,
and precedence relationships between the tasks, represented as edges. This “prece-
dence graph” abstraction allows data scientists to quickly develop and incorporate
modular components into their machine learning pipeline (e.g., data preprocessing,
model training, and model evaluation) and then easily specify a workflow. The
graphs that specify the workflows in platforms such as TensorFlow, PyTorch, and
AzureML can be made up of hundreds or even thousands of tasks, and the jobs may
be run on systems with thousands of machines. As a result, the performance of the
platforms depends on how these precedence-constrained tasks are scheduled across
machines.

The goal of scheduling jobs composed of precedence-constrained tasks has been
studied for more than fifty years, starting with the work of [26]. The simplest version
of this scheduling problem focuses on scheduling a single job with = precedence-
constrained tasks on < identical parallel machines with the goal of minimizing
the makespan: the time until the last task completes. More generally, the goal
of minimizing the total weighted completion time is considered, where the total
weighted completion time is a weighted average of the completion time of each
task in the job. Note that makespan is a special case of total weighted completion
time as a dummy task with weight one can be added as the final task of the job,
with all other tasks given weight zero. For the goal of minimizing the makespan,

11

Graham showed that a simple list scheduling algorithm can find a schedule of
length within a multiplicative factor of (2 − 1/<) of the optimal. This result is still
the best guarantee known for this simple setting. Since then, research has sought
to generalize the setting considered in two important ways: (i) to non-identical
machines and (ii) to the case where communication is needed between tasks.

Addressing these two issues has been one of the major goals of the field since
Graham’s initial result fifty years ago. Since that time, considerable progress has
mostly been made on generalizations to heterogeneous machines. The focus has
been on (uniformly) related machines, a model where each machine 8 has a speed B8,
each task 9 has a size F 9 , and the time to run task 9 on machine 8 is F 9/B8. Under
the related machine model, a sequence of results in the 1980s and 1990s culminated
in a result that showed how to use list scheduling algorithms in combination with
a partitioning of machines into groups with “similar” speeds in order to achieve an
$ (log<)-approximation algorithm for makespan [9]. This result was also extended
in the same work to total weighted completion time by proposing a time-indexed
linear programming technique. The extension yields an $ (log<)-approximation
for total weighted completion time. The idea of using a group assignment rule
to partition machines into groups of machines with similar speeds and then to
assign tasks to a group is a powerful one and has shown up frequently in the years
since; it recently led to a breakthrough when the idea of partitioning machines
was adapted further and combined with a variation of list scheduling to obtain a
$ (log</log log<)-approximation algorithm for both makespan and total weighted
completion time [10].

Despite the progress made in generalizing from identical machines to heterogeneous
machines, there has been little progress toward the goal of incorporating communi-
cation delays. Subsequent to this work, some progress has been made in the case of
fixed communication delays (see Related literature). However, machine-dependent
communication delays are crucial for capturing issues such as data locality and the
difference between intra-rack and inter-rack communication. The state-of-the-art
result in the case of machine-dependent communication delays is [27], which studies
machine-dependent communication costs in the setting of identical machines. In
this context, a greedy algorithm called Earliest Time First (ETF) has been shown
to produce schedules with a makespan bounded by (2 − 1/<)OPT(8) + �, where
OPT(8) is the optimal schedule length when ignoring communication time and � is
the maximum amount of communication of a chain (path) in the precedence graph.

12

However, the analysis for the case of identical machines in [27] is quite complex
and it has proven difficult to generalize to the related machines setting. As a result,
there has been no progress outside the context of identical machines since [27].

Given the challenge of designing schedulers that are approximately optimal for
relatedmachines withmachine-dependent communication time, most work studying
the design of scheduling policies in this context has relied on developing scheduling
heuristics and evaluating these heuristics numerically [e.g., 28–33]. For a recent
survey, see [34, 35] and the references therein.

Contributions. In this paper, we propose a new scheduler, Generalized Earliest
Time First (GETF), and prove that it computes a makespan that is at most of
length $ (log</log log<)OPT(8) +� in the case of related machines and machine-
dependent communication times, where � is the amount of communication time in
a chain (path) in the precedence graph. Additionally, we generalize our result to the
objective of total weighted completion time and show thatGETFproduces a schedule
S whose total weighted completion time is at most $ (log</log log<) wOPT(8) +∑
9 l 9� (S, 9), where wOPT(8) is the optimal total weighted completion time, l 9 is

the weight in the objective, and� (S, 9) is the communication requirement in a chain
in the precedence graph. These two results address long-standing open problems.
Note that the makespan result matches state-of-the-art bounds for the special cases
(i) when there is zero communication time and (ii) when the machines are identical.
In the case of total weighted completion time, no previous result exists for the case of
identical machines with communication time, but the result matches the best known
bound for the case with related machines and zero communication time.

The key technical advance that enables our new result is a dramatically simplified
analysis of ETF in the setting of identical machines. The state-of-the-art result in
this setting is [27], which is established using a long, complex argument. In contrast,
the core idea in our proof of Theorem 2.4.1 is a short, simple proof of a Separation
Principle which can be used to provide a novel proof of the approximation ratio for
ETF in the case of identical machines. The proof is simple and general enough that
it can be extended from identical machines to related machines by adapting recent
advances from [10].

Related literature. In recent years, the design and optimization of large-scale
general-purpose machine learning platforms has been an overarching goal, bridging
many communities in both industry and academia. The emergence of platforms
such as TensorFlow, PyTorch, and AzureML illustrate the power of such systems to

13

democratize tools from machine learning, making them accessible and scalable for
anyone.

Since the emergence of such systems, there has been a torrent of work that seeks
to optimize the scheduling and assignment of the precedence-constrained graphs in
such systems. Heuristics have emerged for managing straggler tasks [e.g., 28, 29,
36, 37]; scheduling tasks with different computational properties, e.g., jobs with
MapReduce-type structures [38–43], scheduling approximation jobs [28, 37, 44],
and managing communication times [e.g., 35, 45]. Many of these heuristics have
led to system designs that have had a significant industrial impact.

Such designs typically address the challenges associatedwith precedence constraints
in ad hoc ways based on simplifying assumptions about the structures of the graphs.
In contrast, there is a long history of analytic work seeking to design schedulers
for precedence-constrained tasks with provable worst-case guarantees. As we have
already mentioned, the initial results on this topic for makespan were provided by
Graham, who gave a (2 − 1/<)-approximation algorithm based on list scheduling
for % |?A42 |�<0G [26]. A decade later, it was shown by [46] that it is NP-hard
to approximate % |?A42 |�<0G within a factor of 4/3. This left a gap which has
been essentially closed recently, when [47] proved that it is NP-hard to achieve
an approximation factor less than 2, given the assumption of a new variant of
the Unique Game Conjecture introduced by [48]. In the case of total weighted
completion time objective % |?A42 |∑ 9 l 9� 9 , the negative results carry over from
the makespan objective since makespan objective can be viewed as a special case of
total weighted completion time objective. Moreover, under the assumption of the
stronger version of the Unique Game Conjecture, it is shown in [48] that it is even
hard to approximate within a factor of 2 − n for the problem with one machine. On
the positive side, [49] gave a 7-approximation, and [50, 51] later improved it to a
4-approximation. The current best known result is a (2 + 2 ln 2 + n)-approximation
by [10] via a time-indexed linear programming relaxation technique.

The results mentioned above all focus on identical machines with zero communi-
cation delays. When related machines are considered, the problem becomes more
challenging. An early result on this topic is [9], which proposed a Speed-based
List Scheduling (SLS) algorithm that obtains an approximation of $ (log<) for
& |?A42 |�<0G . A time-indexed linear programming technique has been proposed
in the same work that gives a $ (log<) bound for & |?A42 |∑ 9 l 9� 9 . Recently, an
improvement to$ (log</log log<) for both objectives was proven in [10]. The best

14

known lower bound for the problem of related machines is from [52], which shows
that it is impossible for a polynomial time algorithm to approximate the minimal
makespan to any constant factor assuming the hardness of an optimization problem
on :-partite graphs.

In contrast, when communication delay is considered, much less is known. To
our knowledge, no approximation ratio is known for % |?A42, 28, 9 |�<0G , and this
open problem was noted by [53]. The only algorithm with a guaranteed worst-
case performance bound in this setting is ETF [27], which provides a bound of
(2 − 1/<)OPT(8) + � on the makespan in the case of identical machines. Prior
to our paper, no algorithm with a worst-case approximation guarantee for ei-
ther makespan or total weighted completion time is known for the case of re-
lated machines with non-uniform communication delays, i.e.,& |?A42, 28, 9 |�<0G and
& |?A42, 28, 9 |

∑
9 l 9� 9 . Some progress was made subsequently to publication of the

extended abstract of this work [20]. When communication delays are fixed, [11] pro-
posed a$ (log 2 · log<)-approximation algorithm in the case of identical machines,
i.e., % |?A42, 2 |�<0G . Under the related machines model, i.e., & |?A42, 2 |�<0G , [12]
proposed a$ (log< log 2/log log 2) ($%)+2)-approximation algorithmwhere$%)
is the optimal makespan for the problem when duplication is allowed. Further, they
were able to bound the duplication advantage to compute a no-duplication sched-
ule. However, both papers consider fixed communication delays. Additionally, they
both emphasize that their results do not apply to machine-dependent communication
delays and highlight the case of machine-dependent communication delays as an
important open question.

2.2 Problem Formulation
We study a model that generalizes & |?A42, 28, 9 |

∑
9 l 9� 9 by including machine-

dependent communication times. Our goal is to derive bounds on the total weighted
completion time and the makespan, which is an important special case of the total
weighted completion time that uses a particular choice of l 9 .

Specifically, we consider the task of scheduling a job made up of a set + of = tasks
on a heterogeneous system composed of a set " of < machines with potentially
different processing speeds and communication speeds. The tasks form a directed
acyclic graph (DAG) � = (+, �), in which each node 9 represents a task and an
edge (9 ′, 9) between task 9 and task 9 ′ represents a precedence constraint. We
interchangeably use node or task, as convenient. Precedence constraints are denoted

15

by a partial order ≺ between two nodes of any edge, where 9 ′ ≺ 9 means that task
9 can only be scheduled after task 9 ′ completes. Let F 9 represent the processing
demand of task 9 . The amount of data to be transmitted between task 9 ′ and task 9
is represented by the edge weight F 9 ′, 9 of (9 ′, 9).

The system is heterogeneous in two aspects: processing speed and communication
speed. For processing speed, we consider the classical related machines model: a
machine 8 has speed B8, and it takes F 9/B8 uninterrupted time units for task 9 to
complete on machine 8. Specifically, computer resources such as CPUs and GPUs
have varying speeds; hence schedulers must be able to handle heterogeneous servers.
The communication speed B8′,8 between any two machines 8′, 8 is heterogeneous
across different machine pairs. We index the machine to which task 9 is assigned
by ℎ(9). If 8 = ℎ(9) and 8′ = ℎ(9 ′), then communication time between task 9 ′ and 9
in the DAG is F 9 ′, 9/B8′,8.

For simplicity, we consider a setting where the machines are fully connected to each
other, so any machine can communicate with any other machine. This is without
loss of generality as one can simply set the communication speed between any two
disconnected machines to 0. We also assume that the DAG is connected. Again,
this is without loss of generality because, otherwise, the DAG can be viewed as
multiple DAGs and the same results can be applied to each. As a result, our results
trivially apply to the case of multiple jobs. Additionally, our model assumes that
each machine (processing unit) can process at most one task at a time, i.e., there
is no time-sharing, and the machines are assumed to be non-preemptive, i.e., once
a task starts on a machine, the scheduler must wait for the task to complete before
assigning any new task to this machine. This is a natural assumption in many
settings, as interrupting a task and transferring it to another machine can cause
significant processing overhead and communication delays due to data locality, e.g.,
[54].

The goal of the scheduler in our model is to minimize the total weighted completion
time of the job, denoted by

∑
9 l 9� 9 , where � 9 is the completion time of task 9 and

l 9 is the weight associated with task 9 . We also consider the makespan, denoted by
�<0G , which is the time when the the final task in the DAG completes.

Note that the problemwe consider is an offline scheduling problem. This is a classical
problem with relevance to modern ML platforms, which use batch scheduling of
precedence-constrained tasks in their pipelines, e.g., [4]. It is also known to be
challenging. Specifically, minimizing the makespan (and hence also minimizing

16

the total weighted completion time) of jobs with precedence constraints is known
to be NP-complete [55]. Thus, we aim to design a polynomial-time algorithm that
computes an approximately optimal schedule. We say that an algorithm is a d-
approximation algorithm if it always produces a solution with an objective value
within a factor of d of optimal in polynomial time.

Our main results use three important concepts. First, our results provide bounds in
terms of OPT(8) and wOPT(8) , which are the optimal makespan and the optimal total
weighted completion time if the communication delays were zero, respectively. Note
that OPT(8) and wOPT(8) are a lower bound of the corresponding objectives of the
problem when communication delays are not included. Second, we provide bounds
in terms of the communication time of a terminal chain of the schedule. A chain
in the DAG is a sequence of immediate predecessor-successor pairs, whose first
node is a node with no predecessor and last node is a leaf node with no successors.
Third, we provide bounds in terms of the communication time of a terminal chain
of a subset of the DAG that is naturally formed in the scheduling process. Formally,
for any given schedule, a terminal chain C of length # can be constructed in the
following fashion. We start with one of the tasks that ends last in the given schedule,
denoted as 2# . Among all the immediate predecessors of node 2# , we pick one of
the tasks that finishes last and define it as 2#−1. In such a way, we can construct a
chain of tasks 21 ≺ 22 ≺ . . . ≺ 2# until the first node 21 in the chain does not have a
predecessor. There may be many such terminal chains, and our results apply to any
arbitrary terminal chain for the given schedule.

2.3 Generalized Earliest Time First (GETF) Scheduling
In this section, we introduce a new algorithm – Generalized Earliest Time First
(GETF) – for scheduling tasks with precedence constraints in settings where servers
have heterogeneous service rates and communication times. For GETF, we provide
provable worst-case approximation guarantees for both the goal of minimizing the
makespan and minimizing the total weighted completion time. At its core, GETF
is a greedy algorithm. Like ETF, it seeks to run tasks that can be started earliest,
thus minimizing the idle time created by the precedence constraints in a greedy way.
However, this simple heuristic does not take into account the potential difference
between the service rates of different machines. For this, GETF is similar to SLS.
It uses a group assignment function 5 (·) to determine sets of “similar” machines,
and then assigns tasks to different groups of machines. Within the groups of similar
machines, GETF uses the ETF greedy allocation rule.

17

Algorithm 2.1 Generalized Earliest Time First (GETF)

INPUT: group assignment rule 5 (·), tie-breaking rule
OUTPUT: schedule S with machine assignment mapping ℎ(·) and starting time
mapping C (·)

1: ' ← {1, 2, . . . , =}
2: while ' ≠ ∅ do
3: � = { 9 : 9 ∈ ', � 9 ′ s.t. 9 ′ ∈ ' and 9 ′ ≺ 9}
4: For 9 ∈ �, C′

9
= earliest starting time on machine <′

9
s.t. <′

9
∈ 5 (9)

5: � = { 9 : 9 = arg min 9 ′∈� C (9 ′)}
6: Choose 9 from � to start on machine <′

9
with a starting time C′

9
based on the

given tie-breaking rule
7: ℎ(9) = <′

9
, C (9) = C′

9

8: ' ← ' \ { 9}
9: end while

GETF is parameterized by a group assignment function 5 (·) and a tie-breaking rule,
and proceeds in two stages. At every iteration, GETF finds a set � of all the tasks
that are ready to process and are not yet scheduled. For every task in �, GETF
calculates the earliest starting time if it was only allowed to schedule on machines in
the assigned group. Then, GETF computes �, the set of tasks in � with the earliest
starting times, and chooses one of the tasks to process on a machine based on the
tie-breaking rule. The pseudocode for GETF is presented in Algorithm 2.1 and
Figure 2.1 in Section 2.3.3 illustrates the operation of GETF on a simple example
(Example 2.3.1).

GETF can be instantiated with different group assignment and tie-breaking rules.
To understand how these rules work, consider a situation where the < machines
are divided into groups "1, "2, . . . , " by a group assignment rule. Let 5 (9)
denote the group of machines to which task 9 can be assigned, 9 = 1, . . . , =. Given
this notation, a schedule under GETF consists of two mappings: a mapping ℎ(·)
from each task to its assigned machine and a mapping C (·) from each task to its
starting time. Further, for any schedule with ℎ(·) produced by GETF, ℎ(·) of the
produced schedule should be consistent with group assignment function 5 (·), i.e.,
ℎ(9) ∈ 5 (9) for each task 9 .

The choice of the group assignment rule has a significant impact on the performance
of GETF. Indeed, different group assignment functions are used for the goals of
minimizing the makespan and total weighted completion time. While our results

18

hold for any tie-breaking rule, different tie-breaking rules could provide meaningful
improvements in real-world workloads. As it could be helpful to keep a specific
tie-breaking rule in mind while considering the algorithm and proofs, the reader
may find it helpful to consider random tie-breaking. Our technical results are based
on the specific group assignment functions described in the following subsections.

2.3.1 A Group Assignment Rule for Makespan
The group assignment rule 5mksp(·) for the goal of minimizing the makespan that
we focus on is adapted from SLS, which is designed for the setting without com-
munication time. Specifically, machines of similar speeds are grouped together as
follows.

First, all the machines with speed less than a 1
<

fraction of the speed of the
fastest machine are discarded. Then, the remaining machines are divided into
 groups "1, "2, . . . , " where = dlogW <e, W = log</log log<. Note that
 = $ (log</log log<). Given the removal of the slowest machines, we can
assume that any remaining machine has speed within a factor of 1

<
of the fastest

machine. Without loss of generality, we assume the speed of the fastest machine is
< and the group ": contains machines with speeds in range [W:−1, W:).

It may seem strange that some machines are discarded, but note that the total speed
of discarded machines is not bigger than the speed of the fastest machine. So, if
we consider the scheduling problem with zero communication time, removing these
machines at most doubles the makespan in the worst case.

After dividing machines into groups in the preprocessing step, we need to assign
the machines. This step is more involved than the division. The design of the group
assignment rule 5mksp(·) is based on the solution of a linear program (LP), which is
a relaxed version of the following mixed integer linear program (MILP).

While the MILP is only designed to produce a group assignment rule, its optimal
solution does not necessarily provide a feasible schedule. In the MILP, G8, 9 = 1 if
task 9 is assigned to machine 8; otherwise G8, 9 = 0. For each task 9 , � 9 denotes the
completion time of task 9 . Constraint (2.1a) ensures that every task is processed
on some machine. For any task 9 , processing time F 9

∑
8
G8, 9
B8

is bounded by its
completion time as in constraint (2.1b). Constraint (2.1c) enforces the precedence
constraints between any predecessor-successor pair (9 ′, 9). Constraint (2.1d) guar-
antees that the total load assigned to machine 8 is F 9

∑
8
G8, 9
B8

and it should not be
greater than the makespan. Finally, constraint (2.1e) states that the makespan should

19

not be smaller than the completion time of any task.

min
G8, 9 ,� 9 ,)

)∑
8

G8, 9 = 1 ∀ 9 (2.1a)

F 9

∑
8

G8, 9

B8
≤ � 9 ∀ 9 (2.1b)

� 9 ′ + F 9

∑
8

G8, 9

B8
≤ � 9 9 ′ ≺ 9 (2.1c)

1
B8

∑
9

F 9G8, 9 ≤) ∀8 (2.1d)

� 9 ≤) ∀ 9 (2.1e)

G8, 9 ∈ {0, 1} ∀8, 9 . (2.1f)

Since we cannot solve the MILP efficiently, we relax it to form an LP by replacing
constraint (2.1f) with G8, 9 ≥ 0. Let G∗, �∗,)∗ denote the optimal solution of this LP.
Note that)∗ provides a lower bound on OPT(8) , the optimal makespan for the same
problem with zero communication time.

For a set ": ⊆ " of machines, let B(":) denote the total speed of machines in ": ,
i.e.,

B(":) =
∑
8∈":

B8 .

Define G∗
": , 9

as the total fraction of task 9 assigned to machines in set ": :

G∗": , 9 =
∑
8∈":

G∗8, 9 .

For any task 9 , define ℓ 9 as the largest group index such that at least half of the tasks
are fractionally assigned to machines in groups "ℓ, . . . , " :

ℓ 9 = max
ℓ
ℓ s.t.

 ∑
:=ℓ

G∗": , 9 ≥
1
2
.

We note that any choice of constant above works for the purpose of our worst case
analysis of GETF, but the choice can potentially have an impact on its empirical
performance. Thus the choice of the parameter should be further optimized when
applied in practice. Each task 9 is assigned to the group 5mksp(9) that maximizes
the total speed of machines in that group among candidates "; 9 , . . . , " , i.e.,

5mksp(9) = arg max
": :ℓ 9≤:≤

B(":).

20

2.3.2 A Group Assignment Rule for Total Weighted Completion Time
The group assignment rule 5twct(·) for the goal of minimizing the total weighted
completion time is similar in spirit to 5mksp(·), but is based on modified solutions of
a different LP. We divide machines into groups in the same way as in Section 2.3.1.
Without loss of generality, we assume that F 9

B8
≥ 1 for any task 9 to be processed on

anymachine 8. Thus, we can divide the time horizon into the following time-indexed
intervals of possible task completion times: [1, 2], (2, 4], (4, 8], . . . , (g&−1, g&]
where & = log (∑ 9

F 9
min8 B8) and g@ = 2@ for 0 ≤ @ ≤ &. Then, the MILP that

forms the basis for the group assignment rule can be formulated as follows:

min
G8, 9 ,@ ,� 9

∑
9

l 9� 9∑
8

∑
@

G8, 9 ,@ = 1 ∀ 9 (2.2a)

F 9

∑
8

1
B8

∑
@

G8, 9 ,@ ≤ � 9 ∀ 9 (2.2b)

� 9 ′ + F 9

∑
8

1
B8

∑
@

G8, 9 ,@ ≤ � 9 9 ′ ≺ 9 (2.2c)

@∑
C=1

∑
8

G8, 9 ,C −
@∑
C=1

∑
8

G8, 9 ′,C ≤ 0 ∀@, 9 ′ ≺ 9 (2.2d)∑
@

g@−1
∑
8

G8, 9 ,@ < � 9 ∀ 9 (2.2e)

1
B8

∑
9

F 9

@∑
C=1

G8, 9 ,C ≤ g@ ∀8, @ (2.2f)

G8, 9 ,@ ∈ {0, 1} ∀8, 9 , @. (2.2g)

Again, theMILP is only designed to find a group assignment rule, and thus its optimal
solution does not necessarily produce a feasible schedule. Here, G8, 9 ,@ = 1 if task 9 is
assigned to machine 8 and it completes in the @th interval (g@−1, g@]. For each task 9 ,
� 9 denotes the completion time of task 9 andl 9 represents its weight in the objective
of total weighted completion time. Constraint (2.2a) enforces that each task will be
assigned to some machine. Constraint (2.2b) guarantees that the completion time of
a task is not smaller than its processing time. Constraints (2.2c) and (2.2d) together
enforce the precedence constraint for every predecessor-successor pair. Constraint
(2.2e) guarantees that the completion time of task 9 is not smaller than the left
boundary of the @th interval (g@−1, g@]. The total load assigned to machine 8 up to

21

@th interval is 1
B8

∑
9 F 9

∑@

C=1 G8, 9 ,C , and it should not be greater than the upper bound
g@ as enforced in constraint (2.2f).

To define the group allocation rule, we relax constraint (2.2g) to form an LP. As
in the previous section, let G∗, �∗ denote the optimal solution for this LP. Note that∑
9 l 9�

∗
9
provides a lower bound for wOPT(8) . For any task 9 , define @(9) as the

minimum value of @ such that both
∑@

C=1
∑
8 G
∗
8, 9 ,C
≥ 1

2 and �∗
9
≤ 2@ are satisfied.

Intuitively, @(9) can be viewed as a rough estimate of the completion time of task 9 .
Define U(9) as the total fraction of task 9 over any machine in the first @(9) intervals
with respect to solution G∗:

U 9 =

@(9)∑
C=1

∑
8

G∗8, 9 ,C .

We construct a set of feasible solutions G̃ based on the optimal solution G∗ for the
LP:

G̃8, 9 =

@(9)∑
@=1

G∗
8, 9 ,@

U 9
∀8, 9 . (2.3)

Notice that the group assignment rule 5twct(·) is of the same form as 5mksp(·), with
G̃ replacing G∗. For task j, define ℓ̃ 9 as before but with respect to G̃ instead of G∗:

ℓ̃ 9 = max
ℓ
ℓ s.t.

 ∑
:=ℓ

G̃": , 9 ≥
1
2
.

The group assignment rule 5twct(·) for the goal of minimizing the total weighted
completion time follows as below:

5twct(9) = arg max
": :ℓ̃ 9≤:≤

B(":).

2.3.3 A Comparison of GETF and SLS
The description of GETF above highlights that it combines the greedy heuristic
of ETF with the speed-based assignment heuristic of SLS. This enables GETF
to provide guarantees for settings with both heterogeneous processing rates and
communication delays. In contrast, SLS does not provide guarantees in settings
with communication time. This is a result of the fact that SLS is based on list
scheduling and does not always schedule the earliest task first, thus making it
impossible to bound the overall idle time in between tasks.

To illustrate the difference between GETF and SLS, we provide a simple example
of scheduling a job made up of four tasks.

22

(a) (b)

(c) (d)

Figure 2.1: An illustration of GETF running on Example 2.3.1. (a)-(d) show the
first four iterations.

(a) (b)

(c) (d)

Figure 2.2: An illustration of SLS running on Example 2.3.1. (a)-(d) show the first
four iterations.

23

Example 2.3.1. We consider a job made up of four tasks, 0, 1, 2, 3 with processing
demands 1, 1, 1, and 3 that are to be scheduled on a set of two identical machines
with the same processing speed equal to 1. The weight for the edges in the graph
are listed as below: F0,2 = F0,3 = F1,2 = 2, F1,3 = 1. We assume B8, 9 = 1 for 8 ≠ 9;
otherwise B8,8 = 2 for 8 = 0, 1.

The schedules of GETF and SLS are illustrated in Figures 2.1 and 2.2. Note that,
since the servers are identical, the group assignment rule does not play a role in
these examples. Given a priority list (0, 1, 2, 3), a possible schedule produced by
SLS puts tasks 0 and 2 on machine 0 and assigns the rest of the tasks to machine 1 as
demonstrated in Figure 2.2. A terminal chain for the given schedule is task 1 followed
by task 3, and the idle time of length 2 between the end of task 1 and the start of task
3 on machine 1 is not bounded by the communication time between task 1 and 3. In
contrast, task 3 starts earlier on machine 0 in a schedule produced by GETF, see
Figure 2.1. List scheduling does not always schedule the earliest task at each step,
thus making the idle time on machine 1 not necessarily bounded by communication
time between task 1 and task 3. Our proofs in Section 2.4.1 highlight thatmaintaining
a tight bound on the communication time between tasks is crucial to achieving a
good approximation ratio in settings with machine-dependent communication time.

2.4 Results
Our main results bound the approximation ratio of GETF in settings with related
machines and heterogeneous communication time for the goals of minimizing the
makespan and minimizing the total weighted completion time.

2.4.1 Makespan
In the case of minimizing the makespan, our main result provides a bound in terms
of the communication time of a terminal chain of the schedule. Specifically, let
C : 21 ≺ 22 ≺ . . . ≺ 2# be a terminal chain for the schedule and define � as the
communication time over such a chain in the worst case, i.e.,

� =

#∑
9=2

F2 9−1,2 9

B̄(2 9−1, 2 9)
,

where B̄(2 9−1, 2 9) is defined as the slowest speed between ℎ(2 9−1), the machine
assigned to 2 9−1 and any machine in the group 5 (2 9), i.e.,

B̄(2 9−1, 2 9) = min
8∈ 5 (2 9)

Bℎ(2 9−1),8 .

24

Note that � can be computed efficiently and minimized over all the terminal chains
using dynamic programming and that the tie-breaking rule can have an impact on �
due to its impact on terminal chains.

Theorem 2.4.1. For any schedule S produced by GETF with group assignment
rule, 5mksp(·)

�<0G (S) ≤ $ (log</log log<)OPT(8) + �,

where OPT(8) is the optimal schedule length obtained if communication time for all
pairs were zero.

Theorem 2.4.1 represents the first result for makespan in the setting of related ma-
chines and heterogeneous communication time, addressing a problem that has been
open since ETF was introduced for identical machines thirty years ago. Addi-
tionally, it matches the state-of-the-art results for the case without communication
time, where the best known approximation ratio is $ (log</log log<) [10], and
the case with communication time but identical machines, where the best known
approximation ratio is (2 − 1

<
)OPT(8) + � [27].

Concretely, in the special case of identical machines, the group assignment rule
5mksp(·) is no longer required when implementing GETF since all machines share
the same speed, so there is only one group of machines. Thus, GETF reduces to
ETF. The theorem makes use of �′ which is defined as

�′ =
1
<

#∑
9=2

<∑
8=1

F2 9−1,2 9

Bℎ(2 9−1),8
.

Note that �′ differs from � since it is an average over the terminal chain. The result
we obtain in this case is the following, which matches the current state-of-the-art
result of [27].

Proposition 2.4.1. Consider a setting with < identical machines. For any schedule
S produced by GETF,

�<0G (S) ≤
(
2 − 1

<

)
OPT(8) + �′,

where OPT(8) is the optimal schedule length obtained if communication time for all
pairs were zero.

25

2.4.2 Total Weighted Completion Time
Similarly to the makespan case, we provide a bound with respect to the communica-
tion time of chains. However, since total weighted completion time depends on the
completion time of every task (instead of just one task as in the case of makespan),
the communication time of terminal chains of many subsets of the DAG show up in
the bound. More formally, assume that the tasks are indexed with respect to their
order in the schedule determined by GETF, denoted by S. At iteration 9 , task 9

is to be scheduled. Let � (S, 9) denote a DAG formed by a set of the tasks that
have been scheduled so far and the corresponding edges within these tasks. Define
S(9) to be a subset of the given schedule S up to iteration 9 , i.e., it is a schedule
for DAG � (S, 9). This definition ensures that task 9 is one of the tasks that ends
last in the schedule S(9). Now, let C(S, 9) : 21 ≺ 22 ≺ · · · ≺ 2# 9 be a terminal
chain that ends with task 9 = 2# 9 in the schedule S(9), and define � (S, 9) as the
communication time over such a chain in the worst case, i.e.,

� (S, 9) =
9∑
9 ′=2

F2 9 ′−1,2 9 ′

B̄(2 9 ′−1, 2 9 ′)
.

This definition of � (S, 9) generalizes the notion of � used in Theorem 2.4.1 for
makespan and plays a similar role in the theorem below.

Theorem 2.4.2. For any scheduleS produced by GETF with group assignment rule
5twct(·), ∑

9

l 9� 9 ≤ $ (log</log log<)wOPT(8) +
∑
9

l 9� (S, 9),

where wOPT(8) is the optimal total weighted completion time obtained if communi-
cation time for all pairs was zero.

Theorem 2.4.2 is the first result on total weighted completion time for the setting
of related machines with heterogeneous communication time and it matches the
bounds in cases where previous results exist. In particular, if the weights are chosen
so as to recover makespan, then the bound matches that of Theorem 2.4.1. Similarly,
results for identical machines can be recovered as done in the case of makespan.
However, note that the group assignment rule used for GETF here is different than
that in Theorem 2.4.1. The rule used in Theorem 2.4.2 applies more generally but,
while both group assignment rules yield the same worst-case performance bound
for makespan, we expect that the rule used in Theorem 2.4.1 will lead to a smaller

26

makespan in most practical settings as it is designed for the purpose of minimizing
the makespan.

2.5 Proofs
In this section, we present our proofs of Theorems 2.4.1 and 2.4.2. The general form
of both arguments is similar; however, the case of total weighted completion time
is more involved. The first step of our argument is to show a general upper bound,
which is valid forGETF regardless of choices of group assignment function 5 (·), and
tie-breaking rule. This Separation Principle can be used to easily establish the result
for makespan in the case of identical machines (Proposition 2.4.1), and represents a
significant simplification compared to existing proofs of that result in the literature.
We then tighten the general bound by taking advantage of the choices of 5 (·)
described in Section 2.3 for makespan and total weighted completion time. Finally,
we establish a connection between the makespan and total weighted completion time
in the same settings by introducing a time-indexed LP that enables us to bound the
total weighted completion time.

2.5.1 A Separation Principle
The Separation Principle presented here is a key component of our proof of Theorem
2.4.1. The core of nearly all proofs in this area is the construction of a chain, which
is then used to bound the overall makespan. This idea goes back to the first list
scheduling algorithms proposed by [26]. The key to our argument is to bound
the amount of communication time between any predecessor-successor pairs in a
terminal chain. However, as we discuss in Section 2.3, it is not possible to do this
under list scheduling algorithms.

Our approach also differs considerably from the approach used to study ETF in [27],
where the authors divide [0, �<0G] into two sets of time intervals, one for the time
when all the machines are busy and the other that one chain covers. Extending this
approach to related machines does not appear possible. In contrast, in our argument,
the construction of a terminal chain is simple and so we can identify the set of time
intervals between tasks in the terminal chain and take advantage of the greedy nature
of GETF to bound these times directly.

A key feature of the the Separation Principle below is that it separates the analysis
of the terminal chain from the analysis of the group assignment rule, which provides
another valuable simplification of the previous proof approaches.

27

Theorem 2.5.1 (Separation Principle). For any choice of group assignment function
5 (·) and tie-breaking rule, GETF produces a schedule S of makespan

�<0G (S) ≤ % +
 ∑
:=1

�: + �,

where
% =

∑
2 9∈C

F2 9

Bℎ(2 9)
,

�: =

∑
9 ::∈ 5 (9) F 9

B(":)
,

� =

#−1∑
9=1

F2 9 ,2 9+1

B̄(2 9 , 2 9+1)
.

Note that the upper bound in this result is valid regardless of the choice of group
assignment rule and tie-breaking rule. % is the sum of processing times along a
terminal chain and �: can be viewed as total load assigned tomachines in group": .
Both % and�: , : = 1, 2, . . . , , are not dependent on the communication constraint,
which enables us to take advantage of any good choice of group assignment rule
5 (·) for general DAG scheduling, even in the case of zero communication time.

Proof. Our proof proceeds in four steps:

(i) Define a terminal chain C. Recall that a chain C, 21 ≺ 22 ≺ . . . ≺ 2# is a
terminal chain when task 2# completes at the end of the overall schedule.

(ii) Partition the overall makespan into + 1 parts. The idea of this step is to
decouple [0, �<0G] into one part where the tasks in the terminal chain are being
processed and other parts associated with each machine group. Dependent
on the choices of group assignment rule, we can further bound these + 1
parts.

(iii) Bound the idle time in between tasks. The greedy nature of GETF makes
it possible to bound the length of the idle time intervals between tasks by
communication delays of task pairs.

(iv) Combine (ii) and (iii) to bound the overall makespan in terms of the commu-
nication time of the terminal chain.

28

(8) Define a terminal chain C. To find a terminal chain of length # , we start with
one of the tasks that ends last, denoted as 2# . According to the definition of ℎ(·)
and C (·), task 2# is assigned to machine ℎ(2#) in group 5 (2#) with a starting time
C (2#). Among all the immediate predecessors of task 2# , we pick one of the tasks
that finishes last and define it as 2#−1. In such a fashion, we construct a chain C of
tasks 21 ≺ 22 ≺ . . . ≺ 2# of length # such that 21 does not have any predecessor.

(88) Partition [0, �<0G] into +1 parts,T0,T1, . . . ,T . Recall that = $ (log</log log<)
is the number of groups for machines by the group assignment rule as we describe
in the previous section. Let T0 denote the union of the time intervals during which
tasks of chain C are being processed. Consider the time interval between the end
of task 2 9−1 and the start of task 2 9 for 9 = 2, 3, . . . , # , and assign it to T: where
": = 5 (2 9). As a set of time intervals, T: can be possibly empty or have more than
one time interval. Essentially, T: is a set of time intervals that tasks in the terminal
chain C assigned to machines in group ": have to wait before being processed. In
such a fashion, we define T1,T2, . . . ,T since 5 (·) maps each task to one of the
machine groups. The length of the union of T8 for 8 = 0, 1, . . . , is the makespan.

(888) Bound the idle time in between tasks. Consider a task 2 9 assigned to machine
ℎ(2 9). For each machine 8 ∈ 5 (2 9), let � (2 9−1, 2 9 , 8) denote a union of disjoint
empty time intervals on machine 8 between the end time of task 2 9−1 and the start
time of task 2 9 . Between the end time of task 2 9−1 and the start time of task 2 9 , there
can be multiple tasks being processed on machine 8 in serial, possibly resulting in
more than one idle time interval onmachine 8 during that time interval � (2 9−1, 2 9 , 8).
Precedence constraints between task pairs can also possibly make a successor wait
before it gets started. Regardless of the reason for idle time between tasks, each
task can not possibly start earlier on any machine in the assigned group due to the
greedy feature of GETF. Thus the length of � (2 9−1, 2 9 , 8) is bounded above by the
communication time between task 2 9−1 and task 2 9 , i.e.,

|� (2 9−1, 2 9 , 8) | ≤
F2 9−1,2 9

Bℎ(2 9−1),8
∀8 ∈ 5 (2 9).

This is true because if it were not the case, then task 2 9 could have started earlier
on machine 8. Note that the end time of task 2 9 could possibly be earlier if it were
allowed to be scheduled on a faster machine with a slightly bigger communication
delay, since the processing speeds of machines in the same group vary.

Let 48 be idle time on machine 8 in group ": during the time interval T: , and let 4̄:
be maximum idle time on any machine in group ": during the time intervals T: ,

29

i.e., 48 ≤ 4̄: for all 8 ∈ ": . Thus,

 ∑
:=1

4̄: ≤
#∑
9=2

F2 9−1,2 9

min8′∈ 5 (2 9) Bℎ(2 9−1),8′

≤
#∑
9=2

F2 9−1,2 9

B̄(2 9−1, 2 9)
. (2.4)

(8E) Bound the makespan. For 1 ≤ : ≤ , the total speed of machines in group ":

is
B(":) =

∑
8∈":

B8 .

Denote the total length of the intervals in T: by C: . There must be at least a sum of
(C: − 48) B8 units of processing done on each machine 8 in group ": during the time
intervals T: . Thus for 1 ≤ : ≤ ,∑

8∈":
(C: − 48) B8 ≤

∑
9 : 5 (9)=":

F 9 .

Therefore,

C: ≤
∑
9 : 5 (9)=": F 9

B(":)
+

∑
8∈": 48B8

B(":)
. (2.5)

We now bound C<0G:

C<0G =
 ∑
:=1

C: + C0

≤
 ∑
:=1

(∑
9 : 5 (9)=: F 9

B(":)
+

∑
8∈": 48B8

B(":)

)
+∑

2 9∈C

F2 9

Bℎ(2 9)
(2.6a)

≤ % +
 ∑
:=1

�: +
 ∑
:=1

4̄:

∑
8∈": B8

B(":)

= % +
 ∑
:=1

�: +
 ∑
:=1

4̄:

≤ % +
 ∑
:=1

�: + �, (2.6b)

where (2.6a) is due to (2.5) and (2.6b) is due to (2.4).

30

2.5.2 Proof of Theorem 2.4.1
In order to apply the Separation Principle to prove Theorem 2.4.1, we need to prove
bounds on % and

∑
:=1 �: in the case of the group assignment rule defined in Section

2.3. For this, we consider the scheduling problem with zero communication time.
Note that the design of group assignment function 5mksp(·) is based on the optimal
solution G∗ of the relaxed LP for a scheduling problem with zero communication
time, hence the upper bounds for both % and

∑
:=1 �: are associated with the optimal

objective of the relaxed LP in the setting with zero communication time as well.

The bounds of % and
∑
:=1 �: are given in the following two lemmas, which are

adapted from results in [10]. Theorem 2.4.1 follows directly from these two lemmas,
the Separation Principle, and the fact that)∗ ≤ OPT(8) , where)∗ is the optimal
solution to the LP.

Lemma 2.5.1. % ≤ 2W)∗.

Proof. Recall that G∗
" ′, 9 =

∑
8∈" ′ G

∗
8, 9

and ℓ 9 as the largest group index such that at
least more than half of tasks are assigned to machines in groups "ℓ, . . . , " .

For every task 9 and any machine 8 ∈ 5 (9), by definition of the largest index ℓ 9 ,

ℓ 9∑
:=1

G∗": , 9 >
1
2
. (2.7)

Thus, ∑
8′∈"

G∗
8′, 9

B8′
=

 ∑
:=1

∑
8′∈":

G∗
8′, 9

B8′
(2.8a)

≥
ℓ 9∑
:=1

∑
8′∈":

G∗
8′, 9

B8′

≥ 1
2
W−ℓ 9 (2.8b)

≥ 1
2WB8

, (2.8c)

where (2.8b) is due to (2.7) and the fact that processing speed of machine 8′ in group
": for task 9 is at most Wℓ 9 for : ≤ ℓ 9 , and (2.8c) is due to the fact that processing
speed of machine 8 in group 5 (9), whose group index is not smaller than ℓ 9 , is at

31

least Wℓ 9−1. Using this, we can bound % as follows:

% =
∑
2 9∈C

F2 9

Bℎ(2 9)

≤ 2W
∑
2 9∈C

F2 9

∑
8′∈"

G∗
8′,2 9

B8′
(2.9a)

≤ 2W
∑
2 9∈C

�∗2 9 (2.9b)

≤ 2W)∗, (2.9c)

where (2.9a) is due to (2.8), (2.9b) is due to constraint (2.1d) of the LP, and (2.9c)
is due to constraint (2.1c) of the LP.

Lemma 2.5.2.
∑
:=1 �: ≤ 2)∗.

Proof. For any task 9 , by definition of ℓ 9 ,
∑
:=ℓ 9

G∗
": , 9
≥ 1

2 . Thus,

1
2B(5 (9)) ≤

 ∑
:=ℓ 9

G∗
": , 9

B(5 (9))

≤
 ∑
:=ℓ 9

G∗
": , 9

B(":)
(2.10)

≤
 ∑
:=1

G∗
": , 9

B(":)
.

Inequality (2.10) is due to the fact that the assigned group 5 (9) maximizes the total
speeds of machines in that group among the candidates "ℓ 9 , . . . , " . Thus,

 ∑
:=1

�: =

 ∑
:=1

∑
9 : 5 (9)=": F 9

B(":)
=

∑
9∈+

F 9

B(5 (9))

≤ 2
∑
9∈+

F 9

 ∑
:=1

G∗
": , 9

B(":)

= 2
 ∑
:=1

1
B(":)

∑
9∈+

F 9G
∗
": , 9

≤ 2
 ∑
:=1

)∗ (2.11)

= 2)∗.

32

The total load assigned to machines in group ": is
∑
9∈+ F 9G

∗
": , 9

while its total
speed is ((":). Summing over machines in group ": on both sides for constraint
(2.1d) leads to (2.11).

2.5.3 Proof of Proposition 2.4.1
We now show how the Separation Principle can be used to provide a new, simpler
proof of the state-of-the-art approximation ratio of ETF in the case of identical
machines. Recall that the group assignment function is not required for GETF in
this case.

To prove Proposition 2.4.1, we use the same approach as we used for proving the
Separation Principle. However, we can tighten the analysis in the final step of the
argument. Specifically, the proof can be broken into three steps, instead of four:

(i) Define a terminal chain C. This step is identical to the definition of a terminal
chain in the proof of the Separation Principle.

(ii) Bound the idle time in between tasks. As the machines are identical in terms
of processing speed, communication speed between different machine pairs
are still heterogeneous due to the possible geolocations of machines.

(iii) Combine (i) and (ii) to bound the overall makespan in terms of the communi-
cation time of the terminal chain.

Compared with the proof of the Separation Principle, Step (i) defines a terminal
chain in the exactly same way. In Step (ii), bounding the idle time in the case of
identical machines is also similar. Step (iii) requires more work. Here, we further
tighten the bound by eliminating the processing time of the terminal chain to improve
the constant factor.

(8) Define a terminal chain C. This step is identical to the definition of a terminal
chain in the proof of the Separation Principle.

(88) Bound the idle time in between tasks. Let � (2 9−1, 2 9) be the time interval
between the end time of task 2 9−1 and the start time of 28 for 9 = 2, 3, . . . , # .
As we explained in the Separation Principle, there can possibly be multiple idle
time intervals on a machine during the time interval � (2 9−1, 2 9). For each machine
8 ∈ " , define � (2 9−1, 2 9 , 8) as a union of disjoint empty time intervals on machine 8
during the time interval � (2 9−1, 2 9). For any machine 8, the length of � (2 9−1, 2 9 , 8)

33

is bounded above by the communication time between task 2 9−1 and task 2 9 , i.e.,

|� (2 9−1, 2 9 , 8) | ≤
F2 9−1,2 9

Bℎ(2 9−1),8
∀8 ∈ ", 9 = 2, 3, . . . , #.

Otherwise task 2 9 could have started earlier on machine 8.

(888) Bound the makespan. During the time intervals � (2 9−1, 2 9) for 9 = 2, 3, . . . , # ,
there must be at least

∑#
9=2

∑<
8=1(|� (2 9−1, 98) | − |� (2 9−1, 2 9 , 8) |) processing units

done, and it is bounded by a sum of the processing units for all the tasks except those
in the terminal chain. This leads to the following bound:

#∑
9=2

<∑
8=1

(
|� (2 9−1, 2 9) | − |� (2 9−1, 2 9 , 8) |

)
≤

=∑
9=1
F 9 −

#∑
9=1
F2 9 . (2.12a)

Finally, applying (2.12a), we have

C<0G =
#∑
9=2
|� (2 9−1, 2 9) | +

#∑
9=1
F2 9

≤ 1
<

=∑
9=1
F 9 +

< − 1
<

#∑
9=1
F2 9+

1
<

#∑
9=2

<∑
8=1
|� (2 9−1, 2 9 , 8) |

≤
(
2 − 1

<

)
opt(8) + �′. (2.13a)

The total processing time
∑=
9=1 F 9 divided by the number of machines < is the

smallest possible makespan, i.e., 1
<

∑=
9=1 F 9 ≤ OPT(8) . At the same time, the

makespan of any schedule should at least cover the processing time of any chain C
in the DAG. These two facts lead to the last inequality (2.13a).

2.5.4 Proof of Theorem 2.4.2
To establish the bound on the total weighted completion time for the group assign-
ment rule 5twct(·), we first apply the Separation Principle to separate the requirements
on communication and processing times. Second, we break the tasks into subsets
based on the task completion times and, for each subset, we form an LP for those
tasks alone. For each such LP, we construct a feasible solution G̃, �̃ and)̃ to
bound processing time of the tasks. The feasibility of G̃, �̃ and)̃ enables us to take
advantage of Lemmas 2.5.1 and 2.5.2 with only a loss of an additional constant
factor.

34

Given a schedule S for a DAG �, we use the same notation as in Section 2.4.2,
� (S, 9), to denote subsets of DAG. For each DAG � (S, 9), there is a terminal
chain C(S, 9) with task 9 as the ending task in the schedule S(9). Similarly, define
%(S, 9) as a sum of the processing time along the terminal chain C(S, 9),

%(S, 9) =
∑

2 9∈C(S, 9)

F2 9

Bℎ(2 9)
, (2.14)

and let �: (S, 9) denote the total load assigned to machines in group ": in DAG
� (S, 9),

�: (S, 9) =
∑
9 : 9∈� (S, 9),:∈ 5 (9) F 9

B(":)
. (2.15)

For every DAG � (S, 9) associated with schedule S 9 for 1 ≤ 9 ≤ =, we are able to
apply Separation Principle and then combine these inequalities as follows:∑

9

l 9� 9 ≤
∑
9

l 9

(
%(S, 9) +

∑
:

�: (S, 9)
)
+

∑
9

l 9� (S, 9).

Both %(S, 9) and �: (S, 9) are independent of the communication constraints,
which enables us to take advantage of any group assignment rule.

Using the group assignment rule 5twct(·) helps further tighten the bound. To show
this, we first divide the = tasks into & sets based on @(9), which can be viewed as a
rough estimate of the completion time of task 9 . For the @th interval, we define J@
as a set of tasks such that @(9) = @:

J@ = { 9 : @(9) = @}.

In this way, we have divided the = tasks into & sets: J1,J2, . . . ,J& .

Next, for 1 ≤ @ ≤ &, we construct a set of feasible solutions for LP (2.1), G̃, �̃ and
)̃ , for every set of tasks in J@, based on the optimal solution of LP (2.2), i.e., G∗ and
�∗. Note that G̃ here is the same as in equation (2.3). Since precedence constraints
are preserved in constraints of the LPs, we can concatenate these schedules together
to obtain a feasible schedule for all of the tasks.

Lemma 2.5.3. Consider a set of tasks J@ for a fixed @. A feasible solution for LP
(2.1) is defined by

G̃8, 9 =

@∑
C=1

G∗
8, 9 ,C

U 9
∀8, 9 ∈ J@ (2.17a)

�̃ 9 = 2�∗9 ∀ 9 ∈ J@ (2.17b)

)̃ = 2@+1. (2.17c)

35

Proof. To show feasibility of such a candidate solution, we verify that @, G̃, �̃ and)̃
satisfy all the constraints in LP (2.1). Substitute G̃ into the left side of constraint
(2.1a) for any task 9 ∈ J@, and it is clear that

∑
8 G̃8, 9 = 1. To validate that constraint

(2.1b) is satisfied, note that U 9 ≥ 1/2 by definition and so a direct substitution on
the left hand side yields the right hand side due to (2.2b). Similarly, constraint
(2.2c) ensures that constraint (2.1c) is satisfied and constraint (2.2f) ensures that
constraint (2.1d) is satisfied. Finally, we obtain �∗

9
≤ 2@ by definition of @(9) and

thus constraint (2.1e) holds.

Due to the similarity between group assignment rule 5mksp(·) and 5twct(·), we can
further tighten the bound using Lemmas 2.5.1 and 2.5.2 from Section 2.5.2 directly.
Combining Lemmas 2.5.1 and 2.5.3, we conclude that the total load along any chain
C in the DAG formed by J@ is upper bounded by∑

9∈C

F 9

Bℎ(9)
≤ 2W)̃

= 2W · 2@+1.

Next, since the terminal chain C(S, 9) can be represented as a concatenation of
chains in the DAGs formed by tasks in J@ for 1 ≤ @ ≤ @(9), we have

%(S, 9) ≤
@(9)∑
C=1

2W · 2C+1

≤ 8W · 2@(9) .

Using Lemmas 2.5.2 and 2.5.3 together gives the following inequality:∑
9∈J@

F 9

B(5twct(9))
≤ 2)̃

= 2 · 2@+1.

The left side can be viewed as
∑
: �: for a DAG formed by tasks in J@. Since the

tasks in DAG � (S, 9) form a subset of ∪@(9)
C=1 J@, the following inequality holds:∑

:

�: (S, 9) ≤
@(9)∑
C=1

∑
9 ′∈J@

F 9 ′

B(5twct(9 ′))

≤
@(9)∑
C=1

2 · 2C+1

≤ 8 · 2@(9) ,

36

which immediately yields

%(S, 9) +
∑
:

�: (S, 9) ≤ 8(W +) · 2@(9) .

Finally, the remaining piece of the proof is to upper bound 2@(9) with a multiplicative
factor of its optimal completion time �∗

9
in the LP (2.2). By definition of @(9), for

task 9 either
@(9)−1∑
C=1

∑
8

G∗8, 9 ,C <
1
2

(2.20)

or
�∗9 > 2@(9)−1. (2.21)

If inequality (2.20) holds, then

2@(9)−1 = g@(9)−1

≤ 2g@(9)−1
©«

&∑
C=@(9)

∑
8

G∗8, 9 ,C
ª®¬ (2.22a)

≤ 2 ©«
&∑

C=@(9)
gC−1

∑
8

G∗8, 9 ,C
ª®¬

≤ 2

(∑
C

gC−1
∑
8

G∗8, 9 ,C

)
≤ 2�∗9 . (2.22b)

Inequality (2.22a) is due to (2.20) and the definition of @(9), and constraint (2.2e)
in the LP (2.2) leads to (2.22b). If inequality (2.21) is true, then

2@(9)−1 < �∗9 ≤ 2�∗9 .

In both cases, 2@(9)−1 is upper bounded by 2�∗
9
. Thus, we achieve

%(S, 9) +
∑
:

�: (S, 9) ≤ 32(W +) · �∗9 .

Since
∑
9 l 9�

∗
9
is lower bounded by wOPT(8) , we conclude that∑

9

l 9� 9 ≤
∑
9

l 9

(
%(S, 9) +

∑
:

�: (S, 9)
)
+

∑
9

l 9� (S, 9) (2.23a)

≤ 32(W +)
∑
9

l 9�
∗
9 +

∑
9

l 9� (S, 9) (2.23b)

≤ $ (log</log log<) · wOPT(8) +
∑
9

l 9� (S, 9), (2.23c)

which completes the proof.

37

2.6 Concluding Remarks
This paper studies the problem of scheduling tasks with precedence constraints on
related machines with machine-dependent communication times, and addresses two
long-standing open problems in the area. We introduce a new scheduler, GETF, and
prove worst-case approximation ratios for it in the case of (i) scheduling to minimize
the makespan and (ii) scheduling to minimize the total weighted completion time.
These results represent the first progress on this problem since [27] provided a
bound on the makespan under ETF in the case of identical servers and non-uniform
communication time. No previous bounds exist for the case of total weighted
completion time when non-uniform communication time is considered.

A variety of open questions are raised by the work in this paper. Most importantly,
while we have provided theoretical bounds on the performance of GETF, it is also
important to investigate how GETF performs in real settings via an implementation
study. GETF could be particularly powerful in the context of large-scale machine
learning platforms, where workflows are typically specified as DAGs. As part of
such a study, it would be interesting to understand how to best choose a tie-breaking
rule, how to adjust the group assignment rules for the best performance, and how
various choices for these rules compare with heuristics that have been suggested in
the literature. Further, it will be important to see if it is possible to obtain some
theoretical results characterizing how the optimal choices for these rules depend on
properties of real-world workloads. Moreover, it will also be interesting to extend
the results of this work to stochastic settings, e.g., when task sizes are unknown.

On the analytic side, it will be interesting to discover other applications of the
Separation Principle. It may be possible to revisit other scheduling problems for
precedence-constrained tasks and obtain more general results because of the sep-
aration this result provides. Further, it is possible to consider other performance
measures, such as energy usage and resource augmentation, using the Separation
Principle.

38

C h a p t e r 3

ENERGY-AWARE SCHEDULING IN CLOUD AI SYSTEMS

3.1 Introduction
This chapter seeks to develop energy-aware scheduling policies for precedence-
constrained tasks that arise in modern machine learning platforms. The problem
of how to optimally schedule a job made up of tasks with precedence constraints
has been studied for decades. The initial work on this scheduling problem arose in
the context of scheduling jobs on multi-processor systems [25]. Today this problem
attracts attention due to the prominence of large-scale, general-purpose machine
learning platforms, e.g., Google’s TensorFlow [4], Facebook’s PyTorch [5], and
Microsoft’s Azure Machine Learning (AzureML) [6]. Machine learning jobs on
the cloud are often expressed as a directed acyclic graphs (DAG) of precedence-
constrained tasks, and how these jobs are scheduled to run on clusters of machines
on the cloud is very crucial to the performance of the system [4]. Another timely
example of scheduling precedence-constrained tasks is the parallelization of training
and evaluation of large complex neural networks in heterogeneous clusters that
consist of CPUs, GPUs, TPUs, etc. This device placement problem has attracted
considerable attention in recent years [56–58].

Traditionally, computational efficiency has been the only focus of works studying
how to schedule precedence-constrained tasks, e.g., the goal is to complete the tasks
as soon as possible given a fixed set of heterogeneous machines. The most common
metric in the literature is total weighted completion time, i.e., a weighted average of
completion time of tasks. The mean response time is a special case of total weighted
completion time (via assigning equal weights to all the tasks), as is themakespan (via
adding a dummy node of weight one as the final task with all other tasks assigned to
weight zero). For these performance measures, significant progress has been made
in recent years. New results have emerged providing policies with poly-logarithmic
approximation ratios in increasingly general settings, including settings focused on
makespan and total weighted completion time, settings with heterogeneous related
machines, and settings with uniform and machine-dependent communication times
[10–12, 21, 59]. Details on these results can be found in the Related Literature
section.

39

However, the increasing scale of machine learning jobs has brought questions about
the energy usage of such jobs to the forefront. Today, the emissions of training
an AI model can be as high as five times the lifetime emission of a car [13].
The computation required for deep learning has been doubling every 3.4 months,
resulting a 300,000x increase from 2012 to 2018 [14, 15]. Indeed, the energy cost
for an individual data center is on the order of million dollars, and it has become a
significant portion of operating cost for cloud platforms [60]. However, there is an
inherent conflict between boosting performance and reducing energy consumption,
i.e., a larger power budget, in general, allows a higher performance in practice. Thus,
it is urgent to study how we can efficiently schedule machine learning jobs with
both performance and energy consumption in mind. Balancing these performance
measures and energy usage is crucial to industry as well as societal goals of making
cloud computing carbon neutral [61].

There has been considerable progress toward understanding how to schedule to
balance performance and energy measures in simple settings, e.g., single and multi-
server settings without dependencies between tasks [62–65]. A focus within this
line of work is on the question of co-designing scheduling of tasks and speed scaling
of servers. On an algorithmic level, there are three common choices to conserve
power consumption.

(a) Static speed: a server adopts a constant speed of choice to balance between
performance and energy budgets.

(b) Gated static speed (a.k.a. sleep states, shutting down): a server transitions to
low power mode (with speed set to zero) when it is idle; otherwise the server
chooses a constant speed.

(c) Speed scaling: a server has freedom to adjust speeds dynamically when
executing tasks.

Though the gated speed scheme is easier to implement in practice, speed scaling
brings more potential to conserve energy by adjusting speeds of a task depending
on the priority of the task. If one task needs to be prioritized, then the scheduler
assigns a fast speed to run the task at the cost of a high power consumption.

While there has been progress on studying speed scaling in simple scheduling prob-
lems, the question of how to balance energy usage with traditional performance met-
rics, such as total weighted completion time, in more complex settings where there

40

are dependencies among tasks is a challenging open question. In fact, scheduling
precedence-constrained tasks is NP-hard even when ignoring power consumption,
i.e., both the goal of partitioning the jobs across machines and of scheduling the
jobs among a group of machines are NP-hard. Further, speed scaling adds con-
siderable difficulty to the question of how to schedule tasks optimally to balance
energy and performance. When speed scaling is not considered, the relaxed version
of the scheduling problem can be formulated as a mixed integer linear program
(MILP). Thus, there are many off-shelf solvers that work well for these problems
on a relatively small-scale in practice. In the presence of speed scaling, solving for
the optimal schedule even for small-scale problems becomes even more complex
and computationally expensive in practice because the optimization is no longer
linear. Given the hardness of the problem, a natural question is: can we design a
scheduler and speed scaling policy for precedence-constrained tasks that is provably
near-optimal for a linear combination of performance and energy consumption?

Related Literature. In recent years, due to the successful deployment of machine
learning algorithms under different contextual scenarios, the design and optimization
of large-scale machine learning platforms attracts extensive attention from both
academia and industry community. One of the fundamental challenge is to balance
between system performance and energy usage while scheduling machine learning
jobs with precedence constrains.

Significant progress has been recently made towards the goal of maximizing per-
formance while scheduling precedence-constrained tasks if energy concerns are
ignored. Under the related machines model, i.e., & |?A42 |∑l 9� 9 , a Speed-based
List Scheduling algorithm was proposed to obtain a $ (log<)-approximation [9].
Later, an improvement to $ (log</log log<) was made in 2017 by [10] for both
objectives: makespan and total weighted completion time. If communication delays
are assumed to be fixed (uniform), two groups of researchers independently made
progress towards a multiplicative approximation algorithm with logarithmic guar-
antees by adopting different approaches [11, 12, 59]. When it comes to incorporate
non-uniform communication delays for the first time, i.e., & |?A42, 28, 9 |

∑
l 9� 9 ,

Generalized Earliest Time First (GETF) was proposed in [21] to achieve a worst-
case bound for both makespan and total weighted completion time, and it reduces
to the state of the art results in the case of zero communication delays.

There has been a torrent of works studying power management if precedence con-
straints are ignored, including settings with sleep states [66–68], settings that con-

41

sider speed scaling, settings with single servers [63, 69–72], and settings with mul-
tiple servers [64, 65, 73]. A comparison of different energy conservation schemes
have also received considerable attention as well [62, 74]. Further, diverse perfor-
mancemeasures have been considered in the literature, including deadline feasibility
[63, 75, 76], flow time [77–79], etc. We refer to [80] for a comprehensive survey of
related scheduling problems.

However, when both performance and energy goals are considered for tasks with
precedence constraints, much less is known. The closest work to ours is by [81].
They consider the problem of scheduling precedence-constrained tasks to minimize
the makespan subject to an energy constraint, and obtain a poly-logarithmic approx-
imation algorithm by reducing the problem to the problem & |?A42 |�<0G . However,
their technique does not apply to our setting for two reasons. First, we consider a
general objective, which is a linear combination of performance and energy con-
sumption, instead of focusing on the constrained budget problem; Second, total
weighted completion time is a much more general choice for performance measure
given that makespan is a special case of it. Thus it remains unknown if we can
design a scheduler for precedence-constrained tasks to minimize a combination of
performance and energy measure under these general settings.

Further, there are tremendous works on the design of heuristics for the goal of
balancing both performance and energy measures [82–88]. We focus on theoretical
results, and thus do not dive into the details of these heuristics.

3.2 Model
We study the problem of scheduling a job made of a set V of = tasks on a system
consisting of a set M of < machines. The tasks form a directed acyclic graph
(DAG) G = (V, E), in which each node 9 represents a task and an edge (9 ′, 9)
between task 9 and task 9 ′ represents a precedence constraint. We interchangeably
use node or task, as convenient. Precedence constraints are denoted by a partial
order ≺ between two nodes of any edge, where 9 ′ ≺ 9 means that task 9 can only be
scheduled after task 9 ′ completes. Let ? 9 represent the processing size of task 9 . If
task 9 is assigned to run at a speed B 9 on machine 8, then it would take ? 9

B 9
time units

to run on machine 8.

For simplicity, we assume that the DAG is connected. This is without loss of
generality because, otherwise, the DAG can be viewed as multiple DAGs and the
same results can be applied to each individual connected component. As a result,

42

our results trivially apply to the case of multiple jobs. Additionally, our model
assumes that each machine can process at most one task at a time, i.e., there is
no time-sharing, and the machines are assumed to be non-preemptive, i.e., once a
task starts on a machine, the scheduler must wait for the task to complete before
scheduling any new task to this machine. This is a natural assumption in many
settings, as interrupting a task and transferring it to another machine can cause
significant processing overhead and communication delays due to data locality.
Further, we assume that servers consume zero power when in idle, i.e., servers can
run at zero speed.

Performance measure. The objective function we consider is) + _� , a linear
combination of a performance measure) and an energy/power usage � . The
system operator can emphasize on either performance or energy metric as desired
via a choice of weight _. For this work, we adopt total weighted completion time
as the performance measure, and our results apply to both makespan and mean
response time as well. For the energy metric, our focus � is on total energy usage,
which is the sum of energy usage of all tasks in the DAG, i.e., � =

∑
9∈V � 9 .

Speed scaling. The scheduler has the ability to scale speed of servers in order
to trade off performance and energy. In our model, a server chooses speed B 9 for
task 9 . For a task running at speed B 9 , its energy consumption � 9 is modeled
as the product of the instantaneous power 5 (B 9) and running time C 9 of that task,
i.e., � 9 = 5 (B 9) · C 9 . A common form of the power function in the literature is a
polynomial, i.e., 5 (B) = BU where U > 1. A quadratic form is most common, so we
focus on that in this work, though our main results apply more generally. Note that
for any convex choice of instantaneous power function, given any optimal schedule,
the server always runs at a constant speed during the execution of a single task;
otherwise we can always adopt the average speed for running the task without any
sacrifice on performance measure but potentially conserve more energy.

3.3 The Optimization Problem
We formally define the problem via an optimization formulation. Let G8, 9 be a a
binary decision variable that indicates whether task 9 is assigned to machine 8, i.e,

G8, 9 =

1, if task 9 runs on machine 8,

0, otherwise.
(3.1)

Let� 9 denote the completion time of task 9 , and B 9 denote the assigned speed of task
9 . The scheduling problem (with total weighted completion time as the performance

43

measure) can be formulated as follows:

min
G8, 9 ,� 9 ,B 9 ,),�

) + _�

G8, 9 ∈ {0, 1} ∀8, 9 (3.2a)∑
8

G8, 9 = 1 ∀ 9 (3.2b)

� 9 ′ +
? 9

B 9
≤ � 9 9 ′ ≺ 9 (3.2c)∑

9

l 9� 9 ≤) ∀ 9 (3.2d)∑
9

5 (B 9)
? 9

B 9
= � (3.2e)∑

8

G8, 9G8, 9 ′ = @ 9 , 9 ′ ∀ 9 , 9 ′ if 9! = 9 ′ (3.2f)

� 9 ′ − � 9 ≥
? 9 ′

B 9 ′
or � 9 − � 9 ′ ≥

? 9

B 9
if @ 9 , 9 ′ = 1 . (3.2g)

The optimal value of this problem is denoted as OPT. Constraint (3.2b) requires
every task to be scheduled on some machine. Constraint (3.2c) guarantees that for
any successor predecessor pair, the successor task will not start until the predecessor
completes. In Constraint (3.2d),) represents the total weighted completion time,
and it can be reduced to other performance measures by assigning appropriate
weights, such as makespan and mean response time. In Constraint (3.2e), � is the
sum of multiplication of power function per unit time and running time. Constraint
(3.2f) guarantees that @ 9 , 9 ′ = 1 if task 9 and task 9 ′ are assigned to the samemachine.
Anymachine should not processmore than one task at a time, as in Constraint (3.2g).
By addition of an auxiliary binary variable 1 9 , 9 ′, we can rewrite Constraint (3.2g)
as follows:

@ 9 , 9 ′

(
� 9 − � 9 ′ +

? 9 ′

B 9 ′

)
≤1 9 , 9 ′

(
) − � 9 ′ +

? 9 ′

B 9 ′

)
∀ 9 , 9 ′ (3.3a)

1 9 , 9 ′� 9 ′ ≤
(
� 9 −

? 9

B 9

)
@ 9 , 9 ′ ∀ 9 , 9 ′ (3.3b)

1 9 , 9 ′ ≤@ 9 , 9 ′ ∀ 9 , 9 ′ (3.3c)

1 9 , 9 ′ ∈{0, 1} ∀ 9 , 9 ′. (3.3d)

When task 9 and task 9 ′ are assigned to run on the same machine, i.e., @ 9 , 9 ′ = 1, the
auxiliary variable represents the ordering of these two tasks, i.e., 1 9 , 9 ′ = 0 if 9 ≺ 9 ′.

44

We emphasize that there are many possible formulations for the optimization prob-
lem. For example, we can derive another optimization formulation with a time-
indexed program, but it would remain nonlinear due to speed constraints. Thus, we
adopt the above formulation for simplicity. Given the optimization formulation, it is
straightforward to conclude that searching for the global optimal of such a complex
non-convex problem is hard and computationally expensive. As a result, we focus
on approximation algorithms.

3.4 Algorithm Design
Inspired by the single server case, we introduce the notion of pseudo-size to quan-
tify importance of tasks in the DAG. Intuitively, a task of significance should be
prioritized to run while a task of low priority should be set to run at a slow speed.
Our approximation algorithm combines the intuition of pseudo-size approximation
and any approximation algorithm for the case of identical machines without energy
concerns, e.g., [50], to produce a schedule that balances between performance and
energy goals. The pseudo-size of tasks depend on various features of the precedence
graph, such as degree of nodes, number of children, etc, as well as the given number
of machines. In practice, experts can extract these features and feed them to an
off-shelf learning algorithm to obtain an approximation.

The introduction of pseudo-size is critical in two ways. First, conditional on an
approximation of pseudo-size, we are able to reduce the general problem, where it is
hard to find an optimal solution, to a much simpler scheduling problem in the case
of identical machines. This not only mitigates the required computations in process,
but also makes it possible to compute a theoretical bound on the final schedule.
Second, since the concept of pseudo-size stems from one single server scenario, it
comes with an intuitive interpretation in the physical world, which is not a given
in the world of learning algorithms. In practice, pseudo-size of a task quantifies
magnitude of externalities it has on other tasks in the graph.

Next, we first formally define the notion of pseudo-size, and then propose a family
of approximation scheduling algorithms based on the pseudo-size approximation.

3.4.1 The Single Server Case
We start by diving into the one server problem. As shown in [62], the optimal
speed for running a task without precedence constraints is proportional to square
root of the number of tasks that are waiting for the task. The same intuition holds
true for one server even if there are precedence constraints among the tasks. The

45

characterization of optimal speeds in the one server case is summarized as follows.

Example 3.4.1. Consider = tasks with dependency to be scheduled to run on a
single machine, i.e., optimization problem (3.2) with < = 1. For any given feasible
ordering in which tasks are indexed with respect to the the given ordering, the
optimal speed for running task 9 is√

(= − 9 + 1) ·
l 9

_
,

where (= − 9 + 1) is the number of tasks waiting for its completion.

Proof. For any feasible ordering of tasks on the machines, we assume that tasks are
indexed with respect to the given ordering, i.e., 1 ≺ 2 ≺ · · · ≺ =. Thus the objective
function can be simplified to(

= · ?1
B1
+ _ · ?1 · B1

)
+

(
(= − 1) · ?2

B2
+ _ · ?2 · B2

)
+ · · · +

(
?=

B=
+ _ · ?= · B=

)
.

Clearly, the objective is minimized only when speed of task 9 is set to be equal to√
(= − 9 + 1)/_. For task 9 , (= − 9 + 1) is the number of tasks (including the task

itself) that are depending on its completion.

For a large _ that translates to an emphasis on the total energy consumption, optimal
speeds tend to have a smaller magnitude and vice versa. When _ is chosen to be
one, then total weighted completion time of tasks is equal to the sum of energy
consumption in any given optimal schedule, i.e., equal budgets are allocated to
performance measure and energy consumption for any optimal schedule. In this
case, optimal speeds of a task is exactly square root of the number of dependent
tasks provided that the weight l 9 of task 9 is 1. Via a choice of _, the system
designer can adjust the budget for performance and energy consumption as desired.

3.4.2 Pseudo-Size
The pseudo-size of a task is a measure of importance of the task with respect to its
running speed. If a task hasmany tasks waiting for its completion, then the scheduler
tends to prioritize the task via assigning a fast running speed. This parallels with
the term (= − 9 + 1) in the single server case.

Definition 3.4.1. For a given DAG G to be scheduled on a set of < machines, the
pseudo-size V 9 of task 9 is defined as the scaled square of the optimal speed B 9 for

46

that task multiplied by the scaling parameter W 9 , i.e.,

V 9 = W 9 · (B 9)2, (3.4)

where W 9 , _
l 9

is a constant scalar introduced by system parameters.

The scaling parameter depends on the choice of performance measure as well as
the weight _. For any relatively large-scale problem, optimal speed is almost
impossible to determine for such a problem. As a result, a good approximation via
an approximation of pseudo-size becomes significant.

3.4.3 Learning-Augmented Energy-Aware List Scheduling
In this section, we propose Learning-Augmented Energy-Aware List Scheduling
for both makespan and total weighted completion time based on an approximation
of task pseudo-size. The concept of task pseudo-size offers a new and intuitive
perspective to learn the optimal speeds via an approximation of pseudo-size. The
data-driven approach enables us to adapt to different scenarios quickly, e.g., dif-
ferent structures of DAGs, heterogeneous task sizes and number of machines, etc.
Additionally, as a two-stage algorithm, Learning-Augmented Energy-Aware List
Scheduling enables us to separate the evaluation of these two stages, and combine
them together to form a worst-case bound under some conditions. Our algorithm
proceeds as follows.

Algorithm 3.2 Learning-Augmented Energy-Aware List Scheduling.

INPUT: DAG G = (V, E) and number of machines <.
OUTPUT: schedule S and speed scaling policy {B 9 }.

First Stage
1: Approximate task pseudo-size {V 9 } via learning.

Second Stage
2: Derive the associated running speed {B 9 }.
3: Transform the initial problem into identical machine case by assigning a new

task size ?′
9
← ? 9/B 9 for every task.

4: Apply list scheduling. ⊲ LS varies depending on choice of �<0G and
∑
l 9� 9 .

We divide our algorithm into two stages. During the first stage, we take advantage of
any off-shelf data-driven algorithms to learn an approximation of task pseudo-size
fromworkload data. The learned model might vary depending on choice of different

47

performance measures. During the second stage, we exploit the learned pseudo-size
and derive the associated speed for every single task in the DAG. Given the running
speeds, we are able to transform the problem into the case of identical machines
and adopt any appropriate listing scheduling to compute a final schedule. Note that
the priority list adopted for makespan and total weighted completion time can be
different in order to achieve a good theoretic guarantee. In short, any greedy list
scheduling can be employed for makespan while list scheduling has to be further
refined in the case of total weighted completion time. Next, we further describe the
list scheduling adopted from [50] for total weighted completion time.

Total Weighted Completion Time. Given a pseudo-size approximation {V 9 }, we
transform the problem into the identical machines problem by assigning a new task
size for task 9 :

?′9 ← ? 9 ·
√
W 9/V 9 . (3.5)

The pseudo-size of a task quantifies magnitude of externalities that it has on other
tasks waiting for its completion. Equation (3.5) scales task sizes to account for
externalities. After the transformation, the list scheduling adopted for total weighted
completion time is built upon a linear program [50].

min
� 9

∑
9∈V

l 9� 9

� 9 ≥ � 9 ′ + ?′9 ∀ 9 ′ ≺ 9 (3.6a)∑
9∈F

?′9� 9 ≥
1

2<
©«
∑
9∈F

?′9
ª®¬

2

+ 1
2

∑
9∈F

?′29 ∀F ⊂ V (3.6b)

The objective of the linear program is to minimize total weighted completion time.
Constraint (3.6a) enforces precedence constraints among any predecessor-successor
pair. Constraint (3.6b) is a weaker version of no time sharing requirement, i.e., one
machine can only process at most one task at a time.

This linear program doe not serve to find an optimal solution for the identical
machine problem. Instead, we further build upon its solutions to construct a priority
list. Let {�!%

9
} denote the optimal solutions for LP (3.6). The priority list is

constructed with respect to U-points of tasks based on the LP solution, which are
defined as below for 0 ≤ U ≤ 1. The U-point"!%

9
of task 9 based on the LP solution

is defined as follows:
"!%
9 , �

!%
9 − U · ?′9 .

48

Once we compute the U-points of tasks, we obtain the priority list L by indexing
these tasks with respect to magnitude of U-points in a non-decreasing order, i.e., a
task with a large U-point value has a high priority. In practice, we can search for
a near-optimal U to further optimize over the overall objective, but for the purpose
of this work, we can assume that U = 1

2 to achieve the final bound. We conclude
this section by giving the details of list scheduling in the case of total weighted
completion time as in Algorithm 3.3.

Algorithm 3.3 Learning-Augmented Energy-Aware List Scheduling: Total
Weighted Completion Time.

INPUT: DAG G = (V, E) and number of machines <.
OUTPUT: schedule S and speed scaling policy {B 9 }.

First Stage
1: Approximate task pseudo-size {V 9 } via learning.

Second Stage
2: Transform the initial problem into the identical machine problem by assigning

a new task size ?′
9
← ? 9/B 9 where B 9 =

√
V 9/W 9 for each task.

3: Construct a priority list L via LP (3.6). ⊲ List scheduling starts.
4: for task 9 in the priority list L do
5: Start task 9 on any available machine at the earliest possible time.
6: end for

3.5 Results
Learning-augmented algorithms usually leverage machine learning tools to make
a prediction in a data-driven fashion, and then feed this prediction as the actual
input to an algorithm. The goal is to design such an algorithm that incorporates
these predictions and provides theoretic guarantees based on quality of learning-
based predictions. These learning-augmented algorithms have been applied in
various settings, e.g., predicting task size for a scheduler [89], improving online
algorithms [90, 91], ski-rental etc. Similarly in this work, we take the inspiration
of pseudo-size from the single server case, and construct a scheduler and speed
scaling policy via building upon the pseudo-size approximation. This allows our
algorithm to adapt to workload data. Assuming a good approximation of task
pseudo-size, we are able to provide worst-case bounds on a linear combination
of performance and energy consumption when either makespan or total weighted
completion time is considered. Even when an pseudo-size approximation is bad,

49

our results characterize how the overall worst-case performance depends on quality
of task pseudo-size approximation.

3.5.1 Total Weighted Completion Time
The scheduling algorithm makes use of the pseudo-size in two stages. First, we
use learning-based algorithms to learn an approximation of the pseudo-size {V 9 }.
Second, we exploit the pseudo-size approximation to transform the problem into
a scheduling problem with identical machines via assigning a new task size of
? 9 ·

√
W 9/V 9 for task 9 . Then we can take advantage of the approximation algorithm

in [50] for the case of identical machines. We denote the schedule produced by
the above algorithm as schedule (. Let) (() and � (() denote the performance
and energy consumption of the schedule (respectively. We use 5 (() to denote
the linear combination of performance and energy consumption for schedule (, i.e.,
5 (() =) (() + _ · � ((). Our main result is the following learning-augmented
approximation ratio.

Theorem 3.5.1 (Total Weighted Completion Time). Given a good pseudo-size ap-
proximation for tasks in a DAG, i.e., (1 − n−

9
) · V∗

9
≤ V 9 ≤ (1 + n+9) · V∗9 , then any

schedule (created by the above algorithm satisfies:

5 (() ≤ max

max
9

4√
1 − n−

9

,max
9

√
1 + n+

9

 · $%).
Note that the approximation ratio is small as long as the pseudo-size is approximated
well.

3.5.2 Makespan
If makespan is adopted for performance measure rather than total weighted com-
pletion time, during the second stage of the scheduling algorithm, we transform
the problem into the identical machine problem and then apply a list scheduling
algorithm. For a produced schedule (, we prove the following learning-augmented
approximation ratio.

Theorem 3.5.2 (Makespan). Given a good pseudo-size approximation for tasks in
a DAG, i.e., (1 − n−

9
) · V∗

9
≤ V 9 ≤ (1 + n+9) · V∗9 , then any schedule (created by the

50

above algorithm satisfies:

5 (() ≤ max

max
9

2 − 1/<√
1 − n−

9

,max
9

√
1 + n+

9

 · $%).
To the best of our knowledge, this provides the first bound when minimizing a
linear combination of performance and energy consumption, which is more general
compared to settings focused on minimizing the makespan for a given energy budget
as in [81]. Moreover, their techniques in [81] does not apply to the case of total
weighted completion time.

3.6 Concluding Remarks
In this chapter, we consider the problem of scheduling precedence-constrained tasks
to minimize a linear combination of performance and energy consumption. Our
main results provide worst-case guarantees when performance is either makespan or
total weighted completion time. Even without a general pseudo-size approximation,
one can easily achieve a good approximation for certain DAGs, e.g., a DAG with all
joins or forks. A variety of research questions have been raised by our results. Most
importantly, how good is an approximation of task pseudo-size for general DAGs
via learning from workload data? Moreover, for particular structures of DAGs, is it
possible to further refine the bounds by incorporating properties of these DAGs? On
the analytic side, it would be also interesting to study how our learning-augmented
algorithm compares with pure learning algorithms in practice.

3.A Appendix
3.A.1 A Proof of Theorem 3.5.1

Proof. Our proof proceeds in three steps.

(8) Bound total energy consumption � . Assuming a good approximation of task
pseudo-size, i.e., (1−n−

9
) ·V∗

9
≤ V 9 ≤ (1+n+9) ·V∗9 , we can translate this approximation

into a bound on speeds adopted in the algorithm:√
1 − n−

9
· B∗9 ≤ B 9 ≤

√
1 + n+

9
· B∗9 .

Given that energy consumption of task 9 is

� 9 = 5 (B 9) · C 9 = ? 9 · B 9 ≤
√

1 + n+
9
· �∗9 ,

51

we get an upper bound on the total energy consumption:

� (() ≤ max
9
(
√

1 + n+
9
) · �∗. (7)

(88) Bound total weighted completion time) . According to the main results in [50],
for any schedule generated by the LP (3.6), we get

� 9 − ?′9 ≤ 2"!%
9 + 2(�!%9 − ?′9),

which can be further relaxed as below:

� 9 ≤ 4�!%9 − 2?′9 . (8)

Let) (?1, · · · , ?=) denote the optimal total weighted completion time for the iden-
tical machines problem with task sizes (?1, · · · , ?=). Thus∑

9

l 9� 9 ≤ 4
∑
9

l 9�
!%
9 (9a)

≤ 4 ·)
(
?′1, · · · , ?

′
=

)
(9b)

≤ 4 ·)
(
?1
B∗1
· 1√

1 − n−1
, · · · , ?=

B∗=
· 1
√

1 − n−=

)
(9c)

≤ 4 ·)
©«
?1
B∗1
·max

9

1√
1 − n−

9

, · · · , ?=
B∗=
·max

9

1√
1 − n−

9

ª®®¬ (9d)

= max
9

4√
1 − n−

9

·)
(
?1
B∗1
, · · · , ?=

B∗=

)
(9e)

= max
9

4√
1 − n−

9

·
∑
9

l 9�
∗
9 . (9f)

Inequality (9a) is a further relaxation of Inequality (8). As LP (3.6) only covers
partial constraints for the scheduling problem of identical machines, its optimal
objective gives a lower bound as in Inequality (9b). Consider the scheduling problem
in the case of identical machines: if we increase task sizes for each task, then total
weighted completion time will increase as well. This explains why Inequality (9c)
and Inequality (9d) hold true. If we scale the task size by a constant factor, then total
weighted completion time will scale correspondingly as in Equality (9e). This can
be easily verified if we go over the constraints in the optimization formulation for
the scheduling problem in the case of identical machines. Equality (9f) says that the

52

general scheduling problem, when either performance or energy consumption are
considered, can be reduced to the problem of minimizing total weighted completion
time alone when task sizes are re-scaled.

(888) Combine (i) and (ii) to bound the overall objective. By combining Inequality
(7) and Inequality (9), we achieve

) (() + _� (() ≤ max

max
9

4√
1 − n−

9

,max
9

√
1 + n+

9

 · $%).

3.A.2 A Proof of Theorem 3.5.2

Proof. Our proof proceeds in three steps.

(8) Bound total energy consumption � . This step is no different than that in the case
of total weighted completion time. Assuming a good approximation of task pseudo-
size, i.e., (1− n−

9
) · V∗

9
≤ V 9 ≤ (1+ n+9) · V∗9 , we can translate this approximation into

a bound on speeds adopted in the algorithm:√
1 − n−

9
· B∗9 ≤ B 9 ≤

√
1 + n+

9
· B∗9 . (10)

Given that energy consumption of task 9 is

� 9 = 5 (B 9) · C 9 = ? 9 · B 9 ≤
√

1 + n+
9
· �∗9 , (11)

we get an upper bound on the total energy consumption:

� (() ≤ max
9
(
√

1 + n+
9
) · �∗. (12)

(88) Bound makespan) . We start with constructing a chain backwards. In the
given schedule (, we start with the task that ends last. Among its predecessors,
we choose one of the tasks with the latest completion time. There can be multiple
candidate tasks that end at the same time. Though the overall performance might
vary depending on different tie-breaking rules in practice, random tie-breaking rules
are good enough for the purpose of this proof. We note that there is no idle gaps
in between the execution of any pair of two predecessor-successor tasks in such a
chain; otherwise, the successor task could have started earlier. We continue doing
so until we reach the top of the DAG. In such a way, we construct a chain J such

53

that every machine is busy during the complement time of execution process of this
chain of tasks. Thus,

) (() ≤
∑
9∈J

?′9 +
∑
9∈V ?

′
9
−∑

9∈J ?
′
9

<

= (1 − 1
<
)
∑
9∈J

?′9 +
1
<

∑
9∈V

?′9 .

Let �<0G (?1, · · · , ?=) denote the optimal makespan for the identical machines
problem with task sizes (?1, · · · , ?=). Then

) (() ≤ (1 − 1
<
) · �<0G

(
?′1, · · · , ?

′
=

)
+ �<0G

(
?′1, · · · , ?

′
=

)
(14a)

≤ (2 − 1
<
) · �<0G

(
?1
B∗1
· 1√

1 − n−1
, · · · , ?=

B∗=
· 1
√

1 − n−=

)
(14b)

≤ (2 − 1
<
) · �<0G

©«
?1
B∗1
·max

9

1√
1 − n−

9

, · · · , ?=
B∗=
·max

9

1√
1 − n−

9

ª®®¬ (14c)

= max
9

2 − 1/<√
1 − n−

9

· �<0G
(
?1
B∗1
, · · · , ?=

B∗=

)
. (14d)

As in Inequality (14a), optimal makespan should be lower bounded by either run-
ning time of any chain of tasks in the DAG or completion time as if there were no
precedence constraints. Consider the scheduling problem in settings with identical
machines: if we increase size of any task, the optimal makespan should not be-
come any shorter, if not any longer. This is why Inequality (14b) and Inequality
(14c) hold true. Further, if we scale task size by a constant factor, then optimal
makespan should scale correspondingly. Again, this can be easily seen if we write
the linear optimization formulation of the scheduling problem in the case of identical
machines.

(888) Combine (i) and (ii) to bound the overall objective. By combining Inequality
(12) and Inequality (14d), we achieve

) (() + _� (() ≤ max

max
9

2 − 1/<√
1 − n−

9

,max
9

√
1 + n+

9

 · $%). (15)

Part II

Market Design

54

55

C h a p t e r 4

THE PRIVACY PARADOX IN DATA ACQUISITION

4.1 Introduction
There is a fundamental discrepancy between privacy attitudes and the behaviors
of users online: users claim to be concerned about their privacy, but do little
to protect privacy in their actions. More specifically, users express their concerns
about privacy, including the ambiguous distribution of data and its use by third party
[92–94]; however, when choosing services, users mainly focus on the popularity,
convenience, price, etc, despite the potential risk of data misuse [95, 96]. This
phenomenon is known as the privacy paradox [97], and understanding the reasons
behind this paradox and its consequences for the design of online platforms is an
important goal for both computer scientists and economists.

The privacy paradox is at the root of the behavior of individuals in modern online
data marketplaces. Online platforms gather data on billions of individuals in order
to personalize advertising and customize other aspects of their systems. However,
such usage tends to provide little direct benefits for the users, a fact that is used as
indirect evidence to argue that users provide a small value on privacy [98]. Such
an argument ignores the impact that an individual’s participation decision has on
others. In particular, when an individual shares her data, it is not just her privacy
that is compromised; the privacy of other individuals whose data is correlated with
hers is also compromised. Thus, these other individuals are more likely to share
their own data given that some has already been leaked [99]. This simple, but often
overlooked issue is at the root of the privacy paradox. Information leakage due to
correlation has been shown to lead to oversharing since each individual overlooks
their own privacy concerns as a result of the negative externalities created by others’
revelation decisions. Thus, information leakage leads to the potential for significant
economic and social inefficiency in data marketplaces.

In this paper, we study the impact of privacy concerns and information leakage on
the design of data markets. Specifically, we study the task of designing mechanisms
for obtaining verifiable data from a population for a statistical estimation task, such
as estimating the expected value of some function of the underlying data.

The goal of designing mechanisms for optimal data acquisition is a core piece of

56

the emerging literature on data marketplaces. A common motivating example is
a setting where a healthcare platform is doing statistical analysis on its population
of users. While some data is measured accurately from their smart devices, other
desired data may be about characteristics users do not wish to provide or may vary
over time. Thus the healthcare platform has to conduct a survey among the users
to obtain such information accurately (e.g., giving the individual a smart device or
having the individual fill out a form); however when administering such a survey, the
responses are likely biased. For example, if weight is the target, then the respondents
may be biased towards low-weight samples. Thus, the task of designingmechanisms
to limit the bias and reduce the variance of estimates obtained from such surveys is
crucial. However, such a task is challenging due to the fact that the analyst does not
know the distribution of the data and has a limited budget.

A growing line of work has focused on the design of such optimal data acquisition
mechanisms, e.g., [100–103]. Initiated by [100, 103], this line of work has led to the
design of mechanisms for unbiased estimation with minimal variance in a variety of
settings. However, in this literature it is assumed that all individuals will participate,
thus unbiased estimation is possible. The trade-off between bias and variance has
been ignored to this point with the exception of Chen and Zheng [102], which still
assumes all individuals will participate and does not consider privacy concerns.
Further, this line of work has not considered the issues created by information
leakage due to correlation between the participants. Information leakage creates
significant incentives for increased data sharing and thus mechanisms that do not
consider it directly will suffer from undetected bias and increased variance in the
obtained estimates. Modeling the incentives created by leakage potentially provides
the analyst the opportunity to obtain an estimator of the same quality using a smaller
budget, due to the externalities created by data correlation.

Contributions. In this paper, we provide the first characterization of an optimal
mechanism for data acquisition in the setting where agents are concerned about
privacy and their data is correlated with each other. As a result, information leakage
due to data correlation not only contributes to an agent’s privacy cost, but also to the
privacy costs of others with correlated data. Additionally, the mechanism allows,
for the first time, a trade-off between the bias and variance of the estimator when
privacy cost is considered. This offers the analyst freedom to tailor towards an
emphasis on either bias or variance of the estimator depending on the contextual
goals.

57

Specifically, we propose a novel model for data acquisition. The novelty of our
model is a result of three important components. First, we introduce the privacy
cost to model impacts of data correlation. Unlike modeling data correlation on an
individual level in [99], we divide the agents into different groups and assume that
agents within the same group share a same correlation strength. This gives us the
power to work with any granularity of choice with regard to data correlation. For
example, if every group has a relatively small size of agents, then our model of
data correlation shifts towards a near individual level. In addition, an agent suffers
a larger privacy cost if she joins the platform than that if she does not join. The
choice of our privacy cost function enables us to model all these desired properties.
Second, in reality, not every agent always decides to join the platform. Thus, we
introduce the notion of participation rate as the ratio of the number of agents who
join the platform to the number of total agents. This further allows us to study
equilibrium with respect to participation rate, which is crucial since the mechanism
impacts the participation rate, which in turn impacts the bias and variance. Third,
given that not every agent always joins the platform, it is not always realistic to aim
for an unbiased estimator. Instead, we minimize a linear combination of bias and
variance of the estimator. Via a choice of constant weights for bias and variance,
we are able to balance between these two metrics of the estimator as desired.

Our main theoretical results provide a closed form solution of payment and allo-
cation rules under a choice of equilibrium participation rate in order to achieve a
truthful mechanism (Theorem 4.3.1 & Theorem 4.4.1). More specifically, we aim
to minimize a linear combination of bias and variance subject to budget and truth-
fulness constraints. By considering a linear combination, we are able to emphasize
either bias or variance of the estimator as desired. Moreover, we provide conditions
for the optimality of an unbiased estimator in the case when it is possible to achieve
a full participation rate, i.e., every agent decides to join the platform.

Our results offer some interesting insights about mechanisms for data acquisition.
First, an unbiased estimator is possible even if the budget is relatively small because
we can meet the expected budget constraint using a small selection probability.
However, an unbiased estimator is not always realistic in practice. As a result,
it is important to optimize the bias-variance trade-off. Second, incorporation of
privacy cost due to information leakage and sharing makes it possible for the analyst
to underpay the agents to acquire the same data set. This can potentially lead to
a relatively small payment for data, something that is frequently seen in practice.

58

Last but not least, the privacy cost from leakage encourages more agents to join
the platform, which coincides with the data oversharing phenomenon frequently
observed in platforms today.

The design of mechanisms for data acquisition is known to be challenging even if
we focus on an unbiased estimator and ignore privacy cost due to data correlation.
However, obtaining our results requires overcoming additional challenges. There are
two technical innovations that enable our analysis. First, we need to introduce and
characterize an equilibriumwith respect to the participation rate, as the participation
rate is an endogenous property of the mechanism design problem. This equilibrium
adds considerable complexity to the analysis, but also provides insights about how
the data acquisition mechanism depends on the popularity of the platform. Second,
we introduce the notion of data correlation strength to characterize the privacy cost
due to information leakage. This allows us to capture the impact of data correlation
on the platform. Further, depending on a choice of group sizes, we are able to model
information leakage at different granularity levels as desired.

Related literature. The design of data markets has attracted a significant amount
of interest in recent years. There is growing body of work studying a variety of
aspects of data markets, including monetizing information via either dynamic sales
or optimal mechanisms, e.g., [104, 105], exploiting personal information to improve
allocation of resources in online markets, e.g., [106–108], optimal acquisition of
information, e.g., [100–102], etc. For a recent survey, see [109] and the references
therein. Our work broadly falls into the last line of work, and focuses on the design of
a mechanism for optimal data acquisition. The study of the optimal data acquisition
has attracted a growing amount of attention across both economics and computer
science. In this paper, we focus on designing a truthful mechanism in order to
perform a statistical estimation task. This goal has received considerable attention.
However, prior work does not consider the privacy cost of the participants. Our
work aims to fill the gap by considering privacy cost as an important factor for
individuals’ decision-making.

In more detail, the prior work on optimal data acquisition can be divided into
two categories depending on whether data is verifiable or not. In the first category,
individuals’ utilities often directly depend on the outcome of the statistical inference,
and they thus have an incentive to misreport their data, e.g., [110–116]. This is
possible since there is no ground truth to verify the data. In the second category,
individuals are assumed to report their data truthfully due to the ability of the analyst

59

to verify the data, e.g., [100–103, 117, 118]. In this paper, we consider the setting
where data is verifiable and so focus our discussion on prior work in that category
below.

The task in this context is to purchase data from individuals whose private costs
are subject to an (expected) budget constraint. This model was introduced in [100,
103]. The model assumes that data cannot be fabricated and that private costs of the
participants are correlated with the data. Moreover, the participants do not derive
utility or disutility from the estimation outcome. Roth and Schoenebeck [100]
minimizes a bound of the worst case variance while achieving an unbiased estimator
while Abernethy, Chen, Ho, and Waggoner [103] considers general supervised
learning. Following these initial papers, a closed form result that directly minimizes
the worst case variance is given in [101]. However, unbiased estimators are not
always possible in realistic settings. When a biased estimator is considered, Chen
and Zheng [102] proposes a slightly different model, in which agents arrive in an
online fashion and cost distribution is not known a priori. Under this model, Chen
and Zheng [102] studies a trade-off between bias and variance of the estimator rather
than only focus on the unbiased estimators. This trade-off is also a core component
of our work.

The prior work discussed above mostly focuses on data acquisition without con-
sidering the privacy concerns of the participants. Even when the privacy concerns
are considered in the prior work, privacy cost is often interpreted as a simple cost,
which does not capture the information leakage due to data correlation. In contrast,
privacy cost due to information leakage as a result of data correlation is a crucial
concern in the model we consider in this paper. There is a recent line of work that
examines data acquisition through the lens of differential privacy [117, 119–122].
As agents might not be willing to report their data due to their privacy concerns,
monetary incentives are given to encourage individuals to participate in order to
balance between privacy of individuals and accuracy of estimation. However, in
this line of work, the impact of information leakage is not considered and thus the
practical impact of the privacy paradox is not considered.

The information leakage that results from correlation between individuals’ is at the
root of the privacy paradox and is a crucial factor for data markets, as has been rec-
ognized by recent work in economics, e.g.,[99, 123]. More specifically, Acemoglu,
Makhdoumi, Malekian, and Ozdaglar [99] recently introduced the concept of infor-
mation leakage to account for privacy cost due to other individuals’ data sharing.

60

Inspired by this concept, we incorporate the privacy cost due to heterogeneous data
correlation in our model and aim to design a truthful mechanism to balance between
bias and variance subject to an expected budget constraint. The privacy concern
of individuals, specifically the privacy cost due to data correlation, is essential in
the design of such a mechanism. This is a critical feature of our model that is not
present in any prior work on data acquisition. The setting and model we consider
differ considerably from [99]. We consider the problem of optimal data acquisition
and the incentives created by information leakage, which have not been considered
previously in this context.

4.2 System Model
We consider an online platform consisting of an analyst and many agents. At a high
level, the analyst aims to design a pricing mechanism to purchase private data from
agents in order to perform a statistical estimation task, e.g., estimate the mean of the
agents’ data. Ideally, the analyst would like to purchase all the private data to obtain
an unbiased estimator. However, given a limited budget, the analyst has to design
a pricing mechanism to wisely select the data in order to balance between the bias
and variance of the estimator.

To this end, we consider a family of pricing mechanisms that presents a menu to
the agents. The menu consists of pairs of payments and probabilities of having
agents’ data selected for use in the estimation task. Given the menu, the agents
report their costs and decide individually if they would like to join the platform or
not. Once the agents make the decisions, the analyst selects data from an agent on
the platform to purchase with the given probability selected from the menu. The
analyst’s goal in designing the mechanism is to determine the menu of payments
and selection probabilities in order to perform a statistical estimation subject to an
expected budget constraint. The form of this mechanism is classical, and adopted
from, e.g., [100, 101, 103].

Considering privacy cost is critical to the design of such a mechanism. For the
agents on the platform, they obtain benefit from participation but reveal some
personal information through their interactions with the platform, which leads to
the privacy cost. Further, when an agent’s data is used, it negatively impacts not
only the privacy of the agent revealing the data, but also the privacy of other agents
whose data is correlated. Thus, even though some agents do not join the platform
and do not directly share their data, they may still suffer a privacy cost through their

61

Figure 4.1: An illustration of the model from the perspective of a participating agent
in group 8.

peers’ interactions with the platform due to data correlation. This privacy cost via
information leakage is an important and novel feature of the model presented here.

We describe the full details of the model and the family of mechanisms we consider
in the remainder of this section. Figure 4.1 provides an overview of the model.

4.2.1 Agent Model
We consider B agents that hold data of interest to the analyst. The set of agents
is denoted by S. Every agent owns a data point. By reporting her data to the
platform’s survey, the agent incurs an overall cost 2, which is known to her but not to
the analyst. The overall cost consists of a combination of reporting cost and privacy
cost, where the reporting cost results from the act of reporting the data while the
privacy cost comes from both data sharing and data correlation. We discuss these
costs further in Section 4.2.1.

We now present how the mechanism works. First, each agent is presented a price
menu by the analyst that consists of a payment rule %(·) and selection probability
�(·), both of which depend on the reported cost 2̃ of the agent. We interchangeably
use selection probability or allocation rule, as convenient. Second, given the menu,
an agent decides if she would like to join the platform. An agent who decides to join
the platform is asked to report her cost, which determines the payment and selection
probability. The payment %(·) is given to the agent if she joins the platform and her
data is selected (used) by the analyst. More specifically, her data is selected with
probability �(·), and she receives the payment only if her data is selected.

Whether an agent decides to join the platform relies on weighing the benefit of

62

participation F(·), plus a potential payment, against the privacy cost that occurs as
a result of her own or her peers’ interactions with the platform. More specifically,
for an agent on the platform, her privacy cost incurred includes both the cost from
the agent herself sharing her data and the privacy cost due to her friends’ sharing
of possibly correlated data. We use ℎ(·) to denote this combination. In contrast,
if an agent does not join the platform, she still suffers a privacy cost 6(·) due to
information leakage as a result of correlation between her data and the data of those
agents who do join. We use N to denote the set of agents who join the platform.
For agent : , her utility is as follows:

D8 (2̃ |2) =

−6(·), if : ∉ N ,

−ℎ(·) + F(·), w/ prob. 1 − �(·), if : ∈ N ,

%(·) − 2 + F(·), w/ prob. �(·), if : ∈ N .

(4.1)

Up to this point, we have described themodel in a general way, without giving details
on the form of the benefit of participation (F(·)) and privacy cost (6(·) and ℎ(·)).
In the remainder of this section, we introduce relevant models of these functions,
which illustrate a variety of parameterized forms motivated by different potential
settings.

Participation Benefit

The participation benefit is the non-negative value received by agents who take
advantage of the service provided by the platform. Intuitively, the more participants
the platform attracts, the more valuable the platform’s service becomes. Take
Facebook as an example, the more friends of a user use Facebook, the more valuable
Facebook as a social network is to this user. However, in light of the limited budget
in practice, it is almost impossible to have every agent join the platform. As a result,
we define the average participation rate of the population \̄ to be the ratio of number
of agents on the platform to the population of agents. The average participation
rate \̄ can be viewed as a measure of the popularity of the platform.1 Moreover,
let F(\̄) denote the participation benefit as a continuous function of the average
participation rate. The participation benefit is assumed to be non-decreasing in the
average participation rate of the population \̄.

1The participation rate is determined endogenously via the equilibrium, which we discuss in
Section 4.3.

63

Correlation Strength

Whether an agent decides to join the platform or not, an important source for
her privacy cost comes from the information leakage due to data correlation. A
stronger correlation naturally leads to more leakage and induces a larger privacy
cost. Intuitively, if an agent’s data is highly correlated with the rest of the agents,
then she has a relatively large correlation strength. Moreover, some agents might
share a stronger correlation with each other within a group of agents than with others
outside the group. For instance, on a healthcare related platform, users who carry a
common disease might share a similar pattern and thus their data is possibly highly
correlated with each other. In order to capture the inter-group versus intra-group
difference, we divide B agents into � groups, and agents within the same group 8
share a common correlation strength "8. The correlation strength vector "8 is further
defined as "8 , (U8, U−8), where U8 and U−8 are used to, respectively, denote the
correlation strength induced by agents inside group 8 and those outside group 8. Note
that vectors are bold while scalars are not.

Privacy cost

Privacy cost is critical to an agent’s decision about whether to join the platform. For
an agent who does not join the platform, her privacy cost 6(·) comes entirely from
information leakage through her peers’ data sharing on the platform due to data
correlation. In contrast, for an agent who joins the platform but does not report her
data, not only her peers’ actions but also her own interactions with the platform result
in her privacy cost, which is denoted by ℎ(·). Next, we introduce the parameterized
form of privacy costs in detail.

Intra-group & Inter-group Privacy Loss. To differentiate the privacy cost due to
correlation inside and outside the group, we further decompose privacy cost into a
sum of intra-group cost and inter-group cost. Let the participation rate)8 denote a
vector of participation rate within the group \̄8 and that of the rest groups \̄−8, i.e.,
)8 , [\̄8, \̄−8]. For convenience, we later use \̄ to denote the average participation rate
of the overall population. For an agent in group 8, her privacy cost is equal to a sum
of intra-group cost and inter-group cost: 6(2,)8;"8) = 6(2, \̄8;U8) + 6(2, \̄−8;U−8)
if the agent does not join the platform; otherwise her privacy cost of joining the
platform is ℎ(2,)8;"8) = ℎ(2, \̄8;U8) + ℎ(2, \̄−8;U−8).

Up to this point, we have introduced a parameterized form of privacy functions
6(2,)8;"8) and ℎ(2,)8;"8). To derive more clear engineering insights, we make

64

two assumptions regarding these privacy functions. These assumptions are intuitive
and consistent with the applications we consider.

Assumption 4.2.1. [Monotonicity&Boundedness] Both 6(2,)8;"8) and ℎ(2,)8;"8)
are continuously non-decreasing in cost 2, participation rate \̄8 and \̄−8, and cor-
relation strength U8 and U−8. Further, the difference ℎ(2,)8;"8) − 6(2,)8;"8) is
continuously increasing in cost 2, and 6(2,)8;"8) is no greater than ℎ(2,)8;"8).
Both of them are bounded by 2: 6(2,)8;"8) ≤ ℎ(2,)8;"8) ≤ 2.

To motivate the monotonicity assumption, first recall that cost is composed of
reporting costs and privacy costs, as mentioned in Section 4.2.1. Thus, an agent with
a high cost tends to value her privacy more, which is captured by the monotonicity
with respect to costs. Second, intuitively, privacy costs increase as more agents join
the platform. Indeed, the more agents join the platform and share their data, the
more information that the analyst can infer about agents, including those who do
not join the platform. Third, the correlation strength characterizes how each agent’s
data is correlated with other agents’ in the population. For an agent, a stronger
correlation strength indicates that data sharing by other agents of the population
could potentially cause more leakage, thus more privacy losses.

To understand the assumption 6(2,)8;"8) ≤ ℎ(2,)8;"8) ≤ 2, we note that every
agent suffers a privacy cost induced by her peers’ activities on the platform due
to data correlation even if she does not join the platform. In addition, for those
who indeed join the platform, they tend to leak more information about themselves
through their own activities on the platform. As a result, it is reasonable to assume
that the privacy cost 6(2,)8;"8) of an agent, if she does not join the platform, is
smaller than her privacy cost ℎ(2,)8;"8) if she joins but does not report her data.
In other words, sharing on the platform potentially leads to more privacy cost. The
difference of these two parts models the privacy cost due to individual sharing.
Naturally, for any agent, the privacy cost due to individual sharing tends to be higher
if the agent has a larger overall cost. Since the overall cost consists of reporting cost
and privacy cost, any privacy cost function is modeled as a fraction of the overall
cost 2, i.e., privacy cost is upper bounded by 2.

Assumption 4.2.2. The privacy cost ℎ(2,)8;"8) is linear in cost 2 with parameter
1()8;"8), i.e.,

ℎ(2,)8;"8) = 2 · 1()8;"8). (4.2)

65

We assume that the privacy cost function of participation ℎ(2,)8;"8) is linear in
cost 2. This assumption is a consequence of the work in Ghosh and Roth [119],
which shows that cost functions of the form 28Y are appropriate for settings using
differential privacy, where Y quantifies the amount of privacy leaked. Note that the
parameter 1()8;"8) inherits the monotonicity with respect to the participation rate
and correlation strength from that of the privacy cost function ℎ(2,)8;"8).

Agent’s Utility

After introducing the key components of agent’s utility, we summarize the utility
function as follows:

(i) If the agent does not join the platform, she only experiences a privacy cost
6(2,)8;"8) induced by information leakage due to data correlation.

(ii) If the agent joins the platform but is not selected to report her data, her utility
is ℎ(2,)8;"8) + F(\̄), where F(\̄) is the participation benefit.

(iii) If the agent joins the platform and is selected to report her data, she incurs
her overall cost 2, which includes her privacy cost. Based on the agent’s
reported cost 2̃, she receives a payment %(2̃,)8;"8) and thus her utility is
%(2̃,)8;"8) − 2 + F(\̄).

As the agent’s privacy cost function is parameterized by the correlation strength pa-
rameter, so should the payment function%(2̃,)8;"8), selection probability �(2̃,)8;"8),
utility D(2̃, 2,)8;"8). However, for simplicity, we later use %8 (2̃), �8 (2̃), and D8 (2̃ |2),
respectively, to denote payment, selection probability, and utility function. For agent
: , her utility is as follows:

D8 (2̃ |2) =

−6(2,)8;"8), if : ∉ N ,

−ℎ(2,)8;"8) + F(\̄), w/ prob. 1 − �8 (2̃), if : ∈ N ,

%8 (2̃) − 2 + F(\̄), w/ prob. �8 (2̃), if : ∈ N .

(4.3)

Let the expected utility for an agent (reporting 2̃ while having a cost 2) in group 8
who joins the platform be denoted by D̄8 (2̃ |2). Consequently,

D̄8 (2̃ |2) =�8 (2̃)
[
%8 (2̃) − 2 + F(\̄)

]
+ (1 − �8 (2̃))

[
−ℎ(2,)8;"8) + F(\̄)

]
.

=�8 (2̃) [%8 (2̃) − 2 + ℎ(2,)8;"8)] − ℎ(2,)8;"8) + F(\̄).
(4.4)

66

4.3 Mechanism Design
The analyst aims to perform an estimation task by designing the menu for the
mechanism, which is composed of payment function and allocation rule for agents.
To study this problem, we first introduce two standard desirable properties of the
mechanism: truthfulness (Definition 4.3.1) and budget feasibility (Definition 4.3.2),
and then define the overall objective (a trade-off between bias and variance of
the estimator) (Definition 4.3.5) subject to these two properties. Following that
setup, we introduce the equilibrium participation rate (Definition 4.3.7), which is a
situation where no agent wants to alter her participation decision given the current
participation rate. We then derive structural results on the payment function and
allocation rule that induce participants’ truthful reporting in the equilibrium in
Section 4.3.3 (Theorem 4.3.1). Finally, we present monotonicity properties of the
mechanism in Section 4.3.4.

4.3.1 Problem Statement
To define the analyst’s mechanism design problem, we first describe two classical,
desirable properties: truthfulness and an expected budget constraint. First, we
require the mechanism to be truthful, which is common, e.g., [101, 102].

Definition 4.3.1 (Truthfulness). A mechanism is truthful if for every participant
with cost 2, she can maximize her expected utility if she truthfully reports her cost,
i.e.,

D8 (2 |2) ≥ D8 (2̃ |2), ∀2̃ ≠ 2,∀8. (4.5)

Definition 4.3.1 guarantees that rational agents on the platform will truthfully report
their costs. Substituting the expected utility as in Equation (4.4), we get

�8 (2) · [%8 (2) − 2 + ℎ(2,)8;"8)] ≥ �8 (2̃) · [%8 (2̃) − 2 + ℎ(2,)8;"8)] , ∀2̃ ≠ 2,∀8.
(4.6)

Second, we constrain the mechanism to use a limited budget �, which limits the
payments of the analyst to the agents for their data. Before presenting the budget
constraint in details, we introduce some notations. Every agent owns a data point G
and cost 2. These pairs (G, 2), owned by agents in group 8 (8 ∈ [�]), follow a joint
distribution D8. Define D , {D8}8∈[�] . Let 58 denote the marginal distribution of
the cost. We assume that 5 , { 58}8∈[�] is known to the analyst whileD , {D8}8∈[�]

67

is unknown.2

Definition 4.3.2 (Expected Budget Constraint). Amechanismwith payment function
% and selection probability � satisfies the expected budget constraint � if and only
if ∑

::8=8(:)
E2∼ 58 [%8 (2)�8 (2) · 1(: ∈ N8)] ≤ �. (4.7)

We enforce the budget constraint on the expected payment in Definition 4.3.2, which
is a common approach in the prior work, e.g., [100–102]. Note that the expectation
is taken with respect to the marginal distribution of agent’s cost 5 , and the agents
who join the platform as only they potentially receive a payment by the allocation
rule. For convenience, we use 8(:) to denote the group index of agent : .

We now formally define bias and variance of the estimator of the analyst. Recall
that the analyst seeks to optimize a tradeoff between bias and variance in our setting.
Specifically, the analyst wishes to learn an underlying parameter ` of the whole
population, and he obtains an estimator ˆ̀ based on participants’ data. The estimator
ˆ̀ is viewed as a random variable, and the randomness of the estimator comes from
the joint distribution D and the allocation rule �. We view the estimator as drawn
from a distribution T (D, �).

Definition 4.3.3 (Bias). Given an allocation rule � and an instance of the true
distribution D, the bias of an estimator ˆ̀ is defined as follows:

B(ˆ̀;D, �) =
��E ˆ̀∼T (D,�) [ˆ̀ − `]

�� . (4.8)

Definition 4.3.4 (Variance). Given an allocation rule � and an instance of the true
distribution D, the variance of an estimator ˆ̀ is defined as follows:

V(ˆ̀;D, �) = E ˆ̀∼T (D,�)
[
(ˆ̀ − E[ˆ̀])2

]
. (4.9)

Since the analyst does not know the joint distributionD, he cannot directly optimize
over bias and variance of the estimator. Instead, we consider the goal of minimizing
the worst-case linear combination of bias (Definition 4.3.3) and variance (Defini-
tion 4.3.4) over all instantiations of D that are consistent with the marginal cost
distribution 5 .

2This prior { 58} could be constructed from previous interactions between agents and data buyers.
Knowledge of the cost (or valuation) distribution is a standard assumption in Bayesian mechanism
design (e.g., Myerson [124]), and is assumed in the works of Roth and Schoenebeck [100] and Chen,
Immorlica, Lucier, Syrgkanis, and Ziani [101].

68

Definition 4.3.5 (Worst-Case Bias-Variance Trade-off). Given an allocation rule �,
an instance of the true distribution D, and a combination parameter W, the worst-
case bias-variance trade-off is the supremum of the linear combination of bias and
variance:

sup
5 consistent with D

W · V(ˆ̀;D, �) + (1 − W)B(ˆ̀;D, �). (4.10)

Using the above, we formally define the mechanism design problem as follows.

Definition 4.3.6 (Mechanism Design Task). Given an estimator ˆ̀, cost distribution
5 , correlation strength parameters, and fixed parameter W, the analyst aims to
minimize a worst-case bias-variance trade-off by designing payment rule % and
allocation rule � subject to truthfulness and budgetary constraints:

inf
�,%

sup
5 consistent with D

W · V(ˆ̀;D, �) + (1 − W)B(ˆ̀;D, �)

s.t.
∑

::8=8(:)
E2∼ 58 [%8 (2)�8 (2) · 1(: ∈ N8)] ≤ �

�8 (2) [%8 (2) − 2 + ℎ(2,)8;"8)] ≥
�8 (2̃) [%8 (2̃) − 2 + ℎ(2,)8;"8)] , ∀2̃ ≠ 2,∀8.

(4.11)

Note that each agent suffers a privacy cost due to data correlation even if she does
not join the platform. This negative utility offers the analyst freedom to compensate
the agent a partial cost rather than the whole cost while motivating the agent to
join the platform (individual rationality). As a result, we do not have to constrain
the mechanism to satisfy a positive value of participation, which is a common
requirement in the prior work in this area. This is a novel, significant consequence
of considering privacy leakage.

4.3.2 Equilibrium Characterization
To characterize the equilibrium that results under a given mechanism design, we
consider the agents’ decisions given a fixed participation rate. Recall that the
participation rate is an aggregation of agents’ decisions on whether to participate,
and that an agent’s utility depends on the participation rate. We emphasize that an
agent’s decision does not depend on other agents’ individual decisions, rather only
on the participation rate as an aggregate. This is natural for large platforms where a
single agent’s decision has little impact on others’.

Before defining the equilibrium concept, we first introduce some notation. Recall
that there are � groups of agents parameterized by data correlation strength. We

69

use @8 to represent the likelihood of a random agent coming from group 8 in the
population. For agents in group 8, the cost follows a continuous distribution 58 with
a support set C , [2min, 2max]. We use \̄8 to denote the participation rate for group
8. Let) , [\̄8]1≤8≤� , an array of average participation rate for all the groups, denote
the participation rate profile. Naturally we have the average participation rate in the
population satisfying \̄ =

∑
1≤8≤� @8 · \̄8.

For a given participation rate profile, an agent makes decisions by weighing her
utility under different choices. For an agent with cost 2 in group 8, we use a binary
variable 38 (2 |)) to denote her decision. If the agent joins the platform, 38 (2 |)) = 1;
otherwise 38 (2 |)) = 0. We consider a non-atomic model where a single agent’s
decision has no effect on the aggregate participation rate when the agent set is large
enough [125]. This is a realistic assumption for a large platform. Every agent
is assumed to be rational, i.e., she decides to join the platform only if her utility
of non-participation is not lower than that of participation. This translates to the
following mathematical expression:

38 (2 |)) =

1, if max2̃ D̄8 (2̃ |2) ≥ −6(2,)8;"8),

0, otherwise.
(4.12)

Since both payment and selection probability depend on the reported cost, an agent
tends to report the cost that maximizes her expected utility of participation D̄8 (2̃ |2).

For an agent in group 8, 1 ≤ 8 ≤ �, her decision on whether to participate is
closely related to the participation rate \̄8 of group 8 and that of the rest groups \̄−8.
Meanwhile, we notice that there are many possible participation rate profiles) that
correspond to one specific average participation rate \̄ (= ∑

1≤8≤� @8 · \̄8). Thus, the
average participation rate \̄ alone is not enough to capture the agents’ decisions.
This motivates us to leverage the participation rate profile) , instead of average
participation rate \̄ of all the groups, as the equilibrium concept.

We now define the equilibrium concept formally. This notion of equilibrium guaran-
tees that agents’ decisions are consistent with the participation rate profile. Note that
we consider a strictly positive participation rate at equilibrium, i.e., \̄∗

8
> 0,∀8, with

an adequate budget; otherwise a zero participation rate for certain groups essentially
leads to a biased estimator towards the rest of the groups with positive participation
rates.

Definition 4.3.7 (Equilibrium). A participation rate profile)∗ = [\̄∗
8
]1≤8≤� is an

equilibrium, if for each group 8, 1 ≤ 8 ≤ �, the fraction of participating agents is

70

exactly \̄∗
8
, i.e., ∫ 2max

2min

1 [38 (2 |)∗) = 1] · 58 (2)32 = \̄∗8 , ∀8. (4.13)

4.3.3 Payment Function
We now analyze the structure of the payment function in the mechanism associated
with the equilibrium)∗. The analyst’smechanismdesign problem inDefinition 4.3.6
involves a truthfulness constraint and a budgetary constraint. We first present the
payment function that satisfies the truthfulness constraint for a given non-increasing
allocation rule. Later, in Section 4.4, we further optimize over allocation rule to
solve for the general optimization problem.

We present the payment function for group 8, 1 ≤ 8 ≤ �, and then characterize the
requirements for a truthful mechanism. We begin with some definitions. For a fixed
desired participation rate profile) , we introduce 2̂8 of group 8, which satisfies the
equality in (4.14). Later in this section, we explain in Corollary 4.3.1 that 2̂8 can be
viewed as a cost threshold for agents in group 8, and agents whose cost is no greater
than this value would like to participate.

\̄8 =

∫ 2̂8

2min

58 (2)32, 1 ≤ 8 ≤ � . (4.14)

Next, we give the payment function of group 8 as follows

%8 (2̃) = 2̃ − ℎ(2̃,)8;"8) +
1

�8 (2̃)

(
(1 − 1()8;"8))

∫ 2max

2̃

�8 (I)3I + g()8,"8)
)
,

(4.15)
where

g()8,"8) = ℎ(2̂8,)8;"8) − 6(2̂8,)8;"8) − (1 − 1()8;"8))
∫ 2max

2̂8

�8 (I)3I − F(\̄).
(4.16)

The characterization of the payment function relies on allocation rule � and the
associated participation rate profile) . According to Myerson’s Lemma [124], the
allocation rule should be non-increasing in the reported cost 2̃ in order to induce
agents’ truthfulness. Further, we present the requirements for a truthful mechanism
in Theorem 4.3.1. Such a mechanism can uniquely induce agents’ truthful reporting
of costs. If the selection probability is strictly decreasing, the mechanism can induce

71

agents’ strict truthfulness.3 We highlight this result in Theorem 4.3.1 and put its
proof in Appendix 4.A.1.

Theorem 4.3.1. The mechanism is truthful (strictly truthful, respectively) and in-
duces participation profile)∗ at equilibrium if and only if for every group 8 ∈ [�],
both of the following statements hold:

(i) allocation rule �8 (2̃) is a non-increasing (decreasing, respectively) function
of the reported cost 2̃;

(ii) payment function is given as in Equation (4.15) (as a function of �), where
) ,)∗ is the desired participation rate profile.

For a mechanism as described in Theorem 4.3.1, the agent would like to truthfully
report her overall cost, as truthful reporting can maximize her expected utility. The
monotonicity of the allocation rule indicates that an agent with a high reported cost
in the same group is less likely to be selected and get a payment. Furthermore,
we would like to emphasize that the strictly decreasing property of the allocation
rule induces strict truthfulness of the mechanism. Suppose that the allocation rule
is fixed in a certain range of reported cost (i.e., not decreasing). By reporting any
cost in this range, the agents in this range can get the highest utility, which does not
satisfy strict truthfulness definition. Thus, a strictly decreasing allocation rule is
necessary to induce strict truthfulness.

Corollary 4.3.1. Under themechanism in Theorem4.3.1, the participation decisions
of agents in group 8 satisfy 38 (2 |)∗) = 1 if 2 ≤ 2̂8 and 38 (2 |)∗) = 0 otherwise.

This result highlights that, under the mechanism in Theorem 4.3.1, the decisions of
the agents in each group demonstrate a threshold structure with respect to overall
cost 2. The agents in group 8 will participate and truthfully report her overall cost, if
her overall cost is no greater than the threshold 2̂8; otherwise she will not participate.

4.3.4 Properties of the mechanism
We now study the connections among three key components of the mechanism
design: data correlation, group participation rate, and payment (see Properties

3By strict truthfulness, we are saying that the agent can maximize her utility of participation if
and only if she truthfully reports her cost, i.e., D8 (2 |2) > D8 (2̃ |2), for all 2̃ ≠ 2. That is, by removing
the equality of (4.5) in Definition 4.3.1, we get the definition of strict truthfulness.

72

4.3.1-4.3.3 later in this section). Existing discussions (e.g., Acemoglu, Makhdoumi,
Malekian, and Ozdaglar [99]) of the connections among data correlation, number
of users, and payment, which demonstrated some interesting properties of data
trading, motivate our study. For example, Acemoglu, Makhdoumi, Malekian, and
Ozdaglar [99] shows that the total payment to users is non-monotone in the number
of users in some scenarios. It is interesting to explore such connections under the
settings of this work. Moreover, studying the connections helps uncover the impacts
these issues have on the mechanism design under our settings when we incorporate
information leakage.

Many of the properties below highlight the complexity of data marketplaces with
information leakage. For example, our first property highlights that, even though a
larger average participation rate means more participants, the total payment for the
entire group does not necessarily increase. This is because the individual payment
for these agents will decrease as well.

Property 4.3.1. Given a fixed selection probability �, the total expected payment
for agents in group 8 is non-monotonic in the average participation rate of group 8.

However, despite the non-monotonicity of the expected payment in the average
participation rate, there are some intuitive monotonicity properties that do hold for
the payment after imposing one additional natural assumption.

Property 4.3.2. Suppose the difference ℎ(2̂8,)8;"8) −6(2̂8,)8;"8) is non-increasing
in correlation strength. The payment to the agents in group 8 who join the platform
is decreasing in both intra-group correlation strength U8 and inter-group correlation
strength U−8.

In the property above, we further require the difference function, i.e., ℎ(2̂8,)8;"8) −
6(2̂8,)8;"8), to be non-increasing in both intra-group correlation strength and inter-
group correlation strength. Intuitively, this difference can be viewed as the extra
privacy cost for the agent with cost equal to 2̂8 due to her own activities on the
platform, and thus it might be even independent of data correlation strength. As
a consequence, the payment for the agents who join the platform in group 8 is
decreasing in both intra-group and inter-group correlation strength, i.e., U8 and U−8.

Some intuition for the above property comes from the observation that, when there
is strong correlation among the agents’ data, an individual will suffer a large privacy
leakage even if they do not join the platform. As a result, they are incentivized to join

73

the platform even when the individual payment is relatively low. Naturally, given
a fixed participation rate profile and allocation rule, the total expected payment for
the entire group decreases as a result.

However, in contrast to the above intuition, we do not have monotonicity of the
participation rate in this setting, as we show in the property below. Note that for
most of this paper, we treat the participation rate as something fixed (and optimized)
by the analyst. However, understanding its behavior is important for performing
such an optimization.

Property 4.3.3. In group 8, the group participation rate is non-monotonic in both
the intra-group correlation strength U8 and inter-group correlation strength U−8.

To develop some intuition for the above, we note that the analyst’s mechanism design
is subject to a budget constraint. Although stronger data correlation indicates lower
payment, the total expected payment is also affected by the selection probability.
If the selection probability increases, the analyst needs to induce a lower group
participation rate so that the total expected payment does not exceed the budget.
Otherwise, the analyst could induce a higher participation rate.

Our last property investigates what happens as the budget increases. In this case
the analyst can exploit the additional budget to improve either bias or variance.
On the one hand, increasing the selection probability helps reduce the uncertainty
of collected data, thus decreases the variance. On the other hand, inducing an
equilibriumwith a higher participation rate helps cover a wider range of participants’
data, thus decreases the bias.

Property 4.3.4. As budget increases, the estimator achieves a better bias-variance
trade-off, i.e., the optimal objective of the overall optimization problem as in Defi-
nition 4.3.6 reduces.

4.4 Optimization of the Worst-Case Bias-Variance Trade-off
We now discuss the design of a mechanism that optimizes the worst-case bias-
variance trade-off. First, we introduce the analyst’s choice of estimator in Section
4.4.1. Second, we characterize the worst-case bias-variance trade-off of the estima-
tor, given a selection rule and a participation rate profile at equilibrium, in Section
4.4.2. Finally, we provide our full mechanism in Section 4.4.3.

From amathematical perspective, our bias-variance optimization problem optimizes
over two types of variables: (i) the allocation rule, which is a collection of prob-

74

abilities that participants are selected to report their data and get the payments,
and (ii) the participation rate profile in equilibrium, which controls the fraction of
agents in each group that join the platform in the first place. However, in practice, a
platform is unlikely to be willing to sacrifice a high participation rate to improve the
performance of any single statistical task. Thus, optimizing over the participation
rate is not attractive. Thus, here, we treat the participation rate as given so that our
work can apply to any platform at any growth stage, e.g., either a start-up platform
with a low participation rate or a popular platform with a high participation rate.

In what follows, we first show that the optimal allocation rule under a fixed equi-
librium participation rate profile is monotone in the agents’ virtual costs, as defined
in Definition 4.4.2 in Section 4.4.3, and provide a closed-form solution for this
allocation rule. Given that optimizing over the participation rate is unrealistic, we
instead present structural results and conditions for a full participation rate profile.
This provides a connection to previous work on data acquisition since, when there
is a full participation rate profile, the analyst sees a representative sample of the
population and obtains an unbiased estimator.

4.4.1 Estimator
The objective of the analyst’s mechanism design problem in Definition 4.3.6 is
to minimize the worst-case bias-variance trade-off of a given estimator. In this
section, we describe the estimator of our choice. We then characterize its worst-case
bias-trade-off variance in Section 4.4.2.

The analyst is interested in estimating a population statistic using the mechanism.
In this paper, we focus on estimating a mean over the population in question. For
example, the analyst wishes to understand the average income, average BMI, or
average ratings for a new movie.

We use the Horvitz-Thompson estimator [126], which is the unique unbiased linear
estimator for the settings where an analyst must sample at different rates from
different sub-populations; in our case, agents in different groups or with different
costs may be selected with different probabilities �(·), and in turn define several
distinct sub-populations. In such a setting, the standard sample mean estimator is
biased towards the sub-populations from which the analyst samples most (relatively
to the sub-population size). The Horvitz-Thompson estimator eliminates this bias
by reweighing each data point by the inverse of the selection probability associated
with its sub-population. In our setting, the Horvitz-Thompson estimator reweighs

75

the data of each agent : by 1/�: , where �: is the selection probability associated
with agent : .

We define the Horvitz-Thompson estimator formally below in Definition 4.4.1.
Recall that N denotes the set of participants (i.e., agents who join the platform)
and is of size # . Let O ⊂ N denote the set of participants who are selected to
report their data. Let G: be the data of agent : . Suppose that the agents’ data is
independently and identically distributed. The Horvitz-Thompson estimator is then
an unbiased estimator for the mean of data of the participants in set N , i.e., the
expectation of the estimator is equal to the expected value of the participants’ data.

Definition 4.4.1 (Horvitz-Thompson estimator). The Horvitz-Thompson estimator
is given by

ˆ̀ =
1
#

∑
:∈N

G: · 1{: ∈ O}
�:

, (4.17)

where �: is the selection probability for agent : .

Although the estimator is unbiased with respect to the set of participants N , it may
be biased with respect to the overall agent set S, when the average participation rate
is less than one. When some agents do not participate, their data are not fed to the
estimator and the estimator fails to capture the information of the non-participants.
On the other hand, if the average participation rate is equal to one, i.e., all the agents
are willing to participate, the estimator is naturally unbiased. In conclusion, the
participation rate at equilibrium is an important factor in the issue of estimation
bias. Since there is an intrinsic trade-off between bias and variance, the analyst
might prefer low variance instead of low or zero bias in some cases, e.g., when
the linear weight associated with the variance in Equation (4.11) is high and the
budget is large enough to use a large selection probability. Later, in Section 4.4.3,
we present conditions under which the analyst prefers to enforce a full participation
rate to achieve an unbiased estimator.

4.4.2 Characterizing the worst-case bias-variance trade-off
Wecharacterize theworst-case bias-variance trade-off of the estimator in this section.
We start by introducing some key notation. For simplicity, we assume that the agent’s
data is binary from the set of {0, 1}. In Remark 4.4.1, we highlight that our analysis
can be generalized to continuous data in [0, 1]. The probability of an agent being
in group 8 is denoted by @8. Let q , [@8]1≤8≤� . Let ?8 (2) , %A [G = 1|2, 8] denote
the probability of an agent : with cost 2 in group 8 having data point G: = 1. Recall

76

that according to Corollary 4.3.1, an agent in group 8 will join in the platform if
her cost 2 is no greater than the participation threshold 2̂8. Let � , {�8 (2)}1≤8≤� ,
consisting of the selection probabilities in all groups. Furthermore, we assume a
positive correlation between data and cost, which is mathematically described as
follows.

Assumption 4.4.1. For each group 8, ?8 (2) is a non-decreasing function of cost 2.

The assumption is often reasonable in practice. If the agent’s data is of a higher
value, then her cost is more likely to be higher as well, and vice versa. For example,
agents with a higher income or higher BMI might care more about their privacy,
hence their reporting costs tend to be higher for them as well.

Lemma 4.4.1. Under Assumption 4.4.1, fix allocation rule � and participation rate
profile)∗. Conditional on N , the supremum of linear combination of bias and
variance of the estimator ˆ̀ in Definition 4.4.1 is

) (�,)∗) = sup
5 consistent with D

W · V(ˆ̀;D, �) + (1 − W)B(ˆ̀;D, �)

= sup
?8 (2)∈[0,1],2≤2̂8

W

B
(
\̄∗

)2
©«
∑
8

@8

∫ 2̂8

2min

?8 (2)
�8 (2)

58 (2)32 −
1
\̄∗

(∑
8

@8

∫ 2̂8

2min

?8 (2) 58 (2)32
)2ª®¬

+ (1 − W) (1 − \̄∗) ·
(
1 − 1

\̄∗

∑
8

@8

∫ 2̂8

2min

?8 (2) 58 (2)32
)
.

(4.18)

Remark 4.4.1. While we focus on the binary data case, we note that if the agents’
data points G: are taken from the interval [0, 1], our proof can immediately be
adapted to show that

) (�,)∗) = sup
5 consistent with D

W · V(ˆ̀;D, �) + (1 − W)B(ˆ̀;D, �)

≤ sup
?8 (2)∈[0,1],2≤2̂8

W

B
(
\̄∗

)2
©«
∑
8

@8

∫ 2̂8

2min

?8 (2)
�8 (2)

58 (2)32 −
1
\̄∗

(∑
8

@8

∫ 2̂8

2min

?8 (2) 58 (2)32
)2ª®¬

+ (1 − W) (1 − \̄∗) ·
(
1 − 1

\̄∗

∑
8

@8

∫ 2̂8

2min

?8 (2) 58 (2)32
)
.

(4.19)

That is, the expression that we optimize over is an over-estimate of the worst-case
bias-variance trade-off; in turn, our approach still provides an upper bound and
does not underestimate the bias-variance trade-off when the data is non-binary.

77

The proof of Lemma 4.4.1 and Remark 4.4.1 are in Appendix 4.A.2. The basic idea
is to derive the variance and the worst-case bias separately, and they both are fully
characterized by the distribution of participants’ data (i.e., ?8 (2) for 2 ≤ 2̂8). Thus,
optimizing a linear combination of bias and variance gives the worst-case linear
combination of bias and variance.

Lemma 4.4.1 presents an analytical formulation of the objective function with an
auxiliary variable ?8 (2). This facilitates our later analysis of the optimization
problem, which is the minimization of (4.18) subject to truthfulness constraint and
budget constraint.

To conclude the subsection, we provide some interpretation about how the allocation
rule � and participation rate profile)∗ affect the trade-off between bias and variance.
If the value of allocation rule �8 (2) is higher, the variance V(ˆ̀;D, �) is lower.
However, due to the budget constraint, a higher value of allocation rule indicates
a lower participation rate, which means a possibly higher bias. Thus, due to the
budget constraint, the analyst needs to carefully trade off bias and variance.

The analyst’s objective is tominimize the aboveworst-case bias-variance trade-off by
choosing the allocation rule � and the participation rate profile)∗ in the equilibrium.
In next section, we discuss the optimal allocation rule and participation rate profile
in details.

4.4.3 Optimal Allocation Rule and Conditions of Full Participation Rate
We now derive solutions to the worst-case bias-variance trade-off optimization
problem under the budget and truthfulness constraints. First, we present the optimal
allocation rule given the participation rate profile at equilibrium. Second, we identify
sufficient conditions under which the optimal participation rate is one and the analyst
obtains an unbiased estimator.

Optimal Allocation Rule

We first study the design of the allocation rule, given a desired participation rate
profile)∗ at equilibrium. Recall that we focus on)∗ in which \̄∗

8
≥ \̄min,∀8 for some

positive value \̄min > 0 to avoid the trivial case of complete non-participation of a
group.

In this section, we first introduce the notion of virtual cost in Definition 4.4.2, which
is analogous to the classical notion of virtual value in [124]. The virtual costs help
characterize the payment function that, given a fixed allocation rule, induces agents

78

to report their privacy costs truthfully. The characterization of payment function is
in Theorem 4.3.1. We note that the virtual cost of an agent in group 8 depends on
her privacy cost (ℎ(2,)∗

8
;"8)) and the cost distribution (�8 and 58) in group 8.

Definition 4.4.2 (Virtual Cost). In group 8, given participation rate profile)∗, the
virtual cost of an agent with cost 2 is

q8 (2;)∗) = 2 − ℎ(2,)∗8 ;"8) + (1 − 1()∗8 ;"8))
�8 (2)
58 (2)

. (4.20)

Here, �8 and 58 are cdf and pdf of cost in group 8, respectively.

Recall that the vector)∗
8
consists of \̄∗

8
and \̄∗−8. The virtual cost q8 (2;)∗) in group 8

is decreasing in the within-group participation rate \̄∗
8
and the outside-group rate \̄∗−8,

as ℎ(·) and 1(·) are increasing in both \̄∗
8
and \̄∗−8. Recall that a higher participation

rate means more privacy cost. Furthermore, we assume that the virtual cost within
a group is non-decreasing in cost 2 as in [101, 124] (Assumption 4.4.2). Note that
a uniform distribution is one example satisfying the assumption.

Assumption 4.4.2. [Regularity] The virtual cost q8 (2;)∗) in group 8 is non-decreasing.
Furthermore, 58 (2) is twice differentiable, in which case �8 (2) 5 ′8 (2) ≤ 2(58 (2))2.

Now we are ready to present the optimal allocation rule of each group.

Theorem 4.4.1. Under Assumptions 4.2.1-4.4.2, given a desired participation rate
profile)∗, the optimal allocation rule of group 8 is

�8 (2) =

j, if q8 (2;)∗) ≤ q̂,

[√
q8 (2;)∗)

, if q̂ < q8 (2;)∗) ≤ q8 (2̂8;)∗).
(4.21)

The characterizations of the constants [, j, and q̂ depend on the system parameters
including the budget �, number of agents B, distribution of virtual cost. See (48) in
Appendix 4.A.3.

Theorem4.4.1 shows that the optimal allocation rule of a group can have two possible
structures: Fixed then Decreasing (FtD) or Strictly Decreasing (SD), depending on
system parameters such as budget �. Figure 4.2 provides an illustration. The
FtD structure (the blue and red curves in Figure 4.2) has an allocation rule for the

79

Figure 4.2: An illustration of the optimal allocation rulewith two possible structures.

group that is firstly fixed in low-cost region (i.e., the region in which q8 (2;)∗) ≤ q̂
holds) and then strictly decreasing in the cost in the high-cost region (inversely
proportional to the square root of the virtual cost). Since the allocation rule is
not strictly decreasing, the mechanism can only induce agents’ weak (non-strict)
truthfulness, according to Theorem 4.3.1. The other structure, SD (the orange curve
in Figure 4.2), has an allocation rule that is strictly decreasing (inversely proportional
to the square root of the virtual cost) in the whole region. The strictly monotonic
structure induces strict truthfulness. Note that the form of the optimal allocation
rule parallels that of previous work [101], showing that a similar form is still optimal
in a more general setting. As we have discussed, the generalization beyond [101]
to include the analyst’s bias-variance trade-off, the agents’ privacy costs, and data
correlation add technical complexity and practicality. A priori, it is not clear that
the optimal form would remain similar in the more general setting.

Note that the optimal allocation rule presented in Theorem 4.4.1 is defined for
the participating agents, whose costs are lower than threshold 2̂8 for group 8. As
in the case of non-participants, we only need to ensure monotonicity to induce
truthfulness. A simple example is �8 (2) = n for 2 ≥ 2̂8, where n is a small enough
non-negative value. Note that this example does notmake the total expected payment
exceed the budget, as the non-participants do not get the payments. In summary,
the allocation rule of the cost lower than the threshold presented in Theorem 4.4.1
and the allocation rule of the cost higher than the threshold make up a complete
menu shown to the agents, which induces agents’ truthfulness and optimizes the
bias-variance trade-off.

We find that, when the budget � is relatively small, the optimal allocation rule has

80

a Strictly Decreasing structure. To state the result, first define

; ()∗) ,
∑
8

@8 \̄
∗
8 (ℎ(2̂8,)∗8 ;"8) − 6(2̂8,)∗8 ;"8) − F(\̄∗)). (4.22)

Corollary 4.4.1. Under Assumptions 4.2.1-4.4.2, the optimal allocation rule is

�8 (2) =
1√

q8 (2;)∗)
· �/B − ; ()∗)∑

8 @8
∫ 2̂8

2min

√
q8 (2;)∗) 58 (2)32

, (4.23)

when the participation rate profile)∗ satisfies the following inequality:

(�/B−; ()∗)) (2W+\̄∗(1−\̄∗) (1−W)B) < W
√
qmin()∗) ·

∑
8

@8

∫ 2̂8

2min

√
q8 (2;)∗) 58 (2)32.

(4.24)
Furthermore, the mechanism is strictly truthful.

Corollary 4.4.1 is a special case of Theorem 4.4.1. The inequality in (4.24) indicates
that the budget is relatively low. Suppose the budget is large enough. The analyst can
keep the allocation rule in the low-cost region fixed, instead of strictly decreasing. In
this case, the agents’ reporting is weak truthful. However, if the budget is low as in
(4.24), the optimal allocation rule is strictly decreasing, which induces agents’ strict
truthfulness. Strict truthfulness is a more desirable property than weak truthfulness.

Sufficient Conditions for Unbiased Estimation

Next, we present simple, easy to verify, sufficient conditions for unbiased estima-
tion. We focus on the low-budget regime, which induces agents’ strict truthfulness,
according to Corollary 4.4.1. By substituting the allocation rule in Corollary 4.4.1
to the objective function (4.18), we arrive at an optimization problem over)∗ as
follows:

max
)∗

)∗()∗) = W
B

(
* ()∗) − 1

\̄∗

)
, (4.25)

where

* ()∗) , 1(
\̄∗

)2 ·

(∑
8 @8

∫ 2̂8

2min

√
q8 (2;)∗) 58 (2)32

)2

�/B − ; ()∗) . (4.26)

The objective function in (4.25) is complicated due to the complexity of ; ()∗)
in (4.26). Furthermore, the complicated characterization of its derivative with

81

respect to group 8’s participation rate \̄∗
8
adds to the complexity. Thus, we focus on

identifying sufficient conditions under which the optimal participation rate is one,
meaning that the analyst would like to have unbiased estimator.

To begin, we introduce some notation and assumptions. We denote the full par-
ticipation rate profile by) 5 , [1] � ∈ R� , each component of which is one. We
define Δ8 , ℎ(2̂8,)8;"8) − 6(2̂8,)8;"8), which captures the additional privacy cost
of an participant (compared with non-participation) whose cost is exactly the cost
threshold in group 8.

We now present sufficient conditions for achieving full participation and an unbiased
estimator.

Proposition 4.4.1. Suppose that, for all)∗ in which \̄∗
8
≥ \̄min > 0,∀8, (i) the

inequality in (4.24) holds, and (ii) F′(\̄∗) ≥ �8 ()∗, �, W, B, q) holds for the function
�8 ()∗, �, W, B, q) defined in (50) of Appendix 4.A.5, where F′ is the derivative of
function F(·). Then, the optimal participation rate profile is) 5 and the analyst
obtains an unbiased estimator.

Proposition 4.4.2. Suppose that, for all)∗ in which \̄∗
8
≥ \̄min > 0,∀8, (i) the

inequality in (4.24) holds, and (ii) mΔ8
m\̄∗
8

≤ X8 ()∗, �, W, B, q) holds for the function
X8 ()∗, �, W, B, q) defined in (51) of Appendix 4.A.6. Then, the optimal participation
rate profile is) 5 and the analyst obtains an unbiased estimator.

The proofs of Proposition 4.4.1 and Proposition 4.4.2 are in Appendix 4.A.5 and Ap-
pendix 4.A.6, respectively. To understand the conditions in these two propositions,
note that Condition (i) in both propositions indicates that the budget is “small”, i.e.,
lower than a certain threshold, which is related to the expectation of virtual cost in
the population. It ensures that the allocation rule is strictly decreasing, according
to Corollary 4.4.1. Further, it holds if the budget itself is relatively low, or if the
expectation of the virtual cost is relatively high. Recall that in the definition of
virtual cost (Definition 4.4.2), the virtual cost is determined by both the cost and
data correlation strength. In summary, Condition (i) indicates that the overall cost
is relatively high, or the data correlation strength is relatively weak, or the budget is
relatively low.

Next we discuss Condition (ii) in the above two propositions. Recall that the
participation benefit F(\̄) is increasing in the participation rate. Condition (ii)
in Proposition 4.4.1 implies that the increment of this benefit is high as average

82

participation rate increases, which indicates that the participation benefit is large.
Meanwhile, recall that Δ8 = ℎ(2̂8,)8;"8) − 6(2̂8,)8;"8) captures the addition part of
the privacy cost that does not concern data correlation. Condition (ii) in Proposition
4.4.2 implies that the increment of this part of the privacy cost is small as the group
participation rate increases, which indicates that the privacy cost of participation is
closed to that of non-participation. Intuitively, if Conditions (ii) in the above two
propositions holds, the analyst does not need to pay a lot to each agent to incentivize
her participation. This is because the benefit of participation is significant (Condition
(ii) in Proposition 4.4.1) or the negative impact of participation is small (Condition
(ii) in Proposition 4.4.2). As a result, the expected payment of each agent is relatively
low. This enables the analyst to increase the participation rate and incentivize more
fraction of the population. This finally leads to a full participation rate to induce
zero bias.

4.5 Concluding Remarks
In this paper, we study the design of an optimal mechanism for data acquisition
in a setting where there is correlation among the data of participants that leads to
information leakage. Information leakage is a crucial and under-explored feature of
data markets and our results represent the first to characterize an optimal mechanism
for data acquisition in such a setting. Additionally, our results provide the analyst
the ability to optimally trade off bias and variance of the resulting estimator.

Further, our results provide important perspectives about the consequences of cor-
relation and information leakage for data marketplaces. In particular, intuitively one
might expect that these factors, which underlie the privacy paradox, would lead to
inefficiencies where data marketplaces exploit participants and obtain data for lower
prices than otherwise. The analysis in this paper shows that this is indeed the case.
Combined with the results of [99], there is a compelling argument that information
leakage is a significant factor in market inefficiencies that lead to oversharing and
reduced payments in data marketplaces.

Thus, one may ask if it is possible to regulate data marketplaces to avoid such
inefficiencies. Unfortunately, our results highlight that typical suggestions, such as
avoiding monopolistic platforms, may not be effective. Since our results hold for
any fixed participation rate, a platform can exploit information leakage regardless of
its market size. Further, differential privacy cannot eliminate the underlying issues
in this case, which comes from inter-group and intra-group correlation. Thus,

83

an important open problem motivated by our work is: what approaches can be
brought to mitigate the impact of information leakage and the privacy paradox in
data marketplaces?

4.A Appendix
4.A.1 Proof of Theorem 4.3.1
First, we show that our mechanism is truthful if and only if the payment rule is of
the form

%8 (2̃) = 2̃ − ℎ(2̃,)8;"8) +
1

�8 (2̃)

(
(1 − 1()8;"8))

∫ 2max

2̃

�8 (I)3I + g()8,"8)
)
,

given byTheorem4.3.1, assuming that) is the true induced equilibriumparticipation
profile. Second, we show that indeed, the equilibrium participation profile)∗ is the
desired profile) when using this payment rule if and only if

g()8,"8) = ℎ(2̂8,)8;"8)−6(2̂8,);"8)−(1 − 1()8;"8))
∫ 2max

2̂8

�8 (I)3I−F(\̄) (4.16)

where 2̂8 satisfies

\̄8 =

∫ 2̂8

2min

58 (2)32, 1 ≤ 8 ≤ � . (4.14)

1. We first argue that our mechanism is (strictly) truthful if and only if the payment
rule has the form given in Equation (4.15) and �8 is (strictly) monotone for all 8.

First, we show the “if” direction. Given a desired participation rate profile) , we
plug the payment function into the agent’s utility from participation, and obtain
the following expected utility D̄8 (2̃ |2) when the agent with true cost 2 reports 2̃:

D̄8 (2̃ |2) = �8 (2̃) [%8 (2̃) − 2 + ℎ(2,)8;"8)] − ℎ(2,)8;"8) + F(\̄)
= �8 (2̃) (2̃ − ℎ(2̃,)8;"8))

+ (1 − 1()8;"8))
∫ 2max

2̃

�8 (I)3I + �8 (2̃) [−2 + ℎ(2,)8;"8)] +

where does not depend on 2̃.

Now, note that we are in the non-atomic setting in which each agent is infinitesi-
mal. In turn, a single agent’s cost reporting and participation decisions does not
affect the participation ratio, and m\̄8

m2̃
= 0. As such, the derivative of D̄8 (2̃ |2) with

respect to 2̃ is given by

�′8 (2̃) (2̃ − ℎ(2̃,)8;"8)) + �8 (2̃) (1 − 1()8;"8))
− (1 − 1()8;"8)) �8 (2̃) − �′8 (2̃) (2 − ℎ(2,)8;"8))
= �′8 (2̃) (2̃ − ℎ(2̃,)8;"8) − (2 − ℎ(2,)8;"8))).

84

In turn, when the allocation rule is decreasing with respect to cost, i.e., �′
8
(2) < 0,

we obtain that

mD̄8 (2̃ |2)
m2̃

= �′8 (2̃) (2̃ − ℎ(2̃,)8;"8) − (2 − ℎ(2,)8;"8)))

> 0, if 2̃ < 2,

= 0, if 2̃ = 2,

< 0, if 2̃ > 2.

Therefore, the agent maximizes her expected utility of participation if and only if
she truthfully reports her cost, i.e., 2̃ = 2. This corresponds to strict truthfulness.
On the other hand, if the allocation rule is non-increasing, i.e., �′

8
(2) ≤ 0, we

have

mD̄8 (2̃ |2)
m2̃

= �′8 (2̃) (2̃ − ℎ(2̃,)8;"8) − (2 − ℎ(2,)8;"8)))

≥ 0, if 2̃ ≤ 2,

≤ 0, if 2̃ > 2.

Therefore, the agent maximizes her expected utility of participation if she truth-
fully reports her cost, i.e., 2̃ = 2. This corresponds to general truthfulness, which
incorporates strict truthfulness as a special case.

We now show that “only if” direction: any (strictly) truthful payment function
must have the form given in Equation (4.15) and requires �8 to be (strictly)
monotone. By truthfulness, we have D̄8 (2 |2) = max2̃ D̄8 (2̃ |2). Applying the
envelope theorem to max2̃ D̄8 (2̃ |2) yields

mD̄8 (2 |2)
m2

=
mD̄8 (2̃ |2)
m2

����
2̃=2

= −(1 − 1()8;"8)) · �8 (2) − 1()8;"8).

Taking the integral from 2 to 2max, we further have

D̄8 (2max |2max) − D̄8 (2 |2) =

(1()8;"8) − 1)
∫ max

2

�8 (I)3I + ℎ(2,)8;"8) − ℎ(2max,)8;"8).

Since D̄8 (2 |2) = �8 (2) [%8 (2) − 2 + ℎ(2,)8;"8)] − ℎ(2,)8;"8) + F(\̄), we obtain
the following equation:

D̄8 (2max |2max) + (1 − 1()8;"8))
∫ 2max

2

�8 (I)3I + ℎ(2max,)8;"8) − ℎ(2,)8;"8)

= �8 (2) [%8 (2) − 2 + ℎ(2,)8;"8)] − ℎ(2,)8;"8) + F(\̄).

Hence, we have

%8 (2) = 2 − ℎ(2,)8;"8) +
1

�8 (2)

(
(1 − 1()8;"8))

∫ 2max

2

�8 (I)3I + E
)
,

85

where
E = D̄8 (2max |2max) + ℎ(2max,)8;"8) − F(\̄).

Now, remembering that

mD̄8 (2̃ |2)
m2̃

= �′8 (2̃) (2̃ − ℎ(2̃,)8;"8) − (2 − ℎ(2,)8;"8))),

(strict) truthfulness implies that for all 2, there exists n > 0 (small) such that
for any 2̃ ∈ (2 − n, 2), mD̄8 (2̃ |2)

m2̃
≥ 0 (> 0 for strict) and for any 2̃ ∈ (2, 2 + n),

mD̄8 (2̃ |2)
m2̃

≤ 0 (< 0 for strict). Since 2−ℎ(2,)8;"8) = 2(1−1()8;"8)) is increasing,
this in particular requires that �′

8
(2̃) ≤ 0 (< 0 for strict truthfulness) on (2 − n, 2)

and (2, 2 + n). Since this holds for all 2, this in particular implies that for all 2̃,
�′
8
(2̃) ≤ 0 (resp < 0), which shows (strict) monotonicity of �.

2. It remains to show that our payment rule induces an equilibrium participation
profile)∗ equal to the desired participation profile) if and only if

g()8,"8) = ℎ(2̂8,)8;"8) − 6(2̂8,);"8) − (1 − 1()8;"8))
∫ 2max

2̂8

�8 (I)3I − F(\̄),
(27)

where 2̂8 is defined as the solution to

\̄8 =

∫ 2̂8

2min

58 (2)32, 1 ≤ 8 ≤ �, (28)

and 2̂8 is such that if all (and only the) agents in group 8 with cost at most 2̂8
participate, then the participation rate in group 8 is \̄8. As such, to show the
result, we simply need to show that the participating agents in group 8 are those
with cost at most 2̂8 if and only if E = g()8,"8). To do so, note that an agent in
group 8 with cost 2 who truthfully reports his cost has utility

D̄8 (2 |2) = �8 (2) [%8 (2) − 2 + ℎ(2,)8;"8)] − ℎ(2,)8;"8) + F(\̄)

= (1 − 1()8;"8))
∫ 2max

2

�8 (I)3I + E − ℎ(2,)8;"8) + F(\̄),

and has a utility of −6(2,)8;"8) for non-participation. In turn, an agent in group
8 and with cost 2 participates if and only

(1 − 1()8;"8))
∫ 2max

2

�8 (I)3I + 6(2,)8;"8) − ℎ(2,)8;"8) + F(\̄) + E ≥ 0.

Note that because F is continuous, 6(2,)8;"8) − ℎ(2,)8;"8) is continuous and
increasing in 2, and �8 (I) ≥ 0 hence

∫ 2max
2

�8 (I)3I is continuous non-increasing

86

in 2, we have that D̄8 (2 |2) is continuous and decreasing in 2. In turn an agent
participates exactly when his cost satisfies 2 ≤ 2̂8 if and only if

(1 − 1()8;"8))
∫ 2max

2̂8

�8 (I)3I + 6(2̂8,)8;"8) − ℎ(2̂8,)8;"8) + F(\̄) + E = 0,

which yields
E = g()8,"8).

This concludes the proof.

4.A.2 Proof of Lemma 4.4.1 and Remark 4.4.1
We first derive the variance. Recall that O ⊂ N denotes the set of reporters selected
in the participants. For simplicity of notations, we make the conditioning on N
implicit in this proof. Let us fix the participation rate profile)∗, the associated cost
threshold 2̂8 under which agents are willing to participate, and the corresponding
participation rate \̄∗ under this profile in the population. Note that there are # = B\̄∗

participants. The estimator is an average of # = B\̄∗ i.i.d. random variables, where
each variable has variance

f2 = E

[(
G: · 1{: ∈ O}

�:

)2
]
−E

[
G: · 1{: ∈ O}

�:

]2
.

Note that

E

[(
G: · 1{: ∈ O}

�:

)2
]
= E

[(G:
�:

)2
· 1{: ∈ O}

]
= E8,2

[
EG: ,O

[(G:
�:

)2
· 1{: ∈ O}

����8, 2]]
= E8,2

[
E

[
G2
:
|8, 2

]
�8 (2)2

· Pr [: ∈ O|8, 2]
]

= E8,2

[
E [G: |8, 2]
�8 (2)

]
,

where the second-to-last step uses the independence of G and O conditional on
8, 2, and the last step uses the facts i) conditional on : being a participant,
Pr [: ∈ O|8, 2] = �8 (2) and ii) G2

:
= G: as G: ∈ {0, 1}. When G: ∈ [0, 1] in-

stead, note that E
[
G2
:
|8, 2

]
≤ E [G: |8, 2], and we get an inequality instead, which

proves Remark 4.4.1. A similar calculation yields (both in the binary and non-binary
cases)

E

[
G: · 1{: ∈ O}

�:

]
= E8,2 [E [G: |8, 2]] .

87

Further, using the fact that an agent in group 8 participates if and only if 2 ≤ 2̂8, note
that the probability density of an agent being in group 8 and having cost 2 conditional
on the agent participating is given by

@8 58 (2)∑
1≤8≤�

@8
∫ 2̂8

2min
58 (2)32

if 2min ≤ 2 ≤ 2̂8,

and is equal to 0 if 2 > 2̂8. In turn, we obtain that

f2 =

∑
1≤8≤�

@8
∫ 2̂8

2min

E[G2 |8,2]
�8 (2) 58 (2)32∑

1≤8≤�
@8

∫ 2̂8

2min
58 (2)32

−
©«

∑
1≤8≤�

@8
∫ 2̂8

2min
E[G |8, 2] 58 (2)32∑

1≤8≤�
@8

∫ 2̂8

2min
58 (2)32

ª®®®¬
2

.

Since # = 1
B\̄∗

and that \̄∗ =
∑

1≤8≤�
@8

∫ 2̂8

2min
58 (2)32, the variance of the Horvitz-

Thompson estimator is then given by

1
B\̄∗

©«
∑

1≤8≤�
@8

∫ 2̂8

2min

E[G2 |2,8]
�8 (2) 58 (2)32

\̄∗
−

©«
∑

1≤8≤�
@8

∫ 2̂8

2min
E[G |2, 8] 58 (2)32

\̄∗

ª®®®¬
2ª®®®®¬
.

Next, we characterize the worst-case bias (over the data of the non-participants).
Recall that we assume positive correlation between data and costs. In turn, the
worst-case bias corresponds to the case where the data of all the non-participants
(whose costs and data are higher than those of participants in each group) is one. To
see this, let ` be true population mean. Let E[G |3 (2) = 0], resp. E[G |3 (2) = 1],
be the expectations of the data of the non-participants (decision variable 3 (2) = 0),
resp. participants (decision variable 3 (2) = 1). Recall that the estimator ˆ̀ is an
unbiased estimator of participants’ data, i.e., E[ˆ̀] = E[G |3 (2) = 1]. We have

B\̄∗E[ˆ̀] + B(1 − \̄∗)E[G |3 (2) = 0] = B`,

which leads to

` −E[ˆ̀] = (1 − \̄∗) (E[G |3 (2) = 0] −E[ˆ̀]).

Positive correlation between data and cost indicates that as the agents’ costs increase,
their data is more likely to increase as well. Meanwhile, we show in Corollary 4.3.1
that non-participants have higher costs. Thus, we know that the expectation of
non-participants’ data is no less than that of participants’ data, i.e.,

88

E[G |3 (2) = 0] ≥ E[G |3 (2) = 1] = E[ˆ̀] .

Therefore, when taking absolute values, we have

|` −E[ˆ̀] | = (1 − \̄∗) (E[G |3 (2) = 0] −E[ˆ̀]).

The bias is maximized when the expectation of non-participants’ data is the maxi-
mum value, i.e., E[G |3 (2) = 0] = 1. Thus, we have

|` −E[ˆ̀] | = (1 − \̄∗) (1 −E[ˆ̀]).

Plugging in (by a similar calculation as for the variance terms),

E[ˆ̀] = 1
\̄∗

∑
1≤8≤�

@8

∫ 2̂8

2min

?8 (2) 58 (2)32,

we immediately obtain that the worst-case bias (where the worst-case is taken over
the data of the non-participants) is

|` −E[ˆ̀] | = (1 − \̄∗)
(
1 − 1

\̄∗

∑
1≤8≤�

@8

∫ 2̂8

2min

?8 (2) 58 (2)32
)
.

So far we have derived the variance and the worst-case bias separately. Notice that
both variance andworst-case bias are characterized by the distribution of participants
data, i.e., ?8 (2), for 2 ≤ 2̂8 and all 8. Thus, the supremum in ?8 (2) (i.e., over the
participants’ data) of the linear combination of the variance and the worst-case bias
gives the worst-case linear combination of variance and bias, i.e., the worst-case
bias-variance trade-off, over the data of both participants and non-participants.

4.A.3 Proof of Theorem 4.4.1
Let)∗ be the desired equilibrium participation rate profile. The proof goes as
follows. First, we write the problem of finding the optimal allocation rule as
a minimax optimization problem over a discretization of the costs. Second, we
interpret this optimization problem as a zero-sum game between the analyst who
controls the allocation rule and aims to minimize the bias-variance trade-off, and an
adversary who controls the correlation between data and costs and aims to maximize
the bias-variance objective. Finally, we convert our solution in the discrete cost case
to the original, continuous case.

89

Reformulating the optimization program. The optimization problem in Defini-
tion 4.3.6 involves two constraints, a truthfulness constraint and a budget constraint.
Because our payment rule uniquely induces truthfulness and the desired partici-
pation rate profile)∗ by Theorem 4.3.1, we can directly plug in the closed-form
expression for the payment into the budget constraint, and replace the truthfulness
constraints by a monotonicity constraint on the selection rule �8, without loss of
generality. That is, the expected payment to a single participant is given by∑

8

@8

∫ 2̂8

2min

�8 (2)%8 (2) 58 (2)32

=
∑
8

@8

∫ 2̂8

2min

(
�8 (2)

(
2 − ℎ(2,)∗8 ;"8)

)
+

(
1 − 1()∗8 ;"8)

) ∫ 2max

2

�8 (I)3I
)
58 (2)32

+
∑
8

@8

∫ 2̂8

2min

g()∗8 ,"8) 58 (2)32

=
∑
8

@8

∫ 2̂8

2min

�8 (2)
(
2 − ℎ(2,)∗8 ;"8)

)
58 (2)32

+
∑
8

@8
(
1 − 1()∗8 ;"8)

) ∫ 2̂8

2min

(∫ 2max

2

�8 (I)3I
)
58 (2)32

+
∑
8

@8

∫ 2̂8

2min

g()∗8 ,"8) 58 (2)32.

First, let us simplify the double-integral term. We remark that∫ 2̂8

2min

(∫ 2max

2

�8 (I)3I
)
58 (2)32 =

∫ 2̂8

2min

(∫ 2max

2<8=

�8 (I)3I
)
58 (2)32

−
∫ 2̂8

2min

(∫ 2

2<8=

�8 (I)3I
)
58 (2)32

=

∫ 2max

2<8=

(∫ 2̂8

2min

58 (2)32
)
�8 (I)3I

−
∫ 2̂8

2<8=

(∫ 2̂8

I

58 (2)32
)
�8 (I)3I

= �8 (2̂8)
∫ 2max

2<8=

�8 (I)3I − �8 (2̂8)
∫ 2̂8

2<8=

�8 (I)3I

+
∫ 2̂8

2<8=

�8 (I)�8 (I)3I

= �8 (2̂8)
∫ 2max

2̂8

�8 (2)32 +
∫ 2̂8

2min

�8 (2)�8 (2)32.

90

As g()8,"8) is independent of 2, we also have that∫ 2̂8

2min

g()∗8 ,"8) 58 (2)32 = g()∗8 ,"8)
∫ 2̂8

2min

58 (2)32

= �8 (2̂8)
(
ℎ(2̂8,)∗8 ;"8) − 6(2̂8,)∗8 ;"8) − F(\̄∗)

)
− �8 (2̂8)

((
1 − 1()∗8 ;"8)

) ∫ 2max

2̂8

�8 (I)3I
)
.

Thus, ∑
8

@8

∫ 2̂8

2min

�8 (2)%8 (2) 58 (2)32

=
∑
8

@8

∫ 2̂8

2min

�8 (2)
(
2 − ℎ(2,)∗8 ;"8)

)
58 (2)32

+
∑
8

@8
(
1 − 1()∗8 ;"8)

) ∫ 2̂8

2min

�8 (2)�8 (2)32

+
∑
8

@8
(
1 − 1()∗8 ;"8)

)
�8 (2̂8)

∫ 2max

2̂8

�8 (2)32

−
∑
8

@8�8 (2̂8)
((

1 − 1()∗8 ;"8)
) ∫ 2max

2̂8

�8 (I)3I
)

+
∑
8

@8�8 (2̂8)
(
ℎ(2̂8,)∗8 ;"8) − 6(2̂8,)∗8 ;"8) − F(\̄∗)

)
=
∑
8

@8

∫ 2̂8

2min

�8 (2)
(
2 − ℎ(2,)∗8 ;"8) +

(
1 − 1()∗8 ;"8)

) �8 (2)
58 (2)

)
58 (2)32

+
∑
8

@8�8 (2̂8)
(
ℎ(2̂8,)∗8 ;"8) − 6(2̂8,)∗8 ;"8) − F(\̄∗)

)
.

Remembering that by definition �8 (2̂8) = \̄∗8 , and that the virtual costs are given by

q8 (2;)∗) = 2 − ℎ(2,)∗8 ;"8) + (1 − 1()∗8 ;"8))
�8 (2)
58 (2)

,

we can rewrite∑
8

@8

∫ 2̂8

2min

�8 (2)%8 (2) 58 (2)32

=
∑
8

@8

∫ 2̂8

2min

q8 (2;)∗)�8 (2) 58 (2)32 +
∑
8

@8 \̄
∗
8 (ℎ(2̂8,)∗8 ;"8) − 6(2̂8,)∗8 ;"8) − F(\̄∗)).

91

Therefore, the equivalent optimization program is given by:

min
�,)∗

) (�,)∗)

B.C.∑
8

@8

∫ 2̂8

2min

q8 (2;)∗)�8 (2) 58 (2)32

+
∑
8

@8 \̄
∗
8 (ℎ(2̂8,)∗8 ;"8) − 6(2̂8,)∗8 ;"8) − F(\̄)) ≤

�

B
,

�8 (2) ∈ [0, 1] is a non-increasing function ∀8 ∈ [�],
0 < \̄∗8 ≤ 1 ∀8 ∈ [�] .

Now, we fix the equilibrium participation profile)∗. We focus on finding the
optimal selection rule given the participation profile. This is given by the following
optimization program, plugging back the expression for) (�,)∗):

min
�8 (2)

max
?8 (2)

W

B
(
\̄∗

)2
©«
∑
8

@8

∫ 2̂8

2min

?8 (2)
�8 (2)

58 (2)32 −
1
\̄∗

(∑
8

@8

∫ 2̂8

2min

?8 (2) 58 (2)32
)2ª®¬

+ (1 − W) (1 − \̄∗)
(
1 − 1

\̄∗

∑
8

@8

∫ 2̂8

2min

?8 (2) 58 (2)32
)

B.C.
∑
8

@8

∫ 2̂8

2min

q8 (2;)∗)�8 (2) 58 (2)32

+
∑
8

@8 \̄8 (ℎ(2̂8,)∗8 ;"8) − 6(2̂8,)∗8 ;"8) − F(\̄∗)) ≤
�

B
,

0 ≤ �8 (2), ≤ 1 ∀8, 2,
0 ≤ ?8 (2), ≤ 1 ∀8, 2.

Note that we do not require the monotonicity constraints on �8 and ?8. We will later
show that the solutions �∗

8
and ?8 to this relaxed optimization problem are indeed

monotone, hence relaxing the constraint is without loss of generality.

Solving for the discrete cost case. The above formulation is presented for contin-
uous costs. Before we find the solution to the continuous cost problem, let us first
focus on the case of discrete costs and find the corresponding optimization program
and solution. We will later show how to transform the discrete solution into an
optimal solution to the continuous optimization problem above.

We first introduce the notations in the discrete case. Suppose the cost 2 in the
population is from a discrete and finite set {21, 22, ..., 2�} with size �. Recall that

92

there are � groups of agents parameterized by data correlation strength. We write
c8 9 as the probability of an agent belonging to group 8 and having cost 2 9 . Naturally
we have

∑
1≤8≤�,1≤ 9≤� c8 9 = 1. Recall that agents’ decisions have threshold structure,

i.e., only agents with costs below the cost threshold choose to participate. We use
C (8) to denote the index of threshold cost in group 8. That is, if the cost 2 ≤ 2C (8) for
an agent in group 8, he would like to participate. Let q8 9 be the virtual cost of an
agent with cost 2 9 in group 8 as follows

q8 9 =

21 − ℎ(21,)8;"8), if 9 = 1,

2 9 − ℎ(2 9 ,)8;"8) + (1 − 1()8;"8)) (2 9 − 2 9−1)
∑ 9−1
C=1 c8C
c8 9

, if 9 > 1.

Since 21 − ℎ(21,)8;"8) > 0, q8 9 > 0. Recall that ?8 (2) = %A [G = 1|2,"8] in
continuous case is the probability of the data being one. We use ?8 9 to denote the
probability of the data being one for an agent in group 8 having cost 2 9 . We are
trying to find the optimal selection probability for discrete cost in each group. Let
�8 9 be the selection probability for agents with cost 2 9 in group 8. The discrete
version of the the min-max optimization problem is as follows:

min
�

max
?

W

B
(
\̄∗

)2

©«
∑

1≤8≤�,1≤ 9≤C (8)
c8 9 ·

?8 9

�8 9
− 1
\̄∗

©«
∑

1≤8≤�,1≤ 9≤C (8)
c8 9 ?8 9

ª®¬
2ª®®¬

+ (1 − W) (1 − \̄∗) ©«1 − 1
\̄∗

∑
1≤8≤�,1≤ 9≤C (8)

c8 9 ?8 9
ª®¬

B.C.
∑

1≤8≤�,1≤ 9≤C (8)
c8 9q8 9 �8 9

+
∑
8

@8 \̄8 (ℎ(2C (8) ,)∗8 ;"8) − 6(2C (8) ,)∗8 ;"8) − F(\̄∗)) ≤
�

B
,

0 ≤ �8 9 ≤ 1, ∀8 ∈ [�], 9 ∈ [C (8)],
0 ≤ ?8 9 ≤ 1, ∀8 ∈ [�], 9 ∈ [C (8)] .

(29)

We write � = [�8 9]1≤8≤�,1≤ 9≤C (8) and ? = [?8 9]1≤8≤�,1≤ 9≤C (8) . Here, there is an
implicit constraint on the mechanism to make the solution meaningful:

�

B
−

∑
8

@8 \̄8 (ℎ(2C (8) ,)∗8 ;"8) − 6(2C (8) ,)∗8 ;"8) − F(\̄∗)) > 0.

If it does not hold, otherwise, it means
∑
8, 9 c8 9q8 9 �8 9 ≤ 0 and �8 9 = 0,∀8, 9

is the solution. Recall that q8 9 > 0,∀8, 9 . In this case, no data is collected,

93

which is meaningless. The constraint means the budget should be higher than
a threshold related to participation rate)∗ so as to generate positive selection
probability. Meanwhile, without loss of generality, we assume∑

1≤8≤�,1≤ 9≤C (8)
c8 9q8 9 +

∑
8

@8 \̄8 (ℎ(2C (8) ,)∗8 ;"8) − 6(2C (8) ,)∗8 ;"8) − F(\̄∗)) >
�

B

to avoid a trivial solution of �8 9 = 1,∀8, 9 . If the above inequality does not hold,
it is optimal to select all agents with probability one. This assumption means the
analyst would not aggressively select all the participants with abundant budget.

We denote the objective function inside the minimax problem as * (�, ?) for sim-
plification. Notice that * (�, ?) is a convex in � and concave in ?. To see this, let
c = [c8 9]1≤8≤�,1≤ 9≤C (8) . We can write* (�, ?) as

* (�, ?) = W

B
(
\̄∗

)2

(
〈c, ?./�〉 − 1

\̄∗
〈c, ?〉2

)
+ (1 − W) (1 − \̄∗)

(
1 − 1

\̄∗
〈c, ?〉

)
.

With abuse of notation, we use ./ to denote component-wise product (division)
operation for vectors, and use 〈, 〉 to denote inner product operation. Then we
can obviously figure out that* (�, ?) is convex in � and concave in ?, similarly for
each problem. In turn, the optimization program defines a convex-concave zero-sum
game, in which player 1 (the analyst) is choosing � to minimize* (�, ?) given ? and
player 2 (an adversary) is choosing @ to maximize * (�, ?) given �. The solution
of the minimax problem corresponds to the equilibrium (�∗, ?∗) of the zero-sum
game satisfying the constraint * (�∗, ?∗) = min

�
* (�, ?∗) = max

?
* (�∗, ?). Thus,

we can find the equilibrium of the game to derive the optimal allocation rule.

Next, we find the equilibrium by characterizing the best responses of two players.

Lemma 4.A.1. Given �, ?8 9 for each 8, 9 is the best response of maximizing player
if and only if one of the following holds:

1. ?8 9 = 1 and W

B(\̄∗)2
(

1
�8 9
− 2
\̄∗

(∑
8, 9 c8 9 ?8 9

))
− 1
\̄∗
(1 − \̄∗) (1 − W) > 0;

2. ?8 9 = 0 and W

B(\̄∗)2
(

1
�8 9
− 2
\̄∗

(∑
8, 9 c8 9 ?8 9

))
− 1
\̄∗
(1 − \̄∗) (1 − W) < 0;

3. 0 ≤ ?8 9 ≤ 1 and W

B(\̄∗)2
(

1
�8 9
− 2
\̄∗

(∑
8, 9 c8 9 ?8 9

))
− 1
\̄∗
(1 − \̄∗) (1 − W) = 0.

Proof. Since the objective function of the maximizer is convex and differentiable,
the KKT conditions are necessary and sufficient for optimality, and the optimal

94

solutions are such that there exist dual variables under which the KKT conditions
are satisfied. Note that the Lagrangian of the maximization problem is as follows:

! (?, _+8 9 , _−8 9 , _) = * (�, ?) +
∑
8, 9

_+8 9 (1 − ?8 9) +
∑
8, 9

_−8 9 ?8 9 .

Hence, the KKT conditions yield

m!

m?8 9
=

Wc8 9

B
(
\̄∗

)2

(
1
�8 9
− 2
\̄∗

(∑
8, 9

c8 9 ?8 9

))
− 1
\̄∗
(1 − \̄∗) (1 − W) − _+8 9 + _−8 9 = 0,

_+8 9 (1 − ?8 9) = 0, _−8 9 ?8 9 = 0, _+8 9 ≥ 0, _−8 9 ≥ 0, _ ≥ 0.

• If W

B(\̄∗)2
(

1
�8 9
− 2
\̄∗

(∑
8, 9 c8 9 ?8 9

))
− 1

\̄∗
(1 − \̄∗) (1 − W) > 0, then _+

8 9
> 0, hence a

best response must satisfy ?8 9 = 1 by complementary slackness. Further, when
taking _+

8 9
> 0, _−

8 9
= 0, and ?8 9 = 1, the KKT conditions hold; hence, ?8 9 = 1 is

indeed a (the unique) best response.

• If W

B(\̄∗)2
(

1
�8 9
− 2
\̄∗

(∑
8, 9 c8 9 ?8 9

))
− 1
\̄∗
(1 − \̄∗) (1 − W) < 0, it must be that _−

8 9
> 0,

which in turns implies ?8 9 = 0. Further, the KKT conditions hold with _−
8 9
> 0,

_+
8 9
= 0, ?8 9 = 0, hence ?8 9 = 0 is indeed a (the unique) best response.

• Finally, if W

B(\̄∗)2
(

1
�8 9
− 2
\̄∗

(∑
8, 9 c8 9 ?8 9

))
− 1
\̄∗
(1− \̄∗) (1− W) = 0, the KKT condi-

tions hold so long as 0 ≤ ?8 9 ≤ 1 with _−
8 9
= _+

8 9
= 0. Therefore, any ?8 9 ∈ [0, 1]

with
W

B
(
\̄∗

)2

(
1
�8 9
− 2
\̄∗
(
∑
8, 9

c8 9 ?8 9)
)
− 1
\̄∗
(1 − \̄∗) (1 − W) = 0,

is a best response for the maximizing player.

Next, the best response of the minimizing player (the analyst) is given by the
following lemma:

Lemma 4.A.2. Given ?,

• if ?8 9 = 0,∀8, 9 , any �8 9 ∈ [0, 1] that satisfies budget constraint is the best response
of the minimizing player;

95

• if ?8 9 ≠ 0,∀8, 9 , the best response of the minimizing player is

�∗8 9 = min
1,

√
W?8 9

B
(
\̄∗

)2
_∗q8 9

 , (30)

where _∗ is such that∑
8, 9 :?8 9≠0

c8 9q8 9 ·min
1,

√
W?8 9

B
(
\̄∗

)2
_∗q8 9

+

∑
8

@8 \̄8
(
ℎ(2C (8) ,)∗8 ;"8) − 6(2C (8) ,)∗8 ;"8) − F(\̄)

)
= �/B.

Proof. If ?8 9 = 0,∀8, 9 , then � does not appear in the objective function. Thus, any
�8 9 ∈ [0, 1] that satisfies budget constraint is the best response of the minimizing
player.

Next, we focus on the case of ?8 9 ≠ 0,∀8, 9 . We drop the constraint that �8 9 ≥ 0
for all 8, 9 (we will see that this is without loss of generality, as we will recover a
positive solution). The Lagrangian of the minimization problem is as follows:

! (�, _, _8 9) = * (�, ?) +
∑
8, 9

_8 9 (�8 9 − 1)+

_ ·
(∑
8, 9

c8 9q8 9 �8 9 +
∑
8

@8 \̄8 (ℎ(2C (8) ,)∗8 ;"8) − 6(2C (8) ,)∗8 ;"8) − F(\̄∗)) − �/B
)
.

From the KKT condition, we have the optimal �∗
8 9
, and optimal dual _∗. _∗

8 9
must

satisfy
m!

m�8 9
= − W

B
(
\̄∗

)2 ·
c8 9 ?8 9

�∗2
8 9

+ _∗c8 9q8 9 + _∗8 9 = 0, (31)

_∗8 9 (�∗8 9 − 1) = 0,

_∗ ·
(∑
8, 9

c8 9q8 9 �8 9 +
∑
8

@8 \̄8 (ℎ(2C (8) ,)∗8 ;"8) − 6(2C (8) ,)∗8 ;"8) − F(\̄∗)) − �/B
)
= 0.

Thus, we have i) �∗
8 9
= 1; or ii) �∗

8 9
< 1 and _∗

8 9
= 0. In the second case, we obtain

that �∗
8 9
=

√
W?8 9

B(\̄∗)2_∗q8 9
for some _∗ > 0, according to (31). A higher value of

selection probability (which indicates higher budget) would always reduce variance,
and thus, the objective function. Thus, the optimal allocation rule is such that the

budget constraint is binding. In conclusion, we have �∗
8 9
= min

{
1,

√
W?8 9

B(\̄∗)2_∗q8 9

}
where _∗ is such that the budget constraint is binding.

96

Before we present the intersection of both players’ best responses, we change some
indexes for simplicity. We denote the set of virtual cost of all groups, Φ , {q8 9 :
1 ≤ 8 ≤ �, 1 ≤ 9 ≤ C (8)}. Suppose there are , ∑

1≤8≤� C (8) number of elements in
the set. We sort them in a non-decreasing order, and replace index 8 9 with index : ,
which indicates the corresponding position in the sorted set, i.e.,Φ = {q: : 1 ≤ : ≤
 , q1 < q2 < ... < q }. Similarly, we replace index 8 9 of �8 9 , ?8 9 , c8 9 with index
: , and obtain �: , ?: , c: , which are associated with virtual cost q: . For simplicity,
we define ; as follows

; ,
∑
8

@8 \̄
∗
8 (ℎ(2̂8,)∗8 ;"8) − 6(2̂8,)∗8 ;"8) − F(\̄∗)).

We begin with some necessary notations as follows. We define

&(<, I) ,
<∑
:=1

c:q: +
√
q<

I
·

 ∑
:=<+1

c:
√
q: , < = 1, ..., . (32)

'(<, I) , 2W

(
I

q<
·
<∑
:=1

c:q: +
 ∑

:=<+1
c:

)
+

(
\̄∗

)2 (1 − \̄∗) (1 − W)B, < = 1, ..., .

(33)
Notice that '(<, I) > 0.

Claim 4.A.1. &(<, 1) is increasing in <, '(<, 1) is decreasing in < and thus,
&(<,1)
'(<,1) is increasing in <.

Proof. We can see that

&(< + 1, 1) −&(<, 1)

=

<+1∑
:=1

c:q: −
<∑
:=1

c:q: +
 ∑

:=<+2
c:

√
q:q<+1 −

 ∑
:=<+1

c:
√
q:q<

= c<+1q<+1 +
 ∑

:=<+2
c:

√
q:

(√
q<+1 −

√
q<

)
− c<+1

√
q<q<+1

=

 ∑
:=<+2

c:
√
q:

(√
q<+1 −

√
q<

)
+ c<+1

√
q<+1

(√
q<+1 −

√
q<

)
> 0.

The inequality is due to increasing virtual cost, i.e., q: is increasing in : . Also, we
have

97

'(< + 1, 1) − '(<, 1) = 2W

(
<+1∑
:=1

c:q:
1

q<+1
−

<∑
:=1

c:q:
1
q<
+

 ∑
:=<+2

c: −
 ∑

:=<+1
c:

)
= 2W

(
<∑
:=1

c:q:

(
1

q<+1
− 1
q<

)
+ c<+1q<+1

1
q<+1

− c<+1

)
= 2W

<∑
:=1

c:q:

(
1

q<+1
− 1
q<

)
< 0.

The inequality is also due to increasing virtual cost. Thus &(<, 1) is increasing in
<, and '(<, 1) is decreasing in <. Notice that '(<, 1) > 0. As such, we have that
&(<,1)
'(<,1) is increasing in <.

Claim 4.A.2. For < = 1, ..., − 1,

&(< + 1, 1) = &
(
<,

q<

q<+1

)
, '(< + 1, 1) = '

(
<,

q<

q<+1

)
. (34)

Proof.

&(< + 1, 1) =
<+1∑
:=1

c:q: +
√
q<+1 ·

 ∑
:=<+2

c:
√
q:

=

<∑
:=1

c:q: + c<+1q<+1 +
√
q<+1 ·

 ∑
:=<+2

c:
√
q:

=

<∑
:=1

c:q: +
√
q<+1 · c<+1

√
q<+1 +

√
q<+1 ·

 ∑
:=<+2

c:
√
q:

=

<∑
:=1

c:q: +
√
q<+1 ·

 ∑
:=<+1

c:
√
q:

=

<∑
:=1

c:q: +
√
q< ·

√
q<+1
q<
·

 ∑
:=<+1

c:
√
q:

= &

(
<,

q<

q<+1

)
.

To prove '(< + 1, 1) = '
(
<,

q<
q<+1

)
, it suffices to show

1
q<+1

·
<+1∑
:=1

c:q: +
 ∑

:=<+2
c: =

q<

q<+1
· 1
q<
·
<∑
:=1

c:q: +
 ∑

:=<+1
c: .

98

To this end, we can check

1
q<+1

·
<+1∑
:=1

c:q: +
 ∑

:=<+2
c: =

1
q<+1

·
<∑
:=1

c:q: +
1

q<+1
· c<+1q<+1 +

 ∑
:=<+2

c:

=
1

q<+1
·
<∑
:=1

c:q: + c<+1 +
 ∑

:=<+2
c:

=
q<

q<+1
· 1
q<
·
<∑
:=1

c:q: +
 ∑

:=<+1
c: .

So we have '(< + 1, 1) = '
(
<,

q<
q<+1

)
.

Next, we characterize the intersection of both players’ best responses. The mini-
mizing player’s strategy corresponds to the solution of the optimization problem in
(29). We will show that the minimizing player’s strategy has the following form:

�: =

j, if : ≤ :̂ ,

1√
q:
·
�/B−;−j

:̂∑
:=1

c:q:

 ∑
:=:̂+1

c:
√
q:

, if : > :̂ .
(35)

Here, the constants j and :̂ are defined as follows:

• If �/B−;
W\̄∗

<
&(1,1)
'(1,1) , then j = 0, :̂ = 0.

• If &(1,1)
'(1,1) ≤

�/B−;
W\̄∗

<
&(,1)
'(,1) , then <

∗ ∈ {1, ..., − 1} and I∗ ∈ (0, 1] be such that
&(<∗,I∗)
'(<∗,I∗) =

�/B−;
W\̄∗

(we prove its existence later).

– If �/B−;
&(<∗,I∗) ≤ 1, then j = �/B−;

&(<∗,I∗) and :̂ = <
∗.

– If �/B−;
&(<∗,I∗) > 1, then j = 1 and :̂ = max{: : &(:, 1) < �/B − ;}..

• If �/B−;
W\̄∗
≥ &(,1)

'(,1) , then j =
�/B−;∑
:=1 q:

and :̂ = .

Now we begin to present how to obtain this solution by deriving the intersection of
both players’ best responses.

• Case 1: �/B−;
W\̄∗

<
&(1,1)
'(1,1) , i.e.,

(�/B − ;) (2W + \̄∗(1 − \̄∗) (1 − W)B) < W
√
q1 ·

 ∑
:=1

c:
√
q: . (36)

99

Notice that
∑
:=1 c: = \̄

∗. Then,

�: =
1
√
q:
· �/B − ;∑

1≤:≤
c:
√
q:
, ∀:, (37)

and ?: = 1,∀: constitute the mutual best response. To see this, �: is a best
response to ?: . Let

_∗ =

W

(
 ∑
:=1

c:
√
q:

)2

B(\̄∗)2 (�/B − ;)2
.

Then, we have √
W?:

B
(
\̄∗

)2
_∗q:

=

√√√√√√√ W

B(\̄∗)2
× B(\̄

∗)2 (�/B − ;)2

W

(
 ∑
:=1

c:
√
q:

)2 ×

√
1
q:

=
1
√
q:
· �/B − ;
 ∑
:=1

c:
√
q:

= �: .

Meanwhile,

�: =
1
√
q:
· �/B − ;
 ∑
:=1

c:
√
q:

≤ �/B − ;
√
q1

 ∑
:=1

c:
√
q:

<
W

2W + \̄∗(1 − \̄∗) (1 − W)B

<
1
2
< 1.

100

The budget constraint is binding, as
 ∑
:=1

c:q:�: =

 ∑
:=1

c:q:
1
√
q:
· �/B − ;
 ∑
:=1

c:
√
q:

=
�/B − ;
 ∑
:=1

c:
√
q:

·
 ∑
:=1

c:
√
q:

= �/B − ;.

Thus, we have �: = min

{
1,

√
W?:

B(\̄∗)2_∗q:

}
for all : . So � is indeed a best response

to ?, as per Lemma 4.A.2. It is also easy to check that �: is decreasing in : as
virtual cost q: is increasing.

On the other hand, @ is a best response to � in P2. We have for all : , ?: = 1, and

W

B

(
1
�:
− 2
\̄∗
(
 ∑
:=1

c: ?:)
)
=
W

B

©«
√
q:

 ∑
:=1

c:
√
q:

�/B − ; − 2
ª®®®®¬

≥ W
B

©«
√
q1

 ∑
:=1

c:
√
q:

�/B − ; − 2
ª®®®®¬

>
W

B

(
2 + \̄

∗(1 − \̄∗) (1 − W)B
W

− 2
)

= \̄∗(1 − \̄∗) (1 − W).

The equality in the first line follows from
∑
:=1 ?: = \̄

∗. The inequality in the
second line follows from q: ≥ q1. The inequality in the third line follows from
�/B−;
W\̄∗

<
&(1,1)
'(1,1) . Thus, W

B

(
1
�:
− 2
\̄∗
(
 ∑
:=1

c: ?:)
)
− \̄∗(1 − \̄∗) (1 − W) > 0. So ? is

indeed a best response to �, as per Lemma 4.A.1. Meanwhile, we can see that ?
is indeed non-decreasing.

• Case 2: &(1,1)
'(1,1) ≤

�/B−;
W\̄∗

<
&(,1)
'(,1) .

Claim 4.A.3. There exists <∗ ∈ {1, ..., − 1} and I∗ ∈ (q<∗
q<∗+1

, 1] such that

&(<∗, I∗)
'(<∗, I∗) =

�/B − ;
W\̄∗

. (38)

101

Proof. Recall that &(<,1)
'(<,1) is increasing in< according to Claim 4.A.1. As &(1,1)

'(1,1) ≤
�/B−;
W\̄∗

<
&(,1)
'(,1) , there exists a unique <

∗ ∈ {1, ..., − 1} such that

&(<∗, 1)
'(<∗, 1) ≤

�/B − ;
W\̄∗

<
&(<∗ + 1, 1)
'(<∗ + 1, 1) .

Recall that &(< + 1, 1) = &
(
<,

q<
q<+1

)
and '(< + 1, 1) = '

(
<,

q<
q<+1

)
in Claim

4.A.2. We have

&(<∗, 1)
'(<∗, 1) ≤

�/B − ;
W\̄∗

<
&(<∗ + 1, 1)
'(<∗ + 1, 1) =

&

(
<∗, q<∗

q<∗+1

)
'

(
<∗, q<∗

q<∗+1

) .
Notice that &(<, I) is continuously decreasing in I and '(<, I) is continuously
increasing in I. So we have &(<,I)

'(<,I) continuously decreasing in I. Thus, there is a
unique I∗ ∈ (q<∗

q<∗+1
, 1] such that

&(<∗, I∗)
'(<∗, I∗) =

�/B − ;
W\̄∗

.

There are two subcases depending on the value of �/B−;
&(<∗,I∗) .

– Case 2(a): �/B−;
&(<∗,I∗) ≤ 1. Then

?: =

I∗

q<∗
· q: , if : ≤ <∗,

1, if : > <∗,
(39)

and

�: =

j , �/B−;

&(<∗,I∗) , if : ≤ <∗,

1√
q:
·
�/B−;−j

<∗∑
:=1

c:q:

 ∑
:=<∗+1

c:
√
q:

, if : > <∗,
(40)

constitute the mutual best response. Indeed, on the one hand, � is a best
response to ?. Let

_∗ =

W

(
 ∑
:=1

c:
√
?:q:

)2

B(\̄∗)2 (�/B − ;)2
.

102

For : ≤ <∗, we have√
W?:

B
(
\̄∗

)2
_∗q:

=

√√√√√√√ W

B(\̄∗)2
× B(\̄∗)2 (�/B − ;)2

W

(
 ∑
:=1

c:
√
?:q:

)2 ×
√
?:

q:

=
�/B − ;

<∗∑
:=1

c:

√
I∗
q<∗
· q: · q: +

 ∑
:=<∗+1

c:
√
q:

×
√

I∗

q<∗

=
�/B − ;
&(<∗, I∗) = �: ≤ 1.

For : > <∗, by a similar derivation, we have√
W?:

B
(
\̄∗

)2
_∗q:

=
�/B − ;
&(<∗, I∗) ×

√
q<∗

I∗
×

√
1
q:

=
�/B − ;
&(<∗, I∗) ×

<∗∑
:=1

c:q: +
 ∑

:=<∗+1
c:

√
q:q<
I∗ −

<∗∑
:=1

c:q:

 ∑
:=<∗+1

c:
√
q:

×

√
1
q:

=
�/B − ;
&(<∗, I∗) ×

&(<∗, I∗) −
<∗∑
:=1

c:q:

 ∑
:=<∗+1

c:
√
q:

×

√
1
q:

=

�/B − ; − �/B−;
&(<∗,I∗) ·

<∗∑
:=1

c:q:

 ∑
:=<∗+1

c:
√
q:

×

√
1
q:

=

�/B − ; − j ·
<∗∑
:=1

c:q:

 ∑
:=<∗+1

c:
√
q:

×

√
1
q:

= �: .

As the virtual cost q: is increasing, �: is decreasing for : > <∗. Notice that

103

�<∗ > �<∗+1. This is because I∗ > q<∗
q<∗+1

, and naturally

�<∗ =

√
W?:

B
(
\̄∗

)2
_∗q:

=

√
W

B
(
\̄∗

)2
_∗
×

√
I∗

q<∗

>

√
W

B
(
\̄∗

)2
_∗
×

√
1

q<∗+1

= �<∗+1.

From this, we can see that �: given by (40) is non-increasing, and hence,

�: ≤ 1 for all : . Thus, we have �: = min

{
1,

√
W?:

B(\̄∗)2_∗q:

}
, for all : . The

budget constraint is binding, as

 ∑
:=1

c:q:�: =

<∗∑
:=1

c:q: j +
 ∑

:=<∗+1
c:q:

1
√
q:
·
�/B − ; − j

<∗∑
:=1

c:q:

 ∑
:=<∗+1

c:
√
q:

= j ·
<∗∑
:=1

c:q: +
�/B − ; − j

<∗∑
:=1

c:q:

 ∑
:=<∗+1

c:
√
q:

·
 ∑

:=<∗+1
c:

√
q:

= j ·
<∗∑
:=1

c:q: + �/B − ; − j ·
<∗∑
:=1

c:q: = �/B − ;.

So � is indeed a best response to ?, as per Lemma 4.A.2.

On the other hand, ? is a best response to �. Recall that &(<
∗,I∗)

'(<∗,I∗) =
�/B−;
W\̄∗

. For

104

: ≤ <∗, recall that 0 ≤ ?: ≤ 1 and �: = �/B−;
&(<∗,I∗) . We have

W

B(\̄∗)2

(
1
�:
− 2
\̄∗
(
 ∑
:=1

c: ?:)
)

=
W

B(\̄∗)2

(
&(<∗, I∗)
�/B − ; −

2
\̄∗

(
<∗∑
:=1

c:q:
I∗

q<
+

 ∑
:=<∗+1

c:

))
=

W

B(\̄∗)2
©«'(<

∗, I∗)
W\̄∗

− 2
\̄∗

©«
<∗+∑
:=1

c:q:
I∗

q<
+

 ∑
:=<∗+1

c:
ª®¬ª®¬

=
1

B(\̄∗)3

(
'(<∗, I∗) − 2W

(
<∗∑
:=1

c:q:
I∗

q<
+

 ∑
:=<∗+1

c:

))
=

1
B(\̄∗)3

×
(
\̄∗

)2 (1 − \̄∗) (1 − W)B

=
1
\̄∗
(1 − \̄∗) (1 − W),

i.e., W

B(\̄∗)2

(
1
�:
− 2
\̄∗

(
 ∑
:=1

c: ?:

))
− 1
\̄∗
(1 − \̄∗) (1 − W) = 0. With this equality, we

do have a best response for : ≤ <∗.
For : > <∗, we have ?: = 1. Remember that �<∗+1 > �<∗ and that �: is
decreasing for : > <∗. We obtain �: < �<∗ for : > <∗. Then we have for
: > <∗+,

W

B(\̄∗)2

(
1
�:
− 2
\̄∗
(
 ∑
:=1

c: ?:)
)
− 1
\̄∗
(1 − \̄∗) (1 − W)

>
W

B(\̄∗)2

(
1
�<∗
− 2
\̄∗
(
 ∑
:=1

c: ?:)
)
− 1
\̄∗
(1 − \̄∗) (1 − W)

= 0.

So ? is indeed a best response to �, as per Lemma 4.A.1. We can see that ?:
is indeed non-decreasing.

– Case 2(b): �/B−;
&(<∗,I∗) > 1.

Claim 4.A.4. There exists :′ ∈ {1, ..., <∗} and I′ ∈ (q: ′
q: ′+1 , 1]such that

'(:′, I′) = W\̄∗. (41)

Proof. Recall that '(<∗, I∗) = &(<∗,I∗)
�/B−; · W\̄

∗ and �/B−;
&(<∗,I∗) > 1. We obtain

'(<∗, I∗) < W\̄∗. Recall that '(<, I) is decreasing in <, and increasing in I,

105

and '(<∗ + 1, 1) = '
(
<∗, q<∗

q<∗+1

)
(Claim 4.A.2). We have

'(<∗ + 1, 1) = '
(
<∗,

q<∗

q<∗+1

)
< '(<∗, I∗) < W\̄∗.

Here, the first inequality holds as q<∗
q<∗+1

< I∗, according to Claim 4.A.3. Mean-
while, '(1, 1) = 2W\̄∗+

(
\̄∗

)2 (1− \̄∗) (1−W)B > W\̄∗. Thus, there exists :′ ≤ <∗

such that
'(:′ + 1, 1) < W\̄∗ ≤ '(:′, 1).

Recall that '
(
:′, q: ′

q: ′+1

)
= '(:′ + 1, 1). We have

'

(
:′,

q: ′

q: ′+1

)
= '(:′ + 1, 1) < W\̄∗ ≤ '(:′, 1).

Since '(<, I) is continuously increasing in I, there exists I′ ∈ (q: ′
q: ′+1

, 1] such
that

'(:′, I′) = W\̄∗.

Define
:∗ = max{: : &(:, 1) < �/B − ;}. (42)

Then

?: =

I′

q: ′
· q: , if : ≤ :′,

1, if : > :′,
(43)

and

�: =

j , 1, if : ≤ :∗,

1√
q:
·
�/B−;−

:∗∑
:=1

c:q:

 ∑
:=:∗+1

c:
√
q:

, if : > :∗,
(44)

constitute the mutual best response. To see this, we know that � is the best
response to ?. Recall that &(<, I) is increasing in < and decreasing in I. As
:′ ≤ <∗ (Claim 4.A.4) and I∗ ≤ 1 (Claim 4.A.3), we have

&(:′, 1) ≤ &(<∗, 1) ≤ &(<∗, I∗) < �/B − ;,

i.e., �/B − ; < &(:′, 1). By the definition of :∗ = max{: : &(:, 1) < �/B − ;},
we have :∗ ≥ :′.

106

Meanwhile, we have &(:∗ + 1, 1) ≥ �/B − ;, i.e.,
:∗+1∑
:=1

c:q: +
√
q:∗+1

 ∑
:=:∗+2

c:
√
q:

=

:∗∑
:=1

c:q: +
√
q:∗+1 · c:∗+1

√
q:∗+1 +

√
q:∗+1 ·

 ∑
:=:∗+2

c:
√
q:

=

:∗∑
:=1

c:q: +
√
q:∗+1 ·

 ∑
:=:∗+1

c:
√
q:

≥�/B − ;.

Thus,
:∗∑
:=1

c:q: +
√
q:∗+1 ·

 ∑
:=:∗+1

c:
√
q: ≥ �/B − ;,

which is actually

1
√
q:∗+1

·
�/B − ; −

:∗∑
:=1

c:q:

 ∑
:=:∗+1

c:
√
q:

= �:∗+1 ≤ 1.

Let

_∗ =

W

(
 ∑

:=:∗+1
c:
√
q:

)2

B(\̄∗)2
(
�/B − ; −

:∗∑
:=1

c:q:

)2 .

For : > :∗, as :∗ ≥ :′, we have ?: = 1 and

√
W?:

B
(
\̄∗

)2
_∗q:

=

√√√√√√√√√√√√ W

B(\̄∗)2
×
B(\̄∗)2

(
�/B − ; −

:∗∑
:=1

c:q:

)2

W

(
 ∑

:=:∗+1
c:
√
q:

)2 ×

√
1
q:

=
1
√
q:
·
� − ; −

:∗∑
:=1

c:q:

 ∑
:=:∗+1

c:
√
q:

= �: .

Due to the increasing virtual costs in : , we have �: ≤ �:∗+1 ≤ 1, for all

: ≥ :∗ + 1. So we have min

{
1,

√
W?:

B(\̄∗)2_∗q:

}
= �: for all : > :∗.

107

Next, in the regime : ≤ :∗, we consider two possibilities of :∗: :∗ > :′ and
:∗ = :′. Recall that :∗ ≥ :′.

∗ Firstly, we focus on :∗ > :′. For : ∈ [:′ + 1, :∗], we have ?: = 1 and√
W?:

B
(
\̄∗

)2
_∗q:

=

√
W

B
(
\̄∗

)2
_∗q:

≥
√

W

B
(
\̄∗

)2
_∗q:∗

> 1.

The last inequality holds due to &(:∗, 1) < �/B − ;, i.e.,

:∗∑
:=1

c:q: +
 ∑

:=:∗+1
c:

√
q:q:∗ < �/B − ;,

which leads to (by plugging the value of _∗)

√
W

B
(
\̄∗

)2
_∗q:∗

=

√√√√√√√√√√√√ W

B(\̄∗)2
×
B(\̄∗)2

(
�/B − ; −

:∗∑
:=1

c:q:

)2

W

(
 ∑

:=:∗+1
c:
√
q:

)2 · 1
√
q:∗

=

�/B − ; −
:∗∑
:=1

c:q:

 ∑
:=:∗+1

c:
√
q:

· 1
√
q:∗

> 1.

Thus, min

{
1,

√
W?:

B(\̄∗)2_∗q:

}
= 1 = �: .

For : ≤ :′, since I′ ≥ q: ′
q: ′+1

(Claim 4.A.4) and q:∗ ≥ q: ′, we have√
W?:

B
(
\̄∗

)2
_∗q:

=

√
W

B
(
\̄∗

)2
_∗
×

√
I′

q: ′

≥
√

W

B
(
\̄∗

)2
_∗
×

√
1

q: ′+1

≥
√

W

B
(
\̄∗

)2
_∗
×

√
1
q:∗

> 1.

Thus, we have min

{
1,

√
W?:

B(\̄∗)2_∗q:

}
= 1 = �: .

108

In summary, we have min

{
1,

√
W?:

B(\̄∗)2_∗q:

}
= �: for all : ≤ :∗ when

:∗ > :′.

∗ Secondly, we focus on :∗ = :′. On the one hand, we have :′ ≤ <∗ according
to Claim 4.A.4, and therefore, :∗ ≤ <∗. On the other hand, &(<∗, 1) ≤
&(<∗, I∗) < �/B − ;, so we have that :∗ ≥ <∗ by definition of :∗ = max{: :
&(:, 1) < �/B − ;}. So, it must be that :′ = :∗ = <∗.
Recall in the proof of Claim 4.A.4 that '(<∗, I∗) < W\̄∗ = '(:′, I′) =
'(<∗, I′), i.e., '(<∗, I∗) < '(<∗, I′). And since '(<, I) is increasing in I,
we have I∗ < I′. Since &(<, I) is decreasing in I, it must be that

&(<∗, I′) < &(<∗, I∗) < �/B − ;.

That is

&(<∗, I′) =
<∗∑
:=1

c:q: +
√
q<∗

I′

 ∑
:=<∗+1

c:
√
q: < �/B − ;.

For : ≤ :∗ = :′, we have ?: = I′

q: ′
· q: , and√

W?:

B
(
\̄∗

)2
_∗q:

=

√
W

B
(
\̄∗

)2
_∗
×

√
I′

q: ′

=

√
I′

q<∗
·
� − ; −

<∗∑
:=1

c:q:

 ∑
:=<∗+1

c:
√
q:

> 1.

Thus, we have min

{
1,

√
W?:

B(\̄∗)2_∗q:

}
= 1 = �: .

In summary, we have min

{
1,

√
W?:

B(\̄∗)2_∗q:

}
= �: for all : ≤ :∗ when

:∗ = :′.

In conclusion, we have �: = min

{
1,

√
W?:

B(\̄∗)2_∗q:

}
, for all : , and �: is non-

increasing in : . The budget constraint is binding through similar calculation,
so � is indeed a best response to ?.

On the other hand, ? is best response to �. For : ≤ :∗, we have 0 < ?: ≤ 1
and �: = 1. From '(:′, I′) = W\̄∗, we obtain

109

'(:′, I′) = 2W

(
: ′∑
:=1

c:q:
I′

q: ′
+

 ∑
:=: ′+1

c:

)
+

(
\̄∗

)2 (1 − \̄∗) (1 − W)B = W\̄∗,

i.e.,

2W

(
 ∑
:=1

c: ?:

)
+

(
\̄∗

)2 (1 − \̄∗) (1 − W)B = W\̄∗.

So

W

B(\̄∗)2

(
1
�:
− 2
\̄∗
(
 ∑
:=1

c: ?:)
)
− 1
\̄∗
(1 − \̄∗) (1 − W)

=
W

B(\̄∗)2

(
1 − 2

\̄∗
(
 ∑
:=1

c: ?:)
)
− 1
\̄∗
(1 − \̄∗) (1 − W)

=0.

With the above equality, any ?: ∈ [0, 1] is a best response according to Lemma
4.A.1. For : > :∗, we have ?: = 1, and since �:∗ < 1, we have

W

B(\̄∗)2

(
1
�:
− 2
\̄∗
(
 ∑
:=1

c: ?:)
)
− 1
\̄∗
(1 − \̄∗) (1 − W)

>
W

B(\̄∗)2

(
1 − 2

\̄∗
(
 ∑
:=1

c: ?:)
)
− 1
\̄∗
(1 − \̄∗) (1 − W)

=0.

So ? is indeed a best response to �, as per Lemma 4.A.1. We can see that ?:
is indeed non-decreasing.

– Case 3: �/B−;
W\̄∗
≥ &(,1)

'(,1) . Recall that&(<, I) is continuously decreasing in I and
'(<, I) is continuously increasing in I. Thus, &(<,I)

'(<,I) is decreasing in I. Notice
that when I = 0, we have

&(, 0)
'(, 0) =

 ∑
:=1

c:q:

2W
(

0
q<
·
 ∑
:=1

c:q:

)
+

(
\̄∗

)2 (1 − \̄∗) (1 − W)B

=

 ∑
:=1

c:q:(
\̄∗

)2 (1 − \̄∗) (1 − W)B
.

110

If

 ∑
:=1

c:q:

(\̄∗)2 (1−\̄∗) (1−W)B >
�/B−;
W\̄∗

, let Ĩ ∈ (0, 1] be such that &(,Ĩ)
'(,Ĩ) =

�/B−;
W\̄∗

. Such a Ĩ

exists because &(,1)
'(,1) ≤

�/B−;
W\̄∗

<
&(,0)
'(,0) . Then

?: = Ĩ ·
q:

q
,∀:, (45)

and
�: =

�/B − ;
 ∑
:=1

c:q:

,∀: (46)

constitute the mutual best response. To see this, we know that � is a best
response to ?. Let

_∗ =

W

(
 ∑
:=1

c:
√
?:q:

)2

B(\̄∗)2 (�/B − ;)2
.

Then √
W?:

B
(
\̄∗

)2
_∗q:

=

√√√√√√√ W

B(\̄∗)2
× B(\̄∗)2 (�/B − ;)2

W

(
 ∑
:=1

c:
√
?:q:

)2 ×
√
?:

q:

=
�/B − ;

 ∑
:=1

c:

√
Ĩ
q
· q: · q:

×

√
Ĩ

q

=
�/B − ;
 ∑
:=1

c:q:

= �: .

As we assume
 ∑
:=1

c:q: > �/B − ; without loss of generality to avoid the trivial

solution of any selection probability being one, we have that �/B−;
 ∑
:=1

c:q:

< 1. Thus,

we get that min

{
1,

√
W?:

B(\̄∗)2_∗q:

}
= �: , for all : . The budget constraint is

binding as
 ∑
:=1

c:q:�: =
�/B − ;
 ∑
:=1

c:q:

·
 ∑
:=1

c:q: = �/B − ;.

So � is indeed a best response to ?, as per Lemma 4.A.2.

111

On the other hand, ? is a best response to �. Notice that

�: =
�/B − ;
 ∑
:=1

c:q:

=
�/B − ;
&(, Ĩ) .

From &(,Ĩ)
'(,Ĩ) =

�/B−;
W\̄∗

, we have

W

B(\̄∗)2

(
1
�:
− 2
\̄∗
(
 ∑
:=1

c: ?:)
)
=

W

B(\̄∗)2

(
&(, Ĩ)
�/B − ; −

2
\̄∗

(
 ∑
:=1

c: Ĩ
q:

q

))
=

W

B(\̄∗)2

(
'(, Ĩ)
W\̄∗

− 2
\̄∗

(
 ∑
:=1

c: Ĩ
q:

q

))
=

1
B(\̄∗)3

(
'(, Ĩ) − 2W

(
 ∑
:=1

c: Ĩ
q:

q<

))
=

1
B(\̄∗)3

×
(
\̄∗

)2 (1 − \̄∗) (1 − W)B

=
1
\̄∗
(1 − \̄∗) (1 − W),

i.e., W

B(\̄∗)2

(
1
�:
− 2
\̄∗

(
 ∑
:=1

c: ?:

))
− 1

\̄∗
(1 − \̄∗) (1 − W) = 0. So ?: = Ĩ · q:

q
, for

all : , is a best response to �, as per Lemma 4.A.1. We can see that ?: is
non-decreasing.

If

 ∑
:=1

c:q:

(\̄∗)2 (1−\̄∗) (1−W)B ≤
�/B−;
W\̄∗

, then ?: = 0 for all : and

�: =
�/B − ;
 ∑
:=1

c:q:

,∀:, (47)

constitute one mutual best response. To see this, on one hand, � is one best
response to ?. This is because when ?: = 0 for all : , any �: ∈ [0, 1]
that satisfies budget constraint is a best response, according to Lemma 4.A.2.
�: < 1 indeed satisfies budget constraint. Actually, there are other formats of
� that satisfy budget constraint being best response. We present the constant
solution, which is non-increasing, for simplicity.

112

On the other hand, ? is best response to �. We have

W

B(\̄∗)2
· 1
�:
− 1
\̄∗
(1 − \̄∗) (1 − W)

=
W

B(\̄∗)2

©«
 ∑
:=1

c:q:

�/B − ;

ª®®®®¬
− 1
\̄∗
(1 − \̄∗) (1 − W) ≤ 0.

So ?: = 0 is a best response to �, according to Lemma 4.A.1.

From discrete to continuous costs. So far, we present the intersections of both
players’ best responses, i.e., an equilibrium of the min-max game. �: of the
equilibrium corresponds to the solution of the minimax optimization problem. We
then convert the solution under discrete cost to the solution under continuous cost.
The continuous cost can be considered as a special case of discrete cost by setting
 to be infinity.

We beginwith some key notations under continuous case. We denote the distribution
of virtual cost in group 8 as l8. We can obtain it based on the connection between
cost and virtual cost. Recall that the probability of group 8 is @8. Thus, we have the
distribution of virtual cost in all groups as

∑
8 @8l8 (q) , l(q). As non-participants

whose costs are higher than the cost threshold would not get payments, we only need
to focus on participants and their virtual costs. Let q8min and q8max be the maximum
and minimum value of virtual costs of participants in group 8, respectively. Let
qmin and qmax be the maximum and minimum value of virtual costs of participants,
respectively. Naturally, qmin = min8 q8min and qmax = max8 q8max.

We divide the interval [qmin, qmax] into numbers of sub-intervals with equal
length (qmax − qmin)/ . When is very large, we can approximate the continuous
distribution by discrete probabilities

c: =

∫ qmin
 −:

+qmax

:

qmin
 −:+1

+qmax

:−1

l(q)3q, : = 1, ..., ,

which are integrals of l(q) in sub-intervals. Consider the functions &(<, I) and
'(<, I) defined in (32) and (33). We define their continuous versions by replacing
summations with integrals as follows:

&2 (G) =
∫ G

qmin

ql(q)3q +
√
G

∫ qmax

G

√
ql(q)3q

113

'2 (G) = 2W
(
1
G

∫ G

qmin

ql(q)3q +
∫ qmax

G

l(q)3q
)
+

(
\̄∗

)2 (1 − \̄∗) (1 − W)B.

We can see that&
(

G−qmin
qmax−qmin

, 1
)
→ &2 (G) and '

(
G−qmin

qmax−qmin
, 1

)
→ '2 (G) as →∞.

As q< → q<+1,< = 1, .., in the limit →∞, we have&(<, I) → &(<+1, I) and
'(<, I) → '(<+1, I). Since&(<+1, 1) = &

(
<,

q<
q<+1

)
, '(<+1, 1) = '

(
<,

q<
q<+1

)
,

according to Claim 4.A.2, we have &
(
<,

q<
q<+1

)
→ &(<, 1) and '

(
<,

q<
q<+1

)
→

'(<, 1). Thus, it suffices to consider I = 1 and leverage the limit&
(

G−qmin
qmax−qmin

, 1
)
→

&2 (G) and '
(

G−qmin
qmax−qmin

, 1
)
→ '2 (G) when characterizing the connection between

&(<, I), '(<, I) and &2 (G), '2 (G).

Based on the connection between discrete & and ' and continuous &2 and '2, we
adapt the solutions of discrete case to that of continuous case.

• Case 1: �/B−;
W\̄∗

<
&2 (qmin)
'2 (qmin) , i.e., (�/B − ;) (2W + \̄

∗(1 − \̄∗) (1 − W)B) < W
√
qmin ·∫ qmax

qmin

√
ql(q)3q. We have the optimal allocation rule for virtual cost q

�(q) = 1
√
q
· �/B − ;∫ qmax

qmin

√
ql(q)3q

.

We can equivalently present the solution in terms of cost 2:

�8 (2) =
1√
q8 (2)

· �/B − ;∑
8

@8
∫ 2̂8

2min

√
q8 (2) 58 (2)32

.

• Case 2: &2 (qmin)
'2 (qmin) ≤

�/B−;
W\̄∗

<
&2 (qmax)
'2 (qmax) . Let q′ ∈ [qmin, qmax) such that &2 (q

′)
'2 (q′) =

�/B−;
W\̄∗

.

– Case 2(a): �/B−;
&2 (q′) ≤ 1. We have

�(q) =

j , �/B−;

&2 (q′) , if q ≤ q′,

1√
q
·
�/B−;−j

∫ q̂
qmin

ql(q)3q∫ qmax
q′ ql(q)3q

, if q < q′.

The solution in terms of cost 2 is

�8 (2) =

j , �/B−;

&2 (q′) , if q8 (2) ≤ q′,

1√
q8 (2)
·
�/B−;−j∑

8

@8
∫ q̂
q8min

q8 (2)l8 (q8)3q8∑
8

@8
∫ q8max
q′
√
q8 (2)l8 (q8)3q8

, if q8 (2) > q′.

114

– Case 2(b): �/B−;
&2 (q′) > 1. Let q∗ be such that &2 (q∗) = �/B − ;. Then we have

�(q) =

1, if q ≤ q∗,

1√
q
·
�/B−;−

∫ q∗
qmin

ql(q)3q∫ qmax
q∗ ql(q)3q

, if q < q∗.

The solution in terms of cost 2 is

�8 (2) =

1, if q8 (2) ≤ q∗,

1√
q8 (2)
·
�/B−;−∑

8

@8
∫ q̂
q8min

q8 (2)l8 (q8)3q8∑
8

@8
∫ q8max
q̂

√
q8 (2)l8 (q8)3q8

, if q8 (2) > q∗.

• Case 3: �/B−;
W\̄∗
≥ &2 (qmax)

'2 (qmax) . We have

�(q) = j = �/B − ;∫ qmax
qmin

ql(q)3q
.

The solution in terms of cost 2 is

�8 (2) = j =
�/B − ;∑

8

@8
∫ q8max
q8min

q8 (2)l8 (q8)3q8
.

In summary, we can present the solution of continuous case for cost 2 ≤ 2̂8 in group
8 as follows:

�8 (2) =

j, if q8 (2) ≤ q̂,

1√
q8 (2)
·
�/B−;−j∑

8

@8
∫ q̂
q8min

q8 (2)l8 (q8)3q8∑
8

@8
∫ q8max
q̂

√
q8 (2)l8 (q8)3q8

, if q8 (2) > q̂.
(48)

Here, the constants j and q̂ are defined as follows:

• If �/B−;
W\̄∗

<
&2 (qmin)
'2 (qmin) , then j = 0 and q̂ < q8min for all 8.

• If &2 (qmin)
'2 (qmin) ≤

�/B−;
W\̄∗

<
&2 (qmax)
'2 (qmax) , then j = min

{
1, �/B−;

&2 (q′)

}
where q′ satisfies &2 (q

′)
'2 (q′) =

�/B−;
W\̄∗

, and q̂ satisfies &2 (q̂)
max{1,'2 (q̂)/W\̄∗} = �/B − ;.

• If �/B−;
W\̄∗
≥ &2 (qmax)

'2 (qmax) , then j =
�/B−;∑

8

@8
∫ q8max
q8min

q8 (2)l8 (q8)3q8
and q̂ = qmax.

�

115

4.A.4 Proof of Corollary 4.4.1
Corollary 4.4.1 is a special case of Theorem 4.4.1. The proof is in Case 1 in the
proof of Theorem 4.4.1. �

4.A.5 Proof of Proposition 4.4.1
Under condition 1) of Proposition 4.4.1, the solution falls into Case 1 in the proof of
Theorem 4.4.1. Plugging the solution of Case 1 in the proof of Theorem 4.4.1 to the
objective function, we have the following optimization problem over participation
profile)∗:

min
)∗

)∗()∗) = W
B

(
* ()∗) − 1

\̄∗

)
,

where

* ()∗) , 1(
\̄∗

)2 ·

(∑
8 @8

∫ 2̂8

2min

√
q8 (2;)∗) 58 (2)32

)2

�/B − ; ()∗) .

Note that \̄∗ =
∑
8 @8 \̄

∗
8
by the definition of average participation rate. Thus, m\̄∗

m\̄∗
8

= @8.
Define

A ()∗) ,
(∑
8

@8

∫ 2̂8

2min

√
q8 (2;)∗) 58 (2)32

)2

,

and recall that

; ()∗) ,
∑
9

@ 9 \̄
∗
8 (ℎ(2̂ 9 ,)∗9 ;" 9) − 6(2̂ 9 ,)∗9 ;" 9) − F(\̄∗)),

and
Δ8 , ℎ(2̂8,)8;"8) − 6(2̂8,)8;"8).

We can write* ()∗) as follows:

* ()∗) = 1(
\̄∗

)2 ·
A ()∗)

�/B − ; ()∗) =
1(
\̄∗

)2 ·
A ()∗)

�/B −∑
8 @8 \̄

∗
8
(Δ8 − F(\̄∗))

.

Before presenting the derivative of the objective function with respect to group 8’s
participation ratio \̄∗

8
, i.e., m)

∗ ()∗)
m\̄∗
8

, we give the derivative of ; ()∗) with respect to \̄∗
8
,

116

which appears in m)∗ ()∗)
m\̄∗
8

. Note that m; ())
m\̄∗
8

=
m
∑
9 @ 9 \̄

∗
9
(Δ 9−F(\̄∗))
m\̄∗

9

. That is,

m
∑
9 @ 9 \̄

∗
9
(Δ 9 − F(\̄∗))
m\̄∗

8

=
m@8 \̄

∗
8
(Δ8 − F(\̄∗))
m\̄∗

8

+
m
∑
9≠8 @ 9 \̄

∗
9
(Δ 9 − F(\̄∗))
m\̄∗

8

= @8 (Δ8 − F(\̄∗)) + @8 \̄∗8

(
mΔ8

m\̄∗
8

− @8F′(\̄∗)
)
+

∑
9≠8

@ 9 \̄
∗
9

(
mΔ 9

m\̄∗
8

− @8F′(\̄∗)
)

= @8 (Δ8 − F(\̄∗)) + @8 \̄∗8
mΔ8

m\̄∗
8

+
∑
9≠8

@ 9 \̄
∗
9

mΔ 9

m\̄∗
8

− @8F′(\̄∗)
∑
9

@ 9 \̄
∗
9

= @8 (Δ8 − F(\̄∗)) + @8 \̄∗8
mΔ8

m\̄∗
8

+
∑
9≠8

@ 9 \̄
∗
9

mΔ 9

m\̄∗
8

− @8F′(\̄∗)\̄∗ using
∑
9

@ 9 \̄
∗
9 = \̄

∗

= @8

(
\̄∗8
mΔ8

m\̄∗
8

+ Δ8 − F(\̄∗) − \̄∗F′(\̄∗)
)
+

∑
9≠8

@ 9 \̄
∗
9

mΔ 9

m\̄∗
8

.

The derivative of the objective function with respect to group 8’s participation ratio
\̄∗
8
is

m)∗()∗)
m\̄∗

8

=
W

B

m* ()∗)
m\̄∗

8

+ W@8

B
(
\̄∗

)2 ,

where

m* ()∗)
m\̄∗

8

=

mA ()∗)
m\̄∗
8

(\̄∗)2(�/B − ; ()∗))
− 2@8A ()∗)
(\̄∗)3(�/B − ; ()∗))

+
@8A ()∗) (\̄∗8

mΔ8
m\̄∗
8

+ Δ8 − F(\̄∗) − \̄∗F′(\̄∗))

(\̄∗)2(�/B − ; ()∗))2

+
A ()∗) ∑

9≠8

@ 9 \̄
∗
9

mΔ 9

m\̄∗
8

(\̄∗)2(�/B − ; ()∗))2
.

We wish to characterize the conditions under which m)∗ ()∗)
m\̄∗
8

≤ 0,∀8, i.e.,

m)∗()∗)
m\̄∗

8

=
W

B

m* ()∗)
m\̄∗

8

+ W@8

B
(
\̄∗

)2 ≤ 0.

This is equivalent to

m)∗()∗)
m\̄∗

8

=
m* ()∗)
m\̄∗

8

+ @8(
\̄∗

)2 ≤ 0,

117

by removing W/B, which is greater than zero. Plugging in m* ()∗)
m\̄∗
8

, we have

mA ()∗)
m\̄∗
8

(\̄∗)2(�/B − ; ()∗))
− 2@8A ()∗)
(\̄∗)3(�/B − ; ()∗))

+
@8A ()∗) (\̄∗8

mΔ8
m\̄∗
8

+ Δ8 − F(\̄∗) − \̄∗F′(\̄∗))

(\̄∗)2(�/B − ; ()∗))2

+
A ()∗) ∑

9≠8

@ 9 \̄
∗
9

mΔ 9

m\̄∗
8

(\̄∗)2(�/B − ; ()∗))2
+ @8(
\̄∗

)2 ≤ 0.

Multiplying (\̄∗)2(�/B−; ()∗))2, which is greater than zero (recall that (�/B−; ()∗) >
0 implicitly. Otherwise, there is no positive solution of allocation rule) at both sides,
we have

mA ()∗)
m\̄∗

8

(�/B − ; ()∗)) − 2@8A ()∗) (�/B − ; ()∗))
\̄∗

+ @8A ()∗) (\̄∗8
mΔ8

m\̄∗
8

+ Δ8 − F(\̄∗) − \̄∗F′(\̄∗))

+ A ()∗)
∑
9≠8

@ 9 \̄
∗
9

mΔ 9

m\̄∗
8

+ @8 (�/B − ; ()∗))2

≤ 0.

(49)

To ensure m)∗ ()∗)
m\̄∗
8

≤ 0,∀8, we require the inequality in (49) to be true for all 8. Define

�8 ()∗, �, W, B, q) ,
(\̄∗
8
Δ′
8
(\̄∗
8
) + Δ8 (\̄∗8) − F(\̄∗))

\̄∗
+

mA ()∗)
m\̄∗
8

(�/B − ; ()∗))

\̄∗@8A ()∗)

− 2(�/B − ; ()∗))
(\̄∗)2

+ (�/B − ; ()))
2

\̄∗A ()∗)
+

∑
9≠8

@ 9 \̄
∗
9

mΔ 9

m\̄∗
8

@8 \̄
∗ .

(50)

If F′(\̄∗) ≥ �8 ()∗, , �, W, B, q), for all) in which \̄∗
8
≥ \̄min > 0, the inequality

in (49) holds, i.e., we can obtain m)∗ ()∗)
m\̄∗
8

≤ 0,∀8. Thus, the objective function is
decreasing in the group participation ratio, and the optimal participation ratio for
group 8 is one, for all groups 8. �

118

4.A.6 Proof of Proposition 4.4.2
The idea of the proof is similar to the proof of Proposition 4.4.1. We can similarly
achieve (49). Define

X8 ()∗, �, W, B, q) ,
F(\̄∗) + \̄∗F′(\̄∗) − Δ8 (\̄∗8)

\̄∗
8

−
mA ()∗)
m\̄∗
8

(�/B − ; ()∗))

\̄∗
8
@8A ()∗)

+ 2(�/B − ; ()∗))
\̄∗
8
\̄∗

− (�/B − ; ()))
2

\̄∗
8
A ()∗)

−

∑
9≠8

@ 9 \̄
∗
9

mΔ 9

m\̄∗
8

@8 \̄
∗
8

.

(51)

If Δ′
8
(\̄∗
8
) ≤ X8 () , �, W, B, q), for all) in which \̄∗

8
≥ \̄min > 0, the inequality in (49)

holds, i.e., we can obtain m)∗ ()∗)
m\̄∗
8

≤ 0,∀8. Thus, the objective function is decreasing
in the group participation rate, and the optimal participation rate for group 8 is one,
for all groups 8. �

119

C h a p t e r 5

OPTIMAL PRICING IN MARKETS WITH NON-CONVEX
COSTS

5.1 Introduction
While there has been a long history of studyingmarkets under convexity assumptions
(such as convexity of cost functions, preferences, etc.) in economic theory, non-
convexities are ubiquitous in most real-world markets. Non-convexities in cost
functions arise due to start-up or shut-down costs, indivisibilities, avoidable costs,
or simply economies of scale.

It has been widely noted in the literature that in the presence of non-convexities,
there may be no linear prices (constant per quantity) that support a competitive
market equilibrium [e.g., 127, 128], and it was suggested as early as 1980s that
in these markets, one needs to consider using price functions, as opposed to the
conventional prices [129]. Following the work of [130, 131], there have been many
pricing schemes proposed in the literature. In particular, during the past decade,
motivated by the deregulation of the electricity markets in the US and around the
world, the problem of pricing in non-convex markets has attracted renewed interest
from researchers, and there has been considerable work on this problem [132].
These pricing schemes are deployed in practice, and the operation and efficiency of
our electricity markets relies on them [133].

Formally, the non-convex pricing problem is that, given an inelastic demand for
a commodity from a number of consumers, a market operator seeks to satisfy the
demand by purchasing the required amount from a group of competing suppliers
with non-convex cost functions. The operator knows the suppliers’ cost functions,
and it announces a price/payment function for each supplier, which determines the
payment to that supplier for producing different quantities. Each supplier then
makes an individual decision about how much to produce in order to maximize its
own profit. The key design question is how to devise the price functions in order
to ensure certain economic properties for the market. We should remark that this
problem is quite different from mechanism design, since the cost functions of the
suppliers are known to the market operator, and the players can influence the market
only by choosing their production level. However, as we shall see, the design of the

120

price functions in these markets is challenging.

An important early approach to the pricing problem was the work of [17], some-
times referred to as integer programming (IP) pricing, which considered the class
of non-convexities that arise from the start-up costs of the suppliers (with linear
marginal costs). The paper proposes a clever pricing rule, based on solving a
mixed-integer linear program and forcing the integral variables to their optimal
values as a constraint. The scheme is economically efficient and has a nice dual
interpretation. Modified versions of IP pricing have been proposed by [134, 135]
and others. Another approach, proposed for the more general class of non-convex
cost functions that are in the form of a start-up plus a convex (rather than linear)
cost, is the minimum-uplift (MU) pricing [18], and its closely related refinement of
[136], known as convex hull (CH) pricing. These schemes provide discriminatory
uplifts to different suppliers to incentivize production, and the uplifts are minimal in
a specific sense [19]. The possibility of having both positive and negative uplifts was
also considered by [137, 138]. Other pricing schemes include the semi-Lagrangian
relaxation (SLR) approach of [139] and the primal-dual (PD) approach of [140].
These schemes seek to find uniform linear prices that are revenue-adequate (but
not supporting of the equilibrium). A survey on all the above pricing schemes was
recently written by [132]. However, the overall desired properties, as well as the
properties that each of the schemes satisfy, were not examined there. We formalize
the desired properties considered in the literature in Section 5.2, and discuss the
properties of the existing schemes in Section 5.5. Table 5.1 summarizes the common
schemes and their properties.

Despite the large body of work on the pricing problem, the existing schemes have
several shortcomings. For example, most of the existing schemes mentioned above
are proposed for specific classes of non-convex cost functions, and cannot handle
more general non-convexities. Furthermore, even the ones that are applicable
for general cost functions fail to satisfy some of the key desired properties of
the market, such as economic efficiency or supporting a competitive equilibrium.
In addition, none of the existing schemes is accompanied by a computationally
tractable algorithm for general non-convexities, and they typically rely on off-the-
shelf heuristic solvers for mixed-integer programs that are known to be NP-hard.

In this paper, we propose a pricing scheme for markets with general non-convex
costs that designs arbitrary parametric price functions and addresses all the issues
mentioned above. Our approach seeks to find the optimal schedule (allocation) and

121

the optimal pricing rule simultaneously, which generally allows for finding econom-
ically more efficient solutions. The ability to use arbitrarily specified parametric
price functions (e.g., piece-wise linear, quadratic, etc.) enables our approach to de-
sign price functions that are less discriminatory, while still supporting a competitive
equilibrium. Furthermore, our pricing scheme is accompanied by a computationally
efficient (polynomial-time) approximation algorithm which allows one to find the
approximately-optimal schedule and prices for general non-convex cost functions.
Lastly, we extend the proposed pricing rule to networked markets, which, to the best
of our knowledge, are not considered in any of the existing work.

Specifically, this paper makes the following contributions.

1. We propose a framework for pricing in markets with general non-convex
costs, using general price functions (Section 5.3.1). Our scheme seeks to find
the optimal price functions and allocations simultaneously, while imposing
the equilibrium conditions as constraints. For this reason, our approach
is generally economically more efficient than the existing methods, while
satisfying the equilibrium conditions. Moreover, the ability to use general
price forms allows one to obtain more uniform prices (smaller “uplifts”).

2. We supplement our pricing schemewith a computationally efficient (polynomial-
time) approximation algorithm for finding the allocations and prices (Sec-
tion 5.3.2).

3. We extend our framework to networked markets, and also propose an ap-
proximation algorithm that can compute the solution efficiently for acyclic
networks, a common scenario in electric distribution networks (Section 5.4).

4. We survey the common pricing schemes proposed in the literature for markets
with non-convex costs and provide a compact summary of their properties
(Section 5.5).

5. We evaluate the proposed method through extensive numerical examples, and
show how it compares with the existing methods (Section 5.6).

5.2 Market Description and Pricing Objectives
While our goal in this paper is to design an economically and computationally
efficient pricing scheme for non-convex networked markets, we begin with the
problem of designing one for a singlemarket, which is difficult in its own right. We

122

return to the case of networked markets in Section 5.4. When the cost functions are
non-convex, even this seemingly simple problem has proven to be challenging, and
a wide variety of pricing schemes have been proposed for it in the literature. In the
following, we describe the market model and survey the desired market properties.

5.2.1 Market Model
We consider a single market consisting of = competing suppliers (often referred
to as firms or generators). The market is run by a market operator that seeks to
satisfy a deterministic and inelastic demand 3 for a commodity in a single period.
Each supplier 8 has a cost function 28 (@8) for producing quantity @8, which may be
non-convex.

The suppliers’ cost functions are known by the operator, and the operator uses
them to determine the prices. In particular, the operator announces price/payment
functions ?8 (@8), which determine the payment to supplier 8 when producing @8.
Note that, in general, the price functions can be different for different suppliers, but
it is often desired to have close-to-uniform prices.

Upon the announcement of the price functions, each supplier 8 makes an individual
decision, based on the price function ?8 (·) and the cost function 28 (·), about how
much to produce (and whether to participate in the market), in order to maximize
its own profit, i.e., ?8 (@8) − 28 (@8). The suppliers are then paid for their production
according to the payment function, and the demand (consumers) is charged for the
total payment.

This model is classical, and has been studied in a wide variety of contexts, initially
under the assumption of convex cost functions for production and linear pricing
functions, but more recently under non-convex cost functions. Non-convex cost
functions are particularly important in the context of electricity markets. As a result,
there is a large literature focusing on non-convex pricing in electricity markets, see
[132] for a recent survey. Often this literature assumes specific forms of non-
convexities (e.g., startup/fixed costs), and specific forms of payment functions (e.g.,
linear plus uplift). The results from this literature have guided the design and
operation of electricity markets across the world today.

5.2.2 Pricing Objectives
The key design question in the market described above is how to devise the payment
functions. The goal of the operator is to (1) find the optimal quantities @∗

8
, and (2)

123

design the payment functions ?8 (·) that ensure that the suppliers produce the optimal
quantities @∗

8
.

There is a huge design space for such payment functions, and there is a large literature
evaluating proposals in the context of non-convex cost functions, e.g., [17–19, 132,
134, 136, 139–141].

From this literature, various desirable properties, which pricing rules attempt to sat-
isfy, have emerged. The following is a summary of the most sought-after properties
in this literature. Note that no existing rules satisfy all of these properties for general
non-convex markets.

1. Market Clearing (a.k.a. Load Balancing): The total supply is equal to the
demand, i.e.,

∑=
8=1 @

∗
8
= 3.

2. Economic Efficiency

a) Minimal Production Cost (Suppliers’ Total Cost): The total production
cost of the suppliers, i.e.,

∑=
8=1 28 (@∗8), is minimal.

b) Minimal Payment (Total Paid Cost): The total cost that is paid to the
suppliers for the commodity, i.e.,

∑=
8=1 ?8 (@∗8), is minimal.

3. Incentivizing

a) Revenue Adequacy: For every supplier, the net profit at the optimum is
nonnegative, i.e., ?8 (@∗8) − 28 (@∗8) ≥ 0, for 8 = 1, . . . , =.

b) Support a Competitive Equilibrium: The optimum production quan-
tity for each supplier is a maximizer of its individual profit, i.e., @∗

8
∈

arg max@8 ?8 (@8)−28 (@8), or equivalently ?8 (@
∗
8
)−28 (@∗8) ≥ max@8≠@∗8 ?8 (@8)−

28 (@8), for 8 = 1, . . . , =.

4. Simplicity and Uniformity: The price functions are simple and interpretable
(ideally linear: ?8 (@8) = _8@8) and non-discriminatory (ideally uniform across
suppliers: ?8 (@8) = ?(@8)).

5. Computational Tractability: The optimal quantities and price functions can
be computed/approximated in time that is polynomial in =.

A few remarks about these properties are warranted. Property 1 ensures that the
demand is met. Property 2 is somewhat more elaborate and concerns the economic

124

efficiency of the scheme, in terms of total expenditure. Even though in certain cases
(e.g., in IP pricing of [17] for startup-plus-linear costs), the suppliers’ total cost∑=
8=1 28 (@8) and the total paid cost

∑=
8=1 ?8 (@8)match and are bothminimal, there is an

inevitable gap between the two in general. Ultimately, the quantity which determines
the cost of satisfying the demand is the total payment to the suppliers

∑=
8=1 ?8 (@8),

and therefore Property 2b is arguably more crucial than Property 2a. However,
ostensibly, because the price functions are not directly available while computing
the optimal quantities, many pricing schemes have resorted to minimizing the total
suppliers’ cost

∑=
8=1 28 (@8) as a surrogate for the paid cost. In this paper, we advocate

a direct approach for minimizing the total payment.

Property 3 incentivizes the suppliers to follow the dispatch and produce the socially-
optimal quantities. More specifically, Property 3a ensures that the suppliers do not
lose by producing @∗

8
, and further, Property 3b assures that it is in each supplier’s

best interest to follow the dispatch. Property 3b is generally a stronger condition
than Property 3a, and if ?8 (0) = 28 (0) = 0 ∀8, then (3b) implies (3a).

Property 4 concerns having price forms that are “close to linear” (simple) and “close
to uniform” (non-discriminatory), in some sense. One common approach to this
is to use uniform linear prices plus a generator-dependent “uplift,” i.e., ?8 (@8) =
_@8 + D81@8=@∗8 , and try to minimize the uplifts D8. As Property 4 is subjective by its
nature, we allow arbitrary parametrized price functions in our scheme. However,
we also examine our scheme when applied to the popular minimal-uplift approach.
Note that Property 4 also rules out the use of “dictatorial” prices, in which the
operator pays the cost (plus an n) only at the desired amount, and pays nothing for
any other amount produced.

The final property, Computational Tractability, is particularly challenging to ad-
dress in the context of non-convex markets. Nearly all standard approaches work
by computing the optimal production quantities and then deriving the prices from
these quantities in some way. Under general non-convex cost functions, this first
step is already computationally intractable. Thus, it is important to consider relax-
ations (approximations) of other properties if the goal is to enforce computational
tractability. To that end, we consider approximate versions of the Incentivizing and
Economic Efficiency conditions, which we discuss in Section 5.3.2. We propose
an algorithm that satisfies these approximate versions, while being computationally
tractable.

125

5.3 Proposed Scheme: Equilibrium-Constrained Pricing
Most existing schemes in the literature (see Section 5.5 for a detailed summary) are
proposed for specific classes of non-convexities, and are not applicable for more
general non-convex costs. Furthermore, even the ones that are applicable for more
general cost functions either already lack some of the key properties (such as eco-
nomic efficiency) or they lose those properties for more general costs. Additionally,
the existing schemes are not accompanied by a computationally tractable algorithm
for general non-convexities, and they typically rely on off-the-shelf heuristic solvers
for mixed-integer programs that are NP-hard. This serves to emphasize that no
existing pricing scheme satisfies the desired properties described in Section 5.2.2.

The main contribution of this paper is the introduction of a new pricing scheme,
Equilibrium-Constrained (EC) pricing, which is applicable to general non-convex
costs, allows using general parametric price functions, and satisfies all the desired
properties outlined before, as long as the price class is general enough. The name
of this scheme stems from the fact that we directly impose all the equilibrium
conditions as constraints in the optimization problem for finding the best allocations,
as opposed to adjusting the prices later to make the allocations an equilibrium.
The optimization problem is, of course, non-convex, and non-convex problems are
intractable in general. However, we also present a tractable approximation algorithm
for approximately solving the proposed optimization.

Wepresent the formulation of the optimization at the core ofEquilibrium-Constrained
pricing in Section 5.3.1, and then develop an efficient algorithm for solving the op-
timization problem approximately in Section 5.3.2.

5.3.1 Pricing Formulation
In this section, we propose a systematic approach for determining a pricing rule
under generic non-convex costs that minimizes payments and satisfies the properties
outlined in Section 5.2.2, while allowing flexibility in the choice of the form of price
functions.

Specifically, consider a class of desired price functions, denoted by P, which can be
an arbitrary class such as linear, linear plus uplift, piece-wise linear, etc. This choice
can be due to interpretability/uniformity reasons or other practical considerations.
The core of Equilibrium-Constrained pricing is an optimization problem for finding
the best price functions in P and the best allocations, at the same time. The
operator is buying the commodity from the suppliers, on behalf of the consumers,

126

and therefore its objective is to minimize the total cost incurred (total payment),
subject to the equilibrium constraints. The optimization problem can be expressed
as follows.

Equilibrium-Constrained (EC) Pricing:

?∗ = min
@1,...,@=

?1,...,?=∈P

=∑
8=1

?8 (@8) (5.1a)

s.t.
=∑
8=1

@8 = 3 (5.1b)

?8 (@8) − 28 (@8) ≥ 0, 8 = 1, . . . , = (5.1c)

?8 (@8) − 28 (@8) ≥ max
@′
8
≠@8

?8 (@′8) − 28 (@′8), 8 = 1, . . . , =. (5.1d)

Constraints (5.1b), (5.1c), and (5.1d) are the Market Clearing, Revenue Adequacy,
and Competitive Equilibrium conditions, respectively. Constraint (5.1d) can also be
equivalently expressed as

?8 (@8) − 28 (@8) ≥ ?8 (@′8) − 28 (@′8) ∀@′8 ≠ @8, 8 = 1, . . . , =. (5.2)

The key difference between EC pricing and the existing methods for pricing in non-
convex markets is that it directly minimizes the total paid cost and seeks to find both
the optimal allocations @∗

8
and the optimal price functions ?∗

8
(·) simultaneously. The

scheme enforces the desired economic properties as constraints, while allowing the
use of any class of price functions, rather than imposing a fixed form for the price.

Since this scheme minimizes the total payments, and does not impose any explicit
constraint on the total production cost, it would be natural to ask what happens to
the latter quantity as we minimize the former. The minimum total production cost
is defined as 2∗ =

∑=
8=1 28 (@0

8
), where

(@0
1, . . . , @

0
=) = arg min

@1,...,@=

=∑
8=1

28 (@8) (5.3a)

s.t.
=∑
8=1

@8 = 3 (5.3b)

is the “minimal production cost” solution.

Remark 5.3.1. It is easy to see, by relaxing the last constraint (5.1d), and using
constraint (5.1c), that the optimal value of the optimization problem (5.1) is bounded

127

below by the minimum total production cost. Mathematically, we have

?∗ ≥ min
@1,...,@=
?1,...,?=

=∑
8=1

?8 (@8) ≥ min
@1,...,@=

=∑
8=1

28 (@8) = 2∗

s.t.
=∑
8=1

@8 = 3 s.t.
=∑
8=1

@8 = 3

?8 (@8) ≥ 28 (@8), 8 = 1, . . . , =.

In other words, the total production cost is always upper-bounded by the total
payment. Therefore, minimizing the total payment puts a cap on the total production
cost as well, while the opposite is not true in general (minimizing the total production
cost can result in very high payments, which can be seen in, e.g., the case studies in
Figs. 5.4a and 5.5a).

Remark 5.3.2. We have imposed nearly all the desired properties as constraints in
the optimization problem (5.1), and it might not be clear whether this optimization
problemhas a solution at all. Indeed, there always exists a class of price functions for
which problem (5.1) has a solution, and further the boundmentioned in Remark 5.3.1
is achieved.

A naive choice of price function, often referred to as dictatorial pricing, is enough
to prove this claim. In fact, one can check that for any price function of the form

?8 (@8)

= 28 (@8) for @8 = @0

8

≤ 28 (@8) for @8 ≠ @0
8

problem (5.1) has an optimal solution @∗ = @0, and achieves the bound ?∗ = 2∗.

While Remark 5.3.2 asserts the existence of an optimal price function in general,
the problem may not have a solution for certain specific classes of price functions.
The key point is that problem (5.1) always allows using more sophisticated price
forms (e.g., piece-wise linear) for which it will have a solution; and for any given
choice of price form, it finds the best one, along with the optimal quantities.

Remark 5.3.3. While in most scenarios the operator is buying the commodity
from the suppliers on behalf of the consumers, and it makes sense to minimize
the total payments

∑=
8=1 ?8 (@8), in general one may seek to balance between the

consumers’ and the suppliers’ costs. In other words, one can take the objective to

128

be a linear combination of the consumers’ cost
∑=
8=1 ?8 (@8) and the suppliers’ net

cost (negative profit)
∑=
8=1(28 (@8) − ?8 (@8)). Without loss of generality, the weighted

sum can be normalized to an affine (i.e., convex) combination (1 − \)∑=
8=1 ?8 (@8) +

\
∑=
8=1(28 (@8) − ?8 (@8)) with parameter \. The optimization can be expressed as

follows.

?∗\ = min
@1,...,@=

?1,...,?=∈P

(1 − 2\)
=∑
8=1

?8 (@8) + \
=∑
8=1

28 (@8) (5.4a)

s.t.
=∑
8=1

@8 = 3 (5.4b)

?8 (@8) − 28 (@8) ≥ 0, 8 = 1, . . . , = (5.4c)

?8 (@8) − 28 (@8) ≥ max
@′
8
≠@8

?8 (@′8) − 28 (@′8), 8 = 1, . . . , =. (5.4d)

For the cases when the total payment ?∗ =
∑=
8=1 ?8 (@∗8) from the optimization

problem (5.1)matches the lower bound 2∗ =
∑=
8=1 28 (@∗8) (such as in the linear+uplift

example of Section 5.3.1), the solution from (5.4) is the same as that of (5.1), and
the prices will be insensitive to parameter \.

It is worth mentioning that our algorithm proposed in Section 5.3.2 for solving (5.1)
is also capable of handling the weighted problem (5.4). However, for the sake of
simplicity, we focus on the case of \ = 0.

To be more explicit about the class of price functions, we consider a general para-
metric form for P, specified by ?8 (@8) := ?(@8;U, V8) with two types of parameters
U ∈ R;1 , and V8 ∈ R;2 for 8 = 1, . . . , =, where parameter U is shared among all the
suppliers, and it constitutes the uniform component of the price, while parameter
V8 is specific to supplier 8. The parameters are in general constrained to be in some
bounded setsA ⊆ R;1 andB ⊆ R;2 , i.e., U ∈ A, and V8 ∈ B for all 8 = 1, . . . , =. This
parametric form is general enough that it encompasses all the assumed price forms
in the literature. In particular, the linear-plus-uplift form (?8 (@8) = _@8 + D81@8=@̂8) is
a special case of this form, where the shared parameter is the uniform price _, and
the individual parameters are the amount and location of the uplifts D8, @̂8. Using
the general parametric form, the optimization problem (5.1) can be re-expressed as
follows.

129

Parameterized Equilibrium-Constrained (EC) Pricing:

?∗ = min
@1,...,@=
U∈A

V1,...,V=∈B

=∑
8=1

?(@8;U, V8) (5.5a)

s.t.
=∑
8=1

@8 = 3 (5.5b)

?(@8;U, V8) − 28 (@8) ≥ 0, 8 = 1, . . . , = (5.5c)

?(@8;U, V8) − 28 (@8) ≥ max
@′
8
≠@8

?(@′8;U, V8) − 28 (@′8), 8 = 1, . . . , =.

(5.5d)

To show a concrete application of this general pricing scheme, we apply our frame-
work to the popular class of linear-plus-uplift price functions, which has been a
standard form considered in the electricity markets literature, e.g., [18, 136], and
minimize the uplifts. We derive closed-form solutions for the optimal quantities and
prices (for general cost functions). In this case, the total payment matches the total
cost, which is the lowest theoretically possible. In contrast, the convex hull (CH) and
minimum-uplift (MU) pricing schemes, which are the most closely related schemes
and use the same type of price functions fail to achieve this bound and typically
exhibit a large gap. The integer programming (IP) pricing, on the other hand, is
capable of achieving the bound, but only for startup+linear cost functions, and not
for more general cost functions such as startup+convex. (See Section 5.5 for more
details on the existing schemes and their comparison with EC.)

Linear+Uplift Pricing

As mentioned earlier, using a linear uniform price plus an uplift term is a common
choice of class of price functions, in practice. For this class, we have ?(@8;_, D8, @̂8) =
_@8 + D81@8=@̂8 , where _, D1, . . . , D= ≥ 0. Without loss of generality, we can assume
@̂∗
8
= @∗

8
, i.e., the optimal location of uplift coincides with the desired production

level, which is intuitive (See the e-companion for proof). The optimization problem

130

(5.5) can then be reduced to

?∗uplift = min
@1,...,@=
_≥0

D1,...,D=≥0

=∑
8=1
(_@8 + D8) (5.6a)

s.t.
=∑
8=1

@8 = 3 (5.6b)

_@8 + D8 − 28 (@8) ≥ 0, 8 = 1, . . . , = (5.6c)

_@8 + D8 − 28 (@8) ≥ max
@′
8
≠@8

_@′8 − 28 (@′8), 8 = 1, . . . , =. (5.6d)

Remark 5.3.4. From Remark 5.3.1, we know that ?∗uplift ≥ 2
∗. On the other hand,

plugging the feasible point
(
@8 = @

0
8
∀8, _ = 0, D8 = 28 (@0

8
) ∀8

)
into (5.6) results in

?∗uplift ≤ 2
∗. Therefore ?∗uplift = 2

∗.

Problem (5.6) has potentially many solutions, and the solution @8 = @0
8
∀8, _ =

0, D8 = 28 (@0
8
) ∀8 corresponds to the naive pay-as-bid scheme, which is equivalent to

having no uniform price and paying each supplier for its own cost. To obtain price
functions that are close to uniform, it is desirable to pick a solution for which the
uplifts are minimum (in ℓ1 sense, for example). That is equivalent to adding a layer
on top of the optimization problem (5.6) to pick the minimal-uplift solution among
all the solutions, i.e.,

min
q,_,u

=∑
8=1

D8 (5.7a)

s.t. (q, _, u) ∈ arg min
q,_,u

(5.6a) (5.7b)

s.t. (5.6b), (5.6c), (5.6d) (5.7c)

where q and u denote (@1, . . . , @=) and (D1, . . . , D=), respectively.

Let us define Λ as the set of all _’s for which the linear price _@ lies below all the
cost functions, i.e.,

Λ = {_ ≥ 0 | _@ ≤ 28 (@), ∀@,∀8} . (5.8)

Figure 5.1 illustrates this set for an example with three non-convex costs.

The solutions to problems (5.6) and (5.7) can be found in closed-form, and the
following summarizes the results.

131

Figure 5.1: An illustration of the set Λ for an example with 3 non-convex cost
functions. The three blue curves are the cost functions. The (dashed and solid) red
lines lie below all the cost functions and their slopes are in Λ. The (slope of the)
solid red line corresponds to the largest element of Λ.

Proposition 5.3.1. The set of optimal solutions of problem (5.6) is given by
@∗
8
= @0

8
, ∀8

_∗ ∈ Λ

D∗
8
= 28 (@∗8) − _∗@∗8 , ∀8.

Proposition 5.3.2. Problem (5.7) has a unique optimal solution as
@∗
8
= @0

8
, ∀8

_∗ = max Λ

D∗
8
= 28 (@∗8) − _∗@∗8 , ∀8.

See the e-companion for proofs.

Note that there were two potential alternatives to the two-stage optimization in (5.7)
for picking a minimum-uplift solution. One may have attempted to enforce uni-
formity as a constraint. However, the problem with this is that imposing, e.g.,
box constraints on D requires knowledge of reasonable upper-bounds on the uplifts,
which may not be available; and on the other hand, insisting on exact uniformity
makes the problem infeasible in most non-convex cases. The other alternative is
to minimize a combination of the two objectives in (5.6) and (5.7). In this case,
the weighted objective becomes

∑=
8=1(_@8 + WD8) for some appropriate constant W,

and it is not hard to show that the solution will be the same as that of the proposed
two-stage optimization.

132

5.3.2 An Efficient Approximation Algorithm
The optimization problem (5.5) defines a pricing rule that satisfies the desired prop-
erties in any non-convex market. For specific classes of cost functions, similar to
the existing approaches, one may be able to solve this optimization problem us-
ing off-the-shelf solvers. For generic non-convex cost functions, however, there
is no existing algorithm that can solve the optimization problem (5.5) to optimal-
ity. Furthermore, even finding an approximate solution, e.g., by discretizating the
variables, requires a brute-force search, which quickly becomes intractable. In this
section, we design a computationally efficient algorithm for solving the problem
(5.5) approximately, based on decomposing it into smaller pieces, which works for
general non-convex cost functions. This approximation algorithm can also be used
to provide tractable calculations of some of the other non-convex pricing rules such
as IP pricing.

Before going through the details of the algorithm, let us define the notion of an
approximate solution to (5.5), which we consider. One could define an approximate
solution as a value that is close enough, in a certain sense, to the optimal solution
(@∗1, . . . , @

∗
=, U
∗, V∗1, . . . , V

∗
=). However, no matter how close is that approximation

to the optimal solution, that per se does not guarantee anything about the properties
that the scheme will satisfy. Instead, we define an approximate solution to (5.5)
as a set of quantities @1, . . . , @= and price parameters U, V1, . . . , V= for which the
Market Clearing condition holds exactly, the Revenue Adequacy and Competitive
Equilibrium conditions are relaxed by an n , and the total payment is at most =n away
from the optimal. More formally, it is defined as follows.

Definition 5.3.1. (@1, . . . , @=, U, V1, . . . , V=) is called an n-approximate solution to
(5.5) if it satisfies

=∑
8=1

@8 = 3, (Market Clearing)

?(@8;U, V8) − 28 (@8) + n ≥ 0, 8 = 1, . . . , =, (n-Revenue Adequacy)

?(@8;U, V8) − 28 (@8) + n ≥ ?(@′8;U, V8) − 28 (@′8), ∀@′8 ≠ @8, 8 = 1, . . . , =,

(n-Competitive Equilibrium)

and
=∑
8=1

?(@8;U, V8) ≤ ?∗ + =n . (n-Economic Efficiency)

133

Given this notion of an approximate solution, we can move towards designing the
algorithm. The optimization problem (5.5) looks highly coupled, at first, since
the constraints share a lot of common variables. However, one can see that, for a
fixed value of U, the objective becomes additively separable in (@8, V8). Furthermore
(again for fixed U), constraints (5.5c),(5.5d) involve only the 8-th variables (@8, V8) for
each 8. Although the Market Clearing condition still couples the variables together,
this observation allows us to reformulate (5.5) as

?∗ = min
@1,...,@=
U∈A

=∑
8=1

68 (@8;U) (5.9a)

s.t.
=∑
8=1

@8 = 3, (5.9b)

where

68 (@;U) = min
V8∈B

?(@;U, V8) (5.10a)

s.t. ?(@;U, V8) − 28 (@) ≥ 0, (5.10b)

?(@;U, V8) − 28 (@) ≥ ?(@′;U, V8) − 28 (@′), ∀@′ ≠ @, (5.10c)

for all 8 = 1, . . . , =.

Therefore, for any fixed value of U and @8, the optimization over V8 can be done
individually, as in (5.10). What remains to address, however, is the coupling of
the variables as a result of the Market Clearing constraint. One naive approach
would be to simply try all possible choices of (@1, . . . , @=), and pick the one that
has the minimum objective value. This is very inefficient. Instead, we take a
dynamic programming approach, and group pairs of variables together, defining a
new variable as their parent. We then group the parents together, and continue this
process until we reach the root, i.e., where there is only one node. During this
procedure, at each new node 8, we need to solve the following (small) problem

68 (@;U) = min
@ 9 ,@:

6 9 (@ 9 ;U) + 6: (@: ;U)

s.t. @ 9 + @: = @,
(5.11)

for every @, where 9 and : are the children of 8. At the root of the tree, we will be
able to compute 6root(3;U). Figure 5.2 shows an example of the created binary tree
for this procedure for = = 8. This procedure can be repeated for different values of
U, and the optimal value ?∗ can be computed as minU 6root(3;U).

134

Figure 5.2: An example of the binary tree defined by Algorithm 5.4 for = = 8. The
faded circles correspond to the added dummy nodes.

The problem with recursion (5.11) is that it requires an infinite-dimensional com-
putation at every step, since the values of 68 (@;U) need to be computed for every @.
To get around this issue, we note that the variables @8 live in the bounded set [0, 3],
and hence can be discretized to lie in a finite set &, such that every possible @8 is at
most X(n) away from some point in &. Similarly, if the U and V8’s are continuous
variables, we can discretize the bounded sets A and B into some finite sets A′ and
B′, such that every point in A (or B) is at most X(n) away, in infinity-norm sense,
from some point in A′ (or B′). See the e-companion for details.

For finding an n-approximate solution, (5.10) is relaxed to

68 (@;U) = min
V8∈B ′

?(@;U, V8) (5.12a)

s.t. ?(@;U, V8) − 28 (@) + n ≥ 0, (5.12b)

?(@;U, V8) − 28 (@) + n ≥ ?(@′;U, V8) − 28 (@′), ∀@′ ≠ @,
(5.12c)

for all 8 = 1, . . . , =, and (5.11) remains the same, except the variables (@ 9 , @:) take
values in &, i.e.,

68 (@;U) = min
@ 9 ,@:∈&

6 9 (@ 9 ;U) + 6: (@: ;U)

s.t. @ 9 + @: = @,
(5.13)

for all 8 > =. We denote the optimizer of (5.12) by 18 (@;U), and the optimizer
of (5.13), which is a pair of quantities (@ 9 , @:), by G8 (@;U). The full procedure is
summarized in psuedocode in Algorithm 5.4.

While not immediately clear, the proposed approximation algorithm can be shown
to run in time that is polynomial in both = and 1/n (in fact, linear in =). Further,
the solution it provides is n-accurate under a mild smoothness assumption on the
cost and price functions, which holds true for almost any function considered in

135

Algorithm 5.4 Find an n-approximate solution to the optimal pricing problem (5.5).
1: Input: =, 21(·), . . . , 2= (·), ?(·; ·), n
2: for U in A′ do
3: (= 1 : =
4: for [dofor the leaves]8 in (
5: compute 68 (@;U) for all @ in &, using (5.12)
6: end for
7: while [dowhile not reached the root]|(| > 2
8: (new = ((end) + 1 : ((end) + d |(|2 e
9: for [dofor the intermediate nodes]8 in (new
10: [9 , :] = indices of children of 8
11: if : = ∅ then
12: 68 (·;U) = 6 9 (·;U)
13: else[it has two children]
14: compute 68 (@;U) for all @ in &, using (5.13)
15: end if
16: end for
17: (= (new
18: end while
19: [9 , :] = (
20: compute 6root(3;U), using (5.13) # at the root
21: end for
22: U∗ = arg min

U∈A ′
6root(3;U)

23: @∗root = 3
24: for 8 = root : −1 : = + 1 do
25: [@∗

9
, @∗

:
] = G8 (@∗8 ;U∗), where [9 , :] = indices of children of 8

26: end for
27: for 8 = = : −1 : 1 do
28: V∗

8
= 18 (@∗8 ;U∗)

29: end for
30: return (@∗1, . . . , @

∗
=, U
∗, V∗1, . . . , V

∗
=)

136

the literature. These two results are summarized in the following theorem, which is
proven in the e-companion.

Theorem 5.3.1. Consider 28 (·) and ?(·; ·) that have at most a finite number of
discontinuities and are Lipschitz on each continuous piece of their domain. Algo-
rithm 5.4 finds an n-approximate solution to the optimal pricing problem (5.5) with
running time $

(
=(1/n);1+;2+2

)
, where = is the number of suppliers, and ;1 and ;2

are the number of shared and individual parameters in the price, respectively.

It is worth emphasizing that while there are ;1 + =;2 variables in the price functions
in total, parameters ;1 and ;2 do not scale with =, and are typically very small
constants. For example, for the so-called linear-plus-uplift price functions ;1 = ;2 =
1. Therefore, the algorithm is very efficient.

We should also remark that if one requires the total payment in Definition 5.3.1 to
be at most n (rather than =n) away from the optimal ?∗, the running time of our
algorithm will still be polynomial in both = and 1/n , i.e., $

(
=3(1

n
);1+;2+2

)
. See the

e-companion for details.

5.4 Equilibrium-Constrained Pricing for Networked Markets
We now consider the more general problem of finding an efficient pricing scheme
in a networked market. The networked market we consider has = suppliers, located
at the nodes (vertices) + = {1, . . . , =} of a network, and connected through lines
(edges) � , where, without loss of generality, the edges are defined to be from the
smaller node to the larger node (i.e., ∀(8, 9) ∈ �, 8 < 9). The 8-th supplier has a cost
function 28 (@8) for producing quantity @8, which may be non-convex, as before, and
there is an inelastic demand 38 at each node 8. The lines connecting the nodes can
possibly have certain capacities for the flows they can carry. We denote the flow of
any line 4 = (8, 9), from 8 to 9 , by 54, and its limits (capacity) by 54 and 54 (the flow
from 9 to 8 is − 54).

Note that if there are multiple suppliers co-located in a market, we can simply assign
them each their own vertex, and connect them through paths with infinite capacities.
In other words, a node with multiple suppliers can be simply replaced with a “line
graph” composed of those suppliers and infinite-capacity edges.

5.4.1 Pricing Formulation
A key benefit of EC pricing is the ease of generalization to the networked setting.
There are no current pricing rules that can be readily applied to the networked

137

case. In this setting, our Equilibrium-Constrained pricing can be formulated as the
following optimization problem.

Networked Equilibrium-Constrained (EC) Pricing:

?∗ = min
@1,...,@=
{ 54}4∈�

?1,...,?=∈P

=∑
8=1

?8 (@8) (5.14a)

s.t. @8 − 38 =
∑
9

(8, 9)∈�

5(8, 9) −
∑
9

(9 ,8)∈�

5(9 ,8) , 8 = 1, . . . , = (5.14b)

54 ≤ 54 ≤ 54, 4 ∈ � (5.14c)

?8 (@8) − 28 (@8) ≥ 0, 8 = 1, . . . , = (5.14d)

?8 (@8) − 28 (@8) ≥ max
@′
8
≠@8

?8 (@′8) − 28 (@′8), 8 = 1, . . . , =. (5.14e)

The objective is the total payment, as discussed before, and the optimization is over
quantities @8, line flows 54, and price functions ?8 ∈ P. Constraint (5.14b) is the
Market Clearing condition (or Flow Conservation) for each individual node, i.e., the
net production at each node should be equal to its outgoing flow. Constraint (5.14c)
enforces the line limits (Capacity Constraints). Constraints (5.14d) and (5.14e) are
Revenue Adequacy and Competitive Equilibrium, respectively, as before. The key
difference between the networked setting and the single-market one is that here the
Market Clearing condition is spread across the network, and we have to solve the
problem for the flows as well.

Remark 5.4.1. When the capacity constraints (5.14c) are relaxed (54 = −∞, 54 =
∞, ∀4 ∈ �), the networked problem reduces to the single-market one. In this case,
the solution to the optimization problem (5.14) reduces to that of (5.1). That is
because the only constraint involving the flows would be (5.14b), and we can always
find flows that satisfy it, as long as

∑=
8=1 @8 −

∑=
8=1 38 = 0, which is the conventional

Market Clearing condition.

Assuming a parametric form ?8 (@8) B ?(@8;U, V8) for P, with shared parameters
U and individual parameters V8 as before, the proposed pricing can be expressed as
follows.

138

Parameterized Networked Equilibrium-Constrained (EC) Pricing:

?∗ = min
@1,...,@=
{ 54}4∈�
U∈A

V1,...,V=∈B

=∑
8=1

?(@8;U, V8) (5.15a)

s.t. @8 − 38 =
∑
9

(8, 9)∈�

5(8, 9) −
∑
9

(9 ,8)∈�

5(9 ,8) , 8 = 1, . . . , = (5.15b)

54 ≤ 54 ≤ 54, 4 ∈ � (5.15c)

?(@8;U, V8) − 28 (@8) ≥ 0, 8 = 1, . . . , = (5.15d)

?(@8;U, V8) − 28 (@8) ≥ max
@′
8
≠@8

?(@′8;U, V8) − 28 (@′8), 8 = 1, . . . , =

(5.15e)

5.4.2 An Efficient Approximation Algorithm
For certain classes of non-convexities, the optimization problem (5.15) can still be
solved using off-the-shelf solvers, similar to those used in the other methods for the
no-network case. However, those algorithms cannot handle more general classes of
non-convexities. In this section, we develop a computationally efficient approxima-
tion algorithm for general non-convex costs, for a special class of networks.

A special yet important class of networks are acyclic networks, which are a typical
topology in many markets, including electricity distribution networks. Acyclic
networks have a tree topology (they do not have cycles), which allows us to devise
an efficient algorithm for them. In the remainder of this section, we limit our attention
to these networks. The main ideas extend directly to more general networks, as long
as there are not “too many cycles” in the network in some sense (i.e., bounded
tree-width networks). We have focused on the acyclic case due to space constraints.

Without loss of generality, let us denote the first node as the root of the tree, and
nodes with only one neighbor as the leaves. Every node (except the root) has a
unique parent, defined as the first node on the unique path connecting it to the root
node. The set of nodes that have a given node 8 as their parent is said to be node 8’s
children. It can be shown that any tree with arbitrary degree can be transformed into
a binary tree, i.e., a tree where each node has a unique parent and at most 2 children,
with $ (=) nodes (see the e-companion). Thus, we can focus on binary trees.

For a node 8, let ch1(8), ch2(8) denote its children (ch1(8) = ∅ and/or ch2(8) = ∅
when 8 has less than two children). The problem can then be written as

139

?∗ = min
@1,...,@=
51,..., 5=
U∈A

V1,...,V=∈B

=∑
8=1

?(@8;U, V8) (5.16a)

s.t. @8 − 38 = 5ch1 (8) + 5ch2 (8) − 58, 8 = 1, . . . , = (5.16b)

58 ≤ 58 ≤ 58, 8 = 1, . . . , = (5.16c)

?(@8;U, V8) − 28 (@8) ≥ 0, 8 = 1, . . . , = (5.16d)

?(@8;U, V8) − 28 (@8) ≥ max
@′
8
≠@8

?(@′8;U, V8) − 28 (@′8), 8 = 1, . . . , =

(5.16e)

where 58 represents the incoming flow to each node 8 from its parent, and 5root =

5root = 0.

Similarly as in the single-market case, we define an n-approximate solution to this
problem.

Definition 5.4.1. (@1, . . . , @=, 51, . . . , 5=, U, V1, . . . , V=) is called an n-approximate
solution to (5.16) if it satisfies

|@8 − 38 − 5ch1 (8) − 5ch2 (8) + 58 | ≤ n, 8 = 1, . . . , =, (n-Load Balancing)

58 ≤ 58 ≤ 58, 8 = 1, . . . , =, (Flow Limit)

?(@8;U, V8) − 28 (@8) + n ≥ 0, 8 = 1, . . . , =, (n-Revenue Adequacy)

?(@8;U, V8) − 28 (@8) + n ≥ ?(@′8;U, V8) − 28 (@′8), ∀@′8 ≠ @8, 8 = 1, . . . , =,

(n-Competitive Equilibrium)
=∑
8=1

?(@8;U, V8) ≤ ?∗ + =n . (n-Economic Efficiency)

The main difference from the definition in the single-market case is that the Market
Clearing condition has been replaced with n-Load Balancing and exact Flow Limit
conditions here.

Note that the minimization over the variables V8 in problem (5.16) can be done

140

“internally,” and the problem can be re-expressed as

?∗ = min
@1,...,@=
51,..., 5=
U∈�

=∑
8=1

68 (@8;U) (5.17a)

s.t. @8 − 38 = 5ch1 (8) + 5ch2 (8) − 58, 8 = 1, . . . , = (5.17b)

58 ≤ 58 ≤ 58, 8 = 1, . . . , = (5.17c)

where

68 (@;U) = min
V8∈B

?(@;U, V8) (5.18a)

s.t. ?(@;U, V8) − 28 (@) ≥ 0, (5.18b)

?(@;U, V8) − 28 (@) ≥ ?(@′;U, V8) − 28 (@′), ∀@′ ≠ @, (5.18c)

for all 8 = 1, . . . , =.

The key insight is that the tree structure of the constraints (5.17b) allows us to write
the optimization problem in a recursive form as follows.

?∗ = min
U

ℎroot(0;U) (5.19)

where

ℎ8 (58;U) = min
@8 , 5ch1 (8) , 5ch2 (8)

68 (@8;U) + ℎch1 (8) (5ch1 (8);U) + ℎch2 (8) (5ch2 (8);U) (5.20a)

s.t. @8 − 38 = 5ch1 (8) + 5ch2 (8) − 58 (5.20b)

5ch1 (8) ≤ 5ch1 (8) ≤ 5ch1 (8) (5.20c)

5ch2 (8) ≤ 5ch2 (8) ≤ 5ch2 (8) (5.20d)

for all 8 = 1, . . . , =.

Now, this recursive form is amenable to dynamic programming. However, since
the variables are continuous, each step still requires an infinite-dimensional search.
In order to tackle this issue, we can discretize the variables and solve the following
approximate version.

ℎ8 (58;U) = min
@8∈&8

5ch1 (8)∈�ch1 (8)
5ch2 (8)∈�ch2 (8)

68 (@8;U) + ℎch1 (8) (5ch1 (8);U) + ℎch2 (8) (5ch2 (8);U) (5.21a)

s.t. |@8 − 38 − 5ch1 (8) − 5ch2 (8) + 58 | ≤ n (5.21b)

141

Algorithm 5.5 Find an n-approximate solution to the optimal networked pricing
problem (5.16).
1: Input: G=(V,E), 21(·), . . . , 2= (·), ?(·; ·), n
2: for U in A′ do
3: for all nodes 8 do
4: compute 68 (@8;U) for all @8 in &8, using (5.22)
5: end for
6: for all nodes 8 ≠root (in bottom-up order) do
7: compute ℎ8 (5 ;U) for all 5 in �8, using (5.21)
8: end for
9: compute ℎroot(0;U), using (5.21)
10: end for
11: U∗ = arg min

U∈A ′
ℎroot(0;U)

12: 5 ∗root = 0
13: for all nodes 8 (in top-down order) do
14: [@∗

8
, 5 ∗ch1 (8) , 5

∗
ch2 (8)] = H8 (5

∗
8

;U∗)
15: V∗

8
= 18 (@∗8 ;U∗)

16: end for
17: return (@∗1, . . . , @

∗
=, 5
∗
1 , . . . , 5

∗
= , U

∗, V∗1, . . . , V
∗
=)

for all 8 = 1, . . . , =, where &1, . . . , &= and �1, . . . , �= are properly-defined discrete
sets (see the e-companion for details). We denote the optimizer (triple) of (5.21) by
H8 (58;U).

68 (@;U) = min
V8∈B ′

?(@;U, V8) (5.22a)

s.t. ?(@;U, V8) − 28 (@) + n ≥ 0, (5.22b)

?(@;U, V8) − 28 (@) + n ≥ ?(@′;U, V8) − 28 (@′), ∀@′ ≠ @,
(5.22c)

for all 8 = 1, . . . , =. The optimizer of (5.22) is denoted by 18 (@;U).

The steps of the procedure are summarized in psuedocode in Algorithm 5.5, and the
following result summarizes the theoretical guarantee of the algorithm.

Theorem 5.4.1. Consider 28 (·) and ?(·; ·) that have at most a finite number of
discontinuities and are Lipschitz on each continuous piece of their domain. Algo-
rithm 5.5 finds an n-approximate solution to the optimal networked pricing problem
(5.16), with running time $

(
=(1/n);1+max{;2,1}+2

)
, where = is the number of suppli-

ers, and ;1 and ;2 are the number of shared and individual parameters in the price,
respectively.

142

It is worth mentioning that the network algorithm developed in this section suggests
another way of solving the no-network case as well, by replacing the single market
with a line graph with infinite capacities. This algorithm will, in turn, have time
complexity $

(
=(1

n
);1+;2+2

)
, which is the same as that of the one developed in

Section 5.3.2.

5.5 Existing Pricing Schemes
In this section, we review the existing pricing schemes in the literature and summa-
rize their properties. No prior pricing rule for general non-convex markets satisfies
all the properties discussed in Section 5.2.2. However, it is possible to achieve all the
properties in the case when the cost functions are convex via a classical approach:
shadow pricing. We first briefly illustrate how shadow pricing works for the convex
case, and then survey some prominent approaches in the literature that seek to extend
the properties of shadow pricing to the non-convex case, contrasting them with the
EC scheme.

5.5.1 Pricing in Convex Markets
When the cost functions 28 (·) are convex, a simple and uniform pricing rule, often
referred to as shadow pricing ormarginal-cost pricing [142, 143], can achieve all the
above-mentioned properties. The pricing scheme works as follows. The operator
first solves the convex program

min
@1,...,@=

=∑
8=1

28 (@8) (5.23a)

s.t.
=∑
8=1

@8 = 3 (_) (5.23b)

where _ is the dual variable corresponding to the load-balance constraint. Let
@∗1, . . . , @

∗
= and _∗ denote an optimal primal-dual pair of this problem (if there are

multiple dual solutions, take _∗ to be the smallest). A payment function of the form

?8 (@8) = _∗@8 8 = 1, . . . , = (5.24)

satisfies all the properties outlined in Section 5.2.2, and it is relatively straightforward
to see that.

For simplicity assume that 28 (·) are differentiable. The optimal solution of (5.23)

143

Figure 5.3: An illustration of shadow pricing for the case of 3 convex cost functions.
The points indicated by ∗ show the optimal quantities. The 3 functions have the same
derivative at their optimal quantities, and the tangent line lies below the function
(because of convexity). The red (solid) line that passes through the origin is the
uniform price function, which is parallel to the three lines.

satisfies the following (KKT) conditions (which does not require convexity):
∑=
8=1 @

∗
8
= 3

328
3@8
(@∗
8
) = _∗, 8 = 1, . . . , =.

Next, note that supplier 8’s profit-maximization problem is

max
@8

_∗@8 − 28 (@8).

Since 28 (·) is convex, the objective is concave, and any point at which the derivative
is zero, is a global maximizer. In particular, the derivative at @∗

8
is zero because

of the KKT conditions, and therefore that is a solution to the supplier 8’s profit-
maximization problem. As a result, the scheme supports a competitive equilibrium
that clears the market and minimizes the production cost, while using a price form
that is simple and uniform. Figure 5.3 illustrates the optimal quantities and the price
function for an example with three suppliers.

Note that the total payment of this scheme is
∑=
8=1 ?8 (@∗8) = _∗3, which can be

generally higher than
∑=
8=1 28 (@∗8). One can always opt for a non-uniform affine price

function as ?8 (@8) = _∗@8 + 18, with 18 = 28 (@∗8) − _∗@∗8 , which has lower payments,
and makes

∑=
8=1 ?8 (@∗8) exactly equal to

∑=
8=1 28 (@∗8). However, if one requires a

uniform and linear price function, it can be shown that ?8 (@8) = _∗@8 has the lowest
total payment among all such functions.

144

Table 5.1: A summary of common pricing schemes and their properties. IP: Integer
Programming. MU: Minimum Uplift. CH: Convex Hull. SLR: Semi-Lagrangean
Relaxation. PD: Primal-Dual. EC: Equilibrium-Constrained.

Scheme\Property
Price form
?8 (@8) =

Proposed for
28 (@8) =

Market
Clearing

Revenue
Adequate

Supports
Competitive
Equilibrium

Economically
Efficient

Shadow
Pricing _@8 Convex X X X X

IP _@8 + D81@8>0 Startup+linear X X X X

MU/CH _@8 + D81@8=@∗8 Startup+convex X X X ×

SLR _@8 Startup+linear X X × ×

PD _@8 Startup+linear X X × ×

EC
(proposed) User-specified General X X X X

The results in this table assume solving the formulation for each scheme exactly. However, in
practice, these schemes rely on numerical solvers for their problems, and if the problem is
non-convex, there is no guarantee of maintaining these properties in general. In particular, the IP
scheme requires a non-convex solver. The MU/CH, SLR, and PD schemes, for the cost functions
that they are proposed for (i.e., startup+convex or startup+linear), require only convex solvers and
therefore satisfy the checked properties exactly. The EC scheme is accompanied by an efficient
algorithm for solving the non-convex problem for general cost functions, which satisfies the
exact Market Clearing property and the n-approximate versions of the other three properties (see
Section 5.3.2).

5.5.2 Pricing in Non-Convex Markets
If the cost functions are non-convex, the approach of shadow pricing, described
above, fails. This is because the net profit of each supplier is no longer a concave
function, and its stationary points do not necessarily correspond to the maximum.
In other words, there may not be a subderivative at @∗

8
supporting the cost function

28 (·).

There have been several schemes proposed in the literature that attempt to address
this issue and design pricing rules that satisfy the properties discussed above in
the context of non-convex cost functions. We review the most promising ones here.
Some of the schemes maintain a uniform pricing rule with additional discriminatory
side-payments called “uplifts” for incentivizing the suppliers to follow the dispatch,
while others raise the uniform price so that it is revenue-adequate. A summary of
the pricing schemes, along with their properties, is provided in Table 5.1.

145

Integer Programming (IP)

A pricing scheme was proposed for non-convex cost functions that are in the form
of a fixed (start-up) cost plus a linear marginal cost, sometimes referred to as “IP
pricing” [17]. This scheme uses uniform marginal pricing for the commodity and
discriminatory pricing for the integral activity of the suppliers. It is based on (i)
formulating an optimization similar to (5.23), as a mixed integer linear program
(MILP) and solving it for optimal allocations, (ii) reformulating the original MILP
as an LP by replacing the integral constraints with forcing commitment choices equal
to their optimal values, and (iii) solving the LP problem and using the dual variable _
of Market Clearing constraint as the uniform price and the dual variables {D∗

8
} of the

forced equality constraints as discriminatory uplifts: ?8 (@8) = _∗@8 + D∗8 1 {@8 > 0}.

IP pricing uses a uniform price plus a discriminatory uplift to clear the market
efficiently such that every supplier’s net profit is zero. As a result, both total
payments and total production costs are minimized at the same time. It is shown
that the optimal solutions generated by IP pricing are optimal to the decentralized
profit maximization problems for every supplier and thus they support a competitive
equilibrium [17]. However, IP pricing assumes knowledge of the optimal solutions
to the unit commitment problem and thus is not intended as a practical approach
to find the optimal allocation. [18] point out that uniform price generated under IP
pricing can be volatile (i.e., a small change in demand could lead to a big change in
the uniform price) and uplifts could be generally very large.

Minimum Uplift (MU) / Convex Hull (CH)

To avoid the unwanted properties of IP pricing (i.e., volatility and instability), a
pricing scheme, proposed in [18] for the (non-convex) class of startup-plus-convex
cost functions, offers minimum uplifts that incentivize each supplier to follow the
dispatch rather thanmaximize their own profits in the absence of uplifts. The scheme
is based on solving the mixed-integer program minimizing the total production cost
and minimizing total uplifts. Given a fixed uniform price _, each supplier chooses
between following the dispatch to receive the uplifts or not. The uplifts can be
viewed as the extra potential profit that the suppliers can make by self-scheduling
and maximizing their own profit. Researchers refined the MU pricing and proposed
the concept of Convex Hull pricing , which is based on (i) replacing the non-
convex cost of the original program with its convex hull to formulate a new LP, (ii)
solving the new LP and using the dual variable of Market Clearing constraint as the

146

marginal price and deriving the lost opportunity cost (LOC) as the minimum uplifts
to incentivize suppliers’ compliance. The final payment ?8 (@8, I8) as a function of
quantity @8 and commitment choice I8 is in the form of a uniform price _∗ and a
discriminatory uplift D∗

8
as ?8 (@8) = _∗@8 + D∗8 1

{
@8 = @

∗
8

}
.

Even though MU/CH pricing minimizes total uplifts, the generated marginal price
might end up being high, and the payments can be much higher than those of the
other schemes. In general, the total payments under this scheme might end up
being much higher than the total production costs, which defeats the purpose of
minimizing the costs. Even for the class of startup-plus-linear cost functions, where
IP pricing is optimal (the total payment is equal to the total production cost, and they
are both minimal), MU pricing is not economically efficient, as it fails to minimize
the payments.

On the computational side, although the work of [141] proposes a polynomially-
solvable primal formulation for the Lagrangian dual problem by explicitly describing
the convex hull for piecewise linear or quadratic cost functions, describing the
convex hull of cost functions could be very challenging in general and thus makes
the problem computationally intractable.

As an aside, MU and CH would not be equivalent if the Market Clearing constraint
was an inequality. In that case, the side-payments in CH would be typically larger
than those in MU, due to Product Revenue Shortfall [19].

Semi-Lagrangean Relaxation (SLR)

The work of [139] introduced a semi-Lagrangean relaxation approach to find a uni-
formprice that is revenue-adequate at the same solution for quantity and commitment
choices as the original optimization problem, for cost functions of startup-plus-linear
form. The scheme is based on formulating and solving the SLR of mixed-integer
program (MIP) by semi-relaxing the Market Clearing constraint with standard La-
grange multiplier _. The solution under SLR satisfies the constraints in the original
MIP and makes the duality gap between MILP and SLR zero. Though the payment
function ?8 (@8) = _∗@8 under SLR pricing is high enough to avoid negative profits
for suppliers, it incentivizes the suppliers to deviate and operate at full capacity and
total payments usually end up being much higher than total costs of production.

147

Primal-Dual (PD)

Another revenue-adequate pricing scheme, proposed by [140], exploits a primal-dual
approach to derive a uniform price to guarantee that dispatched suppliers are willing
to remain in the market (revenue adequacy). The scheme works for cost functions
with the form of start-up cost plus linear cost, and the prices have shown not to
deviate much from that of [17]. The approach is based on (i) relaxing the integral
constraint of the original MILP to formulate a primal LP problem, (ii) deriving the
dual LP problem of the primal LP problem, (iii) formulating a new LP problem that
seeks to minimize the duality gap between the primal and dual problems subject
to both primal and dual constraints and (iv) adding back the integral constraints as
well as nonlinear constraints to ensure that no supplier incurs loss and solving the
new problem for optimal solutions @∗

8
, I∗
8
and _∗.

Though this scheme may be implemented using standard branch-and-cut solvers, it
is computationally intractable in general. The prices ?8 (@8) = _∗@8 and profits pro-
duced under PD do not significantly deviate from dual prices if integral constraints
are relaxed and thus are always bounded. However, as a revenue-adequate pricing
scheme, PD fails to form a competitive equilibrium as suppliers are incentivized
to operate at full capacity. In general, total payments are much higher than total
production costs.

5.6 Experimental Results
In this section, we compare and contrast EC pricing with the existing approaches
using numerical experiments on common case studies. Specifically, we compare
the payments and uplifts generated from different pricing schemes, including IP,
CH, SLR, PD, and EC. Among all these schemes, only EC allows flexibility of the
payment form. As a result, we further divide EC into one with a payment function
in the form of linear marginal price plus uplifts and another pricing with a payment
form of piecewise linear marginal prices plus uplifts. In practice, specific limits on
the number of sections and the maximum slope among all sections can be used to
further restrict EC. For convenience, we name these variations of EC in terms of
number of piecewise sections of its payment form, e.g., EC2 refers to EC with a
payment function in the form of 2 piecewise sections plus uplifts.

First, we apply all these pricing schemes to a single market example from [18],
which is a modification of Scarf’s example developed in [131]. Second, we adapt
cost functions in the modified Scarf’s example to be quadratic plus startup cost in

148

order to further explore how these schemes generalize to different cost functions.
Finally, we consider a further generalization to a simple 2-node networked market.

5.6.1 Case 1: Linear Plus Startup Cost

Table 5.2: A summary of the production characteristics in the modified Scarf’s
example.

Type Smokestack High Tech Med Tech

Capacity 16 7 6
Minimum output 0 0 2

Startup cost 53 30 0
Marginal cost 3 2 7
Quantity 6 5 5

We consider a modified Scarf’s example, as proposed in [18]. The parameters are
listed in Table 5.2. We assume that demand is inelastic with a maximum capacity
of 161 units. We restrict the payment function of EC1, EC2, EC3 and EC4 to,
respectively, have one, two, three, and four sections and impose that the marginal
price of any section cannot exceed the maximum marginal price for any supplier
operating at full capacity. Figure 5.4a shows total payments for different demand
levels while Figure 5.4c shows the corresponding uplifts of the pricing schemes
that apply, i.e., CH, EC1, EC2, EC3, and EC4. Payments of two revenue-adequate
pricing schemes, including SLR and PD, are higher than total costs in general. IP,
EC1, EC2, EC3, and EC4 achieve the minimum payments equal to total costs. CH
achieves the minimum payments at low demand levels and its total payments surpass
total costs as demand gets high. As for uplifts, EC4 achieves the smallest among
the five pricing schemes. Total uplifts of CH and EC1 are close to each other at a
low demand level and that of EC1 increases significantly when demand approaches
capacity. This is not surprising as total payments of CH go above total costs at
a high demand, making it possible for relatively smaller total uplifts. It is worth
noting that startup prices and marginal prices for IP are volatile and unstable. Figure
5.4d and 5.4e demonstrate that the more complex we allow payment functions of EC
family, the smaller total uplifts we can achieve, which means more uniform prices
are across suppliers. In practice, there is apparently a trade-off between complexity
and uniformity of payment functions among the EC family, and this will be a design
choice for the independent system operator (ISO). Overall, EC4 outperforms other
pricing schemes in terms of total payments and total uplifts.

149

(a) Total payments as a function of
demand

(b) Payment difference in percent-
age w.r.t cost as a function of de-
mand

(c) Total uplifts as a function of de-
mand

(d) Total uplifts as a function of de-
mand

(e) Total uplifts for pricing schemes
at different demand levels

Figure 5.4: An example with cost functions of the form of linear plus startup cost

5.6.2 Case 2: Quadratic Plus Startup Cost

Table 5.3: A summary of the new cost functions in the modified Scarf’s example.

Type Smokestack High Tech Med Tech

Cost function 3
16@

2 + 53 ∗ 1 {@ > 0} 2
7@

2 + 30 ∗ 1 {@ > 0} 7
6@

2

To further explore how these pricing schemes generalize to different cost functions,
we modify the cost functions of the example above. Table 5.3 describes the new
cost functions for each supplier. Since it is not clear how to generalize SLR and PD,
we focus on a comparison among IP, CH, EC1, EC2, EC3, and EC4. We restrict the
payment function of EC1, EC2, EC3, and EC4 to, respectively, have one, two, three,
and four sections with the marginal price of any section bounded by the maximum
of marginal price for any supplier operating at full capacity. As can be seen in
Figure 5.5a, EC1 EC2, EC3, and EC4 achieve the possible minimum total payments
equal to total costs. Total payments of IP and CH are both above total costs and
the gap between total payments and costs grows as demand increases. Observe
that the demand here ranges from 1 to 160 because marginal price of CH increases
dramatically at the capacity level and the plot over the interval (1, 160) would be a
flat line if the whole range were covered. Figure 5.5c shows that total uplifts of EC1

150

(a) Total payments as a function of
demand

(b) Payment difference in percent-
age w.r.t cost as a function of de-
mand

(c) Total uplifts as a function of de-
mand

(d) Total uplifts as a function of de-
mand

(e) Total uplifts for pricing schemes
at different demand levels

Figure 5.5: An example with cost functions of the form of quadratic plus startup
cost.

Figure 5.6: A schematic drawing for two connected markets with a
constraint on flow capacity.

are much larger than that of CH and EC2. At a low demand level, uplifts of EC1 and
EC2 are close to each other. As demand increases, uplifts of EC2 are a little larger
than those of CH, in order to maintain a smaller overall payment. There is a trade-
off between minimizing total payments and minimizing total costs. Allowing the
flexibility of payment function form enables EC2 to perform better than either CH or
EC1 in terms of total payments and uplifts. Figure 5.5d and 5.5e show a relationship
between complexity of payment function form and magnitude of total uplifts among
the EC family pricing schemes. As in the case of cost function being start-up plus
linear cost, it is not surprising to see that more complex payment functions tend to
allow smaller total uplifts, i.e., more uniform prices across suppliers.

151

5.6.3 A Networked Market with Capacity Constraints
One advantage EC has over all the other pricing schemes is its generality. Specifi-
cally, EC can be applied to networked markets. In this section, we divide a single
market with a fixed total demand 60 as described earlier into one market with only
med tech suppliers and the other one with the smokestack and high tech suppliers.
The cost functions of the suppliers are the same as defined earlier, i.e., linear plus
startup cost. As pictured in Figure 5.6, these two markets are connected via a
flow capacity constraint. We consider two different cases of non-uniform marginal
pricing and uniform marginal pricing for these two markets. Figure 5.7 shows how
total payments, total uplifts, and flow between these two connected markets vary as
flow capacity increases for nonuniform and uniform marginal pricing settings. The
results show that the total payments and total uplifts decrease as more flow is al-
lowed between these two markets until it reaches the demand of one market, which
means one market alone meets the total demand. Allowing non-uniform pricing
does not further reduce total payments as total payments are minimal and equal the
total costs. However, it helps reduce total uplifts, as we can see in Figure 5.7b.

(a) Total payments as a function of
flow capacity

(b) Total uplifts as a function of
flow capacity

(c) Flow between two markets as a
function of flow capacity

Figure 5.7: An example of two connected markets with a constraint on the flow
capacity.

5.7 Concluding Remarks
We study the problem of pricing in single and networked markets with non-convex
costs. Our key contribution is the proposal of a novel scheme, Equilibrium-
Constrained (EC) pricing, which optimizes for the allocations and the price pa-
rameters at the same time, while imposing the equilibrium conditions as constraints.
Our pricing framework is general in the sense that: (i) it can be used for pricing
general non-convex cost functions, (ii) it allows for using general price classes, (iii)
can be computed in polynomial-time regardless of the source of the non-convexities,
and (iv) it extends easily to networked markets.

152

This paper opens up a variety of important directions for future work. First, as this
framework enables one to use general price classes, it would be interesting to apply
it to specific classes of price functions (e.g., quadratic plus uplift, piece-wise, etc.)
and characterize the solution theoretically and/or numerically. One can then inves-
tigate the potential trade-offs between the complexity of the class and the economic
efficiency or the uniformity of the price. Second, since electricity markets are an
important application of the pricing problem studied here, it would be interesting to
evaluate the proposed scheme in practical settings for electricity markets. Our pre-
liminary exploration shows that we can achievemore efficient (lower total payments)
and less discriminatory (lower uplifts) prices with, for instance, piece-wise linear
functions. More evaluations in large-scale, practical settings should be carried out
in order to evaluate the potential of deployment.

Another important direction to pursue is the extension of our results to networked
markets with more general network structures. Our algorithm currently applies to
networks with bounded tree-width; however, beyond such networks, new ideas are
needed. Finally, our proposed pricing scheme has broader implications for non-
convex optimization problems as well. In the convex setting, dual prices are crucial
for the development of distributed optimization algorithms, but such approaches
have not been possible in non-convex settings due to the lack of pricing rules with
the desirable properties laid out in Section 5.2.2. It is now possible to explore
whether EC prices can be used as the basis for distributed optimization algorithms
in the non-convex setting.

5.A Appendix
5.A.1 Supplement to Section 5.3.1
In this section, we formally prove the reduction of the optimization problem for the
class of linear-plus-uplift functions to (5.6), and then showPropositions 5.3.1 and 5.3.2.

Reduction

Here we show that for the class of linear-plus-uplift price functions ?(@8;_, D8, @̂8) =
_@8 + D81@8=@̂8 , one can assume @̂∗

8
= @∗

8
without loss of generality, and therefore

the optimization problem (5.5) reduces to (5.6) for this class. The optimization
problem (5.5) for price function ?(@8;_, D8, @̂8) = _@8 + D81@8=@̂8 , _, D1, . . . , D= ≥ 0,

153

is as follows

?∗uplift = min
@1,...,@=
_≥0

D1,...,D=≥0
@̂1,...,@̂=

=∑
8=1
(_@8 + D81@8=@̂8) (25a)

s.t.
=∑
8=1

@8 = 3 (25b)

_@8 + D81@8=@̂8 − 28 (@8) ≥ 0, 8 = 1, . . . , = (25c)

_@8 + D81@8=@̂8 − 28 (@8) ≥ max
@′
8
≠@8

_@′8 + D81@′8=@̂8 − 28 (@
′
8), 8 = 1, . . . , =.

(25d)

The following lemma shows that this optimization problem can be reduced to (5.6),
and the optimal uplifts of (5.6) are no larger than those of (25).

Lemma 5.A.1. Given any solution (q∗, _∗, u∗, q̂∗) to the optimization problem (25),
(q∗, _∗, u, q∗) is also a solution, where

D
8
=

D∗
8
, if @̂∗

8
= @∗

8

0, o.w.
.

Proof. Proof of Lemma 5.A.1. Let us first show the feasibility of (q∗, _∗, u, q∗).
For any 8 such that @̂∗

8
≠ @∗

8
, we have that

_∗@∗8 − 28 (@∗8) ≥ 0

_∗@∗8 − 28 (@∗8) ≥ max
@′
8
≠@∗

8

_∗@′8 + D∗8 1@′8=@̂∗8 − 28 (@
′
8) ≥ max

@′
8
≠@∗

8

_∗@′8 − 28 (@′8),

which implies

_∗@∗8 + D∗8 1@∗8=@∗8 − 28 (@
∗
8) ≥ 0

_∗@∗8 + D∗8 1@∗8=@∗8 − 28 (@
∗
8) ≥ max

@′
8
≠@∗

8

_∗@′8 + D∗8 1@′8=@̂∗8 − 28 (@
′
8),

because D∗
8
= 0. Therefore (q∗, _∗, u, q∗) is feasible.

The objective value of (q∗, _∗, u, q∗) is
=∑
8=1
(_∗@∗8 + D8) =

∑
8:@̂∗

8
=@∗

8

(_∗@∗8 + D∗8) +
∑

8:@̂∗
8
≠@∗

8

_∗@∗8

=

=∑
8=1
(_∗@∗8 + D∗8 1@∗8=@̂∗8),

which is the same as that of (q∗, _∗, u∗, q̂∗), and is therefore optimal.

154

Based on this lemma, the optimization problem (25) can be reduced to (5.6).

Closed-Form Solutions

Proof. Proof of Proposition 5.3.1. In the optimization problem (5.6), the order of
variables in theminimizations does notmatter, and further, for every fixed @1, . . . , @=

and _, the minimization over each D8 can be done separately. Therefore this program
can be massaged into the following form

?∗uplift = min
@1,...,@=

(
min
_≥0

=∑
8=1

68 (@8;_)
)

(26a)

s.t.
=∑
8=1

@8 = 3, (26b)

where

68 (@8;_) = min
D8≥0

_@8 + D8 (27a)

s.t. _@8 + D8 − 28 (@8) ≥ 0, (27b)

_@8 + D8 − 28 (@8) ≥ max
@′
8
≠@8

_@′8 − 28 (@′8), (27c)

for all 8 = 1, . . . , =. Constraints (27b) and (27c) can be expressed as

_@8 + D8 ≥ 28 (@8),
_@8 + D8 ≥ 28 (@8) + max

@′
8
≠@8

_@′8 − 28 (@′8).

It follows that

68 (@8;_) = _@8 + D∗8 = 28 (@8) +max
{
0, max

@′
8
≠@8

_@′8 − 28 (@′8)
}
,

which is, of course, a function of _ and @8. Therefore we have

min
_≥0

=∑
8=1

68 (@8;_) =
=∑
8=1

28 (@8)

and the minimizers _∗ are all values _ for which max
@′
8
≠@8

_@′
8
− 28 (@′8) ≤ 0, which are

exactly the elements of Λ = {_ ≥ 0 | _@ ≤ 28 (@), ∀@,∀8} (Figure 5.1 provides a
pictorial description of these values). Finally we have the last minimization, which
is

min
@1,...,@=

=∑
8=1

28 (@8) (28a)

s.t.
=∑
8=1

@8 = 3, (28b)

155

and therefore this minimization problem has @∗
8
= @0

8
∀8 as its optimizer. We also

have D∗
8
= 28 (@∗8) − _∗@∗8 , ∀8.

Proof. Proof of Proposition 5.3.2. The steps of the proof are exactly the same as in
the previous one, except that the additional minimizer picks the _ with the smallest
total uplift

∑=
8=1 D8 (_), which corresponds to the largest element of Λ.

5.A.2 Supplement to Section 5.3.2
In this section, we prove Theorem 5.3.1 in two parts. First, we show that there exist
finite sets &,A′,B′ for which Algorithm 5.4 finds an n-approximate solution, and
we quantify the sizes of these sets as a function of n . In the second part, we analyze
the running time of Algorithm 5.4.

n-Accuracy

Let us first state a simple but useful lemma.

Lemma 5.A.2 (X-discretization). Given a set C ⊆ [!1, !1] × · · · × [!: , !:], for any
X > 0, there exists a finite set C′ such that

∀I ∈ C, ∃I′ ∈ C′ s.t. ‖I − I′‖∞ ≤ X,

and further C′ contains at most+/X: points, where+ = ∏:
8=1(!8 − !8) is a constant

(the volume of the box). C′ is said to be a X-discretization of C.

Let&,A′, andB′ denote some X-discretizations of sets [0, 3],A andB, respectively.
In other words, for every @ ∈ [0, 3], U ∈ A, and V ∈ B, there exist @′ ∈ &, U′ ∈ A′,
and V′ ∈ B′, such that |@ − @′| ≤ X, ‖U − U′‖∞ ≤ X, and ‖V − V′‖∞ ≤ X. We can
combine all these inequalities as

‖(@, U, V) − (@′, U′, V′)‖∞ ≤ X.

On the other hand, given that the cost function 28 (·) for each 8 is Lipschitz on
each continuous piece of its domain, there exists a positive constant 8 such that
|28 (@) − 28 (@′) | ≤ 8 |@ − @′|, which implies

|28 (@) − 28 (@′) | ≤ 8X. (29)

Similarly, Lipschitz continuity of ?(·; ·) implies the existence of a positive constant
 such that |?(@, U, V) − ?(@′, U′, V′) | ≤ ‖(@, U, V) − (@′, U′, V′)‖∞, which yields

|?(@, U, V) − ?(@′, U′, V′) | ≤ X. (30)

156

Using Eqs. (29),(30), we can see that, for any solution @∗1, . . . , @
∗
=, U
∗, V∗1, . . . , V

∗
= to

optimization (5.5), there exists a point @1, . . . , @=, U, V1, . . . , V=with @1, . . . , @= ∈ &,
U ∈ A′ and V ∈ B′, for which constraints (5.5c) and (5.5d) are violated at most by
(+ 8)X and (2 + 2 8)X, respectively, and the objective is larger than ?∗ at most
by = X. As a result, this point will be an n-approximate solution if

(+ 8)X ≤ n ∀8, (31)

2(+ 8)X ≤ n ∀8, (32)

= X ≤ =n . (33)

These constraints altogether enforce an upper bound on the value of X as

X ≤ �n,

for some constant �. Therefore if we pick

X =
3⌈
3
�n

⌉ , (34)

our algorithm is guaranteed to encounter an n-approximate solution while enumer-
ating the points, and & = {0, X, 2X, . . . , 3} is a valid X-discretization for [0, 3],
which has #@ =

⌈
3

�n

⌉
+ 1 = $

(
1
n

)
points. The nice thing about this particular

choice of X is that now 3 can be written as a sum of = elements in & (because
all the elements, including 3, are multiples of X), which allows us to satisfy the
Market Clearing condition exactly. Based on Lemma (5.A.2), A′ and B′ contain
#U = $

(
1
X;1

)
= $

(
1
n ;1

)
and #V = $

(
1
X;2

)
= $

(
1
n ;2

)
points.

Finally, if there are any discontinuities in the cost or price functions, we can simply
add them to our discrete sets &, A′, and B′, and since there are at most a finite

number of them, the sizes of the sets remain in the same order, i.e., #@ = $
(
1
n

)
,

#U = $

(
1
n ;1

)
, and #V = $

(
1
n ;2

)
. Next, we calculate the time complexity of

Algorithm 5.4 running on these discrete sets.

Run-Time Analysis

In this section, we show that Algorithm 5.4 has a time complexity of$
(
=(1

n
);1+;2+2

)
.

For every fixed U, we have the following computations

157

1. The leaves: We need to compute 68 (@;U) for every 8 and every @ ∈ &.
Computing each 68 (@;U) (i.e., for fixed 8, @, U) takes $ (#V#@). The reason
for that is we have to search over all V8 ∈ �′, and for each one, there are
#@ + 1 constraints to check. More explicitly, we need to (a) check $ (#V#@)
constraints, (b) compute #V objectives, and (c) find theminimum among those
#V values. All these steps together take $ (#V#@), and repeating for every 8
and @ makes it $ (=#V#2

@).

2. The intermediate nodes: In each new level, there are at most half as many
(+1) nodes as in the previous level. For each node 8 in this level, we need
to compute 68 (@;U) for every @ ∈ &. For every fixed @, there are $ (#@)
possible pairs of (@ 9 , @:) that add up to @, and therefore we need to (a) sum
$ (#@) pairs of objective values, and (b) find theminimum among them, which
take $ (#@). Hence, the computation for each node takes $ (#2

@). There are
$ (=2 +

=
4 + · · · + 2) = $ (=) intermediate nodes in total, and therefore the total

complexity of this part is $ (=#2
@).

3. The root: Finally at the root, we need to compute 6root(3;U). There are #@
possible pairs of (@ 9 , @:) that add up to 3. Therefore, we need to compute
#@ sums, and find the minimum among the resulting #@ values, which takes
$ (#@).

Putting the pieces together, the computation for all values of U takes

#U ×
(
$ (=#V#2

@) +$ (=#2
@) +$ (#@)

)
,

which in turn is $ (=#U#V#2
@). Finally, finding the minimum among the #U values

simply takes $ (#U).

The backward procedure, which finds the quantities @8 and the parameters V8, takes
just $ (=), since it is just a substitution for every node. As a result, the total
running time is $ (=#U#V#2

@), which, based on the first part (Section 5.A.2), is
$

(
=(1

n
);1+;2+2

)
.

Remark on the n-Approximation

As mentioned at the end of Section 5.3.2, if one requires the total payment in
Definition 5.3.1 to be at most n (rather than =n) away from the optimal ?∗, the
running time of our algorithm will still be polynomial in both = and 1/n , i.e.,

158

$

(
=3(1

n
);1+;2+2

)
. To see that, notice in this case (31) and (32) remain the same, and

(33) changes to = X ≤ n . Therefore, the upper bound enforced by the constraints
will be X ≤ �n

=
, for some constant �. In this case, our choice of X would be

X = 3

d 3=�n e
, and hence #@ = $

(=
n

)
. #U and #V remain the same as before. The

running time is$ (=#U#V#2
@), as computed previously, which in this case would be

$

(
=3(1

n
);1+;2+2

)
.

5.A.3 Supplement to Section 5.4
In this section, we first show the transformation of the problem on a tree to one on
a binary tree, and then prove Theorem 5.4.1.

Transformation into Binary Tree

Lemma 5.A.3. Given any tree with = nodes (suppliers), there exists a binary tree
with additional nodes which has the same solution (@∗

8
, . . . , @∗=, U

∗, V1, . . . , V=) for
those nodes as the original network. The binary tree has $ (=) nodes.

Proof. Take any node 8 that has :8 > 2 children. For any two children, introduce
a dummy parent node. For any two dummy parent nodes, introduce a new level of
dummy parent nodes. Continue this process until there are 2 or less nodes in the
uppermost layer, and then connect them to node 8 (See Fig. 5.8). The capacities of
the lines immediately connected to the children are the same as those in the original
graph. The capacities of the new lines are infinite.

The total number of introduced dummy nodes by this procedure is

$ (:8
2
+ :8

4
+ · · · + 2) = $ (:8).

Since there are 1 + :1 + :2 + · · · + := = = nodes in total in the original tree, the
number of introduced additional nodes is $ (:1 + · · · + :=) = $ (=). Therefore the
total number of nodes in the new (binary) tree is $ (=).

Proof of Theorem 5.4.1

Most of the proof is similar to the one presented in Section 5.A.2. For this reason,
we only highlight the main points. The proof consists of n-accuracy and run-time,
as before.

159

Figure 5.8: The transformation of an arbitrary-degree tree to a binary tree.

n-Accuracy
Let &1, . . . , &=, �1, . . . , �=,A′,B′ denote some X-discretizations of sets [0, 31 +
5ch1 (1) + 5ch2 (1) − 51], . . . , [0, 3= + 5ch1 (n) + 5ch2 (n) − 5=], [51, 51], . . . , [5=, 5=], A,
B, respectively. Note that if any line capacities are infinite, the intervals can be
replaced by [0,∑=

8=1 38] instead. Similarly as in Section 5.A.2, the constraints
enforce an upper bound on the value of X as X ≤ �n, for some constant �. Based

on Lemma (5.A.2), the sizes of the sets will be #@8 = $
(
1
n

)
∀8, # 58 = $

(
1
n

)
∀8,

#U = $

(
1
n ;1

)
, and #V = $

(
1
n ;2

)
.

Run-Time Analysis
For every fixed U, the run-time of the required computations is as follows.

1. The time complexity of computing 68 (@8;U) for each node 8 and each fixed
value of @8 is $ (#V#@8). Therefore, computing it for all nodes and all values
takes $ (=#V#2

@).

2. Computing ℎ8 (58;U) for each node 8 and each fixed value of 58 takes $ (#2
5
),

because there are $ (# 5) × $ (# 5) pairs of values for (5ch1 (8) , 5ch2 (8)) (@8 is
automatically determined as the closest point in&8 to 38 + 5ch1 (8) + 5ch2 (8) − 58).
Therefore, its overall computation for all nodes and all values takes $ (=#3

5
).

As a result, the overall computation takes #U ×
(
$

(
=#V#

2
@

)
+$

(
=#3

5

))
, which is

$

(
=(1

n
);1+;2+2

)
+$

(
=(1

n
);1+3

)
, or equivalently $

(
=(1

n
);1+max{;2,1}+2

)
.

160

BIBLIOGRAPHY

[1] D. Reinsel, J. Rydning, and J. F. Gantz, Worldwide global datasphere fore-
cast, 2021–2025: The world keeps creating more data — now, what do we
do with it all? Mar. 2021. [Online]. Available: https://www.idc.com/
getdoc.jsp?containerId=US46410421.

[2] S. Sengupta, S. Basak, P. Saikia, S. Paul, V. Tsalavoutis, F. Atiah, V. Ravi,
and A. Peters, “A review of deep learning with special emphasis on architec-
tures, applications and recent trends,” Knowledge-Based Systems, vol. 194,
p. 105 596, 2020.

[3] N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso, “The computa-
tional limits of deep learning,” arXiv preprint arXiv:2007.05558, 2020.

[4] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S.
Ghemawat, G. Irving, M. Isard, et al., “TensorFlow: A system for large-
scale machine learning,” in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), 2016, pp. 265–283.

[5] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A.
Desmaison, L. Antiga, andA. Lerer, “Automatic differentiation in PyTorch,”
2017.

[6] D. Chappell, “Introducing Azure machine learning,” A guide for technical
professionals, sponsored by Microsoft Corporation, 2015.

[7] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,” Ad-
vances in Neural Information Processing Systems, vol. 30, pp. 1709–1720,
2017.

[8] S. Sridharan, K. Vaidyanathan, D. Kalamkar, D. Das, M. E. Smorkalov,
M. Shiryaev, D. Mudigere, N. Mellempudi, S. Avancha, B. Kaul, et al.,
“On scale-out deep learning training for Cloud and HPC,” arXiv preprint
arXiv:1801.08030, 2018.

[9] F. A. Chudak andD.B. Shmoys, “Approximation algorithms for precedence-
constrained scheduling problems on parallel machines that run at different
speeds,” Journal of Algorithms, vol. 30, no. 2, pp. 323–343, 1999.

[10] S. Li, “Scheduling to minimize total weighted completion time via time-
indexed linear programming relaxations,” in 2017 IEEE 58th Annual Sym-
posium on Foundations of Computer Science (FOCS), Oct. 2017, pp. 283–
294. doi: 10.1109/FOCS.2017.34.

[11] S. Davies, J. Kulkarni, T. Rothvoss, J. Tarnawski, and Y. Zhang, “Schedul-
ing with communication delays via LP hierarchies and clustering,” arXiv
preprint arXiv:2004.09682, 2020.

161

[12] B. Maiti, R. Rajaraman, D. Stalfa, Z. Svitkina, and A. Vĳayaraghavan,
“Scheduling precedence-constrained jobs on related machines with com-
munication delay,” arXiv preprint arXiv:2004.10776, 2020.

[13] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy considera-
tions for deep learning in NLP,” arXiv preprint arXiv:1906.02243, 2019.

[14] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green AI,” arXiv
preprint arXiv:1907.10597, 2019.

[15] D. Amodei and D. Hernandez, AI and compute, May 2018. [Online]. Avail-
able: https://openai.com/blog/ai-and-compute/.

[16] A.Wierman, Z. Liu, I. Liu, andH.Mohsenian-Rad, “Opportunities and chal-
lenges for data center demand response,” in International Green Computing
Conference, IEEE, 2014, pp. 1–10.

[17] R. P. O’Neill, P. M. Sotkiewicz, B. F. Hobbs, M. H. Rothkopf, and W. R.
Stewart, “Efficient market-clearing prices in markets with nonconvexities,”
European Journal of Operational Research, vol. 164, no. 1, pp. 269–285,
2005.

[18] W. W. Hogan and B. J. Ring, “On minimum-uplift pricing for electricity
markets,” Electricity Policy Group, 2003.

[19] D. A. Schiro, T. Zheng, F. Zhao, and E. Litvinov, “Convex hull pricing in
electricity markets: Formulation, analysis, and implementation challenges,”
IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 4068–4075, 2016.

[20] Y. Su, X. Ren, S. Vardi, A. Wierman, and Y. He, “Communication-aware
scheduling of precedence-constrained tasks,” ACM SIGMETRICS Perfor-
mance Evaluation Review, vol. 47, no. 2, pp. 21–23, 2019. doi: 10.1145/
3374888.3374897,

[21] Y. Su, X. Ren, S. Vardi, and A. Wierman, “Communication-aware schedul-
ing of precedence-constrained tasks on related machines,” Under Review,
2020,

[22] Y. Su, J. Yu, V. Anand, and A. Wierman, “Learning-augmented energy-
aware scheduling of precedence-constrained tasks,” Under Review, 2021,

[23] G. Liao*, Y. Su*, J. Ziani, A. Wierman, and J. Huang, “The privacy paradox
and optimal bias-variance trade-offs in data acquisition,” in Proceedings of
the 2021 ACM Conference on Economics and Computation, 2021,

[24] N. Azizan, Y. Su, K. Dvĳotham, and A. Wierman, “Optimal pricing in
marketswith nonconvex costs,”Operations Research, vol. 68, no. 2, pp. 480–
496, 2020. doi: 10.1287/opre.2019.1900,

[25] E. G. Coffman and J. L. Bruno, Computer and job-shop scheduling theory.
John Wiley & Sons, 1976.

162

[26] R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM Jour-
nal on Applied Mathematics, vol. 17, no. 2, pp. 416–429, 1969.

[27] J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee, “Scheduling prece-
dence graphs in systems with interprocessor communication times,” SIAM
Journal on Computing, vol. 18, no. 2, pp. 244–257, 1989.

[28] G. Ananthanarayanan, M. C.-C. Hung, X. Ren, I. Stoica, A. Wierman,
and M. Yu, “GRASS: Trimming stragglers in approximation analytics,” in
11th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 14), Seattle, WA: USENIX Association, 2014, pp. 289–302,
isbn: 978-1-931971-09-6. [Online]. Available: https://www.usenix.
org/conference/nsdi14/technical- sessions/presentation/
ananthanarayanan.

[29] X. Ren, G. Ananthanarayanan, A. Wierman, and M. Yu, “Hopper: Decen-
tralized speculation-aware cluster scheduling at scale,” in Proceedings of the
2015 ACM Conference on Special Interest Group on Data Communication,
ser. SIGCOMM ’15, London, United Kingdom: ACM, 2015, pp. 379–392,
isbn: 978-1-4503-3542-3. doi: 10.1145/2785956.2787481. [Online].
Available: http://doi.acm.org/10.1145/2785956.2787481.

[30] M.-Y. Wu and D. D. Gajski, “Hypertool: A programming aid for message-
passing systems,” IEEE Transactions on Parallel and Distributed Systems,
vol. 1, no. 3, pp. 330–343, 1990.

[31] Y. Xu, K. Li, L. He, L. Zhang, and K. Li, “A hybrid chemical reaction opti-
mization scheme for task scheduling on heterogeneous computing systems,”
IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 12,
pp. 3208–3222, 2015.

[32] T. Yang and A. Gerasoulis, “DSC: Scheduling parallel tasks on an un-
bounded number of processors,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 5, no. 9, pp. 951–967, 1994.

[33] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 13, no. 3, pp. 260–274, 2002.

[34] F. Wu, Q. Wu, and Y. Tan, “Workflow scheduling in cloud: A survey,” The
Journal of Supercomputing, vol. 71, no. 9, pp. 3373–3418, 2015.

[35] R. Mayer, C. Mayer, and L. Laich, “The TensorFlow partitioning and
scheduling problem: It’s the critical path!” In Proceedings of the 1st Work-
shop on Distributed Infrastructures for Deep Learning, ACM, 2017, pp. 1–
6.

[36] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective strag-
gler mitigation: Attack of the clones,” in the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), 2013, pp. 185–
198.

163

[37] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha,
andE.Harris, “Reining in the outliers inMap-Reduce clusters usingMantri,”
in 9th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 10), Vancouver, BC: USENIX Association, 2010. [Online].
Available:https://www.usenix.org/conference/osdi10/reining-
outliers-map-reduce-clusters-using-mantri.

[38] V.K.Vavilapalli, A.C.Murthy, C.Douglas, S.Agarwal,M.Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth, et al., “Apache Hadoop YARN: Yet
another resource negotiator,” in Proceedings of the 4th Annual Symposium
on Cloud Computing, ACM, 2013, p. 5.

[39] M.Lin, L. Zhang,A.Wierman, and J. Tan, “Joint optimization of overlapping
phases in MapReduce,” Performance Evaluation, vol. 70, no. 10, pp. 720–
735, 2013.

[40] B. Palanisamy, A. Singh, L. Liu, and B. Jain, “Purlieus: Locality-aware
resource allocation for MapReduce in a cloud,” in Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis, ACM, 2011, p. 58.

[41] J. Tan, X. Meng, and L. Zhang, “Delay tails in MapReduce scheduling,”
ACM SIGMETRICS Performance Evaluation Review, vol. 40, no. 1, pp. 5–
16, 2012.

[42] A. Verma, L. Cherkasova, and R. H. Campbell, “Two sides of a coin:
Optimizing the schedule ofMapReduce jobs tominimize theirmakespan and
improve cluster performance,” in 2012 IEEE 20th International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems, IEEE, 2012, pp. 11–18.

[43] W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang, “Maptask scheduling in
MapReduce with data locality: Throughput and heavy-traffic optimality,”
IEEE/ACM Transactions on Networking (TON), vol. 24, no. 1, pp. 190–203,
2016.

[44] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica, “Improving
MapReduce performance in heterogeneous environments,” in Proceedings
of the 8th USENIX Conference on Operating Systems Design and Implemen-
tation, ser. OSDI’08, San Diego, California: USENIX Association, 2008,
pp. 29–42. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1855741.1855744.

[45] S. H. Hashemi, S. A. Jyothi, and R. H. Campbell, “TicTac: Accelerating dis-
tributed deep learningwith communication scheduling,”CoRR, vol. abs/1803.03288,
2018. arXiv: 1803.03288. [Online]. Available: http://arxiv.org/abs/
1803.03288.

[46] J. K. Lenstra and A. Rinnooy Kan, “Complexity of scheduling under prece-
dence constraints,” Operations Research, vol. 26, no. 1, pp. 22–35, 1978.

164

[47] O. Svensson, “Conditional hardness of precedence constrained scheduling
on identicalmachines,” inProceedings of theForty-SecondACMSymposium
on Theory of Computing, ACM, 2010, pp. 745–754.

[48] N. Bansal and S. Khot, “Optimal long code test with one free bit,” in
2009 50th Annual IEEE Symposium on Foundations of Computer Science,
pp. 453–462.

[49] L.A.Hall, A. S. Schulz, D. B. Shmoys, and J.Wein, “Scheduling tominimize
average completion time: Off-line and on-line approximation algorithms,”
Mathematics of Operations Research, vol. 22, no. 3, pp. 513–544, 1997.

[50] A. Munier, M. Queyranne, and A. S. Schulz, “Approximation bounds for a
general class of precedence constrained parallel machine scheduling prob-
lems,” in International Conference on Integer Programming and Combina-
torial Optimization, Springer, 1998, pp. 367–382.

[51] M. Queyranne and A. S. Schulz, “Approximation bounds for a general class
of precedence constrained parallel machine scheduling problems,” SIAM
Journal on Computing, vol. 35, no. 5, pp. 1241–1253, 2006.

[52] A. Bazzi and A. Norouzi-Fard, “Towards tight lower bounds for scheduling
problems,” in Algorithms-Esa 2015, Springer, 2015, pp. 118–129.

[53] M. Drozdowski, Scheduling for parallel processing. Springer, 2009.

[54] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” ACM Computing Surveys (CSUR),
vol. 31, no. 4, pp. 406–471, 1999.

[55] M. R. Garey and D. S. Johnson, Computers and intractability: A guide to
NP-completeness, 1979.

[56] A.Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou, N. Kumar,
M. Norouzi, S. Bengio, and J. Dean, “Device placement optimization with
reinforcement learning,” in International Conference on Machine Learning,
PMLR, 2017, pp. 2430–2439.

[57] Y. Gao, L. Chen, and B. Li, “Spotlight: Optimizing device placement for
training deep neural networks,” in International Conference on Machine
Learning, PMLR, 2018, pp. 1676–1684.

[58] Y. Huang, Y. Cheng, A. Bapna, O. Firat, M. X. Chen, D. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu, et al., “Gpipe: Efficient training of giant neu-
ral networks using pipeline parallelism,” arXiv preprint arXiv:1811.06965,
2018.

[59] S. Davies, J. Kulkarni, T. Rothvoss, J. Tarnawski, and Y. Zhang, “Scheduling
with communication delays via LP hierarchies and clustering II: Weighted
completion times on related machines,” in Proceedings of the 2021 ACM-
SIAM Symposium on Discrete Algorithms (SODA), SIAM, 2021, pp. 2958–
2977.

165

[60] A. Khosravi, L. L. Andrew, and R. Buyya, “Dynamic VMplacementmethod
for minimizing energy and carbon cost in geographically distributed cloud
data centers,” IEEE Transactions on Sustainable Computing, vol. 2, no. 2,
pp. 183–196, 2017.

[61] P. Henderson, J. Hu, J. Romoff, E. Brunskill, D. Jurafsky, and J. Pineau,
“Towards the systematic reporting of the energy and carbon footprints of
machine learning,” Journal of Machine Learning Research, vol. 21, no. 248,
pp. 1–43, 2020.

[62] A. Wierman, L. L. Andrew, and A. Tang, “Power-aware speed scaling in
processor sharing systems,” in IEEE INFOCOM 2009, pp. 2007–2015.

[63] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced CPU
energy,” in Proceedings of IEEE 36th Annual Foundations of Computer
Science, IEEE, 1995, pp. 374–382.

[64] S. Albers, F. Müller, and S. Schmelzer, “Speed scaling on parallel proces-
sors,” Algorithmica, vol. 68, no. 2, pp. 404–425, 2014.

[65] J.-J. Chen, H.-R. Hsu, K.-H. Chuang, C.-L. Yang, A.-C. Pang, and T.-W.
Kuo, “Multiprocessor energy-efficient scheduling with task migration con-
siderations,” in Proceedings. 16th Euromicro Conference on Real-Time Sys-
tems, 2004. ECRTS 2004., IEEE, 2004, pp. 101–108.

[66] A. Gandhi, M. Harchol-Balter, and M. A. Kozuch, “Are sleep states effec-
tive in data centers?” In 2012 International Green Computing Conference
(IGCC), IEEE, 2012, pp. 1–10.

[67] A. Paya and D. C.Marinescu, “Energy-aware load balancing and application
scaling for the cloud ecosystem,” IEEE Transactions on Cloud Computing,
vol. 5, no. 1, pp. 15–27, 2015.

[68] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Energy-efficient
resource allocation and provisioning framework for cloud data centers,”
IEEE Transactions on Network and Service Management, vol. 12, no. 3,
pp. 377–391, 2015.

[69] N. Bansal, H.-L. Chan, T.-W. Lam, and L.-K. Lee, “Scheduling for speed
bounded processors,” in International Colloquium onAutomata, Languages,
and Programming, Springer, 2008, pp. 409–420.

[70] N. Bansal, H.-L. Chan, K. Pruhs, and D. Katz, “Improved bounds for speed
scaling in devices obeying the cube-root rule,” in International Colloquium
on Automata, Languages, and Programming, Springer, 2009, pp. 144–155.

[71] N. Bansal, D. P. Bunde, H.-L. Chan, and K. Pruhs, “Average rate speed scal-
ing,” in Latin American Symposium on Theoretical Informatics, Springer,
2008, pp. 240–251.

166

[72] R. A. Carrasco, G. Iyengar, and C. Stein, “Resource cost aware scheduling,”
European Journal of Operational Research, vol. 269, no. 2, pp. 621–632,
2018.

[73] D. S. Hochbaum and D. B. Shmoys, “Using dual approximation algorithms
for scheduling problems theoretical and practical results,” Journal of the
ACM (JACM), vol. 34, no. 1, pp. 144–162, 1987.

[74] S. Irani, S. Shukla, and R. Gupta, “Algorithms for power savings,” ACM
Transactions on Algorithms (TALG), vol. 3, no. 4, 41–es, 2007.

[75] M. Li, B. J. Liu, and F. F. Yao, “Min-energy voltage allocation for tree-
structured tasks,” Journal of Combinatorial Optimization, vol. 11, no. 3,
pp. 305–319, 2006.

[76] W.-C. Kwon and T. Kim, “Optimal voltage allocation techniques for dy-
namically variable voltage processors,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 4, no. 1, pp. 211–230, 2005.

[77] S. Albers and H. Fujiwara, “Energy-efficient algorithms for flow time min-
imization,” ACM Transactions on Algorithms (TALG), vol. 3, no. 4, 49–es,
2007.

[78] N. Bansal, K. Pruhs, and C. Stein, “Speed scaling for weighted flow time,”
SIAM Journal on Computing, vol. 39, no. 4, pp. 1294–1308, 2010.

[79] P. Singh, B. Khan, A. Vidyarthi, H. Haes Alhelou, and P. Siano, “Energy-
aware online non-clairvoyant scheduling using speed scaling with arbitrary
power function,” Applied Sciences, vol. 9, no. 7, p. 1467, 2019.

[80] M. Kumar, S. C. Sharma, A. Goel, and S. P. Singh, “A comprehensive
survey for scheduling techniques in cloud computing,” Journal of Network
and Computer Applications, vol. 143, pp. 1–33, 2019.

[81] K. Pruhs, R. van Stee, and P. Uthaisombut, “Speed scaling of tasks with
precedence constraints,” Theory of Computing Systems, vol. 43, no. 1,
pp. 67–80, 2008.

[82] M. Mezmaz, N. Melab, Y. Kessaci, Y. C. Lee, E.-G. Talbi, A. Y. Zomaya,
and D. Tuyttens, “A parallel bi-objective hybrid metaheuristic for energy-
aware scheduling for cloud computing systems,” Journal of Parallel and
Distributed Computing, vol. 71, no. 11, pp. 1497–1508, 2011.

[83] Y. C. Lee and A. Y. Zomaya, “Energy conscious scheduling for distributed
computing systems under different operating conditions,” IEEETransactions
on Parallel and Distributed Systems, vol. 22, no. 8, pp. 1374–1381, 2010.

[84] S.Wallace, X.Yang,V.Vishwanath,W. E.Allcock, S. Coghlan,M. E. Papka,
and Z. Lan, “A data driven scheduling approach for power management on
hpc systems,” in SC’16: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, IEEE,
2016, pp. 656–666.

167

[85] S. Baskiyar and R. Abdel-Kader, “Energy aware DAG scheduling on het-
erogeneous systems,” Cluster Computing, vol. 13, no. 4, pp. 373–383, 2010.

[86] L. Wang, G. Von Laszewski, J. Dayal, and F. Wang, “Towards energy aware
scheduling for precedence constrained parallel tasks in a cluster withDVFS,”
in 2010 10th IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing, IEEE, 2010, pp. 368–377.

[87] V. Shekar and B. Izadi, “Energy aware scheduling for DAG structured ap-
plications on heterogeneous and DVS enabled processors,” in International
Conference on Green Computing, IEEE, 2010, pp. 495–502.

[88] J. Mei, K. Li, and K. Li, “Energy-aware task scheduling in heterogeneous
computing environments,” Cluster Computing, vol. 17, no. 2, pp. 537–550,
2014.

[89] M. Mitzenmacher, “Scheduling with predictions and the price of mispredic-
tion,” arXiv preprint arXiv:1902.00732, 2019.

[90] M. Purohit, Z. Svitkina, and R. Kumar, “Improving online algorithms via ml
predictions,” in Advances in Neural Information Processing Systems, 2018,
pp. 9661–9670.

[91] D. Rohatgi, “Near-optimal bounds for online caching with machine learned
advice,” in Proceedings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SIAM, 2020, pp. 1834–1845.

[92] H. J. Smith, T. Dinev, and H. Xu, “Information privacy research: An inter-
disciplinary review,” MIS Quarterly, vol. 35, no. 4, pp. 989–1016, 2011.

[93] A. Acquisti, I. Adjerid, R. Balebako, L. Brandimarte, L. F. Cranor, S. Ko-
manduri, P. G. Leon, N. Sadeh, F. Schaub, M. Sleeper, et al., “Nudges for
privacy and security: Understanding and assisting users’ choices online,”
ACM Computing Surveys (CSUR), vol. 50, no. 3, pp. 1–41, 2017.

[94] A. Goldfarb and C. Tucker, “Shifts in privacy concerns,” American Eco-
nomic Review, vol. 102, no. 3, pp. 349–53, 2012.

[95] M. J.Keith, S.C. Thompson, J.Hale, P.B. Lowry, andC.Greer, “Information
disclosure on mobile devices: Re-examining privacy calculus with actual
user behavior,” International Journal of Human-Computer Studies, vol. 71,
no. 12, pp. 1163–1173, 2013.

[96] G. S. Kim, S.-B. Park, and J. Oh, “An examination of factors influencing
consumer adoption of short message service (SMS),” Psychology & Mar-
keting, vol. 25, no. 8, pp. 769–786, 2008.

[97] S. Barth and M. D. De Jong, “The privacy paradox–investigating discrep-
ancies between expressed privacy concerns and actual online behavior–a
systematic literature review,” Telematics and Informatics, vol. 34, no. 7,
pp. 1038–1058, 2017.

168

[98] S. Athey, C. Catalini, and C. Tucker, “The digital privacy paradox: Small
money, small costs, small talk,” National Bureau of Economic Research,
Tech. Rep., 2017.

[99] D. Acemoglu, A. Makhdoumi, A. Malekian, and A. Ozdaglar, “Too much
data: Prices and inefficiencies in data markets,” National Bureau of Eco-
nomic Research, Tech. Rep., 2019.

[100] A. Roth and G. Schoenebeck, “Conducting truthful surveys, cheaply,” in
Proceedings of the 13th ACM Conference on Electronic Commerce, 2012,
pp. 826–843.

[101] Y. Chen, N. Immorlica, B. Lucier, V. Syrgkanis, and J. Ziani, “Optimal
data acquisition for statistical estimation,” in Proceedings of the 2018 ACM
Conference on Economics and Computation, ACM, 2018, pp. 27–44.

[102] Y. Chen and S. Zheng, “Prior-free data acquisition for accurate statistical
estimation,” in Proceedings of the 2019 ACMConference on Economics and
Computation, 2019, pp. 659–677.

[103] J. Abernethy, Y. Chen, C.-J. Ho, and B. Waggoner, “Low-cost learning via
active data procurement,” in Proceedings of the Sixteenth ACM Conference
on Economics and Computation, 2015, pp. 619–636.

[104] M.Babaioff, R.Kleinberg, andR. Paes Leme, “Optimalmechanisms for sell-
ing information,” in Proceedings of the 13th ACM Conference on Electronic
Commerce, 2012, pp. 92–109.

[105] J. Hörner and A. Skrzypacz, “Selling information,” Journal of Political
Economy, vol. 124, no. 6, pp. 1515–1562, 2016.

[106] A. Goldfarb and C. Tucker, “Online display advertising: Targeting and ob-
trusiveness,” Marketing Science, vol. 30, no. 3, pp. 389–404, 2011.

[107] D. Bergemann and A. Bonatti, “Selling cookies,” American Economic Jour-
nal: Microeconomics, vol. 7, no. 3, pp. 259–94, 2015.

[108] R. Montes, W. Sand-Zantman, and T. Valletti, “The value of personal infor-
mation in online markets with endogenous privacy,” Management Science,
vol. 65, no. 3, pp. 1342–1362, 2019.

[109] D. Bergemann and A. Bonatti, “Markets for information: An introduction,”
Annual Review of Economics, vol. 11, pp. 85–107, 2019.

[110] Y. Liu and Y. Chen, “Learning to incentivize: Eliciting effort via output
agreement,” arXiv preprint arXiv:1604.04928, 2016.

[111] Y. Liu and Y. Chen, “Sequential peer prediction: Learning to elicit effort
using posted prices,” in Thirty-First AAAI Conference on Artificial Intelli-
gence, 2017.

[112] Y. Liu and Y. Chen, “Surrogate scoring rules and a dominant truth serum
for information elicitation,” arXiv preprint arXiv:1802.09158, 2018.

169

[113] O. Dekel, F. Fischer, and A. D. Procaccia, “Incentive compatible regression
learning,” Journal of Computer and System Sciences, vol. 76, no. 8, pp. 759–
777, 2010.

[114] R.Meir and J. S. Rosenschein, “Strategyproof classification,”ACMSIGecom
Exchanges, vol. 10, no. 3, pp. 21–25, 2011.

[115] R. Meir, A. D. Procaccia, and J. S. Rosenschein, “Algorithms for strate-
gyproof classification,” Artificial Intelligence, vol. 186, pp. 123–156, 2012.

[116] J. Perote and J. Perote-Pena, “The impossibility of strategy-proof clustering,”
Economics Bulletin, vol. 4, no. 23, pp. 1–9, 2003.

[117] R. Cummings, K. Ligett, A. Roth, Z. S. Wu, and J. Ziani, “Accuracy for
sale: Aggregating data with a variance constraint,” in Proceedings of the
2015 Conference on Innovations in Theoretical Computer Science, 2015,
pp. 317–324.

[118] Y. Cai, C. Daskalakis, and C. Papadimitriou, “Optimum statistical estima-
tion with strategic data sources,” in Conference on Learning Theory, 2015,
pp. 280–296.

[119] A. Ghosh and A. Roth, “Selling privacy at auction,” in Proceedings of the
12th ACM Conference on Electronic Commerce, 2011, pp. 199–208.

[120] L. K. Fleischer and Y.-H. Lyu, “Approximately optimal auctions for selling
privacy when costs are correlated with data,” in Proceedings of the 13th
ACM Conference on Electronic Commerce, 2012, pp. 568–585.

[121] A. Ghosh, K. Ligett, A. Roth, and G. Schoenebeck, “Buying private data
without verification,” in Proceedings of the Fifteenth ACM Conference on
Economics and Computation, ACM, 2014, pp. 931–948.

[122] K. Nissim, S. Vadhan, and D. Xiao, “Redrawing the boundaries on pur-
chasing data from privacy-sensitive individuals,” in Proceedings of the 5th
Conference on Innovations in Theoretical Computer Science, 2014, pp. 411–
422.

[123] G. Liao, X. Chen, and J. Huang, “Social-aware privacy-preserving corre-
lated data collection,” in Proceedings of the Eighteenth ACM International
Symposium onMobile AdHoc Networking and Computing, 2018, pp. 11–20.

[124] R. B. Myerson, “Optimal auction design,” Mathematics of Operations Re-
search, vol. 6, no. 1, pp. 58–73, 1981.

[125] W.Trockel,Market demand: An analysis of large economieswith non-convex
preferences. Springer Science & Business Media, 2012, vol. 223.

[126] D. G. Horvitz and D. J. Thompson, “A generalization of sampling without
replacement from a finite universe,” Journal of the American Statistical
Association, vol. 47, no. 260, pp. 663–685, 1952.

170

[127] D. J. Brown, “Equilibrium analysis with non-convex technologies,” Hand-
book of Mathematical Economics, vol. 4, pp. 1963–1995, 1991.

[128] R. Guesnerie, “Pareto optimality in non-convex economies,” Econometrica:
Journal of the Econometric Society, pp. 1–29, 1975.

[129] L. A. Wolsey, “Integer programming duality: Price functions and sensitivity
analysis,” Mathematical Programming, vol. 20, no. 1, pp. 173–195, 1981.

[130] H. E. Scarf, “Mathematical programming and economic theory,”Operations
Research, vol. 38, no. 3, pp. 377–385, 1990.

[131] H. E. Scarf, “The allocation of resources in the presence of indivisibilities,”
The Journal of Economic Perspectives, vol. 8, no. 4, pp. 111–128, 1994.

[132] G. Liberopoulos and P. Andrianesis, “Critical review of pricing schemes
in markets with non-convex costs,” Operations Research, vol. 64, no. 1,
pp. 17–31, 2016.

[133] N. Azizan Ruhi, K. Dvĳotham, N. Chen, and A. Wierman, “Opportunities
for price manipulation by aggregators in electricity markets,” IEEE Trans-
actions on Smart Grid, 2017.

[134] M. Bjørndal and K. Jörnsten, “Equilibrium prices supported by dual price
functions in markets with non-convexities,” European Journal of Opera-
tional Research, vol. 190, no. 3, pp. 768–789, 2008.

[135] M. Bjørndal and K. Jörnsten, “A partitioning method that generates inter-
pretable prices for integer programming problems,” Handbook of Power
Systems II, pp. 337–350, 2010.

[136] P. R. Gribik, W. W. Hogan, and S. L. Pope, “Market-clearing electricity
prices and energy uplift,” 2007.

[137] A. L. Motto and F. D. Galiana, “Equilibrium of auction markets with unit
commitment: The need for augmented pricing,” IEEETransactions onPower
Systems, vol. 17, no. 3, pp. 798–805, 2002.

[138] F. D. Galiana, A. L. Motto, and F. Bouffard, “Reconciling social welfare,
agent profits, and consumer payments in electricity pools,” IEEE Transac-
tions on Power Systems, vol. 18, no. 2, pp. 452–459, 2003.

[139] V. Araoz and K. Jörnsten, “Semi-lagrangean approach for price discovery in
markets with non-convexities,” European Journal of Operational Research,
vol. 214, no. 2, pp. 411–417, 2011.

[140] C. Ruiz, A. J. Conejo, and S. A. Gabriel, “Pricing non-convexities in an elec-
tricity pool,” IEEE Transactions on Power Systems, vol. 27, no. 3, pp. 1334–
1342, 2012.

[141] B. Hua and R. Baldick, “A convex primal formulation for convex hull
pricing,” IEEE Transactions on Power Systems, vol. 32, no. 5, pp. 3814–
3823, 2017.

171

[142] R. Turvey, “Marginal cost,”TheEconomic Journal, vol. 79, no. 314, pp. 282–
299, 1969.

[143] P. Beato and A. Mas-Colell, “On marginal cost pricing with given tax-
subsidy rules,” Journal of Economic Theory, vol. 37, no. 2, pp. 356–365,
1985.

